-
Notifications
You must be signed in to change notification settings - Fork 15
/
Gather.py
97 lines (86 loc) · 4.05 KB
/
Gather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#
# SPDX-FileCopyrightText: Copyright (c) 2022 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
"""Reconstruction of a Gather op."""
from logging import info
import onnx
import numpy as np
import onnx_graphsurgeon as gs
from common.IndexSelectionOperator import IndexSelectionOperator
class Gather(IndexSelectionOperator):
expected_num_inputs = 2
def generate(self, input_shapes, attrs, num_indices):
assert len(input_shapes) == 1
input_shape = input_shapes[0]
dtype = np.float32
var_input = gs.Variable(name=self.new_tensor_name(), dtype=dtype, shape=input_shape)
outputs = [gs.Variable(name=self.new_tensor_name(), dtype=dtype)]
axis = attrs.get('axis', 0)
index_vals = np.arange(input_shape[axis], dtype=np.int64)
np.random.shuffle(index_vals)
index_vals = index_vals[:num_indices]
index_constant = gs.Constant(name=self.new_tensor_name(), values=index_vals)
node = gs.Node(op=self.op,
inputs=[var_input, index_constant],
outputs=outputs,
name=self.new_node_name())
node.attrs = attrs
graph = gs.Graph(nodes=[node], inputs=[var_input], outputs=node.outputs, name=node.name)
graph.name = f'{self.op}_axis{axis}_orig'
return graph
@classmethod
def reconstruct(cls, node, graph):
if cls.qualifies_for_reconstruction(node):
info(f'Reconstructing {node.op} node "{node.name}"...')
orig_axis = node.attrs.get('axis', 0)
transposes_needed = IndexSelectionOperator.insert_transposes_if_needed(
node, graph, orig_axis)
if transposes_needed:
node.attrs['axis'] = 1
axis = node.attrs.get('axis', 0)
assert axis == 1
channels_in = node.inputs[0].shape[1]
indices = node.inputs[1]
assert len(indices.shape) == 1
channels_out = indices.shape[0]
node.op = 'Conv'
node.attrs.clear()
weight_shape = (channels_out, channels_in, 1, 1)
weight_vals = np.zeros(weight_shape, dtype=np.float32)
for c_out, c_in in enumerate(indices.values.flatten()):
weight_vals[c_out, c_in, :, :] = 1
weight_constant = gs.Constant(name=f'{node.name}_tmp0', values=weight_vals)
node.inputs = [node.inputs[0], weight_constant]
graph.cleanup()
def test(self, input_shapes=None, num_indices=None, axes=None):
input_shapes = input_shapes or [(1, 5, 6, 7)]
num_indices = num_indices or 3
axes = axes or [1, 2, 3]
maxabsdiff = 0.0
for axis in axes:
attrs = dict(axis=axis)
orig_graph = self.generate(input_shapes, attrs, num_indices)
orig_path = IndexSelectionOperator.save_gs_graph(orig_graph, run_shape_inference=True)
reconstructed_graph = gs.import_onnx(onnx.load(orig_path))
for node in reconstructed_graph.nodes:
self.reconstruct(node, reconstructed_graph)
reconstructed_graph.name = orig_graph.name.replace('_orig', '_reconstructed')
reconstructed_path = IndexSelectionOperator.save_gs_graph(reconstructed_graph)
maxabsdiff_axis = self.run_comparison([orig_path, reconstructed_path],
input_shapes=input_shapes,
incremental_vals=True)
maxabsdiff = max(maxabsdiff_axis, maxabsdiff)
return maxabsdiff
def main():
op = Gather()
op.test()
if __name__ == '__main__':
main()