-
Notifications
You must be signed in to change notification settings - Fork 46
/
hello_nngen.py
434 lines (327 loc) · 12.6 KB
/
hello_nngen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
"""
NNgen: A Fully-Customizable Hardware Synthesis Compiler for Deep Neural Network
Copyright 2017, Shinya Takamaeda-Yamazaki and Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import absolute_import
from __future__ import print_function
import sys
import os
import nngen as ng
# --------------------
# (1) Represent a DNN model as a dataflow by NNgen operators
# --------------------
# data types
act_dtype = ng.int8
weight_dtype = ng.int8
bias_dtype = ng.int32
scale_dtype = ng.int8
batchsize = 1
# input
input_layer = ng.placeholder(dtype=act_dtype,
shape=(batchsize, 32, 32, 3), # N, H, W, C
name='input_layer')
# layer 0: conv2d (with bias and scale (= batchnorm)), relu, max_pool
w0 = ng.variable(dtype=weight_dtype,
shape=(64, 3, 3, 3), # Och, Ky, Kx, Ich
name='w0')
b0 = ng.variable(dtype=bias_dtype,
shape=(w0.shape[0],), name='b0')
s0 = ng.variable(dtype=scale_dtype,
shape=(w0.shape[0],), name='s0')
a0 = ng.conv2d(input_layer, w0,
strides=(1, 1, 1, 1),
bias=b0,
scale=s0,
act_func=ng.relu,
dtype=act_dtype,
sum_dtype=ng.int32)
a0p = ng.max_pool_serial(a0,
ksize=(1, 2, 2, 1),
strides=(1, 2, 2, 1))
# layer 1: conv2d, relu, reshape
w1 = ng.variable(weight_dtype,
shape=(64, 3, 3, a0.shape[-1]),
name='w1')
b1 = ng.variable(bias_dtype,
shape=(w1.shape[0],),
name='b1')
s1 = ng.variable(scale_dtype,
shape=(w1.shape[0],),
name='s1')
a1 = ng.conv2d(a0p, w1,
strides=(1, 1, 1, 1),
bias=b1,
scale=s1,
act_func=ng.relu,
dtype=act_dtype,
sum_dtype=ng.int32)
a1r = ng.reshape(a1, [batchsize, -1])
# layer 2: full-connection, relu
w2 = ng.variable(weight_dtype,
shape=(256, a1r.shape[-1]),
name='w2')
b2 = ng.variable(bias_dtype,
shape=(w2.shape[0],),
name='b2')
s2 = ng.variable(scale_dtype,
shape=(w2.shape[0],),
name='s2')
a2 = ng.matmul(a1r, w2,
bias=b2,
scale=s2,
transposed_b=True,
act_func=ng.relu,
dtype=act_dtype,
sum_dtype=ng.int32)
# layer 3: full-connection, relu
w3 = ng.variable(weight_dtype,
shape=(10, a2.shape[-1]),
name='w3')
b3 = ng.variable(bias_dtype,
shape=(w3.shape[0],),
name='b3')
s3 = ng.variable(scale_dtype,
shape=(w3.shape[0],),
name='s3')
# output
output_layer = ng.matmul(a2, w3,
bias=b3,
scale=s3,
transposed_b=True,
name='output_layer',
dtype=act_dtype,
sum_dtype=ng.int32)
# --------------------
# (2) Assign weights to the NNgen operators
# --------------------
# In this example, random floating-point values are assigned.
# In a real case, you should assign actual weight values
# obtianed by a training on DNN framework.
# If you don't you NNgen's quantizer, you can assign integer weights to each tensor.
import numpy as np
w0_value = np.random.normal(size=w0.length).reshape(w0.shape)
w0_value = np.clip(w0_value, -3.0, 3.0)
w0.set_value(w0_value)
b0_value = np.random.normal(size=b0.length).reshape(b0.shape)
b0_value = np.clip(b0_value, -3.0, 3.0)
b0.set_value(b0_value)
s0_value = np.ones(s0.shape)
s0.set_value(s0_value)
w1_value = np.random.normal(size=w1.length).reshape(w1.shape)
w1_value = np.clip(w1_value, -3.0, 3.0)
w1.set_value(w1_value)
b1_value = np.random.normal(size=b1.length).reshape(b1.shape)
b1_value = np.clip(b1_value, -3.0, 3.0)
b1.set_value(b1_value)
s1_value = np.ones(s1.shape)
s1.set_value(s1_value)
w2_value = np.random.normal(size=w2.length).reshape(w2.shape)
w2_value = np.clip(w2_value, -3.0, 3.0)
w2.set_value(w2_value)
b2_value = np.random.normal(size=b2.length).reshape(b2.shape)
b2_value = np.clip(b2_value, -3.0, 3.0)
b2.set_value(b2_value)
s2_value = np.ones(s2.shape)
s2.set_value(s2_value)
w3_value = np.random.normal(size=w3.length).reshape(w3.shape)
w3_value = np.clip(w3_value, -3.0, 3.0)
w3.set_value(w3_value)
b3_value = np.random.normal(size=b3.length).reshape(b3.shape)
b3_value = np.clip(b3_value, -3.0, 3.0)
b3.set_value(b3_value)
s3_value = np.ones(s3.shape)
s3.set_value(s3_value)
# Quantizing the floating-point weights by the NNgen quantizer.
# Alternatively, you can assign integer weights by yourself to each tensor.
imagenet_mean = np.array([0.485, 0.456, 0.406]).astype(np.float32)
imagenet_std = np.array([0.229, 0.224, 0.225]).astype(np.float32)
if act_dtype.width > 8:
act_scale_factor = 128
else:
act_scale_factor = int(round(2 ** (act_dtype.width - 1) * 0.5))
input_scale_factors = {'input_layer': act_scale_factor}
input_means = {'input_layer': imagenet_mean * act_scale_factor}
input_stds = {'input_layer': imagenet_std * act_scale_factor}
ng.quantize([output_layer], input_scale_factors, input_means, input_stds)
# --------------------
# (3) Assign hardware attributes
# --------------------
# conv2d, matmul
# par_ich: parallelism in input-channel
# par_och: parallelism in output-channel
# par_col: parallelism in pixel column
# par_row: parallelism in pixel row
par_ich = 2
par_och = 2
a0.attribute(par_ich=par_ich, par_och=par_och)
a1.attribute(par_ich=par_ich, par_och=par_och)
a2.attribute(par_ich=par_ich, par_och=par_och)
output_layer.attribute(par_ich=par_ich, par_och=par_och)
# cshamt_out: right shift amount after applying bias/scale
# If you assign integer weights by yourself to each tensor,
# cshamt (constant shift amount) must be assigned to each operator.
# a0.attribute(cshamt_out=weight_dtype.width + 1)
# a1.attribute(cshamt_out=weight_dtype.width + 1)
# a2.attribute(cshamt_out=weight_dtype.width + 1)
# output_layer.attribute(cshamt_out=weight_dtype.width + 1)
# max_pool
# par: parallelism in in/out channel
par = par_och
a0p.attribute(par=par)
# --------------------
# (4) Verify the DNN model behavior by executing the NNgen dataflow as a software
# --------------------
# In this example, random integer values are assigned.
# In real case, you should assign actual integer activation values, such as an image.
input_layer_value = np.random.normal(size=input_layer.length).reshape(input_layer.shape)
input_layer_value = input_layer_value * imagenet_std + imagenet_mean
input_layer_value = np.clip(input_layer_value, -3.0, 3.0)
input_layer_value = input_layer_value * act_scale_factor
input_layer_value = np.clip(input_layer_value,
-1 * 2 ** (act_dtype.width - 1) - 1, 2 ** (act_dtype.width - 1))
input_layer_value = np.round(input_layer_value).astype(np.int64)
eval_outs = ng.eval([output_layer], input_layer=input_layer_value)
output_layer_value = eval_outs[0]
print(output_layer_value)
# --------------------
# (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT)
# --------------------
silent = False
axi_datawidth = 32
# to Veriloggen object
# targ = ng.to_veriloggen([output_layer], 'hello_nngen', silent=silent,
# config={'maxi_datawidth': axi_datawidth})
# to IP-XACT (the method returns Veriloggen object, as well as to_veriloggen)
targ = ng.to_ipxact([output_layer], 'hello_nngen', silent=silent,
config={'maxi_datawidth': axi_datawidth})
print('# IP-XACT was generated. Check the current directory.')
# to Verilog HDL RTL (the method returns a source code text)
# rtl = ng.to_verilog([output_layer], 'hello_nngen', silent=silent,
# config={'maxi_datawidth': axi_datawidth})
# --------------------
# (6) Save the quantized weights
# --------------------
# convert weight values to a memory image:
# on a real FPGA platform, this image will be used as a part of the model definition.
param_filename = 'hello_nngen.npz'
chunk_size = 64
param_data = ng.export_ndarray([output_layer], chunk_size)
np.savez_compressed(param_filename, param_data)
# --------------------
# (7) Simulate the generated hardware by Veriloggen and Verilog simulator
# --------------------
# If you don't check the RTL behavior, exit here.
# print('# Skipping RTL simulation. If you simulate the RTL behavior, comment out the next line.')
# sys.exit()
import math
from veriloggen import *
import veriloggen.thread as vthread
import veriloggen.types.axi as axi
outputfile = 'hello_nngen.out'
filename = 'hello_nngen.v'
# simtype = 'iverilog'
simtype = 'verilator'
param_bytes = len(param_data)
variable_addr = int(
math.ceil((input_layer.addr + input_layer.memory_size) / chunk_size)) * chunk_size
check_addr = int(math.ceil((variable_addr + param_bytes) / chunk_size)) * chunk_size
tmp_addr = int(math.ceil((check_addr + output_layer.memory_size) / chunk_size)) * chunk_size
memimg_datawidth = 32
mem = np.zeros([1024 * 1024 * 256 // memimg_datawidth], dtype=np.int64)
mem = mem + [100]
# placeholder
axi.set_memory(mem, input_layer_value, memimg_datawidth,
act_dtype.width, input_layer.addr,
max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich))
# parameters (variable and constant)
axi.set_memory(mem, param_data, memimg_datawidth,
8, variable_addr)
# verification data
axi.set_memory(mem, output_layer_value, memimg_datawidth,
act_dtype.width, check_addr,
max(int(math.ceil(axi_datawidth / act_dtype.width)), par_och))
# test controller
m = Module('test')
params = m.copy_params(targ)
ports = m.copy_sim_ports(targ)
clk = ports['CLK']
resetn = ports['RESETN']
rst = m.Wire('RST')
rst.assign(Not(resetn))
# AXI memory model
if outputfile is None:
outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out'
memimg_name = 'memimg_' + outputfile
memory = axi.AxiMemoryModel(m, 'memory', clk, rst,
datawidth=axi_datawidth,
memimg=mem, memimg_name=memimg_name,
memimg_datawidth=memimg_datawidth)
memory.connect(ports, 'maxi')
# AXI-Slave controller
_saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True)
_saxi.connect(ports, 'saxi')
# timer
time_counter = m.Reg('time_counter', 32, initval=0)
seq = Seq(m, 'seq', clk, rst)
seq(
time_counter.inc()
)
def ctrl():
for i in range(100):
pass
ng.sim.set_global_addrs(_saxi, tmp_addr)
start_time = time_counter.value
ng.sim.start(_saxi)
print('# start')
ng.sim.wait(_saxi)
end_time = time_counter.value
print('# end')
print('# execution cycles: %d' % (end_time - start_time))
# verify
ok = True
for bat in range(output_layer.shape[0]):
for x in range(output_layer.shape[1]):
orig = memory.read_word(bat * output_layer.aligned_shape[1] + x,
output_layer.addr, act_dtype.width)
check = memory.read_word(bat * output_layer.aligned_shape[1] + x,
check_addr, act_dtype.width)
if vthread.verilog.NotEql(orig, check):
print('NG (', bat, x,
') orig: ', orig, ' check: ', check)
ok = False
else:
print('OK (', bat, x,
') orig: ', orig, ' check: ', check)
if ok:
print('# verify: PASSED')
else:
print('# verify: FAILED')
vthread.finish()
th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl)
fsm = th.start()
uut = m.Instance(targ, 'uut',
params=m.connect_params(targ),
ports=m.connect_ports(targ))
# simulation.setup_waveform(m, uut)
simulation.setup_clock(m, clk, hperiod=5)
init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low')
init.add(
Delay(10000000),
Systask('finish'),
)
# output source code
if filename is not None:
m.to_verilog(filename)
# run simulation
sim = simulation.Simulator(m, sim=simtype)
rslt = sim.run(outputfile=outputfile)
print(rslt)