-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lists-of-NS-equations.html
545 lines (440 loc) · 25.4 KB
/
Lists-of-NS-equations.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width">
<meta name="theme-color" content="#ddd"><meta name="generator" content="Hexo 6.2.0">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/logo_32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/logo_16x16.png">
<link rel="mask-icon" href="/images/logo.png" color="#ddd">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300italic,400,400italic,700,700italic&display=swap&subset=latin,latin-ext">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.1.1/css/all.min.css" integrity="sha256-DfWjNxDkM94fVBWx1H5BMMp0Zq7luBlV8QRcSES7s+0=" crossorigin="anonymous">
<script class="next-config" data-name="main" type="application/json">{"hostname":"example.com","root":"/","images":"/images","scheme":"Gemini","darkmode":false,"version":"8.12.1","exturl":false,"sidebar":{"position":"left","display":"post","padding":18,"offset":12},"copycode":{"enable":true,"style":null},"bookmark":{"enable":false,"color":"#222","save":"auto"},"mediumzoom":false,"lazyload":false,"pangu":false,"comments":{"style":"tabs","active":null,"storage":true,"lazyload":false,"nav":null},"stickytabs":false,"motion":{"enable":false,"async":false,"transition":{"post_block":"fadeIn","post_header":"fadeInDown","post_body":"fadeInDown","coll_header":"fadeInLeft","sidebar":"fadeInUp"}},"prism":false,"i18n":{"placeholder":"搜索...","empty":"没有找到任何搜索结果:${query}","hits_time":"找到 ${hits} 个搜索结果(用时 ${time} 毫秒)","hits":"找到 ${hits} 个搜索结果"}}</script><script src="/js/config.js"></script>
<meta name="description" content="流体流动类型众多,可以按照流体粘性种类划分,也可以按照流体压缩性划分。本文参考了 COMSOL 帮助文档,列出主要常用的各种流体流动方程,以作参考。">
<meta property="og:type" content="article">
<meta property="og:title" content="NS 方程索引">
<meta property="og:url" content="http://example.com/Lists-of-NS-equations.html">
<meta property="og:site_name" content="Day day up!">
<meta property="og:description" content="流体流动类型众多,可以按照流体粘性种类划分,也可以按照流体压缩性划分。本文参考了 COMSOL 帮助文档,列出主要常用的各种流体流动方程,以作参考。">
<meta property="og:locale" content="zh_CN">
<meta property="og:image" content="https://raw.githubusercontent.com/NChilton/Picture/main/img/202112061710021.png">
<meta property="article:published_time" content="2020-05-17T16:00:00.000Z">
<meta property="article:modified_time" content="2021-11-21T16:00:00.000Z">
<meta property="article:author" content="Chilton Nieh">
<meta property="article:tag" content="NS 方程">
<meta property="article:tag" content="流体力学">
<meta name="twitter:card" content="summary">
<meta name="twitter:image" content="https://raw.githubusercontent.com/NChilton/Picture/main/img/202112061710021.png">
<link rel="canonical" href="http://example.com/Lists-of-NS-equations.html">
<script class="next-config" data-name="page" type="application/json">{"sidebar":"","isHome":false,"isPost":true,"lang":"zh-CN","comments":true,"permalink":"http://example.com/Lists-of-NS-equations.html","path":"/Lists-of-NS-equations.html","title":"NS 方程索引"}</script>
<script class="next-config" data-name="calendar" type="application/json">""</script>
<title>NS 方程索引 | Day day up!</title>
<noscript>
<link rel="stylesheet" href="/css/noscript.css">
</noscript>
</head>
<body itemscope itemtype="http://schema.org/WebPage">
<div class="headband"></div>
<main class="main">
<header class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-container">
<div class="site-nav-toggle">
<div class="toggle" aria-label="切换导航栏" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
</div>
<div class="site-meta">
<a href="/" class="brand" rel="start">
<i class="logo-line"></i>
<p class="site-title">Day day up!</p>
<i class="logo-line"></i>
</a>
<p class="site-subtitle" itemprop="description">做人最重要的的是😀</p>
</div>
<div class="site-nav-right">
<div class="toggle popup-trigger">
</div>
</div>
</div>
<nav class="site-nav">
<ul class="main-menu menu"><li class="menu-item menu-item-home"><a href="/" rel="section"><i class="fa fa-home fa-fw"></i>首页</a></li><li class="menu-item menu-item-archives"><a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>归档<span class="badge">38</span></a></li><li class="menu-item menu-item-tags"><a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>标签<span class="badge">41</span></a></li><li class="menu-item menu-item-categories"><a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>分类<span class="badge">6</span></a></li><li class="menu-item menu-item-favorites"><a href="/favorites/" rel="section"><i class="fa fa-heart fa-fw"></i>收藏</a></li><li class="menu-item menu-item-about"><a href="/about/" rel="section"><i class="fa fa-user fa-fw"></i>关于</a></li>
</ul>
</nav>
</div>
<div class="toggle sidebar-toggle" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
<aside class="sidebar">
<div class="sidebar-inner sidebar-nav-active sidebar-toc-active">
<ul class="sidebar-nav">
<li class="sidebar-nav-toc">
文章目录
</li>
<li class="sidebar-nav-overview">
站点概览
</li>
</ul>
<div class="sidebar-panel-container">
<!--noindex-->
<div class="post-toc-wrap sidebar-panel">
<div class="post-toc animated"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#%E6%A0%87%E5%87%86-ns-%E6%96%B9%E7%A8%8B"><span class="nav-number">1.</span> <span class="nav-text">标准 NS 方程</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E6%B9%8D%E6%B5%81"><span class="nav-number">2.</span> <span class="nav-text">湍流</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E7%83%AD%E6%95%88%E5%BA%94"><span class="nav-number">3.</span> <span class="nav-text">热效应</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E4%B8%A4%E7%9B%B8%E6%B5%81"><span class="nav-number">4.</span> <span class="nav-text">两相流</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#vof-%E6%96%B9%E6%B3%95"><span class="nav-number">4.1.</span> <span class="nav-text">VOF 方法</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#level-set-%E6%96%B9%E6%B3%95"><span class="nav-number">4.2.</span> <span class="nav-text">Level-set 方法</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#ale-%E6%96%B9%E6%B3%95"><span class="nav-number">4.3.</span> <span class="nav-text">ALE 方法</span></a></li></ol></li></ol></div>
</div>
<!--/noindex-->
<div class="site-overview-wrap sidebar-panel">
<div class="site-author site-overview-item animated" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" alt="Chilton Nieh"
src="/images/logo.png">
<p class="site-author-name" itemprop="name">Chilton Nieh</p>
<div class="site-description" itemprop="description">路漫漫其修远兮,吾将上下而求索</div>
</div>
<div class="site-state-wrap site-overview-item animated">
<nav class="site-state">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">38</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/">
<span class="site-state-item-count">6</span>
<span class="site-state-item-name">分类</span></a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/">
<span class="site-state-item-count">41</span>
<span class="site-state-item-name">标签</span></a>
</div>
</nav>
</div>
<div class="links-of-author site-overview-item animated">
<span class="links-of-author-item">
<a href="https://github.com/yourname" title="GitHub → https://github.com/yourname" rel="noopener" target="_blank"><i class="fab fa-github fa-fw"></i>GitHub</a>
</span>
</div>
</div>
</div>
</div>
</aside>
<div class="sidebar-dimmer"></div>
</header>
<div class="back-to-top" role="button" aria-label="返回顶部">
<i class="fa fa-arrow-up"></i>
<span>0%</span>
</div>
<noscript>
<div class="noscript-warning">Theme NexT works best with JavaScript enabled</div>
</noscript>
<div class="main-inner post posts-expand">
<div class="post-block">
<article itemscope itemtype="http://schema.org/Article" class="post-content" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://example.com/Lists-of-NS-equations.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/logo.png">
<meta itemprop="name" content="Chilton Nieh">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Day day up!">
<meta itemprop="description" content="路漫漫其修远兮,吾将上下而求索">
</span>
<span hidden itemprop="post" itemscope itemtype="http://schema.org/CreativeWork">
<meta itemprop="name" content="NS 方程索引 | Day day up!">
<meta itemprop="description" content="">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
NS 方程索引
</h1>
<div class="post-meta-container">
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-05-18 00:00:00" itemprop="dateCreated datePublished" datetime="2020-05-18T00:00:00+08:00">2020-05-18</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar-check"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2021-11-22 00:00:00" itemprop="dateModified" datetime="2021-11-22T00:00:00+08:00">2021-11-22</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E7%A0%94%E7%A9%B6%E7%9B%B8%E5%85%B3/" itemprop="url" rel="index"><span itemprop="name">研究相关</span></a>
</span>
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<blockquote>
<p>流体流动类型众多,可以按照流体粘性种类划分,也可以按照流体压缩性划分。本文参考了
COMSOL 帮助文档,列出主要常用的各种流体流动方程,以作参考。</p>
</blockquote>
<p><img
src="https://raw.githubusercontent.com/NChilton/Picture/main/img/202111301507193.png" /></p>
<span id="more"></span>
<h2 id="标准-ns-方程">标准 NS 方程</h2>
<p>NS 方程用于描述速度场 <span
class="math inline">\(\boldsymbol{u}\)</span> 和压力场 <span
class="math inline">\(p\)</span> 的关系,可以写作 <span
class="math display">\[
\begin{align}
\underbrace{\rho \left( \frac{\partial \boldsymbol{u}}{\partial t} +
(\boldsymbol{u}\cdot\nabla) \boldsymbol{u} \right)}_\text{惯性力} &
= \underbrace{-\nabla p}_\text{压力} + \underbrace{\nabla\cdot
\boldsymbol{K}}_\text{粘性力} +
\underbrace{\boldsymbol{F}}_\text{体积力}, \label{eq_momentum} \\
\frac{\partial \rho}{\partial t} + \nabla\cdot(\rho\boldsymbol{u}) &
= 0. \label{eq_mass}
\end{align}
\]</span> 其中 <span class="math inline">\(\rho\)</span>
是流体密度,粘性力项中张量 <span
class="math inline">\(\boldsymbol{K}\)</span> 与动力粘度 <span
class="math inline">\(\mu\)</span> 和速度 <span
class="math inline">\(\boldsymbol{u}\)</span> 相关 <span
class="math display">\[
\boldsymbol{K} = \mu(\nabla
\boldsymbol{u}+(\nabla\boldsymbol{u})^\mathsf{T})-\frac{2}{3}\mu((\nabla
\cdot\boldsymbol{u})\boldsymbol{I}).
\]</span> 其中 <span class="math inline">\(\boldsymbol{I}\)</span>
是单位矩阵,<span
class="math inline">\(\nabla\boldsymbol{u}+(\nabla\boldsymbol{u})^\mathsf{T}=\boldsymbol{D}\)</span>
也被称为变形率张量。如果流体不可压,则有 <span
class="math inline">\(\text{d}\rho/\text{d}t=0\)</span>,代入方程 <span
class="math inline">\(\eqref{eq_mass}\)</span> 得 <span
class="math inline">\(\nabla\cdot\boldsymbol{u}=0\)</span>。假设流体粘度恒定,此时粘性力项可简化为
<span class="math display">\[
\begin{align*}
\nabla\cdot \boldsymbol{K} & = \nabla\cdot \left[ \mu(\nabla
\boldsymbol{u}+(\nabla\boldsymbol{u})^\mathsf{T})-\frac{2}{3}\mu((\nabla
\cdot\boldsymbol{u})\boldsymbol{I})\right] \\
& = \nabla \cdot \left[ \mu(\nabla
\boldsymbol{u}+(\nabla\boldsymbol{u})^\mathsf{T})\right] \\
& = \mu \nabla \cdot \nabla \boldsymbol{u} = \mu
\nabla^2\boldsymbol{u}.
\end{align*}
\]</span> 则不可压、粘性、层流 NS 方程可写作 <span
class="math display">\[
\begin{equation}\label{eq_ns}
\boxed{\begin{aligned}
\rho \left( \frac{\partial \boldsymbol{u}}{\partial t} +
(\boldsymbol{u}\cdot\nabla) \boldsymbol{u} \right) & = -\nabla p +
\mu \nabla^2\boldsymbol{u} + \boldsymbol{F}, \\
\nabla\cdot\boldsymbol{u} & = 0.
\end{aligned}}
\end{equation}
\]</span> 流体的可压缩性可以通过无量纲数——马赫数 <span
class="math display">\[
Ma = U/c
\]</span> 来判定,其中 <span class="math inline">\(U\)</span>
是流体特征速度, <span class="math inline">\(c\)</span>
是流体声速。按马赫数大小可分为</p>
<ul>
<li>不可压流动(<span class="math inline">\(Ma=0\)</span>)</li>
<li>弱可压缩流动(<span class="math inline">\(Ma<0.3\)</span>)</li>
<li>亚声速流动(<span class="math inline">\(Ma=0.3~0.8\)</span>
左右)</li>
<li>跨声速流动(<span class="math inline">\(Ma=0.8~1.2\)</span>
左右)</li>
<li>超声速流动(<span class="math inline">\(Ma=1.2~5.0\)</span>
左右)</li>
<li>高超声速流动(<span class="math inline">\(Ma>5.0\)</span>)</li>
</ul>
<p>不可压流动可通过方程 <span
class="math inline">\(\eqref{eq_ns}\)</span>
求解,弱可压缩流动可通过方程 <span
class="math inline">\(\eqref{eq_momentum}\)</span> 和 <span
class="math inline">\(\eqref{eq_mass}\)</span> 求解。当 <span
class="math inline">\(Ma>0.3\)</span>
需要考虑湍流效应和热效应,需要额外方程来描述流体流动特征。</p>
<p>对于不可压流动,描述湍流效应还有一重要的无量纲数——雷诺数 <span
class="math display">\[
Re=\frac{\rho UL}{\mu}=\frac{\text{惯性力}}{\text{粘性力}},
\]</span> 其中 <span class="math inline">\(L\)</span>
是流动结构特征长度。尽管不同的流动结构产生湍流效应的临界雷诺数不同,一般可认为当
<span class="math inline">\(Re>2000\)</span> 时产生湍流效应,当 <span
class="math inline">\(Re<2000\)</span> 流体流动可通过方程 <span
class="math inline">\(\eqref{eq_ns}\)</span>
求解。如果惯性力相对于粘性力可以忽略(一般 <span
class="math inline">\(Re<<1\)</span>),流体流动及其缓慢,该种流动也被称为为<strong>蠕动流</strong>。在求解时,方程
<span class="math inline">\(\eqref{eq_ns}\)</span> 中惯性项中对流项
<span class="math inline">\((\boldsymbol{u}\cdot\nabla)
\boldsymbol{u}\)</span> 可以忽略 <span class="math display">\[
\begin{equation}
\boxed{\begin{aligned}
\rho \frac{\partial \boldsymbol{u}}{\partial t} & = -\nabla p + \mu
\nabla^2\boldsymbol{u} + \boldsymbol{F}, \\
\nabla\cdot\boldsymbol{u} & = 0.
\end{aligned}}
\end{equation}
\]</span></p>
<h2 id="湍流">湍流</h2>
<h2 id="热效应">热效应</h2>
<h2 id="两相流">两相流</h2>
<p>在工程上,有时需要追踪流体的界面,此时,表面张力在界面变形中起到重要作用。如最常见的水龙头接水时,液柱界面形状变化。考虑最普通的气液两相不可压流动,如下图所示</p>
<p><img src="https://raw.githubusercontent.com/NChilton/Picture/main/img/202112061710021.png" style="zoom:50%;" /></p>
<p>若空间内气液界面 <span
class="math inline">\(\boldsymbol{s}=\boldsymbol{s}(\boldsymbol{\xi};t)\)</span>
用两个参数 <span
class="math inline">\(\boldsymbol{\xi}=(\xi_1,\xi_2)\)</span>
的参数方程表示,则界面的运动方程满足 <span class="math display">\[
\left( \frac{\partial \boldsymbol{s}(\boldsymbol{\xi};t)}{\partial
t}-\boldsymbol{u}(\boldsymbol{\xi};t) \right)\cdot\boldsymbol{n} = 0,
\]</span> 其中 <span
class="math inline">\(\boldsymbol{u}(\boldsymbol{\xi};t)\)</span>
表示位置 <span
class="math inline">\(\boldsymbol{\xi}=(\xi_1,\xi_2)\)</span>
的速度,该方程通常也简写为动力学边界条件 <span
class="math inline">\(\boldsymbol{n}\cdot(\boldsymbol{u}-\boldsymbol{u}_S)=0\)</span>,<span
class="math inline">\(\boldsymbol{u}_S\)</span>
是气液界面运动速度。如果用等值面 <span
class="math inline">\(S(\boldsymbol{s}(\boldsymbol{\xi};t);t) =
S_0\)</span> 来表示气液界面,上式可写作 <span class="math display">\[
\begin{align}\label{eq_S}
\frac{\partial S}{\partial t} + \boldsymbol{u}\cdot \nabla S = 0.
\end{align}
\]</span> 在气相和液相 <span
class="math inline">\(\Omega_1\cup\Omega_2\)</span>
中,流体流动均满足方程 <span
class="math inline">\(\eqref{eq_ns}\)</span> 。在气液界面 <span
class="math inline">\(S\)</span>
上,两侧的应力差驱动界面流动,满足界面应力平衡方程 <span
class="math display">\[
\begin{align}\label{bc_stress}
\boxed{\boldsymbol{n}\cdot[\boldsymbol{T}_i]_2^1=\gamma\kappa\boldsymbol{n},}
\end{align}
\]</span> 其中 <span class="math inline">\([x_i]_2^1=x_1-x_2\)</span>
表示物理量跨越界面时的差值,<span
class="math inline">\(\boldsymbol{T}_i=-p_i\boldsymbol{I}
\boldsymbol+\mu_i\boldsymbol{D}_i\)</span>
称为水动力应力张量(hydrodynamic stress tensor),<span
class="math inline">\(\kappa=-\nabla\cdot \boldsymbol{n}\)</span>
是界面平均曲率。如果气液两相可当作无粘流体或者均处于静止状态,则两侧压力差为
<span class="math display">\[
\Delta p=p_1-p_2=\gamma\kappa,
\]</span> 该压力差也被称为拉普拉斯压力。注意NS
方程是<strong>体方程</strong>,而方程 <span
class="math inline">\(\eqref{bc_stress}\)</span>
是<strong>表面方程</strong>。追踪界面方法有流体体积(Volume of fluid,
VOF)法、水平集(Level set,LS)法和任意拉格朗日(Arbitrary Lagrangian
Eulerian,ALE)法等。其中 VOF 和 LS 法将界面处理成一定厚度的过渡层。</p>
<h3 id="vof-方法">VOF 方法</h3>
<p>VOF 法引入相体积分数 <span class="math inline">\(c\)</span>
来实现对计算域内界面进行追踪,同时将双流体方程(气液相各一个)转化为单流体方程。流体体积分数一般设置为
<span class="math display">\[
\left\{
\begin{align*}
& c=0 & \text{气相} \\
& 0<c<1 & \text{界面} \\
& c = 1 & \text{液相}
\end{align*}.
\right.
\]</span></p>
<p>通过求出整个计算域内各网格单元的相分数,从而可以构建出界面</p>
<p><img
src="https://raw.githubusercontent.com/NChilton/Picture/main/img/202112071047804.png" /></p>
<p>在 VOF
法中,所有物理量经过界面都是渐变的,如转化为单流体方程中密度和粘度可表示为
<span class="math display">\[
\rho(c)=(1-c)\rho_1+c\rho_2,\ \mu(c)=(1-c)\mu_1+c\mu_2.
\]</span> 此时求解的单流体动量方程为 <span class="math display">\[
\begin{align}
\rho(c) \left( \frac{\partial \boldsymbol{u}}{\partial t} +
(\boldsymbol{u}\cdot\nabla) \boldsymbol{u} \right) = \nabla \cdot
\boldsymbol{T} + \boldsymbol{F_S},\label{eq_mo}
\end{align}
\]</span> 此处我们用 <span class="math inline">\(\boldsymbol{T} =
-p\boldsymbol{I} \boldsymbol+\mu(c)\boldsymbol{D}\)</span> 代替了 <span
class="math inline">\(\eqref{eq_ns}\)</span> 中的压力项和粘性项,<span
class="math inline">\(\boldsymbol{F_S}\)</span>
为表面张力导出的体积力。单流体仍然当作是不可压流体,有 <span
class="math display">\[
\frac{\text{d}\rho}{\text{d}t} = 0 \rightarrow \frac{\text{d}
\left((1-c)\rho_1+c\rho_2 \right)}{\text{d}t}=
(\rho_2-\rho_1)\frac{\text{d}c}{\text{d}t} = 0,
\]</span> 即 <span class="math display">\[
\boxed{\frac{\partial c}{\partial t}+\boldsymbol{u}\cdot\nabla c=0.}
\]</span> 该方程是不可压缩 VOF
模型中的相方程,也是最常见的对流方程,也与方程 <span
class="math inline">\(\eqref{eq_S}\)</span> 一致。VOF
模型中,界面法向向量和曲率可以写为 <span class="math display">\[
\boldsymbol{n}=\frac{\nabla c}{\left |\nabla c \right|},\ \kappa =
-\nabla \cdot \left( \frac{\nabla c}{\left |\nabla c \right|} \right).
\]</span> 为了将表面方程 <span
class="math inline">\(\eqref{bc_stress}\)</span> 考虑到 VOF
方法中,需要用到连续力(Continuum surface
force,CSF)模型,该模型将间断的压力处理成连续过渡的体积力,即(不考虑马兰戈尼效应)
<span class="math display">\[
\boldsymbol{n}\cdot(\boldsymbol{T}_1-\boldsymbol{T}_2)=\gamma\kappa\boldsymbol{n}\rightarrow
\nabla \cdot \boldsymbol{T} = \nabla (\gamma\kappa)=\gamma\kappa\nabla
c,
\]</span> 结合方程 <span class="math inline">\(\eqref{eq_mo}\)</span>
不可压缩 VOF 模型中动量方程 <span class="math display">\[
\boxed{\rho(c) \left( \frac{\partial \boldsymbol{u}}{\partial t} +
(\boldsymbol{u}\cdot\nabla) \boldsymbol{u} \right) = -\nabla p +
\nabla\cdot \left( \mu(c)\boldsymbol{D} \right) - \gamma \nabla \cdot
\left( \frac{\nabla c}{\left |\nabla c \right|} \right) \nabla c.}
\]</span></p>
<h3 id="level-set-方法">Level-set 方法</h3>
<h3 id="ale-方法">ALE 方法</h3>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/NS-%E6%96%B9%E7%A8%8B/" rel="tag"># NS 方程</a>
<a href="/tags/%E6%B5%81%E4%BD%93%E5%8A%9B%E5%AD%A6/" rel="tag"># 流体力学</a>
</div>
<div class="post-nav">
<div class="post-nav-item">
<a href="/COMSOL-simulation-of-viscous-jet.html" rel="prev" title="粘性射流非线性断裂过程模拟">
<i class="fa fa-chevron-left"></i> 粘性射流非线性断裂过程模拟
</a>
</div>
<div class="post-nav-item">
<a href="/COMSOL-batch-mode.html" rel="next" title="COMSOL batch mode 运行">
COMSOL batch mode 运行 <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</article>
</div>
</div>
</main>
<footer class="footer">
<div class="footer-inner">
<div class="copyright">
©
<span itemprop="copyrightYear">2022</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">Chilton Nieh</span>
</div>
<div class="powered-by">由 <a href="https://hexo.io/" rel="noopener" target="_blank">Hexo</a> & <a href="https://theme-next.js.org/" rel="noopener" target="_blank">NexT.Gemini</a> 强力驱动
</div>
</div>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/animejs/3.2.1/anime.min.js" integrity="sha256-XL2inqUJaslATFnHdJOi9GfQ60on8Wx1C2H8DYiN1xY=" crossorigin="anonymous"></script>
<script src="/js/comments.js"></script><script src="/js/utils.js"></script><script src="/js/next-boot.js"></script>
<script class="next-config" data-name="mermaid" type="application/json">{"enable":true,"theme":{"light":"default","dark":"dark"},"js":{"url":"https://cdnjs.cloudflare.com/ajax/libs/mermaid/9.1.1/mermaid.min.js","integrity":"sha256-8L3O8tirFUa8Va4NSTAyIbHJeLd6OnlcxgupV9F77e0="}}</script>
<script src="/js/third-party/tags/mermaid.js"></script>
<script class="next-config" data-name="enableMath" type="application/json">true</script><script class="next-config" data-name="mathjax" type="application/json">{"enable":true,"tags":"none","js":{"url":"https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.1/es5/tex-mml-chtml.js","integrity":"sha256-hlC2uSQYTmPsrzGZTEQEg9PZ1a/+SV6VBCTclohf2og="}}</script>
<script src="/js/third-party/math/mathjax.js"></script>
</body>
</html>