-
Notifications
You must be signed in to change notification settings - Fork 12
/
eval_openset.py
315 lines (264 loc) · 18.9 KB
/
eval_openset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
Stand alone evaluation script for open set recognition and plotting of different datasets
Uses the same command line parser as main.py
The attributes that need to be specified are the number of variational samples (should be greater than one if prediction
uncertainties are supposed to be calculated and compared), the architecture type and the resume flag pointing to a model
checkpoint file.
Other parameters like open set distance function etc. are optional.
Minimum example usage:
--resume /path/checkpoint.pth.tar --var-samples 100 -a MLP
"""
import collections
from lib.cmdparser import parser
import lib.Datasets.datasets as datasets
import lib.Models.architectures as architectures
from lib.Models.pixelcnn import PixelCNN
from lib.Training.evaluate import eval_dataset as eval_dataset
from lib.Training.evaluate import eval_openset_dataset as eval_openset_dataset
from lib.Utility.visualization import *
from lib.OpenSet.meta_recognition import *
def main():
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Command line options
args = parser.parse_args()
print("Command line options:")
for arg in vars(args):
print(arg, getattr(args, arg))
# Get the dataset which has been trained and the corresponding number of classes
data_init_method = getattr(datasets, args.dataset)
dataset = data_init_method(torch.cuda.is_available(), args)
num_classes = dataset.num_classes
net_input, _ = next(iter(dataset.train_loader))
num_colors = net_input.size(1)
# Split a part of the non-used dataset to use as validation set for determining open set (e.g entropy)
# rejection thresholds
split_perc = 0.5
split_sets = torch.utils.data.random_split(dataset.valset,
[int((1 - split_perc) * len(dataset.valset)),
int(split_perc * len(dataset.valset))])
# overwrite old set and create new split set to determine thresholds/priors
dataset.valset = split_sets[0]
dataset.threshset = split_sets[1]
# overwrite old data loader and create new loader for thresh set
is_gpu = torch.cuda.is_available()
dataset.val_loader = torch.utils.data.DataLoader(dataset.valset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=is_gpu, sampler=None)
dataset.threshset_loader = torch.utils.data.DataLoader(dataset.threshset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=is_gpu, sampler=None)
# Load open set datasets
openset_datasets_names = args.openset_datasets.strip().split(',')
openset_datasets = []
for openset_dataset in openset_datasets_names:
openset_data_init_method = getattr(datasets, openset_dataset)
openset_datasets.append(openset_data_init_method(torch.cuda.is_available(), args))
if not args.autoregression:
args.out_channels = num_colors
# Initialize empty model
net_init_method = getattr(architectures, args.architecture)
model = net_init_method(device, num_classes, num_colors, args)
# Optional addition of autoregressive decoder portion
if args.autoregression:
model.pixelcnn = PixelCNN(device, num_colors, args.out_channels, args.pixel_cnn_channels,
num_layers=args.pixel_cnn_layers, k=args.pixel_cnn_kernel_size,
padding=args.pixel_cnn_kernel_size // 2)
model = torch.nn.DataParallel(model).to(device)
# load model (using the resume functionality)
assert(os.path.isfile(args.resume)), "=> no model checkpoint found at '{}'".format(args.resume)
# Fill the random model with the parameters of the checkpoint
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
best_prec = checkpoint['best_prec']
best_loss = checkpoint['best_loss']
# print the saved model's validation accuracy (as a check to see if the loaded model has really been trained)
print("Saved model's validation accuracy: ", best_prec)
print("Saved model's validation loss: ", best_loss)
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
model.eval()
# set the save path to the directory from which the model has been loaded
save_path = os.path.dirname(args.resume)
# start of the model evaluation on the training dataset and fitting
print("Evaluating original train dataset: " + args.dataset + ". This may take a while...")
dataset_eval_dict_train = eval_dataset(model, dataset.train_loader, dataset.num_classes, device,
samples=args.var_samples, calc_reconstruction=args.calc_reconstruction,
autoregression=args.autoregression)
print("Training accuracy: ", dataset_eval_dict_train["accuracy"])
# Get the mean of z for correctly classified data inputs
mean_zs = get_means(dataset_eval_dict_train["zs_correct"])
# visualize the mean z vectors
mean_zs_tensor = torch.stack(mean_zs, dim=0)
visualize_means(mean_zs_tensor, dataset.class_to_idx, args.dataset, save_path, "z")
# calculate each correctly classified example's distance to the mean z
distances_to_z_means_correct_train = calc_distances_to_means(mean_zs, dataset_eval_dict_train["zs_correct"],
args.distance_function)
# Weibull fitting
# set tailsize according to command line parameters (according to percentage of dataset size)
tailsize = int(len(dataset.trainset) * args.openset_weibull_tailsize / num_classes)
print("Fitting Weibull models with tailsize: " + str(tailsize))
tailsizes = [tailsize] * num_classes
weibull_models, valid_weibull = fit_weibull_models(distances_to_z_means_correct_train, tailsizes)
assert valid_weibull, "Weibull fit is not valid"
# Determine rejection thresholds/priors on the created split set
print("Evaluating original threshold split dataset: " + args.dataset + ". This may take a while...")
threshset_eval_dict = eval_dataset(model, dataset.threshset_loader, num_classes, device, samples=args.var_samples,
calc_reconstruction=args.calc_reconstruction, autoregression=args.autoregression)
# Again calculate distances to mean z
print("Split set accuracy: ", threshset_eval_dict["accuracy"])
distances_to_z_means_threshset = calc_distances_to_means(mean_zs, threshset_eval_dict["zs_correct"],
args.distance_function)
outlier_probs_threshset = calc_outlier_probs(weibull_models, distances_to_z_means_threshset)
threshset_classification = calc_openset_classification(outlier_probs_threshset, num_classes,
num_outlier_threshs=100)
max_entropy = np.max(threshset_eval_dict["out_entropy"])
threshset_entropy_classification = calc_entropy_classification(threshset_eval_dict["out_entropy"],
max_entropy,
num_outlier_threshs=100)
# We have added a flag to turn off calculation of the decoder because it is computationally heavy for many samples
# (repeated calculation of the decoder), whereas latent space sampling and repeated calculation of our latent based
# EVT approach and even the single layer classifier is cheap.
if args.calc_reconstruction:
max_recon_loss = np.max(threshset_eval_dict["recon_loss_mus"])
threshset_recon_classification = calc_reconstruction_classification(threshset_eval_dict["recon_loss_mus"],
max_recon_loss,
num_outlier_threshs=1000)
# determine the index for the corresponding rejection priors/thresholds. Although this should never happen,
# we also set a default if no threshold satisfies the 95% inlier condition.
if (np.array(threshset_classification["outlier_percentage"]) <= args.percent_validation_outliers).any() == True:
EVT_prior_index = np.argwhere(np.array(threshset_classification["outlier_percentage"])
<= 0.05)[0][0]
EVT_prior = threshset_classification["thresholds"][EVT_prior_index]
else:
EVT_prior = 0.5
EVT_prior_index = 50
if (np.array(threshset_entropy_classification["entropy_outlier_percentage"]) <=
args.percent_validation_outliers).any() == True:
entropy_threshold_index = np.argwhere(np.array(threshset_entropy_classification["entropy_outlier_percentage"])
<= 0.05)[0][0]
entropy_threshold = threshset_entropy_classification["entropy_thresholds"][entropy_threshold_index]
else:
entropy_threshold = np.median(threshset_entropy_classification["entropy_thresholds"])
entropy_threshold_index = 50
if args.calc_reconstruction:
if (np.array(threshset_recon_classification["reconstruction_outlier_percentage"]) <=
args.percent_validation_outliers).any() == True:
recon_threshold_index = np.argwhere(
np.array(threshset_recon_classification["reconstruction_outlier_percentage"]) <= 0.05)[0][0]
recon_threshold = threshset_recon_classification["reconstruction_thresholds"][recon_threshold_index]
else:
recon_threshold = np.median(threshset_recon_classification["reconstruction_thresholds"])
recon_threshold_index = 500
print("EVT prior: " + str(EVT_prior) + "; Entropy threshold: " + str(entropy_threshold))
if args.calc_reconstruction:
print("Reconstruction loss threshold: " + str(recon_threshold))
# ------------------------------------------------------------------------------------------
# Fitting on train dataset complete. Beginning of all testing/open set recognition on validation and unknown sets.
# ------------------------------------------------------------------------------------------
# We evaluate the validation set to later evaluate trained dataset's statistical inlier/outlier estimates.
print("Evaluating original validation dataset: " + args.dataset + ". This may take a while...")
dataset_eval_dict = eval_dataset(model, dataset.val_loader, num_classes, device, samples=args.var_samples,
calc_reconstruction=args.calc_reconstruction, autoregression=args.autoregression)
# Again calculate distances to mean z
print("Validation accuracy: ", dataset_eval_dict["accuracy"])
distances_to_z_means_correct = calc_distances_to_means(mean_zs, dataset_eval_dict["zs_correct"],
args.distance_function)
# Evaluate outlier probability of trained dataset's validation set
outlier_probs_correct = calc_outlier_probs(weibull_models, distances_to_z_means_correct)
dataset_classification_correct = calc_openset_classification(outlier_probs_correct, num_classes,
num_outlier_threshs=100)
dataset_entropy_classification_correct = calc_entropy_classification(dataset_eval_dict["out_entropy"],
max_entropy,
num_outlier_threshs=100)
if args.calc_reconstruction:
dataset_recon_classification_correct = calc_reconstruction_classification(dataset_eval_dict["recon_loss_mus"],
max_recon_loss,
num_outlier_threshs=1000)
print(args.dataset + '(trained) EVT outlier percentage: ' +
str(dataset_classification_correct["outlier_percentage"][EVT_prior_index]))
print(args.dataset + '(trained) entropy outlier percentage: ' +
str(dataset_entropy_classification_correct["entropy_outlier_percentage"][entropy_threshold_index]))
if args.calc_reconstruction:
print(args.dataset + '(trained) reconstruction loss outlier percentage: ' +
str(dataset_recon_classification_correct["reconstruction_outlier_percentage"][recon_threshold_index]))
# ------------------------------------------------------------------------------------------
# Repeat process for open set recognition (no fitting, just testing) on all unseen datasets
# ------------------------------------------------------------------------------------------
# dicitionaries to hold results
openset_dataset_eval_dicts = collections.OrderedDict()
openset_outlier_probs_dict = collections.OrderedDict()
openset_classification_dict = collections.OrderedDict()
openset_entropy_classification_dict = collections.OrderedDict()
if args.calc_reconstruction:
openset_recon_classification_dict = collections.OrderedDict()
for od, openset_dataset in enumerate(openset_datasets):
print("Evaluating openset dataset: " + openset_datasets_names[od] + ". This may take a while...")
openset_dataset_eval_dict = eval_openset_dataset(model, openset_dataset.val_loader, num_classes, device,
samples=args.var_samples, autoregression=args.autoregression,
calc_reconstruction=args.calc_reconstruction)
openset_distances_to_z_means = calc_distances_to_means(mean_zs, openset_dataset_eval_dict["zs"],
args.distance_function)
openset_outlier_probs = calc_outlier_probs(weibull_models, openset_distances_to_z_means)
# getting outlier classification accuracies across the entire datasets
openset_classification = calc_openset_classification(openset_outlier_probs, num_classes,
num_outlier_threshs=100)
openset_entropy_classification = calc_entropy_classification(openset_dataset_eval_dict["out_entropy"],
max_entropy,
num_outlier_threshs=100)
if args.calc_reconstruction:
openset_recon_classification_correct = calc_reconstruction_classification(
openset_dataset_eval_dict["recon_loss_mus"], max_recon_loss, num_outlier_threshs=1000)
openset_dataset_eval_dicts[openset_datasets_names[od]] = openset_dataset_eval_dict
openset_outlier_probs_dict[openset_datasets_names[od]] = openset_outlier_probs
openset_classification_dict[openset_datasets_names[od]] = openset_classification
openset_entropy_classification_dict[openset_datasets_names[od]] = openset_entropy_classification
if args.calc_reconstruction:
openset_recon_classification_dict[openset_datasets_names[od]] = openset_recon_classification_correct
# Print the results
for other_data_name, other_data_dict in openset_classification_dict.items():
print(other_data_name + ' EVT outlier percentage: ' +
str(other_data_dict["outlier_percentage"][entropy_threshold_index]))
for other_data_name, other_data_dict in openset_entropy_classification_dict.items():
print(other_data_name + ' entropy outlier percentage: ' +
str(other_data_dict["entropy_outlier_percentage"][entropy_threshold_index]))
if args.calc_reconstruction:
for other_data_name, other_data_dict in openset_recon_classification_dict.items():
print(other_data_name + ' reconstruction loss outlier percentage: ' +
str(other_data_dict["reconstruction_outlier_percentage"][recon_threshold_index]))
# joint prediction uncertainty plot for all datasets
if args.var_samples > 1:
visualize_classification_uncertainty(dataset_eval_dict["out_mus_correct"],
dataset_eval_dict["out_sigmas_correct"],
openset_dataset_eval_dicts,
"out_mus", "out_sigmas",
args.dataset + ' (trained)',
args.var_samples, save_path)
# visualize the outlier probabilities
visualize_weibull_outlier_probabilities(outlier_probs_correct, openset_outlier_probs_dict,
args.dataset + ' (trained)', save_path, tailsize)
# histograms
visualize_classification_scores(dataset_eval_dict["out_mus_correct"], openset_dataset_eval_dicts, 'out_mus',
args.dataset + ' (trained)', save_path)
visualize_entropy_histogram(dataset_eval_dict["out_entropy"], openset_dataset_eval_dicts,
dataset_entropy_classification_correct["entropy_thresholds"][-1], "out_entropy",
args.dataset + ' (trained)', save_path)
if args.calc_reconstruction:
visualize_recon_loss_histogram(dataset_eval_dict["recon_loss_mus"], openset_dataset_eval_dicts,
dataset_recon_classification_correct["reconstruction_thresholds"][-1],
"recon_loss_mus", args.dataset + ' (trained)', save_path)
# joint plot for outlier detection accuracy for both seen and unseen datasets
visualize_openset_classification(dataset_classification_correct["outlier_percentage"],
openset_classification_dict, "outlier_percentage",
args.dataset + ' (trained)',
dataset_classification_correct["thresholds"], save_path, tailsize)
visualize_entropy_classification(dataset_entropy_classification_correct["entropy_outlier_percentage"],
openset_entropy_classification_dict, "entropy_outlier_percentage",
args.dataset + ' (trained)',
dataset_entropy_classification_correct["entropy_thresholds"], save_path)
if args.calc_reconstruction:
visualize_reconstruction_classification(dataset_recon_classification_correct["reconstruction_outlier_percentage"],
openset_recon_classification_dict, "reconstruction_outlier_percentage",
args.dataset + ' (trained)',
dataset_recon_classification_correct["reconstruction_thresholds"],
save_path, autoregression=args.autoregression)
if __name__ == '__main__':
main()