forked from szagoruyko/imagine-nn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
SpatialAveragePooling.cu
234 lines (194 loc) · 7.14 KB
/
SpatialAveragePooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include <THC/THC.h>
#define CUDA_MAX_THREADS 1024 // this is safe, in reality 256 is our limit
/*
* Description:
* this function avg-pools an input 3D tensor along dimensions 1 and 2
* 3D input, 3D output
*/
__global__ void subsample(float *input, float *output,
int input_n, int input_h, int input_w,
int kH, int kW, int dH, int dW)
{
// iterators
int xx, yy;
// output size
int output_w = ceil(float(input_w - kW) / float(dW) + 1);
int output_h = ceil(float(input_h - kH) / float(dH) + 1);
// compute offsets based on thread/block ID
int o = blockIdx.x;
int i = o;
int xx_start = threadIdx.x;
int xx_end = output_w;
int xx_step = blockDim.x;
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
int yy_step = blockDim.y*gridDim.y;
// select input/output plane
output = output + o*output_w*output_h;
input = input + i*input_w*input_h;
// For all output pixels...
for(yy = yy_start; yy < yy_end; yy+=yy_step) {
for(xx = xx_start; xx < xx_end; xx+=xx_step) {
// Compute the mean of the input image...
float *ptr_input = input + yy*dH*input_w + xx*dW;
float *ptr_output = output + yy*output_w + xx;
float sum = 0;
int nElements = 0;
int kx, ky;
for(ky = 0; ky < kH; ky++) {
for(kx = 0; kx < kW; kx++) {
if((xx*dW+kx < input_w) & (yy*dH+ky < input_h)) {
sum += ptr_input[kx];
nElements++;
}
}
ptr_input += input_w; // next input line
}
// Update output
*ptr_output = sum / float(nElements);
}
}
}
extern "C"
void SpatialAveragePooling_updateOutput(THCState* state, THCudaTensor* input,
THCudaTensor* output, int kW, int kH, int dW, int dH)
{
if (input->nDimension == 3) {
long nInputCols = input->size[2];
long nInputRows = input->size[1];
long nOutputCols = ceil(float(nInputCols - kW) / float(dW) + 1);
long nOutputRows = ceil(float(nInputRows - kH) / float(dH) + 1);
long nInputPlane = input->size[0];
input = THCudaTensor_newContiguous(state, input);
float* input_data = THCudaTensor_data(state, input);
THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols);
float* output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane,yblocks);
dim3 threads(32,8);
// run subsample kernel
subsample <<<blocks, threads, 0, THCState_getCurrentStream(state)>>>
(input_data, output_data,
nInputPlane, nInputRows, nInputCols, kH, kW, dH, dW);
} else {
long nInputCols = input->size[3];
long nInputRows = input->size[2];
long nbatch = input->size[0];
long nOutputCols = ceil(float(nInputCols - kW) / float(dW) + 1);
long nOutputRows = ceil(float(nInputRows - kH) / float(dH) + 1);
long nInputPlane = input->size[1];
input = THCudaTensor_newContiguous(state, input);
float* input_data = THCudaTensor_data(state, input);
THCudaTensor_resize4d(state, output, nbatch, nInputPlane, nOutputRows, nOutputCols);
float* output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane*nbatch,yblocks);
dim3 threads(32,8);
// run subsample kernel
subsample <<<blocks, threads, 0, THCState_getCurrentStream(state)>>>
(input_data, output_data,
nInputPlane, nInputRows, nInputCols, kH, kW, dH, dW);
}
// clean
THCudaTensor_free(state, input);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialSubsampling.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
}
/*
* Description:
* this function computes the gradInput from gradOutput
*/
__global__ void subgradinput(float *gradInput, float *gradOutput,
int input_n, int input_h, int input_w,
int kH, int kW, int dH, int dW)
{
// iterators
int xx, yy;
// output size
int output_w = ceil(float(input_w - kW) / float(dW) + 1);
int output_h = ceil(float(input_h - kH) / float(dH) + 1);
// compute offsets based on thread/block ID
int o = blockIdx.x;
int i = o;
int xx_start = threadIdx.x;
int xx_end = output_w;
int xx_step = blockDim.x;
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
int yy_step = blockDim.y*gridDim.y;
// select input/output plane
gradOutput = gradOutput + o*output_w*output_h;
gradInput = gradInput + i*input_w*input_h;
// compute gradInput
for(yy = yy_start; yy < yy_end; yy+=yy_step) {
for(xx = xx_start; xx < xx_end; xx+=xx_step) {
float *ptr_gradInput = gradInput + yy*dH*input_w + xx*dW;
float *ptr_gradOutput = gradOutput + yy*output_w + xx;
float z = *ptr_gradOutput/float(kW*kH);
int kx, ky;
for(ky = 0; ky < kH; ky++) {
for(kx = 0; kx < kW; kx++)
ptr_gradInput[kx] += z;
ptr_gradInput += input_w;
}
}
}
}
extern "C"
void SpatialAveragePooling_updateGradInput(THCState* state, THCudaTensor* input,
THCudaTensor* gradOutput, THCudaTensor* gradInput, int kW, int kH, int dW, int dH)
{
if (input->nDimension == 3) {
long nInputCols = input->size[2];
long nInputRows = input->size[1];
long nInputPlane = input->size[0];
float *gradOutput_data = THCudaTensor_data(state, gradOutput);
float *gradInput_data;
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
gradInput_data = THCudaTensor_data(state, gradInput);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane,yblocks);
dim3 threads(32,8);
// run updateGradInput kernel
subgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>>
(gradInput_data, gradOutput_data,
nInputPlane, nInputRows, nInputCols, kH, kW, dH, dW);
} else {
long nInputCols = input->size[3];
long nInputRows = input->size[2];
long nInputPlane = input->size[1];
long nbatch = input->size[0];
float *gradOutput_data = THCudaTensor_data(state, gradOutput);
float *gradInput_data;
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
gradInput_data = THCudaTensor_data(state, gradInput);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane*nbatch,yblocks);
dim3 threads(32,8);
// run updateGradInput kernel
subgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>>
(gradInput_data, gradOutput_data,
nInputPlane, nInputRows, nInputCols, kH, kW, dH, dW);
}
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialSubsampling.updateGradInput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
}
#undef CUDA_MAX_THREADS