forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
SpatialAdaptiveMaxPooling.cu
395 lines (319 loc) · 13.5 KB
/
SpatialAdaptiveMaxPooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#include "utils.h"
#define CUDA_MAX_THREADS 1024 // this is safe, in reality 256 is our limit
/*
* Description:
* this function adaptively maxpools an input 4D tensor along dimensions 2 and 3
* 4D input, 4D output, 4D argmax x and y
*/
__global__ void adaptivemaxpool(float *input, float *output, float *indices_x, float *indices_y,
int input_n, int input_h, int input_w,
int output_h, int output_w,
int strideh, int stridew,
int strided)
{
// iterators
int xx, yy;
// compute offsets based on thread/block ID
int o = blockIdx.x;
int i = o;
//int k = blockIdx.x % input_n;
int xx_start = threadIdx.x;
int xx_end = output_w;
const int xx_step = blockDim.x;
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
const int yy_step = blockDim.y*gridDim.y;
// select input/output plane
output = output + o*output_w*output_h;
input = input + i*strided;
indices_x = indices_x + o*output_w*output_h;
indices_y = indices_y + o*output_w*output_h;
// For all output pixels...
for(yy = yy_start; yy < yy_end; yy+=yy_step) {
int y_start = (int)floor(float(yy) / output_h * input_h);
int y_end = (int)ceil(float(yy+1) / output_h * input_h);
int kH = y_end-y_start;
for(xx = xx_start; xx < xx_end; xx+=xx_step) {
int x_start = (int)floor(float(xx) / output_w * input_w);
int x_end = (int)ceil(float(xx + 1) / output_w * input_w);
int kW = x_end-x_start;
// Compute the mean of the input image...
float *ptr_input = input + y_start*strideh + x_start*stridew;
float *ptr_output = output + yy*output_w + xx;
float *ptr_ind_x = indices_x + yy*output_w + xx;
float *ptr_ind_y = indices_y + yy*output_w + xx;
int argmax_x = -1;
int argmax_y = -1;
float max = -FLT_MAX;
int kx, ky;
for(ky = 0; ky < kH; ky++) {
for(kx = 0; kx < kW; kx++) {
float val = ptr_input[kx*stridew];
if (val > max) {
max = val;
argmax_x = kx;
argmax_y = ky;
}
}
ptr_input += strideh; // next input line
}
// Update output and argmax
*ptr_output = max;
*ptr_ind_x = argmax_x + 1;
*ptr_ind_y = argmax_y + 1;
}
}
}
/*
* Description:
* this function computes the gradInput from weight and gradOutput
*/
__global__ void adaptivemaxgradinput(float *gradInput, float *gradOutput, float *indices_x, float *indices_y,
int input_n, int input_h, int input_w,
int output_h, int output_w)
{
// iterators
int xx, yy;
// compute offsets based on thread/block ID
int o = blockIdx.x;
int i = o;
//int k = blockIdx.x % input_n;
int xx_start = threadIdx.x;
int xx_end = output_w;
int xx_step = blockDim.x;
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
int yy_step = blockDim.y*gridDim.y;
// select input/output plane
gradOutput = gradOutput + o*output_w*output_h;
gradInput = gradInput + i*input_w*input_h;
indices_x = indices_x + o*output_w*output_h;
indices_y = indices_y + o*output_w*output_h;
// compute gradInput
for(yy = yy_start; yy < yy_end; yy+=yy_step) {
int y_start = (int)floor(float(yy) / output_h * input_h);
for(xx = xx_start; xx < xx_end; xx+=xx_step) {
int x_start = (int)floor(float(xx) / output_w * input_w);
float *ptr_gradInput = gradInput + y_start*input_w + x_start;
float *ptr_gradOutput = gradOutput + yy*output_w + xx;
float *ptr_ind_x = indices_x + yy*output_w + xx;
float *ptr_ind_y = indices_y + yy*output_w + xx;
float z = *ptr_gradOutput;
int argmax_x = (*ptr_ind_x)-1;
int argmax_y = (*ptr_ind_y)-1;
ptr_gradInput[argmax_x + argmax_y*input_w] += z;
}
}
}
/*
* Description:
* this function computes the gradInput from weight and gradOutput
* when kH != dH or kW != dW (uses atomic add)
*/
__global__ void atomicadaptivemaxgradinput(
float *gradInput, float *gradOutput, float *indices_x, float *indices_y,
int input_n, int input_h, int input_w, int output_h, int output_w
)
{
// iterators
int xx, yy;
// compute offsets based on thread/block ID
int o = blockIdx.x;
int i = o;
int xx_start = threadIdx.x;
int xx_end = output_w;
int xx_step = blockDim.x;
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
int yy_step = blockDim.y*gridDim.y;
// select input/output plane
gradOutput = gradOutput + o*output_w*output_h;
gradInput = gradInput + i*input_w*input_h;
indices_x = indices_x + o*output_w*output_h;
indices_y = indices_y + o*output_w*output_h;
// compute gradInput
for(yy = yy_start; yy < yy_end; yy+=yy_step) {
int y_start = (int)floor(float(yy) / output_h * input_h);
for(xx = xx_start; xx < xx_end; xx+=xx_step) {
int x_start = (int)floor(float(xx) / output_w * input_w);
float *ptr_gradInput = gradInput + y_start*input_w + x_start;
float *ptr_gradOutput = gradOutput + yy*output_w + xx;
float *ptr_ind_x = indices_x + yy*output_w + xx;
float *ptr_ind_y = indices_y + yy*output_w + xx;
float z = *ptr_gradOutput;
int argmax_x = (*ptr_ind_x)-1;
int argmax_y = (*ptr_ind_y)-1;
// atomic add since different threads could update same variable
atomicAdd(&(ptr_gradInput[argmax_x + argmax_y*input_w]), z);
}
}
}
static int cunn_SpatialAdaptiveMaxPooling_updateOutput(lua_State *L)
{
THCState *state = getCutorchState(L);
THCudaTensor *input = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
long nOutputCols = luaT_getfieldcheckint(L, 1, "W");
long nOutputRows = luaT_getfieldcheckint(L, 1, "H");
THCudaTensor *output = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "output", "torch.CudaTensor");
THCudaTensor *indices = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "indices", "torch.CudaTensor");
THAssert(THCudaTensor_checkGPU(state, 3, input, output, indices));
float *indices_data;
float *output_data;
float *input_data;
luaL_argcheck(L, input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch) tensor expected");
if (input->nDimension == 3) {
long nInputCols = input->size[2];
long nInputRows = input->size[1];
long nInputPlane = input->size[0];
long istride_d = input->stride[0];
long istride_h = input->stride[1];
long istride_w = input->stride[2];
input_data = THCudaTensor_data(state, input);
THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_resize4d(state, indices, 2, nInputPlane, nOutputRows, nOutputCols);
indices_data = THCudaTensor_data(state, indices);
output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane,yblocks);
dim3 threads(32,8);
// run maxpool kernel
adaptivemaxpool <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (input_data, output_data,
indices_data+nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
istride_h, istride_w, istride_d);
} else {
long nInputCols = input->size[3];
long nInputRows = input->size[2];
long nInputPlane = input->size[1];
long nbatch = input->size[0];
long istride_d = input->stride[1];
long istride_h = input->stride[2];
long istride_w = input->stride[3];
input = THCudaTensor_newContiguous(state, input);
input_data = THCudaTensor_data(state, input);
THCudaTensor_resize4d(state, output, nbatch, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_resize5d(state, indices, 2, nbatch, nInputPlane, nOutputRows, nOutputCols);
indices_data = THCudaTensor_data(state, indices);
output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane*nbatch,yblocks);
dim3 threads(32,8);
// run maxpool kernel
adaptivemaxpool <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (input_data, output_data,
indices_data+nbatch*nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
istride_h, istride_w, istride_d);
// clean
THCudaTensor_free(state, input);
}
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialAdaptiveMaxPooling.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
static int cunn_SpatialAdaptiveMaxPooling_updateGradInput(lua_State *L)
{
THCState *state = getCutorchState(L);
THCudaTensor *input = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
bool atomic = true; // suboptimal, but without atomic it doesn't pass the tests
THCudaTensor *gradInput = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "gradInput", "torch.CudaTensor");
THCudaTensor *indices = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "indices", "torch.CudaTensor");
THAssert(THCudaTensor_checkGPU(state, 4, input, indices, gradOutput, gradInput));
float *indices_data;
float *gradInput_data;
float *gradOutput_data;
gradOutput = THCudaTensor_newContiguous(state, gradOutput);
if (input->nDimension == 3) {
long nInputCols = input->size[2];
long nInputRows = input->size[1];
long nInputPlane = input->size[0];
long nOutputCols = gradOutput->size[2];
long nOutputRows = gradOutput->size[1];
//bool atomic = (nInputCols%nOutputCols != 0) || (nInputRows%nOutputRows != 0);
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
indices_data = THCudaTensor_data(state, indices);
gradOutput_data = THCudaTensor_data(state, gradOutput);
gradInput_data = THCudaTensor_data(state, gradInput);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane,yblocks);
dim3 threads(32,8);
if(atomic)
{
// run updateGradInput kernel, accumulate gradients atomically
atomicadaptivemaxgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (gradInput_data, gradOutput_data,
indices_data+nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols);
}
else
{
// run updateGradInput kernel
atomicadaptivemaxgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (gradInput_data, gradOutput_data,
indices_data+nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols);
}
} else {
long nInputCols = input->size[3];
long nInputRows = input->size[2];
long nInputPlane = input->size[1];
long nbatch = input->size[0];
long nOutputCols = gradOutput->size[3];
long nOutputRows = gradOutput->size[2];
//bool atomic = //(nInputCols%nOutputCols != 0) || (nInputRows%nOutputRows != 0);
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
indices_data = THCudaTensor_data(state, indices);
gradOutput_data = THCudaTensor_data(state, gradOutput);
gradInput_data = THCudaTensor_data(state, gradInput);
// cuda blocks & threads:
int yblocks = (int)(16L / nInputPlane);
yblocks = yblocks < 1 ? 1 : yblocks;
dim3 blocks(nInputPlane*nbatch,yblocks);
dim3 threads(32,8);
if(atomic)
{
// run updateGradInput kernel, accumulate gradients atomically
atomicadaptivemaxgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (gradInput_data, gradOutput_data,
indices_data+nbatch*nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols);
}
else
{
// run updateGradInput kernel, accumulate gradients atomically
adaptivemaxgradinput <<<blocks, threads, 0, THCState_getCurrentStream(state)>>> (gradInput_data, gradOutput_data,
indices_data+nbatch*nInputPlane*nOutputCols*nOutputRows, indices_data,
nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols);
}
}
// clean
THCudaTensor_free(state,gradOutput);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialAdaptiveMaxPooling.updateGradInput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
static const struct luaL_Reg cunn_SpatialAdaptiveMaxPooling__ [] = {
{"SpatialAdaptiveMaxPooling_updateOutput", cunn_SpatialAdaptiveMaxPooling_updateOutput},
{"SpatialAdaptiveMaxPooling_updateGradInput", cunn_SpatialAdaptiveMaxPooling_updateGradInput},
{NULL, NULL}
};
void cunn_SpatialAdaptiveMaxPooling_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_SpatialAdaptiveMaxPooling__, "nn");
lua_pop(L,1);
}
#undef CUDA_MAX_THREADS