-
Notifications
You must be signed in to change notification settings - Fork 4
/
SOS.m
82 lines (56 loc) · 1.44 KB
/
SOS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
clear; echo on;
pvar px1 px2 px3;
px = [px1; px2; px3];
mypi = 3.14159265358;
syms test;
x = sym('x', [3 1]);
u = sym('u', [2 1]);
x_ = sym('x_', [3 1]);
u_ = sym('u', [3 1]);
eq_x = [12.5; 12.5; mypi/4.0 ];
eq_u = [ 0.0; 0.0 ];
f_original = [ u(1) * cos(x(3)) ; u(1) * sin(x(3)) ; u(2)];
% tolerance
epsilon = 0.001;
% initial value of rho
rho = 0.0001;
Q = [ 10 0 0 ;
0 10 0 ;
0 0 5 ];
R = [ 3 0 ;
0 5 ];
[A_l, B_l] = sym_linearization(f_original, x, u, eq_x, eq_u);
[k, S, ~] = lqr(A_l, B_l, Q, R);
k
S
cg = cos(mypi/4.0);
sg = sin(mypi/4.0);
% define f_hat
% closed loop function
f_cl = toCL(f_original, x, u, eq_x, eq_u, k);
% taylor expansion
f_cl_t = symbolic_Taylor(f_cl, x, eq_x);
for i=1:length(f_cl_t)
[C, T] = coeffs(f_cl_t(i));
C(abs(C) < 1e-7) = 0;
f_cl_t(i) = dot(C, T);
end
f_hat = vpa(f_cl_t, 5)
% define dJ*_hat(x_)
dJ = 2 .* (x_.') * S * f_hat;
% define J*(x_)
J = (x_.') * S * x_;
% define norm part
nor22 = epsilon * ( (x_(1))^2 + (x_(2))^2 + (x_(3))^2 );
% ----------- replace x_ with px ------------
% dJ = subs(dJ, x_(i), px(i));
% J = subs(J, x_(i), px(i));
% nor22 = subs(nor22, x_(i), px(i));
% define a sos program
Program1 = sosprogram(x_);
% define h(x_) as sums of squares
[Program1, h] = sossosvar(Program1, x_);
% add inequality constraint
Program1 = sosineq(Program1, (-dJ - h*(rho - J) - nor22) );
% call solver
Program1 = sossolve(Program1);