-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_api.py
72 lines (57 loc) · 2.22 KB
/
keras_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
from keras.applications.resnet50 import ResNet50
from keras.preprocessing.image import img_to_array
from keras.applications import imagenet_utils
from flask import Flask
from PIL import Image
import flask
import io
import tensorflow as tf
app = Flask(__name__)
def load_model():
global graph, model
model = ResNet50(weights="imagenet")
graph = tf.get_default_graph()
def prepare_image(img, target_size):
if img.mode != "RGB":
img = img.convert("RGB")
image = img.resize(target_size)
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)
return image
@app.route("/predict", methods=["POST"])
def predict():
# initialize the data dictionary that will be returned from the
# view
data = {"success": False}
# ensure an image was properly uploaded to our endpoint
if flask.request.method == "POST":
if flask.request.files.get("image"):
# read the image in PIL format
image = flask.request.files["image"].read()
image = Image.open(io.BytesIO(image))
# preprocess the image and prepare it for classification
image = prepare_image(image, target_size=(224, 224))
# classify the input image and then initialize the list
# of predictions to return to the client
#global graph
#graph = tf.get_default_graph()
with graph.as_default():
preds = model.predict(image)
results = imagenet_utils.decode_predictions(preds)
data["predictions"] = []
# loop over the results and add them to the list of
# returned predictions
for (imagenetID, label, prob) in results[0]:
r = {"label": label, "probability": float(prob)}
data["predictions"].append(r)
# indicate that the request was a success
data["success"] = True
# return the data dictionary as a JSON response
return flask.jsonify(data)
if __name__ == '__main__':
print(("* Loading Keras model and Flask starting server..."
"please wait until server has fully started"))
load_model()
app.run()