-
Notifications
You must be signed in to change notification settings - Fork 4
/
txt2img.py
605 lines (554 loc) · 21.8 KB
/
txt2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import argparse, os, datetime, yaml
import math
import logging
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from imwatermark import WatermarkEncoder
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldm.models.diffusion.dpm_solver.sampler import DPMSolverSampler
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from quant.calibration import cali_model, cali_model_multi, load_cali_model
from quant.data_generate import generate_cali_text_guided_data
from quant.quant_layer import QMODE, Scaler
from quant.quant_model import QuantModel
from quant.reconstruction_util import RLOSS
import torch.multiprocessing as mp
import pandas as pd
import json
logger = logging.getLogger(__name__)
# load safety model
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
logging.info(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
logging.info(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
logging.info("missing keys:")
logging.info(m)
if len(u) > 0 and verbose:
logging.info("unexpected keys:")
logging.info(u)
model.cuda()
model.eval()
return model
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def load_replacement(x):
try:
hwc = x.shape
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
y = (np.array(y)/255.0).astype(x.dtype)
assert y.shape == x.shape
return y
except Exception:
return x
def check_safety(x_image):
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
assert x_checked_image.shape[0] == len(has_nsfw_concept)
for i in range(len(has_nsfw_concept)):
if has_nsfw_concept[i]:
x_checked_image[i] = load_replacement(x_checked_image[i])
return x_checked_image, has_nsfw_concept
def get_prompts(path: str,
num: int = 128):
'''
COCO-Captions dataset
'''
df = pd.DataFrame(json.load(open(path))['annotations'])
ps = df['caption'].sample(num).tolist()
return ps
def prompts4eval(path: str,
batch_size: int = 1):
df = pd.read_parquet(path)
prompts = df['caption'].tolist()
res = []
for i in range(math.ceil(len(prompts) / batch_size)):
if (i + 1) * batch_size > len(prompts):
res.append(prompts[i * batch_size:])
else:
res.append(prompts[i * batch_size:(i + 1) * batch_size])
return res
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--dpm_solver",
action='store_true',
help="use dpm_solver sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
help="uses the LAION400M model",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=2,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
# linear quantization configs
parser.add_argument(
"--ptq", action="store_true", help="apply post-training quantization"
)
parser.add_argument(
"--wq",
type=int,
default=8,
help="int bit for weight quantization",
)
parser.add_argument(
"--aq",
type=int,
default=8,
help="int bit for activation quantization",
)
parser.add_argument(
"--cali_ckpt", type=str,
help="path for calibrated model ckpt"
)
parser.add_argument(
"--cond", action="store_true",
help="whether to use conditional guidance"
)
parser.add_argument(
"--no_grad_ckpt", action="store_true",
help="disable gradient checkpointing"
)
parser.add_argument(
"--softmax_a_bit",type=int, default=8,
help="attn softmax activation bit"
)
parser.add_argument(
"--verbose", action="store_true",
help="print out info like quantized model arch"
)
parser.add_argument(
"--cali",
action="store_true",
help="whether to calibrate the model"
)
parser.add_argument(
"--cali_save_path",
type=str,
default="cali_ckpt/quant_sd.pth",
help="path to save the calibrated ckpt"
)
parser.add_argument(
"--data_path",
type=str,
default="",
help="prompts data path(for calibration or evaluation)"
)
parser.add_argument(
"--interval_length",
type=int,
default=1,
help="calibration interval length"
)
parser.add_argument(
'--use_aq',
action='store_true',
help='whether to use activation quantization'
)
# multi-gpu configs
parser.add_argument('--multi_gpu', action='store_true', help='use multiple gpus')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:3367', type=str, help='')
parser.add_argument('--dist-backend', default='nccl', type=str, help='')
parser.add_argument('--rank', default=0, type=int, help='')
parser.add_argument('--world_size', default=1, type=int, help='')
opt = parser.parse_args()
if opt.laion400m:
print("Falling back to LAION 400M model...")
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
opt.outdir = "outputs/txt2img-samples-laion400m"
seed_everything(opt.seed)
ngpus_per_node = torch.cuda.device_count()
opt.world_size = ngpus_per_node * opt.world_size
os.makedirs(opt.outdir, exist_ok=True)
outpath = os.path.join(opt.outdir, datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))
os.makedirs(outpath)
log_path = os.path.join(outpath, "run.log")
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
handlers=[
logging.FileHandler(log_path),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
sampler = PLMSSampler(model)
elif opt.dpm_solver:
sampler = DPMSolverSampler(model)
else:
sampler = DDIMSampler(model)
p = [QMODE.NORMAL.value]
p.append(QMODE.QDIFF.value)
opt.q_mode = p
opt.asym = True
opt.running_stat = True
wq_params = {"bits": opt.wq,
"channel_wise": True,
"scaler": Scaler.MSE if opt.cali else Scaler.MINMAX}
aq_params = {"bits": opt.aq,
"channel_wise": False,
"scaler": Scaler.MSE if opt.cali else Scaler.MINMAX,
"leaf_param": opt.use_aq}
assert(opt.cond)
if opt.ptq:
# LatentDiffsion --> Diffusionwrapper --> Unet
if not opt.cali:
setattr(sampler.model.model.diffusion_model, "split", True)
qnn = QuantModel(model=sampler.model.model.diffusion_model,
wq_params=wq_params,
aq_params=aq_params,
cali=False,
softmax_a_bit=opt.softmax_a_bit,
aq_mode=opt.q_mode)
qnn.to(device)
qnn.eval()
if opt.no_grad_ckpt:
logger.info('Not use gradient checkpointing for transformer blocks')
qnn.set_grad_ckpt(False)
cali_data = (torch.randn(1, 4, 64, 64), torch.randint(0, 1000, (1,)), torch.randn(1, 77, 768))
load_cali_model(qnn, cali_data, use_aq=opt.use_aq, path=opt.cali_ckpt)
sampler.model.model.diffusion_model = qnn
if opt.use_aq:
cali_ckpt = torch.load(opt.cali_ckpt)
tot = len(list(cali_ckpt.keys())) - 1
sampler.model.model.tot = 1000 // tot
model.model.t_max = tot - 1
sampler.model.model.ckpt = cali_ckpt
sampler.model.model.iter = 0
else:
logger.info("Generating calibration data...")
cali_data = generate_cali_text_guided_data(model,
sampler,
T=opt.ddim_steps,
c=1,
batch_size=1,
prompts=get_prompts(opt.data_path),
shape=[opt.C, opt.H // opt.f, opt.W // opt.f],
precision_scope=autocast if opt.precision=="autocast" else nullcontext)
a_cali_data = cali_data
w_cali_data = cali_data
logger.info("Calibration data generated.")
torch.cuda.empty_cache()
setattr(sampler.model.model.diffusion_model, "split", True)
if opt.multi_gpu:
kwargs = dict(iters=20000,
batch_size=32,
w=0.01,
asym=opt.asym,
warmup=0.2,
opt_mode=RLOSS.MSE,
wq_params=wq_params,
aq_params=aq_params,
softmax_a_bit=opt.softmax_a_bit,
aq_mode=opt.q_mode,
multi_gpu=ngpus_per_node > 1,
no_grad_ckpt=opt.no_grad_ckpt)
if opt.no_grad_ckpt:
logger.info('Not use gradient checkpointing for transformer blocks')
mp.spawn(cali_model_multi, args=(opt.dist_backend,
opt.world_size,
opt.dist_url,
opt.rank,
ngpus_per_node,
sampler.model.model,
opt.use_aq,
opt.cali_save_path,
w_cali_data,
a_cali_data,
256,
opt.running_stat,
kwargs), nprocs=ngpus_per_node)
else:
qnn = QuantModel(model=sampler.model.model.diffusion_model,
wq_params=wq_params,
aq_params=aq_params,
softmax_a_bit=opt.softmax_a_bit,
aq_mode=opt.q_mode)
qnn.to(device)
qnn.eval()
if opt.no_grad_ckpt:
logger.info('Not use gradient checkpointing for transformer blocks')
qnn.set_grad_ckpt(False)
kwargs = dict(w_cali_data=w_cali_data,
a_cali_data = a_cali_data,
iters=20000,
batch_size=8,
w=0.01,
asym=opt.asym,
warmup=0.2,
opt_mode=RLOSS.MSE,
multi_gpu=False)
cali_model(qnn=qnn,
use_aq=opt.use_aq,
path=opt.cali_save_path,
running_stat=opt.running_stat,
interval=256,
**kwargs)
exit(0)
logging.info("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "StableDiffusionV1"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
logging.info(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
if opt.data_path is not "":
data = prompts4eval(opt.data_path, batch_size)
opt.n_iter = 1
sample_path = os.path.join(outpath, "imags")
os.makedirs(sample_path, exist_ok=True)
os.makedirs(os.path.join(outpath, "texts"), exist_ok=True)
os.makedirs(os.path.join(outpath, "numpy"), exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
# write config out
sampling_file = os.path.join(outpath, "sampling_config.yaml")
sampling_conf = vars(opt)
with open(sampling_file, 'a+') as f:
yaml.dump(sampling_conf, f, default_flow_style=False)
if opt.verbose:
logger.info("UNet model")
logger.info(model.model)
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
precision_scope = autocast if opt.precision=="autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
all_images= []
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image = x_samples_ddim
# x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
if not opt.skip_save:
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
with open(os.path.join(outpath, 'texts', f"{base_count:05}.txt"), "w") as f:
f.write(prompts[base_count % batch_size])
base_count += 1
imags = 255. * rearrange(x_checked_image_torch, 'n c h w -> n h w c').cpu().numpy()
imags = imags.astype(np.uint8)
all_images.extend([imags])
if not opt.skip_grid:
all_samples.append(x_checked_image_torch)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
img = Image.fromarray(grid.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
toc = time.time()
all_img = np.concatenate(all_images, axis=0)
shape_str = "x".join([str(x) for x in all_img.shape])
nppath = os.path.join(outpath, 'numpy', f"{shape_str}-samples.npz")
np.savez(nppath, all_img)
logging.info(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
if __name__ == "__main__":
main()