forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.rs
202 lines (153 loc) · 5.42 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_nn::{ops::softmax, VarBuilder};
use candle_transformers::models::clip;
use tokenizers::Tokenizer;
use tracing::info;
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long, use_value_delimiter = true)]
images: Option<Vec<String>>,
#[arg(long)]
cpu: bool,
#[arg(long, use_value_delimiter = true)]
sequences: Option<Vec<String>>,
}
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
let img = image::io::Reader::open(path)?.decode()?;
let (height, width) = (image_size, image_size);
let img = img.resize_to_fill(
width as u32,
height as u32,
image::imageops::FilterType::Triangle,
);
let img = img.to_rgb8();
let img = img.into_raw();
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
.permute((2, 0, 1))?
.to_dtype(DType::F32)?
.affine(2. / 255., -1.)?;
// .unsqueeze(0)?;
Ok(img)
}
fn load_images<T: AsRef<std::path::Path>>(
paths: &Vec<T>,
image_size: usize,
) -> anyhow::Result<Tensor> {
let mut images = vec![];
for path in paths {
let tensor = load_image(path, image_size)?;
images.push(tensor);
}
let images = Tensor::stack(&images, 0)?;
Ok(images)
}
pub fn main() -> anyhow::Result<()> {
// std::env::set_var("RUST_BACKTRACE", "full");
let args = Args::parse();
tracing_subscriber::fmt::init();
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let tokenizer = get_tokenizer(args.tokenizer)?;
let config = clip::ClipConfig::vit_base_patch32();
let device = candle_examples::device(args.cpu)?;
let vec_imgs = match args.images {
Some(imgs) => imgs,
None => vec![
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
],
};
// let image = load_image(args.image, config.image_size)?.to_device(&device)?;
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? };
let model = clip::ClipModel::new(vb, &config)?;
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
let softmax_image = softmax(&logits_per_image, 1)?;
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
info!("softmax_image_vec: {:?}", softmax_image_vec);
let probability_vec = softmax_image_vec
.iter()
.map(|v| v * 100.0)
.collect::<Vec<f32>>();
let probability_per_image = probability_vec.len() / vec_imgs.len();
for (i, img) in vec_imgs.iter().enumerate() {
let start = i * probability_per_image;
let end = start + probability_per_image;
let prob = &probability_vec[start..end];
info!("\n\nResults for image: {}\n", img);
for (i, p) in prob.iter().enumerate() {
info!("Probability: {:.4}% Text: {} ", p, vec_seq[i]);
}
}
Ok(())
}
pub fn get_tokenizer(tokenizer: Option<String>) -> anyhow::Result<Tokenizer> {
let tokenizer = match tokenizer {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("tokenizer.json")?
}
Some(file) => file.into(),
};
Tokenizer::from_file(tokenizer).map_err(E::msg)
}
pub fn tokenize_sequences(
sequences: Option<Vec<String>>,
tokenizer: &Tokenizer,
device: &Device,
) -> anyhow::Result<(Tensor, Vec<String>)> {
let pad_id = *tokenizer
.get_vocab(true)
.get("<|endoftext|>")
.ok_or(E::msg("No pad token"))?;
let vec_seq = match sequences {
Some(seq) => seq,
None => vec![
"a cycling race".to_string(),
"a photo of two cats".to_string(),
"a robot holding a candle".to_string(),
],
};
let mut tokens = vec![];
for seq in vec_seq.clone() {
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
tokens.push(encoding.get_ids().to_vec());
}
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
// Pad the sequences to have the same length
for token_vec in tokens.iter_mut() {
let len_diff = max_len - token_vec.len();
if len_diff > 0 {
token_vec.extend(vec![pad_id; len_diff]);
}
}
let input_ids = Tensor::new(tokens, device)?;
Ok((input_ids, vec_seq))
}