-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
277 lines (238 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os, re
import random
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
from time import time
from transformers import BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import torch.nn.functional as F
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from tqdm import tqdm
LOCAL_MODEL = False
LOCAL_BERT = False
EPOCHS = 1
PARTIAL_SAMPLE = 10
if torch.cuda.is_available():
device = torch.device("cuda")
print(f'There are {torch.cuda.device_count()} GPU(s) available')
print("Device name: " + torch.cuda.get_device_name(0))
else:
print("No GPU available, using the CPU instead.")
device = torch.device("cpu")
original_columns = ['age', 'body type', 'bust size', 'category', 'fit', 'height', 'item_id', 'rating'
'rented for', 'review_date', 'review_summary', 'review_text', 'size', 'user_id', 'weight']
def load_train_data(filepath):
return pd.read_csv(filepath)
df = load_train_data("data/train.csv")[:PARTIAL_SAMPLE]
total_sample_num = len(df)
print("Total training sample number: " + str(total_sample_num))
MAX_LEN = 512
loss_fn = nn.CrossEntropyLoss()
TEXT_WEIGHT = 0.9
SUMMARY_WEIGHT = 1 - TEXT_WEIGHT
if not LOCAL_BERT:
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
else:
tokenizer = BertTokenizer.from_pretrained('models/', local_files_only=True)
def text_preprocessing(text):
if type(text) is not str:
return ""
text = re.sub(r'(@.*?)[\s]', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text
def preprocess_for_bert(text_arr):
"""
:param text_arr: Array of texts to be processed
:return: input_ids
attention_masks
"""
input_ids = []
attention_masks = []
for i, sentence in enumerate(text_arr):
encoded_sentence = tokenizer.encode_plus(
text=text_preprocessing(sentence),
add_special_tokens=True,
max_length=MAX_LEN,
padding='max_length',
truncation=True,
return_attention_mask=True,
)
ids = encoded_sentence.get('input_ids')
input_ids.append(ids)
atm = encoded_sentence.get('attention_mask')
attention_masks.append(atm)
input_ids = torch.tensor(input_ids)
attention_masks = torch.tensor(attention_masks)
return input_ids, attention_masks
class BertClassifier(nn.Module):
# freeze_bert: bool, set "False" to fine-tune the BERT model
def __init__(self, freeze_bert=False):
super(BertClassifier, self).__init__()
D_in, H, D_out = 768, 50, 3
if not LOCAL_BERT:
self.bert = BertModel.from_pretrained('bert-base-uncased')
else:
self.bert = BertModel.from_pretrained('models/', local_files_only=True)
self.classifier = nn.Sequential(
nn.Linear(D_in, H),
nn.ReLU(),
# nn.Dropout(0.5),
nn.Linear(H, D_out)
)
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False
def forward(self, inputs_ids, attention_mask):
outputs = self.bert(inputs_ids, attention_mask)
last_hidden_state_cls = outputs[0][:, 0, :]
print(last_hidden_state_cls.shape)
logits = self.classifier(last_hidden_state_cls)
return logits
# Take 'review_text' and 'review_summary' for bert_classifier
review_data = df[['review_text', 'review_summary']]
fit_label = df['fit']
fit_label_embed = [1 if label == 'fit' else 0 for label in fit_label]
positive_num = sum(fit_label_embed)
negative_num = len(fit_label_embed)-positive_num
print("Positive fit label number: " + str(positive_num))
print("Negative fit label number: " + str(negative_num))
X_train, X_test, y_train, y_test = train_test_split(review_data, fit_label, test_size=0.2, random_state=2021)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=2021)
print("Processing train data...")
train_inputs, train_masks = preprocess_for_bert(X_train['review_text'])
train_sum_inputs, _ = preprocess_for_bert(X_train['review_summary'])
train_inputs = torch.trunc(train_inputs * TEXT_WEIGHT + train_sum_inputs * SUMMARY_WEIGHT).int()
print("Train data preprocessed.")
print("Processing validate data...")
val_inputs, val_masks = preprocess_for_bert(X_val['review_text'])
val_sum_inputs, _ = preprocess_for_bert(X_val['review_summary'])
val_inputs = torch.trunc(val_inputs * TEXT_WEIGHT + val_sum_inputs * SUMMARY_WEIGHT).int()
print("Validate data preprocessed.")
print("Processing test data...")
test_inputs, test_masks = preprocess_for_bert(X_test['review_text'])
test_sum_inputs, _ = preprocess_for_bert(X_test['review_summary'])
test_inputs = torch.trunc(test_inputs * TEXT_WEIGHT + test_sum_inputs * SUMMARY_WEIGHT).int()
print("Test data preprocessed.")
def label_embedding(y):
y_embed = []
for lab in y:
if lab == 'fit':
y_embed.append(1)
elif lab == 'small':
y_embed.append(0)
elif lab == 'large':
y_embed.append(2)
return y_embed
y_train_embed = label_embedding(y_train)
y_val_embed = label_embedding(y_val)
y_test_embed = label_embedding(y_test)
train_labels = torch.tensor(y_train_embed)
val_labels = torch.tensor(y_val_embed)
test_labels = torch.tensor(y_test_embed)
batch_size = 32
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
val_data = TensorDataset(val_inputs, val_masks, val_labels)
val_sampler = SequentialSampler(val_data)
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=batch_size)
test_data = TensorDataset(test_inputs, test_masks, test_labels)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
def initialize_model(epochs=4, local_model=False):
if local_model:
bert_classifier = torch.load("bert-classifier.pkl")
else:
bert_classifier = BertClassifier(freeze_bert=False)
bert_classifier.to(device)
optimizer = AdamW(bert_classifier.parameters(), lr=5e-5, eps=1e-8)
total_steps = len(train_dataloader) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
return bert_classifier, optimizer, scheduler
def set_seed(seed_value=42):
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed(seed_value)
def train(model, train_dataloader, val_dataloader=None, epochs=4, evaluation=False):
for epoch_i in range(epochs):
print("Epoch " + str(epoch_i) + " is running...")
t0_epoch, t0_batch = time(), time()
total_loss, batch_loss, batch_counts = 0, 0, 0
model.train()
for step, batch in enumerate(train_dataloader):
batch_counts += 1
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
model.zero_grad()
logits = model(b_input_ids, b_attn_mask)
loss = loss_fn(logits, b_labels)
batch_loss += loss.item()
total_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
if (step % 20 == 0 and step != 0) or (step == len(train_dataloader)-1):
time_elapsed = time() - t0_batch
print("Batch Loss: ", batch_loss)
print("Total Loss: ", total_loss)
batch_loss, batch_counts = 0, 0
t0_batch = time()
avg_train_loss = total_loss / len(train_dataloader)
if evaluation == True:
print("Evaluation: ")
val_loss, val_accuracy = evaluate(model, val_dataloader)
time_elapsed = time()-t0_epoch
print("val_loss: ", val_loss)
print("val_accuracy: ", val_accuracy)
print("Training Complete.")
def evaluate(model, val_dataloader):
model.eval()
val_accuracy = []
val_loss = []
for batch in val_dataloader:
b_inputs_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
with torch.no_grad():
logits = model(b_inputs_ids, b_attn_mask)
loss = loss_fn(logits, b_labels)
val_loss.append(loss.item())
preds = torch.argmax(logits, dim=1).flatten()
accuracy = (preds == b_labels).cpu().numpy().mean() * 100
val_accuracy.append(accuracy)
val_loss = np.mean(val_loss)
val_accuracy = np.mean(val_accuracy)
return val_loss, val_accuracy
def bert_predict(model, test_dataloader):
model.eval()
all_logits = []
for batch in test_dataloader:
b_input_ids, b_attn_mask = tuple(t.to(device) for t in batch)[:2]
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)
all_logits.append(logits)
all_logits = torch.cat(all_logits, dim=0)
probs = F.softmax(all_logits, dim=1).cpu()
return probs
set_seed(42)
if not LOCAL_MODEL:
bert_classifier, optimizer, scheduler = initialize_model(epochs=EPOCHS, local_model=LOCAL_MODEL)
train(bert_classifier, train_dataloader, val_dataloader, epochs=EPOCHS, evaluation=True)
torch.save(bert_classifier, "bert-classifier.pkl")
else:
bert_classifier, optimizer, scheduler = initialize_model(epochs=EPOCHS, local_model=LOCAL_MODEL)
probs = bert_predict(bert_classifier, test_dataloader)
y_pred = torch.argmax(probs, dim=1).numpy()
y_true = np.array(y_test_embed)
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')
print("Accuracy: ", accuracy)
print("Precision: ", precision)
print("Recall: ", recall)
print("macro-F1: ", f1)