forked from OpenPrograms/Sangar-Programs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
raytracer.lua
198 lines (179 loc) · 5.35 KB
/
raytracer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
--[[
Very basic raytracer, passing results (i.e. hit "pixels") to a callback.
Usage:
local rt = require("raytracer").new()
table.insert(rt.model, {0,0,0,16,16,16})
--rt.camera.position = {-20,20,0}
--rt.camera.target = {8,8,8}
--rt.camera.fov = 100
rt:render(width, height, function(hitX, hitY, box, normal)
-- do stuff with the hit information, e.g. set pixel at hitX/hitY to boxes color
end)
Shapes must at least have their min/max coordinates given as the first six
integer indexed entries of the table, as {minX,minY,minZ,maxX,maxY,maxZ}.
The returned normal is a sequence with the x/y/z components of the normal.
The camera can be configured as shown in the example above, i.e. it has a
position, target and field of view (which is in degrees).
MIT Licensed, Copyright Sangar 2015
]]
local M = {}
-- vector math stuffs
local function vadd(v1, v2)
return {v1[1]+v2[1], v1[2]+v2[2], v1[3]+v2[3]}
end
local function vsub(v1, v2)
return {v1[1]-v2[1], v1[2]-v2[2], v1[3]-v2[3]}
end
local function vmul(v1, v2)
return {v1[1]*v2[1], v1[2]*v2[2], v1[3]*v2[3]}
end
local function vcross(v1, v2)
return {v1[2]*v2[3]-v1[3]*v2[2], v1[3]*v2[1]-v1[1]*v2[3], v1[1]*v2[2]-v1[2]*v2[1]}
end
local function vmuls(v, s)
return vmul(v, {s, s, s})
end
local function vdot(v1, v2)
return v1[1]*v2[1] + v1[2]*v2[2] + v1[3]*v2[3]
end
local function vnorm(v)
return vdot(v, v)
end
local function vlen(v)
return math.sqrt(vnorm(v))
end
local function vnormalize(v)
return vmuls(v, 1/vlen(v))
end
-- collision stuffs
-- http://tog.acm.org/resources/GraphicsGems/gems/RayBox.c
-- adjusted version also returning the surface normal
local function collideRayBox(box, origin, dir)
local inside = true
local quadrant = {0,0,0}
local minB = {box[1],box[2],box[3]}
local maxB = {box[4],box[5],box[6]}
local maxT = {0,0,0}
local candidatePlane = {0,0,0}
local sign = 0
-- Find candidate planes; this loop can be avoided if
-- rays cast all from the eye(assume perpsective view)
for i=1,3 do
if origin[i] < minB[i] then
quadrant[i] = true
candidatePlane[i] = minB[i]
inside = false
sign = -1
elseif origin[i] > maxB[i] then
quadrant[i] = true
candidatePlane[i] = maxB[i]
inside = false
sign = 1
else
quadrant[i] = false
end
end
-- Ray origin inside bounding box
if inside then
return nil
end
-- Calculate T distances to candidate planes
for i=1,3 do
if quadrant[i] and dir[i] ~= 0 then
maxT[i] = (candidatePlane[i] - origin[i]) / dir[i]
else
maxT[i] = -1
end
end
-- Get largest of the maxT's for final choice of intersection
local whichPlane = 1
for i=2,3 do
if maxT[whichPlane] < maxT[i] then
whichPlane = i
end
end
-- Check final candidate actually inside box
if maxT[whichPlane] < 0 then return nil end
local coord,normal = {0,0,0},{0,0,0}
for i=1,3 do
if whichPlane ~= i then
coord[i] = origin[i] + maxT[whichPlane] * dir[i]
if coord[i] < minB[i] or coord[i] > maxB[i] then
return nil
end
else
coord[i] = candidatePlane[i]
normal[i] = sign
end
end
return coord, normal -- ray hits box
end
local function trace(model, origin, dir)
local bestBox, bestNormal, bestDist = nil, nil, math.huge
for _, box in ipairs(model) do
local hit, normal = collideRayBox(box, origin, dir)
if hit then
local dist = vlen(vsub(hit, origin))
if dist < bestDist then
bestBox = box
bestNormal = normal
bestDist = dist
end
end
end
return bestBox, bestNormal
end
-- public api
function M.new()
return setmetatable({model={},camera={position={-1,1,-1},target={0,0,0},fov=90}}, {__index=M})
end
function M:render(w, h, f)
if #self.model < 1 then return end
-- overall model bounds, for quick empty space skipping
local bounds = {self.model[1][1],self.model[1][2],self.model[1][3],self.model[1][4],self.model[1][5],self.model[1][6]}
for _, shape in ipairs(self.model) do
bounds[1] = math.min(bounds[1], shape[1])
bounds[2] = math.min(bounds[2], shape[2])
bounds[3] = math.min(bounds[3], shape[3])
bounds[4] = math.max(bounds[4], shape[4])
bounds[5] = math.max(bounds[5], shape[5])
bounds[6] = math.max(bounds[6], shape[6])
end
bounds = {bounds}
-- setup framework for ray generation
local origin = self.camera.position
local forward = vnormalize(vsub(self.camera.target, origin))
local plane = vadd(origin, forward)
local side = vcross(forward, {0,1,0})
local up = vcross(forward, side)
local lside = math.tan(self.camera.fov/2/180*math.pi)
-- generate ray for each pixel, left-to-right, top-to-bottom
local blanks = 0
for sy = 1, h do
local ry = (sy/h - 0.5)*lside
local py = vadd(plane, vmuls(up, ry))
for sx = 1, w do
local rx = (sx/w - 0.5)*lside
local px = vadd(py, vmuls(side, rx))
local dir = vnormalize(vsub(px, origin))
if trace(bounds, origin, dir) then
local box, normal = trace(self.model, origin, dir)
if box then
blanks = 0
if f(sx, sy, box, normal) == false then
return
end
else
blanks = blanks + 1
end
else
blanks = blanks + 1
end
if blanks > 50 then
blanks = 0
os.sleep(0) -- avoid too long without yielding
end
end
end
end
return M