-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_gpt2.py
728 lines (641 loc) · 28.5 KB
/
finetune_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# GPT-2 FULL CODE FOR CAUSAL LANGUAGE MODELLING
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
# data files are already shuffled for gpt2
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import transformers
import wandb
from datasets import load_dataset
from src.training import CustomTrainer, GenerationCallback
from tqdm import tqdm
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
EarlyStoppingCallback,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
transformers.logging.set_verbosity_info()
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
os.environ["TRANSFORMERS_CACHE"] = "./transformers_cache"
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
apply_ear: Optional[bool] = field(default=False)
ear_reg_strength: Optional[float] = field(default=None)
ear_strength_dynamic: Optional[bool] = field(default=False)
ear_disable_special_tokens: Optional[bool] = field(default=False)
ear_include_hs: Optional[bool] = field(default=False)
apply_klreg: Optional[bool] = field(default=False)
klreg_special_share: Optional[float] = field(default=None)
klreg_hscn_are_special: Optional[bool] = field(default=None)
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={
"help": "If training from scratch, pass a model type from the list: "
+ ", ".join(MODEL_TYPES)
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a text file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."
},
)
id_terms_file: Optional[str] = field(
default=None, metadata={"help": "The input identity terms file (a text file)."}
)
prej_terms_file: Optional[str] = field(
default=None, metadata={"help": "The input prejudice terms file (a text file)."}
)
block_size: Optional[int] = field(
default=None,
metadata={
"help": "Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
):
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`validation_file` should be a csv, a json or a txt file."
if self.id_terms_file is not None:
extension = self.id_terms_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`train_file` should be a csv, a json or a txt file."
if self.prej_terms_file is not None:
extension = self.prej_terms_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`train_file` should be a csv, a json or a txt file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
if "validation" not in datasets.keys():
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (
data_args.train_file.split(".")[-1]
if data_args.train_file is not None
else data_args.validation_file.split(".")[-1]
)
if extension == "txt":
extension = "text"
datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, **config_kwargs
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, **tokenizer_kwargs
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, **tokenizer_kwargs
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# when the model is GPT2 we need to set this
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if model_args.model_type == "gpt2":
SPECIAL_TOKENS_DICT = {
"additional_special_tokens": ["<hatespeech>", "<counternarrative>"],
}
# Add these special tokens to the vocabulary and resize model's embeddings:
tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
if model_args.model_name_or_path:
# prev DialoGPT training code uses AutoModelWithLMHead but it's deprecated now
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise NotImplementedError("Should not come here!")
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# resize is not working with init unfortunately, so we deepcopy an initialized model instead.
# We need to find a way to successfully update model config in this class
import copy
def model_init():
return copy.deepcopy(model)
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = datasets["train"].column_names
else:
column_names = datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def find_sub_list(sl: List, l: List):
"""Find the spans a sublist is found in a list.
Parameters
----------
sl : List
Sublist to search.
l : List
List to search "sl" in.
Returns
-------
List[Tuple[int,int]]
List of tuples, each containing start and end index of the span found.
"""
results = list()
sll = len(sl)
for ind in (i for i, e in enumerate(l) if e == sl[0]):
if l[ind : ind + sll] == sl:
results.append((ind, ind + sll))
return results
list_id_terms = None
if data_args.id_terms_file is not None:
# we add leading space so that we can treat all words as non initial words (GPT tokenizers has the distinction, see https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer.add_prefix_space)
with open(data_args.id_terms_file) as fp:
list_id_terms = [f" {f.strip()}" for f in fp.readlines()]
list_id_terms = [tokenizer.encode(t) for t in list_id_terms]
list_prej_terms = None
if data_args.prej_terms_file is not None:
with open(data_args.prej_terms_file) as fp:
list_prej_terms = [f" {f.strip()}" for f in fp.readlines()]
list_prej_terms = [tokenizer.encode(t) for t in list_prej_terms]
def tokenize_dialogpt(examples):
# Remove empty lines
examples[text_column_name] = [
line
for line in examples[text_column_name]
if len(line) > 0 and not line.isspace()
]
# separate context from response and encode them separately
texts = list()
for ex in examples[text_column_name]:
clean_ex = ex.strip("<hatespeech> ").strip(" <|endoftext|>")
context, response = [t.strip() for t in clean_ex.split("<counternarrative>")]
texts.append(
f"{context}{tokenizer.eos_token}{response}{tokenizer.eos_token}"
)
tokens = tokenizer(texts, padding="max_length", max_length=data_args.block_size)
tokens["labels"] = tokens["input_ids"].copy()
# In the original training script inputs longer than block size are discarded
# The previous tokenization doesn't trucate inputs, then we can have inputs larger than block_size
tokens = {
k: [toks for toks in v if len(toks) <= data_args.block_size]
for k, v in tokens.items()
}
# We add additional info the batch with the keys "type_ids" and "term_type_ids"
tokens["type_ids"] = list()
for t in examples[text_column_name]:
clean_ex = ex.strip("<hatespeech> ").strip(" <|endoftext|>")
context, response = [t.strip() for t in clean_ex.split("<counternarrative>")]
hs_token_count = len(tokenizer.encode(f"{context}{tokenizer.eos_token}"))
cn_token_count = len(tokenizer.encode(f"{response}{tokenizer.eos_token}"))
tokens["type_ids"].append(
[0] * hs_token_count
+ [1] * cn_token_count
+ [2] * (data_args.block_size - (hs_token_count + cn_token_count))
)
if list_id_terms or list_prej_terms:
raise NotImplementedError(
"Per term type EAR loss not implemented yet for dialogpt"
)
# tokens["term_type_ids"] = list()
return tokens
# Here how we handled the line by line basically padding: https://finisky.github.io/finetunelmlinebyline.en/456G
def tokenize_gpt2(examples):
# Remove empty lines
examples[text_column_name] = [
line
for line in examples[text_column_name]
if len(line) > 0 and not line.isspace()
]
tokens = tokenizer(
examples[text_column_name],
padding="max_length",
truncation=True,
max_length=data_args.block_size,
return_special_tokens_mask=False,
)
tokens["labels"] = tokens["input_ids"].copy()
# We add additional info the batch with the keys "type_ids" and "term_type_ids"
tokens["type_ids"] = list()
if list_id_terms or list_prej_terms:
tokens["term_type_ids"] = list()
for t in examples[text_column_name]:
# include type ids, where 0: source hs, 1: counternarrative tokens, 2: pad
hs_text = t.split("<counternarrative>")[0] + "<counternarrative>"
cn_text = t.split("<counternarrative>")[1]
hs_token_count = len(tokenizer.encode(hs_text))
cn_token_count = len(tokenizer.encode(cn_text))
tokens["type_ids"].append(
[0] * hs_token_count
+ [1] * cn_token_count
+ [2] * (data_args.block_size - (hs_token_count + cn_token_count))
)
if "term_type_ids" in tokens:
# include term type, where 0: normal, 1: identity term, 2: prejudice term
token_ids = tokenizer.encode(
f" {t.lower()}"
) # remember the leading space trick
term_types = [0] * len(token_ids)
if list_id_terms:
identity_terms_spans = [
find_sub_list(id_tokens, token_ids)
for id_tokens in list_id_terms
]
for id_spans in identity_terms_spans:
for id_span in id_spans:
for i in range(id_span[0], id_span[1]):
term_types[i] = 1
if list_prej_terms:
prejudice_terms_spans = [
find_sub_list(id_tokens, token_ids)
for id_tokens in list_prej_terms
]
for id_spans in prejudice_terms_spans:
for id_span in id_spans:
for i in range(id_span[0], id_span[1]):
term_types[i] = 2
tokens["term_type_ids"].append(
term_types + [0] * (data_args.block_size - len(term_types))
)
return tokens
tfn = tokenize_gpt2 if model_args.model_type == "gpt2" else tokenize_dialogpt
tokenized_datasets = datasets.map(
tfn,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warn(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warn(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Hyperparameter search
# -----
def cn_hp_space(trial):
return {
"learning_rate": trial.suggest_categorical(
"learning_rate", [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]
),
# trial.suggest_float("learning_rate", 1e-6, 1e-5, log=True),
"per_device_train_batch_size": trial.suggest_categorical(
"per_device_train_batch_size", [2, 4]
),
"num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5, log=True),
"warmup_ratio": trial.suggest_categorical("warmup_ratio", [0, 0.1])
# "weight_decay": trial.suggest_float("weight_decay", 1e-12, 1e-1, log=True),
# "adam_epsilon": trial.suggest_float("adam_epsilon", 1e-10, 1e-6, log=True)
}
# ----
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
callbacks = [EarlyStoppingCallback(3, 1e-4)]
if model_args.model_type == "gpt2": # we have it only for gpt2 atm
callbacks.append(GenerationCallback())
training_args.remove_unused_columns = False
# Initialize our Trainer
trainer = CustomTrainer(
model=model,
model_type=model_args.model_type,
# model_init=model_init,
args=training_args,
train_dataset=lm_datasets["train"] if training_args.do_train else None,
eval_dataset=lm_datasets["validation"] if training_args.do_eval else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
apply_ear=model_args.apply_ear,
ear_reg_strength=model_args.ear_reg_strength,
ear_disable_special_tokens=model_args.ear_disable_special_tokens,
ear_strength_dynamic=model_args.ear_strength_dynamic,
ear_include_hs=model_args.ear_include_hs,
callbacks=callbacks,
apply_klreg=model_args.apply_klreg,
klreg_special_share=model_args.klreg_special_share,
klreg_hscn_are_special=model_args.klreg_hscn_are_special,
)
# trainer.add_callback(
# EarlyStoppingCallback(1, 0.0001)) # we can change the criteria, in transformers test file it is 0.0001
# best_run = trainer.hyperparameter_search(n_trials=10, direction="minimize", hp_space=cn_hp_space)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(
model_args.model_name_or_path
):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
if trainer.is_world_process_zero():
with open(output_train_file, "w") as writer:
logger.info("***** Train results *****")
for key, value in sorted(train_result.metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(
os.path.join(training_args.output_dir, "trainer_state.json")
)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
eval_output = trainer.evaluate()
perplexity = math.exp(eval_output["eval_loss"])
results["perplexity"] = perplexity
output_eval_file = os.path.join(training_args.output_dir, "eval_results_clm.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()