-
Notifications
You must be signed in to change notification settings - Fork 131
/
evaluation.py
281 lines (232 loc) · 9.37 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/python
# -*- encoding: utf-8 -*-
from logger import setup_logger
from models.model_stages import BiSeNet
from cityscapes import CityScapes
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.distributed as dist
import os
import os.path as osp
import logging
import time
import numpy as np
from tqdm import tqdm
import math
class MscEvalV0(object):
def __init__(self, scale=0.5, ignore_label=255):
self.ignore_label = ignore_label
self.scale = scale
def __call__(self, net, dl, n_classes):
## evaluate
hist = torch.zeros(n_classes, n_classes).cuda().detach()
if dist.is_initialized() and dist.get_rank() != 0:
diter = enumerate(dl)
else:
diter = enumerate(tqdm(dl))
for i, (imgs, label) in diter:
N, _, H, W = label.shape
label = label.squeeze(1).cuda()
size = label.size()[-2:]
imgs = imgs.cuda()
N, C, H, W = imgs.size()
new_hw = [int(H*self.scale), int(W*self.scale)]
imgs = F.interpolate(imgs, new_hw, mode='bilinear', align_corners=True)
logits = net(imgs)[0]
logits = F.interpolate(logits, size=size,
mode='bilinear', align_corners=True)
probs = torch.softmax(logits, dim=1)
preds = torch.argmax(probs, dim=1)
keep = label != self.ignore_label
hist += torch.bincount(
label[keep] * n_classes + preds[keep],
minlength=n_classes ** 2
).view(n_classes, n_classes).float()
if dist.is_initialized():
dist.all_reduce(hist, dist.ReduceOp.SUM)
ious = hist.diag() / (hist.sum(dim=0) + hist.sum(dim=1) - hist.diag())
miou = ious.mean()
return miou.item()
def evaluatev0(respth='./pretrained', dspth='./data', backbone='CatNetSmall', scale=0.75, use_boundary_2=False, use_boundary_4=False, use_boundary_8=False, use_boundary_16=False, use_conv_last=False):
print('scale', scale)
print('use_boundary_2', use_boundary_2)
print('use_boundary_4', use_boundary_4)
print('use_boundary_8', use_boundary_8)
print('use_boundary_16', use_boundary_16)
## dataset
batchsize = 5
n_workers = 2
dsval = CityScapes(dspth, mode='val')
dl = DataLoader(dsval,
batch_size = batchsize,
shuffle = False,
num_workers = n_workers,
drop_last = False)
n_classes = 19
print("backbone:", backbone)
net = BiSeNet(backbone=backbone, n_classes=n_classes,
use_boundary_2=use_boundary_2, use_boundary_4=use_boundary_4,
use_boundary_8=use_boundary_8, use_boundary_16=use_boundary_16,
use_conv_last=use_conv_last)
net.load_state_dict(torch.load(respth))
net.cuda()
net.eval()
with torch.no_grad():
single_scale = MscEvalV0(scale=scale)
mIOU = single_scale(net, dl, 19)
logger = logging.getLogger()
logger.info('mIOU is: %s\n', mIOU)
class MscEval(object):
def __init__(self,
model,
dataloader,
scales = [0.5, 0.75, 1, 1.25, 1.5, 1.75],
n_classes = 19,
lb_ignore = 255,
cropsize = 1024,
flip = True,
*args, **kwargs):
self.scales = scales
self.n_classes = n_classes
self.lb_ignore = lb_ignore
self.flip = flip
self.cropsize = cropsize
## dataloader
self.dl = dataloader
self.net = model
def pad_tensor(self, inten, size):
N, C, H, W = inten.size()
outten = torch.zeros(N, C, size[0], size[1]).cuda()
outten.requires_grad = False
margin_h, margin_w = size[0]-H, size[1]-W
hst, hed = margin_h//2, margin_h//2+H
wst, wed = margin_w//2, margin_w//2+W
outten[:, :, hst:hed, wst:wed] = inten
return outten, [hst, hed, wst, wed]
def eval_chip(self, crop):
with torch.no_grad():
out = self.net(crop)[0]
prob = F.softmax(out, 1)
if self.flip:
crop = torch.flip(crop, dims=(3,))
out = self.net(crop)[0]
out = torch.flip(out, dims=(3,))
prob += F.softmax(out, 1)
prob = torch.exp(prob)
return prob
def crop_eval(self, im):
cropsize = self.cropsize
stride_rate = 5/6.
N, C, H, W = im.size()
long_size, short_size = (H,W) if H>W else (W,H)
if long_size < cropsize:
im, indices = self.pad_tensor(im, (cropsize, cropsize))
prob = self.eval_chip(im)
prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]]
else:
stride = math.ceil(cropsize*stride_rate)
if short_size < cropsize:
if H < W:
im, indices = self.pad_tensor(im, (cropsize, W))
else:
im, indices = self.pad_tensor(im, (H, cropsize))
N, C, H, W = im.size()
n_x = math.ceil((W-cropsize)/stride)+1
n_y = math.ceil((H-cropsize)/stride)+1
prob = torch.zeros(N, self.n_classes, H, W).cuda()
prob.requires_grad = False
for iy in range(n_y):
for ix in range(n_x):
hed, wed = min(H, stride*iy+cropsize), min(W, stride*ix+cropsize)
hst, wst = hed-cropsize, wed-cropsize
chip = im[:, :, hst:hed, wst:wed]
prob_chip = self.eval_chip(chip)
prob[:, :, hst:hed, wst:wed] += prob_chip
if short_size < cropsize:
prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]]
return prob
def scale_crop_eval(self, im, scale):
N, C, H, W = im.size()
new_hw = [int(H*scale), int(W*scale)]
im = F.interpolate(im, new_hw, mode='bilinear', align_corners=True)
prob = self.crop_eval(im)
prob = F.interpolate(prob, (H, W), mode='bilinear', align_corners=True)
return prob
def compute_hist(self, pred, lb):
n_classes = self.n_classes
ignore_idx = self.lb_ignore
keep = np.logical_not(lb==ignore_idx)
merge = pred[keep] * n_classes + lb[keep]
hist = np.bincount(merge, minlength=n_classes**2)
hist = hist.reshape((n_classes, n_classes))
return hist
def evaluate(self):
## evaluate
n_classes = self.n_classes
hist = np.zeros((n_classes, n_classes), dtype=np.float32)
dloader = tqdm(self.dl)
if dist.is_initialized() and not dist.get_rank()==0:
dloader = self.dl
for i, (imgs, label) in enumerate(dloader):
N, _, H, W = label.shape
probs = torch.zeros((N, self.n_classes, H, W))
probs.requires_grad = False
imgs = imgs.cuda()
for sc in self.scales:
# prob = self.scale_crop_eval(imgs, sc)
prob = self.eval_chip(imgs)
probs += prob.detach().cpu()
probs = probs.data.numpy()
preds = np.argmax(probs, axis=1)
hist_once = self.compute_hist(preds, label.data.numpy().squeeze(1))
hist = hist + hist_once
IOUs = np.diag(hist) / (np.sum(hist, axis=0)+np.sum(hist, axis=1)-np.diag(hist))
mIOU = np.mean(IOUs)
return mIOU
def evaluate(respth='./resv1_catnet/pths/', dspth='./data'):
## logger
logger = logging.getLogger()
## model
logger.info('\n')
logger.info('===='*20)
logger.info('evaluating the model ...\n')
logger.info('setup and restore model')
n_classes = 19
net = BiSeNet(n_classes=n_classes)
net.load_state_dict(torch.load(respth))
net.cuda()
net.eval()
## dataset
batchsize = 5
n_workers = 2
dsval = CityScapes(dspth, mode='val')
dl = DataLoader(dsval,
batch_size = batchsize,
shuffle = False,
num_workers = n_workers,
drop_last = False)
## evaluator
logger.info('compute the mIOU')
evaluator = MscEval(net, dl, scales=[1], flip = False)
## eval
mIOU = evaluator.evaluate()
logger.info('mIOU is: {:.6f}'.format(mIOU))
if __name__ == "__main__":
log_dir = 'evaluation_logs/'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
setup_logger(log_dir)
#STDC1-Seg50 mIoU 0.7222
# evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet813', scale=0.5,
# use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
#STDC1-Seg75 mIoU 0.7450
# evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet813', scale=0.75,
# use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
#STDC2-Seg50 mIoU 0.7424
# evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet1446', scale=0.5,
# use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
#STDC2-Seg75 mIoU 0.7704
evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet1446', scale=0.75,
use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)