-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflann_based_matcher.py
85 lines (62 loc) · 2.86 KB
/
flann_based_matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
"""
if __name__ == "__main__":
import numpy as np
import cv2
from matplotlib import pyplot as plt
base_dir = "H:/projects/SLAM/python_code/dataset/our/trajs2/"
im1_file = base_dir + '1.jpg'
im2_file = base_dir + '4.jpg'
img1 = cv2.imread(im1_file, 0) # queryImage
img2 = cv2.imread(im2_file, 0) # trainImage
# Initiate SIFT detector
# sift = cv2.SIFT()
# fd_de = cv2.xfeatures2d.SIFT_create()
fd_de = cv2.xfeatures2d.SURF_create()
# fd_de = cv2.ORB_create(nfeatures=5000)
# find the keypoints and descriptors with SIFT
kp1, des1 = fd_de.detectAndCompute(img1, None)
kp2, des2 = fd_de.detectAndCompute(img2, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
index_params_orb = dict(algorithm=6, # FLANN_INDEX_LSH <-> 6, not so sure why I can not use it
table_number=6, # 12
key_size=12, # 20
multi_probe_level=1) # 2
index_params_orb2 = dict(algorithm=6, # FLANN_INDEX_LSH <-> 6, not so sure why I can not use it
table_number=6, # 12
key_size=12, # 20
multi_probe_level=1) # 2
"""
# FAILED
index_params_auto = dict(algorithm=255,
target_precision=0.9,
build_weight=0.01,
memory_weight=0,
sample_fraction=0.1) # FLANN_INDEX_AUTOTUNED <-> 255
# flann = cv2.FlannBasedMatcher(index_params_auto, search_params)
"""
search_params = dict(checks=50) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params, search_params)
#flann = cv2.FlannBasedMatcher(index_params_orb, search_params)
#flann = cv2.FlannBasedMatcher(index_params_orb2, search_params)
#matches_HAMMING = flann.match(des1, des2) # for ORB like
matches = flann.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]
matches_good = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7 * n.distance:
matchesMask[i] = [1, 0]
matches_good.append(m)
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
print("Matches with ratio test:{}->{}".format(len(matches), len(matches_good)))
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **draw_params)
#img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches_good, None, flags=2)
plt.imshow(img3, ), plt.show()