-
Notifications
You must be signed in to change notification settings - Fork 17
/
misc.py
268 lines (185 loc) · 6.84 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
@Time : 2020/3/15 20:09
@Author : TaylorMei
@E-mail : [email protected]
@Project : CVPR2020_GDNet
@File : misc.py
@Function:
"""
import os
import xlwt
import numpy as np
import pydensecrf.densecrf as dcrf
from skimage import io
################################################################
######################## Utils #################################
################################################################
def check_mkdir(dir_name):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def data_write(file_path, datas):
f = xlwt.Workbook()
sheet1 = f.add_sheet(sheetname="sheet1", cell_overwrite_ok=True)
j = 0
for data in datas:
for i in range(len(data)):
sheet1.write(i, j, data[i])
j = j + 1
f.save(file_path)
################################################################
######################## Train & Test ##########################
################################################################
class AvgMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# codes of this function are borrowed from https://github.com/Andrew-Qibin/dss_crf
def crf_refine(img, annos):
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
assert img.dtype == np.uint8
assert annos.dtype == np.uint8
assert img.shape[:2] == annos.shape
# img and annos should be np array with data type uint8
EPSILON = 1e-8
M = 2 # salient or not
tau = 1.05
# Setup the CRF model
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M)
anno_norm = annos / 255.
n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm))
p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm))
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32')
U[0, :] = n_energy.flatten()
U[1, :] = p_energy.flatten()
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5)
# Do the inference
infer = np.array(d.inference(1)).astype('float32')
res = infer[1, :]
res = res * 255
res = res.reshape(img.shape[:2])
return res.astype('uint8')
def get_gt_mask(imgname, MASK_DIR):
filestr = imgname[:-4]
mask_folder = MASK_DIR
mask_path = os.path.join(mask_folder, filestr + ".png")
mask = io.imread(mask_path)
mask = np.where(mask == 255, 1, 0).astype(np.float32)
return mask
def get_normalized_predict_mask(imgname, PREDICT_MASK_DIR):
filestr = imgname[:-4]
mask_folder = PREDICT_MASK_DIR
mask_path = os.path.join(mask_folder, filestr + ".png")
if not os.path.exists(mask_path):
print("{} has no predict mask!".format(imgname))
mask = io.imread(mask_path).astype(np.float32)
if np.max(mask) - np.min(mask) > 0:
mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
else:
mask = mask / 255.0
mask = mask.astype(np.float32)
return mask
def get_binary_predict_mask(imgname, PREDICT_MASK_DIR):
filestr = imgname[:-4]
mask_folder = PREDICT_MASK_DIR
mask_path = os.path.join(mask_folder, filestr + ".png")
if not os.path.exists(mask_path):
print("{} has no predict mask!".format(imgname))
mask = io.imread(mask_path).astype(np.float32)
mask = np.where(mask >= 127.5, 1, 0).astype(np.float32)
return mask
################################################################
######################## Evaluation ############################
################################################################
def compute_iou(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
if np.sum(predict_mask) == 0 or np.sum(gt_mask) == 0:
iou_ = 0
return iou_
n_ii = np.sum(np.logical_and(predict_mask, gt_mask))
t_i = np.sum(gt_mask)
n_ij = np.sum(predict_mask)
iou_ = n_ii / (t_i + n_ij - n_ii)
return iou_
def compute_acc(predict_mask, gt_mask):
# recall
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
accuracy_ = TP / N_p
return accuracy_
def compute_acc_image(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
accuracy_ = (TP + TN) / (N_p + N_n)
return accuracy_
def compute_precision_recall(prediction, gt):
assert prediction.dtype == np.float32
assert gt.dtype == np.float32
assert prediction.shape == gt.shape
eps = 1e-4
hard_gt = np.zeros(prediction.shape)
hard_gt[gt > 0.5] = 1
t = np.sum(hard_gt)
precision, recall = [], []
# calculating precision and recall at 255 different binarizing thresholds
for threshold in range(256):
threshold = threshold / 255.
hard_prediction = np.zeros(prediction.shape)
hard_prediction[prediction > threshold] = 1
tp = np.sum(hard_prediction * hard_gt)
p = np.sum(hard_prediction)
precision.append((tp + eps) / (p + eps))
recall.append((tp + eps) / (t + eps))
return precision, recall
def compute_fmeasure(precision, recall):
assert len(precision) == 256
assert len(recall) == 256
beta_square = 0.3
max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)])
return max_fmeasure
def compute_mae(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
mae_ = np.mean(abs(predict_mask - gt_mask)).item()
return mae_
def compute_ber(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
ber_ = 100 * (1 - (1 / 2) * ((TP / N_p) + (TN / N_n)))
return ber_
def segm_size(segm):
try:
height = segm.shape[0]
width = segm.shape[1]
except IndexError:
raise
return height, width
def check_size(eval_segm, gt_segm):
h_e, w_e = segm_size(eval_segm)
h_g, w_g = segm_size(gt_segm)
if (h_e != h_g) or (w_e != w_g):
raise EvalSegErr("DiffDim: Different dimensions of matrices!")
class EvalSegErr(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)