ReactiveDynamics.@add_species
— MacroAdd new species to a model.
Examples
@add_species acs S I R
diff --git a/dev/index.html b/dev/index.html index 88beb75..f075e30 100644 --- a/dev/index.html +++ b/dev/index.html @@ -8,32 +8,32 @@ @push acs 1.0 X ⟶ Y @prob_init acs X = 1 Y = 2 XY = α @prob_params acs γ = 1 α = 4 -@solve_and_plot acssource
We list common transition attributes. When being specified using the @ReactionNetwork
macro they can be conveniently referred to using their shorthand description.
attribute | shorthand | interpretation |
---|---|---|
transPriority | priority | priority of a transition (influences resource allocation) |
transProbOfSuccess | probability prob pos | probability that a transition terminates successfully |
transCapacity | cap capacity | maximum number of concurrent instances of the transition |
transCycleTime | ct cycletime | duration of a transition's instance (adjusted by resource allocation) |
transMaxLifeTime | lifetime maxlifetime maxtime timetolive | maximal duration of a transition's instance |
transPostAction | postAction post | action to be executed once a transition's instance terminates |
transName | name interpretation | name of a transition, either a string or unquoted text |
We list common species attributes:
attribute | shorthand | interpretation |
---|---|---|
specInitUncertainty | uncertainty stoch stochasticity | uncertainty about variable's initial state (modelled as Gaussian standard deviation) |
specInitVal | initial value of a variable |
Moreover, it is possible to specify the semantics of the "rate" term. By default, at each time step n ~ Poisson(rate * dt)
instances of a given transition will be spawned. If you want to specify the rate in terms of a cycle time, you may want to use @ct(cycle_time)
, e.g., @ct(ex), A --> B, ...
. This is a shorthand for 1/ex, A --> B, ...
.
For deterministic "rates", use @per_step(ex)
. Here, ex
evaluates to a deterministic number (ceiled to the nearest integer) of a transition's instances to spawn per a single integrator's step. However, note that in this case, the number doesn't scale with the step length! Moreover
ReactiveDynamics.@add_species
— MacroAdd new species to a model.
Examples
@add_species acs S I R
ReactiveDynamics.@aka
— MacroAlias object name in an acs.
Default names
name | short name |
---|---|
species | S |
transition | T |
action | A |
event | E |
param | P |
meta | M |
Examples
@aka acs species = resource transition = reaction
ReactiveDynamics.@mode
— MacroSet species modality.
Supported modalities
Examples
@mode acs (r"proj\w+", r"experimental\w+") conserved
+@solve_and_plot acs
We list common transition attributes. When being specified using the @ReactionNetwork
macro they can be conveniently referred to using their shorthand description.
attribute | shorthand | interpretation |
---|---|---|
transPriority | priority | priority of a transition (influences resource allocation) |
transProbOfSuccess | probability prob pos | probability that a transition terminates successfully |
transCapacity | cap capacity | maximum number of concurrent instances of the transition |
transCycleTime | ct cycletime | duration of a transition's instance (adjusted by resource allocation) |
transMaxLifeTime | lifetime maxlifetime maxtime timetolive | maximal duration of a transition's instance |
transPostAction | postAction post | action to be executed once a transition's instance terminates |
transName | name interpretation | name of a transition, either a string or unquoted text |
We list common species attributes:
attribute | shorthand | interpretation |
---|---|---|
specInitUncertainty | uncertainty stoch stochasticity | uncertainty about variable's initial state (modelled as Gaussian standard deviation) |
specInitVal | initial value of a variable |
Moreover, it is possible to specify the semantics of the "rate" term. By default, at each time step n ~ Poisson(rate * dt)
instances of a given transition will be spawned. If you want to specify the rate in terms of a cycle time, you may want to use @ct(cycle_time)
, e.g., @ct(ex), A --> B, ...
. This is a shorthand for 1/ex, A --> B, ...
.
For deterministic "rates", use @per_step(ex)
. Here, ex
evaluates to a deterministic number (ceiled to the nearest integer) of a transition's instances to spawn per a single integrator's step. However, note that in this case, the number doesn't scale with the step length! Moreover
ReactiveDynamics.@add_species
— MacroAdd new species to a model.
Examples
@add_species acs S I R
ReactiveDynamics.@aka
— MacroAlias object name in an acs.
Default names
name | short name |
---|---|
species | S |
transition | T |
action | A |
event | E |
param | P |
meta | M |
Examples
@aka acs species = resource transition = reaction
ReactiveDynamics.@mode
— MacroSet species modality.
Supported modalities
Examples
@mode acs (r"proj\w+", r"experimental\w+") conserved
@mode acs (S, I) conserved
-@mode acs S conserved
ReactiveDynamics.@name_transition
— MacroSet name of a transition in the model.
Examples
@name_transition acs 1 = "name"
+@mode acs S conserved
ReactiveDynamics.@name_transition
— MacroSet name of a transition in the model.
Examples
@name_transition acs 1 = "name"
@name_transition acs name = "transition_name"
-@name_transition acs "name" = "transition_name"
ReactiveDynamics.@cost
— MacroSet cost.
Examples
@cost model experimental1=2 experimental2=3
ReactiveDynamics.@valuation
— MacroSet valuation.
Examples
@valuation model experimental1=2 experimental2=3
ReactiveDynamics.@reward
— MacroSet reward.
Examples
@reward model experimental1=2 experimental2=3
ReactiveDynamics.@push
— MacroAdd reactions to an acset.
Examples
@push sir_acs β * S * I * tdecay(@time()) S + I --> 2I name => SI2I
+@name_transition acs "name" = "transition_name"
ReactiveDynamics.@cost
— MacroSet cost.
Examples
@cost model experimental1=2 experimental2=3
ReactiveDynamics.@valuation
— MacroSet valuation.
Examples
@valuation model experimental1=2 experimental2=3
ReactiveDynamics.@reward
— MacroSet reward.
Examples
@reward model experimental1=2 experimental2=3
ReactiveDynamics.@push
— MacroAdd reactions to an acset.
Examples
@push sir_acs β * S * I * tdecay(@time()) S + I --> 2I name => SI2I
@push sir_acs begin
ν * I, I --> R, name => I2R
γ, R --> S, name => R2S
-end
ReactiveDynamics.@jump
— MacroAdd a jump process (with specified Poisson intensity per unit time step) to a model.
Examples
@jump acs λ Z += rand(Poisson(1.0))
ReactiveDynamics.@periodic
— MacroAdd a periodic callback to a model.
Examples
@periodic acs 1.0 X += 1
ReactiveDynamics.@prob_init
— MacroSet initial values of species in an acset.
Examples
@prob_init acs X = 1 Y = 2 Z = h(α)
-@prob_init acs [1.0, 2.0, 3.0]
ReactiveDynamics.@prob_uncertainty
— MacroSet uncertainty in initial values of species in an acset (stderr).
Examples
@prob_uncertainty acs X = 0.1 Y = 0.2
-@prob_uncertainty acs [0.1, 0.2]
ReactiveDynamics.@prob_params
— MacroSet parameter values in an acset.
Examples
@prob_params acs α = 1.0 β = 2.0
ReactiveDynamics.@prob_meta
— MacroSet model metadata (e.g. solver arguments)
Examples
@prob_meta acs tspan = (0, 100.0) schedule = schedule_weighted!
-@prob_meta sir_acs tspan = 250 tstep = 1
ReactiveDynamics.@join
— Macro@join models... [equalize...]
Performs join of models and identifies model variables, as specified.
Model variables / parameter values and metadata are propagated; the last model takes precedence.
Examples
@join acs1 acs2 @catchall(A) = acs2.Z @catchall(XY) @catchall(B)
ReactiveDynamics.@equalize
— MacroIdentify (collapse) a set of species in a model.
Examples
@join acs acs1.A = acs2.A B = C
ReactiveDynamics.@import_network
— MacroImport a model from a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@import_network "model.toml"
-@import_network "csv/model.toml"
ReactiveDynamics.@export_network
— MacroExport model to a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@export_network acs "acs_data.toml" # as a TOML
-@export_network acs "csv/model.csv" # as a CSV
ReactiveDynamics.@import_solution
— Macro@import_solution "sol.jld2"
-@import_solution "sol.jld2" sol
Import a solution from a file.
Examples
@import_solution "sir_acs_sol/serialized/sol.jld2"
ReactiveDynamics.@export_solution_as_table
— Macro@export_solution_as_table sol
Export a solution as a DataFrame
.
Examples
@export_solution_as_table sol
ReactiveDynamics.@export_solution_as_csv
— Macro@export_solution_as_csv sol
-@export_solution_as_csv sol "sol.csv"
Export a solution to a file.
Examples
@export_solution_as_csv sol "sol.csv"
ReactiveDynamics.@export_solution
— Macro@export_solution sol
-@export_solution sol "sol.jld2"
Export a solution to a file.
Examples
@export_solution sol "sol.jdl2"
ReactiveDynamics.@problematize
— MacroConvert a model to a DiscreteProblem
. If passed a problem instance, return the instance.
Examples
@problematize acs tspan = 1:100
ReactiveDynamics.@solve
— MacroSolve the problem. Solverargs passed at the calltime take precedence.
Examples
@solve prob
+end
ReactiveDynamics.@jump
— MacroAdd a jump process (with specified Poisson intensity per unit time step) to a model.
Examples
@jump acs λ Z += rand(Poisson(1.0))
ReactiveDynamics.@periodic
— MacroAdd a periodic callback to a model.
Examples
@periodic acs 1.0 X += 1
ReactiveDynamics.@prob_init
— MacroSet initial values of species in an acset.
Examples
@prob_init acs X = 1 Y = 2 Z = h(α)
+@prob_init acs [1.0, 2.0, 3.0]
ReactiveDynamics.@prob_uncertainty
— MacroSet uncertainty in initial values of species in an acset (stderr).
Examples
@prob_uncertainty acs X = 0.1 Y = 0.2
+@prob_uncertainty acs [0.1, 0.2]
ReactiveDynamics.@prob_params
— MacroSet parameter values in an acset.
Examples
@prob_params acs α = 1.0 β = 2.0
ReactiveDynamics.@prob_meta
— MacroSet model metadata (e.g. solver arguments)
Examples
@prob_meta acs tspan = (0, 100.0) schedule = schedule_weighted!
+@prob_meta sir_acs tspan = 250 tstep = 1
ReactiveDynamics.@join
— Macro@join models... [equalize...]
Performs join of models and identifies model variables, as specified.
Model variables / parameter values and metadata are propagated; the last model takes precedence.
Examples
@join acs1 acs2 @catchall(A) = acs2.Z @catchall(XY) @catchall(B)
ReactiveDynamics.@equalize
— MacroIdentify (collapse) a set of species in a model.
Examples
@join acs acs1.A = acs2.A B = C
ReactiveDynamics.@import_network
— MacroImport a model from a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@import_network "model.toml"
+@import_network "csv/model.toml"
ReactiveDynamics.@export_network
— MacroExport model to a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects).
See tutorials/loadsave
for an example.
Examples
@export_network acs "acs_data.toml" # as a TOML
+@export_network acs "csv/model.csv" # as a CSV
ReactiveDynamics.@import_solution
— Macro@import_solution "sol.jld2"
+@import_solution "sol.jld2" sol
Import a solution from a file.
Examples
@import_solution "sir_acs_sol/serialized/sol.jld2"
ReactiveDynamics.@export_solution_as_table
— Macro@export_solution_as_table sol
Export a solution as a DataFrame
.
Examples
@export_solution_as_table sol
ReactiveDynamics.@export_solution_as_csv
— Macro@export_solution_as_csv sol
+@export_solution_as_csv sol "sol.csv"
Export a solution to a file.
Examples
@export_solution_as_csv sol "sol.csv"
ReactiveDynamics.@export_solution
— Macro@export_solution sol
+@export_solution sol "sol.jld2"
Export a solution to a file.
Examples
@export_solution sol "sol.jdl2"
ReactiveDynamics.@problematize
— MacroConvert a model to a DiscreteProblem
. If passed a problem instance, return the instance.
Examples
@problematize acs tspan = 1:100
ReactiveDynamics.@solve
— MacroSolve the problem. Solverargs passed at the calltime take precedence.
Examples
@solve prob
@solve prob tspan = 1:100
-@solve prob tspan = 100 trajectories = 20
ReactiveDynamics.@plot
— MacroPlot the solution (summary).
Examples
@plot sol plot_type = summary
+@solve prob tspan = 100 trajectories = 20
ReactiveDynamics.@plot
— MacroPlot the solution (summary).
Examples
@plot sol plot_type = summary
@plot sol plot_type = allocation # not supported for ensemble solutions!
@plot sol plot_type = valuations # not supported for ensemble solutions!
-@plot sol plot_type = new_transitions # not supported for ensemble solutions!
ReactiveDynamics.@optimize
— Macro@optimize acset objective <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and optimize given functional.
Objective is an expression which may reference the model's variables and parameters, i.e., A+β
. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
By default, the functional is minimized. Specify objective=max
to perform maximization.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
@optimize acs abs(A - B) A B = 20.0 α = 2.0 lower_bounds = 0 upper_bounds = 100
+@plot sol plot_type = new_transitions # not supported for ensemble solutions!
ReactiveDynamics.@optimize
— Macro@optimize acset objective <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and optimize given functional.
Objective is an expression which may reference the model's variables and parameters, i.e., A+β
. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
By default, the functional is minimized. Specify objective=max
to perform maximization.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
@optimize acs abs(A - B) A B = 20.0 α = 2.0 lower_bounds = 0 upper_bounds = 100
@optimize acss abs(A - B) A B = 20.0 α = 2.0 upper_bounds = [200, 300, 400] maxeval = 200 objective =
- min
ReactiveDynamics.@fit
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and fit initial values and parameters to empirical data.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
+ min
ReactiveDynamics.@fit
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and fit initial values and parameters to empirical data.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
data = [80 30 20]
-@fit acs data t vars = A B = 20 A α # fit B, A, α; empirical data is for variable A
ReactiveDynamics.@fit_and_plot
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset, fit initial values and parameters to empirical data, and plot the result.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
+@fit acs data t vars = A B = 20 A α # fit B, A, α; empirical data is for variable A
ReactiveDynamics.@fit_and_plot
— Macro@fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset, fit initial values and parameters to empirical data, and plot the result.
The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the NLopt
solver has the form [free_vars; free_params]
; order of vars and params, respectively, is preserved.
Propagates NLopt
solver arguments; see NLopt documentation.
Examples
t = [1, 50, 100]
data = [80 30 20]
-@fit acs data t vars = A B = 20 A α # fit B, A, α; empirical data is for variable A
ReactiveDynamics.@build_solver
— Macro@build_solver acset <free_var=[init_val]>... <free_prm=[init_val]>... opts...
Take an acset and export a solution as a function of free vars and free parameters.
Examples
solver = @build_solver acs S α β # function of variable S and parameters α, β
-solver([S, α, β])
Settings
This document was generated with Documenter.jl version 0.27.25 on Thursday 31 August 2023. Using Julia version 1.9.3.