-
Notifications
You must be signed in to change notification settings - Fork 36
/
fcos.py
730 lines (620 loc) · 30.3 KB
/
fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import logging
import math
from typing import List
import torch
import torch.nn.functional as F
from scipy.optimize import linear_sum_assignment
from torch import nn
from cvpods.layers import ShapeSpec, cat, generalized_batched_nms
from cvpods.modeling.box_regression import Shift2BoxTransform
from cvpods.modeling.losses import iou_loss, sigmoid_focal_loss_jit
from cvpods.modeling.meta_arch.fcos import (
permute_all_cls_and_box_to_N_HWA_K_and_concat,
Scale
)
from cvpods.modeling.meta_arch.retinanet import permute_to_N_HWA_K
from cvpods.modeling.postprocessing import detector_postprocess
from cvpods.structures import Boxes, ImageList, Instances, pairwise_iou
from cvpods.utils import comm, get_event_storage, log_first_n
def focal_loss(
probs,
targets,
alpha: float = -1,
gamma: float = 2,
reduction: str = "none",
):
ce_loss = F.binary_cross_entropy(
probs, targets, reduction="none"
)
p_t = probs * targets + (1 - probs) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
focal_loss_jit = torch.jit.script(focal_loss) # type: torch.jit.ScriptModule
class FCOS(nn.Module):
"""
Implement FCOS (https://arxiv.org/abs/1904.01355).
"""
def __init__(self, cfg):
super().__init__()
self.device = torch.device(cfg.MODEL.DEVICE)
# fmt: off
self.num_classes = cfg.MODEL.FCOS.NUM_CLASSES
self.in_features = cfg.MODEL.FCOS.IN_FEATURES
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
# Loss parameters:
self.focal_loss_alpha = cfg.MODEL.FCOS.FOCAL_LOSS_ALPHA
self.focal_loss_gamma = cfg.MODEL.FCOS.FOCAL_LOSS_GAMMA
self.iou_loss_type = cfg.MODEL.FCOS.IOU_LOSS_TYPE
self.reg_weight = cfg.MODEL.FCOS.REG_WEIGHT
# Inference parameters:
self.score_threshold = cfg.MODEL.FCOS.SCORE_THRESH_TEST
self.topk_candidates = cfg.MODEL.FCOS.TOPK_CANDIDATES_TEST
self.nms_threshold = cfg.MODEL.FCOS.NMS_THRESH_TEST
self.nms_type = cfg.MODEL.NMS_TYPE
self.max_detections_per_image = cfg.TEST.DETECTIONS_PER_IMAGE
# fmt: on
self.backbone = cfg.build_backbone(
cfg, input_shape=ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)))
backbone_shape = self.backbone.output_shape()
feature_shapes = [backbone_shape[f] for f in self.in_features]
self.head = FCOSHead(cfg, feature_shapes)
self.shift_generator = cfg.build_shift_generator(cfg, feature_shapes)
# Matching and loss
self.shift2box_transform = Shift2BoxTransform(
weights=cfg.MODEL.FCOS.BBOX_REG_WEIGHTS)
self.poto_alpha = cfg.MODEL.POTO.ALPHA
self.center_sampling_radius = cfg.MODEL.POTO.CENTER_SAMPLING_RADIUS
self.poto_aux_topk = cfg.MODEL.POTO.AUX_TOPK
pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(
3, 1, 1)
pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(
3, 1, 1)
self.normalizer = lambda x: (x - pixel_mean) / pixel_std
self.to(self.device)
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances: Instances
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
dict[str: Tensor]:
mapping from a named loss to a tensor storing the loss. Used during training only.
"""
images = self.preprocess_image(batched_inputs)
if "instances" in batched_inputs[0]:
gt_instances = [
x["instances"].to(self.device) for x in batched_inputs
]
elif "targets" in batched_inputs[0]:
log_first_n(
logging.WARN,
"'targets' in the model inputs is now renamed to 'instances'!",
n=10)
gt_instances = [
x["targets"].to(self.device) for x in batched_inputs
]
else:
gt_instances = None
features = self.backbone(images.tensor)
features = [features[f] for f in self.in_features]
box_cls, box_delta, box_filter = self.head(features)
shifts = self.shift_generator(features)
if self.training:
# remove gt_instances with ignore label
gt_instances = [inst[inst.gt_classes >= 0] for inst in gt_instances]
gt_classes, gt_shifts_reg_deltas = self.get_ground_truth(
shifts, gt_instances, box_cls, box_delta, box_filter)
losses = self.losses(gt_classes, gt_shifts_reg_deltas, box_cls,
box_delta, box_filter)
gt_classes = self.get_aux_ground_truth(
shifts, gt_instances, box_cls, box_delta)
losses.update(self.aux_losses(gt_classes, box_cls))
return losses
else:
results = self.inference(box_cls, box_delta, box_filter, shifts,
images)
processed_results = []
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
def losses(self, gt_classes, gt_shifts_deltas, pred_class_logits,
pred_shift_deltas, pred_filtering):
"""
Args:
For `gt_classes` and `gt_shifts_deltas` parameters, see
:meth:`FCOS.get_ground_truth`.
Their shapes are (N, R) and (N, R, 4), respectively, where R is
the total number of shifts across levels, i.e. sum(Hi x Wi)
For `pred_class_logits`, `pred_shift_deltas` and `pred_fitering`, see
:meth:`FCOSHead.forward`.
Returns:
dict[str: Tensor]:
mapping from a named loss to a scalar tensor
storing the loss. Used during training only. The dict keys are:
"loss_cls" and "loss_box_reg"
"""
pred_class_logits, pred_shift_deltas, pred_filtering = \
permute_all_cls_and_box_to_N_HWA_K_and_concat(
pred_class_logits, pred_shift_deltas, pred_filtering,
self.num_classes
) # Shapes: (N x R, K) and (N x R, 4), respectively.
gt_classes = gt_classes.flatten()
gt_shifts_deltas = gt_shifts_deltas.view(-1, 4)
valid_idxs = gt_classes >= 0
foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
num_foreground = foreground_idxs.sum()
gt_classes_target = torch.zeros_like(pred_class_logits)
gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
num_foreground = comm.all_reduce(num_foreground) / float(comm.get_world_size())
pred_class_logits = pred_class_logits.sigmoid() * pred_filtering.sigmoid()
# logits loss
loss_cls = focal_loss_jit(
pred_class_logits[valid_idxs],
gt_classes_target[valid_idxs],
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum",
) / max(1.0, num_foreground)
# regression loss
loss_box_reg = iou_loss(
pred_shift_deltas[foreground_idxs],
gt_shifts_deltas[foreground_idxs],
box_mode="ltrb",
loss_type=self.iou_loss_type,
reduction="sum",
) / max(1.0, num_foreground) * self.reg_weight
return {
"loss_cls": loss_cls,
"loss_box_reg": loss_box_reg,
}
def aux_losses(self, gt_classes, pred_class_logits):
pred_class_logits = cat([
permute_to_N_HWA_K(x, self.num_classes) for x in pred_class_logits
], dim=1).view(-1, self.num_classes)
gt_classes = gt_classes.flatten()
valid_idxs = gt_classes >= 0
foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
num_foreground = foreground_idxs.sum()
gt_classes_target = torch.zeros_like(pred_class_logits)
gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
num_foreground = comm.all_reduce(num_foreground) / float(comm.get_world_size())
# logits loss
loss_cls_aux = sigmoid_focal_loss_jit(
pred_class_logits[valid_idxs],
gt_classes_target[valid_idxs],
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum",
) / max(1.0, num_foreground)
return {"loss_cls_aux": loss_cls_aux}
@torch.no_grad()
def get_ground_truth(self, shifts, targets, box_cls, box_delta, box_filter):
"""
Args:
shifts (list[list[Tensor]]): a list of N=#image elements. Each is a
list of #feature level tensors. The tensors contains shifts of
this image on the specific feature level.
targets (list[Instances]): a list of N `Instances`s. The i-th
`Instances` contains the ground-truth per-instance annotations
for the i-th input image. Specify `targets` during training only.
Returns:
gt_classes (Tensor):
An integer tensor of shape (N, R) storing ground-truth
labels for each shift.
R is the total number of shifts, i.e. the sum of Hi x Wi for all levels.
Shifts in the valid boxes are assigned their corresponding label in the
[0, K-1] range. Shifts in the background are assigned the label "K".
Shifts in the ignore areas are assigned a label "-1", i.e. ignore.
gt_shifts_deltas (Tensor):
Shape (N, R, 4).
The last dimension represents ground-truth shift2box transform
targets (dl, dt, dr, db) that map each shift to its matched ground-truth box.
The values in the tensor are meaningful only when the corresponding
shift is labeled as foreground.
"""
gt_classes = []
gt_shifts_deltas = []
box_cls = torch.cat([permute_to_N_HWA_K(x, self.num_classes) for x in box_cls], dim=1)
box_delta = torch.cat([permute_to_N_HWA_K(x, 4) for x in box_delta], dim=1)
box_filter = torch.cat([permute_to_N_HWA_K(x, 1) for x in box_filter], dim=1)
box_cls = box_cls.sigmoid_() * box_filter.sigmoid_()
num_fg = 0
num_gt = 0
for shifts_per_image, targets_per_image, box_cls_per_image, box_delta_per_image in zip(
shifts, targets, box_cls, box_delta):
shifts_over_all_feature_maps = torch.cat(shifts_per_image, dim=0)
gt_boxes = targets_per_image.gt_boxes
prob = box_cls_per_image[:, targets_per_image.gt_classes].t()
boxes = self.shift2box_transform.apply_deltas(
box_delta_per_image, shifts_over_all_feature_maps
)
iou = pairwise_iou(gt_boxes, Boxes(boxes))
quality = prob ** (1 - self.poto_alpha) * iou ** self.poto_alpha
deltas = self.shift2box_transform.get_deltas(
shifts_over_all_feature_maps, gt_boxes.tensor.unsqueeze(1))
if self.center_sampling_radius > 0:
centers = gt_boxes.get_centers()
is_in_boxes = []
for stride, shifts_i in zip(self.fpn_strides, shifts_per_image):
radius = stride * self.center_sampling_radius
center_boxes = torch.cat((
torch.max(centers - radius, gt_boxes.tensor[:, :2]),
torch.min(centers + radius, gt_boxes.tensor[:, 2:]),
), dim=-1)
center_deltas = self.shift2box_transform.get_deltas(
shifts_i, center_boxes.unsqueeze(1))
is_in_boxes.append(center_deltas.min(dim=-1).values > 0)
is_in_boxes = torch.cat(is_in_boxes, dim=1)
else:
# no center sampling, it will use all the locations within a ground-truth box
is_in_boxes = deltas.min(dim=-1).values > 0
quality[~is_in_boxes] = -1
gt_idxs, shift_idxs = linear_sum_assignment(quality.cpu().numpy(), maximize=True)
num_fg += len(shift_idxs)
num_gt += len(targets_per_image)
gt_classes_i = shifts_over_all_feature_maps.new_full(
(len(shifts_over_all_feature_maps),), self.num_classes, dtype=torch.long
)
gt_shifts_reg_deltas_i = shifts_over_all_feature_maps.new_zeros(
len(shifts_over_all_feature_maps), 4
)
if len(targets_per_image) > 0:
# ground truth classes
gt_classes_i[shift_idxs] = targets_per_image.gt_classes[gt_idxs]
# ground truth box regression
gt_shifts_reg_deltas_i[shift_idxs] = self.shift2box_transform.get_deltas(
shifts_over_all_feature_maps[shift_idxs], gt_boxes[gt_idxs].tensor
)
gt_classes.append(gt_classes_i)
gt_shifts_deltas.append(gt_shifts_reg_deltas_i)
get_event_storage().put_scalar("num_fg_per_gt", num_fg / num_gt)
return torch.stack(gt_classes), torch.stack(gt_shifts_deltas)
@torch.no_grad()
def get_aux_ground_truth(self, shifts, targets, box_cls, box_delta):
"""
Args:
shifts (list[list[Tensor]]): a list of N=#image elements. Each is a
list of #feature level tensors. The tensors contains shifts of
this image on the specific feature level.
targets (list[Instances]): a list of N `Instances`s. The i-th
`Instances` contains the ground-truth per-instance annotations
for the i-th input image. Specify `targets` during training only.
Returns:
gt_classes (Tensor):
An integer tensor of shape (N, R) storing ground-truth
labels for each shift.
R is the total number of shifts, i.e. the sum of Hi x Wi for all levels.
Shifts in the valid boxes are assigned their corresponding label in the
[0, K-1] range. Shifts in the background are assigned the label "K".
Shifts in the ignore areas are assigned a label "-1", i.e. ignore.
"""
gt_classes = []
box_cls = torch.cat([permute_to_N_HWA_K(x, self.num_classes) for x in box_cls], dim=1)
box_delta = torch.cat([permute_to_N_HWA_K(x, 4) for x in box_delta], dim=1)
box_cls = box_cls.sigmoid_()
num_fg = 0
num_gt = 0
for shifts_per_image, targets_per_image, box_cls_per_image, box_delta_per_image in zip(
shifts, targets, box_cls, box_delta):
shifts_over_all_feature_maps = torch.cat(shifts_per_image, dim=0)
gt_boxes = targets_per_image.gt_boxes
prob = box_cls_per_image[:, targets_per_image.gt_classes].t()
boxes = self.shift2box_transform.apply_deltas(
box_delta_per_image, shifts_over_all_feature_maps
)
iou = pairwise_iou(gt_boxes, Boxes(boxes))
quality = prob ** (1 - self.poto_alpha) * iou ** self.poto_alpha
candidate_idxs = []
st, ed = 0, 0
for shifts_i in shifts_per_image:
ed += len(shifts_i)
_, topk_idxs = quality[:, st:ed].topk(self.poto_aux_topk, dim=1)
candidate_idxs.append(st + topk_idxs)
st = ed
candidate_idxs = torch.cat(candidate_idxs, dim=1)
is_in_boxes = self.shift2box_transform.get_deltas(
shifts_over_all_feature_maps, gt_boxes.tensor.unsqueeze(1)
).min(dim=-1).values > 0
candidate_qualities = quality.gather(1, candidate_idxs)
quality_thr = candidate_qualities.mean(dim=1, keepdim=True) + \
candidate_qualities.std(dim=1, keepdim=True)
is_foreground = torch.zeros_like(is_in_boxes).scatter_(1, candidate_idxs, True)
is_foreground &= quality >= quality_thr
quality[~is_in_boxes] = -1
quality[~is_foreground] = -1
# if there are still more than one objects for a position,
# we choose the one with maximum quality
positions_max_quality, gt_matched_idxs = quality.max(dim=0)
num_fg += (positions_max_quality != -1).sum().item()
num_gt += len(targets_per_image)
# ground truth classes
has_gt = len(targets_per_image) > 0
if has_gt:
gt_classes_i = targets_per_image.gt_classes[gt_matched_idxs]
# Shifts with quality -1 are treated as background.
gt_classes_i[positions_max_quality == -1] = self.num_classes
else:
gt_classes_i = torch.zeros_like(
gt_matched_idxs) + self.num_classes
gt_classes.append(gt_classes_i)
get_event_storage().put_scalar("num_fg_per_gt_aux", num_fg / num_gt)
return torch.stack(gt_classes)
def inference(self, box_cls, box_delta, box_filter, shifts, images):
"""
Arguments:
box_cls, box_delta, box_filter: Same as the output of :meth:`FCOSHead.forward`
shifts (list[list[Tensor]): a list of #images elements. Each is a
list of #feature level tensor. The tensor contain shifts of this
image on the specific feature level.
images (ImageList): the input images
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(shifts) == len(images)
results = []
box_cls = [permute_to_N_HWA_K(x, self.num_classes) for x in box_cls]
box_delta = [permute_to_N_HWA_K(x, 4) for x in box_delta]
box_filter = [permute_to_N_HWA_K(x, 1) for x in box_filter]
# list[Tensor], one per level, each has shape (N, Hi x Wi x A, K or 4)
for img_idx, shifts_per_image in enumerate(shifts):
image_size = images.image_sizes[img_idx]
box_cls_per_image = [
box_cls_per_level[img_idx] for box_cls_per_level in box_cls
]
box_reg_per_image = [
box_reg_per_level[img_idx] for box_reg_per_level in box_delta
]
box_filter_per_image = [
box_filter_per_level[img_idx] for box_filter_per_level in box_filter
]
results_per_image = self.inference_single_image(
box_cls_per_image, box_reg_per_image, box_filter_per_image,
shifts_per_image, tuple(image_size))
results.append(results_per_image)
return results
def inference_single_image(self, box_cls, box_delta, box_filter, shifts, image_size):
"""
Single-image inference. Return bounding-box detection results by thresholding
on scores and applying non-maximum suppression (NMS).
Arguments:
box_cls (list[Tensor]): list of #feature levels. Each entry contains
tensor of size (H x W, K)
box_delta (list[Tensor]): Same shape as 'box_cls' except that K becomes 4.
box_filter (list[Tensor]): Same shape as 'box_cls' except that K becomes 1.
shifts (list[Tensor]): list of #feature levels. Each entry contains
a tensor, which contains all the shifts for that
image in that feature level.
image_size (tuple(H, W)): a tuple of the image height and width.
Returns:
Same as `inference`, but for only one image.
"""
boxes_all = []
scores_all = []
class_idxs_all = []
# Iterate over every feature level
for box_cls_i, box_reg_i, box_filter_i, shifts_i in zip(
box_cls, box_delta, box_filter, shifts):
# (HxWxK,)
box_cls_i = (box_cls_i.sigmoid_() * box_filter_i.sigmoid_()).flatten()
# Keep top k top scoring indices only.
num_topk = min(self.topk_candidates, box_reg_i.size(0))
# torch.sort is actually faster than .topk (at least on GPUs)
predicted_prob, topk_idxs = box_cls_i.sort(descending=True)
predicted_prob = predicted_prob[:num_topk]
topk_idxs = topk_idxs[:num_topk]
# filter out the proposals with low confidence score
keep_idxs = predicted_prob > self.score_threshold
predicted_prob = predicted_prob[keep_idxs]
topk_idxs = topk_idxs[keep_idxs]
shift_idxs = topk_idxs // self.num_classes
classes_idxs = topk_idxs % self.num_classes
box_reg_i = box_reg_i[shift_idxs]
shifts_i = shifts_i[shift_idxs]
# predict boxes
predicted_boxes = self.shift2box_transform.apply_deltas(
box_reg_i, shifts_i)
boxes_all.append(predicted_boxes)
scores_all.append(predicted_prob)
class_idxs_all.append(classes_idxs)
boxes_all, scores_all, class_idxs_all = [
cat(x) for x in [boxes_all, scores_all, class_idxs_all]
]
if self.nms_type is None:
# strategies above (e.g. topk_candidates and score_threshold) are
# useless for POTO, just keep them for debug and analysis
keep = scores_all.argsort(descending=True)
else:
keep = generalized_batched_nms(
boxes_all, scores_all, class_idxs_all,
self.nms_threshold, nms_type=self.nms_type
)
keep = keep[:self.max_detections_per_image]
result = Instances(image_size)
result.pred_boxes = Boxes(boxes_all[keep])
result.scores = scores_all[keep]
result.pred_classes = class_idxs_all[keep]
return result
def preprocess_image(self, batched_inputs):
"""
Normalize, pad and batch the input images.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [self.normalizer(x) for x in images]
images = ImageList.from_tensors(images,
self.backbone.size_divisibility)
return images
def _inference_for_ms_test(self, batched_inputs):
"""
function used for multiscale test, will be refactor in the future.
The same input with `forward` function.
"""
assert not self.training, "inference mode with training=True"
assert len(batched_inputs) == 1, "inference image number > 1"
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
features = [features[f] for f in self.in_features]
box_cls, box_delta, box_filter = self.head(features)
shifts = self.shift_generator(features)
results = self.inference(box_cls, box_delta, box_filter, shifts, images)
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results = detector_postprocess(results_per_image, height, width)
return processed_results
class FCOSHead(nn.Module):
"""
The head used in FCOS for object classification and box regression.
It has two subnets for the two tasks, with a common structure but separate parameters.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
# fmt: off
in_channels = input_shape[0].channels
num_classes = cfg.MODEL.FCOS.NUM_CLASSES
num_convs = cfg.MODEL.FCOS.NUM_CONVS
prior_prob = cfg.MODEL.FCOS.PRIOR_PROB
num_shifts = cfg.build_shift_generator(cfg, input_shape).num_cell_shifts
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS
# fmt: on
assert len(set(num_shifts)) == 1, "using differenct num_shifts value is not supported"
num_shifts = num_shifts[0]
cls_subnet = []
bbox_subnet = []
for _ in range(num_convs):
cls_subnet.append(
nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1))
cls_subnet.append(nn.GroupNorm(32, in_channels))
cls_subnet.append(nn.ReLU())
bbox_subnet.append(
nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1))
bbox_subnet.append(nn.GroupNorm(32, in_channels))
bbox_subnet.append(nn.ReLU())
self.cls_subnet = nn.Sequential(*cls_subnet)
self.bbox_subnet = nn.Sequential(*bbox_subnet)
self.cls_score = nn.Conv2d(in_channels,
num_shifts * num_classes,
kernel_size=3,
stride=1,
padding=1)
self.bbox_pred = nn.Conv2d(in_channels,
num_shifts * 4,
kernel_size=3,
stride=1,
padding=1)
self.max3d = MaxFiltering(in_channels,
kernel_size=cfg.MODEL.POTO.FILTER_KERNEL_SIZE,
tau=cfg.MODEL.POTO.FILTER_TAU)
self.filter = nn.Conv2d(in_channels,
num_shifts * 1,
kernel_size=3,
stride=1,
padding=1)
# Initialization
for modules in [
self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred,
self.max3d, self.filter
]:
for layer in modules.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
torch.nn.init.constant_(layer.bias, 0)
if isinstance(layer, nn.GroupNorm):
torch.nn.init.constant_(layer.weight, 1)
torch.nn.init.constant_(layer.bias, 0)
# Use prior in model initialization to improve stability
bias_value = -math.log((1 - prior_prob) / prior_prob)
torch.nn.init.constant_(self.cls_score.bias, bias_value)
self.scales = nn.ModuleList(
[Scale(init_value=1.0) for _ in range(len(self.fpn_strides))])
def forward(self, features):
"""
Arguments:
features (list[Tensor]): FPN feature map tensors in high to low resolution.
Each tensor in the list correspond to different feature levels.
Returns:
logits (list[Tensor]): #lvl tensors, each has shape (N, K, Hi, Wi).
The tensor predicts the classification probability
at each spatial position for each of the K object classes.
bbox_reg (list[Tensor]): #lvl tensors, each has shape (N, 4, Hi, Wi).
The tensor predicts 4-vector (dl,dt,dr,db) box
regression values for every shift. These values are the
relative offset between the shift and the ground truth box.
filter (list[Tensor]): #lvl tensors, each has shape (N, 1, Hi, Wi).
The tensor predicts the centerness at each spatial position.
"""
logits = []
bbox_reg = []
filter_subnet = []
for level, feature in enumerate(features):
cls_subnet = self.cls_subnet(feature)
bbox_subnet = self.bbox_subnet(feature)
logits.append(self.cls_score(cls_subnet))
bbox_pred = self.scales[level](self.bbox_pred(bbox_subnet))
if self.norm_reg_targets:
bbox_reg.append(F.relu(bbox_pred) * self.fpn_strides[level])
else:
bbox_reg.append(torch.exp(bbox_pred))
filter_subnet.append(bbox_subnet)
filters = [self.filter(x) for x in self.max3d(filter_subnet)]
return logits, bbox_reg, filters
class MaxFiltering(nn.Module):
def __init__(self, in_channels: int, kernel_size: int = 3, tau: int = 2):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1
)
self.norm = nn.GroupNorm(32, in_channels)
self.nonlinear = nn.ReLU()
self.max_pool = nn.MaxPool3d(
kernel_size=(tau + 1, kernel_size, kernel_size),
padding=(tau // 2, kernel_size // 2, kernel_size // 2),
stride=1
)
self.margin = tau // 2
def forward(self, inputs):
features = []
for l, x in enumerate(inputs):
features.append(self.conv(x))
outputs = []
for l, x in enumerate(features):
func = lambda f: F.interpolate(f, size=x.shape[2:], mode="bilinear")
feature_3d = []
for k in range(max(0, l - self.margin), min(len(features), l + self.margin + 1)):
feature_3d.append(func(features[k]) if k != l else features[k])
feature_3d = torch.stack(feature_3d, dim=2)
max_pool = self.max_pool(feature_3d)[:, :, min(l, self.margin)]
output = max_pool + inputs[l]
outputs.append(self.nonlinear(self.norm(output)))
return outputs