From 387af826d10f9d03bda27938b213bc0d1113bc2c Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sat, 8 Jun 2024 17:09:24 +0200 Subject: [PATCH 01/21] feat (kron): try out kron and zkron product --- scratch/scratch5.ipynb | 235 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 235 insertions(+) create mode 100644 scratch/scratch5.ipynb diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb new file mode 100644 index 0000000..b4dd151 --- /dev/null +++ b/scratch/scratch5.ipynb @@ -0,0 +1,235 @@ +{ + "cells": [ + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T14:13:05.769616Z", + "start_time": "2024-06-08T14:13:05.764982Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "import pennylane as qml\n", + "\n", + "from qulearn.hat_basis import HatBasis\n", + "from qulearn.qlayer import (HatBasisQFE,\n", + " MeasurementLayer,\n", + " MeasurementType)" + ], + "id": "6e4cb30e217e595f", + "outputs": [], + "execution_count": 6 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T14:13:06.039103Z", + "start_time": "2024-06-08T14:13:06.029319Z" + } + }, + "cell_type": "code", + "source": [ + "num_qubits = 5\n", + "num_nodes = 2**num_qubits\n", + "a = -1.0\n", + "b = 1.0\n", + "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "\n", + "embed = HatBasisQFE(wires=num_qubits, basis=hat_basis, sqrt=True, normalize=False)\n", + "obs = qml.PauliZ(0)\n", + "model = MeasurementLayer(embed, observables=obs, measurement_type=MeasurementType.Expectation)\n", + "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", + "x = torch.tensor([0.0])\n", + "print(drawer(x))" + ], + "id": "557b395bbcf03f54", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0: ──────────────────────╭U(M2)─┤ \n", + "1: ───────────────╭U(M1)─╰U(M2)─┤ \n", + "2: ────────╭U(M1)─╰U(M1)────────┤ \n", + "3: ─╭U(M0)─╰U(M1)───────────────┤ \n", + "4: ─╰U(M0)──────────────────────┤ \n" + ] + } + ], + "execution_count": 7 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T14:46:10.206718Z", + "start_time": "2024-06-08T14:46:10.199905Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "import tntorch as tn\n", + "def zkron(t1, t2):\n", + " c1 = t1.cores\n", + " c2 = t2.cores\n", + " c3 = [torch.kron(A, B) for A, B in zip(c1, c2)]\n", + " \n", + " t3 = tn.Tensor(c3)\n", + " return t3" + ], + "id": "8d60b58b23b4e5f3", + "outputs": [], + "execution_count": 34 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T14:57:13.077588Z", + "start_time": "2024-06-08T14:57:13.071076Z" + } + }, + "cell_type": "code", + "source": [ + "import tntorch as tn\n", + "import numpy as np\n", + "\n", + "t1 = tn.randn([2]*3)\n", + "t2 = tn.ones([2]*3)\n", + "\n", + "T1 = t1.numpy().reshape((2**3))\n", + "T2 = t2.numpy().reshape((2**3))\n", + "\n", + "cores = t1.cores + t2.cores\n", + "t3 = tn.Tensor(cores)\n", + "T3 = t3.numpy().reshape((2**6))\n", + "\n", + "T3_ = np.kron(T1, T2)\n", + "delta = abs(T3_ - T3)\n", + "delta = np.linalg.norm(delta)\n", + "print(delta)\n", + "\n", + "t4 = zkron(t1, t2)\n", + "T4 = t4.numpy().reshape((2**6))\n", + "\n", + "print(t4)\n", + "print(T3)\n", + "print(\"=========\")\n", + "print(T4)" + ], + "id": "9e4e98216ac5dfb8", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0\n", + "3D TT tensor:\n", + "\n", + " 4 4 4\n", + " | | |\n", + " (0) (1) (2)\n", + " / \\ / \\ / \\\n", + "1 2 2 1\n", + "\n", + "[ 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342\n", + " 0.15855342 0.15855342 -0.19791673 -0.19791673 -0.19791673 -0.19791673\n", + " -0.19791673 -0.19791673 -0.19791673 -0.19791673 -0.10040016 -0.10040016\n", + " -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016\n", + " -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476\n", + " -0.13793476 -0.13793476 -0.46558505 -0.46558505 -0.46558505 -0.46558505\n", + " -0.46558505 -0.46558505 -0.46558505 -0.46558505 0.07590834 0.07590834\n", + " 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834\n", + " -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369\n", + " -0.7543369 -0.7543369 0.29843152 0.29843152 0.29843152 0.29843152\n", + " 0.29843152 0.29843152 0.29843152 0.29843152]\n", + "=========\n", + "[ 0.15855342 0.15855342 -0.19791673 -0.19791673 0.15855342 0.15855342\n", + " -0.19791673 -0.19791673 -0.10040016 -0.10040016 -0.13793476 -0.13793476\n", + " -0.10040016 -0.10040016 -0.13793476 -0.13793476 0.15855342 0.15855342\n", + " -0.19791673 -0.19791673 0.15855342 0.15855342 -0.19791673 -0.19791673\n", + " -0.10040016 -0.10040016 -0.13793476 -0.13793476 -0.10040016 -0.10040016\n", + " -0.13793476 -0.13793476 -0.46558505 -0.46558505 0.07590834 0.07590834\n", + " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.7543369 -0.7543369\n", + " 0.29843152 0.29843152 -0.7543369 -0.7543369 0.29843152 0.29843152\n", + " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.46558505 -0.46558505\n", + " 0.07590834 0.07590834 -0.7543369 -0.7543369 0.29843152 0.29843152\n", + " -0.7543369 -0.7543369 0.29843152 0.29843152]\n" + ] + } + ], + "execution_count": 42 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T14:57:27.906931Z", + "start_time": "2024-06-08T14:57:27.902942Z" + } + }, + "cell_type": "code", + "source": [ + "print(t1.numpy().reshape((2**3)))\n", + "print(t2.numpy().reshape((2**3)))\n", + "print(T3_)\n", + "print(T4)" + ], + "id": "ed6556db86940912", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0.15855342 -0.19791673 -0.10040016 -0.13793476 -0.46558505 0.07590834\n", + " -0.7543369 0.29843152]\n", + "[1. 1. 1. 1. 1. 1. 1. 1.]\n", + "[ 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342\n", + " 0.15855342 0.15855342 -0.19791673 -0.19791673 -0.19791673 -0.19791673\n", + " -0.19791673 -0.19791673 -0.19791673 -0.19791673 -0.10040016 -0.10040016\n", + " -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016\n", + " -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476\n", + " -0.13793476 -0.13793476 -0.46558505 -0.46558505 -0.46558505 -0.46558505\n", + " -0.46558505 -0.46558505 -0.46558505 -0.46558505 0.07590834 0.07590834\n", + " 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834\n", + " -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369\n", + " -0.7543369 -0.7543369 0.29843152 0.29843152 0.29843152 0.29843152\n", + " 0.29843152 0.29843152 0.29843152 0.29843152]\n", + "[ 0.15855342 0.15855342 -0.19791673 -0.19791673 0.15855342 0.15855342\n", + " -0.19791673 -0.19791673 -0.10040016 -0.10040016 -0.13793476 -0.13793476\n", + " -0.10040016 -0.10040016 -0.13793476 -0.13793476 0.15855342 0.15855342\n", + " -0.19791673 -0.19791673 0.15855342 0.15855342 -0.19791673 -0.19791673\n", + " -0.10040016 -0.10040016 -0.13793476 -0.13793476 -0.10040016 -0.10040016\n", + " -0.13793476 -0.13793476 -0.46558505 -0.46558505 0.07590834 0.07590834\n", + " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.7543369 -0.7543369\n", + " 0.29843152 0.29843152 -0.7543369 -0.7543369 0.29843152 0.29843152\n", + " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.46558505 -0.46558505\n", + " 0.07590834 0.07590834 -0.7543369 -0.7543369 0.29843152 0.29843152\n", + " -0.7543369 -0.7543369 0.29843152 0.29843152]\n" + ] + } + ], + "execution_count": 43 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 0cc3ef153dcfcdb803363dd3563b6cacecb27fde Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 01:57:53 +0200 Subject: [PATCH 02/21] wip: load 2D linear basis, canonical order --- ToDoNotes.txt | 4 + qulearn/hat_basis.py | 4 +- qulearn/mps.py | 2 +- scratch/scratch.ipynb | 1070 +++++++------------------ scratch/scratch2.ipynb | 761 +++--------------- scratch/scratch3.ipynb | 546 ++----------- scratch/scratch4.ipynb | 1725 +++------------------------------------- scratch/scratch5.ipynb | 799 ++++++++++++++++--- 8 files changed, 1204 insertions(+), 3707 deletions(-) diff --git a/ToDoNotes.txt b/ToDoNotes.txt index e69de29..36aaf19 100644 --- a/ToDoNotes.txt +++ b/ToDoNotes.txt @@ -0,0 +1,4 @@ +- add input checking +- qlayer: remove item() calls for compatibility +- qlayer: handle 2D case where x or y are out of bounds +- qlayer: too much boiler plate code, reuse mps module \ No newline at end of file diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index 2e2f122..50a1eb4 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -35,9 +35,9 @@ def position(self, x: Tensor) -> Tensor: """ Find the index of the grid point left of x. - :param x: A tensor containing the values for which the the position indeces are to be found. + :param x: A tensor containing the values for which the position indexes are to be found. :type x: Tensor - :returns: A tensors of position indeces. + :returns: A tensors of position indexes. The position indices are -1 for values left of `a`, and -2 for values right of `b`. :rtype: Tensor """ diff --git a/qulearn/mps.py b/qulearn/mps.py index 397b631..416b788 100644 --- a/qulearn/mps.py +++ b/qulearn/mps.py @@ -193,7 +193,7 @@ def eval(self, x: Tensor) -> MPS: def mps_hatbasis(self, first: float, second: float, idx: int) -> MPS: """ - Generates an MPS the hat basis vector. + Generates an MPS for the hat basis vector. :param first: The first non-zero value in the hat basis function. :type first: float diff --git a/scratch/scratch.ipynb b/scratch/scratch.ipynb index ec71416..00bfe53 100644 --- a/scratch/scratch.ipynb +++ b/scratch/scratch.ipynb @@ -12,7 +12,6 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], "source": [ "a = 0.3\n", "b = 0.5\n", @@ -35,34 +34,13 @@ " \n", " beta = beta1*(lam1+1)*(1+a-b)+beta2*(b-a)*(lam2+1)\n", " return beta" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAK9CAYAAADyuinTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKaElEQVR4nO3de5wU1Z3//3d1z0W5zCAiDERAVBRRMIoujCaGBCIiazSSTUyI4iW64QfeiK6SNYpGxTX7jbckGmMWjNGYmIhujJegCG4i3lAiGiVCiBBlwMvCcJGB6a7fHxN6bahPMae7uqtr5vV8PObxgLqcc+p09UyfPlXv8nzf9wUAAAAACZSKuwEAAAAAUCgGNAAAAAASiwENAAAAgMRiQAMAAAAgsRjQAAAAAEgsBjQAAAAAEosBDQAAAIDEYkADAAAAILEY0AAAAABILAY0ABCDM888U/vtt1/czcizadMmfeMb31BDQ4M8z9NFF10USbn33HOPhgwZourqavXo0SO3/Hvf+572339/pdNpffKTn5QkeZ6nadOmRVIvAKBzYEADoGLNmTNHnufppZdeClw/evRoHXbYYSVtw6OPPqqZM2e2e/vRo0fL87zcT8+ePXX00Ufrv/7rv5TNZiNp0/XXX6+HHnookrJ2LnfOnDmaMmWK7rnnHp1++ulFl/nmm2/qzDPP1AEHHKCf/OQnuvPOOyVJv//97/Vv//ZvOvbYYzV79mxdf/31RdcV5N1339XMmTO1ZMmSkpQPAIhfVdwNAIBK9uijj+qHP/yh06Bm33331axZsyRJ7733nn72s5/pnHPO0V/+8hfdcMMNRbfp+uuv15e+9CWdcsopRZf1cfPnz9eoUaN01VVXRVbmggULlM1mdcstt+jAAw/MqyuVSumnP/2pampqIqtvZ++++66uvvpq7bfffrlZIABAx8IMDQBErL6+Xl//+tf19a9/XRdffLH++Mc/at9999UPfvADbd++Pe7mmdatW5d3SVhUZUrapdx169Zpzz33LOlgBgDQOTCgAdDh/PznP9eIESO05557qmfPnjrttNO0evXqvG3+53/+R//yL/+iAQMGqLa2Vv3799fFF1+sjz76KLfNmWeeqR/+8IeSlHcZmasuXbpo1KhR2rx5s9577z1zu82bN+tb3/qW+vfvr9raWh188MH6z//8T/m+n9vG8zxt3rxZd999d649Z555Zmj969at0znnnKM+ffpojz320OGHH6677747t37BggXyPE8rV67U7373u1y5f/vb30LL3V0/77fffrnZnn322Uee52nmzJnyPE+zZ8/W5s2bc3XNmTMnr+x7771XBx98sPbYYw+NGDFCzzzzzC71v/POOzr77LPVp08f1dbW6tBDD9V//dd/5R3X0UcfLUk666yzdqmrPecAAKDycckZgIq3YcMGvf/++7ssD5rtuO666/Sd73xHX/7yl/WNb3xD7733nm677TYdd9xxeuWVV3IzBQ888IC2bNmiKVOmaO+999YLL7yg2267TX//+9/1wAMPSJL+9V//Ve+++67mzZune+65p6hj+Otf/6p0Om3OgPi+ry984Qt6+umndc455+iTn/yknnjiCV166aV65513dNNNN0lqu8H+G9/4hv7pn/5J5513niTpgAMOMOv96KOPNHr0aC1fvlzTpk3ToEGD9MADD+jMM8/U+vXrdeGFF+qQQw7RPffco4svvlj77ruvvvWtb0lqG4RY2tPPN998s372s59p7ty5uv3229WtWzcNHz5cBx54oO6880698MILuuuuuyRJxxxzTK7shQsX6pe//KUuuOAC1dbW6kc/+pFOOOEEvfDCC7l7ptauXatRo0blQgT22WcfPfbYYzrnnHPU3Nysiy66SIcccoiuueYaXXnllTrvvPP06U9/Oq+u9pwDAIAE8AGgQs2ePduXFPpz6KGH5rb/29/+5qfTaf+6667LK2fp0qV+VVVV3vItW7bsUt+sWbN8z/P8t99+O7ds6tSpvsuvys985jP+kCFD/Pfee89/7733/DfeeMO/4IILfEn+SSedlNtu8uTJ/sCBA3P/f+ihh3xJ/rXXXptX3pe+9CXf8zx/+fLluWVdu3b1J0+e3K723Hzzzb4k/+c//3lu2bZt2/zGxka/W7dufnNzc275wIED/QkTJuy2TJd+vuqqq3xJ/nvvvZe37eTJk/2uXbvuUvaO1/Wll17KLXv77bf9PfbYw//iF7+YW3bOOef4ffv29d9///28/U877TS/vr4+9/q++OKLviR/9uzZu9TV3nMAAFDZuOQMQMX74Q9/qHnz5u3yM3z48LztHnzwQWWzWX35y1/W+++/n/tpaGjQ4MGD9fTTT+e23XPPPXP/3rx5s95//30dc8wx8n1fr7zySlHtffPNN7XPPvton3320SGHHKLbbrtNEyZMyLscamePPvqo0um0Lrjggrzl3/rWt+T7vh577LGC2vLoo4+qoaFBX/3qV3PLqqurdcEFF2jTpk1auHChc5ku/VyIxsZGjRgxIvf/AQMG6OSTT9YTTzyhTCYj3/f1m9/8RieddJJ8389rw7hx47Rhwwa9/PLLu62nlOcAAKB8uOQMQMX7p3/6Jx111FG7LN9rr73yLkV766235Pu+Bg8eHFhOdXV17t+rVq3SlVdeqf/+7//W//7v/+Ztt2HDhqLau99+++knP/mJPM/THnvsocGDB6t3796h+7z99tvq16+funfvnrf8kEMOya0vxNtvv63Bgwcrlcr//qqYcl36uRBB5R500EHasmWL3nvvPaVSKa1fv1533nlnLgZ6ZzvCCMKU8hwAAJQPAxoAHUY2m5XneXrssceUTqd3Wd+tWzdJUiaT0ec//3l9+OGHuuyyyzRkyBB17dpV77zzjs4888yinxfTtWtXjR07tqgyKll7+7mU9UvS17/+dU2ePDlwm51n73ZW6nMAAFA+DGgAdBgHHHCAfN/XoEGDdNBBB5nbLV26VH/5y190991364wzzsgtnzdv3i7bFpJqVoiBAwfqySef1MaNG/Nmad58883c+kLaNHDgQL366qvKZrN5szRB5bZXe/u5UG+99dYuy/7yl7+oS5cuuaCC7t27K5PJ7HbgaPWVyzkAAKhs3EMDoMM49dRTlU6ndfXVV+dFHUttKWIffPCBJOVmFT6+je/7uuWWW3Yps2vXrpKk9evXl6jVbU488URlMhn94Ac/yFt+0003yfM8jR8/Pq9N7W3PiSeeqKamJv3yl7/MLWttbdVtt92mbt266TOf+YxzW9vbz4VatGhR3j0wq1ev1sMPP6zjjz9e6XRa6XRaEydO1G9+8xu99tpru+z/8Whs6/VzOQcAAJWNGRoAHcYBBxyga6+9VjNmzNDf/vY3nXLKKerevbtWrlypuXPn6rzzztMll1yiIUOG6IADDtAll1yid955R3V1dfrNb36zy30UknI3p19wwQUaN26c0um0TjvttMjbftJJJ+mzn/2s/v3f/11/+9vfdPjhh+v3v/+9Hn74YV100UV50cwjRozQk08+qe9///vq16+fBg0apJEjRwaWe9555+nHP/6xzjzzTC1evFj77beffv3rX+uPf/yjbr755l3u2WmP9vZzoQ477DCNGzcuL7ZZkq6++urcNjfccIOefvppjRw5Uueee66GDh2qDz/8UC+//LKefPJJffjhh7m29ujRQ3fccYe6d++url27auTIkU7nAACgwpU9Vw0A2mlHbPOLL74YuP4zn/lMXmzzDr/5zW/8T33qU37Xrl39rl27+kOGDPGnTp3qL1u2LLfNn//8Z3/s2LF+t27d/F69evnnnnuu/6c//WmXiN/W1lb//PPP9/fZZx/f87zdRjhbbdrZzrHNvu/7Gzdu9C+++GK/X79+fnV1tT948GD/e9/7np/NZvO2e/PNN/3jjjvO33PPPX1Ju41wXrt2rX/WWWf5vXr18mtqavxhw4YFxhi3N7Z5h/b0cyGxzVOnTvV//vOf+4MHD/Zra2v9I444wn/66acDj2vq1Kl+//79/erqar+hocEfM2aMf+edd+Zt9/DDD/tDhw71q6qq8l7f9p4DAIDK5vn+TtcLAAAAAEBCcA8NAAAAgMRiQAMAAAAgsRjQAAAAAEisihnQ3HDDDfI8TxdddFFu2datWzV16lTtvffe6tatmyZOnKi1a9fm7bdq1SpNmDBBXbp0Ue/evXXppZeqtbW1zK0HAAAAkqWjfP6uiAHNiy++qB//+Me7PNn54osv1m9/+1s98MADWrhwod59912deuqpufWZTEYTJkzQtm3b9Oyzz+ruu+/WnDlzdOWVV5b7EAAAAIDE6FCfv+OOWdu4caM/ePBgf968ef5nPvMZ/8ILL/R93/fXr1/vV1dX+w888EBu2zfeeMOX5C9atMj3fd9/9NFH/VQq5Tc1NeW2uf322/26ujq/paWlrMcBAAAAJEFH+/wd+4M1p06dqgkTJmjs2LG69tprc8sXL16s7du3a+zYsbllQ4YM0YABA7Ro0SKNGjVKixYt0rBhw9SnT5/cNuPGjdOUKVP0+uuv64gjjgiss6WlRS0tLbn/Z7NZffjhh9p7773leV4JjhIAAADF8H1fGzduVL9+/ZRKVcRFRjlbt27Vtm3bYqnb9/1dPr/W1taqtrbW3CeOz9+lFOuA5v7779fLL7+sF198cZd1TU1NqqmpUY8ePfKW9+nTR01NTbltPt6ZO9bvWGeZNWtW3hOnAQAAkAyrV6/WvvvuG3czcrZu3apBA7upaV0mlvq7deumTZs25S276qqrNHPmzMDt4/r8XUqxDWhWr16tCy+8UPPmzdMee+xR1rpnzJih6dOn5/6/YcMGDRgwQJ/SiapSdd62XlVwF3lVabuC6urAxVZZSht11Bjbh9WdDl7nG8utsvyq4G8+zHIkqSp4diubtsoK3t6u2549yxp1+yljuVGWWU7IYWetdhn7ZK02GV82hdVtrcsay80+Nw6hkLrN5dbxFXLcZlnGc4Jd2xoyUeung+twLssqxzoGyb7r0Tzu4OWesdwsR1LKWOd5wctT6Wzw9kY5aatNklKp4LLSRt1VRt1pz1hulC9JVca66nTwBxe7juC21qTsm2ituquMOqyyrO2rU/aHrxpjXZUXvLzaWF5rtsmu22qXWYe33Wn7as/u82qjr/Yw6zCOT8F114Qdt2vfWtvLOD+MY5PMP98K/jQjVRtXs1R5wb+kqq1fwpKqveB1QcubN2U18Mi/qXv37mZ5cdi2bZua1mX09uL9VNe9vDNHzRuzGjjib1q9erXq6upyy63ZmTg/f5dSbAOaxYsXa926dTryyCNzyzKZjJ555hn94Ac/0BNPPKFt27Zp/fr1eaPEtWvXqqGhQZLU0NCgF154Ia/cHSkMO7YJYk3DValaVd5OAxrPGGwYy9tWGgMaa5+UUUfK+FWSCvmkZ6wzByLmAKiAAY2xT9ZxgBLpgMaqowwDGmsfz9o+wgGN8ffB7o8I6y7LgMasw3GwUY4BjfW3LWkDGqssxwGNNTBKG9u37eM2oLHKsgYu1sAhbF2V44DGHBiFXDbjPKAxfgcXNqAJ/qBebX1gNZbXGl/gWNu3tcvaJ3j5HsZ5YG1fHfL+tgYce1ivn1W3Wb5dt1mWsdw87oLqNpab27u9rtUhGVSu55Skir09oFt3T926l7dtWbXVV1dXlzegscT5+buUYrsAccyYMVq6dKmWLFmS+znqqKM0adKk3L+rq6v11FNP5fZZtmyZVq1apcbGRklSY2Ojli5dqnXr1uW2mTdvnurq6jR06NCyHxMAAABQqTrq5+/YZmi6d++uww47LG9Z165dtffee+eWn3POOZo+fbp69uypuro6nX/++WpsbNSoUaMkSccff7yGDh2q008/XTfeeKOampp0xRVXaOrUqaE3QgEAAACdTUf9/B17ylmYm266SalUShMnTlRLS4vGjRunH/3oR7n16XRajzzyiKZMmaLGxkZ17dpVkydP1jXXXBNjqwEAANDZZPysMiFXDZeqzqgl8fO35/t+mbu+8jQ3N6u+vl6jdfKu99CYoQAhY0HXUACrjhrj6tVCQgGsfSINBeAemvbsY91T4VpO2DrnUICk3UNj7hPN/S3mfS9hdbgeR4z30Fjbm/fWyL6Z3wwLsO57Meqw7pNp2yeiUIAI76GxyrLuS3G9H0aSatJuN/lXGXXXWjfZh9xDY920b93kb97QbrUp7MZ81zocl+/h2dG61j00rgED5r04RrhAWFlW3TXGzf9WsIG1XJKqZd2nY2zvfA9NRKEAG7Pa66C/asOGDe26X6RcdnyOXLdsYCyhAL0Pfrvi+qTcKnqGBgAAAEiCrHxljcFhKetEjKEAAAAAAFAsZmgAAACAImWVNS4ELG2dYIYGAAAAQIIxoAEAAACQWFxyBgBx4D7OkslaoW/G9lG+FL5feU8wz0bYJrMsxyqyITtkrchAI+3LVTb0u9xo6rBLt487ZbSrusRtCmPVbL2XskZwbjYkYc06FzIB51opIoqjlPF9ZcocHlzu+ioVMzQAAAAAEosZGgAAAKBIxDbHhxkaAAAAAInFgAYAAABAYnHJGQAAAFCkrHxluOQsFgxogM6kHL/3OvrvVjMxqgIPvBKbVECbzOQwr/QHaKV6WSlP5ajbNVHMEpQitUOVYx2ZMiR0lTr9TLKPI2U8vDBtXuhS+uPOGOd/yjhBUiGvd7oM7yWglBjQAAAAAEUiFCA+3EMDAAAAILGYoQEAAACKxIM148MMDQAAAIDEYkADAAAAILG45AwAAAAoUvYfP+WuEwxogNLhstbiRNl/vBbtU0iksrE8omThSHWUCOZsGXo3qojkjFFOKuRkq3asw2pr1vqoV4aTM2NGJ9sXxqStPokwltqV9WHZum8jZfRt2OudMsvadTmJXrAwoAEAAACKlInhwZrlrq9ScQ8NAAAAgMRiQAMAAAAgsbjkDAAAAChSxm/7KXedYIYGAAAAQIIxQwMAJRQQ1COJ4LWd+VYKWNvawKVWclg5vqmLKrUsysQyO5ksumDXjNG7VRGGx1rJaK7pZ67lS1LKOI60dVaVIYHMTEwzlqeNczPr2eeaVUc1v6mcENscH2ZoAAAAACQWMzQAAABAkbLyzNmuUtYJZmgAAAAAJBgDGgAAAACJxSVnAAAAQJGyfttPuesEAxqgQypLslZH/iUa47F5IWlfvtUw1/aadYQUVI46YmImlklKW28mqywrecqplH+UFZr85lCO0SYzFU1yTkaz2mpe31/AobmmfVW7V+HMSkxLGRfAhJ9PpU9Mc2U94yRlvH7WeZ717ePOGuda0LmTJdMLBgY0AAAAQJEyMYQClLu+SsU9NAAAAAASiwENAAAAgMTikjMAAACgSFxyFh9maAAAAAAkFjM0QJHKkijWkUXZUQlK1kL7+dbrarz5zO0LOA+s9C7X1LKoEstCy4rwi9pSP328HE83zxjf2aZCzoO0+T1v6RPI7BQ3IzHNSA7LGO8LKw1OklLGOVXtmPLX2WV9L9L3envrBDM0AAAAABKMGRoAAACgSNxDEx9maAAAAAAkFgMaAAAAAInFJWcAAABAkTJKmWEUpasTEgMaAIhEp027izGBzJVdd3xlhSYUOVZRjrSjOBPWsn7wB8Wsde540X3UsxPTsoHLrbS0jLG9JFW7N6vkrNZayzNG8loq5PywUudSAWVZ5QMMaAAAAIAi+THENkf5RU2ScQ8NAAAAgMRiQAMAAAAgsbjkDAAAACgSz6GJDzM0AAAAABKLGRogyUod+NLRA2Ws4yvHF16F9K1re10TxUJvLq28kyGqFoXeVGvF1xmsG4LTBZxTVqqXnTEVLGO0KRXhiW4dd8YLPobqMoTN2qloIf0X45fdGaO9aeNMz3jBx2G9rumQ8zzrGa+fUVZQAplkp5mlzZqlrFFWNuD4Ql+7CpDxU+brWLo6y1pdxWKGBgAAAEBiMUMDAAAAFCkrT9kyzxWYz2HqZJihAQAAAJBYDGgAAAAAJBaXnAEAAABFIrY5PszQAAAAAEgsZmiA9uCeu8rC61HxrChkz3jxQqOTHV9wu6z4Tpzw43NjRSRH+UWtFfVcFVEdYdG2KeN1spZXe9FFQFvtShlxwWnje+GMeQz2cUd5HIhHPLHN/EGUmKEBAAAAkGAMaAAAAAAkFpecAQAAAEVqew5NeW/SL3d9lYoZGgAAAACJxQwNAAAAUKSsUsqUea4gS0qOJAY0AMrF+p2bsNlyzzgO809KJf6tKaBNrqllUYozxKfUVZuJZZLze8O69CRrpS55wcldoXUYZWWMN0aVkQ4WJes5HClzeUjSmOJLGsuaiWnBfWgdR9p4w1ivUVtZRl8Z52faKMt6tcOSuFLGeR6UamelxwFccgYAAAAgsZihAQAAAIrEc2jiwwwNAAAAgMRihgYAAAAoUlYp816o0tXJDI0U8wzN7bffruHDh6uurk51dXVqbGzUY489lls/evRoeZ6X9/PNb34zr4xVq1ZpwoQJ6tKli3r37q1LL71Ura2t5T4UAAAAoKJ11M/esc7Q7Lvvvrrhhhs0ePBg+b6vu+++WyeffLJeeeUVHXrooZKkc889V9dcc01uny5duuT+nclkNGHCBDU0NOjZZ5/VmjVrdMYZZ6i6ulrXX3992Y8HKAm+fClekvqwkLaaSVmVd+BxXu6dNepOF1SWkf5UQFlmHSWOACzHA/msfgqrO+vFF31oRe6mzQSy4JMqZeR9WeXsKA3JlvE9ZcKSC0tUp4uO+tk71gHNSSedlPf/6667Trfffruee+65XKd26dJFDQ0Ngfv//ve/15///Gc9+eST6tOnjz75yU/qu9/9ri677DLNnDlTNTU1JT8GAAAAIAk66mfvigkFyGQyuv/++7V582Y1Njbmlt97773q1auXDjvsMM2YMUNbtmzJrVu0aJGGDRumPn365JaNGzdOzc3Nev311826Wlpa1NzcnPcDAAAAJNHOn2tbWlp2u085P3uXWuyhAEuXLlVjY6O2bt2qbt26ae7cuRo6dKgk6Wtf+5oGDhyofv366dVXX9Vll12mZcuW6cEHH5QkNTU15XWopNz/m5qazDpnzZqlq6++ukRHBAAAgM4mo5R52WLp6my77LF///55y6+66irNnDkzcJ84PnuXWuwDmoMPPlhLlizRhg0b9Otf/1qTJ0/WwoULNXToUJ133nm57YYNG6a+fftqzJgxWrFihQ444ICC65wxY4amT5+e+39zc/MuJwIAAACQBKtXr1ZdXV3u/7W1tea2cXz2LrXYBzQ1NTU68MADJUkjRozQiy++qFtuuUU//vGPd9l25MiRkqTly5frgAMOUENDg1544YW8bdauXStJ5rV/UtuLHPZCAwAAAC6yfkrZMj9YM/uPpJUdqWXtEcdn71KrmHtodshms+Z1f0uWLJEk9e3bV5LU2NiopUuXat26dblt5s2bp7q6utzUGeDC8/3An47O84N/YuWH/JSYF/KDfL4f/FOeur3AH1dZ3zN/IitLwT+FiKqt4XWkgn8iPA7nNhl1m201fipVRl7wzz+ePr/zj3V8ZjkhP67nrd1WBf/I/slaP76/y4/fCf4ex6EjfPaOdYZmxowZGj9+vAYMGKCNGzfqvvvu04IFC/TEE09oxYoVuu+++3TiiSdq77331quvvqqLL75Yxx13nIYPHy5JOv744zV06FCdfvrpuvHGG9XU1KQrrrhCU6dOZQYGAAAA+JiO+tk71gHNunXrdMYZZ2jNmjWqr6/X8OHD9cQTT+jzn/+8Vq9erSeffFI333yzNm/erP79+2vixIm64oorcvun02k98sgjmjJlihobG9W1a1dNnjw5LzsbAAAAKLU4QwHaq6N+9vZ85u/U3Nys+vp6jdbJqvKq89Z5VcFjPmu5JKm6OnCxuY9VR01wOaoKeXRbOnidb+1jLPergt+QvlF+W1nB+2TNsoIvU7DrDnkQW5VRllWHudwoP6Ruq6ysUZZrHWFXSFhlOR+HUYd1DIXUbR2H6/LC6g7+NWdtH/b3yGxv2qjDcfvQuq19rNPTrCN4uWdtH7aPsTxlbm88cDCk7pSxj1VHlbm9UbdRjiRVp4Mfdpg2rslMG3VYbapO2Q9TtPap8oL3qTHaWuUVULfjPjWp4KeEVxtttZaH1eFalrW8NrXdrtvqW8/1+IK3rwk7bqsO44GbVllmOSF11xgPAq22zgNrufHhujrkqsQa40Gq1QG/2DZuzGrQIU3asGFDu+8XKYcdnyN/8vIIdeke5eN1d2/LxozOPXJxxfVJucUeCgAAAAAkXVZSJuL72dpTJyowFAAAAAAA2osZGgDR6qwXsboet/ktXkhB1qoCigrcPGT7Un/nGOXFz1biVyHf4FllWZecRVV+lGWVI4XMte6MZ78a1iVWUQlLOssa33db90WkjO3TxvZh9zukjH3sc620/VQIa7YgbBYhY7z5UwGnjuv9IuWWVUrZMs8VlLu+SkUvAAAAAEgsBjQAAAAAEotLzgAAAIAi7XjoabnrBDM0AAAAABKMGRoAAACgSFl5ZQnh2LlOMKAB0IFYYUCVnYuTEK6JacbyQv70+oUkwpWwHCkk/cy5JPc6ovr8Eva8jFSMH5KsS2hSxutkLjcf/tgxZIzXyExLC4kSzBi/PK3zIFXi9D/AFZecAQAAAEgsZmgAAACAIhEKEB96AQAAAEBiMUMDAAAAFCmjlDJlnisod32Vil4AAAAAkFjM0AAAAABFyvqenU5YwjrBgAadVQUmS5YjctgzYjv9Tppj32ljnuM8wAijk80YZsfoWDvO2Z1VlhnzXEDVWeMm4KwVyxvh29uKeraigq044CoFRyqXgxV3LNnHYUVDp63jNiOm7eO2ywreJ2WcB2mj7owRY93WLuP8tM5nL3i5GSUdEhmdMl6OoAj0+M4aVDouOQMAAACQWMzQAAAAAEXKxhAKkGVuQhIzNAAAAAASjBkaAAAAoEhZP2Xe41bKOsEMDQAAAIAEY4YGQEFICKuQ7eMWUXvDk8YcU8uKa0p+WRElqTmXH6GskTwV+s1uSCJWFMKiZs32GslazsfnZcIbh8iFnU3WukxAMlrQMkBiQAMAAAAULSMvNBa8VHWCS84AAAAAJBgzNAAAAECRCAWID70AAAAAILGYoQEAAACKlFH572kh4qINAxoAidNpE9ZKLcKkMbOsiNLBCmEnirm3ydrDSu9KO9dgl2WlfUXJNTksa7yuZppZjPcxh12ikzVe2ayRxWU9FT5lbJ8OuTAmY9SdMvZJG32eMeq2ypGktJEeljHqSBkvYMo6/2N836Nz4JIzAAAAAInFDA0AAABQJEIB4kMvAAAAAEgsZmgAAACAImX8lDJlnjEpd32Vil4AAAAAkFjM0KBjq8RglXK0qQKPO85kso6SiuYZCUK+dSRRHmCECWHOVZe47mxIMYWkkwXXUfq0LzMVzVoeY9SY2R+SMp6RHGYkcaXMdDBjuRecAiZJ1eaa5Au71yJj9ImVZpZ2TOALizI2X9eAXYgohoUBDQAAAFAkX17Zvyjw48xAryBccgYAAAAgsZihAQAAAIpEKEB86AUAAAAAicUMDQAAAFCkrO+FBl6Uqk4woAEQwkoHk5KXEOYk7ODMwC23JK5Yk9cqMLHMK6BuIxzJTkULO6EN1oeFyNLPQm7otVLtyiFj1G2lXlnbVyXss5aVxpUyLmixktTSxvaZkPM8peCkMbssI5nMuAQp7ZU+I8zsv5BzOW28L4OOzs6nQ2fHJWcAAAAAEosZGgAAAKBIGaWUKfNcQbnrq1T0AgAAAIDEYoYGAAAAKBKhAPFhhgYAAABAYjFDA6AiddqEtUJYHVKGL+6iSi2zEsuiZH2TWcg3e1ZZVpdHlYoWVnfWOJKs1bllOD+yRuJWJuQNnjLaayXCZT2rP4zlIQ8izBrnrb08OHfLuq/BSjKT3JPRrOQ1KzXMSkULLct4LazXz0p9K0QmoKigZYDEgAYAAAAoWlYp84uFUtYJLjkDAAAAkGDM0AAAAABFyvie+ZDZUtYJZmgAAAAAJBgzNAAAAECRiG2ODzM0AAAAABKLGRp0CFYCaJwJj2VpUwVGWMb6WrhWUkijHPdx7o84X9MI6zaTggv4MrHUkc5W9PQ/1pa0jrBvV9Ml/uLVijWW7GjjrHFCm1HInh0VjPLKhMRVp43zPGO8finj3Elb53nIGz9jlBVlBDQ6PgY0AAAAQJF8PxX6nKNS1QkuOQMAAACQYMzQAAAAAEXKyDMvoStlnWCGBgAAAECCMaABAAAAkFhccgagItPSEMA5xc26FMH9BTdTy1zLMZYXctGElRxmpqJZkXMF1WG0uIA6XOu2ktHCkqTiYiWphaW7WftkvODvYFPGC26lZIWlZ6UcU71SxvfCVh3pkO+RM2Z7g9tklZUxto/yG2zrxveMcf5b/SdJKeNcSAeUVel/qrJ++Z8Lk630TikTZmgAAAAAJBYzNAAAAECRsjHENpe7vkpFLwAAAABILAY0AAAAABKLS84AAACAImXlmaEWpawTDGgAxMwKhSpzUEz5xZlME2XdUZUV+oJHU0k5utyqw0o+SpeuKbutu6CkMWOfsBQr/J9MyP0O7mlmVqJY8PZBqWH/V5aVjGaUpYxZVpDQc81I5wt6YCQPkYSFAQ0AAABQpIzvmYP+UtaJmO+huf322zV8+HDV1dWprq5OjY2Neuyxx3Lrt27dqqlTp2rvvfdWt27dNHHiRK1duzavjFWrVmnChAnq0qWLevfurUsvvVStra3lPhQAAACgonXUz96xDmj23Xdf3XDDDVq8eLFeeuklfe5zn9PJJ5+s119/XZJ08cUX67e//a0eeOABLVy4UO+++65OPfXU3P6ZTEYTJkzQtm3b9Oyzz+ruu+/WnDlzdOWVV8Z1SAAAAOiEdsQ2l/vHRUf97O35vvlM5Vj07NlT3/ve9/SlL31J++yzj+677z596UtfkiS9+eabOuSQQ7Ro0SKNGjVKjz32mP75n/9Z7777rvr06SNJuuOOO3TZZZfpvffeU01NTbvqbG5uVn19vUbrZFV51XnrvKrgq/Ks5ZKk6urAxeY+Vh01weWoKuSq63TwOt/ax1juVwW/QXyj/LaygvfJmmUZT+B23D5sXdaqw6w7uHyrnNCyjN8xWaML7WMwqzbr8M06rHKsfgqp2ywrou1Dfke71x38a861rZJ9q4e5T8q17pBfya77WKet0SaF1h28zrOWG2VZ26dCru9PpY3r+62yzOXB5VQZyyUpbZSVNvYxlxvHV52270WoMp5ab9VhHUeVF1xH2HFbdVelgsuqNravTQd/a2u1qa0st/Za27sul6TqVHB7o6ojbdyr0rZPcN01znW7lRO2j1VHjXEPjX3c9vvbOneClm/amNXRh67Vhg0bVFdXZ5ZZbjs+R5721NdV0619nz2jsm3TNt0/5udF9Ukcn72jVjGxzZlMRvfff782b96sxsZGLV68WNu3b9fYsWNz2wwZMkQDBgzQokWLJEmLFi3SsGHDch0qSePGjVNzc3NupBmkpaVFzc3NeT8AAABAEu38ubalpWW3+5Tzs3epxR4KsHTpUjU2Nmrr1q3q1q2b5s6dq6FDh2rJkiWqqalRjx498rbv06ePmpqaJElNTU15Hbpj/Y51llmzZunqq6+O9kBQehU1l/gx5iRnNDfqhXxxHW+XJCmly7xp0opYCynLKMpMawspKjJRnYKVmH4myXd9/SIrX8oa7++o0skKSX/yXFPLYrxn2E5Fs79PzRhvppTxWliJbFb/hcXcWpfvZI1zzV5uzdSZVUcma6ai2bNDKeO4rZmVjDGrYqXdhc3QWMllqYBzp9JvgM/KC31Pl6pOSerfv3/e8quuukozZ84M3CeOz96lFvuA5uCDD9aSJUu0YcMG/frXv9bkyZO1cOHCktY5Y8YMTZ8+Pff/5ubmXU4EAAAAIAlWr16dd8lZbW2tuW0cn71LLfYBTU1NjQ488EBJ0ogRI/Tiiy/qlltu0Ve+8hVt27ZN69evzxsprl27Vg0NDZKkhoYGvfDCC3nl7Uhi2LFNkNra2tAXGgAAAHDhx/BgTf8f9e1ILWuPOD57l1rF3EOzQzabVUtLi0aMGKHq6mo99dRTuXXLli3TqlWr1NjYKElqbGzU0qVLtW7dutw28+bNU11dnYYOHVr2tgMAAABJ0hE+e8c6QzNjxgyNHz9eAwYM0MaNG3XfffdpwYIFeuKJJ1RfX69zzjlH06dPV8+ePVVXV6fzzz9fjY2NGjVqlCTp+OOP19ChQ3X66afrxhtvVFNTk6644gpNnTqVGRgAAADgYzrqZ+9YBzTr1q3TGWecoTVr1qi+vl7Dhw/XE088oc9//vOSpJtuukmpVEoTJ05US0uLxo0bpx/96Ee5/dPptB555BFNmTJFjY2N6tq1qyZPnqxrrrkmrkMCAABAJ5T1YwgFcKyvo372rrjn0MSB59AEbV+Bz6ExnpXStk+Mz6Exnw3i9lwZ1+fZhJdlLHdsa+jzWCJ7Bo7b8oLqjuj5NKHronoGTtiFwGZZxq9xs63W9u7PwPGMZ8SYz6cxyrGeERNWluvzZtJGW61nxISW5fh8mmrH59ZI9nNX0uYzYqzn0Lg9U6aQsqqNsly3b9vH7RknUT2fJnSfEj+fRpJqHJ8F4/7cGvtJ7lYKWamfT9O2zjjPA9q0aWNWxxy2pmKfQzPxycmq7lre57Bs37xNvxl7d8X1SbnFHgoAAAAAJF3WT5nR36WsExUYCgAAAAAA7cUMDQAAAFCkJNxD01ExQwMAAAAgsRjQAAAAAEgsLjlDxfGM4D2/zE/fRcRc8xQrNH/ROgvN5kZ5HJXYJ+blDm6N9UMum/AiOnCrDjtnLLpv/azLQlIhx23uw+/CxAq7PChjnG0p4wxNG9tnjPdLKuRsToekkAWxbkTPGIllYeds2uiTsPTBSpWVp2yZ35/lrq9SMUMDAAAAILGYoQEAAACKRChAfJihAQAAAJBYDGgAAAAAJBaXnAEAAABF4pKz+DCgqWRZK3snXdZmoEwqMdClEtsUJklJah28bitRrJDEMiP40FweJes47DYZHy7KkNhkfbDJesbyAhLWrESljGMim7V92z5WgpaR3mW8GFZbrf4I3cdI9coa57O1PG2kgBUiqlS0trKMdDLjuK1UNKtN6ZA3q/m6BrwWGRK9YGBAAwAAABSJGZr4cA8NAAAAgMRihgYAAAAoEjM08WGGBgAAAEBiMaABAAAAkFhccgYAAAAUyZedlFfKOsGABmiXsMTVSvxlYrW3EtvaYcTYuZ4VLezaqNBrsaM5QCu9NSRJt4A63KKWyxGpbNUQdv279bpascME+hcvY8QUp4xXMGXEMFtx1VYkdVgdVtxyWsHRyVbEdCbkPWy1K228N8yYZ6P8sLhlq6/SAec/94vAwoAGAAAAKBKhAPHhHhoAAAAAicWABgAAAEBicckZAAAAUCQuOYsPMzQAAAAAEosZGsSGJK4OyvUFNJOnoqvD9VyLM9Uu0roL6VvHsszUsmiKbyvL/AYyouS1sHVW0phx4HEmjVnf1JrLQ77TtI7PSlizkrWyxgltbR++j3UcwcsznpFYZsbdSSkvODnMldkfIWdb1kgOyxivU8rYPl3A+9s6F8w0M+P40lZSm5EGJ4WksgWcB2FpaZWAGZr4MEMDAAAAILGYoQEAAACKxAxNfJihAQAAAJBYDGgAAAAAJBaXnAEAAABF8n3PDBIpZZ1gQANAIlqulKJM6IrqdSpxaljURZlVGMdhh1iVvlHW9exWUlvYR5GUY2pZyijNvMY+xs9BYdf9Z8zja38almSnmVmpaFJIipvZt0baVwFpaXaamZWoZyWTGf1hJJa1lWW0yTy+4DrMVLTQC4KsfXbt87DXDp0bAxoAAACgSFl5ZR90Mchrwz00AAAAABKLAQ0AAACAxOKSMwAAAKBIPIcmPszQAAAAAEgsZmiAjytDMpMRDlNQ1VGW5awDJKMV1H/WSscvySJ97SJLP4uonELqCPuW0eos16qtPg+p28qFslLLkvTGCE37ckxYs8oyE8siek0LYaWJSXYympU0Zi732p/c9X/rgll9bqeiBddtpaK1lWW8HkZzzTQzKxUt7H1h1JEOeC2yFf72IrY5PszQAAAAAEgsZmgAAACAInEPTXyYoQEAAACQWAxoAAAAACQWl5wBAAAARSIUID4MaFBynpEa47vGQiHZEpYg56wSk8YiSmQLLasMaV/mH2wrtixGVlvN5SFpX9a18VbCWtZz3D403S34Ao6s0edW3Vkj9Sobetxu+7gmrxWSsGaVZS63jiHkfWGtSxuJaVbKmZVmZiaZKSwZLVjGSjMz+tZKRWur26gjoG+DlgESAxoAAACgaH4MoQDM0LThHhoAAAAAicWABgAAAEBicckZAAAAUCRf5b+1r/LuJIwHMzQAAAAAEosZGqATiTUFLEki7JBI+7wMiWKRMdO+gjf3Ik1Fs5a7tUkKTyFDaVg3VWeM5Skr1ct47VIhL7iVWpZ2vO/aSgFLGYllkpSyUtmM40sp41Z3SNKYczKa0R9WmlnKaFNb3e2vI/iIK0dWnrwyJ7FZ52xnwwwNAAAAgMRihgYAAAAoEg/WjA8zNAAAAAASiwENAAAAgMTikjMAAACgSFnfk1fmS8CsEI3OhhkaAAAAAInFDA2iY0ZhVt63B57RVj/KtkaV9hpjamxYYm2cYbbOUcgdPXm3HOdaiSOjQx9GZ1RtfxNa+hfcuhE3axyI1dawb3OtNSmzbiv21217Scp6bvuYy426rQhmSUpFFJXt2iZJynhG5LHxuqaMcy3lBQcMZ0Pii7NGWfby4IhkK2I6G/IdthXPbEY9m9HQwcvTIa+pFfUcVIf1/qoUvh/DgzUru0vKhhkaAAAAAInFgAYAAABAYnHJGQAAAFAknkMTH2ZoAAAAACQWMzQAAABAkZihiQ8DGgCRck0gc04si1IhKVlRhfmV4QCtBC0/ysqt189YXo4/vdYfeKtNfkhMkJlmZmzfUS57sBPCgo/QSp+y09JC0r6MXwrWPtb2Vg2ZkFfJSjOzktHM4zO2T5s1SxljHyulzkoUs5LXwt72VppZ2kwtM1LcjO3NJDNJKetc8Hbdx+ojoKP87gUAAADQCTFDAwAAABQp63uhz5YqVZ1ghgYAAABAgjFDAwAAABTJ9+179UpZJ2KeoZk1a5aOPvpode/eXb1799Ypp5yiZcuW5W0zevRoeZ6X9/PNb34zb5tVq1ZpwoQJ6tKli3r37q1LL71Ura2t5TwUAAAAoKJ11M/esc7QLFy4UFOnTtXRRx+t1tZWffvb39bxxx+vP//5z+ratWtuu3PPPVfXXHNN7v9dunTJ/TuTyWjChAlqaGjQs88+qzVr1uiMM85QdXW1rr/++rIeD1AxOus3NjEedwF5ac47RJYIZ+4Qdi12RJ1rFRNWvHWNuNUhMXJPWLP73DfTvoL3sa7dt5K4wq71T5W4b8Ou+88Y66y0L3t7IwXMSOgKYyWjWaloVtKYmUAWImvsYy83EsU8+ztsK80sYx6HUYeRWGa9FpKUdvjFlqnw6Yi2GZpyxza7bd9RP3vHOqB5/PHH8/4/Z84c9e7dW4sXL9Zxxx2XW96lSxc1NDQElvH73/9ef/7zn/Xkk0+qT58++uQnP6nvfve7uuyyyzRz5kzV1NSU9BgAAACAJOion70rKhRgw4YNkqSePXvmLb/33nvVq1cvHXbYYZoxY4a2bNmSW7do0SINGzZMffr0yS0bN26cmpub9frrrwfW09LSoubm5rwfAAAAIIl2/lzb0tLSrv3K9dm71ComFCCbzeqiiy7Sscceq8MOOyy3/Gtf+5oGDhyofv366dVXX9Vll12mZcuW6cEHH5QkNTU15XWopNz/m5qaAuuaNWuWrr766hIdCQAAADob3/diuOSsrb7+/fvnLb/qqqs0c+bM0H3L+dm71CpmQDN16lS99tpr+sMf/pC3/Lzzzsv9e9iwYerbt6/GjBmjFStW6IADDiiorhkzZmj69Om5/zc3N+9yIgAAAABJsHr1atXV1eX+X1tbu9t9yvnZu9Qq4pKzadOm6ZFHHtHTTz+tfffdN3TbkSNHSpKWL18uSWpoaNDatWvzttnxf+vav9raWtXV1eX9AAAAAIXyY/qRtMvn2t0NaMr92bvUYp2h8X1f559/vubOnasFCxZo0KBBu91nyZIlkqS+fftKkhobG3Xddddp3bp16t27tyRp3rx5qqur09ChQ0vW9s7KC4nT8EMTkuIRWSpUGeqw+rYc/VpI3a7HHdX2kh16FZkoT5ByhPLEWUeMoUPmpR3W+VxI0pi1j3GCWmVljYLCksasddYeKbNut9SwsH2sxDRze6vuAlLUskZ7s0ayVtYxJS6sDuc2Wf0UUn7aWJ4x9rFePzNRzDeSyRSS4makmVmpaPIct5e0zTgVagIOz++0EZ7R6aifvWMd0EydOlX33XefHn74YXXv3j133V19fb323HNPrVixQvfdd59OPPFE7b333nr11Vd18cUX67jjjtPw4cMlSccff7yGDh2q008/XTfeeKOampp0xRVXaOrUqe2abgMAAAA6g4762TvWAc3tt98uqe0BPh83e/ZsnXnmmaqpqdGTTz6pm2++WZs3b1b//v01ceJEXXHFFblt0+m0HnnkEU2ZMkWNjY3q2rWrJk+enJedDQAAAJRSnKEA7dVRP3vHfslZmP79+2vhwoW7LWfgwIF69NFHo2oWAAAA0OF01M/eFZNyBgAAACTWx+/SL2edqIyUMwAAAAAoBDM0SZQNGY5bMSlAZxbhN1iRJeeZ1z1H2FjXZLIoL/02E8iMxWGHbSWEVV6wYofhmlqWNb4ftdLdrBSwtn2Cy0p7Gac2Zcx0N/u73IzxBk8puG4zHcw47lTI+ztsXZCssb21POz9bdVtpZOZyWRG+ZmwYzPalQlIWLMS3ypGDPfQlD72MxmYoQEAAACQWAxoAAAAACQWl5wBAAAARfL93Vw+W6I6wQwNAAAAgARjhgYAAAAoUhIerNlRMaBBsF3DRdowp1dZOsJUcyHHENFxR5ZYFraT498aq01SzJcWVOC5Zna58Qfe6r+wfrUeQmd9iLB+dbq2KawO3zhJrLQvq+6wpLG0c+KWYypayIcwqywztczsDyN5LeRNZqe4ub2Rzf4IS3ez6jCOI+UFn20px3La6g4uy0pxs5PJrHQ3651htysojS7D9VUw8PEUAAAAQGIxQwMAAAAUy/fK/1wYLjmTxAwNAAAAgARjhgYAAAAoErHN8WGGBgAAAEBiMUMDAAAAFMtX+RMhmaGRxIAGHWWuMmscRyqim+Wi7KYkRe/GGKlckBLHORdURTn6w7optBzvb8e6rSaF9Xln/YPtGsNs/bZLFRCdbEX/WvtY0cmW0NhmI9rYNYY5ZZw4Vvxz2z7BdWTMOjLB2xvlpELek1Z7ZcQzm/3hWE5b3VZ0slu2vRXPnA67IMhoV9A+5rGh0+OSMwAAAACJxQwNAAAAUCTf98wH4payTjBDAwAAACDBmKEBAAAAosBtPrFghgYAAABAYjFD09FYCSodJc0MnUfYKet4ybAVwFTQu6LESWrleKtaKVl+WOWVeJm2dRzm9m7Ja23rrL6ymmTVYSV32ZWnI+pz17Q0yU4as/ax6sha6VlecDpYeFnBy63UMiupLey7XCsxzbVNZvkh21t9LiPNzEogS1lpZkY5be0yjttILZMXXJaVZrYt5D1WYyzPBLQpw2cZGBjQAAAAAEUiFCA+XHIGAAAAILGYoQEAAACK5av8oQBchSeJGRoAAAAACcYMDQAAAFA0T+VPUOEeGokBDVDxrDQsKSzNqRQtKbKOjj4tbh1flH9rjDoiTXEz67YSmBwrN8sJqdosy+oQY7FjYlnYOisRzkwzM8oPSxqz6zaOI+yXhSMr1ctKDjNTwIzkLmt7SUpZSWNm3cEXm1iJZVY6mBSWmBZcR8Z88wW/4hkjHUySUub5HFyWa39Y5Uj262odt3l81vYhvweD0sza6th10Xa7GHRyXHIGAAAAILGYoQEAAACKRShAbJihAQAAAJBYzNAAAAAAxWKGJjbM0AAAAABILGZogI+xQmCs0JjQssqRPBWVimxUGbgmcYXuFMwqKSxZKzLm8Tkul0gGjUHWTLULfjHM5Ub5qbDz3DFpzKrbTD8L+T416/jmsNpkJ5aFncxuiWlmWpuRZmYmmck+DqtNVlpbWIqbXXfwPmaqmNFUs+6QJqWsDMCAPsyaeYHo7BjQAAAAAMXyvd18IVaiOsElZwAAAACSixkaAAAAoEi+X6bLiXeqE8zQAAAAAEgwZmgAAACAYhHbHBsGNEgML2Re1SeCqXK4/nKN8JdxWZLlSv3HI+QGT+s9EOvfM9ekOOsYQg7Cel1d6zarCPvdYp1TVh3W9sZBWOVIkmceuGObXBO6ZKeWpRyPw0w58+y6w9rlUlbWiKe0EsskmSeJnZhmXegSnMZlJ5lJGSMZTb5RlnHc2/20WYcl5RjxGVUqWlsd1kfR1l2WWK8DwCVnAAAAABKLGRoAAACgWMQ2x4YZGgAAAACJxQwNAAAAUCTPD7nnr4R1ghkaAAAAAAnGDA1QKQr4lsU11cs5BSzGb34KCCKKcAd3Zt+aL0aElUeUNGYlW7VV0Tm/BnROMzNT3IwkrpC6rdfDPqfc0szCTsGUY2qZlX5mppyFnGtZ47vWlJdxq8M4wtCkLGOVc2KasX0m5BdbynphjfQze3v3hLXtWePjYGrXpDFJSlllmaloIWe6cXzpgPPAOjcABjQAAABAsXgOTWwY6gIAAABILGZoAAAAgGIR2+zkpZde0q9+9SutWrVK27Zty1v34IMPOpXFDA0AAACAsrn//vt1zDHH6I033tDcuXO1fft2vf7665o/f77q6+udy2NAAwAAABTLj+knga6//nrddNNN+u1vf6uamhrdcsstevPNN/XlL39ZAwYMcC6PAQ0AAACAslmxYoUmTJggSaqpqdHmzZvleZ4uvvhi3Xnnnc7lcQ8NOqcov9FI6Lcj5eYcGV1IWa6XElupp1FGRldi3YUwK3eLhnaOmA7Zx4wvNuNsjcWhMb7R9LoZ/xxSvhn17Bi7nTbqCDsyM+rZapNnxDkblYTGNhtlhe3jVk7Yd7nB8cJWTLEZAW3GP4dEJysduLxaRly1GcNsxDyHveJW1LPRV9vNcoLbKt/+uFmt4GjobQEfUbfx97bD2GuvvbRx40ZJ0ic+8Qm99tprGjZsmNavX68tW7Y4l8eABgAAACgWsc3tdtxxx2nevHkaNmyY/uVf/kUXXnih5s+fr3nz5mnMmDHO5TkPaH70ox/pwQcfVM+ePfWv//qveZW+//77+qd/+if99a9/dW4IAAAAgI7vBz/4gbZu3SpJ+vd//3dVV1fr2Wef1cSJE3XFFVc4l+c0oLn11ls1Y8YMnXXWWdqwYYNOPPFEzZw5UzNmzJAkZTIZvf32286NAAAAABKNGZp269mzZ+7fqVRKl19+eVHlOQ1ofvzjH+snP/mJvva1r0mSpkyZolNOOUUfffSRrrnmmqIaAgAAAKDjS6fTWrNmjXr37p23/IMPPlDv3r2VyRj3YxmcBjQrV67UMccck/v/Mccco/nz52vs2LHavn27LrroIqfKAQAAAHQuvhFu0tLSopqaGufynAY0vXr10urVq7Xffvvllh122GGaP3++Pve5z+ndd991bgCwi+CwlQ4TMh5l2ldUCmlTVMcRaX+UoRPN9pbjBTRTvYIXO7c17BisdWV4SLUZWuZ6HFbSWAGVmyFuVjpYAWlprkljrm0KS3Cz6k6ZyWtuaV9hyXJWWVnzj4CV0GWVE3bSBteRNfqqNRucTKZU8LfLqdA/ZMZxGO11TUWzti9EtbE8a/4ysv6wy0xAC0o/c026KzvfKyBuM4I6E+TWW2+VJHmep7vuukvdunXLrctkMnrmmWc0ZMgQ53KdBjSf+tSn9OCDD+rTn/503vKhQ4fqqaee0mc/+1nnBgAAAADo+G666SZJbTM0d9xxh9Lp/xto19TUaL/99tMdd9zhXK7TgObyyy/X4sWLA9cdeuihmj9/vn7zm984NwIAAABIMs+P7NFVTnUmycqVKyVJn/3sZ/Xggw9qr732iqRcpwHN8OHDNXz4cHP9YYcdpsMOO6zoRgEAAADomJ5++mlJ0rZt27Ry5UodcMABqqoq/PGYRT1Yc8uWLVq1apW2bduWtzxs0AMAAACg8/roo480bdo03X333ZKkv/zlL9p///11/vnn6xOf+IRzjHNBt1m/9957+ud//md1795dhx56qI444oi8HwAAAKBT8WP6SaDLL79cf/rTn7RgwQLtscceueVjx47VL3/5S+fyCpqhueiii7R+/Xo9//zzGj16tObOnau1a9fq2muv1f/7f/+vkCIBWAr4ZRVnklpkdUfZWNcUsAirNus2gmkS+rdpV45JY6ExcSUO8QlP83NNFLOWW2lp9sFZyWjWPlmjDusYwpLGUkbdrslrVjlhx22mk5lvGiOZzOiP1pDvcquMpLGMY4pb1mjTdrNmOzksY/6iMtrqGcdnbC+5923K8TeVdWySzAS0oES4TEeJO4Ueeugh/fKXv9SoUaPkfez8O/TQQ7VixQrn8goa0MyfP18PP/ywjjrqKKVSKQ0cOFCf//znVVdXp1mzZmnChAmFFAsAAACgg3vvvfd2eaimJG3evDlvgNNeBQ11N2/enGvEXnvtpffee0+SNGzYML388svtLmfWrFk6+uij1b17d/Xu3VunnHKKli1blrfN1q1bNXXqVO29997q1q2bJk6cqLVr1+Zts2rVKk2YMEFdunRR7969demll6q1ddf8cgAAAKCzqpTP3kcddZR+97vf5f6/YxBz1113qbGx0fm4ChrQHHzwwbmDP/zww/XjH/9Y77zzju644w717du33eUsXLhQU6dO1XPPPad58+Zp+/btOv7447V58+bcNhdffLF++9vf6oEHHtDChQv17rvv6tRTT82tz2QymjBhgrZt26Znn31Wd999t+bMmaMrr7yykEMDAAAAnHn6v+jmsv04trFSPntff/31+va3v60pU6aotbVVt9xyi44//njNnj1b1113neNRSZ5vXdgb4uc//7laW1t15plnavHixTrhhBP04YcfqqamRnPmzNFXvvIV54ZI/zf9tHDhQh133HHasGGD9tlnH91333360pe+JEl68803dcghh2jRokUaNWqUHnvsMf3zP/+z3n33XfXp00eSdMcdd+iyyy7Te++9p5qamt3W29zcrPr6eo3Wyary8q/09IwIOWu5JKk6+GpRcx+zDuOpvmF1G/v4ZlnG9mlre3sM7BvrzOVpY3nKuGa9KuSa67S1j1VHcDm+UU42pG7XsqztrQdOW/3RVodrm9y2t/pVkvl1SFR1W8tDy3K7DNw+hpAHavsp454A1+Mo5Lgd67brMH7tF1C3uY913b/Z1pA/RcY6z3m5UX7Igxyse0CsOlLmcuM+gZDjtuo2lxt1pI060sb2YXWkreVGWVXWcYfcgxFVWVWpTPD2Ia93lXE/h1WW1R9WOSljuSRVu9Zt3O9j9ZO1vSRVW31l9G21Z/VHcB3W9pLdJ0H7fLSpVZcd/T/asGGD6urqzDLLbcfnyIH/ca1SH7vBvRyyW7fq7cuuKLhP4vrsLUkrVqzQDTfcoD/96U/atGmTjjzySF122WUaNmyY83EUdA/N17/+9dy/R4wYobfffltvvvmmBgwYoF69ehVSpCRpw4YNkqSePXtKkhYvXqzt27dr7NixuW2GDBmiAQMG5Dp10aJFGjZsWK5DJWncuHGaMmWKXn/99cDUtZaWFrW0tOT+39zcXHCbAQAAgDjt/Fm2trZWtbW1u92vXJ+9gxxwwAH6yU9+0q5td6egAc0111yjSy65RF26dJEkdenSRUceeaQ++ugjXXPNNQVd7pXNZnXRRRfp2GOPzT2cs6mpSTU1NerRo0fetn369FFTU1Num4936I71O9YFmTVrlq6++mrnNiKBzAlIt0laL2Qi0y91BFOMIj3uMqSWRfZShLXVTGeK6AALqNt6ncyXr4CkMTvty/HFMGPAzKpD2utWhbWigPtPC0g5c0tLkyQ/oqQx1zZJMr/Lt/ZImclrbulgkn0crdngKTZrRsKsO4SV9mWlllk9lbJ7KqRuI5XNmr53a1L4TQbGPtbMzfawaWxHVgJaUCJcq/tFReXleyF/I0pYp6T+/fvnLb7qqqs0c+bM0F3L+dk7SCaT0dy5c/XGG29IkoYOHaqTTz65oAdsFnQPzdVXX61NmzbtsnzLli0FDxSmTp2q1157Tffff39B+7uYMWOGNmzYkPtZvXp1yesEAAAASmH16tV5n21nzJix233K+dl7Z6+//roOOuggTZ48WXPnztXcuXM1efJkDR48WK+99ppzeQUNaHzfD4xU+9Of/pSbsnIxbdo0PfLII3r66ae177775pY3NDRo27ZtWr9+fd72a9euVUNDQ26bnZMXdvx/xzY7q62tVV1dXd4PAAAAULByPkzz4z/SLp9rd3e5Wbk/e+/sG9/4hg499FD9/e9/18svv6yXX35Zq1ev1vDhw3Xeeee1q4yPcxrQ7LXXXurZs6c8z9NBBx2knj175n7q6+v1+c9/Xl/+8pfbXZ7v+5o2bZrmzp2r+fPna9CgQXnrR4wYoerqaj311FO5ZcuWLdOqVatykW6NjY1aunSp1q1bl9tm3rx5qqur09ChQ10ODwAAAOiwKuWz95IlSzRr1izttddeuWV77bWXrrvuOr3yyivOx+V0kdrNN98s3/d19tln6+qrr1Z9fX1uXU1Njfbbbz+n7OipU6fqvvvu08MPP6zu3bvnrrurr6/Xnnvuqfr6ep1zzjmaPn26evbsqbq6Op1//vlqbGzUqFGjJEnHH3+8hg4dqtNPP1033nijmpqadMUVV2jq1KntuhkKAAAA6Awq5bP3QQcdpLVr1+rQQw/NW75u3TodeOCBzsflNKCZPHmyJGnQoEE69thjC7pp5+Nuv/12SdLo0aPzls+ePVtnnnmmJOmmm25SKpXSxIkT1dLSonHjxulHP/pRbtt0Oq1HHnlEU6ZMUWNjo7p27arJkyfrmmuuKaptAAAAQLt97BKwstbpIM7P3h9PYps1a5YuuOACzZw5MzdQeu6553TNNdfoP/7jP9wOSgU+h0Zqy46ePXu2VqxYoVtuuUW9e/fWY489pgEDBuwy2qp0PIcmYPtyPIfGet6M9XyaQp5DE9lys2q7btdn3RTyHJqonvniuH3bPo7HHdFza6Kso7BnwVjL3Z67UtDzdxyf4eLeH2HPgrHKMvax47Dc63YsK7Ln00jyzOfQBMdCWYlprs+nCd2nxM+nCSvLekaM9TwW13Ik+xku1mthpZwV8iwY81k3ET1vxnrWTFvdrs+6cXvOTvizYIzXyYg/i+q5NZLbs2u2bmrVd0bOr9zn0Fx/XTzPofn2v1dcnwRJpVJ59+DvGILsWPbx/2cy9jkTpKAploULF2r8+PE69thj9cwzz+i6665T79699ac//Uk//elP9etf/7qQYgEAAIBE8vzQ5/SWrM6kePrpp0tWdkEDmssvv1zXXnutpk+fru7du+eWf+5zn9MPfvCDyBoHAAAAIPluueUWzZkzR3V1dfrZz36mr3zlK5Hd715QbPPSpUv1xS9+cZflvXv31vvvv190owAAAIBEiTG2OQkeeeQRbd68WZJ01llnacOGDZGVXdAMTY8ePbRmzZpdot5eeeUVfeITn4ikYQAAAAA6hiFDhmjGjBn67Gc/K9/39atf/cq87+eMM85wKrugAc1pp52myy67TA888IA8z1M2m9Uf//hHXXLJJc4NAAAAANCx3X777frWt76l3/3ud/I8T1dccUVeSMAOnueVZ0Bz/fXXa+rUqerfv78ymYyGDh2q1tZWTZo0SVdccUUhRQKdnnVjX8XOJpe6YRGWb/atVUecnR4W9hXRcTiXE1KWudxKJjPLsdP8orrr1bfqCDtwYxfPKstoq1WF2aawfYw6skZZVlvDDtvK4rLKCnn1nMqRpKwRFWeFslnH3WpcVR/2wSfrGPyatSP4grcPOZdbrahLI1FMCt6+SsHbbze2l6RqYx8zAtA4Qaz0s+1hsZUOtvt2SlxFSEBsc5yOPfZYPffcc5LaEs/+8pe/qHfv3pGUXdA9NDU1NfrJT36iv/71r3rkkUd077336i9/+Yvuuecepa24XwAAAACd0qmnnpp7Fs3s2bPzgsWKVdCARpJ++tOfavz48friF7+or3/96zrllFN01113RdYwAAAAICl2xDaX+ycpPh4KcPbZZ2vjxo2RlV3QJWdXXnmlvv/97+v8889XY2OjJGnRokW6+OKLtWrVqt0+KRQAAABA51FxoQC33367fvKTn+irX/1qbtkXvvAFDR8+XOeffz4DGgAAAAA5d9xxh6ZPn145oQDbt2/XUUcdtcvyESNGqLW1tZAiAQAAgOTyvfCAk1LVmRDHHHNMyUIBChrQnH766br99tv1/e9/P2/5nXfeqUmTJkXSMMBFZAlhCboWNZTrcUR53GXowzgT4czrlaNKUkvO3yZJYQlajgcYli7lmoxmVl3AiWMdn7l98BojuGs3KWdWYpprwlrw9mGJXinjdbLKck1eS4WlnJnHZyx2/EBnpahJdtJYlZHeZSepBadxbbeSzGQnhJU6/UyyE9BKnX4muSWgZfyCb/1GhVm5cqWWLVum6dOn669//aseeOABfeITn9A999yjQYMG6VOf+pRTee0e0EyfPj33b8/zdNddd+n3v/+9Ro0aJUl6/vnntWrVKp5DAwAAgM6H2OZ2e+mll3T66adr0qRJevnll9XS0iJJ2rBhg66//no9+uijTuW1e0Dzyiuv5P1/xIgRkqQVK1ZIknr16qVevXrp9ddfd2oAAAAAgM7j2muv1R133KEzzjhD999/f275scceq2uvvda5vHYPaJ5++mnnwgEAAIDOII4Y5STFNn/csmXLdNxxx+2yvL6+XuvXr3cuj4sRAQAAAJRNQ0ODli9fvsvyP/zhD9p///2dy2NAAwAAAKBszj33XF144YV6/vnn5Xme3n33Xd1777265JJLNGXKFOfyCko5AwAAAPAxhAK02+WXX65sNqsxY8Zoy5YtOu6441RbW6tLLrlE559/vnN5DGhQelnj3ZZKWD6twTkJ1vGXjxcSreqXOuO3DHHOUUYwl/q1KIewV9SOgA7eyzp3XMsJ3SmqU7CA6GSrTWZTC4jKdk2ftmOszRpC6nYtK5iRpBsad5w12mXtYy1POcY5t600Lh5JBR+JFTFtHXdo3caq0H2Ctjdzuu19Mo5x1VHFOUt2pLMV55z2jd61rvuxXgzZkc5Bcc6tVr1IHM/z9O///u+69NJLtXz5cm3atElDhw5Vt27dCiqPAQ0AAABQrBhCASrxizkXNTU1Gjp0aNHlcA8NAAAAgMRiQAMAAAAgsbjkDAAAACgWoQCxYYYGAAAAQGIxQwN0JmVILYtK2I2Vpf5CKrRu14QwYwczka2Ag3MuyzUFrICyzOVRBvM5vxbG4pDj9sydjAQyqyDXuLSQXXzHsnzjhbVS1MJYVWcck8kKOQ2sJLVW47vZKiNaq9Vqq6Qqo72tRtqXlQ5m1WGV37aPY2pZZOlnkpWAZh2fPKMPrcML+/rcCkwLOG+3V3rKGTM0sWGGBgAAAEBiMUMDAAAAFMmLIba57DHRFYoZGgAAAACJxYAGAAAAQGIxoAEAAACQWNxDg86pg1xzaqZbxVRO1GWZ4kzW6qycU9yMxK0C0r6cE8KM7a1iQq9Bd6vC3N7sj5B3hp1yZvWVW5pZWF6U9W1n1mhUykpYM+oOy9syOSapuaafSe7pZFGln4XWYaSWZY0Tt9pIMzPTz6SQBLTgfVLWyWmeOHbVWS/4HKkO6MNsAcl86BwY0AAAAADFIrY5NlxyBgAAACCxGNAAAAAASCwuOQMAAACKxHNo4sMMDQAAAIDEYoYGyRHntxAF1O2c9hXh8ZU6/SzKssy0qDIoqE2uSVmudYTUbYQBhZQVvIPnmALWtlPIusDCHJeHle+6j2N/hPW5mYxmvrBWmplVjnvdru8Za/uwlDOLldaWNY7Q2j7s21TfeDNZCVcpxxQ3K1WrrSxjH8d0Ldf0M8k9Yc06qbYbaWZW+llb3aVNUgvr86A0M0naHtCH2/1CztoyY8YkFszQAAAAAEgsZmgAAACAYhHbHBtmaAAAAAAkFgMaAAAAAInFJWcAAABAkYhtjg8DGkTHjN5xjUdCngpMP2sry0jKiur1LkfSWEc5NR37o6CENdeyjL61Uq/8QiLWXCsvIN3Nfs84tslMZAs5CY2yslkj7cu45sLuW7tuK2ksYyRxpY0krowVShV2fYhjHa7pYNb2YftYbbJSwMy6jfQzyU5As9qbsuo28t2s9LO2soL3qXYsyy7Htt1qU8AvpNYkpJwhFgxoAAAAgGIRChAb7qEBAAAAkFgMaAAAAAAkFpecAQAAAEUiFCA+zNAAAAAASCxmaNChRZnqFZVKbFOklbsmaMV54OVI+7JSrIwdwr5tK3WQYEF1Ox6fnfZl1+28j+v2oUljjisc67DSxKSQRDijEqvLs1ZKlpXoJcm3+sRor7m9Wb69zmxVidPPCtknZRxHQXUbCWgpo7OqUkYqmvFddVBqWK4sY7mVQJY2ykpZ50HI1+dp4w0bdNyt2QpPOSMUIDbM0AAAAABILGZoAAAAgGIxQxMbZmgAAAAAJBYDGgAAAACJxSVnAAAAQJGIbY4PMzQAAAAAEosZGlSeUmfThvCMuv2wuisxdjgp5YcI/dbJOTrZqsS9btc6zLJcjyGsDsfkZDOmOPTA3XZx7qeQ95jv+jshsu3D0qeNSGWrqKwR050KOW5juZlK7RgxHRa1bKXjpoyvQYMDhGUEEUuZkPTdtFFHqeOcJTtW2donZbwBqozWhtVtlmW2yYh59oK3D4+MNo7POEeyRlurrShpo61hZQUdx3bHePCyIxQgNszQAAAAAEgsBjQAAAAAEotLzgAAAIBicclZbJihAQAAAJBYzNAAAAAARSK2OT4MaOAmNIKpwtNHys3xl4yZFhVl3VH+4oso7Yvfxe3nnCgWZTlmtJa13D1RzOQc9xVR+ZKUNdLMUkZqmXmeF9Ifjr9TrRArKzUsJGnMSjMrdfqZZCeglTr9THJPM5OVQGalhoWfbJG0KWWdN2Gvt5k0ZtVhHId1fhjJa5KUNsoKSlgLS0tD58YlZwAAAAASixkaAAAAoFiEAsSGGRoAAAAAicUMDQAAAFAkQgHiE+sMzTPPPKOTTjpJ/fr1k+d5euihh/LWn3nmmfI8L+/nhBNOyNvmww8/1KRJk1RXV6cePXronHPO0aZNm8p4FAAAAEDl66ifvWOdodm8ebMOP/xwnX322Tr11FMDtznhhBM0e/bs3P9ra2vz1k+aNElr1qzRvHnztH37dp111lk677zzdN9995W07agwJU4UCwlokV/irwXCvn2J7IuZGL/hKShxK6KENWv70O5wTXGLMgXMMdXLc63CapMkz9jJfM+49kdIoJdntMt3LsxqVFiamNs+vvG7wjNS0cJONnOVeXiuL7h93K5hdFGln0l2ApqVfmad5+ZXtkZqWFtZrgceXJbvmIr2j5XBZRkvRtaoo8pMXrMTwlJGHVY6mV2HkcgW8h6zjiOobqv8ipGAe2g66mfvWAc048eP1/jx40O3qa2tVUNDQ+C6N954Q48//rhefPFFHXXUUZKk2267TSeeeKL+8z//U/369Yu8zQAAAEASddTP3hU+1JUWLFig3r176+CDD9aUKVP0wQcf5NYtWrRIPXr0yHWoJI0dO1apVErPP/+8WWZLS4uam5vzfgAAAIAk2vlzbUtLS8FlleKzd6lV9IDmhBNO0M9+9jM99dRT+o//+A8tXLhQ48ePVybTNlnd1NSk3r175+1TVVWlnj17qqmpySx31qxZqq+vz/3079+/pMcBAACADs6P6UdS//798z7bzpo1q6BDKNVn71Kr6JSz0047LffvYcOGafjw4TrggAO0YMECjRkzpuByZ8yYoenTp+f+39zczKAGAAAAibR69WrV1dXl/r/zfS/tVarP3qVW0TM0O9t///3Vq1cvLV++XJLU0NCgdevW5W3T2tqqDz/80Lz2T2p7kevq6vJ+AAAAgEJ5Mf1I2uVzbaEDmp1F9dm71Cp6hmZnf//73/XBBx+ob9++kqTGxkatX79eixcv1ogRIyRJ8+fPVzab1ciRI+NsKtqjs2anFxLzZO1hJk+5lxVcfshKMymrtG2qWCVOXpMKOHUiSv8Lq9us2jVJLRtSufXVm/PvkAKS5Zz3sbY3FoeEXlnJaH7WqMNKUrNSvUISt7JGHVZqmV2OUXVIOVYCmpV2lzaOw0pF881YtJCyjO2dT8GQhDU77ctIM5ORNGbUYZUTti5lnc/W6+p4DG11GPsEvN6tWTupDaWRlM/esQ5oNm3alBvxSdLKlSu1ZMkS9ezZUz179tTVV1+tiRMnqqGhQStWrNC//du/6cADD9S4ceMkSYcccohOOOEEnXvuubrjjju0fft2TZs2TaeddhoJZwAAAMDHdNTP3rFecvbSSy/piCOO0BFHHCFJmj59uo444ghdeeWVSqfTevXVV/WFL3xBBx10kM455xyNGDFC//M//5M3jXbvvfdqyJAhGjNmjE488UR96lOf0p133hnXIQEAAKAzijEUoL066mfvWGdoRo8eHfJgNOmJJ57YbRk9e/bkIZoAAADAbnTUz96JuocGAAAAqESev5t7T0tUJxKWcgYAAAAAH8cMDQKVOj2rI4msryL8lsU1QassX/C4pnqFNMr5+FzrCHnprLqt8C6TawqYZB6Ia5uck8nCCnM8qcy2hnW6edzB+/hm5Ub5VmqYFJIc5pY0ZiWTeSFfK1oJaCVPP5PMBDQr/cwKDrPSzKz0s7ayrIQ1K83MMdUrJN3N6hPPKMt3rCMb8v622mvXYS02ygl5g7smrGWN16jKCz7ulLE8rI6g5a1+hX8PX8A9LZHUCWZoAAAAACQXAxoAAAAAicUlZwAAAEAUuAQsFszQAAAAAEgsZmgAAACAIhHbHB8GNEgMK01MCklIylrpMMb2ZUgac66iDL+szLaGpl5FtDxKjnW7pqWFrnJN9bISyAroc+cUtwK4ppOZ6X+OAWRh+9hhZkb6WUGVh6yLYPuw95h5HKVOP5PsBDTHxC0rzcxKMpPsNLOsYwKZKSTdzUoUM5trFVVAW601Yclogds7JpZJ7sloVh1m+pn1N1dSyqgjKBmtNSyZD50aZwYAAACAxGKGBgAAACgWz6GJDTM0AAAAABKLGRoAAACgSIQCxIcZGgAAAACJxQwNAAAAUCzuoYkNAxqUXGTxxXGqxDjnsJ0S1LkFRSdb69zSTUMqCFnnGLfsHKkcGiFsxY0bUbOO51pIkq5z3HKkUdLWcZux7MGLPSO+2A+LL7aP0GiTY0Sytb3sdpU8zrmtEjdG3dZLlwrpc9d45pQVGW2UH/pqGw22I4+Da/GNN1NobLMZGW29fsEHnra2D6nbNerZOeY5JHrarMPb9fi2Wzng6PS45AwAAABAYjFDAwAAABSJUID4MEMDAAAAILGYoQEAAACKRShAbJihAQAAAJBYzNB0do4pQeVQllS0ksdkuSvPcUe0XAWkkxl97pvJXXbd1jrXNkV6GjjW7ZyKppBmOZblnExWCON19YzfOX7I7xz7veGW+mYq6LhLnH4Wso/1lgkIhWrb3gqGCjvPzXYZbbKKMZaHhVVZaXthKXxu5dgFmYli1g5G0pidWGZW7ZyMZtVhJZZZ6WeSnTTmWodrKpoUkowWUFYmLJkPnRoDGgAAAKBYXHIWGy45AwAAAJBYzNAAAAAARSK2OT7M0AAAAABILGZoAAAAgGJxD01sGNCgQ/CsBK1ypJYVkBDmInQ62TVRLMYUt7KIKMWtkD43k6dc08wKOW/MpLjo0r6sdCYzSc0xmcx6D0t2Sped6uWWKOaFJCf5YSlkwaVZJQUvDkttslYZbTKP20xFC+tztxPaSwVvbwasWedsSB1huwQW45ga1rbOrSylgo/QOj4rBUxyT0aLKhUtbB+rveap6ViOa92t2bRZDjo3LjkDAAAAkFjM0AAAAABF8nw/dLa5VHWCGRoAAAAACcYMDQAAAFAsQgFiwwwNAAAAgMRihgbRseJskjRsLsc3HTF+m2IGzRSQuOWc0lWBSWNmOYUkyzmGWxVy3GbVrsfnWo4KSRpz3d6OsLLSuEqdfiaFJKBZyVNmWdYOZtV2uxwTyGQkkFn9J4Ula1l7WCe0W/+FlGQmh2WNPz52Ypldt2symu8Hn2xm/xmpaJJ7MlpUqWht+7jWYSVpBsuGRNS5HF8mm6QPFCgnBjQAAABAkTx/N1/GlahOJOu7cwAAAADIwwwNAAAAUCxCAWLDDA0AAACAxGKGBgAAACgS99DEhwFNZ1GBT5K1nm7rW/E3IYk81lyj9UZ37Y2wJ/Ga7XVl1RGSDlNIOlmpuSepWelBER53RAlkUgGJYo6BVGFvVfMwrIApx1SvSOu2kpas7e2qzXSykqefSSHJYcbmRllWWlTodRIRpZkp6/giKeS8dUy1M1/YsE9hrsloVvKVmZ5VQNXm8mhS0cLqyDomjVmHZ6WJhZZlLLdONXt797qD9mkl5QwGzgwAAAAAicUMDQAAAFAsQgFiwwwNAAAAgMRihgYAAAAoEqEA8WGGBgAAAEBiMUODTimq9DNJ8sx0H8cUt3JwTiAroKyoDi/KpDHHtoZ942WW5ZjeZVZRyEnouo8R8+RZaViSrHAm6/w3t7fKN2sO2afE6Wdt7XJNDrPqMNLPQvrcfi9FlGYW9l51/f3lmA4WljTmmozmm0ljbglk4XUYm0eUihbWrsgS1syaJc84QCudzErts19v9z8MQceRyaady0HnwIAGAAAAKBahALHhkjMAAAAAicUMDQAAABABbtKPBzM0AAAAABKLGRoAAACgWL4fkhxTwjrBDA0AAACA5GKGBm4q9ZuAiJoVZZyzax2RRieby60DtLI23et2jTUuKP45ojoKer2jKsuKYrViwBVhdLK5fUikrBEJXOo4Z8k+p6y45ajinCU7htZa4Rt1yIqMDouztd6WVh3mDtbmYfHFjmVZr4XZfwVU7VqWY8xzW91uWe726eH4iyKkbvc4Z2v7sLqDl2cdy7L6w4p/Dm/XrqVlMnwPj2AMaAAAAIAieX75QwEIIWjDUBcAAABAYjFDAwAAABSLB2vGhhkaAAAAAInFgAYAAABAYnHJGUrPjL2yomwKib2y6nbfxbmczjrdG1GimHMimyTfOBdc6zDTs8yaQ8qyUqysr40cA+ck9yS1qLZv28fo8xKnn0khqVdmcpixvXUMoWlfRlnm8RnpZ45JXGF1e8YK30zWcqxAKuCkMhsbLOT1dk0ziywVTbKPz4wUM+o2i3d/g4ftEliMY1pa2zpruWPKmWNa2u7atbNMtrK/h/ey4UmVpaoTzNAAAAAASDBmaAAAAIBiEQoQG2ZoAAAAACQWAxoAAAAAicUlZwAAAECRPD8856NUdYIBTccTkgyVeKHH5hgDYyQzKVVAkprFOdXLWh4WPeUYsRPVcsk9dK4cdbsmrxWQuGWWZW3uWHdo+pOx3KzbMXnN2l4KSZIy3jNRpZ9JIQFarglTVh1WQWF1G7W4trWQuq2TyrN+f5kpYO4JawXEelmVu9ftnGZm9UfYcbvt43xuhh22Y932S2S0NeyXtpla5paY5pqWtrt1O8tkuLAIwRjQAAAAAMXy/fJ/sdyRv8h2EOtQ95lnntFJJ52kfv36yfM8PfTQQ3nrfd/XlVdeqb59+2rPPffU2LFj9dZbb+Vt8+GHH2rSpEmqq6tTjx49dM4552jTpk1lPAoAAACg8nXUz96xDmg2b96sww8/XD/84Q8D199444269dZbdccdd+j5559X165dNW7cOG3dujW3zaRJk/T6669r3rx5euSRR/TMM8/ovPPOK9chAAAAALl7aMr946KjfvaO9ZKz8ePHa/z48YHrfN/XzTffrCuuuEInn3yyJOlnP/uZ+vTpo4ceekinnXaa3njjDT3++ON68cUXddRRR0mSbrvtNp144on6z//8T/Xr169sxwIAAABUso762bti765auXKlmpqaNHbs2Nyy+vp6jRw5UosWLZIkLVq0SD169Mh1qCSNHTtWqVRKzz//vFl2S0uLmpub834AAACAJNr5c21LS4tzGaX87F1qFRsK0NTUJEnq06dP3vI+ffrk1jU1Nal3795566uqqtSzZ8/cNkFmzZqlq6++OuIWdzDmTWYRpoBFmDTmGe0NTXUJ3ME9kSeyuiNkTkG7JqmFRfI41uEaghSacmYmaBmJPI5tCqvbORnN8XKAsLQv6yuoUqefhdZh9odj+llo+pNVh7G9XVRwOQWEXlnvbzOxqaDUK7cV9q9ttwQrSfa55nh8zqlokv2GNSO0HMsJOUMiS0wrIGEtqsS00NfV4pikZp/n7n3ukoyWycT3d7VdfDn/zo+kTkn9+/fPW3zVVVdp5syZTkWV8rN3qVXsgKaUZsyYoenTp+f+39zcvMuJAAAAACTB6tWrVVdXl/t/bW1tjK0pv4od0DQ0NEiS1q5dq759++aWr127Vp/85Cdz26xbty5vv9bWVn344Ye5/YPU1tZ2uhcaAAAApRPngzXr6uryBjSFKOVn71Kr2HtoBg0apIaGBj311FO5Zc3NzXr++efV2NgoSWpsbNT69eu1ePHi3Dbz589XNpvVyJEjy95mAAAAIImS/Nk71hmaTZs2afny5bn/r1y5UkuWLFHPnj01YMAAXXTRRbr22ms1ePBgDRo0SN/5znfUr18/nXLKKZKkQw45RCeccILOPfdc3XHHHdq+fbumTZum0047jYQzAAAA4GM66mfvWAc0L730kj772c/m/r/jvpbJkydrzpw5+rd/+zdt3rxZ5513ntavX69PfepTevzxx7XHHnvk9rn33ns1bdo0jRkzRqlUShMnTtStt95a9mMBAABAJ+b74SkjparTQUf97O35frl7vvI0Nzervr5eo3WyqrzqvHVeVfCYz1ouSaquDlxs7mPWkXbaXpKUDr6K0LfKSlvLrXJCrlJMue1jpSC5bi9JShtlGftkre0dy5FkpwFZx2d0ubl9WPKU4z7mcjNFKiQNyLEOM+zItZyCynJLRwrtc6tLnPvWKCcsxMf1uM2IIsftQ/Zx7sOC6rZS7SKqo5A+j6pvwy64j+o4Iuxz1zrsut2P2zm+zjmRrQx1FNDndtqda4RiyCrH43AOUgtpq0uSWnbLVq08+zpt2LCh6PtForTjc+SoE69RVfUeu98hQq3bt+q5R6+suD4pt4oNBQAAAACSIs5QgM6uYkMBAAAAAGB3mKEBAAAAihXjgzU7O2ZoAAAAACQWAxoAAAAAicUlZ0nU0YPpynB45k10rssV8nKUenlY5Wa0llGOlWQTdq451mGWZIXrhFXtWlbWSskKPgYva9dtppkZ+3jW10bG9qHpbgazvVZbrXLCzjXHNDOrTdZpE5aaZL9OxuvqWkdY3RGW5VZQSFkpt0SqQvrc/qXgVoed3FXAcbsmpll1uL5GYSJKfQtbZ6fROR5faLKcW6fYfe5evNmqgJ2ymcr+Hp5QgPhU9pkBAAAAACGYoQEAAACKlfXbfspdJ5ihAQAAAJBcDGgAAAAAJBaXnAEAAADF4jk0sWFA09m5JqYVkP5k1+GWqhKaeuWY8tRRRJbW5ppMVkBZ5qtt1R0WyONaluP2YZwTxSJKP2vbyajDMWmskAQm810cVZpZ2K8Dq3Ij/cw15clOkXJvb2GJYkZZZgKg63Fby93fZO7H5540FlliWlRJdCpXkpoZN+lWh+trIffUsshS0RyL8is85QzxYUADAAAAFMlTDLHN5a2uYjHUBQAAAJBYzNAAAAAAxfL98j/8vKM/bL2dmKEBAAAAkFgMaAAAAAAkFpecAQAAAEXy/BhCAbjiTBIDGsTIehNG+t50jS/OumYOy8wY9azrWrOO0ZwhmbLmKqtua4cCDtu1DtfoZDNyWAXEFJsRyUaMrxUHHCKyOOewqh2bFWl0snUcVlGOae0FRSe7JsIbBYX1uWuEsHt0sl13pGUFbh/W6a7LHX9zF3TcbhHJYeeUXXdE0dBm+fYq52joAuqIbJ+YIqP9DJleCMaABgAAACgWD9aMDffQAAAAAEgsBjQAAAAAEotLzgAAAIAieb5v3z9bwjrBDA0AAACABGOGppIlbdRtttctlcT6tiG8Oyow+cQ1Yc11ecg6szcc6wjtcjOdzFhhJYcZaV9WkllbHW77RJV+1laYVbeRoGXVXUBSlfPxOdYRmjRmdYnVh26BeuEhWY7tdU1xKyhhzTX1yjjAguo2d4ho+e7WBW4fYRJXRElqVpNC088iOg7ndDxJnlVYZKl29irnRLio2uS60/YK/x4+K/NvWknrBDM0AAAAAJKLGRoAAACgSNxDEx9maAAAAAAkFgMaAAAAAInFJWcAAABAsXztJk2nRHWCAU1nYSVPmUlSUV6T6ZowVQijvWagjLncMZopZJ2ZwGT1bdbcIaTu4H3MPay6jXJCs2dck9GiSmQLWRVZ+llBSWNWipXRtxGmBEWV9lVQ8pRjuGFhyVOOy6MsJ6o+dD0PVEjylOObrIDjNk+DKM81UzQpYGFVO6eTOfdTWKydvSqK7WNN1CukrKBNMxWYaIqKwIAGAAAAKJbvl/+RG4QCSOIeGgAAAAAJxoAGAAAAQGJxyRkAAABQJM8Pv+21VHWCGRoAAAAACcYMDZyEPZHWd45csdK+rMojTDdxTT8zEqwkucf+uKZFFZCw5pwcZqbg2X1uJoRZX5M41mGWL5kH6Jpm5pwOFiaidKSwFCTzmzirzx0TxUKPO6IUqzjrdk1kCxVZ+pl7FXYSl1uSmnOKmhRtkpq1S1TtjbLPC4lMC9q8HKl2BdRtHYhzep1b8aEC626t8JQzQgFiwwwNAAAAgMRihgYAAAAokpfdzdUFJaoTzNAAAAAASDAGNAAAAAASi0vOAAAAgGIRChAbBjSVwHeNiwory/HEjvKNEOObygp7Mbs2HU35bZW4Lbe6ybN2yIalujimk7mmooWkuzmnkzmmn4Wm4ljHZybkRbQ8TGSpV6VP1CsoRSqi44uzbrP4QpKnojx3LJV43EYlZllRpVtJ8hxTvSJL6FIZktfCVjmuMHspwuO2RJmcF1hUawHlo1NgQAMAAAAUy1f4oxZKVSe4hwYAAABAcjGgAQAAAJBYXHIGAAAAFMnzfXllvp+43PVVKmZoAAAAACQWMzQoOevbAzPty4pJCfkWwlxl1uG2vR8W9eKa0uUaAxMWemWmerklpvnGVxuhLTWO2zn9rKAkIqvP3dK+CqrbOkesPoyybtdkNDOZyTGpKqxJrulPER53ZAlMESasuSZVFZLuFtWvljAlT/UqIO0r9PdwUDnlSF4zK3f/1jyqvnVPS7O5tqmQ3yFOO7VGGSNYAsQ2x4YZGgAAAACJxQwNAAAAUCxf9vPQSlknmKEBAAAAkFwMaAAAAAAkFpecAQAAAEUitjk+zNAAAAAASCxmaBDMjCIO+yag8uIUreb6rhHCYdHJ1gprH+e445C4amufjLFD2i3OOfQltb4OMc8dtzqsGGSpgLhqM761gOO2djEjv93KiTK+2IyaNRpbSISwvb1b34Ylt5Y8KriACOGCYpiDionwuMsSUxxVVHYBSv1ahJXlHoVsRORHeK65F2RzjqU26y5tXLW33bn48vIVQ2xzeaurVMzQAAAAAEgsBjQAAAAAEotLzgAAAIBi+X4Ml5xxzZnEDA0AAACABGOGBgAAAChWVuXPR7JCcjoZBjRJVMj0YjmmJF2Tp8xkLWv7kLrN6B0resqt6rC6raQxK+3Ls7Z3a2pbWa6JaVb6WcqtnLa6rRXWcrcEMi8k+sZcZc05R9SmtnWO6V1GMYWkSEWWmBZRgpUUcZKawU5xi+a1CHu9o0oai/K47R3iq9s5JSvCBDJLlClnUdVR0GfdiD4glydhLbpP80Ht9VsrL00VlYFLzgAAAAAkFjM0AAAAQJE835dX5pv0y11fpWKGBgAAAEBiMUMDAAAAFIvY5thU9AzNzJkz5Xle3s+QIUNy67du3aqpU6dq7733Vrdu3TRx4kStXbs2xhYDAAAAlamjfrau+BmaQw89VE8++WTu/1VV/9fkiy++WL/73e/0wAMPqL6+XtOmTdOpp56qP/7xj3E0dfd8KxYqxnGlNbIvw4jfuu7Tqjos9crayTciWqxwK+sl8owUsH9UEsxIcfONHQpKYLLSzIz0M+fIrbCMNTNByzHuyDWBLGQf6xxxTRQLTQNyTe9yTj8LSZZzbG9USVVthTkutzaPqBxJ8gtJqQssx17n3ofGe9KswK38sH3KkTSWpDSzciSKOSepRRnSFWFZcR6Hy+vnb4+u3pJIyAxNh/ps/Q8VP6CpqqpSQ0PDLss3bNign/70p7rvvvv0uc99TpI0e/ZsHXLIIXruuec0atSocjcVAAAAqGgd8bN1RV9yJklvvfWW+vXrp/3331+TJk3SqlWrJEmLFy/W9u3bNXbs2Ny2Q4YM0YABA7Ro0aLQMltaWtTc3Jz3AwAAACTRzp9rW1pazG1L8dk6bhU9oBk5cqTmzJmjxx9/XLfffrtWrlypT3/609q4caOamppUU1OjHj165O3Tp08fNTU1hZY7a9Ys1dfX53769+9fwqMAAABAh7fjkrNy/0jq379/3mfbWbNmBTaxVJ+t41bRl5yNHz8+9+/hw4dr5MiRGjhwoH71q19pzz33LLjcGTNmaPr06bn/Nzc3M6gBAABAIq1evVp1dXW5/9fW1gZuV6rP1nGr6BmanfXo0UMHHXSQli9froaGBm3btk3r16/P22bt2rWB1wV+XG1trerq6vJ+AAAAgIJlY/qRdvlcaw1odhbVZ+u4VfQMzc42bdqkFStW6PTTT9eIESNUXV2tp556ShMnTpQkLVu2TKtWrVJjY2PMLY2RlW4V1dA1JE3DNbXMjA+ywuDCUq/MdLLg5WaSmlGOlZYmSZ6VBGb1uZF+ZjYqHRInY6aZuaZ9GclrYeFu1uuXdkyeco2RCtnFSr1yTwez21TqRDHrtQjdx9rBPG4jiSvC1KuSp0WpsJQ6l3LCd7JWOKbgFVSHUXMZkqrCUviiqiOqsgrq8w5Qd8nLUYzHty3CeiGp43y2rugBzSWXXKKTTjpJAwcO1LvvvqurrrpK6XRaX/3qV1VfX69zzjlH06dPV8+ePVVXV6fzzz9fjY2NFZ3CAAAAAMSho362rugBzd///nd99atf1QcffKB99tlHn/rUp/Tcc89pn332kSTddNNNSqVSmjhxolpaWjRu3Dj96Ec/irnVAAAA6Gw83zevVillnS466mdrz/fL/QSgytPc3Kz6+nqN1smq8qrz1nlVwWM+a7kkqbo6cLGXNq5Bcq0jnbbrTll1BO/jW22yyrG2D9nHty6ZsrY3L2UKuQzIeMCkjOXm9talWtb2knlpmbWPeXzW5TNhx+14GZfz5UFhD/W06rBOT8fLn0K5XmrkvH0hfW7uElk5UV1S5HoOhonzkjPn19WxnCj34ZKzCCTosi8uOXPgUFamZavevO3b2rBhQ0Xd/7zjc+TYg6arKt2+e1ei0ppp0ZN/+X7F9Um5VfQMDQAAAJAIH4tRLmudSFbKGQAAAAB8HDM0Fcy6GrCgmV6rLCMly0qLMlO1JDsSy0r1shKpjOLDvoTwjPlv3zEFzEoostLP2vYwEqOs9LOILtEJ3cf6qiKqS9TknoxmJ2sZ52DY1y2OV0y5pnqZ53/IPpZCktRcy3K/HMbx3Awty3GHMlx6aInzsq+Cfm9X4CVn1u/IDnFJliJsV6RtiqiwCu1zS9Br4Vd6ylnWD48HLVWdYIYGAAAAQHIxoAEAAACQWFxyBgAAABSLUIDYMEMDAAAAILGYoQEAAACKFsMMjRXU0ckwoCmFrBGJFfZQyijKl+wHYpaDlaRmLHd+z1tpaW0rg+u2+iNj9KH5IE67ZisBzTo+M7DGqiMs3c1KjDLa5Jrq5YU8UNT5oZSOyVpexqzaOSnLSlKzFJKwZtZtluP+Ryjeh1i67eSeuBVhf5h1OFcRa+pVJaZblSdJzU0lJqZF2qaIkuUKUmmv3zY+vCMYl5wBAAAASCxmaAAAAIBiEQoQG2ZoAAAAACQWMzQAAABAsbK+yn6TfpYZGokZGgAAAAAJxgwNAAAAUCw/a8eMlrJOMKCpCFHe0GWVVerlkpWcbMexWjHMKSNCOCSu2jcnG404ZzO/2KzCrtuKHXaM2HWOeZbsOVbHuq3Nw35PRhkBHVxOyEozItmICHftjwIio62Tx4zeLSTG13VO3TnOOWwHxzdHWaKkC9gnqrotkcZbl7bPCxFnjLWraKOTDWU5jjJUUo6+MrjFNpesGUg4LjkDAAAAkFjM0AAAAADFIrY5NszQAAAAAEgsZmgAAACAYhHbHBtmaAAAAAAkFjM0lcwadUc5DDWuvfSMuq0Eq8LqMCK0jMgTP21X4VyWlapiJayFxLBYiWl2HY6xaGF9biXFub5OVmqY0R9h7FQvt7JCk32cy3La3H6NCqjDSl5zTcMKq8PkXEVIv0aamOYoqjSzKH93OqbdFaLk6VYkjRWtLMcX4e+QUit5f2xnNgLBGNAAAAAAxSIUIDZccgYAAAAgsZihAQAAAIrlK4YZmvJWV6mYoQEAAACQWMzQAAAAAMXiHprYMKApkB9yApU8dyTs5LXWuSamWclkGSNNTJKfNgqz9rESWoxyvIxZtXtqmVW3aypa29rgOqy+NZLJnNPSQnhGSpedmmSl6BRQd0THYb5GYSKacy4oXaojpIBF+curgKQ4V+VJ0CptJYX8bnEWZxhW5QVxlT49rlBRphKWWKSJgS62259B0LlxyRkAAACAxGKGBgAAAChWNiupzLNI1nP4OhlmaAAAAAAkFjM0AAAAQLEIBYgNMzQAAAAAEosZmnKyksY8a3nwdZF+SCyOZ11LaaW6mJdeGitS9hjYSkDzrbQjM2nM6o+Q47bqMBLFrLKs9JvQ8BnHNDOTdXwRpn2ZJRWU6uW2j3MiVYQpWa6pRqFbR9WsMiQtdYQUMEmxfvUWayJWhYZxBanY5LAgCWpqIcryvo9La0jcKTo1BjQAAABAsbjkLDZccgYAAAAgsZihAQAAAIqV9VX2B55atzN0MszQAAAAAEgsZmgAAACAIvl+Vr5f3gddlru+SsWAJonCphetxLSMkQxippaZ0V0hdRsJYVbkimtKVljqlWOamcUrKFEsonSyQhLWDM6JQ1HO1UZ1HGVJAesgCV2VmDBVgW3qMOlPESYAJkmiktTi1JG7qbU17hagQnHJGQAAAIDEYoYGAAAAKJbvl/8mfWKbJTFDAwAAACDBmKEBAAAAiuXHENvMDI0kZmgAAAAAJBgzNLvhG9dCeumwnYL38Y3lnhW5ZwSTKaRu39rHSMXxrJF91miTmYqmyFK9zLZaxxZl3VFtHyI0rc1VghLFKrFuL2lpUR0h5akjHEOZkOpVQfj6tyL4mW1xNwEVigENAAAAUKxsVvLK/FwYnkMjie8cAAAAACQYMzQAAABAsQgFiA0zNAAAAAASixkaAAAAoEh+Niu/zPfQ+NxDI4kZGgAAAAAJxgxNORlRyNbVj2Y0dFh8say45eD4T+dYUC9kDBxRBK4XZVRpVGWFxVU7SlSkciGS1t5SS1o0NPLFGSseW81AGTm8x1LZlhI2BEnGgAYAAAAoFqEAseGSMwAAAACJxQwNAAAAUKysL3nM0MSBGRoAAAAAicWABgAAAEBicclZobL2FJ9vxJCZ6V3GdKGfMeLMokzdiTC9y+KaWlaRk6ckVaFcwpIEAaAT8/1tcTchnO/LTJstaZ3gLycAAACAxGKGBgAAACiSn/XllzkUwGeGRhIzNAAAAAASjAENAAAAgMTikjMAAACgWH5W5Q8FKHN9FYoBze5kg5PGfGN5GK5yBAAAKEzG3x53E1ChGNAAAAAARSIUID7cQwMAAAAgsZihAQAAAIrFPTSxYYYGAAAAQGIxQ6P/u/6wVdu5cx8AAKACtaotFKBS7xuJ43Pkjj7p7BjQSNq4caMk6Q96NOaWAAAAIMwHH3yg+vr6uJuRU1NTo4aGBv2hKZ7PkQ0NDaqpqYml7krh+ZU6zC2jbDard999V927d5fneXE3JxGam5vVv39/rV69WnV1dXE3JzHoN3f0WWHoN3f0WWHoN3f0WWE2bNigAQMG6H//93/Vo0ePuJuTZ+vWrdq2bVssddfU1GiPPfaIpe5KwQyNpFQqpX333TfuZiRSXV0dv4wLQL+5o88KQ7+5o88KQ7+5o88Kk0pV3i3ge+yxR6cfVMSp8s4IAAAAAGgnBjQAAAAAEosBDQpSW1urq666SrW1tXE3JVHoN3f0WWHoN3f0WWHoN3f0WWHoN1gIBQAAAACQWMzQAAAAAEgsBjQAAAAAEosBDQAAAIDEYkADAAAAILEY0MA0c+ZMeZ6X9zNkyJDc+q1bt2rq1Knae++91a1bN02cOFFr166NscXxeOaZZ3TSSSepX79+8jxPDz30UN563/d15ZVXqm/fvtpzzz01duxYvfXWW3nbfPjhh5o0aZLq6urUo0cPnXPOOdq0aVMZj6K8dtdnZ5555i7n3gknnJC3TWfrs1mzZunoo49W9+7d1bt3b51yyilatmxZ3jbteU+uWrVKEyZMUJcuXdS7d29deumlam1tLeehlFV7+m306NG7nG/f/OY387bpbP12++23a/jw4bkHPzY2Nuqxxx7Lredc29Xu+ozzbPduuOEGeZ6niy66KLeMcw3twYAGoQ499FCtWbMm9/OHP/wht+7iiy/Wb3/7Wz3wwANauHCh3n33XZ166qkxtjYemzdv1uGHH64f/vCHgetvvPFG3Xrrrbrjjjv0/PPPq2vXrho3bpy2bt2a22bSpEl6/fXXNW/ePD3yyCN65plndN5555XrEMpud30mSSeccELeufeLX/wib31n67OFCxdq6tSpeu655zRv3jxt375dxx9/vDZv3pzbZnfvyUwmowkTJmjbtm169tlndffdd2vOnDm68sor4ziksmhPv0nSueeem3e+3Xjjjbl1nbHf9t13X91www1avHixXnrpJX3uc5/TySefrNdff10S51qQ3fWZxHkW5sUXX9SPf/xjDR8+PG855xraxQcMV111lX/44YcHrlu/fr1fXV3tP/DAA7llb7zxhi/JX7RoUZlaWHkk+XPnzs39P5vN+g0NDf73vve93LL169f7tbW1/i9+8Qvf933/z3/+sy/Jf/HFF3PbPPbYY77nef4777xTtrbHZec+833fnzx5sn/yySeb+3T2PvN931+3bp0vyV+4cKHv++17Tz766KN+KpXym5qactvcfvvtfl1dnd/S0lLeA4jJzv3m+77/mc98xr/wwgvNfei3NnvttZd/1113ca452NFnvs95Fmbjxo3+4MGD/Xnz5uX1E+ca2osZGoR666231K9fP+2///6aNGmSVq1aJUlavHixtm/frrFjx+a2HTJkiAYMGKBFixbF1dyKs3LlSjU1NeX1U319vUaOHJnrp0WLFqlHjx466qijctuMHTtWqVRKzz//fNnbXCkWLFig3r176+CDD9aUKVP0wQcf5NbRZ9KGDRskST179pTUvvfkokWLNGzYMPXp0ye3zbhx49Tc3Jz3LXJHtnO/7XDvvfeqV69eOuywwzRjxgxt2bIlt66z91smk9H999+vzZs3q7GxkXOtHXbusx04z4JNnTpVEyZMyDunJH6vof2q4m4AKtfIkSM1Z84cHXzwwVqzZo2uvvpqffrTn9Zrr72mpqYm1dTUqEePHnn79OnTR01NTfE0uALt6IuP/6Ld8f8d65qamtS7d++89VVVVerZs2en7csTTjhBp556qgYNGqQVK1bo29/+tsaPH69FixYpnU53+j7LZrO66KKLdOyxx+qwww6TpHa9J5uamgLPxR3rOrqgfpOkr33taxo4cKD69eunV199VZdddpmWLVumBx98UFLn7belS5eqsbFRW7duVbdu3TR37lwNHTpUS5Ys4VwzWH0mcZ5Z7r//fr388st68cUXd1nH7zW0FwMamMaPH5/79/DhwzVy5EgNHDhQv/rVr7TnnnvG2DJ0dKeddlru38OGDdPw4cN1wAEHaMGCBRozZkyMLasMU6dO1WuvvZZ3Txt2z+q3j997NWzYMPXt21djxozRihUrdMABB5S7mRXj4IMP1pIlS7Rhwwb9+te/1uTJk7Vw4cK4m1XRrD4bOnQo51mA1atX68ILL9S8efO0xx57xN0cJBiXnKHdevTooYMOOkjLly9XQ0ODtm3bpvXr1+dts3btWjU0NMTTwAq0oy92TmT5eD81NDRo3bp1eetbW1v14Ycf0pf/sP/++6tXr15avny5pM7dZ9OmTdMjjzyip59+Wvvuu29ueXvekw0NDYHn4o51HZnVb0FGjhwpSXnnW2fst5qaGh144IEaMWKEZs2apcMPP1y33HIL51oIq8+CcJ61XVK2bt06HXnkkaqqqlJVVZUWLlyoW2+9VVVVVerTpw/nGtqFAQ3abdOmTVqxYoX69u2rESNGqLq6Wk899VRu/bJly7Rq1aq864U7u0GDBqmhoSGvn5qbm/X888/n+qmxsVHr16/X4sWLc9vMnz9f2Ww29wevs/v73/+uDz74QH379pXUOfvM931NmzZNc+fO1fz58zVo0KC89e15TzY2Nmrp0qV5g8F58+aprq4ud1lMR7O7fguyZMkSSco73zpbvwXJZrNqaWnhXHOwo8+CcJ5JY8aM0dKlS7VkyZLcz1FHHaVJkybl/s25hnaJO5UAletb3/qWv2DBAn/lypX+H//4R3/s2LF+r169/HXr1vm+7/vf/OY3/QEDBvjz58/3X3rpJb+xsdFvbGyMudXlt3HjRv+VV17xX3nlFV+S//3vf99/5ZVX/Lffftv3fd+/4YYb/B49evgPP/yw/+qrr/onn3yyP2jQIP+jjz7KlXHCCSf4RxxxhP/888/7f/jDH/zBgwf7X/3qV+M6pJIL67ONGzf6l1xyib9o0SJ/5cqV/pNPPukfeeSR/uDBg/2tW7fmyuhsfTZlyhS/vr7eX7Bggb9mzZrcz5YtW3Lb7O492dra6h922GH+8ccf7y9ZssR//PHH/X322cefMWNGHIdUFrvrt+XLl/vXXHON/9JLL/krV670H374YX///ff3jzvuuFwZnbHfLr/8cn/hwoX+ypUr/VdffdW//PLLfc/z/N///ve+73OuBQnrM86z9ts5DY5zDe3BgAamr3zlK37fvn39mpoa/xOf+IT/la98xV++fHlu/UcffeT/f//f/+fvtddefpcuXfwvfvGL/po1a2JscTyefvppX9IuP5MnT/Z9vy26+Tvf+Y7fp08fv7a21h8zZoy/bNmyvDI++OAD/6tf/arfrVs3v66uzj/rrLP8jRs3xnA05RHWZ1u2bPGPP/54f5999vGrq6v9gQMH+ueee25eJKfvd74+C+ovSf7s2bNz27TnPfm3v/3NHz9+vL/nnnv6vXr18r/1rW/527dvL/PRlM/u+m3VqlX+cccd5/fs2dOvra31DzzwQP/SSy/1N2zYkFdOZ+u3s88+2x84cKBfU1Pj77PPPv6YMWNygxnf51wLEtZnnGftt/OAhnMN7eH5vu+Xbz4IAAAAAKLDPTQAAAAAEosBDQAAAIDEYkADAAAAILEY0AAAAABILAY0AAAAABKLAQ0AAACAxGJAAwAAACCxGNAAAAAASCwGNABQQUaPHq2LLroo7mYAAJAYDGgAoAOZM2eOevToUdC+F1xwgUaMGKHa2lp98pOfjLRdAACUCgMaAEDO2Wefra985StxNwMAgHZjQAMAFaa1tVXTpk1TfX29evXqpe985zvyfV+S1NLSoksuuUSf+MQn1LVrV40cOVILFiyQJC1YsEBnnXWWNmzYIM/z5HmeZs6cKUm65557dNRRR6l79+5qaGjQ1772Na1bty6v3ltvvVVTp07V/vvvX87DBQCgKAxoAKDC3H333aqqqtILL7ygW265Rd///vd11113SZKmTZumRYsW6f7779err76qf/mXf9EJJ5ygt956S8ccc4xuvvlm1dXVac2aNVqzZo0uueQSSdL27dv13e9+V3/605/00EMP6W9/+5vOPPPMGI8SAIBoVMXdAABAvv79++umm26S53k6+OCDtXTpUt10000aN26cZs+erVWrVqlfv36SpEsuuUSPP/64Zs+ereuvv1719fXyPE8NDQ15ZZ599tm5f++///669dZbdfTRR2vTpk3q1q1bWY8PAIAoMUMDABVm1KhR8jwv9//Gxka99dZbWrp0qTKZjA466CB169Yt97Nw4UKtWLEitMzFixfrpJNO0oABA9S9e3d95jOfkSStWrWqpMcCAECpMUMDAAmxadMmpdNpLV68WOl0Om9d2CzL5s2bNW7cOI0bN0733nuv9tlnH61atUrjxo3Ttm3bSt1sAABKigENAFSY559/Pu//zz33nAYPHqwjjjhCmUxG69at06c//enAfWtqapTJZPKWvfnmm/rggw90ww03qH///pKkl156qTSNBwCgzLjkDAAqzKpVqzR9+nQtW7ZMv/jFL3Tbbbfpwgsv1EEHHaRJkybpjDPO0IMPPqiVK1fqhRde0KxZs/S73/1OkrTffvtp06ZNeuqpp/T+++9ry5YtGjBggGpqanTbbbfpr3/9q/77v/9b3/3ud3epd/ny5VqyZImampr00UcfacmSJVqyZAmzOACAiub5O7JAAQCxGz16tA499FBls1ndd999SqfTmjJliq699lp5nqft27fr2muv1c9+9jO988476tWrl0aNGqWrr75aw4YNkyRNmTJFDzzwgD744ANdddVVmjlzpn7xi1/o29/+ttasWaMjjzxSM2bM0Be+8AW98soruYdojh49WgsXLtylTStXrtR+++1Xxl4AAKD9GNAAAAAASCwuOQMAAACQWAxoAAAAACQWAxoAAAAAicWABgAAAEBiMaABAAAAkFgMaAAAAAAkFgMaAAAAAInFgAYAAABAYjGgAQAAAJBYDGgAAAAAJBYDGgAAAACJ9f8DggQFD7YdnDkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAKSCAYAAAB/ZFz8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXxcaX3ni7/PObWqSrtkSZZlyZa8L223u9stmaWBQF/CkA3Ca5I70CEEuP0jkJDkB0MuW0JYApkLTIYwMJMQLglZmiWTISQNHbpZel+sfZe1WZIlWVXaSqrlLPcP9zldVdqlKqlsf9+vl17drjr11HPOU1Xn+3m+m2JZloUgCIIgCIIgCMIqqHs9AUEQBEEQBEEQchcRDIIgCIIgCIIgrIkIBkEQBEEQBEEQ1kQEgyAIgiAIgiAIayKCQRAEQRAEQRCENRHBIAiCIAiCIAjCmohgEARBEARBEARhTUQwCIIgCIIgCIKwJiIYBEEQBEEQBEFYExEMgnCb8m//9m+cO3cOn8+HoijMzs7u9ZS2xX333cd9992319NIYXJykje/+c2UlpaiKApf+MIXMjLu5z73OQ4fPoymaZw7dw4AXdf5wAc+QE1NDaqq8ku/9EsMDQ2hKAp/9md/lpH3FQRBEG5vRDAIQo7Q1tbGm9/8Zmpra/H5fFRXV/Pa176WP//zP8/4e83MzPCWt7wFv9/Pl770Jb7xjW8QCAQy/j47oa6uDkVRnL99+/bx8pe/nO9+97sZGX9paYmPf/zjPPbYYxkZL5n3v//9PPzww3zoQx/iG9/4Bv/H//F/7HjMH/zgB3zgAx/g0qVLfO1rX+NTn/oUAH/1V3/F5z73Od785jfz9a9/nfe///07fq/V6Ozs5OMf/zhDQ0NZGV8QBEHIXVx7PQFBEOCJJ57gVa96FQcPHuSd73wnlZWVjI6O8tRTT/HFL36R9773vRl9v2effZaFhQU+8YlP8HM/93MZHTuTnDt3jt///d8HYHx8nK985Sv8yq/8Cl/+8pf5v/6v/2tHYy8tLfFHf/RHABn3UPzoRz/iF3/xF/mDP/iDjI6pqip/+Zd/icfjSXm8urqaz3/+885j2TDqOzs7+aM/+iPuu+8+6urqMj6+IAiCkLuIYBCEHOCTn/wkhYWFPPvssxQVFaU8NzU1lbH3iUQiBAIBZ8z098o1qqur+U//6T85/37b295GQ0MDn//853csGLLJ1NRUxq/t1NQUfr8/RSxk670EQRAEIRkJSRKEHGBgYIBTp06tavjt27fP+X87Nv2v//qvVxynKAof//jHnX9//OMfR1EUOjs7+fVf/3WKi4t52ctexn333ccDDzwAwN13342iKPzGb/wGAD/96U/51V/9VQ4ePIjX66Wmpob3v//9LC8vr3i/7u5u3vKWt1BeXo7f7+fYsWP83//3/51yzNjYGL/5m79JRUUFXq+XU6dO8Vd/9Vdbv0AvUllZyYkTJxgcHFz3uKmpKd7xjndQUVGBz+fjjjvu4Otf/7rz/NDQEOXl5QD80R/9kRP2lHz9VuPKlSv86q/+KiUlJeTl5XHvvffyL//yL87zf/3Xf42iKFiWxZe+9CVn3PUwTZMvfOELnDp1Cp/PR0VFBe9+97sJh8POMYqi8LWvfY1IJOKMab/Xo48+SkdHh/N4eojV5z//eWpra/H7/bzyla+kvb19xRy6u7t585vfTElJCT6fj7vuuot//ud/TjmvX/3VXwXgVa961Yr3+l//63/xhje8gf379+P1eqmvr+cTn/gEhmGse+6CIAjCzYF4GAQhB6itreXJJ5+kvb2d06dPZ3TsX/3VX+XIkSN86lOfwrIsjhw5wrFjx/jqV7/KH//xH3Po0CHq6+sBeOihh1haWuLBBx+ktLSUZ555hj//8z/n6tWrPPTQQ86Yra2tvPzlL8ftdvOud72Luro6BgYG+N//+3/zyU9+EriR+HvvvfeiKAq//du/TXl5Of/6r//KO97xDubn5/nd3/3dLZ9LIpFgdHSU0tLSNY9ZXl7mvvvuo7+/n9/+7d/m0KFDPPTQQ/zGb/wGs7Oz/M7v/A7l5eV8+ctf5sEHH+SXf/mX+ZVf+RUAzp49u+a4k5OTNDU1sbS0xPve9z5KS0v5+te/zi/8wi/wrW99i1/+5V/mFa94Bd/4xjd461vfymtf+1re9ra3bXhO7373u/nrv/5r3v72t/O+972PwcFB/tt/+29cvnyZxx9/HLfbzTe+8Q2++tWv8swzz/A//+f/BOD8+fN84xvf4JOf/CSLi4t8+tOfBuDEiROOwPt//9//l4WFBd7znvcQjUb54he/yKtf/Wra2tqoqKgAoKOjg0uXLlFdXc1//s//mUAgwD/+4z/yS7/0S3z72992zut973sf//W//lf+8A//kBMnTjjvBTcERTAY5Pd+7/cIBoP86Ec/4qMf/Sjz8/N87nOf2/AaCIIgCDmOJQjCnvODH/zA0jTN0jTNamxstD7wgQ9YDz/8sBWPx1OOGxwctADra1/72ooxAOtjH/uY8++PfexjFmD92q/92opjv/a1r1mA9eyzz6Y8vrS0tOLYT3/605aiKNbw8LDz2Cte8QorPz8/5THLsizTNJ3/f8c73mFVVVVZ169fTznmP/7H/2gVFhau+l7J1NbWWq973eus6elpa3p62mppabH+43/8jxZgvfe973WOe+UrX2m98pWvdP79hS98wQKsv/mbv3Eei8fjVmNjoxUMBq35+XnLsixrenp6xTVbj9/93d+1AOunP/2p89jCwoJ16NAhq66uzjIMw3kcsN7znvdsOOZPf/pTC7D+9m//NuXxf/u3f1vx+AMPPGAFAoEVY7zyla+0Tp06lfKY/Tnx+/3W1atXnceffvppC7De//73O4+95jWvsc6cOWNFo1HnMdM0raamJuvIkSPOYw899JAFWI8++uiKOay2lu9+97utvLy8lHEFQRCEmxMJSRKEHOC1r30tTz75JL/wC79AS0sLn/3sZ7n//vuprq5OCQ3ZDluJ9ff7/c7/RyIRrl+/TlNTE5ZlcfnyZQCmp6f5yU9+wm/+5m9y8ODBlNfb4TeWZfHtb3+bN77xjViWxfXr152/+++/n7m5OV544YUN5/ODH/yA8vJyysvLueOOO3jooYd461vfyp/+6Z+u+Zrvf//7VFZW8mu/9mvOY263m/e9730sLi7y4x//eNPXI33ce+65h5e97GXOY8FgkHe9610MDQ3R2dm55TEfeughCgsLee1rX5tyjS5cuEAwGOTRRx/d1lxtfumXfonq6mrn3/fccw8XL17k+9//PgChUIgf/ehHvOUtb2FhYcF5/5mZGe6//376+voYGxvb8H2SPzf2OC9/+ctZWlqiu7t7R+cgCIIg7D0SkiQIOcLdd9/Nd77zHeLxOC0tLXz3u9/l85//PG9+85tpbm7m5MmT2xr30KFDmz52ZGSEj370o/zzP/9zSgw9wNzcHHAjjh9YN3Rqenqa2dlZvvrVr/LVr3511WM2k8x98eJF/uRP/gRFUcjLy+PEiRMbJvgODw9z5MgRVDV1P8QOnxkeHt7wfdca9+LFiyseTx53q+FkfX19zM3NpeSpJLPThPcjR46seOzo0aP84z/+IwD9/f1YlsVHPvIRPvKRj6w5h2TRsRodHR18+MMf5kc/+hHz8/Mpz9mfG0EQBOHmRQSDIOQYHo+Hu+++m7vvvpujR4/y9re/nYceeoiPfexjaybQrpdcmrz7ux6GYfDa176WUCjEBz/4QY4fP04gEGBsbIzf+I3fwDTNTZ+Dfex/+k//yUmwTme9fAGbsrKynC77ulNM02Tfvn387d/+7arP24nZ2Xx/gD/4gz/g/vvvX/WYhoaGdceYnZ3lla98JQUFBfzxH/8x9fX1+Hw+XnjhBT74wQ9u6XMjCIIg5CYiGAQhh7nrrrsAmJiYAKC4uBhgRVfm7e6aJ9PW1kZvby9f//rXU5J1f/jDH6Ycd/jwYYBVq+3YlJeXk5+fj2EYu27w19bW0traimmaKV4GOzSmtrYWYMPqRauN29PTs+Lx9HG3Qn19PY888giXLl3atLDbCn19fSse6+3tdfoo2Gvpdrs3XKe1rtdjjz3GzMwM3/nOd3jFK17hPL5RJStBEATh5kFyGAQhB3j00UexLGvF43as+bFjxwAoKCigrKyMn/zkJynH/cVf/MWO56BpGkDKPCzL4otf/GLKceXl5bziFa/gr/7qrxgZGUl5zn6tpmm86U1v4tvf/vaqwmJ6enrH812Ln//5n+fatWv8wz/8g/OYruv8+Z//OcFgkFe+8pUA5OXlASvF13rjPvPMMzz55JPOY5FIhK9+9avU1dVtK2TsLW95C4Zh8IlPfGLFc7qub3pua/FP//RPKTkIzzzzDE8//TSvf/3rgRsle++77z6+8pWvOKI0meR1sjuBp89ptc9NPB7PyGdSEARByA3EwyAIOcB73/telpaW+OVf/mWOHz9OPB7niSee4B/+4R+oq6vj7W9/u3Psb/3Wb/GZz3yG3/qt3+Kuu+7iJz/5Cb29vTuew/Hjx6mvr+cP/uAPGBsbo6CggG9/+9srchkA/ut//a+87GUv48477+Rd73oXhw4dYmhoiH/5l3+hubkZgM985jM8+uijXLx4kXe+852cPHmSUCjECy+8wCOPPEIoFNrxnFfjXe96F1/5ylf4jd/4DZ5//nnq6ur41re+xeOPP84XvvAF8vPzgRuhWidPnuQf/uEfOHr0KCUlJZw+fXrNPIT//J//M3/3d3/H61//et73vvdRUlLC17/+dQYHB/n2t7+9ImdiM7zyla/k3e9+N5/+9Kdpbm7mda97HW63m76+Ph566CG++MUv8uY3v3nb16KhoYGXvexlPPjgg8RiMb7whS9QWlrKBz7wAeeYL33pS7zsZS/jzJkzvPOd7+Tw4cNMTk7y5JNPcvXqVVpaWoAbXbc1TeNP//RPmZubw+v18upXv5qmpiaKi4t54IEHeN/73oeiKHzjG99YVQALgiAINyl7VZ5JEISX+Nd//VfrN3/zN63jx49bwWDQ8ng8VkNDg/Xe977XmpycTDl2aWnJesc73mEVFhZa+fn51lve8hZrampqzbKq09PTK95vrbKqnZ2d1s/93M9ZwWDQKisrs975zndaLS0tq5ZybW9vt375l3/ZKioqsnw+n3Xs2DHrIx/5SMoxk5OT1nve8x6rpqbGcrvdVmVlpfWa17zG+upXv7rhNamtrbXe8IY3bHhcellV+33f/va3W2VlZZbH47HOnDmzainaJ554wrpw4YLl8Xg2VWJ1YGDAevOb3+yc8z333GN973vfW3EcmyyravPVr37VunDhguX3+638/HzrzJkz1gc+8AFrfHzcOWY7ZVU/97nPWf/lv/wXq6amxvJ6vdbLX/5yq6WlZdXzetvb3mZVVlZabrfbqq6utv7Df/gP1re+9a2U4/7H//gf1uHDhy1N01JKrD7++OPWvffea/n9fmv//v1OWWDWKMMqCIIg3FwoliXbQIIgCIIgCIIgrI7kMAiCIAiCIAiCsCYiGARBEARBEARBWBMRDIIgCIIgCIIgrIkIBkEQBEEQBEEQ1kQEgyAIgiAIgiAIayKCQRAEQRAEQRCENRHBIAiCIAiCIAjCmohgEARBEARBEARhTUQwCIIgCIIgCIKwJiIYBEEQBEEQBEFYExEMgiAIgiAIgiCsiQgGQRAEQRAEQRDWRASDIAiCIAiCIAhrIoJBEARBEARBEIQ1EcEgCIIgCIIgCMKaiGAQBEEQBEEQBGFNRDAIgiAIgiAIgrAmIhgEQRAEQRAEQVgTEQyCIAiCIAiCIKyJCAZBEARBEARBENZEBIMgCIIgCIIgCGsigkEQBEEQBEEQhDURwSAIgiAIgiAIwpqIYBAEQRAEQRAEYU1EMAiCIAiCIAiCsCYiGARBEARBEARBWBMRDIIgCIIgCIIgrIkIBkEQBEEQBEEQ1kQEgyAIgiAIgiAIayKCQRAEQRAEQRCENRHBIAiCIAiCIAjCmohgEARBEARBEARhTUQwCIIgCIIgCIKwJiIYBEEQBEEQBEFYExEMgiAIgiAIgiCsiQgGQRAEQRAEQRDWRASDIAiCIAiCIAhrIoJBEARBEARBEIQ1EcEgCIIgCIIgCMKaiGAQBEEQBEEQBGFNRDAIgiAIgiAIgrAmIhgEQRAEQRAEQVgTEQyCIAiCIAiCIKyJCAZBEARBEARBENZEBIMgCIIgCIIgCGsigkEQBEEQBEEQhDURwSAIgiAIgiAIwpqIYBAEQRAEQRAEYU1EMAiCIAiCIAiCsCYiGARBEARBEARBWBMRDIIgCIIgCIIgrIkIBkEQBEEQBEEQ1kQEgyAIgiAIgiAIayKCQRAEQRAEQRCENXHt9QQEQdgbLMsikUgQjUZxuVy4XC40TUNVVRRF2evpCYIgCIKQIyiWZVl7PQlBEHYX0zSJx+MYhkEsFnMEgqIoqKqK2+1G0zRcLheKooiAEARBEITbGBEMgnAbYVkWhmGQSCSwLAtFUYjH46iqimVZWJaFaZrOc4qiOMLB9kCIgBAEQRCE2wsRDIJwm2CHIBmGAdzwJliW5QiG1Y7fjIBY7bWCIAiCINw6SA6DINwG2F4F0zRTchTW2y+wBYItCGwBoes6iUQiRUDYIUwiIARBEATh1kM8DIJwC2Mb+LquA6SEE1mWxdWrV5mamqKoqIji4mICgcCmw43SPRCAE9rk9XodESECQhAEQRBubkQwCMItimmajlcBUsVCIpGgo6ODUChEVVUV8/PzzM3NoWkaxcXFjoDIy8vbsoB4/vnnOXDgAOXl5SiKkhK+JAJCEARBEG4+JCRJEG4x7F3/1UKQAGZnZ2lpaSEQCNDY2OiEHZmmyfz8POFwmKmpKfr7+3G5XBQXFzsiwu/3rykgbEFihylpmubMI5FIOMckCwi7CpMgCIIgCLmLeBgE4RZitcTm5BCkwcFB+vv7OXLkCHV1desmPRuG4QiIcDjM/Pw8Ho9nhYBI57nnnqOmpoaKiooVc7PDl5KTqG0BkVyFSRAEQRCE3EE8DIJwi2CaJjMzM/h8Ptxud4rhHYvFaG1tZWlpiXvuuYeioiJg/aRnOzypuLgYuCEg5ubmCIfDjI2N0d3djdfrdY4pLi7G6/U61ZfSsT0PNsmekHg87ng60pOoRUAIgiAIwt4iHgZBuMmxeyvous6PfvQj7rrrLgoLC53nr1+/TmtrKyUlJZw6dQq32+08Zzdw205ega7rjoAIh8MsLCyQl5eHruuUl5dz6NAhPB7Pls4j3QOhquqKHAgREIIgCIKwu4iHQRBuYtbqrQA3xEBfXx8jIyOcOHGC6urqjBrbLpeL0tJSSktLgRuJ1LOzs/T29nL9+nXGxsYIBAJOAnVxcXGKWEkn2QORfA7xeNzpRi0CQhAEQRB2HxEMgnCTslpvBVswLC0t0dLSgmmaNDY2EgwGsz4ft9tNeXk5o6OjVFVVUVZWRjgcZnZ2lsHBQdrb2wkGg46AKCoqWlNA2CJABIQgCIIg7D0iGAThJiO5t4JlWSlVkBRF4fr16wwPD7N//36OHTuWkjewG9iixe12s2/fPvbt2wdAPB53BMTAwABLS0vk5+c74qGoqAiXa/WfpNUEhP0Xi8WIx+MAIiAEQRAEIQuIYBCEmwjTNNF13QlBShYLdgfmoaEhzp49u6JK0V7j8XioqKhw5hWLxZz8h97eXmKx2AoBsZbYSa7+pGnaCgFheyAURXESqN1u94oSs4IgCIIgbIwIBkG4CUiuKJRcktRmYWGB5uZmLMvi1KlTeyoW1qqSlI7X66WyspLKykoAotGoIyC6u7uJx+MUFBQ4AqKwsHDLAsI0TR555BEuXryI1+tFVVXcbrfjgRABIQiCIAgbI4JBEHKcjXorjI6O0tPTQ11dHRMTE1uqTJQNtmuA+3w+qqqqqKqqwrKsFAExPj6OruuOgCguLqagoGDN6k7JTeQARxzY49rH2M3jREAIgiAIwtqIYBCEHMb2KhiGscKYjcfjdHR0MDs7y5133klpaSmTk5Ob2t1PJhsG8k6rNSuKgt/vx+/3s3//fieRe3Z2lnA4zNWrVzEMg8LCQkdA5Ofnrysg7OfSPRAiIARBEARhfUQwCEIOktxbIbkKkk04HKalpYX8/HwuXbrkeBW2Y9zaxn2mDONsGNiKohAIBAgEAlRXV2NZFpFIxBEQIyMjWJbl5D7YAmK98dYKYYrFYkSjUVRVXZFELQJCEARBuB0RwSAIOUZ6CFKykWpZFleuXOHKlSscOXKE2traFANWURRM09yTeSeT7X6QiqIQDAYJBoMcOHAAy7JYXFx0BMTw8DCA08BucXERj8ezprGfnhNiCwjDMDAMY80yriIgBEEQhNsBEQyCkEPYfQZW8ypEo1FaW1uJRqPcc889Kd2cbXLBeN2LOSiKQn5+Pvn5+dTU1GBZFgsLC4TDYWZmZmhra0NVVSeBuri4mEAgsKGAsMOYkgWEruvO8+khTOnCQxAEQRBuBUQwCEIOYBujdhWkdLEwNTVFW1sb5eXl3Hnnnev2K8j27v5m2Os5KIpCQUEBBQUFDAwMcM8995BIJAiHw1y/fp2BgQE0TXPyH4qKisjLy9uygLBL2YqAEARBEG5lRDAIwh6zXm8F0zTp6enh6tWrnDx5kurq6nXHygXBkIsGsqqqFBYWUlhYSF1dHaZpMj8/TzgcZnJykr6+PlwuV4qA8Pv9GREQdh8IO4RJEARBEG42RDAIwh6xUW+FSCRCS0sLAE1NTQQCgQ3H3KpgyJZxv9eiZSNUVXUSpA8dOoRhGI6AmJiYoKenB4/Hs0JArMVGAsJ+z/Qu1CIgBEEQhJsBEQyCsAfYxqSu68DKpNvx8XE6Ojo4cOAAx44d27RhuR0PQ6ZFQy54ObZKcngSgGEYzM3NEQ6HGRsbo7u7G6/X6xxTXFyM1+tdc7y1BEQikeCFF17g4MGDFBUViYAQBEEQbgpEMAjCLmOaJlNTU06cfbKRqOs6nZ2dTE9Pc8cdd7Bv374tjX0zGuu7wVaviaZplJSUUFJSAtxYF1tAjI6O0tnZSV5enpNAXVxcvG7DvGQBYfd9AEgkEo4HQlEUERCCIAhCTiKCQRB2ieQqOyMjI47BaTM/P09zczM+n49Lly7h8/m2/B65IBhyYQ6ZxuVyUVpaSmlpKXDD0J+dnWV2dpbh4WE6OjoIBAIpAsLtdq85np3fYJMcnraWgHC5XDmZHyIIgiDc+ohgEIRdYLXeCsnPDQ8P09fXx+HDhzl8+PC2DcNb0VjPRdxuN+Xl5ZSXlwM4FZhmZ2cZHBykvb2dYDDo5D8UFRWlCIj09V1PQMTjccc7kZ5ELQJCEARB2A1EMAhCllmtt4KqqliWRTwep62tjYWFBe666y4nhn675IJgyIU5JLMbRrXb7Wbfvn1OCFk8HncExMDAAEtLS+Tn51NcXJxSEWu9OW9GQKSHMImAEARBELKBCAZByBLr9VZQFIVIJMLjjz9OYWEhTU1N68bAb5ZcM9ZvVzweDxUVFVRUVAAQi8UIh8OEw2F0Xae1tZWCgoIUD0SyQEgnWUDY62sL0bW6UIuAEARBEDKFCAZByAKrhSAl91aYm5tjfn6eEydOUFNTkzHDLhcEQy7MIdfwer1UVlZSWVlJOBymvr4e0zQJh8N0d3cTj8cdAVFcXExBQcGaAsL+rIiAEARBEHYLEQyCkGFsr0JyCJLN8vIyra2tLC0tUVFRwcGDBzP63rlgrItRujFer5eioiKqqqqwLItoNOp4IMbHx9F1fYWAWKti0noCIhaLEY/HgdX7QMhaCYIgCJtBBIMgZIj03grpYmFycpL29nYqKiooLCzcMI59O+SCYIDcb9y2l6RfG0VR8Pv9+P1+9u/fj2VZLC0tMTs7Szgc5urVqxiGQWFhoSMg8vPzNyUgNE1zekBYlrVCQNgJ1C6Xa8XnVRAEQRBsRDAIQgawE1JN0wRSG7EZhkFPTw/j4+OcOnWKqqoq+vr6HGGRSXJBMOSi0bnX12QrKIpCIBAgEAhQXV2NZVlEIhFHQIyMjGBZlpP7YAuIta578mcxXUBEo1EikQihUIi6ujrcbrfjgRABIQiCINiIYBCEHZBcvWa1EKTFxUVaWlpQVZWmpiby8vKAG0acLS4ySS4IBri5DPS9YCuGuKIoBINBgsEgBw4cwLIsFhcXHQExPDwMkCIggsHgpgVEIpFgenqa2tpap6mcnQMhAkIQBEEAEQyCsG3WS2y2LIuxsTG6uro4ePAgR44cSQkhscuqZprtCIZ4PI7b7c5o4rWQPRRFIT8/n/z8fGpqarAsi4WFBScHYnBwEEVRnPCloqIiAoHAuutiV2FazQOR/HxyDoQICEEQhNsHEQyCsA1sr4JhGCsMJ13X6ejoYGZmhnPnzjnNvZLJlidgK+Oapkl3dzcjIyO4XK6ULsUbGZgbkUsehlwzajN9bRRFoaCggIKCAmprazFN0xEQ09PT9Pf3o2laioDIy8tLuS7p/79aCJOdRB2NRlFVdUUStQgIQRCEWxcRDIKwBezeCrqurxqCNDc3R3NzM3l5eVy6dAmv17vqOHstGJaWlmhubgbg4sWL6LrO7OwsMzMzDAwMpBiYxcXF+P3+TRuDuRIWdbuiqiqFhYUUFhZSV1eHaZrMz88TDoeZnJykr68Pl8vlrK1hGOuuV7KAABwBYRgGhmGsWcZVBIQgCMKtgwgGQdgkG4UgDQ0N0d/fT319PYcOHdowBCRbOQwbjXvt2jXa29vZv38/x44dcwzGwsJCZ4faNjCvXbtGb28vHo+HkpISx8hcSwjZiGBYn900pFVVdfIbDh06hGEYzvpOTEwwPz8PQGdnp+OB8Pv9a45nCwg7xG4tAWGHMNn/TRcegiAIws2DCAZB2ATr9VaIxWK0tbURiUS4++67KSoq2nC8vfAwJFdrOn36NJWVlY6hl8xqBqadYDs6OkpnZyd5eXkpHgi3250yByF3SfYeAUxMTDA8PIzX62VsbIzu7m68Xm/K+q4nENcSELquk0gknOfTcyBEQAiCINw8iGAQhHVI7q1gWdYKsXD9+nXa2tooLi6mqakpxXBej91Oeo5EIrS0tKAoSkq1ps2gaRqlpaWUlpYCkEgkHAExODhIe3s7wWDQMS5N08w5D0MuzSeX5gI3PjNut5v6+nrgRg7O3NzcCoGYnOPi8XjWHW+zAsLuA2GHMAmCIAi5iQgGQVgD0zQJh8O4XC48Hk+KWDBNk/7+foaHhzl+/DgHDhzYcqnM3SqrOjExQXt7OwcOHODYsWM7Nszcbjfl5eVOMncsFmN2dpZQKERvby/RaBS3243H43G6FNtdiIXcw7KslM+uy+VaVSDOzs4yPDxMR0cHgUDACV9K9zCls1kBkd6FWgSEIAhC7iCCQRDSSO6t0NHRQXV1NQcOHHCeX1paoqWlBcMwaGxsJBgMbvk9diMkyTAMurq6mJyc5I477mDfvn0Zfz8Ar9dLRUUFFRUVAPT09LC4uMjy8jLj4+Pour7pLsW3CzdTKE66QEwkEoTDYWZnZ1d4mOxQtu0IiEQi4XShNgwD0zQpLCwUASEIgpADiGAQhCRWS2xOxk4Yrqqq4vjx49veOc92SNLi4iLNzc24XC6amprWTWLNNB6PB7/fz8mTJ7Esi6WlJadHQHKX4uLiYkpKSnZcwnUjbibjfC9I9zBshNvtZt++fY4AjcfjjoAYGBhgaWmJ/Pz8FAHhcq19q1lNQMzMzDA6Osq5c+fEAyEIgpADiGAQhBdZrbeCqqqYpolhGHR3dzMxMeEkDO+EbHoYlpaWePLJJ1dtGLfbKIpCIBAgEAikdClObjKmquq2S7jejORaDsNWBUM6Ho8nxcMUi8Wc9e3t7SUWizkCori42PEarEWygHC73Skev0Qi4RyTLCDsKkyCIAhCdhDBINz2rNdbQVEUlpeXefLJJ3G5XFy6dCkju/XZEAy6rjMxMcHCwgJ33nnnqg3j1mKnRmMy651bcpfigwcPOk3GQqEQk5OTTgnXZAHh8/kyMi9hbTJpbHu9XiorKx1RHY1GHQHR1dVFPB6noKDAWd/VclySP492gnTyc7aAiMfjjrhYrQqTIAiCkBlEMAi3NRv1VohGo0xPT3Po0CEaGhoytluf6aTnhYUFJ6+ipKRkS2JhL0luMmaXcLUr9NglPn0+X4qAWK9Cz81CLhmz2fZ4+Hw+qqqqqKqqcr5TtoCwc1zSBcR6AnYrAiK5ClMuXXNBEISbDREMwm2LaZrE4/FVeyskEgna29tZXFxk//79HD16NKPvnakcBsuyGBsbo6uri9raWjweDzMzMxmY4fbZifdE0zRKSkooKSkBcDpQh8Nhp0JPcgnXjeLjbXItDCiXyKR3aSMURcHv9+P3+9m/f7+T42Kv8dWrVzEMA5/Ph2VZzM3NbZgknywg7HVeTUCk50CIgBAEQdg8IhiE2w47BCmRSKzaWyEcDtPS0kIwGGTfvn1ZSRjOREiSrut0dnZy/fp1zp8/T1lZmZNUvJdk0hBzuVyUlZVRVlYGvJRgGw6H6evrIxqNbik+PhfY6/VZjb0ynpNzXKqrq7Esi0gkwtDQELOzs7S0tDhJ8naifH5+/rreB2BVARGPx50u1CIgBEEQtoYIBuG2wjRNdF1fMwTpypUrXLlyhYaGBurq6ujo6Nj1jsybYWFhgebmZrxeL01NTU6cf7aSqbdKtuaQnmC7Wny8XcK1pKSE/Pz8rMzjViIXPi82iqIQDAYpKirCNE3OnDnD4uJiipcJSBEQwWBwWwIiFos5ZVxFQAiCIKyPCAbhtiA5ztkOwUg2CKLRKG1tbSwvL3PPPfdQWFgI4FRJyjTbzWGwLIurV6/S3d1NXV0dDQ0NKeeRC4JhNw2t9Pj45eVlR0BcvXrVqXA1MTFBZWXlusblbpILc7DZzZCkzWKapvMdtZPka2pqsCyLhYWFFVW2bPFQVFS0bpneZAGhaZrTA8KyLBEQgiAI6yCCQbjlsbvK6roOsEIsTE9P09bWRmlpKefPn0+Jid/Njswboes67e3thMNh7rzzTqcT707HzQZ7MQdFUcjLyyMvL88Jb1lcXOT5559nYWGB8fFxFEVJSaDOy8sTQ5DcEjCwtohRFIWCggIKCgqora11qmyFw2Gmp6fp7+9H07SUHJf11jj5t2A1AZEcwuR2ux0BkR7GKAiCcKsjgkG4pUnurZDcHMp+rre3l9HRUU6cOEF1dfUKI0BVVSd8KZNsNel5fn6e5uZm/H4/TU1NeL3eVY/bqmBIF0+ZIFcMKXt3WlVVjh49Sl5e3grj0uVyregBkW1yQdAlk2vzgc17PZKrbNXV1WGaJvPz84TDYSYnJ+nr60tZ46KionX7fKwnIKLRKB0dHTQ0NJCXlycCQhCE2woRDMItyXq9FQCWlpZoaWnBNE0aGxsJBoOrjrPXHgbLshgZGaG3t5fDhw9z+PDhdQ2T29nDsBHpxqVhGI5xOTExQU9PD16v18l/uFVKuG5ELoYkbXdOdnhSUVGRU6Y3fY230ucjXUDMzs4684tGo84x6T0gREAIgnCrIYJBuOVYr7cCwPj4OJ2dnezfv59jx46tW1UnU+VP09mMELFLu87OznLhwgWn1OhG4+61sX6zGErJoSuwegnXQCCQsjvtdrsz8t43yzXaKzIlYtLXeLU+H7ZItP/W8t7BDa+kndOQ7IEwTdMREKqqrsiBEAEhCMLNjggG4ZZivd4Kuq7T1dXF1NQUZ86ccSrtrMdeeRjm5uZobm4mEAhw6dKlTe9054JggNzzMGxmPuklXBOJhJNcOzAwwNLSUkoJ16Kiopwv4boZctXDkKkmicms1ufDFhCjo6N0dnaSl5fnrG+yl8n+DCXPa60QJsMwMAyDaDQqAkIQhFsCEQzCLcFGvRXm5+dpaWnB4/Fw6dKldcMQksmWh8E2OtKNNcuyGB4epq+vj/r6eg4dOrQlwyIXBEMuzCETuN1u9u3bx759+wCIxWKOgOju7k4p4Wp3KN6MkZtr1yZXBcNuzMnlclFaWuoUEEgkEszOzjI7O7vCy1RQUACw7hrbAiL5+50sINKTqO1QpmzkEgmCIGQSEQzCTc96IUjJOQCHDh2ivr4+Jwzw5PnZ/x+Px2lvb2d+fp677rrLCaPY6rhbna8YKpvD6/VSWVlJZWXlqiVcDcNwdqU3ajCWa+TaPPdKxLjdbsrLyykvLwde8jLNzs4yNDQEwAsvvEBJSYmTK7FemNp6AkLXdef59BwIERCCIOQaIhiEmxrDMJiamuLq1aucOXMm5SZrG+Bzc3ObzgFIJ5t9GAAndGp2dpbm5mby8/NpamradrLtdgRDpgVRrnkYsmF4rVbCNRKJOAIiucGYLSCS+wPkkjGYS2tlk62QpK2S7GWKx+P87Gc/4+DBg8zPz68aplZYWJhSljmdtQSEruskEokUAWF7IOwQJkEQhL1EBINwU5LcW8GOQ042wkKhEK2treTn528pByCdbOUw2AaAaZoMDg7S39/vdJfeiTGZa8b67YLdoTgYDFJTU4NpmiwuLhIOh5mZmWFgYMAp72lX2NmNEq6b4XYOSdoK9veqsrKSqqoqIDVMraenh1gstkJArJfnIgJCEISbBREMwk2H3VvBNuST8wwsy2JgYIDBwUGOHj3KwYMHd2R4ZLNKEkBLSwuRSIS7776boqKijIy714IhF+aw16iquqLBmJ1cC9Dc3Lyl6jzZJheN81ybU3L3aZvkMDW40THeFhBdXV3E43EKCgpS8lx2IiBg9S7UIiAEQcg2IhiEmwa7fKEtFuxcBU3TnLKGLS0txGIxLl686CQp7oRseRjseu6KonDp0qWMluu83Y31XERVVcdoHBoa4u6773Z2p9Or89h/mfpMbEQuGuc365x8Ph9VVVVUVVU5niRbQIyPj6Pr+goBsZ0k6kQiQTwed77v9rgiIARByBYiGISbgvUSm1VVRdd1Hn/8cfbt28eFCxfWjSPeCpn2MFiWxZUrV7hy5QoAJ0+ezKhhmAtGVi6Kllybj8vlIhgMrqjOEw6HGRwcpL29fUux8TslFz43yeSiYLA9DJtFURT8fj9+v5/9+/djWRZLS0vOOtuJ8smVtuzO5OuNmS4gFhYWuHz5MpcuXXKOSfZA2FWYBEEQdoIIBiHnsb0KhmGsKJdqmiZDQ0Pous7Zs2fZv39/Rt87k0nPsViMtrY2IpEI99xzD08++WRGxk0mWx6Rrc5B2Brp1XlWi43fSmjLVsg1MQVbN853g50mYiuKQiAQIBAIpCTK2wJiZGQEy7Kc6kubqbSVvGnicrlSvLC2ByJZQCRXYRIEQdgKIhiEnCW5/OBqjdgikQgtLS3Oc5kWC5C53fJQKERLSwvFxcU0NTXhdruzkh+RK4ZALhqhucBmr0t6bHxyCVc7tGUrO9MbzSlXPjc2uTinTIuY5ET5AwcOYFkWi4uLKd3G4aVKW0VFRQSDwRVzSBYydohm8nPpAkJV1RVJ1Ll2rQVByD1EMAg5yXohSABjY2N0dnZSU1PDgQMHePzxx7Myj516GJKTsI8dO0ZNTU1Kac1sCIatzjfTxkKuGR+5Nh/Y+pxWC22xBYS9M52c/5BcwnUjctE4z9U5ZTM3QFEU8vPzyc/Pp6amxgk3CofDhEIhrly5gqqqKQIiEAg4nte1xtyMgEhPos61ay8Iwt4jgkHIOeyOzat5FXRdp7Ozk+npac6dO0d5eTnRaNRJBsyG8btdoz4Wi9Ha2sry8vKqSdjZEgxbYXl5mba2NhKJBCUlJZsqBbkZxMOQPZJDW5J3pkOhkFPCVdO0FAHh9/tvKiMwFwXDbodJKYqyotKWLSCmp6fp7+9H0zTy8vIwDINIJEJeXt6GIUz2d9v+jpqmSTweT+lCLQJCEIR0RDAIOUNybwV7Ny/5RjU3N0dLSws+n49Lly7h8/mA1J4GmYrrttluTsDMzAwtLS2UlpZy/vz5VRNWs5FvsBURMj09TWtrq9OYanZ2ls7OTifcxRYQW+1YLMbF2mSrRK+9M20blvPz84TDYSYnJ+nt7cXj8aQICPu7Y88p19YsV+e0l9WHVFWlsLCQwsJC6urqnHW+evUqi4uLPPvss06vj+R1Xus62o+LgBAEYTOIYBByAtM00XV91RAky7IYHh6mr6+Pw4cPc/jw4ZQbVvJxmWareQaWZdHf38/Q0BDHjx/nwIEDa95cs5XDsNGYpmnS39/P8PAwp06doqKigkQikRLuEgqFUuKobQOkpKRkU7vV4mHYO+ywlaKiIg4dOoRhGE4PiLGxMbq6ulJKuBqGkXMGYC4KhlxLxLbXORaLEY1GOX/+vCMUJyYm6OnpWVcoprOagLD/YrEY8XjceV8REIJw+yGCQdhTkmNqbSMh+eYTj8dpa2tjYWGBu+66i+Li4hVjJHsYMs1WchjsPhDxeJx7772X/Pz8dY/PVkjSeuFZyXNsbGwkGAw6Is1+vR3uYncstsMgpqam6Ovrc4wQ2wOR3nAsF42HXBMwu3mNNE2jpKSEkpIS4EZYn53/MDg4SCQSYW5ujkQi4cTGZ7OE62bIRcGw1x6GtbBDN5PD0IAVQrG7u3tLzQKTf4s1TVshIJI9EHYCtcvlWuEZFgTh1kAEg7BnpCc2p4uFmZkZWltbKSoqWre5WTYFw2aN+unpadra2igrK9t0H4hshSSthR0mtZU5podB2EZIKBRyGo4FAoEUIwRyz0AXXsLlcqWUcG1tbUXTNAzDoK+vj2g0uqIHRKZD/TYiFwVDrnkYbGzBkM5qQtEWEOnNAu1Eao/Hs+b7rCcgotGoc4wtIGwPhAgIQbg1EMEg7Akb9VYYGBhgaGhoRWWh1bBvZHvhYTBNk76+PkZGRjhx4gQHDhzY9NjZTHpONriSm8WtFiZl3/Q3Q7oRkkgknN3qgYEBlpeX8fv9xONxwuEwhYWFObkru1fkopBSVZX8/HwOHjwIkNKd2M5psXtAlJSU7KiE62bJxd38XJwTrC0Y0nG5XJSWlq5oFjg7O8vw8DAdHR2O+LcFxHpNJTcjIMbGxqiqqiIvL08EhCDc5IhgEHaVjXorLC8v09LSgq7rmwrrsclkg7Vk1gvxSZ6rHd6zFbLZh8EeNx6P09raytLS0qqVmnaK2+12kqbhhrE5OjrK+Pg4HR0d6LruGB8lJSWr1pEX9pb0z6DP56Oqqoqqqiosy2J5ednJabl69SqmaTprWlxcnJU1FQ/D5tmsYEgnvVmgLf5nZ2edbuPBYNBZ541C1VYTEIODg5SVlTkCQlXVFTkQIiAE4eZABIOwa2zUW2FycpL29nYqKio4ceLElsIgsrFbb88RVhowU1NTtLW1bWuuNtn2MITDYZqbmykqKqKxsXHd3cJM4fP5KCsrY3p6msbGxpQE6qGhIRRFScl/2I1yn7lojOTSnNYzzhVFIS8vj7y8vJQSrsk5EPaa2n8blfbc6Zz2ipvdw7AR6eLf9hLOzs7S39/P0tLSilC1jcIaLcvC7XbjdrudjRfTNJ1EbREQgnDzIIJB2BXsUn2reRUMw6Cnp4fx8XFOnTpFVVXVlsfPpocBUksO9vb2Mjo6yqlTp3bUXTqbgmFoaIjBwUGOHDlCbW3tntyA10qgDoVCKeU+bfGwURKmkD02+/lILuF68ODBVXsD2KU97XVdrzLPWuSiYLjVPAwb4fF4qKiooKKiArjRV8YWij09PcRisXVzXezf4+Qu1KuFQhqGgWEYayZRp79OEIS9QQSDkFXsG8LExAS9vb1cunQp5cd/cXGR5uZmNE2jqamJvLy8bb1PtgRDckJ1PB6nubkZ0zRpamoiEAjsaOxs5F3oug7A6Ogod999N0VFRRkdfzOsJYSSE6jtcp+zs7MpSZh2DHVJSUlOVOvJNLmYw7CTOa2VFJ9cmcfn86V4INZLrE2eU64Zibe6h2EjvF4vlZWVVFZWAqm5Ll1dXcTjcSfXxfYeAmvOzRYCyV7c5JBV+3lbONgeCBEQgrA33Fp3YyGnSO6tYBvHyTv2dk34gwcPcuTIkR3d9LLtYZiamqKrq4uqqiqOHz+ekaoxmc5hmJubo7m5GYC77757yzkVmWKzN3NN01YkYdoGSHK1nuQO1LlosN3sZNI4X60yjy0K0xNr7bj41ULlcnE3PxfnBHsnZNJzXZIFxPj4OIlEAoCRkRGKi4spKChYd55rCQhd10kkEmsKCPlNEITdQQSDkHFW663gcrkcgz6RSNDR0UEoFOL8+fOUlZXt+D2zJRhsOjs7OX369LbCpdYiUyFJlmUxOjpKT08Phw8fpq+vb8935rdzXukx1MvLyykGiJ1AbQuIrSTb5trOfi4ZntnczXe5XJSVlTnf8Xg87giIgYEBJy4+WRTaCbO5dI0gdz0MhmHs+fddURT8fj9+v99pABkKhWhtbSUSiXD16lUMw6CwsNARixtV29qKgLBDmERACEL2EMEgZBT7B90OjUn+0TdNk9nZWVpaWsjLy+PSpUsZi1nPRj7A0tKSs2N/4cIFZ9c0U2Rizrqu097eTjgcdubY19e3pXEzbZhlarx0AyQSiRAOhwmFQgwODqKqakqoy24kUAs7w+PxrKiqlR7WUlhYiK7rRCKRDXeld5Nc9jDk2rwURcHj8aBpGqdPn3a+v7ZYHBkZwbIsp9pWUVER+fn5myqfvZaAgNW7UOfK50cQbnZEMAgZI7m3QvIPO9z4sdd1nWeffZaGhgbq6uoyepPLtIfh2rVrtLe3s3//fhYWFrKSjLvTHIaFhQUuX76M3++nqanJmWO2KkZthWwkcweDQYLB4JoJ1MldbEtKSjYVK7/b7PW6rMZeGpyrlXANh8PMzc0xMDBAX19fSgnXjYzKbJKrHgbTNHe9sd5mSM6tSP7+JlfbsgXE0NAQQIqA2MiDuJaASCQSxONxQASEIGQSEQzCjtmot0IsFqOzsxPTNLn33nuzkoibKcGQXLHp9OnTVFZWMjY2lrWSrdsd9+rVq3R1dVFXV0dDQ0PK9d5rwbAbBt16CdQjIyNOAnVJSQmmaTqlfIXVyYUd6uQSrgMDA5w7dw5VVR0PhF2WNzksLRMlXDdLLguGXFi/dNYTMsnVtmpqarAsy6m2FQqFuHLlCqqqpgiIQCCwZQFhb2LZHgg7PNYWEHYVJkEQNkYEg7AjNuqtcP36dVpbWyksLARw/ptpMiEYIpEILS0tKIqSUrEp203htoJhGHR2djI9Pb1m/sdWx83GDXO3BUt6ArUdKx8KhdB1nZaWFid+uqSkZM9DXXLJSMlVr4eqqiu8SouLi4RCoRUlXNMr82QD0zT3PFdgNXarStJWMQxj0/NSFIWCggIKCgqora1dtVyvpmlbCkG08xtskgXEzMwM169fp76+3hEQyVWYBEFYSe79+gk3Dev1VjBNk76+PkZGRjhx4gRlZWU89thjWQt/2KlRPzExQUdHB9XV1Rw7dmxFOFU2jKqtjmuXoHW73TQ1Na1Z3/528DBsRHKsfCgU4vDhw5imSTgcpq2tDdM0KSws3FYC9a1GLsbArzYnVVUdo7Kurg7TNJ0SrhMTE/T09KSEpWW6r0cu7+TnomDYybzSy/Wapsn8/DzhcJjJyUmnsEPyWvt8vk0LiEQiwfz8vPP/8Xjc8U6kJ1Hn4poLwl4ggkHYMnYIkl0FKV0sLC0t0dLSgmmaNDY2EgwGnSTobN3ctmskG4ZBV1cXk5OTnD171knGTCabHobNjjsxMUF7e/umStBu51pk+qaYa7vWtiGZnEBtd6BOT6AuKSnJ2k51rl0Xm1wzijYjYpLXDG4UALAFRHpfj/VKuGZyTntBLguGTOVW2OFJRUVFTgiiLSBssejxeFYIiLUwDMMRBDbJHohkAZGeA5GLnwFB2A1EMAhbYqMQJHunfv/+/Rw7dsz5QbZvaNkqAbgdo97esXe5XDQ1Na1pJGajwZo97kYGpGmadHV1ce3aNe64445VBc12xs0muX5DTU7AtLsV28bHtWvXUhKobQ9ELiZQZ4pcFDHbMc5dLteKvh6rlXBN7ky8ld+iXM5hyMV5bSUkaaskhyfZ77Vaw8DkhPlkb5MtGJJJ9kDY3wnbi57chVoEhHC7IoJB2DS2V2G1EKTknfozZ85QUVGR8lr72Gz1StiqYBgbG6Ozs3NTO/aZbrC22XHtsq6KotDY2LjpLth7LRggN43QtUjfvbR3qkOhkNNsLBgMpuxU71T05pKRkWs75/ZnZ6fGptvtpry8nPLycuBG8QU7gbqnp4dYLJbSmXijxoC5apjLvFZvGJjubcrLy3O+v/F4fF3vh/19EAEhCC8hgkHYkPTeCuliYWFhgZaWlnV36pN7MWSDzY5tJw1PTU1x7tw5x5hYj73IYZicnKStrY39+/dz/PjxLd1491ow3Ow3zPSd6ng87hiavb29jqFpex/2OoE6E+TSmtmf3UzPyev1UllZSWVlJbB6Y8DkxPhgMJiyrrkmrGxyVTCstou/W6zlbZqdnWV4eJjFxUVcLhe9vb2OF2K9cLXVBIT9F4vFUsq4Pv7447hcLl73utdl+SwFYXcRwSCsix3TaRvjduk6SO0wXFdXR319/YY79dkSDJsJG7KFjdvt5tKlS+vGuCazmzkMpmnS29vL1atXnbKu2xl3r3f49/r9k9mpkefxeKioqHC8ZrahGQqFuHr1KqZpOkZHSUnJuuUfc+m62OTanLIlGNJJbwy4tLTk5LWMjIwApIS02P1lco1cFQy5NK90b1N3dzexWAyAwcFB2tvbt+RFTL4P2p3J7b9/+qd/IhAIiGAQbjlEMAirkpwAtloIUiKRoL29ndnZWe68805nJ2c9su1hWMvwsSyLsbExurq6qK2tpaGhISd27NPHXV5epqWlBcMwaGxsJBAIZGTc3SYXjapMsloH6tUSqG0PRDZLfWaCXNs53y3BkIyiKAQCAQKBwIq+ADMzMwwMDDi/iZZl5VRnccmt2B7BYJD6+nrgJS/i7Ows/f39W853SRYQkUhkU7lmgnCzIYJBWMFGic3hcJiWlhby8/O5dOnSphNCsy0YVmvOpes6nZ2dXL9+fc2+BZsZOxvzTp7z9PQ0ra2tVFRUcOLEiR258vdaMEDu7Vpni7USqEOhUEqpT1s82CIwFwzNZHJpPnshGNJZrS/AM888g8/nczqLJ1flKSkpyUo3+M2Qq4Z5rnaghhvhUske5nQv4mr5LukCYq1zi0QiBIPBXTkPQdhNRDAIKdheBbvCRfJN27Isrly5wpUrVzhy5Ai1tbVbuqlnWzDY3TxtFhYWaG5uxuv1rtu3YCOyWSXJDkEaHh7m5MmTVFdXZ2TcXPAw5NLO9W5dj+QEarghWO1KPXbsNEB/fz8lJSUUFRXtuVGVa+IuFwRDOnZ9/oqKCsrLy1M6i9td1+2kWvtvJyVct0Ku9ofIVkW8TLCRmEnPd4lGo46A6OrqIh6PpyTMFxQUOOMtLS1lTDB85jOf4UMf+hC/8zu/wxe+8AVnLr//+7/P3//93xOLxbj//vv5i7/4i5RCIyMjIzz44IM8+uijBINBHnjgAT796U/n7HoINwfy6RGAl3or6Lq+aghSNBqltbWVaDTKPffcs62OzbuV9GxZFlevXqW7u5u6ujoaGhp2dEPNVpUkwzCYmprC7XZz7733kp+fn5Fxc0UwCDeSL8vKyhzP1vz8PM899xy6rjs7l8mJtvn5+bu+W5xLwg5yUzBAqmGe3lk8uYTrdmLit4sdN5+rHoZcnBdsveSrz+ejqqqKqqoqLMtKERDj4+N88YtfZHJyksbGRuLxeEa8Tc8++yxf+cpXOHv2bMrj73//+/mXf/kXHnroIQoLC/nt3/5tfuVXfoXHH3/cObc3vOENVFZW8sQTTzAxMcHb3vY23G43n/rUp3Y8L+H2RQSD4IQgNTc3U1ZWxv79+1Nu1na4THl5OXfeeee2b3y7kfSs6zrt7e2Ew+FN51ZsduxMMjMzw9WrV/F4PDQ2NmbUmNhrwWCTa4ZoLmCH7504cQK4kbdi5z8kJ1AnhzDtxjXMpXVKLrCQS6xnmKcn1SZX1urr6yMajW46pGUr2NcqFw3zXA9J2u7cFEVZkcdUVFTEww8/zM9+9jOee+45nnrqKR566CFe9apX8apXvYq77rprS7/xi4uL/J//5//J//gf/4M/+ZM/cR6fm5vjL//yL/nmN7/Jq1/9agC+9rWvceLECZ566inuvfdefvCDH9DZ2ckjjzxCRUUF586d4xOf+AQf/OAH+fjHP35L95QRsosIhtuc5N4KdunU5J4Jvb29jI6OZiRcJtsehng8zhNPPIHf76epqSljMcWZ9DAkh3WVlpY6dbwzyV4Lhlwz9HJtPsn4/X6qq6uprq7GsiwWFxdTEm1dLldKmEs2EqhzQVwmk6tCcyuhP2tV1gqHw3R2dqaUcC0uLt62ZymXBUM2G7ftlEyWfFUUhdOnT3P69Gl+7/d+jzvvvJM/+IM/IJFI8Oijj/Jnf/ZnxONxXv7yl/PNb37TCVdcj/e85z284Q1v4Od+7udSBMPzzz9PIpHg537u55zHjh8/zsGDB3nyySe59957efLJJ1f0Qrr//vt58MEH6ejo4Pz58xk5b+H2QwTDbUpybwV750zTNOcGFIlEaGlpAaCpqWnbFXuSWSsxeadYlsXs7CyhUIgjR45w+PDhjBocmTLA4/E4ra2tLC0tcfHiRWZmZpibm8vADFeSC0ZgLswh11jvmiiKQn5+Pvn5+U4Ctd18yk6g9vl8KRWYMhEnn2sGeq7Nx2YnoT+rlXC1BcTIyIizS20LiGAwuKlrkMuCIZdDkrLp/VhaWuLUqVO8/OUv573vfS+madLa2srPfvazTYXy/v3f/z0vvPACzz777Irnrl27hsfjWSE6KioquHbtmnNMeuNU+9/2MYKwHUQw3IbY3oT0Kki2B2B8fJyOjg4OHDjAsWPHMvajnw0Pg13edWZmhoKCAqdMXibJxLztylKFhYU0NjbidrsJhUK73hBuN8hFY+9mxC7PWlxcDKQmUCfHydviYScJ1Lm0ZrkqGDKVXJxcwvXAgQMpnqXk0rzJoWlrlXDN1fAtuHVDkjYiEomkbLCpqsq5c+c4d+7chq8dHR3ld37nd/jhD3+47SIdgpAtRDDcRiT3VrBvysk3GkVRmJiYIBaLcccdd2S8lnSmBcPc3BzNzc0EAgGOHj3KxMRExsZOZic5DJZlMTQ0RH9//4rKUtmsvrRZwWCaJl1dXUxOTq4wUHaKeBhWZ7vGXXoCdTwed/Ifuru7icfj20qgzrV1ylXBkK3k4tU8SwsLC4RCISYnJ+nr68PtdqeEptnG5GoFKnKF3Q5JUsxpLLV8U8dma252X5btFrB4/vnnmZqa4s4773QeMwyDn/zkJ/y3//bfePjhh4nH48zOzqZ4GSYnJ52KTpWVlTzzzDMp405OTjrPCcJ2EcFwm5DeWyFdLMzPzzM5OYmmaVvqgrwVMiUYLMtieHiYvr4+6uvrOXToENeuXcua4bPdHIZEIkFbWxvz8/PcfffdK9zI2aq+tFnBsLy8THNzM5ZlcezYMRYXF1NCX0pKSpzSn1sJfclF4yXXjOJM4PF4nNKPlmWlxMmPjo46Dcbsv7USqHPNQM+1+djsVvlSVVUpLCyksLCQQ4cOYRiGE5o2NjZGd3e3E5qWK83jVmNXQpLMMC7je7j0HxHzfgzYvGDIhochFothGMa2BcNrXvMa2traUh57+9vfzvHjx/ngBz9ITU0Nbrebf//3f+dNb3oTAD09PYyMjNDY2AhAY2Mjn/zkJ5mamnI2/X74wx9SUFDAyZMnd3B2wu2OCIbbgI16K4yMjNDb2+vscmXLFZoJwZBshN91111OuMZuVGDaCrb3IxgM0tTUtGplit3qIL0a169fp6WlhcrKSo4ePYphGJSXl3Po0CEn9CUUCjEwMMDy8jL5+fmO96GwsPCm3LnOBbJ1TRRFIS8vj7y8vJQE6lAotGoCdUlJScr3PJeMzlwtE7pX89I0zRHvkBqaNj4+jmEYPP300866ZquE61bJWkiSZaIYT6Ik/hWv1QyWQsz7h1hq3abnZVlWVuYWiUQAtp3zl5+fz+nTp1MeCwQClJaWOo+/4x3v4Pd+7/coKSmhoKCA9773vTQ2NnLvvfcC8LrXvY6TJ0/y1re+lc9+9rNcu3aND3/4w7znPe/Zs+aCwq3B3v+qCFljo94K8Xic9vZ25ufnuXDhAqFQiOXl5azNZ6dG/ezsLM3NzeTn568wwrNdgWmzhp5lWYyOjtLT0+N4P9YyxvYiJMmyLAYGBhgcHHQqX5mmmZKMnh76YtccD4VCjoFiJ2iWlJSs2LnOJePzdiU5zMXuVGzvUo+Pj6d4keycplwhFz0Mdr+DXJhX8vezvLyc9vZ2Dh065JRwXV5eTmkqlqkSrlsl42E/5iSK/k+oie+CNYOm3YtFAN3zS5iuxs0P8+JvbjauyeLioiPes8XnP/95VFXlTW96U0rjNhtN0/je977Hgw8+SGNjI4FAgAceeIA//uM/ztqchNsDEQy3KOkhSOliIRQKOUm4tvE9OzubNaMbSKnCtBWS8wAaGhqoq6tbcePOtodhM9WddF2no6ODUCjEhQsXnB3B9cbdTQ9DcpWmrTSKS29aFIlEnNj5K1euODvX9i6ovbuZKx6GXDDyktmL+SQnUB8+fDjFi2SaJi+88EJKn4C97ECdK4Z5MvZnOdc8H6Zp4nK52LdvnxN+slpX4uQSrgUFBbtyHpkISbIsA0t/HJf+LRTjp6DUYimVuNQa3OYTJFy/iO7+tS2NmXxPzDSRSGTTFa42y2OPPZbyb5/Px5e+9CW+9KUvrfma2tpavv/972dsDoIAIhhuSUzTJB6Pr+pVsCyL/v5+hoaGOHr0KAcPHnSez1bZU5vtjB+Px2lra2NhYWHVPACbbO3Ww+Y8DAsLCzQ3N+P1ejfdA2I3cxjm5ua4fPkyBQUFTpWm7Y4dDAYJBoMppT9DoRBjY2N0dXU5u2uhUIiysrKcCI8QUknepR4fH+fcuXOOoZmcQG2Hoe1mB+pcFAy5Wo1otbyKdIGfnNtiNwdMXttMG7jwUoGN7YpOyxzHSDyEmfhnfEoVKC5QqlGsK6jqXbjNFzDUc8Q9H9ry2IZhOFUBM00kEiEvLy/nPieCkAnkTn4LYYcg2VWQ0sVCNBqlpaWFeDzOxYsXKSgoSHn9dj0Am0VVVRKJxKaPt0uRFhQUcOnSpXWN3GwZ37CxGLl69SpdXV3U1dXR0NCw6ZvFbngYkkOk1vLO7IT00p+JRIJQKERHRwdXrlyhq6uLgoICx/uwm4ZnLpIrXpdkLMtyarunJ1CHQiGnT0By/kM2jaJcFAy57GFYb06r5bZEIpGUEq6KoqQkx2dibbfTH8KydCz9MYzEP2Iaj6OoR/GoDSjm8yhW/MZB6glcZi+6epGY709A2frGRzbLvaaXVBWEWwkRDLcIa/VWsJmamqKtrY19+/Zx4cKFVXd9sxnWs5XxLcticHCQgYGBFaVIdzr2dlhLjBiGQWdnJ1NTU5w/f96J+d8s2c5hMAyDjo4Orl+/vqkQqUzgdrvZt28fHR0dXLhwAdM0HcPT3t1Mbjwmu3G5QXoOSrqRubCwsGoHansdM1koIRcFQy57GLZilCd7CGtqapwSruFwmOnpafr7+zPSXXwrgsE0x4nHv4VqPI1lDqFoh0GpwK0U4jKffOk4juJS8rHwEff8Dijb+z3LZg+GxcXFNauRCcLNjgiGm5yNeisYhkFPTw/j4+OcPHmS/fv3rzmWpmlZD0nayECOxWK0tbURiUS45557NtUZc7Njb5fVDPvFxUWam5txuVzbLkObTQ9DLBbjySefxO1209TUtOH8snGDsyxrRYdbu3KPbZy43W7H6CwpKVm1mlSm5pIr5JoxsdG1URSFgoICCgoKUhKo7TC07u5u/H5/ipG5kw7UuSgY7GuUa/PaaZ5AcgnXuro6DMNgfn4+pbu41+tNWdvNhFtulFhsWSa6/hixxN+TSPwUv+vlWOhYzGEZz+JSz+IymzEpBLUey5rHo0RRzeeJe/8USzu27XPOpmBYWloiGAxmZWxB2GtEMNzEWJaFrutOhZN0sbC4uEhLSwuqqtLU1LRh5Ya99jDYidjFxcU0NTVtyejYTQ/DxMQE7e3tHDx4kCNHjmz7hp2tMKpoNMrk5CQHDx7k6NGjWyqBmqlOtsljJj+eXLnHri9vh710dnYSDAZTykPmaqfYW4XtrPtqHaiTQ1za29tXlOHdyjrmomCwcwVycV6ZDJPSNG3F2trVtezvaCAQSEmOX+132s4TSL9ehjlNIvFtYvG/x7JiqOphvK4mMH+C/WuhKrV4FC+mchLMTjBfwK2dQTUHSbh/C8P1uh2dYzYbyi0uLma1QpIg7CUiGG5SknsrpCdwWZblJKBuxajdjaTn1Yz65FKfx44do6amZss3Znu3PhvGhu1hME2T7u5uxsfHM9IJO9MeBtM06e3tZXZ2ln379nH8+PGMjb1VNrMG6fXl4/G4E76Unnhr5z/kmsG2VXLJ0wGZEYoul4vy8nLKy280zYrFYs46dnV1kUgkVnSgXu/9dqtB2lbI1d4Q2W6O5nK5KC0tpbS0FLiRo2SLw4GBAZaWllatrpU8L8uyiOtPEYn/Hao1i2otgFKOYXagsYxqNr/4blWg1OFVxsG8jP0JULWLYE6Q0N6M7v7/7ficsulhsKskCZsnGo0Sj8f3ehq7isfjyVq/q2wiguEmY6PeCnZpz5mZGc6dO+fcxDfDbiQ9p48fi8VobW1leXl51UTsrYwN2dmdVFUVXdd56qmnADblrdkMmRQMdkJ7IpFg3759OZF4t9Vz83g8VFRUUFFR4STe2uVbR0ZGAFLKt24ntlpYnUx+Z7xe74oO1OnrWFRUtGYeSy57GHKNXemmnISdo2RvltjiMLm6VkFBAXl5eWiuJRaW/4qlxD9gmnP4tFNY1jAJawIAl1qLyxoH9QyWFcM0+wioxSjW2I1zswIo2h1Y1gyG4sXw/i5kYA2ynfQsgmHzRKNRDtUGuTaVvY3KXKSyspLBwcGbTjSIYLiJ2Ki3wtzcHC0tLfj9/k3FraezGyFJyR6MmZkZWlpaKC0t5fz58zsqv2nfNLNxA11YWGBubo6amhqOHz+esfEzlfQcCoVobm6mrKyMCxcu0NPTs+c72Ts1rpITbw8cOOAkZ4ZCISYnJ+nt7cXr9TriYb24+Vwz9HJpPtn+nKSvY3ICdXKSbXIeSy4KhtvVw7AR6eIwGo1yffZJFqP/QN2J7zMVrkBR8/C4SzCVp4EbO8mqUotH3Y9pdIJxGYA81z1gXMZQj2PhBaK4zcuAByPvm6BkZhMkmyFJUiVpa8Tjca5NGQw+X0tBfu59v7LB/ILJoQvDxONxEQxCdjBNk/HxcVRVpaSkZMWOnN3YbKPuwuuxGyFJdtiQ3Qvi+PHjHDhwYMcGQrJgyBR2iM/o6Ch+v5+TJ09mbGzYeQ5D8ronh3JlK5l6O/PLFMnJmYcOHXIaj60VN19UVJSTBl6usdvJvOkJ1HYeSzgcdsIoPR4PiqIwPT29Zoz8bpOLIgZyR8iYVpT5+L8ym/h7lLwEBV4vcb0YT94YirkPD4sYBiwvH8HtjhNwa5g85bzeozVhYWIq5TfyFpQSPIoHrASm7/Og1mZsrtkOSdpsoQ7hJQLBG3+3A8be35q3jQiGHCe5t8K1a9fwer1OPCm8VFVocXGRu+66y0lW2w67EZKk6zrPPPMM8Xh8S92GNzM2ZE4wRKNRmpub0XWdo0ePMj4+npFxk9mJYZ9IJGhra2N+fn5FNamtjpsNQyjbxlVy4zFIjZvv7OxE13Un7MUwjJwQUJB7OQw2e2UMp+exJBIJBgYGCIVCTox8QUGBEyO/1QTqTLHXO/lrsdfziusjhON/z1z8f+FSynGr+1DMZkx1HpcHVCWfgKcaAN3oJi/Yh6afwqV1YpgulpZrcSmFePOexVLs324XbmUflqJhud+J5XpZRuec7SpJ1dXVWRlbEPYaEQw5THoIUrpBPzMzQ2trK8XFxRs2NtsMyR6AbBgQCwsLLC0tUVRUtGYviO2yVmWe7XD9+nVaWlqoqKjgxIkTzMzM7FpH5s2wsLDA5cuXycvLo6mpaUUp0u2EOmWrrOpukR4asbS0RCgUIhQKsby8TGdnJ2VlZU7Yy83mCs4WuSZg3G43gUCARCLBmTNniMViTv7DdhKoM0Uu5zDstoCyLJO5xM+YjT1MQn8Gj1aFSynFsGbwmbMYzGNZecSWD1Ka7yJhPO+8Ns91D4o6A+pdKHQTyFvGxxTKi2JhOVYG5kFU3yiWdieq59cyPv9sXjO7D4OwNUwsTHLrtyhb3MznKYIhR7G9CsmJzXafBNM06e/vZ3h4OGMhPfDSLr1hGBk15k3TpK+vj+HhYVwuF2fPns3Y2MnsNAcjOVTq5MmTzk5RNhusbXXcsbExOjs7OXToEPX19auuey4YNns5B0VRCAQCBAIBampqePrpp6moqMA0Tae2vN03wA5hyuTnfTPzyzVyaU7JGxZer5eqqiqqqqocIZjcgRrIeJfiteaUqx6G3QrZ0s05rsf+ievRb4Nlku+uxCLCsnEZBS8FWhVg4lLvIqZ34lVNDLP1xVcX4NXOYJnjmNYQGFeAfPI0F5alYakXMK0wbncBfq2ZSLSGp9vvx+d7KmP9PWwMw8jaNVtaWhLBsA1MTLIX25Bb3MxnKoIhx0jvrZCc2KxpGktLSzzzzDPoup7RkB57fMhsHkBy9Z6zZ8/S0dGRsbHT2YlgiMVitLS0EIvFVlzXbPVL2IqHwTAMurq6mJyc3LD61a2Yw7ATbAFhX7PkvgEDAwMsLy87+Q8lJSUUFBTkpHGYDXKxIdlaHs5kIZicQJ3eCNA2LktKSjbVZGwnc9prdiMkaSHRSyj2D4RiD+PT6lEpwqdFWNafBkCxfBR4LmCaIyTMQQDc5mlcvlZU9RQoHhQrgmJexmIZAAsVv+sCpjWHZU2B+Ryqehy31olFIf6Sr3LpUuWKPCW7T4udp7QdoW8YRtY8jFIlaXsYloWRI/eLbHMzn6cIhhzC7q1gG73pjW+WlpaYmpriwIEDHD9+PONu1UznAUxNTdHW1uaE9iwvL+9pY7i1sBvGlZSUcOedd664CWWretRmS8EuLS3R3NyMoig0NTVtWE40FwRDLhpXNul9A6LRqBP20tbWhmmaKWU/A4FAxs5nr9clnVybD2zeOE9OoLa7FNsJ1FevXqWrq4u8vDxnHXfiSdrrXIG1yNa8TEtnOvYYY8vfxq+YqIqFouSzaHRQ5j5BzOjFrdahKaW4FYWY/mPntX7tLIZuohulWEonqlJKnqJhsYyi1IBaiQcXlvGTl95Q2YfLmsVSTmF534ui1uBWWbW/Rzgcpre3l1gslpLfUlBQsKl7ovRhyD0kJOnmQARDDmBZVopYSC+XahgG3d3dXLt2jfz8fE6dOpWVedgN4HZaKSm5utCpU6fYv38/kP2yrVsN8bEsiytXrnDlypV1G8ZlywBPzrtYy0Canp6mtbWVqqqqTZd0zQXBALljjG5kfPp8Pvbv38/+/fuxLIvFxUXC4TAzMzMMDAysKPuZqV3rXCKXBN52d/OTE6jr6+tJJBLMzs46CdS2J8lex80amJDbOQyZFAxxM8T48j8xHv0nXEoBQa2YiP4cFgkASl3nUIjjVhuIGQPku4tJGM9iWRpe1ylU8rHMZ1Hd0RdHdONXqkDxYin5GGY/HspRzBt5DRagKEdxKSVYZie4X4XiunfVuSXnKQEsLy87AmJ8fBxd1538luLiYvLz81e9NtkSDHbIXCa9/rcLJhbGTWxIbwURDMK22ai3wsLCAi0tLbhcLhoaGpiZmcnqfHZq1C8vL9Pc3IxpmjQ2NqbstmQ7qXoroUPxeJzW1lYikciKKkOrjZutHAZY/aafnE+RLLo2O+5eG+u5aFxtBkVRyM/PJz8/n4MHD2IYBvPz84RCIWfXOhAIpJRv3equdS5dm73+nKxGpn4f3G73Ck+SbWB2dHQ4Bqa9luslUN/qIUmziS6moz9iIvpPBF0NuJQgeWqQiP4kAB5lP0Gtlrj5Aqa1AECedhzMcTzaPSSMKySMcfyqhUkU0wIjcZjCvEoM4zmwYgC4lAZcZicW1ShqFZY1ilsJopjPgOt1KN7f2vSc/X4/fr/fEfp2fovdINCyLIqKihyBaHsKs+ktkqRn4VZGBMMeYnsV7EYy6b0Vrl69Snd3N7W1tTQ0NHDt2rWs9kmAnRnHk5OTtLW1Obvh6bs4ySFP2djh2ezcZ2dnaW5uprCwkKampg0T4LJlgCeHJCUTj8dpaWlheXl5W3kquSAYIDeN0a2iaZqzY2nvWttJt3ZYRHrVnlwMXVmLmymHYaf4fL4VCdR2KNrw8DBASv6D3+9fV9TnAjuZl2npXIv+mKHl76Bi4lU0VMXFvN5Kifsky3ozea4zGFbiRtiR8TPAwEIjTz2DS1kibkyQMMdR8BJ0VWGZi7jUe4jGB3CRh2k8nvSOZXjUSixULLMfy7yKS73nhrdBbQDfn2z7OqyW32J7Cu0cCFVVKS4uJhqNout6Vj5nEpK0PSQk6eZABMMeYPdW0HV91RCkRCJBR0cH4XCYO++80+m7kO0+CfZ7bFWUmKZJT08PY2NjnDp1iqqqqlWP22vBYFkWw8PD9PX1ceTIEWprazcdK51ND0OyYZ0uZrYTc50LgiGXDNBM4na72bdvH/v27QNueNTs8q2jo6MATv5DutEJuSeicnHnfDfmlF5Jy+4kHg6HmZqaoq+vD4/H44iHRCJxywiGuDnH8NI/M7L8z3iUYvxaMUv6M0Rf7MKcrzXgQiOhFLOgd5Cn1oA1hkvZh0urRjemULlK3Lj24ohu8t33YFqT6NYUGJMoRgM+bweWpaFqp8By4VUimOYTzjxU9Tiq2YOl3gW+P0LNUCdnWOkpNE2T+fl5wuEw169fd6r2JVdg2mkitGVZIhi2iSQ93xyIYNhlNgpBmp2dpaWlhUAgQFNTU0q89HaM+a2yVQ+DnZAL0NjYuK47NhvdmNPHX2vsRCJBe3s7c3NzW25wl80qSYATpjUyMkJvb++WxMxa4+aCYZoLc7DJ1lz8fj/V1dVUV1evqNpjG522eNhJU8VscjsKhnSSO4knJ1DbQnBhYQFN0+jt7aWkpGTbFXoyzVbKvc4mrjC09DDh+ON4tTIUJQ/dihA1RjCJE9CO4lELiRttzOs3wo48aglBrQQDjajRS1wPUajtJ2Few6XWoSpluBWVuP6Y8z4utQZLTZBInMLluYputBJw3QVm34tzVlHVU2j4sBhD9T6AotVl+tKkoKoqRUVFFBUVORtblmU5Hca7u7vx+XwpAiK9v81GLC8vY1mWCIZtYL74dztwM5/n3v/i3Uas1lvBxrIsBgcHGRgYoKGhgbq6uhU3zd0QDFvxYly7do329nb279+/qYTcZPd+NljLEzA3N0dzc7MjwrZ6I8hW7oU9ViKRoLu7m1AotONu3fa4e22s58IcdpvVqvbYZSGHh4fp6OjA7/djGAahUGjPuhYnk4trlAs9D9I7UA8MDDA7O+vkFiWX4rU7UO/FnDfyMFiWyXjsafoi/4sFfZQy9wFi1iKLiWv41CLyVRcerYGoMU3MnEZlGsNawK3sw6cdxMU4EeMZZ7wi10nARFPriZlXCGiFGMYLACgU4dKO4WIG022LA/C57gbzeVAOg1KCZQ7jUqJgdqB43o3ienVWr1E6du+KYDDorK+u6853dWhoiI6Oji2XcI1EIgAiGLaBcRslPd/M5ymCYRdI7q1g3wyTDc9YLEZrayvLy8vrJuBmu8qQ/R4biRLDMOjp6WF8fJzTp087VSs2wq7ClE0PQ7IBZFkWo6Oj9PT0cPjwYQ4fPrwtg38z1Yy2gz3WCy+8gM/nW+FR2sm4uWgI3m5omkZpaakTUhiPxxkbG2N4eDila/Fmkm6zRS6GJO1F9+KNUBSFvLw8jh07BryUQB0KhZwKPckJtsFgcE87UCfMZYaWf0hf5J/QFB8afvK1INcTN6oTBdT9FLmKWTC6WEqMoeGjUCtBVfNwKaUsGX0UKAVEjRt9FTzqEfLUcqLG01jcSGD2qofB7MalnsVSFOJGNz4WMF/0JAC4lJNoaJhUY5kDwABe7W4wXwDtZSie92b9GqVj5wwm43K5KCsro6ysDLjxXbXzH/r6+ohGo06FLVsgpn9GFxcX0TRNushvA8O68Xc7cDOfpwiGLGOaJrqurxmCND09TVtbG6WlpZw/f37dXYxcCEmKRCK0tLQ4PQHy8vIyOv5OSB5b13U6OjoIhUIpeSDbHRcyn/g4MTEBQElJCSdPnszY2NsRDJkWGbkkWnLFILZj4sfHx2lqakrJfxgaGnKSMpOTbneDXLk+NrkoYtK9HuslUA8NDaEoSkon8fRclkyRLq4W9Sk6Iv/CcmIIg0XAxZw+TKWnnjn9CkWu45iWgV+NM6vf8Ax4lBKKXXUsGX0k9CEAyt2niRt9+LW7iJuTuBU/0aS+CR6lFp9aSsKcJma2ARB03YVpPAPks7xcjcfjwecaxTC6nNe5tbvBbMXS7kHzfxZF2V2vjGmaWJa1oSD1eDxUVFRQUVEBpFbY6urqIh6PU1hYSFFREcPDwzQ1NTldnrf7O/7lL3+ZL3/5ywwNDQFw6tQpPvrRj/L6178egPvuu48f//jHKa9597vfzX//7//d+ffIyAgPPvggjz76KMFgkAceeIBPf/rTORE+J9z8yKcoSyT3VrBvgMk3DNM06evrY2RkhBMnTlBdXb3hDcXe/c/mDXU9UTIxMUFHRwfV1dUcO3ZsWz+MuyEYFhYWaG5uxuv1ZmTXfrXk5J2QnCSuqip1dXUZFSK5YKznmsGXa9g71nl5eRw4cMD53IZCIa5du0Zvby8+ny+l6dhG1by2w15/TlYjVwXDWnNaK4E6FAoxOTlJb2+vk8tii4ithkWuhe1hmIp10774z1yLdVPhqWFB7yFmzQNwwHsG0PGqJczq3VR6jjGf6CPoOoqCG68Kc/pTN84ThTLXBSwW0a0oCf0F8rTDmGYHCvl4XEcxzEU8SoyY8ZQzD792HqwoqnYHutGF29uPTzkAzDrjaspZFMBUCnB5//8oSlFGrsFWsO9tW/VgpQtEuwdEf38/b33rW0kkEpw6dYqioiIuX77MuXPntvybfuDAAT7zmc9w5MgRLMvi61//Or/4i7/I5cuXnd5L73znO/njP/5j5zXJG3aGYfCGN7yByspKnnjiCSYmJnjb296G2+3mU5/61JbmsttIDsPNgQiGLJCe2Lxax+aWlpZVexWsh/0jl80b6moGvWEYdHV1MTk5ydmzZ50KMdsdP1teElVVnS6gdXV1NDQ0ZOQ6ZTJZOxqN0tzcjGEYNDU18cQTT2TcaMsFwQC5aYzmAqt9JpOTbg8dOuTEVIdCIQYHB2lvb3e62paUlGQ0Zv5mMs73iq00bktfy+RcltHRUTo7OwkEAs5abjeB2rRM5nwD/Cjyv0lElvGqBRS79zGTeB4Lk3ythkJXGbOJFzBfbLxW6T6LQgKPWsm83ke55zQR/XlcFOFzHcalKCzrT2GbNW61FJ8awOIkUaObJf0yRa7TJIxOADT1EG71AJit6Fb4pcnFjqLl9aEo9aAWgzmDplzDMqfRvJ+4UTlpD7B/w3cS8pYs9qurqxkeHua5557j7/7u7/jud7/Lfffdh9vt5lWvehWvfvWrefWrX82xY8c2/Py88Y1vTPn3Jz/5Sb785S/z1FNPOYIhLy9vzRDgH/zgB3R2dvLII49QUVHBuXPn+MQnPsEHP/hBPv7xj2dMpGYDEwWD3PrOZwvzJj5PEQwZZr3eCvDSLv3+/fs5duzYln647GNXi8HMFOmCYXFxkZaWFlRVpampacdhEtnyMNhVTWKxGOfPn3eaNWWCTHkYZmZmaGlpoby8nJMnT6JpWlZKtm5VMNjVQvx+f8bib3PN4MsVNrsu6THVsVjMCXmxm44ll2+1m1Jlaz67SS4kPaezmTCWtUjPZbF7eSTHx9ticDMJ1HFzmY7FR+lZ/BlG4SI+S2PWmGCf20PEGKTYdYy4FcWv+gglngYgoB0kX93HvP485os5CMWuY2BFyHOdYVHvwWVeB2sMMHEp5XjUQ2jKJEvGZee9C13n0Y0B3No96NYkhjWPx2zHShILPq2RiBXGsKpQGABDxasdB3MY1f0raJ43b+s6ZoK17ss7QdM0Ll68yOTkJM8//zzPPfcczz//PP/+7//Od77zHX7/93+fBx98kP/n//l/tjTPhx56iEgkQmNjo/P43/7t3/I3f/M3VFZW8sY3vpGPfOQjjpfhySef5MyZM04YFcD999/Pgw8+SEdHB+fPn8/YOWca07rxdztwM5+nCIYMsVFvBV3X6erqYmpqasWXerPYNxHDMLISngCpIUnj4+N0dHRw8OBBjhw5kpGbeDYEQyQScXbta2pqMioW4CUP0XbnbVkWV65c4cqVK5w4cYIDBw44z2WjZOtWBIOu67S1tXH9+nUMw3C6GNs7nzvZicslYzSX5rIdvF5vSkhEJBJxkm4HBwedBnN22MtmhV8u7ubn4py24mHYiNV6edgCIjmB2l5LO4F6QZ+hZeHf6I78jBJXFaqyyGJgjGUDirUqApoP3Qowneih3H2YJaOHItcp4lYEt+JmTn8KCxMXBRS6j6BbQyy82EvBoxTjYRGP6wimZbBk9BBQy4gZAzcmbXkIuO/AshbQmUM3ngXc5Gs1LyY5l6BpDai4wHyWQEB3ztej3QXmc6Deheb9aEau4XbJ5mZbJBIhEAjgcrm4ePEiFy9e5A//8A+JRqMsLCxsaoy2tjYaGxuJRqMEg0G++93vcvLkSQB+/dd/ndraWvbv309raysf/OAH6enp4Tvf+Q5wo2phul1h//vatWvkMsZt5GG4mc9TBEMGsCyLeDxOc3Mzx48fx+v1ptxc7Jh6j8ezo116W4Rks1KSqqqOETk1NcW5c+cyaoBnuvmcXdr1wIED6Lqeteoq273uiUSC1tZWFhcXV62AlY3woc2Oubi4yOXLl/F6vc4ulh0G09PTQywWS9nF3krll1wz+G4lFEUhGAwSDAadmPm5ubmUmvJ+vz9F+K0X8pJra5WLgiGbXg+/34/f72f//v2risElb4il0kFmvL0UuW6Eo5iEmDfGcMWKqMivYcnsYzI+BEChWo1f8xI3vcwkOinUDpCwRgloh1EUHwkzRMzsQrfmAPAp1RS69rFsdLOotwNQ7L6DmPEsbrUBTSnAMhcxjRYMlpx552tnURQdVT1DwuzCMgfxKybwklhQlQtYgKEcxuf/FIqy8ypwO8EwjKzdI9Zq2ubz+TYt4I8dO0ZzczNzc3N861vf4oEHHuDHP/4xJ0+e5F3vepdz3JkzZ6iqquI1r3kNAwMD1NfXZ+w89gIRDDcHIhh2iGmaxONxTNNkcnKSI0eOpISw2GU96+rqqK+v3/FNJ9uVknRdZ3p6mmAwyKVLlzJeIi5THgbTNOnu7mZ8fNzx2HR1de1aydbNMD8/z+XLlwkGgzQ1Na3qFdqrkKTJyUna2tqoqamhoaHBSaa3dz7txL70Kj62EVpSUrJhMvnNvqufLTJtDCdXVzp8+DCJRMIRfnbPgOT8h4KCAud3KBfXKBcFQyY9DOuRLAYTpWE65p5EMRLoxiIxa4HJxDyFehG6bpHv2s+SNkPMHCFqzlPsqserBokZPVyPXwHAr5YRdJWwZESZM67gVgLkaz7iRpR81x0kzAhBTWNRf9qZQ4HrDhQsNKWGmDGAphSQp7oxrCUsS8WjncCjlqIbT2Ox/OKrXOSpxVhmHygHmJ33Ewx68dCNYSzh9f8FqlqT9eu3Edks2bu4uLhu49LN4PF4aGhoAODChQs8++yzfPGLX+QrX/nKimMvXrwIQH9/P/X19VRWVvLMM8+kHDM5OQmw6dLngrAeIhi2iR2CZFdBUlUVl8vlGPPxeJyOjg5mZ2e5cOGC0yBmp2RLMFiWxdjYGBMTEwSDQe6+++6s7KhlQjDYSeOWZaWUds2m92WrY1+9epWurq4N+z/stofBsiz6+voYHh7mzJkzVFZWOp/l9DHSq/jMz88TCoUYGxujq6tr3fClXDP4coXdMNDdbjfl5eWOZzAajTrCb2xsDNM0HYGRi+UWc1Ew7FZehWHpdC4+xdNz/4qmuClwBRlLtIJi4cbHQV894fgQi0yimi4CRh76kh+3p5R5fZJi1wxxa46gVotXLcZknJkXey8oaJS6G7CsBDFlnlm9jQrPaZb15wAXftcJ3ARJGE8RJ/7ijDSC2j4sonjUu4kbV1DQMYyfkexJCGj3YJFAV+owzUG8fjcepQqI4Pa8C5d7d5uzrcVeeBh2gmmaxGKxVZ9rbm4GoKqqCoDGxkY++clPMjU15YS7/fCHP6SgoMAJa8pVTEvBtHLrO58tbubzzL27xU3AWr0V7ApA4XCYlpYW8vPzuXTpUkarE2QjB0DXdTo7O7l+/brz47NbSdVbZWpqira2NqqqqlZ0l852BabNGHuGYdDZ2cn09PSm+j/sZg5DPB6npaWFaDS6pepccGOeRUVFFBUVObvYdtjEauFLdmfsXCDXjM/dxufzsX//fifkZXFxkVAoxPXr153uxZ2dnc7a7XU1lVwUDNn2METNZS7PP0HX4mO4VR9xSyeoupmINRPUSsnXyvGqJhPxGwnIAbWcYncp15Vu4toMquUiP55PLKqhuStYsMZxawbLjKHip8B1FI9iMpt4znnPMvcpDHOaPNedLBkDxI0JVCWK9aJY0Cgl6D6OaQ6RMIeBITSlHI1rWOgoFKNq9WgEiBs/hqQOtsbyQci/gqrdg9v7u1m7blslmzkMdh+G7fKhD32I17/+9Rw8eJCFhQW++c1v8thjj/Hwww8zMDDAN7/5TX7+53+e0tJSWltbef/7388rXvEKzp49C8DrXvc6Tp48yVvf+lY++9nPcu3aNT784Q/znve8JyMNQbOJhCTdHIhg2AIb9VZQVZXR0VEnNKm2tjbjN5lMexjSexZMTEwwOzubsfHT2a5gSO5bcfr0aUfYZGLszbAZT8DS0hKXL19G0zSampo2Fc61Wx6Gubk5Ll++TGFhIY2NjTveWU5O3FwtfMk0TUZHRzEMY1PhS7cTe2kMK4pCfn4++fn51NbWcv36dXp6evB6vSklPzOV+L4dclEwZMvDMK/P8uTsv9O68AwHfPuYM+ZYSlylylONW0lQ6j7EZHyQUlcpk/F2ytwNmJZJnqYxnWgDDQLqPsrd+5h1dZOwIgAU6geIJubBqMXwTWIYy8y7OgDQCFLgPoplTRA1R8AcQcVLQAsSN0P4tHOYxHErXmL6S43CFNzkqcWg+DGVauJGD24zhGq1kiwWPMrdxAiD2ojX/2coSu507c6mh2FxcXFHDUKnpqZ429vexsTEBIWFhZw9e5aHH36Y1772tYyOjvLII4/whS98gUgkQk1NDW9605v48Ic/7Lxe0zS+973v8eCDD9LY2EggEOCBBx5I6duQqxioGORWZbRskd3Wu9lFBMMmsSwLXdfR9Rtu2HSxEI1GicfjzMzMcPHiRQoKCrIyj0ztoluWxdWrV+nu7k7pWZDppOR0tmPUR6NRWlpaSCQS6+6M71YX6dWYmpqitbV1y03tdiOHwQ6Pqq+v59ChQ2saY9s11FYLX3rmmWfweDxOEm5eXt6eG6HCSuzvfH19PfX19at6jgoLC521y8/Pz7oxn4uCIdMehun4BD8NP8zgci9FrhKKPX6uRNtRUKn1HkG3wlyLjwNQ6z2CqpjkaeVMJQY46D3G9Xg7RVoDi0sLFBcWMf1i2JGGjwrPSWKuCWLGDDBD0DxEXOuE5SqwvFieJRJKO5ZiV+5RKHGfwySCZU4TMVrwq4cxzBsdmi00PNopPEqAmPE8FlEAVCUfDxEsYkABmnYEFR+YzxEM6ni8H0VVyzJ2zTJBNnMYIpEItbW12379X/7lX675XE1NzYouz6tRW1vL97///W3PYa+wbqOQJOsmPk8RDJsgubeCHXqUjB0mo6oqDQ0NWRMLkJkqQ7qu097eTjgcXhE2k02jezvjX79+nZaWFvbt2+f0LsjU2FthLcPeNE36+/sZHh5e0/Ox0bjZ8jCYpklnZyeTk5ObCo/KFKqqOnH0lZWVa4YvFRcXU1pauqXqSzc7uShckq99esnPpaUlZ+1GRkYAUsq3+v3+jK9dLgqGTHkYhpav0Dz/DKOxHjyKlwUjTLHbz2ximoPeY8StJRaNEZbNBfK1Mso9Vcwk2knoN4z0Gu8JVAy8agkhY4ACq4pwopWAdgCPWowbnN4LAPlqLUFvgCWjkph/EhUfAcuLqSxgxAuxEvvwu9wsKj9zXuNSSnBZ11G1Q6AUEjX6UXETNx5POhOFPLUeRQHLKkM3u7HMPnxKHhZxxsZ+geMnLu74emWabHoYdhqSdDsjIUk3ByIY1mGj3gqmadLT08PVq1c5deoUY2NjWb/R7TQkaX5+nubmZvx+P01NTStCRbKZB2CPvxmj3rIs+vv7GRoaWtG7YC2ymfS8Wq5BLBajpaWFWCy25ZyA9cbdKfZ1ePrpp53E8J023NsJ64UvDQ8PO9WXbEM005W5hLXZ6LOX3NHWsiwWFhYIhUJMTk7S29uL1+tNWbtM9IfZrYpEW2Gnc+pcbOfR0COYVhxViTMZH0MBjuUdwySOgc5MYpyABkGtlKBrHwpxpuMtGCQoctVQpJUxFX8B88Vk43L1EAklgk+rY14fodTlZcHsB1QKXEfRFD+62UM40Q+Agkq5+yAoCrpZRMTdT9CtoSitzjyNeBluZT9x9xjmiz0Y/Go9ptn84hF+3NoxPEo+uvEkOMnRCj61DstsAy4xNf0GTpzMrTWE3enDIAi3KiIY1sCyLMerAKwQC5FIhJaWFgCampoIBAJcu3bNCVnKFts16JNLvK5XuWc3QpI2mn8sFqO1tZVoNMq9995Lfn7+psfO1g5uuhgJh8M0NzdTXFzMnXfeue2cgGx4GObn54nFYpSXl3PixIldD/+Btc9rvepL4+Pj9PT0OOFLdiWfvZh/NsklY3gru/mKolBQUEBBQQF1dXUYhuGUbx0eHqajo4P8/HxHPBQWFm5r7W4VD4NpmTQvPM+jM4/gUj14FJWQMUbMXGafu5oSd4CRWAcWFj7VT43vALP6JJOJYUpc+1CZpcxdT9SMoKEyFb+MiU5A20eJu5q5eBu6f4m4DkGtAlWJUOg+zaIxyoIxSpEWJPFir4U8rYGgVshCohnzxVKoeeoBVPpRKcKtNRA3Q3jdPky1GfuXztLzQb2Ooh1F1TwkjG4UEhjGT0jOW/C57sYyp1G0V2PoH0JVhzNx2TPOzVYl6XbBsFQM6zbJYcg9J/OmEcGwCskhSKu1kR8bG6Ozs5OamhqOHj3q3EiybWxv9z0SiQTt7e2bKvG6GyFJ6wmGUChES0sLxcXFnD9/fkuGeLZzGOzKP8PDw/T19XH06FEOHjy4I+Mmk4LBsiyGhobo6+tD0zROnz6dkXGzyVrVl8LhML29vSkx9Ldb+NJusd3rqWkapaWlTqhbPB53PEddXV0kEomU/IfNrl0uCoateBgSZoLHZ5/hylIXEXOBRXMJtxUjYs1T7qkiasYocPkZjnWQpxZQ7q5GJ8xQ9MZOf75aQpm7mOuJOSbivRRq+0hYs5S4D2Gio5uLzCc60LnRF6HUcwy3EmVO7wNjDAWFfZ46YsYUBa7zLBvX8Co+5hNPOnN0KfkEXfvQTT9LRi9R/TKFrjtI8CzAjX4L6lE0xYWp9GDRCQZYejGKNQjqjd8sVa1HU6rRjQFMa5IC/6eJJAqytou/UwzDyFoBBhEM28dEwbxNkp5Nbl7FIIIhidV6KyTfJOzyo9PT06t2QM52U7XtvMfc3BzNzc0EAoFNlXjdjZCkRCKx4nHLshgcHGRgYIBjx45RU1OzZaMh2zkMiUSClpYWwuEwd911F8XFxRkZNxNztrtzz83NcerUKbq7u3c85k7YrhBaLYY+FAoRDoed8CV7B3uz4Uu5ZHzmWg5DJufj8XiorKx0ensk5z/Yjf/S8x/WmlMurRlszsOwbCzz4/DjPBF+lkpvEWOxYZbMCEVaIZXeIqYTMUaiQxzJO8yyOUu15wjX4sNYyiIz8VHK3QfxqXnEzUmuxtoAyFOLKXOXEtYXuJ7oxafmE1BVFPLwWwdYMMZRmWdOHwJAsVxUee9At0JEzTmiZjMFrkNEjVYsFPLUBlQliFtZYD7xUpOvPO0wCeMyHu0IqlJAzBjEp/lJ8GxSxLUbvxogoXuJxapxe6fRtOt4lBCKGibP9wHcrjsxzVDOegWzlfRsf95FMGwPyWG4ORDB8CIbhSDNzc3R0tKCz+dbswOypmk5E5KUvBO+UXWcZPYiJCkej9PW1sbi4iL33HMPhYWF2x47W3O3k5sz3VsjE2FUi4uLXL58GZ/PR1NTE7FYbM8N00wZfOnhSwsLC8zMzDjhS36/3xEPt2L4UrbJlnGuKAqBQIBAIJCydqFQiImJCXp6evD5fCmVs+z8h1wUDOt5GOYTi/wo9GNeWGglXyug3JNP33IneWqAI3nHWNDH6V/uBhSO5DWQsBa4nrgGQIP/MGBS7KoirF+jwl3CgjFJqbsOt+LHsqaYiDcD4FLcVHoOEzVDzOqDwDQFVhWLxhB5WjVetRQ3CqEkT4JPLcOj6Giusyyb4yyaA5S5z7Csv7Sh4FNq8KlFxK0yosaNfIeg6wwJ41nnGJdaj0+twjR7QbtGngewFBTjEIo2wPzcGXo6TlBS0o2maTm3fjbZzmEQwbA9bq+QpNzaNNoKIhjA8SqslticbHhv1LVX07RVd88zyWY8DIlEgra2Nubn57e8E77bVZJmZ2dpbm6moKCApqamHSVNZiMfAGB8fJz5+XlKS0u5cOFCRm+GO53ztWvXaG9vp6amhiNHjqCqKvF4fEtjppcIzhSZXgtVVSksLKSwsNAJX7Jj6NPDl9JLgO61gEoml4yp3TLOk9fu0KFD6LrurN3AwADLy8vk5+dTUlKSdS/tdljNwzATn+UH1x9nIj6CbhlMx8KUBAKE9RnqfPVMx6dZMiZZ0hep9TXgVlTGY12YGATUAmp81UwlBoiaiygo1HlvbOoEtEquJ0Y54K0krI+Tp5YT0Cpwq1GuxZMar1kNJFgmT61lQR/B7fKxYPYCoBEg6GrApSyyaLwkDkpcp1nWn8ellOHRatHNWTyKzpL+UmUlr3oAy+zCpR5GVUpJGFdxKwXoxk9Szt/nugtdeRZNPUN11VfIz7uR2zU1NUUsFuOZZ55xhPxelFJeDclhyE1uhCTlzu9iNrmZz/O2FgzpvRXSxYK9872wsLApw1vTNKLRaFbnrGka8Xh8zedtAzw/P5+mpqYt74RnO6zKFgzJQqyhoYG6urodGy6ZFjumadLd3c3ExAQFBQWUl5dn3LjarmBIbmR35swZKisrU57fawN5N4xQu3SrHRqYHAKTHL4Ui8WyLuSFreFyuSgrK6Os7Ead/mg06qydHfpnJ72XlJQQCAT2VGglexiuxa7zvanHuLI0SqHbw5XlQSwsjufVYRJnJjHLghHhkK8cTXWzYESIW8uE9KuUuCvxqnn4VBiJ3SiaUejaR5m7jMl4Dwnrxv3jkPcwJjpF7iPMJK5Q7C5jJnGjL0KBVkdQKyUcfwHTEydq3GjeZphXCbgaUPAwr/fhVqMsJnkSAuohNEXBox1l2egnps9Q6j5DVH/eOcat1OLXKtCNGHFjEBjErdZgmR3OMZblwq2dxcJEUcoJ+P8Qt6uMsjIoKysjGAwyPj7OgQMHVvTzsNczPz9/T/IcsiUYTNOUkCQhK3z5y1/my1/+MkNDQwCcOnWKj370o7z+9a8H4L777lvRo+Pd7343//2//3fn3yMjIzz44IM8+uijBINBHnjgAT796U9vuVjLbSsY7MRm28BM32WdmZmhtbWVoqIiLl26tKmd793IYVgrJMlOeO3v79+RAZ5s0GfjBm2HbTU3NzM3N5exXADIrGBYXl6mubkZy7JobGykp6cnK56X7eQwxONxmpub1yznms1qUVtht+eQXAI0OQRmZmaG/v5+xsfHU0JgdtrtejvkwrokkyvhPz6fj6qqKqqqqpiZmeHYsWPEYjHC4TBXrlzB5XKl5K7sdudwy7K4lpjhG8PfYyI+jWapBFwKA8tXqPUdoNAdoH+pExOTclc55d4gI9ErGOjsc5eTr3nQlAqmEuMc9h3iWqyHCk8DuqUTdHm4+qJ48KtFVHlqmNOvsGyGATjgPcaCPkip+wxLxgyqohBOPIep6C++ppIi9z4WjOUbic9Ahec0i/rzYLkIuI6h4cW0+ljQe51zKnKdJao/h0upxqVVkTAn8akBovoTzjEKfryKgWGauLSzWLgwzGmwBtHNEAHv7+F2XUi5VoZh4HK5qKiooKKiAsAppRwOh7l69SqmaVJUVOR4IHZLEGYrh2FpaQnLskQwbBPzNur0vNWk5wMHDvCZz3yGI0eOYFkWX//61/nFX/xFLl++zKlTpwB45zvfmdLROy8vz/l/wzB4wxveQGVlJU888QQTExO87W1vw+1286lPfWpLc7ntBIPd0GqtECTTNBkYGGBoaGjLybe7lfScbmAme0LuvvtuioqKtj2+veuTLUMiFosxNzdHSUnJtjwg65EpwWA3i6uoqHDKkmbLCN+qh2Fubo7Lly9TWFi4bjnXvTZM99oITQ6BCYfD7Nu3D6/XSygUoq+vj2g0uusdjHOVXDzvQCBARUUFBw8exDRN5ubmCIVCjI2N0dXVRSAQcAREtsVff2SMf/e247nexRJRJqKTHA1UoSoaFZ5yVMViYLmL/d79KCh4NZPBaC8+xU+9r555Y4zh2I2uzQe9tbgVBZ9WzHj8CrW+eiZinZS7D6MoGj5F5Vr8xo6/ZSns9xwDK07MjLEc7yCglqGbMyi4yTMOkbCWCOZ5mEm85CUocR3DNOcIus4R0a+woPdR4q4iboacY/KUelyKiqnWETOHienjFLrOkzCeSTpzH0H33ZjWLAYhdKMNUAhoxzDMEdyul+H3vnvF9bLvq8n4/X6qq6udfh6Li4uEw2FmZmYYGBhwBKH9l62+MdnKYYhEIgAiGLaJ5DCszRvf+MaUf3/yk5/ky1/+Mk899ZQjGPLy8lZEGdj84Ac/oLOzk0ceeYSKigrOnTvHJz7xCT74wQ/y8Y9/fEs22G0lGDZKbF5eXqa1tZV4PL6l+v82e1ElKRwO09LSQkFBwaY9IRuND5n/YbUsi6tXrzIwMIDb7c54LgDsvOKQZVkMDAwwODi4ollctprCbUWIjI6O0t3dvaEHKduib7PstWhJRtO0lPCl5OZxIyMjKIqy5epL2yWXDPRcWiOb9M+tHVpmeyKTS+/a4q+goCBF/GXit6t7cZhvT/yYZXOZOU+IuWgENxrnCuoZi40zq89x0FtJnqZRapUyFrvK0byDLBjzHPI1MKeHmDfGmDfClLgqKHWVMZnoZNqKAbDfc0M8BLVyphJDVHlqCen9+JQCCl0HsUiwYPShvxim5FH8FLvLsShmNjHAojZAoV7reA18aiVB7QAJc4AlcwpevE2Ue06xpL+AixK8rkOYZgyVq6nhStoRdON5IA+3dgwTC7fiJqo/lnJNAq4LGMYzqEo5Bf7PrfpZ3ijsR1EU8vPzyc/PTxGE4XA4JSE+uaJWJhoCbmZu2yUSieB2u3fd83WrYKLedmVV5+fnUx73er0bfn4Mw+Chhx4iEonQ2NjoPP63f/u3/M3f/A2VlZW88Y1v5CMf+YjjZXjyySc5c+aM4+0DuP/++3nwwQfp6Ojg/Pnzm577bSMYNuqtMDk5SXt7OxUVFdx1113b+lHZrZAkO2TILkN65MgRamtrM2KI2DfaTBrHdjna69evU19fz7Vr17JiNO3ECxCPx2ltbWVpaYmLFy9SUFCQsbHXYzNCxDAMurq6mJqa4s4773Tq3m/EVptyZZJcMopXI3nHc7UKPsnVl/YqfGk32GtRuRobzSm99O7y8rKT/2CHuyQbm3l5eVs6x46FIb418SgJSyduxkmwwJIapcFXi89t0RHpwqt4OBlo4HpijKnlGzf+s8HjLJvzzOphouYypW4/fq0YjxpEN5eZ1ntJWDFKXPspcpUynegkpN8QA8XaPnwqeNQGZuJXQB/DpybQrSg+pYSg6wCaMs/1xEtdmQuMOnTXCEWuO4ibC8TNEHFlgLg55RxT6j4Llo5XPc6S0U8s0UKJu5aYMe0co1GCRylE104TM3qJG6141VoMcyTlunjU41hmBEW9h6Dvt1HV1X+HVvMwrEe6ILQT4sPhMIODg7S3tzsNAXeaQJ1NwbDVz5nwEoalYFi3x7Wzz7Ompibl8Y997GN8/OMfX/U1bW1tNDY2Eo1GCQaDfPe73+XkyZMA/Pqv/zq1tbXs37+f1tZWPvjBD9LT08N3vvMd4EZhlGSxADj/vnbt2pbmfmveBZOweysMDAxQVla2IlbSMAx6enoYHx/n1KlTVFVVbfu9dsvDkEgkeP7554lEIjsqQ7oatpjK1HnYJT+9Xi+XLl1iYWGB8fHxjIydznZDkuwwn4KCAhobG1fdzcqWh2GjkKTl5WUuX76Moig0NjZuylWf7GHYLNkQQ7mye73RTXy1Cj62AZrp8KVcuSbJ5JqRs1UR4/f78fv97N+/3wl3CYVCTE9P09/fj9vtdsRDSUnJmi7452b7+fFMM/PGPNdiM+iWTpUvQIFSzGxsEY9mMhmbosFfz7K5xER8mJgRpc5/mKBLo2/5Ru8En+LnsL+Wyfgo04kp8rV88lUIuvYTNZdImFFCeh8JK4pXCVLuqSVujjEZvwqAW/FSoPlwqcX4tHJCiSsUq3HCib4XL5BKmecECWMOE4NQog0FlTL3ASJGHwoegq6juJUAS/ozWLxUJKPUfZao8SwKAbzaUQzLwqNEWEwKRVIJ4GUJgzjgw60dA3xY5iAxa5Kg91143feuuR5bFQzppCfE2w0Bw+Ew3d3dxOPxbSVQ2+HI2RAMi4uLBAKBjI8r3LqMjo6mbEyu5104duyYk/f5rW99iwceeIAf//jHnDx5kne9613OcWfOnKGqqorXvOY1DAwMUF9fn9E539KCITkEaWRkhGAwmBJjuLi4SEtLC6qq0tTUlJIosh12QzAsLS055dt2WoZ0LTKVC2B3xK6traWhoQFVVYlEIlntxryVhG3LshgdHaWnp2fDXhV7kcNg51JUVlZy4sSJLd+E99I4zUUjdLO4XK51w5cARzxkO3wp2+SagLG7qW/385Mc7lJbW4thGE7+w+joKJ2dnQSDwZRyn8/PD/CticfxqBrX4hPM6ouUuQs5nFdG39IIuqVTqxdhYRExYoQSYfyazn7vfq7FpvGqMLDcSYmrnAKtCEWJ0r/cDkCBWsgB7z6uxYeZjfXjVwMUuFx4lBIKtCrC+gS6eY1F44ZXIKjuo9Szj3Cin5hxQ0BUe48TTrQQ0A7gVUtIGAvEjAESrgXnvPe5j2OyRL7rDhaNAZaNMVCMFLFQoJ0EdNzqWZaNfuJ6G8XuO4gZPSnXsMB1hBvtpcqJG71EjVbytJPo1iRu7Rz5vt9Zdw1M08yoRy69IaDtUQqHw4yOjmJZVkr+w1oJ1PZnK1seBslf2D7GbZT0bLwYklRQULAikmEtPB4PDQ0NAFy4cIFnn32WL37xi3zlK19ZcezFixcB6O/vp76+nsrKSp555pmUYyYnJwHWzHtYi1tWMKT3VnC5XI4xb1mWkzx38OBBp379TsmmYLDj669cuYKmadxxxx1ZM8p2KhjsEJrJyckVHbGz2edhK7H7hmHQ0dHB9evXNxXmk80chvTPTHK4WXouxWbIld4De/3+mSLT4Uu5JKZyLSTJ/sxkak6apjlrAzd2q+1k2+/1/oyfcQWP5kZxwYQaptCVz8lAOUtWmK7IFQ54Kyh1B+hZ6mVy+TqlWhH7fUUMLQ8znQhzxH8Qw4pS5TnIeGyUEneQ0dgglZ6DuBUXKksMRW+UJPUqfg76agnpE0wlRlFROeirYjYxSrnnOHFzmaDm41r8sjP/cvdhVCz8ag3z+hguJUSxK8iScUMsuI0qSvwHWDK6SFg3qiopaBS5ylg2+lDwkacdRVN9xPVWombEGTvfdYKYcaOvg0Ypbq0ON36ixs+AlxqQ5ml3oRvPoJBPcd5/QVHW/3wbhpHRYhbJKIqSUg0t2aO0WgJ1sqBPzl3MNJFIZM9L/97MmJaKeZskPZsZuC+apkksFlv1uebmZgAnWqaxsZFPfvKTTE1NOWGcP/zhDykoKHDCmjbLLScYknsr2M12FEVxjHld1+no6GBmZobz5887bs9MkC3BEIvFaG1tZXl5mdOnT9Pd3Z3VH6adnEckEqG5uRlN02hqaloRQpNNwWBfk41c4pFIhMuXL+N2u2lqatrUDvFmO2xvlXQPg67rtLW1MTc3t+1ws1wQDNlqorfX7Gb40m6RS/PLtGBIx+120+ea5WfuHmYL55lfTpCvKPgxCcb9XNfn0IwoPs3Lfk8FhW4fPcu9FBgBqgoqWDSn6V3qw42bE3n1zBtThPQZAI7n1YNiUOwqZzI+wmHfQSbiI5S6q/EqQVxqjKHoSzkIDf4TGCxjKS6uxXs44D3G9UQbWColnnq8SoAFvYMFfcl5Tbl7PzHjOkXuc8xFx1AVlXn9WSxe6jNS5j4JRAm4zhDR+4kYvQQpxeQlseBR96Eyj1u7gGHNETMG0Mx8EoyQLBY8aj268QKqUk2h/4O4tI03L3YakrQV0j1KyQnUdjd4u6O47QHIlodBQpK2z+3oYdgsH/rQh3j961/PwYMHWVhY4Jvf/CaPPfYYDz/8MAMDA3zzm9/k53/+5yktLaW1tZX3v//9vOIVr+Ds2bMAvO51r+PkyZO89a1v5bOf/SzXrl3jwx/+MO95z3u2nKR/SwkG0zTRdX3VKkiaprGwsEBfXx95eXlcunQp4xUN7JKnmdy1m5mZoaWlhdLSUs6fP080Gt21xOqtYncdPnDgAEePHl31prFbHoa1mJycpK2tbd05rkY2cxjsce18D5/Pt6OSs7kgGG4XthK+VFxcnHNrkqvzybRgsCyLn4V6+Nb4MwQ0F/3LV4kYURr8FbhdJleWJvC5Nc74q7kWv86oPk11LJ+52BJlrmLm1HmWzTAJU6fe34BJnKvxfnQrQZGrhGrvPsZifcRerGh01N+AhUGRu5qpxAT1/nomYv248VLurSNPdXE1/oIzvwp3HQlzhnL3aeb0URb0CSzVhW7dEAsuAlR6jxG3pliyQiwlZtAI4NKWMEiApRF0HcGvFBLRn8fkJZFR4jrFknGjz4NbrcatVOFW5ogZncAQAKoSwK0sYVjxF6+XikttwKWUoCvLeNyN+D33b+paZytPYDMkJ1AfPnw4paO4/X187rnnHO9DYWFhRuYqgmFnmHDbJD1v1YqYmpribW97GxMTExQWFnL27FkefvhhXvva1zI6OsojjzzCF77wBSKRCDU1NbzpTW/iwx/+sPN6TdP43ve+x4MPPkhjYyOBQIAHHnggpW/DZrklBENybwXbWE++4ViWRTQaZWZmhiNHjqwbq74TkkuS7jSG07Is+vv7GRoa4vjx4xw4cABFUbLeWA22btSbpklPTw9jY2MrynftdOytsF6FJ7sz8ujoKKdPn95y7F62chjsca9du0ZbWxu1tbUcOXJkR2ubC4LhVvUwbER6vfn5+fmU8CW3241lWVy/fj0nqi/d6iFJlmXxZLiPfxx7ChUVTYGOyCB1/n3kaW7GY9eIxuOcDNRiKst0LF/BhcYd+YcJ69NcT4RxoVJpFJBY1JlzL6IZKqY2yz5PFQoqXlVhMNqOhUWRq4wKzz4mYn3ErGUADvsaiBmz7PceYzo+hEqC8fiNBGk3fso9hzCtMLP6BHNMoKJR4aliTh+m2HUMFAWXonA98bRzXgoafsuHarnJc9eyqA+iWxEiZg8mL4UqFLnPopvT5LkuEDeniJpXyXOXEdM7U65TvusQCb0bt+sOLFzEjEHcah4x40lc6iGK/H+46WuerV4H2yE5gXphYYHLly9TU1NDOBymq6vLSaC2Bf12S/IuLi5KDsMOuL3Kqm7tPP/yL/9yzedqampWdHlejdraWr7//e9v6X1X46YXDOm9FdLFQiwWo62tjeXlZaqrqzl8+HDW5pIpwRCNRmltbSUWi63oB6Fp2o4TAzdiKyFJyR2RN5M4bhvI2XBbJ4ckJRONRmlpaSGRSDgKe6tkU+jMzc0xNTXF2bNn1xVbmyUXBINwYx3Sw5cGBweZnJxc0T+gtLR0z8KXblXB8JPrffx0pouZ+DwDkWkO+ovwuxUqvcUsGkvELIOD/n2MR69jKVEmYzOcCBzCpVgMLPdhWhZ1vhpcisGIemN3ukjNp8jyMat7uWpdpdwsZtY9TYWrBksFn+piKNoGWLjxctB/mKgxRVifAP1GSNGs3k+JqxaX4mNBnyJmjhExrjvzrvGdxrSWcSkBZvReCrT9xK0J5/mAepACVxmzZge6skA0MYJLycOjLBJ/sceDV63Fp+4nYV4hbv5/7P15kGT5Wd+Nfs6WJ/etsiora++uqq7epqdnembUPSMwAVpCBpl70b0oLrYkx0tgEJJeWxD3YmzABITYwteAI8QQBlmAsV4ZcdH1fSWMkIQkNJp9uqur1+qufa+s3Pez3z+yM7uyp5fasrtK09+IiZjOOvk7v7PkOc/393yf57sCdr2AOiSfQDPfbI4lEsEnH8NyspiAYdaJjE8+jWG9BSh0eP/fiMLWG4I8TEnSdtBoqXq3AupGBmJzAXU0Gt1yq9RKpfKYMDzG9z0ONGF4kLdCKpViYmKCaDRKIpFoS0ehzWiQld1IhjY2Nrh06RKxWOyuTr7tMlbbjK0Gx8lkkkuXLtHd3c3Ro0e3lNrdnAVoB2G4c+6ZTKYp6Tpz5syOiVw7Vsw1TWN5eblpFLhXL5ydEIZ2+DDsF8KyXwJiWZYJBAIUCgXOnDnTIl9aXFwEaDGPa5fb7Wbsl2vUwF4QhpfSN/ni4ht4JInr5SWqls6pUC9Fq8BcKUOXEmTAF2aqvExaz3Mq2I+DjYODZtdImkkOewfJaHlcssNcdQGP5WYwOEDeXGHFrAffXVKMoOzCtNysmIuEjBAFNUtQ6MCvhHEwSOpXsZx6fUFQ7CAkB3HMCCljARGJblcXOXMOVQgTUvpwCRLr+u2AXhX9yEIJhDBBsZuKtY5b8pM1XoVNj9uInMByyvjkZ6haa1TtPBIlDOe2J4MqdGNbN5CFHiSxF8PJg2OgWa/jbMpKKEIPtnUNgLD7F3DJ2yuMfJSSpPvhTg+GuxVQF4vFuzpQNzIQ96p3a/gwPMbO8M5yej64x3kgCUPDW8E0zWbgufkF05CfLCwscOzYMXp7e7lx40bbtf+bi6u3C9u2mZqaYn5+/r6dcRpBtmVZbSNADyrw3Xx+T5w4QU9Pz7bGbozRDjQCVcdxmJubY2pqirGxMfr7+3ct89nLOedyOcbHx1EUhUgksuerU486YN8vQfp+xp3ypWKxSDqdZm1tjRs3buDxeFqClXbIl76fJEmvZWb474uvYTsgiTBRmGMskMAjSUxW5gjIHp4KHmZVX+VScYYuJUyfv5vJyhyWYzHoiRNSXOQtkRvlOY77B6hZFfqVPtbtdcpWkpyZJe7qJiyHSRkzLNslECEmxwi5fBRNgZyTolap4laqWIJJVBrAJbmxSbGkXWrOt189fKvOYZSMMYvPKVM0p5t/V4UgcWWYirVG0VqgbCUJyv1UzSvNbRSnh7DaT9WaQbPXwFoGIKYMU7Vuy45cwhA+qQvNFqjZS2CvI6ISkMOY9m2yICCjikGgE0U6gl/9l9u+DvtJkrQZW3GgbrS63FxAnclkWF5e5vr16y2/yVAo1KwzK5fLLd0At4MXX3yRF198kbm5OQBOnDjBr/3ar/GBD3wAqGfIf/EXf5EvfvGLaJrG+9//fv7oj/6oJRu9sLDAxz/+cb71rW/h9/v52Mc+xm//9m8/csnjVmEjYLN/nkPtxEE+zoNxN23CnRKkO8lCpVLh4sWLWJbFuXPnmoGYLMv3bEO1l9gJYbhTMnO/4LFxvO0KuOF28fbdsJ253g3tJgyiKKLrOjdv3iSfz/Pss88SDof3ZNy9CMAdx2FpaYnr168zMjKCIAik0+ldj3snHjVhgP21er2f5nI3bA5WGvKlRrHm9PQ01Wq1KV+KRqMEg8E9C/T3G2G4U1b6ILyWnuObG9dYreWYLK1zxF9vkdyh+jEcg6pZYMTXS0rLs66v4Zc8ROUgPlnganmaLiVCwh1joTbLul5DROR0YIScmWFNX0dGIoYHnxRAFGSKVhFBKFGxS0TkTqJKJzlzgSWz7prqEb10+8NgdZC11khbS4RqAXR3XXYUFHqIqjFSxjWMW0XNfrEDw15BRCGkjGE6Bl5RYV2/3T/dJQaRyCGKcVxiF9nKIm7FQ854lc2llJ3KE5TNC3ikI4hCgKq9jFsKUzRfaTlvYeUImvUWALIwgCjGkXFRtV5BFIJ0+v9wR/fGfpUkbTfzcTcH6ob/w8zMDH/2Z3/Gm2++yfPPP082m32bc+9W0dfXx+/8zu8wOjqK4zj8+Z//OT/+4z/OhQsXOHHiBJ/+9Kf56le/ype+9CVCoRCf/OQn+Ymf+Am+973vAXUi9KM/+qN0d3fz8ssvs7q6ykc/+lEUReG3fuu3djSnh43HGYaDgQNFGGzbRtf1u2YV4HaXnp6eHsbGxloeDg/DVG0n+9nY2GBiYoJ4PM6xY8e29EBr97HcS5LUkHjFYjGeeeaZHaWdHwbhmZiYaBrb7VU/8L2Ys2VZXL16lY2Njab3Q8N4aK+xHcJQrVa5ePEiuq7T0dHR9BPYjaxgPwWh+w1bOTd3ut1u1lrvpXxpvxGp7WQ8zmcX+Yu510GwuVZapmYZPB3pY1VLs6EXOeLrxCuLXC/lKJsaI/4OCmaFueo6p4N9VO0qhzx9lMwKy9o8AgJHvIdxSwLXK3VJjl/y0y/HWNYXydZyqIKLhBpAFd24BT9ZM4VbtClZOUQkEq4hVMlgTZ8GHBDgkHuYnLxMxBmhZKcxDINVzoNQP/cyLmJKHNMJkzVn2dCv0+0aI2tcbB6rKsTpUHqpWMsUrRWw1hAJgLjCbbIgE5KP42CBEKJo1bMVYfk4VfOtlnMXkE5gO1Vc0rNo1gpVexmvEECz3wAcOr2/gSzubMX8oEiStos7O6IlEgn+1//6X3zrW9/i5Zdf5qtf/Srf+973eM973sOP/MiPcObMmS3t74Mf/GDLvz/zmc/w4osv8uqrr9LX18fnPvc5vvCFL/DDP/zDAHz+85/n2LFjvPrqq5w9e5a///u/5+rVq3zjG98gHo9z+vRpfvM3f5Nf+qVf4td//dfb5omxl3hntVU9uMd5oAgD0OKt0MBmo7B7del5WIRhq/36dyvraWfAfecxNEzjZmdnd2Qkdrfx2zH/5eVlDMOgq6uLkydP7mnQutsMQ6VSYXx8HEEQWrwf2pUJ2OqxN9r2dnZ20tvbSzabZXJystk9pEEgdmJKtN+C0f2AnZ4Tj8eDx+Ohp6enKV/KZDKsr69z48aNZq/57cqX9qMk6UHzuZxf4fOzr1E2DRTJ4XJ+kePBHtyyyERhjj5PlHeFD3G1ModeMzka6MFwKkwUZxGA50KHyZg5lmpJokqAuOpFEePMVZdBMLlZmSHhSqBKbtyiw0xtCkTwiwEOebpZ0xdZ19eQEOn3xKnZJfrdR9nQl1ElizV9CgDBkTjsPYpuF6g6ZSpME3HFsZQNbMfB68TBcCPaZdaE2+QgJPZQMq+jCh14pT6qdp6gHCClv9HcRkTGjYSFRkA+AUhoVgrTnqPqZJrbqUIXpnXz1neCuOXDiKgY9hU0O9/cThJC4KwCDgHX/x2f60d2fA33syRpL+c1MDDAz/7sz/KzP/uz/NiP/Rg//MM/TGdnJ9/4xjf4vd/7PQB+6Id+iD/+4z/ecjMLy7L40pe+RLlc5ty5c7z11lsYhsF73vOe5jZHjx5lYGCAV155hbNnz/LKK6+8Le55//vfz8c//nGuXLnCU089tWfH3C7YjoD9TmmreoCP80ARBlEU3/aDLxaLXLx4EVmW72oU1oAkSZimede/7SW2QkwanYVs296RrKfd5GezJGmzadydHZt2ir0mDJZlcf36ddbW1lBVlUQisedB0G7mnEqluHjxIt3d3Rw7dqzlHm6nv8P9glPHcZifn+fmzZscPXqUnp4eDMMgHo/jOA6VSqVZkDszM4OiKM2ANBqNPrB+Zj8FoftpLnuBzfKloaGhB8qXHtQqcj+dn/sRhslCkv/f8hWmKxtMFVOMBqPY2IRcXhAsCmaFYV8cyzG5WV1kxJugZNao2iVSWo7j/gG8ksRE6QYAhzwJPDLMVpdwcBjx9CILDp2uOMv6Gsf9Q8xWp+gS41i6RUfQx1S1XhcgInHUP0bJypI16/+Neg6zql8lJMXxSlFEbJa1izi3jJrcog+vKOESRihZaYrWOv3+MdLGVPMYJdOHoQngilFSNijZV+iUR8gZ481tRFTirifI1ZYQUMib1wCBqDxExVpobicg45c6EYRuLKdI1ZqhZF4mKPVhO7fJAoBP6kG3LiELh+jw/ttdXcP9KknabYbhfqhUKoyOjvJTP/VT/PzP/zyWZXHhwgW++c1vNl3G74dLly5x7tw5arUafr+fL3/5yxw/fpzx8XFcLtfbZLXxeJy1tboEbm1t7W2EpPHvxjaP8Rh7gQNFGDbDcRwWFxeZnJxkaGiI4eHh+z6kZFneF5Kk9fV1Ll++vK3OQtvdx27RyDA0OgxFIhGeeuqpPSug2kvCcOfK/VtvvfXIJT4NOI7DzMwMMzMzHD9+nN7e3j0Zdyu437iWZTXdzp955hkikUjTGb3xXZ/Ph8/no7+/H9u2mwHp/Pw8V65ceZue/m6/vccZhoeD3ciX9ts1uhthmC1l+NOZ18jqZabKGxSNGs909LJYS5HSSzwd6qXmaEyXNzjk7aDT7aFUlZmprDPkDeGR/JStKrLgcLU0zRHvAIZjYAtVZqopfKKXw94e1vRFlvQSAMd8QwjYdCgxksY6vUKMxdoUITlKWImhCjBVve3afNh9GLAJSf2kjBU6ELFJ4uAg46JDOYQqmGwYN5oEIuEaJm1MIOEmpBzGtC1cSo28MtMcVzFCVJybILhwOwOIsoRHVsiar4CXpmdsh3KSsvkWDgJe6TCSEMYlCJTNV1vOZVg5Tc28nalwEPBLz+IIJoJ0jE7PbyAKO+/O1Wg4sR8lSe2USlUqlZZ23ZIk8cwzz/DMM89s6ftjY2OMj4+Tz+f567/+az72sY9tqb/+9wvsd5Ak6SD7TRw4wiAIArquc/nyZXK5XFML/iA86hqGzeZmJ06cIJFI7Hgf7ZYkCYJANptlaWlpTzoM3Ym9mn+j/mPzyn27zs12xzUMg0uXLlEsFnnXu95FMBi857gPkzBUq1UuXLiAKIqcO3funm0C75xjI9iEetapkX24dOkStm23ZB88Hs++WrXeb2j3udmOfMmyrH11rTYThqVKnj+dfo3lah5FFJnIL3E81I1XlngrP8uIr4sj/k7O56fxiC6eCx9iprbMciFJRPZxMhjnRnmJmq1z0t+PJEBQ9jFfW6HPE8Z2YMQzRNWusqjNULM1OuQOetQYi9pNtFueBkNSL7pdoVsdYEVbIqqEmdfqWYoupY+QHGZFu4J5yyXZJ/mRhCJ+sRtZdJPSF1BFh6Q+2TzOkNSNJAiE5WNkjFnW9Un61KNkjNtkQcZDwj9IzYpStGYpizNIWgjbybI55ghIw+BU8cmnqVqLlKxZQtIYFet2RyYArzRKzXwLgQCqdBhHELDtCjX7Io5dI+b+FB7lxK6u3+ZmJPsN7cowOI5DuVzeVac7l8vFyMgIAGfOnOGNN97gD//wD/nwhz+MruvkcrmWLMP6+nrTfLS7u5vXX3+9Zbz19fXm3w4CbEfEPsDFwNvBQT7OA0cYstks4+PjBAIBXnjhhS0X9DxKwtBYBQd2bBz2oH3sFXRdJ5lMomkazz33HKFQaM/3sdugfrML9p31H+0iDNvJBDQcRb1eL+fOnbvvPfowMwzpdJrx8fG7SqO2g4bsK5FI3DUg9Xg8iKKIqqqYpnlgWvs9DDzsFf0HyZcqlQoul6spOdup0+1ewXEc8o7Bizde4UJumcVKnj5PANMxCLu8SCIUrSpD3k7cksx0ZYUngv2UrSo3q0sEZTeDnhgmVSaKM4RlPycD/UxX5qjaGrIgcDo0TM4osKqlMRQTSagSd8UxHRtJsJnVrmE5FgEpSJ/aw6o2S0Uugwb9ah95c41+dYy8mUGza6zrk02y4Jei9KpdZMwlNoy6PGhQPUJSv4zjCESVQVxiAM1aZF1fah53wnWETDPbcAgHB1WwSBq3ipUFkASVsFemZhvguLEqXTi2TM27TE0uNcdyCVEcZ77lvLqEAVQxhCmMULNmMK0JBCS8Uh+WU8MjPUWH+6d3ff0az979Shja9SzaLWG4E7Zto2kaZ86cQVEUvvnNb/KhD30IgMnJSRYWFjh37hxQjyk+85nPkEwm6erqAuDrX/86wWCQ48e356HxqGAhYB3gdqPbwUE+zgP1Jrdtm8uXLzM0NMTg4OC2VsZkWX4kNQybOzcdPXp0Tx6kWy2s3i4a3gCSJNHR0dEWsgC7C+p1XefixYv3rKloJ2HYyrirq6vNe7TRNnUvxt0uNhOGzfUKe1G0fud+7gxIs9kss7Oz5HI5vvvd77YUT/v9/keyor3fpDePCnfKl65evYqmaZTL5UdmHtdAXq/xR9NvMl6ep7IqsFot8GxHH0u1DOtakXdF+8iaJWYraZ4MJVAlqFg6ab1AWFXpk6PMVtaJqgo1S2fMNwBYXCtPISEy5h1CkkwmivWV/qDkY8ATZVVbZ7a6SLcao2xlSCg9IEiYjsaCNonhGDgODKgDqKJAyqhQsG7gFb0EZZmqadGjHkF3NAKSyKJ2W6oUdw2g2Vk6XSfJGWtsGEv0qD2U7dvOzkEpgSw4RJSj5IxZUsZ1EuoxckZrhqBLOYKDiSCEKJizOJ5lYvIAVec2WXAckHQZ01VBYQxJ9qHZK6iSj9Id8iS/fJqa9QYiPhK+30IQdr/6vt8JQ7skSbshDL/8y7/MBz7wAQYGBigWi3zhC1/g29/+Nl/72tcIhUL89E//NL/wC7/QlH9+6lOf4ty5c5w9exaA973vfRw/fpyPfOQj/N7v/R5ra2v8yq/8Cp/4xCdQVXUvD7NteJxhOBg4UIRBFEXe/e537+i7jUC+3V1BGvuxLIvJyUlWVlY4efLknqYG9zrD4DgOCwsL3Lhxo5kWzWazezb+ndhpUN8gNKFQiOeff/6uq0XtCsAfJB2ybZsbN26wtLTEk08+2VzpeRDanWGwLIvLly+TyWT2zJPifmi0Hszn81iWRX9/f1O+NDc3hyRJLfKlg9Dy7/sZkiQRCAQYGRnZ0+5L20HFNPjL2XFe3VhEsi1mKXJcTTDkD/F6do6jgTijgSiv5WbocgV4oWOIi4VZDMfiiD+OJNrcKK8gCQLPhYfImSWWaxncXhnDKTPqG2C+uoYs2dyszBN3dRBVQlTsDFfLdWlRRAoQdwVJ6jXmtSU65AgIZVyCm04SlK0SVSdDUsvVzxsSA+4+TMegZJVZ1KYY8QyzrtdN1TximA6lj5qdJG+uwS2PhkH3ETb0SwjIRJTDyIILw76djQCIyIMUjMsAqEIMj9yLCxcp4zU2+y24Kr1UAzeb/5aFDoLSMDopNEfBEKbABEU7TM3TSj7c0ig16y1EoYsuz/+OS9qbRYRGJ6L9JHNroF01DJZlUa1Wd6wcSCaTfPSjH2V1dZVQKMSpU6f42te+xnvf+14Afv/3fx9RFPnQhz7UYtzWgCRJfOUrX+HjH/94U8HwsY99jN/4jd/Yk+N7GLA42Cvv20H7dS7tw4EiDLDzYLPxoGh3j2hJkqjVarz22mvNQty9toy/n7HadmGaJpcvXyabzTYLYBcXF9vetnU7428ucB8ZGWFoaOieL6R21QTcb86apjE+Pt40s9vOi6OdNQy1Wo1XX3212UHsYa42Na6P1+vF6/XS19fX4py6uLjI1atXCQQCzYA0FArty5XJvcZ+C6Ya89nr7ksPgmFbfGVxkr9duU5Gq+FTZHQMwqKKS4KCWWPQ24FXlpivpjgV7AUsxvMzjPi7kUWBDSNNrlrhqL8XVXJ4q1APoA97uvArMlOVEkkjzyn/AKajM+juYUVbJyCLrOsbdLvihOQAJTvJZKWeefCKHrrVCJrjY7m2QI0aEclD0crhF4N0KAkU0WS2dttJeUAdIq1PE3eNoTsGeSNJ1VqjYK03t+lxjWA5VWLKcTLmAhvGFL2uQar2RnMbtxjEJTp4xCeo2TmK1iKi5aXqLLGZLATFIQz/TVRxCEXsQLOzSEgUrddBuB2SqEI3svt2XYRty2AMYMpekHtQpTHC6o/v+Breif3aIQnal2Eol8sAO+4g+LnPfe6+f3e73Xz2s5/ls5/97D23GRwc5G//9m93tP/HeIyt4sARhp2isTJmmmZbCUOlUiGZTDIwMMDY2FhbHp57lWEoFAqMj4/j8Xha6kHaJXlqYDuEwTRNrly5QiaT4cyZMw9sUfewaxhyuRwXLlwgEolw5syZba/AtivD0DCJ6+3t3TMp3HZx53Ftdk4dHh5G1/Vm9uHKlStYltUih9lror0fsN+kUfebz53ypVqt1rxeS0tLOI6zI/mS7Th8ZXGSry5dp2BqXM0neSbWQ8YoMV/JcUwOkDOqzJYzvKujFwODDa1Ih8uDWxaIuUNs6AV8MvS4OxAdCVWCa6UFRnw9+CQXy/oyK+UqbsHFk8Eh1vU10kYeATjq60MUoNuVIKWn8UgWaSONX/TTrSYwnAJT1XrmQQC6xRi2bZNwDbGiLRBXLRa1WwXMjkCPaxBFBAOBJa3eInVQHWDDmMJBoEMZwCeFyZuTaHaxeR761aNkbpmz+aQEbqETSaiQMW4XR8uCB1moULtVIyE4MgF5GJegUKsFKbEE1hKy4MUnylib1i8FZLySiON0IYndmE6FmjOLIqmY0kVs3U/+5geohSabv8sHtUt+4LXdp6Zt0D5/iAZh2MsahncaHkuSDgYOHGHY6eqcIAgIgtC2QLhhHrexsUEoFOLYsWNt2Q/sTdHw0tIS169f5/Dhwxw+fLjlvO5lBuNu2CohKZVKjI+PoyjKllfIH1aXpM1Zj9HR0W3X1DSw14TBcRzm5uao1WoMDg5u+T7c61XvrRyXy+Wiu7ub7u5uHMehVCqRyWTY2Njg5s2bqKrarH3YjRxmv63o7ydsR6Lpdrvp6enZUvelcDh81+Dz26uz/B8zlxBFgcv5dfq8Id7dPcBr6XnGgp08F+rmrdIK/XaYH+ga4I3sLBICT4V7WdUzJKtFOmQfo8EOpsprrBQWORPuw3Ys4mqEnFGiaOu4RZU+dxxFgKvlegAeloMMebqYry1StiqICIz64thYDKiHWNKWgBpr+jIAUbmThNrBYnUaTayCBoPuQZa0ScJyJwEpStksopMio92WcB5yj1Kzs3S7jpMz1yhaaRwn20IW4sphdDtNh/IEFStNwVzDr0ZbyAJAp9JL2VwgJD+B49gUrTkU0aFgXoRNpzci91E267IjES9u+TBuMYhmXsdwNsBeBcAvn0C7ZRI3EPx1rMNPNWuOLl++TDAYbJLAnWT89qtpG7Q3w6Cq6q7J1jsZliNiHeBAejs4yMd54AjDTiEIQtu6C5VKJS5evIgoihw+fJh8Pv/gL+0CuzkO0zS5evUqqVTqni1pH4aT9IPGX1tb49KlSwwMDDA6Orrll9DDyDA0fAxSqdSWsh4PGnev5WW5XA6fz7ereT1sCIJAIBAgEAgwODiIZVlNL4HNcpgGgQgEAgeWCBzUeW/GVuVLkUiEjo4OZvUKn5+6QM6oUbUMJAl6vUF8LpmsXuaQP4pPllmt5hmS/MQ8Xi7mFngi1IsAXC0v4ZfdPBMaZN1Icz4/i19y867wILPVVfJmhYji5ZA3iuYYTFdWiCg+FmuLDKgJJFHBK4pN8uAVPRzx9ZI01skYdWfkY75BlmvzDLqHqVo1grKbqerl5jF3KXHcokxUTpAyVskbWXrcMdJGnSz4pQ46lR5K1vItKdIqAgK9am+zXWpQ6iEgd1GzFihb68AKADFlmMymIme3GCMqD2A4KQynStao10Z0uk5SNC+0XIsO5QSGncQnn8F0KpStGVyOQcn4HptlTLIQxrTnAAi7/hkRz3vBQzOD1GiXnM1muXLlCqZpEg6HmyRwK27v71RJktfr/b74XT8qOAjY75AaBucAH+c7hjBAe9yeV1ZWuHLlSjOwXV1dJZPJ7Ok+7oQoiui6vu3v3blif68e/I9SkrTZr+LUqVNvc7B8ENpZRGzbdrNFriiK9z2HW8Ve1TBUKhUuXLiALMucO3eO8+fPP1L5y26vgyRJbzMja8hhFhYWEAShpXj6oHQD2W/YqyYQ95IvTawu8qXLr5IXDGasKkNePy6XxNV8ind19ZI3q9wspng+1k/J0ljVixxRAkiigyIqVC0dkxpHAwmWqhlSRhbbsXki0I9LFBgvTiMhcsI/gEaZK+U5AA55uvBKElElylxtjeP+AW5Wp+lxdeOW3HhEgeuVa835H/eO4KCDIDFbnWXQ3ceydhPBEYnShey4MEgxV1tufmfIM0DWWKFHPUrVKuM4BhvGVQyn1txmwD1KzcoQd52kaG5QNNOognWLLNThESNo9jI+qRdV7KBqZZBwyBnnsTGa2/mlPkpmncAIjgu71kk02EPNnka3k80sgiz4kJwNbFqfsR4pjmGt4JXP0eP9f73tGt7ZLrlcLjdJ++zsLJIktUjQ7vab28+SpHbNrVQq7bpV+jsdjzMMBwPvOMKwV4FwQyOeTCY5ffo0nZ2de76Pe2En+2gQm8HBQUZGRu67CtRuSdK9xq/VaoyPj2NZ1o79KtopSQJ45ZVXSCQSe1YXsBcEJ5VKcfHiRXp6epp1M9sdtx2SpL2Ex+Oht7eX3t5ebNumUCiQyWRYXl7m2rVr+Hy+ZvYhFAq9LTDYL7UD+2UeDbSra1zeNvnTlSmWKjkWXSY48KQvykQ5SUxXOKkGeDO7SJ/q5/mOPl7PzuOXXDwdiHOzus5MLsdYIIZXEblWzJExyhwPdKE7JpOlFXrcIeaqq5wMDJLUcmiUWKwliSpBBt1dLGjzrOpVAI54+xBx6FI6WdLWGfP1M12bxi2o9Lr7UAWJmdq1pgNzlxIDavS7R0nqa2SsNB2Sl7JVAEBG4bBnFM0pULVrLNZu4BY99RarVp0sBKU4HXKckrlE0brVKQnoV0dI38oW4IgE5QECUpCitUTBXAFWkAU3YclD1blNFiTBjSoqSMJxLEejaM7iqGtYjlAnC5sQlgeomnXZkeCoqPIwitCBbs+hOWX6PP8bknj/Al1BEPD7/fj9/qbb++bf3PXr1/F4PC0SNFmW970kqV01DI+qXfT3C2xHwHbeGefvIB/ngSMMu/lRNh5ou8XmlfoXXnihZZX5YRGGrQbFjdqK9fX1FmJzPzwKSVI6nebixYvEYjFOnDix45Wgdsy94WMAcOTIEfr7+/ds7N0QBsdxmJ2dZXp6muPHj9Pb27sn4+4V2rV/URQJh8OEw2EOHz6MYRjN7MO1a9cwDKNlJfRRn4d3Ekq6zucnx7mYXiOr10BySHgCWIJFwdIYC3XiUSSStQLDTgjJtriUW2JEDuF2SVyqrpAQfZwOx7haXqBaMzjii6NKcLFY/w0+GexDEmwMx2KytMiwP4bj2Ax7+iiYRZb1RcpWlU4lQq+7k9nqLFW7Hsgf8iSwnBqH3IdYrC1TNkus2xu3jNLc9Ln7MJwCa/oKsIYA9AidZFgh7hpEFlwIWCxol3FureALCHS5otTsAj2u4xStHI5jsWFcxdyUbeh1jZLRrxFWRhAFN3lzGY/kI2m0Soy6XP3kjcvgiPjkIWQxiAuL3B1SJFUbpCpNtXwWlo5j2Tk8Ul2eVLHmcKwcOrPYVOlUf5Kg8ty2r+vdfnMNCdrU1FRTgtZ4x+43aVKjxXQ7MgyVSuVxhuEx3hE4cIRhN9htMO84TnNF814r9fspw1Aul1vkM1vtYtLuY9is298c9B49epS+vr5dkUJRFDEM48EbbhGGYTAxMUGxWC9YTCQSezY27LyGYXO9wt0cuXdCGPZyhexhrrYpikI8HicejzelFJlMhnQ6zfT0NFC/jqqq7kknmN1iP61E7lWGwbAs/urmVd5Mr3A1t4EkQE8gwIXMGicjMRBspkoZnu/qo2zpLNeKnO3sw3JslgsVVFWmamnE8WDaJlcL8/SqYUwBRNFkspzkkKeLuNvPxcJNbBwURJ6ODLGqZVjV0oRkLyFFIChHCcshNFtjrjpH1a7hFlQO+3opWRlWtXob07AcRHfydLq6UAQXa/oaup0naaw2j2vMN0a5kkcV/Kzqi4SlKAiFJlnwiWF61D5K1joFM0PBzKAIbqKyh+KtbIPoKMRch0CwcQQvG8YsAHHXCBljouU8xpVjOI5BQH6CgrlI1pynUzlKzrrYsp2XQWxP/d6WhSiq1I+IC926ieGkgcVbWwq4JR81awVV7KfX97/v+lpD/TfX2dnZXIBqSNCWlpYol8t897vfbXZeanQ8e5T3feMZ+1iStD9hIWKxfwhmO3GQj/MdRxh2WsOwuVj4qaeeamp177aPdhOGrRYNX758md7e3m23d213hkGSJAzDwDAMLl26RLFYvGvQuxPsZRFxsVjkwoULeL1ezp49y7e//e09Py87CewrlQrnz5/H5XLx/PPP39X87Ps5w3A/bJZSDAwMYFkWFy5cQBRFZmdnuXLlCoFAoClfCgaD+yqAf9jYLWFwHIf/NT/N/zkzSd6qMVXI8FRnN1cKG5jlPGfjPby8MU+PJ8gLXf28mpkn4vJwrrOfi/llNNvkuWgvWbPEvJanV/ETFWTSAsxoaXoFFd2QiItBsCwuFacJyh56PV3IosX5W74LfsnNmD/OYnWNqcoSYdmPW7IJKwF6pThZI0/KWKFg1ol/UAow4OliXV9nSVtGAEY8/SxpM3hEH12uHlRRZrZ2GcT6fewSVDySjWaJ9Kpj1KwKHtHFota68p9wdZM15okpYzgIFMwkupMiq9+WDvnEDmpWPWPiFmN4pQSiIJE3L2Ntykp4xRiafbNlfEnwoeCmVhvF5TOoWItU7SvE5CFqTrpl27DyJBXzLUBk0P/riEJ7nLsbHbR0XadUKjE4ONhC2hVFacn6PWzDxnYShnK5/Jgw7BKPJUkHAweOMDwKSVKxWGR8fBxVVR9Y6PqoMwybi4Z36jDdKMRtV1pZFEVqtRovv/wyfr+fc+fO7dkLZK+KiFdXV7l8+TJDQ0NNF1xgzwlD4/xuNXDb2NhgYmKipV7hbnjUhGG/BOGSJKGqKuFwmP7+/hYvgcXF+irs5uLp3RaxPwiPmsTdDTu9Vm+ur/AX1yfIalV0LDyyzHA4ylKtwHAwgig4zJYzPBHuxiULTJaSPBXpRZHgzew8J0IJAorCW7k5PJLCs9EBZkqrJO0aqiBxtmOIuUqSNb1IrxjANCvEbB9rTokurcwNa41eNUZI9mFRYaJYD6zdoothX5yMkWFFS+IWVbpUDym9zKB7AMcBWTKYrFxvHsuY5zCWoJNQh1jRFinbBdLmBtyqa5AdmWHvMBUrT87OsFi7QVTuJG+tNMeQcdPvHsVwShiIrOp1uVC/OkR6U7tUEZEOJY5NFxUrQ9FaoWKViCrhFrIgIOKXXJStCqoYRxUTmI6BKkLBvAxuMG+9BmLKE1TMN1uuj1vspWpewyWOElXfg185vaPrvB00Covv7HiWz+fJZrNNw0a/398kEOFwuO2F0o33ZTtrGB5j57ARsQ/wyvt2cJCP88ARht1gu8H8Zr+CRuD4oJdrYx/tKiaEe3cxqlarjI+P4zjOrhymN7tit+MBWywWSaVSjIyMvM0DYrfYbXZkM+F68skn6erqavn7Xgd8jWN/0P2yWbp14sQJenp6Hjjuow5OH/X+74Y7vQQahZyrq6tMTk7i9XpbCjn3a8eXvcJOrtFsLseXbl7lSnaD6VyGJ7q7uJFPE8ZNyOPiRqZEwufDcCxWKyUGfEEMTEqmjiyC6Vh0uQOIgsN0eZ1ToT5yRoW56jq24zAsRQkG3LyRm0ZwBI4FEtiCzmw1CxIcV+PoVo0O28dKbQOXbLJKik45QocrgiWUuFKqB+gSAqO+bhwcSlaN2doix3wDzNXqZDHu6iamRFjUpqjZ9SJpn+THoYRlW/Soh6hUavgUhZnqbVmQKnpQRB3TgrhrDNOxEbBY1iaaciWAfvUIaeMSAhJhZahevCyIrOrjLee0Wz1MdpM8SXAUEu5TOE4VWeilZK1TstLElON1D4ZN8IrdVM36dx1E3OIAktiBiEnFzCBg0e35yLav805wt05EkiQ1f1PDw8MYhtHsvjQ5OYmmaYRCoRYH8b1+dzYKntvxTn6cYdg9LEfAOsAr79vBQT7Ox4ThHmhoxDOZzD39Cu61D2hve7m7FT0nk0kuXbpEd3c3R48e3dW+GyRhr1fTGwXYqVSKUCjE8PDwno4PuyMMmqYxPj6OYRhv69LUMP5rF2G4HzkzTZNLly6Rz+d517veRTAY3NK4jzMM94cgCIRCIUKhEIcOHXpbIKPrOqFQqClf2kof+q3udz9hq/NJV6t8buICM8Ucb6VWGQmF6Qh6OJ9a5XQsznh+jayp8FxngtfSSwQVlbNdPZzPLeM4Ds/GepmtpElqJU6HEygSFEydlWqOqMdFVOrgWmEVSbSZKq1yMtCPbpukzDR5s0JQ9nLEF2ehtkLeKYMIJ729aIZGzAqzrmdxGxYbcgYJkUFPH15JYrJyW9JzzDdESl/lsGeUrJEFB2Zr1zFvdSSSBJFBdw+mo6PZJovaHDE6STVrAkDBxZBnhIpVIG8VWdKm8IoBPKLRQhY65D4ETDqUo2TNRVLGLHFlmKRxO7MB0OUaIWtM4BY78UgJDNtAEhxS+pts9lFwix1U75AnCYj4pCjQgYVJ1VqgZC8SETsomRcBkWH/ryIKD6ft8FYKixVFoaurq7kYU6lUmr+7hYUFgGb2IRKJ4PF4dv2baVfBMzwmDHuBx5Kkg4EDRxh28+DYag1DoVBgfHwcj8fDCy+8sK0e742HUjsfUJuJj23b3Lx5k4WFhS2tPG8F7SAMDf8CQRA4fPgwuVxuz8bejJ0Shmw2y/j4ONFolDNnztzVVbgdtR2bJUl3Q7lc5sKFC/etV7gbHjVhgP2ZYbgfNgcyjuNQqVSa8qWZmRkURWmRLz3q4um9wFYyoTXT5C+vXuKNtVVs0SZVrXAs2kHGrBJTvURUN1PlNMdCMSQRrhU2eDLajSw5nM8ucTKcQJVFXsvO0+sJ8QOxId7IzWE6Noe9UUKqwtXiKjYOpz2d6JaOJMgsV7O4FYuA5CWhdiBic6U0hY1DRA5w2NvFfG2ZglUG4FRwgIyeoc9OsG6nqRYLLKkpAERHZNQ3iOFoFK0q+coUYSkIUgnTMYjKMUJyBFm0mK5ebR57hxxDE5KISMTVIRzALcrMVMeb24iIRBU/GWMeVQgQUfqwcdDtZdaN2548XjFC1VradGZFwtIQiqDiEvsoWmsUrSyK4CUgidDioyDgk/yUrTVkwohWF7ppE/WHyJmvtVwvj9hH+VbGIeH5KQLKqS3fD7uFbdvb/l14vV68Xi+9vb13dRBXVbVJHnb6u2s3YdjrZhiP8Rj7EQeOMOwGsiyjado9/+44DouLi0xOTnL48OEdyWUaAWC7jc8sy6JWq3Hx4sXmivhe6SgFQdhT87ZkMtnU3R89epSVlZW2FVVvt+jZcRwWFha4ceMGo6OjDA4O3vOatzPDcLdxNzY2uHjxIn19fRw5cmRb8rBHTRj22yr6TjpG+Xw+fD5fsw99o43k/Pz8XYunt3J99huJut98HMfh72dn+MrsTaazWfrDQSqmQcHU6Ax4KFcNwqqFIosUdB0lKGJiUTYNZMnBwsEnuxFFWNcKnAgmEHB4IzfHiK8TtySRNvNcLm7Q54nQ7wkynp/DwiYgq4wGOsgYReaqGwx7O0kZSQY93UiChCqKXCrdAEBG4mRgkJJTIGXlgTxjvn7mtRmiYgTVUtHMGgvVGSyh/kxzCQoxlx9FjOIRiiSNdaJKiIXajebxq6KbLleUTAlKcpolbYZe1wAr2o2W83TIM4bj6ISVQTLGIhX9Ov3qAHn7NlkQEAlIXqpWlQ7lODYOBXMJWbRI6q2dkjqVHvLmldvfdVzE1FM41JDFQSrWEohFXGIXRfPtGQdZABMDtzRIv/dnt3dD7BK7lbHe6SBuWdZdf3cN8nA3z5V7zatdhKFSqTyuYdglHEfEPsCGZtuBc4CP8x1FGO4nSTIMo9mm8syZM0Sj0R3tQxCEthc+N8Z/+eWXicVi91wR3w32YjXdcRxu3rzJ/Pw8J0+ebK7CtLML03aKni3L4sqVK6TTaZ555hkikcgDx25HlyRoDdwcx2FmZoaZmZkdZ40eNWGA/Rcc7waiKDYzC1CXrzWyD5cuXcK27Zbsw1ZbGD9q3CvD8NbqKl+4cpnFSoG1UokjnR28vrHCyWgMRZEYT61zujPORH4NWRB5OhbnQm4Vx3F4pjPB9UKSrFHj+c4+ClaNuXKO48FOvIpIjyfEWi1P2K0QlD0EZQ8BReat/AweZPrkCI7b5nxhBoA+d4SoS8UkyHRljSO+BDOVRTqVCB2uMKJgM1m92TReG1C7UUSBLiXOmp4kLPlRXGZ9ldmRiNhRZMtkiUUcof6dPlcPS7ecnbvVfiRkZNFgpna1+ZYMShFK1ioODgGpk6AUwyXKLGkXaBRHAwyqY2wYl5r/Dkg9ROVuKvY6NadK9ZYkqdd1jPSdbVVdR8kZE/jk/rrZmlPBcQwyxgWcTa7PgiOjiho2re+ZsHyKsnkFj3SMw75ffGhSpAb2eiVfkiQ6OjqakmBd19/mubK5/uFeBmrtNJR7LEnaPSwELPbXIlO7cJCP88ARhnZIkvL5POPj4/h8Pl544YVdd+xpJ2ForIgDjIyM0N/f35bV3N0eg6ZpXLx4EU3T3pb9aDdh2MrYlUqFCxcuIEkS586d21J3nL1s2bp5TLgt/2rUKxQKhS3XK9xr3McZhvZBVVUSiQSJROKuMgq3293MPjRccBvYz+dmsVDgTy9cIFWrcD2XYjAYZjAaIq/XeCoWZ76So98foi/g50ohybFwJ5IEF7KrnAx3IUnwSnqBo4FOTka6eDkzhyKIPBvtZU3LcrNSxC+7eDLSzWotx43yOqdDPSS1PE8E+5kurmGIGiu1HN2uMD3uKMvaMhPFunfCgDuGRxLpcceZr63hlhRyVt14rU9NEJb9LOvzrFUqAKiiQlBRkAUPMaWLZW2FDl+AuU2ZBI/lQS+XCItxSkqOZW2BEc8wy/pMcxsJmZgSRSBGwcqQM5O3yFaOzWShU+kjY0wSkYeRBQ95K4ksuFnV32qpb4jK/WSMy81/K0KQoNSPgIkgRMjdcn0WkQkrHehWq7dM0B7AVK4BIOLBLQ0hC2E0Zx0Dm5hymoDr4UmRGmi3YZvL5aK7u5vu7u6mbLBR/zA3N4coii3tWxvP9XZKkkql0uMMwy5hOwdb278d2Ad4He3AEYbd4M62qg0H35s3bzI8PMyhQ4f25GXeLsKg6zoXL16kWq1380gkEm3txLTT4LhRDxCJRHj66afflv3YS7nTndjKvButSROJBEePHt3yC26vWrZuxuZi6nK5zPnz53G73btuNfuoCQN8f2UY7oc7ZRSmaTaDmJs3b1Kr1ZrF07qu76vz0sgwFDWNv7h0iYvr65RNHbcqIwkiikukrOkYtoUgC1iAIDlYgoODgyg62I6DR5JBdChbBiP+DvwuhfHcMk+He3EEm2ulFUQEng73UbLLvJ6tm5edDvZgY5LU82zoeQ67gjjAsDdBSsuTNNbJmWWiSpABT4wVbZVr5XUAulwhRFHnkKuflJ4lbeQwKVG26mQhLIVueS2ssWbWaxlGvANNshBT4oSkMDUnRcpYb56TiBFhWbwOAgScGILuIuBxsbhJiiQLMj5ZIGfWn8UuwUtEHsAlmpQtF0ljDgC36Md0qi1kQRE8OE4ZvzyIIgSp2jmK5goBuUjauE1S6sc4Rs4cb/ksKA1h2xqSfhzJbVCxFtDNaQJSgqo9j1vsZcj38d3dGDtEO6U/d2KzbLCvrw/btpvEvdH1zO12N93e2/WuLJfLBAKBtoz9ToH9DpIkbfc4X3zxRV588UXm5uYAOHHiBL/2a7/GBz7wAaBumviLv/iLfPGLX0TTNN7//vfzR3/0R8Tj8eYYCwsLfPzjH+db3/oWfr+fj33sY/z2b//2tpUpB5Iw7DQY2hzIN0zDCoXCluQoO93PXmFzEP7kk0/yD//wD201V9sJYdhMwO5XD/CoMgyO4zA9Pc3s7OyOpD7tyDA0xk2lUty4cYP+/n5GR0d3vUr3qAnDo97/ZjzsFX1ZlltccDcXT6fTaQRB4MqVK80MxMM2sdoMy7b56swc1y5f4fzaKoPhEDlTQ9Mq9Ib8vLq6xKnOOFmrxlJqjafj3VzNJ9EskzOdCa4VkuT0Gu/u7melVmC2nOW5jh4QHSRRpGhVqdk1jge6mStnqDhVFippTgZ68coyl4v14mePqHA61Md0aYWsXcFTU+h1e1ElF0HJz4aeY11PkjNL4AgMe3vwyA6zlSVWtTSKIDHgibChpxn2HKJq64RkF9c3eS0kXJ1U7TyH3EfImTk29A2CXpWUfpssROUoAbebiDNKxkiRJUvUjpJ0FlvO24B7gIK5TrdygppdI20s0qForN3yXmggJkfJmPXP3EIUn5xAFWTSxnVMK9Xcrkc9Rs4Yb/luWB4iZ04gODI+eQhRCGDaVRzSaNIaSNBQJEWVUxTN84DAqP+XkYT2+oncC+2U/jwIoii2dD0zTbNZ/5BMJjEMgzfffLNZQB0KhfZkrpVKZcctzB+jDhsB+wBLdbaD7R5nX18fv/M7v8Po6CiO4/Dnf/7n/PiP/zgXLlzgxIkTfPrTn+arX/0qX/rSlwiFQnzyk5/kJ37iJ/je974H1H+TP/qjP0p3dzcvv/wyq6urfPSjH0VRFH7rt35rW3M5kIRhp2gE8rlcjvHxcQKBwLY6z2x3P3sBx3GYm5tjamqKI0eOMDAw0FyVfhh1EltFow1tNpt9IAFrJ2G4V6BqGAYTExOUSqUdS33akWFwHAfHcZicnGyp89gt9lPA/k5HowtMX18fc3NzZDIZ3G53i4lVgzzsVRCzFbyysMSf3pylLEPNcTjeFeNSJslYtIMNvULNNHmup5fL2XWOhGMMhQKcz6zUpUcyvJxa4IlwnLFIB99LzxN1eXl3Vz/j+WWqlsmIL0LYpXKlkCGllXki0oUkiARlL5qtMV9aIeYK0OkK4pLgzUI9sPaicCrYy0ItyUItjVuU6fUEKFtVjvqGSGl5BEFjqrIGgIDAE/5D1BwN2xG5WZlnzDfAdPXWeKKXHncPpl1gVU+Tou6GPOY9xIJW92vokLvxS2F0cqzotzsZdSpxysJtcza3EcKt+0hZKapygbxZAGDIPUpyk8QIoN91FJMSMeUJylaWgrWKjzjreqszdEjuIb/5u46IX+rHLUURBYmiuUDWnAOg23WMornW8n2v2EPJrNdMdLv/GWHXme3fDHuEdkuStgNZlonFYsRiMRRFoVQqEYvFyGQyrKysYFkW4XC4SSB20ja5kRl+nGF4jHbhgx/8YMu/P/OZz/Diiy/y6quv0tfXx+c+9zm+8IUv8MM//MMAfP7zn+fYsWO8+uqrnD17lr//+7/n6tWrfOMb3yAej3P69Gl+8zd/k1/6pV/i13/917cV/77jCIOmabzxxhuMjIwwNDS0L/X/DTSC3GKxyHPPPUcoFGr+rZ2ynsb4Ww3qS6USFy5caDphP6gN7d18JPYKd5t3sVjkwoUL+Hw+nn/++R23w9zrINw0TSYmJnAchyeeeGJHrtz3wqMmDI96//sVgiCgqirDw8MMDw+3FHFeuXIFy7JaNNh70YP+Tszn8nzurXEWc3mKtoFLVOnwuKjaJj6XgiXYKKKIIILhWHgVF5IMumPhl10g2ui2zYAvhKqIzJWzPB3pRRLhlcw8h7xREh4/10orzOVSdCp+hkMRrhSWqdkGg54wPllmQIpxs7RGtzvARHGeAXcMyXCQJZvzt8iDJMDp4CB5q8RyLUPWmOdEIMFMdYGwHCTuiuGWBC6Xbzsp97vjrGlLDLmHsBybNX0d3c6zrq82txl091Gycgy4x8gYGdaMDUYVDyltEzkQ3QhOGY8RJuCOUCKD5JbQ1SSGc7vbntcIsSFeBQFcBAgpfbgEN2nzKoZTaW7nEyOUzdmWayGhoAgaitiJKnVhOgYFcwm3FGBDf6tl27A8RPEO0zYBEUWU0E0bnzzGIe+ndnFn7B7trBXYDSzLwuVytdQdlcvl5m9venoaWZZb2rdutZ3646Ln3eOdaNxWKBRaPldV9YH3nGVZfOlLX6JcLnPu3DneeustDMPgPe95T3Obo0ePMjAwwCuvvMLZs2d55ZVXeOKJJ1okSu9///v5+Mc/zpUrV3jqqae2PPcDSRh2Eozous7k5CSWZXH27FnC4XB7JsfeEIZGIbbf779rFqSdQTdsnZCsrKxw5coVBgcHGR0d3VJw8zAlSY35HTp0iOHh4V0FX3s57wbJcrvdyLK85111HnXAvt8Ke/cLeblzHncWcZbLZdLpNBsbG9y8eRNVVZvZh0gksqtuaEVN468mrvH6yjLT6Syj3VGuZCuc8HuYK+ZRJYkOv5c3kqs8He9mXSuxmi5xtruHm8U0qVqFdyf6mS/nWKzkeSHeR9U2SWtV+nwBKpbBmL+TiqUzWVol5vIz4Inikh3eys2hCjJPh/rImHmuFJcBeDLUh4PFgCfGQjXFESXKnLVBWPbR6+5EEW3OF2/XDpwODGKhM+DuZb66SqcrzLXyrSDcEeh3JwjKCnlTYKY6D3DL2XkagIjcQczVScFKkjZSrBt1WdAR72GWbmUbREeiy9VHUHaT1OeoKiVKVgZZUOhQQlTN22RBEVQ6vCFMM0jZLFCW0lRrM4REFUO8TRYEBPySj7yZBEAVwvjlHryim6w5hWZnwaoXdkflw2TN212WACRURPI0CqwdR8Zl9xJw92I4KRzBx6D3Z5DFRxu47qcMw2bcSWQEQcDv9+P3+xkYGMC2bfL5PJlMhuXlZa5fv47X622ShzsbF2zG4wzD7vFOrGHo7+9v+fw//If/wK//+q/f9TuXLl3i3Llz1Go1/H4/X/7ylzl+/Djj4+O4XK63xbPxeJy1tXomcm1trYUsNP7e+Nt2cCAJw3aRzWa5ePFicxVg80p9O7AbwrDZF+B+WZCH0br1fsGxbdtcv36dlZUVnnzyyaZr51bQrloAuB3U27bN5OQkKysrnD59uqkn3w32at4NX4r+/n6OHDnCt7/97bYEtFsds1Hbsbq6SiQSoaOj474vyL3e/2PUsTmIGRwcxLKsZvH09PQ01WqVYDDYJBCBQGBLxMyybf6/lyd5aX6RC8k1RjqiqF6ZXK3G4aCPmUqBox2dTBczGLbFC339vJZc4mRHF/3BAK9sLHIqEmcoFOKljXn6vSHOdfXyWnoJG4dnO3rImmVmyxkSbj99vgBFU+ZmaYNnOhIsVjOcDg2Q1UusaGkyRokOl58RXydT1WWKtwqHnwz2ka/kGZBiLBoZBr02V2+RgYTaQa8aYbY2T9mqbz/gjrOsLRKTI0RcUbJ6DluocrOy0Dz2o74hMkaSIc8oebNI3szhshzSxkZzm161h6Q2R496GBBJast4JYX5WqvEqM89wKo2iYxKh6sPUZCRBYs1vV4g3Xibdsu95JxWf4SIPYRtGcSUJ6jYGYrWKh4nypp+mc1dlhTBi0WKO9GpHMGmhCL3YNgFiuYCglAhZ7yFjUaX+sPE1BceeC+0G/uVMNi2fV/pRaO7UkNK23B9z2azzcYFwWCwpX1ro+uipmk7yjD89m//Nn/zN3/D9evX8Xg8PP/88/zu7/4uY2NjzW1+6Id+iO985zst3/vZn/1Z/viP/7j5770qaH2UsHkHOT3fqmFYXFxskUbfL7swNjbG+Pg4+Xyev/7rv+ZjH/vY2+6Lh4GDc0ftAI7jMDs7y/T0NKOjoyQSCb71rW+1vZPDTuVC26kDaDdhuN9qerVaZXx8HMdxeP7557dd8NUgI+3oXNE492+88QamaXLu3Lk9K0jbbQ2D4zhMTU0xNzfXIkFqRzZgq/fg5jaug4ODlEql5gsyHA43g9Pt6nv3W4bhIEKSpKYGG+q/u4aEYmFhAUEQmgTvXhKKN5dW+NLFa5RMnZyucSgapoZJSFXxuhVyxSoBxUXF1gmpKqosUTY14h4fkuhQtQz6fUEkGVK1Ck+Eu1EVkTczy5yKdOOVJd7ILiAicCbSQ9oocT5Xzx68OzZAxdYoGBqzpQ1CqkRY9tKlhjAxuFKaQ3dMApKHMX83y1qSlF0AG04G+pirrnDUN0TBrOCRJK6Vb2Dd6jYUlfxEFS+iEGNFW2fDyHHE18N8rZ5V8Ik++t0JylaBjFkibRYBOOLtY1GrkxCXoNLj6kUWTfLAYq3+eY+rlxVtsuU89sqHEBDodB0mpS+yqs/Q7x6pk4VN6HEdJmdex3EEgnIPqhDCMhxK4iSOY9CwUpAcFdNOs5ksAHQoA+TMS8j48cp9iLgRBZGM+RbOHZ4LLrzobCALQY74/8027qz24WF2SdoOtiuV2uz6DvXfXoO8Ly4u8vGPf5zBwUHOnTtHJBLZUVvV73znO3ziE5/g2WefxTRN/t2/+3e8733v4+rVqy0E5Gd+5mf4jd/4jea/N7/P9rKg9VHCeQcVPTu3jrPRWW8rcLlcjIyMAHDmzBneeOMN/vAP/5APf/jD6LpOLpdryTKsr68344vu7m5ef/31lvHW19ebf9sODiRh2Eowous6ExMTlMvlpv5/c6/7dj7U7mzfuhUUCgXGx8ebKw0P0rK1U9bTGP9ux5BKpbh48SLxeJxjx47t6Dw2VqDaQRgKhQKO4+DxeDhx4sSeXufdZBga9SjlcpmzZ8+2pLDblXF5EAmpVCqcP38eVVV517veBdy+No3OPul0mpmZGRRFIRqN0tHRQSQS2VIdyOMMw92x03ve4/HQ29tLb29vs4VkOp1meXmZa9eu4fP5muShgsgXJ65xcW0dr9tF2dCpmgaq282NZIpn+nu4lNrA6ziEgl4uptZ5truHtVqRhVKeH+jtZ76cZ7Gc592JfjJ6lblSjue6erCx6VC9ONhcLSQ5Hekhr1dZ1fIktSLHA91EVBev5eoBuFdSOBHuYqWWY6qywYA7TNkp0uOO4hZd2FhcKc1gOvXfwCG5A1FwMB2Hq6V5etQIaSON4zgc8vahCDIVO8/V8u2ORMf9gyzVFjjkOYxmG5StMiv6IhX7tizoqO8Qa9oCg+owpmOxrq9iCxUWtdtFzj7Rj26nsR2HDqUHjxQim8uQ9S1iaLelSGG5k4wx3XJ9/EIUl6jQoRwnZ66SMdeQhTRRJYBzh4+C34yhiXPNf0uOl6gyjCNYqOIAJWuVqnETEYWw7H8bWVD1IXR3ff+j/k/iEveuy99O4TjOvs0w7LZ7k8fjwePx0NPTg23b/Mmf/Al/93d/xze+8Q3y+TxPPvkk733ve3nPe97De97zni1l3P/u7/6u5d9/9md/RldXF2+99RY/+IM/2Pzc6/XeM7Dby4LWRwnbeQdlGPbgOG3bRtM0zpw5g6IofPOb3+RDH/oQAJOTkywsLHDu3DkAzp07x2c+8xmSyWTzvvz6179OMBjk+PHj29rvgSQMD0Imk+HixYuEw+GWIteH0V0ItpdhcByn+cLfjs7+YUuSNrsPHzt2jL6+vh2P3Xhw7+XLpSHlmpysrwyePHlyz19cO80wlEolzp8/j9fr5dy5c28LttuVYbjfmA3i19PT00yB67re/Pvmzj62bTfbE87OznLlypVmer6jo+Ou0pj9lGHYT3PZq+u8uYXk4cOHMQyDTCbD2sYG/+3r/8jNUpkVTedQR4grG0lOJeLMbmQJ+FRGujq4kcvyRGcnb24s47NtXujt43vri5yIdPJMIsF3kwsMByKc6ar/v1eSeSHex/XSBlm9ypOROKosYgswU0oTUVUS7iCiIOBRRF7PzdLh8jHoiVJxKrx+izx0Kn56vAHWNYeZygb97ghFK48quDjii1OulEiRZalcD7BDspeI4sIl9rKsJZmpLHPE301Sr8t2JETGfEMYjo7uwM3KHC5BIa762TDqZMEtuBlw92HaVXTHZLZW9zoY8x1moXY7kyA6IgPufgxHwyLJurGObKYJKAoat8mChIxLdKgaJlFlAFX0U7GKuEVY1q62XKde9RAbequ0qVMZoSrME5KOYFsyFSuL7hTI2lM4crll27hrlLzZ2lXJJURwXPUsTkR5hoT7Azu7ifYYjffFfiUMe7V4JIoizz//PM8//zw3btzg3e9+N5/73Of45je/yX/8j/+Rj3zkI5w8eZKf+Zmf4ZOf/OSWx83n8wBNN/kG/vt//+/85V/+Jd3d3Xzwgx/kV3/1V5tZhr0saL0TqVSqed7cbjeqqiLL8r56nr4T8Mu//Mt84AMfYGBggGKxyBe+8AW+/e1v87WvfY1QKMRP//RP8wu/8AtEo1GCwSCf+tSnOHfuHGfPngXgfe97H8ePH+cjH/kIv/d7v8fa2hq/8iu/wic+8YktF/Y38H1FGDb32R8bG3ubC7IgCG0PtKEebBuG8cDtTNPk6tWrpFIpnn76aTo6Ora8j4fZJUnXdS5durSrlqR3jg3s2aq6ZVlcvnyZTCbD6dOnOX/+fFtWt3eSCVhfX2diYuK+ReHtaNcKdw9ON3tlHD9+nN7eXuD+10IUxaZ2d2RkhFqt1sw+LC4uIghCkzxs9hV4nGF4eFAUhcu5Mn83vcqK5aD6fPR7Vcq6TrdLZjmbolNV0S0N1eWi0+MhpVeJSS58LoWsUeNQIIziEsnrNU6EOlEUicl8imc6epBleCWzQLfbzw90DfBmbgHdtghLKscjnVwvrrNQzXI6kqBkVjkZ7GGytI4haEyXkyTUMAk1xIaR5nx+DoBOl58O1U0EN1PlVZZraSRBo+YY+EQ3g55ubKHKdHW5eZxPBAa4WZ6l192NW/SiOzqztTkM5/bz9pA3zrq2yiH3YQzHomwW2TAWqdi3g/FDnkEWapOogptOVx+2Ax5RYqraGtwPugdY3SQ78ohBetVDaHYBWSiSMurZiQF1jPU72qrGlUE29CsAiLgIyQMogg/TyVBzDKrmrQyFCAn1CFnjSsv3ZS1KXrjIZqWGIoQJy2NkC+soHoEx//9zm3dK+9B4huxHSVK7pFKlUgmfz8d73/te3ve+9/G7v/u7bGxs8A//8A/bWt23bZt/82/+DS+88AInT55sfv5TP/VTDA4O0tPTw8TEBL/0S7/E5OQkf/M3fwPsbUFrA7Vajb/4i7/gpZdeYnZ2FlEUEQQBr9dLrVbji1/84rZqFreCd2LR81aRTCb56Ec/yurqKqFQiFOnTvG1r32N9773vQD8/u//PqIo8qEPfajFuK0BSZL4yle+wsc//nHOnTuHz+fjYx/7WIvMbas4kIThbkGXpmlMTExQrVbvG9Q2CpXaia2QklKpxPj4OIqi8Pzzzzct7Lezj4chSWp0a2p4Vuy0JemdY8PeEIZKpcKFCxeQZZnnn3+++VJoxwtiO4H9veoV7oaHlWGwLIsrV66QTqd59tlnd9wpzO1209PT00zPFwqFprb36tWrBAIB3G43pmnuG4nC9zN5mUll+YvXLzKXzeHzqFQMg46OIPP5AtGAD80xWc3lGPG7uVbIE1dkBEVitlbhhNdH3tSYLxR4vqePtFZlupDlmXgCy3GwcBAlh6RW5lS4G9MxeTO3QEz10eMOkrfKvJaZR0LgmUgvBavMbCWNgMPpcA+mYzHi7WaxlsGnCKzrefySm2FfnKJV4EqpHnC7RYWIS8HSBKJyiGUzjSDqzFVuk4WT/iHAIaiEma8lCUpePLLTJAuq4GLMN0TVLqM5FtPVOWRBolcNkTRuk4UOKYYqKnQpQ6xrK8xVZ+lTe1nU5lrO64A6xKp2A1WLEPHHKTtFPKLKfO18y3ZRuZsNo7WWwSV4UUUFVTyJZpfJmUskjVl6XcPkzfmWbWPK8NvIgoBEwCNg2V3Ymh/dNLGVIqIQJum8Ch6IC/8cr7w988l2ovHO2w+/9zvRrnavDcKwGZ2dnXz4wx/e1jif+MQnuHz5Mi+99FLL5//qX/2r5v8/8cQTJBIJfuRHfoTp6WmGh4d3PvH74I/+6I/4zGc+w0c+8hG+9KUv8eM//uMkk0leeeUV/sk/+SdtMal7LEm6Nz73uc/d9+9ut5vPfvazfPazn73nNoODg/zt3/7ttvZ7NxxIwnAn0uk0Fy9epKOjg6eeeuq+3QF2Ul+wXTyIMDRafQ4MDOzY1fdhFD3ncjmWl5cZHh7m0KFDe5aKbEjDdksYGt2Gent7GRsba8mKtMuReSvj3q9eYTfjbhebg+RarcaFC3Vpw7lz57ZNUO8FURQJh8OEw2EOHz7c9BVYWVmhVqvx0ksvtRTm7tV+DzL26ndUqun8j7eu8NrCEslSmWDAw3w+Tyzo5UoyxdF4B6+vrfBkV5xowMOaofNsby8vry3RL7k4GQpxuZIjYbsY9QV4aX2RqOLmuXgP49k1apbJu+N95Mwac6UcY6EOZAlG/Z1MldIEXQpJrcTT4T4cHK6WljEci6Ds5mSom5lKkpReQhIEjgVjGLbJcX8fs5UNKnaZxVpdVtQhBxj2xVioJUk7BTDgqWA/k5UZ/JKXHncclyBxszqN5dSfebIgElO9JLUNhjyDOI6AiM2NyiQ2t39LI95e5mtThOUoETlGzariCFWmK7dbtfolP1U7hXOrANkteIm5epEEC0nwU3IVKOkFvFIAyLZcA1lQEAUdy7EIygm8UhTd1vGIAqv6tZZtu12jpI1WyZIieDGcegGi4Cj45X5k0Y8qqGSMy5iUwZUGF0h4EKh3dxKqcYqrx5kuTD90w797wbbt5rN9v6FdDtTlchm/37+rY/7kJz/JV77yFf7xH//xgVLfRq3Z1NQUw8PDe1rQ2sAf/MEf8OKLL/KTP/mTfOELX+BXf/VXOXHiBP/23/5bLMvatoxlK3js9HwwcKAJw+ZV3KNHj9LX1/fAH+7DkiTdbR+WZXH9+nXW1ta23Yr0TrRTkmRZFhsbG5TLZc6cObMtqdRWsZui7c3X/cSJE/T03F5la1z/dqwobyXDsNkk7m71CndDuzMM2WyW8fFxOjs7OX78+D1fnHvxom/4CsiyzPT0NMeOHSOTybC6usrk5CRer7cpXwqHw488yHnY2Ivr7DgOX710k+9OzXMpucFwZxRHFvApCoZoo0gSI50RCobGSCRK3qoR83qxBVipFDkSieJRZfJ6jUHZjcensq5VOaL6MR2DV1NLDLuDxEIeXk4vgAOno91UHY3rhTSyIPJMRzeG42BYNjmjwoaRo8cdIqh4USWB13P1OgGPqPB0pJeVWoblWhYBh5OhBFPlFcZ8fRi2hV+WuFC8XcB8xNWF4ZgMefqZra6R1LIg1JpkQUTkVGCYqlVFEGRmKotE5SAI1RaycNR7GBGbqBwnZWyQMXKMeodYqN1e4ReAmMuPZtWIqr1U7AopYw3LKbOuL7ac904lxIYx0/y3VwzTrQ5Rs4vIokbGTJIxk/S6htkwWsmCWwhSMRdaPpPxEncdw6KKJEQpmktkzHn8UjdFexWb1kx4p+sQOfMiIKImf5x4V4JardY0/Gu4FkejUbxe70MP3PdrhyRoX4ahUqnseMXdcRw+9alP8eUvf5lvf/vbHDp06IHfGR8fByCRSAB7W9DaQC6X47nnngPq74RSqQTUsyBnzpxpS/elxxmGg4EDSRgEQaBWqzExMYGmaVtaxW3gURGGSqXC+Pg4giDw/PPP79qoq12SpHK5zPj4OKZpNgO7dmCnhOdBq/d7lb24Gx407traGpcuXWJoaIiRkZEtv7DbWcOwtLTEtWvXOHLkCAMDA/edU2MOexloNFrHDQ0NNXubp9Nprl27hmEYLdmHdqS6v99wbTXFF9+4RKZaRXdsuoM+TGzAQVJE0oUKUZ+b9UqZsqkzEA1xMbnOic4YumMxXcjyQm8fWb3GbDHHiMeLS1Go1Ap4gyEsx6a/JuOWBM7nVzkseZFlialykqptMurrIOR28WZ2CQfo9wSJuT3IEsyUU5wOuxkvLNHnjhBRfKiywBu5292Eno0MoTsmblHlWmmZ08E+rpXnAOh3d+GuOazbaaqVegG+W3ThkwXWtSoD7gSq5EYVBC6XbkuAXIKMX5FI6hXirjh+KQBYLGqzmJtqG4Y9h1io1f0RRCS61V5CcoB1fZGClWXDTAMw6hlmWWsN+A+5R0gbU8SUYSRBpWhl8Ipe5moX2Nwa1SsGKFutRAMgqsQomatElKOIKFTsHKrgZlV/o2U7AQG3KFG0W8lCSB4kZ04AMOD5Z6SqfXR2dhIIBFpci9PpNNPT082uZg3Dv4fRLaddq/h7gXbWMOykpSrUA/AvfOEL/M//+T8JBALNmoNQKITH42F6epovfOEL/NN/+k/p6OhgYmKCT3/60/zgD/4gp06dAva2oBXq5ymRSHDz5k0GBwc5fPgwr7zyCqdOneL69evour4nsuS37fcxYTgQOJCEIZPJ8MYbbxCLxXj66ae3ZVAiy/JDr2FYX1/n0qVLLdKZvd7HXmDzPL1eL6nU2w2E9go7yTAUCgUuXLiA3++/7+p9u1rO3iuwdxyHmzdvMj8/z6lTp95WhPYgtMuVuVFbsN2C+r3A3UjH5t7mm4Ochqux2+1uad26X1crHwUK1Rp/9eZVXp5exOOWWa9UCLlV0loNPxaSS2I2m2UwFuL11RWeTnSTLlSYzeV4OtHN99aW6PMFeKY7wUtri8TdXs7Eu3krtYqtF3l3zwAzxSzLlQLPddVXL8OOhinJZK0KPaKXgl3D1qpcqG3gF10cC3Wxqmc4n6sHyCeD3QgCDHk6mamkiKleJgrzqILMsK+bgKLwVuF2JuGYP8GaluK4f4gNvUDF0siLRWq3gnwBOOHvw3BMKpbOXG2NIU83S8ZqcwwBgeP+epekmqSzqiXxiEXCitRCFjqVGDljnX73MLbjsK6vYGMxVb2MsykrUfdgqJMRxxGIyHGsooCmVtEdgVV9DgBV9CJS5u0+ClHSRp2UuIUwfrkbt+CjaC1QtsuU9frfZEFFkt4e0HW5jpEzLrZ8JiAhYyBLw7jELo74foYN583me+RO1+JG7Vkmk2F+fp4rV64QCASaBKJd8qX9Uq90JxzHaVuGoVwu78i0DeDFF18E6uZsm/H5z3+ef/kv/yUul4tvfOMb/MEf/AHlcpn+/n4+9KEP8Su/8ivNbfeyoBXq1/CjH/0o6+vrCILAP//n/5zf+I3f4OWXX+all17igx/84I7GfYzvDxxIwuD1ehkbG2t2eNkOHlaGYbPb8PLyMidPntyxpvBuEEVxS52YtgLbtrl58yaLi4vNeS4tLbW9qHo74zfqPrbSerZdhOFuGQbDMLh48SKVSoVz587taLVprwmDrussLi6i6zovvPDCI1u5v98x3S3IaRgj7YVx3J372k/Yznwcx+ErFyb5ztQCU6kM/bEQi/kCQ7Ewc7kcfeEgK+UiHT4vhmBh2DbHu2IsV4sMhcKIksBsMcepji6QHBZKec50JtAFkwvpNYZkN/6gj++uzxN2uXl3vI+J/BolU6fXG6Q3EGCmZDClFXimI0GyWmBMiLKul5gtrJIXdMKim2FfB7Naivwt1+Yngt0UzRInAwNMl5PYWFwo1CU5MiJjvh5sDLJGhbQxj1dyEVNVirZBRPTT7enELQpcKt12TI7IfkpWBsu26VG78cleVEHkavl2tkEA+twRlrS67CgkR4jKMWyhwqq2Qb5WN3Dzil5qdq6FLHhEDwI1ul0jOAikjSQZM0NQVdgwCi3XJe6Ks67faPms3zWGgEFMOUHJSlO0NjANAUXQ0J3SHd8/RNq41PKZR4hSNG/gOAJeqRtV7ABBREElZZzHweKZ0L9AFn33Dc4lSWqSA6BZV5TJZLhy5QqmaRKJRPZcvrRfJUntbPdaqVR2nGF40DO/v79/S26+e1XQCvUF1X//7/89tVoNqNdXyLLMSy+9xKc//Wn+9b/+13uynzvxOMNwMHAgCYPb7d4RWYCHRxhM0+S1117Dtu0m89/rfezFcWiaxvj4OIZhcPbs2ebD71E6SW+Gbdtcv36d1dVVTp8+TWdn55bGblcNw+ZzspN6hbthLyVUhUKB8+fP43K58Hg8j4wsbDcAudPVeC+M4/YjtnNfXl9J8T9evcRapd7hp7cjiGZbJMIBKqaBx6VgCQ4FTaM3GmSjWEGVRUJeNxu5Cr2hABXTZL1coTcYwHAs8kaNhOjHJUiEFBUEWKkWOdORQBQFXk4v0KF6OBUZYKqc5LV0PXvwQmc/WbPCsl7EL7vo9rtxCRIxC4pmleuVFWpYKIgcUTuoWlUWalmoZhnyRlnQ1uhRo4QUHzmjTNJIkTPrxyUCI/5OBATMmkXKKdJFhCu3pEoAiiAx4IlhY7NOmiVtnX6hiyWjtXXkmHeIilNkyDNK1siTMlJ0KCGWtdv1AwIQV6OsaHMIjkDM1YNX9CMJJovaTSDZ3PaQa4h1q5UY9KnDrOvXcQtBgnI3IGPaGmlzFsOptmwbVTpIGzfu+GyA9KYWrDJefHIvPjGI5uQoOasUrA2wNvCKnVhOGgeLLtcz9Hl+CMdxcBxnywFwo66ou7u7rfKl/SpJajyz91uGYT8in8/z0ksv8aM/+qNNY9Wf+7mf4+d+7ueA9nWbe0wYDgYOJGHYzWrIw2irWigU0HWdrq6uHbshPwh7EdA3DO6i0ShnzpxpkXa120l6KzUYtVqN8fFxLMvi3LlzWw5+H0YNQ6NeYTtme/fCXhGcxpwOHz6MoijNbhmPCrs5pt0ax+3lXB42ilWN//7yBBfmVvH6XawXSgx0hbm6vsFodwdXkymGYxEyeg1dsOmOBHhjZZmnehJczibJGFWe7I7z+toKEdXNU4ku3kqtIgnwbHcPl3Mb5LQqLyT6Wc2myBg1+gWHDa3EU5EEq7Uis9UURVPj6UgPblni1Wx9xd4tSTwV7Wa+nGWulqbT5UNUbDqkABHJQ04vsWSmqN56xkYENxHRBXKIxVqGDb1It9tLUiujIHHYlyAgK1wpz2A5NgjQLYdZrtXbqSZcnQTlAIpoca18uxYiIHmp2QUsLARHpNfdQ0gOsKovULAKNIL+I94hFrSbLed3xDOKjU6fa5gNY411fYXDnmEWtdbAvkftZ928/V2X4CEq9yIKMl6xh7yZpGjVi6D73b0UjVaykHCNkL6j+FlCwSXIqMpxQKRi5ShZ6wSQWdPffNu94JX85M1VRFw8GfwUsLsV83bKl/arJKmd7V53U8OwHzE1NcUHP/jBZserzfja177GRz7yEZLJ5D2+vXM4HOzuQdvBwXkTvR0HkjDsBu0kDLZtMzU1xfx8/eV64sSJtskhdtMlyXEc5ubmmJqauqvBXWP8dhKGBwX1DTLT0dHBiRMntkW62lnD0JCZLS4u7rrTVQO7lSQ1aigWFhaac1paWtrWmHt9n+6lzGqnxnH7Ffc6147j8PWJab55dYbZjSy+oJtyqYLH5yJbrXKoK0KmWuNkoovZQp6BSJCMXsUlS5xKxJkqZBgNR0ESuJnLcLqrmxoGl9NJnop1U3F0vru+yCF/iLFwlJc3FnCA05FODMdksZKnaGp0+3z4ZBcV00AQHV7LzpNwB0m4AxgYvJKeAyAguxgNRknrZWYqG1QUDY8sUNVMRrxdKI5I1spx+ZbxmoBDr+QFR+CYb4C5ahJFFJgo3a5r8DgKAUkm7upnQ8+yrKUIK15uVG53J5IQ6FaDCIJIh9LJsrZG2shTstOUrNvSn7grxpo+B45Ap6sbnxREABZrN7A2dSCKylGS+mzLtXCLHiw7T1Tso1a2kf0iGWONqGyyVGslIIPuETbu8FFwC34q5hKCIxNUenGJQQzbwCOprOvjLdu6BA81e5k7EVPGyJv1cY/4/x/4bnkuNJ5te/Gb3Uv50n4lDA2pVDvexeVy+W3OzAcR1WqVcrnM7OwsfX19VCqVZoFzw+l5Y2OjbbVwjzMMBwPvOMIgyzKapu35uLVajYsXL2IYBmfOnOH1119vpvTagZ12STJNk0uXLpHP5+9r3tVuSdK95r/ZifheZOZBaBdhsG2bVCqFoigt8q3dYjfB9Z1doxpz2smYe3mvtrNuYCvGcQ0CsVtX8oeFmfUMf/XKZS6tbBALePD4XXhdMjoihm3j9SiUdYOAx0XNMTEdC1kRqVZN/IKNLYiUdANZkdBti6plYgkmbknCLcuUHR3TtjkWjuF1SbyWXuKJSBdWucKVYhILh0FfiE6vl4ncKqZj82Q4ju6YHAvGmSys0+3xcq2wRrcaoNcTomiXeSM3B4Bbkun3BnEJEjgwV00xHIiSvmWY1qEE6JMCLOsp8lYVtDQ9YpDpSl0qFFNCdLmiFEop5o11uFWeNejpYu5WG1S3oNLjTuCXFaYq0+i3ippFBHq8nSxrt4NuVXDRqUTQHT9JPcmqlkQVckRdagtZkJBwSyJlQwdHoMOVwCMGUQWHZe0GFllQAQMG3aOs3eGtEJAiZM3bmQ8XPvxKgoAYoGylqNqrpIxlYJmQnKB4R91D/dgHyNzhEq0I3iaJ8Et9jPp+svm3dmryHyRfkmW5SR7uJOftKizeLdoplapUKt8XkqQrV67w8z//8wiCQCaT4ROf+ESTKAQCAWq1Gv/4j//Iu9/97rbs/zFhOBg4kIRht5KkvQ6EG8ZxsViMM2fOND9v54NqJ8fR0Nx7PB6ef/75+67EtjvDcLfxTdPkypUrZDIZnnnmGSKRyJ6NvVsUi0UWFxcRRZFz585tqzPXg7BTCVWpVGpezztrKNrVeWk7eBj7v5dxXDqd5tKlSziO08wq1mq1R24cd+c5qWgG/+N7l7i0tI6Jg0eVsSWolHV8fhezySxHuju4tLrOyb44VzZS9Ab9+Lwuzq+t8VRPN5fTGwjAqe5Ozm+sIQsCpxNxJtLr1CyTdyV6Wa+VuZFP82xXNxYOfd4QADesIqOBKIokU0PjfHYZjyhzpqOHlVqOlVq92PeZSA+aYzDmjzNVStLp8TBbSSEiMOaP45FErhSXsG8l3E+He5itrHPC30/J0gnJLq5uqknokH0gGHRbEcp2jaRTIOy4SEq55jZh2Y/taAx5BtBtk8XaGg4WVzdJkwCO+geZqd4kLIeJyp1UbQ2/JDFZmWzZbtDTzaI21fLZsHcU0zHodvnZMNZZ09c55PawcIc8KShFSW3yYGgg5urAdsI4yJStPDlznYAjsaS1ukELCLhEh5rd+syOyANkNmcnHBGvnCAk92A6FUQhyhPBn0MSbj+r20kYWuZ8H/nSwsICV69exe/3N8nDfq5haBeRKZfLW27pvp/h8/k4e/YsN27cwOv1UigUKBQKaJpGrVZDEATe85738OlPf/pRT/UxHiEOJGHYDfZSkuQ4DjMzM8zMzLQYxzWCAsuy2lacudMuQ1v1CGiXz0MDd86/XC5z4cIFFEXh+eef35Wb5F4Hy6urq1y+fJlIJIIgCHtKFmBn893Y2ODixYv09/dz5MiRt13PR00YHlVnojtXSIvFItevX6dYLPLKK6/sK+O4l68v8H++NUmyWMISQFFEUtUKvZ4gRdsk5kA44KFmWZzsi7NSKnG8q4PZYo7eYJBYopsr6Q3GolF0wWYileRUZxclS+N7q4uc7OhCkOC76wu4RYl3J/q4UUyzUatwPBxDVUQigouZco7hcIiSrvN0pBfdNrlUWEGzTUKym5OhLqYrKTa0utznTDTBupbnyWA/85U0bknkUvG298C7okNULQ3TgUvFJUZ9Xdy4lUnwii4OebuxBZ2Zygq2UAIJxtQ482Z9RV21ZWJCGFUQWdKTrOp1d+WYEmZjU0tVHIER7yA4EJHibOgpUnqRUe8Ac7VWUjHsGWRRu4lLUIm5ehAFBQmB6er1psMzQEAMkjPu8FFwICC7SRlJ/FIMv9SBg4BbVFiotbZAVQUPmr3KnehRx0jd0RVJREIVXbiE4wiCjGaXKVhr2Cisam8BNn3uHySuPtXyvUcl/bmffOnq1asYhoHL5WJhYWHXnc32Eu0mDN8PGYZjx47xn//zf+bmzZu88cYb/NRP/dRD3f/jDMPBwIElDDsNiGRZ3pMMg67rTExMUKlUeNe73tUifRAEoa1OzLD1DINt21y7do21tbUtdxmC9jpJN8ZvEIZkMsnExAR9fX0cOXJk1y/DvcowbG43++STT1Kr1djY2Nj1uHdiO0XPjuMwOzvL9PT021yuN+NREwZ49IXGgiAQDAbx+/14PB76+vr2hXFcuqTxn/7nS5yfX6Mr4qNimvTEgmSqVXqjITRM4gEftgiiIOBWZWqWhSQKtz4TkSQBE7veWUiwkUURr6xQtGq4JJnDwQi2aLNQyvNMLIEsC3xvYxG/7OL5rj5ulDZIF6tIwLtiCcq2SUqr4JFlsmaJHneIgKKiiAKvZueAeu3A2dgAObNMUiuyrhU5E+7lUnGBTleQhDuMIgq8lb+9Et+tBskZOQ57E4DAbHUNWzCYqtyWDw15OsnbeY54h0gVMmSkEqois2CtNLeREVEFi5plMegeQBJkymaZDWONslVpbhdTIiT1pdsn2xHodnWjiDIxZYB1fZX52gJu0Y1fklrIggB0uHwk9dv+Mz4hilvzI3oUXEKUrJkla2YJiGHyQvFt1zah9pLUr7Z85hMj5MwbKEIAv5RAFNzotoZH8rB2Rz2DgICCTQ0bWfBwOvgzb9vHfqkVuJOcX79+nUqlQjabZWZm5r7ypYeJdrZ7/X7JMEBdVj06Osro6Cjf/e53WVpa4tChQ5w9exZdrxsptusaPiYMBwMHljDsFHshScpms4yPjxMOh+/ZTvNh1AA8aPxqtcr4+DiO42zbXboRdLerDqNBSG7evMnc3BwnT55s2t3vxdi7JQy6rnPx4kVqtVqzLW67vCm2KkmyLItLly6Ry+V47rnnCIVC9x3zUeJR738zGnN51MZxpmXz9cuLXFvNYcoynREfmmUTC/vI1WpIkkDR1ClqGuGgh2vJDU72dnFhfZ3haBhbchhfW+PpvgRXMyk00+Tpnm4upTeo2QbPJnqYL+aZymd5Mh7HwcGyHQQRZopZznT0ULV0LuZW0SyT0+E4xXKeV7O3OhK5fSS8fhRNYKac4WSoi+uFNbpcAXq9YVwivJ67TQaeDCawsTnsizNdTuKXVdYawbYDh71dRFSV6UqVyXI9+D8d7OdauV5g7Je8DLq7MKmyplXJGPMgwai7h/lNq/wewc2gEKWolbBEmK0uIQD9rg7Sm8iCLIj4JIGSJdOt9uI4kDRSSJLNVLVVYtSrxlnSWrMQh92HKdspetQxLMchYySxHIG8ukxWa81KhxU/G0br4kFcGWiSBcGRCSgJVDGIS5DJmcuUrBQl69axi1EqVmuhNUC3a4zsrUzEcf9P4ZFib9tmvxCGzRAEAUmSCAaDjI6OYtt2U77UqC3aLF8KhUIPrd6hnVKpcrn8feNQ73a7KZVK/P7v/z7/7b/9N6ampvjwhz/M2bNn+c53vsN//a//lU9+8pO88MILe75vxxFwDnAgvR0c5ON8TBi2gc3dhY4cOcLAwMA9A6OH4WNwv/E3NjaYmJigu7ubY8eObfuB2XiYt3N1Znl5GUEQOHv27J6u0uyWMDQcpYPBYEu9QrtW7bcybrVa5cKFC0iSxLlz5x4o2XqcYWjFnXN5mMZxAJfm1vn/fO8Ka9ksJcOgs8PNXCpHX1eImVSW0UQHl9c3OJ7oZK1aokv0MdgZIVmp8HRvNxeT64x2dNAV9HF+fZVTXXFKts7Lq0s82Rmn4hi8tFp3cH46HudCeh3dtng+0UvNNsnqNfxamapjcDzcyVwxiygLzDoVoi4Po4EYS1qG1zP1QH3EH0ERBUZ8cW4Uk8RUD9fK9Ta9Q94OEu4QV0uLlK16A4m4GiBnFYgqfrrUMGu1HC7ZYaI41zwHx/w9LFRXOeobpGbrLFU3qDklFmu32/+GbS8r5ipRJURMiVK2agRkFzPVGdj0GOqnkzXzlvTHEYhJHXS7o2TtDAWrRr5a3+9R3yHma61k4ZB7iKVbtQxBKUJIjqEILjLmPCUrT9qoS6AEoEuKkXNaycKAe5ikfr3lM48Qxiv5cUknqVllcuYaSWOVHpePZb21gxJAQA6SMVvbHqtCgJI5c+vv/Yz6/i93u5X2JWGAemDeeC6JokgkEiESiTA8PIyu683fVyO7Fw6HmwSinfKldkmSGosO3w8ZhsY99aUvfYm//uu/5nOf+xxf/vKXyWQyADzzzDO8+OKLvPnmm20hDDbCO6at6kE+zgNLGHYjSdpJDYNhGFy6dIlCoXDf7kINPMouQ1NTU8zNzXH8+PEdG9w1XkjtIAyFQoH19XVUVd2V4dm9sBvC0Kj1OHz4MIcPH255ibXT3+F+93Imk2F8fJx4PL5l8veoCcN+yjBsBe0yjitWNP76pct899o8Qb9KulIj4HdRNnR6OgMYts2heISqZTLYEaJiGwQ9KrYMoingViQqlkFAdSHKAqZtE3Z7KNo6qiQxFAxTtnUqpsHTnd3omLy2scKRUAdxn5eXNuq1A4O+IJ1eL5dz67yZLvFMZ4KCUWNQ8JK3bdb1PGu1IhHFw1igk7lqitlKGoBDvghZq8jJQC9pvYxmm1zbRBaCosphX5QNrch8NcWaVuB0uJerpUZ3I4URXwIbjaptcLVUn9OTwT4mNxVCdytR3DUHQ3KxrmdI6QV61GgLoQAY8vSQM9IMqYNYls26vgGmzfXqNTa/i3tccRZrrUXOETGCLMj0uY6QNdNkjBw5o0ifu5OSlb9jP6OsaK1dkbxigIKxRFjuwy0GMR2Tgpki6oozr7V2OlIFLxXr7fUMcdcIGfPa2z7vUBJk9Em8ch9PBT6OKNz99bxfCcP95uVyuYjH48TjcRzHaf6+MplM2+VLj2sYHozGtfv2t7/ND/7gD/IDP/AD/Mmf/Emz614kEqFSqVCpVB4w0g73/1iSdCBwYAnDTrGTQD6fzzM+Po7f739gd6Hd7Gc7kCQJx3FaHtKb6yp2u2q/mTDsJZaXl5utL4PBYFuKwncSLNu2zY0bN1haWrpnrcfDcpBuwHEcFhcXmZyc5OjRo/T39295zEdNGGB/ZRi2i83GcY3uMOl0usU4rpF9uJdx3LcuTPMPE7MkCyUCATeWYxMOqpQNk26fm4VMjr7OEPPZPFGfu15HUKgwHO/g/OoqpxJd5DSDxfUU5wb7uJ7JUNI1zvQmmMllyek1TnTFqFkWs8UcYa+KIziMhqIE3S5e2lhgJBCh0+3lZjnFG+kcsiDw7nh/3ZytlEUBhgIhZFHkiWCCpFZktrJBSi+DA2OBTnwuievFLBvaEiHZjc8lUrV0jvoTiI6AI5q8mbstr3ky1MvN0hJHfL2AQFLLkzLSpI1Cc5uT/j4mS/P0uLsIyH6SWpagy8OMtdhsqeoWXQiCgXGrfWqXK0ZUCVOzi5TtKjPVOvEISD4MpQKbfkKyLVHVMoiiRIfYjSp7KdoFfLLKTLXVR2HYe4glrTVjEJE7WNenbo2l0uHuRRJUFMFhVb9J0VgF6mQgKnezfkfGASDu6ntbPYMiqGh23Z1aQsUvdaOIfhTBQ8laRUehSx4m7n7qbeM1sB2X54eJrRIZQRDw+Xz4fD76+/vbLl9qJ2GoVCrfFxmGxvOrVqs16zGr1WpzwVHXdXK53AMXSh/j+xvvWMKwFW3+5oBteHiYQ4cObXnl9GFIkuD2QzqXyzE+Pk4oFNqTVXtRFBEEYc+OwbZtrl+/zurqKqdPnyabzTYLqfYa280w6LrO+Pg4uq436xX2Ytyt4m7BvW3bXL16lWQyuaMWs4+aMBy0DMP9cGd3mM3GcfPz801juQaBSBVr/B/fvMhGsUxJNwgG3Syk88RjAdazVYJ+F/OZHLGwl6l0lpF4lAsra5xIdFJxTLK1KmcHe3l5eYknujqJ+OO8vLzEk51dlByVl5YXGQ6FiQWivJ5cRRIFnu/pY66UZaFU4ExnN4ZjMRqIktNrFO0alu1wJtqDSxJ5OVUPtD2ixGFRpWiZzJQL+CUXMY+bomnwVKiPnFGlSpWZQn3lXREljgRj2I6NZllcK67xdLiXy8V6ACw4AieCPYCDJMpcL60gCQKjvhiz1dXmNqO+BJIoEpCDLNRSQIpTgYEWczaAYW8cwzEIKxHWtQyrWgafpLCk3S6GFoBOV5AlrS6lEh2JuNpNTAmQ0dNsmElW7XXQIW7EWFUXWvYRU2Ks3tFq1S+G6XQl0OwIOS1NkQxL2jz96iGW7vBRqLdLtSnf0S61Q+4jucmzQcaNX04QkiNoThEHDyVrg5q5hIBAVO6mYC0jCSrPhH76vvfjfs4w7CQwb7d8qV2yWl3X0XX9+8LpuXE//diP/Rj/5b/8FyYmJsjlcs3P//iP/xjbtjl16lRb9v+4huFg4MAShp0GJI0Hh2VZ922PaZomly9fJpvNcubMmW27OT6MDAPU57myssLk5CQjIyMMDQ3tWbC2VwFyrVZjfHwc27Y5d+4cXq+XfD7ftrat25l3Pp/nwoULhEIhnn766fveE+2sYdg8X03TuHDhQvN8badYffOYj3qF/1Hvv124m3FcOp1mbn6BP//qy1xfq+ANesnVDFweBQyQVAlBALdHRpFEPAEVQRDojwYpGzqJkJ+SZRByqyiKSF7X6AsGsEQHwYGhUIiCXSfYT3Z1UbYNrmU3eDrWjS3Z/OPaPC5R5Fx3LwuVPCuVIhGXm6FQ3d34Sm4DG5vXM8v0eUN0ql4E0eZifgVqIIsCT0a6KVoaK9UilwurDAdDTJfzBGU3h7wxRNHmQv52wP1UqJfLxQUGPDGCspeiWWVZ36BoVpvbPBHo5XppgSFvAreoktGL5KwCM7Xb2YZDnjhTlTkAVFuhz5Mg6PIwWZlqmrMBnPAPMl1tDe7HvIfImRkOuUfQbZM1fR2XoHC9bOXq7AABAABJREFU0rqyH5WjlMRUy2eCA6Kl4ZMiBJQIluOQNdNEXDGmqptaoAp15+fSXeRFA+5R1u6oUZBw4ZeC+KTjWI5N2cpStFKojsaSdgGH1vdCt+soqVvGbSf9/zd80v072dm2vS8J+V4VF++1fKldGYZyuW5K+P1AGBr307/4F/+C73znO/ziL/4iExMTVKtVPvjBD/L1r3+d//Sf/lNb6hfgsSTpoODAEoadohEQ3o8w3GlwthNPgIeVYbh69Sr5fH5HpGYr+9jtMTT0952dnRw/frz54G6nMdxWx27UK2w1e9SuOW+WOjUITDQa5cSJEzt+0T1qwrAfA5p2oGEct5rT+Ycb88xmHASPimFbOBhYhklFNMFxsESboqYT8qvMZfMcTcRYKBQQBIFY0MP4apJnBxKsVcosFvOc7e9jLp8nW6tyoruTvFZjvphn0BUi5FIJyC4s0Wa6kOGZWA+SJPB6ahnbcTgZ7cQRbcYz9dX/JyJdOILNWDDG9UKKbq+HC7kVvI7EkVAcJIdXMvWaAwGHU5E4pmNzPNDDZHEdSYKJwu12pcf8cSRBoNMVYq6Sxi0W6PZ4mmRBcASeDA7gYOKVvEyX1xGBI4EuZqu3uwuFJC+qCKPeIfJmhaVqkoJVYaWyhLGp2Ljf3cVstZ6B8Ahu4mo3XtHDmr5MzsyT1HMABCU/WXOt9Roh4JMkyraJ4Ih0uOK4BR+y5bBuz2NYGmmrXtwZEIKsa2/vXpRwdbN6R3bBL4bJ6LPNegbLgbKVIyyHWdLeXujsFmWqd2QiXIKPgjlXH0+Kc8L/f737jbYJ+znDsNfz2gv5kmVZbWkHWirVfUm+H2oYGhAEgT/90z/lr/7qr/jHf/xH5ubmiEQifOtb3+Ls2bNt2+/jDMPBwDuOMDxIarO0tMS1a9c4dOgQw8PDu8pktJMwNB5WtVpt10Zn98JuzNscx2F+fp6bN28yNjZGf39/y7lsJ2F4UHGybdtMTk6ysrKyLW+Kdhc9NwjMXmSKdkIY9ppk7JcMQzvJS1Uz+KtvTnBpbh1ECEY8VAwTxSVh6hK6baHZNgVDQ0triAqsFUsMdoS4nNzgZKKTSxspXJrEc4M9dRlSZydHYh18d2mRsWgUvyfIq6vLBGSZ091xJtJJSqbOu3p6MGwb03LQHYvpXIrTHd3ktBo1x2A6lyGoqJyMdDFTTpPU6iuiz8YSFM0aJ4MJrubXESWH8Xxd5pNwBxgOhLlZSpIx6gWOp8MJJgoLBCQ3Q75ORAfmamuUK/WiZwGH0UCUG6UVDnu7UUUVw9a5UV5E3xT0nwrVW6oKjkC/J45PcmM6NaYqtyVGCiKiqGNsakzhFlQCkougfJiSWWVVS7JQXaXD5SNn3i5UFoAu1c+ylr39mSMy5juCiU5cUNnQ11nV1+lUYlSdDSxhcwMMB9USKcqtUsmIHWNVv4HjCATlGD4pioCILNisalOU9TWgTlJ8YoiM0dquFaBHHSVtXH3b5zFXPxu3MhRngv9bi6PzvbCfCUO7W6XuRL7UrgxDpVLB6/Xuy2uxW/zkT/4kP/mTP/nQ9ue8gzIMjwnDI8BugoC7BfOWZXH16lU2NjZ46qmnmt1S9nIfe4W1tTUuX76MKIocP368LWQBdh7Ub5Zz3aujVLszDPc695qmcfHixWa9wnZ6aLer6BnqmYVUKrUtAnM/PM4wtB+vX13kKy9dx8CiWNNAEXAJMqlylUF/mFK5RH8szEqpyGCkg5xeQzV0LNGmVC4TlgTmMxniXjdet0xOqzEWjaIJFjh16VHOrJEvazwXT5Axa3xvbYl+X4BjnTHeSK5gOg4nO2K4FRFFkLicWWc4HKZimZyOJqiYOhP5VSqWgV9y8UQkzlIty3K1LgkaFj1cK6zzZChB2TIIuVy8dsuoDeCIP4YgOIz5E9wsJZkpbRBW5WaHJBx4LnoIzTbwST5ulpMEJDcBRWwhC2O+BIZjcMQ7wFItxVx1nVOBAW5uIgsAccdLyszhl3zEXZ3YDiiixY3KfMt2w95+pqutgfmYb4iF6jRdajdeKUDN0rExmapOYm2SAYkIuCWHkt3aLe+Qe4QVfbL5b8V2I+t+BFvC40pQlQtkjAwZI0OfepjlOzIOAB1KhKTRKn1yCW7K1vLbtg3LPeT1eYLyITrkYQY85962zd2wXwlDO/0O7oX7yZdmZ2ebREGSJDRN29N3ZalU2jdu1nuJ1157jb/5m79heXkZSZIYGRnhox/9KIOD/3/2/jxKkvws70c/sUfua2Vm7dXV+zY90zOj6R6wBBLSSMK+F0tgc9iEDQJkCcxyQD4Yzg+MQZbMah8WXwyCa6TLsUAslrA20Drq0Sxd1ftW1bXvua+RGdv9IzuzKjurp6u7q3q6Nf2cU+dURUV+4xuRmRHv833f532Gd+yYLvCArC/tOB7m03xoCcO94ObWquVymfHxcRRF4dlnn0XX9Xs+xk44JW/s5HP06FEuX768Y0E33N05VCoVxsbGUFX1VTMfO00YTNPs2t4q9wmHw7fVK2yGnQjCTdNkYWGBer3Os88+u23p7QeBMDwoGQbY3mxHvlTjr/7pHC9dmUdSRLxeFVNwiQU8VC2L/p4ANdsiFvRStc3mA0KGxbUSu+MBZkoVUuEgmgQX1tIc0mVW8nmypsneaIiK5bJmGAxGAsR0LwXDIGsZuLgcifWgKhLfWF1g0BdkVyjEi5l56raNKMC39g6yalSZKRexHBeDOgndR1jx4AoOL+fnsN3m9+7xcIpSqYAkSowXljgc7OHCjbKjUW+cuOZnorrEZK1ZZiQJAoPeABPVlbZuQRHhlcL19kNQBAa8Aa5Xl/CKGkPeBKooM2csUDbWtQ17vL0dLVVB4IhvmEIxS0JJslRPkzdnOegf4nqtkyyMevrXyYIr0KPGiSoRTLeCKGos1FeBVSREUlq4gywA7PXuYrZ+pWObXwhguTX61P04QMHKkXeyDKhesuJ0x76SI1OoLzRPdgN61RFWzc4OTABJbYjV+iX8ci+aGEZAwXQbCFiUnGXKjSXeGPm57g/aLfCgEobXel63Kl+6ePEi+Xye559/flu7L32ztFTdiL/927/lJ37iJ4jFYuzfvx/HcfjTP/1TPvzhD/N3f/d3vOUtb3mtp/gIryFel4Rh4+r/0tIS58+fZ2hoiL17927bDU+WZer1+raMBc3SozNnzmBZVruTz9WrV18Tr4dbYXV1lbNnzzIwMMC+ffte9VreS7nT7bAZGWm1c73Tble3G/de0NLKtOrgt/PhczcBu2VZ7ZK9R9gcX3xxgs++eBUH0Dwyuq5gODaRkIflYpl4yMfkWpahVJjJ1Rx7kjGyDQPVkOiNB5koFNkdCXIhn2Mg6Ofx/iSvLC+zJxrBL7qcLeQJSxIJTeFyJt0UIycTZM061/I5jqdSlK0GR6I9NByLlzMLyIgciSVwRJevrDRFyTFVZzgYZM2oMFnOsjsgsFwvoIsS+wIpVFFkvDiPiQM2DPvC1ByDo6EBlowiK/UydQwKGwTMb4gM0XAt4mqIqWqGft2mbJc6VsyeDA9huhaj3j6maytcqywy6AlSttfHich+smYGj6jSpycRBIG6Xee6MUdDMeHGbTOhRlgw5tkIv+jFdhuMenZjuTYrjTQrjSyaBMuNTu3CHu8I0zeZtsWVOAv1STTBQ0RJIQsaNcdAF0Xm6tdv2reHnNXZVQmgVx1gzekUX4uuRN1u+lYo6PjlFLLoQ0GlbK1iuToZs9kRqjnGXtJm83gHfW8jogxt8mnbHK91YH4r3I+SpDtBq3xJVVWGh4eJRCLt7EOrfCkUCt21OWOLMHwz3S9/+qd/mu/7vu/jt3/7tzu2v+997+OnfuqnePnll++qCcft4CAgPMSGZneCR8ZtrwHutSTJNE0uXLjA8vIyx44dI5FIbOPstrckKZPJcObMGeLxeIcQdieDbth6gOy6LteuXWNmZoajR4+SSqW2bey7wcaxN7ZzvddSs+1cNV9ZWeHs2bOMjIygaRqrq6vbMm4LdzLXloP5lStXUFWVWCzWfojeaRbmbo7/MGA5XeITnxtnPlvCwcF0XRRVYj5XJB7zs1QsEw15KRh1dvVFydcMDvTFWavWGIqGmiVBmspA0MeyUeNALIorQ75e5/FUkpxVp2aZvKG3j6VaiWulIgeCYWpugxfWlhBcOBYOk66WmamW2BUMg+RwKNLD5XwaRJex7BIJzcuuQITlRpEX0s1Wo32eAF5FZr/Ww5XiGqv1MiWnhuk6yK7AkXAvJiZXy1lmawVkQWBfMMq1yipxxU+/J4JHkngxvx5Q+yQVQbCoOQ0iio8BPYZHUjhTuoazgUIcC/ZzubKeIUgoEYa8UXJWifnaKlercyiCRK8W6OiIJAsiXkmgaDfwiT4SWhwBCUEwmbop43DIN8J1o3NlP6UmmN1g2haWowSlCLokkbVccmaGot28PiP6CAs3tVYVAI8IVaHzHhVTUqTt9eugCwE0N4xiaRiNIrYUxpAqlJxmCVK/1k/O6ixHkgWVit0kN5ro53joX2/yibs1HlTC8FqUJG0FLQ2Doii3LV+KRCLtDMTtype+WTIMrWelKIosLy/zUz/1UwDt+EWSJD74wQ/yp3/6pzvimwSPRM8PCx5awnCvuHLlSttp+E7q2LeK7ShJcl2XqakpJicnOXDgAAMDAx1E6X50Yrrd+I1GgzNnzlCr1Th58uSWW8zttOjZdV3q9Trj4+PtrMy9vs/bMWfXdZmcnGRqaqpNrubn57c9uN5qwO44DhcuXCCdTnP8+HFs224/QC9cuEAoFGp7DPj9/jsm6lvxO3mQ4Tgun3n+Ml955Tq2CCYOhVqdcNhD3XWIRX24rktP1EfZaBAMaOSNOromU7NtCoZBPOxlerVA0Kth45CpGQwnohTrddLVKl6PQljTKNbrrBhloh4PkijiqCJLRYPj8RSC4PByrul43C+rSFadqWqF6VKepxK9lK0GR8NJJksZslaFuWoBn6RwMNRD3qpyodB8bVT1YAsWSc3PqCfKZHGNol1htrYuFH4y0oeFw6gnwWRljaDi4XJlvbORCBwKJHBw8UgaM9U1NFGm6pQ7yMKRQD/XKnOMeFLoos5KvUBCDzJe6gzu9/v6uVpd70ykIHM0sIuG2yDmwmojQ6E6xwFfd3lSSoszY3RmBiQEwrKPkLwH07XImBnSZoGIEmOi1lmKpIseClankzTAqD7K0k1mbF4hRESO4ZeCNJwGBStLwS4SkHTK6jK221kGGTDiZG4qZwJIqaOs3BA6Hw/+a3Txzoy/HkTjtptNRB8kbJb5eLXuS63GJ36/v00gwuFw1xgtDcPDjo3v2U/8xE/wD//wD/zoj/5ou7OUbducOXOGY8eO3fUC0u3guALCQxxI3wkeZnH3644wrKysUCqViEQiPPXUUzt2g5Nl+Z6CedM0OXfuHMVikTe84Q2EQqGufXYy6IbbZzA2ehg8++yzd3Qz2ekMQ71e59SpU0QiEQ4fPrwtN7pWEH63QbBlWe33dKMT9050X9oKYdjo93DixIm2e3gsFgOaTp8bDcokSdpy9uFBIgl3O5fZxSx/9flzzK3mMRyHcMiDbbv0xP3kKjXCIQ/XV3MMJMNcW06zqy/KucVVDg70cG5plb2JKIomc3k1w/5kjJcXl4hpCruifk7Nz5Py+xjtiTC+skJAVTmUjDORz7GUWWN/TwxZlPDKCqIscDq9yuOxJIIAM9Uci40KKgKjiofpbJq000AU4GAkRs0xOR7pZaacJ2tVmK40yUBU0TkU7mGmmmeinEUEhiSN2VoOVZDY608QUjVO52cw3ea9q0f1kbOKWK5DXPXTrzezDa8U1oN0TZRRJZeM1ewu5BVVdnmSgIMsaExUmtmzvb7UTboF2Oft52plmqQWJyj5SBezhANBzpWv4m4gHzElxPxN5UmyICILFgICfWo/uuil5tQJyBrXap2lSFE5wuIm7VIHtBRz9U4C4xf91JwcSXU3Rs3GFm1qYpmQmmCi1t0uNaIEWGmsdWyTBRXFb2De9LVWbB9r9SsgQFge4KDvua7xbgfHcXYscLtbtO41D1JJUgtb6ZJ0c/cl0zTJ5XJkMhkuX77cLl+SZZlKpcIb3vAGKpXKXXswfOhDH+KTn/wkly9fbrdv//CHP8z+/fvb+xiGwc/93M/xl3/5l9TrdZ577jn+4A/+gGQy2d5ndnaW973vfXzxi1/E7/fznve8hw996ENb/nwYhsGP/diPkUql2g7P//7f/3tmZ2c5ceIEHo+H06dP8z//5//kf/yP/3FX57oVuO7rSPT8EJ/ng3XXuQPcaRCwUTAcCoXo6enZ0dWQe8kwFItFxsfH8Xq9PPvss7fsIX0/Mgy3CmRbqzB3qwnYScJQKBTI5/Ps379/243s4O5WzavVKqdPn0ZVVU6ePNnxnu5E+c7txiwWi5w+fZpIJMKRI0c2FYp7PB76+/vp7+/HcRzy+TyZTOaOsg8PY4bBth0+9U8XeP7sDIomIakSEV1jMVciHPWyVqpgCg5qw0LRJSzHJhHzY9kOBwd6yNUMDvTGWapUSAV9iJLATCHP0VQP6WqJtFHn6f5+FqpFzq+tcTyVYsko8/ziPDHdwxO9Kc6kV6haFk+nenFwiekeFislRNlFk2SejPUhSfBiulnuIgOH9SCrpSIrbp05Ic+eQJjJSo7DwSQCAq7o8PXM+gr94+Ekq6UcjwX7uVZKY7sOL+emsG8E6pook/L60ASZvGUwXU2TUANcKneu8u8PxFltFDjkH6ZqNViu58nZRVaq61mLiOwlb2XbJMAveenXepBFB7/sY6meYYkMqigjOk4HWRARCMgKpXqTkKiCSlJLEFMCZM0spisyazRLfFJaD1O1uY75CUBA1ig3Oj/f/Vof8/UJPIKfsBJHEXQaTgNNEpivTwDZtrDZ43rJmZ2EBaBPHWGlMdG1fUAb6TJ0AwhJMaqOiNjQ8eWf5lLmcvs7tFWvgAdxJb/1HHrQ5gV3VyqlKAqJRIJEItEuX8rlcnz2s5/lF3/xF9F1nf379yNJEktLS/T29t7R+F/+8pd5//vfz9NPP41lWfziL/4ib3vb27h48WI7a/EzP/MzfPrTn+YTn/gEoVCID3zgA7zrXe/i+eefb5/Xd37nd5JKpfj617/O0tISP/RDP4SiKPzGb/zGlubRaDRYWVlhcnKy3ar9scce43/9r//FH/7hH2KaZrvD1A/8wA+wvLx8mxHvDo9Kkh4OPLSE4U5Qq9U4c+YMtm1z8uRJrl+/3tElaSdwtxmGViA+OjrK6OjoqwZbO9GJ6XbjO47DpUuXWF5evidNwE4QhpZeYXl5Gb/fz65du7Z1/NZ7cacP7Ewmw/j4OH19fezfv7/rtTvRrrU1180C9uXlZc6dO9dB9m53fFEU27W9cPvsw8NGElqYnEnzN587R65qICgC6VIV3adSNxuIuoQsSai6jFeWECQBVZGRVIlqoUoooFMw6liugySLlBsNFDmIYVtUGiaO5KJLEiXTYtWokPT5EAWBJaOM7Tg8mUxRcy1OLS/Qo3t5ItnLeGaJimUS0XT2RsNULZuLuTUSHh/jmRX6vQFSngCyBC9lmwGtgMthT5SaUceLzPnCKkcDUS5VmoLbPj3IqC/CRGWVNddgKb/IgCfIYj2DjUtE8TLkjSGLDmeLc+3QvU8PMm+stf/u16MMeEIs13Os1Sus3fB5eCzYy+XKetAuAkndh+069OtJ8maFJSODqRpMVjrdk+N4SFv5jm0HfSPUHYPdnj2UrCor9TVM2+Zi/RIO6/cQCRFZsDu2Aez27GL2RhZBRiGmJPCIPiTBxitGKVh5Sjf0DIP6IPObGbdpSRbqnVkLSZBpuPmufQNihLXGNXxSAl0MIwkqlmsjCworjUs4osVgaJSTPf+cTCbTUQLTIg+hUOiW95gH0el5Yx38g4RWqdS9ZD42li/9yI/8CN///d/Pl7/8Zf74j/+YsbExBgYGOHz4MG9729t429vexj/7Z//stsLgz3zmMx1//9mf/RmJRIJXXnmFN77xjRQKBf7kT/6Ej3/847z5zW8G4KMf/SgHDx7khRde4MSJE3zuc5/j4sWLfOELXyCZTPL444/za7/2a3zwgx/kV37lV7ZMQN/73vfyzne+E8MwyGQy+P1+XNfFsiwajQaNRoNqtfpAZo8e4f7im54wrK2tcfbsWZLJJAcPHkSSpB1fmYc7D+Zt2+bSpUusrKxsORDf6fO4uSTJMAzGxsZwXZdnn332nrolbDdh2KhX2LdvH4uLi7d/0R1iY4ZhK9hoXnfo0CH6+/s33W+nMgytOWz8fWJigunp6XsW+t8u+9AqtyqVSgSDwdc8wLnd9TUtm7///HleGJ9pZg90Gct18QQ0RAkkWULFxXAtqqaFKkK+XCMU8nB5eY09vTFeml3kaH+CFaNKeq3KgVSc00vLBHWNPYko4yur+CSR4UiAqWqFnGGwKxbCch0uZ9NEfDpls8Hj8SSSJPD1lVkUUeTJeC8Fx+DFtWZwfSAcQxRhXzDO5UKaPp+fl7ILKILIoXASnyLzQma2Hdgf8UWZquXYhQ9DcNAdeDE33c4kBGQNryKSlHuo2haT5TV2+VzOFNeDfo+koIguSTlEQPawZBRQBInx4hSWu/49PrpB5ByUvPTpcQKyytXqLBXbaO/3WHCIq5VO7cFeTx8zjTlUQSGlJdBEHdGFa9VprA2eDoog4QpGFzHY6xtmaqP42RXoUXqQBIkhbR8lu0SmkWahvsw+726mjc7MgCzIGE6BmxEV4izUu9ulDmmjLDYu4hHD+KQosqBjuw6aKLLUKFMxc8B6liWhJnGwEBD51sgPEVbChMPhtgFZS4B74cIFbNsmHA63CbjH47nrBYv7gRaJeRDnBdtbKqXrOs899xyf+9znOHToEL/8y7/MP/7jP/L5z3+e9773vaysrPDVr36Vp59+estjFgrNz11rQeaVV17BNE2+4zu+o73PgQMHGBoa4tSpU5w4cYJTp05x9OjRjhKl5557jve9731cuHCBJ5544rbHnZiY4D/9p//Ed3/3d5PJZPj93/99fvd3f3fL894uPMow3BpbKV/7tm/7Nr785S93vO7Hf/zH+aM/+qP23/davgbfxITBcRwmJiaYmZnpCtZkWd60T/924k6C+Wq1yvj4OIIg3FEgfj+6JLXOodWpKZFItInXdo19r8jn84yNjRGNRjly5AiZTGZHOvRsDLxvB9u2uXDhAplM5pbmdRvH3QkNA6zP9Vb6iZtxNyVEm2Uf1tbWKBaLjI2NIcvytnRe2ilcmVjhk585S8mo48jg9erUGiayLlEx6hiGTTjkYblaYXcwQj5vsCcSJdOo4VFk+uMhKqbJ8eE+Lmcy7I6GsUSXa5ksx1IJlo0ql9IZnuxNcTWfZjyXZW8kgqpKnF5dRhLg5MAgaaPKTLFAOKExXSnwZE8vc6UiBcdgopglrGocDMeZrORYLTVX85+IJVkxyhyP9jNRzCCJAqcyzVagIgJPRlOY2NgNmHIqpFQfq3YZGxfFFejFQ1DzMFHNtAP/Q4EE50tz7TFGfQliqs5kdYUFoxnYhGQdwTE7yMKAFqHuGBzyj5A3q8wbaSJ2neu1mQ4x9JAeZ3KDlkFGYkBPoiATNIMU5BrXq0vIgkivFuogCwD7fANM1jqD/YQaY6WxSL82hCro1Jw6a400PsnDtWpnsB9XYswb3W7MI55h5m7yZxBckAQLcJFRCSoJNNGPLChUnAIQIG+VyVvNco6kOsjaJhmKfm0Pq2ZTRH3I92ZiymDH/1VVJZVKkUqlcF2XSqVCJpNhbW2Na9euoWlaO/vQan/8IOFB7pAEO6OtqFQqJBIJotEo3/M938P3fM/3tDsGDg3dWZvcn/7pn+ZbvuVbOHLkCNDMAquq2vXcSCaT7bKg5eXlDrLQ+n/rf1tBqVRienqamZkZTp06xR//8R/zkY98hHq9jizLSJKEKIrtn53CI9HzrbGV8jVoZor+03/6T+2/NzZ52Y7yNXiICcOrBTUtN996vb5pcCRJEoZh3OLV24OtBvOrq6ucO3eO3t5eDhw4cEdfyvuRYWg0GkxNTTExMcGBAwcYHBy8/Qu3gFYZzr3WuLfS+Xv37mV4eBhBEHYkAIf1DMPtxm5lYgBOnjx5WyPAnc4w1Go1Tp8+jaIoXfqJnYDH46G3t5eJiQmeffZZyuVyR/YhGAy2CcTddF7aLjQaFn//mbOMXV5CVkVqjo3mUSjWDMqWSTIQwKlDT8xHzbIY7glhODY9QS8NHCRRQFAEzJqNpiqY2Ai4uFIz0JZFkaxpEPd6QHCZquQJKjJxXaOCxUQmy7F4AkGGry42g/zH4j2IokCxXudMfYU9sQh12+bxaIp8o8bF4hoFs44iiDweS1K0DeaqReaqRY5EejhbaJYXJfUApmtzobRC/YajcVDWUGSBXZ44oiBytbiKIsJlY12wG5c8rNSz7PElUUWZqWoGv6zwSmE9CBaBXk+AyeoyHlFlyNODIkrkrQKT1Ux7P5+kUXM7OyfpooKDQUKNEVQC1Ow6C/U0ruBw2ZgBibYV6n7fENeqnYH9oJbg+g3TtqgcI6iEwBFxRYOMkaGwoYXpLn2Q2ZuCdwHwSQolu5OEROUoi/X1Y/mlMH4pglt2cTULXZIoWFkqjRVghV36MKuN2a6xBbqfK7KgUr7RRlURPDwT+p6ufTrGEQT8fj9+v5/h4WFs225n8CYnJ6lWqxiGgWmaxGIxAoHAa57BexCzHrBOGHbi+lSr1a4uSYIgsG/fvjsa5/3vfz/nz5/na1/72nZOb0vYtWsXb37zm/nu7/5uFEVB0zT+3b/7dyiKgtfrxefzte/Rhw8f5p3vfOeOzOOR6PnWuF35Wgter/eWLe23q3ztoSUMsHmg1VoJj8Vit3TzvR8lSZIkvapOYqN3weHDh+nr67vjY9zK0Xg7kclkSKfTt10lv1Pci4AYOrUUx48fb3f2aY29E4RhY0nArZDL5RgfH297ZmzlIbqTGoZcLse5c+faJXn366HeOv6dah/uV/bhysQKf/cPZykYdRwJcvU6Ni4eWUARZHpUjUrDJBjSWS5ViAU9LBbKBH0aFccinTNIRv28MrvE40NJrhcK1BsWh/sTnFlawaPI7EnFOL+6Sr5uMBwLk6lWWSmXCHtVerxBbMcBCcbWVjgUjRP16HxjbQHTcZAEeLZ/kIVqiclijrjuQZTBr6jsCUap2RYXi6tU7eb3f3cgjFdRGPFGmSxnMR0HSzCbZMGFPf4YMd3D5dIqC7USAMdCCS7e0BAogsguPYrk2MxYBpfLzVaju9QQF0udIuKnwsOYWIx6U0xX17hUXuRosI+leq5jv13eCNeqTV1FTA7So0XwyTIT1XkqdhHqTXJxxD/U0VYVYFDvYXLDNgmJlNpDRPWjSgqrjQzLjQLLjQKHfMNcNzrnqIkaJTvDzRj1jNwQNDchuCJhJU5S66HuRKk5BjkzQ6ZRpia5CHINy23Ahlt5Su1jsd4tdB7S97B8UytWgD5tF0s3BNBPBv9feKVw1z6vho3fEYCXXnoJv99PuVxmbm4OQRDa7T9jsdht/QN2AlvpRPRaoDWvnSAMlUrllpnareIDH/gAn/rUp/jKV77CwMBAe3sqlaLRaJDP5zueuysrK+2gMJVK8eKLL3aMt7Ky0v7fVjA0NMTv/u7v8rGPfYy///u/p1wus7y8TC6Xo1arUavVME2ThYUF/tW/+lc7TBheHxmG1qO+WCx2bNc0bUvf3ZvL11r42Mc+xl/8xV+QSqX4F//iX/DLv/zL7SzDdpSvwUNOGDbCdV2uX7/O9evXN/Us2AhZlndc9NxqUbnZykvLu8AwjFctD9nKMXaK+JTLZebnmw/7b/3Wb932VenWNbmbVLZhGIyPj+M4zqYlXDvdsvVWwX0r27Fv3z6Ghoa2/JDayQzD2NhYu/b1tcDN57WZ9mGj78NOZB82jtHMKpzjpfEZLMFF9SkgCXhUFUeElWKFSMTHTDpPKhFkNlOgryfIXLbArlSEiytp9iZjzBWLWI7D06P9jC8tcygZp2SZnF1e4bHeBNPlIt+YX+CxVIK8afDS4iJBRWE05Ge6VmFuZYnjqV4cHAb9QSzX4aX0IgFFYzQYxpVcvrLcXMEOyAr7ozGy9RpXCs1uRg0sqrbJvmCMqOrhWiXNVKYZsPtkBV0RcFAY9ceYrxYIqCov5daD6j3+KFPVNQZcH6FQiMlyGk2TuVhaNxAMSxp5u4TjuvTgIyB78KgKY8XpjqxBU7fQudp+LDCIhcl+7wgrjTwrjSJRNciZUicx6FWjXK91vlYVZCTBZVDvQxU1SnaV5XoGn+LlfLmzvCgmB5mvd3ZtAhjRe7s0CrrgwXYtBrW9uIiU7UrTcVoKcKnS3dGoV0swf5N2oZlFaHTtqwoaBatbN+UVg6yZE8johOV+Hvf/86597gaxWIxEIoHjOJRKJTKZDIuLi1y5cgWv19shnr4fgfyDmmHYSffpezFuc12Xn/zJn+Rv/uZv+NKXvtTVoOPJJ59EURT+8R//kXe/+91A0ztqdnaWkydPAs3s9a//+q+zurra1qN9/vOfJxgMcujQoS3N4+rVqxSLRf7jf/yPnDx5kk9/+tP81m/91l2d0yPcGW6u1vh//p//h1/5lV951ddsVr4G8H3f930MDw/T19fH2bNn+eAHP8iVK1f45Cc/CWxP+Rp8kxCGRqPB2bNnqVarPPPMM+1+wrfC/cowQPeNtLUCHYlEeOKJJ+5pRXWnuiStrKxw7ty5dqeOnShh2Xh97gSt6xeLxTpcrzdiJ1bsW9is3Gmjm/TN2Y6tjrmd83UchytXmrXYjz322JZXm7YTWwn0N2Yf9uzZ0+7SsVPZh6tXl/nkp85Qsywkj4yqSZSMBkbdxh/UyFcNvAEN03bo6fHj4JKKBzAdh95YkJplEfbqGK6NpshomoxhW4Q0nbJl4VMVEgEfU6UCSb+PmE9noVrCdBze0NfLcr3CmWIevyTz7MAAl3IZskaN0VAYUYKDkTgXsmu4osvL6SXimofRYIS8XePrq81gP6RohDSVoBJgqSazVClRcxrkGjWgWXb0eCzJQq3AVCXHQrXEU9E+xgpN8q8IIvsDPaiywHJdZJYqFKo8GennbGk9cFcFiYOhFDXHZLaaYdmqUnUsxLrVQRZSaoCp2hKCKzDojROUmita16rz1J317GdY9rFq3uxVIKKILpZlE5R8hMUQ9WqdRCTCxcpER2vVfq2H69VubUBE9TBf78wk9GlJ5oxp4koSnxTAcQVKdoWw7GH6Ju2CJqgUrc55ASTVZEcmooVhfZSlm3QOAP36EIvGZXxyFI8YRhY0HAQ0UWGtMU3VKfKtgbcji/d+L934TBFFkVAoRCgUYnR0tMM/4NKlS5im2SGe9nq9O7La/qAShp3MfNyLD8P73/9+Pv7xj/N3f/d3BAKBdtAWCoXweDyEQiF+5Ed+hJ/92Z8lGo0SDAb5yZ/8SU6ePMmJEycAeNvb3sahQ4f4wR/8QT7ykY+wvLzML/3SL/H+979/y1mmv/7rv+b8+fN87GMfo9FocOzYsbs6n3vF61H0PDc31xGrbuU9u1X52o/92I+1fz969Ci9vb285S1vYXJykt27d2/TzB9ywiAIAtlsljNnzhAKhTh58uSWrMvvJ2GwLAtZljs65myst7/XY2znSvrGMqmjR49immY7xbnd2Ep5z82Ym5vj8uXLt71+9zPD0Gg0GB8fxzTNu3aT3k7NhWmajI+PtzU621lGdje4EyKk6/qOZB8sy+Frz0+zlDFxZYFivQGKiC6IOIJLMKxjOg6RiJd0sUI85mdmKc/ugRgXFtbY3x9jKlvAo8l4PCpnF5Z5w2g/19I56qbJ4YEkF1bX0GWZoXiIuWKRlUoFv1dlMBhkOp9npVGlalkc9AeRFInnl+YREXiiJ0nZaXA53wx6n0r1UjLrPBZJcDmfpuo2uFbMIrhwKNyDKoucz69guQ6yKLAnFGWqnOVoKIWDiy6LfC093T73Q6EeLhQXORhIoIgyM5UsNbfOpUK2vc+BQA/nS3P4JY0RbxzLcfAqEi/mO3ULfb4g16vr9wMfKv66iCp4yYo1pqtpFEGkTw92kAUBl16Pj6naegeisBxgt7eXmm0QkR3WGnmy1OgRA11kQRJEBMHq6oq03zfEjDGJ4IrE1KYDMwg41Km7Egv1DNC8rv1aqssRGmDYM8CM0dkuVQAU0QW787OrCTp5cxERhaAURZeCiIKCiETBXMNGJ2sWgWapQUTuYcVZxcWhRxnisO9buz+cd4FXc3rezD+gRcInJydRFKWdfYhEIlt6Xm4FD3JJ0k4Qmda1vdsMwx/+4R8Cze42G/HRj36UH/7hHwbgd37ndxBFkXe/+90dxm0tSJLEpz71Kd73vvdx8uRJfD4f73nPezqEr7dDuVzmypUruK7Lxz/+cebn5/mhH/ohyuVyl+h5J3UyLvA6kTC0zzMYDN52cXsjblW+thmeeeYZoNkFa/fu3dtSvgYPMWFolSDdTQB+O33BdqD1BXMcB8uyOH/+PLlcjqeeeopIJLItx9hO4rOxTOrkyZP4/X4WFxd3jFjdiTjZcRwuXrzI6uoqTz75ZFft3mZj7xRh2Dh2qwtQKBS6pV5mK9iujEi5XOb06dP4fD5OnDjBP/7jP+5YpuV2uNeHy3ZlHyYmVvjLvzpP2bDQAl5wRGSPjOpRKBsNvEGd+XSecMRHtlDBkSFbrhEMeVgplNnbH2MinWNfKsaZ5RVGvCqPD/Xy8twSx/qSLBsVXpid51h/kqVahW8sLDIQCJAK+zizuoomSexPxrAch7lCgVgwwGS5wFOJXiqmyUy1QLZewyvJPJ5IMlMpMl9pBpxPJJMsVIo8FetjrpxHlGA8t+5bcDIxSNU20USFs/llnor3MpZvin4FFw4Ee/DKMpqktkuNnoj0cq64LgyOuAphVWNUSDBZSXO2sMjRUIozxc4yocfD/VwszbPLm8Qn6mQaZXp0DxfKnfv12V4Wb1rxPxocYrWRZq93GBBYrefxShpnitc6SIAiSDhCo4MsABy4SfwclkNElDCSIJJQBlhtpFmsZ4EsB3y7mL7JuE1EALrHjSnRW3RL2sVi4xoSMqrpx6+FUWUdj6SQNhcx3AY1KwtWk3Tt0ofJWt1pfZ/spdxont8/i/xrBGF7AtetBsEb/QOGhoawbZtCodDV/rhFIAKBwF0H16/HDEO5XL7rcuKt3Jd1Xef3f//3+f3f//1b7jM8PMw//MM/3NUcAN7xjnfw1a9+lTe96U2srKzgui7vfe97kSQJv9/fFj1blsU73/nOHctAvB4zDFvf/9XL1zbD+Pg4QNtQcDvK1+AhJgyCIGBZ1l2Jce/WVO1OIUkSpVKJq1evomkazz777LYK0rarJKlQKLQD35MnT7aDr51cqYetZUg2ej+cPHlySy1n70eGoWV+thWDvdthO0qS1tbWOHPmDIODg+zbt69NyLY6bmv/7cKdtKDdCu40+2DbDv/3/57nG69MUaw1ULwKoiZTs0xUTWHtBjlQHAlZl9E1mapjEtRVDNdGR2i6OLsOybCfglkn6fchyQI2LgORIEu1MlGvl4CuMVUq4lcVnhnoY7KY45XlZfbHoiiKyCvLzSD/mf4+8uUSLgLTxQKSAl5ZYSQQRhDh1OoCDi4iAt/S10/eNMgYNdaMKk/2pDidXSSmeRjxRdFkka+trdfuHwk3OyTt8kaIqF5W6yWKTo0r+XVh3ZORPs4U50lqAXr1EIV6lVqjwku59aC/Vw8ys6FrUlj2ssfXg+E0UAWNiXLzf4cCqS6ysNebZMZo1vH7XI2go6O6MgvlNQpUSTearWBVQUaX6MoYjGoJpm5yU04qUepOnT3e3TQck7VGjrRZIqaGuFzpDPYjcpB5o1vPsNc7wrTR7aMQkHXKtn1D+BzDKwWQBRXbbeAVkuStLFWxTN4sE3YjNBo5bDoXmpJK76YC6JQ6xEqjmdEY0g+zy7N9gdarZRheDZIkdTQgqNfrZDIZstlsW6+2UTx9u+5uG/F6JAz3omF4UPCt3/qt/PIv/zIvvPACv/M7v4PX6yWbzVIqlcjlcpRKpXaL+lQqtXMlS6/HFMMWcbvytcnJST7+8Y/zzne+k1gsxtmzZ/mZn/kZ3vjGN/LYY48B21O+Bg8xYQDYt2/fXQWG96MkqYUzZ84wMjLC3r17tz2ltx0lSS2h7kbX3xZ2mjDcbvyt6BVuNe52tGy9FWZnZ1lbW7tn87MW7oUwuK7L9PQ0ExMTXd22dkJM/SDgdtmHbKbB+Nk8NhKuLCF5ZOquQ71mIOsSCAKegIooCTiSgKJImDhUGib+gM71uTSPjaa4uLTGQDyEhcPkSpY3jA5wLZPFcmx2J2LM5AtkqjUCfpU+v590tcpkIUfK7yeqe3BEh3PpNXaHIyT9Pk4tL2C7Ln5ZYk8sQqFe51IuTVBTuZLPENV0RgIRVFnka6vrq+RP9/RSdy0OhRJcLqQZ9DmcyqwH1qO+MD5FIaEFuF7JIVVzHAjHubxBwHw4mEQSYNATYbaaY9ko8VggwewN7QOAKkpoEvjEICHZS9asUTSrXK+uUrCq7f3iio+lRrrjPQmLXvyyxgH/COlGieV6jopkMagFKZjVjn2HpQgzjc4V+SFPgun6AgHXR9LXg4tAwSyjSgLXa51i4lFPH1O16a7PRUwNMGt0dmoKSH6W6uvExi8FCcphglIAw6kSkHrJWVmWG02TtX3eUWY3KV2KKH4WG91aB1nY/P7lUr/xm8Abw9+76T53i+0KzjVNo6+vj76+PlzXbYunl5eXuXr1Kh6Pp00ewuHwq95/d1JcfC/YqXm1SpLuVsPwIOGtb30rb33rW9F1nSNHjvCOd7yDdDq9JfPYbcPrKMPAHZ7n7crXVFXlC1/4Ar/7u79LpVJhcHCQd7/73fzSL/1Se9/tKF+Dh5ww3G0w2CIMOxVQtkSnlmWxd+/ebRWdbMS9EJ9Wmc/Kysothbo7TaxuRRhc12Vubo4rV67ccceh1ritcbbz/TVNE9M0yWaznDhxYtseFndbQuU4DhcuXLhl29vXkjBsd4bh1dDKPqRSvfzfT5/l7PlpDMuhUDNoYOPxKbiiiM+nYDgO1RuGY/lqnVjIy3K5wi6fSsWyqDUa9CeDTKXzHB7s4YWZBQ6m4uzpjfH89BxH+5Kk61VemFtgTyyCokpcWEmT9HsZiYWZLRa4ms0wHA2iSTJ7wlECusrXlubxywpDupeyYPLCcrMsaHcwhCSJHAz3cDG3Rr/f5nS6+b9hf4hBX4hz+WUKZjMA3R+KcbG0TFjRGfVHqdsmWbvCS9l1TcIT0V7GCgsMecLENT81u8FSPUehvO4R8Hi4j/OlJunQBZlRf5ygonOtskLOLABZROBAMM5EZV23IAIxXWe+Vma3J4UuaeTNGgFF5kypc3X/aGCAS5VOofKAEmPWbo4nuSJRgvgVHzIuMjo5auRudFw67B/mWq0zeFcFmYrd7cY86hlk1phu/y0hEVPjpNQohmNQc2rkzBw5q0zZNqjIRQpWvmOMqBxhfhOykJJTLDa6BddD2ggrje7MxYC2mxWzqYvY732GpHb7EoI7QctVeTshCEK7pnrXrl1YltUWT1+5coVGo0EoFGqXAPp8vo45PMjGbTsxr3q9jmVZ99xW9UGA4zjYts3P//zP86d/+qe8+93v5jOf+Qy//du/zY//+I/zD//wD6ytrfFd3/VdhEKh13q6rzvc7hk6ODjY5fK8Ge61fA0ecsJwt2iV3Ni2ve193ze2/PT5fDt6Q7nbgL5Wq7Vr3F7NWfq1yDDYts2lS5e2rFfYDBsF1dv1sKhUKpw+fRqA/fv3b+vK0t1oGOr1OmNjYziOc0tzuAchw3C/jr84n+ev/upFMvkajiyiBXxEgj4kVWB+OYOrONSLBfINi964n3LDpjceIG/UGe2NUqzX6Y0EsAQHr6ri92qkKzX29ESouRa6qHC4t4eFSomwrvOGwT4uZTMYZYun+3uZLRd4YWEBRRJ4ZnCAiXyOpXKOY6kkK9UKTyZSXM/nKNNgtlYlqGocisSYqRaYyOQBOBCJMlvN8USsl3zdQBFFvpGZw7zxHenz+AlrKnulOFeKac7ml9gdirBSKbevw5PRPgQBerUQM9UCS0aJIV+AgrlOFoa9YdKNIoe8SQrVCiuugSx2ipwBnggPcK5FAlwY8EQZ9ITJWiUcV+JqpZnB2Kyt6pAnxtVKJ4EIiT4SnhBh10fBrLBcz7JEkV2WzIzduXofkf3M1jvLkwD2+PqZuMnMzSd4UUWJUc8ebNehZJVJm1kkZM5v0i51lz7ElNFdRhRR/MzXb8oiuIDYgJtusyIiNXudpClo+OQomuBHEXUSyiEs1+Rbwv+q6zj3glu16t5uyLJMT08PPT09bfPHVvnS1NRUR3lTNBp93ZUkVSrN8rpvhgyDIAgoisLHPvYxfv3Xf50f/uEf5sUXX2zfu30+Hx/+8Ic5cuQITz755I7M4ZFx28OB1yVhaN1AtpswpNNpzpw50zbJeumll16TFfpXQyaTYXx8vD3HV7uZ7lTb1o3jb5z/RofkZ5999o5qaG8eF+68ZeutsFEfkE6nt/0BtHE1fisrh8VikdOnTxOJRDhy5Mgt5/NaE4b74T7rui5f/MIlvva1azRwUb0KjgDFmoGoyWjISB4Fn19B1DT8gkvZMJAll4V0BkmWsLHIVOuM9sU4t7DKkcEe8vU6C4UShwcTLBRLVM0asYCXqMdDzTKZKRXZE4uQM2pMl/PULZunenupuRZfnW+WEx1PJqg5FovlEsvVMvvjMfKVMocCYfK2xUQ5x5rRLNc5GInhVWWMqs3p9BL9vgBrpoFpO+wPxQkpKkv1Ii9l1gXLx2MpxvOLDHhCJPQA4HChtEzDWf/OHg0nOFNovmbQEyGh+SnZVSYrOZZoGrj1e0JMVDpLhHb74iwYaQ75B3CBuVoWSRB5pXgd213/XvWoAWZqna9VBQlBMImqIaJyCNt1WWsU6fcEGS91BvsDWpxls7vUR2u4VJROv4OUGmOtscawNoQiqjQci6xZoE+PcrXaSQBEBOxNXJdD0ua+DQNaP/P17ixC1IyRk5sZEQWNgBxBE/0EJB+GU0YQApTtImWnRNlMM6KHmag1ScrxwLcTUe69ZHEjWt/n+xmcC4KA1+vF6/UyODiI4zht8fTs7CwXL15EURQ8Hg/5fJ5gMPjAkIedJAyt6/Kwo1W29Xu/93u8//3v52d/9mf5u7/7u/ZC4lNPPcXi4iL1ev02I909HomeHw481IThbgOSVgej7QqGN5rGHTx4sN3yaqdLeu5kfNd1mZqaYnJysmOOtxv/fmUYstks4+Pj9PT0cOjQoXu6yW8XYdh4zVr6gGw2u+3X5E4Iw52Ire+UMOxEgL+ThCW9WuKTn3iZ1XQJWxQQJJGabeNIoHpVZE3CsG28PoXlQpXhQR/XljLs6o9yeSnN3r4YZ+dXGNJE6q7J1cVVRqJeXpxdZF8yRiLi49TMPPt6ojiixPjSCsORIImQnwura1gFh6hfZ8Ab5EomQ821uJrN8EQyiSZLvLS6hOU4KKLAif4BFqolFuo1CrZJ2Oeh3rB5Kt5LzbZYbZRIl5rkIazqhHSNXsnPXLnARDHDvkiEhdq6gPmZngFsHAY8YeaqBcpmA1UROsjC8UiKitXgWGiQhWqB2UqekKoyWVnXHygISKKL4VjIiIx4m6VJBbvMWqPKWqM5J4+kUHeNDrIgAmFVZbqWR3AFevUoYcWPT5S5Vl2kaFVZvNFidNTbw5WbMg4SApJoY98kft7nHWC6PoMPLz7Hg2u5WIIDOGSokKHS3jehRpmqdQf6e70jTG0idI6rYWaNfMc2AXBoajkEVyQoR/HKARQ0ykaGsDhI2SlTtkuU7TSaWCIvQc2pdIyjCBoZc+HG7yr/LPz/7jr+vaJ173ktA3JRFIlEIu1uf/V6nQsXLmCaJufOncNxnA7x9FYaVewUHMfZEff4luD5fiyK3C+k02lGR0eBpn6wlT2RZZlcLrez76Mr3HFt/0OLh/g8H2rCcC/YLrdn0zQ5e/Ys5XK5yzTufmgAtpKitiyLc+fOUSgUeMMb3rDlOsT7UZJk2zYzMzNcvXqV/fv3Mzg4eM834Ttp2Xor2LbdboW78ZrthCncVkqoXNdlYmKC6enpLYut75Qw7NR57QROfeUqz39tgkrdpIGDLQroHhXTcnBFF1cSWMqVCEe8FKomvoCKYVr0J0PUbZt9A3HK9QaHBhOkazV2JWJY2BRqBiNBD6vlAh5F4WhPhKlKGVkUOTkywLn0KlMLRYZDQSIBD2dXVnBxOd7Xiyu4eBWFimlyIbdGVNMZCoZAgq8sNUt2VFFgbzCEI0usVitcyaeJ+nTS9So+SeFAuIe6a3I+ty5YfrInxVhukbjmZdgXQZUkXsrNYt94vyRBIOnzcq2cRhVE9gQSRBSdi6WljlKkp2L9nCl0thwdlQJ4VT8BWWe6muFaZZXHQimmq52i5v3+Hi6W118ruALHIyNYrsVuTz8LRpa5Wg5FkLlqrHSYu6miRINaV1vTQ4EhrlSamgGf6CEs+BEtAZemQ3LBKlPAABn2aH3Mmp1zB/CIIvmb7rF+0ctSo3vffq2vrXPQBI2QHEUXvfgkDxWnhE8SKJh5Vs08mHn2eUfJ6mtgdo4zqA8wt4l524A2xFz9MgBPB9+GX97+eu8HgTDcDE3T0HWdSCTCyMgI5XKZTCbD6uoq165dQ9f1DvH0TgTwt4Jt2ztiPFoul79pCEPrs/TUU0/x2c9+lu/6ru9qkz6Av/mbv2mXp+0UHpUkPRx43RKG7QjmC4UC4+Pj+P1+nn322S4TnPuRYYBXDzTL5TJjY2Pous6zzz57RzfPrRKSu4UgCMzOzlKtVrfVnwLujezUajXGxsaQJImTJ092tB3bCY+HjSLtzdAifMVikRMnTmxZF/NalyTB9pOQcqnGJ/7iG8wv5nFkEVQREFBUiVLDpFJvEIp6sR2HSMyH7YLXp1Cum2hehYVskd54gGy1uVquywrpUoW+WIBczaDmuAzEg4hGg2qjwXKtSlwWqTkOYytLpLw+9kQiLBplxpaX6ff7GYgEGVtdoW7bjIbDqIrIvkiMi5k1hsIhXlpdJKCo7A9HyVdLjBWawbgsCgwEgyAIPB7t5XJ+DROL8/l1svCGnj5sHPYG4lwrZlAEmbJba5MFgKfivdQdm6PBXq6VMsyVC6TVYgdZ2BuIcb64gITALl8PXklFcmzOVBegkG/v93i4n/OlzmD7SKCXS6V5BjwxwrIfwzGxXZuzxRksd/3+pooydafWQRYADgb6uLxB/KwKMoN6AgEY9QyRMYtkzCIF6owIUSZv8lEISB7STieBAegXYiyZ3f4H/XoPUzf8Fbyij5AcRhM8aKKMqwxTsIoU7RJFew1NVPFJIhW73DGGX/SxtEnpUkAKsNToFkZ7RR/LN4TRuujjZOgdXftsBx5EwgDrZS2CIBAIBAgEAoyMjGBZFvl8nkwmw7Vr1zAMg1Ao1CYQd2LAeDfYyZKkh72lagut6//zP//zvO997+NXf/VXWVhY4KWXXuLs2bP8xm/8Bj/3cz93RwZfd4xHbVUfCjzUhOFebjT3Esy7rsv8/DyXL1/etB3pdhxjK7idFqNVvjI0NNTuzX834+8EYajVapRKJRRFuSe9wq1wt8FyqzSqpfG4+bx3MsOw2bi1Wo3Tp0+jKAonT56849WybyYNw4WxWT79t+PUHAfFI9OwHYyGiSUJ+GUFSZCIBvzkKjUCQQ9zazniPUFWcjWCAZWri2mGUhFemV7isZEUl1fTVCyTfQNxXpieZyQWJh7ycnp+hV2xMD2RAOeWVtGCfqIeBblmkK5WyDUq+GSZvYEgHq/GC0uLaKLIU6kUq0aVc+lmTf7x3hS5Ro0n4ikuZtdwRJcJoxmY9mge9sdjXCtmWak1S1ueSqR4ObOIJkocCPUQ0jReyMy2Rc8+WUGSXcq1Bn5JZXcgRlBWeTk3R/1GKZIIjIZDHS1VexQfMdWDR0pyvZLhSmmNPk+Qkl3quL59epBrlRvGcC706RESWgDLNdFEnZlqjhlyTTdnb6CDLAAc9Ke4WO4Msof0GDmzwD7vMK4rkrcqrNSzONicLy907NsrRVh0u/UMA544k9Xpjm2qqFBXqrRsETRXRXe8qA2Jol0lLKcoCxXyVo28tcJe7wiXqle7xt7l6Weq1l261KcnmNmkpCmpxZmr57q2J9Re5m9kHU6E3o4u7Uxte6tD0oO2sn2rbkSyLBOPx9stOjeKp2dmZjpaJMdisW3PBuw0YXjQ3od7wdNPP81v/dZv8Uu/9Evs37+fj3zkIyiKws/8zM/wwQ9+8LWe3iM8AHioCcO94G7dnm3b5uLFi6ytrd2yHenGY+wkYWg9OG4+huM4XLt2jbm5OR577DGSyeRdjb/d4uEWWkG5LMsMDg5uO1mAu8swzM7OcuXKFQ4cOMDg4OCm++xEhuFWhCGXyzE2NnZL8nI77AS5uVNsx/HrdZNPf+IVLl1awhYFHAnquAiygKpr6LLIar6MP+yhXDUomyY+QQNVQpUlJE1ElkQS8QANx+bYrl6mczn29ESpuiaZSo2nhvuYyOeQqybP7hpgbGWFqUKex/qSZBsG59cyhDSVQ/1JlkolpgtF9msK13NZ9uoeqgJMFLLkGnV0SeJYMslyrcx0sdkC9KlUL2cyy+z1BHBEgYjfx9dW1lfSj8eTlK0GT0R7uVLMkDVrTFTSbbIgAvvDzXtNUPZwtZim2KhzpbzSqVuI9TGWm2fYFyGq+sjWq3gVkRc3mLMpoohHFlgz1+9/siAS17wkhAC26zJXyzFfyxNUVK7dJIg+Eurj/E0tVHd7e7hUnsErqqS0GLqkUbct6m6VhVqBOdZboR4NDHDtJh8FSRBxhUbX6tuQnuR6df1YMhIxNUavFqXm1PGLUbJmgaJdpkyZwWCMJXOlY8VSdmVWjCVuRkgKML+hFWsLUSXK3CYO0FE5xny9e3tACrNUn8QjBAjKcd4QfGvXPtuFB7Ub0Vbn5fF4GBgYYGBgAMdxKBaLZDKZth+Q3+9vk4dQKHTP5/oow7B1uK7Lm970Jr761a9iGAaVSuVV45vtPfYj0fPDgNc1YbjTYL5SqTA+Po4kSVtaFZckCdM0X3Wfe4EgCF2BcaPRYHx8nEajcc9eAa2b9XaKw2dnZ7l69SoHDhwgk8lsy7ib4U4IQ8uTYnV19balUTutYWih9QDdv38/Q0NDdz32w55hmLq2wv/95GnS+Rq2KIAsIHsUqg2Lqm2iSSqOaSN5ZRRVwpQcol4vFuDTFRzJxXIcJEWk3DAJ+3Qs16bRsBEUAdmScDDJGDUGQkFqtsWZlVX2xprtfCfyORq2zZP9zezBqfnmqvizQ/2ULZNqpUzacRAlF8lx2K3qCLLEy6uLWDeu/Rt6e7Fx8cgK12olDocivJxpmpEN+oIMB0JcLqZJ15sC45CiYbrN8wvIzUyCT5F5MTOPdUN0HFJ0qq7RJguqIHI00ovjOkRUH1OVPFOVPE9H+xi7SbdwLJziTHEOn6gSc3VC/hCaJPJKoZMEHA8PcL7U2S51lzfGxQ3betQgPUoIVRLoUWMs1/NcrTa7Ch0LDnK93PkdD8keFhvdZUQHfYNcrXaW+oQkPxHFj18axXRtClaFdCNP3XE4V76GfVOGY69viOlNfBT6pR4W3IWu7UktwozRnS2IyD4q9mrX9pgaQbNlNNGLIMg4rkvdaeCXdGaNGmXX4GT4W1DErTun3inu1uV5p3E3REYURcLhMOFwmN27d9NoNMhms2SzWS5cuIBt24TD4Q7x9J3eU3bKuK2lYfhmwsZrq+v6jizkvSoe4lKd1wseasJwLwGJLMt3FAivrKxw7tw5+vv72b9//5ZujpIkYRjdrf22ExuJT6FQYGxsjHA4zPHjx+9ZXLYZIblb2LbNhQsXyGQy7aA8l8vtmKh6q/O+2c/gdp0gdirD0Cqhapn+LS4u3jaDdTs8zBkGx3H5wt+P8/I3pnBlEUGTcVwHRxCwHQdLcPH4NVxcRFVGMV2KjQYILuW6haJIGDgUs0UCPpUrq3mOjfZyaSmNV1MY6Y0wNrfMQMRPPOTjzGKzDCno1fHUZPI1AwObffEoi8Uya0aVuUKBo4kEAV3l+cWmR0BAUdifiJEzDC5nMwRDXuZqpWZpkOpBl0ReWltsPwt3eXws1Ms8GeslbdQwXZszuWVKVrOFqCQIDAUCyIJETPVypZDBcR2+nl4P0iUB+v0+lmoljoV7sRyHglljorxG0VpvfbgvEONscd3LQELkWLgXgGG9h5lqlhJl9jteLpQ7g/h+Pci1SqfDsiKIhBWdkDJEw7FZMnIsG2VSWrjLtK1PC3O10i08HvJGuFbtJCFROUDZrjAg9uLYLugSa40CSS3BmVL3in5I1slbnfduVVTIbtKeNSKHWHFWuraHbD8ztevNFkk3ICPTp/Xj4DCo78O2XXKlHJJPRhdVLlc3zzqkG7M4OITkCE+H3ti1z3biQc0wbMdKvqqqpFIpUqkUrutSqVTIZrOk02kmJibQNK1NHiKRyJaebztl3FapVL4pPBgeFDzKMDwceKgJw71gqxmGVnnP7OwsR44cobe3d9uPcS9odRqam5vj8uXL7Nmzh5GRkW2rrdwOwtASEYui2GEytpNdmLYydotg3c7P4OZxdyIIFwSBRqPBhQsXqNfrnDx5clt6fD+MGYb0coG//v++QCZfRdRlaraNadugiGh+mYphoXgUSkadimUS0/wslyqM9EWZWs0z0hdhYjXDcE+Y+WIJSRTZmwoxuZrjQF+cpUqZ+VyRZ0b7ObuyyvJylScHermWzXItm2MoHCQW9HJhZY2iYTAQC+JRFAzTQpFFnl+cJ6Rp7ItEyZo1Ti02V68HAgE0Veawt4fL2QyiR2OyVsQFJFdgSNZwHIuiZfJyeomQouHVZUr1BroosT8Ux6sovJJZbGcOhvwhJja0QU3pfvYFo6w0ypStOuO5JWRBZCQQYmFDn/RmUF0mrgZI6UEatk3erDFVTVO01hcxPEhkzVLH4p4kCHhkkaIFu71JvJJG2a4TUjTOFDuJwS5vnIvlTgIgAh5JYs28OQOQYrq6SJ+WwC/5cFyXolUjoChMVjeYtNUgJHmZNbqzAnu8/cwYs5tun6h1m7HF1BDTtfUsgiZohJQwCSVCzYpRNxtULYOKW6Ui1inVy+TYkBVRAROG9L6usQFCsp/SjWzEt0X+ObKgbLrfdmEnXJ63A9tNZARBwO/34/f7GRoawrbttnh6cnKSWq1GMBhsE4hAILDpddmpkqRqtfpNl2F4TfFI9PxQ4HVNGG6nYajX65w5c4ZGo8HJkyfveEXhfhGG69evUywW73lFejPc6zm0jOJSqVRXHf5O+jzcTvS8uLjIhQsX7phg7USGoYUzZ87g9/s5ceLEtrQevFNy8yD4MLz4pSt8+fMXMV0wBRBFECQZXAdJk8mX6tQci1hAxbUE4mE/DdtmIBXGsCwSMT+GZeHVVCyx+RSSFLBcF02VKJp1Yn4vlUaDS+kMe3uiWI7DmZVVYj4PJxMxzqXTTC8UiXk97ElEOL+6SrlhcqwvSbZu8EQiyZVMhpJdZyKfQ5ckDsd7yJkGF7PN4L7f72fNrNLrCxDTvKRrFQpunUy9GaxLQEgA1RU47I9yvVpEFkVOra2vygdkFQuThOajR/exZlQJqRpfy0x3XLNj0RRj+WZwrQkSu30xwprGdDXHUq3EUq2MCBwIx1gtd5bg9MoeZsymV4JPVBn0RompXpYbOequ23Zz3u2Lc77YGajLgohJvasr0pHgIJfK0yiCRK8Wwyd7EBCoOVUMW2C6moEbQfk+Xx+T1e5MxIAnyrVqJzlRBImyXezaNyIHmDE26hwUwkqYqBwC12VI303NNihYJUp2hZiqcb5yeX2AG7ekATnFmtPtLt2n9LK4SZvWHiXBwg2zt4gc53jw2a59ths7VWJzr9jpzIckScRisfbzzTCMtnh6bm4OQRA6vB9ane12ijCUy+VHGYZthUBHuu+bGg/veb5uCcPtSpJyuRzj4+NEo9G7Lu/ZacJQq9XaJU870WkI7j4L4LouMzMzXLt27ZYi4p10kr7VvF3X5cqVK8zPz/P444/fcW/pncgwrK2t4TgO0WiUI0eObGvg/rBkGGqVOn/7v15ganKtacKmSci6TKVhUnccREVCkgVUn4JH1SkaBoGgzsxqjoHeCFcX0+zqjTCbLRD0aEiqyPm5FY6N9nJubhldlhjpi3F2YZXhWJCgX2exXKbcMHEFlz3xCAWjzvlMmohHY08sQsmu88L8ApIAT/X1kjMNpvJ5RAEOJXvI1w2eTKaYKxVZqVeYKzWD2aimMxwKs1ApMV0osCJXSAS8ZMo1cGGXL0hfMMi53AqlWrNT0YCkMZ5d71C0OxCh1+djqpJjplJgplKgzxNgqtqpCXgskmLFKHE83E/VNrlezuBRZF7Idgb3x6N9nCl2Br2HvT1UGjUeCwySNavMV3NUrQbXa8sdBm2aKGM4mxGDPs7f6IokIdKrR4nIPlzXIanGWa7nmKo1CdSx4CAztc7SIFWUKdoFbsawnmCi2p1F2Ocb4FpL5+AKBBU/ITlIVA1Ssw0Mu0HBKpO3SpTtPIpHYaHeKXYWANOpdY0tAI5Uh01udRWjCJskDnySRt5qXpNvj/5zJGHnA/kHNcOwU4H5raDrOv39/fT39+M4DqVSiUwmw+LiIleuXMHr9RKNRrFte0euV6VS2bKf0SM8wjcLHmrCcK9tVTcTJG8MdPft28fQ0NBdH2cnCUM6nebMmTPIsszo6OiOCZTuJqjfqFd4+umnCYfDtxx7p0ThmxEG0zQZHx/HMAxOnjx5Vynl7cwwuK7L9PQ0ExMTSJJ0T5+1zfBa+zBs9fgTFxb4P/+/F6k1HBxVwqbZLVMRQFJlvIqIjUu6WCEY8TGfLhCKeljJl4hEfawVK+weiDGTLrCnL8rZhRV2J2Ps7Y9zcXGN3fEA06UKF5fXeGIoxfnVNa5kcxzqjWMLLldWs/SHAsSDXjyWwmQ2h0dXWCqVebK3FwSXsfQKpuMgCwInhvpZqTYJwkq1zHA4xLV8jkPROJokU7TqfH25uVItCjAaDVE06zwV72Uyl8Evy3x9QyYh5fFTsusMKQE0BxbrVaR6na/X1smBJkkoikCl2kARRPb444RUnflajkWjyOINF+hRX5Rzhc4geZcvwoXSAh5RYdgbQxMVTNdmqrpKzTGZKTRJiyKIuKLVQRYADgVSneJnF0b9PTiuwyH/MEWzxqKRY6aaxRdQurQPvVqEq5VuAnDQ38elDf4McGPtTbDaJm+iKxJVw4RkPwISI/ouynaNjFkg3aiii37Gipe7xt7jHWibtG3EXu/wpsLoPd5hZjfrjGRGKGrdHhAhO8RCvTl+TEnyeOBE1z47gQdVw/BazksURUKhEKFQiNHRUUzTJJfLkclkcF2Xl19+uUM87fV67/k+W61W6e/v36YzeIRHJUkPBx5qwgB3HxRtJkje6Ij8aoHuVrETK+iu6zI1NcXk5CQHDx5kaam7XeB24k7LhqrVKuPj44iiyLPPPtthenYz7qeGoVwuc/r0afx+PydPnrzrkp/tyjA4jsOFCxdIp9M8/fTTjI2N7Uj3pde6JOnV4NgOn/3fL3FubA5HkjAFcAUXVBlNkynU6tiApjT1Cqpfw8ElFPUgySL+oI7tuIRCHuq2TSykUzZNIj4PFk6zlWrIx0K1Sq/fg+rROb20zGgsTNir8/LiMpZtc6wvQd5sMLa0giTCk4N9NGwb03EoNOrMlAtEdJ2hYBBRFvnqQjPYFwV4PJnCdl3iupfL2QyHeuJMFptlPzFN52A8zmylwGy5yGypyKju42KlSQREBPaFooRUjavFLFPVZtB/NNrDxWLnavxuxQuOxAFfgulqnmulLEN+P4vGeomOV1KouY12JyVVENnljxLVPEgizFRzXCiuIAL7gjFqTidZfyzcy9mbuiLt9saZqa6yx9uLR1Ko2iZLtTyWa3Ou1NlJ6FCgj2ublBf5ZZm02fk9T6ihjiyC6IoEBR9JKYAiKWgeH0WrQrpRYLFeIKIEOF/uDvQlofvzLQki5U0yF4ogkbW6g39ZEClY3R3bBMCW6l3bRVciqASbrtSmRH92P5crl9t+AjvhLNzCg0wYHpRSKUVRSCQSRKNRlpaWeOKJJ9rtW69fv46iKB3i6ZsNV7eCSqWyLRqzR7iBR4ThocBDTxjuFjdrGEqlEmNjY3g8njt2RL4V7rQT0+2wkdC84Q1vIBQKsbq6uqNlT3cS1Lf0Cr29vRw4cOC2D7adJAwbMwGtDlfDw8Ps2bPnngLjzXwv7hQ3d2bSdX1HsgEPcoYhvVTg7/78eTLZKg1XQFBFBERM18HBRXRsHBG8fo2GYxOMeMkVa2g+mdW1KoOpMBdmVjiyJ8X5uVV29UYoWxYr6RxHR3u5uLBGJOAhHvKyWCxhqDayAL3BAA5wdmWVw8k4NctitlwiU62xPxbF71V5cWEBFxgOh9BVmX2RKJfSaQbDQb6xvIAkCByJ96ArCt9YXmjf/5/sTXEhu8rj8SR1y8aryXx1ZT0oHgoEWTJKjHiCRDx+rpdyqJLEN9Lr4t5+b4CpSrZ5fF+YuOpDk0ReyM7hNtav3yFvkCvVTj3CvkCMol3neLifst1gqpLFKyt8I9upBXgi0t9VnrTbF+N8aQ7BFejTw0RUP7hQc2rkzTr5DY7Kj2/SbtUjqaTNbNf7fMTfz5WbyosiSpAhPU7dDWO5DgWzymojT9ExqZOmVm507D+ox29RojTI9Vq3G/Ne7yDXa93Zgt3eIa5vIoze7Rlm+oZJm+CK+OUAHsmPz/VSrBbo9/VhORaGU6dsVwgpAaYazfcs4U3y1v53ks3mmJub4+LFiwQCgXa9fSAQ2NYA/0EkDI7jPJDtXlv36UAgQCgUYnBwENu2KRQKZDIZpqamuHDhAoFAoEM8vZXzeNQlaZvhCs2f1wMe4vN83RKGjcF8SwA7MjJyzwHlRmxnhqFcLjM2Noau6x2EZieD7tb4tzuHjaU1Bw8eZGBgYMtj73SGYWJigqmpKY4ePbot1vb3mmEoFoucPn26qzPTTrVrfRDbqr70T5f42mcvUrVtJE1DVARqpoUtgqjJqJpMpW7iC+osZop4AzpWxaBo1VEtGVcSqNQb9PWGmM8WOTyS4KWpBY4MJnElGJtZ4rGhppPzdC7Pvp4QObPO9aVVDiRj+DwqclVisVjGlWEwGMQvK+i6zMtLS3hlmcPJBAuVEudWm6vox1IJFislnkr2MpnLIksiLyw3g0bBhZP9/dQcExGB8bUVDsXijN3QJAgu7A1FiXg8FIwa1yslqJR4KtHLy5l1suCRJAYDAVKOj/lKkelSAfwCy41ix6LUoUCMK7XmvEKuQlzxENY8XKtkKNkNWkU+R0JJzhQ6Ow0NesJcLK2XDKmuyLC/h6imI4sS87UcM9UCM9UCT0b6mSp3tipNqIF1N+gN2O9PcOEml+eAoOPgcsA3gguUrTqrjQIROcjLxe6AfkSOMOt2t0BVRKFdotSCLEjkrHzXvrqosrKJz4NH1FmqL6AKKgE5iEf0IQsqIiKmYxKRBynbFcp2hWqjikiNiOynIOeh2pmViCvrtetvjb+dSDBKJBJtewm0xLhnz57Fdd0OJ+NXy7huBQ8qYQAeyHm1WoO3IElS+/2A5uJN6/1aWFjAdd0O8fStSn0fEYbthes2f14PeJjP86EnDPdSkmRZFhcuXGB5efmuBLBbOcZ2EIbl5eX2CvnevXs7CM1OC6tvV5Jk2zbnz58nm83ecRnXTpOd+fl5bNvmxIkTBAKBbRnzXubceh9HR0cZHR3teB8fhAyD67rb2rf8ZuJdr9X5mz/5KtPX0ri6givJGK6NLCtIkox7w5gtXaziygKyKyNqEn6/Sq5mkAwEqVkmsaAXR3bRRBmPR6FUbzDSEyFbrxH2evDrKueWV9jdE8WjKbw0v4hXkTi5q58zK6tUMiZxn5eReJir6SxnllZ4fDDJUrnM8VQv6WqF68U86WoVSRB4PJWkbDdYLpdZKpd5PJnk5dVlen1++n0BZAlOrcy3Q9rBQIDpao4hf5iY6mGhXESSBF5cWw/eD0finM4s4pFk9gZjiIIIgsM3NuzjlxVMrA4n56TmxaPJPK72NzsgGSVk12LBWKO+wcgsJGks1DozELIgENY0IloSWZBYrRZZapTxyQov5qY79h32RrhY6u4YFNU9ZCud5T7DnhhLRpY93j5UQaXh2GQaZXo9ga6Wq4ogUbS6Ox31ahHmrW6ztP2+AaY2ySLs28ToDWC3p5+MmSGqRVFEFQGBhmsTkHSuV2epOhZFqwA3nKcP+kaYrE11jTPqHWZ6E01Dv9bLQr2ZnUmoSR4PPNnxf1VV6e3tpbe3F9d122LcpaWlthg3FosRjUYJh8N3/F17kAnDg1KS1MJWhNiaptHX10dfX1/H+7W8vMzVq1fxeDxtghEOh9ulrPfSVvUrX/kK//W//ldeeeUVlpaW+Ju/+Ru+67u+q/3/H/7hH+bP//zPO17z3HPP8ZnPfKb9dzab5Sd/8if5P//n/yCKIu9+97v5vd/7vYeXxDwqSXoo8NAThruFbduUSiVc1922nvc3Q5bldrr2brIWjuNw9epV5ufneeyxx0gmk1377DRheLUAuVqtMjY2hizLt9Ur3GrsnZh7tVolm82iKAonT57c1priu8kEuK7LxMQE09PTHDt2jEQi0bXPTjlIb3XMFllwXZdGo4Eoiu2fe0Hr+NOXFvnU/zpFxbCxFBHHBVGXkFWJstGg4TqoPhVZEvEENERZwBLA51WpWCYOLpbrsFqsMtIX4dzMCo/tTrFUKFE2Goz2RplYzaLKMrpHIezx4Agwky+wLxKk7ti8srRMSNc4kuxhulTkhbkFcOHk6AA5w2C5VKFmWnh0GdGFJ1MpGo7N+ewaht0sXzwYi4MosD8c5Woui09WmKsV2s+Afq+P/mAAu+QyXcgzTZ4nkyleyayvyicVDz5V4VC4h6vFLGdzqzwZT3E627kyvjsU4VxhhSFfmLjqpWI2sEWb09n1sSRBIOzVyVYqHa+NChKzVpmooNGjBpBkBb+q8FK+M4Dvl7ycK3YSA0kQkASnS/x8JNjH5fI8CS1EVGmay1WsBi4WK/UqKzecqgEGPVEul7v1DIcCfVwsT3dtDyoqGavzs9okF/mufUNigLrdYFQfQRQkbNehZjdwcLhWnafhmsA6KQlIPpZc48b2dXhEncV6NymSEMlvommAJulq4Ttib28SvVtAEASCwSDBYJBdu3Z1iHEvXryIbdsdq9m3M42EB5MwtO7hD1r3pjtd/Lj5/bIsq/1+Xb16lY985CMUCgXe9KY3IQjCXROGSqXCsWPH+Lf/9t/yrne9a9N93v72t/PRj360/ffNz9bv//7vZ2lpic9//vOYpsm/+Tf/hh/7sR/j4x//+F3N6REeYSt4XRKGtbU1Ll++jCAIPPPMMzu2MtK6Wdm2fcci25s9IG51c9rJ1qSvNn6rS9NW9Qq3Gnu7MwwtHYWu6yQSiW0XIN7pqn1Ld1IsFl810/FaZhhc123reSRJwnXdjm2ttP7N6f2tHB/gi598mVe+co0GAmgKriRgI9BwHRRJRtIVArpEpW5StywESWApVyaVCDK9lmfvYJyrK1kODPXgSrCaL3NguIdvTM5zdDhJzbF58foCjw2nWKlUuJzO8NhgAkSBtXIFNejFxmV/PMZCscRsuUSuWuPx3iS6pvD8XDNo9MoyB5IxCvU6lzMZFFmiZNUxbIu94SgJn4/x9Apls1ljn/D6yJhVfIrK0WiYfN1AkGmXKgEcTzTJQkzzMBIIky0UqSsuL6bXy4L2BiOcza2TBb+kcCzWS81pEJU9zJTyzJDnqXgvp/Odq/BPRHsZK6wHvf16iBFfhJJVJ1R1SZs10rUsCUHjitjZ5EEWRCzRwnE6PyOPh/o4V5pFcAWSeoiI4kcTZcp2DUXQWayVWLzRDvZYaIAL5Ztbl7poEl1tWGOKn8lqtxnbPl8vU7XOwN0netjr68dw6kSUOKbjULZq5MwSCb2HK5XurMDhwBCrm3RdG9B71tuxbsAuT2pTs7dR7zBTRvf2fq23TTB6lARP3JRduB1aYtxEItF2Ms5kMqytrXHt2jV0XW9nHyKRyKbPpQdRK9AiMQ8iYbiXZ7ssy/T09NDT04Pruvz6r/86n/rUp/jiF7/IxYsX+cEf/EG+8zu/k+eee463vvWtW65QeMc73sE73vGOV91H07RbltBeunSJz3zmM7z00ks89dRTAPz3//7feec738lv/uZv0te3ucngA41HGoaHAg89YbiTm5TrukxOTjI1NcWuXbuYnZ3d0TRqiyTcKWHI5/OMj48TDodv6wGxFQO6e8HNJUkb9QqHDh26p9Zy27mqvrEd7sGDBykUurukbAfuZM61Wo3Tp09vKdPxWmgYWsSglQWTJKn9WXMcp51xaP3ewlazD9VSnb/+718kkzEQdQ1BEqk7Lq4Aoi4jKSK5Ug1Jl7FsyNUMEskghYpBX2+IasNkz1CcUr3B3v44WcOgN+LHlsCwLA4PJpjNFeiLBBmMBzm9sEwq6Odb9gxyamYe23U53Bun3DCYK1TImxYDsSC6LFMy6giiwNfn5wlqGvtiUYpWnVMLzYA26tFRFJE9gSgrlQr5ukGmUWuTBb8ssycaJmPUuJrP8nJtiSeSScYy64H//nAEURTYHYgwWcyRNmrs9fpZrJfb+4RVnZxZI+UJkNT9lMw6Dg4vZecwN3weDobibXO2FvYFYqTrZZ4I9WO6DnOVApbjMJZfoGavB86KKOLxaGSMTv+BXaKXKWf9e5JQg/RqAUBg2JNi0SgwVysxVyvxRKiXiUqnviAse5iqdWsOjgQHuLxJG9VePciVDeVMChIxNYRf8rDfO0qxUqYh2BQxMB2By+V5qk5nl6KYEmByEwF0Qg1zvdpduhSVQ5sKo32ih7lNHKNlQSRrrXVth2bb2RbeEnvbq2YXboeNTsbDw8NYltV2Mr569SqNRoNQKNQWT7dagT6IGYYHqUPSRmznvARB4PDhwxw+fJhf+IVfoL+/n//yX/4Lk5OT/OZv/iY/+IM/yBNPPMF3f/d38x/+w3+45+N96UtfIpFIEIlEePOb38x//s//uW1ad+rUKcLhcJssAHzHd3wHoijyjW98g3/5L//lPR//fkNwmz+vBzzM5/nQE4atotFocPbsWarVKidOnEAQBKamulepthMtMrPVDIDruszNzXHlyhX27t3L8PDwbQnR/SxJsiyL8+fPk8/n212a7nXs7Zj7Zr4PpVJpR/QRWw3sc7kcY2NjJJPJLofrW427ExmGW6FFBDYKFjfuv5EQtAiFbdvt19z8upuzD1dOT/PFvziH7g8h+Tw0EJBUCcFxMXFxHRvXckEV8fi1pktzMkCpVicY0lkrVIiEveSrdVxcVF1gZaVEz+4Uy4Vy0+gu7MOjKriCy1q1yr5EDEkSODUzz8HeHjyKzNmVVWqWRZ/PQyIa5OzyKrbjcqw/Sb5hcCyZ5Eo6Tc0xuZLNIAAHYzEUVeZ8eo2pfAG/ohD26SyUihyKxlFFiToWzy+tr4o/lUrxcnqJlMfPgD+A6djM1gpcLq13Dno60cvL2WZmQRFE9gajhDSN66Ucc5Uic5UifkkhoCsdZCGk6KyZZVwgpQVIeQKIgshao8BCrchstRmEi0CPHmW1Uep4r4+FUx1ZCIARPYRj24zYIequTZY6y0YZnygzXe7sdrTHF+fCJnqGQV+ES+XO7V5JZbHeKRL2Sx6GPXEE4IBvBMOxyJkVso0SESXI6WL36v/RwBCXKtNd21NakGvVfNf2qOojX+suI+pRQxRv0nIADHmSTG6SXdjl2Ty70Kf0UrLK9Ch9hOQQx4NPd+1zL5BlmXg8Tjwex3VdarVaW4zbagUai8Wo1+tbKl26n9hO3dN2YqfM5FzXpVqt8m3f9m386I/+KB/60IdYWVnh85//PNlsd6ewO8Xb3/523vWud7Fr1y4mJyf5xV/8Rd7xjndw6tQpJElieXm5q6xVlmWi0SjLy92C/4cCjzQMDwVeF4ShUCgwNjZGKBTi5MmTKIqCYRjtFdSdSqUKgrDlgN62bS5evMja2hpPPvlku4vD7bDTwuHW/KvVasdq+b12+4DtmbthGIyNjQG0W5S2xt4JIrWVDMP8/DyXLl1i//79DA0Nbdu4d4pbkZCNeoXWsW83N1gXNbYyDi0i0XoPW9+jz/3FKS6dnsVERhIFJFVBEKBqOVi4yB4FQRKouzY+n4f5tTyJVIippRy9qSBX59MMD0Q5N7PKkdEE5+fXSOAw2BvmhYl5Dg32UGw0OD2zxLHhJIZjM7WW58hgAlEWSQR8VE2TiVyW0VgYo17HcGzGFldQRJEnBlKk6zWu5/JAkzzMFgs8meplqVTCEl0urDZXziVR4HDiRklMo8HFTJrjvUkurq0HxUdjcRBgNBDmejFPtl6lPxgkW18vAdofjjFdybNP9SPKCjO1El5F5dRaZ8C9JxzhbH79oR9RPRyNJChbDSQklmoVlmoVjseSLNQ6xcNPRPsZy3eOt8sX4UJxiRFPjJDqwXYc0vUKiAJT9U5isV+LMFHvDLplQcB0613PuD2+ni6yEJK9HAz0NvUEmkvFarDWKFFo1MgrVRaMzrF9osas0R3gJNQQVzfJIvRrMSY28Xno13qYqnVvT6jRTbMLQcnHrDEDroBX8uKTfKiijiooiILMkLYPy7Wp1KtU7RoNyQRBZaW+CpT5/t4376irsyAIeL1evF5vuxVoPp8nm822W4KWSqV29sHv97+m5UAPYtYDdo7I1Go1HMfpKC9NJpP8wA/8wLaM/73f+73t348ePcpjjz3G7t27+dKXvsRb3vKWbTnGA4dHJUkPBb6pCcPGFfs9e/YwMjLSvrG2gp+70RfcCbZifNYyOxMEgWefffaOXJvvR4ahVCpx6tQp+vr62L9//7bdhO+VMORyOcbHx4nH4xw6dKhjNWmnXKRfbc6O43DlyhUWFxc5fvx4O4W8FdwvDcPGzMLd1h3fKvuQXcnzt3/4T2SyBrYk4moStixiuA6KLiPYoMgiDcchXzDwhT3UagaaX8N2HIIRDwgCfakQpu1weDTBQr7Evv4Y2bqB48LTe/o4s7BKXzjAyX0DvDC1gCqJPL2rj4lcjkylxq54mLBPp2qbXEtnSQU8lEyT4/0pHFzGVpuuzQJwcniAQqNOwajzytISj/UmOLO2SljT2R0OgwgvLK3rDY73pnhlbYmY3tQkCAJcKqxRsdY/a4fiPe3SpAFvkH5fgJxZJVurkb4Reh+KxHkl01li9GQ8xcXCCodCCXRJYc2okPD4+OpaZ9B7LJLgTKHTTXnQG+L8jW0RxUOfJ4QmKtTdOo4hcL2ShRu66Kei/YwXOgPskKyz7Ja5GcOul1kj37HNJ6oEFQ+H5CFwoWI3WK0X0QWdl/JTXWLpx4IDXKp0B+57/IlNBdBR1Ue22p0V8MkKa2b3d8QrS81s1QYoyCSUKF5RRRFUREHCBUzXJijpzBlLVN0KWbNB9kaZ2X7fMBfK1zoHF6BPSTBrNMlRRA5zIry92YXbQZKkNjkwTRNZlvH5fGSzWWZmZhBFsa192GnjuM3woJYk7VSGoXKjwcD96kg0OjpKPB5nYmKCt7zlLaRSKVZXO7VMlmWRzWa3pXX4a4JHGYaHAg89YbhVwGNZFhcvXiSdTm+6Yn8/CcOraQzuVTy8k4TBdd32ytaRI0fuSa+wGe6FMLRW8fft28fQ0FDX52CnMi+3KkkyTZPx8XHq9fpddd26H4RhY1nRdokUW5/X86eu8Y//+yUM0wVNo27Wqbuge1REVSRfqdNwXQIRD64tEIx6cQXQPCpmrY6kilRLJuGwl7VsiXjER92xMSwLFAHJFEGAnFFnON40VDu3sMqxwSSiJPDSwhI+TeGZkX4uZzJM5vPIksBTQ31kiiXKpkXBqDNXKeFXVUYjYVRF4vmF9VXyJ/tTGLbNkXgPl9JpEOHllXVB75F4Dwhuu0NSw7IJ3Oji1MLxRJKC2eDJWB9LlTJL1TJeVeJacb1UIaJoLBql5nPDhRF/mF6vn7xZw3bhQr5ZQz/kC3Kh0LkCH1M9zNQ2lD24MOAJMegLE9W8LNdKrNTLZBoGT0X7uVjo1Bj06UEuFDvJBsCwP8yFUuf2uOIDRWWvkMIxHSpmnbxTp0fwcjq/SQbAE2TlJkdnj6SyUO/WBCTVEFc30Tn0yREmqt3lT6PeFNO1JsESkQjJfnySh4jsxxIsdum7aTgWVdugaFUJyl7Ola93+TeEJD+LbhXT7bwny4JIxux2gQbwiOsB+HfEv31Hswu3g+M4aJpGf38//f39OI5DoVAgm80yOzu748Zxm+H1VpJUqVSQJOmOFvbuBfPz82QyGXp7e4FmJj2fz/PKK6/w5JNN4f0//dM/4TgOzzzzzH2Z0yO8PvHQE4bNUKlUGBsbQ1GUW67YtwImy7K2pbzmVrhVhsF1Xa5fv87169fvSTy8U6U3G12lI5HItpMF2Fr25WY4jsPly5dZWlp61VX8nTIt26x0qFwuc/r0aXw+HydOnLgrAroTBGfjNdioPdjOjiaWZfHp//klrozN4agKjipj2CbFeh09FMCWJARJQPHIeHSZQrWOx6+SKVTxBDTK+RqyLjGfLhIIeTg3vczBXQnOza6SCHuJRXycnlri0GAPFg5XlzI8sSuFK4Djupiuw2qhwrG+JIV6nfNra1QbJo+lEiDBqdlmkJny6nh0mf16lIuraSwcXllskoGBYIDhcIgLmTQ5o1lGdCyZ4OWVJTySzL5oDI8icyazQvUGORAFGAwHuJhLIwkC+8NxorqH8/lVchtKkZ5Kpnglsx6IC7j0erzNVWCfwEw5z1KtjCM4zFU3CIJFEVGE+gYPBgGXfr8fw7bY4++halnMVvIkPAG+nu5cwR/xhjl7k2mbgEtAVVg1O+8X+wMJpqtpdnsT+CQN23UpmAYBReHSTR2QworOstvto7BXjzNR7S4v2szQDSCmeslWu+u9ZRFkRyKiBPBJXtQbXgqqKJBSeylaVQpWhZVGGSizywNzRrfwesATYc3q/v736TGuVbvnv9s7yGStW0sRIcjMDXF0UArwreGTXfvcT9xc/iOKIpFIhEgkwu7du6nX62Sz2R0zjtvKnB4U7FTmo1Kp4PV67/qcy+UyExPrOpmpqSnGx8fb79Ov/uqv8u53v5tUKsXk5CS/8Au/wJ49e3juuecAOHjwIG9/+9t573vfyx/90R9hmiYf+MAH+N7v/d6Hs0MSPMowPCT4piMMy8vLnD9/noGBAfbt2/eqX+qNbs87hc0yAKZpcu7cOUqlEs888wzBYPCext/uQLNFuFRVZXR0lFyuuzxgO3CnQXKj0WB8fBzTNG+7in+/Mgxra2ucOXOGwcFB9u3bd9eB+E5lGFokofUZ3E6ykF7I8tf//XPk8jVcWUXQFIqlMoZj4YuG8Pg92KJAtljFG9IpVhuU6iaeoE7NtYl5FTK1GlG/l6pro0gi+4Z7mM8WOTqSZCKdxW0InNg/yDem5gnqGs/s6Wd8YQXDtHhsKIkjuKyVqs3vgeiyLx5lNlsACc4sr+KVZXYF/aQbBueWmyvdBxMxrhdyPJ5MUazX8aoKX19cwLlx/fdGItg4HOtJciWbYbqYR1OlNlkAeCrVS822eDyWYrKQY7laZskod5CFY/EEr2QWEREYDUYIKzpGpcKFcq7jmfFkT4rT2c7V/cejKV7JLaCLMiO+CD5ZxSPLvJSd6yARI/4QZ28qT5IEAVF0u0qDnoj0c7Y4T0TxktCCuA2bhmVTt22KDYtiY32F/VAw2UUWAEZ8kS4BtIxAxuzuShZX/VytdGcLRvQ4a408Q3oKXdQQBRHTcbCrBmtmiZoDVbsENDUWB/x9XNnE02G3t5eZWneb1gE9vqmmIST5md5ku4RA1tzcd8GLSkvp8ebYm1BEZdP97hduF5xrmrapcdzi4uK2GMfdak4PaknSThCZcrl8T+VIL7/8Mt/+7d/e/vtnf/ZnAXjPe97DH/7hH3L27Fn+/M//nHw+T19fH29729v4tV/7tQ6y97GPfYwPfOADvOUtb2kbt/23//bf7v6kXms8IgwPBR56wtAKfjaanB05cmRLtXw7Xf/fOsbGkqRSqcTY2Bher3dbTMW2+xxaAXB/fz/79+9ncXFxx65Ra7V+K8LzYrHI2NgYwWDwtq1mW2PvFGFozbnVxvXw4cP3vLKzk4RhI1nYLox96SJf/N8v0rBB8OiYCOSLRVBEAv4IjixiOA4N00HUZVRNxhRdekIalgixmB/TddE0BVsUsGwbURVo2DayLJJvGCRCfiRZ5OpKmscGkgiSwAvTC+zpidIT8vLCzAK26zIYCdAT8nFheY3FQoljg0nWKlWe6EuxUiyzVK+RMZrtOQ/0xNBUGbPoMLa8zJ5ohCv5DI7rMhoOk/L5uZxPkyk2W5DKosCgP8DVfBZdktgXiRHWNF5KL1FreVeIArsCYa4V1lfM+71+VEnisUiKqWKea/kcByNxrjQKHc+Lx6KJDrLgEWUOR5r93Ed9UabLeS4V1uj1+CnYtQ6y0CQGYHURg962+DmmeklqQXyyStWuExB9rBk11m5kUg5qYa5VO4NlRZTIWd16ht2++Kbuz0fDA5wrdWYRBEcg3BDxykG8qgdFVmg4NiXbwEFipW6wsoFciUBc1Cg5na1fRaBid89FAEyn0bUdwCvJsIl8qV+Pb+4O7Rvi+ibZhZAQYJUmyfSIHt4Y+ZZNj3c/cSer+ZsZx7WyD3drHLcZHuSSJEXZfoJXqVTu2rQN4Nu+7dte9V7/2c9+9rZjRKPRby6Ttkei54cCDz1hgGannDNnzrRXnrf6Zd5pD4PWMVqB69LSEufPn2dkZIQ9e/ZsWw35dgTGG0ukNgbAO5HBaGGjcPbVVqiWl5c5d+4co6OjjI6Obum67RRhaI17/vx50ul0u43rvWK7CUOLhC0tNVeJe3p6CIVC9/yZsy2bT/1//olLp6cRdA1HkmnYDuVGDVQJ1eenQZMIOIKDqiuIjkOuaqD7VJZyZeIxH2uFCn6vCorA1fk0+3f1cHZmhb6oH79f4+L8GkdHkrhAsVrHiTnULYfd8Qi6JvPCzAIj8TARj4frhRyz80uIwMld/aRrBvOFEvmaQSTgwahYHAgFUXSdmUqefK5JHnoDPizB4Ui8h+VKhbVKFcO1OvwKHk8maTgOj8WSXMllKJkNrhQz1DeQ6GM9SV5JLzHiDxHXvZTNBjXX5KW1dSIQUXVW6qUOshDTPCwbRQ4Ge/DKKrm6QcaoMlPJk97gmiwAAU1ludTZ1eiJWG9HV6SgrDPsDSMgcMDfy5JRZNWosWoYHAsnuVDsLN3pkT1MbeKkfDSU4kyxcyW++U21uhbHkmqIhmNx2D8ECBi2ScGs4ZdUJuorYAHWegnQqBplurHKzTgUGODKJsLoQ4EBrm7ir7DX18/1TTomDeoJpo3urENA8jFV69ZMiAgUrM0zqCHBS8VtZk6+Lfqt6NL9qVl/NdxL+Y+iKCSTSZLJZIdx3Orq6paN47Z7TjsJ27Z3RGdQrVbbvhiPsD145MPwcOChJwyFQoEXXniBeDzOU089dUep0fuZYbh8+TLz8/McO3asq4fyvY5/r+ewUa9wc4nUTrZtvR1hcF2Xa9euMTs7e8fXbSeM0KD5EDIMg1Kp1NHG9V6xnfNtiZtHRkYIBoNt92uAWCzW7vd+p6tvmaUcn/jtf6BYqOOqOo4oYzg2uUoJPegnEAnSsOy2VqFm24SjXpazFVK9IZZzJfp7Q0yv5hjpj3J+bpXdfVFEVWJmrcCTe/oYm1vGazV4ek8fp2eXsWyH47t6WS5XmMsVOdQfxxFhOBYmXzMomg0als3x/hSKIvL8Dc2CKosc6uvBsGyWSmUWqlU8WOSNOrokcbAnTs2xuJzJMEUBSRTYE4twOZdBkyQORGMENY1vrCy2yUFY06jYjfbfiiDyRCKFhUNS9zJTKjBTKvBEIsXlzHp5j4BLb8DHpUIa0YURb5Cox4ctuJzPr7Ba20BQYomOtqoAT8b7eCXXGQQPe0NUrDpPhPqxHIdlo8yaUcbQLc5lO19/KJjgfLG7vCgoy+RuEiknNT+Xyp0lToogcSzUT90xORIYxnQdiqbBar1EXAtwodidddjj79YWSUDRrnZtVwSRtcYmegZBJG12B/MCUN1kHACPLG6aXehwe3YFfJIHj+QhoUYxnBpBPYogiLgu2LjISORqGTQiiJLImyJv3PR49xvb5fS8mXFcLpcjm82+qnHcZnhQCcNOlUrda0nSI2yCRyVJt8SHPvQhPvnJT3L58mU8Hg/PPvssH/7wh9m/f397H8Mw+Lmf+zn+8i//knq9znPPPccf/MEfkEwm2/vMzs7yvve9jy9+8Yv4/X7e85738KEPfeiONJcPPWHw+Xzs37+fvr6+O2b890PDAM03SpblO8p+bBX3ShhaegVN03j22We7SqR2SlTdGhu4Zdehs2fPUqlUOHHixB3foHfC16BYLHL+/HkEQeCZZ57Z1ofRds13o7hZVdWOeuZCoUA6nWZmZoYLFy4QCoXa5OF2vdyvn5nh7//oC9RtcBQNR2rW9BeNKoF4GMWjUygbmAKE/AquBNGwF9NxSKQC1C2LRNyPYVnEwj6qlkXQp2E4Nl5NRpK8XM/k2dcbQ5REXplZ4vBAEl2TOHWjderx4RRzpRIrpQoRj05fzI8kSFxeTeMIcGpuEa8ic6AnRkNw+MZ8M/DVJBGfJuHXNHr9fqZyOYpWg4kN2pxjqSR12+LxniRXsxkats3zS023aGiKnFMBH4vVMk/EU1iOQ9U0OZddoWavZykfjyc5nekMzk+mBmg4DodCPUzmM1yvFIl4fYxlO/d7PJbkbL5z24A3yPnCMik9QFLzIwoihUYNRJfLhc6uPsejfYzfJHTWRImc2V3S81g4xcWbuiJ5RJld/hhVO4iEiGGbZBtVKlaDa5U1CmZnudCQJ8KlUvdq/qFAL1erm2wPDnCxvElnJNvHopnv2n4w0M+VTczb9vkGutyeFWQG9QQNx2REH0ISZAQEHJpZhJJVIyglqNoGFaeG4TQQzAYuIiuNbv3CQd8wa27z8/GW0LMElQcjQNyp4FyWZXp6eujp6XlV47iWMHdjkLFT3YjuFTtVKlWpVB4Rhke4b/jyl7/M+9//fp5++mksy+IXf/EXedvb3sbFixfb8eTP/MzP8OlPf5pPfOIThEIhPvCBD/Cud72L559/Hmh+F77zO7+TVCrF17/+dZaWlvihH/ohFEXhN37jN7Y8l4eeMCiKctcdfHY6w5DP51lbW0PX9bvunnM7tALNu3mQrK6ucvbs2VcViO9kSdJG/clGVCoVTp8+jcfjaRvt3Sm2OzPSKovq7+9ncXFx2x+Q91qS1NJV3ErcLAgC4XCYcDjMnj17MAyDdDpNOp1mamqqHRD09PQQjUY7zu/lz47zT3/1Eq4kYysyripTaRgUDQNvKICgariSgOpX8eky5bpJIOJlbjlHf3+ES9Or7Nud4OLsKrsGIuSqdcrZOnuGYpybXmG0P4qmy2TXqvTG/NiuQ8TnQZQEzi+tcXy4F1eA8aUVbNvhYCqOI7qcX2oGzEf7esjWajyearo22yJtgXPc42EgoDNbrnAt01zFPtKb4OzaKgKwPxqjx+9hbHWF8o1+/Cmfn7lqqU0WEh4vB2JRVmpVKvUGY6vLeGWZiE/vIAt9vgBXShmimodhfwjXBQeHl9YWO3QGgx4/Z3I3tUvVPEzdcFjWBIlhf5iArIEIZavBUrXZohXgqXgvp2/KOMRUD9fK3e1Lj4aTXWZuXlEGXPYoUQQEBFUh3agQV728kOku/zke6e8qUQLwyRJOvfMzKwsC+U30D5oos2B0ty3VRYWiYsBNt2EFkcXaCrqgElT8eEQdRVCQEFEFiRHPCHXbpGLXKVlVSk4DWxCZqnYf44h/mOlad4Zlt7efaaP7vPyih5la85qJiDwXf1PXPq8V7sdq/qsZx12/fr292NDSPux0a/K7xU62Vd3uhb9HeIRb4TOf+UzH33/2Z39GIpHglVde4Y1vfCOFQoE/+ZM/4eMf/zhvfvObAfjoRz/KwYMHeeGFFzhx4gSf+9znuHjxIl/4whdIJpM8/vjj/Nqv/Rof/OAH+ZVf+ZUta2kfvG/5fcROEYaNhnGhUAifz7djN9SN7rtbfZBs1CscOXKk3d95M+xkSZIgCF0ZjO3qOrSd2o6JiQmmp6c5duwYHo+HhYXu1dN7xb2UJN3s3CwIwm2vm67rDAwMMDAwgOM45HI51tbWuHLlCvV6nUgkQjweZ/z/XuLSSzO4soqrKAiqQrZYbHoqxCPoXp2G41A0GniDOgtrxWYXpEIV2auQLxukeoMsZkscGE0ydn2RIyMpTGyuLmQ4tifFK9PNYO7YaC/XVjNkyzWe2t2P6TpYdnMlf7ZQ4GhfgmLNoOpYTKfzKKLIsYEkmVqNmVyBGQo8Ppjk3OoqRxM9mI6DrkqMrazX7h8fSJE1DJ5KpZjK5ZFEgecX59sdkryyjKSIhF2dA+EY6WqVoEfjK4udgeXeWJQzmea4siCwJxQl7NGRKgKz5QJZo4ZPVgjqagdZUAQBS3A6toVVncOROFXLIt+oMVMucKWQ5al4H69kOz9rfZ5AlzcDQL8vyPli5/YBT5Blo8ihYApNlGk4Npl6lT6Pn7HCBhJRbwqodan7/pHSA12ZCIBDgSTXKt3bDwf7ubBJFuGAv5fzG9uruhBSvOzzpSjZNQYEmVKxjKJrNFwbvyNyvb6KKTgUzCLQ1EEc9PdzodhNaob0OFObdEzyiXrbv+FmmO7moukhT7Itjj4k7yauRjbd77XAa1H+s9E4bu/evdRqtbZ4emZmBtd18Xg8+P3+18Q47lZ4RBgeHgg83LX9d4LWk7lY7GzvrGnaltoeFwpNXVXLW+yVV17BNE2+4zu+o73PgQMHGBoa4tSpU5w4cYJTp05x9OjRjhKl5557jve9731cuHCBJ554Yktzf+gJw70Ij2RZ3nbRs23bXLhwoW0Yl81mqdVqt3/hXeJODegsy+Ls2bNbbul6P5ykW6vjU1NTTE5ObkvXoe0gDC1tR7FY5MSJEwQCAcrl8o74O9xthmE7zNhaTrGxWAzXdalWq6wsrfCJ//ppFmeyiLoHLdAsWarWa6BJ+D0+UCQMx6ZsmMgeBUcAb0jHoyvUHBtFEHAVF9cViEYUqg2T4USElVKJVCQAIozPLnN4MIEki3zj+jx94QDP7Bvgpf8/e38eZMl+1fein5z3PI81V/VQPY9naoEeYtSRbGwjOV4IY8wUwCOQIjDh4A8bmyEMvgwR2BACwjxfsG+gK8OzQRiQZFlcGR10pu6q6q6eqquruuZpz/OUO/P9sbuGXZnVp7u66qjPOf2NKOl0Vu7M3Fl7/3J911rf9Z1bQTcMRpNhXE4VqShydzVFT8RPpV7ncn+SlmFwfW2D5sPP54uDSVqGiVNWmFxPcbE3xthDshBSNU4kIjwoFlkplXhAx3/hQSm/RRaGfQGSXg9zxQLL5RJLxSJ9Xi/3Ct0tK5cTCZYrJS5HkjT0NjPFHC5F4fX17kz+8WCIiV16gmHNTc7QuRBMIgqwVquQdLn5+np3kN3n8jG5ixgImPg0hbVm9/fxTCDOvVKKYVcIv+oAU6CsN5BEuFdOsVzbFkv3OX1M2hi3nQ/0cL1g1SJENBepXSNTJUGgrFs1BE5JYbHeqXKogkRA8eKVnThEBQGBUdcAdaNFSa+Ta1Zo6AI3S8tU2zsC93qnGuGWRVpC9/sUTJP1cnpTgd0Fl2w/GWnYFedu5YFl+5AzwVLDeh9UQWGpsV2N+FbtkvWg30QYhvFNF9s6nc4u47hNfdSmcZzP59uqPrwbxnF74TB9GJ63JB0wPoBTkvr7+7s2/8Iv/AK/+Iu/+MiXGobBz/zMz/At3/ItnDlzBuh0P6iqahm+Eo/HWVtb29pnJ1nY/P3m7x4X73nC8DQ46GC4Wq0yMTGBKIpbhnGFQuFQA+7Nh8fjnKNcLjM+Po7D4Xjska6HWWHYPP6mXiGXy/HSSy/h9/uf+rhP2+JTq9UYGxvb0p5s3qvDHtf6JDgM52ZBEGg3TP7X//ct9JpKuLePut6mYeo0WjV0QUAwJJqNBn6Pl7YA3pCLcq2JIUK92UJ1K6ynSwz2h7gxu8qF0V7mNvLIskg04mFpsUDI7wJRQJNlTBE2ShVO98ZQVYnXZ5foC/oYiPi5trRKPaWjSCKXh3soNBpkMjXcmsp6pYIAXOiJ43aovLawuKUnu9Ab534uy7lolHSxhKbKvLm6iv7wb+dTVVq0Sbo9BDQHS6USIZeTv1vZDprdskxbNKnpeqeKEAgRdriYK+dZq1RYq1QAOBeNcW2XbuFCJL5FFnpdXuIOD25F4UZmlYLRIvXwd3GHm7uF7lYiAXAoEs1G93f6YjjJRH4Fr6zS4/TjljUwTQp6Dd0wmS1vazIuBJPcKNpMC1JUVhvdn1+/7GS6bJ1cdNwTtfViOOtLMlVaIa768MouNKljruaWVVbqOVqCREGvUdY7XgqX/H2MF6xVh1Punu6qw0Oc8CS5XZ6zbvf2cc9mMlJc8jJrU0VwCCoLdev1A0h7fFWOuHq3xNGDJEnIUfsdv0l41gTGoigiyzLBYJD+/v5vinHcXjisCkO5XN7TMPQ59okPoOh5cXGxK2H7ON+Nn/7pn+bmzZu89tprh3V1j8T7gjDsNziUJIlWyyYttQ+kUilu3LhBMpnkxIkTW4v6YWfoBUF4LJ3Bpl7hSVt9NgPkx/FK2A8EQeDmzZtomsaVK1cO7IHyNIF9LpdjfHyceDzOyZMnLc6qwIHfjycVlx+Wc/PK/TX+9Lf+mrpu0lZk0FRMoUWl0sAd8uJ1OajUG7TFNgsrG6geDVGRKDba9LoDpCs1vEEnpiKQKVY4OhTj6v1lzh1Jcm8tzdqDMmePJLi3liFfrfPyiX5ylRpzqTwXRpKUmk1OJqK0jDZjS6uYpsmFvgQtweAbc51gvsfvRVMlTrgj3EulqbV1JpdSmHSy3+d74rRMg1qrzY2NNFGnRkFvbpGFI34/YY+LmXyemXIegNPRCNfWu4PLk7EIumkQcTi5n8+yXCqRa9ZZr1W29om73MyUuif8DHsCaA89GBbKBZbKZYqNJqoqUjC21xsBk6BDY6PYPS71ciTJtVwn++2VVXpdfnyyRtPQiak+1utlig+Fui9EksxWus/vkVQWatapQ2f9cW6XrAH0iDdocYUWAVE0GXSEccsaiiCjmwYto81Go0LDEFiqV4DOvQgoTlpmk7rRvZ6GFTdTZWsmPyA7ma5atztEmYWa1blZBIo2fgwATiTsBqMecSeZsqku9GpR5uvWc0sIpHaY1102Tz1TwTk8e4QBugPzdzKOc7vdW+TB7/cf6ns5LNFztVplYGDgwI/7gcYHkDBseqQ8Lj796U/zl3/5l/zt3/4tfX19W9sTiQTNZpN8Pt9VZVhfX9/yI0skErz11ltdx1t/WH1/HM+yTbwvCMN+IUnSU7cL7eVfsPMc3ww36Z3XNzMzw4MHD95Rr7DXseFwyrvZbJZGo0E0GuXixYsHurjvlzAsLS1x584dRkdHbR8Km4H5QROGxyW97yRufhrcfG2KL/9fr9E0BQRVo20KVOt1Kq0m/ngQUVUplhsIDgWXx0NVUPD7VdKFCl63wHouRzSokSlXiAU9tAQDQYCTQ3HuraUZToSQFZG3ZpcZ7YlwtDfM69OLiAK8eLSXjXKFB+k8Q9EAbcHkZCLK9HqGtmgyubKBKomcTsYptRrc3egEzIOhAPPFIr0+L2GXk2qrxd1MhsrDRIBHkZE1mZgscyIUZrFYxOdy8ubqduDc43HzoJjHBAa9PqIuNw5F4rXVxa5n2NlYjMnMdiZeEgQ8DgVaBsf9IQwDlstFFEnkzY3ugHQkELQInS9FehjboVFwiDIj3iCiIHLOn2SjXmG1VqLYTHM+HGMy3x1ID7r9XM9bCcCoP8z4LgKgihKpZsmyb1JyU2w2OO3tQRYkWoZBWW8S0ZyM2VQFLgd7uVe0ujoPu0PcsBFGD7gC3CxZzzvoDnOzZD3+UUeUqbq1Neq4p5dpm+pCUguyqlunHEmmwGJ5ZbtheAc8ssr6Dl6jIKNJGgNanEK7RK/mJaIE6SvEv+ntPzux+d1/1gjDXiTmUcZxt27dOjDjuL3wXMPwHO8HmKbJZz7zGf7sz/6Mr33tawwPD3f9/vLlyyiKwle/+lU++clPAjA1NcXCwgJXrlwB4MqVK/zKr/wKGxsbW+Ppv/KVr+Dz+Th16tRjX8sHmjA87VjVzVaacrm8px7g3SAMewXHrVaLyclJSqXSVg/+fo4NB08YFhYWmJqaQtM0+vv7D/wh+KSEwTAMpqamWFlZ4dKlS3uWnHfej4O85scRPW9Ow9rc73HEzY+Lv/3TN3njyzcwZRVDFBEUiUq9TqnewB30Iaoqhijg8DuQVZGWaRIKuam2dMLRANVmC7XVAtlkI1VCknWy1TZ+rwOP19m5V5JAsdFkJBbE4VCYmF/lwmACTZV5/UEnSDyeCKNpMrdWNljIFjg/lGC9VOZSX5LVQomNaoWlQkcsFvO4iPvdIJrM5QqUGk0EWdgiCz1uF4ORIA/yeWZzeWbJc6kn2VVJcEoSfX4fcaPNYqnEfKmIKkuMZXJdZOFyPMm1dOd1AVVj0OPH51CZLmZZr1ZZr1S39rua7iYL5yNxC1mIO9wUm3UuBpOAQLpRZaVSwsDkrXR3sH82aCULAiaqLNKud39mhtwBbuzSKIgIXAr0UG436HEEMM3O5KW1ahFFVLhf7q5GaKJExbBqFIKKk7tla79rXPNy22a8alzzcads3R5S3EzZbFdMkaWmdcqRgEm5XbFsh46TdaaVwSk5cIoONFFFFRT8kotSs4K/pdNs6ZgCiLKEW3WQa1bxiGHqRrPzY7YptRtoQpnVRudefHTwI5j5Zyubv/m9f5auCR5/LXwn4zin07lFHgKBwFM9bzar4s81DO8NPDdu2xs//dM/zec+9zm+8IUv4PV6tzQHfr8fp9OJ3+/nx37sx/jZn/1ZQqEQPp+Pz3zmM1y5coVXXnkFgO/5nu/h1KlT/OAP/iC//uu/ztraGj//8z/PT//0Tz9RV8f7gjA8TUvSfoP5UqnE+Pg4brebD33oQ3uO/vxmVRg29Qqbo0n3O7li80HQbrf3Nd50NwzD4M6dO6yvr3P58mXu3r17qI7Mj4NWq8XExASNRoMrV67gcrn23HevUbBPi3fyYdipV9icLnUQME2TL/zOl5m6sYQhywiagiBLpPNF2iL4o0EcHie1lk4bE0ESWEoVSCQDzCxnGR4McXtug5NHEzyYz9Mb9ZFIBJldyzLaH2QpX2Y2U+RYws1qNsdqocbFo0lMwO1QMUV4c26Zs30xZEliNpsjn653XJuP9pGp1VktlMlUavSFfcxkcpyMRXCpCmvVMm8+NGpzyBJel0ahWuWoy0VdFIn63XxjaTtbfSwc5npqHZcsczQURgQM0eTNte0AO+RwkG5Ut0aqAgz7/NT1Fpcjic5EplKBuqvN5Pr2dCWAEV+AiUx3QB3SHMxVcgQUB30uH61qDV0SUTWZO7t9FCIJxnPdFQOnJLPRsLbiXAwlmSh0EwMZgajDhV91IAsSTaNNvllDNw3G86s0jO4BD0cUHw+a1mrB2UCCiYI1mz/kCXLDxqQt7vCQLlmPE9fcZG38FfqcQW6VrVWHXtPNspHHKaq4JRcuSUMRFfyyg4bZwif7aZsmLaNNw9DRRJmZcoZGW6Gmt+m0R1UQgajmJb0p1t6MGQ0YqvtZkaztWsPOJPO1zv0MK36uBM8w8WDimaowPMuE4UkD80cZx01NTdFsNgkEAlsE4kmdlTfv1XPC8B7BB7Al6XHxe7/3ewB85CMf6dr+h3/4h/zwD/8wAL/1W7+FKIp88pOf7DJu24QkSfzlX/4lP/VTP7XlB/ZDP/RD/PIv//ITXcv7gjDsF5suzE+K1dVVbt68ydDQEEePHn3kQvbNIAzr6+tMTk4yMDDAsWPHnuqht9nychABcqPRYGJigna7zZUrV3A6nYfm87BJIt+pdahcLjM2Nobb7X4sr4ydGobDuF47HIa4GaBeafB//9pfsL6Sx1RUTFmh2TYo1qqIDhmH042oKZTqTYq1OqGol0q9QTjqpam3GegPUtcNTh6Ns14oMzoQYbVYJux3c/lEH2/PLHGiL8qIU+Ha7AoeTeZozMXNxTUabZOTPUFMTMIeJxulKi3amJhc6k92XJsfahYkUeBMXxwTk4jLxUwmy0A4wFKhE3R6VZWzvTHm0hlyjSbZRpPLfQmurm0H3zGXi5DLgSKHmc5mubG+zgu9Sd5e3w66RQGiHjd3c2kGPH7iLhetdsdF+cGOgNirqGSa1S6yoEkSdfTOuFQTBjx+Ig4XDllivpxnpVom/3CC0Fl/mMldQueQ6mC6ZG2tOROMbukZNuGTFGrtJmd9SRRRotHujEuNO928nbGZgBSKs17oDuhlQaRoNiz7BhQHUzZVhKTDxy2b8ar9zoBtdaHXEejSLrglDa/sxCc5MUw45R4EBNqmQcNo0zbbZKp52oZKvm2Qb5WBDlEadAVZqlvvzTlvH+V23bJ91NPHvaq13cknOUkJRdsHdqO+3Zr6seiHkATpmWv/2VwfnqVrgoPRCjyucVw4HCYYDL7jOr2zZfOgUa1Wn7ckHTSeE4a9d3+MWMPhcPDZz36Wz372s3vuMzg4yF//9V8/2cl34QNNGJ60JWmzbWV5eZnz589v9YI9Cu9WS9LmHP5Nz4CzZ88+kZjlnY7/tEF9oVBgfHycYDDImTNntjI/hzV16HHEyfvxfDisCsNehOGwyEJ6Ocef/MZfUKq2MFUNHZG2YFKsVxEUFUl10DBNPA4JUTcJe31Um03cfhepXJlIzMtapkQ45Kamt2m12yCLSJKEJIuUGg16w35kVWIhnefCcBJEGJtfJeR2MBp0czedo64b+FSZeMCNompMb+RpCyZXF5aRBIFTiSiaJnNtaRXDNBEEONMb4+5GmnOJGG2j05rz2sJ25vtUPML4+hphp4Mhf4CG3qZitHhjh3/GaCTM2MY2ofAoChcTSSqtJjHNzWKxyGKxyPl4nLVqdzvMUMDHZG474FcFkRdjSaptnYDsZKFcYKFUJOxw8vpGd0Y+ICncr1kluv1eHzd2tR0NuwMsVYuc8sVwSAotwyDbqBFzOi2VCJck07SZK3rMG2ayYNU5nAskmchbqwVHvCH78aoOFxulvGV7SHVhmgZu2YEqykhIGKaJS5ZRBIWyXiffqpFr6+SaJS74fVy3qV5c9PczLzYsD9Pj7gQzNTvRtIvpir2/QqVtbacCGHJHbUesxuUga3qn6qCYEqElmbna3IENxDgobD5HnqWqBxxOe+ZexnEzMzPUarUu4zg7l/p2u32gldhNbLZS7ae99zn2xvOWpPcG3heEYb8L6JME85vZcV3X+dCHPvTItpX9nmO/2Jz2NDY2RqVS2bdeYS886QSf3VhZWeHWrVscPXqUoaGhrr/XYRMGu4eZaZrMz88zPT39xJ4Pm7qBw6gw7LwPm9WRzV7cgyQLM9fn+Yvf/yrNNrRlBRSFWrNBIV/FFw6guZ3omGgOmfVsmVDUw+JqjnDMx9xKjkjMw63ZNY4fiXFjdo3+eADNpTJ2f4UXTvSyVqywmMrzwok+ai2dfKVOT8RPulThXH8cQRS4vtIJjs/2RSk1GtzLdDLgAz4Hi9ksZ2NhlooVFEXi7cVOwCiY8KGRfiqtFqoocWNlg3M9Ua7tMGYb8HvxaAoj/iAz2SzZyhrnexPMrm8H+BGXk/V6mT6Pj5jLTanRRJZEXlta6IpXLyUSXEt1B9uX4gnu5lOcCkRxyTKFRhNVEnltbanrtWHNYZmeBBBQJOZa3Zn9M8EYdwopBt1BQooDQRAoN5uYoslqKc/qDsJyxBtkImclAKeCUYv7s4CJIVi/t15JZcbGFbrH4ePmDv2DQ5QJKm5iaqf94qx3gLZpUm/rlFoN/Iq2g7hstxgNOAPcKmctibSw6uauTZVCE2UW6tbrAWhjXwEedIW5VbKOZD3qSvDAZgKSJios1u3njQc1L6mHhOHbwy8wpAyQyWSo1WrcvXuXdDpNOBwmFAodSFvmfnHQ68BB4bD8DjbxTsZxkiRtjW7dNI47LMEzPG9JOhR8AH0Y3ot4XxCG/eJxg/lcLsfExAShUKgrO/4k5zissaSwPQnJ5/Nx5cqVA3+o7bdtyDRNpqamWFpa4sKFC0Sj1pnm7wZh2AnDMLaM9V588UWL2cnj4KBatHZip4bhMMXNb39pgq/997fRkUBV0U2BSq1Grd0inAzTRiJbquH0aTQqdQwJDExkl4qqyTi8CpIkMDwYYT1f4fyxJLcWU/RGfLx4so83p5foCXm5cLyHq7PLtA2TV070k63WWMwU8XucLOTyXOxPsFGqkG80WcgWEQWB8/0xSs0m2XSOTC3DkM/BteVVIg6NvqAfh6by2tx2dvpoOMCNVIqgqjISDtHQ22SbNd5a2g4YL/UmufpQ5KxJEseCQTwOjdl8joVCkYVCkbDTgS6YXQFur9fLrWwniPXICkP+ID5VY71epqEb3M529AdeRUVTJUtwnHC7ub1Lo3AhEmcit4pTlOh3B/AqGgJQ0OsYbYG5Yp65zeu20TOIgCCalnMlnV4mbaYlnQ/22HoxHPdFGc8v4UIioLgIODwoooRHVgg0XZT1JtlmlVKzQalZxi07uFe0+jT41IhlG4Bf1VixMVHudwaYLFq1Cye9CW7auEMfccWYq1mDfLeoMVux91cQ9kjfHXcnmKrOWbb7JBez1U5FRUDg7ye+lZgWoqenh2984xv09vbSarWYm5vbMiXbDF7tMtuHiWdxpCoc3vjSvbDbOK5QKJDNZruM49xu91Zi56D/RtVq9TlheI4PJD7whOFRGgbTNFlYWODevXscP36cgYGBJ158DnMsKXRc+nK5HKFQiMuXLx/KA2w/QX2r1eL69evUarUtkc1BHftxYNc61Gg0GB8fxzAMrly5gsPh2Nex30mgvB/s1FxsEszNcx0UvvR//j9cf20aHBqGIYAsU6lVqDR13AEvKCq63sbhdyApIqomgS5hiAKKImFI0NINRE2i2dJxajLFRpNYwIPDqbCcK3JmMIYpC4zNrnCqP4qmKXxjuhPknxmIIUkC9UaLOysp4mEvhVqdSwNJWkabO6kMtVbn+3i2Nw6CyYiiMJcv4RQLLNa3M/NxtxOzVWfI62OuUGRiZY3RRJiVHSM8j0dCLJQKXE4kaOptprNZNEXhjZXtIFoUIOxxMZXd7pF3iCIDfh+Jtodcrc6DYp7b6RRHQkFmCt3tREdDQcbS3UHtxei2aZtLkul1+fArasfTQdDI6E3uFToZ7cvRJNPF7kpEQHEwU7ZWJy48NG7bjYjDwfou8bImSaw3CiQ1H36l47YMHe3CRr2MQ3BQajcpNSosNiqMuINM5K3kYtQb5V7Z6otw3BNl2mb7oCtoa/YWVuyrC7IgstSw6hMAZNF+LTvqidlWF/ocYWZr1nOLQKZl59QA/c4odx6axL3oP0VMC3X93u/3EwgEOHr0KPV6nWw2SyaT6cpsv1vVh2fB5Xk3vtmjXkVRJBgMEgwGOXLkyJZx3OrqKq1Wi69//esHahxnGMbzsaqHgecahvcE3heEYb+LqCzLe5qStdttbt26RSaT4YUXXiAYDO7rHJsk4aBLpKZpMj09zfz8/NaCeVgPkydtSdopJL5y5cojBWrvhoYBoFgsMjY2ZtFQ7AeHUWHYPOZh6BVazRZ/+pt/xcJsirYsI6kqCALpQgFTFPGFAzi8DqqNFopboVBpIJgChmlSaxsIrRZoEvcXU4wMRbl+f5VjAxEMUeDeQoqXTvVTqjdYzZUI+J0IgkAy6EVWZK4+WOFET4SQ18mbD5bRDQNFEjsmbfUm85k8DrVMsdWk1tI5EgmS8HkYX12j0uz0kA+FA6yWy7gUmT63i2azSVZvslZvAx3R66W+BFcfeisM+v0kvR426lXSlSqphyNPz8VjFnO2S8kk4xurjAbD+DSNfL2O36HxjeXu4PnFZJK3U90B79lIrIssKILIsDeAJslcDCVJ1SssV0rcK2S5EIlxPWv1UZjI2hip+QOW6oJHVpmrWEnESV+UQqvBGV8CRZQxTJOq3iKkOXgrs4iByRLbU5YuhBLMV63Bs7rH98EQ9kioCPaff6+iglVLTb8raFtdOO3r4ZZNdaHfGeJ+1XpvFEFisWbfvuRTHKzaVDaOuXuYqy3jEFUUUUERZGRBRkak2TYZcPQiIfHx2Ie6Xrc7QHc4HPT09NDT07OV2c5kMu9a9eFZrDAc5jSi/WDTOE6WZVqtFidOnCCbzbKyssLdu3fxeDxPZRxXrVYxTfO5huGA8VzD8N7A+4Iw7Bc7g/mdQW21WmV8fBxZlp8qEw3dY0kPCpvZ+2q1ypUrV1hYWDhUncSTtCRtOkoPDg6+4wQpeHp9xDsd2zAM1tbWmJycZGRkhJGRkad+kB9WhaHRaFAqlQ402Chly3z+175AKlVFdGgIkkS1qVNu1ZCdKorDheLWyBZrVNttIh6FfKXG4GCYB8s5BgdCTC2lGAqHaIkGa7kSL5zs4817SyRCHi4c7+HN6UVkSeSF0T6m1zKki1UuHE3SNgwGwn5MTN6eW0GVRM72xWhi8Ppspw0k4nYiKxJHAyE2ihXqLZ3ra+tbZCHicRH2unBpCvc2MtzPF0l4NPKN7c/MgEtlLZfjVCBAutFkqVhCUSVmctuBcdLj4f6O6sCAz0ef10euWUcWpa0Kw8lwZKuFaRMjgQDju6oIPlWjYehcDCeQBYFso85iqYBTlXljvVs0fCYU5Xput48CSJLQNb4V4KidRsGEc6EY+WaDEU8I0xSo6k1yjTplvclitcgCxa3dQ6qDxVoWY1cqa9gdtBVAn/RFmSpZW45O++LctWn9GfVEuV+xry7ctakuBGSnrduzJAhsNPOW7dAJ/rNNBaekdbwVxE6QH1bcVI06PZqAgIBJp2VOFWWq7Rq9Wi+62X44erVFw9Cp6iZVXaKKCTQf/sBpbz+TD83jRlwJTniGuq7hUZnznZntd6v68CwShsOcRvQ02Hym+/1+/H5/l3FcJpPZt3FcpdLREz1vSTpgPK8wvCfwnDAAuq5vEYZUKsWNGzfo6elhdHT0qRdCQRAOVPi80/9hU69wWFn6TTzO8Xc6Sj/JhKbDvHZBEJibm2NlZeWxp1o97nEP6po3S/perxeHw8Hbb7+NpmlEIhGi0SjBYHDfn8GV+2v86b//IvWmAapKCwFdMCk3q4iqhilpNARQFAHJJRN1uWi22yR7A9RbbSJRDzVdx+txUNFbeB0qgiyykClwoj+KoAjcWdrgwnCyQwLuLeLRFF460cv0WpZsucbRRIi60eZ0b4yp1TS6YDK5vIFgwmgygqpK3FpNMZfJE3Q7kRWRcqPJaDSMR1PZqFa5urAdbB4JuJkuV5BFgdFwmIDbyc1UinytDrVOavuIx8F0djsbr0giAZeTmORGQGC+UCBfa1BpZ0jXtifq+DWN9Vqlaz1XJZEWbWRR4Kg3gldRqektNEWyCKLPReNc3+XD4JAk1qtFduNSNMm1jNVHwaeqnFHiKIKEbhrkG3VkUeSt1EpnZOsOXI4kGc9ZA/FBT8C2dcmhSJi7ppAKmDTa1iqCgEl1984PYSekBvvqgibIHPNE2WiUUEUZRZCRRBEREY+kUm7X8Ut+Gm2dfKWIoKl4ZI2b+Q3apkmBOptVJBFIOL1s2HhHnPf3c8+G3Aw6IszVrOQGINfarrx8b/wV6/t8ghagd6P68CwShveSN8Ru47hyuUw2m30i47hqtYosy0/d2vQcu/ABqjA8JwzvUWy2fWz2jG8GvE86OedxznMQhGEzU77b/0GSJBoNmz6AA8I7ER5d15mcnKRYLD7xhKbDqjDouo5hGGxsbBzK1KiDqDDsFDc7nU4uXryIYRhks1lSqRS3bt1C13XC4TCRSIRIJPLYD6rJ16b48v/1ddqmSFuWQVGo1uoUSzUC0SCyw4EhCRiiQKHSwBNwML+So78/xMxilr7eANlijVa7TTLhZ3JmjbPHk9T1NmvZEuFgp4fXIUvUjTbrhTIXhpNIssCb9zvtPKf6ouiYzK9mmSPPhZEkc5k8lweSrBfLNGlzZ7kjDHYqMoNRPyIChmEyncowmoyykN8ODo8HvchOBxc8HmYyWZaLJTYaNfL17cD2fDLGRGodEejRHGiAqsjcSaW61ukziSiT6e6s+oDfz42H26IOJ70eH36nxkKpQEs3uPtQ6HwuGrOQBa+islixBrJHXF5u72oBCiga5VaT88EEqijTMHSy9RoJl4erGauO4GQgbCELHklh1kbn0O/yPVEV4bgzxHTVepwz/iS3baoCp7xx8nqFYVcUh6ggCRIiAg5Romo0GHYkqbdbVNpNSnodUVSYyK9RN7pHlAqY9LkCrNTzOzdCs0GPw8eCaSXkJ7xJ7lWt98clqszsIYL27NEidcSV2NI7+GU3/6/QGcs+++3NP6zqw7NKGJ7FyU3v1AIsCAJerxev1/tExnHlcnlLUP2k+Nu//Vt+4zd+g2vXrrG6usqf/dmf8Y/+0T/a+r1pmvzCL/wCf/AHf0A+n+dbvuVb+L3f+z2OHTu2tU82m+Uzn/kM/+N//I8to67/8B/+w3u/4vG8wvCewPuCMDzNYiXLMo1Gg7t37x7KSFJ4+tGqpmly7949FhcXOXfuHPF4vOv3h9nWs3n8vTLq1WqVsbExVFXdl6O0KIo0mzaNx0+BWq3G2NgYAGfOnDnwv+dBVBj2EjdLktRlYFQul0mlUiwvL29lKjerD16v1/az/7//5A3e+OINUBVMRUEXoFKt0Wi3iPbGqDUNqrUmTp/GWrpEMOZmPVMiGvezkioyPBxmcmaV00cT3FvNspwqcv5ED9fur+DSFC4c7+HWwgYNXefC8V7qrRa5So3+mJ+bS+tcGEzQxmQ2nadUbyAArxzro9jsGMBNLKwy2hfl1moKn0PjaDRIyzQYX9zOzl8aSHJteRVVFEk4VMJeF3fyRWoP++BFAY7Gw9xNbwtmB/0+ZFnkXDTGbC7PUq3O2ViUG5nunvcTAW8XWRBMeLGnB900uRhJsFousV6tEHY6ub681rW+e1WVpYq1YnA0FGIs3R20JlQHq/Uyp3wRXIqGbhhk6zUiLidjme59fYpGUbdm9M8Eo9yymVB0IhhhzKa64Fc1lurdTyQBk4Zp9RQQMSm2G8iIBFUXXkXDKSkogoRDljjj7aNptKm1W5T1BoVWnareZqnScVTeifOBOLdK1qD9jN/eNfqkN8mUTZDv36N9CaBh2q8TxzxxbpatIuiw4uF+xf5Y0o7vzauxyyii9VF4UCLjvaoP8/PzT1R9eBYJw7s9Ielx8aTXtds4rlqtbpG8O3fu8DM/8zO89NJLnDp1al+T9aDTznT+/Hl+9Ed/lE984hOW3//6r/86v/3bv81//s//meHhYf71v/7XfPSjH+X27dtbbdE/8AM/wOrqKl/5yldotVr8yI/8CD/xEz/B5z73uX1d03M8x5PgfUEYngaCIHD9+vVDG0kKT24QtxPNZpMbN25Qq9V45ZVXbDMJh+WWvIm9CEMmk2FiYuKp2rcOuiUpl8sxPj5OPB6n1WodihjvaSsMj2vGtjMLNjIyQrPZJJ1Ok0qltjKVm+QhFAohiiJ//jtf5t6NRdAU2oKMoMoUSyUarTbukJ+2JNEwdZw+BwYQirpBFPAGXJimSTjqod7SGewNsZwrMRAPgCxwdynNuZEEtbbO29PLjCSCuD0ab88sYZrw4vFeWoaBLEmsF8tUdR0EuDSYRFElXn+w3dd/YShBo21wJhljai2NIcCNle2g+NJAkobR5mQkyEw2T9WEXKlCbcdEs/N9ScZWVhkJBQk7HBQbTcpGk6vL20FowuNhppjvuqe9Xg8zlRJxRcUrSJiiRFsQmExtdB3fIUsU9IYlGXQ0FGQ81d12dCIUZjKzzrA3SEh1gAmpQgETk7WWTja3TWqOB0KMZ6yB8vFAiKu7WpQkQSBnQyJiDhc3CzaTi3xhbhW7t3sklZO+KFWzxXlfL6Ig0DZMGkYbqd5kQS/TNEzW6xXW6x0ScC6Q4HW7SocvxlTJet4+p5/bNmTBJSrcL1vJDkDThsAAjLjD3CjajFh1R5ivWY8lCQIre0xZ6nMGuVWykruo6ud+tXOvZUHk1egLln0Oy1V5Z/UBeKLqw7NIGJ7Fa4KnGzIiCAJutxu3201/fz/1ep1f+ZVf4X/+z//JH/3RH7GyssJHPvIRXn31VV599VXOnz//WPfgYx/7GB/72Mdsf2eaJv/+3/97fv7nf55/+A//IQD/5b/8F+LxOH/+53/Opz71Ke7cucOXvvQl3n77bV54ofOZ/Z3f+R0+/vGP85u/+ZsH2hXxruN5heE9gQ80YVhZWaHZbJJMJjl37twzM2VoE6VSibGxMbxeL6+88sqeZOawzeF2H3+n8dnJkyfp6+vb97EPkjAsLS1x584dRkdHGRgY4Otf//qhjWzd73F3VhaetJSvqmpXpjKfz5NKpbh37x6lQpkbX7hPtdRGcrvRNAcGJplsDlOW8UZCaB6NekvHF3GTzpQJxjwsLmcZHAxz+/46p04mebCaxedx4vSopNYyxKJedMNAME2quo6JyfHeMKIqMTG/xlAsQCLk5a3ZJdqGScTrIuxzEREE7q6k0U2DsQedYLI34GMg4uf22kPNAXBxKMm1pVUkQWA0FiHocTC2vEb1ocuuQ5JwulRS+U7g55AlziXjNE2DoMPBg0yOB8C53hh317eDQ0kUcGoyq7UyggmDAT9Rlwsdk2KryUajyQYtBEx6Xc4usgBwKhq1tB2djkQZT63hlGT6Pf4tH4VyuwGGwFx+20dh1OPjbq27RUkUoGW2Lc+LQW/AUnEAuBRJcjVrDdx73F7S+QoSAmHNhV924JQUPIqC09dDo92mpDfINmpUWjpLtRIrte4JRZIgEJJlykZ31l4UINPqrh5sQjfs15iIw8la0zp56YQvxkTRWl046o7yoGoN/hVTYMZGTA3gkOwfVaOeHqYq1nOogsx81f5Ycc1PupUH4JXAScKqz7LPTg+Uw8STVB+exWz+s0oYDnKMucPh4BOf+ASf+MQn+MIXvsCv/uqv8k/+yT/hS1/6Er/6q7+K2+3mox/9KJ/5zGe2AvknxYMHD1hbW+O7vuu7trb5/X5efvllXn/9dT71qU/x+uuvEwgEus7xXd/1XYiiyJtvvsn3fd/3PfV7/Wbh+ZSk9wbeF4ThSRd1wzCYmppiZWUFl8tFPB4/1AfDfgL61dVVbt68yfDwMEeOHHnk9R02YdgZ1O8cN7tf47O9jr1f7Px7Xrp0iXA4fGDHtsN+KwybeoWD6PsVRXF7vrg3xh//6p9RLhs0BWiWypi1BoJDRHZqaF4PilNlNVXE5XdQKdSoGm3UehNRk0nnq/T2B7k+vcKpY0luzq0j5QTOHksyObeOYRpcPNHHSrbEUqbAsYEIJibHEiHcLpXX7y+iSCJnB+MUG00mFzvB4IneCLPZHOf7ExRrDbwujW882A7uzvRGKTWbXOxNMJPOka/VmS8WtsgCwNFEmOV8iYvJBA29TbXVZHJjg2prO8C/2JuwjEt9ua+XervNuajKQqHAfL5AxO1ifK27OnC5p4e317oz+32axthDsqAKIgNePyHNiSGY9Lv8LJdL3Hsoqn4xkeRurjvD7ZFkVmwqA3ZCZwCnLFkmGvkUjaliiqjmIqS5cEkqkiDilGTW6yUisodMo8papcoaVc4GY/xd2ho4XwwmmLDRNFwIJpgoWMnIWX+SG0XrNZ7wRrlnUy1IODzcKdqMPxUl5mv2mX9Vsg8we3Gz2LZWBGKal+k9NAo1w16YPepJcsemTUkTZB7sMIP7e/GXbF9/WBWGR+Gdqg/QqVavr69/012nN3GYjspPg3a7/cTtsY+DcrlMOBzmJ3/yJ/nJn/xJms0mr7/+Ol/60peeSke49nBd2t1uHI/Ht363trZmGdwhyzKhUGhrn+d4jsPE+4IwPAnq9TrXr19H13WuXLnCzZs3DzXYhicL6HfqFR53ss+7MSWp3W5Tr9cZHx8HeOpxszuP/TTXvtsgzuVyHdix98KTVhh2OzcfpEhw9vo8f/67X6GFiMPnRxUlmrQpN2ropki52kAwdFy6ExRwulQK9QaxgI9itUE05Kai6yiqxOiROFNLKUYHIjQxuDa9zMmhOA3T4PW7i8iSwIsn+phL5VnJljg3kmAxV+TiUJL1fJl0pcZitpNVH+2JoGoyum4wsbDGyZ4ok6udjO9g0E9PyMtUKkv6oUeCV1MxRJPyQz1L0uvmSDTESrFMrlojW63hUmQCXmcXWRgM+LmZ3iDkcDLg93fGlYoCry8tdYXgp6IRrq11B50Dfh8TG9sPWgmBAb+fpNdNuNEkVamwVqsyk8sjupvcq3dn3vu9PsYz1gf1sUjEomfwqxr3itYA+nw4Trpe4XQghlPqBIB1XcenaVxNr1Bs1NmobgfFJ4Nhy3FEAfI2BEURRZbqViG2Ioos7xQbP4QApHdMDtoJq790Bz1OL+mWNcg/7Utww6a60OcMcK9svWcikBfsg/8ep59syfo+hpwRFmzalADyNtcEcNTTw+2HRGLYGee0d9B2v3erwvAo7K4+3Lt3j3w+31V92Gxf2kvPdNh4VisMh1WN2W3apqoq3/Zt38a3fdu3Hfi5PlB43pL0nsAHijDkcjkmJiYIh8OcPn0aSZIOPTsPj08Yms0m169fp16v76lXeJrj7xeSJFEul3n99deJRCKcOnXqwLJKT6O/eCeDuE335IPGk1QYDtO5+e0vTfC1//Y2LURQZExJpFSpU2k1CcaCCIoCiki9odNCp91osJbNoBsCyCbpfIUjkRj5lTJOt4JhmggmNIw2oiTSFwtQbeusZUtcHOmMTv3GVCcIvHAkScswyJVrlGsNkhEfG4UyFwaTtE2D2Wye0kYn4zYUCVBo1DnfmyBVqlBr6dxaT2+1JUmiQDLoIVcuM+r3UjHB53Twd3NLGDvu85F4iBtrnQBRFUWOhIL4XA4MwWShUCRXrRNyOjCk7vDWp2ms7RqXKokCfodGwKGhihKFRoOFYoGQ02kxbTsSCHC/tLvlxkQRTfRdn91jgRDju8iCYMLpUJRCs45TVgCBWqtFqdlgvVphrVZmubIdqPe4vNwtpi2Tkc4Eo9yy0S5cDCdtBdDnggnGcnZVhBjXbaoIZwMJJm2qBcc8EabLVrO0sOrkTskm+BdgvWEN8DuvcbPayCEi4pBkHIKCIskkZA9r5QwxdwhJEBEFEREBSRARTDjlHgIBTLNDXkwTvLKCKmgYpkkbE8M0aJsmYdXNRjOPX4rQNo2tH8M0SNUbtNsO2qbBq1HrKNVNfDMqDI+CKIpomobP5+PUqVM0Gg0ymQyZTIaFhYV33XV6E89imxQcXuXjsFyeN8eQr6+vk0wmt7avr69z4cKFrX02NroJsq7rZLPZxx5j/qzieUvSewPvC8LwTpkV0zRZWFjg3r17HD9+nIGBga6RpLq+h5vpAeFxguJiscj4+Dher/cd3ZF347CnJG1O6hkdHWVwcPBAM1n7rQKkUimuX79Of38/x48ft72mb3aFYWdl4aBHD37x//x/uP7aNKgKgijTQqBUrdLEINobpVJvIykCelMnW6oRTfpZylcZGggzvZiGah1BNRi/s8iRwSAzy1lqeotLJ/uYXc1SqjYYGQgjSRLrlGhgcGdpgzMDcdwudUuzIEsC54aT1FotlrMGC5k8gixQqjdwyBIneqLU2jrz6wWW8yVcqkLQ52Qt38nWj4SDRL0OptZT5Jo6G7UmCZ+H+UKhiyxc6k+wXqlwqSdBraUzm8mhqjJvLO0MiE3ifg+3093B7WDQz610iiOBIAHNgW4YuFSZ11e6DdaOh8KM7WptkkSBJga7/9onfQHulPNd2xQEfJrKeSWBKkq0jDb5RgNFFHljfbnr/QC8GO/hatoa0EecLlbq3ZqDLa3ELiiiyGLVGpw7RIkHNs7QnapD3rJdALLNqmV75zXbn1tVkHDLGi5JYcgdJNeqIosSneGqYCLgkVVKeh2/5EM3DJpGm6bRxiFKzJZz0FZpmG0aepsCnXVLdkqsmA1WSt1/u4uBPq7mrZWKsOKi1K7Sthm/6pKV7nGtD3HEFWP2oSeDW9L49oh1lOomnoUKw27s7MvXNO0dtQ/vRvXhILUCB4nDJAyHMcJ0eHiYRCLBV7/61S2CUCwWefPNN/mpn/opoFPVz+fzXLt2jcuXLwPwN3/zNxiGwcsvv3zg1/Qcz7Eb7wvC8Ci0221u3rxJNpvlhRde2OoP3cTTTDB6XLwTKdnUK+zXifiwpiQZhsHdu3dJp9MEAgGGhoYO/BxPGtTvFFy/k1/GYWoYHsfI7nEmIT0p9JbOn/7m/2D+fhpTUTFEGVSRQrFE0zDxhYM02yaVZotI2EW12CbZH6RUa3DsSJyNXJnRkRhz6Tw98TAJweDWXIr+iJO6KfDGnUXCXgfHhqLcWkjRNtqcO9qDiYnf5UA3Dd5+sNzRLPRHaQsmb850Am+PpuB0KjgUmZ6Aj+V8kY1KleWHgmVRgIFogLquc7kvyWKugFMWeWNxO0h3yBKKLFIuN3HIEkfDIQJOB1O5LBvlCkuFTiB9sTfB2G49Ql+Sqw/bjjyKwoDfT8TlYq1aQUZkJtupEgwH/NzKdLesqKJIWW9aqsUX4wne3ujOxvtkBVOROe70YeptBEUmW28QEAWurVsz7sfDIQtZCKoO7uStWfvj/jA3ctYqwoVw3OoADZwPJ7hmI4w+G0pwNbtk3T+YYDy/hGwKuCUVv+pEkxQiqoOqoRNROsFQ2zRpGQZeRWWlXsQnuinrDWqmQU2v45NNrjZXqLWt045G3EHmbLwdLod6mCtY3/MRd4QHdhOQgJW6VUwNMOAKcaNobZ+KqF6mbdymAdQdwunvjp7DIe2dhd+vB8NhYq8xr7u1D+9m9eFZbUk6rOt6mgpDuVzm/v37W/9+8OABExMThEIhBgYG+Jmf+Rn+7b/9txw7dmxrrGpPT8+WV8PJkyd59dVX+fEf/3F+//d/n1arxac//Wk+9alPvbcnJG3iPZx5/6DgfUMY7NpPqtUq4+PjyLLMhz70IVvTq3erJckuwNzsS11aWnoqJ+LDeA/NZpOJiQmazSbDw8OUSqV3ftE+8CRBvWEY3Lp1i3Q6/ViC68OsMDyqJekgxc07UcyU+fyv/QXZbBVDVhAdGm3TIJMrgCjhDQdQ3CoN3SCS8FOuNvAFHeRLNdw+B7VmC0QTXaTT6iGLYAoko35Eh4TQaDHa6yJXqzMxu0bAKdMTDXFrcZ1Gq82x3jCVVouzfXGmVzOYItxY6AS3EY+TIz1hZlN5FrNZZElgOBHi3nqn334oHCAZ9HI/nWWjVOEB0B/wcCfT3Y9/vi9Bq23gUVRmMjkWc0XWahVSle3sd5/fx61dVYThgI+2aXI5kSRTrbFQKJAqV5kvFim3ticByaKAIZiWdp9ziThv79I4JN1uVitlzoRjOCWZZrvjoxB1ORnbOVq13tEorNs4IB9xeZjKW7ULR4JBrqWtbUGmTb1aFgVW69bvn1OSt83bTAioDnyKA5ekIJgCl4N9mCYYpkmz3aZpGGxUKki6QgODRlsn2ywhYFLz+Fmo5i3nOBuIsVyzVjCO+SKM5a2EZNQTZbpiDf6dksyMTVsTdETfdjjhS3LXxpNBESTmqvbH6nMFyBWt+oWg4uoSTn9v4rLt6zdxUB4MB4nHzea/m9WHZ1n0fFgVhmg0uq/XXr16lW//9m/f+vfP/uzPAvBDP/RD/NEf/RE/93M/R6VS4Sd+4ifI5/N867d+K1/60pe6tIJ//Md/zKc//Wm+8zu/c8u47bd/+7ef7k09C3iuYXhP4H1DGHZjY2ODGzdu0Nvb+0iPAEmSDtw4zO4cuycobOoVGo0GV65ceaq+yIMmDJvjXH0+H5cuXWJ1dZV8Pn9gx9+Jxw3qG40G4+PjGIbx2ILrgzBYs8NeGgbTNLcqC5v7HVTQsTS9yn/7D1+mWmshaCptRCr1BjW9juZ24fR5MCWB1Y0S0R4/swtp+gZD3L6/xvHjCW7eX2VoIExbFLgxvcoLZ/uZXc1RqTU4diRKtd5iLVdCcXpxuZyc8HkwRYObK1kEYCCoUW/WWchVWEjluXAkyeTSOmf64rT0NrIq8vrMdgB5qj9Oulzh0kCS1XyJgNvRNSHJrylk6zUME45FQvg1DVWR+MZ8dxA6Eg9xe2M7OFQlEUEScMsqJ8JeZEEkU62hCybjq93Z/ZDHxUYm3bXtQjLB1V1TkYb8AW6mUoz4AwQ0BwICpWYTSRa4nUmztIMsj/gDFh8G6Pgz7B7DqooieRu/gV6nmwmbMarnQnFu5HdVF0y4HE6yUa9w2h9Hk+SOG7Zp4lVV5isFBEki36yTrTXJ1pq8GO3hzZS16nDOH+V+zUagHIxzq2B9T31OH7eL1mqHJkrMVNKW7dBp4bLDKV+M60UrwYhpHu7a6CAAmoa9V8NJb5xbJeuxZEFkzmZcK8CAM8yNUsff4bxvkH5n2Ha/TTyrFYYnrQ4cdvXhWa0wHCZhGB4e3tdrP/KRjzwy0SQIAr/8y7/ML//yL++5TygUel+atD3XMLw38L4jDKZpcv/+febm5t6xZQXevQrDzpakYrHI2NgYfr+fixcvPpFewQ6bAaxpmk8doK6trTE5OdnVHnWYxnCPQxg271cwGOTMmTOP/SB4WoO1vWBHRHaLmwVBODCyMPnaFF/6o/9NW1JoSwqmINE021T1OkgaDUNEEaFSbeDwajT1Nv6Im5bRZmgkSipf4dypXsanVzg6EOHEsQRv3F5kuDdEMORk7N4KTlXmzLEkqWKV2dUs544mmVnPcGEkSVPXmcvkqZQ6uoPhkINSuYQmSdxcXOfCSJKxhU4AHPG4OJYMs5wvspwrsZwrcTwR5sbqduApi5BwqyhOFwu5Ivc3shyNhZhd624/udif5Npq57g+TWMo4Mfn1JjL5clVa+SqNaCjb7i62h2AX+pNWqYiDQb8TGys4ZJl+r1+PKqGYRg0aNMqGczuIMXn43EmUt3BsgBU61VLgmjY72c8bQ16z8USvG0TuCtGm/bDz4lXUgg73HgVDZ+i8UKoF90wqOotCs061VaLe/ksuWb3BCGPrCBIAqVWdyLCJclMF63BvCwILNhoGgBqbfuESczpZsVGvHzSZy+a7nf5uWtj7CYJsLqHCLrX5SddsJKYQVeI2T2qCCW9Zrv9hDfJnbKVSIiCwFJ9u8rz9+OXbF+/Ewexlh40DiI4P+jqwweNMFSr1UMRPX/g8bzC8J7A+4YwCIJAo9FgcnKSSqXCK6+8gtfrfcfXvVsahs0Ac2VlhVu3bu1br7DX8aGzSO6XfGwSrfn5eUt71GGObX2nY9sRmIM69n6xm4gcprj5a3/yDd768i3aooQpy5iIFCoVam2dUDxE25SQnHJHyOt3UKm1EFWRVq2NS3XQaOl4fRrFemeSUUswaTWanD4SJ1+vM7+U49yRBKVmizenOsHWS6f6qTVbNPU267kS1bZOq21wbiCO26nyjfuLW2veYNDB7eU1RiN+dBPcLgffmN2uJCT8HlbLZVyqynDQT7FURpIF7uYr8FD4HHQ5yNZqtI3te3o0EqLR1nmhJ0mmUmU+V8Dwm7w23y2APRELb5GKrXN6PFstSw5JYsDnx6+qIAnohsFKqcRUphM8X04muLXRHZh6FYUFmzGeI5qTmZZVGKzKkkWjENIc3M5tENKchDQnXkVFFiTcssxGvUayLpNu1CjqbYqNIsedbiZz1uz4C7EkV21al04Eo1y1cWM+HYrZbh+SnMyaVkO2k/6obZAf1dzctKk6iAKsNexHloYVJ8u1vGX7KV+cOza6Aqcoc79sb64WUBws2UxZHXaFWajZE4lq234s63F3gqlK5x4GFTffEhq13W8nntWWpIMMzg+i+vCsip4P67rK5fKhiJ4/6HheYXhv4H1DGIrFIteuXduaMvS4pdV3s8Jw584dlpeXuXDhwr77IPc6PuyfMOi6zvXr17eI1u4F8TCnMO0V1O+sFJ07d85iaPM0x35a7DzuYYmbDcPgC7/zZaYmFkDTMEWJFgLFSpm2JBCNx6g2Wrj8ChupEq6gi2y6hDfgYmY+zfCRKJNTq5w+mSRXrrGaKnLmZC+ZUpV0oUpAdBLyumi3TYqNJrNrOU70RfF6NN641wnKIz4Xfp+DmKxwfy1Ds91mcrbjbyAKAheGE9R1HaPS5F6qQMKtMrcjWxx0agxHg2QrVaY3skxWNzgW9jJV2G7xEQWI+txMbWQYCgcIO520jDYr5TKp7HZwHnI5WSx1B6oeVSG1I+MvItDv8zIQ9FNutshUaywXi0yns1zuTVqqEFGXi1tZG+FxJMLVXdOSnKLAuk170flojHS9yulgR+cAUG/reFWV8fQauUad3A4fhZFAkJlidyVFk0QyNsd2SzJ389ZqgVdWuWMjHnbuUV0QMSmrgJ2vlGD//Rj0BBjLWUXFZ/z2o1eDioM7NsQDoGnaD3w44Ytz3carwSc7uLeH47NXtjfjGnCGma/Zt0m1d8y4+p7oeWTxnQPJZzFzftjXtJ/qw9MkqQ4ThzXutVqtPlYi8jme4/2IZ++bvk/cu3ePvr6+J85CvxtjVU3TpFgs0mw2n1qvYIfN97uf4LhSqTA2NobT6dyTaL3bLUm6rjM5OUmxWHzsStHjHvsgsNmSdFji5lqlzuf/3RfYWC9hqCqmKGEqEoVCAV0Q8YeCFCoN6nobzeegorcJuxRqGZ2YU8EdcJLJVzh/to+3by8y0hdmYDDMW3cW8Xs0jg5FubuQYjVToq8niFOVSQa9aA6ZN+8vIYsCpwZi1HSdO0udIGwoFmQ2k6c36CPscdEy2kwubdB8SCRjPjcVU8fn1Ii7HBSqNUQRXt9Rbej1uZgtb2e5Q04np3qiFBoN/A6NuUyeOfKc7ol1iZw3j38n1R0QnkhEqLV0Bn0Byo0mC/kCEbebr++qQvT6PEymrdn7uNfNRro76z7sDzC20Z1ZF0w4E4pQxcQlKZhAtdWi3GyyWq6wUauwXNoOrge8Pu7kU1ttR5s4H40zkbEGwuciCdvxqr2Kxr2mNWg/EYzwtk0V4cwe1YWzwTiTNlqEo94Qd4tW4uGTNe7Y7A9Q2aN96Yg3wljOGvwPuYLMVLrPISKiCCL5VhWv5EASRDA6VTqHqjHkDrFSzyPSaesTERAAWZSotdsMOeN0vmmd7YIAUdWNKlrXLoco0TJ0hp0JQODj8Yu2178bz6qG4d26psetPtRqtUNxVH4aGIaBaZqHpmHYaQ76HAeE5y1J7wm8bwjDCy+8sK/g8LBbkgqFAtPT0wC88sorh5KN2dQZPOn7eBwvAzj8lqTNlh5RFKnVaoyNjSHLMleuXHmqh9FhGbdtZtYOQ9ycWs7wX3/jLymVWpiyjOhQabQN0pk8piTjC/mRNRlVBJcm0TRNogkvNV0nFHJTbjbxeR3ImkS6UOHkSJyy3iKVKXP5RC9LuSJv310i4NYYPZbk7mKKYrXB+WNJFrMFLo4kWcuWyNcbzKfyAMQDHsIBFzoGC+kCrXabUqu1RRZCbicjiSDrxQoPUjlylTqXhpJc2zEu1SkLFFsNEi4HQZeLQrOFS1V47cFC1/p5sT/B2Ep3wH6pP8HY8hoDAR8RlwvDMHEoEq8vdrfqJLxubqWsAbDbobFU7Q68z8SiFhLhkCSibjd+hwNZEChUKuTqNXwOJ2PptKXt6IVk0jJyFcDrUGlXu/eVRIH1mrUlyCMr3CtYM+N+VWPJsJYEXILIzZy1VcghStwvWacxCZi2LtAALqWzFgmmgFtW0CQFhyQz7AmSalSQBRFZEBEfBu1OWaFu6Fz0uzvf2YcTmAQBai2DI644umHSNg1aRhvdNAjIHlL1OrppoBsGLbONCQx5o0wVNu//9roltmo09CzppvVeXQ72MlGwahTcksoDIU/dRiR9wd/PzWLnfr0YHCLpCNjei914FjUM30wSs1f1IZVKUSgUyOfz33TX6U1srssHTRhM06RSqTyvMBwGnhOG9wTeN4RhvwvUYbYkLS8vc/v2bZLJJJlM5lBLt0/SNmSaJg8ePGBmZuaxhOGH3ZIEbD2ExsfHicfjnDx58qkfjqIo0mrZT1rZLzYDiWw2y8rKCtFo1HZc734wc32eP//dr9A0wFRVdATqtc4kJKffg8vvodHSKddbyA6ZVL6GP+igVG3Q0g1CUQ+37q9y4Uw/uUqdTKFCIhHA73ZQq7dYzBYR6Lg0l1ot3nqoWbh0vIdaSydfqlGqNOhL+Jldz3KyN4pTVVjIF3h7ppO59jk1DBEkQeDiQIJyvYmsSl0Tks70xbbIglMSGAoHcbo07q6nWSxWWSxW8coSaVnoWjsHgj5urncCflkUGA4GCbkclFstPIrKYq7IYq6I36FhSru/7yZ+p8bqLmJwsSdhqRh4ZBlJFLgUSyI+dF1OVav0+328tWLN0Ie9PqtGweGwbWc6GY7Ybr8QTXA1ZW3lORmO2lYXjgXC9tv9Ya4XdxEdQeJ8MM56s0JUdaPXGsiSiM/twaNoVNpNQrIH3TQejldt41VUFooFFEOj3tYp6G2g3fGjaOrkmlZh8dlQnJt5K1m5FOph0mZ7SHVyo7BGy7SuHcIeT82Tvjh3Stb7JIKtPgLgmDfCDZsJTJIgdLUp/YPEedvX2+GDoGHYL3ZWH8rlMoFAAFVVt6oPoigSDoffddfpTWwmt95Lxm0fdDzXMLw38L4hDPvFYbQkGYbB1NQUKysrXLhwAUVRSNlkPg8Sj9s2tGlkl8vleOmll/D7/Qd27P1g8wG4tLTE9PQ0o6OjDAwMHNixD/K6N/UKPT09CILA8vIyd+/exefzEY1GiUQieDyefQUab39xnL/5/13FlCTagoCJQMNoUdebmIJKGwndMNjIlEkOhFhYyTEwFObW9BonTyS4PbtBOwsnTyR56/YikYCL4YEIN2fX8Lo1ehJ+WrrB7EoGt1djIZXn/HACzSHz1v0lTBNEUeD0cBzDNAm6Xcxt5IiEPGwUO9letypzejBGplwjVcgwPr/GxeEkYzsqCX1BH6Vmk9GQj2KtwXqticOpcXXHPqIAsaCX+9n81jZFAJ8iEYqEqeo689kCc9kcLdPHXK5bgNwf8nNjvTtovtiTtLg0BzSNcqvJ+WgMVZSo6zqpSpW+gG/L4G0TXkVhpmA1CTsfi3M9ZW3PGQoGuLaxO7A1aRjWtcQhSswW85btflXjTn7Dsm/U4abcanDa37luUei4KEuCQN1sMeqJUNV1yq0GpVYDHYPbmQ1KuwPzWpkjviAzJRsTtUiSbMNKCs6EEozbGMH1OL3c3j3y9SEyNm1TACPeENdy1kA+oXmY2sOToW1DLqCjd5gq249fze5x/hOeBLcfiq1DiptvDR+13c8Oz0pwvhPP6jVpmkYymeyqPmSz2XfddXoTm/qFwzjP8ylJh4TnFYb3BN43hOFZqTA0Gg0mJiZotVpcuXIFl8tFqVR6V4TV73SOWq3G+Pg4kiRx5cqVx86MH2ZL0ibu37/PpUuXCIcfPR/9SXCQ171T3Ox0Ojly5AhHjhyh0WiQSqVIp9PMzs6iquoWeQiFQo/1gP/iH/wNN964T1uSMBUFw4R8pUrTbBMIh6i3DNxBJ029TbQ3QLNtkOwLUG/pjAxHWE4XGR4I08RgJVXk0sleljIlxu+tMDoUpWUa3JhZQ5FFTh5NYJqgSlJHhzCzjoDAyb4ImlNh/MEqhmkiSQJHesLMbGQ53RdDwESQRb4xvd2nfn4wwdjiKgJwJBoi6HKyXikzl85v7XOyN8rYUndgfaE/yY3VdY5HQng1jWKtjiaL3Ex1t9ScTYS5sWvbuWSMiV1kIexyMl/McywYwufQMA3I1+v4nCoT691Bbr/fx4SdG3M0bBE6q6LIWsUajA76fLZeDBdiCSYy1u1nonHmS3mO+oK4ZAVFlBAR8KoqmXqNqt6i0mqSb9apNXViQQ9XU9ZWp5fiPVy30UBcivQwlrXuP6S5bclCWHPaVgQETDZsDOIAetxeVm2mI53yx2ynLMmiyGzF2iIF0Of2s9G0nieuuJgu2/so7LW8H3GHebDH1KSd5nwfS5x5LLHzJp7FlqRnteqxM5O/s/qwuT7u1D68G9WHwxI8t9ttqtXq8wrDYeA5YXhP4H1DGPYLWZa3RFJPuxhvttQEAgEuX7681YL0bk1ietQ5stksExMT+2r32a0zOCi0Wi2uX78OwMWLFw+ULMDBEYZHiZs1TaOvr4++vj7a7TbZbJZ0Os3t27fRdZ1wOLxFIHbrMVpNnT/9jb9ifnYDUdUwEdANk1ylgqBIRMJRmoaJ1+dgdaNIojfA/bk0I0djLKzmCIbcCJJAoVgjHPUgG51rW8wUCQfc+H0OstUa69kyw8kgXp+DG7NrGIbJ8f4I2Wqds0MJ5tfzKJrMtdlO0CkI8OLxPqrNFg5F5vbSBhdHklyb3w6oR+JBdNPgQl+CuXSemY0sx3vCzGe3qwExr5uFfAGTjofBcDhAwuclU6shITC90QlmTyWj3Nw12rTf62JyF1nwOzQeFAt4VZU+nxe3otIy2oiSyMTqGtnKdq/+yWjEQhYAnKqCXu5esQd8PsY3rAH0+bjV/RnA7VAxKp1jOCWZsNOFT1FxywovRnpom9Bs61SaLZpGm6lMhlKrSaqyndEPag5qRot6u7siEdQc3Mxag2a3rHDXZjKSJAgsVfKW7QCiZP9dHfEF7UeyBuPcKljvmVdWuV2wD+T3Wg5O++PcKFhJjCZK3Cvt4dLsDZLKWwlaRHVzb48JTB5FBRtbhqjmZXrHpKW/lzhrf6F74IMuen5cvFNwbqd9OOzqw2GatgHPNQzP8YHFB54wHISHAXRaau7cucPRo0cZGhrqWvgkSTqUgHsnHhUcLywsMDU1te92n817dJDXXy6XGRsbw+12I4rigekAduJpRc9P6twsSRLRaJRoNMqJEycol8ukUikWFxe3Ho6b5MFomHz+1/6SfL6GIckYgoghi+QKRURVwRP0s56u4Au72EiVkJwKy+tFIkkfk1MrnBhNMHl/DZdL4ejROJPTqwT9Tvr7giysF1jLFJE1iYjfjduhojkVJmbWEIDTQzF0wWR9rcxqtsSFo0nG5laJ+z30hrxIisjrOyoJZwfjXJtfRZMljsXDuFSF6XSWmdR2C8+5gRjXV7aDSkUSiQc9iIKA3jaYz+TJlmvk6w2y1R2Bs8vBcrE726xJEi1JxAQcskTS5UQxAbPNRkun2Gxx96ER19lkzOLwrEqibQ/++YTVjA1AlQXLRKOgw8HtTJqgw0HY4cSjqCiiiEtWyDRqDLkDZOs1Ss0my80SiUSSv1u2tt+8mOxhecOaTT8SCNpWEY4Egrxts/10OMrbNpqGE94Qt8rWTP6IN8hs2Vpd0BC4mbWSIIC2ab9+nAhEuZq1vrcep5c7NgQDoNK2m+HaIRITeev7UEWJ+3tUFwbcAa4XrETCLanc28PHoc8ZIP2winHe30e/M2S73154VrP5zxpheJJrereqD4dp2gY8rzAcAp5rGN4beLZWn6fA07QkAfvWMRiGwe3bt5mamuLixYsMDw9brmUnKTks2FUYDMPg1q1b3L9/n8uXL+9bG7BTmHwQSKVSvPHGG8TjcS5dunRoGomnqTBsErzNe/qkzs2CIOD1ehkZGeHll1/mwx/+ML29vRQKBb7837/Cr//U7zK/sE5VNxCdGi0R1lM5Wm0BV8CHIQg4/RqqQ0F0Kng9DlS3giJLjB6Pc38pw6mjcdw+Jzfvr3L2eBJDFrh6Z5mW3ma4P0zbMLk9t4HDpbKQKnDhSJKTgzEepPPcWUxhmCZnh+O0TZOj8RCpQhkdk7dmtwO6I/EQCAJne2OIpsD0aob1SoXsjmz5sXiAGysbaJLIqWSES31JLgwkuLG0zsTiGjdXNig1mvQEfV1kASAZ8JKvdyoDIjAQ8PHyUC8Jj4d+n49my+BBvozmcjFVqZFrbovYHZLAXM6qOzibjLNa7g4wXbLMYtnaUjMaCJArVxj1BXgh1sML0R7OBGOcCIZp6wb5ap2ZbI7r6+tcXV1loVzkZjrFfLFAqdkZMeqUZGYK1uB8r2pByOFgMmsNdAOqg0mb/R2SxHTRvr1no2rfQuTbY7rY2UiCug0x6NXctiNWRQEWqtZ7DNDr8tpW14c9IWZsSAxAvmXv0nzKH6OkW0mGJAgs1uzPf9QTttWMiMBibfvv8fcT52xf/yg8rzA8Hp7GIG2z+nD27Fk+/OEPc+bMGTRNY35+ntdee42rV6/y4MEDisXiEyV+Dsu0rVKpoKrquy7i/kDA/ID9PAH+9m//lu/93u/d0k7++Z//edfvf/iHf3grPtn8efXVV7v2yWaz/MAP/AA+n49AIMCP/diPUS7ba78ehQ98hUEUxX1PAdrUK+i6vqVXsMNOwnBYi83u97B5be12mytXruB0Op/q2PD0hMc0Tebn55menu6azvRuGKw9CXbqFQRBOJCHtKZp9Pb2kntQZvbraVSnj0bboFCpkK3XETUJzevCG/JRa+hoToVWo4EhC5QqNXxhF8VMHY9fo2WYqLJIulwj4HWgKBKz6zkM0+TSiV6Wsp3RqQjw0ul+Ko0W9abOarZEzdAp15scSYSIB92Mza1Sa3aCruO9YW6tbKDKEscTYZyqwr31DPmN7eDr7FCc60vbwW6vz4XRbDAS9LOYL3FnOc3pvhiT87tEyQOd0ag7cbk/Sa2tc7k3SaXRZCFXwKko/O1s96hVr6ayVLIGxsejYa7v8maIOh3c2KVRUESRi8kEhWaTEV+AtmlSaTbJlCtslMrkdJ1MowB02qn6fT7u5mx8FOL2FYrT0ajteNUjoRBXbbaP+O2rC0eD9tWFs+EYVzPW7YOyk3nDGoAnnB4mc9brFAVYqtq7NLv3yB2dCcSZtHF8dooyd/doLQqoDrAaYnf0BhV7c7WyDVkAOOlLcKdkfe8Aed3mJMAxd5x71c77d0sqH4m8s7PzbjyvMDweDkovcJDVh8PSMJTLZdxu9zP3uXg/4HmFYW9UKhXOnz/Pj/7oj/KJT3zCdp9XX32VP/zDP9z69+6OjR/4gR9gdXWVr3zlK7RaLX7kR36En/iJn+Bzn/vcE13LB54wwP40Bvl8nvHxcUKhEGfOnHlkRmMz6DzsCsNmcLyppQgGg+94bY+Dzet/mqB+s9qRTqd58cUXCQQCW797lgjDYTk3A3ztv77Om1+axJBkRE3FqUigt6i1GjTbIgYmiysb6Ej42g6yFR1DFlHdGjfvrnDqVA93ZtZxOBWGhiJMzadotts4XAp9MT+rmSJL2SKpfJnTw3FUTeaNu51WkqDXgcOlEHd5SOUr6IbRRRZ6wh3jtlPJKPfXMsyuZgkF3eR3uBRfGE5yc2Wdk8kIDllmOZOj2dZZLjfZbCSP+dw82JX1Hwj5uLmWIuH1kPC6ERDQTYNbaynqOyp7DlkiV69bEjBHoiFL29HRSJAbu8iCT1VIOFQ8DRNJlDAEkVK7jSrLvLm8gr7rs3DU7WK6Zg1UfU6VxUr3VciiwHrV6g3gVVXu5KxBcMjhZNJGoLxXdcGrqNzOWQNwWRSY30OjoLgdULIShl63lzUb8fL5YJzpUoaA4kARRWRBQhJF3JICoslRNYxpGBh6m/bDv4tQa3HCGUFVlM73gY5dml9RKbYbWwZqYILZETsbmFzy99ORUW/fR6+sIDfatA0Dr9eDIIgIAqiCRMvUOe/rroCamPgUldPe/of/MjHMzhHdkkylXWfEFX+43UA32hiYuCSVkOxGx+Dbw8eQTeGJg+1nscLwLF7TYZGYd9I+eL3eLQKxW/twWC1Jm4ThOQ4Bz0XPe+JjH/sYH/vYxx65j6ZpJBIJ29/duXOHL33pS7z99tu88MILAPzO7/wOH//4x/nN3/zNdxyrvxPPCQNPThgepVc4qHM8KTaPv7Kywq1bt57o2h4HTxPUNxoNxsfHMQyDK1eu4HA4DuzYj8KmI/Pj4rDIgmEY/Plvf5mp64sYioyoqBiGSb5Upi0JON1e9GabaMLPerqIN6CxvFHE65VYyxZIxDz0DwaZvLfK6eMJ5tMF3r61yFBPEKdX487sBl63RijswuvSaDZ1JEXi2v1OZna0L4KiSdxZTDHXNogG3JTrLWpNnaPJEH6Xk8VcnhtzDwNZAU72x7i13KkS+J0OjiWDVPU2siByd6UTIA+HXMwWtrO8kijgcqmspSsIJvSFfEQ9LkwEKs0W64Uy64UyggAjsVAXWQA4kYxaTNtOxMIWshBwaIRcTi5pDjBNSs0mG6UK/X4fkzbji/tcqoUsuCWJFd3q0XEiEuZW2nqM8/GEZYoSwGg4zNvr1gz4cCDANRvfhZFA0LbqMBoK83ZqBREBj6LgkBWcoky/x0e+VafH6UNEoFqpgmEQ8Qeo0+ZiwIlhmuiGgW4ayIJItlqnR/XTNNpbvguNtk6xqVNudPwWduLFaI+tPmLA5WOiYt8ONODxsVgtWLa/EOnlms1YVq+s0jCatHj4d8huE5rLoV7GctZ7EtXcZFsVDJsn7KVgDzfz1rYnv+JgubK+NSHpu0dPbw0sgG0d0jtVDp+1CsPmYI5niTActi5vE09afThMDcPzCsNzHBSKxe5qr6Zp+9Zyfu1rXyMWixEMBvmO7/gO/u2//bdbQ2Ref/11AoHAFlkA+K7v+i5EUeTNN9/k+77v+x77PO8bwvA0X2JZlh9Lw2AYBnfu3GFtbe2JR4AeNmEQRZFUKkWlUuHChQtEo9EDPf5+r79YLDI2NkYgEODs2bO2C/lhVhgep/d1U9y81ySkp0GtUufz/+4LrK8WER0aBgI1vU2+VEZ0KoRCAQxBQPOLVBs6/rAb3QR/0IvTo1JtFWliYtZr+L0SU8spAl4nF0/0ML2apbiRJxn1Eot4uT23TqPV5tzxHh6s5bhwJEkqX6FpGtyd6wT5XqdGNORBkUQW0wUWNgr0xkzWC9vZ8wvDSdYKZS4NJclX6pTqDe6lchR2VBuGQ25md7wGE14c6aWmtzmbiLGQLbCUKRL1uBjfNVb14kCSa7u2HY2FGN9FFpyShFOVuZiIIwki5UaT9VKFkVCQtxa6A0xNklivWltUTsUi3MpYCcCAz8vtQn7XVpOmjQ+AQ5KYtfFoCGoObmasmoOww8FcKU/S5cEtqzgkCUWUUAURTIEXIj20DZPWw2DeNGG1WMGNRlVvUdJ1SugIAhgGLFWsbUSK221bqXgp3sOtvPWajvlDtjoIWRC4v4c+Iup2s1i3koJeSbMlCwKwWrNveUoKKtNYHacfNTVp0BMgnbP22WqixPQerznqCTOW71TVRtxhLsWGtrRIm0H35lqzSRrsyMOzGJwDz9Q1HaZB2qPwTtWHTZ1BsVg8UN+HSqXyvMJwWPgAVhj6+/u7Nv/CL/wCv/iLv/jEh3v11Vf5xCc+wfDwMDMzM/zLf/kv+djHPsbrr7+OJEmsra0Ri8W6XiPLMqFQiLU1e2+bvfC+IQxPg8cJhndmyT/0oQ89sSbgMAlDq9UilUptaSkOY1HbT1C/trbG5OQkIyMjjIyM7LlwfzNbknYShc3XHNQDJr2c5b/+xl9SqjTQBRFBEGlLUMiX0HxOVKeLVKZCOOlndi7N4NEo92Y2GBgMU9fbLM1ucOZMH/fmUjidCqGoB6VUp1ZrcLtUIeDRiAcDlPU249OdAPryiU7QXq03uTG7xrGBCHeXUvhdDkYSQSp6i5vz25WE00Nxbi52/j0UDZAIepnL5FnJlVjJlVBkkb6on40dE5Eibo2VaoOEz0PC76Hd7vg2vDG71LXmn0hGGF/qXpD6gj4mV7sDWk2SMOmMQnWpCq12m0ylRsLn4eouYhF2O7ljU0U40xPj6kr3vpIoUGhZg9S4y8lU0RrwnovFuGFDAM7E4kym10m6PHhUFacso4gSPk2l2GzSMto09DbVVotyq8mIN7ijGrFNql5IJnl71Zp9fyGeZDplFU2fDce4YUMKet1ebuWs1ymLArNF+4qAa4+e77OhOOM2U5N8imZLPAAi/gArNj4OR1wBZvZwYy5g77h+yh9nIm+tLgjAYtX+WCf9cW7YTFoCSDe37/f39p4BtnVqsJ2p3yQQO9fk3fs9S5nknevTs4Jn4Zrsqg93796lUqkwPj5+oL4P5XL5+YSkQ4Lw8OeDgM33ubi4iM/n29q+3+rCpz71qa3/Pnv2LOfOnePIkSN87Wtf4zu/8zuf5lIteE4YeOdg/kn0Cvs9x36xOZ5UFEVisdihZUCe5PpN0+T+/fvMzc1x7tw54vH4I/f/ZhGGzcDhMLJ398fn+Mv/+DdUG21QFGSHRr3VYn09j6hqBHw+coUK3oiHcrVB73CYVKbMyVM9jN1e4sSxBIIm8taNBY4fiVFr6dyZSdGb8NPTHyGdq5DJl9FFyJZqDEVcuNwOrt5f6QTtApw7mqDVNjjZH2V6OU3daHN3ebvf/sJIgmK9yYWhJMuZAm3DZGx+lXpru9p2qj/GxGInOHRKAn1BL16vh8VsgbV8mbV8mYDLAXJ3gsjrUNmoVLq2iaKALIt4VJWEz4NDlmnoOm6Hwpu7Kgb9AR8Tq9ZguSfg5cZadyAb87iZXLcGtxeScYujM0DU62Wt3un9VwQRv6LgABrlMidcPhRZQZAkGkan334mm6PRNFhrVtgkACGng7LepLHrOxFyOplMW6/Fq6rcztprFOZKect2gGrbPsiOe9ws2WTyz4biTGStgXzM6eamjQgaoGhDqABGA2Fbr4aw5tzTk8HcY30Y1DwstOwrD3uJnU/4YtzdY2Rqrd203T7sDjFX7VRLJEHg4z2nLPtsfsd3joreWX3YrDRvCmefFaHxzqrIs4JngTDshqZpOJ1OXC4XR44ceSLtwzvheYXhEPEBrDD4fL4uwnBQGBkZIRKJcP/+fb7zO7+TRCLBxkb3mq3rOtlsdk/dw1543xCGp1lIJUnasyVpcXGRu3fvcuzYMQYHB58ZR2mAjY0Nbty4sXVdm8Yyh4HHDep1XWdycpJiscgrr7zyWCY3hyUIf9Q1H6a4+e0vTvA3f/ompiRjygq6KVAtVWgaLbwhH+6Al2arjS/soVZvoXo09LZBIOymVG8y0BsiXargdTs4f6qX6aU0Lb3NxVO9zKcLTEyt4FBljo3EwIRyTUd2aNxeyWMCYbdMLORmZiVDud4JOs8fSzL+oOPKPJIIEQu6ubuSJlvuBM4+l4YpCV1k4dxgnEqjyZlEmI18kUythdPl4tpcd3CfDHu5vdodDA9FO6NWPapCX8CHW1VxaDJ31tNkK7WtsayD4QB3UlbRsKrIFt3BiVjYQhYA4j436+vdn32vqjKdzRDUNByGScDlxu104pIlso06w94AuVqNQqNBRm9wqSfBmE159lQwQK5uDaqHAgGu2Wgahv3220fDYdtJSuejCVutw2gwzFTBel/8qmY7qhWwraYADHr9bKStrT1HfSHul6ztSAKwvMc0pb1M38KakwXdfv1R9/hu9bv83N9j/Kq6h+lc0uHdsx0pqDqZe9iVdiUyTER752zw7qqCYRiUSiVSqRSDg4Nbz4XN/b5ZwfFBTmw7KLTb7WfumqBzXZqmHbjvw6aG4TkOHs+nJB0clpaWyGQyJJNJAK5cuUI+n+fatWtcvnwZgL/5m7/BMAxefvnlJzr2+4YwwP6NuvbyMNivXsEOBxkUm6bJzMwMDx484OzZsyQSCebm5g4lS7+JxyEMtVqNsbExZFnmypUrFmfjpzn2frDX52FnJvGgycJf/8HfcOP1+7SFzpQeQxSpGS2aZgtRceIN+VhcyhHrDzI7u8HwiQS37qxy5mwva5kStXqT/v4w9WybRlMnU65ypD9Cud5gaiVDudrg+EAEWZWYvL+KacLRgQhrhTJnh+MUyjU8bpXJhe2gajjmZiNf5NxAjJVsCcMwuTq7QlPfNKSDeMjD1GqGkMfJQMiPQ5G5tbpBqb6dzT07EOf6YndQfWEosdV2JAL9QT89QS/VVos+n5eVfImptQx9QR+ra2Va7e2/sygAgmkZX3qhL2HRM0iiQKllzSyfjIapNJqcj8dQRAnDNKm3dPxOjbeXV9CNzrHXankgz9FokOlsd/uPJknMF6wtSl5FYcbGuyHkdHDTpooQ1Oy3OyWZu3lr8C8IsFrdYxa2Yb9WHA+GeStlDdhHA2Hu2WgRNFGyJR7Qmcxkh1PBqG0VQRRgvpy3fc2wN2QrdvZICvMte6+IuMPDUs16332yxp2iPSnqc/lZb1j/JrIgMlPe/sz/vZ7Ttq9/FERRpFQqcf36dfr7++nv799qWdy5ZjxK+3BYeNZapODZHPMKe/swPM3kJXjeknSo+ABWGB4X5XKZ+/fvb/37wYMHTExMEAqFCIVC/NIv/RKf/OQnSSQSzMzM8HM/93McPXqUj370owCcPHmSV199lR//8R/n93//92m1Wnz605/mU5/61BNNSIL3kXHb00CW5a5gvl6v89Zbb1EoFPjQhz701GTB7hz7ha7rTExMsLy8zMsvv7xVUnq3pjDthVwut6XGf/HFFx+bLMC715K004zNNM0nNmN7FFpNnc/9yp8x8XfTGJKC6HDQFmXylQr1VgtDcNBCoNbU0UVoGwauoIt0usToqQRXJxdxu1QcHgdjt5ZQFBFvwEmh3GAjXyFbqzPcE6Qv6scU4daDdUwTjg2EcThlGk2dGzOruF0atxY7AWJv2MeLx3soNNqsZCtMzm/QaDZJV8pbZEEAXjrWj1tTGQz7yZVq3FtNM5/Ld5GFuN/DvVR3QNoX8qEbBpf7k5yIhXHIMqV6k5urKa4vrbOcL2HSCTRlReoiCwAX+pPM5boDRp9DYybb3Yfv0zReHugl6nLxQk+S8/EYI/4APkml2tKZzeS5sbLBtaVVxpfXyFVrvL20TRY2cSYRtZAFgLOJGJmadTzp8ViEus3nMmBiaUUCOBIM2W4/FY1umbx1nTcSY6ViDaYTDif3SlYtgiKK3C9arx/AsYdL/elQjGLL2vYTVB3czNu3/Ih7fCdOB+KkGtYqggAs2YigAUYDUVo2RnEicDdnL7g75g/TshGfi8BC1f79n/TFKD5sb/LKGh+JHbXd71HIZrOMjY0xMjLCkSNHkGUZRVHQNG1LSLvTU0fXdZrNJrquH2qyBp7N4PywDNKeFo8zJWmz+nDkyBFeeuklPvShD9HT00O5XGZiYoLXXnuN27dvMz09zfp653tykC1Jv/iLv2gx2zpx4sTW7+v1Oj/90z9NOBzG4/HwyU9+cus6nuODhatXr3Lx4kUuXrwIwM/+7M9y8eJF/s2/+TdIksSNGzf4B//gH3D8+HF+7Md+jMuXL/P1r3+9SxPxx3/8x5w4cYLv/M7v5OMf/zjf+q3fyn/8j//xia/lfVVh2C92tiTlcjkmJiYIh8OcPn36wBbEg6gwVKtVxsbGUFXVksE/bJ+HRwX1m2NmR0dH9+Um/W4QhsMUNxczJT73f3yBfK6G5HLQMgTqDZ1ssYTD48AX8tNoGyiqTMMwCEe9VFo6/oATQxKo1FqcPdnD/HoeVZZ46eIAE9Or1FdzJGNeYjEP9xcy3JpZ59hwlPn1HOeOJjBMkwepPKWVTqB0pDdMulTl3HCCdKEKosnNpRTVRqctSZFF/H4X64Uy/X4HIqBpCq9PL3a9n5FEkJvL29laSRLQHDIOQ+FoNIQiSuSrNdqiyc2l7kzwUCxoaU86bzMVKepxcXtjxzkEgYTXw0gkSKXVom0YlOtNUuUqsiAysbxOtdXd03+xL8HYqjXo9Mgiq7uqFqIAuYaVFLgVhXs2JCLocHDTZrxq0OFgyaaH3i1J3LYRTMuiwNweWfnqHm2QbtM+CXUmHGMsY21fijndtiJogGzT3tzsiD/EVZtRqjGnm9t7iJ1Nwf47ejIQ5Y6NSzRApmnfpnQmkLA1hANI1+2rLsd9Ue6V9rq27Tv23YlRVPHJHm2pVIrJyUlGR0fp7e21/H4v4fTmhLXDrj48i4ThsAzSnhb7ua7d1YdisUgmk+Hzn/88v/Ebv8GJEydIJpP09vYe2N/i9OnT/K//9b+2/i3vIP3//J//c/7qr/6KP/3TP8Xv9/PpT3+aT3ziE/zd3/3dU5/3mcUHpcLwhPjIRz7yyM6ZL3/5y+94jFAo9MQmbXZ4ThjoEIZms8nCwgJTU1McP36cgYGBAy0BP20FIJPJMDExQU9PD6Ojo5YFa6dx22HALqg3DIOpqSlWVlaeqm3rsAnDYYqbl++v8t9+60tUmgZtJDBF2qJJqV7FF/GCoNAy6YzRbOlU6y38ETcrMxuMnu4hl6vS1Nu0MOmJ+2m124zfWyUadBOPeplezjB+dwVBgMtn+qk1WxiGydJGAWSBUrWBU5UZ7Y9SarXYyFdYy5UJepyIqrBFFvwuByeHouQqddYLVRbzdZJBD6v57oDyeMK/RRZCbgd9QT8el8psKke+XCP/UPNwcTjJ2GJ38Hp+IMHELjfnuM/DrbXtYFIEkj4vw9EAtZZOU2+Tr9ZZK5VxSDKv7XJ5BvsWJacsM5e3ZrWTTo37RRvTsp64rUbhZCzC1VUbv4Rw0FYwPRIM2PoxDLo93C7ZT166llpDEUSciowmSqiSTMzpotxucTIQQRIERATq9TpmS8fr8fKCFEDYnKdhdv5HFSVeCPU+/KfZ8ScwO74U2Ua9Y21msvX/QYeDTKPGCU/s4T3tbBeARrPNcU9n9PKm+ZoAxF1uUkoFEDotYw9/61EUau0WZ309CAiIwsOrEzqtW6c0k3q9jsfjQVY6jxWnJFMzWgT97g5hf2i8ZpgGXtnBUXcE3TRomQattk6j3cKL1HGjtll6HZL948qvOJja0cL0pO1I6+vr3Lx5kzNnzrzjgAbYWzi9s4K5c9+D0D48i4ThWbwmeHrjNlEUCQQCBAIB/tW/+lf803/6T/mLv/gLPv/5z/N3f/d3fPGLX+TVV1/lYx/7GN/zPd+z7+eeLMu2otNCocB/+k//ic997nN8x3d8BwB/+Id/yMmTJ3njjTd45ZVX9v3enlU81zC8N/C+Igz71TCIokgmk2FjY4PLly8TCoUO/Nr2SxhM02R+fp7p6WlOnjxJX1/fgR7/cbH7+K1Wi+vXr1Or1bhy5Qoul+upjn1YhAE6bVybc9UPkgROvnaXL//nr9NoA7KM5NSoNpusr+dx+jxIqoPV9SL9wxHuz6cZPZVkfqNAWxToGwwzdn2RwcEQnoCTu/fXGR4KIyoSA4kAhUqd+ytZyrUGp4/EkTWJt+50KgEel4rqlPE4VRIhL6l8mYVcsVNVYLOS4KBca3BhOEmp1sDr1vjG1HYlwanKIAk09O2/adLnpFavM+h1UGy0yZbqBJwObiyvdwXxR+JBru8alxp0O5lJd2fqAw4HI9Eg9ZZO2zAoVOusFsqEnA5em+muaghCJ0u8+9s7HA4wsWIjRk5GLWNUAWRZwtzVgaNIIksla9+7V1W5m7H2/W9WFwQTPKqCS1ZxKjIuScYwTC5FEw8DZgGTzgOgjckZWaOht6g1m9RbOo22zkomj6SL6JiUWi1KD8eLhlUX99PWtqNL8TjXNqzvdzQYZmrDXqOgqRLFprXt6Hw0YetCfTYc5YaNcFoSBFL1ChmbSsyLsR6u24x4DaoOinp9W4eS2yaglyM9XLOpiIQ1J3fyGYt2BWA4GmM+U0dEQBVEJARkwCOppIt1hrUYqiQjiZ3fCYJAQNUo6R2HcK+icSFov0baYXl5mampKc6fP08kEnns1+3Eo8a27sc0zg7PYnD+rLYkHfR1DQ4O8pnPfIbXXnuNf/bP/hkvv/wyX/ziF/m1X/s1fvAHf5CXXnqJr371q088an16epqenh4cDgdXrlzh3/27f8fAwADXrl2j1WrxXd/1XVv7njhxgoGBAV5//fX3JWF4rmF4b+B9RRj2g3q9ztLSErqu8y3f8i1P/KV/XGxWMZ4E7Xab27dvk06nefHFFwkEAnvue1hZervjVyoVrl27htvt5sqVK12l1P3gSR2Zn+S4AHNzc8Tj8QOdcPG//+QNvvHXE6ComJJA0xCoF8vU2y3cAT+BmJdaQ6d3KEy1qXP8VJKVVJGjI1EypRrFcp3Llwa4cW+NxmqOU6NJCpU6C4sZomEPTo9K3ONgbiWLqIiM3+tM2IkF3Qz0BJldzXIvncGhSESjPlY38gDEgx6Ge4KsZEukClVShSrH+yJcX+gOQkd6QkyvZjjRE8GpKuRKFfLVKrn6dpuMW5XYKJW61jdNlqjora5gTzDhaDxIramjShK1Zou1QoWBsJ/XdxEDhyyxZjPN67xNFQEemu/t2hZyObi5YW2BGfJ5eFC2trOcS8S4trqKT1PxqRouRcUhS4RdrofaApO2YdJsGzR0najHya1Umla7TbnaovwwyH+hN8nbNtWIy8kk4+vWaz8diXDTZpRq3OmyFUfLosADmyoFgKbYB0CnI1HG0tZrCmoObu7RpmTnnAxwJmTv+yAK8KBs7++QkDVyLSvBeJTYujNpydoqJe0wkTMwqe/QMfSqPu7Usth4vzHiDTJb7pDV/8/xx5/6MT8/z+zsLBcuXDiwJNE7jW19HNM4OzyLhOFZbkk6DCJTLpfx+/18+MMf5sMf/jC/+qu/ysrKCt/4xjeeOG54+eWX+aM/+iNGR0dZXV3ll37pl/jwhz/MzZs3WVtbQ1VVy/M+Ho8/sdHWewXPKwzvDXygCUMul2N8fByXy4UgCIdGFuDJKwD1ep3x8XGgMxbL4XAc6PGfFJsaiXQ6zcTEBP39/Rw/fvxAMvaiKD6W0/aTYHOqyOjoKOl0mtnZWVwuF9FolGg0it/v39e1G4bBf/8PX+T+zWV0ScIwoC0K1I0mLcHA7fPj9DpJZyuEEz42UiW8QRfNtkFLb9M0DLweB029za2ZdY4ORpBkkVsP1mm22gz1BXF5Ne7MbjBnGJw72cOtuXVOD8dptnQEReStu0sP75vAYF+YTKnGxSNJssUqQb+L1+9uB+mxgJvlQon2QwHwQMRPX8RHulQFE6Ye+jL0BxxdZAFgKBHm5nJ30Jn0KuTrDY6H/ThVjZrexuNQeXu2e2So16HxIGsNMk/2xix6Bo+qMGuz79memO0Y1YFQgPGH2gVFFHCLEj5NoycQIOz1djL+pklT12m1DdaLFWRT7AT/1U7w79VUZrJ5iy7Cr2ksl4vUdn0e3YrCHZtqhCQKLOwR5DdshLsAPkHATr54JhpjPGXvo2DnVg2Qa1qDdYAjgRBvp6xjXONON3dsJjYB6DbiZOhMTbq5h64hvcf5TwZjTNgYwgGs1eynJp0KxLi5h67BUCSwOVVYULbIAsDf7z1p+/qdME2TBw8esLCwwKVLl/D7/e/4mv3iSU3j9grAnzXnaXg2SQwcHpGpVquWKUk9PT3843/8j5/4WB/72Me2/vvcuXO8/PLLDA4O8id/8ieHGoc8s3heYXhP4H1FGB43ADRNk8XFRaamphgdHUVRFObm5g712p6k7WbTKO5JhNfvBmHI5/MsLi5y+vTpJx7H9Sjsp/qyFzZFiJv3or+/n4GBAXRdJ5PJkEqlmJiYANgiD+Fw+LHuca1c5/O/9j9YXcyAqiIrKnW9TblewxAE6nUBd1hlbj5NrD/EzVsrjJ5OcufeGv6Ak3hPgNtTaxw5EsXpUdEKEvWWzsJSnqMDEUwgXakwe78TPF841UvbMNFkmVuz65w5nuDGbCegCvmcHBuIspYtk8p1fk4NxZiY2w7SVFnC63UQkSUkQWQpXUAWRd6aWUbfMbFoIOhgrtCduj03GOf60jo+p0Zv0IdLltFUmRtL65QbLfIPp+I4ZRFRsT6cR+JBJna1LfUGvFxfsYbKxxMRri13B5eKKJKp1kh6PPgdGk5FRhJENEki32gw5PWTq1QpNVsU0RkMhXh9bsly7Ev9Se6tWEXNx6Nh25amo5GgrabhRCxiq2k4F4sxvmF9T0dDQaZz1vP6VI1Fm6lFABs2I1wBBvx+NjasVZnjgZDtKNVHjT8d8PlZT1mrMAmnhzs5e1IiiPbraq/iYFm3Jwz1tn0C4KgvxMwe3gt7nIaYw829PUTV/b4QmWLnczYgOFm7dQ89EiEajdqOxjRNk+npaVZXV3nhhRfe1TGZj2saZ1d9eBaz+c9qS9JhVRgO07gtEAhw/Phx7t+/z3d/93fTbDbJ5/NdVYb19fUnNtp6juc4SLyvCMPjYLPNJ5VKbekVUqnUoQbb8GhzuJ3YnDj0pEZxhzklyTAMMpkMlUqFl1566ZGtUfvBQbVTPUrcLMsy8XiceDy+NYM7lUoxPT3N5OQkoVCIaDRKJBKxreakl7P83//HX1Ct6kguFy0DyuUGuVIJT8iDy+FE9ggIooA34sEEjp5MML+U5fTpXqYX08zOp7lwvo+pBylKlQZHRyI43Soul8rSeh6XTyNbqHLmSAKXS+XNu4tsdv6cG00yvZzm3EiCWr2Fy63xxp3tSkJfzMf9jSymCT0hL3G/B1EWGH+wulVd8DhVSs1mF1kIOBTWaw89KQToC/uJet20DIOk18NaoczdSgqnIuPxaJQb3cRuKBbk9np3ADgU8lrIAoDbqaKXtrPLkiAwHO6Iny/2dHQBetug0mgS9bh5c2EJE1gvbAe4p5JRbq93B4+SKJCuWgNXlyJzP2MN2r2aym0bsziPqnAnbWMiJ4nM5O1bcjJ1+4DZqdgvraPhEG/biam9PmYq1kqFJorcy9sH2C7V3mjqVCjGpE07kiwKzOwxlrXf62PdZjpRSHPsSSTi/gDLGev7jzncTBXsXxPQNLAZguRT9vZeGHQHbMe5gslqc/tg/+/jl+n39JJKpbaMuSKRCJFIZCspcOfOHTKZDC+++OJT6a4OAnamcZs/u6sPmyZpzxKeRRKz2fZ10ITBNE0qlcpjGZHuB+VymZmZGX7wB3+Qy5cvoygKX/3qV/nkJz8JwNTUFAsLC1y5cuVQzv/NxvOWpPcGPlCEYWebz4c+9KGtwPBxg/mnwTtVGJ524pAkSVvZ9YN8sDQaDcbHx2k2m0QikQMnC3AwhGHn2NR3EjfvdAA9fvw4lUqFVCrF6uoqd+/exev1EolEiMVieDweZq/P8+e/979oGgItBIQ26KJJVa8RTAQRBBnV66CUqeD0O6jndFwBJ4Zp4vU7mV/L098TBBHG76wQ8Dp44cIAN2bWqC228LhU+vuDyJJIqdyg2W5z+94ypgmyJHD+eA+VZotWy2ByZo3RwSg35rYDcq9TJeR3E/K7WcuWWE2XiAbcjM10B6b9MT+3d4xLlQU42hdFN0yqjRYL6TxL6QKaIjG91h1YjvZFGN+lgxjtiXB7vTvAFkUo7RDgigLEPG4GwgFaRptLPQnqLZ1ctU66XEGVJMsYVp9DY71ctlRuj0ZD3Fq3BqJnk/GtFqWdOJmwF0bvVV04EY3w9qq1jedMPMY1O41CNMKtjJVgJNwe25GskiAwk7MnHl6XA2wIQ6+sMtu0Nu4HNAe39nB8Nvd4Ip0KRffUKMyV8ravGfEHuZq23hPHIzQKg94AGzYBviKK3NvjNcf8YcZsjN8A1vYcsxrhXqlzPEkQ+PuDpwlrrq3RmPl8nnQ6zczMDJOTkyiKgmmanDt37plr+7BrXdpcz0zTpFarIQgCrVbrXTeN2wvPYkvS5jPwMCoMB+n0/C/+xb/ge7/3exkcHGRlZYVf+IVfQJIkvv/7vx+/38+P/diP8bM/+7OEQiF8Ph+f+cxnuHLlyvtT8AzPW5LeI3hfEYZHBYnZbJaJiQlisRinTp3qWugOu53nnc7RbDaZmJig2Wzue+LQTkOhpxUhb6JYLDI2NkYgECAWi1GwccM9CDwtYdjZF7yfSUhutxu3283Q0BDNZpN0Ok0qlWJ+fp75sVVm31xD1DRkpwvFrVGpN9hYLxJOhiiVmihuidxaAYfXwZ07q5w818ude2vEEz58QRfrsxuEwm6K5QajIzGa7TYT91ZottqMDkcRZIE7sx0jtsHeEA828vRGffjdTkxMxu+vbFUJemN+5tMFFEnkSF8IWZKo6TrXd5CDoUSQW4vdweT5IwnurWY4ngih1+vU2xCP+Hl7pjsYvDCcZHy+O5g+mggxsYssqJJErrYdyHodGnGvm0TAQ6XZItpokilXyVRqZIoVao0GhWY3KT+RtBIOgKOxEGNL1oDeOkOpkzVfLlpbeVyKzD2b6oJHUbhrU0XQJIl7Wfv2npWKfcC614rR6/ewatOnf9wf4E7BShgiTqctwQAwnRqUrIRhyONlImeT3Xe6uW0zGQmgvYdG4XQwtqdAeq1m/95PBqOM76FRWK7at1adCkS5kbfXKBRbNmpmYNgTZK5iT7I8yrYx0SuRAcLa9ropiuKWE+qRI0cYHx/fCvjGx8fRNI3Iw9alYDD4TAW+u1uXFhYWWFlZ4cyZMwCHMrZ1P3gWW5I2781h3I9KpXJgLWxLS0t8//d/P5lMhmg0yrd+67fyxhtvEI12Rh3/1m/9FqIo8slPfpJGo8FHP/pRfvd3f/dAzv1M4jlheE/gfUUY7GCaJgsLC9y7d4/R0VH6+/stAeVBuTA/CnsRhlKpxNjYGD6fj0uXLu072N+ZnToIrK2tMTk5ycjICCMjIywuLh7aFKanIQw7y/gHMTZVVdUtA5+/+oOvMn8tgyFJVGtNWrUmoqbS0NsoThdOt5t0sUk07Cb9oErIpZIcDHH33honTiS5M7vB7HKOM6eS1FttllbzDA91RMqjwzEyuQotDGYedALVZNRDMOiiYbRZWM3Tn4CNUmWLLATcGvGIF4/HwexKhtvzKc4fS3JvfjtA9Lo0is0GrbaBQ5EYigUJuB2sFsvUG/pWP/+RZIiJ+e7grSfo5dYukbMqiZRbra01zqupxP0eEkEP5UYTv0Njo1ghX62jiiLL+SK1VjcxOD+QYGxXi5IgQK5qnZST8HmYXLVmwU/GI7ZtRGd74ozZTFfaq7owGo/Ybj8dj3LNplXoTDzG9ZQ1mB4OBLhrU13wKAp3Hm4XH3oZSIKIgEmlVsUjywiiiCgIiKYAAhwLhrlrE+QnPW6WK2X8qrblY9BuG7RNg6ViDvGhwZu54yM/6POznrJm92OPEDvv9Z055g8xXbJvh6rtoVE47gtzb4/X7DWdKen0cH+P14Q1ly1hkASBmR2v+VjvqO3rdV1nYmICwzC4cuUKiqLQbrfJZrOkUilu3bqFruuEQqGt9qV3GjDxbmJzktOlS5cIBAIWX5mDGtu6HzyLLUmbz9iDJjK6rm/5jBwEPv/5zz/y9w6Hg89+9rN89rOfPZDzPet43pL03sD7mjC0221u3bpFJpPhhRdeIBgM2u632S500O08u8+xmzBsBuXDw8McOXLkqc69Uxz3NDBNk5mZGR48eMC5c+e2jIwOUyOxH8KwW9x8kB4LrabOn/z6X7A0l0F2ukCQMNsm0KBtmKiagm62SRfyuDwK5XoDf8BFqdHE7XYwNBJl8t4qg/0hfH4n124uYZgmI0NhXG6NpY0i/3/2/jxIsj0v68dfZ8t937P2vav328uduVcHBSTEYQZR0QBFJTBAA8UVl3D5hggo7l9cAvGL/HRcZkAEBscBhEGQbWaY6arurn3f18yq3PfMc35/ZFV1ZeXn9O2lqu/tnnoiOmbuycyT55zMOvl+Pu/38zzTi7sM9IeYX09wpS+MzaqxnswwNtscywh6HWQrFRRZ4kZ/jIauU2o0+PLck7GNG/1RHi4/KXIlCa72hqnUGvjsNtb206ztpUl77eyknqx42y0q2XIF/bQ1qgRWq0o1c3Q9JYj53AxE/BSqNXw2K4lskYN8Ea+9zucXN6mf+cw6/G4mzhCOkMsh7CKMhH3MHKTbtkc8TnYF1qhJQY6CRZFZT7dvt6sqC2e6C4ok4bFaSBVL9Hg8WBQFTVbQZAlFboqp70c7OP4KNb9fzU7K7UCUxlHgWEM3qOs6EbuDarVBXddp6Dr1o8eu+UOM7e6gGM2MBh3Q0YlZLGwUj/UfT/6OVEliTj8gXW4XQve5fGQK7duvh45HoZp/8/LRP1WWWE+m8RpWVEVBlWUUSUKRZPrdPrbz1mZ+gSShyM3wNbuqUtN17vub6cYn5w94rBZshkyukMdisyJrGjW9gUWRSVfK+DUbpUa9KXA+ep3bYj17uAD4LDZmTXQNXU4Pu5X2jowEpt2FUU+YqWyTWFplha+LD7c9p1arMT4+jqIo3Lt376SIVBTlxPDAMAzy+TzJZPJkJNHlcp2Qhxd1UzsPrKyssLq62uLk9F6hcS9q2/oi0HUdTRPraN4vHJOY8/7M8kf3pIvSMHzF47LD8FrgjSIMp28SpVKJ8fFxJEl6T1vSixjnEb3HcXFrGAaLi4usrq62FOUvA0mSXnq0ql6vMzExQTab5Z133mm5OV5kkvTzkpGz4ubjVbXzQPYgx6f+yf8kuZdDslqQLRpGXafaKFGrgWKx4wk42drN4HZp5AoV8gc5Ih0udvfLxDskVKtGJOhCs6g8mNxksDeI22NnanmP0uYhkgS3b3RSb+j4XHY2d9N4/A4OjoLXnDaV/u4g2WKZxc0DJpd3uTEcZ3nzScHVHfEyv5Mk4nMRD7io1hrY7RpfnGt1ChrtDfN4vXXFfqgzxONTI0aaInO3v4Nyvc5bPTGypQrbh1k0SebzixsnHY7mxQabVaWeaf0ujMSCbWQBIB5wk9hqfX+7prJbbB9BCVlVJgQuSr0uG6vFMooEXpsdp0XDrqlE3E7y1Rq9Pi8SoBvNPAWf3cpmJodHsVCq1SlUq1RqDQajAR4Iugu3O6J8Ya19fn4kFGBst32sKeiwsZ7LtBEmSYL1XJa6IJAs4vexI+hUXI9EeCRwWXJbLEybWKnKUmsBaNCkIINuL3O5owL7lFusJEFVr7NfarfmZSsAAQAASURBVO/o3I91MCYIirPJCrICxeNOQuUJcbkf6WD6lHhaQsGmqng0K8lCmT5b4ISQHZMWn9VKrl5tEjGMo4TnBjW9QUVv4NfsFOpVqqesaEe9YWZN3JFU5ck1+D3RfpyqpeXxSqXC2NgYdrudmzdvmq44S5KE2+3G7XbT399PtVrl4ODgxD4aIBgMnhCIV1EgG4bB8vIyGxsb3L9//6lF6vPYtp539+GDqGG4qDGp4lE39FW6al3iEh80vFGE4RgHBwc8evRIqFcQ4fgGU6/XL5ww1Ot1Hj16RKFQaCvKXxYv0wUolUqMjY2hqirvvvsuFkvrD/BFBsM9z75fVq/wNGwt7PCT/+KzVGoGqtNBzYB0pkCuWMYTclMp14mF3WxtpegZCDH+aIOr1zuoJbIsr+UYGPSROMyRzlbp6/NSbVSJhV2UKjU2V3JUqnVGByLYHBrjs0eiZlWmu8vP2m6aq32RprAR/STVGeDWSJyHR3aqmiozGA/gcFioNhrspvLsp/IMdgSYW25dyb/eF2kjC9e6wmQKJW73xJCAdKFMw9AZX9uheir1WZJAVuVWsgDc6onycLN1n7JEW24BwEDYz8RWezE82hE+yWKwKgp+hx23xULE6yBbKFGv16lWq9QaOrWGjo6MS9EoVGuk8iVSlLAoMslCicMz7khWRcFu1UiXWgmJqkismWhwDktipyNNFRcefX6f0Hr1ejgiDGTzWq3MCPQRAKV6Tbh9JBjgy3vt7xGw209GntqO16qBIOKgU7WyKSALAHtFsUZhwOVhOi92VNoqtr6JQfPzv+IL8vBQrFEY8vpZyrZ3CwY9fh6ln5ACi2zBqWo4VA2/4mLUeUw8msnaktTUsui6zogrTKlR42NnsheO72Ver/eZ7v+nYbFYiMfjxONxDMM4cVNbXV1lamoKr9d7Qh5cLte5r2S/jO3rRYXGmeGi7EtfBhc1JlUoFLDZbB+4831TIBkGkmCh5U3E63yebxRhMAyD1dVVFhYWGB0dpbu7+5led7xKc5E6huMV+s9//vMnUfDnvVr1ol2A4wC7aDTK1atXhTfcD8JI0kWShYnfmOF/f+I3qCNTNWSoG9SMBqV6hUDMh2qxYvEo1Oo6kU4fuWKVkZEoaztpOmI+enqDjE1sYLdp3LgRZ2XzkFwhi8+jIVtVuqIu9g6KaFblZOxIkiTuXO+iUKlhVVVmVva5eSXO5NKTInuoJ8RmMsvt/hjVWp2VnUOQJR4sPBErexxWUsVyS3Ef8thZ2DvAbVHpDvuwqhr1eoOtTI7DfIn1xFHxLDX1DKfJAsDtvnbxs8uqsXrYXnTf7okxviFYpbZq9AS8OC0WrKpyNNMvkStX6XZ5SJdKFCo19it5PJEAv73UnqMw6HexmGkvaq93RBjbEjgXxSOMbQm0CLEo44KUVDNtRIfHzZQgTdqqKCwcigvpuklQ21AwIMxw6PF6mDfZ125RZCMKA16fkEgE7XZmTDoSfo+HTUHidJ/bw6pJ9kOuLCYYQ94ACybWrA3Ef8Nxh0tIFgD8NnuLzWpVb1CtNsjVKmTrFXK19nyW24Eoj46IiVPV+Eik7+SxQqHA2NgYoVCI0dHRl7pHSJKEz+fD5/MxPDxMuVwmmUyeBEFaLJYT8hAIBF66mDQMg7m5ORKJxLnYvp5XaJwZPogdhotMeXY6nR84a9s3BpcjSa8F3ijCkEqlWFlZeapewQwX7ZSUTqcBzuWHzAwvcg7HuQ8jIyP09PSYHtdFjyS9177PW9x8Gr/6qd/mi780QQ0JQ5HRHFZypRKZXJFQPMTebo7OQQ/zs7sMXe9gfz+LpEi4A05sVg1Zk1haT3L9ageyIvFobhvDgIHeIKpVYX41STJVpitu59HCDkGPjVjIg2bT+OLUk07CzZH4idtRT9RHxO9kP1PgIN38B3B7pIPx5daCsSPiYWYj0cxRCPnw2jWKpQK1ukymVGN2vVkQX+uPcJhvXU2/3R9rEz8HnDbmdgTuRR0hxtafvLfHZiXsciBLEne7myuy5VqdXKlKyOMQZjG81Rtjdrd935LgN16SoGi0f86yBIv77ftQZYmNtLiLsG9SgOsmqz1Rt5OtfPty/bVoiDEB8ej2eJgVJEFLEqxnxccUdjhZFzg8XQkEmDXJXtgUHBM0RdjJvfYi322xMJcWF/hqTdzd8MoKW3VxuJzHKtYoeC1WU1F1t8sjdFuSJFjOiY9t1B82dW467Zb1NR0DWJXmz9ixgURHRwdDQ0Pnfo+12Wx0dXXR1dVFo9EglUqRTCaZm5ujUqng9/tPslye17bVMAxmZmY4PDzk/v375277err7cHyvfdbQODN8UEXPF0kYLnExuBQ9vx54owhDMBjkq77qq15orOiishiOux6Li4sADAwMXNgqxfOM9jxv7sP7NZJ0keJmXdf52X/1i8yNr4PVAgbossxhLkc6XcQT8lMo1NFcNra30nQOBHnwYJWrNzo4zJZZndzi9lvdVBsN8vmmiHhueZ9rI3HqDZ29dJ7DrWYRd/1KDEOCbkljcy+Hwy6xtv5kbGaoJ0ixUuP2YJztRIb9ZA4dg43Ek2JzqCvYkr+gyhJ3Rjqp1RuMdoTYSGTY2EujhOysnLHcvNYbYfKM1WrQbWd+p70wjQc9TG42nxtw2gi6nHjtVhqGwc14hFyxQjJXJJ+vMBQOMLbSSmAUWaIhtX+eUa9LqHO4EgsxKyAAtzqjPBRoGm51RhkXJUYHfUwn21eyr8fDTAq6BX1+H7PJ9vN3W8TBbgBJk/GliMvJhmC1/lo4LLRMtSmK0GUJwGYSyHY1GDQdbdo2IRIj/iAP9ts7Eposs2fSEel2uZnMt19HTZJZMCEyQ74ADwR5DQBbBfGxjfpCzJgIoVVJXIg6FJW5U8Tko11NsXM6nWZ8fJy+vj76+/uFrz1PKIpy0l0wDINisUgikWBvb4+5uTkcDsfJ4z6f76mFta7rTE9Pk8lkuH///oW7NB0fy7OGxpl1Hz6otqoXmcFw2WG4IFx2GF4LvFGEAXhhDcJFWKs2Gg0mJydJpVJ86EMf4gtf+MKFjz09y/5rtRqPHj2iVCo9c+7DRXZgzLoXIueP87phlwsVPvkPf5bEXg5dVanWGlRqUFMqGBL4Y0EcThuZQgWvy06hWqNa07lzv4/HM9uEQy7u3O9h/HHTAen6tQ4kVcKiqWztpFHtKql0kaGeEAG/g4dz21Rqzet3ZSjC7EYSRYbOoBOLYrCVSFOsPLm+14aiTK4+KYp9bjsHxRK9ET9eh5VCqUpD13m4tEPt1DhRwKmymW1dHXbbrWwK3IQifhfTWwk0RSbmdeF12HDbm2nOfUEf+5k8qVyZVK7MUDzIwm5rsRj3uZjYbC/cb/ZEhSNKEY+T3Vz7SnNNULjKEuzn21fMZQm2BfuApgWtCBWT763XYQXB4v9IOCjUKIyEAswJCna7qjJtlqMg3ApXw2HGBWFwbovFdLTIanJvG/YHmM+IC/lURZxvcDUY4vGBeAV/vyIeR7oaDPPooP3zBvMchUGPn+WceBzJbnI+Nllh1iTg7YovxPhB87PxaFZ+d6z3JGNneHj4mcdQzxOSJLVkudRqNQ4PD0kmk0xMTKDreotw+rQ+TNd1JiYmKBaL3L9/H6tJB+ci8V6hcWbdhw/iSNJFkZhCoXDZYbhAXHYYXg+8cYThRXHeBfGxS5Msy7z77rtYrdYLH3t6lv0fz/g6HA7efffdZyZYF9lhkCSpbd+n523P2xowsXnIT/3z/8VhqgQWDVQV6g3qlKlWdILRIOlMCZtHJpsp4w46qZcq2GwaiVSBgb4Qml3lwaMNujt9RGNexqY2qTd0XE4rwbALu01DMqDW0Hk4v3NCFno6faBIXO+PsLp9SCpbxeG2tpCF7rCNydU9JAM6wm5CHieGIjG3keQw3VzhtqgKwYCzhSzIEljtNmpnknF74j4m1veQJYm4z43facPjsJEplenwuNnP5NlMZNlVcoR8LnbSrSvC17sjJx2H0/C77W3Fu0NTWU6m257b5fcwud2+j9F4iBlBd+F6R5THgjyGGx1RHom2x8NM7rYX2jG7tc1iFSDgsDEpSI2WnzJCZDURQQ/6PEwKtAhRp9NUoJytiEd+zMTObs1iui+X1SLc3u32sCwIigNM1AbQ7/GxIuguABQEuRkAMbuLhYx4tChgswsJgypLLGTFJGfUHzYVT9dO3Se+tmOAzMEhExMTjI6O0tHRIXzNq4amaUSjUaLRKIZhkM1mSSaTbGxsMD09fZIkHwgEWFlZoVqtcu/evTajifcD72Xbevr3pdFofOBW3C9qTCqfz186JF3iKx5vFGF4mZvXeY4kmaVKXzRheK+i/tgqsLu7m5GRkee6Xsf7voisirM5GBcpbl56uMqnf+SXqDYkVIedugEHBzmqNFAtFso1ibpukM5XqAK+qJuHDze48VY35Wqd9Y1Drt/soFStM9AbwmJT+fLkBoZuMNQXxGK3MLe0T72hEw27OcwVqVbrDHQH8XvsLO8esrqXBkCSJQZ7Q8xvPCkEB7oC2G0aI3Y728kc2/s5NFlnJdlarI32hXm00lpUXesLM7HeLIJdNgtxv5uA206hVqc34GUnlWc7mSWVKWJ3WjjIte7zZl+MsdXWYtWiyOxl21fuh2MBprbbC+4rnWHGNtoLXq/TxkamvctREszRS5K5c9Hp7VZFwaoqaEcWnt1eD4osockKiiwhAR6LiqtQpFGvg2GgaioWzULA7SRfqyHRDE87bgU4LWrzermavvfHi0GaLFNH50PRDgyOXmIYlCtlGoUybwXCqKrG8YS9AXhtVuKV8pGVKOiGjg7YVYVstcqg10ddN2joOlW9QV03yFWraLLcUhgDjASDPBAQCZuiMHsoJhJRp3hMyme1CYPioCmeFhEGp6KyVhZ3cLrcbnGOggSrubTwNaO+MJNpcbfCTFfiVi3MnnJU+pAzyOPHj7lx48a5WFNfBCRJwuv14vV6GRwcpFKpcHBwwP7+PisrKwBEo1FSqRTBYPDCXPpeFGbC6VQqRaVSQVEUqtXqKw+NM8NFjyRd4oJwOZL0WuCDdXc6BxwXnM+L8yrm19fXmZub48qVK/T09FzIe5jBbP+GYbC2tsbCwgLXr19/oZW40ytO531DPv6BOf7cLoosfOGzY/zfn/4yDUmmjkSj1qBSq1OoVYl0BikWdXo63axvpugbDLO6eQilKnc/3M+Xx9dRFIm37vWws5tlZy/DyEiUrUSG6yNxUqkCuiQzNd8s4n1uO36/k7Aqs7mbYWc/S6lRP8laALgxEufx0g4DHQE8TiulSo29TIHU9pPV2oHOAMv76Zbz6Ak7W8iCQ5PpjwfRFJXr3RES6QKJTIGteobDYolktpUYjPSEeXiGGATddqa32gnA9e4oY2fckpCgJrjree1WZgUhbb1B30l3QZNl3DYrDotG0GElmc0y4vfgsjtOPmunVSNTruCP2Kg3GtTqOtVGg5jXxXziAIehUqnXqdUa1GgwFA7wcL19RTrqdjJfLLYVoKoM2mGaYqOdXA9Hgswn2le+73fHeSBwX4rbLGxXq5BrJTiKLOGx24TE515HjMX99hX5fr+Phb3mdgUJi6JgVVWsikK9otNv92E5CmRTZRlZlvDbrGRrtZPANR0D3TCoGw0MHYY8AcqNOuVGjWK9RqlWZ9Dn50Gi/VxkCZZN3IyuBMI8SLa/BmDNhHxc8QaZMxmV0kyKSruiMmcyjjTsDTB2NI7kUjScOylu375NKBQSPv+DCKvVSiQSYXt7G4/HQ39/P6lUiqWlJSYmJvD7/SejSx+0AvX4Pp3JZJiammJkZASv13thtq0vgosiDJcjSReLy5Gk1wNvHGF4UbyshkHXdWZmZtjb2+PevXsEAoG257wfhEHXdaampkgmk7z99tv4fL4X2vfpVaaLIgz1ev2kaDxvsvDz/9+v8Pi3F6giowOqw0qxWKRYqxKJh2joEg6vlXKtgd2hkS1WCIVcaA4LE9Pb3LzegawpjD1quhpdGY6iWBTK5TpTczsMD0WYXd7H77XT0+EnU6oyfWSPKskw2B9m/nj1325hpD9MudbAbbOysnWIJEN/V5DUqcLT5bCQKrUmMrttKpqmMhB0UK01yJUbFGp1UoUy2xutq7zDPWEenhEk94S8TAiK63jQw8RG64qvz2ljVuCWdKM7ciJedlo0vHYbTqtGzOciW6miSBL6USJytd7AabNQKFXJV6qUq3VS1WaWQt1pYa9UhWwFeLIS3hv2sSpIgbZaVDKl9lEeq0V8G+v0e9grtK+KX4/HeLgjIBgOu5AsKLLEcqr9eABCfi/bgtGmq+EQE4n27RZZZk7gpgTgd9gh03wfg6b2otJo0OP1MLEv1htcCQeF7kzXQiHGBYFsMhL5QgVfQ8Ouabjt9mbImiLjtVop1GsMOpvEo240Ox/lRh0JCZeqUajVOG1c1evysFYUj3A5FPHnYpFl5rPmGgWzcaSq/uTedl11cv/u3ed2w3u/IUqfDofDjIyMUCwWT2xbFxcXsVqthEIhwuEwfr//A6EXOO6eX7lyhc7OzpPtz2Lbevz/LxIXqWG4HEm6QFx2GF4LXBKGI7xMMV+pVHj48CGNRoN3333X1BLvVYwknd5/pVJhfHwcXdffM+36WfYNzRWc886POCYG5XIZu91+ruLmWrXGT/6T/8nGUgJUDUmSUVSVg3SGdLpE11Cc5YUEQzc6WVzYJxR1Y/fYmJ3d4cadXnRDx6LKGLLEw6lNRoejOJ1WHs1vUzvSJdy43kxtHuoNsbp5QKFaZ3njSRF3YzTOdjLL7eE4hVKVWl1ncnnvRNcAcHM4zsPF1uK+K+YnkSlwsy+CIsukciVcTitTa63F40DMxVKilSz0Rn0tjkoASKBalbYwtsF4oI0sWBSZkXiQw0IZu6aiyjKGAQ29Qb1uEHU4SRfLFIs1isUaAZedtWSG6pnvd3/Y196hADpcFraL7R77o/EQM4IuxWDYz2KifVU+7nExLdAuODSVOYE2AiBdFo87+Wwau4KOwLVomIm99oLdZbEwlzTLJBDjWiTEw732URyLLDNvQiTCTrH9atjhMCUfFhO9RcThZD7d7CJkGnV2T12LO5GYkGQE7HbWUll0w0CRFFwWC07NgkNV6XK6CWpOFLn591rX65SqVYq1CvvpNC5Joajr6KeW1Ub9IR6nxONIDZPusEvVWjoPf+zavdeOLFSrVcbGxrBardy6dautsHU4HPT09NDT00Oj0ThJnJ6amqJerxMIBE66DxftpCTCcSCqSC/yXqFxL2Lb+iJoNBoXMtZ1qWG4eLzOK+9fKXjjCMPLjCS9iIYhk8kwPj6O3+/nxo0bT13deBUdhuO2cDabZWxsDJ/Px82bN1961eX4Jn/ewudj21Sv18vnP/95fD4f4XCYcDj80sFF2YMcn/qhnyOdKlOXVSrlBpV6DV0rUak1iPZEqVQa9I3GWV07YORGB48nt7CmVG7f62V2fo9SqcrNt7ppGAYBr5NytRmeVqs16O7wEYl4mV7apXBU/F6/2sHEQrNA7oh46Ip72UpmSR4WSB4WcDos2JyWFrIw3Bvi0dIOEtAZ9hL0OHDYNWY3EhzmSiRTTWHx9YEok2fIQlfYw9phq/BYkiBXah/FudUX5dFR8rPdohJyO3DbrHidNtw2K9Vag0K5SqpQwmO38mBpu41c3O6LMS1wQOoOe4VjQTarmFzaHA4QEIaGyfKLWRch6nOxnW93TRqNhYTBbsPhAPMCEbRT01gXuDIBpHMmlqWRIA+228lQ2OlgNikmK+WG+B5zNRLm4X57Ea1IEssp8ZhQj8/L/m77MdsUhTkTXYPL5O/XIsvMp8Tko9/r4+DImrVhGGQqFTJHou1CvcpOof36XwuGmU41iZyEhF1ScMgKTouGvSZzx9OBqsgYNAPvynqdaqPOXjGPZEgYZ6qHYU+Q8cPmMThVja/rHxUe6wcV1WqVBw8e4HA4uHnz5nsWy4qiEIlEiEQiGIZBPp8nmUyys7PD7OwsLpfrhDx4vd4LFx8nk0keP37M1atXicfj7/n8s9qHF7FtfRFcpIbhdSOorxUMo/nvKwGv8Xm+cYThRaGqKhUT5xIzbG9vMzU1xeDgIP39/e95034VhKFSqbC7u8vExAQDAwPnmvtw3k5Jxy1swzB4++23qVQqJBIJEokECwsLOJ3OE/Lg8Xie6zw253f4mX/1v8kVquiKgmRRgQZ1qYRhKIQ6whRLNTSHBUOSiHX5WVpNMDIcAU1m/NEGoZCLK1fjTM/vUi7X6OrykylWGOqPkE4X8focfGli/eQ9b17r4CBb4vaVDvaTOWxWjQezW9QbT2Z74zEv80dBahLQE/PidlgZ7Q6zuZdhay9Do97goFSmUn1SXPrdTcH0acgyKJpysv+T4xiI8XB1F4dFwW1RscoSdqtGtVKlP+jjMF8iW6ywWcpysz/K5+c2OIuOkIfGGStWi6qwnmwfPwl7nEIXpb6wj2mBMHog7BM6KQ2E/czvCXIhvC6md9r347ZamBGEwAHsmFiv2kyIx0g0KCQYcbeTDcFYE8BeXry9x+9lf7u9kI+5XMwJch8AKrr4vnA1HGJSMNoECAt1gNFQiIcJ8VhPzqQuGw2GeJwQjz2lqyaWqT4fSyYuTLZTHQ4DKBk6pYZOtlxnr1KmYrTfR94KRVnOZFAkGa/VhsdixaFqWBUFuVhlWHZjczm4HYphkT9Y/v9PQ7lcZmxsDLfbzfXr15+7OJYkCbfbjdvtpr+/n2q1etJ9ePjwIcAJeQgGg+feAX5esnAWL2rb+iK4SA3DZYfhEl/puCQMR3ieYt4wDObn59nY2OCtt94iHA4/0+vOjgydNyRJIpPJsLOzw61bt87dOeQ8CY/ICclms9Hd3U13dze1Wo2DgwMSiQRjY2PIsnxCHgKBwFN/FCZ/c5af///9X+pIyHYbhmGQThepqw1y6TodAwGWF/YZvt3F7PQufUNhFFWhlK+iKxLZbJnRKzFUq8rY42Yx3dcXxOG2srecZ3Jmm6ujMSbmn3QSOuI+1ndS7B3k2dpJE/Q7yOcKLcX8zStxdg9z3BqKU6812NzPoGoqD2a3Tp4jyxKaTaWSaV2J9ro0DvdbC7ebAzEerewS8bkIuuxYtaYgNlUs47NayRYrlEtH2Q9ddma2W4s7q6qwedA+6jIUDzAjFEBH2lyUADqCbvbX24tnh01sE2k1CSZzmHQjol6XMHthOBbkgcCR6WpMbNUacNiZFow7ASQL4u5Ch9fDjoAwxG0WNgVjQgAbJts7vS52BSFmIYfddLTIrHAa8PtYOtI7nEXVhHz0uT2sCFyTnoaow8liWkwK/DY7CAiDIkksmhCJq8Gwaf5Dodz8DBqGwWG5xOHRuJRVkmlgUMeAUpHvuvr2c53D+4lSqcSDBw/w+/1cu3btXBZvLBYL8XiceDyOrutks1kSiQQrKytMTk7i9XpPCITL5Xqp90wkEjx+/Jjr168Ti8Ve+thFo0vn2X24SA2D2+0+9/1eoolL0fPrgUvCcIRnHUk6G3r2PM4JFxEOd4x6vc7e3h6FQoF33333Qm5u59FhOB5BOv6BMBM3a5pGLBYjFouh6zqpVIpEIsHs7Cy1Wo1gMEg4HG4LQvrVT/02X/ilx+iSRkNqOiGl0gUKlQrheIBsoUhDN3BHPMzP7DJyLcb07A7VaoM7H+rjMFVgY+OQG7e6mF3c49rVOHrDYOcwy/JWc4V/sD9MMl3k5pUODg7zqJrC4/ltKtXmZ2vRFGwuC4ndNE67Rk/Mj8dlY3HrkGS6wF6yWfzeutKuW7g5HGN8qXVbf9TN8n4On9NK1O/CbtFQZYVkroBNVkkc5EkcNPd5bSDC0k5rJyIWcLGw394ZiHs0VtLtM/uisSC7RWVxr32UJ+xxCLsLXQEP04JU5+6AhxlBtyDmdTEl6iLYrMIugizBekostjUrkPpCPh5sthOMoVBAmNWgyhILJoV8JOhnW5AH0edxsyJMXTbYFNjKAvT6fSQEQXEuTWPOZLTJZ38ikD4Nv81mOo4UdDmFhMGpakLhNEC318uu0E7VYD0nvv6jgSBTJs5JsslnY5Nl1orijkmX1c5SpXkMdkXlI/Ee4fM+aCgWizx48IBQKMTo6OiFjA3JsozP58Pn8zE8PEy5XCaZTJJIJFheXsZisZyQh/daaDmL/f19JiYmLtS21sy29fh34nm7D5cuSa8pLkXPrwXeOMLwojflZ1k9z+fzjI2N4XQ6eeedd5679XtRI0mlUomxsTEajQY+n+/CVkJetkNyNrn5WZ2QZFkmGAwSDAa5cuUK+Xye/f191tfXmZ6exufzEQwG+eJ/f8zy9A51Q6Km19GcdsrlErpiEOsK0zAkIjEv6XyZQMBJKOrm4aMNhkdiKDaVL4+tAfDWnR6qDR1NVdjaSqM5VVKZEk6HhaH+MJlCmUQyx34iR8DvoF6rn5AFSYJb1+JUag00SWZtO8V+IsdmMku28GTkra/Tz8Ry69hIb9zH45VdZAniAQ8+l41auUihVsdrs5DJlslkm12G0b7ISZ7DMYa6gm2CaACv2852prUY8zvt7BTaMxD6gk6W99tXh0c7wybdBQ/76+2r836XnQ1BurTZ9pjPJRwjGooGhLkO1zoiTOy0n2vM42LGJJBtzYRgmHU2hgM+Zg7br4VDU5kTuCkBKCbLR1dCIeZMgtdETk4Aw8GgMA1almDZZNV/wO8T5jVIEqyYdCRGAkGh2BkgWRJ3XoZ9AdOwNrNEaossM58Wv+ZKMMyjpPgYTl/R393Rg+0DllUgQqFQ4MGDB0Sj0efOvHkZ2Gw2urq66OrqOslLSCaTzM3NUalU8Pv9JwstZuYc8IQs3Lx5k0gk8kqO/XlC48y6DxcV3FYsFi9Hki4Qkt7895WA1/k8P/h33leE91r939/f5/Hjx/T09DA8PPxCPwCyLJ9bONwxUqkU4+PjRKNRPB4PO4KVyvPCaVH18+L0yhG8uL3e6XnewcFByuUym2ub/MQ//Ax7O2lUqx3VZsfmdpI4TIMi4XC7qemQz5cJd/rI7WbwhV1U6w2iMS9YZKZmthnoD+MLOhl7vIGuGzgdFpw+Kw67lYDXSSpTZHU7RTp7NCphUbA5Lewf5LnSH0ZTFSxWlS9NbJ4cr6xIePyOk+4EgN2qkq/UaOgGEhANuAh5nVitKoois53IsrPf/NcTc7F12NoFuNoXYXqjtSiWZYlitZ0AjHSFmNlsL6B7ol4ennFRkiQo6e0Fr8OiMr/7pEBWZQmHxULAZSdbrDAcCaApCookIcsSVlWhXK0x6LJjs9mwWK0YBlg1hWK1xrVwiIbezAto6E1idpAuEnc40U+2N6/N3kEel6Q1iwbDaGrjMKhXdCwN+eS4jwPYut1ucvkysiQhH7ltKbLEQMjPejpLh82FIksoUjPHwGHRqJbqXAuEkGUJ5eg11WoFShVuB4NopzpYOgYuq4V0uUz9yDq2pjeoNhrohkG63kCRpDa3H6Mq1kf1+30smxTyxXr75wlwJRhi2qSLkDV5nxF/kFkTUbPZCFPc5WIlKz42r80GAv71tHGk0UDIdBzJbNnNIsns1J+M4nUXqkxPT5+smH/Qgs4AcrkcY2NjdHZ2Mjg4+L6lISuKctJdMAyDYrFIIpFgb2+Pubk5HA7HyeM+n+/knry3t8fk5OQrJQsimHUfTo8wHT/v2FnvojoM+Xz+ssNwkbjsMLwW+ODdbd8nPC30bHl5meXlZW7evPlSc5wvIqx+GjY3N5mZmWFkZISenh729vbe1yRpM1xkcnMuWeAX/+1vIeMgGLGTyZYolOoUahlSqQrx/iAriwmGb3RSrhWZeLjB7Q/1s75xyMFBgZHrTRFfPOrF7rDw5YdNEXMs4ibe6Wd5LcnWdgaHXcMTcJDea66Cu5wWRq/EyeRKSBjMLe/T3xNkerW1ILo+EufRqbEjl93C9eEopUodn9PGdiLLXjJPNOjmwdxWy2t7Y25Wztil2jSFvUz7ivTNgSgPV9oJQEGQpBz3u5hY30OWwOuw47I1PfmDHgelWo0OXzOMqVypUq5UsCgGB6U6qqZRrjeo1nTytQqDET8P19pXha92BJg+GYt6Qnbe6o8xJRhfutMXF4qdb3ZHeCwYa+oKeJgTaBEsisz8/iGlWjspL9Tq7Ofar9ud7jhTgkA2j6aQazQwsu0r7INhP4vJ9qL4TleM8SPhtF1RsGkqNlXFqanUaw36NQfoOpqmYrFoaJqG1+XAZ7FR0xtUdJ1KvRkkaFEVU5tVqya+bcecThZS4hV8h4luxK1ZmDsUv0+n2822yZiQ2TjSiD/ITFpMZhSTRQKLLLNg1nkIhJg4bH4HVFnmW+5+mFI6w8LCAqVS6cRqNBwOP3XF/FXh2J2up6eHgYGB9/twTiBJEk6nE6fTSV9fH7VajcPDQ5LJJBMTE+i6TjAYxGKxsLm5ye3bt59Zm/cq8F62rce/S8e/f8e/NecBwzAuNQwXjEsNw+uBN44wvMxI0tnV/3q9zsTEBJlMhg9/+MN4PJ6XOrbzEj3rus7c3Bzb29vcvXuXYDAIvPqch2fB6c7CeZOFhbEVPvP//Qqlkk5dlkFRka1WFKmKJGv0DAfI5kp09HuYX9ilo8uDLxrhwYM1nE4Lt+72sLScIJMpcfVGB/Or+1wbjVEu1VCsCmMTTcGzokhEO3wcpgvcvBKnUKzgdNv4nUdrJ8fi89g5yBZpnBI5D/WF2T3McmMwioTEQbqAz2PnCxOtrkT9nX4mlloLb6umkKm0X+sr/VEentE4uB1WFk/pFhRZIuB20B/1ka/UCPXGkYC6rlOp1nE5rBRLNXKlCplMiUymhCxDvlxlJ9VKUBwWDUmVyJdbiYfLqgqLf7dNY36vvZh2WTXmBCFwiiyxJghpAygIOiYAIbdDONZ0tSPCI4HTUdjlEBIMgGRRPHIzEAnyUDDy1OFxCckCQL7yxCa22mh2HbJUuN0R5WGL3qG5aCABDotCod7+Od/ripNMl3BbLTgsGnZVbaY+qwqyIfOhSAe6YVA7Clcr1WvEXA4SpUKbBkWRJJZMRpiGAwHGBGNPAElBJgXAoNfPUvb5iIkiSSyakQJ/iIlDcS6Dpjwp+t6JdtETjUE0xpUrVygUCifz+vPz8zgcjpNxG6/X+8qDztLpNOPj4/T399PX1/dK3/t5oWka0WiUaDSKYRhks1lWV1fZ2Gjem1ZWVshms4TDYdxu9/vWJTGDqPuwtLQENEXhx7/l52XbWiwWX9rm+xKXeBH8+q//Ov/sn/0zHjx4wM7ODj/7sz/LH/pDf+jkccMw+Pt//+/zYz/2Y6TTaX737/7d/Lt/9+8YHh4+ec7h4SF/8S/+RT7zmc8gyzLf/M3fzL/6V//qucfs3jjC8KI4O5JULBYZGxvDYrHwu37X72oR1r4ozqOgPyu6Pn0TO2/b07N43pGk063j8yYLv/ML4/zqT3yBGjKK3YZsGOSLFapSlWpZItbnJ50q4vK6kDUFXwnQVPb2MnR02pE0jbHxZjfh6rU4kiKjyjLTMztcu97B1HyziPJ77QwORtg/zJHOFEmli4wOR3k8v31yLLIi4fc7Wd48IBZyE/Y3x162DrPsH+bZPxI5+9x2suXW7AFVkSnV622ZCSP9ER6dIQbxoJvJ1T1sFpWQp5mhYNEUXHYL6UKZQrlGJl8mXSiRzZRZbBxymGst+noiPhaWt9usoK/3Rnm83l60jXSFGBdoFzoDLmbPaCgAQg6V5VR7oT/cEWJcEOB2rSvC402BeDjsYykh0A9YNGZNrFTzJt277oCXfYELUn/Iz7JAowCwLehGAMS8brYEWou428WCSYhbxeRvfjQSYsZE1LyfL1DXdVKlMqnSk5Gcm7EIjwUp1QDlXBmjIuHUNLxWK06LBZumEnDYKNZrGG5oGDoVvUGhXiNfq1AxGZF82jiS3249Hcx9gqZOQnw9r/iDTJsIoU+TgtOQJVpsW7+2q7/l8eMV897e3pMV80QiwaNHjzAM42TcJhQKnbvV6Fkcj4YODw/T3d19oe913pAkiWKxyMHBAXfu3MHtdp8kTq+trbWMNgWDwQ/cGJgsyywvL7O9vc39+/dxOBznHhp32WG4YFzmMJiiUChw+/Zt/syf+TP8kT/yR9oe/6f/9J/yr//1v+YTn/gE/f39/D//z//D13/91zM9PX0S8Pht3/Zt7Ozs8Mu//MvUajW+4zu+gz/7Z/8sn/zkJ5/rWD5Yf/nvI04X8wcHBzx8+JB4PM7o6Oi5rVS9LGEoFAqMjY3hcDh49913227cH5QOw4uKm58V/+vff47Hv70AqgqSSqnaYHc7hcWrkc/W6RyI8PDLq1y/18v+fp6DZJ5rd7opV+qUSlli3UEWFvfp7nIhqwYzS3voR7P7N252srJxyPXROMVCBaentZPQEfOyvH148jcf8DoY6g+TL1QJuO3s7efYS+QYGgyzfyZQLRx2M7fWqie4PhRtc0rqiflY3j6gN+rDY7eiHBFBWZUplmtkCmW2Ss2RkHjIw8Tqk+M/xtX+CA+X2wt0u01ru1/JssRetr1AtmsqSwJnJJdVYz3V/nxNhu1ce9EuyxLrB+IRltOr8qfhcVhBMClzJR5kTBAc1xPwsCRY+ZclWD0Uv7fXYQVBjX8lGhSKmqWnCKc7fG52BAFyAYedeROBtFUTz1qHrBbWTRyVMPkzClo09o+uZalWPxrLan5Gd+JRxnfbr5nbYmExn8Kv2fBYrTgtGlZVRVVkPFYLcbuLUqNOoV4jXSmTrVYwJNg0C7LzBZnLiM/VZlKwyxIspcWvGfY+2Z9EO2E4jbMr5plMhmQyyerqKlNTU3i93pPug9PpPNf70XEC8pUrV+js7Dy3/b4qbG9vMzs7y+3bt0+61Z2dnXR2dqLrOul0mmQyydLSEhMTE/j9/hMC8UGY619ZWWF9fZ179+6drJieZ2hctVqlWq1eEoYLxOVIkjk++tGP8tGPflT4mGEY/PAP/zB/7+/9Pb7pm74JgP/8n/8z0WiUT3/603zrt34rMzMz/OIv/iJf+tKXuH//PgD/5t/8G77hG76Bf/7P/3lbavvT8MYRhpcZSdJ1nZWVFRYXF7l69SpdXV3nemwvU9Afh/R0d3ebum68CsLwXh2G8xI3i1Cr1vnJf/I/2VhMUKlLVMs1rB6NQqmAbFfw+n2otjqVcp3bHx5k/MEaXb0BBq/FefRwHSSJ62/1YOg6XrcdVbOysZ9B1w1UVaKz00EimaJUqDA1vc3ISJSJuSedBKfDgqFI9Hb4sWpNO1OP286XHq+3FOE3RuM8PkMCrg/HmFhuXUnvinrZTGToDDiwKBJORzNJ2pChkK9SyD8ppq/0hZlZbV+J9zhtbB+2FnBuh5WF7fbV3IF4gFmBAPp6b0TYXbjSHRZ2F4Y6xV2H0a4Ijzfax3hGon5mBcSjP+xnWdBFcNkszAjGlwASJmnMQbeDdcGY0mgszNRu+zlbVYX5fbPiVnxbvBIJMmPymq2MuIjuC/h4INBIWBWFeZMQt95wkIToNbJsGvwWdTo4SLeTGUWSWDwUdz4GgwHG93ZbkpuP0e/3sZJOn3l/hdFQkEK9TtTrwqIqSBLUDZ1Ko07AYWO7mCNXayWBkgSrJp2HAbePxZz4MbfFevL/bwQjRBzPVpxKknRiNTo0NNRiNbq0tITVaj3RPfj9/pe6RyUSCSYmJl441Oz9hogsnIYsywQCAQKBACMjIxSLxZPuw8LCAjab7YSIvey1fBGsrq6ytrbGvXv3hAX9eYTGFY5czC5dki4QX4Gi5+yZvB6r1YrVahW8wBwrKyvs7u7ydV/3dSfbvF4vH/7wh/n85z/Pt37rt/L5z38en893QhYAvu7rvg5ZlvniF7/IH/7Df/iZ3++NIwwviuObxMrKCvfv37+QGPgXcRkyDIO1tTUWFha4du3aU1ew3u+RpGfJV3hRZJJZPvmP/ieHyTyGoiDbFBwWlf39FJrTghUNSVORqw2sbhsHhwWuXI1TMXRmprfp6PQRinqYmt6iXtfp6gmwfZCjM+7DYbeALDE9v3syGhTwW1ncSGAYEPI7iIU8oMrMLO2xXdePnuNgO5ltIQsdUQ+zZ6xNA1472wdZ+jv8uO1WJKBQrFDH4ODwdAFc4OZwjMdn7FZVReKw0D5PPtwVYnZDkKTcGRB2F2Sl/fOQZUjk2otwVZZYE6Qxm22XJNgTCIQBUiaJyC67eMxvOBZkbL39+AcjYrGxRVFY2BcXxWbfwSuxEI+220mSQ1OZMyEFVlW8Sj4U8rN4IC56D010AFeiIR7viuf2t7Ji8tHjcTJv8ljOpM19JRRkOilOijZzR4o6nW1kAaCm61hVlccmydNhp4NCsY5DtRCw2/EcjUS5rRqFep0uR4N8rUqqWiJdKWNIwFNMIDYLTwjQ07oL74WzVqPHYt+pqSnq9TrBYPBkxfx5frCP3YQuMqfgIrG1tcXc3BxvvfUWgUDgmV7jcDjo6emhp6eHRqNxkjh9fC2PReihUOhkHOKisLa2xurqqilZOIsXtW09JgwfhG7Km4qvxA7D2dHFv//3/z7f933f91z72j3qHJ+9/0Sj0ZPHdnd329zOVFUlEAicPOdZcUkYgHK5zPj4OAD37t3D6/VeyPs8azjcMXRdZ3p6mkQiwdtvv43P53vP/R+vnFxUSJBZB+MinZA257f5qf/3F6hUDdA08oUqmkNmd20P1W6jntfxRd1MT2xy591BUodF9nbSRHsCaJpCX38Iu9vKo8dNu9NYzEsg7KJUb7C6ekBPT4DtZO6ELHg8NmKdASKNBnv7WQ4OitissLH/pPiTZAmPx8HK5im7UVVC0mQsqkJvzI/DqlGv66DA9PIeqVPk4OpghMXV1sLL5bCystteeF4bjLUJnZHEs/F+l50ZwSr/YEeAhe32QvhaT5SJjfbC9VpPlEfr7TcTs+1XO8NMCdKh+8M+VgSiZqemMLMtLjx3TFbrnTZxMXe1I8SjrfZz8NltzJqInQsmhepwNCgkElZVYS4h3pfHpDCKe1ysHKaFj+mGmHj3B3wsp8SvsdhsICAMYauFDZMRJrOxJ5dFM3Vh6vJ42CuKSZ5ZZkS/z3eS81Cu19nO5Tjuzd2Lxxk788NkkVVcsozVYeeOz4uqyBgYlBt1crUKVlVmPmuuX3hRKIpykhg/OjpKPp8nmUyytbXFzMwMbrf7pPvwNLHvzs4OMzMz3Lp16wPlJvSs2NzcZH5+/rnIwlkoikIkEiESiWAYxsm1PO5auFyuE/Lg9XrP9TdhbW2N5eXlZyYLIjwtNO70SG02m8Vut7/y7slXFL4CNQwbGxstRjrP2114P/DGEYbnvSkdO1sEg0Gy2eyFCrqeZ2SoUqkwPj6Oruu8++67z7Rac3xDazQaF3IeZh2MixQ3T/zGLL/4n/4vVV2ipkvU6g0KpSqaXKfaUOjpCTM/v4eaKzN6u4cHv7OK1aZy7U4Pm5uHrK5kuXari5nZHUauRNEsKtv7WR4ekYdQyHUkDDa4MhRFVWXy5SpTM08K9KGBMIsbrcVVT9zJyuYBqiLRFfPhcdqwOTRWNg8p5Kos5prF5bXhKFNLrQWo12VlYbO9WOvvCvD4DDFwOawsbLU/93pflElBSFt3zMujlfaCXpIFadqKTLlWI+iyY1EVNEVBVWQUSUJTZK53RpCPMg4kWQLDwK5p3IgFKRQKOBwOrNZmx8RqVbnX0xzJOH3bd9otBJz2k20SNLMXZINUoUi9VkeWZVRNQ1VV3E4buUqNgN2ObjRzDnTdwJAgUywTcTmoNZr2o5V6g4ZhCPMnoDnyJAp9C9itLJk4M5VMCP2VSIhHgmRnRZJYEqREA3R43GwLBNJOi8a8iUDab7eDgDA0U5/FBX7M7SIhOAZFgiUTUfdgMMhDE3cksyyHTpeL9ayYmATtdtNguB1B8nVN13HYHUybuDe9HYvjahQJ2h0M+HwM+9rHZV4WpzNd+vv7qVarJ+M26+vryLJ8Mm5zOvPheGXebIzng46NjQ0WFha4c+fOuXXSRdfyuPvw8OFDgBbh9MuI0NfX11leXubu3bsv7Vx4jKd1Hz7xiU9QqVSo1WqvRVF3idcDHo/npb+/xzb/e3t7LSORe3t7vPXWWyfP2d9vrRXq9TqHh4fPHRPwxhGG58FxjsHw8DC9vb0kEolzD1Y7jWcdSTr28vb5fNy8efOZg2hO3+wuAoqiUDvl628YxsmqDJy/uPlXf+K3+cJnH1E1QLXbUCSJsl5BshlodgcdfRoHhwU6ugLoiszKcoKbb3WTLpR58OVVAN6630utruN229jaTOEKODk4PG4xa3T1BCgUq6yuHzC3sMf16x2sbjwpvgJ+BzsHT7oPPreN7k4/tVqNWEAneVhibeOQaNjB3lK5RXzscVlZ30+3nZfTIZM6aP2MOqNeJgWF/kBXoK27oMgSyWwRu0XF7bDisGjYLCpWi4oE3OmPw1HQWaOh47JZ2MsW6fJ6qNTqlKs1ytU6I53BtgA4gGu9EcZOuUAd40pXiMerpyxhD5vuPT1hn9Aa1euwUqrXqZ6xDZUkCHqcJARC6y6vjY1suW37nf4Y44LMh56Am71knrBmx6KqR8RHRlMVVF3iTiyGLEscfy1L5TJGrULI6cOQZMr1OqV6nWK1htOqsWAyjlQzGd+5EgkxvW/SKRGIoAGGwgEh+QDYMCnIB8MBHpqMMGVM7lkxq4Utk05K3aTDEbDbTTUPMY+bzYL4nPZN7Gm7PR42cuJzinvdbJbE3aSDcplCrUahluH3dvcKn3PesFgsdHR00NHRcSL2TSQSLZkPqqqSSCS4c+fOC6/Mv5/Y2NhgcXGRu3fvvmfH+mVgsViIx+PE43F0XSebzZJIJFhZWWFychKv13vSyXkeEfrGxgZLS0vcvXv3wiYB4Mlv2b/7d/+OT37yk/zKr/zKJVm4QHwljiSdB/r7+4nFYvzKr/zKCUHIZrN88Ytf5Lu/+7sBePfdd0mn0zx48IB79+4B8H/+z/9B13U+/OEPP9f7fUUShvcrx+B4/08bGdrd3WViYoKBgQEGBgaeqwA/3WG4CJweSTorbj5O2jwP6LrOT//Ln2fu4TrSUcBVqVzn8DCH5lYpl2ScPgtIErubafqvd6AqMjabSjpfZn3tgMGhCF6/g/FHzdRmzaIQ7w6wvZtmdCQKSFQaDcYePSmAr1/vYHLuSXGuKBKxuBfDaK6MJ5I58sUKO/tZkqdcglRVptow2pyKOuJeZlZamX3Ub2XzoL0gttnUpvhakfC7HbjtFlwOKxISdwbiNBoG1VqDcrVG2O/k0dIutXqDSvEJgbs5HOPRQntRPdITZlUw6iQKOGtuF6/Ylyvtxw3gddmEjkb9sQAPBeLoKx0hZgSibK/Dxk5eXOAmBToLgIjHxWYqx9kytjfkY3pHXMjHvE52BQTnWihEpVTHYbFgtzRD11RVxmFRqRsG9+NxGoZOTdepNBqUajUcmooMnC2/e/1eVgUiZIBaQ1ysDwT8LKXEK+51k0WADrfL1FEp5PWytd/ehbIpCgsm40h9Pi+Hu2LdRbos/vzjLhfrWfG5Rp1OU8JwUDIRsNvsrJzqPHx1z6shDKdxWux7nPmwsLBwslI3Ozv7vmY+vAjW19dZWlrizp07F0oWzkKW5RMR+vDwcIsIfXl5GYvFctJ9CAQCpgtkm5ubLC4ucufOnQslC9D8ffvxH/9xfuAHfoDPfvazfOQjH7nQ9/uKx1eg6PlZkc/nWVxcPPnvlZUVHj58SCAQoKenh7/yV/4KP/iDP8jw8PCJrWpHR8dJVsPVq1f5A3/gD/Bd3/Vd/OiP/ii1Wo3v+Z7v4Vu/9VufyyEJ3kDC8F5Fa7Va5eHDh1Sr1bYcg7NZDOeN0x2AszfF4+CZlZUVbt269UIiOkmSLpT0nNZIXNQIUilf5lM/9Gl2N9JUGlDL17B7VLa3DnFFHBwmKgzd6OTx2AYut40rd3qYndpCkiU6+kLY7BqRsAebw8KDo5wFSZa4eaeHQqGKLMnMzu1x9UYHS6dGhXp7Aswu7uF12+iMeZEkGYtVYWxqs+X4rl6JM73YWpRfHY7xaP5MZkLI3kYWZFnC4rTTY7PjslvRNAUMA4ddYyuZw2e3kS2USR4USFLg6mCk7b00VSZXrlI7s2of8jqYFowo9cZ8zG22F+eDHQEWdwXORXE/ywJyEXJZWT1oX132OKzMCrQLkgRbh+JCUTQeBdAf9QvdlyIuKxuCfUkSrJtYpvpddlYF+oHeoIc1k+PayxXIlavkzmRl3OmJMS6wcrUoCulMCaUu4bVacNuaIWtWTSXgthO2OTAkg5quU6rXKdVq1Bo68yZaCJ/dBgK+4FBV5kzyGuIeN9uCToYkwYaJ/WnEorFmQv7KghA5gIDdZkpmOt1udkw6DykTkhFymI8w9Xl9HJSbpMVtsXAv9v67D+3t7ZFOp/nQhz6E3W5/XzMfXgTHM/8XvTL/LDgrQk+lUiSTSebm5qhUKvj9/hMydpzefay5uOjOCDR/i//Lf/kv/N2/+3f5zGc+c0kWXgEuOwzm+PKXv8zXfM3XnPz3X/trfw2Ab//2b+c//af/xN/8m3+TQqHAn/2zf5Z0Os1HPvIRfvEXf7FljP2//bf/xvd8z/fw+37f7zsJbvvX//pfP/exv3GE4WnI5XKMjY3h8Xi4e/fuK88xOCYJjUajhTAcJ0pns1neeeedl/J7vkinpOMOw0WJmxObB/zkP/kMqVQJQ1WRVAmby0IqncUZcuB2efAFNZYXEly73U0qV+LR2BrBsIvOvhDzc3uUilWu3upkcnqbzi4fPq8TVIkvP3iSpXD9ZicTM82RG1WV6esO4vRYqTV0tnczZLNlhgbDTJ0ZBRodjrYV8N0dPibObHPaNYIhLz6fm0a9TqFQolyp4/FYWN5MtzxXUSSCQTe7B63FXU/Mx8xqOwG42h9tC3QD6Ih4SCy3r9g6TITCqokY1m4VFztuu0qi2L76PxAPML4isFjtDAtFzUG3nTlBdwFgNyMuOjvDAfYFoW/dPidr6faxJkWWhHatAAGXU0gYeoJe04yFswTiGCOxIJPbzc8oW66QLT+5PhGvkz1B+NvtrhiH2RJhux2PzYLdomFRFGQZNEnmViRCqVYjW62SKpWo6jqdThvzAi0EmLswDfr9LKZMdBJeL2v77YW8XVFYODTrPPg52G3/DMBc8xCw21k20Sj0eLwkyuIOQ6XxpPP1kc4eNPnZRjIvAscLOVtbWy0C2/cr8+FFsLq6ysrKygeCLJzF6VA4wzBO0rv39vaYm5vD4XBgs9lIpVK89dZbr4QsfOpTn+Kv//W/zqc//Wm++qu/+kLf7xJH0I3mv68EPOd5fvVXf/XJJIcIkiTx/d///Xz/93+/6XMCgcBzh7SJ8EYSBkmS2i7w8ahPf38/g4ODpjkGF6lhEI0MlUolxsfHURSFd99996UTpS+S9BwngmYyGTwez7n+EC6MrfDpH/kl6rqMZLNQKTXQXFZWF3eI9ofZ38zjj2jUGwayIpNMF1BVmas3OimUazwab44WXbnRTG3u6PCxtZHG53cyMfVkHn9oOMzOfpYbo3Gq1Tqbmyl0yeDR5NbJc7weO3sHuRbTBq/bxuZea0HpdloJBlx4Pc1VsEKpykGqQG9XgEezrcWV22VlJ9VeWA31BJlZby/SLFa1zTTCqims7bUXYAGPXdhdiAfdQsekjpBHaMca9jqZEWy3qTJb2fZjf1oXwSxgrCfkIynKdogFWBBkNWiKzOKeuIi1qOJC8ko8xJRgHEmWzIlE0OUQEoawy8FSwsSyVbgV+kM+lk3ckSr1OnVd56BQ5OBU+nR/0Cd0VHKrCmoNrnmD2CxqM8QPg2pDx8Bgp5AXjkR5TYiiIkssmRTxcZuNZRN3pLLJfdFtsZh2Hno9Xg7LYkJT1sX7sykKC6eIzvsxjnQMwzCYn59nb2+P+/fvC201X2Xmw4vgmCzcu3fv3ATCFwVJknC5XLhcLvr6+qjVaiwuLrK1tYWiKDx+/LjFAvdlfytF+Omf/mn+8l/+y/zUT/1Ui7f9JS4YlyNJrwXeSMJwGoZhsLi4yNra2nuO+lz0SNLZkaFUKsX4+DjRaJSrV6+ey4/Js6YxPw+Oxc0+n49kMsnY2BiaphEOh4lEIvh8vpc69i/+rzH+7//4EnVJptaAdDqHoakUU1lsHhebSykGb3UzN7mN1abSNxojnSqys5Wioz/E2mqSgcEI/pCLhxOb1GrN879yLc7k7A4SBt1dAUJBF7sHOQ4SzX8AN252MTF7SuArQSjiYmHlScEpSTDQH6ZcqaEqCqVSlcRhnp6uAONnRpbCQRczy4LRoK4AE2fC3KyazOpuuu25g11BFjbaV+Gv9Ed4tNhebHfFfMKuQ8jnYjvVvjId9DqEhX5HyMO+YFX8Sk+Eh6vtIzlXOsVahJDbwbwoeE2CrZSYYDhMOhtXOkJMbrVfT7tFZV3QXQAolsTbr8RDzJjoGjZMugvdQS+JQvtKuF1TTYPffA47iIp/q4UFE/IRcNqFhKGqN1grlCkLui93u2KkMyVUWSLgsOOxWXFaLKiKjEVSuBWOUqhWSFUqpEolDAlGgkGmD8QdHrfLBQLCYJVl5k06D4N+Pw/3xWLsrMmYkk1RTLsfQ/4Ak0e5EYok8ZHuHuHzLhqGYTA7O0symeT+/fsto6tPw0VlPrwIVlZWTkLNPuhkQYREIsHOzg53797F7/eTzWZJJpNsbGwwPT2Nx+M5uZZPs8B9Vvzcz/0c3/3d380nP/lJvuEbvuGczuISl3hz8EYThnq9zuPHj8nn83z4wx9+z1Gfix5JOv0exw5NIyMj9PT0nNtq/YuEwz0Np8XNdrudW7duYRgGh4eH7O/vMzExga7rJ97mwWDwuSxdf/7H/g9jvzZNtSGhOqxImoyuykhqAxQLoagPT8hgYmyN0ZtdZPMVHj1YR7MoDF6PIysyobCbWr3B4+mtE7LQ0x+krutcH42zvZUmsZel2miws/ekYB0ejjI51+oGdP1qnGSqwPXhGLIsk8uXcbttjE+cIQYhFzPL7YWS3+dgP9VadHVGPUwtCcTIgzEeLbQX+gWBGFRTZdb30m3b3U4rc4KuQDOPoX27x2kVdhdsmsLijqAolGAvIy7AzbQI3WEvydX2cxiJB5kTvIdNU5jfFRekDZNW7HAsyCNBfoRdU9nMiefmVZPjHY4GmDcp5A8EgXnN1wR5LMh+ANg0ESEPhPw8FGQ8AOyYjGNdiYaZ3BOTnFylOSrV0A0S+eJJCnaP38P6GWJmVRSCDgcRiwNbIIaqyDTQKTXqZKoV0uWSaRHf7XSyILBGBdBNlstUCTZMnJOGAgEmDtpJYPM4n9w7bkWi+KwXG/4lgmEYTE9Pk0qluH///skc/fPivDIfXgTLy8usr6+/VE7B+4mdnZ2TBOpjNyqv14vX62VwcJBKpXJigbu6utoy2vS8v0EAn/3sZ/nO7/xOPvGJT/BN3/RNF3FKl3gKJL6CNAzv9wG8BN5IwiBJEvl8nrGxMWw2G++8884ztS8veiQJmh2A5eVlDg8PWxyazgvnSXrMwtgkSWqZO81kMict+MnJSQKBwMkPpdkqWq1a4yd+6OdYW9hD0izYnBYKhSpVo0K5WiUUClMqZSnXdDSrSu9ghMRBgcRelp7+IO6Ak9npHer1BtG4l4NsiWqlzsBAGK/HxsrGIanUUcEiwfBojLnFJ8Wa3+9gJ5nFYbfQEfVis2ooisT8aoJCscrubrPg8rptJDPthY/HY2PvzOr9cH+YuZX24s7hsqIftBZwHpeNubX25w52BVjcbi/chrqDTAueP9DZarsqSxKqItPf6Wdu8wCbpiJLTVtRSYKBziBLOwc4OVrRPxodHezwM7d1gF1TqDUaGEgYusFwZ4hZURfB42B2q327JMHGgXi13qKJbzfD8RCPBcW/12Fjfle8Gl42cXjqj/iYEnQ3VAnmTLoLTpv43hDzuIR2scCJzW7b+z9lHKlqQuS7/R420mKSoSjizp3XZmXZJF067HS2EYZaQ2c3l6dm6CQFHZOr0RA7uTwdDjdOa1NXoUsGpXoNj8PGerFI5Yy1rCJh6rbUZXewauKCZDZKBrCee/Ld+T1dr767oOs6U1NT5HI57t+/f25pxS+a+fAiWFpaYmNj47UlC7u7u8zMzDw158JqtdLZ2UlnZ2eLBe7i4iITExP4/f6T36j3Smj+5V/+Zb7jO76D//Af/gN/9I/+0Ys4pUu8F74Cg9teR7yRhCGRSDA+Pk5XVxcjIyPPPC5z0R2GWq1GrVYjk8m0OTSdF87rHJ41ufn0DO/w8DCFQoH9/f2TtE+Px0MkEjnx2wbIJnN88oc+zUGyQKUOGAa1Sond3QyugB1JsbE6v8/ovT7WlvbRDQPNYSUYdmG3a1hdViaPgtd8fgf+iJuAJLG1ccjedopC2fWELNAqcvZ57cSjHqwOC3v7OXb2Mizk9lFUiXiHj0KxVeAa7/Axs9hazI4OR5k+011QZIlkun2VeKgvxLyg0O/rCrK2c0jAY8euaVi0Zmiaw2HBZW+SLEPXqVSr1Ko18ukccZcVZBkJmYbRJJ87u1mcskat3qDe0AEDxQILK0mKpdZzUWSJFf2ATK591Txh0SjlTusUDCRA02VsDRn1ONtAaf7/vrAfl5pDVRQURUKRZWRZwuu0UazU6PF5kWiOa+qGgSHpNBowEg1SqTeo1GuUqg2K1aqpvWt/xMdDQap0wGkT6h0AUoIkZIDRjsiJQPk0JAlWTUhBp9/NrkBs/NRxJKd4HMlh0VhIiF8TcTmFhEGRJVNS0B/083BbHLx2WBR3RXr9PlbT7ccG4NA00qUy6VJrd0aSwG2z0ijrhO12Ag47TqsFRQaZBruFAhmjQrbRQD91iwh4PKaEYc3EgrXX42HtVA7F73lF+QvH0HWdiYkJisUi9+/fv5AZ+WM8S+bDcffhWTscpwXa9+/fx+VyXdjxXxR2d3eZnp7m1q1bz7yYdtYCt1gsnpCxhYUFbDbbCRk7qyP5tV/7Nb7t276NH/mRH+Fbv/VbL+q0LvEeuHRJej3wRhKGra0trl279vwes6pKxSTo6GVRKBQYGxtDkiSGh4cvhCzA+bgkvUxys9PppL+/n/7+fiqVColEgv39fRYXF5vnXJT5zU+NUyrp6JJMqaLjDlvZWd0n2utnZT7FlZudqA4rY19Yxh9y0jMcZWUxwezUNqO3upiZ3iYccRPr8JHKlpg5EjVLskT/SJTFxSeF4dBQmHpD58ZoB8lkjr39HN1dAcYft44YXbvaweOZ1vGkkaFIG1mwWdU2RyOA7riLrUSBaNCF22HFqqmoioTFqnKzP0a12qBSrTdTqlWZmbkd6nWdLE+Ku6G+EJOC0aXrw3GWBdsHOtws7baPC430hnkseP6V3ghTa+0r+QMdAZZ32gtwv9vO3GaChm5Qa+iUqs3CXpKggUEy214QXu+NMLXeXpjfGogxIdBBhD1ONrfTBK027EcBdBatmTptlxXudjctNRuGfpTw3CDkcTC9nSBfrrSIfR2qzG5R7Ghk1gfudNvZyIsL7KTJONJQJMCEgHwA7GTNwtr8PDJ5jUgjATAcDjBjQjLMguRCDrEWAiDotJsSBrMxqsGAn8WjtOhUqUzqFKG42xlnM928Rpok41IVnKqMVZGp58pcdfspGQ32y0WKR53bPq+XlZz4GCIO5wlhiDqcjAZDwuddBBqNBo8fP6ZSqXDv3r0LJQtnIcp8OBZOz8/P43A43jPz4ayb0+tIFvb29piamuL27duEQi/+2TscDnp6eujp6aHRaJwkTk9NTfEv/sW/oFqt8vt//++nv7+fP/fn/hw//MM/zJ/6U3/qfXez+orGpej5tcAbSRju3LnzQqvsFzWSlEwmefjwId3d3aRNfrDPCy/TYTjv5Gar1XoiAKzX6/zmZ7/I//6Pv0aloYOqoqpWLC4rif1DfBEPimqjqz9E4rBAo6Fz++0+NrfTPPxy0xL1xr0e6g2d3r4Qm5uHuPwONtafFLpXb3YyPbNDf18Il9NCrdZgaz9L9tRMe29vsCWcDaCr08/UfGsxa7OqLeFsEgY+j4OhgTD5YoXuqBdDNyiVquTyBQ4OS9QrOon9HAmahOLqcJTHZ7QPADdG4+wISEddcCeRJIkDgYZAkiFVEASsSZAwEQOXquJANqMhLrJ7on4eLrdrLIa7QswJxpHcdgvz2+ICN1sSE/HOkIf9lQLVeoN04cnnFA+4mdgwmZuvNShkKyiShNdmwarKyEaD3liQsm4gSxIGHAWs1SnX6+ykxfsK+b1CwhCwW0zHkczIR5ffw4ZJ4W2YvCjqdrJuIri2W8RCcJuqsGiiuejxe0madBgOTDQFXV4PmyYJ0167+UjO9qmch7phkK7VSdegy+Nm+cxYmk+zEHY56Hb6CFsc1AydXL3CfqlAttb8/mUqT76HX/UKxc6NRoOHDx/SaDS4d+/e+56j4HQ6cTqd9Pb2UqvV3jPz4djYY3t729TN6YOO/f19JicnuXXr1kuRhbNQFIVIJEIkEsEwDGw2Gz/7sz/Lf/2v/5W5uTk6OztZXV3li1/8Im+//bZpaNwlLhaSYSC9xqM6z4PX+TzfSMLwojjvkSTDMFhbW2NhYYFr167R2dnJgwcPLnTs6UVdkk6HscH5JjcD/PpPfoEv/tIknmCQSk1nfzeDIyizMp8gOugjnSqjN0qEu4P4nBYO9nNsbqdJ7ufo7g0SinmYmtqmUm4WvaO3m50GAI/XzsBQmGKphs2isrqSQFZkuvuCLWTBZlPJl6sticyKKmHI0DhK33W7bIT8DiJhN8VyM1U5l6uQTBWwKDLjjzeORn+eYKDPx95Ga4EkyxIHmfbCLeh3CMXS/d0Bljbbi+0r/WFmVttHmkb7IkwLchpiXquQjHRHfcIugsOqsJ4UEBJJMrVMVVXxiN9AR4BHy+1dhFjAxYrADhZg30RQHfW52BYU+XG/i7VE81rrhtFCRNyFijCM7mZvlM29DDZFxuOw4T7OP9AUNBTudsSoNnQKtSrZcoV0qUTUZedQkL9gURQW98XFesTjFBIGTZZZTIpfE3bY2MuLr4EZ+RgKB5jcFesxSiYLHiGHnVUTYhJ1O00Jg1n3o8PjZsskGC7qdrF55rFcrUYulaFULrNdbiWPPquNbq8HTZJ5O9JB3dD5mu4+4b7PG/V6nfHxcSRJEmbzvN/QNE2Y+bC2tnaS+QDNDvbrTBYmJia4efMm4XD4wt5HkiQ+9KEPoSgKn/jEJ/iBH/gBent7+fmf/3m+4Ru+AUVR+OhHP8of/+N/nI9+9KMXdhyXuMTrig/W3fF9xnnaquq6zvT0NIlEgrfffvskcOZVhMM970jSab2CJEnn6hWu6zo/88O/wPTvrFBtgOZUKOSrqA4r6YMivdc6mJ/cJdbtBQ0WprZxeizY/U5CQRdWTcHjdzB2OnjtrW4SBzlu3OwkmylhYDA1vU21+uS6Xr3ewcR064hR/2CEqaPugtNpIRJ0Ew67KJZqWGSZ5EGeXLqEx2HhSw/XW4gFgM/nYO+wdeTE57WyvtM+hnJ1OMbkQnvxHI94SS60F2GKSZBauSr+rpSrJr74Xjc7gswEp028/46Ag8Xd9sLPtIvgsDIvSI4GSOXF7kRRv5sdgb6jN+xjNZkWvsasIxDzifcVcNlZMtE1HDst1Ro6B7kiB7nm9R+OBZkXjEnJkoSiawy6fdg0BYwGtXqNar2Ow6qRqNbRdb3ZKTuFY5eisxiKBpk2KfAPTIru3oCX1bS4wFdNVkHtqspSUkzMugNeElvizkOmLO7+RJwO1k2OIe5xmRKGnEmQm9tiYbfSTsJylSoKEo+O7HNVWebtP/B846Qvglqtxvj4OKqqcvv27Q/86vLZzIdSqcTU1BSZTPMzevjw4fua+fAiSCQSJ2QhEolc+Ps9evSIb/qmb+Lv/J2/w9/4G38DSZL4k3/yT1Kv1/nCF77AZz/7WSYmJi4Jw6uGTnuYzJuK1/g8LwnDKZxXMV+pVBgfH0fXdd59990Wp41XQRieZ//PKm5+EZTyJf7rD36anfUDDEXB6rBQq+tUJR1D0vFHg1QrDW6+3cf62gGZ3SKRuAd32MH68iGJ7Swd/V6mppqhah2dPmKdPja30+ztZtjbyeDy2LDYtRayMDAUZvKUHsHvtdPdG0Q3DEYHIiQP8hweFijbLYw/Tp9YsR7DYtPayMJgf4g5Qb5CRyzA1JmkZ1WR2Em2F1N+r52ZlfbuQlfMy/y6QBjdEWBF4JjUE/OxLNge8btYEBTzVk0WOi8B5E1G/s26CP3xAI8Eyc6dIQ/r++n2Fzwl3M3ntoOAMPRFfawkBPsC9rPi1fiesJfD1faC2G5RWTCxbDXLfgi67MJ8CYDRmIPDI3cslyrjsVvxOGz43Q6qho4/ZqNQq5Eul0kVijQAq4krkF2R2CuLx8SCLocpYVgz0SgMhvymnYdKXXxP8FitLB+KSUaXz8O+yRhT2iRh2mXRWDLZX3/Az6M9sa1s/pRt681wCMcFjwVVq1XGxsawWq3cunXrA08WzuK4e10qlXj33XexWq0nmQ/T09PUarVXmvnwIkgkEjx+/JgbN268ErIwOTnJN37jN/JX/+pfPSELx1BVlY985CN85CMfufDjuEQ7LkeSXg+8kYThRYve8yjms9ksY2Nj+Hw+bt682fZDdNGEQZZlqlWTKvAMLpIs7G8k+Yl/8hlyuQp1XcLqsrK7nUZzqyS38wzf6SWfKVOtNlhdSRCN+4h3+0lnyyzONIuevpEI+WKF3j4vhwdFqtUyjx5vUK8fjU3JEpG4l6WlJ0WSx2PFYtO4cbWDaqXO/n6OerXB2toBmeypIkcCu9NGLdm6Wn1tNN5GACQJSpX2wq4j5mVmqb0AGh2OMTHfvnLdFffxeL692HZ7bJBsLw7tdnHR5HbZQKCfjYXd7An8/K/0RoSjQnG/nZ3DdmLjsluY3xIX2WkTIXDY62TroJ0YDEQDLAlGeCQJ1k1Igc9pB8FjXUEPmybkw0wjMRgLMrEpLlLXTexfO4MeYbdAliS2Tlnsluo6pVyJvVyJvkqJlUxrh0WRJSIuO41ig7vhKIoqUzd0Uvk86XKFnrCfx2adBxMdwmDQb1qQm3UeLIrMkonbUl/Qx+Md8fWpmNyn7KrCSiotfGwg4Ofxnljc/bQF79OfRKfR4Dd/8zdbVsvPs6CvVCqMjY3hcDi4efPma7ESfxqGYTA3N0cikWjJiTi2sjYM45VmPrwIksnkCVl4WpjqeWFmZoZv/MZv5Lu/+7v5e3/v773v53+JM7gUPb8WeCMJw4tCVdWXEj3v7u4yMTHBwMAAAwMDwpvSB2Ek6Vjc/KJOSO+FxfFV/ueP/DL5QpVCoUapquNSFFLpIk7DTtdwjInfWaWjL0iww0d9O8325iG+iJedrTRev52+wXAzd+FoXMYbcFBpcEIWAPoG/ezuZhgZjmLRFDKZEjanhZmp1qJ89HqcmbnWgvna1TiTZ7ZZrSrbifYi8upInClBwJrbbWMr0VrAKrLEdqK9CPe4rMwJtAhBv5NZwfaQz8mswI7V47IyJ+hGaKos7DoAHJq4ALkcNki3PzbQEeCRoBPSGfKwZtJF2BQQHgCXU7yyORgPsmASFGdWyAdcNiFhCLkdrOyLC2KzYLGBiJ8lk9cUBOQQYDAaYGFPTKRkiw1oJQwN3cBh0ZjeEpMC2ScTVR34nTYcVg1ZbhKKumGwU8ghGWCc+bP0OWwg/phNxdODoQDT++KOidlfvSabk4yQprJeFt/DFJNwPMC0Y9LrbbVT/ZO/9/cQUWQSiQQzMzPnulpeLpd58OABHo+H69evv5Zk4XQCtchy9VVmPrwIDg4OePz4MdevX38lZGFhYYGPf/zjfPu3fzv/4B/8g0uy8EHEZQ7Da4FLwnAKL1rMH1varayscOvWrafeBBVFeeYOwIvgvc7hrLj5vMnCFz/zgF/+id/GkDVkqwVFl/H4ZHY2U3QOhMjm6myvH3LrnQFWlpNsfXkNq00l3hdCs6oMjkTJZIosrxyQPRINa5qCy+dgY+MQp9NCZ6cfm11hcztDIVdh/qjwH7oSZn6hdXVzaCTSRhacTgtrW+m2Yx8ejjIx26p70FSZnTMkQlUkeroCpDMleuI+LJqKIssoioTHbaNQqtEV9oDRvN4ALpeVTK7cDPwyQDd0DAN8XgcH6cLRPeTJjSQYcOFLF5A4Dl1r/m/A7ySVKyEfb5MlJMDptFKoVJu7kI4+Z8PAalHJl2v0Bt2UKhUU1UJd19GBTYE4GmDbZA4+5HMKC/bBeIAlgaBaliVWTcTOZuNAA1HzQn4zYTI6E/KQFHQErKrCosk4kschdv/x2K0sm4ianTbxMbtsFlZNCJNUE3c+VFliaf+QYrVGMtd67G/1xEgflHCoCmG3E7fditWiggwaMl1uN3uFArVTCwP9AZ+pnarNJDBPkjDtFAyFAswkxCTD43aBie5hzSSArs/vY8XEIS7kemKnGnY4uBZtjqccB0Pm83kSicTJarnH4zlZLXe5XM98/yqVSjx48AC/38+1a9deu8LRMAxmZmY4PDx8rgTqi8h8eFEcHBzw6NEjrl69SiwWu9D3gmbi9cc//nG+5Vu+hX/8j//xa0cQv1JwmcPweuCNJAyvciSpXq8zOTlJJpPhnXfeec9kzVcxkmTWYTgeQTouYs/75vmZH/1lHv/mPIrNTrlcp1FpUDMalLMlFFWjUoNQ1IPTbWNhfo9ivkKsy0ek08/i/B6FXBmny4oz4CR7tMosSXDzXi/lSg3JCLC1ccj+TpaGIpE9NWLkD9hZXWstKG02lYNU+8x7b1+IydnT6cgQi3koFCpc6Q+jaSqyBIYOVpvC5laSiNtGQ5colqpUynVUSWZ/t7U4kmSJUMjF/kHrWJDFoqBZVfKF1iLLblXZ3E1TPDPHbtEU9g4L5Iutz5ckCOaKJATn1N8dYHmrvdC9MRxnfuk0iaoebY8xsbSLTVVw2DRsVg2rphDwOsiXy/itNur1GrphoKoqkqqg1xt0B72UqlUyxQq1I9GvWVLyUGdQKJyWJcm0I+B2iFePA3aVw5J45T8vcDOCJpGZMlnd306JyVJ/xM8jQVgcmGsx+iN+YVI1QE2xcLbzANAT8LBk0kmpHt0fKvUGm6ksHF2qoMvOwdFImCxJxF0O/E47dquGx2nFpVlIV8rs5wstmoWtjPhcBwLm400OE0tXgH2zYDifl7WM+JyCDrspYcifWkB5t6er5bHTq+UDAwNUKpWT1fLV1VU0TXum0aVisciDBw8Ih8NcuXLltSQL09PTpFKpl0qgPo/MhxfF4eHhCVmIx+Pntl8zrK2t8bGPfYxv/MZv5F/+y395SRYucYmXxBtJGF4Ux+M8x2M674VSqcT4+DiKovDuu+8+U9jP+yV6vki9Qq1S4yf/6f9ieXqTWkNCNupsrCQJ9vrYWD7EH3ET748wP7GJYUhk8mV6+kOUihUsDiuPjhyQFFUm3OVnfy/L6PU4htEUID/4nZWT95JkCX/UzfJyomWbx+/iMNO6mhwIW9jaKaIqEoGAE6/bjstlpdYwuDYUpVisksuVyWRL+N0OpttGlBSQoVxpvZ7dnX4WltsL0SvD0bagN4CRgQgTAu3CYF9YuH24P8LkYnvROtwXFo4jxUJuIVmwqDILa+J58vxRCnSt3iCTb5A5cjjyeewsrLfvqyNgY3kj3bLNaVHxuWyUc1WuRkNYNAVZlkBqOhM5HVZ6gl5ypQrZUpnG0crKUEeQOZGoWIINgQ4CIB7wcijIePA6bSybdDEURfw33BX0mL5PzeRvszfkM81l0E1azGGPs1nwi9AQkx+LIrNs0knpDnhPCINuGCRyRRJH3Yn+sJ/lU52hqMuO3+0g4LRRRifsdJAqN8nEMdHzPSVjQZRwDdDldbNhkqYdcjpMCUPWJBDTrqotouvf3dNtekzQzHbp7Oyks7OTRqNBKpV6z9GlfD7PgwcPiMfjDA8Pv7ZkIZ1OvxRZEOF5Mx9eFIeHhzx8+JDR0dFXQha2t7f52Mc+xu///b+ff/tv/+0lWfig43Ik6bXAJWE4heNZzkaj8Z43mFQqxfj4ONFolKtXrz7zDelFcxKeFSLCYBjGiTbjvMlCJpnjv3z/z5Dcy1Kp6th9ToqFCr5ONztrGa7e72Npdp/JL6/SORDCF3GTzpaYfbzJ6N0eZiaaDkj+gIP+q3EODwqUi1VmJ7fpHQi3pDYDXL3VyeRU69jQtRvNbQG/A7/fid2mYbOqHKSL+Jw62WyZxE6OxE6OeJeb7d3WYqiz08eMQKQcDlnY2BE47zjFxDBXaC+KJAn2RKM/EuwfiouyTEFsTyqZzIeHgy6heDkWsLOeaB/ViQRcQvclJNgSaDgAggEf26nWa1Sp1rFrMksCgbSmyKgW5aR7IksSPqcVt8NK2G7H0RlFUmQMDKqNBsVqDbtNY3Zb3BHIVsTaor6wj0drAmtU2byLEXY7hYTBoiosm7wm6LILCYMqS6aviXudJHJiV6e8Lr5fdHqdrJh0P2oNcefQY7eyeubYkvkSyXyJOz0xHm08uT6yBJ0eF36XDbukci8eo1CvkSyUSB45IkVdTrZMSEHE5TQlDHmTUUuHqrL8FJH0VKL5mUvAO92dwueJoCjKSTFrNrrk8XjY2dmhq6uLoaGh15IsHFun3rt371zJwlk8S+bDcffB6XQ+87VMpVI8fPiQK1eu0NFx8Xa5u7u7fMM3fANf9VVfxY/+6I9ekoXXAJLe/PeVgNf5PN9IwvAyI0nQJAxPW03Z3NxkZmaGkZERenp6nuv9zjPrQYTThOS0uNkwjHMnCxtz2/yPf/nzFItVJFXD6bZwmMjRUHVkWSHWHWRhepdQxMPwjQ7mZ3fZ3GgWV9fu97K1fsj1213ks2VcfgcPvvikk+D22klnSy0i586eALNzu1itKvGoF6erOdt9kC7isKqkknlSyTySLNHZE2Rjo7UoHhgMsrTWXijb7JY20m+xSByk24vUzriPuaX2VfvhgTDza+2r5iODEWYFdqwjfWGhCLq3M8DqTnsB6vfahdariiyxJng+gG4iaY2F3ewJsgwGOgMsCToVqiKJCQYgyeLVksGuIDOnjlc3DNL5MtlChXShTK7YTq5uD8VRyhJBlw2bKiGj4/W6sdstFKo1LGE/6WKZVKF0YmVdMTEpGIwGmDcRKKdMCNlg1G9qp3po5loUDTBropM4MJnn7/C5TceENJPaRpUlVky0Jb1BH4+3xCNRpTN5HboBe5k85WqNue1kiyTcY1GJeF10B710ezxkCnnSlQqZeuNkTKpYE19vm6qY2rP2B/1M7ouJoO1U/shoOIT/BWfoRaNLGxsbrK6uAs0isl6vX4jr0kVB13WmpqbI5XLcv3//lVqjns18KJfLJ6NLS0tLWK3WZ8p8SKfTjI+PMzIyQmfns5PBF8X+/j4f//jHuXfvHj/+4z/+WnzOl+Cyw/Ca4I0kDC+K49AyM6ckXdeZm5tje3ubu3fvEgwGn/s9XpVL0kWLmyd+Y4b//Z9+nWKpzmGygDfmZ35sjciQn8RagXhfEIvTRiQmUanUWZzfp5Cv4HBZGb7RQSZdIpsukj4sMHQtzvTk1sm+JVkiFPOyvLiPosp0dvjweB0YMtRrOon9LOvLzcKu/0qEtdXWIu/qtQ6mZlpHfRRVIltoXwGNROwsCsaLhgYjTM21F2Furw3221fhdZNLW6ub6ElMnu9yiYuC7g4fh6Lxpb4wM4LEZ6/TypYgwRkQZkQAOMy0CF0hZk2cmXbS4uK7XDYpsDsDLJhYtm4d5NB1g8NT2pTNwzK3B+PMnCJdmiwRcDsI+hyohsy97jgNw6BUr5EplUnmiqbnEnDaWDUpvK0m4mC/w86aScCc3Sp+H02C/aJ4xT3qdZkShkxN/H2Ju+1sZMWZCGZWR1ZVaRlTOg0RyShW66wm0jg0jamdUyN/EnR4nITdTiyKyt14jFy1yl6+cDJqNBj0M2XixGSWQwGweyrl+t3uLtPnPS9KpRIbGxsMDw/T1dX1TKNLHyTous7k5CT5fJ579+6978dos9no6uqiq6uLRqPxTJkPp8lCV9f5fbZmODg44A/+wT/I1atX+c//+T9/4FK7L/EUXNqqvha4/Is6A7OCvlar8ejRI0qlEu+88w5Op/OF9v+qRpIuUtz8fz71W/zWz42hSzK1BtQlmVK5gj1oZ2M+xbW7fRwcFFhd3CDc4aWqG0Q6vMS7/UiKxOOxJynKkQ4vm1vpk/92uWxcuR6nXKnT2xtkZzPFxuoB195yMPV4q+U4Rm90MD3bWkQ7nBbWNtpXw0evdrSEuT15vhOSrUWvpkmsCOb4gwEn8wJyEY96WVxtL5biUQ9L6+3bgz6H8Pl2q8qi4PkAuyaORmbFYm9nkMcCK9i+Dj8ru+1FpCKbdxEUkxC3oe4Q0wKNhCJL7JoQCbNCvjviZT0hXpHPnclYaOgGiUyBsN/JxHI7qZMliUKqzIgvgMOmoaoydV2nUKvhddtILW+337MlWDdxOuoJe0mtiwnQriD3AqA35GXRZH8Fk9GdDp+bbRMi4bJZQEAYJAlTbcVA2M/Mrvj7ZAZZgqX9VkJnGLCXKRCw2xnbav0bCtlthL1OojYntrhGoVZlv1Dk8FSw27aJHiLidLSMPp0VPL8ojuflh4eH6e5uaiLea3TpRVyXLgrHZKFQKHD//v1n0sa9SiiK8p6ZD263m93dXYaGhl4JWUilUnzTN30TfX19fOpTn3opvcUlXj0ug9teD7yRhOFlbviikaFCoXAS9PPOO++81M3oVYwk1et1crncuQf06LrO//gXn2X2wRqy1YJRN5BkCdUik0zmCMf8dPXFmZnYol5rEO7wEusPsb6UYGlmh56hMNs7mRNyYHdoWBwWugJOLJpK6qCA1aYy/uW1lqTl3oEwM2d0C06XlfWt9sK3fzDSpnGw2zXWNtuL4YHBMEsr7QVVX2+A+eX2VfBYzEtyrr1oCwScbCfbi92A38m2oAjuiPtIZtr3M9gXZmKhfR6/vzsgzFhwOa0sbogLwoOMuLvgdolnoAe7Q0JBtUVVhIJqMP87G+oKMbshHkFZ3BSLsP0uu5Aw+Jw2VgUEB8w1HR1BNysmQujRnjDWukLI48DrtGG1KCBJyKrETiZPXqlQPaMVqJv8vcZ8LnbSJgW+w05rHFkTdk01FTVHvU5TwpAz6TxE7FZ2TULrzOxUATZMMhviTjubJuF8doFzUrpUJl0qUyhXW7omXpuFqMdJ8CgB22e1sV8stATSdXqeJEnbVJU78Ze32Ty27bxy5YpwBOa8XJcuCrquMzExQbFY5N69ex84snAWosyHjY0NVlZWkCSJlZUV8vn8hWY+ZDIZ/vAf/sNEo1H++3//7x/4a3aJS7yueCMJw8vgbIchmUzy8OFDuru7GRkZeekC/CI7DIZhYLVaCQQCfOlLX8JmsxGJRIhEIng8npc69lK+zCf/4c+yuZJE1izkMmVQFZL7aTxRF3JeQZIUZia36BuJoFk1Eokcj39nFYBg1MNhukS91qC7N4jXZ8eQZWYmtp4QCKcFu9vWQhY0i0KhVG3ZBtA9EGJ6upUYRCJuZufaC+7B4QgTR89VVflEFO2yW+iKe6lWy1gtGg6HA0WWsdhUbozEj8TiNWq1GvVGnXwmw1CXF82ioanN4kmSAQluDsWa+QdHx6ljIDUMrvSGaegG9UaDRkOnVm+QzZZw2S2Ua/UWjUZGIJoGcDjEP4B9nX4mBG5KnVEvW/vtxbckw7pJ8a1p4sJooCsgDJBTFZllQfbC0/bVHxd3NwA2E+J99cR8PBakVD8t4yHkdbJpJmrePaRWb7BzmGsRit8ZjLO7m0WSIOZ24HPZcdg0ZFmirhh0BTzsZwtUT9mVxn1udkw6DFsm7kj9ET9TJsLusok+IOiym7othb0uU8KwlxWTxp6A1zTkzWFRQPwyYdYFQMjlaBuxyper5MtV3JqVh1tPPj+vVSPmc+OyW3BrVkZDQfYKBa6Fw1hesjhPJBJMTEw8l23ne7kuBQKBE6HvRY8F6brO48ePKZfLrwVZEKFcLrO+vn4yhnTRmQ+5XI5v/uZvxuPx8DM/8zMXKgq/xAXiUsPwWuCNJQySJJ2M5DwPFEWhXq9jGAZra2ssLCxw7dq1cxNsHRMSwzDOffVf13UkSeL27ds0Gg0ODg7Y399nbGwMRVGIRCLvKVITIbF5wCf/4adJ7ObI5ysEO+2sLSWIDvhpILM+c8jwnR4sdgsen4PttUO8UQ+Jo5wCu1Ojqz9EpVxja81gczmJ524PU482W96nZzDM7HTrGM3ItQ4mJ1pHkbp6A8zO7iBh4PY4cLus2O0W/CEXkWIVMNDrBrVaA0mSONzP4bNZKZWq1Ip1CsU6kcEwEw9Pv38JyHLtegePHm60XYPr1+NMzrSP+IyMhJlbbF/lv3Et3tbpABgZjjJ3ah7fqshYrSqdcR/5YoWhqB9NU1AVGVmRUVQJA4mb/TEauk6lVqdcrZEv1dpyGo4R9DmFhGGoK8j8ZnvnRFVkVky6CGbWpINdQWEXQZZgzaSQ9zjFP+Zeu8pBXmwzWq2JyXV/zM/irviYM0XxONRAPMDMprhYTx3ZyhoGJLNFkkfjP8OdQeaP7FwlCaIeBwGPHZtVw6lpXI2H2M/kSBUrJ0LsroDHtMDXTOb5n2qn6n9ip3oWpYb4HuexKKbdipDLYUoYarK5jsPsNV0+D4mCmEw0jNbOSKFSY2mv+bl57VYyRwFwH7n1cmMre3t7TE5OcuPGjRdOD34W16WLGl06SxZex5GabDbLgwcPGBgYoKenB+BCMx8KhQJ/7I/9MTRN49Of/vSFh85d4gJhAK+xe9Bz4fXlC28uYXhRqKpKrVZjamqKRCLB22+/jc/nO7f9H7e4z4swHDshHXctjsXNqqqeWOTpuk4qlWJ/f5/JyUl0XSccDhOJRAgGg09tu88/WOHn/u3/plzTka0aAa+TTKZIbNDP3mYBt8/Bnd/bw/SjTSqlGppFIT4YYX87zZWbnRi6TkOHR0edBoDe4UgbMRi+3tG2raPbz/ZWir6+EHaHhiJLNOo6kqYQKtZIpwrkD4vkD4v09Af58heW247/+q0udhbbC51aXVCgSpAUhKJJMuzsCQpACXb2xEVUOiMu8M6KnesNnXqxitWiMi9wU7o6EmNakO0QDrrYXDrEaZHxuh04HBasFhVVk7EYMrf7Y9QaOpVajXy5SrpQxmqSrjzYHTTtIpjpGky7CB0BFk1es5cSr8bHAm7S2+n293hKF8NpEvDmddpY22vfFzQD8UxfY1KsO0+Jmg0DkpkiyUwRm6bQMJo5FgAWRSLid+Nz2Qh4HASddnLlKnu5PIXKk+/atskI00AkwKyJ3qBhsvDhsGisHIiPuy8c5PG2SQZHRayhcFktrB2a6Dj8HlIl8Xfa7PgA1s32d6bLcb/nxe02d3Z2mJmZ4datW4TD4Rfez2m8ytElXdd59OgR1Wr1tSULuVyOsbEx+vv76e3tFT7nPDMfSqUS3/It30Kj0eAXf/EXcblcF3Fal3hFuNQwvB64JAxncDx3qWka77777rm3OI9/WOr1+ku3nJ81uVmWZYLBIMFgkNHRUTKZzEmbeGJigmAweNJ9OH2j/vxnHvDrP/0lqnWdXKaCJ+whsZemUq+hqBb6RmIYssTjL6/RqOuomszNdwfIpkvUa3XmHm9y7W4v86c6CU63lWyuQuPUnLjba6NcqTFyJYbFolCvNchnyyiqwnYiRSrxpNC8cr3jJLuh5RwFwlyX29aW4wAQiTrZ2GgvZIaGIsJAtuGhKHOCon1oUPz8UNDGpqAA9rrtLAnEzpIEGybWqHUT73271cAAKlW9mSx91Djo6wowJRjLUmSJ/a0snU4XTocFm1VDUWUMqSkU74v6yBYrpPMljqe/BruCQl2DJGOqK3DaxYV8POgWZkUANCRxsRX321k/EM/HmJGPnoiXiVWxxeiWSVhbT9jLxJq4K7FvogXpi/qZ3XzyWdYbBtvJLNvJLCOnuhIAIZedkNeBz22jYjQIOOwk88WWER+zZGVJoi1j4Rj9IT+TO2JSYObCpUqwbDL+1RfyMWFCMszE9YBp56HX72XN5LGw80mXw2e3MRJ5fsc5aFpcz8/Pc/v27RdyrXtWiEaXksnkS48uNRoNHj16RK1W4+7du68tWXjw4AG9vb309fU902teJvOhXC7zJ/7En6BQKPBLv/RLuN3uCzqzS7wyGLzWozrPhdf4NN9YwvAiI0nZbJZUKoXdbufDH/7whQjejvd5bHf6ojhtm/o8lqln/bULhQL7+/usr68zPT2N3+8nHA4z9nNTPP7NBRrI7G2kCPeFefhbC0QH/didTtbnE7huulhbStDVH8LusCJbFB781tLJe43e7mb6zNhRR3+IfK7M1RudSJJBPlfG5rAyf6a7cPV2F9NnRno0TSGRbC8UB0ciLC4JMg36Q0xOtpMLRRNfK7OV0lpdPBZjds39PifJw/YCtLvHz8Rs+1jTYF9I6JrkdttYWhdbkBbK4u+P28SWtb83xIIgJ0KRJaw2jcJR8rMqS/g9djxuGyG7HUdfDAMo1+vkSlUO80U6w14WBKnLADsmRXnELw6Xc9o00y6Cz+sWEga/y8KuSbiZWepyZ8gj1DUApveJkNfB1qH4NfWKmGBYVYWV/XTLtnS+RDpf4nZ/nMerT8icx6oR8btwOy3YFJVr8TDJfJFErnDym9If8ptao2om7lVNkiEu1IciQWb3xZ+d/JR7yKZJpkRvwMuqCSkIuuymhKF0Sq/xdk/HC3VbNzY2WFxc5M6dO/j9/ud+/Yvi9OjSlStXXnh06Zgs1Ov115YsHKdo9/b20t/f/0L7eK/Mh0ePHjE5Ock3fuM38rVf+7V813d9F4lEgs997nN4vd5zPqNLvC+41DC8FnhjCcPzYnd3l4mJCZxO53uO6bwM3ivr4Vlw3Fl4XrIgOhaXy4XL5WJgYIBSqcTO1g6f/MGfY2NuD6vTiWq1YA84OdjP0HMrwvpcBkMvMHCjA5vbhs/vZG1uj2sf6mNqfP1k3x29QZYX9nG6rMS7/VgtKlanlclH61TKdbaPbEuHr3W0kQWny9oWugYwcr1dzwBQEcy5OxwaSwIS4fZa2N1tn7eOd3hZFjgmRaMelgXFvM8nzm+waAqb2+LiatOkyNZM3Gx6uwJMzLUTjHDAzn5KMB4iwdauuECzWsXv0d8TYuHUOJKuGxykixxmihykCmQFQmxfh5V+rxeX04KmqeiSQbnWQFYk5nfEYzWioDaAvniASUGOBMCWwHkKIOSxcyjIOJAlcyF02EQILUuwmkgLX9MR8JAwyT44FGR6APTF/Mxtia/B2ZC5YqXG6m6KgMvO4SmNgkNTiAXcuJ1WfC4bNk1tIxIAu1lxl6Uv6GPFpCvhMMmNAFhLiL+fnU8Jmgs6HaaEoVgV3+MUSWLlVMjb273Prw9bXV1lZWWFu3fvvq9F44uOLjUaDR4+fEij0eDu3buvZWbAMVno6el5YbIgwtnMB1mWefjwIX/lr/wVcrkcVquV7//+76dqYk98nvjH//gf87f/9t/mL//lv8wP//APA80Ox/d+7/fyEz/xE1QqFb7+67+eH/mRH2nRzqyvr/Pd3/3d/Oqv/ioul4tv//Zv54d+6Idey8/5Epc4xlf8t9cwDJaWllhZWeHWrVscHh6+9Or/e+FlwtuOuwovSxZEqBXq/MK//Q2qWYj1dJHYSaNrzRAu1aaxPpumczBEOO5j+uEWlXKz0Bt+q5vpR02hsN1hoasvhM1pxTAMdjdTLE6VCMe8ZAoVKuUnRYTdaSEhEOf2DkeYOkMM7A4LK4KC3qy7ILJXBejpCQu3+wNOtgU6hVDYxa7A7rOrM0BKkOswOBBiZr59JKarw8eGQO+gaTIrJtkLZkV2LOoXEoa+zgCrAvGyJEls7KSF+7KZEYmuIMsCgTTA5n6GxGF7sXrrShwp3yDqceDz2LHbNGRVRjcMMqUKNk2h3EbuxN/f7oiXjYS4EJVU8Ups1GtlJyNe+S+UxcVFb9RvasFaMxkH89ktQsICYutRaHZyVvfF79MV9LQQhkqtcaLDGIoHTsTdLotKJODC7bBis6ikqxWq9UabIDrgtJsShoRJJkLY7WDfxAUpYLeaEoZiTSxWV2XpqaNUi8kn39MPPQdhMAyDlZUV1tfXuXfvHh6P55lf+yrwLKNLwWCQ3d1mp+l1JQuFQoEHDx7Q1dXFwMDAhb2Poih8zdd8DV/1VV/Fd37ndzI7O8vHP/5xfvInf5Lv/d7v5c6dO3z84x/n4x//OHfv3j3X38MvfelL/Pt//++5detWy/a/+lf/Kp/97Gf5qZ/6KbxeL9/zPd/DH/kjf4Tf+q3fAppk8GMf+xixWIzf/u3fZmdnhz/9p/80mqbxj/7RPzq343ujoPPUscc3Cq+xuPv1u1M9I57lxlGv15mcnCSTyfDOO+/gdrvJZrNUKuJC7bxwnMb8PDATN58XNud3+O//7H+xu3mIarOR2jrAF/cx/2iDnmtRVIuFQNQgny2wv5ejWm4eR+dgmHK5xrXb3eQzZbZWkkiyxMSXV0/2LSkSNo+tOWt/Cv3DMaYft44shWMe5gRuRAMjUWF3QTTjrygym1vptu02m8qSoCtgs6nCPAZVlVkzGQnaN0lLNkt29vkdQsIQDdrY3Gsv1Pw+hzA7AmDPJMTN7TYZR+oOsCTalwSbu2nha1wmVq4dEY/pyn82X8Yw4DDT7FAc49pglI2jjpLfYSHoc+J0WFE0CUOR6Y34SGQKFE+Jg4Meh5AwWDXF1JrV53IICYNNU0xJgdfEuUmWzAv83miA9Gq7TgTMNQ/9UT8LJq5OZg1qm6a0dD9K1TprR5/X7b7YyYiZz24h5nfhsFswZFAlGadVaxFbA7isGpsmousOn8eUMGTyYpKhSBKrh2nhY/1BPwsmWgnvKZ1LzOOix/9sHQLDMFhcXGR7e5v79+9/4IWuotGl/f19FhYWaDQaeDwe1tfXPzCBcc+KQqHAl7/8ZTo7Oy+ULByj0Wjw5//8n+fRo0f82q/92ollbiKR4Bd+4Rf47Gc/y3/4D/+BxcXFc7O+zefzfNu3fRs/9mM/xg/+4A+ebM9kMvz4j/84n/zkJ/nar/1aAP7jf/yPXL16lS984Qu88847/NIv/RLT09N87nOfIxqN8tZbb/EDP/AD/K2/9bf4vu/7vtfSLveicSl6fj1wvhHArxFKpRK/8zu/Q6VS4d133z0RTh3bql4knvc9jonCMVmQJOlcf1we/to0n/gHP002W6JUauDwOiiW66zObTN0p5N0oszy5A6yrNIwNOo1nXifj+4RH9l0no2FfaYfrLO+uM/IW13Mn1nBv/pWD+tnCvKObj+zAn2BL+RqySYAcHlsLC3uo2kyLpcVv99BKOxi9HqcWrVOd5ePnu4AvT0BenuC3L7dhddjoyPuIRiwEI+56ezwcfVaB16XjVDAic9rx+mwYNEUBocilMvtK6VDQxFy+Xby2NcbZC/RXnh5PXbh+JIkSWyajAo5TQR7Qb9NOOoYj3qE7w0IOyQADhNHob5OP6ms2PnGjJSEAuKEc7fTyrpJFyN3quDMFausbqeYWtwlm60wMbnN9lqKWrpKWLNxJRzgrd4YDlVltCtM1O9CPhXQ1hcPtGQhnEbRJNws6FRNuwVZs1GpmL+FwJxG3YTsB912tk00Dy4TMTjAhoneoC/iNxW9N07lkuRLVRa3D3m8tMvc8j4TC7tUUjVimoMboTD3OuNcDfuJWVRTnYKZ9kOS4NDkunZ4nC1ahNPw2MzPN1d+cs3ffkZ3JMMwmJ+fZ2dn57UgC2chSRJ2u53Dw0M8Hg8f+chH6OrqIpfL8aUvfYnf/M3fZGZmhmQyeaHBni+LY7LQ0dHB4ODghZMcXdf5S3/pL/GFL3yBz33ucy35GuFwmD/9p/80P/mTP8na2tq55mT8hb/wF/jYxz7G133d17Vsf/DgAbVarWX76OgoPT09fP7znwfg85//PDdv3mwZUfr6r/96stksU1NT53aMbxSONQxfKf+eA9/3fd93UvMd/xsdHT15vFwu8xf+wl8gGAzicrn45m/+Zvb2xMYfL4s3tsPwNKRSKcbHx4lGo1y9erXFXehlxoWeFc/TYTgvvYIZfuW//Aa/80uPqeuArOIOeVhb3scTseH0hFh43Fzt9wScRHqCNOo6G4v7JDYyxPrD5E6JIT0hG3NnyEIw5mFxvnU1VpLA43OCJONwWtBUBVmRsdlVCoUqw4NhatU6lUqdSrlGV1+IyUeb6LpBvfCkiPO5beystq9i1it+tls6DM2iWK/UT7IhTiObyONAwmJVsVpVLJbmP4eqcn0ggqzIJ6nCumHgdFuRJYlypU6hVCFfqFBvGPR0+ZkQjCn19wZZ2mjvVNhtKisCITJAriAerQkFXGwLxri64j7TbsGOYKQKwO2yA+2r6PGwhx2zLoJJuFxP3M/UUvuquyRBwmRM6OzqfjpbIp0t4bRrFKv1k7A+iyoTDrrxuu0EXHa03ijZUoW9VP4k7MzntLFuokXwetxsZtqP22HVWDPpInhMSJYswdoZUfMxOoNeDvJiApY2+Ty7gh42TUiGzWS8CZ5OMuZ3mt+1YwvYY1zrDGKpVIgFPHhdNmRFplCvspctmCY/9wV8rJh0EWxPWW46TQpOw6LIrJ6yWn0WO1XDMJidnSWZTHL//n0cDsd7vuaDhnq9zvj4OLIs89Zbb6EoyoW4Ll0kisUiDx48oKOjg6GhoVdCFr73e7+XX/3VX+XXfu3X6O7uNn3u82Y4PA0/8RM/wdjYGF/60pfaHtvd3cVisbRZrUej0ZMxs93d3bYskOP/Pn7OJc7gUvT8VFy/fp3Pfe5zJ/99eozxvUbkzhNvLGEwu5ltbm4yMzPDyMgIPT09bc9TVfWVEIZneY+LJAuNhs7P/L+fZfbBGrW6wWEijyfooibpZA8KBDu7WHi8TUdfqJnSfFhk6kurJ68fvd/H7CkHJFWTsTkdZNJpAGQFfAE7kQ43Yd2DhES5WCWXLRGKef//7L15mGR1efb/ObWvp/at957p2TeGGZaRiEYERJYZJYr6BhCNRoIa1xAjxu0Fo15JNNHgm+gvaiJZBAQFIqICGmVYZl97pnt6766lq7uququXWn9/9HRNL+dpGOieBeq+Lq6Lqeqqs9SpU8/9fe77uTkyZ3oSQPOqEB1zxqDa7CaOt8bmJT2Ha120H59vlm1c5qezc35x3rQsQKeG7Ki2wVORL01OFpheV/d47XR2Dc77bhuNOgwmI+PjszXsLruJ4lie5WEPJrMBo8kAyimCkcsXyWQnGBmZqEgYmxv8HD4+/wfErVqJDWoXngNCget12zQJQ03IRZ9AGAaF0aQBr0OTMKgOM1392tuXJg2FfTb6k9pSl9SodhHdEPZweIYRulAoMRDLMBDLEPI5iE37JxQIu2x4PTb8HjupiRwjE5PEUqOzugNJjS4RgMeioy+jvd9pocBvCHhEqVJZEBc5LEa6BDLjV20iYUiOaJ+32gVIhn0BU/PwWI58oURPPE1P/FTRXudVyY7nWOfzY7EYyZenfBEDmVE8dqtIGDCZgfnXkFFROLGAf6F1xpSmFyMM5XKZw4cPMzw8zNatW8/LcK5CoVAJz5wmCzOxWFOXlhJjY2O88MILhMPhM0YWPvOZz/DYY4/x5JNPvuRxra8UPT09/Pmf/zlPPPFENTW6inMGBoOBcDg87/GXIpFb1P1Y1Hc7h1Eul2ltbaWvr48LL7xQnNl9pjoML7aNpTQ3j49O8IPP/5gTh/qxe5x0Hu2j5cImDu3qpJArsvriZnQ6HTVNPqI9SSxOK30ziu3VWxpnkIUygYibhhUBxsfyOB0WhpNZhhIjqC4bR3bPlh3pDTrKGqtBTSuC88jC1ONhDu2fTy48fidRjW5BvqhtRrVYtVdrVbcNNPwONbVuhjRC3JqXBTl2fH67z2Yz09o6/3FFN5UHMTIyVYAa9TpU1YrTacZpMrJpeYSyUiZfLDE2mSeVGcPp0KFVy3s9VhJD2kRiKKVdXPq9dk3C4PfYNTsVAKPj2gV2ndBF0OkUuoQcCb/XpUkYnHYzPUJHRC+MCw147KfIAkAZkqkxkqkxzDoDR2bsW8htw+ex43SYGS8VsRj1RFOjTMyY3OP1uOjLzL/mbCYDnUIXwe2wgBBVIOU81AfcHBYSprUmfMFU96VXCD0LLEAypJRrr8PKgOBf8Dtt9HRlGJpD4KxGPaa8js3hMOhgJDdJX3qE8XxhqlMgkIJa1U5nWpuMOmbot2tdTiKqPEO/VCpx8OBBRkdHueiii86ZlfbTQT6fZ8+ePRgMBjZt2vSi0/fOZGDcS8X4+Di7du0iFAqxYsWKM0IWPv/5z/PAAw/w5JNP0tLSsqTbm4ldu3YRj8e58MILK48Vi0V+85vf8K1vfYvHH3+cXC5HKpWa1WWIxWKVgi4cDvPcc8/Net9piYhW0VcFr8kOQyYz+x5uNpvFe9zx48epqanBYrGwbds2vvKVr9DQ0PCiErkqYXgZyOfz7Nu3j/HxcS699FLsdm0dNpw5D4NEGJba3JzoSfKjux8iNTSKRbVTKJVo2lTPvmfa8YTsNKys5eiebiZPavrXXLyMI3t6Kq+vafJSKpVZt7mesdFJYr3DWCwGdv/uxKwugNliIDU8v3gJNjjo79IoXDQO0WQ20K3hCVBdVto0wslsDiMDffMLFYfTQpvG5CKjUUeXRjcCYFAj70HaT4BgSCWu8ZrmJv8sX0OxWGJ4OMvY2CQD0Qw5jYLRbVaJ2G04nRYsViM6vY58sYhNNVMoxEnPWTF32vSiHCktrOKHgyqJ1HxCZLMY5S6CsILeWOOhQ2M6E8DwiDbBaQh7OHRCW2fZL3REwn6n5j4D9MVnF9dDqTGGUmOsbwlzeJpIKFDjtuPx2DBbpoLr6nwq0dToLK+Ax6onm9G+B2THtQlprU8VMxukhGmdotApJEzX+1wc7NH+7CSSYTMZ6RpMae+fd/YkppnIC/LIfKHEwa5YRfYFUxKzOo+DpqCb8XKRbCHPwMgoqfFT++pVnSJhSGROffcX6i6USiUOHDjA2NgYW7duPS+Novl8nt27d2Mymdi4cePLKu6XKjDupWJ8fJwXXniBQCDAypUrl5wslMtl7rnnHv793/+dX//616xatWpJtzcXV1xxBQcOHJj12G233cbq1au58847qa+vx2g08qtf/Yobb7wRgNbWVrq7u9m2bRsA27Zt4+677yYejxMMBgF44oknUFWVtWvXntHjOW/wGpySNFdi9/nPf54vfOEL8/78kksu4fvf/z6rVq1iYGCAL37xi7z+9a/n4MGDL0kit5h41RKG6RtbNptl9+7d2Gw2Lr300hcNxzmbkqTpMLZisTjL4LJYOL7rBA99+wmS0TTOgJvOIwMEmnyk4sOEm9y4fG727zxRkZesvXgZHcdirFhfg9FoIJMeJ58vzkpu1hv05ArleZKhlvW1s3IZAMxWI5mh+ccdrlfp1BiNunx1hMMak5Hql/k1uw6hGpUTbfML18Zm/7wxrQDLVoQ4qkE86uo99PTOL+SsViOdGgQGYFhY4bcK04YaG320akiqLBYDA9FRisUSiTnm5uZmP9n4GA6zAa/XjsNpwWgyYLUZGEikSY1OkBnLUT5553U6zHRrJE4DTAoz8htrPRw5MX+/lAUmKqnCpCGXw0JvTPs10o9DJKDSL/gnJANwTUAVScas67IMieEsieEsfredwZMTjYwGhTqfiqpayBVzlIs5XDYT6TmjU016nShHCrjsImEYFLIcmoJuTgjvp9dpnyCdgkgKGgNujvRpdzIWCmXrHhT8C4H5+1cuQ3RolBqXk32dp6aZhRwWgl4nZosBk05P0GEnPjqb3Jl0OvpHTj0W0cPg4CBer3eWBr1YLLJ//35yuRxbt249LwPNZpKFTZs2LYrG/kxLl6Y7C4FAgFWrVp0RsvD1r3+df/7nf+bXv/4169atW9LtacHpdLJ+/fpZj01nM00//v73v59PfOITeL1eVFXlIx/5CNu2baus5l511VWsXbuWm2++ma997WtEo1Huuusu7rjjjvOyS3Ym8FqcktTT0zNrLLR0bVxzzTWV/9+4cSOXXHIJjY2N/Pd///cZl2i+agkDTP0Y7d27l/r6+pe8OnK2JEkz/QrT4W6LiZ2P7OYX//Y7hhMZFKOJvb9tZc3rVtB7IkY6McaKzQ0cO9BLuVwm3OAl3OhjeHCM3ESe4yeL7TVbm2Z1GwBWba7n0JzHPAEHxw7NL9CXr6nhkIZ3QZKgDCXnr1IqOoUBrSJYgUxae6pNali7YJOSnV1umyZhaFoW4IjGyNdgyEmfhqwJBfqEgl1abWxq9HP0mEb3xGai62SY3cRkgf6BNAxMFXoty4P0dU79v9mgw+2yYLboMFlgwmGgiI7RsXylM2E26jXzGgB0eu3Poj7ioUsYZ5oSugi1IRepE9qr5HM7AtPwe+yahEFRECVMfrddmzAoU5kRWoj4nRXCUCiU6Yul6Ts59jbkczA2NInXbibgc2CxGJjI5yiVCpwY0u5wSJOb3HaLmDDtsska6XhGezsNATcdgh/CLHQyAFGOVOdV6RGIzkL7N9fUPDQ6wdDoBGaDnmK5TKFUwmM1UeN1YrWayFHEaNCzu/fU92ddwFNZKff5fBWZzeHDhyuBZucjWcjlcuzevRuLxcLGjRsX/V4OSy9dmpiYYNeuXfh8vjNGFv7hH/6Bf/iHf+CJJ56Yl31wLuHv//7v0el03HjjjbOC26ah1+t55JFHuP3229m2bRt2u51bb72VL33pS2dxr89xvAYlSaqqvqwcGbfbzcqVK2lra+PKK698UYncYuJVSxgSiQR79uxh7dq11Na+9GCgsyFJWupJSA9963H2/eYoil7P2EQRn9vEsgsbOPRsBwDN62rITRZZs7mReO8Q+ckixw8OkB05Vey1rK+bRxZ8Yde8EaoAoToPw3M6AGarkS4N03Gk3kNfd2re4/6IjWj//GJv+coQbRoegublAU6cmP/+4RoXfRrFv91hokMjkwEF+oUif+6412kEgi5i8fnkpqnBR6fGdCSdThHzHaSV94Z6L0c0iITJpK8Qiel9HDzpGVi1MsSJGefKatLh8VgIh1wUdDpyxRKp0QkSQyclOQr0a2RFALhVC10aHU6H3Uy3QCSk67g2KBuxxc5H2EOnsB3pNbUBF71C+Js0RtTtsBA96ZMYyU4yMmMq1KaWCIbsKGG3FatFR5EiuTJkckWx81DrUxkWfAXZnDbB9TgsDAxrF/huuxUEwhAVPAUB1S4SEL9qFwnDuLB/Jr2OLuG8NgXctEanru3R8RzH+k5d55sbIzjzBmp8KnV+F5dt3kS5XK6slHd3d3Po0CEMBgONjY3kcrnzjjDkcjl27dqFzWZjw4YNS0IWtLCY0qWJiQleeOEFvF4vq1evPiNk4d577+WrX/0qjz/+OFu2bFnS7Z0unnrqqVn/tlgsfPvb3+bb3/62+JrGxkYee+yxJd6zVxFKZVBeI4Sh9MqOc3R0lPb2dm6++Wa2bNnyohK5xcSrljB4vV4uueSS02Zwer2+Ig1aqpu9Xq+vhMMtJVnIT+b5j688TPexKONjOUx2G+VyiYlCga4jcbwhJw0rw/R1DpE4WSQbzUYCjT6SM7T9NoeZhMaMf3fQOU/rH2nwckwjX6FlbQ2thwcwW4zMPK1ev4PBwRFKxRLF4qkvklN1kojNL7RKQkyiyaIt/fH5nUQH5u97Q3OAw4fnk536ei/dPfNX3y0WgyhHSqe1V9gdqvYKbVOTXzMoTq9XNLcNcvHd2ODjuIacS1Ggdw7xyedKxGNjWIwK3X2nCki9XiEccBKJqOTKUONXSWcniA+NVjwWaWGcqs9pZFTIMugTikqf26ZJGHSKQrfQRXA5LaBBWPQ6+TU+l00kDJKEqTboYrhDu8BPj05QKpWJD83uWIXcVkYnc/gc5qnMC6Oe9ESeWHoUvXAPMegUugT/Qp3XxbAwpWlCyD2wGHTERrRfE/E4SIycXmdkyl+R0nyuMeDmeEz7OrUtMKVpZGKS8ckC7f1DrAkFgFMr5RaLhUQigdvtJhQKkUwm6ejowGKxEAgECAQCuFyuM1aAvxycLbIwF1rSpcHBwYp0yel0Vs7pXOnS5OQku3btwuPxsGbNmjNCFr73ve/x5S9/mccee4xLLrlkSbdXRRXnGz71qU9x/fXX09jYSH9/P5///OfR6/W8+93vxuVyvahEbjHxqiUMBoPhZbV7pufbFovFJSUMhUKh4leAxTc3ZwZH+NfP/Tf9nUnQ6chm8wwcbKNhQw35fJ76lgCj6XE6j8VJzSj6WzbVc2Tv7E5Cw6oIR/f2oOjA5bHjcFnx+p3ki0XWb6qjVC5TLBQp5IrYXFbK+QKTEwXyuQK5yQJQpud4nMJcs67bRuueLoonV+4VwGDU4w+rDPWmCLgsGI16DEY9KGX0RphIZ6iNWFEUBZvdNhUmVywxOTaJ12tjZHSSfO5UwF2/llQINIPaYMpQTc/8xxub/ZpTkNxuK71CIvOgkAZtsWivmjY2+ITgN+gRjMhmk/ZXuL7OQ5dGZwVgMj9bnlAqlolFM6h2I8c7Th2LolOo9TvwBxwoRh325hDDo+PEkqMUK0ZZ7dWShbwIkzntIrUh4qZDmLYkmY0bwh46+rXP/4TQeYj4VQYEmZBO8A5YzQZ6hMlJkYCbvW0DZCeKwKmi3W7UURid4IK6EGUdDGUn6B/OUCyVaQp6aBOKbmkfdAp0C/6FoMNCt+CjWchN2C3lOWj4F6bhXCCEbnRSzl+Y6ZXY3HQqgEtLwtPQ0ECxWCSZTJJIJNi3bx9ARWbj8/lmzSI/25gmC3a7nfXr158zxGamdKm5uXlB6ZLdbmf37t243W7Wrl17RsjCD3/4Qz772c/ys5/9jMsuu2xJt1fFOYzXoCTppaK3t5d3v/vdJJNJAoEAf/AHf8DOnTsJBKYWXV5MIreYOHfuuOcIprWexWJxydrhOp1uSZObe472859f/Sn9nUl8dT72/u8xnF4bjZsixDpTTIzmsNhNeCJeBrpOdRJWbm7kyN4eVI8NX9CJ1WbCYjMxPJjF77MzPDhCKpomFctQzBcZ6J5d8EQafXQcj837Pqy+oIEjGiblhuX+ecboQr6IL6AS7Ztfta/eVEfX8Zndi6kCpHGFj64ZZmeb1YhTtRJp9DIxkaM24AQ9FItlJiYL5Esl+vq0i6GBAe0CSvp8amo9DKfn+xoCAQdRIXm5t09bjmQTDNL19d5ZsqOZiMa1SYmqaoey+Tx2YsI41eycTkG5VCYeH8GjWmk9dOoYTQYdqmrE7jThdbuxmG0kUlmGZph7JS+CboGOgOq0wPxTiUGvo1swT6sOKWBNEV8T8NhFwhAd0p7u0xB009qj3WEaF4iJxWjgWPfsz8Bs0BEJuqhTnTjMJlLjE/QPj8xa6Y+mhH3wu+kQCIPP7RIJQzS9uP6F0Qlt8raQVKnB755FkDY3ThGG6RVth8Mxr9DW6/UEg0GCwSDlcpl0Ok0ikaC9vZ0DBw7MktmczXyG6WNwOp2sW7funCELWpgpXSqVSgwNDTE4OMjhw4eZnJzEbDbjcrnI5XJLatAtl8v8x3/8B5/+9Kd5+OGHeeMb37hk26rifMBriDAIi2wS/vM//3PB51+KRG6xUCUMczBtOF4qH0O5XMZkMjE0NMThw4cJhUJ4vd5Fm6e976nD/M+/Pk02M4HT7yTWO8SyDbWM5ybpOnhSuqIo1K2qpe1ALw6XlVCdB7tqIZvNoapmMokMmUQGnV5HsM5HdE6xuuqCelo1pg6pHhsDGqvaKY1CRtGh+bcoEBU8BNF+7UJ77mjSifE8E+N5AjUujh2cLztas6mO/qEx3KoF1WPH5jBjNOkx2YyMjOawGPUkU1kmJqauAb1eR1eXdsEurZYHQyoJDdO202kkndEuuJKCoVYVpE3hoEo0oV0MZgR5SjisktQYTWow6Bgc1l4dLuRn72+xUGJ4aBKjzsi+7lPEzu0wEQg4sTkt2IxGGsJuosmRWZ9PY8RDh9AtGR3TPi+NETftgklb6jzUR9x0Ct2KSUGb73fbiAthdhaz9uKBsoCxui7kIdU5uyuVL5SmJlflCnSf7Ozp9QrLAiqqasVo0pMcH8dk0M+TC7kdVhAIQ0rwSficVuJp7evK57SJhEGSPhl0ijilqSHgFrsm6oyuRFC1U+tVK8Zal8vF2rVrFyy0FUXB7XbjdrtZsWIFY2NjJBIJYrEYra2t2O32isxGVdUzFm52PpGFudDpdPj9flRVJZlM4vP5cLvd9Pf3c/To0QWlS68UDzzwAB/72Mf48Y9/zBVXXLFo71vFeYpqh+G8wKuWMLySm9tSjVad9iv4fD42b95MPB7n6NGj5PN5/H4/wWAQv9//slvtv/7R7/j9I7vpPNJP4/oGRtJj9LXHqVkTYKAtBYDVYWbNxcsYz+YI1bqJ9QwxOpxl+aYG2udMNlp9YSOHd83uAOgNepIaRWqwxq1pgG5eFeaExvjQ5asjtB2dv5zcvCKsGeDm8plJDc4viuxOM7E+7VyH7g7thK0pmRSMZCYYyZx6z3UX1NO+/9Q58LqsuH12AhEXYxN5iqUy2Ykcg0NZsmM5LBYDXV3aJEaSPAUCTjKj8wtZj8fGQFS78JSKf7/foUkYHHaT5pQnmMqB0EJDnZcTghE7ldHefsDvJDaDFGVHc2RHkyjK1AjasfE8ik6hIejE5bGhN+mxWk0k0+Nk5mj0TQa92Hlw2LRXOg16RZyc5BJGvaJAd1S7qA37nCTSUiq1tk+lPuimW5Aq6YWJUzoFojNIdLFYpieahmia9ctC9HQModMpNAdVXKoVxaCQGp8Q/QZWk0GUKtV4VJLCvheE/AUFWfrUGHDTLkiV1AWlSqeI3QWNkcrITq/X+7K08jabjcbGRhobG8nn8wwODpJIJNi9ezc6na5S6C7mYsxczCQ869atOysJzK8U01Kq6XGiOp1uyQPjHn74YW6//Xb+4z/+Y9bIyCpewyiVOd2V9/MWr9D0fDbxqiUMMEUayi+DzS3FaNWZ5ma9Xo/H48Hj8bBy5UpGRkaIx+OcOHGCQ4cO4fV6CQaDBAKBlxRYVCyW+M97HuLork4S/cOEV0TY85tWAGrXBBgfKbD24may6XGMFiN7fnN81nlZvaWJo/tmS4AcLiudGpr9FZvqZqQ8n4KvxkVcQ4JjMAuXmKDTNgmJzMGwh/TQ/P2pbw5wRKPbUdvgoa9nfmFjsRrp0pimBDA8Z4U/kx4nkx7H4bRyeI6kyuW00LI8xHi+gM6oJ5cvkc6MkxgcnQqEE4pvnV77+CJhl2aWg81qFIt/rdA3gNoaD0fbNFKnNYzQ07DbtYs9j8tKcli74MyMaK/G19V4Kp6LcqlMNJqppHIva/QzEc0SdNvwBx2YrCZypSIGg5597Rp6JGBEMFU3RDycEPwjkn/BYzMwPCZ0D4WCz2Y20iN0ETxOq0gYEoK0qDHkoUOY+DQ+NnUNlEpleqNpek+SSIWpdOwmuwOdroDJZmasBH3DGRr9bo72a1/Tkh8CoF+YxNTgd4tdhIWkStlJbZKs1ymz/AtrIl6ef/55gsHgoozsNBqNRCIRIpEIpVKpMiHo6NGj5HK5ysjWxQw3myYLZ0rvvxRYyHchSZdeaWDco48+yp/8yZ/wwx/+kBtuuGEpDquK8xHl0tR/rwWcx8f5qiYMLxeLOVp1Orm5VCppTkJSFKUyj7elpYVsNks8Hqe3t5cjR47g8Xgq5MFimf9jPTYyzg8/fz99HQlKZXBHvBx+9gR2twV/o4v8mMJwdJjh6AiekEouX55FFhwuKz0aE3saVkY4vKtr9oOKwrBGmrHVbqLj6PwC1eGy0n50/mgbh2qhQ2NEqNGkp1OjGwEwGNeWVUxOan9Obq9DkzC4fCZiffMLc7fXRr/G3wOaRGh0ZILcRH6eNMtg0LF6Ux0TuSJGi4Hs+ATD6SwjowV0ikJXt3aBOzf4bhp19V5aNcbIKooiFv8GYR5/bY1bfE0qo00KImEXw8IUqKG0dufBrVo1TdoGg47ek4+nUmOzpGrr19TgLukJh1WsdjN5ygxmxkiNjNMjeBEk862iIPoXgj6V4THtzyAu+BfqQ25au7UD0SaF+4TbbqE/qV2QuxwL5RssPCI2U5lWNfWZWIw6AkYrtrowRQUGR8foT2UqXe+EME415LYTFVKzPQ6rSBjGBamSTlHoFsa6NvjcdMyYCKVPJ4isbKalpWXRC22dTofP58Pn87Fy5Uqy2ey8cLPp7oPdbn9Z2585dvRMTBJaCkwHy9lsthc1aU9Ll17O1KWZeOKJJ3jve9/Ld7/73coIyCqqqOL8QZUwaGCxOgwziQK8tElIdrud5uZmmpubGR8fn6XTVVW1YgK02WwkepJ8//M/ZnwsT9eRfkItYRQUIsu8oFPoPTpM6aQERdEpqH6VrjnJxvWrIxyZQwxUj512DXlRy/pa2jSCy5pWR+ZNVgKobwlyeM/8xxtaAhzW+PumFSGOH5lPJGqbfPRpeAjsDjOd7doEIyaYl1WXqkkYghEXKY2V9EDIqUkYAOLR+Y8XCyVK+RJtc7wTik5h9cY6csUSBouBfLHEcHqcxOAI5XKZHsGEbTBoF//1dR66hc6DlncCwOOyaRIGm9UoBsxNClNvIiGVfsE8PTikvV/1NR46hM5LdmySsWyOE+2zyeuqZUEmyiUcqoU8JZKZMaJDI5TLC0xOCrnpFAiD3qDd4fE4LcQE/4JV6pItFAwXVBnu1CZU4wLJddrMJATipi9rH2s+XyIxnKV9xqQop9lATdCFS7WQLebJFYoMjsy+5sOqUyQMBeHepyjQI0xVqvepdAnPuWd0JWxGPVtWLWP58uVLXmgrioLD4cDhcMyaEJRIJDhx4gRms7lS6Lrd7pfkP3ilUqpzAfl8nl27dmG1Wk97/OtLnbpkMBioqanBbrcDU1kG/+f//B/uvfde3vWudy3VoVVxvqLqYTgvUCUMGlgMD8O0BGl6Nf/lmOGsVisNDQ00NDSQy+VIJBLE43Ha2tpI92R57scHGY6NMZrKsuZ1q+g6MsBQNI2vzkV2pFAhCwBrLl7O4Rc6Z71/pMlPq0bhXtcSmt9dAPKChlqr6wAwlNB+PDuqXYTqBF2s22vXJAx1zX6Oapiaw7UuohqEQadT6OsS0opT2sVvIOwmrhHKFgg5SQiG40GNx8ulMkq5zPE5+2s26VmxNkIRUIw6xifyxJOjjJz0LSSE0awulxU0CIPbbRWnIEkyndoaD8c7tFfQ48Ix+rx2TcKg08FQSru4tQteBKNBR89ASvM5s8VI65HZ50y1GKipdWMxmVjXFGIwkyU+PFq5D7ucVhAIgzTqNeJ3MTSqXeBnhAyKOr9Kr/B+RuFaVoAeId+gLqByROhkzMwomQmDXkf3HNIyPlmgvSfJ2sZApTPid1gIB5yYLAbGCvkFpUp9ghF6oalKXodNJAy5GffSNWEvLS0t4raXEnPDzYaGhkgkEhw4cIBSqTRrZKvWhLzx8XFeeOEF/H7/GQk0WwpMdxYsFsuiZEVI0qWvfvWr/OQnP+Hiiy/mggsu4Lvf/S7f/OY3ufnmm5fkvN17773ce++9dHZ2ArBu3Tr++q//uuKReOMb38jTTz896zV/+qd/yne+853Kv7u7u7n99tt58skncTgc3HrrrXzlK185p8b3vmpR9TCcF3hVfxNeiYfhlUiSliKMzWQyVW7Mv3lgJ/t+tpdo1zDOgA2nRWXPk0cBsDrNKDojk+OnVhQDdR6G4xmaV4Ux24xTPxLlMkaLEZvNSG6yQH4yTyFfxGAy0HdsALtFR7lUBkVBp1MI1XsZGhgm4LFgMBkwGPUYTQZcASfj2Rze9RFQFMplKBSKGCwmErEMZouByRkyC2/QSbdGV8Bo0tOpobsHSAqjQ6VP1htUNQlDXZOP7o75K9wGo450UrvIHc1qr/gGwqomYXB7bZqdB4BUav575XNFlBK0zvFI+H12ahs9lPQ6vC4bQ+mxk92IqeezWe39lSREigJ9wnQii0X7NuCwGxjJan8P8kLqdX2Nhy6hW5JIaHcX6mo8nNBIxAYY1SjWxycKlHIlDu07JQdz2UyEIi5sdiNmowGfy0ZyjoE55HWIXQTJoGw06ERJlNdlEwnD0Ii2ebou6BbzHExG+XY8mtO+2r12A7ERbe+AcUahkx6dID2DEIXcdurMDvxeOzqjjtT4BD1DafyqjQHhHC00VSm3wAJLzwx507bVy8S/O5PQ6/WV7kK5XCaTyZBIJOjo6ODgwYN4PJ6KRt9mszE2NsauXbsIBAKL4rs4G5gmCyaTqZJ3sZiYKV3653/+Zz74wQ/y/e9/n//6r/9iYmKCf/mXfyEajXL99dezcePGRT2HdXV1/M3f/A0rVqygXC7zgx/8gO3bt7Nnzx7WrVsHwAc+8AG+9KUvVV5js9kq/18sFrn22msJh8P8/ve/Z2BggFtuuQWj0cg999yzaPtZhYBqh+G8wKuaMLxcvBJJ0szOwmKHsQH87N4n2PXLQ5TLOsqFMiaTnf62qRVYRQFPvQulrLDigjrKxTKZ5CgOl5UTc9KXG1aF6dbwC6y9dDmHn++c93jDShPDGgXymq3NHN01/+/XXtTM4IkpAmC1mVC9duxOK/5aN9mQgxJT/oORzARDyVHqlvnpODZ/dTUQVolqhK/pdAq9ncKEIkGq4nRpz2qvb/LT0TZ/23qD3JHIC+NU7U49KY2X2Owm+gUJkdb+ppJZImEXRw6fIhIOm5FgrRuH20ZJgZqwi1hiZNbkI+l6m2lEnou0MAWprsbLUcFT0h8TJF+qFTQIg16nMDyiTT6k/AmDXqFXmpw0x6Q9Npajoz0BCthtJkbHcriseiK1Hix2M+P5PDarSSQMSUHr3xCSR7oWhZUim9momWQN4HVaRcKQFtKdfU4ryRFt4hr0uYmNaHclpPdz2y3ETsqR4jPkayaDjuW1HiJ2JwVKxEZGic0YySodL0D/sPbxBlUb8Rn5HBsbwuJ7nC0oioLL5cLlctHS0lKRgiYSCY4dO4bVamVychK/38/KlSvPS7JQKBTYs2cPJpOJTZs2Lfn4V51Oh06n46GHHuKLX/wi73rXu3jsscd45JFH+Ju/+Ru8Xi/XXXcd//AP/7AoK/jXX3/9rH/ffffd3HvvvezcubNCGGw2G+Gw9vX3i1/8gsOHD/PLX/6SUCjEBRdcwJe//GXuvPNOvvCFL7yk4SNVvAKUOa8L6dPCeXyYVcKggZdLGKb9CovZWZhGbjLP9z/7X/R1xOk81E82M07Tpib6T8QJL3fjdDqwuezs++2xWa+rXRWYRxYAjJb5N0BFryOqYco1GPV0HZu/+q836OgRugKxGUXjxFiOibEcMEypVJr3XopOIT+SoS5oQ/U4UQw6cvkSIyMT+GvcJGLziUr9sgCd7fMLJbPFQLeGiRsgI5h0bcKEoPqmwFQROgeKDrq7tLeh12t/pWrqvRzXmDql0yn0CURi7vUzMZan+3iCpuUBOk9OejKb9IRq3Tg8NsrK1Mq/Xq+bNz7V7dY2IlssBnoFOZA0OjEcVBkQCuIJYVJOfa2HTiF8Lp7Qfrw2IncrJqUU54BK/8l9Gx8vcqLt1Oe0bmWYWrMdb8CO3qQnPT5BbyKD2aQXpUpOQUYFEB3S7nzVBl0c69W+PgrCWFuLUb9AkrRLJAxCowe9DvH9avwqKQ0ykS+UGJ/Ic6DjlI/IZzcTCaiYrQZKShm72ThvGlLY7SCa1iZiNk7toMmgZ01tQHuHzyHMlIKm02l2796N2WwmmUzy29/+dpZ0aalGti4mCoUCu3fvxmAwLElnQQt79+5l+/btfPazn+WjH/0oiqJw2223cdtttzE5OclTTz3Fc889tyRyn2KxyI9//GOy2Szbtm2rPP6jH/2If//3fyccDnP99dfzuc99rtJleOaZZ9iwYQOhUKjy91dffTW33347hw4dYvPmzYu+n1XMQLXDcF7gVU0YXm7Bfroehpdjbj4dpBMZ/vnTP2IkNc6B3x3DplrY9IdriXYnyGUniR4bR9di4MQcw7BOr2N8ZP7qdW1LkPYD80ejtmyo47jGiNJl62o5tk/DpLw6ommOrlkWoL9zfsHkcFnp1shYKJfLpGMTjKYn6GN218BmUAioZlwBJ2abiWJ5So7jdGlPmmloDnC8db4x22Y30SdkJmSEKUB2IUU4FFGJDgiyoyFtvbvJpP1Vq6v30i3sV0IoymeOQM3nivR2JKEjicdrZ3goi8WkJ1jrxum1UVRgKD3GhGC0ra/1cFwgWFKQnM9r1yYMCvQLWRJOYTKQXqeQHtX+rtms8u1J2o7JKN+ME0NZEoMjs6RkBr2OtetC5ChRUMokTpqqpzEmnDe/y8agkNlgs8gJ8RLJqAu6aROCCcXyToEeIVm5KeyhXQiuMwryK4DEnJC3THaSTDaBT7WRzIyhKNDgV/F5bJT1kMyO4XPaRMJgtdngZAdrdU0Ak2DiPxeRzWbZt28ftbW1FalLKpWqdB4mJycr40UDgcCSJiO/XEx3FvR6PZs2bTojBOfgwYPccMMNfPKTn+RTn/rUvN9Cs9nM1VdfzdVXX72o2z1w4ADbtm1jYmICh8PBT37yE9auXQvAe97zHhobG6mpqWH//v3ceeedtLa28uCDDwIQjUZnkQWg8u9odP4gjiqqeC3iVU0YXi70er04HWYuFsPcvBC6j/bzoy89wHAySz5XYNVFy9CbDOz59ZFT+2s0UFYUinPm8q/e2syROUZngALaq8AFwVhZEJYxDUIR7PE7NAlD3fIgR/d0z3s80uhjQEP6Y7YY6WlPUMgXGZwzxafU5MdnN+IJqZjtZoqlMun0OEZBj1/b6Oe4xoQnq91EnzDqdEQITPMFtAmDy2MmreFTAEgKk4tUQSbl9tpICN6N8XHtzy8YUhkeypLPFek7SSJgqiNS8NhoCXuwqRbypRKJoVEGh7JYNDpNAKrTQlQwT5eEFZKakEq/MFFK6gjU1XjoFCQ/wynt419oO5JnSXVYiGsYyIvFqalWh4+eIr4+h5lQWMVsN5Ivl7FbTfMmMoW8TgYz2oQhO6EtiVuIZNgFWRYgvqbWp9IrjG51LpCX0C90dJw2M1EhmyHsdZDMjFEuw0AiM4swhlvsrPH6sNpMTJQKdCdTjJ7sQqRmnItNDaF573uuIpvN8sILL1BTU1MZ/6ooCl6vF6/Xy8qVKytp0wMDA0uejPxyUCwW2bNnDzqdjgsuuOCMkIUjR45w3XXX8Wd/9md89rOfPaPnYNWqVezdu5d0Os3999/PrbfeytNPP83atWv54Ac/WPm7DRs2EIlEuOKKK2hvb2f58uVnbB+rEFAqAedvPsFpQQjMPB9QJQwaeKmm54XyFRYD+54+zPc/+1946/yMjUzQdzzKyouXceTZE7P+btXFyzj83OzHFJ3CoMYqrM1pYahv/sqxzWWhS2Nl3q5qP24w6ueNaJ3GoFDMSVkDHr+qSRhql/vndU1gqlMx0J2kXIbhOdtSxiao9dtRfU50Jj1j43liA2kMRm0iV9vgo00jK8JkNmjmOABMSinOQRfp1HwJk8NpIdqvvRI8JvgtwhEXqeH5heJCEia9QfsYIzVu+vpT897Pq1rQTeZoCFpAbyKZniA7NrU/kZBLTJjWKrwBvG67WMhLKdZOp5zIPDKmfWN12OQV/OyETGYywhSkkTnG6tHRSUbbEtSGXPTF0qBAQ8iJ1+egpFcYyo6j12t/13WKMm9q0TTCXqdY/EtSLofVxIA0mchlFwnDeE77/UwGnRhcF/HYyfRrL5QYdHKxGU9l6U/O3scaj43aoIuCroxRr6d3KMOmc9C/oIXR0VF27dpFbW2tOP5VURTsdjt2u52mpiZyuVxlZOv0eNFp8uDxeM6IDGgmpsmCoihnjCwcO3aM6667jttuu40vfOELZ5wwmUymygSuLVu28Pzzz/PNb36T//f//t+8v73kkksAaGtrY/ny5YTDYZ577rlZfxOLTUlIJd9DFYuIqiTpvMCrmjAspSRpKSYhzcTPv/ckT/7nMxTKCrt/dQiAULOf9jnTdGxCQd+yqYG2/fNlR41rajS7Dt4aJ73HNEaXLg/Rund+V6B+RZAOjWLeX+MmpqFV1xt0dAt+h1Fh9rxF0I9HGn2a0inVayPaPVVMD8xJc875bKxcHsBoNTKRKxKPZRhJj2MSZuzXNXhp1zBCKzroFbT4Bo1RjDBlhNYKRdbpFJGUSAVGbb2XHqEjkhIkRG6PXTNnYSw7Sev+gVMjOxWojbjwBJ04HRbqa9z0xzKz/BAej41BYTuSKTYcUIkK8ippVG8k6GJA6HCMj2tfL26XlcFh7X2TJhDpdQp90hQkt22KMJQhFh0hFj1VnNsbdawJ+LA4TIwXCvQOphkdz1EfcskZEFLRqEB3TPs6qPWrtPZoS8ZE95wCvYJUqT7onpXZMBOTE9pkBmB4VPucS4QmMTyG32HnSM/Ud8hpMbKh/twvvKbJQl1dHcuWLXvJ93WTyURNTQ01NTUUi0WGh4dJJBIcOnSIQqFQ8T34/X7Nka2LiWKxyN69ewHYvHnzGSELJ06c4LrrruOmm27iK1/5yhknSFoolUqiUmD6/EQiEQC2bdvG3XffTTweJxgMAlNBc6qqVmRNVSwhqoThvMCrmjC8XLyY6Xkpzc3FYon/+puHOfi/raSHx4idNNcaTAYmJvOU5siDmjc2cGhOxwHkKT4ZjVVrAINeuziXijOroEkP1Lg1Oxv1LUE6NUy/NqeZ3hPaU160pjKBnGQcrvOSGZp/fE63jY5D80mVL+jEWCyxfn0NYxMFogNpxk6uNlsFI3RNnZe+Xu2CKyGsrrvcTqID8/crUuOirzel+ZqksIovSZhsNpPmKFmAotACdXtMJAdn/KCWId6fJt6fpr7BR7RnCLPZQKTeg91lIVcqYbIYGUppX0NxYbXb57WLhCEmditsMmGY1P6+eVQTwwL5lLoLtRE33cL0KIkAWc0GunqGZkuzFKgPOmlwq7isFgZHxugfysz6bRgSjMs+h5mkkE1iNcvFZUL4HGp9Kn1J7XMnpWMD6M02YP55Mht09A1qX1u1fpVWweBtniFZ9DltuO2yTOpcwMjICLt27aK+vv4VyVT0en1lvOjq1asZGRkhkUjQ1dXFoUOHcLlcs9KmFxPTZKFUKp0xstDV1cW1117LDTfcwN/93d+dFbLwmc98hmuuuYaGhgZGRka47777eOqpp3j88cdpb2/nvvvu461vfSs+n4/9+/fz8Y9/nMsvv5yNGzcCcNVVV7F27Vpuvvlmvva1rxGNRrnrrru44447zklvyqsO1RyG8wJVwqABSZJULpcrnQVYfHPz2Mg437/rv9n1+D4MNgvxniHsbitOnw2r24xJZyIc8ZCbyFOYLKDoFeJtMfweKygKeoNuKhshpDI5lmfV+gi6kybDQqGMzmQg3p9C0SlTGQsnofocmvIinV4h1q1dTA0L+vq503mmYbRo/3DVNge1uwUeO1FhJX9I2LYkyQnXexjRMDZPZCc5+Ez7qXOhQLDGjTfixmLS09DkY6AvRX6GN0Rn0JZzeHx2kkKA3fi49mvKirYcyeE0ExOyHHICEaypddMmjECVAuYCAQ/Jwfmfu9GkZ+Dk5KT8ZIHuGZ2WdetrCZvM+CMuFLOe1OgE/bE0qtMimqQl+Dw2BoWiV4JblbsIkgbWaNCJ41ldkiQKxO3UhN20dc8pkssQi43gddg42j5FjD12E+EaF2abifFinh6BNKlWo0gYpDTrhfwGPpdNJAxSeJ9ep9ArkAKv3chA+vQJzej4qdesbzq3/QvTZKGhoYFlyxYvK0JRFFRVRVVVli9fzsTERGVka1tbGzabrdJ5cLvdr+j3pFgssm/fvgpZOBOBY319fVx77bVcddVVfOtb3zprnYV4PM4tt9zCwMAALpeLjRs38vjjj3PllVfS09PDL3/5S77xjW+QzWapr6/nxhtv5K677qq8Xq/X88gjj3D77bezbds27HY7t95666zchiqWDuVyiXL5/NX2nw7O5+N8VROGl3vz1eowLLW5OdGT5OvvvZf+tijLtywjP54jPzbB0EAKpZQn0VGYZ2peu20l3Ufa5r2X6ndy/IX5XYd1f7CSZFs/epMBX9iFGnBhcVhweOwMxkYZimdIzyj6GldF6NAyCqsmBrQm+ygK/cK40WGhgDEKxulIo5fM/vnFpOq1ERM0/MNCsrRRKGoiDT5OzDy+Mgz2pRiOZdDpdeRzRfRGPY1NPqweG5nRLAZhxS4UdjGs0d0wGvX0C10Eu80JzH9NMKwyqiGHAohqSIsAzFZt06zbYxWJjLTQUVProUvIuMikxxlKjM5K8baaDbS0uMkFXYwXCvTHM7MC1waHtLcf8KsiYZC6GKGAk5TQRSiWta8lv9fKQFy7+JcM/U67tkka5NwIgPiMY81mc7Qfn/oclzf6KQ7mWBZx4fJayZWL9CSGyYwXsDvsoHHt6hTEYLgav8pRQaq0UMd7QJjSVB9w0SGMYQ35PQyktf1KQ0JCuk5R6J1BkNY1nruEIZPJsHv3bhobG2lubl7SbVksFurr66mvr6dQKJBMJkkkEuzbtw9g1sjW0yn4S6US+/fvp1AocOGFF54RshCNRrn22mt5/etfz3e+852zKkP63ve+Jz5XX18/L+VZC42NjTz22GOLuVtVVPGqwquaMLxczPUwLLW5ufW5dv7fJ/4Nq9OMv9bLvl8dnPV83Yo6jj7XPu91GWEFNCVIObInV9mLuQKJ7iSJ7qmicOXWZtpPhq/Z3TYCDX7sHgcOj518Lki8b5jcDKNvTVOA9gPzx6lGGjwMaGjyFb1COiEYToWRpjph/GK43kdmeL43w+GyEhOkQhlh5dtq1y78Io0+ek96IIr5Ir0zVu4dLisevUKg0Y/JPhUQ1t+fQieMqozUycV3clB7vyYntYtlf9DJoECKxoQV6lBEO/kZEBOpJSOy0airdB5mIjdZoDBe4PB03ocCdSe9EDqjjphwnRoE47DdZhIlTOWydofFYNBN+Q203m+BMaeSJKompNJ6QvualQzKHpeVpHCsdquJcqlMX1+KvhlBhGGPDVvZwAVNEYbGxukdTFeGA9T5XXQLXgSLST4mKWU66HYQTwnTuhxWEAjDhNDVUhSICsSuPuCia8b7nasdhkwmw65du2hubqapqemMbttgMBAKhQiFQlOjpdNpEokE7e3tHDhwYNbIVotF7oSVSiX27dtHLpc7Y2QhHo9z3XXXsXXrVr73ve+dF3kUVZzDKJfPa6nOaaHqYXh1YWaHYanNzc/8bBc/+/bjdOzvZO1lq+k8NLsY9td5Ob67Y97rws0BejXMzp6Qi77j81cDzTYTvRqPA0RnjEDNpsbIpqZMznUrwvQej6LT6wg2BfCEPegsRsw2CyaLgdzEbHmDYtJera1t8lcK8Jkwmg2a41dBJkMGaRJQg1dT2mS2GBgQTMJjI9pFtuq2aT7uC6skTxbZmaFTRnC9QYfSkGPd6jAFIBbLVCYSOVVhbKrHxpAwatVksgHzj9/ttmoSBkWBfqHzYBCIl8/vEDsPOSkUrdZDt0B+Zo2gLUOsP02sP03LihDJtiRel4VQnQej1Uh6bIK+aJqUoOmvCbk4LlwXKaHgrQ276BRC3gxGbQ2y025kSJhaZBY6XwD9AiEP+ZwiOZvMaxfd+ckC+/f3Vn5DVIuBSK0bq8OE2WIkns5qyoik0a12i3HexKJpBN12kTBIPhdAfD+f3chgVps82U2nrjub2ciysFd8/7OF6VC2ZcuW0djYeFb3RVEU3G43brebFStWkM1mGRwcJBaL0draisPhqJAHp9NZ+R2a7ixMk4WlNlQDJJNJbrjhBtauXcsPfvCDM0JQqniVo/wa8jBUCcO5iVciSSoUCktqbgb4yTcf4/6vP8JoKkvT+noO/f7YvL8JNwdJaphZfTVeohrFW2RZgGGNldb6VRHa9s2fdhRs8BHX8AqYrEYGOqZW1kvFEtH2GNGT2mxv2E1uMENkeQhX2At6HUODWcxmKzB/206PHZhfANY0+ek6Nl93bzQbRP+C1JGQpE01TX46NMzWig4GhG0UhMk9/uApwjATBoOOY3u6Kc3IsQiEXfjr3NjMeiI1bqIDqVn3iWBY1Rybqiiy7GhcmGITrnEzMGPVeibSQkEcCDhFwiD5J6TOg16vaHYeYCpJGmAkPcFI+hTBdThM2AoKm1rCjBeK9MZSjJ3Ml7AK2RAKkBrVJjNSMBzIZuyA187ImPZ+j44JHRu/k6jwftI1CIgdk0hQnUWOxicKnGif+ve6lWEYLrCsxoXLbWOyXKR/KEMmOylOQaoNyCnTep18/5KIRNjjIDqs/VzE72Ewq+2bGR07dd0tC6nk87lzyjx6LpEFLUyPbG1sbCSXy1WkS11dXRgMhopsqb+/n4mJCbZs2XJGyMLw8DDbt2+nubmZ++6774xss4rXAEolUM5fbf9poepheHVBr9dTLpfJ5/PodLpFJwv5yTz/cPv3+M1/P1N5zO7WnpYxKhR8kuxoIqu98mgWdNe+Go8mYYgsC9F1aL70x+m1M3TSQNrXOkDfjC5HoNFPU6ObvK5EoagwHMuSmywwGNNelbYLq+81jT66NBKh9QadSCTGhCk4NqGQjDT46BdWyweFFGe9kOUQrvfR1T57f4eiaYaiaVSPjczwGE7VQrg5gMlhZmQsJyY/h2vcDAiEQVHMaHUebHbt99LpFfqFQl4yiPsDDgYFqVRBWCWP1LjpEXwlE0LInN/npGMGWVR0Ck11blwBB2ajHrdqnedVqAmr9AlkpiCY7T0uq+iHsNutQErzuV4hJdnntYuEIZvVJhl+r0M0UFsXkEsNprKUimV6e1L09pzaz3UtAXRmAyU9xDPZWQW9bQETciqr/R1x2S3EU9r753fZRcKgLKBZHy+eei7sMPDb3/4WVVVnTQc6W8FmqVSKPXv2sHz5choaGs7KPpwOTCYTkUiESCRCqVRieHiYeDzOgQMHKJVK+P1+EokEfr8fk0n217xSpNNpduzYQSgU4r//+7+XdFtVvMZQ7TCcF6gShjkol8vodDrMZjPPPPMMgUCAUCj0iidYTCOdyHDPu7/J0Z2nzMqKotDdOl9Oozfo6W+fXzjr9DriPdrFbl+btuwoKQRnSWFqDmF8Z6jBz4iGJ8BX42awZ4jBGQW9zqCjpiWM2+vEZrMQ788wPnqK0IwLBZZd2PZMb8FMKApETzNkzeW1axIGl9fOkDBVaERIcbar2qTE43cwfHIVfywzwYl9PZXnmleHWR5RsXrsjE0W6OtLMTmRx+O1axIGg0Endh4mJ7TPo8ttYmhY+7mRjHbx6A84RcIQF6ZTqS4rCIRhQBj16pjTrSiXyvR3D9PfM4zdbmYsm6Mm5MTqMpCnxFheweO2i4QhIci7Qn5VlAlJE4hCfgcxofuiE+4BOp0ieii8qkUkDBOT2h0Tu9Uo+iuMOj0HZ4wJDqgWIhEXeosenaKgU5R5adwmg54+wUAd8TlJjWlfD4YFSIGUdO2yWUikTx3vVa/bzJbl4cp0oBMnTmCxWCrkYbHurS8F02ShpaWF+vr6M7LNxYROp8Pj8dDX14fVamX16tWkUil6eno4fPhwZWSr3+9fVFI2MjLCjTfeiMvl4sEHHzynukVVnP8ol0qUXyMdhuqUpFcJZo5MveyyyxgaGiIej7Nv3z4URSEYDBIMBl92cmf3kT7+7zv+nljn7Ak4/iYPg93zi42alhC9x+fLaYIN/lm+g2n4atwkNYpKm2ol2qE9dSchEI+cUGhL03icPjtDc4q5UqHE5Mg4h46eMkgHmwM4Qy4mi0WGEvP3FSAvaOidgrcgWOsmJkwi0sqEAGaNlZ0Ju9tIWqP2Xai7IUqYwmqFMMyEooP+zuQsMqPT62ha5ke1GFmxIkhfX4qxsVMFbU2dh+4u7e2Xito+BafLokkY9HqFqNR5EMyLbreNYcE8Prc4nUYw6BRJRlE4Z8GgWnnNYGwEZlz+TW4H6xoC6Ex6kpkxBhJTOQcLjVo1CZkdigL9QoHv98qEITaY0ny8NuSiRzin4+Py6FgpayIScnO8S/s7O3chLpOZIHOSADpsJtSyjtpaN2aHkcxkjq5EmvqgSwxsW8ivMZwVSLLZKCZQ1/idpLtPEZC1DUHMZjN1dXXU1dVRLBbnTQeaJg8+n2/JDLTDw8Ps2bOHlStXUldXtyTbWGqUSiUOHjxINptl69atmEwmvF4vy5YtY2JiopI23d7ejtlsnkXKXu4Uo2w2yzve8Q5MJhMPP/wwVqv2gk4VVVTx6sarmjCczuqKlrl5+mY7sw188OBByuUygUCAYDCIz+d7yTfiQq7A5e+4lN1P7OfEvu7KiFaHx65JGFS/ChqEwR1UNQmDJ+TSJAy+Gjdjx+Z3HrxhN0NCQR0TxqNOjGuvWOeLwuSYkIvBGWbUeEeCeEcCX42HVP8w3loPjohKvgSZ4RxjIzlxbOpMj8BMuP1OTcKgem2kktqFZFoofqVQuEiDV7O7AZAUAtsk2VGoxkN0zjGWiiV6j8cp5ooMdA+h6BQamv2oQZVcqYTFbtIkDGazQQxsKwuFfCjiEke9SrKaYEglJY1AFc6x1+cQCYOU2eBb4DXxgRGiM65Xt2om0uDF5bHRk8zQF03PIy+SF6EmqNInFOsK2vcNg14hmdJeiXerVpEwlITbbNDnIC50RhaSKknhdCGfg9jJ92ubMZbXZNARabDhajSRLRToTqQYn0HKJQO10aATuxK1AZVjfdqLDeYZqdo1PhW3Y3aBqdfrK4sv5XKZVCpFIpHg+PHj86YDLdZK9tDQEHv37j2vyUK5XObQoUOMjo5WyMJMWCwWTVI2U7o0TcpeqvdgfHycm266iVKpxKOPPrroQXNVVAFUJUnnCV7VhAGmSINUOE3jxczNOp0On8+Hz+ertIDj8ThHjx6lUCjg9/sJhUIvujq2bFMjyzY18sef/yOOH2znkX99nJ5dUbKCbERahdUJ25BW/+0u7ZV5T0hlSGOV1VfjISmk38a18hcAk0H7h91k1r7EpsjNMEN9U/9NI7QigN5WwuZ0VAjENIYFiYZk5gxG3GSG5xdXRpOeuGAS1uuEDorQ3XCoVpJCgTuzQzATLp99HmGYu1/lUpn+9gT97VOF36qNtdS7rbhCLnLlMn39KbKjk0Rq3XQKRCaf1yayZpP2+VIURSQfRpP2NWezm4gLhbdeGDXrcJhJCOcMRfu7arEY520nm5mk7eAA69fXEj+cQLUbiTT4MDlNpLIT9MXTYhfB47aJhEHKeagNe+gUVunTaeEc6BRiAjkKeOwiYZjMCR0+k54BwUDt89grhGEmCoUS2cwkh08OLVB0Cstr3Lg8ViZKReKj2kSwzueiI6Z9H7AJxnSAsRmdszUNAfHvYOqa83g8eDyeynSgRCJBf38/R48eXRTfwzRZWLVqFbW1taf9+nMB02RhZGSELVu2vKh/YC4pmx7Z2tHRwcGDB/F4PJXzKnUMJiYmeM973kM2m+UXv/gFTqdzKQ6tiiqmRqoK9/5XHaqE4fzEy0lunvkDt3LlSjKZDPF4nGPHjjE5OVkhD36/Xxw319PTQ3esk3d96m1EIhHSgxmee3Qvz/xsF/ufPkLh5OrfoDAmckIwL0opy3phtKbZpl3k+yJuTcIgSZ4Ahvq1C7NJoWg2W7TPjcNmoX3PlNZfUcBV68IedKIzWxmMahdeo4IeXyJQoTqP2C04XQlTsM7N6FFt34hISoRCOlTnobdDm5ClkmPE+oYZOLnfik6hvslHxGvHqNfR3TPE5Iwxt2azgZh0LFLnIawSFTwCkhckFHZx4oS2dGZEWgkPuxjVMLUDJASZWiTioqND+zMbP7lv49k8J46c+iyaGjwY7SZMDhPp8Rw90dSM74j299xklAtyp0Ne7c4VtN+vNuyiWyBhUnYHwIDgo6kNuTghSOP0C3Q6ZwbKlUtlenuH6e0dpiaoMpIYoTnswuOzk9OV6E1mSGUn0JW0P3OASUE2CNCXPHW86xqC4t/NhaIoOBwOHA4Hzc3NTE5OzvI9mM1mgsHgafkekskk+/btY/Xq1dTU1LzkfTmXUC6XOXz4MJlMhi1btpx212XuyNaxsbGKdOnYsWPY7XYCgQCpVIrNmzej1+vJ5XLccsstDA4O8sQTT+ByuZbo6KqogpNF9Pmr7T8tVAnD+YeZYWwwdVM93dUrRVFwuVy4XC5aWloYHR0lHo9z4sQJDh06hNfrJRQKEQgEMBqNlMtljh07xsDAAFu2bMHtdgPg8qtceevlXHnr5WTTYzz/833sfmI/z/7Pfs3tJoSAslFBxy0Ve1IL0Ch0BaY6D6l5j3uCKilB8z0oyDTygtnTMoPElMuQ6k2T6k0TXu5nojuJp8GDM+yhWNIT7U1TLpdFb8GkELDlFEzVbp+dlEZaM8iGZ6swfcofVhkUim9pNKzTZQPmEwaT2UB8znksl8oMnBhEdZjp2N8HOoWGZh9qyMVEoQR6heMacjaAfF4olhdYtIwJsisp9VinU0TDs9WqLYdQFEintAmmzS4XSXFh3xwOC0dmJHnbLUYijV4sqokyYNDr5k1Xqgm76BSuJ8mrYTbqiUv+jqJ29xAgI0z28nvtJITvssMmj48dERYSnA6z6PHwumz0xzMMDKRnfV4hlwmHomNDQ5D+1CjJOQZnKTG6xuukf8Zza06DMMzFi/ke/H5/RRaq1dmdJgtr1qwhEom87P04m5gmC6lUiq1bty6KRMtms9HQ0EBDQwP5fJ5kMklvby/XX389er2eyy+/nGw2SzQa5cknn8TrXZoMjXvvvZd7772Xzs5OANatW8df//Vfc8011wBTHY5PfvKT/Od//ieTk5NcffXV/NM//ROh0KkQwO7ubm6//XaefPJJHA4Ht956K1/5yleq2RDnGcqlMuXXSIfhxRQv5zJe9d8qLUnSTL+CoiiLEmmvKApOpxOn08ny5cvJZrPE43G6u7s5fPgwbrebXC5HuVzm4osvxmbTlrjYXTbeeNM23njTNiayk+z+5UGe+dkudv3iAOOjE7iDKikh7TchFDoZYQzkuDCCtVjQZvpGo/bl4q/zahIGh9sujn/VkkIttG2P30W0fZChjiGGOqaO02AxUL+xFoPVxuhIgdicFX2pYJdWl31hlyZh0OkV4oJEKyek4HqD2oRB0SF6NKTbSLjOQ3e79ip+bFoiUyrT3z5I/8kZ/msvbGCZ34ndbyc7WaC3b5hcrojRpBdlRwbh8/V47aLhuSB8XuGwSwyTmxTIYiBoJx7XJmzSdeHz2UkKHgrdHKna5ESeztYYRpOeYqGEzWQg0uTF6jSTGp+gJ5rGuUBBnhRGj9aE3XQIwwMcDifE5xfyOkU2PAe8DpEw5Ava506vU8RAuYhfZSSrff1IiyTpdA6T3kRiaKpjU+d34A85KRsgm8vTFtW+1/hUW4UwGPQ6Vtb5Nf/udHG6vofBwUH2799/3pOFI0eOMDw8vGhkYS6MRiPhcJhwOExnZyc///nP+fa3v82ePXsol8u8//3v54YbbuDaa68lHA4v6rbr6ur4m7/5G1asWEG5XOYHP/gB27dvZ8+ePaxbt46Pf/zjPProo/z4xz/G5XLx4Q9/mLe//e387ne/A6BYLFb26/e//z0DAwPccsstGI1G7rnnnkXd1yqWGOUSr50Ow/l7nK96wjAXS53cPA273U5zczPNzc0MDw+zf/9+SqUShUKBQ4cOEQqFCAaDWCxygWKxm3nd9i28bvsW8pN59j51mEO/P86vfvT7ed0Ef42HQY2iVm/QiX6ElCC9GBdWPifGT0/6E6j3MqpRZJltJlHalBnSJkNan1JhokB5PE/b80cBsPvsBJeHMNhsjI7mxFGrg3HtbVuEle9gjUfsYki+CqNgng7VeuVQOikvQMir0BsV0kntbkWpWKJnhlTKaDbQ0BLAHXGTGM7S2zs8T8JWEGQ1VquC9pmEIYFIuNw2kTAkBLmN3+8WCcOgQHp9fodIGEZGtVf3I2EX3d1DUwTi6KkujMNqxImOTS1h0uOTdA+kKmOHbQuMOXUIXRaAEYGUuxwGhke0i38pzRwQOxmRoIvek/koc2FZwEAtdTkcdjOJGd/FwcFRBk8uCqxZHqJGbyUYdlI2KETTo8ROfs9nLr4sj3hnGaAXC3N9D2NjY8Tj8YrvwWq1Mj4+TktLy6IXuWcK5XKZo0ePMjQ0xNatWxf8nVgsGAwGHn300QoRS6VS/PSnP+V73/sef/qnf8rWrVv5xCc+wTvf+c5F2d71118/699333039957Lzt37qSuro7vfe973HfffbzpTW8C4F//9V9Zs2YNO3fu5NJLL+UXv/gFhw8f5pe//CWhUIgLLriAL3/5y9x555184QtfqOZEVFHFIuM1RRjOFFmYiXQ6zf79+wkEAqxevZpcLkc8Hq/4HlRVraycSV0HAKPZyEVXb+Kiqzdx8+fexsH/PcYzP9vNs4/tJRXP4A6pmoTBV+MhriFhMloMpAQph1ZSNMBwUvtxaZXZKshIgvU+emYEvk1Dp1dEudXYiFDYOE9N7cgms3QkT0xto9lLwKHH2xBkMg89HYMUCyUUHQzFtUlJblK7W+Dy2jSLfLPVKE5IGhe8G26fXfO99AbdvA7JNMol7fPrDTpI9GkXsek5nZL8ZIGuQwNYTQb69vZis5upaQlgdJoZSo8TjabFzoPdbgHmnzOr1UhCIJ1zV/enobqsmgnXgNT4weEwMyh01UxCQarTyQZuKbF6YjxPb0eyIr9yWo3UNPkwOUwoRh37Wvspa/SBRka09828gB8iEvIxPKItGcsK147qsJAUOg8ep4VebSsNE4I0z6BX6Itrn6Ow30mbMDHLYNSRHMrOmnQV8dgIhl1Y9XpCbgex1OgrkiO9VCiKMmtxpr+/n8OHD+NwOGhvb6e3t/e0fQ9nG9NkIZlMnjGyUCqV+OhHP8rOnTt58sknqampoaamhrVr1/KXf/mXxONxHn30UVRVXZLtF4tFfvzjH5PNZtm2bRu7du0in8/z5je/ufI3q1evpqGhgWeeeYZLL72UZ555hg0bNsySKF199dXcfvvtHDp0iM2bNy/Jvlax+KhKks4PvCYIw7S5eaFJSEuBWCzGoUOHKomiiqJgsVgq+tGZ5KGtrQ2Hw1EhDw6HQ3xfvUHPpjeuYdMb1/DBr7+bo8+2c+j3x0gnRuYV3C6/U5Mw+Gu8DGhkM1jsZjLC5JbcqPaK6PiIsMotFLoOYeJQoM4njnPVIkMAOcmn4LbTvqeH+Ekpj9FqJLTMj83rYCRdYlCj0BenMAkrvsEaNz2CEXdIkIdIhXS4zkOfkLOQEfwT/oBbkzAYjLp5nodpTI8MHc9O0r7vVJJ388ogJtWKYjEQTYzMGpVaKgnTjpz6WRNxZmJUIHiBgJOM4OGQXhMKqYyOaktqxoTwtXBElkRJ9+u5k5gmxk+ZqNetr0WdVKht8mGwGRkcGaM/nqZchuGM0MkIuegUBhdIMsgy0BPVfk3Y7xQ7Agv9BEWF67om6KJbuE5sC3QltALvhobHyGQmUBTIF0qE3TYubDqzUqB4PM6RI0fYuHEjwWDwZfkezjbK5TKtra0MDg6eUbLwyU9+kqeeeoonn3xSM9AuGAxy2223Lfq2Dxw4wLZt25iYmMDhcPCTn/yEtWvXsnfvXkwmU8XnN41QKEQ0OvWdjEajs8jC9PPTz1Vx/qBQnjyvpTqngwLyMIlzHa8JwjDT3HwmyEK5XKazs5OOjg42bNhAIKA9WtBkMlVMffl8nkQiQTwep6OjA6vVSjAYJBQK4XA4xH3W6XSs3baCtdtW8I5PXsvx3Z3sfGQPzzyym4H2OEYpaM1j1yQMvoibvrb5K58Wh5lRYWU4JYzIHBcKQOlYXH6nJmFQfXYyUp6CIG8xzZkznh/PEz00QGSFj8TxJL46L6EVNeTKCr2dSXQ6Re4WCLISKQ3b4bSI+Q/Sezk9NtAgDFOdB0kQpI1QrYc+jRRrkCcXWSwmWl/oqvw7XOvG3+Alr0BKKPA9XpV4Yv5nrCgQFbpUkjxGURRxQpNVuIYBYsJrXC6rSBjSae3rOBxx0SkQwEKxxHg2R9uhU4WIy2bAG7Zh9zqJm8eIzZFNOR1ysZcWSHbI5yAmyPIWCliTRsH6PXYGBe+Fy2kFgTBI3hwU6Be6JjVBtUJAhlNjNIc94v4uNmKxGAcPHmTDhg0Eg1OdjbOR9/BKMD0UI5FIsHXr1jMSkFYqlfjMZz7DY489xlNPPUVTU9OSb3MmVq1axd69e0mn09x///3ceuutPP3002d0H6o4ezCZTITDYf43+tjZ3pUzinA4fF5K5l7VhKFcLvONb3yDK664ghUrVpyRFaVSqcThw4cZGhrioosuesmzq41GY6UNXCgUGBwcJB6P8/zzz2MymSrkQVXVBQnPigubWHFhEzf/9dvoOtzH3qePMJrK0n2kf9bfGc3ahZuU2eALaxMJs80k+g7Swsqm5JEwCgWRL+LRJAwGk55BoSgUJUwuB5Ak2TtE8mTnRW/Us+b1qykbjAwNj8/zPkijViUJjT/iElfLJVIirTiHaj30C9kX8rQl7UJDURTiwvjbubr5wb4Ug30p3D476eExGpYFcIWcZHMFenqHyeeLKDrt75OqGkmntVdRRjLa18pCI10lyZvf72RQuMakTo7RqBO3Y7fLN3CtcLrxsQKmkoljL/QBEPLaCNa7KRsVBpIj4phjg0G3cJaC8H0aTGp3oIwGHQPCeQh4ZcJQEAzUwDzyM42I30m/8JxrBkGymA001JwZwjBNFjZu3Cguzswdhz09lGIx8x5eCcrlMsePHycej7Nly5YzRhb++q//mgceeICnnnqK5cuXL/k258JkMtHS0gLAli1beP755/nmN7/JTTfdRC6XI5VKzeoyxGKxii8lHA7z3HPPzXq/WCxWea6Kcx8Wi4WOjg5yOe2FtFcrTCbTGekeLjZe1YQhk8nwm9/8hs997nMsX76c7du387a3vY01a9YsymSkucjlcuzbt49iscgll1zysletDAZDZXLFdFs9Ho+ze/fuWatmHo9nwR+2xrW1NK6tZfvtb6avPcbOR/aw85E9tO3tqmRPzIU0UlUkEhGPZqfCaDGQFkatipInQV5kFTTngTqf5rYBkUgo5fmfezFfJNkXZaB1qjB3R9zUrKqloNOTSU0QE0mJthRFGgHqdNvICMbmcUEvLhX/Op0idh6ka9sfVokLxbLkufAFnaSSWfrb4vSfzE4wmg00rQphNxmorXHTP5CaJfMJBt2k09qfS0qQV7ndNrGQH5JGgvpsImHICNkc4bCbHmlsqpAkbrUaSQjbsc0gGamhsVlTtsImK5saQ+R1ZXoTmYqcqCao0i1cUwsZnieEIL5wwEmPFLgnmO8BokLmhUe1imnSHpddJAwzz15LvX/BXIjFQjQa5dChQwuSBS3M9D1MTk5WFmim8x4CgQDBYBCXy7UkvxUzMU0WotEoW7duXdDLtpjbvPvuu/nRj37Ek08+ycqVK5d8my8FpVKJyclJtmzZgtFo5Fe/+hU33ngjAK2trXR3d7Nt2zYAtm3bxt133008Hq90lZ544glUVWXt2rVn7RiqOD1YLJbzsnh+LeJVTRhcLhc/+9nPSKVS/OxnP+PBBx/kG9/4BnV1dRXysHHjxkX5Qchms+zZswen08n69esXrZsxkyCUSiWGhoaIx+Ps378fRVEIBAKEQiE8Hs+Cx1G7PMSNf/4Wbvzzt5DoHWLXLw+iKAqtz5+oTIIBmJzQLlyl1X/Jj+ALuYlqyIt0eoVhQd8/IqysSqFpqldbVuX02hkRpsmMDGtvQ1WdDJzMQEgNpEidlFY0r6+lMWzDHnTP7j4oiD4BaV6/P6SKk5CktOjJnHbhG6xxa6ZFA2SF7obb7xQJg5anA8CiIQfKTxboPRqleKifUrGMx2snvNwPZgMD8Qwms/ZKvdGkkMloExODFC5oNjAoys60r0lFgZggiXKq8g/TsCC5C4VddAgSL6mLYDYbOHE8fuq7pUBjnQd3yI7VYSYxlK0Ezs3EqJQO7rCIRTwLZD1obQPAoIe04EkK+ZzitvQGeYFipixqZdNLL95fLgYGBjhy5AibNm3C73/541vNZjO1tbXU1taecd9DuVymra2NaDTKli1bzhhZ+NrXvsa//Mu/8Otf//qsFdef+cxnuOaaa2hoaGBkZIT77ruPp556iscffxyXy8X73/9+PvGJT+D1elFVlY985CNs27aNSy+9FICrrrqKtWvXcvPNN/O1r32NaDTKXXfdxR133HFOSMyqqOLVhlc1YZiG2+3m5ptv5uabb2ZkZITHHnuMBx54gKuvvhq/38/27dvZsWMHW7dufVnkYWhoiH379lFXV0dLS8uStbN1Oh1+vx+/38/q1atJpVLE43EOHjxIqVSqkAev17vgD1ugzstb3ns5b3nv5QzH0jz72F6eeWQPB585zvCgdqElGZiljoTDY4Ou+Y97Qtop0gDDQtGaFYoXg0RivFZNwqDoFAaFIruQ0z6+ifwEAwf7Kv/2RDyEV9Wgt1lob9WecjMqSIWsguTF4bKSEYrVMSGMS/XYRMIgdUSMJkFC5LaJ2y/ktTtRwRp3xScxMpSddb6NHjsbVoSYKJXo7h2u5C5EIh66BWN3dky76A2FXHR3axfrUp5DKOwiKsnIBHew2WyYZXieCfsCoXHSxKdw2EXXTClZGaI9w0R7hlm7tgZiE7Q0eXB4bYxM5umKTo25laRKIb+TtCDlU10uzawHQH4/n4M+YVqYaQGvREbohE0lZJ8idiublnZC0kyy4PP5Fu195/oe0uk08Xh8SXwP5XKZ9vZ2+vv72bp1K3a7/cVf9ApRLpf55je/yT/+4z/yxBNPsHHjxiXfpoR4PM4tt9zCwMAALpeLjRs38vjjj3PllVcC8Pd///fodDpuvPHGWcFt09Dr9TzyyCPcfvvtbNu2Dbvdzq233sqXvvSls3VIVVTxqsZrgjDMhNPp5KabbuKmm25ibGyMn//85zzwwAPs2LEDVVW54YYb2L59O5deeulLWk3q6+vj6NGjrF69mtra2jNwBFPQ6XR4vV68Xi+rVq0inU4Ti8U4evQo+Xwev99PKBTC7/cveByekIur33s5La+v5djhNoqDBvb9qpV9Tx+lkDtVkI0LM+2liTMmi3ZxrPocmoRhIWOzFP4mSZh0wiqov8ZNQiiypUwKVVUrnQeA4YFhhgeGad5QR64nSvOGBqx+F4PJLPH+NIoCCUEeUhI6Jf6wi1FBQpMbE9K4BamJL+QkGdNekZ8Y1z5f/rAqSqXSQkEsSaUAuo/GKv4KnV6httGFp8aHxW6mp3tI85rpF+RVTqdclA0K0ja32yoShoxAPucV+DOQy2sTE7PZQFzofjgc8n5nMuNTORntSWif2qbVbGDF2jAFo8JwdoLeWHpWp8pqkW/VaaGj5LQZGBE6Fl63UyQM0hhWnU5hQBjDWhNUZ02EWrWEHYZp38Fik4W5UBQFt9uN2+2u+B4SicSi+R5OnDhBX1/fGSUL//RP/8TXv/51fv7zn7Nly5Yl3+ZC+N73vrfg8xaLhW9/+9t8+9vfFv+msbGRxx57bRlmq6jibOE1Rxhmwmaz8fa3v523v/3tTExM8MQTT/DAAw9w0003YTabuf7663nb297GZZddNi9qvlAosHPnTvL5PJs3b8br9Z6lo5j/wzYyMkIsFqOtrY2DBw9WWup+vx/jnOlB0ybt4eFhLn/TH+BwOLj+fW9mbGScXU8c5JlH9rD714fEgnpSKEgkQ7BFCLlyB1RNwmCyGEXPg0QwnKoTmC9VcgVUTcJgNBsYFgrM3Jh28TSZH6eYK3Bi14nKY/4GP7Xr6xkdL9LTkSSfm11ojgrFqk04JzaHSZy2lMtpF7Een0MkDEmBeFmF7S80nlXqxKkeK5nhU8dZKpaJn0gRP5Fi9QV1uAtlIssDYDHQH82QSo3h8zlmzfSfCUne5XCYxfRpSd6k0ymVjIX57ydLleKxlObjC5EMada2tA+5yQKliQKt+6amMHmcZiKNPnQWA7HUKJPC1CKjQTdrZX8masNejnbENZ8rCB4mWMDwHHDSKxFr+6nzZ7MYqQ+7xfd/Jejr66O1tZULLrjgjN9z7XY7drudpqamiu8hkUi8LN/DdEbEli1bzhhZ+O53v8v//b//l8cee4xLLrlkybdZRRVVvLrwmiYMM2GxWLj++uu5/vrryeVyPPnkk5UxbwDXXnstb3vb27j88suZmJjgne98J9lslp///Odn5Ib/UqEoCqqqoqoqLS0tZLNZYrEYnZ2dHDp0CJ/PVwkyUhSFvXv3UiqVuPjii2e12G1OK69/+0W8/u0XMTmeY8+vD/HMI3t54YkDjM0ofKUJSTmBSCjC9BqrULB5wy6inRqjLhWFIaHInxRGl5qFkZ6BOi/97dqF1ZCghVedKv3MLhYHuwdxqmY6DvZhsppYvqkRk8tBdCBDKjlKQphQJM3Q94dddLcJ5mGBSJiEY7Sr8qhXaQrRQuNZJZO2P+SaRRhmYiQ9zmhqjOO7TmnV6hp91DV4cbtt9PQOzRvnGYtqS5iCQTmbYVzIZggGVbHzIBX4er1CWvBdLNRFSAuytHBYzofQzyA62ZFJ2g6eCjd0NevZ1BikoIOeWQZqF12CxM8kSNAAonHt1yxkeHarNpEwzOyerWgMLIkss7e3l2PHjp0VsjAXL8X3EAgE8Pl88xabTpw4QU9PD1u3bl0wb2exUC6X+eEPf8hdd93Fz372My677LIl32YVVVTx6kOVMGjAZDJx9dVXc/XVV3Pvvffym9/8hvvvv58PfehDjI2NoaoqLpeLH//4x+cUWZgLRVFwOBw4HA6WL19eGSXY29vLkSNHUBQFm83Gpk2bFtTjmq0mLr12M5deu5l8rsD+3x5l5yN7eOEXB8RUaMncWxBWSkU/gmCqdvkcpIXOw7BQ1EgGVWkbVodZHA07IZCSyZMG1Nx4jradxyuPt2xdhtnjJDtRpKdzcNZEHmkEq10gUUaTXjQpS8foC6mMjmgX2GlhpX4h2ZG0fYNRu1BUdBDXkGrFupL4fXa6d3dPTV9aGcLssjKYHicWyzAyot1JsSwg0UkIqdAej00kDCPCZxAMOumPClOBFiAZUifDvUA+hER0HA4z3TPzIRRorvPgCjqw2E1EB0eY1Og4jU9onzujQUcmq/2c1yUTBmlULcBQ5tT3fWXj4suRpsnC5s2b8XjOXL7DS4Hke5ju8M70PfT399Pd3c2WLVvOGFm47777+PSnP83DDz/MG9/4xiXfZhVVVPHqRJUwvAgMBgNvetObeNOb3sRtt93GW9/6VtxuN5lMhksuuYRrrrmGHTt28OY3v/mMTLh4JZgeJejxeNizZ0/lB+v3v/89Lper8qO30Axwo8nAlivWs+WK9RSLRQ4/08Yzj+zluZ/vm7XiL63+ZzPaRKJY0CYS0oq5K+DUJAwGk14Mc8sKJEbMf6jx0HtMOzF0KJrSfHyq8zC/I5Ifn6DthSn5kt1jo259I1jM9HYNEZdGwAqrtIGIW8xmGBXGlkrkQ69XSAiflSSrcHlsorchI+QsBCJuUd6UP0ki85MFOg6cMpgvXxXC7LJR0OvoHUgxOsNHMzys/V5ut1UMmtPrtY9noalKHq9DJAxSFyESdtHbp71/OmEfAGKCZCw0t5tShoGeYQZ6hlm7NoIhOUljsw+by8rw2AQ9sRSlUpmBuPY+RIIuuoWuRF6YygUwIhjTTUb9rDTpFY0vf2KRFnp6emhra+PCCy+cl/x7rmEh38P0Ik1dXR2KolAul5c87+H+++/n4x//OD/+8Y+54oorlnRbVVRRxasbVcLwEvHwww/zx3/8x9x11138xV/8BeVymeeee47777+fz372s/zJn/wJV199Ndu3b+ctb3nLGVk9ejmIxWIcOnSIlpYWGhoaAJicnCQej1emgTidzgp5WKiDotfr2fAHq9jwB6v4wFfeSesLHTzzyB4O72yjfV+35mskA7O0Yo/wg6o3aRde3pCLuDBnX5IXzfUaTMOhahMnm2ohI6zKTwjm8ELplBciOzxG62+PAOAKObE4zNSvDDE6ViTam6r83Zgg+1HdVvo1JlApCmLxL51Hf9hFTChux4UC0RdSRcJQKmh/Lm6fXSQMKeFcmowGWp/rAKakbE0tAZwBlcx4jly+CMwv2N0em0gYpBX8UGiBqUqCGWehLoLqsoJwTrPCZ+rx2BgWEqgXSroeyUxQLJToPn6KULjsJiKNbkbzE1jNRhJziLJrASmV1WYHNPZDgYFBIeE5oNI5g4CsWMQOQ3d3N+3t7WzevPmcJwtamPY9KIrC6OgoDQ0NjI6O8uyzz1Z8D4FAALfbveh5Dw899BB/9md/xn/8x39wzTXXLOp7V1FFFa89VAnDS8A3v/lN7rrrLn7wgx/w9re/HZhaSbr00ku59NJL+drXvsaePXu4//77ufvuu/nQhz7Em9/8ZrZv385b3/rWF01nPhMol8t0dXVx4sQJ1q9fXwm6gSk9bn19PfX19eRyORKJBPF4nPb2dux2eyVleqFJIIqisPqiZay+aBkA7fu62fnYXnY+ureSEG1TLWSFYi4jGC3zwhz5nLAS6vDYNQmD1Slve0QIBtMLk4i8ETdjmdPsPKgqfRpGbKNFx2D7IMn2qa6Er85HaFUNkyVFNPVKK+W+kMqgGMwmkA+PTSQMUjaEZJLW6RSGhMk7BuFcTsmrhNCxGRr8cqlM37E4HIujN+iwOiysXR5AsRrpj2UqGQr5vLxCLkmVFpqqJI97VekXPCkLfdelcDp/wCkShoLQfZMM1OPZHNnkKPHY1PVeG3Dgr3OR10FPPC1ONgNICNec22FkOKv9XXTOGDtrMRuoC7nlDZwGpu9XF154IS6Xa1He82xg+ji2bt2KqqoAs3wP+/fvBxb2PZwuHnnkET7wgQ/wwx/+kBtuuOEVH0MVVVRRRZUwvATU1NTw5JNPsnXrVs3ndTodW7ZsYcuWLdxzzz0cPHiQH//4x3zjG9/gz/7sz3jTm97E9u3bue666140nXkpUCqVaG1tJR6Pz/rR0oLJZKqY+fL5fCUBtbOzE4vFUiEPTqdzweNYvqmB5Zsa+D+fuYHuo/3sfGwfx/d0sOuJQ/P+Vm/QiZ2HUaGIstkcwHxZjlbQGIA74GRc0KlL8qmcMOffIaReL9h5EFaWzXOK72RvkmRvEofLRj5foGVTMwbVxkBfurKqPyGQKLfPIRIGqfiXZu7bnRYxm0HySQRq3MSEsbVSFycYcdMnyKsmBQ1+MOJioGd4nnnaU+vGZDcRi43PM3I7VYs4UlWaqoSC2EVwqVaRMEhdhEDAIZIWi5BnAogdk2DQKRIQr0cldpIwJBOjJE9uV9EpmDxuLlgWZjSfp3NguHKuVIeFIeH7Fgl5GT6hnTsyk9Asr/cv6HV4qejs7KSjo+O8Jwvd3d0V0jPzvqvle0gkEpq+h9PNe3j88cd53/vex/e+971KSnIVVVRRxStFlTC8BLzjHe94yX+rKAobNmxgw4YNfPGLX+To0aPcf//9/PM//zMf/ehHufzyy9mxYwfXXXddZVLRUqJQKHDgwAHGx8e5+OKLF/QnzIXRaCQSiRCJRCgWiwwODhKLxXjhhRcwGo0V8uByuRY8jobVNTSsrgEg2pngmUf2svOxvbTt6aJcLuMNu0n0asuIpDC3vFDMS1OYpCLf4bEzKnQYpLRoSYfui3gYywxoPieZw10u7c6Dw2cjemKQ48+0AlPXVc2aWtz1foSMOUxC0WlX5eJfCmbzBZ1iYvSIUMC6vXaRMAwPahfKTrdVM+APYFgwtatuGwM9s7cT60oS60oSrvVgSY1TuzKE0WlhYHCEZDKLzaowon0pkUppkym/z0lC2Ae9QZaPxAVy5vXaRcKgZVqGqUlHUqCc220TCYPA6VCAY0ej5E9+7lazgbpmLyaHCZ1Rz56jfZqvMyzgvYgnT13b9SEHpVLpFclrpsnCli1bFlzcONfR09NDe3v7i5Kemb6HFStWzMt7mJaIvpS8hyeffJKbb76Zf/qnf+Kmm25aisOqoooqXqOoEoYlhKIorFmzhs997nPcddddtLe388ADD/Bv//ZvfPzjH+d1r3sd27dv54YbbiASiSw6eZiYmGDv3r0YjUYuuuiieRkMpwO9Xk8oFCIUClEsFhkaGiIWi7Fnz55Zq2UvpsUNNwV424ev5G0fvpLB/mGefWwvbXu7+e2Dz88LNnO47YymtIt2aSVfWsk2mrWP3RNwioRBkhdJZMUueB4sdjMpwYg9KeQ8GMyzz2G5XKbvcC/x9iiFXBFX2EVkTT0FRUd3R5LcZIGiMB51oQlJUmCbfaHANKEjYxCKaLPVKGZASNeK2WpkSHiN1BHQG3QkommKxRIn9vVWHg/XummK+LFbs/T0pSvF8jSGhrTPgddnFwnDuBCC5/PZSQrja41G+XabFMYTh0MuugVPjmGBQMYh4fsRDKoMzCDhuckCJ45OjRTesL6WICbC9W5KRoWeRLoSCped0PZ/6HUK6bFT3wdjKcvTTz9dWR0/XXlNR0cHXV1d5z1Z6O3tpa2tjc2bN592h2Rm3sO0RHRu3oOW7+G3v/0t73rXu/jmN7/JzTfffNZlsFVUUcWrC4vrsqpChKIotLS0cOedd7Jz507a2trYvn07Dz74IGvWrOGqq67iH//xH+nu7hbHNZ4ORkZGeO6553A6nWzevPkVkYW50Ov1BAIB1q9fzxve8AbWrVtHqVTiwIED/OY3v+Hw4cMMDg5SKgnLnCfhr/Fw7Z/8IX/+rVv57r6v8KGvv5sL3rimsnrrCTo1X6fTK6KEaUxITJZgVbWnB6k+BzlB+jMiFHfSqrMv4ha3nxKMpKpbu1hS/XbK5TKpgRRHfn2A47/aR6k/xvJ6FZtZj9s736QuTUhSdJAQVqgVRTCV+x2iVEgKkwvWuEXd/ISUmRB2ia+ZFD6XYMStKZdK9qUYjWboeb4bw+AoK8Iu1q4I4naZsFh0jI0JJFPwXQAMCh0Tr8b5n4Z0fmw2k0gyHE45UG5MyDqx2YwkxRRseZJbPl8kPTxG6/5+ju/qY6JnlCaHgwuWhbEYDZg0zkckoM6Sf1175WVs3rwZs9lMe3s7Tz/9NHv27KGvr49cThhscBInTpx41ZCF6RGwr9SoPS0RveCCC3jjG9/IypUrKRQK7N+/nz/8wz/kHe94Bz/4wQ/41a9+xTve8Q6++tWv8r73vW9JyMJXvvIVLrrookrHY8eOHbS2ts76mze+8Y0oijLrvw996EOz/qa7u5trr70Wm81GMBjk05/+NIWC9nejiiqqOHdQ7TCcBSiKQmNjI5/4xCf4+Mc/Tn9/Pw8++CAPPvggd911F5s3b2b79u1s376d5ubm0775J5NJ9u/fT2Nj48t6/elAp9Ph8/nw+XyUy2WGh4eJx+McPnyYYrFYST/1+XzoF1gRdQecXHXzH3DVzX/AaGqM5x/fz6HnjtPfkaA4Z0XYE3aTFEaRSonUOWGF1CCs+rr8DjFhWvI8SJ0Hm0BKDCa9mDBdEN7LqrHyn5/I0/bsccx2M7nxPDWrI7jrAqRHcvR3J8UJSYGQSzMbAeRC3mSVr6W0sFLvWKBbIXkrHAtkQAwJxbrqtjLQo/2aaRlVIVekc8bo1pUb68BqIFso0B/NkJuh95oQrhlVtYgjVc1CJwsWWPUPOekUfBwLIS5c68GAKr6fZJgHGJ7bbSrDQE+KXDZPciiL2aRnebMPs8vM4MgYvfE0bqeV3pNyO6NBR3OtF4NBP0teE4/H6evr48iRI7hcrso9YeYY6vb2dnp6etiyZQtOp/ZCwfmAvr6+RSMLczHX93DXXXfx0EMPcffddxONRlm1ahV6vZ5oNEokElnUbQM8/fTT3HHHHVx00UUUCgX+6q/+iquuuorDhw/Pmqb3gQ98gC996UuVf8/8nIvFItdeey3hcJjf//73DAwMcMstt2A0GrnnnnsWfZ+rqKKKxUOVMJxlKIpCbW0tH/nIR/jwhz9MLBbjoYce4sEHH+SLX/wi69atq5CHlStXvmjx39vbS2trK2vXrl2SH42FoCgKXq8Xr9fLqlWryGQyxGIxjh07Ri6Xw+/3EwwG8fv9C8oUHG4bG65ooRwY48r3X0LiWIadj+5l968OMTGWQ/U6NAmDxW5mVJDYSPkE5ZL2MrbNqV2wqj6ZSIwI8qmxce3H/RE3UaGwkyY3udwqvcxPpXZ4rIymprorfUf66TvSD4A77MKqK9GyKkRXR3KWZEv12kTCMCRIqMxW7YJYr1dICn4TRShS7U6LGBonXeUWq1HcN70gVZrqpAgyKp3C4Wc7p15v1NOyMoTeYWQwlSUW135NIOAkI3SyJE+IxWIQV/3tdplQjY5qb8fjsVUmQ53O+0mjZU0mPQnhvPp8dpJDWfK5Ih2tp669oMeK22hifXOI3sE0Aa9jnlxsOvulubmZycnJygS2trY2bDYbgUCgIrs5U8nHS4X+/n5aW1u54IILljxcTlEUrrzySgKBAA899BCf+MQn8Pl8/PCHP+SOO+5g69at3HDDDezYsYO1a9cuyjZ//vOfz/r397//fYLBILt27eLyyy+vPG6z2QiHw5rv8Ytf/ILDhw/zy1/+klAoxAUXXMCXv/xl7rzzTr7whS9gMskjhKuoooqzi6ok6RyCoiiEw2E+9KEP8fjjjzMwMMCHP/xhnn/+eS699FIuueQS7r77bg4fPjxPtlQsFvnRj37E8ePH2bx58xknC3OhKAoul4uVK1dy2WWXcdFFF2Gz2Thx4gRPP/00e/fupb+/n3x+vrykr6+Pffv2sWbNGlatXckf7NjKp/7lT/j+4a/xl9//IJsuX41dYwXaE5K1wsNC8TcpFFDSGFCXXy5opM6DQa/9I+j0yiupg0IHpSjIvJw+bSlMKprmxHPHaXtyP0osQUuDyur1EVSPTVwNt9pMpASJjNWqLWkJhF3i9CRJQuQPyrKTcUFuE4jIn3FuUns7gbC7Eg43FzO/RsV8ka5D/Zx4tovJ7jS2bIHVDW4aap0YjadulQs0ysQiPhSSJVYLKRAlA7XNJu/EQpLGuNCdCYVc8zxE05AmaWWGxxnsSdP2Qh8TXaNsrtMuEqdhNpupq6vjwgsv5I1vfCPLli2rmHsVRaGnp4dkMvmiUsZzEdMG5QsuuACv13tGtnnw4EGuv/56PvWpT/HVr36VO++8k9/97nf09/fzwQ9+kGeffZY777xzybafTk/d7+Ye749+9CP8fj/r16/nM5/5DGNjp74TzzzzDBs2bCAUClUeu/rqq8lkMhw6NH+CXhVVVHHuoNphOEehKAo+n4/3v//9vO997yOdTvPTn/6UBx98kL//+7+nvr6e7du3s2PHDpYvX84f//Efc+jQIX73u9+dsR+slwpFUXA6nTidTlpaWhgdHSUej9Pd3c3hw4fxer2VKSC9vb10d3ezefPmecdhshi5+C2buPgtm3jPX17Pgf9tZeeje3n25/vJJEdFGYvTaxcnHkkr+VLxJHUeFjJoFye1i1WjRfvr5wmp4nSoMWE0qNvrYqB9frdCbzo1sjY3nqNt5/GpJxQFY52DdesjDKUmGJgx3cgXVuk9MT+tGiA7Iuc5RIU8BymYzbZAgJgoVRLOP8CwQHJcHpuYpp0VVvCDERc9HUmGY1P7YTDqqVvuR283kJvU/gxMRj2JQe39XrCLkNXeB5/PIXYlFiItUvfD7bEynNJ+Tl1ANjbXJD4TsenPqQw1oZfuO9Dr9YyMjJDP57n00ksrXYZDhw5RLBYrmQQv1o08FzAwMMDRo0fZtGnTGbv3HjlyhOuuu4477riDv/qrv5rVeQ4Gg7zvfe/jfe9736L44bRQKpX42Mc+xmWXXcb69esrj7/nPe+hsbGRmpoa9u/fz5133klraysPPvggANFodBZZACr/jka1s22qqKKKcwPn9p24CuDU2L1bbrmFW265hZGRER599FEeeOABrrzySux2O6qq8q1vfYtAYPFSVpcKDocDh8PBsmXLGBsbm6VxnvZ3zNS9asFg1LP5D9ey+Q/X8sGvvoujz7ZzaOdxktE0Q3MShd1+p0gYpHGnE0Jgl9R5cAedImGQiv+SsCLvCbrE1wyJsh9tEY8nqDI4Iz26gnKZwRMJeo9P/Uh7a72EVtUyWQLzAsWtJDsyCqvQRpOeYUHqIs3rdzgt4vQmSZJnthjEqUp6gyzjk6RK9jlm42K+SN/RqRyC2kYvQQXUiJOxYpF4cpxCoYzXayUa0y7wxT1Q5C6Cz2sXCYPFYgPmv06nU4gJ58Hvc4qEYYE9FL0Xfr9jlvm7uckvvsdMlMtljh8/TjQaZevWrRX9u8/nq0gZE4kEHR0dlUyC6QWF080kWGpEo1GOHDnCpk2b8Pl8Z2Sbx44d47rrruN973sfX/jCFxaUqS6Vf+2OO+7g4MGD/O///u+sxz/4wQ9W/n/Dhg1EIhGuuOIK2tvbWb58+ZLsSxVVVHFmUCUM5yGcTifvete72Lp1K3v37sXv99PU1MRtt92Gy+WqaFcvueSSBY3G5wJsNht1dXUMDQ1VtK9DQ0N0dXWhqmol62Gh/Ai9Xse6161g3etW8I6PX8PxPV3sfHQvzzy6l1jXoDgJyR1UxWlLEsEoFU+v82B1mMkKXQEpSM4iJCnbVas4AjYnjPn0BFzahAEYHDjVVRjqG2Kob2p854bLV9FcZ2e8XCadKjCenZIHub02UoKxWUojDkRc9AtjQSeEffYGnYwK50ZKrA5EXPR2aPtBUsPan7HH7xDzIaTvjaJAfCBDPlcgdTLV2mTUU9fswWLXMaYayWTmH9eoEObm9zkYFKZuSVIgkLsIC4W5WSyyIVvySlitRgYF0uL12CuEQVFgWfOLL1aUy2WOHTtGLBZjy5Yts8yyU+8zJWV0uVy0tLRUFhSmV/FVVa2Ypue+9kwjFotx+PBhNm7ceMbIwokTJ7juuut417vexT333POK8i5eLj784Q/zyCOP8Jvf/Ia6uroF//aSSy4BoK2tjeXLlxMOh3nuuedm/U0sNkXEJd9DFVVUcW6gShjOU/z+97/nhhtu4LbbbuOrX/0qOp2O8fFxnnjiCR588EHe+c53YrFYuP7663nb297G6173unOytT85OcmePXswGo1cfPHFGI1Gli9fXjFIxmIx2tracDgchEKhFy0UFEVh5YVNrLywiVs+t4OOg70c+G0rY+mJymr6NFw+hyZhUBQYFoiE7HnQ/uH2hFyMj843KQOkhUJMmmrkDbtE8pGRik4hzM2mWsQRtJlkhq5DUwF0OoOOpg0N2AJudCaDSBgygqnc6bKBQBikYLa5q/szIU1IWkiqlJvQ7uR4FyAMkofCH3LN60oU8kX6jw2y9oJ6JtqHCQQdOEM2soUiyVSOQqEshq95fXaRMOTz2pOyDAadHObmksPc8kJOB8yQFs1BKChPXDKbTpGqYFDFJhDdaUyThenE+RfrIsLUgkJTU9OsTIJ4PM6JEycqyfOBQOBFwyMXG7FYjIMHD7Jx40b8/pfWWXml6Orq4tprr2X79u387d/+7RknC+VymY985CP85Cc/4amnnqK5uflFX7N3716Aiqdu27Zt3H333cTjcYLBIABPPPEEqqoumjm7iiqqWBqcexVkFS+Kxx9/nBtvvJGvf/3r3H777ZXHrVYrN9xwAzfccAO5XI5f//rXPPDAA5UQn+uuu463ve1tvP71rz8nplFks1n27NmDy+Vi3bp1s34Apw2SdXV15PP5Cnlob2/HZrNVyIPD4ViwUGheX0fz+jpuuP0Keo9H2fnoXnY+to8TB3qwCvkE7qBLlCpJGQyjo9or/3ahkNUb9aSlMDeBlEjBcIpOR1KQ1hQFL4a/xkO3kEqdSpx6r1KhROeeTgDWXrKckBV8zSFGJ4r0diYplcooCgwKRapeIFJmi4FhQe+vEz5Pq80kTlWS0rf1BoV0UpvMWKzyd2BI2De3zy7KmKY7Jun4KOnp7oNJT+MKL5NKmbQBRkZmdx8W6iKkBBIWDqn0Cn4RKdRu6v20yV4w4CAuJFDb7fI5mpxhJF/2InKkcrlMa2trZRrS6STOT2M6k6C2tpZisUgymSQej7Nnzx50Ol0l0Mzr9S5pZzUej1fIwpmSgPb19XHttddy9dVX84//+I9npbNwxx13cN999/Hwww/jdDorngOXy4XVaqW9vZ377ruPt771rfh8Pvbv38/HP/5xLr/8cjZu3AjAVVddxdq1a7n55pv52te+RjQa5a677uKOO+445+RmVVRRxWxUCcN5iAsuuIAHH3yQq666Svwbk8nEW97yFt7ylrdw77338vTTT3P//ffzwQ9+kMnJSa677jq2b9/Om970prNyo06lUuzdu5fa2lpaWloWLPqNRiM1NTXU1NRQKBQYHBwkFovR2dmJ2WyukAdVVRd8n7oVYf7oY2/hjz72FmLdg+x96ujUqueuzlnmQJfPoUkYFAVRJy9JgoyCDMQbVkn0DGs+J8mOdIJ/whdxMSiMRx0XOhK2BVbxsylt+QwKxNpjxNqnJAQOn4O69Q0YHVaOndT3z4U0ZtQfctEnrFxPSFOVQio9HdpmbDnMzcOA0OGQpjrZHGZxSpTJJBeiWuNeC7ki5pKBniNT5CwYcmDxmZkoQ3I4x9iYdpfHZJTHnDqdViCl+dyklHRu1BEX3s/jtouEYSHM9DYs5F8ol8scPXqUwcHBl00W5mJmJkGpVCKVSpFIJDh69Cj5fH6WaXoxQyvj8TgHDhxgw4YNZ4wsRKNR3vrWt3L55Zdz7733nhWyAHDvvfcCU+FsM/Gv//qvvPe978VkMvHLX/6Sb3zjG2SzWerr67nxxhu56667Kn+r1+t55JFHuP3229m2bRt2u51bb711Vm5DFVVUcW6iShjOQ4RCoQXJwlwYDAauuOIKrrjiCr71rW/xu9/9jvvvv5+PfexjjIyMcM0117B9+3be/OY3vySZwCvF9ArdihUrqK+vP63XGgwGwuEw4XC4ssoYi8XYvXs3BoOhUkS43e4FyUOowc/Vt/wBV9/yBwxFUzz7P/t45tF9HN7ZhkUw/S7UeSjmTm8aidPtEAmDZGyeG2A3DZffKRIG6b2kzIKFJjSlhmY/Ppoc5ejTh1m+sZ5SX4zlGxsxuR3096crIW4ZYczoQsFsqZchVZImMamuFw9zmwt/SKVbmBJVEGQ9NodZ3AfzDNKYio3CSWO0xWKgnBmlNmghPVZkdPQU6QkEnPQJk50WCl8bEjpgwaCLXuH9FiJBI8JULNscb0NzszZhKJfLHDlyhKGhoUUjC3Oh0+kq+S8rV66sTGHr6uri0KFDeDyeinTJYpGvoRdDIpGokIVpOc1SIx6Pc+2113LxxRfz3e9+96x60l5s4lJ9fT1PP/30i75PY2Mjjz322GLtVhVVVHGGUCUMrzHo9Xouv/xyLr/8cr7xjW/w7LPPcv/99/NXf/VXfOADH+Cqq65ix44dXH311UsSotTd3U1bWxvr169/xT+6c1cZpyUK+/btQ1GUynMej2fBVTlv2M01t72Ba257A+nBEfb9phWrw8KB/22dtUKuCp0HgJRQZEsJ02ZBDrNQMNyYYAQ2C9pxq9Mijo2VUqndgQVGuqaF7VtN5CfytD/XNvWAolC/rg611k9K2GeDUPSazIYFgtm0X7PQJCaDUAwrykufkDQT0vQmf0ilezSh+VxB6GSUiyUGWocqRvpgxIHZa2ISPaDdMQE5fM1qNZIUOiOqagWBMOQEIqooEBWuheAcb4NWh6FcLnP48GGGh4fZunXrKyrWXypmjnBevnw54+PjFTlja2srDoejcl+w2+0v2feQSCTYv3//oty3XioGBwe5/vrrWbduHd///vfPSQ9aFVVU8dpB9Q70GoZOp2Pbtm1s27aNr3/96+zevZv777+fL3/5y/zpn/4pb37zm9mxYwfXXHPNi8p9XgzToxT7+/u58MILcbvdi3cgMEvDXCqVGB4ernQyyuVyZbKKz+dbkDy4/E4uf/tWLn/7VrKZcV74xQGeeXQve586glXQc7sDTlJCwSqZlHXCGFR3wCkShrSgq5dGYnrDLvqEgl1KpbYK3RWdXmFEKEZHR+fsb7lMz8EeAsNZEn1D+Ot9BFfVMF4o092RpFgskROkM/6wSn+XtoRIkh0Fwir93drdGimwzRtwilkP0nWu0ykkBK/GQiRjVOhkBCOuWfudGhiFk7aS2hUqtaoend3CUDpHduzUsUtTixYyKEvXG8CwQIICAac48nVmroTNZiI8J4NhmiykUqkzRha0YLVaaWhooKGhgVwux+DgYGVkq9lsrnQeFupIDg4OcuDAAdatWzcvQ2CpMDw8zPbt21m2bBn33XffosqqqqiiiipeDqqEoQpgquDeunUrW7du5Z577uHgwYPcf//9/N3f/R1/9md/xpve9Ca2b9/Otddei8fjOS3yUCqVOHToEOl0mosuumjJxyHqdDp8Ph8+n4/Vq1eTSqWIx+McPXqUQqGA3+8nGAzi9/sXbPHbVStv+KOLecMfXczE2CQH/vcYT/zH/7LvqVbyE6cKXtUnEwZptV7S9ktGbJPFKBKJnFBIO1yyvCw5J6vixeCLuEn0ahflxby2VEH120n0DTHYk2SwZ6qQtbtt1G1sxGzSY7GZmJgzjcgpGLsB0oK8yWheQFIjFOtun10kDGLKdFgl1q/dlZC+DQt1MpwuG6B9Ts06K32tMSANCgRr7Fj9Noo6I7392teUbYH8DMkXYjLpZ2UpzITHbRMJA5z6zJsafbPuB+VyufJ937Jly1kjC3NhMpkqXqhiscjQ0FClIwlUFhx8Pl/lvpBMJtm/fz9r1649Y2M/0+k0O3bsIBKJ8N///d/nxICKKqqooooqYahiHnQ6HRs3bmTjxo188Ytf5OjRo9x///185zvf4SMf+QhveMMb2LFjB9dddx1+v39B8pDP59m3bx/FYpGLL774jP/4KYqCx+PB4/GwcuVKMpkM8Xic48ePc/DgwQp5CAQCC7b8LTYzNeu8XHrzKm750g0MHBli52N7ef4XB7AKicV2l41sWrvIlRKbpWA4T9BFrFvSnja0AABsvUlEQVRbVz8qrBCLIXMLdESkVXyXzykShokR7QJ7Mj9f/55NjXHsf4+iN+goA8s2NWHxOhmIZhhOZsV9Nhh1JAXDeaGgvX1FgUFBQma2LDAhSTg3Lq9dJAwSyfCFVHGC1EITjWaNjy1Dqi9Lqi9LqF7FNT6JWutEsZqJDY4zeVJethCFTwikIBRU6RE+V5NR/j6Mjp76bJsaT8mRphcHRkZG2Lp16zk7+Uav11cIQrlcrpimjx07xuTkJH6/H6vVSk9PzxklCyMjI7z97W/H7XbzwAMPnLPnr4oqqnjtoUoYqlgQiqKwZs0aPve5z3HXXXfR1tbGAw88wA9+8AM+9rGPcdlll7F9+3ZuuOEGwuHwLPLQ3t7Ob3/7WzZt2sTmzZvPeojc3FCoaXNkR0cHhw4dwufzEQqFCAQCsyQA5XKZjo4Ourq62Lx5Mx6Ph7r6Wi66agPFQpHDz7bz+5/u5tn/2TerEHcHnSJhSAsFXEkYg+rw2Ih1ax/XcEIwSQvaeaNdB9pyezJJ7WLZZNWWRBhMetHXIRU73rCL5Ek9/Ynn2yuP166pxWbUUVPvoX+OIdwfchEVCluL1QbMPwcLFetl4Txb7Sa5k7FAAS11K9xeu7gPkizLajeJU5p8PhexngzjmSnZlk6vEKl3YvXayU1qG5QdDjNpodPiXEBKlRNyIIBZE5eaGqdCy0qlEgcPHmR0dJQtW7acN8XuzEWFFStWkM1m6erqoqurC5gaaZrP5wkEAkti2p5GNpvlHe94B2azmYceemhJt1VFFVVUcbqoEoYqXjIURWHFihX85V/+JXfeeSddXV088MAD3H///fzFX/wFl1xyCTfccAPbt2+nv7+fd7zjHVx77bXccsstZ20UoIS55shsNks8Hqe7u5vDhw/j8XgIhUL4/X46OzsrYVNOp3PW++gNejZctpINl63kA195J0efO8Ezj+7l2cf2ibkJZqtRDFqbEJKMJZO00+tgROgwTAjpwnanjQTzi3ydXmFIkM+UhcwvX8RNTNDNl4V6Uy/UkX1H+ihN5hg4kcBb5yW8upbxInSfGER120TCMDaqvbrv8sjF+phwbnxBld5O7eORZGQO1SKaoc0LpCtL06ACIRfdJwRGNwelYplkZwY6M5itejw2I546FwW9gf7YCIVCiWBAZSSr3Z3S6eS+hJTb4Pc5ZvkoGhu8FbKQzWbZunXreSujURSFXC5HLBZj3bp1eL3eSljcsWPHcDgcFT/Ui2XAnA7Gx8e56aabKJVKPProo2c9xbqKKqqoYi6qhAH49re/zde//nWi0SibNm3iH//xH7n44ovP9m6d01AUhaamJj75yU/yiU98gr6+Ph588EEefPBBPvOZz2A2m7nyyiv51Kc+dUYTWF8u7HY7zc3NNDc3Mz4+Tjwep7+/nyNHjqDT6WhqanpR46FOp2PtpS2svbSF93/5j2jf183vH9nDzkf3MtBxqgD0hFxEO7ULuBFhNKekN3EHnCJhkEiJ3aFdjCzkU5gUiIzTYxcJg2TSVj0q8Y6U5nNDJ70VQ71DDPVOraLbXFZc5lpWrgnT3TU0y/ewUGicZYFiXZI3ORbwUGSEVXpfyMmokJotkQyjSc+gZCheYNVfIjour4300BiT40Wyyal9MZl11DS5cVp1uFQLaY19HBfyQ0xGvShj8njtswhDQ4OXAwcOMDY2xpYtW85bsgBTZuO9e/eyatUqampqgKlxofX19eTz+Ypp+vnnn8doNM4yTb/cRZGJiQne8573MDY2xuOPPz5vUaKKKqqo4lzAa54w/Nd//Ref+MQn+M53vsMll1zCN77xDa6++mpaW1vP2Pi88x2KolBXV8dHP/pRfD4fzz33HH/0R3/EwMAAW7ZsYd26dezYsYPt27ezYsWKc55AWK1WampqSCQSOJ1OQqEQyWSSjo4OVFWtjGV8scyK5ZsaWL6pgZs/u52uI3088+hennlkL2ZB3qPoFIYlnb4wBtUmFLg6vUJKKEilIlb1OkTCkBKkSpIXYCGpksmkffxWl5nx9PyCeCw9zkh/kmPPd6Az6AitCOCpDxOLjaAz6EjGtPetWNJuizhUK6OnOb1KUWSSYbPJ0hvJdO0LOon2prS3tUDdOSiY6L1+ZyX7YhqFyRLR1iEMhRLjJ1KEa52oERdjRegbSFMuQ0IgdcGQSq9wLZhnpFP7fQ46ThxjfHz8vCcLqVSKPXv2sHLlSmpra+c9bzQaiUQiRCIRisViZRLbgQMHKJfLFT/UTNP0iyGXy3HLLbcwODjIL3/5S1wu12IfVhVVVFHFouA1Txj+7u/+jg984APcdtttAHznO9/h0Ucf5f/7//4//vIv//Is7935g3K5zNe+9jXuvvtuHnroIa666irK5TLJZJKHH36YBx54gHvuuYeVK1eyfft2duzYwZo1a85J8jA5Ocnu3buxWCwV70VzczO5XI54PE48HqetrW3WTPcXy6xoXFNL45pa3vWpa+lrj7Hz0b3sfHQv7ftPpYpNZSBoF9nSeFbRJB065ROYCynPwSTIngwmvZgzURKK8oWkSpOCQdgfdtOT1k6Mzp4svEuFErEjMWJHpv5u/R+uIeyPMJSeYGBOgTs2KsiOAk6RMOQEYub1O0kKZmjpGp6akKR93tDJ/oDxrPb5cbqsIgGRRv4C6DGilGG4d4Th3qljUJ1Gwiv8lMxm8vnivE6DukCXo1A4RTi9HmOFLJzPoz9nkoW6uroX/Xu9Xo/f78fv91Mul0mn0yQSCY4fP86BAwfwer2V7oNEovL5PO9973vp6enh17/+NR6PZ7EPq4oqqqhi0fCaJgy5XI5du3bxmc98pvKYTqfjzW9+M88888xZ3LPzD3feeSf/9m//xtNPP83mzZuBqULK7/fz/ve/n/e9732k02l++tOf8sADD/C3f/u3NDY2VsjDhg0bzgmfQzabZffu3Xg8HtauXTtrn0wmE3V1ddTV1ZHP5yva5o6ODqxWa4U8OJ3OBYlQ7fIQN370am786NXEe4Z49rG9PPPoXibHcyJhkDoPkkla9TpEwiAZmyU9uzfsJt6tXfxLPomFpEoZQXblcDsAbcIQ79N+r9JYjsNPHgE4mfdQy1ihRHfHoGhEtglTrUBOpnb77CJhkCZLLZT14HQ6iKIt+RkWpEC+kCoSBsljAjCoce1MjOQZT2SJ9UZR9AoNzR7sASdDIzliiZEFvQ3pGWTL77ec92QhnU6zZ88eWlpaXhJZmAtFUXC73bjd7oppOh6P09fXx5EjR3C5XAQCAfL5PCtWrACgUCjwgQ98gOPHj/Pkk0/i8/kW+7CqqKKKKhYVZ79CO4sYHBykWCzOC+MJhUJEo9GztFfnJ6655hp27txZIQtzMf2jesstt/Dwww8Ti8X4/Oc/T3t7O1deeSWbNm3is5/9LC+88IK4ar3USKfTPP/884TDYdatW7cggTEajdTU1HDBBRfwhje8gWXLljE2NsYLL7zA7373O44dO0YqlaJc1i7opxGs93L9n76Je376CT7777fzga+8k42vXzUr1djqtIhjWKXV+rIiaOfNBnFCk5T+7PTI0itpPKskVZoyVqe0nxOKVLPdyGRWTj6exmBPksO/3E/nUwfxlQrUB+ysXBOeZzyWtqM36MQCfyHz8rAw0cjtXci4qn1t2RxmUgKhsgmJ3gBjo9pdI5fXRnZE6LT43QCUi2VibUOceKaL1MEBAuUyhnyeZY0+DHPStfV6ZVY2w8UXrTnvycLu3btZvnw59fX1i/Ke036oiy++mNe//vVEIhE6Ozu56KKLWLduHX/+53/Oe9/7Xvbt28evfvWrJZW+fuUrX+Giiy7C6XQSDAbZsWMHra2ts/5mYmKCO+64A5/Ph8Ph4MYbbyQWm03cu7u7ufbaa7HZbASDQT796U9TKMhdsiqqqOLVh9d0h6GKxcMf/uEfntbfq6rKu9/9bt797neTzWb5n//5Hx544AGuv/563G43N9xwAzt27ODiiy8+I+NYBwcH2b9/Py0tLTQ0NJzWaw0GA+FwmHA4TLFYJJn8/9u787CqqvWB49/DPB7Gw6SCOOOIigNqzhOgAtqgmVNaXae0waxuWWal2WR2HW5ZaTdpEFBzzplUnFAREFBxQBTOQZF5hv37gx870LNRSwF1fZ7H59Gz92GvjQzr3Wu973sDnU7HyZMnMTQ0lFce7tTwzt7ZBr+JvfGb2JucjFyO/hHD4S2nSE/JIDkhVe97sm/qn1wq/TK3d7FRfPKfn6M/KKkpT0EpYKhpq5JSnkSxQgKu2tGK9Dz977mRrr8rtLmlMQkRZwAwNjOmWYfGGNtacvVqFoUK13F0UqNNVagSpRD3GZsYclMhD0ApVwUgSyEocHRWk5x7dxWSqkq/h9wGmcJNZevyKC1IIT+nBHMzI1yaO2KktuCqLhtLCxNSq2yzatrk4c3zys7OloOFe/2ev1umpqbyquSFCxcIDw/nxx9/JDo6Go1Gw4cffkhgYCB9+vR5IPkf+/fvZ/r06XTp0oXS0lLefvttBg8ezJkzZ+RKTK+88gpbtmxh3bp12NjYMGPGDEaOHMnBgwcBKCsrIyAgABcXFw4dOkRqairjx4/H2NiYjz/++L6PWRCE+umxDhgqO/3e+jRFq9XWWqMeoeKJ3JNPPsmTTz5JQUEBf/zxB+Hh4Tz11FOYm5szfPhwgoKC6NGjR43N1f6uympIbdq0+cf/71UDhPLycrmb7OnTp1GpVGg0GpydnbGzs6txBcPa3ooBo30ZMNqX/JwCju+M5fCWU5zcG09RQcWqgspARaZCDwZzc/2rAlY2FmjRHzAobXtCaauSsw26K/on7EpblWpKrM5RCH7sNbakX1ao3pSr0Mugyh78ksISzh85V/EPlQpXm+a0aePK9Zv51Rqx2dhZKAYMStWJHF3UpCbrH5tSr4eaVjIsFTp9A+Qp5GTY2luQqRAU1JTbkK+QK2FuaUL+/zfjKy4sJTmmYrVVUoGzlz2NXcwpUZmgTc+hUUN7xY9fn2VnZxMVFUWTJk0eWLBwK1tbW2JjY7lx4wZxcXFcunSJjRs3MnHiRPLy8ggICGDSpEkMHDjwvl1z+/bt1f69evVqnJyciIqKonfv3mRlZfHdd98REhJC//79Afjhhx/w8vLi8OHDdO/enT/++IMzZ86wa9cunJ2d8fb2ZsGCBcydO5f333//oU50FwTh7j3WW5JMTEzo3Lkzu3fvll8rLy9n9+7d+Pr61uHIHl/m5uYEBgayZs0a0tLS+PbbbyktLWXcuHE0a9aMmTNnsnv3bkpK7rxF5W5cunSJxMREvL2973uQaGBggKOjI61bt6Z3795ynkZcXBz79+8nNjaW9PR0ysr0bx+qZGFtTu+RXXjjuxdYHbuIN1ZN4YlgH1w9NZQW639vkcJkUKmfg7mVqZxYfCulCk3WdspbbrIUSrqaKmyrUangxv+XVL2VYvdnE0OyFbZX5eXpf93QUMW5w+eJ23EK7dGzOBlLtPFyxr2JI8amNZVhVSgRa6O8XUsxyHCyVmyqV9MKlFKFJDtH5TKcNeU2KN2Txlmtf2wSlOaXkBqdzvVTV/G0NKGoSP/XTH2Wk5PDiRMn8PT0xMPDo1auWV5ezptvvsn27dvZtWsXLVq0YPDgwSxbtowrV66wc+dOGjduzIULFx7oOLKyKgJie/uKQC8qKoqSkpJqQUqrVq1wd3eX8/giIyNp165dta27Q4YMITs7m7i4uHsew522aQqCUD891isMAK+++ioTJkzAx8eHrl27smTJEvLy8uSqSULdMTExwd/fH39/f1asWEFERATr1q3jxRdfpLi4mGHDhhEYGEi/fv3uuausJEmcPXuWtLQ0OnfujFqtf5J0vxgYGGBvb4+9vT0tW7YkKysLnU5HQkICJSUlODo6yo3iatqCZWphQvcAb7oHeFNSXMLpP89ycPNJjmyLpqDKXvUshcRmFCakdk42FOTq9B5T6latVFXJ0MhAsaQrCnMFO2cbxaZxSmVgHVxs0SokY5sY6R+bg6tttVUR3UUduosV9922d0taNXOg1NCIyxdvUPL/nZitrM0UqyoZGSn/X6Ur3I/a1qLaykZVRUX6A+G/WyFJKbfB2sacHIV7qqkPhIW5FVDxf2thaciRI0cwMzOTV9XUanW9rHxWKScnh6ioKDw8PGjcuHGtXLO8vJx58+YRHh7Ovn37aNq0abXjBgYGdOnShS5dujzwccyePZuePXvStm1bANLS0jAxMcHW1rbauVXz+NLS0vTm+VUeu9cxVF1ZLSsrk3/eSZJUr792BOFx99gHDM888wzp6enMmzePtLQ0vL292b59+20/IIW6ZWxszIABAxgwYADLli3jwIEDhIaGMmvWLHJycvD39ycwMJCBAwdibq7cfAsqfmnFxcWRlZVFly5d7thP4X67tapKTk6OXKo1NjZWrufu6OhYY0KpsYkxbXo2pcg8iyfGtcEgz5wj205zYs8Zxa1CpcX6VwssbZQ/ZzcVtj0p/XK3c7bh+lWFLUQFCl2ZHa0VAwalgEXtYKUYMBQqJUkbKz9yz9Zmk5xYkStiamFCc+/GGFhbUIaK82f055CUKAQz5pbGih2oa1rJUMptsNdY/a0KSUq5DQ5O1uQoNJuradKWVaVJYPuOzejTp4ecs3PixAkMDQ3lTsh32nZX23Jzc4mKisLd3R1PT89auaYkSXz00UesXbuWvXv30qJFi1q5rj7Tp08nNjaWAwcO1Mn1JUmSvx7mz59PdHQ0KpWKvn37MnPmTBEsCEI999gHDAAzZsxgxowZdT0M4S4ZGhrSp08f+vTpw1dffcXhw4cJDQ3lrbfeYsqUKQwZMoSgoCCGDBkiJ/ZVyszMZPfu3TRo0IAuXbrc88rE/aZSqVCr1ajVapo2bUpeXh5arZZLly4RFxeHg4ODYj33yhKwDg4Ock+LDk+0QpIkEo5frOj1sO006Sl/BQ952fon38am+n8UWKjNyFfqYqwQfFjbWSoGDEpdqQ1NlCeWSoGESQ0Tb6X32NnboLuQqf89VUraFuUXc+7QWQBadfWksaMZFs52aHW51cqrKk3iLayMKFAIWpS2IxmbGJKhkERuYan8dapYIcnOgiyFMrEWNeRKKCWFGxkbVGte19DTESMjI5ydnXF2dqa8vFxuZhYbG0t5ebkcPNxLM7MHoTJYaNSoEU2aNKmVa1b2plm1ahV79uyhdevWtXJdfWbMmMHmzZuJiIioVjrWxcWF4uJiMjMzq60yVM3jc3Fx4ejRo9U+XmXe371s46wMCIYPH05KSgpDhw7lwoUL/PDDD9jZ2fHcc8/93dsTBKEWiIBBeKgZGBjQo0cPevTowWeffUZUVBShoaF88MEHvPTSSwwcOJCgoCD8/PzIyclh+PDhNGrUiLCwsAeSQP1PqFQqrKyssLKyomnTpuTn56PVaklJSSE+Ph47Ozt560dhYSEnT56kQYMGNGvWrNrTOZVKhVeXJnh1acKk90eSdDqZyC3RHN4arZzYrMBWo1YMGJSayZnVMLm9qTCRz89X6M1gZ0muQjK0UiUmG0crxdKxhob6/89NLIzIVQpmDA25dPQ8cAkAt5Zu2DV2IjO3SPkJvsaOG1r9n588hcZ5jk7q25rPVarp6atSfwh7jbViwFDTPvIMhapPGhcbUq/8Nb5Gnppqxw0MDHBwcMDBwYFWrVrd1sysavBbm6VY8/LyiIqKomHDhrdtB3pQJEniq6++4uuvv2bXrl20a9euVq6rbxwzZ85k/fr17Nu377aVlcoeGrt372bUqFEAJCYmkpycLOfx+fr68tFHH6HT6eQSsDt37kStVt9zEPTOO+9w9epVtm7diqurK1lZWYwfP559+/aJgEEQ6rn6s178mHr//fdRqVTV/rRq1Uo+fjc1soUKlXuBP/nkExISEjh48CDt27fns88+w8PDgx49emBvb8/KlSvr9Gnn3bKwsMDT05Nu3brRs2dPHB0dSUtLIyIigqNHj2JjY0PDhg3vuJTftL07z701nP/8+Q4frZ/N6Nf98PByq3aOUklTqxq2KmUqBB9Kw7HVWMt5AbcyNdb/xNteIQEXlCsx2TnZ3PN7HN2Uq/3c2p/iWuI14nacoiDpGpYFebRuqcGzmaZafwcjY+Vg9IbC583aVvlzrdQcztLajFyFgM68hr4NBQr9O8wtTchU6CtRNcHb0NAAN3flz1nltrvmzZvTo0cPunXrhlqtJjk5mf379xMVFUVycjKFhfrHfr/k5eVx/PhxGjRoUKsrC8uXL+fTTz9l+/btdOrUqVauq8/06dP56aefCAkJwdramrS0NNLS0igoqAhmbWxsmDx5Mq+++ip79+4lKiqKSZMm4evrS/fu3QEYPHgwrVu3Zty4cURHR7Njxw7eeecdpk+ffk8rtDqdjsuXLzN+/HhcXV0pKyvDxsaGkSNHEhcXR3FxcZ314BEE4c7q1yPWx1SbNm3YtWuX/O+qT77vVCNb0M/AwABvb2+8vb0JDg5m8ODBtGjRgry8PLy8vOjbty+BgYEMGzYMR0fHer9/1tzcHA8PD8zNzcnOzsbZ2ZmioiIOHjwoN2VycnK6bQvWrTxaueHRyo2nX/Ej9WI6h7dVrDwolTQ1MtH/JNjc2kxxhaFMYV+/jaOVYt8GpYClpq0zSh/LvIZOzpkKT8+tbZU/b+mp+vMkbDXWXIhJ4eb/b78ytTLF3bsxmJspbteqqQSqsUI1KECxmZuDk7XiikVNxWhuaPV/HhycrEm5qP9+jYz/er7k0tCuxvFWVXXlrEmTJhQUFMhd0s+ePSt//Wo0GiwtLe/b92LlyoKbmxtNmzatle9xSZJYtWoVH374Idu2baNr164P/Jo1WbFiBQB9+/at9voPP/zAxIkTAfjyyy8xMDBg1KhRFBUVMWTIEJYvXy6fa2hoyObNm5k6dSq+vr5YWloyYcIEPvjgg3sai4WFBX369JF79lQ+tDE1NeXmzZsYGhrelvMiEqEFof4QAUM9UNn461Z3UyNbqNmePXsIDg7m3//+N3PmzAHg/PnzhIaGsnr1ambPnk2vXr0IDAxkxIgRODs719tfUFevXiUxMZF27drJWwOKi4vlyVdSUhKWlpY4OTnh7Ox8x8mXq6eG4GkDCZ42kOtXb8rBQ8KxC5RX9hBQmHXaaawpUJio5iu8bm5VQ2K1wtYeQyP9i6DGpkaKAYOBofJ7lK6jVLoVIO+mwtYri+qBSVFuEecOVHTRdWviRFM3NSa21ly9lkX2/293snO0UgwYSkuVcxtuKmyxqim3oVAhwdzS2kyxQhIq5e69xVVK+DbydFQ8707Mzc1xd3fH3d2d4uJirl+/jk6n48KFC/et4lJ+fj5RUVG4uLjctmXvQZEkiTVr1vDuu++yadMmevTo8cCveTdjuhMzMzOWLVvGsmXLFM/x8PBg69at/2gsVlZWjB8//rZcLEfHilyY0tJSDA0NOXToEKtXr+abb76ptz+LBeFxJAKGeuDcuXO4ublhZmaGr68vCxcuxN3d/Y41skXAULN169YxceJEli9fzoQJE+TXmzdvzltvvcWbb77JpUuXCAsLY926dcyZM4fu3bszYsQIAgMDadCgQb35hXXp0iUuXryIt7e3XEMdKkrPNmjQgAYNGlBSUiJPvi5duiRPvpydnbG2tq7xXhwb2DFsSl+GTelLZno2R7bHcHjrKcVVBCtb5cpSSlWVlCb/lmpz5dWKMv0THgcXG9IUOlYXK2zfcXC1Je3Sdb3HlEq32mqsFQOTrGz9+RgGhiq0V25QdqGiXKvKQEWjto1QuzlgXMMEX2lrkaOzulruwK3XUpKhEGQ4OFkrNoFTCragegWnfxIwVGViYoKbmxtubm6Ulpbel4pLlcGCs7MzzZs3r7VgISQkhLlz57Jx40b69OnzwK/5MLi1jKqJiUm1UqpQsS0KKlYaDh8+zJAhQ3j55ZdrfayCINRMBAx1rFu3bqxevZqWLVuSmprK/PnzeeKJJ4iNjb2rGtmCMktLS9atW4e/v7/e4yqVCk9PT15//XVee+01UlJSCA8PJzw8nLfffptOnToRFBREYGAgHh4edRI8SJLE+fPnuXr16h37RRgbG+Pq6irvD64MHo4fP46xsbEcPNjY2NR4L7YaNUPG9WTIuJ7kZuZz7I8YIrdGEx2RIO/nV9qqZGphQq5Coq3ipNzJWjFgKMzTP4m2srUEhYBBKXnZ2s5SMWBQur6tk1oxYCgr1r8iYO9iW61KlFQuceV0MpxOpnX3pjibSDg2dSG7oJSUyzfkRRylxmzWNhaKAUNxoUKnawsTxRKtFjVs2TI21H/MyNiA61VyL+5XwFDtGndRcUmj0dTYq6SgoICoqCicnJxo0aJFrX3PhoaG8sorrxAaGiqvBj/uqgYGp0+fprS0lKZNm8oBQqWMjAwMDQ05ePAgI0aMYPr06Xz00Ud1MWRBEGogAoY65ufnJ/+9ffv2dOvWDQ8PD3777bc79hMQaqYUKOijUqlo1KgRs2bN4uWXXyYtLY3169cTHh7OvHnzaNeunRw81NYWh/LycuLj48nIyKBLly53zE+oytDQUJ58lZWVkZGRgU6n4+TJkxgaGsrbPmxtbWt8cmtla0G/p7vR7+luFOQWErU7jsgt0eQq9Eawd7Yh9WK63mM3b2Tqfd1SrbxaoVTtyMSsppKq+q9TcxlW/e8xr2FFoGqjvKoMTJS3gRTlF6NN0qJNqihcYOtig2vrRmBmytl4/b0e/lZug7NyLkJN/99KH0/jbFOtgtODCBiqUqq4VNmrpLLikqOjo7zFpaCggOPHj6PRaGo1WNiwYQPTpk3jl19+YejQobVyzfquvLxcDhbGjBnDiRMnKC0tpaioiPDw8Gq5Hebm5iQkJNC7d29mzZrFokWL6mrYgiDUQAQM9YytrS0tWrTg/PnzDBo06I41soX7T6VS4erqyrRp05g6dSo3btxg48aNhIaG8tFHH9GyZUsCAwMJDAyU+x/cb2VlZcTGxpKXl0eXLl0wM1NO/r2Tyq0dGo0GLy8vbt68iVarJSYmBkmS5ODB3t6+xsmkuZUZvQI70yuwM0UFxZzan8DhLac4tiuO/P9/Ql9TAzilXABjE/0/hgyNDchSSFJWonawJFuhyo9SBRYrWwvFVQmVwhYdlQHkZiisSjjYoLuYqfdY1o3qAVBmWhaZaVl4tm2IyY2buHfwAHMzki9nyJWMSkv1r8wYGRsolkCtqVtzsUI36ZpyJaxtLeSAwcBQhZuHg+LHv9+qNjps1qwZeXl56HQ6kpOTOXPmDLa2ttjZ2XH16lU0Gg0tW7astWBh8+bNvPDCC/zvf/9j+PDhtXLNh0Hlz5Gnn36apKQkfvnlFzw8POjWrRtBQUGsWLGCwMBAoCKHwczMjJdffpkFCxbU5bAFQaiBCBjqmdzcXJKSkhg3btxd1cgWHiyVSoWjoyOTJ0/m+eefJzMzk99//52wsDA+++wzGjduzIgRIwgODqZt27b3pbNtaWkp0dHRlJWV4ePjc1uS4D9R9cmtJElkZmai1Wo5c+YMZWVld91oy9TchG5D29NtaHtKS8o4fSCRw1ujFRumGRipyM/S/0ReKTHT3tmGdIW+BEqTXhsHa8WAoVChlKi9s1oxYChRzIewU2xOZ6TQ60FlADdSM/UeM7MwpSC7gMQ/EwAwNDGkqbcnJnbWFClUXHJwVqNN0f/xDGvIRVBKuq4pV8K4SoUkZzfbu66QdL/dWnGpsLCQq1evcunSJcrLy8nKyuLixYtyxbAHGTjs2LGDSZMm8f333zNy5MgHdp2H1aZNm0hPT2fdunU0adKE+fPnk5+fj4+PD2PGjOHnn38mMDCQhg0bEh4ezoABA+p6yIIg1EAEDHXs9ddfZ/jw4Xh4eHDt2jXee+89DA0NGTNmTLUa2fb29qjVambOnFmtRrZQe1QqFXZ2dkyYMIEJEyaQnZ3N5s2bCQsLY8CAAbi6usrBQ8eOHf9W8FBcXMzJkycxMjKiU6dOD7S5XOX92NnZ0bJlS7Kzs9FqtZw9e5bi4mIcHR3lbR81jcPI2JBO/VrTqV9rysrKiT+SROTWaA5vPSVXJXJwsVWc/CtN5K3tLRXfk6fUYVmt/GQ9O0Oh0lANW6KU3mPjaKUYMCjdj4ObHdeVGrPd8qVSVlxG0tHzAJhamtLQ0wmbhg6kZxSgS60IytQ2FooBQ0lxDasSCjkZNeVKlJb8tTrToBZXF+5GWloarq6uNG3aVE6avnjxopz0r9Fo7pi3c6/27t3LuHHjWLlyJU8//fR9+7iPisp8hWeffZYmTZqwcuVKVq1axU8//YSvry8dO3Zk4sSJfP755zz//PMiWBCEh4AIGOpYSkoKY8aM4caNG2g0Gnr16sXhw4fRaCq6qN6pRrZQd9RqNc8++yzPPvssubm5bNu2jfDwcAICArC3t2f48OEEBwfTpUuXu2oUV1hYSFRUFNbW1vdtteJuqVQqbGxssLGxoXnz5uTm5qLVarlw4QJxcXF33aXX0NCAtj2a06xTI7yGupB1tQBdQi5Xz2sVJ/9KPSBMzZRXVjK0+lcyDBUCGwNDlWKjOaWn8SoVZKTqv05NY1PaRmXjYK0YMGRc1/96ZZWmlNgrpMReAcCpiROOzVwxtzZFpdJf+TZbYcXEwcka7TX9n4eqqwi3qlqGtWE9CRiKioqIiorC1tZW3hpYWXGpMuk/PT2dkydPYmBgIG+9u5eKS/r8+eefjB49mq+++ornnnuu3lRSq0vbtm2T8/FmzZpF165dGTt2LA0bNqSkpITw8HBefvll+vXrR35+Pq1atcLR0ZHY2Ng6HrkgCHdLBAx17Jdffqnx+N3UyBbqnpWVFU899RRPPfUUBQUF7Nixg/DwcEaNGoWFhQUjRowgKCgIX19fvU/r09LSOHfuHA4ODg8sL+JuqVQqrK2tsba2plmzZuTm5lbbM25vby9PvvRtl6osa+ng4EDPnn/dS1LMFY5sjSZyazRXz2v//1pwU6d/Uq5SmNRZ21uSo5CcW16mP0/BztmGG9cy9R5TyhGwc7ZR3GKlxMjEkJsKwYypuXKgVZx392VddRd06C7oaOnjibooH7c27hSrDLh88QalJWUYGKi4oVPoUWGk3Em36irCrap2p64PKwyVwYKNjQ2tW7e+7fulatJ/1YpLcXFxlJWVVVs9u5eu75GRkTz11FMsXryY559/XgQLwMWLF5k8eTLt2rVDo9Hwxx9/yD1v1Go1aWlpxMXF8dxzzwFw8+ZNbt68yffff0/z5s3rcuiCINwDETAIwn1mbm5OUFAQQUFBFBYWsnv3bsLDwxk7diyGhoYMHz6coKAgnnjiCYyNjYmIiGDMmDF8++239OrVq95NQqruGc/Pz0en03Ht2jUSEhKwtbWVgwczMzNyc3Plhlm3Vqpp2q4RTds14tm5w7hyNpXDW08TG3mOmANn9V5XsVuyxloxYCjM058noba3VAwYCnL1l261trdQDBgUtx252qJVKPeKQvEkA0MVWUodsMv03w9Afk4BWdpssrQVT2nN1eY07eCBiZ0V5xJ1esvY1rQyotTMzU5jxc30v7Zm1XXAUFxcTFRUFGq1mjZt2tzx++XWikvZ2dnodDq54lJlAKzRaGrMFzp+/DijRo3iww8/5F//+le9+z6tK40aNSIkJISAgAAMDAyIiYmRVxaMjY1xcXFh4MCBTJs2jf3797Njxw569OghggVBeMjU3p4HoV6KiIhg+PDhuLm5oVKp2LBhQ7XjkiQxb948XF1dMTc3Z+DAgZw7d67aORkZGYwdOxa1Wo2trS2TJ08mN1f/3u/HjZmZGQEBAXz33Xekpqaydu1ajIyMmDJlCk2aNGHs2LGMHDmSF154AX9//3o/CbGwsKBx48Z07dqVXr164eTkhE6n48CBA0RGRnLkyBGcnZ3vWNayUQtXnpo9hPm/zmD5oXmMfzeQFp0aV3tPnkLpVosaOkZn3dA/8b61K3O19yhsISou0x8UAGTfUKgmZKdc+rZAIZhxcLGlTKHLs6WVleLHu3W7VGXSdMFlHSUXr9LE1QqvNq6o7f7K0TA1Vc7xUOoDYWdf/Z7qMmAoLi7m+PHjWFtb31WwcKvKrXfNmzenZ8+edOvWDVtbW1JSUoiIiOD48eMkJyeTlVX9c3vq1CkCAwN55513mDlzZr3/Pq0tkiRhZGSEkZGRXDBh0qRJFBcXY2xsTFFRxdf8f/7zH2bOnElBQQETJ07kt99+q+ORC4Jwr0TA8JjLy8ujQ4cOilueFi9ezNKlS1m5ciVHjhzB0tKSIUOGUFj411PZsWPHEhcXx86dO9m8eTMRERG8+OKLtXULDw1jY2MGDhzIypUrSUlJYdasWWzZsgVPT0+++eYbpkyZwubNmyko0P+kt74xMzPD3d0dHx8f2rdvT35+PmZmZqSkpHDkyBEuXrxIXp7+lYCqXDwcCfrXABZtepVvjs1nyodP0ta32W0lSCsZKVToMTQ2UHxSr7Rn3cTMWLHXg5mZ/iDDwFClmEPxd3Ib1A7KQYGk0Ona1NJYsdmciZkxZcVlXDh6nvjtJ8mOuYCTuUSbNi5I5QoVqRytKS7Sv6JjZv7XPantLLCuoXTug1S5smBlZfW3ggV9rKys8PT0pFu3bnIAnJ6eTmBgIN7e3sydO5ewsDCGDRvGnDlzeO211x5osHCnBzgTJ05EpVJV+3Nr74faeIBTWaK48nPRo0cPoqKiWLNmDTqdjr59+1JQUICpacX3kKWlJe+//z4hISF8+OGH93UsgiDUDhEwPOb8/Pz48MMPCQ4Ovu2YJEksWbKEd955h8DAQNq3b8+PP/7ItWvX5F9k8fHxbN++nVWrVsm/dL/++mt++eUXrl27Vst38/BYs2YNixcvJjQ0lNOnT7NlyxZcXFyYO3cunp6eTJgwgfXr19/VhLuupaenExsbS6tWrejZsyd9+vTB3d2dzMxMDh8+zKFDh0hKSiInJ0exhGolB1db/Cf15oPQl/k64t9M/XQ0Hft5VQsSysr07/e3d7ahXGFCXKKwvcnOxUbv6wDGhvon/3bONoq5Ekq9HoxNjeSKUbcyNa9hm5BCQrijq53ie24jge6slrjtp0iOiMPJuJw2Xk40auxA5dzX1kG5UlTV/7O6SniuDBYsLS0fWEGAygC4c+fO/Prrr7zwwgucOHFCzlXIzMzkyJEjiv/H98OdHuAADB06lNTUVPnPzz//XO34g36AU15eLn/+d+3axf/+9z/Cw8PJy8ujV69eLF++nIKCAvr160d2djalpaWMGDGCX3/99b6NQRCE2idyGARFFy9eJC0tjYEDB8qv2djY0K1bNyIjIxk9ejSRkZHY2tri4+MjnzNw4EAMDAw4cuSI3kDkcbd48WI+/vhjtmzZQp8+fQDo2bMnPXv25LPPPuP48eOEhYUxf/58XnzxRQYNGkRQUBBDhw5FrVbX8eir02q1xMbG0qZNG7mZoLGxsVytprS0lOvXr6PVarl06RKmpqY4Ozvj5OSEWq2u8WmtjYM1g57twaBne5CXlc+xnbEc3hqt2MvA2q6GMqwKT+OtbSzQKlw/P0f/e9T2Vor5EMolVW1Ju3hd4Ur61VSlydrOCtDpPXYjXf/nQO1gRfaNXAqTtOjkTtO2uLZphKWdBZeNDPRujSqock91sR2ppKSEEydOYGFhUWvVw5ydnRk0aBBffPEFL7/8Mj179mTDhg34+/tjZmZGYGAgwcHB9O/f/76WPvbz85OrDSkxNTVVbNxZ+QDn2LFj8s/kr7/+Gn9/fz777DPc3Nz+8RgrP//vv/8+q1atomXLlqSmpmJjY8Mbb7xBcHAwX3zxBW+88QaNGzfGw8MDAwMDxo8f/4+vLQhC3RErDIKitLQ0oOKXZ1XOzs7ysbS0NJycnKodNzIywt7eXj5H+EtWVhahoaHs3btXDhaqMjAwoGvXrnzyySckJCRw8OBB2rZty+LFi2ncuDFPP/00a9euJTMz845P6x+0q1evEhcXR/v27RUnMEZGRri4uNChQwf69u1LixYtKCws5MSJExw4cIDExERu3rx5x3uxtLGg75NdefP7F/gg9GVeWzGRniM6YWb517Yh0xryFJRKqpqYKVcuuqnwnpryIZT6NljbKuc2FObrz22wd7FRXBmpqTFbgUKDPDvn24PNzLRM4nfHkH9Zi8n1DFo2tqVFKxfMqlR0yqiS8FzbKwwlJSVERUVhZmZGu3btaq3U8IULFxg2bBhjxozh008/ZeTIkfz4449otVr+97//YWhoyKxZsygt1f//8yDt27cPJycnWrZsKXeir3SnBzj3y2+//cbKlStZu3Ytu3fvZtq0aXL/GIC+ffsSHh7O22+/zdixY4mKirpv1xYEoW6IFQZBqEU2NjYcOXLkrvZBGxgY4O3tjbe3NwsWLODMmTOEhobyn//8h+nTp9OvXz8CAwMZNmwYDg4OtZqImZycTFJSEt7e3tjb29/VewwNDeWKSuXl5XKTrejoaFQq1V3XyTe3NKXniE70HNGJ4sISTkUkcGRrNDfT9U/wLdRmiisMSizUZorN4W5tslbJwFCluO3I2FQ5MFHKobBxVHNDYYWhpET/RNXY1IhshQpSpeX6u1ZDRUJ2QXYBiRHxABiZGtHU2xMzRzVXrmTK5zVoXHsBQ+XKgpmZGe3bt6+1YOHy5csEBAQQFBTEZ599Vu26xsbGDBgwoM4ajQ0dOpSRI0fi6elJUlISb7/9Nn5+fkRGRmJoaFhrD3BOnz6Nv78/ffr0YfPmzbzzzjt88cUXDB8+nJycHHQ6HU2bNuX111+/b9cUBKFuiYBBUFT51Fir1eLq6iq/rtVq8fb2ls/R6apvjSgtLSUjI0PxqfPj7u9M7FUqFW3atKFNmzbMmzePc+fOERoayvfff8+sWbN44oknCAwMZPjw4Tg7Oz+w4EGSJC5evEhycjKdOnXCxkY5B6AmBgYGaDQaNBpNtTr5sbGxSJIkV1xxcHCocaJoYmZM18Ht6Dq4HaUlZcQeOkvklmiO7oiRk4xtNWrys/WXTs3L1V+Jqab3KD31t3exVez+rLe7GhWJ2kp9G8wslHMbchUas1nYmpKl1T8+cwvlCkmZtwRbpUWlJB05R6MWLuSc1+Lezh0rV/taW2EoLS3l5MmTmJiY1GqwcPXqVfz9/Rk6dChLly6t1eaJd2P06NHy39u1a0f79u1p2rQp+/btq9UgpqCggObNmxMbG8uzzz7LggULmDZtGuXl5fz222/k5+czefJkLCyUc2MEQXi41K+fhkK94unpiYuLC7t375Zfy87O5siRI/j6+gLg6+tLZmZmtSXnPXv2UF5eTrdu3Wp9zI8DlUpFixYtePvttzl27BiJiYn4+fnx66+/0rJlS4YOHcry5cu5evXqfd22JEkS586d48qVK/j4+PztYOFWlXXyvby86N27Nx06dMDIyIiEhAT2799PTEwMWq1WMdm5kpGxId59vJi6eDTfnVzAgrCXCZjcB9fGGsX33EzXP1m3VCtXAspXWK1Q11BSVTG3wcVWMVGbGmI+pf4QNjVUXFJJ+n/cGxobKG7ZslCbI5VLJEdf5tzeGBxdHnwOTWlpKSdOnMDIyIgOHTrU2qQ9LS0Nf39/+vbty/Lly+tdsKBPkyZNcHR05Pz588D9f4BTdctVRkaGXCa1b9++/Pvf/6Z9+/Z8+eWXzJo1C6joVv/bb79x+fJlESwIwiOm/v9EFB6o3NxcTp06xalTp4CKROdTp06RnJyMSqVi9uzZfPjhh/z+++/ExMQwfvx43NzcCAoKAsDLy4uhQ4fywgsvcPToUQ4ePMiMGTMYPXr0fUmwE2qmUqlo0qQJc+bM4eDBg1y4cIEnn3ySTZs24eXlxYABA/jqq6+4fPnyPwoeJEkiPj4erVZLly5dsKqhP8A/oVKpsLOzo2XLlvTq1YtOnTphZmbG+fPn2bdvH9HR0aSmpt5x77iBgQFtujdj8gejeHvNi3yy+TWCpg3ApbFjtfMKsvRP5E1q2EKkNFk3rWFFQKnaUU19G4oUggwbRyvFBnVWauX/F6Vmd/YutkoLIBgZ/fUrwsXD8YFPoitXFmo7WNDpdAQEBNC1a1e+/fbbe+r+XJdSUlK4ceOGvAJ8vx7g7Nmzh9TUVDknYc2aNQwfPpwOHTrw1FNPUV5ezpdffomxsTENGjQgPT2dc+fO8eyzz5KamsrChQvv740KglDnVFJdZ04KdWrfvn3069fvttcnTJjA6tWrkSSJ9957j2+++YbMzEy5bF6LFi3kczMyMpgxYwabNm3CwMCAUaNGsXTp0gc2qRTuTJIk0tLSWL9+PWFhYURERNC+fXuCgoIIDAykadOmd71tqby8nLi4OLKzs+ncuTNmZspbWx4USZLIzc1Fp9Oh0+nIy8vDwcEBZ2dnNBoNxsbKE/xbHdl7gj2hkWRezufcySt6z/Hq1pT4I0m3vW6pNlfMh2jj24y4yPO3va4yUGFgaECZns7LStcBcGpkj+5Kxm2vN27dgEtnrup9T6uuTUg4euH2MajAyNhI73aq5h09OHfyst6P19DLiZT4iifWXYe2583vpug9736oDBYqc3dqa9J+/fp1AgICaNWqFSEhIff0tXS/5ebmyqsFHTt25IsvvqBfv37Y29tjb2/P/PnzGTVqFC4uLiQlJfHGG2+Qk5NDTEyM3PPAz88PrVbLypUrKSkpYdKkSfj4+BASEnJXY4iNjWX48OE888wzvP3225w5c4Z+/foxf/58cnNzSU5OJiQkhNmzZ2Ntbc38+fNxc3PDwcEBc3Nzdu3aJVYXBOERJAIGQXjESZLE9evX2bBhA2FhYezdu5eWLVvKwUOrVq0Ug4eysjJOnz5NUVERnTp1wsRE+Sl6bcrLy0On06HVasnNzcXOzk4OHionTvpcuXKF8+fP4+3tjZ2dHVfPa4ncGs2RbdEknf4rePBs25CLsSm3vb9Bc2euntNfiFVp4u3gaqOYvNy6e1POHL49YFCpwNDYkNJiPUFG1ybE6wkKADxauXI5IfWextCme1Pi9IwBQONuR3pyRV5Gj1HtePbNgHsO0O5GWVkZJ0+eRKVS1WqwcPPmTYYNG4aHhwe//fZbnX991/QAZ8WKFQQFBXHy5EkyMzNxc3Nj8ODBLFiwoFolu/vxAOfnn3/m888/Z+jQoRQXF2Ntbc27774LVARYq1atYsGCBYSFhdGgQQMuXryIo6MjnTt3rvH7TxCEh5cIGAThMSJJEjdv3uT3338nLCyMnTt30qRJE0aMGEFwcDBt2rSRt4HcvHmTqVOn8vzzz9OvX786ffJak4KCAjl4yM7OxsbGRu71UHU15NKlS1y8eJGOHTtia2t728fRXbnB4a3RHN52mhupmaSn3P50v0XnxpyNuqR3HG5NnbiWdHtvBM82DbkYd3vwAdDM253zp5Jve93exUZx61Ob7s2IO3z7SgaA2t5Sb5WkJm0bckFPAATKqxIAZpam8vanp+YOxLOrkxygVVa1+qcTxMpgASqeqtdWsJCVlSUXCQgPDxcT3VuEh4fz6aefotVqmTBhAu+99558LD09nalTp6LRaFixYkUdjlIQhNoichiEeiciIoLhw4fj5uaGSqWSu0pXmjhxIiqVqtqfoUOHVjsnIyODsWPHolarsbW1ZfLkyeTm6i9f+ThRqVTY29szceJENm3ahFar5d///jfnzp2jf//+eHt78+6777Jnzx4GDRpEamoqXbt2rbfBAoC5uTkeHh507dqVXr16yYmfBw4c4MiRI1y8eJHExEQuXbpE586d9QYLAE6NHBjxUn8+3jCbhb+/wgsfPUW7ni0wqNLzwMhYubCcYrUjK+WJaO5N/dWO1DUkLxcW6M9fMLcyVSypWrVfxa0KlJK4HarnSnTo1obu3bvTs2dPHB0dSUtL488//+TYsWNcvnyZgoJ7K10LFcHCqVOnkCSpVoOFnJwcRo4cib29PWFhYSJY0GPkyJG899575ObmsmXLFnmrFIBGo8HZ2Zm4uLg6HKEgCLVJBAxCvZOXl0eHDh1YtmyZ4jlDhw4lNTVV/vPzzz9XOz527Fji4uLYuXMnmzdvJiIighdffPFBD/2hY2Njw9ixYwkLC0Or1fLxxx9z/vx5nnzyScrKyujWrRsJCQl3rFBUX5iZmdGoUSN8fHzo3bs3DRo04OrVqyQnJ2NsbMz169fvKnC0d7bBb+ITzP9tBt+f+pBpn42hU//WKKV9WNlaUJCrfyJvUEOuSIZCkGFewwQ/Q6GTs71LDVWraqq4pNA74tZGb66eFdWmKgO0Ll268MQTT+Dq6sqNGzc4ePAghw8f5sKFC+Tm5t4xyb6srIzo6GjKy8trNVjIy8vjqaeewszMjPXr19dJTs7DYujQofzyyy/k5eXx5Zdfcu7cOfnY9evXcXR0pKREub+HIAiPDtGHQah3/Pz88PPzq/EcU1NTxTKB8fHxbN++nWPHjskdT7/++mv8/f357LPPRPUmBVZWVnTv3p133nmHoKAgnnzySTZu3MioUaOwtLRkxIgRBAUF4evr+1BUkTE2NiYvL4/y8nK6du0q5z1cvHgRc3NzeUuNtbV1jQngansrBo7xZeAYX/JzCji+K47DW6M5uTeeooKKSkZ2TmrF3ghKfRtsNdZkpufoPWZQYydn/dWTLNXKiaZKFZcs1GaKFZwsrP6aSFtYm2HndHtJVVNTUxo2bEjDhg0pKSnh+vXr8ufYzMxM/hyr1epqn+PKYKG0tJROnTrJ1XgetIKCAp5++mnKy8vZsmULlpbKVaqECv379+frr79mxowZ7N69m549e6JSqYiIiODQoUP1evVREIT7RwQMwkNp3759clfg/v378+GHH+LgUNFUKjIyEltbWzlYABg4cCAGBgYcOXKE4ODguhp2vXb27FkGDhxIQEAAy5Ytw8DAgCeffJLCwkJ2795NWFgYzz77LEZGRgwfPpygoCB69epVLycMkiSRkJDA9evX8fHxwcLCAhsbG9zc3CgtLZUntsePH8fExESe2NrY2NQYPFhYm9M72IfewT4UFRRzYs8ZDm+LJlOXw5Wz+jvpKlVVsnFUDhhKivQHGRbWZuTn6G8oZ2yq/ONcaauSvYuNYoO6qkFL5epCTYyNjXF1dcXV1ZWysjL5c3zixIlqXb7VajUxMTG1HiwUFhYyZswYCgoK2LFjB9bW1rVy3UdB//79+f777xkzZgx79uxh2rRpLFiwoFpDT0EQHm0iYBAeOkOHDmXkyJF4enqSlJTE22+/jZ+fH5GRkRgaGpKWloaTk1O19xgZGWFvb09amv5J3eMuIyOD3r17M3HiRBYuXFht0mxmZkZAQAABAQGUlJSwb98+QkNDef755ykrK2P48OEEBgbSt2/fOq8yAxXBwpkzZ7h58yY+Pj6Ym1dvwmZkZISLiwsuLi6UlZVx48YNdDodJ0+erDaxtbOzqzF4MDU3wTfAG98Ab0qKSoj+8yyHt57i6I6YaqsNN3UK245qyG1QCjIcXG3Jz9H/NVxeVq73dZWBSnHrU02rEsUFf201cWvipHiePoaGhjg7O+Ps7Ex5eTkZGRnodDpOnz5NaWkpRkZGtGrVqtb6LBQVFTFu3DgyMjLYuXPnfWs6+Djp3r07a9euZf78+UyePBl7e/u6HpIgCLVIBAzCQ2f06NHy39u1a0f79u1p2rQp+/btY8CAAXU4soeXvb0969evlzt4KzE2NmbQoEEMGjSIZcuWceDAAdatW8f06dPJz8/H39+fwMBABg4cWCd7w8vLy4mNjSU3NxcfH587jqFqgHDrxFalUsnJnXZ2djVObo1NjfEZ2AafgW0oKy0jLvI8kVujiTl4Vm/lpMprK1FKoLaooQO1UjM3e2e1YklVI2PlMWTf/CvXw7XJnVcYlBgYGODo6Ii9vT1FRUXk5+djb2/PuXPnOHPmDBqNBicnJxwcHB7IakNJSQkTJ04kJSWFPXv2YGdnd9+v8bjo0aMHGzduFHkfgvAYEgGD8NBr0qQJjo6OnD9/ngEDBshVcqoqLS0lIyNDMe9B4I7Bwq2MjIzo27cvffv2ZenSpURGRhIWFsYbb7xBRkYGQ4cOJSgoiEGDBtXKXvHy8nJiYmLIz8/Hx8fnnlc7Kie2jo6OtGrViszMTHQ6HXFxcZSVlcnBg729fY2TfUMjQ9o/0ZL2T7Ss2Bp17AKRW6I5sv10tVKtpaX6E8mtbCzIzdKfD1HTBD/rhv5kbrWDtWLAUKqnmRxU9IHIqPKeu9mSVJPK/5uioiK56pYkSeTk5KDT6UhKSiI2NhYHBwecnJzuW6+H0tJSpkyZQlJSEnv27JG3LQp/nwgWBOHxJAIG4aGXkpLCjRs35P20vr6+ZGZmEhUVRefOnQHYs2cP5eXldOvWrS6H+sgyNDSkV69e9OrVi88//5xjx44RFhbGe++9xwsvvMDgwYMJDAzEz8/vgewdr2wwV1xcjI+Pzz+ebBoYGMjddVu2bElWVhY6nY6EhARKSkpwdHTE2dkZR0fHGoMHlUqFV9emeHVtyvPzR3I+OpnDW08RuSWafIVtR7ZO1ooBQ1mp/m1HRiaGZOr0Vzsys6ihpGqu/vwFO+fqfSDudUtSVZXBQkFBAZ07d5b/b1QqFWq1GrVaTbNmzcjNzSU9PZ3k5GTOnDnzj3s9lJWVMXXqVGJjY9m7d+9t2xQFQRCEuycatwn1Tm5urlzzu2PHjnzxxRf069dPnsDNnz+fUaNG4eLiQlJSEm+88QY5OTnExMTIEws/Pz+0Wi0rV66kpKSESZMm4ePjQ0hISF3e2mOnvLyc6OhoQkNDCQ8P59KlSwwcOJARI0YQEBBwxyTju1FZy7+srIyOHTs+0CTsqk/FtVothYWFODg4yMHDvVz7csK1ikZxW6O5HH9Nfr1Jh4ZciNbfZM2jtRuXz1y77XUndwd0yTf0vqeNbzPiIhUavTlYka1nZeLWZnP/O7MISxvlfAcllVvE8vLy6Ny5812v+lQ249PpdGRlZaFWq+XgwcLizuMoKyvj5Zdf5sCBA+zbt48GDRrc89gFQRCEv4iAQah39u3bR79+/W57fcKECaxYsYKgoCBOnjxJZmYmbm5uDB48mAULFuDs7Cyfm5GRwYwZM9i0aRMGBgaMGjWKpUuXYmWl3BBLeLAkSSIuLo7Q0FDWr19PQkIC/fr1IzAwkGHDhmFvb3/PwUNpaSknT55EpVLh7e1daxV3oOJ+8vLy0Gq16HQ68vLysLe3x9nZGY1Gc09boq5d0HF4azQHNkVRXFrEtQT9k3+lUqzNOrhzPvr2jtEALTo15uyJS7e9bmpholhu1atrE+L/v/uzla0FP8Ytuss7+cvfDRZuVVRURHp6OjqdjoyMDCwtLXFycsLZ2RlLS8vbvmbKy8t59dVX2bVrF3v37sXDw+NvXVcQBEH4iwgYBEGodZIkcfbsWcLCwggPDyc6OponnniCoKAghg8fjpOT0x2Dh5KSEk6cOIGxsTEdOnSo894Q+fn5cvCQk5Nzz1tqrl+/zunTp3GxcyPpeCqHt0aTePwi5eUVP6KNTY0oLS7T2xCtdfemnDmcpPfjujbRkHoh/bbX3Zo4ce2C/oTsqh+vmbc7i7e8fsfxVyVJErGxseTk5PytfBIlVXs9XL9+HVNTU+Lj42nWrBm9e/dGpVLx5ptv8vvvv7Nv3z6aNGlyX66rJCIigk8//ZSoqChSU1NZv349QUFB8nFJknjvvff49ttvyczMpGfPnqxYsYLmzZvL52RkZDBz5sxqDze++uor8XBDEIR6RQQMgiDUKUmSuHDhAmFhYaxfv57jx4/j6+tLYGAgI0aMwM3N7bbgITU1lcTERGxtbWnfvn2tlee8WwUFBaSnp6PVasnKysLGxkYOHm4t8wqQnp7O6dOnadOmTbXE/Ju6bI5uP03k1miuX715VxP8W5lZmuqtoNS8owfnTl7W+56qx54I6swryybc8Z4rVa4kZWdn07lz57+Vf3A3Kkvivvvuu3LHZi8vL+Lj44mIiKB169YP5LpVbdu2jYMHD9K5c2dGjhx5W8DwySefsHDhQtasWYOnpyfvvvsuMTExnDlzRk4e9vPzIzU1lf/+97/y9skuXbqI7ZOCINQrImAQBKHekCSJK1euEB4eTnh4OIcOHaJLly4EBgYSGBiIu7s7V65cYejQofj7+7N48eJ6FyzcqqioSN6Pf/PmTaytreXgwdLSUg4W2rZtW21b3a1ybuZy7I84Dm89RfSfidWauyltSVI7WJJ9Q3/TtppyG6quSjw1ewhj5gTc1b1W9sDIzMzEx8fngQULtyooKGDOnDns2rWL/PyKhPERI0YwcuTIWivxq1KpqgUMkiTh5ubGa6+9xuuvV6zQZGVl4ezszOrVqxk9ejTx8fG0bt26Wlf67du34+/vT0pKiuhKLwhCvVG/f9MKQj2xcOFCunTpIk/2goKCSExMrHZOYWEh06dPx8HBASsrK0aNGoVWq612TnJyMgEBAVhYWODk5MScOXMoLdXf1fdxpFKpcHd3Z/bs2ezfv5/k5GSee+45/vjjD9q3b0+PHj3o378/zZs356OPPqr3wQKAqakpjRo1onPnzvTu3ZuGDRuSmZlJZGQkf/75J9HR0TRr1uyOVXys7azo/0w33l7zEqtPf8yryyfgG+CNqbkJOTf1BwW2GrXix1Nq9AZUq5Dk4uF4hzusUDVYeJArC/qu+9VXX7Fp0ya2bNmCVqtl48aN2NnZMXPmTDQaDaNHjyY3V3/Z2Qfl4sWLpKWlMXDgQPk1GxsbunXrRmRkJHDnrvSCIAj1Rf3/bSsI9cD+/fuZPn06hw8fZufOnZSUlDB48GDy8v6aqL3yyits2rSJdevWsX//fq5du8bIkSPl42VlZQQEBFBcXMyhQ4dYs2YNq1evZt68eXVxS/WeSqXCzc2N6dOns3v3biIjI7l27RoWFhbs37+fvn37smjRIhISEvTu66+PTExMaNCgAR07dqR169YUFRWhVqs5f/48hw4d4ty5c2RlZd3xfsytzOgV2Jk53zzP6piPmTAvmN4jfW5r7GZhpfxkXanRm9rBqloytMtd9GCQJIn4+Hhu3rxJ586da61WvyRJLFmyhP/85z/88ccftGvXDkNDQ3r27Mnnn3/OhQsXiIiIoFOnTrXSC6Sqyq7yt64aOTs7y8dEV3pBEB4Wog+DINyF7du3V/v36tWrcXJyIioqit69e5OVlcV3331HSEgI/fv3B+CHH37Ay8uLw4cP0717d/744w/OnDnDrl27cHZ2xtvbmwULFjB37lzef//9+5YY+ig6d+4cwcHBjB49miVLlpCVlcXGjRsJDw9n8eLFNG3alBEjRhAcHEzr1q3r/cqDVqslISGBDh06oNFoKCsrk5N5o6KiMDY2lisB3an0rKm5Cd392tPdrz0lxaXEHDjL4W3RHN1+GkOjGhq9Zeh/4m6rUVcrterauOYVBkmSSEhIICMj4666a98vkiSxbNkyPvvsM3bs2EHHjh1vO0elUtGxY0e9xwRBEIS7V79/qwpCPZWVVbFlw97eHoCoqChKSkqqbT9o1aoV7u7u1bYftGvXrtoTxyFDhpCdnU1cXFwtjv7hcubMGfr06cOYMWNYunQphoaG2NvbM2nSJDZt2oRWq+Wtt94iMTGRvn370rFjR9577z1OnjxJebnytpu6kpaWRlxcHO3atUOjqXh6b2hoiLOzM+3ataNPnz60atVKLhkbERFBfHw8GRkZd7wfYxMjOvVvzbRPx/DdqY8Y/bo/fhOfwN7Fptp5hsYGZGr1N3qzsP5rK5GZpWmN25oqg4UbN27U+srCt99+y0cffcSWLVvo2rVrrVz3XlQmr9+6LVGr1crHRFd6QRAeFmKFQRDuUXl5ObNnz6Znz560bdsWqJgEmpiYYGtrW+3cW7cf6NueUHlM0O/HH3/kpZde4r333tP7pN3GxobnnnuO5557jpycHLZu3Up4eDhDhw7F0dGRESNGEBQURJcuXep85SE1NZX4+Hjat2+Po6P+J/eGhoZoNBo0Gg1eXl7cvHkTrVZLTEwMkiSh0WhwdnbG3t6+xvsxNDSgjW8z2vg2Y8qHT5J4/CKHt53m8NZTIIEuJUPv+wyqlKetKX9BkiQSExO5fv06Pj4+eqs/PQiSJLFmzRrmzZvH5s2b6dGjR61c9155enri4uLC7t278fb2BiA7O5sjR44wdepUQHSlFwTh4SECBkG4R9OnTyc2NpYDBw7U9VAeCwsXLrzrhm7W1tY888wzPPPMM+Tn57Njxw7CwsIIDg7G2tqaESNGEBgYiK+vb633bagMFjp06ICDg8NdvcfAwAAHBwccHByQJInMzEy0Wi1nzpyhrKwMjUaDk5MTDg4ONd6PSqWiVZcmtOrShInzgrgYl0Lk5lNEbo3m6vnqT8DLSsvkv7sobEeq7KORnp5e68FCSEgIc+fOZePGjfTu3btWrqukald6qEh0PnXqFPb29nLy/ocffkjz5s3lsqpubm5yJSUvLy+GDh3KCy+8IHelnzFjBqNHjxYVkgRBqFdEwCAI92DGjBls3ryZiIgIGjZsKL/u4uJCcXExmZmZ1VYZbt1+cPTo0Wofr3K7gth+oOxeuz9XsrCwIDg4mODgYAoLC9m1axdhYWGMGTMGExMThg0bRnBwMD179sTY2Pg+j7q6a9euyTkLdxss3EqlUmFnZ4ednR0tW7YkOzsbnU7H2bNnKS4uxtHREScnJxwdHe/Y8dqzTUM82zTk2bnDuHI2lcNbK1YeLsZdJS+rQD5PX8AgSRLnzp1Dq9XWerCwbt06XnnlFUJDQ+Vcobp0/Pjxal3pX331VaCiK/3q1at54403yMvL48UXXyQzM5NevXqxffv2alu31q5dy4wZMxgwYEC1rvSCIAj1iejDIAh3QZIkZs6cyfr169m3b1+1Tq1QkdOg0Wj4+eefGTVqFACJiYm0atWKyMhIunfvzrZt2xg2bBipqalyZZRvvvmGOXPmoNPpaq0M5eOupKSEvXv3EhoaysaNGykvLycgIIDg4GD69Olz35PPr169SmJiIt7e3nLOy/0kSRK5ublyl+mCggIcHBxwcnJCo9HcUzCUdvk6x3bEcOD3E5w/lcy/PnmGQWP/2vIjSRLnz58nNTUVHx8fLCws7vv9KNmwYQMvvvgiv/zyC8OGDau16wqCIAgiYBCEuzJt2jRCQkLYuHEjLVu2lF+3sbGRn7BOnTqVrVu3snr1atRqNTNnzgTg0KFDQEVZVW9vb9zc3Fi8eDFpaWmMGzeOKVOm8PHHH9f+TQmUlpby559/EhoayoYNG8jPzycgIIDAwEAGDBjwj5N4U1JSOHv27AMLFvTJy8uTg4fc3Fzs7e3lRnH3Egxdv3YTQyND7Jwqkp4rg4Vr167h4+NTq2VKN2/ezKRJk/jpp58IDg6utesKgiAIFUTAIAh3QWlbzA8//MDEiROBisZtr732Gj///DNFRUUMGTKE5cuXV9tudPnyZaZOncq+ffuwtLRkwoQJLFq06I5bSIQHr6ysjEOHDhEWFsb69evJzMxk6NChBAUFMWjQoHt+ml4ZLHTs2BE7O7sHNOqa5efny12ms7OzsbW1lYOHewmGJEkiKSmJq1ev1nqwsGPHDsaNG8d3333HM888U2vXFQRBEP4iAgZBEIRblJeXc/ToUTl4SEtLY/DgwQQGBjJ06FCsra1rfP+VK1c4f/48HTt2vK1yVl0pLCyUg4fMzEzUarXc6+FOeQhJSUmkpKTQuXNnrKysamnEFRWDRo8ezcqVKxk7duzfzmcRBEEQ/hkRMAiCINSgvLycU6dOERoaSnh4OJcvX2bgwIEEBgbi7+9/W2O1r7/+mgYNGtC/f/96Eyzcqri4WA4eMjIysLKywtnZGScnp9tWDy5cuEBycjI+Pj61GixERETw1FNP8dVXXzFp0iQRLAiCINQh0bhNeCyUlJSQkpJS18O47xYuXEiXLl2wtrbGycmJoKAgEhMTq53Tt29fVCpVtT//+te/qp2TnJxMQEAAFhYWODk5MWfOHEpLS2vzVuotAwMDOnXqxMcff0x8fDxHjx6lU6dOLF26FE9PT0aNGsWPP/7IjRs3WLBgAQsWLECj0dTbYAHAxMSEhg0b0qlTJ/r06YO7uzuZmZkcPnyYQ4cOcf78eXJycuosWIiMjOTpp59m8eLFIlgQBEGoB8QKg/BY2LFjB3PmzOGbb76he/fudT2c+2bo0KGMHj2aLl26UFpayttvv01sbCxnzpyRnxT37duXFi1a8MEHH8jvs7CwQK2uSGatTMZ2cXHh008/JTU1lfHjx/PCCy+IZOwaVDYuCwsLIzw8nISEBABefvllXnrpJTQazUM30S0tLeX69evy6oMkSbi6utKoUSPUanWt3M+xY8cIDAzkgw8+YObMmQ/d51AQBOFRJAIG4bHw0ksvkZuby+eff46Liwvl5eV13vX3QUhPT8fJyYn9+/fLTa369u2Lt7c3S5Ys0fueynKv165dkztPr1y5krlz55Kenn7fy4w+ij755BMWLlzI+PHjOXr0KFFRUfj6+hIUFMSIESNwdXV9qCa+ly5d4uLFizRp0oScnBzS09MxMjKSE6ZtbW0fyP2cPHmSYcOG8e9//5vXXnvtofqcCYIgPMoevRmTINyioKCAkydP0rZtW7likYGBAY9irJyVlQVwWwnPtWvX4ujoSNu2bXnrrbfIz8+Xj0VGRtKuXTs5WAAYMmQI2dnZxMXF1c7AH2ILFy5k8eLF7N27l6VLlxIZGcn58+cJDg5m/fr1tGrVikGDBvH111+TnJxc77/uLl++zMWLF+ncuTMeHh60bduWPn364OXlRWlpKdHR0URERBAfH8+NGzcoLy+/L9eNiYlhxIgRzJkzRwQLgiAI9YxYYRAeeYcOHeKVV17B39+fsrIyGjVqxIQJE257ci5J0kM9SSkvL2fEiBFkZmZy4MAB+fVvvvkGDw8P3NzcOH36NHPnzqVr166Eh4cD8OKLL3L58mV27Nghvyc/Px9LS0u2bt2Kn59frd/Lw+Kjjz7iyy+/ZPfu3XTo0OG245Ikce3aNdavX09YWBgHDhzA29ubwMBAAgMDadKkSb36mktOTiYpKYnOnTvLW9ZuVV5eTmZmptzrQZIkNBoNTk5OODg4/K2VuzNnzuDv78+0adN477336tXnRBAEQQBR/F145P36668cO3YMZ2dnWrVqxUcffcTvv//OmjVrqj2Jr5ykVD4xfdi2LE2fPp3Y2NhqwQJUBASV2rVrh6urKwMGDCApKYmmTZvW9jAfKba2tuzZs4f27dvrPa5SqWjQoAEzZsxg+vTp6HQ6NmzYQFhYGB988AGtW7cmMDCQoKAgWrRoUacT5cpgoVOnTorBAlR8X9jb22Nvb0+rVq3IyspCq9WSkJBAaWkpjo6OODk54ejoiKGh4R2ve/bsWYYPH87kyZNFsCAIglBPiRUG4ZFWVFSEj48PjRs3ZsOGDRgaGnL69Gl69erF2rVrGT58OAAHDx4kNTWVAQMGyE22Klcc8vLyuH79Oh4eHvV2FWLGjBls3LiRiIgIPD09azw3Ly8PKysrtm/fzpAhQ5g3bx6///47p06dks+p3L9+4sQJOnbs+IBH//iRJImMjAw2btxIeHg4u3btomnTpgQGBhIcHIyXl1etBqyVfSM6deqEjY3N3/oYkiSRnZ0tJ0wXFhbKwYNGo9HbnDApKQk/Pz+eeeYZPv3004cuSBcEQXhciJ/OwiPt1KlTmJubM3nyZPlpZ+PGjenZsyeRkZFkZmYyYcIE/vWvf/Hxxx/TsGFDRo8ezc2bN+XAIC0tjY4dO/Ljjz+iUqnu257t+0GSJGbMmMH69evZs2fPHYMFQA4MXF1dAfD19SUmJgadTiefs3PnTtRqNa1bt34g437cqVQqHBwceP7559m8eTNpaWm8+eabxMfH06dPHzp16sR7773HqVOnHvjXW0pKCufOnaNjx45/O1iAinuysbGhefPm9OjRg65du2JlZcWlS5fYt28f+/fvZ+nSpWi1WqAisXrYsGEEBQXVSbDw/vvv31ZuuFWrVvLxwsJCpk+fjoODA1ZWVowaNUoeuyAIwuNGBAzCI+23334DoHPnzvJrBQUFpKenU1payhdffMHly5c5ePAgJ06c4PDhw1y/fp1Vq1YBFc2j3njjDcrLyxk/fjxQv7YqTZ8+nZ9++omQkBCsra1JS0sjLS2NgoICoOIJ7oIFC4iKiuLSpUv8/vvvjB8/nt69e8vbaAYPHkzr1q0ZN24c0dHR7Nixg3feeYfp06djampal7f32LC1tWXcuHGsX78erVbLggULuHz5MkOGDKFdu3a8/fbbHD169L4HDykpKZw9e/a+d6RWqVRYW1vTtGlTfH198fX1paioiNWrV9O8eXOeeOIJhg0bRu/evVm6dGmdfU+1adOG1NRU+U/V7XyvvPIKmzZtYt26dezfv59r164xcuTIOhmnIAhCXRNbkoRHVklJCZ06daKwsJBz587Jr+/btw8/Pz8+//xzvv32W+Li4pg2bRrDhw9nwIABLFq0iD179vDHH3+wa9cuhg0bBoCLiwsTJ07k1VdfrbbHW5IkuUyrvu1KD3Ibk9LH/eGHH5g4cSJXrlzhueeeIzY2lry8PBo1akRwcDDvvPNOtXu4fPkyU6dOZd++fVhaWjJhwgQWLVqkdxuJUHvy8/PZvn07YWFhbNmyBbVazYgRIwgMDKR79+53lSOg5OrVqyQmJtKxY0d5G15tOHToEP/+979JTk4mPT2dHj16MGrUKEaOHEmjRo1qbRzvv/8+GzZsqLYVr1JWVhYajYaQkBCefPJJABISEvDy8iIyMvKR6uUiCIJwN8RsQHhknTx5khs3buDs7MzatWsZO3YsR44cYcmSJbRp04YGDRoQHx/P+vXrWbt2Lc899xwGBgYYGBjQokULMjIyaNasGY0aNWLKlCk0btyY7du3k5iYSLt27Thy5Aju7u54enrWOHGrmkx9v5+k3ineb9SoEfv377/jx/Hw8GDr1q33a1jCfWJhYcHIkSMZOXIkhYWF7Ny5k7CwMJ555hlMTU0ZPnw4wcHB9OzZ856Cu2vXrpGYmIi3t3etBgs6nY6ZM2fSqVMnDh06hE6nkytIvf7663Ts2JFZs2YxduzYWhnPuXPncHNzw8zMDF9fXxYuXIi7uztRUVGUlJQwcOBA+dxWrVrh7u4uAgZBEB5LYoVBeGTl5ORw8uRJzp07xxdffIFKpaKwsBA3NzeWLVvG8ePH+fjjj+XVh5ycHP7880927NiBtbU1H374IT/99BPTpk3j/PnzODk5yR97y5Yt/PTTT+zZswe1Ws3s2bOZPHkyZmZm8opCamoqGzdupGXLlvTr16+uPg3CI6i4uJi9e/cSGhrKxo0bAQgICCA4OJjevXvX2GwvNTWV+Ph4vL29b+vX8SBdv36dgIAAvLy8CAkJuS3AuX79Ohs3bsTW1pZRo0Y98PFs27aN3NxcWrZsSWpqKvPnz+fq1avExsayadMmJk2aRFFRUbX3dO3alX79+vHJJ5888PEJgiDUJyJgEB4LOp2OX3/9FXNzc5588klsbW3Zu3cvY8eOZdGiRXJ+QlV5eXnMmDGDM2fOcOTIEUpLS+VJTlpaGqamppSUlLB+/Xo+//xzli1bxqBBg+SVhLVr17JmzRoSEhK4fv0633//PaNHj67tWxcecaWlpURERBAaGsqGDRsoLCwkICCAoKAg+vXrh5mZmXzuf//7Xy5dusTrr7+Og4NDrY3x5s2bDBs2DA8PD3777bd62T08MzMTDw8PvvjiC8zNzUXAIAiCUEX9yd4UhAfIycmJmTNnMmXKFDm5s1+/fkyePJnPP/+c999/n6NHj7Jlyxbi4+OBirr0kZGR8iS/rKwMqJigFRYWEh8fj5OTEy+99BL+/v588cUXwF9J0QEBASxfvpyXX34ZjUaDo6MjQL2qsvQgrVixgvbt26NWq1Gr1fj6+rJt2zb5+N1UoUlOTiYgIAALCwucnJyYM2cOpaWltX0r9ZqRkRH9+/dn+fLlXLlyhQ0bNmBvb88rr7yCp6cnzz//PL///jsrVqzgrbfeomvXrrUaLGRlZREYGIibmxu//vprvQwWoCLxvEWLFpw/fx4XFxeKi4vJzMysdo5Wq5W7xQuCIDxORMAgPNbeffddZs+ezR9//MEzzzzDd999x9WrV4GKLRJnz56Vt0dU5im8+OKLBAcHM2XKFJycnAgKCiI6OprCwkLgr8DC1taWZs2aodPpcHJyon///kD9qrL0IDVs2JBFixYRFRXF8ePH6d+/P4GBgcTFxQF3rkJTVlZGQEAAxcXFHDp0iDVr1rB69WrmzZtXV7dU7xkaGtK7d2+++uorLl26xI4dO2jYsCGzZs3izTffZPDgwZSVlZGbm1sr48nJySE4OBh7e3vCwsLqddWt3NxckpKScHV1pXPnzhgbG7N79275eGJiIsnJyfj6+tbhKAVBEOqIJAiCJEmSVFhYKJ09e1bKz8+XJEmSIiMjJWdnZykiIkI+5/Dhw5JKpZJ++ukn6ezZs9LBgwel1157TVKpVNJ//vMfSZIkqby8XCovL5ckSZJiY2OlQYMGSdOmTZMkSZLKyspq+a7qFzs7O2nVqlVSZmamZGxsLK1bt04+Fh8fLwFSZGSkJEmStHXrVsnAwEBKS0uTz1mxYoWkVquloqKiWh/7wyo0NFSysLCQlixZIr355ptSixYtJHNzc2n48OHSqlWrpGvXrkm5ublSXl7eff2j0+mkXr16SX379pXy8vLq+tNwm9dee03at2+fdPHiRengwYPSwIEDJUdHR0mn00mSJEn/+te/JHd3d2nPnj3S8ePHJV9fX8nX17eORy0IglA3Ho9HnYJwF0xNTWnevDnm5uZARVWU5557jj59+jBw4EDS0tK4cOECJiYm+Pv7yw2qAgICUKlU9OzZE6he6jQ2NpaUlBS5o/TjqqysjF9++YW8vDx8fX3vWIUGIDIyknbt2uHs7CyfM2TIELKzs+VVCqFmGzZsYPz48fzyyy/MmjWLhQsXkpCQwJEjR/D29mbJkiU0btyYJ598kh9//JGMjIw7Vt66GwUFBTz99NMAbNq0CQsLi3/8Me+3lJQUxowZQ8uWLXn66adxcHDg8OHDaDQaAL788kuGDRvGqFGj6N27Ny4uLoSHh9fxqAVBEOqGSHoWhDuQJIlDhw7Rtm1bMjMzGTlyJB4eHsyePZuDBw/y1Vdf4enpyZ49e+RgA6CoqIj33nuPP/74g8OHD9fbvdsPUkxMDL6+vhQWFmJlZUVISAj+/v6EhITcMan0xRdf5PLly+zYsUM+np+fj6WlJVu3bsXPz6+2b+ehsn37dkaNGkVISAiBgYF6z5EkiYSEBEJDQ1m/fj2xsbH07t2boKAghg0bhkajueceIoWFhYwePZqcnBy2b9/+j7pHC4IgCPWDWGEQhDuoXD2wsbHBw8ODpUuXUlpayvTp0zE3N0en0zFixAg5WKiMwS9dusSpU6fo2rUrJiYmcm7D46Rly5acOnWKI0eOMHXqVCZMmMCZM2fqeliPhdatW/Prr78qBgtQ8bXt5eXFu+++S1RUFGfOnGHQoEH873//o3nz5vj7+7Ny5UquXbt2VysPRUVFjBs3joyMDLZu3SqCBUEQhEeEaNwmCPeoZ8+e/P7770DFE+8zZ85Ue9p99OhRvLy8iIuL4+rVq8ycORNQ7sr8KDMxMaFZs2YAdO7cmWPHjvHVV1/xzDPPyFVoKqtWQfUqNC4uLhw9erTax6usoiQq1dyZu7s77u7ud32+SqWiWbNmzJ07lzfeeIPk5GTCwsIIDw9n7ty5dO3aVe4y3ahRo9u+nktKSpg4cSJXr15l9+7dtdoQThAEQXiwxAqDIPwDFhYWfPPNN3h7ewMVtdxffvllXF1dmTFjBunp6Xh5eQGPT3WkmpSXl1NUVHRXVWh8fX2JiYlBp9PJ5+zcuRO1Wk3r1q1rfeyPE5VKhYeHB6+++ip//vknly5dYvTo0Wzfvp127drRr18/vvzySy5cuIAkSZSWljJlyhSSkpLYuXNnrZZtFQRBEB48kcMgCA9AREQEv/76K+vXryctLY0JEyawatUquTTr4+Ctt97Cz88Pd3d3cnJyCAkJ4ZNPPmHHjh0MGjSIqVOnsnXrVlavXo1arZZXYg4dOgRUJEp7e3vj5ubG4sWLSUtLY9y4cUyZMoWPP/64Lm/tsSVJElqtlg0bNhAeHs6+ffvw8vJCpVKRn59PRESEWP0RBEF4BImAQRAesP3795OamvrYdXmePHkyu3fvJjU1FRsbG9q3b8/cuXMZNGgQUJEc+9prr/Hzzz9TVFTEkCFDWL58ebUJ5+XLl5k6dSr79u3D0tKSCRMmsGjRIrnjtlB3JEkiIyODkJAQFi1axP79++XtZ4IgCMKjRQQMgiAIgiAIgiAoEpuqBUEQBEEQBEFQJAIGQRAEQRAEQRAUiYBBEITHzooVK2jfvj1qtRq1Wo2vry/btm2Tj/ft2xeVSlXtz7/+9a9qHyM5OZmAgAAsLCxwcnJizpw5lJaW1vatCIIgCMIDJzIHBUF47DRs2JBFixbRvHlzJElizZo1BAYGcvLkSdq0aQPACy+8wAcffCC/x8LCQv57WVkZAQEBuLi4cOjQIVJTUxk/fjzGxsaigpMgCILwyBFJz4IgCIC9vT2ffvopkydPpm/fvnh7e7NkyRK9527bto1hw4Zx7do1nJ2dAVi5ciVz584lPT0dExOTWhy5IAiCIDxYYkuSIAiPtbKyMn755Rfy8vLkpnEAa9euxdHRkbZt2/LWW2+Rn58vH4uMjKRdu3ZysAAwZMgQsrOziYuLq9XxP86WLVtG48aNMTMzo1u3brd1BhcEQRDuD7ElSRCEx1JMTAy+vr4UFhZiZWXF+vXr5Q7Szz77LB4eHri5uXH69Gnmzp1LYmIi4eHhAKSlpVULFgD532lpabV7I4+pX3/9lVdffZWVK1fSrVs3lixZwpAhQ0hMTMTJyamuhycIgvBIEVuSBEF4LBUXF5OcnExWVhahoaGsWrWK/fv3y0FDVXv27GHAgAGcP3+epk2b8uKLL3L58mV27Nghn5Ofn4+lpSVbt27Fz8+vNm/lsdStWze6dOnCf/7zHwDKy8tp1KgRM2fO5M0336zj0QmCIDxaxJYkQRAeSyYmJjRr1ozOnTuzcOFCOnTowFdffaX33G7dugFw/vx5AFxcXNBqtdXOqfx31U7VwoNRXFxMVFQUAwcOlF8zMDBg4MCBREZG1uHIBEEQHk0iYBAEQaDiCXVRUZHeY6dOnQLA1dUVAF9fX2JiYtDpdPI5O3fuRK1W612hEO6v69evU1ZWpndbmNgSJgiCcP+JHAZBEB47b731Fn5+fri7u5OTk0NISAj79u1jx44dJCUlERISgr+/Pw4ODpw+fZpXXnmF3r170759ewAGDx5M69atGTduHIsXLyYtLY133nmH6dOnY2pqWsd3JwiCIAj3lwgYBEF47Oh0OsaPH09qaio2Nja0b9+eHTt2MGjQIK5cucKuXbtYsmQJeXl5NGrUiFGjRvHOO+/I7zc0NGTz5s1MnToVX19fLC0tmTBhQrW+DcKD4+joiKGhod5tYWJLmCAIwv0nkp4FQRCEh063bt3o2rUrX3/9NVCxpczd3Z0ZM2aIpGdBEIT7TKwwCIIgCA+dV199lQkTJuDj40PXrl3lFaFJkybV9dAEQRAeOSJgEARBEB46zzzzDOnp6cybN4+0tDS8vb3Zvn37bYnQgiAIwj8nqiQJgiDUY4sWLUKlUjF79mz5tcLCQqZPn46DgwNWVlaMGjXqtv38ycnJBAQEYGFhgZOTE3PmzKG0tLSWR/9gzZgxg8uXL1NUVMSRI0fk8reCIAjC/SUCBkEQhHrq2LFj/Pe//5WrM1V65ZVX2LRpE+vWrWP//v1cu3aNkSNHysfLysoICAiguLiYQ4cOsWbNGlavXs28efNq+xYEQRCER4BIehYEQaiHcnNz6dSpE8uXL+fDDz/E29ubJUuWkJWVhUajISQkhCeffBKAhIQEvLy8iIyMpHv37mzbto1hw4Zx7do1eYvOypUrmTt3Lunp6ZiYmNTlrQmCIAgPGbHCIAiCUA9Nnz6dgICAat2MAaKioigpKan2eqtWrXB3d5e7HEdGRtKuXbtq+/mHDBlCdnY2cXFxtXMDgiAIwiNDJD0LgiDUM7/88gsnTpzg2LFjtx1LS0vDxMQEW1vbaq9X7XKclpamtwty5TFBEARBuBciYBAEQahHrly5wqxZs9i5cydmZmZ1PRxBEARBEFuSBEEQ6pOoqCh0Oh2dOnXCyMgIIyMj9u/fz9KlSzEyMsLZ2Zni4mIyMzOrva9ql2MXFxe9XZArjwmCIAjCvRABgyAIQj0yYMAAYmJiOHXqlPzHx8eHsWPHyn83NjZm9+7d8nsSExNJTk7G19cXAF9fX2JiYtDpdPI5O3fuRK1W07p161q/J0EQBOHhJrYkCYIg1CPW1ta0bdu22muWlpY4ODjIr0+ePJlXX30Ve3t71Go1M2fOxNfXl+7duwMwePBgWrduzbhx41i8eDFpaWm88847TJ8+HVNT01q/J0EQBOHhJgIGQRCEh8yXX36JgYEBo0aNoqioiCFDhrB8+XL5uKGhIZs3b2bq1Kn4+vpiaWnJhAkT+OCDD+pw1IIgCMLDSvRhEARBEARBEARBkchhEARBEARBEARBkQgYBEEQBEEQBEFQJAIGQRAEQRAEQRAUiYBBEARBEARBEARFImAQBEEQBEEQBEGRCBgEQRAEQRAEQVAkAgZBEARBEARBEBSJgEEQBEEQBEEQBEUiYBAEQRAEQRAEQZEIGARBEARBEARBUCQCBkEQBEEQBEEQFImAQRAEQRAEQRAERSJgEARBEARBEARBkQgYBEEQBEEQBEFQJAIGQRAEQRAEQRAUiYBBEARBEARBEARFImAQBEEQBEEQBEGRCBgEQRAEQRAEQVAkAgZBEARBEARBEBSJgEEQBEEQBEEQBEUiYBAEQRAEQRAEQdH/AXmJLKfmBviIAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -95,25 +73,13 @@ "ax.set_zlabel('effbeta')\n", "ax.set_title('Surface Plot of effbeta')\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "RuntimeError", - "evalue": "shape '[65, 1]' is invalid for input of size 9", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/home/mazen/Research/QC/QuLearn/scratch/scratch.ipynb Cell 4\u001b[0m line \u001b[0;36m4\n\u001b[1;32m 38\u001b[0m \u001b[39m#all_combinations = list(itertools.product(*omega_spectrum))\u001b[39;00m\n\u001b[1;32m 39\u001b[0m all_combinations \u001b[39m=\u001b[39m omega_spectrum\n\u001b[0;32m---> 40\u001b[0m all_combinations \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39;49mtensor(all_combinations, dtype\u001b[39m=\u001b[39;49mtorch\u001b[39m.\u001b[39;49mfloat64)\u001b[39m.\u001b[39;49mreshape(\u001b[39m65\u001b[39;49m, \u001b[39m1\u001b[39;49m)\n\u001b[1;32m 41\u001b[0m model \u001b[39m=\u001b[39m ClassicalSurrogate(id_z, all_combinations)\n\u001b[1;32m 43\u001b[0m \u001b[39m# Example forward pass:\u001b[39;00m\n", - "\u001b[0;31mRuntimeError\u001b[0m: shape '[65, 1]' is invalid for input of size 9" - ] - } - ], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -162,13 +128,13 @@ "output = model(x)\n", "print(output)\n", "print(output.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pennylane as qml\n", @@ -205,13 +171,13 @@ "plt.scatter(x, target_y, facecolor='white', edgecolor='black')\n", "plt.ylim(-1, 1)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "scaling = 1\n", "\n", @@ -247,24 +213,24 @@ "plt.plot(x, random_quantum_model_y, c='blue')\n", "#plt.ylim(-1,1)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "drawer = qml.draw_mpl(serial_quantum_model, show_all_wires=True, expansion_strategy=\"device\")\n", "x = 0.0\n", "print(drawer(weights, x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "def cost(weights, x, y):\n", " predictions = [serial_quantum_model(weights, x_) for x_ in x]\n", @@ -290,13 +256,13 @@ " cst.append(c)\n", " if (step + 1) % 10 == 0:\n", " print(\"Cost at step {0:3}: {1}\".format(step + 1, c))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "predictions = [serial_quantum_model(weights, x_) for x_ in x]\n", "\n", @@ -305,13 +271,13 @@ "plt.plot(x, predictions, c='blue')\n", "plt.ylim(-1,1)\n", "plt.show();" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import torch\n", @@ -328,13 +294,13 @@ "y = torch.tensor([-0.25], dtype=torch.float64)\n", "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "print(drawer())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "Z = np.array([[1, 0], [0, -1]])\n", @@ -345,13 +311,13 @@ "M = sum(matrices[i]*coefficients[i] for i in range(2))\n", "eigenvalues = np.linalg.eigvals(M)\n", "print(eigenvalues)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch.optim import Adam\n", "opt = Adam(model.parameters(), lr=0.1)\n", @@ -360,23 +326,23 @@ "loss = loss_fn(pred, y)\n", "loss.backward()\n", "opt.step()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "print(drawer())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "def scalar2vector(x, L):\n", " # Check if input is within the expected range\n", @@ -427,13 +393,13 @@ " print(\"less than 0\")\n", "if x > 0:\n", " print(\"larger than 0\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import CircuitLayer\n", "import pennylane as qml\n", @@ -452,13 +418,13 @@ " qml.PauliX(self.wires[index])\n", " \n", " qml.RZ(0.0, self.wires[-1])" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import CircuitLayer, AltRotCXLayer\n", "import pennylane as qml\n", @@ -592,13 +558,13 @@ " )\n", " self.qnode = qnode\n", " return self.qnode" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from enum import Enum\n", "class Test(Enum):\n", @@ -606,13 +572,13 @@ " two = 2\n", " \n", "print(Test.one.name)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "x1 = torch.tensor([[0.1]])\n", "x2 = torch.tensor([[0.2]])\n", @@ -620,13 +586,13 @@ "x = torch.cat((x1, x2, x3), dim=1)\n", "print(x)\n", "print(x.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn.qlayer import ParallelEntangledIQPEncoding, ParallelIQPEncoding, MeasurementLayer, MeasurementType, IQPERYCZLayer, RYCZLayer\n", @@ -678,43 +644,43 @@ "# loss_after = fn(predicted, labels)\n", "\n", "# print(f\"Loss before: {loss_before} | Loss after: {loss_after}\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(model.alpha)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "X_train = torch.randn((num_samples, num_features))\n", "model.X_train = X_train\n", "print(model.alpha)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for p in model.named_parameters():\n", " print(p)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import HamiltonianLayer, AltRotCXLayer, IQPEmbeddingLayer\n", "import torch\n", @@ -734,13 +700,13 @@ "print(y)\n", "x_ = x[0]\n", "print(drawer(x_))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import HamiltonianLayer, AltRotCXLayer, IQPEmbeddingLayer\n", "import torch\n", @@ -760,13 +726,13 @@ "y = model(x)\n", "print(y)\n", "print(drawer(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import torch\n", @@ -812,13 +778,13 @@ "x, y = generate_dataset(25, n, c)\n", "y = torch.where(x <= 0, torch.tensor(0, dtype=torch.float64), torch.tensor(1, dtype=torch.float64))\n", "dataloader = get_data_loader(x, y)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn.qlayer import MeasurementLayer, MeasurementType, IQPEAltRotCXLayer, HamiltonianLayer\n", @@ -832,13 +798,13 @@ "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "x = torch.randn(num_features)\n", "print(drawer(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch.optim import Adam\n", "from qulearn.trainer import SupervisedTrainer\n", @@ -848,56 +814,56 @@ "logger = logging.getLogger(\"SupTrainer\")\n", "logger.setLevel(level=logging.INFO)\n", "trainer = SupervisedTrainer(opt, loss_fn, num_epochs=50, logger=logger)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "trainer.train(model, dataloader, dataloader)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.fat import fat_shattering_dim\n", "from qulearn.datagen import DataGenFat, UniformPrior\n", "prior = UniformPrior(sizex=num_features, seed=0)\n", "gamma=0.1\n", "datagen = DataGenFat(prior=prior, Sb=10, Sr=5, gamma=2.0*gamma, seed=0, batch_size=25)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "dim = fat_shattering_dim(model, datagen=datagen, trainer=trainer, dmin=1, dmax=100, gamma=gamma, dstep=1)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.fat import check_shattering\n", "#check = check_shattering(model, datagen, trainer, 1, gamma=gamma)\n", "#print(check)\n", "print(dim)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(dim)\n", "data = datagen.gen_data(1)\n", @@ -908,13 +874,13 @@ "print(data[\"b\"])\n", "print(data[\"r\"])\n", "print(0.07260766+gamma*2)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -942,13 +908,13 @@ "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from sympy import symbols, Matrix, cos, sin, exp\n", "from sympy.physics.quantum import TensorProduct as kron\n", @@ -998,13 +964,13 @@ "# Compute the expectation value of Z\n", "expectation = (psi.H * Z * psi)\n", "expectation[0]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from sympy import symbols, Matrix, cos, sin, exp\n", "from sympy.physics.quantum import TensorProduct as kron\n", @@ -1065,13 +1031,13 @@ "# Compute the expectation value of Z\n", "expectation = (psi.H * Z * psi)\n", "expectation[0]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from sympy import symbols, Matrix, cos, sin, exp\n", "from sympy.physics.quantum import TensorProduct as kron\n", @@ -1142,13 +1108,13 @@ "# Compute the expectation value of Z\n", "expectation = (psi.H * kron(Z, I) * psi)\n", "expectation[0]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -1203,13 +1169,13 @@ "plt.legend()\n", "plt.grid(True)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -1233,40 +1199,13 @@ "plt.grid(True)\n", "plt.legend()\n", "plt.show()\n" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([0.9639])\n", - "0: ──H──RZ(0.96)───Rot(5.73,1.50,0.92)─╭●──Rot(1.08,0.87,2.04)─────────────────────────╭●\n", - "1: ──H──RZ(1.93)───Rot(5.46,1.76,5.00)─╰X──Rot(0.33,0.36,3.38)─╭●──Rot(4.01,3.54,3.06)─╰X\n", - "2: ──H──RZ(3.86)───Rot(1.10,4.75,1.15)─╭●──Rot(4.41,2.58,2.66)─╰X──Rot(1.29,4.85,0.46)─╭●\n", - "3: ──H──RZ(7.71)───Rot(5.35,0.31,1.80)─╰X──Rot(1.78,1.01,4.78)─╭●──Rot(4.37,2.35,5.73)─╰X\n", - "4: ──H──RZ(15.42)──Rot(5.37,2.63,3.06)─────────────────────────╰X──Rot(6.20,1.32,5.91)───\n", - "\n", - "───Rot(3.56,4.46,5.36)─────────────────────────╭●──Rot(4.20,5.61,0.05)─────────────────────────┤\n", - "───Rot(2.90,4.84,1.06)─╭●──Rot(4.18,0.58,5.43)─╰X──Rot(4.70,3.59,1.99)─╭●──Rot(0.44,3.08,0.03)─┤\n", - "───Rot(5.06,5.36,4.85)─╰X──Rot(4.24,5.19,1.13)─╭●──Rot(0.74,1.40,1.66)─╰X──Rot(3.04,0.92,0.20)─┤\n", - "───Rot(3.98,1.64,3.79)─╭●──Rot(0.41,0.58,4.86)─╰X──Rot(0.91,3.47,6.02)─╭●──Rot(5.77,5.49,0.25)─┤\n", - "───────────────────────╰X──Rot(2.03,3.04,4.61)─────────────────────────╰X──Rot(4.77,1.81,2.89)─┤\n", - "\n", - " <𝓗(-0.15,0.80)>\n", - " \n", - " \n", - " \n", - " \n", - "89\n", - "{'gate_sizes': defaultdict(, {1: 34, 2: 12}), 'gate_types': defaultdict(, {'IQPEmbedding': 5, 'Rot': 29, 'CNOT': 12}), 'num_operations': 46, 'num_observables': 1, 'num_diagonalizing_gates': 0, 'num_used_wires': 5, 'depth': 14, 'num_trainable_params': 89, 'num_device_wires': 5, 'device_name': 'default.qubit.torch', 'expansion_strategy': 'gradient', 'gradient_options': {}, 'interface': 'torch', 'diff_method': 'backprop', 'gradient_fn': 'backprop'}\n" - ] - } - ], "source": [ "import pennylane as qml\n", "from qulearn.qlayer import AltRotCXLayer, ParallelEntangledIQPEncoding, ParallelIQPEncoding, MeasurementLayer, MeasurementType, IQPERYCZLayer, RYCZLayer, IQPEAltRotCXLayer, HadamardLayer, HamiltonianLayer, IQPEmbeddingLayer, AltRXCXLayer\n", @@ -1327,41 +1266,23 @@ "#print(model(x1))\n", "print(sum(p.numel() for p in model.parameters() if p.requires_grad))\n", "print(qml.specs(model.qnode)(x1))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(
, )\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABxwAAAJrCAYAAADajuZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADF/UlEQVR4nOzde3RU9b338c/kNuEiWiOJLXASEmg92CIK2KoQsaK0XhBFUKmeB5RbLUJsbSFU8FIRolJLOSgKgqWtPgUCXlsj4VGhHisCC0JBbBIMB9tTLsESk5hkIPv5IyeBycwkO5M9s/eeeb/WylrOZmbPd/Y3n/3N+JuLxzAMQwAAAAAAAAAAAAAQhgS7CwAAAAAAAAAAAADgXiw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsCXZXQAQDfX19Tpw4IBKS0tVVlamY8eOqa6uTvX19XaX5sfr9So1NVXnnXee+vXrp/79+ys7O1ter9fu0ixFP5yFfgChkQ8AQDiYHwCAcDA/ALgF5ysEw4IjYtLJkyf13nvvad26dSoqKtLBgwdlGIbdZYXF4/EoMzNTo0aN0rhx43TllVcqKcld0aUfzkI/gNDIBwAgHMwPAEA4mB8A3ILzFczwGG79rQCCKCsr0+LFi1VYWKijR4/aXU5E9OzZU2PHjtUDDzygnJwcu8tpE/1wFvoBhEY+AADhYH4AAMLB/ADgFpyv0BEsOCIm1NbWatGiRSooKFBDQ4Pd5USF1+vVz372M82ZM0ddu3a1uxw/9IN+2M3J/YCzkA/yAQDhYH4wPwAgHMwP5gfgFpyvOF+FgwVHuN7bb7+tqVOn6uDBg+1eNyMjQ/369VOfPn3UtWtXpaSkKCEhIQpVtq+xsVENDQ2qra3VoUOHVFZWpsOHD7d7u6ysLD333HO69tpro1Bl++gH/YiEWOkHnIV8kA8ACAfzg/kBAOFgfjA/ALeItfPVnj179D//8z/y+XycryKMBUe42saNGzV+/HidPHky6L8PHjxY48aN08iRI9W/f3/16NEjyhV2TlVVlUpLS1VcXKy1a9dq586dQa+XlJSktWvX6uabb45yhf7oRxP6ER1u6wechXw0IR8A0DHMjybMDwDoGOZHE+YH4HyxdL5qbGzU3LlzVVBQoA0bNujmm2/mfBVpBuBSGzZsMJKSkgxJfj+JiYlGXl6eUV5ebneJlisrKzPy8vKMxMTEgMedlJRkbNiwwbba6Af9sJuT+wFnIR/kAwDCwfxgfgBAOJgfzA/ALWLpfFVbW2vceuutLY/hf/7nf4Jej/OVtVhwhCsVFRUFPfnl5uYae/bssbu8iNuzZ4+Rm5sb9CRYVFQU9XroB/1wEqf1A85CPsgHAISD+cH8AIBwMD+YH4BbxNL56p///Kdx6aWXtjyGrKysdm/D+coafKQqXKe2tlYDBgwI+AzpKVOmaPny5Y75jOhIa2xs1PTp07VixQq/7VlZWdq3b5+6dOkSlTroRxP64SxO6QechXw0IR8A0DHMjybMDwDoGOZHE+YH4HyxdL7au3evrr/+er/Hcscdd+ill15q97acrzrPPb8pwP9atGhRTJz8OishIUHLly/XlClT/LZXVFRo0aJFUauDfjShH87ilH7AWchHE/IBAB3D/GjC/ACAjmF+NGF+AM4XK+er4uJiXX755QGP5bLLLjN1e85Xncc7HOEqZWVl+uY3v6n6+vqWbbm5uXrnnXdcdfKzUmNjo0aMGKGtW7e2bPN6vdq7d69ycnIiet/0IxD9cBY7+wFnIR+ByAcAtI/5EYj5AQDtY34EYn4AzhQr56uVK1fqhz/8oU6ePBnwbx999JGGDBliel+cr8Lnnt8YQNLixYv9Tn6JiYlatmyZq05+VktISNCyZcuUmJjYsq2+vl5PPfVUxO+bfgSiH85iZz/gLOQjEPkAgPYxPwIxPwCgfcyPQMwPwJncfr5qbGzU7NmzNWXKlKCLjV26dNFFF13UoX1yvgqfO35rAEknT55UYWGh37b77rtP3/zmN22qyDm+9a1v6b777vPbtmHDhqAnWavQj9Doh7PY0Q84C/kIjXwAQGjMj9CYHwAQGvMjNOYH4CxuP199+eWXGj9+vJ544omQ1xkyZIiSk5M7vG/OV+FhwRGu8d577+no0aN+21qHPp7NmDHD7/KRI0e0ZcuWiN0f/Wgb/XCWaPcDzkI+2kY+ACA45kfbmB8AEBzzo23MD8A53Hy+Onz4sEaMGBGwYNqa2e9vDIbzVcex4AjXWLdund/lwYMHKzs726ZqnCcnJ0eXXHKJ37bWx8xK9KNt9MNZot0POAv5aBv5AIDgmB9tY34AQHDMj7YxPwDncOv5au/evfr2t7+tbdu2+W0P9jGwnVlw5HzVcSw4wjWKior8Lo8bN86mSpyr9TFpfcysRD/aRz+cJZr9gLOQj/aRDwAIxPxoH/MDAAIxP9rH/ACcwY3nq02bNunyyy/XwYMH/bafffbZQb9j8Tvf+U6n7o/zVcew4AhXqK+vDziJjBw50qZqnOuaa67xu3zw4EG/L/21Cv0wh344S7T6AWchH+aQDwDwx/wwh/kBAP6YH+YwPwD7ufF8tWLFCn3/+99XVVWV3/asrCz913/9l7p27Rqw/fzzz+/UfXK+6hgWHOEKBw4ckGEYftu+/vWv21SNc/Xv39/vcmNjoz799FPL74d+mEM/nCVa/YCzkA9zyAcA+GN+mMP8AAB/zA9zmB+A/dx0vmpsbNTs2bM1depUnTp1yu/fvv3tb+svf/mLBgwYoA8++MDv3zrzcarNOF91DAuOcIXS0lK/yxkZGTrrrLNsqsa5evToofT0dL9trY+dFeiHOfTDWaLVDzgL+TCHfACAP+aHOcwPAPDH/DCH+QHYzy3nq9raWo0fP15PPPFE0H//7W9/q4yMDEmKyIIj56uOYcERrlBWVuZ3uV+/fjZV4nytX3URiRMg/TCPfjhLNPoBZyEf5pEPADiN+WEe8wMATmN+mMf8AOzllvPV8ePH9eWXX4b8969//ev6/ve/r2PHjulvf/ub379ZseAocb7qCBYc4QrHjh3zu9ynTx+bKnG+3r17+12urKy0/D7oh3n0w1mi0Q84C/kwj3wAwGnMD/OYHwBwGvPDPOYHYC+3nK969+6tN954Q6+++qqysrKCXuett95Sz549/bZ16dJFF110kWU1nInzVWgsOMIV6urq/C63/gJYnNb62LQ+dlagH+bRD2eJRj/gLOTDPPIBAKcxP8xjfgDAacwP85gfgL2cfL46deqU33c1ejwejR49Wvv27dP8+fNN7WPIkCFKTk62pB7OV+Yl2V0AYEZ9fb3f5ZSUFJsqcT6v1+t3ORInQPphHv1wlmj0A85CPswjHwBwGvPDPOYHAJzG/DCP+QHYy+7zVUNDg3bv3u33s3fvXn3xxRfy+XySpOTkZJ111lm68MILddFFF+miiy7Sv/3bv5nav1UfpypxvuoIFhzhSgkJvDk3FDuODf0IjX44C8cG/A6ExrEBgNA4R4bGsQGA0DhHhsaxAZwlWpnctWuXVq1apd///vc6fvx4m9f1+Xw6fvy4tm7dqq1bt3bofqxccOR8ZR4LjgAAAAAAAAAAALDcyZMn9cILL2j58uXatWuX5fu//vrrVVxc7Peuze985zuW3w/ax4IjAAAAAAAAAAAALPXBBx/ohz/8oXbv3h2x+3jzzTd1wQUX6Ctf+Yo++OADZWVl6fzzz4/Y/SE0FhwBAAAAAAAAAABgicrKSs2ZM0crV65s83pf//rXW76f8aKLLlKvXr1avjOxvr5ef//737V792794he/CPjeyTPt379fknTNNdfom9/8pnUPBB3CgiMAAHHA5/Ppiy++kCSdddZZSk5OtrkiAIAbMD8AAOFgfgBA/Nq1a5duuOEG/f3vfw/673369NHEiRP1f/7P/1FOTk6b+7r44ouVlpamBx980NR9b9q0Sfv27dN//Md/aNCgQR0tHZ3Et10CABCjdu3apZkzZ2ro0KHq3r270tLSlJaWpu7du2vo0KGaOXNmRD/SAgDgTswPAEA4mB8AgLfeekvDhg0Lutj4zW9+U3/605/06aef6tFHH213sVGSDMPQ5ZdfHrD96aef1p/+9Keg72b8+9//rmHDhumtt94K70EgbCw4AgAQY0pKSpSbm6uLL75YS5cu1fbt29XQ0NDy7w0NDdq+fbuWLl2qQYMGKTc3VyUlJTZWDABwAuYHACAczA8AgCS9/vrrGj16tGpqavy2d+vWTU899ZR27typ733ve0pMTDS9z5///OdBt+fl5el73/uedu7cqaeeekrdunXz+/eamhrddNNNev311zv+QBA2FhwBAIgRhmFo0aJFGjJkiLZu3Wr6dlu3btWQIUO0aNEiGYYRwQoBAE7E/AAAhIP5AQBo9v7772vs2LHy+Xx+24cPH66PP/5YP/nJTzr88dpffPGFFi5cGLD9448/bvnv5ORk/eQnP9HHH3+sYcOG+V2voaFBY8eO1fvvv9+h+0X4WHAEACAGGIah++67T/n5+QF/3Jnh8/mUn5+v++67jyf9ABBHmB8AgHAwPwAAzT7//HNNmDAhYB7ccccd2rRpk/r06RPWfoN95OrFF1+sCy64IGB7nz59VFxcrDvuuMNvu8/n04QJE/Svf/0rrBrQMXGx4PjRRx/puuuu0znnnKNu3brpO9/5jtauXWt3WXCpiooKeTwefe973wt5nXfffVcej0fTp0+PYmWxq/mYn/mTnJysXr16afz48dq+fbvf9V988cWA64f6GTFihD0PyoU62oeOmjhxojwejyoqKqwpOM4UFBRo2bJlnd7PsmXLVFBQYEFF8YV8AHAr5oe9mB8A3Ir5YS/mBwCnMAxDU6ZM0X//93/7bb/77rv129/+Vl6vN6z9fvDBBzp69GjA9r/85S8hb+P1evXb3/5Wd999t9/2//7v/9aUKVN4gUsUJNldQKS98847GjVqlFJTU3X77bfrrLPOUmFhoW677TYdOnRIP/nJT+wuEYBJOTk5uvPOOyU1fQ73jh07tG7dOr3yyisqLi5Wbm6uJGnQoEF66KGH2tzXsmXLdOzYMV144YURrzvWmO0DoqekpETz58+3bH/z58/Xddddp4EDB1q2z3hBPgC4CfPDOZgfANyE+eEczA8AdluxYoUKCwv9to0YMULPP/98h76r8UyGYejyyy8P2L5kyRKlpKS0edvExEQ9//zzKi8v13vvvdeyff369Vq5cqWmTJkSVk0wJ6YXHE+ePKkpU6YoISFBW7Zs0aBBgyQ1/SFz6aWXau7cubr11luVmZlpb6EATOnXr58efvhhv22LFi1Sfn6+5s2b1zJEBg0a1JL3YBYvXqxjx45p8ODBWrx4cQQrjk1m+4DomTFjRlgfYxSKz+fTjBkztGXLFsv2GS/IBwA3YX44B/MDgJswP5yD+QHATrW1tcrPz/fbdu655+p3v/td2IuNkvTzn/886PaZM2eaun1iYqJ+97vf6aKLLtLx48dbtufn5+sHP/iBunbtGnZtaFtMf6Tq//t//0/l5eWaMGGC3+LD2Wefrblz56qhoUG/+c1v7CsQQKfdc889kqQdO3aYun5xcbFmz56t9PR0bdy4UampqZEsL26E6sOxY8eUl5envn37yuv1Kj09XePHj9df//pXv+tlZWW1nI/79u3LR952wK5du7R161bL97t161bt3r3b8v3GI/IBwImYH87H/ADgRMwP52N+AIiWF1980W9BT5JWr16tXr16hb3PL774QgsXLgzY/vHHH3doP71799aqVav8tlVWVrIeFGEx/Q7Hd999V5J07bXXBvzbqFGjJIlX+gAxIimp/dPZgQMHdNttt8nj8WjdunVhf2ExQjuzD0ePHtVll12m8vJyjRgxQrfffrs+/fRTrV+/Xm+++aaKioo0bNgwSVJeXp5efPFF7d69W7NmzdI555wjqemJDtrW+o8nq/e9ZMmSiO0/3pAPAE7C/HAP5gcAJ2F+uAfzA0AknTp1Sr/85S/9tn3/+9/X6NGjO7XfnJycgG0XX3yxLrjggg7v66abbtL3v/99/elPf2rZ9stf/lJTp07t1DswEVpMLziWlpZKkvr37x/wb+eff766d+/ech2go8rKygI+tqIZX6odPStXrpSklj+MQ6mpqdGYMWN0/PhxLV26lO8xsFiwPsyePVvl5eXKz8/X448/3rL9j3/8o66//npNmjRJn3zyiRISEpSXl6ddu3Zp9+7dysvL44lMB3zwwQeu3Hc8IR8AnIj54XzMDwBOxPxwPuYHgGh49dVXVV5e7rftgQce6NQ+P/jgAx09ejRg+1/+8pew9/mTn/zEb8GxrKxMr732mm6++eaw94nQYnrB8cSJE5KaPkI1mB49erRcxy0Mw1Btba3dZUSdld8NYJXy8nI98sgjdpfRLp/Pp5qaGsv3aYczF3mbvwz9nXfeUUZGhp588sk2bztx4kTt2bNHkyZN0owZM6JQbXCx0A8zfWhoaNDLL7+stLQ0Pfjgg363v+6663TNNddo06ZNev/99zV8+PCo1n+mSPQjmnw+n0pKSiK2/5KSEp04ccLUO4idinyEz+35ABAa86N9zI/wMT+A2MX8aB/zI3zMDyC6Onu+Wrt2rd/liy++WFdddVXY+zMMQ5dffnnA9iVLliglJSXs/X73u9/VoEGDtGvXrpZtf/jDH1hwjBD3TvA4VVtbq+7du9tdBtT0sbxvvfVW0H979913O3WCtdKKFSu0YsUKu8uwRLBF3vPPP19bt25Vv379Qt5uwYIFWr9+vb797W/r2WefjXSZbYqFfpjpw/79+1VXV6errroq6BcxX3XVVdq0aZN27dpl6xOaWOhHJNXX17d8fA7MIR8AwPwIB/MDAJgf4WB+ALBL63cdTp06VR6PJ+z9/fznPw+6febMmWHvU5I8Ho+mTp2qe++9t2Xbhx9+2Kl9IrQEuwuIpOZ3NoZ6F2NVVVXIdz8CcJ5Ro0bJMAwZhqEjR47oySef1JEjRzR69GhVV1cHvc2bb76p+fPn6/zzz1dhYaG8Xm+Uq449ZvpQVVUlScrIyAi6j69+9at+1wNiBfkAAISD+QEACAfzA4Ad/vnPf+rgwYN+29r7uqu2fPHFF1q4cGHA9o8//jjsfZ6pdW0VFRU6fPiwJfuGv5h+h2PzdzeWlpZq8ODBfv/2z3/+U9XV1br00kvtKC1sXbt2DbmwEsvuv/9+XuUUpilTpujpp5+2dJ9O6EfPnj31wAMP6MSJE3rsscf04IMP6le/+pXfdf72t7/pBz/4gZKSkrR+/Xr16tXLnmLPEGv9CNWHHj16SFLI4f3Pf/5TklquZ5dI9COafD6fMjIy1NDQEJH9e71eHT582NUfaUQ+wuf2fAAIjfnRPuZH+JgfQOxifrSP+RE+5gcQXZ05X7V+h+BZZ52lf//3fw+7lpycnIBtF198sS644IKw93mmAQMGqHv37n7rKh9++KFGjx5tyf5xmnsnuAlXXnmlFi5cqLffflu33367378VFRW1XMdNPB6PunXrZncZUZecnGx3Ca6VnJxs+e+Mk/oxd+5crVq1Ss8884zfl5lXVVXppptu0okTJ7R8+XJdccUV9hb6v2K1H637cMEFFyg1NVUfffSRamtrAz625d1335UkDRo0qGVbYmKiJOnUqVPRKjsi/Yi2gQMHavv27RHbt9s/CYB8hC8W8gEgNOZH25gf4WN+ALGN+dE25kf4mB9AdHXmfLV7926/y0OHDm05b3TUBx98oKNHjwZsb/2RrZ2RmJiooUOH6p133mnZtmvXLhYcIyCmP1L16quvVnZ2tl566SW/LwU9ceKEHn/8caWkpOg//uM/7CsQQKd16dJFs2fPls/n0y9+8QtJTV8yfOedd2r//v2aOnWqpk2bZnOVsa91H1JSUnTHHXfo2LFjAR+J8NZbb6moqEj9+vXzWwg+99xzJUmHDh2Kau1ud9lll7ly3/GEfABwIuaH8zE/ADgR88P5mB8AIu2LL77wu9ynT5+w9mMYhi6//PKA7UuWLFFKSkpY+wyldY3x+CmS0RDT73BMSkrSypUrNWrUKOXm5ur222/XWWedpcLCQh08eFBPPfVUy7uhALjX1KlTVVBQoDVr1mju3LnasGGDXn/9daWkpCgtLU0PP/xwm7dv799hTus+FBQU6L333tNjjz2m//qv/9K3v/1tVVRUaN26deratatWr16thITTr3v57ne/q6eeekpTp07V2LFj1a1bN2VmZuquu+6y8VE53913362lS5dGbN+wBvkA4DTMD3dgfgBwGuaHOzA/AETSRRddpNtvv11ffvmlvvzyS33rW98Kaz8///nPg26fOXNmZ8oLauDAgbr22mvVpUsXdenSRRdddJHl94EYX3CUpKuuukp//vOf9dBDD+kPf/iDfD6fvvWtb6mgoEC33Xab3eUBsEBqaqry8/N133336ZFHHmn5I7mhoSHoFw63xoKjNVr3Yc2aNfrwww/1i1/8Qq+++qq2bt2qs88+W2PGjNFDDz2kb37zm363//73v68nnnhCK1as0OLFi+Xz+XTllVfyhKYdgwYN0vDhw7V161ZL9zt8+HD++LIQ+QDgNMwPd2B+AHAa5oc7MD8ARNKdd96pO++8s1P7+OKLL4L+f9uPP/64U/sN5Sc/+Yl+8pOfRGTfOC3mFxwl6dJLL9Wf/vQnu8tAjMjKypJhGG1eZ8SIEe1eB+aZOeYzZszQjBkzWi6/+OKLEa4q/oTTh/POO09LlizRkiVLTN3HT3/6U/30pz/tVJ3x6D//8z81ZMgQ+Xw+S/aXnJysZcuWWbKveEE+ALgR88N+zA8AbsT8sB/zA4Db5eTkBGy7+OKLdcEFF9hQDawS09/hCABAPBg4cKAeffRRy/b36KOPhv1xGAAA92B+AADCwfwAAHTGBx98oKNHjwZs/8tf/mJDNbASC44AAMSA2bNn60c/+lGn9zNjxgzNnj3bgooAAG7A/AAAhIP5AQAIh2EYuvzyywO2L1myRCkpKTZUBCux4AgAQAzweDxaunSpFi5cqOTk5A7fPjk5WQsXLtSvf/1reTyeCFQIAHAi5gcAIBzMDwBAOH7+858H3T5z5swoV4JIYMERAIAY4fF4NGfOHG3fvl3Dhw83fbvhw4drx44dmjNnDk/2ASAOMT8AAOFgfgAAOuKLL77QwoULA7Z//PHHNlSDSEiyuwAAAGCtgQMHasuWLdq9e7dWrVqlDz74QLt371ZDQ4Mkyev1auDAgbrssst0991366KLLrK5YgCAEzA/AADhYH4AAMzIyckJ2HbxxRfrggsusKEaRAILjgAAxKiLLrpIS5YskSSdOHFC55xzjiTp8OHDOvvss22sDADgZMwPAEA4mB8AgFA++OADHT16NGD7X/7yFxuqQaTwkaoAAMSBpKSkoP8NAEBbmB8AgHAwPwAAzQzD0OWXXx6wfcmSJUpJSbGhIkQKC44AAAAAAAAAAACw3M9//vOg22fOnBnlShBpLDgCAAAAAAAAAADAUl988YUWLlwYsP3jjz+2oRpEGguOAAAAAAAAAAAAsFROTk7AtosvvlgXXHCBDdUg0lhwhCs1NjbaXYJj2XFs6Edo9MNZODbgdyA0jg0AhMY5MjSODQCExjkyNI4N4CyRyOT+/ft19OjRgO1/+ctfLL+vSOJ8ZR4LjnAFr9frd7mhocGmSpyvvr7e73Jqaqrl90E/zKMfzhKNfsBZyId55AMATmN+mMf8AIDTmB/mMT8Ae0X6fGUYhvLy8gK2L1myRCkpKZbeV6RxvjKPBUe4QusQ19bW2lSJ87U+NpE4AdIP8+iHs0SjH3AW8mEe+QCA05gf5jE/AOA05od5zA/AXpE+Xx05ckSffPKJ37avfOUrmjlzpqX3Ew2cr8xjwRGucN555/ldPnTokE2VON9nn33mdzktLc3y+6Af5tEPZ4lGP+As5MM88gEApzE/zGN+AMBpzA/zmB+AvSJ9vsrIyNC+ffs0f/58eb1edevWTSUlJZbeR7RwvjKPBUe4Qr9+/fwul5WV2VSJ85WWlvpd7t+/v+X3QT/Mox/OEo1+wFnIh3nkAwBOY36Yx/wAgNOYH+YxPwB7ReN81aVLFz3yyCPau3ev1qxZo969e1t+H9HA+co8FhzhCq1DfPjwYVVVVdlUjXNVVVXpyJEjftsicQKkH+bQD2eJVj/gLOTDHPIBAP6YH+YwPwDAH/PDHOYHYL9onq9ycnJ0yy23RGTfkcb5qmNYcIQrZGdny+Px+G1r/coCBB6ThIQE9e3b1/L7oR/m0A9niVY/4CzkwxzyAQD+mB/mMD8AwB/zwxzmB2A/zlfmcL7qGBYc4Qper1eZmZl+24qLi22qxrk2bdrkdzkzM1Ner9fy+6Ef5tAPZ4lWP+As5MMc8gEA/pgf5jA/AMAf88Mc5gdgP85X5nC+6hgWHOEao0aN8ru8bt06mypxrtbHpPUxsxL9aB/9cJZo9gPOQj7aRz4AIBDzo33MDwAIxPxoH/MDcAbOV+3jfNUxLDjCNcaNG+d3eceOHTpw4IBN1ThPeXm5du7c6bet9TGzEv1oG/1wlmj3A85CPtpGPgAgOOZH25gfABAc86NtzA/AOThftY3zVcex4AjXuPLKK9WzZ0+/bUuXLrWpGuf5z//8T7/L6enpys3Njdj90Y+20Q9niXY/4Czko23kAwCCY360jfkBAMExP9rG/ACcg/NV2zhfdRwLjnCNpKQkjR071m/b0qVL9de//tWmipxjz549AcPglltuUVJSUsTuk36ERj+cxY5+wFnIR2jkAwBCY36ExvwAgNCYH6ExPwBn4XwVGuer8HgMwzDsLgIwq7y8XBdeeKHq6+tbtuXm5uqdd95RQkJ8rp83NjZqxIgR2rp1a8s2r9ervXv3KicnJ6L3TT8C0Q9nsbMfTlNTU6Pu3btLkqqrq9WtWzebK4ou8hGIfAAwg/nB/GiN+QHADOYH86M15gfgTJyvAnG+Cl98/sbAtXJycvSzn/3Mb9uWLVs0ffp0NTY22lSVfRobGzV9+nS/k58kzZ49OyonP/rhj344i939gLOQD3/kAwDMYX74Y34AgDnMD3/MD8C5OF/543zVObzDEa5TW1urAQMG6ODBg37bp0yZouXLl8fNKy+aT34rVqzw256VlaV9+/apS5cuUamDfjShH87ilH44Sby/wlgiH83IB4COYH4wP5oxPwB0BPOD+dGM+QE4H+erJpyvOi8+flMQU7p27arnn38+4POSV6xYoREjRmjPnj02VRY9e/bs0YgRIwJOfklJSXruueeievKjH/TDaZzUDzgL+SAfABAO5gfzAwDCwfxgfgBuwfmK85VlDMClNmzYYCQlJRmS/H4SExONvLw8o6yszO4SLVdWVmbk5eUZiYmJAY87KSnJ2LBhg2210Q/6YTcn98MJqqurW45HdXW13eXYinyQDwDmMT9OY34wPwCYx/w4jfnB/ADcgvMV56vO4iNV4WobN27U+PHjdfLkyaD/fskll2jcuHG65ppr1L9/f/Xo0SPKFXZOVVWVSktLtWnTJq1bt047d+4Mer2kpCStXbtWN998c5Qr9Ec/mtCP6HBbP+zGRxr5Ix9NyAeA9jA//DE/mjA/ALSH+eGP+dGE+QE4H+erJpyvwsOCI1zv7bff1rRp01RRUdHuddPT09W/f3/17t1bXbt2ldfrdcxnUDc2Nqq+vl61tbX67LPPVFpaqiNHjrR7u6ysLD333HO69tpro1Bl++gH/YiEWOmHnXjCH4h8kA8A7WN+BGJ+MD8AtI/5EYj5wfwA3ILzFeercLHgiJjw5ZdfatGiRSooKFB9fb3d5USF1+vV7NmzNWfOHMd9hjT9oB92c3I/7MIT/uDIB/kA0DbmR3DMD+YHgLYxP4JjfjA/ALfgfMX5KhwsOCKmlJeX66mnnlJhYaGOHj1qdzkRkZ6erltuuUUPPPCAcnJy7C6nTfTDWehHfOMJf9vIBwAEx/xoG/MDAIJjfrSN+QHALThfoSNYcERMOnnypLZs2aJ169apqKhIFRUVcuuvusfjUVZWlkaNGqVx48YpNzdXSUlJdpfVIfTDWehHfOIJvznkAwD8MT/MYX4AgD/mhznMDwBuwfkKZrDgiLhQX1+vTz/9VKWlpSotLVVlZaXq6upUV1dnd2l+UlNTlZqaqrS0NPXv31/9+/dX37595fV67S7NUvTDWehHfOAJf3jIB4B4x/wID/MDQLxjfoSH+QHALThfIRgWHAEAiAM84QcAhIP5AQAIB/MDAID4k2B3AQAAAAAAAAAAAADciwVHAAAAAAAAAAAAAGFjwREAAAAAAAAAAABA2FhwBAAAAAAAAAAAABA2FhwBAAAAAAAAAAAAhI0FRwAAAAAAAAAAAABhY8ERAAAAAAAAAAAAQNhYcAQAAAAAAAAAAAAQNhYcAQAAAAAAAAAAAISNBUcAAAAAAAAAAAAAYWPBEQAAAAAAAAAAAEDYWHAEAAAAAAAAAAAAEDYWHAEAAAAAAAAAAACEjQVHAAAAAAAAAAAAAGFjwREAAAAAAAAAAABA2FhwBAAAAAAAAAAAABA2FhwBAAAAAAAAAAAAhI0FRwAAAAAAAAAAAABhY8ERAAAAAAAAAAAAQNiS7C4AiIb6+nodOHBApaWlKisr07Fjx1RXV6f6+nq7S/Pj9XqVmpqq8847T/369VP//v2VnZ0tr9drd2mWoh/OQj+A0MgHEBr5AEIjH0Bo5AMIjXwAoZEPwPlYcERMOnnypN577z2tW7dORUVFOnjwoAzDsLussHg8HmVmZmrUqFEaN26crrzySiUluSu69MNZ6AcQGvkAQiMfQGjkAwiNfAChkQ8gNPIBuI/HcGtKgSDKysq0ePFiFRYW6ujRo3aXExE9e/bU2LFj9cADDygnJ8fuctpEP5yFfsS3mpoade/eXZJUXV2tbt262VyRs5APIDTyEd+YH20jH0Bo5CO+MT/aRj6A0MgH4GIGEANqamqMefPmGSkpKYakuPjxer3GvHnzjJqaGrsPfwD64Sz0A4ZhGNXV1S3Hp7q62u5yHIN8AKGRDxgG8yMU8gGERj5gGMyPUMgHEBr5ANyPdzjC9d5++21NnTpVBw8ebPe6GRkZ6tevn/r06aOuXbsqJSVFCQkJUaiyfY2NjWpoaFBtba0OHTqksrIyHT58uN3bZWVl6bnnntO1114bhSrbRz/oRyTESj/sxCuMA5EP8oHQyAf5aMb8CEQ+yAdCIx/koxnzIxD5IB8IjXyQD8QGFhzhahs3btT48eN18uTJoP8+ePBgjRs3TiNHjlT//v3Vo0ePKFfYOVVVVSotLVVxcbHWrl2rnTt3Br1eUlKS1q5dq5tvvjnKFfqjH03oR3S4rR924wm/P/LRhHwgGPLRhHw0YX74Ix9NyAeCIR9NyEcT5oc/8tGEfCAY8tGEfCAm2PsGSyB8GzZsMJKSkgLeip6YmGjk5eUZ5eXldpdoubKyMiMvL89ITEwMeNxJSUnGhg0bbKuNftAPuzm5H07ARxqdRj7IB0IjH+SjNebHaeSDfCA08kE+WmN+nEY+yAdCIx/kA7GFBUe4UlFRUdBhlJuba+zZs8fu8iJuz549Rm5ubtChVFRUFPV66Af9cBKn9cMpeMLfhHyQD4RGPshHMMyPJuSDfCA08kE+gmF+NCEf5AOhkQ/ygdjDgiNcp6amxsjMzAw4GU+ZMsU4deqU3eVFzalTp4wpU6YEHIesrCyjtrY2anXQjyb0w1mc0g8nqaqqajkOVVVVdpdjC/LRhHwgGPLRhHwEYn6Qj2bkA8GQjybkIxDzg3w0Ix8Ihnw0IR+INSw4wnXmzZsX98OoWaihNH/+/KjVQD9Oox/O4oR+2OH48eNGcXGxsWjRImPcuHFGdna2kZqaGnAcUlNTjezsbGPcuHFGQUGBUVxcbBw/ftzu8iOKfJwWr/lAaOTjtHjNB/MjNPJxWrzmA6GRj9PiNR/Mj9DIx2nxmg+ERj5OIx+IJSw4wlVKS0sNr9frd/LNzc2Ny2HU7NSpU8bw4cP9jonX6zXKysoift/0IxD9cBY7+xFN+/fvN2bNmmVkZ2cH/IHa0Z/s7Gxj1qxZxv79++1+WJYiH4HiJR9oH/kIFC/5YH60j3wEipd8oH3kI1C85IP50T7yEShe8oH2kY9A5AOxggVHuMr06dP9TryJiYlx8Zne7SkpKQn4ouHp06dH/H7pR3D0w1ns6kek+Xw+o7Cw0Lj66qsDnrT37dvXuPXWW41FixYZmzZtMg4cOGCUl5e3/Ht5eblx4MABY9OmTcaiRYuMW2+91ejbt2/Afq6++mqjsLDQ8Pl8dj/cTiMfwcVqPtAx5CO4WM0H86NjyEdwsZoPdAz5CC5W88H86BjyEVys5gMdQz6CIx+IBSw4wjV8Pp/Rs2dPv5NuXl6e3WU5Rl5ent+xSU9Pj+gf6fSjbfTDWaLdj0j68ssvjQULFhi9evVqeTwJCQnG6NGjjddee82orKwMervq6uqW61dXVwe9TmVlpfHaa68Zo0ePNhISElqu36tXL+Pxxx836urqIvnQIoZ8tC2W8oGOIx9ti6V8MD86jny0LZbygY4jH22LpXwwPzqOfLQtlvKBjiMfbSMfcDsWHOEaxcXFAa9+Ky8vt7ssxygrKws4Pps3b47Y/dGPttEPZ4l2PyLlww8/NAYMGNDyGHr27GnMnTvXqKioaPe2Zp7wn6miosKYO3eu3xOBAQMGGNu2bbPioUQV+WhbrOQD4SEfbYuVfDA/wkM+2hYr+UB4yEfbYiUfzI/wkI+2xUo+EB7y0TbyAbdLEOAS69at87s8ePBgZWdn21SN8+Tk5OiSSy7x29b6mFmJfrSNfjhLtPthtbq6Os2ZM0eXXXaZ9u3bp4yMDK1Zs0aHDh3SggULlJmZafl9ZmZmasGCBTp06JDWrFmjjIwM7du3T9/5zneUn5+vuro6y+8zUshH29yeD3QO+Wib2/PB/Ogc8tE2t+cDnUM+2ub2fDA/Ood8tM3t+UDnkI+2kQ+4HQuOcI2ioiK/y+PGjbOpEudqfUxaHzMr0Y/20Q9niWY/rLRt2zZdcsklKigoUGNjoyZMmKC9e/fqrrvuktfrjfj9e71e3XXXXdq7d68mTJigxsZGLVq0SIMHD9a2bdsifv9WIB/tc2s+0Hnko31uzQfzo/PIR/vcmg90Hvlon1vzwfzoPPLRPrfmA51HPtpHPuBmLDjCFerr63Xw4EG/bSNHjrSpGue65ppr/C4fPHhQ9fX1lt8P/TCHfjhLtPphpfXr12vYsGH6+OOPlZGRoY0bN+r3v/+90tLSol5LWlqafv/732vjxo1KT0/Xvn37NGzYMBUWFka9lo4gH+a4MR/oPPJhjhvzwfzoPPJhjhvzgc4jH+a4MR/Mj84jH+a4MR/oPPJhDvmAm7HgCFc4cOCADMPw2/b1r3/dpmqcq3///n6XGxsb9emnn1p+P/TDHPrhLNHqh1VWrVql2267TT6fTzfddJP27t2rMWPG2F2WxowZo3379ummm26Sz+fT+PHjtXr1arvLCol8mOO2fMAa5MMct+WD+WEN8mGO2/IBa5APc9yWD+aHNciHOW7LB6xBPswhH3AzFhzhCqWlpX6XMzIydNZZZ9lUjXP16NFD6enpfttaHzsr0A9z6IezRKsfVli9erXuueceNTY26p577lFhYaEtryoOJS0tTYWFhS013n333Y590k8+zHFTPmAd8mGOm/LB/LAO+TDHTfmAdciHOW7KB/PDOuTDHDflA9YhH+aQD7gZC45whbKyMr/L/fr1s6kS52v9KphIDCT6YR79cJZo9KOzCgsLNXnyZEnSrFmztGLFCiUmJtpcVaDExEStWLFCs2bNkiRNnjxZGzZssLmqQOTDPDfkA9YiH+a5IR/MD2uRD/PckA9Yi3yY54Z8MD+sRT7Mc0M+YC3yYR75gFux4AhXOHbsmN/lPn362FSJ8/Xu3dvvcmVlpeX3QT/Mox/OEo1+dMa2bdt0xx13qLGxUZMnT9bTTz8tj8djd1kheTwePf300y2vNL799tv10Ucf2V2WH/JhntPzAeuRD/Ocng/mh/XIh3lOzwesRz7Mc3o+mB/WIx/mOT0fsB75MI98wK1YcIQr1NXV+V3u2rWrTZU4X+tj0/rYWYF+mEc/nCUa/QhXXV2dJk6c2PKdKcuXL3f0k/1mHo9Hzz33XMt3qkycONFxx/VM5CM0J+cDkUE+zHNyPpgfkUE+zHNyPhAZ5MM8J+eD+REZ5MM8J+cDkUE+zCMfcCsWHOEK9fX1fpdTUlJsqsT5vF6v3+VIDCT6YR79cJZo9CNcjzzyiD7++GNlZGTohRdecOTHGIWSmJiolStXKj09Xfv27dOjjz5qd0ktyId5Ts4HIoN8mOfkfDA/IoN8mOfkfCAyyId5Ts4H8yMyyId5Ts4HIoN8mEc+4FYsOMKVEhL41Q3FjmNDP0KjH87i1GOzbds2PfHEE5Kk5cuXKy0tzeaKOu68887T8uXLJUkFBQWO+2ijZk79HXACjg34HQjNqceG+RE9Tv0dcAKODfgdCM2px4b5ET1O/R1wAo4N+B0IjWMDt+I3FwAAG9XV1WnSpElqbGzUhAkTNGbMGLtLCtvNN9/c8h0wEydODHj1IgDAOswPAEA4mB8AACBSWHAEAMBGTz/9tPbt26eMjAz9+te/trucTlu6dKkyMjK0b98+/fKXv7S7HACIWcwPAEA4mB8AACBSWHAEAMAmJ0+e1LJlyyRJTz75pCs/yqi1tLS0lo9neuaZZ3Ty5EmbKwKA2MP8AACEg/kBAAAiiQVHAABs8tprr+nvf/+70tPTNX78eLvLscxtt92mnj176rPPPtPrr79udzlAu3w+n44fP67jx4/L5/PZXQ7QLuYH4AzMD7gN8wNwBuYHgFjFgiMAADZ55plnJEmTJ0+W1+u1uRrreL1eTZ48WdLpxwg4za5duzRz5kwNHTpU3bt3V1pamtLS0tS9e3cNHTpUM2fO1O7du+0uEwiK+QHYh/kBN2N+APZhfgCIByw4AgBgg/3792vz5s1KSEjQ1KlT7S7HctOmTZPH41FxcbE++eQTu8sBWpSUlCg3N1cXX3yxli5dqu3bt6uhoaHl3xsaGrR9+3YtXbpUgwYNUm5urkpKSmysGPDH/ADswfyA2zE/AHswPwDEExYcAQCwwfLlyyVJN9xwgzIzM22uxnqZmZm64YYbJEnPPvuszdUAkmEYWrRokYYMGaKtW7eavt3WrVs1ZMgQLVq0SIZhRLBCwBzmBxBdzA/ECuYHEF3MDwDxiAVHAABs0PzdIs0f/ROLmh/bG2+8YXMliHeGYei+++5Tfn5+WN+R4vP5lJ+fr/vuu48n/bAd8wOIHuYHYgnzA4ge5geAeBXzC46/+93vNG3aNA0ZMkRer1cej0cvvvii3WXBxSoqKuTxePS9730v5HXeffddeTweTZ8+PYqVxa7mY37mT3Jysnr16qXx48dr+/btftd/8cUXA64f6mfEiBH2PCgX6mgfOmrixInyeDyqqKiwpmAH+/zzz3XgwAFJ0hVXXGFzNZHT/NjKy8v1r3/9y95iIox8OFtBQYGWLVvW6f0sW7ZMBQUFFlQUX8iHdZgfsYd8OBvzw17kwzrMj9hDPpyN+WEv8gHYJ8nuAiLtwQcf1MGDB3Xeeefpq1/9qg4ePGh3SQDClJOTozvvvFOSVFNTox07dmjdunV65ZVXVFxcrNzcXEnSoEGD9NBDD7W5r2XLlunYsWO68MILI153rDHbB4S2c+dOSVLfvn117rnn2lxN5KSlpSkrK0sVFRXauXOnvvvd79pdUsSRD+cpKSnR/PnzLdvf/Pnzdd1112ngwIGW7TNekI/OY37ELvLhPMwP5yAfncf8iF3kw3mYH85BPoDoi/kFx5UrV6p///7KzMzUokWLlJ+fb3dJAMLUr18/Pfzww37bmnM9b948vffee5KaFhwHDRoUcj+LFy/WsWPHNHjwYC1evDiCFccms31AaM2vphs8eLDNlUTekCFDVFFRoe3bt8fFE37y4TwzZswI62OMQvH5fJoxY4a2bNli2T7jBfnoPOZH7CIfzsP8cA7y0XnMj9hFPpyH+eEc5AOIvpj/SNWRI0fG5JdhA2hyzz33SJJ27Nhh6vrFxcWaPXu20tPTtXHjRqWmpkayvLgRqg/Hjh1TXl6e+vbtK6/Xq/T0dI0fP15//etf/a6XlZWl3/zmN5KaXnUb6x9523ychgwZYnMlkdf8PzXMZjQWkQ/77Nq1S1u3brV8v1u3btXu3bst3288Ih8dw/yIL+TDPswP5yMfHcP8iC/kwz7MD+cjH0Bkxfw7HAHEh6Sk9k9nBw4c0G233SaPx6N169apT58+UagsvpzZh6NHj+qyyy5TeXm5RowYodtvv12ffvqp1q9frzfffFNFRUUaNmyYJCkvL08vvviidu/erVmzZumcc86R1PSHXCxq/sM2Hl5hzBP+08hH9K1atSqi+16yZEnE9h9vyIc5zI/4RD6ij/nhHuTDHOZHfCIf0cf8cA/yAUQGC45AmMrKygLelt+MLw2OnpUrV0pSy+APpaamRmPGjNHx48e1dOlSPqfdYsH6MHv2bJWXlys/P1+PP/54y/Y//vGPuv766zVp0iR98sknSkhIUF5ennbt2qXdu3crLy8v5v9Q+8c//iGp6fsEYl2/fv0knX7M8Yh82OeDDz5w5b7jCfnoGOZHfCEf9mF+OB/56BjmR3whH/Zhfjgf+QAiiwVHlzEMQ7W1tXaXEXVWfva5VcrLy/XII4/YXUa7fD6fampqLN+nHc5c5G3+sud33nlHGRkZevLJJ9u87cSJE7Vnzx5NmjRJM2bMiEK1wcVCP8z0oaGhQS+//LLS0tL04IMP+t3+uuuu0zXXXKNNmzbp/fff1/Dhw6Na/5ki0Y/2NDY2qq6uTlLTOT1a93/m/UTzMRuGIUn68ssv9cUXXyghIbqf5k4+wmdHPqzk8/lUUlISsf2XlJToxIkTpt5h71TkI3zMj8hjfpAPuzA/2kc+wsf8iDzmB/mwC/OjfeQjfG7PR7i6du0qj8djdxnoAPeeoeJUbW2tunfvbncZkDRq1Ci99dZbQf/t3Xff1VVXXRXlioJbsWKFVqxYYXcZlgi2yHv++edr69atLa9iDGbBggVav369vv3tb+vZZ5+NdJltioV+mOnD/v37VVdXp6uuukpdu3YN2MdVV12lTZs2adeuXbb+wWZ3P+x6hXFGRoYt99ujRw9b7jeayEf8qK+vb/n4HJhDPqzD/Ig95CN+MD86jnxYh/kRe8hH/GB+dBz5cL/q6mp169bN7jLQAdF9mQ8AdMKoUaNkGIYMw9CRI0f05JNP6siRIxo9erSqq6uD3ubNN9/U/Pnzdf7556uwsFBerzfKVcceM32oqqqSFPqJ5Ve/+lW/6wGxgnwAoZEPIDTyAYRGPoDQyAcQGvkAoo93OLpM165dQy6sxLL7778/Ll/FYYUpU6bo6aeftnSfTuhHz5499cADD+jEiRN67LHH9OCDD+pXv/qV33X+9re/6Qc/+IGSkpK0fv169erVy55izxBr/QjVh+ZXkh4+fDjo7f75z39Ksv8Vp5HoR3saGxtbHnd5eXnUXu1bU1PTcl+HDx+O2ivEDh8+3PJK6qqqqqh/pBH5CJ8d+bCSz+dTRkaGGhoaIrJ/r9erw4cPu/ojjchH+Jgfkcf8IB92YX60j3yEj/kRecwP8mEX5kf7yEf43J6PcAV71ymczb1nqDjl8Xji8m3EycnJdpfgWsnJyZb/zjipH3PnztWqVav0zDPP+H1Zc1VVlW666SadOHFCy5cv1xVXXGFvof8rVvvRug8XXHCBUlNT9dFHH6m2tjbgD4R3331XkjRo0KCWbYmJiZKkU6dORavsiPTDjNTUVNXV1dl2Tu/WrVvU7rf5s/a7dOmis846Kyr3eSbyET678mGlgQMHavv27RHb99lnnx2RfUcL+Qgf8yPymB/kw07Mj7aRj/AxPyKP+UE+7MT8aBv5CF8s5APxgY9UBeBqXbp00ezZs+Xz+fSLX/xCUtOXxN95553av3+/pk6dqmnTptlcZexr3YeUlBTdcccdOnbsmBYuXOh33bfeektFRUXq16+f30LwueeeK0k6dOhQVGu3w9e+9jVJTa8wjnVlZWWSTj/meEQ+7HPZZZe5ct/xhHx0DPMjvpAP+zA/nI98dAzzI76QD/swP5yPfACRFfMLjitXrtTEiRM1ceJErVu3LmDbypUrba4QQGdNnTpVX/va17RmzRqVl5frqaee0uuvv66UlBSlpaXp4YcfbvMH1mjdh4KCAmVnZ+uxxx7T1Vdfrblz52rChAm68cYb1bVrV61evdrv422++93vtuwnPz9fjz32mH7729/a9XAiavDgwZKkHTt22FxJ5DU/xubHHK/Ihz3uvvtuV+473pAP85gf8Yd82IP54Q7kwzzmR/whH/ZgfrgD+QAiJ+YXHP/85z/rN7/5jX7zm99o586dkqT333+/Zduf//xnmysE0FmpqanKz8/XyZMn9cgjj2jv3r2SpIaGBi1cuFCPPPJImz+wRus+9OzZUx9++KFmzpzZshC8adMmjRkzRh9++KGGDRvmd/vvf//7euKJJyRJixcv1rx58/TCCy/Y8VAirvnJb6Q+asVJeMLfhHzYY9CgQRo+fLjl+x0+fLguuugiy/cbr8iHecyP+EM+7MH8cAfyYR7zI/6QD3swP9yBfAARZAAucO+99xqSWn7uvfdeu0tyrGgcK/phHv1wFqccq+LiYkOS0bdv36jdZ3V1dcvjrq6ujtr9ZmVlGZKMzZs3R+0+z+SUnrtBrB6r3bt3G8nJyX6PrTM/ycnJRklJid0PyxKx2vNIcMqxYn5Ej1N67gaxeqyYH6HFas8jwSnHivkRPU7puRvE6rFifoQWqz2PBI4V3Crm3+EIAIDTXHLJJZKkTz/9VMePH7e5msiprKxURUWFpNOPGYi2gQMH6tFHH7Vsf48++qi+9a1vWbY/oCOYH0D0MD8QS5gfQPQwPwDEMxYcAQCIsq985SvKzs6W1PQx37Gq+bHl5OTonHPOsbcYxLXZs2frRz/6Uaf3M2PGDM2ePduCioDwMD+A6GJ+IFYwP4DoYn4AiFcsOAIAYIMbb7xRkrRy5UqbK4mc5sd2ww032FwJ4p3H49HSpUu1cOFCJScnd/j2ycnJWrhwoX7961/L4/FEoELAPOYHED3MD8QS5gcQPcwPAPGKBUcAAGzwwx/+UJL0xhtv6ODBgzZXY72Kigq98cYbkk4/VsBOHo9Hc+bM0fbt2zV8+HDTtxs+fLh27NihOXPm8GQfjsD8AKKL+YFYwfwAoov5ASAeseAIAIANvvGNb+jqq69WY2Ojnn/+ebvLsdzzzz8vwzA0cuRIfeMb37C7HKDFwIEDtWXLFu3atUszZ87U0KFDlZKS0vLvXq9XQ4cO1cyZM7Vr1y5t2bKF70yBozA/AHswP+B2zA/AHswPAPEkye4CAACIV/fee682b96slStXav78+fJ6vXaXZIn6+vqWjzO69957ba4GCO6iiy7SkiVLJEknTpxo+Z6fw4cP6+yzz7axMqB9zA/APswPuBnzA7AP8wNAPOAdjgAA2GT06NHq1auXjhw5orVr19pdjmX+8Ic/6OjRo+rdu3fLd8UATpaUlBT0vwGnYn4AzsD8gNswPwBnYH4AiFUsOAIAYJOkpCT96Ec/kiT99Kc/VWVlpc0VdV5lZaV+9rOfSWp6dTFPngDAeswPAEA4mB8AACCSWHAEAMBGP/7xjzVgwAAdPnxYM2fOtLucTrvvvvt0+PBhDRgwQD/+8Y/tLgcAYhbzAwAQDuYHAACIFBYcAQCwkdfr1erVq5WQkKCXXnpJr7zyit0lhW3jxo16+eWXlZiYqBdffDFmvhMGAJyI+QEACAfzAwAARAoLjnClxsZGu0twLDuODf0IjX44i1OPzaWXXtryMUDTp0935UcbHTt2TNOnT5ck/exnP9PQoUNtrig4p/4OOAHHBvwOhObUY8P8iB6n/g44AccG/A6E5tRjw/yIHqf+DjgBxwb8DoTGsYFbseAIV2j9KrWGhgabKnG++vp6v8upqamW3wf9MI9+OEs0+hGuhx56qOWjje655x6dOnXK7pJMO3XqlCZPnqwjR45owIABeuihh+wuqQX5MM/J+UBkkA/znJwP5kdkkA/znJwPRAb5MM/J+WB+RAb5MM/J+UBkkA/zyAfcigVHuELrk2ptba1NlThf62MTiYFEP8yjH84SjX6EKzU1VatXr1ZycrJeffVVTZs2TYZh2F1WuwzD0LRp0/Tqq68qJSXFcR9lRD7Mc3I+EBnkwzwn54P5ERnkwzwn5wORQT7Mc3I+mB+RQT7Mc3I+EBnkwzzyAbdiwRGucN555/ldPnTokE2VON9nn33mdzktLc3y+6Af5tEPZ4lGPzrj0ksv1csvv6yEhAS98MILuv/++x39pN8wDN1///164YUXlJCQoJdfftlxH2VEPsxzej5gPfJhntPzwfywHvkwz+n5gPXIh3lOzwfzw3rkwzyn5wPWIx/mkQ+4FQuOcIV+/fr5XS4rK7OpEucrLS31u9y/f3/L74N+mEc/nCUa/eissWPHauXKlZKkJUuWaMqUKY78eKPmjzFasmSJJOmFF17QLbfcYnNVgciHeW7IB6xFPsxzQz6YH9YiH+a5IR+wFvkwzw35YH5Yi3yY54Z8wFrkwzzyAbdiwRGu0PqkevjwYVVVVdlUjXNVVVXpyJEjftsiMZDohzn0w1mi1Q8rTJo0SatWrWp5pfHYsWNVWVlpd1ktjh07prFjx7bUuHr1ak2cONHusoIiH+a4KR+wDvkwx035YH5Yh3yY46Z8wDrkwxw35YP5YR3yYY6b8gHrkA9zyAfcjAVHuEJ2drY8Ho/fttav9EDgMUlISFDfvn0tvx/6YQ79cJZo9cMqkyZN0tq1a1u+U2XAgAHauHGj3WVp48aNuvDCC/Xqq68qOTlZ69atc+yTfYl8mOW2fMAa5MMct+WD+WEN8mGO2/IBa5APc9yWD+aHNciHOW7LB6xBPswhH3AzFhzhCl6vV5mZmX7biouLbarGuTZt2uR3OTMzMyJfnk4/zKEfzhKtflhp7Nix+vOf/6x///d/15EjR3TLLbfoBz/4gS2vNq6srNSECRN0yy236MiRIxowYIDef/99R36M0ZnIhzluzAc6j3yY48Z8MD86j3yY48Z8oPPIhzluzAfzo/PIhzluzAc6j3yYQz7gZiw4wjVGjRrld3ndunU2VeJcrY9J62NmJfrRPvrhLNHsh5UuvfRS7dy5U3PmzFFCQoJeeuklXXjhhVqzZo3q6+sjfv/19fVas2aNLrzwQr388stKSEhQfn6+duzYoaFDh0b8/q1APtrn1nyg88hH+9yaD+ZH55GP9rk1H+g88tE+t+aD+dF55KN9bs0HOo98tI98wNUMwCWKi4sNSX4/5eXldpflGGVlZQHHZ/PmzRG7P/rRNvrhLNHuR6Rs27bNGDBgQMtj6Nmzp5Gfn29UVFS0e9vq6uqW21VXV7d7/YqKCiM/P9/o2bNny+0GDBhgbNu2zYqHElXko22xko/O6Gg+Ygn5aFus5IP5ER7y0bZYyUdnMD/IRyixkg/mR3jIR9tiJR+dwfwgH6GQD7gdC45wDZ/P5/eHpyQjLy/P7rIcIy8vz+/YpKenGz6fL2L3Rz/aRj+cJdr9iKQvv/zSePzxx41evXq1PJ6EhATjxhtvNF599VWjsrIy6O3MPKGprKw0Xn31VePGG280PB5Py/V79+5tPP7440ZdXV0kH1rEkI+2xVI+whXPT/jJR9tiKR/Mj44jH22LpXyEi/lBPkKJpXwwPzqOfLQtlvIRLuYH+QiFfMDtWHCEq0yfPt3vpJuYmGjs2bPH7rJsV1JSYiQmJvodm+nTp0f8fulHcPTDWezqR6T5fD5jw4YNxsiRIwNe/ZaVlWXceuutxsKFC423337bOHDggFFeXu736sEDBw4Yb7/9trFw4ULj1ltvNbKysgL2M3LkSGPDhg0x8cct+QguVvPRUfH8hN8wyEcosZoP5kfHkI/gYjUfHcX8IB/BxGo+mB8dQz6Ci9V8dBTzg3wEQz4QC1hwhKuUlZUZXq/X78Sbm5trnDp1yu7SbHPq1Clj+PDhfsfE6/UaZWVlEb9v+hGIfjiLnf2Ipv379xuzZs0ycnJyAp60d/QnJyfHmDVrlrF//367H5alyEegeMmHGfH+hJ98BIqXfDA/2kc+AsVLPsxgfpCP1uIlH8yP9pGPQPGSDzOYH+SjNfKBWMGCI1xn3rx5AX+gTpkyJS6H0qlTp4wpU6YEHI/58+dHrQb6cRr9cBYn9MMOn3/+ubF582ajoKDAGD9+vJGTk2N06dIl4Dh06dLFyMnJMcaPH2888cQTxubNm43PP//c7vIjinycFq/5CCXen/AbBvk4U7zmg/kRGvk4LV7zEQrzg3ycKV7zwfwIjXycFq/5CIX5QT7ORD4QS1hwhOvU1NQYmZmZcT+UQg2jrKwso7a2Nmp10I8m9MNZnNIPJzl16pRRWVlpVFZWxtXvwpnIRxPyEYgn/OSjGfkIxPwgH83IRyDmB/loRj4CMT/IRzPyEYj5QT6akQ/EGhYc4UpFRUVGUlJSwMl4+PDhRklJid3lRVxJSUnA2+wlGUlJSUZRUVHU66Ef9MNJnNYPOAv5IB/B8IS/CfkgHwiNfJCPYJgfTcgH+UBo5IN8BMP8aEI+yAdiDwuOcK0NGzYEHUqJiYlGXl5eTH7GdVlZmZGXlxfwBcLNw2jDhg221UY/6IfdnNwPOAv5IB+t8YT/NPJBPhAa+SAfrTE/TiMf5AOhkQ/y0Rrz4zTyQT4QWzyGYRgCXGrjxo0aP368Tp48GfTfL7nkEo0bN07XXHON+vfvrx49ekS5ws6pqqpSaWmpNm3apHXr1mnnzp1Br5eUlKS1a9fq5ptvjnKF/uhHE/oRHW7rB5yFfDQhH01qamrUvXt3SVJ1dbW6detmc0X2Ih9NyAeCIR9NyEcT5oc/8tGEfCAY8tGEfDRhfvgjH03IB2IBC45wvbffflvTpk1TRUVFu9dNT09X//791bt3b3Xt2lVer1cJCQmRL9KExsZG1dfXq7a2Vp999plKS0t15MiRdm+XlZWl5557Ttdee20Uqmwf/aAfkRAr/YCzkA/y0Ywn/IHIB/lAaOSDfDRjfgQiH+QDoZEP8tGM+RGIfJAPxAh732AJWKO2ttaYP3++4fV6A96KHqs/Xq/XmD9/viO/QJh+OAv9AEIjHzAMPtIoFPIBhEY+YBjMj1DIBxAa+YBhMD9CIR+A+/EOR8SU8vJyPfXUUyosLNTRo0ftLici0tPTdcstt+iBBx5QTk6O3eW0iX44C/0AQiMf8Y1XGLeNfAChkY/4xvxoG/kAQiMf8Y350TbyAbgXC46ISSdPntSWLVu0bt06FRUVqaKiQm79Vfd4PMrKytKoUaM0btw45ebmKikpye6yOoR+OAv9AEIjH/GJJ/zmkA8gNPIRn5gf5pAPIDTyEZ+YH+aQD8B9WHBEXKivr9enn36q0tJSlZaWqrKyUnV1daqrq7O7ND+pqalKTU1VWlqa+vfvr/79+6tv377yer12l2Yp+uEs9AMIjXzEB57wh4d8AKGRj/jA/AgP+QBCIx/xgfkRHvIBOB8LjgAAAIhrPOEHAISD+QEACAfzA0CsSrC7AAAAAAAAAAAAAADuxYIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGwsOAIAAAAAAAAAAAAIGwuOAAAAAAAAAAAAAMLGgiMAAAAAAAAAAACAsLHgCAAAAAAAAAAAACBsLDgCAAAAAAAAAAAACBsLjgAAAAAAAAAAAADCxoIjAAAAAAAAAAAAgLCx4AgAAAAAAAAAAAAgbCw4AgAAAAAAAAAAAAgbC44AAAAAAAAAAAAAwsaCIwAAAAAAAAAAAICwseAIAAAAAAAAAAAAIGxJdhcAREN9fb0OHDig0tJSlZWV6dixY6qrq1N9fb3dpfnxer1KTU3Veeedp379+ql///7Kzs6W1+u1uzRL0Q9noR9AaOQDCI18AKGRDyA08gGERj6A0MgH4HwsOCImnTx5Uu+9957WrVunoqIiHTx4UIZh2F1WWDwejzIzMzVq1CiNGzdOV155pZKS3BVd+uEs9AMIjXwAoZEPIDTyAYRGPoDQyAcQGvkA3MdjuDWlQBBlZWVavHixCgsLdfToUbvLiYiePXtq7NixeuCBB5STk2N3OW2iH85CP4DQyEd8q6mpUffu3SVJ1dXV6tatm80VOQv5AEIjH/GN+dE28gGERj7iG/OjbeQDcDEDiAE1NTXGvHnzjJSUFENSXPx4vV5j3rx5Rk1Njd2HPwD9cBb6AYRGPmAYhlFdXd1yfKqrq+0uxzHIBxAa+YBhMD9CIR9AaOQDhsH8CIV8AO7HOxzhem+//bamTp2qgwcPtnvdjIwM9evXT3369FHXrl2VkpKihISEKFTZvsbGRjU0NKi2tlaHDh1SWVmZDh8+3O7tsrKy9Nxzz+naa6+NQpXtox/0IxJipR9wFvJBPprxCuNA5IN8IDTyQT6aMT8CkQ/ygdDIB/loxvwIRD7IB2IDC45wtY0bN2r8+PE6efJk0H8fPHiwxo0bp5EjR6p///7q0aNHlCvsnKqqKpWWlqq4uFhr167Vzp07g14vKSlJa9eu1c033xzlCv3Rjyb0Izrc1g84C/loQj6a8ITfH/loQj4QDPloQj6aMD/8kY8m5APBkI8m5KMJ88Mf+WhCPhAT7H2DJRC+DRs2GElJSQFvRU9MTDTy8vKM8vJyu0u0XFlZmZGXl2ckJiYGPO6kpCRjw4YNttVGP+iH3ZzcDzgL+SAfrfGRRqeRD/KB0MgH+WiN+XEa+SAfCI18kI/WmB+nkQ/ygdjCgiNcqaioKOgwys3NNfbs2WN3eRG3Z88eIzc3N+hQKioqino99IN+OInT+gFnIR/kIxie8DchH+QDoZEP8hEM86MJ+SAfCI18kI9gmB9NyAf5QOxhwRGuU1NTY2RmZgacjKdMmWKcOnXK7vKi5tSpU8aUKVMCjkNWVpZRW1sbtTroRxP64SxO6QechXw0IR+BqqqqWo5DVVWV3eXYgnw0IR8Ihnw0IR+BmB/koxn5QDDkown5CMT8IB/NyAdiDQuOcJ158+bF/TBqFmoozZ8/P2o10I/T6IezOKEfcBbycVq85uP48eNGcXGxsWjRImPcuHFGdna2kZqaGnAcUlNTjezsbGPcuHFGQUGBUVxcbBw/ftzu8iOKfJwWr/lAaOTjtHjNB/MjNPJxWrzmA6GRj9PiNR/Mj9DIx2nxmg/EJhYc4SqlpaWG1+v1O/nm5ubG5TBqdurUKWP48OF+x8Tr9RplZWURv2/6EYh+OIud/YCzkI9A8ZKP/fv3G7NmzTKys7MDnsB19Cc7O9uYNWuWsX//frsflqXIR6B4yQfaRz4CxUs+mB/tIx+B4iUfaB/5CBQv+WB+tI98BIqXfCD2seAIV5k+fbrfiTcxMTEuPtO7PSUlJQFfNDx9+vSI3y/9CI5+OItd/YCzkI/gYjUfPp/PKCwsNK6++uqAJ+19+/Y1br31VmPRokXGpk2bjAMHDhjl5eUt/15eXm4cOHDA2LRpk7Fo0SLj1ltvNfr27Ruwn6uvvtooLCw0fD6f3Q+308hHcLGaD3QM+QguVvPB/OgY8hFcrOYDHUM+govVfDA/OoZ8BBer+UB8YcERruHz+YyePXv6nXTz8vLsLssx8vLy/I5Nenp6RP8IoR9tox/OEu1+wFnIR9tiKR9ffvmlsWDBAqNXr14tjychIcEYPXq08dprrxmVlZVBb1ddXd1y/erq6qDXqaysNF577TVj9OjRRkJCQsv1e/XqZTz++ONGXV1dJB9axJCPtsVSPtBx5KNtsZQP5kfHkY+2xVI+0HHko22xlA/mR8eRj7bFUj4Qn1hwhGsUFxcHvLqnvLzc7rIco6ysLOD4bN68OWL3Rz/aRj+cJdr9gLOQj7bFSj4+/PBDY8CAAS2PoWfPnsbcuXONioqKdm9r5gn/mSoqKoy5c+f6PVEeMGCAsW3bNiseSlSRj7bFSj4QHvLRtljJB/MjPOSjbbGSD4SHfLQtVvLB/AgP+WhbrOQD8StBgEusW7fO7/LgwYOVnZ1tUzXOk5OTo0suucRvW+tjZiX60Tb64SzR7gechXy0ze35qKur05w5c3TZZZdp3759ysjI0Jo1a3To0CEtWLBAmZmZlt9nZmamFixYoEOHDmnNmjXKyMjQvn379J3vfEf5+fmqq6uz/D4jhXy0ze35QOeQj7a5PR/Mj84hH21zez7QOeSjbW7PB/Ojc8hH29yeD4AFR7hGUVGR3+Vx48bZVIlztT4mrY+ZlehH++iHs0SzH3AW8tE+t+Zj27ZtuuSSS1RQUKDGxkZNmDBBe/fu1V133SWv1xvx+/d6vbrrrru0d+9eTZgwQY2NjVq0aJEGDx6sbdu2Rfz+rUA+2ufWfKDzyEf73JoP5kfnkY/2uTUf6Dzy0T635oP50Xnko31uzQcgseAIl6ivr9fBgwf9to0cOdKmapzrmmuu8bt88OBB1dfXW34/9MMc+uEs0eoHnIV8mOPGfKxfv17Dhg3Txx9/rIyMDG3cuFG///3vlZaWFvVa0tLS9Pvf/14bN25Uenq69u3bp2HDhqmwsDDqtXQE+TDHjflA55EPc9yYD+ZH55EPc9yYD3Qe+TDHjflgfnQe+TDHjfkAmrHgCFc4cOCADMPw2/b1r3/dpmqcq3///n6XGxsb9emnn1p+P/TDHPrhLNHqB5yFfJjjtnysWrVKt912m3w+n2666Sbt3btXY8aMsbssjRkzRvv27dNNN90kn8+n8ePHa/Xq1XaXFRL5MMdt+YA1yIc5bssH88Ma5MMct+UD1iAf5rgtH8wPa5APc9yWD+BMLDjCFUpLS/0uZ2Rk6KyzzrKpGufq0aOH0tPT/ba1PnZWoB/m0A9niVY/4Czkwxw35WP16tW655571NjYqHvuuUeFhYW2vKo4lLS0NBUWFrbUePfddzv2ST/5MMdN+YB1yIc5bsoH88M65MMcN+UD1iEf5rgpH8wP65APc9yUD6A1FhzhCmVlZX6X+/XrZ1Mlztf6VTCRGEj0wzz64SzR6AechXyY54Z8FBYWavLkyZKkWbNmacWKFUpMTLS5qkCJiYlasWKFZs2aJUmaPHmyNmzYYHNVgciHeW7IB6xFPsxzQz6YH9YiH+a5IR+wFvkwzw35YH5Yi3yY54Z8AMGw4AhXOHbsmN/lPn362FSJ8/Xu3dvvcmVlpeX3QT/Mox/OEo1+wFnIh3lOz8e2bdt0xx13qLGxUZMnT9bTTz8tj8djd1kheTwePf300y2vNL799tv10Ucf2V2WH/JhntPzAeuRD/Ocng/mh/XIh3lOzwesRz7Mc3o+mB/WIx/mOT0fQCgsOMIV6urq/C537drVpkqcr/WxaX3srEA/zKMfzhKNfsBZyId5Ts5HXV2dJk6c2PKdKcuXL3f0k/1mHo9Hzz33XMt3qkycONFxx/VM5CM0J+cDkUE+zHNyPpgfkUE+zHNyPhAZ5MM8J+eD+REZ5MM8J+cDaAsLjnCF+vp6v8spKSk2VeJ8Xq/X73IkBhL9MI9+OEs0+gFnIR/mOTkfjzzyiD7++GNlZGTohRdecOTHGIWSmJiolStXKj09Xfv27dOjjz5qd0ktyId5Ts4HIoN8mOfkfDA/IoN8mOfkfCAyyId5Ts4H8yMyyId5Ts4H0BYWHOFKCQn86oZix7GhH6HRD2fh2IDfgdCcemy2bdumJ554QpK0fPlypaWl2VxRx5133nlavny5JKmgoMBxH23UzKm/A07AsQG/A6E59dgwP6LHqb8DTsCxAb8DoTn12DA/osepvwNOwLGBW/GbCwAAAEeqq6vTpEmT1NjYqAkTJmjMmDF2lxS2m2++ueU7YCZOnBjw6l4AgHWYHwCAcDA/AKBzWHAEAACAIz399NPat2+fMjIy9Otf/9rucjpt6dKlysjI0L59+/TLX/7S7nIAIGYxPwAA4WB+AEDnsOAIAAAAxzl58qSWLVsmSXryySdd+VFGraWlpbV8PNMzzzyjkydP2lwRAMQe5gcAIBzMDwDoPBYcAQCIAz6fT8ePH9fx48fl8/nsLgdo12uvvaa///3vSk9P1/jx4+0uxzK33Xabevbsqc8++0yvv/663eUA7WJ+wG2YH4AzMD/gNswPAOg8FhwBAIhRu3bt0syZMzV06FB1795daWlpSktLU/fu3TV06FDNnDlTu3fvtrtMIKhnnnlGkjR58mR5vV6bq7GO1+vV5MmTJZ1+jIDTMD/gZswPwD7MD7gZ8wMAOo8FRwAAYkxJSYlyc3N18cUXa+nSpdq+fbsaGhpa/r2hoUHbt2/X0qVLNWjQIOXm5qqkpMTGigF/+/fv1+bNm5WQkKCpU6faXY7lpk2bJo/Ho+LiYn3yySd2lwO0YH7A7ZgfgD2YH3A75gcAWIMFRwAAYoRhGFq0aJGGDBmirVu3mr7d1q1bNWTIEC1atEiGYUSwQsCc5cuXS5JuuOEGZWZm2lyN9TIzM3XDDTdIkp599lmbqwGYH4gdzA8gupgfiBXMDwCwBguOAADEAMMwdN999yk/Pz+s70jx+XzKz8/Xfffdx5N+2K75u0WaP/onFjU/tjfeeMPmShDvmB+IJcwPIHqYH4glzA8AsEZMLzj+/e9/169+9Stde+21+rd/+zelpKTo/PPP19ixY/Xhhx/aXR5cqqKiQh6PR9/73vdCXufdd9+Vx+PR9OnTo1hZ7Go+5mf+JCcnq1evXho/fry2b9/ud/0XX3wx4PqhfkaMGGHPg3KhjvahoyZOnCiPx6OKigprCo4zBQUFWrZsWaf3s2zZMhUUFFhQUXwhH9b5/PPPdeDAAUnSFVdcYXM1kdP82MrLy/Wvf/3L3mIijHw4G/PDXuTDOsyP2EM+nI35YS/yYR3mR+whH4B9kuwuIJKWLl2qgoIC5eTk6Nprr1XPnj1VWlqqV155Ra+88opeeukl3XbbbXaXCcCknJwc3XnnnZKkmpoa7dixQ+vWrdMrr7yi4uJi5ebmSpIGDRqkhx56qM19LVu2TMeOHdOFF14Y8bpjjdk+IHpKSko0f/58y/Y3f/58XXfddRo4cKBl+4wX5KPzdu7cKUnq27evzj33XJuriZy0tDRlZWWpoqJCO3fu1He/+127S4o48uE8zA/nIB+dx/yIXeTDeZgfzkE+Oo/5EbvIBxB9Mb3geOmll+rdd9/VlVde6bd969atuvrqq/XDH/5QY8aMkdfrtalCAB3Rr18/Pfzww37bFi1apPz8fM2bN0/vvfeepKYFx0GDBoXcz+LFi3Xs2DENHjxYixcvjmDFsclsHxA9M2bMCOtjjELx+XyaMWOGtmzZYtk+4wX56LzmV5sOHjzY5koib8iQIaqoqND27dvj4gk/+XAe5odzkI/OY37ELvLhPMwP5yAfncf8iF3kA4i+mP5I1VtuuSVgsVGShg8frquuukqff/659uzZY0NlAKxyzz33SJJ27Nhh6vrFxcWaPXu20tPTtXHjRqWmpkayvLgRqg/Hjh1TXl6e+vbtK6/Xq/T0dI0fP15//etf/a6XlZWl3/zmN5KaXlXIR96at2vXLm3dutXy/W7dulW7d++2fL/xiHx0TPNxGjJkiM2VRF7z/9QwO8NiEfmwD/PD+chHxzA/4gv5sA/zw/nIR8cwP+IL+QAiK6bf4diW5ORkSVJSUtweAiCmmMnygQMHdNttt8nj8WjdunXq06dPFCqLL2f24ejRo7rssstUXl6uESNG6Pbbb9enn36q9evX680331RRUZGGDRsmScrLy9OLL76o3bt3a9asWTrnnHMkNf0hh7atWrUqovtesmRJxPYfb8iHOc1P/OLhFcY84T+NfEQf88M9yIc5zI/4RD6ij/nhHuTDHOZHfCIfQGTE5Wrbf//3f6u4uFhf/epX9a1vfcvucuBSZWVlAW/Lb8aXBkfPypUrJall8IdSU1OjMWPG6Pjx41q6dCmf026xYH2YPXu2ysvLlZ+fr8cff7xl+x//+Eddf/31mjRpkj755BMlJCQoLy9Pu3bt0u7du5WXl8cfah3wwQcfuHLf8YR8dMw//vEPSU3ftxHr+vXrJ+n0Y45H5MM+zA/nIx8dw/yIL+TDPswP5yMfHcP8iC/kA4isuFtw9Pl8uuuuu1RfX6+CggIlJibaXVKHGIah2tpau8uIOiu/G8Aq5eXleuSRR+wuo10+n081NTWW79MOZy7yNn/Z8zvvvKOMjAw9+eSTbd524sSJ2rNnjyZNmqQZM2ZEodrgYqEfZvrQ0NCgl19+WWlpaXrwwQf9bn/dddfpmmuu0aZNm/T+++9r+PDhUa3/TJHoRzT5fD6VlJREbP8lJSU6ceKEqz8NgHyEz458NDY2qq6uTlLT3zzRuv8z7yeaj9kwDEnSl19+qS+++EIJCdH9tgPyET7mR9uYHx1HPjqH+cH8IB/RwfxoH/kIH/Mj8pgf5MNtunbtKo/HY3cZ6AD3TvAwNDY2auLEidqyZYumTJmiu+66y+6SOqy2tlbdu3e3uwxIGjVqlN56662g//buu+/qqquuinJFwa1YsUIrVqywuwxLBFvkPf/887V169aWV2kFs2DBAq1fv17f/va39eyzz0a6zDbFQj/M9GH//v2qq6vTVVddpa5duwbs46qrrtKmTZu0a9cuW/9gi4V+RFJ9fX3Lx4PAHPJhHbteYZyRkWHL/fbo0cOW+40m8hE/mB8dRz6sw/yIPeQjfjA/Oo58WIf5EXvIh/tVV1erW7dudpeBDojuyxhs1NjYqLvvvlsvvfSS7rzzTi1fvtzukgB00KhRo2QYhgzD0JEjR/Tkk0/qyJEjGj16tKqrq4Pe5s0339T8+fN1/vnnq7CwUF6vN8pVxx4zfaiqqpIU+g/nr371q37XA2IF+QBCIx9AaOQDCI18AKGRDyA08gFEX1y8w7GxsVGTJk3SmjVrdMcdd+jFF1+M+lvGrdK1a9eQCyux7P7774/LV3FYYcqUKXr66act3acT+tGzZ0898MADOnHihB577DE9+OCD+tWvfuV3nb/97W/6wQ9+oKSkJK1fv169evWyp9gzxFo/QvWh+ZVyhw8fDnq7f/7zn5Lsf0VdJPoRTT6fTxkZGWpoaIjI/r1erw4fPuzqjzQiH+GzIx+NjY0tj7u8vDxqr/atqalpua/Dhw9H7RWUhw8fbnkldVVVVdT/PiUf4WN+tI350Tnko+OYH8wP8hEdzI/2kY/wMT8ij/lBPtwm2LtO4WzuneAmnbnYeNttt+m3v/2t67638Uwejycu30acnJxsdwmulZycbPnvjJP6MXfuXK1atUrPPPOM35c1V1VV6aabbtKJEye0fPlyXXHFFfYW+r9itR+t+3DBBRcoNTVVH330kWprawP+QHj33XclSYMGDWrZ1nxuPnXqVLTKjkg/om3gwIHavn17xPZ99tlnR2Tf0UI+wmdXPlJTU1VXV2fb3zzdunWL2v02fxdFly5ddNZZZ0XlPs9EPsLH/Gh/38yPziMfHcP8iB7yET7mR/v7Zn50HvnoGOZH9JCP8MXC/EB8cOfb/Exq/hjVNWvWaNy4cfrd737n6sVGAIG6dOmi2bNny+fz6Re/+IWkpi/BvvPOO7V//35NnTpV06ZNs7nK2Ne6DykpKbrjjjt07NgxLVy40O+6b731loqKitSvXz+/heBzzz1XknTo0KGo1u52l112mSv3HU/IR8d87Wtfk9T0CuNYV1ZWJun0Y45H5MM+zA/nIx8dw/yIL+TDPswP5yMfHcP8iC/kA4ismF5wfPTRR/Wb3/xG3bt319e//nU99thjevjhh/1+du3aZXeZADpp6tSp+trXvqY1a9aovLxcTz31lF5//XWlpKQoLS0tIPetf2CN1n0oKChQdna2HnvsMV199dWaO3euJkyYoBtvvFFdu3bV6tWr/T6+47vf/W7LfvLz8/XYY4/pt7/9rV0PxzXuvvtuV+473pAP8wYPHixJ2rFjh82VRF7zY2x+zPGKfNiD+eEO5MM85kf8IR/2YH64A/kwj/kRf8gHEDkxveBYUVEhSaqurtaCBQv0yCOPBPyw4Ai4X2pqqvLz83Xy5Ek98sgj2rt3rySpoaFBCxcuDJr9M39gjdZ96Nmzpz788EPNnDmzZSF406ZNGjNmjD788EMNGzbM7/bf//739cQTT0iSFi9erHnz5umFF16w46G4yqBBgzR8+HDL9zt8+HBddNFFlu83XpEP85qf/Ebqo7qchCf8TciHPZgf7kA+zGN+xB/yYQ/mhzuQD/OYH/GHfAARZAAucO+99xqSWn7uvfdeu0tyrGgcK/phHv1wllg9Vrt37zaSk5P9HltnfpKTk42SkhK7H5YlYrXnkeCUY1VcXGxIMvr27Ru1+6yurm553NXV1VG736ysLEOSsXnz5qjd55mc0nM3iNVjxfwILVZ7HglOOVbMj+hxSs/dIFaPFfMjtFjteSQ45VgxP6LHKT13A44V3Cqm3+EIAEA8GDhwoB599FHL9vfoo4/qW9/6lmX7AzrikksukSR9+umnOn78uM3VRE5lZWXLp3E0P2Yg2pgfiCXMDyB6mB+IJcwPALAOC44AAMSA2bNn60c/+lGn9zNjxgzNnj3bgoqA8HzlK19Rdna2JOn999+3uZrIaX5sOTk5Ouecc+wtBnGN+YFYwfwAoov5gVjB/AAA67DgCABADPB4PFq6dKkWLlyo5OTkDt8+OTlZCxcu1K9//Wt5PJ4IVAiYd+ONN0qSVq5caXMlkdP82G644QabK0G8Y34gljA/gOhhfiCWMD8AwBosOAIAECM8Ho/mzJmj7du3a/jw4aZvN3z4cO3YsUNz5szhyT4c4Yc//KEk6Y033tDBgwdtrsZ6FRUVeuONNySdfqyAnZgfiBXMDyC6mB+IFcwPALAGC44AAMSYgQMHasuWLdq1a5dmzpypoUOHKiUlpeXfvV6vhg4dqpkzZ2rXrl3asmUL35kCR/nGN76hq6++Wo2NjXr++eftLsdyzz//vAzD0MiRI/WNb3zD7nKAFswPuB3zA7AH8wNux/wAAGsk2V0AAACIjIsuukhLliyRJJ04caLlexoOHz6ss88+28bKgPbde++92rx5s1auXKn58+fL6/XaXZIl6uvrWz7O6N5777W5GiA45gfcjPkB2If5ATdjfgBA5/EORwAA4kBSUlLQ/wacavTo0erVq5eOHDmitWvX2l2OZf7whz/o6NGj6t27d8t3xQBOxvyA2zA/AGdgfsBtmB8A0HksOAIAAMBxkpKS9KMf/UiS9NOf/lSVlZU2V9R5lZWV+tnPfiap6dXF/M83ALAe8wMAEA7mBwB0HguOAAAAcKQf//jHGjBggA4fPqyZM2faXU6n3XfffTp8+LAGDBigH//4x3aXAwAxi/kBAAgH8wMAOocFRwAAADiS1+vV6tWrlZCQoJdeekmvvPKK3SWFbePGjXr55ZeVmJioF198MWa+EwYAnIj5AQAIB/MDADqHBUe4UmNjo90lOJYdx4Z+hEY/nIVjA34HQnPqsbn00ktbPgZo+vTprvxoo2PHjmn69OmSpJ/97GcaOnSozRUF59TfASfg2IDfgdCcemyYH9Hj1N8BJ+DYgN+B0Jx6bJgf0ePU3wEn4NjArVhwhCu0fhVOQ0ODTZU4X319vd/l1NRUy++DfphHP5wlGv2As5AP85ycj4ceeqjlo43uuecenTp1yu6STDt16pQmT56sI0eOaMCAAXrooYfsLqkF+TDPyflAZJAP85ycD+ZHZJAP85ycD0QG+TDPyflgfkQG+TDPyfkA2sKCI1yh9Um1trbWpkqcr/WxicRAoh/m0Q9niUY/4Czkwzwn5yM1NVWrV69WcnKyXn31VU2bNk2GYdhdVrsMw9C0adP06quvKiUlxXEfZUQ+zHNyPhAZ5MM8J+eD+REZ5MM8J+cDkUE+zHNyPpgfkUE+zHNyPoC2sOAIVzjvvPP8Lh86dMimSpzvs88+87uclpZm+X3QD/Poh7NEox9wFvJhntPzcemll+rll19WQkKCXnjhBd1///2OftJvGIbuv/9+vfDCC0pISNDLL7/suI8yIh/mOT0fsB75MM/p+WB+WI98mOf0fMB65MM8p+eD+WE98mGe0/MBhMKCI1yhX79+fpfLyspsqsT5SktL/S7379/f8vugH+bRD2eJRj/gLOTDPDfkY+zYsVq5cqUkacmSJZoyZYojP96o+WOMlixZIkl64YUXdMstt9hcVSDyYZ4b8gFrkQ/z3JAP5oe1yId5bsgHrEU+zHNDPpgf1iIf5rkhH0AwLDjCFVqfVA8fPqyqqiqbqnGuqqoqHTlyxG9bJAYS/TCHfjhLtPoBZyEf5rgpH5MmTdKqVataXmk8duxYVVZW2l1Wi2PHjmns2LEtNa5evVoTJ060u6ygyIc5bsoHrEM+zHFTPpgf1iEf5rgpH7AO+TDHTflgfliHfJjjpnwArbHgCFfIzs6Wx+Px29b6lR4IPCYJCQnq27ev5fdDP8yhH84SrX7AWciHOW7Lx6RJk7R27dqW71QZMGCANm7caHdZ2rhxoy688EK9+uqrSk5O1rp16xz7ZF8iH2a5LR+wBvkwx235YH5Yg3yY47Z8wBrkwxy35YP5YQ3yYY7b8gGciQVHuILX61VmZqbftuLiYpuqca5Nmzb5Xc7MzIzIl0PTD3Poh7NEqx9wFvJhjhvzMXbsWP35z3/Wv//7v+vIkSO65ZZb9IMf/MCWVxtXVlZqwoQJuuWWW3TkyBENGDBA77//viM/xuhM5MMcN+YDnUc+zHFjPpgfnUc+zHFjPtB55MMcN+aD+dF55MMcN+YDaMaCI1xj1KhRfpfXrVtnUyXO1fqYtD5mVqIf7aMfzhLNfsBZyEf73JqPSy+9VDt37tScOXOUkJCgl156SRdeeKHWrFmj+vr6iN9/fX291qxZowsvvFAvv/yyEhISlJ+frx07dmjo0KERv38rkI/2uTUf6Dzy0T635oP50Xnko31uzQc6j3y0z635YH50Hvlon1vzAUiSDMAliouLDUl+P+Xl5XaX5RhlZWUBx2fz5s0Ruz/60Tb64SzR7ocTVVdXtzz26upqu8uJKvLRtljJx7Zt24wBAwa0PIaePXsa+fn5RkVFRbu37Wg+KioqjPz8fKNnz54ttxswYICxbds2Kx5KVJGPtsVKPjqD+UE+QomVfDA/wkM+2hYr+egM5gf5CCVW8sH8CA/5aFus5APxiwVHuIbP5/MbrJKMvLw8u8tyjLy8PL9jk56ebvh8vojdH/1oG/1wlmj3w4ni+Qk/+WhbLOXjyy+/NB5//HGjV69eLY8nISHBuPHGG41XX33VqKysDHo7M/morKw0Xn31VePGG280PB5Py/V79+5tPP7440ZdXV0kH1rEkI+2xVI+wsX8IB+hxFI+mB8dRz7aFkv5CBfzg3yEEkv5YH50HPloWyzlA/GJBUe4yvTp0/1OuomJicaePXvsLst2JSUlRmJiot+xmT59esTvl34ERz+cxa5+OE08P+E3DPIRSqzmw+fzGRs2bDBGjhwZ8OrQrKws49ZbbzUWLlxovP3228aBAweM8vJyv1fXHjhwwHj77beNhQsXGrfeequRlZUVsJ+RI0caGzZsiIknf+QjuFjNR0cxP8hHMLGaD+ZHx5CP4GI1Hx3F/CAfwcRqPpgfHUM+govVfCC+sOAIVykrKzO8Xq/fiTc3N9c4deqU3aXZ5tSpU8bw4cP9jonX6zXKysoift/0IxD9cBY7++E08f6En3wEipd87N+/35g1a5aRk5MT8KS9oz85OTnGrFmzjP3799v9sCxFPgLFSz7MYH6Qj9biJR/Mj/aRj0Dxkg8zmB/ko7V4yQfzo33kI1C85AOxjwVHuM68efMCBvCUKVPiciidOnXKmDJlSsDxmD9/ftRqoB+n0Q9ncUI/nCTen/AbBvk4U7zm4/PPPzc2b95sFBQUGOPHjzdycnKMLl26BByHLl26GDk5Ocb48eONJ554wti8ebPx+eef211+RJGP0+I1H6EwP8jHmeI1H8yP0MjHafGaj1CYH+TjTPGaD+ZHaOTjtHjNB2ITC45wnZqaGiMzMzPuh1KoYZSVlWXU1tZGrQ760YR+OItT+uEkPOEnH83IR6BTp04ZlZWVRmVlZVz9LpyJfDQhH4GYH+SjGfkIxPwgH83IRyDmB/loRj4CMT/IRzPygVjDgiNcqaioyEhKSgo4GQ8fPtwoKSmxu7yIKykpCXibvSQjKSnJKCoqino99IN+OInT+uEUPOFvQj7IB0IjH+QjGOZHE/JBPhAa+SAfwTA/mpAP8oHQyAf5QOxhwRGutWHDhqBDKTEx0cjLy4vJz7guKysz8vLyAr5AuHkYbdiwwbba6Af9sJuT++EEPOE/jXyQD4RGPshHa8yP08gH+UBo5IN8tMb8OI18kA+ERj7IB2KLxzAMQ4BLbdy4UePHj9fJkyeD/vsll1yicePG6ZprrlH//v3Vo0ePKFfYOVVVVSotLdWmTZu0bt067dy5M+j1kpKStHbtWt18881RrtAf/WhCP6LDbf2wW01Njbp37y5Jqq6uVrdu3WyuyF7kown5QDDkown5aML88Ec+mpAPBEM+mpCPJswPf+SjCflAMOSjCflALGDBEa739ttva9q0aaqoqGj3uunp6erfv7969+6trl27yuv1KiEhIfJFmtDY2Kj6+nrV1tbqs88+U2lpqY4cOdLu7bKysvTcc8/p2muvjUKV7aMf9CMSYqUfduIJfyDyQT4QGvkgH82YH4HIB/lAaOSDfDRjfgQiH+QDoZEP8oEYYe8bLAFr1NbWGvPnzze8Xm/AW9Fj9cfr9Rrz58935BcI0w9noR8wDD7SKBTyAYRGPmAYzI9QyAcQGvmAYTA/QiEfQGjkA3A/3uGImFJeXq6nnnpKhYWFOnr0qN3lRER6erpuueUWPfDAA8rJybG7nDbRD2ehH/GNVxi3jXwAoZGP+Mb8aBv5AEIjH/GN+dE28gGERj4A92LBETHp5MmT2rJli9atW6eioiJVVFTIrb/qHo9HWVlZGjVqlMaNG6fc3FwlJSXZXVaH0A9noR/xiSf85pAPIDTyEZ+YH+aQDyA08hGfmB/mkA8gNPIBuA8LjogL9fX1+vTTT1VaWqrS0lJVVlaqrq5OdXV1dpfmJzU1VampqUpLS1P//v3Vv39/9e3bV16v1+7SLEU/nIV+xAee8IeHfAChkY/4wPwID/kAQiMf8YH5ER7yAYRGPgDnY8ERAIA4wBN+AEA4mB8AgHAwPwAAiD8JdhcAAAAAAAAAAAAAwL1YcAQAAAAAAAAAAAAQNhYcAQAAAAAAAAAAAISNBUcAAAAAAAAAAAAAYWPBEQAAAAAAAAAAAEDYWHAEAAAAAAAAAAAAEDYWHAEAAAAAAAAAAACEjQVHAAAAAAAAAAAAAGFjwREAAAAAAAAAAABA2FhwBAAAAAAAAAAAABA2FhwBAAAAAAAAAAAAhI0FRwAAAAAAAAAAAABhY8ERAAAAAAAAAAAAQNhYcAQAAAAAAAAAAAAQNhYcAQAAAAAAAAAAAISNBUcAAAAAAAAAAAAAYWPBEQAAAAAAAAAAAEDYWHAEAAAAAAAAAAAAEDYWHAEAAAAAAAAAAACELcnuAoBoqK+v14EDB1RaWqqysjIdO3ZMdXV1qq+vt7s0P16vV6mpqTrvvPPUr18/9e/fX9nZ2fJ6vXaXZin64Sz0AwiNfAChkQ8gNPIBhEY+gNDIBxAa+QCcjwVHxKSTJ0/qvffe07p161RUVKSDBw/KMAy7ywqLx+NRZmamRo0apXHjxunKK69UUpK7oks/nIV+AKGRDyA08gGERj6A0MgHEBr5AEIjH4D7eAy3phQIoqysTIsXL1ZhYaGOHj1qdzkR0bNnT40dO1YPPPCAcnJy7C6nTfTDWehHfKupqVH37t0lSdXV1erWrZvNFTkL+QBCIx/xjfnRNvIBhEY+4hvzo23kAwiNfAAuZgAxoKamxpg3b56RkpJiSIqLH6/Xa8ybN8+oqamx+/AHoB/OQj9gGIZRXV3dcnyqq6vtLscxyAcQGvmAYTA/QiEfQGjkA4bB/AiFfAChkQ/A/XiHI1zv7bff1tSpU3Xw4MF2r5uRkaF+/fqpT58+6tq1q1JSUpSQkBCFKtvX2NiohoYG1dbW6tChQyorK9Phw4fbvV1WVpaee+45XXvttVGosn30g35EQqz0w068wjgQ+SAfCI18kI9mzI9A5IN8IDTyQT6aMT8CkQ/ygdDIB/lAbGDBEa62ceNGjR8/XidPngz674MHD9a4ceM0cuRI9e/fXz169IhyhZ1TVVWl0tJSFRcXa+3atdq5c2fQ6yUlJWnt2rW6+eabo1yhP/rRhH5Eh9v6YTee8PsjH03IB4IhH03IRxPmhz/y0YR8IBjy0YR8NGF++CMfTcgHgiEfTcgHYoK9b7AEwrdhwwYjKSkp4K3oiYmJRl5enlFeXm53iZYrKysz8vLyjMTExIDHnZSUZGzYsMG22ugH/bCbk/vhBHyk0Wnkg3wgNPJBPlpjfpxGPsgHQiMf5KM15sdp5IN8IDTyQT4QW1hwhCsVFRUFHUa5ubnGnj177C4v4vbs2WPk5uYGHUpFRUVRr4d+0A8ncVo/nIIn/E3IB/lAaOSDfATD/GhCPsgHQiMf5CMY5kcT8kE+EBr5IB+IPSw4wnVqamqMzMzMgJPxlClTjFOnTtldXtScOnXKmDJlSsBxyMrKMmpra6NWB/1oQj+cxSn9cJKqqqqW41BVVWV3ObYgH03IB4IhH03IRyDmB/loRj4QDPloQj4CMT/IRzPygWDIRxPygVjDgiNcZ968eXE/jJqFGkrz58+PWg304zT64SxO6Icdjh8/bhQXFxuLFi0yxo0bZ2RnZxupqakBxyE1NdXIzs42xo0bZxQUFBjFxcXG8ePH7S4/osjHafGaD4RGPk6L13wwP0IjH6fFaz4QGvk4LV7zwfwIjXycFq/5QGjk4zTygVjCgiNcpbS01PB6vX4n39zc3LgcRs1OnTplDB8+3O+YeL1eo6ysLOL3TT8C0Q9nsbMf0bR//35j1qxZRnZ2dsAfqB39yc7ONmbNmmXs37/f7odlKfIRKF7ygfaRj0Dxkg/mR/vIR6B4yQfaRz4CxUs+mB/tIx+B4iUfaB/5CEQ+ECtYcISrTJ8+3e/Em5iYGBef6d2ekpKSgC8anj59esTvl34ERz+cxa5+RJrP5zMKCwuNq6++OuBJe9++fY1bb73VWLRokbFp0ybjwIEDRnl5ecu/l5eXGwcOHDA2bdpkLFq0yLj11luNvn37Buzn6quvNgoLCw2fz2f3w+008hFcrOYDHUM+govVfDA/OoZ8BBer+UDHkI/gYjUfzI+OIR/BxWo+0DHkIzjygVjAgiNcw+fzGT179vQ76ebl5dldlmPk5eX5HZv09PSI/pFOP9pGP5wl2v2IpC+//NJYsGCB0atXr5bHk5CQYIwePdp47bXXjMrKyqC3q66ubrl+dXV10OtUVlYar732mjF69GgjISGh5fq9evUyHn/8caOuri6SDy1iyEfbYikf6Djy0bZYygfzo+PIR9tiKR/oOPLRtljKB/Oj48hH22IpH+g48tE28gG3Y8ERrlFcXBzw6rfy8nK7y3KMsrKygOOzefPmiN0f/Wgb/XCWaPcjUj788ENjwIABLY+hZ8+exty5c42Kiop2b2vmCf+ZKioqjLlz5/o9ERgwYICxbds2Kx5KVJGPtsVKPhAe8tG2WMkH8yM85KNtsZIPhId8tC1W8sH8CA/5aFus5APhIR9tIx9wuwQBLrFu3Tq/y4MHD1Z2drZN1ThPTk6OLrnkEr9trY+ZlehH2+iHs0S7H1arq6vTnDlzdNlll2nfvn3KyMjQmjVrdOjQIS1YsECZmZmW32dmZqYWLFigQ4cOac2aNcrIyNC+ffv0ne98R/n5+aqrq7P8PiOFfLTN7flA55CPtrk9H8yPziEfbXN7PtA55KNtbs8H86NzyEfb3J4PdA75aBv5gNux4AjXKCoq8rs8btw4mypxrtbHpPUxsxL9aB/9cJZo9sNK27Zt0yWXXKKCggI1NjZqwoQJ2rt3r+666y55vd6I37/X69Vdd92lvXv3asKECWpsbNSiRYs0ePBgbdu2LeL3bwXy0T635gOdRz7a59Z8MD86j3y0z635QOeRj/a5NR/Mj84jH+1zaz7QeeSjfeQDbsaCI1yhvr5eBw8e9Ns2cuRIm6pxrmuuucbv8sGDB1VfX2/5/dAPc+iHs0SrH1Zav369hg0bpo8//lgZGRnauHGjfv/73ystLS3qtaSlpen3v/+9Nm7cqPT0dO3bt0/Dhg1TYWFh1GvpCPJhjhvzgc4jH+a4MR/Mj84jH+a4MR/oPPJhjhvzwfzoPPJhjhvzgc4jH+aQD7gZC45whQMHDsgwDL9tX//6122qxrn69+/vd7mxsVGffvqp5fdDP8yhH84SrX5YZdWqVbrtttvk8/l00003ae/evRozZozdZWnMmDHat2+fbrrpJvl8Po0fP16rV6+2u6yQyIc5bssHrEE+zHFbPpgf1iAf5rgtH7AG+TDHbflgfliDfJjjtnzAGuTDHPIBN2PBEa5QWlrqdzkjI0NnnXWWTdU4V48ePZSenu63rfWxswL9MId+OEu0+mGF1atX65577lFjY6PuueceFRYW2vKq4lDS0tJUWFjYUuPdd9/t2Cf95MMcN+UD1iEf5rgpH8wP65APc9yUD1iHfJjjpnwwP6xDPsxxUz5gHfJhDvmAm7HgCFcoKyvzu9yvXz+bKnG+1q+CicRAoh/m0Q9niUY/OquwsFCTJ0+WJM2aNUsrVqxQYmKizVUFSkxM1IoVKzRr1ixJ0uTJk7VhwwabqwpEPsxzQz5gLfJhnhvywfywFvkwzw35gLXIh3luyAfzw1rkwzw35APWIh/mkQ+4FQuOcIVjx475Xe7Tp49NlThf7969/S5XVlZafh/0wzz64SzR6EdnbNu2TXfccYcaGxs1efJkPf300/J4PHaXFZLH49HTTz/d8krj22+/XR999JHdZfkhH+Y5PR+wHvkwz+n5YH5Yj3yY5/R8wHrkwzyn54P5YT3yYZ7T8wHrkQ/zyAfcigVHuEJdXZ3f5a5du9pUifO1Pjatj50V6Id59MNZotGPcNXV1WnixIkt35myfPlyRz/Zb+bxePTcc8+1fKfKxIkTHXdcz0Q+QnNyPhAZ5MM8J+eD+REZ5MM8J+cDkUE+zHNyPpgfkUE+zHNyPhAZ5MM88gG3YsERrlBfX+93OSUlxaZKnM/r9fpdjsRAoh/m0Q9niUY/wvXII4/o448/VkZGhl544QVHfoxRKImJiVq5cqXS09O1b98+Pfroo3aX1IJ8mOfkfCAyyId5Ts4H8yMyyId5Ts4HIoN8mOfkfDA/IoN8mOfkfCAyyId55ANuxYIjXCkhgV/dUOw4NvQjNPrhLE49Ntu2bdMTTzwhSVq+fLnS0tJsrqjjzjvvPC1fvlySVFBQ4LiPNmrm1N8BJ+DYgN+B0Jx6bJgf0ePU3wEn4NiA34HQnHpsmB/R49TfASfg2IDfgdA4NnArfnMBALBRXV2dJk2apMbGRk2YMEFjxoyxu6Sw3XzzzS3fATNx4sSAVy8CAKzD/AAAhIP5AQAAIoUFRwAAbPT0009r3759ysjI0K9//Wu7y+m0pUuXKiMjQ/v27dMvf/lLu8sBgJjF/AAAhIP5AQAAIoUFRwAAbHLy5EktW7ZMkvTkk0+68qOMWktLS2v5eKZnnnlGJ0+etLkiAIg9zA8AQDiYHwAAIJJYcAQAwCavvfaa/v73vys9PV3jx4+3uxzL3HbbberZs6c+++wzvf7663aXA7TL5/Pp+PHjOn78uHw+n93lAO1ifgDOwPyA2zA/AGdgfgCIVSw4AgBgk2eeeUaSNHnyZHm9XpursY7X69XkyZMlnX6MgNPs2rVLM2fO1NChQ9W9e3elpaUpLS1N3bt319ChQzVz5kzt3r3b7jKBoJgfgH2YH3Az5gdgH+YHgHjAgiMAADbYv3+/Nm/erISEBE2dOtXuciw3bdo0eTweFRcX65NPPrG7HKBFSUmJcnNzdfHFF2vp0qXavn27GhoaWv69oaFB27dv19KlSzVo0CDl5uaqpKTExooBf8wPwB7MD7gd8wOwB/MDQDxhwREAABssX75cknTDDTcoMzPT5mqsl5mZqRtuuEGS9Oyzz9pcDSAZhqFFixZpyJAh2rp1q+nbbd26VUOGDNGiRYtkGEYEKwTMYX4A0cX8QKxgfgDRxfwAEI9YcAQAwAbN3y3S/NE/saj5sb3xxhs2V4J4ZxiG7rvvPuXn54f1HSk+n0/5+fm67777eNIP2zE/gOhhfiCWMD+A6GF+AIhXMb3gWFdXpx//+MfKzc3V1772NaWmpur888/XFVdcodWrV/OlvAhLRUWFPB6Pvve974W8zrvvviuPx6Pp06dHsbLY1XzMz/xJTk5Wr169NH78eG3fvt3v+i+++GLA9UP9jBgxwp4H5UId7UNHTZw4UR6PRxUVFdYU7GCff/65Dhw4IEm64oorbK4mcpofW3l5uf71r3/ZW0yEkQ9nKygo0LJlyzq9n2XLlqmgoMCCiuIL+bAO8yP2kA9nY37Yi3xYh/kRe8iHszE/7EU+APsk2V1AJFVXV+vZZ5/VpZdequuvv149e/bU559/rj/96U+6++679X//7//Vn/70JyUkxPS6KxAzcnJydOedd0qSampqtGPHDq1bt06vvPKKiouLlZubK0kaNGiQHnrooTb3tWzZMh07dkwXXnhhxOuONWb7gNB27twpSerbt6/OPfdcm6uJnLS0NGVlZamiokI7d+7Ud7/7XbtLijjy4TwlJSWaP3++ZfubP3++rrvuOg0cONCyfcYL8tF5zI/YRT6ch/nhHOSj85gfsYt8OA/zwznIBxB9Mb3geO655+rEiRNKSUnx237y5Eldc801evvtt/WnP/1J119/vU0VAuiIfv366eGHH/bbtmjRIuXn52vevHl67733JDUtOA4aNCjkfhYvXqxjx45p8ODBWrx4cQQrjk1m+4DQml9NN3jwYJsribwhQ4aooqJC27dvj4sn/OTDeWbMmGHpp1r4fD7NmDFDW7ZssWyf8YJ8dB7zI3aRD+dhfjgH+eg85kfsIh/Ow/xwDvIBRF9Mv7UvISEhYLFRkpKSknTzzTdLksrKyqJdFgAL3XPPPZKkHTt2mLp+cXGxZs+erfT0dG3cuFGpqamRLC9uhOrDsWPHlJeXp759+8rr9So9PV3jx4/XX//6V7/rZWVl6Te/+Y2kplfdxvpH3jYfpyFDhthcSeQ1/08NsxmNReTDPrt27dLWrVst3+/WrVu1e/duy/cbj8hHxzA/4gv5sA/zw/nIR8cwP+IL+bAP88P5yAcQWTH9DsdQGhsb9dZbb0mSvvnNb9pcDQArJCW1fzo7cOCAbrvtNnk8Hq1bt059+vSJQmXx5cw+HD16VJdddpnKy8s1YsQI3X777fr000+1fv16vfnmmyoqKtKwYcMkSXl5eXrxxRe1e/duzZo1S+ecc46kpj/kYlHzH7bx8ApjnvCfRj6ib9WqVRHd95IlSyK2/3hDPsxhfsQn8hF9zA/3IB/mMD/iE/mIPuaHe5APIDLiYsGxoaFBjz/+uAzDUGVlpTZv3qz9+/dr0qRJuvrqq+0uDy5VVlYW8Lb8ZnxpcPSsXLlSkloGfyg1NTUaM2aMjh8/rqVLl/I57RYL1ofZs2ervLxc+fn5evzxx1u2//GPf9T111+vSZMm6ZNPPlFCQoLy8vK0a9cu7d69W3l5eTH/h9o//vEPSU3fJxDr+vXrJ+n0Y45H5MM+H3zwgSv3HU/IR8cwP+IL+bAP88P5yEfHMD/iC/mwD/PD+cgHEFlxs+D4yCOPtFz2eDx64IEHtHDhQhurCo9hGKqtrbW7jKiz8rPPrVJeXu73e+VUPp9PNTU1lu/TDmcu8jZ/2fM777yjjIwMPfnkk23eduLEidqzZ48mTZqkGTNmRKHa4GKhH2b60NDQoJdffllpaWl68MEH/W5/3XXX6ZprrtGmTZv0/vvva/jw4VGt/0yR6Ed7GhsbVVdXJ6npnB6t+z/zfqL5mA3DkCR9+eWX+uKLL5SQEN1Pcycf4bMjH1by+XwqKSmJ2P5LSkp04sQJU++wdyryET7mR+QxP8iHXZgf7SMf4WN+RB7zg3zYhfnRPvIRPrfnI1xdu3aVx+Oxuwx0gHvPUB3QvXt3GYahxsZG/eMf/9Drr7+uuXPn6oMPPtAf//hH9ejRw+4STautrVX37t3tLgOSRo0a1fLRvK29++67uuqqq6JcUXArVqzQihUr7C7DEsEWec8//3xt3bq15VWMwSxYsEDr16/Xt7/9bT377LORLrNNsdAPM33Yv3+/6urqdNVVV6lr164B+7jqqqu0adMm7dq1y9Y/2Ozuh12vMM7IyLDlft00b8NFPuJHfX19y8fnwBzyYR3mR+whH/GD+dFx5MM6zI/YQz7iB/Oj48iH+1VXV6tbt252l4EOiO7LfGyWkJCg3r1764c//KGef/55vf/++1qwYIHdZQEwadSoUTIMQ4Zh6MiRI3ryySd15MgRjR49WtXV1UFv8+abb2r+/Pk6//zzVVhYKK/XG+WqY4+ZPlRVVUkK/cTyq1/9qt/1gFhBPoDQyAcQGvkAQiMfQGjkAwiNfADRFxfvcAzm2muvldT0TjQ36dq1a8iFlVh2//33x+WrOKwwZcoUPf3005bu0wn96Nmzpx544AGdOHFCjz32mB588EH96le/8rvO3/72N/3gBz9QUlKS1q9fr169etlT7BlirR+h+tD8StLDhw8Hvd0///lPSfa/4jQS/WhPY2Njy+MuLy+P2qt9a2pqWu7r8OHDUXuF2OHDh1teSV1VVRX1jzQiH+GzIx9W8vl8ysjIUENDQ0T27/V6dfjwYVd/pBH5CB/zI/KYH+TDLsyP9pGP8DE/Io/5QT7swvxoH/kIn9vzEa5g7zqFs7n3DNVJzV8enZycbHMlHePxeOLybcRu65OTJCcnW/4746R+zJ07V6tWrdIzzzzj92XNVVVVuummm3TixAktX75cV1xxhb2F/q9Y7UfrPlxwwQVKTU3VRx99pNra2oA/EJpf7DFo0KCWbYmJiZKkU6dORavsiPTDjNTUVNXV1dl2Tu/WrVvU7rf5s/a7dOmis846Kyr3eSbyET678mGlgQMHavv27RHb99lnnx2RfUcL+Qgf8yPymB/kw07Mj7aRj/AxPyKP+UE+7MT8aBv5CF8s5APxIaY/UnXfvn2qra0N2F5bW6sf//jHkpq+/BWAe3Xp0kWzZ8+Wz+fTL37xC0lNXxJ/5513av/+/Zo6daqmTZtmc5Wxr3UfUlJSdMcdd+jYsWNauHCh33XfeustFRUVqV+/fn4Lweeee64k6dChQ1Gt3Q5f+9rXJDW9wjjWlZWVSTr9mOMR+bDPZZdd5sp9xxPy0THMj/hCPuzD/HA+8tExzI/4Qj7sw/xwPvIBRFZMLziuXbtW559/vq677jrde++9mjNnju666y7927/9m9566y0NHz5c999/v91lAuikqVOn6mtf+5rWrFmj8vJyPfXUU3r99deVkpKitLQ0Pfzww23+wBqt+1BQUKDs7Gw99v/bu/voqAozj+O/mQQmgLLWSOgWPAmELNvgWiRC161QVJTtFhChRIt1hQIS0GLwKG+nQnHltbKKrgICQtmtnBIhgrhbXrIq1l2lhIMiVDcJhMXdswlEKg0xgZC7f+RkYPJ6czNz3+b7OSfndMZJ5pn75Jkf02dy59lnddddd2nBggWaOHGiRo8era5du2rTpk0Rp7e58847wz9n/vz5evbZZ/XP//zPTj2cmMrKypIkFRYWOlxJ7DU8xobHHK+YD2f89Kc/9eTPjjfMh3nkR/xhPpxBfngD82Ee+RF/mA9nkB/ewHwAsePrheOoUaP0wAMP6L//+7+1detWrVq1Sv/2b/+mm2++WevWrdO///u/q0uXLk6XCaCDkpKSNH/+fNXW1mrx4sU6duyYJOnixYtatmyZFi9e3OoXoqNxH3r06KGPPvpIs2bNCi+C9+3bp7Fjx+qjjz7S7bffHvH9P/jBD7Ry5UpJ0qpVq/T0009r48aNTjyUmGt48RurU624CS/46zEfzhg4cKCGDh0a9Z87dOhQfec734n6z41XzId55Ef8YT6cQX54A/NhHvkRf5gPZ5Af3sB8ADFkAB4wc+ZMQ1L4a+bMmU6X5Fp2HCv6YR79cBe3HKv9+/cbkow+ffrYdp+VlZXhx11ZWWnb/aalpRmSjIKCAtvu82pu6bkX+PVYffzxx0anTp0iHltHvjp16mR88sknTj+sqPBrz2PBLceK/LCPW3ruBX49VuRHy/za81hwy7EiP+zjlp57gV+PFfnRMr/2PBY4VvAqX/+FIwAAbjRo0CBJ0smTJ/Xll186XE3sVFRUqLS0VNKVxwzY7eabb9YzzzwTtZ/3zDPP6K/+6q+i9vOA9iA/APuQH/AT8gOwD/kBIJ6xcAQAwGbf+MY31LdvX0nSBx984HA1sdPw2NLT03Xdddc5Wwzi2ty5c/Xoo492+Oc89thjmjt3bhQqAqwhPwB7kR/wC/IDsBf5ASBesXAEAMABo0ePliRt2LDB4Upip+GxjRo1yuFKEO8CgYBeeuklLVu2TJ06dWr393fq1EnLli3Tiy++qEAgEIMKAfPID8A+5Af8hPwA7EN+AIhXLBwBAHDAjBkzJEm7d+/WqVOnHK4m+kpLS7V7925JVx4r4KRAIKB58+bp0KFDGjp0qOnvGzp0qAoLCzVv3jxe7MMVyA/AXuQH/IL8AOxFfgCIRywcAQBwQP/+/XXXXXeprq5Or776qtPlRN2rr74qwzA0YsQI9e/f3+lygLCbb75ZBw4c0JEjRzRr1iwNHjxYnTt3Dv/3UCikwYMHa9asWTpy5IgOHDjAZ6bAVcgPwBnkB7yO/ACcQX4AiCeJThcAAEC8mjlzpgoKCrRhwwYtXLhQoVDI6ZKioqamJnw6o5kzZzpcDdC873znO1q9erUk6auvvgp/zk9ZWZn+7M/+zMHKgLaRH4BzyA94GfkBOIf8ABAP+AtHAAAcMmbMGPXq1Uvl5eXatm2b0+VEzW9+8xudOXNGvXv3Dn9WDOBmiYmJzf5vwK3ID8AdyA94DfkBuAP5AcCvWDgCAOCQxMREPfroo5Kkp556ShUVFQ5X1HEVFRWaM2eOpPp3F/PiCQCij/wAAFhBfgAAgFhi4QgAgIOeeOIJZWZmqqysTLNmzXK6nA772c9+prKyMmVmZuqJJ55wuhwA8C3yAwBgBfkBAABihYUjAAAOCoVC2rRpk4LBoF5//XW9+eabTpdkWX5+vrZu3aqEhARt3rzZN58JAwBuRH4AAKwgPwAAQKywcIQn1dXVOV2CazlxbOhHy+iHu7j12AwZMiR8GqCcnBxPntro7NmzysnJkSTNmTNHgwcPdrii5rn1d8ANODbgd6Blbj025Id93Po74AYcG/A70DK3Hhvywz5u/R1wA44N+B1oGccGXsXCEZ7Q+F1qFy9edKgS96upqYm4nJSUFPX7oB/m0Q93saMfVi1atCh8aqMpU6bo8uXLTpdk2uXLlzV16lSVl5crMzNTixYtcrqkMObDPDfPB2KD+TDPzfNBfsQG82Gem+cDscF8mOfm+SA/YoP5MM/N84HYYD7MYz7gVSwc4QmNn1SrqqocqsT9Gh+bWAQS/TCPfriLHf2wKikpSZs2bVKnTp20c+dOTZ8+XYZhOF1WmwzD0PTp07Vz50517tzZdacyYj7Mc/N8IDaYD/PcPB/kR2wwH+a5eT4QG8yHeW6eD/IjNpgP89w8H4gN5sM85gNexcIRnnDDDTdEXD59+rRDlbjfF198EXE5OTk56vdBP8yjH+5iRz86YsiQIdq6dauCwaA2btyo2bNnu/pFv2EYmj17tjZu3KhgMKitW7e67lRGzId5bp8PRB/zYZ7b54P8iD7mwzy3zweij/kwz+3zQX5EH/NhntvnA9HHfJjHfMCrWDjCE/r16xdxubi42KFK3K+oqCjickZGRtTvg36YRz/cxY5+dNT48eO1YcMGSdLq1as1bdo0V57eqOE0RqtXr5Ykbdy4UePGjXO4qqaYD/O8MB+ILubDPC/MB/kRXcyHeV6YD0QX82GeF+aD/Igu5sM8L8wHoov5MI/5gFexcIQnNH5SLSsr0/nz5x2qxr3Onz+v8vLyiOtiEUj0wxz64S529SMaJk+erNdeey38TuPx48eroqLC6bLCzp49q/Hjx4dr3LRpkyZNmuR0Wc1iPszx0nwgepgPc7w0H+RH9DAf5nhpPhA9zIc5XpoP8iN6mA9zvDQfiB7mwxzmA17GwhGe0LdvXwUCgYjrGr/TA02PSTAYVJ8+faJ+P/TDHPrhLnb1I1omT56sbdu2hT9TJTMzU/n5+U6Xpfz8fA0YMEA7d+5Up06dlJeX59oX+xLzYZbX5gPRwXyY47X5ID+ig/kwx2vzgehgPszx2nyQH9HBfJjjtflAdDAf5jAf8DIWjvCEUCik1NTUiOv279/vUDXutW/fvojLqampMfnwdPphDv1wF7v6EU3jx4/X7373O337299WeXm5xo0bpwcffNCRdxtXVFRo4sSJGjdunMrLy5WZmakPPvjAlacxuhrzYY4X5wMdx3yY48X5ID86jvkwx4vzgY5jPszx4nyQHx3HfJjjxflAxzEf5jAf8DIWjvCMkSNHRlzOy8tzqBL3anxMGh+zaKIfbaMf7mJnP6JpyJAhOnz4sObNm6dgMKjXX39dAwYM0JYtW1RTUxPz+6+pqdGWLVs0YMAAbd26VcFgUPPnz1dhYaEGDx4c8/uPBuajbV6dD3Qc89E2r84H+dFxzEfbvDof6Djmo21enQ/yo+OYj7Z5dT7QccxH25gPeJoBeMT+/fsNSRFfJSUlTpflGsXFxU2OT0FBQczuj360jn64i939iJWDBw8amZmZ4cfQo0cPY/78+UZpaWmb31tZWRn+vsrKyjZvX1paasyfP9/o0aNH+PsyMzONgwcPRuOh2Ir5aJ1f5qMj2jsffsJ8tM4v80F+WMN8tM4v89ER5Afz0RK/zAf5YQ3z0Tq/zEdHkB/MR0uYD3gdC0d4xqVLlyL+4SnJyM3Ndbos18jNzY04NikpKcalS5didn/0o3X0w13s7kcsff3118bSpUuNXr16hR9PMBg0Ro8ebezcudOoqKho9vvMvKCpqKgwdu7caYwePdoIBALh2/fu3dtYunSpUV1dHcuHFjPMR+v8NB9WxfMLfuajdX6aD/Kj/ZiP1vlpPqwiP5iPlvhpPsiP9mM+Wuen+bCK/GA+WsJ8wOtYOMJTcnJyIp50ExISjKNHjzpdluM++eQTIyEhIeLY5OTkxPx+6Ufz6Ie7ONWPWLt06ZKxY8cOY8SIEU3e/ZaWlmb86Ec/MpYtW2bs3bvXOHHihFFSUhLx7sETJ04Ye/fuNZYtW2b86Ec/MtLS0pr8nBEjRhg7duzwxT9umY/m+XU+2iueX/AbBvPREr/OB/nRPsxH8/w6H+1FfjAfzfHrfJAf7cN8NM+v89Fe5Afz0RzmA37AwhGeUlxcbIRCoYgn3mHDhhmXL192ujTHXL582Rg6dGjEMQmFQkZxcXHM75t+NEU/3MXJftjps88+Mx5//HEjPT29yYv29n6lp6cbjz/+uPHZZ585/bCiivloKl7mw4x4f8HPfDQVL/NBfrSN+WgqXubDDPKD+WgsXuaD/Ggb89FUvMyHGeQH89EY8wG/YOEIz3n66aeb/AN12rRpcRlKly9fNqZNm9bkeCxcuNC2GujHFfTDXdzQDyecO3fOKCgoMFasWGFkZ2cb6enpRpcuXZochy5duhjp6elGdna2sXLlSqOgoMA4d+6c0+XHFPNxRbzOR0vi/QW/YTAfV4vX+SA/WsZ8XBGv89ES8oP5uFq8zgf50TLm44p4nY+WkB/Mx9WYD/gJC0d4zoULF4zU1NS4D6WWwigtLc2oqqqyrQ76UY9+uItb+uEmly9fNioqKoyKioq4+l24GvNRj/loihf8zEcD5qMp8oP5aMB8NEV+MB8NmI+myA/mowHz0RT5wXw0YD7gNywc4Ul79uwxEhMTmzwZDx061Pjkk0+cLi/mPvnkkyZ/Zi/JSExMNPbs2WN7PfSDfriJ2/oBd2E+mI/m8IK/HvPBfKBlzAfz0Rzyox7zwXygZcwH89Ec8qMe88F8wH9YOMKzduzY0WwoJSQkGLm5ub48x3VxcbGRm5vb5AOEG8Jox44djtVGP+iH09zcD7gL88F8NMYL/iuYD+YDLWM+mI/GyI8rmA/mAy1jPpiPxsiPK5gP5gP+EjAMwxDgUfn5+crOzlZtbW2z/33QoEGaMGGC7r77bmVkZKh79+42V9gx58+fV1FRkfbt26e8vDwdPny42dslJiZq27Ztuu+++2yuMBL9qEc/7OG1fsBdmI96zEe9Cxcu6JprrpEkVVZWqlu3bg5X5Czmox7zgeYwH/WYj3rkRyTmox7zgeYwH/WYj3rkRyTmox7zAT9g4QjP27t3r6ZPn67S0tI2b5uSkqKMjAz17t1bXbt2VSgUUjAYjH2RJtTV1ammpkZVVVX64osvVFRUpPLy8ja/Ly0tTevWrdM999xjQ5Vtox/0Ixb80g+4C/PBfDTgBX9TzAfzgZYxH8xHA/KjKeaD+UDLmA/mowH50RTzwXzAJ5z9A0sgOqqqqoyFCxcaoVCoyZ+i+/UrFAoZCxcudOUHCNMPd6EfQMuYDxgGpzRqCfMBtIz5gGGQHy1hPoCWMR8wDPKjJcwH4H38hSN8paSkRM8995y2b9+uM2fOOF1OTKSkpGjcuHF68sknlZ6e7nQ5raIf7kI/gJYxH/GNdxi3jvkAWsZ8xDfyo3XMB9Ay5iO+kR+tYz4A72LhCF+qra3VgQMHlJeXpz179qi0tFRe/VUPBAJKS0vTyJEjNWHCBA0bNkyJiYlOl9Uu9MNd6AfQMuYjPvGC3xzmA2gZ8xGfyA9zmA+gZcxHfCI/zGE+AO9h4Yi4UFNTo5MnT6qoqEhFRUWqqKhQdXW1qqurnS4tQlJSkpKSkpScnKyMjAxlZGSoT58+CoVCTpcWVfTDXegH0DLmIz7wgt8a5gNoGfMRH8gPa5gPoGXMR3wgP6xhPgD3Y+EIAACAuMYLfgCAFeQHAMAK8gOAXwWdLgAAAAAAAAAAAACAd7FwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAlrFwBAAAAAAAAAAAAGAZC0cAAAAAAAAAAAAAliU6XQBgh5qaGp04cUJFRUUqLi7W2bNnVV1drZqaGqdLixAKhZSUlKQbbrhB/fr1U0ZGhvr27atQKOR0aVFFP9yFfgAArCA/AABWkB8AACvID8D9WDjCl2pra/Xee+8pLy9Pe/bs0alTp2QYhtNlWRIIBJSamqqRI0dqwoQJ+v73v6/ERG+NLv1wF/oBALCC/AAAWEF+AACsID8A7wkYXp1SoBnFxcVatWqVtm/frjNnzjhdTkz06NFD48eP15NPPqn09HSny2kV/XAX+gEAzbtw4YKuueYaSVJlZaW6devmcEXuQn4AQPPIj9aRHwDQPPKjdeQH4F0sHOELVVVVWr58uVasWKGLFy86XY4tQqGQ5syZo3nz5qlr165OlxOBftAPp7m5HwDchxf8zSM/yA8ArSM/mkd+kB8AWkd+NI/8ID/gfSwc4Xl79+7VI488olOnTrV52549e6pfv3668cYb1bVrV3Xu3FnBYNCGKttWV1enixcvqqqqSqdPn1ZxcbHKysra/L60tDStW7dO99xzjw1Vto1+0I9Y8Es/ALgTL/ibIj/IDwBtIz+aIj/IDwBtIz+aIj/ID/gDC0d4Wn5+vrKzs1VbW9vsf8/KytKECRM0YsQIZWRkqHv37jZX2DHnz59XUVGR9u/fr23btunw4cPN3i4xMVHbtm3TfffdZ3OFkehHPfphD6/1A4B78YI/EvlRj/wA0BbyIxL5UY/8ANAW8iMS+VGP/IAvGIBH7dixw0hMTDQkRXwlJCQYubm5RklJidMlRl1xcbGRm5trJCQkNHnciYmJxo4dOxyrjX7QD6e5uR8A3K2ysjL8fFFZWel0OY4iP8gPAOaRH1eQH+QHAPPIjyvID/ID/sJfOMKT9u7dqx/+8IdN3vkybNgwvfzyy7rpppscqswen376qR599FEdOHAg4vrExES9/fbbtv/5Pf2gH27itn4AcD/eYVyP/CA/ALQP+VGP/CA/ALQP+VGP/CA/4D8sHOE5VVVVyszMbHJO72nTpmnt2rWuOWd3rNXV1SknJ0fr16+PuD4tLU3Hjx9Xly5dbKmDftSjH+7iln4A8IY//elP4dPynD9/Xtdee63DFdmP/KhHfgBoD/KD/GhAfgBoD/KD/GhAfsBv4mNy4SvLly+P+zCSpGAwqLVr12ratGkR15eWlmr58uW21UE/6tEPd3FLPwC4y7lz51RQUKAVK1YoOztb6enp6tKlS8RngHTv3l1dunRRenq6srOztXLlShUUFOjcuXMOVh575Ec98gNAc8iPlpEf9cgPAM0hP1pGftQjP+A3/IUjPKW4uFg33XSTampqwtcNGzZM77zzTlyF0dXq6uo0fPhwvf/+++HrQqGQjh07pvT09JjeN/1oin64i5P9AOAOn3/+udasWaO33npLJ06c6NDP6tu3r0aPHq0ZM2aof//+UarQeeRHU+QHAPKjbeRHU+QHAPKjbeRHU+QH/IKFIzxlxowZWrt2bfhyQkKCjhw54vtzerfl6NGjuuWWW3T58uXwdTk5OVqzZk1M75d+NI9+uItT/QDgnNraWu3atUuvvPKKCgoKIv5bnz59lJWVpVtvvVVZWVlKT0+XYRjhF3ElJSUKBAIqKSlRYWGhDh06pMLCQp08eTLi59x1112aOXOmxowZo8TERNseWyyQH80jP4D4Q360D/nRPPIDiD/kR/uQH80jP+ALBuARly5dMnr06GFICn/l5uY6XZZr5ObmRhyblJQU49KlSzG7P/rROvrhLnb3A4Azvv76a2PJkiVGr169wvMeDAaNMWPGGLt27TIqKiqa/b7Kysrw7SsrK5u9TUVFhbFr1y5jzJgxRjAYDN++V69extKlS43q6upYPrSYIT9aR34A8YH8aD/yo3XkBxAfyI/2Iz9aR37A61g4wjP2798f8YQrySgpKXG6LNcoLi5ucnwKCgpidn/0o3X0w13s7gcA+3300UdGZmZmeMZ79OhhLFiwwCgtLW3ze8284L9aaWmpsWDBgogXypmZmcbBgwej8VBsRX60jvwA/I/8sIb8aB35Afgf+WEN+dE68gNeF58nRYYn5eXlRVzOyspS3759HarGfdLT0zVo0KCI6xofs2iiH62jH+5idz8A2Ke6ulrz5s3TbbfdpuPHj6tnz57asmWLTp8+rSVLlig1NTXq95mamqolS5bo9OnT2rJli3r27Knjx4/rr//6rzV//nxVV1dH/T5jhfxoHfkB+Bf50THkR+vID8C/yI+OIT9aR37A61g4wjP27NkTcXnChAkOVeJejY9J42MWTfSjbfTDXezsBwB7HDx4UIMGDdKKFStUV1eniRMn6tixY3rooYcUCoVifv+hUEgPPfSQjh07pokTJ6qurk7Lly9XVlaWDh48GPP7jwbyo23kB+A/5EfHkR9tIz8A/yE/Oo78aBv5AS9j4QhPqKmp0alTpyKuGzFihEPVuNfdd98dcfnUqVOqqamJ+v3QD3Poh7vY1Q8A9njjjTd0++236w9/+IN69uyp/Px8/frXv1ZycrLttSQnJ+vXv/618vPzlZKSouPHj+v222/X9u3bba+lPcgPc8gPwF/Ij44jP8whPwB/IT86jvwwh/yAl7FwhCecOHFChmFEXPcXf/EXDlXjXhkZGRGX6+rqdPLkyajfD/0wh364i139ABB7r732mu6//35dunRJ9957r44dO6axY8c6XZbGjh2r48eP695779WlS5eUnZ2tTZs2OV1Wi8gPc8gPwD/Ij+ggP8whPwD/ID+ig/wwh/yAl7FwhCcUFRVFXO7Zs6euvfZah6pxr+7duyslJSXiusbHLhrohzn0w13s6geA2Nq0aZOmTJmiuro6TZkyRdu3b3fkXcUtSU5O1vbt28M1/vSnP3Xti37ywxzyA/AH8iN6yA9zyA/AH8iP6CE/zCE/4GUsHOEJxcXFEZf79evnUCXu1/hdMLEIJPphHv1wFzv6ASB2tm/frqlTp0qSHn/8ca1fv14JCQkOV9VUQkKC1q9fr8cff1ySNHXqVO3YscPhqpoiP8wjPwBvIz+ii/wwj/wAvI38iC7ywzzyA17FwhGecPbs2YjLN954o0OVuF/v3r0jLldUVET9PuiHefTDXezoB4DYOHjwoH784x+rrq5OU6dO1fPPP69AIOB0WS0KBAJ6/vnnw+80fuCBB/T73//e6bIikB/mkR+Ad5Ef0Ud+mEd+AN5FfkQf+WEe+QGvYuEIT6iuro643LVrV4cqcb/Gx6bxsYsG+mEe/XAXO/oBIPqqq6s1adKk8GemrF271tUv9hsEAgGtW7cu/JkqkyZNctXzDvlhHvkBeBP5ERvkh3nkB+BN5EdskB/mkR/wKhaO8ISampqIy507d3aoEvcLhUIRl2MRSPTDPPrhLnb0A0D0LV68WH/4wx/Us2dPbdy40ZWnMWpJQkKCNmzYoJSUFB0/flzPPPOM0yWFkR/mkR+AN5EfsUF+mEd+AN5EfsQG+WEe+QGvYuEITwoG+dVtiRPHhn60jH64C8cG8J6DBw9q5cqVkqS1a9cqOTnZ4Yra74YbbtDatWslSStWrHDdqY0a8BzZMo4N4D3kh314jmwZxwbwHvLDPjxHtoxjA6/iNxcAAACuVF1drcmTJ6uurk4TJ07U2LFjnS7Jsvvuuy/8GTCTJk1q8u5eAED0kB8AACvIDwDoGBaOAAAAcKXnn39ex48fV8+ePfXiiy86XU6HvfTSS+rZs6eOHz+uf/zHf3S6HADwLfIDAGAF+QEAHcPCEQAAAK5TW1url19+WZL0y1/+0pOnMmosOTk5fHqmV155RbW1tQ5XBAD+Q34AAKwgPwCg41g4AgAAwHV27dql//mf/1FKSoqys7OdLidq7r//fvXo0UNffPGF3nrrLafLAQDfIT8AAFaQHwDQcSwcAQAA4DqvvPKKJGnq1KkKhUIOVxM9oVBIU6dOlXTlMQIAoof8AABYQX4AQMexcAQAAICrfPbZZyooKFAwGNQjjzzidDlRN336dAUCAe3fv1+ff/650+UAgG+QHwAAK8gPAIgOFo4AAABwlbVr10qSRo0apdTUVIerib7U1FSNGjVKkrRmzRqHqwEA/yA/AABWkB8AEB0sHAEAAOAqDZ8t0nDqHz9qeGy7d+92uBIA8A/yAwBgBfkBANHBwhEAAACuce7cOZ04cUKS9L3vfc/hamKn4bGVlJToj3/8o7PFAIAPkB8AACvIDwCInrhcOK5YsUKBQECBQEAffvih0+XAY0pLSxUIBPS3f/u3Ld7m3XffVSAQUE5Ojo2V+VfDMb/6q1OnTurVq5eys7N16NChiNtv3ry5ye1b+ho+fLgzD8qD2tuH9po0aZICgYBKS0ujUzAATzp8+LAkqU+fPrr++usdriZ2kpOTlZaWJunKY/Yr8gOAHcgP/yE/ANiB/PAf8gNwTqLTBdjt008/1aJFi9StWzdduHDB6XIAtEN6erp+8pOfSJIuXLigwsJC5eXl6c0339T+/fs1bNgwSdLAgQO1aNGiVn/Wyy+/rLNnz2rAgAExr9tvzPYBAKxoePGXlZXlcCWxd+utt6q0tFSHDh3SnXfe6XQ5MUd+AIgl8sO/yA8AsUR++Bf5AdgvrhaOly5d0sMPP6yBAwcqIyND//Iv/+J0SQDaoV+/fvrFL34Rcd3y5cs1f/58Pf3003rvvfck1S8cBw4c2OLPWbVqlc6ePausrCytWrUqhhX7k9k+AIAVhYWFkupfDPtdVlaW3njjjfBj9jvyA0AskR/+RX4AiCXyw7/ID8B+cXVK1SVLlujYsWN67bXXlJCQ4HQ5AKJgypQpkmT6H0v79+/X3LlzlZKSovz8fCUlJcWyvLjRUh/Onj2r3Nxc9enTR6FQSCkpKcrOztann34acbu0tDT96le/klR/GhNOeQvEr4bnkXh4h3HDY4yXF/zNIT8ARAv5EV/IDwDRQn7EF/IDiK24+QvHw4cPa8mSJXrmmWeUmZnpdDkAoiwxse2nsxMnTuj+++9XIBBQXl6ebrzxRhsqiy9X9+HMmTO67bbbVFJSouHDh+uBBx7QyZMn9cYbb+jtt9/Wnj17dPvtt0uScnNztXnzZn388cd6/PHHdd1110lS+PMFAMSP//3f/5VUf/obv+vXr5+kK485npEfADqK/IhP5AeAjiI/4hP5AcRGXCwca2pq9Pd///caOHCg5syZ43Q5HWIYhqqqqpwuw3aXLl1yuoQmiouLm/xZfgM3fWjwpUuXov55pW7qx4YNGyQpHPwtuXDhgsaOHasvv/xSL730kmPnafdrP5rrw9y5c1VSUqL58+dr6dKl4ev/9V//VT/84Q81efJkff755woGg8rNzdWRI0f08ccfKzc317Z/qMWiHwCsq6urU3V1taT6f/PYNZ9X34+dzwmGYUiSvv76a/3pT39SMGjvyUfID+vID8BdyA/yQyI/ALQf+UF+SOSHm3Xt2lWBQMDpMtAOcbFwXLhwoYqKilRYWOj5U6lWVVXpmmuucboMSCopKdHixYudLqNN69ev1/r1650uIyquXvI2fNjzO++8o549e+qXv/xlq987adIkHT16VJMnT9Zjjz1mQ7XN80M/zPTh4sWL2rp1q5KTk/Xzn/884vv/7u/+Tnfffbf27dunDz74QEOHDrX7IYT5oR+AXzn1DuOePXs6cr/du3d35H7tRH4AsAP54T/kBwA7kB/+Q354X2Vlpbp16+Z0GWgH3y8c//M//1PPPfecfvGLX+imm25yuhz4yMiRI/Xb3/622f/27rvv6o477rC5Iv9rbsn7zW9+U++//374tBDNWbJkid544w1997vf1Zo1a2Jdpu+Z6cNnn32m6upq3XHHHeratWuTn3HHHXdo3759OnLkiKP/YAMA2If8AABYQX4AAKwgPwD7+XrhWFtbq4cfflg333yz5s2b53Q5UdG1a1dVVlY6XYbtZs+eHZfv4oiGadOm6fnnn4/qz3SqH1cvec+cOaNf/epXmjt3rsaMGaODBw82+9e/b7/9thYuXKhvfvOb2r59u0KhkN1lR/BDP8z04fz585Jafqfen//5n0tS+HZOiUU/AFhXV1cXfqdtSUmJbe/2vXDhQvi+ysrKbHsHZVlZWfid1OfPn7f9lEbkh3XkB+Au5Af5QX4AsIL8ID/ID3drbgkMd/P1wrGyslJFRUWSpM6dOzd7m9tuu02SlJ+fr7Fjx9pVmmWBQCAu/4y4U6dOTpfgWZ06dYr674wb+tGjRw89+eST+uqrr/Tss8/q5z//uV544YWI2/zXf/2XHnzwQSUmJuqNN95Qr169nCn2Kn7rR0t9aPgHe1lZWbPf93//93+SnD+FRyz6AaBjkpKSVF1d7di/ebp162bb/TZ8FkWXLl107bXX2nKfVyM/rCM/APchP+xDflhHfgDuQ37Yh/ywjvyAV9j7NgabhUIhTZkypdmvjIwMSdKYMWM0ZcoU2z7gFUB0LViwQN/61rf0yiuvqLS0NHz9+fPnde+99+qrr77Siy++qO9973vOFRkHGvfhL//yL5WUlKTf//73qqqqanL7d999V5I0cODA8HUNn7F7+fJlO0oG4FLf+ta3JNW/w9jviouLJV15zPGI/AAQLeRHfCE/AEQL+RFfyA8gtny9cOzSpYs2bNjQ7Nff/M3fSJLmz5+vDRs2RDxpAPCOLl26aO7cubp06ZL+4R/+QZJkGIZ+8pOf6LPPPtMjjzyi6dOnO1yl/zXuQ+fOnfXjH/9YZ8+e1bJlyyJu+9vf/lZ79uxRv379IhbB119/vSTp9OnTttYOwF2ysrIkSYWFhQ5XEnsNj7HhMccj8gNAtJAf8YX8ABAt5Ed8IT+A2PL1KVUBxIdHHnlEK1as0JYtW7RgwQLt2LFDb731ljp37qzk5GT94he/aPX72/rvMKdxH1asWKH33ntPzz77rP7jP/5D3/3ud1VaWqq8vDx17dpVmzZtivi8gDvvvFPPPfecHnnkEY0fP17dunVTamqqHnroIQcfFQC7ZWVlKS8vT4cOHXK6lJjjBX898gNANJAf8Yf8ABAN5Ef8IT+A2PH1XzgCiA9JSUmaP3++amtrtXjxYh07dkySdPHiRS1btkyLFy9u9QvR0bgPPXr00EcffaRZs2appKREzz33nPbt26exY8fqo48+0u233x7x/T/4wQ+0cuVKSdKqVav09NNPa+PGjU48FAAOuvXWWyXFxzuMG/5PjYbHHK/IDwDRQH7EH/IDQDSQH/GH/ABiJ27/wnHz5s3avHmz02XAg9LS0mQYRqu3GT58eJu3gXlmjvljjz2mxx57LHyZ+Y4+K3244YYbtHr1aq1evdrUfTz11FN66qmnOlQnAG8bNGiQJOnkyZP68ssvw6er8ZuKiorwZw83PGa/Ij8A2IH88B/yA4AdyA//IT8A5/AXjgAAAHCNb3zjG+rbt68k6YMPPnC4mthpeGzp6em67rrrnC0GAHyA/AAAWEF+AED0sHAEAACAq4wePVqStGHDBocriZ2GxzZq1CiHKwEA/yA/AABWkB8AEB0sHAEAAOAqM2bMkCTt3r1bp06dcria6CstLdXu3bslXXmsAICOIz8AAFaQHwAQHSwcAQAA4Cr9+/fXXXfdpbq6Or366qtOlxN1r776qgzD0IgRI9S/f3+nywEA3yA/AABWkB8AEB0sHAEAAOA6M2fOlFR/6p+amhqHq4mempqa8OmMGh4jACB6yA8AgBXkBwB0HAtHAAAAuM6YMWPUq1cvlZeXa9u2bU6XEzW/+c1vdObMGfXu3Tv8WTEAgOghPwAAVpAfANBxLBwBAADgOomJiXr00UclSU899ZQqKiocrqjjKioqNGfOHEn17y5OTEx0uCIA8B/yAwBgBfkBAB3HwhEAAACu9MQTTygzM1NlZWWaNWuW0+V02M9+9jOVlZUpMzNTTzzxhNPlAIBvkR8AACvIDwDoGBaOAAAAcKVQKKRNmzYpGAzq9ddf15tvvul0SZbl5+dr69atSkhI0ObNmxUKhZwuCQB8i/wAAFhBfgBAx7BwhCfV1dU5XYJrOXFs6EfL6Ie7cGwA7xkyZEj4NEA5OTmePLXR2bNnlZOTI0maM2eOBg8e7HBFzeM5smUcG8B7yA/78BzZMo4N4D3kh314jmwZxwZexcIRntD4XTgXL150qBL3q6mpibiclJQU9fugH+bRD3exox8Aom/RokXhUxtNmTJFly9fdrok0y5fvqypU6eqvLxcmZmZWrRokdMlhZEf5pEfgDeRH7FBfphHfgDeRH7EBvlhHvkBr2LhCE9o/KRaVVXlUCXu1/jYxCKQ6Id59MNd7OgHgOhLSkrSpk2b1KlTJ+3cuVPTp0+XYRhOl9UmwzA0ffp07dy5U507d3bdqYzID/PID8CbyI/YID/MIz8AbyI/YoP8MI/8gFexcIQn3HDDDRGXT58+7VAl7vfFF19EXE5OTo76fdAP8+iHu9jRDwCxMWTIEG3dulXBYFAbN27U7NmzXf2i3zAMzZ49Wxs3blQwGNTWrVtddyoj8sM88gPwLvIj+sgP88gPwLvIj+gjP8wjP+BVLBzhCf369Yu4XFxc7FAl7ldUVBRxOSMjI+r3QT/Mox/uYkc/AMTO+PHjtWHDBknS6tWrNW3aNFee3qjhNEarV6+WJG3cuFHjxo1zuKqmyA/zyA/A28iP6CI/zCM/AG8jP6KL/DCP/IBXsXCEJzR+Ui0rK9P58+cdqsa9zp8/r/Ly8ojrYhFI9MMc+uEudvUDQGxNnjxZr732WvidxuPHj1dFRYXTZYWdPXtW48ePD9e4adMmTZo0yemymkV+mEN+AP5AfkQP+WEO+QH4A/kRPeSHOeQHvIyFIzyhb9++CgQCEdc1fqcHmh6TYDCoPn36RP1+6Ic59MNd7OoHgNibPHmytm3bFv5MlczMTOXn5ztdlvLz8zVgwADt3LlTnTp1Ul5enmtf7Evkh1nkB+Af5Ed0kB/mkB+Af5Af0UF+mEN+wMtYOMITQqGQUlNTI67bv3+/Q9W41759+yIup6amxuTDoemHOfTDXezqBwB7jB8/Xr/73e/07W9/W+Xl5Ro3bpwefPBBR95tXFFRoYkTJ2rcuHEqLy9XZmamPvjgA1eexuhq5Ic55AfgL+RHx5Ef5pAfgL+QHx1HfphDfsDLWDjCM0aOHBlxOS8vz6FK3KvxMWl8zKKJfrSNfriLnf0AYI8hQ4bo8OHDmjdvnoLBoF5//XUNGDBAW7ZsUU1NTczvv6amRlu2bNGAAQO0detWBYNBzZ8/X4WFhRo8eHDM7z8ayI+2kR+A/5AfHUd+tI38APyH/Og48qNt5Ae8jIUjPGPChAkRlwsLC3XixAmHqnGfkpISHT58OOK6xscsmuhH6+iHu9jdDwD2SUpK0rJly/Thhx8qMzNTZWVlevjhh3XjjTdqwYIFOnXqVNTv89SpU1qwYIFuvPFGPfzwwyorK1NmZqY+/PBDLV26VElJSVG/z1ghP1pHfgD+RX50DPnROvID8C/yo2PIj9aRH/A6Fo7wjO9///vq0aNHxHUvvfSSQ9W4zz/90z9FXE5JSdGwYcNidn/0o3X0w13s7gcA+w0ePFiFhYVaunSpevXqpTNnzmjZsmXq27evxowZo127dunLL7+0/PO//PJL7dq1S2PGjFGfPn20bNkynTlzRr1799bSpUt1+PBhz7yr+GrkR+vID8D/yA9ryI/WkR+A/5Ef1pAfrSM/4HUBwzAMp4sAzJoxY4bWrl0bvpyQkKAjR47opptucrAq5x09elS33HKLLl++HL4uJydHa9asien90o/m0Q93caofAJxTW1urt956S6+88kqTzwRJS0vTrbfeqqysLGVlZalfv34yDEPp6emS6t9RGggEVFxcrMLCQhUWFurQoUMqLS2N+DkjRozQzJkzNXr0aCUmJtr10GKC/Gge+QHEH/KjfciP5pEfQPwhP9qH/Gge+QE/YOEITykpKdGAAQMizos+bNgwvfPOOwoG4/MPduvq6jR8+HC9//774etCoZCOHTsW/sdLrNCPpuiHuzjZDwDu8Pnnn2vNmjXavXu3SkpKOvSz0tPTNWrUKM2YMUP9+/ePUoXOIz+aIj8AkB9tIz+aIj8AkB9tIz+aIj/gF/E5wfCs9PR0zZkzJ+K6AwcOKCcnR3V1dQ5V5Zy6ujrl5OREhJEkzZ0715Ywoh+R6Ie7ON0PAO7Qv39/vfDCCyouLta5c+dUUFCgFStWKDs7W+np6erSpUuT7+nSpYvS09OVnZ2tlStXqqCgQOfOnVNxcbFeeOEFX73Yl8iPxsgPABL5YQb5EYn8ACCRH2aQH5HID/gJf+EIz6mqqlJmZmaTD2GeNm2a1q5dGzfvhGkIo/Xr10dcn5aWpuPHjzf7D5hYoB/16Ie7uKUfALyhrq5Of/zjHyVJ1113Xdw8V16N/KhHfgBoD/KD/GhAfgBoD/KD/GhAfsBv4mNy4Stdu3bVq6++2uR85evXr9fw4cN19OhRhyqzz9GjRzV8+PAmYZSYmKh169bZGkb0g364jZv6AcAbgsGgrr/+el1//fVx88K2MfKD/ADQfuQH+SGRHwDaj/wgPyTyA/4Un89o8Lx77rlH27ZtaxJK77//vm655RbNnj27w+dJd6OSkhLNnj1bt9xyS5M/s09MTNS2bdt0zz332F4X/aAfbuDWfgCAV5Af5AcAWEF+kB8AYAX5QX7AfzilKjwtPz9f2dnZqq2tbfa/Dxo0SBMmTNDdd9+tjIwMde/e3eYKO+b8+fMqKirSvn37lJeXp8OHDzd7u4Ywuu+++2yuMBL9qEc/7OG1fgCAV5Af9cgPAGgf8qMe+QEA7UN+1CM/4AcsHOF5e/fu1fTp01VaWtrmbVNSUpSRkaHevXura9euCoVCrjl1QV1dnWpqalRVVaUvvvhCRUVFKi8vb/P70tLStG7dOte884V+0I9Y8Es/AMAryA/yAwCsID/IDwCwgvwgP+APLBzhC19//bWWL1+uFStWqKamxulybBEKhTR37lzNmzfPdef0ph/0w2lu7gcAeAX5QX4AgBXkB/kBAFaQH+QHvI+FI3ylpKREzz33nLZv364zZ844XU5MpKSkaNy4cXryySeVnp7udDmtoh/uQj8AAFaQHwAAK8gPAIAV5AfgXSwc4Uu1tbU6cOCA8vLytGfPHpWWlsqrv+qBQEBpaWkaOXKkJkyYoGHDhjX5MGW3ox/uQj8AAFaQHwAAK8gPAIAV5AfgPSwcERdqamp08uRJFRUVqaioSBUVFaqurlZ1dbXTpUVISkpSUlKSkpOTlZGRoYyMDPXp00ehUMjp0qKKfrgL/QAAWEF+AACsID8AAFaQH4D7sXAEAAAAAAAAAAAAYFnQ6QIAAAAAAAAAAAAAeBcLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYBkLRwAAAAAAAAAAAACWsXAEAAAAAAAAAAAAYNn/A3wG7f7U8LFxAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "drawer = qml.draw_mpl(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "print(drawer(x1))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, - "outputs": [], "source": [ "from torch import nn\n", "class ExtendedModel(nn.Module):\n", @@ -1380,23 +1301,13 @@ " \n", "extended = ExtendedModel(model)\n", "model = extended" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-1.2338],\n", - " [ 3.6446]], dtype=torch.float64, grad_fn=)\n", - "torch.Size([2, 1])\n" - ] - } - ], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -1445,13 +1356,13 @@ "output = model(x)\n", "print(output)\n", "print(output.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# First, let's import necessary packages\n", "import torch\n", @@ -1486,13 +1397,13 @@ "print([p.shape for p in model.parameters() if p.requires_grad])\n", "print(sum(p.numel() for p in model.parameters() if p.requires_grad))\n", "print(model(x).shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torchviz import make_dot\n", "# Create a random tensor to represent a sample input\n", @@ -1501,13 +1412,13 @@ "\n", "# Visualize the network\n", "make_dot(y, params=dict(model.named_parameters())).render(\"network\", format=\"png\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "from qulearn.qlayer import MeasurementType\n", @@ -1520,13 +1431,13 @@ " entropies.append(model(x).item())\n", "max_entropies = [np.log2(min(2**len(subsystem), 2**(wires - len(subsystem)))) for subsystem in subsystems]\n", "print(x)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# Plotting\n", "import matplotlib.pyplot as plt\n", @@ -1540,13 +1451,13 @@ "plt.grid(True)\n", "plt.title('Computed vs Maximum Entropy')\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -1650,24 +1561,13 @@ " return torch.sin(low * X) + 0.5 * torch.sin(high * X)\n", "\n", "Y_high_low = add_gaussian_noise(high_low(X))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhYklEQVR4nO3dd3hUVfoH8O/MJDOTSSWkAoFQAwiEZjCgAhKpYt0VK0XFBqsrrgqrgogKuyq6qyj+FLCsiohYdkUUUEQw0nvvPQkhkJ6p9/dHyOTemTstmZ7v53l4nLn33Mm5TpJ5c8573qMQBEEAERERUYAoA90BIiIiatoYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCisEIERERBRSDESIiIgooBiNEREQUUBGB7oA7LBYLzp49i9jYWCgUikB3h4iIiNwgCALKy8vRokULKJWOxz9CIhg5e/YsMjIyAt0NIiIiaoBTp06hVatWDs+HRDASGxsLoPZm4uLiAtwbIiIickdZWRkyMjKsn+OOhEQwUjc1ExcXx2CEiIgoxLhKsWACKxEREQUUgxEiIiIKKAYjREREFFAMRoiIiCigGIwQERFRQDEYISIiooBiMEJEREQBxWCEiIiIAorBCBEREQUUgxEiIiIKKAYjREREFFAMRoiIiCigGIwQUUAJgtDo11h3qBhLt5z2Qm+IKBAYjBBRwPy8vxC9Z63EL/uLGvU69yzYgL99uQMHCsq91DMi8icGI0TkU8eKK/Hl5lMwW+xHQO77cDMuVhkx4cNNXvlaZy9Ve+V1iMi/IgLdASIKb4NfWwMAMFkE3JnT2qdfSy7gIaLgx5ERIvKLTcdLGv0alXoTXlm+D9tOXrQeE+ecmL2Qf0JE/sdghIhCxpurDuL/1h7FLe/8bj0mHgzxRjIsEfkfgxEiChn7ZRJUTRaL9bHZYneaiEIAgxEiChkKhcLumDhPhNM0RKGJCaxEFJKKK/T4aU8hureMtx4zWzg0QhSKGIwQkdcYTBbM/mEfBmWlYGCnZMk5BexHNRpjzg/7sXTLaagj6gd4OU1DFJo4TUNEEudKq7Fg3TGU1xhh8XCp7Cd/nMCi9ccxbuFGH/Wu3pYTtStqDKb6CMR0ORoxmi0orTL6vA9E5B0MRohI4k/v5mPW//ai+ws/IeeVVThfrnf72lMlVQ3+ure9+zs+zj/utI14bEWltB9pMVwORm6etx7ZL/6EX/YX4VAhq7ISBTsGI0RNXFmNEesOFVsTQc+IqpgWVxiwcP0xv/Rjy4mLmP7tHrfb1xjNdsfqRkn2nC0DAEz4cBOuf2OtxyM8RORfDEaImrh7PtiAexZswCcORiXcqWpqsQg4XFQOi81qFnFxMlvGRiZ4XJKZhtGb5F/TyMRWoqDGYISoidt5uhQA8KWDXW9dBSOFZTW4/6NNyJu7Fh/nn7AeLyitkRQn+2rrabz0v73WwmQ3/Hud7Ovd/+Ema+6HMxV6k90xg8kCvcl+xMRo5sgIUTBjMEJEAByPVLgKRq57bQ1+OXDe7vjxC5V2xz5Ydwy7ztQGPwcc5HKs3l+EP442rHS8wWxBRY19kOJOcAMAn288iWeW7rS7Z1Z2JfItBiNEBAA4WFiBFbsL7I67CkYqDfYjEQCw8/Ql2eOXqowup2gOF5Xjkz9OoLzGiJJKg/W4TM0zCYPJIj9i4mYwMm3ZLnyx+RR+2lP//2HT8RL0eWkVvt1+xq3XICLPsc4IEVk9/J8tdsecVTV1Fqi8sny/7HGj2YKyaufLbl/4714AwPPf7AYA/D71OrRIiHJ6DQDoTWaUy4yMeDpNc0nUv/sWbUK53oTHF2/HTT1bevQ6ROQej0dG1q5di9GjR6NFixZQKBT45ptvXF6zZs0a9O7dGxqNBh06dMCHH37YgK4SkbsEQcCUJdsx/dvdjX4tZytR5KZEXJn5370odRGM2Pp5f5Fb7facLUOlzMiI0UFiqyPPf7Mbc386AADQs5Iakc95HIxUVlYiOzsb8+bNc6v9sWPHMGrUKAwePBjbt2/HX//6VzzwwAP48ccfPe4sEbnnXGkNlm09g4/zT6DawTSKu5yNfpTVeF5Y7GRJFU5frHbdUCRSpcChwnIUVzivebL91CWcl2nj6codk0XAv38+jGqDmcuCifzA42maESNGYMSIEW63nz9/Ptq2bYvXX38dANClSxesW7cOb7zxBoYNG+bplyciN4gLglXoTYhSqxr8Ws6CEbkpEXcckNl915nvdpzFM1/tctlOEGBNkBVzN2fEVlF5DTffI/IDnyew5ufnIy8vT3Js2LBhyM/Pd3iNXq9HWVmZ5B8RuU/8+Vl+efRi1v/2YupXOz1eGSL+MC4qq8Ej/9mCb7efQVFZDdYesl9F4479HgYj6w9fcLvte78etTtmNAvYdvIiBsz5Gd/vPOf2axWU1oCxCJHv+TyBtaCgAKmpqZJjqampKCsrQ3V1NaKi7JPSZs+ejZkzZ/q6a0RhyyQq8lVeY4LJbMGCdbWVVB8a2B5tk6JhsQjYe851oG8SjYxM/nwbNh4rwQ8yq248sb/Av39gmMwWPLFkO85cqsakz7ZiVI9RAGp3/m0erQYAfLHplN11BWU1fu0nUVMVlKtppk2bhilTplifl5WVISMjI4A9Igot4oKjFXqTZDXJ4NfWYEzfDGQkRuG1nw66fC2zWYAgCDBZBGw81rD6H7YOFVZ45XXc9af59iOxP+8vxH0fbsZd/Vojr0sKpi6znwbyZF8eImo4nwcjaWlpKCwslBwrLCxEXFyc7KgIAGg0Gmg0Gl93jShsSUdGjHY5E19sPiW70ZycFXsK0HbackSqHLd/+65emPzZNrf719AcDltRkSpUy+xR445/rqhdLfPZhpNI1Kll21TqG5f8S0Tu8XnOSG5uLlavXi05tnLlSuTm5vr6SxM1WeI9YspqTLKrSdwLReo5q9XRPjnGw1fzjnfu7m19fGVmM6cBk1hBaY0k+fbtXw7LtmOhMyL/8DgYqaiowPbt27F9+3YAtUt3t2/fjpMnTwKonWIZO3astf3DDz+Mo0eP4umnn8b+/fvxzjvvYMmSJXjiiSe8cwdEZEec51FUVoNXvt/ntE1jJUbLjyzYurZTste+JgC0alY/uqqNVOHlW7pbn8+6uRuuzGwm349Xf5HsTuzI0WL7kvZE5H0eByObN29Gr1690KtXLwDAlClT0KtXL0yfPh0AcO7cOWtgAgBt27bF999/j5UrVyI7Oxuvv/46PvjgAy7rJfIh8XLc1346iGXbnP+F3zU9rlFfLyVWOq362HUdZNuN7JYmed4lPQ5/G9rJ+rxzWqxktMOVBNH0ikKhQHxUpPV5jEblcCrK4GERNCLyLY9zRgYNGuR0aaBcddVBgwZh2zb355OJqHFc7Sdja8KATDy1dGeDvtb4/plQKBSYc2t3axLoX4Z0xL9/tp/66GwT9Ewb0RkXKuuTRL9+dAA2HXc/STZBVx981BjNSBYFRc2jNX5PlCWihgnK1TRE1DieTsHEahv+q+CFG68AAKSL9o6JVCmRFKNGcYVB0ja7VTz6tGmGLScuAgAyEnWSqqrqCM8GayNV9e1T47TolZGAJ6/vBKVSgdz2zXGh0uDkaiIKFty1lygMeVrCPErd+L9Lru2YhEmD2+Ptu2qncBc/aJ+krlAoMLJ7uvV5y4QoiLuqUiqc7sz7/ti+Ds/1a5sIhUKBvwzpiEmDO0gCFW+pMZphMFlQXmPksl8iL2IwQhQmLBYBReW1Rbo8HRmJ9qBc/E09W8geVygUeGpYZ9zQo/Z8h5QY2dwR8eiHOkJpN+2bGqd1+LVz2ze3O/Z/9/bBA1e3xR1XOq9FNKRzitPz7ugzayUmfLgRA+b8jCtfXoWLlQZYLAKWbT2Ns24kxBKRPAYjRGFi1vd7kfPyaqw9eL4BIyPuByOejDjc0ruV3bHberfEwE7JmHVT7fSObQpap9RYvCJaFQPU1hO5MbsFYjT2IzhDr0jDczd0RYRMv/q1TQQA3HNVaywYf6Xb/Xak0mDG+sMXUHZ5WfDWkxfx/a5zmLJkBwa9tqbRr0/UVDEYIQpBZouAqV/txOKN9SvXFq0/DgCY88N+j0dGdOoITBrc3q22nuzV0jYpGj89cS16t07Aq3/qYf1aH92Xg3tzMwHI54nc1a+19fGtvVti36zh+Pedvdz/wpe9e08fvDEmG8+N6uqyra4BmwleqjJi8+WEW4PJglMlVbBYBHy5+RQOF9Xvv1NeY8TuM6Ue7wtE1FQwGCEKAp9uOIFH/rMFNTbVRA8XVWD7qUt2Ix0rdhdg8aZTsiXMFQp4vNOsTq3CU8M644XRrj+0BdS/trP8jjqdUmOx7NEB+HNf+WmUEd3TcFW7RDw2pKPk+A09anNLHri6nesv4kBitBq39GoFbaTrQKMhSbwXqwyoNNS/Z8cvVGLFngI8tXQn8uautR4f/dY63PDWOvx6sGEbCxKFO66mIQowg8mCZ7/eDQDI63IOt/Wpn9rIm/srACA9Xovfp14HxeVP/3Ol0vwE8VJehaJ2PxlP1E29jB/QFt1bxeO2dx3vqg1xwqk70YgLmgiVbLLrv+/ohZdv7o540fJdX4rWRACoT0q9uWcLfLP9rNNrXrIpJneutAZHz9sXSjt+oQoA8MOuAgzKanzuClG44cgIUYDtPH3J+risxmh9XKmvL1d+rrRGsgeL3qZoV13iKgCYzIJHIyPaSCWaiT7wFS4CDIsgoGdGAgDgRgfJrN6gVCpkAxE3t9SR9caYbEQoFRjaNdXuXDOb/WnuyGlt18aVwtIayQhLtUE60qWU6fyx4kocKCi3O07UlDAYIQowcS2MMxfrRzwu2NToqBJ9sImncwRBkKzkqNCbXBY9mzAg0/r44/v6SQKQ0qr6gEjug18AsGBcX/zjtu6YdVM3p1/HF+QSVd11S69W2D1zGF66pRtaXq6LktM2EYdeHmE3yqNTqzwOfM6V1UjyQs7ajGBF2LygIAgY/NoaDHtzLUqrjSBqqhiMEPmZ0WzBZxtO4vjlfU/Eoxx1+6VYLALmrjwguW728v34/UgxAGkwsv3UJcm0it5kcZrAOjq7BR4eWJ+saru5XIeU+k3v5HItstJi0TxGgzFXtr48teFf6kbWD9FGqpASq8X6qdfh+JxRWPJQLiJVSihtXjYqUoXfnrkOL93sfsB1qcpgXWkDwFrcrY5teXqzzR5CRE0Vc0aI/OzD9cfx8vLaXIPjc0ZBLwos6pIhP/z9uF2+wldbT+OrradxfM4o1BjrA5hb3vld0q7GaHa6tPetO3uhQjQFZLGZ0slI1OF/f7kaSTEarNxXiOe/2Y1xuW1wc6+W+GV/Ee6/uq2Hd+xdsdoISf+9JcI2GkFtUbbrPKhPUl5jkowsPb10p2TEpW5kZO3B80iJ0yCzebT1HNfZUFPGYITIhz7OP47PNpzEx/fnICW2tpjXH0cvSNqIR0ZM5trHK3YXOH1dZx/GrkZGAEAnGvEwmOzbdmsZDwC4p19rXNsxCRnNdFAqFejVWn4XXH+af08fPPrpVkwd0dmrryvO57i2UzLaJ9eOENlOrThTXmNCmUY63fLklzusj1UqBb7actp6bM9M+w1Dd58pxdNLd2LqiM5e3+WYKFhxmobIh6Z/uwf7C8rx+o8Hrcds80PFuQIms4ANRy9g99lSh68pCILdahoxg8kiyT2RI/7gTbbZcVdMoVCgTfNo2cTLQMnOSMD6qddhdLZ3k2fFt/jxfTnWe3aUoyJXH6W8xmiX6yO2el+RJDgxiVY91Q1QPfjxZuw9V4axCzd60n2ikMaRESI/EK+SESutMuLVH+tzQ45fqMSY//vD+jxBF4lLVdJrb38vH5uOS3MRbL2x6qDdsaQYtaT412cP9ENheY0kR6Qpc7RM2TbPo05qnAYWS32eDwCU1ZhQVOZ4z5rDRdJdhA3m+lGxuvotTGSlpogjI0R+YDSLl+LWf7it3l8oaVdks/naO3f1tnstV4GInNHZLbDp2Tzc3Kul9Vj/Dkm4pZd9ufamqkerBNnjjqZpIlVKu+Tf8+V6lHuQzyJevl03StKY1UJEoYojI0R+YFsXpI7cUL9YpIvz7ri2UzKm39DVZf2Qpu6hge2gVACDbRJWHY2MqFVKGCD/vrqrXLTypm5ljW2AQ9QUMAQn8gODKBgRf7ZpIpyXKXf0V/m43DaS5y/edAVm3niFXbvUOA0+vi/HaV4I1dJGqvCXIR2tybt1NBFKdE6LtWsfoVJ4lNwqp1wvyhey1H6PyAU/b646iGnLdnJvGwpbDEaI/EA8TSMeoHA1Ih+pUqJbyzi747fa7IY7NjcT4/pn2rUTLwGmhlEoFPhu8tV2xy9WGhGlrh9cFo9yJcWo7drL+f1w/coqo1mAwWRBoUzOyZurDuHzjaew91yZJ10nChkMRoj8wChaNSH+QLnvw81Or1NHKLFw/JV2x7MzEnDz5VLszpa42m68Rw2jjlDi0wf6Ia9L/RTO2dJqJIrK1YsTYOOj3NtP5+1fDlsfmy0C5v96xK6NeDTEtrw8UbhgzgiRH9SNjOw6XYpTJc6X3YpFqpTW+iR16naznXljN4ztn4neTmp/OMpVIc8N6JCEAR2SkDn1ewC1S3GbRdePgIj3DqpqQNBgNFuwal+hzPH6YMRV/RiiUMWRESI/qFvCufaQZ1vI1yUzfjd5gPVYXU5BvC7SaSBCviGejknUyU/HPD6ko8evazILkEsJqcslAeC0si5RKGMwQuQj3+2oL+d+9HwlVu4tRJTMXi/O1O3D0l2UVKnkqpiAGpxVWxVVqQDuv6YtotUq/KmPNIenTxvPg0STxWJXmh8AjKIKuZ7sxkwUSjhNQ+Qjj32+TfJ84sebcWvvlg5ay6urOSFelussGPnP/f2wal8hvtx8CpUGM2ICsJFduJtzaw8kxRzA7X0zkB4fha3Tr4dapcTSLaetbRpSK8RksR8ZsVgEGC3i7QIYjFB44m8qIj9atvWM7PGUWI1dwTNAvuaEs9WkV3dMwtUdk3BHTgb+8cN+TLk+q8F9JXnNotV4+Zbu1udyy7MbUivEZBbsVsvUmMySlVh6ExNYKTxxmoYoCDga7YiU+QvbUREusc5pcVg0IQfdW8W7bEveJ/e+1fn4vhzZ4/9efcjuWGm1UTIawqXaFK4YjBD5gMHDVSyO4gu5DzVWUg1O793bB9FqFebf08dpMbT+7Zvj7n6t7Y4fLa60O3ax0siREWoSOE1D5AMXKh1vlibH0a64cqMg3LokOA27Ig27XhgGpVLhdLO7CJUSOrV7icwXqwxIiqmvnsuREQpX/LVG5AN6Dz80PFkhw9U0wasuqBTnjNzSyz5pWVy51ZlZ/9sr2fGZIyMUrhiMEPmAuDaEtzEYCX7i6bWR3dNx71XSvYTcXeK9v6AcL/1vr/U5R0YoXHGahsjL5vywH4s3nfToGrMHxazitPyxDXa2OSO2OUSebLC343Sp9THL+1O44sgIkZfN//UILlU5zhmQM6BDc5dtZt10BXLaJuKBa9s1tGvkJ+IkYwWAKJsckYaWddebLNCbzDhX6v6WAkShgMEIUQC0S4q2Pv77yM54/oauaJcc7eQK4N7cTCx5KBdxWvc2YaPg8ZfrOuDKzGb45209AAAmc8OmW2qMZvzp3Xzkzv4ZBwvLUVyhxzfbzjCXhEIex3uJvMjo5ofMnNt64Of9RfhTn1bokBIDAFgw7kocLqrAxI+d7+RLoSVKrULzGA2+fLi/9ZixESMju87UTtss33UO/91xFkfOV+JgYXs8Pdzx7s1EwY4jI0Re5O5urS0StJg6orM1EAGAtknRuL5rqq+6Rn721LAs3JjdArnt7Kfg5I65Y+3B+o0WE6IiceR8bW2SH3YXNKyTREGCwQhRI609eB7f7zwHAKjQm2Tb2C6AcWc1BRNVQ9ukwR3w7zt7ydaQyW3fHJ9N7Ofxa4q3DNCJ9h1SKIAzl6pxoKC8YZ0lCjAGI0SNNHbhRkz6bCu+2HQSA+b8LNvmyMsjJVvP65zUmbiiRRwA4G6b5aAUXvq3T0J8VH3+T7SbhdDqSFboCMCAOT9j2JtrcbHS4K0uEvkNgxEiNwky27eLl+Q+89Uuh9cqlQq8dWcv63NtpOMfvUUTrsQbY7LxRF6nBvaUQsXATskAgORYDVY9ORDv3N3bWjBtaNdUdEqNcXiteJmvuJT8Wa60oRDEcWAiN5wrrcbN89bjzpzW+OvlIOHtnw/h0w2e1ROp42x/mZRYLW7p1apBr0uhZdbN3ZCVFosbs1sgPT4K6d2jcG2nZFQZTEiJ1WL3mVLc8NY62Wv1DvY/kjteYzRDazM1WGM047UfD2BIl1Tktm9YDguRt3BkhMgNb/98GIVlery5qn5n1dd+OohzpTVuv8aADklI0EXiqnaJvugihaD4qEhMGtwBGYk667EYTQRSYrUAnI+gVTtIln51xQHJVM17vx5B5+dX4Jf9RZJ2C9YdwwfrjuHO9/9ozC0QeQWDESI3WGSmaNzVt00zALUfMhv+PgSfPXCVt7pFYU4T4TiPxFE11vyjF/DU0p04XlyJ3w8XY/YP+wEATy3dIWl3TGaXYKJA4TQNkRPVBjP+OHoBRrM0GJHLH3Hki4dyrY+dfbgQ2dJEOP578YN1xxyeW3voPAa9Vuj0tRsRXxN5HYMRIhk7T1/C1hMXseXkJfx3x1nJuQ9+O4o7clq79ToKBaDyYB8SIjG54FWhcB1IqGRykhh8UDBjMEIkUlReg18PnMdTS3c6bPPS9/vcfj1+AFBjaGRyRpJjNJJ6I3J8uWs0kS8wGCG6rMpgQs7Lq91q60lAQtRQapV9MNKmuc5lMGI7rShHACNlCh5MYCW67FQJ6zNQcLGt3tqqWRSeG9U1QL0h8h0GI0SX7TlbGuguEDn017yOWP3kQGRnJGDH9KGNfj0FmMtEwYPBCDUZddutO1oSOWXJDtnjRMEgThtpTWiN10W6aO0ap2komDAYoSbj9vfy8dcvtuPNVYdgsdnC3dyALd3F+4qI/eW6Dg3qH5Ez4h2e5ThbBgw0rlYOka8xGKEm4+jl7dbn/3oE2S/+hAWiOg0GB6W1nZHb2OyWXi3x5NCshneSyMaSh3Lx4k1X4JqOSZLjH4zti+RYjfV5y4Qop69zscqIexdswK3vrMdvh877pK9EDcVghJqk8hoTZv1vr/W5o6kbZ6LUKkTYJBieKqkCAMy7qzdiNBFYNOHKxnWUmryctokYm5tpt59RXtdUbHo2z/q8z+VKv878dqgYW09ewr0LNkqOe1LEj8gXuLSXCI43HXMmSq2CSqmA6fIUT4RSYd1Eb1SPdIzolma3GoLI2965uze+2nIaz47qgoxEHeauPOjehaL4w2QRrLsFEwUCR0aIAOhNno+M6CIjJCMju2cOw9WioXQGIuQPI7unY8H4K5GgU2NAhyTXF8gwmQVUG8zW3Kn9BWXYdvKiN7tJ5BSDESIANUb3RkbESatRapUk4LDdop3I32x38tXJ5DVZiWLli1UGdHvhR9z49joAwPA3f8Mt7/yO8y6KqxF5C4MRatK+3nYaFysNbo+MRIoqYupkckaIAqlX6wTEaiOQHKvBhxOuxE09WzhuLJqmWXe4GGaLgD1nyyQry45f4M6+5B/MGaEm7YkvdiAlVoN5d/e2O3djdgt8Z7NJnnj5ZG3OCON5Ch7RmghsejYPkSolVEoFfjtU7LBtabXR+thotsg+rtCbrI8r9SZEa/iRQb7B36TU5BWV61FaZbQ7ft/Vba2P+7dvjlhtBKaO6Gw9xpERCkbaSJV1p2i55ed1ykWBhkm0l41BHIzU1LZZvuscrpjxI+b/esTb3SUCwGCEmoAzl6rx2OfbnLZ54OPN1sex2ggseSgXWtGOqVNHdMb26UPRJT3OekynjsDkywXORmc7GQ4nCpAoteORjCpDfTAiHg0RL3OvGxmZsmQ7AGDOD/u93EOiWhxzo7D3xOLt2Hi8xK22OW0TsXjiVVAqFTh6vsJ6PEJZO+wdJfpLMypShbv7tUZO20S0S4r2er+JGitaIx0ZaR6txoVKAwCgSl8fdIh3+RUfLyyrAQCwDAn5GkdGKOwdKCx3u60mQmldISNOVlVH1B7TiVbMdEmPg0KhQKfUWETIbPVOFGhRNiu8vp08AM0u72tT6WBkpEq0ImfR+uMNKghI5CmOjFDY82RPDvHyXHGyasTlRNW4qEi0T46GRQAGZSV7r5NEPmCbcBoVqYL68vd1pWgERLwdgnj6prTaiM7Pr/BxL4kYjFAYM5ktUCkVdpviOSOuyyAeGVFeLsWtUirw0xMDYTRbWFeEgp7tyEiUuj4YEa+UEY+GVBo4EkL+x2CEwlKl3oS8ub/iihbxMHswMtJVlKCqdrALqkqpgErJQISCn+1OvtoIFdQyU4oL19dvGlktGhkh8hcGIxSW1h8uxrnSGpwrrZH95Suna3oc7riytfW5eGRExX07KATZBtRKpQLqCOeBdJWLkZFTJVXISNQ1um9EYsy6o7AUKfolLK6b4Mzyx69BvK6+3Ls6QokHrm6LO3MyXG7PThSM5Eb3HI341XE1TXPNP3+RPDe5+fNF5AyDEQpLei+tAHjuhq6YfWsPr7wWkb+J85rqAmq1i1G+Kr370zRLNp9Ctxd+xPrDjiu9ErmDwQiFpbJqznsTdUiOwbWdknFtp2T8/LeBAFyPjLiapgHqlwI/vXQnaowWPCgqGkjUEMwZobBRWmXE4fMV6N06AWU19uXd5ejUKgzokIRrO3GZLoUfpVKBj+/LkRxzlUP1r9WHXL6u3mSR5FQpFMyposZp0MjIvHnzkJmZCa1Wi379+mHjxo0O2xqNRrz44oto3749tFotsrOzsWIF162T943411rc9u7vmPjxFpRVuxeMRKqUeH9sX9x7VRsf944oOLgaGXGH7TQoQxFqLI+/K7/44gtMmTIFM2bMwNatW5GdnY1hw4ahqKhItv1zzz2H9957D2+99Rb27t2Lhx9+GLfccgu2bXO+VwiRp86W1pauXrWvEN/vOufWNVVcxkhNjHg1TWqcpkGvUVptxCd/nKg/wGiEGsnjYGTu3LmYOHEiJkyYgK5du2L+/PnQ6XRYuHChbPtPPvkEf//73zFy5Ei0a9cOjzzyCEaOHInXX3+90Z0ncuTI+Uq32on35CBqCiJFCazPjuqKWTdd4fFrvPz9Pjz/zW7r8/IaE4rKa/8YKKsx4pcDRZIS80SueBSMGAwGbNmyBXl5efUvoFQiLy8P+fn5stfo9XpotVrJsaioKKxbt87h19Hr9SgrK5P8IyKixhMXQkuJ1eDe3EzZdkM6pzh8jdX77UfCX/rfPgDAfYs2YcKiTXjnlyON6yg1KR4FI8XFxTCbzUhNTZUcT01NRUFBgew1w4YNw9y5c3Ho0CFYLBasXLkSy5Ytw7lzjofRZ8+ejfj4eOu/jIwMT7pJREQOaETTNHHa2ro6EwZk2reLVOLxIR3dft26kZHNJy4CqF32S+Quny/t/de//oWOHTuic+fOUKvVmDx5MiZMmACl0vGXnjZtGkpLS63/Tp3iNzV5V+e0WABAfFSki5ZE4SU9vn6kuq7I3/OjutoltkYolRA82EpBpZQmjnCBDXnCo2AkKSkJKpUKhYWFkuOFhYVIS0uTvSY5ORnffPMNKisrceLECezfvx8xMTFo166dw6+j0WgQFxcn+UfkjKNfmp1SY+yOPXZdB7w/ti9u7dUSn0+8ytddIwoqaaJgJE5bW91BqVRg2SP9Je2a6SLhSUaV0ib6sH1O5IxHwYharUafPn2wevVq6zGLxYLVq1cjNzfX6bVarRYtW7aEyWTCV199hZtuuqlhPSaSoTfJJ8vZlnG/MycDU4ZmISNRh7ljeqJrCwa61LSkx9f/TESr60tNdWsZj63PX299nhitgcWDkRHbWiNKxiLkAY+Lnk2ZMgXjxo1D3759kZOTgzfffBOVlZWYMGECAGDs2LFo2bIlZs+eDQDYsGEDzpw5g549e+LMmTN44YUXYLFY8PTTT3v3TqjJEgQBNQ7Kv+s00m9xFmeipq5vm2a4oUc6WiZEQWkTMdSNlABAlFqJmir3t1WwrTLPkRHyhMfByJgxY3D+/HlMnz4dBQUF6NmzJ1asWGFNaj158qQkH6SmpgbPPfccjh49ipiYGIwcORKffPIJEhISvHYT1HRZLAL+/F4+zl6qdqt9ckzD6ioQhQulUoG37+otey5CVFU1KlKFC4LB/de1DT4Yi5AHGlQOfvLkyZg8ebLsuTVr1kieDxw4EHv37m3IlyFyqqTSgHELN2LXmVKHbSyW+mHmzOY63Hd1W390jShkZTbX4fiFKgzunIKP80+4vuAy+2kaRiPkPu5NQyHrpe/3Og1EAEjmvH96YqBXSmEThbPlj1+DsmoT0uK1kmDeFdscEeaMkCcYjFDIOlbsusqq+HcpAxEi13TqCOguJ7Z6EItwNQ01Cn87U1jzpE4CEUkJMot7O6bE4IsH7ZfEK5X8eaOGYzBCIcdktuCxz7dh28lLLtuaPfnTjogkHry2HeK0EZIKrTUmM6I19oPqVQYz/ruzvrI2R0bIEwxGKOSs2FOA73aclT13z1WtJc8ZixA1XHp8FLY+fz1mjK7fTK/aYEakyv6jY82B83js8/rd2J0U2Sayw28XCjlFZXqH58QFnQAggll0RI1St9z37bt6IVYbgdf+nI0I26IiMjhjQ55gAiuFnGoHBc4AIClGLXn+7Kgu2HmmFA9e43j7ASJy7YYeLTCyWzqUSgVOXKhPHh/aNRU/7S20a29wUBWZSA6DEQo5BaU1Ds/V7UJap11yDDb+fQgrrxJ5QV3FVnFxtFit/GaTjrZoIJLDaRoKCSv3FmLqVztRYzSjpMpxVUi5X4wMRIi8K1I0/ZkUq5Zt42wEk8gWR0Yo6P13x1n85XJiXFZaLPROfsnFavktTeRr4pGRvm0SkT5ai8ykaMRFReL0xWo89vk2nC/XY/PxEvTNTAxgTylUcGSEgtrhonJrIAIAFyoMTod/46Lkh4yJyHvECawRKgXGD2iLQVkp6N26GUb3SIc2svaj5U/z87Hj1KUA9ZJCCYMRCmollUbJc51G5XCHXoAjI0T+EClat2tbT0ShUKBlQv2qto3HSvzWLwpdDEYoqNmme2giVE5HRhiMEPmeeGREbvW8eIk9fybJHQxGKKhVG6SjICcuVGLnaceb42kiVL7uElGTJ67fo5JJEI/W1P8c6jQRqDGacc8HG/B/a4/4pX8UehiMUFCzzciX29Jcww3wiPxKvEJNKTM0oo2sD0bMFgu+2HQK6w4X45Xl+/3SPwo9/C1OQc1Zfsg1HZPw2QP9YLEp9TiqezoAYECH5j7tGxEB6fFau2PJMRrr4ye+2IEZ3+2xa6M3mfH00h34Ydc5u3PU9HAyj4Kas2Bkxugr0CElBkazNBiZc1t3DO6cguu7pPq6e0RN1ucTr8LFKgPaNI+2O/fIoPb4YN0xp9d/kn8CSzafxpLNp3F8zihfdZNCBEdGKGhcqjJgyeZTKK+pX0FjmzMiVjc9kxpX+1dY26TaX4qx2kj8qU8rxOu4zJfIV3LbN8fIy6OQtprHaHBLr5ay5yyXd688LiopT8SREQoaD36yBRuPlWDtwfN4+67eAIBqo+OVM3Xz0h9OyMF7vx7BE9d38ks/iajhnliyHd9uP4u0OPvpHWq6ODJCQaOuHsH/dtbOIRvNFvxjRW3CW/eW8XbtNZcLK3VJj8Obd/SSHS4mosAwmuX/kPh2+1kAQEGZ4z2mqOnhyAgF3IJ1x/Dd9jOSY6VVRpwtrbY+T43TYJe0CbRcxksUtEw2uVxEzjAYoYCb9b+9dseyX/wJPTMSrM+Pnq9EYrQaJZX1m+RFqrgBHlGwcjQyIsdsEaCSq55GTQanaSigDhdVODy3XbSnxdjcNpJKj/Pv6cPdeImCmNHi/siI3sQdfps6BiMUMMeLK5E391eX7QZlJePe3Ez8bWgWAODOnNYY3i3N190jokYw2YyMxGocD8Q7WzVHTQOnaSggjGYL1h0udqvtiG5pUCkVGHNlBvq1a47WiTof946IGss2Z6RtcrTDrRxqLu83JQgCqo1m6NT8aGpqODJCAfHn+fl47pvdbrVNia1dAqhQKNA2KZpzy0QhoL9NBWRxiXhbdcUNZ3y3Bz1nrsSBgnKf9o2CD4MR8juLRZDkg7iSHKtx3YiIgsrDA9tLnjvbQ6ouGPk4/wQMZgv+84f9HlQU3hiMkM9VG8z4fuc5lF2urGrwIMseADKTWD+EKNRoI1WSFW/OgpEX/7sXu0RTOGky+91QeOPEHPnci//bi883nsSgrGRc3SEJn3jwV8+qKdcixkniGxGFBo2TukAbjpVg9NvrrM+dTelQeOJvefK5zzeeBACsOXAeaw6c9+jaFJaMJgoLzkZGbFUbTD7sCQUjTtOQzzUm4VSt4rcoUTio277BHdU2u3XvOHUJX2057e0uURDhyAj5nEqpgNmDAkhikQxGiEKWAgoAtT/7zqZpbFUbpHllN81bDwBokRCF3PbN5S6hEMff9ORzqkZUSuUyXqLw4NE0jWhkpLhCb318qIhLfsMVgxHyuQgGFERNnifBSI0oGBn06hrrY26+F74YjJDPqbihHVGTJKA+eFB7EIxUiRJYK/T1jy0Cg5FwxWCEfGLdoWKMX7QRZy5Vc2SEqIkST7MaPBjVqDbK1yJqaO4ZBT8GI+QT9yzYgDUHzuPJJduh5O66RE3SovE5SNBF4l939JRMvbhS42DjPBODkbDF1TTkVav2FuJocYX1+eGiSjgaGMluFY/9BeXQmzyryEpEoSG3fXNse/56KBQKbD5+0e3r6qo127I4CEZqjGYWSgtxHBkhr3rg4814Zfl+6/NKvcmuZkCdSJWSoyZEYU5x+Wdc/Hvgn3/q4fQa8QoaMbmRkTdXHUSX6Suw4eiFRvSSAo3BCHmNIJNcVm00Q+9g/lcAJHtXEFH4uqpdbX0QlVLhMo/sQqUBJpk9rMwWAUfPV+Cj349bz7+56hAEAZj1/V7vd5r8htM05DU1DoIORxvjGc0WtEiIQhm3CycKe7f0agltpBI9MxIkm+LZqiuSWFJpsNsOwiwIeHzxduw6U4p958ow57b6EZZmOrXP+k6+x5ER8ppyvfw8ryMGkwWtmkX5qDdEFExUSgVu6NECrZrpMKRLKnq1TkCszCaYzaNrg4qcV1bj2+1nJOcsFgG7ztQGMos3nZKcS4rR+Kjn5A8MRshrKmo829wqWhOB4d3SHZ5P4yZ5RGFJHaHE148OwI4ZQ/HRfTmSc+kJ9X+gPL54u+Tce2uPQqeuT1TVm+rzUBKjOTISyhiMkNeIixO5olIqMKp7Om7r3RKPDmoPALgzp7X1/JPXd8KPf73W630kouChVCowsFOy5FiGi9FS8eq7A6Ip3hiZURYKHQxGyGvK3RwZmTS4Pfa9OBz3Xd0WCoUCTw/vjGOzR+L+qzOtbYZekYZ4XaSPekpEwSrKxRJdceGznaLckwuVejz79S5sP3XJV10jH2IwQl7jbjASqVLalYZW2CzxbR7DIVeipujRwR2Q2VznVttTJVXWx//54yQ+3XASN1/e4ZdCC4MR8hp3p2kc7VEh3jacmfFETVPbpGiseWow8rqkumz74e/Hfd8h8gtOspHXVDiommhLrZIPRrqkx6JnRgIym+ske1oQUdPjzko7Vm8OHwxGyCPvrz0KhQJ44Jp2dufcHRmJdBCMRKiU+GbSgEb1j4jCQ1wUc8aaEgYj5LZKvQkvL98HALitdys0s1lKV97IaRoiojpxWn48NSX8VCC3mURbgF+otN87wt06Iy0TWOiMiJyL03JkpClhMEJuM1rq52cvVdnnh7i7mqZ7y3iv9YmIwlNcFEdGmhIGI+Q28fr+C5UGALX7y5gtAgRBcJkzkhSjRk7bRLvpHSJq2haNvxIpsRp8cn99NVaduvHByOcbT+LppTskv7soODH0JLcZRRveXagwYOOxEtz1/h8wWQR0TY/DkfMVDq8d3z8TU0d0driShoiarsGdU7Dx2bwGXZuRGIVTJdWy56Yt21X7+lkpGNHd8dYTFHgMRsht4pyRkko97v9oH0yX/+LYe67M6bUzRne1K2xGRORI60T3Cp9FuzGCUlrt2Sae5H/8M5XcZhINdVYbzW7niAD2FVaJiJzJTIpGTmai7Lnk2PodeqPUzsvHAwB//QQ/BiPkNpMogdXAYkNE5GMfjO8rezxRVKHZnZERCn58F8lt4mkaVj4kIl+L00bi2OyR2HO2DK2b69DjhZ8AAH0ym+FAYe2OvTo3RkYo+HFkhNwmnqZxNDJiW9AsQqnAg9faV2slInKHQqFAt5bxiNNGYu1Tg/HXvI64b0Cm9Xy0Rv5vakHgCppQwpERcptJtJrG0ciIbZCye+YwaF1sCU5E5I7WzXX4a14nlIv2wXK0j5XRzGAklHBkhNwmHhkpd7Ap3sRr2kqea1j6nYi8zJ0aJOJSBBT8+ElBTlXoTRi/aCPm/XJYkjMiV4EVAO69KhMzb7zC+pyraIjI28SjIXK/YQRBQI3R7L8OUaMxGCGnXvvxANYcOI9XfzwgWU1zycG6fW2kEkOvSPVX94ioiUuL19odm/fLYfR5aZX1OdNHgh9zRsipjcdKrI/dGRnRRKgQr4vEkodyEctdN4nIRxaM64uj5yvRurl9cbSF649LnhtZDj7o8dOCnFKKxs7EIyNlDkZGNJG1F+S0lS9WRETkDUO6pGJIF+C7HWftzpVc3jurjpGlCIIep2nIKZUo58MgGhkxOEgOY8IqEfmT3o3cEPEfUhSc+MlBTokTxSrcKP/OhFUi8id3JmC4zDf4NSgYmTdvHjIzM6HVatGvXz9s3LjRafs333wTWVlZiIqKQkZGBp544gnU1NQ0qMPkX+JgpKBUfmdMIqJAGd2jhcs2XOYb/DwORr744gtMmTIFM2bMwNatW5GdnY1hw4ahqKhItv1nn32GqVOnYsaMGdi3bx8WLFiAL774An//+98b3XnyrcNF5dh1ptT6/N8/H5Zt99SwLABAfFSkX/pFRFQnSq3Ctuevd5qnxmAk+HkcjMydOxcTJ07EhAkT0LVrV8yfPx86nQ4LFy6Ubf/7779jwIABuOuuu5CZmYmhQ4fizjvvdDmaQoFltgjIm7sWNUbnP8TXd03FpMEd8PvU67B+6nV+6h0RUb1m0WoseShXspuvmInTNEHPo2DEYDBgy5YtyMvLq38BpRJ5eXnIz8+XvaZ///7YsmWLNfg4evQoli9fjpEjRzr8Onq9HmVlZZJ/5F+22eiORF0u9d4iIQoxDvaIICLyB0cJ9I4S7il4ePTpUVxcDLPZjNRUaVGr1NRU7N+/X/aau+66C8XFxbj66qshCAJMJhMefvhhp9M0s2fPxsyZMz3pGnnZ+XK9W+0iHOwLQUTkb46CEY6MBD+fr6ZZs2YNXnnlFbzzzjvYunUrli1bhu+//x6zZs1yeM20adNQWlpq/Xfq1Clfd5NsFFe4F4xw9QwRBQtNhPymnJ/8cQLvrJHPeaPg4NHISFJSElQqFQoLCyXHCwsLkZaWJnvN888/j3vvvRcPPPAAAKB79+6orKzEgw8+iGeffRZKpX08pNFooNHIz/2Rf7gfjPi4I0REbqoruijnnysOYMXuAjyR1wmDO6f4sVfkDo9GRtRqNfr06YPVq1dbj1ksFqxevRq5ubmy11RVVdkFHCpVbfQqcMOAoHWhwr2cEcYiRBQsxNM0dav8xHaeLsWEDzf5s0vkJo+naaZMmYL3338fH330Efbt24dHHnkElZWVmDBhAgBg7NixmDZtmrX96NGj8e6772Lx4sU4duwYVq5cieeffx6jR4+2BiUUeIIgSILDaidVDdWiH3iOjBBRsBAXWr2nXxv8+tQgVoUOER4vfxgzZgzOnz+P6dOno6CgAD179sSKFSusSa0nT56UjIQ899xzUCgUeO6553DmzBkkJydj9OjRePnll713F9RoEz/ejDOXavDNpP7QRKigN0mDkaQYNYovj5b88rdBGDDnZwCAktEIEQWJKmN9lei4qAjE6yKxY8ZQTP5sG1btq08vmLJkO177Uzb++eMB9GqdgGFXyKcZkP80aC3m5MmTMXnyZNlza9askX6BiAjMmDEDM2bMaMiXIj9Zta+2aN26Q8UY0iUVepv6Itd1TsGSzacRq4lAy4Qo63HGIkQULMR1keqS67WRKjxwTVtJMLJs6xl0TovF/F+PAACOzxnl346SHRaGIMn0zLHiSgCA3maXyynXZ6FrehyGdJEu63aUvU5E5G81DqaXxX9A1dlzlvWrggmDkSZu9b5C/Fe0BffJkioAsJumiYuKwPgBba3Pnx6ehS83n8ajg9v7p6NERC44qhidFq+1O/bt9rMyLSlQGIw0cfd/tFnyvLTaiHm/HMaSzaclxyNV0iSwRwd1wKODOvi8f0RE7tI7GBmx/f1ld53JzFHeAGOacRM27xf7IkCVejNe/fGA3XFWWiWiYFdjcrwK0JlKfcOuI+9hMNJE7T5TKht0iJO8xFhplYiC3b1XZQKo3cDT1htjsh1e9+kfJ/De5WRWCgxO0zRRF6vcK2r25z6tcFe/1j7uDRFR4z0zIgvXdExCv3aJducGdnJcdfX1lQcBADltE9GrdTOf9Y8c48gIOZXXNZU/nEQUEjQRKgzunAKd2v7v7AiV69HdvefqV9isO1SMFbsLvNo/cowjI02Uws1C7tpIJnURUehTu0hiBYDTF6sBABaLgHsWbAAAbHx2CFJi7VfjkHdxZKSJKiqvcasdE1eJKBy4WlEDAAWltb8Xq0SrcipqTI6akxcxGGlidp0uxdlL1ZiyZIdb7W3rjRARhSKVzR9WV2baTz9XG8zYcuIi/vHDfuuxCJmd5cn7OE3ThKw7VGwdenSX0cydlYkovDw0sB2mDu+M0W+vw+4z9XkiepMZt737u6StySJfSI28iyFfE/L9rnMete+aHoeBnZJ91BsiosBQQAGFQoG0OGmZeLkKriYL/yDzB46MhKE3Vh6EJlJpVyFVvAeNI3Nu7Y4TJVV4fEhHJq8SUViqK5ukjpBO3VTJVHA1mjky4g8MRsJMUXkN/rX6EADgvgFtcbHKgH+uOIAJAzJhcSMYuSOHNUWIKLzVhSC2Sa0VNUa7tiZOVfsFp2nCjEG0267ZIuBvX+7A19vO4Ma314OjjURE9SMjtsGIXFl45oz4B4ORMKMUlW03mQUcKqywPrcwGiEisrIbGdHbL+NlEr9/MBgJYwabuc5l284EqCdERMFDrVJd/q80Z6TSYB+McJrGPxiMhBmzaPTDaLaA+9sREdV6bEhHtE+Oxvj+mQCACJuREbm0Ok7T+AcTWMOMOEnVZBbcLvtORBTuplzfCVOu72R97k5VVo6M+AdHRsKMeE28gSMjREQO2U7TiPVoFQ+AIyP+wmAkzFhsp2kC2BciomDmbGQk6nKdJSaw+geDkTAjHhkxmQUoXAyNvH1XL7RO1Pm6W0REQcc2Z0RMHVF7bt+5MtTIFEMDgEtVBuvmetQ4DEbCjDiBdcqS7SiTKeJTZ9H4K3FDjxa4ql0iAEATwW8HImo6zE6mYOpqNr2z5ghufed32TY9X1yJq2avRmm149+z5B4msIYZcTByqKjCSUugd+vaXSufu6ErWiboMDo73ad9IyIKJuIikbYuVhmsj/eeK0NptRHxUZHWY+IdzY8XVyI7I8EnfWwq+KdwmHF3U6eJ17RFvK72BytOG4nH8zqiXXKML7tGRBRU9E72nbHdNG/X6VLJc/FoiDurcsg5joyEGXf2nwGAWG2k60ZERGFML7NLbx3bPJFTF6sAAH8cvYA4baRkkz1uptd4DEbCjLtr4rnKhoiaOr2TaRrbYORChR6Hiypwx//9AQBY+nCuw7bkOY4thRlnIyNpcVrr446psf7oDhFR0Kpbvlvn2OyReHZkFyx9OBc1NoHKiQtVWL2v0Pr8UlX9NI2zoIbcw5GRMOMsZ6RLeizm39sHO09fwrArUv3YKyKi4DNpcHssXH/M+lyhUGDite0A2Ce3frnltOR5iSjBlSMjjcdgJEwUldfg/g83IzlW47BNp9RY9MxIQE9mfRMRoXmMBqufHIhJn27FpMEdPLq2pFIUjHBkpNEYjISJBeuOYdeZUqdtWjaL8lNviIhCQ/vkGKz467UeX1cmWk2j58hIozFnJEyo3NiEJj2ewQgRkTsWjb8SzaPVWDi+L4Z2tZ/WFi/tfWrpThwqLPdn98IOg5EwkRTjeHqmTtukaD/0hIgo9A3unILNz+Xhus6pePeePuiYIq3D9OmGk5LnD32yxZ/dCzsMRsKE1iYr3FZel1R0SGFRMyIid9Xt7aVSKpCgc16bqa4OCTUMg5Ew4arozl+u8yw5i4iI6kWpnadYcnffxmEwEgZ+P1yMGd/tcdqG6+CJiBouWu189Jkah6tpwsBdH2xweG5k9zQYTBb0ap3gvw4REYWZKAYjPsWRkRCz49QlHPQga/uJvE74YNyV3MiJiKgRol1M0wDAe78e8UNPwhM/oULIxUoDbpq3HkPfWAvBzQ3xlEruQkNE1Fg6jeuRkdk/7AcAVOpNqDaw9ognGIyEkIKyGutjZ2XfxSIYjBARNZou0r2shvIaI3rPWomb5633cY/CC4OREKIUFTZzNyFVxWCEiKjRot0YGQGAdYeKoTdZcKCwHBY3/2gkBiMhRVxk1d3ywxFKvsVERI2lcyNnBAAOF1VYHxtclFygevykCiFmUZTt7sgIYxEiosbT2aymiY+KxP/d28eu3esrD1of640MRtzFj6oQIi5s9s8V+zH8zbW4JNrGWg5HRoiIGs82GInRREDjovK13sQkVnexzkgIEQcj32w/CwAYMOdnp9cwZ4SIqPGiNdKPy2FXpEEb4fyPPRabdB//bA4hBpN9MlSli+VjXE1DRNR44qJn4/tn4unhWRwZ8SIGIyHE1f4zcjgyQkTUeOKiZw9c0xbaSBW0kc4/QmuYM+I2BiMhhMEIEVFgiHNG1JcrWruqbF03TVNjNKPGzRWQTRWDkRDibjByU88W1scqBYMRIqLG0oqmZOoqWytd/H7VG80wWwRc+fIq9HtlNUxc6usQg5EQYnBji+p37+6NQVnJ1ucsB09E1Hjiomd1IyIamQTWRwe1tz7Wmyy4UKlHeY0JpdVGlNWYfN/REMVgJIQ8uWS7yzYpcVqX0ToREXlGp47A3Nuz8c/beiA+KhIA0CIhCuNy21jbXNMxCU8P74wrM5sBqE1gFdcacXdPsaaIwUgIKK8x4m9f7oDRjZGR3q0ToGAwQkTkdbf2boXbr8yQHJt5Uze7dpqI2lEUvcmCalGuiDu/w5sqBiNB4FhxJe77cBO2nCiRPf+PFfuxdMtpl6/zy98GQaFQgDMzRET+Z7k88lE3faM3WlChr5+aacgihKaCwUgQeHzxNvy8vwi3vZsve37byUtuvU5itBpAfaY3ERH5j+VyrKG5vORXbzKjUhSMcK8ax/ipFQROllQ5PV9S6bjk++19W1kfR6pqh0QGZaWgb5tmGN8/0yv9IyIi1wTUjozUbar35qpDKCitsZ43cZrGIQYjQcB2/5iF647hgY82WdelX6hwHIz0b59k9zrqCCWWPtIfL9x4hQ96S0REYg8NbAcAeGZ4ZwBA85jaUeoLlQY8tXSntd1//jiBMe/lu9xTrCliMBIEbEu2v/i/vVi1rwifbzwJwPnQnlq0tKxuZISIiPxn2ogu2D9rOHq1rl1F0/zylLmtT/44gQ3HSvD2z4f92b2QwGAkCIirpN4+vz5v5FhxpdOlYOunXidZ585VNEREgSEuitZMJx+M1LlYZfR1d0IOg5EgIB7R2Hi8fkVNcYUeZdWOi+S0TIhCgotveiIiCi4W1huxE+G6Cfmao/1jLlYasfXURafX9m6dgDuuzEBGos4XXSMiIg91SIlxet5sYTBii8FIELBNYK1jsliwcN0xp9cqFArMua2HL7pFREQN0Kt1M/z7zl74bvsZrNpXZHfezJEROwxGgkCEg8TTTcedj4oQEVFwujG7BaoNJtlgxMKRETvMGQkCroLkZrpI6+PsVvF4794+WP7YNT7uFRERNUbPjGayx3/YXYDb5+dzukaEwUgQqDGZnZ6/okW85PmwK9LQtUWcL7tERESN1NFJ7sjG4yU4UFDux94ENwYjQaDG4DwY6Zha/w3NOJqIKDQolQr89vRgpMdrA92VoMdgJMAMJgvKahwv3wXAb2QiohCVkahD79by0zWr9hViypLtKGXdkYYFI/PmzUNmZia0Wi369euHjRs3Omw7aFDtTrK2/0aNGtXgToeiorIafLfjrN2ujb8dOi/Z1REAcjITJc9jtfU5I66K6RARUXBxVB177sqDWLb1DOas2OfnHgUfj4ORL774AlOmTMGMGTOwdetWZGdnY9iwYSgqss8YBoBly5bh3Llz1n+7d++GSqXCn//850Z3PpTc+PZ6PPb5Nvzf2qOS4+dEmyjViYuKxLMju1ifx2oj0D45GgDwyKD2vu0oERF5VaSLndSPnq/0U0+Cl8fByNy5czFx4kRMmDABXbt2xfz586HT6bBw4ULZ9omJiUhLS7P+W7lyJXQ6XZMLRgrKaoOOlXsLJcerZfJFLIKAHq3qk1ZjtZH4+P5++G7yAFzVrrlvO0pERF5lOyJui2VHPAxGDAYDtmzZgry8vPoXUCqRl5eH/Px8J1fWW7BgAe644w5ER0d71tMwYfs9VyUTjJgtgnULagCI0USgZUIUerRK8G3niIjI68YPaOv0/MbjJU0+b8SjYKS4uBhmsxmpqamS46mpqSgoKHB5/caNG7F792488MADTtvp9XqUlZVJ/oUNmxC42igfjESp69+aOC1r0xERhaqeGQmYe3u20zaf/HHcP50JUn79lFuwYAG6d++OnJwcp+1mz56NmTNn+qlX/mU7MlJtsF9JY7JYECUaGREnsBIRUei5pVdLVBvN6NYiHt9uP4uF66Vbfew6Uwqj2eIyvyRceXTXSUlJUKlUKCyU5j0UFhYiLS3N6bWVlZVYvHgx7r//fpdfZ9q0aSgtLbX+O3XqlCfdDGq2c4Ny0zQWizT7WqdR2bUhIqLQoVAocHe/NsjOSEB8lP0fmD/uKcQzS3cGoGfBwaNgRK1Wo0+fPli9erX1mMViwerVq5Gbm+v02i+//BJ6vR733HOPy6+j0WgQFxcn+RcuymqMeHPVQRwrrs2erpKbphEEJMdocGvvlrjjygzEcWSEiChsJMdqZI8v23bGzz0JHh5P00yZMgXjxo1D3759kZOTgzfffBOVlZWYMGECAGDs2LFo2bIlZs+eLbluwYIFuPnmm9G8edNeDXLiQhXeXHUI8389gv2zRsiupjFZBCgUCsy9vaf/O0hERD6V4iAYaco8DkbGjBmD8+fPY/r06SgoKEDPnj2xYsUKa1LryZMnoVRKB1wOHDiAdevW4aeffvJOr8NAjbF2qVddMNI5LRb7L+9TwB0diYjCV7NoFq+01aAE1smTJ2Py5Mmy59asWWN3LCsrCwIXUts5Vlxpnab529AsPPDxZgDgTo5ERGFMLmekzr5zZeicFovNJy6iuFyPEd3T/dizwGmaabt+UFyhx4h//YaF6445bDP4tTXYceoSAECnrk9SZTBCRBS+6ipqyxnxr9+wdMtp/Hl+Ph75dCsOFTaNnX0ZjPjI3JUHse9cGV783163gosotcq63fSoHk0jEiYiaooUCgX+dUdPh+f/tfqQ9fGRJlIqntW0fKS4XG99/PbPh12216kj8MVDudh47AKGdEl12Z6IiMKTOG+w2uh8V/dwwWDER8T1Q95YddBle51ahcRoNYZ346gIEVFTdla0gWql3n7FZTjiNI2PVMpUVnUmSs3CZkRETYVCoXDdCPKbqYYjBiM+8PW209h28pJH10RFMhghImoqWjWLcqudXJXucMRgxMtOXqjCE1/scNnu9r6t8Kc+razPGYwQETUdvVs3w6ybu6FnRoL12Nt39cKM0V0l7aqaSM4IgxEvO19R47oRgFt6tUK0aGpGqXRvyI6IiMLDvVe1QW77+qrkg7JSMGFAW0mbsmojZv53D37aU+Dv7vkVgxEvc7e2W5Ra5facIRERhSdxTkjdH6itE3XWY59vPIVF64/jwU+2+L1v/sRgxMvcrVcWFakCYxEioqatRrRZat0fqE3xs4HBiJe5W/Y+KlIFBZrgdxwREVnVyOzc7uiTYd+5Mmw5UeLbDgUIgxEvc7eQu1atxO1X1iaw9mub6LsOERFR0KqWCUYcGfGv33Dbu/k4LyqqGS5Y9MzLLB6MjHROi8OmZ/PQTOd40yQiIgpfsVr73/+u8gnPlVYjOVbjqy4FBIMRL9t5utStdnVLecPtG4qIiNz39LAsnLlYjXuuamM91hQn8BmMeJHZImDOD/vdahuh4gwZEVFTlxKnxecPXiU96CIacXfVZijhJ6KXVOhNmLJke6C7QUREIc7VyIi76QChhMGIlyzbehrfbj8b6G4QEVGYM5gsge6C1zEY8YL1h4sx/ds9ge4GERGFAaWLBFaDuT4Y2XKiBH+e/zt2n3EvXzFYMRjxgrs/2BDoLhARUZhwVfRMb7TAdDkgue3dfGw6fhETP97sh575DoMRIiKiEPLqjweQPfMnHCgotx4L9dojXE3TSFtPXvT4GvFuvURERGKuqnMfKKwNQt779Yj1WJQ6tHd+ZzDSSLe+87vbbZNi1Pj0gavQslmUD3tEREShzN29acQBiI7BCLkjLU6Lt+7qhay02EB3hYiIwoAmQhyMhPbHeWj3PkT0bdMMSx/pH+huEBFRiJl/T29EqpS4/yP7BNWLVQbr47qq3qGKCaweMpktePbrXfjvjrNu79Abq2XMR0RE7hEv7R3eLR2DslJk2xWU1lgf7z1XhpvmrQ/ZRFYGIx76etsZfLrhJP7y+TZU6E1uXSO3ERIREZEc25wRlVI+iaSwrEbyfMepS/j36kO+6pZPMRhxg9ki4PcjxajQm3C+oj7qrDK4t/VzDEdGiIjITXFu/gFrG4wAQHmN0dvd8Qt+SrpQXKHH4FfXoFxvwp05GWidGG09t/dcmVuv4e43FhER0exbu+PRT7fi4UHtrcfS47U4VyoNPipl/iBWuLsUJ8hwZMSFLScuovzydMyhwgrJ8NmERZvceo0OKTG+6BoREYWhzKRoLH/8GtyY3cJ67OP7cpAYrQ5gr3yLIyMu1BjrI88otQoOpu4ceujadrilV0sv94qIiJqSjqmx2Pr89dhzthSRKiWGv7kWFpk1FKE5LsJgxKVq0TCY0WxxWRlPLLO5DtNGdvFFt4iIqAm6okU8AKCZTo0LlQb7BiEajXCaxoVq0ciIySy4XRkPAB4RzfcRERF5SzMHUzY1RjMOFpbDYjNs8suBItzyznocLiqXvS7QGIy4IA5GjBbBYXLQc6O64LOJ/RAVqcLLt3TD6icH4va+Gf7qJhERNSGZzXWyx5fvKsDQN9ba7eI7YdEmbDt5CX/5fLsfeuc5TtO4UGMQj4xYZEfAcjIT8cA17QAAu14YiggVYzwiIvKdDimxWLWvyOH51fuLUGUwQQGFZA+bi3JTO0GAn5ouiGuJmC2CbAKrJrL+fyMDESIi8rWObqzSfOQ/W9F71kqcuFBpPebpIgx/4ciIC5JpGrNFNntZvFkRERGRr3VMdR2M/HrwPADgt0PF1mPBWoeEf8a7IElgtQgwWSx2bfQm9yqxEhEReUP7ZPfrVyXFBH99EgYjLtTYrKYxmu2HRo6LhsCIiIh8LVojndgYnd0C3VrGybY1iYb0lUH6qR+k3Qoe4joj5yv0ssk/Zy/Z7w9ARETkL2/d2Qs9WiXInjOLghFPamX5E4MRF8TTNAaTBR+sO2bXpm1StN0xIiIif0qL08oeF4/oB2sCK4MRF6qN9jkitt65u7cfekJERFSvc1osACD68tLdNg5qj5hFuY5MYA1RNTK7Ioo9dl0HdEqN9VNviIiIar0/ti9G9UjHZxOvAgDktm8u2048MhKcoQiDEZeqjCan55XBOuZFRERhLSNRh3l39UZ2RgIAICVWi4cGtrNrZzKLR0b81TvPMBhxodrgfJpGFazvLBERNTnTRnTBn/u0khyTrKYJ0s8sBiMuiJf2ylGpgvONJSKipilWGyl5Lg5GgjQWYTDijCAIktU0ciI4TUNEREEkPkoajCzdctr6mCMjQW7R+mP4dMMJyTGjWZCsz5ajCtYKMkRE1CTFR0kLoh0uqghQT9zHvWkAnL1UjZn/3QsA+HOfDKgjagMMV6MiAMBZGiIiCibxukiH5zgyEsROX6y2Pi6vMVof1+WLqJxMxai4Sy8REQUR22kasSCNRRiMAMCpkirr45/3F0EQaqdm6krB6yLtd+UdnJWM9HgtburZwj+dJCIicoPWyU7ywRqMcJoGwKmL9cHIU0t3IjVOi2s7JWN/QTkAQKtWoVwvrTeyaEIOLBaBdUaIiCioxDkZGeE0TRArq5YGGiv3FmLz8RI8/J8tAICOKTHISIyyu46BCBERBZtuLePx3Kgusp9bwfqpxWAEQJVBGowcv1CJP83Ptz4f3i0Nq6YMtG5CNKRzil/7R0RE5IkHrmmH67JkPquCdGSE0zQAKm32n/ntULHkebQ6ApoIFb6e1B9fbzuDO69s7c/uERERecwkU5oiOEMRjowAAKr0zvef0V5OYE2Pj8KjgzqgWbTaH90iIiJqMLk6WRZBesxotuDspWq7dv7GYARApcF5MKKJ4P8mIiIKLeKRkRmju9YeM0uDkUf+sxX95/yMzcdL/No3W/yUBVB1eZpmVI902fOaSP5vIiKi0CLerTcrNRZA7WiJOE9y1b5CAMC7a474t3M2+CkLoPLyNM29V7XB0K6pdue1MnVGiIiIgpl4ZKSueOeBwnJ0nf4jXv1xv6Tt6v1FWHvwvF/7J8ZgBPUjI9HqCLvdDgFO0xARUegR54dE2OxdMu8X+5GQNs11Pu+TI/yURf3IiE6jQqzWfoGRxkk1OyIiomAkzg+R29T1ux1nJc9bJzIYCRiT2YKKy8FIrCYCMRr7YETLnBEiIgoxTw7NQoRSgYeubYcImSKdj32+zfr4hh7pUASwBkmTrzNSUFYDiwCoVUokxWgQw5ERIiIKA1lpsdj74nCoI5Q4X6532vbvI7v4qVfymvyf/Gcu79ibnqCFUqmQnabhyAgREYUi9eWcx+RYDa6XWaBRJ9ALNZr8p+yR85UAgJYJtTX8WyTY1/LnyAgREYW6vm2aOTwXxWAksD7dcAIA0Kt1AgDg2o7JuKpdoqQNV9MQEVGo6+0kGAn051yT/pStNpix71wZAODeqzIB1K7F/s/9/bDx2SHWdtydl4iIQt2VmYmYf08f2XOB/pxr0gmsBwvLYRGApBg10uK11uMRKiVSYrVY/tg10Kk5RUNEROFheLe0QHdBVoNGRubNm4fMzExotVr069cPGzdudNr+0qVLmDRpEtLT06HRaNCpUycsX768QR32ppMlVQCAdskxsue7tohDZlK0P7tERETkU6lxmkB3wY7HwcgXX3yBKVOmYMaMGdi6dSuys7MxbNgwFBUVybY3GAy4/vrrcfz4cSxduhQHDhzA+++/j5YtWza6841VV18kPsq+6ioREVE4+v6xa5AWp3Xd0I88Dkbmzp2LiRMnYsKECejatSvmz58PnU6HhQsXyrZfuHAhSkpK8M0332DAgAHIzMzEwIEDkZ2d3ejON1ZFTX2xMyIioqYgKUaDZ0fV1xX56pHcAPamlkfBiMFgwJYtW5CXl1f/Akol8vLykJ+fL3vNd999h9zcXEyaNAmpqano1q0bXnnlFZjNZodfR6/Xo6ysTPLPF8ovj4xEMxghIqImRC1aPdM1PT6APanlUTBSXFwMs9mM1FRp4ZTU1FQUFBTIXnP06FEsXboUZrMZy5cvx/PPP4/XX38dL730ksOvM3v2bMTHx1v/ZWRkeNJNt9WNjMhVXSUiIgpX4mAk0Mt6AT8s7bVYLEhJScH//d//oU+fPhgzZgyeffZZzJ8/3+E106ZNQ2lpqfXfqVOnfNK3Cr0RAGT3oyEiIgpXqbH1OSOBXtYLeLi0NykpCSqVCoWFhZLjhYWFSEuTXy6Unp6OyMhIqFT1S2S7dOmCgoICGAwGqNVqu2s0Gg00Gt9n+1o3yOPICBERNSFdW8ThqWFZSI8PjkRWj0ZG1Go1+vTpg9WrV1uPWSwWrF69Grm58gkwAwYMwOHDh2GxWKzHDh48iPT0dNlAxJ/K66ZpODJCRERNzKTBHXBr71aB7gaABkzTTJkyBe+//z4++ugj7Nu3D4888ggqKysxYcIEAMDYsWMxbdo0a/tHHnkEJSUlePzxx3Hw4EF8//33eOWVVzBp0iTv3UUD1Y2MMBghIiIKHI8/hceMGYPz589j+vTpKCgoQM+ePbFixQprUuvJkyehVNbHOBkZGfjxxx/xxBNPoEePHmjZsiUef/xxPPPMM967iwa6vW8G+rVtjvYp8kXPiIiIyPcUgiAIge6EK2VlZYiPj0dpaSni4uIC3R0iIiJyg7uf34Ffz0NERERNGoMRIiIiCigGI0RERBRQDEaIiIgooBiMEBERUUAxGCEiIqKAYjBCREREAcVghIiIiAKKwQgREREFFIMRIiIiCigGI0RERBRQDEaIiIgooBiMEBERUUBFBLoD7qjbWLisrCzAPSEiIiJ31X1u132OOxISwUh5eTkAICMjI8A9ISIiIk+Vl5cjPj7e4XmF4CpcCQIWiwVnz55FbGwsFAqF1163rKwMGRkZOHXqFOLi4rz2usEk3O+R9xf6wv0eeX+hL9zv0Zf3JwgCysvL0aJFCyiVjjNDQmJkRKlUolWrVj57/bi4uLD8BhML93vk/YW+cL9H3l/oC/d79NX9ORsRqcMEViIiIgooBiNEREQUUE06GNFoNJgxYwY0Gk2gu+Iz4X6PvL/QF+73yPsLfeF+j8FwfyGRwEpEREThq0mPjBAREVHgMRghIiKigGIwQkRERAHFYISIiIgCKuyDkZdffhn9+/eHTqdDQkKCW9cIgoDp06cjPT0dUVFRyMvLw6FDhyRtSkpKcPfddyMuLg4JCQm4//77UVFR4YM7cM7Tfhw/fhwKhUL235dffmltJ3d+8eLF/rgliYb8fx40aJBd3x9++GFJm5MnT2LUqFHQ6XRISUnBU089BZPJ5MtbccjTeywpKcFf/vIXZGVlISoqCq1bt8Zjjz2G0tJSSbtAvYfz5s1DZmYmtFot+vXrh40bNzpt/+WXX6Jz587QarXo3r07li9fLjnvzs+jv3lyj++//z6uueYaNGvWDM2aNUNeXp5d+/Hjx9u9V8OHD/f1bTjkyf19+OGHdn3XarWSNsH2Hnpyf3K/TxQKBUaNGmVtE0zv39q1azF69Gi0aNECCoUC33zzjctr1qxZg969e0Oj0aBDhw748MMP7dp4+nPtMSHMTZ8+XZg7d64wZcoUIT4+3q1r5syZI8THxwvffPONsGPHDuHGG28U2rZtK1RXV1vbDB8+XMjOzhb++OMP4bfffhM6dOgg3HnnnT66C8c87YfJZBLOnTsn+Tdz5kwhJiZGKC8vt7YDICxatEjSTnz//tKQ/88DBw4UJk6cKOl7aWmp9bzJZBK6desm5OXlCdu2bROWL18uJCUlCdOmTfP17cjy9B537dol3HrrrcJ3330nHD58WFi9erXQsWNH4bbbbpO0C8R7uHjxYkGtVgsLFy4U9uzZI0ycOFFISEgQCgsLZduvX79eUKlUwj//+U9h7969wnPPPSdERkYKu3btsrZx5+fRnzy9x7vuukuYN2+esG3bNmHfvn3C+PHjhfj4eOH06dPWNuPGjROGDx8uea9KSkr8dUsSnt7fokWLhLi4OEnfCwoKJG2C6T309P4uXLggubfdu3cLKpVKWLRokbVNML1/y5cvF5599llh2bJlAgDh66+/dtr+6NGjgk6nE6ZMmSLs3btXeOuttwSVSiWsWLHC2sbT/2cNEfbBSJ1Fixa5FYxYLBYhLS1NePXVV63HLl26JGg0GuHzzz8XBEEQ9u7dKwAQNm3aZG3zww8/CAqFQjhz5ozX++6It/rRs2dP4b777pMcc+eb2Ncaen8DBw4UHn/8cYfnly9fLiiVSskvzHfffVeIi4sT9Hq9V/ruLm+9h0uWLBHUarVgNBqtxwLxHubk5AiTJk2yPjebzUKLFi2E2bNny7a//fbbhVGjRkmO9evXT3jooYcEQXDv59HfPL1HWyaTSYiNjRU++ugj67Fx48YJN910k7e72iCe3p+r363B9h429v174403hNjYWKGiosJ6LJjePzF3fgc8/fTTwhVXXCE5NmbMGGHYsGHW5439f+aOsJ+m8dSxY8dQUFCAvLw867H4+Hj069cP+fn5AID8/HwkJCSgb9++1jZ5eXlQKpXYsGGD3/rqjX5s2bIF27dvx/333293btKkSUhKSkJOTg4WLlzocgtob2vM/X366adISkpCt27dMG3aNFRVVUlet3v37khNTbUeGzZsGMrKyrBnzx7v34gT3vpeKi0tRVxcHCIipNtN+fM9NBgM2LJli+RnR6lUIi8vz/qzYys/P1/SHqh9L+rau/Pz6E8NuUdbVVVVMBqNSExMlBxfs2YNUlJSkJWVhUceeQQXLlzwat/d0dD7q6ioQJs2bZCRkYGbbrpJ8nMUTO+hN96/BQsW4I477kB0dLTkeDC8fw3h6mfQG//P3BESG+X5U0FBAQBIPqjqntedKygoQEpKiuR8REQEEhMTrW38wRv9WLBgAbp06YL+/ftLjr/44ou47rrroNPp8NNPP+HRRx9FRUUFHnvsMa/135WG3t9dd92FNm3aoEWLFti5cyeeeeYZHDhwAMuWLbO+rtz7W3fOn7zxHhYXF2PWrFl48MEHJcf9/R4WFxfDbDbL/r/dv3+/7DWO3gvxz1rdMUdt/Kkh92jrmWeeQYsWLSS/3IcPH45bb70Vbdu2xZEjR/D3v/8dI0aMQH5+PlQqlVfvwZmG3F9WVhYWLlyIHj16oLS0FK+99hr69++PPXv2oFWrVkH1Hjb2/du4cSN2796NBQsWSI4Hy/vXEI5+BsvKylBdXY2LFy82+nveHSEZjEydOhX/+Mc/nLbZt28fOnfu7KceeZe799dY1dXV+Oyzz/D888/bnRMf69WrFyorK/Hqq6965YPM1/cn/lDu3r070tPTMWTIEBw5cgTt27dv8Ot6wl/vYVlZGUaNGoWuXbvihRdekJzz5XtIDTNnzhwsXrwYa9askSR53nHHHdbH3bt3R48ePdC+fXusWbMGQ4YMCURX3Zabm4vc3Fzr8/79+6NLly547733MGvWrAD2zPsWLFiA7t27IycnR3I8lN+/YBGSwciTTz6J8ePHO23Trl27Br12WloaAKCwsBDp6enW44WFhejZs6e1TVFRkeQ6k8mEkpIS6/WN4e79NbYfS5cuRVVVFcaOHeuybb9+/TBr1izo9fpG71/gr/ur069fPwDA4cOH0b59e6SlpdllghcWFgKAV94/wD/3WF5ejuHDhyM2NhZff/01IiMjnbb35nsoJykpCSqVyvr/sk5hYaHDe0lLS3Pa3p2fR39qyD3Wee211zBnzhysWrUKPXr0cNq2Xbt2SEpKwuHDh/36YdaY+6sTGRmJXr164fDhwwCC6z1szP1VVlZi8eLFePHFF11+nUC9fw3h6GcwLi4OUVFRUKlUjf6ecIvXsk+CnKcJrK+99pr1WGlpqWwC6+bNm61tfvzxx4AlsDa0HwMHDrRbgeHISy+9JDRr1qzBfW0Ib/1/XrdunQBA2LFjhyAI9Qms4kzw9957T4iLixNqamq8dwNuaOg9lpaWCldddZUwcOBAobKy0q2v5Y/3MCcnR5g8ebL1udlsFlq2bOk0gfWGG26QHMvNzbVLYHX28+hvnt6jIAjCP/7xDyEuLk7Iz89362ucOnVKUCgUwrffftvo/nqqIfcnZjKZhKysLOGJJ54QBCH43sOG3t+iRYsEjUYjFBcXu/wagXz/xOBmAmu3bt0kx+688067BNbGfE+41VevvVKQOnHihLBt2zbr8tVt27YJ27ZtkyxjzcrKEpYtW2Z9PmfOHCEhIUH49ttvhZ07dwo33XST7NLeXr16CRs2bBDWrVsndOzYMWBLe5314/Tp00JWVpawYcMGyXWHDh0SFAqF8MMPP9i95nfffSe8//77wq5du4RDhw4J77zzjqDT6YTp06f7/H5seXp/hw8fFl588UVh8+bNwrFjx4Rvv/1WaNeunXDttddar6lb2jt06FBh+/btwooVK4Tk5OSALu315B5LS0uFfv36Cd27dxcOHz4sWU5oMpkEQQjce7h48WJBo9EIH374obB3717hwQcfFBISEqwrl+69915h6tSp1vbr168XIiIihNdee03Yt2+fMGPGDNmlva5+Hv3J03ucM2eOoFarhaVLl0req7rfQeXl5cLf/vY3IT8/Xzh27JiwatUqoXfv3kLHjh39Hhw35P5mzpwp/Pjjj8KRI0eELVu2CHfccYeg1WqFPXv2WNsE03vo6f3Vufrqq4UxY8bYHQ+296+8vNz6OQdAmDt3rrBt2zbhxIkTgiAIwtSpU4V7773X2r5uae9TTz0l7Nu3T5g3b57s0l5n/8+8IeyDkXHjxgkA7P798ssv1ja4XI+hjsViEZ5//nkhNTVV0Gg0wpAhQ4QDBw5IXvfChQvCnXfeKcTExAhxcXHChAkTJAGOv7jqx7Fjx+zuVxAEYdq0aUJGRoZgNpvtXvOHH34QevbsKcTExAjR0dFCdna2MH/+fNm2vubp/Z08eVK49tprhcTEREGj0QgdOnQQnnrqKUmdEUEQhOPHjwsjRowQoqKihKSkJOHJJ5+ULIv1J0/v8ZdffpH9ngYgHDt2TBCEwL6Hb731ltC6dWtBrVYLOTk5wh9//GE9N3DgQGHcuHGS9kuWLBE6deokqNVq4YorrhC+//57yXl3fh79zZN7bNOmjex7NWPGDEEQBKGqqkoYOnSokJycLERGRgpt2rQRJk6c6NVf9J7y5P7++te/WtumpqYKI0eOFLZu3Sp5vWB7Dz39Ht2/f78AQPjpp5/sXivY3j9Hvx/q7mncuHHCwIED7a7p2bOnoFarhXbt2kk+D+s4+3/mDQpB8PN6TSIiIiIR1hkhIiKigGIwQkRERAHFYISIiIgCisEIERERBRSDESIiIgooBiNEREQUUAxGiIiIKKAYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCisEIERERBdT/A2+1FedeYyWmAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "# Create the scatter plot\n", @@ -1675,13 +1575,13 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -1715,436 +1615,23 @@ " loss_fn=loss_fn,\n", " num_epochs=num_epochs,\n", " logger=logger)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:train_function:Train - Epoch: 1, Loss: 28.374617, Metrics: \n", - "INFO:train_function:Validate - Epoch: 1, Loss: 15.306045, Metrics: \n", - "INFO:train_function:Train - Epoch: 2, Loss: 6.944586, Metrics: \n", - "INFO:train_function:Validate - Epoch: 2, Loss: 4.070129, Metrics: \n", - "INFO:train_function:Train - Epoch: 3, Loss: 2.297779, Metrics: \n", - "INFO:train_function:Validate - Epoch: 3, Loss: 2.452321, Metrics: \n", - "INFO:train_function:Train - Epoch: 4, Loss: 4.190285, Metrics: \n", - "INFO:train_function:Validate - Epoch: 4, Loss: 2.566634, Metrics: \n", - "INFO:train_function:Train - Epoch: 5, Loss: 4.947295, Metrics: \n", - "INFO:train_function:Validate - Epoch: 5, Loss: 2.028602, Metrics: \n", - "INFO:train_function:Train - Epoch: 6, Loss: 3.355003, Metrics: \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:train_function:Validate - Epoch: 6, Loss: 1.606066, Metrics: \n", - "INFO:train_function:Train - Epoch: 7, Loss: 1.463900, Metrics: \n", - "INFO:train_function:Validate - Epoch: 7, Loss: 1.601547, Metrics: \n", - "INFO:train_function:Train - Epoch: 8, Loss: 0.589338, Metrics: \n", - "INFO:train_function:Validate - Epoch: 8, Loss: 1.405363, Metrics: \n", - "INFO:train_function:Train - Epoch: 9, Loss: 0.506256, Metrics: \n", - "INFO:train_function:Validate - Epoch: 9, Loss: 0.881238, Metrics: \n", - "INFO:train_function:Train - Epoch: 10, Loss: 0.563275, Metrics: \n", - "INFO:train_function:Validate - Epoch: 10, Loss: 0.542042, Metrics: \n", - "INFO:train_function:Train - Epoch: 11, Loss: 0.467121, Metrics: \n", - "INFO:train_function:Validate - Epoch: 11, Loss: 0.518983, Metrics: \n", - "INFO:train_function:Train - Epoch: 12, Loss: 0.268541, Metrics: \n", - "INFO:train_function:Validate - Epoch: 12, Loss: 0.462689, Metrics: \n", - "INFO:train_function:Train - Epoch: 13, Loss: 0.121311, Metrics: \n", - "INFO:train_function:Validate - Epoch: 13, Loss: 0.269656, Metrics: \n", - "INFO:train_function:Train - Epoch: 14, Loss: 0.090821, Metrics: \n", - "INFO:train_function:Validate - Epoch: 14, Loss: 0.135381, Metrics: \n", - "INFO:train_function:Train - Epoch: 15, Loss: 0.107483, Metrics: \n", - "INFO:train_function:Validate - Epoch: 15, Loss: 0.114345, Metrics: \n", - "INFO:train_function:Train - Epoch: 16, Loss: 0.094385, Metrics: \n", - "INFO:train_function:Validate - Epoch: 16, Loss: 0.109555, Metrics: \n", - "INFO:train_function:Train - Epoch: 17, Loss: 0.061210, Metrics: \n", - "INFO:train_function:Validate - Epoch: 17, Loss: 0.091975, Metrics: \n", - "INFO:train_function:Train - Epoch: 18, Loss: 0.045687, Metrics: \n", - "INFO:train_function:Validate - Epoch: 18, Loss: 0.097665, Metrics: \n", - "INFO:train_function:Train - Epoch: 19, Loss: 0.046508, Metrics: \n", - "INFO:train_function:Validate - Epoch: 19, Loss: 0.130206, Metrics: \n", - "INFO:train_function:Train - Epoch: 20, Loss: 0.045141, Metrics: \n", - "INFO:train_function:Validate - Epoch: 20, Loss: 0.157882, Metrics: \n", - "INFO:train_function:Train - Epoch: 21, Loss: 0.039467, Metrics: \n", - "INFO:train_function:Validate - Epoch: 21, Loss: 0.160419, Metrics: \n", - "INFO:train_function:Train - Epoch: 22, Loss: 0.035131, Metrics: \n", - "INFO:train_function:Validate - Epoch: 22, Loss: 0.142788, Metrics: \n", - "INFO:train_function:Train - Epoch: 23, Loss: 0.033410, Metrics: \n", - "INFO:train_function:Validate - Epoch: 23, Loss: 0.120179, Metrics: \n", - "INFO:train_function:Train - Epoch: 24, Loss: 0.032701, Metrics: \n", - "INFO:train_function:Validate - Epoch: 24, Loss: 0.103704, Metrics: \n", - "INFO:train_function:Train - Epoch: 25, Loss: 0.031135, Metrics: \n", - "INFO:train_function:Validate - Epoch: 25, Loss: 0.095953, Metrics: \n", - "INFO:train_function:Train - Epoch: 26, Loss: 0.029130, Metrics: \n", - "INFO:train_function:Validate - Epoch: 26, Loss: 0.095093, Metrics: \n", - "INFO:train_function:Train - Epoch: 27, Loss: 0.028071, Metrics: \n", - "INFO:train_function:Validate - Epoch: 27, Loss: 0.096863, Metrics: \n", - "INFO:train_function:Train - Epoch: 28, Loss: 0.027399, Metrics: \n", - "INFO:train_function:Validate - Epoch: 28, Loss: 0.095346, Metrics: \n", - "INFO:train_function:Train - Epoch: 29, Loss: 0.026354, Metrics: \n", - "INFO:train_function:Validate - Epoch: 29, Loss: 0.088803, Metrics: \n", - "INFO:train_function:Train - Epoch: 30, Loss: 0.025347, Metrics: \n", - "INFO:train_function:Validate - Epoch: 30, Loss: 0.080980, Metrics: \n", - "INFO:train_function:Train - Epoch: 31, Loss: 0.024581, Metrics: \n", - "INFO:train_function:Validate - Epoch: 31, Loss: 0.075464, Metrics: \n", - "INFO:train_function:Train - Epoch: 32, Loss: 0.023840, Metrics: \n", - "INFO:train_function:Validate - Epoch: 32, Loss: 0.072928, Metrics: \n", - "INFO:train_function:Train - Epoch: 33, Loss: 0.023096, Metrics: \n", - "INFO:train_function:Validate - Epoch: 33, Loss: 0.072189, Metrics: \n", - "INFO:train_function:Train - Epoch: 34, Loss: 0.022403, Metrics: \n", - "INFO:train_function:Validate - Epoch: 34, Loss: 0.071459, Metrics: \n", - "INFO:train_function:Train - Epoch: 35, Loss: 0.021760, Metrics: \n", - "INFO:train_function:Validate - Epoch: 35, Loss: 0.069618, Metrics: \n", - "INFO:train_function:Train - Epoch: 36, Loss: 0.021144, Metrics: \n", - "INFO:train_function:Validate - Epoch: 36, Loss: 0.066836, Metrics: \n", - "INFO:train_function:Train - Epoch: 37, Loss: 0.020551, Metrics: \n", - "INFO:train_function:Validate - Epoch: 37, Loss: 0.063997, Metrics: \n", - "INFO:train_function:Train - Epoch: 38, Loss: 0.019991, Metrics: \n", - "INFO:train_function:Validate - Epoch: 38, Loss: 0.061732, Metrics: \n", - "INFO:train_function:Train - Epoch: 39, Loss: 0.019457, Metrics: \n", - "INFO:train_function:Validate - Epoch: 39, Loss: 0.060039, Metrics: \n", - "INFO:train_function:Train - Epoch: 40, Loss: 0.018946, Metrics: \n", - "INFO:train_function:Validate - Epoch: 40, Loss: 0.058586, Metrics: \n", - "INFO:train_function:Train - Epoch: 41, Loss: 0.018462, Metrics: \n", - "INFO:train_function:Validate - Epoch: 41, Loss: 0.057132, Metrics: \n", - "INFO:train_function:Train - Epoch: 42, Loss: 0.018004, Metrics: \n", - "INFO:train_function:Validate - Epoch: 42, Loss: 0.055635, Metrics: \n", - "INFO:train_function:Train - Epoch: 43, Loss: 0.017567, Metrics: \n", - "INFO:train_function:Validate - Epoch: 43, Loss: 0.054142, Metrics: \n", - "INFO:train_function:Train - Epoch: 44, Loss: 0.017147, Metrics: \n", - "INFO:train_function:Validate - Epoch: 44, Loss: 0.052692, Metrics: \n", - "INFO:train_function:Train - Epoch: 45, Loss: 0.016745, Metrics: \n", - "INFO:train_function:Validate - Epoch: 45, Loss: 0.051303, Metrics: \n", - "INFO:train_function:Train - Epoch: 46, Loss: 0.016361, Metrics: \n", - "INFO:train_function:Validate - Epoch: 46, Loss: 0.049985, Metrics: \n", - "INFO:train_function:Train - Epoch: 47, Loss: 0.015995, Metrics: \n", - "INFO:train_function:Validate - Epoch: 47, Loss: 0.048734, Metrics: \n", - "INFO:train_function:Train - Epoch: 48, Loss: 0.015645, Metrics: \n", - "INFO:train_function:Validate - Epoch: 48, Loss: 0.047545, Metrics: \n", - "INFO:train_function:Train - Epoch: 49, Loss: 0.015310, Metrics: \n", - "INFO:train_function:Validate - Epoch: 49, Loss: 0.046409, Metrics: \n", - "INFO:train_function:Train - Epoch: 50, Loss: 0.014988, Metrics: \n", - "INFO:train_function:Validate - Epoch: 50, Loss: 0.045322, Metrics: \n", - "INFO:train_function:Train - Epoch: 51, Loss: 0.014678, Metrics: \n", - "INFO:train_function:Validate - Epoch: 51, Loss: 0.044277, Metrics: \n", - "INFO:train_function:Train - Epoch: 52, Loss: 0.014380, Metrics: \n", - "INFO:train_function:Validate - Epoch: 52, Loss: 0.043272, Metrics: \n", - "INFO:train_function:Train - Epoch: 53, Loss: 0.014094, Metrics: \n", - "INFO:train_function:Validate - Epoch: 53, Loss: 0.042317, Metrics: \n", - "INFO:train_function:Train - Epoch: 54, Loss: 0.013819, Metrics: \n", - "INFO:train_function:Validate - Epoch: 54, Loss: 0.041416, Metrics: \n", - "INFO:train_function:Train - Epoch: 55, Loss: 0.013553, Metrics: \n", - "INFO:train_function:Validate - Epoch: 55, Loss: 0.040559, Metrics: \n", - "INFO:train_function:Train - Epoch: 56, Loss: 0.013296, Metrics: \n", - "INFO:train_function:Validate - Epoch: 56, Loss: 0.039733, Metrics: \n", - "INFO:train_function:Train - Epoch: 57, Loss: 0.013047, Metrics: \n", - "INFO:train_function:Validate - Epoch: 57, Loss: 0.038930, Metrics: \n", - "INFO:train_function:Train - Epoch: 58, Loss: 0.012807, Metrics: \n", - "INFO:train_function:Validate - Epoch: 58, Loss: 0.038154, Metrics: \n", - "INFO:train_function:Train - Epoch: 59, Loss: 0.012574, Metrics: \n", - "INFO:train_function:Validate - Epoch: 59, Loss: 0.037409, Metrics: \n", - "INFO:train_function:Train - Epoch: 60, Loss: 0.012347, Metrics: \n", - "INFO:train_function:Validate - Epoch: 60, Loss: 0.036694, Metrics: \n", - "INFO:train_function:Train - Epoch: 61, Loss: 0.012127, Metrics: \n", - "INFO:train_function:Validate - Epoch: 61, Loss: 0.036004, Metrics: \n", - "INFO:train_function:Train - Epoch: 62, Loss: 0.011913, Metrics: \n", - "INFO:train_function:Validate - Epoch: 62, Loss: 0.035336, Metrics: \n", - "INFO:train_function:Train - Epoch: 63, Loss: 0.011705, Metrics: \n", - "INFO:train_function:Validate - Epoch: 63, Loss: 0.034687, Metrics: \n", - "INFO:train_function:Train - Epoch: 64, Loss: 0.011501, Metrics: \n", - "INFO:train_function:Validate - Epoch: 64, Loss: 0.034055, Metrics: \n", - "INFO:train_function:Train - Epoch: 65, Loss: 0.011303, Metrics: \n", - "INFO:train_function:Validate - Epoch: 65, Loss: 0.033441, Metrics: \n", - "INFO:train_function:Train - Epoch: 66, Loss: 0.011109, Metrics: \n", - "INFO:train_function:Validate - Epoch: 66, Loss: 0.032845, Metrics: \n", - "INFO:train_function:Train - Epoch: 67, Loss: 0.010920, Metrics: \n", - "INFO:train_function:Validate - Epoch: 67, Loss: 0.032265, Metrics: \n", - "INFO:train_function:Train - Epoch: 68, Loss: 0.010734, Metrics: \n", - "INFO:train_function:Validate - Epoch: 68, Loss: 0.031700, Metrics: \n", - "INFO:train_function:Train - Epoch: 69, Loss: 0.010553, Metrics: \n", - "INFO:train_function:Validate - Epoch: 69, Loss: 0.031148, Metrics: \n", - "INFO:train_function:Train - Epoch: 70, Loss: 0.010374, Metrics: \n", - "INFO:train_function:Validate - Epoch: 70, Loss: 0.030608, Metrics: \n", - "INFO:train_function:Train - Epoch: 71, Loss: 0.010200, Metrics: \n", - "INFO:train_function:Validate - Epoch: 71, Loss: 0.030081, Metrics: \n", - "INFO:train_function:Train - Epoch: 72, Loss: 0.010028, Metrics: \n", - "INFO:train_function:Validate - Epoch: 72, Loss: 0.029565, Metrics: \n", - "INFO:train_function:Train - Epoch: 73, Loss: 0.009860, Metrics: \n", - "INFO:train_function:Validate - Epoch: 73, Loss: 0.029061, Metrics: \n", - "INFO:train_function:Train - Epoch: 74, Loss: 0.009694, Metrics: \n", - "INFO:train_function:Validate - Epoch: 74, Loss: 0.028567, Metrics: \n", - "INFO:train_function:Train - Epoch: 75, Loss: 0.009532, Metrics: \n", - "INFO:train_function:Validate - Epoch: 75, Loss: 0.028082, Metrics: \n", - "INFO:train_function:Train - Epoch: 76, Loss: 0.009372, Metrics: \n", - "INFO:train_function:Validate - Epoch: 76, Loss: 0.027607, Metrics: \n", - "INFO:train_function:Train - Epoch: 77, Loss: 0.009214, Metrics: \n", - "INFO:train_function:Validate - Epoch: 77, Loss: 0.027140, Metrics: \n", - "INFO:train_function:Train - Epoch: 78, Loss: 0.009059, Metrics: \n", - "INFO:train_function:Validate - Epoch: 78, Loss: 0.026682, Metrics: \n", - "INFO:train_function:Train - Epoch: 79, Loss: 0.008907, Metrics: \n", - "INFO:train_function:Validate - Epoch: 79, Loss: 0.026232, Metrics: \n", - "INFO:train_function:Train - Epoch: 80, Loss: 0.008757, Metrics: \n", - "INFO:train_function:Validate - Epoch: 80, Loss: 0.025789, Metrics: \n", - "INFO:train_function:Train - Epoch: 81, Loss: 0.008609, Metrics: \n", - "INFO:train_function:Validate - Epoch: 81, Loss: 0.025354, Metrics: \n", - "INFO:train_function:Train - Epoch: 82, Loss: 0.008463, Metrics: \n", - "INFO:train_function:Validate - Epoch: 82, Loss: 0.024926, Metrics: \n", - "INFO:train_function:Train - Epoch: 83, Loss: 0.008319, Metrics: \n", - "INFO:train_function:Validate - Epoch: 83, Loss: 0.024505, Metrics: \n", - "INFO:train_function:Train - Epoch: 84, Loss: 0.008177, Metrics: \n", - "INFO:train_function:Validate - Epoch: 84, Loss: 0.024091, Metrics: \n", - "INFO:train_function:Train - Epoch: 85, Loss: 0.008038, Metrics: \n", - "INFO:train_function:Validate - Epoch: 85, Loss: 0.023683, Metrics: \n", - "INFO:train_function:Train - Epoch: 86, Loss: 0.007900, Metrics: \n", - "INFO:train_function:Validate - Epoch: 86, Loss: 0.023281, Metrics: \n", - "INFO:train_function:Train - Epoch: 87, Loss: 0.007765, Metrics: \n", - "INFO:train_function:Validate - Epoch: 87, Loss: 0.022885, Metrics: \n", - "INFO:train_function:Train - Epoch: 88, Loss: 0.007631, Metrics: \n", - "INFO:train_function:Validate - Epoch: 88, Loss: 0.022495, Metrics: \n", - "INFO:train_function:Train - Epoch: 89, Loss: 0.007499, Metrics: \n", - "INFO:train_function:Validate - Epoch: 89, Loss: 0.022112, Metrics: \n", - "INFO:train_function:Train - Epoch: 90, Loss: 0.007369, Metrics: \n", - "INFO:train_function:Validate - Epoch: 90, Loss: 0.021733, Metrics: \n", - "INFO:train_function:Train - Epoch: 91, Loss: 0.007241, Metrics: \n", - "INFO:train_function:Validate - Epoch: 91, Loss: 0.021361, Metrics: \n", - "INFO:train_function:Train - Epoch: 92, Loss: 0.007114, Metrics: \n", - "INFO:train_function:Validate - Epoch: 92, Loss: 0.020993, Metrics: \n", - "INFO:train_function:Train - Epoch: 93, Loss: 0.006990, Metrics: \n", - "INFO:train_function:Validate - Epoch: 93, Loss: 0.020632, Metrics: \n", - "INFO:train_function:Train - Epoch: 94, Loss: 0.006867, Metrics: \n", - "INFO:train_function:Validate - Epoch: 94, Loss: 0.020275, Metrics: \n", - "INFO:train_function:Train - Epoch: 95, Loss: 0.006745, Metrics: \n", - "INFO:train_function:Validate - Epoch: 95, Loss: 0.019924, Metrics: \n", - "INFO:train_function:Train - Epoch: 96, Loss: 0.006626, Metrics: \n", - "INFO:train_function:Validate - Epoch: 96, Loss: 0.019577, Metrics: \n", - "INFO:train_function:Train - Epoch: 97, Loss: 0.006508, Metrics: \n", - "INFO:train_function:Validate - Epoch: 97, Loss: 0.019236, Metrics: \n", - "INFO:train_function:Train - Epoch: 98, Loss: 0.006392, Metrics: \n", - "INFO:train_function:Validate - Epoch: 98, Loss: 0.018900, Metrics: \n", - "INFO:train_function:Train - Epoch: 99, Loss: 0.006278, Metrics: \n", - "INFO:train_function:Validate - Epoch: 99, Loss: 0.018568, Metrics: \n", - "INFO:train_function:Train - Epoch: 100, Loss: 0.006165, Metrics: \n", - "INFO:train_function:Validate - Epoch: 100, Loss: 0.018241, Metrics: \n", - "INFO:train_function:Train - Epoch: 101, Loss: 0.006054, Metrics: \n", - "INFO:train_function:Validate - Epoch: 101, Loss: 0.017920, Metrics: \n", - "INFO:train_function:Train - Epoch: 102, Loss: 0.005944, Metrics: \n", - "INFO:train_function:Validate - Epoch: 102, Loss: 0.017602, Metrics: \n", - "INFO:train_function:Train - Epoch: 103, Loss: 0.005836, Metrics: \n", - "INFO:train_function:Validate - Epoch: 103, Loss: 0.017290, Metrics: \n", - "INFO:train_function:Train - Epoch: 104, Loss: 0.005730, Metrics: \n", - "INFO:train_function:Validate - Epoch: 104, Loss: 0.016982, Metrics: \n", - "INFO:train_function:Train - Epoch: 105, Loss: 0.005625, Metrics: \n", - "INFO:train_function:Validate - Epoch: 105, Loss: 0.016679, Metrics: \n", - "INFO:train_function:Train - Epoch: 106, Loss: 0.005522, Metrics: \n", - "INFO:train_function:Validate - Epoch: 106, Loss: 0.016380, Metrics: \n", - "INFO:train_function:Train - Epoch: 107, Loss: 0.005420, Metrics: \n", - "INFO:train_function:Validate - Epoch: 107, Loss: 0.016086, Metrics: \n", - "INFO:train_function:Train - Epoch: 108, Loss: 0.005320, Metrics: \n", - "INFO:train_function:Validate - Epoch: 108, Loss: 0.015796, Metrics: \n", - "INFO:train_function:Train - Epoch: 109, Loss: 0.005221, Metrics: \n", - "INFO:train_function:Validate - Epoch: 109, Loss: 0.015510, Metrics: \n", - "INFO:train_function:Train - Epoch: 110, Loss: 0.005124, Metrics: \n", - "INFO:train_function:Validate - Epoch: 110, Loss: 0.015229, Metrics: \n", - "INFO:train_function:Train - Epoch: 111, Loss: 0.005029, Metrics: \n", - "INFO:train_function:Validate - Epoch: 111, Loss: 0.014952, Metrics: \n", - "INFO:train_function:Train - Epoch: 112, Loss: 0.004934, Metrics: \n", - "INFO:train_function:Validate - Epoch: 112, Loss: 0.014679, Metrics: \n", - "INFO:train_function:Train - Epoch: 113, Loss: 0.004842, Metrics: \n", - "INFO:train_function:Validate - Epoch: 113, Loss: 0.014410, Metrics: \n", - "INFO:train_function:Train - Epoch: 114, Loss: 0.004750, Metrics: \n", - "INFO:train_function:Validate - Epoch: 114, Loss: 0.014146, Metrics: \n", - "INFO:train_function:Train - Epoch: 115, Loss: 0.004661, Metrics: \n", - "INFO:train_function:Validate - Epoch: 115, Loss: 0.013886, Metrics: \n", - "INFO:train_function:Train - Epoch: 116, Loss: 0.004572, Metrics: \n", - "INFO:train_function:Validate - Epoch: 116, Loss: 0.013629, Metrics: \n", - "INFO:train_function:Train - Epoch: 117, Loss: 0.004485, Metrics: \n", - "INFO:train_function:Validate - Epoch: 117, Loss: 0.013377, Metrics: \n", - "INFO:train_function:Train - Epoch: 118, Loss: 0.004400, Metrics: \n", - "INFO:train_function:Validate - Epoch: 118, Loss: 0.013129, Metrics: \n", - "INFO:train_function:Train - Epoch: 119, Loss: 0.004316, Metrics: \n", - "INFO:train_function:Validate - Epoch: 119, Loss: 0.012885, Metrics: \n", - "INFO:train_function:Train - Epoch: 120, Loss: 0.004233, Metrics: \n", - "INFO:train_function:Validate - Epoch: 120, Loss: 0.012644, Metrics: \n", - "INFO:train_function:Train - Epoch: 121, Loss: 0.004151, Metrics: \n", - "INFO:train_function:Validate - Epoch: 121, Loss: 0.012408, Metrics: \n", - "INFO:train_function:Train - Epoch: 122, Loss: 0.004071, Metrics: \n", - "INFO:train_function:Validate - Epoch: 122, Loss: 0.012175, Metrics: \n", - "INFO:train_function:Train - Epoch: 123, Loss: 0.003992, Metrics: \n", - "INFO:train_function:Validate - Epoch: 123, Loss: 0.011946, Metrics: \n", - "INFO:train_function:Train - Epoch: 124, Loss: 0.003915, Metrics: \n", - "INFO:train_function:Validate - Epoch: 124, Loss: 0.011721, Metrics: \n", - "INFO:train_function:Train - Epoch: 125, Loss: 0.003839, Metrics: \n", - "INFO:train_function:Validate - Epoch: 125, Loss: 0.011499, Metrics: \n", - "INFO:train_function:Train - Epoch: 126, Loss: 0.003764, Metrics: \n", - "INFO:train_function:Validate - Epoch: 126, Loss: 0.011281, Metrics: \n", - "INFO:train_function:Train - Epoch: 127, Loss: 0.003690, Metrics: \n", - "INFO:train_function:Validate - Epoch: 127, Loss: 0.011067, Metrics: \n", - "INFO:train_function:Train - Epoch: 128, Loss: 0.003618, Metrics: \n", - "INFO:train_function:Validate - Epoch: 128, Loss: 0.010856, Metrics: \n", - "INFO:train_function:Train - Epoch: 129, Loss: 0.003547, Metrics: \n", - "INFO:train_function:Validate - Epoch: 129, Loss: 0.010649, Metrics: \n", - "INFO:train_function:Train - Epoch: 130, Loss: 0.003477, Metrics: \n", - "INFO:train_function:Validate - Epoch: 130, Loss: 0.010445, Metrics: \n", - "INFO:train_function:Train - Epoch: 131, Loss: 0.003408, Metrics: \n", - "INFO:train_function:Validate - Epoch: 131, Loss: 0.010244, Metrics: \n", - "INFO:train_function:Train - Epoch: 132, Loss: 0.003340, Metrics: \n", - "INFO:train_function:Validate - Epoch: 132, Loss: 0.010047, Metrics: \n", - "INFO:train_function:Train - Epoch: 133, Loss: 0.003274, Metrics: \n", - "INFO:train_function:Validate - Epoch: 133, Loss: 0.009854, Metrics: \n", - "INFO:train_function:Train - Epoch: 134, Loss: 0.003209, Metrics: \n", - "INFO:train_function:Validate - Epoch: 134, Loss: 0.009663, Metrics: \n", - "INFO:train_function:Train - Epoch: 135, Loss: 0.003145, Metrics: \n", - "INFO:train_function:Validate - Epoch: 135, Loss: 0.009476, Metrics: \n", - "INFO:train_function:Train - Epoch: 136, Loss: 0.003082, Metrics: \n", - "INFO:train_function:Validate - Epoch: 136, Loss: 0.009292, Metrics: \n", - "INFO:train_function:Train - Epoch: 137, Loss: 0.003020, Metrics: \n", - "INFO:train_function:Validate - Epoch: 137, Loss: 0.009112, Metrics: \n", - "INFO:train_function:Train - Epoch: 138, Loss: 0.002960, Metrics: \n", - "INFO:train_function:Validate - Epoch: 138, Loss: 0.008934, Metrics: \n", - "INFO:train_function:Train - Epoch: 139, Loss: 0.002900, Metrics: \n", - "INFO:train_function:Validate - Epoch: 139, Loss: 0.008760, Metrics: \n", - "INFO:train_function:Train - Epoch: 140, Loss: 0.002842, Metrics: \n", - "INFO:train_function:Validate - Epoch: 140, Loss: 0.008588, Metrics: \n", - "INFO:train_function:Train - Epoch: 141, Loss: 0.002784, Metrics: \n", - "INFO:train_function:Validate - Epoch: 141, Loss: 0.008420, Metrics: \n", - "INFO:train_function:Train - Epoch: 142, Loss: 0.002728, Metrics: \n", - "INFO:train_function:Validate - Epoch: 142, Loss: 0.008255, Metrics: \n", - "INFO:train_function:Train - Epoch: 143, Loss: 0.002672, Metrics: \n", - "INFO:train_function:Validate - Epoch: 143, Loss: 0.008092, Metrics: \n", - "INFO:train_function:Train - Epoch: 144, Loss: 0.002618, Metrics: \n", - "INFO:train_function:Validate - Epoch: 144, Loss: 0.007933, Metrics: \n", - "INFO:train_function:Train - Epoch: 145, Loss: 0.002565, Metrics: \n", - "INFO:train_function:Validate - Epoch: 145, Loss: 0.007776, Metrics: \n", - "INFO:train_function:Train - Epoch: 146, Loss: 0.002512, Metrics: \n", - "INFO:train_function:Validate - Epoch: 146, Loss: 0.007622, Metrics: \n", - "INFO:train_function:Train - Epoch: 147, Loss: 0.002461, Metrics: \n", - "INFO:train_function:Validate - Epoch: 147, Loss: 0.007471, Metrics: \n", - "INFO:train_function:Train - Epoch: 148, Loss: 0.002411, Metrics: \n", - "INFO:train_function:Validate - Epoch: 148, Loss: 0.007323, Metrics: \n", - "INFO:train_function:Train - Epoch: 149, Loss: 0.002361, Metrics: \n", - "INFO:train_function:Validate - Epoch: 149, Loss: 0.007177, Metrics: \n", - "INFO:train_function:Train - Epoch: 150, Loss: 0.002313, Metrics: \n", - "INFO:train_function:Validate - Epoch: 150, Loss: 0.007034, Metrics: \n", - "INFO:train_function:Train - Epoch: 151, Loss: 0.002265, Metrics: \n", - "INFO:train_function:Validate - Epoch: 151, Loss: 0.006894, Metrics: \n", - "INFO:train_function:Train - Epoch: 152, Loss: 0.002218, Metrics: \n", - "INFO:train_function:Validate - Epoch: 152, Loss: 0.006756, Metrics: \n", - "INFO:train_function:Train - Epoch: 153, Loss: 0.002173, Metrics: \n", - "INFO:train_function:Validate - Epoch: 153, Loss: 0.006620, Metrics: \n", - "INFO:train_function:Train - Epoch: 154, Loss: 0.002128, Metrics: \n", - "INFO:train_function:Validate - Epoch: 154, Loss: 0.006488, Metrics: \n", - "INFO:train_function:Train - Epoch: 155, Loss: 0.002084, Metrics: \n", - "INFO:train_function:Validate - Epoch: 155, Loss: 0.006357, Metrics: \n", - "INFO:train_function:Train - Epoch: 156, Loss: 0.002040, Metrics: \n", - "INFO:train_function:Validate - Epoch: 156, Loss: 0.006230, Metrics: \n", - "INFO:train_function:Train - Epoch: 157, Loss: 0.001998, Metrics: \n", - "INFO:train_function:Validate - Epoch: 157, Loss: 0.006104, Metrics: \n", - "INFO:train_function:Train - Epoch: 158, Loss: 0.001956, Metrics: \n", - "INFO:train_function:Validate - Epoch: 158, Loss: 0.005981, Metrics: \n", - "INFO:train_function:Train - Epoch: 159, Loss: 0.001916, Metrics: \n", - "INFO:train_function:Validate - Epoch: 159, Loss: 0.005860, Metrics: \n", - "INFO:train_function:Train - Epoch: 160, Loss: 0.001876, Metrics: \n", - "INFO:train_function:Validate - Epoch: 160, Loss: 0.005742, Metrics: \n", - "INFO:train_function:Train - Epoch: 161, Loss: 0.001837, Metrics: \n", - "INFO:train_function:Validate - Epoch: 161, Loss: 0.005626, Metrics: \n", - "INFO:train_function:Train - Epoch: 162, Loss: 0.001798, Metrics: \n", - "INFO:train_function:Validate - Epoch: 162, Loss: 0.005512, Metrics: \n", - "INFO:train_function:Train - Epoch: 163, Loss: 0.001761, Metrics: \n", - "INFO:train_function:Validate - Epoch: 163, Loss: 0.005400, Metrics: \n", - "INFO:train_function:Train - Epoch: 164, Loss: 0.001724, Metrics: \n", - "INFO:train_function:Validate - Epoch: 164, Loss: 0.005290, Metrics: \n", - "INFO:train_function:Train - Epoch: 165, Loss: 0.001688, Metrics: \n", - "INFO:train_function:Validate - Epoch: 165, Loss: 0.005183, Metrics: \n", - "INFO:train_function:Train - Epoch: 166, Loss: 0.001652, Metrics: \n", - "INFO:train_function:Validate - Epoch: 166, Loss: 0.005077, Metrics: \n", - "INFO:train_function:Train - Epoch: 167, Loss: 0.001618, Metrics: \n", - "INFO:train_function:Validate - Epoch: 167, Loss: 0.004974, Metrics: \n", - "INFO:train_function:Train - Epoch: 168, Loss: 0.001584, Metrics: \n", - "INFO:train_function:Validate - Epoch: 168, Loss: 0.004872, Metrics: \n", - "INFO:train_function:Train - Epoch: 169, Loss: 0.001550, Metrics: \n", - "INFO:train_function:Validate - Epoch: 169, Loss: 0.004773, Metrics: \n", - "INFO:train_function:Train - Epoch: 170, Loss: 0.001518, Metrics: \n", - "INFO:train_function:Validate - Epoch: 170, Loss: 0.004675, Metrics: \n", - "INFO:train_function:Train - Epoch: 171, Loss: 0.001486, Metrics: \n", - "INFO:train_function:Validate - Epoch: 171, Loss: 0.004580, Metrics: \n", - "INFO:train_function:Train - Epoch: 172, Loss: 0.001454, Metrics: \n", - "INFO:train_function:Validate - Epoch: 172, Loss: 0.004486, Metrics: \n", - "INFO:train_function:Train - Epoch: 173, Loss: 0.001424, Metrics: \n", - "INFO:train_function:Validate - Epoch: 173, Loss: 0.004394, Metrics: \n", - "INFO:train_function:Train - Epoch: 174, Loss: 0.001394, Metrics: \n", - "INFO:train_function:Validate - Epoch: 174, Loss: 0.004304, Metrics: \n", - "INFO:train_function:Train - Epoch: 175, Loss: 0.001364, Metrics: \n", - "INFO:train_function:Validate - Epoch: 175, Loss: 0.004216, Metrics: \n", - "INFO:train_function:Train - Epoch: 176, Loss: 0.001336, Metrics: \n", - "INFO:train_function:Validate - Epoch: 176, Loss: 0.004129, Metrics: \n", - "INFO:train_function:Train - Epoch: 177, Loss: 0.001307, Metrics: \n", - "INFO:train_function:Validate - Epoch: 177, Loss: 0.004044, Metrics: \n", - "INFO:train_function:Train - Epoch: 178, Loss: 0.001280, Metrics: \n", - "INFO:train_function:Validate - Epoch: 178, Loss: 0.003961, Metrics: \n", - "INFO:train_function:Train - Epoch: 179, Loss: 0.001253, Metrics: \n", - "INFO:train_function:Validate - Epoch: 179, Loss: 0.003880, Metrics: \n", - "INFO:train_function:Train - Epoch: 180, Loss: 0.001226, Metrics: \n", - "INFO:train_function:Validate - Epoch: 180, Loss: 0.003800, Metrics: \n", - "INFO:train_function:Train - Epoch: 181, Loss: 0.001200, Metrics: \n", - "INFO:train_function:Validate - Epoch: 181, Loss: 0.003722, Metrics: \n", - "INFO:train_function:Train - Epoch: 182, Loss: 0.001175, Metrics: \n", - "INFO:train_function:Validate - Epoch: 182, Loss: 0.003645, Metrics: \n", - "INFO:train_function:Train - Epoch: 183, Loss: 0.001150, Metrics: \n", - "INFO:train_function:Validate - Epoch: 183, Loss: 0.003570, Metrics: \n", - "INFO:train_function:Train - Epoch: 184, Loss: 0.001126, Metrics: \n", - "INFO:train_function:Validate - Epoch: 184, Loss: 0.003496, Metrics: \n", - "INFO:train_function:Train - Epoch: 185, Loss: 0.001102, Metrics: \n", - "INFO:train_function:Validate - Epoch: 185, Loss: 0.003424, Metrics: \n", - "INFO:train_function:Train - Epoch: 186, Loss: 0.001079, Metrics: \n", - "INFO:train_function:Validate - Epoch: 186, Loss: 0.003354, Metrics: \n", - "INFO:train_function:Train - Epoch: 187, Loss: 0.001056, Metrics: \n", - "INFO:train_function:Validate - Epoch: 187, Loss: 0.003285, Metrics: \n", - "INFO:train_function:Train - Epoch: 188, Loss: 0.001034, Metrics: \n", - "INFO:train_function:Validate - Epoch: 188, Loss: 0.003217, Metrics: \n", - "INFO:train_function:Train - Epoch: 189, Loss: 0.001012, Metrics: \n", - "INFO:train_function:Validate - Epoch: 189, Loss: 0.003150, Metrics: \n", - "INFO:train_function:Train - Epoch: 190, Loss: 0.000990, Metrics: \n", - "INFO:train_function:Validate - Epoch: 190, Loss: 0.003085, Metrics: \n", - "INFO:train_function:Train - Epoch: 191, Loss: 0.000969, Metrics: \n", - "INFO:train_function:Validate - Epoch: 191, Loss: 0.003022, Metrics: \n", - "INFO:train_function:Train - Epoch: 192, Loss: 0.000949, Metrics: \n", - "INFO:train_function:Validate - Epoch: 192, Loss: 0.002959, Metrics: \n", - "INFO:train_function:Train - Epoch: 193, Loss: 0.000929, Metrics: \n", - "INFO:train_function:Validate - Epoch: 193, Loss: 0.002898, Metrics: \n", - "INFO:train_function:Train - Epoch: 194, Loss: 0.000909, Metrics: \n", - "INFO:train_function:Validate - Epoch: 194, Loss: 0.002839, Metrics: \n", - "INFO:train_function:Train - Epoch: 195, Loss: 0.000890, Metrics: \n", - "INFO:train_function:Validate - Epoch: 195, Loss: 0.002780, Metrics: \n", - "INFO:train_function:Train - Epoch: 196, Loss: 0.000872, Metrics: \n", - "INFO:train_function:Validate - Epoch: 196, Loss: 0.002723, Metrics: \n", - "INFO:train_function:Train - Epoch: 197, Loss: 0.000853, Metrics: \n", - "INFO:train_function:Validate - Epoch: 197, Loss: 0.002667, Metrics: \n", - "INFO:train_function:Train - Epoch: 198, Loss: 0.000835, Metrics: \n", - "INFO:train_function:Validate - Epoch: 198, Loss: 0.002612, Metrics: \n", - "INFO:train_function:Train - Epoch: 199, Loss: 0.000818, Metrics: \n", - "INFO:train_function:Validate - Epoch: 199, Loss: 0.002558, Metrics: \n", - "INFO:train_function:Train - Epoch: 200, Loss: 0.000801, Metrics: \n", - "INFO:train_function:Validate - Epoch: 200, Loss: 0.002505, Metrics: \n" - ] - } - ], "source": [ "# Train\n", "trainer.train(model, train_data=loader_train, valid_data=loader_valid)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.trainer import RidgeRegression\n", "lambda_reg = 1e-01\n", @@ -2154,24 +1641,13 @@ "metrics = {\"mse_loss\": loss_fn}\n", "trainer = RidgeRegression(lambda_reg=lambda_reg, metrics=metrics, logger=logger)\n", "trainer.train(model, loader_train, loader_train)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/2klEQVR4nOzdeZyN5RvH8c+ZxczY932tRJJdomzZSVmzZI1CCRGlCCmqX7ZCWpAs2Sk7KSQiWZMkEtn33azn98fVzJjMMMuZOWdmvu/Xa17nmXOe85zrzMPMuZ77uq/b4XQ6nYiIiIiIiIiIy3m5OwARERERERGRlEpJt4iIiIiIiEgiUdItIiIiIiIikkiUdIuIiIiIiIgkEiXdIiIiIiIiIolESbeIiIiIiIhIIlHSLSIiIiIiIpJIlHSLiIiIiIiIJBIl3SIiIiIiIiKJREm3iIiIpDidOnWicOHC8XpujRo1qFGjhkvjERGR1EtJt4iISAy++OILHA5HjF8//fSTW+MbMWIEixcvdmsMdxP+s+ratWu0j7/xxhsR+5w9ezaJoxMREUl8Pu4OQERExNO99dZbFClS5Lb777vvPjdEE2nEiBG0aNGCJk2auDWOu/H392fBggVMnDiRNGnSRHnsq6++wt/fn5s3b7opOhERkcSlpFtEROQuGjRoQIUKFdwdRrJVv359vvnmG1asWMFTTz0Vcf+mTZv466+/aN68OQsWLHBjhCIiIolH5eUiIiIJNGTIELy8vFi7dm2U+59//nnSpEnDrl27AAgKCuLNN9+kfPnyZMqUiXTp0lG1alW+//77244ZFhbGuHHjeOihh/D39ydHjhzUr1+fbdu2AVa2fe3aNaZNmxZRnt2pU6do4zt16hQ+Pj4MGzbstsf279+Pw+Fg/PjxAAQHBzNs2DCKFi2Kv78/2bJl47HHHmPNmjXx/vnky5ePatWqMWvWrCj3z5w5k4ceeoiSJUtG+7x58+ZRvnx5AgICyJ49O+3atePYsWO37bd48WJKliyJv78/JUuWZNGiRdEeLywsjLFjx/Lggw/i7+9Prly56NatGxcuXIj3exMREbkbJd0iIiJ3cenSJc6ePRvl69y5cxGPDxo0iDJlytClSxeuXLkCwKpVq/jss8948803KV26NACXL1/m888/p0aNGrz33nsMHTqUM2fOUK9ePXbu3BnlNbt06UKfPn0oUKAA7733Hq+99hr+/v4R88inT5+On58fVatWZfr06UyfPp1u3bpFG3+uXLmoXr06c+fOve2xOXPm4O3tTcuWLQEYOnQow4YNo2bNmowfP5433niDggULsn379gT9DNu2bcuSJUu4evUqACEhIcybN4+2bdtGu/8XX3zB008/jbe3NyNHjuS5555j4cKFPPbYY1y8eDFiv9WrV9O8eXMcDgcjR46kSZMmdO7cOeLixK26detG//79efTRRxk3bhydO3dm5syZ1KtXj+Dg4AS9PxERkRg5RUREJFpTp051AtF++fn5Rdl3z549zjRp0ji7du3qvHDhgjNfvnzOChUqOIODgyP2CQkJcQYGBkZ53oULF5y5cuVyPvvssxH3fffdd07A2atXr9tiCgsLi9hOly6ds2PHjrF6L5988okTcO7ZsyfK/SVKlHA+/vjjEd+XLl3a2ahRo1gdMzYA54svvug8f/68M02aNM7p06c7nU6nc9myZU6Hw+E8fPiwc8iQIU7AeebMGafT6XQGBQU5c+bM6SxZsqTzxo0bEcdaunSpE3C++eabEfeVKVPGmSdPHufFixcj7lu9erUTcBYqVCjivh9++MEJOGfOnBklvpUrV952f/Xq1Z3Vq1d32c9ARERSN410i4iI3MWECRNYs2ZNlK8VK1ZE2adkyZIMGzaMzz//nHr16nH27FmmTZuGj09k+xRvb++IRmJhYWGcP3+ekJAQKlSoEGUkecGCBTgcDoYMGXJbLA6HI17voVmzZvj4+DBnzpyI+3799Vd+++03WrVqFXFf5syZ2bt3LwcOHIjX68QkS5Ys1K9fn6+++gqAWbNmUaVKFQoVKnTbvtu2beP06dO88MIL+Pv7R9zfqFEjihcvzrJlywA4ceIEO3fupGPHjmTKlClivzp16lCiRIkox5w3bx6ZMmWiTp06USoWypcvT/r06aMt8RcREXEFJd0iIiJ38fDDD1O7du0oXzVr1rxtv/79+1O6dGm2bt3KkCFDbkv8AKZNm0apUqUi5kvnyJGDZcuWcenSpYh9Dh48SN68ecmaNavL3kP27NmpVatWlBLzOXPm4OPjQ7NmzSLue+utt7h48SL3338/Dz30EP3792f37t0uiaFt27asWbOGI0eOsHjx4hhLy//++28AihUrdttjxYsXj3g8/LZo0aK37fff5x44cIBLly6RM2dOcuTIEeXr6tWrnD59OkHvTUREJCbqXi4iIuIihw4dihgh3rNnz22Pz5gxg06dOtGkSRP69+9Pzpw5I+YsHzx4MNHja926NZ07d2bnzp2UKVOGuXPnUqtWLbJnzx6xT7Vq1Th48CBff/01q1ev5vPPP2fMmDFMmjQpxrW2Y+vJJ5/Ez8+Pjh07EhgYyNNPP53QtxRrYWFh5MyZk5kzZ0b7eI4cOZIsFhERSV000i0iIuICYWFhdOrUiYwZM/L666/z1VdfsXDhwij7zJ8/n3vuuYeFCxfSvn176tWrR+3atW9bo/ree+/l+PHjnD9//o6vGddS8yZNmpAmTRrmzJnDzp07+eOPP2jduvVt+2XNmpXOnTvz1VdfcfToUUqVKsXQoUPj9FrRCQgIoEmTJqxbt446depESfZvFV5yvn///tse279/f8Tj4bfRlcL/97n33nsv586d49FHH72taqF27doRze5ERERcTUm3iIiIC4wePZpNmzbx6aefMnz4cKpUqUKPHj04e/ZsxD7e3t4AOJ3OiPu2bNnC5s2boxyrefPmOJ3OaJf4uvW56dKli9LJ+24yZ85MvXr1mDt3LrNnzyZNmjQ0adIkyj63dmUHSJ8+Pffddx+BgYER9126dInff/89Skl8bL3yyisMGTKEwYMHx7hPhQoVyJkzJ5MmTYryuitWrGDfvn00atQIgDx58lCmTBmmTZsWJZY1a9bw22+/RTnm008/TWhoKMOHD7/t9UJCQuL0cxQREYkLlZeLiIjcxYoVK/j9999vu79KlSrcc8897Nu3j8GDB9OpUycaN24M2JJXZcqU4YUXXoiYR/3EE0+wcOFCmjZtSqNGjfjrr7+YNGkSJUqUiFhKC6BmzZq0b9+eDz/8kAMHDlC/fn3CwsL44YcfqFmzJj179gSgfPnyfPvtt4wePZq8efNSpEgRKlWqdMf30qpVK9q1a8fEiROpV68emTNnjvJ4iRIlqFGjBuXLlydr1qxs27aN+fPnR7wmwKJFi+jcuTNTp06NcW3wmJQuXfquo8q+vr689957dO7cmerVq9OmTRtOnTrFuHHjKFy4MC+//HLEviNHjqRRo0Y89thjPPvss5w/f56PPvqIBx98MMrPtHr16nTr1o2RI0eyc+dO6tati6+vLwcOHGDevHmMGzeOFi1axOm9iIiIxIqbu6eLiIh4rDstGQY4p06d6gwJCXFWrFjRmT9//ijLVjmdTue4ceOcgHPOnDlOp9OW+xoxYoSzUKFCTj8/P2fZsmWdS5cudXbs2DHK8lZOpy0v9r///c9ZvHhxZ5o0aZw5cuRwNmjQwPnLL79E7PP77787q1Wr5gwICHACsVo+7PLlyxH7z5gx47bH3377befDDz/szJw5szMgIMBZvHhx5zvvvOMMCgq67ecyderUu74e/y4Zdif/XTIs3Jw5c5xly5Z1+vn5ObNmzep85plnnP/8889tz1+wYIHzgQcecPr5+TlLlCjhXLhwYbQ/U6fT6fz000+d5cuXdwYEBDgzZMjgfOihh5wDBgxwHj9+PGIfLRkmIiKu5HA6b6lTExERERERERGX0ZxuERERERERkUSipFtEREREREQkkSjpFhEREREREUkkSrpFREREREREEomSbhEREREREZFEoqRbREREREREJJH4uDuApBYWFsbx48fJkCEDDofD3eGIiIiIiIhIMuR0Orly5Qp58+bFyyvm8exUl3QfP36cAgUKuDsMERERERERSQGOHj1K/vz5Y3w81SXdGTJkAOwHkzFjRjdHE7Pg4GBWr15N3bp18fX1dXc48h86P55P58iz6fx4Pp0jz6bz49l0fjyfzpFnSy7n5/LlyxQoUCAix4xJqku6w0vKM2bM6PFJd9q0acmYMaNH/0NLrXR+PJ/OkWfT+fF8OkeeTefHs+n8eD6dI8+W3M7P3aYtq5GaiIiIiIiISCJR0i0iIiIiIiKSSJR0i4iIiIiIiCSSVDenW0REREREJCmEhoYSHBzs7jCSneDgYHx8fLh58yahoaFui8PX1xdvb+8EH0dJt4iIiIiIiAs5nU5OnjzJxYsX3R1KsuR0OsmdOzdHjx69a5OyxJY5c2Zy586doDiUdIuIiIiIiLhQeMKdM2dO0qZN6/bEMbkJCwvj6tWrpE+fHi8v98yIdjqdXL9+ndOnTwOQJ0+eeB9LSbeIiIiIiIiLhIaGRiTc2bJlc3c4yVJYWBhBQUH4+/u7LekGCAgIAOD06dPkzJkz3qXmaqQmIiIiIiLiIuFzuNOmTevmSMQVws9jQubmK+kWERERERFxMZWUpwyuOI9KukVEREREREQSiZJuERERERERkUSipFtERERERETczuFwsHjxYneH4XJKukVEREREREQSiZJuERERERERISwsjJEjR1KkSBECAgIoXbo08+fPx+l0Urt2berVq4fT6QTg/Pnz5M+fnzfffBOwpdK6dOkS8dxixYoxbty4215jypQpPPjgg/j5+ZEnTx569uwJQOHChQFo2rQp3t7elCpVKmnedBLQOt0iIiIiIiKJxOmE69fd89pp00Jcmm+PHDmSGTNmMGnSJIoWLcqGDRto164dOXLkYNq0aTz00EN8+OGH9O7dm+7du5MvX76IpDssLIz8+fMzb948smXLxqZNm3j++efJkycPTz/9NAAff/wxffv25d1336VBgwZcunSJH3/8EYCff/6ZnDlzMnXqVOrWrct1d/3QEoGSbhERERERkURy/TqkT++e1756FdKli92+gYGBjBgxgm+//ZbKlSsDcM8997Bx40Y++eQTZs2axSeffEKHDh04efIky5cvZ8eOHfj4WErp6+vLsGHDIo5XpEgRNm/ezNy5cyOS7rfffpt+/frRu3fviP0qVqwIQI4cOQDInDkzuXPn5vLlywl+/55CSbeIiIiIiEgq9+eff3L9+nXq1KkT5f6goCDKli0LQMuWLVm0aBHvvvsuH3/8MUWLFo2y74QJE5gyZQpHjhzhxo0bBAUFUaZMGQBOnz7N8ePHqVWrVpK8H0+ipFtERERERCSRpE1rI87ueu3YuvpvkMuWLSNfvnxRHvPz8wPg+vXr/PLLL3h7e3PgwIEo+8yePZtXXnmFUaNGUblyZTJkyMD//vc/tmzZAkBAQEAC3knypqRbREREREQkkTgcsS/xdqcSJUrg5+fHkSNHqF69erT79OvXDy8vL1asWEHDhg1p1KgRjz/+OAA//vgjVapU4YUXXojY/+DBgxHbGTJkoHDhwqxdu5aaNWtGe3xfX19CQ0Nd+K48g5JuERGRxHT5MixcCFu2wB9/WEedLFng4YehQQNIQd1ZRUQk+cqQIQOvvPIKL7/8MmFhYTz22GMRjc4yZsxI9uzZmTJlCps3b6ZcuXL079+fjh07snv3brJkyULRokX58ssvWbVqFUWKFGH69On8/PPPFClSJOI1hg4dSvfu3cmZMycNGjTgypUr/Pjjj7z00ksAEUl55cqVCQoKImPGjO76cbiUlgwTERFJDOfOwUsvQe7c0LkzTJoE330H339vSfhrr0Hp0vDYY7B6tbujFRERYfjw4QwePJiRI0fywAMPUL9+fZYtW0bhwoXp0qULQ4cOpVy5cgAMGzaMXLly0b17dwC6detGs2bNaNWqFZUqVeLcuXNRRr0BOnbsyNixY5k4cSIPPvggTzzxRJQy9VGjRrFmzRoKFSpEtWrVku6NJzKNdIuIiLja3LnQvTtcuGDfFy8OTz0FDz4IPj5w/Dhs2ADLl8OPP0K9etC8uSXm2bO7N3Z3+vtvWLkSdu+2n52vLxQrBlWqQNWq4O3t7ghFRFI0h8NB7969o3QXD3fy5Mko3/v6+rJt27aI7/38/Jg6dSpTp06Nst/IkSOjfN+tWze6desW7es3btyYxo0bExYWpu7lIiIiEo3QUOjXD8aNs+9LlYJRo6BWrdsXSu3XD06cgPfeg/HjYcEC2LoV5s2DSpWSPnZ3Wr8e3nrLKgFiUriwVQ707Alp0iRZaCIiIgml8nIRERFXCAqCNm0iE+6BA+GXX6B27dsT7nB58sDYsbBtGxQtCkePQo0asGRJUkXtXqdPQ7Nm9p6/+85+TtWqQf/+MHo0jBgBrVvbHPjDh+1CRenSsGmTuyMXERGJNY10i4iIJFRICDz9NHz9tZVEz5oFLVrE/vllylji/cwzsHQpNG0K06dbEp9SrV1r7/fUKSsb79YNBgyAQoVu3/fGDZgxAwYNgt9/h+rVYcwYePHFmC9oiIiIeAiNdIuIiCSE0wk9eljC7e9vo9RxSbjDZcwIixZBx45Wpt6hAyxb5vp4PcHnn9s89lOnoGRJ2LEDJkyIPuEGCAiA556D/fuhVSu7yPHSSzYi7nQmbewiIiJxpKRbREQkId57z5JILy/46itLJuPLxwemTIF27SyxbNECNm50Xaye4IMPLIEODbWR7q1b4aGHYvfczJntZ/z++/b9qFHQq5cSbxER8WhKukVEROLr++/hjTds+6OPoEmThB/Ty8sS70aN4OZNeOIJG+FNCcaNs9FpsJ/b9Ok2ih0XDocd49NPbXv8eBg+3PWxioiIuIiSbhERkfg4dsyafIWFQadOVmLuKr6+tuxYlSpw6ZItN3bpkuuO7w6ffAJ9+tj24MHw9tsJm4/93HMwcaJtDxkC06YlOEQREZHEoKRbREQkrkJDLeE+fdqWBZswwfUNvdKmhYULIX9+G+lu184S/ORo7Vp44QXbHjAAhg1zzXG7d4fXX7ftbt1sbriIiIiHUdItIiISVx98YHOtM2Sw9bXTpk2c18mVCxYvtgZtS5fC0KGJ8zqJ6e+/rflZWJg1h3v3XddeoBg+3ErwAwOhZUu4eNF1xxYREXEBJd0iIiJx8euv8Oabtj1uHNx3X+K+Xvny1qgNrCT7228T9/Vc6cYNW4f73DkoVw4mTXJ9RYCXl5WWFyoEBw9C585qrCYikgwULlyYsWPHRnzvcDhYvHhxkscxdOhQypQpk6ivoaRbREQktoKDbbQ2KMhGVzt1SprXfeYZeP55SybbtYOTJ5PmdRMifCm17dshe3YrlY9r07TYypoV5s2DNGmsMuCzzxLndUREJNGcOHGCBg0axGrfpEiUXUlJt4iISGz97382bzhr1sju2Ull7FhbWuvUKUu8Q0OT7rXjY+JEG4H28oI5c2Jeg9tVKlaEkSNtu18/OHw4cV9PREQICgpy2bFy586Nn5+fy47nSdyadG/YsIHGjRuTN2/eWJcTrFu3jnLlyuHn58d9993HF198kehxioiIcPiwlXeDlZXnyZO0rx8QYB3N06a1xmThCaYn2rgxslP5e+/B448nzev27g2PPQZXr0KXLsm38ZyIiJvUqFGDnj170rNnTzJlykT27NkZPHgwzn+n7RQuXJjhw4fToUMHMmbMyPPPPw/Axo0bqVq1KgEBARQoUIBevXpx7dq1iOOePn2axo0bExAQQJEiRZg5c+Ztr/3ffPDYsWO0bduWrFmzki5dOipUqMCWLVv44osvGDZsGLt27cLhcOBwOCJywosXL9K1a1dy5MhBxowZefzxx9m1a1eU13n33XfJlSsXGTJkoEuXLty8edPFP8XbuTXpvnbtGqVLl2bChAmx2v+vv/6iUaNG1KxZk507d9KnTx+6du3KqlWrEjlSERFJ9fr0sTnKNWpYubc7FC8OH39s20OGwIYN7onjTo4ft4ZmISHWQK1fv6R7bW9vmDrVLkx8913kz0pExJ2cTrh2zT1f8ehxMW3aNHx8fNi6dSvjxo1j9OjRfB7eWwT44IMPKF26NDt27GDw4MEcPHiQ+vXr07x5c3bv3s2cOXPYuHEjPXv2jHhOp06dOHr0KN9//z3z589n4sSJnD59OsYYrl69yhNPPMHx48f55ptv2LVrFwMGDCAsLIxWrVrRr18/HnzwQU6cOMGJEydo1aoVAC1btuT06dOsWLGCX375hXLlylGrVi3Onz8PwNy5cxk6dCgjRoxg27Zt5MmTh4nhy08mIp9Ef4U7aNCgQazr9gEmTZpEkSJFGDVqFAAPPPAAGzduZMyYMdSrVy+xwhQRkdRu2TL4+mvw8YHx45O2rPy/OnSwhHLaNGjTBnbuhBw53BfPrYKCoEULm3NesiRMnpz0P6v77rPR9ZdegoEDoUkTyJcvaWMQEbnV9euQPr17XvvqVUiXLk5PKVCgAGPGjMHhcFCsWDH27NnDmDFjeO655wB4/PHH6XfLBdWuXbvyzDPP0OffCqeiRYvy4YcfUr16dT7++GOOHDnCihUr2Lp1KxUrVgRg8uTJPPDAAzHGMGvWLM6dO8fPP/9M9uzZAbjvlsal6dOnx8fHh9y5c0fct3HjRrZu3crp06cjytQ/+OADFi9ezPz583n++ecZO3YsXbp0oUuXLgC8/fbbfPvtt4k+2u3WpDuuNm/eTO3ataPcV69evYgTHJ3AwEACAwMjvr98+TIAwcHBBAcHJ0qcrhAemyfHmJrp/Hg+nSPPlqzOz82b+PTqhQMI7dWLsPvvt4Zq7jRmDD4//YRj/37COnQgdPFimzv9r9BQuHABzp6F8+cdnDtn31+96ogY/Lh+PXwgxMHNm1aJHRpqX04nBAd7ceZMZcaP98LPLwxfX+tTFvnlJH16yJjRvjJkcFJ99kvcu3kzIRkyc3zcXLI60+Dnjp/Vc8/hPWMGXlu2ENa7N6FffZX0MSSyZPV/KBXS+fF8iXmOgoODcTqdhIWFERYWBmFhbisvDn/9uKhUqRJOpzOipLxSpUqMGjUq4mdVvnx5O+6/du3axe7du6OUjIe//4MHD/LHH3/g4+ND2bJlI553//33kzlz5oj9bo03LCyMXbt28dBDD5ElS5Yoj996/Ij396+dO3dy9epVsmXLFmXfGzdu8OeffxIWFsa+fft4/vnnozzvkUceYd26ddG+TvhrOJ1OgoOD8fb2jvJYbP/9JKuk++TJk+TKlSvKfbly5eLy5cvcuHGDgGi6oo4cOZJhw4bddv/q1atJm1jrqrrQmjVr3B2C3IHOj+fTOfJsyeH8FJs9m+KHDnEjWza+q1iRkOXL3RaL0wlXrvhy+nRafB8bRPc/u5Jm5Uo+e3AYE9K+zPnz/ly65Me1a744na4YYc4Z6z07M4Vn+ZQwHDx5ZSYratkIRtq0wWTOHEimTIFkzhxI1qw3yZHjOjly3Pj36zqZMwe6fEA8Y+vWVP/5Z7wWLGDL229zulw5176Ah0gO/4dSM50fz5cY5yh8BPbq1avWaMzphH/+cfnrxEpICPw76Bi73UMIDg6OGKgES1rBBi/DwsLw9vaO8vjly5fp1KkT3bp1u+14OXLkiJhTffnyZbxuuUDsdDq5efPmba91+fLliOT2ypUr0cYZGBhIaGholOeePXuW3Llzs2TJktv2z5QpE5cvX472NYOCgm471q2CgoK4ceMGGzZsICQkJMpj169fj/Y5/5Wsku74GDhwIH379o34/vLlyxQoUIC6deuSMWNGN0Z2Z8HBwaxZs4Y6derg6+vr7nDkP3R+PJ/OkWdLNufn0CF8Fi0CwPfDD6nbvHmSvOz587Bvn4ODB+HPPx0cPGjbhw45uHgxMjv9let8Sje6HHyfL2jMHipHOU6mTE6yZYOsWZ1kzWrVjenSQbp0TtKmDd8Gf3+rnPfycuLtbVOjw8JC2bfvV0qUKElYmDdBQQ6CgqyCPDgYbt60kfLLlx3kOPwzw9f1ACeMzzGMXb4N8DntJCTEwfXrvly/7svx4zGXVvr5OSlQAO67z8n99zu5/37+vXWSJ0/8K9Sdhw/DuHE8MmMGIf36Jd6SZW6QbP4PpVI6P54vMc/RzZs3OXr0KOnTp8ff39/uzJTJpa+RWHx8fNixY0eUPGn37t0ULVqULFmy4OXlhb+/f5THy5cvz8GDB2Ncwqts2bKEhIRw4MCBiPLy/fv3c+nSpduOFRAQQMaMGSlfvjxffvklwcHBt41cA2TIkAEgynMrV67M22+/TebMmSlcuHC0sZQoUYLdu3dHNIAD2LFjB97e3jHmhjdv3iQgIIBq1apFns9/xZSo/1eySrpz587NqVOnotx36tQpMmbMGO0oN4Cfn1+0red9fX2TxS/B5BJnaqXz4/l0jjybx5+fV16BwECoVQufNm1cPj/52jXYuxd+/TXq14kTd35enjyQPz+czfccv+z9nvIHZrMmW2t2TN5BtqJZ/020wdc3PN64xx0c7GT58n9o2LAUvr53+Lhw+jSUbwHOIHjqKXotfINeXg6cTrh40VY4O33avk6dssGeI0fg77/t6/hxCAx08OefdoFh5cqoh8+QAYoVg1KloHTpyK/MmWPxJoYPh/nzcRw6hO///mffpzAe/38oldP58XyJcY5CQ0NxOBx4eXlFGdlNLo4cOcIrr7xCt27d2L59O+PHj2fUqFER7yX8vYV77bXXeOSRR+jVqxddu3YlXbp0/Pbbb6xZs4bx48fzwAMPUL9+fXr06MHHH3+Mj48Pffr0ISAg4LZjhf/M2rRpw4gRI2jevDkjR44kT5487Nixg7x581K5cmWKFCnCX3/9xe7du8mfPz8ZMmSgbt26VK5cmWbNmvH+++9z//33c/z4cZYtW0bTpk2pUKECvXv3plOnTlSsWJFHH32UmTNnsnfvXu65554Yz5WXlxcOhyPafyux/beTrJLuypUrs/w/ZX1r1qyhcuXKMTxDREQknr75BpYuBV9flzRPu3nTep5t22ZfP/8M+/bF3Fi2YEG4/37rC3br1z333Dpg64DLn0D5baT/80+qTukMixZFmd+dqIKD4emnLZMuVgy+/DLitR0OyJLFvooXv/Mhjh2zFdn++AP274/8OnQIrlyJ/JndqlAhS77LloVHHoGHH7YLDVFkyAAffgjNm1tztXbtLE4REYlRhw4duHHjBg8//DDe3t707t07ysjwf5UqVYr169fzxhtvULVqVZxOJ/fee29ER3GAqVOn0rVrV6pXr06uXLl4++23GTx4cIzHTJMmDQsWLGDYsGE0bNiQkJAQSpQoEbHqVfPmzVm4cCE1a9bk4sWLTJ06lU6dOrF8+XLeeOMNOnfuzJkzZ8idOzfVqlWLmKLcqlUrDh48yIABA7h58ybNmzenR48eib4alluT7qtXr/Lnn39GfP/XX3+xc+dOsmbNSsGCBRk4cCDHjh3jyy+/BKB79+6MHz+eAQMG8Oyzz/Ldd98xd+5cli1b5q63ICIiKdH169Crl23363fnrDEGR47ADz/YktU//WQj2P+ZCgZArlzW6PvWrxIlrDlZrGTMCHPmQOXKdqHg7bfhzTfjHG+cOZ3WIXz9eqtbX7QoDkFH8vWFwoXtq0aNqI8FBcHBg/Dbb7Brl33t3Bl1pPybbyL3v/9+qFTJvh55xEbHfZs2hQYNYMUKO6crV7q3+7yIiIfz9fVl7NixfBzNsouHDx+O9jkVK1Zk9erVMR4zd+7cLF26NMp97du3j/K98z9XoQsWLMi8efOiHYH28/Nj/vz5t92fIUMGPvzwQz788MMYY3n99dd5/fXXo9z33nvvxbi/K7g16d62bRs1a9aM+D587nXHjh354osvOHHiBEeOHIl4vEiRIixbtoyXX36ZcePGkT9/fj7//HMtFyYiIq717ruW0RUoAIMG3XX3sDBLDMOT7B9+gKNHb98vRw6oWBEqVIj8ypPHBfGWK2drUnfpYut3lyplS2UlpokT4ZNPLIH96iu4w9Iv8ZUmjR32gQdssDrchQuwe7cl4T//DFu2wIEDNlL+xx8wfbrtlz49PPqogyYlP+T5bx/Ea/VqWLgw6sFEREQSmVuT7ho1atx2ReNWX3zxRbTP2bFjRyJGJSIiqdqBA1aKDDBmTIzrmx49Ct9+C2vWwNq1Nmf5Vt7elgtXrQpVqliyXaBAIg6yPvusDQN/9BG0bw+bNsFDDyXOa61aBb172/Z778ETTyTO68QgSxaoXt2+wp07B1u3WgL+0092e/Gihbpq1X2c5lXeZDin273MtD31qflEOsqVS7pKfBERSb2S1ZxuERGRRBVeMh0UBHXrQrNmEQ9du2bJ9Zo19rV/f9Snpk1rFd5Vq8Jjj1l5cwz5euIZNcrq2L//HurXhx9/tLptV9q82X4uoaHQoYM1m/MA2bJZFXmDBvZ9WBjs2WPV7+vWwafrXqP9hekUuXmY4GHvUHHYCHLksNNcv77d5oz9CmkiIinSunXr3B1CiqSkW0REJNzixTY0miYNjB/P0X8cLF0KS5bAd99ZI/NwXl7WvKt2bahTx5LsNGncFrnx9YX586FaNWuLXqeO1bv/20AmwfbsgYYNbc57/frw2WceOz/ayyuy03mvXhAWlpYj48dC7yb0d3zA/ICO7DhTjJkzYeZMe065cpa0N2kC5ct77FsTEZFkRkm3iIgIwNWrOHv3xgGsq9ifPi2LsmtX1F0KF7acs3ZtqFkzlstWJbWsWWH1anj0UfjzTxvCXbMm4cO4u3bZsS5etHr5+fM94CpD7Hl5QeGXnoRVDfFdvpxtlV/ih0GrWLXalinbsQO2b7evd96BfPngqacsAa9ePVm9VRER8TCaySQiIqma02nNuDbUHILj6FH+ojANf3ydXbssUXv0Ueur9uuvtoTVhAnQtKmHJtzh8ua1RDtXLus49thjtiZXfG3YYJnn6dNQpowtpZbktfMu4HDYEmJ+fnitXUP1cwsZMcIS7RMn4IsvoEULe2vHjlmvuPCy87ZtYcECuHHD3W9CRJKLsLAwd4cgLuCK86iRbhERSXWcTlv3ed48+8p8eAc/Mw6Avn4TadQ4LY0b26h29uxuDja+7rvP2qjXqWPN4SpUgFmzLIuMLacTrwkToH9/W+/ssces1t6jrzjcxb33wquvwltvQZ8+ViafLh25c0PHjvZ186bN3//6a/s6fdoatH/1lXVEb9IEWre2H61GwEXkv9KkSYOXlxfHjx8nR44cpEmTBofmq8RJWFgYQUFB3Lx5M9olw5KC0+kkKCiIM2fO4OXlRZoE/MJX0i0iIqnG/v22nNTMmZEDv16EMs+rGz5hoRyt8jQz1zQgbVq3huk6RYtaM7Unn7Th3Pr14YUXbC3vuyXOBw9SeehQvMNr7Fu3hsmTSRE/nNdegy+/tH8Eb78NI0dGedjfHxo1sq+PP7ZO6IsWwdy5tkb4jBn2lSWL9ZRr3dqmG3h7J+F7cDrxP3sWx7Zt1tQuRw6b/+Dnl4RBiEh0vLy8KFKkCCdOnOD48ePuDidZcjqd3Lhxg4CAALdfsEibNi0FCxZMUPKvpFtERFK08+dh9mzLsbZsibw/bVpb6Wpgho8pM/lnyJiRAvPHQgrIKaPIl88S79694dNPrT7+q6+gWzdo184WwQ7/QBMcbEuNTZmCz6xZ5AwJwenvj+Pdd60bWUoZqQkIgHHjbNL2qFHQqRMUKxbtrt7eNoW9ShVbHW3LFvv3NHcunDxp1yEmT7Yfc4cONlIew6ESzum06oWpU/FZvZp6//0wHxBg7fM7doSWLa2xnoi4RZo0aShYsCAhISGEhoa6O5xkJzg4mA0bNlCtWjV83fi7zNvbGx8fnwQn/kq6RUQkxQkKghUrLNFessRySbAEqn59W8a6cWNIe/4fKPG6PThyJOTJ476gE5O/P3zyCbRqBS++CL//bu935EhrvJYnj42WHjlinckBB3CqbFmyzpiBb4kS7o0/MTRubEPZy5bZMnGrVt31ooKXly0LV7kyjB5t+e/s2TZF4dixyB9p5cqWx7dqBZkyuSBWpxNWroQ33rCOb9j5CfP2xpEnDw4/P6uBv3LFmuitXg2vvx55YUFE3MLhcODr6+vWpDG58vb2JiQkBH9//xTx81MjNRERcS2n0ybFOp1J/tJ//mnTdfPnt3m3Cxdawl2mjCVJx45ZD7BWrSBtgBOefdYSlUqVbOQ3pXv8cesIt2gR1KtnI6Pnz9vyYr//bgl3tmzQoQMhmzbx05AhVqKeEjkclpT6+VnTufnz4/R0b2+oUQMmTYLjx+3pjRrZ/Zs32z+n3LnhmWdsfni8+/D8848lzg0bWsKdLh089xwhq1axbNYsQg4dsn/4ly7ZuR02zDq//f135OTzq1fj+eIiIuIKSrpFRCThNm+Gfv2gVCnrNBUQAD4+ULCgTXqdNAnOnEmUlw4OtoSnTh3LD99/314qd24Ladcuy1Vefvk/y1V//LElW/7+1rY6SSfkupG3tyVjK1fChQv2w1mzxjLDP/6AU6dg2jScFSq4O9LEd++9Nr8bbLT73Ll4HcbPD5o3tws6R4/C//4HJUrYtadZs2yJueLF7cLP+fNxOPDChVCypJVr+PraP+jDh+HTT3HWrEnYrfO3HQ548EF4803bZ+BA+z84Z47Vxieke72IiCSIkm4REYm/TZugWjX7UD96NOzZE1GeTFiYZSCLFkGPHraMVYcONqrqAn/9ZRW0BQrY9NVvv7W8o359e8mjR+GDD+w6wG0OHLCO3GATdYsXd0lMyY6fn5UB1K5to+BFi6aeiw/hBg60DPnUKZu3nkB58sArr9ig89at0L07ZMhg/+T69bO535062WMxFoMEBdlVoubNbQS7UiW7OPLBB7Frpx8QACNG2FJvuXPb/8tq1WxEXEREkpySbhERibvAQOjb15aQ+uEHG4Vr1866S/3xh42gHj8O69fbh/9y5WzJqenToVQpvF54gTSXLsX5ZZ1OG5Bt3NgGKUeOtFwpd25LwA8dsrncTZrYIF+0bt60RZevX7eW0z17JuhHIcmcnx9MnWoTtmfNgsWLXXJYhwMqVrSCiuPHrdijdGn75zdtmuXRFSrA559HXqcC7P9O3bowdqx937+//R978MG4B1G5sq2N98ADdhWqenW7WiUiIklKSbeIiMTN2bM2MjpmjGXBHTvaB/np023IuWhRW44qTx4bXRs4EH75xYb2mjWDsDC8P/+c2j164PXpp7Ga+33jhnWILlXKXnrpUntanTpWWn7kCLzzjq2YdFe9elkikjWrlZW7af1P8SAPPxxZ+dC9uzUlc6H06W2O944dVhzSvr3l+tu3w3PP2SyMQYPg9NbD8OijdrEqY0ZbJPz99xPWhTxfPvj+e0vajx+3ueEXLrjsvYmIyN3pk4aIiMTe8eNWSr5xo7VlXrLEEtd8+e7+3IoVYcEC2LABZ5ky+F6/jnfPnlYPfvRojC83aJAlJV27WsluunQ2OL1/vzVpbt48DjnJ5Mnw2Wc2DPnVV3ZgEYChQyPLzDt0SEDns5g5HDb4/OWX1tTvgw+gSBGbSr7ynW2EVXoE9u0jKFd++z/25JOueeFcuew/S/781jCveXOrPBERkSShpFtERGLn9GmoVcsmpxYsaEN2TzwR9+NUrUrI5s3sefZZnP7+lgyULGk1t/+Oeu/ZY6OBhQrZCPbZs7b9wQfWzPmjj+D+++P4uj/+aMtlAbz1lpXwioTz97emYwEBtnzY++8n6stly2ZzvA8cgE0Dl/CDV3Vyc4qdlKbIqZ+o1echli1zYe6fNy8sX24TzL//3i4yiIhIklDSLSIid3fjhq2H9PvvNlq2fr2NCsaXtzeHnnySkJ9/tsmtly9Dp06cq96UdnVPU6oUzJhhg3GPPWYl5H/+aUlK5szxeL29e+0CQWCgjR6+/nr8Y5eUq2RJu6IDVmLxww+J/pLen0yk8ntNCAi7zsVH6vFh8w2c8s7Hd9/ZP9kHH7TrUeFrzSfIQw9ZpQdYr4XVq11wUBERuRsl3SIicmfOf9ez3rbNhufWro3l5OlYKFYM5w8b2d9xBMEOX7L98DVj1jxIMxbSsiX8/LPlPc2b36Ex2t3s3WsTwS9ehEcesbJyzeOWmDz7rC2uHRpq//ASq/FYaKi1OX/xRRvO7tKFzBuWMGV+Rg4dsinmmTLZda5OnaxVwsSJdv0rQVq1snnrTqc1Pzx+3BXvRkRE7kCfOkRE5M7GjoXZsy3rXbAgHnXd0QsNhTlzHJSt6EPxaQOp4PyZ3ZQiB2dZQHPm+negwn0XE/YiW7ZYx+aTJ22Ub+lSSJvWJfFLCuVwwCefQNmytuB7o0ZxXFw7Fq5csRb7o0bZ98OH2wj0v80JCha06vYjR2xFu1y54O+/LT8vUsTWAb9yJQGvP2aMtVI/c8Y6ucWimaGIiMSfkm4REYnZL7/Aq6/a9tixlsAmUGgozJrl4KWXatG+vQ+7dll35zr9SpPt4Fbrdu7lZd3Qixe35mehoXF7EacTPv3UuqefO2dN3Nats5F6kbtJl86aBObLB/v2Qb16tl62Kxw5YnMmli61eeSzZ1spu8Nx264ZM8KAATbYPn68JeOnTtl9993nw1dfFYvf9QB/f1seLU0am+c9c2bC35eIiMRISbeIiETv+nVo08YmkzZtCi+8kKDDhYZaZXfJktCpkw/Hj6cnWzYnb71lo3gffAD57vGzuaYbN9qI+qlT1ra8QgVYuDB2yffvv1uS1K0bBAVZ7N9+a0uEicRWvnzWUC17dptaUadOwpcS++YbG0HfvduGr9ets3LvuwgIsFHuP/+0xQKKFYMLFxzMmVOc++/3YdiweFwTKFEC3nzTtnv3tv9rIiKSKJR0i4hI9IYOtdbK+fLB559HOxIXG2Fh1hT6oYegbVvLibNmddKu3W/88UcIgwdHkw9XrmwtzEePtomtO3fa/Np774XXXrPuyxcu2Ih2aKgtOTZzpjVJK1EC1qyxhZDfe89K4jNmTOhPQ1KjBx+MvGDz88/WE2DPnrgf59o1eOkleOopK1UvV87Wra9UKU6H8fWFjh2tTcFXX4VQuPAlLl92MHSolZ2PHAlXr8bhgAMGQJkyFlPPnnGKRUREYk9Jt4iI3G779sj5ppMmxWuUOCzMuo6XKgWtW1uVbpYs8Pbb8McfIbRocYAMGe5wgDRp4OWXbXjv9dftyX//bYn0449bTL6+llwXLGhNoZYssUT8ySdtUe8BA+J9sUAEsLnPmzbZBZ+//rKqi/fftyqKuwkLg7lz4YEHrD4coG9fO14C1oj39obmzZ2MHr2OWbNCeOABuwb1+uuWfH/wgRWq3JWvL0ydagecP1/dzEVEEomSbhERiSo4GLp0sYShdet4rcW9dq0N4rVsaaNymTPb0th//QVvvBHHgefs2W2x7n/+sQSmdWtbtBtslDs01OaAlyljSfbvv8PXX8N998U5bpFoFSsGP/1kTdWCgqzPQbFilkhHV5Z94oQ9VrKklY8fPWr/ZleutItZfn4uCcvLC1q0cLJnjy2xd999tqZ9//52jeCjj2JxbaBMGRuFB+jVK3YXE0REJE6UdIuISFTjxlk5d9asth0HO3bYdOratW0abPr0Nm30r79g8GCrFI+3tGkti//qKzh82Opo//kHjh2zRGHHDhsFL1YsAS8iEoPs2a2SYvJkm499+LAlq3nyWIZbs6Y1GixUCPLmtcf27bN/9EOHwm+/2X+ORODtbauc7dsHU6bYin4nT1oO/cAD1qstLOwOBxg6FHLmhP374cMPEyVGEZHUTEm3iIhEOnXKhqTBalRz5ozV0w4etPna5cpZhaqvr33gP3gQhg2zkW6XS5fO5pvnzWtZh0hiczhsHe9Dh+yC1MMP23SGQ4esKdqGDdadHKzUY8wYmxIxZEiSLFXn4wOdO1vu/PHHkDu3hdamjYXz/fcxPDFTJnj3XdseNsxG6kVExGWUdIuISKQ33rAFgB9+2Do23cXp0zagV7y4DUA7HDbi9vvvlpPEMmcXSV7SprWrSlu22JDy999bI7+5c2H9erh40crR+/RJYHlH/KRJA927WzuEt96yipNt26wVQsOGMfSC69jRMvOrVyOXCRQREZdQ0i0iImbHDqtNBVuT2yvmPxGBgfC//0HRojZ1NSQE6te3/mszZsA99yRNyCJulysX1KhhpR4tW9ra8G5ItKOTLp1N6zh40JqT+/jAihXWG65zZ5udEcHLyyaBOxwwfTps3uy2uEVEUhol3SIiYiWyvXvbbdu2tmRXDLstXGircg0YAJcvQ/ny8N139mG+TJmkDVtE7i5nTsunf/vNrgs4nZHrfQ8fDjdu/LtjxYqWjQO88ortKCIiCaakW0REYNky+OEHCAiInNv5Hzt2WK+o5s1tnmiePDBtmi03XLNmEscrInFWtKhVwG/ZAo8+asuKvfmmTQ+ZO/ffHHv4cCuf37QJFi1yd8giIimCkm4RkdQuLAwGDbLtXr2gQIEoD584YSuIlS9v01X9/a1k9Y8/oEOHO1ahi4gHevhhu8Y2e7b9dz9yxFY2q14ddpzKC/362Y6vvqolxEREXEAflUREUrt582DXLls8e8CAiLuDg21J4fvvt6ne4ZXn+/dHNmcSkeTJ4bBE+/ffbcWwgABLxMuXh55/9yc0e07rxPbJJ+4OVUQk2VPSLSKSmoWEWH0p2BzOrFkBa8ZcpozddfWqjYxt2mQNmgsWdF+4IuJaadPaimb799vSYk4nTPgyA69cHQaAc9gwuHTJzVGKiCRvSrpFRFKz6dOtTjx7dujTh+PHbTT78cet6VL27DB5sjUyjqG3moikAAUKwKxZ8OOPUKECfHSzK/sojuPcOY69FH2fBxERiR0l3SIiqVVgIAyz0azQ/q8x+rMMUdbbfuEFG/169lnN2xZJLapUsSXGJ0zyYXi69wDIOn0sr7Y9yrlzbg5ORCSZ0scoEZHU6vPP4e+/Ccyel0rTXqBfP7hyBSpVgp9/hgkTIqrNRSQV8faGbt1g7MHG/J6rGgHcpMRXgyhWzCpfwsLcHaGISPKipFtEJDW6fp2w4W8D0OfsIH75LYBs2SwP37TJmimJSOqWM5eD4ks+AKA908l/biddu8Jjj8Hu3W4OTkQkGVHSLSKSyjidsKvbBLxOneQvCjOZLnTtalO7u3RRKbmI3KJiRWjdGi+cfF20P+nTOdm82S7MvfEG3Lzp7gBFRDyfPlqJiKQiR49CqwaXyT/DGiN9knso365Pw2efqZRcRGIwYgSkSUOhA9/y18QVNGtmCx+MGAGlS8P69e4OUETEsynpFhFJBUJD4cMPoUQJeGDVGLJxnjPZizPsYDuqVXN3dCLi0YoUgV69AMg+sh8LZgezYAHkyWMVMjVq2BxwrSwmIhI9Jd0iIinc7t3Wkbh3b0hz9RwDvEcBkGPiW/il9XZzdCKSLAwaBDlywO+/w6RJNGtmywo+/7w9/Omn8MADsGiRe8MUEfFESrpFRFKooCBbEax8edi6FTJmhLV13iNd6BUoUwaaN3d3iCKSXGTKBMOH2/bQoXD+PJkzwyefwLp1ULQonDgBzZrZr5bjx90Yq4iIh1HSLSKSAu3aBQ8/bJ+NQ0KgaVPYv+4EZTaOtx3eflsd00Qkbrp0gZIl4fx5eOutiLurV7ffOQMH2nJjCxfCgw/C9OnWuFFEJLXTJy4RkRQkONhGtytUsA/B2bLBV1/BggWQe/I7cOOG1Zo3bOjuUEUkufHxgdGjbXvCBNi/P+KhgABrrPbLL1Zdc/EidOhgF/xOnXJPuCIinkJJt4hIChHd6PbevdC6NTj+OmSTLgHeeQccDrfGKiLJVJ060Lix/ZJ55ZXbHi5dGn76yYppfH3h669t1HvOHDfEKiLiIZR0i4gkc8HBVulZoQLs3GlLf82aZaPbuXL9u9OQIbZj3brWalhEJL4++MBGvZcuhZUrb3vYx8fW8P75Z0vCz52zi39PPw1nz7ohXhERN1PSLSKSjP36K1SqZDl1+Oj2b79Bmza3DGbv2QMzZ9r2iBFui1VEUoj7749YQowXX7RpK9EoXdqaOL75ps31njfPRr0XL066UEVEPIGSbhGRZCgsDMaOtdHtHTtsdHvmzP+MbocbNMi6GbVoYZMtRUQSauhQyJ8fDh2yWvIYpEljfSa2bLGE+/RpuzjYvj1cuJB04YqIuJOSbhGRZOaff6xK/OWXITDQeqLt3Qtt20YzVXvzZvjmG+tUHr7cj4hIQmXIAB99ZNvvv2+/hO6gfHlrsjZwoP06mjHDRsLXr0+CWEVE3ExJt4hIMjJ3LpQqBWvXWrfgjz+2aZW5c0ezs9Npn3ABOnWC4sWTMlQRSemaNIEnn7S5Lc8/D6Ghd9zdz89muGzaBPfdB0ePQs2a9msqKChpQhYRcQcl3SIiycClS7b8TqtWVpIZXlbevfsdGpF/840NI/n52aRvERFX++gjG/XetMkarMVCpUr2+6tLF7s2+O67ULky/P57IscqIuImSrpFRGLrxg1bl2vHDvj7b/u0mAR++MHKMKdPt7LMQYPs822xYnd4UmAg9Otn2/36QcGCSRKriKQyBQvCuHG2PXiwLaEQC+nTw+efw8KF1pNi+3YoVw4mTUqyX60iIklGSbeIyJ0EBcGXX0KVKpAuHZQpY58MCxeGfPng2Wft02IiCA62ZXeqV7ccv0gRS8CHD7f1b+9o/Hg4eNDqzsNLzEVEEkOnTlZqHhwM7drBzZuxfmrTprbAQp06dl2zRw946ilruCYiklIo6RYRicmOHVCxInTsaA3JnE4bksmTx7LeEydg6lTrEFS/vktrIw8ftmR7xAh72c6dbZC9SpVYPPnMGVu4G2DkSBtSEhFJLA4HfPop5MxpDdV69ozTcHXevLbc95gx1u18yRJ46KFolwAXEUmWlHSLiERn1ix4+GHYvRuyZ4d33rGuP2fPwvHjcPmydTN75hnw8YFVq+xT4siRtp5XAixYYAPqmzdDpkzWPG3KFJs2GSv9+1t85cvbRHARkcSWI4dVBXl5weTJ1uUxDry8oE8f+PlnKFnSRrobNIABA2wAXUQkOVPSLSLyX598YiWSISFWMrl3L7z+uq1JG961zN8fHn/c1r3Ztw+eeML2f/11G/U+dSrOLxteWtmihTVOC2821LJlHA6yZg1Mm2ZxTphgn2RFRJJCvXp24RGgd2/YsCHOhyhVyhLvF1+07//3P6hWzap/YuXkSbto+uKLtrZiqVKWxT/2mJXBT5kSr9/PIiIJoU9jIiK3+uYby3ydTvvQtmCBlUzeyX332fOmTIG0aS3xLVvWFqWNpd9+s4H1SZPs+9des/nbRYrEIfbr16FbN9vu2dOydhGRpNS/P7RpYxchmzaFX3+N8yH8/a0txYIFVu3z00/2K3XhwhiecP26jbLXrWu9Np55BiZOtN/Fe/bYhdMff7QLkl26RO4Tj9hEROJDSbeISLg9e6BtW0u4u3e3pXBiO1LscNjE623b4MEHbb53tWqWjN+B02kdfCtUsM9/OXNapfrIkbFolvZfQ4bAX39BgQJWDi8iktQcDvulVqkSnD8PtWvD/v3xOlSzZtYMvVIluHgRmje364kRfdouXLDfdYULW++NNWtsek+5ctC3r/XcWL3apgLNmWPd1cuXt/XEZ82yeTyvvWZlRiIiiUhJt4gI2Ke4Vq3g2jWoVQs+/PAOC2DfwQMP2Hpedeva6EuTJnasaFy+bDn+c8/ZZ746daxZWt268Yh//XoYNcq2J06MwwRwEREXS5sWVqyw0u5Tp6y0e+vWeB2qcGGr+hkwwL6fMAGerHCc813623JlgwZZ88jChW1ph4MHrcpo1CgrJ69Tx6YCPf20NZjcts0eb9LEku/33rMOlUeOuOjNi4jcTkm3iAjYCMi+fZArF8yeHY9h5ltkzAhLl1o27XTa3MY+fewD3r/27LHG6LNnWx+2996zTr25c8fj9c6ftznoTqd9yHziifjHLiLiClmy2Mhz+fLWgLJGDRt5jsci3L6+9jty/af7me7XlSV7i5B1ygdw9ao1sJw5Ew4csAT8nnvufsBy5WDRIli82BrA7dxpv5B37IhzbCIisaGkW0Rky5bIUeLPP7du5Qnl62sN2d57z74fN846ol2/zpdfWrnkH39Yb7YNG2wUJ149z0JDoX17+OcfKFrUSuJFRDxBzpywbp21Ib9xA5591n4PxrorGpak//ADNGtGtW4P0C5wMn4EsZ5qNGQZ3Svv4maztnb1Mq6eesq6tpUube3Sa9dW4i0iiUJJt4ikbmFh0KuXfbDr0MG1o8QOh2XTs2fb4rOLFnGoyOO80vE0N25YGfmOHVC5cgJe47XXYPlyCAiwOYtak1tEPEn69Fb5M2IEeHtbd7TixaFrV1sX8ZYKoAhhYbB9u5WD33+/9cdYtMh+Tz/1FKEbfuS7N9ez0tGQTz518NhjccvjoyhUyKbnhM9Br1MH/vwzIe9YROQ2SrpFJHWbPt3mGmbIEDkq7WqtWnFs2rdc8s7CPae3sJnKTOi5j+XLEzioPm4cfPCBbX/xhbX3FRHxNF5eMHCgJdK1akFgoK3lXaUKZM0Kjz5qnc6ffNKS38yZrSx9yBBLgNOls67jv/0GixfjXbUKw4bZ9casWW2Kdrly9n28ZMpkHSzLl4dz56BRI2vSJiLiIkq6RST1unHDPgiCzemO14Tqu/v6a3iwe1UeDt3MYa8i3MshXphaEe85s+J/0AkTbJ442GjQ00+7JFYRkURTqpTN896wwZbsypjROkpu2mTzq5cssYugV67YCPkTT9gyXydP2tSfBx6Icrj69S2Pr1jRcuRGjeDNN6MfPL+rTJns9QsUsLk/bdrYiLuIiAso6RaR1GvSJFvaq1AhKzF3sZAQqy5v0gQuXYLsVYqR5pefrJPutWv2ofO55+zB2AoNhX79bN0cgFdfteZBIiLJgcMBVavCjBlWzr19O8ybZ6sufP45zJ9v6yeeP29JcIcOd5w2U6iQTfl+4QX7fvhwm0J+9mw8YsuTx0rhAwJs5Pt//4vfexQR+Q8l3SKSOl27Bu++a9uDBoGfn0sPf/q0TQ0M/8zWt6/1E8pbJqetGzt4cOR6tg88YOXhISF3Puivv9rcxtGj7fshQ2xB7/gsbSYi4m7e3jYtpkUL6NHDSsibN4cHH4zTChJ+flb8M3265ctr1thhf/opHjGVKhXZkPKNN+J5EBGRqJR0i0jqNGmSZcZFikDHji499LZtUKGCJdnp09vAzahRt3yG9Pa2kvDvvrOO4ydOQOfO1jBo6FA7wPXrVtp45gx88419KC1Txsow06e35mxDhyrhFhH5V7t2Vp1+//22oEO1avarPs6rlD37LLRubZVFXbrYHHQRkQRQ0i0iqU9wMIwZY9tvvJGwNbn/Y9o0eOwxOHrUPvht3WoDN9GqUQN277YGbtmzw19/wbBhNkExXTpLznPmtGVtFiywD4BNmlgzoVatXBaziEhKUbKkrQLWvLn9qu/RA7p1i2Pe7HDA+PH2+/e336zzuohIAijpFpHUZ/58OHYMcuWyoREXCA6Gl16CTp3sw13jxpZw/6fvz+38/W3i9+HD8OWX1jgoR46o+xQvDi++CHv22LI5BQq4JGYRkZQoY0abJv7uu5Y/f/YZ1KwJx4/H4SDZslniDZZ079mTKLGKSOqgpFtEUhenM3KU+4UXXDKX+9QpWwUn/PPZ0KHWiDdTpjgcJF06aN/eGgedPm1NhE6fhqtXYd8+O3jJkgmOVUQkNXA4rM/k8uW2AtnmzTbtJ05TtFu0sOqikBBreqlu5iIST0q6RSR12bTJag/9/KB79wQfbutWW9r1hx9sdOXrr62/mVdCf7tmyWIj3unSJThGEZHUqn59+5X/4IPWPqN6detfGSsOh3VoS58etmyBWQlY5lFEUjUl3SKSuoSPcrdrZ/P1EmDKFFv55tgxqwDfuhWefNIFMYqIiMvcd5+NdDdrBkFBNmj94ou2fVd581rvD4DXXrOVL0RE4khJt4ikHkeO2JxogD594n2Y4GBbJrtLF/vQ1qSJDYIUK+aSKEVExMUyZLB53m+/bQPYEyfatKBTp2Lx5D59oHBhu8KqtbtFJB6UdItI6jF1qs3Jq1Ej3vOjz5+HBg2s4tDhgOHDrbF4xoyuDVVERFzLy8sGrZcssd/ZGzfa9KBt2+7yRH9/eP99237/fVueQkQkDpR0i0jqEBpq9eBgtYXx8PvvUKkSrF1rU60XLYJBg1wwf1tERJJMo0Y2Hah4cRu8rloV5s69y5NatLD1IG/cgLfeSpI4RSTlcPtHxQkTJlC4cGH8/f2pVKkSW7dujXHf4OBg3nrrLe699178/f0pXbo0K1euTMJoRSTZ+vZbKy/PksUm9sXRqlXwyCPw559QqJD1Y3vqqUSIU0REEl2xYjYtqFEjuHkTWrWCYcNsgYtoORzw3nu2PXUqHDiQZLGKSPLn1qR7zpw59O3blyFDhrB9+3ZKly5NvXr1OH36dLT7Dxo0iE8++YSPPvqI3377je7du9O0aVN27NiRxJGLSLIzebLdPvOMlQrGktMJ48ZBw4Zw6RI8+qiNkJQqlUhxiohIkghfcaJfP/t+6FBo08YGs6NVpYr9MQgNtZ1FRGLJrUn36NGjee655+jcuTMlSpRg0qRJpE2blinhJaD/MX36dF5//XUaNmzIPffcQ48ePWjYsCGjRo1K4shFJFk5c8YWzgbo2jXWTwsKgm7drIdOWBh07myl5Qlsei4iIh7C2xs++MCuy/r6wpw5tqzY8eMxPOHtt+32q6/g11+TLE4RSd583PXCQUFB/PLLLwwcODDiPi8vL2rXrs3mzZujfU5gYCD+/xmhCggIYOPGjTG+TmBgIIGBgRHfX758GbBS9eDg4IS8hUQVHpsnx5ia6fx4vlvPkdcXX+AdHExY+fKElihh7cfv4uxZaN3amw0bvHA4nLz7bhh9+oThcMTq6XIX+j/k+XSOPJvOj2u1bw+FCjlo1cqbn3928PDDThYuDKFs2f/sWLIk3s2a4bVwIWFvvEHo/PnRHk/nx/PpHHm25HJ+Yhufw+mMcfZKojp+/Dj58uVj06ZNVK5cOeL+AQMGsH79erZs2XLbc9q2bcuuXbtYvHgx9957L2vXruWpp54iNDQ0SmJ9q6FDhzJs2LDb7p81axZp06Z13RsSEY9Vo08fMh0+zK5u3TjcoMFd9z9yJAPvvFOJU6fSERAQTL9+26hQIfppLyIiknKcOJGWd955hH/+yUCaNCH06bOdKlVORNkn/dGjPN6rFw6nk+/HjuVy4cLuCVZE3O769eu0bduWS5cukfEOS9kkq6T7zJkzPPfccyxZsgSHw8G9995L7dq1mTJlCjdimIAT3Uh3gQIFOHv27B1/MO4WHBzMmjVrqFOnDr6+vu4OR/5D58fzhZ+juvnyEVCxIk5fX0KOHoWsWe/4vDVrHLRp483lyw7uucdGOkqUSKKgUxH9H/J8OkeeTecn8Vy6BO3aebNqlc3CHDYslNdes0qncN5t2+I1fz5hLVsSOnPmbcfQ+fF8OkeeLbmcn8uXL5M9e/a7Jt1uKy/Pnj073t7enDp1Ksr9p06dInfu3NE+J0eOHCxevJibN29y7tw58ubNy2uvvcY999wT4+v4+fnh5+d32/2+vr4efQLDJZc4UyudH8+XZt48ABwNG+KbK9cd9/38c+je3XrkVKsGCxY4yJ5d5zcx6f+Q59M58mw6P66XPTssXQr9+8PYsTBkiDd//OHN5MkQ8ZFy8GCYPx+v+fPxGj7c2qFHQ+fH8+kceTZPPz+xjc1tjdTSpElD+fLlWbt2bcR9YWFhrF27NsrId3T8/f3Jly8fISEhLFiwgKe0bo+IRCcsDK85c2z7mWfutBsDB9ry3aGh0K4drF5tH7xERCT18fGBMWPgk09se+ZMqFsXzp//d4dSpaBxY1vi4t133RqriHg+t3Yv79u3L5999hnTpk1j37599OjRg2vXrtG5c2cAOnToEKXR2pYtW1i4cCGHDh3ihx9+oH79+oSFhTFgwAB3vQUR8WBZ9+3D8fffkCEDPPFEtPvcuAGtW0d+ZhoyBL788pbRDBERSbWefx5WrLDlxTZssFXDDh3698E33rDb6dPh8GF3hSgiyYBbk+5WrVrxwQcf8Oabb1KmTBl27tzJypUryfVvCeiRI0c4cSKyecXNmzcZNGgQJUqUoGnTpuTLl4+NGzeSOXNmN70DEfFk+TdssI3mzSEg4LbHz5yBWrVg3jxbKmbaNFt69dZ5eyIikrrVrg0//ggFCsD+/fDII7BlC1CpEtSpYyVS77/v7jBFxIO5bU53uJ49e9KzZ89oH1u3bl2U76tXr85vv/2WBFGJSLIXFES+TZtsO5rS8t9/h0aNbMQic2ZYtAhq1EjSCEVEJJkoWRJ++skqyrdvt78XM2dCszfegDVrbKHvQYMgb153hyoiHsitI90iIonFsXYtaa5cwZk7N9SsGeWx9esjSwSLFIHNm5Vwi4jIneXNa38/GjWCmzehRQsY80s1nI89BkFBMHq0u0MUEQ+lpFtEUiSvhQsBCGvWDLy9I+6fMcOqAS9csBLBn36C4sXdFaWIiCQn6dPD4sXQo4f1UOvbz8GkzP/2H5o06ZZOayIikZR0i0jKExyM45tvAHA2a2a3ThgxAtq3h+BgaNkSvvsOcuZ0Z6AiIpLc+PjAhAnwwQf2/QtLG3AoY2m4dg3Gj3dvcCLikZR0i0jK8913OC5c4GbmzDgffZTQUOjZM7LRbP/+MHt2tL3VRERE7srhgH79rBGnv7+D1y+/BkDYuA8t+RYRuYWSbhFJeebNA+DEI49wI8ibp5+GiRPtQ9K4cdZk1ku//UREJIFatLCqqXXZWvAn9+J1/hxnRnzm7rBExMPoY6eIpCzBwdaKHDhYthoNG3qzcCGkSWOj2716uTk+ERFJUSpXhh82+zA526sABL/7Adt/CnZzVCLiSZR0i0jKsn49nD9PaNYcPDe9Gz/+6EWmTLBqFTz9tLuDExGRlKhoUej9SwdO++Ylb9gxptWexY4dOdwdloh4CCXdIpKy/Fta/tXNJhz+Jyv58jn54QctCSYiIokrdyE/Mg7tC0CfoPcZMbwiM2Y43ByViHgCJd0iknKEhBA010rLv7j+NAUKXGbDhhAeesjNcYmISKrg/9LzOLNk4X4O8FTYYp591of337cVNEQk9VLSLSIpxrrhG0hz8QxnyUZw5aqMGLGRAgXcHZWIiKQaGTLgeOklAN7NNBRw8uqr8PLLEBbm1shExI2UdItIivDhh7DvrfkA7CzUhKWrvMiQQY1sREQkifXqhTNtWu699Btzu6wAbOWMNm0gMNDNsYmIWyjpFpFkzemEQYPg5d6hNGUhADUntsTf382BiYhI6pQtG2FduwLQ/MB7zJoFvr4wdy40aACXL7s5PhFJckq6RSTZCg2FF16Ad96Bx9hIbk7hzJIF7zqPuzs0ERFJxcL69CHMxwevDRtoU2gTy5dD+vTw/fdQsyacOePuCEUkKSnpFpFkKSgInnkGJk0ChwMm1LDSckeTJjakICIi4i7583O0enXbHjmS2rVtRcscOWD7dqhaFY4ccW+IIpJ0lHSLSLJz7Ro8+STMmWP59exZYZTcv8AebNHCvcGJiIgAB5o1w+lwwNKlsGcP5crBxo1QsCDs3w+PPWa3IpLyKekWkWTlwgWoUwdWrYK0aWHJEng6/yY4cQIyZYLatd0dooiICNfy5cPZrJl98+67ANx/vyXexYvD0aOWeG/f7sYgRSRJKOkWkWTjxAmoVg02b4YsWeDbb6FePWC+lZbz1FOQJo1bYxQREQkXOmCAbcyeDYcOAVCgAPzwA1SoAGfPQo0aVnouIimXkm4RSRYOHoRHH4Vff4U8eWDDBqhcGVv4dIFKy0VExAOVLWtXh8PC4H//i7g7e3b47jtrqnbliu3yzTdujFNEEpWSbhHxeLt3WwneX3/BvffCjz9CyZL/PvjTT/DPP5Ahg9Wdi4iIeJKBA+126lQr2fpXhgywfLkVaQUGQrNmMH26m2IUkUSlpFtEPNqPP0L16nDyJJQubXPhihS5ZYd58+z2ySfR4twiIuJxqlWz0qzAQHj//SgP+fvbDKmOHW0ZzA4dYNw4N8UpIolGSbeIeKw1a2zw+uJFKy1ftw5y575lh7CwyPncLVu6IUIREZG7cDhg6FDb/vhj66B2Cx8fmDIF+vSx7/v0gSFDwOlMyiBFJDEp6RYRj/TNN/DEE3DjBjRoAKtXQ+bM/9lp69bI0vJ69dwRpoiIyN3VqWNlW4GBMHz4bQ97ecHo0ZEPvfUW9O2rxFskpVDSLSIeZ/Zsm9sWFATNm8PixbY82G3CS8sbN1ZpuYiIeC6HA955x7anTIEDB6LdZdAgGD/evh87Frp3t6IuEUnelHSLiEeZMgXatrW5be3bWwIe7SpgTqdKy0VEJPl49FFo2ND+wL35Zoy7vfii9Vzz8oJPP7X53iEhSRiniLickm4R8Rjjx0OXLpZPd+8OX3xhc92itXUrHDkC6dOrtFxERJKHt9+229mzYcuWGHfr1AlmzbK/gTNmQOvWVv0lIsmTkm4R8QjvvQcvvWTbffvCxIl2lT9G4aPcTzwBAQGJHp+IiEiClS1rQ9cAvXvfsXa8VStYsMCqvRYsgKZNrc+JiCQ/SrpFxK2cThg8GF57zb4fPBg++MDmtt3xSeHzuVVaLiIiycmIEZAunY10z5p1x12ffBKWLLFry8uX23Xmq1eTKE4RcRkl3SLiNk4n9OsXWW337rvWsfWOCTfAtm3w99/2oaVBg0SPU0RExGXy5oU33rDt116Da9fuuHvdurBypc2m+u47m1F16VISxCkiLqOkW0TcIiwMevSAMWPs+48+gldfjeWTw0e5VVouIiLJ0csvQ5EicOwYDBt2192rVYO1a23pzE2boFYtOHcu8cMUEddQ0i0iSS4kxJrEfPKJzdueMgV69ozlk28tLW/RIrFCFBERSTz+/jBunG2PGgU//3zXpzz8MHz/PWTPDr/8AjVqwMmTiRumiLiGkm4RSVIhIdCuHUyfDt7eMHMmdO4chwNs2waHD9vC3Q0bJlaYIiIiiatxY2jTxkq/unSJVXvyMmVgwwbIkwd+/RWqV4d//kn8UEUkYZR0i0iSCQ62zxdz5oCvrzUgb906jgeZOdNun3zSEm8REZHkatw4G7reswdGjozVUx54AH74AQoVgj/+sBHvo0cTN0wRSRgl3SKSJIKCbPmT+fNt+ZOFC6FJkzgeJCTE1jYFeOYZV4coIiKStHLksKYmYF1Ff/opVk+7914b8S5SBA4etBHvv/9OxDhFJEGUdItIogsMtOnXixaBn5/dPvFEPA70/fdw6hRky2btW0VERJK7Vq3sKyTEbs+fj9XTChaE9estAf/rLxvxPnw4USMVkXhS0i0iiermTWjWzNYZ9feHr79OwFTs8NLyp5+2+nQREZHkzuGATz+F++6DI0egbVtLwGOhQAFYtw6KFrWEu3p1OHQoUaMVkXhQ0i0iiebmTWjaFJYvt4R7yZIEDFDfuGE16aDSchERSVkyZrSVOdKmhVWroHdvW60jFvLnt8S7WDHL2WvUgD//TNRoRSSOlHSLSKK4ccN6na1caZ8hli2D2rUTcMAlS+DKFescU7myy+IUERHxCGXKWEWXwwETJ8Jbb8X6qXnz2gys4sWtqVqNGnDgQKJFKiJxpKRbRFzu+nWbs71mDaRLZyPdjz+ewINOn263bdva4t4iIiIpTZMmMGaMbQ8dCsOGxXrEO08eG/EuUQKOHbNS8/37EytQEYkLfXIVSW3++Qfef986m9WpA+3bw7RpNorsAlevQqNG8N13kD69jXRXr57Agx47Zpk7QIcOCY5RRETEY/XubX+nwRLvWK7hDZArl414lywJJ07YiPe+fYkWqYjEkpJukdQiMBD697f1RV59FRYsgG+/hRkzoFMnu0Q+cmSs/7BH58oVa5K2bh1kyGDT0h57zAWxT5sGYWF2sOLFXXBAERERD9a/vy0l5uUFU6fatKq9e2P11Jw57cJ3qVJw8iTUrAm//ZbI8YrIHfm4OwARSQLnz1vJ2g8/2PdVq9r3OXPCH3/Y2tcHDsDrr8OsWbB4sa1BEgdXrkCDBvDjj9YPZvVqqFTJBbGHhcHkybbdtasLDigiIpIM9OxpHc3btoXt26FcOejWDQYOtAvld5AjB6xdawVtO3faiPf6hed4wPsP67J2/rz94Q4Lg8yZrV9KmTJ2KyIup6RbJKW7eNGS7N9+s2x4xgxo3DjqPsOGWfOWfv3g11/h4YdtMe1q1WL1Elev2gj3jz/a3+7Vq6FiRRfFv369rX+SMaOVxIuIiKQW9evbCHe3btZQ9KOP4OOP7Sr3E0/AI49YBVuGDDb3+9o1OH0aDh8m+969bC6zl30HfqXgmX1kqxqL9b+LFYOWLaFHD+vOJiIuoaRbJCULCYFWrSzhzpvX6r1Llrx9P4cD2rWDWrXgqafg55/tD/3y5XZ5/A6uXbM53Bs3QqZM1jytQgUXvofPP7fbtm2tK5uIiEhqkicPfPONDV0PGWJXuJcssa9w3t72t/w/63v7A2Vv+f4frwJkqViUdIVzWKLu5QUXLljV29691nnt7bdtTnm3bjB8uP1xF5EEUdItkpK98YYNO6dNC0uXRp9w3ypPHhtZbt4cVqywbPrbb2Ncouv6dRs037AhsqTcpQn3+fM29xxUWi4iIqlbrVr29dtvMHeu/fHdscMq2kJDI/cLCLDFu0uUgAcfhAcf5HL+EtR/qSibd6cj12FY90U0LVIuX7b1PSdOtCvpH31kf4OnTUvgmp8ioqRbJKXauhU++MC2p02DsmXvvH+4gABYuNDmfK9aZSPfW7ZY+dotbtywh77/PrJL+cMPu/Yt8Pnn1gCuTBmbyyYiIpLalShhXc3DXbliCXNYGGTJYn+U/yMjsOQ7W75z9267Xb8eiha9daeM0KaNfX37LXTvDgcPQr168L//wcsv22i6iMSZupeLpERBQbbESFgYPPNM3OdC+/vb1e2yZeHMGRvxvngx4uGbN6FpU/ubnC6dDYrHMBgefyEhMH68bffqpT/0IiIi0cmQAfLlgwIFok24w2XLZn+3w5cTq1nTcupo1a4Ne/ZAx472WaJfP2u2Gss1w0UkKiXdIinR+PHWEC17dhg7Nn7HSJfO5ovly2eLfD79NISEEBho1eerVlnV+vLlLloW7L8WL4ajR+09tGmTCC8gIiKSuoR3NS9RAo4ds8T7r79i2DkgwJYr+9//7Pt334VBg5IsVpGUREm3SEpz6RK8845tv/uuJa3xlS+fzQVPlw7WrCG0/2u0bGmJdkCATf2KZYPzuAu/WNCtm428i4iISILlzGmJd7Fidm378cfh779j2NnhgFdegQ8/tO9HjIBPP02yWEVSCiXdIinNBx9YA7Lixa0sLKHKlIEvvgDAe+wo0i+Zhb+/DYLfpbF5/G3YYN1Z06SBF15IpBcRERFJnXLnhu++szndhw9b4v3PP3d4wksvwVtv2fYLL1jWLiKxpqRbJCU5dw7GjLHtESPAxzW9EoOfasHCYgMBmEwXvvtgO7VqueTQ0QsfqX/2Wa0TKiIikgjy5rXE+5574NAhKzU/fvwOTxg0yJYXDQ21ZTxPnkyyWEWSOyXdIinJxIm2cHbZstZ93AVCQuxvbMv9w1npaEAAN6n8flNrsJYYtm61tce8veHVVxPnNURERIT8+W0VksKF4c8/LfE+cSKGnR0OKy1/6CE4fRo6dLAmayJyV0q6RVKKGzdsTU2A/v1d0u07NNQq1OfOBW9fb5g1y2rRjhyBVq0gODjBrxGF02lri4Nl+oULu/b4IiIiEkXBgpZ4FywIf/xhS4GfOhXDzgEBMGeO3a5ZAxMmJGmsIsmVkm6RlOLLL230uVAhaNkywYcLC4PnnrM828cH5s2D+q0zW1fx9OntL3T//gl+nShWrrT1TNKkgSFDXHtsERERiVbhwlZqnj+/LVhSuzacPRvDzg88YP1jAAYOvEMXNhEJp6RbJCVwOiM7i/bpk+C53E6nLY09dSp4ecFXX8FTT/37YIkSluADjBsXuZ1QISGRSXyvXlCkiGuOKyIiInd17712PT1vXlt1tF49uHgxhp27d7f1Qq9ds22t3y1yR0q6RVKCH3+E336zhbM7d07QoZxOeO01qxhzOKxxeYsW/9mpaVN4803bfv552LYtQa8J2BJhe/dC1qzw+usJP56IiIjEyX33WWPyHDlg+3Zo1AiuXo1mRy8v+Pxzq0xbudLWEBWRGCnpFkkJPvnEbtu0gUyZEnSo4cPh/fdt++OPoX37GHYcMgQaN4bAQEvCY5wAFgt//AGDB9v2++9DlizxP5aIiIjEW/HiNl07c2bYtMkq3W7ciGbHYsWsug6gXz/X93kRSUGUdIskd+fO2YRrgG7dEnSoUaMip1KPGXOXw3l5wfTp9kf3n39sHnlQUNxfNCjIurXdvAl169oyYSIiIuI2pUvbAHb69DbXu0WLGP7Ev/EG5MxpF88nTkzyOEWSCyXdIsndrFk22ly2LFSoEO/DTJwIr7xi22+/HXnx+o4yZbLGahkywA8/2F/lwMDYv6jTCS++CD/9ZMf69FOXdF0XERGRhKlUyarGAwJg+XJbmjsk5D87ZcxoJXIAw4bZQICI3EZJt0hyN2OG3XbuHO+E9YsvLPcFa0QavmpXrBQvDgsXgr8/LFlidWiXLsXuue++a3PCHA7r1laoUFxDFxERkURSrZpdW0+TBhYssGK025bm7tIFSpWCCxfs77qI3EZJt0hyduAAbN0K3t62bnY8zJljfy8BeveGd96Jx0Fq14alS+1y+KpVdnl8z56Y9w8NhVdfjWyY9v770KBBPF5YREREElPdujB3rn3UmD4dXnjhP83Kvb1h5EjbnjABTp92S5winkxJt0hyNnOm3dapY3Oq4mjJEmjXLnJN7jFjElDdXasWbNhgi3zu32/l7n36wJ9/Ru7jdFpXlkceiezW9v77kXXtIiIi4nGeesoSbofDere+8sp/Eu8GDeDhh63jWvjfdxGJoKRbJLlyOiOT7meeifPT16yxKdghIfb0jz92wXTqChVs+bAmTWw0e9w4KFoUHngAqlaFggXh0Udtn0yZ7C94+NrcIiIi4rHatLEZYQCjR0c2XgXsA8TQobY9cWLCVjQRSYGUdIskVz//bKPIadNakhsHGzbYVeugIGje3OZ0e3u7KK5cuWDRImt7Wq+edTn//XfYuNG6nPv52fzzfftsmF1ERESShWefhY8+su3hw+G99255sH59m16m0W6R2/i4OwARiafwBmpPPWVresTS1q3wxBP2N7FhQ2t+7pMYvwnq1bOv06dhxw64fNkS8vLlIV26RHhBERERSWw9e8K1a/Daa/aVNi289BKRo90NGlj53MCBkD27u8MV8Qga6RZJjkJDrasJxKm0/Ndf7W/hlSvw+OMwf751JE1UOXNa8t2ypbVBVcItIiKSrL36KgwebNu9esGUKf8+UK8elCtnV/YnTHBbfCKeRkm3SHK0ebPNl8qc2ZqoxcKhQ9aB9Px562P29dfWbFxEREQkroYNg5dftu3nnrML+TgcMGCA3Tl+PFy/7rb4RDyJkm6R5GjhQrt94olYDVWfOGG5+YkTULIkLFsWp4p0ERERkSgcDhg1Crp2tVVQ2ra1Jq00bw6FC8PZs9Y0RkSUdIskO05nZNLdrNlddz9/3ka4Dx2Ce++F1asha9ZEjlFERERSPIcDJk2yGWTBwdbXdfPPPtC3r+0werRNiRNJ5ZR0iyQ3O3bA339bbXi9enfc9epVa5b266+QN69dgc6TJ4niFBERkRTP29t6u9ata9XkDRvCnorP2hX+gwdtRRORVE5Jt0hyEz7K3aCBtQyNQWCgXXHessX+7q1eDUWKJE2IIiIiknqkSWMfT6pUgYsXoU6TdJxv/YI9OG6cW2MT8QRKukWSm1iUloeEQJs2sHatzd1esQIefDCJ4hMREZFUJ106WLoUSpWyXq8NvumB08cHNm6EnTvdHZ6IWynpFklOfv8d9u0DX19o1CjaXcLCrIvookXg52ddyh9+OInjFBERkVQnSxZYtQruuw+2/pOXFWmb2wMffeTewETcTEm3SHLy9dd2+/jjtlzYfzid0K+fNQv19oY5c2xXERERkaSQO7f1kMmXD965/BIAzlmzrJu5SCqlpFskOVm2zG4bN4724eHDYexY254yBZ56KmnCEhEREQlXuLD1ktmftQrbKYvj5k2CP/7c3WGJuI3bk+4JEyZQuHBh/P39qVSpElu3br3j/mPHjqVYsWIEBARQoEABXn75ZW7evJlE0Yq40YULsGmTbUdTWv7RRzBkiG2PGwcdOiRhbCIiIiK3KFECVqx08KlfLwAujpxIyM0QN0cl4h5uTbrnzJlD3759GTJkCNu3b6d06dLUq1eP06dPR7v/rFmzeO211xgyZAj79u1j8uTJzJkzh9dffz2JIxdxg1WrbK3LEiXsEvItpk+HXvY3jaFDI7dFRERE3KViRWjzdWvOkJ0cN44ysf43hIW5OyqRpOfWpHv06NE899xzdO7cmRIlSjBp0iTSpk3LlClTot1/06ZNPProo7Rt25bChQtTt25d2rRpc9fRcZEUIby0/D+j3F9/DZ0723bv3vDmm0kcl4iIiEgMqtfz50KL5wB4aP1HvPyy9aARSU183PXCQUFB/PLLLwwcODDiPi8vL2rXrs3mzZujfU6VKlWYMWMGW7du5eGHH+bQoUMsX76c9u3bx/g6gYGBBAYGRnx/+fJlAIKDgwkODnbRu3G98Ng8OcbULMnPT2goPitW4ABC6tXD+e/rbtjgoFUrb0JDHbRvH8Z774USosotQP+HPJ3Oj+fTOfJsOj+eTecnqiLvdSVswXvUdK6j54d7GZalOG+84d4hb50jz5Zczk9s43M4ne651nT8+HHy5cvHpk2bqFy5csT9AwYMYP369WzZsiXa53344Ye88sorOJ1OQkJC6N69Ox9//HGMrzN06FCGDRt22/2zZs0ibdq0CX8jIkkgy++/U+211whOm5YVX36J08eHQ4cyMmjQY1y/7svDD5/g1Vd/xttbl45FRETE81R8913y/vQTE+nBi0ykR4+d1Kv3t7vDEkmQ69ev07ZtWy5dukTGjBlj3M9tI93xsW7dOkaMGMHEiROpVKkSf/75J71792b48OEMHjw42ucMHDiQvn37Rnx/+fJlChQoQN26de/4g3G34OBg1qxZQ506dfD19XV3OPIfSX1+vH76CQDvRo1o8OSTHDoE3br5cP26g6pVw1i2LDv+/g0SPY7kRP+HPJvOj+fTOfJsOj+eTefndg5/f6hfny5ppvNa0Lt88klpatQoSdOm7hkw0DnybMnl/IRXUd+N25Lu7Nmz4+3tzalTp6Lcf+rUKXLnzh3tcwYPHkz79u3p2rUrAA899BDXrl3j+eef54033sDL6/Yp6n5+fvj5+d12v6+vr0efwHDJJc7UKsnOz8qVAHg1bsyZ8740agSnTkGpUvDNN15kyOD2hQg8lv4PeTadH8+nc+TZdH48m87PLerWheLF8fv9dz6p8iVtN/WkfXsfVq2CGjXcF5bOkWfz9PMT29jc9kk9TZo0lC9fnrVr10bcFxYWxtq1a6OUm9/q+vXrtyXW3t7eALipSl4k8R07Bjt3gsPBlUfr06ABHDxoDcxXroTMmd0cn4iIiMjdOBzwwgsAtL4wkaZNnAQFwVNP2ccckZTMrcNjffv25bPPPmPatGns27ePHj16cO3aNTr/24q5Q4cOURqtNW7cmI8//pjZs2fz119/sWbNGgYPHkzjxo0jkm+RFGf5cgDCHq5Ek+dysGMH5MgBq1dDnjxujk1EREQktjp0gHTpcOzbx+xu31OtGly+DPXr24CCSErl1jndrVq14syZM7z55pucPHmSMmXKsHLlSnLlygXAkSNHooxsDxo0CIfDwaBBgzh27Bg5cuSgcePGvPPOO+56CyKJ79+lwuZcbcR3WyB9elixAooWdXNcIiIiInGRKRO0bw+TJpHmswl8/fXjVK8Ou3dDvXrw44/wbxogkqK4vZFaz5496dmzZ7SPrVu3Lsr3Pj4+DBkyhCFDhiRBZCIeIDAQ57ff4gDe39sIX19YtAjKl3d3YCIiIiLx8OKLMGkSfP01mcf9w8qV+Xn0URvpbtAA1q0DD+51LBIv6r4k4snWr8dx7RrHyMsuyjBjBtSu7e6gREREROKpZEmoVg1CQ+GTT8iTB1atsqlzO3ZA06YQGOjuIEVcS0m3iAfbM3IpAMtpyEfjHTz9tJsDEhEREUmoF1+0288+g6Agiha1qXPp08N330G7dpaTi6QUSrpFPNSC+U7SrrP53OlaNor4+yQiIiKSrDVtat1gT52CBQsAmzq3eDGkSQPz58NLL4EWJ5KUQkm3iAf6/nsY1nY/93KIYK80tJmsmnIRERFJIXx9oVs3254wIeLuWrVgxgxbXezjj+Gtt9wUn4iLKekW8TA7dtialbWDbakwn8er48iQ3s1RiYiIiLjQ88+Dj4+1LN+1K+Luli1h/HjbHjrUeq6JJHdKukU8SHjnzitX4JnMlnQ7nmjk5qhEREREXCxPHmjWzLZvGe0GeOEFePPNyO3585M4NhEXU9It4iFOn7Y1Kk+dgsolr1Du2gZ7oGFD9wYmIiIikhjCG9bMnAkXL0Z5aOhQq0B3OuGZZ2D9+iSPTsRllHSLeIBr1+CJJ2yku3BhWPbytziCg6FoUfsSERERSWmqVrUlxK5fhy++iPKQw2ED4M2aQVCQTb379Vf3hCmSUEq6RdwsJASefhp+/hmyZYOVKyHLJutarlFuERERSbEcjsjR7okTISwsysPe3tZY7dFH4dIlm4L3zz9uiFMkgZR0i7iR0wndu8Py5RAQAEuXQrH7nXYHKOkWERGRlK1dO8iYEQ4cgG+/ve3hgAD45hsoXtwS7gYNbqtEF/F4SrpF3Oitt2DyZPDygtmz4ZFHsA6eJ05A2rRQvbq7QxQRERFJPOnTQ8eOth3etvw/sma1SsA8eazEvGlTCAxMwhhFEkhJt4ibfP65NQkBq6h68sl/H1j2b2l57drg5+eO0ERERESSzgsv2O3SpXD4cLS7FCpkhYAZMsC6dZan/6caXcRjKekWcYNly6ysHGDQIOvOGUGl5SIiIpKaFC8OtWrZvLs7LMxdpgwsWgS+vjBnDvTvn3QhiiSEkm6RJLZ1qzVOCw2FTp2sxDzCuXPw00+2raRbREREUovwhmqff27dzGNQqxZMnWrbo0fDmDFJEJtIAinpFklCf/4JjRrZ35J69eDTT61xZ4RVq6xW6qGHoEABt8UpIiIikqQaN7Z1U8+di8yqY/DMM/Dee7bdt6+Neot4MiXdIknk9GmoXx/OnoXy5WH+fCuPikKl5SIiIpIa+fjAK6/Y9gcf2Jqqd9C/P7z0km136GDzvEU8lZJukSRw9aqNcB88CEWK2Jzu9On/s1NoqLXmBNtZREREJDXp3Bly5LBmanPn3nFXh8NKy5s1g6AgaNLEOpuLeCIl3SKJLDjY5nBv2wbZsllenStXNDtu3WolVZkzQ+XKSR2miIiIiHulTQu9etn2u+9aY7U78PaGGTPgscfg0iWrKDx6NAniFIkjJd0iicjptC7lK1ZAQICthHH//THsHL5UWL16VmIlIiIiktq8+KKVA+7ZEznt7g4CAuDrr+GBB+DYMWjQAC5eTPwwReJCSbdIIho6FKZMAS8va/LxyCN32Pmbb+xWpeUiIiKSWmXJErmW6tChdx3tBsia1SoJ8+SBvXut1DwwMFGjFIkTJd0iieSzzyKXA5s40ZpyxujQIbui6+2tpFtERERStwEDIF06m5v39dexekrBglZZmCEDrF9vzdXCwhI5TpFYUtItKdeNG7B/P5w8GaurpK60fLmVlQMMHhx5wTZG4X9QqlWzy7UiIiIiqVXOnNC7t20PGmTNZmOhdGlYtMhWh5k713J3EU+gpFtSnpMn4dlnLXktXtxqjR56yDptJEHyvX27NU4LC4NOnWDYsFg8KTzpfuqpxAxNREREJHl45RVrLrt3L8yeHeun1aoFX3xh26NGwYQJiRKdSJwo6ZaUZccOKFsWpk6FmzetxsjLy35ht28PzZvDtWuJ9vJHjsATT9hL1K4Nn35qS1rc0blz8MMPtq2kW0RERMTmdvfvb9tDhti6YLHUti28845t9+oFS5a4OLabN+MUj4iSbkk5Dh6EOnVspLtkSdi0ydaPOHfOfvOmSWM1R08+aaXnLnbpkk3HPnHCXn7+fCtvuqulS21YvHRpKFzY5XGJiIiIJEu9etk6qwcPwtixcXrqwIHQtat9xGrd2qaHx1tQECxYYKWMBQtay3Q/P6uqbNkSFi7UBHK5IyXdkjIEBdkvvXPnoEIF2LjR1rp2OKw06fXX4fvvbQmK776zEe9Yzg+K7cs3bw6//mrV7MuXQ6ZMsXyySstFREREbpc+va3XDTB8OBw/HuunOhzWyLZePbh+3SoRDx+O4+uHhsLnn9t6ry1awLx5URcCv3DBRlmaN7fFwnftiuMLSGqhpFtShvHjrbQ8WzZYvDj6jLdKFcuG06a19pZDh7rkpZ1Oa5S2dq012ly2DAoUiOWTb9yAVatsW0m3iIiISFQdOkClSnD1KvTrF6enhjdUK1UKTp2Chg0tT46VffugalV47jn4+2/IndvK3TdsgDNn4OxZ+OmnyE7rmzfbZ83wJWBFbqGkW5K/kycjE+j33oN8+WLet2pVW8sL4O23bVHHBBo+3Bp2eHvbL/ayZePw5OXL7fJroUJxfKKIiIhIKuDlZYMrXl7WUG3x4jg9PWNGGxDJl8/y6GbN7rKGd1gYfPABlCljiXSGDDB6tC3v+v779lkye3Yb6KlUyT577t8PdevaZ7qmTWHWrIS8Y0mBlHRL8jd4MFy5YmXlnTvfff+2bSPX83r2Wbh4Md4vPX26gyFDbHvCBLuCGidz5tjt00/HouOaiIiISCpUoUJkU7Xu3W06YRzkz2/jHBkywLp1Ntc72gVtLlywpLl/f5s72LChNeN9+WWbxx2TfPmsR0+XLpa0d+4c2SRXBCXdktydOAHTptn2mDF2FTQ2Ro+2+TknTtiSFPGwe3d2unXzBuDVV2OxFvd/Xb1qv6DBOnyIiIiISPSGDrWlYE+dgo4d49y4rFQpm37t7W2ryA4d+p/PjNu3Q/nyVh6eJg1MmmSf02I7Z9DX15atad7cEvYmTeCff+IUo6RcSroleZs4EYKDbQ7NY4/F/nkBAdYYA2DyZGuyFgd798K77z5MSIiDVq1gxIg4Pd0sWWJzuu+7T6XlIiIiInfi729l235+Vi8ejw9fdetaXgwwcqQ3335b0Ia8P/3UPkv+9RcUKWIr4HTrFvcqRC8v+PJLS97Pn7eR72iH1CW1UdItydeNG/Dxx7bdt2/cn1+1Krzwgm2/9BKEhMTqaSdOwFNP+XD9ui+PPhrGF1/EfoA9ivDS8latVFouIiIicjdly9p8PoA334SvvorzIZ59FgYNsu0vJtzHqQbPWoIdGAiNG8Mvv1jSHF9p08LMmXaRYPXqyCxfUrU4pwodO3Zkw4YNiRGLSNzMmmVzegoXthKe+Bg+3Bph7N0bmcDfwdWrtuTEkSMO8ua9yvz5ofj7x+N1L160Duqg0nIRERGR2OrSBXr2tBHkDh3i1S38rbfg1Ya72OysTP7vZuL09raGaIsXQ5YsCY+xWDEYOdK2X33VOp1LqhbnpPvSpUvUrl2bokWLMmLECI4dO5YYcYnc3fTpdtutm03QiY+sWeGdd2z7zTdtCYgYhIRYfrx9O+TI4WTw4M1kyxa/l+Xrr22+T4kSULJkPA8iIiIikgqNG2eNcUNCrPHZxImxf25QEI5hQxm5piIl2csJctMyy1r+aTsgnqWLMejVy0bmL12CYcNcd1xJluL8L2vx4sUcO3aMHj16MGfOHAoXLkyDBg2YP38+wcHBiRGjyO2OHIH16237mWcSdqyuXW1ZiIsXI+uN/sPphN69bQqRvz8sXBhKnjzX4/+aM2bYbatW8T+GiIiISGrk5WXrtXbubA3VXnzRGpjdaTAwLCxy0e5hw3AEB3O0fGWevm87C85Wp1EjuHzZxTGOGmXbH39s65VJqhWvyzk5cuSgb9++7Nq1iy1btnDffffRvn178ubNy8svv8yBAwdcHadIVOFzeKpXj31XyZh4e8OHH9r255/Drl237TJqlF1EdThsmk6lSgloinH4MHz7rR2sQ4f4H0dEREQktfL1tWa4774LPj6wcCHcc48Nxnz1FezYYZ/pvvnGSrwLF7bBjv37IUcOQmbOZPugAUxZnp1cuWD3blvB1aVjiDVrwpNPQmiodV+XVCtBNRQnTpxgzZo1rFmzBm9vbxo2bMiePXsoUaIEY8aMcVWMIrebOdNu27VzzfGqVrXftGFh0KdPlE6T8+ZFLg05ahQ0a5bA1/riC7utVcv+AIiIiIhI3DkcllBv326r2AQFWc+ftm2hXDmrZHzqKXj/fTh6FDJntlLvP//E2bIlOBwULmwrg6VNC6tWWY9dlzYcHz7cbufNgz/+cOGBJTmJc9IdHBzMggULeOKJJyhUqBDz5s2jT58+HD9+nGnTpvHtt98yd+5c3nrrrcSIV8TKc/bssTUUW7Rw3XHff99qx9ets0Ya2IoR7dvbwy+9ZPl4goSGwtSptv3sswk8mIiIiIjw0EPwww+wbZvNpa5cGXLmhNy5rXdOp062asyJE9bDJ2PGKE+vUAFmz7aK8M8/t8FzlylVyrqiO50uPrAkJz5xfUKePHkICwujTZs2bN26lTJlyty2T82aNcmcObMLwhOJxpIldvv443bF0lUKFYJXXoG334ZXXuHP+xvy5JN+BAZaZdCYMS5Y2WvNGpuPnjlz/Duui4iIiMjtypeP93JfjRvbbMOePeH11+Hee60I0iXeeMM+v06fbiPtCZ0aKclOnEe6x4wZw/Hjx5kwYUK0CTdA5syZ+euvvxIam0j0wpPuxo1df+xXX4U8eeDQIRbVGMe5c3b1c9as+DdIjyJ87niHDhAQ4IIDioiIiIgrvPhiZFVjhw7w008uOnClSlCjhnVbnzTJRQeV5CTOSXf79u3xj9fCxCIucPas1XyDLZjtaunTE/K2lf50O/s25fKdYskSSJfOBcfev9/W5nY4rFZdRERERDzKBx/YuE54paPLxhHDP/t9+incvOmig0py4cLF6ESSwPLl1uysdGkoWNDlh3c6odsP7dhKRTJyhTWVBpE7t4sO/tFHdtuoEdx3n4sOKiIiIiKu4u1tFY5ly8KZMzbGc/GiCw785JOQP78NIM2b54IDSnKipFuSl8QsLcf6W0z5wou+jrEAZF002ZacSKgzZyK7lvfunfDjiYiIiEiiSJ/ePnLmywe//QYtW7pgKTEfH+jRw7bHj09wjJK8KOmW5CM0FNaute2GDV1++HnzrHEGQNvxVaBNGxv67tXLRtcT4v334do1a+5Rq1bCgxURERGRRJMvHxFTDL/91uZ7J3gpsa5dLfneuhX27nVJnJI8KOmW5GPnTrhwwZZ5qFjRpYfessUaZoANRL/wAjbsnS4dbNwIn30W/4OfOgUTJtj2W2+5oAW6iIiIiCS2smXhq69sKbHPPoNRoxJ4wJw5bZohRFZASqqgpFuSj/BR7urV7Sqhixw+bNNsbt60eTsRv1ALFoQRI2y7f384ejR+LzB8ONy4YZ0rGzRwRcgiIiIikgQaN4bRo217wABYtCiBB+zc2W6nT3dBzbokF0q6JfkIT7pdWJ596ZIl2qdPQ5kydjUzytJgL74IlSvDlSvQsaOVuMfFtm0wcaJtjxihUW4RERGRZKZXr8jy8meesY938dawoY14nzoFK1e6LEbxbEq6JXkIDIQffrBtFyXdwcHw9NM2pSZvXpu3kz79f3by9oapU63M/Pvv4e23Y/8CISHQrZv9hm7bFh5/3CVxi4iIiEjScThg7FgrWLxxw0a/jxyJ58F8fS1zB5g501UhiodT0i3Jw08/2W+5XLngwQcTfDin05ZLXL0a0qa1hDt//hh2LlYMJk2y7WHDYPHi2L3IoEGwfTtkzhxZlyQiIiIiyY6PD8yeDQ89BCdPWqXk5cvxPFibNna7ZIk12pUUT0m3JA/r1tltzZouKdEeOxY++cQONWsWlCt3lye0axc5at26NY4NG+68/+zZ8N57tv3xx3axQERERESSrYwZYelSyJ0b9uyB1q2tsDHOKlSAe+6B69dh2TKXxymeR0m3JA8//mi3Vasm+FBffw39+tn2qFHw1FOxfOL48bZzYCDeTzxBge+/j36/efNs/jfAq6/ab2QRERERSfYKFrQB6oAAWLEC+vSJx1JiDofNcQSYO9fVIYoHUtItni801MrLAR59NEGH2r7dplc7ndC9u/2ijLXwuqLGjXHcvEm5cePwbtMGNmyAM2ds3bGOHe2XaFAQtGwJ77yToHhFRERExLNUqGDTsR0OWxX2ww/jcZDwpHvZMmvYKymaku6U5tIl65Y9dWrKWYbg11/tl1GGDFCyZLwP888/1vji+nWoW9d+Qca5Ut3fHxYvJvSNN3A6HHgtWGBLmOXMCY88Al9+afv162d161FaoYuIiIhIStC0Kbz/vm2//LKNfsdJmTJQtKitWRvnJ0tyo6Q7Jbl50xLAF1+EZ5+FevXivsSVJ9q0yW4feSTeSezVq5ZwHz9ufdjmzrXmkfHi5UXYkCGsGz2asHbtLOEGyJLFRre3boUPPnDpWuIiIiIi4ln69YPnn7cKyjZtYMeOODz51hLzOXMSJT7xHEq6U5L33oNduyK///77yDWik7Pw+dxVqsTr6aGh9otw507Lj5cuhUyZEh7W5SJFCJ0yxdZZDAmBc+csm69YMeEHFxERERGP5nBYy586dawJ+RNPwLFjcThAq1Z2u3JlAlqhS3KgpDulCAmJXNZq5szIZPudd2x+cXIWPtIdz/nc/fpZou3vD998A4ULuy60CN7eLumqLiIiIiLJh6+v9dAtUcIqKhs3jsMqYCVLWol5UBCsWpWocYp7KelOKVavtkUDs2eHFi2ga1dbz+DUKWvXnVydOAF//QVeXlCpUpyfPnEijBtn219+Ga9DiIiIiIjEKFMm64eWI4eVmHfoAGFhsXiiwxG5jM433yRqjOJeSrpTivAGDE8/DWnS2GW3rl3tvmnT3BdXQoWPcj/0kC2OGAerV8NLL9n2iBE23VpERERExNUKF4ZFi+xj+MKFMGhQLJ/45JN2u2xZymmCLLdR0p1ShK8ZXbdu5H3h60OvWZN8lyKI53zuffssyQ4Lg06d4LXXXB+aiIiIiEi4Rx+FyZNte+TIyEVt7qhKFatUvXAh8nOvpDhKulOC48dh/34rUalWLfL+EiUi54msWOG++BIiHvO5z52zRhaXL0PVqjbVXdOtRURERCSxtWsHr79u2889Bxs33uUJ3t72wRWS95RQuSMl3SlB+FWxMmVs2apwDkdkyUpybM4QGAjbt9t25cqxekpQEDRrBocOQZEiVt7j55eIMYqIiIiI3GL4cGje3D6XNm1q7YnuKPzz+tdf2/pjkuIo6U4Jdu602woVbn+sVi27/e67JAvHZfbssbkt2bJZBn0XTif06AEbNtj076VLrVpHRERERCSpeHlZS6Vy5eDsWetofscVwerWtVGiv/6CvXuTLE5JOkq6U4LwpLtMmdsfq1oVfHzg8GEb/k1Otm2z2woVYlUfPno0TJliv+jmzLHqehERERGRpJYunTUkz5vX8ujWrW2F3xh3rl3bttXFPEVS0p0ShCfdZcve/lj69JHrZG3YkGQhucStSfddLF0K/fvb9pgxUL9+IsYlIiIiInIX+fJZDh0QYO2VXnnlDjs3bmy3y5cnSWyStJR0J3dnzlgjNYfDltWKTvh86C1bki4uV4hl0r17N7RpY+Xl3bpFLhMmIiIiIuJO5ctHdjEfNw4++SSGHRs0sNvNm62TuaQoSrqTu3377LZwYRvVjk74SHdySrpv3IBff7XtOyTdp07ZhcGrV+Hxx+Gjj9SpXEREREQ8R4sW8Pbbtv3ii7B2bTQ7FSxocyPDwmy5X0lRlHQndwcO2O3998e8T3jSvXs3XL+e+DG5wq5dEBoKuXJZbU40bt60jpBHjtjKaPPmga9vEscpIiIiInIXr79uy4mFhloSvn9/NDuFj3Yn16V+JUZKupO7P/6w2zsl3fnzQ5489r88fAkuT/fLL3YbQxM1p9PWPty8GTJntjndWbMmbYgiIiIiIrHhcMBnn0GVKnDxolVqnj//n53Ck+6VK23EW1IMJd3JXfhId9GiMe/jcCS/EvO7zOceORJmzABvb5g//87XHERERERE3M3fHxYtslmhBw7YiHdw8C07PPaYdTI/edIqVCXFUNKd3MVmpBtSVNK9cCG88YZtjx8fuRS5iIiIiIgny5kTliyBDBng++9tjrfT+e+Dfn7WpAhUYp7CKOlOzsLC4OBB277TSDckr6T72jX47TfbLl8+ykPbt0P79rbdqxd0757EsYmIiIiIJEDJkjB7Nnh5Wcn52LG3PKh53SmSku7k7MwZ6ybm5QUFCtx53/AR4yNH4Ny5xI8tIXbutAsKefPaXPR/HT8OTz5pveDq1YNRo9wXooiIiIhIfDVsGPlZtl8/WLbs3wfCk+5Nm2zyt6QISrqTs7//ttu8ee/etjtDBrjnHtvetStx40qo8NLyW0a5r1+Hp56CY8fggQdgzhzw8XFTfCIiIiIiCdS7Nzz/vJWXt24Ne/ZgE76LF7cGyN9+6+4QxUU8IumeMGEChQsXxt/fn0qVKrF169YY961RowYOh+O2r0aNGiVhxB4iPOkuWDB2+5cubbeennTv3Gm35coBNujdqZPl4tmy2TyYTJncFp2IiIiISII5HNaf6PHH4epV62h++jQqMU+B3J50z5kzh759+zJkyBC2b99O6dKlqVevHqdPn452/4ULF3LixImIr19//RVvb29atmyZxJF7gCNH7LZQodjtn1yS7vD4ypQBYNiwyDW4Fy6Ee+91X2giIiIiIq7i62ufc4sWtfG0Jk0gqNYtS4dFdFmT5MztSffo0aN57rnn6Ny5MyVKlGDSpEmkTZuWKVOmRLt/1qxZyZ07d8TXmjVrSJs2bepMuuM70u3JSxAEB8PevbZdujRffQVvvWXffvIJVKvmvtBERERERFwta1ZYuhSyZIHNm6HHrKo4AwKsodGvv7o7PHEBtybdQUFB/PLLL9SuXTviPi8vL2rXrs3mzZtjdYzJkyfTunVr0qVLl1hheq74jnTv3fufRQE9yP79EBQEGTOy5VRhOne2u/v3J2JbRERERCQluf9+mD8fvL1hyix/DhWsYQ+sWuXWuMQ13NqK6uzZs4SGhpIrV64o9+fKlYvff//9rs/funUrv/76K5MnT45xn8DAQAIDAyO+v3z5MgDBwcEEe2riCRGx3SlGn7//xgGE5MmDMzbvJW9efDJkwHHlCsG//mrrFXgYx7Zt+AA37n+Ip5pAYCA88UQYb70V6lHXCWJzfsS9dI48m86P59M58mw6P55N58fzeeI5qloVxozxolcvbz7cX49xrCBsxQpCe/d2d2hJzhPPT3RiG1+y7v88efJkHnroIR5++OEY9xk5ciTDhg277f7Vq1eTNm3axAzPJdasWRPjY/UOH8Yf+OGvv7i8fHmsjvdY/vxk27eP3dOn80/16i6K0nVKfP01RYF5+0tw6oqDwoUv8cwzG1m1KsTdoUXrTudHPIPOkWfT+fF8OkeeTefHs+n8eD5PO0cFC0L9+qVYsbIB4+iDc/0PrFq4kFB/f3eH5haedn7+6/r167Haz61Jd/bs2fH29ubUqVNR7j916hS5c+e+43OvXbvG7NmzeSt8wm8MBg4cSN++fSO+v3z5MgUKFKBu3bpkzJgx/sEnsuDgYNasWUOdOnXwjW45sJAQfC5dAuCxli3hP9UCMfFauRL27aOMlxelGjZ0Zcgu4f3ReAB+uFKRnDmdrFmTlkKF6ro5qtvd9fyI2+kceTadH8+nc+TZdH48m86P5/Pkc1SnDjRq6MVf6wtTJPQwVYL8ydDM8z63JyZPPj+3Cq+ivhu3Jt1p0qShfPnyrF27liZNmgAQFhbG2rVr6dmz5x2fO2/ePAIDA2nXrt0d9/Pz88PPz++2+319fT36BIaLMc7Tp62bobc3vnnzglcsp+f/2xHce+9evD3t/TudXN28i/TAXp8yLF7s4L77PCzG/0gu/45SM50jz6bz4/l0jjybzo9n0/nxfJ54jnx9Yf4CWHlPfYpcnsS6177liVZPkSaNuyNLep54fm4V29jc3r28b9++fPbZZ0ybNo19+/bRo0cPrl27Rud/u2Z16NCBgQMH3va8yZMn06RJE7Jly5bUIXuG48ftNnfu2CfcAA8+aLf79rk+pgT6+pOTpL9+hlC8ePHjklSu7O6IRERERESSXrZsUO3tegCUPL6Kl17S6mHJmdvndLdq1YozZ87w5ptvcvLkScqUKcPKlSsjmqsdOXIEr/8klfv372fjxo2sXr3aHSF7hhMn7DZPnrg974EH7Pbvv+HqVUif3rVxxdO2bTC51y6eAs5mvZ9nuga4OyQREREREbcp0PFxwl724f7QA6z59BATHrqHuxQDi4dye9IN0LNnzxjLydetW3fbfcWKFcOZ2i/1hI90xzXpzpbN5n+fOmWj3RUruj62ODpxApo0gWeCdwGQo3Zp9wYkIiIiIuJuGTPi9WgV2LCBeqyiT58eFCtmc74leXF7ebnEU/hId968cX9ueIn5b7+5Lp54unnTEu5jx6BqRku6vcoo6RYRERERoX59AJ4rsJLQUHj6afjjDzfHJHGmpDu5im95OUCJEnbr5qTb6YTnnoOtWyFLFqiT05JuSivpFhEREREJT7rLXviOqpWCuHgRGjeGCxfcG5bEjZLu5OrkSbu9y9Jq0QpPuvfudV088fC//8GMGeDtDQtn3sDv0O/2wL8d1kVEREREUrXSpSFnThxXr7J4wCYKFLCR7tatISTE3cFJbCnpTq7OnLHbnDnj/lwPGOleuhRee822x42DGjn2QlgYZM8ev9F7EREREZGUxssL6lkX86w/r+KbbyBtWli9Gvr3d3NsEmtKupOr06ftNiFJ9+HDcO2ay0KKrb17oU0bKy/v3h1eeAHYdUtpucOR5DGJiIiIiHikf5NuVq6kTBn48kv7duxY+PxzdwUlcaGkO7kKH+nOkSPuz82Rw76cTvj9d9fGdRfnzsGTT9pqZTVqwIcf/ptj79J8bhERERGR29Stax+Yd+6Ekydp3hzeesseeuEF2LDBrdHdLjTUcpXUvtrULZR0J0c3bsCVK7Ydn5FucEuJeXAwtGgBhw5BkSIwbx74+v774M6ddqukW0REREQkUo4cUL68ba9eDcCgQdCqlX2+bt7cCljdLizMmjZlz245StGisHatu6PyCEq6k6PwUW5fX8iUKX7HcEPS3bs3rFsH6dPDkiX2/xGwq2C7d9u2mqiJiIiIiER1S4k52MD3lCmWi589a5Wk4WNybhG+LNGAAXDxot138KDFvX69GwPzDEq6k6NbS8vjO/85iTuYT5wIH39s4c6aFblUOAB//w2XLtlFhOLFkyQeEREREZFk49+lw1i92sq3sYZqixfbYkZ79kC7djbY7BajR9tVAG9v+9B//rwNwYeGwjPPuKWPlCdR0p0cJaSJWrgkHOn+7jvo1cu2R460tQWjCJ/PXaIEpEmT6PGIiIiIiCQrlSpBxozWIGn79oi78+e3xNvPD775xsrOk9zBg/DGG7b9//buPDyq8tDj+G+yEyAshl1ENnFhU5AUVOi9BhdsBbVuYEHaoiJUW6wVWpUCrVCliNeitlwWy1VBKCKtiGAsrcqmgBrZNMgiYoKAkAAx63v/eHMmGcgySWYyZzLfz/PkOYeZc868kzeHyS/v9swzdqbkZs2khQvtmNKvvpLmzAlBwdyD0B2OajOJmsNpav7iCztGPEj27JFuvdX+keuuu2yPk7MwiRoAAABQsdhYKTXV7r/1ls9TKSnSvHl2f/p06aWX6rhsv/yllJcnDR5csixRiUaNpMmT7f7MmVJ+fh0XzD0I3eHIaemuTehu2VJq3jyoM5hnZ9tW7WPHpH79pLlzK+gNzyRqAAAAQOXOGNdd1ogR0sSJdv+nP5U2baqjMq1ebSdriokpsyzRGQVr3do2Gr7xRh0Vyn0I3eHoyBG7rU3o9nhKu5jv3Fn7Mp2hqEgaPtxeum1b2+0lIaGCg2npBgAAACrnhO6NG0snKyvjD3+wDV55edKwYdLBg0EujzGlLdkPPFD+3EwxMdKoUXZ/4cIgF8i9CN3h6Ngxuz3nnNpd56KL7DYI47p/8xv7x6yEBOn116U2bSo4MDvbdnGXCN0AAABARTp0sL+/FxWVuxRXVJTtWt69u5SZaYP36dNBLM8770ibN9tf+B95pOLjRoyw2zVrglwg9yJ0h6OjR+22efPaXSdILd2LFklPPmn3FyyQ+vat5OD0dLtt167MGmIAAAAAzlJJF3NJatzYTqiWnCxt2SKNHm0bpINi+nS7/dnPKp/guXt3+weD776L2HW7Cd3hyAndtW3pDsIM5hs32vtOspMY3nFHFSfQtRwAAADwj7N02FtvVZimO3aU/v5327P71Vdtt/OA27bNBuiYGOlXv6r8WI+ndPmiVauCUBj3I3SHo0B1L3dC9+efB2Q2wYMHbTeW/Hy7nTrVj5OYRA0AAADwz8CBtjv3l19W2lt14EDpuefs/mOP2eGeAfXCC3b7ox/ZVuyqODOvr1sX4IKEB0J3OApUS3e7drYPSlGRlJFRq0udPi0NHSplZUk9etgu5lH+/HTR0g0AAAD4p0EDadAgu19Fq/GYMdL48Xb/rrukTz8NUBlycqSXX7b7997r3zlXXWVbvHftsoEhwhC6w40xgRvT7fEEZDI1Y6Sf/ETautWOH1m50i7LV6WiotIx3b171/j1AQAAgIjxgx/Y7cqVVR46a5b0X/8lnTwp3XhjaYyolVdesRe84ILSPwBUpXlz2zInSf/5TwAKEV4I3eEmN9euAyDVvqVbCsi47j/8QVqyRIqNlZYvl84/388TMzLs+2nQQOrSpcavDwAAAESMG2+02/fft+tfVyI2Vlq61I7z3rtXuu02qaCglq//17/a7T33nL0ud2WuvNJu62wRcfcgdIcb589TsbF+NidXwWnpruEM5suX23Eikh03ctVV1TjZGc/do4cUHV2j1wcAAAAiynnnSZddJhUXS//8Z5WHn3OOHdPdsKFd5euhh2rx2lu22K+4uNL1t/3lLGn0wQe1KEB4InSHm7Jdy6vzl6WK1KKl+5NPpJEj7f4DD5TOWu43Zzw3XcsBAAAA/w0darcrVvh1uDPnkiQ9+6w0b14NX9dp5b7lluov93v55Xa7dasdZhpBCN3hJlAzlzuc0L17d7V++I8csff6qVN2MsI//akGr+20dBO6AQAAAP85oXvtWjujsR9uukmaMsXujx1re6dXS9kJ1O65p5ony/awTUy048F3767++WGM0B1unNBd20nUHB062DHVeXl2oIcfCgqkW2+V9u2TOne247ljYmrw2oRuAAAAoPp69rQTKeXmSmvW+H3ao4/aVb4KCqSbb5YOHKjGa9ZkArWyoqNLf+93erxGCEJ3uDl+3G6bNg3M9aKjpW7d7L6fXcwnTLBL7DVqZCdNrFH+z8qSvv7adpF3ZjIEAAAAUDWPp7S1uxqLcEdFSQsX2tV6Dx+Whg3zu6G85hOoleX83u+sYBQhCN3h5sQJu23SJHDXrMa47v/9X+nPf7b7L71Uemq1OX/d6to1MBPCAQAAAJHECd0rV1ZrSvKGDW1OT06Wtm2zS/8aU8VJtZlArSxCN8KCE7oD1dItlSbnKmYwf/996f777f60aaWrFdQIXcsBAACAmrvqKqllSzv8dO3aap3aoYP097/bIaJLlkgzZlRxQm0mUCuL0I2w4HQvD2RLt7NsWCUt3V9+ae8xZzz3b39by9ckdAMAAAA1FxMj3X673X/llWqfPnCgnclcsr/b/+MfFRxYdgK1e++tfjnLckL3/v32uhGC0B1ugtm9fOdOu97fGXJz7WyHWVl2zoYFCwKwWhmhGwAAAKidO++029deq8bg7FL33We/jJFGjKigDc6ZQK1bN5vUa6NZM6lVK7sfQTOYE7rDTTC6l3fuLMXG2vW/Dh70ecoYu/72li22J8nrr9txILWSm1t6kxG6AQAAgJr53vfsLOanTlXSVF25Z56xWTonxw4TdxZL8grEBGplOZM4f/ZZ7a8VJgjd4SYY3ctjY+3U/9JZf96aOdP2JomJkZYts/d0rX36qW1Rb9lSat06ABcEAAAAIpDHIw0fbvdr0MVcsnOjLVtmx3lnZNge64WFJU9u3lw6gdrIkYEps5M7aOmGawWje7lU7rju1aulRx6x+888U7Pl+MpVtmt5IP5aBgAAAEQqp4v5qlXSt9/W6BItWtgerYmJ0ttvSw8/XPKEs2zRHXfUbgK1spyWbkI3XCsY3culs2Yw373b3lvGSGPGSGPHBvC1GM8NAAAABEb37naCsoICaenSGl+mVy/pb3+z+7NnS4v/57Cd2lySxo+vfTkddC+H6wWje7nks1b3iRN2PMeJE9IVV9g/cAW0QZrQDQAAAASO0/XbGX9dQ7fcIj3+uN3fMWGulJ8vpaRIl19eywKW0bWr3X7+uR8LhNcPhO5wYoyUnW33g9S93OzYoRHDjXbvls49167fFxcXwNcpLpY+/tju9+oVwAsDAAAAEeruu+0v7Vu2SB9+WKtLTZ4s3TK0UPcUPS9JOjY8gK3ckh08LtkZ0WvYHT7cELrDyalTUlGR3Q909/ILLpCiouQ5flwfrspSQoK0YkXpjP4Bs2ePfR8JCaWTKAAAAACoueRk6dZb7f5f/lKrS0VFSYt+tELn6itlqaV+8OKtys0NQBkdDRqUTqa8b18AL+xehO5w4nQtj4mxP6yBlJCg7JadJUmXaLvmz5f69AnsS0gq7Vreo4d9HwAAAABq77777Pbll2vXgmyMGvzPk5KkRQn3aMPWeP3sZwHuCe60dhO64TplZy4P8KzfW7dK6w5fIkl68Ort3kkQA47x3AAAAEDgXXGF1LOndPq09NxzNb/O2rXSBx9IDRroey8/oOhom+OfeipwRfWuQ7x/fwAv6l6E7nASpJnLs7KkYcOkbcU9JUk/6PBJQK/vY+tWuyV0AwAAAIHj8ZSu9zt7tg3fNfH739vtfffpypta6Jln7D8nTrSrkgWEE7pp6YbrBGHm8vx86Uc/kr78UjrWtockKSo9SKHbmNKJHfr2Dc5rAAAAAJHqttukTp2kI0ek//3f6p+/dq307rt2UrZf/UqSdP/9dglhY+yS4Lt2BaCcdC+HawWhpfuBB6T33pOSkqQH59mWbn36aemEbYG0f7/9DyA2lpnLAQAAgECLiZF+/Wu7/8QTpSsf+aOwUJowwe6PHSu1bSvJNqD/+c/SlVfayw0dWtoWWGN0L4drlR3THQDPP28nN/R4pFdekToN7mwnaMvNtbOMB9oHH9htz55SfHzgrw8AAABEutGj7SpBWVmlXcX9MXeubXxr3rx0se4ScXF2KeH27aXPPpPuuKOWbXS0dMO1Ati9/N//tq3ckjRjhjRkiKToaKl7d/vgJ0HoYu6E7ssvD/y1AQAAANiE/PTTdn/2bGn37qrP+fJL6be/tftTptjgfYaWLaXXX7dtdG+9VTp8vEac0H3iRACazd2P0B1OAtS9fP9+O467sFAaPlx6+OEyT/Ys6WIezNDNeG4AAAAgeIYMsV8FBbZZurKFtouKpBEj7DJjl18u3XtvhYdeeqm0cKHd/9OfpL/9rYbla9hQatHC7kdAF3NCdzgJQPfyU6fsOIwjR6TLLrPzK/isPuaE7vT0mpezPMXF0pYtdp+WbgAAACC4/vIXG2w/+kgaN67ihbYnTbKTpzVubMecxsZWetnbbittFL/nHmnz5hqWL4K6mBO6w0ktu5cbY4d4fPyx7R6yYoXtHuIjWC3dn30m5eTYF7z44sBeGwAAAICvc8+1IToqSlqwQBo/3i5d5CgosF1enQW4X3hB6tzZr0tPnSrdeKOUl2eXHj50qAbli6Blwwjd4aSW3cunT5eWLrV/vFq+3E6EcJYedtkwffFF6esFgtO1/LLL7KyKAAAAAILr6qul556z+889Z1cQ+v3v7czmvXtLM2fa5/70Jzvu1E9RUdKiRbYt7euvpZtvlr77rppli6AZzAnd4aQW3cv/8Q/p0Uft/pw50hVXVHDgOeeUdvXYtq36ZawIk6gBAAAAde/ee6XXXrO/5+/aJT32mO0fvmOHnTBtyZLSpcKqISlJWrlSatZM2rRJuu++inuwl6tdO7v96qtqv3a4IXSHkxp2L9+xw86NYIwdzjFmTBUn9Oljt84Y7EBgEjUAAAAgNIYNsz1Z//xn6a67bDj4n/+RMjLsIO0a6tzZZvaoKOnFF+0l/VayDri+/rrGrx8uCN3hpAbdy7/91k6clpMjff/7pasHVCrQobugwE7gINHSDQAAAIRCUpJtgVu0SPq//5N+/nPbTF1LgweX9lJ/6CEpLc3PE9u0sVtCN1ylmi3dhYV2hYCMDNtj3BnPXaVAh+70dDvIo0kTqUuXwFwTAAAAgCv84hfSyJF29bHbbrON6lUidMN1ioulkyftflKSX6dMnCitWSMlJtqF7JOT/XwtJ3R/9pmUnV39sp7p/ffttn9/2/cEAAAAQL3h8dgVyi6/XDp2zPa0daJLhZzQfeqU7ZZbj5GAwsWpU6X7jRtXefiiRXYSQsmOr+jVqxqvlZwsnXee3Q/EZGrvvWe3V15Z+2sBAAAAcJ2EBDtfW+vW0qef2pbv4uJKTmjYsDTX1GjNsfBB6A4Xzp+KoqLsT3QlNm8unSztscekH/2oBq8XqC7mxhC6AQAAgAjQrp1dmjguzgbw3/++ihMipIs5oTtcOKG7cWPbf6MCX38t3XSTXaj+xhul3/2uhq/nhO4PP6zhBUrs32//chUTwyRqAAAAQD3Xv7/0/PN2f/JkacWKSg4mdMNVnHEOjRpVeEhenl2Y/tAhu1D9okW1GEKdkmK369fX8AIlnFbuPn3s4HIAAAAA9dpPfmInR5ekH/9Y2r69ggMJ3XAVp6W7gtBtjDR2rLRxo535f+VKv+dbK19KihQdbVuqDx6s+XWcSdToWg4AAABEjD/9Sfqv/7IxZuhQO8HaWQjdcJUqQvezz0oLFtiW7SVL7EL1tdK4censa05wron//Mdur7iilgUCAAAAEC5iY6VXX7VLF+/ZY5cyLiw84yBCN1yl7JjuM6SlSRMm2P2ZM+0C9QHhtE47XcSr69AhaccOOwZ94MAAFQoAAABAOEhOtksXJyZKa9dKjzxyxgGEbrhKBWO6v/jCLkBfVCSNGmUXpg8YJ3TXtKU7Lc1uL7tMOuecwJQJAAAAQNjo1UtauNDuz5ol/e1vZZ4kdMNVyulenpNjZyg/dkzq10964YVKJzavPqdL+Mcf12zB+rVr7TZgTe8AAAAAws2tt0qPPmr377nHLnEsidANlzkjdBcX25bt7dvtz+prr1W5fHf1tW0rdexoX2zDhuqda4z09tt2n9ANAAAARLQpU6Qf/tCuuHTTTSU52wndx49LubmhLF5QEbrDxRljuqdOtUHbWXi+bdsgve6gQXbrtFr7a/t2eyc1aCANGBD4cgEAAAAIG1FR0v/9n3TRRXbqp1tukfIaNC1tOczMDGn5gonQHS7KjOlevtz+pUiS/vrX0iW1g+L66+121arqnbdmjd1edVUQmuABAAAAhJukJDuxWtOmtiPtuPEemQjoYk7oDhclLd1f5zTSyJH2oV/8wnYxD6rBg+2fpXbskA4c8P+8FSvs1gntAAAAACJe167S4sU2YsybJ2WZVvaJw4dDW7AgInSHi5LQ/fyiRjp1SkpNlZ56qg5et1kzqX9/u//mm/6dk5lZuszYzTcHp1wAAAAAwtK110p//KPd/3Bfst05ciR0BQoyQneYKM6xoXvf0Ubq1ElaskSKiamjF3daq/0N3a+9ZidSS0mRzjsveOUCAAAAEJYeekgaMUL6RjZ0H9v9TYhLFDyE7jCxL92O6S5MaKyVK6XmzevwxZ3QnZYmffdd1ccvW2a3t9wSvDIBAAAACFsejzR3rhTdqoUk6Z8Lj+jUqRAXKkgI3WFg/nwp52vb0j1+YiNdckkdF6B3b6l9e9vFvaoJ1Q4fltats/uEbgAAAAAVaNBAuvEntqXbHDmiu++2HWbrG0K3y23Y4NF990mNZEP3gGsa1X0hoqKkO++0+y+9VPmxixbZdb379pU6dQp+2QAAAACEraZdbOhu6flGy5ZJTzwR4gIFAaHbxY4cSdBtt0WroEA6J75kne5GIQjdkh1wIUn/+IeUlVX+McXFdg0zSRozpm7KBQAAACB8tbDdy/t0sBOpPfqo9I9/eEJZooAjdLtUbq40Y0Y/ZWV51LOn1CSqZJ3uxo1DU6CePaXvfU8qKCgN1mf65z+lzz6zZXRaxgEAAACgIslOS/cR3X+/fejuu6P15ZchamwMAkK3CxkjjR0brYyMZjrnHKMVfy+SJzfXPhmqlm5JGj/ebp95RsrJ8X2uuFj6/e/t/v33h+6PAwAAAADCR0no1jffaPZsaeBAKSfHo+nTU/TttyEtWcAQul3o44+lV1/1KCqqWIsXF6ljyzLT+IUydN9+u3TBBdLRo9L06b7P/e1v0gcf2PL98pehKR8AAACA8FLSvVwnTyq26DstWyadd57RoUON9OKL9SOuhvxdzJkzR+eff74SEhKUkpKizZs3V3r88ePHNW7cOLVp00bx8fG64IILtKqqGbXDTO/e0ptvFmns2I81aJCxs4ZLUnS0FB8fuoLFxEgzZtj9J5+U3n7b7qenSz//ud1/7DGpVavQlA8AAABAeGnSxOYcSTp6VC1aSEuXFmr06E/14IPFoS1bgIQ0dC9ZskQTJkzQ5MmTtXXrVvXq1UvXXnutDh8+XO7x+fn5Gjx4sPbt26dly5Zp9+7dmjt3rtq1a1fHJQ++QYOMBg8+YP+RU2Y8tyfEkwrcdJOdVK2oSBoyRPrBD6QBA+wfBr7/fWnChNCWDwAAAED48Hh8uphL0qWXSkOH7gl59AmUmFC++KxZszRmzBiNHj1akvTCCy/ojTfe0Pz58zVx4sSzjp8/f76OHTum9evXKzY2VpJ0/vnn12WRQ+NkiGcuP9O8edLp09Jrr0lvvGEfGzhQWrbMtoYDAAAAgL9atLArJB05EuqSBEXIWrrz8/O1ZcsWpaamlhYmKkqpqanasGFDueesXLlS/fv317hx49SqVSt1795dTzzxhIqKiuqq2KHhttAdHy/9/e9SWpo0c6adtfydd6Rzzgl1yQAAAACEG6elu56G7pA1Sx45ckRFRUVqdcb431atWmnXrl3lnvPFF1/onXfe0YgRI7Rq1SplZGTo/vvvV0FBgSZPnlzuOXl5ecrLy/P+Ozs7W5JUUFCggoKCAL2bwHPKVlBQIM/x44qRVNywoYrcVOarrrJfkp29vLh+jLnwR9n6gTtRR+5G/bgfdeRu1I+7UT/uRx25S3Tz5oqSVJSZqeIyOc3t9eNv+cKqL3BxcbFatmypv/71r4qOjlafPn301Vdf6amnnqowdE+fPl1Tpkw56/E1a9YoMTEx2EWutbVr16rdu++qr6SjeXlaX88mjQt3a9euDXURUAXqyN2oH/ejjtyN+nE36sf9qCN36Hn6tDpK+nzjRu3u2NH7uNvr5/Tp034dF7LQnZycrOjoaGVlZfk8npWVpdatW5d7Tps2bRQbG6toZ3Y7SRdddJEyMzOVn5+vuLi4s86ZNGmSJpSZ3Cs7O1vt27fXNddco6SkpAC9m8ArKCjQ2rVrNXjwYMVlZkqSzunQQUOGDAlxySD51o8zvwDchTpyN+rH/agjd6N+3I36cT/qyF2iNm+WVq9W12bN1HnIkLCpH6cXdVVCFrrj4uLUp08fpaWladiwYZJsS3ZaWprGjx9f7jlXXHGFXn75ZRUXFysqyg5H/+yzz9SmTZtyA7ckxcfHK76cZbZiY2NdXYGO2NhYxeTmSpKikpIUFQZljiTh8nMUyagjd6N+3I86cjfqx92oH/ejjlyiZMhx9NGjii5TH26vH3/LFtIlwyZMmKC5c+fqxRdf1M6dOzV27FidOnXKO5v5yJEjNWnSJO/xY8eO1bFjx/Tggw/qs88+0xtvvKEnnnhC48aNC9VbqBtum0gNAAAAAAKlRQu7ZSK1wLv99tv1zTff6PHHH1dmZqZ69+6t1atXeydXO3DggLdFW5Lat2+vt956S7/85S/Vs2dPtWvXTg8++KAeeeSRUL2FuuGs003oBgAAAFDfMHt5cI0fP77C7uTr1q0767H+/ftr48aNQS6Vyzgt3Y0bh7YcAAAAABBoTuj+5pvQliNIQtq9HH6iezkAAACA+uqcc+z22DHJmNCWJQgI3eHACd0NG4a2HAAAAAAQaM2a2W1+vlQyiXR9QugOB876b4RuAAAAAPVNo0aSsyz0t9+GtixBQOgOB07oTkwMbTkAAAAAINA8HqlpU7tP6EZIELoBAAAA1GdOF3NCN0KC0A0AAACgPiN0I6QI3QAAAADqM0I3QorQDQAAAKA+I3QjpAjdAAAAAOozQjdCxhhCNwAAAID6jdCNkMnPl4qL7T6hGwAAAEB9ROhGyDit3BKhGwAAAED95ITu48dDWoxgIHS7nRO6Y2Kk2NjQlgUAAAAAgoGWboQM47kBAAAA1HeEboQMoRsAAABAfde0qd0SulHXPLm5dofQDQAAAKC+oqUbIUNLNwAAAID6zgnd331nv+oRQrfbEboBAAAA1HdJSZLHY/frWWs3odvtCN0AAAAA6ruoqHo7rpvQ7XaM6QYAAAAQCUq6mHvq2VrdhG6X89DSDQAAACAS1NPJ1AjdbkfoBgAAABAJCN0ICUI3AAAAgEhA93KEBKEbAAAAQCSgpRshwURqAAAAACKBE7pp6UZdYiI1AAAAABGhZMkwupejbhG6AQAAAESCJk3sNjs7tOUIMEK32xG6AQAAAESCpCS7zckJbTkCjNDtdozpBgAAABAJnNBNSzfqFC3dAAAAACJBSfdyz4kTIS5IYBG6XY6J1AAAAABEBLqXIySc0N2wYWjLAQAAAADBRPdyhARjugEAAABEgpLQ7Tl9Wp6iohAXJnAI3W5H93IAAAAAkcBp6ZYU4+SgeoDQ7XaEbgAAAACRIC5OSkiQROhGXSkulue77+w+oRsAAABAfVfS2h3rDLOtBwjdLhadn1/6D0I3AAAAgPquZNmwmFOnQlyQwCF0u1h0Xl7pP0q6WQAAAABAvUVLN+pStNO1vEEDKYqqAgAAAFDPlYRuxnSjTsQ43cvpWg4AAAAgEjihm5Zu1AVv93JCNwAAAIBIUDKmO5Yx3agLhG4AAAAAEYWWbtQlQjcAAACAiOJMpMaYbtQFb+hu0CC0BQEAAACAusBEaqhL0UykBgAAACCSOGO6Cd2oC1FO6GaNbgAAAACRgJZu1CVvSzfdywEAAABEAiZSQ12KKiiwO7R0AwAAAIgEdC9HXWIiNQAAAAARhe7lqEvRtHQDAAAAiCSEbtQlJlIDAAAAEFGc0J2fLzmNkGGO0O1iTKQGAAAAIKKUhG5JUnZ26MoRQIRuF2MiNQAAAAARJTZWxml0JHQj2GjpBgAAABBxnNZuQjeCLZox3QAAAAAiTUno9uTkhLgggUHodjG6lwMAAACINMZp6T5xIrQFCZCYUBcAFWOdbgAAAACRpnjaNH3w3nu6rG/fUBclIAjdLkZLNwAAAIBIY1JTlZmfL7VqFeqiBATdy12MidQAAAAAILwRul2MidQAAAAAILwRul0sipZuAAAAAAhrhG4Xi2ZMNwAAAACENUK3i0XRvRwAAAAAwhqh28WYSA0AAAAAwhuh260KCxVVVGT3aekGAAAAgLBE6Har774r3aelGwAAAADCEqHbrcqG7vj40JUDAAAAAFBjhG63KgndJjZWio4OcWEAAAAAADVB6Har3Fy7pWs5AAAAAIQtQrdbOd3LmUQNAAAAAMIWodulPE7opqUbAAAAAMIWodutnNDNJGoAAAAAELYI3W7FmG4AAAAACHuEbrdyZi9nTDcAAAAAhC1XhO45c+bo/PPPV0JCglJSUrR58+YKj124cKE8Ho/PV0J9DKZMpAYAAAAAYS/koXvJkiWaMGGCJk+erK1bt6pXr1669tprdfjw4QrPSUpK0tdff+392r9/fx2WuI4wkRoAAAAAhL2Qh+5Zs2ZpzJgxGj16tC6++GK98MILSkxM1Pz58ys8x+PxqHXr1t6vVq1a1WGJ64aHidQAAAAAIOyFNHTn5+dry5YtSk1N9T4WFRWl1NRUbdiwocLzTp48qQ4dOqh9+/YaOnSotm/fXhfFrVtMpAYAAAAAYS8mlC9+5MgRFRUVndVS3apVK+3atavcc7p166b58+erZ8+eOnHihGbOnKkBAwZo+/btOvfcc886Pi8vT3l5ed5/Z2dnS5IKCgpUUFAQwHcTWObUKUVLKo6LU5GLyxmpnJ8dN/8MRTrqyN2oH/ejjtyN+nE36sf9qCN3C5f68bd8HmOMCXJZKnTo0CG1a9dO69evV//+/b2P//rXv9a///1vbdq0qcprFBQU6KKLLtKdd96padOmnfX87373O02ZMuWsx19++WUlJibW7g0EUbdXXtGFS5Zo7/XX65N77w11cQAAAAAAZZw+fVrDhw/XiRMnlJSUVOFxIW3pTk5OVnR0tLKysnwez8rKUuvWrf26RmxsrC699FJlZGSU+/ykSZM0YcIE77+zs7PVvn17XXPNNZV+Y0Ju3TpJ0rldu+rcIUNCWxacpaCgQGvXrtXgwYMVGxsb6uKgHNSRu1E/7kcduRv1427Uj/tRR+4WLvXj9KKuSkhDd1xcnPr06aO0tDQNGzZMklRcXKy0tDSNHz/er2sUFRUpPT1dQyoIpvHx8YovZzKy2NhYV1eg06U8KjFR0S4uZ6Rz+88RqCO3o37cjzpyN+rH3agf96OO3M3t9eNv2UIauiVpwoQJGjVqlPr27at+/fpp9uzZOnXqlEaPHi1JGjlypNq1a6fp06dLkqZOnarvfe976tKli44fP66nnnpK+/fv189+9rNQvo2A8zCRGgAAAACEvZCH7ttvv13ffPONHn/8cWVmZqp3795avXq1d3K1AwcOKCqqdJL1b7/9VmPGjFFmZqaaNWumPn36aP369br44otD9RaCw1kyLCEhtOUAAAAAANRYyEO3JI0fP77C7uTrSsY2O55++mk9/fTTdVCqEKOlGwAAAADCXkjX6UYlSpY5M7R0AwAAAEDYInS7ldO9vJxJ4AAAAAAA4YHQ7VZ0LwcAAACAsEfodikPE6kBAAAAQNgjdLsVLd0AAAAAEPYI3W5VMpEaLd0AAAAAEL4I3W5V0tJtmEgNAAAAAMIWodutnDHddC8HAAAAgLBF6HYrJlIDAAAAgLBH6HYjY0pnL6elGwAAAADCVkyoC4ByFBTI9OihU0ePKp7QDQAAAABhi5ZuN4qLU+GWLUp77jmpceNQlwYAAAAAUEOEbgAAAAAAgoTQDQAAAABAkBC6AQAAAAAIEkI3AAAAAABBQugGAAAAACBICN0AAAAAAAQJoRsAAAAAgCAhdAMAAAAAECSEbgAAAAAAgoTQDQAAAABAkBC6AQAAAAAIEkI3AAAAAABBQugGAAAAACBICN0AAAAAAAQJoRsAAAAAgCAhdAMAAAAAECSEbgAAAAAAgoTQDQAAAABAkBC6AQAAAAAIEkI3AAAAAABBEhPqAtQ1Y4wkKTs7O8QlqVxBQYFOnz6t7OxsxcbGhro4OAP1437UkbtRP+5HHbkb9eNu1I/7UUfuFi7142RKJ2NWJOJCd05OjiSpffv2IS4JAAAAACDc5eTkqEmTJhU+7zFVxfJ6pri4WIcOHVLjxo3l8XhCXZwKZWdnq3379vryyy+VlJQU6uLgDNSP+1FH7kb9uB915G7Uj7tRP+5HHblbuNSPMUY5OTlq27atoqIqHrkdcS3dUVFROvfcc0NdDL8lJSW5+gct0lE/7kcduRv1437UkbtRP+5G/bgfdeRu4VA/lbVwO5hIDQAAAACAICF0AwAAAAAQJIRul4qPj9fkyZMVHx8f6qKgHNSP+1FH7kb9uB915G7Uj7tRP+5HHblbfaufiJtIDQAAAACAukJLNwAAAAAAQULoBgAAAAAgSAjdAAAAAAAECaE7RP7whz9owIABSkxMVNOmTf06xxijxx9/XG3atFGDBg2Umpqqzz//3OeYY8eOacSIEUpKSlLTpk3105/+VCdPngzCO6j/qvu93LdvnzweT7lfS5cu9R5X3vOLFy+ui7dUr9TkZ/373//+Wd/7++67z+eYAwcO6IYbblBiYqJatmyphx9+WIWFhcF8K/VWdevo2LFj+vnPf65u3bqpQYMGOu+88/TAAw/oxIkTPsdxD9XMnDlzdP755yshIUEpKSnavHlzpccvXbpUF154oRISEtSjRw+tWrXK53l/PpNQPdWpo7lz5+qqq65Ss2bN1KxZM6Wmpp51/N13333WvXLdddcF+23UW9Wpn4ULF571vU9ISPA5hnsosKpTP+X9PuDxeHTDDTd4j+H+CZz//Oc/+uEPf6i2bdvK4/FoxYoVVZ6zbt06XXbZZYqPj1eXLl20cOHCs46p7udaSBmExOOPP25mzZplJkyYYJo0aeLXOTNmzDBNmjQxK1asMB9//LG58cYbTceOHU1ubq73mOuuu8706tXLbNy40bz77rumS5cu5s477wzSu6jfqvu9LCwsNF9//bXP15QpU0yjRo1MTk6O9zhJZsGCBT7Hla1D+KcmP+uDBg0yY8aM8fnenzhxwvt8YWGh6d69u0lNTTXbtm0zq1atMsnJyWbSpEnBfjv1UnXrKD093dx8881m5cqVJiMjw6SlpZmuXbuaW265xec47qHqW7x4sYmLizPz588327dvN2PGjDFNmzY1WVlZ5R7//vvvm+joaPPkk0+aHTt2mEcffdTExsaa9PR07zH+fCbBf9Wto+HDh5s5c+aYbdu2mZ07d5q7777bNGnSxBw8eNB7zKhRo8x1113nc68cO3asrt5SvVLd+lmwYIFJSkry+d5nZmb6HMM9FDjVrZ+jR4/61M2nn35qoqOjzYIFC7zHcP8EzqpVq8xvf/tbs3z5ciPJvPbaa5Ue/8UXX5jExEQzYcIEs2PHDvPss8+a6Ohos3r1au8x1a3zUCN0h9iCBQv8Ct3FxcWmdevW5qmnnvI+dvz4cRMfH29eeeUVY4wxO3bsMJLMBx984D3mzTffNB6Px3z11VcBL3t9FqjvZe/evc1PfvITn8f8+c8Glatp/QwaNMg8+OCDFT6/atUqExUV5fOL0fPPP2+SkpJMXl5eQMoeKQJ1D7366qsmLi7OFBQUeB/jHqq+fv36mXHjxnn/XVRUZNq2bWumT59e7vG33XabueGGG3weS0lJMffee68xxr/PJFRPdevoTIWFhaZx48bmxRdf9D42atQoM3To0EAXNSJVt36q+v2Oeyiwanv/PP3006Zx48bm5MmT3se4f4LDn8/wX//61+aSSy7xeez222831157rfffta3zukb38jCxd+9eZWZmKjU11ftYkyZNlJKSog0bNkiSNmzYoKZNm6pv377eY1JTUxUVFaVNmzbVeZnDWSC+l1u2bNFHH32kn/70p2c9N27cOCUnJ6tfv36aP3++DCv3VUtt6uell15ScnKyunfvrkmTJun06dM+1+3Ro4datWrlfezaa69Vdna2tm/fHvg3Uo8F6v+jEydOKCkpSTExMT6Pcw/5Lz8/X1u2bPH5/IiKilJqaqr38+NMGzZs8DlesveCc7w/n0nwX03q6EynT59WQUGBmjdv7vP4unXr1LJlS3Xr1k1jx47V0aNHA1r2SFDT+jl58qQ6dOig9u3ba+jQoT6fI9xDgROI+2fevHm644471LBhQ5/HuX9Co6rPoEDUeV2LqfoQuEFmZqYk+YQB59/Oc5mZmWrZsqXP8zExMWrevLn3GPgnEN/LefPm6aKLLtKAAQN8Hp86dar++7//W4mJiVqzZo3uv/9+nTx5Ug888EDAyl/f1bR+hg8frg4dOqht27b65JNP9Mgjj2j37t1avny597rl3WPOc/BfIO6hI0eOaNq0abrnnnt8Huceqp4jR46oqKio3J/tXbt2lXtORfdC2c8b57GKjoH/alJHZ3rkkUfUtm1bn19Cr7vuOt18883q2LGj9uzZo9/85je6/vrrtWHDBkVHRwf0PdRnNamfbt26af78+erZs6dOnDihmTNnasCAAdq+fbvOPfdc7qEAqu39s3nzZn366aeaN2+ez+PcP6FT0WdQdna2cnNz9e2339b6/8y6RugOoIkTJ+qPf/xjpcfs3LlTF154YR2VCGfyt45qKzc3Vy+//LIee+yxs54r+9ill16qU6dO6amnniIwKPj1Uza89ejRQ23atNHVV1+tPXv2qHPnzjW+biSpq3soOztbN9xwgy6++GL97ne/83mOewjwNWPGDC1evFjr1q3zmazrjjvu8O736NFDPXv2VOfOnbVu3TpdffXVoShqxOjfv7/69+/v/feAAQN00UUX6S9/+YumTZsWwpLhTPPmzVOPHj3Ur18/n8e5fxBIhO4Aeuihh3T33XdXekynTp1qdO3WrVtLkrKystSmTRvv41lZWerdu7f3mMOHD/ucV1hYqGPHjnnPj3T+1lFtv5fLli3T6dOnNXLkyCqPTUlJ0bRp05SXl6f4+Pgqj6/P6qp+HCkpKZKkjIwMde7cWa1btz5r5susrCxJ4h4qURd1lJOTo+uuu06NGzfWa6+9ptjY2EqP5x6qXHJysqKjo70/y46srKwK66J169aVHu/PZxL8V5M6csycOVMzZszQ22+/rZ49e1Z6bKdOnZScnKyMjAxCQzXUpn4csbGxuvTSS5WRkSGJeyiQalM/p06d0uLFizV16tQqX4f7p+5U9BmUlJSkBg0aKDo6utb3ZF1jTHcAtWjRQhdeeGGlX3FxcTW6dseOHdW6dWulpaV5H8vOztamTZu8f0nt37+/jh8/ri1btniPeeedd1RcXOwNF5HO3zqq7fdy3rx5uvHGG9WiRYsqj/3oo4/UrFkzwoLqrn4cH330kSR5f+Hp37+/0tPTfcLi2rVrlZSUpIsvvjgwbzLMBbuOsrOzdc011yguLk4rV648a4md8nAPVS4uLk59+vTx+fwoLi5WWlqaT0tcWf379/c5XrL3gnO8P59J8F9N6kiSnnzySU2bNk2rV6/2mT+hIgcPHtTRo0d9Qh6qVtP6KauoqEjp6ene7z33UODUpn6WLl2qvLw83XXXXVW+DvdP3anqMygQ92SdC/VMbpFq//79Ztu2bd4lpbZt22a2bdvms7RUt27dzPLly73/njFjhmnatKl5/fXXzSeffGKGDh1a7pJhl156qdm0aZN57733TNeuXVkyrIaq+l4ePHjQdOvWzWzatMnnvM8//9x4PB7z5ptvnnXNlStXmrlz55r09HTz+eefm+eee84kJiaaxx9/POjvp76pbv1kZGSYqVOnmg8//NDs3bvXvP7666ZTp05m4MCB3nOcJcOuueYa89FHH5nVq1ebFi1asGRYDVW3jk6cOGFSUlJMjx49TEZGhs8yLYWFhcYY7qGaWrx4sYmPjzcLFy40O3bsMPfcc49p2rSpd6b+H//4x2bixIne499//30TExNjZs6caXbu3GkmT55c7pJhVX0mwX/VraMZM2aYuLg4s2zZMp97xfk9Iicnx/zqV78yGzZsMHv37jVvv/22ueyyy0zXrl3Nd999F5L3GM6qWz9Tpkwxb731ltmzZ4/ZsmWLueOOO0xCQoLZvn279xjuocCpbv04rrzySnP77bef9Tj3T2Dl5OR4s44kM2vWLLNt2zazf/9+Y4wxEydOND/+8Y+9xztLhj388MNm586dZs6cOeUuGVZZnbsNoTtERo0aZSSd9fWvf/3Le4xK1qJ1FBcXm8cee8y0atXKxMfHm6uvvtrs3r3b57pHjx41d955p2nUqJFJSkoyo0eP9gny8F9V38u9e/eeVWfGGDNp0iTTvn17U1RUdNY133zzTdO7d2/TqFEj07BhQ9OrVy/zwgsvlHssKlfd+jlw4IAZOHCgad68uYmPjzddunQxDz/8sM863cYYs2/fPnP99debBg0amOTkZPPQQw/5LFcF/1W3jv71r3+V+/+iJLN3715jDPdQbTz77LPmvPPOM3FxcaZfv35m48aN3ucGDRpkRo0a5XP8q6++ai644AITFxdnLrnkEvPGG2/4PO/PZxKqpzp11KFDh3LvlcmTJxtjjDl9+rS55pprTIsWLUxsbKzp0KGDGTNmjGt/IQ0H1amfX/ziF95jW7VqZYYMGWK2bt3qcz3uocCq7v9xu3btMpLMmjVrzroW909gVfT57tTJqFGjzKBBg846p3fv3iYuLs506tTJJxM5Kqtzt/EYwzorAAAAAAAEA2O6AQAAAAAIEkI3AAAAAABBQugGAAAAACBICN0AAAAAAAQJoRsAAAAAgCAhdAMAAAAAECSEbgAAAAAAgoTQDQAAAABAkBC6AQAAAAAIEkI3AAAAAABBQugGAAAAACBICN0AAECS9M0336h169Z64oknvI+tX79ecXFxSktLC2HJAAAIXx5jjAl1IQAAgDusWrVKw4YN0/r169WtWzf17t1bQ4cO1axZs0JdNAAAwhKhGwAA+Bg3bpzefvtt9e3bV+np6frggw8UHx8f6mIBABCWCN0AAMBHbm6uunfvri+//FJbtmxRjx49Ql0kAADCFmO6AQCAjz179ujQoUMqLi7Wvn37Ql0cAADCGi3dAADAKz8/X/369VPv3r3VrVs3zZ49W+np6WrZsmWoiwYAQFgidAMAAK+HH35Yy5Yt08cff6xGjRpp0KBBatKkif75z3+GumgAAIQlupcDAABJ0rp16zR79mwtWrRISUlJioqK0qJFi/Tuu+/q+eefD3XxAAAIS7R0AwAAAAAQJLR0AwAAAAAQJIRuAAAAAACChNANAAAAAECQELoBAAAAAAgSQjcAAAAAAEFC6AYAAAAAIEgI3QAAAAAABAmhGwAAAACAICF0AwAAAAAQJIRuAAAAAACChNANAAAAAECQELoBAAAAAAiS/wcSomqFPu08RgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "# Plotting\n", "X = torch.linspace(-1, 1, 1000, dtype=torch.float64).reshape(-1, 1)\n", @@ -2193,24 +1669,13 @@ "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDHUlEQVR4nO2deZxb9Xnun6N9Nmn2zR57PN7G2MY2NnYMCUtwsGPahCQlQN2wlEJKcW4oaVpIm0Bubq5prktyQ2gJuQWaZoGmCSQhiQkxGAcw3g3G+z6rZh9Jo5nR+rt/nPM70sxoOUc6Wo70fj+f+STWaPmJmZEePe/zvq/AGGMgCIIgCILQCYZcH4AgCIIgCEINJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVplwfQGvC4TB6enpQUVEBQRByfRyCIAiCIBTAGIPH40FzczMMhsTeSsGJl56eHrS0tOT6GARBEARBpEBnZydmz56d8DoFJ14qKioAiE/ebrfn+DQEQRAEQSjB7XajpaVFfh9PRMGJF14qstvtJF4IgiAIQmcoiXxQYJcgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1B4oUgCIIgCF1RcIsZM0XP6AR+9O4lhBjDIx9fkuvjEARBEETRQs6LQsb9IfzrrnP48bsdYIzl+jgEQRAEUbSQeFHI7KoSAMCYL4jR8UCOT0MQBEEQxUtWxMtTTz2F1tZW2Gw2rFu3Dvv27Yt73V/84hdYs2YNKisrUVZWhpUrV+I///M/s3HMhNjMRtRXWAEAnSPjOT4NQRAEQRQvGRcvL774Ih566CE8+uijOHToEFasWIGNGzeiv78/5vWrq6vxj//4j9izZw/ef/993H333bj77rvx6quvZvqoSWmpLgUAdA5P5PgkBEEQBFG8ZFy8PPHEE7j33ntx991347LLLsPTTz+N0tJSPPvsszGvf9111+FTn/oUlixZgvnz5+OLX/wiLr/8crz11luZPmpSWqTSUccwOS8EQRAEkSsyKl78fj8OHjyIDRs2RB7QYMCGDRuwZ8+epLdnjGHnzp04deoUrrnmmpjX8fl8cLvdU74yhey8UNmIIAiCIHJGRsXL4OAgQqEQGhoaplze0NAAp9MZ93Yulwvl5eWwWCy46aab8OSTT+JjH/tYzOtu27YNDodD/mppadH0OUTTUsXLRiReCIIgCCJX5GW3UUVFBY4cOYL9+/fjm9/8Jh566CHs2rUr5nUfeeQRuFwu+auzszNj55pdLZaNukYo80IQBEEQuSKjQ+pqa2thNBrR19c35fK+vj40NjbGvZ3BYMCCBQsAACtXrsSJEyewbds2XHfddTOua7VaYbVaNT13PLjz0j0ygXCYwWAQsvK4BEEQBEFEyKjzYrFYsHr1auzcuVO+LBwOY+fOnVi/fr3i+wmHw/D5fJk4oiqaHDYYDQL8oTD6PJO5Pg5BEARBFCUZXw/w0EMP4c4778SaNWuwdu1afOc734HX68Xdd98NALjjjjswa9YsbNu2DYCYYVmzZg3mz58Pn8+H3/72t/jP//xP/Nu//Vumj5oUk9GA5kobOocn0Dk8gSZHSa6PRBAEQRBFR8bFy6233oqBgQF87Wtfg9PpxMqVK7Fjxw45xNvR0QGDIWIAeb1e/M3f/A26urpQUlKC9vZ2/OhHP8Ktt96a6aMqYk51qSRexrF2XnWuj0MQBEEQRYfACmxRj9vthsPhgMvlgt1u1/z+H/75+3hhfyce3LAQD25YpPn9EwRBEEQxoub9Oy+7jfIZmrJLEARBELmFxItK+IJGGlRHEARBELmBxItKZke1S6eDezKAQCisxZEIgiAIoqgg8aISvt+o1zWRsvjYfXoAH/rfO3HNt97A4Y4RLY9HEARBEAUPiReV1JZbYTEZEGaA06V+1svQmA+f/8+DGPeH0OuaxP944TDC4YLKTBMEQRBERiHxohKDQcDsytRzLz872IWJQAhza0pRYjaic3gCb58b1PqYBEEQBFGwkHhJgVlVqe04YozhhX0dAIAHrluAP1s9GwDw84Nd2h6QIAiCIAoYEi8pwEO7asXLuYExXBwah8VkwJ+saMLm5U0AgL0XhjU/I0EQBEEUKiReUmC27LyoKxvtPi2Wh9bNq0apxYQVLQ4YDQJ6XZPoGaW5MQRBEAShBBIvKTA7xbLRW2dF8fLhBbUAgFKLCUuaKgAAh6jriCAIgiAUQeIlBVKZ9RIOM+yXykNXS+IFAK6YUwUAOHiJxAtBEARBKIHESwrwWS9O9ySCCme9XBzywuMLwmoyoL2xQr58WbMDAHCmb0z7gxIEQRBEAULiJQX4rJdQmKFX4ayXo90uAMBlzXaYjJH/7PPrywGIYV6CIAiCIJJD4iUFome9KM29HO0SxcvlsxxTLp9fVwYA6HVNYswX1PCUBEEQBFGYkHhJkVkqO47el5yXZdPES2WpBbXlFgDAeXJfCIIgCCIpJF5ShId2OxU4L+EwwzFJvFw+u3LG9+fXUemIIAiCIJRC4iVFWqqlFQHDyZ2X84NeeP0h2MwGuUwUDc+9nB/wantIgiAIgihASLykyNxqUYRcHEouOD6QXJelzY4pYV3OnOrUJvYSBEEQRDFC4iVF5taIgqNjKLnz8r4U1l0+Le/CmVWZ2sRegiAIgihGSLykCBcvQ14/PJOBhNc92j0KIIF4kcK/aobeEQRBEESxQuIlRSpsZtSUiV1ClxK4L6Eww7EeNwDg8tmxxcvsqKF3AYVD7wiCIAiiWCHxkgZzeOkoQWj3/MAYxv0hlFqMaJO6iqZTWyYOvQszwKlw6B1BEARBFCskXtKgtUYM7V4YjB/a5XmXpc12GA1CzOsYDEJU7oVKRwRBEASRCBIvacDbns/1x5/PcjTOcLrpzFY59I4gCIIgihUSL2mwQJrPcjbBcLmj8nC6xOKlyWEDQGUjgiAIgkgGiZc0kCfj9o+BMTbj+8FQGMelsO7yWZUJ76vRLoqXPg+JF4IgCIJIBImXNJhbUwajQYDXH4LTPVN0nBvwYiIQQpnFiLbamZN1o6nn4sXty8hZCYIgCKJQIPGSBhaTQZ73cjZG7uX9rlEAwNJZDhjihHU5DZJ46Y8hggiCIAiCiEDiJU0WN1QAAE72emZ87z1JvFyeJKwLAA12KwDEdHAIgiAIgohA4iVNeBcRD+ZGc/DSKABg9dyqpPfDnZcBjw+h8Mz8DEEQBEEQIiRe0mRpsx1AZPkixzMZwCmnGNa9QoF4qS23wiAAYQYMjVHuhSAIgiDiQeIlTfi+ovOD3ik7jt7rdCHMxPkt3FVJhNEgoK5CLB1RaJcgCIIg4kPiJU1qyq1olma0HO2KuC/vnBsEAKxR4LpwuMih3AtBEARBxIfEiwasnVcNAHhbEiwAsOvUAADg2sV1iu+nrlx0XqhsRBAEQRDxIfGiAR9ZKAqU3adF8dLvnsTxXjcEAbhmoXLxUlMubqke8vq1PyRBEARBFAgkXjTgIwtrAQAf9LjQ75nEr97rASC2SNdIbooS+HUHyXkhCIIgiLiQeNGAersNV8ypBGPAs29dxA/3XAIA3HrlHFX3U1MmOS9j5LwQBEEQRDxIvGjE56+dDwB4+s1z6Bgeh91mws2rmlXdRy3PvHjJeSEIgiCIeJB40YiPLWnAdVI412QQ8K0/uxylFpOq+5AzL+S8EARBEERcsiJennrqKbS2tsJms2HdunXYt29f3Ov+4Ac/wEc+8hFUVVWhqqoKGzZsSHj9fMFgEPDcXVfih3+5Fi8/cDU2LWtSfR81ZTzzQuKFIAiCIOKRcfHy4osv4qGHHsKjjz6KQ4cOYcWKFdi4cSP6+/tjXn/Xrl24/fbb8cYbb2DPnj1oaWnBjTfeiO7u7kwfNW0EQcA1i+rklQFqqZWcl2GvD2FaEUAQBEEQMREYYxl9l1y3bh2uvPJKfO973wMAhMNhtLS04Atf+AIefvjhpLcPhUKoqqrC9773Pdxxxx1Jr+92u+FwOOByuWC329M+fzYJhMJY+I+/AwAc+urHUC0FeAmCIPTMSacb337tNCpLLNj26eUwGIRcH4lIkclACB3D42h02GC3mTW9bzXv3xl1Xvx+Pw4ePIgNGzZEHtBgwIYNG7Bnzx5F9zE+Po5AIIDq6upMHTNvMBsNcJSIvww0qI4giEKAMYa/+o8DePVYH1480In3ukZzfSQiDU73eXDjt3fjxid25/QcGRUvg4ODCIVCaGhomHJ5Q0MDnE6novv4h3/4BzQ3N08RQNH4fD643e4pX3qGh3Yp90IQRCFwcWgcXSMT8r/fkKaPE/qk1yWur2l0JN/Zl0nyutvo8ccfxwsvvICXXnoJNlvs/1Dbtm2Dw+GQv1paWrJ8Sm2pLaN2aYIgCocDF4en/PvNU7HzjoQ+cEripamQxUttbS2MRiP6+vqmXN7X14fGxsaEt92+fTsef/xx/P73v8fll18e93qPPPIIXC6X/NXZ2anJ2XMFtUsTBFFIHLw0AgD4xApx7tX73S74gqFcHolIA+688EXCuSKj4sVisWD16tXYuXOnfFk4HMbOnTuxfv36uLf71re+hW984xvYsWMH1qxZk/AxrFYr7Hb7lC89ExEv5LwQBKF/3utyAQA2L29CqcUIxjCljEToC6dL/NkVtPMCAA899BB+8IMf4D/+4z9w4sQJ3H///fB6vbj77rsBAHfccQceeeQR+fr//M//jK9+9at49tln0draCqfTCafTibGxsUwfNS+QZ73QckaCIHQOYwxdw+MAgAX1ZZhTXQoA6Bgaz+WxiDTIl8yLuhGwKXDrrbdiYGAAX/va1+B0OrFy5Urs2LFDDvF2dHTAYIhoqH/7t3+D3+/Hn/3Zn025n0cffRSPPfZYpo+bc2rJeSEIokBwTwTh8QUBALMqSzG3phQnnR5cGvLm+GREqjjdPPNSktNzZFy8AMDWrVuxdevWmN/btWvXlH9fvHgx8wfKY/hmacq8EAShdzpHRIelttyCEosx4rwMU9lIjzDGZOel4MtGhDrkzdJUNiIIQud0SeJlVpUoWubUlAEAOobJedEjI+MB+INhAEC93ZrTs5B4yTO48zJIZSOCIHQOD+a2VIklhrmS83KJMi+6pFv6edaWW2E1GXN6FhIveQbPvHgmg9ROSBCEruHiZbbkvDRXiiKG5yYIfXFJcszm1pTm+CQkXvIOu80Mk7T3Y5hKRwRB6BguXmZJzktdhegseyaDmAzQhzO90SF1jvHsUi4h8ZJnGAwCqsr4dmkSLwRB6JcBjzTQTBItdpsJFqP4tkOlcf3RSeKFSER1qSheRryBHJ+EIAgidfiOtlpJvAiCIJfGaX+b/uBZJRIvREyqysTN0sPj9MdNFB+TgRCCoXCuj0GkCWMMA5K7Ulce6UzhQmbQQ86L3uBlI8q8EDGpLuPOC4kXorh45+wglj/2KpY/9nu8dLgr18ch0mDMF5TbavnaEyAiZAaobKQr/MEwekbFDBM5L0RMqkop80IUH5OBEL7y0lEEQgwTgRD+8aUP5BdLQn/wslCpxYhSS2Qeam05OS965MKgF2EGVFhNcvA6l5B4yUNk54XKRkQR8YcTfbg4NI6aMgva6sow7g/hB388n+tjESnCA7m15VPf6GorLFO+T+iDk043AGBRYwUEQcjxaUi85CXkvBDFyJunBgAAn1o1C/900xIAwK/f60UozHJ5LCJFuLNSG1UyAiJlIwrs6otTTg8AYHFjRY5PIkLiJQ8h54UoNhhj2H1GFC/XLKrDRxbWoarUjMExH/acG8rx6YhUiO+8SJkXKhvlBZeGvHj6zXN46XBXwg8KXLy0k3gh4hGZ80Kt0kRxcG7Aiz63D1aTAWvnVcNsNGDTskYAwM6TfSnfrz8YxltnBjFKHwSyzvQ2aQ59OMsfTvS68SfffQuP/+4k/vbF93DHs3vlkPV0TnLnpYHECxGHyJwX+uMmioPjvWI9fWmzHTazuDPlIwvrAABvnRlM6T5Hx/247Zk9+It/34t1/3sn3jjZr81hCUXIzkvZ1LJRZYn479EJ+nCWS8Jhhr998Qg8vqC49dtsxNtnh/C/f3tixnX73JPoHp2AIADtTfYcnHYmJF7yEHnOi9cPxqjeTxQ+p6Qw4OLGyAvjVfNrYBCAM/1jcLrU78L55x2ncKhjFADgC4bxDz9/H+5JesPMFqPj4n/r6unipVR8fXONB+j1LYe8caofJ50elFtNeO1vr8VTW1YBAJ5/5yIOdYxMue6758XS7dJmOxwl5qyfNRYkXvIQ/sfuD4Xh9dP+D6LwiVVPryy1YPnsSgDAO+fUuS/nBsbw4v4OAMB/3rMWrTWl6Pf48OK+Tm0OTCSFl4UqS2OLF38ojAnab5QzfrjnEgBgy7o5qCqz4KPtDfjMFbMBAF99+YMp+Zd3zw8DAD40ryb7B40DiZc8pMRshNUk/miodEQUAyfjdDJ8qK0aALDvwrCq+/vp3g6EGXD9YjH8e89H2gAAv3yvW4PTEkrgzgsXK5wSsxFmozDlOkR2cU8G5A8En72yRb78kc3tsNtMONbjxo/eFcVNKMyw+7QYpl/XRuKFSIAgCLL7Qu3SRKEz5gvK24endzKsm6devARCYbx0WBQpW9bNBQDctLwJJoOAD7rdODcwpsWxiSS4Jrh4meq8CIIAB8+9kHjJCbtODSAQYlhQX475deXy5bXlVnx542IAwPbfn8KAx4fdpwfQPToBR4kZH15Qm6sjz4DES54iz3qhRD5R4Fwa8gIQy6XT3+hWz62GIADnB73o9yjLvbxzbghDXj9qyy24dnGdfN/r54ufGvmnSCKz8A6vyhgZCe7GjE7Q61su4OH1j13WMON7f75uLpbNssMzGcTn/n0v/unlDwAAf7Z6NkosxqyeMxEkXvIU2m9EFAudw6Lr0lJVMuN7jhIzlkgh3v0XRmZ8PxavnxBbqz92WQPMxshL3Icky3vveXUlKEI9/mAkr1c1TZACEUHjIuclJ3An8+r5M50Uo0HAP3/mcpRbTTjp9KB7dAKVpWbcfXVrlk+ZGBIveQqVjYhioWtE3FQ7O86yt7Vy6Sj5sDrGGP5wQvxUeUP71E+VPD+z98IQwjS1N6NwR0UQgAqbacb35Y4japfOOl0j4+genYDJIOCKuZUxr7O02YGf3vshfOyyBny0vR4//qt1mF2V+2WM0cz8rSLyAhrkRBQLncOieGmJ8+K4bl41nn/nIvYqyL2c7htD9+gErCYDrp5Wn18+qxIlZiNGxgM4OzCGRXkybAsQl1J+/dfH4HRNYsu6udgQw87XE9xRcZSYYTDM3IPjoFkvOWP/RfHvaOksx5SFmdNZPtuBH9yxJlvHUg05L3lKZL8R/XEThU2nFNZtqZ5ZNgKAKyXn5VSfJ+mkXD6N96r5NTPq8xaTActnOQAAR7tcaZ1ZSxhjuPeHB/DTfZ1449QAPv+jgzghDe3TK1yUxMq7AFGZFyobZZ0j0uyjNXOrcnuQNCHxkqdUS4PqKPNCFDrJnJfacivm15WBMWD/xcS5l9d5yWhJbOdimSRePujJH/Hy6jEn/nhmEGajgDKLEaEww//6zfFcHyst+OvW9AA2R868UGA36/Bp1stm5cek3FQh8ZKnyPuNqGxEFDCMMblNuiVO5gUA1krDsRLlXoa9fnky6Efb62Neh79gH+vOD2eDMYYnXjsNALj/2vnY8eA1AIC3zw6h361+qnC+IDsvpYmdlxFylrNKOMxwolecqXRZkyPHp0kPEi95Cu03IooB90RQnrLa5LDFvZ6SeS9vnu5HmAFLmuxoroxdguLOy7EeV16EdvdfHMHpvjGUmI34q2va0FJdipUtlQCA3x9PfSFlruGZl3hlowqbeLnHR+Ilm3SOjGPMF4TFZEBbXVmuj5MWJF7ylCoK7BJFQJ80u6Wy1CwvZIwF7zj6oMeNMV8w5nV2SiWjj7bXxb2fttoyWE0GeP0hdEjlqlzyk73iFNObVzXDLr2h37hULHn94YR+xQvvNopXNuIdSJ7J2D9LIjPwLNXihoopYwT0iL5PX8BEuo0CefEJkSAyQZ9UGmmoiO+6AEBzZQlmV5UgFGY4dGlm7iUQCsvD5z7aHr9Tx2Q0oE2aKHq2P7eTdsf9Qbx6TBQot145R778Gmmb9uGOUd0uLnRPiKLEnsx5IfGSVY73iOLlsjzZDJ0OJF7yFF4TDoUZ/YETBUuf2wcAqLdbk153bYLS0cFLI3BPBlFdZpHLLvFYUC+Kl1yvCXjteB8mAiHMrSnFitmR/MHixgpYTAa4JgK4NJR7dygV+PZue4wZL0C080Jlo2zCw7pLmvJnTECqkHjJU6wmI8qt4h84hXaJQkV2XuyJnRcgce6Fjzu/blEdjDHmikQzX6r159p5+fV7PQCAT6xohiBEzmw2GuRPxu91jWbs8XtdE9j0nd2467l9mru77gkuXuI5L+Jrm5s+mGUV2Xlp1ndYFyDxktdUSe3SNGWXKFT6ZfGS3Hnh4/0PdYxMmffCGJPDrdfH6TKKhjsvZ3PovIyO+/GmVOb6xIrmGd/nTsx7nZlp6WaM4Z7nD+Ck04Ndpwbwm6O9mt4/FyX2knjOi/ja5g+G4QuGNH1sIjaj4370uMS/t3ZyXohMQh1HRKHDy0ZKnJe5NWVob6xAMMymdOIc7hzFhUEvSsxGdeKlfyxnmZLffeBEIMSwpMmOhTEm/S6VuqJO9WWmpftM/5hcQgCAp988p+n9J3NeuKsMUO4lW/Cf95zq0rg/Fz1B4iWPoVkvRKHDu43qkwR2OTctbwIQKbkAwM8PdgEANi1rnPKmGI/WmjIYBPFNc2DMp/bImsDP/MmVM10XICqX0+/NyOPvOSfOy2lvFIXT8d74XVypIGde4gR2jQZB/lmReMkOZ/pEpzGf1mKkA4mXPIacF6LQ6VcR2AWAT6xshiAAfzwziJNON/rck/iZJARuWTNb0X3YzEZ5IF4uci/nB8Zw4NIIDALwqVWzYl5nfq0oXpzuSU1FBefd86J4+dMVzWh22MAYcKxbuxIVFySJPuFTaDe78IA6F8Z6h8RLHkPOC1HIMMZk56OuXJl4mVtThs2S+/L3//0+vvDTw/AHw1gztwrrpUyMEhbUcWcj++LlvyWxde2iurjlMkepGbXSf5MLA9q7L3zNwrp51Vgu5WuOaiReAqEwxv1ijiVe5gWgWS/Zhgt1Ei9ExpFnvZDzQhQgY74g/MEwAKCmPPYws1j87YaFKDEb8X6XC/suDMNsFPDI5vYpHTvJiM69ZJNQmOEXh7oBALesaUl4XT4BVeuWbtd4AIOSaGxvsuPy2ZUAgPc1WlYZLUYSlfEis17IeckG/Hd9vs4n63JIvOQxtFmaKGR4F12pxYhSS/KsCmdBfQWevetKtDdWYFFDOf51y2qsnlut6rHny7NeMpMpiceuU/1wuidRWWrGDUsSh4vn12VmHs35QfH+GuxWlFtNclv2KadHk/vnYd0yixGmBFNcqV06e7gnA+j3iIJ1foE4L8pfMYisI2+WprIRUYAMjom/19xhVMP6+TXyEsNUyIXzwhjD9944CwD47JoWWE3x1yEAwLxaMZej9RqD85Jga5NyNXNqxMfpHBkHY0yVgxWLZGFdDk3ZzR68PNpgtxZEpxFAzkteU0WBXaKAGZJKFzUK8y5a0lYrWudO9yS8GQjExuLVY04c7hiF1WTAX31kXtLrz64SRQXfuq0VFwZF8TJPKh/MkpZYjvtDmsyUklcDJHmTpMBu9uAOI3fzCgESL3kMzwEMkXghChD+e12bgvOSLpWlFtnxuTikXemIMYbTfR4c73HLeR4A6Bgaxz+9/AEA4N6PtClqDZ9dJYqKrhGNnRepbMQFnM1slIcEdmoglCLOS2JjnwK72aPQwrpAlsTLU089hdbWVthsNqxbtw779u2Le91jx47hM5/5DFpbWyEIAr7zne9k44h5CXdeXBMBBEPhJNcmCH3BP+WrCetqSatULuFORLp80O3ChifexI3f3o3N3/0jlj/2Kj77/T34u5+9h0889RYGx/xob6zAF25YoOj+uCPS5/ZpOoX2wqAohtqigpstksvTqUGJKtmAOk6FlZyXbBEJ65J4UcyLL76Ihx56CI8++igOHTqEFStWYOPGjejv7495/fHxcbS1teHxxx9HY2Njpo+X1zhKzODl59EJ+gMnCgve8VJdlv2yEQDMkzIfFzUQL+cGxnD7M+/i3IAXVpMBjhIzfMEw9l0Yxn8f7MLoeADtjRX44T1rk2ZdONVlFpSYxev2jE6mfUZOz6jorvCyFAB57k2nBi4Pd1LK4yxl5JRJ4sXrp/UAmeZ8gc14AbIQ2H3iiSdw77334u677wYAPP300/jNb36DZ599Fg8//PCM61955ZW48sorASDm94sJk1F8ERwdD2DE65fnPhBEITAkBXZrc+S8cOfhfJriJRxmePjn78PjC2L13Cr8+51r4Cgx49yAF/svDqPPPYmF9RXYuLQhYffNdARBwOyqEpzpH0PXyDjm1abf4jruD8IlfRBqdERKVy1SiapzOP2ykUfKEFUoFS9ZyhwVK/5gGJckR43Ei0L8fj8OHjyIRx55RL7MYDBgw4YN2LNnjyaP4fP54PNFRny73ZnZBZIrqkstGB0P0HJGouDIddmIi4F0y0Y7T/Zj/8URlFqM+O7tq1AplXsX1Jen/WbBxUu3RqHdXmkxX7nVNKWsw10Y7sqkwxh3XqyJy0blJF6ywsUhL0JhhnKrCfUVhfMBOKNlo8HBQYRCITQ0NEy5vKGhAU6nU5PH2LZtGxwOh/zV0pJ48JPe4FN2qV2aKDR4YJdnu7KNVuLlB388DwC4Y32rnFPRimbp/ro1EBUA0CuVn6JdFwCokwK7fBZIOvAMSzLnpdQilsS8PiobZRLeJj2/vjztNvh8QvfdRo888ghcLpf81dnZmesjaQoNqiMKFdd4bsVLa40oXnhZNhXO9nuw78IwTAYBd141V8vjAYhs2+Y7oNKl1yWKoKZp4oV/Ih/wpJ+tGVNYNpKdFz85L5lE7jQqoLAukOGyUW1tLYxGI/r6+qZc3tfXp1kY12q1wmotHCtsOjSojihUeAi9sjQ3Q7NKLEY0OWzodU3i/KAXq1No2f7VEXG79bWL6tDk0NZ1ASC3MPdrICqASNlopngR/z3k9SMYCqvK5kyHi5dkG74p85Idzg5w56Uw1gJwMuq8WCwWrF69Gjt37pQvC4fD2LlzJ9avX5/Jhy4Y5OWMlHkhCghfMCQv76vMkfMCpFc6Yozh1+/3AhC3M2cCLir6NHdepgqtmjILjAYBjEUmH6eK3G2URLxEMi9UNsok8jbpAnNeMl42euihh/CDH/wA//Ef/4ETJ07g/vvvh9frlbuP7rjjjimBXr/fjyNHjuDIkSPw+/3o7u7GkSNHcPbs2UwfNS+ppim7RAHiGhddF4MQmfeRC7h4SaVd+tyAFxcGvbAYDdhwWUPyG6RAvYZZFCC+82IwCHLXV7ouT6RslNhR45mXiUAIoTBL6zGJ2ITDDOf6pem6BdRpBGShVfrWW2/FwMAAvva1r8HpdGLlypXYsWOHHOLt6OiAwRDRUD09PVi1apX87+3bt2P79u249tprsWvXrkwfN++QnZc8Lxv9+r0evHa8D1s/ugCLGipyfRwiz+ElI0eJGQZD7kKE6Tgvu06Js6rWtVUndRlShWdehry+tMs5ADAgiSB+v9HUV9jQ5/alna9RGtgti/pv5vUHC2bnTj7RPTqBiUAIFqMBc6tLk99AR2TlI8/WrVuxdevWmN+bLkhaW1vBGKlwjh6cl12n+vHFFw4jzIDXjvfh9397jTz0iiBiMTrO8y65KxkB6c162XVqAICYd8kU1aUWmAwCgmGGwTH/jC4htXDxUhejZZaHdtN1ecYUlo2sJoP83Lw+Ei+ZgG8Kn19fnrbwzTcK69kUIHpwXr792mlw13ciEMJP9nXk9kBE3jMq/T47kmwezjS84+jioBdhFaULXzCE/ReHAQDXLc6ceDEYBFlo9LnTK+eEwkxuT48pXjQIB4fCTJ6Ym2zCriAI1C6dYU71ieJlcUNhlYwAEi95D18eN5KnrdKXhrx4r8sFgwB881PLAAA/O9CFAO1iIhKQ604jTkt1KYwGAROBEPpUvGl/0O2CLxhGTZkl4/ti6jUSLyPjfoTCDIIQeV2Jpk4KB6fjvES3PSsppdGguszCnZdFjYVXyifxkufwstGYL6jpcjat+M1Rsdvi6gW1+OyaFlSWmjE45sPRbleOT0bkMzywW5lj58VsNGCOVOK8MKC8dLTvwggAYE1rVcYHf9Xb0xcVQKRkVFVqgTlGCaFaEpKjabi8vNPIYjTAZk6+w4napTPLadl5IfFCZJkKmwlGKdDIcwL5xLvnRet8w5IGmI0GXNlaDQA4IFnqBBGL0QnxDTLXmRcgKrQ7pFy88JIR/33PJHIWJU3nRc67xNmRpsVYhjGFSxk5tJxRGb2uCdUCLxAKy23Si8l5IbKNwSCgSvpElG+zXsJhhsMd4ifQ1XOrAABrpP89cHEkZ+ci8h8uxHOdeQGixItC5yUcZrI4Xzsv8+KlQSPnhW/xjpV3ASKlpHQ+JI35xNsq7b4qs/LMCzkv8fj+m+ewftvrWPH13+O5ty8ovt3FQS8CIYYyi1HztRX5AIkXHVCVpx1HZwfG4JkMosRsRLuk7Ne0iuLl4KUR6hoj4pIvmRcAaFXZLn263wP3ZBClFiMua7Jn8mgAtMu8JOo0AqJXkaRfNlIsXizi9cZIvMTk7bOD2Pa7kwCAYJjhf75yHG+eHlB025NReZdC2mnEIfGiA/K144i7LitaHHIb3rJZDpgMAoa8fjjTfLElChc585IH4qVNpXjZf0F0Xa6YU5WV9lOtnJek4iVqCWyqHzzk1QAKy0Zc5IzTfqOYPLNbXPp5+9oW3L62BYwB2357QlFnXCHnXQASL7qgpiw/nZfjPW4AwIrZlfJlVpNR/iR7um8sF8cidEA+Zl46hscVdcntk0qi2ci7AIhqldambMQn6U6HNwcEQizlDAp3XuwKxUupVDYao1bpGVwa8uLN0wMQBOD+axfgHza1o9xqwkmnB3840Zf09rzTqBDzLgCJF10QCdLlV2D3ZJw/jkXSTIEzkvIniOmM5km3EQA02m2wmQ0Ihhm6RiYSXpcxJjsvV86rysbxZkzZTRU+46W6LLbzUmIxwmoS3xJS/aCkdEAdh7qN4vPGSXGC84fm1WBOTSkqSy3Ysm4OAOC/DnQmvf0Jp/jhkpwXImfIU3bzqGzEGJNtyenrABbWi/8+TeKFiIMrTybsAmIong+ruzCY2C3sGpmA0z0Jk0HAqpbsiBetliby1w++qT4W1Wl2HHnUlo0sVDaKB8+2RA9BvGXNbADAG6cG5DJgLIa9fnQOi0J86SxHBk+ZO0i86ADuvAzlUdloYMyHkfEADAKwYNrCLy5mTlHZiIhBIBSW3+TywXkBImsCLgyOJ7web5FeNsuBEkvyOSZaYDAIcntzOtNvh8cSOy9AVHNAih+UIs6Lsp8rd16obDQVXzAkj6G4Jmr9xIL6CqxoqUQozPDLI91xb/9e1ygA8fc6Hzr6MgGJFx3Aa9SDGm2W1YLTTlGYtNaUzRhGxctG5/rHqOOImIFrIlL+tOfJC2tbrbJS5/4stkhHw0f3p5N74YH/6gRuV5XkyqQsXnzKljJyqFU6Nid6PZgIhFBVapY7OTl/tlp0X/77YFfc27/fKQ4Jjc4jFhokXnQAD+wNjOWPeDnbL77IL4yxM6OluhSCIHYe5NtsGiL38LyLPWoAY65pbxLfIE44E4uXvVLeZW2WwrqcWsl5GUrxNWDcH8RkQMzLVMcJ7ALR7dKp5et4YFe5eKFW6VgclZyTy2dXzmhz/sTlzbAYDTjp9OCDOJPMD3dKnaCzC7NkBJB40QV8zkOiGme24W2l82pniheb2YhGKWR4cSixDU8UH6486jTitDeK81pOOz0IxWlDHfD4cH7AC0HIXqcRpybN0jH/EGExGlCWoNwVGVSXqvOSWmCXMi9Tea+LOyczxYej1IyPXdYAAPj5oZnuSyAUlkPla7L8e5pNSLzogLpyUQi4JgJ5s9/ogiRK5tWWxvz+3Brx8o5h5SPXieJgNI9mvHDm1ZbBajJgIhBCx3Bswb1PekNob7TDkeWz16b5AWZY7jSyJBxYVpnmoDq1Q+oiixnz43UtXzgqiZflcco+n1k9CwDwqyM9M9r7j3a74PWH4CgxZ2WIYq4g8aID7CUmWKRhWOl0G2gJ78qI5bwAwNxqMQB5iZwXYhr5tBqAYzQIcsv/iV53zOvsuzAEAFiX5bwLoJ3zUhVjm3Q0keWMqZWN1A6pK7XwOS/kvHAmAyGckcryy+N0Cl2zsA615VYMef3YdWrqxN0958Tf0/VtNTDkSVk2E5B40QGCIERyLyl88vL6gnjjZD/OD2jT/eMLhtAtzcNojeO8zOHOC4kXYhqR1QD5UzYCIH9Kfb8rdo5AzrvkQLzwv/9UQ/tcvNQkES/pLmcck4fUKROm8oRdEi8y5we8CDNR3DfYY3eGmYwG3LyyGQDw3wenznz5/TEnAODqhbWZPWiOIfGiE1K1jQfHfLjx27tx9/P78adPvoWDl9JfmNg5PI4wE1944m2o5WWjiyo29RLFgUvKU1TlUdkIAFbNqQQQWXsRzei4H6ekTqRciJcaqb15yJueeEnmvKTbKu2ZVLuYMbJVWsnI+2KAuy4L68sTlvg+I3UdvX6yHz2j4ofJC4NevNflgtEgYNPSxswfNoeQeNEJdVKHgFrx8tivjqFb+sX2+kN48MXDcQOJSrkozcKYW1Ma94+rpUoUL/yxCYLDnZd8KhsB4q4iQHRepk+y3XdhGIwB8+vK5M6fbFJbIZWNUiwbK3VeqstSFy+hcGStgNKyEV/MCADjAcq9AOKICWDm/KzpLGmyY928agRCDE+/eQ4A8ML+DgDA1Qtq4+6wKhRIvOiEVMpGl4a8eOX9XggC8F+fX4/KUjM6hycU7cVIBA80cnclFs3SCvZ+jw/+YOojzYnCw5Wn4mV+XTkqbCZMBELy6gvO7jNiruBDbTW5OJrsvAyP+1NaETAiu12JxQsPUY94A6pnNHmjOoaUOi82swE8lkGlI5EzCsULAHzxhoUAgB+9ewlP/P4Unnv7IgDgcx+am7Hz5QskXnRCXQXfLKt8wiYfYvSRhXVYO68af75W3Ivxk70daZ2Fi5eW6vjipabMAovRAMaAPtouTUShdhZItjAYBNl9eefcoHw5YwyvnxD3zNywpD4nZxO7hADGgJEUwrRD8nTdxIKROy/+UFj1ckaedzEbBXlHUjIEQaBZL9M4K4mXhQp2El21oBafvmIWwgz47utn4Q+GcdX8GmzI0e9pNiHxohP43BSlQoAxhpcOi+Ojb5Fqo5++QvzfPeeH0pqr0DUiiZeq+OLFYBDQVCmeuYdKR0QUPBehNNSZTfgemdelpXgAcLzXjR7XJGxmA66an5sQpNEgyJNxB1MYVBfZa5S4lFBiTn05IxcfFTZzwqzGdKhdOkIozOQOzTZp23kyvnnzctx2ZQtKLUZ87LIGfPf2Var+++sVEi86ockhCoFelzLxcrZ/DF0jE7CYDNiwRBxoNL+uDLOrSuAPhuV2ulTgzsucBM5LKmcmigP3RORNLt/4aLv4ifXAxRG5vPWLQ+KHgGsX1c1YhZFNIlN21edRhuTAbuL/5oIgpBzaVRvW5fB2aS8NqkOvawL+UBhmoyCX3pNRYjHi8c9cjmNf34gf3LEmJ5msXEDiRSc0SkLAqVAI8I2k6+ZVywvkBEHA9YvFF+fpswGUwhiTt5UmKhsBkdwLhXaJaPibXL6VjQBgbk0ZFtaXIxhmePlwNyYDIXmK6W1Xzsnp2WrK03Be5MBu8je2Kjm0q648pXZAHSfivJB44aMlWqpKVa/OKAa3JRoSLzqBl42GvH5FU3Yj69Sn1j6vmi8GDvmCObUMjvkxEQhBEIBZST4ZNDvE7/e6SLwQEfibXL4sZZzOHevFsOMzu8/j678+htHxAJodtinbfXNBjfSJWq14CYWZ3OGVzHkBIrmYYZVt2WoH1HEo8xKBr1NJ1AxBiJB40QmVpWa5Ft2fZLNsMBSW57lwscK5Yq4YSDzd50npxaJTyrs0O0pgSRLK485L7yiVjQiRUJjB48vPwC7nljUtqKuwont0Aj/dJw4A+6c/uSznSyTl7fIqy0aj437wxqFk3UZAZHig2im7PLBbobpsRJkXziVpncrcGmV5l2KGxItOEARBLh0ly5CcdHow7g+hwmbC4mmJ9Qa7DbMqSxBmwHudo6rP0SnlXWZXJa/H8sAulY0ITrRgzlfxYjMb8dxdV6K+wgqryYC/uW4+Ni9vyvWxUt4szbMrdpsJZmPyl/zKktRWBKTaRVZuFcvatJwxUjYi5yU5+fnqQcSk0W7DpaFxOJN0HB2QSkJXzKmKudviirlV6B6dwKFLI7h6gbruCf7HlSysC0SXjch5IUTcUvnCajLAaspd+DUZy2Y5sPvvrweAnIZ0o6lNMfPCA741CoOcfNYLDywrxZNi2ahU3ixNzsslFa+vxQ45LzpC7t5J4mQckEpGa6QS0XQul5Z9HY+zgC4RvGykSLxURrZhUxiPAKI/nedn3iUam9mYN8IFiF4RoK5sNKJyHUNlCS8bqWyVlgO76n62ZdRtJNMj5QNnKXC2ix0SLzpitjRXpWskvnhhjOHARUm8tMbewbJEWkAXb3tuIpQMqONU2Mxy/ZtCuwQQPeOFTF+11Ka4nJGLnWQzXjgOvllapfMy5kuti4xnXsaLPPMy4Q/JpTqlbdLFDIkXHdFSLf5CcwERi+7RCTjdkzAZBKxsqYx5nfYmMQdzaXhctSOitE2aw/8Ieyi0SwBwc+clTzuN8hm+l2jQ61c1un/Eq2y6LodnXtSWjeRuI5WB3TIrOS9AxHUpt5rycoBjvkHiRUdwwcBLN7HgXUZLm+3yfJfp1JZbUVdhBWOQN+UqwR8Myw4KF1LJoCm7sbkw6MUDPz6EL75wGIEUdtXoFXJeUocHdv3BsJwvUYJa54V3G7myFNgl50WEv0byeACRGBIvOoKP4+8anoi7Pp6XjFbPjV0y4vDS0cle5eKlZ3QCYSYuU6tTGP6TnRcK7U7h/h8dxG+O9uKXR3rw1tnB5DcoEPJ1r5EeKLEY5XyImim7qp2XFMtGqQ6pI+dFhI+UaKKSkSJIvOiIJocNJoMAfyiM/jh1bx7WvbI1dliXs6RRLB2pyb3I26SryxRPc2x2kPMyHadrcsrW4h1HnTk8TXbh3UZki6cGz72oaZdW7bzIrdL+uB+SYpHqkLoSs366jQKhMHae6FM86VwNcli3kpwXJZB40REmo0F2MmLlXtyTAZxyimJkdTLxwp0Xp3LxcklFWJfTJLVLZ+KPXa/smzbd+PfHnareJPRMvg+oy3fk3IsK8RJZyqhMMPLJx2EGjKlwQyJD6lR2G3HnJc87Eke8fnz8//4R9/zHAdz03T+m1PCQCNl5cZDzogQSLzqDtyhfHPLO+N7hjlGEmXid+orE6j26bKQ0/NepcCFjNLx+m2w2TTGx74K4FPOuq1phMRowMh4omkF+kb1G5LykQmRFgPKy0fCYOudFbBEX3xrU5F5SdV7kzEueOy9PvXEWZ/vHAIhu1ldeOqrp/XPnhTIvyiDxojMW1JcDgPxHFM1B6RN9vPku0bTVlcFiNMDjCyZsvY7m0hAfXa1cvDSoXChZDLzf5QIArJ1XjTnSf8vzgzPFaCHCN0pTYDc1alPYbzTMnRcFqwE4kVkvysRLKMxk8aLWVSvTwYTdEa8fP3z3EgBg+y0rYDEacLhjNKUp5fHgpfVkO+MIERIvOmOxlFU55ZwZtOV5l2QlIwAwGw2yEFI6rK5DapNW47zwhZJjvqD8qbvY4SW/troytNWKO0zOD8wUo4WIm5yXtOBTdpUGdsf9QUwGxG626nIV4kUO7Sp7nOiwrerArg52G712og/+YBjtjRX4zBWzcNPl4rqIFw90anL/jDF5EjkFdpVB4kVnLGoQBcfpaS3OwVAYR6RPAWuSdBpx2iUhdEZBuzRjDB2S8zJHhfNSZjXJn7LJfRFnZ/BPsy1VpWirE3+e5weKw3mhbqP0UOu8DEthXYvRIHcqKcGhcr8Rz7uYjYK8QFYppdK5JgIhhPI0+/X7Y2Ko/uPLmiAIAv50hShe/nhmQJP7d08E5bIZlY2UkRXx8tRTT6G1tRU2mw3r1q3Dvn37El7/Zz/7Gdrb22Gz2bB8+XL89re/zcYxdcFCadFir2tyyhCpE73iMka7zYSFkqOSjEXcxelL/ql/2OuH1x+CIChbyhhNE+04kuG5odpyC8qsJrTVSc7LYHE5L3YaUpcSNSqdl2G508iiuEMQUN8uHd0mreZxAPEDDmcikH/uy2QghN1nxHEGG5c1AADWzauB2Sigc3hCLqenA8+8VZdZ8molRT6TcfHy4osv4qGHHsKjjz6KQ4cOYcWKFdi4cSP6+/tjXv+dd97B7bffjnvuuQeHDx/GzTffjJtvvhkffPBBpo+qC+w2s9x+HF06eve8GAJdPTf2MsZY8I3Tp2OUoKbDSx1NdpvqhXqNFNqV6ZzWsTWfixdyXggFpOq8VJUpLxkBkcyLS+F+o3REqdVkAH/Jysfcy/tdLviDYdRVWOXXzDKrCVfMEcvzfzyT/pwmPvyzmdqkFZNx8fLEE0/g3nvvxd13343LLrsMTz/9NEpLS/Hss8/GvP7//b//F5s2bcKXv/xlLFmyBN/4xjdwxRVX4Hvf+16mj6obVkhj//dHtdy+cUoUg9csqlN8P9x5OT84lnTKq5qdRtPhuRcqG0X+O/LcEP/v2eeeRLAIJu1GJuyS85IKajdLD6scUMeRnReFZaN0fq6CIMi5l3ycsnvgkvg6e2Vr1RRXaV1bDQDgUMdI2o/Bh3hSm7RyMipe/H4/Dh48iA0bNkQe0GDAhg0bsGfPnpi32bNnz5TrA8DGjRvjXt/n88Htdk/5KnQ+JP3RcLfFMxmQhcz1i+sV30+zw4ZyqwmBEMPFJN0uHdKqdjWdRhzuvFDZaKZ4qSmzwmgQEGbq2l/1iD8YlsOjJF5Sgzsv7skgfMHkb/S8vFSrcCI2R+1yxnQdtdI8nrIrL7qdliVcMdsBADgqdQ+mQ69UNmqmvItiMipeBgcHEQqF0NDQMOXyhoYGOJ2xp4o6nU5V19+2bRscDof81dLSos3h8xguXg5cHIE/GMbOE/0IhBjm1ZahVepeUYIgCFgoBYCT7Ti6lMKMF44864U2S89ohzQaBHnVQl+Bl9Wiu83UzgIhROw2M0xSjYW7KokY9IoOTY3CGS8cta3S6U5OLsvTWS+MMdlZWTOti/Py2ZUAgLMDY3KbeKrIe42o00gxuu82euSRR+ByueSvzk5tWtfymYX15agtt2AiEMLrJ/vwI2n+wKdWzVJ9X0pzL2mVjch5kRmQ7P56e+TNpMFeLOJFfIEvsxhhVJjLIqZiMAhyaHfQk1y8cOelRkWbNBApG7kUtkq7tXJe8mzKbtfIBEbHAzAbBbQ32qd8r67CimaHDYwBx7rTc1942aiZxItiMipeamtrYTQa0dfXN+Xyvr4+NDY2xrxNY2OjqutbrVbY7fYpX4WOwSDgtivnAAD++keHcODSCEwGAbddqd51WtTAO46SOC/ygDrlzg6H13EL/c1ZCQPSTqq68og93CBlgvri7KsqFKjTSBu4i8JdlURwd6ZWrXhR2Sqd7s82X6fsHusRRcmihgpYYrSAL5sllo4+6EkvriAHdqlspJiMiheLxYLVq1dj586d8mXhcBg7d+7E+vXrY95m/fr1U64PAK+99lrc6xcrd17VipKolro7r2pFvV39Lz4XL6cTtEuP+YLoc4svlPNUlKU4PLA7Mh7AZB62QmaLcJjJuZa6imjnRfzv01/g4o46jbRBTbs0X+CotmyU7cwLn0GTb87LB92iKFnaHPtDMZ+VpaRjMx7hMJObGahspJyMv4o89NBDuPPOO7FmzRqsXbsW3/nOd+D1enH33XcDAO644w7MmjUL27ZtAwB88YtfxLXXXot/+Zd/wU033YQXXngBBw4cwDPPPJPpo+qKugorfnrfh/D0rnNorizBVzYvSel+FjWKmZeLQ15MBkIxZwzw6a91FVZ5eJUa7CUmlJiNmAiE4HRNqsrlFBIj4355CFe0jc/LRoXejUV7jbShTkW79GDKZSPeKh0AYyzp7BaeeUn1Z1tqzW/nhTss0+Edm6f7Uxcvg2M+BEIMBgFoqFAnMouZjIuXW2+9FQMDA/ja174Gp9OJlStXYseOHXIot6OjAwZDxAC66qqr8JOf/AT/9E//hK985StYuHAhXn75ZSxbtizTR9UdK1sq8fTnVqd1H3XlVlSVmjEyHsDpPo8cQovmnCRe+EwStQiCgCaHDecHvegtYvHC8y7VZRaYjZHf+fpiKRvRXiNNiDgviX9fGGMYkkpLaruNeNnIHwpjIhCSyzrx4M5Lqj/bUnN+dhudlByVy5piOy/RmUElIi8WPO/SYLfBZNR9DDVrZOVVZOvWrdi6dWvM7+3atWvGZbfccgtuueWWDJ+KAERhcVmzHW+fHcLxHndM8cKXQM6vUza5NxaNknhxuou34yiSd5n6RtJYJGUj2mukDbUKN0uP+0Nya7pa56XUYoTZKCAQYhgdDyQVL+n+bPmU3Xya8+KZDMhNBgvrK2Jep7W2DGajAK8/hO7RCcyuUt/QwNukaS2AOkjmEfKningLGs/1i2HddMULADhdhe0uJEIWL9OsYfmTtILWVz1DmRdtqFFYNuKZGJvZkFR8TEcQBDhUtEvLzktJis6LJf+cl3PS1Ou6CqucAZqO2WhAW634unhGwZqVWHRTm3RKkHghsLRZrOcej5OY5/Xc+Qp3JsUiMmWXnJfp4qVaGt0+4vWDsfxcTKcF1G2kDZEpu4nFbqozXjiRdmkl4iXNOS956LzwhbXJdsVF9pOltuKDuzuzSLyogsQLgcukJP2JXjfC07a6jvuDuCD9Ucar+yqhiWa9yOJlettqlRSODIaZPC+jECHnRRt42ShZ5iUyXVddyYjDcy9KZr1E8kyptkrnn/PCy+ULkogX3oF5IcXlqrxNmspG6iDxQqCttgwlZiO8/pAczuWc6PWAMdEtmO4YqKFRmvVSzMsZh8f5npmp/x1tZqPcKjpSwKUj6jbSBlm8eP0zPmxEI7dJqwzrchwKZ70EpFAvkE6rdP51G3Hxksx54Q0IFwfHU3qcnlHaa5QKJF4ImIwGXC7t6Zi+ZIznYOLNOVAKOS8RYVIVo37Ot/4Wcu6Fuo20gZcZQ2GWsKTDf5dqVG6U5iid9eKJcgsLacLuGdl5iR3W5bTJzktqZSO+GoA2SquDxAsBAFglrXc/dGl0yuXHpTkH6ZSMgEhgV5xpUPjbk2MxIn2CrYrxZlITlXspVDw+2iitBRaTQXZFEoV2B9N0XpTuN+KOWqnFmHKrb745L5OBEDpHRCclWdmIOy89rgnVQzj9wbA8QoFWA6iDxAsBALhiTiWAmc4LFzPL4wxpUkp1qQVmowDGgP4Cn2cSj9Fx7rzMFC9c0PDSUiHCnRfKvKRPjYLQbtqZF4X7jdLNuwD5l3k5NzAGxsT/Bsn++9WUWVBhM4Ex4NKQutJRn3sSjImCNFWHrFgh8UIAAFbPFZ2XM/1j8ryRoTGfvPNonbTJOlUMBkEeg1+sHUey8xKjbFQtCRolm4L1ioe6jTSjtix5uzQfUKd2xguHixelzks6ojTfuo2i8y7JBs8JghAV2lVXOuJl9CaHLaUBd8UMiRcCgGgtr5ByL2+c6gcAvHt+GIC4v6Nag08FPPfCA2rFRCjM5FbhyhjOS3WBl40YY9RtpCG1Fcmn7MobpVNslVYa2HXLM17Sd17G88R54TNbkpWMOKmKFznvQmFd1ZB4IWSub68HAOw8IYqX3acHAAAfStN14fCaLv+DLSZcEwHwES6VCQK7heq8TARCCEqdMdRtlD5ckCQKeMuB3ZSdFynzkiSw69bSefGH8mLW0VmFYV3OPLnjSKV44W3SFNZVDYkXQuZjl4n7pt441Y+z/R78+v0eAMCmZY2a3D8fwtRdhOJlRMqyVNhMU/YacaoLXLxw18UgRDYIE6lTm2TKbjjM5N8ltXuNOPKclyQ5rIijlr7zEgwz+PMg0H+mX9mAOk7KZSPJhSbnRT0kXgiZpc0OrJ1XjUCIYcMTuzHuD2FBfTnWzavW5P753o/ukSIUL974YV3xcvGFf6RAA7vRM16otp8+yQK7romAvME83u9cMioVtkrzjdLptMBHry/Ide7FHwzLwVvVZaOh1MpG5Lyoh8QLMYUHb1g45d9br1+g2ZvNrCrx00VXMYqXBGFdIJIX8BTohF0XdRppSjLnhbffOkrMsJhSe5nnrdLj/hB8wfiCQgvnxWgQYJXOmeuOo0tDXgTDDGUWo+Kpt7xdesDjk4W6EvhGaWqTVg+JF2IKVy2oxQ//ci0+srAWT3x2BW5eNUuz+55dFSkb5UNdO5twRyVWWBeItJkq2SOjR9LdfUNMpd4uipd+d2zx4pTeFBvsqU/FrrCZwD+3JPq9jOysSk+YRudecok8nK6hQvEHN7vNLLc6q2mX5qsBqGykHvoYRMzgmkV1uGZRneb3yzMvY74g3BPBuJtaC5HIjJfYz5l3drhVfGrTE9RppC3NUes2QmEGo2Hqmyxfw8HHE6SCwSDAUWLG6HgArvEA6iti35dWax9KLUYMe3M/ZVcO69apW0Q7t6YUQ14/Lg2NY5mCuVjj/qDcyUVlI/WQ80JkDZvZKA984tMriwX+yTWZ8zIZCCe06PWKm/YaaUpdhRVGg4BQmMUsHfVJzktjGuIFiIR2E+VeuDBNd+1DvkzZ5c7LwgZ14kXecaQw98JHRlRYTeRIpgCJFyKr8NBuV5GKl3izMKIt+kLMvchvcGmWFggRo0FAvbQoNda+MO68NKa5qdjB26UTzHpxa1QSzJf9Rmf61HUacVpr1LVL91KbdFqQeCGySmuNKF4uqhyjrXdcSZYSGgwCyqWav7sAcy+UedEeHiaNNbG6T4OyERDlvCTogtNKmOaD8xIKM5yXxIfSTiPOXOm1TWnmhXddUlg3NUi8EFllrvTp5JLKlkK9wwWJI8EU0kIO7dJeI+1pknIvCZ2XdMVLafLfSf67rUXmBchtt1Hn8Dj8wTCsJoPsEitFdl4Uvrbx0nmLyschREi8EFmltVZyXgaLzXlRIF7k0G4hlo3IedEaXhKKKV5cvinXSZXKJCsCwmGm6HdbCfmw34jnXebXlc8IQSeDi5d+j0/RmoOOYdF5aakm5yUVSLwQWUUPzotrIqD5jhW3gqWEjpJCLhuR86I1kV1hU8tGgVBYXsqYbtlIzrzE2Szt8QURTrD2Qg354LzwybpqS0YA4Cg1y92ESkpHncPkvKQDiRciq/BPJz2uSUwG8q+r5smdZ3DFN17D7c+8q+ksGjVlo0Jsl6ZuI+3howemD33sHZ0EY4DFZJBnj6RKMueFZ2FKLUZYTemtfciHOS8ne0Xx0t6kbKfRdNR8OONNCy3VJF5SgcQLkVWqSs3yp281w5yyQefwOP7ltdMIhRne63LhUMeoJvfLGEvabRT9PZ4PKSTIedGeOVJAtGN46t/RpWHxjXNOdSkMKksf00mWeYlMjk5/67zsvOSw2+ik0w0AWNJoT+n2vCHhQpKy+Lg/KK92IOclNUi8EFlFEAS5BfG01JKYL+w5PzTl37860q3J/U4GwgiERBenWAO7kY4Ucl60gn/KH/b6p7h1XMzM0eATPf99jS9e+OTo9H+uue428gVDODcgCr9MOy/cLauwmYpqWKeWkHghss6iBvGFId/Ey7uSeLmsSfzUtev0gCb3y1/4jQYh4UZl3mpakGUjuSOFnBetKLea5KGPHVEuppbiRV7OmKRspInzkuM5L2f6xhAKMzhKzCl3ac1TOKiO8i7pQ+KFyDr5Kl72nh8GAHz+2jYA4pvAhAafAiNDvEwJd6XIKwIKzHkJhxnG/FQ2ygRcoESXYDs1dV74kLrYgd0Rr5TlKgDn5aRTyrs0Kt9pNB0+6yVZN6WWP6NihcQLkXUWN3LxMpbjk0QY8wXRLXVtXN9ej6pSMxgDzg2kf0YleRcgOrBbWJmXMX8QPPtMrdLaEmu2SCacF/dkEMFQeMb3k+3sUgPPvGjd6aeUk71S3qUptbwLEHFenO7JhA5S5wi1SacLiRci6/CdIZeGvJo4G1rAa9TVZRbYbWYsrBcFFm+dTAfXuLI5GPYCdV7487EYDbCZ0+tIIabCMxYXpKmwjDFckj7180BvOlSVWsAzv8Mx3Be+80ibwG7+OC+pUllqkUt5FxKsCZDLRuS8pAyJFyLr1JVbUV9hRZgBH/S4cn0cAJHMAP+0ygXWGQ3cIaW7X/jqgEITL9RplDl4sPRYj+gadA5PwOMLwmI0yK5MOhgNAqqldutBz0zxwruN4i0cVYOcecmV8yJ1GrWn4bwAQFut+NqRyLWVnRfKvKQMiRci6wiCgFVzKgEAhy6N5PYwEpekT0K8Zs07ovjEzXRQuvslMmGXxAuhjGWzHADEZYKTgZD8YWBxYwUsJm1e3mvKxAWQsbZXa1k2kjMvOZiwO+DxYXDMD0EAFqncJj2d+fWiaDwX57WDMRblvFDZKFVIvBA54Yo5VQCAg/kiXiTnZa7kvHA7fvoAsFTgo/ErrIlf4B1Rc160HJCXa5QM6CNSo9lhQ3WZBcEwwymnBx90i+Jl2az03INoaitEV4VP7Y1mRMtuoxxO2D0mib7WmjK5fJUq8+u48xK7bDQ6HsCYlIdRuz+JiEDihcgJV8wVxcuhjhGEw1PfqBljeGFfB770X+/h5cPazFpJRgcf7CWJFr6mvjfGxl61cOehPInzwJ0XfygMX3BmOFKvKFmNQKSGIAhY2iwKlaPdLhyVxYtDs8eoLZeclxhlo2Fp0FpVmpN8gciE3clAGKFwdsX7kc5RAMDKlsq074uLl7NxnBe+tbrBbqUMWBqQj0vkhOWzHCizGDE45sd7XaNYJTkxjDE8/POjePFAJwDg54e6IAjAJ1fOyuh5pndo8I29o+MBTPhDKEkwnyUZboVlkzKLEQYBCDPRrSiUFzbuvFCnUWZYPbcKfzwziJcOd+O4lH1ZMbtSs/uPVzZijMlTYusqrGk/TmnU39i4P5jVVRKHpWnaWogXnpc7NzAGfzA8o3zHy0l8ZASRGuS8EDnBZjbi+vZ6AMCOD5zy5T/d14kXD3TCaBDkUdtf++WxjO5BYoyhzy2+MPNld3abSX4xTdd94RZxshdjQRBkd6KQpuy6FWZ+iNS4WRL2By+NYCIQwoL6ctmN0QJeNhqYJl7cE0H4pfbpdHcoAYDVZJA3OWez4ygcZrLzwrN46TCrsgQVVhOCYYbzgzPdF97ByB0aIjVIvBA54+PLmgAAvzzSI4YNu1147NfHAABf3rgYf3joWjQ7bHBNBLDrlDbTbmPhngzCL5Vp+CdIQRBkIdPrmkzr/uXMi4LAqqMAQ7seWsqYUVpry3Bla5X879uubEl5yFoseNloaGxq2YiLGbvNpIlLKAhCTvYbnR8cg2siAKvJgPYUdxpFIwiC3AXGFz1Gw5sAFqYZDC52SLwQOeOGJfVodtjgdE/iL/7fXtz57D74g2Hc0F6P+z7SBpPRgJsuFwXOb472ZuwcAx5RnEx/EW6Wtvb2jKbnvMjdNtbk4kUeVFdAyxn5c7FTt1HG+OanluP2tXNw11Wt2LJurqb3zeeWTC8bDXjEf9dqUDLi5GLK7ttnxbUga1qrNOvQ4oM4+eyYaPj4BT5LikgNEi9EzrCZjfjKTUsAAAcujWDI68eSJjueuHWlvA1383JRvOw62T8j2KsV/VLJqH7aPhPuvDg1c16SOw+FuN+IAruZZ1FDBbZ9ejke+8TStPJZsZADu9PFi/TvunLtxEsu9hu9dXYQAHD1glrN7pM7OMelqb0cz2RAnuS9oJ6cl3Sgj0JETvmTy5shQMB/H+zE/LpyPHD9gikttctnOVBiNsLjC+L84BgWZODTSr8n9otwoxTa7UlTvIypmHMScV4KULxQ2UiX8CWFAx4fgqEwTEbxM+8g/7vRsfMSDIXlhaxXz9dOvFw+W+z2eq9zFOEwkz+M8W6wWZUl8vA/IjVIvBA556bLm+Ty0HRMRgOWz3Jg38VhHOl0ZUi8iOKk3j71RbhB+je3x1NFaas0EHmDL6jA7gQFdvVMbbkVZqOAQIihz+PDLKmcyp2XWi2dlyzPennn3BA8k0FUl1k0bS9f0mSHzWyAayKAC0NeOZz7XqcoXla0aPdYxUrGykbDw8PYsmUL7HY7Kisrcc8992BsLPG00meeeQbXXXcd7HY7BEHA6Ohopo5H6Aj+h/6e1BGgNXLZaNonyHh2uRrUblSOlI0KJ/PiIedF1xgMAhrsvIQayX9lxHmxZnfK7ivv9wAAPr6sUe500gKz0YDLZ1UCmDpF/P2uUQDatrIXKxkTL1u2bMGxY8fw2muv4ZVXXsHu3btx3333JbzN+Pg4Nm3ahK985SuZOhahQy6X/tD5H77W8LJRfcXUzEu8oKIavCo3KvNcjKegMi/KWsWJ/KWZl1BHIyXUjGResui8eH1B/E4a0xDP+U0H3nZ94KIoXhhj8jyZFRrMkyl2MuLjnjhxAjt27MD+/fuxZs0aAMCTTz6JzZs3Y/v27Whubo55uwcffBAAsGvXrkwci9ApfMvruQEvGGOatoECkbLQ9LJRvBZRNfCSkdkowKqgk4G7M54CcV4YY5EhdVQ20i2xJk7zLrwGhy3mbVKBi5dsZF5+uq8Dnskg5tWWYd28Gs3v/8MLa/H93eexU2o2OOn0wOmehM1sIOdFAzLivOzZsweVlZWycAGADRs2wGAwYO/evZo+ls/ng9vtnvJFFBZzakphEMRhb+nmT2Ix7BXFyfTafY3074lAKOXuBznvYjUpEl0R56UwxMtEIISg1CVGZSP90jTNeRGXC4rihU+l1gK+VyjT3UYDHh/+bdc5AMDnr2nTtGTEWTevBhU2EwbHfDjcOYrfHxddng8vqNO8I6wYyYh4cTqdqK+vn3KZyWRCdXU1nE5nnFulxrZt2+BwOOSvlpYWTe+fyD1Wk1FeYBZv2Vk6DMdZLldmMcJmljorUiwdqR3QVm7lzkthlI14WNdoEKaMfyf0RfM052XI68dEIARBiHxPC8qsmXdeBjw+3P+jgxjy+tHeWIFPXZGZ1SMWkwEflaaIP//ORfzyiJivuXFpQ0Yer9hQJV4efvhhCIKQ8OvkyZOZOmtMHnnkEbhcLvmrs7Mzq49PZIe2OnFh4oVBbcULYwwjkvMyvXVREISo0G5qpSOPT3lYF4gMchvL4pyLTBJpk1bmPBH5yXTnhe8Ca7TbYDVpJ0pL5VZp7X//D14axhdfOIyrHt+JA5dGUGE14Tu3rdT0/NO566pWAMCv3+vBhUEvasst2LSsMWOPV0yoKkJ/6Utfwl133ZXwOm1tbWhsbER/f/+Uy4PBIIaHh9HYqO0Pzmq1wmrVLjBG5CdtteXYdWoA5wcSd6ypxeMLymWNytKZ7khNuRVdIxNpOC/qxEuhlY08NKCuIJhXKzqf5wfGEA4zdEripaVKu5IRILqdAODV0HkJhsL42q+O4Sd7O+TLVrZU4vHPLNdkHUAiVs2pwp+vmyM/9qN/upTKpxqhSrzU1dWhrq4u6fXWr1+P0dFRHDx4EKtXrwYAvP766wiHw1i3bl1qJyWKmnkZcl6461JqMcbcz1IndRylGtrlb97lVoVlowIL7PKykVLxRuQnc2vKYDYK8PpD6B6dQNeIWD5q0TDvAgClcqu0dr//239/Gj/Z2wFBAD5zxWzcub4Vy2dnb87KNz65DH++dg5MRiHjYqmYyEjmZcmSJdi0aRPuvfde7Nu3D2+//Ta2bt2K2267Te406u7uRnt7O/bt2yffzul04siRIzh79iwA4OjRozhy5AiGh4czcUxCR7RUibZ1d5p7hqbDw7rT8y6cdGe9cBGidK9PRVTZKFPrELIJTdctDMxGA9pqxUFrZ/o96BiSnJfqEk0fh0/Y1cp5+aDbhaffFIO537l1JbbfsiKrwgUQ817LZjlIuGhMxua8/PjHP0Z7eztuuOEGbN68GR/+8IfxzDPPyN8PBAI4deoUxsfH5cuefvpprFq1Cvfeey8A4JprrsGqVavwq1/9KlPHJHQCn+qptXgZGY+dd+Hwy7nIUYua1QBAJLALQB5up2fkNmkSL7qHb0E+3TeG96Ux91ovFyyVA7va/O4/9Yb4QfgTK5rxyZWZCeYSuSFjXm51dTV+8pOfxP1+a2srGJv6yfKxxx7DY489lqkjETqmSRIvnskg3JMBzd4Mh73im2tVHPHCHRkuctQil40Uiheb2QiL0QB/KAzPZFD3b/p8QB3NeNE/ixoqAPTi0KURnHKKIynWtFZp+hjybiMNJuz2uiaw45jY3br1owvSvj8iv6Ct0oQuKLea5IWNvaPpLUqMRu40ihHWBSIh3tHx1FqXPSlMl5VLRwWQe6GyUeHAlw3+/ngfwkwsGTXYtWuTBrSdsPu7o04wBlzZWiUJL6KQIPFC6IbmSt6uqV3pSJ7xEsd5qZScl9EUnRe3yrIREB3a1f+sl8hSRhIveufqBbWoifo7uXJuteaPoeVuo9990AsA2Lxc+9H/RO4h8ULohlnSMCwtcy8R5yVe2Uh80x1J0XkZ86kbUidet3A6jtzykD4qG+kds9GAT62K5Eb+fN0czR+jLMp5mR4rUINrPIAD0kLEjUtprkohQq8ohG7gzkv0fpV04VmWygw5L3LZyKr8T61Caqv2FMCgOgrsFhZbP7oANrMRm5c34bJm7btneKt0mImrJfjQOrXsvzgMxoC22jL5dYMoLEi8ELph+pRPLeBZlso4ZQ2eeXFPBhEMhWEyqjMr1Q6pAwqsbDRJZaNCorLUgr/buDhj919qNkIQAMbEcQGpipd9F8XxGuvatC9tEfkBlY0I3VBfIc5c0XI5o0tyBhzxxEvU5fy6ahjzFXdg1xO1HoAgkmEwCFH7vVL//d97QRQva+eReClUSLwQuqHeLoqXfo92zos7iXgxGQ2ymFCbe2GMRS1mVP7mbS+gFQEU2CXUku7vvz8YxvEecQ7NmgyEion8gMQLoRvqK8TAbn8WnRcgMuvFNaEu9+ILhhEIiaFDpXNegMLaLO2m3UaESvjvf6rO4+k+DwIhBkeJGbOrKO9SqJB4IXRDnVQ2Gh0PwBdMv5UyEArLY8gTiReeexnxqhMT/I1bEIByFbV7udtI54HdyUAI/mAYAHUbEcqpSDPzdUxyXZY222mTeQFD4oXQDVWlZpiN4ovRYIqLEqOJzrAkcgYqU5yyyz85lltMMBiUv4gWymZpHoY2GgRV3VZEcVOepng/1iNO/12agW4oIn8g8ULoBkEQUCctSux3p5974eKlwmaCMYG44LNe1AZ2ufhQUzKKvr7ey0ajUpmtssRMn4AJxaQr3iPiJbsLGInsQuKF0BV1du1yL0ryLkDq+41SaZOOvv6YzstG3HlxxFm9QBCxSCfzwhjD6T4PAGBxI60EKGRIvBC6QnZesihe+PfVdhtFOo3UvXlXaNAqmg/wwX5VcaYXE0Qs7Gk4jwMeHzyTQRgEYF5tmdZHI/IIEi+EruDt0gMalI2StUlzquTljCqdF1+qzkthZV7iDQAkiFjIzksKzuPZ/jEAwJzqUtjMRk3PReQXJF4IXVErjfEfTnFcfzRyWSOZeCnjKwJSzLyoDKsWypC60QkqGxHqSWe319kBUbwsqC/X9ExE/kHihdAVXEiobVuOBS8bVSZ5c8122YgHdv2hMCYD6beE54oRKhsRKVDOncc0nJf5JF4KHhIvhK6olsTLkFe7zEuyAWpVKS5n5M6J2tH45RYTeHOOnktHLiobESmQzpyX8wNeAMD8OhIvhQ6JF0JXVGvovCjdeBwRL6mVjdRmXgwGQR5qp+eOIznzQmUjQgXplE0vDonihcK6hQ+JF0JXcCGhRebFo9AZqSwT33wnAiFVZRyPT3zzVpt5AQpj1gsvG1VS2YhQQYU1tcC6PxhGz+gEAGBuTanm5yLyCxIvhK6oKefOix+MsbTui4uLZGWjCmtkiJ0a9yXivKh3HtIJLeYLSjNFBBFNqnOOukbGEWZAqcUoj1QgChcSL4Su4M5LMMzgTvONnW88TlbWEQRBzm2oGVSXatlIvI3+26Vl56WEnBdCOeVR4iUUVv4B5dLQOACxTZomOhc+JF4IXWEzG1FqEec3jHjTKx2p6QaqlGe9qHFepLJRCuKlEDZLU+aFSIVose/1KxfvPO/SWkN5l2KAxAuhOyIdR+mKF555Sf7mmkrHkZr7n47eVwRMBkLwSRulSbwQarCajLAYxbcmNc4jd14o71IckHghdEek4yh18cIYg1t2XpI7I7LzomI5YzGXjXjJyGQQUgosE8VNKh1HXSOieGmpJvFSDJB4IXSHFh1HvmAYgZBYT1ciLhxSbkPpZulgKIwJqTMpvcCuPstG0SUjyh8Qakml265rROw0mlVVkpEzEfkFiRdCd9Ro4Lxw18UgAGUWJeJFXeYlutyTivNQkcZ+l3xA6eoFgohFKt123VKb9OxKEi/FAIkXQnfwFQHD6YiXicjeIYMhuTPAy0auCWWPyV90bWYDLCb1f2b8k2e6HVWJGBrzoU+DBZexoI3SRDrIgXWF4t01EZD/5sh5KQ6oGE3ojmoNxIvavUMR8aLMeXEpnN4bj0xmXsJhhu2/P4V/e/McGAM+dlkD/uWzK1I+ayxGacYLkQaR339lf2/dUsmoqtSMUgVOKqF/yHkhdIcc2E0j86I2TKu2bMTLUskG4MUjEljUPvPy0/0d+NddonABgNeO9+GLPz2c9tC/aCJlI3JeCPWoDezKJaMqCusWCyReCN3BSxHptErLbcwKxYVq8TKR2lJGToU1MxN2XeMBPP67kwCAhz/ejpcfuBoWkwFvnBrAzw50afY4kbIROS+EetT+/ndLnUazKO9SNJB4IXSHFq3SsjOiUFzw/TxKy0bpOy+ZKRu9dLgLnskgFjWU496PtGFlSyX+7sZFAIDv/OE0fEHlu5sSQQPqiHTgv/9KA+vceaG8S/FA4oXQHbnIvHDnRbF4STvzon23EWMMP93XCQDYsm6uvK/pjvWtaLTb0OOaxC8OdWvyWLyk56DALpECkcC6wswLFy/kvBQNJF4I3cHFi3syiEAonNJ9KN0ozeG7jcZ8yh4znQF1QOr7XRJxbsCLU30eWIwG3Lxqlny5zWzEX364FQDwo3cvaZJ94YFdKhsRqaA680IzXooOEi+E7nCUmMHnnqUa2uXOiFLnJbr841bgvmgV2AW0c192neoHAKydVz1j/sotq1tgMRlwrMeN97tcaT8Wz7zQnBciFcrVZl7IeSk6SLwQusNoEOTQ7og3tW4ctc6I0SDI11WyIiAS2E3tzdtqMsrzYbQSL2+eHgAAXLe4bsb3qsos2LS0EQDw8pH0S0e8pFdTZk37vojiw64i8zIZCGFwTPx9m03OS9FA4oXQJbwcMeT1pXR7tyxelIsLNZulI85L6jMnKjTcLO0PhrHvwjAA4NpFM8ULAHxyZTMA4JX3e9MqVYXDTBYvteWUeSHUw/9ulGTM+FqAcquJnL4igsQLoUsiHUepOi/qxUWlvN8oeakq3cAukNpyungc73XDFwyjqtSMBfXlMa/zkYV1cJSYMeDx4cDF4ZQfa3QiAK59+DRkglADnw+kZIt7dMmI9mgVDyReCF3CW5dHFY7rn04qzouajiO3yjkysdCyXfrQpREAwKo5VXFf4C0mA66XSkqvS/mYVBgaE92wylIzzEZ6iSHUw11O92TywDqFdYsTemUhdEmVihJOLCKt0sqdF4eastGEujkyseChRaXtook43DkKAFjVUpnwete31wMA3jiZunjh+YNqcl2IFKmMEv3JPix0j9KAumIko+JleHgYW7Zsgd1uR2VlJe655x6MjY0lvP4XvvAFLF68GCUlJZgzZw7+x//4H3C50u9+IAqLytL0BtVFWqVVZF5UTNlNt9sI0HbWy3tcvMypSni9axfVwSAAp/vG0CVNLVULzyHVUliXSBGT0SBnvpKVjsh5KU4yKl62bNmCY8eO4bXXXsMrr7yC3bt347777ot7/Z6eHvT09GD79u344IMP8Pzzz2PHjh245557MnlMQofI4VmFQ+OiYYxFMi9qnBeFZaNwmMmCI53MC5/1km7ZyDMZQMewKESWNtsTXrey1ILVc0WBk6r7MiQ5LzUU1iXSwKHwb5zapIuTjK3fPHHiBHbs2IH9+/djzZo1AIAnn3wSmzdvxvbt29Hc3DzjNsuWLcPPf/5z+d/z58/HN7/5TfzFX/wFgsEgTCbaFkqIVKoI9E3H6w/JgdJUuo2SiZcxf1BeepjqkDogInzS7TY65fQAABrtNkUB2uvb67H/4gheP9mPz61vVf14PPNC4oVIh6pSC7pGJsh5IWKSMedlz549qKyslIULAGzYsAEGgwF79+5VfD8ulwt2uz2ucPH5fHC73VO+iMInncwLFwNmowCbWfmfgFLBxPMuFpMBNrNR9fk4WnUbnZDEy5KmCkXX/6iUe3nn3BAmA+p3HQ3RjBdCA5SMJgiEwnC6JwHQjJdiI2Pixel0or6+fsplJpMJ1dXVcDqdiu5jcHAQ3/jGNxKWmrZt2waHwyF/tbS0pHVuQh/ImZcUnBc+QK7CZlbVWmlXWDZKd0AdR+2U0Xic6BUFfXtT4pIRZ3FDBWrLrfAFwzgiZWXUwMtGNOOFSAclm9ydrkmEmfhBgTJWxYVq8fLwww9DEISEXydPnkz7YG63GzfddBMuu+wyPPbYY3Gv98gjj8DlcslfnZ2daT82kf8oLeHEIpVOo+jHTFaD12JAHRApabnTFC+nJeelvVGZ8yIIAj7UVg0A2HNuSPXjDchlI3ozIVIn4rzE/4DCB9TNqiyBwUAzXooJ1a+uX/rSl3DXXXclvE5bWxsaGxvR3z818BcMBjE8PIzGxsaEt/d4PNi0aRMqKirw0ksvwWyO/wnWarXCaqUXyWKDrwcYHQ+AMabKQUl1aaIsmJKUqrQYUAdEdxull3m5MOgFAMyviz2cLhbr59fglfd78e559eKl3yPa+A12+rskUkf+G0/wYYF3xFFYt/hQLV7q6upQVxd7vHg069evx+joKA4ePIjVq1cDAF5//XWEw2GsW7cu7u3cbjc2btwIq9WKX/3qV7DZbGqPSBQBXEgEwwweX1CVUJCdEZXiIrrbKJFg0mJAHaBNt5F7MiBnUFpryxTfbn1bDQDgcMcoJgMhxdkdxhj63KLzUl9Bf7tE6igpG3VKzktLNYmXYiNjmZclS5Zg06ZNuPfee7Fv3z68/fbb2Lp1K2677Ta506i7uxvt7e3Yt28fAFG43HjjjfB6vfj3f/93uN1uOJ1OOJ1OhELqg4NE4WIzG+WwbTInZDruVJ0XKbAbDDN4/fF/H7UYUBd9+3TEy0XJdamrsMoZGiXMqy1Dg90KfygsT+dVgmsiAH8wDACoJ+eFSAMluTbuvMyuKs3KmYj8IaNzXn784x+jvb0dN9xwAzZv3owPf/jDeOaZZ+TvBwIBnDp1CuPj4i/goUOHsHfvXhw9ehQLFixAU1OT/EVZFmI6XEyoDe1GMi/qnBGb2SBvek5Uh/do5LxUqNisGw9eMppXo9x1AXjuRXRf9qgoHXHXparUDKsp9U4rguCt9nxicyy6hrnzQuKl2Mjo4JTq6mr85Cc/ifv91tZWMBbZW3HddddN+TdBJKKy1Ayne1J1u3Qq03UB8Q29ssSMfo8Po+MBzI4zrDbVstR0yqO2SqvN9XBk8aKiZMRZ31aDXx7pUZV76ZPaVqlkRKRLnRT4HhyLvzm+U3JeWqhNuuig3UaEbqlKsV2al3VSGSCn5DHlslHa3Ubi7QMhBp9UilELLxupybtwuPPyXqdL8byXfo+Ud6GSEZEmtZJ4Gfb6EY6xnNEXDEXNeCHnpdgg8ULollTbpVPtNgKAqjLxMUcSuD1aOS9lFhO42ZJq7iXivKh/cZ9bU4r6CjH3onTeC3deGuzkvBDpwctGoTCL+WGhd3QSjAElZiPNFCpCSLwQuiWynFGteEl9aWKVgoWQkSF46TkvBoOAckukdKQWxpgsXlJxXgRBwNp54ryXfReGFd2m301t0oQ2mI0G+QNKrNxLpxzWLUmppEroGxIvhG7hL2yqy0Zy5iUV50VB2UiDjdKcdDZLj4wH5OfaqjKwy1mnUrz0ukTx0kjOC6EBtQlyL51SWJfWAhQnJF4I3VKVctkotW6j6MdM6LxoVDYC0pv1cmFwDADQ7LClvGNp7Twx93Lw0ggCoeS5my5akkdoSK3ccRRDvPCwLnUaFSUkXgjdknqrdBqZFzmwG18w8e4nhybOS+qbpS8Mii/uqZSMOAvry1FZasZEIIRjPcmXntLcDUJLuPMy4JkpXrhQbqHftaKExAuhW5RsnY1Fqq3SQPJuo2AoLN9/dVn6IcKKNJyXdDqNOAaDgDVzeekoccu0ezJSpqJx7YQWRMpGMTIvw9x5od+1YoTEC6FbeP4k0cC46YTCTM6PpNdtFPsx+R4WQdDGeUlnszR3Qeakaasrzb10S5+Eq0rNKFMxzZcg4lFXkch5IZevmCHxQuiWSr77REXmZSxKBKSWeUnc4cSzMHabGUYNttxGykbqxUv3aGTjbjpEdxzFmrfB4TY+vZkQWsGD372uiSmXj/uDshtDZaPihMQLoVt4q7RrIoBQgjfVaHiYNnrUvxqSlY14FkaLkhEQ6YhKZbN0z6jY+dOcpnhZ2mxHqcUI92QQp/o8ca/XHdW6ShBawH+XuBDndEglI7vNBEdp+g4noT9IvBC6hZdlGItMtU2GO41OIyBSqhr3h2JOneWiplKjF9RUy0bBUDhq+mh6YsJkNGD1XHEXQqLSUcewNk4PQXB411rv6OQU1+9sv9hJN7++PCfnInIPiRdCt1hMBvnNXWnpKJ1OI0D8pGeSykHDMdqledmoulQb5yXVwG6fx4dQmMFsFOQdMemgJPdybkB8Q2mrozcUQhsa7TYYDQL8oTAGotqluXhZQL9rRQuJF0LXqB1UFxEvqTkjgiDIY8uHYnRA8LJRpWbiRcq8qBxSx8OzTY4SGDTI3vB5L3svDMddniq/odCnYUIjTEaDnHvhAV0AODcgdtLR71rxQuKF0DXyfiOF7dJ8oF06nUCJpn7yzqcqrcpGttTWA3SPii/0WpVwLp/tgMVkwOCYT145EM24PyjnEugNhdASXjrigXAgqmxEzkvRQuKF0DVqN0u7NRAvNQnECy8lVWkU2E21bKRVWJdjMxuxsqUSAPDu+Zmlo/PSJ+HqMotmYWWCAIDZlVNDu6Eww/kBcvmKHRIvhK7hIkTpoDruvKSy14jDR5YPxcq8SOeo0qhsxAfpjakUL5kY03/1/FoAwB/PDMz4Hs+7zK9LfSAeQcRirrSXi7st5wbG4AuGUWox0mqAIobEC6FruEhQOqhO07JRjMFZmpeNrKmVjXrkGS/aLUi8dnEdAOCtM4Mz9hzx1QGLGio0ezyCAIDLmu0AgOPS79iRjlEAwPJZDk1mKRH6hMQLoWsigV11rdLpbHxO5LzwUpJWpRNeNvL6Q4pn2QDRA+q0+2S6fJYDVaVmeHxBHLo0MuV7/N+r5lRp9ngEAYhzhgDgTP8YJgMhHOkaBQC5jEkUJyReCF3Du3qUtkprknkpi5954WPM6+3aOB7lUeUtpaUjxpjsvDRr6LwYDQKuX1wPANhxzClf7g+G8X63CwBwxZxKzR6PIACgyWFDdZkFoTDDKadHdl5WkHgpaki8ELqmSl7OqDSwm/pSRk5tRexlcV5fEF6/OLiuviL92SoAYDUZUWI2AoiUvJIxOh7AuHQOrQK7nI8vbwIA/O6oUx4adrzXDX8wjKpSM+alsQSSIGIhCILsvvzmaC+O94rlIz44kShOSLwQukbtZmktMi81ZXzOy1TnhTsxpRajposJ5ec4oUyg8ZJRbbkFNkn4aMVHFtaiwmqC0z2JPefFLdOvn+wHAKyeWw1BoAwCoT3XLhLzVs/sPg8AWN9WgwaN3E1Cn5B4IXRNpdpWaTnzkrq4qK+IlI2CUcHVfqlkVKeR68LhQkup86LVQsZY2MxG3LxqFgDg2bcugDGGlw93AwD+5PImzR+PIADgltUtsgMJAJ++YlYOT0PkAyReCF3DN0tnc0hdTbkVJoOAMMOUkeU876LFOP5o1LpLkbxLZnYM3X11KwQB2HmyH3/5/H50DI+j1GLEjUsbMvJ4BOEoNWPrRxegrsKKz31oriygieJFO2+bIHIAb5X2+IIIhMIwG+Pr8UAoLGdB0sm8GA0CGuw2dI9OoNc1iSaHKBIiYV2NxUuJulAyXw2QqQWJbXXl2LJuDn70bgfeOCXOfLnzqlaUWujlhMgcD1y/AA9cvyDXxyDyBHJeCF1jLzGDxyySORPRm6dTXczIaXKI9fZeaZItAPR7xP+fKefFpbA01p1h5wUAvvonl+Hmlc2oKjVj09JGfOljizL2WARBENOhj0qErjEaBNhtZrgmAnBN+BPmTdxSq3G51QRTAodGCY1cvLgi+1YGMpV5SbFspOV03elYTUZ857ZVGbt/giCIRJDzQuieKoWD6rTIu3C4q9Hrijgvfe7MiBfVZaMMBnYJgiDyARIvhO5xyCsClJWN0pmuy2mU2jSdUeKlc1jc5NxSpe2+FTWB3clASJ4/Q+KFIIhChcQLoXsizkviTIgWSxk5PPPS44psuuXLEOfUaCteIq3SyTMvvGRUYjbKoocgCKLQIPFC6B6l7dJ8xosWZSOeJ+kcFsVCn3sS/lAYJoMgdx9pRaWKzdk9UoB4VlUJDYwjCKJgIfFC6B6lg+pcGpaN2urKAYiD6kbH/bg0JJaMZleVaL7pVg7sKsi8dI+K56CSEUEQhQyJF0L3VClczsj3GmnhvJRbTWiWSkdn+8cieZdqbUtGQNTyyXE/GEu8Wbpbcl4y2SZNEASRa0i8ELqnUuFyxkjmRZssyIKGCgCieOmQxMtcjfMuQGSXUiDE4PEl3izNB9TNzmCbNEEQRK4h8ULoHi5eRrzKuo0caew1imZhvVg6OtM/Jm+6nVdbrsl9R2MzG1FqEfe6DI8lFmiR1QC0tI4giMKFxAuheyqVlo0mtcu8ABHxcrzHjf0XhwEAV7ZWaXLf06nmm6y9icVLZMaL9g4QQRBEvkDihdA9VSrLRlpkXgBgjSRU9pwfgmcyiHKrCZc12TW57+nw0tFwAvESDjN54i85LwRBFDIkXgjdI0+gzeKQOgBYUF+B9sYK+d9rWqvSXjsQj2pZvPjiXmdgzIdAiMEgRIboEQRBFCIkXgjdU1kmipGJQAiTgVDc62ntvADAp1bNkv//lnVzNbvf6dRIyx4HE2ReukbE0HCj3ZYxEUUQBJEP0GJGQvdUWE0wGgSEwgyuiQBsZuOM6zDG5MWMWnUbAcA9H56HylIzVrRUor0xMyUjQFnZiA/My0S7NkEQRD6R0Y9nw8PD2LJlC+x2OyorK3HPPfdgbGws4W0+//nPY/78+SgpKUFdXR0++clP4uTJk5k8JqFzBEGQp9DGG1Tn9YcQCoszUrR0XkxGA269ck5GhQsQXTaKL146MjhrhiAIIp/IqHjZsmULjh07htdeew2vvPIKdu/ejfvuuy/hbVavXo3nnnsOJ06cwKuvvgrGGG688UaEQvHLAQSRrF2al4zMRgE2s/5KKkq6jfigvDkkXgiCKHAyVjY6ceIEduzYgf3792PNmjUAgCeffBKbN2/G9u3b0dzcHPN20eKmtbUV/+t//S+sWLECFy9exPz58zN1XELniO3S3rjLC0ekN/3qMosud/7UlCcP7HaOcOeFBtQRBFHYZOwj6J49e1BZWSkLFwDYsGEDDAYD9u7dq+g+vF4vnnvuOcybNw8tLS0xr+Pz+eB2u6d8EcVHZLN0bOeFl1v4KgG9UVMmBXY9yTMv5LwQBFHoZEy8OJ1O1NfXT7nMZDKhuroaTqcz4W3/9V//FeXl5SgvL8fvfvc7vPbaa7BYYr/pbNu2DQ6HQ/6KJ3KIwsaRpF2aZ2F4+UVvNEitzwNjPjm7E00gFJZnvLRUkXghCKKwUS1eHn74YQiCkPAr3YDtli1bcPjwYbz55ptYtGgRPvvZz2JycjLmdR955BG4XC75q7OzM63HJvRJskF1svOiU/FSW26BQQBCYYahGKWjntEJhBlgNRlQV2HNwQkJgiCyh+rMy5e+9CXcddddCa/T1taGxsZG9Pf3T7k8GAxieHgYjY2NCW/PXZSFCxfiQx/6EKqqqvDSSy/h9ttvn3Fdq9UKq5VerIsdLkriOi8886LTspHJaEBtuRX9Hh/63T7UV0wdQhfdaaTHTA9BEIQaVIuXuro61NXVJb3e+vXrMTo6ioMHD2L16tUAgNdffx3hcBjr1q1T/HiMMTDG4PPFDyoShCNJq/TwuL6dF0AsHfV7fHC6JrFslmPK9+QZL7RNmiCIIiBjmZclS5Zg06ZNuPfee7Fv3z68/fbb2Lp1K2677Ta506i7uxvt7e3Yt28fAOD8+fPYtm0bDh48iI6ODrzzzju45ZZbUFJSgs2bN2fqqEQBwIO48Z0X8fLqUu1mvGSbBrvoMPZ5ZpZQI51GlHchCKLwyejAix//+Mdob2/HDTfcgM2bN+PDH/4wnnnmGfn7gUAAp06dwvi4+MJrs9nwxz/+EZs3b8aCBQtw6623oqKiAu+8886M8C9BRCPPeSnQzAsQCe32uWaKlw6a8UIQRBGR0fUA1dXV+MlPfhL3+62trWAs0jnR3NyM3/72t5k8ElGg8Dko8Ya4cVGj11ZpIEq8uGeWULsk8TKbOo0IgigC9DdqlCBiwAOsw14//MHwjO8Pe/XdKg1ENkU73bHKRnyvEWVeCIIofEi8EAVBZYkZJoPYZTO9lZgxFnFe9CxeHKJ46R6dmHL56LhfFmdza8qyfi6CIIhsQ+KFKAgMBkGeb9I/razimgggEBLLkzU6Fi+tkjDpGB5HOGpQ3dl+cdnprMoSlFtpUTxBEIUPiReiYODiZcAzVbz0S/92lJhhMxuzfi6taK60wWQQ4A+Gp5SOzkjiZUF9ea6ORhAEkVVIvBAFQ1255LxMFy+SE1Ov88mzJqNBboW+OOSVLz/TJ4qXhSReCIIoEki8EAVDvT2e8zI55ft6Zm6NKF46hsbly870ewAACxtIvBAEURyQeCEKhojzMrUbh4uZ6SP19QjPvVyUxAtjDKeconihshFBEMUCiReiYKiTWolnlI08hVE2AiLOy7kBsVTU45pEv8cHk0HAZU2ORDclCIIoGEi8EAUDFyd90+agcPFSCNuWlzaLAuVI5ygYYzjcMQIAWNJkR4lFv2FkgiAINZB4IQqG2dJSwu6RqXNQ+t0886L/stHlsx0wGQQMeHzoHp3AoUujAIBVcypzei6CIIhsQuKFKBhmV4ollSGvH+P+oHz5QAGVjWxmIy5rtgMADnWM4t3zQwBIvBAEUVyQeCEKBnuJCRXSkLYeaQotYwy90iLDxgJwXgBgVUslAOCZ3edwvNcNs1HAtYtocSlBEMUDiReiYBAEAbOk0hHf9TPg8WEiEIJBgPw9vfOJlc0AgA+63QCAG9obdL2ziSAIQi0kXoiCgudeuiTxcknattxcWQKzsTB+3VfPrcZ1i+sAAGajgHs+Mi/HJyIIgsgutAiFKChmV4m5Fx7avSTNQ+EtxoXCE59diZcPd+O6xXVoq6P5LgRBFBckXoiCgjsvHcNe6X9F8TKnurC2LVeXWfCXHybHhSCI4qQwfHSCkFjUUAEAONkrTp3tkHYAFZrzQhAEUcyQeCEKiiVNYhvxhSEvvL6gPEZ/TjWJF4IgiEKBxAtRUNRVWFFfYQVjwHtdozjeI3bkcFFDEARB6B8SL0TBwYe4vbCvE/5QGLXlVrRS2YggCKJgIPFCFBzLZ4n7f371Xg8AYO28KgiCkMsjEQRBEBpC4oUoOD61ataUf69trc7RSQiCIIhMQOKFKDja6srx0XZxXP7C+nJ86orZOT4RQRAEoSU054UoSP73p5bjt0d78ekrZsFRYs71cQiCIAgNIfFCFCSNDhsNcSMIgihQqGxEEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuIPFCEARBEISuKLit0owxAIDb7c7xSQiCIAiCUAp/3+bv44koOPHi8XgAAC0tLTk+CUEQBEEQavF4PHA4HAmvIzAlEkdHhMNh9PT0oKKiAoIgaHrfbrcbLS0t6OzshN1u1/S+84FCf35A4T9Hen76p9CfIz0//ZOp58gYg8fjQXNzMwyGxKmWgnNeDAYDZs+endHHsNvtBftLCRT+8wMK/znS89M/hf4c6fnpn0w8x2SOC4cCuwRBEARB6AoSLwRBEARB6AoSLyqwWq149NFHYbVac32UjFDozw8o/OdIz0//FPpzpOenf/LhORZcYJcgCIIgiMKGnBeCIAiCIHQFiReCIAiCIHQFiReCIAiCIHQFiReCIAiCIHQFiZcEXLx4Effccw/mzZuHkpISzJ8/H48++ij8fn/C201OTuKBBx5ATU0NysvL8ZnPfAZ9fX1ZOrU6vvnNb+Kqq65CaWkpKisrFd3mrrvugiAIU742bdqU2YOmSCrPjzGGr33ta2hqakJJSQk2bNiAM2fOZPagaTA8PIwtW7bAbrejsrIS99xzD8bGxhLe5rrrrpvxM/zrv/7rLJ04MU899RRaW1ths9mwbt067Nu3L+H1f/azn6G9vR02mw3Lly/Hb3/72yydNHXUPMfnn39+xs/KZrNl8bTq2L17N/70T/8Uzc3NEAQBL7/8ctLb7Nq1C1dccQWsVisWLFiA559/PuPnTBW1z2/Xrl0zfn6CIMDpdGbnwCrZtm0brrzySlRUVKC+vh4333wzTp06lfR22f47JPGSgJMnTyIcDuP73/8+jh07hm9/+9t4+umn8ZWvfCXh7f72b/8Wv/71r/Gzn/0Mb775Jnp6evDpT386S6dWh9/vxy233IL7779f1e02bdqE3t5e+eunP/1phk6YHqk8v29961v47ne/i6effhp79+5FWVkZNm7ciMnJyQyeNHW2bNmCY8eO4bXXXsMrr7yC3bt347777kt6u3vvvXfKz/Bb3/pWFk6bmBdffBEPPfQQHn30URw6dAgrVqzAxo0b0d/fH/P677zzDm6//Xbcc889OHz4MG6++WbcfPPN+OCDD7J8cuWofY6AOMk0+md16dKlLJ5YHV6vFytWrMBTTz2l6PoXLlzATTfdhOuvvx5HjhzBgw8+iL/6q7/Cq6++muGTpoba58c5derUlJ9hfX19hk6YHm+++SYeeOABvPvuu3jttdcQCARw4403wuv1xr1NTv4OGaGKb33rW2zevHlxvz86OsrMZjP72c9+Jl924sQJBoDt2bMnG0dMieeee445HA5F173zzjvZJz/5yYyeR2uUPr9wOMwaGxvZ//k//0e+bHR0lFmtVvbTn/40gydMjePHjzMAbP/+/fJlv/vd75ggCKy7uzvu7a699lr2xS9+MQsnVMfatWvZAw88IP87FAqx5uZmtm3btpjX/+xnP8tuuummKZetW7eOff7zn8/oOdNB7XNU87eZbwBgL730UsLr/P3f/z1bunTplMtuvfVWtnHjxgyeTBuUPL833niDAWAjIyNZOZPW9Pf3MwDszTffjHudXPwdkvOiEpfLherq6rjfP3jwIAKBADZs2CBf1t7ejjlz5mDPnj3ZOGJW2LVrF+rr67F48WLcf//9GBoayvWRNOHChQtwOp1Tfn4OhwPr1q3Ly5/fnj17UFlZiTVr1siXbdiwAQaDAXv37k142x//+Meora3FsmXL8Mgjj2B8fDzTx02I3+/HwYMHp/y3NxgM2LBhQ9z/9nv27JlyfQDYuHFjXv6sgNSeIwCMjY1h7ty5aGlpwSc/+UkcO3YsG8fNCnr7GabKypUr0dTUhI997GN4++23c30cxbhcLgBI+L6Xi59hwS1mzCRnz57Fk08+ie3bt8e9jtPphMVimZGvaGhoyNsap1o2bdqET3/605g3bx7OnTuHr3zlK/j4xz+OPXv2wGg05vp4acF/Rg0NDVMuz9efn9PpnGE/m0wmVFdXJzzvn//5n2Pu3Llobm7G+++/j3/4h3/AqVOn8Itf/CLTR47L4OAgQqFQzP/2J0+ejHkbp9Opm58VkNpzXLx4MZ599llcfvnlcLlc2L59O6666iocO3Ys40tos0G8n6Hb7cbExARKSkpydDJtaGpqwtNPP401a9bA5/Ph//2//4frrrsOe/fuxRVXXJHr4yUkHA7jwQcfxNVXX41ly5bFvV4u/g6L0nl5+OGHYwaoor+mv5B0d3dj06ZNuOWWW3Dvvffm6OTKSOX5qeG2227DJz7xCSxfvhw333wzXnnlFezfvx+7du3S7kkkINPPLx/I9HO87777sHHjRixfvhxbtmzBD3/4Q7z00ks4d+6chs+C0IL169fjjjvuwMqVK3HttdfiF7/4Berq6vD9738/10cjFLB48WJ8/vOfx+rVq3HVVVfh2WefxVVXXYVvf/vbuT5aUh544AF88MEHeOGFF3J9lBkUpfPypS99CXfddVfC67S1tcn/v6enB9dffz2uuuoqPPPMMwlv19jYCL/fj9HR0SnuS19fHxobG9M5tmLUPr90aWtrQ21tLc6ePYsbbrhBs/uNRyafH/8Z9fX1oampSb68r68PK1euTOk+U0Hpc2xsbJwR9AwGgxgeHlb1+7Zu3ToAors4f/581efVgtraWhiNxhmdeYn+dhobG1VdP9ek8hynYzabsWrVKpw9ezYTR8w68X6Gdrtd965LPNauXYu33nor18dIyNatW+UGgGQOXy7+DotSvNTV1aGurk7Rdbu7u3H99ddj9erVeO6552AwJDarVq9eDbPZjJ07d+Izn/kMADFl3tHRgfXr16d9diWoeX5a0NXVhaGhoSlv9pkkk89v3rx5aGxsxM6dO2Wx4na7sXfvXtUdWemg9DmuX78eo6OjOHjwIFavXg0AeP311xEOh2VBooQjR44AQNZ+hrGwWCxYvXo1du7ciZtvvhmAaFvv3LkTW7dujXmb9evXY+fOnXjwwQfly1577bWs/a2pJZXnOJ1QKISjR49i8+bNGTxp9li/fv2Mttp8/hlqwZEjR3L6t5YIxhi+8IUv4KWXXsKuXbswb968pLfJyd9hxqLABUBXVxdbsGABu+GGG1hXVxfr7e2Vv6Kvs3jxYrZ37175sr/+679mc+bMYa+//jo7cOAAW79+PVu/fn0unkJSLl26xA4fPsy+/vWvs/Lycnb48GF2+PBh5vF45OssXryY/eIXv2CMMebxeNjf/d3fsT179rALFy6wP/zhD+yKK65gCxcuZJOTk7l6GnFR+/wYY+zxxx9nlZWV7Je//CV7//332Sc/+Uk2b948NjExkYunkJRNmzaxVatWsb1797K33nqLLVy4kN1+++3y96f/jp49e5b9z//5P9mBAwfYhQsX2C9/+UvW1tbGrrnmmlw9BZkXXniBWa1W9vzzz7Pjx4+z++67j1VWVjKn08kYY+xzn/sce/jhh+Xrv/3228xkMrHt27ezEydOsEcffZSZzWZ29OjRXD2FpKh9jl//+tfZq6++ys6dO8cOHjzIbrvtNmaz2dixY8dy9RQS4vF45L8zAOyJJ55ghw8fZpcuXWKMMfbwww+zz33uc/L1z58/z0pLS9mXv/xlduLECfbUU08xo9HIduzYkaunkBC1z+/b3/42e/nll9mZM2fY0aNH2Re/+EVmMBjYH/7wh1w9hYTcf//9zOFwsF27dk15zxsfH5evkw9/hyReEvDcc88xADG/OBcuXGAA2BtvvCFfNjExwf7mb/6GVVVVsdLSUvapT31qiuDJJ+68886Yzy/6+QBgzz33HGOMsfHxcXbjjTeyuro6Zjab2dy5c9m9994rv/DmG2qfH2Niu/RXv/pV1tDQwKxWK7vhhhvYqVOnsn94hQwNDbHbb7+dlZeXM7vdzu6+++4p4mz672hHRwe75pprWHV1NbNarWzBggXsy1/+MnO5XDl6BlN58skn2Zw5c5jFYmFr165l7777rvy9a6+9lt15551Trv9f//VfbNGiRcxisbClS5ey3/zmN1k+sXrUPMcHH3xQvm5DQwPbvHkzO3ToUA5OrQzeGjz9iz+nO++8k1177bUzbrNy5UpmsVhYW1vblL/HfEPt8/vnf/5nNn/+fGaz2Vh1dTW77rrr2Ouvv56bwysg3nte9M8kH/4OBemwBEEQBEEQuqAou40IgiAIgtAvJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAVJF4IgiAIgtAV/x8CRjGlETo52gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -2240,44 +1705,44 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "outputs" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import sys\n", "sys.path.append(\"/home/mazen/Research/QC/QuLearn/examples/compare_models\")\n", "from model_builder import QNNModel, QNNStatModel" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "model = QNNStatModel(num_features=1, num_reuploads=1, num_varlayers=1, num_repeats=1, omega=0.0, double_wires=False, id=\"0\")\n", "for p in model.parameters():\n", " print(p)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import torch\n", @@ -2285,13 +1750,13 @@ "x = torch.randn(1, 1)\n", "print(model(x))\n", "print(drawer(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -2332,13 +1797,13 @@ " plt.xlabel('x')\n", " plt.ylabel('y')\n", " plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from mpl_toolkits.mplot3d import Axes3D\n", "\n", @@ -2354,13 +1819,13 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "from scipy.stats import qmc\n", @@ -2387,13 +1852,13 @@ " parameter_list = [[torch.tensor(samples[j][i], device=None, dtype=None) for j in range(len(samples))] for i in range(n_samples)]\n", "\n", " return parameter_list" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "test = generate_model_samples(model, 5)\n", "print(len(test))\n", @@ -2401,47 +1866,47 @@ " print(len(t))\n", " for x in t:\n", " print(x.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for input, label in dataloader:\n", " print(input)\n", " print(label)\n", " break" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import logging\n", "logger = logging.getLogger(__name__)\n", "logger.setLevel(level=logging.INFO)\n", "logger.info(\"hello world\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "print(torch.__version__)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import IQPEmbeddingLayer\n", "from qulearn.qlayer import QEvalType\n", @@ -2459,13 +1924,13 @@ "out = qnode()\n", "print(out)\n", "print(qdev.shots)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import math\n", @@ -2476,13 +1941,13 @@ "a = [0, 1]\n", "b = [0, 2]\n", "print(a==b)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import IQPEmbeddingLayer, RYCZLayer, MeasurementLayer, HamiltonianLayer, MeasurementType, EmbedVarLayer, CircuitLayer\n", "import pennylane as qml\n", @@ -2507,24 +1972,24 @@ "x = torch.randn(3, num_wires)\n", "drawer = qml.draw_mpl(ham_layer.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "drawer(x)\n" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "y = torch.cat((x, x), dim=1)\n", "print(x)\n", "print(y)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.utils import all_bin_sequences\n", "from qulearn.observable import sequence2parity_observable\n", @@ -2539,44 +2004,44 @@ "print(all_obs)\n", "print(pairs_obs)\n", "all_obs[0].name" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(tuple(range(3)))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for p in ham_layer.parameters():\n", " print(p)\n", "print(ham_layer.observable.coeffs)\n", "print(ham_layer.observable)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "tmp = torch.tensor([1., -1., 0.5])\n", "print(tmp.numel())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.fim import empirical_fim, compute_fims, mc_integrate_idfim_det\n", "\n", @@ -2591,33 +2056,33 @@ " plist.append([p1[i], p2[i]])\n", "\n", "FIMs = compute_fims(measure_layer, x, plist)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "integral = mc_integrate_idfim_det(FIMs, 1.0, 1.0)\n", "print(integral)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "lin = torch.nn.Linear(3, 1)\n", "print(lin(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "y1 = upload_layer(x)\n", "y2 = var_layer(x)\n", @@ -2626,13 +2091,13 @@ "\n", "print(y3)\n", "print(y4)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "print(y3)\n", @@ -2649,13 +2114,13 @@ "]\n", "grad = torch.cat(grad_list)\n", "prod = torch.outer(grad, grad)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for key, val in measure_layer.state_dict().items():\n", " print(key)\n", @@ -2668,13 +2133,13 @@ " print(key)\n", " print(val)\n", " print(\"====\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch import nn\n", "class HybridModel(nn.Module):\n", @@ -2700,34 +2165,34 @@ " print(key)\n", " print(val)\n", " print(\"======\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(y)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for key, val in measure_layer.state_dict().items():\n", " print(key)\n", " print(val)\n", " print(\"=====\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from enum import Enum\n", "\n", @@ -2744,13 +2209,13 @@ "\n", "if not isinstance(y, MyType):\n", " raise NotImplementedError(\"QEvalType not implemented\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "from torch.nn import Linear\n", @@ -2758,13 +2223,13 @@ "X = torch.tensor([[0.1, 1.1, -2.2], [0.6, 4.1, -3.2], [-0.1, -2.1, -2.2]])\n", "Y = model(X)\n", "print(Y.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch.utils.tensorboard import SummaryWriter\n", "writer = SummaryWriter(\"runs/test\")\n", @@ -2773,13 +2238,13 @@ " writer.add_scalar(\"foobar1\", val, i)\n", " writer.add_scalars(\"loss\", {\"train\": val, \"valid\": val+1.0}, i)\n", "writer.close()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import pennylane as qml\n", @@ -2812,13 +2277,13 @@ "loss = torch.nn.MSELoss()\n", "test = loss(Ypred, Ypred)\n", "print(test)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch.nn import Parameter\n", "P = model.parameters()\n", @@ -2847,13 +2312,13 @@ " print(p)\n", "print(\"====================\")\n", "print(save)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import os\n", "os.environ[\"OMP_NUM_THREADS\"] = \"8\"\n", @@ -2877,13 +2342,13 @@ "\n", "x = torch.zeros(3, num_wires)\n", "print(ham_layer(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "from torch.utils.data import DataLoader, TensorDataset\n", @@ -2901,13 +2366,13 @@ "\n", "dataset = TensorDataset(X, Y)\n", "loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch.optim import Adam\n", "from qulearn.trainer import SupervisedTrainer\n", @@ -2920,62 +2385,62 @@ "logger = logging.getLogger(\"SupTrainer\")\n", "logger.setLevel(level=logging.INFO)\n", "trainer = SupervisedTrainer(opt, loss_fn, metrics, 200, logger=logger)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "trainer.train(model, loader, loader)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "%%timeit\n", "trainer.train(ham_layer, loader, loader) # lightning + torch + adjoint (+ omp-num-threads=8)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "%%timeit\n", "trainer.train(ham_layer, loader, loader) # default + torch + backprop" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "%%timeit\n", "trainer.train(ham_layer, loader, loader) # default + torch + adjoint" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "%lprun -T lprof0 -u 1.0 -f trainer._train_step trainer.train(ham_layer, loader, loader)\n", "writer.close()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from enum import Enum\n", "\n", @@ -2991,13 +2456,13 @@ "\n", "example = MeasurementType.Expectation\n", "print(type(example.name))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qml_mor.trainer import RegressionTrainer\n", "from torch.utils.tensorboard import SummaryWriter\n", @@ -3012,13 +2477,13 @@ "loss = training.train(model, loader, loader)\n", "print(loss)\n", "writer.close()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "path = \"model_bestmre\"\n", "state = torch.load(path)\n", @@ -3027,23 +2492,23 @@ "print(Y)\n", "print(\"==============\")\n", "print(Ypred)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "%load_ext tensorboard\n", "%tensorboard --logdir runs/fashion_trainer_20230517_113403" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import pennylane as qml\n", @@ -3090,13 +2555,13 @@ "loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)\n", "\n", "opt_params = opt.optimize(qnn_model, loader)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "Nx = X.size(0)\n", "y_pred = torch.stack([qnn_model(X[k], opt_params) for k in range(Nx)])\n", @@ -3104,13 +2569,13 @@ "\n", "print(mre)\n", "print(loss_fn(y_pred, Y))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "from torch.utils.data import TensorDataset, DataLoader\n", @@ -3130,26 +2595,26 @@ " print(X_)\n", " print(Y_)\n", " print(\"***********\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qml_mor.datagen import DataGenRademacher, NormalPrior\n", "prior = NormalPrior(3, seed=0)\n", "radem = DataGenRademacher(prior, 2, 3, seed=None)\n", "data = radem.gen_data(4)\n", "print(data)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import pennylane as qml\n", @@ -3163,20 +2628,20 @@ "print(H.coeffs.requires_grad)\n", "W_ = torch.nn.Parameter()\n", "print(W_)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], - "source": [] + "source": [], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import torch\n", @@ -3254,13 +2719,13 @@ "#print(drawer(x, init_theta, theta, W))\n", "probs = qnode(x, init_theta, theta, W, omega)\n", "probs" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "samples = probs\n", "bitstrings = [''.join(str(b.item()) for b in sample) for sample in samples]\n", @@ -3268,13 +2733,13 @@ "print(samples)\n", "print(bitstrings)\n", "print(bitstring_counts)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qml_mor.models import IQPEReuploadSU2Parity\n", "\n", @@ -3284,13 +2749,13 @@ "probs = qnode(x, params)\n", "print(probs)\n", "print(model.Hamiltonian(params))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "H = model.Hamiltonian(params)\n", "sum = 0.0\n", @@ -3316,24 +2781,24 @@ " sign *= (-1)**(int(b[-1-w]))\n", "\n", " sum += sign*H.coeffs[idx]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(probs)\n", "marginal = qml.math.marginal_prob(probs, axis=[0])\n", "print(marginal)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qml_mor.models import parities\n", "\n", @@ -3342,7 +2807,8 @@ "H = qml.Hamiltonian(W, test)\n", "print(H)\n", "print(H.ops)" - ] + ], + "outputs": [] }, { "attachments": {}, @@ -3356,30 +2822,29 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# feature layer\n", "def feature_layer(x):\n", " num_qubits = len(x)\n", " qml.IQPEmbedding(x, wires=range(num_qubits))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# variational layer\n", "def variational_layer(init_theta, theta, num_qubits):\n", " qml.SimplifiedTwoDesign(initial_layer_weights=init_theta, weights=theta, wires=range(num_qubits))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# observable / output layer\n", "def sequence_generator(n):\n", @@ -3408,13 +2873,13 @@ " ops.append(qml.Identity(0))\n", "\n", " return ops" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from pennylane.templates import IQPEmbedding, SimplifiedTwoDesign\n", "# QNN model\n", @@ -3445,13 +2910,13 @@ " H = qml.Hamiltonian(W, obs)\n", "\n", " return qml.expval(H)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from pennylane.templates import IQPEmbedding\n", @@ -3471,13 +2936,13 @@ "features = np.random.random((n_layers, n_wires))\n", "\n", "result1 = iqpe_circuit(features)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "num_qubits = 3\n", "num_reps = 0\n", @@ -3493,13 +2958,13 @@ "\n", "ret = torch.stack([result1, result2])\n", "result1.size()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from scipy.stats import qmc\n", "def generate_samples_r(d, S):\n", @@ -3519,13 +2984,13 @@ "arr = np.array(list(tmp))\n", "print(arr)\n", "arr[0, 3]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -3540,24 +3005,24 @@ "tensor_list *= 2\n", "print(tensor_list)\n", "print(est_params)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "msg = (f\"Stopping early\\n\"\n", " \"Loss not improving\")\n", "print(msg)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import torch\n", @@ -3606,13 +3071,13 @@ " print(f\"Epoch {epoch + 1}, Loss: {loss.item()}\")\n", "\n", "print(f\"Trained parameters: {params}\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "num_qubits = 3\n", "num_reps = 3\n", @@ -3651,25 +3116,25 @@ "\n", "result = qnn_model(x, init_theta, theta, W)\n", "print(result.shape())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "tmp = parities(3)\n", "for x in tmp:\n", " print(type(x))\n", " print(issubclass(type(x), qml.operation.Observable))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# example\n", "num_qubits = 3\n", @@ -3682,7 +3147,8 @@ "W = torch.randn(2**num_qubits, requires_grad=True)\n", "\n", "print(qml.draw_mpl(qnn_model)(x, init_theta, theta, W, omega))" - ] + ], + "outputs": [] }, { "attachments": {}, @@ -3696,7 +3162,6 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "def gen_dataset(N, samples=10, seed=0):\n", " sizex = num_qubits\n", @@ -3708,7 +3173,8 @@ " y = scale*torch.rand(samples, N, requires_grad=False) + shift\n", "\n", " return x, y" - ] + ], + "outputs": [] }, { "attachments": {}, @@ -3722,29 +3188,28 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# model specs\n", "num_qubits = 3\n", "num_reps = 2\n", "num_layers = 2\n", "omega = 1." - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import this" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# initial parameters\n", "seed = 0\n", @@ -3752,13 +3217,13 @@ "init_theta = torch.randn(num_reps, num_qubits, requires_grad=True)\n", "theta = torch.randn(num_reps, num_layers, num_qubits-1, 2, requires_grad=True)\n", "W = torch.randn(2**num_qubits, requires_grad=True)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# loss function\n", "def square_loss(targets, predictions):\n", @@ -3767,13 +3232,13 @@ " loss += (t - p) ** 2\n", " loss = loss / len(targets)\n", " return 0.5*loss" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# capacity estimation parameters\n", "Nmin = 1\n", @@ -3781,13 +3246,13 @@ "samples = 10\n", "steps = 300\n", "eps_stop = 1e-12" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "summary = {}\n", "for N in range(Nmin, Nmax):\n", @@ -3822,30 +3287,31 @@ "\n", " mre_N = torch.mean(torch.tensor(mre_sample))\n", " summary[f'N = {N}'] = mre_N.item()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "for count, eps in enumerate(summary.values()):\n", " m = int(np.log2(1./eps.item()))\n", " C = (count+1)*m\n", " print(C)\n", "print(torch.numel(init_theta))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "C = [-0.5, 13.1, 2]\n", "max(C)" - ] + ], + "outputs": [] }, { "attachments": {}, @@ -3859,30 +3325,29 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "y_pred = torch.tensor([qnn_model(x[k], init_theta, theta, W) for k in range(N)], requires_grad=False)\n", "mre = torch.mean(torch.abs((y[s]-y_pred)/y_pred))\n", "print(mre.item())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "# cutoff precision converted to bits of precision\n", "cutoff = np.sqrt(eps_stop)\n", "m = np.log2(1./cutoff)\n", "print(m)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "print(x)\n", "print(init_theta)\n", @@ -3890,7 +3355,8 @@ "print(W)\n", "print(y[s])\n", "print(y_pred)" - ] + ], + "outputs": [] } ], "metadata": { diff --git a/scratch/scratch2.ipynb b/scratch/scratch2.ipynb index e8fd04d..f05cc17 100644 --- a/scratch/scratch2.ipynb +++ b/scratch/scratch2.ipynb @@ -4,7 +4,6 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import torch\n", @@ -30,23 +29,13 @@ "print(x_train.shape)\n", "print(y.shape)\n", "print(y)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Left Points: tensor([ 0.5000, -0.5000, 0.5000])\n", - "Right Points: tensor([1., 0., 1.])\n", - "Position: tensor([3., 1., 3.])\n" - ] - } - ], "source": [ "import torch\n", "\n", @@ -78,23 +67,13 @@ "print(\"Left Points:\", left_points)\n", "print(\"Right Points:\", right_points)\n", "print(\"Position:\", position)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[0.8660, 0.5000, 0.7071, 0.7071, 1.0000, 0.0000, 0.0000, 1.0000]],\n", - " dtype=torch.float64)\n", - "torch.Size([1, 8])\n" - ] - } - ], "source": [ "import torch\n", "\n", @@ -143,23 +122,13 @@ "n = 3\n", "print(sawtooth_vector(x, n))\n", "print(sawtooth_vector(x, n).shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[0.5000, 0.5000],\n", - " [0.2500, 0.7500]], dtype=torch.float64)\n", - "torch.Size([2, 2])\n" - ] - } - ], "source": [ "import numpy as np\n", "import torch\n", @@ -190,32 +159,13 @@ "result = linear_FEM_basis(x_tensor, n)\n", "print(result)\n", "print(result.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TT cores [tensor([[[0., 1.],\n", - " [1., 0.]]], dtype=torch.float64), tensor([[[ 1., 0.],\n", - " [ 0., 0.]],\n", - "\n", - " [[ 0., 0.],\n", - " [ 0., -1.]]], dtype=torch.float64), tensor([[[ 0.5000],\n", - " [ 0.0000]],\n", - "\n", - " [[ 0.0000],\n", - " [-0.5000]]], dtype=torch.float64)]\n", - "Mode size [2, 2, 2]\n", - "TT rank [1, 2, 2, 1]\n" - ] - } - ], "source": [ "import torchtt as tntt\n", "full_tensor = result.reshape(2, 2, 2)\n", @@ -223,29 +173,13 @@ "print('TT cores', tens_tt.cores)\n", "print('Mode size ', tens_tt.N)\n", "print('TT rank ', tens_tt.R)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Original Matrix:\n", - " tensor([[0.0000, 0.5000],\n", - " [0.5000, 0.0000]], dtype=torch.float64)\n", - "Q Matrix:\n", - " tensor([[ 0., -1.],\n", - " [-1., 0.]], dtype=torch.float64)\n", - "R Matrix:\n", - " tensor([[-0.5000, 0.0000],\n", - " [ 0.0000, -0.5000]], dtype=torch.float64)\n" - ] - } - ], "source": [ "# Reshape the tensor into a 2x2 matrix\n", "matrix = result.reshape(2, 2)\n", @@ -257,24 +191,13 @@ "print(\"Original Matrix:\\n\", matrix)\n", "print(\"Q Matrix:\\n\", q)\n", "print(\"R Matrix:\\n\", r)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTZf/G8c9JuiejUFahQNl776VsxIUDUDYiS0WcuH30cSuIoih7iAo4UMHB3rPsXUbZtJRCJ23TJL8/qvz0EZTR9iTp9f7HV0Nyen2bmPvkm/vct+F0Op2IiIiIiIiIiIiIiMjfWMwOICIiIiIiIiIiIiLiqtREFxERERERERERERG5CjXRRURERERERERERESuQk10EREREREREREREZGrUBNdREREREREREREROQq1EQXEREREREREREREbkKNdFFRERERERERERERK5CTXQRERERERERERERkatQE11ERERERERERERE5CrURBfxcK+88gqGYZCQkPCv983Ozubpp58mIiICi8XCnXfemfcBRURECjiN1SIiIq5P47VIwaYmuohcNnXqVN59913uueceZsyYweOPP/6P99+3bx+dO3cmKCiIIkWK0KdPH86dO5dPaUVERAqe6xmrN23axPDhw2nQoAHe3t4YhpGPSUVERAquax2vHQ4H06dP5/bbbyciIoLAwEBq1qzJ66+/TkZGRj6nFpF/4mV2ABFxHcuWLaN06dKMHTv2X+978uRJWrduTWhoKG+88Qapqam899577Nq1i02bNuHj45MPiUVERAqW6xmrFy1axOTJk6lduzYVKlTg4MGD+ZBQRERErnW8Tk9PZ8CAATRt2pShQ4dSvHhx1q9fz8svv8zSpUtZtmyZvgQXcRFqoovIZfHx8RQqVOia7vvGG2+QlpZGdHQ0ZcuWBaBx48Z06NCB6dOnM2TIkDxMKiIiUjBdz1g9bNgwnnnmGfz9/Rk5cqSa6CIiIvnkWsdrHx8f1q5dS/PmzS/f9tBDDxEZGXm5kd6+ffs8TCoi10rLuYgUEAkJCdx3332EhIRQtGhRHnvsscuXh8XGxmIYBsuXL2fPnj0YhoFhGKxYseKqx/vmm2+47bbbLjfQAdq3b0/lypWZO3duXpcjIiLicXJ7rA4PD8ff3z+f0ouIiBQMuTle+/j4/KWB/oe77roLyFlCVURcg5roIgXEfffdR0ZGBm+++SZdu3Zl/Pjxl2eLFytWjFmzZlG1alXKlCnDrFmzmDVrFtWqVbvisU6dOkV8fDwNGzb82781btyYbdu25WktIiIinig3x2oRERHJG/kxXp89exaAsLCwXM8vIjdGy7mIFBDly5dnwYIFAIwYMYKQkBA++eQTnnzySWrXrs2DDz7I5MmTsVqtPPjgg/94rDNnzgBQsmTJv/1byZIlSUxMJDMzE19f39wvRERExEPl5lgtIiIieSM/xut33nmHkJAQunTpkpvRReQmaCa6SAExYsSIv/z8yCOPADmbjl2vS5cuAVyxSe7n5/eX+4iIiMi1yc2xWkRERPJGXo/Xb7zxBkuWLOGtt9665n1QRCTvqYkuUkBUqlTpLz9XrFgRi8VCbGzsdR/rj/VVMzMz//Zvf6wFpzVYRURErk9ujtUiIiKSN/JyvP7666954YUXGDRoEMOGDbvp44lI7lETXaSAMgzjhh/7xzIufyzr8mdnzpyhSJEiWspFRETkJt3MWC0iIiL5I7fG68WLF9O3b1+6devGxIkTc+WYIpJ71EQXKSBiYmL+8vOhQ4dwOBxERkZe97FKly5NsWLF2LJly9/+bdOmTdStW/cGU4qIiBRcuTlWi4iISN7Ii/F648aN3HXXXTRs2JC5c+fi5aUtDEVcjZroIgXEhAkT/vLzRx99BHDDG5X06NGDn376iRMnTly+benSpRw8eJB77733xoOKiIgUULk9VouIiEjuy+3xet++fXTr1o3IyEh++uknLY0q4qL01ZZIAXH06FFuv/12OnfuzPr165k9eza9e/emTp06N3S85557jnnz5tGuXTsee+wxUlNTeffdd6lVqxYDBgzI5fQiIiKeL7fH6mPHjjFr1iyAy1ePvf766wCUK1eOPn365E5wERGRAiQ3x+uUlBQ6derEhQsXeOqpp1i4cOFf/r1ixYo0a9Yst6KLyE1QE12kgPj666956aWXePbZZ/Hy8mLkyJG8++67N3y8iIgIVq5cyejRo3n22Wfx8fGhW7duvP/++1oPXURE5Abk9lh99OhRXnzxxb/c9sfPbdq0URNdRETkBuTmeH3+/PnLV3c/++yzf/v3fv36qYku4iIMp9PpNDuEiIiIiIiIiIiIiIgr0proIiIiIiIiIiIiIiJXoSa6iIiIiIiIiIiIiMhVqIkuIiIiIiIiIiIiInIVaqKLiIiIiIiIiIiIiFyFmugiIiIiIiIiIiIiIlfhZXaAa+FwODh9+jTBwcEYhmF2HBERkTzhdDpJSUmhVKlSWCzu9T23xmoRESko3HW81lgtIiIFRV6M1W7RRD99+jQRERFmxxAREckXJ06coEyZMmbHuC4aq0VEpKBxt/FaY7WIiBQ0uTlWu0UTPTg4GMgpPCQk5KaPZ7PZ+O233+jYsSPe3t43fTyzeEodoFpckafUAZ5Ti6fUAZ5TS27XkZycTERExOVxz51orL46T6nFU+oAz6nFU+oAz6nFU+oAz6klL+pw1/E6t8dq0OvEFXlKLZ5SB3hOLZ5SB3hOLZ5SB7jHZ2u3aKL/calZSEhIrn0wDwgIICQkxK1fZJ5SB6gWV+QpdYDn1OIpdYDn1JJXdbjjJdYaq6/OU2rxlDrAc2rxlDrAc2rxlDrAc2rJyzrcbbzO7bEa9DpxRZ5Si6fUAZ5Ti6fUAZ5Ti6fUAe7x2dp9FnATEREREREREREREclnaqKLiIiIiIiIiIiIiFyFmugiIiIiIiIiIiIiIlehJrqIiIiIiIiIiIiIyFWoiS4iIiIiIiIiIiIichVqoouIiIiIiIiIiIiIXIWa6CIiIiIiIiIiIiIiV6EmuoiIiIiIiIiIiIjIVaiJLiIiIiIiIiIiIiJyFWqii4iIiIiIiIiIiIhchZroIiIiIiIiIiIiIiJXoSa6iIiIiIiIiIiIiMhVqIkuIiIiIiIiIiIiInIVaqKLiIiIiIiI5KNVq1bRvXt3SpUqhWEYfP/99//6mBUrVlC/fn18fX2Jiopi+vTpeZ5TREREclx3E12DvYiIiGvTWC0iIuLa0tLSqFOnDhMmTLim+x89epRu3brRrl07tm/fzqhRoxg8eDC//vprHicVERERuIEmugZ7ERGRHE6nk/hLZqf4O08YqxNSM7mUbdqvFxERyVNdunTh9ddf56677rqm+0+cOJHy5cvz/vvvU61aNUaOHMk999zD2LFj8zipiIiIAHhd7wO6dOlCly5drvn+fx7sAapVq8aaNWsYO3YsnTp1uuJjMjMzyczMvPxzcnIyADabDZvNdr2R/+aPY+TGsczkKXWAanFFnlIHeE4tnlIHuH8tDoeTpfvP8fGKQxyOt9KtQzrFQgJu+ri59ffwhLH67V8O8OtuKycCDjKwRXlC/L1v+phmcffX+x88pQ7wnFo8pQ7wnFo8pQ7wnFryog4z/ibr16+nffv2f7mtU6dOjBo16qqPyeux+o9j/fm/7spT6gDPqcVT6vhi43E+WHKICH8LzVtfolCQ2YlunKc8J+A5tXhKHZD7teTF38RwOp3OG36wYfDdd99x5513XvU+rVu3pn79+owbN+7ybdOmTWPUqFEkJSVd8TGvvPIKr7766t9unzNnDgEBN9+kEBERuREOJ+xMNPj1pIXT6QYAPhYng6o4qFrohofTy9LT0+nduzdJSUmEhITc9PHAPcfqbAe8v8t6+W/sZ3XSpoSTNiUdBLpvL11ERDxEbo/X1zJWV65cmQEDBjBmzJjLty1atIhu3bqRnp6Ov7//3x6jz9Ui5lp22mDBMevln8sHOxla1Y7fdU9nFZHrlRefrfP8f92zZ88SHh7+l9vCw8NJTk7m0qVLVxzsx4wZw+jRoy//nJycTEREBB07dsyVwm02G4sXL6ZDhw54e7vvp3FPqQNUiyvylDrAc2rxlDrA/WpxOJz8sieOT1cc4WB8KgCBvlZ6NyxNZOYR7uqaO3X8MUMsv7niWN2xQxbvf72UtUkhxMSn8espgzUJ3vRtUpYBLcpROMDnpn9HfnG31/vVeEod4Dm1eEod4Dm1eEod4Dm15EUdZo3X1yuvx2rQ68QVeUot7l7HZ6uOsuBYDAAtKhRm67FEjqYYfHm2KFP71ifYz/1qcvfn5M88pRZPqQNyv5a8GKtd8vsvX19ffH19/3a7t7d3rr4ocvt4ZvGUOkC1uCJPqQM8pxZPqQNcvxa7w8nCXWf4aGkMMb83z4N9vejfIpJBLcsT6G2waNGRXKvDlf8W/ys/xup6YU7GPNicZQfP8+HSGPafTeHTVUeZueE4fZpF8lCr8hQN+nsGV+Xqr/dr5Sl1gOfU4il1gOfU4il1gOfUkpt1mPH3KFGiBHFxcX+5LS4ujpCQkCt+2Q3597k6r45pBk+pAzynFnes4+NlMby3OKeB/nj7ygxvE8lncxcx6ZAf208kMWDmNmYObEyomy5X6I7PydV4Si2eUgfkXi158ffI8yb6jQz2IiIiZrI7nPy44zQfLYvh8Lk0AIL9vBjYojwDW5QnNCBnQPaEtefAtcdqi8WgS62SdKpRgsX74hi/NIY9p5OZuPIwM9bF0qdZOR5qVYFiwe7TTBcREblezZo1Y9GiRX+5bfHixTRr1sykRCJyJeOWHGTckpwG+lOdqjCiXRQ2m42IIJg5oCH9pkez48RF+k7ZyMxBTdy2kS5SEFny+hc0a9aMpUuX/uU2DfYiIuKKsu0Ovt16kg4frGTU19s5fC6NUH9vRneozJpnbuHxDpUvN9A9iTuM1RaLQacaJfjpkZZM7tuQ2mVCuWSz8/mqI7R6Zxmv/bSX+JQMs2OKiIhck9TUVLZv38727dsBOHr0KNu3b+f48eNAzlIsffv2vXz/oUOHcuTIEZ5++mn279/PJ598wty5c3n88cfNiC8i/8PpdPLBbwcuN9Cf7VKVEe2i/nKf6iVDmDO4KYUDvNlxMok+UzaSlO4Zk3JECoLrbqJrsBcREU+TbXcwb8sJ2n+wktFzd3AkIY1CAd482bEya55px6O3VnKrWSKePFYbhkH76uEsGNGCaf0bUSeiEBk2B1PWHKXV28t55Yc9xCWrmS4iIq5ty5Yt1KtXj3r16gEwevRo6tWrx0svvQTAmTNnLo/bAOXLl2fhwoUsXryYOnXq8P777zN58mQ6depkSn4R+X9Op5Oxiw8yftkhAF7oVo2hbSpe8b7VS4Uw56GmFAn0YefJJB6YsoGL6Vn5GVdEbtB1L+eyZcsW2rVrd/nnPzYq6devH9OnT7/qYP/444/z4YcfUqZMGQ32IiLiEmx2B99tPcXHyw9xPDEdgMIB3jzUugJ9m0US5OuSW4f8q4IwVhuGQbuqxWlbpRirYhL4cMlBth6/yPR1sczZdJyejSIY2qYipQpp6TgREXE9bdu2xel0XvXfp0+ffsXHbNu2LQ9TiciNGLsk5nID/cXbqjOoZfl/vH+1kiF8+VBTek/awO5TyfSetJEvBjehcKBPfsQVkRt03d0BDfYiIuLusrIdfLP1JBOWH+LkhUsAFA30YUjrCjzYtByBbto8/0NBGqsNw6BN5WK0rhTG2kPn+XDpQTbHXmDm+mN8tekE9zYsw/B2UZRWM11EREREctnYxQcZvzRnCZcXulX71wb6H6qUCObLITmN9L1nkuk9OaeRXkSNdBGX5d5dAhERkeuQmW1n3paTfLriMKcu5jTPw4J8eLh1RR5oWpYAHw2L7sowDFpWCqNFVFHWHznP+KUxbDiSyBcbjzN3ywnuaVCG4W2jiCgSYHZUEREREfEA45Yc5MM/NdAHt6pwXY+vHB7Mlw81pdekjew7k0zvSRv4YnATigb55kVcEblJ6haIiIjHy8y2M3fLST5ZfogzSTnrZRcL9mVom4r0blwWfx+ryQkltxiGQfOKYTSvGMbGI+cZvyyGtYfO8+WmE8zbcpJ7G5ZhRLsoyhRWM11EREREbsyHS2IubyL6fNfrb6D/oVJ4MF8NaUqvSRvYfzYlZ2mXh5oQpka6iMtRE11ERDxWVraD+dEn+XhZDKd/b56Hh+Q0z3s1Louft5rnnqxJhaJ8UaEoW2IT+XBpDKtjEvhy0wnmR5/k/kYRjGgXRclQLfMiIiIiItdu/NIYxi45CMBzXavyUOsba6D/Iap4UE4j/fMNHIhLofekDcx5qKka6SIuRk10ERHxOH9sGDp+WczlNc/DQ3wZ3jaK+xtFqHlewDSMLMKsQU3YEpvI2CUHWXvoPLM3HGfu5pP0ahzB8HZRhIf4mR1TRERERFzcR0tj+GBxTgN9TJeqDGldMVeOW7FY0OUZ6QfjUnlw8kbmPNRUa6SLuBCL2QFERERyS7bdwTfRJ2n/wUqe/mYnJy9cIizIl5duq87Kp9rRr3mkGugFWMPIInwxuClfDWlK4/JFyLI7mLH+GK3fWc5/ftxLfEqG2RFFRERExEV9vCyG939voD/bpSoPt8mdBvofKhQL4qshzSge7Mv+syk8OHkjF9OzcvV3iMiNUxNdRETcnt3hZMH2U3Qcu4on5u3g2Pl0igb68HzXaqx+uh0DW5ZX81wua1qhKF8PacqcwU1oWK4wmdkOpq49Sut3lvPfhXtJSM00O6KIiIiIuJAJyw/x3m85DfRnOldlaC430P9QPizw96VcfNh7Jpk+UzaRdMmWJ79LRK6PlnMRERG35XA4WbT7DOOWxHAoPhWAQgHePNy6In2blSPQV8OcXJlhGDSPCqNZxaKsOZTAB4sPsu34RSatPsrsDcfp1zySIa0r6BJaERERkQJuwvJDvPvrAQCe7lyFYW3zpoH+h6jiQcx5qCk9P9/ArlNJ9Ju6iVmDGhPs552nv1dE/pm6CyIi4nYcDie/7T3L2MUxHIhLASDEz4shrSvQr3mkTjDlmhmGQatKxWgZFcaKg+cYt/ggO04mMXHlYWatj2VAi/IMblWeQgFqpouIiIgUNJ+uOHy5gf5UpyoMbxuVL7+3cngwswc1offkDWw/cZEB0zYzY2BjTRISMZH+7xMREbfhdDpZsi+esYsPsvdMMgDBvl4MalWegS3LE6LmudwgwzBoV6U4bSsXY9n+eD5YfJA9p5P5ePkhZqyLZUDL8gxqWZ5Qf73GRERERAqCKWuO8vYv+wF4smNlRrTLnwb6H6qXCslppE/awJZjFxgwfTPTBzQiwEetPBEz6P88ERFxeU6nk+UH4hm7OIZdp5IACPSxMrBleQa3rEBogBqbkjsMw+DWauHcUrU4v+2NY+zig+w/m8L4pTFMW3uUh1pVYEALXe0gIiIi4slmbTjGaz/tBWBU+0qMvKWSKTlqlg5l1qAmPDh5I5uOJjJ4xham9GuEv4/2exLJb9pYVEREXJbT6WTlwXPc+ck6Bk7fwq5TSQT4WBnWtiJrnrmFJzpWUQNd8oRhGHSqUYJFj7bi0wfqUzk8iJSMbD5YfJCWby9nwvJDpGZmmx1TRERERHLZ3C0nePH73QAMbVORx241p4H+hzoRhZg+sDGBPlbWHT7PkFlbyLDZTc0kUhCpiS4iIi5pw5Hz3DtxPf2mbmLHiYv4eVsY0roCq55uxzOdq1JYGz5KPrBYDLrUKskvj7Xmo171qFgskKRLNt799QBt3lnO5NVH9CFGRERExEMs2H6KZ77ZCcCAFpE807kKhmGYnAoalCvM9IGNCfCxsjomgWGzo8nM1jmoSH5SE11ERFzKjhMX6TNlIz0/z1n7z9fLwqCW5Vn1dDue61qNsCBfsyNKAWSxGHSvU4rfHm/Dhz3rElk0gPNpWby+cB9t313BFxuPYbM7zI4pIiIiIjfo511nGD13B04nPNCkLC/dVt0lGuh/aBRZhKn9G+HnbWH5gXOM+GIbWdk6/xTJL2qii4iISzhwNoUhM7dwx4S1rI5JwMti8GDTsqx8qh0v3lad4sF+ZkcUwWoxuKNuaZaMbsPbPWpRKtSPs8kZPP/dbm59fyXfbTuJ3eE0O6aIiIiIXIel++J45Mtt2B1O7mlQhtfuqOlSDfQ/NK1QlCn9GuHrZWHJvjge/XKbJnKI5BM10UVExFSxCWk89tU2On+4it/2xmEx4O76pVn2RFtev7MWJULVPBfX42W1cH+jsix/qi0vd69OWJAPxxPTefzrHXQet4pfdp/B6VQzXURERMTVrTp4jmGzt5LtcNK9Tine7lEbi8X1Guh/aBEVxud9G+JjtfDLnrM8NW8HDk3iEMlzXmYHEBGRgulCJrywYA/zt56+PHO3a60SjO5QmajiwSanE7k2vl5WBrQoz/2NIpi+LpbPVh4hJj6VobO3Uqt0KE90rEzz8oXMjikiIiIiV7D+9406s+wOOtcowQf31cHqwg30P7SpXIxPH6zPw7Oi+X77afx9vHjjLtecPS/iKdREFxGRfJWQmsnHSw8ye5uVbOcpANpVKcYTHatQs3SoyelEbkyAjxfD20bxQJNyTF59hKlrjrLrVBL9p22mYblCNA8yO6GIiIiI/Fn0sUQGzdhMhs3BLVWLM75XPbyt7rNgw63Vwhl7f10e+2obX246TqCPlee7VVMjXSSPqIkuIiL5IindxuerDzNtbSzpWXbAoHFkYZ7uXJWGkUXMjieSK0L9vXmiYxX6N4/k0xWHmbnhGFuOXWQLXmybEc1TnatSu0whs2OKiIiIFGg7T16k/9TNpGfZaVUpjE8eqI+Pl/s00P/QvU4pLmXZefqbnUxec5RAXy8e71DZ7FgiHklNdBERyVNpmdm/L3NxmOSMbABqlQ6hZcgFHu/VEB8fH5MTiuS+okG+vHBbdQa3qsCHSw7w9ZYTrD50ntUfr6VTjXCe6FiFyuFatkhEREQkv+07k0yfKZtIycymcfkifN6nIX7eVrNj3bD7GkWQnpXNKz/u5cOlMQT4WHm4TUWzY4l4HDXRRUQkT2TY7MzZeJxPVhwiITULgCrhwYzuWJl2lYrw888/61JD8XglQv34z+3VicqOZZcjggU7z/Drnjh+2xvHHXVKMap9ZSLDAs2OKSIiIlIgHE1Io8+UTSRdslGvbCGm9m+Ev4/7NtD/0L9FedKy7Lz76wHe/Hk/Ab5e9GlazuxYIh5FTXQREclV2XYH86NP8uHSGM4kZQBQrmgAoztU5rbapbBaDGw2m8kpRfJXmB+827UWI26pxAeLD/Lz7rN8v/00P+48w30NI3js1kqUCPUzO6aIiIiIxzp98RIPTt5IQmom1UqGMH1AY4J8PactNqJdFOlZ2UxYfpgXv99NgLeVHg3KmB1LxGN4zruFiIiYyul08vPus7z36wGOJKQBUDLUj0dvrcQ9Dcq41SY9InmlUngwnz7YgF0nk3jvtwOsPHiOLzcd59utJxnQojzD2lQkNMDb7JgiIiIiHiUhNZMHp2zk1MVLVAgLZNagxoT6e94515Mdq5CWaWf6uliemr+DAB8rXWqVNDuWiEdQE11ERG7aukMJvP3LfnacTAKgSKAPI9pF8UCTsm69vqBIXqlVJpQZAxuz6Wgi7/yyny3HLjBx5WHmbDzG8HZR9G8eqf93RERERHJB0iUbfads4si5NEqF+jFrcBPCgnzNjpUnDMPgpduqk56VzdwtJ3n0q2187mOlXZXiZkcTcXuaFigiIjds96kk+kzZSO/JG9lxMokAHyuP3lqJlU+1ZVDL8moCivyLxuWLMG9oMyb3bUjl8CCSM7J56+f9tHl3OV9uOk623WF2RBERERG3lZ6VzaDpm9l7JpmwIB9mD25C6UL+ZsfKUxaLwZt31+a22iWx2Z0MnRXN+sPnzY4l4vY0E11ERK5bbEIa7/12gJ92ngHA22rwQJNyjGgXRbFgz5zVIZJXDMOgffVw2lUtznfbTjF28UFOXbzEmG93MWn1EZ7qWIXONUtoI14RERGR65CZbefhWdFsOXaBED8vZg5sQoViQWbHyhdWi8HY++uSYbOzZF88g2dsZvbgJtQrW9jsaCJuSzPRRUTkmsWnZPDC97to/8FKftp5BsOAO+uWYunotrxyew010EVugtVicE+DMix7sg0v3ladIoE+HDmXxrAvtnLnhLWsO5RgdkQRERERt5BtdzDqq+2sjknA39vKtAGNqV4qxOxY+crbauHj3vVpEVWUtCw7A6Zv5mBcitmxRNyWmugiIvKvkjNsvPfrAdq8s4LZG46T7XDStkoxFj7SinE961G2aIDZEUU8hq+XlUEty7PyqbY8emslAnys7DiZRO/JG+kzZSO7TyWZHVFERETEZTkcTp79dhc/7z6Lj9XCpL4NaVCuYM7A9vO28nmfhtQrW4iL6Tb6TNnIicR0s2OJuCU10UVE5KoybHYmrTpC63eW8/HyQ1yy2alXthBfDWnK9AI4m0MkPwX7eTO6Q2VWPtWOfs3K4W01WB2TwG0frWHknK3EJqSZHVFERETEpTidTl5buJf50SexWgzG96pHy0phZscyVaCvF9P6N6JyeBBxyZn0nbqJcymZZscScTtqoouIyN/YHU7mbjnBLe+t4L+L9nEx3UZU8SA+69OAb4c1p2mFomZHFCkwigX78uodNVk6ui131C0FwE87z9D+g5W88P0u4pMzTE4oIiIi4hrGLYlh2tpYAN7pUZvONUuYG8hFFArwYebAnE1Vjyak0X/aJpIzbGbHEnEraqKLiMhlTqeT3/acpfO4VTw9fyenkzIoGerHOz1q88tjrehUQ5sbipilbNEAPuxZj4WPtqRtlWJkO5zM3nCcNu+u4N1f9+uDkIiIiBRoU9cc5cOlMQC8ensNejQoY3Ii11Ii1I/Zg5tQNNCHPaeTGTxjCxk2u9mxRNyGmugiIgJA9LFE7pm4niGzoomJT6VQgDfPd63G8ifbcl+jCLysGjJEXEGNUqFMH9CYr4Y0pV7ZQlyy2Zmw/DBt3lnO1DVHycp2mB1RREREJF8t2H6K//y0F4AnOlSmX/NIcwO5qPJhgcwY2JhgXy82HU1k5JxtZNt17ihyLdQREREp4I6cS2XorGh6fLqe6GMX8PO2MKJdRVY+1Y6HWlfAz9tqdkQRuYKmFYry7bDmfNanAVHFg7iQbuM/P+2l/Qcr+WnnaZxOp9kRRURERPLcigPxPDF3BwD9m0cy8pYokxO5tpqlQ5ncryG+XhaW7IvjmW924XDovFHk33iZHUBERMyRkJrJ+KUxzNl4nGyHE4sB9zWM4PEOlQkP8TM7nohcA8Mw6FSjBLdWLc686JN8sPggxxPTGTlnG5MijvJ812o0Ll/E7JgiIiIieWLb8QsMm72VbIeT2+uU4qXbqmv5yWvQpEJRPu5dn6Gzo/lm60kKB3jzfLdq+tuJ/APNRBcRKWAuZdn5eFkMbd9dwcz1x8h2OLm1anF+GdWat3rUVgNdxA15WS30alyWFU+25fH2lQnwsbLjxEXu+2w9g2ds4VB8qtkRRURERHLVofhUBk7fzCWbnVaVwnjv3jpYLGoCX6sO1cN5p0dtACavOcqnKw+bnEjEtWkmuohIAWF3OPkm+iTvLz5AXHImALVKhzKma1WaVwwzOZ2I5IZAXy8ea1+JXk0i+HBJDF9tPsGSfXEsPxDP/Y0iGNW+EsWD9UWZiIiIuLczSZfoO2UjF9Jt1IkoxMQHG+DjpXmi16tHgzJcSM/i9YX7eOeXAxTy96F3k7JmxxJxSWqii4h4OKfTyYqD53hr0X4OxKUAUKawP091qkL32qU0W0PEAxUP9uO/d9ViQIvyvP3LfhbvjWPOxuN8v+0UQ1pX4KFWFQj01WmgiIiIuJ+L6Vn0nbKJ00kZVCgWyLT+jXRecxMGt6rAhfQsJiw/zPPf76JQgDdda5U0O5aIy9G7jIiIB9t9Kok3Fu1j3eHzAIT6e/PILVH0aVYOXy9tGCri6aKKBzGpb0M2HjnPGz/vZ8eJi4xbEsMXG4/zePvK3NewDF5WzdoSERER95Celc3A6ZuJiU+lRIgfMwc2pkigj9mx3N6THatwId3GnI3HGfXVdgoH+NCsYlGzY4m4FH1qEhHxQCcvpDPqq23c9tEa1h0+j4/VwpDWFVj1VDsGt6qgBrpIAdOkQlG+H96cj3vXo2yRAM6lZPLcd7vo/OFqluyNw+l0mh1RRERE5B/Z7A6Gf7GVrccvEurvzcxBjSlTOMDsWB7BMAxeu6MmnWuUIMvuYMisLew/m2x2LBGXoia6iIgHSUq38caifdzy3kq+334agDvrlmLpE214rms1QgO8TU4oImYxDIPbapdiyeg2vNy9OoUDvDkUn8rgmVvo+fkGdpy4aHZEERERkStyOJw8M38nKw6cw8/bwtT+DakcHmx2LI9itRiM61mXxpFFSMnIpt/UTZy6eMnsWCIuQ010EREPkJXtYPLqI7R+dzmfrzpClt1BswpF+XFkS8b1rEdEEc3QEJEcPl4WBrQoz4qn2jGsbUV8vSxsPJrIHRPW8siX2ziRmG52RBEREZG/ePPnfXy77RRWi8EnD9SnQbkiZkfySH7eVib1bUil4kHEJWfSb+omLqZnmR1LxCWoiS4i4sacTie/7D5Lx7EreX3hPpIu2agcHsS0/o2Y81ATapUJNTuiiLioUH9vnulcleVPtqVH/TIYBvy44zS3frCSt37eT0qGzeyIIiIiIkxefYRJq48C8E6P2txSNdzkRJ4tNMCbGQMbUyLEL+eqxRlbyLDZzY4lYjo10UVE3NTuU0n0/HwDQ2dHE3s+nbAgX966uxaLHm1Fu6rFMQzD7Igi4gZKFfLn/fvq8NMjLWkRVZSsbAcTVx6m7bsr+GLjMbLtDrMjioiISAG1aNdZXl+4D4Bnu1SlR4MyJicqGEoV8mfGwMYE+3mx5dgFHv1yG3aH9tCRgk1NdBERN3M2OYMn5u6g+8dr2Hg0EV8vCyPbRbHiqbb0bFwWL6ve2kXk+tUoFcrsQU2Y0q8hFYoFcj4ti+e/203X8atZefCc2fFERESkgDmUDE9+swuAfs3K8XDrCiYnKliqlAhmUt+G+Fgt/LY3jv8s3If2opeCzMvsACIicm3Ss7L5+YTBs+PWcMmWMzP0zrqleKpzVUoX8jc5nYh4AsMwuLVaOK0rF+OLDccYtzSGg3Gp9Ju6iTaVwmiu7RVEREQkH8TEpzJ5vxWb3UmnGuG81L2GrrQ1QdMKRRnXsy4j5mxlzqaTJEUYdDM7lIhJNF1RRMTFORxOvok+SccP1/LLSSuXbA4alCvMd8ObM65nPTXQRSTXeVst9G9RnpVPtmNwy/J4Ww1WxiTw9g4rL/+4l/OpmWZHFBEREQ8Vl5zB4JlbuWQ3qBcRyoc962G1qIFulq61SvLybdUBWHjCyvytp0xOJGIOzUQXEXFhG4+c57WFe9l9KhmAIr5OXrmzDt3rltFMDBHJc6EB3rxwW3UeaFqONxbuZfG+eOZsOsmPO84y8pYo+reIxNfLanZMERER8RApGTb6T9vM6aQMivs5+ezBevh561zDbP1blOf0xXQ+Xx3LCwv2UiI0gHZVi5sdSyRfaSa6iIgLik1IY+isaO7/fAO7TyUT5OvFUx0r8VxdO11qllADXUTyVfmwQD7pXZdHqmdTo1QwKZnZvPnzftp/sJKFO8/g1AKZIiIicpOysh0Mm72VfWeSKRrow9BqdgoH+JgdS373ZIdKNApzYHc4Gf7FVrafuGh2JJF8pSa6iIgLSbpk4/Wf9tJh7Ep+2XMWiwEPNCnLiqfaMqRVebz1ri0iJooKhW8fbsp799YhPMSXE4mXGDFnK/dOXK8PUiIiInLDnE4nz367kzWHEgjwsTKpTz2K+pmdSv7MMAx6VXTQMqool2x2Bs/YzInEdLNjieQbtWNERFyAze5gxrpY2r67nMlrjmKzO2lduRi/jGrNf++qRViQr9kRRUQAsFgM7mlQhuVPtuWxWyvh521hy7EL3DlhLaO+2sbpi5fMjigiIiJu5v3fDvLt1lNYLQYTetenVulQsyPJFVgt8FHPOlQrGUJCahYDpm8mKd1mdiyRfKEmuoiIyVbHnKPrh6t5+Yc9XEi3Ual4ENMHNGLmwMZUDg82O56IyBUF+HjxeIfKrHiyHT3qlwHg++2nueX9FYxbcpBLWXaTE4qIiIg7+GLjMT5efgiAN+6qqbW2XVyQrxdT+zekRIgfh+JTeXj2FrKyHWbHEslzaqKLiJgkNiGNwTO20GfKJmLiUykc4M1rd9bk58da0baKThxFxD2UCPXj/fvq8OPIljSOLEKGzcG4JTG0/2AlP+08rfXSRURE5KqW7Y/jxe93A/DYrZW4v1FZkxPJtSgZ6s/U/o0I9LGy4Ugiz36zU+d84vHURBcRyWepmdm89fN+Oo5dxZJ9cXhZDAa2KM+KJ9vRp2k5vKx6axYR91OrTChfP9yUj3vXo1SoH6cuXmLknG3c//kG9pxOMjueiIiIuJg9p5MYOWcbDifc26AMo9pXMjuSXIfqpUKY8EB9rBaDb7ed4sOlMWZHEslT6tSIiOQTh8PJvC0naPfeCiauPEyW3UGrSmH8MqoVL3WvTmiAt9kRRURuimEY3Fa7FEufaMuo9jnrpW86mkj3j9bw3He7OJ+aaXZEERERcQFnkzIYNH0L6Vl2WkQV5Y27a2EYhtmx5Dq1rVKc1+6oCcC4JTHMjz5pciKRvONldgARkYJg6/ELvPrDHnaczJmNGVk0gBdvq84tVYvrZFFEPI6/j5VR7Stzb8MI3ly0j592nmHOxuP8uOM0o9pXpm+zcnjrqhsREZECKS0zm0EzNnM2OYOo4kF88kADnRe4sd5NynI8MZ2JKw/z7Dc7KRXqR/OoMLNjieQ6vUuJiOShuOQMHv96O3d/so4dJ5MI8vViTJeq/Pp4a26tFq4Guoh4tNKF/Pm4d33mPtyM6iVDSMnI5rWf9tJ53CpWHjxndjwRERHJZ3aHk8e+2sae08kUDfRhWv9GhPrrilx393SnKnSrXZJsh5OHZ0cTE5didiSRXKcmuohIHsiw2Zmw/BDt3lvBd9tOATnr/C17sg0Pt6mIr5fV5IQiIvmncfki/PhIS968uxZFAn04fC6NflM3MXjGZo4mpJkdT0RERPLJ6wv3smRfPL5eFib1a0hEkQCzI0kusFgM3r+3Dg3KFSYlI5v+0zYTn5JhdiyRXKUmuohILnI6nfyy+ywdxq7k3V8PkJ5lp37ZQiwY0YJ3761D8WA/syOKiJjCajHo1bgsy59sy6CW5fGyGCzZF0/HsSt5c9E+UjJsZkcUERGRPDRjXSzT1sYC8MF9dalftrC5gSRX+XlbmdS3IZFFAzh18RKDZ2whPSvb7FgiuUZNdBGRXLL/bDIPTN7I0NnRnEi8RHiIL+Pur8s3w5pTJ6KQ2fFERFxCqL83L95WnV9GtaZN5WLY7E4+W3WEdu+tZO6WEzgcTrMjioiISC5btj+OV3/cA8DTnXOW/hDPUyTQh2kDGlM4wJudJ5MY9dV2nduJx1ATXUTkJiVdsvHKD3voNn4N6w6fx8fLwiO3RLHsibbcWa+01j0XEbmCqOJBTB/QiKn9G1I+LJCE1Eyenr+Tuz5Zy/YTF82OJyIiIrlkz+kkHpmzDYcT7m8YwbA2Fc2OJHmofFggk/o2xMfLwm9743jn1wNmRxLJFWqii4jcIIfDybwtJ7j1/RVMXxeL3eGkc40SLB3dhic6ViHQ18vsiCIiLs0wDG6pGs6vo1rzXNeqBPl6seNkEnd9spZnv9nJ+dRMsyOKiIjITTiblMGg6VtIy7LTvGJRXr+rpiYZFQANI4vwTo/aAExceZj50SdNTiRy89REFxG5AbtPJXHPxHU8NX8nCalZVCwWyOxBTZjYp4E2xxERuU4+XhaGtK7Isifb0KN+GZxO+GrzCdq9t4KZ63O+pBQRERH3kpaZzaAZmzmbnEFU8SA+fbAB3la1oQqKO+uVZmS7KADGfLuTzbGJJicSuTl69xIRuQ4X07N4/rtddP94DVuPXyTQx8pzXavy82OtaVkpzOx4IiJurXiwH+/fV4f5Q5tRvWQIyRnZvLRgD90/WkP0MX3wEhERcRcOh5PRc7ez53QyRQN9mNa/EaH+3mbHknw2ukNlutYqgc3u5OFZ0ZxITDc7ksgNUxNdROQa2B1Ovtx0nHbvreCLjcdxOuH2OqVY+kRbhrSuiI+X3k5FRHJLw8gi/PhIS/5zRw1C/LzYeyaZHp+u54m5OziXoiVeREREXN3YJQf5dU8cPlYLn/fV1boFlcVi8P69dalVOpTEtCwGzdhMSobN7FgiN0RdHxGRf7H9xEXu+mQtY77dxYV0G1XCg/lqSFPG96pHiVA/s+OJiHgkq8Wgb7NIlj/ZlvsbRgDwzdaT3PLeCqauOUq23WFyQhEREbmSBdtP8dGyQwC8cXctGpQrYnIiMZO/j5VJfRsSHuLLwbhUHvlym87jxC2piS4ichXnUzN59pud3PXJWnaeTCLY14uXbqvOT4+2pGmFombHExEpEIoG+fL2PbX5bnhzapUOJSUzm//8tJdu49ew8ch5s+OJiIjIn2w/cZGn5u8E4OHWFbinQRmTE4krKBHqx+S+jfDztrDiwDneWLTf7Egi101NdBGR/2F3OJm5PpZ2763gq80ncDqhR/0yLH2yDQNbltdmOCIiJqhXtjDfj2jBf++qSaEAbw7EpXD/5xt47KttxCVnmB1PRESkwDublMGQmVvIynZwa9XiPN25qtmRxIXUKhPKB/fVBWDq2qPM2Xjc3EAi10mdIBGRP4k+lkj3j9bw0oI9JGdkU71kCPOHNuP9++pQPFhLt4iImMlqMXigSTmWP9GW3k3KYhiwYPtpbnlvBZ+vOoxNlwaLiIiY4lKWnYdmbiE+JZPK4UGM61kXq8UwO5a4mK61SvJEh8oAvLRgN+sOJZicSOTa3VATfcKECURGRuLn50eTJk3YtGnTP95/3LhxVKlSBX9/fyIiInj88cfJyNCMIRFxHedTM3ly3g56fLqevWeSCfHz4rU7avDjIy1pGKk1/MT9aKwWT1Y40Ic37qrFDyNaUjeiEGlZdt5YtJ8uH65m3WF9GBMR96HxWjyB0+nkyfk72HUqicIB3kzp14hgP2+zY4mLGnlLFHfWLUW2w8mwL7Zy5Fyq2ZFErsl1N9G//vprRo8ezcsvv8zWrVupU6cOnTp1Ij4+/or3nzNnDs8++ywvv/wy+/btY8qUKXz99dc899xzNx1eRORmORxO5mw8zi3vr2R+9EkA7m8YwfIn29KnWaRmT4hb0lgtBUWtMqF8O6w57/SoTZFAHw7Fp9J70kYe/3o751IyzY4nIvKPNF6Lpxi/9BALd57By2Iw8cEGRBQJMDuSuDDDMHirR23qlS1E0iUbg2duITnDZnYskX913U30Dz74gIceeogBAwZQvXp1Jk6cSEBAAFOnTr3i/detW0eLFi3o3bs3kZGRdOzYkV69ev3rN+wiInltz+kkekxcx3Pf7SLpko1qJUP4dnhz3r6nNkWDfM2OJ3LDNFZLQWKxGNzXKILlT7TlwaY5S7x8t+0Ut76/glkbjmF3OM2OKCJyRRqvxRMs2nWGsUsOAvD6nTVpUqGoyYnEHfh5W/m8T0NKhvpx5Fwao77arnM2cXle13PnrKwsoqOjGTNmzOXbLBYL7du3Z/369Vd8TPPmzZk9ezabNm2icePGHDlyhEWLFtGnT5+r/p7MzEwyM/9/9lBycjIANpsNm+3mv5364xi5cSwzeUodoFpckafUAX+vJTUzmw+XHmLmhuM4nBDoY+WxW6Po0yQCL6vFZWv25OfEXeV2HblxHI3VrsdTanH1OgK84eVuVbmzTkle/nEve06n8OL3u5m35Tj/6V6dGqVCLt/X1Wu5Vp5SB3hOLZ5SB3hOLXlRh7uM13k9Vv9xrD//1115Sh2Qv7XsOZ3M6LnbAejfrCw96pXUa+sKPKWW3K6jkJ+FT3rVpefkTSzbH8+7v+zjiQ6VcuXY/0bPietxxc/W/8twOp3X/FXP6dOnKV26NOvWraNZs2aXb3/66adZuXIlGzduvOLjxo8fz5NPPonT6SQ7O5uhQ4fy6aefXvX3vPLKK7z66qt/u33OnDkEBOiyIBG5MU4nbE80+O6ohSRbzjItdYs6uKucg0KaeC4uID09nd69e5OUlERISMi/P+AKNFaLgMMJa84a/HTCQqbdwMBJqxJOukU48LuuKSQiIn/nLuO1xmrJS8lZ8P4uKxezDKqGOhhSzYFVK2HKDdhyzmDWISsA/SrZqR+mGely83JjrP5fef4xYsWKFbzxxht88sknNGnShEOHDvHYY4/x2muv8eKLL17xMWPGjGH06NGXf05OTiYiIoKOHTvmSuE2m43FixfToUMHvL3dd7MLT6kDVIsr8pQ6IKeWL39czPLk4qw5nAhA2SL+vHJbNVpVCjM53bXztOfEE2rJ7Tr+mCGW3zRW5y1PqcXd6rgNeDw5gzd/PsjC3WdZddZgf5o/z3WpQocqRViyZInb1HI17vac/BNPqcVT6gDPqSUv6nCX8Tqvx2rQ68QV5UctWdkO+k7bwsWsi1QIC2DOw01yfSNRPSeuJ6/q6Ar4/nqQyWti+TrWm7s7NKZ6ydx5j7oaPSeuxx0+W19XEz0sLAyr1UpcXNxfbo+Li6NEiRJXfMyLL75Inz59GDx4MAC1atUiLS2NIUOG8Pzzz2Ox/H1Zdl9fX3x9/z4t1NvbO1dfFLl9PLN4Sh2gWlyRu9eRmW1n4prjfLLdSrYzER+rhaFtKzK8bUX8vK1mx7sh7v6c/Jmn1JJbdeTGMTRWuy5PqcWd6ihT1JsJDzagZ8w5Xvx+N7Hn0xk1dycto4rSNsi9avknnlIHeE4tnlIHeE4tuVmHu4zX+TVW59UxzeApdUDe1vLqwl1EH79IsK8Xk/o1okhw3l3ZoOfE9eRFHWO6VicmPo2VB88xfM4OfhjZIl/2KdNz4npc6bP1/7qujUV9fHxo0KABS5cuvXybw+Fg6dKlf7kE7c/S09P/NphbrTmNq+tYSUZE5LqtiUmg87jVjF92mGynQfOKRfhlVCtGd6jstg10kX+jsVrk71pVKsYvo1ozqn0lfLwsrDl0nrd2WPlo2WEybHaz44lIAaTxWtzVV5uOM3vDcQwDxvWsS8ViQWZHEg9gtRiM71mP8mGBnLp4ieFfbMVmd5gdS+QvrquJDjB69GgmTZrEjBkz2LdvH8OGDSMtLY0BAwYA0Ldv379sjtK9e3c+/fRTvvrqK44ePcrixYt58cUX6d69++UBX0QkN8UnZ/DIl9t4cMpGjiakUSzIh36V7Ezv14AKOsmTAkBjtcjf+XlbGdW+Mr+Oak3LqKJkOw3GLz9Mlw9XszrmnNnxRKQA0ngt7mbr8Qu8tGAPAKPbV+bWauEmJxJPEhrgzaS+DQjy9WLj0URe+2mv2ZFE/uK610S///77OXfuHC+99BJnz56lbt26/PLLL4SH57x5Hj9+/C/fjr/wwgsYhsELL7zAqVOnKFasGN27d+e///1v7lUhIgI4HE6+2HiMd345QEpmNhYD+jaL5NF25Vm9bDGGoZ1upGDQWC1ydeXDApnatz5vzPqFRWcDOJqQRp8pm+hepxQvdqtG8RA/syOKSAGh8VrcSXxyBkNnRZNld9CpRjgj2kWZHUk8UFTxYMbdX5eHZm1h5vpjVCsZQq/GZc2OJQLc4MaiI0eOZOTIkVf8txUrVvz1F3h58fLLL/Pyyy/fyK8SEbkmB86mMObbnWw9fhGAOmVC+e9dtahZOhSbzWZuOBETaKwWuTrDMKgX5uTR+1rw0YojzFgXy487TrPiQDxjulSjZ6MILBZ98SoieU/jtbiDzGw7Q2dHE5+SSaXiQbx/X12Nk5Jn2lcPZ3T7yry/+CAvLdhNpeJBNIwsYnYsketfzkVExJVk2Oy8++t+uo1fzdbjFwn0sfLq7TX4dngLapYONTueiIi4sGA/L17uXoMfRrakdplQUjKyee67Xdz/+XoOxaeYHU9ERMQlvPLDXrYev0iwnxef921IkO8NzccUuWYjb4mia60S2OxOhs7eytmkDLMjiaiJLiLua+2hBDqPW8WE5YfJdjjpWD2cJU+0oV/zSKyaGSEiIteoZulQvhvegpduq06Aj5XNsRfo8uFqxi4+SGa2Nh4VEZGC64uNx/hyU85GouN75Wz8KJLXDMPg3XvqULVEMAmpmQz7IpqsbG00KuZSE11E3E5iWhaj527ngckbiT2fTniILxMfbMDnfRtSMtTf7HgiIuKGrBaDgS3Ls3h0G26tWhyb3cmHS2Po8uFqNhw5b3Y8ERGRfLclNpFXfsjZSPTJjlVoV6W4yYmkIAn09eKzPg0I8fNi2/GL2mhUTKcmuoi4DafTyTfRJ7n1/RV8u/UUhgH9mpVjyeg2dK5Zwux4IiLiAUoX8mdyv4Z88kB9igX7cuRcGj0/38Cz3+wkKV17bIiISMEQl5zBsC+2YrM76VqrBMPbVjQ7khRA5YoGMq5nXQBmbTjGN9EnzQ0kBZqa6CLiFmIT0nhwykaemLeDC+k2qoQH882w5rx6R02C/bzNjiciIh7EMAy61irJktFt6N2kLABfbT7BrR+s4Icdp3E6nSYnFBERyTtZ2Q6GzY7mXEomVcKDefeeOhiGlssUc9xSNZzHbq0EwHPf7WL3qSSTE0lBpSa6iLg0m93BhOWH6DRuFWsPncfXy8LTnavw06MtqV+2sNnxRETEg4X6e/PGXbWYN7QZUcWDSEjN4tEvtzFg+mZOJKabHU9ERCRPvLFo3582Em1AoDYSFZM9dmsl2lUpRma2g2FfRHMxPcvsSFIAqYkuIi4r+tgFbhu/hnd/PUBmtoOWUWH89nhrhreNwtuqty8REckfjSKLsPDRlozuUBkfq4UVB87RcewqJq8+QrZdm1yJiIjnWLD9FNPXxQIw9r66lCuqjUTFfBaLwdj76xJRxJ8TiZcY9fV2HA5dGSj5S10oEXE5aZnZvPLDHu6ZuI4DcSkUCfRh7P11mDWosU7iRETEFL5eVh69tRI/j2pF4/JFuGSz8/rCfdz5yVpdViwiIh7hYFwKz36zC4AR7SrSvnq4yYlE/l+hAB8mPtgAX6+cCQ3jlsaYHUkKGDXRRcSlrDqYM7tv+rpYnE7oUb8MS0a34a56ZbQOn4iImK5isSC+eqgpb/eoRYifF7tPJXPHhLW8/ct+Mmx2s+OJiIjckNTMbIbOjuaSzU6LqKKM7lDF7Egif1OjVChv3l0LgPFLY1i6L87kRFKQqIkuIi4hKd3Gk/N20HfqJk5dvETpQv7MGtSY9++rQ5FAH7PjiYiIXGaxGNzfqCxLn2hLt9olsTucfLriMF3Hr2ZLbKLZ8URERK6L0+nk6fk7OHIujZKhfozvWQ+rRROYxDXdXb8MfZuVA2DU19uJTUgzOZEUFGqii4jpftl9lvZjVzI/+iSGAf2bR/Lb461pVamY2dFERESuqliwLxN61+ezPg0oFuzLkXNp3PvZel75YQ9pmdlmxxMREbkmU9YcZdGus3hbDSY8UJ+iQb5mRxL5Ry90q079soVIyfj9CoosXQ0oeU9NdBExTXxKBsO/iGbo7GjOpWRSsVgg8x5uxiu319AO8CIi4jY61SjBksfbcG+DMjidMH1dLB3HrmJ1zDmzo4mIiPyjTUcTefPn/cAfjcnCJicS+Xc+XhY+eaABYUE+7D+bwosLdpsdSQoANdFFJN85nU6+iT5Jhw9WsWjXWawWgxHtKrLw0VY0jCxidjwREZHrFhrgzbv35myCXbqQP6cuXqLPlE08NW8HSek2s+OJiIj8TXxKBiPnbMXucHJ7nVKXl8gQcQclQv34qFd9LAbMjz7J3C0nzI4kHk5NdBHJV6cuXqL/tM08MW8HSZds1CgVwg8jW/BUp6r4eVvNjiciInJTWlUqxm+Pt6Z/80gMA+ZFn6T92JX8uues2dFEREQuy7Y7GDlnG/EpmVQOD+KtHrUwDK2DLu6lWcWiPNExZxPcF7/fzb4zySYnEk+mJrqI5AuHw8nM9bF0/GAlKw+ew8fLwtOdq/D9iBbUKBVqdjwREZFcE+jrxSu312Dew82oUCyQcymZPDwrmhFfbOVcSqbZ8URERHj31wNsOppIoI+VTx9sQICPltMU9zSsTUXaVC5GZraDEV9sJVX70kgeURNdRPLckXOp3P/5el5asIe0LDuNIgvz82OtGN42Cm+r3oZERMQzNYwswqJHWzG8bUWsFoOFu87QYexKvtt2EqfTaXY8EREpoJbui+OzVUcAePfeOlQsFmRyIpEbZ7EYjL2/LiVD/TiSkMaYb3fpPEvyhLpXIpJn7A4nk1YdocuHq9kce4EAHyv/uaMGXw9pphM1EREpEPy8rTzduSoLRrSgeskQLqbbePzrHQycvpkzSZfMjiciIgXM6YuXeGLeDgD6N4+ka62SJicSuXlFAn34uHc9vCwGP+44zeyNx82OJB5ITXQRyRNHzqVy32fr+e+ifWRmO2hVKYzfHm9N32aRWCxaa09ERAqWmqVDWTCyBU91qoKP1cLyA+foOHYV86M1K11ERPKHze7gkS+3cTHdRq3SoYzpWtXsSCK5pkG5IjzTOec1/dqPe9l1MsnkROJp1EQXkVxldziZvDpn9nn0sQsE+Xrxdo9azBzYmDKFA8yOJyIiYhpvq4UR7aJY9FhL6kQUIiUjmyfn7WDQjC3EJWeYHU9ERDzc+78dJPrYBYJ9vZjQuz6+XlazI4nkqsGtytOhejhZdgfD50STdMlmdiTxIGqii0iuiU1Io+fn63l94f/PPv/18dbc36isdnoXERH5XVTxYL4Z2oxnOlfFx2ph2f54OnygtdJFRCTvLN8fz8SVhwF4557alC2qCU7ieQzD4L176lCmsD8nEi/x1LwdOreSXKMmuojcNIfDybS1R+n84So2x14g0MfKG3flzD4vXcjf7HgiIiIux8tqYVjbivz0aEtqlQ4lOSObx7/ewZBZ0cSnaFa6iIjknjNJlxg9dzsA/ZqVo4vWQRcPFhrgzScP1MfHauG3vXFMWXPU7EjiIdREF5Gbcvx8Oj0nbeDVH/eSYXPQvGJRfhnVmt5NNPtcRETk31QOD+a74c15qlMVvK0Gi/fG0XHsKhZsP6WZUyIictOy7Q4e/XIbF9Jt1CwdwnPdqpkdSSTP1S5TiBduy3mtv/XzfrafuGhuIPEIaqKLyA1xOJzMXB9Lp3Gr2HQ0kQAfK6/dWZPZg5oQUUSXBoqIiFwrr9/XSv9hZEtqlArhYrqNx77azrDZW0lIzTQ7noiIuLEPFh9kc6zWQZeCp0/TcnStVYJsh5NHv9xGSobWR5eboya6iFy3E4np9J68gZcW7OGSzU7TCkX4dVRr+jQth8Wi2eciIiI3olrJEL4f0YLH21fGy2Lwy56zdBy7ioU7z5gdTURE3NDKg+f4ZEXOOuhv9ahNuaKBJicSyT+GYfDm3bUpXcif44npPP/dbl3lJzdFTXQRuWZOp5PZG47RadwqNhxJxN/byqu312DO4KaafS4iIpILvK0WHmtfiQUjW1C1RDCJaVmMmLOVEXO2kpiWZXY8ERFxE3HJGTz+9XYgZ0Zut9paB10KnlB/b8b3qofVYvDDjtPMiz5pdiRxY2qii8g1OZuUQb9pm3nh+92kZ9lpHFmEX0a1ol/zSM0+FxERyWU1SoXyw8iWPHpLFFaLwcKdZ+g4diW/7TlrdjQREXFxDic8OX8XiWlZVC8ZwvNaB10KsAblCjO6Q2UAXl6wh0PxqSYnEnelJrqI/Ksfdpym07hVrDp4Dl8vCy/dVp2vhjTV5YAiIiJ5yMfLwuiOVfh+eAuqhAeTkJrFkFnRPD1/h9b1FBGRq1p62mDD0QsE+Fj5uHc9/Ly1DroUbEPbVKR5xaJcstl55MttZNrsZkcSN6QmuohcVZoNRs3dyaNfbiPpko1apUNZ+GhLBrYsr9nnIiIi+aRWmVB+eKQFD7eugGHA3C0n6fLhajbHXjA7moiIuJjtJy6y6HhOq+eV22tQoViQyYlEzGe1GIy9vy5FAn3YdyaZt3+LMTuSuCE10UXkilYfSuDtHVYW7jqL1WLw6K2V+HZ4c6KKB5sdTUREpMDx9bIypms1vnqoKWUK+3PywiUemLqZBccsZGY7zI4nIiIuICXDxuh5u3Bg0K1mCe5tUMbsSCIuIzzEj/fvrQPArA3H2ZWoiYFyfdREF5G/uJRl56UFuxk4YytJNoPyRQP4ZlhzRneojLdVbxkiIiJmalKhKD8/1or7GpbB6YRlpy30mLiBfWeSzY4mIiIme2nBHk5cuEQRXyf/ub0ahqEmociftatanEEtywMw57CFM0kZJicSd6KOmIhctu34BbqNX83M9ccAaFXCwYLhzagbUcjcYCIiInJZsJ8379xTh0971yXIy8mBuFTu+HgtE1cexu5wmh1PRERM8N22k3y37RQWA/pE2Qnx9zY7kohLerpzFWqUCiY92+CJ+bt07iTXTE10EcFmd/DBbwe4Z+J6jiSkUSLEj6n96nNPeQf+PtqERkRExBW1r1acZ+vaubVqMbLsDt76eT+9Pt/AicR0s6OJiEg+OnY+jRe/3wPAyHYVqRBiciARF+brZWXcfbXxtTjZHHuBj5cdMjuSuAk10UUKuEPxKdz9yTrGLzuE3eHkjrql+HVUa1pFhZkdTURERP5FsDd82rsu7/SoTaCPlU2xiXQet4q5m0/gdGpmlYiIp7PZHTz61XZSM7NpHFmE4W0qmB1JxOVFFg3k3go5e8qMXxbD1uParF3+nZroIgWU0+lk+tqjdBu/hl2nkgj19+ajXvX4sGc9QgN06Z+IiIi7MAyD+xpF8Muo1jSOLEJalp2nv9nJQzOjSUjNNDueiIjkobGLD7LjxEVC/LwY27MuVovWQRe5Fo2KObmtVgnsDiePf72dtMxssyOJi1MTXaQAOpeSSf9pm3nlx71kZjtoXbkYvz3emu51SpkdTURERG5QRJEAvhzSlGe7VMXbarBkXxydx61i+f54s6OJiEgeWHc4gU9XHgbgrR61KV3I3+REIu7lle7VKBXqx7Hz6bz2016z44iLUxNdpIBZtj/nA/XKg+fw8bLw6u01mDGgEeEhfmZHExERkZtktRgMbVORH0a2pEp4MAmpWQyYvplXfthDhs1udjwREcklSek2npi7A6cTejaKoGutkmZHEnE7of7evHdfHQwDvtp8gl/3nDU7krgwNdFFCogMm52XFuxm4PQtnE/LomqJYH56pCX9mkdiGLrkT0RExJNUKxnCgpEt6N88EoDp62K54+O1HDibYm4wERHJFS/9sJszSRlEFg3gpe7VzY4j4raaVwxjSKucvQSe/WYn8ckZJicSV6UmukgBsO9MMrd/vIaZ648BMLBFeb4f0YLK4cEmJxMREZG84udt5ZXbazBtQCPCgnw4EJdC94/XMH3tUW06KiLixn7YcZoF209jtRiMvb8uAT5eZkcScWujO1ameskQLqTbeGr+Tp0nyRWpiS7iwRwOJ1PXHOWOCWs5GJdKWJAv0wc04qXu1fHztpodT0RERPJBuyrF+fmx1rSrUoysbAev/LiXgdM3a9NRERE3dDYpgxe+2wXAiHZR1Ctb2OREIu7P18vKhz3r4utlYeXBc8zacMzsSOKC1EQX8VDxKRn0n76Z//y0l6xsB7dWLc6vo1rRtkpxs6OJiIhIPisW7MvU/o14pXt1fLwsLD9wLmfT0QPadFRExF04HE6emr+D5IxsapcJ5ZFbosyOJOIxKoUHM6ZLVQD+u3AfMXFaAk/+Sk10EQ+0dF8cncetZtXBc/h6WXjtzppM7teQokG+ZkcTERERkxiGQf8W5flhZIv/33R0mjYdFRFxFzPXx7I6JgFfLwsf3FcXb6taOiK5qW+zSFpXLkZmtoPHvtpOVrbD7EjiQvSOK+JBLmXZefH73QyasYXEtCyqlQzhp0da0qdpOW0eKiIiIgBULfH3TUfvnKBNR0VEXNmh+BTe/Hk/AM91rUZU8SCTE4l4HovF4L17alM4wJu9Z5J5f/EBsyOJC1ETXcRDHIxL4Y4Jay6v3fVQq/J8P6I5lbR5qIiIiPyPy5uO9s/ZdHT/2ZxNR2esi9VmWiIiLsZmd/D41zvIzHbQqlIYfZqWMzuSiMcqHuLHm3fXBuDzVUfYEptociJxFWqii7g5p9PJl5uO0/2jNRyMS6VYsC+zBjXm+W7V8fXS5qEiIiJyde2q5mw62vb3TUdf/mEPD8+K5mJ6ltnRRETkdx8tjWHXqSRC/b159546WCy6ylgkL3WuWYJ7GpTB6YQn5+0gPSvb7EjiAtREF3FjyRk2HvlyG2O+3UVmtoPWlYvx82OtaFWpmNnRRERExE0UC/ZlWv9GvHRbdbytBr/tjaPb+DVEH9PMKxERs209foGPlx8C4L931aREqJ/JiUQKhpe6V6dkqB+x59N5+/ellKRgUxNdxE1tP3GRbuNX89POM3hZDMZ0qcr0/o0I0+ahIiIicp0Mw2Bgy/J8O6wFkUUDOHXxEvd9toEJyw/hcGh5FxERM6RnZTP66+04nHBn3VLcVruU2ZFECowQP2/e7pGzrMuM9cdYdyjB5ERiNjXRRdyMw+Fk0qoj3PPpOk4kXqJMYX/mDW3Gw20q6rI+ERERuSm1yoTy4yMtuaNuKewOJ+/+eoB+0zZxLiXT7GgiIgXOO78cIPZ8OiVC/Hj1jppmxxEpcFpXLsYDTcoC8NT8naRk2ExOJGZSE13EjZxPzWTgjM38d9E+sh1OutUqycJHW1GvbGGzo4mIiIiHCPbzZtz9dXmnR238vC2sjkmgy4erWROjGVgiIvll45HzTF8XC8Db99Qm1N/b3EAiBdRzXasRUcSfUxcv8d+F+8yOIyZSE13ETaw7nPMBdsWBc/h6WXjjrlp83LueTqZEREQk1xmGwX2NIvhhZEsqhweRkJpJn6kbeffX/WTbHWbHExHxaOlZ2Tw1fycA9zeMoE1l7XklYpZAXy/evacOAF9tPsHyA/EmJxKzqIku4uKy7Q4+WHyQByZvJD4lk6jiQSwY2YLeTcpiGFq+RURERPJO5fBgFoxoSa/GZXE6YcLyw/T8fAOnLl4yO5qIiMd655cDHE9Mp2SoH8/fVs3sOCIFXtMKRRnYojwAz36zk6R0LetSEKmJLuLCziZl0HvyRsYvjcHpzJmF8MPIFlQtEWJ2NBERESkg/H2svHl3LT7qVY9gXy+2HLtA1w9Xs3hvnNnRREQ8zoY/LePyVo/ahPjpymMRV/B05ypUCAskLjmTV37cY3YcMYGa6CIuak1MAt3Gr2bT0USCfL34sGdd3r6nNgE+XmZHExERkQKoe51SLHy0FbXLhJJ0ycZDM7fw6o97yMrW8i4iIrkhPSubp39fxqVnIy3jIuJK/LytvHdfHSwGfLftFL/uOWt2JMlnaqKLuBi7w8m4JQfpM3Uj59OyqFYyhB8fackddUubHU1EREQKuLJFA5g/tDmDW+Zc0jxtbSz3f76e01reRUTkpv2xjEupUD+e76ZlXERcTf2yhXm4TUUAnv9uFxfTs0xOJPlJTXQRF3I+NZP+0zYxbknO8i09G0Xw3fDmlA8LNDuaiIiICAA+XhZeuK06k/o2JMTPi23HL9Jt/GpWaKMtEZEb9r/LuARrGRcRlzSqfSUqFQ8iITWL//y01+w4ko/URBdxEZtjE+k2fg2rYxLw97by/r11eKtHbfy8rWZHExEREfmbDtXDWfhoK2qWDuFCuo0B0zfzwW8HsDucZkcTEXErf17GpVfjCFprGRcRl+XrZeXte2pjGPDt1lMs1ySCAkNNdBGTOZ1OPl91mJ6fb+BscgYViwWyYGQLejQoY3Y0ERERkX8UUSRneZcHmpTF6YTxyw7Rd+pGElIzzY4mIuI2/ljGpXQhf57rqmVcRFxd/bKFGdgiZ2m757/dRUqGzeREkh/URBcxUVK6jYdmRvPGov3YHU7uqFuKH0a2pHJ4sNnRRERERK6Jn7eV/95Viw971sXf28raQ+fp+mHO5ugiIvLPtsQmMmN9LABv9ailZVxE3MQTHStTtkgAp5MyeOeXA2bHkXygJrqISXadTOK2j1ezZF8cPlYLr99Zk3H31yXQ18vsaCIiIiLX7Y66pflhZAuiigcRn5JJr0kb+GzlYZxOLe8iInIlmdl2nv12F04n3NewDK0qaRkXEXcR4OPFW3fXAmDWhmNsPHLe5ESS19REF8lnTqeTWRuO0ePTdZxIvEREEX++Hd6cB5uWwzAMs+OJiIiI3LBK4cEsGNGCO+qWwu5w8ubP+xkyK5qkS7rMWUTkf01YfphD8amEBfnyfNfqZscRkevUPCqMXo0jAHj2211k2OwmJ5K8pCa6SD7KsNl5Yt4OXvx+N1l2Bx2rh/PTI62oWTrU7GgiIiIiuSLQ14tx99fl9Ttr4mO1sHhvHLd9tJrdp5LMjiYi4jIOnE3h0xWHAPjPHTUIDdAyLiLuaEzXaoSH+HI0IY2xSw6aHUfykJroIvnkRGI6d3+yjm+3nsJiwHNdq/JZnwaE+utkSURERDyLYRg82LQc3wxrTpnC/pxIvESPT9cxP/qk2dFERExndzh55pud2OxOOlQPp0vNEmZHEpEbFOLnzX/vzFnWZdKqI+w8edHcQJJn1EQXyQcrDsRz20dr2HsmmaKBPswe3IQhrStq+RYRERHxaLXKhLLwkVbcUrU4mdkOnpy3g5cW7CYr22F2NBER08xaH8v2ExcJ9vXitTtq6nOhiJtrXz2c2+uUwuGEp+fv1HmOh1ITXSQPORxOPloaw4Dpm0m6ZKNORCF+fKQlzSuGmR1NREREJF+EBngzuW9DHru1EgAz1x+j16QNxCVnmJxMRCT/nbyQzju/HgDgmS5VKRHqZ3IiEckNL3evTpFAH/afTeHzVYfNjiN5QE10kTySkmFjyKwtvL/4IE4n9G5SlrkPN6VUIX+zo4mIiIjkK4vF4PEOlZnSryHBfl5EH7vAbR+tYXNsotnRRETyjdPp5IXvd5OeZadxZBF6Ny5rdiQRySVFg3x56bacDYI/WnaI2IQ0kxNJblMTXSQPnE6HuyduZMm+eHy8LLzTozZv3FULXy+r2dFERERETHNrtXB+HNmSKuHBnEvJpNfnG5ixLhan02l2NBGRPPfDjtOsOHAOH6uFN3vUwmLRMi4inuSOuqVoGRVGZraDFxfs1vmNh1ETXSSXLdx1lrG7rMSeT6d0IX/mD23GfY0izI4lIiIi4hIiwwL5dnhzbqtdkmyHk5d/2MPT3+wmy252MhGRvJOYlsWrP+4F4NFbo6hYLMjkRCKS2wzD4PU7a+LjZWF1TAI/7DhtdiTJRWqii+QSm93Baz/tZdTcnWQ5DJpXLMKPj7SkdplCZkcTERERcSmBvl581KseL3SrhtVi8P2OM4zbbeXEhXSzo4mI5Ik3F+0jMS2LqiWCGdK6otlxRCSPRIYF8ugtUQC89tNeLqZnmZxIcoua6CK5IDEti75TNjFlzVEA2pdyMLVvA4oE+picTERERMQ1GYbB4FYVmDWoMUUCvTmVbnD3pxtZdfCc2dFERHLVpqOJzIs+iWHAG3fXwsdLrRgRTzakdUWiigeRkJrF27/sNzuO5JIbeueeMGECkZGR+Pn50aRJEzZt2vSP97948SIjRoygZMmS+Pr6UrlyZRYtWnRDgUVczf6zydz+8RrWHzlPoI+Vj3rWoXs5B1atbyciJtJYLSLuonnFML4f1oyygU4uXrLRf9omPlt5WOuISoGg8drzZWU7eOH7XQD0bFSW+mULm5xIRPKaj5eFN+6qBcCXm05oI3UPcd1N9K+//prRo0fz8ssvs3XrVurUqUOnTp2Ij4+/4v2zsrLo0KEDsbGxzJ8/nwMHDjBp0iRKly590+FFzPbzrjPc/ck6Tl64RNkiAXw7vAWda4SbHUtECjiN1SLibkqG+vFoTTv3NiiNwwlv/ryf0XN3kGHTQuniuTReFwxT1hzlYFwqRQN9eKZzFbPjiEg+aVy+CD1/3x/vuW93kZXtMDmR3Cyv633ABx98wEMPPcSAAQMAmDhxIgsXLmTq1Kk8++yzf7v/1KlTSUxMZN26dXh7ewMQGRl5c6lFTOZwOBm3NIbxS2MAaBkVxse961EowAebzWZyOhEp6DRWi4g78rbAf++oTs3ShfjPT3v5btspjpxL5bM+DSkR6md2PJFcp/Ha851ITOfDpQcBeK5rNQoFaLlPkYLk2S5VWbw3jpj4VCatPsKIdlFmR5KbcF1N9KysLKKjoxkzZszl2ywWC+3bt2f9+vVXfMwPP/xAs2bNGDFiBAsWLKBYsWL07t2bZ555BqvVesXHZGZmkpmZefnn5ORkAGw2W640KP84hrs3Oz2lDnCvWlIzs3n6m90s3pczQ6R/s7I806kyXlbjL69Rd6jln3hKHeA5tXhKHeA5teR2HblxHI3VrsdTavGUOsBzavGUOuD/a8jOzqZ3o9KUL+rHo1/tZMfJJLp/tJoJvetSL6KQuSGvgSc+J+5eS17U4S7jdV6P1X8c68//dVd5VcfLC3aTYXPQOLIw3WsVz5e/k54T1+MptXhKHZB/tQR6G4zpUoUn5+9i/NIYOlUvRrkiAbl2fD0n/3683GQ4r2OxwdOnT1O6dGnWrVtHs2bNLt/+9NNPs3LlSjZu3Pi3x1StWpXY2FgeeOABhg8fzqFDhxg+fDiPPvooL7/88hV/zyuvvMKrr776t9vnzJlDQEDuvdhErldCBkzab+XsJQOr4eT+Cg6aFNd6nSKSO9LT0+nduzdJSUmEhITc0DE0VouIp0jIgMn7rZz5/byrZwUHjXXeJS7AXcZrjdXm2pVoMPmAFavh5OnadkroTy5SIDmd8Mk+CweTLFQNdTC0mgNDW+jludwYq//XdS/ncr0cDgfFixfn888/x2q10qBBA06dOsW777571Q/mY8aMYfTo0Zd/Tk5OJiIigo4dO+ZK4TabjcWLF9OhQ4fLl8G5I0+pA9yjlrWHz/PS1ztIupRN8WBfPu5V54ozotyhlmvhKXWA59TiKXWA59SS23X8MUMsv2mszlueUoun1AGeU4un1AFXr+XuP10B+MVhKz7h5Xi6YyW8rNe9tVO+KAjPibvJizrcZbzO67Ea9Dq5mrTMbN76aB2QwZBWFRjYodLNh7xGek5cj6fU4il1QP7XUrNpOl0+Wsv+JAtekfXolEt76ek5ubq8GKuvq4keFhaG1WolLi7uL7fHxcVRokSJKz6mZMmSeHt7/+XysmrVqnH27FmysrLw8fn7mmC+vr74+vr+7XZvb+9cfVHk9vHM4il1gGvW4nQ6mbY2lv8u2ofd4aRORCE+79OA8JB/XpvTFWu5EZ5SB3hOLZ5SB3hOLblVR24cQ2O16/KUWjylDvCcWjylDvh7LYW9vfmsT8PLe9FMW3eMQ+fS+LhXfUIDXLdmT35O3FVu1uEu43V+jdV5dUwz5FYdny4+xJmkDCKK+PNo+yp4e195eby8pOfE9XhKLZ5SB+RfLVElQhnapiIfLTvEm78c5JbqJQjwyb15zXpOrnyc3HZdUzh8fHxo0KABS5cuvXybw+Fg6dKlf7kE7c9atGjBoUOHcDj+fxfagwcPUrJkySt+KBdxJVnZDp75Zif/+WkvdoeTu+uX5ushTf+1gS4iYhaN1SLiaSwWg9EdKvPJA/Xx97ayOiaBOyas4VB8itnRRG6YxmvPtf9sMpPXHAXgP7fXxN8n/xvoIuJ6hreNonQhf05dvMSE5YfMjiM34Lqvgxw9ejSTJk1ixowZ7Nu3j2HDhpGWlnZ5R/G+ffv+ZXOUYcOGkZiYyGOPPcbBgwdZuHAhb7zxBiNGjMi9KkTywIW0LPpM2cjcLSexGPBCt2q8f28d/EyYRSAicj00VouIJ+paqyTfDGtO6UL+xJ5P584J61h+IN7sWCI3TOO153E6nby0YA92h5PONUrQrmpxsyOJiIvw97Hy4m3VAZi06ihHE9JMTiTX67qvHbj//vs5d+4cL730EmfPnqVu3br88ssvhIfnrOdz/PhxLJb/781HRETw66+/8vjjj1O7dm1Kly7NY489xjPPPJN7VYjkskPxqQyasZlj59MJ8vXio971aFdFJ0Ai4h40VouIp6peKoQfRrZg2Bdb2XQ0kUHTN/PSbdXp36K82dFErpvGa8/z084zbDqaiJ+3hRe7Vzc7joi4mE41wmlTuRgrD57jlR/2MH1AIwztMuo2bmgBnpEjRzJy5Mgr/tuKFSv+dluzZs3YsGHDjfwqkXy3JiaBYV9Ek5KRTZnC/kzp14gqJYLNjiUicl00VouIpyoa5MvsQU14/rtdzIs+ySs/7uVIQhov3VbdZTccFbkajdeeIz0rmzcW7QP+f9kGEZE/MwyDV26vQaexq1h58By/7Y2jU40r74MhrkdnmSJ/MnvDMfpN20RKRjYNyhXm+xEt1EAXERERcTE+Xhbeuac2z3apimHAzPXHGDRjC8kZNrOjiUgBNWH5/28mOqR1BbPjiIiLKh8WyEOtc66g+8+Pe7mUZTc5kVwrNdFFALvDyas/7uGF73djdzi5q15pvhjchLCgv+9mLyIiIiLmMwyDoW0q8ukDDfDztrDy4Dnu+XQdJxLTzY4mIgVMbEIak1blbCb6Yrfq2kdLRP7RiHZRlAr149TFS3yyQpuMugs10aXAS8mwMXjGZqatjQXgiQ6V+eA+bSAqIiIi4g461yzBvIebUzzYl4Nxqdw5YS3Rxy6YHUtECpDXftpLlt1B68rF6FA93Ow4IuLiAny8Lm8y+tnKI8Rqk1G3oCa6FGgnEtO559P1LD9wDl8vCxN61+eRWytpYwcRERERN1KrTCgLRrageskQzqdl0WvSBhZsP2V2LBEpAJbvj2fp/ni8rQYvd6+uz5Iick061yxBq0phZNkdvPrjHrPjyDVQE10KrG3HL3DXJ2s5EJdCsWBf5j7cjG61S5odS0RERERuQMlQf+YNbUb7auFkZTt47KvtjFtyEKfTaXY0EfFQmdn2y82vgS3KU7FYkMmJRMRd/LHJqLfVYPmBc6w4EG92JPkXaqJLgfTrnrP0mrSBhNQsqpUMYcGIFtSJKGR2LBERERG5CYG+XnzWp8HlTf3GLYnhsa+2k5mtTbtEJPdNWXOU2PPpFAv2ZeQtUWbHERE3U7FYEP2aRQLw+sJ92OwOcwPJP1ITXQqcaWuPMnR2NBk2B22rFGP+0GaUKuRvdiwRERERyQVWi8FzXavx1t218LIY/LDjNH2nbCIp3WZ2NBHxIGeTMvh4Wc6GgGO6VCXYz9vkRCLijh65tRJFAn04FJ/KnI3HzY4j/0BNdCkwHA4nr/20l1d/3IvTCb0al2Vy34YE+nqZHU1EREREclnPxmWZPqAxQb5ebDyaSI+J6zh5Id3sWCLiId75ZT/pWXYalCvMXfVKmx1HRNxUqL83oztUBmDskoNcTM8yOZFcjZroUiBk2OyMmLOVKWuOAvB05yq8cVdNvKz6X0BERETEU7WsFMa8oc0oEeLHofhU7vpkHbtPJZkdS0Tc3M6TF/l2W87mxdpMVERuVs9GEVQJD+Ziuo1xS2LMjiNXoQ6ieLzEtCx6T9rAz7vP4mO18GHPugxvG6UTHREREZECoFrJEL4b0ZyqJYI5l5LJfZ+t1+ZdInLDnE4nr/+0D4C765emdplC5gYSEbfnZbXwUvfqAMzacIxD8SkmJ5IrURNdPFpsQhp3f7KWrccvEuLnxcxBjbmjri61ExERESlISob6M3doM1pEFSU9y86gGVv4erPWHRWR6/frnrNsik3Ez9vCU52qmB1HRDxEi6gw2lcLx+5w8vrCfWbHkStQE108VvSxC9z96Tpiz6dTupA/3w5vTtMKRc2OJSIiIiImCPHzZlr/xtxdvzR2h5NnvtnFB78dwOl0mh1NRNxEZradNxbtB2BI64qUDPU3OZGIeJLnu1XD22qw4sA5luuqOZejJrp4pF/3nKX3pA0kpmVRq3Qo341oTlTxYLNjiYiIiIiJfLwsvH9vHR65JQqA8csO8eS8nWRlO0xOJiLuYOa6YxxPTKd4sC8Pt65gdhwR8TDlwwLp3zwSgNd/2ovNrvMTV6ImunicORuPM2x2NJnZDm6tWpyvhjSleLCf2bFERERExAUYhsETHavw5t21sFoMvtl6koHTN5OSYTM7moi4sMS0LMYvy9nw78lOVQj09TI5kYh4okdurUTRQB8On0vjiw3HzI4jf6ImungMp9PJ+KUxPPfdLhxO6NU4gs/6NNDJjYiIiIj8Ta/GZZncryEBPlbWHEqg16QNnEvJNDuWiLioD5ccJCUjm+olQ+hRv4zZcUTEQ4X4eTO6Y2Ug54q5ZH3J7zLURBePYHc4efmHPXyw+CAAj94SxRt31cLLqpe4iIiIiFxZuyrF+XpIM4oG+rD7VDL3TlzHicR0s2OJiIs5FJ/K7I05mxG/0K0aVothciIR8WT3N4ygYrFAEtOy+GzlYbPjyO/UYRS3l5lt59EvtzFz/TEMA169vQajO1bBMHRiIyIiIiL/rFaZUOYPa06Zwv7Enk/n7k/Xse9MstmxRMSFvLloH3aHk/bVwmkeFWZ2HBHxcF5WC892qQbA5NVHOZN0yeREAmqii5tLybAxYNpmFu46g7fV4KNe9ej3+yYMIiIiIiLXonxYIN8Ma07VEsGcS8nkvs/Ws/HIebNjiYgLWHc4gaX74/GyGIzpWtXsOCJSQLSvVpzGkUXIzHYw9vdVF8RcaqKL24pPyeD+zzaw7vB5An2sTB/QmNtqlzI7loiIiIi4ofAQP75+uBmNI4uQkpFNn6mb+G3PWbNjiYiJnE4nb/+8H4DeTcpSsViQyYlEpKAwDINnf//ibn70Sfaf1VVyZlMTXdzSsfNp3PPpevaeSSYsyIevH25GC11WJyIiIiI3IdTfm5mDGtO+WjhZ2Q6Gzo5m7uYTZscSEZP8vPssO04mEeBj5ZFbKpkdR0QKmPplC9O1VgkcTi5/oSfmURNd3M7uU0n0+HQdxxPTKVskgPlDm1OzdKjZsURERETEA/h5W5n4YH3ua1gGhxOe/mYnn6w4hNPpNDuaiOQjm93Be78eAGBwqwoUC/Y1OZGIFERPdaqKl8Vg+YFzrDuUYHacAk1NdHErW2IT6TVpAwmpWVQrGcL8Yc2IDAs0O5aIiIiIeBAvq4W3e9RmWNuKALzzywFeX7gPh0ONdJGCYu6WExxJSKNooA8PtSpvdhwRKaDKhwXyQJOyALz5836di5hITXRxG6tjztFnyiZSMrJpHFmErx9uSvFgP7NjiYiIiIgHMgyDZzpX5YVu1QCYsuYoz3yzE7s+vIp4vPSsbD5cEgPAyFuiCPbzNjmRiBRkj9xaiSBfL3adSuLHnafNjlNgqYkubuGX3WcZNH0Ll2x22lQuxoyBjQnRiYyIiIiI5LHBrSrwwX11sFoM5kWf5NEvt5GV7TA7lojkoWlrY4lPySSiiD+9f58BKiJilrAgX4a2qQDAe78d0HmISdREF5f37daTjJizlSy7gy41SzCpb0P8faxmxxIRERGRAuLu+mWY0Ls+3laDhbvOMHR2NBk2u9mxRCQPXEjLYuKKwwA80aEKvl767Cki5hvYsjxhQb6cSLzE3C3a9NwMaqKLS5u1PpbRc3dgdzi5p0EZPupVDx8vvWxFREREJH91rlmCyf0a4edtYdn+eAZM20xqZrbZsUQkl01YfoiUzGyqlQzh9jqlzI4jIgJAgI8Xj9wSBcBHy2L0Zb4J1I0UlzVh+SFeXLAHgP7NI3mnR228rHrJioiIiIg52lQuxowBjQny9WL9kfM8OHkjSek2s2OJSC45ffESM9cfA+CZzlWwWAyTE4mI/L+ejSMoXcifuORMZv3+XiX5Rx1JcTlOp5O3ft7Pu78eAOCRW6J4uXt1ncCIiIiIiOmaVCjKF4ObUCjAm+0nLtJz0gYSUjPNjiUiueDjFUfIsjtoWqEIbSoXMzuOiMhf+HpZeax9JQA+WXGIlAxdEZef1EQXl+JwOHlpwR4mrsxZg25Ml6o80bEKhqEGuoiIiIi4hjoRhfh6SDPCgnzZdyaZ+z5bz5mkS2bHEpGbcO4SfLvtNABPdaqqz6Ai4pLurleaCsUCuZBuY7pmo+crNdHFZTic8MIPe5m14RiGAf+9qyYPt6lodiwRERERkb+pUiKYeUObUSrUjyPn0rjn0/UcS0w3O5aI3KBfTlqwO5y0q1KMBuUKmx1HROSKvKwWRneoDMDUtcdI06py+UZNdHEJdoeTLw9bmBd9CosBH9xXhwealDM7loiIiIjIVZUPC2TesOZEFg3g1MVLPDBlM/GakC7idg7FpxKdkDPzfHSHKianERH5Z11rlqRayRBSM7NZelqt3fyiv7SYLtvu4OlvdrPpnAWrxWBcz3rcVa+M2bFERERERP5V6UL+zB3ajMrhQcQlZ/LRHitHzqWZHUtErsNHyw/jxKBDteLUKhNqdhwRkX9ksRg81SlnNvqqswbxKdqbJT+oiS6mstkdjPp6Oz/sPIPFcDL23lrcXqeU2bFERERERK5Z8WA/5jzUlCrhQSTbDB6cuplD8SlmxxKRa7DvTDKLdscB8OgtWk5URNxDuyrFqRcRis1hMHHlEbPjFAhqootpsrIdPPrlNn7aeQZvq8GAyg661CxhdiwRERERkesWFuTLzAENKRXg5FxqFj0/30hMnBrpIq5u7OKDANQr6qBqiWCT04iIXBvDMHiiQyUAvtpyklMXtZ5cXlMTXUyRmW1nxJyt/Lz7LD5WCx/3qkvtIk6zY4mIiIiI3LAigT6MrG6nWolgElIz6fn5Bg6cVSNdxFXtOpnEb3vjsBjQuYzD7DgiItelSfkiVApxYLM7+XTFIbPjeDw10SXfZdjsDJu9lcV74/DxsvB53wbcUqWY2bFERERERG5aoDfMHNCQmqVDOJ+WRa9JG9h3JtnsWCJyBR8sPgDA7bVLUiLA5DAiIjfgjy8A524+yZkkzUbPS2qiS77KsNl5eFY0y/bH4+tlYUq/hrStUtzsWCIiIiIiuaZQgDdfDGpKnTKhJP7eSN9zOsnsWCLyJ1uPX2D5gXNYLQYj22ktdBFxT1Gh0DiyMFl2B5+uOGx2HI+mJrrkm8xsO8NmR7Py4Dn8va1MG9CIVpU0A11EREREPE9ogDczBzWhbkQhLqbb6D1pI7tPqZEu4io+WhoDwN31SlOuqKahi4j7euT3LwK/2nSCs0kZJqfxXGqiS77IynYw4ottLD9wDj9vC1P7N6J5xTCzY4mIiIiI5JlQf29mDmpMvbKFSLpk44HJG9l7Wku7iJht96kklh84h8WAEe2izI4jInJTmpQvTOPIImTZHUxcqdnoeUVNdMlz2XYHj321jSX74n5fwqURzSoWNTuWiIiIiEieC/HzZubAxtT/vZH+4JSNxMRps1ERM320LGcW+u11ShEZFmhyGhGRm2MYBo+1rwTAl5uOE5+s2eh5QU10yVN2h5PH5+7g591n8bFa+KxPA1pEaQa6iIiIiBQcwX7eTB/YmNq/r5Hee/JGjpxLNTuWSIG0/2wyv+6JwzBg5C2ahS4inqF5xaI0KFeYzGwHE1ceMTuOR1ITXfKM3eHkqXk7+HHHabytBp8+WF+biIqIiIhIgfTHjPRqJUM4l5JJ70kbOX4+3exYIgXOhOU5Sx10rVmSqOLBJqcREckdhmHw2K05s9G/2HiM+BTNRs9taqJLnnA4nIz5diffbjuF1WLwUa/63Fot3OxYIiIiIiKmKRTgw+xBjakcHsTZ5Ax6TdrAyQtqpIvkl8PnUvlp52lAa6GLiOdpVSmMemULkZnt4HPNRs91aqJLrnM6nbywYDdzt5zEYsD4nvXoXLOE2bFERERERExXNMiX2YObUCEskFMXL9F70kbOJmm2mEh+mLD8EE4ntK8WTvVSIWbHERHJVX+djX6cxLQskxN5FjXRJVc5nU5e/XEvczYexzBg7P116Va7pNmxRERERERcRvFgP+Y81JSyRQI4nphO70kbdNm1SB47fj6dBdtzZqE/orXQRcRDtalcjJqlQ7hkszN9XazZcTyKmuiSq8YuPsj0dbEYBrx7Tx3uqFva7EgiIiIiIi6nRKgfcx5qQulC/hxJSOOBSRs5n5ppdiwRj/XpykPYHU5aVy5GnYhCZscREckThmEwvG3OF4Uz1sWSlpltciLPoSa65JpJq44wftkhAP5zR03uaVDG5EQiIiIiIq6rTOEA5jzUhBIhfsTEp9J/2mZSMmxmxxLxOGeSLjE/+iQAj2oWuoh4uE41SlA+LJCkSza+3HTc7DgeQ010yRVfbTrOfxftA+DpzlXo07ScyYlERERERFxfuaKBfPFQE4oG+rDrVBKDZ2whw2Y3O5aIR5m65ig2u5PG5YvQMLKI2XFERPKU1WLwcOsKAExafYTMbJ1X5AY10eWm/bjjNGO+2wXA0DYVL182IiIiIiIi/65isSBmDGxMsK8XG48mMnLOVmx2h9mxRDxC0iUbczbmzMQc1qaiyWlERPLHXfVLEx7iS1xyJt9vO2V2HI+gJrrclOX743n86+04ndC7SVme6VzF7EgiIiIiIm6nZulQJvdriK+XhSX74nl6/k4cDqfZsUTc3hcbj5GWZadKeDBtqxQzO46ISL7w9bIyuGXObPTPVh7BrnOKm6YmutywjUfOM3R2NNkOJ7fXKcVrd9TEMAyzY4mIiIiIuKUmFYry6YP18bIYfLftFK/+uAenUx96RW5Uhs3O1DWxADzcpoI+r4pIgdKrSVlC/b05kpDGb3vOmh3H7amJLjdk18kkBs3YQma2g1uqFuf9++pgteiERERERETkZtxSNZz376uDYcCM9ccYuyTG7Egibuu7badISM2kVKgf3euUMjuOiEi+CvL1ol+znD0LP1lxWF/M3yQ10eW6HTmXSr9pm0jNzKZJ+SJ88kB9vK16KYmIiIiI5IY76pbmP3fUBGD80himrDlqciIR92N3OJm06ggAA1uW12dWESmQ+rcoj5+3hV2nklh76LzZcdyaRhG5LvHJGfSduonEtCxq/b5uo5+31exYIiIiIiIepU/TcjzZsTIAr/20l/nRJ01OJOJeFu+N40hCGiF+XvRsXNbsOCIipigS6EPPRjnvgZPXHDE5jXtTE12uWUqGjf7TNnPywiUiiwYwbUAjgv28zY4lIiIiIuKRRrSLYnDL8gA8881Olh+INzmRiHtwOp1MXHkYgD7NyhHk62VyIhER8wxoEYlhwIoD54iJSzE7jttSE12uSVa2g6Gzo9l7JpmwIB9mDGxMWJCv2bFERERERDyWYRg8360ad9Urjd3hZMQXW9l58qLZsURc3ubYC2w/cREfLwv9mkeaHUdExFTligbSsXo4AFPXaom4G6Umuvwrh8PJk/N2sPbQeQJ9rEzr35hyRQPNjiUiIiIi4vEMw+DtHrVpGRVGepadgdM3c/x8utmxRFza57+vhd6jfmmKB/uZnEZExHyDW1UA4JutpzifmmlyGvekJrr8qzcW7eOHHafxshhM7NOAWmVCzY4kIiIiIlJg+HhZ+PTB+lQvGUJCahb9pm3SB2CRq4hNSGPp/jgABrWsYHIaERHX0LBcYeqUCSUr28HsDcfNjuOW1ESXfzRp1REmr8m51OPde2vTqlIxkxOJiIiIiBQ8wX7eTB/QiNKF/DmakMbAGVtIz8o2O5aIy5m+LhanE9pWKUZU8SCz44iIuATDMBj0+2z0WRtiybDZTU7kftREl6tasP0U/120D4AxXapyV70yJicSERERESm4iof4MWNgYwoFeLPjxEUembONbLvD7FgiLiM5w8a8LScAGNiivMlpRERcS5eaJSgV6kdCahY/bD9tdhy3oya6XNGGI+d5ct4OIOfkY0hrXQYnIiIiImK2qOJBTOnXEF8vC0v3x/Pigt04nU6zY4m4hHlbTpKWZSeqeBCtKoWZHUdExKV4Wy30bxEJwOQ1R3T+cJ3URJe/OXwulYdnRWOzO+lWqyQvdKuGYRhmxxIREREREaBBuSKM71UPiwFfbjrBx8sOmR1JxHR2h5Pp63KWIh3Yorw+w4qIXMH9jcoS6GPlYFwqq2MSzI7jVtREl79ITMti4PTNJF2yUa9sId6/rw4Wi04+RERERERcSacaJXj1jpoAvL/4ID/s0GXZUrAt2RfHicRLFArw5q56pc2OIyLikkL9vbmvUQTA5T0Q5dqoiS6XZdjsDJm5hWPn04ko4s+kvg3x87aaHUtERERERK6gT9NyPNQqZ93nJ+ftIPrYBZMTiZhn6u/NoN6Ny+Lvo8+xIiJXM6B5eQwDVh08x5FzqWbHcRtqogsADoeTp+bvZMuxCwT7eTGtfyPCgnzNjiUiIiIiIv/g2S7VaF8tnKxsB0NmbuFEYrrZkUTy3e5TSWw8moiXxaBPs3JmxxERcWlliwbQrkpxAGZtOGZyGvehJroAMHbJQX7ccRovi8FnDzYgqniw2ZFERERERORfWC0GH/asS41SIZz/fWnG5Ayb2bFE8tWMdbEAdK1VkpKh/uaGERFxA31//8JxfvRJ0jKzTU7jHtREF+ZHn+Sj3zcjeuOuWjSP0i7mIiIiIiLuItDXiyn9GhEe4ktMfCojvthKtt1hdiyRfHExPevyngD9mkeaG0ZExE20rlSMyKIBpGRk8/32U2bHcQtqohdwG46cZ8y3OwEY3rbi5c0FRERERETEfZQI9WNKv0b4e1tZHZPAyz/swel0mh1LJM/Njz5JZraD6iVDqF+2kNlxRETcgsVi8GDTnNnos9Yf0znDNbihJvqECROIjIzEz8+PJk2asGnTpmt63FdffYVhGNx555038msll51ITGfY7GhsdifdapfkyY5VzI4kIiK5RGO1iEjBU7N0KB/2rIthwBcbjzN1bazZkeRfaLy+OQ6Hk9m/r+f7YNNyGIZhciIREfdxb4MI/L2t7D+bwqajiWbHcXnX3UT/+uuvGT16NC+//DJbt26lTp06dOrUifj4+H98XGxsLE8++SStWrW64bCSe9Iys3lo5hYupNuoVTqU9++tg8WiEw4REU+gsVpEpODqWKMEz3WpBsDrC/ey4sA/v/eLeTRe37y1hxOIPZ9OkK8Xd9QtZXYcERG3EhrgzZ31ct47Z2qD0X913U30Dz74gIceeogBAwZQvXp1Jk6cSEBAAFOnTr3qY+x2Ow888ACvvvoqFSpUuKnAcvMcDiej525n/9kUwoJ8+bxvA/y8rWbHEhGRXKKxWkSkYBvcqjw9G0XgdMIjX27jyLlUsyPJFWi8vnmz1uc0fXrUL02gr5fJaURE3E+fppEA/Lr7LHHJGeaGcXHXNcpkZWURHR3NmDFjLt9msVho374969evv+rj/vOf/1C8eHEGDRrE6tWr//X3ZGZmkpmZefnn5ORkAGw2Gzbbze80/8cxcuNYZrrROj5ceohf98ThbTX4pFcdwgK8TP9beMpzAp5Ti6fUAZ5Ti6fUAZ5TS27XkRvH0VjtejylFk+pAzynFk+pAzynFleq44WuVTgYl8LW4xd5aOYW5g1pQrDftX/8c6VabkZe1OEu43Vej9V/HOvP/81PZ5IyWLIvDoD7G5S+qQye8noHz6nFU+oAz6nFU+oAz6klN+qoVMyfhuUKseXYRWavP8qjt0TlVrzr4oqfrf+X4byOleNPnz5N6dKlWbduHc2aNbt8+9NPP83KlSvZuHHj3x6zZs0aevbsyfbt2wkLC6N///5cvHiR77///qq/55VXXuHVV1/92+1z5swhICDgWuPKFWw/bzDtYM6s894V7TQpro0DRERcRXp6Or179yYpKYmQkJAbOobGahER+UNyFry3y0pSlkHNwg4GVXGgFRxvnruM154+Vi86buHXUxaiQpw8UsNudhwREbe1NcFgRoyVEG8nrzSwY/WAc4XcGKv/V55e75SSkkKfPn2YNGkSYWFh1/y4MWPGMHr06Ms/JycnExERQceOHXOlcJvNxuLFi+nQoQPe3t43fTyzXG8de88k8+ykTYCDAc3L8VwX19lI1FOeE/CcWjylDvCcWjylDvCcWnK7jj9miOUnjdV5z1Nq8ZQ6wHNq8ZQ6wHNqccU6qjdMoteUzey+ADG+UTze/tpmmLliLTciL+pwl/E6r8dqMO91YrM7eP29VUAWIzvXoWutEjd3PA95vYPn1OIpdYDn1OIpdYDn1JJbdbTPdvDjeytJTLPhX6Eh7asVz8WU18YdPltfVxM9LCwMq9VKXFzcX26Pi4ujRIm/D1qHDx8mNjaW7t27X77N4XDk/GIvLw4cOEDF/2PvvuOjqrP/j79nJpNeIAQCCQFC770IolhQsJe1YQX7qlvkt+7q7qrruru633XVXctaEXtd29oBQSxI701KQmhJCCG9Tbm/P2YmgICQZCZ35s7r+Xj42GW4uTknk+Ez98y559OjxyFfFxcXp7i4uEMedzqdQf3lDvb5zHIseZRU1euW11aq1uXVCb0y9Iez+ivG0eSR+CFnledEsk4uVslDsk4uVslDsk4uwcojGOdgrQ5fVsnFKnlI1snFKnlI1sklnPIYkZuhBy8cpOlvrdSTX23VwM5tdOagTsf89eGUS0sEM49IWa9ba60O1Tl/yhfrd2tPVYMykuN05uBsOWOCc21rld93yTq5WCUPyTq5WCUPyTq5tDQPp1O6eESOnp6/VW8v26UzBmcHMbqmxhI+19Y/1qSVJjY2ViNGjNCcOXMaH/N6vZozZ85Bt6AF9O3bV6tXr9aKFSsa/zv33HN18skna8WKFcrJyWl5Bjgqt8er215bpp1lterWLlGPTxkelgV0AEDLsVYDAH7swuGddf34XEnS/3trpdbvbv1OahyM9bplXlvk21D0slE5ig1SAR0Aotmlo3zryLyNxdpdXmtyNOGpyeNcpk+frmuuuUYjR47U6NGj9eijj6q6ulrTpk2TJF199dXKzs7WAw88oPj4eA0cOPCgr2/Tpo0kHfI4Qucfn2/U91tLlRTr0LNXj1RaYuR/ygYAODLWagDAj915Rl9tLKrU15tKdMNLS/S/28arbVKs2WFFNdbr5inYW6NvN++Vzba/6AMAaJnu7ZM1JjddC/NK9dbiHfrVxF5mhxR2mlxEv/TSS7Vnzx7dc889Kiws1NChQ/XZZ58pMzNTklRQUCC7nU+Cw8Wnq3fr6flbJUn/uHiIemWmmBwRACDUWKsBAD8W47DrsSnDdN4T32rb3hrd/tYKzbhmlOzsNGoa1uvmeXvpdknS8T0ylJMe+RukAkC4mDK6ixbmlerNxQW67ZSecvAe4SDN2lj0tttu02233XbYv5s3b95Pfu3MmTOb8y3RDJuLq3THO6skSTeckNuk2YcAgMjGWg0A+LE2ibH6zxUjdMGT32rexj16fO5m/fJUOs3MxHrdNB6voXeW7pBEFzoABNvkgR2V9qFTu8rrNH/THp3cp/U3GA1nfKxtUdX1bt38ylJV1bs1Jjddv5vc1+yQAAAAAJisf1aq/nrBIEnSI7N/0Pwf9pgcEXDs5m/ao93ldWqT6NTpAzLNDgcALCXe6dCFw32bir6xqMDkaMIPRXQLMgxDv/3vKm0urlJmapwev5yNRAEAAAD4XDSis6aM7iLDkH71xnLtLGMDMUSGtxb7RrmcPzRbcTEOk6MBAOuZMrqLJGnO+mIVV9aZHE14obJqQc9/k6ePV+1WjN2mJ68YrvYpcWaHBAAAACCM3HtOfw3KTtO+GpdueXWZ6t0es0MCflJJVb1mry+SxCgXAAiV3pkpGt6ljdwHjM+CD0V0i1mSX6oHPt0gSbr77P4a0TXd5IgAAAAAhJt4p0NPXjFcaQlOrdxepr9+vN7skICf9N6ynXJ5DA3unKZ+nVLNDgcALCvwQeV/l+6QYRgmRxM+KKJbyL7qBv3i9eXyeA2dNzRLV4/tanZIAAAAAMJUTnqiHr10qCTppQXb9P7yneYGBByBYRh6c4lvlMslI+lCB4BQOnNQJ8U77dqyp1ord5SbHU7YoIhuEYZh6Ddvr9Tu8jp1z0jSXy8YJJvNZnZYAAAAAMLYyX076Jen9JQk/f691dqyp8rkiIBDLd9eps3FVYp32nXu0CyzwwEAS0uJd2rSgI6SpHeXMdIlgCK6RTz/TZ7mbChWbIxdj10+TMlxMWaHBAAAACAC/Gpib43t3k41DR794rXlqnMxHx3hJVDEOWNgJ6XGO02OBgCs72fDO0uSPly5i31T/CiiW8DKHeX6+2f756APyEozOSIAAAAAkcJht+nRy4aqXVKs1u2u0IP+PZaAcNDg9uqjVbslSRcOzzY5GgCIDsf3zFBmapzKalyau6HY7HDCAkX0CFfjln795kq5PIbOHNRRV47pYnZIAAAAACJMZmq8HrpkiCRp5nf5mr2eC2aEh3kbi1VW41KHlDiN65FhdjgAEBUcdpvOH+b74PKdpeyZIlFEj2iGYeiNLXbtKKtTTnqCHrhwMHPQAQAAADTLyX066MYTu0uS7nxvjfbVmxwQIOk9/4a35w3NksPO9S4AtJaL/CNd5m0s1t4q3hRQRI9gry/eoZWldjkdNj0+ZbjSEpgNBwAAAKD5fnN6Hw3pnKbyWrde2uSQ2+M1OyREsfIal+b474q4YFhnk6MBgOjSKzNFgzunye019MGKXWaHYzqK6BFqc3GVHvhsoyTpN6f10pCcNuYGBAAAACDixcbY9diU4UqOi9HWSpsen7fV7JAQxT5Zs1sNHq/6ZKaoX6cUs8MBgKgT2GD0v/4NnqMZRfQI1OD26tdvLledy6s+aV5NHdvV7JAAAAAAWESXdon6y3n9JUlPfrVVC7fuNTkiRKv3lvlGuVwwPJvRpQBggnOHZMnpsGntrgr9UFRpdjimoogegR6Z/YPW7KxQmwSnrujplZ25cAAAAACC6KxBHTWmvVeGIU1/a6Uq6lxmh4Qos720RovyS2Wz+eahAwBaX9ukWE3o3UGS9L+V0T3ShSJ6hPl+61499dUWSdJfzuuvtFiTAwIAAABgSRfmetW5bYJ2ltXqvg/XmR0OoswHK3xd6ON6tFOntASTowGA6HXOkE6SpA9X7pJhGCZHYx6K6BGkvNal6W+ukGFIl4zsrEkDMs0OCQAAAIBFxTukh342UHabbxbqp6t3mx0SooRhGHpvua+Ifv7QbJOjAYDodlr/TCU4Hdq2t0ardpSbHY5pKKJHkHs+WKNd5XXq2i5R954zwOxwAAAAAFjciK5t9fOTekiS7npvtYoq6kyOCNFg/e5KbdlTrbgYuyYP7Gh2OAAQ1RJjY3RqP0a6UESPEB+s2KkPVuySw27TI5cOVVJcjNkhAQAAAIgCvzq1twZmp6qsxqU73lkV1bdyo3V8vNpXpDm5TwelxDtNjgYAcO4Q394UH63aLa83Ot8HUESPAEUVdbr7/TWSpF+c0lPDu7Q1OSIAAAAA0SI2xq5HLx2quBi75v+wRy9/v83skGBhhmHoo1W+0UFnDe5kcjQAAEma0Ke9UuJjVFhRp8X5pWaHYwqK6GHOMAzd9e5qVdS5Nbhzmm47uafZIQEAAACIMj07pOiuM/pKkv72yXrllVSbHBGsau2uCm3bW6N4p12n9O1gdjgAAElxMQ5NHuAbr/VhlI50oYge5v67bKe+3FCsWIddD108RDEOnjIAAAAAre/qsd10fM92qnN59bv/rora27kRWoEu9FP6dmCMKQCEkXP8I10+XVMol8drcjStj4psGCssr9N9/1srSfrVxF7qnZlickQAAAAAopXdbtODFw5WYqxDi/JKGeuCoDMMo3Ee+lmDskyOBgBwoHE92qldUqxKqxv07eYSs8NpdRTRw5RhGPr9e6tV6R/jctOJ3c0OCQAAAECUy0lP1J3+sS5//2yDCvbWmBwRrGT1znJtL61VgtOhk/u2NzscAMABYhx2nTHIN9LlszWFJkfT+iiihynGuAAAAAAIR1eO6aoxuemqafAw1gVB1TjKpV8HJcYyygUAws0ZA30bPn+xrkieKFv/qcyGIca4AAAAAAhXdrtN/3fRYCU4HVqwda9eW1RgdkiwAMMw9LG/iH72oE4mRwMAOJzRuelqk+hUaXWDFueXmh1Oq6KIHmYMw9Af3/eNcRnCGBcAAAAAYahruyTdMamPJOmBT9Zrxz7GuqBlVu4o186yWiXGOnRSnw5mhwMAOAynw66J/TIlRd9IF4roYeazNYWavb5YTodN/3cRY1wAAAAAhKep47ppZNe2qm7w6K53V8swouu2bgTXF2t9xZiT+3RQQqzD5GgAAEcyeYBvLvrnawujau2nQhtGKupcuvdD3xiXm07soT4dGeMCAAAAIDwFxrrExtj19aYSfbhyl9khIYJ9sa5IknT6gEyTIwEA/JTxvTKUGOvQ7vI6rdpRbnY4rYYiehj5x2cbVVxZr9yMJN12Sk+zwwEAAACAn9S9fbJ+cbLv2uX+j9arvMZlckSIRFv3VGlzcZWcDptO7ssoFwAIZ/FOh072j936bG30jHShiB4mlm7bp1cWbpMk/fX8gYp3cvsaAAAAgPB344Tu6tE+SSVV9fr75xvMDgcRaJa/C/247u2UGu80ORoAwNFMGugf6bImeka6UEQPAy6PV79/d7UMQ7poRGeN65lhdkgAAAAAcEziYhz62wWDJEmvLSzQ0m2lJkeESLN/lEtHkyMBAByLk/u0V6zDrq0l1dpcXGV2OK2CInoYeGb+Vm0sqlR6Uqz+cGY/s8MBAAAAgCYZ072dLh7RWZL0+3fXyOXxmhwRIkVxZZ2WFeyTJJ3Wj3noABAJUuKdGt/L1wT86ZroGOlCEd1k20tr9O85myRJfzyrn9omxZocEQAAAAA03e/P7Kf0pFhtLKrUc1/nmR0OIsSc9cUyDGlITht1TIs3OxwAwDGa5N8Ies76IpMjaR0U0U3254/Wqd7t1bge7XTBsGyzwwEAAACAZml7wJ21/5rzg7aX1pgcESLBF/5N6U7vTxc6AESSwEbQK3eUq7iyzuRoQo8iuonmbizWrHVFirHbdN+5A2Sz2cwOCQAAAACa7cLh2Tque7rqXF799eP1ZoeDMFdd79a3m/dK2t/RCACIDB1S4jW4c5okad7GPSZHE3oU0U1S7/boz/9bJ0madnw39cpMMTkiAAAAAGgZm82m+84dKIfdps/WFuqbTSVmh4Qw9t2WvWrweNUlPVE92iebHQ4AoIlO7uPrRv9yfbHJkYQeRXSTPP9NnvJKqtU+JU6/PLWX2eEAAAAAQFD06Ziiq47rKkm6739r2WQURzR3o6/ocnKf9tyZDQAR6NR+viL615v2qMFt7fWeIroJdpfX6rE5myVJvz+zr1LinSZHBAAAAADBc/tpvZWeFKtNxVV6acE2s8NBGDIMQ1/5b/8/yT9XFwAQWQZmpSkjOU7VDR4tyis1O5yQoohugr9+vF61Lo9GdWur84eymSgAAAAAa0lLcOq3k/pIkh6d9YNKqupNjgjhZlNxlXaW1Souxq6x3duZHQ4AoBnsdptO6dtekvTlBmuPdKGI3soW5ZXqo1W7ZbdJf2IzUQAAAAAWdfHIHA3KTlNlvVv/+Gyj2eEgzMz1F1vG9mineKfD5GgAAM11iv9uoi83FJkcSWhRRG9FXq+hv37s20z0stFdNCArzeSIAAAAACA0HHab/nRuf0nSW0u3a9WOMnMDQliZ5x/lEtiUDgAQmcb3ai+nw6b8vTXauqfK7HBChiJ6K/rfql1auaNcSbEO3T6xt9nhAAAAAEBIjeiarguGZcswfGMtDcMwOySEgco6lxbn+2bnntSnvcnRAABaIjkuRsf5x3JZeaQLRfRWUufy6P/8tzD+/KQeap8SZ3JEAAAAABB6v5nUR7Exdi3MK7X0xTWO3bebS+T2GuqekaSu7ZLMDgcA0EITevs+EP16U4nJkYQORfRW8sK3+dpZVqtOafG6bnx3s8MBAAAAgFaR3SZB1x6fK0l64NMNcnu8JkcEs83d4BvlMoEudACwhPG9MiRJC/P2qt7tMTma0KCI3gr2VtXrybmbJUl3TOqjhFg2TQEAAAAQPW45uYfaJjq1ubhKby3ZYXY4MJFhGPrqB18R/STmoQOAJfTJTFH7lDjVubxaum2f2eGEBEX0VvCvOZtUWe/WwOxUnT802+xwAAAAAKBVpcY79ctTe0mSHp71g6rr3SZHBLNs2VOtwoo6xcbYNSY33exwAABBYLPZdEJPXze6VUe6UEQPsa17qvTqwgJJ0h/O7C+73WZyRAAAAADQ+q4Y01Vd2yWqpKpez3691exwYJLvtviKKyO7tlW8k7u0AcAqAiNdvqGIjuZ4ZPYmebyGTunbQWN7tDM7HAAAAAAwRWyMXb+d1FeS9Mz8rSquqDM5Ipjh282+4srx/o5FAIA1jPf/u75mV7lKqxtMjib4KKKH0PrdFfrfyl2SpN+c3sfkaAAAAADAXGcO6qhhXdqopsGjJ/z7RiF6eLyGFmzZK4kiOgBYTYfUePXtmCLD2P+BqZVQRA+hf37xgyTp7MGd1D8r1eRoAAAAAMBcNptNd/gbjF5ftF07y2pNjgitac3OclXUuZUSH6NB2WlmhwMACLJAN7oVR7pQRA+RZQX7NHt9kew26fbTepsdDgAAAACEhXE9M3Rc93Q1eLx6/MtNZoeDVvStfx76cd3bycF+YQBgOY1z0elEx7H65xcbJUkXjeisHu2TTY4GAAAAAMLH//N3o7+9ZIcK9taYHA1ay3ebfaNcxjPKBQAsaXRuumLsNu0sq9X2Umut7xTRQ+C7LSX6dvNeOR02/fLUXmaHAwAAAABhZVS3dJ3Yu73cXkP/mkM3ejSoc3m0OL9UknR8z3YmRwMACIXE2BgN6uwb17Uwr9TkaIKLInqQGYbROAv98tFd1LltoskRAQAAAED4me4fe/ne8h3asqfK5GgQassK9qne7VWHlDju1gYACxuT6/ugdOHWvSZHElwU0YNswda9Wrptn2Jj7Lr15J5mhwMAAAAAYWloThtN7NdBXkN6dDbd6Fa3yN+ROLZHO9lszEMHAKsa0z1dEp3oOIrHv9wsSZoyKkcdUuNNjgYAAAAAwtft/m70j1bt0uZiutGtLDDKZVS3dJMjAQCE0siubWW3SQWlNdpdXmt2OEFDET2Ilm4r1XdbfLPQb5rQw+xwAAAAACCsDchK08R+mTIM6amvtpgdDkLE5fFq2bYySRTRAcDqUuKdGpjtn4u+1Trd6BTRg+gxfxf6RSM6K6tNgsnRAAAAAED4u+VkXwPS+8t3ase+GpOjQSis3VWhWpdHaQlO9erAPHQAsLrjuvvnoudZZy46RfQgWb2jXPM27pHDbtPPJzALHQAAAACOxfAubTWuRzu5vYaenb/V7HAQAovzAqNc2spuZx46AFjdmFzfXUff04mOH3t8rm8jnPOGZKlLu0STowEAAACAyHHryb5GpDcWb9eeynqTo0GwLWIeOgBElZHd0mWzSXkl1SquqDM7nKCgiB4Em4ur9PnaItls+29FBAAAAAAcm3E92mlIThvVu7164ds8s8NBEHm9hpYEiui5FNEBIBqkJTjVv1OqpP0fpEY6iuhB8Pw3vlsOT+uXqZ4dUkyOBgAAAAAii81m060n+RqSXl6wTeW1LpMjQrBsLanSvhqX4p12DcxKMzscAEArGdG1rSQ1biwd6Siit1BJVb3+u2ynJOmGE7ubHA0AAAAARKaJ/TLVOzNZlfVuvbGowOxwECSL8vZJkobltFVsDCUIAIgWw7v4i+gF+0yOJDhYwVrole+3qcHt1ZCcNhrp/4QFAAAAANA0drtN14/3NSa9+F2+3B6vyREhGBbn799UFAAQPQJF9HW7KlTv9pgcTctRRG+BOpdHLy/YJkm6fnyubDZ2GQcAAACA5jp3aJYykmO1q7xOn64pNDscBMFyfwfiCDYVBYCokpOeoHZJsWrweLVmZ4XZ4bQYRfQWeG/5Tu2tblB2mwSdMbCj2eEAAAAAQESLdzp0xZiukqTnv2GD0UhXVtOg/L01kqShnduYGwwAoFXZbDYN83ejL7fASBeK6M3k9Rp67mvfhqLTju+mGAc/SgAAAABoqSuP66pYh10rtpdp6bbIv+iOZiu2l0mSumckKS3RaW4wAIBWN7xrG0nWmItO5beZvtq0R1v2VCslLkaXjsoxOxwAAAAAsIT2KXE6f1iWJGkG3egRbeX2cknSkJw25gYCADDFsJxAJ3qZuYEEQbOK6E888YS6deum+Ph4jRkzRosWLTrisc8++6xOOOEEtW3bVm3bttXEiRN/8vhI8Yp/FvrFI3OUEs8n6gCA8MJaDQCIZNeOz5Ukfbpmt3aV1ZocTehYfb1euaNMkjSkc5q5gQAATDEkJ00Ou027y+u0uzyy1/MmF9HffPNNTZ8+Xffee6+WLVumIUOGaNKkSSouLj7s8fPmzdOUKVM0d+5cLViwQDk5OTr99NO1c+fOFgdvlu2lNfpyoy/fK4/rYnI0AAAcjLUaABDp+nZM1dju7eQ1pDcWFZgdTkhYfb02DKNxnAud6AAQnRJjY9S3Y4qkyO9Gb3IR/eGHH9YNN9ygadOmqX///nrqqaeUmJioGTNmHPb4V199VbfccouGDh2qvn376rnnnpPX69WcOXNaHLxZXl9UIMOQxvfMUPf2yWaHAwDAQVirAQBWcIW/YemNxdvl8nhNjib4rL5e79hXq9LqBjkdNvXrlGp2OAAAkwz2byy9Zme5uYG0UExTDm5oaNDSpUt11113NT5mt9s1ceJELViw4JjOUVNTI5fLpfT09CMeU19fr/r6+sY/V1RUSJJcLpdcLldTQj6swDmac656t1dvLPZ1Qlw2Mjso8TRXS/IIN+QSfqySh2SdXKySh2SdXIKdRzDOw1odfqySi1XykKyTi1XykKyTi1XykMIjl5N7tVO7pFgVV9br89W7NGlAZpPPEYo8ImW9DvVaHTjXgf97oKX5eyVJ/TqmyCGvXK7w/SAkHH7fg8UquVglD8k6uVglD8k6uURKHv06JkmSVu0oO2Ks4Xht/WM2wzCMYz14165dys7O1nfffaexY8c2Pv7b3/5WX331lRYuXHjUc9xyyy36/PPPtXbtWsXHxx/2mD/96U+67777Dnn8tddeU2Ji4rGGGxJLS2x6aZNDaU5D947wyGEzNRwAgIXU1NTo8ssvV3l5uVJTm9exxVoNALCS/xXYNXunXX3SvLqlf3gUYSNlvTZ7rX4v3655u+06IdOri7qHx3MHAGh926qkh1fHKCnG0F9HemRrhVpqMNbqH2tSJ3pLPfjgg3rjjTc0b968I16US9Jdd92l6dOnN/65oqKicd5bMBJ3uVyaNWuWTjvtNDmdTdsU9OXnFkkq0zXje+qcU3q0OJaWaEke4YZcwo9V8pCsk4tV8pCsk0uw8wh0iJnJCmt1uLFKLlbJQ7JOLlbJQ7JOLlbJQwqfXAbvq9WcR77WxnK7Bow5UV3bNa34G4o8ImW9DvVaLf30zzdw7Xz28YN05rDsoHy/UAmX3/dgsEouVslDsk4uVslDsk4ukZJHvcujf6/9UtVuafj4U9Qp7dB1KxKurZtURM/IyJDD4VBRUdFBjxcVFaljx44/+bUPPfSQHnzwQc2ePVuDBw/+yWPj4uIUFxd3yONOpzOovxRNPd+mokot2VYmh92mK8Z2C5tf0GD/XMxELuHHKnlI1snFKnlI1sklWHkE4xzRvlaHM6vkYpU8JOvkYpU8JOvkYpU8JPNzye3g1Em922vuxj16e9ku3XVmv2adJ5h5RMp63Vpr9eHO6fUa2lBYJUka2qVdxLwezP59Dyar5GKVPCTr5GKVPCTr5BLueTidTvXKTNH63RVaX1StLhkpP3lsuFxb/1iTNhaNjY3ViBEjDtq4JLCRyYG3oP3Y//3f/+n+++/XZ599ppEjRzY/WpO9vXSHJOmUvh2UmXrk7jwAAMwS7Ws1AMB6rhjTVZLveqzBbY2xIFZfrwtKa1RV71ZsjF3d2yeZHQ4AwGQDs3x3QK2N4M1Fm1REl6Tp06fr2Wef1Ysvvqj169fr5z//uaqrqzVt2jRJ0tVXX33Q5ih///vfdffdd2vGjBnq1q2bCgsLVVhYqKqqquBl0QpcHq/eXbZTknTxiM4mRwMAwJFF61oNALCmk/q0V4eUOJVWN2juxmKzwwkaK6/X63b7bqPv2zFFTkeTyw4AAIsZ1DlNkrRml/kj0ZqryTPRL730Uu3Zs0f33HOPCgsLNXToUH322WfKzPTtlF5QUCC7ff8i+Z///EcNDQ266KKLDjrPvffeqz/96U8ti74Vzf9hj0qq6tUuKVYn9+1gdjgAABxRtK7VAABrinHYdcGwbD09f6v+u3SHJg346XEnkcLK6/U6f5Gkf6fgzF4HAES2AVm+IvrqCO5Eb9bGorfddptuu+22w/7dvHnzDvpzfn5+c75F2Hl7iW+Uy/nDsvkkHQAQ9qJxrQYAWNfPRnTW0/O36ssNxdpbVa92yYfO+o5EVl2v1+7yFUkGZFFEBwD4PlS126Q9lfUqrqhThwgck001+BiUVjdozgbfhi8Xj2SUCwAAAAC0pt6ZKRqUnSa319CHK3eZHQ6OIjDOpT9FdACApIRYh3p2SJYUud3oFNGPwQcrdsrlMTQoO019O/ImAAAAAABa28+GZ0uS/rtsh8mR4KeUVNWrqKJeNpu4fgYANAqM+NpYVGlyJM1DEf0YfLDC1+lwof9NGwAAAACgdZ07NFtOh01rdlZoQ2HkbkxmdYF56LntkpQU16wJsgAAC+rdMUWS9EMhRXRL2l5aoxXby2S3SWcN7mR2OAAAAAAQldKTYnVSnw6SpP8x0iVsbfQXR/p2SjE5EgBAOOndwbcubCyqMjmS5qGIfhT/W+V7c3Zc93bqkBJ5Q+8BAAAAwCrOGZIlSfp41W4ZhmFyNDicTcW+InqvDhTRAQD79fF3om8prpLb4zU5mqajiH4UH63cLWn/mzUAAAAAgDlO7dtB8U678vfWaO0uRrqEo03Fvg7D3pkU0QEA+2W3SVBirEMNHq/y99aYHU6TUUT/CZuLq7Rud4Vi7DZNHtDR7HAAAAAAIKolxcXolL6+kS4fr95tcjT4McMwtNl/m36vzGSTowEAhBO73aZe/g9Yf4jAzUUpov+Ej/yjXMb3ylDbpFiTowEAAAAAnDXId5fwR6t2MdIlzBRV1Kuy3i2H3aZu7ZLMDgcAEGZ6d/B9wLoxAjcXpYj+Ez5a5etsOHswo1wAAAAAIByc3Le9EpwObS+t1eqd5WaHgwME5qF3a5eo2BjKDQCAgwXmotOJbiGbi6u0ubhKTodNpw/INDscAAAAAICkxNgYndLPP9JlFSNdwsmmwCgXNhUFABxGb8a5WM/s9UWSpOO6t1NqvNPkaAAAAAAAAWcP6iRJ+nRNISNdwkigE5156ACAwwkU0fP31qjB7TU5mqahiH4Es9b5iuin96cLHQAAAADCyYm92yvWYVdBaY227KkyOxz4BTrRe3agiA4AOFRmapwSYx3yeA1t31djdjhNQhH9MEqq6rWsYJ8kaSJFdAAAAAAIK0lxMRrbo50kafb6YpOjgSQZhqFNxb4ieqDTEACAA9lsNuVm+DaezttTbXI0TUMR/TC+XF8sw5AGZqeqU1qC2eEAAAAAAH7kVP9c9Dn+UZww174al8prXZLUWCABAODHGovoJRTRI94X/lEup/XraHIkAAAAAIDDOaWvr4i+dNs+7atuMDka5O/1FUOy0uIV73SYHA0AIFx19xfRt1JEj2x1Lo++2bxHknQao1wAAAAAICx1bpuovh1T5DWkuRsZ6WK2bf4ietd2dKEDAI4st32gEz2y9jShiP4jS/L3qc7lVWZqnPp1Yo4bAAAAAISr/SNdKKKbLb/Et0Fct4xEkyMBAISzbv4PWwPrRqSgiP4jX/u70Mf3bC+bzWZyNAAAAACAIzmlr+/u4a837ZHHa5gcTXSjEx0AcCwCM9ELK+pUXe82OZpjRxH9R77ZVCJJOqFXhsmRAAAAAAB+ypDOaUqJj1FFnVtrdpabHU5Uy9/r70RvRyc6AODI2iTGKj0pVtL+/TQiAUX0A+ytqtfaXRWSpON7UkQHAAAAgHAW47BrbPd2kqRvNpeYHE10oxMdAHCsctJ9H7ju2FdrciTHjiL6AQJvuvp1SlX7lDiTowEAAAAAHM14/13EgbuK0frKa13aV+OSJHWlEx0AcBSd2yZIoogesRjlAgAAAACRZbz/LuKl2/aptsFjcjTRqaDUN8qlfUqcEmNjTI4GABDuOrcJFNEjZ3NRiuh+hmE0dqKPZ5QLAAAAAESE3IwkZaXFq8Hj1aL8UrPDiUq7yuok7e8sBADgp9CJHsEKSmu0u7xOsQ67Ruemmx0OAAAAAOAY2Gw2jfM3Qi3cutfkaKLTrnJfET2rDUV0AMDRdW7LTPSItTh/nyRpUOc0xTsdJkcDAAAAADhWo7v5GqGWbNtnciTRaXegiJ4Wb3IkAIBIsL8TnXEuEWfpNt9tfyO7tjU5EgAAAABAU4zs5ruOW7m9TPVu5qK3tt10ogMAmiDbX0SvrHOrvNZlcjTHhiK6X6ATfWQ3RrkAAAAAQCTJzUhSu6RY1bu9WrOzwuxwos6uct/t+BTRAQDHIjE2Ru2SYiVFTjc6RXRJpdUN2lxcJUkaQSc6AAAAAEQUm83WeC0XuMsYrWe3f2PRbIroAIBjFGmbi1JEl7TUPzevR/skpfs/BQEAAAAARI7ASJfAXcZoHW6vtKeqQZLUiZnoAIBjFBjpspMieuRY4u9UGMUoFwAAAACISIHRnEvyS2UYhsnRRI8yX/1ccTF2mtIAAMcsM9X3wWtxZb3JkRwbiuiSlheUSZKGd2GUCwAAAABEooFZaYp12LWvxqWC0siYr2oFZf7aR3abBNlsNnODAQBEjMYiekWdyZEcm6gvonu9htbt8m08M6hzmsnRAAAAAACaIzbGrr6dUiRJq3eWmxxN9NjX4Cucd2rDKBcAwLHLTI2TJBVVUkSPCPl7q1VV71ZcjF29OiSbHQ4AAAAAoJkGZvsaoyiit57AOJdARyEAAMciM8W3bhRVMM4lIgTeXPXrlKoYR9T/OAAAAAAgYg3yF9HXUERvNZUuXyd6+5Q4kyMBAESSDv4PX4vK6USPCIE3V4E3WwAAAACAyLS/iF7B5qKtpNLfid4+mSI6AODYBca5VNa7VV3vNjmao4v6IvpqiugAAAAAYAm9M1MU67CrvNal7aW1ZocTFSpdvv/NoIgOAGiC5LgYJcY6JEl7qsJ/pEtUF9ENw9D63ZWSpP5ZqSZHAwAAAABoidgYu3p39O11tW43I11aA+NcAADNYbPZGteO4kqK6GGtpKpB5bUu2W1STzYVBQAAAICI17tDiiRpc3GVyZFEBzrRAQDNlZ4UK0kqq3GZHMnRRXURffMe35uqLumJinc6TI4GAAAAANBSPTN9DVKbKKKHnMvjVbXb14mekRxrcjQAgEiTnuhbO/ZRRA9vm4urJUk9/Z0KAAAAAIDI1st/fbepiCJ6qO2t9u0q6rDb1DaRIjoAoGna+jvR9/nXk3AW3UV0fyd670xGuQAAAACAFfTyj+rcsqdKHq9hcjTWtrfKV/RolxQru91mcjQAgEgTGOdCJ3qYC3Si96KIDgAAAACWkJOeqNgYu+rdXu0oqzU7HEsrq/UVPdokOE2OBAAQido2jnOhEz2sBTrRezHOBQAAAAAswWG3qUd7X6MUm4uGVoW/iJ6aEGNyJACASJSe5PsQlk70MFbtkkqrfU9Q9/ZJJkcDAAAAAAiW/SNdqk2OxNoq69ySpNR4OtEBAE3Xlo1Fw19Jve9/M1PjlBjLp+YAAAAAYBVd2yVKkrbvY5xLKJXX+TvR47mmBgA03f6Z6IxzCVuldb5NT3LaJpocCQAAAAAgmALXeTsooodUZa2vEz2FmegAgGZoy8ai4W+vvxM9J50iOgAAAABYSef0BEkU0UOtonGcC53oAICmS/ePc6msc8vjNTmYo4jiInqgEz3B5EgAAAAAAMEU6ETfWVYrr2FyMBZWwTgXAEALJB+wftR5TAzkGERtEb20zve/nelEBwAAAABL6ZQWL4fdJpfHUEX4j1mNWIFO9BQ2FgUANIPTYVeC0yGJInrY2t+JThEdAAAAAKwkxmFXVpt4SftHeSL4KhnnAgBooUA3OkX0MFXu70bolBZvbiAAAAAAgKDLSvON7ixvsJkciXVV1PrHuSRQRAcANE9KHEX0sFXT4FaD1/dGKiMlzuRoAAAAAADBlpnqa5gqZ5xLyOzvRGecCwCgefZ3oof3h95RWUTfW+17FxXvtCsp1mFyNAAAAACAYMtM9TVM0YkeOoGNRVMY5wIAaKZkOtHDV0mVr4jeLilWNhtvqAAAAADAauhEDy2Xx6tal1cSnegAgOYLFNFr3SYHchRRWUTfGyiiJ8eaHAkAAAAAIBTa+0d3VrpMDsSi6lz7WwYTuMMbANBMgTXEbZgcyFFEZxHdP84lI4l56AAAAABgRW0TfU1T1W7uPg4Fl2d/tcNp52cMAGgep8NXnvZ4TQ7kKKKyiF5CJzoAAAAAWFp6kr+ITid6SLj81Q67DNkpogMAmilQRKcTPQztraqXJGUkUUQHAAAAACtq67/eq3JLhhHmV+YRqMHtK6I7orKqAAAIFqfD90GsxxveH8hG5XIXGOdCJzoAAAAAWFO6f5yLx7CpusFzlKPRVIFO9JjwrnkAAMIcnehhrKLOt91rWgI7iAMAAACAFSXEOhTjHzNS6b8GRPC4vb5qh4MiOgCgBRpnolNEDz/1/tvO4mKiMn0AAAAAiApxTt81X2D0CIKHcS4AgGCIbRznYnIgRxGVy12923crX5zTYXIkAAAAAIBQCTROBa4BETyMcwEABAPjXMJYvYtOdAAAAACwurgYX+NUPZ3oQefyMM4FANByzhjGuYStwBuoeIroAAAAAGBZgWu+OhdF9GALdKJTRAcAtAQz0cPY/pnojHMBAAAAAKvaP86FInqwNXiYiQ4AaDlmooexOpd/Jjqd6AAAAABgWbFOZqKHitvfMshMdABASzATPYwFdhEPvKECAAAAAFhPfGAmOuNcgo5xLgCAYIhhnEv4YiY6AAAAAFgf41xCp7GIbg/zqgcAIKw5/Z/GhvtS3awq8hNPPKFu3bopPj5eY8aM0aJFi37y+Lffflt9+/ZVfHy8Bg0apE8++aRZwQaD2+OV2+tb5JmJDgCwqkheqwEACJZwL6JH8noduMObTnQAQEvENnaih/eC0uQi+ptvvqnp06fr3nvv1bJlyzRkyBBNmjRJxcXFhz3+u+++05QpU3Tddddp+fLlOv/883X++edrzZo1LQ6+OQ5888RMdACAFUX6Wg0AQLAEGqfCcSZ6pK/XLmaiAwCCwGnVcS4PP/ywbrjhBk2bNk39+/fXU089pcTERM2YMeOwx//rX//S5MmTdccdd6hfv366//77NXz4cD3++OMtDr45ApuKShTRAQDWFOlrNQAAwRLn3werLgxnokf6er1/nIsp3x4AYBHOmMgoosc05eCGhgYtXbpUd911V+NjdrtdEydO1IIFCw77NQsWLND06dMPemzSpEl6//33j/h96uvrVV9f3/jniooKSZLL5ZLL5WpKyIeormuQJDlshjwet1yuyP3YPPCzaOnPJByQS/ixSh6SdXKxSh6SdXIJdh7BOI8V1urAeQ7830hmlVyskodknVyskodknVyskodknVz8NXTVNgRnfZIiZ70O9Vpd73JL8o1zifTfE6v8vkvWycUqeUjWycUqeUjWycUqedgN34eybm94XVv/WJOK6CUlJfJ4PMrMzDzo8czMTG3YsOGwX1NYWHjY4wsLC4/4fR544AHdd999hzz+xRdfKDExsSkhH6LKJZ2QaZchadasWS06V7iwSh4SuYQjq+QhWScXq+QhWSeXYOVRU1PT4nNYYa0+kFV+RyTr5GKVPCTr5GKVPCTr5GKVPKTIzyW23KZxmTY1FG3RJ59sDso5I2W9DvVaXVZm0/GZNnVJNiL+9yTAKnlI1snFKnlI1snFKnlI1skl0vMorpXGdbArLTZ460kw1uofa1IRvbXcddddB33CXlFRoZycHJ1++ulKTU1t8fkvcLk0a9YsnXbaaXI6nS0+n1lcFslDIpdwZJU8JOvkYpU8JOvkEuw8Ah1ikSDUa7VVfkck6+RilTwk6+RilTwk6+RilTwk6+RyWgjyiJT1OtRr9Zmyzu+JVfKQrJOLVfKQrJOLVfKQrJOLVfKQpCsi4Nq6SUX0jIwMORwOFRUVHfR4UVGROnbseNiv6dixY5OOl6S4uDjFxcUd8rjT6QzqL0Wwz2cWq+QhkUs4skoeknVysUoeknVyCVYewTgHa3X4skouVslDsk4uVslDsk4uVslDsk4uwcwjUtbr1lqrQ3VOM1glD8k6uVglD8k6uVglD8k6uVglDym8rq1/rElbgMTGxmrEiBGaM2dO42Ner1dz5szR2LFjD/s1Y8eOPeh4yXebwZGOBwAAzcdaDQBA+GO9BgAgsjR5nMv06dN1zTXXaOTIkRo9erQeffRRVVdXa9q0aZKkq6++WtnZ2XrggQckSb/61a80YcIE/fOf/9RZZ52lN954Q0uWLNEzzzwT3EwAAIAk1moAACIB6zUAAJGjyUX0Sy+9VHv27NE999yjwsJCDR06VJ999lnjBicFBQWy2/c3uI8bN06vvfaa/vjHP+r3v/+9evXqpffff18DBw4MXhYAAKARazUAAOGP9RoAgMjRrI1Fb7vtNt12222H/bt58+Yd8tjFF1+siy++uDnfCgAANANrNQAA4Y/1GgCAyNCkmegAAAAAAAAAAEQTiugAAAAAAAAAABwBRXQAAAAAAAAAAI6AIjoAAAAAAAAAAEdAER0AAAAAAAAAgCOgiA4AAAAAAAAAwBFQRAcAAAAAAAAA4AgoogMAAAAAAAAAcAQU0QEAAAAAAAAAOAKK6AAAAAAAAAAAHAFFdAAAAAAAAAAAjiDG7ACOhWEYkqSKioqgnM/lcqmmpkYVFRVyOp1BOacZrJKHRC7hyCp5SNbJxSp5SNbJJdh5BNa5wLoXSVirj8wquVglD8k6uVglD8k6uVglD8k6uYQij0hdr4O9Vkv8noQjq+RilTwk6+RilTwk6+RilTykyLi2jogiemVlpSQpJyfH5EgAAAi9yspKpaWlmR1Gk7BWAwCiTaSt16zVAIBoE8y12mZEwMfnXq9Xu3btUkpKimw2W4vPV1FRoZycHG3fvl2pqalBiNAcVslDIpdwZJU8JOvkYpU8JOvkEuw8DMNQZWWlsrKyZLdH1sQ11uojs0ouVslDsk4uVslDsk4uVslDsk4uocgjUtfrYK/VEr8n4cgquVglD8k6uVglD8k6uVglDykyrq0johPdbrerc+fOQT9vampqxP+SSdbJQyKXcGSVPCTr5GKVPCTr5BLMPCKpo+1ArNVHZ5VcrJKHZJ1crJKHZJ1crJKHZJ1cgp1HJK7XoVqrJX5PwpFVcrFKHpJ1crFKHpJ1crFKHlJ4X1tHzsfmAAAAAAAAAAC0MoroAAAAAAAAAAAcQVQW0ePi4nTvvfcqLi7O7FBaxCp5SOQSjqySh2SdXKySh2SdXKySRziy0s/WKrlYJQ/JOrlYJQ/JOrlYJQ/JOrlYJY9wZZWfr1XykKyTi1XykKyTi1XykKyTi1XykCIjl4jYWBQAAAAAAAAAADNEZSc6AAAAAAAAAADHgiI6AAAAAAAAAABHQBEdAAAAAAAAAIAjoIgOAAAAAAAAAMARUEQHAAAAAAAAAOAILFlE/+tf/6px48YpMTFRbdq0OaavMQxD99xzjzp16qSEhARNnDhRmzZtOuiY0tJSXXHFFUpNTVWbNm103XXXqaqqKgQZNP975ufny2azHfa/t99+u/G4w/39G2+8ETZ5SNJJJ510SIw333zzQccUFBTorLPOUmJiojp06KA77rhDbrc7ZHlITc+ltLRUv/jFL9SnTx8lJCSoS5cu+uUvf6ny8vKDjmuN5+SJJ55Qt27dFB8frzFjxmjRokU/efzbb7+tvn37Kj4+XoMGDdInn3xy0N8fy+smFJqSx7PPPqsTTjhBbdu2Vdu2bTVx4sRDjp86deohP/vJkyeHOg1JTctl5syZh8QZHx9/0DGR8Jwc7rVts9l01llnNR5jxnMyf/58nXPOOcrKypLNZtP7779/1K+ZN2+ehg8frri4OPXs2VMzZ8485Jimvu6iiVXWa6us1c3JRQrP9Zq1er9IWBdYq8PvOQnXtVpivW5trNWs1aEUqeu1VdZqyTrrtVXWaska67Vl12rDgu655x7j4YcfNqZPn26kpaUd09c8+OCDRlpamvH+++8bK1euNM4991wjNzfXqK2tbTxm8uTJxpAhQ4zvv//e+Prrr42ePXsaU6ZMCVEWzfuebrfb2L1790H/3XfffUZycrJRWVnZeJwk44UXXjjouANzNTsPwzCMCRMmGDfccMNBMZaXlx+U68CBA42JEycay5cvNz755BMjIyPDuOuuu0KWR3NyWb16tXHhhRcaH374obF582Zjzpw5Rq9evYyf/exnBx0X6ufkjTfeMGJjY40ZM2YYa9euNW644QajTZs2RlFR0WGP//bbbw2Hw2H83//9n7Fu3Trjj3/8o+F0Oo3Vq1c3HnMsr5tga2oel19+ufHEE08Yy5cvN9avX29MnTrVSEtLM3bs2NF4zDXXXGNMnjz5oJ99aWlpyHJobi4vvPCCkZqaelCchYWFBx0TCc/J3r17D8phzZo1hsPhMF544YXGY8x4Tj755BPjD3/4g/Huu+8akoz33nvvJ4/funWrkZiYaEyfPt1Yt26d8dhjjxkOh8P47LPPGo9p6s8m2lhlvbbKWt2cXAwjPNdr1mrWarNyYa0O/XPCet26WKtZq8Mpl3BYr62yVjcnl3Bdr62yVjcnl3Bdr626VluyiB7wwgsvHNNC7/V6jY4dOxr/+Mc/Gh8rKysz4uLijNdff90wDMNYt26dIclYvHhx4zGffvqpYbPZjJ07dwY99mB+z6FDhxrXXnvtQY8dyy9xsDQ3jwkTJhi/+tWvjvj3n3zyiWG32w/6x+4///mPkZqaatTX1wcl9h8L1nPy1ltvGbGxsYbL5Wp8LNTPyejRo41bb7218c8ej8fIysoyHnjggcMef8kllxhnnXXWQY+NGTPGuOmmmwzDOLbXTSg0NY8fc7vdRkpKivHiiy82PnbNNdcY5513XrBDPaqm5nK0f9Mi9Tl55JFHjJSUFKOqqqrxMbOek4BjeT3+9re/NQYMGHDQY5deeqkxadKkxj+39GcTLSJ5vbbKWm0Y1lmvWatZq4OJtdonHNdqw2C9bk2s1azVwRap67VV1mrDsM56bZW12jCsuV5baa225DiXpsrLy1NhYaEmTpzY+FhaWprGjBmjBQsWSJIWLFigNm3aaOTIkY3HTJw4UXa7XQsXLgxJXMH4nkuXLtWKFSt03XXXHfJ3t956qzIyMjR69GjNmDFDhmEELfYDtSSPV199VRkZGRo4cKDuuusu1dTUHHTeQYMGKTMzs/GxSZMmqaKiQmvXrg1+Igre70F5eblSU1MVExNz0OOhek4aGhq0dOnSg37H7Xa7Jk6c2Pg7/mMLFiw46HjJ9/MNHH8sr5tga04eP1ZTUyOXy6X09PSDHp83b546dOigPn366Oc//7n27t0b1Nh/rLm5VFVVqWvXrsrJydF555130O96pD4nzz//vC677DIlJSUd9HhrPydNdbTXSDB+NjhYOK7XVlmrJeus16zVrNXBwlq9X6Su1RLrdWtjrWatPlaRuF5bZa2WrLNeW2WtlqJ7vY6UtTrm6IdYX2FhoSQdtGAE/hz4u8LCQnXo0OGgv4+JiVF6enrjMaGIq6Xf8/nnn1e/fv00bty4gx7/85//rFNOOUWJiYn64osvdMstt6iqqkq//OUvgxZ/QHPzuPzyy9W1a1dlZWVp1apV+t3vfqeNGzfq3XffbTzv4Z6zwN+FQjCek5KSEt1///268cYbD3o8lM9JSUmJPB7PYX9eGzZsOOzXHOnne+BrIvDYkY4Jtubk8WO/+93vlJWVddA/vpMnT9aFF16o3NxcbdmyRb///e91xhlnaMGCBXI4HEHNIaA5ufTp00czZszQ4MGDVV5eroceekjjxo3T2rVr1blz54h8ThYtWqQ1a9bo+eefP+hxM56TpjrSa6SiokK1tbXat29fi39fcbBwXK+tslZL1lmvWatZq4OFtdonktdqifW6tbFWs1Yfq0hcr62yVkvWWa+tslZL0b1eR8paHTFF9DvvvFN///vff/KY9evXq2/fvq0UUfMday4tVVtbq9dee0133333IX934GPDhg1TdXW1/vGPfzRpUQl1HgcuhIMGDVKnTp106qmnasuWLerRo0ezz3s4rfWcVFRU6KyzzlL//v31pz/96aC/C8Zzgp/24IMP6o033tC8efMO2jjksssua/z/gwYN0uDBg9WjRw/NmzdPp556qhmhHtbYsWM1duzYxj+PGzdO/fr109NPP63777/fxMia7/nnn9egQYM0evTogx6PlOcEh7LKem2VtVqyznrNWh0dWKvDD2u19bBWNw1rddOwXkeHSF6vrbhWS6zXrSFiiuj/7//9P02dOvUnj+nevXuzzt2xY0dJUlFRkTp16tT4eFFRkYYOHdp4THFx8UFf53a7VVpa2vj1x+pYc2np93znnXdUU1Ojq6+++qjHjhkzRvfff7/q6+sVFxd31OOl1svjwBglafPmzerRo4c6dux4yE68RUVFkhSWz0llZaUmT56slJQUvffee3I6nT95fHOekyPJyMiQw+Fo/PkEFBUVHTHujh07/uTxx/K6Cbbm5BHw0EMP6cEHH9Ts2bM1ePDgnzy2e/fuysjI0ObNm0O2qLQklwCn06lhw4Zp8+bNkiLvOamurtYbb7yhP//5z0f9Pq3xnDTVkV4jqampSkhIkMPhaPFzHImssl5bZa2WrLNes1YfirWatfpYRPNaLbFeHw5rNWs119bNY5W1WrLOem2VtVqK7vU6YtbqVpu+boKmbn7y0EMPNT5WXl5+2M1PlixZ0njM559/3iobizb3e06YMOGQXaqP5C9/+YvRtm3bZsf6U4L1s/vmm28MScbKlSsNw9i/+cmBO/E+/fTTRmpqqlFXVxe8BA7Q3FzKy8uN4447zpgwYYJRXV19TN8r2M/J6NGjjdtuu63xzx6Px8jOzv7JDVDOPvvsgx4bO3bsIRug/NTrJhSamodhGMbf//53IzU11ViwYMExfY/t27cbNpvN+OCDD1oc709pTi4HcrvdRp8+fYzbb7/dMIzIek4Mw/dvdFxcnFFSUnLU79Faz0mAjnHzk4EDBx702JQpUw7Z/KQlz3G0iOT12iprtWFYZ71mrWatDibW6vBdqw2D9bo1sVazVgdbpK7XVlmrDcM667VV1mrDsOZ6baW12pJF9G3bthnLly837rvvPiM5OdlYvny5sXz5cqOysrLxmD59+hjvvvtu458ffPBBo02bNsYHH3xgrFq1yjjvvPOM3Nxco7a2tvGYyZMnG8OGDTMWLlxofPPNN0avXr2MKVOmhDSXo33PHTt2GH369DEWLlx40Ndt2rTJsNlsxqeffnrIOT/88EPj2WefNVavXm1s2rTJePLJJ43ExETjnnvuCZs8Nm/ebPz5z382lixZYuTl5RkffPCB0b17d+PEE09s/Bq3220MHDjQOP30040VK1YYn332mdG+fXvjrrvuClkezcmlvLzcGDNmjDFo0CBj8+bNxu7duxv/c7vdhmG0znPyxhtvGHFxccbMmTONdevWGTfeeKPRpk2bxh3Yr7rqKuPOO+9sPP7bb781YmJijIceeshYv369ce+99xpOp9NYvXp14zHH8roJtqbm8eCDDxqxsbHGO++8c9DPPvDvQWVlpfGb3/zGWLBggZGXl2fMnj3bGD58uNGrV6+QvWFsbi733Xef8fnnnxtbtmwxli5dalx22WVGfHy8sXbt2oPyDffnJGD8+PHGpZdeesjjZj0nlZWVjeuFJOPhhx82li9fbmzbts0wDMO48847jauuuqrx+K1btxqJiYnGHXfcYaxfv9544oknDIfDYXz22WeNxxztZxPtrLJeW2Wtbk4u4bpes1azVpuVC2t16J8T1uvWxVrNWh1OuYTDem2Vtbo5uYTrem2Vtbo5uQSE23pt1bXakkX0a665xpB0yH9z585tPEaS8cILLzT+2ev1GnfffbeRmZlpxMXFGaeeeqqxcePGg867d+9eY8qUKUZycrKRmppqTJs27aA3D6FwtO+Zl5d3SG6GYRh33XWXkZOTY3g8nkPO+emnnxpDhw41kpOTjaSkJGPIkCHGU089ddhjzcqjoKDAOPHEE4309HQjLi7O6Nmzp3HHHXcY5eXlB503Pz/fOOOMM4yEhAQjIyPD+H//7/8ZLpcrZHk0J5e5c+ce9vdRkpGXl2cYRus9J4899pjRpUsXIzY21hg9erTx/fffN/7dhAkTjGuuueag49966y2jd+/eRmxsrDFgwADj448/Pujvj+V1EwpNyaNr166H/dnfe++9hmEYRk1NjXH66acb7du3N5xOp9G1a1fjhhtuaLV/iJuSy69//evGYzMzM40zzzzTWLZs2UHni4TnxDAMY8OGDYYk44svvjjkXGY9J0d6rQZiv+aaa4wJEyYc8jVDhw41YmNjje7dux+0rgT81M8m2lllvbbKWt2cXMJ1vWat3i8S1gXW6vB7TgwjPNdqw2C9bm2s1azV4ZRLuKzXVlmrDcM667VV1uqm5mIY4bleW3WtthmGYRxl4gsAAAAAAAAAAFHJbnYAAAAAAAAAAACEK4roAAAAAAAAAAAcAUV0AAAAAAAAAACOgCI6AAAAAAAAAABHQBEdAAAAAAAAAIAjoIgOAAAAAAAAAMARUEQHAAAAAAAAAOAIKKIDAAAAAAAAAHAEFNEBAAAAAAAAADgCiugAAAAAAAAAABwBRXQAAAAAAAAAAI6AIjoAAAAAAAAAAEdAER0AAAAAAAAAgCOgiA4AAAAAAAAAwBFQRAcAAAAAAAAA4AgoogMAAAAAAAAAcAQU0QEAAAAAAAAAOAKK6IDF/elPf5LNZlNJSclRj3W73frtb3+rnJwc2e12nX/++aEPEACAKMdaDQBA+GO9BqIbRXQAjWbMmKF//OMfuuiii/Tiiy/q9ttvP+Kxzz77rCZMmKDMzEzFxcUpNzdX06ZNU35+fusFDABAlGnKWn0gl8ul/v37y2az6aGHHgpxlAAARLemrNdTp06VzWY75L++ffu2YsQAjibG7AAAhI8vv/xS2dnZeuSRR4567PLly5Wbm6tzzz1Xbdu2VV5enp599ll99NFHWrlypbKyslohYgAAoktT1uoDPfbYYyooKAhRVAAA4EBNXa/j4uL03HPPHfRYWlpaKEID0EwU0QE0Ki4uVps2bY7p2CeffPKQx84//3yNHDlSL730ku68884gRwcAAJqyVh/4NX/+85/1u9/9Tvfcc09oAgMAAI2aul7HxMToyiuvDF1AAFqMcS5AlCgpKdEll1yi1NRUtWvXTr/61a9UV1cnScrPz5fNZtPcuXO1du3axtvH5s2b16Tv0a1bN0lSWVlZcIMHACAKhGqtvvPOO9WnTx8uzgEACIJQrdcej0cVFRUhjh5Ac1FEB6LEJZdcorq6Oj3wwAM688wz9e9//1s33nijJKl9+/Z6+eWX1bdvX3Xu3Fkvv/yyXn75ZfXr1++o5927d6+Ki4u1ZMkSTZs2TZJ06qmnhjQXAACsKBRr9aJFi/Tiiy/q0Ucflc1ma400AACwtFCs1zU1NUpNTVVaWprS09N16623qqqqqjXSAXCMGOcCRInc3Fx98MEHkqRbb71VqampevLJJ/Wb3/xGgwcP1pVXXqnnnntODoejSZ1q2dnZqq+vlyS1a9dO//73v3XaaaeFJAcAAKws2Gu1YRj6xS9+oUsvvVRjx45l828AAIIg2Ot1p06d9Nvf/lbDhw+X1+vVZ599pieffFIrV67UvHnzFBND6Q4IB3SiA1Hi1ltvPejPv/jFLyRJn3zySYvO++mnn+qTTz7RP//5T3Xp0kXV1dUtOh8AANEq2Gv1zJkztXr1av39739vcWwAAMAn2Ov1Aw88oAcffFCXXHKJLrvsMs2cOVN//etf9e233+qdd95pcbwAgoMiOhAlevXqddCfe/ToIbvd3uKutJNPPllnnHGGpk+frrffflv33XefHn/88RadEwCAaBTMtbqiokJ33XWX7rjjDuXk5AQpQgAAEKpr6wPdfvvtstvtmj17dtDOCaBlKKIDUSoUc1F79OihYcOG6dVXXw36uQEAiDYtWasfeughNTQ06NJLL1V+fr7y8/O1Y8cOSdK+ffuUn5+vhoaGYIUKAEDUCsW1dUJCgtq1a6fS0tKgnxtA81BEB6LEpk2bDvrz5s2b5fV61a1bt6B+n9raWpWXlwf1nAAARINgrtUFBQXat2+fBgwYoNzcXOXm5uqEE06QJP3tb39Tbm6u1q1bF4ywAQCIKq1xbV1ZWamSkhK1b98+aOcE0DIU0YEo8cQTTxz058cee0ySdMYZZzT5XG63W/v27Tvk8UWLFmn16tUaOXJk84IEACCKBXOt/uUvf6n33nvvoP+efvppSdLUqVP13nvvKTc3t+VBAwAQZYK5XtfV1amysvKQx++//34ZhqHJkyc3L0gAQccWv0CUyMvL07nnnqvJkydrwYIFeuWVV3T55ZdryJAhTT5XVVWVcnJydOmll2rAgAFKSkrS6tWr9cILLygtLU133313CDIAAMDagrlWDx8+XMOHDz/oscCs1gEDBuj8888PQsQAAESfYK7XhYWFGjZsmKZMmaK+fftKkj7//HN98sknmjx5ss4777xghw+gmSiiA1HizTff1D333KM777xTMTExuu222/SPf/yjWedKTEzU9ddfr7lz5+qdd95RbW2tsrKyNGXKFP3xj38M+ogYAACiQTDXagAAEBrBXK/btGmjs88+W7NmzdKLL74oj8ejnj176m9/+5t+85vfyG5ngAQQLmyGYRhmBwEAAAAAAAAAQDjiIy0AAAAAAAAAAI6AIjoAAAAAAAAAAEdAER0AAAAAAAAAgCOgiA4AAAAAAAAAwBFQRAcAAAAAAAAA4AhizA7gWHi9Xu3atUspKSmy2WxmhwMAQEgYhqHKykplZWXJbo+sz7lZqwEA0SJS12vWagBAtAjFWh0RRfRdu3YpJyfH7DAAAGgV27dvV+fOnc0Oo0lYqwEA0SbS1mvWagBAtAnmWh0RRfSUlBRJvsRTU1NbfD6Xy6UvvvhCp59+upxOZ4vPZxar5CGRSziySh6SdXKxSh6SdXIJdh4VFRXKyclpXPciCWv1kVklF6vkIVknF6vkIVknF6vkIVknl1DkEanrdbDXaonfk3BklVyskodknVyskodknVyskocUGdfWEVFED9xqlpqaGrQL88TERKWmpkb0L5lV8pDIJRxZJQ/JOrlYJQ/JOrmEKo9IvMWatfrIrJKLVfKQrJOLVfKQrJOLVfKQrJNLKPOItPU62Gu1xO9JOLJKLlbJQ7JOLlbJQ7JOLlbJQ4qMa+vIGeAGAAAAAAAAAEAro4gOAAAAAAAAAMARUEQHAAAAAAAAAOAIKKIDAAAAAAAAAHAEFNEBAAAAAAAAADgCiugAAAAAAAAAABwBRXQAAAAAAAAAAI6AIjoAAAAAAAAAAEdAER0AAAAAAAAAgCOgiA4AAAAAAAAAwBFQRAcAAAAAAAAA4AgoogMAAAAAAAAAcAQU0QEAAAAAAAAAOAKK6AAAWMz8+fN1zjnnKCsrSzabTe+///5Rv2bevHkaPny44uLi1LNnT82cOTPkcQIAAAAAEAmaXETnwhwAgPBWXV2tIUOG6Iknnjim4/Py8nTWWWfp5JNP1ooVK/TrX/9a119/vT7//PMQRwoAQHTiuhoAgMjS5CK6FS7Md5fXqcZt2rcHAFhEdb1be+vMjuJQZ5xxhv7yl7/oggsuOKbjn3rqKeXm5uqf//yn+vXrp9tuu00XXXSRHnnkkRBHCgBAdLLCdbUk7amsVx3X1gCAFsrfW212CEcV09QvOOOMM3TGGWcc8/EHXphLUr9+/fTNN9/okUce0aRJkw77NfX19aqvr2/8c0VFhSTJ5XLJ5XI1NeSD7NhXq6tmLJbd5dApJ9cqPaVFpzNV4GfR0p9JOCCX8GOVPCTr5GKVPCRr5FLT4Nb1Ly3Vpt0OHTeuXL06prX4nGb9PBYsWKCJEyce9NikSZP061//+ohfE8q1OnCeA/83klkllyfmbtbzSxxq06tY43p1MDucFrHKc2KVPCTr5PLYnE16aalDKT2LdUJvXifhIBR5BONckX5dLUnPf5uvR2Zv1qmdbDqH35OwYZVcrJJHYUWdZnyTp5h9Np0W4blY5TmRrJOLVfLYsa9WZ/z7O3VNcuj4CXVKS2r5OUPxM2lyEb2pmnNh/sADD+i+++475PEvvvhCiYmJLYpnV7W0r8qhardNlz45Xz/v71G8o0WnNN2sWbPMDiFoyCX8WCUPyTq5WCUPKXJzafBIz2ywa1OFXfEOafb8b7UpueXnrampaflJmqGwsFCZmZkHPZaZmamKigrV1tYqISHhkK8J5Vp9oEj9HTmcSM5lR7X06KoYSTb9/p3lumOwRzab2VG1XCQ/JweySh5SZOeyr1769zLf6+TW15brLyM9irHADlSR/JwcKJh5mLFeh9t1tSTtKrGp3u3QvN12/e+zWRF/XS1Z5/ddsk4ukZ7HsxvsWrPPLofNrpyPZykt1uyIWi7Sn5MDWSWXSM/jra12ub12OeyGvv3qy6CcMxRrdciL6M25ML/rrrs0ffr0xj9XVFQoJydHp59+ulJTU1sc06iCUl01Y7Hyq2x6uyhDz189XImxIf9RBJ3L5dKsWbN02mmnyel0mh1Oi5BL+LFKHpJ1crFKHlJk51Ln8uimV5ZrU0WpkmIdurF3va6/IDh5BDrEIkGo1+pI/h35MSvk8vNXl0vaI0naWWNTfPeROrVf5HbZWuE5kayTh2SNXO75cJ2kHZKkWo9NVR0G6fLROeYG1QJWeE6k0ORhxnodjtfVk7yG5v/7G+XvrVVxSm/dfFLPFp/TLFb5fZesk4sV8li3u0JrFnwvSfIYNm2J6aY/ntnf5KiazwrPSYBVcrFCHrvL6/SbRV9LMjSpszdouYRirQ7LynFcXJzi4uIOedzpdAblBzmkS7pu6e/R0z/Ea8m2Mt386krNmDpKCbGR+dF5sH4u4YBcwo9V8pCsk4tV8pAiL5c6l0e3vL5M3231FdBnXDNChWu+C1oeZv0sOnbsqKKiooMeKyoqUmpq6mEvyqXQr9WhOp+ZIjWXNTvLNXvDHtls0sA2Xq3eZ9dj87Zq0iDfZniRLFKfkx+zSh5S5OayY1+N3lm2U5I0JN2rlaV2PT0/T5eN6aq4mMi8xgiI1Ofkx4KZR6T8PEK9Vjsl/XxCd/3u3bWa+f0OXT+hd8ReUwdY5fddsk4ukZzHU/PzJUltE53aV+PSm8t26Ren9VVG8qGvy0gSyc/Jj1kll0jOY8Z3P8jlMTS6W1v1TN0T1tfWIb/BsDkX5q2hS7I045rhSo6L0YKte3Xjy0tU5/KYFg8AILzVuz26+ZWl+npTiRJjHXph2mgN79LG7LCCYuzYsZozZ85Bj82aNUtjx441KSKEk0dnb5IknT2oo6b08Cop1qG1uyo0a13RUb4SiB5PzN0il8fQ2O7puqqXVx1S4rSrvE5vLdlhdmiwiHC9rj5ncCelxxnaW92g1xcVmBYHEG5+KKrUp2sKJUmvXjtKXZMN1bm8eu7rPJMjA8JHcUWdXvOvHbee1N3kaI4u5EX0cL4wH5bTRi9MG6XEWIe+3lSim19Zqno3hXQAwMFcHq9ufXW55m3co3inXTOmjtLo3HSzwzqiqqoqrVixQitWrJAk5eXlacWKFSoo8L1Bueuuu3T11Vc3Hn/zzTdr69at+u1vf6sNGzboySef1FtvvaXbb7/djPARRtbsLNfs9UWy26RbT+qhJKd09XFdJPmK64ZhmBwhYL7tpTV6e8l2SdIvT+khp1266cRcSdKTczdzfYGgCNfraqfDrtOyvZKkp+dvoTEN8Hty7mZJ0uQBHdUrM1mn+18nLy/I177qBjNDA8LGM/O3qsHt1YiubTW2e/heXwc0uYhutQvzUd3SNWPqKMU77Zq3cY9ufXWZGtxes8MCAIQJt8erX7+xQrPXFyk2xq7nrxml47q3Mzusn7RkyRINGzZMw4YNkyRNnz5dw4YN0z333CNJ2r17d+O6LUm5ubn6+OOPNWvWLA0ZMkT//Oc/9dxzz2nSpEmmxI/w8ejsHyRJ5w7JUo/2SZKkacd3VXJcjNbtrtDna+lGB56Yu1lur6HxPTM0smtbSdKlI7LVMTVeu8vr9Nbi7SZHiHBkpevq0e0NdUyNU1FFvd5eyt0XQH5JtT5cuUuSdNspvr0CBrQ11K9jiqobPHrhu3wTowPCQ0lVvV5ZuE2S9MtTe0XEmMgmF9GteGF+XPd2ev6aUYqLsWv2+mL98vXlcnkopANAtPN4Df3m7ZX6ePVuOR02PX3VCB3fM8PssI7qpJNOkmEYh/w3c+ZMSdLMmTM1b968Q75m+fLlqq+v15YtWzR16tRWjxvhZfWOcs1eXyy7TfrFqb0aH2+bGKup47pJ8hXZvV660RG9CvbW6B1/0fD20/a/TuKcDt1ycg9JvlEvdKPjx6x0XR1jl248wXf3xVPzttCUhqj3n3lb5DWkU/p20MDsNEmSzSbd4h9X8cK3eaqoc5kZImC6Z7/eqjqXV0M6p+nEXuF/jS01Y2PRwIX5kQQu0H/8NcuXL2/qt2pVx/fM0DNXj9QNLy7RZ2sLdfubK/TopUMV4wj5xBsAQBjyeg39/t3Ven/FLsXYbXri8uE6uU8Hs8MCWk2gC/28odnq0T5ZLtf+i73rT8jVi9/la0Nhpb5YV6jJAzuZFSZgqse+3CS319AJvTI0omv6Qa+TS0bm6Mm5W1RYUac3F2/X1WO7mRcowo7VrqsvHpGtJ7/K086yWr23fIcuHdXF7JAAU+zYV6P/LvN9uHrryT0P+rvT+3VQrw7J2lRcpZe+y9dtp/Q63CkAyyutbtDLCyKrC11qhZnokWRC7/Z66qrhcjps+mjVbv3m7ZXy0F0FAFHHMAzd++Favblku+w26dHLhur0AR3NDgtoNat2lGnOBn8X+ik9D/n7NomxmnZ8N0m+2eh0oyMa5ZdU693lOyVJt5/W+5C/j3c6dKu/G/3JucyKhrXFOx266URfl+0Tc7fIzZ3diFJPf7VVbq+h43u20wj/iK8Au93WON7l+W/yVF3vNiNEwHQzvslTTYNHA7JSdUrfyGlUo4j+I6f0zdQTlw9XjN2m91fs0u/+u4oLQwCIIoZh6C8fr9fL32+TzSb985IhOntwltlhAa3q0dmbJEnnD8tW9/bJhz3muvHdlRIXow2FlfpsbWFrhgeEhce+3CyP19BJfdpreJe2hz3mklE56pQW39iNDljZFcd1UXpSrApKa/S/VbvMDgdodUUVdXrTv9H0bScfvsv87MFZys1I0r4al171z4MGoklFnUsvLsiX5GvWiZQudIki+mGdPqCj/j1lmBx2m95ZukN/eH/1T95qBwCwjoe+2Kjnv8mTJD1wwSBdMKyzyREBrWvF9jJ9uaFYDrtNv/iJ24zTEp2aNt43A/dfdKMjyuSVVOu95b7b9X898dAu9IC4GIdu8d/O/+S8zXSjw9ISY2N0nX9deNz/IRMQTZ6dv1UNbq9Gdm2r47qnH/YYh92mn5/ku0vpmfl5rAuIOq98v02VdW717JCs0/tH1t3eFNGP4MxBnfTIpUNlt0mvL9qu+z9aTyEdACzusTmb9MTcLZKkP583QJeNZp4nos+//LPQzx+ardyMpJ889rrxuUqJj9HGokp9smZ3a4QHhIUn5m5u3DRuaE6bnzz2kpGdlZUWr6KKer2xqOAnjwUi3dVjuyo1PkZb9lTrU9YFRJG9VfV6daHv3/jbjtJde8GwbHVum6CSqnq9zrqAKFLb4NHzX/sa1m45qYfs9sjpQpcoov+kc4dk6e8/GyxJmvFtnh6Z9YPJEQEAQuXpr7bon/5/5/94Vj82gENUWl6wT3M37vF3oR86C/3H0hKcjV2HdKMjWmwvrdF7/lnovzz16JvCHdyNzmx0WFtKvFPTjt/fjc66gGgx49s81bo8GpSdpgm92//ksU6HvbEb/emvtqrezbqA6PDWku3aW92gzm0TdM6QyBuZShH9KC4emaM/nzdAkvTvLzfrqa+2mBwRACDYZn6bpwc+3SBJumNSH11/QneTIwLM8a85vlnoFwzLVrejdKEHTDs+V6nxMdpUXEU3OqLCk/O2yOM1dEKvjKN2oQdcMjJH2W0SVFxZr9cW0nUIa7v2+Fwl+/fMmLW+yOxwgJArr3Hpxe98882P1oUecNGIzuqY6tsz452lO0IdImA6l8erZ+ZvlSTdNKGHnI7IK0lHXsQmuHpsN/1ucl9J0oOfbtDL/gH4AIDI9/qiAv3pf+skSb88paduPfno3beAFa3aUaZ5TehCD0hLcOra8XQdIjrsKqvVO0t9m8YdSxd6QGyMXbec7O86nL+FrkNYWlqiU1eP7SrJ96ETY1FhdTO/y1dVvVt9MlN0Wr/MY/qauBiHbprga9z5z7wtcnu8oQwRMN0HK3ZpZ1mtMpLjdPGIyNx3jCL6Mfr5ST0aLyjv/mAtnxQCgAV8sGKnfv/eaknSTSd21+2nHXlzOMDqHv9ysyTpvCFZ6tru2LrQA6aO69bYdThnQ3EowgPCwtNfbZHLY+i47uka1e3wm8YdSaDrsKiinmsJWN6043MVF2PXyu1lWrB1r9nhACFTVe/WjG99M55vPaVnk2Y8Xzaqi9olxWrHvlp9vJq7+WBdHq+hJ+f5rjVuOCFX8U6HyRE1D0X0Jph+Wm9NO76bJOm376zUx6v4Rw4AItXsdUWa/tZKGYZ01XFddecZfY/p1kvAijYUVuiLdUWy2dTYLdsUbRJjdZW/6/DxLzfRdQhLKq6o0+uL/V3opxx7F3rAj7sOXXQdwsLap8TpkpE5kny/74BVvb6wQOW1LuVmJOmsQZ2a9LUJsY7GGtN/uGsDFvbF2kJt3VOt1PgYXXFcV7PDaTaK6E1gs9l0z9n9ddmoHHkN6VdvLNeXG5jxBgCR5rvNJbrltWXyeA1dOCxb9507gAI6otoTc30FjjMHdlLPDinNOsf143MV77Rr5Y5yfb2pJJjhAWHhmflb1eD2akTXthrbo12zznHZqC7KSPZ1HX6wYleQIwTCy40ndpfDbtPXm0q0Zme52eEAQVfv9ui5b3wznm+e4Pt9b6qrjuumpFiHNhRWat7GPcEOETCdYRh6wt+FHrh7NVJRRG8im82mv14wSOcOyZLba+jmV5bpu81cKAJApFhesE/Xv7REDW6vTu+fqf+7aHCTbrsErGbLnip9tMpXzGvJngDtkuN0xZhAN/rmoMQGhIu9VfV61b8h6C+OcdO4w0mIdTRuXv3k3M3ysIcALCwnPVHnDPZ15tKNDit6f/lOFVXUKzM1TucPy27WOdISnY2dubxOYEXzN5Vozc4KJTgdmnp8rtnhtAhF9GZw2G365yVDdFr/TDW4vbr+pSVaum2f2WEBAI5i/e4KTX1hsWoaPDq+Zzv9e8owxUTgruBAMPluH5Ym9uug/lmpLTrXjSd2V6zDrkX5pVrIDFxYyHPf5KnW5dHgzmma0Lt9i8515XFdlZbg1NaSan3CDFxY3M0n+UaEfbJmt/JKqk2OBggej9fQ0/N9XejXj++uuJjmz3i+bnxu4/unJfmlwQoRCAtPzPU111w+povSk2JNjqZlqBw0k9Nh12NThumEXhmqafBo6guLuEUNAMJYXkm1rnp+kcprXRrepY2euWpkxG5oAgTL9tIavbd8p6SWdaEHZKbG65JRnSVJj8+lGx3WUFbToJe+y5ck/eKUXi0e/5UcF6Nr/Z1Yj3+5WV660WFhfTum6pS+HWQY0jPz6bKFdcxat3/G85QxXVp0rszUeP1shK+TnW50WMni/FItyiuV02HTDf478SIZRfQWiHc69PRVIzSqW1tV1rl19YxF2lxcaXZYAIAf2VVWqyufW6iSqnr165SqF6aOVlIEz2IDguWpr7bI4zV0Qq8MDevSNijnvOnEHorxz8BdXsCdeoh8M77NV3WDR/06pWpivw5BOWdgJujGokrNXs8eS7C2W/zd6P9dulNFFXUmRwO0nGEYjcXuq8cGZ8bzjSf2kM0mzdlQrA2FFS0+HxAOnvQ31Vw0orM6psWbHE3LUURvocTYGD0/dZQGd05TaXWDrnp+kXaW1ZodFgDAr6SqXlc+v1A7y2rVPSNJL107WmmJTrPDAkxXWF6nt5fskCTdFoQu9ICc9ERd4J8L+gTd6IhwFXUuvfBtnqSWzUL/sbREp64e699DYO5mGQbd6LCukd3SNapbWzV4vHr+mzyzwwFabMGWvVq5o1xxMXZNPb5bUM6Zm5GkMwf69hB4+qutQTknYKa1u8o1d+Me2W2+JhsroIgeBKnxTs2cNlo9OyRrd3mdrnp+ofZW1ZsdFgBEvfJal65+fpG27qlWVlq8Xr5+jNqnxJkdFhAWnpm/VQ0er0Z3S9eY7u2Ceu6fn9RDdps0e32x1u5i3B0i10vf5auyzq1eHZI1eUDHoJ77uvG5infatWpHueZvKgnquYFwc8tJvg9rX/1+m8prXCZHA7TMf77ydaFfOipHGcnBu7a4eYKv0Pjhyl3aXloTtPMCZnjK/2HQ2YOz1C0jyeRogoMiepCkJ8Xq5etGK7tNgrbuqdY1LyxSZR1vDgDALDUNbl07c7HW7a5QRnKsXrl+jLLbJJgdFhAWSqrq9dqibZKk204JXhd6QPf2yTp7cJYkutERuarr3Y1ds7ed0lN2e3C60APaJcfpijG+bvTH5myiGx2WdlKf9urbMUXVDR69/H2+2eEAzbZmZ7m+3lQihz34M54HdU7TCb0y5PEaeu5rutERubaX1jRunn7ThMifhR5AET2IOqUl6KXrRqtdUqzW7KzQDS8tUZ3LY3ZYABB16t0e3fTyUi3dtk+p8TF6+box6t4+2eywgLDx/Dd5qnN5NcR/sRYKgeL8p2sKtamIPWMQeV5fVKB9NS7lZiQ1figUbDee2F2xDruWbNunhXmlIfkeQDiw2Wz6uX82+oxv81XbwHUyIlOgC/2cwZ2Uk54Y9PMHXidvLN6uEiYcIEI9/01e475LA7LSzA4naCiiB1mP9sl68drRSo6L0fdbS/WL15fL7fGaHRYARA2P19Dtb67Q15tKlBjr0MxrR6tfp1SzwwLCRllNg176Ll+SdNspvYI24/nHememaPKAjjIM6Un/5ltApKh3e/Ssvwvw5gnd5QhyF3pAZmq8LhnVWZL0+JfctQFrO2tQJ+WkJ6i0ukFvLdludjhAk+WVVOtTf3ftzSeFZsbz2O7tNCSnjerdXs38Nj8k3wMIpX3VDXpzse/feKvMQg+giB4CA7PT9OzVIxUbY9esdUW6893V3J4JAK3AMAzd88EafbK6ULEOu565aqSGd2lrdlhAWJn5Xb6qGzzq2zFFp/btENLvFehG/2DFTm3bWx3S7wUE0/vLd6qool6ZqXE6379RbqjcdGIPxdht+mZziZYV7Avp9wLMFOOw60Z/QeWZ+VvlotkMEeaZ+VvlNaST+7RX346hadKx2Wz6uX82+ksL8hkTjIjz8vfbVOvyaEBWqo7vGdx9l8xGET1ExvZop8enDJPDbtM7S3fob5+sp5AOACH26OxNenVhgWw26ZFLh2p8iMZUAJGqut6tF/xdTbeeHPwZzz82MDtNJ/VpL6/hu/AEIoHHa+hp/2ZYN5zQXXExjpB+v5z0RF3gL9Q/OZe7NmBtF4/orIzkWO0sq9VHq3aZHQ5wzIor6vTfpTskST8/Kfj7yRzo9P6Z6t4+SRV1br22sCCk3wsIpjqXRy/673i98cTuIbvj1SwU0UPo9AEd9fefDZYkPft1XuPsLABA8L20IF//mrNJkvTn8wbqrMGdTI4ICD9vLN6u8lqXurVL1JmDWuc1crO/m+rtpTu0p5LZngh/X6wt1NaSaqUlOHXZ6C6t8j1vmtBDNps0e30RewjA0uKdDk07PleS9Mz8PBrNEDFmfJuvBo9XI7q21ahuob3T1W63Nb5/euHbfDW4uWsDkeGdpTu0t7pB2W0SdFYrXWu0JoroIXbRiM7641n9JEn/99lGPkUEgBD438pduvfDtZKk2yf21lXHdTU5IiD8NLi9et4/4/nGE3uEbMbzj43JTdewLm3U4PZq5nd5rfI9geYyDKNxhv81Y7sqOS6mVb5vzw7JOr1/piTpae7agMVdMaaLEpwOrd9doW837zU7HOCoqurdenXhNkm+5oDW6K49b2iWOqTEqbCijrs2EBE8XkPP+a81rj8hVzEO65WcrZdRGLr+hO669WTfp4h/eH+1PvFvRAEAaLmvN+3R9LdWyDCkq8d21S9PDe3tlUCk+nDlLu0qr1NGcpwuHB7aGc8Hstn2d1O9tGAbsz0R1r7dvFerd5Yr3mnXNeO6ter3DrxO3l++U7vKalv1ewOtqU1irC4dlSNJjRv4AuHszcXbVVnnVvf2SSHfTyYgLsbRuA49+zV3bSD8fbG2UPl7a9Qm0dn4b7zVUERvJb85vY8uH9NFhiH96o3l+nrTHrNDAoCIt3J7mW56ealcHkNnD+6kP50zwHJz14Bg8HoNPe0fK3fd+FzFO0M74/nHTuuXqR7tk1RZ59bri7grD+HrP19tliRdNqqL2iXHter3HtalrY7rni6319Dz33DXBqzt2uNzZbdJX/2wRxsLGWGE8OX2eDXD/2/y9eO7h3w/mQNdMaaLEmO5awPhzzAMPeW/k+6q47oqMbZ17uRrbRTRW4nNZtP95w3UWYM6yeUxdNPLS7VqR5nZYQFAxNpcXKWpLyxSTYNHJ/TK0MOXDG3VN7VAJPlyQ7E2FVcpJS5GVxzXOjOeD2S323STv8v2ua/zVO/2tHoMwNGs3F6mbzfvVYzdputPyDUlhkA3+uuLClRW02BKDEBr6NIuUWcM9M3LpRsd4ezTNYXaWVardkmxrXonn+S7a+OSkb6O3md4nSCMLcor1crtZYqNaf07+VoTRfRW5LDb9PClQzS+Z4ZqGjy6duZibdtbbXZYABBxdpfX6poZi7SvxqUhndP0nytHKDaGJQ04kqf8XeiXH9dFqfFOU2I4f2i2OqbGq7iyXu8v32lKDMBP+Y9/Fvq5Q7PUuW2iKTFM6N1e/TqlqqbBo5cXbDMlBqC1BD6s+mDFThVV1JkcDXAow9g/4/mqsV1b/U4+yXcHod0mzeeuDYSxZ/xd6BeN6KyMVr6TrzVRcWhlcTEOPXXVCA3ISlVJVYOunrFIJVX1ZocFABGjrKZBVz+/SDvLatW9fZJmTB3Vahu/AZFocX6plmzbp1iHXdcdb053rSTFxtgbCyZPf7VVHi+zPRE+NhdX6fN1hZKkn/u7wc3g20OguyTphe/yVdvAXRuwrmFd2mpUt7ZyeQzN/C7f7HCAQyzO36eVO8oVF2PXVcd1NSWGnHTu2kB421RUqTkbimWzSTec0N3scEKKIroJkuNi9MK0UcpJT9C2vTW6duZiVde7zQ4LAMJeTYNb185crE3FVeqYGq+Xrh3d6jNrgUjzlL+79mcjstUhNd7UWC4b3UWp8THaWlKtWf6CJRAOnpm/RYYhndY/U70yU0yN5axBnZSTnqDS6ga9vXS7qbEAoRYouLz6/TauiRF2At21Fw7vbOo1B3dtIJwFXieT+ndUbkaSydGEFkV0k3RIiddL145RelKsVu0o189fXSaXx2t2WAAQttwer257bbmWFZQpLcGpl64bbdrt9kCk2FgYXp0hyXExjXMS/zNviwyDbnSYb3d5rd7zjxj6+UnmdaEHxDjsja/XZ+ZvlZtrBFjYxH6Zys1IUkWdW28t4UMjhI+te6o0Z0ORJJm2T0bAgXdtvMhdGwgjxRV1en+F7z3UTRPMv9YINYroJsrN8I0hSHA6NP+HPfrdO6u4mASAwzAMQ3d/sEZfbihWXIxdM6aOVG+TOwWBSPC0fxb6GQM7qnv7ZJOj8blmXDfFxdi1cke5Fmzda3Y4gJ77Ok8uj6Exueka3qWt2eFIki4ekaN2SbHasa9WH6/ebXY4QMjYD9jI9/lv8vjQCGHj+W/yZBjSxH4d1CMM3kMFPlx9hbs2EEZeWrBNLo+hkV3baliYvIcKJYroJhua00ZPXjlcDrtN7y7fqb9/ttHskAAg7Dz25Wa9vmi77DbpsSnDNKJrutkhAWFvZ1mtPly5S5J0s4kznn8sIzlOl47KkbR/I0fALOW1Lr2xqEBSeHShByTEOjTVf9fGU19tpdEGlvaz4Z2V7v/Q6LO1jPqC+fZW1eudpTskhcedfBJ3bSD81Lk8enWhbxP068abe7dGa6GIHgZO7tNBD144SJL01Fdb9MK3eSZHBADh463F2/XwrB8kSfedN1CnD+hockRAZHju661yew2N69FOgzu3MTucg9xwQnc57DZ9valEa3aWmx0OotjriwpU3eBRn8wUTejd3uxwDnLV2K5KjHVo/e4KffXDHrPDAUIm3ulo3LTx2fl8aATzvfJ9gerdXg3unKbRueHRvGO32xoLlTO+5a4NmO/dZTu1r8alnPSEqLlGp4geJi4emaM7JvWRJP35o3X6aNUukyMCAPPN3Visu95bLUm65aQejRdYAH7avuoGvbHI16UUTt21ATnpiTprUCdJ0tP+zYiA1tbg9jY2r9xwYnfZbDaTIzpYm8RYXT66iyTu2oD1XTW2a+Oor0V5pWaHgyhW5/LopQX5knwf+ofT2hC4a2N7aa0+X1tkdjiIYoZhaIb/PdTUcbly2MPndRJKFNHDyC0n9dDVY7vKMKTpb67Ugi3MCQUQvVbtKNOtry6Tx2vowmHZjR80Aji6V77fplqXRwOyUjW+Z4bZ4RxWYPOhT1bv1s6yWpOjQTT638pdKqqoV4eUOJ07JMvscA7ruhNyFWO3aWFeqVbtKDM7HCBkMpLj9LMRnSVJz37Nh6swz3vLd2pvdYOy2yTojIHh1V2bELv/ro1nvuauDZjnqx/2aHNxlZLjYnTJyM5mh9NqKKKHEZvNpnvPGaAzBnZUg8erG19aovW7K8wOCwBaXcHeGl07c7FqGjwa3zNDD/5scFh1gQDhrN7t0YsLfPMJbwzD7tqAAVlpGtejnTxeQy98wyg7tC7DMBoLdVOP76bYmPC8LOqUltBY4H/ua14nsLbAqIo5G4qVX1JtcjSIRl6voef8a8O047spxhF+a0PjXRvby7R02z6zw0GUet7/3v3SUTlKiXeaHE3rCb9/EaKcw27TI5cO1ejcdFXWuzX1hUXaRXcWgChSWt2ga15YpJKqBvXvlKr/XDk8bIsbQDj6YMUulVTVq1NavM70j0wJV4HNut5YvF0VdS6To0E0+XpTiTYUViox1qErRof3qLDrTvAVFj/mrg1YXI/2yTq5T3sZhjTzu3yzw0EU+mrTHm3ZU62UuJjGTdDDTUZynC4Yli1JeuHbfHODQVTaWFiprzeVyG5T4ybo0YKqRBiKdzr07NUj1TszWUUV9bp25mIuLAFEhdoGj657cbHySqqV3SZBL0wbFVWfbAMtZRiGnv86MJ+wm5xh2EF1oAm926tnh2RV1bv1pn+GO9AaAl3ol47KUVpieK8zB961MfNbutFhbdOO931o9PYSPlxF6wsUpcO9u3bq8d0kSZ+tLeTDVbS6Gf4u9EkDOionPdHkaFpXeF9ZRbG0BKdemDZaHVLitKGwUre+ukwudl8GYGFuj1e/eH25lheUKS3BqRevHaXM1HizwwIiyvxNJdpYVKmkWIcu829IGM7sdpuu99++/8K3ebzXQatYt6uisYPqWn/BLtw13rWxaLsqKSzCwk7olaGeHZJV3eDR20t2mB0Oosjm4irN/2GP7DbpmjDvru3bMbXxw9XAJqhAayipqtd7K3ZK2j+CK5pQRA9j2W0SNGPqKCXGOvT1phL94b3VbBwBwJIMw9C9H67V7PVFio2x67lrRqpnhxSzwwIiznON3bVdlJYQvh1UBzp/WLYykmO1q7xOn6zebXY4iALPfeN7nZwxqFPEdFAF7tqorHfrzcXctQHrstlsmubvsp35XZ48Xq5/0Tpmfufrrp3YLzMi1obAXRtvLNqumga3ydEgWrz6fYEa3F4N6ZymEV3bmh1Oq6OIHuYGZqfpicuHy26T3lqyQ49/udnskAAg6J6ev1WvLiyQzSb969KhGtUt3eyQgIizoXB/d22gABEJ4p0OXXVcN0m+jRNpGEAo7S6v1YcrdkmSbvR3d0cCu93W2PH1wrf5cnPXBizswmGdlZbg1PbSWs1ZX2R2OIgC5TUu/Xepr7t2WoTcoXRK3w7q2i5R5bUuvbd8p9nhIArUuz16+fttkqTrTugum81mckStjyJ6BDi5bwf9+byBkqR/zvpB7y3ntjYA1vHJ6t168NMNkqS7z+qvM8J8I0QgXD3nn4V+xsDI6a4NuPK4LoqLsWv1znItzCs1OxxY2Mzv8uX2Ghqdm64hOW3MDqdJLhiWrXZJsdpZVqtP1xSaHQ4QMgmxDk3xjyRj40S0hjeXFKjW5VHfjik6rntkNPM47DZdM7abJN/rhCYEhNqHK3appKpendLidcbAjmaHYwqK6BHiyuO66qYTfd0yv31nlRZs2WtyRADQcsu3l+n2N1dI8m2CeG0UzlUDgqG4ok4f+OcTXn9C5L2O2iXH6WcjOkvaP5IGCLbKOpde+75AUmR1oQfEOx26amxXSb7XCQUTWNnVY7vKYbdpwda9Wr+7wuxwYGFuj1cvfufrrr32+NyI6q69eGRnJcfFaHNxlb7eVGJ2OLAwwzD0vH9D0WvGdZPTEZ3l5OjMOkL9bnJfnTWok1weQze9vESbi6vMDgkAmq2kTrr51eWqd3t1at8Ouvvs/maHBESslxZsk8tjaETXthrWJTLnEwZGVcxeX6wte3iPg+B7c/F2Vda71b19kk7p28HscJrlyuO6KjbGrpU7yrVk2z6zwwFCJqtNgiYP8HU6vvBtnsnRwMpmry/SzrJapSfF6tyhWWaH0yQp8U5d5G9C4HWCUPp+a6k2FFYqwenQlFFdzA7HNBTRI4jdbtM/LxmiEV3bqqLOrRteXqaKBrOjAoCmK6916ZkNDpVWuzQgK1X/njJMDnvkdH0A4aSmwa1XFvo6qG6IwC70gB7tk3Wqv7AZ6HQBgsXt8TaOhbh+fHfZI3TNyUiO08+GZ0uSnp3PXRuwtmvHd5Mkvb9il/ZW1ZsbDCxrhn9tuHx0F8U7HeYG0wxTx3WTzSbN3bhHW2lCQIi8+F2+JOnC4dlKS3SaG4yJKKJHmHinQ89ePVLd2iVqR1mdntngYCdmABGlwe3Vba+vUFGtTR1T4zRj6iglxcWYHRYQsf67dIfKalzq2i5Rp/WP7PmE1/tHbPx36Q4KJgiqWet8nYZtE5260F+EjlTXjfe9TmatL1JeSbXJ0QChM7xLWw3unKYGt1evLSwwOxxY0Npd5VqUV6oYu61xXFak6ZaR1NiEMNNf6ASCaWdZrb5Y59uL5Zpx3cwNxmQU0SNQelKsXpg2Wm0TndpebdP0t1fL42UmIoDwZxiG7np3tb7P26c4u6FnrxquzNR4s8MCIpbHu38+4bXH50b8HR3HdU/XwOxU1bu9euV7CiYInkAX+uVjIrPT8EA9OyTrlL4dZBjSDO7agIXZbDZde7zvDquXv9+mBrfX5IhgNYG14cxBnSL6mmSa/3XyztIdKq91mRwNrOaV77fJa0jjerRT78wUs8MxFUX0CJWbkaSnrhimGJuhORv26P6P1pkdEgAc1eNfbtZ/l+2Qw27TtN5e9e0Y3Ysw0FJfbihW/t4apcbHNM7EjGQ2m003+LvRKZggWNbsLNeifH+n4XHdzA4nKK737yHw9tLtKqthviOs68xBndQhJU7FlfX6ZPVus8OBhZRU1evDFbskSdOO72ZuMC00rkc79clMUU2DR28v2W52OLCQOpdHbyzyNbZcPbabucGEAYroEWx4lza6spfv4nLmd/l6+fttJkcEAEf2wYqd+uesHyRJ957dV/3acgcN0FKBTaSmjOlimbFIvm6wOJVU1evj1bvMDgcWEOg0PGNQJ3VMi9xOwwON7dFO/Tqlqs7l1ZuLKZjAumJj7LryON+YDTZORDC9trBADR6vhua0idhN2QNsNlvjBwEzv8tnUgGC5n8rd2lfjUvZbRI0sV9kbsoeTBTRI9ywdob+38SekqQ/fbhWX2/aY3JEAHCoRXmluuPtVZKkG0/srimjckyOCIh8Gwsr9d2WvbLbrNUZ4nTYdeWYQMEkX4bBhSCab09lvf630vdhzLUR3ml4IJvNpmn+uaQvLdgmt4e7NmBdl4/poliHXSt3lGvF9jKzw4EFNLi9jU2Ikd6FHnD+sGy1TXRqx75azVlfZHY4sADDMPTignxJ0pXHdVWMgxIyPwELuOnEXF04PFser6FbXl2mzcXsyAwgfOSVVOvGl5eowePVGQM76s7Jfc0OCbCEwOZRkwZ0VHabBHODCbIp/oLJqh3lWk7BBC3w6sJtluk0/LFzh2apbaJTO8tqNXt9sdnhACGTkRynswZ3kiS95C/oAC3x6Zrd2lNZr8zUOJ05qJPZ4QRFvNOhS0d1kSSmFCAolhXs05qdFYqLsesymuAkUUS3BJvNpgcuHKSRXduqss6t615crNJqZiMCMF95jUvXzVysshqXhuS00cOXDJU9wjc+BMJBWU2D3lu+Q9L+zaSsJCM5TucOzZK0fxQH0FT1bk/jBrVW6TQ8ULzTocvH+AomM79jzAWs7aqxvjuUPlq1m2tdtNjLC3xF5stHd5XTQt21V4zpIptN+npTibbuobkSLTPzO9/r5NwhWWqbFGtyNOHBOv9aRLm4GIeevmqEctITtG1vjW5+eanq3R6zwwIQxVwer259bZm2llQrKy1ez109UgmxDrPDAizhzcXbVefyqn+nVI3qZq3u2oCp/lEVn67ercLyOnODQUT6eNVulVRZq9Pwx648rqscdpu+31qq9bsrzA4HCJlhOW00KDtNDW72AUDLrNtVoSXb9inGbtOU0dbqrs1JT9QpfXxzq+lGR0sUVdTpU/9mztf435ODIrqltEuO0/PXjFJKXIwW5ZfqD++tYY4oANPc/9E6fbO5RImxDj13zSi1T4kzOyTAEtwer17yd1BNPb6bbDZr3t0xMDtNo7q1ldtr6NWFXAiiaQzD0Az/JoRXj+1mqU7DA3VKS9DkgR0lSS/6RzwBVmSz2Rq70V/5fhsbJ6LZAsXlSQM7qkOqNTabPlDgdfLO0h2qaXCbHA0i1WsLC+T2GhrZta0GZqeZHU7YsOa7ySjWOzNFj10+THab7x/Np+dvNTskAFHo5QX5emnBNtls0iOXDlX/rFSzQwIsY/b6Iu0sq1V6UqzOHZJldjghFRhV89rCAtW5uMMOx27Jtv1zPKeM7mJ2OCEV2GD0veU7GXMBSzt3SJba+PcBmLuBfQDQdOW1Lr2/fKck6erjupocTWic2Ku9urVLVGWdWx+s2GV2OIhADW6vXlvkG4dHF/rBKKJb0El9OujecwZIkv7+2QZ9vrbQ5IgARJNvNpXoT/9bJ0m6Y1IfTRrQ0eSIAGsJzAifMjpH8U5rj0g6vX+mOqXFa291g/63kgtBHLsX/F3o5w/NVrrF53iO6NpWA7NTVe/26o3FBWaHA4RMvNOhS0b6xm+8xKgKNMO7y3ao1uVRn8wUjc5NNzuckLDbbbrS/wHBSwu2MZ0ATRbYeLdDSlzj3W7woYhuUdeM66arx3aVYUi/fmOF1uwsNzskAFFgy54q3fLqUnm8hi4clq2fT+hhdkiApazbVaGFeaVyHHCBZGUxDnvjbckzv8vnQhDHZGdZrT5fWyRJmja+m7nBtAKbzaap43x3bby8YJvcHq/JEQGhc+WYrrLZpPk/7FFeSbXZ4SCCGIbROMrlyrFdLTsOT5IuHpGjeKdd63dXaOm2fWaHgwgz0z8e7oox1tp4Nxj4aVjYPWf31wm9MlTr8uj6F5eoqIJNuQCETllNg65/cYkq6twa0bWtHvjZIEu/OQXMEJh5fMbAjuqUlmBuMK1kyqguiouxa61/IzDgaF5akC+P19C4Hu3Ut2N0jBM7Z0gnZSTHand5nb5YV2R2OEDIdGmXqJN6t5fkm40OHKtvN+/V1j3VSo6L0QXDss0OJ6TSEp2NI/8C++gAx2LNznItLyiT02HTlDHW2ng3GCiiW1iMw67HLx+unh2SVVhRpxteWsI8UQAh4fJ4detry5RXUq3sNgl6+qoRioux9pgJoLWVVjfo/RW+OZ7Tju9mbjCtqG1SbOPFbmBEB3AktQ0evbFou6T9M/WjQVyMQ5f7Z7/P9I98Aqzq6rHdJElvL9mu2gaub3FsXlqQL0m6cHi2kuNizA2mFQReJ4HRHMCxCHw4OXlgJ3VIsd7Guy1FEd3i0hKcmnHNKLVNdGrVjnL97r+ruBUaQFAZhqE/fbhW327eq8RYh567ZqQykuPMDguwnDcWF6je7dWg7DQN79LW7HBa1VT/hwafr/Vtqgocyf9W7lJ5rUud2ybolL4dzA6nVV1xXFfF2G1alF/KKEdY2oTe7dUlPVEVdW594P9wGfgpu8pqNXu97y6dq6JgHJ4kDcxO07AubeTyGHpjEftl4Ogq6lyNm9FeOcbam7I3F0X0KNClXaKevGKEYuw2fbBil56ev9XskABYyEsLtunVhQWy2aR/XTZM/TpFx63zQGtye7x62X877tRx3aJuVFLfjqka272dPF6j8ecA/JhhGHrp+3xJvjmeDnt0vU4yU+N15qBOkvaPfgKsyLdxoq/Aw8aJOBavLSyQ15DGdm+nXpkpZofTaq727yvz2qIC9svAUb2/fKdqXR716pBs2Y13W4oiepQY26Od7j2nvyTp759t0NwNxSZHBMAKvtlUoj9/tE6S9LvJfXVa/0yTIwKs6Yt1RdpdXqeM5FidPaST2eGYItCN/ubiAsbT4bBWbC/Tmp0Vio2x69JR0TnHM/A6+WDlLu2t4vZ9WNclI3MUF2PXut0VWlZQZnY4CGP1bo/eWOzrxA5sVh4tzhzUSelJvv0yAp34wOEYhtE4yuWKMV2irmHnWFFEjyJXHtdVU0Z3kWFIv3x9ubbsqTI7JAARbNveat362jJ5vIYuHJ6tm07sbnZIgGUFuq+njO4StfsNTOyXqay0eO2rcemT1bvNDgdhKPA6OXuwr2gQjYZ3aavBndPU4Pbq7aU7zA4HCJk2ibGNGye+7J91DRzOZ2sKVVLVoMzUuKhr+ImLcTR+qPwyG/HiJyzZtk8/FFUpwenQhSM6mx1O2KKIHkVsNpvuO3eARnVrq8p6t254cYnKa11mhwUgAlXXu3XjS0tVXuvSkJw2+tsFg/i0GgiRzcWVWrB1r+w2XxE9WjnsNl3un8/IhSB+rLS6QR+t8n24EthMLVpd6Z/3++rCbfJ6GXMB6wq81j9evZs7L3BEBzYiOB3RVwK7YkwX2W3St5v3anMxjZQ4vEAX+rlDspQa7zQ5mvAVff+CRLnYGLv+c+UIZaXFa2tJtX75+nJ5eHMNoAm8XkP/762V2lhUqfYpcXrmqhGKd0ZnZyzQGl753ncL8qn9MpXVJsHkaMx1yagcOR02LS8oY+NEHOTNxdvV4PFtvDukc5rZ4ZjqnMFZSo2P0fbSWn21aY/Z4QAhM6iz7/Xu8hj67zLuvMChNhZWasm2fXLYbVHbiNC5bWLjRtuvs8EoDmNvVb0+XV0oSbriuOh8nRwriuhRKCM5Ts9cPVLxTru++mGP/u+zDWaHBCCCPDF3sz5bW6hYh11PXTlCmanxZocEWFZNg1v/9Y9kuOq46JrjeTgdUuI1eaBvJvyrC+lGh4/Hu3+O51Vju0b9nVEJsQ5dPNJ3+/4rbMQLiwsURl9ftJ0NRnGIQNF4Yr8OUX3NEriT77/LdrCvDA7xztIdavB4NbhzmgZ3bmN2OGGNInqUGpidpn9cNESS9PT8rXp/+U6TIwIQCWavK9I/Z/0gSbr//AEa0bWtyREB1vbhil2qrHera7tEje+ZYXY4YeFK/4Xg+8t3MZYOkqS5G4q1s6xWaQnOxhnJ0e4K/+vky43F2l5aY3I0QOicMyRLyXExyiup1oKte80OB2GktsGjd/13KFw+JrobESb07qCstHiV1bj02ZpCs8NBGPF6Db3m/7Ap8N4BR0YRPYqdMyRLt5zUQ5L0u/+u0qodZeYGBCCsbS6u1K/fXCFJunpsV106ikU2nD3xxBPq1q2b4uPjNWbMGC1atOgnj3/00UfVp08fJSQkKCcnR7fffrvq6upaKVocjmEYesnfRXrlmK6y26O7uzZgdG66emcmq9a1/+IY0S0wI/+SkZ0ZL+bXvX2yxvfMkGFw+z6sLSkuRucN9X149tpCftex3yerd6uizq3ObRN0QpQ3IjjstsZrt9dYE3CAbzaXaNveGqXEx+gcGhGOiiJ6lPvN6X10at8Oqnd7deNLS1VcQcEEwKHKa1264aWlqqp3a3Ruuu4+u7/ZIeEnvPnmm5o+fbruvfdeLVu2TEOGDNGkSZNUXFx82ONfe+013Xnnnbr33nu1fv16Pf/883rzzTf1+9//vpUjx4GWby/Tut0Vio2x66IRnc0OJ2zYbLbG0TavfL+N2/ejXH5Jtb76YY9stv0basLnSv9c0zcXb1e9m9v3YV2BURWfry1kg1E0ChSLp4zuQiOCpEtGdZbdJi3KK2WDUTQKjEf82fDOSoyNMTma8EcRPcrZ7TY9ctlQ9WifpMKKOt38ylLeZAM4iMdr6FdvLFdeSbWy0uL15BXDo3Jn+0jy8MMP64YbbtC0adPUv39/PfXUU0pMTNSMGTMOe/x3332n448/Xpdffrm6deum008/XVOmTDlq9zpCKzDj+ZzBWWqbFGtyNOHl/GHZSop1aMsebt+PdoHXyYTe7dW1XZLJ0YSXif0ylZkap73VDdy+D0sbkLV/g9F3lnKHEnwbii71byh6MY0IkqROaQk6pW+mJO5Qgk9heZ1mr/c1WV3OKJdj2t5y+wABAABJREFU0qyPGZ544gn94x//UGFhoYYMGaLHHntMo0ePPuLxjz76qP7zn/+ooKBAGRkZuuiii/TAAw8oPj56N3YIJ6nxTj13zSid9/g3WlZQpvs/Wqe/nD/I7LAAhImHvtioeRv3KN5p1zNXj1RGcpzZIeEnNDQ0aOnSpbrrrrsaH7Pb7Zo4caIWLFhw2K8ZN26cXnnlFS1atEijR4/W1q1b9cknn+iqq6464vepr69Xff3+bq+KigpJksvlksvV8jnVgXME41xma04u+2oa9NGq3ZKky0ZmhcXPIZyek3iHdO6QTnp98Q699F2+RnVJa9LXh1MuLWGVPKTm5VLb4NFbS7ZLki4f1Tksfg7h9pxcOqKz/j13i15ekK8zB3Ro0teGWy7NFYo8gnkurq2DY8roLlq5Y7VeX1SgG0/sHvUbDEe7AzcU7RDFG4r+2OVjcjR7fZH+u2yH7pjUhxFoUe6NxQXyeA3/qMQUs8OJCE0uogduEX/qqac0ZswYPfroo5o0aZI2btyoDh0OfWMWuEV8xowZGjdunH744QdNnTpVNptNDz/8cFCSQMvlZiTpX5cN07UvLtYr3xdocOc2umRkjtlhATDZ/1bu0n/mbZEk/f1ngzUwu2mFKrS+kpISeTweZWZmHvR4ZmamNmzYcNivufzyy1VSUqLx48fLMAy53W7dfPPNPznO5YEHHtB99913yONffPGFEhMTW5bEAWbNmhW0c5mtKbl8ucumBrdDnZMM7Vz1nXatDmFgTRQuz0lOvSTF6Iu1hXr9/Z1Ka0azfrjk0lJWyUNqWi7fF9tUUedQepyh6s2L9cmWEAbWROHynGQ0SHY5tGRbmZ57+xNlNaNZP1xyaalg5lFTE5zNWrm2Dp5zhmTpLx+vV/7eGi3YslfjonwGdjSrc7Gh6JFM6N1BndLitbu8Tp+vLdR5Q7PNDgkm8XgNvbnY14jAhqLHrslF9ANvEZekp556Sh9//LFmzJihO++885DjD7xFXJK6deumKVOmaOHChS0MHcF2ct8O+vWpvfXI7B/0x/fXqF/HVA3qTMEMiFbrd1fojndWSpJuOrE7b7IsbN68efrb3/6mJ598UmPGjNHmzZv1q1/9Svfff7/uvvvuw37NXXfdpenTpzf+uaKiQjk5OTr99NOVmpra4phcLpdmzZql0047TU6ns8XnM1NTc/F6Df3zX99IqtXPJw7QWSPD4zbkcHxOvixfpCXbylSS1kdTTu5xzF8Xjrk0h1XykJqXy/NPfy+pQtee2Ftnn5gb2gCPUTg+J9/WrtDn64q1Pb6brj/z2Pc0CcdcmiMUeQTuvmoprq2DJ7DB6KsLC/TaogKK6FHs41W+DUWz27Ch6I/5NhjN0aOzN+nVhQVc30Wx+T/s0e7yOrVJdGrywI5mhxMxmlRE5xbx8BKKPG4+oatWbC/V3I0luunlJXrv58cpvRXmsFrlOZGsk4tV8pCsk0tr5lFe69KNLy1Rncur8T3b6fZTe4TkNmiek8OfryUyMjLkcDhUVFR00ONFRUXq2PHwb5DuvvtuXXXVVbr++uslSYMGDVJ1dbVuvPFG/eEPf5DdfugM/Li4OMXFHTrax+l0BrXYEuzzmelYc/nqhz0qKK1VSnyMLhiRI6czvDb5Cafn5Kqx3bRk2wq9uWSHfnFq7ybv1xBOubSEVfKQjj2XtbvKtWpHhZwOmy4b0zXs8g+n5+Sacbn6fF2xPlixW78/a4CS45r2b0o45dISwcwjGOdpjWvrUF9XB8514P+a6ZIRviL652sLVbivSu2aMIIwnPJoKavk0tw8AhslXjIiWx6PW54w2PItnJ6TC4d20r/nbNKivFJt2FWmHu2P/RalcMqjpaySS3PzeM3/Ojl/SCfZDa9cLu//Z+/Ow+Mor3zxf6t3tfZ9t+VdlvcFGwNmtQ0YzJaFrORy5zIzSZxkxslcwkwGQmYmZCFcZiZMmJDwS2YmCQSSAAFjY4wNGLzb8i7Lsixr35eW1Oq9fn9UV0u2ZVtLd79V1d/P8/DwWFa3Trm71PWeOu85UY9tvLS4tr7YuK6guEVcm6J9HOvSgGMOM5r7PPjiz97DX88NwRynlnJGeU0A4xyLUY4DMM6xxPo4QjLwi9MmNPSYkGWXsT6jDVu3vB2Tn8XX5ELR2B5us9mwbNkybN++Hffddx8AIBQKYfv27di4ceNlf+7FiXKzWemRKMvypGOi8fnv3cpF7SeWlsBp01YCXWvumF+A7GQb2lxebD/VhjvmF4oOieJE7Xe7bl4BZ3VcxaoZ2Ziem4zajkH86XATvngt2xtoQTzW1vFaVwPauaabkmxG/SDw/d+9h9uKx38No5XjiAajHMt4jqPZDRyqt8AEGZm9Vdi8efRzSRStvCYVGSYc7zHhB698iPvLxp881cpxRINRjmU8x+HyAdurzAAk5LtrsXlzbewCmwAtra0vFvOVGbeIx04sj2Phyn588j/3oroPqLJOx9+tmx3V57+YUV4TwDjHYpTjAIxzLPE6jud21uJETw1sFhNe/N8rMK9o8r93L8bXZHTR2h6+adMmfOlLX8Ly5cuxYsUKPPvssxgcHIxsF3/ooYdQXFyMp556CgCwYcMGPPPMM1iyZEnks/of//EfsWHDhkgyneKjuXcI71Upuwi+wETXVdktZnz6mlL8bOdZ/HZfA5PoCcLtC+C1w80AgM+tYB/Pq5EkCV9YORXfe/MkfrPnPL6wcgqHLurUeNfWsV5XA9q7phvMb8Tfv3YSRwZS8eM7rofJNLb3utaOYzKMciwTOY5/eqsKQD1um5uPz963OKbxjYfWXhPHjA781f8cxpE+O3669kbYxzhgVGvHMRlGOZaJHMfPPzyHkHwGi0vT8X8+uTLGEY6dVtfWI40ric4t4toUi+OYV5KFH31yEb72u8P4+Yd1WDIlC3cuiP3C1CivCWCcYzHKcQDGOZZYHsf71R341/dqAAD/fN98LJ6aHZOfo+JrcunzRMODDz6Ijo4OPP7442htbcXixYuxZcuWSLVbfX39BZ+/3/nOdyBJEr7zne+gqakJubm52LBhA/7lX/4lKvHQ2P3+QANCMrByWhZm5qWIDkcXPhNOon94pgMN3W6UZkW3upK0580jLRjwBjA124lV02P7OWUUn1hagh9uqUJVaz8qG3qxZEqm6JASXjzW1vFaV8fqOSfi3iWl+P7b1Tjf7cbBBte4e6Nr5TiiwSjHMtbj8PiDeK1SucH6+Wu11+YL0M5rsqaiEIXpp9DS58H26q5x90bXynFEg1GOZazHIcsyXj2knCefXTFFk8eutbX1SONqHDlyi7hK3SK+atWqUR/DLeL6tWFRER5ZrQxp+tYrR3CmrV9wREQUSw3dbnzjpcOQZeUD9dPLS0WHRJOwceNGnD9/Hl6vF3v37sXKlcNVBjt37sSvfvWryJ8tFgueeOIJ1NTUYGhoCPX19XjuueeQkZER/8ATWDAk4/f7GwAo5yCNzdTsZFw/MxuyrNyEIOP7bbiVy2dXTBlzlWmiS3dasT5cEPPSPp4nWsC1dWyoA0aB4d8VlBhGDhS9cVau6HA0TR0wCgC/2cvzJJHsO9eNc52DSLaZcffCItHh6M74pi9B2SL+wgsv4Ne//jVOnTqFL3/5y5dsER85HGXDhg342c9+hpdeegnnzp3Dtm3buEVcRx69oxzXTs/CoC+Iv/rvg3B59D10gYhG5/EH8eXfHESv249FJen47j0VokMiSjgfnOlAc58H6UlW3DF/9CpEGt1nrlFuOvz+QAMCQfGDkSh2Tja7UNnQC6tZwieXlYgOR1c+E06Y/PloMwa8AcHREMC1dayoN6LfOdGGXrdPcDQULy+HCxE+c00pb7COwYPXlMIkDSdVKTGo58mGRUVIHuegcZpAT3RuEU8sFrMJP/3cUmz4912o7RzEN39/BP/5hWX8UCIymCdeP4HjTS5kOq34jy8sg93ChRhRvL0Urpi7f0kxHGPsTUmKdfPykRUeMLrzdAfWVORf/UGkS5GBohUcKDpeK6ZlRQaMvlHZjM+t5I4X0bi2jo35xemoKEzDyRYXXq9sxpeuKxMdEsXYuc5B7KvrhkkCPrmcN1jHojA9CTfOzsXO0x149WAD/u72ctEhUYz1Dfnx1rEWAIjsRKDxGXclOsAt4okmJ8WO57+wDDazCdtOtuH5D86KDomIouilffV4+UADTBLw759diuKMJNEhESWc9n4Ptp9qB8BWLhNht5jxiaVKP8+X9nNbslEpA0WbAPA8mQhJkiLV6DxPtINr69j4dDiRqlZdkrG9elB5nW+cnYvCdK5lxkpt3/nqwUYEQ2wJZXRvVDbBGwhhTn4qFpdmiA5HlyaURKfEs6g0A9+7dx4A4Omtp7H7bJfgiIgoGo409OLx108AAL65bg5umDW+4UtEFB2vHmxEICRjyZQMzClIFR2OLj0YbunyXlU7WvqGBEdDsfDm0Rb0ewOYkuXEdTM4UHQiPrG0BFazhKONfTjR3Cc6HKKYuXdxMWxmE062uHC8ie91IwuGZLx6sBEAONNpnG6bm4dMpxVtLi8+ONMhOhyKsZfCNxUfvKYUksTuEhPBJDqN2YPXlOITS0sQkoGv/e4w2vs9okMioknoHvThK785BF8whLUV+fjyTTNEh0SUkEIhOVIp99lrWF07UTPzUrCiLAshGXjlQKPocCgGfseBopOWnWLHugpl5gIHjJKRZSbbsHae0hbnFQ6dNrQPznSgzeVFptOK2+bmiQ5HV+wWM+5bouzk43libMeb+nCi2QWb2YT7w685jR+T6DRmkiThn++bjzn5qegc8OLrvzvM4V1EOhUMyfjGS4fR1DuEsmwnfvLpRUxIEAmyp7YL57vcSLFbcPeiQtHh6NpnVigVaC/vb0CI25IN5VSLC4fre2ExcaDoZKnnyWuVTRjyBQVHQxQ7alXya5XN8Pj5XjcqNfl735JiznWagE8tU86TbSfb0D3IQbxGpbZxWzcvH5nJNsHR6BeT6DQuSTYz/uMLS5FsM2NPbTf+37vVokMiogl4bkcNPjzTCYfVhOe/uAxpDqvokIgS1u/CVej3LC6C0zbume80wvoFhUhzWNDUO4QPazpFh0NRFBkoOi8fuakcKDoZ18/IQWlWEvo9gciAMSIjumFmDgrTHegb8mPbyTbR4VAMdA/6Iq+tmgym8akoSsOC4nT4g3Jk7ggZy5AviNcrmwEAn+Gu10lhEp3GbUZuCn7wiYUAgOd2nMV7VbwgIdKTj2s68Wz4Btg/37cA5QVpgiMiSlzdgz5sPd4KgK1cosFhNeOBpUqV8kv7ODjRKDz+IP4UXthz8Td5JpOEB8MVujxPyMjMI3au/J6tKgzptcNN8AdlLChOR0UR1zQTpQ7i/f2BBsgyd/IZzdvHW9DvCaAkM4kzZSaJSXSakA2LivClVVMBAH/78hE09rgFR0REY9He78HXX6pESFYulrglnkisPx5qhC8YwryiNCwoSRcdjiGorSq2nWxDR79XcDQUDVtPtKLfE0BxRhJumMkB2NHwqeWlMJskHDjfgzNt/aLDIYoZtTp5V00nmno5dNpIZFmO3BxRk8A0MfcsKobNYkJVaz+ON7lEh0NRps4K+vTyUrZwnSQm0WnC/v6uuVhUko6+IT+++tvD8AbYZ45Iy4IhGV//3WF0DngxJz8VT94zX3RIRAlNlmW8FG7l8pkVrK6NlvKCNCwuzUAgJOPVgxwwagTq4u+Ty0q4+IuS/DQHbpmjDOBTfw8RGdGUbCdWTc+GLAOvcui0oRxvcqGqtR82iwn3LOKgxMlId1pxxzxl6DR3bRhLQ7cbu2u7AAAPLOV5MllMotOE2S1mPPf5pUhPsuJIQy++/9Yp0SER0RU8+2419tR2Izk82yDJxsE7RCIdqu9BTfsAkqxm3Lu4SHQ4hvLZcDU6tyXrX2OPGx+dVfrbc/dUdH1upXKe/PFQI4thyNA+fY3yu+OVgxw6bSRqsveOeQVId3K+02Spg3hfr2ziIF4DUdvhXTcjGyWZTsHR6B+T6DQpJZlO/L8HFwEAfr37PP58pFlwREQ0mg+qO/DTHTUAgO8/sAAzclMER0REv9+vVMQpwzC5+IumuxcWwWkz41znIA6e7xEdDk3CHw42QZaVxV9pFhd/0XTT7DwUpDnQ4/Zj+6l20eEQxcwd8wqRaregsWcIe8IVmaRvHn8Qr1cqyUE1+UuTc92MbBRnJMHlCWDriVbR4VAUyLKMPxxS1hufWMpChGhgEp0m7dbyfHz1lhkAgG//4SjOdgwIjoiIRmrt8+BvXq6ELAOfWzkF9y7mNi4i0dy+AN461gIA+BT7eEZdst2CO+cXAgBbuuhYKCTjlYNqv1smSaLNbJJwf3hrN88TMrIkmxkbwju+2KrCGN452QZXeFYGByVGh8kkRa5JX2HrI0M4cL4H57vcSLaZceeCAtHhGAKT6BQVf7tmNq6dnoVBXxBf/c0hbv8h0ohAMISv/e4Qugd9qChMw+N3V4gOiYgAbDneigFvAFOynFg5LUt0OIakLgTfPNoCty8gOBqaiD21XWjsGUKqw4I75nPxFwufCrfI2Xm6He0uj+BoiGJHvRH39vFWuDx+wdHQZL0SvhnCWRnR9cllJZAkZRBvQ7dbdDg0SeociDsXFMJpswiOxhiYRKeosJhN+LfPLkFOig1Vrf34F/ZHJ9KEp9+pxv66HqTYLfiPzy+Fw8o+6ERaoFZ9KosVLv5iYUVZFqZkOTHgDWDLcW5L1iO1YvSeRUX8/IqR6bkpWDY1EyF5uG8qkREtKknHjNxkeAMhbDnGzwQ9a+kbwq4azsqIhZJMZ6Sy/zV+JujakC8Y2fXK8yR6mESnqMlLdeAnn14MAPjvPefxdviEJSIx3qtqw/PvnwUA/OiTC1GWkyw4IiICgIZuNz4+2wVJAh5YyvZKsWIySZH+j2xVoT8ujx9vh29+fIqtXGJKXVy/crCRg3jJsCRJwgPhzwS1RzDp0+uVzZBl5WY5Z2VE3/1LlPPkT4eb+JmgY1tPKLteSzKTsKKMu16jhUl0iqqbZufir29S+qP/3z8c5RYgIkFa+oaw6fdHAAD/67oyrF9QKDgiIlKpi/frZmSjJJOLv1j6xLJiSBLw8dkuXpPozJ+PNMMbCGF2fgoWlaSLDsfQ7lpYCIfVhJr2AVQ29IoOhyhm7luifCbsPdfNzwSdkmUZfwxfR7EQITbumF+AJKsZtZ2D/EzQsZEDRdnyKHqYRKeo++a62Vg6JQP9ngC+/tJh+IMh0SERJZRgSMbfvFSJXrcfC4rT8dj6ctEhEVFYKCRHLmq5tTL2Rm5LZuWhvvw+3Mfz08tL2fIoxtIcVtwxT+k5z10bZGTFGUlYNZ2tKvTsRLML1W0DsFlMWL+QRUKxkGIfnkPCNl/61Nw73PJI3ZVJ0cEkOkWd1WzCv35mCdIcFhyu78VP3qkWHRJRQnluRw32nutGss2Mf/vsEtgt7CNLpBVK9duQskCZx8VfPKg3K/5wqBGhELcl60F1Wz+ONPTCYpJw3xJWGsaD2jLnjSPN8PiDgqMhih21pQtbVejTHw8pSd21FflIc1gFR2Nc94c/e9840gxfgEWReqP8fgvPB8rmrtdoYhKdYqI0y4kffXIhAOD598/i/eoOwRERJYb9dd149l3lxtU/3Tcf09gHnUhT1CrPuxcWIsnGG1zxcMe8QqTaLWjoHsLec92iw6ExeCU8UPTW8jzkpNgFR5MYVk3PRnFGEvo9Abxzsk10OEQxc8f8AjisJraq0KFAMIQ3jihJ9E+wlUtMXT8zB3mpdvS6/dhxul10ODQOsizjDwe56zVWmESnmLljfiG+eO1UAMCmlyvR7vIIjojI2HrdPnzjd4cRkoEHlhRHKm2ISBsGvAFsDg/d/tRynp/xkmQz4+5FStU/W1Vonz8Yimwf/zQHisaNMohXSUqpNzGIjEjZCaa0qlCrmkkfPjzTic4BH7KTbVg9K1d0OIZmHrET7E88T3TlcEMvajsH4bCacOeCAtHhGA6T6BRT/3DXXMwtTEPXoA9/83IlgtxGTRQTsizj0T8cRXOfB2XZTnzvvvmiQyKii2w50YYhfxDTc5KxdEqm6HASilqJs/lYCwa8AcHR0JV8WNOFzgEfclJsuGkOkyTx9InwebKrphMtfUOCoyGKHbXQ5M9Hm+ENsH2RXqizTe5ZXASrmamsWFMHt26vakOv2yc4GhortWDkzvmFSGXLo6jjbx6KKYfVjJ9+bgmcNjM+PtuFn+2sER0SkSH9Zm89tp5og9Us4d8/uxQpdovokIjoIn8IV/J8YlkJByXG2dIpmZiem4whfxCbj7aIDoeu4LXDzQCAexcXM0kSZ1Ozk7FiWhZkmRW6ZGwXtKqoYttRPXB5/JFWUxyUGB/lBWmoKEyDPyjjz7x20gVvIIi3wq/VA2x5FBO8MqWYm5Gbgu/dq1TFPrOtGgfq2I+UKJpOt/bjn948CQB49I5yLChJFxwREV2sYwg4cL4XJokXtSJIkhSpRn/lIFtVaJU7AGw/rSS07udAUSHU8+TVg40cukiGdUGrisNs86UHbx9rgS8Qwqy8FMwrShMdTsJQr1n/dIjniR7sPN2BviE/8lLtuG5GjuhwDIlJdIqLTy4rwf1LihGSgb95uRIuj190SESGMOQLYuNvD8EbCOHmObn439dPEx0SEY1if4dyyXXDrFwUpicJjiYxPbCkBCYJ2F/Xg/put+hwaBRHuiT4AiHMzmeSRJS7FhTCaTPjXOcgDtX3ig6HKGbU5OB7Ve3oGWSrCq1Td/M9sJS7+eLpnsVFMEnAofpenOscFB0OXcXrlcp5cs+iIphNPE9igUl0ipvv3TsPpVlJaOwZwhOvnxAdDpEhfO/NkzjTPoDcVDue/tQimPhhSaQ5sixjf6dybn6CVejCFKQ7cP1MpSrnjSPclqxF6s2m+5cwSSJKst2CO+Yrg8he53lCBjayVcWbR5tFh0NX0NgzhH3nuiFJwH1LikSHk1DyUh2RIa7q0G/Spn6PH++eageAyE4bij4m0SluUh1WPPvgEphNEv50uClyl4yIJubtYy343b56SBLw/z69GDkpdtEhEdEoDtX3otsrIdlmxrqKAtHhJLT7FiuLijeOtICdKrSlsWcIZ/slJkk04IElSkuXt4+3IRASHAxRDKnV6H/gDABNU2/oXTcjm7v5BFDPkz8eakQoxIsnrdp6sh2+QAgzcpO5my+GmESnuFo2NRNfu3UmAOA7fzqOBm6nJpqQ1j4Pvv3HYwCAv7pxBm6YxZ5nRFr1RnjAz7qKPCTZzIKjSWy3zy+Aw2rCuS436rkrWVPUJMmqaVlMkgi2aka2MnRxyI9TvdwRQMaltqqobGCrCq2SZeC1SmWngHqDj+JrXUUBUuwWNPYM4SDbfGnWn8PXUfctLuZuvhhiEp3ibuMtM7F0Sgb6vQFs+n0lgrybSTQuoZCMb71yBH1DfiwoTsemtbNFh0REl+ELhLD5WBsApT8hiZVit0R2Axzo4GWwVsiyjNfDSZJ7FxcKjobMJgn3LlZ+Xx3o5EKcjGtkq4o3j7YKjoZGUz8I1HW5kWQ1R1pNUXwl2cy4k22+NK3PB+w+1w0AuHcxW7nEElcPFHcWswnPPrgEKXYL9tf14D921IgOiUhXfr2nHrtqOuGwmvD/HlwMm4W/yom06v3qDvQO+ZFmlbFqepbocAjA/eFtyYc6JfiD7FWhBZUNvTjX5YbVJGNdRb7ocAjD/VSPd0vo9/gFR0MUO+oN7jePsc2XFh3sVNY5ayrykWy3CI4mcamJ2a0n2OZLiw51SpBlpfPDlGyn6HAMjZkXEmJKthPfu3ceAODZ7WdQ2dArNiAinWgeBH78TjUA4Dt3VWBmXorgiIjoSl4LD2FamiPDzMG/mrB6Zg6ykq0YCEj46GyX6HAIw8PKFmbJSGGSRBMqCtMwKy8ZAVnClhPtosMhipl18/Jht5hQ2+lGIzu6aEowJONweDcMd/OJtWpGNnJSlDZfp/t4Pas1B8I3m+5bzPMk1phEJ2HuX1KMDYuKEAzJ+Oarx+AJio6ISNu8/iD+q8YMf1DGreV5+PzKKaJDIqIrcHn82HZKaeVyTS7LdrTCYjbh7gVKy5DXK7ktWTRfIIQ/H1FauVyTyzJQrZAkCfeGk1ZvhF8fIiNKdVhx29w8AMChTqZHtGR/XQ9cfgnpSRbcNDtXdDgJzWyScPdC5drpINt8aUpN+wAaByVYTBLuWsgkeqzxU4KEkSQJ/3zffBRnJKG+ewh/PMe3I9GVPPNuDVrcErKSrfjhJxZyYAiRxm051gpfIISZucko5s5KTbl3kbIQfLeqHQPegOBoEtvO0+3ocfuRm2LD7HQm0bVkw0KlB+7euh409w4JjoYodtQq50NdEkKc16UZbx5TbnTfXpHP9pUasCF8nhzrljDkYwWkVrxxVDlPbpiZjaxkm+BojI+/iUio9CQrnvn0IpgkYG+HCW8f50AXotHsOtOJFz8+DwB46v75yE21C46IiK5GbVFx76JC8J6XtiwoTkOeQ4bHH8JWXnsIpZ4nGxYWwszzRFOKMpIwM02GLLManYzt5jl5SLFb0OuTcKC+R3Q4BGWX0pYTym6+uxdyoKgWLJ2SgZIMB3whCTtOd4gOh6AMZv9zeCiyWiBCscUkOgm3cno2/urGaQCA77x+Eq19HsEREWlLr9uHb75SCQC4Pj+EW+dwOyOR1jX3DmHPOaXf9gZe1GqOJElYHm6x81plk+BoEpfL48f2KqXf9r2LeZ5o0fKc8HlymOcJGZfDasa6CqWly5tHeWNVCz6o7kDfUABpVhkryjiYXQskabily5vHeJ5owaH6HjT2DMFuknFbeZ7ocBICk+ikCV+7ZQZKk2W4PAE8+oejkDkanQiAcnf57/90DG0uL6ZlO3HvVPZVJtKDN440Q5aBFdOyUJyRJDocGsWyHOVa46OaTrS5eANfhK3Hwy2P8lIwtyBVdDg0ikXZMqxmCVWt/TjV4hIdDlHMqNXOW060wR/k9bZo6u6XJdkczK4ldy9QzpOd1R3oG/ILjoZer1TOk4VZMpJsZsHRJAYm0UkTrGYTvjAzCJvFhPerO/DbffWiQyLShD8easLmY62wmCT85FMLYOdnI5EuqFWb9y8pFhwJXU6OA1g2JQMhGXijkq0qRPhzuI/nPYuKOOdDo5wWRHbAsRqdjGzVtCykWGX0uP3YdaZTdDgJze0LYNtJpZXLshze0NCSOQWpKEiS4Q/KbIcnWCAYwubw3AC1MIRij0l00owCJ/CttbMAAP/y1imc7xoUHBGRWI09bjzxxgkAwN+smYUFxemCIyKisTjV4kJVaz9sZhPWz2eLCi27J9xq509MDsZd14AXH9UoiSp1WBlp073h1+f1ymYEOXSRDMpiNmFJtvL+5gwAsd491Y4hfxBTspIwJUV0NHQx9cYGzxOx9p7rRueAD5lOKwezxxGT6KQpX7p2ClZOy4LbF8Q3f3+EF+qUsEIhGY/+4SgGvAEsmZKBv75phuiQiGiM1K2Vt5TnIt1pFRwNXcmd8/NhMUk42eLC2Y4B0eEklM3HWhAMyVhQnI5pOcmiw6EruHF2DtKTrGh1ebA3POuByIjU5ODWE60Y8gUFR5O43gjPKrlrQQEHs2vQ0nDV88dnO9Hez3Z4orx5VFlvrKvIg5mZ3bjhPzVpiskk4elPLUKK3YID53vwiw9rRYdEJMRv9p7HRzVdcFhN+MmnFsHCT0YiXZBlOXJRe+9itnLRukynDatn5QAA3jzSIjiaxKJWsN3DKnTNs1tMuGOe0gf3zaM8T8i4ylKAkgwH3L4gtle1iQ4nIfW6fXi/ugMAsGEBd/NpUY4DWFiShpAMbOZnghD+YAhbwu107pxfIDiaxMKsDGlOaZYTj99dAQD4yTvVqGrlECNKLHWdg/j+5ioAwLfvKMf0XO5jJNKLyoZeNPYMwWkz45Y5eaLDoTG4e6GSxH3jSBMHm8dJc+8Q9tf1QJKAuxcxSaIH6uu05Xgrhy6SYUkScFc4cctZGWIov2NklBekYlY+10BatWFh+DxhSxchPj7bhR63H9nJNqwsyxQdTkJhEp006VPLS3BbeR58wRA2vXwEvgAv1ikxBEMyvvXKEQz5g1g1PRsPrSoTHRIRjcOfw9XMayvykWTjJGA9WDsvHzaLCWc7BlHV2i86nISg7ta4piwLhelJgqOhsVg1PRvZyTZ0D/rw8Vm2dCHj2rBQqerceboDLo9fcDSJJ7JLaTF3KWnZ+vkFMEnAofpeNHS7RYeTcN4Mnyd3LijgjvU44782aZIkSXjqEwuQ6bTiZIsL/7b9jOiQiOLixV3ncOB8D5JtZvzokwthMrERIJFehEIy3jqmXNRuWMjFn16kOay4ZU4ugOHkLsWWmiThQFH9sJhNWB+u0H2TlYdkYHMKUjEzLwW+YAjvnmRLl3jq6PdiT61yk47XUdqWl2rHtdOzAQBvHWNLl3jyBULYekJp5XI3z5O4YxKdNCsv1YF/uX8BAOA/dtbgUH2P4IiIYutMWz9+/M5pAMA/3l2B0iyn4IiIaDz213WjzeVFqsOC1bNzRIdD46Amc/98pIUtXWKstmMAx5tcMJskrGcfT125O7x9f8uJVngDHLpIxqXeMNrM5GBcbTnRipAMLCpJ5zpIB3ieiLGrpgMuTwB5qXZcU5YlOpyEwyQ6adr6BYW4b3ERQjLwzd8f4ZR0MqxAMIRvvqK0Lrp5Ti4evKZUdEhENE5/Dlcx3zGvAHYLW7noya3leUiymlHf7cbRxj7R4Ria2vLohpk5yE6xC46GxuOasizkp9nR7wngg+pO0eEQxYzaF/2D6k62dIkjdUjleg4U1YU7wi1djjb2saVLHL15ZPg8MXPXetwxiU6a9+Q981GQ5sC5zkH8JFylS2Q0P9t5Fkcb+5DmsOAHDyyEJPEDkUhPAsEQ3j4W3lrJFhW647RZsKYiHwDwZ7aqiBlZlvHGkSYAwD08T3THZJJw1wLldWPrIzKy2fkpmJGbzJYucdQ54MXec0orFybR9SEnxY6V05SWLqxGjw+PP4h3wr+T1N1hFF9MopPmpTuteOoBpa3LLz86h4Pn2daFjOVEcx/+Ndz3/8l756Eg3SE4IiIar921Xega9CEr2YbrZmSLDocmYEN4MfLWsRaEQmzpEgsnW1w42zEIm8WEdfPyRYdDE7BhkXKebDvZxh2iZFiSJEWq0ZkcjI8tx5VWLgvZykVX1i/keRJP71d3YMAbQGG6A0unZIoOJyExiU66cEt5Hh5YWgxZBv7vq0fg8fOinYzBFwjhm78/gkBIxu3z8nHf4mLRIRHRBKhbK++YXwCrmZdXenTTnFykOixo6fPgIOewxITayuXWOXlIdVgFR0MTsbg0AyWZSXD7gthxul10OEQxoyYH2dIlPtQkLKvQ9eWOeUpLlyNs6RIXb4ZbHt21oBAmtnIRgqs80o3H765AbqodZzsG8ey7Z0SHQxQVz+2oQVVrP7KSbfiX+xewjQuRDvkCIbx9XLmo3bCQLSr0ym4xY12FMuiSLV2iT5blSAuQexbzPNErSZJw90J1EC/PEzKuOfmpkZYu20+xpUssdQ54sadWaeVyF5PoupKbaseKacpwS/VamGJjyBeM/C5i60hxmEQn3chw2vAv980HAPz8g7M40tArNiCiSapqdeG5HTUAgCfvmYccDlgj0qVdNR1weQIXLCRIn9RWFZuPtSAQDAmOxliON7nQ2DOEJKsZt8zJEx0OTYLah/W9qnYMeAOCoyGKjZEtXd462io4GmPbekJp5bKgmK1c9ChynhzjeRJLO063w+0LoiQzCYtK0kWHk7CYRCddWTevAPcsKkJIBv7u1SPwBtjWhfQpEAzh/756FIGQjLUV+RwMQqRjaouKuxYUwsytlbp2/cwcZDqt6BzwYe+5btHhGMrmcIXareV5SLKZBUdDkzGvKA3Tc5LhDXDoIhlbpKXLmQ70s6VLzKiD2dnKRZ9un18ASQKONPSisYctXWJFbXl014JC7l4XiEl00p3v3jMPOSk2VLcN4Kfv1YgOh2hCfrnrHI429iHVYcE/3zefH4REOuUNBLEtnERSq5hJv6xmE+6Yr7R04bbk6JFlGW+HF393LigQHA1NltLSRfl9p/ZnJTKiOfmpmJ6bDF8ghO2nOAMgFroHfdjNVi66lpfqwIqycEsXVqPHhMcfxI4q5XfQnTxPhGISnXQnK9mG792rtHX5j51ncbypT3BERONT2zGAZ7ZVAwD+8a4K5Kc5BEdERBO160wnBrwB5KfZsaQ0U3Q4FAV3zFcWJ1uOtyEYkgVHYwynWvpR1+WG3WJiKxeDUBfxH5zpYEsXMqwLWroc4w2jWNh6ohXBkIz5xWmYks1WLnp110KeJ7G060wnBn1BFKY7sLCYrVxEYhKddGn9gkLcOb8AwZCMv3v1KHwB9i0lfQiFZHz7D8fgDYSwelYOPrW8RHRIRDQJbx9XKm7unF8IE1u5GMKq6dlIc1jQOeDFwfM9osMxBHUL8s1zcpFstwiOhqKhvCAV03KUCl21Oo7IiNQWI+9Xs6VLLKifD2zlom93hFu6VDb0oql3SHQ4hrPlhLLeuH1eAdcbgjGJTrr1vXvnI9NpxakWF55//6zocIjG5Dd7z2NfXTecNjO+f/8CtnEh0jF/MBRp5aK2ACH9s1lMWFuhvJ6bWVE1abIsM0liQJIkRX7vbTnO7ftkXOUFqZgevmH0Hm8YRVX3oA8fn2UrFyPIS3XgmkhLF147RRPXG9rCJDrpVm6qHd+9Zx4A4N/fO4Pqtn7BERFdWWOPGz94uwoA8H9vn8Pp80Q6t/tsF/qG/MhJsUUWDmQMd4YXKVtPtCLEli6TUt02gNrOQdgsJtxazlYuRqKeJ+9VtWPIFxQcDVFsSJIUuQHIG0bRte2k0splXlEapmYniw6HJkm9EcIChOjaW9uNviE/spO53tACJtFJ1+5ZVIQ1c/PgD8p47I/HuNAlzZJlGf/wp+MY9AWxfGomHlpVJjokIpoktZXL2ooCmLm10lBumJWDZJsZLX0eHGnsFR2OrqmL6Rtn5SLVYRUcDUXTguJ0FGckYcgfxPvVHaLDIYqZ2+cpN4x2nu6Ax88bRtGy9US4unYeq2uNQD1PDtX3ot3lERyNcWw5oVxHrZuXz/WGBjCJTromSRK+d+98JNvMOHi+B7/ZVy86JKJR/fFQE96v7oDNYsIPP7mQvcyIdC4YkrHtpNoPnYs/o3FYzbhtbj6A4ZslNDFvH1dbufA8MZoLW7qw8pCMa35xWuSG0YdnOkWHYwgD3gB2hf8tb+d1lCEUpDuwqDQDAPBOuP0ITU4oJEduNt3Om02awCQ66V5RRhL+7vY5AIAfvl2F1j7e9SRt6Rzw4ntvngQA/M2aWZiRmyI4IiKarP113egc8CE9yYpVM7JFh0MxoN4ceft4C2SZO90moqa9H9VtA7CapchNCTIW9TzZfqod3gArdMmYJEnC2grld9jWE7yxGg3vn+6ALxjCtJxkzMrj2sgobp+nnCdMokfHofoedPR7keqw4LoZOaLDITCJTgbxxVVlWFyagQFvAE+8cVx0OEQX+Oc3T6JvyI95RWn4y9XTRYdDRFGg9kVdMzcfVjMvp4zopjm5cFhNaOgewolml+hwdGnzMeU8uWFmDtKT2MrFiJZOyUReqh393gA+rukSHQ5RzKwLJwe3n2pDIBgSHI3+qTcj1s3LhyRxh65RqNXSu892wuXxC45G/94esd6wWbje0AK+CmQIZpOEpx5YAItJwtYTbRz6Qprx4ZkOvFbZDJME5T3KZBuR7oVCcuRzhq1cjMtps+CWOcogzLfZqmJC1H7od4aHjZHxmExSJGnC84SMbEVZFjKdVvS4/dhf1yM6HF3zBULYUdUOAFhXwesoI5mRm4IZucnwB+XIa0wTI8vD6w22ctEOZnPIMOYWpuEvb1SqfJ944zjvfJJwQ74g/uFPys6IL11XhoUlGWIDIqKoONzQi1aXB8k2M26Yxa2VRnZHpKVLK1u6jNO5zkFUtfbDYpKwroKtXIxMvZn4zsk2+FmhSwZlMZsibanY0mVydtd2od8bQG6qHUvCPbTJONSE7zsn2NJlMo43udDUO4Qkqxk3zc4VHQ6FMYlOhvL122ahLNuJNpcXP9pSJTocSnD//t4Z1He7UZjuwDfXzREdDhFFiTpA77a5+XBYzYKjoVi6tTwPNrMJtR2DONM+IDocXXknnGS6dno2Mpw2wdFQLK2YloWsZBt63X7sre0WHQ5RzKjJwW0n23hjdRLUmxBrK/JhMrGVi9GsC58nO0+3w+PnrIyJ2nJCWW/cPCcXSTauN7SCSXQyFIfVjO8/sAAA8D976nGgjhfyJEZVqws//6AWAPDkPfOQYrcIjoiIokGW5Uh/QrZyMb5UhxU3zlZ2G6itSWhs1KFi6pAxMi6L2RTZbcCWLmRkq2flwGkzo6l3CMebOCtjIkIhGdsinw+8jjKihcXpKEhzYNAXxMdnO0WHo1tqK5c7uN7QFCbRyXCum5GDTy0rAQA89sdj8AZ495PiKxSS8fd/PIZASMbt8/Ijd+OJSP9ONLvQ2DMEh9WEm+Zwa2UiuGO+0s+b81bGrr3fg0P1Ss/gNWzlkhDURf7WE20IhlihS8bkGNFWgS1dJuZwQy86+r1ItVuwanq26HAoBkwmKTKId+txtnSZiLMdAzjbMQirWcIt5Xmiw6ERmEQnQ/qHu+YiO9mGM+0D+Pn7taLDoQTz2331OFTfixS7Bd+9Z57ocIgoitQWFTfNzoXTxh0mieC28jyYTRKqWvvR0O0WHY4ubD/VDlkGFpakozA9SXQ4FAfXzchBqsOCzgEvKhs4dJGMK5IcZBJ9QtTrqFvK82CzMB1lVOrA2HdP8cbqRLwb3q1x7fRspDmsgqOhkfhbiwwpw2nD4xsqAAA/3VGD+i4ueik+2l0e/DDcj/9b62YzeUBkMGqLirUV3GGSKDKTbVg+NRMAIlvQ6crUfycOFE0cNosJN89RquXe4XlCBnbrnHxYTBLOtA+gtoOzMsZDluXIzQe2cjG2ldOzkOawoGvQh4PneWN1vN49pa43eB2lNUyik2Hds6gI183IhjcQwhNvHOfwF4qLJ988iX5PAItK0vHFVWWiwyGiKGrodqOqtR8mSRk4SYlDXcSoixq6vAFvALtqlB6obGeWWCLnCZPoZGDpTitWzVDakPCG0ficaR9AXZcbNgtb4hmd1WzCbXO5a2Miuga8kRsP6r8haQeT6GRYkiThe/fOh9UsYcfpDl7kUMztON2Ot462wGyS8P0HFsDMafMk0HPPPYeysjI4HA6sXLkS+/btu+L39/b24qtf/SoKCwtht9sxe/ZsbN68OU7R6oOaQF1eloWsZJvgaCie1G3Je891o8/tFxyNtn1Q3QFfIISybCdm5aWIDofi6OY5ubCYJJztGGSFLhmaeoOQycHx2RqeLXLDzByk2NkSz+jUweLvnGxlQeM47DjdgZAMVBSmoTiDu9q1hkl0MrSZeSn4yxunAwCefOME3L6A4IjIqDz+IJ54/QQA4OHryjCvKF1wRJTIXn75ZWzatAlPPPEEDh06hEWLFuH2229He3v7qN/v8/mwdu1a1NXV4dVXX8Xp06fxwgsvoLi4OM6RaxtbVCSuKdlOzMlPRTAkY8fp0c8jUmw7ObwFWZJ4MzmRpDmsuDY8KJCtj8jI1OuAw/XKkEwaG7WoTU2ukrHdODsXdosJDd1DONXSLzoc3VB3c3EwuzYxiU6Gt/GWWSjOSEJznwf/tr1GdDhkUP/5fi3qu90oSHPgb9bOFh0OJbhnnnkGjzzyCB5++GFUVFTg+eefh9PpxIsvvjjq97/44ovo7u7Ga6+9huuvvx5lZWW46aabsGjRojhHrl19bj/2nusGAKzh1sqEtKZCaeHD5ODl+YMhbA/v2GArl8TE1keUCPLTHFhQrBTM7KjijdWxaO3z4FhTHyQJuLWc11GJwGmzYPWsHADAe1X8TBgLjz+ID850AADWcr2hSdxDQ4aXZDPjyXvm4f/81wH84sNafGJpMWblp4oOiwykvsuN/9ip3KD5zt1zuT2RhPL5fDh48CAee+yxyNdMJhPWrFmD3bt3j/qYN954A6tWrcJXv/pVvP7668jNzcXnPvc5PProozCbzaM+xuv1wusdrr5yuVwAAL/fD79/8u0u1OeIxnNFw7snWxAMyZiZm4zidNu44tLasUyUUY4DmNix3DI7B8/tOIudp9sxMOSF3SK+FkVrr8nHZ7vg8gSQlWzFgsIUnic6N5FjuXlWFgDg4PketPYOIlsDra9i8ZoY4fWlybltbh6ONfVhe1UbPn1NqehwNE/dxbWoJAO5qXbB0VC83Fqej3dPtWN7VTs23jpLdDiat/tsF9y+IArSHJhfnCY6HBoFMz2UENZU5GPN3Hy8e6oN33ntOF76y2u5xZii5ntvnoA3EML1M7Nx14JC0eFQguvs7EQwGER+/oXVC/n5+aiqqhr1MbW1tXjvvffw+c9/Hps3b0ZNTQ2+8pWvwO/344knnhj1MU899RSefPLJS77+zjvvwOl0Tv5AwrZt2xa155qM/6k2ATChzNY/4V7xWjmWyTLKcQDjO5aQDKRZzXD5gvjpy1sxN1M7/T218pq8ek45T2Y5vdi65e0JPYdWjmWyjHIcwPiPpdhpRpNbwr++sh3X5hnzPHG73VF7LtKnNXPz8ey7Z/DhmU54/EE4rKMXHZBC3aW0Zi4HsyeSW8uV17uyoRedA17kpPAGypVsU8+TijzmqzSKSXRKGE9sqMCumg7sPdeN1yqbcP+SEtEhkQG8e7IN755qh9Us4cl75vPDjnQpFAohLy8PP//5z2E2m7Fs2TI0NTXhxz/+8WWT6I899hg2bdoU+bPL5UJpaSnWrVuHtLTJV074/X5s27YNa9euhdVqnfTzTYYvEMLfH9oBIIi/vOtaLCnNGNfjtXQsk2GU4wAmfix7gyfx0v5G9KVOxfr1FTGMcGy09JrIsowf/ORDAB48vG4pbisfX6JES8cyGUY5DmDix1LjqMG/76hFp60Q69cvjl2AYxSL10TdfUWJa15RGvLT7GhzebGntgs3z2Fy+HI8/iB21XQCYCuXRFOQrlRUH29yYUdVOz61nLs2LicUkkfcbOJ5olUTSqI/99xz+PGPf4zW1lYsWrQI//7v/44VK1Zc9vt7e3vxD//wD/jjH/+I7u5uTJ06Fc8++yzWr18/4cCJxqs0y4mv3ToLP956Gv/y1incWp6P9CR9L25ILI8/iO/+WRkm+n9WT8fMvBTBEREBOTk5MJvNaGu7sPdgW1sbCgpG71FcWFgIq9V6QeuWuXPnorW1FT6fDzbbpdvx7XY77PZLq0msVmtUE0fRfr6J2H2uA4PeIHJT7VhelgOTaWI3y7RwLNFglOMAxn8st88vxEv7G/He6Q78i9ky4fdCtGnhNTne1IeWPg+SrGbcXF4A6wSrMrVwLNFglOMAJnKeFOHfd9RiV00XgjBppkI3mq9JNF9brq31SZIk3Fqej9/tq8d7Ve1Mol/B7rNd8PhDKEx3YG4h26ommlvL83G8yYX3mES/ouPNfWhzeZFsM2PVjGzR4dBljLuZ48svv4xNmzbhiSeewKFDh7Bo0SLcfvvtaG8ffaCGz+fD2rVrUVdXh1dffRWnT5/GCy+8gOLi4kkHTzRej6yejhm5yegc8OEn75wWHQ7p3H/sPIvGniEUpTvwtVtnig6HCABgs9mwbNkybN++PfK1UCiE7du3Y9WqVaM+5vrrr0dNTQ1CoVDka9XV1SgsLBw1gZ5o3h2xBVkrSVMSY9X0bDhtZrS5vDje3Cc6HE3ZfkpZC6yelaOZpCmJMa8oDUXpDgz5g/goXH1Ko+PaWt/UHTfbT7VDlrXTukhr1OuoW8vZoiIRqS18PqjugDcQFByNdr0bHlx/4+xc2C28jtKqcVeiP/PMM3jkkUfw8MMPAwCef/55vPXWW3jxxRfx7W9/+5Lvf/HFF9Hd3Y2PP/44cse+rKzsij8j0YaVTZRRjgOI37FIAJ64uxwP/X8H8d97zuOBxYWYVxTdgQ1GeV2MchxAbI7lfJcbz79/FgDw2J1zYJXkmP9b8TXRnmgfR7SeZ9OmTfjSl76E5cuXY8WKFXj22WcxODgY+ex+6KGHUFxcjKeeegoA8OUvfxk//elP8Y1vfANf+9rXcObMGXz/+9/H17/+9ajEo2eyLEcuarm1khxWM26anYu3j7di28k2LCzJEB2SZrwXHhp3G/vdJjxJkrCmIh//tfs8tp1sw2383XlZsV5bx3pdrT7XyP/r1USOY8XUdNgtJjT1DuFEYw/mFGijylpLr4ksD7eouHl2dkIOnAaMcywTOY45uU7kptjQMeDDx2c6cMNMbVRZa+01eedEKwBlkD3PE22trUcaVxLd5/Ph4MGDeOyxxyJfM5lMWLNmDXbv3j3qY9544w2sWrUKX/3qV/H6668jNzcXn/vc5/Doo49esG18pEQbVjZZRjkOIH7HsiTbhMNdJmz6n934+rwgYnFD3Civi1GOA4jescgy8J9VJvgCJpSnhxCsO4jN56Py1GPC10R7onUc0RpU9uCDD6KjowOPP/44WltbsXjxYmzZsiUybLS+vh4m0/BmtNLSUmzduhV/+7d/i4ULF6K4uBjf+MY38Oijj0YlHj070exCc7hFxfUzc0SHQxqwtiI/kkT/5ro5osPRhI5+L4409AIAbmFLA4Jy0/G/dp/Hu6faEQrJ3MUzinisreO1rgYS95puRooJJ3tN+Nkbu7CuRFvV6Fp4TZoGgVaXBVaTjN7T+7G5ZvzPoYXjiBajHMu4zxOnCR0DJvx/W/fDVR26+gPiSAuvSY8XqGqzQIIMf30lNrdUjvs5tHAc0aK1tfVI40qid3Z2IhgMRhbhqvz8fFRVVY36mNraWrz33nv4/Oc/j82bN6OmpgZf+cpX4Pf7OaxskoxyHED8j2XJ9R6s+9ddqO0PQS5dgrsWFkbtuY3yuhjlOIDoH8u7p9pxak8lrGYJ//a/VmNaTnIUorw6vibaE+3jiOagso0bN2Ljxo2j/t3OnTsv+dqqVauwZ8+eqP18o2CLCrrYLXPyIElAVWs/WvqGUJieJDok4XaGq9DnF6chL80hOBrSgmunZyPFbkHngBdHm/qweJwDmRNBPNbWsV5XA7ym68ttwONvnEIzsrB+/coYRjh2WnpNnttZC6AGq2fl4b4NS8b1WC0dx2QZ5Vgmehy2U+3Y89tK1HqTceedN2iirY+WXpOX9jcCh05icWkGPn3v+H6PaOk4JkvLa2vVhAaLjkcoFEJeXh5+/vOfw2w2Y9myZWhqasKPf/zjyybRE2lYWTQY5TiA+B3LlBwrvnLzTDyzrRo/eucMbl9QBKctuqeDUV4XoxwHEJ1j8fiDeGpLNQClx/7swowoRDY+fE20J1rHYYR/C6PZwRYVdJHMZBuWlGbgUH0vdlR14HMrp4gOSTj1PLm1nG07SGGzmLB6Vg7ePt6KHVXtTKJHyXjX1vFaV8fqOUUY73GsnVeIx984hcrGPvR5Q8hJufTfWxQtvCY7q5W5CGvnFUw4Fi0cR7QY5VjGexw3lefDZjGhsWcI53u8mJWvjdZHgDZekw9qugAo11E8T7S9th7XYNGcnByYzWa0tbVd8PW2tjYUFBSM+pjCwkLMnj37gu1lc+fORWtrK3w+3wRCJoqOv7xxOkoyk9DS58HPdp4VHQ7pxIsfnUN9txv5aXZ89RYOEyUysq4BL4409gIAbmaLChpBbVmiJo8TmS8QwgfhJMmt5TxPaJh6nuzkeTIqrq2NoTA9CfOK0iDLwM7THaLD0ZSO/uHrKLb6SmxOmwXXzVB6oW+v4mfCSN7A8BDuW3gdpXnjSqLbbDYsW7YM27dvj3wtFAph+/btWLVq1aiPuf7661FTU4NQaLjvUXV1NQoLC2Gz2SYYNtHkOaxmfOeuuQCA//ygFg3d0e+XRMbS5vLgp+8pjfy+fWc5ku0x38xDRAJ9cKYDsgxUFKYhny0qaAR1kfNRTSe8gaDgaMQ6UNeNAW8AOSk2LCxOFx0OachNc3IBAEca+9DR773Kdycerq2NQx2eqw7QJMXO0+2QZaXVV0E6r6MS3W3ha6f3TjGJPtL+cz1w+4LITbWjojA6bbYodsaVRAeATZs24YUXXsCvf/1rnDp1Cl/+8pcxODgYmSj+0EMPXTAc5ctf/jK6u7vxjW98A9XV1Xjrrbfw/e9/H1/96lejdxREE3T7vAJcNyMbvkAI//zWSdHhkMb9aMtpuH1BLJmSgXsXFYsOh4hi7L0qpaLslvJcwZGQ1swrSkNeqh1uXxD7znWLDkeo98IVZTfPyePwSLpAfpoD84qUhMD71azQHQ3X1sagJgc/qO6AL6CtoYkiqXNl2OqLgOEChAPnu9EzyJ0zKnVX482zc3kdpQPjTqI/+OCDePrpp/H4449j8eLFqKysxJYtWyIDUerr69HS0hL5/tLSUmzduhX79+/HwoUL8fWvfx3f+MY38O1vfzt6R0E0QZIk4YkN82A2Sdh6oi2yjYboYpUNvfjDoUYAwBMb5vEDjsjgAsEQPggnfbgFmS4mSdJwS5eqxE4Oqkl0tnKh0bD10ZVxbW0MC4rTkZNiw6AviIPne0SHowm+QAi7wmvr2/j5QABKMp0oL0hFSFZ2e5JC/XxkKxd9mFAvgo0bN2Ljxo2j/t3OnTsv+dqqVauwZ8+eifwoopibU5CKL147Fb/6uA5P/vkE3vr6aljN476/RAYmyzKe/PMJAMADS4s5HIsoAVQ29KJvyI/0JCvPeRrVLeW5ePlAA3acbsfjGypEhyNEXecgajsHYTFJuGFWjuhwSINuKc/DT3fU4IPqDgSCIVh4jX0Jrq31z2SScOOsXPzxcBPer+7AqnDv50R2qL4HA94AspNtWMBWXxR285w8VLX24/3qDty7mDu7z3cNorZjEGZeR+kGr2KIAPztmtnIdFpR3TaA/9lzXnQ4pDGvVzbjcH0vnDYzHr2jXHQ4RBQHalXIjbNzmfShUV0/MwdWs4RznYM41zkoOhwh1Cr0FdOykOawCo6GtGhxaQYynFb0ewI4VN8rOhyimFFnALB1kUL9d7iRLSpohJtmK+fJB9WdCIVkwdGIpw4jXj41k9dROsFVIRGAdKcVf3e7khz9f9uq0c0eXRQ26A3gqbdPAQC+estMDhckShBqi45b5rAfOo0u1WHFNWVZAIAdVYnZqoKtXOhqzCYpkjRhSxcyshtm5kCSgFMtLrS5PKLDEe79cHJQPf+JAGDZ1Ewk28zoHPDiZItLdDjC7WQrF91hEp0o7MFrSlFRmAaXJ4B/235GdDikEc+/fxZtLi9Ks5LwFzdMEx0OEcVBa58HJ1tckCQu/ujKErnf84A3gL3nugBw8UdXNjw/IPHOE0oc2Sl2LAy3LUn0avR21/B11Gq2qKARbBYTrpupvCcS/Tzx+IP4+Gz4Oorzl3SDSXSiMLNJwnfumgsA+J8951HbMSA4IhKtoduN//ygFgDwD+vnwmE1C46IiOLh/Wol0bOoJAPZKXbB0ZCWqcnjvbXdcPsCgqOJr49qOuEPypia7cT0nGTR4ZCG3Tg7F5IEVLX2o6VvSHQ4RDGj3nhP9OTgB2eUgaILitN5HUWX4Hmi2F3bBW8ghKJ0B2bnp4gOh8aISXSiEa6bmYPbyvMQCMl46u0q0eGQYD/YUgVfIIRV07Nx+7wC0eEQUZyoLSpYFUJXMyM3GaVZSfAFQ/iopkt0OHGlLn5vnp0LSWK/W7q8rGQbloQHNKutsoiM6KbwdcOuM50IBEOCoxFH/Xzgbj4ajfq+OHS+By6PX3A04uwMrzduLs/jdZSOMIlOdJHH1pfDbJKw7WQb9tQm1oKYhh2q78FbR1sgScA/3l3BDzaiBOELhLArXEF1SzkXf3RlkiTh1gRs6SLLMj4YMTSO6GoSufURJY5FJelIT7Kib8iPI419osMRIhiS8eEZJtHp8kqznJiem4xASMbHCVaAoJJlGTtOq/OXWLSjJ0yiE11kZl4qPruiFADwz2+d5NToBCTLMr7/ljJM9BNLS1BRlCY4IiKKlwN13Rj0BZGTYsP8onTR4ZAO3Bxu6bKzqh2ynBjXDHVdbjT2DMFqlnDt9GzR4ZAOqK2PPqrphDcQFBwNUWxYzCbcMCux+z0fbexFr9uPVIcFi8M7UIgulugtXeq63KjvdsNqlnDdDF5H6QmT6ESj+Js1s5Fit+B4kwuvVTaJDofibOuJNhw43wOH1YRvrpstOhwiiqP3R1TXmkzcgUJXd+20bNgsJjT3eVDbOSg6nLhQq9CXT81Cst0iOBrSg4rCNOSm2uH2BXGwrkd0OEQxE0kOJuiuC/U6avWsHFjMTDfR6NTz5IPqjoQpQBhp1xleR+kVf6sRjSInxY6v3DIDAPDjracx5GPFTKLwB0P44RalH/7/uWE6CtOTBEdERPH0YbiVC7cg01gl2cy4piwTAPBhglRUsZULjZfJJGH1TKVC98OaTsHREMWOev1wtKkPXQNewdHEH/uh01hcOz0bdosJTb1DONsxIDqcuFOH766enSM4EhovJtGJLuN/Xz8NxRlJaOnz4Je7akWHQ3Hyu331ONc5iOxkG/7qpumiwyGiOOro9+JkiwsAcP1MXtTS2K2epSQL1JswRuYLhLA7PDPmRi7+aBzUNhdqv2QiI8pPc6C8IBWyDOxKsBtGPYM+HGnoBcCbrHRlDqsZK8Pt4HaeTqzPBH8whN1nleuo1TN5nugNk+hEl+GwmvF/75gDAPjZzrNo7/cIjohird/jx7++ewYA8DdrZyPVYRUcERHF00fhxW5FYRpyUuyCoyE9WR1ODu6u7YIvEBIcTWwdON8Nd3huwNwCzgyhsbshfHPyeJMrISt0KXHcNEdt6ZJYycFdNZ0IycCc/FTu5qWrStS+6JUNvRjwBpDptGIeZ6/pDpPoRFewYWERFpWkY9AXxLPh5CoZ1/Pvn0XXoA/Tc5PxmWtKRYdDRHH2IbdW0gTNLUhDTooNbl8Qh+uN3e85cp7M4twAGp+8cIUuAHwUrsIjMqKRycFQKHH6PQ/PleF1FF3dTeH3yd5z3QnVPle9jrqB11G6xCQ60RWYTBK+c3cFAODl/Q0J2a8rUTT3DuEXH54DAHz7jnJYOQiHKKHIshxpMcCtlTReJpMUqbI1ekuXD5gkoUlQd20kyvwASkzLp2bBaTOja9CHqtZ+0eHEhSzLkc+Hm2bnCY6G9GBGbgqKM5LgC4Sw51zi3FgdXm/wOkqPmCUiuopryrKwZm4egiEZP3nntOhwKEZ+8k41vIEQVpRlYW1FvuhwiCjOzrQPoL3fC7vFhOXhIZFE4zHcF924ycGOfi9ONCtzA9TjJRoP9X2zq6YTspw4FbqUWGwWE1ZOywIw3CrO6HgdReMlSVLkxupHBi9AUPW5/ZG5AeqcENIXJtGJxuBbt8+BJAGbj7VGfumRcZxsduGPhxsBAH9/11xIErdVESUatXpqxbQsOKxmwdGQHqkLwaNNfegZ9AmOJjZ21Sjnybwizg2giVkxLQs2iwktfR7u8CRDUweUJ8pwUfVmAa+jaDzU8yRRWnx9fFaZGzAzLwVFGZwboEdMohONQXlBGu5fUgwA+OGWKlbOGMzT75yGLAN3LyzE4tIM0eEQkQDqIvdGVtfSBOWlOTAnPxWyDHx01phJkw+qw+fJbJ4nNDEOqxkrypQKXaO3PqLEpiYH953rhjdg/H7PahL9eraooHG4bkY2AOBUiwudCTBw+sPweXIDzxPdYhKdaIw2rZ0Nm9mEj8928aLfQA7UdeO9qnaYTRK+uW6O6HCISABvIIg9tUoFDIeK0mQM93s23nWCMjdAHSrK84QmLnKe8HqaDGxOfipyUmwY8gdxuL5XdDgxFQiGsKe2GwBw/Qx+PtDYZafYMbcwDQCw2+DV6CPnBnCujH4xiU40RiWZTnzh2qkAgB9trUqoSetGJcsyfrRF6XP/6eWlmJaTLDgiIhLhYF0PPP4QclPtmJOfKjoc0rHVs43b77m6bQCdA144rCYsm8p+tzRxah/YPbVd8AVCgqMhig2TScJ14YTyxwZv6XKksQ8D3gAynFZUFKWJDod05oaZSjW60ecHnO9yo7FnCFazhJXTskWHQxPEJDrROGy8dSZS7BYcb3LhrWMtosOhSdpZ3YF9dd2wW0z4xm2zRIdDRIKoWytXz8zhTASalBVlSr/npt4h1HYOig4nqj4Ot6i5piwLdgv73dLEzS1IQ06KDW5fEIfqe0SHQxQzNyRIX3T1JsGq6dkwm3gdReNzXaQvurHPE3Xw/NIpmUi2WwRHQxPFJDrROGQl2/CXN04HAPzkndPwB1k9o1ehkIwfh6vQv3RdGQrSHYIjIiJR1IvaG9iigiYpyTai33N4y65RfBzeZn0dt+rTJJlMUqRvsvr7l8iIrgtX2B5p7IPL4xccTezsYj90moQVZVmwmiU0dA+hvsstOpyYUc8TtsTTNybRicbpL26YhpwUG+q63Hhpf4PocGiC3jrWgpMtLqTYLfjyTTNEh0NEgnQP+nCi2QWAQ34oOtQkwscG6u2p9LtVjuf6mdyCTJO3OjzEeRf7opOBlWQ6UZbtRDAkY2+4Z7jRuH2ByI4SJtFpIpLtFiwpVdrEGXXXRigkD88N4Hmia0yiE41Tst2Cr92qtP74t+1nMOQz/rR1o/EHQ3hmWzUA4JHV05GZbBMcERGJsre2C7IMzM5PQV4ad6TQ5K2aoSSZ99R2IWiQ+Sknml3o9wSQ6rBgXlG66HDIANSbMceajF2hS6QmzIza73l/XQ/8QRnFGUkoy3aKDod06nqDt3Q52eJC35AfKXYLFhTzOkrPmEQnmoDPrpiC0qwkdPR78d976kSHQ+P06sFGnOscRHayDX+xeprocIhIILVaeNV0VtdSdMwvSkOq3QKXJ4BTLS7R4USFep5cy363FCWF6UrCLSQD+88Zs0KXCBje5WbUJLp6XNfNyOZcGZow9cbqxzWdCBmkAGGk3eHrqGvKMmExMw2rZ3z1iCbAZjFFqtGff78Wg96A4IhorDz+IP713TMAgK/cogyKJaLEtTvcomIV+zxTlFjMJqyYpvRF/9ggFVXqcVw/gzebKHrU37tGan1EdLFVM7IhScCZ9gG0uTyiw4k6NYnOuTI0GYtKM5BsM6PH7cepVmMUIIykrjc4V0b/mEQnmqAHlhSjLNuJ7kEffvVxnehwaIz+Z895tLo8KEp34PMrp4gOh4gEau/3oKZ9AJIEXDs9S3Q4ZCBqSxcjJAe9gSD21ymVwtexjydFkXqe7DbAeUJ0ORlOG+aH22AZrRp95FyZVbzJSpNgNZuwMrwr1GjnSSAYwr7wjiueJ/rHJDrRBFnMJnxjjVKN/vMPatHPfo6a5/YF8Pz7ZwEA31gzCw6rWXBERCSSmriZW5CGDCdnI1D0qIuk/ee64Q+GBEczOZX1vfD4Q8hJsWNWXorocMhA1JuXp1pd6HX7BEdDFDtqv2ejDU1Ur6Pm5KciL5VzZWhyhucHGOvG6rGmPgx4A0hPsmJuYZrocGiSmEQnmoR7FhVjRm4y+ob8eHFXnehw6Cp+u68RnQM+TMly4oGlJaLDISLB9kS2VrIqhKJLuTFjxaAviKONfaLDmRS1mp79bina8lIdmJWXAlkG9tSyLzoZl3qdsddg73N1COR1M3kdRZOn9kXfd64bvoC+CxBGUlu5rJyWxbkyBsAkOtEkmE0S/mbNbADAL3bVos/NanSt8gaBF3adAwBsvHUmrBzoQZTw1Aoqbq2kaDOZJFw7TXlfqTdr9Erth86bTRQLwy1djFWhSzTSsqmZsJgkNPUOoaHbLTqcqFE/3zicnaJhTn4qspJtGPIHcaypV3Q4UcP1hrEwi0Q0SXctKMSc/FT0ewL4xa5a0eHQZexqldA96MfUbCceWFIsOhwiEqy5dwh1XW6YJOCaaeyHTtGnVubpebio2xfA4fpeAByGRbGhJt926/xmE9GVJNstWFCi9EXX+41VVXu/B7Udg5AkRIZpE02GJElYGX4vGWV3ki8QwoG6HgC8jjIKJtGJJslkkvC3a5Xe6C/uOofuQfZ01JpBbwDbm5VfdxtvmQkLq9CJEp5aFbKgOB1pDqvgaMiI1OTggboeeANBwdFMzP66HgRCMkoykzAl2yk6HDIgdZBcddsAOge8gqMhip1rp6u7k4yRHFQHJZZzrgxFkZpE33vOGOfJkcZeDPmDyE62YXY+58oYATNJRFFw+7wCzCtKw6AviF9+VCc6HLrIb/Y1YDAgYUpWEu5nFToRYbjqcRWrQihGZualICfFDm8gFKnm1hu2cqFYy0q2RQatGaVCl2g0ahJ97zljvM/V81UdEEwUDSsjBQj6H8wOAB/XqOcJ58oYBZPoRFEgSRL+Ntwb/b/31KOfrdE1Y9AbwC/CQ1+/evN0VqETEWRZZn9CijlJkiLvL3U4p96oQ/CuZb9biiF114ZezxOisVg2NRNmk4TGHmP0RVc/H1ZO4+cDRc+c/FRkOK1w+4I43qTvwewAsLtWKUbgesM4mE0iipLb5uZhUUk6hvwh7GjmqaUV/7X7PHrcfuQ4ZNyzsFB0OESkAQ3dQ2jqHYLFJGH51EzR4ZCBqRXceqywHfQGIgtY9rulWFKTC3uYRCcDS7FbsKBY6Yuu91YVnQNenGkfAMDPB4ouk0nCijJj9EX3+IM4FN6JyCS6cTDTRxQlkiTha7cqvdF3tUrodbMcXbQBbwA//+AsAOD2khCr0IkIALAnvJV6UWkGku0WwdGQkanJhcqGXt31RT9c34tASEZxRhJKMtkPnWJnxbQsmCSgtnMQ7S6P6HCIYibS0kWHN1ZHGu6HnoqsZPZDp+haaZDWR4fqe+ALhJCXasf0nGTR4VCUMKNEFEW3zc1DeUEqvCEJv959XnQ4Ce+/dtehx+1HWbYTy3Jk0eEQkUbsDy/+WD1FsTY9Jxk5KTb4AiEcbdTXtuR9dTxPKD7Sk6woL1D6ou+v6xEcDVHsrAz3D9+j8+SgehNgJT8fKAbUPvsH6noQ0HFfdPVmE/uhGwuT6ERRJEkSvnLTNADAf+2ph8vDanRR3L4AXvigFoDSC93Mzy0iCtuvJgfLuPij2JIkCdeE32f7dLZ9f184ycMkOsWD+j5Tfz8TGdHycF90ta2cXu3hvAyKofKCNKQ5LBjwBnCi2SU6nAlTP8+u4XWUoTCJThRlt1fkIz9JhssTwH+zGl2Y3+1rQI/bj6nZTty9oEB0OESkEe39HtR1uSFJwFL2Q6c4UJPoekoOegNBHA738WQSneJBrzebiMYj1WHFfLUvuk5bunQP+nC6rR8APx8oNswmKfLe0mtLF38whEPnewGwaMdomEQnijKTScLaYmXb0S93nYPbFxAcUeLxBoKRKvS/vmkGe6ETUcT+c0qrgPKCNKQnWQVHQ4lAXQgerOtBMKSP1mLHGvvgDYSQk2JjH0+Ki2vKlJuap1pd3MlJhnbtNHVooj6Tg+oupVl5KchOsQuOhoxK3eWg1+Gix5v6MOQPIj3Jill5KaLDoShiZokoBpbmyJiSlYTuQR9+u7dedDgJ50+HmtDq8iA/zY4HlhaLDoeINCSytbKMVegUH3ML05Bit6DfG8CpFn1sS94XOU+y2MeT4iIvzYGp2U7IMnDwPPuik3FFhovqdNcFW7lQPKycpry/9p/r1k0Bwkgj1xsmE6+jjIRJdKIYMEvAX9+o9Eb/+Qe18PiDgiNKHIFgCD97/ywA4JHV02G3mAVHRERaorYKuIZbKylOzCYp0jpILy1d9nH4LgkQaX2k0+Qi0VgsK8uEJAHnu9xod3lEhzNuavJfHZJKFAsVRWlIDRcgnNRhX/R94Z2vXG8YD5PoRDFy76IiFKU70N7vxSsHGkSHkzA2H2/F+S43Mp1WfHbFFNHhEJGGuDx+VLUqF+JMDlI8rdTR0MRgSMaBOmXxx/OE4mmFDucHEI1XmsOKOfmpAIADOtt1ccF1FJODFEMjCxAOnNfXZ0IoJEdi5lBR42ESnShGbBYT/vrmGQCA59+vhS8QEhyR8cmyjP/YUQMAePj6aUi2WwRHRERacuh8D0IyMCXLifw0h+hwKIEMD03sgSxre1vyqRYXBrwBpNotKC9IEx0OJRA12XCkoY+7OMnQ1M8E9YalXhyu74UsA6VZScjjdRTF2PJIEl1f50lNxwB63X44rCbML0oXHQ5FGZPoRDH06eWlyE21o6l3CH8+0iw6HMN7r6odVa39SLaZ8aVVZaLDISKN2V/HVi4kxsKSdNjMJnQOeFHX5RYdzhWpW/WXl2XCzD6eFEdl2U7kpNjhC4ZwtLFPdDhEMbO8TJ8VtgfD11HLp/I6imJvWfg8OVin/QKEkdSWeEtKM2GzMOVqNHxFiWLIYTXj4evLAAD/+cFZXf3y1xtZlvHTcBX6F1ZNRbrTKjgiItKa/efUFhUcKkrx5bCasahUqUbad65LcDRXtj/SD51D4yi+JEmK/H5mSxcysuXhm/knml1w+wKCoxk7tSJ42VReR1HsLS7NgMUkodXlQVPvkOhwxkz9/GJLPGNiEp0oxj6/cipS7BZUtw1g5+kO0eEY1u7aLhyu74XNYsJf3DBNdDhEpDHeQBCVjb0AWIlOYqiLKXXYlBbJ8nAfT95sIhGGWx8xiU7GVZyRhMJ0B4IhGZUNvaLDGZNAMBSJVa2kJ4olp82CeUVKW7mDOmrpsp/D2Q2NSXSiGEtPsuJzK5UBl8+/f1ZwNMb1s53Kv+2Dy0uRl8oefUR0oaONffAFQshJsWFaTrLocCgBXaODoYn13W50DvhgM5swv5h9PCn+1PPk0PkeBEPcwUnGtVxnfdFPtfTD7Qsi1WHB7LxU0eFQglg2VfvXTiM19rjR3OeBxSRhyZQM0eFQDDCJThQHD19fBqtZwt5z3Thcr48LJT051eLCh2c6YZKAv7xxuuhwiEiD9o/o4ylJ7PNM8bdsaiYkSUlUt/d7RIczqkPha5T5xWmwW8yCo6FENLcwDSl2C/q9AZxqcYkOhyhm9DY0Ud2ltGxqJkycl0FxEpkfoJObTep6Y15xOpw2i+BoKBaYRCeKg8L0JNy7uBgA8PMPagVHYzwvfKj8m965oBClWU7B0RCRFh0KL1K5BZlESXVYI9V7h+t7xQZzGep26aVTeJ6QGOYR1XssPCEjU69H9LLrQk32L2c/dIoj9f12uq0fLo9fcDRXtz+c7L+G54lhMYlOFCdqhfSWE6041zkoOBrjaOkbwhuVzQCAv1zNKnQiupQsy5Gk5RImB0mgpVMzAAxXfGvNofO9ADg0jsRSf09r9WYTUTSUFyi7Lga8AZxu7RcdzhXJsowDdWolOvs8U/zkpTkwJcsJWdbHZ4IaI6+jjItJdKI4mZ2fitvK8yDLrEaPpl99XIdASMaKaVlYVJohOhwi0qD6bje6BtU+z2miw6EEFkkOhpPVWjLgDaCqVWmfsZSLPxJoabgSXas3m4iiYeSui4Pntd3vubFnCG0uLywmCYu53qI4U6vRD2q8L7pyQ4zXUUbHJDpRHP3VTTMAAH841KjZfqh6MuAN4Ld76wGwCp2ILk+tCqkoYp9nEktNDh5t6oU/GBIbzEWONvQiJAPFGUnIT+OAbhJnSamSfKjrcqN70Cc4GqLYWR4ZmqjtG0Zqq695RWlIsvE6iuJrWbj1kdbPk6ONvI5KBEyiE8XRNWWZWDIlA75ACL/+uE50OLr38v4G9HsCmJ6bjFvL80SHQ0QapVYzss8ziTY9JwVpDgs8/pDmhiZGzhNWT5Fg6U4rZuQmA2BfdDI2tS/6QY0PFx0eKspWLhR/6s2mygbtFSCMpBbtLA4XTJAxMYlOFEeSJOGvwr3Rf7u3Hh5/UHBE+hUIhvDirnMAgEdWT+eUeCK6LPWiVu1HTSSKySRptt/z8FDRDLGBEGH4pqfWzhOiaFpcmgGzSUJT7xBa+oZEh3NZB+o4nJ3EmZWnFCAM+YOaK0AY6RCHsycEJtGJ4mxtRQFKMpPQ4/bjtcNNosPRrc3HW9HUO4ScFBvuX1IsOhwi0qgh3/AFN4eKkhaoiyst9XsOhWQcbugFwGFYpA1LNHieEEVbst2C8oJUANq9YdTv8eN0mzL4dDk/H0gAk0mK7JI7oNGWLrI8fB21hMUIhsYkOlGcmU0S/td1ZQCAFz86B1mWxQakQ7Is4+cfnAUAPLSqDA4re/MR0eiONfUhEJKRn2ZHUTr7E5J46o4ILSUHazsH0ev2w2E1YW4hh++SeOp5cqShF8EQr5XJuNRBnZXhBJzWHG3sgxzu85zHPs8kiFqAoNXz5Hx4hofNbMK8Il5HGRmT6EQCfPqaUiTbzKhuG8BHNV2iw9Gdfee6cbzJBYfVhC9cO1V0OESkYWqicklpJiSJbZ9IvEWlGZAkoKF7CB39XtHhABg+TxYWZ8Bq5vKAxJuVl4oUuwWDviCqw1WwREak7rqo1Gglupq0ZJ9nEknrN5sONyjXUfOL02C3sMDPyHiVTCRAmsOKTy0vBaBUo9P4/Hp3HQDg/iUlyEq2iQ2GiDTtcGRYYobYQIjC0hxWzMpLAaCdavRIH09u1SeNMJskLCpNB6DdNhdE0aAmB482aXNoonr+LQnHSSTCovD7r77bja4BbRQgjHTofC8Ato5MBEyiEwnypevKIEnAe1XtqO0YEB2ObjT3DmHriTYAwJeuYxU6EV2eLMs4pC7+eFFLGqK1vuiRSkMmSUhDlpRq6zwhioXpOclIdVjg8YdwulVbuy5kWebnA2lCepIV03OTAQBHGnvFBjMK9XOKQ0WNj0l0IkGm5STj1jl5AIBff1wnNhgd+Z895xEMyVg1PRvlBew3RkSX19SrtMuwmCQsKE4XHQ5RhLrIOhyuXBJpyBfEmXblZj6TJKQl6g6iw0yik4GZTJJmW1U09Q6hc0C5jprP6ygSLHKeaGx3ktsXQFX4BhiHihofk+hEAv3vG6YBAF452Ii+Ib/gaLTP4w/id/vqASiV/EREV6JuQa4oSuMAYtIUtbfs8eY+4UMTT4RjyEu1o4DDd0lDFocr0c92DKLPzetkMi6tJtGPNPQBAMoLU3kdRcKpLYUqG/vEBnKRo43KdVRBmgNFGUmiw6EYYxKdSKDrZmRjTn4q3L4gfr+/QXQ4mvfGkWb0uP0ozkjCmrl5osMhIo07Gt7uyepa0poZuSlw2sxw+4I4K7il25HwYnRhSYbQOIgulpVsw9RsJwDgWJO2kiZE0aRep2ht10VleFgir6NIC9S+6EcaeiHLYgsQRlKLdjh/KTEwiU4kkCRJ+N83lAEAfvVxHQIaHCajFbIs41cf1QEAHlo1FRYzf30R0ZUdDScH2cqFtMZskjC/SHlfHhVcUaXebFpUwvOEtEf9/X20qVdsIEQxpCapz3YMamp38nA/dPZ5JvHKC9Jgs5jQN+THuc5B0eFEqP3Ql/A8SQjMQhEJdu/iYmQ6rWjqHcKO0x2iw9GsA+d7cLLFBYfVhAevKRUdDpHmPffccygrK4PD4cDKlSuxb9++MT3upZdegiRJuO+++2IbYIyFQjKON7HClrRrQThpfUzwgCw1ib+QlYakQQsj5wkr0cm4slPsmJKl7Lo4qpGhif5gKLIDhJXopAU2iwnzi5SZaFpqfXREvdnEfugJgUl0IsEcVjM+vVxJCv/PnvOCo9EutQr9/iXFyHDaxAZDpHEvv/wyNm3ahCeeeAKHDh3CokWLcPvtt6O9vf2Kj6urq8O3vvUtrF69Ok6Rxk5t5yAGfUEkWc2YkZssOhyiS6jJwSMCk4Mjq7kWcscGadCC4gwA4ndsEMWa1oYmnm7th8cfQqrDguk5vI4ibVB3RWglid7m8qC93wuTBMwLJ/jJ2JhEJ9KAz62cAkkC3q/uwPku7WxN0oqWviFsOdEKgANFicbimWeewSOPPIKHH34YFRUVeP755+F0OvHiiy9e9jHBYBCf//zn8eSTT2L69OlxjDY21EqueUVpbP9EmqTukDjZ4oJfUDs3tbp3SpYTmcm8QU3aM79YSUo09Q6ha8ArOBqi2NHacNHhVi4ZMJkkscEQhanV3lo5T9QbvLPyUuG0WQRHQ/HAV5lIA6ZmJ+Om2bnYeboDv9lbj79fP1d0SJrymz31CIZkXDs9C+UFvMNLdCU+nw8HDx7EY489FvmayWTCmjVrsHv37ss+7nvf+x7y8vLwF3/xF/jwww+v+nO8Xi+83uGEhsvlAgD4/X74/ZPv56k+x0SfqzLcn3BeUWpU4pmMyR6LVhjlOABtHEtRqhWpDgv6PQGcaOyZUAXTZI/j8PkuAMCCojThr6sWXpNoMMpxANo4FocZmJ7jRG2nG4fPd+Gm2bnjfo5YHIcRXl/SFjU5eDg8NFGSxCauRybRibRiSfj9eKrFBY8/CIfVLDQetSXfQs6VSRhMohNpxBdWTsXO0x34/YEGbFo7W/gHglb4gyG8tL8BAPDQqjKxwRDpQGdnJ4LBIPLz8y/4en5+PqqqqkZ9zK5du/DLX/4SlZWVY/45Tz31FJ588slLvv7OO+/A6XSOK+Yr2bZt24Qe9+EJMwAJoY5z2Ly5NmrxTMZEj0VrjHIcgPhjKbSb0O8x4XdbP8J1+fKEn2eix7HttAmACZb+Jmze3Djhnx9Nol+TaDHKcQDijyUTyvv0jzsPYLAm/ufJaNxud9SeiwgAKgrTYDFJ6B70oal3CCWZ0buWmggm0UmLSjKTkJ1sQ9egDyeaXVg2Vewwz6OR+UtMoicKJtGJNOKW8jwUZyShqXcIbx1twSeWlYgOSRO2nWxD54AXual2rK3Iv/oDiGhc+vv78cUvfhEvvPACcnJyxvy4xx57DJs2bYr82eVyobS0FOvWrUNa2uR3jPj9fmzbtg1r166F1Wod12MDwRAePfAegBC+sP5GTBfcE30yx6IlRjkOQDvHcsJSjeoP64CsqVi/vmLcj5/scXz/xPsAvPj0mpVYUZY17sdHk1Zek8kyynEA2jmWto/P4+Dbp+FNLsD69UvG/fhYHIe6+4ooWhxWM2bnp+JkiwvHm1xCk+iD3gDOdgwA4HB20hZJkrCwJB07TnfgeFOf0CS6LMuRdi4LeJ4kDCbRiTTCbJLwuZVT8OOtp/Hfe84ziR722731AIBPLy+BlX2Nia4qJycHZrMZbW1tF3y9ra0NBQUFl3z/2bNnUVdXhw0bNkS+Fgop/ZktFgtOnz6NGTNmXPI4u90Ou91+ydetVmtUky0Teb6zXS54/CGk2C2YVZCumV6e0f63EcUoxwGIP5YlU7IA1OF4s2tScUzkONpdHrS5lGFYi6dkw2rVxrJA9GsSLUY5DkD8sSyZqtzgEXGeXOm5iKJtQXF6OInehzvmX3rNFi8nW1yQZaAgzYHc1Euv9YhEWlCsJNGPNYkdON3UO4TuQR8sJgnlBalCY6H4YUaKSEMevKYUVrOEyoZeHBf8oaAFdZ2D2FXTCUkCPnPNFNHhEOmCzWbDsmXLsH379sjXQqEQtm/fjlWrVl3y/eXl5Th27BgqKysj/91zzz245ZZbUFlZidLS0niGHxVqVcj84jTNJNCJRrMgvP33dGs/PP5gXH/2kfB5MjMvBcl2bSTQiUZTUZgGkwS0ubxoc3lEh0MUM/PDnwmik4PqOlQd7EukJfOKlfNEdL5EHc5eXpjKVrwJZEJJ9Oeeew5lZWVwOBxYuXIl9u3bN6bHvfTSS5AkCffdd99EfiyR4eWk2HHn/EIAwP/sOS84GvF+t1+pQr9xVi5Ks8T2BSTSk02bNuGFF17Ar3/9a5w6dQpf/vKXMTg4iIcffhgA8NBDD0UGjzocDsyfP/+C/zIyMpCamor58+fDZrOJPJQJUS9quQWZtK44IwlZyTYEQjJOtcS3PcTwMKyMuP5covFKtlswMy8FwPDvdyPh2ppUC0YkB2V54v3/J+tYJInOPs+kPep5cqZ9IO4FCCOp/dAXFGcIi4Hib9xJ9JdffhmbNm3CE088gUOHDmHRokW4/fbb0d7efsXH1dXV4Vvf+hZWr1494WCJEsEXV00FALxW2QSXxy84GnG8gSBePaAMOfvcSlahE43Hgw8+iKeffhqPP/44Fi9ejMrKSmzZsiUybLS+vh4tLS2Co4yd4YtaLv5I29TenkD8Kw9PNCtJ+/lFrDQk7VOTFEcNtlOTa2saqbwgFWaThK5BH1r6xO26OM7rKNKwwnQHspNtCIZkVLX2C4vjaKQYgedJIhn33s1nnnkGjzzySKSa7fnnn8dbb72FF198Ed/+9rdHfUwwGMTnP/95PPnkk/jwww/R29t7xZ/h9Xrh9Xojf1YHt/j9fvj9k08qqs8RjecSySjHAfBYRlpUlIJZeck40z6IPx1swOdWiGmlIPo12Xy0BV2DPuSn2nHjjMxJxSH6WKLFKMcBGOdYon0c0fz32LhxIzZu3Djq3+3cufOKj/3Vr34VtTjizRcIRSp6eVFLerCwOB07T3dE2hDFy8nweTKPSRLSgYUl6fjDocbIDgqjiPXaOtbravW5Rv5fr7RwHGYAs3KTUdU2gMrz3chNzpvQ80zmWIZ8QdS0K0NF5+Q5hf57aOE1iRajHItWjqOiMBUf1nShsr4b8wqSJ/QckzmWkUNF5+Yn8zyJEi2vrVXjSqL7fD4cPHgwsgUcAEwmE9asWYPdu3df9nHf+973kJeXh7/4i7/Ahx9+eNWf89RTT+HJJ5+85OvvvPMOnM7otXTYtm1b1J5LJKMcB8BjUc1LknAGZvzivZPI6DwWxajGT9Rr8twJEwATFqcP4Z2tW6LynEZ5fxnlOADjHEu0jsPtdkfleRJZdVs/fIEQ0hwWTGEbKNIBNYl9sjl+7Vy6R1Q5zi1kJTpp34IROzZkWYYk6X/eRTzW1vFaVwO8pouW9JCyBnrtg0Pw14Um9VwTOZZz/UBItiDNKuPgrvcm9fOjRfRrEk1GORbRx+EYUs6TrXtPIHOS+ZKJHEvHENDvscAiyag9tAvnKycVQlSIfk2iSctr63El0Ts7OxEMBiPbwVX5+fmoqqoa9TG7du3CL3/5S1RWVo755zz22GPYtGlT5M8ulwulpaVYt24d0tImf6Hv9/uxbds2rF27VteT1Y1yHACP5WLXDvrw1o/fR8MgMG3JaswtjP+0Z5GvSW3HIGp2fwSTBPzDZ25GYbpjUs9nlPeXUY4DMM6xRPs41Aoxmji1unZ+cbohkixkfBXhJPaZduUGkM0yoZFF43KiWameKst2IoVDRUkH5hYow0U7B3zo6PciL21y14ZaEI+1dazX1QCv6aKte2899r5ZBa8zD+vXL53Qc0zmWP57Tz1wvApLpuVO+OdHi1Zek2gwyrFo5ThMJ9qw7aUj6DOnY/36VRN6jskcy5tHW4DKY5hXnIENd6+c0M+PFq28JtGgh7V1TK+a+/v78cUvfhEvvPACcnJyxvw4u90Ou91+ydetVmtU3xTRfj5RjHIcAI9FlZ9hxbqKArx1rAV/rGzBd6dkRTm6sRPxmrxyqBkAcMucPEzJid4NBKO8v4xyHIBxjiVax2GEfwvR1GpeVteSXpRkJiHVYUG/J4Ca9gFUxKFHuXqezCtiKxfShySbGdNyknG2YxAnWlyGSKKP10TW1vFaV8fqOUUQfRyLwuu+Ey0uWCyWSRUETORYTrUqrVwWlWRo5vUU/ZpEk1GORfRxLA6fJ2faBxCSTLBbzBN+rokcy0n1PCnleRILWl5bj6vUJScnB2azGW1tbRd8va2tDQUFBZd8/9mzZ1FXV4cNGzbAYrHAYrHgv/7rv/DGG2/AYrHg7Nmzk4ueyMA+fY3SC/1Ph5uETp2ON38whD8dbgIAfGYFB4oS0fio/dArmEQnnZAkKfJ+VXdSxJo6VDQeCXuiaKkI3/Q5FafzJNa4tqbRVBSmwWyS0DngQ6sr/sNF1SHX8zkvgzSsJDMJGU4r/EEZ1eGEdjwND2fneZJoxpVEt9lsWLZsGbZv3x75WigUwvbt27Fq1aVbKMrLy3Hs2DFUVlZG/rvnnntwyy23oLKyEqWlYgYmEunBDTNzUJyRhL4hP7aeaBUdTty8V9WOrkEfclLsuGVOruhwiEhHZFmOJCFZiU56oiaz49UXXW3nwiQ66UnkZlMc5wfEEtfWNBqH1YxZeSkAgGNxHjjt8QdxJjxUlEl00jJJkiIJbPXGT7yMXG/wOirxjLudy6ZNm/ClL30Jy5cvx4oVK/Dss89icHAwMlH8oYceQnFxMZ566ik4HA7Mnz//gsdnZGQAwCVfJ6ILmU0SPrmsBP+6/Qx+f6AB9y4uFh1SXLxyoBEA8MDSYljMse8LS0TG0dQ7hH5PAFazhJnhBSiRHgxXosd+Iej2BVDbOQgAmMfFH+mIOiPIKJXoANfWNLr5xemoau3H8aY+rJt36a6EWKlq7UcwJCM72TbpmVREsTa/OB27ajpxvDm+SfSWPg963X5YTBJm5XO9kWjGnUR/8MEH0dHRgccffxytra1YvHgxtmzZEhmIUl9fD5OJiS+iaPjU8hL823tn8FFNF+q73JiS7RQdUkx19Hux43Q7AOBTy0oER0NEeqNWJ87MS43LcEaiaBlZiS7LckyH4la19kOWgZwUO/JSmSQh/VDPk9rOQbh9ATht+h+Ky7U1jWZBcTpePdgY9wrbka1cOJydtG5BeLfE8TifJ8PrjZRJ9WInfZrQlcfGjRuxcePGUf9u586dV3zsr371q4n8SKKEVJLpxA0zc/DhmU68crAB31w3R3RIMfXa4SYEQzIWl2ZgVn70BooSUWI4yX7opFOz8lJhNUtweQJo6h1CSWbsbpqfiAwV5XlC+pKX6kBOih2dA16cbu3HkimZokOKCq6t6WLzi+M7J0N1IpJE5+cDaZ/6Pq1q6Yc/GII1TrvY2colsfG2NpHGPRgeMPrKgUYEQ7LgaGJHlmW8crABgFKBT0Q0Xqd4UUs6ZbOYMDNPuXkc637PJ5lEJx0bbunSLzgSotiZU6D8fm5zedE96Ivbz+WwRNKTKVlOpDos8AVDqGmP33BR9TqKRTuJiUl0Io1bW5GPTKcVrS4PdtV0ig4nZo429qG6bQB2iwkbFhWJDoeIdGh4qCh3spD+DPdFj3USnUNFSb8irY/iMD+ASJQUuwVTw208q+JUjR4IhlDdptyc4nB20gNJkjA3fMOpqjV+uzZYiZ7YmEQn0ji7xRxJKv/pUKPgaGJHrUK/Y34B0hxWwdEQkd64PH40dA8BYGUI6ZO6GIvl0MRgSEZVq5Ik4XlCeqS+b1mJTkZXXhDenRSnJHpdlxveQAhOmxlTsow9h4uMozzOu5NcHj/qu90AeB2VqJhEJ9KB+5cUAwC2nmjDoDcgOJro8/iDeKOyGQDwqWWlgqMhIj2qCl88F6U7kOG0CY6GaPziUYle360kSRxWE6ZmJ8fs5xDFynAS3YWQgdscEs2N8w0j9QbunIJUmEwcKkr6MLcw9gUII6nrjeKMJK43EhST6EQ6sLg0A9NykjHkD2LriVbR4UTdu6fa4PIEUJyRhOtmZIsOh4h0iP3QSe/U5GBD9xBcHn9Mfsbp8HbnWXmpMDNJQjo0LScZdosJbl8wUg1IZERqcjBebSrUn1NewOso0g91x4a6yy7W1JZ4bHmUuJhEJ9IBSZJw32KlGv1Ph5sERxN9rx1WqtDvW1LEygcimhB1yA8vakmv0p1WFKQ5AABn2mKzGDzdqgzemp3PuQGkTxazCXPi3OaCSAS11/OZtgH4g6GY/zy1wpZzZUhPZuenQpKAjn4vOge8Mf957IdOTKIT6YTa0uWjmk60uTyCo4meXrcP71e3A0DkRgER0XidDicd1eQKkR7NDr9/q9sGYvL81ZHzJCUmz08UD3PCN4FOx6nykEiEkswkpNgt8AVDqO0YjPnPUyt5WYlOepJst2BqljqEN/afCZEkOm82JSwm0Yl0Ykq2E8unZiIkA69XGqca/a1jLfAHZVQUpmEWK+OIaAJkWUZNOytsSf9m5ynJ7VglB9Xt+nOYJCEdU2+WnmlnEp2My2SSRrSqiO2uiz63H029ynD2ciYHSWfi1frIHwyhOryjr6IwPaY/i7SLSXQiHbl/qVKp/cdDxkmivz6ilQsR0UQ093kw4A3AYpJQxmGJpGOzY5gc9PiDqOtSekjP4c0m0rFZrESnBKEmtGPdukhNPhZnJCHNYY3pzyKKNnX3RKzPk7rOQfiCISTbzCjJTIrpzyLtYhKdSEfuXlAEm9mEqtb+uE2gjqXGHjf21XVDkoANi5hEJ6KJUVtUTMtJhs3CSxvSL3UnRSzaudR2DCIYkpHmsCA/zR715yeKF/UmUF2XG95AUHA0RLETqbCNcZsKtZUL+6GTHqk3m2J9nqitI2flp3KOWwLjSpNIR9KdVtxangfAGANG3ziiVKGvnJaFwnTezSWiiVGHMLKVC+ndrHA7l45+L3oGfVF97uoRcwMkiYs/0q/8NDtSHRYEQ3JcekUTiaIm0WNdPKU+P4ezkx5VhN+3Ne2xHcJbHb7ZxN18iY1JdCKdUVu6vFHZjFBIFhzN5LxRGW7lwoGiRDQJatXurHwOSyR9S7ZbIluE1aR3tKiVhhy+S3onSVIkiRHt84RIS+bkp0KSgPZ+L7oGvDH7Oac4VJR0rDgjPkN41fXGbF5HJTQm0Yl05uY5uUi1W9Dq8uBgfY/ocCasqtWFqtZ+2Mwm3LmgUHQ4RKRjrEQnI5kdo+RgpBKd5wkZwCwm0SkBJNstmJrlBDB8IzTagiE5UmHLoaKkRyaTFCkQiOVwUV5HEcAkOpHu2C1mrJ2XDwB4M9wORY9eCw8UvaU8F+lJHGBDRBMTCsk40x6uDGElOhlArPqiq0MYebOJjGBO+Pd9LOYHEGmJesPoTIxuGNV3uzHkD8JhNXE4O+mW2s//VIz6oivD2ZUq99kFXG8kMibRiXRow0JlCOfm460I6rCliyzL+PMRtnIhoslr6h2C2xeEzWzCVC7+yABmR5KD0VsI9nv8aOodCj8/k+ikf7HasUGkNepnglowEG1qcn5mXgrMHJZIOqV+JtS0x+YzoaZ9ACEZyHBakZvC4eyJjEl0Ih26fmYO0pOs6Oj3Yu+5LtHhjFtlQy+aeoeQbDPjlvCgVCKiiTgTvlienpsMq5mXNaR/I5ODshydG+VqtW5eqh2ZybaoPCeRSGp1bn23G0O+oOBoiGJnVl64Ej1WSfTw86o/h0iPZubF+GZT+/BuPg5nT2xcbRLpkM1iwh3zCgAAbx5tERzN+G0+psR829x8OKxmwdEQkZ4NDxXl4o+MYWZeCkwS0OP2o3PAF5XnVCsNOVSUjCInxYasZBtkWakQJDIqNTkYq/e5+rzqzyHSI/UmUH23Gx5/9G+snm5VzhP2Qycm0Yl06u5FyjDOLcdbEQiGBEczdrIsY/OxVgDAeg4UJaJJUodhzebijwzCYTVHWhNFq1XF2Q5l8Tcjl+cJGYMkSZiVF/3WR0RaMyM3BZIEdA/60DngjfrzqxW2s3gdRTqWk2JDhtMKWR6+5okm9XNmNosREh6T6EQ6tWp6NrKSbege9OHjs/pp6XK0sQ9NvUNw2sy4eU6u6HCISOeq1cUfK0PIQKKdHKztUIZhzWCShAxErZyNRcKESCuSbGZMyXICAM5EeZBuKCSzEp0MYeSN1Vjs2lCHs7MSnZhEJ9Ipi9mEO+arLV2aBUczdmorl1vL89jKhYgmZeTiTx28RWQEs/KjmxyMVKLncPguGcf08M4K9SYRkVENJweju+uiqXcIHn8INrMpkqgn0quZeepw0egm0Qe8gRHD2bneSHRMohPp2N0LlXYoW0+0wa+Dli6yLOOtcBL9LrZyIaJJ4uKPjGp6TvSSg95AEPXdbgCsRCdjmZGr3BSq7WQlOhnbzBgNF1WTjdNzk2HhcHbSOfVmU7R3bKhzZfJS7chwcjh7ouNvSiIdWzktGzkpNvQN+bG3tlt0OFd1vMmFxp4hJFnNuHlOnuhwiEjnajuVBOPUbCcXf2Qo09TkYBSS6PVdboRkIMVuQV6qfdLPR6QVao//uk43giFZcDREsaNWv0a7/7/aD52tXMgI1PfxmSjv2KjmcHYagStOIh0zmySsmZsPANh6olVwNFf31ohWLkk2tnIhosk5F25RMY0tKshgZoQr0VtdHgx6A5N6LrWVy/TcZEiSNOnYiLSiKCMJNosJvmAIjT1u0eEQxcysGLWpUCt21ecn0jO1FV5dlxu+QPR26avnCW82EcAkOpHu3T5P6Yv+zslWhDRchSPLcqQf+nq2ciGiKDgXrkRX++ISGUW604rsZGXLsPo+n6iz6lBRnidkMGaThOk50du1QaRVM/KU93nngA/dg76oPa/aHmYW+zyTARSkOZBityAYklHXFb3PBHXnK6+jCGASnUj3rpuZjWSbGW0uL4429YkO57JOtrhQ3+2Gw2rCLeW5osMhIgNQL2qnsxKdDGh6uKXLZIeLRoaK5vI8IeOJ1nlCpGVOmwUlmUkAoleNLsvDw9lZYUtGIEnScEuXKPZFH76O4nlCTKIT6Z7dYsbN5Up/cS23dNl2sg0AsHpWLpw2i+BoiMgI1MrDaUwOkgFFa7goK9HJyCLnySR3bBBp3ex8peVKtPqit7o8GPAGYDZJKMvmdRQZw6wo90X3BoJoUIezc71BYBKdyBDUli5aTqK/e0pJoq+tyBccCREZgccfRHPfEABWopMxRYaLTiI5KMsyatvVnuhMopPxqG0uzka5VzSR1qjJwWhVoquVumXZTtgsTAuRMaitic5E6Tw5Hx7Onmq3IJfD2QlMohMZwi1zcmE1S6jtGIz6wJloaO4dwvEmFyQJuC1cNU9ENBl1XYOQZSDNYUFWuHc0kZGoN4fOdU78c71jwIt+bwAmCZia7YxWaESawUp0ShQzopxEV5+HQ0XJSNT3c7RurNZyODtdhEl0IgNIdVhx3YwcANqsRler0JdNyUR2Cu/gEtHknesYHirKi1oyIrVy/FzHIGR5YoPDz7Yr50lplhMOqzlqsRFphdoTvaPfi36PX3A0RLGjtpKY7LBpVU0H+6GT8ajv59qOQQRDE7t2Gokt8ehiTKITGYTa0uWdcO9xLVH7obOVCxFFC4eKktFNyXLCbJIw6AuizeWd0HPUhqvYeZ6QUaU6rMgLb7Gf7PwAIi1T+5Y39w3B4w9O+vmGixH4+UDGUZSRBJvFBF8whObeoUk/39kRlehEAJPoRIaxtiIfkgQcaehFS9/kPzCixeXxY09tFwAm0YkoeiJDRZkcJIOyWUyYkqW0YFG3E49XfZcyDGsqh8aRganJjbMTPE+I9CAr2YY0hwWyrPRpniy1or2M11FkIGaThKnqtVMUdm2wEp0uxiQ6kUHkptqxdEomAOC9qnbB0Qx7/3QH/EEZ03OTOdSMiKJG7RPN3ytkZGoF+dkJLgTPR5Lo7IdOxqXeTK2LQmKRSKskScI0tc3XJGZlAIDbF0CrywMAmMabrGQw6o2hukkm0TmcnUbDJDqRgdwaHtq5o6pDcCTD1H7orEInomhSq0tYiU5GNm2SC8G6LuVxTKKTkU3JUs6T+i62cyFjU2+sTrbCtq5TueGU4bQik8PZyWCGB7NP7jzhcHYaDZPoRAZy85xcAMBHNZ1R6ZU3WYFgCDvCVfHrmEQnoijpGfSh160MkCvL4UUtGZe6aJvI1n1ZllHfrTxOTTISGVHkPOlmJToZ22RvrKrUG6xlrEInAyqLUhJdHc5eksnh7DSMSXQiA6koTEN+mh1D/iD2nesWHQ4O1ffC5Qkg02nF4tJM0eEQkUGoicH8NDucNovgaIhipzTc17NhAsnBzgEf3L4gJAkozUqKdmhEmqHODqhnOxcyuGlRSg6e43B2MrDhFl+TO0/U4ewzOFSURmASnchAJEnCLXOUli5a6Iu+87QSw42zc2E2SYKjISKjGK6uZRU6GZs6ELS+2w1Zlsf12PpuZfFYlJ4Eu4UVVGRcaiV616APA96A4GiIYifaSXQOFSUjUs+Txp4h+AKhCT/PuQ61dST7odMwJtGJDObmcBJdTWCL9H610ptdbTNDRBQNahK9lEl0MrjijCSYJGDIH0RHv3dcj1VbwPBmExldqsOK7HBf5/Psi04Gpia9Owd86BvyT/h56phEJwPLS7XDaTMjGJLR0DPxHUpqizC2jqSRmEQnMpgbZuXAapZQ1+VGbcfkJrdPRnu/ByeaXQCA1bOYRCei6FG37E9ln2cyOJvFhMJ0pRVL/ThbuqhJdA7DokQwZRLzA4j0IsVuQV6qHcDk+qKznQsZmSRJkX7/kzlP6lmMQKNgEp3IYFLsFqyYlgUA2HG6Q1gc74d/9sKSdOSk2IXFQUTGE2nnks0+z2R8Ex0uOnyecPFHxjc1i0l0SgyTbenSN+RH16APACvRybgme57Isozz4bZ4UzmAl0ZgEp3IgNS+6DsE9kXfGW7lctNsVqETUXSxJzolEvV9fn6clejqQC3u2KBEMCUyP4DtXMjYpoeHHNZOMDmoVubmptqRYudwdjKmySbR2/u98PhDMJskFGewaIeGMYlOZEC3lCtJ9L3nujAoYMBSIBjCrjOdANgPnYiiyxcIoaVvCAB7olNiUCvJG8aZRK9nOxdKIKxEp0ShtqmYaHJQvcE6jdW1ZGDqLou6Cc7JUD9LijIcsFmYNqVhfDcQGdD0nGSUZCbBH5Sx71x33H/+kcZe9A35kZ5kxaKSjLj/fCIyrubeIYRkwGE1IZetoigBRCrRx7EQHPAGItv12c6FEsFE2x4R6c3UyK6Lib3XazvUoaL8bCDjmhZ+f5/rmGgSnbv5aHRMohMZkCRJWD0rBwDwYbgiPJ52hvuh3zArBxYzf80QUfSMbOUiSZLgaIhiT13AjSdhoi7+spJtSHNYYxIXkZaoN4ta+obgC4QER0MUO+qN1fHuTlKpnw/sh05Gpu7YaO7zwOMPjvvx6g1ZFiLQxZjdIjKoG2YqbVR21cR/uOj74X7oN7MfOhFF2flIEp2LP0oM6gKuc8A35hZtaisXzg2gRJGbYofdYkJIBlr7PKLDIYqZ0iylP3P3oA/9Hv+4H9/Qo7TE4+cDGVlWsg3JNjMAoKl3aNyPV9cbZUyi00WYRCcyqOtmZEOSgOq2AbS74reY6HP7caypDwCwehaT6EQUXQ0cKkoJJj3JijSHMvytoWdslYfq9/E8oUQhScPD3xp72dKFjCvVYUVWsg0A0NA9/uSguqupNJOfD2RckiRFZidNpPVRfXjHBot26GJMohMZVGayDfOL0gEAu2ri19Jld20XZBmYkZuMgnRH3H4uESUGtcJWrcQiSgTF4WRHS+/Yboo3h7+vOJPnCSUO9f3e1DP+xCKRnkw0OejxB9HR7wXAm6xkfOp50jiBJLpaic7h7HQxJtGJDOz6mUpf9Hgm0T8+23nBzyYiiiZ1SyYrqCiRFGcoN6Ubx7gluTGcRCzKYBKdEodaiT6RrftEeqImwBvHuDtJpX5/it2CDCfnZZCxqWuFhnHeWO1z+9HrVlol8WYTXYxJdCIDU4eL7jrTCVmW4/IzPwon7K+bkR2Xn0dEiaWlj8lBSjxqcrB5jMlB9ftKeJ5QAokk0VmJTgZXGt51Md5KdPX7SzKTOJydDE/dtaruYh2r891KK5ecFDuS7Zaox0X6xiQ6kYEtm5oJu8WE9n4vzrQPxPzntbk8ONsxCEkCrp3OJDoRRZfHH0TngA8AUJTBdlGUOIrGm0TnzSZKQJF2LqxEJ4ObMsF2LmoPdVbXUiJQ3+djnSejOt/FoaJ0eUyiExmYw2rGimlZAJRq9FhTW7nML0pHhtMW859HRImlpU/p8+y0mZGexG3IlDjG0+t50BuIbEPmzSZKJGznQoli4kl0da4Mk4NkfOr7vGGCOzamMIlOo2ASncjgrpuhtHTZU9sV85/1UU1X+GeyCp2Iok+twi3K4DZkSizjqURXvyfNYUGqgzebKHGoN5taej0IheLTxpBIhOGBiUPjeq+rycFSDp2mBFASfp+7PAH0hYsLxkKdHcD5SzQaJtGJDG7ldKUSfV9dd0wXFLIsY/fZcBKdQ0WJKAaaetmighKTWmHb6vIgEAxd8Xt5nlCiKkhzwGyS4AuG0DHgFR0OUcwUpjtgCb/X2/vH/l5XByyywpYSgdNmQU6KHcD4Wrqow9mLebOJRsEkOpHBLShOR5LVjF63P6Z90c93udHUOwSrWcI1ZZkx+zlElLjUCttitqigBJObYofVLCEkK4n0K2mKnCdc/FFisZhNKEhTPh8aOVyUDMxiNkUSfGNt6SLLMhq7WWFLiUUdLjqeli5NHM5OV8AkOpHBWc0mLJuqJLX3notdSxf1uReXZsBp4xRrIoq+ll4leViUzotaSiwmk4TCdLWly5WT6JGbTaygogTEvuiUKNRWFWNNDva6/ej3BsKPZRKdEoN6w2g8N5uauaOProBJdKIEsDI8XHTvue6Y/Yx953oAANeUZcXsZxBRYmvuUy5qC3lRSwmoeIx90dUkOxd/lIjGM4SXSM/UgoKWvrG919V2FjkpdiTZzDGLi0hL1CG8Y23n0j3og8evtM0r5M5XGgWT6EQJYIWaRK/thizHpi/6gfNKgv6aaUyiE1FsDPd65kUtJZ6iMVbYqslDJtEpEQ1Xoo996z6RHg1/Jlx5d5JKvQFbwl1KlEDUG6tX28WnUq+x8lLtsFt4s4kuxSQ6UQJYVJoBm8WEzgEvajsHo/787S4Pzne5IUmItI4hIoqmkdsr2euZElGkwvZqSXSeJ5TA1MrB1r6xJUyI9EotKBhrJfrwLiUWIlDiKExX3u9X28WnYks8uhom0YkSgMNqxpLSDADAvhi0dNlfp7RyKS9IQ5rDGvXnJyLqcfsj2ysL0rkApMSjDtS9UpuKYEiODB5looQSkTpY9GoDeIn0rmiMLb5UarK9kHNlKIGo50nLGG+sNnI3H10Fk+hECSLSF702+sNF99cpifkVZaxCJ6LYUBeJudxeSQmqIJz4aLtCcrBrwItgSIZJAvJSmUSnxJOvJtH7vIIjIYqtSDuXnqExtetsDicRC1mIQAlEfb/3Dfnh9gWu+v3qbr4SJtHpMphEJ0oQK6dnA4hNJbr6nMs5VJSIYkRNohdx8UcJKj/NDuDKSXS1+jY31Q6zSYpLXERaou5U6hr0wh8MCY6GKHbUwaKDviBcnqsnB1t6WWFLiSfVYUWq3QJgbH3R1d1+bOdCl8MkOlGCWDIlA2aThOY+z5h7542Fy+NHVasLAHANk+hEmvHcc8+hrKwMDocDK1euxL59+y77vS+88AJWr16NzMxMZGZmYs2aNVf8fhHa+pWqQrXKkCjRqG0qetx+eAPBUb+nzeW94HuJEk2W0warWYIsA+39rEYn40qymZHpVNpojmVt18JKdEpQ6qyMsbQ+au7jXBm6MibRiRKE02ZBeUEqAODQ+d6oPe+h8z0IyUBpVhL7FBNpxMsvv4xNmzbhiSeewKFDh7Bo0SLcfvvtaG9vH/X7d+7cic9+9rPYsWMHdu/ejdLSUqxbtw5NTU1xjvzy2sMVtkyiU6JKT7LCZlEu3dtdoycH1Sr1PJ4nlKBMJinSyuhKuzaIjGCsfdEDwVDkfGBykBLNcF/0qyfRm9gTna6CSXSiBLJ0itKz/FB9T9Se80B4qCir0Im045lnnsEjjzyChx9+GBUVFXj++efhdDrx4osvjvr9v/nNb/CVr3wFixcvRnl5OX7xi18gFAph+/btcY788tSkYV6qXXAkRGJIkhRp6dLeP3pycPhmE88TSlyR1kdjHCRHpFfqkNCmq7SpaO/3IiQDVrOEnBR+PlBiUc+Tq7VzcfsC6HH7AbCdC12eRXQARBQ/S6dm4L/3nI9uEv280g+dSXQibfD5fDh48CAee+yxyNdMJhPWrFmD3bt3j+k53G43/H4/srIuf157vV54vcPVsC6X0tbJ7/fD7/dPMPph6nOo/28NV49kJ1uj8vzxdPGx6JVRjgPQ77HkpdjR0D2Epu5BLCxKveQ41GrEnGSb7o5Nr6/JxYxyHIB+j0W92drUM3jBZ1I0j0Nv/yZkTMXhNhUtV6lEVz8b8tMcMHFeBiUYdZ7S1SrR1SR7qt2CNIc15nGRPjGJTpRA1Er0E00ueANB2C3mST1fMCTjWGMfAKXnOhGJ19nZiWAwiPz8/Au+np+fj6qqqjE9x6OPPoqioiKsWbPmst/z1FNP4cknn7zk6++88w6cTuf4gr6Cbdu2AQBqmswAJJyvOorNbUei9vzxpB6L3hnlOAD9HUto0ATAhB17D0OulyNfV4/jRK3y9211p7F589jOd63R22tyOUY5DkB/xzLUpZwHuytPIbfnROTr0TwOt9sdtecimqixtnNpDu/KUIeREiWSwkg7lytXoqstj/LZopaugEl0ogQyJcuJrGQbugd9ONHsiiTVJ6qmfQCDviCcNjNm5aVGKUoiEukHP/gBXnrpJezcuRMOx+UvIh977DFs2rQp8meXyxXppZ6WljbpOPx+P7Zt24a1a9fCarXie0d3AvDhrltvwNxCff2+ufhY9MooxwHo91gOowqHd9cjp2QG1t8++5Lj+FntxwAGsPb6a7B6Vo7ocMdFr6/JxYxyHIB+j6Xxw3N4v/UMknOKsX79gpgch7r7ikikwoyxtalQK9XVAYtEiUStRG+6ys0mNYnO4ex0JUyiEyUQSZKwdEoG3j3VjkPneyadRD/S0AsAWFCcDjO3BhJpQk5ODsxmM9ra2i74eltbGwoKCq742Keffho/+MEP8O6772LhwoVX/F673Q67/dK+mlarNarJFqvVCpjM6Hb7AABFWcm6SuaMFO1/G1GMchyA/o6lMEPZ5dE56L8gbvU42gd4nmiFUY4D0N+xFGcmAwA6BnyjnifRoKd/DzIutZ3L1ZKDagUuhyVSIooMFu31QJZlSNLoeYs2df4S58rQFXCwKFGCWRJOnB+u7530c1U2Ks+xuDRj0s9FRNFhs9mwbNmyC4aCqkNCV61addnH/ehHP8I//dM/YcuWLVi+fHk8Qh2zzgEvZBmwmCRkOW2iwyESJj9cHaVWS43kDQTRPagk0fNTWUVFietK5wmRkRSE27O093sQCsmX/T613UsR21RQAioIv++H/EH0DV1+nkWknQsr0ekKmEQnSjBq9Xk0hotWhhPxTKITacumTZvwwgsv4Ne//jVOnTqFL3/5yxgcHMTDDz8MAHjooYcuGDz6wx/+EP/4j/+IF198EWVlZWhtbUVraysGBgZEHcIF2sOVIbmpdg7EooSmVke1jpIcVM8Tm8WEDCerZClx5YYHi3YMeK/ynUT6lpuivNf9QRk94R17o1Er0QvZE50SkMNqRnayUoRzpdZHkSR6KivR6fKYRCdKMAtL0iFJysVUR//EFxdDviBOt/UDABYxiU6kKQ8++CCefvppPP7441i8eDEqKyuxZcuWyLDR+vp6tLS0RL7/Zz/7GXw+Hz75yU+isLAw8t/TTz8t6hAuoF7U5vGilhKc2qdTTZiP1N4/fJ5cbqsyUSLISVGSJf2eALyBoOBoiGLHZjFFkoNto3wuqNQbrwWsRKcENZYdSm08T2gMJpREf+6551BWVgaHw4GVK1di3759l/3eF154AatXr0ZmZiYyMzOxZs2aK34/EcVWst2C6TlKr8jjTX0Tfp7jzX0IhmTkpdpRyA8aIs3ZuHEjzp8/D6/Xi71792LlypWRv9u5cyd+9atfRf5cV1cHWZYv+e+73/1u/AMfRXu/2qOQv2soseWEbyQNeAPw+C9MDnaG+6Hn8mYTJbj0JCusZuVGUtfA5atztYJra5oM9Xe+eiP1YsGQjK7wrgwWI1CiUnfyXe48AUb2ROd6gy5v3En0l19+GZs2bcITTzyBQ4cOYdGiRbj99tvR3t4+6vfv3LkTn/3sZ7Fjxw7s3r0bpaWlWLduHZqamiYdPBFNzILidADAsUkk0dWhootKM1jxRkQx1c5KdCIAQKrdAptZuXzvGrwwOagmC7OTeZ5QYpMkKXIedGq8pQvX1jRZ+VfYoQQAXQNehGTAJAHZKfx8oMSkriEud57IshxJsLMnOl3JuJPozzzzDB555BE8/PDDqKiowPPPPw+n04kXX3xx1O//zW9+g6985StYvHgxysvL8Ytf/CIy4IyIxJgfTqJPphK9MpxEZz90Ioq1znCyMIeLP0pwkiQhK7x1v+ui5KD6Z3VrP1Eiy05RzxNtV6JzbU2TlR+usL1cmwp1N192ih1mzpWhBJUXHrjefpl2tt2DPviDynDeXK436Aos4/lmn8+HgwcPXjCMzGQyYc2aNdi9e/eYnsPtdsPv9yMrK+uy3+P1euH1Dr+5XS4XAMDv98Pvv/w03bFSnyMazyWSUY4D4LHEW3m+0s7lWFPfZeO82nGoCfi5BcmaPlZAH6/JWBjlOADjHEu0j0Pv/x6x0q1W2KYwOUiUnWJDq8ujJAfDn+fAcGU6zxOi4ZuuWh4uGo+1dazX1epzjfy/Xun1OHLCN05b+4YuOQa/34/mnkEAQG6KTXfHptfXZDRGORa9Hkd2spL6vNx50tTtCX+fDZIchN+vn3kaen1NRqOHtfW4kuidnZ0IBoORwWSq/Px8VFVVjek5Hn30URQVFWHNmjWX/Z6nnnoKTz755CVff+edd+B0OscT8hVt27Ytas8lklGOA+CxxIsnAAAWtPR58PvXNyPFevnvHe04PEHgfJcZgITmE/uwuTpWkUaXll+T8TDKcQDGOZZoHYfb7Y7K8xhNdzg5mMUKW6LIdvyL21Sof+Z2faLhJLqWK9HjsbaO17oa4DWdKO2tEgAzjp45j82bz13wd9u2bcPuNuXvMdSHzZs3C4lxsvT2mlyJUY5Fb8fR0KWcB2ca2i45D7Zt24aTPcrfO2QvzxMN0PLaelxJ9Mn6wQ9+gJdeegk7d+6Ew3H5PkOPPfYYNm3aFPmzy+WK9HtLS0ubdBx+vx/btm3D2rVrYbVeIXuocUY5DoDHIsLztbtwrsuNwooVWD0r55K/v9JxHKrvhbxvH/JT7Xjw3nXxCnnC9PKaXI1RjgMwzrFE+zjUCjG6UNegkhxkEp1ouOqw+6Ke6N2Rtkc8T4jU80DrPdEnYyxr61ivqwFe04lmPdmOV89VwpScifXrlSHyI4+ldlc9UHsW82aUYv36eYKjHR+9viajMcqx6PU4Cut78WL1PvgtSVi//kYAFx7L4NE2oOokZpbkYv36pYKjHR+9viaj0cPaelxJ9JycHJjNZrS1tV3w9ba2NhQUFFzxsU8//TR+8IMf4N1338XChQuv+L12ux12+6VVNFarNapvimg/nyhGOQ6AxxJP80sycK7LjVNtg7i1ovCy3zfacVS3K9sCK4rSNH2MF9P6azJWRjkOwDjHEq3jMMK/RSyoyUEOTCQa0euZg0WJLivnMjs2tCQea+t4ratj9Zwi6O04irKUtl4d/d5L4rZarehyK+0MCtKTdHVcI+ntNbkSoxyL3o6jMFM9T3ywWCyQpOH5AFarFR0DAeX7eJ5ogpbX1uMaLGqz2bBs2bILBpeog0xWrVp12cf96Ec/wj/90z9hy5YtWL58+cSjJaKoWVCsVJ8caxz/cNGTLcodvYqi6FSwEBFdTjAko3dIWQCyEp0IyEoePTnIHRtEw/QwWJRra4qGvFTlM6G934tQSL7k79td3gu+jygR5Ybf/75gCH1Dl/bJbutXeqLnp12+YwYRMIF2Lps2bcKXvvQlLF++HCtWrMCzzz6LwcFBPPzwwwCAhx56CMXFxXjqqacAAD/84Q/x+OOP47e//S3KysrQ2toKAEhJSUFKSkoUD4WIxmN+cToAZbjoeJ1sDifRC9OjGhMR0cV63T7I4TVhptMY1RVEkzFacjAYktnOhWgEPVSiA1xb0+SpycFASEaP23fJXIy2fm/4+5gcpMTlsJqRnmRF35Af7f1eZDgvvFZqdzGJTmMz7iT6gw8+iI6ODjz++ONobW3F4sWLsWXLlshAlPr6ephMwwXuP/vZz+Dz+fDJT37ygud54okn8N3vfndy0RPRhM0rUhLgTb1D6BvyIz1pbMmpQDCEqtb+8HOwEp2IYqt7UKkWyXBaYTGPawMdkSHlRNq5DCcHe4f8UAsQM1mJTjQiia7dSnSAa2uaPKvZhOxkG7oGfWjv916SRO8IJwfz0liJToktL9WuJNFdXszOT73g7zoiN5t4ntCVTWiw6MaNG7Fx48ZR/27nzp0X/Lmurm4iP4KIYiw9yYrCdAda+jyobuvHNWVZY3rcuc5BeAMhJNvMmJLljHGURJTout1KAoQtKogUas/z7hHJQbUKPcNphZU3m4giN5u6B70IjtLiQku4tqbJygon0S8eOC3LMjoG2M6FCFBuJJ1pH0B7uHXLSOoN12zu5qOr4FU2UQKbU6DcgT0driwfC7Uf+tzCNJhM0lW+m4hocoaHivKilggYXuB1Dvogh3sd8TwhupB64zUkIzJXg8ioIp8LF7Uv6h3ywx9UPidYYUuJLi/c0kitOh9J3d2Xw+HsdBVMohMlsAkl0Zs5VJSI4kdNDrISnUihVqL7AiEMeIMAhvujZ3PxRwQAsJhNSHUom6773Eyik7FFdihdVImutsRLtVtgt5jjHheRlqhriYvPE7cvAI8/pHwPK9HpKphEJ0pgc/InV4lORBRr6gIwi8lBIgBAks0Mp01JhqiVU12D3IZMdLHM8OA4VqKT0Y02cBoAetSWePxsILpsEl29hrJbTEi28WYTXRmT6EQJLFKJ3tYf2RJ+NWfaBi54LBFRLKk90dmmgmhYJDkYrrBV/5/h5HlCpMpwWgEwiU7GpyYHuy6pROduPiLV5ZLoasFOdrINksR2tXRlTKITJbCZeSkwmyT0DfnR5rq0N9jFXB4/WsMT3mfmpcQ6PCIiLgCJRpGepCQH+8LJQTVJqCYNiWj4plKv23eV7yTSt+wUZbde10U90SO7+XiDleiyN5uGd/Nx1ytdHZPoRAnMbjFjWk4yAKUa/Wpq2pUq9Pw0O9IcXKgTUex1s00F0SXUZHnfUAAA4FKT6En8bCZSZSRdeJ4QGVX2ZStsWYhApOJ5QtHAJDpRghvui+666veqSfRZeWzlQkTxoSY/0pkcJIq4XCU6zxOiYZnhm009rEQng8u+TIUte6ITDVOT5D0XV6IPsGCHxo5JdKIEp/Y2rw73Or8SNYnOVi5EFC8uD5ODRBcbrkRXzg+XJ3DB14kISA+3sOhjT3QyuOHBoqO3c+FcGaLhJHq/NwBvIBj5eg/nL9E4MIlOlOCm5yrtXGo7mEQnIu1Rk4NpTKITRajng3p+qElCnidEw9RKdHXwLpFRZScrvZxdngB8gVDk6+pw9qxk9nomSnNYYTYpg0N7Boc/F4Yr0Xme0NUxiU6U4KbnKAnxc52DV/3eM+1K3/RZTKITURyEZKDfw3YuRBfLSAoPTAwnz/siPdFZRUWkUndm9LISnQwuPWlEcnBE+6LhXs+8hiIymSRkOtXWR8O7NoZvNvEaiq6OSXSiBFeW4wQA9Lj9l/QHG2nIF0RjzxAAVqL//+z9eXxcV30//r/urNJIGu275d3xEq9xsHFoCYsTZ2lKSpeQUBIChA+UtAG3QAxJ3ECLaYEQPhBwoTHhQeGTAKUJ31/cENfgUhonTrwl3ndbtqx9GUmj2c/vj5lzZ2RJlkZzZ+72ej4eeYDl0egcH905977POe83ERVGKH3SEmVFLv0aQmQwclEpMBKFEOkgejnTuRCpKlLBEu5EJ6vLDA52Z6R06Uv97nMnOlFStZoXPWMneioGUsOc6DQFDKIT2ZzP40JTeREA4MxVdqOf7hqCEMkVWh51IqJCCCY3oaPI7YDX5dS3MUQGkpkTPZIAonGR/DpPbBCpKq4owEtkZTI4KHefC5H+/8z1TJRUmTqVMWon+jAXm2jqGEQnIsxJ5UW/WkqX06mc6fNruQudiApjJBVEZyoXotHKM4KD8jpxORT4PFxsIpLKipLXyVA4pnNLiPIvXVw0GTiPJIBwKj8601QQJcn6Ab3DY9MecbGJpoJBdCLCnJrJi4ue6w6Oei0RUb4F48n8nv4iBtGJMqWD6DEMp+KDFT43FEXRsVVExiLTgA2F4xBC58YQ5VnmCSUAGEodwPC6HFxgJUqpuuLERiSeXmyqYEo8mgIG0YloSsVFz/ck/25WKoc6EVG+cSc60fjG24nu53VCNEqpNxlEjycEogmdG0OUZ3JekDUAhlJzQ1WJhwusRCmVVwTRZepIp0NR5wyiq2EQnYimlM7lXCqIPruaO9GJqDAYHCQanzydEY4lMBRLBkfKeGKDaBSfxwlHKnY4Er/6a4nMrrw4GRyUO9GHo8lffllwlIgyCosGU0H01NxQXszTfDQ1DKITEebWpIPoicT4513P9yTTucyq5k50IiqMkYwbWyJKK/Gmj+YPpo7sl3p5XJ8ok6KkdxaGGEQniyu/opCuvIdiigqitCuvkyBPvVKWGEQnIsyo9MHtVBCOJdA2MDLm7wOhKHpSR55mcSc6ERVIMCZzovN4JVEml9MBryt5Gz8QSV4nJR5eJ0RXkic0GEQnq0vnRB+dpoJ1ZYjS/MXJe6VA6rjrSOpZg0F0mioG0YkIToeCmVXJHeaygGimC6ld6DWlHuYKI6KCCaUeAJmmgmisktR8PBAZ/WciSkvvROcxfbK2MTvR1ZR4nBuIJLmopKY94k50yhKD6EQEAGhJBdEv9Y8Nost86NyFTkSFFE4VgvMxTQXRGDKlSyAy+s9ElFaaOskkF2WJrKriisKi3GFLNJa8HgKh0YtNTHtEU8UgOhEBAGZUFgMALvaNTefCfOhEpIdIKojONBVEY8nrQk3nwp3oRGPInehhpnMhi/NPkBOd6VyI0uR1EhiJQgihpo7kYhNNFYPoRAQgmRcdGD+I3tqbDKLLlC9ERIUggx7FHu6wJbqSDA4OyMKiXGwiGkPdic4gOlncROlcyrnDlkglr5OEAIbCcRYWpawxiE5EADJ3oo9N53KpPxlYb64oLmibiMjeIqkctj4G0YnGkDvP5S4q7kQnGqssdV2MMIhOFifTUYRjCYSicQS5E51oDK/LAY8zGQYdDEUZRKesMYhORACuvhO9jUF0ItIB07kQTezKQt8s/E00FguLkl2Uel1wOpK/5wMjUeZEJxqHoigZqY9iDKJT1hhEJyIA6Z3o7YEQIrGE+nUhBNr6QwCAJgbRiaiAmM6FaGJXntBgAV6isZjOhexCURT4U7/vgYzgoL+YC6xEmeQ1EQhFMRLnYhNlh0F0IgIAVJd4UOR2QAjg8kB6N3r/SBQj0eSTR0N5kV7NIyIbkjvRmc6FaKwr07cwnQvRWOpO9JjODSEqALloNBSOqSmMGBwkGq1cLS4aUzfs8B6KpopBdCICkNy9MF5KF7kLvabUiyI3A1lEVDiR1I2tj+lciMZgOheiycnrIpyY5IVEFiDT3w2FY2phUeZEJxpNXhOBUJQbdihrDKITkUqmdGntTRcXvTyQDKI3V3AXOhEVVpg3tkQTGrMTnYtNRGPIdGARpnMhG5CLRp2DYQgk01T4uROdaBR1J3oovROdG3ZoqhhEJyJVY3kyiC4D55n/n/nQiaiQovEE4iL5AMggOtFYpVfkQOdOdKKxilOnKKMJFhYl65OLqx2BMADA5VB4kpjoCmrao1CMO9EpawyiE5GqwZ/cbd4RSAfR2xhEJyIdjGRsG+TuEKKxxuZE5wMg0ZXUnehM50I2IBdTu4aSQXTOC0RjlaTmheFITF1gLWYQnaaIQXQiUtX7vQBGB9Evp3KiN7KoKBEVUDBV0NjlUOBx8XaF6EosLEo0ObkTnUF0soPMdC5A+vefiNKKU5tzeoYi6te4E52mik+lRKSqTwXK21NHAAGgbSBZZJQ70YmokIKpJIXcGUI0vszgiKIAXi42EY0hU1lEmROdbEAupnalgug8yUc0ltyJ3j2cDqIXufi8QVPDu20iUtWXJYPonRk70btSK7T1fu5EJ6LCGUlFPLgzhGh8mUFzr8sBRWHOZ6IrMZ0L2YmslSGD6EznQjSWL7XY1J2Kc/g8TjgcvIeiqWEQnYhUMp1Lz3AE4VgCQgDdqZx6dWVePZtGRDYTTOVE9/EoMtG4vBnXBnehE42P6VzITuRO9M6M4CARjSZ3ovcMMe0RZY933ESkqirxwO1MrsJ2D4URjgOhaPKpo6aUQXQiKpxgJAaA6VyIJjJ6JzqvE6LxyOBIXCiIxRlJJ2uTQfRILPm7zuAg0Vi+K9K58FmDssEgOhGpFEVBXSqlS0cgjEA0+fUyr4uTCxEVlLoTnZ89ROPKDKKz+C7R+DLvX0MxBtHJ2kqvLDjNnOhEY8haAUKk/szFJsoC77iJaJSaVNqWnqGIGkSvZSoXIioweQqGu6iIxsd0LkSTy7w2QqwuShZXckUQ3cec6ERjXFkrgJsFKRu84yaiUapLPACA3mAEg5FkapcaBtGJqMCiqWP3bidvVYjGM2onOq8TonEpiqKmKozGhc6tIcqvK4ODPM1HNJbPc+WJDV4nNHW84yaiUapkEH2YO9GJSD+xRDLY4XQoOreEyJgyg+gKLxOiCcl5JJ5gEJ2s7cp0LkxTQTTWlYtL3IlO2WAQnYhGqR4VRE8+dNSyqCgRFZgMdrgYRCcaF4uJEk0Ng+hkF2PSuTA4SDTGlTvRmTqSssEgOhGNUl0qg+hRDCYLVnMnOhEVnNyJ7nIyiE40HjevDaIpcTuSj7wxBtHJ4sbsRPeysCjRlZj2iHLBIDoRjVJVkgyY9wYjCMaSXysvduvYIiKyI+5EJ7o6hTlciKYkvRM9oXNLiPKryM3gINFkilzOUWnwmM6FssEgOhGNkpnOZSSenF0qfAyiE1FhxdWc6LxVISKi6ZOLsdyJTlZ3ZVoK5kQnGsvhUEZdK7xOKBt8MiWiUTILiw5zJzoR6YSFRYmmjrsNiSbGnOhkF26nMuq+yefl3EA0nsy86LyHomwwiE5Eo6hB9GBUTedSUezRsUVEZEexePLYPdO5EE3sk++cg3KPwMf/cI7eTSEyLBlUjMUZRCdrU5QrdtgyOEg0rsy86EznQtlgpQkiGkUWFo3EEogg+dDBnehEVGhx7kQnmtTGmxZgUfQk3r2wVu+mEBkW07mQnRS5HRgKJ/+/z81wD9F4uNhE08Wd6EQ0SrHbCbdzdNCqnDnRiajAZLDjys8jIiKibLicTOdC9pFZXNTrYriHaDzejOvkyloCRFfDT1UiGkVRFPiL3Bl/Bsq83MVARIXFnehERKQFWaCaO9HJDjIDgm4X76GIxuPJ2KTDdC6UDQbRiWgMf0b6lvIiNxwMYhFRgbGwKBERacGlFhZN6NwSovzLDAh6nAz3EI3Hk3FKo8TDDYM0dfxUJaIx/EXpicRfzEmFiApP7kRnYVEiIsqFkznRyUaKXBk70RlEJxpX5rXBneiUDX6qEtEYmTvRK1hUlIh0kN6JzlsVIiKavvROdAbRyfoyU7h4mBOdaFyZpzR8zIlOWeCnKhGNkZkT3c8gOhHpIJY6ds+d6ERElAt1J3qcQXSyPoeSvm9icXai8bld3IlO08MgOhGNUZpRSJRFRYlID/E4c6ITEVHuXEznQjaSufmAOdGJxpd5nTCITtngpyoRjZE5kfi8nFSIqPBksMPFXVRERJQDOY8wnQvZQebmA25EIBpf5qJqCYPolAUG0YloDF9mEJ05wohIBywsSkREWmBhUbKTzHQuisJ7KKLxxDPSe3lZO4CywN8WIhojM4jO401EpId0YVE+ABIR0fS5UgWquROd7ID3TUSTk7WXAC42UXYYRCeiMYo96TzoxdyJTkQ64E50IiLSggwqxjOCJkRWxSA60eR4Mommi0F0IhpjVDoX7kQnIh3IHSJ8GCQiolzIeSTKoAnZAO+biCYXi3M+oOlhEJ2IxmA6FyLze+qppzB79mwUFRVh7dq12LNnz1Vf//Of/xyLFi1CUVERli1bhu3btxeopeNLp3PhrQoREU2fy8HComQfTqamIJpUjCeTaJr4ZEpEY2SmcGFhUSLzee6557Bx40Zs3rwZ+/btw4oVK7BhwwZ0dnaO+/pXXnkFd999Nz760Y9i//79uPPOO3HnnXfi0KFDBW55GtO5EBGRFtTCotx5SDbg4H0T0aQ4H9B0MYhORGP4MnOicyc6kek88cQTeOCBB3D//fdjyZIl2Lp1K3w+H7Zt2zbu67/1rW/hlltuwWc/+1ksXrwYX/7yl3HdddfhO9/5ToFbnsYgOhERacHt5E50sg/eNxFNjum9aLpck7+EiOymssSt/v8Kn/sqryQio4lEIti7dy82bdqkfs3hcGD9+vXYvXv3uN+ze/dubNy4cdTXNmzYgOeff37CnxMOhxEOh9U/BwIBAEA0GkU0Gs2hB0nRWOqYpUho8n56ku1nP4zDKn2xSj8A6/TFKv0ArNMXBclgSSQW06wvZv83Ieta0uTXuwlEhnfdzAocbO3XuxlkQgyiE9EYSxr9ePiWa3DoyFGsnlmpd3OIKAvd3d2Ix+Oor68f9fX6+nocO3Zs3O9pb28f9/Xt7e0T/pwtW7bg8ccfH/P1l19+GT6fbxotH22WU0FJnYILR/dj+4X9Ob+fEezYsUPvJmjCKv0ArNMXq/QDsE5frNIPwPx98QwouKFeQaTjNLZvP6XJewaDQU3eh0hr96yZiUAwgsTlo3o3hciw/vbmhfB7nfD1HNe7KWQyDKIT0RiKouCj75iN7QNHWOGdiMa1adOmUbvXA4EAWlpacPPNN8Pvz30X1E3RKHbs2IGbbroJbre5T8RELdIXq/QDsE5frNIPwDp9sUo/AOv0JR/ziTx9RWQ0LqcD/+edc7B9O4PoRBMp9brw4LvnYft2BtEpOwyiExERWUhNTQ2cTic6OjpGfb2jowMNDQ3jfk9DQ0NWrwcAr9cLr9c75utut1vTYIvW76cnq/TFKv0ArNMXq/QDsE5frNIPwDp90bIfVvj3ICIiouywsCgREZGFeDwerF69Gjt37lS/lkgksHPnTqxbt27c71m3bt2o1wPJ4/sTvZ6IiIiIiIjITrgTnYiIyGI2btyI++67D9dffz3WrFmDJ598EsPDw7j//vsBAPfeey+am5uxZcsWAMBDDz2EG2+8Ed/4xjdw++2349lnn8Ubb7yB73//+3p2g4iIiIiIiMgQGEQnIiKymLvuugtdXV147LHH0N7ejpUrV+Kll15Si4deuHABDkf6MNoNN9yAn/70p3jkkUfwhS98AQsWLMDzzz+PpUuX6tUFIiIiIiIiIsNgEJ2IiMiCHnzwQTz44IPj/t2uXbvGfO3P//zP8ed//ud5bhURERERERGR+TAnOhERERERERERERHRBBhEJyIiIiIiIiIiIiKawLSC6E899RRmz56NoqIirF27Fnv27Lnq63/+859j0aJFKCoqwrJly7B9+/ZpNZaIiIiIiIjIKvhsTUREZA5ZB9Gfe+45bNy4EZs3b8a+ffuwYsUKbNiwAZ2dneO+/pVXXsHdd9+Nj370o9i/fz/uvPNO3HnnnTh06FDOjSciIiIiIiIyIz5bExERmUfWhUWfeOIJPPDAA7j//vsBAFu3bsWLL76Ibdu24eGHHx7z+m9961u45ZZb8NnPfhYA8OUvfxk7duzAd77zHWzdunXcnxEOhxEOh9U/BwIBAEA0GkU0Gs22yWPI99DivfRklX4A7IsRWaUfgHX6YpV+ANbpi9b9MPu/BxEREU1dvp+t8/1cLd8r83/Nyir9AKzTF6v0A7BOX6zSD8A6fbFKPwBzPFtnFUSPRCLYu3cvNm3apH7N4XBg/fr12L1797jfs3v3bmzcuHHU1zZs2IDnn39+wp+zZcsWPP7442O+/vLLL8Pn82XT5KvasWOHZu+lJ6v0A2BfjMgq/QCs0xer9AOwTl+06kcwGNTkfYiIiMjYCvFsXajnaoD3dEZklb5YpR+AdfpilX4A1umLVfoBGPvZOqsgend3N+LxOOrr60d9vb6+HseOHRv3e9rb28d9fXt7+4Q/Z9OmTaNuDgKBAFpaWnDzzTfD7/dn0+RxRaNR7NixAzfddBPcbnfO76cXq/QDYF+MyCr9AKzTF6v0A7BOX7Tuh9whRkRERNZWiGfrfD9XA7ynMyKr9MUq/QCs0xer9AOwTl+s0g/AHM/WWadzKQSv1wuv1zvm6263W9NfCq3fTy9W6QfAvhiRVfoBWKcvVukHYJ2+aNUPK/xbEBERkTEU6rk6X++pB6v0A7BOX6zSD8A6fbFKPwDr9MUq/QCM/WydVWHRmpoaOJ1OdHR0jPp6R0cHGhoaxv2ehoaGrF5PREREREREZGV8tiYiIjKXrILoHo8Hq1evxs6dO9WvJRIJ7Ny5E+vWrRv3e9atWzfq9UAyv81EryciIiIiIiKyMj5bExERmUvW6Vw2btyI++67D9dffz3WrFmDJ598EsPDw2pF8XvvvRfNzc3YsmULAOChhx7CjTfeiG984xu4/fbb8eyzz+KNN97A97//fW17QkRERERERGQSfLYmIiIyj6yD6HfddRe6urrw2GOPob29HStXrsRLL72kFji5cOECHI70BvcbbrgBP/3pT/HII4/gC1/4AhYsWIDnn38eS5cunfLPFEIA0C4pfDQaRTAYRCAQMHXOIKv0A2BfjMgq/QCs0xer9AOwTl+07oec5+S8Zyacqydmlb5YpR+AdfpilX4A1umLVfoBWKcv+eiHVvN1oZ+ttZ6rAf6eGJFV+mKVfgDW6YtV+gFYpy9W6QdgjmdrRZjgSf3ixYtoaWnRuxlEREQF0draihkzZujdjKxwriYiIrsx23zNuZqIiOxGy7naFEH0RCKBtrY2lJWVQVGUnN8vEAigpaUFra2t8Pv9GrRQH1bpB8C+GJFV+gFYpy9W6Qdgnb5o3Q8hBAYHB9HU1DRq55kZcK6emFX6YpV+ANbpi1X6AVinL1bpB2CdvuSjH2adr7WeqwH+nhiRVfpilX4A1umLVfoBWKcvVukHYI5n66zTuejB4XDkZYXf7/eb/pcMsE4/APbFiKzSD8A6fbFKPwDr9EXLfpSXl2vyPoXGuXpyVumLVfoBWKcvVukHYJ2+WKUfgHX6onU/zDhf52uuBvh7YkRW6YtV+gFYpy9W6Qdgnb5YpR+AsZ+tzbNsTkRERERERERERERUYAyiExERERERERERERFNwJZBdK/Xi82bN8Pr9erdlJxYpR8A+2JEVukHYJ2+WKUfgHX6YpV+GJGV/m2t0her9AOwTl+s0g/AOn2xSj8A6/TFKv0wKqv8+1qlH4B1+mKVfgDW6YtV+gFYpy9W6Qdgjr6YorAoEREREREREREREZEebLkTnYiIiIiIiIiIiIhoKhhEJyIiIiIiIiIiIiKaAIPoREREREREREREREQTYBCdiIiIiIiIiIiIiGgCDKITEREREREREREREU3AkkH0f/zHf8QNN9wAn8+HioqKKX2PEAKPPfYYGhsbUVxcjPXr1+PkyZOjXtPb24sPfvCD8Pv9qKiowEc/+lEMDQ3loQfT/5nnzp2Doijj/vfzn/9cfd14f//ss88aph8A8K53vWtMGz/xiU+Mes2FCxdw++23w+fzoa6uDp/97GcRi8Xy1g8g+7709vbir//6r7Fw4UIUFxdj5syZ+Ju/+RsMDAyMel0hxuSpp57C7NmzUVRUhLVr12LPnj1Xff3Pf/5zLFq0CEVFRVi2bBm2b98+6u+nct3kQzb9+MEPfoA//MM/RGVlJSorK7F+/foxr//whz885t/+lltuyXc3AGTXl2eeeWZMO4uKika9xgxjMt61rSgKbr/9dvU1eozJ7373O9xxxx1oamqCoih4/vnnJ/2eXbt24brrroPX68X8+fPxzDPPjHlNttednVhlvrbKXD2dvgDGnK85V6eZYV7gXG28MTHqXA1wvi40ztWcq/PJrPO1VeZqwDrztVXmasAa87Vl52phQY899ph44oknxMaNG0V5efmUvuerX/2qKC8vF88//7w4ePCg+OM//mMxZ84cMTIyor7mlltuEStWrBCvvvqq+J//+R8xf/58cffdd+epF9P7mbFYTFy+fHnUf48//rgoLS0Vg4OD6usAiB/+8IejXpfZV737IYQQN954o3jggQdGtXFgYGBUX5cuXSrWr18v9u/fL7Zv3y5qamrEpk2b8taP6fTlrbfeEu9///vFr371K3Hq1Cmxc+dOsWDBAvGnf/qno16X7zF59tlnhcfjEdu2bROHDx8WDzzwgKioqBAdHR3jvv5///d/hdPpFP/8z/8sjhw5Ih555BHhdrvFW2+9pb5mKteN1rLtxz333COeeuopsX//fnH06FHx4Q9/WJSXl4uLFy+qr7nvvvvELbfcMurfvre3N299mG5ffvjDHwq/3z+qne3t7aNeY4Yx6enpGdWHQ4cOCafTKX74wx+qr9FjTLZv3y6++MUvil/+8pcCgPiP//iPq77+zJkzwufziY0bN4ojR46Ib3/728LpdIqXXnpJfU22/zZ2Y5X52ipz9XT6IoQx52vO1Zyr9eoL5+r8jwnn68LiXM252kh9McJ8bZW5ejp9Mep8bZW5ejp9Mep8bdW52pJBdOmHP/zhlCb6RCIhGhoaxNe+9jX1a/39/cLr9Yr/9//+nxBCiCNHjggA4vXXX1df85//+Z9CURRx6dIlzduu5c9cuXKl+MhHPjLqa1P5JdbKdPtx4403ioceemjCv9++fbtwOByjPuy+973vCb/fL8LhsCZtv5JWY/Kzn/1MeDweEY1G1a/le0zWrFkjPvWpT6l/jsfjoqmpSWzZsmXc1//FX/yFuP3220d9be3ateL//J//I4SY2nWTD9n240qxWEyUlZWJH/3oR+rX7rvvPvG+971P66ZOKtu+TPaZZtYx+eY3vynKysrE0NCQ+jW9xkSayvX4uc99Tlx77bWjvnbXXXeJDRs2qH/O9d/GLsw8X1tlrhbCOvM152rO1VriXJ1kxLlaCM7XhcS5mnO11sw6X1tlrhbCOvO1VeZqIaw5X1tprrZkOpdsnT17Fu3t7Vi/fr36tfLycqxduxa7d+8GAOzevRsVFRW4/vrr1desX78eDocDr732Wl7apcXP3Lt3Lw4cOICPfvSjY/7uU5/6FGpqarBmzRps27YNQgjN2p4pl3785Cc/QU1NDZYuXYpNmzYhGAyOet9ly5ahvr5e/dqGDRsQCARw+PBh7TsC7X4PBgYG4Pf74XK5Rn09X2MSiUSwd+/eUb/jDocD69evV3/Hr7R79+5RrweS/77y9VO5brQ2nX5cKRgMIhqNoqqqatTXd+3ahbq6OixcuBCf/OQn0dPTo2nbrzTdvgwNDWHWrFloaWnB+973vlG/62Ydk6effhof+MAHUFJSMurrhR6TbE12jWjxb0OjGXG+tspcDVhnvuZczblaK5yr08w6VwOcrwuNczXn6qky43xtlbkasM58bZW5GrD3fG2Wudo1+Uusr729HQBGTRjyz/Lv2tvbUVdXN+rvXS4Xqqqq1Nfko125/synn34aixcvxg033DDq61/60pfwnve8Bz6fDy+//DL+6q/+CkNDQ/ibv/kbzdovTbcf99xzD2bNmoWmpia8+eab+PznP4/jx4/jl7/8pfq+442Z/Lt80GJMuru78eUvfxkf//jHR309n2PS3d2NeDw+7r/XsWPHxv2eif59M68J+bWJXqO16fTjSp///OfR1NQ06sP3lltuwfvf/37MmTMHp0+fxhe+8AXceuut2L17N5xOp6Z9kKbTl4ULF2Lbtm1Yvnw5BgYG8PWvfx033HADDh8+jBkzZphyTPbs2YNDhw7h6aefHvV1PcYkWxNdI4FAACMjI+jr68v595VGM+J8bZW5GrDOfM25mnO1VjhXJ5l5rgY4Xxca52rO1VNlxvnaKnM1YJ352ipzNWDv+dosc7VpgugPP/ww/umf/umqrzl69CgWLVpUoBZN31T7kquRkRH89Kc/xaOPPjrm7zK/tmrVKgwPD+NrX/taVpNKvvuROREuW7YMjY2NeO9734vTp09j3rx5037f8RRqTAKBAG6//XYsWbIEf//3fz/q77QYE7q6r371q3j22Wexa9euUYVDPvCBD6j/f9myZVi+fDnmzZuHXbt24b3vfa8eTR3XunXrsG7dOvXPN9xwAxYvXox/+Zd/wZe//GUdWzZ9Tz/9NJYtW4Y1a9aM+rpZxoTGssp8bZW5GrDOfM252h44VxsP52rr4VydHc7V2eF8bQ9mnq+tOFcDnK8LwTRB9L/927/Fhz/84au+Zu7cudN674aGBgBAR0cHGhsb1a93dHRg5cqV6ms6OztHfV8sFkNvb6/6/VM11b7k+jN/8YtfIBgM4t577530tWvXrsWXv/xlhMNheL3eSV8PFK4fmW0EgFOnTmHevHloaGgYU4m3o6MDAAw5JoODg7jllltQVlaG//iP/4Db7b7q66czJhOpqamB0+lU/32kjo6OCdvd0NBw1ddP5brR2nT6IX3961/HV7/6VfzXf/0Xli9fftXXzp07FzU1NTh16lTeJpVc+iK53W6sWrUKp06dAmC+MRkeHsazzz6LL33pS5P+nEKMSbYmukb8fj+Ki4vhdDpzHmMzssp8bZW5GrDOfM25eizO1Zyrp8LOczXA+Xo8nKs5V/PZenqsMlcD1pmvrTJXA/aer00zVxcs+7oOsi1+8vWvf1392sDAwLjFT9544w31Nb/+9a8LUlh0uj/zxhtvHFOleiL/8A//ICorK6fd1qvR6t/u97//vQAgDh48KIRIFz/JrMT7L//yL8Lv94tQKKRdBzJMty8DAwPi7W9/u7jxxhvF8PDwlH6W1mOyZs0a8eCDD6p/jsfjorm5+aoFUP7oj/5o1NfWrVs3pgDK1a6bfMi2H0II8U//9E/C7/eL3bt3T+lntLa2CkVRxAsvvJBze69mOn3JFIvFxMKFC8VnPvMZIYS5xkSI5Ge01+sV3d3dk/6MQo2JhCkWP1m6dOmor919991jip/kMsZ2Yeb52ipztRDWma85V3Ou1hLnauPO1UJwvi4kztWcq7Vm1vnaKnO1ENaZr60yVwthzfnaSnO1JYPo58+fF/v37xePP/64KC0tFfv37xf79+8Xg4OD6msWLlwofvnLX6p//upXvyoqKirECy+8IN58803xvve9T8yZM0eMjIyor7nlllvEqlWrxGuvvSZ+//vfiwULFoi77747r32Z7GdevHhRLFy4ULz22mujvu/kyZNCURTxn//5n2Pe81e/+pX4wQ9+IN566y1x8uRJ8d3vflf4fD7x2GOPGaYfp06dEl/60pfEG2+8Ic6ePSteeOEFMXfuXPHOd75T/Z5YLCaWLl0qbr75ZnHgwAHx0ksvidraWrFp06a89WM6fRkYGBBr164Vy5YtE6dOnRKXL19W/4vFYkKIwozJs88+K7xer3jmmWfEkSNHxMc//nFRUVGhVmD/0Ic+JB5++GH19f/7v/8rXC6X+PrXvy6OHj0qNm/eLNxut3jrrbfU10zlutFatv346le/Kjwej/jFL34x6t9efh4MDg6Kv/u7vxO7d+8WZ8+eFf/1X/8lrrvuOrFgwYK83TBOty+PP/64+PWvfy1Onz4t9u7dKz7wgQ+IoqIicfjw4VH9NfqYSH/wB38g7rrrrjFf12tMBgcH1fkCgHjiiSfE/v37xfnz54UQQjz88MPiQx/6kPr6M2fOCJ/PJz772c+Ko0ePiqeeeko4nU7x0ksvqa+Z7N/G7qwyX1tlrp5OX4w6X3Ou5lytV184V+d/TDhfFxbnas7VRuqLEeZrq8zV0+mLUedrq8zV0+mLZLT52qpztSWD6Pfdd58AMOa/3/72t+prAIgf/vCH6p8TiYR49NFHRX19vfB6veK9732vOH78+Kj37enpEXfffbcoLS0Vfr9f3H///aNuHvJhsp959uzZMX0TQohNmzaJlpYWEY/Hx7znf/7nf4qVK1eK0tJSUVJSIlasWCG2bt067mv16seFCxfEO9/5TlFVVSW8Xq+YP3+++OxnPysGBgZGve+5c+fErbfeKoqLi0VNTY3427/9WxGNRvPWj+n05be//e24v48AxNmzZ4UQhRuTb3/722LmzJnC4/GINWvWiFdffVX9uxtvvFHcd999o17/s5/9TFxzzTXC4/GIa6+9Vrz44ouj/n4q100+ZNOPWbNmjftvv3nzZiGEEMFgUNx8882itrZWuN1uMWvWLPHAAw8U7IM4m758+tOfVl9bX18vbrvtNrFv375R72eGMRFCiGPHjgkA4uWXXx7zXnqNyUTXqmz7fffdJ2688cYx37Ny5Urh8XjE3LlzR80r0tX+bezOKvO1Vebq6fTFqPM15+o0M8wLnKuNNyZCGHOuFoLzdaFxruZcbaS+GGW+tspcLYR15murzNXZ9kUIY87XVp2rFSGEmCTjCxERERERERERERGRLTn0bgARERERERERERERkVExiE5ERERERERERERENAEG0YmIiIiIiIiIiIiIJsAgOhERERERERERERHRBBhEJyIiIiIiIiIiIiKaAIPoREREREREREREREQTYBCdiIiIiIiIiIiIiGgCDKITEREREREREREREU2AQXQiIiIiIiIiIiIiogkwiE5ERERERERERERENAEG0YmIiIiIiIiIiIiIJsAgOhERERERERERERHRBBhEJyIiIiIiIiIiIiKaAIPoREREREREREREREQTYBCdiIiIiIiIiIiIiGgCDKITEREREREREREREU2AQXQiIiIiIiIiIiIiogkwiE5kcX//938PRVHQ3d096WtjsRg+97nPoaWlBQ6HA3feeWf+G0hERGRznKuJiIiIiIyNQXQiUm3btg1f+9rX8Gd/9mf40Y9+hM985jNXfX0ikcD3vvc9rFy5EsXFxaiursZ73vMeHDx4sEAtJiIispds5mpFUSb876abbipgq4mIiIiIzM2ldwOIyDh+85vfoLm5Gd/85jen9PqPfOQj+MlPfoJ7770XDz74IIaHh7F//350dnbmuaVERET2lM1c/eMf/3jM19544w1861vfws0335yP5hERERERWRKD6ESk6uzsREVFxZRe+7Of/Qw/+tGP8Mtf/hJ/8id/kt+GEREREYDs5uq//Mu/HPO1Xbt2QVEU3H333Rq3jIiIiIjIupjOhcgmuru78Rd/8Rfw+/2orq7GQw89hFAoBAA4d+4cFEXBb3/7Wxw+fFg96r1r164J3++JJ57AmjVr8Cd/8idIJBIYHh4uUE+IiIisSeu5+krhcBj//u//jhtvvBEzZszIUy+IiIiIiKyHQXQim/iLv/gLhEIhbNmyBbfddhv+7//9v/j4xz8OAKitrcWPf/xjLFq0CDNmzMCPf/xj/PjHP8bixYvHfa9AIIA9e/bgbW97G77whS+gvLwcpaWlmDt3Ln72s58VsltERESWoeVcPZ7t27ejv78fH/zgB/PVBSIiIiIiS2I6FyKbmDNnDl544QUAwKc+9Sn4/X5897vfxd/93d9h+fLl+Mu//Ev867/+K5xO57jHvzOdPn0aQgg8++yzcLlc+Od//meUl5fjW9/6Fj7wgQ/A7/fjlltuKUS3iIiILEPLuXo8P/nJT+D1evFnf/ZnWjediIiIiMjSuBOdyCY+9alPjfrzX//1XwNI7krL1tDQEACgp6cHL7zwAj75yU/innvuwc6dO1FdXY1/+Id/yL3BRERENqPlXH2lQCCAF198EbfddtuUc6oTEREREVESg+hENrFgwYJRf543bx4cDgfOnTuX9XsVFxcDSO6YW7t2rfr10tJS3HHHHdizZw9isVhO7SUiIrIbLefqK/37v/87QqEQU7kQEREREU0Dg+hENqUoyrS/t6mpCQBQX18/5u/q6uoQjUZZaJSIiChHuczVV/rJT36C8vJy/NEf/ZFm70lEREREZBcMohPZxMmTJ0f9+dSpU0gkEpg9e3bW79XU1ISGhgZcunRpzN+1tbWhqKgIZWVl020qERGRLWk5V2e6fPkyfvvb3+JP//RP4fV6c3ovIiIiIiI7YhCdyCaeeuqpUX/+9re/DQC49dZbp/V+d911F1pbW7Fjxw71a93d3XjhhRfwnve8Bw4HP16IiIiyofVcLT377LNIJBJM5UJERERENE0uvRtARIVx9uxZ/PEf/zFuueUW7N69G//2b/+Ge+65BytWrJjW+23atAk/+9nP8Kd/+qfYuHEjysvLsXXrVkSjUXzlK1/RuPVERETWp/VcLf3kJz9BU1MT3vWud2nTUCIiIiIim+FWUSKbeO655+D1evHwww/jxRdfxIMPPoinn3562u9XX1+P3//+91i/fj2++c1v4otf/CJmzJiB//7v/875YZ+IiMiOtJ6rAeD48ePYu3cvPvCBD/CUGBERERHRNClCCKF3I4iIiIiIiIiIiIiIjIjbUYiIiIiIiIiIiIiIJsAgOhERERERERERERHRBBhEJyIiIiIiIiIiIiKaAIPoRERERERERAX0u9/9DnfccQeampqgKAqef/75Sb9n165duO666+D1ejF//nw888wzeW8nERERJTGITkRERERERFRAw8PDWLFiBZ566qkpvf7s2bO4/fbb8e53vxsHDhzApz/9aXzsYx/Dr3/96zy3lIiIiABAEUIIvRsxmUQigba2NpSVlUFRFL2bQ0RElBdCCAwODqKpqQkOh7nWuTlXExGRXWg9XyuKgv/4j//AnXfeOeFrPv/5z+PFF1/EoUOH1K994AMfQH9/P1566aVxvyccDiMcDqt/TiQS6O3tRXV1NedqIiKytHw8W7s0eZc8a2trQ0tLi97NICIiKojW1lbMmDFD72ZkhXM1ERHZTSHn6927d2P9+vWjvrZhwwZ8+tOfnvB7tmzZgscffzzPLSMiIjIuLedqUwTRy8rKACQ77vf7c36/aDSKl19+GTfffDPcbnfO76cXq/QDYF+MyCr9AKzTF6v0A7BOX7TuRyAQQEtLizrvmQnn6olZpS9W6Qdgnb5YpR+AdfpilX4A1ulLPvqhx3zd3t6O+vr6UV+rr69HIBDAyMgIiouLx3zPpk2bsHHjRvXPAwMDmDlzpmZzNRERkVHlY642RRBdHjXz+/2aPZj7fD74/X7T3xBaoR8A+2JEVukHYJ2+WKUfgHX6kq9+mPGINefqiVmlL1bpB2CdvlilH4B1+mKVfgDW6Us++2H0+drr9cLr9Y75ulZzNRERkdFpOVebK+EqERERERERkc00NDSgo6Nj1Nc6Ojrg9/vH3YVORERE2mIQnYiIiIiIiMjA1q1bh507d4762o4dO7Bu3TqdWkRERGQvDKITERERERERFdDQ0BAOHDiAAwcOAADOnj2LAwcO4MKFCwCS+czvvfde9fWf+MQncObMGXzuc5/DsWPH8N3vfhc/+9nP8JnPfEaP5hMREdkOg+hEREREREREBfTGG29g1apVWLVqFQBg48aNWLVqFR577DEAwOXLl9WAOgDMmTMHL774Inbs2IEVK1bgG9/4Bv71X/8VGzZs0KX9REREdmOKwqJEREREREREVvGud70LQogJ//6ZZ54Z93v279+fx1YRERHRRLgTnYiIiIiIiIiIiIhoAgyiExERERERERERERFNgEF0IiIiIiIiIiIiIqIJMIhORERERERERERERDQBBtGJiIiIiIiIiIiIiCbAIDoRERERERERERER0QQYRCciIiIiIiIiIiIimgCD6EREREREREREREREE8g6iP673/0Od9xxB5qamqAoCp5//vlJv2fXrl247rrr4PV6MX/+fDzzzDPTaCoRERERERERERERUWFlHUQfHh7GihUr8NRTT03p9WfPnsXtt9+Od7/73Thw4AA+/elP42Mf+xh+/etfZ91YIiIimhwXvImIiIiIiIi048r2G2699VbceuutU3791q1bMWfOHHzjG98AACxevBi///3v8c1vfhMbNmzI9scTERHRJOSC90c+8hG8//3vn/T1csH7E5/4BH7yk59g586d+NjHPobGxkZd5+qhKBBPCLh1awEREZndYCiKSFzvVhAREZHZZR1Ez9bu3buxfv36UV/bsGEDPv3pT0/4PeFwGOFwWP1zIBAAAESjUUSj0ZzbJN9Di/fS065jHdi81wnf3A68a1G93s3JiVXGZGAkih+9cg4lQfP3xSpjcr4niP/YfxGNUfP3xSpjsvd8Hz79szdxW4OCm0zeF63HRKv3KcSCd77n6ru+/xr2tbpwzco+rJxVlfP76ckq1+757kG8fFHBDcMjqCjRuzW5scqYBENhdIeASCSid1NyZpUxOXKpH79pU3DjSBgmv0wsMybPvHIOT73uxGnvcfztzQs1eU+z/5sQERFR9vIeRG9vb0d9/egAb319PQKBAEZGRlBcXDzme7Zs2YLHH398zNdffvll+Hw+zdq2Y8cOzd5LDw/tdgFQ8NCzB7BljTW2V5h9TP7vISdODyq4ptyBRpP3RTL7mDx93IE3ex1o8jlR5jZ3XySzj8k/7neiM6RgW8CJFSbvi6TVmASDQU3eJ1vTWfDO91wdGnQAcOAnO15DW5PI+f2MwOzX7hffcGIo6kT0x/+N22cm9G6OJsw+Jt857MDJgAsHe3bivc28ToxgywEn2kec6N/2W7x/Dq8TI3jpiANx4UD3xTPYvv20Ju+p13xNRERE+sl7EH06Nm3ahI0bN6p/DgQCaGlpwc033wy/35/z+0ejUezYsQM33XQT3G5zHhIfDMWA3b8BAATjCm655VY4HIrOrZo+K4xJOJbAQ7v/CwBwYsCBG9/9bpQUe3Vu1fRZYUziCYGHdicf/NqCCta9892oLB27cGcWVhgTIQT+bs9/AUgGe1atuxGNlebdq6f1mMjd3IU2nQXvfM/VF3yncGTnGQwW1eO2267L+f30ZIVr91L/CIZ2/w8A4FS4FLfd9gc6tyg3VhiTvmAED+3eBQA4PFKGb3BMdBeMxPBQ6v781W4X/vVT6yf5DmOzwphE4wk8/MZvACTwoQ1vx5LmSk3eV6/5moiIiPST9yB6Q0MDOjo6Rn2to6MDfr9/3IdyAPB6vfB6xwYf3W63pjdwWr9fIR083Tfqz6d6RnBtU7lOrdGOmcdkX2vPqD8f6QjihgWlOrVGO2Yek+OXBkb9+WDbEG66Nvfgnt7MPCZnuoYQjad3S+6/OIiZdRX6NUgjWo2JmcY133P12nk1wM4z2Nc6AKfTZeqFYsnM1+6+1vS93OWBEOBwwu3Muj694Zh5TPZfTN93nO8ZQSShoMRryP0xWTHzmLx1Ln3fEY4lMBBOoKbUvBsqJFOPyeU+jEQTKHEJLGqs0KwfZv33ICIiounL+9PPunXrsHPnzlFf27FjB9atW5fvH21pu8+MDti+eqZXp5aQdOUYvHaWY6K3V6+4Tl472zfBK6lQrvzseu0crxMjmM6Cd75d2+iHxyHQF4ziVNeQLm2gtD0Zc9pINIFDVyxSUuFljkksIbD/Qr9+jSEAwGtnR89xb3CO093rqetkbpmwxGIsERER6SfrIPrQ0BAOHDiAAwcOAADOnj2LAwcO4MKFCwCSx7vvvfde9fWf+MQncObMGXzuc5/DsWPH8N3vfhc/+9nP8JnPfEabHtiUDA42+cSoP5N+dp/pBgAsqk/uPt9zjgFbve0+nbwu0mPCh1m9yTFZ3FAGgAsbRmHEBW+Py4HZZck5jouS+pMBW4ciRv2Z9CMDtukx4b2g3l4bc51wjtOb/Kya57dGzQAiIiLST9ZB9DfeeAOrVq3CqlWrAAAbN27EqlWr8NhjjwEALl++rAbUAWDOnDl48cUXsWPHDqxYsQLf+MY38K//+q/YsGGDRl2wn0Aoqu4Au2VGsmDRnrO9SCR4c6iXUDSOfakdYH/znvkAgH0X+hGOWaPgqxnF4gn1wUmOyeG2QQyGono2y9aEEOqJjb9+9zwoEDjdNYzuobDOLbMeqyx4z0sF0V9nwFZXnYEQznQPQ1GAm5oYRDeCQCiKI23JnMw3NyfvBbnYpK9QNI4Drf0AgA2pMdlzjgsbekokBF4/xyA6ERERaSPrIPq73vUuCCHG/PfMM88AAJ555hns2rVrzPfs378f4XAYp0+fxoc//GENmm5fb5zrRUIAs6p8WFolUOJxYmAkiqPtLHCjl/0X+hGJJVBb5sV7F9Wi1C0QjiXw5kUed9fLkcsBDIZjKCty4T2LalHtFYgnBN44z11hejndNYTuoTC8LgfeeU0NGn3Jr7/GdFSas8qC97xUCYM9Z3shBAMgepGneBbWl2FpVUL9WpyL97rZe64PCQHMrCrGdTXJcdjfysV7PR1oTd0Llnrw9rrkmBxpC3DxXkfHOwYRCMVQ4nGi2bw1zImIiMggzF8RyoZkOoS1cyrhVIDrZyWrzDMQpR+ZTmfd3Go4HArmp3a7vHqaO5D0kr5OquDMHBOmPtKN3IV+3cxKeF0OjkkeWWXBe1apgNupoD0QQmvviN7NsS256/xtsyvRXAKUeJwYDMVwvH1Q55bZl9x1vmZ2FeqKgOoSDyKxBN7i4r1uMq+TCi/QUlmMhAD2cvFeN3JMVs2sgJPp0ImIiChHDKKbkAxErZ1TBQBYM6cy9XUGovQiiyW+fW41AKSDg8xPqpsxY1Keyq3MxSbdyKDP2rnJzy55nVxZiI1I8jiB5c3lAPh7oqc9asA2uXh/3cyK1Nc5JnqR18PbZldAUZKB2+TXOcfpRY7JmtRYyDFh6iP9qAsbqQ1HRERERLlgEN1kBkaiONyW3GUkg+drMh6cmBe98ELROA6k8qG/PRUcXJAKDu4938ej1TqIxRNqDuUrFzbeujSAoXBMt7bZlRACr52RpwOSYyLzk57oGGJedJoQA1H66huO4Fhqx/nbZlUk/1eOCYs16yIYiak7ztfMTt538DrRVySWUHecv41BdEMQQqifUdfPrtC3MURERGQJDKKbjMyHPqemBA3+IgDAtU1+NS/6MR6tLrh95/sQiSdQ7/diTk0y4WJ9MVBV4kYoyrzoejjcFsBwJA5/kQtLGpNJlau8wIzK4mRedAZ+Cu5cTxCdg2F4nA6sSu1iLXUDC+tLATDIQBNjwFZfalG+2hJUl3oBjA4OMld94e07349YQqCpvAjNFcl7wetTCxx7z/chFk/o2Dp7OtQ2gFA0gUqfG/Nrk/OavE4OXuxHKMoNFYV2rieIrtR9x4rUiSYiIiKiXDCIbjIyz7Pc8QwAbqcD16d2IjGlS+G9mpE2RFGSCRcVBVgrx4R50QtOPVI9pwoORzoJ5lo19RGDcYUmd6GvbKlAkdupfn1NKi3Va/zsogmsaqmAQwHO9wTRPhDSuzm2s0dNw1Stfm1Zczk8Lge6hyI40z2sV9NsS85xazPuOxbWl6GsyIWhcAxHL3NDRaHJ02/Xz07fd8ysLEZdmRfRuMCB1n4dW2dPckxWtlTAm3HfQURERDRdDKKbjMyx/faMh9nMPzOIXnivXpE2RJIBW+YnLTw1f++cqlFfT6c+4nVSaFfmQ5fkmHBhgyZSVuTCkqbkiRLuRi889drN+Dz1uhxY1VIBgKdI9DDeHOd0KHhbavGec1zhvX5udCoXAFAURR0jXieFJz+73jaH+dCJiIhIGwyim0gyH3oAwHhBdPngxLzohRSKxtXdRWvHBGyTf37jfC8iMR6tLpREQqR3Ts4ZfZ3IMXnz4gCGmRe9YMbLhy7JgMPxjkH0DkcK3jYyhzWzk783LGRZWIOhzDosV8xxDA7qIhJLqPcdMmguyTF5nYtNBZVICLxxPhWwvWJM1vI60c2ec/JUYvUkryQiIiKaGgbRTeSNc70QqXzo9al86NLS5nLmRdfBmxcHEIklUFOazocuza8rQVWJJ5UXvV+fBtrQsfZBBEIx+DxOXJvavSrNqCxO50VPFQCj/LvYN4K2gRBcDgXXpfL2StUlHiysLwPAAClNjAFbfew934eEAFqqitFYXjzq7zgm+jjUNoBwLJl7e17t6PuOzDFhrvrCOd01hP5gFEVuB65tGp17WwZw957vQ5S56gvm8sAIWntH4FCA1bO4E52IiIi0wSC6iajHd6/Y5QIwL7peZNBv7ZwqNS+ppCiKekKAY1I4ckxWz6qEyzn2I46pjwpPHqlePqMcPo9rzN+nrxMG42h88sTCiY4hnlgooL3nZYqKsfcd182shNOh4FL/CC72BQvdNNvKzL195X3H0qZyFLud6AtGcapzSI/m2ZJMM7WqpRIe1+j7jgV1pSgvdmMkGldPk1L+yWema5vKUeode99BRERENB0MopuIvEm/8ki1tJYB24J7bYLc21I6YMvgYKHI6+TKlEeS/DoLWRaOmsplgjFZy4UNmkR1qRcL6koBMFVFIcl/6/GC6CVeF5Y2l496HeXfeLm3JY/LgVUzKwCwHkshvXGVMXFk5KrnaavCmag2DhEREVEuGEQ3iWAkhrcujp+XVFKDg8yLXhCxeELdpTfZmOw938e86AUghJj0wUnmJ2Ve9MIZrzBhJjlWx9qZF50mxvQhhTU69/b46RCY77mwEgmBvRPk3pZ4nRSeutg0yX0Hx6RwXp9k4xERERHRdDCIbhL7L/QjlhBoLC/CjMricV+zrLkcPuZFL5jDbQEEI3H4i1xqTucrLagrRVWJByPRON661F/YBtrQ6a5hdA9F4HU5sHxG+bivaanyobmiGLGEUBdBKH8uD4zgQm8QToeippy6Uk2pF9fUJ3cZM8hAE2FwsLAOtw0gFE2gwufG3JrScV8j08tx13NhnOkeQt8Eubcl5kUvrMsDI7jYl8y9vWrm+ItN6YKvfdzkUgC9wxGc6EimM5posYmIiIhoOhhEN4nM3bVX5sCUMvOiv8Yjo3mXOSYOx/hjkpkXffdpjkm+yTFZNbMCXpdzwtcxL3rhvJZKZbS0yX/VvKRr53BM6OpkIOpw2wAGQ1GdW2N9cpHx+lmVE85x16d2qJ/pGkbXYLhgbbMrmcplZUvFmNzb0qqWSridCtoDIbT2jhSyebYkx2TJVea4a5v86iaXE53c5JJvche63MhCREREpBUG0U1CBgcn21GxJvVAy/yk+TdZPnRJ7tTbc467nvNNLh6tmTN+7m1J1g/g7sn8k2MyUT50iQsbNJnG8mK0VBUjIZKnsyi/5H3ERCdIAKDC58GihrJRr6f8uVqOeqnY48TyGRUAuKGiEF6fwv25y+nA6lnJ+3OepMm/15kPnYiIiPKEQXQTiMQS2N+aDMBOlFNYShcv6uMx3jxKJERGvsWrBwdljsx95/sQ5zHevBFCqLue3z7FhY23Lg4gFI3nvW12Jsdkss8u+bB7vGMQAyPcZUzju35W8vfkDaZiyishxFWLJWaSu9GZHiv/5JhcbWEj+fcck0KZysIGkLGhgkH0vNvDfOhERESUJwyim8Bbl5J5SatKPJhfN35eUmlFSwU8Tge6h8I43xMsUAvt50RnMtDn8zhxbZP/qq9d1OBHmdeFoXAMRy8HCtRC+7nYN4L2QAguhzJhXlJpVrUPtWVeROIJvJkq2Eva6wyEcKZ7GIoyedCntsyLOTUlECK54EQ0HrmbUxZXpPw42z2MnuEIPC4HljaPn3tbkmPChY386giEcKE3CIcCXDez4qqv5WJTYQyMRHG8I5me5fpJFptWp/6e81t+BSMxHG5L3mtPdt9BRERElC0G0U1A7lq5flblhPnQpSK3E8tSBRX38Gh13sgxWT2rEm7n1S8jp0PBdTLIwDHJG5kGZPmMchR7Js6HDiRz1b+NqY/yTqbLWdLoR3mxe9LXXz+LY0JXJwNV+y/0IxZP6Nwa65LB1xUzyq9aXwJIB2wPXxrASIQne/JF7kJf1OBHWdHVP0/lwsapziH0ByN5b5td7TvfByGA2dU+1JUVXfW1K1sq4HQoaBsIoa2fuerz5UBrP+IJgcbyIjRXFOvdHCIiIrIYBtFN4PUsjyXKI6Wv88ho3qj50Ke4y0WO3evMi543cmFjstzbknqdMGCbN3uyzEv6tjkcE7q6BXVlKPO6EIzEcaydBfry5Y0p5EOXZlQWo67Mi1hC4ODF/jy3zL7SaUOuvuMZAKpKPJhbUwIA2HeB9x35MtVULgDg87iwpDF5cpEnBPJH7vSXC0lEREREWmIQ3eDio3JvTzVgy6PV+SSEyDo4KHfY7jnXy1z1eZJtDkz50Lv3HHPV54v87JosH7okx+RgK3PV0/icDgWrZjHfc76pubenEIhSFIU5uAvgjfNTX9gAMtLscPE+b7IJogPpMWFKl/x5g0F0IiIiyiMG0Q3uWHsAg6EYSjxOdQfLZFbPrIKiJHOadg6G8txC+znXE0TXYBgepwMrWiqm9D0yV33XYBgXepmrXmvtAyGc70nmip1K0AcAFjf6Uep1YTAcw7F25qrXWmau2NWzphZgmF3tQ01pMlf9W5eYq57Gdz1zcOdV91AYZ7qHAUw9ECWvcQbR82MoHMORVJ7nqQZs5cIGr5P8CEXjONianKfeNsWF4nT9AJ62yodEQqgLFNdP8b6DiIiIKBsMohucTMmyenYVXJPk3pbKfW4srC8DwB1I+bDnbDL39sqWChS5r54rVhqVq55pdjT3WmpMrm0qnzRXrDQ6Vz2vE63tu5DOFVtb5p3S9zBXPU2FDKLv5e9IXshA+DX1pajweab0PddnnA5I8GSP5vad70NCAC1VxWgov3rubUkubBxs7UeU9QM099alAUTiCdSUejC72jel75ELG0cvD2I4HMtn82zpVNcQAqEYit1OLG4s07s5REREZEEMohucmqJiCjkwM8mdSgzYau+1LFO5SMzBnT/ZHqmW3paRZoe0tVemg8h2TFjTgSaxciYL9OWTzIc+1RMkALCkyY8itwMDI1Gc7hrKV9NsS47J27IYk7k1JajwuRGOJXC4jaettCbvO66fVQVFUab0PY3lxWiuKEY8IXCwtT+PrbMnuSFiZUvFlDceEREREWWDdxgGNjr39tSKJUryaCmPjGov2xz1kpqrnrueNSf/TadScC2Tep0wV73msimCl0kG0d/gjlaaAAv05dfr0/g8dTsdWDGjAgDHJB9en8aipMOhYPVMed/Be0GtpReKs5vjrmM6qryRp2iyHRMiIiKiqWIQ3cDOdg+jeygCj9OB5alUIFMlH36PtAUwGIrmo3m2dHlgBK29I3Ao6QehqZK56s90D6NrMJynFtrPqNzbWT44rWypgNupoCMQRmsvd7RqJRJL4EBql122O9EXN5ahxOPEYCimjivRlVYzpUtejETiOJSqR5DtyR41BzcXijUVjSewv3V6C8WrWfA1L4QQ2HdhegUsWdMhf/amNg5le39ORERENFUMohuY3IWeTe5tqbG8GDMqi5EQwL4L/XlonT3J4MCSpmRRymyMzlXPwI9W9qdyb8+q9qGubGq5YqUitxPLmpMLVEyzo51DbQMIxxKoKvFgbk1JVt/rcjoyctVzTGh8LJqYHwcv9iOWEKj3ezGjsjir75WF/GRwkbRxpC2AUDSB8mI35tWWZvW96k708308baWhs93D6AtG4XE5cG1TdptcZNB9P09baap7KIxzPUEoCnDdTAbRiYiIKD8YRDcwmaf5bXOmdzO4hrmFNaceFc0iL2mm69WiiQwyaEWOSba7wSTmqtdeOqdy5ZRzxWZSazrwOqEJyOv96OUAC/Rp6I1p5HmWZOAqeYqOp620Iue462ZWwOHIbkxWpE5bdQ2GcbGPp620IjenLG8uh8eV3aPUooYy+DxODIZjONHJ01ZaUQsi15WhvHhqBeaJiIiIssUguoGlc/tNL2Ar8z0zOKidN3I8KsqArfbk6YDpLmykA7YcE61MJ6dyJnWx6Sxz1dP4ZIG+hICaOohyJ6/d6SxKlvvcWFCX3CnN9CHakTv7p7O7tsjtVHdKs0aOdtSFjWlcJy6nA6tmVgBg6iMt7cthTIiIiIimikF0g+oaDON8TxDA9I8lygDWgdZ+hGNxzdpmV8PhGI5eTu4aun6aN+myGOnhtgEMcfdkzjJzxU63kJQMFp3pGkYPd0/mTAiR8wLgqpZKuBwK2gMh7p6kCa2exRzcWkokBPZfyO3z9Hrm4Nbc/tSu5+kGB9X6ARwTzezPYWEDSKfZ2ccx0cwb6klRBtGJiIgofxhENyj1WGJ96bSPJc6rLUVViQfhWEItFEbTd7C1H/GEQFN5EZoqsssVK2XuntzPvLE5y8wVOz/LXLFSZYkH19Qnv5dpdnJ3pnsYvcMReF0OLM0yV6xU7HFiaTN3T9LVpfOi83dEC2e6hxEIxeB1ObCowT+t91idOhHEegba6AiEcKk/Wcx8RUvFtN7jei42aWowlC5mft2simm9x+rUAjNrOmgjFI3jrYvJ55zppvYjIiIimgoG0Q1KHt9dPc0UFQCgKIr68MTgYO7kw87qae6uleRudOaqz90bGfnQs80Vm0numGbgJ3fy33BlS0XWuWIzyetkz1l+dtH41AJ9F5ILnJQbed+xfEb2eZ4lec9x6FIAoShPwOVqn7qhoizrYuaSvE6OdwwiEIpq1ja7OtDaDyGAlqrirIuZS6tmVkBRgAu9QXQOhjRuof0cbhtAJJ5ATakHs6p9ejeHiIiILIxBdIPKtViixICtdrQ6KsriotrZez5dwDIXa5irXjPpfOi5LTa9jQsbNIlFDX6Uel0YCsdwvJ0F+nKVa4oKAJhV7UNNqQeROE/AaUHNh57DHFfnL0JLVTGESKeGoenbd74fQG7Xib/IjYX1Zan3471grt7IqOUwnWLmRERERFPFILoBZR5LzD1gmz4ymuBOvWmLJwT2a7WwkRqT/a19iMYTObfNroQQGUVFcxsTWYT3UFsAw8xVnxMZ9F49zZzKkhzTk51D6BuO5Nwush6nQ1EL9O1lSpecyQDrqhyCg4qiqMFFpqrI3T6ZDz2HMQHShbeZFz13ezVYbAJY00FLWm08IiIiIpoMg+gGJI8lVpfkfixxSaMfXpcDAyNRnOke1qiF9nOiYxCD4Rh8HicWNZTl9F7zapN57kPRBI5eDmjUQvtp7R1B52AYbqcy7VyxUnNFMZrKixBPCBy82K9J++yoczCEcz1BKEruAYbKEg8W1Mlc9QyQ0vhYNFEbo/I8pxYmpkvNVc/gYE4isQTeSu3mz3VM0tcJP0tzkVl8N9eArRpE52dXTjKLmeeSApOIiIhoKhhENyAtjyV6XA6smFEBgEdGcyFv0FfNrIDLmdtl43Ao6gMxAz/TJ4sJLm0uR5HbmfP7rUo90PI6mb69qc+uhfVl0y6InEkGGfYxBQFNQC7WHGjt17chJnewdQBCJBcU6/zTy/Msyev2QGsfhOAJuOk63DaASCyBSp8bc2pKcnovubBxgPUDcnK6awiDoRiK3blvqJCnAw63DbB+QA7O9QTRMxyBx+XA0ubpFUQmIiIimioG0Q1I62OJ16mBKAYHp0vrXS4y8MMg+vRplaNeWj2TAdtcaZUPXbpuJj+76OrkKZRzPUH0Mu3PtO3XIPe2dG1TOdxOBd1DEVzsG8n5/exqX0Z6nVw3VCyoK0OJx4nhSBwnO1k/YLrkPduKlvKcN1S0VBWjptSLaFzgcBvrB0yX3PiwrLkcXlfuGyqIiIiIroZBdIPJPJZ4fY45hSXues6d3PWsWcA29T4s8jV9e89pu7CxOmOxibsnp0e9TrT67EqNyZsX+1k/gMZVXuzGvNrkLt0DrZzjpksuVK3KMTUWABS5nVjSmNwRup8nBKZNLSqaYyoXIFk/QC448b5j+vZplA8dSNYPWMkxyZk8haTFdUJEREQ0GQbRDea8PJbodODapnJN3vO6jAJ9AyNRTd7TTjoDIbT2jkBRoBaxy9WKlgo4FOBS/wjaB0KavKedDASjOJHaTafViY3FqfoB/UHWD5iOYCSGw23JHP/Xa7QTfW5NCesH0KRkIUwGoqZHCKEGu7XYiQ5kjgkXNqZLFjPXImALICNgyzGZLq1Pisp7Si42Td/+1OLpyhYWFSUiIqL8YxDdYGSKimUztMnzDAA1pV7MThUo5cNT9uSYLKwvQ1lR7nmeAaDE68KihuROPaaqyF5ytzgwp6YEtWVeTd4zs34AT21k782LA4gnBBr8RWiuKNbkPTPrBzBXPU1EDUQxiD4tZ7qH0R+MwuNyqDvIc8UxyU37QAhtAyE4FORcOFviYlNu+oMRnO5KLrCv0mhhQ14nBzgm0zISiePo5eSGCq02uRARERFdDYPoBqP1LhdJzS3MQFTWZKFXrVJUSHKMGbDNnkwbovV1smpWBQBeJ9OhHnNP/RtqRa0fwCADTWBVS7q4KIsmZk8GVZc1l8Pj0ua2UI7JkbYAwjEWTcyW/Dxd2OBHidelyXvKneinuoYQCPFUYrbkdTKnpgRVJR5N3nP5jPSpxM4ATyVm61BbcvG+3u9FY3luBZGJiIiIpoJBdIPZm6fgYLq4aL+m72sHe9V86NqkqJBksJE70bOnLmxofJ2sZiHLadt3vh+AdqkHJDVXPRc2aALX1JfC53FiKBzD6a4hvZtjOlrm3pZaqopRVeJBJJ5Q0zzR1O07r/2Y1JZ50VJVDCGAN1tZyDJbWuZDl0q9LlxTXwaAKV2mQ56uXdlSkXPxXSIiIqKpYBDdQAZGojjRkQwA5CsQtf9CH3fqZWEkElcDAFovbKyemQzKH7o0gFCUO/WmKhpP4ODFfgDanw6Qi00nOlg/IBtCCLWoo9ZHqjPrB3Rwpx6Nw+V0YPmMZA0RpizL3j6Nc28DyaKJq1g0cdryEbAF0nmjeZ1kL1+nrZj6aPrkv5lW6XWIiIiIJsMguoHIG/TZ1T7N8jxL19SXodTrwnAkjuPtg5q+t5UdvNiPWOqo6IxKbfI8Sy1Vxagp9SAaFzh0ibvCpup4+yBC0QTKi92YW1Oq6XvXlHoxK1U/4AB3hU1Za+8IuocicDsVzQoiS6PqB3A3Ok2A+Z6nZygcw4mO5D2BVkVFJTXfMz9LsxKOxXHoUnLxXvMxkQsbHJOsxBNCzVuueRo5LmxMm/xsWaVR3QAiIiKiyTCIbiDqbjCNb9ABwOlQ1HyYTFUxdTJf+fWzqjQ/KqooSjpXPcdkyvZlHN91OLQ/vqvm4GbAdsrkmFzbpF1B5Exy5x/HhCbCXc/T82ZrPxICaCovQr1f25zC6YUNXrfZONwWQCSeQFWJRy0Kr5XMhQ0heCpxqk52DmI4EkeJx4kFdWWavvfK1Ji8dWkAsXhC0/e2sssDI7g8EILToWDZDG0X74mIiIgmwiC6gaTzPGube1u6jrmFsyYf/rVOUSGxuGj20sd3K/Ly/tfNYuAnW/lKPSBxsYkmIwNRJzoHMciiiVMmr6lVeVi8Xz6jHIoCXOwbQecgUzFNlbxHW5WHPM9LmvzwOB3oHY7gQm9Q0/e2soOpHc/LZ1TAqfHi/fzaUpR5XQhG4mpKR5qcPBmwsL4MPo82xXeJiIiIJsMgukHE4gn1WKLWR0UlWaBqLwNRU5LM89wPIH/5FjMLvnJX2NSkFzbyMyarM9JCsH7A1Owr0GLToUsBhGOsH0Bj1ZUVobkiVTTxItNjTZVclMzHAlhZkRsL6pIptw7whMCUyVQr+TiV6HU5saQpmR6LpzamTt4LrshD2hCHQ1Hfd38r78+nSo7JyjzddxARERGNh0F0gzjWPoiRaBxlXpf60Kk1GXQ83xNE91A4Lz/DSi72ZeZ59uflZyxrLofbqaBrMIyLfSN5+RlW0jscwbme5O65lTMq8vIzFjaUocTjxFA4hpOdrB8wmZFIHEcv5yensjSzyofqEg8i8YSaK5joSszBnR0hhBqwzdcCmJrvmWMyZXLX88o85XnmdZK9A63Jhbm8jwkXNqZMPZXIfOhERERUQAyiG0TmLpd85HkGgPJiN66pTwbomdJlcnJ37ZJGf17yPANAkduJJalCjEzpMrkDqV1a82pLUO5z5+VnOB2KurOJYzK5Ny8md+zX+71oKtc2p7KkKArTUdGkmIM7O+d7gugdjsDjdORtoZjBwex0D6UX1POV55nXSXaCkXTx3XwF0Vey4GtWovEE3rzUDyB/pxKJiIiIxsMgukEcyPNuMEktmsiHp0mlc2/n9wZ9NfM9T1mhxkTNwX2+P68/xwr2ZaSD0Dp/bybmRafJyPlzP9NjTcnBi/0Aknmyva78LBTLz+qDF5keayreTI3JvNoS+Ivys1Asd+4ebgsgFGV6rMkcuhRQF4ob8rRQLIPopzqHMDDCmg6TOd4+iFA0gbIiF+bWlOjdHCIiIrIRBtENQu4IytcuF0ktmsjg4KQKtbDB4qJTl++iolI6Vz3HZDL5zocuZV4nDJDSeK5NFU3sGY6gtZfpsSZzIM9pQwBgfl0pStWiiUyPNRmZNiQfubelGZXFqCn1IJYQONzG+gGTyXd6HQCoLvViVrUPQHohhSa2P2NM8nV6l4iIiGg8DKIbwMBIFKe7hgEUIIiesSssGk/k9WeZWTgWx5G2ZO7l/C9sJN//WPsggpFYXn+WmcUTGYVeW/K8Ez31/me7h9HD+gETEkKoC4D5KEyYafmMcrgcCjoHw7jUzwApjTWqaCIL9E3qoJpGLj9pQ4Bkeiz5/ixkOblCBGwVRcFKmaueYzKpA6mgdj4XNoD0CQGOyeTUAvPMh05EREQFxiC6AchdJzOrfKgu9eb1Z82tKUFZkQvhWALH27krbCKH2wKIxBOoKvFgZpUvrz+rsbwYDf4ixBMCb13krrCJnO4awlA4Bp/Hqeb2z5dynxvzapNHhA9yV9iEMovvLm3OXyAOkPUDkgFSntqgicgTEcydf3XReAKHUwvFy/NUpFlS8z3zZM9VCSHU+WZFnsdETX3EHNyTkvn881XMXOJ1MnXpk6LMh05ERESFxSC6Aag36AXYUeFwKOrPOcCHpwnJMVnVUpHXPM+S3KnHgO3E5IPlihkVcDnz/9Eld+qxIN7E1OK7TeV5K76bSe46O9jKxSYan5zfDnJB8qqOtw8iHEvmFJ5Tnd+cwvLkEO85ru5CbxD9wSg8TgcWNZbl9Wex4OvUdKVOPilK/gq9SjIgfKCVNR2upj8YwZkCnd4lIiIiuhKD6AawvwDHdzPJHU4H+UA7oUKPyUoGGSZVqHzo0koZZGAwbkJyt2+hjlSvUAOk/QX5eWQ+clf1kcsBRGJMWTaRN1Ofaytm5D+n8PLUIvGp1GkiGp+c/xfnsdCrtHxGBRQFuNQ/gq5BpiybiLxPnl9birI8FXqVFjf64XE50BeM4nxPMK8/y8zkdTK72ofKEo++jSEiIiLbYRBdZ0Kk8zyvLFRwkDvRJ6XmWyzQUdGV3GE7qXQQvUBjkrHYxF1h49uXGhNZiDXf5HVy6NIAazrQuGZX++AvciESS7CQ5VXI4ODyPO+uBYC6siI0lhdBiOS1S+OT838hFiVLvS7Mq02mRWMhy4nJBdtCbKjwuBxY0phMWfYmr5MJqQuA3IVOREREOmAQXWetvSPoHY7A43Tg2lS+33yTN56nuoYwGIoW5GeaSddgGBf7ksd3l+ex4FqmZTPK1V1hnYOhgvxMMxkMRXGiMxkQK9TpgIUNZfC4HBgYieIcd4WNEYrGcfRyMqfydQVaAJxdXQI/azrQVSiKou5G54mFiR0sULFESQbrGbCdWHpMCnPfkR4TBmwnckAtvltRkJ+3Qo4JN7lMSH6G5LuWAxEREdF4GETX2f7W5I7nQhzflWrLvGiuKIYQYCHLcciHpgV1pfDn+fiuVOp14Zq6ZA5U5igd682LAxACaKkqRm1ZfovvSh6XA0tTC1tMfTTW4bYBxBICNaXJz5NCcDgUNZjBkzQ0ETU4yJM94wpGYuou/XwXsJTSCxsck/FE4wl1l36hxkT+HC5sjC+REOrcX6jF+2XqmPA6mUg6FVVhFpuIiIiIMjGIrrP9GQUsC0mmjtnPQNQYMpVLoQsWsbjoxNT0Oi2FSRsiMWA7sQOpAOXKlvKCFN+V0qmP+gv2M8lcuBP96g5dCiAhgHq/Fw3lRQX5mTJgy4X78clCr/4iF2bnudCrlLkTnSnLxjrXM4xAKAavy4GFDfkt9CrJwPChtgHEExyTK7UPhNA5GIZDAa5tYhCdiIiICo9BdJ3J4FyhiiVKMt8zg4NjpceksAFbFhedWKGLikqsHzAxGcQu1K5JaQU/u2gSckHyZOcQRiJxnVtjPHLncSGv3WWp4OCF3iD6hiMF+7lmkZleJ9+FXqXFjX64HAp6hiO41D9SkJ9pJnJMljaXw+0szOPS3NpSlHicCEbiON01VJCfaSbys+ua+jIUewpzerdQnnrqKcyePRtFRUVYu3Yt9uzZc9XXP/nkk1i4cCGKi4vR0tKCz3zmMwiFmA6SiIgo3xhE11E4FseRtmRO4ULvepY70Q+waOIo8Yzju4UO2MrAz5utA0hwB5JKCKGemCj8wkYFAOBIWwDhGINxmd4scE5liTUdaDIN/iLUlnkRTwgcbuPO5ysVOs8zAJQXuzGnJrnDmkUTx9JjUbLI7VR3WDN9yFgytV4hx8TpUHBtc+pUIheKx5C/p4UoiFxIzz33HDZu3IjNmzdj3759WLFiBTZs2IDOzs5xX//Tn/4UDz/8MDZv3oyjR4/i6aefxnPPPYcvfOELBW45ERGR/TCIrqMjbQFE4glUlXgws8pX0J+9tKkcToeCrsEwLg9w54J0snMQw5E4SjxOLKgrzPFdaWF9GYrcDgyGYzjTzR1IUmbx3cWNhR2TmVU+VPrciMQTOHaZhSyl/mBELbZa6IfZUTUdGIyjcSiKoqZFYA7usQ7qsBMdAJY1s2jiRA6m0mMVelGSqY8mdiD12bGy0BsqWPB1QvL3dJnFioo+8cQTeOCBB3D//fdjyZIl2Lp1K3w+H7Zt2zbu61955RW84x3vwD333IPZs2fj5ptvxt133z3h7vVwOIxAIDDqPyIiIpoeBtF1dCCjYFEhcwoDQLHHiYX1yYAkd7ukyZ1Hy2dUwFmgI9WSy+lQgwwHWBBPJR+aFjeWFaz4rqQoLGQ5HvlwP7vahwqfp+A/n2l2aDLLWTRxXL3DEbT2JlN3LCvwAthyLmyMaygcw4lOWei1sGMifx5z1Y8WjsVxVJ4ULXDAVv3s4iLxKEIIdeHcSkVFI5EI9u7di/Xr16tfczgcWL9+PXbv3j3u99xwww3Yu3evGjQ/c+YMtm/fjttuu23c12/ZsgXl5eXqfy0tLdp3hIiIyCYYRNdRZhBdD5kpXShJHZMC7zyS0sHBPl1+vhHJINhynXYesZDlWAd1SAeRiWNCk1nO3ZzjkouSc2tKUF7sLujPlp8XXNgY7dClAQgBNJUXoc5fmEKv0vKMgq9MI5d2vH0QkXgClT43WqqKC/qz5WfX0bYAIrFEQX+2kbX2jqA/GIXHWbhCr4XQ3d2NeDyO+vr6UV+vr69He3v7uN9zzz334Etf+hL+4A/+AG63G/PmzcO73vWuCdO5bNq0CQMDA+p/ra2tmveDiIjILhhE15EslqhbED318LSfgSiV3CFX6GPuEnc9j3VQ5xyY6pgw8KM6qPPCxgo1iM4AKY1P/m6e7R7GwAhz50tv6pQ2BACubfLDoQCdg2F0BJhGTtJzUfKa+lJ4Xck0cmd7hgv+841K7nhe2lxe8JOiM6t8qEilkTvezjRy0puX+gEAi3Q4lWg0u3btwle+8hV897vfxb59+/DLX/4SL774Ir785S+P+3qv1wu/3z/qPyIiIpoeBtF10jscwYXeZE5h3XZzpnZbv3VxALE4d7uEonGc6Eg+sOgVsJULKscuDyIUZSHLeELg0CX9gj5AekHlTNcwBoIMxgkh1HRDK1v0uU6WNvvhdChoD4TQzpoONI6qEo+6g5SpKtLSC2CFv3Z9HheuYRq5MdLFEisK/rNdTgeubfKn2tFf8J9vVG/puHivKIqa2o+56tOsWlS0pqYGTqcTHR0do77e0dGBhoaGcb/n0UcfxYc+9CF87GMfw7Jly/Anf/In+MpXvoItW7YgkeDzHBERUT4xiK6TN3U8Ui3Nqy1FqdeFkWgcJztZyPJwWwDxhEBNqReN5YU9Ui01VxSjptSDWELgcBsDP6e7hhCMxOHzODGvtlSXNlSVeDCrOln4V+6EsrPLAyF0D4XhdCi4tkmfh9nMYBxPbdBE0rmF+3Vth1EIIXRPxcQ0O2PJ30+9goNqcVGe7FHJnegymF1oy5mrfgz52aXXCbh88Xg8WL16NXbu3Kl+LZFIYOfOnVi3bt243xMMBuFwjH6EdzqTu/OFYFomIiKifGIQXSdG2FHhdCgZhSz7dWuHUbyVsUOv0Md3JUVRMvKi8+FJPjQtbS4veKHXTHI3uiw8a2dyTBbWl6HIrd+RarkLnjv1aCKy+Nyb/CwFAFzqH0HPcAQuh4Iljfoc51cDtrxuAQD9wXSh16U6LUquaJELG/26/HyjCUXjahqVpboF0SsA8DqREhmnEq22Ex0ANm7ciB/84Af40Y9+hKNHj+KTn/wkhoeHcf/99wMA7r33XmzatEl9/R133IHvfe97ePbZZ3H27Fns2LEDjz76KO644w41mE5ERET54dK7AXYlg+jLdN5RsXJmBXaf6cHB1n7cvWamrm3RmxEWNoBkwPa/jnZyYQMZY6LTg6y0sqUCvzrYxgdaZNQN0Gknq7RiRgX+355WLmzQhNSd6LxuAaR3tS5s0G8BTN1he2kAQgjdFqyN4nBbAEAyD3a5T59TifI6OdwWQCyegMtp7/01x9sHEUsIVPrcaK4obFFRSS7cn+wcwkgkjmKPvQOjZ7qHMByJo9jtxHydTiXm01133YWuri489thjaG9vx8qVK/HSSy+pxUYvXLgwauf5I488AkVR8Mgjj+DSpUuora3FHXfcgX/8x3/UqwtERES2wSC6Tt5KHd9dYYCALcCd6IC+uWIzyVz1zBkLvCl3HukdsM0o+Gr3wI/8vdQrH7qk1nS4NIB4Quh6UoGMKVkUEGgbCKFrMIzaMq/eTdKV3ikqAGBRgx8epwP9wSgu9AYxq7pEt7YYgRHGZE51Ccq8LgyGYzjRMYQlTfYuOqiOyYwK3eb6hvIi1JV50TkYxuG2AVw/u0qXdhiFTDV0bZPfsos8Dz74IB588MFx/27Xrl2j/uxyubB582Zs3ry5AC0jIiKiTNO6E3nqqacwe/ZsFBUVYe3atdizZ89VX//kk09i4cKFKC4uRktLCz7zmc8gFLJvMbiOQAgdgTAcCnR/WFmVCkSd6BhEMBLTtS16GgxFcaZ7GACwrLlC17bIXUz02xsAAMHHSURBVGEXeoPoHY7o2hY9RWIJHE3t0tN7senaJj9cDgXdQxFc7BvRtS16SiSEGmDQOy/pgroy+DxODIVjONPFmg40VqnXpdZS4G70dHBQrxQVAOBxObC4MVVclPmeDTEmDoeCZTOY0kWSJzaWNet7f876AWlGue8gIiIiyjqI/txzz2Hjxo3YvHkz9u3bhxUrVmDDhg3o7Owc9/U//elP8fDDD2Pz5s04evQonn76aTz33HP4whe+kHPjzUreECeDQPoeBqj3F6G2zIuEAI5eDujaFj0duhSAEEBTeZHuuxXLi92YU5PcnScfHOzoePsgIvEEKnxuzKzy6dqWIrcTi1M5hO08Jme6hzAUjqHY7cSCOn2PVGfWdNjPUxs0ARmIsnvAVgihpg7Rc9czkA6EvcWArZrnWe8xWcbrRGWE0wEA01FlkidFV+h8Ao6IiIgo6yD6E088gQceeAD3338/lixZgq1bt8Ln82Hbtm3jvv6VV17BO97xDtxzzz2YPXs2br75Ztx9992T7l63MvnguMwgxXFkvmk773aR6XWMsstF7kqzc5BBPjQta9av0GsmdUxsHESXxW6XNZcb4ki1DJAesvGY0NWtYCAKQDKlTW+qqOjChjJd28KFjaSBkSjO9wQBAEt13vXM6yQpFI3jREeyqKjeNYu4Ez0pGk/giEEWAImIiIiy2gYdiUSwd+/eURXCHQ4H1q9fj927d4/7PTfccAP+7d/+DXv27MGaNWtw5swZbN++HR/60Icm/DnhcBjhcFj9cyCQvHmKRqOIRqPZNHlc8j20eK/pkDmFlzaW5tQGrfqxpLEUO4914s3WPkSjM3J6r+nSe0wOXOgDAFyb45gA2vTl2sZS/H8Hk78rev2bGGVMljaVGWJMljQkd14fbO2z8Zj0AgCWNRtjTBY3pFN1WGVMtOzHU089ha997Wtob2/HihUr8O1vfxtr1qyZ8PVPPvkkvve97+HChQuoqanBn/3Zn2HLli0oKirSrE2FJher5S5su5IpKhbU61dUVFILWV4aQCIh4LBpPYPDqcW/lqpiVPg8urZFBmyPtw8iFI3r/juil2OpoqJVJR40lev7uSevkzPdwxgYiaK8WJ/Cs3o70TGIcCyBsiIXZtu8hgIRERHpL6sgend3N+LxuFotXKqvr8exY8fG/Z577rkH3d3d+IM/+AMIIRCLxfCJT3ziqulctmzZgscff3zM119++WX4fNqlddixY4dm7zVVQgBvnHUCUBA4dwjbew7l/J659iPUpwBwYvfxNmzf3ppze3Khx5gAwGsnk2Mycuk4tm8f/3c5W7n0ZWggOSavn+7A9u3bNWnPdOk1Jv97LDkm0fZT2L79pCbvmUtfBoYAwIUD53rw4ovboefmeL3G5HeHkmMS6zyD7dtPa/KeufSlZwQAXDh8sR//34vb4bTAmASDQU3eR6Ze27p1K9auXYsnn3wSGzZswPHjx1FXVzfm9TL12rZt23DDDTfgxIkT+PCHPwxFUfDEE09o0iY9LG7ww6EAXYNhdAZCqPObd0EgF4fbjJHnGQDm1ZbA63JgOBLHuZ5hzK3VNzWUXoySNgQAmiuKUelzoy8YxYmOQcOcyiu0zBz1ep+AqyrxYEZlMS72jeBIWwDr5lXr2h69pHPUl9t2wY2IiIiMI+8JuXft2oWvfOUr+O53v4u1a9fi1KlTeOihh/DlL38Zjz766Ljfs2nTJmzcuFH9cyAQQEtLC26++Wb4/bk/AEajUezYsQM33XQT3O7C7uy41D+C4Vf/By6Hgo+8fwO8Oez20aof1w+G8YNj/43OkIIb33szSryFz9Ou55j0BSPo2b0LAPCRP1mf824fLfoyGIrhO0d+g/6IgrXvfC+qSwufp13PMQlGYvjMq78BAHz4j9+N+hwDX1r0JRJL4FtHdiIYB5bf8C60VBY+T7ueYxKOJfB3e3YCELjvjhtz7r8WfUkkBJ48+hsMh+NYsPoPsUiHNBVaj4k8eZWrzNRrALB161a8+OKL2LZtGx5++OExr89MvQYAs2fPxt13343XXntNk/bopdjjxPy6UpzoGMKhtgG8x6ZBdCMUsJRcTgcWN/pxoLUfh9oCtg+iG2FMFEXB0uZy/M/JbhxuC9g2iH4oFbBdboAxAZJFzS/2jeBw24Btg+iH2oyz2ERERESUVbS0pqYGTqcTHR0do77e0dGBhoaGcb/n0UcfxYc+9CF87GMfAwAsW7YMw8PD+PjHP44vfvGLcDjG5tX1er3wescGDd1ut6aBI63fbyqOtncDABY1lqHUp83DfK79aK5yo97vRUcgjJPdI3jb7CpN2jUdeozJsY5+AMDsah9q/NoFRnPpS5Xbjbk1JTjTPYyjnUG8u1K/IIMeY3Li0iASAqj3ezGjWrvAaC59cbuBRQ1+vHVpAEfbg5hbp98DnS6fXR39iMYFKnxuzKn1a7ZLL9e+LGsux6tnenG0YxjLWsz/2aXFezD12mhLGspwomMIBy/04Q/n6fM7omcqJiGEuptzUX2JYdLIHWjtx5utfbh1SW1O7zVdeqfHMtqYLKovxf+c7MabrX34s1WNOb3XdOk9JrIWy+IGY4zJ4oYy/PpwB960cWo/WfPEKNfJeO9JRERE9pFVEN3j8WD16tXYuXMn7rzzTgBAIpHAzp078eCDD477PcFgcEyg3OlM7r4WQkyjyeZ2UD2WWKFvQ66wrLkCHYEOvHVxQNcguh7eVAu9Vujajistm1GOM93DOHRxAO9eODb9gpXJugFG2w23bEY53ro0gLcuDeD25foEGfRy6FK6sJfex9wzySD6WxcH8BfXt+jdHENg6rXRlFR6rN/sP4m5I8e1adQ06ZGKqT8M9Ay74IDA+QOv4PJbub9nrv1IdCfH5HdvncGy+KncG5QDPcZkJAac703egrcf3oPtJ3J/z1z7EUmNyStHW7HddS73BuVAjzGJJoATHcmUZZ3H92L7udzfM9d+BFPpFvectGe6xbgADl9KjknXyf3YfnF/zu+pZT+0Sr9GRERE5pF13o6NGzfivvvuw/XXX481a9bgySefxPDwsHpk/N5770VzczO2bNkCALjjjjvwxBNPYNWqVWo6l0cffRR33HGHGky3k7cu9QNIF3EyimXN5fivox3q8WI7eTO1sLHCgGPywoE2jomByOPE8jq2EyOlHsi0VB0T+10nWrJy6rXqs734j21voCfhw223vTPndk2HnqmYdh7tBPYdwPy6Mtx5xw05vZdW/ZjVFsCz33sVnREvbr31XboszOk5Jq+d7QVefwPNFUX48/fl9jupVT+W9AzjR0/+L9pDTty84Sa4nGNPiuabnmNy8OIAEq+9hkqfGx+886acfie1TLf4/VS6xXetvxk+j73SLZ7sGEL01VdQ4nHivj+5Kaec6Pnoh1bp14iIiMg8sr4bu+uuu9DV1YXHHnsM7e3tWLlyJV566SV1x9uFCxdG7Tx/5JFHoCgKHnnkEVy6dAm1tbW444478I//+I/a9cIkhBBqcNBoQXTZHjsGot68aMx8i8tsHByUpwMMtxM9NSaHLgUghDDUjux8k4UJlzYZ8zo5ejmAWDyhS+DHaJh6bbTlM5Onq9oGQhiMCFSVeLRqWtb0SMV0pGMYQPK0lVY/O9d+LG6ugNupoH8kis7hGGboUGNC0ie1X2pMmo0zJvPqylHqdWEoHMOF/ggW6lBjQtJnTIYAJO87PB5tPiO0SLdYW+ZF12AYp7pDWD2rUpN2TYceY3K8K3mdLGnyw+s1xphc+V5ERERkL9OKNjz44IM4f/48wuEwXnvtNaxdu1b9u127duGZZ55R/+xyubB582acOnUKIyMjuHDhAp566ilUVFTk2nbTOd8TxGAoBo/LgWvq9Xs4GY/czXm6awhD4ZjOrSmczkAI7YEQFMV4O2yvbS6HogCXB0LoGgxP/g0WMTASxbme5BFZoy1sXFNfBo/TgYGRKFp7R/RuTsFEYgkcuzwIwHhjMru6BGVeF8KxBE52DundHEPITL0mydRr69atG/d7rJx6zV/kxuzqZJBWLgbZicwpvKw599MBWvG6nOp9kEwVZSdycXyZgTZUOBwKljQlf0cO2XDxXh0Tg81xS1NjcsSWn13Jz4ZrDbZ4T0RERPbFLXsFJAsWLWn0w22w3ZK1ZV40lhdBCOBIm30eaOUu9Pm1pSjxFv6Y7NWUel2YW1MCwF4PtDLI1VJVjEodd4yOx+NyYFFjMvDzpo1SupzsHEQknoC/yIWWqmK9mzOKw6Hg2lRwUBbqo2TqtR/84Af40Y9+hKNHj+KTn/zkmNRrmYVH77jjDnzve9/Ds88+i7Nnz2LHjh2WSr12bcYpErs5ZMCALZA+1WLnhQ3DLd7LILoNx+St1GeD8caEn13y95KIiIhIb8aK5FrcWwZN5SLJBweZSsMOjJo2RLJjSpfDcudRo7GvEzuNSWbAx4gpbOx4nUzmrrvuwte//nU89thjWLlyJQ4cODAm9drly5fV1z/yyCP427/9WzzyyCNYsmQJPvrRj2LDhg34l3/5F726oCkZsLVbcLAzEELnYBgOBVjcaKxA1NJme+56HgxFcaZbpnMx1jynLmzYLGAbisZxoiN52spo9+jqdWKzz65EQqibergTnYiIiIzCWFtvLe5Ngx4VlZY3l2PHkQ5bPdAeSt2gG+mYe6ZlMyrw/IE2dce8HcgHxaUGHZPlzeX4KewV+Dlk0B16kh0XNqbiwQcfxIMPPjju3+3atWvUn2Xqtc2bNxegZYUnP08O2+x3RF4T82pLdSlKeDVL1IUNewVsD6f621xRrGt+/vHIz9IjlwNIJEROhRzN5Fj7IOKJZL2ExvIivZszigwgn+gYRCSWgMdlj/1PrX1BDIZj8DgdWFBfqndziIiIiABwJ3rBZO6oMNqRamlpql1v2ijIYNQj1VK6kKV9xkQGGK416JioAduLA6bPFT1Vbxn8OpEnSY5cDiAaT+jbGDIkGYg61xNEIBTVuTWFIxfAjLh4v7ixDA4F6BoMozMQ0rs5BZO+7zDeQvG82hJ4XQ4MhWM43xvUuzkFk97x7DfcaasZlcUoL3YjGhfqbnk7kJ9dixrLDJcCk4iIiOyLdyUFcqE3iKFwsqjovFpj7qiQD9lnu4cxaIMgQ9dgGJ2DYSgGPOYuJR/ogPZACJ2D1g8yBCMxnO5KFoc0ag5MWVw0EIrhgg2CDLF4Akcvp3aiG3RMZlX5UOZ1IRJL4GQHi4vSWFUlHjRXJPP526nuh1wAM+KipM/jUu+H7JSq4pCBTyW6nA4sarRfmp0jl5N9XWLAOU5RFPV+yE71A2RfjXovSERERPbEIHqByN21ixqMu6OiptSLplRx0cM2CDLIG/Q5NSWGKyoqlXgzggw2eKA9ejkAIYC6Mi/qyox1pFryuBxYLIuL2iDNzqmuIYRjCZR6XZhdXaJ3c8aVWVzUDtcJTY9aNNFGvyNynjPqAthSGxZ8PWzwPM9LbVhcVC6sLTHohgp5ndjh3lw6ZPDrhIiIiOzJmNFcCzLLjgqZasYOQQajP8hKatHEi9Z/eDJ67m1pqY3S7MgxWdLkN3R+XBYXpcnYLRDVNxzB5YHkCSYj7rAFYLsdtqFo3PCnrdS86Da5TuIJgWPtyTQpRh0Tuy0ACiHU+hVGHRMiIiKyJwbRC8QsOyrsFIgyzcKGOib9+jakAMw3Jta/ToyceiDTslRedDvVdKDsLLXZaQWZhmlmlQ9lRW6dWzM+u+1EP9ExiIQAqks8qC3z6t2ccS1tSi8S26Hux7meYQQjcRS5HZhTY8x0i/LZ4ejlZAFUq+sIhNEzHIHToRg23SIRERHZE4PoBSCEwBGTBAfljboddiDJ3YhLDb6wYaddYTKQYvTFpsyd6FYPMhi5CF4mGeQ/yuKiNAH5WX+6awjBSEzn1uTfkcvGTlEBpHfIX+ofQd9wROfW5J+aNsSABSylaxpK4XIo6AtG0TZg/VosR9R0i344DXraak5NCXweJ0aicZzttn7dD3nfMb+2FEVup86tISIiIkpjEL0AOgfD6B6KwKEkb9KNTD7Qnu4aQiga17k1+RMIRXG+J1kU0ugLGzL/dttAyNJBhnAsjhMdySPVRg/YXlNfBrdTQSAUw8W+Eb2bkzfxhFAXm4y+E31WlQ+lqeKiZ7qG9W4OGVCdvwi1ZV4kRHJHp9VlBmyNyl/kxuxqHwB7pNkxw8KG1+XEgvrkfYcdTm2oY2Lg68TpUNTfGTuc2jhkko1HREREZD8MoheATFExr7YUxR5j76ioK/OiptSDhICaI9KKZHChqbwIlSUenVtzdWVFbsxKBRnkw54VnWgfQiwhUOFzo7miWO/mXJXH5cD8umSQwcpjcrZ7CCPROHwep2GPuUsOh6IuONklvzJlTwZljtjgd0R+Nhk9HcK1NkqPZYaFDSBdXNQWCxsGLyoq2SkvulqzyOCL90RERGQ/DKIXwGE1RYWxb9ABQFHS+QetnD7EbDfoS2wxJumdR0Y95p4pHYyz7pjIoNaSRuMec89kh+uEcqPObxbfiR6OxXGqM5n2wegBW3ndHrXwgiQAJBJC7aPhFzZkEN0GAVu52GT0e3R5v3rIBguALCpKRERERsUgegHIG96lJgnYqnnRL1v3Rt0sBSwlGWSw8g5b9ToxeD50SQ3YWjjwI4+Nm++zy7pjQrlZbJOA7cmO5Mme8mI3msqL9G7OVckTJMfarT0mF3qDGI7E4XE5MLemRO/mXJW8Tqx8IhEAOgdD6BoMmyPdovrZNWjpWix9wxE1F7/RFwCJiIjIfhhEL4DDJjm+Ky2xwTFeuVPV6AUspWub7ROwNc3pABvsRD9kst1g6phcDlg6yEDTtyQVsD3ePoh4wrq/I0czcm8b/WSPDNie7hq2dC0WOSaLGsrgchr79ntRY7rg60AwqnNr8kfO33NqSgyfbnFBfbLg68BIFJctXPD1aGoxraWqGP4it86tISIiIhrN2HfxFjAQjKqFB69tNEdwUAbMjl22ZpAhFI3jZOqYu9ELWEpLUr87Vg0yxOIJNcBgloDt4owgQ3/QegVfhRAZx9zN8dk1vy4ZZOgPWjvIQNM3u7oEXpcDI9E4zvdYtwCtWfKhA0CDvwgVPjfiCaGmoLEiMxQVlcqL07VJjlr4hEC6qKjx5zivy4l5tcnaJFY+tSGLPhv9ZAARERHZE4PoeXY4lRJlRmUxyn3m2FExu7oExW4nRqJxnO22XpBB7kCsKvGgwW/sY+5Svd+LqhIP4gmB4xY8Xn2mexjhWAIlHifmVBv7mLtUXuxGS1UyyGDFEwKX+kcwGIrB7VQwv87YRUWlIrdTbauVTwjQ9LmcDixsSO5GP2rhvOhmKWAJpGqxNFj/tJWZxgSwR+qj9KlEc4zJokbrf3YdM9ECIBEREdkPg+h5ZqaiopLToag36lZ8oD2c8dBk9GPukqIo6UKWFhwTmTZkSZMfDhMUsJSsXMhS9ml+XRk8LvNMFen6AdYbE9KGDNhaNTgohBiVzsUMbBGwNVlwUM1Vb+GArZlOBwCZhZGte53Ikw8y9RYRERGRkZgnMmJSh01WLFG6Vs2Lbr1ClumiouYaEysHbNV86KYbk1QhSwuOidzptthkD7LpvOjW++wibSxWd3Na77oFkqdIAiY7RWL1MekdjqgpphY1mOMzVV3YsGjqkOFwTD1taZ6FDZlu0ZpjEosncKIjmdKJ6VyIiIjIiBhEzzN117NJcm9LVg4OHjLZ8V1piYV3oqcXNsw1JlY+HWC2naySla8T0obVdz2b8RRJekwGLVkUWP6uzar2ocwkxRLlmBxvH0QsntC5Ndo71j4IIYC6Mi9qy7x6N2dK5GLT2W5r1sc52z2MSCq138wqn97NISIiIhrDHE9XJjUSieN0V3JHhdl22KrBwbaApR5oY/GEuoPHrAHbo5cDlir4mpl6wCy7wSQZsD3VOWS5B1qzHXOXZHtbe0cwMBLVuTVkRItSvyNtAyFLFgWWp0jMdO0uqE8WBR4YsWZRYDMuSs6q8sHncSIcS+CcBYvwHjHhvWBtqRfVJR4kBCxZH0eOycKGMlOl9iMiIiL7YBA9j462B5AQQE2pB3Um2eUiLWwog9OhoGc4gs7BsN7N0UxmAcvZJilgKc2pKUWR24FgJI7zFnqgvTwQQiAUg9OhYEG9OVIPSI3lRajwuRFLCJzqHNK7OZoZDEVxoTcIwHwLGxU+D5orkgVfrXrknXJTXuxWf0esWKBPpjIySwFLAPC6nJhXm/z8t+IJAXk6wEyfpw6HohbhPWLF68RkhV6BVBFeC5+kOZZaGFhkouuEiIiI7IVB9DxK36CXm6aApVTkdmJebTLIbKWULpk7ns22y8XpUNQckVZKVSHHZF5tCbwup86tyY6iKBmFLK2Tg1vucGvwF6GyxKNza7Jnh+JrlBsrB6LMeopEFjQ/ZuEdtqYbkwbr5uA2W6FXabGFrxOznkokIiIi+2AQPY+OtZvzoUmyYnDQrA9N0hK14Kt1HmjN/tCUmfrIKtSAj4l26GWy4nVC2lqiBqKs9TsSCEXR2jsCwHz3HlZd/ApF4+pJJbN9pi6xaMHXRELgRLssnm2uMbHiZgrpmCxobpLiu0RERGQ/DKLnkXoz2GjOm0GZx91KN+pyTBaZdExkUMRKAdujl835ICtZsZBlemHDnNeJFRc2SFuZhSytRM5xzRXFKPeZo4ClZNXTAac6hxBLCFT43GgsL9K7OVmx6nVyoTeIkWgcXpfDdKn9Mq8TK9Us6huOoD2QrIfAdC5ERERkVAyi50kiIdK5/RrMeTNoxd2cctehWcfkWisGbNUxMWfAdkljarGpLYCERQq+mjF/bya52HSycxCRWELn1pARyd/t4x2DiMWt8ztyJHVyzIzXrly0O9c9jJGIdQo1qyfgGvymS+0ng5ntgRD6hq1ThFfen19Tn6z/Yybz60rhdioYDMXQZqEivHLxbGaVD6Vel86tISIiIhofg+h5cql/BEPhGNxOBXNrzbXLRZKBqPM9QQyGojq3Jne9wxF0BJJFUheaNGC7qMEPhwJ0DYbROWj+h6eRSBznupNFUs2WekCaW1sCj8uB4UhcLcZpZvGEwPGOZIDBrGMyo7IYZUUuROPWKvhK2plZ5YPP40QklsDZbusUaj7Wbt4TcHVlRagp9SAhoH4GWYGsMWHG+45Srwszq3wArHVCQG6oMOOYeFyOdBFeC21yOapuPDLfmBAREZF9MIieJ/JhY35dGdxOc/4zV5Z40JQ6emyFo7yyMNasavPucin2ODGnJrkoY4UTAsc7BpEQQHWJB7VlXr2bMy1up0N96LPCCYGz3cMIRRModjsxy2TH3KXMgq9WGBPSnsOhqAE0K/2OHDNxwBawZkqX4yYPDsp2H7VQIUuzj4kVrxOz18chIiIiezBndNcE1N1gJr1Bl+RR3uMWKL5mlV0uS1K56o9ZaGFjcaP5jrlnslIRXhlQXNRovmPumZYwLzpNwmr5nhMJgRMd5p7nrBgc5MKG8Rw3ebpFedLkqAXuzSV5OoBBdCIiIjIyBtHzxCo3g/Kh75gFdiDJB0CzPjRJMjhiiYWNy+bOhy6lx8Q614nZP7uWWDDwQ9qyWnDwUv8IgpE4PE7zFUuU1OCgRcakZyiM7qFkGrlr6s05z1ntOhmJxHG2J5nCyewLG1bYTAEAsXgCJzqSqdfMmIqKiIiI7INB9DyRN7aLTH4zaKXgYHphw9xjsrDeSgsbMn+vuQO2C1MLM9YYE2sE0eVi2fGOQQhhjYKvpK0lFgvYys+feXWlcJk0jVxmcNAK163M7T6zyocSk6aRUws1dwwhaoEivCc7ByFMnkZOzm9ne4YRjMR0bk3uznYPIxJLoMTjREulT+/mEBEREU3InE9ZBpe5y8X8u55lOhdzP9CO3uVi7jGRO6dOd5n7gVYIoR5FNvuYyMWmi33JgsJmJtOfmLWoqLSgvhQOJVlQuCu1E5Qok1z86hwMo3c4onNrcidPJ5n5ZM/cmlK4nQoGwzFc7BvRuzk5M3NRUWlGZTFKvS5E4tYowisXm8y8yaW2zIuaUi+EsMYml3QaOT8cJk4jR0RERNbHIHoeJHc+AjWl5t3lIs2tLVEfaC/1m/eB9lxPcpeLzwK7XOQDbTQuTP1Ae6l/BIOhGFwOBfPqzJl6QKos8aAuda2b+YG2ZyiMzsEwFMXcgTgAKHI71ZQWVjnyTtoq9bowo7IYANRc4mZm9tzbAOBxOTCvthSANcbE7AUsgdFFeK1wakNd2Kg390JxOvWR+a8T2QczXydERERkDwyi58Exi+TeBgC3M/1Aa+bg4JHL6eCC2Xe5KIo1HmjlQ9P8ulJ4XU6dW5O7hRZIfSTHZJaJUw9kssKYUH7J9FhWCtiaOYgOZFy3FhgTubBh1nzokmz/ydSJPjM7ZoETG0C6/db47ErvRCciIiIyMgbR8+CYBXYeZVpkgeKiVlrYAKwRHLRK7m3JCgVfrVIQWbJSYWTKj2ss8FkKAOFYXD2ZZPZ7D6sEbBMJoQY4zT4mC+tTmyksEbC1xmLTNRZaAJTpFs1+nRAREZH1MYieB0cvW2tHhRWKJsq2LzFxDsxMVij4apVCr9IiC1wnVgkuSOp10mHehQ3KL6vsRD/TNYxYQqCsyIUGf5HezcmJDA6aeX4DkjUygpE4PE4HZteYO2XZNRbZ9dw1GEb3UASKYv7TAQstMiaDoaiaLvKaOnOPCREREVkfg+gaE0KoQTTrBAfNv8PWcgsb9ebfYZvOgWmRMclIQWDWIrzyYXyhyYMLklwAPNkxhHjCnGNC+ZUZsDXrdQuMzr2tKOZOWSY/f051DSFm4uLZctf2vLpSuJ3mvt2WY3KhN4iRSFzn1kyfvE5mV5eg2GPuNHLz65KnA7qHIugxcfHsk53JXej1fi/KfW6dW0NERER0dea+qzeg9kAIAyNROB2KeoNrdotSiwFnuoYRjpnv4ak/GMHlgRAAK+2wTQYHL/WPIBCK6tya7I1E4jjXk0o9YJHFpvl1pXA6FPQHo+gcNN8DbTL1QPJh9hqLXCczq3wocjsQjiXU3zeiTHNrS+B0KAiEYugImO+6laxQVFSaUVmMYrcTkVgC53uDejdn2o5bJPc2AFSXelFd4oEQwKlO86bZkSfgrLBQ7PO4MLPKByCdDsWMTlikbgARERHZA4PoGpM7nufVlliiWCIANPiL4C9yIZYQON1pvkCUDC40VxTDX2SNXS7lPjcay5NH9k+YcDf66a4hCAFU+tyoLfXq3RxNFLmdmF2dfKA1Y8HX1r4gRqJxeFwOzEo9mJud06FYJjUE5UfmdWvmfM8yYLvQAid7HA4F16RycJtxfpOstLABZJzaMPV1kjqxYZHFe/U6MfGYqIv3DKITERGRCTCIrjGrpagAAEVR1P6YMbfwMYsVsJTMXDTxeMbOI7OnHsikXicmHpMFdaVwmTz1QCYrpD6i/JKfpSctEIiywg5bwFoBW6sE0a2Qg/tYRtojK7BCcVHZdrkgQERERGRk1omUGITVHpokuWvHjIEo+RC+sMFaN+gLTVxcVM29bbHrxBJjYpEgnLTQAjUdKL/MflohkFGYzyrXr9mDg+FYHGe6kyf3rDYmZr1O4gmBk53y3sMamyqssLBxvCO9qYKIiIjI6BhE15i8kbXKLhdJ3fV82Xw36lY9KrrIAgHbBRYbE1OfDrBYPnTJzKcDqDAWmjxgK1OeNJYXWaYw3zVqcNCcuZ5Pdw4jnhAoK3KpqdfMTu4UNuuJjdbeIELRBLwuh5pL3OwW1Jm7MHLfcARdqRoyVrsfJCIiImtiEF1DsXgCZ7qSO48YsDUGIUTGUVGrjUkyOHisPWC6hyerpR6Q5HVyqmsIsXhC59ZkRwbirDYmcmHjfG8QwUhM59aQEWUGbBMJc32WAtbLvQ2kP4fOdpuzoLlMfbeowTopy2SQs20gZMqC5idTBVFlEXAryCyMbMaC5vL+vLmiGKVel86tISIiIpocg+gaOtcTRCSeQLHbieaKYr2boykZgG4PhDAQNM/DU0cgjMFQDE6Hgrm1JXo3R1PzakvhSj08XR4I6d2cKRvMSD1gtRyYLZU++DxORGIJnOsxTxHeSCyB013W3IleW+ZFdYkHQgAnTbqrlfJrVpUPHpcDI9E4LvaN6N2crB234AJYvd8Lf5EL8YRQNyeYyfH21EKxhT5Py4vTBc3NuBtdPQFXZ537jlGFkU22yQUATnRa7zohIiIia2MQXUMn1RQVpXBYZJeLVFbkxozK5MLAMRPlFpa5FmdV++B1OXVujbY8Loe6MGCmhye5G6ze70WFz6Nza7TlcCjqgpOZUrqc7R5GLCFQ6nWhySKpBzKZOVc95Z/L6cD82mRgzYyFLI9bsMaEoiimzvd80qIn4NJ50c23IHkqde9htbQhZq4fIE/ALbDYhgoiIiKyLgbRNSRTVMgchVazyIT5ntUHWYuOyUI1pYt5xkQ+NFktuCCZMfVRurBXqWVSD2Qyc656KgwzB2xPd1qz7oeZC1me6rLm/aA8PWbG60QWFbXSTnTA3EH04xYtaE5ERETWxSC6hk50pgNRViRv1OWDiBmo+dAttEMvUzpga77TAVYL+EgyGHfUREV41XzoqUUZq1Gvkw7zXCdUWGYN2PYMhdEzHAEAy6UsM2twMBSN40JvEID1dtiadUwSCWHZnejqSSuTpSsTQlj2xAYRERFZF4PoGrL6zaB8GDRTXmF5OsCqCxtyR5Xc9WYGJy1aVFSS/TplosWm9G4wa14ncnHAbAFSKpyFDebcYSsDgzMqi+HzWKswXzpga575DQBOdw1BCKDS50Z1ibVSlpn1xMbFvhGEogl4XA7MrPLp3RxNXaPemw+aqjBy11AYfcEoFCVZ7JWIiIjIDBhE10g0nsDZ7mTxK6vtPJLksWT50G50QqR3Hll3YSM9JmZ5eDreYe0cmPNT/brQG0QoGte5NVNj9RMb8gG9eyiCvtSuXaJMco443TWEaDyhc2umTtaYsFqKCiAdHLzQG0QwEtO5NVOn7niuK7Nceqz5daVQlORnac9QWO/mTJmc4+bVlsJpsZpFs6pL4HE6EIzE1aLtZiA3VMyuLkGR21o1i4iIiMi6GETXyLnuYUTjAiUeJ5orivVuTl7Mq00+PPUMm+PhqW0ghKFwDC6HgtnV1jrmLrVUFsPjciAUTZji4alvOIKuweTvjtWOVEu1pV6UF7uREMCZrmG9mzOpYCSmph6w6umAUq9L/Vw206kNKpzmimKUeJyIxoW6IG4GVk1RAQDVpV7UlHoBmOsEnGzrfAsuFPs8LrRUJndym+mEgJUXm9zOdJF5M50QkCfDrDgmREREZF0MomvkhPrQZL2dR1Kxx6k+PJ00wW50med5Tk0JPC5r/qq7nA7MrUk+PJkhV718wJtRWYxSr7VSD0iKoqgPhWYYk5MdydQDNaUeVKcCVlYkd6ObKRhHhaMoCubXm+u0FZBuq1XTIcg0O8dNFByUn/vza605Jun6AeapMXHSJjWLzHSdyPvBhRY9AUdERETWZM3Iog7UYokWfZCV0sFB4wcZTlg8R720wER5Y9WHJsuPSSpXvQmuE6sXepXMtLBB+pBBTzNct5IasLXovYcck9OmGhN5OsCaY6Lm4DbTmMiNLnXWnOfUXPUmqvtxQk3tZ80xISIiImtiEF0jVi8qKsnjyadMsNslXVTU2mNyjYl22B63yUOTfFA3w5jIh26r7wYz08IG6UMGos3yOzIwEkVHIJkey7JB9FS/TpskDVMklsD5nmR6rAUWDdiabUwSCZGR9sjq14k5UlEJIdT7I6ueDiAiIiJrYhBdIycsXixRkg+FZtiBZPXju1I6OGiehQ15RN+qzLTr+WRGETwrm2+ywshUeGYLost2NviL4C9y69ya/JhnsjE51zOMeEKgzOtCvd+a6bHS14k5AraX+kcwEo3D43RgVpVP7+bkxbza9MKGGYrMdw6GMRiOwaEkUy4SERERmQWD6BoIx+I4l9p5ZPndnCZJ55JIpHe52GbXc+cQhDDuw5MQwkYpdpLXybmeICKxhM6tuTqr79CTZODn8kAIg6Gozq0hI5K/I2e6zRGIOm2Da1emc7nQG0QoGte5NZPLLCpq1fo4c1Nj0j0UxkDQ+J+lcjF7bm0JXE5rPvbMqvbB5VAQjMTRHgjp3ZxJyc+umVU+eF1OnVtDRERENHXWvJsssLPd6Z1HDf4ivZuTVzLI0DUYRn8wonNrJpa582h2tTV3Hkmzqn1wO5MPT20Dxn14Sv7OROFQ0rumrKrBX4RSrwvxhMC5HuPu1hsOx3CpfwSAdYvgSeXFbtSVJXeGmmVXKxVWS2UxPE4HQtGEel0YmQwOWvnztLbMi7IiFxIChv4sleSYLLBoeh0AKPW60FievNc9ZYKULul86NYdE7fTgdmpHd1mmN/k742Vx4SIiIisiUF0DZzoSO8Gs+rOI6nE60JzRTEAY+9GP95u/Z1HktvpUI/DnjRwrnr5+zKrugRFbmvvPFIURX04NHJe9DOp/KnVJR5Ulnh0bk3+LTBhQTwqHFfGZ6kpgoM22Ime+VlqhuCgfdJjmafgq13q48yrNU8QXf7eWHkBkIiIiKzJ2tHFArFLUVFJDUQZODh4otMeBSylBSbI9yyLkNnlockMedFPdaV2stpkN5gZrhPS17y6ZCDKDMFBNWWZ1QO2Mt+zCXJwn8pI52Jlch43w2LTKRucDgDMVfD1lM3uB4mIiMg6GETXQLqoqLUfZCUzBAdlcOEaiz80SWbY9SwDlzJIZXVm2PUsx8QuR6rNtKOV9CEDtkb/HQlG0qmY7BIcNHrANhZP4Ey3XNiw9pjMM8lO9ERCZJzYsPY9+jyTfHYB6QUxuyzgExERkXUwiK4BNWBr8Z1Hkhl2c56yyUOTlA7YGndhQ+6OsnrubUleJ0YOMqhBdNuMifGvE9LXPJMstMggVE2p9VMxmSU4eL43iGhcwOdxoqm8WO/m5NV8k+xEbxsYQTASh9upYJbF6+Okd6Ib+8TGYCiqFj+1y70HERERWQeD6DmKxBI43xsEYP0j1dJ8g6dzEUKkA7Y22eUif/dOdg5BCKFza8aX3olujzGRv3tnuoYRiyd0bs34Ttp0J/rFvhEEIzGdW0NGlLnr2aifpYA9iopK6c/SIcQTxh2TzJM9Doe16+PIE2WtvUGEonGdWzMxOcfNri6B2+L1ceRnQfdQGAPBqM6tmZisxVJT6kW5z61za4iIiIiyY+07ygK40DuMeEKgxONEvd+rd3MKQu7mbA+EEAgZ70a9PRBCMBKHy2H9nUfS7BofnA4Fg6EYOgJhvZszxmAoqrbLLgHb5opiFLudiMQTuJBaaDOSSCyB8z3JdtllTKpLvagq8UCI9IM8UaZ5taVQFKA/GEXPcETv5kzIDkVFpZYqHzwuB8KxBC71jejdnAnZKT1WbakX/iIXEgI4223cz1L5OW+HMSnxutBYXgQgXe/EiNQNFbX2SO1HRERE1sIgeo5OZeT1UxRr7zySyorc6o26EXejy2PuM6t9lt95JHldTnXBwIipKuTx4royL/xF9th55HAo6Vz1BkxDcL4nvQAor2c7mM+ULnQVRW4nZlQmU3EYOX2IXYqKAoDToWBuTargq4HTh8gi83YI2CqKYopClrJtc20SsFXHxMBFeO12UpSIiIisxR4Rxjw6bdMK8+kCfcYLRNl1TBYYuLhoeueRPcfEiMG4zPQ6dlkABIx9nZAxmKG4qJznrF7AUjJDrvqTNqsxYYZc9Wdsdj84zwS56u16P0hERETWwCB6jtIBW3vscpHUHNwGDETZN4iezotuNHbdeZSuH2C8xSY7pR7ItMDApwPIGIy+wzYci+N8j33SVADGD9gKIWyVOgTI3ExhzDEB0qfg5trkfnCeuhPdyGNiz3sPIiIisgYG0XMkb9BtF7CtN24gyrYLGyYI2NpuTAy8sHHKpg+yC+qTY2LkIAPpy+jBwQs9QSQEUOp1obbMHrVYMgu+GlF7IISRaLIWS0uVPWqxpBebjJk6ZDAURddgshaLbdK5GHwnejSersVilyLzU/XUU09h9uzZKCoqwtq1a7Fnz56rvr6/vx+f+tSn0NjYCK/Xi2uuuQbbt28vUGuJiIjsy6V3A8xMCIEzGSkR7ETmJz3Tbbwb9dMZeertRC7kGHH3ZHrnkfXz92bKDMYlEgIOh3HSpshTJHZJPSDJMTnXM4xwLA6vy6lzi8ho1M9SgwbR07trS2yTiikzxY4QwnD9lrvQ7VSLRX6WnukaQjwh4DTQ/Aakx6TWRrVY5tUl781be4MIReMochtrfjvfE0QsIeDzONHot08tlsk899xz2LhxI7Zu3Yq1a9fiySefxIYNG3D8+HHU1dWNeX0kEsFNN92Euro6/OIXv0BzczPOnz+PioqKwjeeiIjIZuxxp58nXYNhDIZjcChQizrahTwae7FvBKFoXOfWpA2FY2gPhAAA82rsFRyUO636glH0DUd0bk1aJJbeeWS3Xc8tlcVwOxWEYwlc6h/RuzmqREKoC2B2G5O6Mi/KilxICOBstzF3UJK+5DXRNhDCcDimc2vGktfunBp77K4F5IIBMDASRY+B5jdJ5t6ea6P7jhmVPnhcjuT81mec+U1Si4ra6DqpLfXCn5rfzvUYb36Tp3vm1pYYalOB3p544gk88MADuP/++7FkyRJs3boVPp8P27ZtG/f127ZtQ29vL55//nm84x3vwOzZs3HjjTdixYoVBW45ERGR/TCIngN5XHJmlc92uxlrSj0oK3JBCKgBUiOQD7I1pV6U++yx80jyeVxoLE/u7DljoODghd5hxBMCpV4X6v32SD0guZwOzKpOPsAbKWB7qX8EoWgCHqcDM22SekBSFEVdBDxr0DQEpK8Knwc1pR4AxjzZI39v7RSwLXI7MaOyGIAx0+xkng6wC6dDUQPURrxO5E50O51KVBTF0EV41VOJNjsBdzWRSAR79+7F+vXr1a85HA6sX78eu3fvHvd7fvWrX2HdunX41Kc+hfr6eixduhRf+cpXEI+Pv6kpHA4jEAiM+o+IiIimZ1pBdOZtSzpj03zowOhA1BkDPTyliyXa50E2k3yAN+KYzLNR6oFMauojA47J7BofXDZJPZBpnpqOikF0Gp+RC1nK31s7BWyB0SldjEYdExvtegZg6ICtPLFhtzGZr6ajMt78dlq9H7Tfc9NEuru7EY/HUV9fP+rr9fX1aG9vH/d7zpw5g1/84heIx+PYvn07Hn30UXzjG9/AP/zDP4z7+i1btqC8vFz9r6WlRfN+EBER2UXW0ROZt23z5s3Yt28fVqxYgQ0bNqCzs3Pc18u8befOncMvfvELHD9+HD/4wQ/Q3Nycc+P1phawtNEul0xGDESli4rac0zkzkQjjckpmz80qYtNBhwTu6VykeYYePckGUO6aKLxfkfU1CF2C6IbOWCrjom9PlONvNhk1/o4Ri7Ce9qmBc21lkgkUFdXh+9///tYvXo17rrrLnzxi1/E1q1bx339pk2bMDAwoP7X2tpa4BYTERFZR9aFRTPztgHA1q1b8eKLL2Lbtm14+OGHx7xe5m175ZVX4HYn02vMnj07t1YbxGl1J7q9HmQl+QBvpCCD+tBkswdZaY4Bdz2ftuGR6kxyF5yR0rnIgL5drxM1nYuBxoSMRX6Wnus2TroyAOgbjqAvGAVgr5zoQPrzymjXbSgaV2te2HVhw0j3gQAQTwicTeUEt1t9HKMubAghbH8/OJ6amho4nU50dHSM+npHRwcaGhrG/Z7Gxka43W44nelUoosXL0Z7ezsikQg8Hs+o13u9Xni99kqnSERElC9ZBdFl3rZNmzapX8smb9sLL7yA2tpa3HPPPfj85z8/avLPFA6HEQ6H1T/L3G3RaBTRaDSbJo9Lvkeu73W6cxAAMKuySJN2ZUurfkzXzMpk/u3TnUM5t0GrvpxKjcnsKn3GBNB3XGZVGW9MTnbYe0xmViYfXIw0Jme6BlNts/eYnOkaQiQSySnNkNb90Gs8aLQ5BjxpBaTb01heBJ8n630QpjbbgAuSQLKAoxCAv8iF6hLP5N9gIXKR2GhFLNv6RxCJJeBxOdCcyqVvFzJAfbZ7CImEMEwBz45AGEPhGJwOBbOq7VWL5Wo8Hg9Wr16NnTt34s477wSQ3Gm+c+dOPPjgg+N+zzve8Q789Kc/RSKRgMORPFR+4sQJNDY2jgmgExERkbayegK7Wt62Y8eOjfs9Z86cwW9+8xt88IMfxPbt23Hq1Cn81V/9FaLRKDZv3jzu92zZsgWPP/74mK+//PLL8Pm0u/HasWPHtL83Egcu9Sf/+c4c2I2Ow1q1Knu59CMXbcMA4MKJy/148cXt0CLddS59iQvgbLcTgILzh/Zg8GTu7cmFHuPSEwIAF852D+H/9+J2aPHslEs/hABOtCfH5NLRvdh+Lvf25EKPMRmKAoALbQMhPP//bYdHgxrEufbj2MXkmLQdP4DtbQdyb1AO9BiTSBwAXBgYieHnv/pPlGpQg1irfgSDxtr5bFfpnejDEEIYpp6DXVO5AOmA7cW+oBogNYIzalHRUsP8nhSKXNjoHopgYCSK8mJjFHSXqUzmVJfAaZAgcqHMqCyGy6EgFE2gYzCExnJjLCLIHPUzKovhdWlwI2QhGzduxH333Yfrr78ea9aswZNPPonh4WH11Pe9996L5uZmbNmyBQDwyU9+Et/5znfw0EMP4a//+q9x8uRJfOUrX8Hf/M3f6NkNIiIiW8j7NqbMvG1OpxOrV6/GpUuX8LWvfW3CIPqmTZuwceNG9c+BQAAtLS24+eab4ff7c25TNBrFjh07cNNNN6kpZrJ15HIA2PMqKn1u/Pn7bs65TdOhRT9yEYrG8c9v7cRIXMHbb3wvqkunf1RQi76c6xlG/NX/RZHbgXved6tuu2/0HJd4QuCrb+1EJJbA8nXvwsyq6S86adGP9kAIkVd/B6dDwQffd4tuQQ+9r5WvHf4t+keiWHj9H2JxY9m030eLfgyHYxjY/RsAwD133IQKnz5BD73H5JvHf4e2gRDmrVyH1bMqp/0+WvdDnrwifbVU+eB0KBiJxtERCKOhvEjvJgHILGBpv3QItWVelHicGI7EcaE3aJi8yurChs3S6wBAqdeFujIvOgfDONc9jBUtFXo3CUDmwob9xsTtdKClyoez3cM42zVsmCC6TI1ltzRUU3HXXXehq6sLjz32GNrb27Fy5Uq89NJL6qa1CxcuqDvOAaClpQW//vWv8ZnPfAbLly9Hc3MzHnroIXz+85/XqwtERES2kVUQvRB524CJc7e53W5Ngy25vN/5vmS6mfl1pboEgDJp/e+Szc9trijGxb4RXOiPoKEy9wfanMakNzkmc2tK4fXqf5xRj3FxI7nz6njHIC70hzGvvjz398yhHxf7kwHBlspilBTrn49Rr2tlbm0J9l3oR2t/GMtnVuX8fjmNSWfyQbaqxIPacv2PVOs1JvPqStE2EMKFvjDePj/3n69VP7T8t3jqqafwta99De3t7VixYgW+/e1vY82aNRO+vr+/H1/84hfxy1/+Er29vZg1axaefPJJ3HbbbZq1ySzcTgdmpgJRZ7qHjBNElztsbRiIUhQFs2tKcLgtgLPdw8YJonfbN2ALJHejdw6Gca7HOEF0uxeZn1NTkgyi9wzjhvk1ejcHQDK9DGDPz66pePDBBydM37Jr164xX1u3bh1effXVPLeKiIiIrpTVttDMvG2SzNu2bt26cb/nHe94B06dOoVEIqF+zQp520532vsGXZIF+oxQyFJ9aDLIg7Ve5IO83ImlJ5m7drbNH5rm1BjnOpFjYvcHWdn/0936j0k+PPfcc9i4cSM2b96Mffv2YcWKFdiwYQM6OzvHfX0kEsFNN92Ec+fO4Re/+AWOHz+OH/zgB2hubi5wy41jjgFzcJ+1ecA2PSbGuW4z07nY0dwa49xzSHZOewQAs6tT14mBxuQsd6ITERGRBWSdzoV525LsvstFmltTgt+d6DJE8TX1QdbmN+jpILr+QQZZbMzuD03qmBjgOmEQPUl+ThgpyKClJ554Ag888IA6N2/duhUvvvgitm3bhocffnjM67dt24be3l688sor6m742bNnX/VnmKUI+HSpxbM7Bg1RFDieEDjXE0y1zWvLguazqpKpKYxSqFkIoc61MyvsOSYtapF5Y1wnQPp+cJZOxbP1HpOZqSLzZ7qMcZ3ItgDADAtdJywETkREZD9ZB9GZty2JgaikeQYK2J7tsfcOPSm961n/4CAXNpIMdZ3wswtAxikaAyxsaC0SiWDv3r3YtGmT+jWHw4H169dj9+7d437Pr371K6xbtw6f+tSn8MILL6C2thb33HMPPv/5z49Kx5bJDEXAczHcrgBwYs/Rs9guTmvynrn0pTsERGIuuBSBg6/swls61kvUa0wGupJjsvfEBWzXqFJ1Ln0ZjAKBkAsKBI6+/j84rWO9RL3GpLc3OSYHz1zG9u0XNXnPXPoSigGdg8nHm1P7/hcX39SkSdOi15h09ifH5ND5Tmzfvl2T98ylLwkBnO9JFjQ/9+YeDJ7QpEnTouWYsBA4ERGR/UyrsKjd87YJIXCOaSoAZKZz0T8QpY5Jtd3HRO561j9gK3ei8zpJB2yFEFAU/aJfMmg8z/aLTcn+n+8ZRiyegMupT9HbfOju7kY8HlcXt6X6+nocO3Zs3O85c+YMfvOb3+CDH/wgtm/fjlOnTuGv/uqvEI1GTV0EPBcVp3vw87N7EXSW4rbb/iCn99KiL/99ogvYvx9zakvxR7e/I6f2TJfeY9LU2o9/O7UHg6IYt912Y07vpUVfXj/XB7zxOporinHnHe/MqT3TpfeYLOgcwtPHX0FfzI1bb705p/lNi74cuhQAXn8VNaUevP+Pb552W3Kh95is7B/Bd4/+D/qiDty84aac5jct+tLaF0T81d/D7VRwz523wuko/D1QPsaEhcCJiIjsZ1pBdLvrGgpjOBKHQwFaqoxR9V4vMmB7oTeIaDwBt06BqOFwDJ2DybQCdg+iz0vtRO8IhDEUjqHUq89lHk8InGc6FwDAzCofFAUYDMXQPRRBbZk+RVaFEDirFia0dyqq5opieF0OhGMJXOofwSybf24kEgnU1dXh+9//PpxOJ1avXo1Lly7ha1/72oRBdDMUAc/FgoZkYeYLvSNQHE5NFlpy6cuFVEHzebVlti1oLsekYzCMSEJBiQbzW25jEgIAzK2z75jMrfNDUYChcAwDYYHastzrHeVUPHsgeZ3MqSmx7Zi0VLvU+a1zOKbJ/JZLX1r7IwCS9+dFXn3rYWk5Jnr/fhEREVHhWWfrXQGdSxXHaaoohtel49ldA2jwF6HY7UQsIXChV79jjf//9u49WrKyvvP/p+51Tp9L309faGhBFAmXVhh6GmOIsbkIo7IySQg6goxDJioTkk4caWNokElARQYnEpkgqGv9NBgyhjhji7StnWhsJQKdoAIK0jQ0nNP3Pve67t8fVc+uXX3q1KnLvlXV+7VWr9VdvU/V3vWcvfezv8/3+T4m43lJf0LD/b3dqR3uT2jZotJDyt4AS1XsPzqjXMFSMh7VmuHeHmxKJ2I6aUnpOwiypMvhqazGZ/OKRKRTlrlXbqMTRaMRe3AnDDNp3LR8+XLFYjGNjY1VvT42NqZVq1bV/JnVq1frda97XVXplje84Q0aHR1VNpv1dH/DatVQWulEVPmipZePzgS9O/bsol4uWba4P6kl5Xu8ue8Hyczs6eWSZelETGsXl+5vYWgT0+/p5YHRaDRSWVw0BCXLmL0LAAC6BUH0FuylprAtEglHIMoMbNBBLzFBlucDDNiaGvXrl/UrGsDU3bA5tZz5HeQDrfnsNcN9Sid6ewBQqlzDgzxPvJBMJnXeeedp586d9mvFYlE7d+7Upk2bav7Mm9/8Zj333HMqFov2az//+c+1evVqJZPBZg4GJWyBKHOP7fW+hzn+MLSJ2YdeHtiQHG0SggFJs/ju+h4fKA7jedLr1y4AAND5CKK3wK7z3MNZLk6nhmDRRNMmr6FNJFUCtkEObJiyIZwnJZVa9UG2CQEfJ/M9hCHI4LYtW7bovvvu05e+9CU9/fTT+sAHPqCpqSldd911kqRrrrmmauHRD3zgAzpy5IhuvPFG/fznP9c3vvEN/cVf/IU+9KEPBXUIoRCmQNReAraSKqWowhCwNSXLejnrWXKcJ2HIRGctFkmV4w9yRqJBEB0AAHQLaqK3gA56NbNoYpDTeF9gqmiV14QgYGuywV7T4wEfo7IIb3CDTb/kQbZKGAabvHLVVVfp4MGDuvnmmzU6OqoNGzbokUcesRcb3bdvn6LRyjj6unXr9K1vfUt/9Ed/pHPOOUdr167VjTfeqI985CNBHUIohCWIPpsr6NXxUv3tXg/YhmXwq1i09CJZz5LClYn+IokukiolhoLsBxokHwEAgG5BEL0FL5RLh7xmeW8/NBnm4dGUVAkC9RarmQfaFwMc2LADtjw0SXI80AY5O+CQWVSUNpGcg03dVc7FuOGGG3TDDTfU/L9du3bNeW3Tpk364Q9/6PFedZawBNFfPjoty5IGUnF7zYteZZfYCTjreWxiVpl8UfFoxK4J3qvCcp5MzOZ0aLK0hkOvr/thZ6IHfJ5k80W9VF4zqddn0QAAgM5HOZcmWZZFlssJTFZckAFbyrlUc9bxtSwrkH1g7YBq5oH2paPTKhSDaROmVFc7rZyJPjae0XQ2H/DeIIzCEhw0g9SnLOtXJNLba0yErU1OWtKneKy3u9OvcQRsiwHd3yTZMwOWDyQ1mO7tReZNm+w/OqNMvhDYfrx0dFpFS+pPxrRyMBXYfgAAALiht3v9LTgwkdF0tqBYNKKTlvR2lothMtFfOT6r2Zz/HXVn5tF6ZgdIkk5eWvoeJmbzOjad8/3zs/miXj5KORen1UNpJeNR5QqWXj0+4/vnF4qWXWLHlDHpdcP9CQ33lQIt+44EN5MG4WUCUa8cnwnk/mZQDqHC3OePTed0dCob2H5QD71i7eI+JWIRZfJFu+xQEPbSJrblA0kNpOIqWrIzwYNgzxRdtqjnBwABAEDnI4jeJJP5tHZxn5Jxvj5JWrooqcFUqTJQEB11kw1G5lFFXzKmVUNpScFM5d13pJR5tCgZ04oBMo8kKRqNaN2S0pR/ky3np1eOzSibLyoZi2rtkt4uPeAUhnJUCK+li5IaSsdlWcGct4YZ5Dm5x0tUSFJ/Mm7f34Ks9/ziEeqhG/FYVOvKg/dB1kV3Bmx7XSQSsQcBgy0jxww4AADQPYgCN+lFFhWdIxKJ6JRyZtjeAIIML5ChV5MJtgSRYWs/NK0g88jJ/I4GMbBh2uTkZf2KRWkTIwzlqBBezkDUCwHWzt/LApZVwlDShUz0ambdjyBr1XOeVFsfgvPkBXvNItoEAAB0PoLoTbIXFaWDXiXIQBSLitYWZIYt2WC1Vc4T/9ukspYD1y4ns/jci5RzwTxODvC8NQjYVlsfgsWznXXq4RjYCEEm+in0ByVV16oPir1mEWXkAABAFyCI3iQCtrXZAdsAg+hMFa0W5MCGmWJ/Km1SxWRi7Q0gK8wEAE9eSps4kYmOhZyyNNiBllyhqJePltZRYGCyxKz7EdRaBs5F5hnYKDHfw74jwWeis8h8yWvKfY5Ay7kcNH10BpsAAEDnI4jepL2Uc6kpyAzbF+wHWTroTsGWDimVPeA8qRZk4McEADlPqpkBwCCzjBFudmmsgH5HXjk2o0LRUioe1cpB1piQHDNIAmqTQ5NZTWULikSkdUtZY0Kq3N+CapPJTF6HJjOSZJcY7HVm0DyohUVncwV7oVkGAAEAQDcgiN6EYtGqTEukM1glyIAtpUNqCzLIYD6TIHo153liWZavn20CgCxMWM18H68cm1EmXwh4bxBGlUz0YLI5TXbtKcv6FWU9A0nBZ6KbLPQ1w31KxWOB7EPYnOJYh6VY9Pf+JlX6gssWJTXEIvOSKm3y6vhsIPe3l4/OyLKkgVRcSxclff98AAAAtxFEb8LYxKxmc0XFohGtXULmkZPJ5tx/dEbZfNG3zz0+ndPR6VxpHwjYVjEPT4enshqfzfn2ubO5gkbLmUcm+ISStUv6FItGNJsr6sBExrfPtSzLDjbRJtVWDKTUn4ypaMkumQE4mZlWrxybVa7g3/3NoGzIXOb+dmQqqwkf729GZaCY66mxZnHp/pbJF3Vw0r/7m/HiYWZbnWjZoqT6kzFZAd3fTGmfdUv7WWQeAAB0BYLoTTArzK9b0qdEjK/OacVgSn0JE4jyLzPMlHJZMZjSQCru2+d2gsF0QssHSpk/fpYhMJlHi5IxMo9OkIhFdVJ5AM7PuugHJzKayRUUjUgnLSHA4BSJRCq1fCnpghpWDqaUikdVKFp65Zj/gSizgCWLAlcMphP2/SWQ8lgMbMyRiEW1ZnFaUjAz4Oxyi7SJLRKJVGZtBNAm5jMZvAcAAN2CSHATKFExv1Igyv/yIS9SXqeuUwIos2Nqb568bBGZRzWcHMAiheaz1izuUzLOZf9E5gE/iHJUCL9oNBJovWeTzXky97kqQQYHTYkdBjaqnbI0uIWa7dJ+9NGrOMvs+O3FI5SRAwAA3YVoShOovV1fEHXRX6TOc11BDmyczGJrNa1f5n+QgWnu9ZlF6FhcFPOxr6UBBKII2NYWZJuQiV7byQEGbPeyyHxNQQ4A2kkVZKIDAIAuQRC9CXZNYTroNQURiKLOc31BZIXtO1Iqd0BwoTZz/djr53liD2zQJrUEmT2JzmDOnX0+/44Uipadac0AfrVTAgwO7mVgsqYgF3zdy3lSk5nBEkzZI4LoAACguxBEb8JL5Vrf66gpXFMQmegvMVW0LrPoma8B23KbrOOhqaZAMtEZAKxrfQAzNtBZgpjVI0mj47PKFopKxCJaPZz29bPDrhIc9Hdg49h0VsdnSouZEhysFtTAxky2oIPlxbq5z1WrDGz4e55ULWhOmwAAgC5BEL0J+ygdUlcQQQYTRGexxNpOCSBga9fvJbhQkxnYePHQtCzL8uUzX2Rxr7pOKdfQfenotApFf9oEnSWoMhXm2n3Skn7FWdC8SlBZz+Z6OjKUUn+SBc2dgjpPzIL2g6m4hvsSvn522J3iOE/86nNI0oGJjDL5omLRiNYsprwfAADoDjyRNej4dE7js3lJZKLPx2TYvnRkWvlC0fPPy+QLenV8VhIB2/mYDNux8Yyms3nPP68q84g2qemkJf2KRKSJTF5Hp3O+fOY+ZmzUtWoorWQsqlzB0ivHZoLeHYRQUIEo1jOYn/lOXjk2q5wPfQ5jL/XQ52X6YkemspqY9ef+JlXPgGNB82prl/QpGpFmc0U7W98P++wFzdNKMAAIAAC6BL2aBplSLssHUupLxgLem3AaGUorEYsoX7Q0Wg5ue2n/0RlZltSXiGn5QNLzz+tEi/uTGkqXMuVeOuJ9cPDgREazuaKiEZF5NI90IqbVQ6WyDC8c8n6GwMRsTkemspII+swnFo1oXXkh3CDqxiL8TlrSr2hEms4WdHDSv0CUCdhS53mulYMppRNRFYqW9h/1b/CLmT3zG0wntHRRqT/m57X0JTuITr/jRIlY1O6P+bkIL/XQAQBANyKI3iA7k5MO+rxi0YjWljvqfgRsK21C5lE9pjb5Sz48PFUyj/qUjHN5mY9pEzMF3UvmQXbZoqQGUpQemE8QazqgcyTjUa0eLg+0+LooMIGo+UQiEft78TM4+NIR2qQeu8yOn6X9yoMotEltZtaGr9cu+zxhABAAAHQPolwN2sdDU0PsgK0PwUHz0ETmUX2m/JAfbULmUWMqQXQfB5soB1FXZbCJci6oLZB1P45WylRgLhOg8zXrmTapyz5PfGwTFjSvL4jBpn2HWR8HAAB0H4LoDXqJDnpDzAKfL/vQUadNGnPSktIgg68BW9qkLntgw4fzhNIDjamcJ5RzQW1BBAdfZrC4rkqGrX8zSGiT+oJY8NXuD7JmUU32YJOvi8yzngMAAOg+BNEbRJZLY8xD5Ut+BGzJem6In+VcXiLruSEmYOvH7IB9R8rZYNRUruske8YGmeiobd1SfwO2E7M5HSsvPnwSwcGa/J4dkC8U9erx0povtEltfpdzsSyLpIoF2INNAcwOoI8OAAC6CUH0BlEDszF+ZtjSQW+MnwMbL9ImDfGzdIidDUab1GXOk/1komMep/hcOsRkPC/pT7CewTz8znp+9fisCkVLyXhUKwZSvnxmpzELWL94xJ/BpqPTOU1lC5IqA9So5vd5MpXJ69BkaUFzBjYAAEA3IYjegELR0v5jZvouncF6/KqJ7sw8ImBb3zpHiR3Lsjz9rErAlqznekzA9pVjMyoUvW2TSukBzpN6TFbpocmsprP5gPcGYWQCdKY/4DWyaxd2smN9Ca/vb1KlTU5a0qdolAXNazFt8sqxWeUKRc8/z7TJyFBK6UTM88/rRGZ24KHJrKYy3t/fTF9wcX9Cw30Jzz8PAADALwTRGzA6PqtcwVIiFtGqoXTQuxNq68pBhrHxjGZzBc8+5/hMThPlBwGmVNdnvp+JTF7HZ3Kefc50Nq+DExlJDGwsZOVgWolYRPmipdHxWc8+p1C09Eo54LeWDL26hvsSGkqXsn39WD8Aneckx/0tk/fu/maY2UNk185vzeLSdzPp8f3NsBcVpd8xr5WDKSXjURWKlkaPe3d/M/ZRD31BQ+mEFveXgtl+ZKMzUxQAAHQrgugNMHUdT1rSrxiZR3UtXZRUf7KUCeRltp7poK8YTKkvSeZRPX3JmJaXp517WT7EvPdQOq7hfjKP6olFI1pbDv54WfrowERpADAejWhkkNIDC1lnZ7VS0gVzLV2UVF850/WVY94HB18mYLugdCKmFeVrmx+DX+Y+x6Ki84s67m++tMlRZmw0wp5J48t5QpsAAIDuRBC9AaaDTjbYwiKRiC910clyaU6lLrp3bcKios3xY8FXE8BYvTiteIzL/ULsBV99qFWPzhOJROzfET8GWszv4Unc5+rys01ePlpJqsD8gjhPCNjWd9Ji/waJX2YWDQAA6FJEVRpA7e3m+LGQJUH05vgxsGEHFxbTJo0wQRgvzxPapDl+LoyMzlQJDno/0PIyA/gNMddSf7KeywFbguh1+Xme2FnPnCd1+XvtMkF0zhMAANBdCKI3gIBtc05yLGTpFTvziIemhtgZth5mIO2n9nZT/MjUe/kI2WDN8DPIgM7kV8kfy7IqiwITiKorkIAt5VzqMv1APxbhNf0a+uj1rfVxYWTzGSct5jwBAADdhSB6A6jt1xy7TIUPpUNok8ZUSod49/BkB9F5aGqIHYzzsE3IBmuOH9cudDa/ArbHpnOatBfP5ppaj1+lQ2ZzBR0oL57NwEZ9lZro3rZJoWjZNb7pD9bn54wNZtEAAIBuRRC9AfvKQS6yXBqzzoe6wiwk1Zx1S7zPnqQGZnPW+TA74OVjPMg2o5JlTCY6avMrEGXef8VgSukEi2fX43ebLErGtJjFs+vya7Dp1eMzyhctJWIRjQylPf2sTufXYNPxmZwmZksDgMxMBAAA3YYg+gJmcwUdmixlHhGIaozX2ZzFoqVXj81KIuu5UWbq+ctHZ2RZliefYbLBeGhqjDlPRsdnlckXPPkMBjaaY64nx2dyGp/NBbw3CKPK4rPeBqLsgWLO3QU5A7Ze3d9K718ZvI9EIp59TjcwAxuvHp9VvlD07HPsxXeX9CsWpU3qMX2zo9M5TZVnuXjB9AWXLkqqPxn37HMAAACCQBB9Aa8cq2QeDfeRedQIExw8Np3ThAeBqEOTGWULRUUj0qphMo8asWZxn6IRKZMv6mB5OrqbZrIFHZ7KSmIRy0YtW5RUXyImy5I9KOSmQtGyr18nMWOjIYtScS1blJTE4qKozQQHD0xkNJvzZvBLomRZM8zg12Qmr+Mz3g1+vUR5rIatHEwpEYuoULQ05kGfw3iJsiENG0onNJQuBbW9rItOaT8AANDNCKIvwHQG1yzuI/OoQQOpuJaUpzp7UdLl5XKbjAyllYjxK9yIRCyq1cPelQ/ZXy4bMpCKa6iPzKNGRCIRTxd8PTAxq1zBUjwa0chgyvX371YnUdIFdSzpT6g/WSqv8oqHgShmkTQunYhpRfka5+V5+zKLijYsGo1U6qJ7OCBpDxRznjTkJF9K+zGwAQAAuhcRyAWYDjolKprjZUmXV8hyaclJHtaqdwZ8GGxqnJcLvpo2Wb04rTiDTQ3zq1wHOpNz8MvLgG2lnAtZz42gTcJnrQ9tYvqDa4bpDzbCtMl+D9vELu1HHx0AAHQhIisLMJ3BNXQGm+LlAy1t0ppKwNaLTHQemlrh5eKidjYY5XWass6nRQrRufxYyJJyLs2xs549zLCt1N/mPtcIc+/x8jzZT6JLU/wYbGIWDQAA6GYE0RewnwUsW2K+r1c9mO7O7IDWmAeaV457N7BBmzTHBOO8GNh4mYBPSypBBjLRUZvXvyOWZRGIapIfAxvOhUWxMPO7a8q9eeGVch+dpIrG+HGeVAY2OE8AAED3IYi+AEqHtMY80HgSsKVNWmLaZL8Hi1i+zPTdlpggw6vHvWsTFsFrjpcldtAdvM7mPDSZVSZfVCQiey0L1Od1m8xkCzo6XVq0lMHixpy01Ns2KRYt+oNNsmdseLqeAzXRAQBA9yKIvgCmirbGy4AtswNaY74vLxbD23+MgG0rVnvYJi8f40G2FWs9HABEd/B6cb5Xy797I4NpJeN00xrh9ewAcz0YSMU1lE548hndxuus58NTWWXLg02rhtOefEa3sWcHeHSeTGXyDDYBAICuxtNZHcWiZT/MMlW0OZ4GbMudfzrozVldfsh85diMLMty9b0p59KaNYtLbTI2Pqtcoejqe++nHERLTJtMzOY1MZsLeG8QRl5nPZv75urFBAYbZQK2+4+6f3+THAtY0iYNc/YDC0Xv2mRkMK0Ei2c3xKz5cWgyq5lswfX3NwkVQ2kGmwAAQHei11nHwcmMcgVLsWhEI4OpoHeno5hBh4MTGWXy7nXUJ2ZzGp/NV30GGmO+r+lsQcdn3AsOZvNFjU0wO6AVyxellIxFVbRKgXS3OKe5n0T93qb0J+Na3F96+PeizA46nwnYHpjIaDbnRSCKOs/NMgMbE5m8xmfyrr9/JYhOmzRqZCiteDSifNHSgQkvZiUysNGsob64BlJxSZXvz02VUi70OwAAQHciiF6H6WCuGkorTpZLU5b0J5ROlL6zURcDUWYRqeG+hP0ggMakEzEtW5SU5O7D06vHZ2RZUioe1fKBpGvv2wui0Yg9Dd3NgO2BCQYA22HqUHsRZEDnW9KfUH8yJsmb2VZmQe41lKhoWDoR0/KB0rXuJQ9KVZi+BzXqGxeLRuxBBy9mbbzCApZNi0QinpY+YlYiAADodkSG6zCdQbJcmheJRBx10d17eCIbrD32gq8u1qp3PjRFIhHX3rdXmOuLm8E4BgDbs9aDNkH3iEQidnksL2YrvEIZuZas9bDMTmWRefqDzfA0YEsmeku8LEf1MmXkAABAlyO6UkfloYnOYCvWehCwfZk2aYt52HzVxUUTaZP2eDHYZNp3NZmsLTHZpq96sDAyusMaD9f9IOu5NWuG3b+/GQxstMb0C/Z7ELC1B/Bpk6as9XB2AP1BAADQ7Qii17GfrOe2rBl2P8hg3ossl9Z4EbAl86g95mHTzYCtea/VXLta4mWAFN2hcn/zIBOdQFRL7MEvD2YHvMrARkvMPegVD2dscJ40x8zY8OL+VukPUmIHAAB0J4LodVTqLdJBb4UXgShK7LTHi9kB+3loastqLwabTNYkmegtsUvseJDRiu6w2oNZPVJpoeaDk5mqz0BjvCiNJUmWVVmomYBtc+yyRx4EbCv9QdqkGabP4eZ6RcarnCcAAKDLEUSvY3850EgHvTXmgdbNrOfKgywB21Z4MbDx6nEGNtrhxXlSyZqkTVrhxdoB6C52JrrLgaix8VlZlpSMR+2FoNEYrzLRj0xllckXFYlII8Ms1NwMr9YOmM7mdXQ6J4lEl2aZNnF7kJgBQAAA0AsIotexv7wQEhkVrVnrQcD2FRaSaos3QXSmubfDi/PEronOtaslJsgwenxWxaIV8N4gjOxMdJczbO173HCahZqb5FWbmHvc8oGUUvGYq+/d7Uyfw+0guhngHEzFNZROuPre3c70C8bG3b2/2QOAsaiW9jMACAAAuhNB9HlMzOY0PpuXRCZ6q5zZnJbVfkc9VyhqbLz04ETmUWtMeY+x8VnlCsW238+yLBaxbJN5oB2fzWsyk3flPU3AYg0DGy0ZGUorGpGyhaIOTWWC3h2EkFdZzyxg2TpzvRubyKjgYnCQ9XFaZ/oFx2dyms66c3+TaJN2rBxMKRqRcgVLhybdu7+Nlvvnq4bTikYZAAQAAN2JIPo8TJbLcF9CA6l4wHvTmVaVH55mcgUdK0+7bcfo8VkVy1kuyxcxpboVywdSSsQiKlqyByTacXwmp9lcKRg/MkQQvRUDqbiG0qVrjBsZlEypbl8iFrV/nynpglrMbKjJTF7js+3f34xXWMCyZSsGU4pHIyoULR2YcO+8rSz0yvW0WYPphAbLfWg3r6WsWdS6RCyqFYOlPrSbg4CmTVaRUAEAALoYQfR5vMLiOG1LJ2JaPlDqqLtR79m0yerFZLm0KhqNuJpBad5j6aKk0gmmubfKZNO5cZ4wpdodXi6Ih87Xn4xrcX+pjMSrXgQHCdg2LRaNeDL4Rcmy9nixCC+l/dpT6Qe61yaj9gw42gQAAHQvgujz2E8H3RUmEOBGvWczVZSyIe1Z42ablB+aVpGF3hY368aa92BKdXvcHNhAdzKBKG/W/SBg24rKQpbuL2hOm7TGDti6OLCx/yht0o5KP9CDwSbaBAAAdDGC6PMYdQSi0Do3F7IkYOsON4ODlQw92qQdbg5sUKPeHV4tiIfuYTIuX3ExYEsgqj3me2N2QHis9uA82c9s0baYgY1RF8r6GfQ9AABALyCIPo9K1jMd9HaYqdWj4+0vXlTJsKVN2rHGxezJ0ePUwHSDmwMbJrOMDL322AFSMtExD7tMhZsZtgRs2+LFwAazA9rjRSY6ffT2rPbg/kbZIwAA0AsIos/DLLrIYontMcFVNxaxNO+xaohFRdsxYreJewMbZB61Z42LQYZRssFcYTJaXyETHfOwy7m4FLCdmM1pYjZf9d5oTmUtA3fO21yhqAMT5YWaaZOWmMEmt84Ty7Loe7TJzbVxjMqiyLQJAADoXgTR50HpEHeY72/UhY66yTwi67k9pk3cGNiotAnBhXaYwbqxifbb5BXKQbiiMrBBJjpqW+ty6RAT0BruS2hRKu7Ke/Yau5yLSwHb0ePlhZrjUS1bxELNrVjjcsD22HRO2XxRkrSSpIqWVGbRuHOeZPNFHZo0g0300QEAQPciiD6PSnCQDno7RtwM2FLOxRVuDmyQDeaOkXIgYMyVNimXHqBN2jJSvvYfmswoXygGvDcII7cXsTSlFbiets4uV+ZSwNYu5cJCzS1zBmwty2r7/Uz/fOmipFLxWNvv14vMNWZsIqNCsf02MX38ZDyqpQw2AQCALkYQvYbpbN6eUk05l/aYrPHR8dm2Hp4KRcueUs3sgPa4GRxkAV53mO9vKlvQxGyurfd61Z5SzWBTO5YtSikWjahoSYcms0HvDkJojaPkjxvBQVMOgcUSW2cCtocmM3a2cjuo89y+1Y7723i5b90OZoq2b+VgWrFoRIWipYMT7pb2i0QYbAIAAN2LIHoNpoO+KBnTYDoR8N50NvOQM50taCLT+sPT4clStkw0Ii0fIMulHcsXpRQvBwcPTrb+8DQxm9NkuU15mG1PfzKuwXSpfEM7szZmcwUdnioFfMlmbU8sGtHKwfIMARdm0qD7jAylFYmUShmY864dJqN9NYuKtmzZoqSS8agsy+W1WLietqw/GddwX6kv7casDUr7tS8WjWikfH9zo1b9q6zFAgAAegRB9BpMEH2EzmDb+pIxDZngYBvTq02Wy8rBtOIxfm3bEa0KDrYeRDfnyVA6Tv1eF1RKH7XeJibgk05EtbifAcB2rTSljwiio4ZkPKrlA6VrqRvlsSqLZ9P3aFUkErEDea+4UO/ZnPvU3m5PpfSRe6X9mCnaHnumqAttYmbRrGHGBgAA6HJEI2sY5UHWVc6SLq0yP8vAhjtWulAXnWnu7nKjVv2oo02YUt2+VeXA2QGC6JiHmws1mwG0lfQ92rLahT6HcWCcMnJuWOPiIrzmXCPruT1mEV5XBpvKmejMDgAAAN2OIHoNTBV114iLwcFVZIO5wo3Az6s8NLlqxIWsZ7NuwIpBzhM3uNEm6G72osBtzCAxyER3hzlvD7jQJvYAPm3SlkrWsxulQzhP3LDGxdkBZiHf1aznAAAAuhxB9BrG6KC7yo2A7aideUQH3Q1uzA4wD15rqN/rihEXsp7HCPi4qjIA2H4wDt1ppauZ6Jy/bhhxsU0oHeIO0w884MIilmPMTHTFqnJ/2o1yLvYsOM4TAADQ5VoKot9zzz1av3690um0Nm7cqMcee6yhn3vwwQcViUR05ZVXtvKxviET3V1uBGzHeJB1lR1kcGV2AAMbbnDjPDEBihEy0V1hZ7ROkImO2kYG3fkdmc0VdHQ6V3pPZly1xV7zo82ArWVZdrvSJu2pzNhwIWDLjA1X2AP3LtzfeG4CAAC9oukg+le/+lVt2bJF27Zt0xNPPKFzzz1Xl156qQ4cOFD35/bu3as/+ZM/0Vve8paWd9Yvo+UpwARs3bHShWxOe/ruMA+ybjDf41gbD0+0ibsqpUNaP08OsAieq9yoU4/uZq5/7f6OHCwHfFPxqIb7WBS4HW5loh+ZyipXsCSVFjVH6yozNtob2JjNFXSsPNhEwLY9Iy7NDsgXijo0yXMTAADoDU0H0e+66y5df/31uu6663TmmWfq3nvvVX9/vx544IF5f6ZQKOg973mPbr31Vp166qlt7bAfKOfiLjfKuVRqxZL17AY36tSbBy8WwXOHPd29rfOEB1k3uZk9ie7kVnDQWcqFRYHbY4Kr7Z63pk2XLUoqGaf6YTvM7IB2s55Nn6UvEdNQOt72fvUye8bG+Kwsy2r5fQ5PZWVZUiwa0bJFSbd2DwAAIJSa6oFms1k9/vjj2rp1q/1aNBrV5s2btXv37nl/7uMf/7hWrlyp97///fre97634OdkMhllMpUH0vHxcUlSLpdTLpdrZpdrMu9R673yhaLdyV/WH3Pl87xS7zjCZHl/6dds9PjMvPta71gsy7Knii5fFO42kTqjXew2GZ9tqU2kSrB3aR9t4oal/TFJpcGJ2UxWsejcQNpCxzE2Xlq0bVl/PNTHKnVGmywrt8n4bF7jU7PqS8bmbOP2cYT5+8BcbpVzoUSFe0ybmOBgq4MS1Kh3j/kOD01mlSsUlYi1NijhLBvCYFN7zOyK2VxR47P5lmfAmPNkxUBK0Rr9FgAAgG7SVBD90KFDKhQKGhkZqXp9ZGREzzzzTM2f+f73v6/7779fe/bsafhzbr/9dt16661zXn/00UfV39/fzC7XtWPHjjmvHctIRSuuqCz9y/e+o07oD9Y6jjAZz0pSXIcmM/q//2+76j071TqW6bw0nS39qu75wT/qZ3PjWKEU5nbJFCQprqlMQV/7v9uVrvOd1jqOgiUdmYpJiujffvR97e2Q5KMwt0nBkiKKqVCU/vbr39Rwne90vuN45WipTX72xA91+Glv9tNtYW4Ty5KS0ZiyxYj+9v9+SyvqTIRx6zimp6ddeR/4w8xWaDc4aLKeKcXUPvMduhUcpB56+5b2JxWPRpQvWjo4kdGaxa3NKhxjsMk1fclSNv/4bF4HxmfbOE+4drnhnnvu0ac+9SmNjo7q3HPP1V/+5V/qggsuWPDnHnzwQV199dV617vepYcfftj7HQUAoMd5OhdyYmJC733ve3Xfffdp+fLlDf/c1q1btWXLFvvf4+PjWrdunS655BINDQ21vV+5XE47duzQxRdfrESiutP4ry8fl574kVYMpfUfrrio7c/yUr3jCJNi0dKtT35b+aJ0/lt+Q6tr1LGsdyy/GJuU/uUHGu6L68p3XOLXbresU9rl4//6HU1m8jr331+k01YsmvP/9Y5jbHxW1g//SdGI9NvvfHvNrOkw6ZQ2+cRP/1FjExmd9e/erLPXDs/5/3rHMZXJa3b3dyRJv/0fLtFAKtxT3TulTe7+xfe19/C0znjTv9fG1yyd8/9uH4eZeYXOsHRRUolYRLlCe8HBA2Q9uyadiGm4L6HjM7m2goMsluieaDSilYMpvXJ8VmPjsy2fJ5W1WGgTN4wMpTU+O6kDExmdPjLY0nuYWTisG9A6s97Yvffeq40bN+ruu+/WpZdeqmeffVYrV66c9+c6ab0xAAC6RVNRluXLlysWi2lsbKzq9bGxMa1atWrO9s8//7z27t2rd7zjHfZrxWKx9MHxuJ599lmddtppc34ulUoplZqb0ZBIJFwNttR6v0NTeUnS6uG+UAd2nNz+XrxgHp4OTed18vL597Vmm0yX2mTVUOe0iRT+dlk1nNZzByZ1eDqvM+rsZ63jODpTypZdPpBSOtUhaegKf5uMDKc1NpHR4elC3f2s2SbHs5Kk/mRMSwY6Z+2AsLfJquG09h6e1uHpfNNt0oowfxeYKxKJaOVgWvuPzWi0jeAg5VzcNTKU0vGZnMbGWw8O2hm2BAddsXIoXQ6it75+gKmJzmCTO1YOpfSLA5Ntrllk1mIhE71VzvXGJOnee+/VN77xDT3wwAO66aabav6Mc72x733vezp27JiPewwAQO9qat5xMpnUeeedp507d9qvFYtF7dy5U5s2bZqz/RlnnKGnnnpKe/bssf+8853v1Fvf+lbt2bNH69ata/8IXMb0XW+MmIW+WljI8uAEU0W90M6Cr3bmEW3iKnvB11bahExWT4y4sDAyupvpL7S3KDDXVDe5cd6OkYnuKvs8aWP9ANMmtWY0onmV9QNaH9g4SCZ6W8x6Y5s3b7Zfa3a9sYVkMhmNj49X/QEAAK1punjnli1bdN999+lLX/qSnn76aX3gAx/Q1NSUPXp+zTXX2AuPptNpnXXWWVV/Fi9erMHBQZ111llKJsOXwWoCtgSi3LWqneBguU1WDBBccFNbAdsJMvS8YA9stDDYNGa3CeeJmyqDTa0HGYJyzz33aP369Uqn09q4caMee+yxhn7uwQcfVCQS0ZVXXuntDnaJERd+R8zPkonuDnNvGnMhYEtShTvcGNgYZbDYVStdGWwiE70d9dYbGx0drfkzZr2x++67r6HPuP322zU8PGz/CWMSGwAAnaLpIPpVV12lO++8UzfffLM2bNigPXv26JFHHrFv/vv27dOrr77q+o765SABW0+YwN6hyeaDDHab0EF31arh0vfZSsD2wDgBWy+Yh9CWZgfYmawEF9y0so3BpiCZGqvbtm3TE088oXPPPVeXXnqpDhw4UPfnqLHavHaDg5ZlOQK2nL9uqMwOaGdggzZxkxuDTQcI2LrKfI+mn90KZtH4q5X1xrZu3arjx4/bf1566SWP9xIAgO7V0spzN9xwg2644Yaa/7dr1666P/vFL36xlY/0zcFykHcFwUFXme+zlY663SYMbLjKZOodbGFgo7KQFG3iJjdmB4zQJq5qZ3ZAkPyosZrJZJTJVK4fZop4LpdTLpdr+xjMe7jxXl5avqhUx/7VY9Pz7mu9Y5mYzWs6W5AkLe2Lhfp4O61NXmmxTXKFog5NltaZWEabuGJZf+mRY+z4TEttYlmW3V9ZQpu4wrTJaIttIlUG8Jf2xUN9vF60iRvv5cd6Y/OtNQYAAJrXUhC9m9lZzwSiXNVWEL0csKVN3LW8PChxaCLb9M9WZgeQoecmk/XcynlC1qQ37NkBbZSF8JupsWpKq0nN11j93ve+t+Dn3H777br11lvnvP7oo4+qv7+/tZ2vYceOHa69lxdGD0YkxfTTF/Zr+/b6GX61jmV0WpLi6otZ+u63v+XJProt7G3y8uFSm/x835i2b99ed9tax3IkI0lxxSKWdv/jTkUjnuymq8LeJi8eK7XJc68caqlNpvNSNl96bPnx97+rf216Lq3/wt4mvxyXpLj2jh1tqU0KlnRoMiYpoqce+75eDF+VzjncbJPp6em238O53pgpoWbWG6uVsGbWG3P62Mc+pomJCX3mM5+hVAsAAB4jiH4CgujesIPoLWU9U3/bC260CbMD3LV8oPQEajIgm8GUam84BwAty1IkEv5oWr0aq88880zNnzE1Vvfs2dPw52zdulVbtmyx/z0+Pq5169bpkksu0dDQUEv77pTL5bRjxw5dfPHFSiQSbb+fVxY/f1j/33OPq5gc1OWXv7nmNvWO5QfPH5b+9XGtXTow78+HRae0yZqXjumBnz+mbKxPl1/+azW3qXcsT750THriMY0M9ek/XFH758OiU9rktWMT+tzTuzWrpC6//K01t6l3LM8dmJT+5QcaSsf1rv9wiR+73LJOaZOXjk7rMz/9viYKMb397ZfUvL/VO5ax8VlZP/wnxaIR/fY7365YiEebvGgTtxbo3LJli6699lqdf/75uuCCC3T33XfPWW9s7dq1uv322+31xpwWL14sSXNeBwAA7iOI7lAsWnbNboLo7lox0HqGLQMb3mhvdkB5YIOAratMmxyZyqhQtJp6IGWwyRtmxsZsrqipbEEDqe67bbZSY1Waf4p4IpFwNXDk9vu5be3SAUmlc3Ch/ax1LIen85Kk1Yv7Qn2cTp3SJgcnM4rF4orWuZbWbJOpUpusGk6H+jidOqVNjk7nVIxElYrH5t221rEcnS2VPFoxmAr1cTqFvU3WLCm1STZf1Ew+ouH++fe11rEcmZmSVEqoSKc6IA1d7raJW+9z1VVX6eDBg7r55ps1OjqqDRs2zFlvLBrtgKkXAAD0gO6LBrTh2ExO+aIlqRI4gTtW2AuLZlUsWnUfaJ1mcwVNzOar3gPuMN/nZCav6Wxe/cnGLgeWZVWC6LSJq5b2JxWJSEVLOjKVbep3ngXXvLEoFVd/MqbpbEEHJzIdEUT3o8YqKsw5Nz6b10y2oL7k/MHBWswaCAyAucdcO3MFS0ens1rWZJ+OQUn3DfcllIxHlc0XdWA8o3VLmyv5REKF+9KJmBb3J3RsOqexidm6QfRa7EXm6Xe0rZvXGwMAoJswrO1gFktcuiipRIyvxk3LymUqCsXSA22jzENTKh7VUDr8watOsigZUzpR+j1vpi76semcsoVSgI2HWXfFY1EtW1Q6V5qZITCVyWsyUxpsWklNdNdVBgGbn7URBGeNVcPUWN20adOc7U2N1T179th/3vnOd+qtb32r9uzZQ43VBQyUB1qkSlmlZhCIcl8iFrXLY42NN3/eMivRfZFIxB5wOtDCGhMHGdjwxEj5+2zl2jU2wQAgAADoLUSKHQ5S59kziVhUS01wsIlA1AFH5lEn1CLuJJFIpKW66Gbbxf2JutOx0RozC6aV82RRMtYRmdKdprIIb2cE0aVSjdX77rtPX/rSl/T000/rAx/4wJwaq2bhUVNj1fln8eLFGhwc1FlnnaVksjOm6QclEonYs3IOtPA7Ygds6Xu4ygT2WlkUmKxnb1QCti2UkWNgwxNm8K6VNhljABAAAPQYoi0OPDR5a8VASkemsjo4kdEZcysK1ESbeGvFQEovHZlpKuvZzpqkTTyxYjClZ0YnmgrYcp54a0ULAxtBo8aqv5YPpLT38HRLsxXM+buc89dVK4dS+tmr0sFWAramTRjYcNXIUOtZz6Yduc+5yww2tTY7oPQzI2SiAwCAHkEQ3YFAlLdWDKb07NhEUwFbE7QiYOuNVjLRzYMW54k3WgnYmsAdAR9vLB8sZWJ3Uia6RI1VP7VT8odMdG+0MqvHoJyLN1a0MWPjIOeJJ+wSO2SiAwAALIg0NAeC6N6yA7bNBNHHCdh6qZU2YcE1b5ls1GYCtofLwQWz9gDcVQnGNb52AHpLOyV/Kn0Pzl832W3SxuwA+h7uMnXq2ztPaBM3VUpRtbCeg8lEJ4gOAAB6BEF0B7JcvNVSEN1uEwK2XrCDg5RzCY1WMtFNcJdMdG+0cu1Cb2k16zmTL2h8trQoMPc5d5mAbbPnrWVZOlS+phKwdRcDG+FTGbhvfpC40h/k2gUAAHoDQXQH00FnWqI3WgoO8tDkqVZKEFDOxVuttEklE5028UI7gR/0hspAS3OBKBOsTcaiGuqjwp6bWi2xMz6TV7ZQlCQtW8TsADdVrqXNnSe5QlFHphnY8MKyRa2dJ8WipcNTDOADAIDeQhDdwQ7Y0hn0RHulQ2gTL6xoIROdgQ1vtTI7oFJTmYCPF8hEx0LsMhVNBqIO2QtYJhWJRFzfr17WasD24GRpoHgoHVc6EXN9v3qZyXo+3OR5cmQqK8uSYtGIlvRzn3OTKSPV7LXr+ExOhaIlSVrKYBMAAOgRBNEdDrKQlKdaKudiAgy0iSdaaZMj5cwjBpu80UqbHC4HichE98YKRya6ZVkB7w3CaHmLAy3c47zTaib6AQaKPVMZbMo2dS01ZUOWLUoqFmWwyU1msGl8Nq9MvtDwz5nzargvoWScx0kAANAb6PWUZfIFHZvOSWJaolfs4GCDD7SW5ZwqSpaLF5x1fBt9oDVtspQ28YT5XT86nVOuXFJgIeZhlmuXN8z3mskXNZnJB7w3CKNWB1oOsRaLZ8x5e6yJa6lUyVzneuo+851mC0V7LYBGmNkBDGy4b7gvoXh5YOJwE7M2Dk5WZtEAAAD0CoLoZSa7Nh6NaHF/IuC96U4rHA+0jWS7TGbyyuZNXVIenLxgHkiz+cYeaAtFS0fLdUlpE28s6a9k2jX6QFvJROdh1gt9yZgGUqV61ZR0QS2tDrTYmegEbF23uC/R9LVUomSZl9KJmAbL19JmZggcpLSfZyKRiN13aG4tFmbAAQCA3kMQvcx0Bpcsoi6pV4YdD7RHp3ILbm8GNvoSMfUlqUvqhXQipsF048HBo9OluqSStITBJk9Eo5Gm6ivP5gqaKAftCMR5x1mGADhRqwMthygj55loNGIvDNpKwJY28YYpXXSItVhCo5XFs5lFAwAAehFB9DITsF3G4jieiUYjduD18NTCHXVTNoTsWm+Zh6dGFvoy58mS/oTiMS4fXmlmcVFzniRjUQ2VB0TgPhYXxUJaGWihJIK3nCXLGkV5LG+1dJ4QRPdUK4vwmvOEPjoAAOglRMHKTHCQFea9Zb5f833XY08VpU08ZdrElGmpxzw0cZ54q5nAj8nmWzbALBovtZKph97SykKWhybK9bcJDnqCrOfwaeVaepCsZ0+10iaHWTsAAAD0IILoZYcJovuimSD6kSkCtn4w3+/hhtqEGph+MANHRxsZbJoiG8wPBNGxkGZmkBgEB71F1nP4tHItPTBu2iTtyT71uuWD5fNkovlMdILoAACglxBELzMBW7KevWUWo2xkka/DBGx9sbS/PLDRSJswO8AXS8xgUyOzAyZY6NUPzQwAoje1VFfYLCxKwNYTK6j1HDrt1N+m7JE3li9qpU0ouQgAAHoPQfSySjkXHpq81EzpEAK2/lg60HjAljr1/rADtg0MbByaIhvMD81cu9Cbmi3n4lwUmKxnbzS7lkGxaNn3OdrEGybr+WATWc/0PbxlZ6KzdgAAAEBdBNHLTMB2KR10T7VSOoRyLt5a1lSdelNih4cmLzVVp97UVOba5aklZKJjAc2WczHbJeNRDaZYFNgLzWY9j8/mVChakqQl/VxTvdBsm2TzRU3Mlgab6Ht4o7LAfGP3N8uymB0AAAB6EkH0MrvWMwFbT5ksooZKhxBE94UJFDRWp56ArR9MmzQy2HSYTHRfNDPYhN5krosHGwxE2dfTRSwK7JVmA7bmmjuYjisZp4vshWbbxAwmRyPS4r6EZ/vVy5ptk+lsQbO5YtXPAgAA9AKeEMrIevZHM3WFDzNV1Bd2OZeG2oTzxA9msKmRhUXNQy/T3L1VGWzKBbwnCCuzfodZY2UhpoTWEq6nnqmUqWhuYIOECu+saDLr2Wy3pD+paJTBJi8sc5T1yxeKC25v+h19iZgWMYsGAAD0EILoZUxL9MdSO8N24SADAxv+aKqci70ALwMbXmoqE91e3Is28ZKzxI5lWQHvDcLI/h1pcKDlCIOSnjP3qqPTWbtMSz12wJY28YwJ2M7kCpoqrwlQD31B7y3tTyoSkSyrwQXNGbwHAAA9iiC6pFyhqHHqLfqi0axny7Io5+ITZ8B2oeAgi3v5wwxsTMzmlVsgK8xMdV9K/V5PLVlUKiNQKFr2/QJwMveqyUxemXxhwe3tc5d7nGcW95fOW8uSjs8sPLhh2oRMdO8sSsXVl4hJaqx8iBm85zzxTjwWtfsQhxpY8NXM7GCmKAAA6DUE0VUpmUC9Re+Zh6BjM7m6WWGTmbyy+VLwkICtt8z3m80XNZ2dP/CTKxR1bLoUhCDA4K3hvoTMrPV6JV0sy9LRcpuYYBG8kYrHNFCetk5ddNQylI4rVj5xG8lGZ6DYe4lYVEPpxs9bsp79UZnZ08DABoP3vrAXF21gpiizdwEAQK8iiK7Kgyz1Fr1nsp4tSzpWZ8qoeZDtS8TUn6Teopf6k3GlE6VLQb0gg8nQi0SkxWQ9eyoajVRqcNc5T2ZyBXuwifID3jPZ6ATRUUskEmluoeZJZpH4wZS6OtpAmQrKufjDXEsbWfeDgQ1/2G3SwMCGXUaO2bsAAKDHEEQXHXQ/JWJRDfctHIgiQ89fSxsI/Bx2BHxiDDZ5zgRxjtRZfM087CZiES1KxnzZr15mzpNGAj/oTc2sMWEGyJaSzempJf2ND35RzsUfzQw2VfqDBGy9tKSJ+5v93MS1CwAA9BiC6CJg6zfzcFpv0cQjk0zf9VMjteoZbPKX+Z7rZaKbh93F/UlFIgxseG1JA22C3mbPVmjgd8S+ppKJ7qmlTS2eTcDWD86Fmhdi2o2BDW8taeI8YS0WAADQqwiiSzrCKvO+auSB1tRk5KHJHyZgUG9gw9TAJIjuj0aynk2Neh5k/dFMMA69yQ4ONhKIYmDSF02V2KHv4YvWMtFpEy/ZfY4GBjZYiwUAAPQqgugiw9ZvSxvIRCcbzF9L+xeuT2oHbDlPfLGkkRkb0yYTnQdZP1DOBQtp5P5mEBz0R3MDG6X7HDXRvdXMwqJkovtjSRNtYtY04toFAAB6DUF0EbD129JGaj3bbUJw0A+NZKIfszOPeGjyw7IGAj/mQXYJbeKLZqa7ozc1OtCSLxR1fIaBST80U4aJWXD+WNLEwIa53jKw4a0lDSRTGKZN6A8CAIBeQxBdZLn4rZFamARs/bXMromemXebo2Q9+6qRTPRK1iRt4gfKuWAhjQZsTbZnJMJ9zmuNDmxMZ/OazRVLP0N/0FP2YuYLnCeFosVirz5pZpCYmYkAAKBXEUSXM2BLIMoPjUx3PzZDm/ipUp90/mm8JmtycR9t4odlDQw2VQY2eJD1QyOLvaK3NTLTSnKcu30JxaIsCuylysBG/TIVh8ttloxH1Z+Meb5fvcwM/C40sHFsOivLMj/Dfc5LZmDj2AL3t2y+qMlMXlIlex0AAKBXEESXM2BLB90PSxroqB83Axt9tIkfKhm2C2eiUzrEH3Ymep1gXKWcCw+yfmimtjJ6UyMzraTKeU1g0HuN3N8kVWU8RyIMbHhpSYOLWJr/H0rHlYjxyOKlJQ3ODjD9jmhEGkrT9wAAAL2FHqmk446MMHjPZJebzOZajhIc9FUji3yZGRvDtIkvGstEZwDQT5UZGwTRUVujvyOUqPBPZfBrgUx0Fnr1jbPPUSxa825nBpuWDbBmkdfM7IDZXFEz2cK82x1xzICLMosGAAD0GILoonSI38z3fKxewHaGgK2fhvsWHthgEUt/OeuTWlbtIINpk6W0iS9M4Gd8Nq9coRjw3iCMzPoSR6fnP2+lSsCW66n3zPVxMpNXJl8nODhJEN0vph9YKFqamM3Pu90RBjZ8M5CKKxErBcXrDt6btVjonwMAgB7U80H0TL6g6XLGBaVD/DHcV7+ci2VZlXIuBBh84ZwdMG/AlsEmX5mZMbmCpZlc7cCPyURnYVF/LO5LyCTeUdIFtZigeK5gaSJTJzhoZ9hyj/PaYDpu152vN3hvAocEbL2Xisc0kIpLql8+hNkB/olEIg3NpKG0HwAA6GU9H0Q3mbeRSOlBC94zQdiJTF6FGtN4p7MFZctZnpTY8YfJRC8ULXvBKKdC0aosLEoQ3Rf9yZji5cDPfDMETCCXwSZ/RKMRDTUwawO9K52I2YtS1ltclECUf6LRiJ01Wy84SMDWX2bwt16bMNvKX43UqrevXZwnAACgBxFEN3We+xLU9vOJCdhaljQxOzcQZTKek7GoHYyAt9KJmFLx0uWgVnBwYjYnk6DOjA1/RCKRumV2coWinelKIM4/jZQ+Qm9rZIE+Arb+soOD9TJspwjY+mlpA21iZg4sZraVL8zARr31cY7apahoEwAA0Ht6Pohul6gg49k3iVhUi8rB8VpTq03m0XB/QpEIAxt+McHBWm1iHqgWJWNKxnv+suGbem1iXotEKtvBewTRsRC7LnojAVuC6L6w15ioM7BRCdjSJn5oqE3sPjpt4ofKIrwLL2hOJjoAAOhFPR8NMw9Nw2Qe+cqUnzhWIxBl10MnMOgrU6ZlvEabmIENyob4a7h//oCtaZOhdMKu9wvvEUTHQkzW82HqCofG0gZqPR+bKd/n6Hv4oqlMdLKefbG4kZroLIoMAAB6GEH0aR6aglDJsJ3bUbezXOig+8puk5oBWx5kg1AvYFs5T2gTP1ETHQsx2ZzzLZ4tVX5/hjl/fbF0oIEgOvc5XzWSiX6cgQ1fLW2iJjpljwAAQC/q+SA6iyUGY3G9DNuZSjkX+Ge4PF26XptwnvjLDqLXLLHD4l5BIBMdC2nkd8S5Hgu8ZwYb62U9m1lYtIk/mikdQn/QH6Y/Ua8m+hEGmwAAQA/r+SD6MUqHBKJekIE2CUbdmuhT5qGJgK2f6p8nTKkOAkF0LGSozrVUkvKORYG5z/ljcZ1BYoP62/5a0kiJnWnaxE9LFy082GT6HqznAAAAehFBdDvrmc6gn0wGS60gA7MDglF/dgADG0FYXCdge5ysyUAQRMdC6p23kjQ+m7f/zvnrj3rlyiQpky9oOlsobUvfwxf1+hySZFlWpZwLbeKLRmqim/8jqQIAAPQiguhkPQfClA6pnfVMBz0IleDg3Ien49M8yAZhqE7gZ3ymFIgjCOcv833XWoAXkBYeaDGvD6Tiisd6vhvmi4XWMjCvRyPSYCru2371soXOk+lsQbmCJYm+h19MnfP51nPIFYqaKA8CkokOAAB6Uc8/vZH1HAw7E71GwPYYbRKIellhJnNyKE2b+KlekGF8tvTaYJqAj5/IRMdCFvodMQEqBsD8s+DARnlAf6gvoWg04tt+9bIFz5Py68lYVH2JmG/71csWvnaVXo9EuH4BAIDe1PNB9GMskBOIxXWyOSlTEYx6NdEnZisBBvinbhC9/BoDG/4iiI6FLFSm4hj3ON8tNIPkOCXLfNfwYFN/QpEIAxt+MH28qWxB+UJxzv+bthpMxRVjsAkAAPQgguimJjqLFvmqfsC2lPU8SHDQV/XaxJQOIevZX6akUa3AjzlPhvpoEz/VO08AaeHg4DizrXw37BjYsCxrzv+b85n1cfxjArazuaIy+cKc/z9OuUXfDTn6eM61GyqvmfOENgEAAL2p54PolbrCBKL8NGyXc5k/65mArb8aKR1C1rO/KgHbuWWPaJNgkImOhTh/R4rFOgFbgoO+Md91rmBpJjc3YMvi2f4bTMVlEszrLmhOwNY38VhUA+U1AeotaE6/AwAA9KqeDqJblqXJTCmIPpCiQ+ineoEoO8OWILqvTNZzvTZhYMNfdgmC2fyc7MnK7ACuXX4y2ZOZfFGzNYJxgPkdsSxpIjM3m5O1WPy3KBmzy0/UDNhSp9530WjEXsS11myrymATswP8ZPretdqEMnIAAKDX9XQQfSZXUKGcJUZw0F+mAz55wnRRy7Icmeh00v1kggeTmbxyJ9TCHKcmeiBMmxSKlQE/o1KnnmuXn5zZk/PVV0ZvSydiSidK3at6wUGup/6JRCJ2lnm9DFsGNvxVKbMzd7DJlFukTfw11MBaLAw2AQCAXtXTQXSTXRuLRtSfjAW8N73FTBedyRWqArZT2YLM7HcyXfzlHEiacgRsi44ALoNN/konokrGS5fpE2twj9szNjhP/BSNRuzvnJIumE+92vl2cJAMW1/ZM+BqtAkLiwaj3oKv1EQPxpA9A65WaT/WYgEAAL2NILpKAd1IhFXm/TQwT8DWtEk8GrEz+eCPRCxqf+cTjhkCU9m8LAY2AhGJRGqWPsoXivbABtms/qMuOhZSd40JsjkDYa6VtdZiYWHRYNQ7T0ybkInuL65dAAAA8+vpKOUE2bWBScSi6kuUsv+dAdtJR+1tBjb8Z0roONvE/D0ZiyqdYMaG38z1yVnOZTJTmPP/8A9BdCzEZJkTHAyPugFbMtEDUb9NqFMfhHptwsKiAACg1/V0EL0SsKUzGASTje6cMloZ2KBNgmAW+ZqsMTuAYG0wTJtUDWxkSudMXyKmRKynL+OBMFPZa013ByRn1nN2zv9ROiQY9UuHELANQkOLzNMmvjIB8vEadepZHwcAAPS6no6+2MHBFMHBINgZtlVZz7mq/4O/Buys58oD7TgPsoEyA0pVbTJDXdIgDdiDTYUFtkSvaiTrmWuqv+qWqeA+F4h6i1gygB+M+uVc8lXbAAAA9JqeDqKzWGKwambY8tAUqIGaWc+0SZBqtgmzaAJVKXtEJjpqM6Va6i1iSSDKX/WznhnAD0JjbcJ54qdhM9OqXjkXBvABAECP6ukgOsHBYFUybCvBwXGCg4Ey50JVwJYamIGq2SYma5JrVyDsTPTZudPdAWn+4GAmX1Q2X5TENdVvjWSi0x/0lzkHyEQPDzM7oFa5MvMaA4AAAKBX9XYQnYBtoCoZto6a6Dw0BWogNXdgg8GmYNVa7JW6pMGqtdgr4DRUY80Pqfp3ZoBrqq8aGdigP+ivenXq6aMHg4VFAQAA5kcQXQQHg2Jn2DqCCibAQAc9GLXr1NMmQRpIzx1sGqdNAlVrdgDgVGvwS6pcWxclY4pFI77vVy+br/521cAGa+T4at6BjVxB2YKZsUGb+Gm+gQ3LsuzXGMAHAAC9qreD6BmyXIJUK8hAmYpg1cqwZZp7sIZqtAn1e4NlZmwQRMd8BuaZrWD+TRa6/0wd5/kGNgZScQY2fDZfwNb0zyMRaVGSc8VP8w02TWULKlqlv1POBQAA9KqeDqLbD048zAZioE7WMwMbwTBZeOM1SuyQeRSMeguL0ibBqARIWVgUtQ3OUzefe1xwBsuDX1OZ2m1CFrr/5stEH5+ptEmUgQ1f2QMbs3lZlmW/bgY6krGoUvGefnwEAAA9rKd7QZXSITw4BWGoRpmKiQwZtkGqPbBBmwTJXoB3ltkBYUE5Fyyk1sLZzn8TsPVfrfubRL8jSKZNprIFFYuVgO0Epf0CY4LohaKlqWzBfn3cMXgfiTCwAQAAelNPB9GpiR6sehm2ZOkFw7RJdekQ2iRIgzUWKJykFFWgBmucJ4DTwDwDLfQ7gmPf37L56oAtbRIY52DSVLZWv4M28VsqHlUyVno8dJbZsRcV7aNNAABA7yKILgJRQbFrotcM2NJJD8JQjezJytoBtEkQagXjpjKl7LBFyVgg+9Tr5stoBQzngKQzYDvJ9TQw5ju3LGk6V8mwpS8YnFQ8qni5XIu5r0nMgAtSJBKpuaYDi8wDAAC0GES/5557tH79eqXTaW3cuFGPPfbYvNved999estb3qIlS5ZoyZIl2rx5c93t/cQU3mDVCg4SRA9W7YBtuU0oPxCIWguLTpcz9hbRJoGoNQAIODnvYTUzbFMEovzmDNg6B8AY2AhOdcCW2VZhUWumKOcJAABAC0H0r371q9qyZYu2bdumJ554Queee64uvfRSHThwoOb2u3bt0tVXX63vfve72r17t9atW6dLLrlE+/fvb3vn20X2UbAGazw4TfDgFKhaD07T5ZqYBGyDYQdsZ3P2Il8mY4+6ysEw33s2X1QmXwx4bxBGqXhUiVg5YJuZG4hiQXP/zRewpS8YrEVJEirCplZpvynWcwAAAGg+iH7XXXfp+uuv13XXXaczzzxT9957r/r7+/XAAw/U3P7LX/6yPvjBD2rDhg0644wz9PnPf17FYlE7d+5se+fbkStKuUIpIEWHMBhDJ2Q9W1YlYEubBKPy4FQJMNilQ1KUDglCf7lkS9GSHbA1ma39lHMJhPP6RF101BKJRCrXU2dwkGzOQJFhGz7me68u50KbBKlWybLJDAkVAAAATfWEstmsHn/8cW3dutV+LRqNavPmzdq9e3dD7zE9Pa1cLqelS5fOu00mk1Emk7H/PT4+LknK5XLK5XLz/VjDcrmcZit9daWilivv6zezz52475JkYrKTs3lls1nlLalQrh2bjBY79rg6uV3MelGzuaKmZ0vnoAnYJqOdeUxSZ7dJIlKpp3x8alZSJeiTinXmMUmd3SZSaQBjOlvQ0ckZSe4dR6d+H5hrIB3X0emcxp2BqFmyOYNUd/Fs2iQQtQbvmZUYrMFaCRVZrl0AAABN9YQOHTqkQqGgkZGRqtdHRkb0zDPPNPQeH/nIR7RmzRpt3rx53m1uv/123XrrrXNef/TRR9Xf39/MLs/LJLwko5a+9cg3XXnPoOzYsSPoXWhJqQ3iyhctbf/Wt5V1VEXYtXOHyjPhO1YntktpckbpsvCNb+0sBWnLMzb++R+/o/4Of3bqxDaRpEQ0plwxoke/849alpYmZ3OSInrsn/9Jv0gFvXft6dQ2iVkxSRF995/+WWsXuXcc09PTrrwPgleqez5Tc6FmFucLxmCNDFuynoO1qMbsABaxDFal7FEl44hZiQAAAE0G0dt1xx136MEHH9SuXbuUTqfn3W7r1q3asmWL/e/x8XG7lvrQ0FDb+5HL5fTFh0sBj8G+lC6//Nfbfs8g5HI57dixQxdffLESic570LAsSzf9yw4VLemCN/+adu76J0mlWrLvuOLygPeudZ3eLn/6+Lc1kyvq/E2/qh/v/r79+ruuuEyJWEtrEQeu09vk1n/7ro5M5fSmCzbp+T27VbBKI0zvuOxiDfV13vFInd8mn372e5o4MqNz3vTvdPjZf3HtOMzMK3S+WiURpigdEig7YFujTj1Zz8EYsMu5MLARFrVKUU2xoDkAAEBzQfTly5crFotpbGys6vWxsTGtWrWq7s/eeeeduuOOO/Ttb39b55xzTt1tU6mUUqm56ZWJRMK1YIvJel6UindkAMfJze/Fb/3JuCYzeeWsqDJd1CZS57bLYDqhmVxGs4WI3SbJeFT96Q5PeVbntsmiVFxHpnLKFiNyJIZpeFFa8Q4d2DA6t01KWcbZ8oCGW8fRid8FaqtVEsEEB1lYNBjUqQ+fwRoldqhTH6xaC/CyoDkAAECTC4smk0mdd955VYuCmkVCN23aNO/PffKTn9Rtt92mRx55ROeff37re+uiTKEU+GBhvmD1lb//6WxB5TVFaZOAmYeniUzODtjy0BSsRclypl62YK/nkIpHOz6A3snMdWraOaoBOAyk55apIOs5WHY5l5pZz7RJEGrNDqCcS7DqDWyY/ggAAEAvarontGXLFl177bU6//zzdcEFF+juu+/W1NSUrrvuOknSNddco7Vr1+r222+XJH3iE5/QzTffrK985Stav369RkdHJUkDAwMaGBhw8VCakyFgGwrm+5/JFeyBDTrowbLbJFvgPAkJO2CbzduzAxjYCFa/YwCw8+dowAuDNYLoEywsGqhaC4tOUjokUKZNnOVcxmdLGdC0STAGatSpN+1DORcAANDLmu4JXXXVVTp48KBuvvlmjY6OasOGDXrkkUfsxUb37dunaLSSHfm5z31O2WxWv/Vbv1X1Ptu2bdMtt9zS3t63wVnOBcHptzNsK8HBfhYtClR/otQm09nKwAYBn2CZ69S0c2CD8yRQZrBvOkcQHbUNpEpZtCZga1mVvw8RHAyEaZMJyrmERq3FXiuLWNImQRhIV1+7JMq5AAAASE2WczFuuOEGvfjii8pkMvrRj36kjRs32v+3a9cuffGLX7T/vXfvXlmWNedPkAF0qZKJ3pcgEBWkWlnPZKIHq885O8AMbJCJHijz/U9lmbERFs7ZAWF1zz33aP369Uqn09q4caMee+yxebe977779Ja3vEVLlizRkiVLtHnz5rrbY2EnBgezRalolf6PmujBGDihnEvRKg1OSpRzCcqiGrMDzHWVgG0w6i8sSn8QAAD0rp4tqEsmejhQOiR8ag5scJ4Eys56zubtmugEF4JlZgLMZMNZE/2rX/2qtmzZom3btumJJ57Queeeq0svvVQHDhyouf2uXbt09dVX67vf/a52796tdevW6ZJLLtH+/ft93vPucWLpEHPuxqIRBvADYtd6LpcLcS5pwDU1GCeeJ0VLmsmVOun0B4NRa+0AMtEBAAB6OIhOwDYcTCBhOldgYCMknG3C7IBwMAHb6UxlAV7Ok2BVBjbCGUS/6667dP311+u6667TmWeeqXvvvVf9/f164IEHam7/5S9/WR/84Ae1YcMGnXHGGfr85z9vLxyO1phAlKnv7BwAi0QiQe1WTzsxE93c4+LRiJLxnu0SB+rEILrpC0rc54JSsyZ6lproXmLmGAAAnaFne0LZckkEgujBqq71TJuEgSnnMpstUn87JJwB21k7iE6bBKnPUWInbHfSbDarxx9/XFu3brVfi0aj2rx5s3bv3t3Qe0xPTyuXy2np0qXzbpPJZJTJZOx/j4+PS5JyuZxyuVyLe19h3sON9wpCX7x0T5uYLX0f9rmbjHXsMXV6m5gqOhMzpTZxlizr1GPqnjbJl9rEMWMjahWUyxXn/+GQ6vQ2SUZLdaemMqU2yRelXKH0WipqdeRxedEmbr2XmTl27733auPGjbr77rt16aWX6tlnn9XKlSvnbG9mjl144YVKp9P6xCc+oUsuuUQ//elPtXbtWlf2CQAA1BayR3//VB6cevYrCIU+u64wpUPCwq71nKP+dlhUFuCtzNjoS9AmQTLnxEwIg+iHDh1SoVCwF/w2RkZG9MwzzzT0Hh/5yEe0Zs0abd68ed5tbr/9dt16661zXn/00UfV39/f3E7XsWPHDtfey0+/OB6RFNOrh45px44d9uB9MTuj7du3B7tzberUNtk7IUlxHTg2UW6T0uvRYo42Ccj+KUmK68jElHbs2GH3BZORor75zW8GuWtt69Q2OZqRpLgmZrPasWOHPQAoSf/4nR2KdfBEGjfbZHp62pX3cc4ck6R7771X3/jGN/TAAw/opptumrP9l7/85ap/f/7zn9f/+T//Rzt37tQ111wzZ/v5BrwBAEDzQvbo758s5VxCoT/hqL/NIpah0OcIDmYosRMKJut8OpuXScpLJyg9ECTnAKDcixeHwh133KEHH3xQu3btUjqdnne7rVu3asuWLfa/x8fH7VrqQ0NDbe9HLpfTjh07dPHFFyuR6LxFH5/af1yf/dmPFE326eKLN+knf/ttSdLKpcO6/PJ/H/DetabT2+QXByb1P3/yAxWjSV188a/qc/+nFFBbOjSgyy9/c8B715pOb5OXjk7rk//2feUU08UX/4a+8HCpTYYWpXX55RcFvHet6fQ2OTad0y1PfFcFK6Jf/4236f9sL5X1SieiescVlwe8d63xok3cCEb7MXNsvgFvAADQvJ6NjNkBW4KDgbIXscw5aj2T9Ryo6kz06tcQjH5n1nOxlAKWitMmQaoMbISvJvry5csVi8U0NjZW9frY2JhWrVpV92fvvPNO3XHHHfr2t7+tc845p+62qVRKqVRqzuuJRMLVwJHb7+eXof7SdzOTKyiRSDjWM+jM43Hq1DZZMlAaFJrM5BWPx+3ZVgPpeEcej1PHtsmiPknSbK6oSDRWNSuxE4/HqVPbZHhRpX+Rt6JV6zl04vE4udkmbryPHzPH5hvwBgAAzevZVMasozYpgtNfVRPdvEabBMke2KgqHUKbBMkZsM2VypIqRSZ6oPrtOvX5Bbb0XzKZ1HnnnVe1KKhZJHTTpk3z/twnP/lJ3XbbbXrkkUd0/vnn+7GrXa3vhMVnGZQMnplVlS9ayhYsuy/IPS44zpluU9mCZikjF7hkPKp4tNQOVYvMk3gUOmbm2N///d/PO3MslUppaGio6g8AAGhNz/aGMkUWsQyDfmdNdMq5hEKfo8QOpUPCwQRsJ7N5DZo2IRM9UM5rVxht2bJF1157rc4//3xdcMEFuvvuuzU1NWXXXL3mmmu0du1a3X777ZKkT3ziE7r55pv1la98RevXr9fo6KgkaWBgQAMDA4EdRycz5cqy+aIKRYsZcCHgDJZTsiwckvGokvGosvmiJjN5yi2GRH8ypvHZvKYzrI/jJb9mjgEAAHf0bGSs0kmnQxik6oBtpPwabRKkPkc5FxNET5GlFyhznsxmi4426dnLdyj0n5BlHDZXXXWV7rzzTt18883asGGD9uzZo0ceecSeMr5v3z69+uqr9vaf+9znlM1m9Vu/9VtavXq1/efOO+8M6hA6Xp8jCDidrZQs6+d6GphELKpEeVXEGUqWhcZAeRBjKpO3BzYGGNgIlF1GLlfQLG3iGWaOAQDQWXq2N1SZmsiDU5DsQFSOrOewcJZzqbQJ50mQzDmRyReVK8V/lIpzngQpzDXRjRtuuEE33HBDzf/btWtX1b/37t3r/Q71mFQ8qmhEKlrlgK2ZAUe/I1B9iZhyhXwpE521WELBTqjIFR2l/WiTIJnr1FQ2zzOTx5g5BgBA5+jZHmqW4GAomE66M2DLgonBMjMBprMFFcpBnzQB20CZc2I2X1A+Vv0agtGfCG9NdIRDJBJRfzKuyUwpYEuZinDoK5epYGAjPMysjVln/W3Ok0A5EypmqYnuqauuukoHDx7UzTffrNHRUW3YsGHOzLFotNIPd84cc9q2bZtuueUWP3cdAICe07O9ITJsw8FMa5/O5slEDwn7wSlXUITzJBTMOZElEz00TJvM5ouyrIB3BqHVl4xpMpOvyuakjFywSt9/prrEDgHbQFUy0R0DG5wngep3JFSYaxflXLzDzDEAADpDz0Zh8nbWc89+BaHgrCtMJno49DsywhhsCgc7Ez1XUN4qBRioiR4ss06AZUkFguiYhzObM8vi2aFgrzFRVROd4GCQnOvjZCkdEgr9jpJl9sKiBNEBAECP68kojGVZyplAFAHbQPUly9mcuaI9sEEmerDshUWz1KkPi6qa6Aw2hUKfY2DJBEeBE5nfk2kWsQyNfsc9zpy7lA4JVp9jBtwsAxuhUOs84doFAAB6XU/2ULOOtEGyOYPlrPVM1nM4mAfXTL6oWLkp+miTQJms56IlO8DAwEawErGIvWhkjiA65lE7E70nu16h4QzYsohlODgXFiUTPRxqzRSlfw4AAHpdT0ZhsvmC/XfKuQQrbU+rLqpgzw6gTYLkDJhPl6fw8uAULOc5MZM3r9EmQYpEIvZ5QRAd8zHlD2YcJRHI5gyWPTvAWaaCgY1A9TkGmzLl6ymD98GqykS3B+9pEwAA0Nt6MlqZyVciHslYT34FoVFrJgCd9GDVynBmxkawnEH06fzc1xAME+ShnAvm4yznQiZ6ODjX/chQpiIUnLMDyHoOB3Odqm4T+h0AAKC39WRvyATRU/GoIpFIwHvT29I1smkJDgYrEokoeUIb8DAbrEgkYp8XLCwaHmSiYyHOci7URA+HvhoZtn20SaCci73misyAC4NKJnrevscxOwAAAPS6nozCZHKVIDqCZeoKG/FoRHFmBwTuxHOj1mAH/HViQIFyLsEzAxkE0TGfPkddYXsRS2o9B6ovMTfDluBgsJw10cl6Dof+qkXmGdgAAACQejWInieIHhbOusISbRIWzgBtNFIa7ECwTjw3OFeCZwaXcgXOD9TmDERl7KxnyrkEyZ4dkCsqV15nnpk9wXLWRKecSzj01xgAZGADAAD0up7sDWXKC4sShAoHZzvwIBsOzjZJJ2KUPQqBEwMKBBiCZwI/1ETHfEzAdiqbtxfPTtP3CFTNgC0zewJVyUSnTcKiL1m6TlGnHgAAoKInn+RMJnqSDnooODvlPDSFgzPbiMGmcDgxA4x2CV6aci5YgAnYHpvO2a8RiAqWHbB1BNEZwA9Wn2OxV8q5hIPpj2dyRUcmOtcuAADQ23qyh5qlnEuoUM4lfJzlXHhoCocTa6BzrgQvGTOLvQa8Iwit/sTcIDrnbrDM7IDJTF5Fe3YA97kg9VPOJXTSZmAjz9oBAAAARk8+ydk10clyCYXqci500MPAeW5QeiAcnFl5MRbgDYVk+dzIk4mOeZhA4PHZUhCdczd49uyAGcfABv3BQJnzZDrH7ICwMANLs2SiAwAA2Hqyh8rCouGSIhM9dBjYCB9nJjrnSTiYkmBkomM+Jug0PpOXxLkbBiab9uh01n6NTPRg9TnOE0vl2QH0PQJlBu4zOTLRAQAAjJ58mmNh0XCpXsSSNgmD6nIutEkYUKc+fOxyLmSiYx7mvB0vZ6Jz7gavPxmXVCmxk4hFFI2yeHaQKrMDGNgICzOIMZkpVMoe0R8EAAA9rid7Q5VMdDroYVCV9UyAIRSqBjZok1AgEz18KOeChZjz9ng5Ez3JuRu4lD2wYWYH0BcMWmV2QGlgIxopDW4gOCaI7ix7xOwAAADQ63ryac4E0XmYDYdkzBlEp4MeBs4HJR6awiGV4DwJGzOYkbcI9qC2E+s6MwAWvBPbgOza4JlMdKtcGiudiCkS4boapBPPi0iE6xcAAEBP9oYyOWqih0mSTPTQoU3Ch0z08CETHQs5cRCSczd4tEn4nFhrmzYJ3onldNLxKAMbAACg5/VkLzXLwqKhkqyqiU6GbRgkHLMDnH9HcKpqopM5GQp2TXQWFsU85mY9c48L2oltwsye4HGehM+JbUCbAAAA9GgQPUMQPVSc5VyYVh0OSUct0gTnSSg4H2C5doUDmehYCFnP4XNi0Jw2Cd6J5RVZiyV4DGwAAADM1ZO91Ey+IInso7CgdEj4xJ2Z6FGm74aB89xgPYdwqNRED3hHEFonBp44d4NHTfTwmTOwQcA2cNFopHqmKNcuAACAXg2ik4keJs5OepLSIaFAOZfwqX6YJcAQBmSiYyFzS4dwPQ0ai72GTyIWkbPcNgMb4ZCqmilKvwMAAKAne6kmiE5GWDg4M5DiMbKew8BZzoU2CYdElBkbYUMQHQuZW86FQFTQyHoOn0gkUnVfI+s5HJwDTgxsAAAA9HgQncX5wsE5mBGP0iZhECcTPXScgxkE0cOBhUWxkBODgZy7wYtFI0pwPQ0d50xEBjbCIUkmOgAAQJWefHLIUs4lVJztEKP+dihUl3OhTcIg7jg3GAAMBzLRsZBYtLpMBf2OcHBmo1MeKxycgXMy0cOBcosAAADVerJHZILoZNiGQ5KAbeg42yHB7IBQcM4OSBL0CYVKJjrXLdQWiUSqM2wJDoZCVekQBiVDobpNuMeFQdVMUfrnAAAAvRlEL1ilufdxsp5DobqT3pO/kqHjbBMGNsKhKhOdQFwoRMttYlHOBXVUZXNy7oaC8xrK9TQcGNgIn+q+IG0CAADQkz2iYrEU8YhGCA6GQXVNdNokDJy16RMEGELB+QDLVPdwiJXvIUWC6KijOhOdDNswcPY7qL8dDs4ZVsy2Cgfn9Yr+OQAAQI8G0U0mOvW3w8EZYKCTHg7O7HPaJBxiZKKHjmkTSqKjniRZz6GToMRO6KSq6m/T7wiDqnKLnCcAAAA9GkS3M9ED3hFIouZiGDGFN3ycAxtkToYD5VzQiKqALWUqQoGZPeGTot8ROkkGNgAAAKr0ZC/VTL2nnEs4pKrKufTkr2ToVJVz4WE2FJxtQl3lcDADsWSiox4y0cMnQTmX0GEtlvBJ0j8HAACo0pM9oiLlXEKFB6fwcbYDbRIOzlkaBOLCwdREJxMd9VA6JHyS3ONCp6p0CIP3oUD/HAAAoFpP9lLthUUJooeCs5POwEY4JJhWHTrOLDACceFg7iEsLIp6qkoisGBiKCRiZNiGjXOgmNJ+4VA1U5S+IAAAQG8G0e2FRemjhwKd9PBJRJ0BBk6UMCATPXxYWBSNSJGJHjpVQXQ6g6EQJxM9dFJkogMAAFTpyV5qoRzxIBM9HJKxSmZegjYJhapyLgR9QsHZJmlq+IZClHIuaEAiXjl3Wc8gHJxBWvod4eBsB4Lo4VBVYocZGwAAAL0ZRDflXGIsLBoKVQsXkekSCgPpeOXvKQK2YUA5l/CJUc4FDaiu9cw9LgwSVaVDuJ6GgbMdkpwnoRDn2gUAAFClJ58cCiwsGipVQXQyXULhzNVD2rL5tbrspKLOO3lJ0LsDVQ8wkc0aDmYglnIuqKe6/jb9jjCgTcKnekFz7nFh4Dw3mJUIAADQo0F0e2FRMtFDoTqITpuEQSQS0QcuOlVvX1dksCkkyEQPH9MklHNBPSyeHT7URA8f5z2OIHo4OK9X9M8BAAB6NIhOJnq4pAgwAAuqXliUEjthQDkXNILZVuGTjJP1HDbOexwB23CIU6ceAACgSk/2iCqZ6AHvCCRRmgJoRIJM9NChnAsa4ayJzkBxOFDOJXyqFnvlHhcKsSg10QEAAJx6spdaKGcN8jAbDs4AQ4G6CEBNMccDbDrRk5fu0ImW7yFctlAPGbbhQzmX8KnOeqZNwiBOnXoAAIAqPdkjoiZ6uDiD6ASjgNosx8lBJno4kImORjhLuDB4Hw5VWc+U2AmFuKNNkgRsQyFGORcAAIAqPdkjoiZ6uEQd7UCLAAvjYTYcYmSiowHODFv6HeGQdM4OIOs5FBIEbEMnzsKiAAAAVXqyl1ooZ6LHyEQPjav/3Ul6/XBR55w0HPSuAKG0dnGfLn7DSp2/vKh0goVFwyDKwqJoQJz626FTXRO9J7vCoeM8TyjnEg5VmejMgAMAAOjNIHqxnDYY5WE2ND7+zjP1wTOLZOkB84hEIvqrd2/Qe0+neEhYUM4FjXAGBLnHhYMzIEjANhwS1N8Onao69Vy7AAAAejOIXihHPOijAwBaZRJYKeeCepyZzmSih8NAKm7/nYBtODjbwdk+CE4s6hxs4jwBAADoyR6RnYlOORcAQItMJrqlSNXCr4BTnEz00BnqS9h/pyZ6ODivoUNpguhhUJWJznkCAADQm0F0uyY6D7MAgBY57yEFCqNjHizOFz7OIC1tEg7TuYL9dzLRw8F5j4uTiQ4AANCbQXQy0QEA7Yo47iEFYuiYh7OrEWMRy1AYTDsz0WmTMJjJVoLorFkUDvEYmegAAABOPfnkYBIG6aMDAFrlzNIrkomOeUREOZew6U/G7L+zYGI4TDuC6AiHWNXCoj35yAgAAFClJ3tElHMBALQrVpWJThAdtTkz0SkdEg7OIDp9wXAgiB4+VTXR45wnAAAAPRdEd2YLUs4FANAqZ2IemehoBAHbcFizuE+LkjENxC31JWIL/wA8d+2Fp0iSNiwtBrwnMJzlpxKUPQIAAOi9ILozW5CHWQBAq5yZ6MTQMR9n7Xwy0cMhEYvqRzf9ura9qUD97ZA4Y9WQHv/oW/W+1xFEDwsWRQYAAKjWe0F0MtEBAC5wDsRSzgXzcfY0CNiGRyoRU5Ik9FAZ6kuIrnmIONqCTHQAAIAeDKIXqzLRA9wRAEBHi0QidsCHci6YD0FBAB3JcVtLxLiQAQAA9FwY2ZmJHuPJFgDQBnMfIRMdANBNLEcUnUx0AACAHgyiFx2lFplWDQBoh7mPkImO+dDTANCJnM9MBNEBAABaDKLfc889Wr9+vdLptDZu3KjHHnus7vYPPfSQzjjjDKXTaZ199tnavn17SzvrhqqFRclEBwC0wcxwJxMd84nQ1wDQgapLYHIdAwAAaDqI/tWvflVbtmzRtm3b9MQTT+jcc8/VpZdeqgMHDtTc/gc/+IGuvvpqvf/979eTTz6pK6+8UldeeaV+8pOftL3zrahaWJQOIQCgDZVM9IB3BKFFDB1AJ2JoGAAAoFrTQfS77rpL119/va677jqdeeaZuvfee9Xf368HHnig5vaf+cxndNlll+nDH/6w3vCGN+i2227Tm970Jn32s59te+dbYbIqonQNAQBtsmuiU84F8yCGDqATWcywAgAAqBJvZuNsNqvHH39cW7dutV+LRqPavHmzdu/eXfNndu/erS1btlS9dumll+rhhx+e93MymYwymYz97/HxcUlSLpdTLpdrZpfnvne29PORiNp+r6CZ/e/045A4ljDqluOQuudYuuU4pO45lmg5iJ5x4f4kdf73gblOXrYo6F0AgKatGu4LehcAAABCpakg+qFDh1QoFDQyMlL1+sjIiJ555pmaPzM6Olpz+9HR0Xk/5/bbb9ett9465/VHH31U/f39zezyHFM56c0jUUUl7dixo633CotuOQ6JYwmjbjkOqXuOpVuOQ+r8Y3nj4qiyQ9Kex36gF5Ltv9/09HT7b4JQ+bXTl+ujb3+9xl/8WdC7AgAN27BusW55xxs0+lwwJTgBAADCpqkgul+2bt1alb0+Pj6udevW6ZJLLtHQ0FDb739lLqcdO3bo4osvViKRaPv9gpLrkuOQOJYw6pbjkLrnWLrlOKTuOZaLXT4OM/MK3SMSiei6C0/R9mM/DXpXAKAp77lgnbYfeiro3QAAAAiFpoLoy5cvVywW09jYWNXrY2NjWrVqVc2fWbVqVVPbS1IqlVIqlZrzeiKRcDXY4vb7BaVbjkPiWMKoW45D6p5j6ZbjkLrnWNw6jm74LgAAAAAA6DZNLSyaTCZ13nnnaefOnfZrxWJRO3fu1KZNm2r+zKZNm6q2l0rT9+fbHgAAAAAAAACAsGi6nMuWLVt07bXX6vzzz9cFF1ygu+++W1NTU7ruuuskSddcc43Wrl2r22+/XZJ044036qKLLtKnP/1pXXHFFXrwwQf14x//WH/913/t7pEAAAAAAAAAAOCypoPoV111lQ4ePKibb75Zo6Oj2rBhgx555BF78dB9+/YpGq0kuF944YX6yle+oo997GP66Ec/qtNPP10PP/ywzjrrLPeOAgAAAAAAAAAAD7S0sOgNN9ygG264oeb/7dq1a85rv/3bv63f/u3fbuWjAAAAAAAAAAAITFM10QEAAAAAAAAA6CUE0QEAAAAAAAAAmAdBdAAAutA999yj9evXK51Oa+PGjXrsscfqbv/QQw/pjDPOUDqd1tlnn63t27f7tKcAAAAAAIQbQXQAALrMV7/6VW3ZskXbtm3TE088oXPPPVeXXnqpDhw4UHP7H/zgB7r66qv1/ve/X08++aSuvPJKXXnllfrJT37i854DAAAAABA+LS0sCgAAwuuuu+7S9ddfr+uuu06SdO+99+ob3/iGHnjgAd10001ztv/MZz6jyy67TB/+8IclSbfddpt27Nihz372s7r33ntrfkYmk1Emk7H/PT4+LknK5XLK5XJtH4N5DzfeK2jdcizdchxS9xxLtxyH1D3H0i3HIXXPsXhxHJ3+nQAAgOYRRAcAoItks1k9/vjj2rp1q/1aNBrV5s2btXv37po/s3v3bm3ZsqXqtUsvvVQPP/zwvJ9z++2369Zbb53z+qOPPqr+/v7Wdr6GHTt2uPZeQeuWY+mW45C651i65Tik7jmWbjkOqXuOxc3jmJ6edu29AABAZyCIDgBAFzl06JAKhYJGRkaqXh8ZGdEzzzxT82dGR0drbj86Ojrv52zdurUq8D4+Pq5169bpkksu0dDQUBtHUJLL5bRjxw5dfPHFSiQSbb9fkLrlWLrlOKTuOZZuOQ6pe46lW45D6p5j8eI4zOwrAADQOwiiAwCApqVSKaVSqTmvJxIJV4Mtbr9fkLrlWLrlOKTuOZZuOQ6pe46lW45D6p5jcfM4uuH7AAAAzWFhUQAAusjy5csVi8U0NjZW9frY2JhWrVpV82dWrVrV1PYAAAAAAPQSgugAAHSRZDKp8847Tzt37rRfKxaL2rlzpzZt2lTzZzZt2lS1vVSqHTvf9gAAwB333HOP1q9fr3Q6rY0bN+qxxx6ru/1DDz2kM844Q+l0Wmeffba2b9/u054CANDbCKIDANBltmzZovvuu09f+tKX9PTTT+sDH/iApqamdN1110mSrrnmmqqFR2+88UY98sgj+vSnP61nnnlGt9xyi3784x/rhhtuCOoQAADoel/96le1ZcsWbdu2TU888YTOPfdcXXrppTpw4EDN7X/wgx/o6quv1vvf/349+eSTuvLKK3XllVfqJz/5ic97DgBA7+mImuiWZUlybwGXXC6n6elpjY+Pd3Q9u245DoljCaNuOQ6pe46lW45D6p5jcfs4zH3O3PdaddVVV+ngwYO6+eabNTo6qg0bNuiRRx6xFw/dt2+fotHKOPqFF16or3zlK/rYxz6mj370ozr99NP18MMP66yzzmr4M7lXz69bjqVbjkPqnmPpluOQuudYuuU4pO45Fi+Ow6379V133aXrr7/eHuS+99579Y1vfEMPPPCAbrrppjnbf+Yzn9Fll12mD3/4w5Kk2267TTt27NBnP/tZ3XvvvXO2z2QyymQy9r+PHz9etf8AAHQrt+7VThHLzXfzyMsvv6x169YFvRsAAPjipZde0kknnRT0bjSFezUAoNe0c7/OZrPq7+/X3/3d3+nKK6+0X7/22mt17Ngx/cM//MOcnzn55JO1ZcsW/eEf/qH92rZt2/Twww/rX//1X+dsf8stt+jWW29taf8AAOgGzz//vE499VRX3qsjMtHXrFmjl156SYODg4pEIm2/3/j4uNatW6eXXnpJQ0NDLuxhMLrlOCSOJYy65Tik7jmWbjkOqXuOxe3jsCxLExMTWrNmjQt75y/u1fPrlmPpluOQuudYuuU4pO45lm45Dql7jsWL43Djfn3o0CEVCgV7lpgxMjKiZ555pubPjI6O1tx+dHS05vZbt27Vli1b7H8fO3ZMp5xyivbt26fh4eGW9x3z65bzJsz4jr3Hd+w9vmPvHT9+XCeffLKWLl3q2nt2RBA9Go16kpE3NDTUFb+s3XIcEscSRt1yHFL3HEu3HIfUPcfi5nF06kMt9+qFdcuxdMtxSN1zLN1yHFL3HEu3HIfUPcfi9nF0wv06lUoplUrNeX14eLgr2jTMuuW8CTO+Y+/xHXuP79h7zjKmbb+Xa+8EAAAAAAAWtHz5csViMY2NjVW9PjY2plWrVtX8mVWrVjW1PQAAcA9BdAAAAAAAfJRMJnXeeedp586d9mvFYlE7d+7Upk2bav7Mpk2bqraXpB07dsy7PQAAcE9HlHNxWyqV0rZt22pObesk3XIcEscSRt1yHFL3HEu3HIfUPcfSLccRRt303XbLsXTLcUjdcyzdchxS9xxLtxyH1D3HEubj2LJli6699lqdf/75uuCCC3T33XdrampK1113nSTpmmuu0dq1a3X77bdLkm688UZddNFF+vSnP60rrrhCDz74oH784x/rr//6rxv6vDB/F92C79h7fMfe4zv2Ht+x97z4jiOWZVmuvRsAAAAAAGjIZz/7WX3qU5/S6OioNmzYoP/1v/6XNm7cKEn69V//da1fv15f/OIX7e0feughfexjH9PevXt1+umn65Of/KQuv/zygPYeAIDeQRAdAAAAAAAAAIB5UBMdAAAAAAAAAIB5EEQHAAAAAAAAAGAeBNEBAAAAAAAAAJgHQXQAAAAAAAAAAObRlUH0P//zP9eFF16o/v5+LV68uKGfsSxLN998s1avXq2+vj5t3rxZv/jFL6q2OXLkiN7znvdoaGhIixcv1vvf/35NTk56cAStf+bevXsViURq/nnooYfs7Wr9/4MPPhia45BKq9GfuI+///u/X7XNvn37dMUVV6i/v18rV67Uhz/8YeXzec+OQ2r+WI4cOaL/9t/+m17/+terr69PJ598sv7gD/5Ax48fr9rOjza55557tH79eqXTaW3cuFGPPfZY3e0feughnXHGGUqn0zr77LO1ffv2qv9v5LzxQjPHcd999+ktb3mLlixZoiVLlmjz5s1ztn/f+94357u/7LLLvD4MSc0dyxe/+MU5+5lOp6u26YQ2qXVuRyIRXXHFFfY2QbTJP/3TP+kd73iH1qxZo0gkoocffnjBn9m1a5fe9KY3KZVK6bWvfa2++MUvztmm2fOul3TL/bpb7tWtHIsUzvs19+qKTrgvcK8OX5uE9V4tcb9eiNvXEMzl9vUNc7V6Pj744IOKRCK68sorvd3BLtDsd3zs2DF96EMf0urVq5VKpfS6172O68UCmv2O7777brsvum7dOv3RH/2RZmdnfdrbzuNVf6AuqwvdfPPN1l133WVt2bLFGh4ebuhn7rjjDmt4eNh6+OGHrX/913+13vnOd1qvec1rrJmZGXubyy67zDr33HOtH/7wh9b3vvc967Wvfa119dVXe3QUrX1mPp+3Xn311ao/t956qzUwMGBNTEzY20myvvCFL1Rt5zzWoI/Dsizroosusq6//vqqfTx+/HjVsZ511lnW5s2brSeffNLavn27tXz5cmvr1q2eHUcrx/LUU09Zv/mbv2l9/etft5577jlr586d1umnn279x//4H6u287pNHnzwQSuZTFoPPPCA9dOf/tS6/vrrrcWLF1tjY2M1t//nf/5nKxaLWZ/85Cetn/3sZ9bHPvYxK5FIWE899ZS9TSPnjduaPY53v/vd1j333GM9+eST1tNPP229733vs4aHh62XX37Z3ubaa6+1Lrvssqrv/siRI54dQ6vH8oUvfMEaGhqq2s/R0dGqbTqhTQ4fPlx1DD/5yU+sWCxmfeELX7C3CaJNtm/fbv3pn/6p9bWvfc2SZP393/993e1/+ctfWv39/daWLVusn/3sZ9Zf/uVfWrFYzHrkkUfsbZr9bnpNt9yvu+Ve3cqxWFY479fcq7lXB3Us3Ku9bxPu1/Pz4hqCal5c31Ct1fPxhRdesNauXWu95S1vsd71rnf5s7MdqtnvOJPJWOeff751+eWXW9///vetF154wdq1a5e1Z88en/e8czT7HX/5y1+2UqmU9eUvf9l64YUXrG9961vW6tWrrT/6oz/yec87hxf9gYV0ZRDd+MIXvtDQQ3mxWLRWrVplfepTn7JfO3bsmJVKpay/+Zu/sSzLsn72s59Zkqx/+Zd/sbf55je/aUUiEWv//v2u77ubn7lhwwbrP//n/1z1WiO/YG5p9Tguuugi68Ybb5z3/7dv325Fo9GqB5PPfe5z1tDQkJXJZFzZ9xO51SZ/+7d/ayWTSSuXy9mved0mF1xwgfWhD33I/nehULDWrFlj3X777TW3/53f+R3riiuuqHpt48aN1n/9r//VsqzGzhsvNHscJ8rn89bg4KD1pS99yX7t2muvDaSj1eyxLHRN69Q2+Z//839ag4OD1uTkpP1aUG1iNHI+/vf//t+tX/mVX6l67aqrrrIuvfRS+9/tfje9opPv191yr7as7rlfc6/mXu0m7tUlYbxXWxb36xO5fQ3BXF5c31Ctle84n89bF154ofX5z38+FNemsGv2O/7c5z5nnXrqqVY2m/VrFztes9/xhz70Ies3fuM3ql7bsmWL9eY3v9nT/ewWbvUHFtKV5Vya9cILL2h0dFSbN2+2XxseHtbGjRu1e/duSdLu3bu1ePFinX/++fY2mzdvVjQa1Y9+9CNP9suNz3z88ce1Z88evf/975/zfx/60Ie0fPlyXXDBBXrggQdU+r1zXzvH8eUvf1nLly/XWWedpa1bt2p6errqfc8++2yNjIzYr1166aUaHx/XT3/6U/cPRO79Hhw/flxDQ0OKx+NVr3vVJtlsVo8//njV73g0GtXmzZvt3/ET7d69u2p7qfT9mu0bOW/c1spxnGh6elq5XE5Lly6ten3Xrl1auXKlXv/61+sDH/iADh8+7Oq+n6jVY5mcnNQpp5yidevW6V3velfV73qntsn999+v3/3d39WiRYuqXve7TZq10DnixneDamG8X3fLvVrqnvs192ru1W7hXl3RqfdqqXfu115cQ1DNy+sbSlr9jj/+8Y9r5cqVNftSqNbKd/z1r39dmzZt0oc+9CGNjIzorLPO0l/8xV+oUCj4tdsdpZXv+MILL9Tjjz9ul3z55S9/qe3bt+vyyy/3ZZ97gRv3vPjCm3S/0dFRSap6uDP/Nv83OjqqlStXVv1/PB7X0qVL7W282K92P/P+++/XG97wBl144YVVr3/84x/Xb/zGb6i/v1+PPvqoPvjBD2pyclJ/8Ad/4Nr+G60ex7vf/W6dcsopWrNmjf7t3/5NH/nIR/Tss8/qa1/7mv2+tdrM/J8X3GiTQ4cO6bbbbtPv/d7vVb3uZZscOnRIhUKh5vf1zDPP1PyZ+b5f5zlhXptvG7e1chwn+shHPqI1a9ZUXTwvu+wy/eZv/qZe85rX6Pnnn9dHP/pRvf3tb9fu3bsVi8VcPQajlWN5/etfrwceeEDnnHOOjh8/rjvvvFMXXnihfvrTn+qkk07qyDZ57LHH9JOf/ET3339/1etBtEmz5jtHxsfHNTMzo6NHj7b9+4pqYbxfd8u9Wuqe+zX3au7VbuFeXdLJ92qpd+7XXlxDUM2r6xsqWvmOv//97+v+++/Xnj17fNjDztfKd/zLX/5S3/nOd/Se97xH27dv13PPPacPfvCDyuVy2rZtmx+73VFa+Y7f/e5369ChQ/rVX/1VWZalfD6v3//939dHP/pRP3a5JyzUH+jr61vwPTomiH7TTTfpE5/4RN1tnn76aZ1xxhk+7VHrGj2Wds3MzOgrX/mK/uzP/mzO/zlfe+Mb36ipqSl96lOfauoh0OvjcD64nn322Vq9erXe9ra36fnnn9dpp53W8vvW4lebjI+P64orrtCZZ56pW265per/3GgT1HfHHXfowQcf1K5du6oW+frd3/1d++9nn322zjnnHJ122mnatWuX3va2twWxqzVt2rRJmzZtsv994YUX6g1veIP+9//+37rtttsC3LPW3X///Tr77LN1wQUXVL3eKW2Cubrlft0t92qpe+7X3Kt7A/fq8OFeDbhjvusbWjcxMaH3vve9uu+++7R8+fKgd6drFYtFrVy5Un/913+tWCym8847T/v379enPvUpgugu2bVrl/7iL/5Cf/VXf6WNGzfqueee04033qjbbrut5nMCgtExQfQ//uM/1vve976625x66qktvfeqVaskSWNjY1q9erX9+tjYmDZs2GBvc+DAgaqfy+fzOnLkiP3zjWr0WNr9zL/7u7/T9PS0rrnmmgW33bhxo2677TZlMhmlUqkFt5f8Ow7nPkrSc889p9NOO02rVq2as7rx2NiYJIWyTSYmJnTZZZdpcHBQf//3f69EIlF3+1baZD7Lly9XLBazvx9jbGxs3v1etWpV3e0bOW/c1spxGHfeeafuuOMOffvb39Y555xTd9tTTz1Vy5cv13PPPefZQ2A7x2IkEgm98Y1v1HPPPSep89pkampKDz74oD7+8Y8v+Dl+tEmz5jtHhoaG1NfXp1gs1nYbd6JuuV93y71a6p77NffqubhXc69uRC/fq6XeuV97cQ1BNb+ub72s2e/4+eef1969e/WOd7zDfq1YLEoqzUJ79tlnXU/A63St/B6vXr1aiUSiapbRG97wBo2OjiqbzSqZTHq6z52mle/4z/7sz/Te975X/+W//BdJpcHpqakp/d7v/Z7+9E//VNEo1bjbtVB/oBEd0worVqzQGWecUfdPqyfua17zGq1atUo7d+60XxsfH9ePfvQjO5Nk06ZNOnbsmB5//HF7m+985zsqFov2w6Lbx9LuZ95///165zvfqRUrViy47Z49e7RkyZKmHgD9Og7nPkqyHzg2bdqkp556qupBeceOHRoaGtKZZ57Z8Pv6cSzj4+O65JJLlEwm9fWvf72hzINW2mQ+yWRS5513XtXveLFY1M6dO6uypZw2bdpUtb1U+n7N9o2cN25r5Tgk6ZOf/KRuu+02PfLII1U1cufz8ssv6/Dhw1UPt25r9VicCoWCnnrqKXs/O6lNJOmhhx5SJpPRf/pP/2nBz/GjTZq10DniRht3om65X3fLvdrPY3Hup+T+/Zp79Vzcq7lXN6KX79VS79yvvbiGoJpf17de1ux3fMYZZ+ipp57Snj177D/vfOc79da3vlV79uzRunXr/Nz9jtDK7/Gb3/xmPffcc/YAhST9/Oc/1+rVqwmg19DKdzw9PT0nUG4GLbxcE6mXuHLPa269087w4osvWk8++aR16623WgMDA9aTTz5pPfnkk9bExIS9zetf/3rra1/7mv3vO+64w1q8eLH1D//wD9a//du/We9617us17zmNdbMzIy9zWWXXWa98Y1vtH70ox9Z3//+963TTz/duvrqqz09loU+8+WXX7Ze//rXWz/60Y+qfu4Xv/iFFYlErG9+85tz3vPrX/+6dd9991lPPfWU9Ytf/ML6q7/6K6u/v9+6+eabQ3Mczz33nPXxj3/c+vGPf2y98MIL1j/8wz9Yp556qvVrv/Zr9s/k83nrrLPOsi655BJrz5491iOPPGKtWLHC2rp1q2fH0cqxHD9+3Nq4caN19tlnW88995z16quv2n/y+bxlWf60yYMPPmilUinri1/8ovWzn/3M+r3f+z1r8eLF1ujoqGVZlvXe977Xuummm+zt//mf/9mKx+PWnXfeaT399NPWtm3brEQiYT311FP2No2cN25r9jjuuOMOK5lMWn/3d39X9d2b68HExIT1J3/yJ9bu3butF154wfr2t79tvelNb7JOP/10a3Z21rPjaOVYbr31Vutb3/qW9fzzz1uPP/649bu/+7tWOp22fvrTn1Ydb9jbxPjVX/1V66qrrprzelBtMjExYd8vJFl33XWX9eSTT1ovvviiZVmWddNNN1nvfe977e1/+ctfWv39/daHP/xh6+mnn7buueceKxaLWY888oi9zULfTa/rlvt1t9yrWzmWsN6vuVdzrw7qWLhXe98m3K/n58U1BNXcvr5hrlavV8a1115rvetd7/JpbztTs9/xvn37rMHBQeuGG26wnn32Wev//b//Z61cudL6H//jfwR1CKHX7He8bds2a3Bw0Pqbv/kb65e//KX16KOPWqeddpr1O7/zO0EdQuh50R9YSFcG0a+99lpL0pw/3/3ud+1tJFlf+MIX7H8Xi0Xrz/7sz6yRkRErlUpZb3vb26xnn3226n0PHz5sXX311dbAwIA1NDRkXXfddZ7f/Bb6zBdeeGHOsVmWZW3dutVat26dVSgU5rznN7/5TWvDhg3WwMCAtWjRIuvcc8+17r333prbBnUc+/bts37t137NWrp0qZVKpazXvva11oc//GHr+PHjVe+7d+9e6+1vf7vV19dnLV++3PrjP/5jK5fLeXYcrRzLd7/73Zq/j5KsF154wbIs/9rkL//yL62TTz7ZSiaT1gUXXGD98Ic/tP/voosusq699tqq7f/2b//Wet3rXmclk0nrV37lV6xvfOMbVf/fyHnjhWaO45RTTqn53W/bts2yLMuanp62LrnkEmvFihVWIpGwTjnlFOv666/37aGpmWP5wz/8Q3vbkZER6/LLL7eeeOKJqvfrhDaxLMt65plnLEnWo48+Oue9gmqT+c5Vs+/XXnutddFFF835mQ0bNljJZNI69dRTq+4rRr3vptd1y/26W+7VrRxLWO/X3KsrOuG+wL06fG1iWeG8V1sW9+uFuH0NwVxuXt9QW7O/x04E0RvT7Hf8gx/8wNq4caOVSqWsU0891frzP/9zO9EAtTXzHedyOeuWW26xTjvtNCudTlvr1q2zPvjBD1pHjx71f8c7hFf9gXoilsW8AAAAAAAAAAAAaumYmugAAAAAAAAAAPiNIDoAAAAAAAAAAPMgiA4AAAAAAAAAwDwIogMAAAAAAAAAMA+C6AAAAAAAAAAAzIMgOgAAAAAAAAAA8yCIDgAAAAAAAADAPAiiAwAAAAAAAAAwD4LoAAAAAAAAAADMgyA6AAAAAAAAAADzIIgOAAAAAAAAAMA8/n9YQhwM/fZT4gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -301,24 +224,13 @@ "basis_functions = linear_FEM_basis(x_plot, n)\n", "basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZd7G8XtKeoMQCBBCJ/TeEhsiTVddOyC9o4KKuLrru2vb4hZXFDtFukBsq2tZlSJNEnoXSEInkIQA6W0yc94/IqwuIASSnJnJ93Nd77VvJpmT+8fEPDN3njnHYhiGIQAAAAAAAAAAcAGr2QEAAAAAAAAAAHBXlOgAAAAAAAAAAFwCJToAAAAAAAAAAJdAiQ4AAAAAAAAAwCVQogMAAAAAAAAAcAmU6AAAAAAAAAAAXAIlOgAAAAAAAAAAl0CJDgAAAAAAAADAJVCiAwAAAAAAAABwCZTogId44YUXZLFYlJmZedmvLS0t1dNPP63o6GhZrVbdfffdlR8QAACwXgMA4OZYqwFcDUp0wAvNmTNHL7/8su6//37Nnz9fTzzxxM8+37hx41+8/wsvvKB58+ZdcPu+ffv09NNPq1OnTgoJCVG9evV0++23a/PmzVecrbi4WL/97W9Vv359BQQEqGfPnlq2bNkV3x8AAG/hrut1Xl6enn/+ed16660KDw+XxWK56PcBAMDbuetavWnTJk2ePFlt27ZVUFCQGjZsqIEDByopKelKRwNQTpTogBdauXKloqKi9Oqrr2r48OHq1auXli9fLqfTecHXfvPNN5Kk3bt3KzU19YLP79+/X4cPH5YkzZ49W7NmzVK3bt30yiuvaOrUqdq/f79iY2O1fPnyK8o2atQoTZs2TUOHDtX06dNls9n0q1/9SuvWrbv6gQEA8EDuul5nZmbqj3/8o/bu3auOHTte25AAAHgwd12r//73v+vjjz9Wnz59NH36dE2YMEFr1qxRly5dtHv37msbGsBFUaIDXigjI0M1atQ4/7FhGJo1a5ZiY2O1Y8cOSdKhQ4c0YMAAvfLKK8rLy9OuXbsUFxend999V4ZhyOFw6M9//rNuu+02HTp0SJL04IMP6tixY5o9e7YmTJigp556Shs2bFB4eLheeOGFy+bauHGjli5dqr/+9a96+eWXNWHCBK1cuVKNGjXS008/XRn/FAAAuC13Xa/r1aunkydP6siRI3r55ZcrY3QAADyCu67VU6dO1ZEjR/T6669r3Lhx+sMf/qC1a9eqtLRUf/vb3yrjnwKAAcAjPP/884YkY+/evcYDDzxghISEGOHh4cZjjz1mFBYWGoZhGIcOHTIkXfB/3333nWEYhrFmzRojNjbW8PX1NTp16mR89tlnP/seGRkZxsSJE43Q0FCjVq1axu9//3sjLy/vstnuvfdeIzw8/LJf99RTTxk2m83Izs7+2e0vvfSSIck4evToFf5rAADgnrxhvf6pTZs2GZKMuXPnlut+AAC4K29bq3+qS5cuRpcuXa76/gAujZ3ogIcZOHCgioqK9Ne//lW/+tWv9Prrr2vChAmSpNq1a2vhwoVq1aqVGjRooIULF2rhwoVq3bq1JMlqtcpisZw/1k///3MfW63WS37+UtLS0hQREXHZr9u2bZtiYmIUGhr6s9t79OghSdq+ffsVfT8AANydJ6/XAABUB962VhuGofT0dNZ6oJJQogMepkmTJvr3v/+tSZMmaeHChXrkkUe0cOFC7dy5U0FBQRo2bJgiIyMVFhamYcOGadiwYapTp46GDh2qKVOm6J133lG9evX0ySef6I033lD//v2Vl5en+Ph4de3aVe3bt9eUKVP017/+Vb6+vmrfvr2+++67S+ZZu3atEhISNGjQoMtmP3nypOrVq3fB7eduO3HixNX/wwAA4EY8eb0GAKA68La1+v3331dqaiprPVBJKNEBDzNp0qSfffzoo49Kkr766qtL3sdisWjUqFFKTEw8f4GwJk2a6Ntvv9XUqVMVHBystm3bav369Xr44YdlsVjk4+OjZ599Vl999ZWaNGly0eNmZGRoyJAhatKkyRWd07ywsFB+fn4X3O7v73/+8wAAeANPXq8BAKgOvGmt3rdvnyZNmqS4uDiNHDmy3PcHcHl2swMAKJ8WLVr87ONmzZrJarWev8r3pfTr1++it996662SpHbt2l30861atbro7fn5+brjjjuUm5urdevWKTg4+DLJpYCAABUXF19we1FR0fnPAwDgDTx5vQYAoDrwlrU6LS1Nt99+u8LCwvTRRx/JZrOV6/4ArgwlOuDhrvTcaj91uScFl7saeElJie69917t3LlT33zzzSWfJPyvevXqKTU19YLbT548KUmqX7/+FR0HAABP40nrNQAA1ZEnrtXZ2dm67bbblJWVpbVr1/KaGqhEnM4F8DDJyck/+zglJUUul0uNGzeuku/vcrk0YsQIrVixQosXL1avXr2u+L6dOnVSUlKScnJyfnb7hg0bzn8eAABv4MnrNQAA1YGnr9VFRUW68847lZSUpC+++EJt2rSppKQAJEp0wOO89dZbP/v4jTfekCTddtttVfL9H330UcXHx+vtt9/WvffeW6773n///XI6nZo5c+b524qLizV37lz17NlT0dHRFR0XAABTePJ6DQBAdeDJa7XT6dSgQYOUkJCgDz/8UHFxcZWUEsA5nM4F8DCHDh3Sr3/9a916661KSEjQokWLNGTIkPMXNalMr732mt5++23FxcUpMDBQixYt+tnn77nnHgUFBV3y/j179tQDDzygZ555RhkZGWrevLnmz5+vw4cP67333qvs+AAAVBlPXq8l6c0331RWVpZOnDghSfr88891/PhxSWUv+sPCwionPAAAVcST1+onn3xS//73v3XnnXfqzJkzF9x/2LBhlZIbqM4o0QEPEx8fr+eee06/+93vZLfbNXnyZL388stV8r23b98uSUpISFBCQsIFnz906NBlX5QvWLBAzz77rBYuXKizZ8+qQ4cO+uKLL3TTTTdVRmQAAEzh6ev1P//5Tx05cuT8x5988ok++eQTSWUvzCnRAQCezpPX6nP3//zzz/X5559f8HlKdKDiWQzDMMwOAQAAAAAAAACAO+Kc6AAAAAAAAAAAXAIlOgAAAAAAAAAAl0CJDgAAAAAAAADAJVCiAwAAAAAAAABwCZToAAAAAAAAAABcgt3sAFfC5XLpxIkTCgkJkcViMTsOAACVwjAM5ebmqn79+rJaPevv3KzVAIDqwlPXa9ZqAEB1URlrtUeU6CdOnFB0dLTZMQAAqBLHjh1TgwYNzI5RLqzVAIDqxtPWa9ZqAEB1U5FrtUeU6CEhIZLKBg8NDb3m4zkcDn377bfq37+/fHx8rvl4ZvGWOSRmcUfeMofkPbN4yxyS98xS0XPk5OQoOjr6/LrnSVirL81bZvGWOSTvmcVb5pC8ZxZvmUPynlkqYw5PXa8req2W+DlxR94yi7fMIXnPLN4yh+Q9s3jLHJJnvLb2iBL93FvNQkNDK+yFeWBgoEJDQz36h8xb5pCYxR15yxyS98ziLXNI3jNLZc3hiW+xZq2+NG+ZxVvmkLxnFm+ZQ/KeWbxlDsl7ZqnMOTxtva7otVri58Qdecss3jKH5D2zeMsckvfM4i1zSJ7x2tpzTuAGAAAAAAAAAEAVo0QHAAAAAAAAAOASKNEBAAAAAAAAALgESnQAAAAAAAAAAC6BEh0AAAAAAAAAgEugRAcAAAAAAAAA4BIo0QEAAAAAAAAAuARKdAAAAAAAAAAALoESHQAAAAAAAACAS6BEBwAAAAAAAADgEijRAQAAAAAAAAC4BEp0AAAAAAAAAAAugRIdAAAAAAAAAIBLoEQHAAAAAKAKrVmzRnfeeafq168vi8WiTz/99LL3WbVqlbp06SI/Pz81b95c8+bNq/ScAACgTLlLdBZ7AADcG2s1AADuLT8/Xx07dtRbb711RV9/6NAh3X777erdu7e2b9+uKVOmaNy4cfrmm28qOSkAAJCuokRnsQcAoExBSakyi8xOcSFvWKtLnS6lFZj27QEAqFS33Xab/vznP+uee+65oq9/99131aRJE73yyitq3bq1Jk+erPvvv1+vvvpqJScFAACSZC/vHW677TbddtttV/z1P13sJal169Zat26dXn31VQ0YMOCi9ykuLlZxcfH5j3NyciRJDodDDoejvJEvcO4YFXEsM3nLHBKzuCNvmUPynlm8ZQ7JO2bJKy7V+AVblHzSpuuuz1bzyLBrPmZF/Xt4+lrtdBl66uNdWrbHpjadTym2We1rOp7ZvOHnXfKeOSTvmcVb5pC8ZxZvmUPynlkqYw4z/k0SEhLUt2/fn902YMAATZky5ZL3qezX1eeO9dP/9VTeMofkPbN4yxz/2Z2m336yRy1CrOrbt8TsONfEWx4TyXtm8ZY5pIqfpTL+TSyGYRhXfWeLRf/617909913X/JrbrrpJnXp0kWvvfba+dvmzp2rKVOmKDs7+6L3eeGFF/Tiiy9ecPvixYsVGBh4tXEBAKgQhaXSjH02Hcq1yN9m6OHWTjUOufbjFhQUaMiQIcrOzlZoaOi1H1CeuVaXOKVZ+61KyrbK12poQiuXWoRd9dMVAAAqVEWv11eyVsfExGj06NF65plnzt/21Vdf6fbbb1dBQYECAgIuuA+vqwFzlbqkP22zKavEIkma0MqptjV5TgtUhcp4bV3unejllZaWpsjIyJ/dFhkZqZycHBUWFl50sX/mmWc0derU8x/n5OQoOjpa/fv3r5DBHQ6Hli1bpn79+snHx+eaj2cWb5lDYhZ35C1zSN4zi7fMIXn2LNmFDo1ZsEWHcnMU6m/XuBZFGndPxcxxbodYVXPHtbpPnyINfWeV9mZZNSvJR+8M7aQbm0dc83HN4Mk/7z/lLXNI3jOLt8whec8s3jKH5D2zVMYcZq3X5VXZa7XEz4k78pZZvGGORRuOKqtk3/mP12WH6TdD4mSxWExMdfW84TE5x1tm8ZY5pIqfpTLW6kov0a+Gn5+f/Pz8Lrjdx8enQn8oKvp4ZvGWOSRmcUfeMofkPbN4yxyS581yNr9Eo+Zv0e7UHNUM9NHckV11ZPu6CpvDk/4tKnutDgmUxrV06cusSK3cf0oPvb9dM4Z1Ve9Wda752GbxtJ/3S/GWOSTvmcVb5pC8ZxZvmUPynlkqcg4z/j3q1q2r9PT0n92Wnp6u0NDQi/6xW6q619WVdUwzeMsckvfM4qlzFDmcemf1IUnS47c007urUvTDyTytTDqjW9vVNTndtfHUx+RivGUWb5lDqrhZKuPfo9wXFi2vq1nsAQBwN5l5xXpwVqJ2p+aoVpCvlkyIVdv6FbOLy2zuulbbrdIbgztqQNtIlZS6NGHhZn27J820PAAAmCUuLk4rVqz42W3Lli1TXFycSYkA/JJFiUeUkVusqBoBmnBjE/WqV3Yal1eXJcnl4pQugCeq9BKdxR4A4Okycov04MxE7UvLVe0QPy2dEKtWdb2jQJfce632tVv15pAuur1DPTmchh55f6u+2nXS7FgAAFyTvLw8bd++Xdu3b5ckHTp0SNu3b9fRo0cllZ2KZcSIEee//qGHHtLBgwf19NNPa9++fXr77bf1wQcf6IknnjAjPoBfUFBSqndXH5AkPdanuXztVvWu71KIv13703P1Jc9lAY9U7hKdxR4AUJ2kZRdp8IxEJWfkqW6ov+InxKpFZAVcRbQSedta7WOzavqgTrqnc5RKXYYeXbJNn21PNTsWAABXbfPmzercubM6d+4sSZo6dao6d+6s5557TpJ08uTJ8+u2JDVp0kRffvmlli1bpo4dO+qVV17R7NmzNWDAAFPyA7i0+euPKDOvRI1qBereLg0kSYF2afR1jSRJry1PkpPd6IDHKfc50Tdv3qzevXuf//jchUpGjhypefPmXXKxf+KJJzR9+nQ1aNCAxR4A4BFSswo1ZFaijpwuUFSNAC0e31ONagWZHeuyvHGtttus+ucDHWW3WvThluN6In67Sp2G7uvawOxoAACU28033yzDuHSJNm/evIveZ9u2bZWYCsC1yi1yaMaasl3oj/dpIR+bVQ6XU5I0Kq6RFiQe1YFT+fpse+r5gh2AZyh3ic5iDwCoDo6dKdCDsxJ1/GyhosMDtHhcrKLDA82OdUW8da22WS36+30dZLdZtWTjUf3mox0qdbk0qHtDs6MBAAAAmvv9YWUVONSsdpDu6hT1s8+F+Ns14aam+sfX+zV9RbLu7FhfPrZKP8sygArCf60AAPyPw5n5GjQjQcfPFqpJRJDiJ8R5TIHu7axWi166p51GxjWSYUi//XiXFiYeMTsWAAAAqrnsAodmrT0oSZrSN0Y2q+WCrxkZ11i1gnx15HSBPtl6vKojArgGlOgAAPzEgVN5GjQzQSeyi9SsdpCWTohV/RoBZsfCT1gsFr3w67Yad0MTSdKzn+7WnHWHTE4FAACA6mz2uoPKLSpVq7ohur19vYt+TZCfXQ/f3EyS9PqKFJWUuqoyIoBrQIkOAMCPktJzNWhGotJzihUTGaylE+IUGepvdixchMVi0e9vb33+Rcgfv/hBM1YfMDkVAAAAqqMz+SXnN3VM6Rsj60V2oZ8zLLaR6oT4KTWrUPGbj1VVRADXiBIdAABJP5zI0eCZicrMK1breqFaMj5WtUP8zI6FX2CxWPT0gJZ6vE8LSdJf/7NPb65MNjkVAAAAqpsZaw4ov8SpdlGhGtA28he/1t/Hpkm9m0uS3lqZoiKHsyoiArhGlOgAgGpvd2q2hsxO1Jn8ErWPCtOS8T1VK5gC3RNYLBY90S9Gv+kfI0n657dJmrYs6RcvrAoAAABUlFO5xVqwvuwaPVP7xchiufQu9HMG94hW/TB/peUUafGGo5UdEUAFoEQHAFRr249lacisRGUVONQpuoYWjeupGoG+ZsdCOU2+pYWeua2VJOn1Fcn6xzf7KdIBAABQ6d5ZdUCFDqc6RddQ75Z1rug+fnabJt9S9m7Kt1cdUGEJu9EBd0eJDgCotjYfPqNhszcop6hU3RrV1MKxPRQW4GN2LFylib2a6bk72kgqezHzly/3UqQDAACg0qRlF2nRhrJd6E/2v7Jd6Oc80K2BosMDlJlXrAUJhyspIYCKQokOAKiWNhw8rRFzNiqvuFSxTcM1f0wPhfhToHu6MTc00Z/ubidJmr3ukF749x6KdAAAAFSKN79LVkmpSz0ah+uG5hHluq+PzarHftyN/u7qA8orLq2MiAAqCCU6AKDa+T4lUyPnblRBiVM3NI/Q3FE9FORnNzsWKsjw2Eb6+33tZbFI8xOO6Pef7pbLRZEOAACAinP8bIHiNx2TJE0t5y70c+7pHKWmEUE6W+DQvO8PVXREABWIEh0AUK2sTjqlMfM2qcjh0s0ta2v2yG4K8LWZHQsVbFD3hvrn/R1ltUiLNxzVbz/eKSdFOgAAACrIGytS5HAaur55LcU2rXVVx7DbrHq8b9lu9JlrDiq70FGREQFUIEp0AEC1sWJvusbP36ziUpf6to7UjOFd5e9Dge6t7uvaQK8O6iSb1aIPtxzXkx9sV6nTZXYsAAAAeLjDmfn6aOtxSdLUfi2v6Vh3dKivFnWClVNUqvfWHqyIeAAqASU6AKBa+Hp3mh5atEUlTpdua1dXbw/tIj87Bbq3u6tTlN54sLPsVos+3X5CU+K3y0GRDgAAgGvw+opkOV2Gbm5ZW10b1bymY9msFj3RL0aSNOf7wzqbX1IREQFUMEp0AIDX+2LnCU1avFUOp6E7O9bXGw92lq+dJbC6+FX7enp7aBf52Cz6YudJTV68VSWlFOkAAAAov5SMPH26PVWSNPXH8vta3dq2rlrXC1VecalmrGE3OuCOaBAAAF7tX9uO67El2+R0Gbq3c5ReHdhRdhvLX3XTv21dzRzeTb52q77Zk66HF21RcanT7FgAAADwMK8tT5LLkPq1iVSHBjUq5JhWq+V8IT9//WGdyi2ukOMCqDi0CAAAr/Xh5mOa+sEOuQxpYLcGevkBCvTqrHerOpo9opv87Fat2JehCQu2qMhBkQ4AAIArsy8tR1/sPCmp4nahn9O3dR11bBCmQodT764+UKHHBnDtaBIAAF5p8YajeuqjnTIMaWjPhvrbvR1ks1rMjgWT3RRTW3NHd1eAj02rk05p7PxNKiyhSAcAAMDlvbosSZJ0e/t6al0vtEKPbbH899zoixKPKD2nqEKPD+DaUKIDALzOgoTD+r9/7ZIkjbqusf58dztZKdDxo+uaRWj+mB4K8rXp+5TTGjV3o/KLS82OBQAAADe2OzVb3+xJl8UiTenbolK+R6+YsguVFpe69NZ3KZXyPQBcHUp0AIBXmb32oJ77bI8kacJNTfX8nW1ksVCg4+d6NAnXgrE9FeJn14ZDZzRizkblFjnMjgUAAAA3Ne3HXeh3dayvFpEhlfI9LBaLnvxxN/rSjceUmlVYKd8HQPlRogMAvMY7qw7oz1/ulSRN6t1Mz9zWigIdl9S1UU29P76nQv3t2nLkrIa9t1HZhRTpAAAA+LmtR89q5b4M2awWPd63Ys+F/r+uax6h2KbhKnG69ObK5Er9XgCuHCU6AMArvL4iWX//ep+ksrdX/qZ/Swp0XFaHBjW0eHysagb6aMexLA2dnaiz+SVmxwIAAIAbOXcu9Hs7R6lJRFClf78n+7eUJH24+biOni6o9O8H4PIo0QEAHs0wDL3y7f7zb698akBLTekbQ4GOK9YuKkxLJsSqVpCvdqfm6MFZiTqdV2x2LAAAALiBjYfOaG1ypuxWix7rUznnQv9f3RuH68YWESp1GZq+gt3ogDugRAcAeCzDMPS3r/fpjZVlF935/a9aa1Lv5iangidqVTdUSyfEqnaIn/al5WrwzERl5BaZHQsAAAAmOrdhR5IGdo9WdHhglX3vc7vR/7XtuA6cyquy7wvg4ijRAQAeyTAM/fGLHzRj9UFJ0gt3ttH4m5qanAqerEVkiOInxKpuqL+SM/I0eGai0rIp0gEAAKqr9QdOa8OhM/K1WTW5ijfrdIquoT6t6shlSNOXsxsdMBslOgDA47hchp79bLfmfn9YkvTnu9tp1PVNzA0Fr9C0drDiJ8YqqkaADp7K16CZCUrNKjQ7FgAAAKrYT3ehD+nZUPVrBFR5hif6lV3E9POdJ7Q/LbfKvz+A/6JEBwB4FJfL0P/9a5cWJR6VxSL9474OGhbbyOxY8CKNagUpfmKsosMDdOR0gQbNSNCxM1zQCQAAoDpZlXRKW49myc9u1SM3NzMlQ7uoMN3atq4MQ3pteZIpGQCUoUQHAHgMp8vQUx/t1NJNx2S1SNMGdtTA7tFmx4IXalAzUB9MjFOTiCAdP1uoQTMSdOR0vtmxAAAAUAUMw9Cry8pK6xFxjVQn1N+0LE/0i5HFIv1nd5r2nMg2LQdQ3VGiAwA8QqnTpakfbNfHW4/LZrXotcGddU/nBmbHgherFxagpRNi1ax2kE5kF2ngjAQu6gQAAFANLPshXTuPZyvQ16aHepmzC/2clnVDdEeH+pJ0vtgHUPUo0QEAbs/hdOmxpdv02fYTslstevPBzvp1x/pmx0I1EBnqr6UT4tQyMkTpOcUaNCNRyemcjxIAAMBbuVyGpv1YVo+6rrFqBfuZnEia0reFrBZp+d4MbT+WZXYcoFqiRAcAuLXiUqceeX+rvtqVJl+bVe8O66rb2tczOxaqkdohfloyIVZt6oUqM69Yg2cmau/JHLNjAQAAoBL8Z3ea9qXlKsTPrgk3NTU7jiSpWe1g3d05SpLOF/wAqhYlOgDAbRU5nHpo4RYt+yFdvnarZozoqr5tIs2OhWooPMhXi8f3VPuoMJ3OL9GDsxK1O5VzUgIAAHgTp8vQqz9ewHPMDU1UI9DX5ET/9XifFrJZLVqTdEqbD58xOw5Q7VCiAwDcUmGJU+MXbNZ3+0/J38eqOSO7q3fLOmbHQjVWI9BXi8b1VKfoGsoqcGjIrETeTgsAAOBFPt9xQikZeQoL8NHYG5uYHednGtUK0gNdy64J9cq37EYHqholOgDA7RSUlGrMvE1am5ypQF+b5o7qoRtaRJgdC1BYgI8Wju2h7o1rKqeoVMNmb9CWI+wEAgAA8HSlTpemr0iWJE24qalC/X1MTnShybc0l4/NooSDp7X+QKbZcYBqhRIdAOBW8opLNWrOJiUcPK1gP7sWjOmhuGa1zI4FnBfi76N5o3sotmm48opLNeK9jdpw8LTZsQAAAHANPtmWqkOZ+QoP8tWo6xqbHeeiGtQM1ODuDSVJ075NkmEYJicCqg9KdACA28gpcmjEexu08fAZhfjbtWBsD3VrHG52LOACQX72sndINI9QfolTo+Zu0vcp7AYCAADwRCWlLr3+4y70h3s1U5Cf3eRElzb5lubys1u1+chZrUnm+SdQVSjRAQBuIbvAoWGzN2jr0SyFBfho8bhYdWlY0+xYwCUF+No0e2Q33dyytgodTo2Zt0mrk06ZHQsAAADl9OGWYzp+tlC1Q/w0LLaR2XF+UWSo//mM077dz250oIpQogMATHcmv0QPzkrUzuPZCg/y1ZLxsWrfIMzsWMBl+fvYNGN4V/VtHaniUpfGz9+sFXvTzY4FAACAK1TkcOrNlSmSpEk3N1OAr83kRJf38M3NFOBj047j2VqxN8PsOEC1QIkOADBVZl6xhsxK1A8ncxQRXFagt6kfanYs4Ir52W16e2gX3daurkqcLj20aIu+3p1mdiwAAABcgaUbj+pkdpHqhflrcI+GZse5IhHBfhr543nbpy1LksvFbnSgslGiAwBMk5FbrMEzE7UvLVd1Qvy0dEKcWtYNMTsWUG6+dqveeLCz7uxYXw6noUmLt+qLnSfMjgUAAIBfUFji1FurDkgqO9e4v4/770I/Z+JNTRXsZ9cPJ3P0zR42cACVjRIdAGCKrGJp6HublJKRp3ph/oqfGKfmdYLNjgVcNbvNqtcGddK9naPkdBl6bMk2fbot1exYAAAAuIRFiUd0KrdYDWoG6IGu0WbHKZeaQb4ac31jSdKry5PkZDc6UKko0QEAVS41q1Cv77Hp8OkCRdUI0AcT49QkIsjsWMA1s1ktevmBjhrULVouQ3rig+36hCIdAADA7eQXl+qd1WW70B/r00K+ds+ryMbe2FSh/nYlpefxLkigknnebwgAgEc7erpAQ9/bpNPFFkXXDFD8xFhFhweaHQuoMDarRX+9t72G9mwow5B+9689Wp9uMTsWAAAAfmLe+sM6k1+iJhFBurdzlNlxrkpYgI/G39hUkjR9ebJKnS6TEwHeixIdAFBlDmXma9DMBKVmFamOv6H3x3ZXg5oU6PA+VqtFf767nUZd11iGIcUftGnRhqNmxwIAAICknCKHZq45KEl6vE8L2W2eW4+NvqGJagb66GBmvj7dzm50oLJ47m8JAIBHScnI06AZCTqZXaRmtYM0ua1T9cL8zY4FVBqLxaLn72yjsdc3kiS9+MU+zV570ORUAAAAmLPukLILHWpRJ1h3dqxvdpxrEuxn18RezSRJr69IloPd6ECloEQHAFS6/Wm5GjwzQRm5xWpVN0Tvj+mmMF+zUwGVz2Kx6LcDYtQvquzFzJ+/3Kt3Vh0wORUAAED1lVVQovfWHpIkTekbI5vV80+7NyKukSKCfXX0TIE+2nLc7DiAV6JEBwBUqj0nsjV4ZoIy80rUpl6oFo+PVa1gP7NjAVXGYrHo9miXHutdtkPo71/v0+srkk1OBQAAUD3NWntQucWlalU3RLe1q2t2nAoR6GvXwzc3lyS9sSJZxaVOkxMB3ocSHQBQaXYdz9aQWRt0tsChDg3CtHh8T4UHsQUd1Y/FIj16SzM9NaClJGnasiS98u1+GYZhcjIAAIDq43ReseZ+f1iSNLVfjKxesAv9nKE9Gyoy1E8nsosUv+mY2XEAr0OJDgCoFFuPntWQ2YnKLnSoS8MaWjSup2oEUqCjepvUu7l+/6vWkqQ3Vqbob1/vo0gHAACoIjPWHFRBiVMdGoSpX5tIs+NUKH8fmyb3LtuN/ubKFBU52I0OVCRKdABAhdt0+IxGvLdRuUWl6t64phaM7alQfx+zYwFuYfxNTfXCnW0kSTNWH9SfvthLkQ4AAFDJMnKLtCDhsCTpiX4xsli8Zxf6OQO7RyuqRoAycou1KPGI2XEAr0KJDgCoUAkHTmvknI3KKy5VXNNamj+mh4L97GbHAtzKqOub6C/3tJMkzfn+kJ77bI9cLop0AACAyvL2dwdU5HCpS8MaujmmttlxKoWf3aZHbynbjf7u6gMqKCk1ORHgPSjRAQAVZl1ypkbP26iCEqdubBGhOaO6K9CXAh24mKE9G+kf93WQxSItTDyi33+6iyIdAACgEpzMLtTiDUclSU/2b+mVu9DPua9rAzUMD1RmXonmr2c3OlBRKNEBABXiu/0ZGjN/k4ocLvVuWVuzRnRTgK/N7FiAWxvYPVrTBnaU1SIt2XhMT320U06KdAAAgAr15soUlThd6tkkXNc1q2V2nErlY7Pq8T4tJEkz1hxQbpHD5ESAd6BEBwBcs2U/pGvigi0qKXWpX5tIvTu8q/x9KNCBK3FP5waaPrizbFaLPt56XFM/2K5Sp8vsWAAAAF7h2JkCfbD5mCTv34V+zt2do9S0dpCyChya+/1hs+MAXoESHQBwTf6z66QeXrRFJU6Xbm9fT28P7SI/OwU6UB53dqyvt4Z0lt1q0WfbT+jxpdvloEgHAAC4Zm+sTJbDaejGFhHq0STc7DhVwma1aErfGEnSrLUHlV3AbnTgWlGiAwCu2r93nNDkJdtU6jJ0V6f6mj64k3xsLC3A1bi1XT29O6yrfG1WfbnrpCa9v1XFpU6zYwEAAHisw5n5+nhrqiRpar8Yk9NUrTva11PLyBDlFpVq9rqDZscBPB5NBwDgqnyy9bimLN0mp8vQvV2iNG1gJ9kp0IFr0rdNpGaM6Cpfu1Xf/pCuhxdtVZGDIh0AAOBqTF+RLKfL0C2t6qhzw5pmx6lSVqtFT/QrOzf6nHWHdCa/xOREgGej7QAAlNsHm47pyQ93yGVIg7tH65/3d5TN6v3nFgSqQu+WdTRnZHf5+1i1cl+Gxi/YTJEOAABQTikZufp0e/XchX7OgLZ11bZ+qPJLnJqx5oDZcQCPRokOACiX9zcc0dMf75RhSMNjG+mle9rLSoEOVKgbWkRo3ugeCvS1aW1ypsbM26SCklKzYwEAAHiMV5cnyzCkAW0j1S4qzOw4prBYLOf/gLBg/RGdyi02ORHguSjRAQBXbN73h/T7f+2WJI2+vrH+eFdbCnSgksQ2raUFY3oo2M+u9QdOa9ScTcorpkgHAAC4nL0nc/TlzpOyWKQnquku9HNuaVVHnaJrqNDh1Dur2I0OXC1KdADAFZm15qBe+PwHSdLEXk313B1tZLFQoAOVqVvjcC0c20Mh/nZtPHxGI97boJwih9mxAAAA3Nqry5IkSbe3r6dWdUNNTmOun+5GX7ThiNKyi0xOBHgmSnQAwGW99V2K/vLVXknSo7c01+9ubUWBDlSRzg1ravG4WIUF+Gjr0SwNn71B2QUU6QAAABez63i2vv0hXVaLNKVv9d6Ffs6NLSLUvXFNlZS69NZ3KWbHATwSJToA4JIMw9Bry5P08jf7JZVdkOfJ/i0p0IEq1r5BmJaMj1V4kK92HM/WkNmJOpNfYnYsAAAAtzNtWdlrl7s7Ral5nWCT07iHst3oLSVJSzcd1fGzBSYnAjwPJToA4KIMw9A/v92v15YnS5KevrWlHuvTwuRUQPXVpn6oloyPVUSwr/acyNGQWYnKzOPiUAAAAOdsOXJW3+0/JZvVwmuX/xHXrJaua1ZLDqehN1eyGx0oL0p0AMAFDMPQX/+zT299V3bhmT/c3lqP3Nzc5FQAWtYN0dIJcaoT4qd9abkaPDNRGTmc1xIAAED677nQ7+/SQI0jgkxO436e7F92epsPtxzXkdP5JqcBPAslOgDgZwzD0Iuf/6CZaw5Kkv54V1uNu7GpyakAnNO8TrDiJ8apXpi/UjLyNHhmIheIAgAA1d6Gg6e1LiVTPjaLHu3DBqCL6dooXL1iasvpMjR9RbLZcQCPQokOADjP5TL0h093a976w5Kkl+5prxFxjU3NBOBCTSKC9MHEOEXVCNDBzHwNnJHAuS0BAEC1ZRiGXvm2bBf6oO7RalAz0ORE7mtqv7Ld6J9uS1VKRp7JaQDPQYkOAJAkOV2GfvfJTr2/4agsFukf93fQkJ4NzY4F4BKiwwMVPzFWDcMDdfRMgQbNSNSxMxTpAACg+lmXkqmNh8/I127V5N6cC/2XdIyuob6tI+UyxG50oBwo0QEAcroMPfXhDn2w+bisFunVgZ00sFu02bEAXEaDmoH6YGKcmkYEKTWrUANnJOhwJue3BAAA1cdPd6EP7dlQdcP8TU7k/s7tRv9i5wntT8s1OQ3gGa6qRH/rrbfUuHFj+fv7q2fPntq4ceMvfv1rr72mli1bKiAgQNHR0XriiSdUVMS5OwHAHTicLk2J365PtqXKZrXo9Qc76+7OUWbHwjVira4+6ob5a+mEWDWvE6yT2UUaOCOBt+YCgIdgvQau3Xf7M7T9WJb8fax6+OZmZsfxCG3qh+pX7evKMP57MVYAv6zcJXp8fLymTp2q559/Xlu3blXHjh01YMAAZWRkXPTrFy9erN/97nd6/vnntXfvXr333nuKj4/X//3f/11zeADAtSkpdemxJdv0+Y4T8rFZ9NaQLrqjQ32zY+EasVZXP3VCy4r0VnVDlJFbrMEzE9hVBABujvUauHaGYWjajyXwyLjGqhPCLvQrNaVvjCwW6es9adqdmm12HMDtlbtEnzZtmsaPH6/Ro0erTZs2evfddxUYGKg5c+Zc9OvXr1+v66+/XkOGDFHjxo3Vv39/Pfjgg5f9CzsAoHIVlzr1yPtb9Z/dafK1WfXusK66tV1ds2OhArBWV08RwX5aPD5WbeqFKjOvRA/OStQPJ3LMjgUAuATWa+DafbMnXbtTcxTka9PEXuxCL4+YyBD9umPZBip2owOXZy/PF5eUlGjLli165plnzt9mtVrVt29fJSQkXPQ+1113nRYtWqSNGzeqR48eOnjwoL766isNHz78kt+nuLhYxcXF5z/OySl7AehwOORwOMoT+aLOHaMijmUmb5lDYhZ35C1zSN4zS0XOUeRwavKSHVqdnCk/u1XvDOmkG5uHV9m/EY/JLx/vWrBWu5+qnCXE16IFo7tqzPwt2pmaowdnJWjeyG5qFxV6zcfmMXE/3jKH5D2zeMsckvfMUhlzeMp6Xdlr9blj/fR/PZW3zCF5zyxXMofLZWjat/slSSPiGirE1+KWc7vzYzKpVxN9vuOEVuzL0KaDp9QpusYlv9ad5ygvb5nFW+aQ3PO19f+yGIZhXOkXnzhxQlFRUVq/fr3i4uLO3/70009r9erV2rBhw0Xv9/rrr+s3v/mNDMNQaWmpHnroIb3zzjuX/D4vvPCCXnzxxQtuX7x4sQIDA680LgDgIkqc0qz9ViVlW+VjNTS+lUstw654KUAlKigo0JAhQ5Sdna3Q0KsrPVmrIUmFpdK7e206nGdRgM3QQ62dahxidioA8A6esl6zVsPbbc20aH6yTQE2Q891cSqwXNtEcc77KVZtPGVVqzCXHm7jMjsOUCEqYq3+X5X+K2bVqlV66aWX9Pbbb6tnz55KSUnR448/rj/96U969tlnL3qfZ555RlOnTj3/cU5OjqKjo9W/f/8KGdzhcGjZsmXq16+ffHx8rvl4ZvGWOSRmcUfeMofkPbNUxBz5xaWa+P42JWWfVaCvTTOHdVbPJuEVnPTyeEwu7twOsarGWl25zJplwIBSjV+4VZuPZGlmsp/eG95FXRvVvOrj8Zi4H2+ZQ/KeWbxlDsl7ZqmMOTxlva7stVri58Qdecssl5vD6TI0/Y31kvI1vldz3d/bfU/l4u6PSfuzBer/2vfal21VnbY91e0SzxfdfY7y8JZZvGUOyTNeW5erRI+IiJDNZlN6evrPbk9PT1fduhc/j+6zzz6r4cOHa9y4cZKk9u3bKz8/XxMmTNDvf/97Wa0Xnpbdz89Pfn5+F9zu4+NToT8UFX08s3jLHBKzuCNvmUPynlmudo7cIofGLdymzUfOKtjPrvljuqtro6ov0H+quj8mFzvOtWKtdl9VPUtNHx8tGNtTY+dtVsLB0xqzYKvmjOqu2Ka1rum4PCbux1vmkLxnFm+ZQ/KeWSpyDk9Zr6tqra6sY5rBW+aQvGeWS83x+dbjOpiZrxqBPhp/UzOPmNVdH5OmdcL0QLdoLdl4VNNXHtDSCXG/+PXuOsfV8JZZvGUOyb1eW/+vcl1Y1NfXV127dtWKFSvO3+ZyubRixYqfvQXtpwoKCi5YzG02m6SyqygDACpfdqFDw9/bqM1HzirE365F43qaXqCjcrBW46cCfe2aM6q7bmwRoYISp0bN3ah1yZlmxwKAao/1Grh6DqdL01ckS5Im3NRUIf7eUR6a6dFbmsvXZlXiwTNan8JzReBiylWiS9LUqVM1a9YszZ8/X3v37tXDDz+s/Px8jR49WpI0YsSIn10c5c4779Q777yjpUuX6tChQ1q2bJmeffZZ3XnnnecXfABA5ckqKNGw2Ru0/ViWagT6aMn42F+8YAw8H2s1firA16ZZI7qpd8vaKnK4NGb+Jq3an2F2LACo9livgavzydbjOnK6QLWCfDUyrrHZcbxC/RoBerBHtCTplWVJ/GEOuIhynxN90KBBOnXqlJ577jmlpaWpU6dO+vrrrxUZGSlJOnr06M/+Ov6HP/xBFotFf/jDH5SamqratWvrzjvv1F/+8peKmwIAcFFn8ks0dPYG7T2Zo/AgXy0a21Nt6lfMOTDhvlir8b/8fWx6d3hXTV68Tct+SNeEBVv09tAu6tsm0uxoAFBtsV4D5VdS6tLrK1IkSQ/f3ExBflxNtKJM6t1cSzcd05YjZ7U66ZRublnH7EiAW7mq3zaTJ0/W5MmTL/q5VatW/fwb2O16/vnn9fzzz1/NtwIAXKVTucUaOjtRSel5igj20+LxPRUTGWJ2LFQR1mr8Lz+7TW8P7aIpS7fry10n9dCiLXpzSGfd2q6e2dEAoNpivQbKJ37zMaVmFapOiJ+GxTYyO45XqRPqr+GxjTR73SFNW5akXjG1ZbFYzI4FuI1yn84FAOD+0nOKNHhmgpLS8xQZ6qf4ibEU6ADkY7Nq+uBOuqtTfZW6DE1avE2f7zhhdiwAAIDLKnI49dbKsl3ok3o3l78PpzGqaA/d3EyBvjbtPJ6tZT+kX/4OQDVCiQ4AXuZEVqEGzUjQgVP5qh/mr/gJcWpWO9jsWADchN1m1bSBnXRflwZyugw9vnSb/rXtuNmxAAAAftHiDUeVllOk+mH+Gvzj+btRsSKC/TTyusaSpGnLkuRycW504BxKdADwIsfOFGjQzAQdPl2gBjUDFD8xTo0jgsyOBcDN2KwWvXx/Bw3uHi2XIU39YIc+2HTM7FgAAAAXVVji1NurDkiSJt/SQn52dqFXlgk3NlWwn1370nL1n91pZscB3AYlOgB4iSOn8zV4ZqKOnSlUo1qBip8Yp+jwQLNjAXBTVqtFL93TXsNjG8kwpKc/3qn3NxwxOxYAAMAFFiQcVmZesaLDA/RAtwZmx/FqNYN8NeaGJpKkV5cnycludEASJToAeIWDp/I0aEaiUrMK1bR2kOInxCmqRoDZsQC4OavVoj/e1VZjri97ofT7f+3WvO8PmZwKAADgv/KKS/Xu6rJd6I/d0kI+Nqqsyjb2hiYK9bcrJSOP6+cAP+I3DwB4uJSMXA2amai0nCK1qBOspRNiVTfM3+xYADyExWLRs3e01sReTSVJL3z+g2avPWhyKgAAgDLzvj+kswUONY0I0j2do8yOUy2EBfhowk1lzw2nr0hWqdNlciLAfJToAODB9qXlaNCMRJ3KLVaruiFaOiFWdUIo0AGUj8Vi0e9ubaVHb2kuSfrzl3v11ncpJqcCAADVXU6hQzPXlP1x//G+LWRnF3qVGXV9E9UM9NGhzHx9si3V7DiA6fjtAwAeandqth6cmajT+SVqWz9US8bHqlawn9mxAHgoi8WiJ/u31NR+MZKkl7/Zr9eWJ8kwOA8mAAAwx9z1R5RTVKoWdYJ1R4f6ZsepVoL97HqoVzNJ0usrklVSym50VG+U6ADggXYcy9KQWYk6W+BQx+gaWjwuVjWDfM2OBcALPNanhX57aytJ0mvLk/XKtxTpAACg6uU7pLkJZRc9f6JfjGxWi8mJqp8RcY0VEeyn42cL9TG70VHNUaIDgIfZdjRLw2ZvUE5Rqbo2qqmFY3soLNDH7FgAvMjDNzfTH25vLUl687sU/fU/+yjSAQBAlVp5wqr8Yqda1wvVrW3rmh2nWgrwtemRm8t2o7+96qAcbEZHNUaJDgAe5ECONHr+FuUWl6pHk3DNH9NDof4U6AAq3rgbm+qPd7WVJM1cc1B//mq/6NEBAEBVOJ1XrDVpZTvPp/aLkZVd6KYZ0rOh6ob6Ky2nWAnpPA6ovijRAcBDJB48o3f32pRf4tR1zWpp3ujuCvazmx0LgBcbEddYL93TXhaLtCDxqD48ZJXLRZMOAAAq18y1h1XisqhDVKj6tq5jdpxqzd/Hpkk/Xnx+WapVhSVOkxMB5qBEBwAPsCbplMYt3KoSl0U3Nq+lOaO6K9CXAh1A5RvSs6H+cV8HWSzS9+lW/eHfP1CkAwCASpOeU6T3Nx6TJD3ep7ksFnY/m21Qt2hF1fBXjsOixZuOmR0HMAUlOgC4ue/2ZWjcgs0qLnWpbU2X3hnSSf4+NrNjAahGHugWrZfvay+LDH24JVW/+WiHnBTpAACgErz9XYqKS11qEmLoxua1zI4DSb52qybd3FSSNGPNIeUXl5qcCKh6lOgA4Ma+3ZOmCQs3q6TUpX6t62hMjEt+FOgATHBXx3oa2cIlm9WiT7amakr8dpU6uboUAACoOKlZhVry4y70X0W72IXuRu7uVF8RfobOFjg0b/1hs+MAVY4SHQDc1Fe7TuqR97fK4TR0e4d6mj6og+z81gZgos4Rhl4f1EE+Nos+33FCjy7ZJgdFOgAAqCBvrkxRidOlnk1qKiaMd725Ex+bVbdGlz3vm7nmoHKKHCYnAqoWdQwAuKHPtqfq0SXbVOoydHen+po+qJN8bPzKBmC+/m0i9e6wrvK1WfWf3Wl6eNFWFZdygSkAAHBtjp4u0Ieby3ahT+nT3OQ0uJiuEYaaRgQpu9ChOesOmR0HqFI0MgDgZj7aclxPxG+X02Xo/q4N9MrATrJToANwI31aR2rWyG7ys1u1fG+6Ji7coiIHRToAALh6r69MVqnL0I0tItStUU2z4+AirBbpsVuaSZLeW3tIWQUlJicCqg6tDAC4kaUbj+qpj3bIZUgP9miof9zXQTYr5wEE4H56xdTWnFHd5e9j1ar9pzR+wWYVllCkAwCA8jt4Kk+fbD0uSXqyf0uT0+CX3NY2Uq3qhii3uFSz1h40Ow5QZSjRAcBNLEw4rN99skuGIY2Ma6SX7mknKwU6ADd2ffMIzR/dQ4G+Nq1NztToeRuVX1xqdiwAAOBhpq9IlsuQ+rSqo07RNcyOg19gtVo0pW+MJGnu94d1Oq/Y5ERA1aBEBwA38N66Q3r2sz2SpLE3NNELv27LlegBeISeTWtp4dgeCvazK/HgGY2cs1G5XGgKAABcoaT0XP17xwlJ0hP9YkxOgysxoG2k2kWFqqDEqRlr2I2O6oESHQBMNmP1Af3pix8kSQ/1aqY/3N6aAh2AR+naKFyLxvVUiL9dm4+c1Yg5G5VdSJEOAAAu77XlSTIM6da2ddUuKszsOLgCFotFU3/8g8eChMPKyC0yORFQ+SjRAcBEb65M1l//s0+S9FifFvrtrS0p0AF4pE7RNbRkfKxqBPpo29EsDX9vAxebAgAAv2jPiWx9tStNFgu70D1N75Zlp94pcrj09ncHzI4DVDpKdAAwgWEYmrYsSf/8NkmS9GS/GE3tF0OBDsCjtYsK05LxsQoP8tXO49kaMmuDzuRTpAMAgIt7dVmyJOmODvXVsm6IyWlQHhaLRU/2L/vDx+INR3Uyu9DkREDlokQHgCpmGIb+8c1+vb6i7Anj725rpUf7tDA5FQBUjNb1QrV0Qqwigv30w8kcPTgzUadyueAUAAD4uR3HsrR8b7qsFmlKX14PeaIbmkeoR5NwlThdenNlitlxgEpFiQ4AVcgwDP3ly716Z1XZ292evaONHurVzORUAFCxYiJDFD8xVpGhftqfnqvBMxOUkcO5MgEAwH9NW1b2rtx7OjdQs9rBJqfB1bBYLHryx9PwfLD5mI6dKTA5EVB5KNEBoIq4XIZe+PcezV53SJL0p7vaauwNTUxOBQCVo1ntYMVPiFP9MH8dOJWvQTMTeZsvAACQJG05ckark07JbrXocd6V69F6Nq2lG5pHyOE09MbKZLPjAJWGEh0AqoDLZej3n+7W/IQjslikv93bXsPjGpsdCwAqVeOIIMVPjFODmgE6lJmvgTMS2KEEAAD0yo/XhnqgWwM1rBVochpcq6k/nhv9462pOpyZb3IaoHJQogNAJXO6DD398U4t2XhUVov08v0dNbhHQ7NjAUCViA4PVPzEODWqFahjZwo1eGaijp6mSAcAoLpKOHBa6w+clq/Nqsm3sAvdG3RpWFO9W9aW02Vo+gp2o8M7UaIDQCUqdbr05Afb9dGW47JZLXp1UCfd37WB2bEAoEpF1QhQ/IQ4Na0dpNSsQg2ckaBD7FICAKDaMQxD05btlyQN7hGtqBoBJidCRZnar6Uk6dPtqUrJyDU5DVDxKNEBoJI4nC49Hr9dn24/IbvVotcHd9ZdnaLMjgUApqgb5q+lE2LVok6w0nKKNHBGAi+wAACoZtYmZ2rT4bPys1s1qXdzs+OgArVvEKb+bSJlGNKry9mNDu9DiQ4AlaCk1KXJi7fqy50n5WOz6K2hXXR7h3pmxwIAU9UJKSvSW9UN0ancYg2akah9aTlmxwIAAFXAMAy9sqzsXOjDYhspMtTf5ESoaE/0Kzs3+pc7T2rvSZ7jwbtQogNABSsuderhRVv0zZ50+dqtmjG8qwa0rWt2LABwC7WC/bRkfKzaRYXqdH6JHpyZqD0nss2OBQAAKtnKfRnacSxLAT42PXxzM7PjoBK0rhd6fvPYqz/+wQTwFpToAFCBihxOjV+wRSv2ZcjPbtXsEd10S6tIs2MBgFupGeSr98fFqmN0DZ0tcGjIrA3aeTzL7FgAAKCSlJ0LvaxUHXldY0UE+5mcCJXlib4tZLVI3/6Qrl3H2SgB70GJDgAVpKCkVGPmbdKapFMK8LFp7qjuuimmttmxAMAthQX4aOHYHuraqKayCx0aOmuDthw5a3YsAABQCb7Zk6Y9J3IU7GfXxJuamh0Hlah5nZDz1wI7dxFZwBtQogNABcgrLtWouZu0/sBpBfnaNH9MD13XPMLsWADg1kL9fTR/TA/1aBKu3OJSjXhvgzYdPmN2LAAAUIFcLkOvLiu70OSY6xurZpCvyYlQ2R7v00I2q0Xf7T/FJgl4DUp0ALhGOUUOjZyzURsPnVGIn10LxvZUjybhZscCAI8Q7GfXvNHddX3zWsovcWrEexu1/kCm2bEAAEAF+WLXSe1Pz1Wov11jb2QXenXQOCJI93Up243OudHhLSjRAeAaZBc4NPy9jdpy5KxC/e1aNK6nujaqaXYsAPAogb52vTey7BRYhQ6nRs8tOzUWAADwbKVOl15bXlaijr+xqcICfExOhKry6C0t5GOzaF1KpjYcPG12HOCaUaIDwFU6m1+ioe8lasexLNUI9NHi8WUXyQMAlJ+/j00zh3dVn1Z1VFzq0rgFm/XdvgyzYwEAgGvw2fYTOngqXzUDfTT6hiZmx0EVig4P1MBu0ZKkV5YlyTAMkxMB14YSHQCuwum8Yj04K1G7U3NUK8hXSyfEql1UmNmxAMCj+fvY9M6wrhrQNlIlpS5NWLhZ3+5JMzsWAAC4Cg6nS9NXlJ0LfWKvZgr2s5ucCFVt8i3N5Wu3auOhM/o+hd3o8GyU6ABQThm5RRo8M1H70nJVO8RPSyfEqlXdULNjAYBX8LVb9eaQLrq9Qz05nIYeeX+rvtp10uxYAACgnD7eclxHzxQoIthXI+IamR0HJqgXFqAhPRpKkl5Ztp/d6PBolOgAUA5p2UUaPCNRyRl5qhvqr/gJsWoRGWJ2LADwKj42q6YP6qS7O9VXqcvQo0u26bPtqWbHAgAAV6i41Kk3VqZIkh6+ubkCfdmFXl090ruZ/H2s2nY0S6v2c80beC5KdAC4QqlZhRo0M0EHM/MVVSNA8RNj1bR2sNmxAMAr2W1WvTKwk+7v2kBOl6En4rfr4y3HzY4FAACuwAebjik1q1CRoX4a2rOh2XFgojoh/hoR11iSNI1zo8ODUaIDwBU4dqZAg2Yk6MjpAkWHB2jphFg1qhVkdiwA8Go2q0X/uK+DHuzRUC5D+s1HOxS/6ajZsQAAwC8ocjj15ndlu9An924ufx+byYlgtok3NVWgr027UrP17Q/pZscBrgolOgBcxuHMfA2akaDjZwvVuFag4ifEKTo80OxYAFAtWK0WvXRPO42MayTDkH778S4tTDxidiwAAHAJ7284qvScYkXVCNDA7tFmx4EbqBXsp9HXN5YkvbosSS4Xu9HheSjRAeAXHDiVp0EzE3Qiu0hNawcpfmKc6tcIMDsWAFQrFotFL/y6rcbe0ESS9OynuzVn3SGTUwEAgP9VUFKqd1aV7UJ/9Jbm8rOzCx1lxt/YVCF+du1Ly9VXu7loPDwPJToAXEJyeq4GzUhUek6xYiKDFT8hTpGh/mbHAoBqyWKx6A+3t9bDNzeTJP3xix80c80Bk1MBAICfmr/+iDLzStQwPFD3dW1gdhy4kRqBvhp7Y9mGiNeWJ8vJbnR4GEp0ALiIvSdzNHhmojLzitW6XqiWjI9V7RA/s2MBQLVmsVj09ICWeqxPC0nSS1/t05srk01OBQAAJCm3yKEZP/6B+/E+LeRjo3LCz425oYnCAnyUkpGnf+9INTsOUC78RgOA/7E7NVsPzkrU6fwStY8K05LxPVUrmAIdANyBxWLR1H4xerJfjCTpn98madqyJBkGu5kAADDT3O8PK6vAoaa1g3R35yiz48ANhfr7aMJNTSVJ05cnq9TpMjkRcOUo0QHgJ7Yfy9KQWYnKKnCoU3QNLRrXUzUCfc2OBQD4H4/2aaFnbmslSXp9RbJe/mY/RToAACbJLnBo1tqDkqQpfWNks1pMTgR3Neq6xqoV5KvDpwv0yVZ2o8NzUKIDwI+2HDmjYbM3KKeoVN0a1dTCsT0UFuBjdiwAwCVM7NVMz93RRpL09qoD+suXeynSAQAwwex1B5VbVKqWkSG6o309s+PAjQX52fVQr7Jr3ExfkaySUnajwzNQogOApA0HT2v4exuVV1yqnk3CNX9MD4X4U6ADgLsbc0MT/emutpKk2esO6YV/76FIBwCgCp3JL9GcdYckSU/0ayEru9BxGcNiG6l2iJ9Sswr1weZjZscBrgglOoBq7/uUTI2cu1EFJU7d0DxC80b3UJCf3exYAIArNDyusf52b3tZLNL8hCP6/ae75XJRpAMAUBVmrDmg/BKn2tYP1YC2dc2OAw8Q4GvTpJvLdqO/uTJFRQ6nyYmAy6NEB1CtrU46pTHzNqnI4dLNLWtr9shuCvC1mR0LAFBOg3s01D/v7yirRVq84ah++/FOOSnSAQCoVKdyi7Vg/RFJ0tR+MbJY2IWOKzO4R0PVC/NXWk6Rlmw8anYc4LIo0QFUWyv2pmv8/M0qLnWpb+s6mjG8q/x9KNABwFPd17WBXh3USTarRR9uOa4nP9iuUifn2QQAoLK8s+qACh1OdYquoVta1TE7DjyIv49Nk29pLkl667sDKixhNzrcGyU6gGrp691pemjRFpU4Xbq1bV29PbSr/OwU6ADg6e7qFKXXB3eW3WrRp9tPaEr8djko0gEAqHBp2UVatIFd6Lh6D3SNVoOaAcrMK9bCxMNmxwF+ESU6gGrni50nNGnxVjmchu7sWF9vDOksXzu/DgHAW9zeoZ7eHtpFPjaLvth5Uo8u3qaSUop0AAAq0lvfpaik1KXujWvqxhYRZseBB/K1W/VYnxaSpHdXH1RecanJiYBLozUCUK18ui1Vjy3ZJqfL0L2do/TqwI7ysfGrEAC8Tf+2dTVzeDf52q36ek+aHnl/i4pLeZswAAAV4fjZAi3dVHYe66n9WrILHVft3s5RahIRpDP5JZq//rDZcYBLojkCUG18vDVVT3ywXS5DGtitgV5+oKPsFOgA4LV6t6qj2SO6yc9u1fK9GZqwYIuKHBTpAABcqzdXpsjhNHRds1qKa1bL7DjwYHabVY//uBt95pqDyilymJwIuDjaIwDVwvp0i373rz0yDGloz4b6270dZLOyWwIAvN1NMbU1d1R3BfjYtDrplMbO38SFqwAAuAZHTufrwy3HJUlP9o8xOQ28wZ0d66tFnWBlFzr03tpDZscBLooSHYDXW7ThqOIPll00dNR1jfXnu9vJSoEOANXGdc0jNH9MDwX52vR9ymmNW7hVxfToAABclekrkuV0GeoVU1tdG4WbHQdewGa1aErfsj/IzFl3SFkFJSYnAi5EiQ7Aq81ee1AvfrFPkjT2+kZ6/s42nK8PAKqhHk3CtWBsT4X42bXx8Fm9s9em3CIuXgUAQHmkZOTp022pkqSp/diFjopzW7u6alU3RLnFpZq55qDZcYALUKID8FrvrDqgP3+5V5LUN8ql3w6IoUAHgGqsa6OaWjSup0L97TqUa9Go+ZuVXch5NwEAuFLTVyTLZUh9W0eqY3QNs+PAi1itlvN/mJm3/rBO5xWbnAj4OUp0AF7p9RXJ+vvXZTvQH+vdTHdEuyjQAQDqGF1DC0Z3U5Dd0M7jORo6O5G3DAMAcAX2p+Xqi50nJLELHZWjX5tIdWgQpoISp95dfcDsOMDPUKID8CqGYeiVb/dr2rIkSdJTA1rq0Vuaif4cAHBO2/qhmtzGqfAgH+1OzdHgmYnsdgIA4DJeXZYkw5B+1b6u2tQPNTsOvJDFYtETP/6BZkHCEWXkFJmcCPgvSnQAXsMwDP3t6316Y2WKJOn/ftVKk3o3NzkVAMAd1Q+SFo3prtohftqXlqvBMxOVkcsLNQAALmZ3ara+3pMmi0XnLwAJVIabY2qrS8MaKi516e1V7EaH+6BEB+AVDMPQn77Yqxmryy5A8vydbTThpmYmpwIAuLMWdYIVPyFWdUP9lZyRp8EzE5XOjicAAC7w6o/v9P11x/qKiQwxOQ28mcVi0ZP9W0qSFm84qhNZhSYnAspQogPweC6Xoec+26M53x+SJP357nYafX0Tk1MBADxB09rBip8Yq6gaATp4Kl+DZiTwYg0AgJ/YdvSsVuzLkNUiPd6nhdlxUA1c16yWejYJV4nTpTe/SzE7DiDpKkv0t956S40bN5a/v7969uypjRs3/uLXZ2VladKkSapXr578/PwUExOjr7766qoCA8BPuVyG/u9fu7Qw8YgsFukf93XQsNhGZscCTMdaDVy5RrWCtHRCrKLDA3T4dIEGzkjQsTMFZscCUA2wXsMTnLve1L1dGqhp7WCT06A6+Olu9A82HeN5GdxCuUv0+Ph4TZ06Vc8//7y2bt2qjh07asCAAcrIyLjo15eUlKhfv346fPiwPvroI+3fv1+zZs1SVFTUNYcHUL05XYae+minlm46JqtFeuWBjhrYPdrsWIDpWKuB8osOD1T8hDg1rhWo42cLNWhGgo6czjc7FgAvxnoNT7Dp8BmtTc6U3WphFzqqVI8m4bqxRYRKXYamr0g2Ow5Q/hJ92rRpGj9+vEaPHq02bdro3XffVWBgoObMmXPRr58zZ47OnDmjTz/9VNdff70aN26sXr16qWPHjtccHkD1Vep0aeoH2/Xx1uOyWS16bXBn3dulgdmxALfAWg1cnfo1AhQ/MU7NagfpRHaRBs5I0IFTeWbHAuClWK/hCV75dr8k6YFu0YoODzQ5Daqbqf3KLmL7ydbjOshzMpjMXp4vLikp0ZYtW/TMM8+cv81qtapv375KSEi46H3+/e9/Ky4uTpMmTdJnn32m2rVra8iQIfrtb38rm8120fsUFxeruLj4/Mc5OTmSJIfDIYfDUZ7IF3XuGBVxLDN5yxwSs7gjd57D4XRp6oe79PWedNmtFr06sINubVP7klndeZby8JY5JO+ZpaLnqIjjsFa7H2+ZxVvmkH55lvAAmxaN6aYRczcrOaPsHOkLRndTizru9/b16vKYeBJvmUPynlkqYw5PWa8re60+d6yf/q+n8pY5pIqdJeHgaSUePCMfm0UP39S4Sv99eEzcjxlztKsXrJtjIrQqKVOvLtuvaQ90qJDj8pi4H3d8bf2/LIZhGFf6xSdOnFBUVJTWr1+vuLi487c//fTTWr16tTZs2HDBfVq1aqXDhw9r6NCheuSRR5SSkqJHHnlEjz32mJ5//vmLfp8XXnhBL7744gW3L168WIGB/OUTqM5KXdK8JKt2nbXKZjE0Osal9uFX/GsMcGsFBQUaMmSIsrOzFRoaelXHYK0GKkaeQ3r7B5tSCywKtht6pI1TUUFmpwLgDjxlvWatxrUwDGn6HpsO5Vp0Y12X7m/iMjsSqqljedI/d9llkaHfdnSqHr++cAUqYq3+X+XaiX41XC6X6tSpo5kzZ8pms6lr165KTU3Vyy+/fMkX5s8884ymTp16/uOcnBxFR0erf//+FTK4w+HQsmXL1K9fP/n4+Fzz8cziLXNIzOKO3HGOYodTk5fu0K6zmfK1W/X2gx3VK6b2Ze/njrNcDW+ZQ/KeWSp6jnM7xKoaa3Xl8pZZvGUO6cpn6d/PodHzt2j3iRzNTA7QvFFd1bZ+xTwJrwjV8TFxd94yh+Q9s1TGHJ6yXlf2Wi3xc+KOKmqWNcmZOpS4VX52q/42opfqhPhVYMrL4zFxP2bOsaN0u5btzdD20iiN/dW1n8KKx8T9eMJr63KV6BEREbLZbEpPT//Z7enp6apbt+5F71OvXj35+Pj87O1lrVu3VlpamkpKSuTr63vBffz8/OTnd+EvaB8fnwr9oajo45nFW+aQmMUducschSVOPbxkq9YmZ8rfx6rZI7rrhhYR5TqGu8xyrbxlDsl7ZqmoOSriGKzV7stbZvGWOaTLz1I7zEfvj4/VyDkbtf1YlkbM3awFY3uqU3SNqgt5BarTY+IpvGUOyXtmqcg5PGW9rqq1urKOaQZvmUO6tlkMw9D0lQckScNjGykq3LxTmvGYuB8z5nhyQEst35ehr/ekK+lUgdrWD6uQ4/KYuB93em39v8p1YVFfX1917dpVK1asOH+by+XSihUrfvYWtJ+6/vrrlZKSIpfrv2/9SUpKUr169S76ohwA/ldBSanGzNuktcmZCvS1ae6oHuUu0IHqgrUaqFhhAT5aOLaHujWqqZyiUg2bvUFbjpwxOxYAD8d6DXe2fG+Gdh7PVqCvTQ/d3MzsOIBa1Q3V7e3rSZJeXZZschpUV+Uq0SVp6tSpmjVrlubPn6+9e/fq4YcfVn5+vkaPHi1JGjFixM8ujvLwww/rzJkzevzxx5WUlKQvv/xSL730kiZNmlRxUwDwWnnFpRo1Z5MSDp5WkK9N88f0UFyzWmbHAtwaazVQsUL8fTR/TA/1bBKuvOJSjXhvozYcPG12LAAejvUa7sjlMjRtWZIkaeR1jRURXLWncQEuZUrfGFkt0vK96dpxLMvsOKiGyn1O9EGDBunUqVN67rnnlJaWpk6dOunrr79WZGSkJOno0aOyWv/bzUdHR+ubb77RE088oQ4dOigqKkqPP/64fvvb31bcFAC8Uk6RQ6PmbNTWo1kK8bdr/pge6tKwptmxALfHWg1UvCA/u+aN7qHxCzZrXUqmRs3dpNkju+n65rwzCsDVYb2GO/p6T5r2nsxRsJ9dE25sanYc4LzmdYJ1d6cofbItVdOWJWn+mB5mR0I1c1UXFp08ebImT5580c+tWrXqgtvi4uKUmJh4Nd8KQDWVXeDQ8DkbtPN49vm30ndoUMPsWIDHYK0GKl6Ar02zR3bTQ4u2aNX+Uxozb5Nmjuh2RRe5BoCLYb2GO3G6DL364y70MTc0Uc0gThME9/JYnxb6bMcJrU46pS1Hzqhro3CzI6EaKffpXACgsp3JL9GDsxK183i2agb6aPH4nhToAAC34O9j04zhXdW3dR0Vl7o0fv5mrdibfvk7AgDg5r7YeULJGXkK9bdr7A1NzI4DXKBxRJDu79JAkvTKt0kmp0F1Q4kOwK1k5hVryKxE/XAyRxHBvlo6Ia7CrrwNAEBF8LPb9PbQrrqtXV2VOF16aNEWfbMnzexYAABctVKnS68tL7tg44SbmioswMfkRMDFPdqnuXxsFq0/cFoJB7hGDaoOJToAt5GRU6TBMxO1Ly1XdUL8tHRCnFrWDTE7FgAAF/C1W/XGg511Z8f6cjgNTXp/q77cedLsWAAAXJV/bUvVocx81Qz00ajr2YUO99WgZqAGdY+WJE1btl+GYZicCNUFJToAt3Ayu1CDZiYqJSNP9cL8FT8xTs3rBJsdCwCAS7LbrHp1YEfd2zlKpS5Djy7Zqk+3pZodCwCAcnE4XXp9Zdku9Id6NVOw31VdPg+oMpN7t5Cv3apNh89qbXKm2XFQTVCiAzDd8bMFGjQjUYcy8xVVI0DxE+LUJCLI7FgAAFyW3WbVyw901MBuDeQypCc+2K6Pthw3OxYAAFfsw83HdexMoSKC/TQirrHZcYDLqhvmr6E9G0qSXlmWxG50VAlKdACmOnq6rEA/eqZADcMDFT8xVg1rBZodCwCAK2azWvS3eztoaM+GMgzpqY92aMnGo2bHAgDgsopLnXrzx13oj9zcTAG+NpMTAVfm4Zubyd/Hqh3HsrRyX4bZcVANUKIDMM2hzHwNmpmg1KxCNYkIUvzEWDWoSYEOAPA8VqtFf767nUZd11iGIT3zyS4tSDhsdiwAAH7R0o3HdCK7SHVD/TXkx529gCeoE+KvkT++c2Iau9FRBSjRAZgiJSNPg2Yk6GR2kZrVDlL8hFjVCwswOxYAAFfNYrHo+TvbaPyNZRdke+6zPZq99qDJqQAAuLgih1NvfZciSZp0S3P5+7ALHZ5lYq9mCvK1ac+JHH2zJ83sOPBylOgAqtz+tFwNnpmgjNxitYwM0dIJcaoT6m92LAAArpnFYtH//aq1JvVuJkn685d79c6qAyanAgDgQosSjygjt1hRNQI0qFu02XGAcgsP8tXo68s2L7y6LFkuF7vRUXko0QFUqT0nsjV4ZoIy80rUpl6olkyIVe0QP7NjAQBQYSwWi37Tv6Wm9G0hSfr71/v0+opkk1MBAPBf+cWl5//I+1if5vK1Uw/BM42/salC/O3an56rL3adNDsOvBi/JQFUmV3HszVk1gadLXCoQ4MwLR7fU+FBvmbHAgCgwlksFk3pG6OnBrSUVHauzle+3c/5OgEAbmF+wmGdzi9Ro1qBurdLA7PjAFctLNBH425oKkl6bXmSSp0ukxPBW1GiA6gS246e1ZDZicoudKhzwxpaNK6nagRSoAMAvNuk3s31+1+1liS9sTJFf/+aIh0AYK7cIodmrim7ZsfjfVrIx0Y1BM825obGqhHoo4On8vXZ9hNmx4GX4jclgEq36fAZDX9vo3KLStW9cU0tHNtTof4+ZscCAKBKjL+pqV64s40k6d3VB/SnL/ZSpAMATDNn3WFlFTjUrHaQ7uoUZXYc4JqF+Ptowk1lu9Gnr0iWg93oqASU6AAqVcKB0xo5Z6PyiksV17SW5o/poWA/u9mxAACoUqOub6I/391OkjTn+0N67rM9XPwKAFDlsgscmr2ubBf6lL4xslktJicCKsbIuMaqFeSro2cK9PGW42bHgReiRAdQadYlZ2r0vI0qKHHqxhYRmjOquwJ9KdABANXTsNhG+sd9HWSxSAsTj+j3n+6iSAcAVKlZaw8qt6hUreqG6Pb29cyOA1SYID+7Hr65maSyU+gVlzpNTgRvQ4kOoFJ8tz9DY+ZvUpHDpd4ta2vWiG4K8LWZHQsAAFMN7B6tVx7oKKtFWrLxmJ76aKecFOkAgCpwJr9Ec78/JEl6ol+MrOxCh5cZFttIkaF+Ss0q1AebjpkdB16GEh1AhVv2Q7omLtiiklKX+rWJ1LvDu8rfhwIdAABJurdLA702uLNsVos+3npcUz/YrlLO3QkAqGQzVh9QfolT7aPC1L9NpNlxgArn72PTpN7NJUlvfpeiIge70VFxKNEBVKj/7DqphxdtUYnTpV+1r6u3h3aRn50CHQCAn/p1x/p688HOslst+mz7CT2+dDsXwQIAVJqM3CLNTzgsSZraL0YWC7vQ4Z0GdY9W/TB/pecU6/0NR82OAy9CiQ6gwny+44QmL9mmUpehX3esr9cHd5aPjV8zAABczG3t6+mdYV3la7Pqy10nNen9rSoppUgHAFS8d1YdUJHDpc4Na+jmlrXNjgNUGj+7TY/2aSFJemdVigpKSk1OBG9BuwWgQnyy9bgeX7pNTpehe7tE6dVBnWSnQAcA4Bf1axOpGSO6ytdu1bc/pOuhRVt46zEAoEKdzC48vyP3yX4t2YUOr3d/1wZqGB6ozLwSLUg4YnYceAkaLgDX7INNx/TkhzvkMqTB3aP1z/s7ysZFagAAuCK9W9bRnJHd5e9j1cp9GRq/YDNFOgCgwrz1XYpKSl3q0SRc1zevZXYcoNL52Kx67Mfd6DNWH1BeMbvRce0o0QFck/c3HNHTH++UYUjDYhvqpXvac5V3AADK6YYWEZo7qocCfW1am5ypMfM28fZjAMA1O362QPGbjkmSnuRc6KhG7u5UX00jgnS2wKG56w6ZHQdegBIdwFWb9/0h/f5fuyVJo69vrD/d1Y4CHQCAqxTXrJbmj+mhYD+71h84rVFzNrFzCgBwTd5YkSKH09ANzSPUsym70FF92G1WPd63bDf6rLUHlV3oMDkRPB0lOoCrMmvNQb3w+Q+SpIk3NdVzd7RhVwMAANeoe+NwLRjbQyH+dm08fEYj3tugnCJe9AEAyu9wZr4+2npckjS1f4zJaYCqd2eH+oqJDFZOUaneW3vQ7DjwcJToAMrtre9S9Jev9kqSJvdurt/d1ooCHQCACtKlYU29P66nwgJ8tPVolobP3qDsAop0AED5vL4iWU6Xod4ta6tLw5pmxwGqnNVq0RN9y/6ANOf7wzqbX2JyIngySnQAV8wwDL22PEkvf7NfkjS1X4x+M4CruwMAUNE6NKihxeN7KjzIVzuOZ2vI7ESd4YUfAOAKpWTk6dPtqZKkqf1ampwGMM+AtnXVpl6o8opLNWMNu9Fx9SjRAVwRwzD0z2/367XlyZKkp29tef5q1wAAoOK1rR+mJeNjFRHsqz0ncjRkVqIy84rNjgUA8ABvfHdALkPq3yZS7RuEmR0HMI3VatHUfmW70eevP6xTuTyXwtWhRAdwWYZh6K//2ae3vjsgSfrD7a31yM3NTU4FAID3a1k3REsnxKlOiJ/2peVq8MxEZeQUmR0LAODGUvOlr3anS5Ke6Me50IE+reuoY3QNFTqcenf1AbPjwENRogP4RYZh6MXPf9DMH9/29OKv22rcjU1NTgUAQPXRvE6w4ifGqV6Yv1Iy8jR4ZqLSsinSAQAX959jZVXP7R3qqXW9UJPTAOazWP67G31R4hGlsyEBV4ESHcAluQzp+c/3at76w5Kkl+5pr5HXNTY1EwAA1VGTiCB9MDFOUTUCdDAzX4NmJuhEVqHZsQAAbmZ3ao52nbXKapGe6MvpN4FzbmoRoW6Naqq41KV31xwyOw48ECU6gItyugwtPWDVkk3HZbFI/7i/g4b0bGh2LAAAqq3o8EDFT4xVw/BAHTldoCHvbdJpNlIBAH7itZUpkqQ7O9RT8zohJqcB3IfFYtHU/mW70eM3H9cZTo2OcqJEB3ABp8vQ7z7ZrQ2nynYwTBvYUQO7RZsdCwCAaq9BzbIivUlEkFKzivT6HpuOnC4wOxYAwA1sOXJWq5MyZZWhR3s3MzsO4HauaxahuKa15HAa+vY4lSjKh58YAD/jcLo0JX67Pt1xUlYZmvZAB93TuYHZsQAAwI/qhQUofkKsmtUOUlaJRUPe26SUjDyzYwEATPbqsiRJUvfahhrVCjQ5DeCenvxxN/qGUxYdPcNGBFw5SnQA55WUuvTYkm36fMcJ+dgsGhXj0u3t65odCwAA/I86of56f0w31Qs0lJFbrMEzE7Q/LdfsWAAAk2w4eFrrUjLlY7NoQAOX2XEAt9WtcbhubF5LLsOiN1cdNDsOPAglOgBJUnGpU4+8v1X/2Z0mX5tVbwzuqI61DLNjAQCAS6gV7KfJbZxqXTdEmXklenBWon44kWN2LABAFTMMQ6/8uAv9/i5RquVvciDAzT3ep7kk6bPtJ3TgFO/mw5WhRAegIodTExdu0fK96fKzWzVzRFf1aVXH7FgAAOAygn2kBaO7qUODMJ3JLyvSdx3PNjsWAKAKfZ9yWhsPnZGv3aqHezU1Ow7g9jo2CFO7mi65DGn68mSz48BDUKID1VxhiVPj5m/Wqv2n5O9j1ZxR3XVzSwp0AAA8RY1AHy0a11NdGtZQdqFDQ2YnatvRs2bHAgBUgbJd6PslSUN6NFS9MLahA1fituiy0x59vvMEp8TDFaFEB6qx/OJSjZ63UetSMhXoa9O80T10ffMIs2MBAIByCvX30YKxPdW9cU3lFpVq+HsbtfnwGbNjAQAq2ar9p7TtaJb8fax6pHczs+MAHqNBkDSgTR0ZhvTa8iSz48ADUKID1VRukUMj52xU4sEzCvaza8GYHoptWsvsWAAA4CoF+9k1f0wPxTWtpbziUo2Ys1GJB0+bHQsAUEkMw9C0H8+FPiKuseqEsAsdKI/Hb2kui0X6z+407TnB6fDwyyjRgWoou9BRtkPtyFmF+Nu1cGwPdWscbnYsAABwjQJ97ZozqrtubBGhghKnRs3dqHXJmWbHAgBUgm9/SNeu1GwF+to08SbOhQ6UV4vIYN3Zob4k6dVl7EbHL6NEB6qZrIISDZu9QduPZalGoI+WjI9V54Y1zY4FAAAqSICvTbNGdFPvlrVV5HBpzPxNWrU/w+xYAIAK5HIZ50u/0dc3Vq1gP5MTAZ7p8b4tZLVIy/dmaPuxLLPjwI1RogPVyJn8Ej04a4N2pWYrPMhXi8fFql1UmNmxAABABfP3send4V3Vr02kSkpdmrBgi5b/kG52LABABflq90ntS8tViJ9d429kFzpwtZrVDtY9nRtI0vnTIwEXQ4kOVBOncov14MxE7T2Zo4hgPy2dEKs29UPNjgUAACqJn92mt4d20a/a11WJ06WHFm3R17tPmh0LAHCNnC5Dry1PliSNvbGJagT6mpwI8GyP92khu9WiNUmnuDA7LokSHagG0nOKNHhmgvan5yoy1E/xE2MVExlidiwAAFDJfGxWvT64s+7qVF+lLkOTFm/T5ztOmB0LAHAN/r0jVSkZeQoL8NGYG5qYHQfweA1rBeqBbmW70V/5lt3ouDhKdMDLncgq1KAZCTpwKl/1w/wVPyFOzWoHmx0LAABUEbvNqmkDO+neLlFyugw9vnSb/rXtuNmxAABXodTp0vQfd6FPuKmpQv19TE4EeIfJt7SQr82qhIOntf4AF2XHhSjRAS927EyBBs1M0OHTBYqqEaD4iXFqHBFkdiwAAFDFbFaL/nl/Rw3uHi2XIU39YIc+2HzM7FgAgHL6ZGuqDp8uUK0gX426rrHZcQCvEVUjQIN7REuSpn2bJMMwTE4Ed0OJDnipI6fzNXhmoo6dKVSjWoH64KE4RYcHmh0LAACYxGq16KV72mtYbEMZhvT0Rzv1/oYjZscCAFyhklKXpq8o24X+UK9mCvKzm5wI8C6TejeXn92qzUfOak0yu9Hxc5TogBc6eCpPg2YkKjWrUE0jghQ/IU5RNQLMjgUAAExmtVr0p7vaafT1jSVJv//Xbs37/pC5oQAAV+SDzceUmlWo2iF+GhbbyOw4gNeJDPU//9/WtG/3sxsdP0OJDniZlIxcDZqZqLScIrWoE6ylE2NVN8zf7FgAAMBNWCwWPXdHG028qakk6YXPf9DstQdNTgUA+CVFDqfeXJkiSZp0czMF+NpMTgR4p4dvbqYAH5t2HM/Wir0ZZseBG6FEB7zIvrQcDZqRqFO5xWpVN0RLJsSqTggFOgAA+DmLxaLf3dZKj97SXJL05y/36q3vUkxOBQC4lCUbjyotp0j1wvw1uEdDs+MAXisi2E8jf7zewLRlSXK52I2OMpTogJfYnZqtB2cm6nR+idrWD9WS8bGKCPYzOxYAAHBTFotFT/Zvqan9YiRJL3+zX68t50JaAOBuCkuceuu7A5Kkybc0l78Pu9CByjTxpqYK9rPrh5M5+mZPmtlx4CYo0QEvsONYlobMStTZAoc6NgjT4nGxqhnka3YsAADgAR7r00JP39pSkvTa8mS98i1FOgC4k4WJh5WZV6wGNQP0QNdos+MAXq9mkK/G/Hj9mFeXJ8nJbnSIEh3weFuOnNWw2RuUU1Sqro1qauG4ngoL9DE7FgAA8CCP3Nxcf7i9tSTpze9S9Lf/7KNIBwA3kFdcqndXl1234rE+LeRrp8YBqsLYG5sq1N+upPQ8fbHzhNlx4Ab47Qt4sI2HzmjEexuUW1yqHk3CNX9MD4X6U6ADAIDyG3djU/3xrraSpBlrDuqPX/xAkQ4AJpu//rDO5JeoSUSQ7u0cZXYcoNoIC/DR+BvLLsI+fXmySp0ukxPBbJTogIdafyBTI+dsVH6JU9c1q6V5o7sr2M9udiwAAODBRsQ11kv3tJckzf3+sJ79bDcX1AIAk+QUOTRzTdku9Mf7tJDdRoUDVKXRNzRRzUAfHczM16fb2Y1e3fEbGPBAa5JOafTcTSp0OHVjiwjNGdVdgb4U6AAA4NoN6dlQ/7i/gywWaVHiUT3zyS6KdAAwwXtrDym70KEWdYJ1Z8f6ZscBqp1gP7sm9momSXp9RbIc7Eav1ijRAQ/z3b4MjVuwWcWlLt3Sqo5mjejG1dkBAECFGtgtWtMGdpTVIsVvPqbffLSDi2oBQBXKKijRnHWHJElT+sbIZrWYnAionkbENVJEsK+OninQR1uOmx0HJqJEBzzIt3vSNGHhZpWUujSgbaTeHdaVAh0AAFSKezo30OsPdpbNatEnW1M1JX475wMFgCoyc81B5RaXqlXdEN3Wrq7ZcYBqK9DXrodvbi5JemNFsopLnSYnglko0QEP8dWuk3rk/a1yOA3d3r6e3hzShSuzAwCASnVHh/p6a0gX+dgs+nzHCT26ZBtvZQaASnY6r1jz1h+WJE3tFyMru9ABUw3t2VCRoX46kV2k+E3HzI4Dk9DAAR7gs+2penTJNpW6DN3dqb6mD+4kHy4qAwAAqsCt7erq3WFd5Wuz6j+70/TI+1vZhQUAlejd1QdUUOJUhwZh6tcm0uw4QLXn72PT5N5lu9HfXJmiIgfPg6ojWjjAzX205bieiN8up8vQ/V0b6JWBnbgqOwAAqFJ9Wkdq1shu8rNbteyHdD20cAsvIAGgEmTkFGlBwhFJ0hP9YmSxsAsdcAcDu0crqkaAMnKLtSjxiNlxYAKaOMCNLd14VE99tEMuQ3qwR7T+cV8HLigDAABM0SumtuaM6i5/H6u+239K4xdsVmEJRToAVKS3Vx1QcalLXRrW0M0xtc2OA+BHfnabHr2lbDf6O6sOKL+41OREqGqU6ICbWph4RL/7ZJcMo+xq0H+5uz3nwgMAAKa6vnmE5o3uoUBfm9YmZ2r0vI28iASACnIiq1CLNxyVJD3ZvyW70AE3c1/XBmoYHqjT+SWan3DY7DioYpTogBuas+6Qnv10tyRp7A1N9OKv21KgAwAAtxDbtJYWjOmhYD+7Eg+e0ai5G5Vb5DA7FgB4vDe/S1GJ06WeTcJ1XbNaZscB8D98bFY93qeFJGnmmoM8/6lmKNEBNzNj9QH98YsfJEkP9WqmP9zemh0IAADArXRrHK5F43oqxN+uTYfPasScjcou5IUkAFytY2cK9MGmY5LYhQ64s7s7R6lp7SBlFTg0Z91hs+OgClGiA27kzZXJ+ut/9kmSHruluX57K0+eAACAe+oUXUNLxseqRqCPth3N0vD3NiiroMTsWADgkV5fkaxSl6EbW0SoR5Nws+MAuASb1aIpfWMkSbPXHVR2AZsIqgtKdMANGIahacuS9M9vkyRJT/aL0VR2HwAAADfXLipMi8fFKjzIVzuPZ2vIrA06k0+RDgDlcSgzX59sS5UkTe0XY3IaAJdzR/t6ahkZotyiUs1ae9DsOKgilOiAyQzD0D++2a/XVyRLkn53Wys9+uM5tgAAANxdm/qhWjohVhHBfvrhZI4enJmoU7nFZscCAI8xfXmSnC5Dt7Sqo84Na5odB8BlWK0WPdGvrLeZ+/0hNhBUE1dVor/11ltq3Lix/P391bNnT23cuPGK7rd06VJZLBbdfffdV/NtAa9jGIb+8uVevbPqgCTp2Tva6KFezUxOBcAbsFYDqEoxkSGKnxiryFA/7U/P1eCZCcrIKTI7FuD2WK+RnJ6rz3ackMQudMCTDGhbV23rhyq/xKkZqw+YHQdVoNwlenx8vKZOnarnn39eW7duVceOHTVgwABlZGT84v0OHz6s3/zmN7rxxhuvOizgTQzD0Av/3qPZ6w5Jkv54V1uNvaGJyakAeAPWagBmaFY7WPET4lQ/zF8HTuVr0MxEncwuNDsW4LZYryFJry1PlmFIA9pGql1UmNlxAFwhi8Vy/g9f8xMOKyOXzQPertwl+rRp0zR+/HiNHj1abdq00bvvvqvAwEDNmTPnkvdxOp0aOnSoXnzxRTVt2vSaAgPewOUy9H//2q35CUdksUh/vbe9RsQ1NjsWAC/BWg3ALI0jghQ/MU4NagboUGa+Bs1I1PGzBWbHAtwS6zV+OJGjL3edlMUiPcEudMDj3NKqjjpF11CRw3X+DAPwXvbyfHFJSYm2bNmiZ5555vxtVqtVffv2VUJCwiXv98c//lF16tTR2LFjtXbt2st+n+LiYhUX//c8ijk5OZIkh8Mhh+Par3p77hgVcSwzecscUvWaxeky9H+f7tEn207IYpH+dk9b3du5ntvNXp0eE0/hLXNI3jNLRc9REcdhrXY/3jKLt8whec8s7jpH3RAfvT+mm4bP3ayjZwo08N0ELRzTTQ3DAy95H3edpby8ZQ7Je2apjDk8Zb2u7LX63LF++r+eyqw5pn27T5L0q7Z11axWAM+hfsJb5pC8ZxZvmUOq2Fkeu6Wpxszfqvc3HNXouIaqF+Z/zce8Ujwmlz9eRbIYhmFc6RefOHFCUVFRWr9+veLi4s7f/vTTT2v16tXasGHDBfdZt26dBg8erO3btysiIkKjRo1SVlaWPv3000t+nxdeeEEvvvjiBbcvXrxYgYGXfvINuDunIb2fYtWWTKssMjSsuUvdal/xf4IAvFxBQYGGDBmi7OxshYaGXtUxWKsBuIusYumtH2zKKLIozNfQ5DZO1QkwOxVw7TxlvWatdm9H86RXdtllkaFnOjkVye9HwCMZhvT6HpsO5lp0faRLA5u6zI4EVcxa/b/KtRO9vHJzczV8+HDNmjVLERERV3y/Z555RlOnTj3/cU5OjqKjo9W/f/8KGdzhcGjZsmXq16+ffHx8rvl4ZvGWOaTqMYvD6dJvPtqlLZnpslstmvZAB93Wrq6JSX9ZdXhMPI23zCF5zywVPce5HWJVibW68nnLLN4yh+Q9s3jCHP36FmvE3M1KOZWvmSmBWjC6m5rXCb7g6zxhlivhLXNI3jNLZczhKet1Za/VEj8n12Lcgq2SMnVXx/oafV/7Cjsuj4n78ZZZvGUOqeJniWhzRsPmbNbGTJv+MqyXompUzV/FeEwurTLW6nKV6BEREbLZbEpPT//Z7enp6apb98Iy8MCBAzp8+LDuvPPO87e5XGV/kbHb7dq/f7+aNWt2wf38/Pzk5+d3we0+Pj4V+kNR0cczi7fMIXnvLCWlLj3x4Q59syddPjaL3hzSRQPaum+B/lPe+ph4Mm+ZQ/KeWSpqjgp5Asda7ba8ZRZvmUPynlnceY764T6KnxinobM3aF9arobN2az3x/dUq7oXL/DceZby8JY5JO+ZpSLn8JT1uqrW6so6phmqao4tR85qdXKmbFaLpvRrWSnfk8fE/XjLLN4yh1Rxs9wQE6nrmtXS+gOn9c7qw/r7/R0qIN2V4zG5+HEqWrkuLOrr66uuXbtqxYoV529zuVxasWLFz96Cdk6rVq20a9cubd++/fz//frXv1bv3r21fft2RUdHX/sEgJsrLnXq4UVb9M2edPnarJoxvKvHFOgAPA9rNQB3UyvYT0vGx6pt/VCdzi/RgzMTtedEttmxAFOxXldv05btlyTd36WBGkcEmZwGQEV4sn/ZxYE/2npchzPzTU6DylDu07lMnTpVI0eOVLdu3dSjRw+99tprys/P1+jRoyVJI0aMUFRUlP7617/K399f7dq1+9n9a9SoIUkX3A54oyKHUxMXbtHqpFPys1s1c0Q39YqpbXYsAF6OtRqAu6kZ5KvF42I1Ys4G7TierSGzNmjh2B7q0KCG2dEA07BeV0+JB0/r+5TT8rFZ9Gif5mbHAVBBujYKV6+Y2lqddEqvr0jWtEGdzI6EClbuEn3QoEE6deqUnnvuOaWlpalTp076+uuvFRkZKUk6evSorNZybXAHvFJBSakeWbJD36ecVoCPTe+N7Kbrml/5+YYB4GqxVgNwR2GBPlo4rqdGz92kLUfOauisDZo/toe6NKxpdjTAFKzX1Y9hGJr2bZIkaVD3aDWoyQVeAW8ytV+MVied0qfbU/VI7+YXvQ4MPNdVXVh08uTJmjx58kU/t2rVql+877x5867mWwIepcgpjVu4TZsOn1WQr01zR/dQjybhZscCUI2wVgNwR6H+Ppo/pofGzNukjYfOaPjsDZo3poc6RYWYHQ0wBet19bIuJVMbD5+Rr92qyb1bmB0HQAXrGF1DfVtHavnedL22PElvDulidiRUIP6sDVSw3KJSvbvXpk2HzyrEz64FYynQAQAAzgn2s2ve6O66rlkt5Zc4NeK9jdpw6IzZsQCgUhmGoVd+3IU+tGdD1Q3zNzkRgMowtV/ZudG/2HlS+9JyTE6DikSJDlSg7AKHRs3frEO5FoX627VoXE91bUSBDgAA8FOBvnbNGdVdN8XUVqHDqXELt2pflsXsWABQab7bn6Htx7Lk72PVwzc3MzsOgErSpn6oftW+riTp1WVJJqdBRaJEByrI2fwSDX0vUTuP5yjQbmjB6G7qGF3D7FgAAABuyd/HppnDu6pPqzoqcrg0a59Vq5JOmR0LACqcYRia9mOZNjKuseqEsAsd8GZT+sbIYpG+2ZOu3anZZsdBBaFEByrA6bxiPTgrUbtTcxQe5KPJbZxqWz/U7FgAAABuzd/HpneGdVW/1nVUalj0yOLt+nZPmtmxAKBClRVpOQrytWliL3ahA94uJjJEv+5YX5LO/wENno8SHbhGGblFGjwzUfvSclU7xE+LxnRXVJDZqQAAADyDr92q6YM6qHMtlxxOQ4+8v1Vf7TppdiwAqBAul3H+lA5jbmii8CBfkxMBqAqP92khm9WilfsytPXoWbPjoAJQogPXIC27SINnJCo5I091Q/0VPyFWLeoEmx0LAADAo/jYrBrewqVfd6inUpehR5ds02fbU82OBQDX7ItdJ7U/PVch/naNu6Gp2XEAVJGmtYN1b+coSZwb3VtQogNXKTWrUINmJuhgZr6iagQofmKsmtamQAcAALgaNov0j/va6f6uDeR0GXoifrs+3nLc7FgAcNVKnS69trysPBt/Y1OFBfqYnAhAVXqsTwvZrRatTc7UxkNnzI6Da0SJDlyFY2cKNGhGgo6cLlCDmgFaOiFWjWpxDhcAAIBrYbNa9I/7OujBHtFyGdJvPtqh+E1HzY4FAFfls+0ndPBUvmoE+mj09Y3NjgOgikWHB2pg92hJ0ivf7pdhGCYnwrWgRAfK6XBmvgbNSNDxs4VqXCtQH0yMU3R4oNmxAAAAvILVatFf7m6vEXGNZBjSbz/epYWJR8yOBQDl4nC6NH1FsiRp4k3NFOLPLnSgOprcu7l8bVZtOHRG6w+cNjsOrgElOlAOB07ladDMBJ3ILlLT2kGKnxin+jUCzI4FAADgVaxWi178dVuNvaGJJOnZT3drzrpDJqcCgCv38ZbjOnqmQBHBvhp5XSOz4wAwSf0aARrSs6EkdqN7Okp04Aolp+dq0IxEpecUKyYyWPET4hQZ6m92LAAAAK9ksVj0h9tb66FezSRJf/ziB81cc8DkVABwecWlTr2xMkWS9FCvZgr0tZucCICZHrm5mfzsVm09mqVVSafMjoOrRIkOXIG9J3M0eGaiMvOK1bpeqJaMj1XtED+zYwEAAHg1i8Wi397aUo/1aSFJeumrfXpzZbLJqQDgl32w6ZhSswoVGeqnYbHsQgequzqh/hoRV/a74NVlSexG91CU6MBl7E7N1oOzEnU6v0Tto8K0ZHxP1QqmQAcAAKgKFotFU/vF6Ml+MZKkf36bpGm8AAXgpoocTr35Xdku9Em9m8vfx2ZyIgDuoOxdKTbtPJ6tZT+kmx0HV4ESHfgF249lacisRGUVONQpuoYWjeupGoG+ZscCAACodh7t00K/u62VJOn1Fcl6+RvOKwrA/by/4ajSc4pVP8xfg7pHmx0HgJuoFeynUdc1liRNW5Ykl4vnMJ6GEh24hC1HzmjY7A3KKSpV10Y1tXBsD4UFcEV1AAAAszzUq5mevaONJOntVQf00ld7KdIBuI2CklK9s6psF/qjfVrIz84udAD/NeGmpgrxs2tfWq7+szvN7DgoJ0p04CI2HDyt4e9tVF5xqXo2CdeCMT0U4k+BDgAAYLaxNzTRn+5qK0matfaQXvz8B4p0AG5hQcIRZeaVqGF4oO7v2sDsOADcTI1AX425oYkk6dXlSXKyG92jUKID/+P7lEyNnLtRBSVO3dA8QvNG91CQH1dTBwAAcBfD4xrrb/e2l8UizVt/WL//dDdviwZgqrziUs1YfUCS9FifFvKxUbcAuNDYG5soLMBHKRl5+nzHCbPjoBz4rQ78xOqkUxozb5OKHC71iqmt2SO7KcCXt+ABAAC4m8E9Gurl+zvKYpEWbziq3368kx1dAEwzd90hnS1wqGlEkO7uVN/sOADcVKi/jybc1FSSNH1FskqdLpMT4UpRogM/WrE3XePnb1ZxqUt9W9fRzBFduZI6AACAG7u/awO9NqiTbFaLPtxyXL/5cAcvRgFUuexCh2atPShJerxvC9nZhQ7gF4y6rrHCg3x1KDNfn2xLNTsOrhC/2QFJX+9O00OLtqjE6dKtbevq7aFduQgMAACAB7irU5ReH9xZdqtF/9qWqinx2+WgSAdQhd5be1A5RaWKiQzWnR3YhQ7glwX52fVQr7Ld6K+vSFZJKc9bPAElOqq9L3ae0KTFW+VwGrqjQz29MaSzfO38pwEAAOApbu9QT28N7SIfm0Vf7DypRxdv4wUpgCpxNr9Ec74/LEl6om+MrFaLuYEAeIThsY1VO8RPx88W6sMtx8yOgytAU4hq7dNtqXpsyTY5XYbu6Ryl1wZ14gIwAAAAHmhA27qaMbyrfG1Wfb0nTY+8v0XFpU6zYwHwcjPWHFRecana1AvVgLZ1zY4DwEME+Nr0yM3NJElvrkxRkYPnLO6OthDV1oebj+mJD7bLZUgPdG2gfz7QkXPXAQAAeLBbWkVq9shu8rNbtXxvhiYs2MKLUgCV5lRuseavPyxJmtqPXegAyufBHg1VL8xfJ7OLtHTjUbPj4DJoDFEtLd5wVE99tFOGIQ3p2VB/v6+DbDzhAQAA8Hg3xdTW3FHdFeBj0+qkUxo7f5MKSyjSAVS8d1cfUKHDqY7RNdSndR2z4wDwMP4+Nk3q3VyS9NaqAzxfcXOU6Kh2FiQc1v/9a5eksisi/+XuduwYAAAA8CLXNY/Q/DE9FORr0/cppzVq7kblF5eaHQuAF0nPKdKixCOSynahWyy8pgRQfgO7RatBzQCdyi0+/zsF7okSHdXK7LUH9dxneyRJ429soufvbMOTHQAAAC/Uo0m4FoztqRA/uzYcOqORczYqt8hhdiwAXuKt71JUXOpSt0Y1dVOLCLPjAPBQvnarHrulhSTpndUH+KO/G6NER7XxzqoD+vOXeyVJj9zcTP/3q9YU6AAAAF6sa6OaWjSup0L97dp85KyGvbdR2YUU6QCuTWpWoZZuPCZJmtqfXegArs29XaLUuFagzuSXaN6P11mA+6FER7Xw+opk/f3rfZKkx/u00FMDWvJEBwAAoBroGF1Di8fHqkagj3Ycy9LQ2YnKKigxOxYAD/bmymSVOF2Ka1pL1zVjFzqAa2O3WfV437Ld6DPXHFQO75xzS5To8GqGYeiVb/dr2rIkSdJTA1rq/9m77/CoyrQN4PeZkklvJCQQAmn0XpOggIWistZVEVQQFUTFhqsr+1nX3dVdFbCgAoLYQV3L7toogo0k9N7SEwJJSEJ6m/J+fyQzECGQMjOnzP27Li7N5MyZ55mZk2fOM+9530c4Xx0RERGRRxkUFYQ1c5PQxc8L+wsqccvyVJRWN8gdFhGpUF5pLT7bfgwA8OjkPjJHQ0Racc3QKCR09UdFnRmrfs2WOxw6BzbRSbOEEHjx+8N4/ccMAMBfrurnWPWYiIiIiDxLv8hArJmbhPAAEw4XVuGW5akorqqXOywiUplXN6bDYhMY3ycco2JC5Q6HiDRCr5PwcPNo9JW/ZPOqOQViE500SQiB5/93CMt+ygIAPHP1AMwdHy9zVEREREQkp94RAVg7NwmRgd5IL67GLctTUVTJRjoRtU3myWp8uatpFPqCSRyFTkTOddWgbugXGYCqBgtW/JIldzj0O2yik+bYbAJPf30Aq35ruvzl+esGYfZFsTJHRURERERKEBfuj7X3JCEq2AdZJ2swbVkKjpfXyR0WEanAqxvSYRPAxP5dMSw6WO5wiEhjdDoJjzR/Qffubzmcek5h2EQnTbHZBP7y5T58kJoLSQL++cfBuD2pl9xhEREREZGC9OrihzVzkxAd6oOc0lpMW56C/LJaucMiIgU7UliF/+49DgCOJhcRkbNNHhCBwVFBqG20YtnPHI2uJGyik2ZYbQKPfb4Xa7blQycBr9w0FNNG95Q7LCIiIiJSoOhQX6ydm4yYLr7IL6vDtGUpyC2tkTssIlKoJRuOQgjgykGRGNg9SO5wiEijJElyTBf1fkoO129REDbRSRMsVhsWfLob/955DHqdhMXThuGGET3kDouIiIiIFKx7sA/W3pOMuHA/HK+ox83LUpB5slrusIhIYQ4cr8B3+wshSRyFTkSud0nfcAzvGYx6sw1vbsqUOxxqxiY6qZ7ZasNDa3bj693HYdBJeGP6cFw7LErusIiIiIhIBSICvbF2bjL6RPijqLIB05alIr2oSu6wiEhBFq8/CgC4ekh39IkIkDkaItI6SZLw6KS+AICP0/JwooJrtygBm+ikag0WK+77aCe+2XcCRr2Et24biSsHd5M7LCIiIiJSkfAAEz6Zk4T+3QJRUt2AW5an4tCJSrnDIiIF2J1fjg2HiqGTgIcm9pY7HCLyEBcldMGY2FA0Wm1448cMucMhsIlOKlZvtuLeD3di/cEieBl0WH77KEwaECF3WERERESkQl38TfhkTiIGRwWhtKYR01ekYn9BhdxhEZHMFjWPQr9+eA/Eh/vLHA0ReYqm0ehN00d9uj2fC6ArAJvopEp1jVbMeX87fjxcDJNBh5WzRuHSfl3lDouIiIiIVCzY1wsf3p2IYdHBKK81Y8aKVOzOL5c7LCKSyfacMvx89CQMOgkPXc5R6ETkXolxXXBxQhjMVoHXf0yXOxyPxyY6qU5towV3rt6GX9JL4GPU493ZozGud7jcYRERERGRBgT5GPHBXWMwqlcIKustuO2dNOzILZM7LCKSwSvrmkah3zSqB3p28ZU5GiLyRAsmN41G//fOAuSU1MgcjWdjE51UpbrBgjtWbUNKVin8vPR4/64xGBsfJndYRERERKQhAd5GvHfnGCTGhqK6wYKZK7ciLatU7rCIyI22ZJYgJasUXnod5l/GUehEJI8RPUNwad9wWG0Cr27kaHQ5sYlOqlFZb8bMlWnYmlOGAJMBH9ydiNExoXKHRUREREQa5GcyYPXsMbg4IQw1jVbc8e42bMkokTssInIDIQQWNY9Cv2VMNKKCfWSOiIg82YJJfQEAX+0uQEZxlczReC420UkVKmrNuP2dNOzMK0eQjxEfzUnEiJ4hcodFRERERBrm46XHO7NGYUKfcNSZrZi9eht+OnpS7rCIyMV+Ti/B9txTMBl0uP/SBLnDISIPN7hHECYPiIAQwOINHI0uFzbRSfHKahoxfUUq9hyrQIivER/PScSQHsFyh0VEREREHsDbqMfymSMxsX9XNFhsmPPedmw8VCR3WETkIk2j0I8AAG5L6oWIQG+ZIyIiAh6Z1DQ3+jd7T+DQiUqZo/FMbKKTopVUN2DGilQcPFGJMH8vrJmbjIHdg+QOi4iIiIg8iMmgx5u3jsQVAyPRaLVh3oc78MOBQrnDIiIX2HioGHuOVcDHqMe9l8TLHQ4REQCgf7dATB3SDQCweP1RmaPxTGyik2IVV9bjluWpOFxYhfAAE9bMTULfyAC5wyIiIiIiD+Rl0OH1GcPxhyHdYLYK3P/RTnyz94TcYRGRE9lsAouam1OzxsYgzN8kc0RERKc9MrE3dBKw7mAR9h2rkDscj8MmOinSiYo6TFueioziakQGemPt3CQkdGUDnYiIiIjkY9TrsGTaMNwwPAoWm8ADn+zEV7sK5A6LiJxk3aFiHDxRCX+TAfeMj5M7HCKiFhK6BuDaYVEAgEXrj8gcjedhE50U59ipWkxblorskhpEBfvg03uSERfuL3dYREREREQw6HV46aahuHlUD9gE8Minu/H5jmNyh0VEnWQTwGs/ZgAA7rwoBiF+XjJHRER0tocu7w29TsKmIyexK69c7nA8CpvopCj5zQ30vLJaRIf6YO09SejZxVfusIiIiIiIHPQ6CS/eMAQzEntCCOCxz/fgk615codFRJ2wq1RCenENAr0NuGscR6ETkTLFhPnhjyOaRqMvaf7ij9yDTXRSjOI6YMY721BQXofYMD98ek8yeoSwgU5EREREyqPTSfj7dYNwx9gYCAEs/GIfPkxjI51IjSxWG77Pb2qPzBkXhyAfo8wRERG17oHLesOol7AlswwZnBrdbdhEJ0XIPFmD1w/oUVjZgPhwP6ydm4RuQT5yh0VERERE1CpJkvDM1QMwZ1wsAOC5/x3GpuOSzFERUXv9Z+8JFNdLCPE1YvbFsXKHQ0R0XtGhvrh5VDQA4Nt8PYQQMkfkGdhEJ9kdKazCrSu3odIsoU9Xf6yZm4yugd5yh0VEREREdEGSJOEvV/XHfZfEAwC+ytVj+S/ZMkdFRG1lttrwxqYsAMDdF8fA32SQOSIiogubf1kCvAw6ZFZJ+C2zTO5wPAKb6CSrg8crMX1FKkprGhHlK/DBnaMQHmCSOywiIiIiojaTJAmPTemLBy9taqS/tC4dr21MlzkqImqLz3ccQ/6pOvgbBW5LjJY7HCKiNukW5INbRvUAACzZmMHR6G7AJjrJZt+xCkxfkYqymkYMjgrE/QOsCOUK6ERERESkQpIk4YHL4jE12goAWLT+KF5Zd4QntUQK1mCx4vXmL7wmRdng68VR6ESkHvPGx8KoE9hzrAKbjhTLHY7msYlOstiVdwoz3klFRZ0Zw3sG4707RsKPa7cQERERkcpN7iHw5yl9AACv/5iBf37PRjqRUq3dlo/jFfWICDDhoggep0SkLuEBJoxr/tu1aP1Rft5wMTbRye225ZTh9pVbUVVvweiYELx/5xgEeLODTkRERETacPfFMXjm6gEAgLd/ysTz/zvEE1sihak3W/HGjxkAgHsnxMLI7ggRqdDlUTb4eumxv6ASPxwokjscTWOZILdKySzFrFVbUd1gQXJcF6yezQY6EREREWnP7Iti8bfrBgEAVv2Wjae/PgCbjY10IqX4MDUXxVUNiAr2wY0je8gdDhFRh/gbgVlJPQEAi9cf5WcNF2ITndzm1/QSzF69FbWNVozrHYZVd4yGH1c+JyIiIiKNui2pF/71xyGQJOCD1Fz831f7eHJLpAC1jRa8/VMmAOCByxJgMrA1QkTqdedFMQgwGXCkqArf7DshdziaxUpBbrH5SDHufG8b6s02XNo3HCtmjoKPl17usIiIiIiIXOrm0dF45aah0EnAJ1vz8fi/98LKRjqRrN7bkouS6kb0DPXFHzkKnYhULtjXiLvGxQIAlmw4ys8ZLsImOrnchoNFmPv+DjRabJg0IAJv3z4S3kY20ImIiIjIM9wwogeW3DIcep2Ez3ccw4JPd8NitckdFpFHqqo3Y9nPTaPQH7q8N4x6tkWISP3uvDgWQT5GZJ6swde7C+QOR5NYLcilvtt3AvM+3IFGqw1XDY7Em7eOgMnABjoREREReZZrhnbHG9OHw6CT8PXu43hozW6Y2Ugncrt3f8tBea0ZceF+uG54lNzhEBE5RaC3EXPHxwEAXt2Yzs8YLsAmOrnMf/ccx/xPdsFiE7hmaHe8dstwfstPRERERB7rysHd8NZtI2HUS/hm3wnc/9FONFp4kkvkLhW1Zqz4JQsA8PDEPtDrJJkjIiJynjvGxqCLnxdyS2vxxc5jcoejOexokkt8sfMYHlqzC1abwA3Do7B42jAY2EAnIiIiIg83aUAElt8+Cl4GHdYdLMK8D3eg3myVOywij/DOr1moqregb0QA/jC4m9zhEBE5lZ/JgHkT4gEAr23M4Bf1TsauJjndp9vy8ehne2ATwLRR0XjppqH8hp+IiIiIqNml/bpi5axR8Dbq8OPhYsx5fzsb6UQuVlbTiFW/ZgMAHpnUGzqeoxKRBt2W1AvhASYUlNdh7fZ8ucPRFDbRyak+SsvF4//eCyGA25J64oUbBrOBTkRERET0O+N6h+PdO8bA10uPX9JLcOfqbahttMgdFpFmLfspEzWNVgzsHogpAyPlDoeIyCV8vPS4/5Km0ehLf8zgl/ROxCY6Oc3q37Lxf1/uBwDMvigGz187iN/uExERERG1Ijm+C967cwz8vPTYklmKO1ZtQ3UDG+lEzlZcVY/3UnIAAAsm9YEk8TyViLTrljE90S3IG4WV9fg4LU/ucDSDTXRyihU/Z+HZ/x4EANwzPg5P/2EAP5gQEREREV3A6JhQfHB3IgK8DdiaU4aZK9NQWW+WOywiTXlrcybqzTYMiw7GZf26yh0OEZFLeRv1mH9ZAgDgzc2ZqGvkaHRnYBOdOm3ppgz8/dtDAID5lybgiSv7sYFORERERNRGI3qG4KO7ExHkY8TOvHLc/k4aKmrZSCdyhhMVdfioeSQmR6ETkae4aWQ0eoT4oKS6Ae83X4lDndOhJvrSpUsRExMDb29vJCYmYuvWra1uu2LFCowbNw4hISEICQnBxIkTz7s9qYcQAks2HMVLPxwBADwysQ/+NKUvP5QQESkAazURkboM6RGMj+ckIsTXiD3HKjDjnVScqmmUOyxyMdZr11u6KQONFhtGx4RgXO8wucMhInILL4MOD17eGwDw9k+ZnC7OCdrdRF+7di0WLFiAZ555Bjt37sTQoUMxZcoUFBcXn3P7zZs3Y/r06di0aRNSUlIQHR2NyZMno6CgoNPBk3yEEHh53REs2ZAOAHhsSl88NLG3zFERERHAWk1EpFYDuwdhzdxkhPl74cDxSkxfkYqS6ga5wyIXYb12vWOnarF2Wz4AYMEkDvgiIs9yw/AoxIb54VStGat/y5Y7HNVrdxN90aJFmDNnDmbPno0BAwbg7bffhq+vL1atWnXO7T/66CPcd999GDZsGPr164d33nkHNpsNGzdu7HTwJA8hBF747jCWbsoEADw5tT/uvzRB5qiIiMiOtZqISL36RgZgzdwkdA0w4XBhFW5Znoriynq5wyIXYL12vdc3ZsBsFRgb3wXJ8V3kDoeIyK0Meh0eah6NvvznLFTUcaq4zjC0Z+PGxkbs2LEDCxcudNym0+kwceJEpKSktGkftbW1MJvNCA0NbXWbhoYGNDScHnFRWVkJADCbzTCbO/+C2/fhjH3JSY48hBD427dH8H5q05xyT0/th9uTojsdg1ZeE0A7uWglD0A7uWglD0A7uTg7D2fsh7VaebSSi1byALSTi1byALSTi7Py6BXijY/uGoXbV21HRnE1pi1Lwft3jkJkoLczwmwTviYX3mdnuKNeu7pW2/d15n+VJLe0Fp/vPAYAeOiy+PPGqOQ82ksruWglD0A7uWglD0A7ubQljysGhCMh3A8ZJ2uw4qcMPHS5MgfBKvHc+vckIYRo68bHjx9HVFQUtmzZguTkZMftjz/+OH766SekpaVdcB/33XcffvjhBxw4cADe3uf+EPjss8/iueeeO+v2jz/+GL6+vm0Nl5zMJoDPs3X4rajpAoab46y4KKLNbx8iIrqA2tpazJgxAxUVFQgMDOzQPliriYi0o6QeeOOAHqcaJYSZBO4faEWoSe6oSC312tNr9YfpOmwr0aF/sA3z+tvkDoeISDa7SiWsPqqHSS/wzHAr/IxyR+R6zqjVv9eukeid9eKLL2LNmjXYvHlzqyflALBw4UIsWLDA8XNlZaVjvjdnJG42m7F+/XpMmjQJRqN63znuzMNqE3jy64P4ragAkgT847qBuHFElNP2r5XXBNBOLlrJA9BOLlrJA9BOLs7Owz5CTE6s1c6nlVy0kgegnVy0kgegnVxckcfll9Xh9lXbkX+qDu9k+eODO0chOsT1DVC+Jq1TS712da0GlPs+yTxZgx2pvwEA/n5LMgZHBZ13e6Xm0RFayUUreQDayUUreQDayaWteVxhE0h9KxWHC6uQ69Mbf5qsvDUN1XBu3a4melhYGPR6PYqKilrcXlRUhMjIyPPe9+WXX8aLL76IDRs2YMiQIefd1mQywWQ6e4iF0Wh06pvb2fuTi6vzsNoE/vzFHnyxqwA6CXjl5qG4fngPlzyWVl4TQDu5aCUPQDu5aCUPQDu5OCsPZ+yDtVq5tJKLVvIAtJOLVvIAtJOLM/OICTfi03nJmLEiDdklNbh15XZ8MicJMWF+Ttn/hfA1Ofe+Ossd9dpdtdpV++yMNzZnwSaASQMiMCImrM33U1oenaGVXLSSB6CdXLSSB6CdXNqSx6OT+2LO+9vxfmoe5kyIR5i/Mi9tU9K59e+1a2FRLy8vjBw5ssXCJfaFTM68BO33/vWvf+H555/H999/j1GjRnU8WnI7i9WGh9fuxhe7CqDXSXj1luEua6ATEVHnsVYTEWlPtyAfrJ2bhPhwP5yoqMfNy1KQUVwtd1jUCazXrnO4sBL/23sCALBgUh+ZoyEiUoaJ/btiaI8g1JmteHtzptzhqFK7mugAsGDBAqxYsQLvvfceDh06hHvvvRc1NTWYPXs2AGDmzJktFkf55z//iaeeegqrVq1CTEwMCgsLUVhYiOpqfuhTukaLDQ98sgv/3XMcBp2EpTOG4+qh3eUOi4iILoC1mohIe7oGemPN3GT0jQhAcVUDblmeiiOFVXKHRZ3Aeu0ai9cfBQBMHdwN/bs5Z9oaIiK1kyQJjzR/sfhBai6KKutljkh92t1EnzZtGl5++WU8/fTTGDZsGHbv3o3vv/8eERERAIC8vDycOHHCsf1bb72FxsZG3HjjjejWrZvj38svv+y8LMjpGixW3PfRTny3vxBeeh3evm0krhjUTe6wiIioDViriYi0KTzAhE/mJmFAt0CUVDdg+opUHDwu//zc1DGs1863v6ACPxwogiQBD09U3py/RERymtAnHCN7haDBYsObmzLkDkd1OrSw6Pz58zF//vxz/m7z5s0tfs7JyenIQ5CM6s1WzPtwBzYfOQkvgw7Lbx+JS/p2lTssIiJqB9ZqIiJtCvXzwsdzEjFz1VbsPVaB6StS8eFdiRjc4/wLJ5IysV4716LmUejXDu2O3hEBMkdDRKQskiTh0Ul9MOOdNHyyNR9zJ8QjKthH7rBUo90j0Unb6hqtuPu97dh85CS8jTqsmjWaDXQiIiIiIgUJ9vXCh3cnYnjPYFTUmTHjnVTsyjsld1hEstqZdwo/Hi6GXifhoYmcC52I6FzGJoQhKS4UjVYb3viRo9Hbg010cqhpsGD26q34NaMEvl56rJ49Bhf3bvtK5kRERERE5B6B3kZ8cFciRseEoKregttXbsX2nDK5wyKSjX0u9BuGRyE2zE/maIiIlOvRyX0BAJ9tz0deaa3M0agHm+gEAKiqN2PWqq1IzSqDv8mA9+8cg6S4LnKHRURERERErfA3GfDenWOQHNcF1Q0WzFy1FalZpXKHReR2W7PL8Et6CQw6CQ9ezrnQiYjOZ3RMKMb1DoPFJvDaj+lyh6MabKITKurMmLlqK7bnnkKAtwEf3DUGo2JC5Q6LiIiIiIguwNfLgFV3jMa43mGobbTijne34reMErnDInIbIQReWXcEAHDz6GhEh/rKHBERkfLZR6N/sfMYsk5WyxyNOrCJ7uHKaxtx2ztp2JVXjmBfIz6+OwnDe4bIHRYREREREbWRj5ceK2aOwqV9w1FvtuHO1duw+Uix3GERucWWzFKkZZfBS6/D/EsT5A6HiEgVhkUH4/J+XWETwKsbORq9LdhE92BlNY2YviIN+woqEOrnhY/vTsLgHkFyh0VERERERO3kbdTj7dtHYtKACDRYbJj7/g5sOFgkd1hELnXmKPQZiT3RPdhH5oiIiNTjkUlNizD/Z89xHC2qkjka5WMT3UOdrGrA9OWpOHSiEmH+JqyZm4QB3QPlDouIiIiIiDrIZNDjzVtH4KrBkWi02jDvwx34fv8JucMicpnNR09iZ145TAYd7rskXu5wiIhUZVBUEK4YGAkhgCUbjsodjuKxie6BiirrccvyFBwpqkLXgKYGep+IALnDIiIiIiKiTjLqdXjtluG4Zmh3WGwC93+8C//dc1zusIicTgiBxeubmj4zk3uha6C3zBEREanPI5P6QJKAb/cV4sDxCrnDUTQ20T3M8fI6TFuWgsyTNegW5I219yQjoau/3GEREREREZGTGPQ6LJ42DDeMiILVJvDQml34ctcxucMicqr1B4uw91gFfL30mDeBo9CJiDqib2QA/jCkOwBg8XrOjX4+bKJ7kPyyWkxbnoKc0lpEBfvg03uSERvmJ3dYRERERETkZHqdhJdvHIpbRkfDJoAFn+7Bp9vz5Q6LyClsNoFFzaPQ7xgbgy7+JpkjIiJSr4cn9oZOAjYcKsKe/HK5w1EsNtE9RG5pDW5Znor8sjr0DPXFp/OSER3qK3dYRERERETkIjqdhH9cPxi3JfWEEMDjn+/FR2m5codF1Gnf7S/E4cIqBJgMmDs+Tu5wiIhULT7cH9cNjwIAxxeUdDY20T1A1slqTFuWioLyOsSF+eHTe5IRxVXLiYiIiIg0T6eT8Py1gzD7ohgAwP99uR+rf8uWNyiiTrDaBBY3L4B358WxCPb1kjkiIiL1e+jy3tDrJPx09CR25JbJHY4isYmucRnFVZi2PBWFlfXo3dUfa+5JQmQQF1whIiIiIvIUkiTh6T8MwD3NI3af/e9BvPNLlsxREXXMf/ccR0ZxNYJ8jLhrXKzc4RARaUKvLn64aWQPAMAr6zga/VzYRNeww4WVmLYsFSerGtAvMgCfzE1C1wA20ImIiIiIPI0kSXjiyn6Yf2kCAOBv3xzCm5szZI6KqH0sVhte3di08N3c8XEI9DbKHBERkXbMvywBRr2ELZmlSMkslTscxWETXaP2F1Rg+vJUlNY0YmD3QHwyJwlhXGyFiIiIiMhjSZKEP03pi0cm9gEA/Ov7I3h1QzqEEDJHRtQ2X+wqQHZJDUL9vHDH2Bi5wyEi0pQeIb64ZXRPAMCi9Uf4+eB32ETXoD355ZixIhWnas0Y2iMIH9+dhBA/zhNHRERERETAQxN74/Er+gIAFm84ilfWHeWJMileo8WG15pHoc+bEAc/k0HmiIiItOf+SxPgZdBhW84p/JJeInc4isImusbsyD2F295JQ2W9BSN6BuODuxMR5MtL3IiIiIiI6LT7LknAk1P7AwDe2JSBF787zEY6KdpnO/Jx7FQdwgNMuD0pRu5wiIg0KTLIG7cl9gIAvLKeX7KfiU10DdmaXYaZK9NQ1WDBmJhQvH9XIueIIyIiIiKic7p7XByeu2YgAGDZz1n46/8O8mSZFKnebMUbPzbN4X/fJfHw8dLLHBERkXbde0k8fIx67Mkvx4+Hi+UORzHYRNeILZklmLVqK2oarRgb3wWr7xwNf17eRkRERERE5zFrbAz+cf1gAMC7v+Xgqa/3w2ZjI52UZc3WPJyoqEe3IG9MH9NT7nCIiDQtPMCEmWObRqMv4mh0BzbRNeCXjBLMfncb6sxWjOsdhlV3jIavFxvoRERERER0YTMSe+JfNw6BJAEfpuZh4Rf72EgnxahrtGLp5kwATXP1ehs5Cp2IyNXuGR8PPy89DhyvxA8HCuUORxHYRFe5A6ckzPtoNxosNlzWrytWzBzFDxVERERERNQuN4+KxqKbh0InAWu35+OJL/eDfXRSgg9Tc3GyqgE9Qnxw86houcMhIvIIoX5euPPiWADA4vXp/HIdbKKr2oZDxVh5RIdGiw2TB0Tg7dtGsoFOREREREQdcv3wHnj1luHQ6yR8ufsEPkjXwWK1yR0WebCaBgve+qlpFPqDl/WGl4EtDCIid7n74jgEeBtwpKgK/9t3Qu5wZMcKpFLf7juBB9bsgVVIuHJgBJbeOoIfKIiIiIiIqFOuHtodS2cMh1EvYWepDg9/uhdmNtJJJqu35KCsphExXXxxw4goucMhIvIoQb5GzBkXBwBYsuGox3+xzq6rCn29uwAPfLILFpvAyDAbFt00GEY9X0oiIiIiIuq8KwZ1w+u3DIVeEvjhYDHu+2gnGixWucMiD1NZb8byn7MAAA9N7A0Dz3mJiNxu9kUxCPY1IutkDb7efVzucGTFKqQyn+84hkfW7obVJnD98O64LcHGDxNERERERORUl/frijl9bfAy6LD+YBHmfbAD9WY20sl9Vv2ajYo6MxK6+uOaoRyFTkQkhwBvI+4ZHw8AeHVjukdfncbuq4qs2ZqHxz7fA5sApo+JxovXDYROkjsqIiIiIiLSov4hAituGw5vow6bjpzEnPe3o66RjXRyvfLaRqz8JRsA8PDE3tDzxJeISDazxvZCmL8X8spq8e8dx+QORzZsoqvEB6m5eOKLfRACmJncC3+/bjB0/CBBREREREQuNDa+C1bPHgNfLz1+SS/B7NVbUdNgkTss0rgVv2ShqsGCfpEBuGpQN7nDISLyaL5eBsyb0DQa/fUfMzx2ijc20VVg1a/ZeOqr/QCAOy+KxXPXDGQDnYiIiIiI3CIprgvev3MM/E0GpGaV4Y53t6Kq3ix3WKRRpdUNePe3HADAI5P68NyXiEgBbkvqhYhAEwrK6/Dptny5w5EFm+gKt+ynTPz1fwcBAPMmxOOpP/SHJPFDBBERERERuc+omFB8cNcYBHgbsC3nFGau2oqKOjbSyfmW/ZyF2kYrBkcFYfKACLnDISIiAN5GPe6/NAEA8MamDI9cJ4VNdAV748d0vPDdYQDAg5cl4M9X9GUDnYiIiIiIZDG8Zwg+mZOEYF8jduWV4/aVaSivbZQ7LNKQ4qp6vJ+SAwBYMKkPz3+JiBRk2uhodA/yRlFlAz5Ky5M7HLdjE12BhBBYtP4oXl53FEDTh4cFk9lAJyIiIiIieQ2KCsLHdych1M8Le49VYMaKNJTVsJFOzvHmpkzUm20Y3jMYl/QNlzscIiI6g8mgxwOX9wYAvLU5A7WNnrVGCpvoCiOEwL9+OILXNqYDAP58RT882PwGJSIiIiIiktuA7oFYMzcJYf4mHDxRienLU3GyqkHusEjlTlTU4ePmkY2PTuIgMiIiJbpxZA/0DPVFSXUj3k/JlTsct2ITXUGEEPj7N4fw1uZMAMCTU/vj3kviZY6KiIiIiIiopT4RAVgzNwldA0w4UlSFW5anoLiyXu6wSMXe+DEDjVYbxsSG4qKELnKHQ0RE52DU6xyDfZf9lInqBs8Zjc4mukIIIfDsfw7gnV+zAQB/vXYg7h4XJ3NURERERERE55bQ1R+f3pOM7kHeyDxZg2nLU3Giok7usEiF8stq8en2fADAo5wLnYhI0a4b1h1xYX44VWvGu819TE/AJroC2GwCf/lyP95LyYUkAS/cMBgzk2PkDouIiIiIiOi8YsL8sPaeZEQF+yC7pAbTlqXi2KlaucMilXn9x3SYrQIXJ4QhMY6j0ImIlMyg1+GhiU2j0Vf8koWKOrPMEbkHm+gys9oEHv/3XnyyNQ+SBPzrj0MwfUxPucMiIiIiIiJqk+hQX3w6Lxm9uvgir6wW05alIq+UjXRqm5ySGvx7ZwEAYMHkPjJHQ0REbXH1kO7oE+GPynoLVv6SJXc4bsEmuowsVhse/XQ3Pt9xDDoJWDJtGG4aFS13WERERERERO0SFeyDtXOTERfmh4LyOty8LAXZJTVyh0Uq8OrGdFhtApf2DceIniFyh0NERG2g00l4ZGLTF5+rfsvBqZpGmSNyPTbRZWK22vDw2t34avdx6HUSXp8+AtcOi5I7LCIiIiIiog6JDPLGmnuS0LurPwor6zFtWQoyiqvkDosULKO4Cl/tbh6FPqmvzNEQEVF7TBkYiQHdAlHdYMGyn7U/Gp1NdBk0WmyY//FO/G/vCRj1EpbOGIGpQ7rJHRYREREREVGndA3wxidzk9AvMgDFVQ24ZXkqjhSykU7ntnhDOoQAJg+IwOAeQXKHQ0RE7aDTSVgwqWk0+ntbcnCyqkHmiFyLTXQ3a7BYce+HO/DDgSJ46XV4+7aRuGJQpNxhEREREREROUWYvwmfzEnCwO6BKKluxC3LU3DgeIXcYZHCHDpRiW/2ngAAPDKJc6ETEanR5f27Ymh0MOrMVry1OVPucFyKTXQ3qjdbMff9Hdh4uBgmgw4rZo3C5f0j5A6LiIiIiIjIqUL8vPDx3UkY2iMIp2rNmLEiDXuPlcsdFinI4vVHAQBTh3RD/26BMkdDREQdIUmnR6N/mJaLwop6mSNyHTbR3aS20YK73tuGn46ehI9Rj3fvGI0JfcLlDouIiIiIiMglgnyN+ODuRIzoGYyKOjNuXZGGnXmn5A6LFGDfsQqsO1gEnQQ8MrG33OEQEVEnjO8dhlG9QtBosWHppgy5w3EZNtHdoLrBgjve3YbfMkrh56XH6tmjMTYhTO6wiIiIiIiIXCrQ24j370rEmNhQVDVYcPs7adiWUyZ3WCSzReuPAACuHRaFhK4BMkdDRESdIUkSFkxuGo2+Zlsejp2qlTki12AT3cWq6s2YtWortmaXIcBkwPt3jUFiXBe5wyIiIiIiInILf5OhaSBRfBfUNFoxc+VWpGSWyh0WyWRH7ilsOnISep2Ehy7nKHQiIi0YGx+G5LguMFsF3vhRm6PR2UR3oYo6M25buRU7ck8h0NuAD+5OxMheoXKHRURERERE5Fa+XgasumM0xvUOQ53Zitmrt+KX9JNyh0UysI9C/+OIKMSE+ckcDREROcujzaPRP9txDLmlNTJH43xsorvIqZpG3PpOKvbklyPY14iP5yRhWHSw3GERERERERHJwtuox4qZo3BZv66oN9tw13vbselwsdxhkRulZpXit4xSGPUSHriMo9CJiLRkVEwoxvcJh9Um8OrGdLnDcTo20V2gtLoB01ekYn9BJbr4eeGTOUkYFBUkd1hERERERESy8jbq8fZtIzF5QAQaLTbM/WA71h0olDsscgMhBBatOwoAuHlUNKJDfWWOiIiInG3BpKbR6F/tKkBGcbXM0TgXm+hOVlxVj1uWp+JwYRXC/E1YMzcJ/bsFyh0WERERERGRIngZdFh66whMHdwNZqvAfR/txHf7TsgdFrnYrxkl2JpTBi+DDvMvS5A7HCIicoFh0cGY2L8rbAKaG43OJroTFVY0NdDTi6sREWjC2nuS0DuCK40TERERERGdyajX4dVbhuHaYd1hsQnM/2QXvt5dIHdY5CJCCLzSPAp9xpie6BbkI3NERETkKo80j0b/397jOFJYJXM0zsMmupMUlNdh2vIUZJ2sQfcgb6ydm4z4cH+5wyIiIiIiIlIkg16HRTcPw40je8BqE3hk7W78e8cxucMiF9h0pBi788vhbdThvkvj5Q6HiIhcaGD3IFw5KBJCAIvXH5U7HKdhE90J8stqMW1ZCnJLa9EjxAdr70nmKuNEREREREQXoNdJ+Ncfh2D6mGjYBPCnz/dg7bY8ucMiJxJCYFFzE2Vmcgy6BnjLHBEREbnaI5P6QJKA7w8UYn9BhdzhOAWb6J2UU1KDactScOxUHXp18cWn9yRzgRQiIiIiIqI20ukk/P26wZiZ3AtCAH/+9z58kJord1jkJD8cKML+gkr4eulxz/g4ucMhIiI36BMRgKuHdAegndHobKJ3QubJakxbnoLjFfWIC/fDp/cko3sw53YjIiIiIiJqD51OwnPXDMRdF8cCAJ76aj9W/Zotc1TUWTabcDRPZl8Ugy7+JpkjIiIid3loYm/oJGDj4WLsyjsldzidxiZ6B6UXVWHaslQUVTagT4Q/1s5NRkQgL0sjIiIiIiLqCEmS8OTU/pg3oWnO7L/+7yCW/5wpc1TUGd/sO4EjRVUIMBkwZxxHoRMReZL4cH9cP7wHADim9VIzNtE74NCJStyyPBUl1Q3oFxmAT+YkITyA36gTERERERF1hiRJ+PMVffHgZQkAgH98exhLN2XIHBV1hNUmsGRDU9PkrnGxCPb1kjkiIiJyt4cu7w2DTsIv6SXYllMmdzidwiZ6O+0vqMD0FakorWnEoKhAfDIniZekEREREREROYkkSVgwuS8WTOoDAHjphyNYvP4ohBAyR0bt8fXuAmSerEGQjxF3Nk/TQ0REnqVnF1/cNKppNPor647IHE3nsIneDrvzyzFjRSrKa80YGh2Mj+5OQogfv00nIiIiIiJytgcv740nruwHAHh1Yzpe+uEIG+kqYbba8OrGdADA3PFxCPQ2yhwRERHJZf5lveGl1yE1qwxbMkrkDqfD2ERvox25ZbjtnTRU1lswslcIPrxrDIJ8+EGAiIiIiIjIVeZNiMdTfxgAAHhzcyb+8e0hNtJV4Iudx5BbWosufl64Y2yM3OEQEZGMooJ9cMuYaADAKyq+soxN9DZIyyrF7Su3orrBgjGxoXj/zjEI4DfpRERERERELnfXxbH467UDAQArfsnGc/89qNoTcE/QaLHhtY1N89jPmxAPP5NB5oiIiEhu91+aAJNBhx25p/DT0ZNyh9MhbKJfwG8ZJZj17lbUNlpxUUIXrJ49mh8CiIiIiIiI3GhmcgxeuGEwJAlYvSUH//fVfthsbKQr0drt+Sgor0N4gAm3JfWSOxwiIlKAiEBvR01YpNLR6Gyin8dPR0/iztXbUG+2YUKfcKycNRq+XmygExERERERudv0MT3x0o1DIUnAx2l5+PO/98LKRrqi1JutWPpj0yj0+y+Jh4+XXuaIiIhIKe69JB4+Rj32HqvAhkPFcofTbmyit2LjoSLMeW87Giw2TOzfFctnjoS3kR8AiIiIiIiI5HLjyB5YMm0YdBLw2Y5j+NNne2Cx2uQOi5p9nJaHwsp6dAvyxi1jesodDhERKUiYvwmzmtfJWLT+qOquKGMT/Ry+31+IeR/uQKPVhikDI/DmrSNhMrCBTkREREREJLdrh0Xh9ekjoNdJ+HJXAR5euxtmNtJlV9doxZubMwEA8y9L4CA0IiI6yz3j4+BvMuDQiUp8f6BQ7nDahU303/nf3uO4/+OdMFsF/jCkG96YMQJeBj5NRERERERESjF1SDe8eesIGPUS/rf3BB74eBcaLWyky+n9lByUVDcgOtQHN42MljscIiJSoBA/L9x5cSwAYPH6o6qalo3d4TN8tasAD36yC1abwPXDo7Bk2jAY9XyKiIiIiIiIlGbKwEgsu30kvPQ6fH+gEPd9tAMNFqvcYXmk6gYL3v6paRT6g5f15kA0IiJq1V0XxyLQ24D04mr8b+9xucNpM1a2Zp9tz8cjn+6GTQA3jeyBl28aCgMb6ERERERERIp1Wb8IrJg1CiaDDhsOFWPu+ztQb2Yj3d3eT8nDqVoz4sL8cP3wKLnDISIiBQvyMWLu+DgAwJIN6apZ24RdYjQtfvLY53shBDAjsSf++cch0OskucMiIiIiIiKiC5jQJxzv3jEaPkY9fjp6Ene9tw11jWyku0utBVj5Ww4A4KGJvTkYjYiILuiOi2IR4mtEdkkNvtxVIHc4beLx1e39lBz85ct9AIA7xsbg79cNgo4NdCIiIiIiItUYmxCG9+4cAz8vPX7LKMUd725FTYNF7rA8wuYTOlTWW9C7qz/+MKS73OEQEZEK+JsMmDchHgDw2o/pqlggvENN9KVLlyImJgbe3t5ITEzE1q1bz7v9Z599hn79+sHb2xuDBw/Gt99+26Fgne3dLbl4+usDAIC7L47FM1cPgCSxgU5EROqnlVpNRETUVmNiQ/H+XWMQYDIgLbsMs1ZtRVW9shvpaq/Xp2obsflE0zn0I5P68IpuIiJqs5nJMQjzNyG/rA7/3qn8udHb3URfu3YtFixYgGeeeQY7d+7E0KFDMWXKFBQXF59z+y1btmD69Om46667sGvXLlx33XW47rrrsH///k4H3xkbCiT847sjAIB7L4nH/03tzwY6ERFpglZqNRERUXuN7BWKD+5ORKC3AdtzT+GO97ajVqF9dC3U65W/5qLBKqFfZACuGBgpWxxERKQ+Pl563HdJ02j0N3/KgkXhg9Hb3URftGgR5syZg9mzZ2PAgAF4++234evri1WrVp1z+1dffRVXXHEFHnvsMfTv3x/PP/88RowYgTfeeKPTwXfUG5sy8d88PQDgoct74/EpfdlAJyIizdBCrSYiIuqoYdHB+HhOEoJ9jdh7rBJLD+pRXmuWO6yzqL1el1Q34P3UXADAw5fFc1pUIiJqtxmJPREZ6I0TFfXYUqTsOmJoz8aNjY3YsWMHFi5c6LhNp9Nh4sSJSElJOed9UlJSsGDBgha3TZkyBV999VWrj9PQ0ICGhgbHz5WVlQAAs9kMs7lzH342HTmJV3/MBAA8eGks5l8SC4tFoUMTLsD+XHT2OVEC5qI8WskD0E4uWskD0E4uzs7DGfvRQq227+fM/6qZVnLRSh6AdnLRSh6AdnLRSh6A+nPp29UXH8wehVnvbsexGjMWfrkPb906win7Vku9dnWtfvPHdNSZbejpJzAuPli17xVA/e/3M2klF63kAWgnF63kAWgnFy3koQcwb0Isnv3vIawv0OH/ausR4Nv5/briOWlXE72kpARWqxUREREtbo+IiMDhw4fPeZ/CwsJzbl9YWNjq47zwwgt47rnnzrp93bp18PXt3DNpE8DYrjqEeQvE16fj22/TO7U/JVi/fr3cITgNc1EereQBaCcXreQBaCcXZ+VRW1vb6X1ooVafSSvvEUA7uWglD0A7uWglD0A7uWglD0D9udzTG/gkU4+LfAudNn+4Wuq1q2t1eC0wNFSH5K4CGzZs6PT+lEDt7/czaSUXreQBaCcXreQBaCcXtecRYAP6BOkwJlzgp00/whkXNjmjVv9eu5ro7rJw4cIW37BXVlYiOjoakydPRmBgYKf3P7mxERs2bMCkSZNgNBo7vT+5mM1mrF+/XvV5AMxFibSSB6CdXLSSB6CdXJydh32EmBq4ulZr5T0CaCcXreQBaCcXreQBaCcXreQBaCcXs9mMiHXrMXmy8/JQS712da0GgFkaep9oIQ9AO7loJQ9AO7loJQ9AO7loJQ8AuHKK8s+t29VEDwsLg16vR1FRUYvbi4qKEBl57kVEIiMj27U9AJhMJphMprNuNxqNTn1TOHt/ctFKHgBzUSKt5AFoJxet5AFoJxdn5eGMfbBWK5dWctFKHoB2ctFKHoB2ctFKHoA2cpEk5+ahlnrtrlrtqn3KQSt5ANrJRSt5ANrJRSt5ANrJRSt5AMo6t/69di0s6uXlhZEjR2Ljxo2O22w2GzZu3Ijk5ORz3ic5ObnF9kDTZQatbU9EREQdx1pNRESkfKzXRERE6tLu6VwWLFiAWbNmYdSoURgzZgyWLFmCmpoazJ49GwAwc+ZMREVF4YUXXgAAPPTQQ5gwYQJeeeUVTJ06FWvWrMH27duxfPly52ZCREREAFiriYiI1ID1moiISD3a3USfNm0aTp48iaeffhqFhYUYNmwYvv/+e8cCJ3l5edDpTg9wHzt2LD7++GM8+eST+Mtf/oLevXvjq6++wqBBg5yXBRERETmwVhMRESkf6zUREZF6dGhh0fnz52P+/Pnn/N3mzZvPuu2mm27CTTfd1JGHIiIiog5grSYiIlI+1msiIiJ1aNec6EREREREREREREREnoRNdCIiIiIiIiIiIiKiVrCJTkRERERERERERETUCjbRiYiIiIiIiIiIiIhawSY6EREREREREREREVEr2EQnIiIiIiIiIiIiImoFm+hERERERERERERERK1gE52IiIiIiIiIiIiIqBVsohMRERERERERERERtYJNdCIiIiIiIiIiIiKiVrCJTkRERERERERERETUCoPcAbSFEAIAUFlZ6ZT9mc1m1NbWorKyEkaj0Sn7lINW8gCYixJpJQ9AO7loJQ9AO7k4Ow97nbPXPTVhrW6dVnLRSh6AdnLRSh6AdnLRSh6AdnJxRR5qrdfOrtUA3ydKpJVctJIHoJ1ctJIHoJ1ctJIHoI5za1U00auqqgAA0dHRMkdCRETkelVVVQgKCpI7jHZhrSYiIk+jtnrNWk1ERJ7GmbVaEir4+txms+H48eMICAiAJEmd3l9lZSWio6ORn5+PwMBAJ0QoD63kATAXJdJKHoB2ctFKHoB2cnF2HkIIVFVVoXv37tDp1DXjGmt167SSi1byALSTi1byALSTi1byALSTiyvyUGu9dnatBvg+USKt5KKVPADt5KKVPADt5KKVPAB1nFurYiS6TqdDjx49nL7fwMBA1b/JAO3kATAXJdJKHoB2ctFKHoB2cnFmHmoa0XYm1uoL00ouWskD0E4uWskD0E4uWskD0E4uzs5DjfXaVbUa4PtEibSSi1byALSTi1byALSTi1byAJR9bq2er82JiIiIiIiIiIiIiNyMTXQiIiIiIiIiIiIiolZ4ZBPdZDLhmWeegclkkjuUTtFKHgBzUSKt5AFoJxet5AFoJxet5KFEWnputZKLVvIAtJOLVvIAtJOLVvIAtJOLVvJQKq08v1rJA9BOLlrJA9BOLlrJA9BOLlrJA1BHLqpYWJSIiIiIiIiIiIiISA4eORKdiIiIiIiIiIiIiKgt2EQnIiIiIiIiIiIiImoFm+hERERERERERERERK1gE52IiIiIiIiIiIiIqBVsohMRERERERERERERtUKTTfS///3vGDt2LHx9fREcHNym+wgh8PTTT6Nbt27w8fHBxIkTkZ6e3mKbsrIy3HrrrQgMDERwcDDuuusuVFdXuyCDjj9mTk4OJEk657/PPvvMsd25fr9mzRrF5AEAl1xyyVkxzps3r8U2eXl5mDp1Knx9fdG1a1c89thjsFgsLssDaH8uZWVleOCBB9C3b1/4+PigZ8+eePDBB1FRUdFiO3e8JkuXLkVMTAy8vb2RmJiIrVu3nnf7zz77DP369YO3tzcGDx6Mb7/9tsXv23LcuEJ78lixYgXGjRuHkJAQhISEYOLEiWdtf8cdd5z13F9xxRWuTgNA+3JZvXr1WXF6e3u32EYNr8m5jm1JkjB16lTHNnK8Jj///DOuvvpqdO/eHZIk4auvvrrgfTZv3owRI0bAZDIhISEBq1evPmub9h53nkQr9VortbojuQDKrNes1aepoS6wVivvNVFqrQZYr92NtZq12pXUWq+1UqsB7dRrrdRqQBv1WrO1WmjQ008/LRYtWiQWLFgggoKC2nSfF198UQQFBYmvvvpK7NmzR1xzzTUiNjZW1NXVOba54oorxNChQ0Vqaqr45ZdfREJCgpg+fbqLsujYY1osFnHixIkW/5577jnh7+8vqqqqHNsBEO+++26L7c7MVe48hBBiwoQJYs6cOS1irKioaJHroEGDxMSJE8WuXbvEt99+K8LCwsTChQtdlkdHctm3b5+44YYbxH/+8x+RkZEhNm7cKHr37i3++Mc/ttjO1a/JmjVrhJeXl1i1apU4cOCAmDNnjggODhZFRUXn3P63334Ter1e/Otf/xIHDx4UTz75pDAajWLfvn2Obdpy3Dhbe/OYMWOGWLp0qdi1a5c4dOiQuOOOO0RQUJA4duyYY5tZs2aJK664osVzX1ZW5rIcOprLu+++KwIDA1vEWVhY2GIbNbwmpaWlLXLYv3+/0Ov14t1333VsI8dr8u2334r/+7//E1988YUAIL788svzbp+VlSV8fX3FggULxMGDB8Xrr78u9Hq9+P777x3btPe58TRaqddaqdUdyUUIZdZr1mrWarlyYa12/WvCeu1erNWs1UrKRQn1Wiu1uiO5KLVea6VWdyQXpdZrrdZqTTbR7d599902FXqbzSYiIyPFSy+95LitvLxcmEwm8cknnwghhDh48KAAILZt2+bY5rvvvhOSJImCggKnx+7Mxxw2bJi48847W9zWljexs3Q0jwkTJoiHHnqo1d9/++23QqfTtfhj99Zbb4nAwEDR0NDglNh/z1mvyaeffiq8vLyE2Wx23Obq12TMmDHi/vvvd/xstVpF9+7dxQsvvHDO7W+++WYxderUFrclJiaKe+65RwjRtuPGFdqbx+9ZLBYREBAg3nvvPcdts2bNEtdee62zQ72g9uZyob9pan1NFi9eLAICAkR1dbXjNrleE7u2HI+PP/64GDhwYIvbpk2bJqZMmeL4ubPPjadQc73WSq0WQjv1mrWatdqZWKubKLFWC8F67U6s1azVzqbWeq2VWi2Eduq1Vmq1ENqs11qq1ZqczqW9srOzUVhYiIkTJzpuCwoKQmJiIlJSUgAAKSkpCA4OxqhRoxzbTJw4ETqdDmlpaS6JyxmPuWPHDuzevRt33XXXWb+7//77ERYWhjFjxmDVqlUQQjgt9jN1Jo+PPvoIYWFhGDRoEBYuXIja2toW+x08eDAiIiIct02ZMgWVlZU4cOCA8xOB894HFRUVCAwMhMFgaHG7q16TxsZG7Nixo8V7XKfTYeLEiY73+O+lpKS02B5oen7t27fluHG2juTxe7W1tTCbzQgNDW1x++bNm9G1a1f07dsX9957L0pLS50a++91NJfq6mr06tUL0dHRuPbaa1u819X6mqxcuRK33HIL/Pz8Wtzu7tekvS50jDjjuaGWlFivtVKrAe3Ua9Zq1mpnYa0+Ta21GmC9djfWatbqtlJjvdZKrQa0U6+1UqsBz67XaqnVhgtvon2FhYUA0KJg2H+2/66wsBBdu3Zt8XuDwYDQ0FDHNq6Iq7OPuXLlSvTv3x9jx45tcftf//pXXHbZZfD19cW6detw3333obq6Gg8++KDT4rfraB4zZsxAr1690L17d+zduxd//vOfceTIEXzxxReO/Z7rNbP/zhWc8ZqUlJTg+eefx9y5c1vc7srXpKSkBFar9ZzP1+HDh895n9ae3zOPCfttrW3jbB3J4/f+/Oc/o3v37i3++F5xxRW44YYbEBsbi8zMTPzlL3/BlVdeiZSUFOj1eqfmYNeRXPr27YtVq1ZhyJAhqKiowMsvv4yxY8fiwIED6NGjhypfk61bt2L//v1YuXJli9vleE3aq7VjpLKyEnV1dTh16lSn36/UkhLrtVZqNaCdes1azVrtLKzVTdRcqwHWa3djrWatbis11mut1GpAO/VaK7Ua8Ox6rZZarZom+hNPPIF//vOf593m0KFD6Nevn5si6ri25tJZdXV1+Pjjj/HUU0+d9bszbxs+fDhqamrw0ksvtauouDqPMwvh4MGD0a1bN1x++eXIzMxEfHx8h/d7Lu56TSorKzF16lQMGDAAzz77bIvfOeM1ofN78cUXsWbNGmzevLnFwiG33HKL4/8HDx6MIUOGID4+Hps3b8bll18uR6jnlJycjOTkZMfPY8eORf/+/bFs2TI8//zzMkbWcStXrsTgwYMxZsyYFrer5TWhs2mlXmulVgPaqdes1Z6BtVp5WKu1h7W6fVir24f12jOouV5rsVYDrNfuoJom+qOPPoo77rjjvNvExcV1aN+RkZEAgKKiInTr1s1xe1FREYYNG+bYpri4uMX9LBYLysrKHPdvq7bm0tnH/Pzzz1FbW4uZM2decNvExEQ8//zzaGhogMlkuuD2gPvyODNGAMjIyEB8fDwiIyPPWom3qKgIABT5mlRVVeGKK65AQEAAvvzySxiNxvNu35HXpDVhYWHQ6/WO58euqKio1bgjIyPPu31bjhtn60gedi+//DJefPFFbNiwAUOGDDnvtnFxcQgLC0NGRobLikpncrEzGo0YPnw4MjIyAKjvNampqcGaNWvw17/+9YKP447XpL1aO0YCAwPh4+MDvV7f6ddYjbRSr7VSqwHt1GvW6rOxVrNWt4Un12qA9fpcWKtZq3lu3TFaqdWAduq1Vmo14Nn1WjW12m2zr8ugvYufvPzyy47bKioqzrn4yfbt2x3b/PDDD25ZWLSjjzlhwoSzVqluzd/+9jcREhLS4VjPx1nP3a+//ioAiD179gghTi9+cuZKvMuWLROBgYGivr7eeQmcoaO5VFRUiKSkJDFhwgRRU1PTpsdy9msyZswYMX/+fMfPVqtVREVFnXcBlD/84Q8tbktOTj5rAZTzHTeu0N48hBDin//8pwgMDBQpKSlteoz8/HwhSZL4+uuvOx3v+XQklzNZLBbRt29f8cgjjwgh1PWaCNH0N9pkMomSkpILPoa7XhM7tHHxk0GDBrW4bfr06WctftKZ19hTqLlea6VWC6Gdes1azVrtTKzVyq3VQrBeuxNrNWu1s6m1XmulVguhnXqtlVothDbrtZZqtSab6Lm5uWLXrl3iueeeE/7+/mLXrl1i165doqqqyrFN3759xRdffOH4+cUXXxTBwcHi66+/Fnv37hXXXnutiI2NFXV1dY5trrjiCjF8+HCRlpYmfv31V9G7d28xffp0l+Zyocc8duyY6Nu3r0hLS2txv/T0dCFJkvjuu+/O2ud//vMfsWLFCrFv3z6Rnp4u3nzzTeHr6yuefvppxeSRkZEh/vrXv4rt27eL7Oxs8fXXX4u4uDgxfvx4x30sFosYNGiQmDx5sti9e7f4/vvvRXh4uFi4cKHL8uhILhUVFSIxMVEMHjxYZGRkiBMnTjj+WSwWIYR7XpM1a9YIk8kkVq9eLQ4ePCjmzp0rgoODHSuw33777eKJJ55wbP/bb78Jg8EgXn75ZXHo0CHxzDPPCKPRKPbt2+fYpi3HjbO1N48XX3xReHl5ic8//7zFc2//e1BVVSX+9Kc/iZSUFJGdnS02bNggRowYIXr37u2yD4wdzeW5554TP/zwg8jMzBQ7duwQt9xyi/D29hYHDhxoka/SXxO7iy++WEybNu2s2+V6Taqqqhz1AoBYtGiR2LVrl8jNzRVCCPHEE0+I22+/3bF9VlaW8PX1FY899pg4dOiQWLp0qdDr9eL77793bHOh58bTaaVea6VWdyQXpdZr1mrWarlyYa12/WvCeu1erNWs1UrKRQn1Wiu1uiO5KLVea6VWdyQXO6XVa63Wak020WfNmiUAnPVv06ZNjm0AiHfffdfxs81mE0899ZSIiIgQJpNJXH755eLIkSMt9ltaWiqmT58u/P39RWBgoJg9e3aLDw+ucKHHzM7OPis3IYRYuHChiI6OFlar9ax9fvfdd2LYsGHC399f+Pn5iaFDh4q33377nNvKlUdeXp4YP368CA0NFSaTSSQkJIjHHntMVFRUtNhvTk6OuPLKK4WPj48ICwsTjz76qDCbzS7LoyO5bNq06ZzvRwAiOztbCOG+1+T1118XPXv2FF5eXmLMmDEiNTXV8bsJEyaIWbNmtdj+008/FX369BFeXl5i4MCB4ptvvmnx+7YcN67Qnjx69ep1zuf+mWeeEUIIUVtbKyZPnizCw8OF0WgUvXr1EnPmzHHbH+L25PLwww87to2IiBBXXXWV2LlzZ4v9qeE1EUKIw4cPCwBi3bp1Z+1LrtektWPVHvusWbPEhAkTzrrPsGHDhJeXl4iLi2tRV+zO99x4Oq3Ua63U6o7kotR6zVp9mhrqAmu18l4TIZRZq4VgvXY31mrWaiXlopR6rZVaLYR26rVWanV7cxFCmfVaq7VaEkKIC8z4QkRERERERERERETkkXRyB0BEREREREREREREpFRsohMRERERERERERERtYJNdCIiIiIiIiIiIiKiVrCJTkRERERERERERETUCjbRiYiIiIiIiIiIiIhawSY6EREREREREREREVEr2EQnIiIiIiIiIiIiImoFm+hERERERERERERERK1gE52IiIiIiIiIiIiIqBVsohMRERERERERERERtYJNdCIiIiIiIiIiIiKiVrCJTkRERERERERERETUCjbRiYiIiIiIiIiIiIhawSY6EREREREREREREVEr2EQnIiIiIiIiIiIiImoFm+hERERERERERERERK1gE52IiIiIiIiIiIiIqBVsohOpxLPPPgtJklBSUnLBbS0WCx5//HFER0dDp9Phuuuuc32ARERExHpNRESkcKzVRNQRbKITadCqVavw0ksv4cYbb8R7772HRx55pMXvY2Jiznv/Z599FqtXrz7r9sOHD+Pxxx/HsGHDEBAQgG7dumHq1KnYvn17m+I6cOAAbrrpJsTFxcHX1xdhYWEYP348/vvf/7Y1NSIiIs1Qar3+vb///e+QJAmDBg3q0P2JiIjUSqm1evPmzZAk6Zz/UlNT25oeEbWDQe4AiMj5fvzxR0RFRWHx4sWO2zZs2IBLL70Uer2+xbY//PADpkyZgv379yMkJARRUVEtfn/kyBGYTCbExMTgnXfewcqVK/HHP/4R9913HyoqKrBs2TIkJSXh+++/x8SJE88bV25uLqqqqjBr1ix0794dtbW1+Pe//41rrrkGy5Ytw9y5c533JBARESmcUuv1mY4dO4Z//OMf8PPz61yyREREKqT0Wv3ggw9i9OjRLW5LSEjoYLZEdD4ciU6kQcXFxQgODnb8LITAihUrkJSUhD179gAAsrOzMWXKFLzyyiuorq7Gvn37kJycjLfffhtCCJjNZvztb3/DlVdeiezsbADA9OnTkZ+fj3feeQdz587FY489hrS0NISGhuLZZ5+9YFxXXXUVvv/+ezzzzDOYM2cOHnroIWzatAlDhw7FokWLXPFUEBERKZZS6/WZ/vSnPyEpKQmjRo1yVtpERESqofRaPW7cONx2220t/oWFhTnzKSCiZmyiE6lMSUkJbr75ZgQGBqJLly546KGHUF9fDwDIycmBJEnYtGkTDhw44Lic66effsLatWuxaNEizJs3DydOnMANN9yA+++/H+vWrYO/vz+mT5+OHTt2YPfu3ViyZAkWLlyI+vp67Nu3D5deeikAYOTIkfD3928RT5cuXTBu3DgcOnSoQ/no9XpER0ejvLy8U88LERGRkmihXv/888/4/PPPsWTJEqc9L0REREqhhVoNAFVVVbBYLM55UoioVWyiE6nMzTffjPr6erzwwgu46qqr8NprrzmmQQkPD8cHH3yAfv36oUePHvjggw/wwQcfoH///gAAnU4HSZIc+zrz/+0/63S6Vn/fmsLCwnZ9211TU4OSkhJkZmZi8eLF+O6773D55Ze3+f5ERERKp/Z6bbVa8cADD+Duu+/G4MGD23QfIiIiNVF7rQaA2bNnIzAwEN7e3rj00ks7vP4JEV0Ym+hEKhMbG4v//Oc/uP/++/HBBx/gvvvuwwcffIC9e/fCz88Pt912GyIiIhAUFOS4nKtr16649dZb8fDDD+Ott95Ct27d8MUXX+D111/H5MmTUV1djbVr12LkyJEYPHgwHn74Ybzwwgvw8vLC4MGDsWnTplbj+eWXX5CSkoJp06a1OYdHH30U4eHhSEhIwJ/+9Cdcf/31eOONN5zx9BARESmC2uv122+/jdzcXDz//PPOekqIiIgURc212svLC3/84x/x6quv4uuvv8bf/vY37Nu3D+PGjcOuXbuc+TQRUTM20YlU5v7772/x8wMPPAAA+Pbbb1u9jyRJuOOOO5CamoqhQ4cCaPrAsG7dOixYsAD+/v4YOHAgtmzZgnvvvReSJMFoNOKpp57Ct99+i9jY2HPut7i4GDNmzEBsbCwef/zxNufw8MMPY/369Xjvvfdw5ZVXwmq1orGxsc33JyIiUjo11+vS0lI8/fTTeOqppxAeHt7WlImIiFRFzbV67Nix+Pzzz3HnnXfimmuuwRNPPIHU1FRIkoSFCxe29SkgonYwyB0AEbVP7969W/wcHx8PnU6HnJyc895v0qRJ57z9iiuuAAAMGjTonL/v16/fOW+vqanBH/7wB1RVVeHXX389az638+nXr59jvzNnzsTkyZNx9dVXIy0trc2XuRERESmZmuv1k08+idDQUEczgYiISIvUXKvPJSEhAddeey2++OILWK1W6PX6Du2HiM6NTXQiletI0/lCHwoutBp4Y2MjbrjhBuzduxc//PBDqx8S2urGG2/EPffcg6NHj6Jv376d2hcREZESqaVep6enY/ny5ViyZAmOHz/uuL2+vh5msxk5OTkIDAxEaGhoW1IgIiJSDbXU6vOJjo5GY2MjampqEBgY2Kl9EVFLnM6FSGXS09Nb/JyRkQGbzYaYmBi3PL7NZsPMmTOxceNGfPzxx5gwYUKn91lXVwcAqKio6PS+iIiIlECt9bqgoAA2mw0PPvggYmNjHf/S0tJw9OhRxMbG4q9//auLoyciInI9tdbq88nKyoK3t3eHR7MTUes4Ep1IZZYuXYrJkyc7fn799dcBAFdeeaVbHv+BBx7A2rVrsWzZMtxwww3tum9xcTG6du3a4jaz2Yz3338fPj4+GDBggDNDJSIiko1a6/WgQYPw5ZdfnnX7k08+iaqqKrz66quIj493ZqhERESyUGutBoCTJ0+etW7Jnj178J///AdXXnkldDqOmSVyNjbRiVQmOzsb11xzDa644gqkpKTgww8/xIwZMxyLmrjSkiVL8OabbyI5ORm+vr748MMPW/z++uuvh5+fX6v3v+eee1BZWYnx48cjKioKhYWF+Oijj3D48GG88sor/LaciIg0Q631OiwsDNddd9059wngnL8jIiJSI7XWagCYNm0afHx8MHbsWHTt2hUHDx7E8uXL4evrixdffNHV4RN5JDbRiVRm7dq1ePrpp/HEE0/AYDBg/vz5eOmll9zy2Lt37wYApKSkICUl5azfZ2dnX7DQr1y5Em+99RZKS0sREBCAkSNH4p///CeuueYaV4VNRETkdmqu10RERJ5AzbX6uuuuw0cffYRFixahsrIS4eHhuOGGG/DMM88gISHBVWETeTRJCCHkDoKIiIiIiIiIiIiISIk4SRIRERERERERERERUSvYRCciIiIiIiIiIiIiagWb6ERERERERERERERErWATnYiIiIiIiIiIiIioFWyiExERERERERERERG1wiB3AG1hs9lw/PhxBAQEQJIkucMhIiJyCSEEqqqq0L17d+h06vqem7WaiIg8hVrrNWs1ERF5ClfUalU00Y8fP47o6Gi5wyAiInKL/Px89OjRQ+4w2oW1moiIPI3a6jVrNREReRpn1mpVNNEDAgIANCUeGBjY6f2ZzWasW7cOkydPhtFo7PT+5KKVPADmokRayQPQTi5ayQPQTi7OzqOyshLR0dGOuqcmrNWt00ouWskD0E4uWskD0E4uWskD0E4urshDrfXa2bUa4PtEibSSi1byALSTi1byALSTi1byANRxbq2KJrr9UrPAwECnnZj7+voiMDBQ1W8yreQBMBcl0koegHZy0UoegHZycVUearzEmrW6dVrJRSt5ANrJRSt5ANrJRSt5ANrJxZV5qK1eO7tWA3yfKJFWctFKHoB2ctFKHoB2ctFKHoA6zq3VM4EbEREREREREREREZGbsYlORERERERERERERNQKNtGJiIiIiIiIiIiIiFrBJjoRERERERERERERUSvYRCciIiIiIiIiIiIiagWb6ERERERERERERERErWATnYiIiIiIiIiIiIioFWyiExERERERERERERG1gk10IiIiIiIiIiIiIqJWsIlORERERERERERERNQKNtGJiIiIiIiIiIiIiFrBJjoRERERERERERERUSvYRCciIiIiIiIiIiIiagWb6ERERBrz888/4+qrr0b37t0hSRK++uqrC95n8+bNGDFiBEwmExISErB69WqXx0lERERERESkBu1uovPEnIiISNlqamowdOhQLF26tE3bZ2dnY+rUqbj00kuxe/duPPzww7j77rvxww8/uDhSIiIiz8TzaiIiInVpdxNdCyfmjRYbSutle3giItKI4+V1MNvkjuJsV155Jf72t7/h+uuvb9P2b7/9NmJjY/HKK6+gf//+mD9/Pm688UYsXrzYxZESERF5Ji2cVwNAg9mKWousIRARkcoJIXCyqkHuMC7I0N47XHnllbjyyivbvP2ZJ+YA0L9/f/z6669YvHgxpkyZcs77NDQ0oKHh9JNXWVkJADCbzTCbze0NuYV9BRV4YM0eoFGPmxsbO7Uvudmfi84+J0rAXJRHK3kA2slFK3kA2shFCIFHPt2LzEI9uvY7ieSE8E7vU67nIyUlBRMnTmxx25QpU/Dwww+3eh9X1mr7fs78r5ppJZfPtufhnzv0iBxQihExXeQOp1O08ppoJQ9AO7ms+DkTq3bqETO0HAOiguUOp1O08pq4Ig9n7Evt59UAsPyXbLy6MRPjI3S4lu8TxdBKLlrJQwiB9MJKNFrVn4tWXhNAO7loJY+c0hpMWvIbonz1uHyic3q1rnhO2t1Eb6+OnJi/8MILeO655866fd26dfD19e1UPDVmoKRKjwarhFfWbsSwLqJT+1OC9evXyx2C0zAX5dFKHoB2ctFKHoC6czlULmFnvh4GCcjetw2njnZ+n7W1tZ3fSQcUFhYiIiKixW0RERGorKxEXV0dfHx8zrqPK2v1mdT8Hvk9NedisQF/STMAkPDsv7dhXn8FXoLRAWp+Tc6klTwAdeciBPCv1KbjZN77aXhiqFXukJxCza/JmZyZhxz1Wmnn1QBw/KSERqse6ZUS3ycKpJVc1J7Hzyck/DtHjyhfPYy69ZAkuSPqPLW/JmfSSi5qz+O3IgmAHt56YOOGDU7Zpytqtcub6B05MV+4cCEWLFjg+LmyshLR0dGYPHkyAgMDOx1Tvu9RvPVzDn4+FYA/33oR9Dp1/hUzm81Yv349Jk2aBKPRKHc4ncJclEcreQDayUUreQDqz0UIgZXL0gBU4qJIgZv+4Jw87CPE1MDVtVrt75EzaSGX7bmngLRtAIAq+OKqq8bLHFHnaOE1AbSTB6CNXHJLa4HUXwEAJ+t1mDxlEgz6ds+eqRhaeE0A1+QhR71W4nn18Ip6fPTyz8irBpLGXYrQgLNjUAutvN8B7eSilTxWL08DUIGCWgn9Rl2M+IjOH3ty0cprAmgnF63ksW7tXgCF6B1kc1ourqjVLm+id4TJZILJZDrrdqPR6JQn8u6LY7H6t2xknqzFD4dO4tphUZ3ep5yc9bwoAXNRHq3kAWgnF63kAag3lw0Hi7C3oBI+Rh0mdrc4LQ+5novIyEgUFRW1uK2oqAiBgYHnPCkHXF+rXbU/Oak5l605FY7/P1Zej5M1FnQPVm+zxE7Nr8mZtJIHoO5ctuaePk4sNoEjJ+swLDpYvoCcRM2vyZmcmYdang9X1+qeYUb0CvVFblktdh+vxpRB6m0O2mnl/Q5oJxc151FvtuLA8SrHz9vzK9Gvh7qnxAPU/Zr8nlZyUXMeQgik5ZQBAHoHCUWfW7t8aERHTsxdLdDHiMu6N12GvGRDOixWbVySTERErmezCSxa3zR3y22JPRHoJXNATpCcnIyNGze2uG39+vVITk6WKSJSmpSskpY/Z5bKFAmRcqVktTwueJyQMynxvBoAkuJCAQBpWWWyxUCkVDtyT6HxjH5TKo8TorOkF1ejpLoR3kYdYvzljub8XN5EV+qJ+fhuAiG+RmSX1ODLXQWyxkJEROrxw4FCHDxRCT8vPe6+OEbucM6puroau3fvxu7duwEA2dnZ2L17N/Ly8gA0Xd49c+ZMx/bz5s1DVlYWHn/8cRw+fBhvvvkmPv30UzzyyCNyhE8KU2+2YmduOQBgaGjTieAWNgeJWhBCOJrmQxzHScn57kLULko9r06KDQEApLA5SHQWex2ICvYGAKRml0EI9a/LR+RMWzKajpMRPYNhUPgseO0OTysn5t56YM64GADAaz+mw8zR6EREdAFWm8DiDU2j0O+8OBahfsochr59+3YMHz4cw4cPBwAsWLAAw4cPx9NPPw0AOHHihKNuA0BsbCy++eYbrF+/HkOHDsUrr7yCd955B1OmTJElflKWnc2jqCICTRgb0XTil5pVypNAojNkFFejpLoBJoMOk6Kaziu255xCo4XnGHRuWjmvto9EP1xUhVM1jbLGQqQ09i9X7xkfC6MkUFLdiMyT1TJHRaQs9iv5kmNDZY7kwtrdRNfSifltY3oizN+E/LI6fLb9mNzhEBGRwv1v73EcLapGgLcBd18cJ3c4rbrkkksghDjr3+rVqwEAq1evxubNm8+6z65du9DQ0IDMzEzccccdbo+blMk+6jwpNhRxAQJGvYSC8jrklTl/xXsitbIfJyN7BqOHHxDia0Sd2Yo9x8rlDYwUSyvn1WH+JkT6CAgBpGXzKiUiu+oGC/Yca1orY3zvMMQGNg0+4NV8RKfZbMIxzVFinPKb6O1eWNR+Yt4a+wn67++za9eu9j6Uy/l46XHfJfH46/8O4o0f0/HHkVEwGfRyh0VERApksdrw6oZ0AMCccXEI8jXCbDbLHBWR69lHhyTFhcKrMB9DewRhe245UjJL0auLn8zRESmDfbRhUlwodDXFSIoNxXcHipCSWYrRMco/KST309J5de8ggcI6CSmZpbhiUDe5wyFShG05ZbDaBHqG+iIq2Ae9AwWOVjTVi5nJMXKHR6QIB09UoqLODH+TAYO7B+LEPrkjOj+FzzbjejMSeyIy0BvHK+qxZmu+3OEQEZFCfbX7OLJKahDsa8Tsi2LkDofILWoaLNiTXw6gaST6mf/lSCqiJjabQGr26Ss2gNOjqTgvOnmC3hxhS3QW+5erY+O7AGj6sgloGpxgs3FKPCLg9HEyOiYEBr3yW9TKj9DFvI163H9ZAgBg6aYM1JutMkdERERKY7ba8NrGplHo94yPR4C3UeaIiNxjW04ZLDaB6FAf9AjxAXB6/tsUzotOBAA4VFiJ8loz/Lz0GBQVCOD0vJ4788p5fkGalxAoIElAenE1TlY1yB0OkSLYm4PJzU30nn6Ar5ce5bVmHC6skjM0IsWwX/E6Nj5M5kjaxuOb6AAwbVQ0ooJ9UFzVgA9Tc+UOh4iIFObzHceQV1aLMH8vzBrbS+5wiNzGcQIY18Vx27DoYJgMOpysauDiWEQ4YxRVbCiMzaOoYsN80TXAhEaLDTtzT8kZHpHL+RmBfhEBAE43RIg8WUWtGfuPN82Hbv8MpdcBo3uFAOBVSkRA03SpW7Ob5kO3f9mkdGyiA/Ay6PDg5U2j0d/anImaBovMERERkVI0WKx4vXkU+rwJ8fD1avdyIkSqda7RISaDDqNimk4CU3jpPtFZl+wDgCRJjp/ZVCRPkGy/Sol1gQhp2aUQAogP90PXQG/H7YlxTZ+fUlkXiLCvoALVDRYE+RjRv1ug3OG0CZvozW4Y0QO9uviitKYR76XkyB0OEREpxNpt+TheUY+IQBNuS+IodPIcFXVm7C9oHkX1u9Eh9lFVnP+WPJ3FakOafRRVXMtLke3HDY8T8gSJjiY6R9gSbck89xQVybFNdSEtqwwWq83tcREpif04SYwNhV4nyRxN27CJ3syo1+Ghy3sDAJb/nIWqerPMERERkdzqzVa88WMGAOD+SxPgbdTLHBGR+2zNLoNNAHHhfog4YxQVACQ3nxSmcnEs8nD7j1eiusGCQG8DBnRvOYrK3jzZk1/OK11J80b3CoFeJyGntBbHy+vkDodIVvaR5r8fhNC/WwACvQ2oarDgwPFKOUIjUozUrLOv5FM6NtHPcO2wKMSH+6G81oxVv+bIHQ4REcnsw9RcFFc1oHuQN6aNjpY7HCK3ss/XeeZ86HZDegTB10uPU1wcizyc/ThJjOty1iiq6FBfRAX7wGIT2JZTJkd4RG4T4G3AoKggAJzShTxbaXWD47NR0u8+Q+l1EhJ5NR8RGixWx2ejZJUsKgqwid6CXifh4Yl9AADv/JqFilqORici8lS1jRa8/VMmAOCBy3vDZOAodPIsKa1cigw0XcE3Jrb50n3O60ke7FzzoZ+J86KTJ+H7nQhIzWpqDPaLDECon9dZv7cPTuBxQp5sT34F6s02dPHzQp8If7nDaTM20X9n6uBu6BcZgKp6C1b8kiV3OEREJJP3tuSipLoRPUN9cePIHnKHQ+RWLUdRhZ5zG8dJIOe/JQ/VaLFhe84pAGdfsm9nv50jc8kTnK4LpRCCU32RZ7JfoXSuQQgAMDah6TjZll2GRgvnRSfPZD9OkuK7QJLUMR86wCb6WXRnjEZ/97dslNU0yhwRERG5W1W9Gct+bhqF/uDlvWHUs1ySZ7EvlNgvMgBd/E3n3MZ+csjFschT7TlWjjqztWkUVdeAc25jb6LvL6hARR2vciVtGxUTAqNeQkF5HfLLOC86eSb7l6atfbnap2vTCPU6sxV7jpW7MTIi5bjQlXxKxa7AOUwZGIFBUYGoabRiWfOl/ERE5Dne/S0H5bVmxIX74bph3eUOh8jtHKNDzjEfut2A7oFcHIs82paMphPApLgu0OnOPYqqW5APYsP8YBNNi/USaZmvlwHDooMBnK4jRJ6ksKIeWSU10ElwTHv3ezqd1OKqDSJPU2+2YldeOYBzr72kZGyin4MkSVgwqWk0+nspOSiuqpc5IiIicpeKWrNjOq+HJ/aBgaPQyQNtacPokDMXx+K8nuSJUrKaF9+9wCgqTulCnsS+QBwXTSRPZK8Lg6KCEORjbHW7pHj74qL8sok8z47cU2i02hAZ6I3YMD+5w2kXdgZacWnfrhgWHYx6sw1vbeZodCIiT/HOr1moqregb0QA/jC4m9zhELldUWU9sk7WQJKAxNgLNAfj7CeBbJaQZ6k3W7EztxxAG5rocWyWkOc4c9FEzotOnuZCU7nY2Qcp7MwrR73Z6vK4iJTE/nkoWWXzoQNsordKkiT8aXJfAMBHaXk4UcE53YiItK6sphGrfs0GADwyqXerl+cTaZn9BHBQ9yAE+bY+igo4vTjW9hwujkWeZWfzKKqIQBPiLjCKyj4t0uHCKq63RJo3vGcwTAYdTlY1IPNktdzhELmVfVDBhaaoiAvzQ9cAExotNuzMPeWO0IgUo61fNikRm+jncVFCF4yJDUWjxYalmzLkDoeIiFxs2c+ZqGm0YmD3QEwZGCl3OESyaM8HW/viWLWNVuzl4ljkQc5slFxoFFV4gAl9IvwBAKmc+og0ztuox8heIQA4hRF5lvyyWhw7VQeDTsLomHPPh24nSZJjNDqnxCNPUt1gwZ5jFQDUNx86wCb6eUmShEeb50Zfuy0fx07VyhwRERG5ysmqBry/JRcAsGBSH9VdWkbkLFvaOM8zwMWxyHPZmx5jm+d/vhD7djxOyBOMjedUX+R57H/fh0YHw89kuOD2yTxOyANtyymD1SYQHeqD6FBfucNpNzbRLyAxrgsuTgiD2Srw+kaORici0qq3NmeizmzFsOhgXNavq9zhEMkiv6wW+WV10LdhFJVdEk8CycPUNFiwJ78cQNsvRU7ivOjkQezHRWpWKWw2zotOnuH0l6ttqwv2L1f35JejpsHisriIlMT+ZdPYuLYNQlAaNtHbYMHkptHon+88hpySGpmjISIiZyusqMeHaRyFTmQ/ARzaIwj+bRhFBZw+WdyRd4qLY5FH2JZTBotNoEdI20dRJcWFQpKAzJM1KK6sd3GERPIa0iMYvl56nKo143BhldzhELmcEOL0YoltnKIiOtQXUcE+sNgEtuWUuTI8IsVQ83zoAJvobTKiZwgu7RsOq03gtY3pcodDREROtnRTBhotNoyOCcG43ur8VpzIGVI78MG2xeJYeVwci7QvpY0Lx50p2NcLA7oFNt2f89+Sxhn1OsfVTHy/kyfILqlBUWUDvAw6jGheE6AtOC86eZKKWjP2H2+eD51NdG1bMKkvAOCr3QXIKOYq40REWnHsVC3WbMsD0PS3nqPQyVM1jaJq3zzPQMvFsVI5pQt5AMcl+wntOwF0zBOdweOEtM/RHOQURuQB7J+fRvQMhrdR3+b7JcdzXRnyHKnZpRACiAv3Q0Sgt9zhdAib6G00uEcQJg+IgE0ASzYclTscIiJykjd+zIDZKjA2votqvxEncoac0loUVtbDS6/DyHaMogK4OBZ5joo6M/YXNI+iaud8nskccUgexP5+T8sqg8VqkzkaItdq72LTdvbjZH9BBSrqzE6Pi0hJHPOhq/icm030dnhkUtPc6P/bewKHCytljoaIiDort7QGn+04BgB4tHn9CyJPZZ/Lc3g7R1EBp08ad+eXo7aRi2ORdm3NLoNNNE1jFBnUvlFUo2NCoddJyCurxbFTtS6KkEgZBnYPQoC3AVUNFhw4znNn0i4hRIemwwOAbkE+iA3zg0001RciLTs9HZ56p09lE70d+ncLxNQh3QAAi9dzNDoRkdq9ujEdVpvAhD7hGNkrVO5wiGTVmYV+Wi6OxXnRSbvsXzYldeA4CfA2YnBUEABeuk/ap9dJSIzl1RekfUeLqlFa0wgfox5DewS3+/6c0oU8QUl1A44UNS00nRSn3vNuNtHb6ZGJvaGTgB8OFDku5SQiIvXJKK7GV7sKAAALJnEUOnk2IQRSO3gpst1YngSSB+jspcg8TsiTjOVUX+QB7F+ujooJgZeh/S02+yLVW7h+AGmY/TyjX2QAuvibZI6m49hEb6eErgG4dlgUAGARR6MTEanWqxvTYRPAxP4RGBodLHc4RLJKL65GSXUjvI06DI0O6tA+krmIHGlcaXUDDhfaR1F1rIl+5rzoQginxUakRPb3+/acMjRaOC86aVNKBxZlP5O9nhwurEJZTaPT4iJSks5c8aokbKJ3wEOX94ZeJ+HHw8XYmcdLlomI1OZIYRX+t/c4AI5CJwKALRlNje/RMaEwGdo3H7qd/UPxvoIKVNZzcSzSnrTm+Wr7RgQgrIOjqEb1CoVRL+FERT1ySjkvOmlb34gAhPp5obbRir3HyuUOh8jprLbTV/J1tDkYHmBCnwh/AKdH6xJpzen50NlE9zgxYX7444im0eicG52ISH0Wrz8KIYCrBkdiQPdAucMhkp19vtqOjq4Ffrc4VhYXxyLtsV9q35lRVD5eegyPDgHAKV1I+3Q6ydEw4fudtOjQiUpU1lsQYDJgUCfOKeyj2HmckBYVVtQjq6QGOglIZBPdMz1wWW8Y9RJ+SS/hKspERCqyv6AC3x8ohCQBD0/kKHQim00gtbnp3dF5nu3OnKqCSGucdSlycjznvyXPkcR50UnD7H/Hx8SGwqDveHstifOik4alZDW9rwd2D0KQj1HmaDqHTfQOig71xc2jogEAr6w7wjkNiYhUwn4F0TVDu6NPRIDM0RDJ7+CJSlTUmeFvMmBwVMfmQ7fjInKkVUWV9cg8WQNJApJindNET+W86OQB7HVhR94p1JutMkdD5FzO+nI1KS4UkgRknqxBcWW9M0IjUozOLsquJGyid8L8yxLgZdAhLbuMJ4tERCqwK+8UNh4uhk5qWt+CiE5/sO3sKCrg9EiqQycqcYqLY5GG2OepHdg9EEG+nRtFNbxnMEwGHUqqG5FeXO2M8IgUKy7MD10DTGi02LieGGmK2WpzzErQ2SZ6sK8XBnRrmg6GV/OR1tj7pUlsonu2bkE+mDGmJwCORiciUoNFzaPQbxjRA3Hh/jJHQ6QM9pM1Zyz0E+ZvQt/mKzy4OBZpyZYM+yiqsE7vy2TQY3RMKADOf0vaJ0mSY/RhKt/vpCH7CipQ02hFsK8R/SM7v8aS/ThhXSAtyS+rxbFTdTDoJMdnHzVjE72T7rs0Ht5GHXbmlWPz0ZNyh0NERK3YllOGX9JLYNBJHIVO1MzixFFUdpwXnbTImV82AZwXnTxLMqf6Ig2yN7uTYrtAp5M6vT8eJ6RF9uNkSI8g+JsMMkfTeWyid1LXAG/MTI4B0DTPLkejExEp0yvrjgAAbhoVjehQX5mjIVKGfQUVqG6wIMjH6LiMuLN4Ekhac+xULfLKaqHXSRgd65xRVKfnRS+DzcbzB9I2+xUcu/PLUdtokTkaIudwzPOc4JwvV0fHhEKvk5BXVotjp2qdsk8iudkHITjjSj4lYBPdCe4ZHwdfLz32HqvA+oNFcodDRES/syWjBKlZZfDS6/DAZQlyh0OkGI45CuNCnTKKCmgakSVJQEZxNYqruDgWqZ8rRlENjgqCn5ceFXVmHDxR6ZR9EilVdKgvooJ9YLEJbMvhvOikfg0WK7blNF/J56QrlAK8jY4F3jmlC2mBEMJxxZ2zrniVG5voTtDF34TZF8UAaJpvl6NJiIiUQwiBV5rnQp8+Jhrdg31kjohIOVKdPEUFAAT5GjGwe/PiWDwJJA1wjDZ04gmgUa/DmOZR7Vw/gDwB53smLdmdV44Giw1h/iYkdHXeOktjOSUeaUh2SQ2KKhvgpddhZK8QucNxCjbRnWTOuDgEmAw4XFiF7/YXyh0OERE1++noSezIPQWTQYf7L+UodCK7M0dRjU1w7iWW9qY8m4OkdkKIM+ZDd/JxwqmPyIM41svgOgCkAfa/28nxXSBJzrmSz74/oOnLJk4VTGpnP06G9wyGt1EvczTOwSa6kwT7euGucbEAgMUbjsLK0ehERLITQmBR8yj025N6oWugt8wRESnHnvwK1JttCPP3Qm8njqICTs97yOYgqV1OaS1OVNS7ZBSV/TjZml0Gi9Xm1H0TKY29ObivoAKV9WaZoyHqnNPzPDt3iopRvUJh1Es4UVGP3FLOi07qprX50AE20Z3qzotjEeRjREZxNf6757jc4RARebwNh4qx91gFfL30mHdJvNzhECmKfY7CpDjnjqICgNGxTYtj5ZbWoqC8zqn7JnIn+9QTw3oGw8fLuaOo+ncLRKC3AdUNFuwrqHDqvomUpluQD2LD/GATwNasMrnDIeqwukYrduU1ze3vzOnwAMDHS4/h0U1f2HIgAqmZEAKpZ1yxoRVsojtRoLcRc8fHAQBe3ZjOESVERDKy2U6PQp81NgZh/iaZIyJSlhQXfrD1NxkwpAcXxyL1s3/Z5OzRhgCg10lIiuP8t+Q5kjnfM2nAjtxTMFsFugd5o1cXX6fvn8cJacHRomqU1jTC26jDsOhgucNxGjbRneyOsTHo4ueF7JIafLGrQO5wiIg81vcHCnHoRCX8TQbMHRcndzhEilJvtmJXXjkA111iaR+dxSY6qZUQwiWL754pmYstkgexH0ccYUtq5riSz8nzodtxXnTSAvtxMjomFF4G7bSetZOJQviZDJg3oWnKgNc2pqPRwtHoRETuZrUJLG4ehX7nxbEI8fOSOSIiZdmRewqNVhsiA70R44JRVMDp5nxKZglPAkmV0ourUVLdPIqqZ7BLHsN+nGzLKeN5A2me/cqLQycqcaqmUeZoiDrG1fM8D+8ZDJNBh5LqBmQUV7vkMYhczZVXvMqJTXQXuC2pF8IDTDh2qg6f7ciXOxwiIo/zv73HkV5cjUBvA+66OFbucIgU58wpKlwxigoARvYKgVEv4XhFPfLKuDgWqY/9BHBUr1CYDM6dD92uT4Q/uvh5od5sw+78cpc8BpFShAeY0CeiaSHrVE5VQSpU3WDB3mNNa1i4qjloMugxKobzopN6WW2uv5JPLmyiu4CPlx73Ny9g98aPGag3W2WOiIjIc1isNizZkA4AmDs+DkE+RpkjIlIee3MwyYWjQ3y89BjekyeBpF72L5tcOYpKkiTHccgpXcgTOK5SYhOdVGhbdhmsNoFeXXwRFezjssc5fTUfjxNSn0MnKlFZb4G/yYDBUUFyh+NUbKK7yC1jeqJbkDdOVNRjzdY8ucMhIvIYX+4qQHZJDUJ8jbjjIo5CJ/q96gYL9jSPonLFYoln4rzopFY2m0BqVhkA11+KfHqe6BKXPg6REiRxXnRSMceXqy4eXWuvO6nZpbDZOCUeqYv9OBkTGwqDXlttZ21loyDeRj3mX5YAAFi6ORN1jRyNTkTkamarDa/92DQKfd6EePibDDJHRKQ823KaRlH1DPVFjxDXzIduZ2/Sb+HiWKQyB09UoqLODH+TAUNcPIrKfpzsyivnFaykeUlxoZAkIKO4GsVV9XKHQ9Qu9isoXP3l6uCoIPh56VFea8ahwkqXPhaRs9kHz7h6sI4c2ER3oZtGRqNHiA9OVjXgw9RcucMhItK8z7YfQ35ZHcL8TZiZHCN3OESK5Fjoxw1zFA7j4likUva5PEfHhLh8FFVsmB8iAk1otNqwI/eUSx+LSG7Bvl4Y0C0QAK9SInUpr23EgeNNDW1Xf4Yy6nUYExsKgMcJqYvZasPW7KYr+ZI0Nh86wCa6S3kZdHjw8t4AgLd+ykRNg0XmiIiItKvBYsUbzaPQ77skHj5erlkEjkjtHKNDElz/wdZk0GN0TPNJIOe/JRXZ4hhFFebyx5IkifPfkkexj07k4qKkJmnZZRACSOjqj66B3i5/vGSul0EqtK+gAjWNVgT5GB1fmGoJm+gudsPwKMSG+aGsphGrt+TIHQ4RkWat2ZqP4xX1iAz0xozEnnKHQ6RIFbVm7D/eNB+6O0aiA6dPArdk8CSQ1MFyxigqV1+yb8d50cmTJMdzXnRSH3deyQec/hI3LbsMFqvNLY9J1Fn24yQpLhQ6nSRzNM7HJrqLGfQ6PNQ8Gn35z1morDfLHBERkfbUm61YuikDAHD/ZQnwNnIUOtG5pGWXQgggPtzPLaOoAC6OReqzr6AC1Q0WBPkY0d9No6jsx8neY02PTaRlo2NCoddJyC2tRUF5ndzhELWJu+d57t8tEIHeBlQ3WLD/OOdFJ3VIceOVfHJgE90Nrh7aHb27+qOizoyVv2TLHQ4RkeZ8mJqL4qoGRAX7YNqoaLnDIVIs+6g/d42uBbg4FqmPfeqhxNimRp87RIf6okeIDyw2gW05ZW55TCK5BHgbMbh5wV5OVUFqUFLdgCNFVQCARDeNRNfrJMec0rxKidSgwWJ1fIZx57mGO7GJ7gZ6nYSHJ/YBAKz6NRvltY0yR0REpB01DRa8tTkTAPDg5QnwMrC0EbXGPv+sO0eHcHEsUht3jza0c8wTzeOEPMBYzvdMKmL//NS/WyBC/bzc9ricF53UZHdeORosNoT5e6F3V3+5w3EJdhrc5MpBkegXGYCqBguW/5wldzhERJrxXkoOSmsa0auLL24Y0UPucIgUq7S6AYcLm0ZRJblpFJUdTwJJLRottjNGUbn3UmTOE02e5HRdKIEQnOqLlG2Lm+dDt7MPetiecwqNFs6LTsq2xTEfehdIkvbmQwfYRHcbnU7CgklNo9FXb8lBaXWDzBEREalfVb3Z8cXkQ5f3hlHPskbUmtSspsZgv8gAt46iAk6fBG7l4likcLvzy1FvtqGLnxf6RLh3FFVyXNNxcuB4BSpquY4SaduoXqEw6iUcr6hHXlmt3OEQnVeqTFco9YnwRxc/L9SZrdhzrNytj03UXikyXPHqbuw2uNGkAREY0iMItY1WvP1TptzhEBGp3qpfc1Bea0Z8uB+uHRYldzhEimafT1OOOQrti2NVcXEsUjj71RJJ8e4fRRUZ5I24MD/YRNMiwERa5uOlx/DoEAC8+oKUrbCiHlklNdBJwJi4ULc+tiRJSLJfpZTB44SUq67Ril15pwBodz50gE10t5IkCY80j0Z/PyUXxZX1MkdERKReFbVmvPNr0yj0hyf2cdvib0RqJefokDMXx+KULqRk9i+b3D3a0M4xxUUWjxPSPk71RWqQktVUFwZHBSHQ2+j2x7dPIWOPg0iJduSegtkq0C3IGzFdfOUOx2XYRHezS/qEY0TPYDRYbHhzM0ejExF11IpfslBVb0G/yABMHdxN7nCIFK2osh5ZJ5tHUcW6dxSV3en5nnkSSMpUb7ZiV145APfPe2vHpiJ5kjPXAeC86KRU9hHgSTJ9uWr/UndnbjnqzVZZYiC6EMcVrxqeDx1gE93tJEnCo5P7AgA+TsvD8fI6mSMiIlKfsppGvPtbNoCmUeg6jkInOi97Q25QVBCCfNw/igrg4likfDtyT6HRakNkoDdiw/xkicF+xcbhwiquoUSaN7xnMEwGHUqqG5B5slrucIjOSe55nmPD/BARaEKj1YaduadkiYHoQuzHiZancgHYRJfF2PguSIwNRaPVhjc2ZcgdDhGR6iz7KRM1jVYMigrElIERcodDpHhnjg6RCxfHIqWzf9mULMN86HZh/ib0jQgAcHoxYCKtMhn0GBXDedFJufLLanHsVB0MOgmjeoXIEoMkSY4GPo8TUqLqBgv2HqsAwCY6ucCZo9E/3ZaPfK5GTkTUZsVV9XgvJQcAsGBSH01fLkbkLEoYHXLm4licqoKUSM7Fd890el50Tn1E2mdvDrIukBLZ35fDooPhZzLIFsfpedF5nJDybMsug9Um0DPUFz1CtDsfOsAmumzGxIZiXO8wWGwCr21MlzscIiLVeHNTJurNNgyLDsalfbvKHQ6R4uWX1SK/rGkU1egYeeZDt7OfBHJedFKaFqOoZLxiA2g5TzSR1iWd0Ry02TgvOimL0r5c3ZNfjpoGi6yxEP2eEq54dRc20WW0YFIfAMAXuwqQXVIjczRERMp3oqIOH6flAQAencxR6ERtYR+1NFTmUVTAGYtj5XFxLFKWbTllsNgEokN9EB0q7yiqpNgukCQg62QNiirrZY2FyNWG9AiCn5ce5bVmHC6skjscIgchhCKu5AOA6FBf9AjxgcUmsC2HU32RsjjWDUhgE51caHjPEFzWryusNoFXNxyVOxwiIsV748cMNFptGBMTiosT5Fnch0htHPM8K2B0iGNxLAsXxyJlSVXQcRLka8TA7oEAOMUFaZ9Rr8Po2KarpHiVEilJVkkNiiob4GXQYURPeeZDP9NYTolHClRe24gDxysBKOMzlKuxiS4z+2j0r/ccR3oRv3knImpNflktPt2eDwBYwFHoRG0ihHCcbI1VwEI/Zy6OxXk9SUm2OI4TZXxBy3miyZPY61Mq6wIpiP3v78ieIfA26mWO5sz1MnickHKkZZdBCCA+3A9dA73lDsfl2ESX2aCoIEwZGAEhgCUbODc6EVFrXv8xHWarwEUJXRzzZxLR+WWX1KCwsh5eeh1G9JJ/FBVw5rzoPAkkZaioNePA8eb50BXwZRNwxnHCxUXJAyTHNX1plJZVBovVJnM0RE0cV/Ippi40HSf7CypQUWeWORqiJko7TlyNTXQFeGRSH0gS8M2+EzjYfBkEERGdllNSg3/vLAAALJjUV+ZoiNTDPlppRK9gRYyiArg4FilPWnYpbAKIC/dDhEJGUY2ODYVeJyG/rA75ZbVyh0PkUgO6ByLQ24CqBotjWgAiOdlswnFlhBKu5AOAyCBvxIX5wSaArdmcF52UIUVhV/K5GpvoCtAvMhBTB3cDACzm3OhERGd5dWM6rDaBS/qGY6RCRtMSqcEWxzzPyvlgy8WxSGm2KGg+dDt/kwFDegQB4KX7pH16nYREXqVECnK0uAqlNY3wMeoxpEew3OE42AcicP0AUoKS6gYcaZ6W2lOuFGcTXSEentgHOglYf7AIe4+Vyx0OEZFiZBRX4avd9lHofWSOhkg9hBCOxRLHJijrg+1YzutJCnJ6tKFyvmwCzpgnmk1F8gBj2RwkBdmS0fR3d3RsKLwMymmbJXNxUVIQ++enfpEBCPXzkjka91DOXwMPl9DVH9cNiwIALFrP0ehERHaLN6RDCGDSgAhFjQRRuqVLlyImJgbe3t5ITEzE1q1bz7v9kiVL0LdvX/j4+CA6OhqPPPII6uvr3RQtucLRomrHKKqhCjt2eBJISlFa3YDDhfZRVKEyR9OS/QqSLZmlEELIHA2Ra9nrwvacU2i0cF50kleKwqZysbOP9j1cWIXS6gaZoyFPt8XD5kMHOthE54m5azx4eW/odRI2HzmJHbmn5A6HiEh2h05U4pu9JwBwFHp7rF27FgsWLMAzzzyDnTt3YujQoZgyZQqKi4vPuf3HH3+MJ554As888wwOHTqElStXYu3atfjLX/7i5sjJmVKaR/ONiglR1CgqgItjkXKkZjVNKdQvMgBd/E0yR9PSyF4h8NLrUFhZj5xSzouuVTy3btKnawC6+HmhzmzFHl6ZTTKynjEfupKm+QKAMH8T+kYEADhdv4jkkuph86EDHWii88TcdWLC/HDjiB4AgEXrj8gcDRGR/BY3X5kzdUg39O8WKHM06rFo0SLMmTMHs2fPxoABA/D222/D19cXq1atOuf2W7ZswUUXXYQZM2YgJiYGkydPxvTp0y94Ik/KpuTRIVwci5TCPnWEEufy9PHSY1jPYACc4kKreG59mk4nOY5DXqVEcjp4vBJV9RYEeBswsLvyzj8cV/NlsS6QfAor6pFVUgOdBIyJVdaVfK5kaO8dzjwxB4C3334b33zzDVatWoUnnnjirO3PPDEHgJiYGEyfPh1paWmtPkZDQwMaGk5fmlJZ2bRCt9lshtnc+dFK9n04Y1/Odu+EGHyx6xh+yyjFr0eLkHieN6OS82gv5qI8WskD0E4uWskDaFsu+wsqse5gEXQSMH9CrCLzdvZr4oz9NDY2YseOHVi4cKHjNp1Oh4kTJyIlJeWc9xk7diw+/PBDbN26FWPGjEFWVha+/fZb3H777a0+jifX6vaSIxerTSAtu6kJMaZXsCJfk8TYEGSV1OC39GJc0tu9H7618v7SSh6AfLnYr9hIjFHmcZIUE4Kt2WXYkl6Cm0d0d8o+20or7y9X5OGsfbn63NrVtdq+rzP/2xljYoLxzb4T+C3jJO4dH9Pp/bWHVt7vgHZykSuPX9KLAACje4VA2Kww26yd3qdTj5NewVi9BdiSUeL250Yr7y1AO7nIlcevR5uOk4HdA+FrcM7jK/Hc+vck0Y4J9hobG+Hr64vPP/8c1113neP2WbNmoby8HF9//fVZ9/n4449x3333Yd26dY4T86lTp+L2229v9RvzZ599Fs8999w59+Xr69vWcFXr0ywdfivSIT5A4IGBVkiS3BEREbnfskM6HCzXYVSYDbf39oy5MWtrazFjxgxUVFQgMLBjI1+OHz+OqKgobNmyBcnJyY7bH3/8cfz000+tnmi/9tpr+NOf/gQhBCwWC+bNm4e33nqr1cfx9FqtdPnVwMv7DDDpBV4YbYVegZ8ldpVIWJ2uR3dfgT8P7fwJKlF7VTQCT+8wQILAP0Zb4dvu4UWul1EJvH7AAH+jwN9G8rxAKZxRr91xbq22Wl1UB/xjtwEGqal2eenljog80duHdDhUrsP1MVZc0k1561HUWoC/bNNDQMJfR1oQ5BnrOZLCfJyhQ9pJHS7rbsO1vZR5ru6MWv177fqoWFJSAqvVioiIiBa3R0RE4PDhw+e8z4wZM1BSUoKLL764xYn5+S45W7hwIRYsWOD4ubKyEtHR0Zg8ebJTEjebzVi/fj0mTZoEo9HY6f0524jKely++FdkVtkQ1DcRFyec+/JSpefRHsxFebSSB6CdXLSSB3DhXHblleNgylbodRJevG08enVR3oke4PzXxD5CzN02b96Mf/zjH3jzzTeRmJiIjIwMPPTQQ3j++efx1FNPnfM+nl6r20OOXN75NQfYdxRjE8Jx9dQRTtmns/NIrG7A6n/+hOO1EpImTESon/vOArXy/tJKHoA8uXy95wSwYx8Gdg/CjdckOWWfzs6jwWLDiqM/otpsQ59R49E7wt8JUbaNVt5frsjDGfXaHefWrq7VgHOfXyEEVmb+jKKqBkQMTHTrfNRaeb8D2slFjjzMVhsW7tgEwIrZV12M/t0CnLNfJ+fyYUEKDhyvgm/scFw1tJsTImwbrby3AO3kIlceL73yM4B63DpxFMb3ds6c6Go4t3b5eIuOnJibTCaYTGcv7GM0Gp36pnD2/pwluosRtyb2xLu/5eDVHzNxSb8ISOcZdqLUPDqCuSiPVvIAtJOLVvIAWs/ltU1ZAIA/johCQmSQu8NqN2e9Js7YR1hYGPR6PYqKilrcXlRUhMjIyHPe56mnnsLtt9+Ou+++GwAwePBg1NTUYO7cufi///s/6HRnL6Hi6bW6I9yZy9acpgXKL0oId/pjOiuPyBAj+kYE4EhRFXbkV+Kqwe47CbTTyvtLK3kA8hwnYxPCFHucGI3AqF6h+DWjBFtzyzGgR4gTomtvDNp4fzkzD7mej/aeW7urVjtzn8nxXfDV7uPYlluB8X3P/bnFlbTyfge0k4s789h7/BRqG60I8TViUI8Q6HTOvfzHWblclBCOA8ersC2nHDeO6umEyNpHK+8tQDu5uDOP/LJaHCuvh0EnISk+HEajc1vLSjq3/r12LSza2RPzwYMH4/rrr8c//vEPvPDCC7DZlDnkXwnuvSQe3kYddueXY9ORcy8sQ0SkRWlZpfg1owRGvYQHLustdziq4+XlhZEjR2Ljxo2O22w2GzZu3Nhiepcz1dbWntUo1+ubrqFux6xvpBBmq82xWKcSFxU9k2NxLC4iRzJIyVLu4rtnOr2IHI8TLeG59bmNjW8a0biFdYFkkHLGYtPObqA7k/0qjS1cXJRkYP/cPjQ6GH4mBc6F50LtaqLzxNx9ugZ4Y1ZyDABg0fqjfK6IyCMIIfDK+qMAgJtHRSM6VJnTuCjdggULsGLFCrz33ns4dOgQ7r33XtTU1DgWLps5c2aLhUevvvpqvPXWW1izZg2ys7Oxfv16PPXUU7j66qsdNZvUY19BBWoarQj2NaJ/pHMu13cVe3NwSyZPAsm98stqkV9WB71OwugY9y5s21724yQ1qww2G88JtILn1udmf7/vyS9HTYNF5mjIeDx0KgABAABJREFU09i/rByr8C9XR8eGQq+TkF9Wh/yyWrnDIQ9j/9yu9OPEFdr9lcGCBQswa9YsjBo1CmPGjMGSJUvOOjGPiorCCy+8AKDpxHzRokUYPny445Iznpi3zT0T4vFhai72F1TihwNFuGKQ+y9nIyJyp98ySrE1uwxeBh3mX5YgdziqNW3aNJw8eRJPP/00CgsLMWzYMHz//feOeVfz8vJanIQ/+eSTkCQJTz75JAoKChAeHo6rr74af//73+VKgTrBPjokKVbZo6iAphglCcg8WYPiynp0DfSWOyTyEPZGydAeQfBX+CiqIVFNMVbUmXHwRCUGRSl/mjNqG55bny061Bc9Qnxw7FQdtuWU4ZK+XeUOiTxEg8WK7c3TfCn9CiV/kwFDegRhV145UrJKOfCI3EYIcfpKPjeuW6EU7f7EyBNz9wn188Lsi2LxxqYMLF5/FJMHRCj+ZJiIqKOaRqEfAQDMGNMT3YJ8ZI5I3ebPn4/58+ef83ebN29u8bPBYMAzzzyDZ555xg2RkavZm+hKPwEEgCBfIwZ2D8T+gkqkZJXi2mFRcodEHkJNx4lBr8PomBBsOnISKZmlbKJrCM+tzy05rgs+23EMKVmlbKKT2+zKK0eDxYbwABPiw923iHNHjY3vgl155UjNLMXNo6LlDoc8RFZJDYoqG+Bl0GFEL/ev0yK3dk3nYjd//nzk5uaioaEBaWlpSExMdPxu8+bNWL16teNn+4l5RkYG6urqkJeXh6VLlyI4OLizsXuEOePiEOBtwJGiKnyz74Tc4RARuczmIyexK68c3kYd7rs0Xu5wiFSpwWLFtpym+dDVcomlff5bzotO7iKEcLzf7O8/pXMcJ5wXXXN4bn22sQlcL4Pczz4Pf3JcF0iS8gcvJsedXj9AK9M5kfLZ/y6P6BkMb6M2roBqjw410cl9gnyNuPviOADAkg1HYeU8iESkQUIILGqeC31mcgy6BnBKB6KO2N08iirM34SErsofRQWcsTgWmyXkJtklNSisrIeXXoeRKhlFZR8xvzW7DBarNhaQJGqNvTm4v6ACFXVmmaMhT5GaqY750O1G9gqBl16Hwsp65JRyXnRyD7UNQnA2NtFV4M6LYxDsa0TmyRp8vbtA7nCIiJxu3cEi7CuogK+XHveMj5M7HCLV2nLGFBVqGEUFnF4cK6+sFsdO8SSQXM8+mnu4ikZR9e8WiCAfI6obLNhXUCF3OEQuFRnkjbgwP9hE0xdHRK5W12jFrnx1zIdu5+Olx7CewQC4QDu5h80mkJqlnunwXIFNdBUI8DZibnNT6dWN6TBz9AkRaYjNJrC4eRT67Iti0MXfJHNEROqlxoV+7ItjAbx0n9xji4rmQ7fT6yQkxoYC4FUb5BmS4jmlC7nP9twymK0CUcE+6KmiRTrH8jghNzpaXIXSmkb4GPUY2iNY7nBkwSa6StwxNgZh/l7ILa3FFzuPyR0OEZHTfLv/BA4XViHAZMCccRyFTtRRdY1W7MprGkWllkuR7RwngZzvmVxMCHHGJfvquhTZfpyk8jghD2B/v3OELbmD/cvJJJXMh25nHzSRmsV50cn17F/WjIoJgZfBM9vJnpm1Cvl6GTBvQtNCe69tzECjhaPRiUj9rDaBJRvSAQB3jYtFsK+XzBERqdeO3FMwWwW6BXmjVxf1jKICTs9/m8LFscjFjhZVo7SmEd5GHYZGB8kdTrskNzf9t+WUocFilTkaItdKam4OHi6sQllNo8zRkNalqGw+dLthPYPhbdShpLoR6cXVcodD/8/ef4fHdZ53wv/3TMegDyrRG0FSpFjEBkBdIuVEXme9aU5sx46cdZUsWXTeJH5/72vHu79rk921VRwplq1YiRPHcYtT1nZsU1Q3ABIkxSKKDb0RdTCDMph6zvvHzBmAEgvKzDynfD/XlSsRAwzug5mD55z73M99G1y7TosQUolJdB35cEstyvKcGPEt4vvHh0SHQ0S0bj85cwXdE/PIz7LjY3fUiw6HSNfUaj099UNXqcOxrviDGOBwLEqjjsR5srfOA6dNH/3QVc1lOSjKdiAYkXF6iH3RydiKc5zYVJYLgLsvKL3mgpHkrAk9tfkCAKfNij21iVZf3dy1QekTkxUcNXk/dIBJdF1x2a14+N4mAMCzL3UjFGEFChHpV0wB/urlXgDAJ+5qQJ7LLjgiIn3TYz901dXDsZgsofRZvmVfbyRJSt64ssUFmUEr+z1TBnT1exGTFdQVuVFRkCU6nFVrZUs8yoC3R2cxG4wi12nDtoo80eEIwyS6znxgbzUq8l0Ymw3in46zNzoR6VfXpIQBbwBF2Q78YVud6HCIdG0+FMWZYX1WUanYF53SLSYrONrnBaC/LfsqJhXJTPjQiDKhvVvf1bWtyXkZXsgyW+JRenT0xv8O76v3wGY1byrZvEeuU06bFZ+9fyMA4Buv9SHMYnQi0qFwVMYvhuNL0KfubkS20yY4IiJ96+qLV1HVeNyoKtRXP3SVWkHPvuiULuevzMK/GEGO04ZbK/XVD12l9iF9c9CHIHelksG11BdBkoCeyQVMzAZFh0MGldzJp9M+z9sr85HjtMG/GMHbV2ZFh0MGpe7k0+vDplRhEl2Hfnt3FWo8bkzNh/H6mL56nhIRAcCPTo7AG5JQkuPAh1tqRYdDpHtqlZ5eq2uB5cOxQujmcCxKA7V6W89VVHVFbpTnuRCOyTgxMCM6HKK0ynfbsTXRNoC7lCgdfIFwMvHc0uARHM3a2KwW7K0rBMBdSpQekZiMrsROPibRSXfsVgseTVSjHxm1YD4UFRwREdHKBSMx/PWr8V7on7q7AVkOfQ12I9KiDgMM+rlqOBZvAikNksN3ddgPXSVJUvJhGVtckBks36VElGqdvV4oCrCxNAeluS7R4ayZukuJD5soHc4M+7EQjqHAbceWcvP2QweYRNet9++sQH2RGwtRCX/fMSg6HCKiFfunY4MYnw2hwKHgA7srRYdDpHu+QBjnRuNVVHpODgLs90zpE4nJOGaQKqoWnidkImpykA9XKR061IerOl8X1PiP9XkRjcmCoyGj6Uw8nGmpL4LFYu5uGEyi65TNasFn72sEAHzrV/3wL0YER0REdHOL4RiefbkHAPBAlQynnVXoROt1tC9eRdVYko3SPP1WUQHLhmP1TXM4FqXU2ZF4FVV+lh23bNB3FZVaiX562M8dqWR4e+s9sFokDHoDGJ4JiA6HDEat3NZzOzwA2LIhD/lZdsyHojg74hcdDhlMsm1kk77Pk1RgEl3H3rutHOVZCmaDUXzrjT7R4RAR3dQ/dPZjaj6EqgIX9pcwQUaUCmo1aptOB2Itpw7H8gUiOD/G4ViUOup50tLg0X0VVVWhG9WeLMRkBV39XtHhEKVVjtOG7VXxQcDcfUGpNDkXwqXxeUgSsL9e38lBq0XC/nq2xKPUC0VjON4fn8Gi9x2vqcAkuo5ZLBJ+vTq+VeeFN/owsxAWHBER0fXNh6J4LtEL/eF7G2HjCkSUEmpSQe9bkQEOx6L0SZ4nBrkBbGtI9L/leUImkOyLzn7PlEJqi4ot5XkozHYIjmb91Gr6Tp4nlEJvDvoQisooznGiqTRHdDjCMYWhc9s9CraU52I+FMU3X+8VHQ4R0XV9u70f3oUw6ouz8f4dG0SHQ2QIU/MhXByfAwC0GCU52MjkIKVWKBrD8YF4xXZbk/53bACcH0DmsnxdUBTuZKTUaDdQEQIAtCbOk65+L0LRmOBoyCiWF+tIkr538qUCk+g6Z5GAx+6P90b/u1/F2yQQEWnNbDCCb74Wf9D32P0bYbNy+SFKBbXaaHN5LjwGqKIClm5mj3I4FqXIqUEfghEZxTkObDRIFZV6nrw16oc/wNlIZGy7awtht0q44g9iYJp90Sk1Og3SD13VXJaDomwHghEZp4fYF51SY6ltpDHOk/ViFsMA7ttUgh3VBViMxPDcKz2iwyEiepdvvd4H/2IEG0tz8L4dFaLDITKMdgP1Q1ctH4711ij7otP6qS0gWhqMU0VVludCQ0k2FAU42sdqdDK2LIcVu2rirb7Y75lS4Yp/EX1TC7BI8eG1RiBJEloSiU51ECTReiyGY3hziP3Ql2MS3QAkScKhg80AgH/oHMD4bFBwRERES3yBMF5IDD/+3IFmWHU+0I1ISzoNthUZeOdwLN4E0voZbcu+qi2ZLGFSkYyPfdEpldTq2lurCpDnsguOJnXa2OqLUuj4gBeRmIKKfBdqi9yiw9EEJtEN4q6NxdhTW4hQVMZfv9wtOhwioqRvvtaLuVAUm8tz8evbykWHQ2QYY/4gehNVVPsMUkWl4k0gpcpiOIZTgz4AxtqxAQCtieGiHCJHZrB8XWBfdFqvdoMNm1apx/PmoA/BCPui0/qo50kL+6EnMYluEJIk4dAD8Wr0fzo2hBHfouCIiIiA6fkQ/q69HwBw6GAzLKxCJ0qZjt54lfa2ynzkZxmnigpYGo51vH8G4Sj7otPanRiYQTgmozzPhTqDVVG1NMQfnl0Ym8M05yKRwe2sKYDTZsHUfAjdE/OiwyEdUxTFsH2e64uzUZ7nQjgm48TAjOhwSOc6DNg2cr2YRDeQtsZitDYUIRyT8cxLrEYnIvGee7UHgXAM26vycfCWMtHhEBlKe7cxW1QAS8OxFiMxnB72iQ6HdEx92NRmwCqqohwnNpfnAgA6e72CoyFKL6fNir11aqsv7r6gtRvyLmLEtwi7VcKeukLR4aSUJEnJ60K2xKP1mAtGcHYkPqDWiPcaa8UkusF8PlGN/sPjQxjk5HIiEmhiNoi/7xgAADx+sNlwyQsi0dS+sEbbigy8YzhWN5MltHbLtyIbEZMlZCatbPVFKaA+XN1ZXQC3wyY4mtTjeUKp0NXvRUxWUFvkRmVBluhwNINJdIPZU+fBXc0liMoKvvbSZdHhEJGJ/fUrPQhFZdxWU4B7mktEh0NkKEPeAIZnFmGzSMnKPKNpY3KQ1mk+FMWZ4XgVldG27Ks4bJHMRE0OdvZNQ5bZF53Wxqj90FXqcZ0e9mM+FBUcDelVcserQc+TtWIS3YAOHYxXo//45DB6J9kvjogyb9S3iO8eHQQAfP6BTaxCJ0oxtbpoR3UBsp3Gq6ICOByL1q+rL15FVe3JQlWhsfqhq/Y3FMEiAb2TCxifDYoOhyitbq3MR7bDCl8ggvNjs6LDIR1a3g+91aB9nqs9blR7shCTFXT1s9UXrU1yx6tBixDWikl0A9pZXYADW0ohK8DTR1iNTkSZ98zL3QjHZOyv9xi2+o9IJLU628jnF4dj0XqpN4BtDcZMlABAfpYdWyvyAXDrPhmf3WrBvvr47it+3mkteiYXMDEXgsNmwa6aAtHhpE1ylxLPE1oDXyCMt6/EH1SyEv1qTKIb1OOJavR/Pz2KS+NzgqMhIjMZ8gbwg64hAKxCJ0oHRVEM3Q9dtXw4Fm8CaS3Uh01Gr6Ji6yMyE64LtB7q9dOe2kK47FbB0aRPW6LKnucJrUVnrxeKAjSV5qA0zyU6HE1hEt2gtlbk49e3lUNRgKdevCQ6HCIyka8duYyorODOjcXJaiEiSp3eqQWMz8arqG6rLRQdTlpxaCKtlT8QwbnRRBWVwZPo6tBU9kUnM1CTg0f7vIjGZMHRkN50qA9XDVyEACyte2+N+uEPRARHQ3pjlvNkLZhEN7DHDzZDkoCfnR3DuVG/6HCIyAT6phbw4zdHACzNZyCi1FKrim6rKTB0FRWwdPF+hsOxaJU6+6ahKEBDSTbKDF5FtbfOA5tFwpB3EUPegOhwiNJqy4Y85GfZMR+K4q1R9kWnlZNlBZ298R7hbU3GTg6W5bnQUJINRQGO9vEBK61Osh2ewYsQ1oJJdANrLsvF+7ZXAACePMxqdCJKv6dfvISYrOC+zaXYVWPsClkiUdQkeptBB2Itpw7HinI4Fq3S0nli/BvAHKcN26vYF53MwWqRsD+x05G7lGg1Lo7PwbsQhtthxfaqAtHhpN1Sqy+uC7Ryk3MhXBqfBxAfXk5XYxLd4B47sBEWCXjx/ARODflEh0NEBnZ5fA7/dnoUAKvQidIlXkWV6IduguQgsDQUspM3gbQKZnrYBCzrf8uWLmQCbeyLTmugfl721nlgtxo/FdaqXj9xXaBVUD8vWzbkwZPtEByN9hj/L4fJNZbk4L/sqgIAPMFqdCJKo6devAxFAd6ztQzbKvNFh0NkSJcm5jC9EEaW3YodJqiiApb3RedNIK3M1HwIF8fnAAAtJqmiWj4/QFEUwdEQpVdr4qHR8f4ZhKPsi04ro15HmKUIoaUhvmPjwtgcpudDgqMhvUieJya5flotJtFN4LH7N8JmkfDapUkc51ZoIkqDt0dn8dOzVyBJ8XkMRJQeahXVnrpCOGzmuIxTb3bPcTgWrZBaRbW5PNc0VVS7awvhsFowPhtC39SC6HCI0qq5LAdF2Q4sRmI4PewTHQ7pQExWkr3BzdDmCwCKcpzYXJ4LAMle8EQ308l+6Ddkjrsvk6spcuN39sSr0b/6S1ajE1HqPfli/G/Le2/dgM3leYKjITKudpO1qACWhmPJHI5FK9RhsmpDAHDZrdhVUwCAuzbI+CRJQou6+6Kbn3e6uXOjfswFo8h12bC1wjw7ZpfvUiK6mSv+RfRNLcAiAfsSOxnoakyim8Qj922Ew2pBR+80/4ASUUqdGfbh8NvjsEjA5w6wCp0oXWKygqMm64euSva/ZV9PWgGz9UNXsS86mcnSusB7W7o5dV3YX18Eq0USHE3mqC05uC7QSqjnya2V+chz2QVHo01MoptEZUEWfm9fNQDgiV9eYq9EIkoZdd7C+3dWoqk0R3A0RMb19ugsZoNR5Dpt2FZhrh0f6nAsDpGjmxnzB9GrVlHVm6uKSn241tkzzWt9Mjw1OXhywIdgJCY4GtI6s/VDV+1vKIJFAnonFzA+GxQdDmmcep60mOw8WQ0m0U3k4Xub4LRZcHxgBq9d5hN7Ilq/EwMzeOXiJKwWCY/ev1F0OESGplbb7av3wGY11yUch2PRSqnnybbKfORnmauKamd1AVx2C6YXwrg0Pi86HKK0qi/ORnmeC+GYjJMDM6LDIQ2LxGR0JWbDma3Pc36WPdm+hoUIdCOKoph2J99qmOsOzOTK8lz4cEstAOCJX15khQoRrdsThy8CAH77tirUFWcLjobI2MxaRQVwOBatXLIfeoP5zhOHzYK9dfEHTmzfSEYnSdKyfs9MDtL1nRn2IRCOodBtx6ayXNHhZFwb+6LTCgx5FzHiW4TNImFPbaHocDSLSXST+fQ9jciyW3F62I8j5ydEh0NEOtbZO41fdU/DbpXw2fubRIdDZGiRmIyuvnjy2IxJdGDpuNn/lm7EzA+bgGXnCZOKZAKtnJdBK7B82LTFRP3QVS08T2gF1OvrndUFyHbaBEejXUyim0xxjhMfbasDEO9jLMusRiei1VMUBU/8Mt4L/QN7q1FV6BYcEZGxnRn2YyEcQ4Hbji3l5uqHrlIri1lxSNcz5A1geCZeRaVWZJuNep509k4jxut8Mjj18356yIeFUFRwNKRV7SbeoQQAe+s8sFkkDHkXMeQNiA6HNMrsRQgrxSS6CX3yrgbkOG14+8osfnFuTHQ4RKRDb3RP4Vi/Fw6bBY/cy17oROnW2bt0A2jGKiqAw7Ho5tRqwx0mrqK6tTIfOU4bZoNRnL8yKzocorSq9rhR7clCVFaSPa+JlgtGYjiR6JnfatI+zzlOG7ZXJfqisxqdrmF5P3Qm0W+MSXQTKsx24GO31wEAnnzxEqtUiGhVFEXBVxNV6B/aX4PyfJfgiIiMT+1jaeYLWw7Hopvp6DV3tSEA2KwW7KtnX3QyD/V857pA1/LmoA+hqIySXCcaS8w7v0kdFMnzhK6lZ3IBE3MhOGwW3FbDfug3wiS6Sf3RnQ3Ic9lwaXwePzkzKjocItKRly9O4NSQDy67BZ++p1F0OESGF4rGcLw/XkXVZuIkOrB0/LwJpHdSFCWZNOZ5wvOEzENNDrLVF12L+nC1rbEIkmTOnXzA1fMyFIVFlHQ19TzZXVMIl90qOBptYxLdpPKz7Pj4nQ0AgKdfvIxoTBYcERHpgaIoeOJwvAr9o611KM1lFTpRul1dRZUjOhyh1OFY7RwuSu/QN7WA8dkQHFYLbqs1dxVVS6Iy91ifFxFe45PBqcnBc6N++AMRwdGQ1nSoO/lMvEMJAHbXFsJhtWBsNoi+qQXR4ZDGdHDH64oxiW5iD91Rj0K3Hb1TC/jXU6xGJ6Kb+8W5cbw1MotshxWfvJtV6ESZ0LFsIJaZq6gADsei61OrUG+rLTB9FdUtG/KQn2XHQjiGsyN+0eEQpVVZngsNJdmQFeBoH6vRaUkgHMWpIR+ApR0LZuWyW7GrpgAAd23Q1WRZQWdvfKaE2XfyrQST6CaW47Qlk2BfO3KZlSpEdEOyrODJRBX6Q7fXw5PtEBwRkTlw0M8SDsei61nqh27uRAkAWCwSWhrifdHZ0oXMINkXnesCLXO8fwaRmILKgixUe7JEhyNcsi86zxNa5uL4HLwLYWTZrdheVSA6HM1jEt3kPtJai+IcBwa9AfzoxLDocIhIw3569goujs8h12VLtoMiovRaDMfw5hD7oS+n3gR2MjlICYqiJD8PbU08TwAOkSNz4eedrqV9WRGC2XfyAUvFGJ3si07LqH8399Z74LAxRXwz/A2ZnNthw6fvaQIA/NWRywhFY4IjIiItisZkPPlivAr9v97RgHy3XXBEROZwfMCLSExBRb4LNR636HA0Qb0JbOdNICVcGp/HdKKKagerqAAsnSdd/V5e35PhqTsvLozNYXo+JDga0oqlHUp8uAoAO6sL4LJbML0QxqXxedHhkEa09/A8WQ0m0Qkf2l+DsjwnRv1BfL9rSHQ4RKRB/3ZqFL2TCyhw2/GxO+pEh0NkGkutXIpZRZWwfDhW/zT7ohPQnhiItaeukFVUCRtLc1Cc40AoKuPUoE90OERpVZTjxObyXABI9vYlc5sNRnB22AeA7fBUDpsFe+viD5zUdZPMLSYryVkS3PG6MrzKJLjsVjxyb7wa/ZmXuhGMsFqFiJZEYjKePnIZAPDJuxqR62IVOlGmtLMf+rtcPRyLN4HEuQHXIkkSWhqWdm0QGV1Lsi861wUCuvq8kBWgrsiNigL2Q1ep6yRbHxEAnBv1Yy4YRa7Thq0VeaLD0QUm0QkA8Lt7q1FZkIWJuRC+0zkgOhwi0pB/PjGMQW8AxTkOfLStVnQ4RKYxF4zg7IgfAJOD78T+t6SKyQo6e9UqKg4VXY5D5MhM2hr50IiWtC/byUdL1JYdnb3TiMlsiWd26nX0/gYPbFamh1eCvyUCADhtVnz2vng1+nOv9iAQjgqOiIi0IBSN4a9e6gYAfOruRrgdNsEREZlHV78XMVlBbZEblayiukpyOFYv+6Kb3fkrs5gNRpHjtGEbq6iuop4nbw7OYDHMnaZkbPvriyBJQO/kAsZng6LDIcG4Q+nabq3MR47ThtlgFOevzIoOhwTjw6bVYxKdkn5rdxVqPG5MzYfx7XZWoxMR8IOuIYz4FlGW58SHW1iFTpRJ6g0gexS+mzoca2o+jMsTHI5lZmpLn/31rKJ6p7oiNzbkuxCJKTgxMCM6HKK0ynfbsa0iHwB3KZndzEIYbycSxByWeDWb1YJ99eyLTvGWrV398RkSPE9WjlealGS3WvDY/RsBAN94rQdzwYjgiIhIpGAkhmdejlehP3xvE1x2q+CIiMxFrQ5p4YXtu1w1HKubN4FmxmrD65MkKXljzGQJmQH7PROA5KDEjaU5KMl1Co5Ge9p4nhCAM8M+BMIxFLrtycHMdHNMotNV3r+rEg0l2fAFIvjbX/WLDoeIBPrHo4MYnw2hIt+FD+ytFh0Okan4AsuqqJgcvKZksoT9nk0rEpNxrC9RRcXz5Jp4npCZqJ/3dg4XNbV27uS7IbU441ifF5GYLDgaEqVjWbGOxSIJjkY/mESnq1gtEj53oBkA8PzrvfAHWI1OZEaBcBRffyVehf7Z+zfCaWMVOlEmdfZ6oShAU2kOSnNdosPRpKXhWF7IHI5lSmdH/FgIx1DgtmNLOfuhX4uaVDwz7Md8iDOPyNj21nlgtUgY8i5iyBsQHQ4Jwh1KN3bLhjzkZ9mxEI4lB9iT+fBh09owiU7v8p9u3YBNZbmYC0bxN2/0ig6HiAT4+44BTM2HUeNx47d3V4kOh8h0OhKtF3hhe33qcCz/YiRZtU/mkqyiqmcV1fVUFbpR43EjJivoSlTtExlVjtOGHVWJvujcfWFKE3NBXJ6YhyTFh83Su1ksEloa4i3x2NLFnIKRWHJWCh82rQ6T6PQuFouExw/Ge6O/8EYfvAthwRERUSbNh6L4xqs9AIBH798IOwe1EWWcevPPQT/Xt3w4Fm8CzYnVhivDvuhkJurfg06uC6bU2Rt/WLilPA+F2Q7B0WhXW2MxAF4/mdWbgz6EojJKcp1oLMkRHY6uMDNC1/SereXYWpGHhXAM33itR3Q4RJRBf/tGH2YCETQUZ+P9OytEh0NkOpNzIVwanwfAoaI308Z+z6YVisbQ1R9PlnDHxo21NfE8IfNQk4PtPdNQFLb6Mhvu5FsZ9WFTV78XoWhMcDSUacuLdSSJO/lWg0l0uiZJknDoYLw3+t+3D2ByLiQ4IiLKBP9iBM+/Hm/j9NiBjbCxCp0o4zoTF7ZbNrCK6maWD8eKcjiWqZxKVFEV5zjRVMoqqhtRK9HPjc7CF+AOUzK23bWFcFgtGJsNon+afdHNhjuUVmZjaQ6KcxwIRWWcGvSJDocyjA+b1o7ZEbqu+zaXYmd1ARYjMXz9FVajE5nBt17vxWwwiuayHLxvO6vQiUTgoJ+VU4djzYeiHI5lMu3LEiWsorqx0jwXGkuyoSjAUfZFJ4Nz2a3YVVMAgC2MzGbUt4j+6QCsFinZ7o2uTZKkZCFCO1u6mEogHMWpIR8APmxaCybR6bqWV6N/5+gAxvxBwRERUTrNLITxwq/6AQCPH2jmkDYiQTrZD33Flg/H4k2guXBuwOqw/y2ZiZoY4ufdXNT3e1tlPnJddsHRaF9yXWCrL1M53j+DSExBZUEWajxu0eHoDpPodEN3bizG3rpChKMynn25W3Q4RJRG33itF/OhKG7ZkIf3bC0XHQ6RKV3xL6JvagEWCdjXwCqqlVBvAjt5E2gai+EY3hycAcAdGyvFpCKZyfJ1gX3RzYM7+VZHXRfeHJzBYph90c1CfWjSwn7oa8IkOt1QvBp9EwDge12DGJ5hXzkiI5qcC+Hb7f0AgEMHWYVOJIqa4Lq1Mh95rKJaEQ7HMp8TA/Eqqg35LtQWsYpqJdRt+xfH5zA1z1lHZGw7qvPhslswNR/G5Yl50eFQBiiKwp18q1RX5MaGfBciMQUnBmZEh0MZwodN68MkOt1Ua2MR2hqLEIkpeOYlVqMTGdFzr/ZgMRLDjuoC3L+lVHQ4RKa11Oe5WHAk+qEOxwpGZJweYl90M1D7HLMf+sp5sh3YXJ4LgLs2yPicNiv21iVafXWzL7oZDHoDGPEtwm6VsKeuUHQ4uiBJUvKBA+cHmMNsMIKzwz4A7Ie+Vkyi04p8/oF4b/QfnhjGwPSC4GiIKJXGZ4P4TucAgHgVOhMSRGIoipKsROeF7cpdPRyLN4FmwH7oa6O2uOD8ADIDdV1gv2dzUK+fdlYXwO2wCY5GP5KtvniemEJXnxeyEt+FUFGQJTocXWISnVZkd60HdzeXICYrePrIZdHhEFEKPftyN0JRGXtqC3HXRla/Eoky5F3EiG8RNouEvayiWhUOTTSPuWAEZ4bjOw74sGl11N9XJ88TMgG1VUFnrxeyzL7oRsedfGujrgtnhv2YD0UFR0PpxmKd9WMSnVbs0MF4Nfq/vjmCbvaWIzKEEd8ivndsCABw6AFWoRvJs88+i7q6OrhcLuzfvx/Hjh274df7fD48/PDD2LBhA5xOJ5qbm/Gzn/0sQ9ESAHT0xquoWUW1ekvDsXwIRtgX3ci6+r2IyQpqPG5UFbIf+mrsq/fAIgG9UwsY8wdFh0OUVrdW5iPHaYN/MYK3r8yKDofSSFEU7lBao6pCN2o8bsRkBV19XtHhUJrxYdP6rSmJzhtzc9pRXYADW8ogK2A1OpFBPPPSZYRjMlobipKVnKR/3//+93Ho0CF86UtfwsmTJ7Fjxw685z3vwcTExDW/PhwO4+DBg+jv78ePfvQjXLx4Ec8//zwqKyszHLm5cdDP2qnDscIxmcOxDK6D58ma5WfZsa0yH8DSQzsSj/fW6WGzWrCvPt4XnbuUjK1nch6TcyE4bRbsqikQHY7usC+6OcwshHF+LP5AsaXBIzga/Vp1Ep035uamVqP/5MwoLo7NCY6GiNZjcDqAHx4fBrA094CM4YknnsDHP/5xPPTQQ7jlllvw3HPPwe1244UXXrjm17/wwgvwer3413/9V9x+++2oq6vD3XffjR07dmQ4cvNa3g+9hcnBVeNwLPNo51bkdVF/b+3dTCpqAe+t06uVfdFNQb1+2l1bCJfdKjga/Wlr4nliBkf7pqEowMbSHJTmukSHo1ur3iu8/MYcAJ577jn89Kc/xQsvvIA/+7M/e9fXqzfm7e3tsNvtAIC6urob/oxQKIRQKJT879nZ+NOSSCSCSCSy2pDfRX2NVLyWSCKOY2NJFn5taxl+fm4cX/3lBTz7+ztT8rpGeU8A4xyLUY4DMM6xpPo4nnzxIqKygjubirCjMjejvx++Jzd+vfUIh8M4ceIEvvCFLyT/zWKx4MCBA+jo6Ljm9/z7v/87Wltb8fDDD+Pf/u3fUFJSgg9+8IP40z/9U1it174Z4Vq9cis5lp7JBUzMheCwWbB9Q44mj1vr78m+ugL8+M0RtHdPIXLfjWPU+rGslFGOA1jZsfgCS20Z9tTka/K4tf6e7KstwDcAdPRM3TRGrR/LSqXjOFL1Wum+t073Wq2+1vL/rSV7a+M7L472TWMxGILNev0aQi0fx2oZ5VhWehxvXJ4EAOyvK9TsMWv5PdlTEz9Pzo3OYtIfQIHbft2v1fJxrJZRjmWlx/Er9TypN895ko7jlBRFWfGUjXA4DLfbjR/96Ed4//vfn/z3j370o/D5fPi3f/u3d33Pgw8+CI/HA7fbveIb8z//8z/Hl7/85Xf9+3e/+1243ex9KNqVAPA/T1uhQML/tT2KqmzRERHRao0vAn9xKn4eH9oWRW2u6IgIAAKBAD74wQ/C7/cjLy9vTa8xOjqKyspKtLe3o7W1Nfnvf/Inf4JXX30VR48efdf3bN68Gf39/fjQhz6Ez3zmM+ju7sZnPvMZPProo/jSl750zZ/DtTq13hiT8MM+KzbmyXhkqyw6HF3yhoAvn7TBAgV/sS8GF4vRDOf0tIQXLllRlqXg/97J3vdrEYoBf9ZlhaxI+OKuKIpYjLYmqVivM3Fvbfa1WlaA/1+XFYGYhMe3RVHH613DkRXg/zluxUJUwue2RVHP93hN/scpK8YXJfzRphi2eziI14j+4pQVY4sSPtYcw44ic7zHqVir32lVlehTU1OIxWIoKyu76t/Lyspw4cKFa35Pb28vXnrpJXzoQx/Cz372s+SNeSQSue6N+Re+8AUcOnQo+d+zs7Oorq7GAw88kJIDj0QiOHz4MA4ePJh8gq9HIo/jbeUs/v3MFRwPleMTv3Pbul/PKO8JYJxjMcpxAMY5llQex+M/OAMFY7hvUwk+/YFdKYpw5fieXJtaIZZpsiyjtLQU3/zmN2G1WrF7926MjIzgf//v/821OgVWciz/8b3TAMbx3r3NePCehswGuEJ6eE9e6HsdQzOLKNq0F3c3l1z36/RwLCthlOMAVnYsx396AcAgDtxagwcf3JLZAFdID+/J98aO4eSgD67aHXhw9/XbgOjhWFYiHceRivU6E/fW6V6rAe1/Tn7mP4XD5ydgKd+MB+++/vqq9eNYDaMcy0qO4/yVOSx0dsDtsOITv30A9hvsNhBJ6+/J0djb+O6xYYQL6/Hgg5uv+3VaP47VMMqxrOQ4puZDGOt4FZIEfOq37keh25HhKFdGD/fWq27nslpruTF3Op1wOp3v+ne73Z7SD3eqX08UEcfx+AOb8NO3xvDyxSm8dWUeu2oKU/K6RnlPAOMci1GOAzDOsaz3OC6OzeGnb40BAD7/nk1Cfyd8T979OutVXFwMq9WK8fHxq/59fHwc5eXl1/yeDRs2wG63X1XFtmXLFoyNjSEcDsPhePeFFtfq1bvesciygmP98WGYd2ws0fzxavk9aWssxvePD+HYgB8Htlbc9Ou1fCyrYZTjAG58LEf7vACA23merMvtTcU4OejDsf4ZfLCl7qZfr+VjWY1UHoeo38dq760ztVan6zVT4famYhw+P4FjAz58dgXxafU41sIox3Kj4+ga9AMA9tZ54Ha9+7OuNVp9T+7YWIrvHhvGsb6ZFcWn1eNYC6Mcy43Pk3grly3leSjN134rCS3dW7/Tqh7TrfXGvLm5+bo35qRP9cXZ+M1d8cqVJw5fEhwNEa3GUy9egqIAv76tHFsr8kWHQynmcDiwe/duHDlyJPlvsizjyJEjV7V3We72229Hd3c3ZHmpjcilS5ewYcOGaybQKbUujs/BuxCG22HF9qoC0eHoWnI4Vg+HYxnN5FwIl8bnAQAtDRwquh7Lhy2uorMnpRjvrTOjrakYANDV70UoyjZQRtORGCbexmHT66KuqxfH5zA1H7rJV5PedHAoe8qsKonOG3Na7tH7N8JmkfD65Sl09XtFh0NEK3Bu1I//eGsMkgQ8frBZdDiUJocOHcLzzz+Pb3/72zh//jw+/elPY2FhITm47CMf+chVg0c//elPw+v14rHHHsOlS5fw05/+FP/jf/wPPPzww6IOwVTUC9s9dR44bNrchqwXanLwrVE//AFtDk2itensjZ8nm8tz4cnmPcR63FZbCIfNgvHZEHqnFkSHY1q8t86MjaU5KM5xIBiRcXrILzocSqFoTMbR3ngegsnB9fFkO7C5PN5QXl1vyTj4sCl1Vn2nxhtzUlV73PjdvdUAgK/+8qLgaIhoJZ5M7Bx53/YKNJdx8o5RfeADH8BXvvIVfPGLX8TOnTtx6tQp/PznP0/2XR0cHMSVK1eSX19dXY1f/OIX6Orqwvbt2/Hoo4/isccew5/92Z+JOgRTaU8k0Xlhu36leS40lmRDUYCjfbwJNJKOXvU8KRYcif657FbcVlMAgLs2ROO9dfpJkpSssm1PJJLIGM6NzmIuFEWuy8bdtSmgPoho57pgKKO+RfRPB2CRgL31HtHh6N6qe6J/4AMfwOTkJL74xS9ibGwMO3fufNeNucWylJtXb8wff/xxbN++HZWVlXjsscfwp3/6p6k7ChLmkXub8KPjw+js9aK9eyq5XY6ItOfUkA8vnp+ARQIeO7BRdDiUZo888ggeeeSRa/7/XnnllXf9W2trKzo7O9McFb1TTFaSyd5WtqhIidbGIvRMLqC9ZxoPbL12SwTSH25FTq22xmJ09nrR0TOND7fUig7HtHhvnRmtjUX4yZkr6OiZxucOiI6GUkV9uNrSUASrRRIcjf61NRbjb3/Vj04m0Q1FvX66taoAeS79934XbU2DRXljTqqKgix8cH8N/q69H189fAmtjUWQJC5gRFqkzi/4L7uq0FiSIzgaIgLiLZbmgmoVVZ7ocAyhrbEY3+kc5HZkA7niX0Tf1AIsErCPVVQp0dpYBByOb9uXZQUWJqCE4b11+qk7WN4c9CEYicFlt97kO0gP1IppFiGkxr56DywS0Du1gDF/EOX5LtEhUQqoD5t4nqQGG2/Sun3mnkY4bRacGJjBq5cmRYdDRNdwvN+L1y5NwmaR8Nj9rEIn0gq1OmR/vQc2Ky/LUkHdtn9hjMOxjEI9T7ZV5iM/i1VUqbCjqgBZdiumF8K4NDEnOhyitKorcqM8z4VwTMaJgRnR4VAKhKMyjifmsqlDxWl98rPs2FYZb4vT0cvWR0agKEryGoptI1ODd2u0bqV5LnykNb4N9InDl6AoiuCIiOidvvrLeBX67+ypQk2RW3A0RKRKVlGxz3PKcDiW8bCVS+o5bBbsqSsEwL7oZHySJCUTSOyLbgxnhn0IhGPwZDvQXMo5T6miViu3d3NdMIIh7yJGfIuwW6Xkmk/rwyQ6pcSn7m6E22HFmWE/Xjw/ITocIlqmvWcKHb3TcFgteOQ+VqETaUUkJqMrUUXFLZappSZbmRw0Bm7ZTw+1xQWHyJEZtHBdMJSOZesC21GlTvL6iUUIhqA+NNxZXQC3Y03dvOkdmESnlCjKceIP2+oAxKvRZZnV6ERaoCgKnkhUof/evmpUFmQJjoiIVGoVVaHbnqycptRQk4NMlujfkDeAEd8ibBYJe+vYDz2V1GTJ0d5pxHjtTganVqKfHvZjPhQVHA2tl/rwr4U7lFJqb50HNouE4ZlFDHkDosOhdWI/9NRjEp1S5hN3NSDXacP5K7P4+bkx0eEQEYDXLk/h+MAMnDYLHr63SXQ4RLSMmuBtYRVVyr1zOBbpl1pFtaO6ANlOVlGl0raKPOQ6bZgNRvH26KzocIjSqqrQjWpPFmKyktwFRvoUjMRwYjDe2559nlMr22nDjuoCACxE0DtFUdg2Mg2YRKeUKXA78LE76gEATx6+xIoWIsHiVegXAQAfbqlFWR4nrBNpSTsH/aQNh2MZBwdipY/NasG++nh1P88TMoO2Bu5SMoKTgzMIR2WU5jrRUJwtOhzDSfZF5/wAXeuZXMDkXAgOmwW7agpEh2MYTKJTSv3RnfXIz7Lj8sQ8fnJmVHQ4RKZ25PwETg/7kWW34tP3NIoOh4iWCUZiODEQr6LisMT0UG8CmSzRr6uqqLgVOS1ak8MWeZ6Q8XFehjF0Lnu4KkncyZdqbcv6oisKCyP1qiPxEGRPbSFcdqvgaIyDSXRKqTyXHZ+4qwEA8NSLlxGNyYIjIjInWVbwxOF4L/SPttWhOMcpOCIiWu7NQR9CURkluU40luSIDseQmBzUv96pBUwkqqhuqy0UHY4hqedJV58XEV63k8Gpn/e3Rv3wByKCo6G1WmpRwYer6XBbbSEcVgvGZ0PonVoQHQ6tEfuhpweT6JRyf9hWB0+2A31TC/jxmyOiwyEypV+cG8PbV2aR47Thk4kHW0SkHcsvbFlFlR4cjqV/aqLktpoCVlGlyZbyPBS47VgIx3Bm2C86HKK0KstzoaEkG4oCHO3jA1Y9CoSjODXkA7A0RJxSy2W34rbaAgDctaFXsqwstcNrYhI9lZhEp5TLdtrwqbvjSbuvHbmMcJRVLUSZFJMVPPlivAr9Y7fXoTDbITgiInondYsl+zynD4dj6d/Sln0mStLFYpHQUh//O9TZy/OEjK+Nu5R0rat/BlFZQWVBFqo9btHhGJa67vL6SZ8ujs9hJhCB22HF9qoC0eEYCpPolBZ/0FKHklwnhmcW8cMTQ6LDITKVn5wZxaXxeeS5bPijO1mFTqQ1y6uouBU5vZJ90Zkc1B1ZVpZ2bPA8SSu1So1D5MgMWhPDRfnQSJ84bDoz1HW3s3cassy+6HqjPiTcW+eB3cq0byrxt0lpkeWw4jOJQYbPvNSNYCQmOCIic4jGZDz94mUAwMfvbEB+ll1wRET0Tsf7ZxCJxauoalhFlVZLFYdTHI6lM5cm5uBdCCPLbsUOVlGllfqw6Xj/DEJRXrOTsbU0eAAAF8bmMD0fEhwNrZa6k48PV9NrR1UBsuxWTC+EcWliTnQ4tEodnBuQNkyiU9r8/r4abMh34Yo/iO8dGxQdDpEp/OupUfROLaDQbcdDd9SLDoeIrkGtrm1hP/S0Wz4cq4/DsXSlvTt+nuypK4TDxluWdGoqzUFxjhOhqIw3B32iwyFKq6IcJzaX5wIAOnu9gqOh1ZgNRnB2JD67gcnB9HLYLNhTFx/ozZYu+hKNyTjayx0b6cIrUkobl92Kh+9tAgA8+0oPFsOsbCFKp0hMxteOxKvQP3l3I3KcNsEREdG1tHMrcsYsH47F/rf60tHLfuiZIklSMiHFZAmZQWsjWxjp0bFeL2QFqC/Oxob8LNHhGJ66/vL6SV/Ojc5iLhRFrsuGrRX5osMxHCbRKa1+d081qgqzMDkXwnc6B0SHQ2RoPzoxjEFvAMU5DnyktVZ0OER0DbPBCM4O+wCwiipT1P637IuuHzFZSfYr5nmSGW1MopOJcF6GPnFORmapv+ejvdOIsS+6bqjnyf76Ilgt3PGaakyiU1o5bBY8et9GAMDXX+3BQigqOCIiYwpFY/irRBX6p+9pgtvBKnQiLerqi1dR1RW5UVHAKqpMUIcmdvZMsy+6Trw9Oou5YBS5Thu2VeSJDscU1KTim0Mz3D1Khre/oQgWCeidXMD4bFB0OLRCakW0+veK0mtbRR5ynTbMBqN4e3RWdDi0Qu3sh55WTKJT2v3mbZWoK3LDuxDG37X3iw6HyJC+3zWEUX8QZXlOfGh/jehwiOg6OOgn864ajjU+LzocWgG1xcK+eg9sVt6uZEJtkRsV+S5EYgqOD7BPNBlbfpY92eaAuy/0YWYhjPNX4oncFibRM8JmtWBffXwQb0cvWx/pQTgq43h/fA1n28j04FUppZ3NasFjB+LV6N98rRezwYjgiIiMJRiJ4ZmXugEAj9zbBJfdKjgiIrqepeoQ9nnOlOXDsdj/Vh+4ZT/zJElCC1u6kIm0sS+6rqgtvprLclCS6xQcjXkszQ/guqAHZ4Z9CIRjKHTbsaksV3Q4hsQkOmXEb+yoRFNpDvyLEbzwRp/ocIgM5TudA5iYC6GyIAu/u7dadDhEdB0zgTDOj6lVVB7B0ZgLhybqRyQm41hfvIqKSfTM4hA5MpMWJgd1hcOmxVDX4a4+LyIxWXA0dDPLd7xa2A89LZhEp4ywWiR8LlGN/q3X++ALhAVHRGQMgXAUz73aAwD47H1NcNpYhU6kVcf6ZqAowMbSHJTmukSHYyrqTXcnh2Np3lsjswiEYyhw27GlnP3QM0lNlpwd8WOOO0fJ4PbWeWCzSBieWcSQNyA6HLoJ9WEHW7lk1pbyPBS47VgIx3Bm2C86HLoJzg1IPybRKWMe3LYBm8tzMReK4vnXe0WHQ2QI324fwNR8GDUeN35rd5XocIjoBo6yulaYbRV5yEkMx1J7qpI2dfTGz5OWelZRZVplQRZqi9yIyQq6+tkXnYwtx2nD9ir2RdeDybkQuifmIUncyZdpFouElvrEgPZenidaForEcGJwBgDbRqYTk+iUMRaLhMcPNgMA/vZX/ZieDwmOiEjf5oIRfOO1eBX6Y/dvhJ3D14g0TU0OctBP5tmsFuxPDMdi/1ttUx82tTXxPBFBrV5jUpHMQN2l1MHkoKZ1JtaFWzbkocDtEByN+ajrMa+ftO3NIT/CURkluU40lmSLDsewmHGhjHrgljLcWpmPQDiGb7zGanSi9fjbX/XDF4igoSQb799VKTocIrqB2TDQPbkASQL21zM5KAL7omtfVAZODPoAcCuyKBwiR2bSumy4qKKw1ZdWdbIIQSh1PT7eP4NQlH3RtUp92NTWWARJ4k6+dGESnTJKkiQcSlSj/31HPybmgoIjItInfyCSbIv0uQPNsHLLO5Gmdc/Gz9Et5XkozGYVlQhqsuQYh2NpVv8cEIrKKM5xoqk0R3Q4pqQmS96+MgtfgH3Rydh21xbCYbVgfDaE/mn2RdeqTrbDE6qpNAfFOU6EojJODflEh0PXoT5sYhFCejGJThl3z6YS7KopQDAi469f7hEdDpEu/c0bvZgLRrGpLBf/6dYNosMhopu47I8n0XkDKM7y4VhvjbIvuhZdmo3fmrSyikqY0jwXmkpzoCjAMfZFJ4Nz2a3YVVMAYKnlGmmLNwQMehdhtUjYW8d+6CJIkpS8fu3keaJJoRhwOjH4tY390NOKSXTKOEmS8PmDmwAA3z06iCv+RcEREemLdyGMF97oAwA8fnAjB68R6cClRCU6tyKLc/VwLN4EalG3n+eJFqhVbJ19M4IjIUo/NeGkzmMgbVHXhVsr85HrsguOxrzUdbmT54km9c5JiMoKKguyUO3JEh2OoTGJTkLc3lSEffUehGMynnmpW3Q4RLryN2/0YyEcw9aKPLxna7nocIjoJq74g5gKSrBIwN56VlGJ1MqbQM1aDMfQPx//v7kVWaxksoTDFskElq8LbIuuPSxC0AZ1XT497Ec4JjgYepflO165ky+9mEQnIeLV6PHe6D84PoThGVajE63EbBj4ztFBAMChg81cJIl0QK163laZhzxWUQml3oSfGPCBs7G05cSgDzFFwoZ8F2qL3KLDMbX9iWTJ5YkFzIYFB0OUZjurC+CyW+BdiOAKb0k1RVEUtsPTiNoiNyryXYjEFPTO8f5Ta5LnCYsQ0o5JdBJmf0MR7mgqRiSm4NlXekWHQ6QLL45asBiRsbO6APdtLhUdDhGtgFr13MIqdOGWD8dSq55JG9SHTS31hXxALJgn24EtG/IALA1FJjIqh82S7LWtJqJIGwa9i/CFJditEvbU8hpKJEmS0JJ4kMHzRFvmghEMLcT/bz5sSj8m0UmoQw/Eq9H/5dQoJvnkn+iGxmaD+NVY/KLl8w+wCp1IDxRFWUoONvAGULTlw7Eu+3kZrCXJh008TzRBrWa7zCQ6mUArk4OapK4LO6rykeWwCo6G1PkBXBe05Vj/DBRIqPW4UVHAfujpxrsHEuq2mkLcu6kEMVnBz4f5cSS6kede7UNUkbCntgB3NHHqNpEeDHkXMeoPwiop2F1TIDocwrLkIJMlmjEXjOCt0VkA3LGhFW1MKpKJqMnB7lkJMZmN0bWiI1GE0MqHq5qgPmwamgfmglHB0ZDqaGIIOIsQMoNZSxLu0MFNAIATUxK6J7i3muhahmcC+MGJYQDA5+5vYhU6kU6090wBAGpzALfDJjgaApaSg/3z8WGWJF5XvxcxWUGxU2EVlUbsa/DAIgGTQQlX/EHR4RCl1baKPGQ7rViMSbgwNic6HEJ8J9/RRCX6fj5c1YTKgizUeLIgQ8LxgRnR4VACHzZlFpPoJNytVfk4uKUUCiT81cs9osMh0qRnXupGJKagOV/mhSSRjnT0TgMANuaxsk0raovc2JDvQkyRcHLIJzocAtDenThP8nmeaEWey45tFfG+6Goii8iobFYL9tUVAlhKSJFY3RPzmJoPwy4p2FldIDocSlB3i3XyPNGEmYVw8sHf/vpCwdGYA5PopAmP3tcIAPjZW+M4f2VWcDRE2jIwvYAfJqrQH6yWBUdDRCulKArae5gc1BpJktCSuNHgTaA2JB828TzRFPWhfSeT6GQCLfy8a4q6LtTnKXDamLbSCrVlCM8TbehMnCflWQqKc5yCozEH/jUiTdhcnotdRfHk4JOHLwmOhkhbnj5yGTFZwd0bi1GfKzoaIlqpnskFTM6F4LBZUJfL5KCW8CZQO3yBMN5OFFBwx4a2qFvD+bCJzEBdF473zyASY9GKaMkdSlwXNEV9uHp+bA6+QFhwNMQihMxjEp0049eqZFgk4Jdvj+PssF90OESa0D0xj399cwQA8Nj9jYKjIaLV6Ej0Q99dUwA7r7g0Ra04PDsyi/kQh2OJ1NnrhaIAjSXZyHOIjoaW211bAIukYMQXxJA3IDocorTaXJYLt03BQjiGsyO8FxVJlhV09jE5qEWluU6UZSlQFD5g1YLkjlc+bMoY3tKRZpS7gfdt3wAAeOLwRcHREGnD00cuQ1aAg7eU4dbKfNHhENEqqNUhLZxjoDkVBVkodiqIyQq6WI0ulPqwiQOxtMftsKE2J/5/q0OSiYzKYpHQlEhEdSQSUyTG+bFZ+AIRZDusqMkWHQ2908bkecJ1QaSJuSC6J+YhSUj+7aL0YxKdNOWz9zbCapHw8sVJnODEZzK5C2Oz+MmZUQDAoYPNgqMhotWQZSV5E97C5KAmqdVtTA6KpT5s4tBsbWpmUpFMZCM/75qg/v731BbCyoyV5qjXT+r6TWKo58mW8lxk2wUHYyL8k0SaUlvkxm/dVgmAvdGJnjx8CYoCvPfWDdiyIU90OES0ChfG5jATiMDtsOLWSp6/WsSbQPEm50K4ND4PANifGPZK2rL0sGkaisJKNzK25sTnvavfi1A0Jjga82IRgrapVc+XxucxORcSHI15dXLHqxBMopPmfPa+jbBbJbzRPYWjvLElk3prxI9fnBuHJAGfO7BRdDhEtEpqYnZvnQd2llFpknoTeG50lsOxBFFvALdsyEOhmw3RtaguV4HDZsHEXAi9UwuiwyFKq7IsoDjHgVBUxqlBn+hwTCkak3Es0WaNyUFtyrEDm8tzASyt45R57XzYJATv6khzqj1u/O6eagDAVw9fYtULmdITiZ0Y/3lHBTaW5QqOhohWS+0T2dZYJDgSup58R3yYpaIAR9kXXQj1BpDniXbZLcBt1fGZLO1scUEGJ0lLraX4eRfjrdFZzIWiyHPZsGUD74G0qiWxe4zniRgjvkUMTAdgtUjYU8udfJnEJDpp0iP3NcFhs+BYnxe/6uYfZjKXk4MzeOnCBKwWCY8dYC90Ir2JxmQc7Y0nZVuZHNQ0tcqN/W/FUCvYWht4nmhZS+L94RA5MoPkusAKWyHU9Xh/QxGsFklwNHQ9avUzK9HFUM+TWyvzkeuyCY7GXJhEJ03akJ+FD+6rAQB89fBFVqOTqajzAH5zVyXqizmSnkhvziWqqHJdNmytyBcdDt2AehPIJHrmXfEvom9qARYJ2MetyJqmVhx29nohy7wmJ2NrTfw9enNwBoth9kXPtHbu5NOFfXWFsEhA39QCrvgXRYdjOup1K4t1Mo9JdNKsz9zbCJfdgjcHfXjl4qTocIgy4lifF69fnoLNIuHR+9kLnUiP1Oq1/fWsotK6fXXx5ODF8TlMzXM4ViYtr6LKc9kFR0M3cmtlPtwOK7wLYVwcnxMdDlFa1XiysCHfhUhMwYmBGdHhmEo4KuN4f/x3zuSgtuW67Li1Ml4owkKEzFIUhW0jBWISnTSrNNeFj7TWAYj3h2Y1Ohmdoij46i8vAgB+d281qj1uwRER0Vqwz7N+eLId2LIhDwC3JGdae7KKqlhwJHQzDpsFe+q4a4PMQZKkZAK3nS2MMur0sA+LkRiKsh1oLmU/dK1rSZ4nXBcyadAbwKg/CLtVwp5a7uTLNCbRSdM+eVcD3A4rzo748cu3x0WHQ5RW7T3TONrnhcNqwSP3NokOh4jWIF5FxX7oeqL24+ZNYObEq6i4FVlP2pgsIRNR1wX2Rc8sdV1oaSiChTv5NK8t8RC8o2eaBY8ZpK7Du6oLkeWwCo7GfJhEJ00rynHiodvrAMT7RLMPIxnV8ir0D+6vQUVBluCIiGgtzgz7EAjH4Ml2YFMZq6j0QE0OdjI5mDFD3kWM+BZhs0jYm2ipQ9qmJhWP9k0jxutxMjj14d6ZYT/mQ1HB0ZiHWvnPh6v6sKe2EDaLhBHfIoa87IueKcmHTTxPhGASnTTv43c2INdpw4WxOfzsrSuiwyFKi1cuTeLkoA9OmwWfuadRdDhEtEZLVVQeVlHpxL4GDywS0Du1gDF/UHQ4ptDRG0+U7KwugNthExwNrcTWijzkumyYC0ZxbtQvOhyitKoqdKPG40ZMVtDV5xUdjikEIzGcHPQBYBJdL7KdNuysLgCwtK5TeimKwraRgjGJTppX4Hbgj+6sBwA89eJlVr+Q4SiKgicPXwIAfKS1FqV5LsEREdFasc+z/uQtH47Fm8CM4A2g/tisFuyvZ190Mo829kXPqJMDMwhHZZTlOdFQnC06HFqhVrb6yqieyXlMzYfgtFmwq6ZAdDimxCQ66cLH7qhHfpYd3RPz+PfTI6LDIUqpw2+P48ywH26HFZ+6m1XoRHoVjMRwYnAGwFLrA9KH5HCsbt4Eptvyfujciqwv6sNBJkvIDNTkIPuiZ4b6e25tKIIkcSefXiTPE/ZFzwh1/d1TVwinjf3QRWASnXQhz2XHJ+5qAAA8/eJlRGOy4IiIUkOWFTyRqEL/w7Y6FOU4BUdERGt1cjBeRVWa60RjCauo9CQ5HIvJkrTrmVzAxFwIDpsFt9WwH7qeqA8Hu/q9iPBanAxO/byfG52FLxAWHI3xLe1Q4k4+PbmtphAOmwUTcyH0TC6IDsfwkkPZWawjDJPopBt/2FaHomwH+qcD+PFJVqOTMfzHW2O4MDaHXKct+aCIiPSpM9nKhVVUeqMOxxqeWcSQNyA6HENTH1TsrimEy84qKj3ZXJ6LQrcdgXAMZ4Z9osMhSqvSPBcaS7KhKMBR9kVPq4VQFKeHfADYD11vXHYrdiceiLMQIb1kWVnascGHTcIwiU66ke20JVtdPH3kMsJRVsCQvsVkBU++GK9C/9gd9ShwOwRHRETrwT7P+nXVcCy2qkirjkR/YZ4n+mOxSGhpWNq6T2R0yV1K/LynVVe/F1FZQVVhFqo9btHh0CottXTh/IB0ujA2B18gArfDiu1V+aLDMS0m0UlXPtxSi5JcJ0Z8i/jB8SHR4RCty/85PYruiXnkZ9mTw3OJSJ8C4ShOqVVUDawO0aNWDpFLO1lW0Nkbr+hktaE+tXGIHJnI8n7PlD7L+6GT/qjrQmevF7LMvujpol6f7qv3wG5lKlcU/uZJV7IcVjx8T7wa/ZmXuhGMxARHRLQ20ZiMp49cBgB84q4G5LnsgiMiovXo6p9BVFZQWZCFak+W6HBoDZYPkeNwrPS4OD4H70I4UUVVIDocWgP1PDkxMMPrcDI8defFxfE5TM2HBEdjXOpDirYmJtH1aHtVAbLsVngXwrg4Pic6HMPq5MMmTWASnXTn9/bVYEO+C2OzQfzTsUHR4RCtyY/fHEHf1AI82Q78YVud6HCIaJ062A9d99ThWOOzIfROcThWOqjnyZ46Dxw23oboUWNJDkpynQhFZbw56BMdDlFaebId2FyeC2ApgUWp5V+M4K0RPwDu5NMrh82CvfUeANy1kS7RmIyjiZ18HL4rFq9eSXdcdiseua8JAPDsyz1YDLMKhvQlHJXxtUQV+qfubkC20yY4IiJaL/Z51r+rhmPxJjAtODdA/yRJSlbBcYgcmYGasGILo/Q41ueFrAANxdkoz3eJDofWSF0XeJ6kx7nRWcyFoshz2XBLRZ7ocEyNSXTSpd/ZXY2qwixMzYfwD539osMhWpUfnhjC8MwiSnKd+IOWOtHhENE6zQYjOKtWUTE5qGvsf5s+MVnB0T5uRTaCNg6RIxNR14VOrgtpoa63Lbx+0jV1XTjaN40Y+6KnnPpwYn9DEawW7ngViUl00iWHzYJH798IAHju1V7Mh6KCIyJamWAkhmde6gYAfOaeRmQ5rIIjIqL1OtYbr6KqL87Ghnz2Q9eztmV90TkcK7XOjfoxF4wi12XDVlZR6ZqaVDw15EMgzGtwMrZ99R5YJKB3agFj/qDocAynnTv5DGFrRR5ynTbMBaM4N+oXHY7hcPiudjCJTrr1m7sqUV+cDe9CGN9u7xcdDtGKfO/YIK74g9iQ78Lv76sRHQ4RpYB6YdvCC1vdWz4c69IEh2OlklptuL/eA5uVtyB6VuNxo7IgC5GYguP9M6LDIUqr/Cw7tlXmAwA6ern7IpW8C2FcGIuvtbyG0jeb1YL9DeyLng7hqIyuvkQ/dA7fFY5XsKRbNqsFjyWq0b/5Wi9mgxHBERHd2GI4hmdf6QEAPHxvE1x2VqETGQH7PBvH8uFY7d28CUyl9uTwXQ7E0jtJkpIJL/ZFJzNQd19wXUgtdVjrprJcFOc4BUdD69XCvuhpcWbYh8VIDJ5sB5pLc0WHY3pMopOuvW9HBTaW5sC/GMG3Xu8THQ7RDX2ncwCTcyFUFWbhd/dUiw6HiFJgZiGM81dmAbCKyig4NDH1IjEZXf3xKipuRTYG9aEhkyVkBlwX0qMj+XCV64IRqEN4u/q9iMRkwdEYR7IIoaEIFvZDF45JdNI1q0XC4webAQAvvNEHXyAsOCKia1sIRfH1V+NV6I/etxEOG//8EhmBWkXVXJaDklxWURmBmhzs7OVwrFQ5M+xDIBxDoduOzeWsojICNel1dtjH3aBkeHvrPLBZJAzPLGLIGxAdjmGo/dCZRDeGzeW5KHTbEQjHcGbYJzocw+DwXW1hFod079e2lmPLhjzMhaL45mu9osMhuqa/a++HdyGMuiI3fvO2StHhEFGKcNCP8SwfjvX26KzocAwheQPIKirDqCjIQl2RG7KCZK9WIqPKdtqwo7oAAPs9p8rEbBA9kwuQJKClntdQRmCxLGv1xfMkJYKRGE4MxmePsG2kNjCJTrpnsUg4lKhG/7v2fkzPhwRHRHS12WAk+YDnsQMbOVCNyEDY59l4lg/HUqvkaH04N8CY1OpRJkvIDJZaGHFdSAW1CGFrRR7y3XbB0VCqtLLVV0qdHJxBOCqjNNeJhuJs0eEQmEQngziwpRQ7qvIRCMfwXKJlBpFWvPBGH/yLETSV5uA3drAKncgoJuaC6J6Yj1dRJZKuZAwcmpg6wUgMJwbiVVTcsm8s6sNDJkvIDJb3RVcUtvpar44e7uQzIvVh04mBGQQjMcHR6F/HsiIESeJOPi1gEp0MQZKWeqP/fccAxmeDgiMiivMFwsmht587sBFWbmMnMgz1wvaWDXkocDsER0OppA7HOtbH4Vjr9eagD6GojJJcJxpLckSHQymkPjw8PzaLmQXOJSJju622EA6bBeOzIfROLYgOR/eWdihxJ5+RNJbEZwSFojLeHPSJDkf3OHxXe9aURH/22WdRV1cHl8uF/fv349ixYyv6vu9973uQJAnvf//71/JjiW7o7uYS7K4tRCgq469f7hYdDhEA4PnXezEXimJzeS4e3LZBdDhkIlyr06+T/dAN6+rhWH7R4eja8rkBrKIyltJcFzaW5kBRgKN9rEZfK67X+uCyW3FbTQEAtjBar+GZAAa9AVgtEvbWcyefkUiSdNWuDVq7hVAUp4Z8APiwSUtWnUT//ve/j0OHDuFLX/oSTp48iR07duA973kPJiYmbvh9/f39+OM//mPceeedaw6W6EYkScLnE9Xo/3RsCCO+RcERkdlNz4fwt7/qBwA8frCZw9QoY7hWZ0ayiqqJSXSjuXo4Fvvfrof6+2M/dGNiX/T14XqtL2oii5/39VF/f9ur8pHjtAmOhlJtaV3g9dN6HB+YQVRWUFmQhWqPW3Q4lLDqJPoTTzyBj3/843jooYdwyy234LnnnoPb7cYLL7xw3e+JxWL40Ic+hC9/+ctoaGhYV8BEN9LWVIyWBg/CMRnPvMRqdBLrG6/1IhCO4dbKfDxwS5nocMhEuFan34hvEQPTiSqqOlZRGVHyJpCVVGsWCC9VUXErsjG1cYjcunC91hf171hn7zRkmX3R16qDO/kMTV0XTg35EAhHBUejX+0sQtCkVT32C4fDOHHiBL7whS8k/81iseDAgQPo6Oi47vf9t//231BaWoo/+qM/wuuvv37TnxMKhRAKhZL/PTs7CwCIRCKIRCKrCfma1NdIxWuJZJTjAFJ7LI/d14jOXi9+eHwI//X2GtRk+KmdUd4XoxwHIOZYJudC+PuOfgDAo/c1IBpd/wUE3xPtSfVxpOJ1uFZnxhuXxgEA2yry4LLeOE6tH8tKGeU4gJUdy96afADA8f4ZzC+G4LRpb5SQ1t+Tzp4pRGIKKvJd2JBr53miMys5ltuq8yBJwOWJeVyZmUdxjjNT4a1YOt4TvazX6V6r1dda/r/1aiXHcUtZNrLsFkwvhPH2yAw2ledmKrxV0fJ7oigK2rvjycF9dQWmWBcA4xzLSo5jQ64dFfkujPqD6OyZxJ1N2mxFovX3pIPnScpeL5VWlUSfmppCLBZDWdnVFZVlZWW4cOHCNb/njTfewLe+9S2cOnVqxT/nL/7iL/DlL3/5Xf/+y1/+Em536hKihw8fTtlriWSU4wBSdyyb8y244LfgC995DR9qEjMQzCjvi1GOA8jssfxznwXBiAV1OQoWLnfhZyncGMH3RHtSdRyBQGDdr8G1OjP+udsCwIISeQY/+9nPVvQ9Wj2W1TLKcQA3PhZFAfLsVsxGZHzjhz9HU34GA1slrb4n/z4QP0+qHAH8x3/8x4q+R6vHslpGOQ7g5sdSkWXFSEDCcz9+CbcVa7c6N5XviV7W60yt1YBxPvM3O45ad/w+84WfvoG7N2j38w5o8z2ZXATGZm2wSgom3z6Kn128+fdo8TjWyijHcrPjqHJYMAoLvnv4OOYuaXtAuxbfk8UocHbECkBCoO8UfjZ66qbfo8XjWCst3Vu/U1obUM3NzeEP/uAP8Pzzz6O4eOVPn77whS/g0KFDyf+enZ1FdXU1HnjgAeTl5a07rkgkgsOHD+PgwYOw2+3rfj1RjHIcQOqPpXK7H7/9jaM4PmXB//+Dd6K+ODsFUa6MUd4XoxwHkPljueIP4o+PvQ5AwZ//9h7cnqItWHxPtCfVx6FWiGUS1+rVUxQFf/nV1wEE8aGDe3HHTXqia/lYVsMoxwGs/FheXDiDn5wdg1LajAfvb8pghCuj9ffkW9/oBDCL375zOx7cVXHDr9X6sayUUY4DWPmxnJIu4m/bBxDMr8WDD96SwQhXJh3viV7W63Sv1YBxPvMrPY6hnD5cOHwZs65yPPjgrgxGuHJafk++1zUMnHobt9V68P737b3h12r5OFbLKMey0uMIvTmKYz9+CxOWAjz4YEsGI1w5Lb8nRy5MQOk6hboiNz74X+644ddq+ThWSw/31qtKohcXF8NqtWJ8fPyqfx8fH0d5efm7vr6npwf9/f143/vel/w3WY4/hbLZbLh48SIaGxvf9X1OpxNO57u3Atrt9pR+KFL9eqIY5TiA1B3Lnvpi3L+5FEcuTODZV/vw9O9l/gLHKO+LUY4DyNyxfOP1C4jEFOyr9+DuTWWQpNQOFOV7oj2pOo5UvAbX6vQbmF7AFX8QdquElsYS2O3WFX2fFo9lLYxyHMDNj+X2jSX4ydkxHOv3afqYtfiezAYjeGskfvNyR3PpiuPT4rGshVGOA7j5sdyxsQR/2z6Ao31eTR9zKt8TvazXmVqr0/WaItz0895ciq8cvoyj/TOwWG2wWlJ7nZ9KWnxPjg34AMSHtJptXQCMcywrOU8A4K2RWSzGgDyXdo9Zi+/JsX4/gPjMP54n63udVFtVc0eHw4Hdu3fjyJEjyX+TZRlHjhxBa2vru75+8+bNOHv2LE6dOpX8n9/4jd/Avffei1OnTqG6unr9R0B0HY8fbAYA/PvpUVwanxMcDZnFkDeAHxwfAgB8/mBzyhPoRDfDtTr91AF6u6oLkeVYWQKd9Ekd5vTm0AwWwzHB0ehLV58XsgLUFblRUZAlOhxKo731HlgkoH86gFHfouhwdIPrtT5tq8hDrtOGuWAUb49mfkeCnimKgo7ENRSHJRpbRUEW6orckJX49QCtDofvateq27kcOnQIH/3oR7Fnzx7s27cPTz31FBYWFvDQQw8BAD7ykY+gsrISf/EXfwGXy4Vt27Zd9f0FBQUA8K5/J0q1bZX5+LWt5fj5uTE89eIl/PWHdosOiUzgr166jEhMwR1NxdjPRY8E4VqdXuoNYAtvAA2vxuNODsc6PuDFnRtLRIekG+rDplaeJ4aX57Lj1qoCnB7yoaNnGr+1u0p0SLrB9Vp/bFYL9tV7cOTCBNp7pnBrlYYHZmhM98Q8pubjg7p31hSIDofSrLWxCP3TAXT0TOP+LWU3/wYCAHgXwjh/Jf6AroX5BM1ZdRL9Ax/4ACYnJ/HFL34RY2Nj2LlzJ37+858nB6IMDg7CYllVgTtR2jx+sBm/eHsMPzs7hnOjfmyt4EUOpU//1AL++eQIAODQA82CoyEz41qdPoqiJJODrKIyPkmS0NpYjH8+OYz2nmkm0VehI5lEX/msBdKv1oaieBK9l0n01eB6rU+tjUU4cmECHb3T+OTd7255R9emXj/trfPAaeNOPqNrbSzGPx0bSr7vtDJHE1XozWU5KMl9dzsuEmtNg0UfeeQRPPLII9f8/73yyis3/N6/+7u/W8uPJFqTTeW5+E/bK/B/To/iycOX8Tcf3SM6JDKwp49cRkxWcO+mEtxWUyg6HDI5rtXp0TO5VEW1i1VUptDaWIR/PjmcTArTzc0shPF2sorKIzgayoS2xiI892oPOnqmoSgK29mtAtdr/VF32Bzr8yISk2G38kHHSnRwh5KpqOv/+bFZzCyEUZjtEByRPiwV67AIQYv4154M73MHNsIiAS+eH8fpIZ/ocMiguifm8K+nElXoBzcJjoaI0kW9sN1TV8gqKpNQb/bPjvgxF4wIjkYfjvbFz5ONpTkozXUJjoYyYU9dIexWCSO+RQx52RedjG1LeR4K3HYEwjGcGfaLDkcXZFlZ6vPMJLoplOa6sLE0B4qydF1AN6eeJ2zlok1MopPhNZbk4P27KgEATxy+JDgaMqonX7wMRQEeuKWMvRGJDCxZRcULW9OoLMhCbZEbMVlBVz+HY60E+6Gbj9thw87qAgBAe8+U2GCI0sxikdBSH//71sHP+4q8fWUW/sUIsh1W3FrJeyWzUK8D2NJlZSZmg+iemIckcSefVjGJTqbw2P0bYbVIePXSJE4M8AaYUuv8lVn89MwVAPE+/ERkTFdXUXGLpZmo/e/bu3kTuBIdnBtgSurDRfXvJJGRtTXx874anYnf0756D9vfmIh6HcCWeCuj/j25ZUMeCtxsf6NF/OtFplBblI3fSQw5+uovWY1OqfVkYofDe7dvwJYNeYKjIaJ0uTA2B18gArfDiu3ccWIqLUwOrtjEXBCXE1VU++uZRDcT9eFie6IvOpGRqQ+NjvfPIBSNCY5G+7hDyZz21xdBkoDLE/OYmAuKDkfzWISgfUyik2k8cl8T7FYJ7T3TfBJKKXN22I9fvj0OiwQ8fmCj6HCIKI3UFgWsojIf9ab/7Suz8AXCgqPRts7e+I6/LeV5HCJmMrtqCuCwWTA5F0LP5ILocIjSqqk0B8U5ToSiMt4c9IkOR9OiMRnH+uJrA4clmkthtgNbyuNFZur1AV0f5wZoH+8AyTSqCt34vb01AIAnDl9khQylxBOHLwIA/vPOSjSV5gqOhojSSd2KzH7o5lOa60JTYjgWbwJvTO0PzBtA83HZrdhTWwiAfaLJ+CRJYr/nFTo74sd8KIo8l427dk2otZHzA1ZixLeIgekArBYJe+vYD12rmEQnU3n43iY4bBZ09c/g9cv8I07rc2JgBi9fnITVIuGx+1mFTmRk0ZiMo72sojKzNt4Ergi3Ipsb+6KTmah/5zqZRL8h9e9BS0MRrBZJcDSUaeyLvjLq7+fWynzkuuyCo6HrYRKdTKU834UP768FAHz18CVWo9O6qL3Qf+u2StQVZwuOhojS6dzoLOYSVVS3VLCKyoyYHLy5Ud8i+qcDsEjA3npWUZlRcthizzRkmdfZZGzquvDm0AwWw+yLfj0d7IduanvrPbBIQP90AKO+RdHhaJbaNpJFCNrGJDqZzqfvaUSW3YrTQz68dGFCdDikU0d7p/FG9xTsVgmfvY9V6ERGp27V3s8qKtNSh4teGp/H5FxIcDTalKyiqipAHquoTGl7VQHcDitmAhFcHJ8THQ5RWtUWuVGR70IkpuD4AFt9XUs4KqOrnzv5zCzPZcetVQUAWI1+PYqiJHe08GGTtjGJTqZTkuvER9ri1ehPsBqd1kBRFHw1UYX+gb3VqPa4BUdEROnWwX7opleY7Uj2cu1kNfo1qQ+beJ6Yl91qSfZyZZ9oMjpJktDCvug3dGrIh2BERlG2A81lOaLDIUHU6wKeJ9c2MB3AqD8Iu1XCnlru5NMyJtHJlD55VyOyHVacG53FL86NiQ6HdOZX3dM41ueFw2bBI/eyCp3I6MJRGV19iSqqJiYHzayNyZLrUhQl+XCBW5HNrZX9b8lE1Opqft6vTf29tDQWQZK4k8+skvMDeqdZxHgNarHOrppCZDmsgqOhG2ESnUzJk+3Ax+6oBwA8efgyezbSisWr0C8CAD60vwbl+S7BERFRup0Z9mExEoMn24Hm0lzR4ZBAaiUVK9HfbdAbwIhvMV5FVVcoOhwSSE2WHO2bRozX2GRw6kOjsyN+zAUjgqPRHvZ5JgDYU1cIu1XCiG8Rg96A6HA0hzv59INJdDKt/3pHA3JdNlwcn8NPzl4RHQ7pxCsXJ/HmoA8uuwWfvqdRdDhElAHLL2wt7Iduavsa4sOx+qYWcMXP4VjLqdWGO6sL4HbYBEdDIm2tyEeuy4a5YBTnRv2iwyFKq8qCLNQWuRGTlWTvb4oLRmJ4c9AHgMlBs3M7bNhZXQCAuzbeSVGU5O+ED5u0j0l0Mq18tx0fv7MBAPDUi5cQjcmCIyKtUxQFTyR6oX+0tQ6luaxCJzKD5VuRydzyXHbcWpkPgDeB78QqKlJZLRL217P1EZlHst9zNz/vy50YmEE4JqM8z4X64mzR4ZBg7It+bd0T85iaD8Fps2BnTYHocOgmmEQnU3vo9joUuO3onVzAv50aFR0Oadwv3x7H2RE/sh1WfPJuVqETmUEwEsOJwRkArA6huNZE/1veBC5RFGVp+G7i90Pm1sa+6GQiyTkAbPV1FfX8b2U/dMLS9UEH+6JfRb2e3FvngdPGfuhaxyQ6mVquy45P3hVPhj595DIirEan65BlBU8mqtAfur0enmyH4IiIKBNODs4gHJVRmutEA6uoCFcPTeRNYFzP5Dwm50Jw2CzYxSoqwtJ50tXv5fU1GZ5aYfv2lVn4AmHB0WiH2g+9lUUIBGBXTQEcNgsm50LomZwXHY5mLH/YRNrHJDqZ3kfbalGc48CgN4B/PjEsOhzSqJ+9dQUXxuaQ67Il2wARkfEt71HIKioCgL11hbBZ4sOxhrzsiw4snSd7agvhsrOKioBNZbnwZDsQCMdwZtgnOhyitCrNc6GpNAeKAnT2si86AMyHojgzHJ+JwDZfBAAuuxV7auODx7lLKU6WFXT2MYmuJ0yik+m5HTZ8KtGa469e6kYoGhMcEWlNTFbw1IuXAcQH0ua77YIjIqJMYXUIvdNVw7F6p8QGoxHsh07vZLFIaGnwAGCfaDIH9e9fRw/XBSC+CyUqK6j2ZKHa4xYdDmkE+6Jf7fzYLHyBCLId1uTMHdI2JtGJAHy4pRZleU6M+Bbxg64h0eGQxvz76RF0T8yjwG3Hx+6oEx0OEWXIQiiKU0M+AEAb+zzTMmq/Z94EJqqoEn2A25qYRKcly/vfEhldG/uiX6WTD1fpGtTrhM7eacgyW+KpxTr76j2wW5me1QO+S0SIby16+N4mAMAzL3cjGGE1OsVFYzKeTlShf+KuBuS6WIVOZBbHB2YQlRVUFrCKiq7Wwr7oSRfG5jATiMDtsGJ7VYHocEhD1OTZ8YEZXluT4e1PfN4vjcdnRJhde7IdHosQaMn2qgK4HVbMBCK4MDYnOhzhuONVf5hEJ0r4wN5qVOS7MD4bwj8eHRQdDmnEj0+OoH86gKJsBz7aWic6HCLKIHUgVhsvbOkdbqsphMNmwcRcCD2TC6LDEUqtutxbxyoqulpjSTZKc50IR2W8OegTHQ5RWnmyHdiyIQ8AkrtzzMofiODcaKIfOq+haBm71YK9dfFWX2bftRGNyTjaF5+hwIdN+sErXaIEp82Kz96/EQDw9Ve6EQhHBUdEooWjMp4+Eq9C//Q9jch22gRHRESZ1MnqELoOl92K3TWJ4VgmvwlU+//yPKF3kiQp+blgn2gyA/Z7jjvaNw1ZARpKslGW5xIdDmkM14W4t0ZnMR+KIs9lSz6AI+1jEp1omd/eXYUajxtT82H8fceA6HBIsB8cH8KIbxGluU58uKVWdDhElEH+xQjOjrCKiq6vjTeB8SqqXrWKiucJvRv7RJOZqJ93s1eiq+c7+6HTtajnydFeL6IxWXA04qg7XlsaimC1SIKjoZViEp1oGbvVgkcT1ejfeLUH8yFWo5tVMBLDMy91AwAevrcJLrtVcERElEnH+ryQFaC+OBsb8rNEh0Ma1JpMlnhNOxzr3Ogs5kJR5Lps2FqRLzoc0qDWhvgW9VNDPu7yJMPb1+CBRQL6phZwxb8oOhxhOtgPnW5ga0U+cl02zIWiODc6KzocYdgPXZ+YRCd6h/fvrEBDcTZmAhH87Rt9osMhQf7p2CDGZoOoyHfh9/ZViw6HiDKMF7Z0M+pwLO9CGBfHzTkcS6023F/PKiq6tmpPFioLshCJKTjePyM6HKK0ynPZcWtl/IFih0lbukzPh5IDI1saPIKjIS2yWiTsrzf3LqVwVE6uiXzYpC9MohO9g81qwWMH4tXoz7/eC/9iRHBElGmL4RiefbkHAPDIfRvhtLEKnchs1C2W3IpM1+OwWbBHHY5l0mRJOx820U0s74tu9j7RZA4tJv+8dyZafG0uz0VRjlNwNKRVZl8XTg/7sBiJoSjbgeayHNHh0CowiU50De/bXoHmshzMBqP41uu9osOhDPuHzn5MzYdQ7cnC7+ypEh0OEWWYdyG8rIqKyUG6vjYT3wTGq6jYD51ujn3RyUzUqtKOnmkoivlafXX0LvV5JroedV043u9FOGq+vujt3fH1sKWxCJLEnXx6wiQ60TVYLBIeP9AMAHjhV/2YWQgLjogyZT4UxXOvxh+cPHrfRtit/DNJZDbqQLDmshyU5LKKiq5P3alwtG8aMZP1RT8z7EMgHEOh245NZbmiwyENUysOzw77MBvkDk8ytj21hbBZJIz4FjHkNV9f9PZkP3Qm0en6NpXlotBtRyAcw5lhn+hwMk592MQdr/rD7BDRdbxnazlu2ZCH+VAU33iN1ehm8e32fngXwmgozsZ/2VUpOhwiEoADsWiltlbkxYdjBaM4N+oXHU5GLZ8bYGE/dLqBDflZqC/OhqwAXX1e0eEQpVW204ad1QUAlhJlZjE+G0Tv5AIkCcme10TXYrEstfoyW0u8YCSGkwM+AHzYpEdMohNdh8Ui4dDBeDX6t9v7MTkXEhwRpZt/MYJvvBrvhf7YgY2wsQqdyJTUfujcikw3Y7NasL/enH3Rk/3QeZ7QCqh/T83Y+ojMx6z9ntV1cFtFPvLddsHRkNa1mnRdODkwg3BMRlmeE/XF2aLDoVVihojoBu7fUood1QVYjMTwXCK5Ssb1rTf6MBuMYmNpDv7T9grR4RCRABOzQfQkqqhaGjyiwyEdaE3sWDDTTWAwEsOJwRkAS8dPdCNtJq04JHNaXmFrpr7oHRw2TaugXj+cGJxBMBITHE3mtC/b8cp+6PrDJDrRDUjSUjX6dzoHMD4bFBwRpcvMQhgvvNEHAHj8YDOs3JpOZErq4LtbNuShwO0QHA3pgVpJ1dXvRSRmjuFYJwdnEI7KKMl1orGEVVR0c2ol+ttXZjlriAzvtppCOGwWTMyF0DO5IDqcjGlX+zwziU4r0FiSjZJcJ8JRGScTD+bNQL3X4E4+fWISnegm7tpYjD21hQhFZTz7crfocChNvvl6L+ZDUWzZkIdf21ouOhwiEqSDA7FolTaXm284Vuey84RVVLQSJblONJflAIgP4iUyMpfdit01hQCWEmZGN+QNYMi7CKtFwt467uSjm5MkKXm93WmSXUoLoShOD/kA8GGTXjGJTnQTkiTh0APxavTvHRvCiM98U9aNbmo+hL/7VT8A4NDBZg5IIzKxdm5FplUy43Csdj5sojUwa/9bMqelFkbmGC6qPizYUZWPHKdNcDSkF2ZbF7r6vYjKCqoKs1DtcYsOh9aASXSiFWhrLEZrQxHCMRnPvHRZdDiUYs+90oPFSAw7qvJxYEup6HCISJDhmQAGvQFWUdGqmekmMBCO4pRaRdXAfui0cmr/W7M8bCJzUx+udvZ6IcvG74veySIEWoO2xLpwasiHQDgqOJr0445X/WMSnWiFPp+oRv/h8WEMTgcER0OpMj4bxD90DgCI90LntnQi81IvbLdX5SPXZRccDelJcjjWgPGHY3X1zyAqK6gsyEK1J0t0OKQjLQ0eSBJweWIeE3OcM0TGtr2qAG6HFd6FMC6Oz4kOJ60URblqWCLRSlV7slBZkIWorKCr3/h90ZP90JlE1y0m0YlWaE+dB3c1lyAqK3j6CKvRjeKvX+5GKCpjd20h7m4uER0OEQnEQT+0VupwrFBUxpuDPtHhpFXHsmpDPnim1ShwO3DLhjwA8epcIiNz2CzYk9jVZvTdF/3TAYzNBuGwWrC7tlB0OKQjkmSelnj+xQjeGvED4E4+PWMSnWgVDh2MV6P/y5vD6JmcFxwNrdeIbxH/dGwIAPB5VqETmZqiKMu2WPLCllZn+XAso/e/VY+PW5FpLdSHlEY/T4iApb+TRm/11Z44n3fVFMBltwqOhvTGLOvCsT4vZAVoKM5Geb5LdDi0RkyiE63CzuoCHNhSClkBnn6R1eh698xL3QjHZLQ0eNDWxKQZkZkNTAdwxR+E3SqxiorWJHkT2GvcZMlsMIKzahUVk+i0Bm1N5qg4JAKW1oWjfdOIGbgvegf7odM6qJ+bsyN+zAYjgqNJH/VhE88TfWMSnWiVHk9Uo/+fM6O4OGbs/nZGNjgdwA+PJ6rQH9gkOBoiEk2tEttVU4gsB6uoaPXMMBzrWG+8iqq+OBsb8tkPnVZvb50HVouE/ukARn2LosMhSqutFXnIddkwF4zi3KhfdDhpoSgKOnu5k4/WrqIgC3VFbshK/DrDqPiwyRiYRCdapa0V+fj1beVQFOCpFy+JDofW6GsvXUZUVnDnxmLsTfQrJCLzYj90Wi91OFYkpuC4QYdjqedJC88TWqNclx23VuYDYDU6GZ/NasH+emP3Rb88MY+p+TBcdgt2VOeLDod0Sh3QbtTdfNPzIVxIFGDyGkrfmEQnWoPHDzZDkoD/eGvMsFUFRtY7OY8fnxwGwCp0InpnP3Re2NLaLB+OZdT+t+08TygFjH6eEC2nJgeN+nlv7463qNhb54HTxp18tDZGXxeO9sUr7DeV5aI4xyk4GloPJtGJ1qC5LBfv214BAHjyMKvR9ebpI5chK8D9m0uxs7pAdDhEJFj3xDym5kNw2izYWVMgOhzSMSP3RZ9ZCOP8lVkArKKi9VEfwnT2TkNRjNsnmghYWhe6+r2IxGTB0aQedyhRKqjnyfkrs5hZCAuOJvXYD904mEQnWqPHDmyERQJePD+BU0M+0eHQCl0an8O/nx4FsNTfnojMTa16YRUVrVdyONawz3DDsdSet81lOSjJZRUVrd2eWg/sVgkjvkUMegOiwyFKq83luSh02xEIx3Bm2Cc6nJSSZQWdiR7W3KFE61GS68TG0hwAS9cbRsJ+6MbBJDrRGjWW5OC/7KoCADzBanTdeOrFS1AU4Ne2lmNbJfv2EREvbCl1lg/H6uoz1nAszg2gVMlyWLGruhCAcftEE6ksFilZpW20z/vbV2bhX4wgx2lLzjogWiv1QYzRdvONzwbRM7kASQJa6nkNpXdMohOtw2P3b4TNIuG1S5M43m+sm2UjevvKLH52dgySxCp0IoqTZQWdfUyiU+oYtf9te/JhU7HgSMgIWgze/5ZouTaDft7VhwL76j2wWZlaovUxal90tbJ+a0Ue8t12wdHQevEvHdE61BS58Tt74tXoX/0lq9G17msv9QAA/tP2CmwqzxUcDRFpwfmxWfgCEWQ7rKyiopRQbwKNVHE4MRdE98R8vIqqwSM6HDKA5RWH7ItORqeuCycGZhCMxARHkzrcoUSptL++CJIUn1U0MRcUHU7KtHerQ9lZhGAETKITrdMj922Ew2pBR+90cjo5ac/APHDkwiQsEvC5AxtFh0NEGrG8isrOKipKATWZ8LaBhmOp58ktG/JQ4HYIjoaMYFdNAZw2CybnQuiZnBcdDlFaNZbEZ0mEojLeHPSJDiclojEZxxJty7iTj1KhMNuBLeV5AIxViMCHTcbCu0WidaosyMLv7asGAHz18CVW02jUfwzF/9y9f1clGktyBEdDRFrBfuiUasuHYx3tM8ZNYCdvACnFnDYr9tSxLzqZgyRJyb+fRun3fHbEj/lQFPlZdtyyIU90OGQQ6i4lowwXHZ4JYNAbgNUiYW89d/IZAZPoRCnw8L1NcNosODEwg9e7jfEH30hODvpw3meB1SLhsftZhU5EcdGYjKOJKipusaRUMlr/W/U42pqYRKfUUZOKRjlPiG4k2cKoxxg7l9XztqXBA4tFEhwNGYXR+qKrD4m3V+Ujx2kTHA2lApPoRClQlufCh1tqAQBPHekGi9G15akj3QCA39pVgdqibMHREJFWvDU6i/lQFHkuG7awiopSyEh90Ud8ixiYTlRR1bGKilJHHVLb2TsNWebFMxmbui6cGvIhEI4Kjmb9uEOJ0mFfvQdWi4SB6QBGfIuiw1k39TqwjTteDYNJdKIU+fQ9jciyW3F2ZBZvzfBpvFZ09Eyjo9cLq6TgM/c0iA6HiDSkPVEN1tJQBCurqCiF1OFYlw0wHEu9Aby1Mh+5LrvgaMhItlflw+2wYiYQwYWxOdHhEKVVjceNyoIsRGIKjvfPiA5nXULRGLr6Ezv5mriTj1In12XHtsp8APovRFAUZVk/dJ4nRsEkOlGKFOc48dG2OgDx/tusqBFPURQ8cfgiAKC1VEFlQZbgiIhIS9gPndJl+XCszl6v4GjWh+cJpYvdasG+RI9Yo/SJJroeSZLQYpAWRqeH/AhGZBTnOJIzQIhSpc0gu/n6pwO44g/CYbVgd22h6HAoRZhEJ0qhT97VgGynFSMBCb94e1x0OKb3+uUpdPXPwGGz4GClLDocItKQcFROVoKxHzqlgxH63yqKkoyfW5EpHZLDFnV8nhCtVHJd0PlDo+U7+SSJO/kotZavC4qO++SqDwF21hQgy2EVHA2lCpPoRClUmO3AQ63x3uhfe6kHMVajC6MoCr56+BIA4IN7q1DgFBwQEWnK6WEfFiMxFGU70FzGKipKPSP0RR/0BjDqD8JulbCnlv3QKfXUh5hHe72IxljwQMamrgtnh32YDUYER7N23KFE6bSnrhB2q4RRfxCD3oDocNasnUUIhsQkOlGKPdRWiyyrgu7JBfzkzKjocEzrpQsTOD3kQ5bdik/eVS86HCLSmPbu+A1gSyOrqCg91OFY/dMBjOp0OJbacmBXdSGrqCgtbqnIQ57LhrlQFOdGZ0WHQ5RWFQVZqCtyQ1aArj59tvoKRmJ4c9AHgDv5KD3cDht2Vcfbn+i19ZGiKBy+a1BMohOlWF6WHfdVxCtpnnrxMqtqBIj3Qo9XoX+krRbFOSxDJ6KrdfTGq0N4YUvpYoThWGrcLayiojSxWiTsN0ifaKKVUKu39fp5PzEwg3BMRnmeC3VFbtHhkEG16Hw33+WJeUzNh+GyW7CzpkB0OJRCTKITpcFdGxQUuu3om1rAv7w5Ijoc0/nFuTGcG51FtsOKT97VKDocItKYYCSGkwM+ANxiSenVpuNkiaIoybh5nlA6Jfvf6rxPNNFKtCaqt/WaHFzeooI7+Shdll8/6bEvunp+76n1wGnjTj4jYRKdKA1cVuDjd9YBAL720mVEWI2eMbKs4MnDlwEAH7ujHp5sh+CIiEhrTiaqqMrynKgvzhYdDhmYmhzs7NXfTWDP5Dym5kNw2izYxSoqSqO2pvh50tXnRTjKa2YytpaG+HyJt6/MYmYhLDia1WvnDiXKgF01BXDaLJiaD6F7Yl50OKumPmzi3ADjYRKdKE0+vK8GxTlODHkX8cPjw6LDMY2fnL2Ci+NzyHXZ8F/vaBAdDhFp0FJ1bTGrqCit1OFYI75F3Q3HUs+TPXWFrKKitGouzYUn24HFSAxnhn2iwyFKq9JcFzaWxgeaH+3TVzX6fCiKM8N+ANyhROnltFmxpy7eF11vu5RkWUFnb3zmAZPoxsMkOlGaZDms+Mw98VYiz7x0GaFoTHBExheNyXjqxXgv9I/f2YB8t11wRESkRR0c9EMZ4nbYsLO6AID+tu6r8fI8oXSzWKTk50yPrY+IVkuvfdG7+ryIyQqqPVmoKmQ/dEqv5LrQra/z5O0rs/AvRpDjtGF7YjYOGQeT6ERp9MH9NSjPc2HUH8T3jg2JDsfw/u3UKHonF1DgtuOh2+tEh0NEGrQQiuL0kA8Aq0MoM9T+t3pKlsiysvSwKRE/UTrpfYgc0Wq06fTzrq4LbQ1cFyj91OuPzr5pyLJ+WuJ1Js6TvXWFsFmZcjUavqNEaeSyW/HwfU0AgGdf7kYwwmr0dInEZDx9JN4L/ZN3NSLXxSp0Inq3rn4vorKCqsIsVHtYRUXpt3xool76ol8Ym4MvEIHbYcX2KlZRUfqpScUTgzO8XibD219fBEkCLk/MY2IuKDqcFWOfZ8qk7VX5cDus8AUiOD82KzqcFVveNpKMh0l0ojT7wJ5qVBZkYWIuhO90DogOx7D++cQwBr0BFOc48NG2WtHhEJFGdSQvbHkDSJmhDseanAuhZ1Ifw7HURMm+eg/srKKiDGgozkZprhPhqIyTgzOiwyFKq8JsB7aU5wFAsney1vkDEZwbjScymUSnTLBbLdhXHx/Eq5ddG9GYjGN97IduZLwqJkozh82CR++PV6N//ZUeLISigiMynlA0hr96qRsA8Km7G+F22ARHRERatdSighe2lBkuuxW7axPDsXRyE9jJuQGUYZIk6bbFBdFatCY/71OCI1mZzr5pKArQUJKNsjyX6HDIJJK7+XSyLpwd8WM+FEV+lh1bNuSJDofSgEl0ogz4zduqUFvkxvRCGN/u6BcdjuH8oGsII75FlOU58eEWVqET0bX5FyN4a8QPAGhlP0/KoDYdDZGLxmQcTVRGcisyZVIrk+hkInp7aMSdfCSCeh1yrM+LaEwWHM3NqcU6++s9sFokwdFQOjCJTpQBdqsFj92/EQDwzdd6MReMCI7IOIKRGJ55OV6F/vC9TXDZrYIjIiKtOtbnhazE2waU57OKijJHTQ529mp/ONa50VnMhaLIc9lwSwWrqChz1GTJqSEfd26S4e2t98AiAf3TAYz6FkWHc1NqEp1FCJRJt1TkIc9lw1woirdGtd8XnQ+bjI9JdKIM+c87K9FYkg1fIIIX3ugXHY5h/OPRQYzPhlBZkIUP7K0WHQ4RaRgHYpEo26sK4HZYMROI4MLYnOhwbkitlt/fUMQqKsqoao8bVYVZiMoKjg+wLzoZW57LjlurCgBovxp9aj6Ei+PxtaulwSM4GjITq0XCfp20dAlHZXT1J3byNfFhk1GtKYn+7LPPoq6uDi6XC/v378exY8eu+7XPP/887rzzThQWFqKwsBAHDhy44dcTGZXVIuFzB5oBAH/zRi/8AVajr1cgHMXXX4lXoX/2viY4baxCJ1JxrX63ZBUVk+iUYXarBXvrEsOxerV9E9jBfugkkPq5a9dJn+hU4HptXkufd22vC+qcjM3luSjKcQqOhsxGL+vCqSEfghEZxTkObCzNER0Opcmqk+jf//73cejQIXzpS1/CyZMnsWPHDrznPe/BxMTENb/+lVdewe///u/j5ZdfRkdHB6qrq/HAAw9gZGRk3cET6c17b92AzeW5mAtG8fzrvaLD0b2/7xjA1HwYNR43fmt3lehwiDSDa/W7Tc+HkhXALUwOkgBtOhgiF47K6OpTq6h4nlDmqZ+7To0nFVOF67W5tS1r9aUo2m31xSIEEkldF473zyAc1W5fdPU8aWkogiRxJ59RrTqJ/sQTT+DjH/84HnroIdxyyy147rnn4Ha78cILL1zz6//xH/8Rn/nMZ7Bz505s3rwZf/M3fwNZlnHkyJF1B0+kN5Zl1eh/+6s+eBfCgiPSr/lQFN94tQcA8Nj9G2G3sjsVkYpr9bsdTSQGN5XlophVVCSAmnw42qvd4Vinh31YjMTgyXaguTRXdDhkQmq/5bMjfsyaYIYQ12tz21NXCLtVwohvEYPegOhwrmupHzqT6JR5zaW58GQ7sBiJ4fSwT3Q418W2keZgW80Xh8NhnDhxAl/4wheS/2axWHDgwAF0dHSs6DUCgQAikQg8nuv30gqFQgiFQsn/np2NDxCIRCKIRNZ/MaW+RipeSySjHAdgrmO5r9mDrRW5ODc6h79++TL+9D3NmQxvxbT+nvzNa72YCUTQUOzGe7eV3jBOrR/LShnlOADjHEuqjyMVr8O1+treuByv6ttfX5jxzx0/79oj4liaS9zIddkwF4zi9KAX26vy1/2aKT9PLiXOk7pCxGJRxGIpedkVMcrnyyjHAYg5liK3FfVFbvRNB9B+eQL3by5d92um4zj0sl6ne61WX2v5/9YrEcdhl4AdVfk4PuDDG5cmULEnNTtrU3ksY7NB9E4twCIBu6vzMvr7McpnCzDOsYg6jv11hfiPc+N449IEdlam5iF/Ko8lGInh5GB8lse+2nyeJ2ukxXvrd5KUVewbGh0dRWVlJdrb29Ha2pr89z/5kz/Bq6++iqNHj970NT7zmc/gF7/4Bc6dOweXy3XNr/nzP/9zfPnLX37Xv3/3u9+F2+1eabhEmnVuRsI3L1hhtyj44q4Y8hyiI9KXQBT4byetWIxJ+OjGGG4r1u72R6LVCAQC+OAHPwi/34+8vLw1vQbX6mv7H6esGF+U8EebYtju4d8MEuP5Cxa8NWPBb9TEcH+l9j6Hf3XOgu5ZC36nPoY7yrUXH5nD93staB+34O4NMn6zTpu7NvSyXuttrTajnw1a8IsRC24rkvHRZu193rsmJXyn24rqbAV/vD2DT1aJlnljTMIP+6xoypPx2a3aO08u+iX89dtW5DsUfPm2GNjNRRtSsVa/06oq0dfrL//yL/G9730Pr7zyynVvygHgC1/4Ag4dOpT879nZ2WS/t1QceCQSweHDh3Hw4EHY7fZ1v54oRjkOwHzH8uuKgqPfPIbTw350Oxrw/zy4OcNR3pyW35OnjnRjMdaL5tIc/N8fboXFcuNVSsvHshpGOQ7AOMeS6uNQK8REMuJaPT4bxHjHa5Ak4NO/dQD5WZn9zPHzrj2ijmWicABv/ewiZhylePDB3et+vVQeRzASw//V9TIAGf/1fXehoSR73fGthlE+X0Y5DkDgsZwdQ/sPzmBcyceDD7be/OtvIh3HoZf1Ot1rNWCcz7yo4yjq8+IXLxzHUMiFX//1u1PSSzmVx/L6v5wDMIL37KrHgxneQW2UzxZgnGMRdRybJxfww6/9CoMBG+47eC9cduu6XzOVx3LhxcsA+nDvlgq89723rju21TDKZwvQx731qpLoxcXFsFqtGB8fv+rfx8fHUV5efsPv/cpXvoK//Mu/xIsvvojt27ff8GudTiecznf3K7Xb7Sn9UKT69UQxynEA5jqWP37PJvzBt47hn7qG8al7mrAhPyuD0a2c1t6TmYUwvt0xCAA49EAznM6Vl/Fr7VjWyijHARjnWFJ1HKl4Da7V73ZiKN6iYmtFHorzxFXe8fOuPZk+ljs2lgK4iBODPiiSFQ5bauZ5pOI4ugb8CEdllOY60bwhX9hQLKN8voxyHEDmj+X25ngLlwtjc5gLK/Bkp2bLZiqPQy/rdabW6nS9pgiZPo499cVw2CyYnA9j0BdCUwrnUaTiWDoTM2Vu31gi7P01ymcLMM6xZPo4mjfkozTXiYm5EM6OzqOtqThlr52KYznaF2/l0sbzJCW0dG/9Tqu6cnc4HNi9e/dVg0vUQSbLt6C90//6X/8L//2//3f8/Oc/x549e9YeLZGB3NFUjH11HoSjMp59uVt0OLrxjdd6MR+KYmtFHt6z9cY3GERmxLX63dq74wOx2hpTd8FNtBabyuLDsQLhGM5obDhWR696nhQJS6ATAUBxjhObyuKJxKOJz6URcb0mAHDZrdhTWwhgaYCnVgx5AxieWYTNImFv3fXn5BClmyRJaEsM7OzQ2LowH4rizLAfAJIxknGtuvzl0KFDeP755/Htb38b58+fx6c//WksLCzgoYceAgB85CMfuWo4yv/8n/8T/+//+//ihRdeQF1dHcbGxjA2Nob5+fnUHQWRDkmShEMPxLfEfb9rCMMz2p3IrhWTcyF8u70fAHDoYDNv8omug2v11dSL7dYGXtiSWBaLhJaGeCJCa8mS9kQ8rbwBJA1QP4ftGjtPUo3rNQFL1yda+7yr69T2qnzkODPaCZjoXbS6LnT1exGVFVR7slBVyFkTRrfqJPoHPvABfOUrX8EXv/hF7Ny5E6dOncLPf/5zlJWVAQAGBwdx5cqV5Nd//etfRzgcxm//9m9jw4YNyf/5yle+krqjINKploYi3N5UhEhMwV8dYTX6zTz3ag8WIzHsrC7AfZtLRYdDpFlcq5cMzwQw6A3AapGwt55VVCRea2JHhJZuAhdCUZwe8gHgjg3ShlaNVhymGtdrAoC2pvjnvbN3GrKsnaHOSzuUuC6QeOrn8PSQDwuhqOBolnQmrufaGniemMGaHic+8sgjeOSRR675/3vllVeu+u/+/v61/Agi0zh0cBN+1d2OH50cxqfvaURdcWYHeenF+GwQ3+kcAMAqdKKV4Fodxyoq0hq14vDE4AyCkVhKhmOtl1pFVVmQhWoPq6hIvJb6IkgS0D0xj4nZIErzrj/oWu+4XtP2qgK4HVbMBCK4MDaHWypSM/R1PRRFQXvPFADuUCJtqPa4UVmQhRHfIrr6vbhnkzaK6riTz1xSM82IiNZsd20h7tlUgpis4GtHLosOR7OefbkboaiMvXWFuHMjn/IS0cqoSXT2KCStaCzJRmmuE+GojJODM6LDAXB1P3QiLch327E1kUg0ejU6kd1qSfYc18rnvW9qAeOzITisFuxO9GwnEk1rfdH9gQjOjcb7oTOJbg5MohNpwKGD8d7o/3pqBN0T7Gn4TiO+RXzv2BCAeOU+q9CJaCUURVnWD50P30gbJElK3mh1aqSlSwerqEiD1F0bWpsfQJQOyRZGiepv0dTq2l01BZrYMUUELD9PtLEuHO2bhqwADSXZKDPwjilawiQ6kQZsryrAwVvKICvAUy9eEh2O5jzz0mWEYzLaGot4g09EK9Y/HcAVf5BVVKQ5bRoajuVfjOCtEVZRkfao/W+1UnFIlE7qunC014toTBYcDfuhkzap1ylvjfjhX4wIjoY7+cyISXQijVCr0X9y5goujM0KjkY7BqcD+OHxYQDA5x9oFhwNEemJWqWys6YAWQ5WUZF2qDsjTg35EAiLHY51rM8LWQHqi7OxIT9LaCxEy+2t98BqkTAwHcCIb1F0OERptbUiH7kuG+ZCUZwbFXsvqChKcqcUH66SlmzIz0J9cTZkJX79IlpyJx93vJoGk+hEGrFlQx7ee+sGAMCTh1mNrnr6yGVEZQV3N5dgd61HdDhEpCPqQCxWh5DWVHuyUFmQhaisoKtfbF90tnIhrcpx2rC9Kh+AdrbuE6WL1SJhf702+j1fGp/H9EIYLrsFO6sLhMZC9E5aaekyPR/ChbE5AEBLA/MUZsEkOpGGfO7ARkgS8Itz48mt1WbWMzmPf3kzXoWuVuoTEa2EoijoTPZDZ3KQtGV5X3TRN4HqwyaeJ6RF6ueyXSN9oonSqVUjrb7U821vnQcOG1NGpC1aWRc6e+OV8JvLc1GU4xQaC2UO/yISacjGslz85x0VAIAnWI2Op1+8DFkBDmwpww5WQRDRKlyemMfUfKKKqqZAdDhE79KmgSFy3oXwsioqJtFJe9R+zJ0901AURXA0ROmlrgvH+70IR8X1RecOJdIy9XrlwtgcvAthYXF09CaKEHiemAqT6EQa89iBZlgtEl66MIGTg2K3eIt0cWwO/+fMKABWoRPR6rV3xy9s99R64LSxHzppj3rTdXbEj9mgmOFY6m6N5rIclOSyioq0Z3dtIexWCaP+IAamA6LDIUqrTWW5KHTbEQjHcGbYJySGmMydfKRtJblONJflAFi6jhGhvYfniRkxiU6kMfXF2fjNXZUAzN0b/akXL0FRgAdvLcctFXmiwyEinVH7ibI6hLTqquFYvWKGY6nVhmq1L5HWZDms2FVTCEB8n2iidLNYxLf6On9lFrPBKHKcNtxamS8kBqKbUa9bRJ0n47NB9E4uwCIB+5lENxUm0Yk06NH7N8JmkfD65SlNTJ3OtHOjfvzHW2OQJOBzB1iFTkSrI8tKsk8hk+ikZeqWZFHJQbWfKFu5kJYt9b9lEp2MT/TnXV0X9tV7YLMyXUTa1CK4L7qavN9akY/8LLuQGEgM/lUk0qBqjxu/u7caAPDVX140XQ9ItQL/N3ZUoLksV3A0RKQ3b1+ZhX8xghynDdtZRUUa1iZwiNzEbBA9kwuQJKClwZPxn0+0Um3LKnPNdk1M5tOaqLA9MTiDYCSW8Z+/tEOJD1dJu1oaPJAkoGdyAROzwYz/fDV5z/PEfJhEJ9KoR+5tgsNqwdE+r6kqb04N+fDi+QlYJOCx+zeKDoeIdEi9AdxbV8gqKtI0tZLq/JVZzGR4OJZa/X7LhjwUuB0Z/dlEq7GzpgBOmwVT8yF0T8yLDocorRpLslGS60Q4Kmd8PlYkJid3QXOHEmlZgduBWzbEW76K2M2n/swWJtFNh3eWRBpVUZCFD+6vAWCuavQnElXov3lbFRpKcgRHQ0R6pF7Yss8zaZ3I4VisNiS9cNqs2FsX3y3BvuhkdJIkJf8ud2a4kOrsiB8L4Rjys+zJBCWRVrUJmh8w5A1gyLsIm0VKrk1kHkyiE2nYZ+5phNNmwclBH165NCk6nLQ73u/Fa5cmYbNIrEInojWJLquiYj900oNWQX3R1V1uPE9ID9TPaXs3k+hkfKL6oqvJyJYGDywWKaM/m2i1WgW1xFOv17ZX5SPHacvozybxmEQn0rDSPBc+0loLIN4n3OjV6F/9ZbwK/Xf2VKPa4xYcDRHp0dkRP+ZDUeRn2bGFVVSkA2r/20zeBA7PBDDoDcDKKirSCTVZ0tk3DVk29vUwkbqT7tSQD4FwNGM/d2mHEnfykfbtrfPAapEw6A1geCaQsZ/L88TcmEQn0rhP3d0It8OKM8N+HH57XHQ4adPeM4WO3mk4rBZ89r4m0eEQkU6picj99fELayKtU4djdU/MZ2w4lnoDeGtlPnJd9oz8TKL1uLUyH9kOK3yBCM6PzYoOhyitqj1ZqCzIQlRW0NWfmb7ooWgMXf3cyUf6keuy49bKfACZa+miKEryZ/E8MScm0Yk0rijHiT9sqwMQ7xduxOobRVHwRKIK/ff3VaOiIEtwRESkV5297PNM+iJiOFYHzxPSGbvVgn31ib7oGd66T5RpkiQlE3SZ+ryfGvQhFJVRnOPAxlLOpSJ9SPZFz9D1U9/UAsZmg3BYLdhdW5iRn0nawiQ6kQ584q4G5DptuDA2h/94a0x0OCn32uUpHB+YgdNmwcP3sgqdiNbm6ioqbrEk/Uj2Rc9AsoRVVKRXmU4qEom0tC5MZeTntSf7oRdBkriTj/Rh+bqQida3arJ+V00BXHZr2n8eaQ+T6EQ6UOB24GN31AMAnnzxEmIGqkaPV6FfBAD8QUstSvNcgiMiIr06PeRHMCKjKNuB5jJWUZF+tDVlrpJqYDqAK/4g7FYJe2rZD530Q+0/e6zPi2hMFhwNUXqpycGzI37MBiNp/3lLO5RYhED6safWA7tVwhV/EAPT6e+L3s5+6KbHJDqRTvzRnfXIz7Kje2Ie/+f0qOhwUubF8xM4PeyH22HFp+5pFB0OEelYe6Jaq6WRVVSkL+pwrIHpAEZ8i2n9WeoN4K7qQmQ5WEVF+rFlQx7yXDbMhaJ4a5R90cnYKgqyUFfkhqwAx3q9af1Zi+EY3hyM917nDiXSkyyHFbuq421V0j2gXVEUdHInn+kxiU6kE3kuOz5xVwMA4Okjlw1RgSPLCp44HO+F/tG2OhTnOAVHRER61tHDPs+kT5kcjqVWG/IGkPTGapHQksHWR0Siqa3p0r1L6cTADCIxBRvyXagrcqf1ZxGlWmuG+qJfGp/H9EIYLrsFO6sL0vqzSLuYRCfSkT9sq4Mn24G+qQX8+M0R0eGs28/PjeH8lVnkOG34xJ0NosMhIh0LRmJ4c9AHYKmPKJGeqDeB7Wnsf8t+6KR3mThPiLRi6fOe3uSgej61cicf6VCm+qKr8wn21nngsDGValZ854l0JNtpw6fujiebv3bkMsJR/Vajx2QFTyaq0D92Rz0Ksx2CIyIiPTsxMINwTEZ5ngv1xdmiwyFaNXUHRWcabwK7J+YxNR+C02bBrpqCtPwMonRS+9Ae75/R9XUw0UqoRQHnr8xiZiGctp+T3KHEIgTSoV01BXDaLJiaD6F7Yj5tP6edRQgEJtGJdOcPWupQkuvE8MwifnhiSHQ4a/aTM6O4PDGPPJcNf5QYmkpEtFasoiK9U4djjaZxOJZ6A7inrhBOG/uhk/40l+WgKNuBxUgMp4d9osMhSquSXCc2lsYHpXemqVXFfCiKM8N+AEwOkj45bVbsqUtvX/SYrOBoX3w2AR82mRuT6EQ6k+Ww4jOJAZzPvNSNYCQmOKLVi8ZkPPXiZQDAJ+5qQH6WXXBERKR3bFFBerd8OFa6+nouzQ0oTsvrE6WbJEloaWRfdDKPtjT3e+7q8yImK6jxuFFVyH7opE/qdU261oXzV2bhX4wgx2lLzrAhc2ISnUiHfn9fDTbku3DFH8T3jg2KDmfV/uXNEfRNLaDQbccf3s4qdCJan/lQFKfVKipWh5COtaSx/60sK+jsi79uC88T0jH17zz7opMZpLsvunoecSg76Zl6XdPZNw1ZTn1LPDU5v6/eA5uVaVQz47tPpEMuuxUP39sEAHj2lR4shvVTjR6JyfjaS/Eq9E/d3Ygcp01wRESkd1398Sqqak8Wqj2soiL9akvjcKzzY7PwBSLIdlixvYpVVKRf6nlyctCnyx2ZRKuxv74IkhSfaTExG0z56yf7oTOJTjq2vSof2Q4rfIEIzo/Npvz1+bCJVEyiE+nU7+6pRlVhFibnQviHzn7R4azYD48PY8i7iOIcJz7SWic6HCIygGQrF1bXks6lcziWep7srffAzioq0rH64myU5TkRjso4OTAjOhyitCrMdmBLeR6A1Ld08QXCODcaTzjyGor0zG61YG+9B0DqW7pEYjKOJfqhcycf8QqaSKccNgsevW8jAOC5V3sxH4oKjujmQtEYnklUoX/mnkZkOTjUjIjWj32eySiWD8dKdbJk6TzhDSDpmyRJS/1v09QnmkhL2tI0B+BonxeKAjSWZKM0z5XS1ybKtHSdJ2dH/FgIx5CfZcctG/JS+tqkP0yiE+nYb95WiboiN7wLYXy7vV90ODf1vWNDGPUHUZ7nwgf314gOh4gMwB+I4K3RRD90JgfJAJL9nrtTdxMYjck4mqiiam3gwybSv6W+6Eyik/G1pmm4KIsQyEjU65ujfV5EY3LKXlc9T1oaPLBYpJS9LukTk+hEOmazWvDYgXg1+jdf68VsMCI4ousLRmJ49uVuAMDD9zXBZWcVOhGt39G+aSgK0FCSjTJWUZEBtCaSGakcjvXW6CzmQ1HkuWy4pYJVVKR/alLx9JAPCzrYjUm0HvvqPbBaJAxMBzDiW0zZ6ybb4bEIgQzgloo85LlsmA9F8dZo6vqi82ETLcckOpHO/caOSjSV5sC/GMG3Xu8THc51fadzABNzIVQWZOEDe6pFh0NEBtHOFhVkMNur8uFO8XAsdSDW/oYiWFlFRQZQ7XGjqjALUVlBV79XdDhEaZXrsmNbZXwgdKpaVUzNh3BxfA4A+zyTMVgtEvYndylNpeQ1Q9EYjg8kdvLxXoPAJDqR7lktEj6XqEZ/4Y0++AJhwRG920Ioiq+/0gMAePT+Jjhs/NNDRKnR2asOFWV1CBmD3WrBvhQPx2I/dDKitjS1uCDSIvXznqrkoHr9tLk8F55sR0pek0i0VPdFPzXoQzAiozjHgY2lOSl5TdI3ZrKIDODBbRuwuTwXc6Eovvlar+hw3uXbHf2YXgijtsiN37ytSnQ4RGQQ0/MhXBhTq6g8gqMhSh2133MqbgLDURnH+2fir8skOhlIa5qGyBFpkboudPZMQ1HW3+qrnS0qyIDUdeF4/wzC0fX3RVcf0rY0FEGSuJOPmEQnMgSLRcLjB5sBAH/X3o/p+ZDgiJbMBSPJxP5j92+E3co/O0SUGp298e2Vm8tzUZTjFBwNUeqoSY1jKRiOdXrYh8VIDEXZDjSX5qYiPCJNUHcgvTXih39Ru3OBiFJhT10h7FYJo/4gBqYD6369TvZDJwNqLs1FUbYDi5EYTg/71v16fNhE78RsFpFBPHBLGW6tzEcgHMNzr/aIDifphTf64QtE0FiSjf+8s1J0OERkIOqWZt4AktGow7HmUjAcq707UUXVWAQL+6GTgZTnu9BQnA1ZiT9wIjIyt8OGXdWFANbfwuiKfxG9UwuwSEi2DyMyAotFSvb4V69/1moxHMOpQR8A3mvQEibRiQxCkiQcSlSj/33HACZmg4IjAvyBCP7mjXgV+ucONHOYGRGlVEeyHzovbMlYlg/HWm+rio7exMMmnidkQGzpQmbSkuyLvs51IfH92yrzkZ9lX3dcRFrSmqL5AScGZhCOydiQ70JdkTsVoZEBMIlOZCD3bCrBrpoChKIy/voV8dXoz7/ei7lgFJvLc/HeWzeIDoeIDGR8NojeyXgV1X4mB8mAUjFELhiJ4eSA76rXIzKSVCVLiPRg+dDE9fRF72ArFzIw9Tx5c9CHYCS25tdZXoTAfuikYhKdyEAkScLnD24CAHz36CBGfYvCYvEuhPG3v+oDEK9C5xZyIkol9QZwawWrqMiYUjEc62Siiqosz4n64uxUhkekCeq2/Qtjc/AuhAVHQ5Reu2oK4LRZMDUfQvfE/JpfR61k5w4lMqL64myU5TkRjsk4MTCz5tdp58MmugYm0YkM5vamIuyr9yAck/HMy93C4vjGqz1YCMewrTIP79laJiwOIjImteqQ1bVkVKkYjrV8IBarqMiIinOc2FQWH5jbuc4+0URa57RZsadufX3Rh7wBjPgWYbNI2FvHfuhkPJIkJQeBrrXV13woijPDfgBMotPVmEQnMph4NXq8N/oPuoYw5F3/9PbVmpgL4tsd/QCAQwebeeNORCmn3jy28MKWDGr5cKy13gRybgCZAfuik5m0rnNoolqEsKO6ANlOW8riItKS5HmyxlZfXX1exGQFNR43qgrZD52WMIlOZED7G4pwR1MxorKCrx25nPGf//VXehCMyNhZXYB7N5Vm/OcTkbENeQMY8rKKioxvPf2eF0JRnB7yXfU6REbEvuhkJq2JCtvOvmnI8ur7onckdyhxXSDjUteFM8N+zIeiq/5+FiHQ9TCJTmRQhx6IV6P/+M0R9E0tZOznXvEv4h+PDgIAPv8Aq9CJKPXUC9vtVfnIYRUVGZh6E3hyDcOxuvq9iMoKqgqzUO1hFRUZV0t9ESQJ6JlcwMRsUHQ4RGm1vSofbocVvkAE58dmV/W9iqKwHzqZQrXHjarCLERlBV393lV/f7JtZBPPE7oak+hEBnVbTSHu21yKmKzg6RcvZeznPvtyN8JRGfvqPLijqThjP5eIzKNjWZ9nIiNrUIdjRWWcXOVwLFYbklnku+3YVpEPYO19oon0wm61YF99fBfealsY9U4tYGIuBIfNgttqC9MRHpFmqNc/nas8T/yBCM6Nxh9Q8WETvROT6EQGdijRG/3fTo/i8vhc2n/e8EwA3+8aiv9sVqETURooipK8aWSLCjI6SZKSN3CrTQ4mtyLzPCETYF90MpPWNc7LUKvQb6spgMtuTXlcRFqy1OprdedJZ980FAVoLMlGaZ4rHaGRjjGJTmRg2yrz8Z6tZVAU4KkX098b/a+OdCMSU3B7U1FyGBoRUSr1TS1gbDYIh9WC3ayiIhNQd1ys5ibQvxjBWyN+AEBrA3dskPGtNVlCpEfqunCsz4toTF7x93VyJx+ZiHr9c27UD38gsuLv445XuhEm0YkM7vGDzZAk4Kdnr+Dt0dX1zVuN/qkF/OjkMADg0MFNafs5RGRuanXtLlZRkUmoycHTQz4srHA41rE+L2Ql3g6mPJ9VVGR8e+s8sFokDHoDGJ4JiA6HKK1uqchDnsuGuVAUb63w/k6WFe5QIlMpz3ehoTgbsgIc7Vv5A1bueKUbYRKdyOA2l+fhvbduAAA8mcbe6F87chkxWcG9m0pYHUpEadPO6hAymbUMx1IHYvEGkMwix2nDjqpEX3RWo5PBWS0S9q+ypculiTl4F8LIsluxo6ogjdERaUey1dcKW+JNzYdwMdEGlzvr6VqYRCcygc8daIZFAg6/PY4zw76Uv373xDz+9dQIAFahE1H6KIqS3IrM5CCZyWr7orOKisxotckSIj1T1wX1oenNtHfHz4s9dYVw2JgGInNY7byMzsT6sbk8F55sR9riIv3iX08iE2gqzcH7d1YCAJ44nPpq9KdevARZAR64pQy3JqqAiIhS7dL4PKYXwnDZLdhZXSA6HKKMaWta+U3g9HwIF8ZYRUXmo+5Q6uiZhqIogqMhSi91XTjeP4Nw9OZ90dWHS9zJR2aiXgddGJvD9Hzopl/Pfuh0M0yiE5nEo/dvhNUi4ZWLkzgxMJOy170wNoufnLkCIN5/nYgoXToS1VZ76zysoiJTUYdjvTXih3/xxsOxjvbFW75sKstFcY4z7bERacXu2v+PvTsPk6uq88f/vrVXL9VLOukdEhYRZYs4QEDFJRCWwW1mRFBBHFEQFMiMShwBcSHOV0VGBwZHQXycYUD9Kvr7EoEQZVwIIEsUkC0QSHenu5NOL9VL7ff8/qi+t6rTXV3bXc99v56HR1NdXXVOnzp1zvmcrQ0hvw/DU0m8tp/nopPcXrcqv1I2kcnhz2V2GudUoa+w5Q4l8pKOpjCO6GwGADzySvkj8biTj8rhCJTII1Z3NOLv39QHALhx6wuGve6351e2n31MN47sjhn2ukREB3qYHVvyqOLLsR7btfwgkOehk1dFgn6sPagVQKG9IJKVz6cUjvoq83n/6544ppNZNIcDOKqH4zXylsJRX8sffTQylcQrY7PwKcAJa9qtSBq5EIPoRB7y6XcdhqBfwR937tdXI9TjmaEp3P/sKHwKcNX6ww1IIRHR0nKq0FfYruMRFeRBJ1V4ridXUZGX8Vx08hKtXSh3Lrr28xPWtCPgZwiIvGWdXk/K9J/mg+xH9bagJRo0PV3kTvwGJfKQvrYGnPs3/QCAGx94se7zIrXz1d9zXC8OW9Vcd/qIiEp5bjiOqUQGTeEAju7l3QvkPSdXECwZjSfx8r5ZKApw0hoG0cl7eC46eYnWLjy5exLJTK7k87bzKBfysJPWrICiAK/sm8VoPFnyeVyEQJVgEJ3IYy5/x+EIBXx47NVx/GFnZbe5L+XJ3RP4zfN74fcpuOJdXIVORObSOrZcRUVeVXw51vhsesnnaLvM3tgTQ0sDV1GR9xzb34JI0IexmRR27p2xOzlEpjqkoxGrmsNIZ1U8WeLOq0xO1Y8BY3CQvKilIYg3zh9jtNxuPv3YSO54pWVwFErkMV0tEXzoxIMAAN+qYzW6dhb6372pF6s7Gg1LHxHRUrTVtydzAEgetfByrKUHgQ/vzD+urcYl8ppwwI+/WZ0/y5bnopPsFEXR+0WljjD6y+AU5tI5tDYEcWQXz0MnbyrepbSUgfE5DE4kEPApehtCtBQG0Yk86NK3H4pI0IcdA5P47Qt7q/79x3aN4/cvjSHoV/Dpd3IVOhGZq3gV1UlcHUIetq7Muej6ln3WE/Kwkyq8bJFIBuXOe94+vwjhpDUr4PMplqWLyEm0ftHDJS4X1dqLY/tb0RgOWJYuch8G0Yk8aFVzBBeuWw0gf655NavRhRD41gMvAAA+8OZ+9Lc3mJFEIiLd00NTmE3n0BIN4g3dXEVF3rVumXPRByfmsHt8Dn6fgr9Zw1VU5F3aytxHdu2HqvJcdJKbtsL2zwOTmE1lF/1cm1w9+TBOrpJ3/c2advh9CgbGExgYn1v0c72ecMcrlcEgOpFHffLUQ9EY8uOZoTjuf3a04t97+OX9eHTXOEIBHy5/52EmppCIKE9bHXLSIe1cRUWepl2O9fK+Wew94HIsrZ4c09eCJq6iIg87ujdfBybnMnhuJG53cohM1d/egN7WKLKqwJ9eHV/ws1RWxeOv5s9K5w4l8rKmcADH9LUAWHz0kRBCX5zAekLlMIhO5FHtjSFcdMoaAPnzzStZqVO8Cv38Ew5Cd0vU1DQSEQGF4CDPeSavW3A51gGDwEI94QCQvC3g9+GE+d0YPNKFvKDUueg7BiaRyqroaArjsFVNdiSNyDH0XUoHtAuv7p/DaDyFUMCHNx3cZkfSyEUYRCfysIvfegiaIwG8MDqNe58eLvv8h17chyd3TyIS9OFT7zjUghQSkdelsioefy2/smodg4NE+iqp4uCgEKLoPHRONhEtVU+IZFXqvoxHXin0nxSFO/nI27T+0cMv719wnO32+XrypoNaEQn6bUkbuQeD6EQe1tIQxMffcggA4KYHX0RumdXoQgh8e+uLAIAL1q3GquaIJWkkIm/78+AkkhkVHU0hHM5VVET6joziS+ReG5/D8FQSIb8Px3MVFZEeVHx01ziyOdXm1BCZS/u8PzM0halERn/8kflL2blDiQg4/uA2hPw+jMSTeHV/4Vz0R/V6wkUIVB6D6EQe97G3rEZrQxAv75vFL3cMlXze1r+O4i+DU2gI+fHJtx1iYQqJyMsefSV/ludJh3AVFRFQuBxr9/gchiYTAIBH5uvJcQe1IhriKiqiN3TH0BINYiaVxbPD03Ynh8hU3S1RrOlohCqAx+YDgukc8OfBKQA855kIAKIhP447qBVA4YJ2IQqTTdzxSpVgEJ3I45ojQXxiPij+b9teQmaJ1TqqKnDj/Cr0i05ZjRVNYUvTSETetZ2rQ4gWKL4cS9uqr/0vVxsS5fl8Ck46JH8uulY/iGR24JEur0wryOQEeloiOHhFg51JI3KMkw+oJ8MJYHw2g2jQj2P7Wm1MGbkFg+hEhAvXrcaKxhBe2z+Hnz85uOjnv35mBM+PTKM5HMDFb+UqdCKyRjqXvxQL4OoQomLaqsJHd40vXEXF1YZEOq0+aPWDSGba511bYfvSVH733kk8D51Ip7cLr+TPRdfqyZtXtyEUYHiUyuOnhIjQGA7g0rfnLwr9zradSGcLq9FzqsC3H8yvQv/Ht65Ba0PIljQSkffsml9F1d0SwWquoiLSaTsztr8yjpEEsH82jUjQp29TJiLg5MPy9eTx1yaQ5bHoJLmT5oODz49MY3w2jZfi+eAgd/IRFRx3UCsiQR/GZtLYuXdWD6KznlClGEQnIgDAh086GKuawxiaTODuxwf0x//f0yPYuXcGLdEgPvaWNTamkIi8RhsAruN56EQLHH9wG4J+BSPxFLaP5rvzbz64HeEAz0Mn0hy+qgkdTSEkMypem7E7NUTmWtkcxus68xewb3t+HwbmP/PcyUdUEA748eaD80d9/fGV/dipjTVYT6hCDKITEQAgEvTjsnccBgC4+Tc7kcrkkBPAv//2ZQDAJ952CGKRoJ1JJCKP0VaHsGNLtFA05Mfag9oAAP87ku/Os54QLaQoir46V2tPiGSmraa9+aGXoULBQe1R9LZGbU4VkbNo/aU7Hn4NiZyCpnAAR/XEbE4VuUVNQfSbb74Zq1evRiQSwYknnojHHnts2ef/9Kc/xetf/3pEIhEcffTR2LJlS02JJSJzffCEfvS0RDAST+J/Hh/En/YpeHX/HFY0hvDRk1fbnTwiqoLb2+qZVBa7uYqKqKQDzz9nPSFaTKsXL8Wdu3bM7e01OYc2aTQ0mcz/e027nckhciStXdDqyd+sbkXA79w2gpyl6k/K3XffjY0bN+K6667Dk08+iWOPPRYbNmzA3r17l3z+ww8/jPPOOw//+I//iKeeegrvfe978d73vhfPPPNM3YknImOFA35c/s7DAQA3//YV/H+7818Rl5x6KBrDATuTRkRVkKGtfvy1CahQ0N8WRV8bz0MnOtDJRUHzxpAfx/S22JgaImfSVubumgaSmZzNqVlMhvaanOOkQ9pRfPrdSYcwiE50oGN6W9BUFNvgpexUjaqD6DfeeCMuvvhiXHTRRXjDG96AW2+9FQ0NDbj99tuXfP6//du/4YwzzsBnP/tZHHnkkfjKV76CN73pTfj3f//3uhNPRMb7hzf3ob89islEBjMZBSubQvjwSQfbnSwiqoIMbfUjr4wD4ACQqJTiS0SP6o1xFRXRElavaEBnLIycUPDk7km7k7OIDO01OUdrQwg9LYXjW07kSnSiRQJ+H17f1az/+8Q1bTamhtymqqWl6XQaTzzxBDZt2qQ/5vP5sH79emzfvn3J39m+fTs2bty44LENGzbgnnvuKfk+qVQKqVRK/3c8HgcAZDIZZDKZapK8JO01jHgtO8mSD4B5cZrLTj0EV//iWQDAxW85GAFFRSaj2pyq2slQJoA8+QDkyYvR+TDidWRpq7e/sh8A8DcHtfBz4hCy5AOQIy8+AJs2HIa7Hn4Jl71ttavzAshRJoA8+QDkycuJq1vxq7+M4uGdYwt2cNTDLe212W219lrF/+tWsuTjPcd245b/fQXNQYG2iM/V+ZGlTAB58iJLPt7+ug48/toEFAgcuiLi6vzIUiaAM8fWB6oqiD42NoZcLofOzs4Fj3d2duL5559f8ndGRkaWfP7IyEjJ99m8eTOuv/76RY8/8MADaGgwbkv31q1bDXstO8mSD4B5cYqwAP72IAU5FeiYeA5btjxnd5IM4eYyKSZLPgB58mJUPubm5up+DRnaaiGAI8MK/G0Kkrv/gi0jf6nr9ZyCn3fncXteugBceRQw8eKfsOVFu1NjDLeXiUaWfADuz0tHUsGJKxUo+1/Bli0vG/KabmmvrRpXA+7/nGjcno/DVOA9Bys4NCZcnxeNLPkA5MmL2/PRmQPO7FOwtkNg24MP2p0cQ7i9TIo5aWx9IEcecrxp06YFM+zxeBz9/f04/fTTEYvVf2tuJpPB1q1bcdpppyEYDNb9enaRJR8A8+JEGyTJByBPmciSD0CevBidD22FmBuY3VafLslnBODn3YlkyYss+QDkyYss+QDkyctpJuTDLe212W01IM/nRJZ8AMAZkuRFpjKRJS+y5AMAzpYkLzKViRvG1lUF0Ts6OuD3+zE6Orrg8dHRUXR1dS35O11dXVU9HwDC4TDC4fCix4PBoKEfCqNfzy6y5ANgXpxIlnwA8uRFlnwA8uTFqHwY8Rpsq51LlrzIkg9AnrzIkg9AnrzIkg9AnrwYmQ+3tNdWtdVmvaYdZMkHIE9eZMkHIE9eZMkHIE9eZMkH4Kyx9YGquoEoFArh+OOPx7Zt2/THVFXFtm3bsG7duiV/Z926dQueD+SX5pd6PhEREdWObTUREZHzsb0mIiJyl6qPc9m4cSMuvPBCvPnNb8YJJ5yAm266CbOzs7jooosAABdccAF6e3uxefNmAMAVV1yBU089Fd/61rdw9tln46677sLjjz+O//zP/zQ2J0RERASAbTUREZEbsL0mIiJyj6qD6Oeeey727duHa6+9FiMjIzjuuONw33336Rec7N69Gz5fYYH7ySefjDvvvBNf/OIX8YUvfAGHH3447rnnHhx11FHG5YKIiIh0bKuJiIicj+01ERGRe9R0sejll1+Oyy+/fMmfPfTQQ4se+4d/+Af8wz/8Qy1vRURERDVgW01EROR8bK+JiIjcoaoz0YmIiIiIiIiIiIiIvIRBdCIiIiIiIiIiIiKiEhhEJyIiIiIiIiIiIiIqgUF0IiIiIiIiIiIiIqISGEQnIiIiIiIiIiIiIiqBQXQiIiIiIiIiIiIiohIYRCciIiIiIiIiIiIiKoFBdCIiIiIiIiIiIiKiEhhEJyIiIiIiIiIiIiIqgUF0IiIiIiIiIiIiIqISGEQnIiIiIiIiIiIiIiohYHcCKiGEAADE43FDXi+TyWBubg7xeBzBYNCQ17SDLPkAmBcnkiUfgDx5kSUfgDx5MTofWjuntXtuwra6NFnyIks+AHnyIks+AHnyIks+AHnyYkY+3NpeG91WA/ycOJEseZElH4A8eZElH4A8eZElH4A7xtauCKJPT08DAPr7+21OCRERkfmmp6fR0tJidzKqwraaiIi8xm3tNdtqIiLyGiPbakW4YPpcVVXs2bMHzc3NUBSl7teLx+Po7+/HwMAAYrGYASm0hyz5AJgXJ5IlH4A8eZElH4A8eTE6H0IITE9Po6enBz6fu05cY1tdmix5kSUfgDx5kSUfgDx5kSUfgDx5MSMfbm2vjW6rAX5OnEiWvMiSD0CevMiSD0CevMiSD8AdY2tXrET3+Xzo6+sz/HVjsZjrP2SAPPkAmBcnkiUfgDx5kSUfgDx5MTIfblrRVoxtdXmy5EWWfADy5EWWfADy5EWWfADy5MXofLixvTarrQb4OXEiWfIiSz4AefIiSz4AefIiSz4AZ4+t3TNtTkRERERERERERERkMQbRiYiIiIiIiIiIiIhK8GQQPRwO47rrrkM4HLY7KXWRJR8A8+JEsuQDkCcvsuQDkCcvsuTDiWT628qSF1nyAciTF1nyAciTF1nyAciTF1ny4VSy/H1lyQcgT15kyQcgT15kyQcgT15kyQfgjry44mJRIiIiIiIiIiIiIiI7eHIlOhERERERERERERFRJRhEJyIiIiIiIiIiIiIqgUF0IiIiIiIiIiIiIqISGEQnIiIiIiIiIiIiIiqBQXQiIiIiIiIiIiIiohKkDKJ/7Wtfw8knn4yGhga0trZW9DtCCFx77bXo7u5GNBrF+vXr8dJLLy14zvj4OD70oQ8hFouhtbUV//iP/4iZmRkTclD7e7766qtQFGXJ/37605/qz1vq53fddZdj8gEAb3/72xel8ZJLLlnwnN27d+Pss89GQ0MDVq1ahc9+9rPIZrOm5QOoPi/j4+P49Kc/jSOOOALRaBQHHXQQPvOZz2BqamrB86wok5tvvhmrV69GJBLBiSeeiMcee2zZ5//0pz/F61//ekQiERx99NHYsmXLgp9XUm/MUE0+vv/97+Otb30r2tra0NbWhvXr1y96/kc/+tFFf/szzjjD7GwAqC4vd9xxx6J0RiKRBc9xQ5ksVbcVRcHZZ5+tP8eOMvnd736Hc845Bz09PVAUBffcc0/Z33nooYfwpje9CeFwGIcddhjuuOOORc+ptt55iSzttSxtdS15AZzZXrOtLnBDu8C22nll4tS2GmB7bTW21WyrzeTW9lqWthqQp72Wpa0G5GivpW2rhYSuvfZaceONN4qNGzeKlpaWin7n61//umhpaRH33HOP+POf/yze/e53izVr1ohEIqE/54wzzhDHHnuseOSRR8Tvf/97cdhhh4nzzjvPpFzU9p7ZbFYMDw8v+O/6668XTU1NYnp6Wn8eAPHDH/5wwfOK82p3PoQQ4tRTTxUXX3zxgjROTU0tyOtRRx0l1q9fL5566imxZcsW0dHRITZt2mRaPmrJy9NPPy3e//73i1/96ldi586dYtu2beLwww8Xf/d3f7fgeWaXyV133SVCoZC4/fbbxbPPPisuvvhi0draKkZHR5d8/h//+Efh9/vF//k//0f89a9/FV/84hdFMBgUTz/9tP6cSuqN0arNx/nnny9uvvlm8dRTT4nnnntOfPSjHxUtLS1icHBQf86FF14ozjjjjAV/+/HxcdPyUGtefvjDH4pYLLYgnSMjIwue44Yy2b9//4I8PPPMM8Lv94sf/vCH+nPsKJMtW7aIf/mXfxE///nPBQDxi1/8Ytnnv/LKK6KhoUFs3LhR/PWvfxXf/e53hd/vF/fdd5/+nGr/Nl4jS3stS1tdS16EcGZ7zbaabbVdeWFbbX6ZsL22FttqttVOyosT2mtZ2upa8uLU9lqWtrqWvDi1vZa1rZYyiK754Q9/WFFDr6qq6OrqEt/4xjf0xyYnJ0U4HBb/8z//I4QQ4q9//asAIP70pz/pz/n1r38tFEURQ0NDhqfdyPc87rjjxMc+9rEFj1XyITZKrfk49dRTxRVXXFHy51u2bBE+n2/Bl91//Md/iFgsJlKplCFpP5BRZfKTn/xEhEIhkclk9MfMLpMTTjhBXHbZZfq/c7mc6OnpEZs3b17y+R/4wAfE2WefveCxE088UXzyk58UQlRWb8xQbT4OlM1mRXNzs/jRj36kP3bhhReK97znPUYntaxq81LuO82tZfLtb39bNDc3i5mZGf0xu8pEU0l9/NznPife+MY3Lnjs3HPPFRs2bND/Xe/fxivc3F7L0lYLIU97zbaabbWR2FbnObGtFoLttZXYVrOtNppb22tZ2moh5GmvZWmrhZCzvZaprZbyOJdq7dq1CyMjI1i/fr3+WEtLC0488URs374dALB9+3a0trbizW9+s/6c9evXw+fz4dFHHzUlXUa85xNPPIEdO3bgH//xHxf97LLLLkNHRwdOOOEE3H777RBCGJb2YvXk47//+7/R0dGBo446Cps2bcLc3NyC1z366KPR2dmpP7ZhwwbE43E8++yzxmcExn0OpqamEIvFEAgEFjxuVpmk02k88cQTCz7jPp8P69ev1z/jB9q+ffuC5wP5v6/2/ErqjdFqyceB5ubmkMlk0N7evuDxhx56CKtWrcIRRxyBSy+9FPv37zc07QeqNS8zMzM4+OCD0d/fj/e85z0LPutuLZPbbrsNH/zgB9HY2LjgcavLpFrl6ogRfxtayInttSxtNSBPe822mm21UdhWF7i1rQbYXluNbTXb6kq5sb2Wpa0G5GmvZWmrAW+3125pqwPlnyK/kZERAFjQYGj/1n42MjKCVatWLfh5IBBAe3u7/hwz0lXve95222048sgjcfLJJy94/Mtf/jLe+c53oqGhAQ888AA+9alPYWZmBp/5zGcMS7+m1nycf/75OPjgg9HT04O//OUv+PznP48XXngBP//5z/XXXarMtJ+ZwYgyGRsbw1e+8hV84hOfWPC4mWUyNjaGXC635N/r+eefX/J3Sv19i+uE9lip5xitlnwc6POf/zx6enoWfPmeccYZeP/73481a9bg5Zdfxhe+8AWceeaZ2L59O/x+v6F50NSSlyOOOAK33347jjnmGExNTeGb3/wmTj75ZDz77LPo6+tzZZk89thjeOaZZ3DbbbcteNyOMqlWqToSj8eRSCQwMTFR9+eVFnJiey1LWw3I016zrWZbbRS21XlubqsBttdWY1vNtrpSbmyvZWmrAXnaa1naasDb7bVb2mrXBNGvvvpq/Ou//uuyz3nuuefw+te/3qIU1a7SvNQrkUjgzjvvxDXXXLPoZ8WPrV27FrOzs/jGN75RVaNidj6KG8Kjjz4a3d3deNe73oWXX34Zhx56aM2vuxSryiQej+Pss8/GG97wBnzpS19a8DMjyoSW9/Wvfx133XUXHnrooQUXh3zwgx/U///RRx+NY445BoceeigeeughvOtd77IjqUtat24d1q1bp//75JNPxpFHHonvfe97+MpXvmJjymp322234eijj8YJJ5yw4HG3lAktJkt7LUtbDcjTXrOt9ga21c7Dtlo+bKurw7a6OmyvvcHN7bWMbTXA9toKrgmi/9M//RM++tGPLvucQw45pKbX7urqAgCMjo6iu7tbf3x0dBTHHXec/py9e/cu+L1sNovx8XH99ytVaV7qfc+f/exnmJubwwUXXFD2uSeeeCK+8pWvIJVKIRwOl30+YF0+itMIADt37sShhx6Krq6uRTfxjo6OAoAjy2R6ehpnnHEGmpub8Ytf/ALBYHDZ59dSJqV0dHTA7/frfx/N6OhoyXR3dXUt+/xK6o3RasmH5pvf/Ca+/vWv48EHH8Qxxxyz7HMPOeQQdHR0YOfOnaY1KvXkRRMMBrF27Vrs3LkTgPvKZHZ2FnfddRe+/OUvl30fK8qkWqXqSCwWQzQahd/vr7uM3UiW9lqWthqQp71mW70Y22q21ZXwclsNsL1eCttqttUcW9dGlrYakKe9lqWtBrzdXrumrbbs9HUbVHv5yTe/+U39sampqSUvP3n88cf159x///2WXCxa63ueeuqpi26pLuWrX/2qaGtrqzmtyzHqb/eHP/xBABB//vOfhRCFy0+Kb+L93ve+J2KxmEgmk8ZloEiteZmamhInnXSSOPXUU8Xs7GxF72V0mZxwwgni8ssv1/+dy+VEb2/vsheg/O3f/u2Cx9atW7foApTl6o0Zqs2HEEL867/+q4jFYmL79u0VvcfAwIBQFEX88pe/rDu9y6klL8Wy2aw44ogjxFVXXSWEcFeZCJH/jg6Hw2JsbKzse1hVJhpUePnJUUcdteCx8847b9HlJ/WUsVe4ub2Wpa0WQp72mm0122ojsa12blstBNtrK7GtZlttNLe217K01ULI017L0lYLIWd7LVNbLWUQ/bXXXhNPPfWUuP7660VTU5N46qmnxFNPPSWmp6f15xxxxBHi5z//uf7vr3/966K1tVX88pe/FH/5y1/Ee97zHrFmzRqRSCT055xxxhli7dq14tFHHxV/+MMfxOGHHy7OO+88U/NS7j0HBwfFEUccIR599NEFv/fSSy8JRVHEr3/960Wv+atf/Up8//vfF08//bR46aWXxC233CIaGhrEtdde65h87Ny5U3z5y18Wjz/+uNi1a5f45S9/KQ455BDxtre9Tf+dbDYrjjrqKHH66aeLHTt2iPvuu0+sXLlSbNq0ybR81JKXqakpceKJJ4qjjz5a7Ny5UwwPD+v/ZbNZIYQ1ZXLXXXeJcDgs7rjjDvHXv/5VfOITnxCtra36Dewf+chHxNVXX60//49//KMIBALim9/8pnjuuefEddddJ4LBoHj66af151RSb4xWbT6+/vWvi1AoJH72s58t+Ntr3wfT09Pin//5n8X27dvFrl27xIMPPije9KY3icMPP9y0DmOtebn++uvF/fffL15++WXxxBNPiA9+8IMiEomIZ599dkF+nV4mmre85S3i3HPPXfS4XWUyPT2ttxcAxI033iieeuop8dprrwkhhLj66qvFRz7yEf35r7zyimhoaBCf/exnxXPPPSduvvlm4ff7xX333ac/p9zfxutkaa9laatryYtT22u21Wyr7coL22rzy4TttbXYVrOtdlJenNBey9JW15IXp7bXsrTVteRF47T2Wta2Wsog+oUXXigALPrvt7/9rf4cAOKHP/yh/m9VVcU111wjOjs7RTgcFu9617vECy+8sOB19+/fL8477zzR1NQkYrGYuOiiixZ0HsxQ7j137dq1KG9CCLFp0ybR398vcrncotf89a9/LY477jjR1NQkGhsbxbHHHituvfXWJZ9rVz52794t3va2t4n29nYRDofFYYcdJj772c+KqampBa/76quvijPPPFNEo1HR0dEh/umf/klkMhnT8lFLXn77298u+XkEIHbt2iWEsK5Mvvvd74qDDjpIhEIhccIJJ4hHHnlE/9mpp54qLrzwwgXP/8lPfiJe97rXiVAoJN74xjeKe++9d8HPK6k3ZqgmHwcffPCSf/vrrrtOCCHE3NycOP3008XKlStFMBgUBx98sLj44ost+yKuJi9XXnml/tzOzk5x1llniSeffHLB67mhTIQQ4vnnnxcAxAMPPLDotewqk1J1VUv7hRdeKE499dRFv3PccceJUCgkDjnkkAXtima5v43XydJey9JW15IXp7bXbKsL3NAusK12XpkI4cy2Wgi211ZjW8222kl5cUp7LUtbLYQ87bUsbXW1eRHCme21rG21IoQQZU58ISIiIiIiIiIiIiLyJJ/dCSAiIiIiIiIiIiIicioG0YmIiIiIiIiIiIiISmAQnYiIiIiIiIiIiIioBAbRiYiIiIiIiIiIiIhKYBCdiIiIiIiIiIiIiKgEBtGJiIiIiIiIiIiIiEpgEJ2IiIiIiIiIiIiIqAQG0YmIiIiIiIiIiIiISmAQnYiIiIiIiIiIiIioBAbRiYiIiIiIiIiIiIhKYBCdiIiIiIiIiIiIiKgEBtGJiIiIiIiIiIiIiEpgEJ2IiIiIiIiIiIiIqAQG0YmIiIiIiIiIiIiISmAQnYiIiIiIiIiIiIioBAbRiYiIiIiIiIiIiIhKYBCdiIiIiIiIiIiIiKgEBtGJXOJLX/oSFEXB2NhY2edms1l87nOfQ39/P3w+H9773vean0AiIiJie01EREREJCEG0YkkdPvtt+Mb3/gG/v7v/x4/+tGPcNVVVy34+erVq5f9/S996Uu44447Fj3+/PPP43Of+xyOO+44NDc3o7u7G2effTYef/zxqtL35JNP4t3vfjfa29vR0NCAo446Ct/5zneqeg0iIiK3c2p7/dGPfhSKopT8b2hoqNIsEhERERFJIWB3AojIeL/5zW/Q29uLb3/72/pjDz74IN7xjnfA7/cveO7999+PDRs24JlnnkFbWxt6e3sX/PyFF15AOBzG6tWr8YMf/AC33XYb/u7v/g6f+tSnMDU1he9973s46aSTcN9992H9+vVl0/bAAw/gnHPOwdq1a3HNNdegqakJL7/8MgYHB43JPBERkUs4tb3+5Cc/ueg5QghccsklWL169aL3JiIiIiKSHYPoRBLau3cvWltb9X8LIfD9738fmzZtwg9+8AMAwK5du3DJJZdACIFTTjkFTz/9ND7/+c/jC1/4AoQQyGQy+OpXv4rbb78dt912G1avXo3zzjsPX/rSl9DU1KS/9sc+9jEceeSR+NKXvlR2UB6Px3HBBRfg7LPPxs9+9jP4fNwMQ0RE3uXU9nrdunVYt27dgsf+8Ic/YG5uDh/60IeM+wMQEREREbkEI1hELjM2NoYPfOADiMViWLFiBa644gokk0kAwKuvvgpFUfDb3/4Wzz77rL7t+n//939x991348Ybb8Qll1yC4eFhvP/978dll12GBx54AE1NTTjvvPPwxBNPYMeOHbjpppuwadMmJJNJPP3003jHO94BADj++OMXDMgBYMWKFXjrW9+K5557rmza77zzToyOjuJrX/safD4fZmdnoaqq8X8kIiIim7m5vV7KnXfeCUVRcP7559f3hyEiIiIiciEG0Ylc5gMf+ACSySQ2b96Ms846C9/5znfwiU98AgCwcuVK/PjHP8brX/969PX14cc//jF+/OMf48gjjwQA+Hw+KIqiv1bx/9f+Xbw6/MCflzIyMoKOjo6yz3vwwQcRi8UwNDSEI444Ak1NTYjFYrj00kv1wAIREZEM3NxeHyiTyeAnP/kJTj755LLntBMRERERyYhBdCKXWbNmDX71q1/hsssuw49//GN86lOfwo9//GP85S9/QWNjIz784Q+js7MTLS0t+PCHP4wPf/jDWLVqFT70oQ/hyiuvxH/8x3+gu7sbP//5z/Hd734Xp59+OmZmZnD33Xfj+OOPx9FHH40rr7wSmzdvRigUwtFHH43f/va3JdPz+9//Htu3b8e5555bNu0vvfQSstks3vOe92DDhg34v//3/+JjH/sYbr31Vlx00UVG/pmIiIhs5eb2+kD3338/9u/fz6NciIiIiMizGEQncpnLLrtswb8//elPAwC2bNlS8ncURcFHP/pRPPLIIzj22GMB5Af3DzzwADZu3Iimpia88Y1vxMMPP4xLL70UiqIgGAzimmuuwZYtW7BmzZolX3fv3r04//zzsWbNGnzuc58rm/aZmRnMzc3hggsuwHe+8x28//3vx3e+8x188pOfxF133YWXXnqp0j8DERGRo7m5vT7QnXfeiWAwiA984ANV/y4RERERkQx4sSiRyxx++OEL/n3ooYfC5/Ph1VdfXfb3TjvttCUfP+OMMwAARx111JI/f/3rX7/k47Ozs/jbv/1bTE9P4w9/+MOis1eXEo1GAQDnnXfegsfPP/98fO9738P27dsX5Y+IiMiN3NxeF5uZmcEvf/lLbNiwAStWrKjqd4mIiIiIZMEgOpHLVXoOarFyA/gvfelLy/48nU7j/e9/P/7yl7/g/vvvLzmgP1BPTw+effZZdHZ2Lnh81apVAICJiYmKXoeIiMht3NReF7vnnnswNzfHo1yIiIiIyNN4nAuRyxx45MnOnTuhqqplF32pqooLLrgA27Ztw5133olTTz214t89/vjjAQBDQ0MLHt+zZw+A/EVrREREMnBze13sv//7v9HU1IR3v/vdBqeQiIiIiMg9GEQncpmbb755wb+/+93vAgDOPPNMS97/05/+NO6++27ccssteP/731/V72pnqd52220LHv/BD36AQCCAt7/97UYlk4iIyFZubq81+/btw4MPPoj3ve99aGhoMDiFRERERETuweNciFxm165dePe7340zzjgD27dvx3/913/h/PPP1y8gM9NNN92EW265BevWrUNDQwP+67/+a8HP3/e+96GxsbHk769duxYf+9jHcPvttyObzeLUU0/FQw89hJ/+9KfYtGkTenp6zM4CERGRJdzcXmvuvvtuZLNZHuVCRERERJ7HIDqRy9x999249tprcfXVVyMQCODyyy/HN77xDUvee8eOHQCA7du3Y/v27Yt+vmvXrrKD8ltvvRUHHXQQfvjDH+IXv/gFDj74YHz729/GlVdeaUKKiYiI7OH29hrIH+WyatUqrF+/3ugkEhERERG5iiKEEHYngoiIiIiIiIiIiIjIiXgmOhERERERERERERFRCQyiExERERERERERERGVwCA6EREREREREREREVEJDKITERERERERWeh3v/sdzjnnHPT09EBRFNxzzz1lf+ehhx7Cm970JoTDYRx22GG44447TE8nERER5TGITkRERERERGSh2dlZHHvssbj55psrev6uXbtw9tln4x3veAd27NiBK6+8Eh//+Mdx//33m5xSIiIiAgBFCCHsTkQ5qqpiz549aG5uhqIodieHiIjIFEIITE9Po6enBz6fu+a52VYTEZFXGN1eK4qCX/ziF3jve99b8jmf//znce+99+KZZ57RH/vgBz+IyclJ3HfffUv+TiqVQiqV0v+tqirGx8exYsUKttVERCQ1M8bWAUNexWR79uxBf3+/3ckgIiKyxMDAAPr6+uxORlXYVhMRkddY2V5v374d69evX/DYhg0bcOWVV5b8nc2bN+P66683OWVERETOZWRb7YogenNzM4B8xmOxWN2vl8lk8MADD+D0009HMBis+/XsIks+AObFiWTJByBPXmTJByBPXozORzweR39/v97uuQnb6tJkyYss+QDkyYss+QDkyYss+QDkyYsZ+bCjvR4ZGUFnZ+eCxzo7OxGPx5FIJBCNRhf9zqZNm7Bx40b931NTUzjooIMMa6uJiIicyoy22hVBdG2rWSwWM2xg3tDQgFgs5voOoQz5AJgXJ5IlH4A8eZElH4A8eTErH27cYs22ujRZ8iJLPgB58iJLPgB58iJLPgB58mJmPpzeXofDYYTD4UWPG9VWExEROZ2RbbW7DlwlIiIiIiIi8piuri6Mjo4ueGx0dBSxWGzJVehERERkLAbRiYiIiIiIiBxs3bp12LZt24LHtm7dinXr1tmUIiIiIm9hEJ2IiIiIiIjIQjMzM9ixYwd27NgBANi1axd27NiB3bt3A8ifZ37BBRfoz7/kkkvwyiuv4HOf+xyef/553HLLLfjJT36Cq666yo7kExEReQ6D6EREREREREQWevzxx7F27VqsXbsWALBx40asXbsW1157LQBgeHhYD6gDwJo1a3Dvvfdi69atOPbYY/Gtb30LP/jBD7BhwwZb0k9EROQ1rrhYlIiIiIiIiEgWb3/72yGEKPnzO+64Y8nfeeqpp0xMFREREZXClehERERERERERERERCUwiE5EREREREREREREVAKD6EREREREREREREREJTCITkRERERERERERERUAoPoREREREREREREREQlMIhORERERERERERERFQCg+hERERERERERERERCUwiE5EREREREREREREVELVQfTf/e53OOecc9DT0wNFUXDPPfeU/Z2HHnoIb3rTmxAOh3HYYYfhjjvuqCGpRERERERERERERETWqjqIPjs7i2OPPRY333xzRc/ftWsXzj77bLzjHe/Ajh07cOWVV+LjH/847r///qoTS0REROVxwpuIiIiIiIjIOIFqf+HMM8/EmWeeWfHzb731VqxZswbf+ta3AABHHnkk/vCHP+Db3/42NmzYUO3bExERURnahPfHPvYxvP/97y/7fG3C+5JLLsF///d/Y9u2bfj4xz+O7u5uW9vqjApkciqCQduSQERELpdI56AKu1NBREREbld1EL1a27dvx/r16xc8tmHDBlx55ZUlfyeVSiGVSun/jsfjAIBMJoNMJlN3mrTXMOK17PTb50Zw7RN+hFaPYP0buuxOTl1kKRMAGJ2chSrcnxdZykRVBfbG5wC4Py+ylMmju8ax8ad/wdndCk5zeV6MLhOjXseKCW+z2+p/+N4j2DEYwKrX78e6w1bW/Xp2kqXuptJpzGTcnw9AnjKRJR+APHlJpFKYZT1xlO/85iXc/qgfL4ZexMbTXmfIa7r9b0JERETVMz2IPjIygs7OzgWPdXZ2Ih6PI5FIIBqNLvqdzZs34/rrr1/0+AMPPICGhgbD0rZ161bDXssOd73sw1Tahzse3IH0q6rdyTGE28vk6XEFt73gwzt7fPC5PC8at5fJ/YMKtgz48ZHDFMDledG4vUy+9IQfE2kFP5z24ziX50VjVJnMzc0Z8jrVqmXC2+y2em7aB8CH+//wOCZelGMJodvr7tYhBf9vdwC7Zx7EG9pYJk4wlgR2TStI/norIqb36q3h9jL5+S4ffj/qx77kVqxutjs1xnB7mTz5og+q8GHPay9jy5adhrymXe01ERER2ceR3e1NmzZh48aN+r/j8Tj6+/tx+umnIxaL1f36mUwGW7duxWmnnYagi/eI/8/tfwIwATS246yzTrA7OXWRpUyuuOYBAMC2PQq++/F3uTovspXJj3f6sen8d7g6L7KUyaYntgHIAYDr82J0mWirua1Wy4S32W3175NP48WnhtHSeyjOMmjloF1kqbva9+mD+5vxzx96i82pqY8sZbL+27/Ha+MJfOiEXnzprDfanZy6yFImWj25d28L7j33FJtTUx9ZyuS23Y8AiOOdJxyLs47pMeQ17WqviYiIyD6mB9G7urowOjq64LHR0VHEYrElB+UAEA6HEQ6HFz0eDAYN7cAZ/XpW2zOVBAAMTaVcnY9ibi+TYrLkRZZ8AEAgEJAiL24vk2jQj7l0PoguFL+r86Ixqkzc9Lcwu60+aEUjAGB4Ou2qv8ty3Fx3p5OFowvaG8OuzceB3FwmmZyK18YTAIDHX5tybT4O5OYyEaKwQ2Nslt9dTjE0mR8zHdzRZFg+3Pz3ICIiotr4zH6DdevWYdu2bQse27p1K9atW2f2W0stpwoMzwfRh6eSyObkOM7FzebS2QX/nk1lSzyTrJI74Bap/bNpm1JCGiEEkpmc/m/te4zsVcuEt9n62vLvOziRsOX9aaHicmD75gzDk4Xvz2SG/UAnKO5nqCwSR5hLZ/Vy0doVIiIiolpUHUSfmZnBjh07sGPHDgDArl27sGPHDuzevRtAfnv3BRdcoD//kksuwSuvvILPfe5zeP7553HLLbfgJz/5Ca666ipjcuBRI/EkMrl8gLA4oE72OTDQMzTJwI/dhqcWlsEAg3G2m5zLYDZdCKKzTJzBiRPefa0MojvJwHjh/F+WiTMMTBTKZM9UAqoqxzn1blZcTyYTmQWTxmSPofnvq6hfoCXK1eNERERUu6qD6I8//jjWrl2LtWvXAgA2btyItWvX4tprrwUADA8P6wF1AFizZg3uvfdebN26Fcceeyy+9a1v4Qc/+AE2bNhgUBa8qbiTDnBA6wQHlgmDg/YbGF9YBqwn9uNkkzVkmPDWVgyOxJNIZ7mk027FbVo8mcVUIrPMs8kKxf2OTE5gdJoLKux2YN+P/Q77aZNN7YtPHyMiIiKqStVnor/97W9fcN7fge64444lf+epp56q9q1oGYsDtnNYhxU2pYaApYKDHMzabXBiYT0Z4mDWdgMTnAC0wuOPP453vOMd+r+1C0AvvPBC3HHHHSUnvK+66ir827/9G/r6+myf8O5oCiHoE8ioCvZMJrC6o9G2tNBSk/dzaIm22JQaAhZ/fw5OJNDdwuMq7HRgv2NgYg6HrWqyKTUEFBZUrIhwpwYRERHVx/SLRckciwZOBwxuyXrcHeA8i1aEcdWz7bhjwxoyTHgrioL2MDCayH+fMohurwPbtIHxBN7YwyC6nQ6clBwYn8PfrG63KTUEcAecE2n9Dq5EJyIionqZfrEomUMbODX4xfy/2Um3m1Ymh3Q0AODAyQm0ySWtTFhP7FeoJ/mAKOsJLWdFWGvjOFFsN22FbWS+33HgiluynhYcjGp9wXF+n9ptUT3hIhfbaf0MrT0hIiIiqhWD6C41OD9QOqyFg1mn0AavJx2SXwXGgK39tMCbViYM2NpPK4OTDmkDwDPRaXkr5lcOHriDgawlhNDL4PCYFrBlmdhN62ccFuNkk1MsqicsE9vpZ6JHbE4IERERuR6D6C6ldQgLg1kGouymTWSctCYfsGVw0H56wHa+TIanksipXIlkJy3AoJXJ2EwaiXTOziSRg7VHuNvKCSbmMpidr6eFyXuWiZ2SmRz2TacAAK/jggpHUFWh9/20MmH/3H5av4Mr0YmIiKheDKK7UCqbw0g8f2mlNpgdnU4ilWUgyi5TiQziySwA4MT54OB0MoupuYydyfK04npy/MFt8CsCmZzAaJwXvtpFCKEH3t7QE+OxEFRWO1eiO4JWR1c1h9E1f28lV9jaS/subQz70d/EgK0TjE4nkckJBHwKDomxfXOC4v45z0QnIiKiejGI7kJ7JpMQAogGfeiO5v9XCGCIq8JsowV4OppCaG8MoSnIbbx2K9QTP1Y2hdAWyj/OYJx99k2nkMqq8ClAT0ukcFQH6wmVoK0cZCDKXlpwtq8tivZwIWC73OW1ZC7te7O/NaoHB4enEsjkVBtT5W1aPelqiaBjvkwm5jKYSWVtTJW3aW1He2MQYb/NiSEiIiLXYxDdhbQOYW9rFIqSH9QC3O5uJ71M2vIXWPIcX/tpf/u+tigUReGxEA6g/e27W6II+n16MI7HQlApK+bPsOWxP/Ya0PsdEbSHAUUBEpkc9s+mbU6Zd2kXVva2RdEcBEIBH1QBDE9yt5VdtH5Hf1sUkQDQGg0ueJysVzwBSERERFQvBtFd6MAOofa/XKlnHy0I2D9fFisYHLSdXibtCyc2WE/so/3tte8s7ZIvBhiolIYA0BwJAGDdtVPxpGTAlz/WBWAbZyftb9/XFoVPAfpaI/OPs57YpbhMiv+XbZx9BvUdGw02p4SIiIhkwCC6C+lbeLVOeqvWSedg1i766qP5gK0eHORg1jYH1pPiIwjIHgfWkxUsE6pAr9bG8fvUNgdOFPczOGi7gQMmJQu7ElkmdtHLpPXARS5s4+wyoO/YiNicEiIiIpIBg+guVLwirPh/OXCyz4AeYDgwOMgysUuhnsyXCSc2bHfgLhqeiU6VKARsGYiyy4EBW05s2E+rD/2tB656Zj2xy0DRETsA++dOcODuACIiIqJ6MIjuQlrAtvfAlS4M2NrmwImNdj04yMGsXfSJjfaFK9FZT+wzOKntDtB2bPDYIyqPRyLYS1WFXkcP7HcwYGsf/Zx6Tmw4xoE7NrQjdlhP7HPgBCARERFRPRhEd6HBEivRGYiyhxBiifO3teDgHIQQtqXNy4YmDliJPj+xMRJPIp1V7UqWp+krJw84p34qkUE8mbErWeRwXM1pr30zKaSzKnwK0N2SDwryLhZ7TSczmJzLf2f2HXDEDvuC9sjkVAxP8c4iJxFCFPodDKITERGRARhEd5m5dBb7Z9MAFp+Jvn82jdlU1ra0edX+2TQSmRwUBeiZX3XUFgYUBUhmVIzNpG1OoffMpbP6310L2DYHgUjQB1VAH+iSdXKqwJ7JhbsDwn6grSEIgKuMqTROFNtLCwB2t0QR9Oe7jQzY2kv7u7c1BNEUzl+8yx0b9hqeTEIVQDjgw8qmEIDCJP7gRIILKmxQ3D/vbmEQnYiIiOrHILrLaAOnWCSAWDQffIpFg4hFAgt+TtbRBqxdsQjCAT8AIOADOpvzy2y5etJ6Wj1ojgTQMl9PFKVouzu3VltueCqBrCoQ9CtY1Vy44IvnXVM5/a0MDtqpsIOkEITSvkuHJhJQVQYHrXbgJc1AIYi+dzqFZCZnS7q8rPh4HUVR8v9/fmHFTCqr7xwg62j1pLM5gnCAQ14iIiKqH3sULrPUwKn43wwyWG+gxKVFXBVmH72etC2sJ308M9Y2xWcq+32K/ji3u1M52g6feDKLqQQDUVY78JJmAOiKheH3KUjnVIxOJ+1Kmmct1e9ojQbRGMpP5HNBhfWW6ndEgn6s5IIK2wxOLJ4AJCIiIqoHg+guUyo42K9vGWUn3Wra33xxmXC7u11KDZwYsLVPqQlAHtVB5TSGA1jRmD8egZOS1htYoo0L+H365AbrrvWW6ncoiqJ/v7KNs16pfgd3W9lnqe8uIiIionowiO4yZVc9czBrOW1g1FcyOMjBrNVKrkTnYNY2he+uhWXSy6M6qAJ9DA7apnRwkDvg7FK63zFfJuwLWq5UwJYTG/bR6wkvFSUiIiKDMIjuMvrqIx7n4hiFFWGljnPhYNZqAyXqSWGyifXEaoP6kRAlVumxTGgZ3Nljn7Lfp2zjLFeq36FNdAyyL2i5pY49Aoomm9jGWU6rJwdONhERERHVikF0l1nqgq/if3P1kfVKDZx6ef62bUqtPurjxaK2qSQQJwQvKKSlcaLYHtmcij2T+TPPF0+AMThoByFEyX5HH8vENgNljpFjv8N6+i4aHudCREREBmEQ3WVKbhflmei2yKkCQ5PLn4O5ZzKBnMrgoJVK7djQBrNjMykk0jnL0+VlhcHswnrSMz+xkcjkMD6btjxd5A48sswew1NJ5FSBkN+HzubIgp/xmAp7TM5lMDvffpXa2cMdG9ZKZnLYN50CUPo4F05sWEtVBYZ4sSgREREZjEF0F5may2A6mQWwxKrn+YHTdDKLqbmM5Wnzqr3TSWRyAgGfgu6WhZ30zlgEQb+CTE5gNJ60KYXeM5XIIK7Xk4Vl0hINoDkcAAAMTXJAa5VUNoeR+Tpw4MRGOOBDZywMgAFSKo3nb9tDC8b2tkXh8ykLfqbvgOMKW0tpwdhVzWFEgv4FP+OODXto9aQpHEBrQ3DBz7TvrqEJ7ray0uh0EumcCr9PQVcsUv4XiIiIiCrAILqLaAOnjqYQoqGFA6eGUAAdTaEFzyPzacGDntYo/AcEGPw+RV9lywGtdbS/dUdTCA2hwIKfKYqin43JwI919kwmIQQQDfqxojG06OcMkFI5hVXPDERZSetPLHUxnzaZPzyVQCanWpouLysc67f4iAqtnCbmMphJZS1Nl5cV1xNFWdgX7G6NwKcAqayqr1Yn8xX65xEE/BzuEhERkTHYq3CRUmdgavoYiLLcQInLEjU8gsB62tECvSXrCc+qt1pxPTkwwABwuzuV19MagaLkj/0Zm+GxP1YZXKbfsbIpjFDAB1UAw5PcbWWV5SY2miNBfSU0+4LWWa6eBP0+faci2zjrDJY4/pKIiIioHgyiu4h+pnCJW+aLV+qRNUqdUa/hWfXWK3X2toarnq1X9ruL5/hSGeGAX9+Sz+9T65S6LBEAfD5FD+SyTKxTLjhY6Hfw+9Qqg2XO3ublotbTd2wwiE5EREQGYhDdRQoB23KrnjmYtUq5gVM/jw6xnBYcLz3ZxICt1cp/d3Fig8rTJ8BYdy1TacCW/Q7rFI5zKdXv4DFyViu7oIKX8FpuuR0bRERERLViEN1FygYHGYiyXLky4cSG9fSVkwz6OEbZo6g4sUEVKKzmZN21ynLnbwNcYWuHSnfAsY2zjvb5LxWwLfTPWU+sUq5/TkRERFQLBtFdpGxwsJ3nb1tNC/qVPhN9fvURgz6WKXtOfTuDPlZb7kgIoPCdNjSRgKry0khaWh9Xc1oqlc1hdDp/1nnJ4CDvM7CUqoqifgcnNpxCn9jgggrHKLdTlIiIiKgWDKK7hBBCDxyUW+kyODEHIRiIMlsmp2J4qrKJjeF4EumsalnavCpfT8qdv51/fCqRQTyZsSxtXjY0sfxK9O6WCPw+Bemcir3TKSuTRi7Sz+CgpYYmEhACiAb9WNEYWvI5PH/bWmMzKaSzKnwK0N0aWfI5nGyy1nQyg8m5fF+i3J1FDKJbo5L+OREREVEtGER3ibGZNJIZFYoC9LQuHUTvbo1AUYBkRsXYTNriFHrP8GQSqgDCAR9WNoeXfM7KpjAiQR+EgN6hJ/Psn00jkcnN15OlAwyN4QDa5wNCgwzGmW4undW/j0oFGAJ+H7pb8uXFIAOVwnOFrVW8klNRlCWfw/O3raV9P3a3RBH0L92FL57Y4IIK82n1pK0hiKZwYMnn6AsqJpPI5rigwmyV9M+JiIiIasEgukvoA6dYBKHA0sUWDvjRFWMgyirFlxaVCjAoilJ0aSIDtmbTAjldsQjCAX/J5/Vza7VltABDcySAlmiw5PN4pwOVowXRhyYTyPHYH9OVO3sbKOwu2TudQjKTsyRdXlbuUlGgsFtxJpXVV0iTecrd+QEAnc0RBP0KsqrASDxpVdI8S/vu6l2mf05ERERUCwbRXULvpJe5IIeBKOtUMnDK/5wBW6sMlDmjXtPHemIZ/XKvMvWkn2fVUxldsQgCPgWZnMAoA1GmK3dZIpBffdsYyk9Y8kgX81XS74gE/frqW/Y7zFfuzg8A8PkU9LayjbPKYAUTgERERES1YBDdJQbLXCqq0S5N5GDWfIWLpJYP2HJiwzqVBmxZT6xT6eVexXc6EC3F71P048z4fWq+cpclAvndVjxmxzqV9gW13VZs48xXacCW56Jbp5IdG0RERES1YBDdJQqrjypbYcvBrPkqHswyYGsZ7W9c6Y4N1hPzVTuxwQADLUffscDvU9Pp36dld1tpwUGWidkqnrxv5+S9VfQdG2X6HX28hNcylRxFRURERFQLBtFdopIVYUDRWc/cLmo6PThY6RE7DA6arrAirNIAA+uJ2YrvDlhOP+8OoApwZ491BscrC9hqdXuQZWK6yvuC7HdYZbDSNq6d9cQqlR63SERERFQtBtFdorDqucLgIAdOpqv+/G0GB81Wyzn1QvCCQjMVtlVXttV9eCqBTE41PV3kToWjQ/h9aqbZVBb7Z9MAyn+fst9hjWxOxZ7J/F0A5fsdXFBhBSFE5butOLFhmUqPkSMiIiKqFoPoLpBTBfZMVheI2jOZQE5lcNAsyUwO+6ZTACo/zmVsJoVEOmd62rwqpwoMTVY2cNIu+JpL5zA+HygicwxWuHJyZVMYoYAPqgBGpnhpJC2NFzVbQwtCxSIBtESDyz6X529bYySeRE4VCPl96GyOLPtcnlNvjcm5DGbn+3Xld1txYsMKyUwOeyvsnxMRERFVi0F0FxiJJ5HJCQT9Cjpjyw+cumIRBHwKMjmB0TgDUWbRggVN4QBaG5YPMLREg2gOBwAAQ5Mc0Jpl73S+ngR8Crpblh/MRoJ+dMbCABj4MdNUIoN4MgugfIDB51PQx0sjqQz9XGF+RkxV6eRX8XNYb82lBV9726Lw+ZRln9tfdP42d1uZR5vMW9UcRiToX/a5Wj0ZnU4ileWCCrNU0z8nIiIiqhaD6C6gDUx7W6Pwlxk4+X0KehiIMl3xOc+KsnyZKIqiXzjFFUjm0f62PRXUE4BnxlpB+w5a0RhCQyhQ9vl9PBaCytB2mQzHk0hneeyPWSo9ogIoTJBNzGUwk8qami4vq/R+CQDobo3ApwCprKrvmiPj6ZeKVlAmKxpDiAb9EAL6sTxkvGr650RERETVYhDdBaq9IEcLMgxwha1pBiu8VFTDIwjMV6gnlZ2ByctFzadfuFZhPeF2dypnZVMYkaBvPhDFz4lZBqo4U7g5EtRXfHLy3jyDVfQFg36fviOL/Q7zVHrRKzC/oKKNi1zMNqjfV8SjXIiIiMh4DKK7QLUX5BS28bKTbpZKLxXV6KueOXAyjT6YrXDgxIkN81V6IbKG5/hSOflAFHcsmK3qyfui40PIHNX2Bft4Vr3pBqvsd/ASXvMVFrnwUlEiIiIyHoPoLlDYmlhlJ52rOU1T/cCJg1mz1T7ZxDIxy0DNOzZYJlQaL7I0X9Xfp+1cYWu2aieKeVa9+bR+duX9Dn53ma3aekJERERUDQbRXWBQ76Rzha1TDFRZJjx/23xVB2y1iQ0GGEzDHRtkBgYHzVf9zh62cWarud/BBRWmqX2RC+uJWao5p56IiIioWgyiu0BhMFvpFt75FbbspJumcA5mhWXSzrOezTZYY8B2cCIBVRWmpcvLqrmcECgEGPZOp5DM5ExLF7kbdyyYa2oug+lk/oLQyo9zYRtnplQ2h9Hp/GWUlbZxXFBhLlUVRUeWcbeVUwxWcU49ERERUbUYRHe4VDaHkbg2cKru6JCReBLprGpa2rxqOpnB5FwGQPXnxU4lMognM6alzasyORXDU9UNZrtbIvD7FKRzKvZOp8xMnicJURRgqHAw29YQRGPIDwAY4qWRVAJ3LJhLC7p2NIUQna+P5fTxPgNT7ZlMQgggGvRjRWOoot8p3DHB71IzjM2kkM6q8ClAd2ukot/hIhdzzaSymJjvnzOITkRERGZgEN3higdOHU2VDZxWNoURDvigCuiBRTKONiBtawiiKRyo6HcawwG0zw98B7lSz3DDk0moAggHfFjZHK7odwJ+H7pb8gNfBn6Mt382jUQmB0UBeioMMCy4NJJBBiqBF9Caa7DKIyqAhTt7hODOHqMNFF2WqChKRb+jLajYM5lAjrutDKdNNnW3RBH0Vzac0r679s+mMZfOmpY2r9LqSTX9cyIiIqJqMIjucIXBbOUDp3wgilurzVLt2duafm6tNs1ADfUE4Fn1ZtLqSWdzBOFAZatZgaILCrl6kkrQ6u3YTBqJNI/9MVq1Z28DhWMqZlJZfacWGaeWyxI7myMI+hVkVcEFFSao9lJRAGiJBhGL5IO73CFgPK3fUc0EIBEREVE1GER3uFoGs8XPZ3DQeANVnoGp4Qpb89Q6cOrnWfWm0etJFQEGgNvdqbyWhiCa9UAUPydGq/YeFgCIBP36LiD2O4xXy2WJPp+C3la2cWaptd/BvqB5BmvsdxARERFVikF0h6tlMJt/Pre7m6UwcKoyODjfqefqI+NVe9GrhoNZ8wzWsHIS4Dm+VJk+7iIxTc2Tkm1s48wyUONliVxQYZ5qLxXVFCbvWSZGq2XHBhEREVE1GER3uJqPDuEKW9NoA6e+qo9z4cSGWeodzDLoYzx95WSV9aSPxx5RBfp5ZJlpal3NqQdsGRw0nN7vqHHVM9s449U6ed/PMjFNrf0OIiIiokoxiO5wAxPVb+HNP5+rj8wyWOvuAD3AwIGT0Wo/p571xCzF9zlUo5+7A6gCDNiaQwhR+6Qkv09NMzheY8BWmyhmPTEcdwc4T639DiIiIqJKMYjucEMTtW6rZsDWDEKImgO2xStshRCGp83Lap1s0spweCqJbE41PF1epteTGncHTMxlMJPKGp4ukgMvajbH2EwaiUwOigL0tFY7ec/dAWaYTWWxfzYNoI7zt1lPDJXNqdgzmQRQyyIX1hMz1DMBSERERFQpBtEdbC6dxdhMfuBU63EuYzMpJDM5w9PmVRNzGcym83/P3ioDDNrz59I5jM8PiKl+yUwO+6ZTAKofOK1sCiMU8CGnCgxPJc1IniepqsDQZG1HQjRHgmhtCALg0UdUGs/ON4cWbO2KRRAKVNdFLJQJ662RtM94LBJASzRY1e/y2CNzjMSTyKkCIb8Pnc2Rqn6XK9HNMVk08c6V6ERERGQWBtEdrJ6BU0s0iOZwYP512FE3iva3XNUcRiTor+p3I0E/OmPh+dfhgNYo2t+yKRzQg6+V8vkU9LVyRavRRqeTyOQEAj4FXbHqAgwAV+pReTzOxRz1rOQsPuuZu62MM1jjsSHFvzM6nUQqywUVRtHapt62KHw+parf1dq36WQWU4mM4WnzqoE6+udERERElWIQ3cFqPTYEABRFQS8DUYbT/pa1lAnAM2PNMFB0BqaiVDeYBQoXUA2ynhhGqyfdrREE/NU3MzwXncrRdvbEGYgylFbn+qrcQQLk67tPAVJZVd8dRPWr9WgsAFjRGEI06IcQ0I8fofoN1HH2dkMogI6mUP512MYZRr9UlKvQiYiIyEQMojuYPpitsUPILaPGG6jxUlENV9gab3C8tnsDNDxb2Xj1BH0AfndReY3hAFY0MhBltMLF2dXX3aDfh+4Wfp8ardY7P4D8gopCv4NlYpR6+x29bTz6yGj17NggIiIiqhSD6A42UOcFOVzNabyBegO2DA4aTq8nNaycBIouXmM9MUy9l3tpExs89oiW08czuA1X72rOPtZdw9WzK7H499jvMM5gnf0OnlVvvIE6JgCJiIiIKsUguoPVu6pC69xzMGuc+gdOvAzPaPWsnARYT8ygD2Y5sUEm4mSL8ervd7DuGs2ogC3riXHqDdjyEl7jFY5b5HEuREREZB4G0R2s3g5hH8/fNly9AyftnNlBBhgMw3Pqnaf+HRuFoA8vKKRSGLA1Vk4VGJo06PuUK2wNY1TAlvXEOMb1O1hPjFI4p96dK9FvvvlmrF69GpFIBCeeeCIee+yxZZ9/00034YgjjkA0GkV/fz+uuuoqJJO894CIiMhsDKI7WP0DJ24XNZKqiqIVYfUNnAYnElBVBgeNUM8FX0ChLEfjKSQzOcPS5WX1rpzUBsEzqSwm53hpJC1NP+uZgShDjMaTyOQEAj4FXbFITa/RxzsmDDU1l8F0MgsA+mXx1WI9MVYqm8PodD5YWe+xR5zYMIYQAkN1HiNnp7vvvhsbN27EddddhyeffBLHHnssNmzYgL179y75/DvvvBNXX301rrvuOjz33HO47bbbcPfdd+MLX/iCxSknIiLyHgbRHap44FT7hYn535tKZBBPMhBVr30zKaSzKnwK0NVSW4ChuyUCv09BOqdi73TK4BR6z3QyowdZa53YaGsIoiHkBwB9FSbVLpNTMTxV32A2EvRjZXMYAI8goNJ474extL9jT2sUfp9S02sUjqlgvTWCNhnR0RRCQyhQ02tofUjugDPGnskkhACiQb9+uXG1iusJd1vVb990Cqn5/nl3a239czvdeOONuPjii3HRRRfhDW94A2699VY0NDTg9ttvX/L5Dz/8ME455RScf/75WL16NU4//XScd955JVevp1IpxOPxBf8RERFRbRhEd6jigVN0PsBXrcZwAO3zHfxBrkavm3Z2ZXdLFEF/bVUn4Pehez4Az7Mw66cFatoagmgK1xZgUBSFZ9UbaHgyCVUA4YBPD4TXgitaqRwGooxV7w6S4t/dM5lAjrut6jZowBEVWj3ZP5vGXDprSLq8rHDRaxSKUttkU09rBIoCJDI57J9NG5k8TxowoH9ul3Q6jSeeeALr16/XH/P5fFi/fj22b9++5O+cfPLJeOKJJ/Sg+SuvvIItW7bgrLPOWvL5mzdvRktLi/5ff3+/8RkhIiLyCHf1NDzEiIFT/vcZiDKKUZcW8Qxu4xQGs/XVk8LRRyyTemmf69622gMMAFcZU3nFgaixGQai6lXvEXIA0NkcQdCvIKsKfUcK1a7es7cBoCUaRCySn2TmRHH9jKgn4YBfPzKJbVz9tHpS6/E6dhobG0Mul0NnZ+eCxzs7OzEyMrLk75x//vn48pe/jLe85S0IBoM49NBD8fa3v73kcS6bNm3C1NSU/t/AwIDh+SAiIvIKBtEdyoiBE8BAlJH0gK1RExvcHVA37YzXegdOvITXOEbVE31ig2VCJRQHorizp35G9Dt8PgW9rWzjjFLvnR+aPvYFDWNUwJZn1RtH+/6vd8zkFg899BBuuOEG3HLLLXjyySfx85//HPfeey++8pWvLPn8cDiMWCy24D8iIiKqDYPoDlVY6VJnJ30+EMXVR/UbMGh3gNbJ52C2fkZPbPDYo/oZcSQEAB6xQxUp7Ozh56ReRgVs9TaOExt1M3xSkv2Oug0YFLDlIhfj6BOALrxUtKOjA36/H6OjowseHx0dRVdX15K/c8011+AjH/kIPv7xj+Poo4/G+973Ptxwww3YvHkzVFW1ItlERESexSC6Qxl2TIUeiGInvV6GBQc5sWEY7W/YV/dxLqwnRjFiqzvAlZNUmcLOHn5O6jWk7+wxpu6yjasfJyWdZ9CoesJLeA1TmNhw33EuoVAIxx9/PLZt26Y/pqoqtm3bhnXr1i35O3Nzc/D5Fg7h/f78/Vm8H4SIiMhctd3ER6Yz7pgKbqs2iuGrjxiwrdugQTs2uJrVOFows/4dG4XJJiFEXeerk7z6OAFmiExO1c8wN2yimBMbdRFCFILoRu2AYz2p2+C4MQFbrd/C7676GbVT1C4bN27EhRdeiDe/+c044YQTcNNNN2F2dhYXXXQRAOCCCy5Ab28vNm/eDAA455xzcOONN2Lt2rU48cQTsXPnTlxzzTU455xz9GA6ERERmYNBdAfKD5yM2sJbGDgxEFW7bE7FnskkAONW2A5PJZHNqQj4uSGkFkIIwwK22rFH47NpzKayaAzzq7FWAwatnOxpjcKnAKmsin3TKayaP/uaqFg/J4oNsWcyAVUA4YAPK5vCdb0W75gwxthMGolMDooCdLfW9/3HBRXGmE1lsX82f4mxUTs2uIumPtmcimGtf+7ClegAcO6552Lfvn249tprMTIyguOOOw733Xefftno7t27F6w8/+IXvwhFUfDFL34RQ0NDWLlyJc455xx87WtfsysLREREnsFIkQONzaSRzKhQlHwgqR7aBV9z6RzGZ9NYUefg2KuGp5LIqQIhvw+rmuv7G65qDiMU8CGdVTE8lfTMRUhGm5jLYDadA1D/jo1YJIiWaBBTiQwGJubw+i5eulSLZCaHfdMpAPVPNgX9PnS3RDE0mcDARIJBdFoSV9gao/iyxHon2zmxYQztM90ViyAcqG91KeuJMbSdAbFIAC3RYF2vpQV8hyYTyKkCfh8XudRiJJ5Edr5/3tns3n7C5Zdfjssvv3zJnz300EML/h0IBHDdddfhuuuusyBlREREVKymJbA333wzVq9ejUgkghNPPBGPPfbYss+/6aabcMQRRyAajaK/vx9XXXUVkslkTQn2Am2Q0x2LIBSob5VyJOhHZywf9OW5i7XTyqS3LQpfnQMdn09B3/zkBge0tdN2a6xqDiMSrH/7auHiNdaTWmnfMU3hAFob6gswAEUXvrKeUAlacHDPfCCKamPUcWXFrzE6nUQqm6v79bzKqKNcgMJ36XQyi6lEpu7X86pBA+tJd0sUAZ+CTE5g7zTHRLXS+mxG9M+JiIiIyqk6Qnv33Xdj48aNuO666/Dkk0/i2GOPxYYNG7B3794ln3/nnXfi6quvxnXXXYfnnnsOt912G+6++2584QtfqDvxstKPqDBohTK3Vtdv0KAz6jX6Ob4M2NZMGzgZtZKfl/DWr3Auaf2rWfOvw+3u9fDChHdXLKIHokbjzk6rkxl1hBwArGgMIRr0Qwjox6BR9Qp9wfr7HQ2hADqaQgtel6qn/e2MqCd+n6LvNuXkfe2K+x1EREREZqs6iH7jjTfi4osvxkUXXYQ3vOENuPXWW9HQ0IDbb799yec//PDDOOWUU3D++edj9erVOP3003HeeeeVHcx7mZGrj/Kvw056vQoXSRlcJgzY1mzAoEtFNfp2d9aTmg0adEa9hrsDaueVCe+FgSh+n9aqMClZ//epoihFZ3CzTGo1aPBlib2cKK7bgNELKlhP6lZY5MKjEYmIiMh8VZ2Jnk6n8cQTT2DTpk36Yz6fD+vXr8f27duX/J2TTz4Z//Vf/4XHHnsMJ5xwAl555RVs2bIFH/nIR0q+TyqVQiqV0v8dj8cBAJlMBplM/dtQtdcw4rXM8NrYDACgpyW0bBorzUdPS/6MwNf2zzg2z44vk/2zAICeWLhsGivJS/f8ETuvjc06Ns+OL5P5etLdYlSZ5Ffp7WY9qZlWT3pbjSmTnvl6MjDunXpi1OsUT3gDwK233op7770Xt99+O66++upFzy+e8AaA1atX47zzzsOjjz5a8j2c0lb3tUawe3wOr45N4039zrzPwOl1d/d4vu52NRvT7+htjeClvTN4dWwa69a0GpZOIzm9TAr9DmPKpK8lgj8PAK+OsY2r1W6tTMr0O6qpJ0C+P+PUPDu+TOb7gr0GlUk1nPo3ISIiIvNUFUQfGxtDLpfTbwvXdHZ24vnnn1/yd84//3yMjY3hLW95C4QQyGazuOSSS5Zd3bZ582Zcf/31ix5/4IEH0NBg3EqDrVu3GvZaRtqx0wfAh/HdL2HLlhfLPr9cPib2KgD82PHibmzZ8qohaTSLU8vkL6/4ASjY9+rz2DLzXEW/s1xexsbyZfL0rj3YsmXAmESaxKllsuOlfD2ZGNiJLVtequh3lsvL8ES+TP66ey+2bNliTCJN4tQyefyFfJnEh3dhy5ZXKvqd5fIyGAeAAF4Y2u+ZMpmbq39FolUT3k5pq8VM/nP328eeRmT4z4a9rxmcWndfHsm3cbv/+iS27C7//HL5yMXzZfK7x59Fy76nDUmjWZxaJi8O5ctk6IU/Y8tI+c91uXykxvNl8scdz6N76q/GJNIkTi2Tv76WL5ORl5/FlvFnyj6/XD7m5vvnjzzzEg5NvmBMIk3i1DKptn9uZD6MaK+JiIjIXaoKotfioYcewg033IBbbrkFJ554Inbu3IkrrrgCX/nKV3DNNdcs+TubNm3Cxo0b9X/H43H09/fj9NNPRyxW/yqzTCaDrVu34rTTTkMwWP/ld0b71gu/B5DAWW8/ESesbi/5vErz0fbKfvzPy08gFWjCWWe9xYQU18/pZXLDs/8LIIVz3nkyju1rWfa5leSlb3AKd7z0KOYQwVlnnWpCiuvn9DL5t5f+AGAOZ516AtYdsmLZ51aSl9ftncF/Pv8w4rkgzjzzdEPO9Daa08vk+689AiCO008+HuuPXLXscyvJy/BUEt959neYyviw4YzT4XfgpWFGl4m2mrseVk14O6Wtfu1/X8H2B3ciurIPZ511VN3vawYn191kJofp7dsAAOf+7WnLXgpcaT5G/vgqfn/fiwi39+Css44xPM1GcHKZ5FSBf37sQQACf3/mO/Qji5ZSaT7ifxrEg7/6K/yxVTjrrDeZkOr6OblMAOCLT/0GQBbvPe2tOHxVU8nnVZqP7J+Hce/A00DjCpx11t+YkOL6Ob1MtP75375jHY7rby35PDPyYUR7TURERO5SVRC9o6MDfr8fo6OjCx4fHR1FV1fXkr9zzTXX4CMf+Qg+/vGPAwCOPvpozM7O4hOf+AT+5V/+BT7f4mPZw+EwwuHwoseDwaChHTijX88IOVVgeCp/EdealbGK0lcuH2tW5oMZQ5NJ+P0BR99e78QySWVz2DudP7JgzcrmitO3XF7WrMqXyeh0Cjn4EAn6jUmsCZxYJqoqMDhZXT0BKiuTmVQWc1ksG0iymxPLBAAGJ/Nnk642qJ70tgcQ9OcvjRybyzr6zFOjysSucq1lwtspbfXBHflg1tBk0pH1opgT6+5rE/nv0uZwAB2xyi4FrrRMBqdYJrXYN5lAJicQ8CnoW9Fc0QQi64m5puYymE5mAWhtXPkhVLl8rF7JMqnHgv75KmPGTNVw2t+DiIiIzFfVxaKhUAjHH388tm3bpj+mqiq2bduGdevWLfk7c3NziwLlfn8+YCiEqDa90huJJ5HJCQT9CjpjEUNes7slAr9PQTqn6p1NqtzQRAJCANGgH+2NIUNes60hiIZQvh4MTfLSxGrtm0khnVXhU4CuFmPqSSToR0eTdgY3y6Ra08kMJufy54MadQGv36egd34FpnZ5GJVX74T30Ucfjfe973244YYbsHnzZqiqakWya6ZNrgzycr6aaN93vW2VBdArwTKpj3bRZE9r1LAdONr38uBEgv3vGmiXmXc0hdAQMmYjb/98PRmeSiCTc/b3rBPtmUzq/fMVBvXPiYiIiJZTVRAdADZu3Ijvf//7+NGPfoTnnnsOl156KWZnZ/XLyy644IIF57Cec845+I//+A/cdddd2LVrF7Zu3YprrrkG55xzjh5MpwIzBk4Bvw/d84HGwQkOaKs1MB+86283LsCgKIo+eGJwsHra57i7JYqgv+qvsZL62/MB2wHWk6ppn+O2hiCawsadFKYFfgYYjKuY1ya8tXo7HE8inWUgqlra951Rk1/Fr7V/No25dNaw1/WKwaJ+h1F6WiNQFCCRyWH/bNqw1/UKrd9h5I6olc1hhAM+qAIYnt9dR5XT+gVG9s+JiIiIllN1pOPcc8/Fvn37cO2112JkZATHHXcc7rvvPv3s1d27dy8YiH/xi1+Eoij44he/iKGhIaxcuRLnnHMOvva1rxmXC4noHUKDjy3oa4ticCKBgYk5vHmZc9ZpMW3gZHSZ9LdH8cLoNIODNdBWThoZYADyZfzU7klONtVA+xwbfeRKX5s2scHJpmps3LgRF154Id785jfjhBNOwE033bRowru3txebN28GkJ/wvvHGG7F27Vr9OBe3THivbAojEvQhmVGxZzKB1R2NdifJVfSArYF1tyUaRCwSQDyZxeBEAq/rbDbstb1gwIR+RzjgR1csguGpJAbG5/SdV1SZQr/DuDJRFAV9bVG8vG8WAxNzOGiFc48sc6IBEyY2iIiIiJZT03LByy+/HJdffvmSP3vooYcWvkEggOuuuw7XXXddLW/lOWasPgLyA7FHMM5jKmpgxsAJKHT6ueq5emZNNukr0VlPqjZg0ncXj4WojZcmvPOBqAbs3DuDgYk5BtGrVLya00h9bQ3463AcA+NzDKJXSWuDtElEo/S1RfNB9IkE1h7UZuhry64QsDW4f97ekA+is42rWmEC0NgyISIiIirFuD33ZAizVlXwSITamTVw0l5vkAHbqplVTzixUTvzdmzw2KNaeWnCu78tip17Z/g5qYF5/Y6oHkSn6phxxA6Q/37+06sTLJMamLlTFGC/oxaFCUCuRCciIiJrGHeYMBli0KRVz9oKMwYYqjdo0jEV+sQGB05VM/M4l/zrs0yqpa+cNDzowwADldfHulszs79P2e+o3tCEthLd4IAtJyVrZuZO0eLXp8oNmFRPiIiIiEphEN1hCudgmhQcZCCqahw4Oc/gpEmr9Iomm5x+maLTDJq2YyNfxiPxJFLZnKGvTfIoXArM79NqxJMZTCUyAMzbRcJ+R3UyORXDU2b1O7Q2jmVSDSGEKXcHANwpWo/CIhce50JERETWYBDdQVLZHEbiSQDmHVMxPJVENqca+toym01lsX82DcCMFWH5Tv/4bBqzqayhry2zbE7Fnsl8PTF6MNvdEoVPAVJZFftmUoa+tsyEEKZtde9oCiEa9EMI6OVOdCDuIqmNtvutvTGExrCxJ/zpx1TwyLKq7JlMQBVAOODDSoMv/+SOjdqMzaSRyOSgKEB3a8TQ1y4scmE9qcZcutA/53EuREREZBUG0R1kz2QSQgDRoB8dTSFDX3tVcxihgA85VWB4ioGoSmkrj2KRAFqiQUNfOxYJ6q/JlXqVG55KIqcKhPw+rGo2NsAQCvjQFcsPkBn4qdzkXAaz6fwqcaNXhOUvjdSCcawntLTC2fn8jFTDrDs/AK5Er1XxpaKKohj62trK9qHJBHIqd1tVSvsMd8UiCAf8hr62Vvf2TaeQzHC3VaXM7J8TERERlcIguoMUH4dg9MDJ51PQ18qzhatl9qVF+hEEDNhWTPv89rZF4fMZW0+A4jNjWU8qpZXJquYwIkFjAwwALxel8rTVnGMzaSTSDERVyqwdJEAhODidzOpHxlB5gyZdKgrkd1sFfAoyOYG901xQUSmzjnIBgNaGIJrmd4GwjascLxUlIiIiOzCI7iADJl0qqtGDgwzYVkwfzJp0aVHhXHQGbCs1OFFYpWcGnlVfveKVk2bo4+WiVEZLQxDNES0Qxc9JpfTvU4PP3gaAhlBA31XHXSSVGzCx3+H3Kehp5eR9tbTPrxn1ZMFuK353VWyA56ETERGRDRhEdxCzLhXVsJNevQGTLhXVFC6U4mC2UoOW7Q5gPanUgIkrJwGed02V6eMF2lUze6K4lxPFVSssqDCr38E2rlqFnaJm9Tu0RS4sk0qZuTuAiIiIqBQG0R2ksKqCgSinMLtMOLFRvQGTV6IzEFc903dsaEEf7g6gZfTzIsuqmb0DjmVSvQGTA7Z9rWzjqqXXE9MXubCeVMrsyXsiIiKipTCI7iDmr3rOvy6Pqaic6WXCiY2qmXmGb/51GfSpltkrJ7Vg0hCDPrSMws4efk4qIYQw9WJRgBe+1sLsFbbsC1bPzHPqAR7tVwuz+x1ERERES2EQ3UGGzN4uyhW2VbNqhe3QRAJCCFPeQzZ6gMG041zyr7tnMoGcyjKphNkrJ4svjZxLZ015D3K/fu7sqcrEXAZz85ew9raaPFHMgG1Fkpkc9k2nAFhxjBzrSSVyqsDQpDX9Dk7eV87sfgcRERHRUhhEd4i5dBZjM2kAJl4sOh9gGI2nkMzkTHkPmUzNZTCdzAfszDvOJf+606ksphIZU95DJqlsDqPTSQDmbavujEUQ9CvIqgIj8aQp7yETVRWmr5xceGkkgwy0tMKqZ35GKqEFUTtjYUSCflPeQz+mggHbimgT983hAFqiQVPeo4+XZ1dlNJ5EJicQ8CnoikVMeY/CkWWsJ5WYShT3z7kSnYiIiKzDILpDaIOZWMS8gVN7YwgNofxAWVtVQ6Vpg5mOpjCiIXMCDJGgHx1N4fz7cQVSWfkV+0A06Ed7Y8iU9/D7FH1VJgM/5Y3NpJDOqvApQHerOQEGgEcfUXlcYVudAZN3WgELJza426o8rR/Q2xaFoiimvIc2AT08lUAmp5ryHjLRvk96WqPw+8wpE21iY3Iug+kkF1SUo5VJR1MIDaGAzakhIiIiL2EQ3SH0c55NvCBHUZSicxcZsC2ncKmouatcuAKpcsVn1JsVYACKLhdlMK4s7XPb3RJF0G9ek8JzfKkcbfIrnuTOnkpoAVsz27ie1ggUBUhkctg/mzbtfWRh9tnbALCyOYxwwAdVAMOT3G1VzqDJd+MAQFM4gLaG/AIaLqgob5BHuRAREZFNGER3CMsDtgwOlmX22dsaXihVObPPqNcwYFs5KwJx+dfnxAYtrzEcwIr5HSr8nJRnRcA2HPDrR2CwTMobMPloLCC/oKKP9wdUzIodGwAv4a2GVf0OIiIiogMxiO4QVgycgKJAFDvpZRUGTlZNbDBgW472NzJ7YoP1pHJW7KIBeGkkVaaPgaiKWdfv0Oou27hyCt+nZvc7OClZKasCtryEt3JWTAASERERLYVBdIewqkOoDQIGGbAty6rgIAO2lRuYsGrHxnbJJn8AAK4JSURBVHwgjvWkLLMvFdUUgj4sEypNn2zh56SsQW0HnNkBW+4iqdiARcdUcCV65QYs7p+znpRn1QQgERER0YEYRHeIwgpbi4KDHDiVpXXSLVt9xIFTWXrQhwEGxygEGPjdRfbj56QyqiosmwDrK7pclJZnxfnbAHg/ThWG9L6gVfWE313lWLVjg4iIiOhADKI7hGVnLnK7aEWEELacvy2EMPW93M7qAMNIPIl0VjX1vdzOqlV6vDSSKsGjQyqzbyaFdE6F36eguyVi6ntpuwMYHFzedDKDybn8d5t1O3tYJsvJ5FQMT1nV7+BdLJXI98+tmdggIiIiOhCD6A4wNZfBdDILAOg1+3K++UHA+Gwas6msqe/lZmMzaSQzKhQF6Gk1t0y6W6LwKUAqq2LfTMrU93Kz2VQW+2fTAMwfOHU0hRAN+iEEsGeSA9pSsjkVeyaTAMzfscFLI6kS3NlTGe3v090SQcBvbleQlwJXRtuR2N4YQmM4YOp7cUFFZfZMJqAKIBzwYWVT2NT3Kp7Y4IKK0vbPppHI5Ob75+ZOABIREREdiEF0B9BWcnY0hdAQMnfgFIsE0RINLnhfWkz723THIggFzK0moYAPXbH8QIDn+JamrTyKRQL6Z9gsiqLwSJcKjMSTyKkCIb8Pnc3mD2a53Z3K6S86OoSBqNKs2v0GFFbwDk0mkFNZJqVYdedH8Xvsm04hmcmZ/n5uVXypqKIopr6XtttqNp3DxBx3W5WiTcZ1xSIIB/w2p4aIiIi8hkF0Bxi06CIpjTagZcC2tAGLzt7WMDhYnlUXvWr6eEFhWdrfprctCp/P3AADwO3uVF5PawSKAiQyOYzNpO1OjmMVBwfN1t0SRcCnIJMT2DudNP393MqqM+oBoLUhiKb51e78Pi1t0KLjygAgEvRjVXN+tTt3bZTGS0WJiIjITgyiO0DhUlGLguhtDNiWo5+3aNGlRbzkqzyrzqjX8ILC8qxcOZl/Hx4LQcsLB/z6zh7W3dKsDA76fYp+LBonJUvTJ+8t6Hdwt1VlrNyxASzcSUNLs7KeEBERER2IQXQHKHTSrQpEcTBbjvUBW61MOJgtZcCiS0U1PDO2vEGLd2zo9YRlQstg3S2vMHlvdb+DbVwptk0Us0xKsnLHBlAYB3BiozReKkpERER2YhDdAaw+pkK/vIid9JKs3h2gr7BlmZRk9RE7nNgob9CuiQ2WCS2DAdvyLF9hyzauLKsDtoWV6JxsKmXAwh0bAHdbVWLQ4oVHRERERMUYRHeAgQmrV7qwk16O1cdU9HN3QFlWr0Tv47FHZdm51Z2XRlIpvGNiedmciuGp/NnkVk9K8piKpQkhLD1iB+DRfpWw8px6gLutKmH1wiMiIiKiYgyi22zBwMniTvoQA1FLyqkCeyYtPqd+/n32TCaQU1kmS7G8nsy/z9hMGol0zpL3dBurd2wUXxq5f5aXRtLSOCm5vOGpJHKqQCjg0y8yNJu+A46T90uamMtgdr6d6W21aPJeLxPWk6UkMznsm04BsH63FSc2lpZTBYYs7p8TERERFWMQ3WZjM2kkMyoUBfrFW2brbc13PKdTWUwlMpa8p5uMxpPI5ASCfkW/oM5snbEIgn4FWVVgJJ605D3dZGoug+lkFoB1KydbGoJojgQAcEC7lFQ2h9FpbTWrNd9d4YAfnc35OslgHJXCI8uWp++0ao3C51MseU/tO4Ir0ZemfZ91xsKIBP2WvGdh1TPryVK0dr8pHEBLNGjJexbvtlK5oGKRvdP5/nnAZ13/nIiIiKgYg+g20wYv3bEIQgFriiMa8qOjKb/6jCuQFtMGsz2tUfgtCjD4fYo+icLg4GJaPeloCiEasibAAPAc3+XsmUxCCCAa9GNFY8iy9+V2dyqHO3uWN6idvW3hSk7tu3R4KoFMTrXsfd2icIScdWWivdfkXAbTSS6oOFDxGfWKYk1fsKslAp8CpLMq9s2kLHlPN9HKxMr+OREREVExBtFtpl+WaPG2RK5AKs3qM+o1PKu+NKsvFdX08ViIkgrnkloXYAC43Z3K64pFEPApyOQERrmzZxGr7/wAgJXNYYQDPqgCGJ5kmRyocPa2dWXSFA6grSG44P2pwOoz6gEg6Pehu4ULKkop7ncQERER2YFBdJsN2hywZSBqMavP3tbw4rXS9ACD5ZNNrCelWH2pqIYTG1QOd/Ysz+rLEgFAUZRC3eX36SJ2XZbIs+pLG7ChngDsCy7Hrn4HERERkYZBdJvpAycGohzD6ssSNX08OqSkwsDJ6skm1pNSire6W6mPExtUAR77U5pdqzn7uNuqJNsCtnq/g/XkQIUdcNyV6BR2LTwiIiIi0jCIbjO7V9gyYLuYHVvdi99vkAHbRew6zoX1pLQBG7a6AwwwUGX4OSnNrtWcPEautEGbAraFBRUskwPZ1cZxQUVpdu3YICIiItIwiG4z+1bYMsBQyiADto6jr9LjyknHKKwIsycQNzSZgMpLI6mEwlFMnJQslszkMBrPX1ho3zFyLJNiqiowOGnTDjjWk5IGbep36JNNXFCxiF39DiIiIiINg+g2yqkCe2waOBWfuSgEA1GadFbFyPxFdJYPnOYHBSPxJNJZ1dL3djIhhG3n1GtBpngyi6lExtL3drpBm46E6IpF4NcujZzmBYW0NJ6/vTStz9EQ8qO9MWTpe/P87aXtm0khnVXh9ynobolY+t7aAg4ej7XQdDKDybl8m2/XgorBSZZJsUxOxfCUPRMbRERERBoG0W00Ek8ikxMI+hV0xqwdOHW3RKEoQCqrYt9MytL3drLhqQRUAUSCPqxsClv63h1NIUSCPghRCHQQMDaTRjKjQlGgXxZolcZwACvmA00MMhTMprLYP5sGYH2AIeD3oac1/33JlXpUiva5HGTAdoHis7cVRbH0vQsTG6y3xbRJhe6WCAJ+a7vlxRMbXFBRoLUtbQ1BNIUDlr63tlhgz2QS2RwXVGiGJ5NQBRAOWN8/JyIiItIwiG4jbeDU0xqF32ftYDYU8KE7xkDUgQqXJVofYFAUhWdhLkH7W3TFIggFrP/K6tODDKwnGm1LdSwSQEs0aPn78zgqKkdbqTjMnT0L2HWpKFCot/umU0hmcpa/v1PZdQ8LAPTOT0zPpnOYmONuK41d56EDwKrmMEJ+H3KqwPAUd1tpiuuJ1f1zIiIiIg2D6DbSB7M2ne1XOAuTgSiNnYNZoLC1mgHbAtvrCbe7LzJoY4AB4NnKVN7KpjB39iyh0MZZX3dbi1b1su4WaJeJ29HGRYJ+rGrOr+plG1cwOGFfmfh8Cnp5HNUivFSUiIiInIBBdBvZdWmRhoGoxewO2PZzYmMR/SIpm+sJVz0X2F1PeN41lcOdPUsrXMxn/fdpvkxYdw9k56rn4vfl5H2B1sbZ1e8oTN6zTDQDNt2NQ0RERFSMQXQb2bkiLP++2qpnDmY1TpnY4JmxBXZdKqopvoSX8gZsDMQBvKCQKtPPQNQigzav5uRZ9YtpwWv7+h2c2DjQoM39c31BBeuJzs4JQCIiIiINg+g20rfw2r36iAMnnd0rXTixsVjhnHq7JzZYJhq7t1VzYoMq0cddJIsM2HhMBVCou5woLrB/QQXryYH0iQ2b+h28hHcxu/sdRERERACD6Lbi+dvOU3yxqB14nMtidm917yuqJ0IIW9LgNE7ZsTE8lUAmx0sjaWkM2C40m8pifDYNwP7jsdjG5WVzqn55pN0TG5yUzBNCOObeD05sFNg9AUhEREQEMIhum1Q2h5G43QOn/PvumUwgpzI4mEjnMDaTAmB/cHBsJo1EOmdLGpwkpwr9UkC7BrO9bVEoCpDI5LB/PgDldXbv2FjZHEY44IMqgOHJpC1pIOdjIGohLUjaEg0iFgnakgaev73Q8FQSOVUgFPDpF3xajbutFpqYy2B2vv/V22rvkWWc2MhLZnLYN21v/5yIiIgIYBDdNsOTSQgBRIN+dDSFbElDZyyCoF9BVhV6QN/LhibzA8jmcAAtUXsCDC0NQTRHAgC4Ug8ARuNJZHICQb+CrljEljSEA350NuffmwNaYGoug+lkFkB+gsEOiqLo783AD5XCnT0LFY5DsC8IxYtFF9J3JLZG4fMptqShOGCrckGFXk9WNYcRCfptSYO2U3R0OolUlgsqtO/wJhv750REREQAg+i2KT7KRVHsGTj5fQp6WnkGt0Y/yqW9wbYyAbgqrJj2uexpjcJvU4ABKDoWgvVE/1x2NIXQEArYlg6uMqZyinf2zKWzNqfGfnbvIAEKAdvJuQymkxnb0uEU2t04dk1IAkBXSwQ+BUhnVeyb343nZXYfIQcA7Y0hRIN+CAEMcfJ+wWXmdvbPiYiIiBhEt8mAzZeKahiIKrD7jHpNH8+q1xUPnOzUx4kN3aDNl+BpeI4vlVO8s4eBKPsvaQbyK0nbGvIrSVl3YfvZ2wAQ9PvQ3aJ9n7KN0+/8sLGeKIrCOx2KDPJSUSIiInIIBtFtUlgRZm9wkIGoAn2ru+3BQR5BoBl0wMrJ/PtzYkPjuAlA1hNaBifACpwQsC1+f07eO+eyxMJuK7ZxAw4J2PIS3gKn1BMiIiIiBtFtonXS7V7NyQBDgb76yOZLixiwLXBKwLaPExs65+zYYCCOyuP3aYFTAlGFc9FZJk44px7grsRiTtkBx0t4CwpjJl4qSkRERPZiEN0mAw4J2God0kF20h1xXixQNHBiwNYxAdvCijDWE+fs2GAgjsrjquc8IUTRkQjO+D71epkAxW2c3RMb7HdoBh3SxvES3oLCIheuRCciIiJ7MYhukyGHDJwYsC0oXCxq98QGAwyaQcfs2Mh/JoYmElBVYWta7OacHRv5z8S+6RSSmZytaSHn6mcgCgAwlchgOpW/XLW31Sk7e7w9AZbK5jAaz1/kyaP9nEFVBQYnnRGw1fo9g+wLFl32ypXoREREZC8G0W0wl85ibCYNwP5OuhaIGoknkc6qtqbFTvFkBlOJDADnrD6KJ7N6mrwonVUxHE8CsH/g1N0Sgd+nIJ1TMTqdtDUtdhJCFF26Zm89aW0IoimcvzTS64EfKq2fAVsAhfx3NIURDfltTYsWMPb68VjaZbcNIT/aG0O2poULKvL2zaSQzqrw+xR0t0RsTQsnNvKmkxlMzuX7wnYvqCAiIiJiEN0GWoc4FgmgJRq0NS0dTSFEgj4IAeyZ9G5HXTvOpr0xhMb5wJxdGsMBrJgfUHs5yDA8lYAQQCTow8qmsK1pCfh96GnND6i9PKAdm0kjkclBUYDuVnsDDIqicLs7lcWdPXlOOXsbWFgmQnh3Z0/xGfWKotiaFm1SdM9kEtmcdxdUaPWkKxZBwG/vEEmrJ/tn05id30XiRdou0baiiXMiIiIiuzCIbgOnXCoKaIEorkAqnIduf4ABKGx39/KFUvrxOg4IMAA8xxco1JOuWAThgL2rWQFud6fyuLMnzyl3fgCFMplN5zAx5+EycdBliauawwj5fcipAsNT3t1t5aRjQ1qiQcQi3G01qJeJ/d9dRERERAyi28BJK8KAojNjPR2wdc7EBlB04SsnNhwRYACKLvnycD1xylEuGm53p3KKd/Z4egJs3Bl3GQBAJOjHqub87iIvt3FOuizR51PQ28bvU21XonPaOE7eDzis30FERETexiC6DZwXiNLOjPVuJ10rE7svFdVw1XPRZJNT6gl3bBQmm5xWTzxcJlReH9s4Pe9OmSju524r504Ue7ieDDhs1bPWxnn5u8tp/Q4iIiLyNgbRbeDUTvqAl1cfOWirO8AVtkDxKj1nDJw42eS8QBx3B1AluNvKeas5GbAtHEPlmL5gO4/HKhwj55R+h1ZPvPvd5bR+BxEREXkbg+g2cNK2aqA4EMWBk2MGs1xh66gzfIGiwayXA3H6VndnfHfpq1k9XE+oPK9PgAkhis4Vdkjd5W4rPTDqlIBtYWLDw22cwxa58GLk4t27zqgnRERE5G0MotvAecFBBhgcu616PAEhhM2psUfxxaJOoKVjeCqBTE61OTX2cNoFX1o6JucymE5694JCWp7Xg4P7ZlJIZlT4FKC7xRltnNd3W82mshifTQNw0Pepx48OyeZU/VJV5/TPvf3dJYQoukfKGWVCRERE3sYgusWm5jKYTmYBQL/EyW7aYGFsJo1EOmdzaqw3PpvG3Hy+e1udUSa9bVEoCpDI5LB/fqDtJYl0DmMzKQDOWTm5simMUMAHVQDDk0m7k2O5nCowNOmsHRtN4QDaGoIAvBuMo/K8vupZqxtdsQhCAWd0+7y+20ork5ZoELFI0ObU5Hn9nPrhqSRyqkDI79MvvrWb1yc2JuYymHVY/5yIiIi8zRmjKQ/RBowdTSE0hAI2pyavpSGI5kg+LV7sqGuD2c5YGJGg3+bU5IUDfnQ2RwB4Mzg4NJn/HDaHA2iJOiPA4PMp+opWL9aT0XgSmZxAwKegKxaxOzk6bnencgq7rby5s6dwMZ8zJr+AQr0dnEhAVb1bJk6ZJAYKx2WMTieRynpvQYXWP+9ti8LnU2xOTZ5WT6aTWUzNeW+3lVZPVjU7p39ORERE3sYgusWcekFOn4dXhTnteB1N4QxuD5aJdpRLewMUxRmDWcDbqye1z2FPaxR+hwQYAG53p/J6WiP6zp6xGe/t7Bl02KWiANDdGoFPAdJZFfvmdx15iX6EXKtzyqS9MYRo0A8hgCEPfp8OOuxSUQCIhvzoaAoB8Ga/o3DBvHPqCREREXkbg+gWc9oFlpr+Nu9emujUMuHEhrMGs4C3LxctDGYdViYe3+5O5YUDfn33hBc/J05c9Rz0+/Tz2b1ZJs77PlUUxdOTkk6780Pj5d1WhUUuzqknRERE5G0MolvMqR1CL18u6tiAracnNpy5O4ATGw4sE4+f40uV8fLlotoEmNN2wHl7UtKZAVsvT0oOOHDHBrDwOCqv4aWiRERE5DQMoltMP5vUaZ10DwdsnbjVHSgEB704mHX+qmfv1ZMBB251B+Dpc+qpcl6+XNSpk/feXmHrzH6Hly8XLfTPnVVP9P65B9u4gQln9juIiIjIuxhEt9iAQ4ODXl5hO6hfuuasMvF0wNahq549fU69w1dODozPefLSSKqMVyclc6rAnklnHlnm1TsmhBCFfofDgoN9ng7YOrON8/Jk06BD+4JmuPnmm7F69WpEIhGceOKJeOyxx5Z9/uTkJC677DJ0d3cjHA7jda97HbZs2WJRaomIiLyLQXQLCSEc2yEsrD7yViddVYVzV6LPD2aHJhJQVW8FBwsXizorwKB9RvZOp5DM5GxOjbWGHHokhFZPZtM5TM5lbE4NOZVXd1uNxJPI5ASCfgWd8+fCO4U2Kem1ieKpRAbTqSwAJ36fzk82eawvmMrmMBrPX3DrtB0bXj2nfkH/3GETG0a7++67sXHjRlx33XV48sknceyxx2LDhg3Yu3fvks9Pp9M47bTT8Oqrr+JnP/sZXnjhBXz/+99Hb2+vxSknIiLyHgbRLTQ2k0Yyo0JRgJ5WZ3XStUBUPJnFVMI7gai90ymkcyr8PgXdLc4KMHS3ROD3KUjnVIxOJ+1OjmXiyYz+GXTaxEZrQxCNIT8AbwV+MjkVw1PO3EUTCfqxqjkMwJurJ6ky+kSxxz4j2sR4T2sUfp9ic2oW8mqZaG1HR1MY0fn2xCm8OrGhTRI3hPxobwzZnJqFis+p99Juq30zKaSzzuyfG+3GG2/ExRdfjIsuughveMMbcOutt6KhoQG33377ks+//fbbMT4+jnvuuQennHIKVq9ejVNPPRXHHnusxSknIiLyHgbRLaQNFLtjEYQCzvrTN4YDWDE/cPDSdnctr90tEQT8ziqTgN+Hntb8wMFLA9rB+ZWi7Y0hNIYDNqdmIUVRPHkJ757JBFQBhAM+rGwK252cRfo8usqYKqfV2z2TCeQ8tLPHqTutgEK93TOZRDan2pwa6xQuS3TWhCRQWIm+fzaN2fnV8l5QfPa2ojhrsqmnNQpFAZIZFWMzabuTYxmtnnTFnNc/N1I6ncYTTzyB9evX64/5fD6sX78e27dvX/J3fvWrX2HdunW47LLL0NnZiaOOOgo33HADcrmld0imUinE4/EF/xEREVFtauqV8Ny22uiXFjl0W6IXA1FOPXtb48XL8Jx6CZ6mcH+Ah+rJuHMDDIB3V7RS5bpiEQR8CjI5gdG4d3b2ODlg29kcQcjvQ04VGJ7yUJlMOPOCeQBoiQYRi+Qnr700ea/XEweWSSjgQ9f8UUxeauOcesG80cbGxpDL5dDZ2bng8c7OToyMjCz5O6+88gp+9rOfIZfLYcuWLbjmmmvwrW99C1/96leXfP7mzZvR0tKi/9ff3294PoiIiLyi6iA6z22r3aDDb5n34sVrWnDQqZ10T05sjDs3wAAUbXf30MTGoEMvXNN4cbKpEpzwLvD7FP0YNS99TpwcsPX5FPS2ee/4EL3f4dC+oBfvyHH62dtebOOcPLFhN1VVsWrVKvznf/4njj/+eJx77rn4l3/5F9x6661LPn/Tpk2YmprS/xsYGLA4xURERPKoOojOc9tq5/QOoZc76U4MMABFZeKhiQ19ssmxExveKxPH79jw6Dm+y+GE92JevKBvcNzhk/faRLGHvk/dMinpqQUV+mSTQ+uJB9u4AYfXE6N0dHTA7/djdHR0weOjo6Po6upa8ne6u7vxute9Dn5/4U6FI488EiMjI0inFx/5Ew6HEYvFFvxHREREtanqwGHt3LZNmzbpj1Vzbtsvf/lLrFy5Eueffz4+//nPL2j8i6VSKaRSKf3f2tltmUwGmUz9l15qr2HEa1Vj9/gsAKCnJeTIfPS05M9E3z0+a/nfxq4yGdDKJGZMmQDG5qW7Zf7CRA+Vye79WpmEHVkmPbF8PRkYn/NMmbw2li+TboO+uwBj89LVrJWJ++uJUa9TPOENALfeeivuvfde3H777bj66qsXPV+b8H744YcRDAYBAKtXr172PdzWVvfOX0732ti06z8nlSrcxeLMfkdvq1YmM54pk93jTi+TfL/jtf3u/z6t1IDB/Q7jv7vyZbJ7v4fqyXyZOLWeGPVaoVAIxx9/PLZt24b3vve9APIrzbdt24bLL798yd855ZRTcOedd0JVVfh8+fVwL774Irq7uxEKOetiXCIiItlUFURf7ty2559/fsnfeeWVV/Cb3/wGH/rQh7Blyxbs3LkTn/rUp5DJZHDdddct+TubN2/G9ddfv+jxBx54AA0Nxq1I2Lp1q2GvVYkXB/0AFAy+8GdsGf6zYa9rVD72TCoA/Hhu9z7btvBbXiZ78mUy8PwObNmzw9DXNiIvg9MAEMBLe8Y9UybP7c6XyfDOZ7Bl7GlDX9uIvAzNAkAAr4xOeaZMntmVL5N9u57Hlvhzhr62EXkZSwJAALv3z+L/3bsFPhuObTeqTObm6l/9adWEt9va6tm9+TbukWd24rDki4a8ZrWsrLtZFRiZytfdF554GMMGfp0alY+Z0XyZPPrMTmxJyV8mQgC79+fLZOeORzH1gnGvbVQ+JofzZfL4c7uwRbxsyGtWy+o27uXRfJnsevZxbHnVuNc1Kh/757+7nnppAFu2vGbIa1bL6jJ5yaT+uZH5MKK9BoCNGzfiwgsvxJvf/GaccMIJuOmmmzA7O6tPgl9wwQXo7e3F5s2bAQCXXnop/v3f/x1XXHEFPv3pT+Oll17CDTfcgM985jOGpIeIiIhKqyqIXovic9v8fj+OP/54DA0N4Rvf+EbJIPqmTZuwceNG/d/xeBz9/f04/fTTDdmClslksHXrVpx22mn6ijuz5VSBf37sQQAC/3DmO9E9vyKuHkbn48ixWdz63B8xlfXjzDNPt/QCQTvKJJtTsfHRbQAE/uGsd6IzVn+ZAMbmZTSexE3P/A6TaQWnbTgDQX9NdwHXxI4yEUJg0xO/AZDD+057Gw5Z2WjI6xqZl+lkFv/nL7/BbFbB2951OprCpn+N6uwoEwD46tMPAUjj3e88BUf1GrMN2Mi8ZHIqvrbjQWSFgr95q3F1uaL3NrhMtNXc9bBqwtttbXX2z8O4d+BpoHEFzjrrb+p+vWrYUXdf2z8H8egfEAn6cO57zjSkTTc6H+LpEfy/3X8BGttx1lkn1P161bCjTPZNp5B55H+hKMB57zkDoUD9bbrR+Yi+sA//99WnkAm34Kyz1tX9etWwo0xmU1nMbv8NAOC8c05Dc6T+9zU6Hyt2jePOlx9H0t+Is856a92vVw0n9M+7DGjTzciHEe01AJx77rnYt28frr32WoyMjOC4447Dfffdp7fhu3fv1lecA0B/fz/uv/9+XHXVVTjmmGPQ29uLK664Ap///OcNSQ8RERGVVlX0p9Zz24LBYMlz25badhYOhxEOhxc9HgwGDe3AGf16y9k7mUAmJxD0K+htb4LfwKWSRuXj4JXNUBQgkVERTwt0NFm/JdDKMhmZnkNOFQgFfOhpa4LP4OWrRuSlpy2AUMCHdFbF2GwOB61YXC/MZmWZ7J9JYS6dA5D/PAaDS6+ArZUReWkPBtHaEMTkXAYj0xkc2WT9GapWlkkyk8O+mfwZm2tWNRv+vkbkJRgEuluiGJpMYHQmg74VzQalrpo0GFMmVk6OFKtlwtttbfXqlfnPxdBEwra/s5V1d3g6X2/72hoM3+JvdJkMTiQ9USYjMzMAgO5YBI1RY9tzo/KxRqsnk96oJ6P7kwCAlmgQ7c3Gnr9tWJmsyk9KDk8l4fMHDB1DVMqW/rnfh16D++dG5sPIv8fll19e8viWhx56aNFj69atwyOPPGLY+xMREVFlqloCU3xum0Y7t23duqVXq5xyyinYuXMnVFXVH/PiuW3aBZY9rVFbOr+VCAf86GzOr/bwwuVF+kVSrVHDA+hG8fkU/aIrL1zypX3uOmNhRAwOoBupcPGa/PVE+9w1hQNoidoTUKmEfkHhuPxlUo4VF5W5kXax6HA8iXRWLfNs99O+n/odelkiUEjb6HQSqWzO5tSYT7/M3MGXJWqXZ08ns5ias/YcbDtoZdLv0MvMAaArFkHApyCTExiNJ+1Ojum0/nlvm3P750RERORNVe8j3bhxI77//e/jRz/6EZ577jlceumli85tKz6H9dJLL8X4+DiuuOIKvPjii7j33ntxww034LLLLjMuFy6gd9LbnDtwAooDUR4I2M4H25w8mAUKn5kBDwTRtTw6vZ5og20v1BMtKN3XFrX0iKdq9c/XYy+USTmc8F7ayqYwIkEfhAD2TMo/2VIIDjr3+7S9MYRo0A8h8jsEZKdNbPQ5eGIjGvLrOxG91O/oa3VuPfH7FPS0eqff4YZ6QkRERN5UdRD93HPPxTe/+U1ce+21OO6447Bjx45F57YNDw/rz9fObfvTn/6EY445Bp/5zGdwxRVX4OqrrzYuFy6grwhz8EoXoCgQ5aGBk5NX6QHeWmFbHLB1Mi9NbGgr0Z0ciAO8VSaV4IT3Yoqi6KtsvfA5GdBXoju37iqKoveLvLCzxz0LKrwzKeme/vl8X9AD9WTQBROARERE5E013YjHc9uqp690cfjAqd9TAVuXlIkXJzYcPnDy1MSGCwJxADwViKsELypbWn9bFDv3znjic1Jo4xweHGxrwIujM55o4woBW6d/nzZgx8Ckp+qJ48ukrQHAfk8c7eeWfgcRERF5T01BdKqednSI0zvp2tEmXuiku2b1kafO33bHwMlL9cQtgTgvrTCuFCe8F/PmCltnf58WjmKSv41zyw44fUGFB75P3RKw9VQ9cUm/g4iIiLyn6uNcqDaFlejO7hAWLrH0QCed5287zqB+6Zqz60nxxIYQwubUmMstuwO0erJnMolsTv5LI6k2XjkSIZHOYWwmBcD5bVyfRwK2OVXoZ/E7/S4Wr0w2CSEK/Q6X9M9lryeAeyYAiYiIyHsYRLdAKpvDSDwJwPmDWS19QxMJqKq8wcFkJofR+HyAweGddG0wu3c6hWQmZ3NqzKOqwj0r0ecHszOpLCbnMjanxlxu2bHR2RxByO9DThUYnkranRxyqH6PBAe1XTLNkQBaGoI2p2Z5fR7ZbTUSTyKTEwj6FXTFInYnZ1lemWyKJ7KYTmUBOP9oP72eSP7dlcrmMDqtjZmc3e8gIiIi72EQ3QLDk0kIAUSDfnQ0hexOzrK6WyLw+xSkc6reiZXR0PxqsIaQH20ODzC0NQTRGPIDkDvIsHc6hXROhd+noLvF2QGGSNCPlc1hAHKvCptOZvRJAqcHGHw+Bb0e2klDten3yFFMbrmHBSi6z0Dy4KCWv57WKPw+xebULK+w22pO6t1WWj3paAojOt/PciqtnozEk0hn5d1tNTSRgBD5/nl7o7PHTEREROQ9DKJboPgoF0Vx9sAp4PehpzUfwJQ5EFW84tnpZaIoiicCP1reulsiCPid/9XU74GArXb2altDEE1h51+h4aXt7lQbLTg4NpPGXDprc2rMU2jjnL+SUwv0759NYzYlb5m45extIB/oVxQgmVExNpO2OzmmKVwq6vx6srIpjHDAB1UAw1MS9zvm64kbxkxERETkPc6PVElgwCWXimr6WuXf7u6mgRNQfGmizAMnd5xRrylc8iVxPXHJeegar2x3p9q1NATRHMlPCA3J/H067p662xINIjZfJnJPSrrj7G0ACAV8+pEzMk9KumnHhqIohYliiS8XHXRZX5CIiIi8hUF0CxSCg84fOAHFF1nK20l308AJKLrwVeLgoPZ5c0OAASg6W1niAINbzqjXeOUcX6pPnwfqrj5575bvUw/stnLbpKQX7g9w044NoGjyXuZ64rKFR0REROQtDKJboLD6yB0dQk8EB90WsPXEwMldAQYvrAjTv7tcsmOj+BxfolL6vVB3XTZR7KWArVv6Hdr3vhd2B7il3+GFNq74CEwiIiIip2EQ3QL6OZhuCURxRZjjeOH87UGX1hOZJzYGXRaI88LEBtXPC0cxFb5P3VF3vbCLZJABW8dx0zn1gDd2ig66bOEREREReQuD6BYYclkgyhOddNcNnOQP+rjuTPT5dA5NJCCEsDk15nDrkRCj00mksjmbU0NO1S/5BbTxZAZTiQwA96zm7JN8JXo6q2I4ngTgpjKRuy8ohCiaKHZHmXhip6jLFlQQERGRtzCIbrK5dBZjM2kA7ll9pA1mh6cSyORUm1NjvNlUFuOz+TJxyzEV2gBvYi6DmVTW5tQYL5tTMTylBRjcUU+6WyPwKUAqq2LfdMru5BiuOMDglu+uFY0hRIN+CCH3pZFUn8JuKzk/I1ogekVjCI3hgM2pqUy/5EeH7JlMQAggEvRhZVPY7uRURPbdVmMzaSQzKhQF6Gl1S19Qm2ySs57MprLYP+uuMRMRERF5C4PoJtMGhLFIAC3RoM2pqczKpjBCAR9UAQxPJu1OjuG0AWFLNIhYxB1l0hwJorUhn1YZV+oNTyWRUwVCAR9WNbsjwBD0+9DdIu+K1om5DGbT+dXcvS4JMCiKIn0wjuon+6pnt13SDMi/wrZwHnoDFEWxOTWV0YKYeyYTyKny7bbSPmvdsQhCAXcMh7T2bWwmhWRGvt1WWj1xU/+ciIiIvMUdvUYXc9ulogDg8yn64FvGszD1IypcsgpdUzifVL7goH6RVGsUPp87AgyA3Nvdte+uVc1hRIJ+m1NTuT7Jg3FUP63expNZ/dgTmehHVLhoJadWb6eTWUzNyVcmhePK3NPv6IpFEPApyOQERuMSLqgYd189aYkG0Ty/u0TO/rm2+8099YSIiIi8hUF0k7m1QyjzqrBBl529rSmcVS9hmWgrJ100mAXkvoTXbZfvavolntggYzSGA1jRGAIg6fepy+78AIBoyI+OpvkykfH71IULKvw+RT/mROZ64qYdG4qi6P0kGds4fQKw1T31hIiIiLyFQXSTuXEwC8i+wlZbie6uMpF5YsONq/SAojKRsJ4UvrtcViaSn+NLxuiTeQLMpZP3Mh+zM+DSyxL1yXsZd8CNu3NBRZ/EFyO7tZ4QERGRdzCIbjLXruaUOBClHx3isuCg3BMb7lulB0g+mB1353dXn8THHpFxZN6xUGjj3FV3Zb7w1bU74NrknWzSJ4pd1sZJfbSfS/sdRERE5B0MopuM5287j2tXH0m8cnLQpauP5J5sct9Wd6CQ3kEJV7OScWQ9ikkI4d5dJFJPSro0YCvx0SGu3QEn8dF+Ay7dvUtERETewSC6yQbcuvpI0k66EAJDbg3YFk1sCCFsTo2x3F5PhieTyOZUm1NjrEGXTjZpQZ/9s2nMprI2p4acqrCLRK7g4PhsGnPpHBQF6HVZcFDW41wS6RzGZlIA3DspKdvERk4V2DPp0rtYJD7ab9ClO0WJiIjIOxhEN9HUXAbTyXwQx62D2b3TKSQzOZtTY5ypRAbT84E1t2111wYVM6ksJucyNqfGOMlMDqPxfIDBbav0OpsjCPoVZFWBkXjS7uQYRlUFBifduXKyJRpELBIAIOdOGjJGv6QBW21SoLM5gnDAb3NqqiPr+dtaYLA5HEBLNGhzaqqjH48lWT0ZiSeRyQkE/Qq6YhG7k1OVvnY5j6IqHjO5rX9ORERE3sEguom0VSIdTSE0hAI2p6Y6bQ1BNIbyA3CZAlHaoKOjKYxI0F0BhkjQj5XNYQByrUAamg/WNoT8aGtwV4DB51PQ2yrfgHbfTArprAq/T0F3i7sCDIC8R3WQcYrP35ZpZ0/hfgl3TdwDC8/flqlMtD5UX3sDFEWxOTXV0SY2RuJJpLPy7LbSJgV6WqPw+1xWJvP1ZCqRQTwpz4KKwpgpjGjIXf1zIiIi8g4G0U006NLLvQBAURQpA1GFi17dF2AACmd3yjSxMVh0BqbbAgyAnOeia4G4rlgEAb/7mglZVxmTcXpaI1AUIJHJYWwmbXdyDOPWyxKBfEBTUYBkRpWqTNx69jYArGwKIxzwQRXA8JQ8/Q43n73dGA6gvTEEABiUaPK+cKmo++oJEREReYf7oiMu4taLpDT6+aRSBWzdec6zpnDJlzzBQbcPnPokvITX7ZNNsp53TcYJB/z6MQ5STYC5OGAbCvjkLJNxdy+o0L9PJQzYunHHBiDnJbz6jg0X1hMiIiLyDgbRTeTmwSxQGFzIdBZmYWLDnWUi44VSAy7esQEUPksy1RNtdRsnm0hmfRLu7NGDgy6dvJdxF4nr+x0y7rbSJ4rdWU9kvITX7WMmIiIi8gYG0U3k5tVHgNwDJ7eWiYwrwrSArVtXhPVJPLHh1gCDPrEhUXCUjCdjwHbQxcdUAIVLE2Wqu4OTLt8B1ybf0X6FVc8u7XdIWE8KuxLdWU+IiIjIGxhEN5F+5qJbVx9JvErPtYNZiSc23Dpw6pdwYmPA5RMbMu7YIOP1SXbvh6oKDLk8OChjwNbtR/tpfViZ2rhBlwdspawnLp8AJCIiIm9gEN0kQgiev+0w+TJx+8RGvkyGJhIQQticGmO4feWkVk9Gp5NIZXM2p8YYbp/Y6J0PIE4ns5iay9icGnIq2SbA9k6nkM6p8PsUdLdE7E5OTWTbbRVPZjCVyH8HuXViQ7bdVumsiuF4EoB7y6TQP5ejnhSPmdxaJkREROQNDKKbZGwmjWRGhaIAPa3u7BBqHdmJuQxmUlmbU1O/fTMppLIqfArQ3eLOMulujcCnAKmsin3TKbuTU7fZVBbjs2kAhe3JbrOiMYRo0A8hgD2TSbuTU7dsTsXwVD4fbp3YaAgF0NEUAiBP4IeMJ9vOHi0fPa0RBPzu7N5JVybzixDaG0NoDAdsTk1tCsceyRGw3TOZgBBAJOjDyqaw3cmpSV/RxaIyLKiQYcxERERE3uDOUZYLaAPA7lgEoYA7/8zNkSBaG4IA5FiNrg0Au1xcJkG/T58AkCHIoOWhJRpELBK0OTW1URSlaPWk+8tkeCqJnCoQ8vuwqtmdAQagsHpSpu3uZCwtYLtnMoGc6v5AlNuPKwPkK5PCTiv3Bga1nXtjMykkM+7fbVU4D70BiqLYnJra9M4HmufSOUxIsNtKhjETEREReQN7KibRLxV16XEImsK5i+5fgaRvFXV5mci03b1wVqx7AwyAXKsntTz0tkXh87kzwADIt92djNcViyDgU5DJCYzG3b+LxO2XJQLylYkMfcGWaBDN86voZZiU1I8rc3E9iQT96IzlJ7llmLyXoZ4QERGRNzCIbhIZBrNA8YVS7u+ku/3sbU2/RJfhuf3eAI1Ml/AOuvxSUU3xdneipfh9in50gAxtnAwr0WUrExn6goqi6PdMyDApqQdsXVxPALku0JahnhAREZE3MIhuEhkGs4BcF0rpZeL2Vc8SnU9aWInu7noi0yW8gy6/VFRTqCfuLxMyjz5RLMEEmNsvBNZIVSaS9AXl2m0lxw44mXYlyrKggoiIiOTHILpJ9FXPbh/MStRJ1wZ/bl99JNMK20KZSDKYlSHoI82ODXl2B5B5ZJpskeZ4LInuM5CnLyjf0X7ub+PkqSeyLKggIiIi+TGIbhIZzlwECucTStVJd3mZSLUiTJJVevolllIE4uTasTE4kYAQ7r+gkMwhy/dpNqdiZP4McbdPFMtyn4EQQpq+oExH+8kSsC0c5+LuegLIM2YiIiIi+TGIboKcKrBnUq5OutsDUVKVyfxgdngyiWxOtTk1tRNCYEiSbdXaZ2r/bBpz6azNqamPLDs2ulsjUBQgkclhbCZtd3LIofokuc9geCqJnCoQCviwsilsd3LqIstuq/HZNObSOQDQzxR3K1nO306kcxibSQGQYAecttvK5RMbxf1zXixKRERETscguglG4klkcgJBv4LOWMTu5NRFG2TMpLKYnMvYnJrajcSTyKpylElncwRBv4KsKvSVh240lchgOpUPOLs9YNsSDSIWCQBwdzAulc1hNJ4PMLh9RVg44EfXfF13e+CHzCPLLpLCZYlR+HyKzampjzRlMt8WdMbCCAf8NqemPn3tchztp+2qbA4H0BIN2pya+hQvclFV9y5yGS0aM3W5vH9ORERE8mMQ3QTaYLanNQq/ywezkaAfK5vzq9rcHIjSyqRXgjLx+RT0trp/QKulvaMpjEjQ3QEGQI7LRbWdAQ0hP9obQzanpn4yneNL5tB39sSTSGfdu7NnQJJznoFCmYy4vExkOXsbKORhKpFBPOneBRVaW9DX3gBFcXdfsLslAr9PQTqnYt/86no3kmnMRERERPJjEN0Eg5JczKeR4XLRwio9ScpEgnN89aCPy49y0ehHELg4iF58qajbAwxA8epJ95YJmWtlUxiRoA9CQD9SwI304KDLd5AA+TIJB3xQBTA85d4ykeXsbQBoDAf0idVBN/cFJTp7O+D3obtlfreVi9s4WS4zJyIiIm9gEN0EslzMp+mX4HLRQUnO3tb0SbDCVqZVeoAcq56Lj4SQQaGeuPe7i8ylKIr+OXH1pKTe73D/92m+TCSYvJcoYAsULaiQoJ5Is6BCgu+uwQm5+h1EREQkNwbRTSDLxXwaGS75kq1M+iW4UKqwSk+OgZMMuwMKk02S1BMJAnFkvn4JLheVbTWnDN+nsgVs9ckm9jscQ4rJJol2bBAREZH8GEQ3waBkHUJ9pYuLO+mylYkUKyclndhwcz0ZkGxFmAy7aMh8cgQHJdsBJ8EukiH9/G05ykTLh5snmwYnJdsBJ0EbJ1u/g4iIiOTGILoJZOsQSrEiTLYykWL1kVyDWRkmNgYlOhICKORjaDKBnCpsTg05lT4B5tLgYDKTw97p/MWCnJR0BlUVEt6PI0HAVrIFFW6vJ4B8/Q4iIiKSG4PoBktlcxiJJwHIN3AamkhACPcFotJZVb4ymR9sjE4nkcrmbE5N9YQQEp5Tn8/HdDKLqUTG5tTUZkCiywkBoCsWQcCnIJMTGJ3/DiA6UL/LV6IPzV+I2hjyo60haHNqjOH2Scm90ymkcyr8PkW//NHt9AUVLg3YxpMZvW2WpY1z+5noxf1zWcqEiIiI5MYgusGGJ5MQAogG/ehoCtmdHEN0t0bgU4BUVsW++dVubrJnMiFdmaxoDCEa9EMIYM+k+4KD+2ZSSGVV+BSgu0WOgVNDKKB/vtwYjJtNZTE+mwYgz4owv09BT6u2Us99ZULWcPuRCMWXiiqKYnNqjOH2Y+S0oGZ3SwQBvxxd7eL7cdy4oEKrJ+2NITSGAzanxhjaZNPwVBLZnGpzaqo3PJWAKoBI0IeVTWG7k0NERERUlhw9ewcpPjZElsFs0O/TA51uXO0iY5koilJ0oZQLy2Q+MNIViyAUkOdrqM/F2921nQEt0SBiETlWswJFl/C69KgOMp8WsB2bSWMunbU5NdUr7CCRY/ILKNTbsZkUkhn37bbS2gBZdr8BQO/8hORcOoeJOffttiocryPHxD0ArGoOIxTwIacKDE+5b0GF1hfsa5NnApCIiIjkJk/0yiFkO29R0+fiM7gLnXR5Bk6Au8+q1wIMfawnjiHbxYQat293J/PFogE0z69MHXLhZMugZHd+APnJPK1M3DgpWegLylMmkaAfnbH8amF3Tt7L1+/w+RT0tbp/kYtMExtEREQkNwbRDSbbBZYaN29311eESTRwAgqDDjeusJXtwjWNm+uJ/t3VKleZuHlig6yhKIoeWHNjIGpQwsl7RVHQ6+K6K9vF2Ro3T0oOSnbnh0b77hp0YT0pTADKVU+IiIhIXgyiG0zWgZObA1EDkgds3bwiTKZVekBxgMGF9UTClZOAu3dskHX6Xd3Gybma0811V5+UlOz71NV9Qdn7526sJ5L2O4iIiEheDKIbTF9hK1mH0M2rj2QN2BYGTi4czEq6+kj7jLlxYkPWHRvaZ8yNx3SQdeSYlJSr7vbrd0y4r+5yt5XzFPrnkpVJm4u/uyS8O4CIiIjkxiC6wWTdmujmFWGylol+iaUbB07j8l3wBRRfLJqAEMLm1FRH3h0b+c/Y8FQCmZxqc2rIqfpduppzJpXVL3mU7ZgKt05KZnOqfsmjtAFbl01sCCEk3rHh3qP9ZL1HioiIiOTFILqB5tJZjM2kAcjXIdQDUZNJZF0UiEqkc4UykS44mM/P/tk05tJZm1NTuZwqsGdSzoFTT2sEigIkMjnsn03bnZyKCSH0yRjZAnErm8IIB3xQBfTPHdGBCivR3fUZ0SaJWxuCaI4EbU6NsfpcugNueCqJnCoQCviwsilsd3IMpR1P47bJ+/HZNObSOQBAT6tcbZxbd4omMzmMzaQAyNfvICIiInkxiG4gbRVILBJAS1Suweyq5giCfgVZVWAknrQ7ORXTAgzNkQBaGuQqk5ZoELFIAIC7ViCNxJPIqgJBv4LOWMTu5BgqHPCjaz5Pblo9OZXIYDqVn4iRbceGoiiuPseXrFHYReKeegsU7+qRq94CxSvR3VVvte/+vtYofD7F5tQYq/iIHVV1z24rbeV8ZyyMSNBvc2qMpbVvo/EUkpmczampnN4/D8s3ZiIiIiJ5MYhuIH3gJOFg1u9T0NvqvgGt7Oct9rnwLEwtrT2tUfglCzAA7tzurk3CdDSFEQ3JFWAA3H2OL1lDC0TFk1lMJTI2p6Zyst75ARS+S6cSGcST7ikT7fu0T7KdVgDQ3RKB36cgnVOxb34VsRsMStwXbG8MoWG+3R5y0W4rbSzR194ARZGvL0hERERyYhDdQDIPZgF3nouud9Il3SrqxjNj9Xoi4WAWKLrw1Y1lIut3l0u3u5N1GsMBrGgMAXBX3dUDthJ+nzaGA2ifL5NBV07ey/d9GvD70N3ivt1WMp+9rSiKKy/hlbmeEBERkbwYRDfQoKQX82n6XNhJ11cfSThwAuDKgZNeTyQN2Pa1u69MBiS9fFfD41yoEn0u3LEgeyCqz4UXvhYmJeX8PnXjpGShjZOznrhxQYXME4BEREQkLwbRDTQge8DWhRdKFc6LlXXg5ObBrKT1ZP6z5qpAHOsJkf75d9Nki36MnKz9DjceWTYh9w44N05Kyr8Dzn1tnOw74IiIiEhODKIbqLBdVM4OoSs76ZJPbLhxMDso/RE77gv6cMcGkfsuFxVCyL8DTpu8d1Hdlfn8bcCdd0wM6efUy9nv0PpT7jz2SM56QkRERHJiEN1AXllh66aArcyXvQLuXGHrlYmNockEcqqwOTWVGZA8EKdNbO6bTiGZydmcGnIq/UgElwRspxIZzKSyACSelHTZxEYyk8NoPH/hpqxtXOHoEHfUE1WVf7LJjRMbMp9TT0RERPJiEN0gU3MZTCclH8zOd3RHp5NIZZ0fiJpKZBCXvEy0fE0ns5hKZGxOTXnprIqReBKAvIPZ7pYoAj4FmZzA6HxenSy/mlXu82JbokE0hQMA3BVkIGu57egQLQi1sjmMSNBvc2rM4bbdVkOT+XQ2hvxoawjanBpzuO1M9L3TKaRzKvw+Rb8UVTaFMnFHPYknM3qfVdZ+BxEREcmJQXSDaIOJjqYQGkIBm1NjjhWNIUSDfggB7Jl0fnBQC5ataAyhMSxnmTSEAuhoCgFwR+Bnz2QCQgCRoE9Pt2z8PgU9re45gmDfTArJjApFgZ5u2SiK4rpgHFmvv+hSYCGcv4tE9ktFgYW7rVxRJkW73xRFsTk15tB29g1PJZHNqTanpjytnnS3RBDwyzns0Y6pGZ9NY3Z+d4qTacfOtEvcPyciIiI5ydmbtMGg5Ee5AAcGopwfsNWCZbJeuKbpddF29+Ijj2QNMADF292dXyZaoL87FkEoIG+T4Majj8haPa0RKAqQyOQwNpO2OzllFS7mk7eN652f2JtL5zAx5/zdVvqxIZKevQ0Aq5rDCAV8yKkCw1PuWVAh6+43AIhFgmiJ5nc+uKGN88IEIBEREclJ3oiJxbxytp+bAlGyH1GhcdNZ9Xo9kbxM+lrdU0/+//buPUyuqs4X/nfXrnvfqpvu9K0aIohE5BKFl5ygyFEjQRiBZ0YH0QOYw8EzAjPOxOFIHCECxwGB4TBHGTkiAZ/3ZQzDPA56xhgJ0cyIBpCQKMhlCATTnXR30ulLdXfda6/3j+q9qypdXV2Xfau9v5/n4dFU767aq1avvdf+rbV+S5s56fRrFzcXpWUEvDL62vPpHpqh7ap/y06+xwV9MnrbAwCaY1DS6XvjAIDHIyEaUfcPaII6mXT+wAZQKF8zbC7qln4HEREROQ+D6Dpxy6wKtXzNEIjSZuk5+GEWaK4NpUYcvqmoqpk2XnNDIA5AU62iIetEm+ke54IZtkAhIN0MAdsRl0yoUIOfTRWwdXg7aaZc9W7pdxAREZHzMIiuE9d00ruaZ+M1NyyrBpprQyn1HJ0e9GmmgQ23DTY1Q4CBrNNMm4u6IZ0L0GSrrVyyAk4blGyC66k22OTwvmAz7fvhhhQ7RERE5EwMoutk2CUB28KDk/076e6Zpdc8M2wLg01ObyfNkzqkMNjk7HbSTKsDyDrRJhkAE0IU2q7D73HNNCjpmjppxnuc0+ukiQaK3ZICk4iIiJyHQXQd5B9m3RKwVZfw2ruTLoQobCzq8IBtIcCQgBDC4rOpzDXpXBb+5kZnEsjkFIvPpjK3pKJSr10ziQxiSftvUEjWaJZZz0fnUkhlFXgkoD8StPp0DNUsq63mU1lMzuc3pHX6hIpm2Tw7m1O0zU+d3+9ojoENIYRr+h1ERETkPAyi62BiLo1kRoEkAQMRZ3cI1YeQY/NpxNNZi89macfm00hkcpAkYNDhnfSBSBCSBCQyORxbeIC3o0Q6h4m5hQCDwwebetoCCHg9UARweNq+D7Q5RWjn5/QNvloDXnSGfQCaI48vWaNZZnOqQf7+jhB8srO7clqeepsHbNW/mUjYh7agz+KzMVaz5N8enUkipwj4vR70tAasPh1DFTYWjdt6QsVUPIN4OgfA+c9MRERE5DzOfvIyifoQ0d8ehN/r7K+0I+RDe9ALwN6zXdRz620LIuCVLT4bYwW8Mvra8zMR7TwrTJ2F3hb0oiPs7ACDJElNsUHhWCyJTE7AJ0va35CTNUuAlKyjttvD0wnkFPsGokZcknsbKF1tpdi4Ttyy+g0olHE8lkIyk7P4bJampZCLhODxSBafjbEGI/l2MpvKYiZh39VWap30tgcQ9Dm7f05ERETO4+yIr0ncsqmoKtoEG68VNlxz/sMs0BzL3d2So17VDJvwqjM7ByIhyA4PMADNtWkkWaO/IwSvR0ImJzAeS1p9Oktyy6aiANDfEYTskZDOKTg6l7L6dJbklrR+ANDV4kfYnw+A2nm1lTqI7fSVVgAQ8svoXphtb+d0VG7rCxIREZGz1BVEf/DBB7Fy5UoEg0GsWbMGL7zwQlW/t3XrVkiShCuuuKKej7WtQifdJQHbJsiFOTzltoGNJqgTF83SA4o34bVxnbhkwzWVeo228+oAPfFeXTvZI2kpBprheuqGtuuVPejvsP9qKzdtlihJUpMN3ruj36GldLFzv8NF7YSIiIicp+Yg+hNPPIGNGzdi8+bNeOmll3D22Wdj/fr1OHLkSMXfe+edd/DXf/3XuOCCC+o+WbvSZoS54GEWaI7NiwoBBnc8OEW77F8nbtlUVFWY9WzfOimsonFJO9GuXfYNMOiF9+r6aQPFdr6eTrut7TbDoKQ7A7b2Hthw14SKZshV76ZUVEREROQ8NQfR77//flx//fXYsGEDTj/9dDz00EMIh8PYsmXLkr+Ty+Xwuc99DrfffjtOPvnkhk7YjtTApWuCg02QV1jrpLulTjqbaPaRSx6cCnl8bVwnrhvYUIM+9g2O6oX36vo1Q9oft83mbK5BSXfUSbQJArbaaiuXrBSNNsE9zm0r4IiIiMhZvLUcnE6nsWfPHmzatEl7zePxYN26ddi9e/eSv3fHHXdgxYoVuO666/DLX/5y2c9JpVJIpQp5L2OxGAAgk8kgk2l8sxz1PfR4LwA4ODkPAOhv9+n2ntXQuxzV6mv3AwAOHovr9tl6l0V9mB1o95v+/VhRL/1NUCdaO+kIuKNO2vJ1Mjxp3zpR20m/W9qJWidTcaTTaUhS43ng9S6HHu/De3VjBjryeYUPHpuzZdvNKULLQ93X5o5+R6FO5m1ZJ0IIbUKF2+pk2KZ1AhT2/ehvM/ceZ3Wd2LWdAPm/F8D8focRdWJ2/RIREZH1agqiT0xMIJfLobe3t+T13t5evP7662V/59lnn8UjjzyCffv2Vf05d911F26//fZFrz/99NMIh/WbubBjx46G30MRwKEpGYCEN/c+h4lXGz+vWulRjlqMxgHAi3eOxrBt2zZd31uvOhmezNfJf+x9Dsdea/y86mFmvUymAMCLkal5/OtPtkHPPSL1KseBI/k6efvl3yD5li5vWTMz62Q+AwBeHJ1L46n/uw0Le7DpQq9yvHk4XyfDr+3FtpG9urxnrcysk4wCAF7E0zk8+eOfotWn33vrVY54vPFZnbxXN+boUQmAjN+9dRjbtg3r+t56lGUyBWQVL2RJYM+zP9f1el8ts+vk2EKd/Hb/MLZt+4Ou761HWeYzwFwq36V+5fl/x3/oeL2vltl1Mj6Zr5NXDoxh27ZDur63HmXJKMD4bL5OXt/zK4z8ruG3rJnZdXJ4Ol8nr48ctW3//OBC//zNfc9hsvztyFB61oke92vVgw8+iHvvvRdjY2M4++yz8a1vfQvnnXfesr+3detWXHXVVbj88svx1FNP6XY+REREVF5NQfRazc7O4uqrr8bDDz+M7u7uqn9v06ZN2Lhxo/bvWCyGoaEhXHTRRWhvb2/4vDKZDHbs2IGPf/zj8Pkai6Icnk4g99wv4ZMlfObyT0A28WlWz3LUIp7O4u7f/hyJnIQPfeTjaA81/tl6lmV0Joncc/8O2SPhqssvhleua//cullRLzlF4Bv7nkFWAc750Ee1TdgaoWc5YokMErt/AQC46pMXoSVg6KVnESvqRAiBb7z8c8yncjhjzYfx7hWtDb+nnuVIZxX85XPPAAA+fcnH0NMWaPj8amHV9eueV/8NR2ZTWHXOB3FWtKPh99O7HOpsbjO54V5di/6D0/h/97+AuCeESy75sC7vqWdZnj8wCbz0IqKdLfijSz+ky/lVy6o6WfGHKfx/+3+DhCdsyzp55VAMePE59LT6ccUnL9Ll/KplVZ28a3QWj7yxG7PCj0su+Ygu76lnWd4+Og88/yuE/TI+fdnHdVl5VC2r6uR9k3H8w2vPYiYr4xOfuEi31VZ6lWUsZl3/3Ig60et+re5h8tBDD2HNmjV44IEHsH79erzxxhtYsWLFkr/HPUyIiIjMV1Mkq7u7G7IsY3x8vOT18fFx9PX1LTr+rbfewjvvvINPfvKT2muKouQ/2OvFG2+8gVNOOWXR7wUCAQQCiwM6Pp9P186oHu83OpvvQA1EQggG/HqcVs30/l6W0+HzobvVj4m5NEZnMzihXb8Zh3qUZXxuFgAwEAkiFDQ3MFjMzHrxIf83eHAyjrHZDE7sbtPvvXUox9jR/GydE1r8iLRal5vU7LYy1BnG62OzGJvL4L2D9rp2HZqZhxBA0OdBf2eLqQGGYqbXSVcYR2ZTGJ1N4xyb3U/U92kU79WNWbkif/0ciyUhJBl+r36BHl36HbE0AODEE8Kmfi/FzK6Td/XkB2VGYylIHlnX4Js+fcF8nUS73FMnajuZimeQViRdB8f1rJOhzjD8fnf0z088oQ2SBCQzCqZTCla0NT6hQqVL/3w23z/v77Cuf65nnej1PsV7mADAQw89hJ/85CfYsmULbrnllrK/U7yHyS9/+UtMT0/rci5ERERUWU1PIX6/H+eccw527typvaYoCnbu3Im1a9cuOn7VqlV4+eWXsW/fPu2/yy67DB/5yEewb98+DA0NNV4Ci424dIOcwU77bpqo5nl2W52oG2fZcTM8dZMrt2z0qtI2F7VhnajXrmhn2LIAuhXcsLko79WN6WkNIOjzQAhoucftZLio7brFirYA/F4PcorA6EzS6tNZxI39jvagDx0LKxHtuLnoiMs2FQUAv9eD/vZ84NyO9zhtM3MXtZPlqHuYrFu3Tnut1j1MlpNKpRCLxUr+IyIiovrUPG1k48aNuPbaa3HuuefivPPOwwMPPID5+Xlt9Pyaa67B4OAg7rrrLgSDQZxxxhklvx+JRABg0evNSntwclEnHcgHon47PG3PTroasO10V51EI2EAx2z6MJs/J9fViRqwnbJhO9EeZt1VJ9rAhg3biZ54r66fJEmIdoax/8gchqfiWNndYvUplRhxYb/D45EQjYTw9sQ8hqfiWju2CzcGbIF8eWcOZTAymcCqvsZTOOlpWOt32OtvxWjRrjAOzyQxMhXHOSd1Wn06JdT+udvaSSVm7GGy1P4lREREVLuag+hXXnkljh49ittuuw1jY2NYvXo1tm/frt38Dx48CI/H3BzUVnJrJ93OgSi3znQpzES3YcDWhbP0gEJ57bk6wKXXLrVObDiwoSfeqxsz1BnKB9FteD0dceFMdAAY7MwH0UcmE8Di7EKWcm2/ozOMVw7F7Dl479IJFUOdYbxwYFK7TtiJW/sdeqpnD5Ol9i8hIiKi2tWVwPCmm27CTTfdVPZnu3btqvi7jz32WD0faVtu7qQD9gxEqYF9u81UM5qdBzbcO0tPrRP7tZNhl9aJeq22Y4odvfFeXb+onVOWuXwViR0Dtm4NDkZtnB5r2KV9wUKd2K+duLUvWIkZe5gstX8JERER1Y7T0BrETrr9OuluXS5aCPrY+GHWZQEGbXWADYM+I66tk0I7URRh8dmQXRXarr2up6lsDmOxfE5wt/U7hmx6jxNCuDY4aOeBDbfuWWTnOnFrX7AS7mFCRETUXOqaiU55JQ+zLusQFgeihBC22Zgwk1MwOuPOpe7qrMTRmQQyOQU+2R5jZEII9+apX/gbnI5nMJvMoC3os/iMCgqDTe5qJ/0dQcgeCemcgqNzKfQubMJGVMyuqZgOTychBBDyyTihxW/16ZjKrptnH51LIZVV4JGAgYi77nF2HdiYT2UxOZ8GAETdNrChrrayWZ1kc4q2KbDb+h3L4R4mREREzYNB9AaMFj3Mdre662F2IBKEJAGJTA7H5tPobrXHMsHR6SQUAfi9HvTY5JzM0tMWQMDrQSqr4PB0AiedYI/N8I7Np5HI5CBJ+Zy2btIa8KIz7MNUPIPhyQROH7BHED2RzmFiLgXAfQMbXtmD/o4gRqYSGJ6MM4hOZdk1PVbxJs12Gbw2S7TTnjNs1QHJ/o6QbQavzaIObIxMxm01oUL9G+kI+dBuo8FrM6jXrsPTCeQUAdljjzoZnUkipwhX9s+Xwz1MiIiImgeD6A0YdvHDbMAro689iNGZJIYn47YJohcHGDw2eXAwiyRJiHaG8NbReYxM2SeIrs6G6m0LIuCVLT4b8w11hTEVn8HIVBynD7RbfToACu2kLeBFR8hdAQYgf30YmUpgeCqOc1d2WX06ZEPqDNuJuTTi6SzCfnt0l9y6ggQozLAdj6WQzOQQ9NnjfqJeT902SAwAg5H83+FsKouZRAaRsD0mlLg1rR8A9LYH4ZMlZHICY7EkBm2yOkJ7Zoq4r39eDe5hQkRE1Bw4rN0ANz/MAkV50W20ZNTt+Ra1XJg2Wu6unosbH2YBe27Cqw5sRLvCrhsABIpTddinTshe2kNetAXygfNDNmq7bt1UFAC6WvwI+/OB88PTNqqTSff2O0J+WZtEYafrqVv3/AAA2SNpaYXs1BccmSz0O4iIiIiaFYPoDSieie5GdswZ69bc26rCwIaN6kRrJ+58cLLjJrxuDsQB9k3VQfYhSZIW7LHV9VQblHTf9VSSJFsPSrp2oFhN6WKrduLuSS52zFXv9n4HEREROQOD6A1w8+wjoDCbxFYPTlPuDTAA9pxhqz3MuvTByZbtZNLdAxuFDQrt007IfoY67fd3oq0icev11NaDki69ntowV73rJ7nYcBNeNw8AEhERkXMwiN4A188+6lRnH9kvwODah1kbBmy1PPUufXCyYztxc75YwL4bFJK92DE91ojLV/YM2XJ1AAc2AHsNNrl+kosN73FuHwAkIiIiZ2AQvQFuf5iN2jKdC/NvAzZd6u7SdlIciBNCWHw2eSPT7g4wqOUenUkim1MsPhuyqyGbpceKp7OYmEsDcO9szqjNBiVzitDys7u1Tuw2sCGE0PYxcGtfUGsndhrYcPmKDSIiInIGBtHrxIfZwsPJoekEcor1wcFkJocjsykA7u2kqw9OR2dTSGZyFp8NoCiFh1m3zj4aXNjgaz6dw1Q8Y/HZ5Lk9X+yKtgD8Xg9yisDoTNLq0yGbKgyA2SMQpQaO24NedIR8Fp+NNbTVVjYZvB+LJZFVBHyyhN72oNWnYwm75d+eSWQwm8oCcO8kF7utSkxmchiPLfTPXdrvICIiImdgEL1O6sNCm4sfZvs7QvB6JGRyAuMx6wNRap20+GVEwu6sk0jYh9aAF4A9Hp7GZ5NI5xTIHgn9He4MMAR9Mla0BQDYY9VGLJnBTCIfzHfrwIbHIyEasdcsY7KfaKe9AlFuX/0GFG+ebY+ArXpNH4yEIHski8/GGsUbi9phtZU66NXdGkDQJ1t8NtbQVlvFkkhnrV9tdWi60D/vdGn/nIiIiJyBQfQ6uT3fIgDIHgkDEfssrR4p2lRUktz5MCtJkq2CDOrfxUAkCK/s3stNYVaY9XWiXru6WvxoWRhwcaNBGy53J3tRr6WxZFYbeLKS2/cyAArX0sn5NOYXZhtbye2bNAP5CRWSBCQzCo7Opaw+naIN5t3bTrpb/Qj6PBACWrohKxXyobu3f05ERETO4N6oVoPcnntbVdhQyvqZesNFnXQ3s9Nydw425dkpt3IhR727r112y+NL9tMS8OKEFj8Am9zjeD1Fe9Cnrf6zxaCky3NvA4Df60H/QiobO6Q+GmHu7YUJFfa5x/GZiYiIiJyCQfQ6uX2zRNWQjTrpI+ykA7DXcnf1gdqtaUNUxZuLWk2bOenyvKR2y+NL9hS1UW7h4aLVVm6m3uPtcD1lip08W7UTrtgAUBgot8M9bpjthIiIiByCQfQ68WE2r/Awy066XWgDGzYIMAxzRhgAew1sjLh8o1eVnQJxZF/aKhIb3OPYdvOiETsN3rt7k2aVnQYl2RfMs9PgPdsJEREROQWD6HXiTJe8IRvNPmKaijw75d8e4WATgOIAg/XthCkh8uy01J3sy06bixZSIri77dpz8N7d/Q5bpfbjPQ6A3Qbv2U6IiIjIGRhErxNnuuRF7TT7iAEGAEUBBlsEfTjYBJQObCiKsPRctMEmt7eThYf58VgKyUzO4rMhuypcT629x80kMogl8xtpuj0QZZfB+1Q2h7FYEgADtnbZY0IIUXSPc3k7sdWqRKbAJCIiImdgEL0OM/EMZvkwC6AQiBqdSSCTUyw7j7lUFlPxDADWiTqwMR3PYDaZsew8MjkFozPc7BUA+juCkD0S0lkFR+dSlp2HEKIoxY6720lXix9hvwwAODxt/SAg2ZNdAlHq53e3+hH2ey09F6sV9mKxtt2OTichBBDyyehu9Vt6LlazS/7to3MppLIKPBLQ3+Hue5xdViXOp7KYnE8D4MAGERERNT8G0eugBqH4MAv0tAUQ8HqgCGsDUWqAIRL2oS3os+w87KA14EVnOP8dWLncfXQ6CUUAfq8HPa0By87DDryyB33tQQDWBuMm59OIp/Ozrgci7n6YlSTJNsE4sq/iQJQQ1q0iUQNhgy4fkAQKA+Ujk3FL66Q4lYskSZadhx2o7eTwdAI5C1dbqX2evvYg/F53P+Ko97eJuRQSaetWW6nthP1zIiIicgJ39zDrNMJULhpJkgoPtBYGoka4VLSEHZa7F+fA9HjcHWAACjOwrGwnarC4tz2AoE+27Dzswk55fMmeBiJBSBKQyOQwMZe27DxGuIJEo/a9ZlNZzCSsW22lBmzdvvoNAHrbg/DJEjI5oaW4sYLW73B5ujIAaA950RbIT/SxtC/IdkJEREQOwiB6HYa5y3wJLRemhYGoQj50dtIBeyx3L6QNYTsB7JEWYoR1UsIueXzJvgJeubCKxMK/E+75URDyy+heWN1k7aAk60QleyRtdZO19zhOqFBJkqQNJlh67WK/g4iIiByEQfQ6DHOX+RLabE520m3DDjNsOUuvlB0CthwALGWHVTRkf3b4O+HGfKW0DV8ZsLWNIRtsNM8JFaXskKue/Q4iIiJyEgbR66B10vngBKB4hq31nXQGbPOiNkjnwll6pQoDG9bPnGQ7ydPSHjGdC1Vgp1UkbLt5hdVWdlgdwDoB7DGwwQkVpWyxUpSpqIiIiMhBGESvgzYjjA9OAGyWf5sBWwD2mH3EWXql7DETnQGGYoVVNJyJTkuzelBSCMHZnMexw6Ak98cpFbXFwAYnVBQbskU7UeuE7YSIiIiaH4PoNRJCMK/wcazOv52vEwZsixXPPhJCWHIOnKVXSv3bHJ1JIptTLDmHQ+rDLOsEQKGdTM6nMZ/KWnw2ZFdWB6KOzaeRyOQgSfmNTsn6wft4OqttNMt+R56W9siidpJTBA5Pc7CpmNUDG0IIbaUX+4JERETkBAyi12hiLo1kRll4mGWHECg8OB2dTSGZyZn++dPxDOYWAmCcfZQ3uPC3OZ/OYSqeMf3zk5kcjsymAHD2kWpFWwB+2YOcIjA6kzT98xWFg03Haw/60BHyAWBedFqa1atI1AHJvvYgAl7ZknOwG6sH79UBybagFx1hnyXnYDdWD2yMxZLIKgI+WUJvOwebgOI6saadzCQymNX65+x3EBERUfNjEL1G6kN0f3sQfi+/PgCIhH1oDXgBWPPwpNZJT1sAQR8DDAAQ9MlY0RYAYE0uTPWBrcUvo5MBBgCAxyNh0MJNeI/MppDOKZA9Evo7GGBQ2SGPL9mbOjh7eDqBnGL+yp5COgQOEqvUdjsyZc1qK+beXkxbbRVLIp01f7WVeg0fjIQgeyTTP9+O1GvGTCKDWNL8CRXq6h32z4mIiMgpGAWukdpJ54yKAkmSLM0trOWKZYChhJUzkEaKNhWVJD7Mqqxc7q4NAHYE4ZV56VdFI9bn8SV76+8IweuRkMkJjMfMX0XCgO1i/R0hSBKQzCg4Opcy/fOZe3ux7lY/gj4PhICWVsVM7J8v1hLw4oQWPwCrJlRwQ2QiIiJyFkZSajTCnMJlaQFbCzvpzIFZasjCWc/D3EiqLCuXu3Mvh/IKM9GZzoXKkz2Slr7NikCUFrDlPU7j93rQv5Cyw4qB4sKeH6wTVX5ChXWDklq6MvbPS1i5CS8HAImIiMhpGESvEQNR5Vk6E511Upb2MGvFwMYkZx+VY2UeX23FBgMMJazO40vNQRtssXJlD6+nJaJdFt7jprgCrhz1+7BkYGOKM9HLiVp4j2O/g4iIiJyGQfQaFTqE7KQXG7IwYMtl1eVZGfQZ5uqAsgozwqxoJwwwlGP1BoXUHKy8x41wZU9Zap1YGbDlPa7UkJUDG+yfl2WLdsJrFxERETkEg+g1GuaMsLKszL/Nh9nyCg9OnKVnF1qAwcINeDkjrFQhT701GxRSc7Cq7SqKwCGmqSiLg5L2Y4dViZxQUcrKzbM5AEhEREROwyB6DXKK0DZLYm7SUoVZz+Z20oUoCjCwk16ieGBDUcwNDjJfbHnqoMJ4LIVUNmfqZ4+wnZSlPtzPprKYSWQsPhuyq6hFaSrGZ5NI5xR4PRL6OxgcLGbV4P1MIoNYMguAAdvjWbViI51VMLaw6S/vcaWsylMvhCjas4jthIiIiJyBQfQajMWSyOQEfLKEvoUNrShP7aRPxzOYTZoXiDo6m0Iqq8AjAf0R1kmxvo4gPFL+4fLoXMq0z51LZTEVz/8NMMBQqqvFj7BfBgBt8McM2ZyC0ZmFAAMHNkqE/DK6WwMArFlJQ81BvceZvXm2mq5sIBKC7JFM/Wy7s2rzbDUweEKLHy0Br6mfbXdWDWwcnk5ACCDkk9Hd6jf1s+2uOE+9mautjs6lkMzk++fqxsxEREREzY5B9BqoM2v4MLtYa8CLzrAPQOGh3wzqw3N/Rwg+mX/OxXyyR5u5aOasMPWzImEf2oI+0z63GUiSZMly99GZJHKKgN/rQc9CwJgKrFzuTs1B/RsZjSWRziqmfe4IU1QsSQ3YHp5OIGfiaittHxYOSC6izgKfmEshkTZvtVVxKhdJYv+82GBnCJIExNM5TM6nTftctZ2wf05EREROwl5NDZgOobLCDCQzA7bcVLQSNfBj5qwwtpPKrFjuruXvjYTg4QDgIlYtd6fm0dMaQNDngRDQ0rqZQdvMnNfTRXrbg/DJEjI5oaXyMAMHNpbWHvKibWF2PvuC9hDwyuhty6/UNHPwXq3/QdYJEREROQiD6DUo5Hlmh7AcLThoQSedKSrKszJgy3ZSnhXL3bXNvdhOytLSQpi4ioaaS34VifmDLdwQeGmyR9LSRJiZZke7x3FgYxFJkrT7jJnthH3ByqzYhJcTKoiIiMiJGESvQWG5KDuE5VjRSecsvcqGLHiY1YI+rJOyohbk8S3UCQNx5VixioaaT9SCwRZu0lyZNYP3C/0ODmyUNWTBJrzDDNhWZMXgPSdUEBERkRMxiF6DES4XrShqRToXLquuyJqgD9tJJVZsUKilc2GAoSwrAnHUfNS/EzPvcdoqErbdsqzYz4ADxZVpg/dcAWcbVmzCy3ZCRERETsQgeg2GuVy0ImtmH7FOKtFmH02bv6yaqUPK04I+VszSY4ChrKh27YpDCPM2KKTmYnbbzeQUjM6oM2zZdssxO8WOEIIDxcuwYvB+hCtFK4paMLBRGABkOyEiIiLnYBC9Sumsom1cxVkV5RXPPjIjEJXNKRidXqgTBgfLUv9WD08nkc0phn+eEIJ5MJehtpPJ+TTmU1lTPnOEM8IqGoiEIElAMqPg6FzK6tMhmzJ7j4nR6SQUAQS8HvS0BUz5zGYTNXnw/th8GolMDpLEDROXMmTywEYincPEXLrks6mU2e0kpwhtA2ZOciEiIiInYRC9SoenExACCPlkdLf6rT4dWxpc2OBrPp3DVDxj+OeNxZLIKgI+WUJvW9Dwz2tGK9oC8Mse5BSB0Zmk4Z83Hc9gbiEwzNlH5bUHfegI+QCY80CbzOQwHssHhvkwW57f60F/e/4aYuZKGmouZufOL05XJkmSKZ/ZbLQ6MWlgQ70+9LYFEfDKpnxmszE7/7baHtuCXnSEfaZ8ZrNRBxcOTSWgKMZPchmLJZHJLfTP29k/JyIiIudgEL1KfJhdXtAnY8XCbDkzZuqpS4UHIyF4PKyTcjweSZstZ8asMPUzetoCCPoYYFiKmZvwHlqYDRb2y+hkgGFJVix3p+aiBqIm5tKIp41fRTLCdGXLUutkNJZEOmv8aivm3l6een+bSWQQSxo/oYK5t5fX3xGE7JGQzik4Mmv8aiu1nQxGQpDZPyciIiIHYRC9SsyBWR0zZyAxH3p1zFzGW0jlwnZSiZnL3bWgT2eYA4AVmL3cnZpPe8iLtoAXQH5Gp9HY71hed6sfQZ8HQkBLH2GkYebeXlZLwIuulvyKTTMnVLCdLM0rezAQyc8IN6PfwQ2RiYiIyKkYRK8SA7bVGTJx1jM76dUxc7l7YZYe66QSdRajqQMbnDlZkdn5rqn5SJJUWLFg4soezrBdmiRJpm4uqgZsOVBc2ZCJm4uy31GdaMS8exxXbBAREZFTMYhepeLZnLS0qImBqBF20qtSmPVs4uoAtpOKhkxMHcKZk9UZMjE4Ss2LwUH7GTJ1tdXC9ZR1UlHUxP0DuAKuOmYO3rPfQURERE7FIHqVOJuzOur3Y2bAlp30yszMv81l1dXR6sSMoA/rpCpmBuKoeZk5AFYIDvIeVwnrxH7U74ep/ezDzNVWar+DdUJEREROwyB6lUYYsK1K4cGJy6rtwswZtnyYrY7WTibjEEIY+lmsk+qoMycPTyeQU4ytE2peZqUsS2Zy2gaAHACrzKxBSUURWi581kll5g7es39eDTP7goVnJrYTIiIichYG0asQT2cxMZcGwEDUcoo3FlUMDESlsjmMzyZLPpPKU4M+47EUUtmcYZ8jRCHAwFl6lakP+7OpLGKJrKGfxZmT1elrD8InS8jkBMZiSatPh2yqkLLM2ICt2m5bA15Ewj5DP6vZmTXDdnw2iXROgeyR0N8RNPSzmp1ZAduZRAaxZP4eyoBtZVGTUlGlswpGF+6h7HcQERGR0zCIXgX1YbYt6EVHiA+zlfR1BOGR8p3oo3Mpwz7n8HQSQgAhn4wTWvyGfY4TdLX4EfbLAKAFuY1wdDaFVFaBRwL6IwwwVBLyy+huDQAwNsgwn8picl4dAGSAoRLZI2EgYt7sSWpOQybleh4umskpSZKhn9XsigfvjaS+/0AkCK/M7nMlxemxjFxtpbbDE1r8aAl4DfscJ1DbyVgsiWxOMexzDk8ntP55dyv750REROQsfAqoAjcVrZ5P9qC/w/hAVGH5LgMMy5EkyZTl7mrQp78jBB8DDMsyY7m7WieRsA9tQQ4ALsfMPL7UnNR2G0tmMZPIGPY5hX1Y2O9YjtpuJ+ZSSKSNW23FvmD1BhfaSTyd0wZyjaDtw8J2sqye1gD8Xg9yisDojHGrrTgASERERE7GSFcVtAcnzuSsSmFzUeODgwwwVMeM5e7cVLQ2Zix3Z53URrt2cSY6LaEl4NVWPxn5dzIyyZzC1WoPedG2MAvZyBUCvJ5WL+CV0duurrYyblCSuber5/FIpgzej3DfACIiInIwBtGrwJzCtSlsmmjkgxM3Fa2FGcvdRziwUZPi5e5G0eqE166qaPmuTdh4jZpX1ISULsNsu1WTJEmrE1MG71knVTFn8J51Ugsz7nGFiUesEyIiInIeBtGrwFnPtWEn3X4K6VyMn6XHh9nqaDPRTVgdwHZSHbWdGDkASM1vyIQN+th2a2PqoCTrpCrmDN6r7YQTKqphRjsZ5sQjIiIicjAG0avAJby1KaREML6TzjqpTlRbHWD8LD3WSXXMzFPPFRvVMWvTSGpuZgwUFwK2bLvVMHdQknVSjSEzBu+5OqAm5rQTXruIiIjIuRhErwJnotfGjFzPhXyxrJNqFPLUmxCwZTupSmETyziEEIZ8xjDbSU3UOhmNJZHOKhafDdmVej01ajbnXCqLqXh+01K23epEDV4dkMkpGJ1RB+9ZJ9WIGpzORQjBSS410lLsmLA6gO2EiIiInIhB9GXMxDOYTWYBsJNeLS0QNZNENqd/ICqezuLYfDr/WQzYVkX9nibn05hPZXV//2xOweh0cuGz2E6qMRAJQZKAZEbBxFxa9/cXQnCpe426W/0I+jwQAjg8zZQuVJ7RuZ7V9+0M+9C6sGEmVTZk8OqA0ekkFAH4vR70tAYM+QyniRo82HRsPo1EJgdJAgbZP6+K0RuLJtI5TMylAHB1ABERETkTg+jLUB/Iulv9CPv5MFuNFW0B+GUPcorA6ExS9/dXH8jag150hHy6v78TtQd92ndlxAPtWCyJrCLgkyX0tgV1f38n8ns96G/Pf1dGBH5mEhnMpdQBQD7MVkOSJG4uSssqzvVsxCoS7vlRO6Pzb48UpSvzeCRDPsNp1CDqoakEFEX/dqLWdW9bEAGvrPv7O5HaTo7MppDM5HR/f7WdtAW96Aizf05ERETOwyD6MgoPTnyYrZbHI2mzgowIRDHAUB8jZyCpS6oHIwww1CJqYH5StU562gII+hhgqJYZG69RcxuIBCFJQCKTM2QVyQg35quZen+bSWQQS2Z0f3/m3q5df0cQskdCOqfgyGxK9/dn7u3adYZ9aPHn+wOHDFhtxXZCRERETscg+jIKG0mxQ1gL9YF2xID8pIU8z3xwqoWRy92ZD70+UQMDttzotT5mbLxGzS3glbUVN0ZeT9l2q9cS8KKrxQ/A2EFJ1kn1vLIH/R1mtBP2O6olSZKh97hCPnS2EyIiInImBtGXwYfZ+hSWVhvXSedMl9oYuRkeN5KqT/HmonrTZumxTmqirdjgTHSqwMjrqRaw5aBkTYYM3FyUA8X1MXL/AG2SC/vnNTHyHseVokREROR0DKIvg4Go+hRmPfNh1i4MnX3EZdV1KdSJcQMbrJPaGL1pJDmDkX8nI1pKBLbdWkQ5eG87xg7eL0xyYV+wJlFDB+85sEFERETOxiD6MoYZiKqLGfm3WSe1MXT2EZdV12XIyL0DmJu0LkZvUEjOYFTAVghRNADGtluLwsoeI2fYst9RC2MHmziwUQ/tHscVG0REREQ1YxC9gvzDLANR9dBm2DIPpm1oAYbJOIQQur43Zx/VRw3EHZ5OIKfoXSdsJ/VQ28nEXAqJdM7isyG7Mip1yHQ8g7lUFkB+o2aqnlGD98lMTtsYk33B2hjVF1QUgUPMv10XIwfvmdqPiIiInI5B9Aom5tJIZhRIEjDAh9maqJ308VgKqax+gaiZRAazyXyAgQ9OtVEfamZTWcQSWd3eN5XNYXw2CYCzj2rV1x6ET5aQyQmMx5K6vW/pbFa2k1q0h7xoC3gBGLPcnZzBqOCg+n4r2gII+mRd39vpjKoT9Vra4pcRCft0fW+nixo02DQ+m0Q6p0D2SNrmpVSdqEGrA2LJDGYSmYXPYL+DiIiInIlB9ArUB7G+9iD8Xn5Vtehq8SPszwcADum4tFrt9He3+hH2e3V7XzcI+WV0twYA6BtkODydhBBAyCfjhBa/bu/rBrJH0gbo9HygPTqXQiqrwMMBwJpJkqStEDBiph45gxok0nsVSSFdGQcka6UO3o9MJXRdbTVSlKJCkiTd3tcN1L/jsVgS2Zyi2/uqAxsDkSC8MvvntVAH1qeKVr3oQe3DnNDiR0uA/XMiIiJyJvY8K+CmovWTJMmQHNwjTOXSECOWuxfShoQYYKiDEZvwqoG4/o4QfAww1Kw4GEdUTn9HCF6P/qtIuKlo/QYXvrN4OofJ+bRu7zvMFBV162kNwO/1IKcIjM7o107YP69fW9CnrajQc7WV2u/gRq9ERETkZIyuVKDl9mM6hLoYsaGU1klngKEuRix350ZSjTFiYEN9MB5kO6mL1k4M2AyPnMGoVSTc86N+Aa+M3nZ1tZWOg/fcVLRuHo9k0OA9+4KNKPTPjZjkwjohIiIi56oriP7ggw9i5cqVCAaDWLNmDV544YUlj3344YdxwQUXoLOzE52dnVi3bl3F4+2Em4o2Rg1E6Tmbc4QB24YYMcNWy73NB6e6GNFOOEuvMUbl8TWbW+7VVlGDqkasImHAtj6GDN5zYKMhWg5uIwbvWSd1MWbwXu0Lsk6IiIjIuWoOoj/xxBPYuHEjNm/ejJdeeglnn3021q9fjyNHjpQ9fteuXbjqqqvwi1/8Art378bQ0BAuuugiHDp0qOGTNxpzkzamkM5FzwcndtIbYcQMWy1gy3ZSFyPaCTcVbcyQAUEfs7npXm0VIwO2vMfVx5jBew4UN8KYwXv2Oxph6OA9+x1ERETkYDUH0e+//35cf/312LBhA04//XQ89NBDCIfD2LJlS9njH3/8cdxwww1YvXo1Vq1ahe9973tQFAU7d+5s+OSNNszcpA1RZx+NGBKwZZ3Uw4g89YV8sayTemgPswzE2YYRAQazuelebRW902MpiigaAGPbrceQEYP3HChuiDGD9xwoboQh7YT9DiIiInKBmrZPT6fT2LNnDzZt2qS95vF4sG7dOuzevbuq94jH48hkMujq6lrymFQqhVQqpf07FosBADKZDDKZTC2nXJb6HpXeK6cIHJ7Od9L72ny6fK7eqimHlfrb8xsXHZyML3uO1ZRFCKHNPrJrnQD2rpf+Nj+A/CyudDpdcSPQassxPDkPAOhr89uyzIC966SvNd9ORmNJzCdS8HuXHtusthwHjy20k3a2k3r0tuZvjTOJDCZn42gL+pY8Vu9y6PE+brpXW6lv4Xo6rNM97shsCumsAo8EnBCWbVlu29fJQk70g8fmdamTuVQWU/H8z3tb7Xk9tXudDLTn24lefcFMTsHoTL5/zjqpT/9CnQzr1E7y/XP3PTPZsZxERERkrJqC6BMTE8jlcujt7S15vbe3F6+//npV7/GVr3wFAwMDWLdu3ZLH3HXXXbj99tsXvf70008jHNZvhsOOHTuW/NlkCsjkvJAlgZd+9QvsWzrWaLlK5bBSIgsAXkzFM/iX/7sNAXn536lUllgaSGS8kCDwu93/hldtvi2uHeslqwASZCQzCp740U+x8BxVUaVypHLA5Hz+MvLai8/iDzVdUcxnxzoRAvB5ZGQUCT/40Xb0VDGxrlI5FAEcmpYBSHhz73OYeFW/czWCHesEAFq8MuazEn7wf3cg2rL88XqVIx5vfGagm+7VVhqeBQAv3jw8iW3btlX1O5XKcmDh/SJ+gR0/267HKRrGrnVyeEYCIOONkQld6uTQPAB4EfYK/PLnT+tyjkaxa538YQ4AvNg/OqVLnUwkAUV44ZUEfvPLn8PD/nnNxuIA4MWBiVn85CfbUGE+haZSWeYyQDyd75+//Ny/4TUb98/1rBM97tdERETUXEwNed19993YunUrdu3ahWAwuORxmzZtwsaNG7V/x2IxLT9re3t7w+eRyWSwY8cOfPzjH4fPV36G4fMHJoGXXsRgZxh/dOkFDX+mEaoph9XueuXnmElk8b7zLsB7etuWPK6asuwbngb2vIDe9iAu+6MLDTrjxtm9Xu57/d8xOpPEaeecj/cPRZY8rppyvDk+B7zwa7QHvfjUZRcZdMaNs3udfOutX+Gto/N49+o1+OApJyx5XDXlODydgPLcL+GTJXzm8k9AtmmEwe518sjB5/C7QzGsfN85uOj03iWP07sc6mxuKzXTvdpKR2dTeOCVf8NMRsK6iy5edhXJcmX50W9HgVdexqkDXbjkkv/HqNNuiN3rZGQqgW+/+ktMZzy4+OKL4Klw/aumLDtfOwL8bh9OXtGBSy75T0addkPsXieT82nc//IuxDISPvbx9Qj4lp5RUU1Zdr99DNi7Byee0II/uvRDBp11Y+xeJ8lMDnf9didSOQnnf2QdOsNLz6iopiy/HZkBXnweK2zcPzeiTuxwvyYiIiJz1RRE7+7uhizLGB8fL3l9fHwcfX19FX/3vvvuw913341nnnkGZ511VsVjA4EAAoHAotd9Pp+undFK7zc2m1+id2JXiy07wMX0/l70FO0MYyYRw2gsg/dFlz/HSmUZbaI6AexbL0OdYYzOJDEaS+O8Ks6vcp2kAeTr2Y5lPZ5d6+TErjDeOjqP0Vi6qvOrXCf5h7rBSAjBQBVLDSxm1zoZOqEFvzsU06VOaqHHe7jpXm2l/k4vgj4PkhkFR+ezWNm9/JKFim13Jp8apxnucXatk6ETZMgeCZmcwFRSQV/H0oNAqkplORzL3+NOPMH+9zi71smKDi9a/DLm0zmMz2dxSk9jdTK6UCdDbCd18/l86GkL4OhsCuOzWazoaPDapbaTLne1E7uXlYiIiPRX04I7v9+Pc845p2SjMXXjsbVr1y75e/fccw/uvPNObN++Heeee279Z2sibmCpD3WDIT02L1LrhBtYNia68Detx6aJbCf6UDfh1WPjtUI74eZejVCvXc24uaib7tVWkiSp0HZ1uMeNaJs0s+3Wyyt70L8QONel38HNEhsmSZKum4uqm4qyL9gYPTcX5bWLiIiI3KLmrHUbN27Eww8/jO9///t47bXX8MUvfhHz8/PYsGEDAOCaa64p2czsm9/8Jm699VZs2bIFK1euxNjYGMbGxjA3N6dfKQygdirZIWzMkI4BW3VT0WgX66QRheCgfg9ODDA0Rm0nw3oMbKh1woGNhqgBGj2CPlZwy73aaoW/Ez3aLgcl9TCk66AkA7Z60NqJLvc4tZ2w39EIXQfvtcEmthMiIiJytppzol955ZU4evQobrvtNoyNjWH16tXYvn27toHZwYMH4fEUYvPf+c53kE6n8alPfarkfTZv3oyvf/3rjZ29gUb44KQLPWcfFQK2rJNGFOqED7N2oe/ABgcA9aC1Ex3qxApuuVdbTc+2y+upPoa6Qtj9Ngfv7STKwXvbKQze67gCju2EiIiIHK6ujUVvuukm3HTTTWV/tmvXrpJ/v/POO/V8hOX4MKsPXWcfTbJO9BDVcQkvZ+npQ8+BDXUAkO2kMepg3chUAkIISJI9N2itxA33aqvptYokm1NweDqZf08GBxui10x0IQQDtjpR70cjegzeM42cLvRMWcZ2QkRERG5RczoXN0hnFYzF+DCrB62TPhmHEKLu98kpAoemGbDVg/owe3g6gZxSf50AHGzSi/o3PTGXQiKda+i9Cqmo2E4aMbjw/cXTOUzOpy0+G7IrvQK2Y7EkcoqAX/ZgRdvizVqpelGdZthOxzOYS2Xz78nraUP0yr+dzORwZDa/AS9XWzVGr5WiiiJwiGnkiIiIyCUYRC/j8HQCQgAhn4zuVr/Vp9PU1Iec2VQWsUS27vcZjyWRyQl4PRL6O9hJb0RfexA+WUImJzC+MFhUj5lEBrNJBhj00BHyoS2QXxjUyHL3VDbHAUCdBLwyetvzwUw9VtKQM2kzbBsMDqqrUAY7Q/B4mm/Vg50UBjYaa7dqwLenLYCgT274vNxMr/zb6oznFr+MzrCv4fNys+hxq63qdWQ2hXROgeyR0Nce1Ov0XOfBBx/EypUrEQwGsWbNGrzwwgtLHvvwww/jggsuQGdnJzo7O7Fu3bqKxxMREZF+GEQvo3gmZzMu4beTkF9Gd6saiKr/4Ul9cBqIhCAzwNAQ2SNhINL4ponq73a3+hH215UZihZIkqTlEm1kafXodJIDgDrSc4NCcib1b2RiLo14uv6BYq4g0Y86sDEWSyKbU+p+H+7Doh91hvJU0ez+eowUrX5j/7wxA5EQPBKQyio4ujC7vx7qtWsgEoRX5mNlPZ544gls3LgRmzdvxksvvYSzzz4b69evx5EjR8oev2vXLlx11VX4xS9+gd27d2NoaAgXXXQRDh06ZPKZExERuQ97O2Uwz7O+tBzcOgRsuVRUH3rkqlcfZgc541kXeix35wCgvoZ0GNggZ2sPeYtWkTRwPeWeH7rpaQ3A7/UgpwiMztS/2or7sOinLehDZGHmeCOrNtQ+C1O5NM4ne7SVnY30BbV2wjqp2/3334/rr78eGzZswOmnn46HHnoI4XAYW7ZsKXv8448/jhtuuAGrV6/GqlWr8L3vfQ+KomDnzp1lj0+lUojFYiX/ERERUX0YRC+DeZ71peVd1CM4GGGd6EGPGbbqYBNn6elDj+XuHADUl155fMm5SleRNL7aioGoxnk8EqJ6rLaaYnBQT3qk2VEHm3iP00chpQuvXVZJp9PYs2cP1q1bp73m8Xiwbt067N69u6r3iMfjyGQy6OrqKvvzu+66Cx0dHdp/Q0NDupw7ERGRGzGIXgZnVehrqCjvYr20gC1noutCjxm2Ixxs0pX6t91IgIEDgPrSK48vOZs22KJD22VwUB9RPQbvOSipK11WJfIepyt9Bu957WrExMQEcrkcent7S17v7e3F2NhYVe/xla98BQMDAyWB+GKbNm3CzMyM9t/w8HDD501ERORWTGRcxgh3mdeVNhO9gU46A7b6iuqSOoSzj/Skfo8j05wRZhfRrsYHAMn59LjHFQaK2Xb1oMfgPfsd+tJn8J4r4PTEwfvmd/fdd2Pr1q3YtWsXgsHyG7sGAgEEAgGTz4yIiMiZGEQvY0SbEcYOoR70yb/NPJh6Ur/HEc4+so1CIE6H3KQcANSFOhhxaCoBRRHwcFNjKqPRtD+pbA7js8mS96LGNDqwIYTgoKTOdNn3g3nqdaXH4D1Xijamu7sbsixjfHy85PXx8XH09fVV/N377rsPd999N5555hmcddZZRp4mERERLWA6l+PE01lMzKUBsJOuF62TPhWHEKLm38/kFIzOcPaRntSHndFYEumsUvPvlwQY2E50oQ5GzCQyiCUzdb0HBwD11d8RhOyRkM4pODKbsvp0yKaiDeZ6PjydhBBA2C+jq8Wv56m5VqOD90dnU0hlFXgkoD9SfnYn1Sba4MDGXCqLqXj+3sjBe300OnifzSkYi6kDgOx31MPv9+Occ84p2RRU3SR07dq1S/7ePffcgzvvvBPbt2/Hueeea8apEhERERhEX0QNDLYFvegI+Sw+G2cYiIQgSUAyo2gDFLU4PJ2AIoCA14OeNi5H1ENPawBBnwdCQBugqMWx+TQSmRwkCRhggEEXLQGvFkCrJ8hQMgDIh1ldeGUP+jvyf9/cXJSWMtTgxqLFq3okiasd9NDo5tlqe+/vCMEns6ush+IUO/VMqFDrMhL2oS3I/rke1MGIw9MJ5JTa62R0JomcIuD3etDdyv55vTZu3IiHH34Y3//+9/Haa6/hi1/8Iubn57FhwwYAwDXXXINNmzZpx3/zm9/Erbfeii1btmDlypUYGxvD2NgY5ubmrCoCERGRa/DJ4DjcVFR/fq8H/e31B6IKqVwYYNCLJEkNzZ5U20lfexABr6zrublZI3l8DxUPAIYZYNBLo8E4cj41EBVLZjGTqH0ViZZTmP0O3agDG0dmU0hmcjX/fnG/g/Sh9jnmUvW1E6bX0V9vexA+WUJWEXVNqCgeAGS6s/pdeeWVuO+++3Dbbbdh9erV2LdvH7Zv365tNnrw4EGMjo5qx3/nO99BOp3Gpz71KfT392v/3XfffVYVgYiIyDWYE/043FTUGNHOMA7PJDE8GccHTuys6XeZA9MYQ50h7D8yV9fABjcVNUa0K4zfjszUFbBlIM4YQ10h7H6bm4vS0loCXpzQ4sex+TSGJ+PoGOyo6fe5qaj+OsM+tPhlzKdzODSdwCk9rTX9Pvsd+gv6ZPS0BXB0NoXhyQQi4dpSF3HPD/3JHgmDkRDeORbHyFSi5lRw7Hfo56abbsJNN91U9me7du0q+fc777xj/AkRERFRWZyJfhzORDdGtKv+GbbDU4WZLqSfaAMzbLmpqDGiDcxEVwNxrBN9cSY6VSPaQEqXEd7jdFe62qqeexwHio3QyOaiw9zzwxCNbMLLiUdERETkNgyiH0ebVcHZR7oq3ly0VnyYNcZQAwMb2lJ3thNdNRKw5cxJY6gDgMyJTpVowcF60mNpqUPYdvU01FX/5qIcvDeGPgMbrBM9NbIJb2FCBa9dRERE5A4Moh+HszmNUZjpUk/AlsFBI2gB2wZmTvJhVl+FDQrrH9hgnehrqIG9A8g9oo1cT5mmwhDRRgbv2e8wxFADg5Laig3Wia60dlJXGjlOciEiIiJ3YRD9OHxwMka0oSW87KQboZGBDc56NkbxUnchRE2/y2uXMdTvcyyWRDanWHw2ZFf1ruyZT2VxbD698B5su3rSBiVrvMdlcwpGp5ML78GBDT0VViXWVidCCG4sapBGBu+Zp56IiIjchkH0IjPxDGaTWQCcia43tZN+eDqBnFJ9cDCZyeHobAoA60Rv6vc5MZdCIp2r+vdyisChaa7YMMJAJP99xtM5TC4E1qrFZdXG6GkNwO/1IKcIjM4krT4dsql6UzGp19KOkA/tQZ/u5+Vm9Q7ej8WSyCoCPllCb1vQiFNzrXrzb0/HM5hLsX9uhHrz1CczORxZ6J9zYIOIiIjcgkH0ImoHsrvVj7Dfa/HZOEtfexA+WUImJzAeqz4QpS7fbQ14EQkzwKCnjpAPbYH83/mh6eofno7MJpHJCXg9Evo7+DCrp6BPRm97AEBt+UlnEhnEOABoCI9HQjSi5rtmXnQqr3g2Zy2rSLhJs3HqHdhQV2cNRkLweCTdz8vNijfPrqmdLPQFe9oCCPpkQ87NrdSB97FYEqls9RMq1AHAFr/M/jkRERG5BoPoRbR8i5xRoTvZI2mzbGt5oC1suBaCJPFhVk+SJGm5RWtJ6aIeOxAJQWaAQXf1bMKrHntCix8tAQ4A6k1rJ9xclJYwEAlCkoBEJoeJuepXkWjpENjv0J2aYmKqaBZzNZgayzgDkRA8EpDKKtoqw2pwzw/jdLf6EfLJEAI4PF39JJfitH7snxMREZFbMIheRA0O8sHJGIWl1dUHbEeYe9tQ9SzjZQ5MY9WTq17bEJntxBBDnfXluyb3CHhlLfVHTddTNTjI66nu2oI+bYZsbYOS6uA9r6d688kebQVbLX1B7sNiHEmSilYI1DPJhXVCRERE7sEgepHhKS6rNlI9S6uLZ6KT/qJ11clCO4nwwckI9eTxHeG1y1D15vEld6lnc9ERzno2lHY9rWFQcoQDxYaqL2DLe5yR6hm8L1y7WCdERETkHgyiF+GyamMN1ZESgXViLPXhp55Zz3xwMkZdg01sJ4aqZxUNuU99bZcDxUaqb/Ceqf2MVNfgvdrvYJ0Yoq7B+0nORCciIiL3YRC9yAiXVRsqWkdKhEKdsJNuBC3/dg0bi3LmpLGiC9efQ3W1E167jFDvBoXkLlFtc9HaA7YMDhqjeMPXahUCtryeGqGewXv2O4zVyGAT2wkRERG5CYPoC4QQRRsXsZNuBHW2ykg9nXQGBw1R3xJezj4yUmFj0QQURVT1OwzEGUttJ0dmU0hmchafDdnVUI2pQ2biGcwm8xte8npqjFr3/UhlcxifzW+uyICtMWodvGf/3Hj1pKJinnoiIiJyIwbRF0zMpZHI5CBJwECEAVsjqJ300VgS6ayy7PGzyQym4xkADDAYRV0dMJPIIJbMLHt8JqdgdIaz9IzU3xGE7JGQzik4Mpta9nghBFNCGKwz7EOLXwYAHJpmShcqr9aUZepx3a0BhBb+vkhftaYOOTydhBBAyCfjhBa/kafmWrUO3h+dTSGVVeCRgP5I0MhTcy1tkkuV1665VBZTWv+c/Q4iIiJyDwbRF6gPs33tQfi9/FqM0NMaQNDngRDA4SoCUeoDVmfYh9aA1+jTc6WWgBddC4GCaoIMh6cTUAQQ8HrQ0xYw+vRcySt70N+RDxRUE4w7Nl8YABzkw6whJEmqK48vuYsaTDo8nUCuilUk3BDYeMUzbIVYvk7U9h3tDEGSJEPPza1qbSfqfbC/IwSfzP65EdQZ/hNzacTT2WWPV69dkbAPbUGfoedGREREZCfsjS7gxnzGKw5EVbNklDkwzTFUQ676QioXBhiMNFTDrDC1Tnrbggh4OZvVKFoeX24uSkvo7wjB65GQyQmMx5LLHl/YpJn3OKOofY65VBYzieVXWw2z32G43vYgfLKErCK0lW2VFPc7yBgdYR/agvnJKtX0BbnRKxEREbkVg+gLtE46c28bqpb8pMPMgWmKaFf1M2yZA9MctWy8VqgTXruMVOtyd3If2SNp6eCqup5yYz7DBX2ytmqqmutpIfc268QoskfCYKT6wXv2O8xRy+A9+x1ERETkVgyiLxjhxnymqCUlQvGyajJOtIaZ6MNMP2CKmtqJVie8dhlJDeCM1LAJL7lPLSsWtIAtg4OGitYyeM+ArSmGahq850x0M9Q0eM9nJiIiInIpBtEXcFm1OWoLMCwEB1knhhqqaWCDqwPMUGgntdQJAwxGqmUVDblXbddTDkqaoaY6YeoQUxQGNhiwtYtaBu+ZYoeIiIjcikH0BVxWbY56cj2zToylzbBlnnrbGKpj7wAONhmLG4tSNaqd9SyEKLrHse0aqXhz0eWMTHJljxm09Fg1BGzZ7zBWTekWJ9nvICIiIndiEB1AThE4PK3mRGeH0EiFJbyVH2aFEFxWbZLiBychRMVjmafeHOrf/OhMEtmcUvFYBuLMoQbipuIZzKWyFp8N2VW1g5ITc2kkMjlIErQ86mQMbSb6MsHBeDqLY/Pp/O+w32GoattJcf+c+beNVW2dcACQiIiI3IxBdABjsSQyOQGfLKGvPWj16TiaOktvYi6FRDq35HFT8QzmF34+yACDodQATjydw+RCAKGcZCaHo7MpAFzCa7Se1gD8Xg9yisDoTHLJ4xRF4BCXVZuiLehDJOwDwM1FaWnVzrBV/4b624Pwe9kVM1K1q0jUwGB70IuOkM/w83Kzamc9j84kkFXy/fMVbeyfG6naPPXTRQPJ7HcQERGR2/DJDYWH3YFICLJHsvhsnK0j5ENbwAugciBK7cSvaAsg6JNNOTe3Cvpk9LYHAFTOT6rWV2vAqwUTyRgej4RoRN3ka+l2Mj6bRDqnQPZI6O9ggMFohdzK3FyUylNny47Gkkhnl15FUsi9zZmcRitO51JptdUwU7mYRv2Ox2JJpLJLT6hQr7WD7J8bTg2Ix5JZzCQySx6nDjb1sH9ORERELsQgOpiiwkySJGkpcyotGWUOTHNVk6u+eMM1SeLDrNFqaScDkSC8Mi/nRtPyXTMvOi2hpzWAoM8DIaCloSinkFOYMzmNNhAJwSMBqayCo3OpJY8rpJBjnRitu9WPkE9eaCdLr7biPizmCfu9OKHFD6DyPY57SBEREZGbMeoCPjiZrZplvOykm6uaXPUjzFFvqqraiVonHAA0hdZOmM6FliBJUiF9SIW/Ey04yLZrOJ/sQX+HOgBWxeA968Rw+XairhCoZvCedWKGagbvuV8RERERuRmD6Cg86LKTbo5q8pOyk26uaFUDG8y9baZq8pOqASHWiTmGOgtpIYiWUlixwNVWdjFYVcCW/Q4z1TJ4z3ucOYZqaSd8ZiIiIiIXYhAdwAgDUaZSZ/xXenBiwNZcQ7UMbPDByRSFgY1K7YR1YqZolRuvkbtVlR6LwUFTVXePY7/DTNUN3nNgw0zVDN6PsH9ORERELsYgOthJN5sWYJjmUne7UPPyHmKeetuoJhDHfLHmKp6JXmmDQnI3baB4ietpThE4NM3rqZmKNxddCvuC5qpmYKOQYocBWzNUNXjPlaJERETkYq4PoqezCsZi+U2NGLA1x3JLeBVFMGBrskLANgFFKR8cLAQY+DBrBvVvfzyWQjKTK3uM2oZYJ+ZQU1HNpbKYjmcsPhuyq+WCg+OxJDI5AZ8soa89aOapudbQMnnqZxIZzCazADjD1izLDWyksrlC/5x9QVMsN3gvhODeAURERORqrg+iH55OQAgg5JPR3eq3+nRcQX1AnUlkEEsuDkQdnUshnVUgeyT0dzDAYIb+jiBkj4R0TsGR2dSin88mM1rQkHsHmKMz7EOLXwYAbdZqsUxOwegMN10zU9Ano6ctAIB50WlpQ12VA1Hq385AJATZI5l2Xm62XJ56dcCju9WPsN9r2nm5WXSZgO3h6aTWPz+hhf1zMxRPcim32urobAqprAKPBPRH2D8nIiIi93F9EL2wqWgIksSHWTO0BLzoWnggKjdTT32trz0Ir+z6P1FTeGWPNmBRbqaeGnjoDPvQGmCAwQySJFXchHd0OglFAH6vBz2tAbNPz7WGqsjjS+6mBmwn5tKIp7OLfs586OZTg4OHpxPIlVltpQZyBzkgaRp1JnM17YT9c3MMRIKQJCCRyeHYfHrRz9U0L/0dIfjYPyciIiIXcn0PiBtJWaM4t/DxmDbEGpWW8TL3tjUq5VYeKRoA9HA2q2kqDWwQAUBHyIe2hcHGivc4BmxN09sehE+WkFWEliKkmJYai31B03SEfWgLLt1OmNbPfAGvjN62hQkVZe5xxf0OIiIiIjdiEJ3BQUtEu5YORI1MMt+iFbSAbZnl7sPMgWmJSsvdGYizRmFgg0F0Kk+SJO0eV7btTjI4aDbZI2Ewot7jOFBsF5UG7wv3OAZszVQpVz03FSUiIiK3YxB9koEoK0SrmonOOjFTpRm2TD9gDS23crmBDa6isUTxJrxESxmqkIObszmtUfEex4FiS1QcvNf6HawTM1XahHeYk1yIiIjI5VwfRC8sF+XDrJmGKgZsGRy0QqUZtlrQhwMbpopWyL/NwSZrDFVYRUOkqvR3ovY7GBw0V6X0WBwotkZVAxvsn5sqWrS56PFGptlOiIiIyN0YRJ/iTBcraDNsORPdNirNsNUGm/jgZKpKg00jnDlpieJVNEIs3qCQCFh6A9pMTsHoDIODVlgqPZYQgvm3LVJpo+ZD7J9bonCPYyoqIiIiouO5OogeT2cxMZfffZ6BKHMVPzgVB6KyOQWjM8mFY1gnZlIfikZnksjmFO11IQTzYFpEDbJNxTOYS2VLflaoEwbizDQQCcEjAamsgqOzKatPh2yqMMO2dFDy8EwSigCCPg96WgNWnJprLZUea3I+jUQmB0kCBiJBK07NtZaaUFHSP2e/w1RLTajIKQKHpzkASERERO7m6iD6oal8sLYt6EVH2Gfx2bjLwMIGX/F0DpPzae31sVgKOUXAL3uwoo0BBjP1tAbg93qQU4Q2kAHkA7jz6RwAaBuzkTnagj5EFq5NxbPCkpkcjiwEcDlLz1w+2YP+jqXTQhABxcHB0tmch4pSuUiSZPp5udlS6bHUdtzXHkTAK5t+Xm62VNqjkv55iP1zM6kB8kNTCShKYZLLWCyJrCLgkyX0tnGwiYiIiNzJ1UH04WmmQ7BK0Cejtz0fJC8ORKkzXwY7Q/B4GGAwk8cjIRpRN/kqPNCqdbKiLYCgjwEGs0XLbFB4aDofYGjxy+jkAKDpKi13JwIKfyOxZBYziYz2eiEfOgckzab29cZiSaSyOe111ol11IH549sJ++fW6WsPwuuRkM4pGJ8tTKjQ+ucR9s+JiIjIvVwdRD/ETYssNVQmP+kwH2YtFS2ztPrQNHNgWqlcXvTiOuFsVvNV2gyPCABaAl6c0OIHUH5QksFB83W3+hHyyRACGJ1eHBxknZhvqXbC/rl1vLIH/QtpjYoH77lvABEREZHLg+h8cLJWYRkvA7Z2UW6Tr2FuKmqpcjljh4tSQpD51MDO8fmuiYpFy6R0GWZw0DKSJJVN6TKyEFCPst9hiXKD9+yfW6vcJJcR9juIiIiI3B1EH+asCkuVfZjlg5Olys2w5YOTtcoNbDD9gLW0AMM0Z6LT0sqnYuI9zkrlBu9HOFBsqaEy6bHYP7fWUJmNkUc4AEhERETk7iA6A1HWKpemgnViLW2GbbkZYXxwskSlgQ0GGKxRLhBHdDztHlduoJht1xKVBu85UGyNyoP37HdYodAXLF6xwXZCRERE5O4gOlOHWCq60Ek/VDZgyzqxQrklvJw5aS31YXZkKgEhBIDiOmGAwQpqYOfwdAI5RVh8NmRXxW0XANI54OhcGgCDg1Yp3OPydaII4PAMB4qtVG7wnqn9rFVx8J7XLiIiInIx1wbR41lgNpkFwIdZqxQ/zCqKQFYBxmdTCz9jnVhBfWAdj6WQyuSgiEK+WD7MWkN9mJ1LZTGTyF+zONhkrd72IHyyhKwiMBZLLv8L5ErHr7aazN/e0BbwoiPks+q0XK2wn0G+TmJpIJMT8Hok9Hew32GF4wfv41kgxv65pY4fACzpn7PfQURERC7m2iC6+jDb3epH2O+19mRcqr8jCNkjIZ1TcGQupdVJ2C+jq8Vv7cm5VGfYh7BfBgAcmk5iNgOkswo8EtDXEbT47Nwp6JPR0xYAkH+gTeaAqXgGAAMMVpE9EgYjpUEGouMVbwoshMBkSgKQ30hRkiQrT821oscFbI8t9DsGIiHIHtaJFYrTY+XbSf519s+tow5sjM4kkMkpmEwBQgAhn4wT2D8nIiIiF3NtEP1YcuFhlikqLOOVPehfCMyOTCVwTA0wdIYYYLCIJElFmyYmcGxhkm1/Rwg+2bWXC8sV5/FV6yQS9qEtyNmsVikOkBKVMxAJQpKARCaHY/NpLWDLlVbWUe9vE3NpxNPZkn4HWaO4nUzOp7X++SD755bpaQsg4PVAEcDoTLIwAMj+OREREbmca6Ni6sMsH5yspT7QHpoqBGyZe9taxct41Qcn5oq1VvHAhlYnbCeWUu8dDKLTUgJeGb1t+YHi4akEJjl4b7mOsA9twfzs5kPTSfY7bGBRO+Fgk+UkScJgZ3FfMP86U7kQERGR27k2iK4+zLJDaK3iDaUKAVvWiZWiRbnqCzMnWSdWGtI24U0W6oQDG5aKdnImOi1vqGgDbbZdeyjej4UDxfagtZPppLY6gH1Ba2mTXKYT2uoADmwQERGR27k2iM7goD1ES2bYqq+xk26l4hm2THtkDyVBH9aJLWjpXKYZRKellQ3Ysu1aqvxqK9aJlYrbCVcH2EPxJJdjnIlOREREBMDFQXTOPrKH4odZBmztoTg4OMmZk7agtomSh1kONllqiOlcqArRouspA1H2EC0TsOXgvbUK+34kSvJvk3XKDQCyToiIiMjtXLntvRCiKOciH2atVJwTfYoBW1sofnDy5DhLzw4KS90T6PIvPMyyTiylBuLGZ1PIKhafDNmWOtjy2tgs4lkGouxArZN3jsUxnVZf4/XUStGu4oBt/jX2O6xVLrUfJ7kQERGR27kyiH5sPo20IkGSgIEIH2atVJj1nATAgK0dqAHbqXgGWp3wwclSA5EQPBKQyioYzbJO7KC71Y+QT0Yik9OCPkTHU+9nvz88CwDoDPvQEnBl18s21Dr5zR+mICAh4PWgpy1g8Vm5m3o/+92hmaL+edDis3I3tS/45pF5zGXYPyciIiICXJrOZXhh+X1vWwB+ryu/AtvoaS2tg46QF+1Bn4VnRG1BHyLhQh34ZAkrGGCwlE/2oL+jdMCPs1mtJUmSVgfqUnei46l/IzlFAGAaJjtQA4GzySwAYDASgiSxDVtJDdiqddLbFkDAK1t5Sq6nDmzMpfJ10h70oiPE/jkRERG5mysjyGoOWwahrOfxSIgWrQYY5MoAWyhuG4OREDweBhisNlhUJz2tfgR9DDBYTQ3GcSY6LaW/IwRv0fWT/Q7rHd/PiHZyxrPV+tqDkNlObCUS9qG1aNUM++dERERELg+ic0aYPRTnduaDkz0UpwphndgD68R+1HpQN0UmOp7skUrSxjEQZb2WgBcntPi1f/N6aj2v7ClJ3xJlO7Fc8WorgO2EiIiICHBpEP3QNGei20nxYAYHNuxhiAMbtlO84S7rxB7UgY1jnIlOFbDt2g8H7+2HA8X2U7yRKPvnRERERHUG0R988EGsXLkSwWAQa9aswQsvvFDx+CeffBKrVq1CMBjEmWeeiW3bttV1snoZZjoXW2HA1n6KH5Y4I8weGGCwHzU4atec6M1+r3aKIQaibIf3OPvhPc5+OABIREREVKrmIPoTTzyBjRs3YvPmzXjppZdw9tlnY/369Thy5EjZ43/961/jqquuwnXXXYe9e/fiiiuuwBVXXIFXXnml4ZOvl5rOhcuq7eHk7hbt/7NO7CHKh1nbKa6H4jZD1onaeCa6E+7VTsGUCPbDe5z9DLKd2E7JAGAX64SIiIio5iD6/fffj+uvvx4bNmzA6aefjoceegjhcBhbtmwpe/zf//3f4+KLL8bNN9+M9773vbjzzjvxgQ98AN/+9rcbPvl65BSB0ZkkAM4Is4v/Z2WX9v/7O7jBlx184MRORCNBdPgEzlvZafXpEEpXbLBO7EENMMxlJMTTWYvPplSz36udpLjtDvAeZwvnnFS4hjJgaw8r2gLa/1/V12bhmZCqr+h69Z4VrRaeCREREZE9eJc/pCCdTmPPnj3YtGmT9prH48G6deuwe/fusr+ze/dubNy4seS19evX46mnnlryc1KpFFKpwtS+WCwGAMhkMshkMrWc8iKHpxPI5ARkSaArJDf8flZSz72ZywAArX4JX153Cl78/Zs4uSvQ9OVxQr2EfcDP/vw/YceOZxAJepq6LIAz6qSnxYvrP3gihv9wAD0t3qYuC+CMOgn7gLaAF7OpLN45OofT/TXdUsvS4/twwr1afZ/i/21WQ5F8cLArIOCB0tTlcUqdXPjuTlz7n4YwNvwHtPqkpi6PU+rk4tN78PPXetCXHUPY29zlcUqd9LX5tP/fHeYz01LvSURERO5R0xP/xMQEcrkcent7S17v7e3F66+/XvZ3xsbGyh4/Nja25OfcdddduP322xe9/vTTTyMcDpf5jerNpIGP9HuQVoCf73ymofeyix07dlh9Cg07EcCJK4FnnnFGnQDOqBdJckY5VM1eljMAnDHU/OUo1uxlOacrv6Brz/O/xjs6TDKOx+MNv4cT7tXFmv1vRAjgipMkDLQ0f1lUTijHByQAJzqjLIAzynFpJP+/TigL4Ixy/MlKCd1B5/TP9awTPe7XRERE1FwanzZngE2bNpXMiIvFYhgaGsJFF12E9vb2ht//U5kMduzYgY9//OPw+XzL/4JNZRxSDoBlsSOnlANwTlmcUg7AOWX5uM7lUGdzNwOj79VO+RsBgIscUhYn1YlTyuKUcgDOKYtTygHof4+zihF10kz3ayIiItJHTUH07u5uyLKM8fHxktfHx8fR19dX9nf6+vpqOh4AAoEAAoHAotd9Pp+uHTi9388qTikHwLLYkVPKATinLE4pB+CcsuhVDj3eg/dq+3JKWZxSDsA5ZXFKOQDnlMUp5QCcUxY9y+GE74OIiIhqU9PGon6/H+eccw527typvaYoCnbu3Im1a9eW/Z21a9eWHA/kl9ItdTwRERHVj/dqIiIiIiIiIn3VnM5l48aNuPbaa3HuuefivPPOwwMPPID5+Xls2LABAHDNNddgcHAQd911FwDgS1/6Ei688EL83d/9HS699FJs3boVL774Ir773e/qWxIiIiICwHs1ERERERERkZ5qDqJfeeWVOHr0KG677TaMjY1h9erV2L59u7Yh2cGDB+HxFCa4n3/++fjHf/xHfO1rX8NXv/pVnHrqqXjqqadwxhln6FcKIiIi0vBeTURERERERKSfujYWvemmm3DTTTeV/dmuXbsWvfbpT38an/70p+v5KCIiIqoD79VERERERERE+qgpJzoRERERERERERERkZswiE5EREREREREREREtAQG0YmIiIiIiIiIiIiIlsAgOhERERERERERERHREhhEJyIiIiIiIiIiIiJaAoPoRERERERERERERERLYBCdiIiIiIiIiIiIiGgJDKITERERERERERERES2BQXQiIiIiIiIiIiIioiUwiE5ERERERERkgQcffBArV65EMBjEmjVr8MILL1Q8/sknn8SqVasQDAZx5plnYtu2bSadKRERkbsxiE5ERERERERksieeeAIbN27E5s2b8dJLL+Hss8/G+vXrceTIkbLH//rXv8ZVV12F6667Dnv37sUVV1yBK664Aq+88orJZ05EROQ+XqtPoBpCCABALBbT5f0ymQzi8ThisRh8Pp8u72kFp5QDYFnsyCnlAJxTFqeUA3BOWfQuh3qfU+97zYT36qU5pSxOKQfgnLI4pRyAc8rilHIAzimLEeXQ6359//334/rrr8eGDRsAAA899BB+8pOfYMuWLbjlllsWHf/3f//3uPjii3HzzTcDAO68807s2LED3/72t/HQQw8tOj6VSiGVSmn/npmZKTl/IiIipzLi2bopguizs7MAgKGhIYvPhIiIyHizs7Po6Oiw+jRqwns1ERG5TSP363Q6jT179mDTpk3aax6PB+vWrcPu3bvL/s7u3buxcePGktfWr1+Pp556quzxd911F26//fZFr/NeTUREbnHs2DHdnq2bIog+MDCA4eFhtLW1QZKkht8vFothaGgIw8PDaG9v1+EMreGUcgAsix05pRyAc8rilHIAzimL3uUQQmB2dhYDAwM6nJ25eK9emlPK4pRyAM4pi1PKATinLE4pB+CcshhRDj3u1xMTE8jlcujt7S15vbe3F6+//nrZ3xkbGyt7/NjYWNnjN23aVBJ0n56exkknnYSDBw823WB9s3BKu7EzfsfG43dsPH7HxpuZmcGJJ56Irq4u3d6zKYLoHo8H0WhU9/dtb293xB+rU8oBsCx25JRyAM4pi1PKATinLHqWo1kfanmvXp5TyuKUcgDOKYtTygE4pyxOKQfgnLLoXY5muF8HAgEEAoFFr3d0dDiiTu3MKe3GzvgdG4/fsfH4HRvP49FvO1BuLEpERERERERkou7ubsiyjPHx8ZLXx8fH0dfXV/Z3+vr6ajqeiIiI9MMgOhEREREREZGJ/H4/zjnnHOzcuVN7TVEU7Ny5E2vXri37O2vXri05HgB27Nix5PFERESkn6ZI56K3QCCAzZs3l13a1kycUg6AZbEjp5QDcE5ZnFIOwDllcUo57MhJ361TyuKUcgDOKYtTygE4pyxOKQfgnLLYuRwbN27Etddei3PPPRfnnXceHnjgAczPz2PDhg0AgGuuuQaDg4O46667AABf+tKXcOGFF+Lv/u7vcOmll2Lr1q148cUX8d3vfreqz7Pzd+EU/I6Nx+/YePyOjcfv2HhGfMeSEELo9m5EREREREREVJVvf/vbuPfeezE2NobVq1fjf//v/401a9YAAP7zf/7PWLlyJR577DHt+CeffBJf+9rX8M477+DUU0/FPffcg0suucSisyciInIPBtGJiIiIiIiIiIiIiJbAnOhEREREREREREREREtgEJ2IiIiIiIiIiIiIaAkMohMRERERERERERERLYFBdCIiIiIiIiIiIiKiJTgyiP6Nb3wD559/PsLhMCKRSFW/I4TAbbfdhv7+foRCIaxbtw5vvvlmyTGTk5P43Oc+h/b2dkQiEVx33XWYm5szoAT1f+Y777wDSZLK/vfkk09qx5X7+datW21TDiC/G/3x5/hnf/ZnJcccPHgQl156KcLhMFasWIGbb74Z2WzWsHIAtZdlcnISf/7nf47TTjsNoVAIJ554Iv7iL/4CMzMzJceZUScPPvggVq5ciWAwiDVr1uCFF16oePyTTz6JVatWIRgM4swzz8S2bdtKfl5NuzFCLeV4+OGHccEFF6CzsxOdnZ1Yt27douM///nPL/ruL774YqOLAaC2sjz22GOLzjMYDJYc0wx1Uq5tS5KESy+9VDvGijr593//d3zyk5/EwMAAJEnCU089tezv7Nq1Cx/4wAcQCATw7ne/G4899tiiY2ptd27ilPu1U+7V9ZQFsOf9mvfqgma4L/Bebb86seu9GuD9ejl6X0NoMb2vb7RYve1x69atkCQJV1xxhbEn6AC1fsfT09O48cYb0d/fj0AggPe85z28Xiyj1u/4gQce0PqiQ0ND+Ku/+iskk0mTzrb5GNUfqEg40G233Sbuv/9+sXHjRtHR0VHV79x9992io6NDPPXUU+K3v/2tuOyyy8S73vUukUgktGMuvvhicfbZZ4vnnntO/PKXvxTvfve7xVVXXWVQKer7zGw2K0ZHR0v+u/3220Vra6uYnZ3VjgMgHn300ZLjistqdTmEEOLCCy8U119/fck5zszMlJT1jDPOEOvWrRN79+4V27ZtE93d3WLTpk2GlaOesrz88svij//4j8WPf/xjsX//frFz505x6qmnij/5kz8pOc7oOtm6davw+/1iy5Yt4ve//724/vrrRSQSEePj42WP/9WvfiVkWRb33HOPePXVV8XXvvY14fP5xMsvv6wdU0270Vut5fjsZz8rHnzwQbF3717x2muvic9//vOio6NDjIyMaMdce+214uKLLy757icnJw0rQ71lefTRR0V7e3vJeY6NjZUc0wx1cuzYsZIyvPLKK0KWZfHoo49qx1hRJ9u2bRN/8zd/I374wx8KAOJf/uVfKh7/9ttvi3A4LDZu3CheffVV8a1vfUvIsiy2b9+uHVPrd+M2TrlfO+VeXU9ZhLDn/Zr3at6rrSoL79XG1wnv10sz4hpCpYy4vlGpetvjgQMHxODgoLjgggvE5Zdfbs7JNqlav+NUKiXOPfdccckll4hnn31WHDhwQOzatUvs27fP5DNvHrV+x48//rgIBALi8ccfFwcOHBA/+9nPRH9/v/irv/ork8+8eRjRH1iOI4PoqkcffbSqh3JFUURfX5+49957tdemp6dFIBAQP/jBD4QQQrz66qsCgPjNb36jHfPTn/5USJIkDh06pPu56/mZq1evFv/1v/7Xkteq+QPTS73luPDCC8WXvvSlJX++bds24fF4Sh5MvvOd74j29naRSqV0Offj6VUn//RP/yT8fr/IZDLaa0bXyXnnnSduvPFG7d+5XE4MDAyIu+66q+zxf/qnfyouvfTSktfWrFkj/vt//+9CiOrajRFqLcfxstmsaGtrE9///ve116699lpLOlq1lmW5a1qz1sn/+l//S7S1tYm5uTntNavqRFVNe/wf/+N/iPe9730lr1155ZVi/fr12r8b/W7copnv1065VwvhnPs179W8V+uJ9+o8O96rheD9+nh6X0NoMSOub1Sqnu84m82K888/X3zve9+zxbXJ7mr9jr/zne+Ik08+WaTTabNOsenV+h3feOON4qMf/WjJaxs3bhQf/OAHDT1Pp9CrP7AcR6ZzqdWBAwcwNjaGdevWaa91dHRgzZo12L17NwBg9+7diEQiOPfcc7Vj1q1bB4/Hg+eff96Q89LjM/fs2YN9+/bhuuuuW/SzG2+8Ed3d3TjvvPOwZcsW5P/u9NdIOR5//HF0d3fjjDPOwKZNmxCPx0ve98wzz0Rvb6/22vr16xGLxfD73/9e/4JAv7+DmZkZtLe3w+v1lrxuVJ2k02ns2bOn5G/c4/Fg3bp12t/48Xbv3l1yPJD/ftXjq2k3equnHMeLx+PIZDLo6uoqeX3Xrl1YsWIFTjvtNHzxi1/EsWPHdD3349Vblrm5OZx00kkYGhrC5ZdfXvK33qx18sgjj+Azn/kMWlpaSl43u05qtVwb0eO7oVJ2vF875V4NOOd+zXs179V64b26oFnv1YB77tdGXEOolJHXN8qr9zu+4447sGLFirJ9KSpVz3f84x//GGvXrsWNN96I3t5enHHGGfjbv/1b5HI5s067qdTzHZ9//vnYs2ePlvLl7bffxrZt23DJJZeYcs5uoMc9z7v8Ic43NjYGACUPd+q/1Z+NjY1hxYoVJT/3er3o6urSjjHivBr9zEceeQTvfe97cf7555e8fscdd+CjH/0owuEwnn76adxwww2Ym5vDX/zFX+h2/qp6y/HZz34WJ510EgYGBvC73/0OX/nKV/DGG2/ghz/8ofa+5epM/ZkR9KiTiYkJ3HnnnfjCF75Q8rqRdTIxMYFcLlf2+3r99dfL/s5S329xm1BfW+oYvdVTjuN95StfwcDAQMnF8+KLL8Yf//Ef413vehfeeustfPWrX8UnPvEJ7N69G7Is61oGVT1lOe2007BlyxacddZZmJmZwX333Yfzzz8fv//97xGNRpuyTl544QW88soreOSRR0pet6JOarVUG4nFYkgkEpiammr475VK2fF+7ZR7NeCc+zXv1bxX64X36rxmvlcD7rlfG3ENoVJGXd+ooJ7v+Nlnn8UjjzyCffv2mXCGza+e7/jtt9/Gz3/+c3zuc5/Dtm3bsH//ftxwww3IZDLYvHmzGafdVOr5jj/72c9iYmICH/rQhyCEQDabxZ/92Z/hq1/9qhmn7ArL9QdCodCy79E0QfRbbrkF3/zmNyse89prr2HVqlUmnVH9qi1LoxKJBP7xH/8Rt95666KfFb/2/ve/H/Pz87j33ntregg0uhzFD65nnnkm+vv78bGPfQxvvfUWTjnllLrftxyz6iQWi+HSSy/F6aefjq9//eslP9OjTqiyu+++G1u3bsWuXbtKNvn6zGc+o/3/M888E2eddRZOOeUU7Nq1Cx/72MesONWy1q5di7Vr12r/Pv/88/He974X/+f//B/ceeedFp5Z/R555BGceeaZOO+880peb5Y6ocWccr92yr0acM79mvdqd+C92n54rybSx1LXN6rf7Owsrr76ajz88MPo7u62+nQcS1EUrFixAt/97nchyzLOOeccHDp0CPfeey+D6DrZtWsX/vZv/xb/8A//gDVr1mD//v340pe+hDvvvLPscwJZo2mC6F/+8pfx+c9/vuIxJ598cl3v3dfXBwAYHx9Hf3+/9vr4+DhWr16tHXPkyJGS38tms5icnNR+v1rVlqXRz/znf/5nxONxXHPNNcseu2bNGtx5551IpVIIBALLHg+YV47icwSA/fv345RTTkFfX9+i3Y3Hx8cBwJZ1Mjs7i4svvhhtbW34l3/5F/h8vorH11MnS+nu7oYsy9r3oxofH1/yvPv6+ioeX0270Vs95VDdd999uPvuu/HMM8/grLPOqnjsySefjO7ubuzfv9+wh8BGyqLy+Xx4//vfj/379wNovjqZn5/H1q1bcccddyz7OWbUSa2WaiPt7e0IhUKQZbnhOm5GTrlfO+VeDTjnfs179WK8V/NeXQ0336sB99yvjbiGUCmzrm9uVut3/NZbb+Gdd97BJz/5Se01RVEA5FehvfHGG7pPwGt29fwd9/f3w+fzlawyeu9734uxsTGk02n4/X5Dz7nZ1PMd33rrrbj66qvx3/7bfwOQH5yen5/HF77wBfzN3/wNPB5m427Ucv2BajRNLfT09GDVqlUV/6u34b7rXe9CX18fdu7cqb0Wi8Xw/PPPazNJ1q5di+npaezZs0c75uc//zkURdEeFvUuS6Of+cgjj+Cyyy5DT0/Pssfu27cPnZ2dNT0AmlWO4nMEoD1wrF27Fi+//HLJg/KOHTvQ3t6O008/ver3NaMssVgMF110Efx+P3784x9XNfOgnjpZit/vxznnnFPyN64oCnbu3FkyW6rY2rVrS44H8t+venw17UZv9ZQDAO655x7ceeed2L59e0mO3KWMjIzg2LFjJQ+3equ3LMVyuRxefvll7TybqU4A4Mknn0QqlcJ/+S//ZdnPMaNOarVcG9GjjpuRU+7XTrlXm1mW4vME9L9f8169GO/VvFdXw833asA992sjriFUyqzrm5vV+h2vWrUKL7/8Mvbt26f9d9lll+EjH/kI9u3bh6GhITNPvynU83f8wQ9+EPv379cGKADgP/7jP9Df388Aehn1fMfxeHxRoFwdtDByTyQ30eWeV9t+p83hD3/4g9i7d6+4/fbbRWtrq9i7d6/Yu3evmJ2d1Y457bTTxA9/+EPt33fffbeIRCLiRz/6kfjd734nLr/8cvGud71LJBIJ7ZiLL75YvP/97xfPP/+8ePbZZ8Wpp54qrrrqKkPLstxnjoyMiNNOO008//zzJb/35ptvCkmSxE9/+tNF7/njH/9YPPzww+Lll18Wb775pviHf/gHEQ6HxW233Wabcuzfv1/ccccd4sUXXxQHDhwQP/rRj8TJJ58sPvzhD2u/k81mxRlnnCEuuugisW/fPrF9+3bR09MjNm3aZFg56inLzMyMWLNmjTjzzDPF/v37xejoqPZfNpsVQphTJ1u3bhWBQEA89thj4tVXXxVf+MIXRCQSEWNjY0IIIa6++mpxyy23aMf/6le/El6vV9x3333itddeE5s3bxY+n0+8/PLL2jHVtBu91VqOu+++W/j9fvHP//zPJd+9ej2YnZ0Vf/3Xfy12794tDhw4IJ555hnxgQ98QJx66qkimUwaVo56ynL77beLn/3sZ+Ktt94Se/bsEZ/5zGdEMBgUv//970vKa/c6UX3oQx8SV1555aLXraqT2dlZ7X4BQNx///1i79694g9/+IMQQohbbrlFXH311drxb7/9tgiHw+Lmm28Wr732mnjwwQeFLMti+/bt2jHLfTdu55T7tVPu1fWUxa73a96rea+2qiy8VxtfJ7xfL82IawiV0vv6RovVe71SXXvtteLyyy836WybU63f8cGDB0VbW5u46aabxBtvvCH+9V//VaxYsUL8z//5P60qgu3V+h1v3rxZtLW1iR/84Afi7bffFk8//bQ45ZRTxJ/+6Z9aVQTbM6I/sBxHBtGvvfZaAWDRf7/4xS+0YwCIRx99VPu3oiji1ltvFb29vSIQCIiPfexj4o033ih532PHjomrrrpKtLa2ivb2drFhwwbDb37LfeaBAwcWlU0IITZt2iSGhoZELpdb9J4//elPxerVq0Vra6toaWkRZ599tnjooYfKHmtVOQ4ePCg+/OEPi66uLhEIBMS73/1ucfPNN4uZmZmS933nnXfEJz7xCREKhUR3d7f48pe/LDKZjGHlqKcsv/jFL8r+PQIQBw4cEEKYVyff+ta3xIknnij8fr8477zzxHPPPaf97MILLxTXXnttyfH/9E//JN7znvcIv98v3ve+94mf/OQnJT+vpt0YoZZynHTSSWW/+82bNwshhIjH4+Kiiy4SPT09wufziZNOOklcf/31pj001VKWv/zLv9SO7e3tFZdccol46aWXSt6vGepECCFef/11AUA8/fTTi97LqjpZqq2q537ttdeKCy+8cNHvrF69Wvj9fnHyySeX3FdUlb4bt3PK/dop9+p6ymLX+zXv1QXNcF/gvdp+dSKEPe/VQvB+vRy9ryG0mJ7XNyqv1r/jYgyiV6fW7/jXv/61WLNmjQgEAuLkk08W3/jGN7SJBlReLd9xJpMRX//618Upp5wigsGgGBoaEjfccIOYmpoy/8SbhFH9gUokIbgugIiIiIiIiIiIiIionKbJiU5EREREREREREREZDYG0YmIiIiIiIiIiIiIlsAgOhERERERERERERHREhhEJyIiIiIiIiIiIiJaAoPoRERERERERERERERLYBCdiIiIiIiIiIiIiGgJDKITERERERERERERES2BQXQiIiIiIiIiIiIioiUwiE5EREREREREREREtAQG0YmIiIiIiIiIiIiIlsAgOhERERERERERERHREv5/Ox0A4pfsey4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -346,24 +258,13 @@ "basis_functions = linear_FEM_basis(x_plot, n)\n", "basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 125, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAXRCAYAAACaYm8JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZfY/8M/UTHrvPdSEQIAAoaNIR0WxYAFEBdeCq7LftS+s5Seusq66oqwUwYK9C9IJnVADCem99zLJTDL1/v64c4eEtMlkes779cpLM7kz97nkmZs7557nHB7DMAwIIYQQQgghhBBCCCGEENItvrUHQAghhBBCCCGEEEIIIYTYMgqkE0IIIYQQQgghhBBCCCG9oEA6IYQQQgghhBBCCCGEENILCqQTQgghhBBCCCGEEEIIIb2gQDohhBBCCCGEEEIIIYQQ0gsKpBNCCCGEEEIIIYQQQgghvaBAOiGEEEIIIYQQQgghhBDSCwqkE0IIIYQQQgghhBBCCCG9oEA6IYQQQgghhBBCCCGEENILCqQP0D//+U/weDzU1dX1ua1arcbzzz+P8PBw8Pl83HHHHeYfICEmQnOdDBY018lgQXOdDBY018lgQXOdDBY018lgQXPd9lAg3YJ27NiBd999F3fffTd27dqF5557rtftMzMzsWDBAri5ucHHxwcrVqxAbW2tRcZ6+vRpTJ8+HS4uLggKCsJf//pXtLa2WmTfxP7Zy1w/cOAAHn30UcTHx0MgECAqKsrs+ySOxR7mulwux+bNmzFv3jwEBwfD3d0d48aNwyeffAKNRmPWfRPHYQ9zHQDeeustTJ48Gf7+/pBIJBg2bBieffZZi10/EftnL3O9o6amJgQEBIDH4+GHH36w6L6J/bKXuX7TTTeBx+N1+VqwYIHZ900cg73MdQBQKpV46623MHLkSEgkEgQGBmLx4sUoKyuzyP6JfbOHuV5UVNTtOZ37WrNmjVn3bwpCaw9gMDly5AhCQ0Pxn//8p89ty8rKMHPmTHh6euKtt95Ca2srNm3ahLS0NJw7dw5isdhs40xNTcUtt9yC2NhYvPfeeygrK8OmTZuQm5uLP//802z7JY7DXub67t278e2332L8+PEICQkx236I47KHuV5QUICnn34at9xyC9atWwcPDw/s378fTz75JM6ePYtdu3aZZb/EsdjDXAeAixcvYuzYsbjvvvvg7u6OzMxMbN26FXv27EFqaipcXV3Ntm/iGOxlrne0fv16yOVyi+yLOA57muthYWHYuHFjp8fo2p0Yyl7mukqlwuLFi3H69GmsWbMGY8aMQWNjI1JSUtDc3IywsDCz7Zs4BnuY6/7+/vjiiy+6PL5v3z589dVXmDdvnln2a0oUSLegmpoaeHl5GbTtW2+9BZlMhosXLyIiIgIAMGnSJMydOxc7d+7EY489ZrZxvvzyy/D29kZycjI8PDwAAFFRUVizZg0OHDhgFxObWJe9zPW33noLW7duhUgkwq233or09HSz7Ys4JnuY60FBQUhLS8OoUaP0j/3lL3/BI488gs8++wz/+Mc/MHToULPsmzgOe5jrAPDjjz92eWzKlCm4++678fvvv+O+++4z276JY7CXuc5JT0/HJ598gvXr12P9+vVm3x9xHPY01z09PbF8+XKz7oM4LnuZ6//5z39w7NgxnDx5EpMmTTLbfojjsoe57urq2u35fOfOnfDw8MBtt91mlv2aEpV2MZG6ujrce++98PDwgK+vL5555hm0t7cDuL504ejRo7h27Zp+yUJycnKPr/fjjz/i1ltv1U9oAJgzZw6GDx+O7777rtexbNiwAXw+H4cPH+70+GOPPQaxWIwrV670+FypVIqDBw9i+fLl+iA6AKxcuRJubm597ps4PkeZ6wCbySISifo4YjJYOcpc9/Pz6xRE59x5550A2CV9ZHBzlLneE65sV1NTU7+fSxyLI871Z555BnfeeSdmzJhh0PZkcHDEua5Wq6nUKOnCUea6VqvFBx98gDvvvBOTJk2CWq2mlUakE0eZ692prKzE0aNHsXTpUkgkkn491yoYMiAbNmxgADCjR49mbrvtNuajjz5ili9fzgBgVqxYwTAMw7S2tjJffPEFM3LkSCYsLIz54osvmC+++IKpqqrq9jXLysoYAMy//vWvLj9bvnw54+Pj0+uYlEolM27cOCYyMpKRSqUMwzDMvn37GADMG2+80etzT548yQBgvv322y4/mz59OjN+/Phen08cl6PN9RstXryYiYyM7NdziGNy9LnO+fTTTxkAzOnTp416PrF/jjrXtVotU1tby1RWVjLHjx9npk6dyggEAiYzM9Og5xPH46hz/bvvvmMkEglTWFjIHD16lAHAfP/99wY9lzgmR5zrs2bNYkQiESMWixkATGBgIPPqq68ySqWyz+cSx+Vocz0tLY0BwLz55pvMmjVr9PN99OjRzJEjRwz5JyEOytHmenfee+89BgBz8ODBfj/XGiiQPkDcpL799ts7Pf7kk08yAJgrV67oH5s1axYzatSoPl/z/PnzDADm888/7/Kzv//97wwApr29vdfXSEtLY8RiMbN69WqmsbGRCQ0NZSZMmMCoVKpen/f9998zAJjjx493+dk999zDBAUF9Tl+4pgcba7fiALphOPoc51hGEahUDBxcXFMdHS0Uc8njsFR53plZSUDQP8VFhbWbYIAGTwcca7L5XImIiKCeemllxiGYSiQThiGccy5/sgjjzD//Oc/mR9//JH5/PPPmdtvv50BwNx77719Ppc4Lkeb6z/99BMDgPH19WWGDRvGfPbZZ8xnn33GDBs2jBGLxZ2OhwwujjbXu5OYmMgEBwczGo2m38+1BirtYiJPPfVUp++ffvppAMDevXv7/VptbW0AACcnpy4/45Y5cNv0JD4+Hq+99hq2bduG+fPno66uDrt27YJQ2HtZ/L723dd+ieNzlLlOSF8cea6vXbsWGRkZ+Oijj+i9Qhxurvv4+ODgwYP4/fff8frrr8PPz4/KARAAjjXX3377bahUKrz88sv9HjtxfI4017dv344NGzZg6dKlWLFiBX799VesWbMG3333Hc6ePdvv4yGOxVHmOned0tLSgsOHD2PVqlVYtWoVDh06BIZh8M477/T7eIhjcZS5fqOcnBxcvHgR9913H/h8+whR28co7cCwYcM6fT9kyBDw+XwUFRX1+7WcnZ0BAAqFosvPuBpI3Da9+fvf/46EhAScO3cOGzZsQFxc3ID3bch+iWNzlLlOSF8cda6/++672Lp1K9544w0sWrSo388njsfR5rpYLMacOXNw66234h//+Ac2b96MRx99FH/88YfBr0Eck6PM9aKiIrz77rv4f//v/8HNza2fIyeDgaPM9Z787W9/AwAcOnTI6NcgjsFR5jr3utOmTUN4eLj+8YiICEyfPh2nT5826BiI43KUuX6jr776CgDw4IMP9vu51kKBdDPh8XhGPzc4OBgAW3D/RpWVlfDx8en2ztGNCgoKkJubCwBIS0szyb5DQkIMeh0yeNjrXCekvxxhru/cuRMvvPACHn/8cbz66qv9fj4ZHBxhrnc0depUBAcH6y/UCeHY61xfv349QkNDcdNNN6GoqAhFRUWoqqoCANTW1qKoqAhardbQQyGDgL3O9Z5wgcaGhoYBvQ5xPPY617k4S2BgYJefBQQEoLGx0aDXIYOHvc71G+3evRsjRoxAYmKiUc+3Bgqkmwg3eTh5eXnQarWIiorq92uFhobC398fFy5c6PKzc+fOYezYsX2+hlarxapVq+Dh4YGXX34ZX3/9NX766ac+nxcfHw+hUNhl30qlEqmpqQbtmzg2R5nrhPTF0eb6r7/+itWrV2Pp0qXYvHlzf4ZPHJyjzfXutLe3o7m5eUCvQeyfo8z1kpIS5OXlISYmBtHR0YiOjsb9998PAHjyyScRHR0NqVTa72MijsNR5npPCgoKAAD+/v5GvwZxDI4y10ePHg2RSITy8vIuP6uoqKC5ThxmrneUkpKCvLw8u8pGByiQbjI3BiX++9//AgAWLlxo1Ovddddd+OOPP1BaWqp/7PDhw8jJycE999zT5/Pfe+89nD59Gp9++ineeOMNTJ06FU888QTq6up6fZ6npyfmzJmDL7/8Ei0tLfrHv/jiC7S2thq0b+LYHGWuE9IXR5rrx48fx3333YeZM2fiq6++spv6c8QyHGWuy2QyyOXyLo//+OOPaGxsxIQJE/p/MMShOMpcf/PNN/Hzzz93+nrjjTcAAM8//zx+/vlnuLq6GnVMxDE4ylyXSqVdSg8wDIM333wTADB//nwjjoY4EkeZ6+7u7li0aBFOnz6NrKws/eOZmZk4ffo05s6da9TxEMfhKHO9o927dwMAHnjggf4fgDVZu9upveM66I4ePZq57bbbmM2bNzPLly9nADAPPPBAp20N7aDLMAxTUlLC+Pr6MkOGDGE+/PBD5q233mK8vb2Z0aNH99k9NyMjg5FIJMyqVav0j+Xk5DAuLi7MPffc0+e+L168yDg5OTHjxo1jPvnkE+aVV15hJBIJM2/ePIPGThyTI871K1euMG+88QbzxhtvMCNGjGC8vLz03//2228GjZ84Hkeb60VFRYynpyfj7OzMbN68mfniiy86fXXs9E4GF0eb65cvX2Z8fX2ZJ598kvnwww+Zjz76iFm1ahUjFAqZqKgopq6uzqDxE8fjaHO9O0ePHmUAMN9//32/n0sch6PN9aNHjzJBQUHMc889x2zevJnZtGkTM23aNAYA89hjjxk0duKYHG2uMwzDXLt2jXFzc2OCg4OZjRs3Mhs3bmSCg4MZf39/pqyszKDxE8fjiHOdYRhGrVYzgYGBzOTJkw3a3pZQIH2AuEmdkZHB3H333Yy7uzvj7e3NrF27lmlra+u0bX8mNcMwTHp6OjNv3jzGxcWF8fLyYh588EGmqqqq1+eo1Wpm4sSJTFhYGNPU1NTpZx988AEDgPn222/73PeJEyeYqVOnMhKJhPH392eeeuopRiqVGjx24ngcca5/9tlnDIBuvx566CGDx08ci6PNdS640tPXhg0bDB4/cSyONtdra2uZxx57jBk5ciTj6urKiMViZtiwYcyzzz7L1NbWGjx24ngcba53hwLphGEcb64XFBQw99xzDxMVFcVIJBLGxcWFSUxMZLZs2cJotVqDx04cj6PNdc7FixeZOXPmMK6uroy7uzuzZMkSJicnx+CxE8fjqHN93759DADmww8/NHi8toLHMAxj8jR3QgghhBBCCCGEEEIIIcRBUJFUQgghhBBCCCGEEEIIIaQXFEgnhBBCCCGEEEIIIYQQQnpBgXRCCCGEEEIIIYQQQgghpBcUSCeEEEIIIYQQQgghhBBCekGBdEIIIYQQQgghhBBCCCGkF0JrD8AUtFotKioq4O7uDh6PZ+3hEDNgGAYtLS0ICQkBnz947//QXHd8NNdZNNcdH811Fs11x0dznUVz3fHRXGfRXHd8NNdZNNcdH811Fs11x9efue4QgfSKigqEh4dbexjEAkpLSxEWFmbtYVgNzfXBg+Y6zfXBguY6zfXBguY6zfXBguY6zfXBguY6zfXBguY6zfXBwpC57hCBdHd3dwDsAXt4eOgfV6lUOHDgAObNmweRSGSt4ZnFYDs2qVSK8PBw/e96sKK57vjHRnOdRXPd8Y+N5jqL5rrjHxvNdRbNdcc/NprrLJrrjn9sNNdZNNcd/9horrNorjv+sfVnrps8kH78+HG8++67uHjxIiorK/Hzzz/jjjvu6PU5ycnJWLduHa5du4bw8HC8+uqrWLVqlcH75JZWeHh4dJnULi4u8PDwcMhf/GA8tsG+jIbm+uA5NprrNNcdib3MdbqGsYzBemy2NNetgeb64Dk2W5rrdF63jMF6bLY0162B5vrgOTZbmut0XreMwXpshsx1kxc5kslkSEhIwObNmw3avrCwEIsXL8bNN9+M1NRUPPvss1i9ejX2799v6qERQgghhPSIrmEIIcSx0HmdEEIcC53XibWZPCN94cKFWLhwocHbb9myBdHR0fj3v/8NAIiNjcXJkyfxn//8B/Pnzzf18IgduFjcaO0hEBvBMAzaVRpoGWuPhBDz02gZaGiuWxVdw5CB0GoZXClrtvYwyCCm1TLg820na9AW0HmdDESrQo2qJrm1h0EI6YDO62QgmuUqtCuVA3oNq9dIP3PmDObMmdPpsfnz5+PZZ5/t8TkKhQIKhUL/vVQqBcCm56tUKv3j3P93fMxROOqxbTtZhH/tz8H8UD7mdvO7JI6pvlWBC8WNuFTciLyaVhTVy1AjVUCmVOuC6EI8f/4gfFzFiPBxQYSPKxLCPTE+whsjg9whFAzeDuLEMZTUy7Fk80k0yoV48cIheDmLEOHjgkhfV4wJ80RipDdigz0goACJTaFrGOM46rF9c74M//gtAzOD6BqGWBbDMHjos/PIq27Bl6uTEOPvZu0h2S06rxvHUY/txwul2PB7JqYG0Hmd2If6VgWWbD6FGcP8sXHpaGsPxybQed04jnps354vxlt/ZmPKAM7rVg+kV1VVITAwsNNjgYGBkEqlaGtrg7Ozc5fnbNy4Ea+99lqXxw8cOAAXF5cujx88eNB0A7YxjnRsxyt5+LFIAAAQ8JlOxyaXUyaAoyltkGNPWiX+TKs0KINPpWFQLVWgWqrA+aJG/HipDADg7SLCnNhALBwdhJnD/CmoTuzSR0dz0Shn/3gr1VrUtChQ08LeYOLmupeLCHNjA7FodDBmDPOjuW4D6BpmYBzp2JqVwFupAgA8+EroGoZY1rUKKY7n1AIAnv02FT89MZX+RhiJzusD42jHtu0qe14PcKbzOrEPe9IqUdbYhq/PleCFBSPg5SK29pCsjs7rA+Nox7Yvhw+ADx8n48/rVg+kG+Oll17CunXr9N9z3VXnzZvXpfD/wYMHMXfuXIcsju9Ix/bthTL8eCYDAPCX6ZGI0+R3OjbuDiCxbwzD4ERuHXaeLsLR7BowHcpYDA90Q2KkD+JCPBDl64IQL2e4S4QQ8Rj8ue8Aps26GU3tWpQ0yJFX04rLpU24XNKIRrkK318sw/cXyxDiKcH9kyLw4ORI+LjSRQOxD2WNcvx0qRwA8ESsBvctugnNCi2K6zvM9eJGNHWY68GeEjyYFIH7J0XA183JykdA+oOuYRzz2J76OhXtmhqMDnHHzKBGuoYhFvVrarn+/6+WNeN/xwvw1M1DrTiiwYXO6455bFlVLSg9cwZCPg8T/Rk6rxO7UFgn0///qbx6LB4TbMXR2C86rzvusW3KOgGgDZFuMPq8bvVAelBQEKqrqzs9Vl1dDQ8Pj27vDAGAk5MTnJy6Bg5EIlG3v+CeHncEjnBsP11il0IDwOrp0fjbvKH488/8Tsdm78c42HEB9Hf3ZyOt/Hr2+ZQYXyweE4z5o4Lg7959MFClUsFVBIR4OSNSJEJCuJf+Z2qNFueKGrA/vQq/XalARXM7/n0wB1uO5WPVtCismRFDd+GJzfvfsQKotQymxvhgpFeNfq6PCfPSb6PWaHG+qBF/plfij6uVqGxux6YDOdh8NB8PT4vCX2YOgacLnSctja5hBsZRjm1feiUOZNRAyOdh453xyL90gq5hiMVotAx+u1IBAJg/KhD7r1Xj/UM5mD0yALHBHn08m9yIzusD40jH9lNqJQDglpH+cBNV0Hmd2IWrHVZ6n8qvo0A66Lw+UI50bA0yJUob2wAA4W6M0ed1q6/5mzJlCg4fPtzpsYMHD2LKlClWGhGxpD+uVuD/vr8ChgFWTI7EK4tjweNRDWBHkl/biuXbU7ByxzmklTfDRSzAqqlROPK3Wfj6sclYPjmyxyB6X4QCPqYO8cNrS+Jx5qVb8J9lCYgP9YBMqcHmo/mY+c5RfHm2GBrqVkpsVLW0Hd9eKAUAPHlTTI/bCQV8TBnii9eXxOP0i7Px3r0JGB3qiTaVBh8n52P6O0fwxZkimusWRtcwpLlNhfW/XgMAPD5rCEYEuVt5RGSwSSmsR7VUAQ+JEB/ePw5zYgOh0jB48cer9DfBCHReJwBbZu/XVPYG1V3jQ608GkIMo9Zoca3ieiD9dF6dFUdjO+i8TjhXypoAANG+LnAZQFq5yQPpra2tSE1NRWpqKgCgsLAQqampKCkpAcAukVi5cqV++8cffxwFBQV4/vnnkZWVhY8//hjfffcdnnvuOVMPjdiY/deq8Mw3qdAywLIJ4Xjt9lEURHcgSrUW/z2ci4Xvn8CpvHqIBXw8Mi0aJ56/Gf+8fZTJG2FJRALcOS4Mv6+djk9XJGJkkDuk7Wq8+ks6ln58CtlVLSbdHyGmsPV4AZRqLSZEemNSlLdBz5GIBFg6Pgy/rZ2mn+st7Wr849drWPrJaWRV0XJjY9E1DOmvt//MQk2LAjF+rlg7m0ppEMv79TIb7Fs0OhhOQgHeujMe7k5CXClrxjfnS6w8Ouuj8zoxxtHsGjTIlPB3d8KMob7WHg4hBsmrbUW7SgsA4PGAono5ypvarDwq06PzOjHW1VL2RtOYMM8BvY7JA+kXLlzAuHHjMG7cOADAunXrMG7cOKxfvx4AUFlZqZ/gABAdHY09e/bg4MGDSEhIwL///W9s27YN8+fPN/XQiA05ml2DtbsvQaNlcMfYELy1dDT4fAqiO4qSejnu+uQ0/n0wB0qNFrOG++Pw32Zh/W1xZq/nzOPxMG9UEP54ejr+eVuc/sPkbR+dxK7TRWAYys4itqG+VYGvUti/h2tnD+33jURuru/56wy8dvsouDkJcaW0Cbd/dAqfn6G5bgy6hiH9cbagHl+fY+fDxqWjIREJrDwiMti0qzTYm86Wn1gyls2aDfCQYN284QCAd/Zlo65VYbXx2QI6rxNj/HCRbfS+dFwoNe4ldoMr65IU7YMEXYnIUw6YlU7ndWIsLiN9oIF0k9dIv+mmm3r98L5z585un3P58mVTD4XYqFN5dXj8i4tQaRgsGh2ETfckQEBBdIfxZ1olnv/hKloUani5iPDa7aNwe0KIxVcbCAV8rJoWjUWjg/H8j1eRnF2LDb9dw4ncOvxnWQLcJY5R54vYrx2nCtGm0mB0qCdmDfeHWq026nUEfB4emhqFBfFBeOmnNBzJqsH6X9m5/t69NNf7g65hiKHaVRq89FMaAOCBpAgkxVDGIrG85OwatLSrEewpQVK0j/7xFZMj8f2FMmRUSvH2n1nYdE+CFUdpXXReJ/1V36rA0awaAMBdiWFWHg0hhruqCxImhHtBJOAhtbQJp/PqcO+EcOsOzMTovE6MwTAMrpQ2AQBGh3qgssH416Lbq8SizhU2YPWuC1CotZgTG4gP7htHd/kdBMMw+OBQLp746hJaFGokRnpj719nYMnYUKuW7AnwkOCzVROx4bY4iIV8HMqsxl2fnEZJvdxqYyKkWa7CrtPFAIzLRu9OoIcE2x+awM51AR8HM9i5XtpAc50QU/vvkVwU1skQ4O6EFxeOtPZwyCD1i66sy+0JIZ1WdgoFfLx5ZzwANrM2vUOjd0JI735NrYBayyAhzBPDA6nvBbEfabqM9NGhnpg2xA8AcCq/nlapEgKgrLEN9TIlhHwe4gbY04gimMRiLpc04uHPzqFNpcGs4f7Y/OA4iCiI7hCUai3+7/ur+M+hHADA6unR+OaxyQjx6r4LtqXxeDw8PC0a3/1lCgLcnZBT3Yolm0/iUkmjtYdGBqldZ4rQqlBjRKA75sYGmux1ubn+wxNTEOjBzfVTuFhMc50QU8mslOJ/xwoAAG/cEQ8PWvVBrKC5TYUjuqxZrqxLR+MjvHHH2BAAwMY/MymQQoiBuLIud1M2OrEjSrUWmZVsT7AxYZ4YH+kNJyEftS0K5NfKrDw6QqyPSyoYEeQOpwGWY6QoJrGI9PJmrNxxDjKlBlNifPG/FYlwElItUUfQrtJg9ecX8OOlMgj4PLx152i8emucTd4kGRvuhd/WTseYME80ylVYvi0Fp/Mdr24csW2tCjV2nCoEADw1e6hZ+kOMCfPCr09NR3yoBxpkSqzYTnOdEFPQaBm8+ONVqLUMFsYHYf6oIGsPiQxS+9IrodRoMTzQDbHB3WdW/W3eCIgFfJzKq8fxXPobQEhfrlU0I6NSCrGAj9sSQqw9HEIMll3VAqVGC09nESJ8XCARCTA23AsAcKFoADUsCHEQaeXXV2wMlO1FuojDyaqSYsX2FLS0qzEh0hvbHppADbkcRLtKgzWfX8DxnFo4iwTY9tAEPJAUYe1h9SrIU4Kv10zGtKG+kCs1WPXZeX0dREIs4auzxWiSqxDt54rFo4PNtp8gTwm++8sUTB/qB7lSg4dprhMyYDtPF+FKWTPcJUK8dvsoaw+HDGJcWZfeSuiF+7hg5ZRIAMDGvZnQaCkrnZDe/HixHAAwNy4QXi5iK4+GEMNdLW8CwGajc38TJkR5AwAu0MpUQpBeIQUAjKJAOrF1eTWtWL4tBY1yFRLCvfDZwxPh6mTyHrfECtpVGqzedQEncuvgIhZg58MTcfOIAGsPyyCuTkJsf2gi5sQGQqnW4i9fXsSZ/HprD4sMAu0qDbaeYEtCPHnTELM3WnYRC7HtoQmYExsAhVqLv3xxkTLTCTFSaYMcm/ZnAwBeXhSLAA+JlUdEBquq5nacLWSvW5aM7T1rdu3sofCQCJFV1YI/rlZYYniE2CWlWotfUtlA+l2JXcslEWLLOtZH50yIYptQU0Y6GewYhtGXdqGMdGLTiutleHDbWdS1KhEX7IHPH54Ed6oj6hA0WgbPfZuKk3l1cBULsOuRSUiK8bX2sPpFIhLgk+Xj9cH01bvO6zudE2Iu35wrQV2rEqFezrhjnGU+pLFzPRFz4wKh1GixZtcFmuuE9BPDMHjll3S0qTRIivbBsgnh1h5SnzZv3oyoqChIJBIkJSXh3LlzPW570003gcfjdflavHixfptVq1Z1+fmCBQsscSjkBr9dKQfDABOjvBHm7dLrtl4uYqyZEQMA+OhIHrSUlU5It5Kza9AgU8LPzQkzh/lbeziE9MtVXSB9TNj1IOH4CG/weEBRvRy1LQprDY0Qq6tsbkeDTAkBn4eRA2w0ClAgnZhJWaMcD2xNQbVUgeGBbvji0UnwdKEguiNgGAZv/JGBP9OrIBbwse2hiZiou9ttb0QCPj56YBymxPhCptTgoR3nUFRHzViIeSjUGvzvOJuN/vhNQyzaR0Ak4OO/93ee6wW1rRbbPyH27pfUchzPqYVYyMfGpaPN0tvAlL799lusW7cOGzZswKVLl5CQkID58+ejpqb78k4//fQTKisr9V/p6ekQCAS45557Om23YMGCTtt9/fXXljgccoOOZV0M8dC0KLhLhMitacW+a1XmHBohdotrMrp0fCiENtjriZCeKNVa5NawjUZHhVwPpHs6izA8gA0aXiymrHQyeHH10YcFuJmkzDT9hSAmV9Xcjge2pqC8qQ0xfq74cnUSfN2crD0sYiLbThRi5+kiAMC/703AlCH2lYl+I4lIgK0PTdA3IF39+QVI21XWHpZN6k92IwA0NTXhqaeeQnBwMJycnDB8+HDs3bvXQqO1PT9dKkdlczsC3J1wT2KYxfcvEQnw6cpEjA6luU5IfzTKlHjjj0wAwDO3DEOMv5uVR9S39957D2vWrMHDDz+MuLg4bNmyBS4uLtixY0e32/v4+CAoKEj/dfDgQbi4uHQJpDs5OXXaztvbu8cxKBQKSKXSTl8AoFKpunz19LgjfJn62DLKG5FRKYWQz8O8WD+DnuMsAB6azPaw+fBQDhQKpdmOjRB7VN+qwBFdH5m7xlv+Go2QgcipboFKw8BDIkSYt3Onn+nrpBdRnXRiu3aeKsSrv6RBqdaa5fWv6QLp8SYo6wIAVKyamFRtiwIPbDuLkgY5wn2c8dWaJAS4Uw1RR3Eytw4b/2SDCa8sinWYbvZuTkJsWzkBt390Cnk1rXh692XsWDXR7PWr7QmX3bhlyxYkJSXh/fffx/z585GdnY2AgK618ZVKJebOnYuAgAD88MMPCA0NRXFxMby8vCw/eBug1mjxcXIeAOCxmTFWa7jsLhFh+6oJWPLRKRTUyvDXry9j+0M01wnpzVt7M9EgU2JEoDsemxlj7eH0SalU4uLFi3jppZf0j/H5fMyZMwdnzpwx6DW2b9+O++67D66urp0eT05ORkBAALy9vTF79my8+eab8PXt/ob6xo0b8dprr3V5/MCBA3Bx6VqO5ODBgwaNzR6Z8tj2lPAB8DHCU4MzyYcMfl6ICnASCJBV3Yp3d+/DaB/TlHjpeGxyudwkr0mIpf1+pQJqLYPRoZ4YYYJl/4RYUkYle6M6LsSjS/PpCVHe+CqlhBqOEpslV6rxz98zAAATIn3MUv40zYT10QEKpBMTapApsXxbCgpqZQjxlGD36skI9nTu+4nELpQ1yvH015egZYB7J4Rh9Yxoaw/JpAI8JNj20ATcveU0juXU4t392Xhx4UhrD8tmdMxuBIAtW7Zgz5492LFjB1588cUu2+/YsQMNDQ04ffo0RCK2rFNUVFSPr69QKKBQXK/dd2PmIqdjBpw9+SW1AqUNbfB2EeGe8cHdjt9Sx+YtEeDj+8fi/u3nkJxdi3/9mYG/zxtu1n12d2z29jskg9OZ/Hp8r1vu/9bS0RYtyWSsuro6aDQaBAYGdno8MDAQWVlZfT7/3LlzSE9Px/bt2zs9vmDBAixduhTR0dHIz8/Hyy+/jIULF+LMmTMQCLreHHzppZewbt06/fdSqRTh4eGYN28ePDw89I+rVCocPHgQc+fO1f+9cBSmPjaGYfDv908CaMOjcxKwaExwv55f7JyL/50oxBWFH15YNHFAY+nu2Li/3YTYm19S2XJJd1qofw0ZXJrbVDhbUI+Zw/zhLDZ9Mk1GBXvu7VjWhTMhki3Bml7ejHaVxmrJPIT05HJJk/7/j2bXmCWQnq57j8SHevSxpWEokE5MolmuwortKciubkGAuxN2r5mMcJ/emx8R+6FQa/DEl5fQKFdhdKgnXl8S3+VutyOID/XEpnsSsHb3ZWw5lo8pQ3wxazg1GzImu/G3337DlClT8NRTT+HXX3+Fv78/HnjgAbzwwgvdBlwcOXNRywCbrggA8DDNrx3Jhw70ur2ljm1ZFA+7cgX49EQR+LX5iPU2fwM6ylwk9kSh1uCVX9IAAA8mRSAxsucyJo5k+/btGD16NCZNmtTp8fvuu0///6NHj8aYMWMwZMgQJCcn45ZbbunyOk5OTnBy6lraTyQSdRtU7ulxR2CqY0sra0ZJQxskIj7mx4dAJOrfR7mHp8dg+6kinC9qRHaN3CRLnDsem6P+/ohjK6qTIbW0CXwecGtC/25OEWKIjXsz8c35Ujw+a4hZErX0GenBXYOEYd7O8HMTo65ViYxKKcZHDI5rGWI/zhVer99/JKsGSrUWYqHpEleqpe2obVGAzwNiu3mPGIMC6WTAWtpVWPnZOVyrkMLXVYzda5IQ5efa9xOJ3fj3gRyklTfD20WET5aPd+g72beOCcHZgnp8ebYE675NxZ/PzECAx+AuT2RMdmNBQQGOHDmCBx98EHv37kVeXh6efPJJqFQqbNiwocv2jpy5+Gd6FarPXoWHRIjXV8yGu6T7P72WPrZFADR/ZOLLlFJ8X+qM32+fAn938/SzoMxFYo8+Sc5HQa0M/u5OeH6B/axQ8vPzg0AgQHV1dafHq6urERQU1OtzZTIZvvnmG7z++ut97icmJgZ+fn7Iy8vrNpBOTO+Pq2zW7C0jA+Hq1P+PcUGeEiweE4xfUyuw42Qh3ls21sQjJMT+/KrLRp821I9KkhKz+OZ8KQBgy7F8vLBghEkT0rRaBpkV10u73IjH42F0qCeOZtcirayZAunE5lwquV52qKVdza7eMGEyY7qurMsQfze4iE0TArf99anEpsmVajyy8zyulDbBy0WEL1cnYWjA4Kor198GjJxvvvkGPB4Pd9xxh3kHOECn8+qw9UQBAODduxMQ5u34Kw1eXRyHkUHuqJcp8dx3qdBqzZ+p62i0Wi0CAgLw6aefIjExEcuWLcMrr7yCLVu2dLu9k5MTPDw8On0B1zPdOn719LgtfgmFQnx8rBAAsGpaNHzcnXvd3tLH9uqto/Rz/fmfrkEgEJptX90dGyG2Kr+2FR8fzQcAbLgtDp7O9jNfxWIxEhMTcfjwYf1jWq0Whw8fxpQpU3p97vfffw+FQoHly5f3uZ+ysjLU19cjOJgyOC2BYRj8cbUSALC4nyVdOnpkGlua7/erFaiRtptkbITYK4Zh8GtqOQDgjrFU1oWYXnlTW6fvr5Q1m/T1yxrb0KJQQyzgY2hA983Qx4R56fbdZNJ9EzJQGi2jL+0yLsILALD/WpVJ92Hq+ugABdLJALSrNFi96wLOFzXCXSLEF48kmWyphL3gGjBu2LABly5dQkJCAubPn4+amppen1dUVIT/+7//w4wZMyw0UuM0y1X42/dXwDDA/ZMiMCcusO8nOQCJSICPHhgPZ5EAp/Lq8dW5EmsPyaqMyW4MDg7G8OHDO5VxiY2NRVVVFZRKpVnHa0sOZ9Ygq6oFrmIBHp4aZe3hdMHO9XFwFglwMq8OX6YUW3tIhFgdwzB45ec0KDVa3DTCH4tH21+geN26ddi6dSt27dqFzMxMPPHEE5DJZPo+FytXruxUrouzfft23HHHHV0aiLa2tuLvf/87zp49i6KiIhw+fBhLlizB0KFDMX/+fIsc02B3ubQJ5U1tcBELcPOIrk2+DZUQ7oUJkd5QaRh8eZbO+WRwSytvRkGdTFcuqfcVO4QY4+INTT73plWa9PUzKtkg4fAgtx77uIwJYwOIaSYO4hMyUNlVLWhVqOHmJMRfZw8DABzMqDZpImN6ua6HAAXSibUp1Br85YuLOJ1fD1exALsemYTRYaabmPaiYwPGuLg4bNmyBS4uLtixY0ePz9FoNHjwwQfx2muvISYmxoKj7b/X/8hAZXM7onxd8OriWGsPx6KGBrjhhQUjALB17UobBm89Z2OyG6dNm4a8vDxotVr9Yzk5OQgODoZYLDb7mG0BwzD479E8AMDyKZHwdrXN4x4a4I6XFrFlK97+M2tQz3VCAOCHi2U4W9AAiYiPN+y0J8iyZcuwadMmrF+/HmPHjkVqair27dunL9FVUlKCysrOH+azs7Nx8uRJPProo11eTyAQ4OrVq7j99tsxfPhwPProo0hMTMSJEye6rYNOTG+PLht9TmzggJvVrZoWBQD49kIp1Bpt7xsT4sB+ucyWdZkTGwg3I8olEdKXi0Vs/edgT7Zs0J6rlWAY0wUJr1X0XB+dw8Vp8mpb0apQm2zfhAzURV1Zl3ERXpg21A9uTkLUtCiQXmG6mz5ZVX2/R/qL/lqQflNptFi7+zKO5dRCIuJjx6qJg7LWljENGAHg9ddfR0BAAB599FGcOHGi130oFAooFAr991xNYZVKBZVKpX+c+/+Ojw3U2YIG/HipDDwe8M7SeIj5jElf31DmODZD3T8hFH9crcCF4ia88OMV7Hwo0aQBle6OzRrHaYh169bhoYcewoQJEzBp0iS8//77XbIbQ0NDsXHjRgDAE088gY8++gjPPPMMnn76aeTm5uKtt97CX//6V2sehkWdzKvDldImOAn5WD3dtm+aLU+KxB9XKnGuqAEv/5yGzx+ZZJfBQ0IGqkGmxFt7MwEAz80ZbteN09euXYu1a9d2+7Pk5OQuj40YMaLHD/fOzs7Yv3+/KYdH+kGrZfSB9FsHUNaFMy8uCL6uYlRLFTiaXYu5g2TFISEdabQMftf1HaCyLsRcLugy0tfNHY4Nv11DeVMbUkubMM5E8ZMMXSB9VEjPSY0B7hIEe0pQ2dyOa+XNSIrx7XFbQizpku79MT7CG2IhH1OH+OJARjWO59TqSxINhLRdhbJGtrzSyCDTlaCmQDrpF7VGi2e/ScXBjGqIhXxsWzlx0J6IjWnAePLkSWzfvh2pqakG7WPjxo147bXXujx+4MABuLh0/XB/8OBBg163Lyot8M4VAQAepgVoUZl+GpXpJnlpo5nq2PprvjdwpUSA0/kNeO3zfZjkb/p66R2PTS63zWzgZcuWoba2FuvXr0dVVRXGjh3bJbuRz7++yCk8PBz79+/Hc889hzFjxiA0NBTPPPMMXnjhBWsdgsV9dITNRr9/UoTZmniaCp/Pw9t3jcbCD07gRG4dfrxUjrsTw6w9LEIs7s09GWiUqzAyyB2PTI+29nAIAcBmbFVJ2+HuJMSsEQNvwCUW8nFXYhg+PV6Ab8+XUCCdDEqn8+tQ26KAl4vIpI3tCOHIFGpkVrKB7unD/DB7ZAD+uFqJAxnVpgukV/bcaLSjMWGeqGxuRxoF0okN4UofJUay74dZI/xxIKMax3JqsVZX6mUgcqpaAABBHhKTrg6nQDoxmEbL4O8/XMWetEqIBDz8b3kipg/zs/aw7EZLSwtWrFiBrVu3ws/PsH+3l156CevWrdN/L5VKER4ejnnz5umbMQJsFvPBgwcxd+5ckzTw+/BIHmraCxDg7oQPV0+Fu8R6TdZMfWzGUPgXYtPBXOyvcsbflk2Hu8Q0p87ujo1bdWCL+pvdOGXKFJw9e9bMo7JN5wobkFLYAJGAh7/Msu1sdE6Mvxuemzscb/+Zhbf/zMK8UYHwsOJ7nxBLO51Xh58ulYPHAzYuHd1jrVFCLO2PK2zW7NxRgXASDqysC+feCeH49HgBjmTVoKq5HUG6sgOEDBZcWZfFo4MhFtL5npheamkTtAwQ6uWMYE9nzIkNxB9XK3E0qwYvLBg54NdvkClR2cw2je4r23ZMmBf2X6s2ebNTQoxV09KOkgY5eDxgrK7R6Mxh7E3NSyVNkLarBvxZNFMXSB8ZbLpsdIAC6cRAWi3beOvny+UQ8Hn47/3jcfNI4xsdOYL+NmDMz89HUVERbrvtNv1jXP1ooVCI7OxsDBkypNNznJycuq09KhKJug0q9/R4f5Q2yPG/40UAgH/ePgo+7raxrN0Ux2asNbOG4MfLFSisk+HjY4V49dY4k75+x2Oz1jES0/pIVxv97sRwBHs6W3k0hntkWjS+O1+KgjoZ/ns4F68sNu1cJ8RWtas0eOUXdunVismRJssUI2SgNFoGe9OrAAC3jQkx2esODXDDpCgfnCtqwPcXSvH0LQPP/CLEXrSrNNh/jX1f3TGOyroQ8+Cybcdz2bbD/cHnAVlVLShvakOo18A+I3DZ7pG+Ln0mvsXrGi1eK6dAOrENl4qbAAAjAt31AfNwHxfE+LuioFaG03l1WBA/sHJ2Wbr3yMgg09VHB6jZKDEAwzB47fdr+OZ8Kfg84P1lY7GAupr3uwHjyJEjkZaWhtTUVP3X7bffjptvvhmpqakIDw+35PB79Pa+LCg1Wkwf6oeF9HsGADgJBdhwGxtQ3Hm6CLnVLVYeEbFlV0qbcDynFgI+D0/MGtL3E2yIWMjHet1c/+xUEfJqWq08IkIs4+OjeSiskyHA3Qn/N3+EtYdDiF5KYT1qWxTwdBZh2lDTrgRdNpG99vzxUplJm98RYusOZ9agVaFGqJczEunGKTETrj76BF0g3dtVrO8tdySrZsCvn81l2xpQ+zlWl5FbVC9Dm1Iz4H0TMlCXSjqXdeFwWenHcuoGvI8s3Xsk1sQZ6RRIJ71iGAZv7c3ErjPF4PGAd+9OwG0JpsuGsXfr1q3D1q1bsWvXLmRmZuKJJ57o0oCRa0YqkUgQHx/f6cvLywvu7u6Ij4+HWGy6mk3GuljciD1XK8HjAS8viqVmgx3cNCIAc2IDodYy+kZ0hHSHy0ZfMjYEEb62saKjP9i5HgC1lsGbezKsPRxCzC6vpgWfHMsHALx2+ygqaURsyh+6JqPzRwWavPzEgvggSER8FNXLcZWW+5NB5A9dk9FbE4LB59PnHWJ6Wi2Dy8VdA4WzY9lV/UdNEEjP0SV3jQjsO0jo7+YEX1cxtAyQW0NJYcT6LhQ1AOgaSOd6wRzPqR3QTX6tlulws4ky0okFvXcwB1tPFAIA/t8do3EXNZ/rZNmyZdi0aRPWr1+PsWPHIjU1tUsDxsrKSiuP0jAMcz1odk9iWJ8NSwajVxbHQsDn4Wh2Lc4VNlh7OMQGZVZKcTCjGjwe8ORNQ609HKO9ujgOQj4Pydm1SCmot/ZwCDEbhmHw8k/pUGkY3DIygFbcEZui1mixT1fW5VYTlnXhuDoJMTeOnfO/plaY/PUJsUUyhRpHs9kgpinLJRHSUU5NC1oUariIBZ0yxmfryuOeyqsbcGZ4ti6QPtyAjHQej6evE51VSYF0Yl3tKg3Sy9myKzcG0idH+0Ik4KG8qQ2lDW1G76O8qQ2tCjVEAh5i/F0HNN4bUSCd9OijI7n47xE2s3LDbXF4ICnCyiOyTWvXrkVxcTEUCgVSUlKQlJSk/1lycjJ27tzZ43N37tyJX375xfyDNMD+a1W4XNIEZ5EAf5tHy9q7E+3nql8G/c6+LFoGTbrYrMtGXzQ6GEMD3Kw8GuNFdZjr7+7PprlOHNaPl8pxrqgBziIBXlsyilZiEZuSUtiABpkS3i4iTB3ia5Z9LNGtNP3jagU0WjrXE8d3JKsG7SotInxcMIoSh4iZcPXRx0V4QdihefmIQHeEeEqgUGtxvsj4xCyGYZBTZXhGOnA9KzezSmr0fgkxhWsVzVBqtPBzEyPCp/MKbmexAGPCvAAAZwuNT+jieggMDXCHSGDa0DcF0km3th4vwKYDOQCAlxaOxMPToq08ImJOWi2D9w/lAgAenR6NQA+JlUdku565ZRichHxcKG40SW074jjya1uxJ41dgbL2ZvvNRuf8tcNcT86utfZwCDG5JrkSG3Wlup6dMwxh3vZXiok4Ni4bfV5cUKdAjCnNHO4PT2cRaloUtAKJDAp7dddqi8cE081TYjYXi3RlXW6owc/j8TBV1+/idL7x59zypjbIlBqIBDxE+RmWbTtCl7nOlbsgxFq4RqPjIry7PQ8nRfsAAFIKjL/ZxM3zWANWbPQXBdJJF5+fKcL/032wfG7OcPzFzprlkf47kFGFrKoWuDkJsXoG3TTpTaCHBKumRQEA/n0ghzJ1id7HR/PBMMCc2EDEBtt/hlOghwSrpkYBoKx04pje3Z+NepkSwwLc8Mh0+ttHbItWy2D/NTaQbs6SQ2IhH4tGBwOg8i7E8ckUan0izGLdvCfEHC5yjRSjfLr8jFthdCbf+GaKXH30GD83g7NtY7mM9EopXdcTq0otawLArtjoziRdIP1ckfE3m7hGoyNN3GgUoEA6ucG350uw/tdrAIAnbxqCv95i/1mVpHdaLYMPDrPlKB6eFgUvF+s3PbV1j88cAhexABmVUiTnUKYuAUob5PgltRwAsHa245w3H581BG5OQmRUSvX1RAlxBFdKm7D7XAkA4I074k2+5JOQgbpc2oSaFgXcnISYOtQ8ZV04t41hA4oHMqqg1mjNui/ieJrbVPjrN1ewt4QPlY3Pn8NZNVCotYj0pbIuxHwaZEoU18sBAGPDvbr8fOoQNiM9rbwZzW0qo/aRXdUKwLD66JxhgW7g84BGuQq1LQqj9ksGh1aFGi//cg2X6syzaueqLpCeoCvhcqMJUT4Q8HkobWhDRZNxddK5EkYjTNxoFKBAOung58tlePGnNABseY+/zx9By90GgQMZ1cislMLNSYhHKSPPIN6uYjyo6xnwydF8K4+G2IJPjuVDo2UwY5hftxfM9srbVazvj/FJMs114hg0Wgav/pIOhgGWjgvF5BjzBikJMQaXjT57ZACchAKz7mtStA88nUVolKv0dX0JMdRnpwrx57Vq7C/nY9XOi6hrtd0A3d6rurIuo6msCzGfK7ogYYy/KzydRV1+HuQpQYy/K7QMjC6plVvN1Uc3vCeTRCRAtK4MTCaVdyG9+PJsMb6/WI4vcvmQGnmzpyf1rQp9E9H4UM9ut3FzEiJed7MzxYg66Qq1BkV1MgCG9xDoDwqkEwDAnquV+Nt3V8AwwPLJEXh1cSxdXAwSnx5ng2MPTY2kbPR+WD0jBmIBH+eKGgbUKIbYv8rmNvxwoQwA8PTsYVYejek9Oj0aYgEf54saaa4Th7A7pRhp5c1wlwjx0qJYaw+HkC4YhtHXRzdnWReOUMDHLbEBANgEC0IM1abUYNfpIgAAn8fgXFEj7th8Sh/AsCUyhVq/um4RlXUhZnSltAkAMLaHbFvgenkXY+ukZ+sC6cP7GSTkts+raTVqv2RwOFfIfubTgocfL5u27NvV8mYAPd9o4iTpEl2MqZNeVCeHlgHcnYQI9HAybqC9oEA6wYFrVXjmm8vQMsC9E8Lw+u3xFEQfJC6VNOJSSRPEAj4e0tVCJoYJ9JDgrsQwAMDHR/OsPBpiTZ8eL4BSo8WkaB99PTdHEughwdLxoQCALZSVTuxcbYsC7+zPBgD8ff4I+Lub/uKakIHKrGxBSYMcTkI+Zg33t8g+58WxAfsDGVVUO5cY7LsLpWiUqxDu7Yy/j9Eg0scFZY1tuHvLGWRWSq09vE64si5RVNaFmBkXSE/oZZXqNF15l7NGZKRrtAxydYHwEf1spBjjz2akF9RSIJ10T6XRdlop8VVKKbRa010XXC1lA+k9lXXhTNL1FzBmpRx3o2hIgJtZYpsUSB/kkrNrsHb3Zai1DJaMDcHGpWPA51MQfbDYfrIQALBkbAgC3CVWHo39eXxWDPg84Gh2LfLpYmRQqm1R4GtdneWnHag2+o0emxkDHo/9EMotJSXEHm38MxMt7WrEh3rgwaRIaw+HkG7t05V1mTncH65OQovsc9Zwf0hEfJQ2tOkbdBHSG7VGi60nCgAAj06LRIgL8M2aiYgN9kBdqwL3bz2rb4hoC/ZcZbMqF4+hsi7EfBiGwZUyXaCwl0B6YpQ3ADazXNrev9IZxfUyKNVaSER8hHu79Ou5Q/zZUjD02ZX0JLW0CTKlBhIRHxIBg+IGOY6ZsC8cVx99TFj3ZV043Psnr7YVLf18j3CB9KEBhpc+6g8KpA9ip/Pq8JcvLkKp0WJhfBD+fU8CBBREHzRKG+T4M42tE/joDKqNboxIX1fMHhkIAPjiTLGVR0OsYfvJQrSrtEgI98L0oX7WHo7ZxPi7YW6sbq6fpblO7FNKQT1+ulQOHg94847RdM1DbNZ+XVmXhRYo68JxFgswYxib/X7gGpV3IX3bm16FssY2+LiKsXQcu3LNz80J3zw2GQnhXmiSq7BiewpKG+RWHilbgoYLBC2Mp7IuxHzKGtvQIFNCJOAhNrjnbPEAdwkifFzAMEBqSVO/9sHdoBoW4N7vJMjrgXTbK79EbMPJ3DoAwC0jAjA5gM1E361LHBso9kZTE4DebzQBgL+7E0K9nMEwwFXdzSlD5dVSIJ2YwfmiBjy66wIUai3mxAbgg/vGQSig6TCY7DpdBC0DTB/qh5Fm6GQ8WKzSlcT54WIZWhVq6w6GWFSTXIkvzhQBAJ6+eajDZzetnBIFAPjpUjnNdWJ3VBot/vFrOgDg/kkRDtUUmDiWgtpWZFe3QMjn4RbdzXpLmaOrk56cU2PR/RL7wzAM/ndM12dpShScxdcb4no6i7Dr4YkYEeiOaqkCy7enoFGmtNZQAQAn8+rQrtIi1MuZyroQAMA/f7uG1bvOo12lMenrpurKusQFe/TZKDoxks1K72/pCi4IbkyQkCvtUtuiQLOJm0gSx3Aqjw2kTx3ig8kBWgDA0awa1JugkXRFczvqWpUQ8nmIC+77XDw2wgvA9feVofQZ6f4USCcmklrahIc/O482lQYzhvnhowfGQyykqTCYtKs0+OES2xzxkelR1h2MnZs21Bcx/q5oVajxs+7flAwOn50qgkypQWywh75JmyOjuU7s2WenCpFT3QofVzGenz/C2sMhpEdcWZcpQ3zh6dJzEy5z4DLSr5Q2oVlOARbSs1N59bhWIYWzSICVU7qWyfJyEePzRychzNsZxfVyrP36EtQarRVGyjqge1/NjQt0+MQH0rfK5jbsPF2EQ5k1+CrFNJm2HEPqo3PG6wLpl0r6G0hng4Qxfq79eh4AuEtE+uaLVCed3KilXYXLujk8dYgvgl2A+BAPqLUMfrsy8KajV3WvPSLIHRJR7zeaAGCc7n3Un0C6Rsvo5zZlpBOTSC9vxsrtKWhVqDE5xgefrphg0AQmjmX/tSo0yVUI9XLGrOGOHwA0Jx6Ph4d0mbq7zhRTg65BoqVdhc9OsT0G1g6CbHSAnesrJrMflj+nuU7sSGVzG94/lAsAeHHhSHi5iK08IkJ6xpV1WWDBsi6cEC9nDA1wg5ZhM3gJ6cn/jrPZ6MsmhsPbtftzaqCHBNsemgAXsQCn8urx1t4sSw5RT63R4lAmW65o3ijLrvIgtul4h3rPnyTnQa403UpLfdmKPhopAsAEXSD9ckkTNP1o5ligy0iPMTLbNsbPrdPrEMJJKWiARssgytcFYd7OAICl40IAAD+aIJEq1cCyLpyxHQLphn72LGuUQ6HWQizkI9ynfz0EDEWB9EEku6oFK7anQNquRmKkN7Y/NLHTMjwyeHDNEe+ZEEY1Yk1g6fhQuIgFyKtpNaqrNLE/X5wthrRdjSH+rlYJdljLXYlhcBELkFvTinOFDdYeDiEG+X97MiFXajAh0ht3jw+z9nAI6VGNtF3fpI7rS2FpM3VZ6cdN2FiMOJaMCilO5NZBwOfh0em991kaGeSB9+5NAADsOFWIfemVlhhiJxeLG9EoV8HTWYRJUT4W3z+xPR0bJ9a1KvG5iXpdqTVapJX33WiUMzzQHW5OQrQq1Mg2sMkzw1zPtuXKtPTXkAD2edRwlNyIu4k+rUPvr1vHBEEk4CG9XGrwPO3J1VLd+6OPRqOc+FBPCPg81LYoUNHcbtBzuLIuMX6uZot1USB9kMivbcWD21LQKFdhTJgnPnt4IlydhNYeFrGCwjoZzhY0gM8D7p0Qbu3hOAR3iQiLR7ONi364SCUvHJ1cqca2E2w2+lM3Dx1UN6M8JCLcNsZ0WQmEmNvZgnr8cbUSfB7w2pJR/W7KRYglHclia5MnhHkiwENilTHMHM5+eD6RW0srj0i3tp9kr4EWjQ42KNtvQXwwHp81BADw4k9pqDIwGGIqBzPYbPRbRgZQTzACtUaLE7pmig8kRQAAdpwshFI98NJDOdWtaFdp4e4kNKjsioDP65Rxa4h6mRLSdjV4PCDaiNIuwPWGo1zAkRAOF0if3iGQ7u0ixqzh7E32vWnG3wxlGAbpFWwgfXSol0HPkYgEGBnENu29YuB7RF8f3UxlXQAKpA8KxfUyPLD1LOpaFYgN9sDnj0yCh8SyNReJ7fjmPJuNPmu4P0K8nK08GsdxVyKb5fjH1Uq0KU3btIbYlq/PlaJBpkS4jzNuTwix9nAsjpvre9OqaK4Tm6bWaPHP364BYD8sjwoxLPuFEGs5lMkG0m+xUjY6ACRF+0Is5KOiuZ2yFUkXNdJ2/HalHAD6zEbvaN3c4Rgd6okmuQp/+z4V2n6UsRgIhmFwIIPKupDrUkub0NKuhpeLCOtvjUOAuxNqWhTYkzbw+s9cWZcx4Z4G37iPD2WvTbgAY1+4ciyhXs5Gl+iN0gXgSxrkRj2fOKZqaTvyalrB47F9WjpaEM8mDe7TlZ8zRlljG1ra1RAL+P0Kco/RZa9fM/A9QoF0MmDlTW14YGsKqqUKDAtww5ePTqLaoIOYRsvg50vsxe+yiRFWHo1jmRTlg3AfZ7Qq1Nh/zfg/MMS2tas0+FRXF/TJm4YOysymCZHeNNeJXdh9rgRZVS3wchHhb3MHX4PRzZs3IyoqChKJBElJSTh37lyP2+7cuRM8Hq/Tl0TSOSOaYRisX78ewcHBcHZ2xpw5c5Cbm2vuwxg02lUanNJlgs0eab3+Nc5iASZGsXV7T+ZSnXTS2Rdni6HSMEiM9NZn0hpCLOTj/fvGwlnE1kv/+rxpGzz2JLu6BSUNcjgJ+Zipy6gkgxtX1mXGMH9IOjTL3X6ycMCrcNLL+5dty26rCxKWGxpI58q6GB8kjNCtJCltkNPKI6J3tqAeADAqxKNLzHBubCCEfB6yq1uMblKbUSkFAAwLdINYaPhn6NhgDwBAZqVhZWUK6tibTUMG8B7py+CLAAwi1dJ2PLD1LMqb2hDt54qv1iTB183J2sMiVpRSWI+aFgU8nUVW/ZDmiPh8Hu7S1d6l8i6O64eLZaiWKhDsKcHS8aHWHo5V8Pk8LB3HznUq70JsVYNMiX8fyAEA/G3eiB6b4Tmqb7/9FuvWrcOGDRtw6dIlJCQkYP78+aipqenxOR4eHqisrNR/FRd3rhn7zjvv4MMPP8SWLVuQkpICV1dXzJ8/H+3tli3T4KjO5NejTaVBsKcEo0I8rDqWydFsJtr5Iur7Qq5rV2nw5Vn2vLC6H9nonCH+bnh+AXtT819/ZqGmxfznjoPX2Gz0GcP84CKmsqbkeiCdK1XxQFIknIR8pJdLcalkYOe8axVsoLA/5/D4UF2QsKoFKk3f5WW4IKEhpWN6EurlDB4PkCk1aJApjX4d4ljOFrD9r7hrgI48XUT6LPU/jcxKz9C9P+KC+3eNcz2QLjVo++J69j1ibOkjQ1Ag3UHVtijwwNazKK6XI9zHGbvXJCHA3Tq1Font+P0Ku2RtYXxQv+4CEsNwgfRT+XWoljpeYKE/2Y0dffPNN+DxeLjjjjvMO0AzU2m0+CSZzUb/y8wYOAkHb7Nm/VzPq7N4rVNCDPHvA9loblMhNtgDD0wafCuw3nvvPaxZswYPP/ww4uLisGXLFri4uGDHjh09PofH4yEoKEj/FRh4vQwCwzB4//338eqrr2LJkiUYM2YMPv/8c1RUVOCXX36xwBGZhkqjRXp5MwpqW22uNNWhTDbgN3tkAHg869bynxTNNmRMKWygbEWi99OlcjTKVQjzdsa8UcY1Wl85JQqjQz0hbVfjzT8yTTzCrrj31dw4KutC2JvsV3UNnWcOY2tA+7iKcauu/8/3F4xPENFoGWRV9T+QHuHjAneJEEq1FrnVfWf6ctnAQ4xsNAqwdaeDdH04qLwL4aToMtInx3QNpANsXwwARq9I5jLS4/qZLMDVSK9sbkdjHzd+WtpVqGtlt4n07buHh7EokuaAGmRKLN+WgvxaGUI8Jdi9ejKCPakW9mCnVGuxN4096Q3Gus6WEO7jgnERXmCYgdUPs0XGZDcCQFFREf7v//4PM2bMsNBIzeeXy+Uob2qDn5sY9w3CwFxHEb4umBDpDS0D/JlufNMZQswhvbwZu8+xZQP+eVvcoGoIDABKpRIXL17EnDlz9I/x+XzMmTMHZ86c6fF5ra2tiIyMRHh4OJYsWYJr167pf1ZYWIiqqqpOr+np6YmkpKQeX1OhUEAqlXb6AgCVStXlq6fHTf21/pc03Prfk5j972OI/+d+LHz/ON75MxO5VU1m26chx6ZUKnFYF/C7abivRf4tevsaFeQKsZCPulYFcqua+3VsxDExDIMdp9gmo6umRhl9XhXwedi4dDT4POC3KxU4nW++8kF1rQpc0QVNbx5BK3EJu/IHAEYEundq6HzvBDZB5PcrFZAr1Ua9dkEt22jUVSxAlK/hQW4ej4f4EMPrpHM10gdS2gUAwr3ZICMF0gnAVrMoqJOBxwMm6m6m32iOrn/L1bJm1LYo+r0PYzPS3SUihPuw8cy+stKL69n57OcmhrsZ+0LS+iYH09ymwortKciubkGAuxO+WjPZoG7qxPEdz6lFc5sKAe5OSOrhLiMZuMWjg3G5pAl70irx0NQoaw/HZDpmNwLAli1bsGfPHuzYsQMvvvhit8/RaDR48MEH8dprr+HEiRNoamrq8fUVCgUUiut/kG8MuHA6fnC3JI2WweajeQCAR6ZFQgAtVKq+l1/2h7WOzVjzRwXgQnEj9lytwPJJYb1u292x2ctxEvvCMAxe+/0aGAa4LSFkUP69q6urg0aj6ZRRDgCBgYHIysrq9jkjRozAjh07MGbMGDQ3N2PTpk2YOnUqrl27hrCwMFRVVelf48bX5H52o40bN+K1117r8viBAwfg4tL12vTgwYMGHZ+xWlXA9xcFAHhw4jNQaNml9JlVLfj4WAHG+WqxMFyLQDPknvR1bGUyoEoqhJjPoDnnPPbmmX4M/RXuLEB+Cw87fj+OKYE9Z6V3PDa5nAIyjupYTi3yalrh5iTEsonhA3qt+FBPLJ8cic/PFGPj3iz8+tQ0gxsz9sdxXQmPUSEenYKmZPA6pbtxM3Vo52uDSdE+iPJ1QVG9HHvTqnB3Yu/Xtd3hyrrEBnv0ez7Hh3rgTEE90subce+Ent9fKo1WH/iOGUBGOsAmgJ0rakApBdIJrtdHjwv2gKdz9wFof3cnxId6IL1cihO5tVg63vD3SZNcifKmNgBArBHl6+KCPVDa0IaMSimmDvXrcbsiXVmXyH7czDIGBdIdSKtCjYd2nMO1Cil8XcX4anWSWesCEfvyx1W2rMviMcGDLjvPkhaODsabezJxvqgBNdJ2h7hw57IbX3rpJf1jhmQ3vv766wgICMCjjz6KEydO9LoPWwu43OhSHQ9F9QK4CBn4NmZi717zLUe29LEZS6QAACEuFjfi61/2wtOAEtQUcCHm9tuVCpwvaoSzSICXFo609nDsxpQpUzBlyhT991OnTkVsbCz+97//4Y033jDqNV966SWsW7dO/71UKkV4eDjmzZsHD4/rH6JUKhUOHjyIuXPnQiQyX/bQ/44XQs3kIj7EAz89noQqqQLnChvw29VKHM+tx+V6PtKbBHhm9lA8Oi3SJM2kDT22j47mA8jHjOEBWHLruAHv1xSyxXn4+FgB2t3DsGjR6C4/7+7YuJvgxPFsP8lmoy+bGG6SLL9nbhmGny6VI628Gb9frcCSsabvO5OczQbSbxoxuJqMbt68Ge+++y6qqqqQkJCA//73v5g0aVK32+7cuVOfJMNxcnJy2N4Xp3UNnacN6RyI4/F4uGdCON7dn42fLpUZGUhns8n7W7YCYG8usa/R+zm0rLENai0D5w6lWYzFNRyljHQCsKXcgJ7LunBmDfdHerkUx3L6F0jnyrqE+zjDw4i/IbHBHth/rbrPhqNcRro5y7oAFEh3GHKlGo98dh6ppU3wchHhy9VJGBbobu1hERuh0mhxJIstwcHVtiLmEerljLHhXkgtbcK+a1VYOSXK2kMaMGOyG0+ePInt27cjNTXVoH3YWsClI62WwebNZwC0Ys3MoVh68xCz7McaxzZQP9ek4EpZM7TB8ViU1HO5Gwq4EEuQKdTYuJc9Jz118xCEeA3OsnZ+fn4QCASorq7u9Hh1dTWCggyraywSiTBu3Djk5bGp0dzzqqurERx8/TqiuroaY8eO7fY1nJyc4OTUtcm9SCTq9hzX0+OmoNEy+Po8W/v2oalREIvFiPATI8LPHXdPjERmpRT/2peF5OxabDqYi7OFjdj8wHh4uphmPH0dW3Iumwk2Ny7IZs7/U4b64eNjBThf3NTrmDoem62MnZhWdlULTuTWgc9jy7qYgq+bE564aQje3Z+Nd/ZlY/6oIEhEpus9o9EyOJ7LBdIHT1kXrhTjli1bkJSUhPfffx/z589HdnY2AgK6/3fw8PBAdna2/ntr92gwl/KmNhTVy8HnAZNiupauuD0hBO/uz8bZgnrUtyrg69b171dvjGk0yhmhqwGdU90ChmF6/B1wQe8IH5cB/54ifNlrpNKGtgG9DnEMZ/uoj86ZNTwAm4/m43hOLTRaxuAETWPLunC4hqNcH4KeFOma8fanvJIxqEa6A2hXabDm8ws4V9QAdychvngkST/RCAGA84UNkLar4esqxvgIb2sPx+Et1t2s2HN1cNaObmlpwYoVK7B161b4+fW89KojJycneHh4dPoCrn9A7/jV0+Pm+krOa0BOTSvcnYR4ZMYQs+7L0sc20K/FY3RNZzJqjTo2Qkxpy7F8VEnbEe7jjNUzYqw9HKsRi8VITEzE4cOH9Y9ptVocPny4U9Z5bzQaDdLS0vRB8+joaAQFBXV6TalUipSUFINf05qOZNWgvKkNXi4i3NZNn5jYYA98tmoi3r17DFzEApzMq8Odn5xCRZP5Awz1rQpcLWsCwDYatRXjI7zB57HBpxoHbKBODLdDl42+ID7IpCVDH5kWjSAPCcqb2vDDReObPHbnSlkTmuQqeEiEGBfuZdLXtmWmbjTtSE7pstHHhHl1mxEb7uOC0aGe0DLAgYzqLj/vDcMwHQLpnv0eW7SfKwR8Hlra1ajq5XzLBdJN8T6kjHTCqZG2o6CWrY8+Kar7+uiccRFecHcSolGuQnp53zX9OfpGo8H9f38AwLAAtidAfm0rtNqey81ZKiOdAul2TqHW4okvL+JUXj1cxALsfGQSRocZNzmJ4+IuBmaPDKCyLhawIJ7N3Dtf1IBmuf3Xge5vdmN+fj6Kiopw2223QSgUQigU4vPPP8dvv/0GoVCI/Px8Sw19wBiGwUdH2IzMlVMje6wZN1gtjGeDbCmF9WiS995FnRBzqmhqw9YTBQCAVxbFmjSz0R6tW7cOW7duxa5du5CZmYknnngCMplMv4R/5cqVncp1vf766zhw4AAKCgpw6dIlLF++HMXFxVi9ejUANtDy7LPP4s0338Rvv/2GtLQ0rFy5EiEhIbjjjjuscYj98vmZIgDAsgnhPc4Nbmn/D49PRYinBAW1Mty/9Syqms0bRD6ZVweGAUYGudtUOThXJyGGBbBZklzDRjL41LUq8HNqOQDg0enRJn1tZ7EAj89ib3p+kpwPlcZ0vWeSdStxZwz3N0mZJntgjkbTN7LFJtKGfp3U1cyfEu3d4zbz49ibmXuuVvSriXRxXQua21QQ8nmI8pH0e2x8RotIXWA7s7zn5tdFtWxZizAvpwH/ewS5szUZK5vbIGtTUBPpQeysrqxLXLBHnyvxRAK+vsfAyTzDm0VzJVlig42rmhHh4wKRgId2lRYVzT0nOXA10s2dkW620i5Um8v8NFrgue+u4mh2LSQiPnasmojESMo2Jp0xDINDmWwAdG6cY2YY2JpwHxcMD3RDTnUrjuXW4vZust/sScfsRi5gwmU3rl27tsv2I0eORFpaWqfHXn31VbS0tOCDDz5AePjAmlRZ0rGcWqSVN8NZJMAj00z7AdIRdJzrx3Pr7H6uc+gaxv5s2p+NdpUWk6J8MH+UYeVLHNmyZctQW1uL9evXo6qqCmPHjsW+ffv0mYYlJSXg868HlxobG7FmzRpUVVXB29sbiYmJOH36NOLi4vTbPP/885DJZHjsscfQ1NSE6dOnY9++fZBIbCf4252C2lacyK0DjwcsnxzZ5/ZxIR744YmpWPbpGRTXy/HgtrP46clpZruRejyH/SA6a7jt1XFOCPdEdnULrpQ22f01JJ3XjfPl2WIo1VokhHuZZVXrfZMi8NHRPJQ3teGXy+W4p5dGi/2RrAua3mSD7ytzMUej6RvZek+jnjAMkJzJNpvm1+Vh797cbrdzagMAIU7n1eH7X/fCtZfTfsdju9rAAyBAoESLwwf2GTVGdy0fAB+/HTuPltzuM27PZ7PbtFQWYu/eAqP2w2EYQMATQMPw8N3v++DToZKNvfQ0ovO6aRha1oUzJcYX+69VI6WwAU/d3Pf2ao0W+TWtAGB05QyhgI8oX1fk1rQiv1aGMO+u5xu5Uo2aFgUAOw2kU20u89NoGXyRx8fl+hqIhXxsXTnB4IlPBpesqhaUNbbBScjHjGGD52LS2m4eEYCc6lYkZ9U4RHBx3bp1eOihhzBhwgRMmjQJ77//fpfsxtDQUGzcuBESiQTx8fGdnu/l5QUAXR63ZQzD4L+6bPQHkiL6XStxsHC0uU7XMPbnalkTfrrMZky+emss/fvrrF27ttubnQCQnJzc6fv//Oc/+M9//tPr6/F4PLz++ut4/fXXTTVEi/jibDEAYPaIAIOXw4d4OePrNZNxz5YzyK+V4a9fX8aOVRNNvqqPYRic0NVxnmmDAb8xYV747kIZruhKz9grOq8bp12lwZe698/q6dFm+TeQiARYMyMGG//MwifJ+Vg6PmzA77O6VgWu6lZRzBpkjUb7q7+Npm25p1Fv8mpaIT17GmIhH0/cfQucelm19mPlaWRVt0IcORaLxna9ru3u2PKO5AHZBUgaEYpFi4z7rJPrlIcryQUQ+kZg0aJR3W7zv6IzAFowf/oE3GyCub0p+wTKGtsQO34KEiO97aqnEZ3XTSdFF0hPiu69rAtnUjQbd7xY1AC1Rtvnqp+SBjmUGi2cRQKEDqB/0RB/NzaQXtPabfIBV9bFy0Vksh43PTHLOieqzWVeWi2Dl35Ox+V6PkQCHj55cDwFSEmPuCaj04f6wVk8uJe6W9LNujqnyTm1vdbxshfLli3Dpk2bsH79eowdOxapqaldshsrKx2rJvzZggZcLG6EWMDHYzMHb73lvnBNvI45yFynaxj7wjAM3tyTCQC4c1woxoR5WXdAxKbIFGp97eUVU/rORu8ozNsFW1dOgETEx7GcWrx3MLvvJ/VTdnULaloUkIj4NrmqdKyutvSV0iYwjP2e3+m8bpzfr1SgrlWJEE8JFsabb6XPg5Mj4SERoqBOhuTsmgG/HlcLOy7YAwHutr1ixpTM0Wj6Rrbc06i3r3PF7I2VCZHecHOR9LrtzbHse/1UQaPBfX9ya9gAXlyIp9FjHKmrrZ5XK+v250KhUN8YNNrf3ST/LiGebFCzVqa2u55Gg/G83iRX4nBmNdQmLIPVKFMiv5YthzKhj/ronBFB7vCQCCFTavS1z3uTq8tGHxrgBv4AbpQOCWCzzPNqW7v9ub4+ugl7efTE5BnpXG2ujnUX+1ObS6vVYvz48XjrrbcwalT3d+IUCgUUCoX++xtrc3E61nhyFAzD4B+/ZeDn1ErwwWDT0njMHOrjUMfY3e/NkY7P0riLScrIsKzESG+4OwnRIFPiSlkTxjlAk9f+ZDfeaOfOnaYfkJl9dJRd9nnvxDAE2lDdWlszIcobbk5C1MuUSCtvRoIdN/WiaxjLMOWxHcyowbnCBjgJ+XjuliFW//eiaxjb8ktqOVra1YjydcFMI5JO4kM98e7dCXj668v4ODkfs4YHYJKBGVuGOK4rPzE5xtcm6/qPCHKHWMiHtF2Nono5ov3Mu1TaHOi8bhyGYbDzNNtk9IFJ4WC0Gqi0mh63H8ixOfGBexJDsf1UMXaeKsTMoQN7j53UrfKYOsQ0n5Ht5bze31KM3eEaTS9atMiMI7U87vPwtKF+fW47a7g/PknOx4lcNkHEkMBfTg1b/3l4oHH1nzs+N7e6BQzDdMmWbm5ToUWhBoBuy1oYI8iT/Xxj7l4gpjZYz+uv/JSGPelVuHNcCP515yiTZNSfK2TfGzF+LnAX8ww+tsRILxzNrsOZvFrEBvZ+bZBVwd7IGuLnMqB/p2gf9sZPXnVLt69TUs8G2EM8JX3uZ6DndZMH0qk2l/kwDPBTER/Hq/jggcGKYVqgLBV7y1KtPTSzsJfaXLasTanBhaJGAIZdOBDTEQn4mDHcD3vTqpCcXesQgfTB5FJJI07l1UPI5+EvM4dYezg2TSTgY8YwP/yZXoUjWTV2HUinaxjLGuixqbXAxitszdNZgWpcPnUEl00ztAGjaxjrYxgGX5xhy1IsnxxpdBbUbQkhOJ5Ti+8vluG5b1Ox/7mZcHMyzUcorj66MUF+SxAJ+BgV4oHLJU24WtZkl4F0Oq8bp7AFuFYhhIjHwKcxE3v3Zhr0PGOPLaQd4EGAE3n1+OzHvQg0fvU/jqSzfxeEdfnYu7f7zGpj2MN5vT+lGAG20fTkyZMxdOhQNDU14d133+3UaNoRaLSMvgb01CF9l8IdH+ENV7EAda1KZFRKER/q2ev27SqNPhN2RJDxgfQoX1cI+TzIlBpUNrcj5IYSGCUN7D4C3J1Mtso8WBdIr7SzQPpgPK8rNMCedPba4+fLFVDVl2Ju6MBXiv1ewtbd9+e1Yu/evd1u092xebSzfQF+T8lCUHNGr/s4nsvuQ91Yhr17S40ea2UrAAiRWd7Q7VhPF7H7aW+oxN695Qa9prHndbM1G+2PwVKbayAYhsE7B3JxvKoIAPD/lsTCtSbdIY7tRvZUm8vWnS9qgFKjRYinBDF2+OHH3s0Y5o+9aVU4k1+P5+ZaezSkPzbraqPfOS7U4Jq6g9ms4f74M70Kp/Pr8Nzc4dYejkXRNUz/merYdp4pRl17NvzcxPjXw9NNFtwcCLqGsR3nixqRVdUCiYiPexIH1sBww+2jcLawHqUNbfjgUA5eWRzX95P60KbU4FxRAwDbrI/OSQjz0gXSm7FkbKi1h2MRdF4Hnv3uKoAqLBkXhnuWdJ+x2ZEpju2U/DKOZNeiVBKDhxeNNOo1ShvlqD9zEkI+D4/fPReuJvi7YE/ndXM0mrZ31yqaIW1Xw91JiNF9BMUBQCzkY+pQPxzMqMaxnNo+A+kFtTJotAw8JEIEuBvfT0ks5CPM2xlF9XIU18t7DKRHmPBziT4jXdpmste0VfZ+Xt+bVgWcu6r//s8yIVYumIhxA0xg+nL7eQCNWDItHosSO99Q6O3Ygkub8Oun51CucMLChTf1mh3/yWa2tv+tMxJxy8ju69cbolWhxr/TjqBFxcO0m+d2aQK/5+tUoLIG08fHYdHkiF5fa6DndZN/4rBUbS4np64nqZ5qONlybSdDvXcwB9tOFgEA/t+d8bhnfAj27k13iGPryY11ukj/neywjI2aaVjeFF0D4MuljWhTaqhGvZ1IL2/G4awa8HnAEzdRNrohpugyfFJLm+x6rtM1jGUN5Nia5Sp8dLQAAPC3eSPg7TaA9EUzoGsY69t1pggAcMfY0AE3nXJzEuKNJfFY9dl57DhVhLsTwweUeQgAKYX1UKrZZIch/rab7BAbzB5ndlWLlUdiHDqv91+NtB37r7H/Xg9Pj+7XWAdybKumReNIdi1+Ta3AK4vjjCp3dF5XC3tsuBe8TPx3wV7O66ZuNG3vzhWyNywnRvv02RSRM3O4Pw5mVONkbh2eunlor9vmdijrMtDP25G+rrpAukx/bc0xRyDdXjPSB+N5/UAWW7LqL7NiUNXcjl9TK/B/P6Rj37Mz4CI2Lqyr0mj1jZknxfj1OP7ujm1MuA+EfB4a5SpUt6p7TDzTaBkU1LE12GNDvAb0b+QtEiHA3Qk1LQpUSJXw8+i8z8pmthRPuI+rwfsx9rxu8majHWtzcbjaXB3vAPWGq80VHBxs6uHZpc1H8/DhYbZW7/pb4/BgUv+aJZHB62QuG0ifPozKulhDpK8LgjwkUGkYXCpptPZwiIE+TmYvqG4dE4IYfzcrj8Y+RPi4INjT/uc6XcPYj0+O5aO5TYURge64d8LAso2J46mRtmN/ehWA/jcZ7clNIwIwf1QgNFoGr/1+bcDNN7mavTOG+dt0ssOIIDbzLqvKNjNw+0Ln9f77KqUEai2DiVHeGBXSdwavqUwf6ocQTwmk7Wocyqzu+wndOJ1veAkPMjik6ALp/elvMVm37eXSRijVvTd2zKnWBdIHeHMVYD87AkBRfdcSE+WNbNZ4mLfpbhAF6ZqN2luN9MF2Xm9XaXA0i23EvCg+GG/cEY9QL2eUNMjx8dF8o183o0IKhVoLT2cRYvz695lXIhJgpO5GOxeM705JgxxKtRYSEd8ktf25gD13Y6mjiib2PRJqwvdIT0weSAfY2lxbt27Frl27kJmZiSeeeKJLba6OjQFef/11HDhwAAUFBbh06RKWL1/ucLW5jLXtRAHe3Z8NAHhhwUg8Mj3ayiMi9qJRptR3UZ46hALp1sDj8fTZBGd0F/bEtuVWt+BPXfClrwwUch2Px8Nk3QoMrg6lvaJrGNtX1dyOz06xTfCeXzACAiNrXxPHtfscGwicEGnaQOA/bo2DWMDH6fx6fcDOWGcL2ODO1KG2HfAbHugGHg+oa1WitkXR9xNsEJ3XDadUa7H7XAkAYOWUKIvum8/n4c7xbPmgHy+W9fv5DMNcD6RTbygCQKtlcL6o/4H0oQFu8HYRoV2lRXpFz0FCAMiuYhscDg8YePJNpC+7OqmkQdblZ1zWeLCX6YKEXEZ6TYsCak3vNwxszWA6rx/LqYVcqUGolzPGhHnCQyLCP25lyy99erwAxfVd54shLhSzyU+Jkd5G9ZEZE+YFALha1tTjNrm6G01D/N1Mcr3OrcgobehcjqhNqUG9TAkACPMyf1lWsxSTpNpcpvHFmSK8uYdt7PLsnGFUYoD0y0XdiTHG3xX+A6jXRgZmSowvfr5cjjN2HlwcLD5OzgfDAPNHBQ542f5gMznGBz9fLrf7QDpdw9i+D4/kQqHWYkKkN2YPoNYicUwqjRa7U9hAoKmy0Tlh3i54ICkCO08XYdOBbEwd4mtUNnlzmwrXdMGZpGjbDqS7iIWI8nVFYZ0M2VUtdnlNSed1w/2ZXonaFgUCPZywIN6wEgmmdNf4MGw+mo/juXWoaWlHgLvE4Ofm1bSitkUBJyEf4yK8zDdIYjfyalvRJFfBWSRAfD9uqvJ4PCRG+uBQZjXOFzZgfIR3j9t2LO0yUFFcRnpd12xbLpDO1TU3BT83Jwj4PGi0DOpalfB1sZ/SjIPpvL5Pl+S1ID5If80xf1Qgpg/1w8m8Omw6kIP/3j+u3697qUMg3RgJYZ7YnQJc6S2QXsPeaBpmghtNABCuyza/MSO9XJeN7ioWwMPZ/D2TzLYHqs01MN+dL8U/fr0GgK3R+8wtw6w8ImJvuDuME4w8MRLT4DLSr5Q2Qa5UG13DjJhfcb0Mv6ayHb7X3kzn3P7iMtLtvU46QNcwtqywToZvz5cCAF5YONKmS2IQ69h/rQo1LQr4uTlhYbzpl2w/efMQfHO+BJdLmpCcXYubjbiZc6GoAVoGiPZzNWlQxFxGBLqjsE6GrCqp3ZYLpPO6YXadLgIAPJgUCZGB9aRNKcbfDeMjvHCppAm/pVZg9YwYg5/L3cifEOUNJ6H9XoMQ0+HKuoyP9IJY2L/5PCnamw2kFzXgL7O6T2hsU2r0AT3TlHZhM9KL62VgGKbTNU5lMxsoDPE0XUa6gM+Dn5sY1VIFalsU8HUxfyavKQ2G87pKo8VhXamr+aOu39zk8Xh4adFILP7wJP64WoFnbhmGof0IVjMMgwvFuvdHLzeKesNlpKeXS6HVMt1mtRfp6qObqlwqV9qlrLH7QHqot7NFPhtY/q8j6dMvl8vxwk9sR96Hp0Xh+fkj6IOiDdu8eTOioqIgkUiQlJSEc+fO9bjt1q1bMWPGDHh7e8Pb2xtz5szpdfuBuKQPpBu+jI2YXpi3M4I8JFBrGaT1Uj+MWN8nyfnQMsBNI/wxOsxyNUEdRYTP9Z4AqaVN1h4OcVD/PpANjZbBzSP8MTGK/r6Rrj4/UwwAeGBSeL8DJ4YIcJdgua5f0dYTBUa9BhfwmxxjH3OYq4OaZacNR4lh0sqacamkCWIBH/dPirDaOJaMZcu7cFmYhuKSiOhvA+FwjUYnRfV/5Q83j84XNUKr7b4nRn5tKxgG8HYRwc9t4Kt1wn2cweMBMqUGda1K/eNtSg2a5CoAps1IB6Afd12rfZbucnTnChsgbVfDx1XcJXN8VIgn5sYFgmGAj47k9ut1q6TtqJYqIODzkBBu3OfeYQFucBYJ0KpQ6xuK3qhIV3aGq/8/UD3VSNfXRzdh6aPeUCDdxuxNq8Tfvr8ChgEeTIrA+lvjKIhuw7799lusW7cOGzZswKVLl5CQkID58+ejpqam2+2Tk5Nx//334+jRozhz5gzCw8Mxb948lJeXm3RcSrVWv8QmMYoy0q2Jx+NhbLgXAFBw0YaVN7Xhx0tsPc6nZ1NtdGPweDyMj/QC0PsSP0KMlV7ejD+uVgIA/j5/pJVHQ2xRVpUU5wobIODz8ECSacu6dPTw9GgI+Dyczq/Xl2jpD64+OreSx9aN1GVaZlMg3aHt1GWjLx4TbNUSPlzW5cWSRtRIDW+CeKGIkojIdQzD4Fwhe9OyP/XROfGhnhAL+GhuU3Xb2BCAPng4xETZtk5CgT7jvGPday4b3VUsgIfEtKubfSmQbtMOZrDZ6LeMDOi2xvhfZ7OrqP+4WonqfpwvuQahwwLcjF4xLxTw9SsxuKa7N+Ia50b7uRq1jxtxNdLLG9ug6XCDi2vGG0KB9MHnUEY1/vr1ZWi0DO5ODMMbS+IpiG7j3nvvPaxZswYPP/ww4uLisGXLFri4uGDHjh3dbv/VV1/hySefxNixYzFy5Ehs27ZN32HalNIrmqFQa+HtIkKMiU5axHhcncbLJU1WHQfp2afH8qHSMJgS44tE+gBmtATdEr9UmuvEDLjm60vGhiAuxMPKoyG2iMtGnz8q0KwlU0K9nLFQVz96+8nCfj3Xnuqjc4YGsB+UC2pbwTDdZ2YS+9YoU+L3qxUAgJUm7i3QX0GeEoyL8ALDsKWaDFHV3I7ypjbwecBYqo9OwGasVksVEAl4RtXMFwn4+tU4aeXd3zDlylZEmfDzdrgPGwjkSlUA7PwG2PeGqeNDfm5iANA3aiS2g2EYHNCdA+eN6r5nxegwT0yM8oZay+BrXaNoQ3Ar5ccMcBX2iED2JlJ3N9pbFWp9k3KubNFABXpIIBLwoNYy+htMAFDRbNlAOhXrtRHHcmrx5FeXoNYyuD0hBP+6a4xRnXOJ5SiVSly8eLFTN2g+n485c+bgzJkzBr2GXC6HSqWCj0/3gTuFQgGF4vrdYalUCgBQqVRQqVT6x7n/5/57vqAOADAu3AtqtbofR2V7bjw2ezQ6hL0Iu1zS2Ovv7cb/J5ZR09KOr3U1lykbfWBo9QUxl3OFDTiWUwshn4d1c4dbezjEBknbVfjlMrvCb8XkKLPv79Hp0fjjaiX+uFKJfyyOg7er2KDn2Vt9dIDNAOPryg3UtigQ4GEf4yaG+/FSGZRqLUaFeOj/llvTwvggXC5pwp/pVVgxJarP7blav7HBHnBzohAHuV7WJSHMCxKRcTXz40M9cbWsGenlzbgtIaTLzwt1gXRTZdsC12ugdwykV+gC6cEmrI/O0Zd2aaGMdFtzrUKKiuZ2OIsEmNFLf5LlkyNxvqgRu1NK8NTNQw3qb3FVd3NotC4Jylhck93uAuncqgofVzE8nUUD2g9HwOch1MsZRfVylDW2IcybzVDnAvYBFlpNRX9lbMCZ/Ho89vkFKDVaLBgVhH/fm9Dtsg1iW+rq6qDRaPSdoTmBgYHIysoy6DVeeOEFhISEYM6cOd3+fOPGjXjttde6PH7gwAG4dNMM5ODBg+zPc/kA+JDIq7B3716DxmLruGOzR0oNwIcA1S0K7P55L7xuOL93PDa5vPulg8R8tp0ohFKtxfgIL31zWGKc0WGeEPB5qJK2o6q53W6CRMT2fXA4BwBwz4Rwk2W1EMfy48UyyJUaDA90s0jt8XER3ogN9kBmpRS/XanAQ1OjDHoe1/wuyYhSA9YiFvIR7uOC4no5CupkFEh3MAzDYLcuk/GBpAibWBG9YFQw3tqbhZTCBjS3qfoMwlwv60IlLQmLC6RPHMC5dnQom63bU0a6OQLpwV7s+bWy6XqZjipdtm2wGa6rKSPddh3QlXWZMcyv15tBC+OD8YZbJmpaFEjOrsXcuMAetwXYc/5VXRnOhAFmpI8MYleIdlfapaiOjWtEmag+OifQQ4KienmnUjY1UoX+Z5ZAgXQru1DUgEd3nYdCrcXskQH48P5xVumQTizv7bffxjfffIPk5GRIJN2/4V966SWsW7dO/71UKtXXVffwuL6sXaVS4eDBg5g7dy5EIhE+/PAUABmW3jQBs4b7m/tQzOrGY7NXn5WeQUZlC7yHjdcvB+/u2LhVB8QyGmRKfHmWLQXw9OxhNvHh0Z65iIUYHuiOzEopUksbscAz2NpDIg7gQlEDTuXVQ8jn4cmbhlh7OMQGabUMvtCVdVkxOdJi5/J7EsPw+h8Z+P5iqcGBdH0zeDtriBjt54riejkK62R2U9udGCalsAEFtTK4igX6Rp/WFuHrghh/VxTUynA6rw4LR/d+PXFR975KtLP3FblOplDjg8O54AGYMsQX04f6QTiAuMhl3erIgdxc4QLp6eXNYBimy98WswTSdVnnnctWcBnppg8S+rpSjXRbxdVH76msC0cs5OP2hBDsOFWI365U9BlIL2tsQ5NcBZGAhxG6GufGGh7ElnYpqpehXaXpFPDnGo1GmTgBhkvU4koeAewKcwAI8KCMdIeXWtqEVZ+dh1ypwYxhfvj4wfEQCymIbi/8/PwgEAhQXV3d6fHq6moEBfV+stu0aRPefvttHDp0CGPGjOlxOycnJzg5dT0ZiESiboPKIpEIKoanb3wyJsLHroPPHfV0zPYiIdwLGZUtyK6R4fYbjqPjsdnzMdqjz04VQq7UYFSIB24aYd83nWzF2HAvZFZKcaWsGQviKZBOBu6Dw7kAgLsTwxDuY9qsFuIYTuXXoaBOBjcnIe4cH2ax/d4xLhQb/8xEerkUmZVSxAb3Xrtfqdbql1OPt7M6ztF+rkjOrtUHjojj2J3CZqPfPjbUpsqizBzmj4JaGY7n1vYaSJcr1cioZBNRKCPdfn1xthifHi8AAPzveAFGBLrj7btGY1xE/3+nzW0q5NW0AsCAShUND3SHWMCHtF2NkgZ5pxVxjXIlmtvYkpymDBSG6DLSKzplpOsC6Wao/+znzgXSKSPdlpQ2yJFZKQWfxzYa7cuSsWwg/WBGFWQKNVx7OZdzjUZHBnnASWhc2SOOv5sTfFzFaJApkVfTivjQ6xnu5ughAABBuqzzKl1GulKtRaOcfS8GuFsmI52itlZyraIZK7enoFWhRlK0Dz5dMcHo2l3EOsRiMRITEzs1CuUah06ZMqXH573zzjt44403sG/fPkyYMMHk48qslIJh2PpQljqRkL5xH64zK7vvaE0sr7lNhZ2nigCwtdEpG900uCaQ3dXKI6S/LhY34kRuHYR8Hp66mXoYkO5xTUbvGm/ZQKCPqxizdR9wf79S0ef2GZVSKNVaeLmITJrBaAlc8/qCWgqkO5IGmRL70tlmdg8mRVh5NJ1xq2qP59T12uT2WoUUGi2DQA8nizWaI6bHzUMBnwdPZxGyq1uw7NOz+ONq3+fWG13RZaNH+rrA1834DFWxkI9hPTRT5MpWBHtK4Cw2XRynu4x0Lts20AzZtr66/h6UkW5buLIuE6N8DOrBMibME1G+LmhXafWZ7D25Wt4EgC3JOVA8Hg/Dde+RG8u7FNez75FIM5R2AaAv7VKrm7siAQ/eLpZJSrSdW86DSE51C1ZsPwdpuxrjI7ywfdVEk558ieWsW7cODz30ECZMmIBJkybh/fffh0wmw8MPPwwAWLlyJUJDQ7Fx40YAwL/+9S+sX78eu3fvRlRUFKqq2AsGNzc3uLm5mWRM1yrYjIyOdwOJ9XH1w7IqqXSLrfjiTBFaFGoMC3DDvLjeV5EQw8Xqlghm0ly3SSqNFldKm3ClrBkZFVLUtLSjvlUJBoBYwIOfmxPCfVwQF+yBSdE+iPR1sepNJi4bfen4UMpGJ90qa5TjcCb7oXHFlEiL73/R6GDsv1aNfelV+Pv8Eb2+Xy6XsOUnxoV72d3N22g/9jq1sK7VyiMhpvTDxVIoNVqMCfO0uc8OSTE+EAv4KG9qQ0GdDEP8u/+slKbLrhwd6mXB0RFTqmxuQ2ppE3g84MxLsyEW8PH3H67iYEY1nv0mFZ7OIswYZvjK0cslTQDYc+1ADQtww7UKKXJrWjFv1PXHi+q5+s+mvSnKNRttlKvQptTAWSxAXQubLe43gJsCPfHXZaQ3yJTQanu+YUUs62AGGyfqq6wLh8fj4baEEPz3SB4OZFThjnE9l+nizpkDrY/OifZzw9mCBv17glPWyH4fYeLr9xtLu9ToAur+bk4Wu7aiQLqFFdS24oGtKWiQKTEmzBM7H5lkU0voSP8sW7YMtbW1WL9+PaqqqjB27Fjs27dP34C0pKQEfP71hR+ffPIJlEol7r777k6vs2HDBvzzn/80yZjSdUuGR4X0vryYWNbIYDa4WNHcjia5El4ufd9ZJuYjU6ix/WQhAGDt7KHgU4NnkxmuC6RX0ly3GQzD4EJxI749X4pDmdVo0i1/NESUrwuWjA21SlmVyyWNOJ5TCwGfh7U3D7Povon9+CqlBFoGmDbUF0MDBlbr0xizRwZALOCjoE6GnOrWXuuNXtIFd8YbUarA2riMstKGNgq2OAiGYfD1uVIAwAOTbCsbHWD7rkyM9sapvHqczK3rOZBezgXSbetGADHcgWvszdDECG/9iur/LU/Es9+m4rcrFVi7+zL2PzvT4Cb2l0t1Ny1NcK4dFsie0/NrOt9E1AfSTby6yMNZCBexAHKlBpXNbYj2c0W9jM24HUh2fU+8ddfpGi2DVoXa5K9P+q9RptQ3y53XR73zjmaPDMB/j+ThRE4dVBptt70XGYbRJzvFBZvmnMk1Ey2uv75iTa3R6kuvhJp4pdD1jHT2fVHTwv7X34KN0CmCa0El9XI8sDUFda0KjAxyx+ePTIKHhOoh27u1a9di7dq13f4sOTm50/dFRUVmHw9XI5AC6bbFQyJCmLczyhrbkFnZgilDqFGXNe1OKUGjXIUoXxcs7qOBFemfjnM9q6qFmtJZEcMwSM6uxX8O5ejrIQKAt4sIiZE+GB3qiTBvZ/i6iSHg86BQaVHd0o7iejkulzTiSmkziurl+OBwLj46moclCSFYO3soYnoIZpjax8n5AIA7x4UiwsTLQoljaFdp8O15NhC4YnKUVcbgLhFhxjA/HM6qwZ/plb0H0otNF9yxtCBPCfg8QKnRoq5VAW9nWk1r787k16NQ11vgtoQQaw+nW1NifHEqrx7nihp6bOjLBdLHmCi7klgeV9ZlQfz17Fs+n4d37xmDwjoZ0sqb8cKPV7Hz4Yl9ZpwyDHM9I90EvSiGBrDXPLk3BNIrmtjSK+E+pg0S8ng8BHtKkF8rQ2VzO3xcxVBp2JuXvgaU+OgvsZAPZ5EAbSoNmtoMT7Qg5nMkqwZaBhgZ5N6vJJaEMC/4uopRL1PiQlFjt/GG2hYFGuUq8HnQly0aKK53QFGHHirVLQpoGbbciqlXUnA31Gpa2qHVMvpAeoC7ZRqNAhRIt5jypjY8sO0sqqTtGBrghi9XJ1GWHjE5rZZBfg17AhseaPmsLNK72GAPXSBdSoF0K2pXafDpCbaZ0ZM3DYWwm7v1ZGBGBrFzPatSSoF0Kymsk2H9r+k4kVsHgP2gdOfYUNw5PhQTIr0NmvcyhRoHM6rx3YVSnM6vx0+Xy/H71Qo8Oj0Gf71lKFzE5ruMzK9txSFduY7HZ8WYbT/Evu25WokGmRIhnhLMie27GZe5zI8PwuGsGhzNqsGzc4Z3u02NtB3lTW3g8YCEcPsL+IkEfAR6SFDZ3I6ypjZ4O1vmhhoxn+8usDehbh8b0mtjOmuaEOUDALhQ1ACGYboEUWUKNfJr2QCnrZWmIYZpkCmRUlgPAJh/QxkLJ6EA/1mWgEUfnsSxnFocza7B7JG9Z+gW1snQ3KaCk5CvL605EFwgPa+mtdNqnPJm82TbAmzDxPxaGepaFfra5e4Sodl66nm5iNDWrIG0jTLSbQFX49zQsi4cPp+HWSP88dOlchzNruk23pCpq/Uf5edqsvkU5ccG+zuWduFuNAV7Opt85XeAuxN4PEClYdAgV6JWl/luyUA6RQ8soFrajge3nkVZYxuifF2we3WSWepbEVIpbUebSgORgGfyWlRk4Lja0dSE0bq+u1CK2hYFQr2ce60fR4wXqytllEVz3eIYhsFXKcVY9MEJnMitg1jAx2MzY3Dmxdn4191jMDnG1+CbR65OQtwxLhS710zGb2un4eYR/lBpGGw5lo9FH5zQlxIzh20nCsAwwJzYAKuU6yD24fOzbJPRB5IirHpTlGuKeLW8GY0yZbfbcKtChvq7wd1OV6RyASPuAzKxXy3tKuy7xmYB3zsh3Mqj6VlCmBdEAh6qpQqUNXadd9cqpGAYIMhDoq/1TOzLoYxqaBl2NXV32bdDA9zx8LQoAMBbe7Og6aO0FJeNPjrUE2LhwP8uRPq4QCTgoU2lQXmHcx93HgzzNn0g3deNTbisbVGgrpX9m+JvxviRpzP7N6m5nTLSrU2p1uJEbi0AGJUgcPMI9jnHc2q7/Xl2FVu9INYEN5k4kT5sRnpzmwpNcna+luvO1yFepi+3IhLw4evKvh+qmtv1zUYt+TeAAulmVteqwANbz6KoXo4wb2fsXjMZARas3UMGl4JaNhs9yteVsmxt0JAArlGXrI8tibko1Vps0ZWLeHxWjEkusElX3IqYG5fBEvNqV2nw3LepeOXndLSpNJg6xBeH1s3Cy4tiB1xXc0yYFz57eBK2rZyAEE8JiurlWPrxaXxzrsREo7+utkWBHy+VAwAemznE5K8/WGzevBlRUVGQSCRISkrCuXPnetx269atmDFjBry9veHt7Y05c+Z02X7VqlXg8XidvhYsWGDuw+jR1bImXCltgljAx31Wru8c6CHByCB3MAxwMq+u220coRl8qC5gVN5NQJPYl71plWhXaTHE39VkDefMwVks0L9nzhc1dPk5V9bFnt9Xgx13Q2dBL9m3T908FJ7OIuTVtOqbMPbkalkTACDBBI1GAUAo4CPG73pWOgBoGKBKV5851Mv0yWtc0mW9TKnPSDdnIqYHF0jvRw8dYh7nixogU2rg5+aE+JD+n9eSYthVPNnVLd3+Prkkp97K0PWXs1iAIF2Mk8tK5246hZhhxQYA+OluNjXIlGiUscfpY4bSRz2hCIIZNcqUWL4tBfm1MgR7SvD1mslmm0iEAEC+LkDbUzMeYl3cRViBnQbSTR2UsYafL5ehorkd/u5OuMeGM7DsXbRf11p5xLya5Ow1xy+pFRDyeXh1cSy+fDTJ5LXF58QFYu8zMzA3LhBKjRYv/pSG9w5kg2FM13xw1+kiKNVajA33wsQo+6slbQu+/fZbrFu3Dhs2bMClS5eQkJCA+fPno6amptvtk5OTcf/99+Po0aM4c+YMwsPDMW/ePJSXl3fabsGCBaisrNR/ff3115Y4nG59fobNRl80OsgmVnrOGOYHAPpMshtdq7D/ZvDc55hyyki3ez9cLAMA3J0Y3mfNaWubyJV30fUY6CiTekPZtZZ2FU7qStB1rI9+Iw+JCCsmRwIAtp4o7PU1r9+0NGHGre5aqqSBDRI2K9nmnCIBzyzlJLjM2roWBep09Z/93M0XJKSMdNtxNIu9TrtphL9RJVEC3CWI8XMFwwAXirvefMyqNH0gHYD+8wbXcJRbsWGO0kfA9aB5o1yJBl0WvLcFS2dTIN1MmttUWLnjHLKqWuDv7oSvVif1q1EAIcbI12Wkc7XciG3h6ofVtSogtbMLFXMFZSxJrdHqmxf+ZWaM2eoMErbuHsBm0jRT4yKza5arsHx7Ci4UN8JdIsSuRyZh9YwYk9ck5Hi5iPHpikT89ZZhAIAPj+Thtd8zTBJMlyvV+EJXruPxWTE2H+CxVe+99x7WrFmDhx9+GHFxcdiyZQtcXFywY8eObrf/6quv8OSTT2Ls2LEYOXIktm3bBq1Wi8OHD3fazsnJCUFBQfovb2/r3OhokCnx25UKAMCKKVFWGcONZgxjy7ucyqvv9udccGeUERlmtoJKuziGojoZzhc1gs9jmznburG6zOLuyonlVpsnKEQs42h2LZQaLWL8Xfv8/LpyaiTEAj4uFjf2WFpOq2WQobu5Ykw2b0+4OE6pLpDeyMa2zVL/GbjeVJStka7UPWa+G8ZeukA61Ui3viPZ7Gfr2SON7/syKZq9+XiusHMgXa3RIk/XU2Kkic+Z168P2nX/tUwgvb5VqS8nY8lAum12FbFzrQo1Vn12DmnlzfBxFWP36iTEUIYwsQCutMuQAFcrj4R0x10iQoC7E2paFCislSEuyH5+Tx2DMgCwZcsW7NmzBzt27MCLL77YZfuvvvqq0/fbtm3Djz/+iMOHD2PlypVdtlcoFFAoFPrvpVL2IlilUkGluh6I5f6/42OG+vVKJYrr5fB2EeGe8cFGvYY5DeTYbI0TH/B3E6O2VYm8qmbEBrIfQLr7XZKBaVWosXJHCtLLpfB1FWP3mskWCSjweDysmzscgR5OeOXndOw8XQR3iRB/mzdiQK/7W2oFmttUiPBxwdy4/jVZIiylUomLFy/ipZde0j/G5/MxZ84cnDlzxqDXkMvlUKlU8PHx6fR4cnIyAgIC4O3tjdmzZ+PNN9+Er2/3DYXNeV7/OoVdtTAqxB2jg11t4nwyJsQNAj4P5U1tKKlrQbCnRD+uWqlcn8U93N/ZJsZrjCB3NthS1iDv9vdmr8c12Px0ic1Gnz7MH0Getl9ylAuIZlW2QKXRQqQrX6nVMvoScsMD6bO2Pdqffr2sS183zgPcJZg7KhB7rlbip0vl3ZbzKayXQa7UQCLimzT+Eq4ra1XayAbSGxTsWM0VJOxY2qVeZv7SLlxGelObCrRe13qK62UoqJVByOdhum6VmzEmRfvgm/OlSLkhkF5UL4NSrYWLWIBwb9Mm+Qbr/pZUNrPXOlxA3VwVOTplpOtKu3i7Wq7/DAXSTaxNqcEjO8/jckkTPJ1F+PLRJAwLpDvkxDIKqbSLzYv2c2UD6XX2E0g3Z1CGs3HjRrz22mtdHj9w4ABcXLr+oT948KCBo2dpGeDdKwIAPEz1bUfyoQP9er4l9ffYbJUHT4Ba8PDL4dMo82czlTsem1wu7+mpxEBaLYNnv0nFlTL2xv1Xa5IsnpX3YFIktFoG//j1Gv57JA/Bns54IMm4etUMw+jLdayYHAmBmTLqHV1dXR00Gg0CAwM7PR4YGIisrCyDXuOFF15ASEgI5syZo39swYIFWLp0KaKjo5Gfn4+XX34ZCxcuxJkzZyAQdF3hY67zupYBtl9mz+djnJvw559/GvQ8Swh2FqBMxsOOX49inN/1FRpf7TkGQABfJwYnj9rvOb5SDgBCFNe16H9fdF63L1oto+9BcXdimJVHY5hwH2e4S4RoaVcjt7oVcboyLuVNbZArNRAJeIj0tY9ranJdu0qDo7rs297KunS0dFwo9lytxG9XyvHyopFdeoJxK39GBnmY9BriekY6GyTkMtJDzdBoFAD8OpR2uV7/2XxBQk99RroKsFxSL7kBV9ZlQpQ3PAbQlHx8BLtaMKNS2unmY17N9ViRqVdSBN+Qkc4F1M11s5bLPq+XUUa63WtXabDm8ws4V9gAdychPn9kkv4PPSHmptQAtbqlXxFURshmxfi7IaWwAQW1rQCMX7JlSeYKynT00ksvYd26dfrvpVKpvhyMh8f186hKpcLBgwcxd+5ciESGX2Dsu1aN6rNX4C4R4o2VN8N9ABcn5mLssdmqk8pryL9YDq/wYZg7I7LLsXHZqcR4mw5k41BmNcRCPrY/NAEjg6xzzbFiShQa5Sq8dzAHG35Lx4ggNyRGdn/TrDeXSpqQUSmFk5BvNwEeR/T222/jm2++QXJyMiSS6x+A7rvvPv3/jx49GmPGjMGQIUOQnJyMW265pcvrmOu8fjirBg1nU+HpLMRLD9wCZ7HtlOm6oM3EFyml0PpGY9Gikfpjcw0dDmTkI3FIIBYtGmvtYRqtUa7E21eS0abhYdbNt+DY0cN0XrczF0saUd7UBncnIebFBfb9BBvA4/EQH+KJMwX1SK9o1n++zq1hy7oM8XfTB4qI/TiRWwe5UoMQTwlGG9gsduZwf/i6ilHXqsSZgnp9SS2OuXpRRHQo7cIwDBrNnJGuL+3SoUQi1xDUHDxddDXSKZBuVUez2R4rN48YWIwgwscF7k5CtCjUyKtpRWww+37gki5j/E1/4zGkQ0a6Qq2BtJ0tE2SOHgIA4KtrNlraIIdayyYuUCDdDinVWjzx5UWczKuDi1iAnY9MNFmnaEIM0cjG0OHmJNTfVSa2J+qGZjWDQU9BmY6cnJzg5NT1D61IJOo2sNLT491hGAafHGMbEz08NQo+7rZ9o6k/x2bLYvzZzOiSxnb98XQ8Nkc4Rms6nlOrr/n/zl1jMC7Cuk05n549FFlVUuxNq8ITX17CgedmwqufF7Rf6mqj35YQAm9X+iRnLD8/PwgEAlRXV3d6vLq6GkFBvWf9bdq0CW+//TYOHTqEMWPG9LptTEwM/Pz8kJeX120g3Vzn9d3n2WzaZRMj4OFqW2UpJsb44YuUUqSWNXc6loJ6NkMrLsTTrs99fu5CCPk8qLUMpEr2gyud181LodagpV0NZ5EArk4D/+j+h663wNxRgXbVK2ZUiAfOFNQjo+L6zZqcarasC63+tk/7dGVd5sf3XdaFIxLwMTcuEN+cL8WRrJqugfRy8/SiCNOVwWhRqNHcpoZUV8XKXNm2XBkXpVqrLwtmzs/3brpzS6tCY7Z9kN7JlWqcKWB7rAykPjoA8Pk8xIV4IKWwAWnlzfpAepEukB5lhhU8wZ7sTaXK5nZ9XX+RgGe2ecsFzfN15b0kIr5FEyvo1q0JqDRaPP31JRzNroWTkI/tD000KhOLkIHgarWFeTtTczYbFnLDsid7YIqgzIEDB/oMypjL0ewaZFRK4SIW4OFp0VYZw2DEZe+UNVJTOlNrlCnxf99fAcCWQLnDBprF8Xg8vHt3AmL82fJVG3671q/n17cqsOdqJQBg5ZRIcwxx0BCLxUhMTOzUKJRrHDplypQen/fOO+/gjTfewL59+zBhwoQ+91NWVob6+noEBwebZNyGKKyT4XhOLXg8YHmS7c2T8RFeAICMCikU6usBiXxdcy97bwbP5/P0WWB1rYo+tibGkinU+OxUIZZ8dBJx6/djwpuHMGrDfkz/1xG88UcGyhqNS8bQaBns1QUvbxsTYsohm92oUDYQ1DmQzmakD7fz99VgpNJocSiT/VyxYFT/+qHcrAsyHsmq6dLknGs0auqMdGexQB/cLm9qQ7OS/aztb6a65RIRH2LdKgsu+cqcgXTuJp1cSc1GreVMfj2Uai1CvZxNcq3ArfK41qExr1kz0r3Ym0oNMiXKdHPWz83JbHEprkZ6RTMbU/GxYDY6QIH0AdNoGaz77gr2X6uGWMDH1pUTMGVI902XCDGnBt3nmTAz1WojpsEF0rnsAntgqaCMOTAMgw8P5wFgA46U5Wo5wboLqko7muv24vU/MlDTosAQf1e8vCjW2sPRc3US4r17x4LPA35NrcCfaZUGP/fny+VQarQYE+aJMWFe5hvkILFu3Tps3boVu3btQmZmJp544gnIZDJ9w+iVK1d26nvxr3/9C//4xz+wY8cOREVFoaqqClVVVWhtZQPAra2t+Pvf/46zZ8+iqKgIhw8fxpIlSzB06FDMnz/fYsf1ha6G/k3D/RHha3uri0K9nOHpLIJayyBXly3LMEB+7fW6pPaOCyZxGWfEtA5nVuOWfx/Da79n4EpZMzTa64HCssY2bD9ZiJs3JeP9QzmdfmaIlMJ61LYo4OkswrShxjeys4ZhAWzWeUFdq/4x7n1l7zeoBqOUggY0t6ng6yrGhKj+JSBOH+oHsYCP4no5CnSBQYC9Id8gY89Lw8zQfDbQgz331bQo0KLLSPc3U9kKHo/XpZSLJTLSZZSRbjXHc9iyLjeN8DdJ8Jlrxpve4eZjYT37fon2M30g3dNZBImIDS9zvQrM2SDX54bP9P1dBTtQFEgfAK2WwfM/XMXvVyog5PPwyfLxmDncv+8nEmIGDe1cRrrtfbAk13G19Kqk7VBrtFYejeFMHZSxlNP59UgtbYKTkI9HZ1A2uiWF6Jb4Vbco+v1hn/TsXGEDfr5cDh4PeO/esTZVHxoAxoZ74YmbhgAA3vgjA21Kwz6U/aRrfnfPhHCzjW0wWbZsGTZt2oT169dj7NixSE1Nxb59+/S9LkpKSlBZef1GxyeffAKlUom7774bwcHB+q9NmzYBAAQCAa5evYrbb78dw4cPx6OPPorExEScOHGi2/It5iBXqvH9xVIAwMopURbZZ3/xeDzEBrMBv0xdZmSLCpC2q8HjmefDq6VRIN08GIbB5qN5eHTXBVRJ2xHh44I3lozCqRdno+CtRbiyfh4+XZGIaUN9odIweP9QLlZ9dq5fGaTcqp/5owIhFtpXGIB779S1Xm8sV6ILClGjUfuz7xo7F+eNCux3U1BXJyESI9lydikFDfrH83QlHsK8neEiNn0F40APNkGkWmr+QDoAeDoLb/jefIF0F921pIwy0q3mZF4dAGDGMNPc5BwRxF6L5Fa3gGEYtLSrUNvCZl5GmeFahMfjwdeVfT9kV7Grhcz5/rixHrq3GZvxdodqpBuJYRi8+ms6frxUBgGfh//ePw63xNpHwxbimCgj3T4EuDtBJOBBpWH0zWHtwbJly1BbW4v169ejqqoKY8eO7RKU4fOvfyjrGJTpaMOGDfjnP/9psXH/90guAOD+SREIcLetWrqOzt/dSV9Lt6aFSgCYgkbL6Eum3Dcx3GZ7sTw9exh+uVyB8qY2/O94Pp6dM7zX7TMrpciolEIk4OG2MZYrE+Lo1q5di7Vr13b7s+Tk5E7fFxUV9fpazs7O2L9/v4lGZpxfUyvQ0q5GhI8LZtlw4srIIA+cLWhAZmUL7kgIQnUbGyQK93axq5rUPeEC6fWtClD40nQ2H83DpgM5AIBVU6Pw4sKRneaLp4sI80YFYd6oIPyaWo6XfkrDidw6rNpxHp8/OqnPuaXWaPU1qW+1s7IuABs8DfGUoKK5Hfm1MgwL5KFRzkYzbXF1CumZVstg/zW2rMv8fpZ14UyM9sGZgnqcL2rAA0kRAIBcXSB9mJlWKHBNE3NqWqFh2PO6OTNub8xIN2ezUTd9aRfKSLeGKt15jccDpsSYJpAe7ecKHo+9kV8vU6JKVwLFz00MD4l55pKfmxjlTW3I0pXd8nMzX5a4m6RzKNvNBD1E+sO+bkXbCIZh8PofGdidUqLLCEvAwtH0wY9YV4OZu4cT0+DzefrGNBV2VvJi7dq1KC4uhkKhQEpKCpKSkvQ/S05Oxs6dO/XfFxUVgWGYLl+WDKKfL2rA2YIGiAQ8PDYzxmL7JSwBn6fP3uEu3sjA/HG1ApmVUnhIhPj7/JHWHk6PJCKBvuTMlmP5+gyYnvx8mc1Gnz0ywOJLM4l9YBgGn+vKuqyYHAl+PzMYLSlO19Qrq4rNSK/W/al3lPITfu66Guky+0kGsHW/XanQB9FfWRSLf94+qtfA+JKxofhydRLcJUKcK2rAKz+nd6kVfaPzRY2olynh7SLCVDstQxqjK42UX9uKknq2Bq+vq9jiARQyMJdLG1HbooC7kxBThxgXNJwYxWaknyvsmpFurnNtgO6alqvT7+0iMuvKjo4Z6K5iAUQC8+3LVd9slDLSreGULht9TKgnPF1ME+SWiAT61cEFtTIUWWAFj68bl5HOvkfMmZHuIhKgYwUcUzTj7g8KpPcTwzB4e18WPjtVBAD4111jsGSs9Zt8EcItMQvwsMwSa2I8rqt1BQUXzeqjI2xt9LsTw/S16YllBetuGlXSXB8wjZbBh4fZFRZ/mTWkS21AW7NodBASwr3QrtJi28mCHrfTaBn8ogukLx0fZqnhETtzobgRmZVSOAn5uGeCbc+TWF0gnSvtUqPLSB9ihuZe1uBPpV1MqrRBjld+SgMAPD5rCNYYeON/fIQ3PnkwEQI+Dz9eKtPfkOzJYV1jx9kjAyE0Y0DOnLj3UH5NK0p1zewoG93+cCsjbokNMDoQPT7CGwI+D+VNbfpkjTx9Rrq7aQZ6A65GOtfQ1JzZtkDnQLq5kwxcdaVwVBoGavupPOowuEC6qXtXDNHdVCqobdUn8Jkz6ZL7bNKuYicRV+rFHPh8Htw6lHByp0C6bXv/UC7+d4z9QPjGHfG4l2p5EhvAMAykXK02NypfYeu4pYH0IdR8rpY14VhOLQR8Hp6YNdTawxm0gnUXa5VSCqQP1N60SuTXyuDpLMLKKZHWHk6feDwe/jqbfe99caYYjT1kr14oakCNrvndzSMCLDlEYke4bPQ7xoba/KqFIQFssK9RrkKTXIV63YIMc9QktQbug3KTrqwGMR7DMHj55zS0KNSYEOmN/5vXexmsG00f5ofn5gwDwDah7m31z5GsGgBs8NJece+hkgY5irlAug8F0u0JwzDYd40NpC+IN66sC8Bmn3I3VjIqmwFcD6QPMVtpF/YzdpsuSGjOsi4AOpXfcJeYN0jo4nR9BQz1G7UshmH09dGnmziQHqM7ZxbUyVDRxH4WM2dyma+bZeuWdyzvQhnpNuzj5Dx8oMsGe3VxLFZMtv0PsmRwkCk1UGl1tdrcbfsDJunYqIvqRpsLl42+JCGEspWsyF9fS5duGg3U9pOFAICHp0XB3Uy1DU1t9sgAxAV7QK7U4Jvzpd1uw9VJHUhmGnFsNdJ2/JnGNqZbYQc3kVzEQv0N85IGOeoVjtUMngvutLRTIH2gjmTV4ERuHcQCPjbdk2BUpvhfZg1BXLAHmuQq/OdQTrfbFNS2oqBOBpGAZ7JGdtbAZVJWNLWhhALpdimjUorShjZIRHzMHGCvC66MVkaFFDKFGlW6pI2h/uYJpN+Yge5tohIcPelU2sXMQUKRgK+/BlNQRrpF5dW0oqZFASchH+N1TXRNhbvZVFAr02ekh3iZL+nS74YMdHPVYud0LOtFgXQbtf1kId7Zlw0AeH7BCKyeQfV2ie3gArKuYoFZupQT0/KnjHSzyqqS4kBGNXg84Mmbh1h7OIMal5lQT7V0ByS9vBmppU0QCXh4MMn2A4kcHo+HVdOiAABfnyuBVtu5hi/DMDiQwWamzYszPjONOLavz5VCrWUwPsIL8aGe1h6OQaJ0NUiL6uUO1wyeq9/a3Ea1dAeCYRj8a18WAODh6VFGr1gQCfh4bckoAMB350v1tcM74rLRk6J97eZGbHe4TMqO5TyodJ992a8r6zJzmP+AP7OOCmH/HmRUSlHayM57T2eRyWpM3+jG1VCeZmz+CXQODEpE5g/bSXSBdBUF0gesvlWBjX9mYunHp/4/e/cdHlWZ/QH8e6em995IIAklQIBAQhCkEwQLVrBRRNxFcXWzuwr7c2V1XXFX13VVFEUQwYa6thWkGEFAQgKE3tML6W1SZyYz9/fHnTskpJCZ3Gl3zud55tnNZObOe/HknZlzz3teLNmcje9OlvW6j8URQ5//pEG+gm9IHu577eIj32aTbzFrCde3nbTm3whtNmqHth0pwt9+OA8AeGpmHB6fRm0CiH3hE7LXL6ch9imAkosW9c6+PADAvJGhiLVQn0TSP/6GD1R1FOsD8ml2MQAgLSHEohv3WMJto8Pg6SJDcV2rcekq70JFE0rrucq0qQOsTCPipNXp8Wk219ZlyaRo2w7GBPxKqDNljVDrxLUZPF9hpqKK9AHZf6kalyub4aGUDfi75YRoP9wcH4gOPYt3f8nr8bUAbpWQI+MvRtU0a1Bk2DgvmPaGcij8KrSBtHXhXduPogkldVy1baSf5eZZn+uSgpZPEl5LqroKnGDtidLwGtQjfWByq5ow/81DeO+XfOQUc61Gn/r8JNK/OAWdvnsyPaeoHgAwPtpP8LHwSfPyxjaUN1q+It3aiXRPau1iv744VoK/fHsWAPCbqYPxtKEPHSH2hE+kW7pXGxFGALW7sJj86mb8cPoqAOCJ6XTR09b43dvrWinWzaXp0OOHU1xMP5AcZePRmM5VIcXdhk1E/5tT2uV3GRe55M6UuEC4Kiz/JZE4nr3nK1GpUiPAQyFI4sVaog2J9Mx8rtIswEMheKWZrfBfjFXtHeilwI70w8aD3J5b9ydHCpJseGIatwLv2xNlXS5yqDt0OFbExaEjt3UBuNhzN7xX5FVziXS+bzWxf/nVzbhU2QSZhMHMYcEDPl6soRd6SV0rCmu4eIi0YAstr+v+Tr1cLZu465w8V1ojkW6oSKdEuvka27RY/tExVKjaMTjQHa/fl4jfzYyDTMLgmxNleH3vpW7P4efn8QK3dQGAMEMivb5Va8wXhVmwIt3jul7+lk6ke1BFun367mQZnv3vaQDA0knRWD13GBiGsfGoCOmOb+3i704V6Y6AeqRbzrv786BngZnDgjAizMvWw3F6fGVCHV00MtuRgjqo2jsQ4KFEymB/Ww/HLLclhgEAMi5UoV17bRcrPslIm4yS3nx0uBAAsGhCFJQyx0lERxr6Nl+q5Da/E0s1OnAteaTTs9RL10yl9W04nFcLhgGW3hQjyDGTY/wQH+yBNq0OXx+/dtHyVEkj2rV6BHgojIlHR8UwTLdWLsFelEh3FHw1euoQf0HarwR5KuEil6BDz+JIfi0Ay7bQkkoYeHVKFHpbuE1S5wpba1Sk8z3StXSB1Gxv/HQZRbWtCPdxxVe/nYS7xkUgfXY8/nVfIgDue+qFcpXx8VWqdpTUtYFhgDFRPoKPx8tVBrdOhSoKmQQ+Fuztf/2muNdffBIaJdLt0I9nypH+xSmwLPBAShTW3jaCkujEbvF9Ki296QkRBv8Gpmqn/qJCKqlrxTcnygAAT8yganR7YGzt0kotAMy1y/DF85aRIZBKHPNzyNhIH4R4uaBZ3YGDV7j2LmodcLKkAQAwaYhjXiAglnWpoglZBXWQMNxncUcScl1yL0RE7Sdc5VLIpdxcRG3SzfO/09zmuamD/QW7yMIwDO43rFrijw/AmGBMGewviu+ynVffyiQMFRE5kF3nuP7oQq0ukkgY42azfOu4SAtvPtu5T7qlq207r9SzRo90/mJ1h97x5wlbKKlvxbZMrhXdK3eP6tLm5I4x4Zg/KhR6Fnh197Wq9OOGti5Dgz0tsjEnwzAI9b72ecTfXWHR94HOyWyFTGLxlXjuXTYbtW6xBSXSe5BxoRJPfnYCOj2Lu8dF4KU7RorigwcRrybDEs7rrwIS+8Rv9NSq0UFHV/0F896BPHToWUyODcC4KOGXxxHT+Ro+RLZqdLR5kRn0LJBh2CTuFgdqa3E9iYQxfnHOuMBdGChoYqDVsQj3ccUgf8t+8SWOaduRQgDcRrSOtqFg0HWJdDG13mMYxrhJoIbmdbP8cJpLKC4YEy7oceeNCgXAJWf4friZeVwiPdVBVzRdr/N+UEGeSkgc9AKzs7na0IZTJQ1gGGD2iIG3deENMmzsrDb0I7H0ps6dk+cW75HeaTNWFyusyFLSZqMD8ml2qfF76JS47vv+/DFtKBiG2/yZb0XEJ9KTLNDWhdd5c9Hre5gLzVN57W/CzQotGzsn6ge6ebGpKJF+nQOXq7Hy4xx06FnclhiGf94zmt6gid1rVnMlQdZe0kLM0/mCBxWlC6NS1Y4vjnJLmVdRNbrd6Dwntev6eCDpUXkrUNeihZtCapFNiKzp5niuN+9hQ1LnciP32Sp1iDiqJImwVO1afJ3DrTBanDrIxqMxXdB1mwKLrWqWbzOgoXndZA1q4HJVMyQMMCdBuIQiwLU54fvs7j1fiQ6dHidKuERNSoxjv4fwOv8tBTjY5tvObI+hGn38IF9B+9oPuq4C3dI98zu3xbB0j/TOiUhr7CNj7JFORV4m0+mB/97gM0tMgDumxXMJ9u3HSgBwG5IDQGKkj8XG5ttpzrR0Iv36HumW1nmlBt+ayFookd5JZl4tHtt2DBqdHmkJwXj9vkSHXUZNnEuTIRtLFemOQS6VGCd+Si4K4/0D+dDo9JgQ7SuaL4tiIJUwxmQ6XTQy3RUV9xlkfLSf1T8gCm1CtB+kEgbFda0orW9DEdc6GskOfoGAWMbXx0vRqtEhNsgDqQ7Y+sddKetyIbFzFa0Y8Ekdqkg33UXDRcRRET5d2kQIZfowbs+JzLxa5Ne0oF2rh7tCiiGBjt0fnefnfi15Tt97HAff1iUtQdjVddf3yA+08MWVzjHnbuECts7VttbYrJrf0JQ2GzVdQRO3oaevmxwzhvW+789d4yIAALvPVoBlWWO/9AQL7uvVufWvpS/qd86daq0QSJ33zqFEuo0cL6rD8o+Ool2rx/ShgXjr/nGQS+mfhzgGvte2JXprEcvg27u0USJ9wGqb1fgki+tJt2pGHFW32hljIp1i3WS5fNW2CJbke7rIkRjhDYDbZLSkhTu30ZHethwWsUMsy2LbEW5OX5w6yGHn9M5V6aKtSKdeuibjV+NMiQ2wyPEnDuYuTh7Jr8XpUq7aMSHMWzQrrDtflKKVuI6htlmN7AJuc3GhE+lB1+0/YemKW1d553Yrls0VKTrloqyRSOdfj1q7mO5cPfdvN31oEGR95BCnDwuCQiZBfk0Lfs2thaq9AzIJY9GNoH3dOlekW28Vj1Zv+aUNyk5/g/zeLdZCmWIAp0sbsHTzUbRqdJgcG4B3H0py+Mov4lyoIt3x8Lu+t3WI44uNLW06VIB2rR6jI7xxc5xlvpgS8/HL/Np1FOumKm7hK9LF0fN/rGHvgh1nKqDWMXCRSxArkipJIpzDebXIq26Bu0KKO8cK20PamjondALEWpFOF0hNVth0ra2VJYwK94GrXIr6Vi2+OcG1vEsIt1y1o7V1vijlSQVEDuGnC5XQs8DIcC/BNwPt3MrFz11h8UJIhezaZ1lXCye35Z1eyyqbjRpegyrSTXfJcIF0eh/V6AB38W+soY3LlsOFAIDYII8uldVC61yR7ucurjlT1il5rpTSZqNWdf6qCg9vykaTugPJMX54f3GSVa74ESIkSqQ7Hv7DP1XpDkxjqxZbDTukr5oe67CVi2LGz0u0+sI0tS0aNGq4eB4eKo4kCL909VdDn/ThIZ59Vu4Q5/SR4cvlXeMiHDpR5tVpIzpLtPCwJT6BRJWLplG1aVGr5ub1kWGWWY2jkEkw0pA4/zW31qKvZQud/5aoIt0x7DrLtXWZK3A1OgAEd6pIt8YFy87fM5SWTqR3rki3xmajUuqRbo52rQ7lrdz/78+moXxxzE8XKgEAIyz8Gd/XRhcfrfGNvPPfY+cLT9bg1N9erlQ24aFNWWhs02JslA82L51g9d1eCRFCm5bLUFn6yjgRDrW7EMaWw4VoVndgWIgnZg0XdtMuIgx3w/uqmmLdJBcrmgAAUX6uokkWJFyXzImz4FJW4pjKGtqMXy4dcZPRzrw6FTd4KMX1+cxFTj3SzXHBMK9H+LjA281yCY3rL77GB3ta7LWsrfP7IRUQ2b+mdq3xgs7ckcIn0ju3rfBxtXwivXOHJIWFW0l0TqTLrNC2gm//ZIWOHKJyoaIJejDwd1cg1PvGm91en2wfHOhuqaEBALw7XdS3xqa1PIkVits6v4LCyoU5TptIL6hpwQMfZKGuRYOR4V7YsixZNF9UifPR6rhvMtSSyHG4UDXXgDWrO7D51wIAwBPTY0XT/1NsKNbNc7mS241zqIgSIEMC3bv0MBzkL+wSb+L4Ps0qgp7l9gWIc/DY77zCVWyFOrTZqHn4C6SWXmV0/fGjRDTXune6KEXf3e3f/ss10Oj0GBLojtgg4ed0DxteTLH0KtjOiUGpFb7jSA3nQ3l005y/ym0YOjLMq18xMTSk6/wsdLuj63W+4Ohm1US65V+DZa9FqzX+RjpzyqxbSV0rHth4BNVNagwL8cS2R1K6XKkhxNF06LhJREaJRIfB97qjL6Hm+/hIERrbtBgc4I55o0JtPRzSC4p185Q1tAHgKtLFQiaVIMzn2vkMsvCXB+JY1B16fJ5dAsDxq9EBdLm4a80vr9bAJ3h0NK+bpKyhHYDl5/Vo/2sVjj5uclF9z+2cPLdlEpX0z57zVQAsU40OdK3a1rGWTwFbc87rXHggtUJ1r8TwT0kV6aYpqec+r/e3sjzUy6VLF4EoC38WdlfaJpFujXaruk7Bau32rk6XSL/a0Ib7Nx5BeWM7hgS64+NHU7r0DSLEEfEV6XKqSHcY/KYi9CXUPG0aHT44mA8AeHx6rNWvQpP+o1g3z1VDwiXcRzyJdACI8O2USBdRlSQZuF1nK1DbokGIlwtmj3D8Vl2d35bE9h7F565oWjcNf4HU0vN6uIgvWLp1SgrJJfS9x55pdMAvl6sBAHMTLF/w0mGFDDBrhWQ9r/P7hjXeQ/hWHJRIN02Z8fP6jdu6ANxF9rBOj7V0RXrni4+ucutdfLRGXltnw1h1qnefKlU7Hth4BKX1bRjk74ZPV0xEgIfyxk8kxM5pDe94cpF9URMzfvUAfQk1zxfHS1HTrEGEryvuGBNm6+GQPlCsm+dqI5dwCevnB3NHEeZ9LcETaIWNwYjj+NhQjf5gSpQoNqEV88VDqSGBSQkX0/AXSMP60Ud3IIK9r32/FcPfUmfKTkVD1NLSvl1qZNCm1SPcx9W4Aa4lWSPJ7W/Fzy2dK2ytmUhnrbJNpHjwF0gjTLhA2nklhb+Fi3o7J9IVVtyQU2mFDXKteWHrek7z7lPTrMYDH2ShsLYV4T6u+HTFRAR7ievLKXFexop0kX1YFjOplK76m6tDD2w8VAgAWDltCMW9naNYN09tswYAEOQprgv+nTc6ElO7ATIwJc3AyZJGyKUMFiVH2Xo4grDyKmOrMlaksyI+SQuoaVYDAIK8LDuvd05gtGrEtdN35zaW9PnPvp2q4/5bpSWEWL3Ng6UsSY3G+EE+uDvaun9Xod6WX53IJ+ttmJt0SNVNps/rnS8IWvpvo3NrF2t8F7sp1h8AsHSS5Vv06W0YrE7RWKyhVYuHPzyG3KpmhHi54LMVE0W3VJo4L52eNb7h0QdKx8F/EdDRl1CTZVczqFSpEeylxD1JEbYeDrkBinXz8MkPsW1S2HnzLLFVShLzHazgYuGWkaEIFMnFoweSo/DF0RKM9hVXIhO41q+XLpCaxhbzui0r9iyhc9KJKtLtl1anx1lDIt1S/dGvZ435KMjLBZ89moydO3da/sUAfLhsAsob2jEizPIV/cbWLhZ/JXFp05o+r1tz7uqcHwqxQiHxhoeSkFPcgJuG+Fv8tWyZ+7LYK69fvx7R0dFwcXFBSkoKsrOz+3z8l19+iWHDhsHFxQWjRo0SbHJq6wCWfXQcFyuaEOChxKcrUkS1czmxPVvHurbT2mGZlBJVjoK/6u9IX0JtHesAF+97y7i3rt/cPMQqy8bIwFCsm+faB3NxxTj1RbceoeOYZVk8//zzCA0NhaurK2bNmoUrV64MeJz1rRrk1HDzxBIrVDBZy8hwb2StnoaH48SXlnDE1i7OOq+LLI8O4Nr7SHK0n41HYp/sIdazCurRpmPg765A0iDfAR+vL/zGjSkx4ouH6UOD8ECKdVZp8Ys9HGnOsIdYv3aBtP/zurU3xvzm8Un4cOkEi/djBwBPFzmmxgdapVhm4YRIJEb6IH12vMVf63oWObvt27cjPT0da9euRU5ODhITE5GWloaqqqoeH3/48GHcf//9WL58OU6cOIEFCxZgwYIFOHv27IDG0azuwIYLUpy9qoKfuwKfrkjB4ECPAR2TkM7sIdY7J9KpIt1xyBwsuWgPsQ4AP5yuQJ2agZ+7HPeLZPm/2FGsm06r00Nr2EGH/4IoFgsnROGeceFYEie+Kl17Yok4/uc//4k333wTGzZsQFZWFtzd3ZGWlob29vYBjfW/OVehZRkMD/HEuCjLJlyszctVDjFuX+Nom40647zOb+w8J8HxN+693p7f34zTf50DbzdqD3Y9e4h1ANhzvhIAMGt4oMX7e+98agqenTsMf0obatHXETtHK3yxh1jvPK+bkkhXWDlnMzbKF9OHBVn1Na3BTSHDd0/chN/NjLP6azOsBdZ7paSkYMKECXj77bcBAHq9HpGRkXjyySexevXqbo9fuHAhWlpa8MMPPxjvmzhxIsaMGYMNGzZ0e7xarYZarTb+rFKpEBkZiZqaGnh5ccte2jQ6LN96HEeLGuDlIsO2R8ZjRKjll8RYi1arxd69ezF79mzI5eL6ENHTualUKgQEBKCxsdH439ge2EOs17VokPLKfgDA2b9Mg1Ihrs3bxBrr/9x9GRsPFWJaqB7vrJhJsd6PWNfpWdzy5q8oqG1F+szBWDktVujTtCmKdftgD7GuatMi6eV9AICT/zcV7i7iaHXBE2usA/bzGUboOGZZFmFhYfjDH/6AP/7xjwCAxsZGBAcHY8uWLVi0aFG3Y/Z3Xp/174MobWjHi7cOxf0p4qlIB8Qb6zSvd2WP83qFqh0Hr9Tg9tGhUFohcS/WWAfsZ17vD3uIdZ2exU3//AW1LRq898BozBhundYu1iLWWH9tzxW8d7CA5nUDS87rV6qasfjDY/jtzTFYkmq/n3vEGuvAwOd1wRu0aTQaHD9+HGvWrDHeJ5FIMGvWLGRmZvb4nMzMTKSnp3e5Ly0tDd9++22Pj1+3bh1eeOGFbvfv2bMHbm7ccoU8FZBTLIVSCjwa147CE4dQeMLMk7Jje/futfUQLKbzubW2ttpwJD2zl1hv1ACADBKwyPjpJ7POxRGILdYLiyUAJNCzFOtA/2I9VwUU1MrgJmURrLqMnTsvm3lG9o1i3XbsJdYb1AAgg4Rh8cvPGWadiyMQW6x3ZstYt0QcFxQUoKKiArNmzTL+3tvbGykpKcjMzOwxkd7fz+ulDTK4Slm4Vp3Dzp3nTD5fRyC2WKd5vSt7ndfdAWTsPW2V1+KJLdY7o1jvX6wXNgG1LTK4SFk05+VgZ4GZJ2TnxBbr+TSvd2Hpef25kQBT7xife8QW652ZG+uCJ9Jramqg0+kQHNx1GVlwcDAuXrzY43MqKip6fHxFRUWPj1+zZk2XPwL+6tCcOXO6XDkYcb4CF07n4NE7neMKilj0dnXI3thLrKu1OoQNq8HR4zlOEw9iMKy6BffUNKHofA7FOvo/r08rqcMP+7Nw2y3iigeAYt0e2Eust2t1iBhRg6xjNK87Gnv4DGOJOOb/1zLzej2+338E8+c6RzyIAT+vF56jeR2geR0Qb6wD9jGv94e9xDrLspg8qR7/25+FW9KcIx7EYHhNC+6ppnmdR/O6eGMdGPi8br0twwWkVCqhVHZfNiGXy7v8B545IgTqwu73i4mznJtYz/FG+hPrcrkcU4cFoyWfdZp4EIOhYT4YHOiOnQUU60D/5/XRkX4o9adYdyQU6131d16/eWgwmvMo1h0VxXr/5/VRkb4ooXndodC83hXN69c4y7mJ9RxvhD6vXyO2c4sP9UFMAM3rPJrXr3GWczPlHAXvch8QEACpVIrKysou91dWViIkpOf+WCEhISY9nhB7QLFOnAXFOnEWFOtEDCwRx/z/UqwTR0PzOnEWFOvEWVCsE1sTPJGuUCiQlJSEjIxrPYL0ej0yMjKQmpra43NSU1O7PB7getX09nhC7AHFOnEWFOvEWVCsEzGwRBzHxMQgJCSky2NUKhWysrIo1oldo3mdOAuKdeIsKNaJrVmktUt6ejqWLFmC8ePHIzk5GW+88QZaWlqwbNkyAMDixYsRHh6OdevWAQCeeuopTJ06Ff/6178wf/58fP755zh27Bjef//9fr0ey7IAuve00Wq1aG1thUqlEt1SBGc7N/6/Lf/f2l5QrFues50bxTqHYl3850axzqFYF/+52SLWhY5jhmHw9NNP46WXXkJcXBxiYmLwl7/8BWFhYViwYEG/xkSxLv5zo3mdQ7Eu/nOjWOdQrIv/3CjWORTr4j83k2KdtZC33nqLjYqKYhUKBZucnMweOXLE+LupU6eyS5Ys6fL4L774go2Pj2cVCgWbkJDA7tixo9+vVVJSwgKgmxPcSkpKhApRwVCs041inWKdbhTrFOt0s7dYFzqO9Xo9+5e//IUNDg5mlUolO3PmTPbSpUv9Hg/FuvPcaF6nWHeWG8U6xbqz3CjWKdad5dafWGdY1s4uLZlBr9fj6tWr8PT0BMMwxvv5nXVLSkqMO+uKhbOdG8uyaGpqQlhYGCQSwTsSOQyKdfGfG8U6h2Jd/OdGsc6hWBf/uVGscyjWxX9uFOscinXxnxvFOodiXfznRrHOoVgX/7mZEusWae1ibRKJBBEREb3+3svLS3T/4XnOdG7e3t42HI19oFh3jnOjWKdYd5Zzo1inWHeWc6NYp1h3lnOjWKdYd5Zzo1inWHeWc6NYp1h3lnPrb6w77yUlQgghhBBCCCGEEEIIIaQfKJFOCCGEEEIIIYQQQgghhPRB1Il0pVKJtWvXQqlU2noogqNzI52J+d+Mzo10JuZ/Mzo30pmY/83o3EhnYv43o3MjnYn534zOjXQm5n8zOjfSmZj/zejceieKzUYJIYQQQgghhBBCCCGEEEsRdUU6IYQQQgghhBBCCCGEEDJQlEgnhBBCCCGEEEIIIYQQQvpAiXRCCCGEEEIIIYQQQgghpA+USCeEEEIIIYQQQgghhBBC+kCJdEIIIYQQQgghhBBCCCGkD06TSP/73/+OSZMmwc3NDT4+PrYezoCsX78e0dHRcHFxQUpKCrKzs209JEEcOHAAt912G8LCwsAwDL799ltbD8khUazbP4p1YVCs2z+KdWFQrNs/inVhUKzbP4p1YVCs2z+KdWFQrNs/inVhUKzbP6Fi3WkS6RqNBvfeey9Wrlxp66EMyPbt25Geno61a9ciJycHiYmJSEtLQ1VVla2HNmAtLS1ITEzE+vXrbT0Uh0axbv8o1oVBsW7/KNaFQbFu/yjWhUGxbv8o1oVBsW7/KNaFQbFu/yjWhUGxbv8Ei3XWyXz44Yest7e3rYdhtuTkZPaJJ54w/qzT6diwsDB23bp1NhyV8ACw33zzja2H4dAo1h0DxfrAUaw7Bor1gaNYdwwU6wNHse4YKNYHjmLdMVCsDxzFumOgWB84inXHMJBYd5qKdDHQaDQ4fvw4Zs2aZbxPIpFg1qxZyMzMtOHICBEWxTpxFhTrxFlQrBNnQbFOnAXFOnEWFOvEWVCs9w8l0h1ITU0NdDodgoODu9wfHByMiooKG42KEOFRrBNnQbFOnAXFOnEWFOvEWVCsE2dBsU6cBcV6/zh0In316tVgGKbP28WLF209TEIGjGKdOAuKdeIsKNaJs6BYJ86CYp04C4p14iwo1klPZLYewED84Q9/wNKlS/t8zODBg60zGCsICAiAVCpFZWVll/srKysREhJio1ERa6BY51Csix/FOodiXfwo1jkU6+JHsc6hWBc/inUOxbr4UaxzKNbFj2KdQ7HelUMn0gMDAxEYGGjrYViNQqFAUlISMjIysGDBAgCAXq9HRkYGVq1aZdvBEYuiWKdYdxYU6xTrzoJinWLdWVCsU6w7C4p1inVnQbFOse4sKNYp1nvi0Il0UxQXF6Ourg7FxcXQ6XQ4efIkACA2NhYeHh62HZwJ0tPTsWTJEowfPx7Jycl444030NLSgmXLltl6aAPW3NyM3Nxc488FBQU4efIk/Pz8EBUVZcORORaKdftHsS4MinX7R7EuDIp1+0exLgyKdftHsS4MinX7R7EuDIp1+0exLgyKdfsnWKyzTmLJkiUsgG63ffv22XpoJnvrrbfYqKgoVqFQsMnJyeyRI0dsPSRB7Nu3r8f/RkuWLLH10BwKxbr9o1gXBsW6/aNYFwbFuv2jWBcGxbr9o1gXBsW6/aNYFwbFuv2jWBcGxbr9EyrWGZZl2f6n3QkhhBBCCCGEEEIIIYQQ5yKx9QAIIYQQQgghhBBCCCGEEHtGiXRCCCGEEEIIIYQQQgghpA+USCeEEEIIIYQQQgghhBBC+kCJdEIIIYQQQgghhBBCCCGkD5RIJ4QQQgghhBBCCCGEEEL6QIl0QgghhBBCCCGEEEIIIaQPlEgnhBBCCCGEEEIIIYQQQvpAiXRCCCGEEEIIIYQQQgghpA+USCeEEEIIIYQQQgghhBBC+kCJdEIIIYQQQgghhBBCCCGkD5RIJ4QQQgghhBBCCCGEEEL6QIl0QgghhBBCCCGEEEIIIaQPlEgnhBBCCCGEEEIIIYQQQvpAiXRCCCGEEEIIIYQQQgghpA+USCeEEEIIIYQQQgghhBBC+kCJdEIIIYQQQgghhBBCCCGkD5RIJ4QQQgghhBBCCCGEEEL6QIl0Qki//PWvfwXDMKipqbnhYzs6OvDMM88gMjISEokECxYssPwACREIxTpxFhTrxFlQrBNnQbFOnAXFOnEWFOv2hxLphBDBbd68Ga+++iruuecefPTRR/j973/f62Ozs7Px+OOPIykpCXK5HAzDWG2ctnxtIg6OEOt6vR5btmzB7bffjsjISLi7u2PkyJF46aWX0N7ebpUxEMfnCLEOABs3bsTUqVMRHBwMpVKJmJgYLFu2DIWFhVYbA3FsjhLrnWm1WowYMQIMw+C1116zyRiI43GUWF+6dCkYhul2GzZsmNXGQBybo8Q6wH1uf/fddzFmzBi4urrC398fM2bMwKlTp6w6DuKYHCXWe5rT+dvs2bOtNg5zyWw9AEKI+Pz8888IDw/Hv//97xs+dufOnfjggw8wevRoDB48GJcvX7bCCG3/2kQcHCHWW1tbsWzZMkycOBG//e1vERQUhMzMTKxduxYZGRn4+eef6SISuSFHiHUAOHHiBGJiYnD77bfD19cXBQUF2LhxI3744QecOnUKYWFhVhsLcUyOEuudvfXWWyguLrbJaxPH5UixrlQq8cEHH3S5z9vb26pjII7LkWL9kUcewSeffILFixdj1apVaGlpwYkTJ1BVVWXVcRDH5Cixvm3btm73HTt2DP/5z38wZ84cq43DXJRIJ4QIrqqqCj4+Pv167MqVK/Hss8/C1dUVq1atsuoEbsvXJuLgCLGuUCjw66+/YtKkScb7VqxYgejoaGMyfdasWVYZC3FcjhDrAPDOO+90u2/BggUYP348tm7ditWrV1ttLMQxOUqs86qqqvDiiy/i2WefxfPPP2/11yeOy5FiXSaT4aGHHrLqaxLxcJRY/+KLL/DRRx/h66+/xp133mm11yXi4Six3tN8vn//fjAMg/vvv99q4zAXtXYhhJikpqYG9913H7y8vODv74+nnnrK2B6isLAQDMNg3759OHfunHF5zv79+3s9XnBwMFxdXc0ay4cffgiGYbB58+Yu97/88stgGAY7d+7s8/kDeW0ifmKJdYVC0SWJzuM/oF+4cMGsMRHxEEus9yY6OhoA0NDQYNaYiHiIMdZXr16NoUOHUpKRdCHGWNfpdFCpVGaNgYiXmGL99ddfR3JyMu68807o9Xq0tLSYNQ4iTmKK9eup1Wr897//xdSpUxEREWHWmKyJEumEEJPcd999aG9vx7p16zBv3jy8+eabeOyxxwAAgYGB2LZtG4YNG4aIiAhs27YN27Ztw/Dhwy0ylmXLluHWW29Feno6SkpKAABnzpzBCy+8gOXLl2PevHkWeV3iHMQe6xUVFQCAgIAAQcdKHI8YY722thZVVVU4duwYli1bBgCYOXOmRcZMHIfYYj07OxsfffQR3njjDWrRRboQW6y3trbCy8sL3t7e8PPzwxNPPIHm5maLjJc4FrHEukqlQnZ2NiZMmIA///nP8Pb2hoeHBwYPHowvvvjCIuMljkUssd6TnTt3oqGhAQ8++KAlhis8lhBC+mHt2rUsAPb222/vcv/jjz/OAmBPnTplvG/q1KlsQkKCya/xxBNPsKZOS+Xl5ayfnx87e/ZsVq1Ws2PHjmWjoqLYxsZGi782ESexxzpv1qxZrJeXF1tfX2/W84njE3OsK5VKFgALgPX392fffPNNU4dORESMsa7X69nk5GT2/vvvZ1mWZQsKClgA7Kuvvmry2Il4iDHWV69ezT777LPs9u3b2c8++4xdsmQJC4C96aabWK1Wa/L4iTiILdZzcnKMn1mCg4PZd955h/3kk0/Y5ORklmEY9scffzR5/EQcxBbrPbn77rtZpVLpMN9LqSKdEGKSJ554osvPTz75JACYtdxeCCEhIVi/fj327t2LKVOm4OTJk9i8eTO8vLxsMh4iHmKO9Zdffhk//fQTXnnllX730SPiJcZY//HHH7Fz507861//QlRUFC2PJgDEFetbtmzBmTNn8I9//MMKIyWORkyxvm7dOrzyyiu47777sGjRImzZsgV///vf8euvv+Krr76ywuiJPRNLrPMrLGpra/Hdd99h5cqVeOCBB5CRkQF/f3+89NJL1hg+sWNiifXrqVQq7NixA/PmzXOY76WUSCeEmCQuLq7Lz0OGDIFEIkFhYaFtBgRg0aJFmD9/PrKzs7FixQpavk8EIdZY3759O5577jksX74cK1eutMAoiaMRY6xPnz4dt9xyC9LT0/Hll1/ihRdewNtvv22h0RJHIZZYV6lUWLNmDf70pz8hMjLSCqMkjkYssd6b3//+95BIJPjpp58EHCFxRGKJdb5XdUxMDFJSUoz3e3h44LbbbkN2djY6OjosNmZi/8QS69f773//i/b2dsdp6wJKpBNCBsgeenLW1tbi2LFjAIDz589Dr9fbeEREjMQQ63v37sXixYsxf/58bNiwwRJDJCIghljvbMiQIRg7diw++eQToYZHRMJRY/21116DRqPBwoULUVhYiMLCQpSWlgIA6uvrUVhYCI1GY9FxE8fiqLHeG1dXV/j7+6Ourk6o4RGRcNRYDwsLA8BtAHm9oKAgaLVaWl1HunDUWL/eJ598Am9vb9x6661CD89iKJFOCDHJlStXuvycm5sLvV6P6Oho2wwI3DKnpqYmrFu3DocOHcIbb7xhs7EQ8RBbrGdlZeHOO+/E+PHj8cUXX0Amk1luoMShiC3We9LW1obGxkZhBkccllhivbi4GPX19UhISEBMTAxiYmIwZcoUAFzrrpiYGJw/f97CIyf2TCyx3pumpibU1NQgMDBQuAEShySWWA8LC0NISAjKysq6/e7q1atwcXGBp6enBUZLHIVYYr2z8vJy7Nu3D3fffTeUSqVlBmkBlEgnhJhk/fr1XX5+6623AAC33HKLLYaDr776Ctu3b8crr7yC1atXY9GiRXjuuedw+fJlm4yHiIeYYv3ChQuYP38+oqOj8cMPPxiXjxICiCfWOzo6UF9f3+3+7OxsnDlzBuPHj7fUkImDEEus/+53v8M333zT5fbee+8BAJYuXYpvvvkGMTEx1jgFYqfEEuvt7e1oamrqdv/f/vY3sCyLuXPnWmrIxEGIJdYBYOHChSgpKcHevXuN99XU1OC7777DjBkzIJFQ+s6ZiSnWeZ9//jn0er1DtXUBACpHI4SYpKCgALfffjvmzp2LzMxMfPzxx3jggQeQmJho1vGKioqwbds2ADAuC+I3Uxk0aBAefvjhXp9bVVWFlStXYvr06Vi1ahUA4O2338a+ffuwdOlSHDp0qM8PHAN5bSJ+Yon1pqYmpKWlob6+Hn/605+wY8eOLr8fMmQIUlNTzTonIg5iifXm5mZERkZi4cKFSEhIgLu7O86cOYMPP/wQ3t7e+Mtf/mLW+RDxEEusjxs3DuPGjetyH98jNSEhAQsWLDDrfIh4iCXWKyoqMHbsWNx///0YNmwYAGD37t3YuXMn5s6dizvuuMOs8yHiIZZYB4A1a9bgiy++wN1334309HR4e3tjw4YN0Gq1ePnll806HyIeYop13ieffIKwsDBMmzbNrHOwGZYQQvph7dq1LAD2/Pnz7D333MN6enqyvr6+7KpVq9i2trYuj506dSqbkJDQr+Pu27ePBdDjberUqX0+96677mI9PT3ZwsLCLvd/9913LAD2H//4h8Vem4iX2GK9oKCg19cFwC5ZsqRf4yfiI7ZYV6vV7FNPPcWOHj2a9fLyYuVyOTto0CB2+fLlbEFBQb/GTsRJbLHeE36uf/XVV016HhEXscV6fX09+9BDD7GxsbGsm5sbq1Qq2YSEBPbll19mNRpNv8ZOxElssc7Ly8tj77zzTtbLy4t1dXVlZ8yYwWZnZ/dr7EScxBrrFy9eZAGw6enp/RqvPWFYlmUHkIcnhBBCCCGEEEIIIYQQQkSNmiwRQgghhBBCCCGEEEIIIX2gRDohhBBCCCGEEEIIIYQQ0geTE+kHDhzAbbfdhrCwMDAMg2+//faGz9m/fz/GjRsHpVKJ2NhYbNmypdtj1q9fj+joaLi4uCAlJQXZ2dmmDo0QQgghhBBCCCGEEEIIEZzJifSWlhYkJiZi/fr1/Xp8QUEB5s+fj+nTp+PkyZN4+umn8eijj2L37t3Gx2zfvh3p6elYu3YtcnJykJiYiLS0NFRVVZk6PEIIIYQQQgghhBBCCCFEUAPabJRhGHzzzTdYsGBBr4959tlnsWPHDpw9e9Z436JFi9DQ0IBdu3YBAFJSUjBhwgS8/fbbAAC9Xo/IyEg8+eSTWL16tbnDI4QQQgghhBBCCCGEEEIGTGbpF8jMzMSsWbO63JeWloann34aAKDRaHD8+HGsWbPG+HuJRIJZs2YhMzOzx2Oq1Wqo1Wrjz3q9HnV1dfD39wfDMMKfBLE5lmXR1NSEsLAwSCTO29pfr9fj6tWr8PT0pFgXKYp1DsW6+FGscyjWxY9inUOxLn4U6xyKdfGjWOdQrIsfxTqHYl38TIl1iyfSKyoqEBwc3OW+4OBgqFQqtLW1ob6+HjqdrsfHXLx4scdjrlu3Di+88ILFxkzsV0lJCSIiImw9DJu5evUqIiMjbT0MYgUU6xTrzoJinWLdWVCsU6w7C4p1inVnQbFOse4sKNYp1p1Ff2Ld4ol0S1izZg3S09ONPzc2NiIqKgolJSXw8vKy4ciIpahUKkRGRsLT09PWQ7Ep/vyvj3WtVos9e/Zgzpw5kMvlthqeRTjbuVGscyjWxX9uFOscinXxnxvFOodiXfznRrHOoVgX/7lRrHMo1sV/bhTrHIp18Z+bKbFu8UR6SEgIKisru9xXWVkJLy8vuLq6QiqVQiqV9viYkJCQHo+pVCqhVCq73e/l5UWJdJGzp2U0Bw4cwKuvvorjx4+jvLz8hvsFAMD+/fuRnp6Oc+fOITIyEs899xyWLl3a79fkz//6WNdqtXBzc4OXl5coJzlnPDd7inVboFh3nnOzp1ined06nPXc7CnWbYFi3XnOzZ5ineZ163DWc7OnWLcFinXnOTd7inWa163DWc+tP7Fu8SZHqampyMjI6HLf3r17kZqaCgBQKBRISkrq8hi9Xo+MjAzjYwixRy0tLUhMTMT69ev79fiCggLMnz8f06dPx8mTJ/H000/j0Ucfxe7duy08UkIIIf1B8zohhIgLzeuEECIuNK8TWzO5Ir25uRm5ubnGnwsKCnDy5En4+fkhKioKa9asQVlZGbZu3QoA+O1vf4u3334bzzzzDB555BH8/PPP+OKLL7Bjxw7jMdLT07FkyRKMHz8eycnJeOONN9DS0oJly5YJcIqEWMYtt9yCW265pd+P37BhA2JiYvCvf/0LADB8+HAcOnQI//73v5GWljagsXx+tBR5tQzmDegohBBrqm/RoLC2BZUqNZrVHWhVa8Cqb/w8Yjn2Mq+zLIsfz1bgUAXN64QIqa5Fg8y8WswdGQKpxH6q64jl2Mu8ru7QYc+5Suy7SvM6IT1hWRb7LlUhMcIH/h7duw8QwrOXeV3VrsXes+U4SPO60zE5kX7s2DFMnz7d+DPfq3zJkiXYsmULysvLUVxcbPx9TEwMduzYgd///vf4z3/+g4iICHzwwQddAnbhwoWorq7G888/j4qKCowZMwa7du3qtgEpIY4sMzMTs2bN6nJfWloann766V6fo1aroVZfy6ypVCoA3FIUrVYLADiUW4u/fH8eEkaC8WfLkTYyVPjB2xB/nvz/iklP5ybG8yScK5VN2HepCkcL65FTVI/aFk23x4S7SbFIz9pgdMQclprXD+fV4nfbT0PGSLCsohFxId7CD96GaF4nttCi7sA9Gw4jv7oFL96RgMWp0bYeErFDlprXz5Q24snPT0HOSLCmqQ1+Ims3TPM6GahtR4rw/HfnMDU+EB89kmzr4RARsdS8XtnQgj98dQZSRoK/tqvhLvzQbYrm9d6ZnEifNm0aWLb3L/lbtmzp8TknTpzo87irVq3CqlWrTB0OIQ6joqKi28Wh4OBgqFQqtLW1wdXVtdtz1q1bhxdeeKHb/Xv27IGbmxsAQM8CSQESHK+R4KkvTmPFqZMY7iu+RNzevXttPQSL6Xxura2tNhwJEVqlqh2fZRfjh9PlyK1q7vb7YC8lwnxc4SqX4nBeLcpaGfx0sQrzE/veKZzYB0vN6ywLDPWW4FKjBL/blolVI/Swo9aUgqF5nVjTKz9eRH51CwBg+9ESSqSTHllyXg9xlaKijcHrX+3HpGDxfVYHaF4n5nvjpysAgF8uV9t4JERsLDmvu0qlaNMx+Pj7DER6WGb8tkbzencW32yUEGK+NWvWGFd9ANd2Ep4zZ06XTS5mqtV4+J19OFUnwYe5cmx8eCxSB/vbYsiC02q12Lt3L2bPni3KTS6uPzf+ajdxbOevqrDhlzzsPFOODkOFuUIqwaRYf0wa4o+kQX4YHuoJN8W1t+F//ngB7/ySj3d+yce80eF2takPEU5/5/XhE1S4dX0mclUStIaMxL1J4rm4QvM6sbbDuTXYdqTI+PO5qyoU1LQgJkBs9WPEFvo7r5d65OG1n/JwUe2Ll+ZNtMVQLYbmdTIQWp0ejW3XqkErVe0I9nKx4YiIs+vvvL698igyC+rhHjUC8yZG22CklkPzeu8okU6IlYSEhKCysrLLfZWVlfDy8urxKigAKJVKKJXde8TJ5fJuk9niOD12NATj50vV+M3HJ7F1eTImRPsJdwI21tM5i0XncxPrOTqLotoWvL73Mr47edV43/hBvrg/OQqzE4Lh5dL7f98lqVH44GAezl1twv7L1Zg+NMgaQyYDYMl5fXCQF+ZF6vFdkRSv7LqMWQmhCPIU15dKmteJNTSrO/Cnr04DAB6aGIWSujb8crka354ow+9nx9t4dMTeWHJev2tcBF7/KRenylQoqlcjNkh85Ys0rxNznC5tgK5Ta8NTJQ2YkxBiwxERMbHkvJ4Y6YPMgnqcr2gR7bxA83p3EksNiBDSVWpqKjIyMrrct3fvXqSmpgpyfJkEeHPhaEyJC0CbVodlHx7FyZIGQY5NCOmbukOHN366jFmv/2JMos8fHYofnpyMr1ZOwt1JEX0m0QHAz12BmwxLvd/KuNJnGzViHyw9r08NZTEyzAuq9g688L/zghyTEGfz2u5LKGtoQ4SvK9bcMhwLxoYBAL47WUbzLOnGkvN6oKfS2H7xq+OlAz4eIWLxa25tl5/PlDXaaCREjCw5r48K56rTz5RSzDoTSqQTYqbm5macPHkSJ0+eBAAUFBTg5MmTxs1216xZg8WLFxsf/9vf/hb5+fl45plncPHiRbzzzjv44osv8Pvf/16wMSnlUrz/8HhMHOyHZnUHFm/Kwln6IEKIRZ0sacD8Nw/hjZ+uQKtjMSUuAD88ORnrHxiHkeGmbRI5PUwPhUyCnOIGZObX3vgJRFD2Nq9LGeClO0ZAKmGw43Q5fjpfeeMnEUKMLpSrsDWzEADwyl2j4a6UYc6IELjKpSisbcUp+uIrevY2r6cEcon0r3NK0aHTC3JMQhzd4bwaAMCwEG4X3tM0N5M+2NO8PsrwXe9KdQvaNLoBH484BkqkE2KmY8eOYezYsRg7diwAID09HWPHjsXzzz8PACgvLzdO5gAQExODHTt2YO/evUhMTMS//vUvfPDBB0hLSxN0XK4KKTYtmYCkQb5QtXfg4U1ZuFTRJOhrEEIAlmXxwcF83PPuYeRWNSPAQ4G37h+LrY8km5xA53krgPuSwgEAb/+cK+RwST/Y47yeEOaFR6fEAAD+8t1ZNLX3f0d5QpwZy7J4/ruz0LPA/FGhmBwXAABwV8owewS36di3J8psOURiBfY2ryf4svB1k6OqSY2DV2oEOSYhjqxNo0NOUQMA4LdThwDgKtJpxRDpjT3N6yFeSnjJWej0LM5dpQtAzoJ6pBNipmnTpvX5Br9ly5Yen3PixAkLjorjrpThw2UT8NAHWThd2ogHP8jC9t9MxJBA8fViJMQWmtq1+P32U/jpAlchPH9UKP5+50j4uCkGfOwVk6Px+dFSHM6rxfGieiQN8h3wMUn/2Ou8/vTMePx4pgLFda14bfclvHDHSIu+HiFi8O3JMhwtrIerXIr/mz+8y+8WjA3D96eu4ofTV/Hc/OGQSam2SKzsbV6XSYDbE0PxUWYxvjpeiunDaD8U4tyOF9VDo9Mj1NsFc0eGQP4Vg7oWjaEll5uth0fskD3N6wzDIMqDxdl6BqdKGzFeRHvUkd7Rp0ZCRMrLRY6tjyRjeKgXaprVeGDjERTVtth6WIQ4vPLGNty7IRM/XaiEQibB3xaMxNsPjBUkiQ4AYT6uuHtcBABg/T6qSifcSqOX7xwFANh6pAjHi+ptPCJC7FurpgPrdl4EAKyaEYswn66biU2JC4SfuwI1zRr8mkdttIh13WXo07/3fCUaWjU2Hg0htvWroa1L6hB/uMilGErtXYiDifLgkvqnSxtsOxBiNZRIJ0TEfNwU+Hh5MuKCPFCpUuOBjVkoa2iz9bAIcVjnr6qwYP2vuFjRhAAPJb78TSoenjgIDMMI+jorpw2BhAF+vlhF+xwQAMDkuADcPS4CLAus+fo0NB3UW5eQ3nz4ayGqmtSI9HM1tkbqTC6VYP6oUADAd9TehVjZiFAvjAj1gkanN25QToizyjRczJw0hGu/NSrcBwAl0onjiHLn/pdi1nlQIp0QkfP3UOKTR1MQE+COsoY2PLDxCCpV7bYeFiEO50xpIxa9n4lKlRpxQR749olJSIz0schrRQe447ZErmKNqtIJ77n5w+HvrsDlymZs+CXP1sMhxC7Vt2iwYT/39/GH2UOhlEl7fNwCQ1Xw7nMVtEEYsbp7x3Mrz748XmLjkRBiO20anbFgJCWGa4kxOoLbZ+hMWYOthkWISSINFekFNS1obKO9jJwBJdIJcQJBXi74dEUKIv1cUVTbigc2HkF1k9rWwyLEYZwqacCDHxyBqr0D46J88NXKSRbv2/jE9FgAwI9nK3C5kjYMJoCvuwLP3zYCALcZbW4VxQUh13v3lzw0qTswPNQLtxsuSPZkXJQvIv1c0aLRYa9hvwtCrOWOMeGQSxmcLVPhQrnK1sMhxCZOlTagQ88i2EuJCF+uBdeocC6RfrqUNhwljsFDDmP80kpi50CJdEKcRKi3Kz59dCJCvV2QV92Chzdlob6F+jISciPnr6rw0KYsqNo7MH6QL7YuT4G3q9zirxsf7Im5CSEAgHeoKp0Y3J4YhmlDA6HR6bHm6zPQ6+lLJunZ+vXrER0dDRcXF6SkpCA7O7vXx06bNg0Mw3S7zZ8/3/iYpUuXdvv93LlzrXEq/VbR2I4thwsBAM/MHQqJpPe2WwzD4I7EcADU3oVYn5+7ArOGBwMAvjpeauPREGIb/J4v4wf5GdskDg3xhEImQVN7B4pqW205PEL6bXS4FwDu4hARP0qkE+JEIv3c8OmKiQj0VOJiRRMe3pxFy48I6UNpfSuWfpiNpvYOTIj2xZZHkuGhlFnt9VfN4KrSvz91FYU1tFkw4ZJ/Ly0YCTeFFEcL6/HZ0WJbD4nYoe3btyM9PR1r165FTk4OEhMTkZaWhqqqqh4f//XXX6O8vNx4O3v2LKRSKe69994uj5s7d26Xx3322WfWOJ1+e/9APjQdekyI9sW0+MAbPp5v7/LL5WrUUXEBsbJ7krj2Lt+eKINWR/teEOdzrLAOAJA0yNd4n1wqwYhQLil5mqp7iYMwrqQooZh1BpRIJ8TJxAS449NHU+DvrsDZMhWWbM5Gs7rD1sMiDsCU6kYAaGhowBNPPIHQ0FAolUrEx8dj586dVhrtwDW0arD0w6OoalJjaLAnPlgywapJdAAYGe6N6UMDoWdBPbGJUYSvG/44ZygA4JWdF1HRSPtekK5ef/11rFixAsuWLcOIESOwYcMGuLm5YfPmzT0+3s/PDyEhIcbb3r174ebm1i2RrlQquzzO19e3x+PZQm2zGp9mFwEAnpwR169NoGODPJEQ5oUOPYsdZ8otPURCupgaH4gADyVqWzQ4eKXa1sMhxKr0evZaRXp01/cSY590qu4lDmKUoSL9jIUv/rRQ3sYuUCKdECcUF+yJjx9NgY+bHCdLGvDIh0fRqqFJmfTO1OpGjUaD2bNno7CwEF999RUuXbqEjRs3Ijw83MojN0+HTo+VH+cgt6oZIV4u+HDZBKu0c+nJqhlxAID/5pSirKHNJmMg9mfJpGgkRvqgSd2Btd+ftfVwiB3RaDQ4fvw4Zs2aZbxPIpFg1qxZyMzM7NcxNm3ahEWLFsHd3b3L/fv370dQUBCGDh2KlStXora2ttdjqNVqqFSqLjcA0Gq13W693W/K7YODeWjX6jEq3AsTo737/bzbRnMttL7NKR3wGCx1bvZ66+ncSP/JpBLclhgKAPjmxFUbj4YQ68qtboaqvQOucimGGyrQeQlh3M/naf8A4iBGhHoCAMoa2tDQapkVbn/74TxG/nU3MvN6/+xFrMO6pXWEELsxPNQL2x5JwQMbjyC7sA4rth7DpiUT4CKX2npoxA51rm4EgA0bNmDHjh3YvHkzVq9e3e3xmzdvRl1dHQ4fPgy5nEtAR0dHW3PIA/KPXReRmV8Ld4UUWx6ZgDAfV5uNJWmQLyYN8cfhvFq8/0seXrhjpM3GQuyHVMLglbtG4ba3DmH3uUrsOluOuSNDbT0sYgdqamqg0+kQHBzc5f7g4GBcvHjxhs/Pzs7G2bNnsWnTpi73z507F3fddRdiYmKQl5eHP//5z7jllluQmZkJqbT7Z4d169bhhRde6Hb/nj174ObWfbPmvXv33nBsvWnrALbkSAEwmOBejx9//LHfz3VVAwykOF7cgI+/2Qk/pdnD6NVAzs3edT631lbqZ2yqO8eG48NfC7HnXAWa2rXwdLHNRXtCrO1YIVeNPibSB3Jp1/rOEaFcRfr5qyqwLNuvFUaE2JKnixyRfq4oqWvD+XIVJg0JEPT47VodNh0qAAB8cawEqUP8BT0+MQ0l0glxYqMivLHlkWQ8vCkLv+bWYuXHx7Hh4SQoZZRMJ9fw1Y1r1qwx3nej6sbvv/8eqampeOKJJ/Ddd98hMDAQDzzwAJ599tkeEy5qtRpqtdr48/WVi7zOFXCWsvNMBTYe5D6ovHLXSAzxd7VKlV1f5/bbm6NxOK8Wnx0twW+mRCPQ0wKZHgvq6dyocnHghod64TdTB2P9vjw8/905pA4JsNnKCSIemzZtwqhRo5CcnNzl/kWLFhn//6hRozB69GgMGTIE+/fvx8yZM7sdZ82aNUhPTzf+rFKpEBkZiTlz5sDL61r1oVarxd69ezF79mzjhVdTvXegAG26K4gNdMezD07qc5PRnuyoO4rswnq0B47AvMnRZo2hJ0Kcm73q6dz4927Sf6PCvTE40B351S3Yfa7S2DedELHj27p07o/Oiwv2gFTCoL5ViwpVO0K9hS1oYVkWL++8AD0LPDd/OCXqiSASQr25RPpV4RPpv+bWGP//xYomQY9NTEeJdEKcXNIgX2xeOgFLP8zGvkvVePLTE1j/4LhulQHEeZlT3Zifn4+ff/4ZDz74IHbu3Inc3Fw8/vjj0Gq1WLt2bbfHW7NysS9VbcCrp7mqxplheuiLjmNnkUVeqlc9nRvLAtEeUhQ26/Hctn24I9oxNyWjykXhPTkjDjvPVKCgpgX/2HURL985ytZDIjYWEBAAqVSKysrKLvdXVlYiJCSkz+e2tLTg888/x4svvnjD1xk8eDACAgKQm5vbYyJdqVRCqex+0U8ul/eYVO7t/hvp0OnxaXYJAOC302KhVCpMPsZtY8KRXViPH89VYuX0OJOffyPmnpsj6HxuYj1HS2IYBneOCce/9l7GdyfLKJFOnMZpQ//zsVE+3X7nIpciNtADlyqbcP6qSvBE+tkylbFo5o4xYRgd0X0MhJhqRJgXdp2rwPmrwl9U3nW2wvj/L1Wo0KzusPreXeQa+pcnhGDiYH9sXDweyz86hj3nK/H77Sfxn0VjITWxoosQnl6vR1BQEN5//31IpVIkJSWhrKwMr776ao+JdGtWLvZGq9Nj4cZsaPQqTIzxxdtLkiCz4gWlG52be1w1Vmw7gSO1cqxbMgV+7qYni2yFKhctx0Uuxct3jsL9G4/g06xi3DU2HOOj/Ww9LGJDCoUCSUlJyMjIwIIFCwBwc3JGRgZWrVrV53O//PJLqNVqPPTQQzd8ndLSUtTW1iI01LYthfaer8TVxnb4uyuM/aZNdcvIEKz97ixOlzaiqLYFg/zdb/wkQgRyhyGR/mtuDSpV7Qj2crH1kAixqBZ1B3KrmwFwqzJ6MiLMy5hInzk8uMfHmKvz5tLHCuspkU4Ewff2PydwIr1Dp8dPF64VR+hZ4ERxPabEBQr6OqT/qOSUEAIAmBIXiHcfHAe5lMEPp8vxp69OQa9nbT0sYgfMqW4MDQ1FfHx8lzYuw4cPR0VFBTSa7huwKJVKeHl5dbkB1yrdOt96u3+gtw0HCnGmTAVvVzn+vWgsXF2UFnmdvm59ndusEaFICPNCq0aHj7NLrT42S5wbEUbqEH/cN56rYvy/b85Cq3PMFQtEOOnp6di4cSM++ugjXLhwAStXrkRLS4txn4vFixd3adfF27RpExYsWAB//669N5ubm/GnP/0JR44cQWFhITIyMnDHHXcgNjYWaWlpVjmn3nx4uBAAcH9ylNmt6QI8lMZl2D+cLr/BowkRVpS/G5IG+ULPAv87RZuOEvE7d1UFlgVCvFwQ1MuFoxGhltlwlGVZ7Dhz7e+MbzFDyECNMCTSc6ub0a7VCXbco4X1qG/VwtdNjltHcwUD/B4DxDYokU4IMZo5PBhv3c9Von+dU4b/+/YMWJaS6c6uc3Ujj69uTE1N7fE5N910E3Jzc6HXX0voXb58GaGhoVAo7K+S+nhRHd7elwsA+PudIwVfQioEhmHw5IxYAMCWw4VQtVOPcXLNmluGw89dgUuVTfjAsFyZOK+FCxfitddew/PPP48xY8bg5MmT2LVrl7FFV3FxMcrLuyaML126hEOHDmH58uXdjieVSnH69GncfvvtiI+Px/Lly5GUlISDBw/22L7FWs5fVSG7oA5SCYMHJ0YN6FjzDV9Od1AindjAgrHhAIBvTpTZeCSEWB7f1mVURM/V6MC1pOQFgRPpZ8tUKKlrM/58rKiOvu8SQYR4ucDXTQ6dnsXlSuH6mP98kStmmzEsGCmDuUIHugBkW5RIJ4R0MXdkKF6/LxEMA3yWXYIX/neePlwQk6sbV65cibq6Ojz11FO4fPkyduzYgZdffhlPPPGErU6hV+oOHZ756jT0LHDn2HDcOjrM1kPq1ZwRIYgL8kBTewe2ZVq5eTuxa77uCvx53nAAwH8yLqOkjnrQO7tVq1ahqKgIarUaWVlZSElJMf5u//792LJlS5fHDx06FCzLYvbs2d2O5erqit27d6OqqgoajQaFhYV4//33u+2dYW1bMwsBAHNHhgz4AujchBDIJAzOl6uQb2g5QIi13DoqFDIJg3NXVYImYAixR2fKGgEAo3tp6wJwG6oDQGFtK5rVHYK99g+GavQZw4IgkzCoVKlR1tB2g2cRcmMMwyAhjItpIfuk779UDQCYPiwQ4w2b854orkcHrUC1GbMS6evXr0d0dDRcXFyQkpKC7OzsXh87bdo0MAzT7TZ//nzjY5YuXdrt93PnzjVnaIQQAdwxJhz/vHs0AK7y9ZUfL1Iy3cmZWt0YGRmJ3bt34+jRoxg9ejR+97vf4amnnsLq1attdQq9ev+XfORVtyDAQ4G/3pZg6+H0SSJh8MR0rir9g4P5aNUI98WCOL67x4Vj4mA/tGv1eP67szRvE1FrUXfge0MbjMUTBw34eL7uCtwUS+1diG34uiswbWgQAOBbqkonInemlEuk91WR7ueuQIih7ctFgarSWZbFj2e4TRvvSYow9rSm6l4ilBEC90kva2jDlapmSBhgcmwA4oM94amUoUWjw8UKuuhqKyYn0rdv34709HSsXbsWOTk5SExMRFpaGqqqqnp8/Ndff43y8nLj7ezZs5BKpbj33nu7PG7u3LldHvfZZ5+Zd0aEEEHcOz4Sf79zJADgvQP5+PdPV2w8ImJrplY3pqam4siRI2hvb0deXh7+/Oc/d+mZbg8KalrwlqGly19uHQFvN/vv233r6FAM8ndDfasWn2YV23o4xI4wDIOXFoyCXMpg36Vq/Hi2wtZDIsRidp4pR6tGh2h/NyTHCLPBLt979IfT1KeaWN+dhvYu3528SvsUEdFStWuRX9MCoPeNRnl8UlKoPum5Vc0ormuFQibBtKGBSBrEvXdQv2kilASBY/YXQzX62Chf+LgpIJUwGGuoSqcLQLZjciL99ddfx4oVK7Bs2TKMGDECGzZsgJubGzZv3tzj4/38/BASEmK87d27F25ubt0S6UqlssvjfH19ex2DWq2GSqXqciOECO/BlEF4/tYRAIA3M65gvSHhSIgYsCyL5749A02HHlPiAnB7ov22dOlMJpXg8WlDAHAXuYTczIY4vtggD6ycysXHC/87hybqpU9E6stjpQC4C/8MwwhyzDkjQiCXMrhc2UztNYjVzRweBA+lDGUNbThGCRIiUufKuNxNuI8r/D363mPDuOGoQNW9GRe54s/Uwf5wU8gwPpoSkkRYfMxeKFdBJ8AF0V8uczE7NT7QeB/f3oXeJ2zHpES6RqPB8ePHMWvWrGsHkEgwa9YsZGZm9usYmzZtwqJFi+Du7t7l/v379yMoKAhDhw7FypUrUVtb2+sx1q1bB29vb+MtMjLSlNMghJjgkckxeHbuMADAq7sv4YOD+TYeESHC2HO+Er/m1kIpk+DvC0YJloixhjvHRiDM2wXVTWp8eazE1sMhdubx6bGI9ndDpUqNf+25bOvhECK4/OpmZBfWQcIAd4+LEOy43m5y3BzHfVml9i7E2lzkUqQlhACgVRFEvM5dNbR1uUE1OiB8RfrPhkT6jGFcG6UkQ0LyYoVK0D7sxHkNDvSAi1yCVo0OhbUtAzqWVqfHr7lcXnTa0O6J9OOFdQM6PjGfSYn0mpoa6HS6bhsLBQcHo6LixsuHs7OzcfbsWTz66KNd7p87dy62bt2KjIwM/OMf/8Avv/yCW265BTpdz1V2a9asQWNjo/FWUkJJBEIsaeW0IXh6VhwA4KUdF7DNsLkXIY5K06HHKz9eBAA8OiUGUf5uNh6RaRQyCX5rqErf8Es+tLTZDOnERS7FSwtGAQA+yizE6dIG2w6IEIF9dZyrRr85PhAh3i6CHvvWxGvtXWifAWJtfPztPFMhSDUjIfbmQjm32offTLQvfHXvxYqmAf89NLZqjZXnfCI92MsFEb6u0LPc5o2EDJRUwmBosCcA4NIAe5jnFNWjWd0Bf3cFRoZdu/A0JsoHUgmDq43tuEob5dqEWZuNmmvTpk0YNWoUkpOTu9y/aNEi3H777Rg1ahQWLFiAH374AUePHsX+/ft7PI5SqYSXl1eXGyHEsp6aGYeVhsTdX747hy+O0gUs4rg+ySpCQQ23wejKabG2Ho5Z7hsfiUBPJcoa2vANbUxGrjM5LgB3jAkDywJ//uYMOuhiCxEJvZ41bsZ4b5Lwq1JnDQ+GQiZBfnULbeRFrO6mIQHwdpWjplmN7AKqNiTic6mSqy4fGuJ5w8dG+bnBRS6BpkOP4rrWAb3ugSvV0OlZxAZ5INLvWgGNsU0G9UknAokXKJGemc9Vo0+KDYBEcm3ltJtCZrzIRO1dbMOkRHpAQACkUikqKyu73F9ZWYmQkJA+n9vS0oLPP/8cy5cvv+HrDB48GAEBAcjNpX7MhNgLhmHwTNpQLLspGgDw7NenjV9kCXEkjW1a/CeD2zz397Pj4aGU2XhE5nGRS/HYlMEAgHf25VLlGunmufkj4OUiw9kyFbZmFtl6OIQIIqe4Hlcb2+GhlGHm8CDBj+/pIse0eL69C7XXINalkEkwl9q7EJHq0OlxpbIZADCsH4l0iYRBbJAHgIEnJfcZ2rrMHNb1fSMpmttwlPqkE6HwF4muVA0sZo8YEukTB3ffUH1clA8A4FRJw4Beg5jHpES6QqFAUlISMjIyjPfp9XpkZGQgNTW1z+d++eWXUKvVeOihh274OqWlpaitrUVoaKgpwyOEWBjDMHj+1hF4MCUKLAv84ctT2HmGeogSx7LpYD4aWrWIC/LAwvGOvcfGAylR8HGTo7C2lb5wk24CPZV49hZuj4t/7bmE8kZa/kkcH9+7fM6IYLjIpRZ5jVsNm0/vOF1O7V2I1c0fzX0H3nW2glYTEVEprG2FukMPV7kUUX79a6vIV/deGcAG0CzL4sCVGgDA1E69poFrFekniuupKIUIIk6AivR2rQ45xQ0AgImD/bv9PjHSBwAl0m3F5NYu6enp2LhxIz766CNcuHABK1euREtLC5YtWwYAWLx4MdasWdPteZs2bcKCBQvg7981CJqbm/GnP/0JR44cQWFhITIyMnDHHXcgNjYWaWlpZp4WIcRSGIbB3+4YiXuSIqDTs/jdZyfw0/nKGz+REDvQ0KrBh78WAgDSZ8dDJrVqhzPBuStlWH5TDABg/b5c6OkLALnO/ROiMC7KBy0aHV74/ryth0PIgOj0LHYYLuDzvaQtYcawIChkEhTWtuKyoXqSEGtJHeIPXzc5als0yKL2LkRE+MRifIhnl1YVfTG2yRhAIj2vuhk1zWooZRLjBqOdj++plKFFo8PFCmE2NSXOje+Rzl046nnfxxs5WdIATYcegZ5KDA5w7/b7MYZE+pmyRtorywZMziAsXLgQr732Gp5//nmMGTMGJ0+exK5du4wbkBYXF6O8vGuF6qVLl3Do0KEe27pIpVKcPn0at99+O+Lj47F8+XIkJSXh4MGDUCqVZp4WIcSSJBIG/7h7NG5PDEOHnsXjn+Tgl8vVth4WITe0+VABmtQdGBbiibSEvluSOYrFk6LhqZThcmUz9tBFLXIdiYTB3+8cBamEwa5zFci4QDFCHFd2QR2qm9TwdpVjcmzgjZ9gJg+lDDfHBQDgqoIJsSa5VIK5I69teusIyhraQLkcciOXDInqYcE3buvCiw/mWrtcGcBFzcN5XIuM8dG+UMq6rmSSShiMMbTJOGGoACZkIIK9lPB0kUGnZ5Ff3WLWMa61dfEHw3S/6BTt7w4vFxnUHfoBtz3qTbvWvIsAzsCsUrxVq1ahqKgIarUaWVlZSElJMf5u//792LJlS5fHDx06FCzLYvbs2d2O5erqit27d6OqqgoajQaFhYV4//33jYl5Qoh9kkoY/Ou+RMxNCIFGp8djW48h0/AhhRB71NiqNVajPzUzrt+VMPbO21WOJZOiAQBv77tCbQhIN8NDvfDoZG7lwvPfnUOrpsPGIyLEPHxSMS2B2xDUkuYYLrbuOkeJdGJ9t3Zq72LP1YZanR5/+fYspv3rID645Nir/Ijl8Rs492ejUR5fkZ5f02z238LhXMOmjUMCevz9GGqTQQTEMIyxKv2ymSsp+uqPDnCFMsb2LqUNZr1GX44W1mH8y/vwaS7N6z2hfxVCiNnkUgnevH8sZgwLgrpDj+UfHcWxQlqCSuzTlsOFoqtG5z0yOQaucinOlqlodQjp0VOz4hDu44qyhja89TNt5k4cj17PYvc5bkXF/NFhFn+9WcODIZUwuFCuQnFtq8Vfj5DOUmL84O+uQH2r1m4LVRpbtViyORvbjnCbWZ9vkOBsGbXGIL3j27P0Z6NRXriPK9wVUmh1LAprTK/u1etZHCm4Vt3bk8QIHwCWSUgS5xQ3gES6uqPv/ug8Pm5PWmAlxbqdF6Du0COrWkKV6T2gRDohZEAUMgneeXAcpsQFoFWjw9IPj9LVfGJ32rU6bM0sBACsnDZENNXoPD93BR6aGAUAeOvnXKpKJ924KWT46+0JAIAPDuYjr5r6PhPHcrqsETXNangoZUjt44ulUPzcFUiJ4SrBdlNVOrEymVSCW0ZxF/3tsb1LWUMb7nznVxzOq4W7QgpPFxkAYJNh5R8h12vVdKDIcFHSlIp0hmEQa0xKmv7Z5UKFCg2tWrgrpBgd4d3jY0ZHcvdfqWpGs5pW7ZGBG2poSXSpwvSYPX9VBU2HHn7uih77o/PGWKgivaCmxZjIB4Dj1PKoG0qkE0IGzEUuxfsPj0dyjB+a1R1YvDkb56422npYhBh9f/Iqals0CPN2wbxRltugzpZWTBkMhUyC40X1OJJPK0NId7OGB2HGsCBodSz++v05uuBCHArf339qfKDF27rw0qi9C7Gh+aO4lRe7z1XaVXuX0vpWLHo/E/k1LQjzdsFXKydh27LxAIAfz1WirKHNxiMk9ojvFe3nroC/h2l74RmTkmZU9/IrOibE+EEu7fm9I8jTBeE+rmBZ4EwpfYclAxdvuFh0pcr0mOV79Y+N9OmxPzrPUheAPs0q6vLzYTtdFWVLlEgnhAjCVSHF5qUTMC7KB41tWjy8KdvsnmCECIllWXxwKB8AsPSm6F4/RDu6IC8XLBwfCYDrlU7I9RiGwdrbRkAhk+DglRraRJE4lL2GzZRnDg+y2mvOSeD2bMoprkeVqt1qr0sIACTH+MHPXYHGNi2OFtjHBfKyhjYsfO8ISuraMMjfDV+tnIThoV5ICPNCnJceOj2LLb8W2HqYxA7lG9qy9FVh2xu+T/oVM75bHiusBwCkxPS9kslS1b3EOfExW1zXavLeRCcMq/vHGjbB7U3nC0CnBYrbdq0OXx4vBQDMH8kVE2RSgVY34swmEEJswkMpw5ZHkjE6wht1LRo8sDEL+dQ+gNjYwSs1uFzZDHeFFAsnRNl6OBb1m6mDIZMw+DW3FseL6m09HGKHBvm747dThwAAXvzhPG08ShxCaX0rLlY0QcIA04daL5Ee6u2KMZE+YFlgjyGRT4i1SCUMZhkuHNlD/DW2abF0czbKGtoQE+CO7Y+lIszH1fj76WHcKqfPs0vQ1K611TCJneK/Ew4OND2Rbm6/aZZlkVPMfR5OGuTb52MTDdW9lmhRqunQ42xZI60EdCIBHkr4uyvAskBulWn5kBOGmB0b1XfMAp3jVpiVFDvPlKOhVYtwH1c8OzceAHD2qgoNrRpBji8WlEgnhAjKy0WOrY8kY1iIJ2qa1XhgYxZt0kVs6kNDZdR9EyLh7Sq38WgsK8LXDXeNCwcArN9HG0qSnj0+bQgifF1R3thOG48Sh/DzxSoAXCLE111h1dfm27tQn3RiC3NGcPG351yFTZNwmg49frvtOK5UNSPYS4lPHk1BiLdLl8cM92ExOMAdTeoObD9aYqOREntVwFekB3qY/NyhhkR6YW0r1B393/jwamM7qprUkEkYjArvuT86z7jhqAUS6au/Po1b3zqEz7Lp78KZxBlaEl0xobd/dZMapfVtYBj02tO/M+NKCoHi9itDNfqiCZEI9XZBiCsLloXdbnptK5RIJ4QIzsdNgY8fTUFskAcqVO144IMj1C+R2ERZQxv2X64GACxOjbbtYKxk5bRYSBgu8XS2jPo8ku5c5FKsvY02HiWOY58hkT5zeLDVXzvN0N4lM68Wja1UZUusa3JcANwUUlxtbMfZMpXNxrH2+3PIzK+Fh1KGD5cmd6lE50kY4JGbBgEAPvy1EB121Ned2B7fIz3GjNYuwV5KeChl0OlZkwq0cgyrM4eHesFVIe3zsSPDvSFhDMl3AVt5nS1rxNc5ZQCArZmFgh2X2D/+ohF/Eak/ThoS4nFBHvB0uXEBmPECkACtXSoa25GZzyXMF4zlCrPivbkLuIdyawZ8fDGhRDohxCICPJT49NEURPu7obS+DQ9uPIJK6i9KrOyLoyVgWSB1sL9ZH9wdUUyAO25L5DYoe2c/VRuTntHGo8RRaDr0yDL0h745LtDqrz840ANDgz3RoWeRcdH27TWIc3GRSzE1nov7Pedtsyri65xSfJZdDIYB3n5gLEaEefX62AWJofB3V6CsoQ0/0j4cxIBlWWNrlyFmtHZhGMb4OT7fhKRkjrFFhs8NH+uulBn7Wp8UsCq98wrR/JoWtGv7X1FPHNtgY8z2v2DF2NYl8sZtXQAY5+PyxnbUNqtNHGFX358qA8sCE6J9EennBuBaIp02HO2KEumEEIsJ8nLBpysmIsLXFYW1rXhg4xHUDHCCJ6S/dHoWXx7jllAuSo608Wis64npsQCAH89WmLUxExE/2niUOIqTJQ1o1ejg767AsBBPm4whbSS1dyG2w296u+ec9S/kXK5swv99cxYA8NTMOEy7wR4FSrkUD6dyVekfHMyni7QEAFDVpEaLRgephEGUn3mFLXxvdVOqe08UNwAAxvWj1zQgbHUvwPXG3tXpfUPTocfRQtq40VnwMcuvxuiP06XcauIx/bj4AwCeLnJE+3NJ73NXB7Zq6dsTVwEAd4wJN94X68VCKmFQUNOC0npq18ujRDohxKLCfFzx2YqJCPV2QV51Cx76IAv1LbRZBbG8A5ercbWxHT5ucmOPW2cRH+yJtIRgsCzwzv48Ww+H2CnaeJQ4An458aTYAEgkjE3GMNvQUubglRqT+vMSIoQZQ4MhlTC4VNmEQhOSiAOl6dDjd5+dQJtWhylxAXhyRly/nvfwxEFQyiQ4VdqIo4W08TmBsYVcpK8rFDLzUlDGivR+tqNr1+pw7iqXlOx3It3Yb1qY1ojv/ZIHlgVmDQ/GPUkRAIBDV6hFhrMYHMC1dimsbYFef+OLiizL4nw5lwwfGXbj/ui8BEP//4Ek0q9UNuF8uQpyKYP5o0KN97vKgNHhXNX74VyqSudRIp0QYnGRfm745NEUBHoqcbGiCYs3Z6OxjfqMEsv6/GgxAOCusRFwkffdF1GMVk3nvvB+d7IMRbXW++JNHAttPErs3a+GRPrkWH+bjSEhzAtBnkq0anTIyqdqQmJd3m5yTBzsB8C67V3e3peLixVN8HNX4PX7xkDazwtZ/h5K3DWOSxpuPJhvySESB8FX5Jqz0SiPT6T3tyL9fLkKWh0Lf3cFIv269/TvSWIkl5A8Vdow4NUUVU3t+PYk1xv98elDMCUuAAB3QZY4hwhfV8ilDNq1epT3o8VtpUqNuhYNpBLGuFFpfyQY2rvwF47MwbfiujkusNum7pOGcJ+/qE/6NZRIJ4RYxeBAD3z6aAr83BU4U9aIpR9mo1lN1Y/EMhpbtfjZsDndfRMibDwa2xgV4Y1pQwOhZ4F3qSqd9II2HhWv9evXIzo6Gi4uLkhJSUF2dnavj92yZQsYhulyc3Fx6fIYlmXx/PPPIzQ0FK6urpg1axauXLli0XNoatcae9XeFBtg0dfqi0TCYMYwrqUF/95CiDXxK+us1d7lbFkj3jH0dn7xjgQEeipNev7yyTEAgJ8uVJrUioOIU3Ed1xIi2t/8/YqGmLhxI1+dOzLcGwzTv4tA8cGeUEglaGrvQEldm3kDNfjyWCm0OhbjonwwLsoXk4Zw72Hny1UD7mVNHINMKkGUodd4f1ZSnC/nEuGxgR4mFYElGKrXzw+gIn3vee69hW8l1lmq4ULu4bwaatdlQIl0QojVxAV74uPlKfB2leNEcQMe2XIUbRpaIu0oTEnKdPb555+DYRgsWLDAsgPsZNe5cmh1LIYGe2JYSO+bYondkzO4Xun/zSlFWcPAvhAQ8eq88egL/ztPH5JFYPv27UhPT8fatWuRk5ODxMREpKWloaqq9ySwl5cXysvLjbeioqIuv//nP/+JN998Exs2bEBWVhbc3d2RlpaG9nbLbSSelV8HnZ5FtL8bInzdLPY6/THT0N4l42Il/Y0Qq5s9gou/48X1Fk/C6fQsVn99Gh16FvNGheDW0WEmHyM2yAMzhwWBZYFNh6gq3dmVGBLp/a0M70m0oSK9plnTr5XNfFKxr81xryeXShAfwiXsB1Ldq9Oz+DSLWxn7YAq3Z0Cgp9K4z8evtHGj04gJ6P8FIHNiFrhWkV5Q24IWMwoVrza04UxZIxgGmDGseyJ9TKQPXOVS1DRrcIn23gJAiXRCiJWNCPPC1keS4amUIbugDiu2HqPdyx2AOUkZACgsLMQf//hHTJkyxUoj5Xx/itss5fYxpn/5E5OkQX5IHewPrY7F+79QVTrpGcMweP7WEZBLGRy4XI19l6ji1tG9/vrrWLFiBZYtW4YRI0Zgw4YNcHNzw+bNm3t9DsMwCAkJMd6Cg699mWJZFm+88Qaee+453HHHHRg9ejS2bt2Kq1ev4ttvv+3xeGq1GiqVqssNALRabbdbb/dn5lUDAFJifHv8vTVvyYO8oJBJUFLXhgtlDf1+Xm/nJsStVtWKH0+X4a2fLuH/vj6NjQdyodForPZv0tO5EcsI9XbF8FAvsKzlW0NsP1qCs2UqeLrI8OIdI80+zqNTBgMAvjpeSvsjObkSwyaFkQO4IOqhlCHYi1sZ0b+kJJcITzAxKTkilHs836vaHAeuVKOsoQ3ernLMH32t3zTf3uXQlWqzj00cyxATNhzlY46Pwf4K8FAi2EsJlgUumBG3P13gqtGTonx7XH2klEkwPprbZ4Da23Fkth4AIcT5JEb6YMsjE/Dwpmwcyq3B45/kYMNDSWZvPkMsr3NSBgA2bNiAHTt2YPPmzVi9enWPz9HpdHjwwQfxwgsv4ODBg2hoaLDKWKua2pFpqPS4zYwqKrF5ckYsMvNr8fnREjwxIxZBni43fhJxOtEB7njkphi8dyAfL/1wAZNjA2lOdlAajQbHjx/HmjVrjPdJJBLMmjULmZmZvT6vubkZgwYNgl6vx7hx4/Dyyy8jIYFr+1NQUICKigrMmjXL+Hhvb2+kpKQgMzMTixYt6na8devW4YUXXuh2/549e+Dm1j2Zsnfv3m73ZZyRAmAgbyjGzp1F3X5vbUM8JLjQIMG73x/ErPD+V6X3dG7m0rPAhQYGB8oZXG5koEfXlgV1BecxzMd6FfOdz621tdVqr+uMpg8NxIVyFfZdqsKCseEWeY3GVi1e3X0RAPD7WfEI8DCtpUtnEwf7ISHMC+euqvDxkSI8ObN/m5US8eHbpET6DWxlUUyAOypVauRXN2OMYWPQnnTo9LhYwVXOJpiwaeO1x5cOaOPGz7O5avR7krru0zQ5LhAbDxbg0BWuRUZ/W84QxzWYT6T34+LPOTMr0gEubitVVTh3VYXx0X4mPZdv68KvfOpJSowfDl6pQVZBLZZMijZ5fGJDiXRCiE0kDfLDpiUTsPTDbPx8sQpPfpaDtx8YB7mUEjf2xtykzIsvvoigoCAsX74cBw8e7PM11Go11OprS5Wvr1zkda6A6833J0qhZ4Exkd4I9ZI7TIVcf87NHOOjvDAm0hsnSxrx/i95eDYtXtDj90dP5+Yo/12cyaoZsfhvTinya1qwNbPQWE1IHEtNTQ10Ol2XinIACA4OxsWLF3t8ztChQ7F582aMHj0ajY2NeO211zBp0iScO3cOERERqKioMB7j+mPyv7vemjVrkJ6ebvxZpVIhMjISc+bMgZfXtS+JWq0We/fuxezZsyGXy433t2t1+GP2zwBYLLttqrHPqC3V+xfjrz9cRDnjj3nzkm/4+N7OzVynShvxwg8XcKbsWoJnSKA7RoZ5Yff5SrRr9bigC0b6vHEDfq0b6enc+PduYhnThwXhnf15+OVyNXR6tt+bf5rijYzLqG/VIi7IAw+nDhrQsRiGwYopg/H09pP4KLMIK24e7JSbvzs7VbvW2Iolwtf81i4A1ybjSH7dDSvS82taoO7Qw10hxSAT3zsGunFjY5sW+y5yFef3ju+6T1NytB8UUgmuNrYjv6bF2PediBff2uVGPdKb2rUoquUuRg83sSId4OL254tVJsdti7oDR/K5ArRZfSXSB3MbjmYX1NFFIFAinRBiQ6lD/LFx8Xg8+tEx7D5XifQvTuGNhWMs8sWAmM+cpMyhQ4ewadMmnDx5sl+vIUTlIu+zs1wFY4y0Djt37uzX69sTISsXecnuDE5Ciq2HCzC4PRfuA8/nmIUqF+2bp4scf5wzFKu/PoP/ZFzBnWPD4T+AakTiOFJTU5Gammr8edKkSRg+fDjee+89/O1vfzPrmEqlEkpl9/iRy+U9JpWvv/9EaRO0OhaBnkoMDvKyiy9tsxJC8dcfLiKnuAHNGha+7op+Pa+3c+4vnZ7FGz9dxtv7csGyXIuDB1Ki8EBylLFvcH51M2b86xf8cqUGFU3aAVd+9lfncxPiYgHp3dhIH3i5yNDQym3CmzTIV9Djl9a34uMj3MqPv9w6QpDilvmjQ/GPXRdR3tiO709exX0TIgd8TNK39evX49VXX0VFRQUSExPx1ltvITm55wt/W7ZsMa425SmVSkH3vig1VKP7uSvgrhxY+mlIP6t7+V7Tw0O9IDHxe+XwUC8wDFCpUqOmWW3yqozd5yqg0ekRH+zRbZ8mV4UU46N9cTivFoeu1FAi3QnwFellDW1o1+p6vZh4ybCCIsTLBX79/GzRGb/ywtSVFNkFddDqWET4umJwQO+bAY+O8IZSJkFNswZ51S2IDXLu2KVEOiHEpm6OD8S7D43Db7Ydx/9OXYVCKsGr94w2+UMPsR9NTU14+OGHsXHjRgQEBPTrOQOtXOTVtWjw+yP7AQBP3T0N4T4Dq3yxJqErFzu7hWVx8J0juFDRhDKPeDw9M1bQ498IVS46jnvHR2JrZhHOl6vw+t7L+Pudo2w9JGKigIAASKVSVFZWdrm/srISISEh/TqGXC7H2LFjkZubCwDG51VWViI09Fq/18rKSowZM0aYgV/nWBHXh3P8IF+7SKIDQISvG4aFeOJiRRN+uVxtsfYanTW1a7Hy4xwcyuX6Yt81Nhyr5w3r1qZrcKAHpsQF4OCVGnx8pAhr5g23+NiIdcmkEkyJD8SO0+XYf6lK8ET62z/nQqtjkTrYHzfHBwpyTLlUgqWTorHux4vYdKgA946PsJu/ZzHi9zTasGEDUlJS8MYbbyAtLQ2XLl1CUFBQj8/x8vLCpUuXjD8L/d/nWn/0gX8mjzEk+gpu0G/6nJn90QHAXSlDjL878mtacO6qClNN/Fv4H79PU2LP7SUnxwVwifTcGmqR4QT83RXwUMrQrO5AaX0rYoM8e3xcbhVXsR4XbF6Cmo/1y5VN0Or0/b4Qyn+2mBwb0OffvlImxdgoHxzJr0NWQa3TJ9KphwIhxOZmDg/GW/ePhVTC4L85pXjuu7NgWev19yR9MzUpk5eXh8LCQtx2222QyWSQyWTYunUrvv/+e8hkMuTldd/0UqlUwsvLq8sNuFbp1vnW2/1yuRwH8+qhZ7lNWqIDvXp9nL3e+jq3gdwUCgV+Z+hNuvVIMdp0lnkdU8+N2B+phMHa20YAAD7LLjZr0yJiWwqFAklJScjIyDDep9frkZGR0aXqvC86nQ5nzpwxJs1jYmIQEhLS5ZgqlQpZWVn9PqapjhXWA4DJvT4tbeZwLhnFb85lSXUtGjz4QRYO5dbATSHFfxaNwesLx/S618Xi1GgAwPZjJbSRu0hNH8rFn9CbQhfWtODL46UAgD/MEbYF3KLkKLjKpbhU2YRMQwsBYhlCbzR9PXM2kS6q4RKE4T4uA97gONSLq9QtqW/t83EXDZ9d4oLczXqd4SFcsvNMSb1Jm0hX1DfjV0Nicm5CUI+PmRjtAwDIzKtFW7vaaptD0ybStsEwjHGFGL9XQE/4RLq5CeoIX1e4K6TQ6lgU9qMfO++QYfPqyXE3Ln5LjrnW3sXZUUU6IcQu3DIqFK/r9Hh6+0l8mlUMpUyCP0btwAABAABJREFU528dYethEXRNyixYsADAtaTMqlWruj1+2LBhOHPmTJf7nnvuOTQ1NeE///kPIiMtt6x373muV29fm6U4q7SEEMQGeSC3qhnbMovwxHTrVqUTx5Ey2B/zR4Vix5lyvPi/8/h0RQpVEDqY9PR0LFmyBOPHj0dycjLeeOMNtLS0GJfwL168GOHh4Vi3bh0Abk+LiRMnIjY2Fg0NDXj11VdRVFSERx99FAD3RfDpp5/GSy+9hLi4OMTExOAvf/kLwsLCjO8LQtLrWRwvMiTSBa66HajpQ4Owfl8eDuXWWKxPNQA0qzvw0AdZOF+ugp+7AlsfScbI8L43zZsxLAjhPq4oa2jD/05dxb3jqY2G2PDVsWfLVKhqahdsA/G3fs6FTs9i2tBAwS9eebvKcXdSOD4+UowtvxZi0pD+rVYkprHERtPXM6cV46ECCQAJ1HXl2LmzzPQT60SjAwAZmto78NX3O+HWSzbrbDHX5rE69zR2Vp02+XUkKgaAFBk5lxDZfKHHx/TUijGzkoGelSLSncW5I/txrofn6VnATSZFs7oD7321CzE9FyjbFLViFFakrysulKuMqzN6kls9sEQ6wzCIC/bEyZIGXK5sRlzwjQOrqqkdlyqbwDDo17w8McYPbwLIyqc+6WYl0oXuu8WyLNauXYuNGzeioaEBN910E959913ExdHO3sT+2VsfOkd2x5hwqDv0eOar0/jw10IoZBL8YeYQWw+LwLSkjIuLC0aOHNnl+T4+PgDQ7X4htWt1OHCZu6pOifTuJBIGq6bH4untJ7HpUAGW3RQNNwVdT+8JzevA6luGYe+FSmTm12L3uUrMHdm/liDEPixcuBDV1dV4/vnnUVFRgTFjxmDXrl3GSsPi4mJIJNcWptbX12PFihWoqKiAr68vkpKScPjwYYwYce2C9jPPPIOWlhY89thjaGhowOTJk7Fr1y64uAiTyOussLYFjW1aKGUSjDBjab4lJUb6wFPJ9ak+d7URoyN8BH8NrU6PlR8fx/lyFQI8FPj8sYm9LgfvTCph8ODEKPxz1yVszSzCPUnURoMnlnk90FOJUeHeOFPWiP2XqnGfABdLyhvb8N1JLsH59CzLbEi+dFI0Pj5SjL0XKlFS12q1Hv7OxBIbTV/PnFaM324/A1TU4OakBMxLHni8/uP8ftQ0azB8/OQeW7e0qDtQn/kzAOCh22fDx830FZCeuTX430c5qIcH5s2b3OV3fbVi/OHTkwCqcGdKLOZN7/077O6mU9h1rhIIHoZ50+xnY3dHa8XoKPP6tYr0PhLphor0gfTNjw/2wMmSBlyqbMJ8hN7w8fzqiYQwr371ZR8b5Qu5lEGFqh0ldW2I8nfeedzk1i583621a9ciJycHiYmJSEtLQ1VV78vLvLy8UF5ebrwVFRV1+f0///lPvPnmm9iwYQOysrLg7u6OtLQ0u/iwQkhfLPH34OzuGx+Jvy3gkq3v/ZKPt/Z1bwNCrG/hwoV47bXX8Pzzz2PMmDE4efJkt6RMeXm5Tcd4OK8GbVodwrxdzOqJ6AxuHR2KQf5uqGvR4NOsYlsPxy7RvM6J9HPDY1O4L3cv77wAdQe1iXA0q1atQlFREdRqNbKyspCSkmL83f79+7Flyxbjz//+97+Nj62oqMCOHTswduzYLsdjGAYvvvgiKioq0N7ejp9++gnx8ZZJup0p4/rbDg/1EmTDQyHJpRKkDuGWNx80LIkW2t93XMDBKzVwlUuxeemEfiXReQvHR0IhleBMWSNOljRYZHyORmzz+rShXFX6IYHib8vhQnToWSTH+GFMpI8gx7xebJAnpsQFgGWBrZmFFnkNYrrU1FQsXrwYY8aMwdSpU/H1118jMDAQ7733Xo+PN6cVY3mjGgAwKMBDkFaBfFKyXKXp8ffFDdzrBXgoEOjtZtZrJEZyqzIKa1uh0TP9aleoZyT4NY9rXTQnIbTP498Uy1X/Hi2qt3qrRbG0YnSkeZ3fH6C4l0R6m0aHsgau7ctAeo/HG6rQr1Q29evxfIuW/q4SclVIjcUDRwqcu02XyaVonftuAcCGDRuwY8cObN68GatXr+7xOXzfrZ6wLIs33ngDzz33HO644w4AwNatWxEcHIxvv/0WixYt6vYctVoNtVpt/Nmer5IRcRP67+F6vcX69f3KOvczE4NFSWFoU2vx8o+X8Na+fNwaxWC2SM6ts57+u9nzf8NVq1b12MoF4JIyfemcsLEUvhp9+rAgqsDrhUwqwcqpQ7D66zN4/0A+Hpo4qNfd450VzevXPHpTFL44VoLiulZsPpiPRydHC3Jcezg3S3G0ed1enTUk0kfdoJWJrUyJD8Se85U4cLla8DZZu89VYMvhQgDAm/ePNbni3d9DiVtHh+LrE2XYllmEsVH21RrHFsQ2r6dE++AtcAUEGo1mQJ95mtUdxgvrj6RGmT22/pzbwymROHilBp8fLcETU2PgrnSMVXGOMq9bYqNpIVSouOLIUO+BbzYKAJG+bjhR3NBrmwwhKnv9PZQI8FCgplmD3KpmJPbjAlNWfh1aNToEeylvWNAzcTB3MfZ4UT3UHTooZfRZ3FSONK+HeisBAMW1rT0+7nKFCiwL+LjK4aVgzJ5fBgdwf2OXKpr6dYyjhkT62AivHh/f07lNGOSD40X1yMyrwZ2JwqxWZVkWb+/LR02LGn+ZNwwyKxRQDHReN+ndyxJ9twoKClBRUYFZs2YZH+/t7Y2UlBRkZmb2mEjvrTcXIdZkr33oxCIYwK1RDH4oluKHYinkW3/CtFBxbkBKfeiEcfBKNQBgSlygjUdi3+4aF4H/ZFxBeWM7vjxeiocnDrL1kOwGzevdzQxi8FmTFG/+dAnetefhLmBhkq3PzZJoXh+YM/aeSDdUE+YU16NF3SFYQrC8sQ3PfMX1810xJcbsNmWLJ0Xj6xNl+OF0Of5v/nD4eygFGZ8jEuO83qEH5BIpapo12PTfHxE2gNX1+8sZNLVLEeTCoi3/GHYWDGhofZ6bngUCXKSoae/A3z/Zi8khjvW53t7ndVP3NOoJv9H0vHnzBBlTu1aHhlYuORXsJcw8FOnXd3Uvn0iPCzY/kQ5w1b01zbW4XNnUr0T6zxe5SujpQ29c0BMb5AF/dwVqWzQ4XdqICXa2qba9c7R5vbwVAGQorFZh586d3X5/vIbrye8r0+DHH3/s9Tg3wi3GkKGwphnf/7ATsj7y0S1aILea++xSd7nvub/LudVzY/3lfBl2ugizunlPKYMdJdzFJA9VERJ8rffeYO68btKnPkv03aqoqDAe4/pj8r+7Xm+9uQixJnvtQ2evy6/MMQ9A5N7LePdAIb4plGLMqOF4QIDeevbC0frQ2bPyxjbkVbdAwgCphioP0jOFTILfTh2Ctd+fw4b9eVg0IdLuWifYCs3r3aXpWRxfn4nLVc3IUw7B6rlDB3xMezk3S6B5feD0ehbnyrh/sxttrmkrg/zdEOnnipK6NmQV1GLGMGH25Vj73Tk0tmmRGOGNP6UNM/s4YyJ9MDrCG6dLG7H9WAken+a8m0uLdV7/uuY4fs2rhSw8AfNSzbsgzrIs/vPmYQAteHz2CNw6gM/Y/T23Wr8ivLTzEo43eeHvyyY5xApCR5rXhd5oeqAqm7iKXqVMAm9XYd7vI335ftNtPf6eT6THDqAiHeAS6YfzuER6fxwwFPRMHxZ0w8cyDIOJg/2x40w5juTVUiLdRI42r7dqOvDKqZ/RpmNw0/TZ3f4WrmTkAlfyMT4+AvPm9ZzY7w+WZfGv8/ugau9A/PgpGBbSe1u4/ZergWMnEO3vhvvumNzjY3o6tyntHXjv5Z9Rp2YwfspMBHkO7AJZxsUq7Mg8afy52jUS8+ZZbk813kDndYuvp0pNTUVqaqrx50mTJmH48OF477338Le//c2sYyqVSiiVzltZQRyXqX8PvcV6b/3K7LmPmbl+PysOl3PzkXFVgrX/uwBXpVyQjZXsyfU96Yjp+D6hoyJ84G3GpkLOZuGESLz1cy7KGtrwzYky0f1NWZPY53U5gDXzh2PZh0ex7UgJlt40WLBN4mx9bpZE87r5iupa0aTugEImGXBFoaUwDIMpcYH4NKsYBy7XCJJI332uAnvOV0ImYfDPexKh6KuUrB8enjgIf/rqND45Uozf3DwEUon9JyzthSPM65PjAvFrXi2yChqw4mbzLpQcK6xDfk0LXOVS3J0UKchcdaNzW5g8CG9k5CG/pgVHChtxc7zjrCJ0hHndEhtND0SVikukh3i7CHbRxLhx4w1au5iyt0RP+Pefy5XNN3xslaod+dUtYJhrbVtuZOIQQyK9oBZPIm5AYyU3Zst53VsuN7YKqmjSIsCr6+fo0gau/dGQIM8Bzy3xwZ44VlSP/No2jIrs/QLNyVIuaTw+2u+Gr9n53PzkcgwN9sTFiiacudqMuSPN/5xW06zGn789bxi3By5XNmPfpWowEqlV2rsA5s/rJo3OEn23+OcN5JiE2IK99qETG4ZhcFuUHosnRgEAnv3vaXx3sszGoyL2ht91nF9uT/rmIpfisZtjAADv7s+DTu9Yy6stheb1nk2LD8SkIf7Q6PR4fe9lWw+HiJxxo9EQT7teLXNzHPd+w7cVG4h2rQ4vfH8OAPDYzYMxtI8qsv66LTEMPm5ylDW0IeNC5Y2fIFJinddviuWSdVn5tejQ6c06xmfZJQC4jcg9XayTGPZ0keOeJK76k98LgAhL6I2mB6LS0B892MtFsGPyFeml9W3QX/f5tUOnN7Z8GRLkPqDXGWrCxo1HDL2mE8K8+l15nzqYS3LyfdJJ/znivB5hXEnR/QIQH7NRAhSqxBni9kYrKY4X1QMAxg8yfR8Vfu+VE8X1Jj+3s+e/O4u6Fg2GhXji+1WT4esmR0OrFtmFdQM6rjWY9Om0c98tHt93q/PVnb7wfbdCQ0MBADExMQgJCelyTJVKhaysrH4fkxBbsMTfA+kZwwDPzRuKB1KiwLJA+hen8OOZclsPi9gJlmVxKJfbOfwmSqT324Mpg+DjJkdBTQt20N8TAJrXe8MwDNbcMhwA8M2JMuNGkIRYwvmrXJVUgp22deGlDgmAhAHyqltQ1tBzi4H+2ppZiKuN7QjzdsHvZgpTmegil2KhYbXRtiNFghzTEYl1Xk8I84aXiwxN6g7jxSdTNLZpsePMVQDAouQooYfXpyWTosEwXE/pgpoWq742sS6+tUuIgIn0UB8XSCUMNB16VDeru/yuvLEdHXoWCpkEwZ4De00+IXm1sR2q9r43ITySz30PSYnpf3vJIYEeCPBQoF2rx+lS+lxlCkec1/mVFD319i82tCkSIpE+tB8rKXR61hhz48xKpPsA4PaJMdcvl6ux80wFZBIGr92bCBe5FLOGcytn9pyz/4v/Jpd5pKenY+PGjfjoo49w4cIFrFy5slvfrc5N/1988UXs2bMH+fn5yMnJwUMPPdSl7xbDMHj66afx0ksv4fvvv8eZM2ewePFihIWFGTfJIMReCf33QHrHMAxeumMk7h4XAZ2exe8+P+HUFVbkmrzqFtQ0q6GUSTBukI+th+Mw3JUyLL+Jq0pf/3Nut6oeZ0Xzes9GRXjj9sQwAMArP/bcf5IQIfDVf3w1oL3ydpUbN6DLzKs1+ziNbVqs35cHAPj97Hi4yKVCDA8A8NDEQWAY4OCVGuRX37g9gViJcV6XShikDuGSdofNiL8fz5SjXatHfLAHxhmSItYSE+CO6UO5PtIfUVW6qFV2au0iFLlUglDD8Uqva+/CJykjfV0hGWA7K29XuXGD1Cs3aO/CJ9L729YF4L7bphgef2QA7yHOytHm9QhfbpPc8sb2Lve3ajpQY7ggJETrxCFBXCK9r/f8gpoWtGp0cJVLMcSMvQTGGSrST5c2QmvGiiidnsW6nRcAcBdW+f1w0hK41QR7z1eCZe37e6nJPdIt0XfrmWeeQUtLCx577DE0NDRg8uTJ2LVrF1xchJtwCbEEe+tDJ3YSCYN/3jMaGp0e/zt1FSs/zsEHS8Y7VH9FIrzjRdzyr8QIHyhlwiUgnMHiSdF4/0A+LlU2Ye+FSuMHGGdG83rv/pQ2FD+eLceh3BocuFxNcy+xiCuG/rb22h+9s5QYf5wobkBWfq2xXYWpNh7IR2ObFvHBHrhrnHnH6E2knxtmDA1CxsUqbDtShLW3mb+JmSMT67w+aUgAdp+rRGZeLZ6Yblqf9P+d5qrRF4wNt8mGn0snRePni1X46ngp/jAn3mqtZYh1WaK1CwCEebuitL6tW1JSyBYZANdvulKlxpXKJiT1Urlb1XStP3qyiZuGThzsjx2nqU+6ORxtXucv/pQ3dl3Bxm+a6+0qF2RD3mh/d+NxdXq2x/1Rzl3lqtGHhXqatX/K4AB3eLvK0dimxYVyFUZH+Jj0/P/mlOJiRRO8XeV4csa1967JcQFwU0hR1tCGs2UqjIqw35WJZm02umrVKqxatarH3+3fv7/Lz//+97/x73//u8/jMQyDF198ES+++KI5wyHEpoT+eyB9k0oYvH5fIjQdOuw+V4nHth3Dh0uTjVU5xPkcK+SWlSVFm740zdl5u8qxeNIgrN+Xh7d/zsWcEcE2+UJtb2he71mknxsWp0Zj06ECrPvxIibHBgy44ouQzto0OuMGcvF2XpEOACmD/bDhlzyz+3k2qzuwNbMQAJA+O94iG4I+nDoIGYaE5Z/ShsJNYdbXP4cnxnk9OYZL2uUU16NDp+/35mzVTWrjKorbRodZbHx9mRIXgCGB7sirbsHXOWVYMinaJuMglmWsSBc4kR5sSEpWXJdIL6oVPpF+8EoNLvXRbzqnqAEAt4rK2820ROj1fdKpIMg0jjSv838D18escRWFn6sgrxPm4wqFTAJNhx5XG9p6rHLnW+iNDDMvUS2RMBgb5YP9l6pxorjBpES6Ts/i3f3cKrzHpw2Bj5vC+DsXuRRT4wPx49kK7DlfYdeJdPvdwYcQQnohl0rw1v3jMH1oINq1eiz/6KixKpk4n+PF5m+WQoBHboqBq1yKM2WN+OXywDfNI+K2anosPJUyXChXYedZ6q1PhJVb1QyWBfzcFQjwUNp6ODc0fpAvJAyXvLn+y3F/fHG0BKr2DsQEuGP2CMusCLo5LhDR/m5oau/AtyeuWuQ1iG3EB3vC00WGVo0OFytuvCEi78ez5dCzQGKkjyCtBMzBMAwenjgIAPBpVrHdL+Mn5uF7pPMtUoQS2ksivcSYlBQmruMMbTJyq3pvk3G6tAEAMMbQ6ssUnfukn6E+6aLGtzeqUFl2FYVUwmCQ4Vj5vexBcdZQkZ4Q5mX264yN5L53m9onfe/5ChTUtMDbVY6HDO8Bnc1J4FYU7D5XYfbYrIES6YQQh6SQSfDuQ0mYHBuAVo0OSzcfNX6QIc6jrkWD/GruQ0JvSy5J3/w9lHgwhdto7K2fc+nLLOmTr7sCj0zmeuu/8dMV6Ki3PhHQZUPVH5+8sHeeLnJjb8+sAtN63Hbo9Nh0qAAA8OiUGItUowNc5Rj/ZXVrZiHN8SIilTDGzz5HTVgV8b9T3AWV20bbdvPUO8dFwFUuxaXKJhwvMn/TOmK/ag29nwM9hU2k89W95b0kJQcZ2lsMVEwAd5zC2t43xeU3bTS1vQXAXVAaP4irSj9GfwOixifSq5rUXfqKC33xBwCi+bjtIZHOsizO8Zu6m1mRDsC4L5mpifQNv+QDAB6eOAjuyu4r5GYMDYZMwuByZbNdb0ZNiXRCiMNykUvx/uIkJMf4oUndgYc3ZRuXKhHnwH/xig3y6LI0jJhmxc2DoZBJcLyoHkfyaXUH6dvyKTHwdpUjt6oZ358qs/VwiIhcruIS6Y7Q1oXH98Q1de786UIlyhra4O+uwN0C90a/3r1JkXCRS3CxoglHCylZIyb8arz+JuFqmtXGx863cSLd21Vu3MT64yNFNh0LEZ5GB7RpuYShn7uwn9FDeqlIF7q6NyaQS0iW1bdB3aHr9nu9nsUpQyHXaDPbUPAXw+hikrgFuCshkzBgWa69Fq9E4JgFrl0A6ikRfbWxHQ2tWsgkDOJDzC9aSIz0AcNwvdj5zVJv5GxZI06WNEAhlWDpTdE9PsbbTW5s2bvHjqvSKZFOCHFobgoZNi+dgLFRPmhs0+KhTVm40kcfOyIuJwxXwZOiqBp9IIK9XLBwfCQAYP2+XBuPhtg7Lxc5Hrt5MADgPz9dQUenyhpCBuJKJbd8Pt4BNhrlpQzmvvCZWpG+/WgJAODe8ZFwkVu2L663mxwLxoQDgLEnOxGH8YYLOccK6/q12mD/pWqwLLekP9RbmJ68A/HgRG5F3M4zFahr0dh4NERIzR3c/yqkEnj0UHk6ED0l0lXtWjS2aQEAEb7CxHaghxLuCin07LWEZ2eFtS1oau+AUibB0BDzLgDzezzlFNXTiiERk0gY46a7ndu7lDVwm42G+Qg3H/Mbjva0kuJSBVd0OCTQY0A9+b1c5IgxvM65fhYyfnmM+9wzOyG4z/Z9c0Zw7V32nK80e3yWRol0QojD81DKsGVZMkaGe6GuRYMHPsiy66VARDj8G7c9b0biKH4zdTBkEgaHcmtMXqZHnM/SSdHwd1egsLYVX+dQVToRRn41l0gf4iCtXQCuIp1hgPzqFlQ19a9PekVju3FPivvGW7YanfdwKtfeZdfZClSpTO/nTuxTYoQPZBIGlSo1Suvbbvj4fRerAAAzhgVZemj9MjrCB6PCvaHR6fHV8RJbD4cIqJnLacPPXSH4RvZ8j/RKVTv0hhZzfFLdy0XWY8sIczAMY6xKL6jpnkjn27qMCPOCvJ+b/V4vIcwLCpkEtS0a42apRJx6ugBUaXg/FnJD3r4q0vl+/7ECFCzwre3Olt24v3+7VodvT3Jtxfjird7we8bkFNf3+3OVtVEinRAiCt6ucmx7JAXDQjxR3aTGAxuP9Fg5QMSDZVnjG/dANkshnAhfN9w5lqtYXP8zVaWTvrkrZfjt1CEAgP9kXIGmg6rSycB06PTGRGC0QP1trcHbTY5hIdx70NGC/l2E/Op4CfQsl4QfHGidiwYJYd5IGuSLDj2Lz7IpYSkWrgqpMZlxrKjv9kJanR4HDBdwpttJIh0AHjJUpX+aVWxMihLH16zlkudCt3UBuEpxCQN06FnUtHBtJfjkpNArLfj3o4Ka7huO8t9DRoebX9CjlEmNzx9Ie5emdi3W78vF3DcOIP7/fsRz354x+1jEMvhkOR+r7Vod6lu1XX4nBD6RXlrf1qUfO9ApkS7AZ4+R4dxnn/4k0n+6UInGNi3CvF1wU2xAn48N8XZBYqQPWBbYa6dV6ZRIJ4SIhq+7Ah8/moIhge4ob2zH/RuP4GrDjatziGOqVKlR26KBVMJgeCgl0oWwctoQSBgg42JVvz4UEef20MRBCPRUoqyhDV8co8QcGZhyVTs69CwUMomgXyitIcmw6dbJkhsnQViWxdcnuFUc903ouypLaIsNVemfZhd1+3JNHBffY/lUSd/v28cK69Gk7oCfuwKJZmyMaCm3JYbBUylDYW0rfs2rsfVwiED41i7+HsIn0mVSiXEDUz4pyf9vsLew7x/Xqnu7F2hdMrQTHej3kCQT9zq4Xk5xPea+cRCv7r6EixVN0Oj0+Cy7BPXULsmuGCvSDVXoVSruIpBCJoGPm1yw1wn2UsJVLoVOz3YrLDQm0gVY+TfSsFnp2as3/s744xmu3/kdY8P7tbl6WoKhvcs5SqQTQojFBXgo8emKiRjk74bS+jY8+EEWLWEWqXOGN+3YQA+L95d1FoMDPXDraG7jr3f2U1U66ZurQoonpnFV6e/uz7OrxFy7VoeSulacv6rC2bJGFNS0GHunEvtUXMdd+I70dYWkH1+y7MnYSC4JcrKk4YaPvVLVjPzqFiikEuMXRWu5ZWQoAjyUqFSp7fbLKTEdv8nhacOmh73h2wlNiw/sVyLDWtwUMtw1jlsR98mRYhuPhgilc2sXSwgxVJ6X84l0w/e9UIEvxF5LpHevSOf39Ygb4AbZ4wZd65NuqiP5tXhg4xGUNbQhys8N/7xnNPzcFdDpWey9QPO8PQn24i7+8O1cKjq1dRGy/RHDMMZ9Aso6FRWyLIu8aq7dixCJ9ARDIr2krg0Nrb1ftGnX6rDvEtdW7JaRIf069hxDe5fDeTVQtdvf53dKpBNCRCfYywWfrpiIcB9XFNS04IEPsvq9mzRxHGfLuP7o1NZFWE9MjwUA/Hi2ArlVtHEv6dui5CgEeChQ1tCG/526arNxVDW144tjJVj1aQ6mvboPw5/fhSn/3Id5bx7ErW8dwvTX9iPxhT1I/vtPWLI5G+8fyKONqe1MsaFqapADtXXhjYnyAcD1y73RBaWdZ8oBADfHB8DTRbgKtP5QyCS4P5mrgqdNR8VjlKEtxLmrqj43fz6Sz22IO+kGy+pt4cGJ3GqJvRcqjUkm4tgs2doF4Nq7AEBtM5fA45OSQlekRxsS6YXXVaSr2rTG1xzoBtnjorhE+uWqJpMu+hfUtODRj46hXavH1PhA7PjdZNw3PhLLJkUDAH40vN8Q+xDQS8xaYhVeOJ9I77R3Rk2zBo1tWjDMtQtEA+HtJkeUnxuAvjccPXSlBq0aHcK8XYzvVzcSG+SBIYHu0OpY494e9oQS6YQQUQr3ccVnKyYixMsFuVXNeOiDrD6vlBLHw1ekJwygLyHpbmiIJ9ISgsGywDv78mw9HGLnXORSPDI5BgBXlW7N/rYsy+LA5Wo8+tExTHw5A898dRo/nC5HYW0rWBZQyiQI8FAi2EsJD8PGY1VNavxyuRov77yI2f8+gNvfPoTPs4uh7tBZbdykZ3xFOv+lzJHE+LvDy0UGdYcelyr6vkCz6yy3vHnuyFBrDK2bB1KiIJUwyCqou+FYiWOI9neHp5KLvytV3atmAaBF3YEzhpZtKTF+1hxev8QHeyI52g86PYsvqVWYKPAV6f4WSqQHGFrG1DZf3yNd4Ip0w8XdClU72rXXPivwf2th3i4Dviga6KlEtL8bWLZ/K5sAQN2hw5Of5aBZ3YEJ0b547+Ek4zhuGcVV8/6aW4smO6zmdVb+hkQ6X+BXaaF2RACXCwG6VqTzbV0ifd0EW83dnz7pu89xn3vmJISYVHk/J4GL44wLlEgnhBCrifJ3w6crUhDgocTFiiY8vCnbLpcGEfNcrOD7Eg5sOSXpbtX0OADAd6euoqi2+47vhHT20MRB8FTKcKWq2WrLiLML6nDPhkws3pyNny5UQs9y7Q1+NzMOnzyagqP/NwsX/zYXx56bhaw/z8LZF9Jw5q9z8M3jk/D8rSMwNT4QcimD06WNWP31Gcx47Rd8cbSENrqzoWsV6Y6XSJdIGCRG+gAATvSRBCmoacHFiibIJAxmD7duWxdeqLer8bW3HSm0yRiIsCQSBgmGZMaZ0p6TGceL6qHTswj3cUWknV6s4vcM+Op4KViW5mJHd61HutIix+d7r9ca+oDziXShq3t93ORwU3BJx857b102JCXjQ4T5HsJXpZ8o7l97l82HCnG2TAVfNzneun9cl8RobJAnBge6Q6PTY9+lakHGRwaOv6hkjFljRbrwfyNhPt0r0vnvdEJUo/P49i5nekmksyyLA1e4GJxl4ueemYZNsX+5XN3naitboEQ6IUTUBgd64NMVKfBzV+BMWSOWbs5Gs7rD1sMiA6TW6lBSzyVd4oIokS60URHemBofCJ2exYZfqCqd9M3LRY6HDZsYvrM/z6IJEFW7Fqv/exr3vZeJ40X1UMokWDopGj+l34zvV01G+ux43BQbgEBPZbeqF08XOcZG+eKRyTH46JFkHFkzE3+eNwzBXtyGqc8YjpvbS0UnsaziWsdNpAPAWEMi/WRxQ6+POWDoUT0h2g/eAm4sZip+09FvcsqoWlEkRhs2Dz1d1tDj7/m2LimD7a8anXfLyBC4KaQorG01e9NFYj9aDK1dfN0sU5Hu784lH6v5inQ+KSlwdS/DMD1W916p4pKS8QPsj84bZdjroK/KXl5VUzve/vkKAOD/5o/o8ZznGqp5dxtWQRHb41u71LVooNez19oRWaC1C98jvbRTzPLfnSP9XAV7nRGGjXYv99IuMa+6GZUqNZQyCcZH+5p07LFRvvBxk6OxTYucPj5b2QIl0gkhohcf7Ilty5Ph5SJDTnEDlm85ijYNLeN3ZAWG1g3ernLj0k4irCdncL3Svzpe2qUCh5CePDI5BkqZBKdKGpCZV2uR1zhV0oC5/z6Az49yy/7vT47CgWem46+3JyDWjAtq/h5KPHbzEPzyp+n4v3nD4a6Q4lhRPea9eRBfUGsBqyszVBNG+jpmIp3vk36ypPcE4EFDVdbN8YHWGFKvUof4IzbIAy0aHb7OKbPpWIgw+L6zp3upSM8uqAMATIzxt9qYTOWulGH+KK7lEbV3cXxthq9a3q6WuWjo36m1i6ZDjzpDla+1+k3z1b2DBaru5f+Ge6vs7WzD/ny0aHRIjPTBXWPDe3zMXMOmjvsuVXVpSUNsh98vQKdn0dimRXUTdxHIEon08B4q0kvr+U3dhfucFWfYHyC/ugWaju5V47/mct8JJkT7mdxORiphMM3weelnO+uTTol0QohTSAjzxrblKfBQypBVUIfHth2jDxUmWr9+PaKjo+Hi4oKUlBRkZ2f3+tiNGzdiypQp8PX1ha+vL2bNmtXn402Vb9hxfEigu6C7nJNrxkf7YeJgP2h1LN4/kG/r4RA7F+ChxELDsvz3LBAvXx0vxb3vZeJqYzui/d3wxW9Sse6uUYJ8+XCRS7Hi5sHYkz4VN8cHQtOhxzNfncZz356xu6WkphB6zl66dCkYhulymzt3riBjVeuApnZutZjQ1YTWkmioCM6rbumxylur0xsvMk2Js+1mjwzDGKvSt2YWUhsNERhpSMJdrGiC7roWVVqd3picSzKxItDa7h3PvY/sOF2OVg2tIHVkbYb/fJ4uMoscv/PGjXwSXSphLJK476ki3bivh0CrqEaEeUHCAJUqNar62HC3sVWLz48WAwDSZ8dDIun5e9CocG+EebugVaPDwSs1goyRDIxCJoGX4e+htkVtjFtL7CPAX/ypULUb3xNK6viKdOES6eE+rnBXSNGhZ1HYQzvQQ7lc7E2KNe8i7nRDe5efL1qndWR/USKdEOI0EiN9sGXZBLgppDh4pQZPfJLT45VT0t327duRnp6OtWvXIicnB4mJiUhLS0NVVc9Xh/fv34/7778f+/btQ2ZmJiIjIzFnzhyUlQlT+ZZnTKR7CHI80rMnZ3C90j/LLkZVU+8f6gkBgOWTY8AwXC/DvGrh2qN8cDAff/zyFDQdesweEYz/PTkZyRbYLC/cxxVblk5A+ux4MAzw8ZFiPPX5SYd8n7DUnD137lyUl5cbb5999pkg420w7AXuoZQNeNM2W/H3UBorIXvaxPNEcQNaNDr4uyuMS6Ft6c6x4XBXSJFX3YLDFlpFQqwnys8NLnIJNB36bnubXKlshrpDD0+lzLhxor2aEO2LQf5uaNHo8OMZaknhyKxWkd6iQW0LV9nr66boNbE8ENdXpOvZa0n1QQL9TbkpZIgN4r7X9FWV/ml2MVo1OgwL8cTNfVyUZRgGaYaq9F3U3sVuBHjyG45qUG9IpPtZYHV1kKcLZBIGOj2LSsOFmRJD/PJtX4TAMAziDO2Nrm/votezyDK0FbtpiHkFBFPjAyFhgMuVzcYLAfaAEumEEKcyPtoPHywZD6VMgoyLVfjdZyccuuLQWl5//XWsWLECy5Ytw4gRI7Bhwwa4ublh8+bNPT7+k08+weOPP44xY8Zg2LBh+OCDD6DX65GRkSHIePJquC+J/AdOYhmThvhjbJQP1B16bDpYYOvhEDs3yN/duDHQR4cLBTnmu/vz8NKOCwCA39w8GO89lGTRRKtEwuB3M+Pw7oNJUEgl2HGmHL/9+Di0DvY+Yak5W6lUIiQkxHjz9e29ulWtVkOlUnW5AYBWq+12a9BwiY9gL2WPv3eU29AQ7j3pbGm98T7+nA9c4qqpJg72g07XYfOxukiBBWPCAABbfi0w6xg9/fcktiGVMMY9Yy5Xdr2Qebq0AQBXtW6JJKOQGIbBPeMiAABfHqf2Lo5K06GHVs/FmqUq0vke6fWtGmOLDEtU9gLXKtL5ftMNGkCrYyGXMoK2khl5g/YuLMsaq9G54oW+/575PukZFysd7nOMWAXwvf2b1KhvNSTSLbCPgFTCGFf4lTW0oV2rM/6dCN1CL97Q3uX69578mhao2jvgIpdgRJh5BQQ+bgqMH8QVz+y7ZD/tXSwzqxFCiB2bNCQA7y8ejxUfHcOucxVI/+IU/r1wDKR2/uXCVjQaDY4fP441a9YY75NIJJg1axYyMzP7dYzW1lZotVr4+fVcRapWq6FWq40/X59w4fH/n98McJCfi2i+uHdOStiTlTfH4LGPT+DjI0VYflOUWZtG9XRu9naeRBjLborBTxeq8NXxUvwxbSi8BpD0/vJYCf6x6yIA4A+z47FqRqzVWjnNHRmCTUvHY8XWY/j5YhVW//cMXrt3tEO0krLknL1//34EBQXB19cXM2bMwEsvvQR//56X665btw4vvPBCt/v37NkDN7euX+IaDYl0qaYJO3fu7NcY7ZG8RQJAgj3Z5+Fbe9Z4/969e7HnPPc7t+Yy7NxZarMxdhapBgAZfrpQiU++2QlfpenH2Lt3r/H/t7baT7WYM4oP9sSZskZcrmwy9kcGgNOGpNzoSG9bDc0kdyVF4PWfLuNIfh2Ka1sFa51BrKdJfa0tj4fSMiknXzc5GAZg2WvfC3zdLXOhPeK6ivSadu49K9LXTdDvj6PCvfF1TlmvG47mFNejqLYVbgop5o8OveHxxkf7wd9dgdoWDbIL6nBTrG3bipFrKynyq1vAd+HytdAFoBAvF5TWt6FKpUapGxe7HkoZfATe7JzfcPfKdRXpp0oaAAAjw7whl5pfw/3/7N13fBR1/j/w12zJbtqm90ISQg2QUCMoUgwEQQE9FWwoop6ceHr5fS34VTjUr1jQ81QURRHxPOvZThCIgVAkEFroARLSe+/Jbnbn98fsbLKp22Zb3s/HYx+a3dmZz5B3Zmff8573Z87oQGTm12JfdiVWTI8yeT2WRIl0QsiQNGtkADbfOwmr/3USv5wphUwiwut/mmD3lTq2UF1dDbVajaCgIL3ng4KCkJ2dbdA6nn32WYSGhiIpKanP141JuLAskFfVBIBB4YUT2OVk7bu7JyXsAcsCYW5ilLSq8eIX+7AwwvSKFkq4OL8Zw/0wMsgDVyqa8e3xIjw8M8ak9Ry+Wo21P5wDAPxl9nA8cdMISw7TIDNHBOCDeyfhkR0n8Z9TxQjzcUXKvJFWH4exhDpmL1iwALfffjuio6ORm5uL559/HjfffDMyMjIgFveeQGrt2rVISUnR/dzY2KhrGaNQdFUmqVQq7P3sdwDAuJhwLFw4zqj9tSfsuXL8/u1ZtLj4YOHCRKhUKqSmpmLuTUl4/uQhAGrcf/MNGBNi/OS4QklvPI6jeXWo8ByBe5MM/zvj923evHmQSrkv5fxFcGIb/B0Rl3skM85pJyCdEOZt7SGZJMzbFdcP98fhnGr8cqYEa+Za//hPzNOsnfPCXSaGxIwE2kAkYhF83bgk8VVtJSxfpW5pYd7cd5HyxnZ0qjWo0XY7tPRFngnhA08a/B/t5NA3jwuBm8vgqTyxiMG8sUH4+ngRdp8vp0S6HeAnHL1ayR2nPeUSs5LMAwlUcH8PlU3tcJdx52nhPq4WLwoZ2U9rlyxtIj0hwtus9d80JhCv787GkdwatCo7DYp9odl+BIQQYiPzxgbh3bsnYs2/T+G7k8VwkYjwytJxDlFx6Ehee+01fP3110hPT4dc3vftj8YkXH7clQql9nbRexYnQ2bkDOD2qq+khL0QDSvHX785i4xqF2x8YKbRrTUo4TJ0MAyDB2dE4/kfz2FHRgEeuj7a6AuUFY3t+OvXp9GpYbE0IRRPJ48SaLSDmzs6CK/eNg7P/ucc3tt3FZOH+WDWyACbjcca+jtmL1++XPf/48ePx4QJEzB8+HCkp6fjpptu6rUemUwGmax3UkMqlfY6xvEV6aHebnZ3/DPGuHCu1c2VimaIxBLwe5Jf14EWpRruLmLEhfvY1R1wD8yIxtG8Onx7ogRPzRsFmcS4z9Tuv09H/t05A12f2m49+pWdGmSXc5+3fJLOESyOD8XhnGr8eraMEukOiJ882lOganSel5sUNS1K5GlbPvoKVNkb6CmDRMSgU8Oiqlmpq0iPtOCkjQAwNsQLIgaobOpAZVM7Aj27PoM1GhZ7L3AtwpZODDV4ncnjgvH18SLsuVCODYvjqGjMxvg5Awq1/b6FilkACPDoaiPj5sJ9tocIMKE7n0jPr2mFslMDFwl3YUCXSI/0Nmv9IwI9EObtipL6NhzJqUHS2KDB3yQw6pFOCBnSFo4Pwdt3JYBhgC+PFeLlXy+BZVlbD8uu+Pv7QywWo6JCf7bsiooKBAcH9/MuzqZNm/Daa69h7969mDBhQr/LyWQyKBQKvQfQ9QW9+6NO2wEm0FMGDzd5n8s46qO/fbb145b4cMQGeqCxvRNfnSi12L4R53TbxDAo5BIU1rYaPYmhWsPir1+dRm2LEmNDFHjtT7Zvp7JsaiTuTYwEywJ/+yZLN2mTvbLGMRsAYmJi4O/vj5ycHLPHzE82GizAFzxrivZ3h1wqQptKrTfh42ntl8n4CG+7SqIDXFFBsEKOmhYlTe7o4EZpkxl51S26SZLza1qgUrPwkEksOsGc0JLjgiEVM8gub+pV5Wiskvo2/HS6BB8dyMWnh/Ow/3Il2pRqC42U9KWxnWvfZ057N0Pw68+rETaRLhIx8NcmJWualajVfhex9N+Uq4tYN3np1R79ps+XNqC6uQMeMgkSo/tuqdaXGcP94CmToLKpQ/dZRGxHoU2kC33xBwACtf37q5o6dP3RAzwtf9dGkEIGV6kYag2L4jruAkFHpxqXyriLuPHh3matn2EYzNXOwbTPTvqkm5RI37x5M6KioiCXy5GYmIjMzMx+l926dStmzpwJHx8f+Pj4ICkpqdfyDz74IBiG0XssWLDAlKERQojRlk4Mw2u3jwcAbPsjD2/suUzJ9G5cXFwwefJkvUnn+Enopk+f3u/73njjDbz88svYvXs3pkyZYrHx1HRwSQhH+kLo6EQiBo/PGQ4A+PRwHlqVnYO8gwxlri5iLEkIAwB8e8K4yeI++yMPx/Jq4e4ixvv3TITcTu44efGWsYgLVaC2RYkXfjpv158R1jpmFxcXo6amBiEhg/dpHUyDbrJRx06ki0WMLpl5uVtV8Nli7svkpMj+J2e1FYlYhHsSIwEAOzLybTsYYpYQLzk8ZBJ0algU1nJJGj4ZFxvoYfOLksbwcpPixhHc3T+/nik1aR2nCutw3yfHcP1r+/DUN1nY+Fs2Xv71IlZ+dhyTXk7Fhv9eQE1zx+ArIkbTVaQLNNEoj6/u5ZOEglb3ahOQlc0daFQJ95k1IpCfuFH/AtL+7CoAwA2x/rqKX0PIJGLMHcMlIfdcoIultsZf/OH/RoSYaJTHV6RzdzhwfyPd73KwFIZhMEzb5qhAW2mfV92CTg0LT7llLuLOGc19Hhy6WmX2uizB6ET6N998g5SUFKxfvx6nTp1CfHw8kpOTUVnZ95WB9PR03H333di/fz8yMjJ0t+qXlJToLbdgwQKUlZXpHl999ZVpe0QIISZYNjUSLy+JAwB8mJ6Ld9PMr7BzJikpKdi6dSs+//xzXLp0CatXr0ZLSwtWrlwJAFixYoXexHavv/46XnzxRWzbtg1RUVEoLy9HeXk5mpub+9uEwbqqQGjyKWu6dUIoIn3dUNuixL+PFdp6OMTO3TUlAgCw+0I5GloNm1i2uK4Vb+29AgD430VjERPgIdj4jCWXivH2XQmQiBikXqzALjuv3LX0Mbu5uRlPP/00jh49ivz8fKSlpWHJkiWIjY1FcnKy2eNt0V6b4yfhcmTDtXF7rbqrIj1bm1QfF6bo8z22tnxaBKRiBqcK6/ud5I7YP71kRg2XzOD78PLJOUdyazzXvuLXs2VGXbxUa1hs/O0S/vThERzOqYaI4Xr03j4xDIvGhyDM2xVtKjU++yMfye8cxIEr9pGYcSaNVkqk89W9PGsk0qubOtCgvYtKiER6V79p/e9M+7WVuHxC0RgL4ri70XafL7frQoChQOGq/zch1ESjABCg6GrtImRFOoCuzx7tuQ9fTDAyyNMiF3ETo/0gETEoqm1DYY3t59kyOpH+9ttv45FHHsHKlSsxduxYbNmyBW5ubti2bVufy3/55Zf4y1/+goSEBIwePRqffPKJriqmO5lMhuDgYN3Dx6f/io2Ojg40NjbqPQghxFz3T4/CC4vGAAD+8fsVfJiea+MR2Y9ly5Zh06ZNWLduHRISEpCVlYXdu3frJrMrLCxEWVmZbvkPP/wQSqUSd9xxB0JCQnSPTZs2mT2WWqpItwmJWIS/zOaq0j8+eA3tKrotmvRvXJgCo4M9oezU4OczJYO/AcCG/15Em0qNaVG+WD41QuARGm9UsKfub2DDfy/Y9Z0Zlj5mi8VinD17FosXL8bIkSOxatUqTJ48GYcOHeqzD7qxWrTXWoSszLKWaH/utvxrVdyXSQ0LXK3kEiKjgu0zkR7oKcfN47g7C77IKLDxaIg5+GRGvjbRkFPZVZHuaJLGBkEmEeFadQsulBr2fV/ZqcFfvjyJjw5cA8sCf5oUjgNPz8FPj1+Pt5clYPO9k3D42TnY8dA0jAryRHWzEg9tP44fThULvDdDS3MH9/noIXCPdEWPRL23m3CtZLpX9wqaSA/uPXFjq7IT57QXOW8YYXwifdaoAMgkIhTWtuJSmXmtkoh5erY78nK1Tsx2VaQLlUjnzn34inT+bij+wpC53GUS3V19h3OqLbJOcxiVSFcqlTh58iSSkpK6ViASISkpCRkZGQato7W1FSqVCr6+vnrPp6enIzAwEKNGjcLq1atRU9N/T82NGzfCy8tL94iIsL8vW4QQx/TwzBjdxHav787GtsN5Nh6R/VizZg0KCgrQ0dGBY8eOITExUfdaeno6tm/frvs5Pz8fLMv2evz97383exxUkW47t08KR4iXHJVNHfj+JH3pJP1jGEZXlW5Ie5fj+bVIvVgBsYjB/902zm4nw3p8bizCfVxR2dRh958Pljxmu7q6Ys+ePaisrIRSqUR+fj4+/vhjXWLeHB0qNTq0E0gLWZllLfydFHnV3JfIqnago1MDuVRk8YnpLGnF9GEAgJ/PlKC+VWnj0RBT6ZIZ2p7RfCJ9RJDjJdI9ZBJdX9yd58oGWZqbjPGZ789gz4UKuEhEeO/uiXjrrnhE9Pi7YxgGN44MwM9rrsftk8Kg1rD4f9+dQdqlin7WTIzFF1vwExwKpWdFuqeAPdkDtdW9+TWtUGr41i6WT0qODOpq7cJXj58paoBawyLES44wb+MLidxcJLqJ0qm9i231jlnhLjbxSfOalg6UN3Dz+wQKELNA18S7/N1Q/IWgkRb87Lk+1h8A8IejJdKrq6uhVqt7nTQHBQWhvNywP8hnn30WoaGhesn4BQsWYMeOHUhLS8Prr7+OAwcO4Oabb4Za3Xe129q1a9HQ0KB7FBUZ13+TEEIG8vicWPx1biwA4KVfL+LLY1SdZU/qtRXpId6O3UvXEblIRPjzjTEAuBZIKrXGxiMi9uy2iWGQiBicL2lEblX/bZ1YlsXrv2UDAO6aEo4RFqpeEYJMItZdbN1y4Br117WAWm3rH4mI6VVd6Ih0Fena25vLWrnPrFFBnnY30Wh3k4f5YEyIAu0qDb47QRdKHdWwbskMtYbVxWFsgP0eVweyYBzXksKQJPe2P/LwU1YpJCIGH98/Wdcapj9yqRib7ojHsikRYFngr1+d1l14IOZp0ybShZ7npGd1r5AV8HxLDP7uCE+5BG4ult9etL87xCIGTe2dqGjkzjFOFdYBACYNM32eDf5viRLpttXzPEfImOWLE1iWm3QZAAI8hPn+HNXjIi5/J56lKtIB4IYR3CS7f+RWQ6OxbYsikyYbNdVrr72Gr7/+Gj/++CPk8q5f4PLly7F48WKMHz8eS5cuxa+//orjx48jPT29z/XIZDIoFAq9ByGEWNLf5o3UJQz/98fzVH1rR5q0LQD429WIdS2fFgl/DxeU1Lfhp9OGtewgQ5OPuwtuGMFVj+w623814ZHcGpwoqINMIsKTN4201vBMduuEUIwLU6C5oxOfH8m39XAcXp22+tnHTepQkyH2J8qfS2TWt6pQ16pEKZ9ID7bvRCbDMLqq9H8dK7D5l1Rimu4V6RWN7VB2aiARMQhz0HZ4s0cGQixicKWiGUW1/ffFvVTWiDd2XwYArF8ch9mjAg1av0jE4JXbxuG6GF+0KNV4+vszUFPsm61dxRVauAqdSO/Rb1rI6l7+e0eOtm2XUC0yZBIxorQtmviq3pMFXCJ9shkTVt80OggSEYPs8ibkdZvDg1hXz4p0IRPpUrGo1/qF7pFeVNsGlVqD4jrueM0XF1jChHBveMgkqG9V4WKZbdt7G5VI9/f3h1gsRkWF/hXhiooKBAcHD/jeTZs24bXXXsPevXsxYcKEAZeNiYmBv78/cnJosj9CiG0wDIPnbh6NB2dEAQCe+f4MfjlTattBEag1rC6RLtQJLBmYXCrGIzO5i0wfpOfSF04yoIXjub7LA92W/8mhawCAZVMjEOxl/3eaiEQM/jKbu2tpx9ECtClpvgBz1Gkr0n2coD86wN1CH6KN47zqVlRyRWAWrcoSypKEUHjKJSioacWBqzQBoyPikxnFdW0o1CaeQ7zldn03xEC83KSYoq3C7a8qnWVZvPjTeSjVGiSNCcJ9iZFGbUMqFuHtuxLgKZPgdGE9vsjIN3fYQ16rkq9IF7Zu05oV6f49vncI+T2ETz7y/abPFtcDACZGepu8Ti83KaYP5yp6qSrddnrFrMB34nXvwe4qFcNVoHZLwV5yMAygVGtwsbQRKjULqZix6DwCUrEI18VwMWzrPulGHdlcXFwwefJkvYlC+YlDp0+f3u/73njjDbz88svYvXs3pkyZMuh2iouLUVNTg5CQEGOGRwghFsUwDNbdMhZ3T4uAhgX+9k0Wdp+nEw9bqm9VggUDhgF8naCXrqO697ph8HaTIq+6xaC+pWTomj+2qwKqr/YuOZVN2H+5CgwDPHR9tA1GaJrkuGBE+rqhvlWF705Si0Fz1LZwFem+7sL1trU2XWVWXRuq27kEpj33R+e5uUhw52RubgOadNQxBXrKIGKATg2rS76Fe9t/7A0kaQzXVjYtu7LP13efL8eJgjrIpSK8snScSXe2hHq74tmbRwMA3t2Xo5ssk5iG75EuVNKO1726V8QI25Pdu0clsZCTY0f6con0otpWVDd3oLpZCYYx/86m5Diu+JW+z9qOi0Skd6eG0BPy+nQ7txJyYlOpWKS7a+N4fi0AIMzb1eIXcW+I1bZ3GSSR3tGpRk5lk2Bzvhh9iTAlJQVbt27F559/jkuXLmH16tVoaWnBypUrAQArVqzA2rVrdcu//vrrePHFF7Ft2zZERUWhvLwc5eXlaG7mvkw1Nzfj6aefxtGjR5Gfn4+0tDQsWbIEsbGxSE5OttBuEkKIaUQiBv+3dDxun8hNRvTEV6ewL5smI7KV6mbuw9DbVQqJ2KrdyUg3HjKJLum5eV8OtQAg/fJ2c9FNDvRbHxdd/nW0EACXKImy4O2fQhOLGDx0fRQA4KtMSqSbg69I93aSinSAS8oBQHlDO2q0bfQj/RwjmXm/tr3L/suVA7bSIPZJIhbpbt0/kc+1g3DUti68uWO4Ni1Hr9WgqV2l9xrLsng79QoA4NGZMWbd1bR8agRi/N1R26K0+8mk7Z21eqR3b+XiIZMI2h6sZxLSy024BGikL/c3W1DTgivlTdrn3MzuyT5/bBAYBsgqqkdZQ5vZ4ySmcZd1/V0I2Y4IALxdu86terZCsjT+bjw+kd5zomdLuE57V8Wpgjp09jFXF8uy2HY4D9P+Lw1Jbx/ExJdT8cRXp1HXYtmEutFZiGXLlmHTpk1Yt24dEhISkJWVhd27d+smIC0sLERZWdcXpQ8//BBKpRJ33HEHQkJCdI9NmzYBAMRiMc6ePYvFixdj5MiRWLVqFSZPnoxDhw5BJqPb9gkhticSMXjjjglYNCEEKjWLx/51Coev2n626KGoSptIp/7otvfAjCh4yiS4XNGE3w2YBIwMXfPjuHPE9Mv6rSJUag3+q22ZdY+Rt+Lbg6UTw+AiFuFSWSMulDbYejgOq7mdq/wU+sukNYVpE+nZ5U1o7eQSOxE+jpFIj/Z3x40jA8CywL+OUlW6Iwr24uKP76vMx6OjGh7ggWF+blCpWWTm1eq9dvBqNa5WNsPdRYyHtXMbmUoiFuHJpBEAgB0ZBVB20oTqptJVpAvc2qV7BbqnXNi7mnr2thayurdrroNWXNb2SbdEe7BAhVzXZ33vBTp3t5Xud2q4C1yR7uVmnYp0ALo2LvxF3HABLuKOCPSEp0yCFqUa2dqLTN29vvsyXvr1IhraVHCVisGywH/PlGL5x0fR0KrqY42mMenItmbNGhQUFKCjowPHjh1DYmKi7rX09HRs375d93N+fj5Ylu31+Pvf/w4AcHV1xZ49e1BZWQmlUon8/Hx8/PHHusQ8IYTYA4lYhHeWJWDe2CAoOzV4eMdxHLtWY+thDTk1zVxpn7+H81QuOiovV6mucvH9/TlgWapKJ327cUQAAOB0UT0a2rpOYg/l1KCmRQl/DxlmaqvWHYm3mwvmaS8S0ITUpmtRcol0oW9vtia+Iv249sukn7uL4F+WLWnFddyx/ZsTRbqEGHEcwQqu2KBGW4EnRDLD2mZoqxCP9jj3/uwPrnL8rqkRvXoPm2Lh+BAEKWSobu7ALmpdZ7I2K002as0WGXKpWK/ne89WL5YUqZu4sVU34egoC82zsWActXexNWvGbfc4FTqRzlekd332WL6AQCxiMFE7b8apwjq91/ZeKMeWA7kAgBcWjcH5Dcn475obEOgpw+WKJvzvT+csNg66L54QQgwkFYvw/j0TMXtUANpVGjy0/biu2odYR42uly4l0u3BqhuiIZeKcLa4AQfpLg3SjwhfN8QEuEOtYXGkW0/DnWe5L3GL40MdtlXT7RPDAAB7zpfTxSQTtXRwiVp3gXvpWhOfSK9o4i7+Rvg6ViJzzuhAhHm7or5VRROtO6DgHpO7hXg5Vvz1hZ9gLqNbIr2yqR0Hr3B3Oj0wPcoi25GKRbg3kbuQRBdITWetHun6lb3Cf4Z0T0T2rFC3pHAfVzAM0KJU43RhPQBYrP0d3yf9WF6Nbo4SYl0SUdc5r6dM2OS2tWIW6LobSvezBSca7Y6/q4KvfAe4Y86G/14EAPz5xhg8PDMGYhGD8eFe2LpiCsQiBr+eLUNGrmUKIR3zWwshhNiITCLGlvsm4/pYP7Qo1XhwWybOFdMt/dbSpG0BIHSPN2IYPw+Z7gvne2lXKZFI+sVXpR+8yiU9NCxwSJtU56ujHNH1sf6QS0UobWjHxbJGWw/HIfGT+jlSxfZgwrx7JDIF+jIpFLGIwX3aqvQvMgro2O5geiYz/JzgLj4+kX6htFF3Z9Nv58qhYYGECG+LzrGxNIG7QHoktxpV2othxDhtSr61i/Uq0i09qWFfuiclhaxIl0nECNTOdcC3r7DUnSURvm4YG6KAhgW1ZrQDQl9s8ujWNk/oinR+fg6ev6cwrVinRHGJ9O4FjT+dLkFJfRtCvOR4Kmmk3vLxEd64ZxrXQvIfv1+xyBgokU4IIUaSS8XYumIKpkX5oqmjE/dvO4ZLlECxika+l67AV++J4R69MQYuYhFOFNThWI/epYTwZo7gWrccu8bFSEEzN8mkQi7BpEhvG47MPHKpGDfEchcJ0i5V2ng0jqlFl0h3nor0AA/9xLlQXyaFtGxqBFwkIpwraUBWUb2th0OM4Nfjrj1nSKQHKeSI8XcHy0LXJ/3Xs9zdErfGh1p0W5F+boiP8IaGBXZfoPYXpuAr0l0kwqabuifS1VaY+N7Lim0yAj31P0cs2aKJL2DYQ+1dbEIqZvr8fyG4u1gvke7rrr/+np9FlhIf4Q0RA5TUt6GisR0sy2L7kXwAwEPXR/d5ceLxObEQixhk5tUip7LZ7DFQIp0QQkzg5iLBpw9OQUKEN+pbVbjvk2PIqew94QWxrKYO55uUztEFKeS4a2o4AOD9fTk2Hg2xV5O0t2Feq25BXasSF+u4U9AbRwY4bFsX3k1jAgEAh65WDbIk6UuLkm/t4jzHdYWrBJJu1ZH+DtiOzNfdBbdO4BKUX2TQpKOOxNtNP5nh4+Z48dcXvgrxbHE9mtpVOKVteZEcZ/m51eaP5dZ56Aod103RqU1quwj8+d79/MH6iXRhP7OCFF0XYMUixqJtMvhE+qGr1bq7woj1dL97gmGETaR3n5BX6H7sPT9r/D2EKSLwkEkQE+ABALhY1ojLFU3ILm+Ci0SEu6ZE9PmeYC855oziCl8s0bbLsb+5EEKIDXnKpfj8oWkYF6ZATYsS92w9hrzqFlsPy6k1t1Mi3R79+cbhkIgYHM6pxulCmjeA9Obj7oIY7a33Z4obcE173fEGB5xktKfEaF8A3H51dGpsPBrHw1ekezjRcZ1hGL25PBx1guwV2gmlfz1bppvsm9g/n26x5+0mhdTBL1byxod5AQDOlTTg2LVaqDUsovzcBJnQjv9syrhWg041HdeNxSe1RQInCfW2aYUWVN1bkAndkiOwW+I8xEtu0aKDEYEeiPF3h1Ktwf5supvO2rr3SBda95iVC9xqqeccZkLOaTYmRAEAuFjaiNQLXIuimbH+8HLrv+p+ibZtV5oFWho5x6cqIYTYiJerFF88lIhRQZ6obOrAvVuPoqi21dbDclpN7VxfTEqk25cIXzfcpp10cfN+qkonfZsYyfc0rEdhM6P3nCOL9neHn7sLlJ0aXCilNl/G0vVId6LJRgFuDgmeI7Z2Abjbp+PDvaBUa/D18SJbD4cYyKdbIsGZJmeP0ybSz5c04Ih2wrgZAl2MHRfmBYVcgqb2TlwooztOjcVXpEus0LecZ43rHW7d7pwSuv97YLfPjUALf4YwDINkbVU6tS+yPiteX9K74GPNRLpMIhK0tdNYbSL9Ulkj0rQXg+aNHfjupBtHBkAsYnC1shnFdW1mbZ8S6YQQYiYfdxf86+FExAS4o7ShHfd8chRlDeYdnEnf+B7pCkqk253Vs4dDxAC/X6rEhVKagJf0Fh/BJUF+OVMGpYaBu0yM2EAPG4/KfAzDYPIw7oLAaeolbbQ2FZf9EDopYW3de4M6YmsX3v3TowAA/z5WaJXWCcR83t1urxdyQkRrGxuigFjEoLpZqZskccowYS7GikUMErQXes/TBVKjabTV4daYANSauvezlkmETqR3VaQL0dt6QRyXSN+fXanraU+sw5qfpN3b5skEnrNA6NYx3Y0J8QQAZBXV6753Xj/IhVUvVyniw7nvIt0nKjUFJdIJIcQCAjxl+PfD12GYnxuKattwz9ZjqGxst/WwnA5fuWjND2pimJgADyzS9tP9YH+ujUdD7BGfNC9t4I6N40MVTvMlOy6UOzG/XGH+BEZDDZ+clQg84Za1de9TPdCtxvbulgkh8HGToqS+zSK3QxPhdU+eq53o2odcKsbwAK5FWKH27k/+2CuEuNCuikdiHL4i3Vk+43ndW9XIpcKm0rrfWSJEIn1CuBdCvORoVapx+Gq1xddP7IObFSvShe733h3f2qW4rg0qNQt/DxeDJuRNiOAukJ4pNq/oixLphBBiIcFecnz5cCLCvF2RV92Cez85Rj1FLYzvPyz0iQAxzeNzhgMAdp0vo8l3SS89q89HOEE1Om9kELcvOZWUSDeWSns/vtSKPUOtwVPelfjwcOC2NXKpGMumRgIAvjhKk446gu69lFkr9I22pmjtXBsA4CIR6RLrQuAT6ReptYvR1DZIpFsj1rvvj9BzDyi6Jc8VAiTSGYZBchy1d3F23RPpQlekdyf0n2Ogp0zvYlZChLdBiXz+7thzZt5p5FxnrIQQYmPhPm749yOJCFLIcLWyGfd/mon6VqWth+U0dAkXJ6tcdBajgxWYPzYILEtV6aS3AA+ZXlumKH/hEiDWNjKYu8U0p7IZ1P3COJ1OWpHe/XOqe19dR3RvYiQYBjh0tRrXquhikSNxsjw6ovy6PjdiAzwsOgFjT6ODuUT6taoWp/t3FJotEunWYM39UciFrUgHoEuk/36pgibVdVLW7JHeHStwAxuGYRDRbaLpUdrz8MGMCOSWy682b047SqQTQoiFDfNzx78fuQ7+HjJcLGvEA9sy0aidJJOYp1PNT15EH1/2as3cWADAz2dKUVhDE++SLgzDICagqwo92t9tgKUdS6SvGxiG6/fdTId7o/Bf3p0tkd494SJ0CwChRfi64abRgQCoKt3RCJ3MsLZIv67PjVBv+QBLmo9vE9CiVKO1U9BNOR1nTaSLrNi6QuHadQFWqET61Cgf+Lq7oL5Vhcy8WkG2QfpgxcOym7Qrjqx7h4jw24j07fo8GOZnWHFOlPa7R32bCi1mnK879lkdIYTYqeEBHvjy4UT4uElxprgBKz87jpYOOgs3l64iXeJcJ+bOZEK4N2aNDIBaw+LDA1SVTvQFK7oSHxEG9DJ0FFKxCAEeMgBAPd2EZBRdRbqTXSCVdPvCas2+oULhJx39/kQxnc84EGerpO6eOAnwFDaRLpeK4e/BTdxaR8d1g7Esq7szy9kS6QJ3c9HTvSJdqLuaJGIR5o0JAkDtXazJmhc45S62afVljb/9iO6JdF/DinPcXCQI9OTO16vN6MDrXGeshBBiR0YFe+KLVYlQyCU4WVCHVZ8fR5uSZkU3B59wEbovITEPX5X+/ckilDW02Xg0xJ50r6ryc3ex4UgsL8SbuzBQ1+FciQOhdSXSnevfTexkFwZmxvoj2t8dTR2d+CmrxNbDIQZytlZTAdoECABdMkRIYdrjei0d1w2m7hZ0znZcn6idqNAaurfkcBGwt/WCcVx7lz0XyqFxtgMGgYuNvjNb47s6f6ET4OaqM1SIdtkmpenHJ+c6wyOEEDszLswLnz80DR4yCY5eq8WjX5xAu4qS6aZgWRYqbWsXqZOdmDubqVG+SIz2hUrN4qMD12w9HGJHut9N4iFz7L7RPQVoT+hbqFjXYGoNq6uYdbbWLkK3nbA2kYjBfdcNAwB8kVHgdJNYOitn+z35e8i6/b/wF2P5xD217DJcZ7dkrDVaofxpUjgA4K83jRB8WzeNCcRbd4zH2njhP+i7TwwpZHuwGbF+8JBJUNHYgTMlDYJth9gGwzC4ZUIIxod5ISHC22rbtUZLu+7FOca0P/LTfo40UWsXQmxn8+bNiIqKglwuR2JiIjIzMwdc/rvvvsPo0aMhl8sxfvx47Nq1y0ojJbYyMdIHn62cClepGIeuVmPNv09B2el4E7rYOta7n5hTRbr9e2Iu94Xmq8xCVDebce+cDdg61p2Za7eJjpyh3UV3Cu1JfJudJNItHccsy2LdunUICQmBq6srkpKScPXqVbPGqOo2uZmztXZZNjUCS+NDcH+s81w8v2NyOFylYmSXN+FEQb2th2OUoXpcD3eiFlqAfrsLdytcjLW347ohbB3r1q5If/OOCchYOxcLx4cIvi2GYbA4PgTBVpjipfs5kkwi3CSRMokYc7VzYOy9WCnYdoRg61g31bRoX6tu7/17JuGXNdcLOjkz74VFYyARMXh3+UTBt9Wdp9zwRLq3G7esOXNfONcZKyFW9s033yAlJQXr16/HqVOnEB8fj+TkZFRW9v0hdOTIEdx9991YtWoVTp8+jaVLl2Lp0qU4f/68lUdOrG1qlC8+fWAKZBIRfr9UiSe/Pu1Qs6PbQ6zrJVycrHLRGV0f64eECG90dGqw7Q/HmZzOHmLdmc0by91C7CZ2ripJoOuLbqcd7JoQcfzGG2/g3XffxZYtW3Ds2DG4u7sjOTkZ7e3tJo9T/wKpcx3XZRIx3rxjPKYE2EFAWIiXqxRLJ4YCAL48VmTj0RhuKB7X/7UqETeNDsTLS8fZeigW1b3FhVB9o7uzp+O6Iewh1tXd7oKwRp9kkYhBiJdzXTDi8a2FpkYJ21KGb++y92KFw8yrYA+xbqon5o7AC4vGYN//m2W1bVqreOXhmTE4vyEZM2L9Bd9WR7fCRGOONZY4rlMinRAzvP3223jkkUewcuVKjB07Flu2bIGbmxu2bdvW5/L//Oc/sWDBAjz99NMYM2YMXn75ZUyaNAnvv/++lUdObGFGrD8+un8yXMQi/Ha+HM/8cN5helfaQ6yrOqki3ZEwDIMntL3S/51ZZNbM6NZkD7HuzKZF++LLVVPwXILzVOny+NuwVRrbJ4QtHccsy+Kdd97BCy+8gCVLlmDChAnYsWMHSktL8dNPP5k8TrXaugkXYr77r4sCAOy5WIEGB5mAcSge128Y4Y9PH5zqlAnGGcP94O8hw8wRwidq7Om4bgh7iHU6rltO2v+bhTPr5sPbTdg2RrNGBsBFIkJhbRtKWwXdlMXYQ6ybSi4V4+GZMYgJ8LD6tq1BLhXuDoru+AtNxrLEcd25mlMSYkVKpRInT57E2rVrdc+JRCIkJSUhIyOjz/dkZGQgJSVF77nk5OR+v4R2dHSgo6OrJUJjYyMAQKVSQaXqykrx/9/9OWfhbPt2fYwP/rlsAp74+gz+e7Yc1YEiJPfxu7Qn9hLrbd1eZ9WdUKmcK5nubLEOADOH+2B0sCeyy5twoFyEpRTrdFwHMDHME9UXnW/f+HaQKg36/F1aixBxnJeXh/LyciQlJele9/LyQmJiIjIyMrB8+fJe66TjunP+HY8IcMWUYd44UVCPIxUM7qDjOh3XYd1927ZiEjo1LFxErODbs5fjuiHsJdbblV1X2NSdKqicLJluzVgXA3CTCr8tFxEwM9YPadlVOFvLUKyDjuuA/e/b3JF++Ouc4UiI9DJqjJY4rlMinRATVVdXQ61WIygoSO/5oKAgZGdn9/me8vLyPpcvLy/vc/mNGzdiw4YNvZ7fu3cv3Nx6N2dLTU01dPgOx9n27b5YBl9cFSHKk9Xbt9ZW+ysDsJdYb1QCXlIxWAC///67CXviGJwt1qcrGFyrFEEEinWAjuvdOdu+lZUw8JSK4CKCTWNdiDjm/yvEcV2hrVyi47rjiHNhcFYkAsDQcR10XO/O2fbNXo7rhrCXWKfjumMKVjGQi0XQsHRcB+i43p0979twAE1XgF1XDH+PJY7rlEgnxI6tXbtW78ppY2MjIiIiMH/+fCgUCt3zKpUKqampmDdvHqRSwydacATOum8LAdxX3YQLmYf09o2/2j3UGBrrf1rknPEAOG+sL9CweLipFSf+OECxDjquA867bwvR975RrHPouO48+zZPrcFfWjtw9NB+inXQcR1w3n2j47o+Oq47b6zfpFLj6c5OHNifRrEOOq4Dzrtvljium5RI37x5M958802Ul5cjPj4e7733HqZNm9bv8t999x1efPFF5OfnY8SIEXj99dexcOFC3essy2L9+vXYunUr6uvrcf311+PDDz/EiBEjTBkeIVbh7+8PsViMiooKvecrKioQHBzc53uCg4ONWl4mk0Emk/V6XiqV9nkw6+95Z+CM+zbM3xMXoL9v9riPFOvW5Yz7Fqi9rZdinWK9u6Gyb9beRyHimP9vRUUFQkJC9JZJSEjoc50U612cbd+k0q65Sui4TrHe3VDZN3vcR4p163K2fZNKpbrWFhTrFOvdDZV9M2YfjW5EKMTsuG+88QbeffddbNmyBceOHYO7uzuSk5PR3t5u7PAIsRoXFxdMnjwZaWlpuuc0Gg3S0tIwffr0Pt8zffp0veUB7naS/pYnxB5QrJOhgmKdOAMh4jg6OhrBwcF6yzQ2NuLYsWMU68Su0XGdDBUU62SooFgntmZ0It3Ss+OyLIt33nkHL7zwApYsWYIJEyZgx44dKC0t7bfxPyH2IiUlBVu3bsXnn3+OS5cuYfXq1WhpacHKlSsBACtWrNCbBOPJJ5/E7t278dZbbyE7Oxt///vfceLECaxZs8ZWu0CIQSjWyVBBsU6cgaXjmGEYPPXUU3jllVfwyy+/4Ny5c1ixYgVCQ0OxdOlSW+wiIQaj4zoZKijWyVBBsU5syajWLkLMjpuXl4fy8nIkJSXpXvfy8kJiYiIyMjKwfPnyXuvsOYNuQ0MDgKHbv2ko4H+3LMvaeCT6li1bhqqqKqxbtw7l5eVISEjA7t27dRNZFBYWQiTqul41Y8YM/Pvf/8YLL7yA559/HiNGjMBPP/2EcePGGbQ9fv97xrpKpUJraysaGxud7rabobZvFOscinXn3zeKdQ7FuvPvmy1iXYg4fuaZZ9DS0oJHH30U9fX1uOGGG7B7927I5XKDxkSx7vz7Rsd1DsW68+8bxTqHYt35941inUOx7vz7ZlSss0YoKSlhAbBHjhzRe/7pp59mp02b1ud7pFIp++9//1vvuc2bN7OBgYEsy7LsH3/8wQJgS0tL9Za588472bvuuqvPda5fv54FQI8h+MjNzTUmZJ1OUVGRzX8H9LDOo6ioyNbhZlMU60PnQbFOsT5UHhTrFOtD5UGxTrE+VB4U6xTrQ+VBsU6xPlQehsS6SZON2lrPGXTr6+sxbNgwFBYWwsvLy4Yjsx5+1uCioiK9WYOdVUNDAyIjI+Hr62vrodhUaGgoioqK4OnpCYZhdM87czwMtX1jWRZNTU0IDQ218ehsi2Ld+feNYp1Dse78+0axzqFYd/59o1jnUKw7/75RrHMo1p1/3yjWORTrzr9vxsS6UYl0IWbH5f9bUVGBkJAQvWUSEhL6XGd/M+h6eXk53S94MAqFYkjtc/fbc4YikUiE8PDwfl935ngYSvs2VC4IDoRifWjsG8U6xfpQ2TeKdYr1obJvFOsU60Nl3yjWKdaHyr5RrFOsD5V9MzTWjcpKCjE7bnR0NIKDg/WWaWxsxLFjx2gGXUIIIYQQQgghhBBCCCE2Z3Rrl5SUFDzwwAOYMmUKpk2bhnfeeafX7LhhYWHYuHEjAG523FmzZuGtt97CokWL8PXXX+PEiRP4+OOPAQAMw+Cpp57CK6+8ghEjRiA6OhovvvgiQkNDsXTpUsvtKSGEEEIIIYQQQgghhBBiAqMT6ULMjvvMM8+gpaUFjz76KOrr63HDDTdg9+7dkMvlBo1JJpNh/fr1fbZ7cVZDbZ+H2v4ay5n/fWjfSHfO/G9G+0a6c+Z/M9o30p0z/5vRvpHunPnfjPaNdOfM/2a0b6Q7Z/43o33rH8OyLGvhMRFCCCGEEEIIIYQQQgghTmNoz9xICCGEEEIIIYQQQgghhAyCEumEEEIIIYQQQgghhBBCyAAokU4IIYQQQgghhBBCCCGEDIAS6YQQQgghhBBCCCGEEELIABwmkb5582ZERUVBLpcjMTERmZmZAy7/3XffYfTo0ZDL5Rg/fjx27dplpZFajjH7vH37djAMo/eQy+VWHK15Dh48iFtvvRWhoaFgGAY//fTToO9JT0/HpEmTIJPJEBsbi+3btws+Tkfwf//3f5gxYwbc3Nzg7e1t6+GYxdi/e0dhSryT3ijW7R/FumVQrNs/inXLoFi3fxTrlkGxbv8o1i2DYt3+UaxbBsW6/bNUrDtEIv2bb75BSkoK1q9fj1OnTiE+Ph7JycmorKzsc/kjR47g7rvvxqpVq3D69GksXboUS5cuxfnz5608ctMZu88AoFAoUFZWpnsUFBRYccTmaWlpQXx8PDZv3mzQ8nl5eVi0aBHmzJmDrKwsPPXUU3j44YexZ88egUdq/5RKJe68806sXr3a1kMxiyl/A47C2HgnfaNYt38U65ZBsW7/KNYtg2Ld/lGsWwbFuv2jWLcMinX7R7FuGRTr9s9isc46gGnTprGPP/647me1Ws2GhoayGzdu7HP5u+66i120aJHec4mJieyf//xnQcdpScbu82effcZ6eXlZaXTCAsD++OOPAy7zzDPPsHFxcXrPLVu2jE1OThZwZI7F0WPC2L8BR2VIvJOBUaw7Bop181GsOwaKdfNRrDsGinXzUaw7Bop181GsOwaKdfNRrDsGc2Ld7ivSlUolTp48iaSkJN1zIpEISUlJyMjI6PM9GRkZessDQHJycr/L2xtT9hkAmpubMWzYMERERGDJkiW4cOGCNYZrE47+OyYDM/VvgBBHQ7FOhgqKdTJUUKyToYJinQwVFOtkqKBYN4zdJ9Krq6uhVqsRFBSk93xQUBDKy8v7fE95eblRy9sbU/Z51KhR2LZtG37++Wf861//gkajwYwZM1BcXGyNIVtdf7/jxsZGtLW12WhUxFJM+RsgxBFRrJOhgmKdDBUU62SooFgnQwXFOhkqKNYNY/eJdGKY6dOnY8WKFUhISMCsWbPwww8/ICAgAB999JGth0Ys4Lnnnus1mWzPR3Z2tq2HSYjZKNbJUEGxToYKinUyVFCsk6GCYp0MFRTrpC8SWw9gMP7+/hCLxaioqNB7vqKiAsHBwX2+Jzg42Kjl7Y0p+9yTVCrFxIkTkZOTI8QQba6/37FCoYCrq6uNRiWc//f//h8efPDBAZeJiYmxzmCswBJ/A8QxUaxzKNadH8U6h2Ld+VGscyjWnR/FOodi3flRrHMo1p0fxTqHYl2f3SfSXVxcMHnyZKSlpWHp0qUAAI1Gg7S0NKxZs6bP90yfPh1paWl46qmndM+lpqZi+vTpVhix+UzZ557UajXOnTuHhQsXCjhS25k+fTp27dql95wj/Y6NFRAQgICAAFsPw2os8TdAHBPFOsX6UEGxTrE+VFCsU6wPFRTrFOtDBcU6xfpQQbFOsd4Xu0+kA0BKSgoeeOABTJkyBdOmTcM777yDlpYWrFy5EgCwYsUKhIWFYePGjQCAJ598ErNmzcJbb72FRYsW4euvv8aJEyfw8ccf23I3jGLsPr/00ku47rrrEBsbi/r6erz55psoKCjAww8/bMvdMFhzc7Ne9XxeXh6ysrLg6+uLyMhIrF27FiUlJdixYwcA4LHHHsP777+PZ555Bg899BD27duHb7/9Fjt37rTVLtiNwsJC1NbWorCwEGq1GllZWQCA2NhYeHh42HZwRhjsb8CRDRbvxDAU6/aPYt0yKNbtH8W6ZVCs2z+KdcugWLd/FOuWQbFu/yjWLYNi3f5ZLNZZB/Hee++xkZGRrIuLCztt2jT26NGjutdmzZrFPvDAA3rLf/vtt+zIkSNZFxcXNi4ujt25c6eVR2w+Y/b5qaee0i0bFBTELly4kD116pQNRm2a/fv3swB6Pfh9fOCBB9hZs2b1ek9CQgLr4uLCxsTEsJ999pnVx22PHnjggT7/Lffv32/roRltoL8BRzZYvBPDUKzbP4p1y6BYt38U65ZBsW7/KNYtg2Ld/lGsWwbFuv2jWLcMinX7Z6lYZ1iWZQ1PuxNCCCGEEEIIIYQQQgghQ4vI1gMghBBCCCGEEEIIIYQQQuwZJdIJIYQQQgghhBBCCCGEkAFQIp0QQgghhBBCCCGEEEIIGQAl0gkhhBBCCCGEEEIIIYSQAVAinRBCCCGEEEIIIYQQQggZACXSCSGEEEIIIYQQQgghhJABUCKdEEIIIYQQQgghhBBCCBkAJdIJIYQQQgghhBBCCCGEkAFQIp0QQgghhBBCCCGEEEIIGQAl0gkhhBBCCCGEEEIIIYSQAVAinRBCCCGEEEIIIYQQQggZACXSCSGEEEIIIYQQQgghhJABUCKdEEIIIYQQQgghhBBCCBkAJdIJIYQQQgghhBBCCCGEkAFQIp0QQgghhBBCCCGEEEIIGQAl0gkhhBBCCCGEEEIIIYSQAVAinRBCCCGEEEIIIYQQQggZACXSCSGEkG7+/ve/g2EYVFdXD7psZ2cnnnnmGUREREAkEmHp0qXCD5AQC6FYJ0MFxToZKijWyVBBsU6GCop1+0OJdEIIIcRE27Ztw5tvvok77rgDn3/+Of72t7/1uZxGo8H27duxePFiREREwN3dHePGjcMrr7yC9vZ2Qcdoy20T5+EIsQ4AW7duxaxZsxAUFASZTIbo6GisXLkS+fn5gm+bOAdHifXuVCoVxo4dC4ZhsGnTJqtumzguR4n1Bx98EAzD9HqMHj1a8G0T5+Aosc6P4cMPP0RCQgJcXV3h5+eHuXPn4syZM1bZPnFsjhLrfR3T+ce8efME3765JLYeACGEEOKo9u3bh7CwMPzjH/8YcLnW1lasXLkS1113HR577DEEBgYiIyMD69evR1paGvbt2weGYQQZoy23TZyHI8Q6AJw+fRrR0dFYvHgxfHx8kJeXh61bt+LXX3/FmTNnEBoaKti2iXNwlFjv7r333kNhYaFVtkWchyPFukwmwyeffKL3nJeXl6DbJM7DkWL9oYcewpdffokVK1ZgzZo1aGlpwenTp1FZWSnodolzcJRY/+KLL3o9d+LECfzzn//E/PnzBduupVAinRBCCDFRZWUlvL29B13OxcUFf/zxB2bMmKF77pFHHkFUVJTuhCUpKUmQMdpy28R5OEKsA8AHH3zQ67mlS5diypQp2LFjB5577jnBtk2cg6PEOq+yshIvvfQSnn32Waxbt07w7RHn4UixLpFIcN999wm6DeK8HCXWv/32W3z++ef44YcfcNtttwm2HeK8HCXW+zqep6eng2EY3H333YJt11KotQshhBDSh+rqatx1111QKBTw8/PDk08+qbvVLT8/HwzDYP/+/bhw4YLuVrT09PQ+1+Xi4qJ3osLjT5IvXbo04Fg+++wzMAyDbdu26T3/6quvgmEY7Nq1q9/3mrtt4vycJdb7ExUVBQCor683+r3EuThjrD/33HMYNWoUJRmJHmeMdbVajcbGRoOWJUOHM8X622+/jWnTpuG2226DRqNBS0vLgMuTocWZYr2njo4O/Oc//8GsWbMQHh5u1HttgRLphBBCSB/uuusutLe3Y+PGjVi4cCHeffddPProowCAgIAAfPHFFxg9ejTCw8PxxRdf4IsvvsCYMWOM2kZ5eTkAwN/ff8DlVq5ciVtuuQUpKSkoKioCAJw7dw4bNmzAqlWrsHDhQqP3z9BtE+fnjLFeU1ODyspKnDhxAitXrgQA3HTTTUaNmTgfZ4v1zMxMfP7553jnnXeoRRfR42yx3traCoVCAS8vL/j6+uLxxx9Hc3OzUeMlzslZYr2xsRGZmZmYOnUqnn/+eXh5ecHDwwMxMTH49ttvjRovcU7OEut92bVrF+rr63Hvvfca9T6bYQkhhBCis379ehYAu3jxYr3n//KXv7AA2DNnzuiemzVrFhsXF2fytpKSkliFQsHW1dUNumxZWRnr6+vLzps3j+3o6GAnTpzIRkZGsg0NDYJvmzgnZ451mUzGAmABsH5+fuy7775r8tiJ43PGWNdoNOy0adPYu+++m2VZls3Ly2MBsG+++abJYyeOzxlj/bnnnmOfffZZ9ptvvmG/+uor9oEHHmABsNdffz2rUqlMHj9xbM4W66dOndKdswQFBbEffPAB++WXX7LTpk1jGYZhf/vtN5PHTxybs8V6X/70pz+xMpnMYb6XUkU6IYQQ0ofHH39c7+cnnngCAExqLdGXV199Fb///jtee+01g3rZBQcHY/PmzUhNTcXMmTORlZWFbdu2QaFQCL5t4tycMdZ/++037Nq1C2+99RYiIyPp9mgCwLliffv27Th37hxef/11C4ycOBtnivWNGzfitddew1133YXly5dj+/bt+L//+z/88ccf+P777y2wN8SROUus83dY1NTU4Oeff8bq1atxzz33IC0tDX5+fnjllVcssTvEgTlLrPfU2NiInTt3YuHChQ7zvZQS6YQQQkgfRowYoffz8OHDIRKJkJ+fb/a6v/nmG7zwwgtYtWoVVq9ebfD7li9fjkWLFiEzMxOPPPKISa0qTN02cV7OGOtz5szBzTffjJSUFHz33XfYsGED3n//fWOHT5yMs8R6Y2Mj1q5di6effhoRERHmDJs4KWeJ9f787W9/g0gkwu+//27yOohzcJZYd3V1BQBER0cjMTFR97yHhwduvfVWZGZmorOz0/idIE7DWWK9p//85z9ob293nLYuoEQ6IYQQYhBL9Z9NTU3FihUrsGjRImzZssWo99bU1ODEiRMAgIsXL0Kj0Vht22TocIZY72748OGYOHEivvzyS5PXQZyTo8b6pk2boFQqsWzZMuTn5yM/Px/FxcUAgLq6OuTn50OpVBq/I8RpOWqs98fV1RV+fn6ora01eR3EOTlqrIeGhgIAgoKCer0WGBgIlUpFd9cRPY4a6z19+eWX8PLywi233GL0e22FEumEEEJIH65evar3c05ODjQaDaKiokxe57Fjx3DbbbdhypQp+PbbbyGRSIx6/+OPP46mpiZs3LgRhw8fxjvvvGO1bRPn5Wyx3pe2tjY0NDSYtQ7i+Jwl1gsLC1FXV4e4uDhER0cjOjoaM2fOBMDdmh0dHY2LFy+asjvESThLrPenqakJ1dXVCAgIMHkdxDk4S6yHhoYiODgYJSUlvV4rLS2FXC6Hp6enUeMgzsVZYr27srIy7N+/H3/6058gk8mMeq8tUSKdEEII6cPmzZv1fn7vvfcAADfffLNJ67t06RIWLVqEqKgo/Prrr7pbOA31/fff45tvvsFrr72G5557DsuXL8cLL7yAK1euCL5t4tycJdY7OztRV1fX6/nMzEycO3cOU6ZMMWocxPk4S6z/9a9/xY8//qj3+OijjwAADz74IH788UdER0ebtE/EOThLrLe3t6OpqanX8y+//DJYlsWCBQuMGgdxPs4S6wCwbNkyFBUVITU1VfdcdXU1fv75Z8ydOxciEaXvhjJninXe119/DY1G41BtXQCAYVmWtfUgCCGEEHvx97//HRs2bMD48eMRFRWFBQsWICMjA//6179wzz336LWHmD17Nqqrq3H+/PkB19nU1IS4uDiUlJTg1VdfRVhYmN7rw4cPx/Tp0/t9f2VlJeLi4jB+/HikpaWBYRjU1NQgLi4OMTExOHz4cL8n1+ZumzgvZ4v1+vp6hIeHY9myZYiLi4O7uzvOnTuHzz77DHK5HEePHu3VX5IMDc4W633Jz89HdHQ03nzzTfzP//yPwe8jzsXZYj0/Px8TJ07E3XffjdGjRwMA9uzZg127dmHBggXYuXMnJReHKGeLdQCoqKjAxIkT0dzcjJSUFHh5eWHLli0oKipCRkYG4uPjDfzXIc7EGWOdN2XKFJSVlaGoqMixjuUsIYQQQnTWr1/PAmAvXrzI3nHHHaynpyfr4+PDrlmzhm1ra9NbdtasWWxcXNyg68zLy2MB9Pt44IEHBnz/7bffznp6erL5+fl6z//8888sAPb1118XbNvEeTlbrHd0dLBPPvkkO2HCBFahULBSqZQdNmwYu2rVKjYvL2/QsRPn5WyxPtB43nzzTaPeR5yLs8V6XV0de99997GxsbGsm5sbK5PJ2Li4OPbVV19llUrloGMnzsvZYp2Xm5vL3nbbbaxCoWBdXV3ZuXPnspmZmYO+jzgvZ4317OxsFgCbkpIy6LL2hirSCSGEEEIIIYQQQgghhJABOFDtPCGEEEIIIYQQQgghhBBifZRIJ4QQQgghhBBCCCGEEEIGQIl0QgghhBBCCCGEEEIIIWQARifSDx48iFtvvRWhoaFgGAY//fTToO9JT0/HpEmTIJPJEBsbi+3bt/daZvPmzYiKioJcLkdiYiIyMzONHRohFkWxTgghhBBCCCGEEEIIAUxIpLe0tCA+Ph6bN282aPm8vDwsWrQIc+bMQVZWFp566ik8/PDD2LNnj26Zb775BikpKVi/fj1OnTqF+Ph4JCcno7Ky0tjhEWIxFOuEEEIIIYQQQgghhBAAYFiWZU1+M8Pgxx9/xNKlS/td5tlnn8XOnTtx/vx53XPLly9HfX09du/eDQBITEzE1KlT8f777wMANBoNIiIi8MQTT+C5554zdXiEWAzFOiGEEEIIIYQQQgghQ5dE6A1kZGQgKSlJ77nk5GQ89dRTAAClUomTJ09i7dq1utdFIhGSkpKQkZHR5zo7OjrQ0dGh+1mj0aC2thZ+fn5gGMbyO0FsjmVZNDU1ITQ0FCKRfbb2p1gnluAIsW4NGo0GpaWl8PT0pFh3UhTrHIp150exzqFYd34U6xyKdedHsc6hWHd+FOscinXnZ0ysC55ILy8vR1BQkN5zQUFBaGxsRFtbG+rq6qBWq/tcJjs7u891bty4ERs2bBBszMR+FRUVITw83NbD6BPFOrEke451aygtLUVERISth0GsgGKdYn2ooFinWB8qKNYp1ocKinWK9aGCYp1ifagwJNYFT6QLYe3atUhJSdH93NDQgMjISBQVFUGhUNhwZEQojY2NiIiIgKenp62HYlUU60PPUI31nvj97xnrKpUKe/fuxfz58yGVSm01PEEMtX2jWOdQrDv/vlGscyjWnX/fKNY5FOvOv28U6xyKdeffN3uM9YMHD+LNN9/EyZMnUVZWNmgLXgBIT09HSkoKLly4gIiICLzwwgt48MEHDd4mxbrz75sxsS54Ij04OBgVFRV6z1VUVEChUMDV1RVisRhisbjPZYKDg/tcp0wmg0wm6/W8QqGg5KKTs+fbaCjWiSXZU6zb4mSF3/+esa5SqeDm5gaFQuGUH+hDcd/sKdZtgWJ96OwbxTrFujNxlFincxjrGKr7Zk+xbgsU60Nn3+wp1ltaWhAfH4+HHnoIt99++6DL5+XlYdGiRXjsscfw5ZdfIi0tDQ8//DBCQkKQnJxs0DYp1ofOvhkS64I3OZo+fTrS0tL0nktNTcX06dMBAC4uLpg8ebLeMhqNBmlpabplCHEEFOvEWfEnK5s3bzZoef5kZc6cOcjKysJTTz2Fhx9+GHv27BF4pIQQQgghXegchhBCnMvNN9+MV155BbfddptBy2/ZsgXR0dF46623MGbMGKxZswZ33HEH/vGPfwg8UuKsjK5Ib25uRk5Oju7nvLw8ZGVlwdfXF5GRkVi7di1KSkqwY8cOAMBjjz2G999/H8888wweeugh7Nu3D99++y127typW0dKSgoeeOABTJkyBdOmTcM777yDlpYWrFy50gK7SIhpKNYJ4dx88824+eabDV6++8kKAIwZMwaHDx/GP/7xj36v+vecWLexsREAd7VYpVLpnuf/v/tzzqCpvRMv/nweHq0M5jnZvgF9/96c7XfoaFiWRWZeLVIvViC7vAktyk74e8gwMdIbi8aHYJifu62HaLKOTjXSL1ch/XIlcqtaoNGwCPV2xdRoX9w6IQTebi62HiKxkYNXqvD+/hwo5FJMGuaNW8aHItLPzdbDMplerFe2YJifG1770wSIRfZTOWhrdA4jvKqmDjzzn3MIY+kchjiOrQevoaS+DS/eMlbwY+aR3GpsO5yH9bfGIcLXcT9zHFVGRgaSkpL0nktOTsZTTz3V73uG+nG9ppmO6wMxOpF+4sQJzJkzR/cz37/5gQcewPbt21FWVobCwkLd69HR0di5cyf+9re/4Z///CfCw8PxySef6J2ILFu2DFVVVVi3bh3Ky8uRkJCA3bt395qUkRBrolgnxDSmnKz0N7Hu3r174ebW+4QzNTXV7HHak91FDH4rFkPMiBC3MxVeTprn6/57a21tteFIhrZThXVY9/N5nC9p7PVa6sUKbNpzGUsTwvD8ojHw9+jdXsxesSyLn7NK8cbubJQ2tOu/WFCHX86U4v92XsSfbxyO1bOHQy4V22agxGbe23cVx/PrAAC/X+JifUlCGF5YNAZ+ThDrmfm1uGNyOBJj/Gw4OsdG5zDG+zlfhMNlIgBiTNuTCong97zbBp3DOI9WZSc2/nYJGhZIGhOEG0b4C7q9+z/NhFrDQixi8NH9UwTdFumtvLy8V74lKCgIjY2NaGtrg6ura6/3DPXj+s5CEQ6WcMf165xs37oz9bhudCJ99uzZYFm239e3b9/e53tOnz494HrXrFmDNWvWGDscQgRDsU6IaUw5Wek5sS4/2cf8+fN79aFLTU3FvHnznKZXW3NHJ9a9dRBAJ9Qsg1xJFF5YONbWw7Kovn5vfGUHsR6WZfH+vhy8/fsVsCwgl4pwy4RQTIv2hUIuQWl9O/ZlV+JwTjV+OF2Cg1er8O7yiZgRK+wXTEto6ejEcz+cw3/PlAIAAjxlWBwfignhXpCKRcitbMbOc2XILm/CP9OuYs+Fcnx0/2SHrrwnxmlXqXGmqAEA8MD0YcitasHhnGr8eLoEB65U4f17JmLGcMeN9R0Z+VCpWfyRW0OJdDPQOYzxNr93BEAzAMBj+CTMHdP33E+Ois5hnM/l8iZotF/zd54rEzSRnl/dArV2YwU1dAHGUQz14/pvX58BSri5/SbNmIVgb+c6Xzb3uC74ZKOEEELIYPqbWFcqlfZ5UtLf847omyOFaGjrhKdcgqb2TnxzqhR/nTfaoaojDdX99+Ysvz9HodGwePY/Z/HdyWIAwO0Tw/C/fVThPnRDNM4W1+OZ788iu7wJD3yWiXeWTcSiCSG2GLZBmtpVePCz4zhZUAeJiMGTN43AIzfG9Ko4XzM3Fr+dL8e6n88ju7wJt31wBP9+JBGjg2ny7qEgq6geSrUGQQoZ/r44DgzD4ExRPZ79jzbWt2XiH8sScMuEUFsPtV8DxfrwAA88/+M5ZObV2HqYQ85QPocpqGnBlcpm3c/7rtQgeUKEDUckHDqHcR6Xypp0/7/7fBleXhIHiViYWyl+PVuq+//q5o4BliRCCQ4ORkVFhd5zFRUVUCgUfV4cBYb2cR0AiuradP+fU92OiABv2w1GQKYe1530xitCCCG2YsrJylDVplTjk0PXAAAvLByFCHcW7SoNtv2RZ+OREWfCsiw2/PcCvjtZDLGIwf/dNg5vL0vo92LNhHBv/PT49Vg0IQQqNYsnvz6Ng1eqrDxqw7Sr1LrEokIuwVePXocnbhrRZ9sWhmGwcHwIfn1iJsaFKVDbosQ9W48hv7rFBiMn1paZVwsAmBbtB4bh+uHGR2hjfTwX6099nYX9lyttOcx+DRbr06J9AQCnC+vR0am25VAdGp3DGGfPhXK9n3+/VKWrviXEXl0q66o8rWtVIeOacBcgfz1bpvv/6mYlJdNtYPr06UhLS9N7LjU1FdOnT7fRiOybslODqxVdF0gvldMdOD1RIp0QQohF0cmK4b4+XojqZiXCfVxx64QQzA/XAAA+P1KAhlbnm9iF2MaOjAJ8nlEAhgHevise9yYOG/Q9cqkY7y2fiCUJoejUsFj9r5O4WtE06PusiWVZPP/jOV1i8d+PXIepUb6Dvi/YS44vV12nS6Y/vOMEmtrp783ZdSXS9WNELhXjvbsnYnE8F+uPf3kKOd0qbO2BIbE+PMAdfu4u6OjU4HxJg41G6vjoHMY4u89zifTnbx4FVzGLmhYlThXW2XhUhAyMT6T7e3CTEu06Vz7Q4iYrrmtFdnkTRAzg5cpVu14ut69zKUfU3NyMrKwsZGVlAQDy8vKQlZWlm79u7dq1WLFihW75xx57DNeuXcMzzzyD7OxsfPDBB/j222/xt7/9zRbDt3u5Vc1QqjW6n7vfwUE4lEgnhBAyIDpZEUZHpxofHeCq0VfPHg6pWIRxPixGBnqguaMTn2fk23aAxCmcK27A/+28BAB4/uYxWJIQZvB7RSIGb94Rj+kxfmhRqvHEV6fRrrKfStevMovww6kSiEUMPrxvMsaFeRn8Xi83KbY9MBVBChlyKpvx3A/nBBwpsTWVWoOTBVxyLzG698UWkYjBW3dxsd6qVOMvX55Em9KxYp1hGN1FgmPaiwaEzmGEVNnYjlOF9QCAm8cFYawPV4m+57wwSUlCLEGjYZGtTWb/+cbhAID92ZUDzo1mqv3Z3B1Ok4f56D57simRbrYTJ05g4sSJmDhxIgAgJSUFEydOxLp16wAAZWVlumM8AERHR2Pnzp1ITU1FfHw83nrrLXzyySdITk62yfjt3cVS/Qp0SqT3Rol0QgghA6KTFWH852QJyhvbEaSQ4Y7J4QAAEQM8NisaALDtjzy0dHTacojEwbWr1Pjr16ehVGswf2wQHp4ZbfQ6XCQivHv3RPh7yJBd3oTXfssWYKTGK6ptxSs7LwIAnl0wCtebMCFqoEKOLfdNhljEYOfZMr0+psS5nC9pQJtKDR83KWIDPPpcRioW4Z93J8DfQ4YrFc14c89lK4+yb8bEOp9Iz6REug6dwwhnz0WuBc7ESG8EK+SY4KtNpF8sFyQpSYglFNe1obmjEy5iEe5JjIRcKkJ5Y7sgCe40bSJ97uggjA72BABcpjYZZps9ezZYlu312L59OwBg+/btSE9P7/We06dPo6OjA7m5uXjwwQetPm5HcUGbSF8Qx028nVfTaleFNPaAEumEEEIGRCcrlqdSa/BBeg4ArhpGJunq57xwXDCi/d1R36rCl8cKbDVE4gQ+SM9FXnULAj1lePOOeF1faGMFeMrw1l3xAIDPM/JxtrjegqM0HstyE6e2KtWYFuWLh2+IMXldEyN98PicWADAiz+dR12L0lLDJHaETyxPjfKFSNT/30Ggpxyb7pwAANh+JA9niuqtMbx+GRvrfCL9RH4d9anWonMY4fCV58lxwQCAMd4sZBIRimrbcLGMkoXEPvGxOSLIA+4yCa4fzl2ctPT8GK3KThzJ5Xqv3zQmEKNDuInNqbULsXcXy7j2cLNG+sNdwkKtYXHFzto72hol0gkhhBAr+yWrFMV1bfBzd8Hd0yL1XhOLGKyezd1q+vHBPKoAICa5VtWMLem5AID1t8bBy83wmej7MmtkAJYmhIJlgf/98bxNk3R7LpTjSG4NZBIR3rxzwoCJUUOsmROL0cGeqGtV4Z9pVy00SmJP+uuP3pfZowKxJCEUGhZ4/sdz0DhQrI8OVsBTLkFzR6feZHqEWFp9qxJHtRM08ol0mRiYGesHANhzoaLf9xJiS/yxcYw2sT17dCCArjYslvJHTg2UnRqE+7hiRKAHRmkr0q9UNNv0c4WQgbAsq2vtMjbEE2HuXKz2bPcy1FEinRBCCLEitYbFZm01+sMzY+DqIu61zG0TwxDm7Yrq5g58c7zI2kMkTmDT3stQqjWYNTIAC8cHW2Sdzy8aA0+ZBOdKGvDLmRKLrNNYHZ1qbNS2l3n0xhgM83M3e50uEhHW3TIWAPDF0QLkVFLVjTNRa1hk5nOJ9MRoP4Pe8+ItY+Ehk+BCaSP+a6OWP6bEuljE6CYhpT7pREhplyrRqWExOtgT0f5dsTlvLJeU3HuB+qQT+9QrkT4yAABwsqAODa2Wm3j84JUqAMDc0YFgGAZRfu6QSURoU6lRWNtqse0QYkkl9W1obO+EVMwgNsADYW7c83RxXh8l0gkhhBAr+u18Ga5VtcDLVYr7rovscxmpWITHZnG38H90IBfKTk2fyxHSl3PFDdh1rhwMA/zvojEmt3TpKdBTjse0d0v8I/UqVGrrx+VXxwpRUNOKQE8ZHps13GLrnRHrj6QxQVBrWLvpjU0s43J5E5raO+Ehk2BMiKdB7/H3kOmOwW/tvWKTY7Cpsc4n0jPzaoQaGiHYo02Uz4/Tv1A7d1QgxCIG2eVNKKhpscXQCBkQ39plrDaRHuHrhuEB7tCwwFELHjcztHdszNC2jhGLGIwI4ubooAlHib3iK89jAz3hIhF1VaRTIl0PJdIJIYQQK9FoWLy/j6tGX3l9FDzl/bfbuHNKBAI8ZShtaMePp4utNUTiBDbt5RLBtyWEYWSQYYlDQz04Iwr+Hi4orG3FdyesG5fKTg0+OngNAPBk0gi4yyQWXf9zN48Cw3AtCaiHqfPgE8qTh/lAIjb8q89DN0QjwFOGwtpWfH/ScWK9+4SjNOEjEUKrshMHtNW2C3ok0r3dpEjUxuAeqkondqapXYXiujYA0Luwyie7+XZF5qpsbEdOZTMYBrgupqul2Kgg6pNO7FvPC018Iv1SWRO1JOqGEumEEEKIlaRlVyK7vAkeMgkenBE14LJyqRh/vpGriPwgPRedNqj+JY7nQmkDDlypgljE4KmkkRZfv7tMgtWzuck5txzItWqv9B9PF6OsoR2BnjLcMTnc4uuPDfTEwnEhAIDN+3Msvn5iG3xbF0P6o3fn5iLBam0l+NZD1xwm1seHeUEuFaGuVYWcymaBRkiGsgOXq9DRqUGEr2ufd3ksGMcl13efp0S6pW3evBlRUVGQy+VITExEZmZmv8vOnj0bDMP0eixatEi3zIMPPtjr9QULFlhjV2ziSgV3TAxSyODt5qJ7/roYru1XRq5lEul8NfrYEIXedkZr+6RfrqDqXmKfdP3RQ7lEepCca4HY3NGJojpqScSjRDohhBBiBSzL4v193ESG908fpndi3Z97EiPh4yZFQU0rdp4rE3qIxAl8ejgPALBwfAgi/dwE2cbd0yLg5SpFYW0rfr9knQnl1BoWH2onT330xhjIJL3nFrCEv8zhEqe/ni2ltgROgGVZ3USjiUYm0gFg2VQu1vOqW5B60TpJQXNj3UUiwqRIHwDUJ50Ig680XxAX3GfrsPljuUT6qcJ6VDa2W3Vszuybb75BSkoK1q9fj1OnTiE+Ph7JycmorOx7kswffvgBZWVlusf58+chFotx55136i23YMECveW++uora+yOTVyt4CrBe96tl6itGs8ub0Jdi9Ls7fCV7dNj9Ofl4CccpdYuxF71rEgXi4ARgdw8GNQnvQsl0gkhhBArOHS1GmeKGyCXirDqhmiD3uPmItEt+/6+HLqljgyoorEd/z3DTYxoaIyZws1FgnsTuf7+nx7KE2w73R24Uon8mlZ4uUpx97S+5xawhLhQL8waGQANC3x5rFCw7dgLY6obAaC+vh6PP/44QkJCIJPJMHLkSOzatctKozXeteoWVDcrIZOIMD7cy+j3u8skuP+6YQCAj7WtVoRmiVjv3t6FEEtSdmqQls0lbpPj+p7IOthLjvgIbwDA3ovWudg6FLz99tt45JFHsHLlSowdOxZbtmyBm5sbtm3b1ufyvr6+CA4O1j1SU1Ph5ubWK5Euk8n0lvPx8el3DB0dHWhsbNR7AIBKper16O95Wz4ulTUAAEYEuOs97yUTITaASxYeyakcdD2D7duRHC6RPjXKW+/54f6uAID86hY0tbbb/N/D0H0jQ0NDW1frIz6RDgBjgrn/56vVCWDZ5pKEEEII6RPfG/2eacPg7yEz+H0rZkTho4PXcLWyGXsvlmOBtvUEIT3962gBVGoWU4b5IEGbxBDKAzOisPXQNWTm1+J8SQPGhRmfpDTGl0e5pPadk8Mt3hu9pxXTh+HAlSp8e6IIKfNGQi4Vpvrd1vjqxi1btiAxMRHvvPMOkpOTcfnyZQQGBvZaXqlUYt68eQgMDMT333+PsLAwFBQUwNvb2/qDNxCfSJ4Y6W3yXQwPzIjCRwdzcaqwHhdLG3W3OwvFErHes0+6pSYcJiTjWg2a2jsR4CnT3fnQl+S4IJwpqseeC+W4T3sxiphOqVTi5MmTWLt2re45kUiEpKQkZGRkGLSOTz/9FMuXL4e7u7ve8+np6QgMDISPjw/mzp2LV155BX5+fn2uY+PGjdiwYUOv5/fu3Qs3t953waWmpho0NmvJuCgCIEJbxTXs2pWr91qwSIQciPDN/tPozB+8nWJ/+9agBApqJWDAou7ycXTfDMsC7hIxWjoZfP7jHkR4mLM3wum+b62t1M5jqOB794d5u8LLTaq7iMK38KIJR7tQIp0QQggR2LFrNcjMr4WLWIRHtX3PDaWQS/HgjCi8ty8H7+3LQXI/t1KToU2tYXWTfz54fZTg2wtSyJEcF4xfz5bh2xNFgibSi+tase8yVwF5d6Jw1ei82aMCEebtipL6Nvx6tkyQfuz2oHt1IwBs2bIFO3fuxLZt2/Dcc8/1Wn7btm2ora3FkSNHIJVyEyVHRUX1u/6Ojg50dHTofu5ZucjrXgFnaUdzqwEAUyK9TV6/t1yEm0YHYveFCvz7WD7W3zLG4Pcau28l9W26WL9zUqjJYx4X7AGpmEF5YzvyqhoR4WP5Nk997RtVLjo/vu/5/LFBEIn6PxdJjgvGG7svIyO3Bg1tKni59j+5OhlcdXU11Go1goKC9J4PCgpCdnb2oO/PzMzE+fPn8emnn+o9v2DBAtx+++2Ijo5Gbm4unn/+edx8883IyMiAWNz74uPatWuRkpKi+7mxsRERERGYP38+FIqui4wqlQqpqamYN2+e7vPCHrxyLh2AEn9KmoH4HncpsefKcfjbs6gReWHhwun9rmOwfdt7sQI4eQajgjzxp8Uzer3+VcVxHMurQ8CIeCycGGbmHllWX/vGf3YT53e5nPtd8y2IeGO0P1NFehdKpBNCCCECe187ceGdU8IR7CU3+v0rr4/GJ4fycKG0EelXqjBnVO9qUTK0HbpahfLGdni7STFvbNDgb7CAZVMj8OvZMvx0ugTPLxwjWOX2N8eLwLLAjOF+GB4gfPmWWMTg3usi8cbuy/gqs9ApE+mmVDf+8ssvmD59Oh5//HH8/PPPCAgIwD333INnn322z4SLPVQuHrwkBsBAU3kVu3ZdMXk90RoGgBj/OVGIeDYPLkaGuqH7trNQBJYVYYRCg+zjBzB4eqx/4W5i5DUx+PTnA5gWKFxbMKpcHDo0Ghap2lYt/bV14Q0P8MCIQA9crWzG/uxKLLWzhOFQ8+mnn2L8+PGYNm2a3vPLly/X/f/48eMxYcIEDB8+HOnp6bjpppt6rUcmk0Em631XpVQq7TOp3N/ztlDbokRVM9f/fEyoN6RS/VTY1Bh/AMDl8maoIRr0nKa/fTtbylX1Thzm2+frY0K8cCyvDjlVrXbzb9NT932z1zESy+N79/dMpI8O5s69SxvaUd+qNGieL2dHiXRCCCFEQKcL63DoajXEIgaPzRpu0jp83V1w33WR2HooD++lXcXskQFUlU70fHeSq0ZfEh8q2EScPV0/3F9Xub3nQjmWJFg+UaLRsPjhVAkAbvJda7ljUjg27bmMkwV1KKxpFWziVlsxpbrx2rVr2LdvH+69917s2rULOTk5+Mtf/gKVSoX169f3Wt7WlYsl9W2oyzgEiYjBn/80D24upn/tWaBh8d9/HEJxfTsQkYCFCaEGvc+YfdNoWLz+9iEA7VizIAELxw+cqBzMRclVfHQoDx1ekVi4MM6sdfWFKheHntNF9ahu7oCnTILrYvpu/dFdclwwrlbmYPf5ckqkm8nf3x9isRgVFfo95ysqKhAcPPCxoqWlBV9//TVeeumlQbcTExMDf39/5OTk9JlId2RXtBONRvi69tk2K9RLjgBPGaqaOnC+pAFTooyfoBoAThfWA+BaivWFJhwl9opv7TK6RyLdUy5FhK8rimrbcLGsETOG+9tieHaFJhslhBBCBLRZW41+28QwRPianox7ZGYMXCQinCqsR8a1GksNj/TB2AkYeV9//TUYhsHSpUuFHWAPDa0qpF7gvlzfOSXCatsViRhdtfb32kS+pZ0qrENJfRs8ZBIkjbFOpT0ABCrkuD6W+6Lwc1aJ1bZrzzQaDQIDA/Hxxx9j8uTJWLZsGf73f/8XW7Zs6XN5mUwGhUKh9wC6Kt26P/p73pzHqSIuqTs+3Ate7q5mrUsmc8Ed2r+tnecrjHqvoft2rqwZpQ3t8JBJkDw+1Oz9v04bvycK6iz+bzvQvhHntfci19Zl9uhAuEgGTyPwVesHrlShXaUWdGzOzsXFBZMnT0ZaWpruOY1Gg7S0NEyf3n8bEgD47rvv0NHRgfvuu2/Q7RQXF6OmpgYhIc43Hw+fSB8V5Nnn6wzD6OaXySqqN2kbnWoNzhZz7+1vDgFKpBN7xLIsLlf0XZEOAKOCuHO4KxS3ACiRTgghhAjmQmkDfr9UCYYB/jLbtGp0XqBCjmXaRA4/cSmxPH4CxvXr1+PUqVOIj49HcnIyKisrB3xffn4+/ud//gczZ8600ki77LlQDqVag9HBnogTeCLEnm6fxFUZHsmtQW2L0uLr/+VMKQBgflyQ1Sf95Cvsf8wqAcsK1xrDFkypbgwJCcHIkSP12riMGTMG5eXlUCot/7s3Fz/RKD/xprlumcBVoR++Wo06B4j1ycN8IGKA/JpWVDS2m70+Qvi2LvMNbB82LkyBMG9XtKnUOHilSsihDQkpKSnYunUrPv/8c1y6dAmrV69GS0uLbp6LFStW6LXr4n366adYunRprwlEm5ub8fTTT+Po0aPIz89HWloalixZgtjYWCQnJ1tln6yJT6SP6CeRDnRVkfNV5cbKLm9Cu0oDhVyCGH/3PpcZqd1+VVOHIOdNhJiitKEdTe2dkIgYxPj3bqM4Stve5XJFs7WHZpcokU4IIYQI5IP9uQC4BEyMBXo7/3lWDCQiBkdya3CyoM7s9ZHeuk/AOHbsWGzZsgVubm7Ytm1bv+9Rq9W49957sWHDBsTEGDeZrCX8dr4MALBofIjVW/4M83NHXKgCag2LvRfKLbruTrUGu85x+7Y43rBWGpaUHBcEmUSEa1UtuOBkEyyZUt14/fXXIycnBxqNRvfclStXEBISAhcX++uXySfSEy2USI8N9MCYEAU6NSz2OECsK+RSjNVeWOP/LQgxVU5lM65VtUAqZjB7VIBB72EYRjdnx54LFYMsTQazbNkybNq0CevWrUNCQgKysrKwe/duXYuuwsJClJWV6b3n8uXLOHz4MFatWtVrfWKxGGfPnsXixYsxcuRIrFq1CpMnT8ahQ4f67IPu6K6UcwnA/irSAZhdkX66kDs3T4j06XcyXg+ZBBG+rgCA7HLnOrcgjoufaHR4gEefdxyNCtZWpFdQRTpgYiLdmFueZ8+eDYZhej0WLVqkW+bBBx/s9fqCBQtMGRohFkWxTggxVU5lE3ZpE5yPzzGvGp0X7uOmqwDmW8YQy+EnYExKStI9N9gEjADw0ksvITAwsM8vqj11dHSgsbFR7wFw/YZ7Pvp7vvujtqkVh3OqAQBJo/0HXV6IR/JYbvLbX8+WGvweQ/bt0JVKVDcr4eMmxbRhXlbfL7kYmD2Sa4+xy8x9s0fGVjeuXr0atbW1ePLJJ3HlyhXs3LkTr776Kh5//HFb7UK/Kpvaca26BQwDTB5mmUQ6ANwaz7U7+O/ZUoutEwAyrtXoYp1vKWQJ06K4ClRKpBNz8dXo18X4wVNueAufBeO4O1zSsiugUmsGWZoMZs2aNSgoKEBHRweOHTuGxMRE3Wvp6enYvn273vKjRo0Cy7KYN29er3W5urpiz549qKyshFKpRH5+Pj7++ONec2c4g+5tK0YOkEifEO4NhuHm2KhsMv5OnjPFDQC6EvL9oTYZxN70N9Eoj78AdaW8yenu0jSF0bPu8Lc8b9myBYmJiXjnnXeQnJyMy5cvIzAwsNfyP/zwg97tnjU1NYiPj8edd96pt9yCBQvw2Wef6X52xqugxLFQrBNCzPHB/lywLHcL9Ohgy7XbWD07Ft+fLMa+7EqcL2nAuDAvi617qDNlAsbDhw/j008/RVZWlkHb2LhxIzZs2NDr+b1798LNrXcP/dTU1AHXd6KKgUotRpAriysnDuKKQaOwLNc2AJDgSE41vvt5F9wNzLEMtm/fXRMBEGG0RwdS9+w2d5gmCVAyAMT48XguRikN/9ftvm+tra0CjMx8y5YtQ1VVFdatW4fy8nIkJCT0qm4UibpqbiIiIrBnzx787W9/w4QJExAWFoYnn3wSzz77rK12oV/H87iqwDHBCni5Wq5v960TQvHG7svIyK1BfasS3m6WqcTfq63WXTAuGFKx5W4Ynhbtg21/5FEinZgtVdsffX6ccZPgTo3yha+7C2pblMjMq7XohSJCDFXV1IGGNhVEDBAT0HfLFYCrFh8e4IGcymZcKG1E4Ci5Udu5qL17bdwgbfZGBHng90sVyKmiNhnEPlweJJEe7e8OiYhBU0cnyhraEertas3h2R2jE+ndb3kGgC1btmDnzp3Ytm0bnnvuuV7L+/rqV4F8/fXXcHNz65VclMlkg844TYg1UawTQkxVWNOKn7X9btfMjbXouqP93XHLhFD8cqYUH6Tn4IN7J1t0/cRwTU1NuP/++7F161b4+xuWHFi7di1SUlJ0Pzc2NiIiIgLz58/XTcYIcBXNqampmDdv3oAT+P367ywAlbh9WgwWJo0wdVfM9p+yI8iuaIYkMgELJw7cmsKQfWNZFq+/dQhAOx6cPxlzDWwlYGkzWlX46vV0lLUC466bjchBJgzua9/4uw7s0Zo1a7BmzZo+X0tPT+/13PTp03H06FGBR2W+zDxuQmZL9UfnRfi6YVSQJy5XNOHAlSpdH31zsCyLfdncHAyWnlB3ahS3/5crmlDXooSPu/214CH2r7KpHae1rS7mGRmjYhGDpDGB+PZEMfZcKKdEOrEJvho9yt990DkoxoYokFPZjEtljZgzqnfxXH+UnRpcreS2M3awRHog1+7xKvWbJnaCT6SP7ieR7iIRISbAHVcqmnG5vGnIJ9KNKnkw9Zbn7j799FMsX74c7u76VwLT09MRGBiIUaNGYfXq1aipqel3Hf3dFk2IpVCsE0LM8eGBXKg1LGaNDMCEcG+Lr//xOVxy/rfz5bhKveosxtgJGHNzc5Gfn49bb70VEokEEokEO3bswC+//AKJRILc3Nxe75HJZFAoFHoPAJBKpb0e/T3PPzSMCIdzuM+QRRPCBlxW6MdN2j64h3JrDVp+sH27VtuO0oZ2yCQi3DgyyGb7FeDlhmnaZOT+KzUm7xuxrmMW7o/e3dwxXGKFT36b63JFE0rq2yCTiDBjuGWTjH4eMsRqEzbH86kqnZgm7VIlWBaYEO6FYC/jKnQBYP7Y4G7roZYAxPp01bYDtHXhjQnhzssuGjk3ytXKJqjULBRyCcIGSTKOCOTGkVNJiXRieyq1BrnauyP6q0jnXuP+Ni7Td0/jEukD3fJcXj74pDuZmZk4f/48Hn74Yb3nFyxYgB07diAtLQ2vv/46Dhw4gJtvvhlqtbrP9WzcuBFeXl66R0REhDG7QcigKNYJIaYqa2jD9yeLAABPWLganTcq2BPJcUFgWeCD9N7JWmIaYydgHD16NM6dO4esrCzdY/HixZgzZw6ysrIEP2afyK9Dm0qNAE8Z4gapfhLabG3V1qGrVVBrzE+UpF3ikpQ3xPrD1WXg6jGh8ZPl8T2CiX2rb1XqvuRNFSKRPpqL9fTLVei0QM9noWOdr8qn9i7EVPyxz9hqdN71sf6QS0UoqW/DxTIqCiLWd8WA/ug8vpr8kpGxyifex4YqBp34fXggV2hX06JETXOHUdshxNKuVbVApWbhKRv4ItCoIO7CPPX2N3GyUVN9+umnGD9+PKZNm6b3/PLly7F48WKMHz8eS5cuxa+//orjx4/3eUspwN0W3dDQoHsUFRVZYfSEGI5inZCh66MD16BSs7guxhdToiyfxOGtmcO18fg5qwQFNS2CbWeoMWYCRrlcjnHjxuk9vL294enpiXHjxsHFRdg2CgevVAEAZo7wH/RLm9AmRnhDIZegvlWFLG0LAHOkXeISN3z1ry3xidNThXVo6ei08WjIYE7k14FlgeEB7vD3sPw8NBMjvOHtJkVDm0rX7sIcQsc6X5WfSRXpxAQtHZ26Ca2N7Y/Oc3UR44ZYrj3X7xctcycHIca4om2hYkgifUwIt0xedQvalH0Xu/WFv0g0NmTwuYvcXCQI9+ESllSVTmwtu5yL3VHBngN+n+D/fqgi3chEurG3PHfX0tKCr7/+GqtWrRp0OzExMfD390dOTk6fr/d3WzQhlkKxTggxRVVTB77KLAQAPDFX2H7V48O9MGtkADQssOUAVaVbyrJly7Bp0yasW7cOCQkJyMrK6jUBY1lZmY1HyTmgTaTPGmmb/uHdScQizNSOI/2yeYmSxvauZLwx/UmFMszPDWHerlCpWUpGOgD+d2Tp/ug8iVik+5vbb2Z7F2vEOt8n/XxJA5rpQhAx0sErVVB2ahDp64aR2mpEU8wby8X375fozh5iXRoNq2uDOCp48BgO9JTD30MGDWtcwrB7RbohdH3SKZFObGywiUZ5/OtXK5stckeeIzMqkW7sLc/dfffdd+jo6MB999036HaKi4tRU1ODkJAQY4ZHiMVQrBNCTPHJ4Wvo6NRgYqQ3Zgz3E3x7fOuY708Wo7S+TfDtDRVr1qxBQUEBOjo6cOzYMSQmJupeS09Px/bt2/t97/bt2/HTTz8JPsaKxnZklzeBYYCZI2yfSAeA2drkIp/gN1XmtVpoWCDG390uJjNiGAYzR3C9q/+4Wm3j0ZDB8P3RhUqkA1wbFgDIuNb/PDeGsEash3q7IsLXFRoWOFVQJ8g2iPPStXUZG2TWnU9zRweBYYBzJQ0oa6DzFWI9JfVtaFGq4SIWYZif++BvQFdVuqF90lmW7VaRbmAiPYj6pBP7MNhEo7wIHze4SsVQdmpQUNtqjaHZLaNbuxhzy3N3n376KZYuXQo/P/3EQnNzM55++mkcPXoU+fn5SEtLw5IlSxAbG4vk5GQTd4sQ81GsE0KMUdeixL8yCgBwCW5rtNqYEuWL62J8oVKz+PjgNcG3R+zHIW1Cd3yYF3zdhW0hY6gbtMnm8yUNaGxXmbyeI7lccvI6K1yMMtT12sQp3+KA2KeWjk6cL2kAAEyLFi5+pmtj82yxeVXe1or1aVHc+qlPOjFGp1qDNO1dF/PHmtYfnRfgKUNChDeArnkBCLEGPlEd7e8Oqdiw9BefDDe0T3pFYwea2jshFjG6/ueDidVVpFObDGJblw2cQ0AkYnR3Jg31PulGJ9JNueX58uXLOHz4cJ+tLsRiMc6ePYvFixdj5MiRWLVqFSZPnoxDhw5BJrN8X0NCDEWxTggxxmdH8tGiVGNsiMKq7Sj4XulfZRaiqokmLBoqjmkrYWcM97fxSLqEeLlimJ8bNCxwMt/0ytcjuVyy2hp3dRiKH0t2eRMqm9ptPBrSn1OFdVBrWIR5uw44YZa5wn3cEOHrCrWGxXEz2v1YK9YTacJRYoLM/Fo0tKng4ybF5GE+Zq8vSTtZKbV3IdaUW8Ul0vnEtSH4anH+vYPhk/XDfN0gkxg2aTTf2oUq0okttSo7UaK9q3mEAXMIUJ90jsSUN61ZswZr1qzp87W+Jk0cNWoUWJbtc3lXV1fs2bPHlGEQIjiKdUKIIRrbVdj+Rx4A61Wj866P9UNChDeyiurxyeFrWHvzGKttm9jOcV0faPOTG5aUGO2LgppWHM2rwZzRxl9Qqm1RIltb5XJdjP0k0v08ZBgbosDFskZk5NZgSUKYrYdE+sAnihMFbOvCmxHjj29qi5CRW2PSxVNrxjrf5iarqB7tKjXkUsMSPWRo49u6zB0dBImBlbwDmTc2CG/uuYwjOTVo6eiEu8ykVAQhRuET1cONSKQPD3DXe+/g22gyeht8Yr+isQMNbSp4uUoNfi8Zmv7IqcaOjHy8sGgsInzdLLLOa1UtYFnA193FoDtc+T7pVyycSN+8PwdlDW3YsHgcxCLrfY82lfmfiIQQQsgQ90VGARrbOxEb6IHkuIEnJLY0hmF0vdL/lVGAuhalVbdPrK+yqR35Na1gGGDyMOEThsZI1LbTOHbNtMrXo9pK+9HBnvD3sK+7tfhkJPWZtl/W6I/O49u7ZOSa1ifdmrE+zM8NgZ4yKNUanNFObkrIQFiW1SXS58eZ19aFNyLQA8P83KBUa3DoqnlzaRBiKL6qnE+OG4JPiFc2dRjUqi7HhKp3T7kUIV5y7v1UlU4M8Ox/zmLPhQrcseVIv8WbxuJjLzbAsNjlE+nZFmztknapAm/uuYx/HS3ESQc5x6ZEOiGEEGKGVmUnPj3MVaOvmRMLkQ2uos8dHYgxIQq0KNX47Ei+1bdPrOt4HneSOSrI0+4qmBJjuATmuZIGtJjQO5qvtLdGRbGxpkRx1f8nHOQkf6hpV6mRpU0SWyORzleRXyi1/1hnGEb3b0LtXYghssubUFzXBplEpJts2VwMw+jau6RepD7pxDp0iUIjktwKuRSBntwFzmtVLYZvw8BkJC9W195laLfJIINTdmpQXMe1YKlo7MDPWaUWWa8udoMMi10+ZgtrWqFSa8zevrJTg1d2XtL9fNTMSdythRLphBBCiBn+fawQtS1KDPNzwy0TQmwyBoZhsGYOV5W+/Y88NJkx0SOxf11tXewv2Rzu44Ywb6539KlC4xPOpwvrAQCTLNCP19L4HsGXyhpNSpwSYZ0tboCyUwN/Dxmi/Q2vPDRVsJccoV5yaFhu28aydqzrEulm9HQnQ8feC1w1+swR/nBzsVwLFj6Rvi+7AmqNZSoqCelPbYsSda0qMAwQ429cknt4gOE9zHMquWS7Mcl6ABgRyFX3Xq2ginQysPOl+ucZb+65DGWn+YlsYy8CBSvkcHcRo1PDoqCm1eztf3G0AHnVXRerTPnuYAuUSCeEEEJM1K5S4+OD1wAAq2cNt0gPUVMtGBeM4QHuaGzvxBdHC2w2DiI8vqJ0apT9JdKBroSzsS0kOjrVuFjaCACYFGl/ifQQL24CSw0LXeUzsR+ZeVwVU2K0r9XmqZiojdPTRcZ98bNFrPOJ9JMFdRapIiPObV82l0jnE9+WMiXKB16uUtS1qhwmYUIcF58kDPN2hauLcXND8EnxwSYcbWhVobq5A4BxPdK7b+MqtXYhgziZzx0vZ47wR6CnDCX1bfj2RJHZ672qvRvC0ItADMPo4tzQyXj7065S44P9OQCAu6dFAuCKDDQOcJGVEumEEEKIib47WYzKpg6EeMlx+6Rwm45FLGLwuLYq/ZNDeWhVUsWsM2pVdiK7nEvA2WsiPT7CGwCQVWRcle6F0kYo1Rr4e7gg3MdVgJGZj79IcCKfEkD2xpr90XkTI70BdFWXG8oWsT4ykGsF1apU44I2iU9IXyqb2nFGe5fFXBMmjR6IVCzCnFEBAIDftT3YCRFKV3904xLc3HsMm3A0p4pLRIZ4yeFh5AS6I4IMr3onQxvfO3zGcH/8ZfZwANwEneZUpavUGl1VuTF3U/B/T+Ym0r87UYSaFiXCvF2x/taxkElEaGhT4Vr14O2UbI0S6YQQQogJVGoNtqTnAgAemzUcLhLbf6Qujg9FhK8raluU+CrT/CoFYn8uljZCwwJBChmCtZNU2ZuECC8AXNW2MZMh8ZN4JkT4WK2i2Fh8Iv0kVVLalU61Rvcl07qJdG1FemGd3ce6SMToLr7x1fuE9CX9MjcR6PgwLwQqLP85kzRW2yf9EiXSibBM6Y/Oi9W2XRksWcj3UI8xYjJT3Ta0CcmS+jY0U8s40g+WZXXz80yJ8sHyaZEI8JShrKEdey6Um7zegpoWdGpYuLuIdRPfGoK/yJRbaXrCu1OtwceHuLu6H70xBnKpGBPCue8PjnC3ku2/9RNCCCEO6MfTJSipb4O/hwzLpkbYejgAAIlYhNWzuKr0jw/moqNTbeMREUvjezGPD/O27UAGEBfqBbGIQXVzB0ob2g1+32ltu5RJw7yFGZgFJGir7c+XNBiVOCXCulDaiFalGgq5BKOCPK223bhQBaRiBtXNSt0kYIawVawn0oSjxAD7LnETgVq6Gp1348gASMUMrlW1mF3RSMhAzKlIj/J3AwAU17YN2M+/qJar6I30NT6R7uPuAn8PblLTXKpKJ/0orG1FdXMHpGIG48O8IJeKcY+2FcqOjHyT18tfaBoe6GHURX1LVKTvy65EUW0bfNykuGsK9z16kq44od7k9VoLJdIJIYQQI6k1rK6n26M3RkMuNa7vopD+NDkMwQo5Kho78P3JYlsPh1jYuRI+ke5l45H0Ty4VY3Qwl8w0pk96lvbEmU9W26NRwZ6QiBjUtihRZsRFAiKszG5tXUQi693NIJeKERdqfAWVrWKdr9Y/nl/nED1IifV1dKpx6CpXkX7TGGES6Qq5FNfF+AEA0qgqnQjInIr0EC9XSEQMlGoNKhr7/7wv0CbSh/m5mTRGvro3zwHaWRDb4NsJjtMm0QHgnsRISEQMjufX4UKp8ROeA8ZPNMrr3iPd1KISvr/7XVMidPMXdL/Lz95RIp0QQggx0q9nS5Ff0wpvNynuTRxm6+HokUnEePTGGADAh+m5NKmckzlbXA8Autsf7RWfIDQ0kV7fqkRJPVfRO87OLxKM0FY8ny8x7YsLsTxb9Efn8Re1LpYZ1nfclrEeF6qAm4sYDW0qXNFOMEZId5l5tWhRqhHgKcO4UOHik5/E9PeLlYJtgwxtbUq17lg73IS2K2IRo5vDolCbLO9Loa4i3bREOt8SxhH6QhPb0LV1GdY1OXmQQo7kuGAAwH9Olpi03qvdKtKNMczPDSIGaGrvRJV2ol1jVDa2Y7+2hdidU7ru6ubv0rtc0YSmdpXR67UmSqQTQgghRtBoWGzWVqOvuj4a7kZOLGQNd0+LhJ+7C4rr2vBLVqmth0MspKm9awIee042A0B8uDeArlY0g7lUxiX1InxdoZBLhRqWRYwLVQCgRLq90GhYHM/nE+l+Vt/+WG08XDRwAk9bxrpELNL1+af2LqQvaXxbl1GBgt7dwVe7nyioRW2LUrDtkKErr7oFLAt4u0nh6+5i0joitMnxARPpNeYl0qP9qSKdDIyfV2XyMP1igdsnhQEAfjlTik4TCqdMvWNDJhHr4t2UPun/OVUCtYbF5GE+etsO9JQj3McVLAucKbLvc2xKpBNCCCFG2HuxAlcqmuEpk2DFjChbD6dPri5iPDyTq0rfnJ4zYG9H4jgulDaCZYFQLzkCPGW2Hs6AxoRwycXs8kaDbvvkq3nHat9nz/iLGOcNTJwSYV2pbEJDmwpuLmLEhVo/fviYvVjqGLHO90k/Rol00gPLskjL5lqtzBWorQsv3McNo4M9oWGhayVDiCXlVHW1rTB1Umc+WVjUTyK9uaMTNdoLQZEmtnaJ9ucSiddovgDSh6b2rjvIes6rcuPIAPi4SVHd3IEjucZNIq7RsLqJckeY0PqI75OeY0Lc/nKGK/K6c3J4r9f4Pun2PuEoJdIJIYQQA7Esi/f3XwUAPDAjCl6u9ls5e991kfByleJaVQt+O19m6+EQC7igTdzG2Xk1OgCMCPKAiAHqWlWoahr8tk++mneMQyTSqSLdnvCV1ZOH+UAqtv5Xm1HBnhAxQE2L0iFina/az8yrpQlziZ7cqmYU1bbBRSzCDbH+gm9v9iguWb8/m9q7EMvjJ+80ZaJRXuQgFel8NbqPm9TkO4y6V6TTMZn0dLa4ASwLhPu4ItBTrveaVCzCLRNCAQA/ZRnX3qWssR1tKjUkIsakuyl0fdKNnCS3oKYFl8oaIRYxutY03U2M9AZg/33SKZFOCCGEGCj9ShXOlzTCVSrGQzdE23o4A/KUS/GgtmL+/X05dHLuBK6UcxUpY7QTedozuVSs+3J4qXzwXsyXHKgifUyIAgwDVDZ1GJQ4JcLS9UePsn5/dICL9RhtouaCAX3SbR3rE8K94CIRoaqpA/k1/bcrIEMP39bluuF+VmlbN2dUAADgwJUqunPOQJs3b0ZUVBTkcjkSExORmZnZ77Lbt28HwzB6D7lcPxHHsizWrVuHkJAQuLq6IikpCVevXhV6N6wit4rv/2x8f3TeoIn02ha95UzdhogBWpVqVNI5BemBTyjzE3H2tGhCCADugqQx7V3yta2EInzdIDGhCIGfdyDXyIr0PRfKAQDXxfjCp4+WS3xF+umierv+7kqJdEIIIcQALMvivTTuy8V910Wa3G/RmlZeHwV3FzGyy5t0X5CJ4+Jv7RzpAIl0ABjNt3cZJLmo7NTgqnbfHKEi3c1FovvSfLXCsSdsNCYp093XX38NhmGwdOlSYQc4CJZldRXptpholNe9vctA7CHW5VKxbjLgzDzjbgUnzi1NWxl+02hh27rwJg3zgadcgrpWFc5oJ9Im/fvmm2+QkpKC9evX49SpU4iPj0dycjIqK/s/v1MoFCgrK9M9CgoK9F5/44038O6772LLli04duwY3N3dkZycjPb2dqF3R3D5NVyikG+dYoqIQVq76CYa9TM9We8iEem2w7faIIR3urAeADBR+7nd05RhPvBylaKuVYVT2mUNwf99RJnYkoi/08PYmP3tPJdIXzAupM/Xx4QoIJOIUN+qsusJeCmRTgghhBgg41oNThXWw0UiwiPa/uP2ztvNBfdPjwIAvLefqtIdGcuyuor0kUGOkUgfq+uTPnCyOaeyGSo1C0+5BOE+rtYYmtlGBHK/gysOnEg3JSkDAPn5+fif//kfzJw500ojHWAsNa2oauqAi1iE+H6+ZFqDbsLRQS4a2UusU5900lN9qxIntRPazbVSIl0qFuHGEVxVejq1dxnU22+/jUceeQQrV67E2LFjsWXLFri5uWHbtm39vodhGAQHB+seQUFButdYlsU777yDF154AUuWLMGECROwY8cOlJaW4qeffupzfR0dHWhsbNR7AIBKper16O/5/h4XS+ow5ZVUTN+Yho07L6Khpc2o93d/KJVK5FdzSe4wLxeT1xOq4Nq1VDcrUdfcNR5+3wq1ychQhczkbahUKkRpE+k5FY1mredAdjmWf3QEo1/8DS/+dM6kdfT1eyO2wbIsThfVA+hqedKTRCzSHbPTLlUYvG6+Ij3K37SLQPwkoSX1bWhVdhr0nsqmdt2FgeSxQX0u4yIRYUI418KSn2TVHgl/zxYhhBDiBN7flwMAWD41AoEK+SBL24+HZ0Zj+5E8nCmqx+GcaszUfmkljqWkvg0tSjWkYgZRZlQ+WdNobeX8pUGSi5crtD2jgxUmTwhmbSODPPD7pQpcMbI3pD3pnpQBgC1btmDnzp3Ytm0bnnvuuT7fo1arce+992LDhg04dOgQ6uvr+11/R0cHOjq6blPvmXDhdf/ibqyMHC75NiFcATE0UKkMv63ZkmL8uKR4TkXTgPt2sYT7UjgqyAOdnYZ98RTCxAgu8Z95rcbkJElfvzdKuDguvr3KyCAPXXWsNcweFYCd58qw/3IVUuaPstp2HY1SqcTJkyexdu1a3XMikQhJSUnIyMjo933Nzc0YNmwYNBoNJk2ahFdffRVxcXEAgLy8PJSXlyMpKUm3vJeXFxITE5GRkYHly5f3Wt/GjRuxYcOGXs/v3bsXbm694yY1NdXgfdxVJEJ1M1fn+dGhPPx4/BoeH6uGtwlzqzepgOYOCRiwuJh5EFfNKB91FYvRpmbw7X/3IrjbLqampuLMFREAEWqKc7BrlxktcZq49ew7fh6KqrNGv51lgd9LGfxaKNY993VmASbiGsQmnFZ1/721tlILMFsprG1FbYsSLmKR7oJ9X24aE4gfT5cg9VIF1i4cY9C687QXmqJNTKR7u7nA202K+lYVCmtbMTp48Lvs/sipBsDNNTTQd+lJkT44nl+HU4X1uHNKhEnjExol0gkhhJBBnCyoxZHcGkhEDP48a7ith2MUfw8Zlk+NxPYj+Xh/Xw4l0h0UX/kc4+8BF4lj3FA4SptI56pwNf1OBJlbyVXFxAaZfvu1tfF3BThqaxdTkzIvvfQSAgMDsWrVKhw6dGjAbQiZcOH9mMMlH3w7a7Fr1y6j328p1e0AIEFuZRN+3bkLoh6JC37f9hZy43Vpt+1429WACGIU17fjXz/ugq8JiSoeJVycAz/h5xwrVaPzZmn7pJ8raUBlU3uvyfQIp7q6Gmq1Wq+iHACCgoKQnZ3d53tGjRqFbdu2YcKECWhoaMCmTZswY8YMXLhwAeHh4SgvL9eto+c6+dd6Wrt2LVJSUnQ/NzY2IiIiAvPnz4dC0ZVIU6lUSE1Nxbx58yCVGjYJ5w87TgGoxvQYX+RVt6C8sQM7irzwnz8nGt2z/2RBHXDiOEK9XbHklhuNem9Pm3OP4EplM0YkTMPMWH+9fdtacBKoa0TSjMlmtUSqO1aIA79mg1EEYeHCiUa//6vjRfj16CUAwLIp4fjmRDFUGgaxk2ZiTIjhdzH29XvjL4IT6+Ort+PCFJBJxP0ud+PIAIhFDK5VtaCkvg1h3oPf8dbV2sX04pxhvm6ob21AQY1hifRDV7lE+g2xA38X5fvB2/OEo5RIJ4QQQgbBV6P/aVK4QScn9ubPs2Lw5bECHMurRWZerU17CRPTXKngKp8dpT86AIR6ucJVKkabSo2i2lbdhIw96SYE6+d1ezRCm/S/UtEMlmUdppKeZ0pS5vDhw/j000+RlZVl0DaETLjw3nzrIIB2LE+agpmx/ka915LUGhavn0uDslOD8dNnY5i2orfnvu36KgsoqcTsSWOwcMYwm40XAL4sOYqzJY3wjJmIhfF99yodCCVcnIdaw+LAlSoAwNxR1k2kB3rKMT7MC+dKGnDgcpXdVh86ounTp2P69Om6n2fMmIExY8bgo48+wssvv2zSOmUyGWSy3lfepFJpn8fv/p7viWVZnC1pAAA8d/MY+Hm44I4PM5Bb1YJXd1/BG3fEGzXO4gYlAK5thbGfKz2FeLviSmUzqps79dYllUpR3sj1kg/39TBrO7FBXCuL/NpWo9eTXd6IV3ZeBgCkzBuJv940AsX1bfgjpwbny5oxIdL4c/7uvzdz//2I6XQTjUb0PdEoTyGXYnyYF7KK6pGRW4M7JocPuLxaw6KwxryKdICbG+BMcQMKagbvZc6yLA5rE+kzRwx8vjZJ28bmSkUTmjs64WGFya+N5RglTYQQQoiNnC9pwP7LVRAxwOrZjlWNzgvxcsUdk7kvp+/vz7HxaIgp+P7ooxyoalskYnQn6ANNRsS/FhPgGC1rAC7pL2KAhjYVqpo7Bn+Dg2tqasL999+PrVu3wt/fsIS1TCaDQqHQewBdX9C7P/p7fqBHZUsniuvbIRYxmBYTYPT7LfmQy1wQo431gtr2fvctv6YNADAiWGHT8UqlUiTG+AEAThY2mLyOvn5vxPGcK2lAXasKnjIJJg0bOGEjhDnaqvT0y1VW37aj8Pf3h1gsRkWFfg/kiooKBAcHG7QOqVSKiRMnIieHOw/k32fOOi2lqLYNda0qSMUMRod4ItzHDe8sTwDDAN+eKMbJAuPmc9D1f7ZAK7xgbQsKPmnO6+jUoLqZS9iHmllkE609/ymsaUWn2vAWZSzLYv3PF6BUa3DT6EA8MTcWABAf7g0AyCqy34peMrjB+qN3N30495mekTv4JOKl9W1QqjWQihmEeJl+FxA/UWlBzeB3o12paEZlUwdkEhEmD/I5E6iQI8zbFRoWOKP9N7A3lEgnhBBCBsBXoy+ODzV5QhZ7sHrWcIhFDA5eqbLbkxLSv1ztl0JHqtoGupLjedV9J9LVGlb3WqwD7ZtcKsYw7Rf0qxWO1yfd2KRMbm4u8vPzceutt0IikUAikWDHjh345ZdfIJFIkJuba62h6xzXTpQ5LlRhF9VK/MRb/B0WPdlbrE+L5r50Z+YN/qWbOLeD2mr062P9+23BJaTZ2pYYB69WQWVEEnEocXFxweTJk5GWlqZ7TqPRIC0tTa/qfCBqtRrnzp1DSAh3B0p0dDSCg4P11tnY2Ihjx44ZvE5LOVNcD4CbpJxvYXFdjB+Wae9QeGXnJbAsa/D68rQVsuZU2/KCtYnGsgb9RHqFNrEuk4jg42Zm1btCDplEhE4Ni+K6NoPfl3qxAsfyaiGTiLBhSZzu7jh+8u2zxQ1mjYvYTrtKjYul3F1eBiXStRfHj16rGfRvhU98R/i6QWLGMT/S1/BEekYuV40+LdoXcmn/bWp4/EVde51w1KR/tc2bNyMqKgpyuRyJiYnIzMzsd9nt27eDYRi9h1yuf9WDZVmsW7cOISEhcHV1RVJSEq5eNWOyBkIshGKdkC6W/ntwBFcqmrD7Atcn8vE5sTYejXki/dywJD4UALCZqtIdDn/bpKNdzOGrdK9V951cLK5rhVKtgUwiMruiy9r4fcs34JZWe2NsUmb06NE4d+4csrKydI/Fixdjzpw5yMrKQkSE9dsxHNMm0u2lVRV/kSunnwlo7S3Wp0ZxX1Jzq1pQPQTuqhiK5zCG4tu63DjSNnOoxId7w8dNiqb2TrtNmtiDlJQUbN26FZ9//jkuXbqE1atXo6WlRTdh9IoVK/TmvXjppZewd+9eXLt2DadOncJ9992HgoICPPzwwwAAhmHw1FNP4ZVXXsEvv/yCc+fOYcWKFQgNDcXSpUutum98gccEbSU1L2X+SMilIpwurNcd8w3BnzMNs0BFOl+xW96gn+DmK9RDvORmt3frfgdff4UHfdlygLuI/dAN0Qj36Zp7JEGbSL9S0YRWpe0mthaaMx/Xz5c0oFPDIsBTZlBb0SlRPpCKGZTUt6GoduCLMboLTWb+fUTp7sQbPGZPavu9T4sy7JyNb+9yyk77pBudSP/mm2+QkpKC9evX49SpU4iPj0dycjIqKyv7fY9CoUBZWZnuUVBQoPf6G2+8gXfffRdbtmzBsWPH4O7ujuTkZLS3t/ezRkKER7FOSBch/h4cAZ9wvnlcMEYEOU5v6v78Zc5wMAyw92IFssupl62jqG9Vor5VBQAY5td7kkZ7xvdF76+1C1+9G+3vDnHPGRrtHP8F3ZBKHHtkTFJGLpdj3Lhxeg9vb294enpi3LhxcHFxsfr4+UpqvrLa1viK9P4S6fYW695uLhitnXPhRL5xbRMczVA9hzFEQ6tK14f3xpG2mWdALGIwS5vE30/tXfq1bNkybNq0CevWrUNCQgKysrKwe/du3VwXhYWFKCsr0y1fV1eHRx55BGPGjMHChQvR2NiII0eOYOzYsbplnnnmGTzxxBN49NFHMXXqVDQ3N2P37t1WTzDyldN8JTUv0FOOP03i+j1vPXjNoHWxLIv8ar7/s/nnTP1VpJc1dOi9bi5dKzwDE+knC2pxqrAeLmIRVl4fpfdakEKOYIUcGhY4X+Kc5/vOflznJxqdGOFt0IUaNxeJrqVP5iCf6brWR2YW5/DzwZTUtUHZOfDdRPxF0sHauvAm8ROOFtUbdTeKtRidSH/77bfxyCOPYOXKlRg7diy2bNkCNzc3bNu2rd/3MAyD4OBg3aP7xEYsy+Kdd97BCy+8gCVLlmDChAnYsWMHSktL8dNPP5m0U4RYAsU6IV0s/ffgCPKqW/DfM6UAHL8anRcb6ImF47hbejfvt34rBmKafG2iNkghg5uL7VtYGINv7dLfF8PcSm3LmkDbt7owVpT2C3q+EdVj9sTYpIw9qW7uQK724gxfWW1rg7UxssdY56v5jan0dERD8RzGUH/kVkPDAsMD3PUqWq1tjra9S/rl/pNgBFizZg0KCgrQ0dGBY8eOITExUfdaeno6tm/frvv5H//4h27Z8vJy7Ny5ExMnTtRbH8MweOmll1BeXo729nb8/vvvGDlypLV2BwDQqdbgnHai0YQIr16vr7ohGgCw73IlyhoGb3tS3axEc0cnGIZrXWGuEC+uGrhnj/RybWI91MsydxjxbTKKag27OP/lsUIAwNKJoQj07J3MnxDO/Vs6aztHZz+un9b2t58Yafg5Dt8CZrDfuaUS6QGeMrhKxdCwQEl9/3+bZQ1tKKlvg4jpfbGsP2NCFJBJRKhvVRl1l4a1GPVtTKlU4uTJk3q3DIlEIiQlJSEjI6Pf9zU3N2PYsGHQaDSYNGkSXn31VcTFxQEA8vLyUF5ejqSkJN3yXl5eSExMREZGBpYvX95rfR0dHejo6LoFkWaIJ5ZGsU5IFyH+HnrqL9ZVKhVUKpXuef7/uz8nlM37rkLDArNH+mNUoJvg27TWvj06cxh2nivDr2dL8cTsaIv0jxxMX/tmjd+hs7DkLcrWxsdXVVMHmtpV8JTr9xHNt9Dtpbbg6BXpAJeUWbNmTZ+vpaenD/je7gkba+P7o48O9oS3m/Wr4fvCJ0HqWlUOE+vTon2xI6MAmU6cSB+q5zCGSs/m5kmYGetn1rjM3bfp0d5gGCC7vAlFNU26CR7tAZ3DCOtqZTPaVGp4yCSI8e99oTEmwANTo3xwPL8OP2eV4rFZwwdcH3/OFOrlquu3bg6+4ry+VYU2pRoSbXEwn1i3VEV6hBGJ9FZlJ3af51pPLpvad2u1+Ahv7L1Yoes/70yGwnGdr+AeH+ph8LrHhXB3mZ0urBvwPfzfSLiXbMDlDNm3SF9XXK5oRm5FA8K9+j4fO36N648+OtgTLiLWoP1hwM2Bc7KwHsfzqhHhLRv0PcYw97huVCK9uroaarW615WboKAgZGdn9/meUaNGYdu2bZgwYQIaGhqwadMmzJgxAxcuXEB4eDjKy8t16+i5Tv61njZu3IgNGzYYM3RCjEKxTkgXIf4eeuov1vfu3Qs3t97VJKmpqSbujWFqO4AfTosBMEhwKceuXbsE3V53Qu8bAMT5iHChToQX/30I98Rab2Kv7vvW2uq4yUdr4ysx7CkBZyhPuRQBnjJUNXUgr7qlV//TIu2kWpEWqBqztihtm52C2hZoNCxEdtCuY6iwt/7oABfrvu4uqG1Roqi2DWND9RPp9hjrfK/Si2WNaGxXQSE3b8I8ezQUz2EMxbLA3nPcuY68Pg+7dhnWOmMg5uxbhJsYhS0MtvywH9MC7e9WfjqHEcZZbaJ3fJhXv5+jt08Kx/H8Ovxwqhh/vjFmwFYXunMmCxWKKOQSuLmI0apUo6yhTZfQq2zikqxBFrrowyfSCw1IpO+9UIFWpRrD/Nx0LTB64tt8OGMi3dmP6/UdQHmjBCKwKD1/FLsuGfa+2g4AkOBiWQN++u8uuPRxHYllgcIa7rifc+YYGq8Mvt6B9s1FKQIgwm+HTqAlp+/j9g/53DK+mgajvlN7qbj3/fLHOcjLzhj8PmOYelwX/P7g6dOn601aNGPGDIwZMwYfffQRXn75ZZPWuXbtWqSkpOh+bmxstMkkR4R0R7FOSBdj/x76i/X58+dDoVDonlepVEhNTcW8efMglQr3hX/Dr5egYYswI8YXjy+bIth2urPWvgFAyPh63PVxJk7WiPHa/bMQ7iPsxHd97RvdYWM4vuJ5mAV6fdpChI8rqpo6UFzX1iuRXqz9whjua/vJF40V5u0KiYhBu0qDyqYOi1WlkcFl2mEiHeBivbZFiaK6VowNVei9Zo+xHqiQI9rfHXnVLTiZX6drrzHUOfo5jKGuVjaj/ugRyCQiPH7nTZBLTa/etcS+ZUuv4sODeWhyD8fCheNNHoul0TmMsLKK+u6P3t3C8SFY//MFXKloxrXqFt3kzn3RnTNZaE4ZhmEQpJAjr7oFVU0dukR6bYsSAODvYZlKWV1rl7pWsCw74MWCXee4tmtLEsL6XW68trVLUW0baluU8HW3j7u3bMWRjuu7L1QAp85gdIgCt93aewL4/rAsi81XDqC6WYlh8TN0rV66q2lRQnk0HQBw95IFkEn67/ZtyL6dFV3GuT8K4BESjYULR/e5zOdbMwHUY8kNE7AwIdTg/cG5cuz79iwaJd5YuPA6w99nAHOP60Yl0v39/SEWi1FRUaH3fEVFBYKDgw1ah1QqxcSJE5GTw03gxr+voqICISEheutMSEjocx0ymQwymWVL+wnpjmKdkC5C/D301F+sS6XSPj+4+3veEiob2/HtyRIAwBM3jbT6l10h9403LSYA18f64Y+cGnx6pACvLLXOF9bu+2YPSQRHwbeEiHLAinQACPdxw6nCepTU6fdP1GhYFGufi7Bhb15TScQihPu4Ir+mFfk1LZRIt5KGNhUuaSdL5iuq7UWErxvOFDf0ujXfnmN9WpQv8qpbcCyv1ikT6UPtHMYYR65xrQMSY/zg6WaZ45c5+3bjqCB8eDAPR67VQiKRGDTBnjXROYww+H7O8eG9+6PzvFylSIzxxaGr1dh3qXLARHpxHXf8teTdP37uLsirbkGNNnkOcL3YAcDfwzIJ6jBvVzAM0K7SoKq5o8++5wDQ0anG4RyuVcb8sf33+PZylSLG3x3Xqltwprgec0Y5z/Hd2Y/r50qbAACThvkYvc6ECG/8fqkS58qaMW14QK/XK5q47xRBChk8XA3LMw20b9EBXDuZ4rr2PpfRaFhcLuf2Jz7S16j9mRTFTSafXd4EDSOySKumnkw9rhs12aiLiwsmT56MtLQ03XMajQZpaWl6V3cGolarce7cOV0iMTo6GsHBwXrrbGxsxLFjxwxeJyGWRrFOSBch/h7s2dZD16Ds1GDKMB9cF2NfSRpLWjNnBADg2xPFqOgxgRKxL4UWrq6yNv6OB/7LLa+yuQNKtQZiEYMQB01CR+r6pNvfREjO6mRBLViWu20/0I76KAP9TxZnz7E+VVvVn5lXY+ORCGOoncMY48CVKgDAjSP8bTwSzqRh3nCVilHd3IFsbeKFOLd2lRqXK7RJtkEmIeQTwfuyB56Qlr9oacnJc/mq8+rmrp7ZfCLdz0IV6S4SEUK0n2lFtf1P3HjsWi1alWoEKWSI63HnU0/8v+lZbdW/s3D24/rpQu1EoxHGT6Y+PswbAHCxtO/qakv/ffDn+P1NNlpY24oWpRouEhFijGy3FO7jCl93F6jULC6V2ddnglGJdABISUnB1q1b8fnnn+PSpUtYvXo1WlpasHLlSgDAihUr9Jr+v/TSS9i7dy+uXbuGU6dO4b777kNBQQEefvhhANytMk899RReeeUV/PLLLzh37hxWrFiB0NBQLF261DJ7SYgJKNYJ6WLpvwd7VduixL+OFgIA1syNtbtqKEu6LsYXU4b5QNmpwdaD5vdFJcJoV6l1FVDh3o6ZSA/TJdL1T7L5n0O95ZCIjT4ltQth3ty+ldbTxShr0fVHt7NqdKD/Hrf2HOuJ2kT62eIGtCnVNh6NMIbKOYwx2lVq3d/S7FG9qxZtQSYRI1FbwHD4arWNR0Os4UJpA9QaFv4eskEvMt40hkukH8+vRWN7/5MCdiUKLddGy09bdc4nz1UaoLmjEwAQYKFEOmDYhKP8hYS5owMH/Z7CV/k7Y590Zz2ud6o1OF/y/9m78/go6vt/4K/ZO/d9k5CEQDgEghwRFQENh1iRVluwtShV26L0W5vvtyrfXwtV+xWr1ForSkXxqFbR1qMtiGAgXhzhCveV+76Pzbnn/P6Ync1uzj1m9ph9Px+PfSib2dnPbN472X3P+/P+cEnwsS4uDWeyZcHRy40jJdItbeYEen/wn4NHSqRfrOfGkZ0Q5vTnH4ZhMMMSw2d8LIad7pG+evVqNDc3Y9OmTWhoaEBOTg727t1rbfRfVVUFmWzgBWpvb8eDDz6IhoYGREVFYfbs2Th06BCmTp1q3ebRRx9FT08PfvrTn6KjowM33ngj9u7dC43Gtyo2SGChWCdkgBjvB1+085ty9BlMmJ4SgYWTfOOLpVgYhsGGm7Nw3xvH8O7RKqxfNEGwqhoinPpOLkEbopIjPEj0pW1EwVe9DP6Q7autLpyREsn9/a4b4QsEEZ6v9kcHBirSR0qk+2Ksj4sKQlKEBvWd/ThV1Y7rs3yjOllIgfIZxhnHK9qhN5qRFKEZtU2Gp92YFYvCy834uqQFD96U6e3hEJGdtlRK56RGjJkUHh8TgvSYYFS09uJ4RRtunjy0rYnOaEJjF/e5SdhEOvf5uNVSkd5lyeMr5Yygn81So4NxtLxt1ET64VJu9tBNE8f+njLDkog9Xd0xZt91fyPV83pJczf6DCaEqhVOV3ADwORELpF+pbEbRpN5SPJa6AtNyZZEele/cdhFyy9YEulTk0afPTGSGeMiUXi5GcXVHVjrQ00cXHrXb9iwARs2bBj2Z4WFhXb//tOf/oQ//elPo+6PYRg8+eSTePLJJ10ZDiGioVgnZIDQ7wdf09lnwFuHKgBIvxqdt3BSHKanROBsbSd2fluOXy8bfpEY4j18Ij0pMshvY5KvVqlp7wPLstb7q304ueiopAju2PjfExFXr96IszVc4sUXE+l8LPtTrDMMg3kZ0fi0uA5Hy9skmUgHpP8ZxlnflnIV39dPiPWpvy03WtrMFJW3Qmc0idITl/gOvlJ65qCFyEcyLyMaFa29KCpvHzaRXtfRD5YFgpRyQRfXjLNWpNsn0mNC1IK+f0a6GMvr6NVbW+HMdeBv4NSkcChkDFp79Kjt6BO03Y0vkOJ5/YzlM841KeGQyZyPrdSoYASr5OjVm1DR2ousePsLpQMV6cLEQohagchgJTp6Dajr6EN44qBEuqXFzBRLpbyzZlor0n2rPZFvzS0khBBCvOTtQxXo0hmRnRCGJVNGXrxHShiGwcOLswAAbx+qRGffyFNliXfUWRK0fMWHP+KrXrp1RrsY4yvUhawa87Rka2sXqkj3hFNVHTCaWSRHaHwybvgFZ3VGM9p7/SfW51n7pLd5eSTEUw5ZqlqvnxDj5ZHYy04IQ1yYGv0GM05Utnt7OERk/EKjMxxsYTHX0tLrWMXw5yo+SZgaLWzxwUBFOtfapdvA7Ts2TLhkPTB2Iv14BfeeyIwLsfZtH41GKbe2+jgtsT7pUnXGyYtLg8lkDCYlcL/zSw1D27uI0frI2t6lfehnYX69iyluVKQDQGlzt7Wdki+gRDohhJCA16Mz4vVvywEAD9+c5VIFgL9aOjUBkxJC0aUz4m1LRX6g27ZtG9LT06HRaJCbm4uioqIRt92xYwcWLFiAqKgoREVFIS8vb9TtncVXOif72AKFztAo5dYvfLZ90hu1XGVXoh8fWzLf2qXTvgKZiOOoTVsXX6qi5akUMsRYqiAbbGYp+Hqs833ST1Zx7T6ItGn7DThrSdbM97FEOsMwuNEyK4L6pEtbR68eFZbF1Pmq07HMs67p0IF+w9A1HcRYaBSA9bzOr1nDV6Q7ksx2Rmr08GvK8IoqnF8jhE/I+lqPaTI8vvJ6uoPvieHw7V0uD1q0mWVZmwv7wr1HRioq6dUbrc+XnehaRXpcmBopkUFgWVhnJPoCSqQTQggJeO8erURHrwEZsSG4bbrvrd4uJplsoCr99W/L0eNDV/u9YdeuXcjPz8fmzZtx8uRJzJw5E8uWLUNTU9Ow2xcWFuLuu+/GwYMHcfjwYaSmpmLp0qWora0VZDz1EqhIBwYWHLXtk97k48lFR/Bj7zfYVyATcRSVc1W08zJ8K/lnKyGci4lG7UAi3ddjfUJcKKJDVNAZzThb6ztfVIk4israYGaBjNgQn/zbYk2kl1AiXcr4hOH4mGBEBjtW2Z0WHYz4MDUMJtZazW6L7y0u9Oyf2DAuYd7SNbS1i5D4xUbrOvuGvajJz9KY60IivXiY14v4Fp3RZF2c09WKdADWivSSpm67+9t7Dei1LCrOF4IIwdrCcVAivbylBwAQHaJy+D0+nBk+uGguJdIJIYQEtH6DCa9+xVWjr180AfIAqkbn3TY9CekxwejoNeDvR6u8PRyvev755/Hggw9i3bp1mDp1KrZv347g4GDs3Llz2O3fffddPPTQQ8jJycHkyZPx2muvwWw2o6CgYNjtdTodtFqt3Q0ADAbDkBsA1FmmKceHKofdxl9u8Zb+ovUdvdZj4xcEiwlSeH18rt5krBmxlmOraumyHttwv0viHp3RhFNVHQB8sz86j0+WN9gm0i3JFz7J7msYhrFWOFJ7F+kb6I/umxekFlj6pJ+t7UQnXaCULFdaWDAMg5mWNjDn6jzTtgIAYi0J8y6dETqDCV0itXaJC1VDpZCBZe0vxgKAycxa+03PTHW8Wtn6etV2wmSmmXO+7HJDFwwmFlHBSrdiOMOySCmfyObxrY/iw9SCrj+RYq1It4/ZsuYeu/G4aoYPzqoQbolhQgghxA/tOlaNlm4dUiKD8N1ZKd4ejlco5DI8tCgLj/7zDF79ugw/nj8eGmXgLfCl1+tx4sQJbNy40XqfTCZDXl4eDh8+7NA+enu5RHF09PCJvi1btuCJJ54Ycv++ffsQHDx0mmVJfRsABtWXz2BPw2nHDsQH9bbJAMhw6OR5RLWchcEMdPZxsx9OH/0KV/34E2kwKwfA4D8HvsX0aO5L6v79+60/7+0dvtcpcc7Zmk7ojGbEhKgwIc69L2Vi4pPlfGsXgxnosKwNkBDmm4l0gLs4sfd8A4rKW7F+0QRvD4eI6LC1P7pvLiwbH65BZmwIylp6cKyiDXlTA2PdmkBTbOnZPdPB/ui8acnh2H+hEefrhs6eEXohRV54kAJyGQOTmUV7nwE9lus70W5U2Q6HYRgkRWhQ2dqLuo4+a4U6wCVF+wwmBCnlyIgNHWUv9rLiQxGskqNHb0Jpc7e1Wpn4noG2LpFuta9LtySuK1p7YDaz1pal/OeSJIFnxyVbe6Tbf97lE+mZbibS+dZPvtTn34+/thBCCCHu0RvN2P5lKQDg54smQCkP3Ilaq2al4M8FV1Hb0YcPjldj7fx0bw/J41paWmAymZCQYP+lPSEhAZcuXXJoH4899hiSk5ORl5c37M83btyI/Px867+1Wq21HUx4+MBCPAaDAfv370ePWQHAhJV5NyHTh5OHYyk7WIpvG0sRkZiKJUsm4b1/c4lmtUKGO2+/1Sf7XTvqPx3FqLrYhHGTrsGSWYnYv38/lixZAqVSCQDWWQfEPb7eH52XOKi1SyfXUhdqhQzhQb771Yuv8j9e0Q6TmQ3I2VmBoKVbZ1387bpM353ZkZsZjbKWHhwtb6VEugSxLGtt0+Bof3TeNcnc9udrPVeRzjAMIoKUaOvRQ9tnQK+lC2JksFLQ5wG4vyGVrb12s5oAWC8cTE4Kc+r8LJcxuCYlAkXlbSiu7qBEug/jK65npLjeHx3g4l8hY9BvMKOxqx9JEdz7gf9cIvTsOL594+CK9PIWrrVMZpzjF36Gc43lHFHb0YeWbp3gaxO4wnc/zRFCCCEi++hkDeo7+xEfpsb3Z4/z9nC8SqWQ4WcLM7Hp0/PYXliKNXPToFIE7oUFVzzzzDN4//33UVhYCI1m+A+parUaavXQD4BKpdKaeOUZzEC3jutlmBgVMuTn/iQpkquqaunWQ6lUWpOLiREaqFTCVnR5WpzlC0l7r9H6O7L9ffrz782XFNkk0n1ZYgT3/m4YlEhPjND49AWAKUnhCFMr0KUz4mK9Fte4+UWe+KYjZVw1+uTEMMT4QDJiJLkZMXivqNp6AY1IS4O2H81dOshlDKYlO3eumZbCFR2UNHej32CyzqA0mMxo7ubaaPGJQyHxifTOPiP6TIz1PqHx1b31nfZJSb6ty7Tk8CGPGUtOaiSKyttwpqYDP5iT6v4giSj4ivQZbiw0CgBKuQyp0cEob+lBeUuPTSJdnPVa+H7rjV39MJjM1sK0shZhWruEa5SYEBeC0uYenKnpwM2TvX9xlb4hE0IICUhGkxkvF3LV6D+9KTMgW5kM9oM5qYgLU6Ousx+fnBJmsUx/EhsbC7lcjsbGRrv7GxsbkZiYOOpjt27dimeeeQb79u3DjBkzBBkPv5iVSi5DuMa/ax/iw7mEDd8rWqvnvoT6cqsLR/GVMS2WL/BEeEaT2brImq8n0ge3dvGXWJfLGMxJjwJAfdKl7JClrcsNWb7Z1oWXa6mWP1fbie4AXwRdiviFQrMTwhCkcu7zd2K4BjEhKpjMLK40dlnvb+rSgWUBpZxBTIjwF+jDLUlz24r0cBES6XySs37Qwo3nrYl055OsM3ywNQax16c34aplcdAZbiw0ykuP4QpYbPukN4hUkR4booZcxoBlBz4LsyyLcktrFyHa8fFrKfhKDFMinRBCSED695k6VLX1IjpEhR/mpnl7OD5Bo5TjpwsyAQAvF5bAaDJ7eUSepVKpMHv2bLuFQvmFQ+fPnz/i45599lk89dRT2Lt3L+bMmSPYeLoslayxoSqfrmR1RLwlicgn0jstFwn4BLs/i7MsNkqJdPFcrO9Ct86IMI0CkxOdr8bzJD4JYm3t4kexPi+DW3ySEum+4VRVO/647zL++4PT+N2/zmPP2Xroje79XT7mJzM7kiKCkBYdDDMLHK9wLx5Lm7ux7WAJ/ufD0/h/H5/FB8eq0dVPi5h600B/dOeTwgzDYGIC1yqixJJ4BAYuXsaHaaw9oYXEV5939htgWeJFnIp0PpE+qCKdb8k0Jcn5v4F8EvJSgxb9BpN7AySiuFDPLQYbH6YWpGLc2ifdJpEuVmsXmYxBrOWzcJOl6r2j14Auy0VQ217/ruIvBp2t9Y1Eun+XNxFCCCEuMJtZvHSgBABw/40ZCFbRn0PeD3PT8HJhCSpae7H7bD3uyAmsBVjz8/Nx7733Ys6cOZg3bx5eeOEF9PT0YN26dQCAtWvXIiUlBVu2bAEA/OEPf8CmTZvw97//Henp6WhoaAAAhIaGIjTUvZ6AWgP3RTAuzPcTcGOJtxxDa7cOJjOLTr5KV+AP897A/35auvVeHol0HS3nqmjnpkf7fO/uOMsMhfZeAwwms1/F+rwMS0V6RRtYlvX7C3j+qqq1F4/98wwOW9qw8N48VIHkCA3+77vTsXhyvNP7be/RWyse54yPEmSsYsrNiEZVWy+OlrdhUbbzx9vZa8AT/z6PjwbNsHv3aBWe+s8FPHbrZPwoN43i3AvOWPujR7r0+AlxoThS1obS5oFEOp8kFLptBc+aSO8zWivSxUikJ1racNj2SNf2G6wX611ZL2dcVBBiQlRo7dHjYr0Ws9J8//0faIRq68JLsySv+XUDANtEuvDfKxLCNWjU6qwFM7WWGRVxYWpBZn3z7eb4FkfeRhXphBBCAs7e8w0obe5BuEaBtfPHe3s4PiVErcBPbsgAALx0oARmM+vlEXnW6tWrsXXrVmzatAk5OTkoLi7G3r17rQuQVlVVob6+3rr9K6+8Ar1ej7vuugtJSUnW29atW90eC9/axRcW1XFXTKgaMgYws0Brj95abS+FiwTU2kV8/tIfHQAig1Xg83KdfQa/ivXpKZFQK2Ro69HbJaiI55yobMNtf/kah8taoZLLsHJmMh5dno11N6Qj3tJ6bd2bx/BXy0Lpzu2ba480IS7Ep/uj83IzuRkSRwddUHBEdVsvbn/pG3x0qhYMAyzOjsP/LJ2E9YsmYEJcCLp0Rvzmk3N49B9nAm72nbeZzSzOWpOGkS7tY4Jl8cLSJpu2FZYK7kSRLlpGWBaLburSwciK1yM9yXIhwHbhRr6qODZUjXCN88/JMIxNe5cO9wdJBHfBjdY9w+F77dfZzGwQ8z3CF8w0dXHPwSfw+XG4a7JlJkaDth+tPvB5m0rwCCGEBBSWZfEXSzX6fTdkIMyFD6RSt/b6dLz6VRmuNnVj34VGLL9m9P7gUrNhwwZs2LBh2J8VFhba/buiokK0cUgpkS6XMYgJVaO5S4fmLh26LdVc0SL0MfU0ayK9y/sf7KXIbGZxrMJ/EulyGYPIICXaew1o69H7VayrFDJcmxaFw2WtOFrehqz4MG8PKaBcqNPix68XoVdvwqy0SLy4ZpbdlPhHl03Gls8u4u3Dldjy2SVolHLce326w/s/bkmkz033/fcRwFWkA1ylZq/e6PDswdZuHda8egS1HX1IjQ7Ci2tm2VXg/s/SbLzxbTme3nMRH56ogULO4OnvTqfKdA8pa+lBl84IjVKGSQmuzdybEB9q2dfQinSxZv/wSfOqtl4A3Lk+VC18Oo1PpLd066A3mqFSyKx9rjPdWLRxZmokDl5utlY+E99yoZ5LpE91YTHZ4aTwiXRLZXif3gRtP/eBJEGEWRtxfAtHS2sX/nnHCZRID1UrkB4TjIrWXlys78KNE7373Ygq0gkhhASUA5eacLFeixCVHOuc+AIaSCKClNYv5y8dvAqWDayqdF/RZWntEhvm+wk4R0QHc8fR3mtAr5E7tqhg/z+2WEsVTo/ehF49LYontJLmbrT3GhCklOMagSq1xMYnzdt6/C/W+YsV1Cfdszp7DfjZO8fRqzdhfmYM/v7AdUP6ygap5HjyjmuQv2QSAOCJf5/HESeqtfle47P9oK0LwLWjSI7QwGhmUVzV4dBjjCYzNvz9FGo7+pAeE4wPf3b9kDYWchmDBxZk4uUfXQsZA7xXVI13jlaJcARkOHxF9PSUCCjkrqWjMq39n3utMwoarK1dxEmw8Yn06jYuQRiuUYhy8SU6RAWV5XXhLw6UWRZtzHAnkW6p/i+2tNUhvkNvNONqI3dRaKoLPfCHw1+Qae7SQWc0WWMpSClHmAgXgAYq0u1buyRHCpe05y8yXKj3/sUgSqQTQggJGLbV6PfMH48oP6gQ9Jaf3JiBIKUc52q1KLzS7O3hBCQpVaQDQFQI9yW0o1ePbsuxRYf4/4yQEJUcGiX3kZr6pAvvqCWhe+34SKgU/vHVJSaE75Puf7Gea5NIp4uonvN/ey6guo2roH7lnmsRpBq5p+wvbs7C92alwMwCv/7HaYcu4PUbTNZKVH+pSGcYBrMsSf9TDrajePNQBQ6XtSJYJceOtXNG7Ze9/JokPH7rZADA07svorK1Z8RtfcW2bduQnp4OjUaD3NxcFBUVjbjtjh07sGDBAkRFRSEqKgp5eXlDtr/vvvvAMIzdbfny5aIew2lLItfVti4AV22rVsigN5mtLVD4thViVaRHBnHfGaotLSvEaOsCcHGfOGjBUb4iPcOF/ug8vrVLWXMPtLTYrk8pbe6G3mRGmEaBcVHCVHBHh6igtnxmaujst1tDQIwLQPyC6s2W1i61lvdJikAV6cDARQZf6JPuH59GCSGEEAF8W9KK4uoOqBUyPHBjpreH49OiQ1T4UW4aAK5XOiVUPK/LskihZBLplorcjj4Deoz29/kzhmGsv6NWP0ukC52UEYO1P3p6jOjPJRT+olFbj97vYn1WWhQUMgb1nf12i5QR8RSVt+GD4zUAgBdW5yByjFhhGAZPrroGKZFBqG7rw4sFJWM+x9naTuhNZsSGqjE+JnjM7X3FrNRIAECxA4n0+s4+/Gn/FQDAb26biokJY7cmeuDGTFyXGY0+gwm/+9d5d4Yqul27diE/Px+bN2/GyZMnMXPmTCxbtgxNTU3Dbl9YWIi7774bBw8exOHDh5GamoqlS5eittZ+8dXly5ejvr7eenvvvfdEPY7Tlgs6My2/W1fIZIw1QVfTwbVasSYKRUqkh1sS5906o+Xf4nVJTrAmJbnqXmsi3Y2K9JhQtTVJe5bau/iUi5a2LlOSwgVLcjMMY9Pepd9aKS7Wei3xfGsXy/PUdQrbIx2wrUinRDohhBDiMX85cBUAcPe8NL9Y+M3bHrwpEyqFDCcq23GkjKb5e5q/JeDGwieHmrv06DdxXxT8oW+0I2wvEvgLsZIyQmJZFkXlXOsKf+iPzosO4ac4+1+sB6nk1spFau8iPpZlseWziwCANXNTMXu8Y3EeqlbgdyunAQDe+LbcWo07kuMVfH/0KL/qBc63ZTlV1THmBf0XC66iR2/CtWmRWDM31aH9y2QMtnxvBhQyBgcvNzvVKsfTnn/+eTz44INYt24dpk6diu3btyM4OBg7d+4cdvt3330XDz30EHJycjB58mS89tprMJvNKCgosNtOrVYjMTHReouKEq/1j85owkVLNWmOGxXpAJBiSQrXtveBZVmb1i7i9kjnubLop6MGL2Je085dLEiLdu8iGH/x4jS1d/EpfIW1UG1deEmR/MK1fWjr4Qo9YkT6LGJt7WLtkc69HwVNpCdxn01Km3vQbzAJtl9X0GKjhBBCAkJReRuOlrdBKWfws4VUje6IhHANVs9Jxd+OVOKlg1cxf4L/VIRKQZ8lkS7W9GFP41tb8JVVMkbcL6KexP+OtH0G+MsR2SZlAGD79u3YvXs3du7ciccff3zI9u+++67dv1977TX885//REFBAdauXTtke51OB51uYAFWrZb7omgwGGAwDFxw4P/f9j5eZVsvGrU6KOUMrkkKGXYbXxSp4dpylDR1AeBiPUg+/DH6ojnjI3GyqgNHylqwckbCsNsM93vzl+PzJd+WtOJUFTdTLn/pJKcemzclHnPTo3Csoh0vF5bgyTuuGXFbvi91jhtVwN4wLTkcSjmDlm4datr7hvSN59V29OEfJ7iq/o0rpkAmc/xiQUZsCNbMS8U7R6rw/P4r+OBn8wUZu5D0ej1OnDiBjRs3Wu+TyWTIy8vD4cOHHdpHb28vDAYDoqPtL9YUFhYiPj4eUVFRuPnmm/H73/8eMTHDf95z97x+roabGREVrERimMKtc0aypRd6VWs32rv70G/geqVHaeSinIs0g7otBStlop3zooK5NF2Ttg/ann6093LPEx/i3ms2PTkMu8/U41Rl+7D7ofO6d1gXGhU6kR7BJbHrO/ugN3EXIsW6qG9t7dKtg8FkRlsPd56IF7BwLSFcjegQFdp69LjS2OVWeyh3USKdEEJIQHjpIDf1+a7ZqdYPFmRsP1uYifeKqvBtSStOVrXj2jT/WKRMCvosxRZSSaTzVdt8Ij0iSOlUssOX8b+jzn4jYr08FkeImZThbdmyBU888cSQ+/ft24fg4KHJsP379w+570gTA0COccFmHNj/uUPj8gUN9dy4z1Q0AWAQJGexd+9n3h6W49q58Reer8EeVeWom9r+3np7e0UemPRss3w2uXtemnVqvKMYhsGv8ibhh68dxT9O1OC/l2aP+PfibC3XysGbiQdXaJRyTE0Kx+maTpyq7hgxkb7jqzIYTCyuy4x2qQf8hsUT8X5RNYrK23CuthPXpPjWwsYtLS0wmUxISLC/sJWQkIBLly45tI/HHnsMycnJyMvLs963fPlyfO9730NGRgZKS0vxv//7v7j11ltx+PBhyOVD+/S7e17/uoE7tySqdPjsM/fOid2N3L6OnitBRPsVAAqoZSwOfiHO34rGPsA2fdbR0og9e/aI8lxtddyxnbpQgvc7Bo7t6wP74c6Ekh4tAChQVDr62Om87jksyw4k0pOFTaTzs69buvUwmrkLTWJVpPMJepOZRWVrL8wswDDCJu4ZhsHUpHB8U9KCC3VaSqQTQgghYjpd3YGvrjRDLmOwfuEEbw/Hr4yLCsZ3Z6XgwxM12HagBK/fN9fbQwoIeqMZejP3bUkqiXS+tUtZK/elTCota4CB3qnaPoNfJNLFSsrY2rhxI/Lz863/1mq11nYw4eEDXxYNBgP279+PJUuWQKm0j/UvPzoHoA7LZmVixZKJDh6d9xmK6/BxxTm06GQAWCREhmDFihu9PSyHLeg3YMfTB9Hcz2DOgluGrSgb7vfGV6cSx5Q1d+NwWStkDPDTm1ybKTd/QgyyE8JwubELHxyrxoPD7KelW4fajj4wDHBNirCJGk+YlRbFJdKr2rFyZvKQn/cbTPjnSa4aff2iLJeeIzFCg9tmJOHT4jrs/LYcz/8gx50h+5xnnnkG77//PgoLC6HRDFywWbNmjfX/p0+fjhkzZmDChAkoLCzELbfcMmQ/7p7XCy3n9JtzsrDiFtd+V9bnOF2P3dVnwYTGYPrciUBxEeIigrFixQK39juS+s5+PF38lfXfWempWLFimijP1VFUjb01FxEcnYBJOWlA8QmMiwnFbbfd4NZ+e3RGbLtwAJ16BrNvvHnIwqx0Xve8Bm0/OnoNUMgYZMWHCrpv2xZBfGcssSrS1Qo5QlRy9OhN1tl4UcEqKOTCdhOfmmxJpHu5Tzol0gkhhEgeX41+R04y0vxokS1fsX7RBPzzZA0KLjX5ZKWWFGn7uam0DAOEaaTxcS0qmPtSpjea7f4tBdbWLv1GL4/EM0ZKythSq9VQq4cmYJVK5ZCE+Uj3H6/sAABcNyF22Mf4qqhQ7jUxmrlvrlHBKr8af7RSialJ4Thfp8WpGi2+M2No8pJn+3vzp2P0BbuOVwMAFmfHu9xHlmEY3HdDOjZ+dBa7jlfjgQUZQ3qg8wsLZsaGIMwP22nx7WhOVXUM+/PPztWjq9+IlMggLMhy/VLmfden49PiOuw5W48n77gGoWrf+dsbGxsLuVyOxsZGu/sbGxuRmJg46mO3bt2KZ555Bl988QVmzJgx6raZmZmIjY1FSUnJsIl0d8/r52q55Ne146PdPl+Mj+WSjnWd/ejs56bwxYaqRTsPRQxa5zNUM/wxCyHBMnO2rdeApm7u82ByZJDbzxepVGJiPHfh7UJDD8bFDL8gL53XPYdfaHRCXCg0yqGzQNwRG8olzfle+wAQJeJ6LVEhKvTo+3Clsdvu+YXEt7/h+8p7Cy02SgghRNIu1mux/0IjGAZ4yMVKpUCXGReK2yyJlJcLS7w8msCgtTRID1UrJNP+JHJQ4lwqlfYAEB7EJVw6/WSxUSGSMvv27RszKeOO+s4+VLX1QsYAs8f7V0upwclKf4x1fnFXWnBUHCYzi49Ocgv1rnZwYcyR3DYjCSqFDCVN3bhY3zXk5/zCgjP9rK0Lj1/89mK9FkaTecjPPzzOVaOvnpvq1t/LnNRIZMaGoN9gxv4LDS7vRwwqlQqzZ8+2WyiUXzh0/vyRe7o/++yzeOqpp7B3717MmTNnzOepqalBa2srkpKSBBm3ra5+A0qauQSbEC0ZEiytkJq7dGgVeSFFAAhW2Sc5gwROetoaqCTWo55ftFGgtpQzU7n30xnLBTYivG6dEZs/PYcbnjmA2178Gv85UzfitnzSeVLi8Bc13GEbRwOLjQrXs3wwfqbplcYuu+cX0qQE7nW62tQ94gLUTV39+NWuYlz3dAHufOUQvi1pEXwcLiXSt23bhvT0dGg0GuTm5qKoqGjEbXfs2IEFCxYgKioKUVFRyMvLG7L9fffdB4Zh7G7Lly93ZWiECIpinRD/x/cfXTE9SfApc4Hk4cVcS5zPzjVYp+wR8XRaKtIjJFKNDgChauWgf0vn2GwXG/UHnkrKuINP4E5NDve7KtrBse2PsZ5LiXRRFVe3o7lLhzCNAouy493aV7hGiZst+/jX6aEJG74iffo4/5xNNj4mBMEqOXRGMypae+x+1t6jx1FLjK7KSXHreRiGwe2W1jGfFo+c+PKW/Px87NixA2+99RYuXryI9evXo6enx7pg9Nq1a+3WvfjDH/6A3/72t9i5cyfS09PR0NCAhoYGdHdzibvu7m78+te/xpEjR1BRUYGCggLccccdyMrKwrJlywQf/9naTrAskBIZZO3d7I7YMC5p128wo6qNaxkXI0IFLE8pl0Fl06YiRMTzeoxNS44GbR8AICnSuTUURjLTMsODv8BGhNVvMOFHrx3FW4crUdvRh/N1Wmz4+ym8fbhi2O1Lmrj3Y1ac8N9R+UR2a7fOmkgXq7ULMFDtzh+TEO/zwTLjQsAwXOFKS7d+yM/bevT4/vbD+PhULRq0/ThR2Y61O4uw77ywF0edTqTv2rUL+fn52Lx5M06ePImZM2di2bJlaGpqGnb7wsJC3H333Th48CAOHz5s7aFVW1trt93y5ctRX19vvb333nuuHREhAqFYJ8T/lTZ3Y/fZegDAhsVUje6OyYnhWDo1ASwLvHyw1NvDkTw+IRvuh5WsIwlRy0f9tz+zXWzUXwidlBEan8Cdlx4jyv7FNLgdkz/G+hzLgo2XGrrQ0Tv0yypxz+fnudkgt0yOh0rh/iTxlTlcAnjvufohPztjXWjUPxPpchmDbEu15oVBFfcHLjXBZGYxOTFMkNZ9/Ov4zdUWdPX71oXR1atXY+vWrdi0aRNycnJQXFyMvXv3Wte6qKqqQn39wO//lVdegV6vx1133YWkpCTrbevWrQAAuVyOM2fOYOXKlZg0aRLuv/9+zJ49G19//fWw7VvcxVdA8xXR7gpWKRBiqRK/3MDFRbSI1bYAEGxzLh9coS4kviVGr96E6jYukS5UUpKfmXK6umPEil7iuuc+v4zT1R2IDFZi+z2zcf+NGQCAJ/99wRqntvik88QEMRLpXBy19w4kncW82BRtmXkqZkW6RilHmmXRaf61s/W/H51FZWsvUqOD8Oa6ubgjJxkmM4v//vA0mrt0Q7Z3ldN/tZ9//nk8+OCDWLduHaZOnYrt27cjODgYO3fuHHb7d999Fw899BBycnIwefJkvPbaa9aKF1tqtRqJiYnWW1TUyFM4dTodtFqt3Y0QoVGsE+L/Xj5YCpYF8qYkYEqS/y2w5Ws23MxdjPj0dB0qB1WFEWF1Wlq7+GNLiJGEUUW6TxE6KSM0ayLdUhntT8I1/h/rsaFqTIjjmgIfq2j38mikhWVZa3Xc0mmjt1Jy1IKJsVDIGFS09qLKsqAzwFUi8skDf/4cNGWEvrj7L3AXJJZOTRjyGFdMiAtFekwwjGYWh0tbBdmnkDZs2IDKykrodDocPXoUubm51p8VFhbizTfftP67oqICLMsOuf3ud78DAAQFBeHzzz9HU1MT9Ho9Kioq8Oqrrw5ZhFoop6s7AAjbYijWklzmE5Ri9GS2FWzTzkXM1i6hagXUlgtsly1JSaHa1mQnhkGlkEHbb0SFzbmCuK+qtddaef78D2Zi+TWJ+M1tU5A3JQFGM4s/7LVfzJ1l2YGKdBFmTUcGqzC42xXffkUMkZZ9W5aHESWRDgxU7w+eIV1U3oa95xsglzH46z1zsCg7Hlu/PxPTUyLQ1W/ESweuCjYGpxLper0eJ06cQF5e3sAOZDLk5eXh8OHDDu2jt7cXBoMB0dH2H4oLCwsRHx+P7OxsrF+/Hq2tI//h2rJlCyIiIqy31FT3+soRMhjFOiH+r7qtF58UczNC+AQwcc+McZG4aVIcTGYW27+kqnQx8ZVw4RJq7TK0Il06x2atSPejRDogbFJGSK3dOly1fLmcm+5f/dEBIHRIRbp/xvq8DG42QFG57yUU/VlNRx8qWnuhkDG4aVKcIPsM0yhxrWUtgS+vNlvv5/vvpkUHI1jln3EIDCwwxy/MB3B95vnet3kCJdIBYKHld/LlleYxtiTO4CvSheiPzouzJOpqO7iqbTHbVgBAsM25PETEinSGYawJT/5CmFDV9kq5DNOSufcTf3GDCOOtwxUwmFgsmBiLmydz5ySGYfD/bpsCGcPNoLGtom7U6tCtM0IuY5AeEzLSbl0mlzHW5DbAXfwRYgbUSAa//6KCxSkGykrgE+n2Fek7vykHAPxgzjhMtcS4Ui7DxlsnAwDeO1Yt2Aw7p17FlpYWmEymIVcpExIS0NDgWM+Zxx57DMnJyXYJyuXLl+Ptt99GQUEB/vCHP+DLL7/ErbfeCpPJNOw+Nm7ciM7OTuuturramcMgZEwU64T4v1e+LIXJzH2YybH0AyTu+4XlosQ/TtSgvrPPy6ORrm4d93fBXxNww1HIZdAoBz56hvphu4uR8L+nXv3wf8+Jc/gK6InxodZesf5ELmPspv37a6xTn3RxFJVz8T1jXISgsxX4BPBXNgngyw1c4plfoM1fWSvSbRLpF+u16NIZEaZRYFqycG1rFmZbXserlEgXSlNXP2o7+sAwwvbqH1zxGiVyIt02eR4s8nl98IzE6BDhkpLW9i7UJ10wOoMJH53kFj5ed0O63c8yYkNw82RuHYv3iqqs9/OJ4PExwaIluG0Lcga3nRPa4MS5WLNqrRXpzbYXJfqx/yI3Q+m+6zPstp8/IQaTE8OgN5oFW/9CvMsRw3jmmWfw/vvv4+OPP4ZGM7BYwpo1a7By5UpMnz4dq1atwn/+8x8cO3YMhYWFw+5HrVYjPDzc7kaIL6FYJ8S76jv78I/j3IeZX9w80cujkZa56dHIzYiGwcTir1+WeXs4ktVn4BKyYvbg9AbbpJGULhLwvyf+90bc489tXXi2X1j9Ndb51/9cnRY9Ov/p/+/rjlVyiXS+4l8o10/g9neist3a+/iypSI9O9G/F1ufnBgGhuGqc/kKXX6R0bnp0ZAP7l/ghnkZMZAxQHVbH5q0/YLtN5Cdqeaq0bPiQgW9eMQvOMob3FZLaEEqz7R2AYDwIPvXScj+73yfeqpIF843pa1o7zUgMVyDhZOGLiC9em4aAGDP2Xrr+fmqpTXJRBHauvBs11oSO5E+eGF4sdZ5mmi5MHy1cSCR/vn5BpjMLGalRVrX1OAxDIPVc7nODp8W269f6CqnEumxsbGQy+VobGy0u7+xsRGJiaP3d9u6dSueeeYZ7Nu3DzNmzBh128zMTMTGxqKkpMSZ4REiGIp1Qvzbq1+VQW8yY15GtF8nYnwV3yrnvaIqQRduIQP6LJXNYn9R8zTbL9D+2Dd6JMFK7lgMJhYms5cHIwFFFVwrEX8+f9t+ofTXWE+ODMK4qCCYzCxOVlGfdKHwFem5mcLG99TkcKjkMrT16FHVxvU+5hd9y07072KcELUCqVH2C8zxLYeEPk+EqhXWCv5TlGgUxBlL5fNMgWeIRg/q9xwRJO65NsSmPZLYhQ621bwyBogUMCnJV6Sfr9PCQB9aBPHlFa7N1NJpCcNe2FswMRYapQz1nf3WmTVi9kfn2SbPQ0W+0DT4s45YiXt+/ZamLh20llaYX1xsAgAsG2HdEf7+4uoOtPe4397FqUS6SqXC7Nmz7RZP5BdTnD9//oiPe/bZZ/HUU09h7969mDNnzpjPU1NTg9bWViQlJTkzPEIEQ7FOiP9q6dZZp839gnqji+LGrFjMTI2EzmjGa99QVboYeg3STKSH2FWkS+fYNKqBj9Q6+k7qFm2/wbqgoD8n0qUS6/OovYugug1AdTvXFm32eGH7/6sVckxL4RLmp6o6wLIsrlgWYcz289YuAJBpSZ6Ut3CLnZ+s6gAgzjoKs9KiLM9BF5CEUGzpjy50In1wxevgilihqW3a06kVIlek2xxLVLAKMgFnXaTHhCBco4DOaLYu1Epcx7IDifRF2cOve6FRynFjFvezwstc2yj+gqcY/dF5tnEk9rpLg9eHEWuGSJhGaW3rVNXai36DCUcsi0PnTRk6GwDgCgOyE8JgZoVp2+V0a5f8/Hzs2LEDb731Fi5evIj169ejp6cH69atAwCsXbsWGzdutG7/hz/8Ab/97W+xc+dOpKeno6GhAQ0NDeju5q6+dHd349e//jWOHDmCiooKFBQU4I477kBWVhaWLVvm9gES4iqKdUL80+vflKPfYMbM1EjcmBXr7eFIEsMw+MVi7iLFO4crBVu4hQzo5yvSJdzaxV+rdIejksusFUgGSqS75URlO8wstzhiUkSQt4fjMo3Cdj0A/411vk/6UUqkC6K2hztPpMcEi5JkmJXKJYBPVbWjuVuHLp0RMgZIjw0W/Lk8LSOWT6R3W1u8MMxA/3QhzUqLBMBdkCDuYVl2oCJdwP7owHCJdHHPtbbJczEXbQTsj03o3u8yGWNd9JVfBJa4rkMP1HX2Qy5jcF3myC27bsjifna8gvt7Wm1JpKdGi3d+tv07I/b7Y/BnHbFauwBAajT3+bC6rRdnazuhN5kRF6bGhLiRq/sXTOTyAkIUBjj97l+9ejW2bt2KTZs2IScnB8XFxdi7d691UcaqqirU19dbt3/llVeg1+tx1113ISkpyXrbunUrAEAul+PMmTNYuXIlJk2ahPvvvx+zZ8/G119/DbXa/xYXItJBsU6I/+no1ePtQxUAgF8szgLDCFe9QezdMiUeU5LC0aM34Y1vK7w9HMmxVqRLOJEeIqFjYxgGwZbZAzpqk+4WKfRHB7jqM54/xzrfx7u4ugP9tAaA22q5vAmmJovTamX6OG6/Fxu6UNnKPVlyZJDo1bOekGlJkJS39OCipTVCRkwIglXCJ4emWX4/lxu6rP2MiWuq2nrR0WuASi7DZIFbDNkmCRUyRvRZfCr5QPpMKRf3O0aEyL2tqU+6cCq7uViYnBg26vmIn4V0sqoDRpMZtR3c7KQ0MRPpNu2OwtTiztgYfHFYzMQ9/5pVtfXilGXm0LVpkaN+9+dnGhULEPMuHdmGDRuwYcOGYX82eNHEioqKUfcVFBSEzz//3JVhECI6inVC/MubhyrQozdhSlI4bhlhahcRBsMweHjxBGz4+ym88W05HliQIfqU2kDC90gPllhrF41NQlEtsWMLUsnRpTNCTxXpbpFKIt02oePPsZ4eE4y4MDWau3Q4U9Pp978Xb+Mr0qeI1LN8Yjy/CNtAIn18jP9XowNApqUivax5IJE+RaQLEhPiQiFjgM4+A5poLRi38EmrqcnhgldxD042i11AY9teRSn3XEW6GP3Y+Yr005bZAsR1VZZE+liti6YkhUOjlKGzz4AjZW0wmFgo5QwSwjWijc2jFek2+1crZKK+R/g1M6rbe9Hazc2M5hPlI8mxzDS61NBl/Z7lKnHf/YQQQoiHdPUbrJXRG6ga3SNuvSYJmXEh0PYb8c6RKm8PR1L6JFqRrrb5Eq0S+Uuop/FfdN38bB7Q+vQmawuAXD9P2GqU0oh1hmFs+qS3enk0/q++11K5KEI7EoBLADMM0N5rsPb3TosWr/+uJ/GtXaraenHeso7ClERxer9rlHJr3+KrTT2iPEeg4FuHCN3WBRicSBe/mMP2q4XYFem2/ayDlMInQHMsSd8rjV3o1RsF338gqeI6+Y4Z40q5zLqQccGlRgBASmTQsIuTCsV+sVGRF+O1WQ9GJvL38IHWLn3WvwczUkZ//ZMjNIgNVcFkZnHVstCrq/z3Ux0hhBBi450jVejsM2BCXAiWXzP8it1EWHIZg4cXcb3SX/u6zO2r+2RAL98jXSmtj2q2iXS1yP1FPY1v5aE300U8V52qbofBxCIhXC3qVGdPUEko1qlPujBYlkWLpbg5Q6Se5UEqufW9U3CRS9RIpSI9MVwDpZyB0czimKXHcEbsyP1w3TUxgdt3SbN7CZdAx7cOEXqhUcC+bYXt/4tFZpdIF/e8btsiRIyK9IRwDRLC1TCzwLlareD7DyRNfVxgZDsw0yjL0qLqwKUmAOL2RwfsFz4Xe70W2xZiLMRticVXpJc0daOmnZt9lRU/+t8DhmGsPdRLm927QOrfn+oIIYQQcFWMr31dBgB4eHGWqFf2ib2VOckYFxWE1h493iuiqnSh9El0sVHbmSJiL9TlafwXXeqR7rqBti4xfj+ryPbvkL/H+tx0LpF+orIdRhP1LnJVe68BOhMXF+OixEue8JXUjVouaz/ezy9K8WSygRYI9Z39AAaqEsXAv4417X2iPYfUGU1mnKvjKtL5ViJCsks2i1C1PRiDgfO6QuTvGkGqgb8bYiTSAWCmdcHRDlH2Hwh69UZ0GgYWkR5LluUCHd96S8y/BYD99whPtpkTe2kJ/gJEbUcfzCx3kSAubOx1B/lke1kLJdIJIYQEuPeKqtDao0dqdBBWzkz29nACilIuw/pFEwAAf/2qFDojZRGFoDNyySqNBBaIs2X7vdOf210Mh/+yYqA8o8uk0h8dsJ/W7O+xnp0QhnCNAr16k3UKNXFeVRuXOEkIV9stRiu0lCj75HJSpHjJZk9LirDvJSzmzJVxltexrqNftOeQuqtNPeg3mBGmVlh73AtJ4+FZe7afYcS+2GvbzkWsogp+loAQiy8Gqqo27kJbZJASkcGqMbfnK9J5CeFjJ3/dYbdei59/FrEVP+h1y4wLceg9SYl0QgghBIDOaMJfvyoFAKxfmAWFhD4k+Iu7Zo9DQrgajVod/nmi1tvDkQSTmSvlkNrsCttqLrH7i3oanyw1ilyFI1V6o9na09nf+6MDnu2lKzaZzLZPOrV3cVW1pbJZ7LZFKYMS5/EOVOn5i8SIgWML0yjsemQLjb8gQRXprjtTa6lGT42wW6hTKBoPtpIAIMoxjMS2Cl3sinRacNR1FU4u6jy4lYsjVdTusF/43HPfkcV+N6oVcrvzf4aDF+r4GQD8rCZXUbaBEEKIX/vHiRo0anVIDNfgztkp3h5OQFIr5PjZTVxV+suFJTDQ1H+3GS2JdLGnDnuaJ6u5PI3vl2qk8HfJ+Tot+g1mRAUrh1Rs+SO5TXxLIdbnUZ90t/Ff3FMGVVULbXAiPTZUOol024r0cVHBor63UiK5hEtdJyXSXcUvNCpGWxfAPrFt9sBFbLEXULQVZJdIF6dtzXTL4pjVbX1o69GL8hxSx19oS41ybOZPcoT9dnEin59t27l4cr0WVuzeLrC/CJEU4djrz/8NoUQ6IYSQgGUwmfFKIVeN/rOFmXaLnBDPunteGmJCVKhp78O/iuu8PRy/J9WKdE9Wc3ka3wfbRBXpLimq4KrR56ZHSyJOpHAMtuZlxAAAjlW0weyJjJUE8YmqmNCxp/+7I9kmkR4dovL7Hv22EsMHEukxIeK+jkmR3HN19hlBa6m75oxlEcuZIiXSbXkicefJ4gbbSuIgkVpBRQQprS13qCrdNa2W87qjleXhQQq736dHK9I9+D3ZA29Hu4sQjs684v8+tnTr3Sp8kc5fVUIIIQHn0+I61LT3ITZUhTVz07w9nIAWpJLj/gUZALiqdBMlWtxirUj385YQg0mtwt4W39qFEumuOVbJJdKl0B8dkF6sT0sOR7BKjs4+A642dXt7OH6ptdszifRYm/1Lqa0LYP/aRQSL19YFAMLUCut5vdso6lNJkt4E67kix9KLW0ye+NvryQukthXpYq6pwPdJP1PdKdpzSFlrN7eos6MX9hiGsZtZI3oi3SaOpHRRFbB/7RLCHZvpFRWstL4OnW5MwpDWK0kIISRgmMwsXj5YAgB4YEGmaAvxEMf9+LrxCNcoUNrcg73nGrw9HL9mZqVZkS6XSfejJ/8Fm64hOc/MAicqOwAAuZbKZ38ntVhXymWYPT4KAFBU3url0fgnvnJR7ErqKJsF78JF7CHuDbaL+YnZHx3gEl5RIdxz9BhEfSpJqunhPqvHh6mRKHI7I8AzFelyT7Z2sUmei3lhdqalvQtVpLum1YWZRrZFMmK33gryUmsXT3x/sX3NBy8+OhKGYRBp+dvR68YFUml9wiOEEBIw9pytR1lLDyKClLjnuvHeHg4BEKZRYt0NXFX6Xw5c9ciXGqka6JEurY9qUqvStcV/waZEuvPqeoFunRGhagWmJIV5eziCkGKsz0unPunu8FQi3TZ5bpTYmiW2yfNID1wkiA7hkjPdRum9n8VW2c29ZjM9UI0OeKaVxG0zkgAAsRoPtJGxSbaKOTtxBl+RXtNBn9td0GKZaRTrRCLd9kK72Mlt20S6J2dUeCKRHq4Z+BsQ5cQMJf7vSK/J9TFK69sZIYSQgGA2s3jpAFeN/pMbMhCqFmcRHuK8dTekI0Qlx6WGLhRcbPL2cPyWVHuk3zQpDgAgY6T3ZY3/giK9IxNfiZZ77WaPj4JCLo2vJ1KMdb7tTlF5GyVcXNDRy5U1i11Jbft3Qyex1Y9tk+eRIrd2AQaSM1SR7rwqPpFuqXgWm9kD56QpSeE4mL8Aj80Qv2m+0ibZKubfxalJ4VDIGLR061Hn5gKMgYg/rztzYU9lc2FE7MXINaqB2PHk321PzN4I0wx8/w9xIhfA/w3uo4p0QgghgeTA5WZcbuxCqFqB+65P9/ZwiI3IYBXumc/NEHjpYAklW1zAsqxkE+nzMqLx3gNz8btrpbdyG/89lyrSnVdqSaRLpT86IM1Yn5kaCZVchqYuHara+rw9HL/DJ7XFWjhwOFI7H9lehAhVi59I5ws1dNK6HuERVRKsSAeAcVFB8EQ3SdvqYaWInwU1SjkmW3XcMcUAAQAASURBVGaCnamhPunOcuW87smCAZXNc3lyglKwWvw3ie3aAa4k0qm1CyGEkIDBssDLX5YBANbOHy/6YlPEeQ/cmAm1Qobi6g58W0K9dJ1lu1CrFNtDzBkfhQhxOxt4hcxSfcOy0vudiYllWWsiPVdCiXRAerGuUcqtiwYWVbR7dzB+iE+4qJWe+woutYvZtskZTyycxydndNK5HuYR7b16tOi48/qMlEiPPKe0It2e2InXmeMiAQBnarWiPo8UuXJe92SRDMMwmBAXAo1ShmtSwkV/vv9eMgkAsOV700V/Ltv3fLATFzL49mf9bpzXKZFOCCHEr1zqZHC2VguNUob7b8zw9nDIMOLC1Lh7XhoArlc6cY7RJpEutYp0KeMT6VS46JzS5h70GBmoFTJM91ALAOI6ftbAsUpKpDtLZ+S+tasVtDi6q2yrKzUeuCDBP5/EOuSI7pwlIZseEyx6wcu0ZC45+N1ZyaI+jzdNThR37RBrIp0q0p3mynnd05/sP3/kJhRvWopglfitUH9xy0Sce2IZbp6cIPpz2a4B4szFJiHO65RIJ4QQ4pBt27YhPT0dGo0Gubm5KCoqGnX7Dz/8EJMnT4ZGo8H06dOxZ88et8fAsiw+r+H+dP0odzxiRF7pnLjupzdlQilncLS8Dcf9LOHi7ViXekW6VPEXPfyplYK3Yx0YSMjmpEZQgtEPWBPpflaR7u1YZ1kWBhN3cvBEJTVP48E2Mp5g2084xANJIaWCez6Tj5zXhY5jlmWxadMmJCUlISgoCHl5ebh61f0CiNOWhOyMFPEvjv79wevwxrq5+MkN0iuuKfyfRfj4oeuRGh0s6vPw7XfO12npM4wT7M7rTiwI6+mJQgq5zKN/Czy1dpnJxWAV4rxOiXRCCCFj2rVrF/Lz87F582acPHkSM2fOxLJly9DUNPxikocOHcLdd9+N+++/H6dOncKqVauwatUqnDt3zq1xFFW0o7yLgVLO4Kc3Zbq1LyKu5Mgg3DV7HADgFUsrHn/gC7FOFen+if9d+UsnBV+IdWAgITt3fJRb+yGece34KMgYoKa9D+06b4/GMb4Q67aLfqo80B/32TtnIClC45Hp9Z72vWtTcE1KOK7PihH9uRSWBR9NPtCyS4w4fvbZZ/Hiiy9i+/btOHr0KEJCQrBs2TL097u36OSZWksifZz4rSQigpRYnB0vmYWqbaXHhmBWmvh/G7PiQxGskqNHb0Kjnyx/4XPndScKAdJjxb0wEiiiQ1zrnSfEed0zlwoIIYT4teeffx4PPvgg1q1bBwDYvn07du/ejZ07d+Lxxx8fsv2f//xnLF++HL/+9a8BAE899RT279+Pl156Cdu3bx+yvU6ng0438I1cq+WmhBoMBhgMBuv92w6WAgDunJWE6CC53c/8HX8sUjqmB24Yjw+O1+Crq62Yq7E/Nl89Tl+I9X6d3vpzs8kIg0FaXw6lGOsAwJq5L1RmUKwDjsU6y7IoKucS6bPGhfnsa+UqKca6Wsa1Ujhbq0WplqFYh2Ox3tM38NrIYBL9tfpuTiK+m5NoHYfYPBnrf/juNO5/WDMMBnF7rsgZ7sqoyez987rQccyyLF544QX85je/wR133AEAePvtt5GQkIBPPvkEa9asGbJPR8/rZ2q4+6cmhPjsecFVUjyvA9x5/VhFO6q66bwOiHte/58lWTCYzLhzVrLPvr6A78f6rVPjcGzuOORmRDs1RiHO65RIJ4QQMiq9Xo8TJ05g48aN1vtkMhny8vJw+PDhYR9z+PBh5Ofn2923bNkyfPLJJ8Nuv2XLFjzxxBND7t+3bx+Cg7mr9hVdwOFyBWQMi0mmKuzZU+XiEfm2/fv3e3sIgpoVLcPxFhn21ciQZnNsvb29XhzV8Hwl1rV6AFCAAYuCL75w6Vj8gdRivbxKBkAGlrU/Nop1e7ax3toPNHZx5/XWKyewp9TFA/JxUov1GDMX66VdDMU6nD+vFxYUgPF+gbMopBbrlZbzusnL53Ux4ri8vBwNDQ3Iy8uz/jwiIgK5ubk4fPjwsIl0R2K9TQe09nDn9drzRWi+5PTh+gWpxXqYjov1ym46rwPin9cXaYDWi1XYc9Hxx3iLL8f6dQoA1RXYU+34Y4Q4r1MinRBCyKhaWlpgMpmQkGC/aEhCQgIuXRr+03FDQ8Ow2zc0NAy7/caNG+0+3Gi1WqSmpmLp0qUID+emhfbpTdCkVOHY2ctYc/sSKJXiLl7kaQaDAfv378eSJdI6tklN3XjxQAmmy+vsjo2v7PAlvhLrXf1GVGlKUFZeIbl4AKQb62FXW5Be0gKmtZxiHY7Femu3Dr0xNThx/iq+s1xa8QBIN9Zjytsw7lwDwrsqKdbh6HndgJqgMpSUlWPpUmnFAyDdWPeV87oYccz/V4zzendUNU5dKMFtdF73G9FlbRh3oQEhWjqvA3ReB6Qb60Kc1ymRTgghxOvUajXU6qELhyqVSusfN6VSiZ/cmIFE7UW7+6VGasc2JSUKL67JwZ49dUN+n4HIkViPVirx6PLJ2LOnTHLxYEtqx3bz1CQsmBg75PcmpWN0hiOxnhilxM8WTsCensuSiwdbUju2GyclIDcjGnv2VFCsw/Hz+v8sy8aePaWSiwdbUjs2Oq/bc/S8/vNFWdjTe0Vy8WBLase2IDsB12XSeZ1H5/UBUjs2Ic7rLjXd9JfVoglxF8U6IUBsbCzkcjkaGxvt7m9sbERiYuKwj0lMTHRqe0J8AcU6CRQU6yRQUKwTKRAjjvn/UqwTf0PndeJtTifS/Wm1aELcQbFOCEelUmH27NkoKCiw3mc2m1FQUID58+cP+5j58+fbbQ9wPchG2p4QX0CxTgIFxToJFBTrRArEiOOMjAwkJibabaPVanH06FGKdeLT6LxOvM3p1i6+uFp0Z2cnAN/s30SEwf9uWZb12HNSrBNv8EasOyI/Px/33nsv5syZg3nz5uGFF15AT0+P9f2xdu1apKSkYMuWLQCAX/7yl1i4cCH++Mc/4rbbbsP777+P48eP49VXX3Xo+fjjHxzrBoMBvb290Gq1kppiBgTesVGscyjWpX9sFOscinXpHxvFOodiXfrH5o1YFzqOGYbBI488gt///veYOHEiMjIy8Nvf/hbJyclYtWqVQ2OiWJf+sdF5nUOxLv1jcyrWWSfodDpWLpezH3/8sd39a9euZVeuXDnsY1JTU9k//elPdvdt2rSJnTFjBsuyLFtaWsoCYE+dOmW3zU033cT+13/917D73Lx5MwuAbgF4Ky0tdSZkXUaxTjdv3zwV6874y1/+wqalpbEqlYqdN28ee+TIEevPFi5cyN57771223/wwQfspEmTWJVKxU6bNo3dvXu3w89VXV3t9d8B3Txzq66uFipEBUOxTjeKdYp1ulGsU6zTzddiXeg4NpvN7G9/+1s2ISGBVavV7C233MJevnzZ4fFQrAfOjc7rFOuBcnMk1hmWdfzSUl1dHVJSUnDo0CG7KRCPPvoovvzySxw9enTIY1QqFd566y3cfffd1vtefvllPPHEE2hsbMShQ4dwww03oK6uDklJSdZtfvCDH4BhGOzatWvIPgdX6XZ0dGD8+PGoqqpCRESEo4fj1/hVg6urq62rBktZZ2cn0tLS0N7ejsjISNGfj2Ldd1CsByaz2Yy6ujqEhYWBYRjr/VKOh0A7NpZl0dXVheTkZMhkLi3ZIgkU69I/Nop1DsW69I+NYp1DsS79Y6NY51CsS//YKNY5FOvSPzZnYt3p1i6+YKQVdCMiIiT3Cx5LeHh4QB1zoJ28KdYHUKwHFplMhnHjxo34cynHQyAdW6BcEBwNxXpgHBvFOsV6oBwbxTrFeqAcG8U6xXqgHBvFOsV6oBybo7HuVKaGVosmgYJinRBCCCGEEEIIIYQQwnMqkU6rRZNAQbFOCCGEEEIIIYQQQgjhOd3axRdXi1ar1di8efOwLTCkKtCO2RvHS7HuGwLtmAPteJ0l5deHjo3YkvJrRsdGbEn5NaNjI7ak/JrRsRFbUn7N6NiILSm/ZnRsI3NqsVHeSy+9hOeeew4NDQ3IycnBiy++iNzcXADAokWLkJ6ejjfffNO6/Ycffojf/OY3qKiowMSJE/Hss89ixYoV1p+zLIvNmzfj1VdfRUdHB2688Ua8/PLLmDRpkksHRYhQKNYJIYQQQgghhBBCCCEuJdIJIYQQQgghhBBCCCGEkEDhVI90QgghhBBCCCGEEEIIISTQUCKdEEIIIYQQQgghhBBCCBkFJdIJIYQQQgghhBBCCCGEkFFQIp0QQgghhBBCCCGEEEIIGYXfJNK3bduG9PR0aDQa5ObmoqioaNTtP/zwQ0yePBkajQbTp0/Hnj17PDRS4ThzzG+++SYYhrG7aTQaD47WPV999RVuv/12JCcng2EYfPLJJ2M+prCwENdeey3UajWysrLw5ptvij5OT6BYp1gfTKqx7q7/+7//w/XXX4/g4GBERkZ6ezhucfZ97y9ciXcyFMW676NYFwbFuu+jWBcGxbrvo1gXBsW676NYFwbFuu8TKtb9IpG+a9cu5OfnY/PmzTh58iRmzpyJZcuWoampadjtDx06hLvvvhv3338/Tp06hVWrVmHVqlU4d+6ch0fuOmePGQDCw8NRX19vvVVWVnpwxO7p6enBzJkzsW3bNoe2Ly8vx2233YbFixejuLgYjzzyCB544AF8/vnnIo9UXBTrFOuDSTXWhaDX6/H9738f69ev9/ZQ3OLKe8BfOBvvZHgU676PYl0YFOu+j2JdGBTrvo9iXRgU676PYl0YFOu+T7BYZ/3AvHnz2Icfftj6b5PJxCYnJ7NbtmwZdvsf/OAH7G233WZ3X25uLvuzn/1M1HEKydljfuONN9iIiAgPjU5cANiPP/541G0effRRdtq0aXb3rV69ml22bJmIIxMfxTrF+mBSjXUh+XtMOPse8FeOxDsZHcW6f6BYdx/Fun+gWHcfxbp/oFh3H8W6f6BYdx/Fun9wJ9Z9viJdr9fjxIkTyMvLs94nk8mQl5eHw4cPD/uYw4cP220PAMuWLRtxe1/jyjEDQHd3N8aPH4/U1FTccccdOH/+vCeG6xX+/jseDsU6h2Ldnr//jsnoXH0PEOJvKNZJoKBYJ4GCYp0ECop1Eigo1h3j84n0lpYWmEwmJCQk2N2fkJCAhoaGYR/T0NDg1Pa+xpVjzs7Oxs6dO/Hpp5/inXfegdlsxvXXX4+amhpPDNnjRvoda7Va9PX1eWlU7qFYH0CxPkCKsU4GuPIeIMQfUayTQEGxTgIFxToJFBTrJFBQrDvG5xPpxDHz58/H2rVrkZOTg4ULF+Kjjz5CXFwc/vrXv3p7aIQIimJd2h5//PEhi8kOvl26dMnbwyTEbRTrJFBQrJNAQbFOAgXFOgkUFOtkOApvD2AssbGxkMvlaGxstLu/sbERiYmJwz4mMTHRqe19jSvHPJhSqcSsWbNQUlIixhC9bqTfcXh4OIKCgrw0KvdQrA+gWB8gxVgfzX//93/jvvvuG3WbzMxMzwzGA4R4DxD/RLHOoViXPop1DsW69FGscyjWpY9inUOxLn0U6xyKdXs+n0hXqVSYPXs2CgoKsGrVKgCA2WxGQUEBNmzYMOxj5s+fj4KCAjzyyCPW+/bv34/58+d7YMTuc+WYBzOZTDh79ixWrFgh4ki9Z/78+dizZ4/dff70Ox4OxfoqABTrg0kx1kcTFxeHuLg4bw/DY4R4DxD/RLFOsR4oKNYp1gMFxTrFeqCgWKdYDxQU6xTrw/H5RDoA5Ofn495778WcOXMwb948vPDCC+jp6cG6desAAGvXrkVKSgq2bNkCAPjlL3+JhQsX4o9//CNuu+02vP/++zh+/DheffVVbx6GU5w95ieffBLXXXcdsrKy0NHRgeeeew6VlZV44IEHvHkYDuvu7rarKC4vL0dxcTGio6ORlpaGjRs3ora2Fm+//TYA4Oc//zleeuklPProo/jJT36CAwcO4IMPPsDu3bu9dQiCoFinWA+UWBdCVVUV2traUFVVBZPJhOLiYgBAVlYWQkNDvTs4J4z1HvBnY8U7cQzFuu+jWBcGxbrvo1gXBsW676NYFwbFuu+jWBcGxbrvEyzWWT/xl7/8hU1LS2NVKhU7b9489siRI9afLVy4kL333nvttv/ggw/YSZMmsSqVip02bRq7e/duD4/Yfc4c8yOPPGLdNiEhgV2xYgV78uRJL4zaNQcPHmQBDLnxx3jvvfeyCxcuHPKYnJwcVqVSsZmZmewbb7zh8XGLgWKdYj1QYt1d995777Cv5cGDB709NKeN9h7wZ2PFO3EMxbrvo1gXBsW676NYFwbFuu+jWBcGxbrvo1gXBsW67xMq1hmWZVnH0+6EEEIIIYQQQgghhBBCSGCReXsAhBBCCCGEEEIIIYQQQogvo0Q6IYQQQgghhBBCCCGEEDIKSqQTQgghhBBCCCGEEEIIIaOgRDohhBBCCCGEEEIIIYQQMgpKpBNCCCGEEEIIIYQQQggho6BEOiGEEEIIIYQQQgghhBAyCkqkE0IIIYQQQgghhBBCCCGjoEQ6IYQQQgghhBBCCCGEEDIKSqQTQgghhBBCCCGEEEIIIaOgRDohhBBCCCGEEEIIIYQQMgpKpBNCCCGEEEIIIYQQQggho6BEOiGEEEIIIYQQQgghhBAyCkqkE0IIIYQQQgghhBBCCCGjoEQ6IYQQQgghhBBCCCGEEDIKSqQTQgghhBBCCCGEEEIIIaOgRDohhBBCCCGEEEIIIYQQMgpKpBNCCCGEEEIIIYQQQggho6BEOiGEEEJIAPrd734HhmHQ0tIy5rZGoxGPPvooUlNTIZPJsGrVKvEHSIhAKNZJoKBYJ4GCYp0ECop130OJdEIIIYQQMqqdO3fiueeew1133YW33noLv/rVr0bcdseOHVi4cCESEhKgVquRkZGBdevWoaKiQvRxevO5iTT4S6zbMhgMmDp1KhiGwdatWz363MR/+Uus33fffWAYZsht8uTJoj83kQZ/iXUAMJvNeOWVV5CTk4OgoCDExMTg5ptvxunTpz3y/MS/+UusD3dO529LliwR/fndpfD2AAghhBBCiG87cOAAUlJS8Kc//WnMbU+dOoWMjAysXLkSUVFRKC8vx44dO/Cf//wHp0+fRnJysmjj9OZzE2nwl1i39Ze//AVVVVUeeS4iHf4U62q1Gq+99prdfREREaI+J5EOf4r1n/zkJ3j33Xexdu1abNiwAT09PTh16hSamppEfV4iDf4S63/729+G3Hf8+HH8+c9/xtKlS0V7XqFQIp0QQgghhIyqqakJkZGRDm378ssvD7lv1apVmDNnDt5++208/vjjAo/ON56bSIO/xDqvqakJTz75JB577DFs2rRJ9Ocj0uFPsa5QKHDPPfeI+hxEuvwl1j/44AO89dZb+Oijj/Dd735XtOch0uUvsT7c+bywsBAMw+Duu+8W7XmFQq1dCCGEEEICWEtLC37wgx8gPDwcMTEx+OUvf4n+/n4AQEVFBRiGwcGDB3H+/HnrtMvCwkKnniM9PR0A0NHRMep2b7zxBhiGwc6dO+3uf/rpp8EwDPbs2ePU8zrz3ET6pBjrjz/+OLKzsynJSOxIMdZNJhO0Wq1TYyTSJ6VYf/755zFv3jx897vfhdlsRk9Pj1PjJNImpVgfTKfT4Z///CcWLlyIcePGOfVYr2AJIYQQQkjA2bx5MwuAnT59Onv77bezL730EnvPPfewANgf//jHLMuybHd3N/u3v/2NnTx5Mjtu3Dj2b3/7G/u3v/2NbWhoGHP/LS0tbGNjI3vs2DH29ttvZwGw+/btG/Nx3/nOd9iIiAi2qqqKZVmWPXPmDKtSqdj777/f4WNz9bmJNEk11o8ePcrKZDL20KFDbHl5OQuAfe655xx6LJEmKcb6vffeyzIMwwYHB7MA2KioKPahhx5iu7q6xnwskS6pxXpnZyfLMAz78MMPsxs3bmRDQ0NZAGxGRga7a9cuB14RIlVSi/XhfPTRRywAdseOHU4/1hsokU4IIYQQEoD4D+YrV660u/+hhx5iAbCnT5+23rdw4UJ22rRpTu1frVazAFgAbExMDPviiy869Lj6+no2OjqaXbJkCavT6dhZs2axaWlpbGdnp+jPTaRJirFuNpvZefPmsXfffTfLsiwl0gnLstKM9ccff5x97LHH2F27drHvvfcee++997IA2BtuuIE1GAxOjZ9Ih9Ri/eTJk9bnSkhIYF9++WX23XffZefNm8cyDMN+9tlnTo2fSIfUYn04d955J6tWq9n29nanH+sN1COdEEIIISSAPfzww3b//sUvfoGXX34Ze/bswYwZM1ze72effYb+/n5cvHgR77zzjsNTlBMTE7Ft2zbcfffdWLBgAYqLi7F//36Eh4eL/txE2qQU62+++SbOnj2Lf/zjHy6Pm0iXlGJ9y5Ytdv9es2YNJk2ahP/3//4f/vGPf2DNmjUuHQuRBqnEend3NwCgtbUVR44cQW5uLgBg5cqVyMjIwO9//3ssX77c5eMh/k8qsT6YVqvF7t27sWLFCof7u3sbJdIJIYQQQgLYxIkT7f49YcIEyGQyVFRUuLXfxYsXAwBuvfVW3HHHHbjmmmsQGhqKDRs2jPnYNWvW4J133sHu3bvx05/+FLfccovHnptIl1RiXavVYuPGjfj1r3+N1NRUt8ZOpEkqsT6SX/3qV/jtb3+LL774ghLpAU4qsR4UFAQAyMjIsCbRASA0NBS333473nnnHRiNRigUlMILVFKJ9cH++c9/or+/Hz/60Y+cfqy30GKjhBBCCCHEimEYwfc5YcIEzJo1C++++65D27e2tuL48eMAgAsXLsBsNnvsuUng8NdY37p1K/R6PVavXo2KigpUVFSgpqYGANDe3o6Kigro9XrXD4JIjr/G+kiCgoIQExODtrY2l/dBpMlfYz05ORkAkJCQMORn8fHxMBgMNLuO2PHXWB/s3XffRUREBL7zne84/VhvoUQ6IYQQQkgAu3r1qt2/S0pKYDabkZ6eLujz9PX1obOz06FtH374YXR1dWHLli345ptv8MILL3jsuYl0SSXWq6qq0N7ejmnTpiEjIwMZGRlYsGABAODpp59GRkYGLly44M4hED8nlVgfSVdXF1paWhAXF+fyPog0SCXWk5OTkZiYiNra2iE/q6urg0ajQVhYmLPDJhIilVi3VV9fj4MHD+LOO++EWq12YbTeQYl0QgghhJAAtm3bNrt//+UvfwHATfF0ltFoRHt7+5D7i4qKcPbsWcyZM2fMffzjH//Arl278Mwzz+Dxxx/HmjVr8Jvf/AZXrlwR/bmJtEkl1v/rv/4LH3/8sd3tr3/9KwDgvvvuw8cff4yMjAynj4lIh1Rivb+/H11dXUPuf+qpp8CyLPWMJpKJdQBYvXo1qqursX//fut9LS0t+PTTT3HzzTdDJqP0XSCTUqzz3n//fZjNZr9q6wJQj3RCCCGEkIBWXl6OlStXYvny5Th8+DDeeecd/PCHP8TMmTOd3ld3dzdSU1OxevVqTJs2DSEhITh79izeeOMNRERE4Le//e2oj29qasL69euxePFia2/Gl156CQcPHsR9992Hb775ZsQvku4+N5E+qcT6tddei2uvvdbuPr5H6rRp07Bq1Sqnj4dIi1RivaGhAbNmzcLdd9+NyZMnAwA+//xz7NmzB8uXL8cdd9zh9PEQaZFKrAPAxo0b8cEHH+DOO+9Efn4+IiIisH37dhgMBjz99NNOHw+RFinFOu/dd99FcnIyFi1a5PQxeBVLCCGEEEICzubNm1kA7IULF9i77rqLDQsLY6OiotgNGzawfX19dtsuXLiQnTZt2pj71Ol07C9/+Ut2xowZbHh4OKtUKtnx48ez999/P1teXj7m47/3ve+xYWFhbEVFhd39n376KQuA/cMf/iDacxPpklqsD6e8vJwFwD733HNOPY5Ii9Rivb29nb3nnnvYrKwsNjg4mFWr1ey0adPYp59+mtXr9WM+N5EuqcU6r7S0lP3ud7/LhoeHs0FBQezNN9/MFhUVjfk4Il1SjfVLly6xANj8/Pwxt/U1DMuyrHdS+IQQQgghhBBCCCGEEEKI76MmS4QQQgghhBBCCCGEEELIKCiRTgghhBBCCCGEEEIIIYSMghLphBBCCCGEEEIIIYQQQsgonE6kf/XVV7j99tuRnJwMhmHwySefjPmYwsJCXHvttVCr1cjKysKbb745ZJtt27YhPT0dGo0Gubm5KCoqcnZohAiKYp0ECop1QgghhBBCCCGEkNE5nUjv6enBzJkzsW3bNoe2Ly8vx2233YbFixejuLgYjzzyCB544AF8/vnn1m127dqF/Px8bN68GSdPnsTMmTOxbNkyNDU1OTs8QgRDsU4CBcU6IYQQQgghhBBCyOgYlmVZlx/MMPj444+xatWqEbd57LHHsHv3bpw7d85635o1a9DR0YG9e/cCAHJzczF37ly89NJLAACz2YzU1FT84he/wOOPPz5knzqdDjqdzvpvs9mMtrY2xMTEgGEYVw+H+DCWZdHV1YXk5GTIZJ7vSESxTjyFYh3W7SnWpc3bse4rzGYz6urqEBYWRrEuURTrHIp16aNY51CsSx/FOodiXfoo1jkU69LnTKwrxB7M4cOHkZeXZ3ffsmXL8MgjjwAA9Ho9Tpw4gY0bN1p/LpPJkJeXh8OHDw+7zy1btuCJJ54QbczEd1VXV2PcuHHeHsawKNaJkCjWSaDw5Vj3hLq6OqSmpnp7GMQDKNYp1gMFxTrFeqCgWKdYDxQU6xTrgcKRWBc9kd7Q0ICEhAS7+xISEqDVatHX14f29naYTKZht7l06dKw+9y4cSPy8/Ot/+7s7ERaWhqqq6sRHh4u/EEQr9NqtUhNTUVYWJi3hzIiinUiBIp1DsW69PlDrHsCf/yDY91gMGDfvn1YunQplEqlt4YnikA7Nop1DsW69I+NYp1DsS79Y6NY51CsS//YKNY5FOvSPzZnYl30RLoY1Go11Gr1kPvDw8Mp4SJxgTaNhmI9cFGscyjWpc+XYv2rr77Cc889hxMnTqC+vn7MNkcAt/Bufn4+zp8/j9TUVPzmN7/Bfffd5/Bz8sc/ONYNBgOCg4MRHh4uyQ+vgXhsvhTr3kCxHjjH5kuxTud1zwjUY/OlWPcGivXAOTZfinU6r3tGoB6bI7EuepOjxMRENDY22t3X2NiI8PBwBAUFITY2FnK5fNhtEhMTxR4eIYKhWCeBgmKdSJUYC+8SQgjxHjqvE0KItNB5nXib6BXp8+fPx549e+zu279/P+bPnw8AUKlUmD17NgoKCqxXkcxmMwoKCrBhwwaxh0eIYCjWSaCgWCdSdeutt+LWW291ePvt27cjIyMDf/zjHwEAU6ZMwTfffIM//elPWLZsmVtjadT2o6TTrV0QD+vWGfHt1WawrLdHQobDsizqO/sRolIgIlhalVUAYDSZUd/Zj9hQNYJUcm8Px2f40nm9uUtH53U/06TtR2mTFmY6r3tEZ68BYRoFZDLfqX72R906I1RyGVQKaS4O6ivndf5zRXmXy7sgXlDX0Yemzl4YzK7vw+lEend3N0pKSqz/Li8vR3FxMaKjo5GWloaNGzeitrYWb7/9NgDg5z//OV566SU8+uij+MlPfoIDBw7ggw8+wO7du637yM/Px7333os5c+Zg3rx5eOGFF9DT04N169a5fmSEuIlinQQKinVCXDPWwrvD0el00Ol01n9rtVoA3BRDg8EAADhR2Y4fv3EcQTI5ftLXj1Dhh+5V/HHy/5WKt74tx3P7riInWoalSweOTWrH6W8u1Gmx89tyFFxsRHuvAUo5g3cfuA7zMqK9PTRBrX/3JPZfaATDADPHReIHc1LxvWtToFFSUt0ZYp3Xz9R04q6/HkWIQo6f6vTCD9zLpHpe/8eJKjz7OXdeX0bndVF9fbUZ971xDA8syMDGW6d4ezh+q66jD3nPf4k56dF4+yfzvD0cnyDWef1yQxe+s+0wguRyPKin87q/+MfxKjz/RQlmx8qwwuDaed3pRPrx48exePFi67/5xeHuvfdevPnmm6ivr0dVVZX15xkZGdi9ezd+9atf4c9//jPGjRuH1157ze7Kz+rVq9Hc3IxNmzahoaEBOTk52Lt375CF6gjxJIp1Eigo1glxzVgL7wYFBQ15zJYtW/DEE08MuX/fvn0IDg4GABjNQIhcjg49g6ffO4gbE6VZCrd//35vD0EwehPwyik5AAZTo1i7Y+vt7fXewAJYj86ILZ9dxLtHq+xmCRhMLPacrZdUIr1Pb8LBS00AAJYFiqs7UFzdgb9+VYpn75yB3MwYL4/Qf4h1XjeZgSC5HN1GBjs+/gITJLr8i5TO6wDwwVnuvJ4VQed1sT349nGYzCz++mUZJdLd8PXVZvTqTfjqSjMuN3QhOzGwFwkFxP28Lmfk6DMx2PWfLxCjEWf83ia18/rBKzIAMiQHu35edzqRvmjRIrCjzFl98803h33MqVOnRt3vhg0baMo/8SkU6yRQUKwT4jkbN260XqwCBlaIX7p0qd3iRW1R5fi/vVfxTVswnrh3AZRy6UzPNRgM2L9/P5YsWSKZxYvePlKFbsMlJEdoMCe22+7Y+Com4jl1HX24/63juFjPvfa3TU/Cj+ePR0NnPx7ZVYyi8jYvj1BYp6raYTSzSIrQ4KOHrsfuM/V49asyVLb24u4dR/DEymn48fx0bw9Tshw9rx/sPY1/n22ENiwDK1ZIK1EoxfN6U5cOlUe+BABMj2LpvC4ibb8B/TZ9FnRGE9QKmk3jirLmHuv/7zlbT4l0Fzl6Xn+14ltcbuxB/KRZWHZNkjeGKhopntcB4M9XvwXQg5RguHxeF71HOiGEEEKIFI218O5w1Go11Gr1kPuVSqXdh9Q189LwYsEV1Hfq8J9zTfjBnFRhB+8DBh+zv9IZTXjtmwoAwM9uyoC85azdsUnhGP1JXUcf7nrlEOos/cJfXJOD67NiAQBNXf0AgIsNWnT2GRARJI3fzVHLhYF5GdFIigjCAwsy8YO5qfjdp+fx0ala/PbT8+jSGfHQoiwvj9T3iXleXzotEf8+24gDV1qw+Q4FGEZ6faClcl4HgMKrdWBZYMa4cESq2+i8LqIDF5vs/l3a1IOpyRKdtiGySw0DDbv3nK3Hr5ZM8uJofIOY5/UpieG43NiDq829+I5EzwtSOq/3G0yoaOUuNiWHsC6f16VT3kQIIYQQ4kHz589HQUGB3X22C++6Q6OU4+Zkrjrr5YMlMNFKZz7ro5O1qO/sR3yYGnfOSvb2cAJaR68eP379KOo6+5EZF4JPHr7emkQHgPgwDTJjQ8CywIlK6VSl8xX2uRkDLVzCNUr88Qcz8as8Lony7N7L+OBYtVfG50/EPK8vyIqBgmFR1daHq03dbu+PiGv/BS7xtmRyvJdHIn17ztbb/ftyI1X8u+pSw8Brd7WpG1cbaSVMMc/rk5O4iv/LjXRO9weXG7pgZoHoECXC3bg2QIl0QgghhBBwC+8WFxejuLgYwMDCu/waARs3bsTatWut2//85z9HWVkZHn30UVy6dAkvv/wyPvjgA/zqV78SZDw3JLCIDFKiorUX/zlTJ8g+ibCMJjNeKSwFAPz0pkyoaWFHrzGbWeR/cBqlzT1IjtDgnftzMS4qeMh2fG/0o2XSSKTrjWacrGoHgCF93xmGwS/zJuLnCycAAP7fJ2dxurrD00P0Kl86r4eoFZgUwV0U3Xe+we39EfF064w4VNIKAMibQol0MXXrjCi80gwAmJseBcC+qpo4rqNXj0Ytt0DmvHTu78Ges9I71/jSeT07gUukU8z6B77l3+SEMLgzKYwS6YQQQggh4BbenTVrFmbNmgWAW3h31qxZ2LRpEwCMuPDu/v37MXPmTPzxj38csvCuO9Ry4L7rxwMAth0sgZmq0n3Ov8/UoaqtF9EhKvwwN83bwwlor39TjgOXmqBSyLDj3jlIjhx+urY1kS6RPulnazugM5oRE6LChLiQYbd5bHk2lk9LhMHEYsN7J6HtN3h4lN7ja+f16dHceZyvdia+6cvLzdCbzMiIDRnxfUWE8c3VZuiNZqTHBOOOnBQAXNUocR6fzB0XFYQ7Z3Ov5YHLTaM9xC/50nl9SmIoAKCyrRe9eqPb+yPisibS3Vw7gHqkE0IIIYRAvIV33fHj3FS8/k0FrjR2Y9+FRiy/JlG05yLOMZtZvHSgBABw/40ZCFYpYDAEToLSl5Q1d+O5zy8DADbfPhXTkiNG3JZPpJ+r7USPzogQtX9/HTpSNtAffaSe2wzD4A93zcC5uk5Ut/Xh2b2X8PtV0z05TK/xtfP6NVEsPmCA0zWdaOjsR2KERpTnIe7Zf4Gr4l0yNUGSvex9yZeWavTFk+OtyS1KpLuGf90mJ4Zh4SRuJsWZmg60dusQEzq037e/8qXzekyoGuFKFloDg8sNXZiVFiX4cxDhXKwfeI+gfoyNR0EV6YQQQgghPio8SIl7r08HALx08OqoXxyIZ+0934DS5h6EaRT48fzx3h5OwGJZFr/99Bz0JjNumhSHH84bfWbAuKhgpEQGwWhmcaqqwzODFFGRzUKjo4kIUuK5u2YCAN49WoUTle2ij40MFa4CcsZxF3r2X6SqdF9kMJlx4BJXxbt0aoKXRyNtLMviqystAICFk+IwyZJIr+/sR2cvXZh2Ft8ffXJiOBIjNJicGAaWBb6+2uLlkUlbcjD32ZxP0hLfxLIsLjYIU5FOiXRCCCGEEB/2kxszEKSU41yt1tpHlHgXyw5Uo6+7Ph3hGjdWLCJu2X22Ht+WtEKtkOH3d1zjUPVoriXpXFTeKvbwRGU0ma0J8bES6QAwf0IM7rx2HFgW2PTpOWoX5SV8z23qk+6bisrboO03IiZERdWlIitt7kZtRx/UChmuy4xBuEaJFEtbrsu0SKbT+NYu2ZYk4aJs7lxTKMH2Lr4k2dL9yXahV+J7ajv60NVvhFLOuN2yixLphBBCCCE+LDpEhXuu46ps/1JAVem+4ODlJlyo1yJYJce6GzK8PZyAZTCZsdXS0mX9oglIixm6uOhwpNIn/WJ9F7p1RoRpFJicGO7QY/53xWSEqOQ4X6fFnnNuzGsmLsubzCW3jpS1BlS/en/B96/Pm5IAuYzauoip8DJXHDAvIxoay2Ld2db2LpSUdIbZzOKKTWsXAFiUHQcA+OpqC104FdFARTrFrC/jZwxMiAuFSuFeKpwS6YQQQgghPu7BBZlQKWQ4WdWBw2X+XUXr71iWxV8s1ej3XDceUSEqL48ocP3zRA0qWnsRE6LCAwsyHX4cn0g/Vd2BfoNJrOGJ7qilon5uerTDCb+YUDUevIl7rZ7fdwVGk1m08ZHhZcZxC1gaTKw1kUh8A8uy1pkCS6iti+j4/ugLJ8VZ7+MT6ZeoT7pTajv60KM3QSWXISOWq7adPT4KoWoF2nr0uEBJXtGkWBLpl+q7qNjFh/EXOqYmOVZ4MBpKpBNCCCGE+Lj4cA3WzE0FAGtLEeIdh0tbcaqqAyqFDA8soGp0bzGYzHix4CoA4KHFWQh1YtHQjNgQxIaqoTeacaamU6whis7R/uiDPbAgE9EhKpS19ODT4joxhkbGsGQqt3A0X/1MfMP5Oi3qOvsRpJTjxomx3h7OENu2bUN6ejo0Gg1yc3NRVFQ04raLFi0CwzBDbrfddpt1m/vuu2/Iz5cvX+6JQ4HeaMaxCu4cdpNNIn0yJdJdwicJs+JDoZBzaT6lXIa56Vx7oiNUhCGahCBAKWfQpTOipr3P28MhI+DfI1MokU4IIYQQEhh+tnACFDIGh0pbcaLSv1tS+DO+Gv3uuamID9N4eTSBa8/ZetR19iM2VI0f5Y6+wOhgDMP4fZ90s5m1JqGcTaSHqhXWi0A7vi6jCjovWDqNq3YuvNQEvZFmBfiKfZYLGzdNirW2GvEVu3btQn5+PjZv3oyTJ09i5syZWLZsGZqahu9//dFHH6G+vt56O3fuHORyOb7//e/bbbd8+XK77d577z1PHA7O1nai32BGdIgKE+NDrffzFelXGqi61xmXB7V14eVmxgDw/1Zmvkwu49qFANTexZdRIp0QQgghJMCkRAbhzmvHAaCqdG85XtGGw2WtUMgY/HThBG8PJ2CxLIvXvykHANw7f7xLCS9/75Ne0tyN9l4DgpRyTE+JcPrxP5o3HsEqOS41dOGbkhYRRkhGkzMuEnFhanTpjFQp6kP4GQL8jAFf8vzzz+PBBx/EunXrMHXqVGzfvh3BwcHYuXPnsNtHR0cjMTHRetu/fz+Cg4OHJNLVarXddlFRnllglZ9RMzc9ym6R6MzYUChkXHVvbQdV9zrqkmVx1slJgxLplr91xyraqE+6iKYkcol0mknhm3p0RlS29QIApgx6j7iCEumEEEIIIX5i/aIJkDHAwcvNOFfrvy0p/NVLB7kLGHdeOw4pkUFeHo37nGkTAAAdHR14+OGHkZSUBLVajUmTJmHPnj0eGu2AYxXtOFPTCbVChh9dN96lfeRmcsmFE5Xtftkn/Kgl+Tp7fBSUcue/0kUEK7Ha0i7q1a/KBB0bGZtMxiBvCleVvu9Cg5dHQwCguq0XF+u1kDHAzZYFYX2FXq/HiRMnkJeXZ71PJpMhLy8Phw8fdmgfr7/+OtasWYOQkBC7+wsLCxEfH4/s7GysX78era0jX9jR6XTQarV2NwAwGAxDbiPdz9+OlHEX8GanRdrdz7AmZFp6fJ+v7Rh1H966jXVs3rhdrLO0dokNtrs/Oz4YwSo5OnoNOF/b7tKxkbHxMwGoIt03XWroAssC8WFqxISq3d6f480ECSGEEEKIV6XHhmDlzGR8UlyHbQdL8Mo9s709pIBxrrYThZebIWO4Cxr+jm8TsH37duTm5uKFF17AsmXLcPnyZcTHD00i6fV6LFmyBPHx8fjHP/6BlJQUVFZWIjIy0uNjf+twBQDge9emINrFxV4nxYchIkiJzj4DztdpMTM1UrgBesBRF/uj2/rJDRl481AFvr7aguq2XqRGBws1POKApVMT8F5RFb640IQnV7KQObhgLBEHX40+Nz3a5fOKWFpaWmAymZCQYL8AakJCAi5dujTm44uKinDu3Dm8/vrrdvcvX74c3/ve95CRkYHS0lL87//+L2699VYcPnwYcvnQmT5btmzBE088MeT+ffv2ITh46Plj//79w47HzAJHS+UAGOhrzmPPnvN2Pw81yQDI8O+vjqO/1DerqEc6Nm8wmIGKFu71rDlfhD1X7X+eFiTDJb0Mb+7+Bjcljf162h5bb2+vwKOVpmxKpPs0a+sjAdq6AJRIJ4QQQgjxKw8vzsInxXX47FwDrjR2YVKC+1MUydj4djorZyYjPTZkjK19n22bAADYvn07du/ejZ07d+Lxxx8fsv3OnTvR1taGQ4cOQalUAgDS09NH3L9Op4NOp7P+e3DlIs+2As4RHb0G7DvPVfCunp3iVrXcnPGRKLjUjEMlzZiaKPzv1NljcxTLsta2CNemhru8/8QwJa7PjMG3pa1472glfpWX5fBjhzs2qlx0zvwJMQhRydGg7cfZ2k6/u5gjNQNtXRLG2NL/vP7665g+fTrmzZtnd/+aNWus/z99+nTMmDEDEyZMQGFhIW655ZYh+9m4cSPy8/Ot/9ZqtUhNTcXSpUsRHj6QoDIYDNi/fz+WLFli/Xth60K9Fv1HjiBELcf9d+ZZF8fkVYeW4+T+q0BEClasmOHycYthrGPzhvN1WpiPHkFUsBJr7lhi1yoHACpDynDpixL0hCRjxYqZI+5nuGPj/3aT0fEV6ZVtvejRGRHixALoRHxXGodfQ8BV9NslhBBCCPEjExPCcOs1ifjsXANePliCF9bM8vaQJO9KYxf2WpK3Dy12PNnoq/g2ARs3brTeN1abgH/961+YP38+Hn74YXz66aeIi4vDD3/4Qzz22GOiVi4O9lU9A4NJjpRgFpXF36Cy2KGHDSu0jwEgx+6iS0jWXnB9R2MQunKxuQ9o6lJAzrCoP3cEey66vq8sGYNvIce7h0sxUXcFzhZFU+Wi6zRKORZmx2HP2Qbsv9BIiXQv6ujVo8iyeO9SH+yPHhsbC7lcjsbGRrv7GxsbkZg4+nh7enrw/vvv48knnxzzeTIzMxEbG4uSkpJhE+lqtRpq9dC2CEqlctik8kj3F9dwSa3Z46MRpBm6v6mWdR+uNvX4TLJ6sJGOzRtKW7he8tmJYVCphs6mmJsRC6AEZ2o6HRqz7bH5yjH6upgQFeLD1Gjq0uFyYxeuTfPMWgPEMXxFulDFR5RIJ4QQQgjxMw8vzsJn5xrwr9N1eCRvkiQqpH3ZNktv9OXTEiUxA8CVNgFlZWU4cOAAfvSjH2HPnj0oKSnBQw89BIPBgM2bNw/ZXqjKxcFefeUwgC6sWzQZK+a71h+dN66mE5/+9Siq+lRYvnyx4K01xKpc/PBELVB8HrPSorDq9nljP2AUtxjN+PTZL9HRZ0DYxLlYOCnOocdR5aIwlk5NxJ6zDdh3oQH/syzb28MJWAcuNcFkZjE5MQxpMb7X4kilUmH27NkoKCjAqlWrAABmsxkFBQXYsGHDqI/98MMPodPpcM8994z5PDU1NWhtbUVSUpIQwx7R6eoOAMCsES4eZSdyfyNKm7uhN5qhUtDSfqO5bK22Hb5txfRxEWAYoK6zH03afsSHazw5vIAxOSkcTV3NuFRPiXRfw1ekZ1MinRBCCCEkMF2TEoGbJ8fjwKUmvFJYij/c5VtTn6WkoqUH/z5dBwDYcLP/V6O7ymw2Iz4+Hq+++irkcjlmz56N2tpaPPfcc8Mm0oWqXLR1uaEL5+u6oJQz+N7sNLeT0zPTohGikkPbb0RZWz+mCNQ7czChKxdPVHELDedmxri9X6USuCMnGW8drsSe803Im5bs5OOpctEdi7PjIZcxuNLYjYqWHroo6iX+0NYlPz8f9957L+bMmYN58+bhhRdeQE9Pj7U919q1a5GSkoItW7bYPe7111/HqlWrEBMTY3d/d3c3nnjiCdx5551ITExEaWkpHn30UWRlZWHZsmWiHsvpmg4AwMzUiGF/nhyhQZhGga5+I8paukdMEBMOnyScmBA67M9D1QpMig/D5cYunK7pxJKplEgXQ3ZCKL660mz9fRDf0NKtQ2uPHgwDZMUP/x5xFl3aI4QQQgjxQw9bWoz882QNajv6vDwa6XqlsBRmFlicHYdrUob/0u9vXGkTkJSUhEmTJtm1cZkyZQoaGhqg1+tFHS9v99l6AMDCSfGCLAaokMswO51brJPvOe4PiipaAQDzMmLG2NIx35nJJc/3n2+EzmgSZJ/EMRHBSlyXycUgn8wlntVvMOHLK80AfLOtC2/16tXYunUrNm3ahJycHBQXF2Pv3r3WmUVVVVWor6+3e8zly5fxzTff4P777x+yP7lcjjNnzmDlypWYNGkS7r//fsyePRtff/31sBdBhdLVb0BZSw8AYMa4yGG3YRjGWjl6qZ6SkmO52tgNYPS2FfxFi+Lqdo+MKRBNtLz+V5soZn3JFUtbl/HRwQhSDW1F6ApKpBNCCCGE+KHZ46NwQ1YMjGYWf/2y1NvDkaTajj7882QNAGlVo9u2CeDxbQLmz58/7GNuuOEGlJSUwGw2W++7cuUKkpKShu3JKoa957gk0YrpwiW7cjO4JObR8lbB9immuo4+VLf1QS5jMHu8MFPHZ6dFISFcjS6dEV9faRFkn8RxS6ZwiVBKpHvHodIW9OpNSIrQ4JoU36583rBhAyorK6HT6XD06FHk5uZaf1ZYWIg333zTbvvs7GywLIslS5YM2VdQUBA+//xzNDU1Qa/Xo6KiAq+++uqQll9CO1erBcsCKZFBiA0dOWGfbVkU8FIDJSVH06MzWospJo5SbZuTyv29OF3d6ZFxBSL+Qsblhm4vj4TYumydsSFca0aXEunbtm1Deno6NBoNcnNzUVRUNOK2ixYtAsMwQ2633XabdZv77rtvyM+XL1/uytAIERTFOgkUFOuE+KcNiycCAN4/Vo0mbb+XRyM9r35ZCqOZxfzMGMweH+3t4QgqPz8fO3bswFtvvYWLFy9i/fr1Q9oE2C5Gun79erS1teGXv/wlrly5gt27d+Ppp5/Gww8/7JHxljZ340pjN5RyBrdMES7RMy9joCKdZVnB9iuWY5YFEa9JDkeoWpgunTIZgxXTuZ7IfNU/8Zwl07gLQ8cr29DarfPyaAIPfwEjb0oCGEbYdRLIUGcsbV1mjBt9hheflCxpoqTkaK5aXp+4MDUig0e+qM1XpJ+u6YDZ7Pt/6/wRfyGjpVuH9h7PzNQjYxO6PzrgQiJ9165dyM/Px+bNm3Hy5EnMnDkTy5YtQ1NT07Dbf/TRR6ivr7fezp07B7lcju9///t22y1fvtxuu/fee8+1IyJEIBTrJFBQrBPiv67LjMac8VHQG83Y8XWZt4cjKU1d/XjvWDUA4BcSqkbnOdsmIDU1FZ9//jmOHTuGGTNm4L/+67/wy1/+Eo8//rhHxrv3XAMA4PoJsYgIEq4X94xxEVApZGjp1lvbDfiyI2VcIp2/ACCU78zgEulfXGiEwWQeY2sipJTIIExLDoeZBQouDf/Zi4jDbGax/wL3mi+d5rv90aXkTA1XET1SWxcen5QsoTYZo7rKV9uO0fs5OyEMGqUMXf1GVLb1emJoASdErUBKZBAAUJ90H3LZMqtlUqIXE+nPP/88HnzwQaxbtw5Tp07F9u3bERwcjJ07dw67fXR0NBITE623/fv3Izg4eEjCRa1W220XFTXyVEWdTgetVmt3I0RoFOskUFCsE+K/GIaxthx550gV2qgCRjCvfV0OvdGMWWmRmD9BmF7UvsbZNgHz58/HkSNH0N/fj9LSUvzv//6vXc90MfGJ9FuvEbaHsVohx6zUSAD+0Se9qFzY/ui8WalRiAlRoUtnxPEK6qHraXxv7n3nqb2LJ52q7kBLtw5hagVyBX5PkeGdqe0AAMwcoyI9y7JwZlVbL/oNtHbDSPiK9NH6owPcmiB8Re7FevqeJZZJlri9QjMpfALLstY1BLxWka7X63HixAnk5eUN7EAmQ15eHg4fPuzQPl5//XWsWbMGISH2K5IXFhYiPj4e2dnZWL9+PVpbR+5TuGXLFkRERFhvqampzhwGIWOiWCeBgmKdEP+3cFIcpqdEoM9gws5vyr09HElo79HjnSOVALhqdJru711NXf04W8tVMQrZ1oWXm+EfC462dOtQ2sxVzc9NF6Y/Ok8mY7BwUhwAoPAyVUV72pKpXFx/U9JMSUMPKrjIXbhYmB0HlYKWjxObtt+A6jaun/e0MRbvjgtVIyJICTMLlDX7/mwhb7li7f88ekU6AExO5NYAuESJdNHwFzSuUkW6T6jv7EeXzgiFjEFGbMjYD3CQU38tWlpaYDKZhixAkZCQgIaGhjEfX1RUhHPnzuGBBx6wu3/58uV4++23UVBQgD/84Q/48ssvceutt8JkGv5DxMaNG9HZ2Wm9VVdXO3MYhIyJYp0ECop1QvyfbVX6W4cq0Nln8PKI/N8b35ajV2/C1KRwLM6O9/ZwAh6/AOY1KeGICxt5cTpX5WZylai+nkg/Zhnf5MSwUXvhumrxZC7WD1Ii3eOmJIUhOUKDfoMZh0v9Y+FbKThgaaWTJ8IFOjLUFUuLheQIzZgtuhiGsbYruUrtXUbEV9tOjB+72nZKErfNhXp6PcXCL2hJrV18A7/QaEZsiKAXS4VZocZBr7/+OqZPn4558+bZ3b9mzRrr/0+fPh0zZszAhAkTUFhYiFtuuWXIftRqNdRq4T9EEyIUinUSKCjWCfENS6YkIDshDJcbu/D2oQr84paJ3h6S39L2G/DGoQoAVI3uK7662gwAuGlinCj7n5UWCYWMQW1HH6rbepEaHSzK87jraLk4/dF5N02Mg1zG4EpjN2raezEuyjdfByliGAY3T4nHO0eq8MXFRutFDSKemvZeXGrogowBFmWLc24h9i452at4YkIojle204KjI+jRGVHbwVX4j9UjHQAmJ3EV6dTaRTx8axf+Agfxrisi9EcHnKxIj42NhVwuR2Ojfe+2xsZGJCaO3q+wp6cH77//Pu6///4xnyczMxOxsbEoKSlxZniECIZinQQKinVCpEEmY/CwpSr99W/L0aMzenlE/utvhyvR1W9EVnwolk0Tth83cZ7ZzOLrq1xF+k2TxEl2BasUmG7p1+vLVelFIifSI4KVmJ3GtYw5eLlZlOcgI7tlMlcVfeBSE1iW9fJopK/gIleNPmd8tCgzPMhQ/KJ/2Q4mtbLi+TYZlJQcDt8fPTZUjaiQsWN4iqW1S21HH7T9NHtRDFnxoWAYoLVHj9ZunbeHE/D4inQh+6MDTibSVSoVZs+ejYKCAut9ZrMZBQUFmD9//qiP/fDDD6HT6XDPPfeM+Tw1NTVobW1FUlKSM8MjRDAU6yRQUKwTIh23TU9CRmwIOnoNePdopbeH45d69Ua8bukz//DiCZDJqBrd287XadHWo0eISo5r04TtC25rno/3Se/sM+BiA1dFOC9dnEQ6ACyYGAsAOELtRTxu/oQYaJQy1Hf24wJVjIquwNLW5ZYpVP3vKXwifbKjFenU2mVUfB/uSQ70Rwe4i6XJERoAwCVq7yKKYJUCqZbZXFfoApDXXbG+R7yYSAeA/Px87NixA2+99RYuXryI9evXo6enB+vWrQMArF27Fhs3bhzyuNdffx2rVq1CTIz9atjd3d349a9/jSNHjqCiogIFBQW44447kJWVhWXLlrl4WIS4j2KdBAqKdUKkQS5j8NCiCQCAV78qpwXrXPD3o1Vo69EjLToYt89I9vZwCIBvSrhq9PkTYkVdDNC64GiFbybST1S2gWW5Pp/x4RrRnue6Cdzf9CNlrVQV7WEapRw3ZnGzLg5cpD71YurWGa0XiyiR7hksy+KS5WJgdkK4Q4/hF9CsaO2F3mgWbWz+iq9IdyZJOMXS3oX/XRDh8Rc2qE+6d5nMrHU2i6OzYBzldI/01atXo7m5GZs2bUJDQwNycnKwd+9e60J1VVVVkMnsP+RevnwZ33zzDfbt2zdkf3K5HGfOnMFbb72Fjo4OJCcnY+nSpXjqqaeoXy7xKop1Eigo1gmRjlWzUvDCF1dR29GHXceqce/16d4ekt/oN5jw6ldlAID1iyZAIRcvaUscV1TOJbuuyxSvChsAZo+PBsMA5S09aNL2i5qsdgXfHz1XpLYuvBnjIqBRytDao0dJU7d14TTiGbdMiccXFxtRcKmJ1roQ0TdXW6A3mTE+JhgT4hyr5iXuadD2Q9tvhFzGYEJ8iEOPSQzXIFStQLfOiIrWHsGrSv0dn6jNcqA/Oi87MQwFl5qsswOI8CYmhOGLi02USPey6rZe6IxmqBQypAm89o1Li41u2LABGzZsGPZnhYWFQ+7Lzs4esaIhKCgIn3/+uSvDIER0FOskUFCsEyINSrkMP180Ab/95By2f1mKu+eliVrFKyUfnqhBU5cOSREafO/aFG8Ph4CrJjpe2Q5AvL7gvIggJaYmheN8nRZFFW34jo/NSDhaJm5/dJ5aIcec8dH4pqQFh8taKZHuYTdbFhk9XdOB5i4d4sKoAEEMBRe5tYFumZxAC0p7CL/QaGZsCNQKuUOPYRgGWfGhKK7uwNXGbkqkD8JX2zrzuvAXjsqae0QZE6EFR31FaTP3+mfGhkAucKtG+mZFCCGEECIh3589DvFhatR39uOjkzXeHo5fMJjM2F5YCgD42U2ZDn/JJ+K63NCFrn4jQlRyTE1yrBWAO/gkNZ+09hU9OiPO1XYCED+RDgxU/x8poz7pnpYQrsH0lAiwLHDwMrV3EYPZzFpfW2rr4jmlLrQhAahP+kh6dEbUdvQBGHiNHDHBsi2fZCTCm2hZJPdKU5egLdLePlyBxVsLrb3xpeTxf55B3vNfor6zT7B98jE+wYn3h6MokU4IIYQQIiEapRw/vSkTAPByYSmMJuorOpZPTtWitqMPsaEqrJmX5u3hEItjln7l146P8kirnVwfXXD0VFUHjGYWKZFBGBcl7PTk4eRmcn3Si8rbqE+6F/DJXb5qmgjrdE0HWrr1CFMrMFfEhXuJvbIWrgI6M86xti48vk863w+ccPjXIzZUjagQlcOP41//pi4duvoNoowt0GXFh0LGAB29BjR36wTZ56mqdmz69DzKW3rwXlG1IPv0FZ19Brx/rBolTd3Y/Ol5wfZb2sSdc8Ro30WJdEIIIYQQiflhbhqiQ1SoauvFv8/UeXs4Ps1kZvGypRr9gQWZ0CipGt1X8At/eirZxT/P5cYutPfoPfKcjuD7xHuiGh0ApqdEQCln0NKtR027cNVhxDG3TObWqPn6agt0Rlo0WmgFloVcb5oUR63PPKjc0kokI9bJRLqlureUEul2+KpkZ6rRASBco7S2jKL2LuLQKOXWi958MtcdLMvi/3ZftP77Yr20Footru6w/v++C404VNoiyH6tFelOXrxzBP3lIIQQQgiRmGCVAvffmAEAeOlACcxmqiodye6z9Shv6UFEkBL3XDfe28MhFizL4riHE+kxoWrrom18Nbwv4Bca9VQiXaOUY4qllc4pmy+4xDOuSQlHQrgavXoTjvhYmyEpKLhEbV28odxSkZ7uZCKdPyeXNffQDDsbfIW/owu32sq0/A7KWujihFj4yn8hXuP9Fxqt68UAwJmaDpgk9Ln+VFW73b+3fn5ZkNlwA4l0qkgnhBBCCCEOWDt/PMI1CpQ292Dv+QZvD8cnmc0sth0oAQD85IYMhKoVXh4R4TVqdWjU6iBjgJzUSI897zwfa++iM5qsyWxPJdKBgde8uKrDY89JOAzDWBcdPUDtXQRV29GHi/VayBhgUTYl0j2lR2dEg7YfwEAS11EpkUEIUsqhN5lR1dYrxvD8UpkbSUJrn3QBqqXJ8DJjhVnUlWVZvHjgKgDgZwszEaKSo0dvktSaASctnzN+cXMWVAoZTlZ14FCpe2u0tPXo0d7LtS5ytp2UIyiRTgghhBAiQWEaJe67gatK/8uBEup1PIwvLjbicmMXQtUK3Hd9ureHQ2ycqekAwC1MF6TyXLsda590H6lIP1PTCb3RjNhQldMJKHfMSosEABRXt4++IREF397li4tNdO4W0AFLNfq1aVGIdqKvNHFPRSuXTIwKViIy2LnXXSZjrFXpVxqpgppX2sz3nHchkR5HC46KzVqR7uZrfKSsDedqtdAoZfjZTRMwY1wkAG7tFCkwm1kUWyrSl01LxN1zUwEAf7FcPHAVH9spkUEIVglfJEOJdEIIIYQQiVp3fTpCVHJcrNdaEwiEw7IsXjrIVaP/eP54RAQrvTwiYutsbScArl+3J/FV3+dqO31iIbYim7YuDMN47HlzUqMAAOfqtNAbqZ2Cp92QFQu1Qobajj5KHgqIX8D1likJXh5JYOHbujjbH503QcA2GVJgNJlRabk44coF1oEkL1Wki2WgtYt7r/FrX5cBAO6aPQ7RISrk8Be5JZJIL2vpgbbfCI1ShuzEMPxs4QTIZQyOlLXhcoPrVff8mgpiVKMDlEgnhBBCCJGsqBAV7pnP9f2mqnR7X19twZmaTmiUMms/eeI7ztRwifQZ4zybSE+KCEJadDDMLHCi0vvV2Nb+6B7qE89LjwlGZLASeqNZcgub+YMglRzXT4gBABRcovYuQujVG63tAqg/umcNLDTqWq9ivuq6nBK/AICa9j4YTCzUChlSIoOcfvz4aG4hzKq2XvpcKJIsS8xWt/W6vGh0dVsvCi41gWGA+2/MBADMsrRdOyWR2WInLdXoM8ZFQimXITkyCHmW8/Pfj1a6vF8x+6MDlEgnhBBCCJG0B27MhFohQ3F1B74tca/noJS8ZOmN/sN54xEbqvbyaIgtlmVxjq9It0xj9iRf6ZNuNJlxwtJiJjczxqPPzTCMdQr5ubpOjz434fBV0wUXaTaREL652gK90YzU6CBMjBcnuUKGx1eku1odmhErTHWvVPCV+RmxIZDJnJ+plBIVBIYB+gwmtPbohR4eARAXpkaoWgEzC1S1utbb/58nawAAN2bFWt8DfEX61aZun5g15y6+RQ3fTg4A7rmOKwD66GQtenRGl/bLtz6aINK5nhLphBBCCCESFhemxt3z0gC433NQKo6WtaKoog0quQw/vSnT28Mhg9R19qO1Rw+FjMHkxDCPP7+vJNLP12nRozchXKNAdoLnX4cpSdxzUkW6d/ALjp6sakcbJbvcdvAyd0Hi5ux4j7ZJIrAuEppmqYR2Fp9ELKdEOoCBliyuVtuqFXIkhmsAcFXPRHgMw1gvHJW6MJPCbGatifS7Zo+z3h8fpkFKZBBYdmDmnj87ZalIn2VpJwcAN0yIxfiYYHTpjNh/wbUZWQMV6dTahRBCCCGEuOBnCzOhlDM4Wt7m9eSgL+B7o981ZxwSIzReHg0Z7KzNQqMapecWGuXxC46erulAv8G1KdlCsO2P7krVobumJoUDAC7Wu96nlLguOTIIU5PCwbLAl1eoKt0dLMui8HIzAGDRZGrr4mk17X0AgHFRzrchAQYS6W09enT00kWlgYVGXU8SpkZxFzWqLb8bIjy+f70ri7oWVbShuq0PoWoFlk5NtPvZwGLgHe4O0at6dEZcaeQ+X1xrU5EukzG4IycFAPCv03VO77ffYLJeIMqiinRCCCGEEOKKpIgg3DU7FcBAEjlQFVd34OurLZDLGKxfOMHbwyHD4BO3U5PDvfL8adHBSAzXwGBirdOOveGoTSLdG6ZYEumX6rUwm6mPrjcsyo4DAHxpSQIT11xt6kZ9Zz/UChnme7hNkpC2bduG9PR0aDQa5ObmoqioaMRt33zzTTAMY3fTaOwvHLMsi02bNiEpKQlBQUHIy8vD1avCzlzTG81o7OoHAIyLcq0iPUStsFZQU1X6QGLWnUT6uGjuogZVpIuH7+3vyqKu/7YkkG+bnoQglX1BQQ7fJ73Kv/ukn6nphJkFkiM0iA+3PzetnJkEAPjqSrPTF88qW3thZoEwjQJxIrVupEQ6IYQQQkgAWL9wAuQyBl9dacZpP69icQffG31VTgpSXZxmTsTFVyh5o60LwE3J5pPXR8u9s66A2cziWAWfSPdO4i8zNgQqhQw9ehOq2ynZ4g0LJ3GJ9K+uttDFDDcUWtq6XJcZ45VZLkLYtWsX8vPzsXnzZpw8eRIzZ87EsmXL0NQ08myF8PBw1NfXW2+VlfaL9z377LN48cUXsX37dhw9ehQhISFYtmwZ+vv7BRt3Q2c/WBZQK2SIDVW5vB9rn3RacNT6GmS6uHgrYFORTol00fAXOvie9o4ym1lrS5NbpycO+fmsNK4NyqmqDr9eLJavqM+xqUbnZcWHYUpSOIxmFp+da3Bqv2XWC02horXxokQ6IYQQQkgASIsJxh05yQACtyr9Qp0WX1xsBMMADy2manRnqhttvf/++2AYBqtWrRJlXJctifRJXugLzvN2n/QrTV3o7DMgWCXHNC9V5ivkMkxK4BI11CfdO64dH4UwtQJtPXqcrfX/frjeYm3rYqnw90fPP/88HnzwQaxbtw5Tp07F9u3bERwcjJ07d474GIZhkJiYaL0lJCRYf8ayLF544QX85je/wR133IEZM2bg7bffRl1dHT755BPBxl1juQiXEhnkVlIrI064PumdfQYcuNSIkibnW264Qmc04eDlJlys17qd+NT2G9DSrQPgZmuXaL61CyXSxcJf6Chr7nHq9366pgNNXTqEqhWYP2HohfRpyeFQyhm09uitbZP8EV/UM3OEReW/M4OrSv/CyT7pFZbFXTNixCuWoUQ6IYQQQkiAeGhRFhgG2H+hMSATY9sKuQsIK6YnubxIl1S4Ut0IABUVFfif//kfLFiwQJRx9RtMqLAkSrK9VJEODPRJP1nVDr3R7PHn5xP4s8dHQSn33le2KYlcEv8C9Un3CqVchhuyYgEAX16h9i6u6NYZrbM7+Ap/f6PX63HixAnk5eVZ75PJZMjLy8Phw4dHfFx3dzfGjx+P1NRU3HHHHTh//rz1Z+Xl5WhoaLDbZ0REBHJzc0fcp06ng1artbsBgMFgGHLj769s5ZLVyZGaYbdz9DY+imv9UNrU5fI+dDo9Xiq4gvlbCvCTN4/jjpe+QVtXr9P7GemYR7r9tbAE6944hlv//DXueuUQSho6XT6GK/XcBbX4MDU0cufGYXtLClcCAKpa7Y9/uGMjruFnUXT2GZxaMHqfJXG8KDsOasXQGTQapdy6hslJP27vYq1It7SqGYxfcPvb0han1qupbOU+Q46PEWehUQBQiLZnQgghhBDiU7LiQ7FiehJ2n6nHtoMleOmH13p7SB5T2tyNPWfrAQAbFmd5eTTeZ1vdCADbt2/H7t27sXPnTjz++OPDPsZkMuFHP/oRnnjiCXz99dfo6OgYcf86nQ46nc7678EJF57tF3cAuFLfBTMLRAQpEKWRee1L/PgoNaKClWjvNaC4stW6uJczBh+bM46UtgAAZqdFejWRMTGe+yJ6qb5z1N/b4P8nwlmYHYe95xtQeLkJ/3XLRG8Px+8cKmmBwcQiLTrYmtjyNy0tLTCZTHYV5QCQkJCAS5cuDfuY7Oxs7Ny5EzNmzEBnZye2bt2K66+/HufPn8e4cePQ0NBg3cfgffI/G2zLli144oknhty/b98+BAcPrf7cv38/vqyWAZDBpG3Gnj17HDncYbW0MwDkOFPegD17ap1+PMsCfy+Voah54MJkj96EHR99gcmRzleJ79+/3+Ft/32eew0A4ERVB1a+9DV+MdWEZBfC8Vgz9zqEM31uvZ7tOgBQoLajF//evQdym8kCtsfW20sV664KUsmREhmE2o4+lLf0IMbBft18W5el04a2deHNSovC6ZpOFFd3WBfm9CcNnf1o0PZDLmMwfVzEsNtMTgxDUoQG9Z39OFzWisXZji0UXWFNpItXkU6JdEIIIYSQALJhcRZ2n6nH7rP1+FVzd8BUZr98sBQsC+RNibcuohio+OrGjRs3Wu9zpLrxySefRHx8PO6//358/fXXoz6HKwkXADhuSRLEKAz47LPPHDwicaRqZGjvleFvnx9GfYrr0/GdSbgAXMLn68tyAAxMDZewZ8/wiTJPaLMmrxqHTdpQwkV8fBV1cXUHOnr1iAx2vc90ICq8MtDWRax+ub5o/vz5mD9/vvXf119/PaZMmYK//vWveOqpp1za58aNG5Gfn2/9t1arRWpqKpYuXYrw8IG/qwaDAfv378eSJUtQ+O/LQE0d5s+YhBULM10+nqmtPdhx6Vu0GuRYvnwpZDLnfpfbvyxDUXMJ5DIGT94+BYfL2vCfsw1QJ2djxSLHx2V7bEqlcsztzWYW/+/kQQBG/PWeWXjpYCnO1mrxt8pQ/Pvh+QgPGnsfti59cRUoKcec7DSsWDHVqcfaMplZ/L74CxjNwJwbb0ZShGbYY+MvghPXjI8JRm1HHypbezEnfeyFw+s7+1DS1A0ZM/oMmoEFRzsEGqlnFVdzlfSTEsIQrBo+Lc0wDBZlx+O9oiocvNTkcCK9ytLahSrSCSGEEEKIIKYkhSNvSgK+uNiIlw+W4o8/mOntIYmuuq0XnxRzFWwPUzW6S9WN33zzDV5//XUUFxc79ByuJFyUSiUu7OOSBLmTU91KEgihKaoSZ/ZchlaTgBUrnJ+94WzChVfe0oOuI99CpZDhZ3cug9qLiyPOaO/D9ktfo1Uvw9JlS6CwtJmhhIvnJEcGYVJCKK40duPrqy24fWayt4fkN1iWxZcS6I8eGxsLuVyOxkb7XsGNjY1ITBy5atWWUqnErFmzUFLCtTjjH9fY2IikpCS7febk5Ay7D7VaDbV6aFWtUqkc9hynVCpR38ktXJoWE+rUeXCw9LhwKGQM+g1mtPaZkBwZ5PBjLzVo8ecDpQCAp+64Bj/MTYPOBPznbAPO1WldGtdIxzxYSVM3unVGaJQy3DIlEddlxuH2l75BVVsv/u+zK3h+dY5Tz1vVzr2eE+LC3Ho9leDaw9R19qO114i02IF92R6bO89BuET6odJWVDq4qOu3JdwC59PHRSJilIss/Cy5C3Va6IymYVvA+LLiaq5FUU7q8NXovJsnc4l0R1ub9RtMqLOcc9KpRzohhBBCCBHKhpu5ZPInxbWodvDDvT/b/mUpTGYWCybGYlZalLeH43e6urrw4x//GDt27EBsbKxDj1Gr1QgPD7e7AQNf0G1vtveXtnDxODkpYthtPXmbP4FLvJ2s7IBMrnBpHyMd82i3k9VcQjonNRKhwRqvvgbjY8OgVshgMLFo7DaOeWxEHHxlIvVJd05JUzdqO/qgUsgwP9Oxc5cvUqlUmD17NgoKCqz3mc1mFBQU2FWdj8ZkMuHs2bPWpHlGRgYSExPt9qnVanH06FGH9+mI2g5uMcRxUY4nvoejlMuQZlkg09kFR3/3r/MwmlksmZqAu+elAgBmWip6i6s73V4AdDT8gorTUyKgkMsQEazEC2tywDDAR6dqrX2iHTVQbet+kjAhgus732BJPBLhWRd1dfCz9qESrq3b9cMsMmorLToY0SEq6E1mXKjzv4vYfEX6SP3ReddlRkPGAJWtvQ7FKf86h6kViA4Rb/YWJdIJIYQQQgJMTmokFkyMhcnMYvuXpd4ejqgaOvvx4fEaANQbnedsdWNpaSkqKipw++23Q6FQQKFQ4O2338a//vUvKBQKlJYKF0PlLdzCdL7QcmhKUjjC1Ap06YweXZyXX2iUX/DUm2QyxtpXuszyuyGet3ASN6X9yyvNoib9pKbQUo2emxGNIJV/VWwOlp+fjx07duCtt97CxYsXsX79evT09FjXuVi7dq1du64nn3wS+/btQ1lZGU6ePIl77rkHlZWVeOCBBwBwbRMeeeQR/P73v8e//vUvnD17FmvXrkVycjJWrVolyJhZlkVjJ7dWRqIlaeuOgXOR44n0Q6UtOFLWBpVcht+tnGZt7zMtmatwb+nWWStYxXC6pgMAMHNcpPW+a9Oi8L1Z4wAAz+51rnWXkAspJvGJdC0l0sUyPpr7PfG/t9GwLItvLeuj3DBh9At/DMNYk9DOXozxNpOZxdkaviJ99OKWMI0S05K5qvWj5a1j7ruCv9AUGyxqKy+XEunbtm1Deno6NBoNcnNzUVRUNOK2b775JhiGsbtpNPYnUZZlsWnTJiQlJSEoKAh5eXm4evWqK0MjRFAU6yRQUKwTMkDo94Ov+sXN3KJ1Hx6vkXQ10qtflUFvMmNuehRyM0ev8AkUzlY3Tp48GWfPnkVxcbH1tnLlSixevBjFxcVITU0VZFwmM4vqNq56UcxFohwllzGYk859yTtqSW57Av9c83wgkQ4AE+K5ixqlTc5VgRLhzM2IQpBSjuYuHS548KKOvyu80gQAWORgb11ftnr1amzduhWbNm1CTk4OiouLsXfvXmuLrqqqKtTX11u3b29vx4MPPogpU6ZgxYoV0Gq1OHToEKZOHWiZ9eijj+IXv/gFfvrTn2Lu3Lno7u7G3r17Bfsc09FngN5kBgDEhTm20OJorIn0Zscv6r10gGtls2ZeKlJs2sFolHJMTgoDMFA1LgZ+3zMHVd7+99JJUMgYHCptxfm6Tof21dGrh7bfCADW6nx3JIRTIl1s/GeZKgcq0staetCo1UGlkFk/e4zGX/uklzR1o0dvQohKjqz4sYsmrsvkPgsdKRv7c5j1QlO0uAtLO51I37VrF/Lz87F582acPHkSM2fOxLJly9DU1DTiY8LDw1FfX2+9VVZW2v382WefxYsvvojt27fj6NGjCAkJwbJly9DfT29o4j0U6yRQUKwTMkCM94OvmpcRjXkZ0dCbzHj1qzJvD0cULd06/L2I+31ssFw4IBxnqhs1Gg2uueYau1tkZCTCwsJwzTXXQKUSZvpsfWcf9CYzVHKZU/1vxTQvg7v4UuRAJZQQatp7UdvRB7mMwbU+0oZoggQq0v39AqlaIbdO9af2Lo7p0RlxrJxrH+DP/dFtbdiwAZWVldDpdDh69Chyc3OtPyssLMSbb75p/fef/vQn67YNDQ3YvXs3Zs2aZbc/hmHw5JNPoqGhAf39/fjiiy8wadIkwcbbpOWq0aOClYL0cB5vORc52iajtLkbh0pbIWOAn940dEFRvkpcrES6zmiyXvga3MIiOTIIK6ZzbXZe/6bcof1VWqpt48PUgsywSAyn1i5iS7Mk0lu69ejWGUfd9kSFpd3JuEhoHFgbhe+T7m8V6Xxbl+njIiB3YNHgXMvnsKNlY38OqxSw9dFonE6kP///2bvv8DjKa3/g39mulbTqXbKKe5WMbAtTYkiMZUwApxAgCS2UXINzQ5wLwfkFO5DcGBICJMGJE4MxJPQESG7sGBthgw22hYtwL7J679pV2zq/P2ZntCvtrrbMrLacz/PoAa9mZ+ZdnR2tznvmvM8+i/vvvx/33HMP5syZgy1btkCr1WLbtm1un8MwDDIzM4Uvx4WNWJbF888/j5/97Ge4+eabsWDBArz66qtoaWnB+++/73J/RqMRer3e6YsQsVGsk2hBsU7IKLHfD6HuB/Ze6a9X1qNrwDjJZyO+bQdqMWK2YUFuAr40PXz740rB1+rGYKiz90fPS47x6o+rYOCrwitre4LSUuPzOq7ial5OAmLVCsmP541wr0iPlAlSPhnMtyshnh281A2T1YbcpBgUpUpbnUhc67B/ruArnwPFV2F7U90LAG9WNgDg7kjITRqfWCuWuDXG2VYDzFYWSVqlyx7x91xZAAD494lWGEbME+6PX7BSrCRhZpj3SA+HCVKdRokkLbd+CN/f3p3j9jhcmJ/o1b6L8xLBMNz7IZw+w/Pvt4nauvAWFyaDYbiK/Q6D51its1ekF4jQ+sgTnxLpJpMJR48exfLly0d3IJNh+fLlOHjwoNvnDQwMID8/H3l5ebj55ptx+vRp4Xu1tbVoa2tz2mdCQgLKysrc7nPTpk1ISEgQvsS6nZQQHsU6iRYU64SMkuL9MJa7SSOz2Tzuy93jYn6V5SdgQa4OI2Ybtn58SfLjBXNsXfohvHKwDgCw5kuFsFgskza2UOVLdeNY27dvdzs56q9g/QHki/k5CYhRytE7ZEZ1h/QV2aHUH53H/zzqvOjxGooiZYKU75N+rL4Xei+SbtHugH3Rvi/NSJO0Vy5xj69IF6OtCwDk2ZPRjT3DE05sWm0s3jveDAD49pIpLrfhq8RPNvfDahN/otSxrYurGCzJS8S09DiYLDbsOtU24f4a7NfgKSK1reAr0tvDsLVLOE2QejsBdLyBq9Re6GWCWadRCuvJVIVRexe+Fc1EC43yEmKUmJHOt2Hy3AYpWBXpPpU5dHV1wWq1jvsgkZGRgXPnXC+SMHPmTGzbtg0LFixAf38/nnnmGVxxxRU4ffo0cnNz0dbWJuxj7D757421fv16rFu3Tvi3Xq+npAsRFcU6iRYU64SMkuL9MNamTZvwxBNPjHt89+7d0GrHf+jbs2ePn6PxXlksgxOQY/unNcgfvohYpeSHBCD92HY1Mhg0ypEVw2Kk5gh2enfntCgcxzY05F3lHBF3ETWxqBQyXJafiE+ru3GotgfTM+IlPZ7QH70gdBLpefYkQIfBiBGz1atbzkMFP0HquAijLxOkNpsNl112GX71q19h7ty5Lrc1Go0wGkerAcdOkPIcJ9r8kaVToiBFi7ruIew/344VcyY/uc8LdGxSOHCRq9y/vCAxoPNyNbZQGmco6zCIW5GekxQDhgGGzVZ0DZg8Jugra3vQNWBCQowSy9y09pmaFodYlRyDJiuqOwYwM1Pc67urhUYdMQyDm4uz8ds9F/CvL1pwyyLPf/uInSTkK9Jb+0fCbhFjxwlSANiyZQt27NiBbdu24bHHHnP5HH6C1BtiXtdzk2LwRVM/ajsNMJtdr9UzYLTgQrsBADAvK9bra0xxrg7VHQM4Wt+NZdPF/dwgxXV9yDQ6zrk+jHNeTjzOtxtwvL4H17gZp9lqQ3Mft85OToLK474Dva5Lfr/g0qVLnRYtuuKKKzB79mz8+c9/xi9+8Qu/9qlWq6FWizOrSYhYKNZJtKBYJ2SUr+8Hd5NGK1asgE6nEx43m83Ys2cPrrvuOiiV0ma2r2dZ7P/jIZxrM6AtfiZ+8OWpkh4vGGMbMFqw8bf7AZjx6FcX4KsLsiQ5zliuxkatqrxXa2/tUpg6+QuNOlpSkIJPq7tRWduDOy7Pl+w4HYYR1HQOgmGAxSGUSE/SKoVkU3PfsFABFw4ibYI0TyFDHWR486PjsNTZ/N6PVIIx+euNPiNQ3akAAxYDl45hZ0Pg+6QJUt912hPp6SJVpKsVcmTpNGjpH0FDz5DHRPquU1xrsuvmZEApd92IQS5jMD83AYdqevBFY5/4iXShhUWi221uKuES6Z9Wd6FvyIRErfs1R8Ru7cJPcBgtNuiHLdAGqZAiUMGYIBXzum7ukQGQ4UDVOWTrz7jc5mI/AxsrR5KKxdEDH7nd11iyXgaAHHurLmGW6aLXz/OFmNf1aj1gYxVIULE45sM4Gfs4P6qqxkzTBZfbdI0AVpsCCobF5/s/gjcdAv29rvuUSE9NTYVcLkd7e7vT4+3t7V7P7CiVSixcuBDV1dzqyfzz2tvbkZU1+kdOe3s7SkpKfDk9QkRDsU6iBcU6IaOkeD+M5W7SSKlUukwqu3tcbD/48nQ89PoxvHKoAfcvm4p4jfTHlHJsb3/WgL5hMwpTY3HTwryg99t2HFswfn6RIhQr0gHHPundYFlWsjYR/MKIszJ1SAihjAbDMMhN0uJ8uwGNPUNhlUj3RyhPkCrOtGP/G1+g2RqHVauu8msfUgjm5K833jveAhw7hXk5Cbjl5ssD2hdNkPqvXeSKdIC7Q6alfwRNvUMozXfdAoNlWXxwmvssd/08z5/fivMScaimB1VNffjWYvHuhtWPmHGpk/udtiA3we12+SmxmJERhwvtA/jkYhduKs52u2290NpFnES6RilHnFqBAaMF3YNGaBPDo6gpGBOkYl7Xh441Y/d7p4G4NKxaVepymy0f1wBnqrF0RiZWrSqe8DXg5TX3450th9FmUuP6668R9fOJFNf1rQdqgdMXUTYtA6tWlXj9vNymfvz9z57HeaimBzh+BLnJsfjqDZ5/PwZ6XfepR7pKpUJpaSkqKiqEx2w2GyoqKpw+bHhitVpx8uRJIblSWFiIzMxMp33q9XocPnzY630SIjaKdRItKNYJGSXF+yFcrJyXialpsegfNuNvh0Qo3ZtEI2Yrtu6vAQCsuWZqyCxaSTxjWRaNvVw1kFhJArEsnJIIpZxBu97o9SJ3/qis7QYQWv3ReXnJXG/ipt7hST4T3wRrglSn0zl98c8b++XucW+/rpqeARkD1HQNoXvIGtC+xP4KdGxifh2yT0pdPT1NsrGRiY22dhEvQSv0m/awcOPFjgG06UegVshw5TTPC42X2NuufCHygqMnm7heznnJMUiJ8zz+a2Zy6x/sO+++v/eI2Yp2e895MSebU+K4CvjuQZNo+wxFS5cuxZ133omSkhIsW7YM7777LtLS0vDnP//Z5fZiXtcL07g7HZr6ht1uc66dmyQpzkvy6do0NzcJSjmDvmEz2gcsIX9dP9XCtXW5LD/Zp+fNy5t4nO0DXGuW3CSt5Nd1nxLpALBu3Tps3boVr7zyCs6ePYs1a9ZgcHBQ6E105513Ot1i8eSTT2L37t2oqanBsWPH8N3vfhf19fW47777AHAVDg8//DB++ctf4l//+hdOnjyJO++8E9nZ2Vi9erWvp0eIaCjWSbSgWCdklNjvh3AhlzF48JppAIAX99dg2GSd5DPy35uVDegaMCEnMQZfW5gz2adDvNQ3bMaImWtVkZUoXvWiGDRKudDjlu9hLgWhP3oIJtJzk7jkFT/ZES4ibYI0QavE/ByuuvVT+2KaxBnLssJCo1dNkEQl0uJbu6TFi1uRDnheuJF/bywpTJ5wTYdie9uVc20GjJjF++xTxS806qY/uqNrZnA93D+50Ambm0VP+fHGaxRIEvGOpVR7kr97wDjBlqEjGBOkYsq1L5Lb2jfi9ud7to2rhp6dpXP5fXfUCjlmZXLPOdHkeSHOUMAvFurN+8KRN+Nstk/05yTG+H+CXvK5R/qtt96Kzs5ObNiwAW1tbSgpKcGuXbuE2yoaGhogk43m53t7e3H//fejra0NSUlJKC0txWeffYY5c+YI2zz66KMYHBzEAw88gL6+Plx11VXYtWsXNJrQ+hBNogvFOokWFOuEjJLi/RAubirJxvMVF9DYM4w3KhvwvasKJ/uUfGay2PDnT7hq9P+6Zqrbvqgk9LT0jQDg/qhXK0JvMcuyomQcqe9FZW0PvjXBgnD+6Bsy4bx9Aa5Q6o/O4xMBTT3hVZEOcBOkd911FxYtWoQlS5bg+eefHzdBmpOTg02bNgHgJkgvv/xyTJs2DX19ffjNb34TUhOkV0xLxRdN/fi0ugvfKB3fkiDaXewYQIfBCLVChsvctP4gwdFjr3JOm6Ai2xd8RbqnSb1Pq7m7e66YOvFESlaCBmnxanQajDjd0o/SfHGuv970R+ctKkiGViVH14AJFzoMQsLQUYPDQqNitu9IieUq0rsGwqci3XGClC/S4idI165d69U++AnSVatWSXimnAydBjIGMFlt6Bo0In3MxNKwyYq6Lq4ifVaW73365+cm4GRzP0409+GGIK0J5I/uASOa+4bBMMC8HN8mDABgTpYOJ5v7cb5N73KczX3ceyQnKQQT6QCwdu1atwG6b98+p38/99xzeO655zzuj2EYPPnkk3jyySf9OR1CJEOxTqIFxToho8R+P4QLpVyGNcum4afvncSfP7mE71w+JSQTmp68e6wJrf0jSI9X4xZKMIWVtn4ukZ4dYtXovCWFKdi89xIO29uviO1IXS9YFihKi/W4gN5k4atAm8KsIh2IvAnSq6al4k/7LuHTS12S9uwPVwcuel+NTKRjsgLD9ruMkmLFq6Dmr0WNbib1LFYbDtdw1+krp6VMuD+GYVCcm4gPz7bjeEOfeIn0pj4AwAIvKm9VChkWTknEp9XdOFLX6zKR3tzHjTc3UdzWZylCRXr4JNKB8JogVcplyNBp0No/gpa+kXGJ9IsdBthYblLDn0mnBTkJeB2j7YRC1clm7vwKU2P9Wotphn0xYL7oYCz+PRKSFemEEEIIISQyfaM0B7+vuIg2/Qj+frQJ3ynLn+xT8prFasMf910CADzwpSJKoISZFj6RniD9H0D+KM1PgozhkjctfcPIFvkPtco6rq1LKPZHB4A8obVL+FWkA5E1QVqanwSVQoZ2vRGXOgcxLT2yF3/1FbV1CQ2DFu6/SjmDOLV4aSe+Ir2lfxgmiw0qhfOdZxfaB2AwWhCvVmButvtFPh2V5CXgw7Pt+EKkRGRb/wja9UbIfKi8Lc1PxqfV3Tha34vvXj7+s1eLPUko9u+eVKFHevi0dgHCb4I0OzHGnkgfHneXwrlWLjE8Kyver4nR+fbFbE8298NmYyEL0bWB+EQ/357MVzMzuET6hfYBl98XWrsEoSKd7nclhBBCCCEAuB6E319WBAD4075LMFttk3xG3vu/Ey1o6BlCklaJb5dNmezTIT5qtSfSQ60/Oi9OrcA8+x9/n9eJ3yc9lPujA1z7A4Br1WC0hO8aCpFAo5Rjkb1lCfVJd2a22nBIqEamRPpk4hPpSVqVqHdNpMapEKOUg2VHk8uOhErwvASvFxvn+6SLteAofw4zMuKhVXk3icC/p4/Uu/790iQk0sX9Hcm3dgm3inSAmyCtr6+H0WjE4cOHUVZWJnxv37592L59u/Dv5557Tti2ra0NO3bswMKFC4N2rvzvUFcxy/dHd3UngjdmZMRDrZDBMGJBvYQLogeKr0j3N5E+I5ObNK7rHhy3noHNxgotAoNRkU6JdEIIIYQQIrht8RSkxqnQ1DuMf1a1TPbpeMVmY7F5L1eNft/VRV7/4UpCB1+RHow/gPy1xN67XOwFRweNFpyy/4G5pHDiVgSTIVGrhMq+5kCHPrwqFyMRnySmRLqzqsY+DJmsSI5VYY6Pi/YRcQ2YuSR2sj1RKxaGYUbXbHBxh0xVQx8A3xYz5NuvNPQMCX3dA+FLf3TewimJwl1P7fqRcd/nE7C5Ilfb8q1dusJosdFwxH+2aXaRSD/fxlWkz8z0vT86wLWOmZPNL8TZ598JBsGpABPpaXFqJGmVYFmgusO5Kr1rwAiT1QYZA2QmSF+QQYl0QgghhBAiiFHJcd/VXFX6H/dWw2pjJ/mMJvbB6TZUdwwgXqPAHUvDpx0NGcX3SM8K0dYuwGi1eKXIifSj9b2w2ljkJMaE7EQCwzBI13EJlw7D+CQPCS4+kX6wpjssrtHBwvfGvrwoOWTbG0QLx4p0sWXZr5Mt/e4r0ot9SGInxChRlBbr9PxA+HMO8RolpqdziVRXva6lau2SIrR2Cb+K9HDC/9xcVaTXdHILjQbSpmuBPTkdqn3SuwaMaOkfAcMAc/1MpDMMgxn29i785AOPv2MjU6eBUi59mpsS6YQQQgghxMl3L89HQowSNV2D2HmydbJPxyOWZfHC3moAwN1XFEDnxwJGZPKFemsXYDSRXt0xIGr1Hp+YD9X+6LxMHfezaaeK9Ek3PycB8RoFDCMW4XZ5Mnq3SFmI3tkRTQbN3H/FrkgHgCz7tYifgBWOabTggn0hwoU+JLEBoMRelR5oexebjcWJRu496UtVPADMtVcVn23VOz1ustjQYeCuu6In0mP5xUbpui4l/ufWOiZmh0wWtNnvQChMifV7//PtsXYiRH8f8L+nilJjA1ozYXoGN9lQ0+VckS7VRJM7lEgnhBBCCCFO4tQKfO/KQgDACx9VwxbCFY/7znfidIseWpUc99jPmYQXlgU67X/EZ+hCN5GeqFVhlv3W689FrEoXEulFoZ1IzxAS6VSRPtnkMkZIFlfWdk/y2YQGs9WGo/W9AEL/vRQNBizcHQFJseJPbvMTrq1jKtLPtelhY4EMnRrpPv4uEatPek3XIAxGCzRKGWZk+FZhPNvejujMmER6W/8IWBZQKWRCT3OxJGq5n49+xAKWDd3PeuGO720/tiK9rovraZ4Qo0RSAD/bBfYFR08194fkXUqBLjTKK7BPNtR1O/eCD+ZCowAl0gkhhBBCiAt3X1GAOLUC59sN+PBs+2Sfjkssy+L3H10EwFXRS1H5RqQ3bAXMVu4PP7GTBGLjq9LF6pM+Yraiyp64CdX+6Dy+tQtVpIeGJYXc4oSVtb2TfCah4WRzP4ZMViRqlZiR7l+vYSIeoSJdgtYu2Ql8mwznSb0L7VyVKt/+wRdCIr2pP6CEMp+In5edAIWPLSb4PtdjE+l8X+2cxBhRF24FuAQuAFhtLAaMtJC0VPi2bV0DJqeFMuu6ubYuhan+V6MDwNS0OMQo5RgyWVHTOTDxE4JMWGjUx7s0xsq3J9Lr7a8bj6/qD1Z7QEqkE0IIIYSQcRK0Stxp7zf+wt7qkKxUOnipG8cb+qBSyHDfVVSNHq4M9oRLvEYBjVI+uSczAbH7pH/R2AeT1Ya0eDUKUrSi7FMqVJEeWviJl8/rekL6rqFg4d+TiwuoP3ooEHqkSzA5yi8mOLYinW/r4k8ifXZWPJRyBj2DJpeLmHrrhB/90UfPgUuk13cPwTBiFh5vcUiki02jlEOl4NKCeodjEnElxCihVXGfbxyr0mu7xEmky2UM5uXwC46GXnuXQBca5fGfk+q7hpz+LuFbH6XHqwPav7cokU4IIYQQQly696pCaJQynGjqxycXuyb7dMb5w0dcb/TbFuf5fBs3CR0G+xpnaXHB+QMoEEsKuET62TY9+ocDTzrwyb8lhcmiVxqKLZMS6SFlbrYOMUo5+ofNuNgRehWIwcYvNBrqaw1EiwEJe6RnC61dnK9FF4WKdN8XbVQr5JhjT2RXBdDepcqexPQnkZ4cq0KG/c4fvroeGK1Iz5ZoDRG+Kr1viBLpUmEYxuU6I3X2RHpBAP3RefNzEgEg5NbN6DQY0covNGq/68JfeclcIt1gtKDHYYHcDvvnkmC1B6REOiGEEEIIcSklTo3vlHFV6X+ouBhSVelH63twsKYbChmD7y+bOtmnQwJgMHMJ5NQwSKSn6zQoTI0Fy3IxGKjKuvBYaBQA0uyVXnzlF5lcSrkMpfl8e5fA+6T3DZlwuKYbh2q6RV1M1xWrjcWp5n7sv9iJC+2GgCvqrTYWR+q4FjeXF4V2i6RoMWzlruu6GPF7pGfa2zcYRiwYMFqEx/mK9Ol+VKQDgfdJN1qsONvCtWUp8bOFxdQ0bhKAT7ACoxXMUrWtSIzh+6RTIl1KqfbfoZ0O11e+tUtBauB3pPF90kMtkc5Xo09Ni0NsAAuNAtwdFFn2O1Ic+6TzkxN8CzqpBTYKQgghhBAS0R74UhH+erAeR+p7cbi2J2SSFC/Yq9G/cVmuJLc7k+DR2/92T40P7f7ovLLCZNR2DeJwTQ++PCvD7/04Lo64JAwS6Xxlad+QaYItSbAsLkjGgeouVNb14o6lBX7t41LnAJ7+zzlUnOsQFqljGOCqaan4ycpZmBfgrfiORsxWvLi/Bi9/Woduh2rCnMQY/NeyIny7LB9yP9qynGnRw2C0IF6tENpjkMk1bM9v6zTip5zi1ArEaxQwjFjQ2jeM6Rnx6B8yC5N809N9r0gHgOLcRAD1+MLensVX51oNMFltSNIqkZfs3+eSwtRYfHapW2j5AYzeBcQnEMXGV6T3D1sm2JIEgm870uFwV1dDD5cMFqMine+xf65VD5uNDZkWVydEWmiUl5+iRWv/COq7B1GanwSWZdFhsFekx1NFOiGEEEIImWQZOg2+tTgXwGjyerKdau7H3vOdkDHAmmuoGj3chVNFOiDegqOnW/QYMlmREBMeiyPyifTeITP15A4RiwtHK9L9uWPon1XNuP53+7H7TDusNhZ5yTEoSNGCZYH9F7uwevOn+OvBOlHOtaVvGF//42d4ZvcFdA+aEK9RYEZGHLQqOZr7hvH4P0/j7pcr0e9He4nD9or8RQVJfiXiifhG7OspxmvEr0gHRhcc5du71NorezN0ar+PyVekn2zuh8Vq8/n5Xzj0R/e3VRffK9sxkS70f5ao2pZPpOtFaFdG3Eu3J3k77T9Pk8Um/GyzRSgIKUqNhUohw6DJKiToQ8HpFi6RHmhbF94Ue3sXfi0D/YgFI2bu/RqsinRKpBNCCCGEEI++/6WpUMgYHKjuwrGG3sk+HWzeyyX0byzORkGACzSRyccvNhpuifRTzf0YNPpfwcf3dA6XxRETtVyyxWpjYQhg3EQ8C/OSoJQzaNcb0djj2wKJ7x5rwg/frILJYsPV01Ox50dfwv5Hv4x9j1yLTx65FivnZsJiY/H4P0/jpQO1AZ1nh34E3/rzQZxp1SM1ToXnby3Bscevw+4fLcOxx6/Dz2+cgxilHPsvduHOlyt9fl/xd3YsDoM7O6IBy7IOiXRpmiBkJTovOMonDvkkmz+KUmMRr1ZgxGxz6lHuLb63erGfbV0AoCiN+0xT4yqRLlG1rVCRTq1dJMW3R+MT6e36EbAsoJLLkCLCWgIKuQwz7W2NzrbqA96fWM61cS2X5oiUSM8aM4nGV/jrgrhgPSXSCSGEEEKIR3nJWnxtYQ4AYPMkV6VfaDfgP6faAAAPXTttUs+FiINPpPN/ZIa63CQtchJjYLGxON7Q5/d++IVGw6E/OsAtxhdn72/aS+1dQkKMSi7cLn/Yhz7ph2u68ejfTwAA7r6iAK/cs8Spr/SUFC3+9N3L8MOvTAcA/OLfZ1Bxtt2vczRarPjeK5+jqXcYBSlavP/QlVi9MAdKOZeK0CjluPvKQvx9zVIkaZX4orEPP3qryqcKe/59eNmUJL/OMVxs3rwZBQUF0Gg0KCsrQ2Vlpdttt27diquvvhpJSUlISkrC8uXLx21/9913g2EYp6+VK1cGfJ5Giw1WlpscjAuwJ7I7fAsHvjdyoz2RnhdAIl0mY7Agj3s/+dPehe+tXuLHQqO8wlSuLU1t1wBsNhZWG4tue09tqX5H6oSKdJoglVL6mHVG+ERwVqJGtMn02VmhlUg3jJiFSa7ZmWIl0p0n0Ubv2AhOWxeAEumEEEIIIcQLa66ZChkDVJzrEBYOmgx/tFejl8/NwAw/FxQjHLGTMv4asLd2EaMiK1j4qnR/F3m02tjRhUaLwiORDoy2d+kZpMrFULG4gIuf414ukDhgtODH73wBi43FVxdkYcNX57hM4jAMg4eXT8edS7kFpx/5+wmn3r7eev7DizjVrEdyrAqvfG8JcpNcJzrnZidg292LoZLLsPtMO1473ODV/lv7h9GmH4GMGV1sLxK99dZbWLduHTZu3Ihjx46huLgY5eXl6OjocLn9vn37cPvtt2Pv3r04ePAg8vLysGLFCjQ3Nzttt3LlSrS2tgpfb7zxRsDnyi8AyjBArEqaRDq/pga/MG6jCBXpwGg1ua8LjupHzEIVeSBxmJsUAxkDjJht6BwwonvQCBvLvZZS/Y7U0WKjQcG3HeH7eY8uIiteAphfI+JMq0G0fQbivL0aPVOnQZJI8Ztpf73a7BMR/BoCGUFq6wJQIp0QQgghhHihKC0OX12QDQD4477JqUqv6xrEv75oAQCsvXb6pJxDpJAqKeOPIXsRXKI2fBLpZQH2ST/fZoBhxIJYlRxzwmhxRP4P4d5BqkgPFXxfZ28Tf898cB5NvcPITYrBU99Y4LESkmEY/L8bZmNOlg49gyY89Z9zPp3b6ZZ+/PnjSwCATV+fj/wJFtRbOCUJj66cCQB4+j/nhCSpJ3w1+qxMHbQSJW1DwbPPPov7778f99xzD+bMmYMtW7ZAq9Vi27ZtLrd/7bXX8OCDD6KkpASzZs3Ciy++CJvNhoqKCqft1Go1MjMzha+kJPdV/UajEXq93ukLAMxms9NX7wCX2IpVyWG1WsZ9X4yvpBjuZ92hH4HZbEa9vUd6tk4d0H7n2St6qxp63W7jasxV9d1gWSA3UQOdWub38WGzCpXLDV0GtPRw40qJVYG1WSV5LWMU3DVgYMT12Ig40sZUpLfYK6r5fv9i4D9PhEpFOn8efKW8GPh+8kJrF4lbH7kSub9pCCGEEEKIqB66dhr+9UUL/nOqDRfbDU6tAIJhy8eXYGOBa2amYX4EVx4Gg2NSBgC2bNmCHTt2YNu2bXjsscfGbf/aa685/fvFF1/EP/7xD1RUVODOO+8ct73RaITROJoEG5tw4ZnNZiGRrlUgbP5ovyyP+2P1eGMfBoZGoHbRl9Mx4TLWwUud3H6mJHLJEZtVwrMVT6I9edVpGIEOGPezJMHHt5E412bAsMmKGJX7HrH13YP426F6AMBTX1/gVdsNtUKOp74xHze98CnePd6MO5bmY6GXLVSe3nUeNha4YUEWyudmevWc711ZiH9WteBkcz9+u/s8Nn19gcftj9vX7bgsP9Gr/Ycjk8mEo0ePYv369cJjMpkMy5cvx8GDB73ax9DQEMxmM5KTne+A2bdvH9LT05GUlIQvf/nL+OUvf4mUlBSX+9i0aROeeOKJcY/v3r0bWu1oJXj9AAAooGAt2Llzp1fn56vGLgaAHBcb2rBzZzMuNMsBMGg6X4WdrVV+77ffBAAKnG834L3/2wm1m7fTnj17nP/dzJ1Pmnwo4DHHsNxYdu47CKUMAORQ24ySvZY1bdy51zW1AjOdxzY0FDqLVoY7PtHbN2SG0WJFa99oaxexzLIn0pv7htE/ZEaCVprFfr111l6RPlvEggG+Ir1/2Iwhk0WoSE8PYntASqQTQgghhBCvzMyMR/ncDHxwuh1/3HcJz91aErRjN/cN4x/HmgAAP/gy9UYPhJRJGZ63CReWBYYtXKbi6MH9uBQebdLBskC8Ug6D2Ya//OMDTPXwN+LYhAsA/N95GQAZdMYOyZIjUhjq5c778y9O4ys5lHAJBVkJGqTFq9FpMOJ0Sz8WFbhvFfTsnguw2Fgsm5GGq6anen2MBbmJ+GZpLv5+tAm/r7iIl+9ZMuFzDl7qxicXOqGUM/hJ+SyvjyWTMdh44xx8c8tBvH2kCQ9dO81tOxhgtCJ9YV7k9kfv6uqC1WpFRkaG0+MZGRk4d867uwR+8pOfIDs7G8uXLxceW7lyJb7+9a+jsLAQly5dwk9/+lNcf/31OHjwIOTy8Rnk9evXY926dcK/9Xq9cHeSTjd6EfzkfDtw8gukJsRh1aorfR2uV1Jqe/DKxSOwqWKxovwKrDtcAYDFLau+jMwAeyVvvvgx2vVG5M5fisUFznFlNpuxZ88eXHfddVAqR5OU/369CkAHyhfPwqorCwI6/u6BE6g92YbMotmI1yiBc6cxNScVq1aVBrRfd8xftOKd2pOITUgB0Ok0Nn4SnAQuMUYJpZyB2cqia8Ak9PjmK6zFkBCjRE5iDJr7hnG2TY/Li1xPigULX5E+S8REuk6jRJxagQGjBa39I+ix3yEXzAXrKZFOCCGEEEK8tvba6fjgdDv+WdWMh5dPn/BWfbH85eNLMFtZXF6UjNL88OkpHYqkSso48jbh0jc4DNuh/QCA1TesCKvWDB8YvsB/TrdDnjkLq64pGvd9dwkXlmXx5ImPAZjw3fLLsSg/fBKAX/znPD7vrEdKTgGAWkq4hACGYVCSl4g9Z9pR1djnNpHe0jeMf59oBQA8Uj7T5+OsvXYa3j3WhL3nO3G2VT9hheHW/TUAgFsX52FKim99qxcVJOOqaak4UN2FF/fX4uc3zXW5ncliw0n7mh0LpyT6dIxo8tRTT+HNN9/Evn37oNGMJplvu+024f/nz5+PBQsWYOrUqdi3bx++8pWvjNuPWq2GWj0+WaVUKp2ucfyalboY58fFlJnIxVTXoAl6E7cop1zGICcpLuCFG0vyEvHB6Xacbh3AFdPTXW4zdswnm7nr32X5KQGPmZ84ajeYYbZxj2XoYiR7LXUxXMuuYQt3MMexSXXMaCSTMUiOVaFdb0T3gBGdErUkmZOt4xLprZObSLfZWKFH+hwRW7sAXFV6dccAWvtGE+li9WD3BvVIJ4QQQgghXpufm4BrZqbBxgJ/2ncpKMfsMIzgjc8bAQA/+DL1Rp9sfFLmvffec0rKOFKr1dDpdE5fwOgf6PzXsIVLeCjlDHRazbjvh/LX5VO5it4jDX1ut3E15sZ+E7oHTVApZLisIGXSx+HLV7K94mvQZHM5NjI5+PYuVR76pL92uB5WGzcZOS/H99ZYBamxWDU/CwCw7UCtx23ruwex9zy33sL3riz0+VgA8F/LpgIA3vq8EQY3iyCea9PDaLEhIUaJwtTgTOpOhtTUVMjlcrS3tzs93t7ejsxMzy1znnnmGTz11FPYvXs3Fizw3CanqKgIqampqK4ObB0UfrHROHd9UUTAV58aRixo6h2yP6YKOIkOjK47UNXU59X2bf0jwoK383ICr7zlK5Rb+oZH+z9LuJBirL3F05AxPFqMhbMk+1owvUNmdA3wldTiJoCFBUdbJndyu6FnCEMmK9QKGQpELrrhFxbtHBhB7xD3OibHBu8ziF+J9M2bN6OgoAAajQZlZWWorKx0u+3WrVtx9dVXIykpCUlJSVi+fPm47e+++24wDOP0tXLlSn9OjRBRUayTaEGxTgjxBd9a5R/HmtDcNyz58V7aXwuTxYaFUxJxxdTJvU01EgQrKeON/mEuQabTKMEwgSdAgmmJfcHRo/W9sFhtXj/vcA23QOnCvESoFdIlmqTA99TmE2UkNPCJ9C/cJP5MFhverOQmI+++osDv49xlf+6Ok60Y9BADfztUD9a+nkVRWpxfx7pyWgqmpsVi2GzFDnsl/Vgnmrhq9OK8xLC7fvhCpVKhtLTUaaFQfuHQpUuXun3er3/9a/ziF7/Arl27sGjRogmP09TUhO7ubmRlZQV0vqOJdOnuMEqwt8kAgDOtXNVrmkg9kktyEwF4v4Av/76bkREvyl1Vo4spDqPbnmxNiZUuka61r6swZKLrutQS7T3L+4ZM6B7kJknEbknCV3+fbZvcRDrf1mVmZjwUcnFruPn3Q/eACb2D3OfIpCAuWO/zaN566y2sW7cOGzduxLFjx1BcXIzy8nJ0dHS43H7fvn24/fbbsXfvXhw8eFC4pbO5udlpu5UrV6K1tVX4euONN/wbESEioVgn0YJinRDiq9L8ZCwtSoHZyuIvH0tbld47aMJf7Yvjrb12WkQnS4IlWEkZb/CJ9ISY8GnpwpuZEY+EGCWGTFac9qHyq7K2GwBQVhh+LYriNFwSgBLpoWV+bgIYBmjsGUb3gHHc9w9Ud6J70IS0eDWWz85wsQfvLMpPQmFqLIZMVuw86Tq5bbOx+NcXLQCAby+Z4vexGIbBLYvyAADvHG1yuc0Ze6JmbrZ4/XdD1bp167B161a88sorOHv2LNasWYPBwUFhweg777zTad2Lp59+Go8//ji2bduGgoICtLW1oa2tDQMDAwCAgYEBPPLIIzh06BDq6upQUVGBm2++GdOmTUN5eXlA5zps4iqbPS18GyiGYYRkGl95K1aLjHn291NT7zC6XLyfxjphT6TzE1qB4hdN7DQY0TfMt62QrtqWn/AYNFFFutT4ZG9T7zBG7H17UkSuSJ+RwSXSL3UMwmZjRd23L87Z27rMyhS3rQsAJNvbuHQPmhwq0kM4kf7ss8/i/vvvxz333IM5c+Zgy5Yt0Gq12LZtm8vtX3vtNTz44IMoKSnBrFmz8OKLLwof1B2p1WpkZmYKX0lJ4dMrkEQminUSLSjWCSH+4KvS3/i8ER2GEcmO8/KntRgyWTE7S4cvz3Ldq5T4TuykjL8MI1xCNl4Tfm1BZDIGi+39qA/bk+MTYVkWh2u5ivQlheF3d8VoRTolXEKJTqMUbp0/a6/OdfTvL7ik9w3zswKqDGQYBt8szQUA/LOqxeU2n9f1oF1vRLxGgWUz0/w+FgB8fWEOZAx310djz/jFbPkE6hwRF7ILVbfeeiueeeYZbNiwASUlJaiqqsKuXbuEtS4aGhrQ2jo6ufGnP/0JJpMJ3/zmN5GVlSV8PfPMMwAAuVyOEydO4KabbsKMGTNw7733orS0FPv373fZB90XI/Ze2xqJ77hJjecSZ3zla7pIFek6jRJT7XdSnPCivcsXjdydEQvsleyBckoS2qttEyWsttVSIj1o+J/jpQ7us1OMUi762jBTkrVQyWUYNlvR0u/6rlGrjcVLB2px8+ZPcftfDuHDM+0utxurZ9CEn71/Eiuf/wQ/eOM4ajrdfwastn9verr4iXS+HU5L3zCG7HEbsj3STSYTjh496rSokEwmw/Lly3Hw4EGv9jE0NASz2YzkZOcKjH379iE9PR0zZ87EmjVr0N3t/sOo0WiEXq93+iJETBTrJFpQrBNC/LV0agoum5IIk8WGF/d77pfrL/2IGds/qwPAJe6pGl08Yidl/BXOFenAaFV5pT05PpGm3mG09o9AIWNwWX6ihGcmjXiNPZE+QhXpoYav+uOTirwRsxV77EmSry4IrGUHAFw/j2v/dLi2G3oXvcv5BU3L52YG3LooXacRJqs+POuc6LHaWJxri56KdABYu3Yt6uvrYTQacfjwYZSVlQnf27dvH7Zv3y78u66uDizLjvv6+c9/DgCIiYnBBx98gI6ODphMJtTV1eEvf/nLuEWo/TFi5hJbGqW0S/Lx1b0X27nJI7ES6QBQbE+KV9mT5O7YbKzQ2qU4z/e1B1zhK5SNFpvQ/13KthWx9jsHTBYbfOhSRvyQZG/twieZxa5GBwCFXIaCVG7B2uqO8YlulmXx6N9P4Bf/PoMvGvtwsKYb9716RLj7052eQRO+/sdP8bdDDTjXZsD/fdGCr/3xM+E6PBY/WTA1Xfz1K5Ltd6Pw41PIGMRL2EpqLJ+ubF1dXbBareMurhkZGWhra/NqHz/5yU+QnZ3tlLRZuXIlXn31VVRUVODpp5/Gxx9/jOuvvx5Wq+sZsU2bNiEhIUH4ysvL82UYhEyIYp1EC4p1Qoi/GIYRFv7826F69A6aRD/GXw/WQz9iwbT0OKyc67l3N/GdmEkZfxmM4VuRDoz2Sa+s7fHqFmo+4T4/N0H0KrRg4CvSDdTaJeTMyuSSyWP74lbW9sBgtCBDp8ZlUwK/O7AoLQ5T02JhtrL4+Hyn0/dYlsVH57jWgKvmi3PNvm4O9xm14qxzy8HargGMmG3QquSiL2RHAsO3rNAopa1IT4jhfm/wldRpOnFauwBAiT0pPlGf9NruQRhGLNAoZUJLjUBpVQrE2F87vX3Skk/ASsHxd5GREumS4idE+ARwisj90Xn8HRWuEul/P9qEfxxrglzG4Gc3zMYdl+cDAJ78v9PjJmIdrX/3BOq6h5CTGIPf3VaCkrxE9A+b8YPXj8M8ZgbGamNR0zUIAJiWJn5FOj8BcdE+vqRYVVCLbaSdIhzjqaeewptvvon33nsPGs3oRe62227DTTfdhPnz52P16tX497//jc8//xz79u1zuZ/169ejv79f+GpsbAzSCAjxDsU6iRYU64REt2tmpmFutg5DJite/lTcqvQhkwUvHeD2+eA1UyGTUTV6JBqytwiJlbCXrpTmZuugVcmhH7HgfPv4lhpjVQptXcKvPzoAxPEV6ZRIDzmz+QXmxrR2OVDdBQC4enqaaNfR6+ZwSXI+ac6r6x5Cc98wVHIZLi8Sp3XRV+w93Q/VdMPgUAHPr0swO0tHvx9CzIjF3iM9SIl0XpqISclihwV8Wdb9JCmfaJ+XnQCliAsqjq1UlrK1i0ohExZupa5d0uIXG+XbkaRK1I5kWjqXSL80pvXKkMmCp3edBwD8eMUM3Hd1EZ68eS5WzMmA2cri17vOudzfwUvd+OB0O+QyBi/etQg3l+TgpbsWITVOhYsdA3j7iPPf7k29QzBZbFArZMhJihF9fCn2181kbyOVHMSFRgEfE+mpqamQy+Vob3e+raq9vR2ZmZ5nnJ955hk89dRT2L17NxYsWOBx26KiIqSmpqK6utrl99VqNXQ6ndMXIWKiWCfRgmKdEBIIriqd65X+8md1Lm/z99frhxvQM2hCXnIMbirOFm2/JLQMm6VflE5KCrkMpflcla837V0q67htwnGhUcChtYvRAg+5JTIJZtv7hFd3GJyqA/df5BPpqaIdi9/XoZpupyTjp5e4Nn6l+Umi3XFRmBqLKclaWGwsjtb3Co/zC41GQ3/0cMNXpKslbu0yNpEu5mKDszJ1UMll6Bsyo8FFf34en0gvFmmhUV6Kw1hkDCRvW8H3szdTRbqkxrbokWqBTD6RPrYi/Z9VLegaMCI3KQb3XVUEgPss/9NVs6GQMdh7vtNlVfpLB2oAALcvyRN+16TEqbH2Wu5vgC0fX3K6K49P4BemxkIuwUTn2Er+RAnv2HDFpyubSqVCaWmp04Jy/AJzS5cudfu8X//61/jFL36BXbt2YdGiRRMep6mpCd3d3cjKCryHGyH+oFgn0YJinRASqBVzMjE9PQ6GEQv+etBzf0VvjZit2Lqf+9D+4DXTAlocj4Q2vipLK3HlopT4ytuJEukd+hHUdg2CYYDS/DBNpKu5P1ZZFjBRwiWk5CbFIE6tgNnKCkmM7gGjkBS5cpp4ifTLpiRBKWfQ2j+Cxp7Rxew+u8S9B64SMWkPjE48HXZ4j11o4yrvZ2WJ3zaABEbokS7xYqNjE+k6EdfaUClkmGPvvV/lob1LVRPXQ13sRLpjgjVRq5L8rguVgvucZaHruqSSYp1jVqoEsLvWLq8d5j6n37W0QPiZA0BBaiyW2+/+eedIk9NzWvtHUGG/++ieKwudvnfr4imIVyvQ2DOMQw6LrvPH5RP6Yksc994P4UQ6AKxbtw5bt27FK6+8grNnz2LNmjUYHBzEPffcAwC48847sX79emH7p59+Go8//ji2bduGgoICtLW1oa2tDQMD3As7MDCARx55BIcOHUJdXR0qKipw8803Y9q0aSgvLxdpmIT4jmKdRAuKdUJIIGQyBg/ZK1Je3F+DIVPgLR/+frQJ7XojshI0+PplOQHvj4SuYWFRuvBNpC8RknzdHlsA8NXoszN14xJA4UKjlAnVZcPU3SWkMAwjLDh63p5k5hOA09LjkCpi24sYlRwL7Isx8skTlgWO248n9h0XwnusZjRRc6mT67/LJ4xI6OAr0mMkrkgfm4TUibzWRgnf3sXNgqMmiw1n7S2GSuzvB7E4VtwGo9pWSKTTnUaSGtuiR6r1YYrSuHUjeofM6LGvYdTYM4RTzXrIGOAbpbnjnvOtxdxj//qixam6fPeZdrAssKQgedz1NkYlx40l3F2j/zzeIjx+qcPeH12iRDp/d5zw7yAuNAr4kUi/9dZb8cwzz2DDhg0oKSlBVVUVdu3aJSxU19DQgNbWVmH7P/3pTzCZTPjmN7+JrKws4euZZ54BAMjlcpw4cQI33XQTZsyYgXvvvRelpaXYv38/1GppGu8T4g2KdRItKNYJIYH66oIs5Kdo0TtkxuuHGwLal9lqw5/2XQIAPPClIqglrmgjk4uvSA/X1i4AsCA3ASqFDF0DJmFxLVcO14R3f3SAS9bydw9QRXro4ZMctfY45NtOlIhcLQuMxvHxBq7dSp8J6BowQS5jMC8nQdRjlRVyd32cbO6HyWLDiNmKpl6u3QYl0kOP0d4jXR3kHuliV6UW8wuONvW5/P65Nj1MVhuStErkJYvbB9pxUiAYi3GrqSI9KOLGJHzHJoTFolUpkJPIxSRfHb77DNfKdUlhssuWMldNS0OsSo6uAaOwBgUAfGhf6HnF3AyXx1o5l2sHu+9Ch1BMwN8VJdX1WSGXQevwuTFOotfR7fH9edLatWuxdu1al98bu5BcXV2dx33FxMTggw8+8Oc0CJEcxTqJFhTrhJBAKOQyPHjNVPzkHyfx509q8N3L8/2uMH7/eDOa+4aRGqfCbYuniHymJNTwLQC0YZxIVyvkWJiXiMO1Pais7XH7hyPf+iVc+6Pz1EoZDEZKuISiQnsVopBI59tO5Iqb2AaA+fZkOZ9wqR/g7lSYlRkv+h0meckxSIhRon/YjIsdBihkMthYLgmVGhfcRebIxEbvNJK2It0xcS6XMaIvWl1srzI/1dwPs9U2bjFRfqJqQW4iGEbc1iuOicFgtD4brUinhXulND6RLt0kSUGqFs19w2joGcKSwmR8cqETAIQWLmOpFDJcOS0Vu8+046NzHZiVUQCTFThS3+fxeUsKkxGjlKNdb8TZVgPmZOtQb19XoCAlVvyB2ek0SqEYIzbUK9IJIYQQQggZ62sLc5GdoEGnwYh3jjT6tQ+rjRWq0e+7uiisq5SJd4b5ivQwbu0CjCbH3fVJ7x004Xw7125jcbgn0vlF6agFQMgpTB1NpLMsK1TSLhC57QQAzLX3jz7Xyi1uyifSxe4VDXB3QvCLip5u1qPGodpR7AQmCdxoaxdpr+uOVds6jUL0WChIiYVOo4DRYhPaJTmqapSmPzrg3KoiGBPN1CM9OLQqORzDdGxiXUx5SVoAXEsXm43FMfvdQ/y6Lq58aUYaAKCyjmujVT/AwGJjkanTID9F6/I5GqUcZUXc55pDNd0YMVvRaTBy5yDynRqOHKv5pXwdXaFEOiGEEEIICZhKIcN/XTMVALDl4xqY/PhrbOfJVtR0DSIhRonvXp4v9imSEDQUARXpALCk0POCo5/b+6NPTYsVtVf1ZFDbq0zNlHAJOUV8Ir1zEO16I/qGzJDLGEkW5JySrEW8RgGT1YZLnYNo4woQhYS32PjE/emWfqFtAN8HmIQWo/267riYoRQcJ9ulWGxQJmOEJLmr9i78YyV54t/x4ViRrglGIl1O1/VgYBgGsarRn61OwpYkecn2RHrvEC50GGAYsUCrkgtrabhy2ZQkAMCJxn7YbCxq7fNHpQVJHieq+Od90dQntN2KVyskXQ/G8T0vVYscdyiRTgghhBBCRPGtRXlIi1ejuW8Y7x9v9um5NhuLzXurAQD3XFkQ9OoSMjmGI6BHOgBclp8IhYxBc9+w8EekI6Gti4dKsHDBV6RbbFQJHGqmpGjBMIDBaMFh+yKgU5K1kqw1wTAMZmdyye0L7QNoH+biQarF5ebwFfBtBtR2ce8xfuKAhBaLfaFCpUzadJNzQlKahB3f3oVv48IzjJiFCR0p7vhw/AwUjNYu/DXCSncaSS5WPfrzlLK1S24SVw3e1DOMY/b2LCV5iVDI3b8vZ2TEIUYph8FowaWuQdTZ7zRalJ/k8Vj8OhxVjX1o7Bnmjp+slfSOIapIJ4QQQgghYU+jlOOBq4sAAH/cVw2L1fvSpopzHTjXZkCcWoG7ryiQ6AxJqOF76YZ7axetSoH59j7U/KKijirrIqM/OjDa95gqF0OPWiEXFpjbe45bIE7KZHNBKlfxeKF9AD3cnfySLS7Ht62p7x5Ccx+XSOcrLklosefRIZdJO9mmdUhIqiWqfhcq0u1tXHinWvRgWS5ZKcVdRk490qm1S0Rx7Oct5SKZUxwr0u2t5SZaCFohlwl3/5xpNaB1iHsPz832/Dx+wqm+ewhnWrl1M/KSpGvrAjgnz6lHOiGEEEIICVvfLpuCJK0Sdd1D2HGy1avnsCyLFz66CAC4Y2k+ErW0eFy0MNvL31QeKqTCxRI3fdIHjBacauaSMIsLwj+RziesKJEemrITuOTFgWquIn2qRBXiAFCYyu1734VOsGCgk3DxTz6R3qYfwaVObjHV7ERpEzXEPxYbd3GQ+rLuWKltZaUppeYX6r3QYcCA0SI8fqKJSxZK0R8dcE4SBqW1i7DYqOSHinqOEyNStiThJxrb9CM43cJ9BvHmjiF+mzMtevQYuUT69Amel6BVIi2em1D62L6oqdQTnY4FGPGUSCeEEEIIIeEqVq3AvVcVAgBe+KgaNtvEf5Xtv9iFL5r6oVHKhOeS6GC1x4fUlYvBICw4WuecSD/e0Acbyy26FQmJv9HWLpN8IsSlzAQNAKBrgCsRnyphH/FCe0X6+fYB+79jJbuVP1GrEvrt8gvZ5UTA+ykS2fPokEm8EKxjiwpvPmv4I12nQXaCBiwLYUIUAE7Y/79EgrYuwNjWLtInCakiPXgc3xdStiRJiVUhRikHywKf13ELjU6UEAdG7yrac7ZD2E9S7MQTpNPsz+OLCXIlrkjXOCTSqSKdEEIIIYSEtTuvKEC8RoGLHQPYfaZtwu1f+IjrjX77kilhvxAj8Q1fuaiIgER6aX4yGAao7RpEh35EeJz/A3ZJQfj3RwccWrtQ5WJIykrUOP1byqrAgjFtY6S+ld/xeHIZg/R4+n0Rivge6Qp58K7rFokS6YBje5c+4bETTVwifUGu+AuNAs5JwhiV9Gk7tZwq0oPFsXBAyrvxGIZBus75GunNHUpT07nrbGMv1+vc28nYsdXuGTqNmy3F4bi2TrAXrKdEOiGEEEIIEZVOoxT6nP/ho2qwHm65PlzTjcq6HqjkMjzwpaIgnSEJFZFUkZ4QoxQWX3SsSq+0J9IjoT86MFqRTq1dQlPWmORFpoTJjLF3WGTopE1sO1Y4Zuo0HhfNI5PHZv+dL3VFuiNrMBLpTX0AgH4T0KY3QsZM3HPaXyqHnu8xKumrbWX238ESdcghDhzfFTKJP/s4TjYmapVeLcrLt+zieVtZnpfsvJ3UE52Ok00qidZIcId+8xBCCCGEENHdc2UhtCo5Trfose98p9vtXtjLVaN/ozQXWQl0m3604asI5UGsXJRSWZFzn3STdbQFwJIISaTzVaY+rCVMgigzYWxyW7pEerxa4dSnVuoKRMfETBpVo4csPqkdzDuNpGopBIwupMgvONowwB1rRka8ZC0lHCuVg7EYN/+josu69II5weR4nfR2UjUrwb/J2LGf4aW+Rju+L5RBnlSlRDohhBBCCBFdcqwK3708HwDw+48uuqxK/6KxD/svdkEuY7Bm2dRgnyIJAZORcJESX3V+uIZLpNcPMDBbWaTHq5GfIu3CW8EitycBKOESmhyrwuPVCkl7xzIM43S8DIkTJ+nxowkdvl86CT38dV3qattgmZ+bAIYBmvuG0Wkwot6eSC+WqD864JxIVwZhollOFelBE8xEuuM1MzPBu4S4RilHonb0+urtnUbZY9qKSZ1IVztUoVNFOiGEEEIIiQj3XV0IlUKG4w19OHipe9z3+Wr0m0uyMSVCkozEN5HU2gUAFhdwifTz7Qb0DplwSc89vqQwWdKKyWCihEtoS3ZYFG5sf1wpOCZqpG7t4liRTon00GVlI2uCNE6tEBZpPNHcj3pubV2h5YsUHBODwfj9yP9+krBDDuEF8W3hmMweW2nuSYYfCXjHivRYlRxaiVsSOfWap0Q6IYQQQgiJBOnxGty+OA8A1yvd0bk2A/acaQfDAA9eM20yTo+EAKG1S4QkmVPi1MKCW0fr+3DJwI2rrCgyFhoFRqtMKeESmhJjRhPpwUg2p8aPHi8lTuVhy8ClUSI95NlsrDDJFszKW09rsYihRFhwtB+NfEV6njT90QHnxGAwJiT4Q7DBzPJGqWDOL6U6XJN9ab2V4ZA89/ZOI8dJXHUw2hEFadFWl8cO6tEIIYQQQkhUeWDZVCjlDA7WdOOIwwKMWz6uBQCsmpclJB5JdHFMuERKRTow2gv9s0vdqOUT6RHSHx0YnfSghEtoiteMVgFagzDZEa9WOvy/tBWIjslzSqSHJqtDQjuSrut89fn/nWzDsJWBRinDjIx4yY7n+NrJZdKn7eRUkR40TBB/dzpeJx0T3RNJcmjt4vj/njgu/inl4r8Ch2sNJdIJIYQQQkjEyEmMwTcuywUw2sqlfRjYeboNAPDQtVSNHq0sDn9oRUoLAGA0af7u8RaYbQyStEpMS4ucySJhUTpKuIQkxyo9k0X6TvaOCwXHaaRNbusokR7yHBNowUykKyTuI873Q2/qHQYAzMnSBW2BQ6nHBoy2dqHLemTROVyTY31otaJVjSbF4/yYIA1GIt3xEMFej4ES6YQQQgghRFJrrpkKGQPsO9+JU816fNgsA8sCy2enY062brJPj0wSW4RWLvIV6YMmKwBgUX5SxCy6Bzi0dpnk8yATk7rdBeA8CaaWuE+tzqHaPk4jbfU78Y9TIj0IrV3+92vzkBKrwlNfXyDpcWZmxjvF94Ic6T+73FicjZkZ8bhiqvStwfg2PLT2hfTYIE5XOE4++nLNdGzL5M+C1Rab9J8QbJMYrJRIJ4QQQghxsHnzZhQUFECj0aCsrAyVlZUet3/nnXcwa9YsaDQazJ8/Hzt37gzSmYaP/JRY3FySAwD4xc5zONLJfUCnavTJNdmxHqkV6VkJMZiSPLp47uKCpEk8G/HJKeFCHASrKhdwTugE+1b+UCD2NZtlWWzYsAFZWVmIiYnB8uXLcfHixYDOMditXb5Tlo8jP1uOeTnS9SsHuDh3PMaCXGmPBwB/uH0hdj18NdQK6ftN828nmiCVXjB/dzreueNLZbnjdd2f93EwxhiU9jFuRN9vH0IIIYQQN9566y2sW7cOGzduxLFjx1BcXIzy8nJ0dHS43P6zzz7D7bffjnvvvRfHjx/H6tWrsXr1apw6dSrIZx76HrxmKhgGONbQBxsYXDE1GQunRFaCMZyEQqxbrZFZkQ6MVqUDwOL8yIpzOS02ShxIXYXu7liaICxmF0qkuGb/+te/xu9//3ts2bIFhw8fRmxsLMrLyzEyMuL3eU7GdZ0J0qKmfHsXIDiJdCB4Y6OK9OAJ5mvs2NrFl2u1KsDrejCKIyYzVul+KEIIIYQQu2effRb3338/7rnnHgDAli1bsGPHDmzbtg2PPfbYuO1/97vfYeXKlXjkkUcAAL/4xS+wZ88evPDCC9iyZcu47Y1GI4xGo/BvvV4PADCbzTCbzcLj/P87PhbuCpI1KJ+TgV2n2wEA379ySkSND3D9cwvVMYZCrA+bTML3bVYLzObIqfEpnZKAvx9tglrOYmqqOmTjwB8sy9UssgiPWAe4St7f/OY3aGtrQ3FxMf7whz9gyZIlbrd/55138Pjjj6Ourg7Tp0/H008/jVWrVgXxjMURjETD3VcU4G+H6jFXZ5p44wA5JhUDTfSEG7Gv2SzL4vnnn8fPfvYz3HzzzQCAV199FRkZGXj//fdx2223jdunN9d1o8N13WoxwxxBk6Tzsrm1LrQKFllxipC+5vmKv67bED7X9XAVzNYuju1cfJn8DnRdF3UQJjqtk5hJp0Q6IYQQQggAk8mEo0ePYv369cJjMpkMy5cvx8GDB10+5+DBg1i3bp3TY+Xl5Xj//fddbr9p0yY88cQT4x7fvXs3tFrtuMf37NnjwwhCX7Ec+Egmx1Qdi94LR7AzsDvIQ5bjz21oaGgSz8S1UIn1fhMAKCADiw8//NCvsYQsCzA1Xo7ZSTbsraiY7LMRVW2DDIAMNjb0Yx0YreTdsmULysrK8Pzzz6O8vBznz59Henr6uO35St5Nmzbhq1/9Kl5//XWsXr0ax44dw7x58yZhBL77/peK8OdPavD/bpgt+bHSdRoceuwa7N61S/JjAcCszHhcaDegrCh54o0jhBTX7NraWrS1tWH58uXC9xMSElBWVoaDBw+6TKRH+3XdbAVmJcgwOynyxsZf19kwua4D4TtBuu66mbh96yHccXm+5MeSyxgUpcWiuXcYc31Yk+gbpbmo7tBD1nnJp+P9z4oZeGb3Bfz6G9KuWQAANxVn46n/nMPlk/C7gBLphBBCCCEAurq6YLVakZGR4fR4RkYGzp075/I5bW1tLrdva2tzuf369eud/rDV6/XIy8vDihUroNONfsA1m83Ys2cPrrvuOiiVSle7CltfXzmMTz/eixUrIm9srn5ufMVeKAmVWLdYbVh0uQH7D3wakbF+8/WR+T4uGzDih4ZhVFV+FvKxDkh/90Uoeuz6WXjw2mlO/XGlpJTLEKQOFPi/H1wFk8Xm1wJ44UqKazb/Xymu66VlBhz4NDKv6zeujOzr+vHD4XFdD+cJ0qVTU3Di5ysQH6Rr2AcPfwlmqw1alffHk8sYPLJiBnburPbpWGu/PB13XF6ABK30743sxBiceqIc2klo8+XXT07smR+WZbFx40Zs3boVfX19uPLKK/GnP/0J06dP9+f0CBENxTqJFhTrhASHWq2GWq0e97hSqXT5B5m7x8NZcjy3qFUkjo3nOLZIHeNEvIl1pRKYninDRW30xEMkyExSIiVOjUvK0I/1YNx9Eaotu7SK4B0r2GNTySZ3bNHa7sLb6/qMLBmq6boeVoTruir0r+tAaLSn4//t+F9vxcgBi8Xi03MCoWR8P0d/x6ZVBu8aqZYBVqsFVqtvzwv0uu5zIl2KmR9+kYtXXnkFhYWFePzxx1FeXo4zZ85Ao9H4eoqEiIJinUQLinVCOKmpqZDL5Whvb3d6vL29HZmZmS6fk5mZ6dP2hIQCinUSLYJx90W0t+xyFC1jC3a7Cymu2fx/29vbkZWV5bRNSUmJiGdPiLhCpT2do2i59kUaf6/rPifSQ2GRC0KCgWKdRAuKdUI4KpUKpaWlqKiowOrVqwEANpsNFRUVWLt2rcvnLF26FBUVFXj44YeFx/bs2YOlS5cG4YwJ8Q/FOiHioZZd0Te2YLe7kOKaXVhYiMzMTFRUVAiJc71ej8OHD2PNmjVSDoeQgIRKezog+q59kSLQ67pPifRQWeRi7G0W/f39AEK3fxMJHP+zZYO0Mi/FOpksFOscivXIF+xY99a6detw1113YdGiRViyZAmef/55DA4OChNNd955J3JycrBp0yYAwA9/+EMsW7YMv/3tb3HDDTfgzTffxJEjR/CXv/zFq+Px4x8b62azGUNDQ9Dr9RH54TWaxkaxzqFYj/yxhWKsB+Pui7HtLvjxDw8PO/3c+ddseHg4qLf0B0O0jW14eBhAcGNd7Gs2wzB4+OGH8ctf/hLTp08X7iDNzs4WkvUToet65I8tFK/rwUDX9egbmy/XdZ8S6aGyyIW72yzy8vK8GwgJW93d3UhISJD8OBTrZLJRrHMo1iNfsGLdW7feeis6OzuxYcMGtLW1oaSkBLt27RLiuaGhATKZTNj+iiuuwOuvv46f/exn+OlPf4rp06fj/fff93rhIoPBAIBiPRoYDAaKdVCsR4NQivXJuPuCYj16BDPWpbhmP/rooxgcHMQDDzyAvr4+XHXVVdi1a5fXbRgp1qNHKF3XJ6M9HcV69PAm1sNyqeuxt1n09fUhPz8fDQ0NIfPmlhp/a0ljY6PTrSWRqr+/H1OmTEFycvJkn0pQUaxTrEcLinWK9VCydu1atwmWffv2jXvslltuwS233OLXsbKzs9HY2Ij4+HgwDCM8HsnxEG1jY1kWBoMB2dnZk3x241GsSyvaxhaqsR7suy8o1iN/bJMV62JfsxmGwZNPPoknn3zSr/OhWI/8sYXidX0yJkgp1iN/bL7Euk+J9FBZ5MLdatEJCQkR9wOeiE6ni6oxO86yS4liPfRQrEuDYj30UKxHF5lMhtzcXLffj+R4iKaxRcuEoCcU69ExtlCM9WDffUGxHh1jC8VYDzaK9egYWyjGerAnSCnWo2Ns3sa6T3+9Os788PiZH3czOfzMjyN3i1zw+EUuaPEiMlko1km0oFgnhBBCSKRbu3Yt6uvrYTQacfjwYZSVlQnf27dvH7Zv3+60/S233ILz58/DaDTi1KlTWLVqVZDPmBBCiDu33nornnnmGWzYsAElJSWoqqoaN0Ha2toqbM9PkP7lL39BcXEx/v73v/s0QUqII59bu4TiIheESIFinUQLinVCCCGEEEIIIeEimO3pCHHkcyI9FBe5UKvV2Lhxo8u2AJEq2sY8GeOlWA8N0TZminVOtP3cgegbc7SN11eR/PrQ2IijSH7NaGzEUSS/ZjQ24iiSXzMaG3EUya8Zjc09hmVZVuRzIoQQQgghhBBCCCGEEEIiRnSv8EUIIYQQQgghhBBCCCGETIAS6YQQQgghhBBCCCGEEEKIB5RIJ4QQQgghhBBCCCGEEEI8oEQ6IYQQQgghhBBCCCGEEOJB2CTSN2/ejIKCAmg0GpSVlaGystLj9u+88w5mzZoFjUaD+fPnY+fOnUE6U/H4Mubt27eDYRinL41GE8SzDcwnn3yCG2+8EdnZ2WAYBu+///6Ez9m3bx8uu+wyqNVqTJs2Ddu3b5f8PIOBYp1ifSyKdQ7FOsV6tPrf//1fXHHFFdBqtUhMTJzs0wmIr+/7cOFPvJPxKNZDH8W6OCjWQx/Fujgo1kMfxbo4KNZDn1ixHhaJ9Lfeegvr1q3Dxo0bcezYMRQXF6O8vBwdHR0ut//ss89w++23495778Xx48exevVqrF69GqdOnQrymfvP1zEDgE6nQ2trq/BVX18fxDMOzODgIIqLi7F582avtq+trcUNN9yAa6+9FlVVVXj44Ydx33334YMPPpD4TKVFsU6xPhbFOodinWI9mplMJtxyyy1Ys2bNZJ9KQPx5D4QLX+OduEaxHvoo1sVBsR76KNbFQbEe+ijWxUGxHvpEi3U2DCxZsoR96KGHhH9brVY2Ozub3bRpk8vtv/Wtb7E33HCD02NlZWXs97//fUnPU0y+jvnll19mExISgnR20gLAvvfeex63efTRR9m5c+c6PXbrrbey5eXlEp6Z9CjWKdbHoljnUKyHt2iOdTGFe0z4+h4IV97EO/GMYj08UKwHjmI9PFCsB45iPTxQrAeOYj08BBLrIV+RbjKZcPToUSxfvlx4TCaTYfny5Th48KDL5xw8eNBpewAoLy93u32o8WfMADAwMID8/Hzk5eXh5ptvxunTp4NxupMi3H/GrlCscyjWnYX7z9gVinUOxbqzcP8ZE8/8fQ8QEm4o1km0oFgn0YJinUQLinXvhHwivaurC1arFRkZGU6PZ2RkoK2tzeVz2trafNo+1Pgz5pkzZ2Lbtm345z//ib/97W+w2Wy44oor0NTUFIxTDjp3P2O9Xo/h4eFJOqvAUKyPolgfRbHOoVinWCfhzZ/3ACHhiGKdRAuKdRItKNZJtKBY907IJ9KJd5YuXYo777wTJSUlWLZsGd59912kpaXhz3/+82SfGiGiolgn0YJiPbI99thj4xaTHft17ty5yT5NQgJGsU6iBcU6iRYU6yRaUKwTVxSTfQITSU1NhVwuR3t7u9Pj7e3tyMzMdPmczMxMn7YPNf6MeSylUomFCxeiurpailOcdO5+xjqdDjExMZN0VoGhWB9FsT6KYp1DsU6xHml+/OMf4+677/a4TVFRUXBOJgjEeA+Q8ESxzqFYj3wU6xyK9chHsc6hWI98FOscinVnIV+RrlKpUFpaioqKCuExm82GiooKLF261OVzli5d6rQ9AOzZs8ft9qHGnzGPZbVacfLkSWRlZUl1mpMq3H/GrlCscyjWnYX7z9gVinUOxbqzcP8Z+yotLQ2zZs3y+KVSqSb7NEUjxnuAhCeKdYr1aEGxTrEeLSjWKdajBcU6xbpL4q57Ko0333yTVavV7Pbt29kzZ86wDzzwAJuYmMi2tbWxLMuyd9xxB/vYY48J23/66aesQqFgn3nmGfbs2bPsxo0bWaVSyZ48eXKyhuAzX8f8xBNPsB988AF76dIl9ujRo+xtt93GajQa9vTp05M1BJ8YDAb2+PHj7PHjx1kA7LPPPsseP36cra+vZ1mWZR977DH2jjvuELavqalhtVot+8gjj7Bnz55lN2/ezMrlcnbXrl2TNQRRUKxTrFOsU6zzKNYjI9bFUF9fzx4/fpx94okn2Li4OOF1NRgMk31qPpnoPRDOJop34h2K9dBHsS4OivXQR7EuDor10EexLg6K9dAnVqyHRSKdZVn2D3/4AztlyhRWpVKxS5YsYQ8dOiR8b9myZexdd93ltP3bb7/Nzpgxg1WpVOzcuXPZHTt2BPmMA+fLmB9++GFh24yMDHbVqlXssWPHJuGs/bN3714WwLgvfox33XUXu2zZsnHPKSkpYVUqFVtUVMS+/PLLQT9vKVCsU6xTrFOssyzFeiTFeqDuuusul6/l3r17J/vUfObpPRDOJop34h2K9dBHsS4OivXQR7EuDor10EexLg6K9dAnVqwzLMuyfpezE0IIIYQQQgghhBBCCCERLuR7pBNCCCGEEEIIIYQQQgghk4kS6YQQQgghhBBCCCGEEEKIB5RIJ4QQQgghhBBCCCGEEEI8oEQ6IYQQQgghhBBCCCGEEOIBJdIJIYQQQgghhBBCCCGEEA8okU4IIYQQQgghhBBCCCGEeECJdEIIIYQQQgghhBBCCCHEA0qkE0IIIYQQQgghhBBCCCEeUCKdEEIIIYQQQgghhBBCCPGAEumEEEIIIYQQQgghhBBCiAeUSCeEEEIIIYQQQgghhBBCPKBEOiGEEEIIIYQQQgghhBDiASXSCSGEEEIIIYQQQgghhBAPKJFOCCGEEEIIIYQQQgghhHhAiXRCCCGEEEIIIYQQQgghxANKpBNCCCGEEEIIIYQQQgghHlAinRBCCCGEEEIIIYQQQgjxgBLphBBCCCGEkIj185//HAzDoKura8JtLRYLHn30UeTl5UEmk2H16tXSnyAhIqFYJ9GCYp1EC4r10EOJdEIIIYQQQggBsG3bNvzmN7/BN7/5Tbzyyiv40Y9+5NXzzGYz5syZA4Zh8Mwzz0h8ls76+vqQnp4OhmHw97//PajHJuErXGL9mmuuAcMw475Wrlwp+bFJZAiXWAcAk8mEX/3qV5g1axY0Gg0yMjJwww03oKmpKSjHJ+EtHGK9rq7O5TWd/7r//vslPb4YFJN9AoQQQgghhBASCj766CPk5OTgueee8+l5f/jDH9DQ0CDRWXm2YcMGDA0NTcqxSfgKp1jPzc3Fpk2bnB7Lzs4O6jmQ8BUusW42m3HDDTfgs88+w/33348FCxagt7cXhw8fRn9/P3Jzc4N2LiQ8hUOsp6Wl4a9//eu4x3ft2oXXXnsNK1asCMp5BIIS6YQQQgghhBACoKOjA4mJiT4/58knn8RPfvITbNiwQZoTc+PUqVP405/+hA0bNgT92CS8hVOsJyQk4Lvf/W7QjkciS7jE+nPPPYePP/4YBw4cwJIlS4JyTBJZwiHWY2NjXV7Pt2/fDp1OhxtvvFHycwgUtXYhhBBCCCGERLyuri5861vfgk6nQ0pKCn74wx9iZGQEwOitxnv37sXp06eFW4z37ds34X4fe+wxzJw506dE38aNGyGTyVBRUeH0+AMPPACVSoUvvvjCq/388Ic/xNe+9jVcffXVXh+bRL5IjHWLxYKBgQGvj0uiQ6TEus1mw+9+9zt87Wtfw5IlS2CxWOhOI+IkUmLdldbWVuzduxdf//rXodFofHruZKBEOiGEEEIIISTifetb38LIyAg2bdqEVatW4fe//z0eeOABAKO3Gs+aNQu5ubn461//ir/+9a+YPXu2x31WVlbilVdewfPPPw+GYbw+l5/97GcoKSnBvffeC4PBAAD44IMPsHXrVmzYsAHFxcUT7uOdd97BZ599hl//+tdeH5dEh0iL9QsXLiA2Nhbx8fHIzMzE448/DrPZ7PU5kMgVKbF+5swZtLS0YMGCBXjggQcQGxuL2NhYLFiwAHv37vX6HEjkipRYd+XNN9+EzWbDd77zHZ+eN2lYQgghhBBCCIlQGzduZAGwN910k9PjDz74IAuA/eKLL4THli1bxs6dO9er/dpsNnbJkiXs7bffzrIsy9bW1rIA2N/85jdePf/kyZOsSqVi77vvPra3t5fNyclhFy1axJrN5gmfOzQ0xE6ZMoVdv349y7Isu3fvXhYA+84773h1bBKZIjHWv/e977E///nP2X/84x/sq6++yt50000sAPZb3/qWV8cmkSnSYv3dd99lAbApKSns9OnT2Zdffpl9+eWX2enTp7MqlcppPCS6RFqsu1JaWspmZWWxVqvV5+dOBqpIJ4QQQgghhES8hx56yOnfP/jBDwAAO3fu9Gt/27dvx8mTJ/H000/79fx58+bhiSeewIsvvojy8nJ0dXXhlVdegUIx8TJWTz31FMxmM37605/6dWwS2SIp1l966SVs3LgRX//613HHHXfgn//8J+6//368/fbbOHTokF/nQyJHpMQ637bIYDCgoqICd999N+6++258+OGHYFmW7jwiERPrY124cAFHjx7FbbfdBpksPFLU4XGWhBBCCCGEEBKA6dOnO/176tSpkMlkqKur83lfer0e69evxyOPPIK8vDy/z+mRRx5BcXExKisrsXHjRsyZM2fC59TV1eE3v/kN/vd//xdxcXF+H5tErkiJdXd+/OMfAwA+/PBDv/dBIkOkxHpMTAwA4Morr3Q69pQpU3DVVVfhs88+8/t8SGSIlFgf67XXXgOA8GnrAkqkE0IIIYQQQqKQL/1Ax3rmmWdgMplw6623oq6uDnV1dWhqagIA9Pb2oq6uDiaTacL91NTU4OLFiwCAkydPenXsDRs2ICcnB9dcc41w7La2NgBAZ2cn6urqYLPZ/BwZiUThGuvu8Imfnp6egPZDIk+4xnp2djYAICMjY9z30tPT0dvb6+0wSJQI11gf6/XXX8fMmTNRWlrq1/MnAyXSCSGEEEIIIRGP/2OPV11dDZvNhoKCAp/31dDQgN7eXsydOxeFhYUoLCzE1VdfDQD41a9+hcLCQpw5c8bjPmw2G+6++27odDr89Kc/xRtvvIF3333Xq2NXV1ejqKhIOPbtt98OAHjwwQdRWFgIvV7v85hI5IiUWHenpqYGALfAHolukRLr8+fPh1KpRHNz87jvtbS0UKyTiIl1R4cPH0Z1dXVYVaMDgG/NawghhBBCCCEkDG3evBkrVqwQ/v2HP/wBAHD99df7vK///u//xurVq50e6+jowPe//33cfffduPnmm1FYWOhxH88++yw+++wz/Otf/8INN9yAffv2Yc2aNfjSl76E1NRUt8/75S9/ia6uLqfHTp06hccffxyPPvooli5ditjYWJ/HRCJHpMS6Xq+HWq2GWq0WHmNZFr/85S8BAOXl5T6Ph0SWSIn1+Ph4rFq1Cv/+979x7tw5zJo1CwBw9uxZfPbZZ/j+97/v83hIZImUWHf0+uuvAwC+/e1v+zyGyUSJdEIIIYQQQkjEq62txU033YSVK1fi4MGD+Nvf/oZvf/vbKC4u9nlfl112GS677DKnx/g+pXPnzh33B+pYZ8+exeOPP467774bN954IwBu4a+SkhI8+OCDePvtt90+96qrrhr3WGJiIgBg8eLFEx6bRL5IifVjx47h9ttvx+23345p06ZheHgY7733Hj799FM88MAD486LRJ9IiXWAqwSuqKjAl7/8Zfz3f/83AOD3v/89kpOTaWFpElGxDgBWqxVvvfUWLr/8ckydOtXnMUwmau1CCCGEEEIIiXhvvfUW1Go1HnvsMezYsQNr167FSy+9FPTzsFqtuOuuu5Camornn39eeHz69OnYtGkT3nnnHa/+CCXEnUiJ9fz8fFx99dV477338OMf/xgbNmzAyMgItmzZgi1btgRhBCTURUqsA8CcOXPw8ccfY+7cufjlL3+JX/3qV1iyZAk+/fRT5OTkSDwCEuoiKdYBbrHo9vb2sKtGBwCGZVl2sk+CEEIIIYQQQgghhBBCCAlVVJFOCCGEEEIIIYQQQgghhHhAiXRCCCGEEEIIIYQQQgghxANKpBNCCCGEEEIIIYQQQgghHvicSP/kk09w4403Ijs7GwzD4P3335/wOfv27cNll10GtVqNadOmYfv27eO22bx5MwoKCqDRaFBWVobKykpfT40QUVGsk2hBsU6iBcU6IYQQQgghhBB/+ZxIHxwcRHFxMTZv3uzV9rW1tbjhhhtw7bXXoqqqCg8//DDuu+8+fPDBB8I2b731FtatW4eNGzfi2LFjKC4uRnl5OTo6Onw9PUJEQ7FOogXFOokWFOuEEEIIIYQQQvzFsCzL+v1khsF7772H1atXu93mJz/5CXbs2IFTp04Jj912223o6+vDrl27AABlZWVYvHgxXnjhBQCAzWZDXl4efvCDH+Cxxx7z9/QIEQ3FOokWFOskWlCsE0IIIYQQQgjxhULqAxw8eBDLly93eqy8vBwPP/wwAMBkMuHo0aNYv3698H2ZTIbly5fj4MGDLvdpNBphNBqFf9tsNvT09CAlJQUMw4g/CDLpWJaFwWBAdnY2ZLLQbO1PsU7EQLHOoViPfBTrHIr1yBcOsR4MNpsNLS0tiI+Pp1iPUBTrHIr1yEexzqFYj3wU6xyK9cjnS6xLnkhva2tDRkaG02MZGRnQ6/UYHh5Gb28vrFary23OnTvncp+bNm3CE088Idk5k9DV2NiI3NzcyT4NlyjWiZgo1km0oFgn0SKUYz0YWlpakJeXN9mnQYKAYp1iPVpQrFOsRwuKdYr1aOFNrEueSJfC+vXrsW7dOuHf/f39mDJlChobG6HT6SbxzIhU9Ho98vLyEB8fP9mnElQU69GHYp1DsR75KNY5FOuRL1pjfSx+/GNj3Ww2Y/fu3VixYgWUSuVknZ4kom1sFOscivXIHxvFOodiPfLHRrHOoViP/LH5EuuSJ9IzMzPR3t7u9Fh7ezt0Oh1iYmIgl8shl8tdbpOZmelyn2q1Gmq1etzjOp2O/giNcKF8Gw3FOhETxTqHYj3yUaxzKNYjXyjF+ieffILf/OY3OHr0KFpbWydcLwAA9u3bh3Xr1uH06dPIy8vDz372M9x9991eH5Mf/9hYN5vN0Gq10Ol0EfmHWjSOLZRifTJQrEfP2CjWKdYjSbjEOn2GCY5oHZs3sS55k6OlS5eioqLC6bE9e/Zg6dKlAACVSoXS0lKnbWw2GyoqKoRtCAkHFOskWlCsk2hBsU4i1eDgIIqLi7F582avtq+trcUNN9yAa6+9FlVVVXj44Ydx33334YMPPpD4TAkhhBBCRtFnGDLZfK5IHxgYQHV1tfDv2tpaVFVVITk5GVOmTMH69evR3NyMV199FQDwX//1X3jhhRfw6KOP4nvf+x4++ugjvP3229ixY4ewj3Xr1uGuu+7CokWLsGTJEjz//PMYHBzEPffcI8IQCfEPxTqJFhTrJFpQrBPCuf7663H99dd7vf2WLVtQWFiI3/72twCA2bNn48CBA3juuedQXl7u8jljF9bV6/UAuCogs9ksPM7/v+NjUmnpG8aH5zpx26JcqBTSL5oWzLFV1vWge8CE6+e5vhtGbK7GFoxxRhOWZfHZpW4crunGlJRYfHVBFjRKuWTHa+sfwT+rmmGxsbhhfhYKUmMlO5bZasPOk62o7hhASV4ivjwrXdKK19Mt/ag42wGdRoHVC3OQqFVJdiziH5PFhlcP1iEhRombSrKhVkgb6+8db8aszHhcOytdsuPwegdNeOtII6anxwUl1j8804FlM9NQkpco2XEmU7R+hqnvGcKeMx349pJcaFXSd+kO5tiO1Peie8CE8rkZE28sgkA/w/j86h85cgTXXnut8G++z+ddd92F7du3o7W1FQ0NDcL3CwsLsWPHDvzoRz/C7373O+Tm5uLFF190Cthbb70VnZ2d2LBhA9ra2lBSUoJdu3aNW7yLkGCiWCfRgmKdRAuKdUL8c/DgQSxfvtzpsfLycjz88MNun+NuYd3du3dDq9WOe3zPnj0Bn+dEXjwnw8leGc6cPo0vZbGSH48n9disNmDdYe7Puh+dPoaCILaydRzb0NBQ8A4c4Ww2Fv/v/ZN4o7JReOylA7V45XuLkR6vEf14n1Z34YFXj2DQZAUA/L7iIp67tQSr5meJfiz9iBn3bv8cn9f1Co+tmp+J3922EEq5+BNcLx2oxf/uOAOb/S2/ed8lvHLPEszJpnZqoWTHyRb8csdZANzP7K/3liEtfnwrvEB9Wt2F+189giGTFQoZg6M/uw4JWmnbVrx0oBYv7OUKOaSO9V/8+wwA4N8nWrBn3TLRjxGOIuUzzMvnZajqkaH24llcmRE5n2FYFnj4EPcZ5pEFFuRKN4c7jr+fYXxOpF9zzTVgWfc/tO3bt7t8zvHjxz3ud+3atVi7dq2vp0OIZCjWSbSgWCfRgmKdEP+0tbWNmxzKyMiAXq/H8PAwYmJixj1n7MK6/CJOK1asGNdfdM+ePbjuuusk7cFptbH42fG9ACzQx2Rh1aoSyY7FC9bYqhr7gMOVAAAmcxZWLSuS7Fg8V2PjK/ZI4P708SW8UdkIGQNcPz8Lhy5142yrHmtfP47X7yuDQsQkXGPPEL7/16MYNFkxL0eHGKUcn9f14odvHkd+ihZzsxNEOxbLsnjknS/weV0v4tUKXDsrHbtOtWHnyTZkJZzD41+dI9qxAODDM+1CYnHZjDQ09gyhpmsQ9796BDv++yqqTA8hlzoGhf8/12bAQ68dwxsPXA65TLzqbT7Wh+wTRhYbi9ruQZRoE0U7hiuXOgeE/w9GrANAXfcgbDYWMhFfv3AVCZ9hAOC5CwcADEGZWoBVq2ZLeiwgeGNr6RsGDu0HACQVLcCq0lzJjsUL9DOM9PcDEEIIIYQQQqKKu4V1lUqlyz/I3D0ulgst/TCMWABwtxDL5YqgJRikHtuxRr3D//cHdVEwx7FF2mJkk6W+exC/q7gIAPjV1+bjtiVTcKlzADe/8Ckqa3vw9pEmfLtsimjH+3/vn8KA0YJF+Ul47f4yKGQyfP+vR/Dh2Q489o+T+OdDV4r2XvnPqTZ8cLodSjmDv91XhuK8RHxwug3f/+tRbPu0FjeXZGNBbqIoxxo2WfH4P08BAO6+ogA/v2ku+ofNuOmFA6jvHsJzey7giZvniXIsErjmvmEAwC2ludh5shWVdT14o7IB3708X7RjOMa6yWrDiaZ+NPcOS94CxXFs7xxtkjTW77g8H69XNsBsZdFhMCIzQfw7WKJBqH2GGTFb0dDDVUzXdg9N2u95KdT19gn/39hnDIvPMNI3BySEEEIIIYSErczMTLS3tzs91t7eDp1O57KSKxRV1vYI/987ZEa1Q4VguHMc25G6Xlhtwbvlm4jvdxUXYbLYcNW0VNy6OA8AMDUtDj9eMQMA8NyHF2C0WEU51pG6HnxyoRNKOYNnbimGWiGHXMbgV1+fjzi1Aieb+1FxrkOUY9lsLJ7bcwEAsGbZVBTbk5flczOxuiQbLAv87sOLohwLAF45WIfW/hHkJMbgsetnAQASYpTY9LX5AIC/HW5AYw+1IwoVzb1csvmq6an4n/KZAIDNe6sxYpYm1gtSuP4RzX3SxwA/tnuuLMTNEsf6/7thNrLsyfNgjC0cRMJnmNquQaE91aUI+vwCANUdo+O51BEeY6NEOiGEEEIIIcStpUuXoqKiwumxPXv2YOnSpZN0Rr5zTDYDwOGa7kk6E3HZbCw+rxsd24DRgrOt1GIlXHUYRvB/X7QAAP6nfKbTooTfKctHVoIGnQYjdpxoFeV4Wz6uAQB8szTXaXHR9HgN7ljKVQL/aV+1y+f66qNzHbjYMQCdRoF7r3ZuP/TD5TMgY4CKcx0432YI+FhWG4u/Hqzn9v2V6U6LtF4xLRVXTUuF1cbib4fqAz4WEQdftZ2bFIPbl0xBVoIGrf2j74dAjY31nCQugconuaUybLKie9AEAMhJisEPvzJdiPUL7dLEek4iN7YmiccWLiLhM8xFhwRzu94I/UjkLO7tlEgPk0kCSqQTQgghhBASRQYGBlBVVYWqqioAQG1tLaqqqoTFdtevX48777xT2P6//uu/UFNTg0cffRTnzp3DH//4R7z99tv40Y9+NBmn7zOWZYVE+rIZaQCAw2MS6+HqfLsB+hELYlVyXD09FcD4SQMSPt6sbITZyqI0P2lcuwmVQia0uXj1YOAJ4A7DCPae56rN772qcNz377myAHIZg2MNfajuCDzh9/YRbuHUby3KQ0KM8y30hamxuG4O18P4nSON457rq4/OdaC5bxhJWiVuKske9/27rygAALxR2SBadT/xn8VqQ5t+BACQk6iFRikXYv1tEeLBVazn8on0PmmTzXxVeLxagYQYJYrS4rB8Nhfrb38uTaznJnGLYUZqIj3aPsMAQPWYSZeazkE3W4Yfxyr0+u4hmK22STwb71AinRBCCCGEkChy5MgRLFy4EAsXLgQArFu3DgsXLsSGDRsAAK2trcIfpABQWFiIHTt2YM+ePSguLsZvf/tbvPjiiygvL5+U8/fVpc5BdA+aoFbIcN/VXBKlsrbH4+LD4YJPmpcWJGPp1BSnx0j44atvv73EdQ/0by3Kg4zhFpgNtC3J+8ebYbWxWDglEdPS48d9Pz1eg2tnchNPfz/aHNCxugeM+MjeIuaWRXkut/lmKff4+1UtASdS3j/ebN9nrlM1Ou/aWenI0KmhH7Fg/4WugI5FAtemH4HVxkIpZ5Aez/Wl/mZpLmQM8HldL2q7Aksauor1YFVt8/vnK+AB7n0MAO8db4ZFgljnjxWpifRo+wwDOFekA+HTAsUbjq32LDYW9d2h35KIFhslhBBCCCEkilxzzTUek8jbt293+Zzjx49LeFbS4RPLl01JwuKCZKjkMnQYjKjvHnJqZxGO+LEtKUhCWWEy91gdN0ng2BaEhL4L7QZc7BiASi7DdXMzXG6TFq9GWWEKDtZ0Y+fJVnx/2VS/j7fjZBsA4BuX5brd5uuX5eLDsx34z6lW/GTlTL9j6sOz7bDYWMzL0WFm5vikPQBcMzMNybEqdA0Y8XldD66YmurXsUbMVqH6+KsLxlejA4BcxmDV/Cy8/GkddpxsxfI5rl9vEhx8e5WshBhhYdsMnQZXTkvF/otd2H26TfRYzw1Saxe+4p1P3ANcrCdplegeNOFIfS8uL0rxa9/uYj1XSKSHfkLSH9H2GQYYTaTnp2hR3z0UMeu89Aya0GNvfTQtPQ7VHQO41DmAaelxk3xmnlFFOiGEEEIIISRiVdZy/dCXFCZDo5SjOC/B/nh4V26zLCu0qFlSmIL5OYlQK2ToGTSFTZ9RMuo/9mTfl2akQqdRut1u1YIsAMDOU21+H6trwIgTTX0AILRUcWXZjDSo5DLUdw/hUgCtBCrOcsm+62Znut1GKZfh2pnpAICPzvq/wOknFzoxZLIiJzEGC3IT3G73VfvruOdMO0yW0G8lEMlcJZuB0djcc6Z93HO85S7Ws+3HMhgt6B+Wrt90s4uKdIVchmtncbH+YQBjcxfruYnBaVtDgsNksaHOflfGyrncNTRSKtL5zyo5iTGYn8PFcHUYjI0S6YQQQgghhJCI5JxsTnb6b7j3Sa/tGkTXgBEqhQwLchOgUshw2ZQkAOE/tmi0/2InAOArsz1XR6+wJwNPNPWhb8jk17E+Pt8JlgXmZuuQodO43S5WrcDl9pZBH53zL+FntFhxoJprn/KV2eket+W/z7eB8cfe89zreN2cDI8V9AvzkpASq8KA0YKqxj6/j0cC5yrZDEDoJX60oRddA0a/9u0u1rUqBZJjVU7Hl4LbSQL72D48638i3V2s869jS99wRLQwi3b13YOw2FjEquS4yr4WSqRMlvNJ82npcZiaxt0hGA5jo0Q6IYQQQgghJCI19Q6jtX8EChmDhVMSAXDV2wBQWdc9iWcWOL6iviQvUeiNy08ShHu1fbRxTOZeNc1zS5MMnQbT0+PAssDBS/7F8Ef2dhBfnuU5sQ0AX7Fvs8+etPNVZW0PhkxWpMerMTdb53Hbq6enQilnUNM1iAY/++QequkW9uWJTMbgCvtrzSf6yeRwl2zOTozBrMx4sOzoz9VXnmI9GAuOupskuHpGGhQyBnXdQ36vd+Au1rMSYsAwwIjZJrTNIOGLb+syLSNeaHkSLotyToRPpE9Ni8PUNG5sgdz9FCyUSCeEEEIIIYREJD6hPD83AVoVtzxUaX4SZAzQ2DOMljC+9Z0fG98b3fH/I2Ux1WhRWdsNi41FfooWecnaCbe/0p4A3u9HAphlWRwWEnBpE25/hb0i/VhDr18tUA7XcHF61fTUCXusx2uUWJCbyD2v1vfEaUvfMGq7BiGXMcKkkidXTePGduCif5MERBxCIn1MshmAsIiyP4n0iWJ9dMFR6XqJ82PLTXJ+X8epFZhvb8fizx1EnmJdpZAJi7ZSe5fwd7GdSzZPT49Dpk6DWJU8bBblnIhjRTo/SVDTMRDyn18okU4IIYQQQgiJSJVj2roAXAJjnr0X5+d14Vu5XVk3fmwLpyRBIWPQ2j+CJokX0SPiOXCRS/Z5u8AmX7XuT0V6ffcQugZMUMllHnuI86alxyE5VoURsw0nm/t9Ph7/HltSMHFiGwjsrgr+9ZiXk4B4D33mefyExBdN/RgyWXw+HhEHX7Wdmzg+kc4vxMlPyPhioljnE+lStXYxWWxo1484HctRWSE/Nt/fxxPFutRjI8FzscMAgEukMwyDqel85Xbot0CZiGMifUqKFnIZA4PRgg6Df62cgoUS6YQQQgghhJCIxCeby8ZU7PFJvUN+JGdCQXPfMJp6hyGXMUJfdACIUcmFKkdq7xI+jjX0AgAuL/Iu2Vyaz/3Ma7sG0etj6wY+sb0gN0FoCeQJwzBYXMAdz9eYMllsQsuaRd4m0u3b+TPJxVexL7UnXyeSm6RFVoIGVhuLk02+TxKQwLEs67EinY+Hix0DPvdJnyjWcyRu7dLWPwIbC6gVMqTGqcZ9v6zI//U6Jor1HHsFPFWkhz8+2Tw9g0ug8y1QwmFRTk+GTVYhPqelx0GtkGOK/Y6sUF9MlRLphBBCCCGEkIjToR9BbdcgGAYozXdO4pXZkw+VfrSPCAWf2xMv87J1iFUrnL5HfdLDi8liw5kWPQCu3703kmJVKErlFmaraurz6XhH67mkfWlB0gRbjuLXFTjiY3L7VEs/jBYbkrRKYSG5iZQWJIFhgLruIXQYRnw63gl7Mvwy+3oI3uDXTjgeIQuObt68GQUFBdBoNCgrK0NlZaXH7fv6+vDQQw8hKysLarUaM2bMwM6dO4N0tkDXgAlGiw0Mw/X2HispVoXp9grcL3z8GU0U67kSJ5ub+rjWGzmJMS7bGi3K52K9oWfI50mCiWJ9tG0NJdLDmdXGoqaL6xnOJ9DDaVFOT2q6uPNP0iqFhX9H+6SH9tgokU4IIYQQQgiJOHw1+uxMHRJinG995ytsL3UO+pzACAWHXbSs4Ql90sO4bU00Odemh8lqQ6JWKVTjeaOETwA39Pl0vCP25OKifO8qxAGgJI+7y8HX1i7H+ERmfvKE/dF5Oo0S0+zJlFM+HG/IZMGFdq4FQrGXExIAsDCPuxYct98VEM7eeustrFu3Dhs3bsSxY8dQXFyM8vJydHR0uNzeZDLhuuuuQ11dHf7+97/j/Pnz2Lp1K3JycoJ2znwSOz1eDZXCdXqKv8vG1/ibKNalTja7W2iUF69RChNivozNm1iXutqeBEdL3zBMFhtUcpkw8TMtPXwW5fSEP38+eQ4AU9O590OoV9tTIp0QQgghhBAScVz1R+clalWYlRkPYLS6O5zwlfR8pbAjLmnJtf3o0PtW0UuCj6+yLc5N9DrZDHD98AHfEsBDJotQ6VecN3F/dN7sLB1kDNBhMPoUU6ftlfbFXvRid8SvYXCqWe/TsWwsl5DN0Gm8fh4/IXHMxwmJUPTss8/i/vvvxz333IM5c+Zgy5Yt0Gq12LZtm8vtt23bhp6eHrz//vu48sorUVBQgGXLlqG4uDho5ywkm130EOctsMeDL+13vIl1PtncM2iSpEe+0LLGw9jm87Huw9i8ifVc6pEeEartMVyYGgu5jPv9IFRth8GinJ7w7VucEulp4TFJQIl0QgghhBBCSMThE+lj+6Pz+AS7P/1pJ1PXgFH4I3Oxi5YFCTFKzM7UAaCq9HDAtxTxpYoaGE1On27Re51MOd9mAMsCqXFqpMd7n2zWqhRCgoNPjnuDb1kzJ1vn9XMAYK59e18q0vkJiQW5iT4da152AhgG6DQY0RniC9x5YjKZcPToUSxfvlx4TCaTYfny5Th48KDL5/zrX//C0qVL8dBDDyEjIwPz5s3Dr371K1itVpfbG41G6PV6py8AMJvN477cPT72q6GbS6ZlJWjcbjM7k4u9E019Xu3TbDbjdFOvPdZVSNLIXW6jVXCLTwNAfafB6317O7bGHu46nalTu91mTla8z2M7Xs9d1+fn6NxukxHH3YXV3Dfk9X7djY1MHiHZnD7aGis/hUuqD4TBopye8C1rihzafoVLaxfFxJsQQgghhBBCSPjoGzLhXBt36/tiD4n0Vw/Wh10vcb6CflZmPBK14xewA7ixnWnVo7K2B19dkB3M0yM+4pPNfGWqt2ZkxEPGcNW0nQNGrxLjZ1r9S2wDXJX4xY4BnGzux7Wz0ifcfsRsFaopfT0eX5HuS9Keb43ha/V7jEqOwpRY1HQN4lybHmnxaT49P1R0dXXBarUiIyPD6fGMjAycO3fO5XNqamrw0Ucf4Tvf+Q527tyJ6upqPPjggzCbzdi4ceO47Tdt2oQnnnhi3OO7d++GVju+LdGePXsmPO/PamUAZBjpbsHOnU0utzFZAQZydA6Y8Mb7O5Hg+rLn5NN2BoAcqfIRjz3f4+VyDIDBP/fsx+wk76t7vRnbiWpubF3157Fzp+ufgUEPAAp8fqnd6970H1zk9qsebHP7nBErt9/+YQve/b+d0Ey8rrDAcWxDQ0PeP5GITkg2p45WbasUMuQna1HTNYhLHQM+3YETSlxVpPNtvVr7RzBgtAgTXaEmNM+KEEIIIYQQQvz0eR3X7mJqWixS49Qut1lSwCXYz7bp0T9sHtdHPVTxVeauWtbwygqTsf2zurCbJIg2FqsNNfa7C/hWQ97SKOUoSI1FTecgzrcZvEuk8xXiWb4n0udm6/De8Wavq8Qvtg/AamORHKtCpo+JHj7x3tw3jN5BE5JiJ86cnrdPnM32Y2yzsuK5RHqrAVdPD89Euj9sNhvS09Pxl7/8BXK5HKWlpWhubsZvfvMbl4n09evXY926dcK/9Xo98vLysGLFCuh0o6+72WzGnj17cN1110Gp9Hxd/effjgNtnbi6dC5WLclzu93Wus9woWMAGbMX48szJ/4ZHfrXGaCmCV9aUIRVK2a4P37PcbSe70T2jHlYtdj98Xm+jO235/cDGMaqZZe7vHsIAAaMFrxw5iP0mRiULVuOFC9i/Y8vfAZgADd9qRRf8TCp9auTH6F/2IJ5S67GjIyJry+uxsbfdUAmh6uKdAAoSotDTdcgqjsHcMW01Mk4tYDYbKyw2OjU9NFEeoJWidQ4NboGjKjpHPD5DqNgodYuhBBCCCGEkIjiqYc4L12nQWFqLFgWOFofPglnT73feXwV/vl2A/qGTEE5r1C2efNmFBQUQKPRoKysDJWVlV4978033wTDMFi9erUk51XXPQST1QatSu6xj7I7fPL9XKvBq+0DqUifm81VevN3ekx8LC7hPidL51Pvd4BbcDQ/hatwPts6cSLPcULCm4ThWDMzuNfD27GFotTUVMjlcrS3tzs93t7ejszMTJfPycrKwowZMyCXj5Yrz549G21tbTCZxl831Go1dDqd0xcAKJXKcV/uHh/71dLP9dzPT4nzuN1M+wRJXfewV/s9184l6eblJnncLs++wG+r3uTVfr0dm1yuQCs/trR4t9slxcUg196rva5nZML9MjI5aru4KvE52Z7HlpPIja19wBzQ2MjkcbUgJzCaWL8U4otyutPSP4wRsw1KOYO8MYvxTrW3egnl9i6USCeEEEIIIYRElIn6o/P4qvRw6ZOuHzELyVD+3F1JjVOjKI2bJDhS5/1ilJHorbfewrp167Bx40YcO3YMxcXFKC8vR0dHh8fn1dXV4X/+539w9dVXS3ZuF9q5xO30jHjIZL4lmwFgVqb3CWCbjRUS7nxfZl9Ms1cNNvYOYcTsuoe2o7OtfIW478cCgOnp3vfKre/hJiRilHIhKemLWfZzPNcWvtW3KpUKpaWlqKioEB6z2WyoqKjA0qVLXT7nyiuvRHV1NWw2m/DYhQsXkJWVBZXKi/4pIhAW5Jzg58bHw0UvEoe+xDp/XLEX5ewwGGG2spDLGGTEu74rijc9nTtHb8bmS6xLNTYSHP3DZnQNcD3QC1OdK9LDZVFOd/iJz/yUWCjkzmlpvkL9Ukfojs2vRLovM/rXXHMNGIYZ93XDDTcI29x9993jvr9y5Up/To0QUVGsk2hBsU6iBcU6IZFvwGjBKXsLC09V247fP1wTHon0o3XcAnoFKVqkT9Aug59EiPYFR5999lncf//9uOeeezBnzhxs2bIFWq0W27Ztc/scq9WK73znO3jiiSdQVFTkcf+BLMB4tqUPADA9LdanBQH5r2mpfNV2/8QLH3YbMGy2QilnkKNT+XysBDWDhBgFWBa44OJ4Y8dW3cElMgtTYvwaW4G9Iv1Cm37Cbc82c6/j1LRYWK0WP15HLuF4od2AoRFj2C7AuG7dOmzduhWvvPIKzp49izVr1mBwcBD33HMPAODOO+/E+vXrhe3XrFmDnp4e/PCHP8SFCxewY8cO/OpXv8JDDz0UlPPVj5hhGLEAwIR3ZPiSSG/VjwixXpAS63FbvmqbT+iLpbmPqxrP1GnGJQrHEiaNvBjbRfvk27T0uAkn3/jXtEnksZHgqLFPImbo1IjXON8ZwE9sVodpRTo/QTo1bfz7k++THspj87lHOj+jv2XLFpSVleH5559HeXk5zp8/j/T08f2Z3n33Xafbgrq7u1FcXIxbbrnFabuVK1fi5ZdfFv6tVnuetSNEahTrJFpQrJNoQbFOSHQ4Vt8Lq41FblIMsidIzpQVccnmU839GDRaEBuiC1vxDnvR1oW3pDAZb1Q2hk21vRRMJhOOHj3qlDyUyWRYvnw5Dh486PZ5Tz75JNLT03Hvvfdi//79Ho8RyAKMn5znFg20dDdg5856L0bkrHMYABS42KbHv3fshKe82rk+bvHFZJUNuz/Y5fOxACBZIUc/GPxjzwFcljp+YUbHsZ1plANg0HbxBHa2n/D5WIMd3PkePlePnbJaj9t+0MRtG2Pu83rBRkc2FlDK5DBbgdfe34V0F5eNcFiA8dZbb0VnZyc2bNiAtrY2lJSUYNeuXcICpA0NDZDJRpO6eXl5+OCDD/CjH/0ICxYsQE5ODn74wx/iJz/5SVDOl6+UTtQqJ7z2Ts+wJ9faDWBZ1mO7ID4BOSVZO2ESW6qq7aZe7yrtgdEK3IsdE99ZcsHesoZ/PTzJpYr0sOaurQsATLUvPtqmD+1FOd0ZTaS7GJsPdyNNFp9fbccZfQDYsmULduzYgW3btuGxxx4bt31ysvOHvDfffBNarXbcH6Fqtdpt7y5CJgPFOokWFOskWlCsExIdvOkhzstN0iInMQbNfcM43tCHq6aH9qJd3vR+5/HbhMskgRS6urpgtVqFRCIvIyMD586dc/mcAwcO4KWXXkJVVZVXxwhkAcbfV38KYBA3XbMYV/uxYJzFasNTJypgtgGlV30ZWQnu71LoPtQAnD2H+fnpWLVqoc/HAoD9xtOoPdYMXe50rPryNOHxsWMbMVvx8CGuxci3b/RuAcWxshr78MalSvSzMVi1apnHbXe/fQJobMM1C2di1dWFPh8LAP5c+xnOtQ8gf95iXOuwmGW4LcC4du1arF271uX39u3bN+6xpUuX4tChQxKflWt8gteb9QHyU2KhkDEYNFnR2j/icZKUbxtR5CJJNxafbG43jMBksUGlEKf7MV/hnuvF2Kb7UF3MV+R7sxYA/7qKXW1PgoOfECpyUbUdLotyuuPpPcpXqdd1D8JitU04GTYZfDojfkZ/+fLlozvwYkbf0UsvvYTbbrsNsbHOwbBv3z6kp6dj5syZWLNmDbq7u93uw93tc4SIhWKdRAuKdRItKNYJiR7e9kfn8Ql3PkkdqoZNVpxo4hZw9GZsOYkxyEmMgdXG4lhDdPdJ95bBYMAdd9yBrVu3IjXVu8S2vwswyuQKNPZwCa7pGQleLwbo+BWjUWOKfbHEpj6jx23r7ceamuF+4cOJvmbYFzetcbHgo+PYmvpNYFkgIUaJjAStX8eamZUIAGjXG2G0MR63rbEvvjgry7/XUalUotCe0Gl08Tq6+nmSwAn90b1INivlMqFP9ETtXTwlIMdKiVVBo5SBZYHWfvESzs1+VKS3643Qj3huG8Qn2/nkuyfUIz28earaBoBp9gVHQ7kFijueWrtkJ8QgRimH2cqiMURj16dEuqcZ/ba2tgmfX1lZiVOnTuG+++5zenzlypV49dVXUVFRgaeffhoff/wxrr/+elitrhcx2bRpExISEoSvvLw8X4ZByIQo1km0oFgn0YJinZDoMGK2oqqxD4B3VdvcduGx4Ojxxl5YbCyyEjReL6jIJ9w/D/GxSSU1NRVyuRzt7e1Oj7e3t7u8k+jSpUuoq6vDjTfeCIVCAYVCgVdffRX/+te/oFAocOnSJdHOrU0/ApPVBqWc8VhJPpECe3Kxttvzwmw1XfY2AakTJ+DcmeZlL+fRasNYjy04PEmIUSLNvkijp+OxLIuG7tGF6/zFv451XaG7wF2k8XahUR6fGK+doOWDL7HOMIxQ3S5mwtmXSQKdRokMnfixzh+7w2CE0TLxAsEktHhq7eL4eCi3QHHFMGJGu55bRNVVRbpMxgjv9VCdJAhqjfxLL72E+fPnY8mSJU6P33bbbbjpppswf/58rF69Gv/+97/x+eefu7z1COBun+vv7xe+Ghsbg3D2hHiPYp1EC4p1Ei0o1gkJD1809sFktSEtXi0sVjgRPpF+vLEvpJMNji1rvE1OhsskgVRUKhVKS0tRUVEhPGaz2VBRUYGlS5eO237WrFk4efIkqqqqhK+bbroJ1157LaqqqkSd/Ky3J8Tykibu4+xJvj3OJ0oAOya3/VVkT0zWdQ+CZcf3SB891oDT9v7iqxVrPYytZ9CEQZMVDAOvJ5hcKUwZbSdAgsOX1i7AaPK4ocdzwtvXWJdiUU5+bLlJ3v0eGh2b+/77vsZ6sr3aHgBa+0a8Og8SGixWm/A7wl0cC4n0jvC6ZvHX89Q4NRJiXN/dE+qTBD79xvZ1Rt/R4OAg3nzzTdx7770THqeoqAipqamorq52+X13t88RIhaKdRItKNZJtKBYJyQ6+JNsLkqNRWqcCiaLTWidEor4sS0u8K5lDQAsDpNJAimtW7cOW7duxSuvvIKzZ89izZo1GBwcFNbLuPPOO4XFSDUaDebNm+f0lZiYiPj4eMybNw8qle+9vt2p7+YSZlO8nPBxh293UdvlPgE3YrYKFbLe9I12JzsxBgwDjJht6Bwwut2OT5QEkrQHuEkGAGj0kFyst38vU6eBRin3+1hCZT9VpAcNn7j2dgIkz97GyFOy2Z9Y55PdYlWksyzrc7W90KLJwzn4GusMw1Cf9DDV2DsMs5WFRilDdoLrGOLvEKoO0WSzO57auvBGJwlCc2w+JdJ9ndF39M4778BoNOK73/3uhMdpampCd3c3srKyfDk9QkRDsU6iBcU6iRYU64REh8o63/qjA1yyYbRPemhWbpssNqHPuS9jC5dJAindeuuteOaZZ7BhwwaUlJSgqqoKu3btElp9NTQ0oLW1NejnxSfSCwJoR+L4fE+V1HxyLl6tQJLW//7eKoUMWTquDU2jh6rgxl77JEFyYJMEfOKU35/LY/WIc6yCVO75LX3DUTvpFGyjFene/eymCIl0cWOdT+R7SmL7onfIjCETF0Petm3iJ40ausWN9RyRJwlIcPAJ5KLUOMhkrosC+N769d2DMFttQTu3QPEV9FM99PkX2oiF6CSBz/eQ+TKj7+ill17C6tWrkZLi3KtwYGAAjzzyCA4dOoS6ujpUVFTg5ptvxrRp01BeXu7nsAgJHMU6iRYU6yRaUKwTEtnMVhuO1nPJ5iU+JJsBYElBaLdAOdncjxGzDcmxKuEPTG+EwyRBMKxduxb19fUwGo04fPgwysrKhO/t27cP27dvd/vc7du34/333xf9nPjb9gNNAPMV6Q3dQ7DaXLdbabInonOSYvzuWc7LEypn3Sf8Rtta+N9qhTsW93xPSXuhsj/A1zEtTo04tQI21nMFPBHHiNmKLvtdDb5WbTf0DLltLeRPrI9WbYvzc+fjPy1e7fVdElNSuHPwVG3vT6xL0baGSK+ma+IFc7N0mtFFOcPomsWPzV3vdwCY6rCQqqc2YpNF4esTbr31VnR2dmLDhg1oa2tDSUnJuBl9mcw5P3/+/HkcOHAAu3fvHrc/uVyOEydO4JVXXkFfXx+ys7OxYsUK/OIXv4BarfZzWIQEjmKdRAuKdRItKNYJiWynW/QYMlmREKPEjPR4n57LL0x6tK4HFqstoJ7VUhht65LkcyJ0SUEydp5sw+HaHjx0rRRnR/xRx1ekpwaWAM5K0EAuY2Cy2tA1YESGbnwFrC8LH04kL1mLw7U9bitnzVYb2vRcP2ZvE6Ruj5U0cSsPPrmYH2CLHIZhkJsUg3NtBjT3jWCaj9cQ4psWe0zGKOVeV47nJMZA5tBaKD1enFjn41Ss9id8Qt6Xc5jiRdsaf2Kdn8yiivTwIlRte0g2y2QMpqbH4lSzHpc6BwNq2xVM/Ng8TRIUpMSCYQD9iAVdAyZh4elQ4XMiHeBm9NeuXevye64W15o5c6bbWYSYmBh88MEH/pwGIZKjWCfRgmKdRAuKdUIiV2VtNwCuh7i7W6HdmZUZD51GAf2IBadb9CjOS5TgDP3Hj41P+Psi1CcJolWTSC1JFHIZMnUaNPcNo7lv2HUinW+hEWBiG3DoW+6mIr2tfwQ2FlArZEiLCyz5wVe/t/YPw2y1QekidvlKzLwAX0eA6wF/rs1ASccgcOwh7u3koEohQ1ZCDJr7htHYM+Q6ke5HrPMJ79a+EVhtLOQ+/v4Yq8mPc3CMdZPFBpVCnFgXu9qeBIdQtT3BHWhT0+JwqlmP6o4BXDcnIxinFhCrjUWt/W6saR4S/xqlHHlJWjT0DOFS50DIJdLpUxQhhBBCCCEk7PFV2770EOfJZKHbAsVqY3Gkzvf+6LyZ9kmCQZMVZ1r1Yp8e8YNhxAyD0QIAyHKzkJwvshO5hGKLm4raJpFarQCjLSjctVvhE+w5iYG3kUmLU0OlkMHGcklOVxpEmpAARpOO7l5HIp7R/ui+xSTf7sdd5bY/sZ6h00AhY2CxsegwuI4zX/CTBLk+jC0tTg2Nkot1d5Xx/sS62NX2JDguddqrtlM9r6EhLMoZor3Ex2ru5SaK1AoZsid4fwiLqYbggqOUSCeEEEIIIYSENZuNFRLgvvZH5/HPC7U+6efa9DAYLYhTKzA7S+fz8+UyBosLQnOSIFq19XPJOp1GgVi1XzeJO8meIAE82u4i8GTzRO1WxKx+l8kYISHqqgLeYrUJiU8x2tZM9DoS8ThWpPuC/xm19rtOePsT63IZgyz7ZJQYC4768x5gGMahMn78Ofgb62Or7Uno6x00oWfQBMBz+xNgdI2Mui73C/CGEj7hX5gaO+GdH6E8NkqkE0IIIYQQQsLa+XYD9CMWaFVyzM32PdkMjLZA+byuB7YQSjjwye9FBUl+txxYHKLV9tGqxZ4EnKgiz1ujCWDXyUXHBRgDlWU/VodhxOX7RMzqd8BzlXjngBE2FlDIGKQE2EYGGK3sp+pd6fnbtz8rgfsZtblJpPsb60ILFDES6X6OLdM+NleTBP7GutjV9kR6fFuXnMQYaFWeJ1r5ZHNtCCabXeET6Z56v/NCeWyUSCeEEEIIIYSENT5BXJqf5HcP8LnZOmhVcvQPm3GhwyDm6QVkdKFR/yrtgdFq+1CbJIhWbf1coo1PnAUqO9F9+waTxYYOgxGAOFXb6fFqMAxgtrLoGTKN+/5oIj3w6ncAQs/3dv34JCCfcEyPVwfc1xpwSNr3UyJdas1+Trhk6twnmwOJdb6CXYxJFKG1i4/vgUwdd85tIsa6XMYI1xm60yI8eLMYJ6/AnmzuHjShf9gs6XmJgW9ZM9WLsRVRIp0QQgghhBBCpBFIf3SeUi5DaX6S0/4mG8uyooxtXnYCYpRy9A6ZUR0mvVQjGV85LkZ/dADI8dAjvbV/GKx98c/UOFXAx1LKZUiJ5SpiXVUFt/hZjetOppBIN477Xrv9+GJPSLT1UxsMqflftc1t73pixf9Y5yvYA23tMmC0oG/I7LRPb2UmuH9fBRLr/GssRtsaIj1fqrbj1Aqk2xfiDMUWKGPxYyvyYmz8JEFDzxAsVpuk5+UrSqQTQgghhBBCwhbLskJfc749i7+WFIRWn/RLnYPoHjRBrZBhfm6C3/tRKWS4LD8RQOiMLZrxibIskRPArhLpfAI6M0ET8OKfPD7h5yqZ2W5vH5GuC7zVCgBk8K08PFTpijUhwVf7mq0sOg3jE/dEHFYbK7wHfE02Z3lofxJIrOeKtCgnX2mfEKNEnI/rH/CTBGLHOi04Gl58qdoGQrsFylg1PkwSZOo00ChlsNjYkJsEokQ6IYQQQgghJGzVdg2ia8AIlUKGBQEkm4HRFiiVtT1g2cmvSOWr0RdOSYRaIQ9oX0sKUpz2SSZPi8itXbLsLSF6h8wYNlmdvsf3RearFsXAV4m7Svh12pOZ6fHijC3TQ2sX/vhivY4KuUx4nVwdj4ijXT8Ci42FQsb4HCf8z7prwAiTxblKNZBYzxWqtl0vouut5j57j3Y/7sjI4t9XLiYJAon1XBH7vxPp8T3Svana5raLtT8vtBPp+hEzuga4dmCFXkwSyGQMClJCc5KAEumEEEIIIYSQsMUnhkvyEqFRBpZsLs5LhEohQ6fBGBJ/uFXWdgMIvNKe2wc/SdAdEpME0YxPlGWLVEmti1FApeD+tO8acK6k7hA5sQ049C0fk/AbNllhMFq444lUkZ7pIbnYKnJlPzCahO2ginTJ8JXRWYkan3vbJ2tVUMllYFmMWzwzkFjnq7Zb+oYDuj7yyWp/FvbN9OruC//HRhXpoc9itaGhm5uM4VubTCRcKtL51jNp8Wqv79YI1UkCSqQTQgghhBBCwpYYPcR5GqUcJXmJTvudTJ/X9QIQZ2wLpyRCKWfQrjeisYcSKpOpTeTe3gzDuE0A8/9OC0JFeoc9ia9RyhDvY1sLdzLsbWS6Bozj+uSKvWgrMPo6UWsX6QjJZj+qtmUyRoiJsZMrgcR6VkIMGAYYMdvQPTh+EV1vNQWwRoBjtb1ZxFgXFlKlivSQ19w3DIuNhVohE+5QmEhhKle5XtsV2uuf8In+whTvJggAx0mC0BobJdIJIYQQQgghYWu0P3rgyWZgNGk92Yn0pt4hNPcNQyFjsHBKYsD70yjlKM7l9nPYXulOgm/QaBGqtoORAO4QuWc54Ni33PlY/LEzdOL1Y0+NVUMhY2Bjgc4x1fZCuwsvE07eSLNXM1MiXTqjC41q/Xo+//Me2yc9kFhXKWTIsP/sA0k488/N9aMiPVmrglLO2KvtxYt1x4p0uhsptPHJ5oKUWMi8vFujMJV7H9V1DYX0z1cYW6r373u+tUtdV2Atl8RGiXRCCCGEEEJIWOKTzXIZg8umJImyTz4hP9mLcvKJ/Hk5CdCqxKnuXRwikwTRjK921ShliFUF1orIUVocn0h3Ti7yCWExW7tkumntMnos8ZL2Mtlotf3YCuRue79dMavt04TKfuqRLpWmANqfAKM/o+4B1xM5/sY6fz6BLGzYHEBFusyhZ/zYHv2BxDrfDmbIZEXfkNnn55PgqfMj2ZyXrIWMAQaMlnGTjaGEHxtfQe8NvrVLqLWtoUQ6IYQQQgghJCx9XjeabI4VqZXEZVOSIJcxaO4bDnjhuUCI2bKGJ/RJr6NE+mThE+kpsWrRqrYBDxXpevGT23zF79ikTYcESXvueBqn/QPAkMmCIfvCqilx4ifSqSJdOnyyOdePZDPAvXcAjGvBEmis88lvfsFQf4xWpPtXbZ8apwIA9AyMji3QWNco5Ui1P4/6pIe2Oh/7owOAWiEX4q22M7QSzo5q7WMr9GGSgE+6N/cNY8RsnWDr4KFEOiGEEEIIISQsSZFsjlUrMC8nAcBoon4yVIrcsgYASvOTIGOA+u4hl4s3EunxCTI+YSYWPnk9PrktfmsXPpHZO2SC1TbaSqDTIH6FOHc8e3LRIXHKV+iqFeJW9tNio9Jrtk9Q+luRzieFxy2sG2CsCy1Q/KxIN1qsQtz4OzY+Ud49ODo2MWJdjGp7Ir0aP/qIA6G/4CjLsqjt5Pqc+zJJkKRVIiFGCQCo6w6dsVEinRBCCCGEEBKWhP7oBeIlm4HJ75PeYRhBTdcgGAZYlC/e2HQaJeZk6wBQVfpk4atoU0WsogZcV1KbLDb02ls5iFklnqTlEhssyyXTefxio2Im7QEgJc5FIt3hdQxGZX+42Lx5MwoKCqDRaFBWVobKykqvnvfmm2+CYRisXr1a0vNjWTag9ifAaDx0OVRtixHroxXp/iWbW/q4RH6MUi68R3zFTxo5jk2MWM8NcGwkOEZbu0RWIr13yAz9CLc2SH6y92NjGGZ0bCFUbU+JdEIIIYQQQkjY6TQYUdPJJZsXi5xI5xPzk9Un/fPaXgDArEwdEvxMyLizpCAFAFBJC45OCqG1i8gV6WkuKqn5il2lnPE7seeKQi4T9ueY3O6yHztN5EmC5NjxFch8f2yxX8d0h0R6KC/c58pbb72FdevWYePGjTh27BiKi4tRXl6Ojo4Oj8+rq6vD//zP/+Dqq6+W/Bx7Bk0YMdsAAFmJ/iW8+bs5HHukixHruQFWbTc79H73N+EtVKQ7JtJFiPVAq+2J9EwWm9BOrsjHRDrfS7wmRBPpfII/O0GDGB/vqhAS6VSRTgghhBBCCCH+49uuzMyIFz3ZvLggGQwD1HQOTkplKj82MVvW8PhWMXyyngTXaCJd+op0PhmXHKsStWqb3yfgnNzuGZKm2j7VVUX6AN9rXtxEOn/uJqtNqKAMF88++yzuv/9+3HPPPZgzZw62bNkCrVaLbdu2uX2O1WrFd77zHTzxxBMoKiqS/Bz5iuj0eDXUCv/alKQK7U/Gx0MgsZ4bYLKZ763ub6U94DBJ4KK1SyCxLkb/dyKtxt4h2FggViX3uT1Wgb0VTF2IJtL9rbQHEJIV6eKsyEMIIYQQQgghQSRFf3ReglaJmRnxONdmQGVtD25YkCX6MTw5LEF/dN7igiQAwPl2A3oHTUgSORFJPOuSKAGcrOX259hqhf//JK34P+OUODUudQ46Jbf77K01EkWe2Ep20SO9a5Cv0hU3aa9RyhGjlGPYbEXfkAlaXXi8P0wmE44ePYr169cLj8lkMixfvhwHDx50+7wnn3wS6enpuPfee7F//36PxzAajTAaRxO8er0eAGA2m2E2m4XH+f93fIxX38X1Sc5O1Lj8vjcSNFw9aJfBKOyj08AliJNilH7vNy2WS48ZjBZ064egixkfx57G1mCvmM1KUPt9DokabnKh0zAi7KNDzyX2k7T+jy0jnhtLU++Q2324Gpu/xyO+45PN+SmxPk8G8cnm+u4hWG0s5DJxJ04Dxfc3DyiRHkKTBJRIJ4QQQgghhISd0WRziiT7v7woxZ5I7w5qIr1/yIxzbVyCSuyWNQCXeJyWHofqjgF8XteDFXMzRT8Gca9Hoh7pibFcomzEbMOI2QqNUi5tIj2Wb6/hmLjnkm7JIk8SpAiLS7qoSBe5tQvAnX9z3zB6h8zIDpNEeldXF6xWKzIyMpwez8jIwLlz51w+58CBA3jppZdQVVXl1TE2bdqEJ554Ytzju3fvhlarHff4nj17xj22t4UBIAcz1IudO3d6ddyxhi0AoMCgyYr3/28nVHLgaBe3X+uw3u/9AkCsQo5BC4O3/r0HOR5yfq7GVlktAyDDQHs9du6s8+v4l/q4cdS1dgvjOFLH7be/vQk7dzb4td/mQQBQoK5j4tfHcWxDQ1TBHix8orjQj2RzdmIMVAoZTBYbWvqGkZc8/v04mfxdRBWgRDohhBBCCCGEBMwp2VyYJMkxlhQmY/tndUHvk36kvgcsy/VI9fX2bm8tKUxGdccAKmspkR5sUiWA49UKKGQMLDYWvUMmZCXEoHdwtN2F2FKEFhTcMcw2YMhkBQAkipy4TxEq0sf3SE+NFf89kqhV2hPpJgC+J37CgcFgwB133IGtW7ciNTXVq+esX78e69atE/6t1+uRl5eHFStWQKfTCY+bzWbs2bMH1113HZRK56ruozvOAfUNWDS7CKvKZ/h17izLYsPxCpgsNiy++lrkJMag61ADcPEcpuVlYdWqYr/2CwBb6w/hVIseRfMW4Suz08d939PYXnvpc6CzF9cuKcGqYv8mXwta9fjT2UMwy9RYteoaAEDFOyeB1lYsXjALq64s8Gu/hhEzfn1iLwYtDK5ZvgJa1fhUoKux8XcdEOnVCu1PfE+Cy2UMClK0uNA+gJquwZBLpAfS2oV/TvegCf3DZiS4uFMk2CiRTgghhBBCCAkrjsnm9Hj/FqybCF8Nfr7dgL4hk+jJQXcqJWzrwisrTMbrhxtQWTc5i6lGM6FHusgJYIZhkKhVoWvAiJ5BeyJdolYrwOgCoHxCe9DeAUIuY6DTiJtmcGztwrIsGIaRbNFWYLSCv8+hTU6oS01NhVwuR3t7u9Pj7e3tyMwcP1l26dIl1NXV4cYbbxQes9m4RUAVCgXOnz+PqVOnOj1HrVZDrR4ft0qlclxS2d3jrXouXqakxLp8jrdSY1Vo6R9B34gNBUol9CPcJE5ynDqg/eYla3GqRY82g8njflyNraV/BACQnxrn9zlkJnJJw54hM+RyBWQyBr3D3JsrXRfj936TlUrEaxQwjFjQMWDB9Az3fdwdxxbIa0l8I7Q/8aNqG+Aqty+0D6C2cwDLZqSJeWoBYVlWSKT7U20fp1YgPV6NDoMRdV2DKM5LFPkMfUeLjRJCCCGEEELCSjCSzWnxahSlxYJlgSN1wVuYU8r+6Dx+kuBUcz8GjOG1oGI4s7GjfculSQBzSS++V7mUrV2ERRHtFfaDFv4cpFvY1GxlhQVAhV7zIrfIAUYnHnoGw6c/tEqlQmlpKSoqKoTHbDYbKioqsHTp0nHbz5o1CydPnkRVVZXwddNNN+Haa69FVVUV8vLyJDlPfiHPnCT/F+QEgIQxkx1ixTq/KGeTjwuOWqw2tNkT6blJ/lcD87FutbHQj3DxJ1asC2Pr828xVSKtui6ujY4/yWbueXEAQqsFCgB0DhgxaLJCxgBT/KyUD7X2Ln4l0jdv3oyCggJoNBqUlZWhsrLS7bbbt28HwzBOXxqNc9UIy7LYsGEDsrKyEBMTg+XLl+PixYv+nBohoqJYJ9GCYp1EC4p1QkaJ/X4IpmAkm4HRhUyDVbk9aLTgVHM/AGnHlp0Yg7zkGNhY4Gh98CYJot2IlUumA9JUiSeNWXCUr0iXYkFZoUp8iE+kM/ZzEH9cGqUccWquyp3vMS+0rZFgkiAcK9IBYN26ddi6dSteeeUVnD17FmvWrMHg4CDuuef/s3fv8VHVd/74X3OfTJLJFXKHBFABFZBbxNaqLYLFtbr9tVV7wbIt7tqyXZvdttJvC7XuirWu9rJsabUsdnuRdre13UoRSk2rBQlyUeSmQO5Xcp1kkrmf3x9nzpmZZJLM5ZzJXF7Px2Meysy5fTLvGcL78z7vzyYAwMaNG+XFSM1mM6677rqQR35+PnJzc3HdddfBaFTnDpx2fxK3Ij++1hP5/vYOQ2PSpJEysS4l+NujTDZ3Dzvh8Qkw6DSYHUdLLoNOi2yjuOCoPDaFYr1SGluUkwTJKpV/hxnP4faiY0h8X2JPpIufqctJkmyWNF4Rr6eiQOzjHot5s8SfyeUrI4pdVzyiHsXevXtRV1eH7du348SJE1i6dCnWr1+Pnp6eSfexWq3o7OyUH83NzSGvP/nkk/je976HXbt24ejRo8jOzsb69evhcDiiHxGRQhjrlCkY65QpGOtEAWp8HhIlUcnm4OMnqk/6yZZBeHwCKvKz4qpqjMTqanGR1mMJ7gGfyUb9VdtmgxYmvU7x40vJeSmpOChX6Sqf3Jb61Nr8yT6peFuNpD0QGJs0JqlaV41+udIYBlIskX7vvffiqaeewrZt27Bs2TKcOnUK+/fvlxcgbWlpQWdn54xd34jTIyeH465IHxd/SsW6VLUdbSJdSk6X5WVBq43vjoy8cZMESsV6rGNLRqn8O0w4Lf2jEAQg16yPeU2Luf6WMK39ybVAbLwta4L3bU6SsUXdvOzpp5/G5s2b5VnNXbt24aWXXsLu3bvxyCOPhN1Ho9GE7csFiJVc3/nOd/C1r30Nd999NwDgJz/5CUpKSvDiiy/ivvvum7CP0+mE0xlYaIQLIJAaGOuUKRjrlCkY60QBSn8expss1t1uN9zuQLsE6f+Dn5vOscY+eHwCyvPMKMkxRLVvtJZXigvovd0+hMGRMWSbIv/nUyxje/3SFQDAyrn5qo4LAFbMycP/nmjD65d74XbPi2rfcGNT+3rTwZg/ka7WYmlyJbW/glWq3lYjuW01hyb7Aq1d1BmbeL4x2BweuL0+eWFTVRLp4ybyGPaAAAEAAElEQVQkUsmWLVuwZcuWsK/V19dPue+ePXuUv6AgUrI5L8sg32EQq/xxbYyUinVpAjPaqu32QTHBJyWr42HNMqBjyIGhMbeisV6RRhXpqfw7TDgX/YunVxdZ4PHE1m6t3CrGftvAGMYcTuh18XXyVmpsl3qGAQBzC7NiPlZ5nniXR3OfXZHfNeL9HSaqby+Xy4Xjx4/LtwMBgFarxdq1a3HkyJFJ9xsZGcHcuXPh8/mwfPlyPP7447j22msBAI2Njejq6sLatWvl7fPy8lBbW4sjR46E/Ufojh078Oijj0Zz6URRYaxTpmCsU6ZgrBMFqPF5GG+yWD9w4AAslomV1gcPHoz4+ve1aAFoUW4Yxb59+yLeL1aFJh36ncAP//cgFuYLUe8fzdj2nxHHZh5uw759rVGfKxr2MQDQ42TLAH77+30wxPBv7uCxjY4mR6VYMhv1tz9RK5Genz2+It3f7kKF9icTKtL9uZ9YqymnY83Sy+eTkvcAkKPwwqZAUIsce2pVpCc7JZPN46u2lYp1KdncZ3dh1OWBxRhZfCnV+x0IjG1wVNlYl9rppHpFeqr/DhPOoXYNAB0MjsGYf6/xCYBOo4PHB/zit/tRpFDnmnjH1nBB/L3G3t2EffsaYzpGmx0A9LjYFfvPJ5xYf4eJ6pPY29sLr9cr3xokKSkpwfnz58Puc80112D37t1YsmQJhoaG8NRTT+Gmm27CmTNnUFlZia6uLvkY448pvTbe1q1bUVdXJ//ZZrOpthgGZSbGOmUKxjplCsY6UYAan4fxJov1devWwWq1ys+73W4cPHgQt99+OwyGyJKLP/vxMQADuOc912HDyonnVtoro6fx4pudwOwF2LD2qoj3i3ZsTo8PXz72JwA+bPqb92H+rNhvg46EIAj40cU/48qIC2XX3YjV1ZG3yQk3Nt5hM71RsbBU/Yr00XEV6SpUiVv9Y7C7vHB7fbC7xUmCfBWS9kBo4lRKLuaa9dDF2UYjnPEtckgZiiabpYr0sXEV6XHGel6WAbkmPYadHnQMjmHB7NyI9gv0fld2kkDJWE+XivRU/x0mnNd/dxZoacON1y3AhrULYj7O9y++hsu9o1iwrBZr5hXFfBxAubH9qPkIgGGsf88KfGDh7JiOMexw49tvvYIRtwbv+8C6uO9oifd3GOWnb8dZs2ZNyCrRN910ExYtWoQf/vCHeOyxx2I6pslkgsmk/OrcRPFgrFOmYKxTpmCsEwVE+3mYLNYNBkPYf5BN9vx4To8Xb7aJ/dHXLJgV1z/uIrVmQTFefLMTx5uHYjpfpGN7s70fTo8PRdlGXFOWB41G+QTheKvnFeGltzpxosWG91xVMv0O4wSPLRHvRapTu7VLYdBio06PF2NuMXOvRnLbGlQdO+zwyP3f81Uam9RKxuZwy1Xwqv0cs1NzsdFk16ZSslnpWK8oyML5rmG0DUSeSG9ToSJ9aEzZWJd+7t3DDrg8vpgXfkxFyfI7zGTah8Q2MtWzcuI6zpyibFzuHUX7kEuxv5PjHVtrv/jZmDfbGvNxCg0GFFgMGBh1o2vYjUU58X/OgNh/h4nqk1NcXAydTofu7u6Q57u7uyPuNWQwGHDDDTfg4sWLACDvF88xiZTGWKdMwVinTMFYJwpQ4/OQKKfbhuD0+FCcY8S8YnUrtiWra8SqrlOtg3D4kzVqkBY0XV1TmJAkOgDU+hdTbWjigqOJICWbrSolgIOrdIcdgT67uXFW74Wj12nlqkCbww2H/6ORa1ZpbGGqdNVKpI9vW0PKkCqhKxVINudniQnzoVHlYz2WRTmlbSsVnCSwKRzrxTlGmPRaCALQNeSI+3gzJZV/h5mMtEBoVZyLjM8tFPdvSZJFOYdG3bD5P5/xjm1OEo0tqkS60WjEihUrcOjQIfk5n8+HQ4cOhczuTMXr9eL06dMoKysDANTU1KC0tDTkmDabDUePHo34mERKY6xTpmCsU6ZgrBMFqPF5SJSZSDZXF1kwK9cEl9eHN1sHVTtPQ9DYEkU61/HmAXi8voSdN1Op3SM9118lPuLwYMSfvMgx6aFVof0JEKhKHxrzYMyfSFejZzkQmHywjXnk5KJVpaS9NEFgd3nh9UW/LgKFp1b7E6VjvTLKFiiCIARNEsSXLATCTxopEesajSamSYJkk8q/w4S9Fp+AtgExOTynKL74qUqiZDMQuI5ZuSZkGXVxHUsaW2sSjC3qv+Xq6urwwAMPYOXKlVi9ejW+853vwG63y6vlbty4ERUVFdixYwcA4Jvf/CZuvPFGLFiwAIODg/j2t7+N5uZmfPaznwUgfpgffvhh/Ou//iuuuuoq1NTU4Otf/zrKy8txzz33KDdSoigx1ilTMNYpUzDWiQKU/jwkipRsXhVFP+94aTQarK4pxEtvdaKhsR+1cfYdDcfrE3C8eQBAYhPpV8/ORV6WAUNjbpzpsGFpVX7Czp2J1G7tkmsSjzvs8GDEGUguqsWaZUDHkMNfkS4mMHPVSqSbA4uNqt3aJXgywO70TLElRUPJHun58t0XLsVjXbq+tggT6b0jLjg9Pmg0QGle/Cs8SneWKN3aBRDHdrnXntKJdCB1f4cJp8vmgNsrwKDToNQaX/zIVdt9M59sBgKJdOm64pFMFelRf9Pce++9uHLlCrZt24auri4sW7YM+/fvlxv9t7S0QKsNFLoPDAxg8+bN6OrqQkFBAVasWIHDhw9j8eLF8jZf/vKXYbfb8eCDD2JwcBDvfe97sX//fpjNCi0zSxQDxjplCsY6ZQrGOlGAGp8HtXm8vhlJNgNiC5SX3upUrQXKuU4bRpwe5Jr1WFhqnX4HhWi1GqyqLsQfz3WjobGfiXSVjam82KiUAB5xemBzuEOeU0NwlbjUXUONNjJAILloc6jf2sWk18Go18Ll8WGYiXRFOD1e9AyLfaCVrkhXOtYr8sWEXaTJZmm7klyzIn3H1WxjJFekp/iCo6n4O8xkpKR3ZYEl7gVl5xaJLe+SIdkMKJtIn+uv1m9OgkmCmL5ptmzZgi1btoR9rb6+PuTPzzzzDJ555pkpj6fRaPDNb34T3/zmN2O5HCLVMNYpUzDWKVMw1okClP48qO1c5/CMJJuB0BYobq8PBp2yi7RJLWtWzi2I+x/S0aqtERPpRxv7sfl98xJ67kwzqnZFenAi3V/+rlaFOBDUyzkBPdLlxUbHAj13peS6OufTo3fEJbcNofh0Doo9uc0GrbyYazykuHa4fRgcdYc8F6+KKFu7KFlpDwQmqIZUiPVAa5eZT0bGK9V+h5lMq7+tS5UCyeaqQvH9HRpzY2jUrep3ZCSkRLoyY0ue1i6Zs0wvERERERGlrKONfQDEti6JTjZLLVBGXV6c6bApfvwG/9ikhU0TaZV/kuBYUz98adoPeufOnaiurobZbEZtbS0aGhom3fbZZ5/FzTffjIKCAhQUFGDt2rVTbh+NMY/U/kTd3t4A0G1zTHhOaYHktvo90kOqdEelvtHqjU36ubEiXRnB/dGVWN8iW8VYl5LN3cMOuDzTrx0hJaWVqLQHAnE94vQoHuvyJEGKt3ZJJ4GFRuOPH4tRj+IcE4DkqEqXe78r2NqlbWBsxteuYCKdiIiIiIiS3kwsximRWqCI19Gn6LEFQZjRsV1bboXFqMPQmBvv9Awn/Pxq27t3L+rq6rB9+3acOHECS5cuxfr169HT0xN2+/r6etx///145ZVXcOTIEVRVVWHdunVob2+P+1qc/pxctim+RdcmY9JrYdCJScqOITFRpmZFujVLPHbviBNeQeUe6cGLS7rU7/8uTXaMMJGuiEDVdvwJNQAw6LRyG5UufyJdqdgrzjHCpNdCEICuIce02ytdkW4x+he7dXoVj/V0ae2STpRsfwIEWqAkQyJdybGV5WVBr9XA5fXJk2czRb2/eYiIiIiIiBTg8wk41jRzyWYgqAXK5X48+L75ih33Ys8IBkbdMBu0uL4iT7HjRsqg02LF3AK8+m4vGhr7E942R21PP/00Nm/eLC9Ct2vXLrz00kvYvXs3HnnkkQnb/+xnPwv583PPPYf//d//xaFDh7Bx48YJ2zudTjidTvnPNpt4x4Lb7Ybb7Zafd7vdcPqrts06hLympByTHgOjbnT4KwEtBp1q58ryJzKDkxpGjaDK+cz+uQe7y4sRf09sk16j2tiyjeLYBu1OGIEJ7yVFpy2oIl0pOSY9+j0uOdmtVLJZo9GIi3JesaNtYBRziqZOArYrPDZpHHanB6P+iRyLwgupdgw64PMJ0Cb47i6aSOlE+pxCC443D8x4It3j9ckTNkqMTafVoLIgC019o2jpH0W5gt8l0WIinYiIiIiIktrFK2KyOcugw3XliU82A0DtPH9FelM/vD5BsfYyUn/05XMKFFmoLharqwvx6ru9ONrYj41rqmfkGtTgcrlw/PhxbN26VX5Oq9Vi7dq1OHLkSETHGB0dhdvtRmFh+AmcHTt24NFHH53w/IEDB2CxhCYPnF4xG/zG639Fq0o5AK1XB0CDs42dADTo7WzFvn3NqpyrtV0DQIcLLd0ANDDpBLy8/w+qnEvsL6+Hy+NDc8cVABpcOPMW9nW9qcr57INaAFocO3Ua7ykBDh48GLiW0Zmv9Ew1UkKtUqGqbQCwGHXotweqxpVsmVSR70+kR9ACpU3xinTxe2LM7cWwv0d6tlGZ1F2p1QytBnB5fegdcWK21azIcSl2rQr2EQ8+Tku/XZHjxapzyAGPT4BRr8XsXJMix5xTlC0m0vtGceO8xLfCkzCRTkRERERESU1ONs/Nn7Fk8+IyK7KNOgw7PLjQNYzF5cpUbs9kWxeJdO5jjf0QBEGRHsbJoLe3F16vFyUlJSHPl5SU4Pz58xEd4ytf+QrKy8uxdu3asK9v3boVdXV18p9tNpvcDsZqDcSIy+WC8/VXAAB3rH0/yvLUSWDtajyCvq5hOHVZABy4fuECbHj/AlXO1X+0Bf/Xch4u/7nyLWZs2HCLKudyeXzYeuyPAACvwQJgDO+tXYlbrp6lyvnqx07j9EAnqmquAkbfwe233w6Dwd8T3qb8OgnpTuk+4kCgcluN9QAqo1hwVKpIr1RobMH933tHxLtdLAq1g9LrtCi1mtEx5EDb4BgT6TNs1OVB74gLAKa98yFScwuTo7WLNEFQWZCl2J0Pc/yLqc702JhIJyIiIiKipCYnm6tnsAJJp8WK6kL85Z0raGjsUySRPtP90SVLq/Jh1GnRM+xEc98oqouzZ+xakskTTzyBF154AfX19TCbwyecTCYTTKaJ1XYGg0FOvAKA0+ODz99HPD/HHPKakqRe4l02MQGXZzGpeC5x3N3D4rlyzXrVzmUwAEadFi6vD1f8ycW8bPV+jnkWcWyjbsF//sD7qdY505nc/kTBinQp4dw5pGyPdACo9Pdyn25RzqExt1w1rtTYTHotdFoNvD4BV/yfLSUnCSoKstAx5ED7wBiWzylQ7LgUvdZ+Mb7yLQZ58eZ4SRXp0rFnitIta4KPNdOJdC42SkRERERESUtMNosLfM5kshkQ+6QDYnsXJbQNjKHL5oBBp8ENVTOX0DAbdFhWlQ8gMGmRDoqLi6HT6dDd3R3yfHd3N0pLS6fc96mnnsITTzyBAwcOYMmSJXFfy6grsGilxaDOYqNAIJno8Qkhf1aDtGiq2yueK0fFcwGBqlyHW1y1VWqBoQYpccnFRuPn9QnoHBST3UpWpEuJdKdHjAclY126zraBqRN2UsV6YbZRXiQ0XhqNRo5tu0tcWEHJWJcXHI2gbQ2pS0oIVym0CC8AlOeLk75dQ2If/JnSpkI7p4p88efUMcOxy0Q6ERERERElrZb+UXTbnGKyeU7+jF6LlMhv8LdAiZfUsub6ijxkqZgUjMSqGjGRfzSNEulGoxErVqzAoUOH5Od8Ph8OHTqENWvWTLrfk08+icceewz79+/HypUrFbkWu3+lUZNeC71OvX+GZ4+rXM0xqVc9PT5xqGTVbDjj+0Qr1Tc6nCy5T7VPtXNkip5hsVeyXqtBiYKtRHLGtTtRMtal6vLpks1KLzQqGf9ZUjLWK6JoW0OxGRpz4//e7MDrl/um/F1BSghLyW8llAT3wbc7J91uzOXFH0534i/vXIE3ioR7++AYXjzZjgtdw1Nu1yF/NpSfJJgukX5l2InfnmrHW22Dip07GFu7EBERERFR0pISu0sr82FWsZI3Eksq82DUa9E74sLlXjvmz8qJ63iBSvuZa1kjWV1ThJ2vXEJDU99MX4qi6urq8MADD2DlypVYvXo1vvOd78But2PTpk0AgI0bN6KiogI7duwAAHzrW9/Ctm3b8POf/xzV1dXo6uoCAOTk5CAnJ/b3W6pIV7OKGgCyxn1GlOqtHE72uGOrPbbxx1dzbNLPccztBZRZJy9jSQnb0jyzYos0AxOTy0rGg5QY7xx0TLm4dPuA8r3fAXVjXUpssiJdHRd7RnD/s6/LbXnuWlqO79y7LGwMdQxJiXTl4seg06LEakbnkAMdgw7Mzp2YpO8cGsN9P3odzX1i/N58VTGe3bhy2t+xDp7txud/fgIu/10gX92wEA++b37YbQNjU26SQPqcddkc8Hh9YSelGxr78Xd7jsl3E/39LfOw9YOLFLsGgBXpRERERESUxJKhh7jEpNfhBgVboEjHqE2Csa2YWwCtRuyrOtO3TSvp3nvvxVNPPYVt27Zh2bJlOHXqFPbv3y8vQNrS0oLOzk55+x/84AdwuVz4yEc+grKyMvnx1FNPxXUdUouG8RXjShufCFGzjcz4sYxP4ivNomKV7nhyRbr/faPYqVW1PT7+lIz1EqsZeq0GHp+AnmHHpNup0fsdYEV6qnJ7ffj7/34DV4admJVrgkGnwf+92YHnXr0cdnup5VF5nrLxIy1m3Rnm73KfT8A//vwkmvtGUWAxwKTX4tV3e/H0wXemPGb74Bi+8IuTcHl8KPcff8cfzuPIpfCT7x3S2BT83BfniD9TnxBYmyPY0Kgb//DT4xhxeuSfwQ//fBkvvdU5Ydt4MJFORERERERJK5kS6UBQn/Q4E+ndNgea+kah0QArqmd+wbcckx7XVeQBAI4p1AM+WWzZsgXNzc1wOp04evQoamtr5dfq6+uxZ88e+c9NTU0QBGHC4xvf+EZc1zAqJdLVrkgfd3w17+IYn9wzG9RNL4z/2amZuJcqgh1uJtLjJfVKVjrZPP6OCCVjXafVoMxfSTtVwlmtSYLxbZOUjPXgHulKtCijgL3HWnHpih3FOUbs/6eb8djd1wEA/uNPFzE46pqwvTRpXaZg1TYQSF6Hu+vg5TNdeKN5ABajDr/b8l7s/PhyAMB//bVxykn0pw+8gzG3F6uqC/CXL9+G+1ZVQRCAJ/afnxBHPp+ALv8iwFJCWwlarQalU0wS/OefL6Lf7sKC2Tl45V9uxZbbFgAAvrX/PDxe5dp0MZFORERERERJqXNoDC39o9BqxIrpZCC1YTk6Te/T6UiJ+MVlVljN6vWxjsbqamUmCWgiu3NmWruomUgfPxa1Wy8FJxctRh20CrYJGc8c3NqF4iIl8ypVrkhXOv4CC45OkUhXbZJAvViXxjXi9MA2xsV0lSIIAnb/tREA8PnbFqAox4SPrazCwtJcDDs9+J/jbRP26ZSTzcrGj/QeS1XhwfYcbgIAbHpPNaoKLVi7uARr5hXB7RXwvP+18XpHnPi/NzsAAF/dsAh6nRb/sv4amPRavNk6iDeaB0K3tzvh8vqg1UDRdRGAQPX++EkCh9uLXxxtAQA8csdCmA06fO62+SjMNqKlfxQHz3ZPOFasmEgnIiIiIqKkJCV0ry3PQ26SJJuXz82HXqtBx5BjygTLdJKt0h4IXUyVlDWaoNYu4xPpalZtJ7q1S/DikuMrdpUW6JHOxUbjpVayeXwrF6XjL5Je4uq1rVEv1rOMOhRlGwEAbYOjih47k51qHcTlK3ZkGXT46MoqAGIF9SdvnAsA+NUboYl0r09Al01MdCsdP1IV+PgK86ZeO4429kMXdF0A8MBN1QCA373ZAV+YhUdfPNkOl9eHpZV5uGGOWNRQnGPCXUvLAQC/PdUesr3UsmZ2rhkGhRfXLp9kkuDlM12wOTyoyM/C+xfOBiB+dj66slIcw7hrjAcT6URERERElJSSMdlsMepxfaXYAiWehLPUPkWqAk8Gq/zX8m7PCPpGJvYfpdhJPdLVrkg3T6gSV++f/Ca9dso/Ky0rKKE4vq2H8udKzdYuO3fuRHV1NcxmM2pra9HQ0DDpts8++yxuvvlmFBQUoKCgAGvXrp1y+1gFks0WRY87vgJd6ViXEv+TTZiOubzoHRHbdVQVKDu24O8JNWKdfdKVt++02Id7/bUlIT3u71pSDp1Wgwvdw2jtD0xc9AyLC9nqtRrMylV2RWMp2dw5FPr+/vGcWJV947zCkCr4W6+ZhVyzHp1DDhxvCa0uD97v7mUVIc9/yJ9I33e6C96gBLxaLWuAwOKl4ycJDpwRr/HDyytC7uC4x3/Nr5y/Ii9AGi8m0omIiIiIKCklYyIdiL9ye3DUhfNdwwCAVUk0toJsI64uyQEAHGua+I9pip2UkFW7antCaxcVE/cajSYkeT6+P7vSQs6VoJ9jKi02unfvXtTV1WH79u04ceIEli5divXr16Onpyfs9vX19bj//vvxyiuv4MiRI6iqqsK6devQ3q5c5aYgCKpVpJvGJc6VjvXKKfpMBz+fY9LDmqVs1bhJHxiLGrFeMc3YKHqvvtsLAPjAopKQ5/MsBqz0t6b70/nAZ1GqqC6xmqFTuE1VoEd6aNW2lBD/wMLQazQbdHIVtzQOydCYW/59YO24sd00vwi5Zj367S6c6RiSn5fiSsmFRiXhJgk8Xh9effcKAOA2/zgki8qsqCrMgsvrwzGF7rZjIp2IiIiIiJJO34gT7/aMAAhUSicLecHRGBfllP5ROn9WNopzlK1Eixfbu6jD6W8RonrV9vhEul7lCvig86ndIz04car2uaRJgVTqkf70009j8+bN2LRpExYvXoxdu3bBYrFg9+7dYbf/2c9+hs997nNYtmwZFi5ciOeeew4+nw+HDh1S7JoGRt3yz1DJRQeBibGtdKxXylXb4dufBLd10WiUTYSqHetyIp0V6YroGXbifNcwNBrgPQuKJ7weLkktJYKV/lwAgWRz74gTTo/4+XO4vTjRPAhgYrIZEJPiAHD4Ymgi/Y2mAXh9AubNysacotA7L/Q6LWr968YcvtQnPy/1fi9XY2x5EycJ3mwbgs3hQb7FgKWV+RP2ec988T15bdzYYqVuYzEiIiIiIqIYSMnmq0tyUOjv55osVswthEYDNPba0WNzYHaUi2k1NIr/4JQWLk0mq2uK8NPXW9DQ1Df9xhQxpycxifTg9hY6rQYGnXoLcgLjq8TVHVtwla5R4b6742Wl2GKjLpcLx48fx9atW+XntFot1q5diyNHjkR0jNHRUbjdbhQWhp+4dDqdcDoDLZ9sNhsAwO12w+12y89L/+92u9F8RUwWzsoxQgcf3Ar2nNdpAq0kdFoN4PPA7VYu3mfniutytA+OweVyQaPRhIytpVec6C3LM4WMXwmGoGHotVD8+KVW8e/U1n57yJiC/zv+/2lyx/2LbS4qtYb9fWWlvxjgVOsABEGARqORW5OoUbVdYDHAbNDC4faha8iBuUXZONMxBJfXh+IcI6qLJrYiusmfbD7VOohRl0eOwROtgwCAVXPDfy/cNL8IfzzXjcOX+vAPt8wHAFXHJlfbB01wnfS3o1lVXRi2uv+mBcV44VgrjlxS5vcaJtKJiIiIiCjpJGtbFwDIyzJgUakVZzttaGjqx98sKY9qf2lstUk4Nqln+9kOG4Yd7qRZ5DXVSVWBxgRWpJv1WsUrZccLqZxVufo9OGlv0Ks7Lunn6PYK8E5cey/p9Pb2wuv1oqQktPVCSUkJzp8/H9ExvvKVr6C8vBxr164N+/qOHTvw6KOPTnj+wIEDsFgmJuYOHjyIN/s0AHSwwIl9+/ZFdB2RemdIPDYA6OHDH/7wB0WP7/EBGujgcPvwy9/9AblBX4UHDx7EX1q0ALTwDPUoPram9sDYbIP9ih+/q188/tnm7gnHPnjwoPz/o6NcjDQSp9vFSaVlc/LDvn5tuRUGnQa9Iy609o9hTpFFbu2iRh9xjUaD8rwsXO61o31wDHOLsuVk//I5BWH/XqgqtGB2rgk9w06c67RhSXkuAOBEyyAAYEV1QdhzSXcMnm4blCcJpIr04D7sSin1V7nbHB443F6YDTqc9Cf7l1Xlh91nuf99ead7GA63F/H+TcVEOhERERERJR2pIjoZq7YBMcF/ttOGhsboEukjTg/e7rDJx0g2pXlmzC2yoLlvFMebB3DrNRNvAafoufzZWLUT6cF9otXuWQ6EJs/V7McOhCbSVa9IDxqLgkXUSeuJJ57ACy+8gPr6epjN4RN7W7duRV1dnfxnm80m91W3Wq3y8263GwcPHsTtt9+O7mMdwDsXcG11KTZsWKroNZe2DGLnWXFx1JwsEzZsuFXR4wPAk2f/jO5hJxateA+WVOaFjO3Qi+eB9k6sWXoNNtxco+h5uw834/ctFwAAZSWzsWHDckWPX91pw3MXXocdRmzYcBuA0PfNYBBnDaS7Dmhq0t/pSyrywr5uNuhwbXkeTrUO4mTrAOYUWdAzLCabS6O8oy1Ss60mXO6148qweBfJm61iD/Plc8MnxAEx4d9z4QrOdIiJdJ8QGNvySSYJrirJgV6rwcCoG51DDpTnZ8nnLLEq37rOatbDqNfC5fHhyrATVYUWvDlNIr0iPwsFFgMGRt14p3sYi0qy47oGJtKJiIiIiCip2BxunJWSzUnWH11SW1OIPYebou4lfqJZ7DdaWZClym3PSlhdXYjmvlE0NPYzka4Ql78i3aRy1XZwRbra5wJCK9JVb+0SNDaDyol0k14LjQYQBCAV1hstLi6GTqdDd3d3yPPd3d0oLS2dct+nnnoKTzzxBP74xz9iyZIlk25nMplgMk1MjBkMBjnxOv75TpuYUKsqzA67TTyyzYEWGmaDTvHjA0BloQXdw050j7hDji+OTUyEzinKUfzcWabA8Ux65cdWXSxOfPTb3fAI2pCJo+D3U42faboRgpLN11eGT6QDwHUVVpxqHcT5rmHcDcjJ5lm56qyTMitXTNBL57nQLS5wvqjMOuk+15bn4ZULV3Cm3QasrECfA3C4fTDptagpzgm7j9mgw4LZOTjfNYwzHTaU5ZlVHZtGo8HsXBPaBsbQM+yA1WxAm7/X/2Q/f41Gg+sq8vDqu714u90WdyI9pr99du7cierqapjNZtTW1qKhoWHSbZ999lncfPPNKCgoQEFBAdauXTth+09/+tPQaDQhjzvuuCOWSyNSFGOdMgVjnTIFY50oNRxvHoBPAOYWWeTbeJPNKn81+fmuYQzYXRHvd8y/QGmyThAAXHBUDTOx2GgiKtKDk/WJbe2i7s9Ro9HI43GlQEW60WjEihUrQhYKlRYOXbNmzaT7Pfnkk3jsscewf/9+rFy5UvHrkhazrChQftLQnIBYlxblbAuz4KiaY1M71q1ZeuSYxLpaadFUis2QCxh2eKDTanDV7NxJt5Nee7db7K3fOyL+3jBLpQXHpeNeGXHC5fGhqdfuv47wCXFArEgHgDOdYvV615jYAmb+rJywvccli6X9OoZgG/PA5RW/NNVaTF1K0F8ZduLiFWmtAjOsU7Sik67xrH9s8Yj6E7l3717U1dVh+/btOHHiBJYuXYr169ejp6cn7Pb19fW4//778corr+DIkSPyrT/t7e0h291xxx3o7OyUH7/4xS9iGxGRQhjrlCkY65QpGOtEqUPuj57EyebiHBPmzxKrmqTkeCSOJnHvd0mtv53Om22DcKTIYovJTkosqL/YaFBiW+UK8fHnCD63GhLZ2gWAvFBrKvRIB4C6ujo8++yzeP7553Hu3Dk89NBDsNvt2LRpEwBg48aNIYuRfutb38LXv/517N69G9XV1ejq6kJXVxdGRkYUuyYpSVuhwt03wfGgVqxLSXIpaS5xe33o8lekV6qcSFcj1jUajfyedDCRHpcrDvF7oqoga8rWXVeViAnsd3vEynD1K9IDyeamPjs8PgE5Jj3KpihOuLpUTPY3XrFDEAR0+UPj6pLJk+8AsNC/3+UrdlwZET8XVrNetb8TZgeN7bI/kT5v1tRV5gtmiWNo9E8oxCPqT+TTTz+NzZs3Y9OmTVi8eDF27doFi8WC3bt3h93+Zz/7GT73uc9h2bJlWLhwIZ577jl5ZjSYyWRCaWmp/CgomLxvj9PphM1mC3kQKY2xTpmCsU6ZgrFOlDqSeaHRYLXzxIRzpJXbDrcXp/y9PJN5bFWFWSixmuD2CjjpX2iM4uP0iIl0tXuk63WBqkG1K8SB0Ip0tScJgs+ViES69F55U6AiHQDuvfdePPXUU9i2bRuWLVuGU6dOYf/+/fICpC0tLejs7JS3/8EPfgCXy4WPfOQjKCsrkx9PPfWUYtckJ9JVrkhXK9alZPP4qu0umwM+QYyR4mzlE6GJiHV5koCJ9Lj0iHlj1BRPnci9ukRMNrf0j2LA7sKI0wMAKE5AIv0df1uXBbNzplyAurIgC1oNYHd50TviQueouO1VJZNX2gPA3CJx7M19dvSoPEEQfOyeYScuXRET4/NnTZ3sl96fpt74F9CN6hPpcrlw/PjxkFWctVot1q5diyNHjkR0jNHRUbjdbhQWhv7iWF9fj9mzZ+Oaa67BQw89hL6+vkmPsWPHDuTl5cmPqqqqaIZBNC3GOmUKxjplCsY6UeoYc3nxVtsggEBldLKqlVqgRFiR/lbbEFweH4pzTNP+o3smaTQaeZFXtndRhpRIVzvZHNw7XDtFwkQpwZXAwUl8NQT3Yzfo1R+b9LNMlYp0ANiyZQuam5vhdDpx9OhR1NbWyq/V19djz5498p+bmpogCMKExze+8Q1FrsXu9GBw1A1ApYr0oHhQK9SlZHPbuIr0jkExe1qRnwXtFC0vYpWIWJcnCQaYSI9Hj7/9yWQ9xCVF2UbkmPQQBOCU/3cck16LXJM6S1cGJ9Kb+8Tk8XTJZpNeJ6/d0tw/ij5/tf28aX5fqfYn0pv6RlWvtAeAWTmB/u+X/BXpkSbSO4bG4IzzTruo/hbv7e2F1+uVZzQlJSUl6OrqiugYX/nKV1BeXh7yD9k77rgDP/nJT3Do0CF861vfwp///Gd88IMfhNcbfnBbt27F0NCQ/GhtbY1mGETTYqxTpmCsU6ZgrBOljpOtA3B7BZRazagqTM7FOCWr/K1n3m4fkqvLptLQKE601dYUTlkVlgzkPulNk08OUuQSl0hPbFwFV86qvQCoOYHnCj6HJ4US6clESjZbzXrkTtG7OFbB8eDxqfMmVU1Sta1myxogMbHOinRl9EoV6dO0Fglup/Om/8604hyTar8LSD3Se0ec8kRQJHeGSAnn5r5R9Is58Wn3m1NoAQAMjblxsUdMbEuLnaphtjV4kkCsSJ+uOKEw24hcsziR0dIfX8yrM/UxiSeeeAIvvPAC6uvrYTYHfqj33Xef/P/XX389lixZgvnz56O+vh4f+MAHJhxnstWiiZIFY50yBWOdMgVjnShxgtu6JHuyuTw/C1WFWWjtH8Px5gHccvWsKbdPhf7oEqna/kTzINxeX0ISl+nMlaDWLsHvkwD1M8DBEwN6FSpzQ84VVKWb0B7pKdLaJdm0D0nJO4sqxw+eNPKplEiXqnOHHR4Mjblh8WfQ2oMq0tWQiFhnRboy+pxiHErJ5KlUFGThQvew3OItEe1P+uwutPaLFekV+dMnt6VxXLxih82t8e83dZxnGXUotZrRZXPIa8aotYhq8LF7hp3oHBI/i+XTjE2j0WBOoQVnOmxoi3PyKKpPZHFxMXQ6Hbq7u0Oe7+7uRmlp6ZT7PvXUU3jiiSdw4MABLFmyZMpt582bh+LiYly8eDGayyNSDGOdMgVjnTIFY50odaRKf3TJ6mqpBcrUldserw8nmgfEfVJgbAtm5aDAYsCY24u324dm+nJSXsJ6pAcls4UEVFIHJ+5Vb+0SvACjyj9HILi1S3JP6CUrtZPNiZhotRj1KMw2AghNOMutXVTo/Q4kJtZZka4Mm0v8b6l1+iS1tDCttPaImon0wmwjtBrx7wGpXV5F/vTJfmny6M028e99s0ErfwamUuZPZJ9pF9d/UnNsUl/5lv5RDDvEuwFL86b/LErvUbfNGdf5o/pEGo1GrFixImSRLWnRrTVr1ky635NPPonHHnsM+/fvx8qVK6c9T1tbG/r6+lBWVhbN5REphrFOmYKxTpmCsU6UGlweH060iMnm2hRINgNBfdKn6SV+ttMGu8sLq1mPa6ZZuCsZaLUauXUN+6THz+URW36p3dolOLmYiI4kwblMvVbtxUaD+kYncLFRtnaJTYc/QVupUrI5mJpvUbgFRztUbu2SiFiv9F97l80BD2+7iInT44PdI34JllinTxxL8TI0Jq4dUKxi1bZOq0GBRUyA2/zJ5umqtgFgtj9JLVXNl+eZI5q0KvG3chn2t7krzFa+nZOkwCIeW/o55pj0yImg13xJnniNXTZHXOeP+hNZV1eHZ599Fs8//zzOnTuHhx56CHa7HZs2bQIAbNy4EVu3bpW3/9a3voWvf/3r2L17N6qrq9HV1YWuri6MjIh9c0ZGRvClL30Jr7/+OpqamnDo0CHcfffdWLBgAdavXx/X4IjiwVinTMFYp0zBWCdKfqfbh+Bw+1CYbcSC2VMvHJUspOryN1uH4JhiASspGb2qulCVxenUsDrCSQKantzaJYEtcoQElKQHR7La/dl12sQm0lNxsdFkonZFejA1Qz3QAmVUfq5d5Yr0RMR6cY4JRp0WXp8Qd2IxU0kLaxr1WuRlTZ84Lhv3Wci3qJdsBjDhmsoj+CyW+Ku23f4vvrIIKr2BQN/ywLmnr2KPVf64Y5fmRdaPXamK9Kh7pN977724cuUKtm3bhq6uLixbtgz79++XF+9qaWmBNuhD/4Mf/AAulwsf+chHQo6zfft2fOMb34BOp8Nbb72F559/HoODgygvL8e6devw2GOPsYcozSjGOmUKxjplCsY6UfILJJsLkr4/umRukQWzc03oGXbiZMsg1swvCrtdKvVHlwQWHO2H1ydAlyITAMlIWgxR7artYImpSA/EhNo90oOPn4hFVdkjPT5y1XYCKtLVJFXUSws2+gSgY0jdivRExLpWq0FZvhnNfaNoHxhDSY66Sd101ONPpM/OjWzR0OJxLVIiSb7HIy8oUZ9r1sNs0E2xtahkXIua4pzIEuLj91NzkiDXrIdWI34WAaAs6kS6A5h6SZspxbTY6JYtW7Bly5awr9XX14f8uampacpjZWVl4eWXX47lMohUx1inTMFYp0zBWCdKblKf8dU14ZPRyUij0WB1TSF+/1YnGhr7wybSfT5BXoArlRLpi8usyDbqMOzw4ELXMBaXW2f6klKWVDGbyPmhRPRI1wYNSO2JluDjq90iBwhUArO1S2w6ElmRruK00fhe4sNusVpXp9VEnMCLVqJivSI/S0ykD45heRW/36PV7a/kL4mwH3hx7viqbXUT6flBx4+kzzkwsUVNQYQJ8dnjxqZmIl2r1SAvy4CBUbf/3JF9DqWq+SvDzrgS6Vx6nYiIiIiIZpzXJ+CNptTqjy6pnedfcLQp/IKj7/aMYHDUjSyDDtdV5CXy0uKi12mxQu6TPvViqjQ1rz+rnciq/kS0dgkejtp3kYRW6SagRzpbu8TM4wN6RsRq3VSvSB/fI73f3xWi1GqGXqU4TFSsB9rWcMHRWFwZEVcajXRhzaJEV6QHHV/qlx7JPsF/T0W63/h+72qPLfi6Iu3HLu0z5O8ZHysm0omIiIiIaMad67Rh2OlBjkmPRWWpVRknJf6PNw/IvbCDSUnoFXMLEpIAVJI0tmP+SQ6Kjdd/D7ougSXpiV5sVG26BCfS5Yp0tnaJ2qBLvCPCbNBOSB6qQdUe6QWhyeYBpxiHalbaJyrWx1fbU3SkxS4jrb7OtxhDJh9Vr0gPSTZH9jnUaDSwmgPNSwoiTFJbx41lfB9zpQW3rcmPMNkvvU+Do664zp1av8UREREREVFakvqjr6wuSLle3Atm5aDAYoDD7cPbHUMTXk/F/ugS6ZqPNvYnpMI5Xfn8P7tELjSb6NYuagvuL5+I7wiDnhXpser3J5vL87MSst6FmrFeWWABAPTZXRhzeeWKdDUr7RMV6+Or7Sk6w/7K5lxTZF2zdVpNSNI3GSvSx+9XGEUlu8So18JsUDfdHNy2JtKfo5TcH3P74I5jgpSJdCIiIiIimnENKZxs1mo1WCW3QOkPeU0QhKBFVFNvbEsq82DUa9E74kRjr32mLydlSYuipdgNCdNK5KLAuqBFFxNxWoM/gclEevTkZHMC+qOrLS/LICdK2wfH5EkCVSvSExTr46vtKTo2h1iRHlzBPZ3coG0TmUiPtP0JAOQFJc8jrUgPPpfVrFf974Zcc3BFemTXKC1SCgCjcXR3SbO/xomIiIiIKNUIgoAG/2KcqdYfXSJNAIxPpLcMjKFn2AmDToMb5uTPwJXFx6TX4YaqfAATx0aR8/kz6YlMPKu5AKMkkTePBLfFSUQlvHT3AG/EiJ7U/qQyQf3R1X6LpIRzx5ADAwmoSE9UrFfmi9X27YNjvOMoBrYxf0V6FAlxY9Bs6vh2KEoLTtpH2v4ECE2K50d4jWpPCoyXbdLJ/x9pGxlpkVKAiXQiIiIiIkphl67Y0W93waTX4vqK/Jm+nJjU1ogLjh5r6pf7YYt/FnuLL63Mh9mgC7tvsqudZJKAIicvNprARLovAb29Z6pHeiIS6dIZ2CI9eulUkQ6EtkBJSEV6gmK9NM8MjQZwenzos8fXNzoTDcdQkR783mYb1f2dIDuo5UxOhO1ngNCkeHaE+xn1gfRyuLVilGYxxlbZz0Q6ERERERGlvGPNYrJ5+ZyCkH+MpZJFZbnIMekx7PDgfJdNfl5KpKdiyxrJqqA+6RQbebHRFOv/P53E9kgPnCsRLXKksbFQN3qJqNoOpnY1tVyRPpiYivRExbpRr0VJrhkA0D7oUO9Eacrm75EeTSI9+HccvcpfZJagRH1WFBP5wUn3WAoAXF71E+nBkxAWU+TXKCXgXd7Y/+5Kzd9SiYiIiIgobaRDslmv02LF3AIAwNHLgYRzOoxt+RxxAdj2wTEuShcj6SaFRObRE5H/nVNoScBZRMELtSaiRY6W2ZKYBaq2ExcfapJa1JzpsMHpU78iPZGxHpgk4Hd7tOTFRs2RV0QbErhQRnA1uTmK6ndDUI9+S5LeSZcVVJFuiqIAQ5pccHKxUSIiIiIiSkWCADT4k82p2h9dMr5P+qATaB0Yg1YDOcmeirJNelxXkQcAOMaq9Jj4/BWziazgTkTP4w8vr8RD76vBQ4u8qp8rWEJau0gV6aqfKb34fAIG/V1CElWRrjZpQuBEyyAAoDjHmLBWXWrHeqBtDSvSoyW1MIkmkZvIu5KCq9CjqUgPvsZoxiZJxPdzcLV9NJ/FLP9+LibSiYiIiIgoFfU7gW6bE3qtBjfMSd1kMwDcOM+fSG/qhyAIuDQs/mPy2vK8qCrWklEt27vETBAEuT2INs1au+i0GtTdfhUW5ic23ZyIH6N0Dh8z6VHpGXHCK2ig02pQkmtKyDnVnjOSJgTsLnHCqDzfrO4Jg6gd66xIj53bvxBFcAV3MgmpSDdEkewPXuw2hgBMxE8jONkfTSJdSsC74pj7ZSKdiIiIiIhmzCWb+I+hJZV5cqVQqrq+Ih8mvRb9dhcuXbHLY1tVndqV9gCwulqqtu+b4StJPcGLzyZysdGllfkJO1eilVjVT2TKPdITkhZKHx3+yuZSq0n1HtCSZVX5qh5/fBuXirzEVdqrHeusSI+d2yt+t0fVriWBE3PZMVZtx1s1n5g7hgL/b46qtYu/R3ocFemRd8QnIiIiIiJS2EV/snl1TdEMX0n8jHotls8pwJHLfTjWPCAn0lO5P7pkVXUhNBrg0hU7+kacM305KcUbVC6biLzigS++D//3Zgc2v2+e+idLsB99agXaB8fkVkNq4mKjsZEqm8tV7CEuSVSsF+cYYdJr4fS38khERXqiYj2kIj31/6pKKI9/UU19FBXpQgIz6ZagivRocuPxJtITMV8cPEEdzYSdtJBvPHcaMZFOREREREQzRmp/kur90SWrawpx5HIfDpztQdeYVJGe2i1rACDPYsA1Jbk43zWMY82DM305KSU4EZuISr2rS3Lxz+uuUf08M2HdtaUJO5f0VjGPHh2psrkiT/1kc6JiXaPRoKIgC5ev2AGou9CoJFGxXilVpA+xIj1aMVWkJ1BwX/RoEseVBfEtEpyIn4c3xky4NOkRTyI9Od9tIiIiIiJKe902B3odGmg0wIo0SDYDgQmB1y6KLVAWzMpGUU5i+gSrTaqsP+ZfHJYiE/wP/kQuNkrxYUV6bDqGEleRnkjByfNE9khXm1SRPuzwYMwzwxeTQgRBgMeX3In04MryOYWRJ8c/urISn1hdhb+7OrpG4tI6MRvXVEe1XyxiTaRLPxMvE+lERERERBSNnTt3orq6GmazGbW1tWhoaJhy+1/96ldYuHAhzGYzrr/+euzbty/ua3jDX9m8qDQX1hRfjFNyw5wC+dZhID2q0SWpmkif6VgPbu2SbouNpjNtClakz3SsA0EV6WmUbAaAyoJAIj0RFemJYjHqUWAR//7tT6GuXTMd6+6gTKwhib/XD/3zLfjN526Kqte+QafFN+5ahKVF0X37/fBTK7H70yvxudvmR3uZUYu5Il0rpsF9QuzvGRPpREREREQZZu/evairq8P27dtx4sQJLF26FOvXr0dPT0/Y7Q8fPoz7778fn/nMZ3Dy5Encc889uOeee/D222/HdR1SQjadks1ZRh2WVAZ62qbT2KQFR893D2M0RSoXkyHWfSGLjcZ8GEqwVKtIT4ZYBxLbIz2RgpPn6TZJIFWlDzhT4wsqGWLd7Q2sVhlNRfpn3iv281+7qCTmc0dj/qwc3DAnMb+H5GUZ8P6FJQmp0F+7WPz5BU9wRUKnQI90JtKJiIiIiDLM008/jc2bN2PTpk1YvHgxdu3aBYvFgt27d4fd/rvf/S7uuOMOfOlLX8KiRYvw2GOPYfny5fiP//iPuK5DTqTPTZ9kMxC6cOrKNBrbbKsZNcXZEASgcTg1Ei7JEOvBlXPxLuJGiaPxJ9J902yXLJIh1gVBQEfaVqSLrTGydAJy0+QOKok0STDgmuELiVAyxLrHG7zYZeTf63dcV4q/fOk27Prk8pjPTeIEweFH3o8/1t0S1X5KJNK52CgRERERUQZxuVw4fvw4tm7dKj+n1Wqxdu1aHDlyJOw+R44cQV1dXchz69evx4svvhh2e6fTCaczcI+4zWYDALjdbrjdbgDAwKgL7/SMAACWVeTIz6eD1dV52PVnYJZZQLFFl1ZjWzk3H429dlyyaULGlYxjTJZYd/n/q4EAj8cjJ2jThTTOZIyBuAhiCl0AGOuILNYHR92wu8S+yrOy0+u77+pZYiK9IltIq3EBQJlVXMej38nvdSCyWB8Nel3weuB2R16nXGY1QPB54fZF14M8kVLhe31Wth6AD2535NOdGv8tRl7E/r3ORDoRERERUQbp7e2F1+tFSUnobcUlJSU4f/582H26urrCbt/V1RV2+x07duDRRx+d8PyBAwdgsYjJiCtjwOJ8LUY9Ghw//OdYhpK0BAG4f74GldkCDh48ONOXoyjTkAblFi2sxtCxjY6OzuBVhZcssT7iBqpzdACQdvEQLN3G1telwdwcLQoY6wAii/UBJ3B1nhYurwZ/eeVPsQwlqf3L9UCBKf1i3dGtQVW2FlYDYx2I/Hu9JlcHQQD++Mc/xjKUlJBusd6vwPc6E+lERERERKSorVu3hlR/2Ww2VFVVYd26dbBarfLzH3e7cfDgQdx+++0wGNLrVvl1aTq2DQC+GmZsUsVepok01v92Q3rGAyBW8qXj2DYg/NgY66LJYv1jaRoPAGM9U0T8vZ6m8QAw1qcSU490pVfHFQQB27ZtQ1lZGbKysrB27Vq8++67sVwakaIY65QpGOuUKRjrREBxcTF0Oh26u7tDnu/u7kZpaWnYfUpLS6Pa3mQywWq1hjwAwGAwTHhM9nw6PDJtbMmGsc5YZ6wz1hnrjHXGOmNdyViPOpGuxuq4Tz75JL73ve9h165dOHr0KLKzs7F+/Xo4HI5oL49IMYx1yhSMdcoUjHUikdFoxIoVK3Do0CH5OZ/Ph0OHDmHNmjVh91mzZk3I9oB4u+9k2xMlA8Y6ZQrGOmUKxjrNNI0gCFGtVVpbW4tVq1bJq9v6fD5UVVXhH//xH/HII49M2P7ee++F3W7H73//e/m5G2+8EcuWLcOuXbsgCALKy8vxz//8z/iXf/kXAMDQ0BBKSkqwZ88e3HfffROOOb7x/9DQEObMmYPW1taQ2ywofUi30gwODiIvLy8h52Ss00xgrEPenrGe3hjrkLdnrKe3mYj1SOzduxcPPPAAfvjDH2L16tX4zne+g1/+8pc4f/48SkpKsHHjRlRUVGDHjh0AxImlW265BU888QTuvPNOvPDCC3j88cdx4sQJXHfdddOeb2hoCPn5+RNi3e1248CBA1i3bl1SVr7FI9PGxlgXMdbTf2yMdRFjPf3HxlgXMdbTf2xRxboQBafTKeh0OuE3v/lNyPMbN24UPvShD4Xdp6qqSnjmmWdCntu2bZuwZMkSQRAE4dKlSwIA4eTJkyHbvO997xO+8IUvhD3m9u3bBYiLZ/ORYY9Lly5FE7IxY6zzMdMPxjofmfJgrPORKY9ExXo0vv/97wtz5swRjEajsHr1auH111+XX7vllluEBx54IGT7X/7yl8LVV18tGI1G4dprrxVeeumliM/V2to64+8BH4l5tLa2KhWiimGs88FYZ6zzwVhnrPOhRKxHtdioGqvjSv+NZgXd8Y3/BwcHMXfuXLS0tCTVLJmapNmSTKlgkyr2CgsLE3I+xnryYKyri7GePBjr6mKsJw/GevLYsmULtmzZEva1+vr6Cc999KMfxUc/+tGYzlVeXo7W1lbk5uZCo9HIz6dzPGTa2ARBwPDwMMrLy2f46iZirKsr08bGWBcx1tN/bIx1EWM9/ccWTaxHlUhPFiaTCSaTacLzeXl5afcGTyd44YNMoNXGtD5uymKsBzDW0xtjPYCxnt4Y6wGM9cyi1WpRWVk56evpHA+ZNLZMmRCcCmM9M8bGWGesZ8rYGOuM9UwZW6SxHtVv9Gqsjiv9N5pjEqmNsU6ZgrFOmYKxTkRERERERPGIKpGuxuq4NTU1KC0tDdnGZrPh6NGjXEGXZgxjnTIFY50yBWOdiIiIiIiI4hJxd32/F154QTCZTMKePXuEs2fPCg8++KCQn58vdHV1CYIgCJ/61KeERx55RN7+r3/9q6DX64WnnnpKOHfunLB9+3bBYDAIp0+flrd54oknhPz8fOG3v/2t8NZbbwl33323UFNTI4yNjUV0TQ6HQ9i+fbvgcDiiHU7KyrQxz8R4GevJIdPGzFgXZdr7LgiZN2bGuijT3ndByLwxZ9p4o5XOPx+OjYKl88+MY6Ng6fwz49goWDr/zDi2yUWdSBcE5VfH9fl8wte//nWhpKREMJlMwgc+8AHhwoULsVwakaIY65QpGOuUKRjrREREREREFAuNIAjCTFfFExERERERERERERElq6h6pBMRERERERERERERZRom0omIiIiIiIiIiIiIpsBEOhERERERERERERHRFJhIJyIiIiIiIiIiIiKaQsok0nfu3Inq6mqYzWbU1taioaFhyu1/9atfYeHChTCbzbj++uuxb9++BF2pcqIZ8549e6DRaEIeZrM5gVcbn7/85S+46667UF5eDo1GgxdffHHaferr67F8+XKYTCYsWLAAe/bsUf06E4Gxzlgfj7EuYqwz1lMVY52xPl66xnq8/u3f/g033XQTLBYL8vPzZ/py4hLt5z5VxBLvNBFjPfkx1pXBWE9+jHVlMNaTn1KxnhKJ9L1796Kurg7bt2/HiRMnsHTpUqxfvx49PT1htz98+DDuv/9+fOYzn8HJkydxzz334J577sHbb7+d4CuPXbRjBgCr1YrOzk750dzcnMArjo/dbsfSpUuxc+fOiLZvbGzEnXfeidtuuw2nTp3Cww8/jM9+9rN4+eWXVb5SdTHWGevjMdZFjHXGeqpirDPWx0vXWFeCy+XCRz/6UTz00EMzfSlxieUzkCqijXcKj7Ge/BjrymCsJz/GujIY68lPsVgXUsDq1auFz3/+8/KfvV6vUF5eLuzYsSPs9h/72MeEO++8M+S52tpa4e///u9VvU4lRTvm//qv/xLy8vISdHXqAiD85je/mXKbL3/5y8K1114b8ty9994rrF+/XsUrUx9jnbE+HmNdxFhPbYx1xjpjPSBdY11JqR4T0X4GUlUk8U5TY6ynBsZ6/BjrqYGxHj/GemqIJ9aTviLd5XLh+PHjWLt2rfycVqvF2rVrceTIkbD7HDlyJGR7AFi/fv2k2yebWMYMACMjI5g7dy6qqqpw991348yZM4m43BmR6u9xOIx1EWM9VKq/x+Ew1kWM9VCp/h6Hw1gXMdZDpfp7TFOL9TNAlGoY65QpGOuUKRjrkUn6RHpvby+8Xi9KSkpCni8pKUFXV1fYfbq6uqLaPtnEMuZrrrkGu3fvxm9/+1v89Kc/hc/nw0033YS2trZEXHLCTfYe22w2jI2NzdBVxYexHsBYD2CsixjrjPVUxFgPYKwHpGOsU0AsnwGiVMRYp0zBWKdMwViPTNIn0ikya9aswcaNG7Fs2TLccsst+PWvf41Zs2bhhz/84UxfGpGiGOuUKRjrlCkY6+ntkUcembCY7PjH+fPnZ/oyieLGWKdMwVinTMFYp3D0M30B0ykuLoZOp0N3d3fI893d3SgtLQ27T2lpaVTbJ5tYxjyewWDADTfcgIsXL6pxiTNusvfYarUiKytrhq4qPoz1AMZ6AGNdxFhnrKcixnoAYz0gHWN9Kv/8z/+MT3/601NuM2/evMRcTAIo8Rmg1MRYFzHW0x9jXcRYT3+MdRFjPVTSV6QbjUasWLEChw4dkp/z+Xw4dOgQ1qxZE3afNWvWhGwPAAcPHpx0+2QTy5jH83q9OH36NMrKytS6zBmV6u9xOIx1EWM9VKq/x+Ew1kWM9VCp/h6Hw1gXMdZDpfp7HK1Zs2Zh4cKFUz6MRuNMX6ZilPgMUGpirDPWMwVjnbGeKRjrjPWwlF33VB0vvPCCYDKZhD179ghnz54VHnzwQSE/P1/o6uoSBEEQPvWpTwmPPPKIvP1f//pXQa/XC0899ZRw7tw5Yfv27YLBYBBOnz49U0OIWrRjfvTRR4WXX35ZuHTpknD8+HHhvvvuE8xms3DmzJmZGkJUhoeHhZMnTwonT54UAAhPP/20cPLkSaG5uVkQBEF45JFHhE996lPy9pcvXxYsFovwpS99STh37pywc+dOQafTCfv375+pISiCsc5YZ6wz1iWMdcY6Y52xnmmam5uFkydPCo8++qiQk5Mj/1yHh4dn+tKiMt1nIJVNF+8UGcZ68mOsK4OxnvwY68pgrCc/pWI9JRLpgiAI3//+94U5c+YIRqNRWL16tfD666/Lr91yyy3CAw88ELL9L3/5S+Hqq68WjEajcO211wovvfRSgq84ftGM+eGHH5a3LSkpETZs2CCcOHFiBq46Nq+88ooAYMJDGuMDDzwg3HLLLRP2WbZsmWA0GoV58+YJ//Vf/5Xw61YDY52xzlhnrAsCY52xzlhPFYx15TzwwANhf5avvPLKTF9a1Kb6DKSy6eKdIsNYT36MdWUw1pMfY10ZjPXkp1SsawRBEOKraSciIiIiIiIiIiIiSl9J3yOdiIiIiIiIiIiIiGgmMZFORERERERERERERDQFJtKJiIiIiIiIiIiIiKbARDoRERERERERERER0RSYSCciIiIiIiIiIiIimgIT6UREREREREREREREU2AinYiIiIiIiIiIiIhoCkykExERERERERERERFNgYl0IiIiIiIiIiIiIqIpMJFORERERERERERERDQFJtKJiIiIiIiIiIiIiKbARDoRERERERERERER0RSYSCciIiIiIiIiIiIimgIT6UREREREREREREREU2AinYiIiIiIiIiIiIhoCkykExERERERERERERFNgYl0IiIiIiIiIiIiIqIpMJFORERERERElOK+8Y1vQKPRoLe3d9ptPR4PvvzlL6OqqgparRb33HOP+hdIpBDGOmUKxnryYSKdiIiIiIiIKIPs3r0b3/72t/GRj3wEzz//PL74xS9Ouu2nP/1paDSaCY+FCxeqfp233npr2HPfcccdqp+b0kOqxDoAuFwuPP7441i4cCHMZjNKSkpw5513oq2tLSHnp9SWCrHe1NQU9rzSY/PmzaqeXwn6mb4AIiIiIiIiIkqcP/3pT6ioqMAzzzwT0fYmkwnPPfdcyHN5eXlqXNoElZWV2LFjR8hz5eXlCTk3pb5UiXW3240777wThw8fxubNm7FkyRIMDAzg6NGjGBoaQmVlperXQKktFWJ91qxZ+O///u8Jz+/fvx8/+9nPsG7dOlXPrwQm0omIiIiIiIgySE9PD/Lz8yPeXq/X45Of/KR6FzSFvLy8GTs3pb5UifVnnnkGf/7zn/Haa69h9erVCT8/pb5UiPXs7Oyw59yzZw+sVivuuuuuhF5PLNjahYiIiIiIiChN9Pb24mMf+xisViuKiorwT//0T3A4HAACt9W/8sorOHPmjHw7fX19/bTH9Xq9sNlsUV3L9u3bodVqcejQoZDnH3zwQRiNRrz55psRHcfj8WBkZCSqc1P6S5dY9/l8+O53v4u//du/xerVq+HxeDA6OhrV+Sm9pUush9PZ2YlXXnkFH/7wh2E2m6PadyYwkU5ERERERESUJj72sY/B4XBgx44d2LBhA773ve/hwQcfBBC4rX7hwoWorKzEf//3f+O///u/sWjRoimPOTo6CqvViry8PBQWFuLzn/98RIntr33ta1i2bBk+85nPYHh4GADw8ssv49lnn8W2bduwdOnSaY/xzjvvIDs7G7m5uSgtLcXXv/51uN3uCH4SlO7SJdbPnj2Ljo4OLFmyBA8++CCys7ORnZ2NJUuW4JVXXoniJ0LpKl1iPZwXXngBPp8Pn/jEJ6Lab6ZoBEEQZvoiiIiIiIiIiCh23/jGN/Doo4/iQx/6EH7729/Kz3/+85/Hf/7nf+LNN9/EkiVLAIiLePb29uLtt9+e9rhbt26FIAhYvnw5fD4f9u/fj+effx7vec97UF9fD71+6o6xb7/9NlasWIGNGzfi29/+Nq677jqUlZXhyJEj0+77mc98BnPmzMH1118Pu92O//mf/8Hvfvc7fOxjH8PevXsj+KlQOkq3WP/Nb36DD3/4wygqKkJhYSG++tWvAgAef/xxNDc349ixY/J4KLOkW6yHs3LlSnR0dKCtrQ1abQrUewtERERERERElNK2b98uABBefvnlkOfPnTsnABB27NghP3fLLbcI1157bczn+rd/+zcBgPCLX/wiou137NghABBWr14tmEwm4cyZMzGfe/PmzQIA4ciRIzEfg1JbusX6T37yEwGAYDQahZaWFvn55uZmwWAwCJ/4xCdivn5KbekW6+NduHBBACB88YtfjHrfmZICqX4iIiIiIiIiisRVV10V8uf58+dDq9WiqalJsXN88YtfhFarxR//+MeItv/Sl76EpUuXoqGhAdu3b8fixYtjPvc///M/A0DE56b0lS6xnpWVBQB4z3veg6qqKvn5OXPm4L3vfS8OHz4c28VT2kiXWB/vZz/7GQCkTFsXgD3SiYiIiIiIiNKWRqNR/JhZWVkoKipCf39/RNtfvnwZ7777LgDg9OnTcZ1bSjRGem7KHKka6+Xl5QCAkpKSCa/Nnj0bAwMDEV4tZYpUjfXxfv7zn+Oaa67BihUrYtp/JjCRTkRERERERJQmpMSG5OLFi/D5fKiurlbsHMPDw+jt7cWsWbOm3dbn8+HTn/40rFYrvvrVr+IXv/gFfv3rX8d87suXLwNAROem9JYusX799dfDYDCgvb19wmsdHR2MdUqbWA929OhRXLx4MaWq0QEm0omIiIiIiIjSxs6dO0P+/P3vfx8A8MEPfjDqYzkcDgwPD094/rHHHoMgCLjjjjumPcbTTz+Nw4cP40c/+hEee+wx3HTTTXjooYfQ29s75X42mw1OpzPkOUEQ8K//+q8AgPXr10cxEkpH6RLrubm52LBhAw4fPozz58/Lz587dw6HDx/G7bffHvV4KL2kS6wH+/nPfw4A+PjHPx75xSeB6JZSJSIiIiIiIqKk1djYiA996EO44447cOTIEfz0pz/Fxz/+cSxdujTqY3V1deGGG27A/fffj4ULFwIAXn75Zezbtw933HEH7r777in3P3fuHL7+9a/j05/+NO666y4AwJ49e7Bs2TJ87nOfwy9/+ctJ9z1x4gTuv/9+3H///ViwYAHGxsbwm9/8Bn/961/x4IMPYvny5VGPh9JLusQ6ADz++OM4dOgQ3v/+9+MLX/gCAOB73/seCgsL8dWvfjXq8VB6SadYBwCv14u9e/fixhtvxPz586Mew4ya2bVOiYiIiIiIiChe27dvFwAIZ8+eFT7ykY8Iubm5QkFBgbBlyxZhbGwsZNtbbrlFuPbaa6c95sDAgPDJT35SWLBggWCxWASTySRce+21wuOPPy64XK4p9/V4PMKqVauEyspKYXBwMOS17373uwIAYe/evZPuf/nyZeGjH/2oUF1dLZjNZsFisQgrVqwQdu3aJfh8vmmvndJXusW65Pjx48LatWuF7OxsITc3V7j77ruFd955Z9r9KH2la6zv379fACB873vfm3bbZKMRBEGYwTw+EREREREREREREVFSY490IiIiIiIiIiIiIqIpMJFORERERERERERERDQFJtKJiIiIiIiIiIiIiKYQdSL9L3/5C+666y6Ul5dDo9HgxRdfnHaf+vp6LF++HCaTCQsWLMCePXsmbLNz505UV1fDbDajtrYWDQ0N0V4akaIY65QpGOuUKRjrlCkY60REREREyos6kW6327F06VLs3Lkzou0bGxtx55134rbbbsOpU6fw8MMP47Of/SxefvlleZu9e/eirq4O27dvx4kTJ7B06VKsX78ePT090V4ekWIY65QpGOuUKRjrlCkY60REREREytMIgiDEvLNGg9/85je45557Jt3mK1/5Cl566SW8/fbb8nP33XcfBgcHsX//fgBAbW0tVq1ahf/4j/8AAPh8PlRVVeEf//Ef8cgjj0w4ptPphNPplP/s8/nQ39+PoqIiaDSaWIdDSUwQBAwPD6O8vBxabeI7EjHWKVEY65C3Z6ynN8Y65O0Z6+mNsQ55e8Z6epvpWE8WPp8PHR0dyM3NZaynKca6iLGe/hjrIsZ6+osm1vVqX8yRI0ewdu3akOfWr1+Phx9+GADgcrlw/PhxbN26VX5dq9Vi7dq1OHLkSNhj7tixA48++qhq10zJq7W1FZWVlTN9GWEx1klJjHXKFIx1yhSMdcoUyRzridDR0YGqqqqZvgxKAMY6Yz1TMNYZ65kiklhXPZHe1dWFkpKSkOdKSkpgs9kwNjaGgYEBeL3esNucP38+7DG3bt2Kuro6+c9DQ0OYM2cOWltbYbValR8EzTibzYaqqirk5ubO9KVMirFOSmCsixjr6Y+xLmKspz/Guoixnv5SIdYTQRr/+Fh3u904cOAA1q1bB4PBMFOXp4pMGxtjXcRYT/+xMdZFjPX0H1s0sa56Il0NJpMJJpNpwvNWq5W/mKe5TLuNhrGeuRjrIsZ6+mOsixjr6Y+xLmKsp79Mi/XxpPGPj3W32w2LxQKr1ZqWSYlMHBtjnbGeThjrk2OsZ87YIol11ZsclZaWoru7O+S57u5uWK1WZGVlobi4GDqdLuw2paWlal8ekWIY65QpGOuUKRjrlCkY65Su/vKXv+Cuu+5CeXk5NBoNXnzxxWn3qa+vx/Lly2EymbBgwQLs2bNH9eskIqLI8HudZprqifQ1a9bg0KFDIc8dPHgQa9asAQAYjUasWLEiZBufz4dDhw7J2xClAsY6ZQrGOmUKxjplCsY6pSu73Y6lS5di586dEW3f2NiIO++8E7fddhtOnTqFhx9+GJ/97Gfx8ssvK3I9Tq8ih6EEcbi98Hh9M30ZRBQk2b7XvYIih6EE8Xh9EIT43rSoW7uMjIzg4sWL8p8bGxtx6tQpFBYWYs6cOdi6dSva29vxk5/8BADwD//wD/iP//gPfPnLX8bf/d3f4U9/+hN++ctf4qWXXpKPUVdXhwceeAArV67E6tWr8Z3vfAd2ux2bNm2Ka3BE8WCsU6ZgrFOmYKxTpmCsE4k++MEP4oMf/GDE2+/atQs1NTX493//dwDAokWL8Nprr+GZZ57B+vXrw+7jdDrhdDrlP9tsNgDireNutxsA8G7PCD7385OwjejwN3e4Yx1OUvJ4fXj64DvQDmhwuzu9xvbLY614Yv87uKlYGzI2d5qNc6Z12xx44g/n8WbrIL58x0LccZ36dzp943dn8NrFXtyzrBx/f8t8GHTq1JiebhvCky+fR+eQAz/4xHJcVaJur3GvT8A//PQ4uoYc+OzNNbh7WYWq55sJyfK93tRnx6Y9x2Gz63DHuvT6TnC6vfjRXy5DO5x+33f/dbgZ3//TJdQWxf69HnUi/Y033sBtt90m/1laROiBBx7Anj170NnZiZaWFvn1mpoavPTSS/jiF7+I7373u6isrMRzzz0XErD33nsvrly5gm3btqGrqwvLli3D/v37JyxoRJRIjHXKFIx1yhSMdcoUjHWi2Bw5cgRr164NeW79+vV4+OGHJ91nx44dePTRRyc8f+DAAVgsFgCAwwu09OnggwZ7f38QhROXD0hZb/ZpsPsdHawGLRYdOIh0aqX823e1GHVpodeKd+lIRkdHZ/Cq0kuPzYEP/+dhtA+OAQCeP9ykeiLd6fFiz+EmAMBTB97Buc5hfP/+G6DVKhu8bzT141M/bsCYW7wV5fdvdeKLt6ubSH+nexgHz4pt2P7phVPotjnw4Pvmq3rOZKfm93rboB6ABr/9w0FYUnIFyvBe7dLgfxp1sBp0qAn67ksH9Ze1GHZqodXE/r0e9Vt96623TlkGH67X0K233oqTJ09OedwtW7Zgy5Yt0V4OkWoY65QpGOuUKRjrlCkY60Sx6erqmjA5VFJSApvNhrGxMWRlZU3YZ+vWrfJkFSBWLlZVVWHdunUhi9L9tO0ITncMwzL3emxYXqXeIBLsxL7zAFpgc2twzcr3YEFJ3kxfkiIEQcDjZ/4CwIn5VgG33367vCidVJ1K8REEAXW/fFNOogMI+X+1dA465P836DR46XQnbpxXiE+tqVbsHDaHG1/4xUk5iQ4Ajb12xY4/mfaB0J/fE384j1XVhbhhToHq505Wan6v//u5evQMu1B9/WqsrClWbxAJduhXpwF0wubW4Jb3fwDZ5vSZ/f3Zj48BGMDsrNi/19NozoSIiIiIiIgocUwmE0ymiUkGg8Eg/wMdAFbXFOJ0xzBOtA7j3lrDhO1T1bGmQfn/T7aNYFFleiSTWvtH0W1zQq/VoDpHCHk/g99Xit3LZ7rw2sVeGPVa7H5gFT7546PoHBqDzycoXh0eTErWz5+VjU/eOBeP/t9ZPPnyBXxoWQXyspR5b3fVX0LHkANziyzYctsCfOl/3krIJIF0jnWLS2Ax6vDiqQ584//O4sXP3QRNOt0uorJIv9fnz8pBz3A/WgadWJNG3wujQRNAXcMeLMzNmcGrUdblXrHyvCQr9u911RcbJSIiIiIiIkp2paWl6O7uDnmuu7sbVqs1bNViNFbNFStCjzUNxHWcZDI05sa5rkAV37Hm9BlbQ2M/AOD6CiuMuhm+mDQkCAJ2vnIJALD55hrcOK8QOq0Gbq+AnmHnNHvHR6rariiw4IE11bi6JAfDDg/+66+Nihx/wO7C8/7WMV+7c7HcF318tbgapER6RUEW/t+di2E2aPFm6yD+8m6v6udOVmp+r9cUi21eGnvTq93T5Sv2sP+f6oZG3egdEb9fZsfx1jORTkRERERERBlvzZo1OHToUMhzBw8exJo1a+I+9gp/Iv1yr13+h3yqO97cD0EApOLhdJokkBLpq6oztyWGmo43D+B0+xBMei3+7j010Ou0KLWaAQDtg+omJdukZHN+FrRaDba8/yoAwM+OtsDj9cV9/P890Qa7y4tFZVasXTQbFflixq572AGXJ/7jT0VK1lcWWDAr14SPr54LANij0CRBKlLze31ecTYA4FIaJZtdHh+a+wOfwcsJaEmUKJd6RwAAJVYTzHFMkDKRTkRERERERGlnZGQEp06dwqlTpwAAjY2NOHXqlLzY7tatW7Fx40Z5+3/4h3/A5cuX8eUvfxnnz5/Hf/7nf+KXv/wlvvjFL8Z9LfkWA8os4toFx/xJ2lR31D+O9YtLoIGAtoExdA6pX3WbCA1NTKSr6YVjrQCAe5ZVoChHbKFRUSAmnNtUrtwOJJvF891xbSmKso24MuxE/YUrcR1bEAT86o02AMAnaudAo9GgOMcIk14LQQC6hhzTHCE+bQNiAlRK3n/yxjkAgD+/cwXdNnXPnSjJ9L0uJdIT0f8+UZr77PD6AuvspFUivUdMpM/3v2+xYiKdiIiIiIiI0s4bb7yBG264ATfccAMAoK6uDjfccAO2bdsGAOjs7JSTLwBQU1ODl156CQcPHsTSpUvx7//+73juueewfv16Ra5nQa6YnDiaJol0qWr7tmtmoTI79LlU1mNzoLHXDo0GWDEnf6YvJ+24PD68fKYLAPD/raiUn6/MT1AifTA02WzUa/Hh5RUAgN+cao/r2Gc6bLjQPQyTXou7lpYDADQajXyuNpWr7aXWLtIkwbxZOVgxtwA+AfjdqQ5Vz50oyfS9Pm+W+MXX3D+qyN0MyeDSlZGQP6fTJIF054D0vsWKi40SERERERFR2rn11lshCMKkr+/ZsyfsPidPnlTleuZbBbzanR7J5lGXB6fbhgCIVdvzrQJa7Ro0NPbj7mUVM3x18ZGq0ReVWpFrTp8FBJPFaxevYNjhwexcE1bODVT8SxXpai/KGdxHXHLnknI8+2oj/nzhCpweL0z62Po+HDwr9uK+9ZpZIQuXVhRk4XKvXdU+6Q63F70jLvF8+YGx3bWkDMebB3DwXDc2v2+eaudPlGT6Xi+zmmHQCnB7xQmg6jgrnZOBlGxeWJqL813DuNxrhyAIabFYrTRJMK84G4jjr2FWpBMRERERERGpbJ5VTP6c67JhaMw9w1cTn5Mtg/D4BJTnmVGRb8Z8/9jSYZJAGsPqmsIZvpL0dPBsDwDgg9eVQqsNJOek5K+ayWavT0DnoCPkfACwpCIPs3JNGHF6cPRy7DH8ygVxbB9YWBLyfHme+pME0rEtRh3yLYEk/gcWidfyRlM/Buwu1c6fibRaDWaLrf0nVHKnKqn9yfuvmQUNBAyNedCfJnEjJ9LjrEhnIp2IiIiIiIhIZXlGoLrIAkEQF+pMZUeDks0ajQbz/G1r3u0ZQV+KL6YqJdJrmUhXxV8v9gIAbr1mdsjziahI7xl2wOMToNdqUOJf3BQQE6JrF4nXc+hcd2zHtjnwlv8ujVsXzgp5TR6bipMEwb3fg6uHqwotWFiaC58g9konZc3OEr/7LqfJgqNSsnlxWS4KTNJzqT82t9eHlj6xtdI89kgnIiIiIiIiSn7S4pWp3ie9obEPALC6pggAkGMArpotJieONQ3M2HXFa3DUhQvdwwCAVUykK66lbxQt/aPQazUTKv6DK9Knat0RDynZXJpnhk4b2qrifVeJye/XY6xIf/VdcYJgSWUeZueaQ16Tx5aAivTgSnvJLVeLYzt8qVe182eqdKpIFwQhpI/4bLM0SZD6Y2vuG4XHJ8Bi1KHUaorrWEykExERERERESXAKn9P6FRugeL0eHGyZRBAaPsTaZIglcf2RtMABAGYPysbxTnxJVtoor/6E7k3zMlHtil0yb5yfwJ4zO3FwKg6rY+mSjZLsXyhezimVhbH/L3118wvmvBaIqrt2wZGQ84VrHaeOLZU/mwmq3SqSO8ZdmLE6YFOq8GcQgtm+0MpHSYJpDHMn5UTd793JtKJiIiIiIiIEkBKNp9uG8KoyzPDVxObt9qG4PT4UJRtxPygXrPSwpFSQjEVSQuNSpX2pKwjl8Q7GW6aXzzhNbNBJ09eqNUCpW1g4kKjkqIcE66anQMgcMdFNN5oFu/EWDl34p0MUuK+c9ABn0/davuKfMuE11ZWF0KrAZr6RtFtc6hy/kxV4k+kp0Wy2d8ffU6hBSa9Vh5bOkwSBBLp8S8Iy0Q6ERERERERUQJU5JtRnmeGxyfIVd2ppmFcf3SJlEg/0zGEYUdqLqZ6lP3RVfVm2yAAYKV/Qmm8Srlye1SV80sV4ZUFE5PNQKByO9rWS/12Fy76k5Ar5k4cW2meGVoN4PL6cEWlNQTkavswkwRWswGLy60AgNcvRz9JQJOTqrb77C4Mjqb2opzjk81pVZHeI04GzJ+VE/exmEgnIiIiIiIiSgCNJtAbOlX7pE+WbC7LM2NOoQU+ATjenHp90u1OD95uFxeLTNX+6Dt37kR1dTXMZjNqa2vR0NAw5faDg4P4/Oc/j7KyMphMJlx99dXYt2+fKtc2YHeh2b/Y35KK/LDbSEngNpUq0uUFOcO0dgECSXBp0dBISfG+YHYOCrONE1436LQo9S9uqvrYwiTSgUClfLRjo6mZdECJv+d2qi/KKV2/lGyWKtJbB8bg9Hhn7LqUIE8SzGYinYiIiIiIiChlSG1DYmkfMdM8Xh+OT9H+RJokSMVezCdaBuD1CajIzwrbQzvZ7d27F3V1ddi+fTtOnDiBpUuXYv369ejp6Qm7vcvlwu23346mpib8z//8Dy5cuIBnn30WFRUVqlzfKX81+rzibORZDGG3qVR5Uc6pqrYB4PqKPADA2Q4bvFG0YDnVKibSV8wJX2kffE41xub2+tDlb9ky2STBdf6xnW5nIl1p84vFCu5UX5RTSjbX+MdjNQDZRh28PgEtfercJZII4iKqgR7p8dJPvwkRERERERERKUFKNp9sGYTT44VJr5vhK4rc2U4b7C4vrGY9rinNnfD66ppC/M/xtpRMpDekeFuXp59+Gps3b8amTZsAALt27cJLL72E3bt345FHHpmw/e7du9Hf34/Dhw/DYBAT29XV1ZMe3+l0wukMtCWx2WwAALfbDbc70MpH+v/g5wDgpH8C5voK64TXJKVWsZq7rX900m1iJQgC2v0LcpbkGMIevzLPBItRh1GXFxc6BnFVSWjSbbKxSXcyLCrNnvS6y/wV6S29I4qPrXVgFD4BMOg0yDNpwx5/UYnYzuZMxxCcThe02tAFF8ONTenrTFc1xdk4fLk/5SvSG3vF65/nTzZrNMC8Wdk43W7DpSt2XFUy8Ts/FfSOuDDs8ECrAeYWWQD44joeE+lERERERERECTJ/VjaKso3os7twum0IK6tTJ3ErJZtXVRdCNy4RBwSS0G+2DcLh9sJsSJ1JgqNBvd9TjcvlwvHjx7F161b5Oa1Wi7Vr1+LIkSNh9/nd736HNWvW4POf/zx++9vfYtasWfj4xz+Or3zlK9DpJr5vO3bswKOPPjrh+QMHDsBimdhz/ODBgyF//uM5LQAt9ENt2LevNew1dQxoAOhwtrlb8RYzI25gzC2mwN48Uo8zk/RnKDPpcMmlwc/+8CpWzw5flT5+bKcadQA0GGx6G/v63g67z1ifOP4jb11A1ci5WIcR1rtD4s8tz+DD/v1/CLuNVwAMWh3sTi+e/80fUDLJTRfBYxsdTd0q5ESaNyv1K9Idbq98t8S8oAU5a4qkRHrqjk269soCC8wGHdxuJtKJiIiIiIiIUoLUJ/0Pb3fhaGN/SiXSp0s2zym0oMRqQrfNiZMtg1gzf2L7l2Tk9HhxqnUQQGom0nt7e+H1elFSUhLyfElJCc6fPx92n8uXL+NPf/oTPvGJT2Dfvn24ePEiPve5z8HtdmP79u0Ttt+6dSvq6urkP9tsNlRVVWHdunWwWq3y8263GwcPHsTtt98uV7oDwLfO/gWAAx9Ze6O8MO1487uG8ez5IxgRDNiwYX00P4JpnW4fAt44itm5Jnzob9ZNut1JnMelIy3QzqrBhg0LQ14LN7a+ESeGjvwZGg3w6XvWIdsUPs1mO9aGg+1noc+bjQ0blis3MAC/PtkOnD2Dq8uLsGHDykm3+0n7UZxqHULRghuwYWlZyGvhxibddUBTqykWJ5JSOdnc1GeHIABWsx5F2UZ4PB4AwZMEqVttf1nu/Z49zZaRYSKdiIiIiIiIKIGkRHpDYz8+f9tMX01kfD4Bx5qmTqRrNBqsqi7E79/qxLGm/pRJpL/VNgSXx4fiHJPcHzjd+Xw+zJ49Gz/60Y+g0+mwYsUKtLe349vf/nbYRLrJZILJZJrwvMFgCEmYh3t+2OFGx5DYw3txeUHY7QFg7iyxdcTQmAdOnwY5kySlY9E9LLYpqSjImvT8ALCkqgA40oIL3SOTbhc8tnd7BwGIlbv5OZP31p9TLLbL6BxyTHn+WHTZxLFVFlqmHltlPk61DuFCjz2isSl9nelK6pHe0j8Kt9cHgy71lqOUks3zZuVAowncbTQvDSYJLsu93+Pvjw5wsVEiIiIiIiKihJIS0cebB+DxxnebeaK82zOCwVE3sgw6eeHCcGpTcMHR4P7owUmkVFFcXAydTofu7u6Q57u7u1FaWhp2n7KyMlx99dUhbVwWLVqErq4uuFwuRa/vnW4xkVViNU260CgA5JoNsJrF5Hn7gLKLcsoLjU6zkOxVs8Vk/qWeyBKHZzvEqu1F5dYpt5PO2z4wBkGIfCHTSLQPii1YKgsmttgJJvW4vhjh2CgypVYzzAYt3F4Brf2p2Q5HSjbPG1e1PS9oIVWl4zZRAr3flZkkZSKdiIiIiIiIKIEWllqRa9ZjxOnBuc7hmb6ciBxt7AMArJhbMGXF5eoasQr9ePMA3CkySXBU7v0evuVIsjMajVixYgUOHTokP+fz+XDo0CGsWbMm7D7vec97cPHiRfh8gffonXfeQVlZGYxGo6LX9063GONXR7BYYYU/GSwlh5XS5k/MVxRMnUifP1tMtvXZXegbcU65LRCYJFg4zdikRLrd5cXQmLKLeEY+SSBW5L7bkxrfOalCq9Vgnr/aOVVboMgV6ePuyJlbZIFGA9gcHvSOKDvBliiXe8OPLVYxJdJ37tyJ6upqmM1m1NbWoqGhYdJtb731Vmg0mgmPO++8U97m05/+9ITX77jjjlgujUhRjHXKFIx1yhSMdcoUjHWi5KbTauQ+0VKCOtlFuhjnVbNzkG8xYMztxdvtQ4m4tLh4vD4cl1vWpEYrmnDq6urw7LPP4vnnn8e5c+fw0EMPwW63Y9OmTQCAjRs3hixG+tBDD6G/vx//9E//hHfeeQcvvfQSHn/8cXz+859X/NqkRPo1kSTSgyq3lSQlmyunSTZbjHpU+pPtkVRuX+4Vt5k/e+q2EVlGHYqyxQmKNoXHFukkwQL/NbYNjMHh9ip6DZlOqnZO1RYocrJ5Vmgcmw06+fOQioupujw+tPjvEhg/tlhFnUjfu3cv6urqsH37dpw4cQJLly7F+vXr0dPTE3b7X//61+js7JQfb7/9NnQ6HT760Y+GbHfHHXeEbPeLX/withERKYSxTpmCsU6ZgrFOmYKxTpQapKRtKrRAEQQhpP3JVLRasU86kBpjO9tpg93lhdWsxzWl0yd6k9W9996Lp556Ctu2bcOyZctw6tQp7N+/X16AtKWlBZ2dnfL2VVVVePnll3Hs2DEsWbIEX/jCF/BP//RPeOSRRxS/NrkiPYKfr5S0axtUOJEeYbIZCCScL06TOBQEIai39PTVrtK52xUcm88noHNQ7D8/XUV6UbYR+RYDBCF1E77Jav6s1K1IF+M4fGsXAHK1/aUUHFvrwCi8PgEWow4l1olrPMQi6kT6008/jc2bN2PTpk1YvHgxdu3aBYvFgt27d4fdvrCwEKWlpfLj4MGDsFgsE34xN5lMIdsVFKTmLVWUPhjrlCkY65QpGOuUKRjrRKlBquw+1tQPny+5e8829Y3iyrATRp0WS6vyp90+lfqkN8htXQqh06Zef/RgW7ZsQXNzM5xOJ44ePYra2lr5tfr6euzZsydk+zVr1uD111+Hw+HApUuX8NWvfjWkZ7pSLvWICbgF01RtA4FEuno90qfuIw4EtUDpnjrZ3Gd3YWjMDY0GqC6KIJGuQrX9lREnXF4ftBqgNM885bYajQYL/Alf9klXVipXpPfZXbA5PJPGcWCSIPXGJk1s1BRnK7b+RVSJdJfLhePHj2Pt2rWBA2i1WLt2LY4cORLRMX784x/jvvvuQ3Z26JtTX1+P2bNn45prrsFDDz2Evr7Jb29zOp2w2WwhDyIlMdYpUzDWKVMw1ilTMNaJUsf1FXkwG7QYGHVPW/k60xr87WeWVeXDbJg+0ZpKkwQNEbasodg43F502cSK6Zpoks0KVm2POD1yX/JIKtKlBUenSzZLSbqK/KyIPhfS2DoUHJvU1qUsL2vKtQskcrU9E+mKkpPNvalXtT1dHKfyJEFjr1Rpr0xbFyDKRHpvby+8Xq98a5CkpKQEXV1d0+7f0NCAt99+G5/97GdDnr/jjjvwk5/8BIcOHcK3vvUt/PnPf8YHP/hBeL3hezbt2LEDeXl58qOqqiqaYRBNi7FOmYKxTpmCsU6ZgrFOlDqMei2Wz5H6pCd35Xak/dEli8usyDbqYHN4cKE7eRc29PkEHGtiIl1NUn/iXLMe+RbDtNtXqFCRLh0rL8uAHJN+2u1r/InDpr6pk6KBdhiRJenUaO0S6UKjklRuQZLMpGRzv92FAXtqLcopxXHNJItxpsMkwWRji8X03yAK+vGPf4zrr78eq1evDnn+vvvuk///+uuvx5IlSzB//nzU19fjAx/4wITjbN26FXV1dfKfbTYbfzmnpMJYp0zBWKdMwVinTMFYJ0qs1TWFOHypDw2N/fjUjXNn+nImFW3Vtl6nxfK5BXj13V40NPZjUZlVzcuL2cUrIxgYdSPLoMN1FXkzfTlpqcmffKsuiqy1gpQQ7hl2wunxwqSPv9VM++BoyLGnM6dQbP/SMTgGt9c3aaW3vEBjhEk6Nart2wb8Y4ug0h4A5hSJY2v170fKsBj1KM8zo2PIgcu9I1iRnToTc1Icz59kQmi+f5KgtX9Usc9kokiJ9PkRrGEQqagq0ouLi6HT6dDd3R3yfHd3N0pLS6fc126344UXXsBnPvOZac8zb948FBcX4+LFi2FfN5lMsFqtIQ8iJTHWKVMw1ilTMNYpUzDWiVKL3AKlsR+CkJwtUNoHx9A2MAadVoPlcyNfGyEV+qRLlfbL5+ZH1BaDoidVpM8tmr43OQAUZhthNojvRYd/Ec14RbPQKADMzjXBpNfCJ0zdhkWaJIi02lXNavtoJwla+5lIV5p0Z4K0JkCqmG7B3Fm5JuSa9PAJQHNfasXN5Sg/o5GI6m8Ko9GIFStW4NChQ/JzPp8Phw4dwpo1a6bc91e/+hWcTic++clPTnuetrY29PX1oaysLJrLI1IMY50yBWOdMgVjnTIFY50otdxQVQCDToMumwOt/courqiUY/5k83Xl1ojaYkhW1xQBEJPVyTpJIFfaVxfN8JWkL6k9SqSJdI1Go/iinG1Rtj/RaDRywrllioSzVFleVRjZcSv9C5322V0Yc4VvjRYtubVLhJMEVf5xDYy6MexwK3INJJKqni/1plYv8ctSH/Hi8BXpGo0m0Cc9hXrr2xxu9I44AcxgIh0A6urq8Oyzz+L555/HuXPn8NBDD8Fut2PTpk0AgI0bN2Lr1q0T9vvxj3+Me+65B0VFoX9BjYyM4Etf+hJef/11NDU14dChQ7j77ruxYMECrF+/PsZhEcWPsU6ZgrFOmYKxTpmCsU6UOrKMOiypzAcAHG2cfAHfmSRdV7Q9xJdU5sGo16J3xInGJOytKwiCvIgq+6OrR6pgnRvBQqOSigIx2Su1ZImXlJCvjDDZDCCiRHqbfNzIJgmsWXp5Mkqp9i7Rji3HpEdhthEAknbyLlWlYkW62+tDi/8zOllFOpCafdIb/ZX2s3JNyDVPvz5DpKLukX7vvffiypUr2LZtG7q6urBs2TLs379fXtCopaUFWm1ofv7ChQt47bXXcODAgQnH0+l0eOutt/D8889jcHAQ5eXlWLduHR577DGYTKYYh0UUP8Y6ZQrGOmUKxjplCsY6UWpZXVOI480DaGjsx0dXJt9aAoGFRqOr2jYbdFhWlY+Gxn40NPZHvCBjorT0j6Lb5oRBp8ENc/Jn+nLSlpxIL4ws2QxA8Yr0aBfkBAKV25Ml0ocdbgyNuaM6rlRtf6F7GO2DY1gwO77PhCAIMY+t3+5CS/8oFpez9ZpSAsnm1Knabu0fhccnIMugQ6nVPOl2qViRHqi0V64aHYhxsdEtW7Zgy5YtYV+rr6+f8Nw111wz6a1cWVlZePnll2O5DCLVMdYpUzDWKVMw1ilTMNaJUsfqmkL8oP4SGpqSr5f4lWEnLl+xQ6MBVldHX7VdW1MoJ9LvWz1HhSuMndTWZWllPsyG1Fk8L5X4fILcY7wqikS6VF3dpnDVdqTtT4Dpe4lLCewCiwHZUbQ8qijwJ9IVmCQYHHVj1N8ipjyKRPqcQgvebB1kn3SFScnmlr7RKRepTSZSf/Tq4mxotZMvBixNElxKoYr0QO93ZSdxk/9dJSIiIiIiIkpTK+YWQKsRK3e7hpRZXFEpx/zJ/WtKcpFnif7WeKllSjJOEsj90dnWRTW9I054fAK0GnEBz0gpWZHu9HjRM+wMOW4kquREevhraOuPPjkPAOX5YtWvEm1rpNYyxTmmqCaD5vh7urcOMJGupLI8MyxGHTw+YcqWQMlErtqeoq2L+Lq/2v7KSNKueTGe1IZG6Yp0JtKJiIiIiIiIZojVbJDbKyRbwllKNtfGmGxePqcAOq0GbQNjivWEVor0s2YiXT2d/omh2blm6KOozpWS00rETOegeA1ZBp3cGzwSZXliwrvLFn5yS7o2aQHRSFX4t1dikkBKxkefzBe37xhMrom7VKfRaOS1AJpSpHJbqtqeP02yWVoseNjhQb/dpfp1KSFQkc5EOhEREREREVHaWF0t9h9vSLIFR2Ptjy7JNulxnX+S4Fhj8kwSdA050Nw3Cq1GvCOA1CEl0svyJ++9HI5UOd415IDXF1/1a1tQWxeNZvLWFeOV+hPpvSNOuL2+MMeNLYmt5CSBvNhpFJX2AORe2N2TTBJQ7GqKxYRzMi6wHI5ctT1N+xOzQYdy/2eiqS/5x+bzCfJkRg0r0omIiIiIiIjSh9wCJYmSzUOjbpzvsgEAVtXEnmyWxnY0icYmVaMvLrci1xx9yxqKTOeQmOiVqrsjVWI1Q6/VwOMT4k72ylXbUSabCy1GGHVaCALk1jChx/UnsaNNpCvYtibWayjxJ9I7k6yVVDqolirSUyDZDERXtV3tT0g39iZ/25oumwNjbi/0Wk1U6zNEgol0IiIiIiIiohm0qlpMVL/TPZI0t82/0dwPQRD7y87OjS4RGkyqZk+manvpWqQ7AUgdUs//Umt0iV6dViNXscdbuR3LQqMAoNVqUJIn9nXvGpp4DVJblLK86I4rJb27bI6wle7RiHVs0sRGn90Jlye+a6BQUrK5KQWSzTaHG70j4iRRJFXbgbEl/ySBdEfAnEKL4ou+MpFORERERERENIOKcky4arZ4a/2xJOmTrtRinNIkwaUrdjlpM9O40GhidPgT6eVRtnYBlKvcbvMn4qOtSAeAMv8EQLjK7Sv+KvUSa+SLqALArBwTjDotfALiXlxYblsTbbV9dnC1PavSlVQjV20nf7JZqkaflWuK6M6cmqJUGltki6jGgol0IiIiIiIiohmWbO1dXlco2ZxvMWJhaS6A5OiTPmB34Z1uMckiJflJHVIld2mUrV2AwKKcUi/yWEmJ+GjbnwBAibTg6LiEtyAIciJ9tjW6sWmVrLYfjK0iXaMJVNuzT7qypNYuHUNjcLi9M3w1U2vs9SebI+whXp1CkwSXrqjTHx1gIp2IiIiIiIhoxiVTIt3u9ODt9iEAylRty2NLgmp7qeL/qtk5KMqJrpqYohNr+xNAuUU52+OpSM8L30t8cMwNl78ty6wYYkiJavsRpwdDY+6Q40WjlH3SVVGcY0SOSQ9BAFr6k7u9i9TrPNKqbWkh1aY+OwQhvkWA1dYY4SKqsWAinYiIiIiIiGiGScnmMx1DGHa4Z/RaTrQMwOsTUJGfhcqC+BdqW1WdPJMEbOuSGL6ghUKjXWwUACr9yeG2OJLNXp8gV5NHW7UNBJLNXeOqtqVq9AKLAUZ99Gk1OZEexySBlITPyzLEtGCutOBovO1lKJRGo0G1P+Gc7JXbUq/zuUWRJdKrCi3QaoBRl1f+DCSry1FW20eDiXQiIiIiIiKiGVaWl4U5hRb4BOB488CMXouUbK5VKNksJa3Pdtpgm+FJAqkqnol0dQ2OueHxiVWrxbFUbStQkd5tc8DjE6DXamJaMLd0ktYu3VJblxgX4ZXHFsckQfugWE0cSzU6EJjcYCJdeTXFYhV0si/K2dwnXl91hIl0k14nx24yTxI4PV75s1XDHulERERERERE6SlZ2rscVbhqu8RqRnWRBYIAHG+auUmCkaCWNVKVPKmjz+4CIFZMx1O13TE4FnMbCSkJX5Zvhk6riXp/aQKgb9wiuYH+6LG1BlKyIj2WSnsgMAlwJUkWAE4nNUWBFijJShAEORkuVdBHQkq6J/PYWvvH4BOAbKMuptZL02EinYiIiIiIiCgJJEMi3eH24lTrYMj1KEE61tEZHNvx5gH4BKCqMAvlMVbyUmT6/Yn04hxjTPtLC3I63D45KR8tOdkc43td5L/2vpHQ818ZFv88KzfGRLoC1fZtKo2N4pcKi3IOjrphc3gAAHMLI6/arpHHlrz936VK+7lF2dBoop9Amw4T6URERERERERJQGql8mbbIBxu74xcw1ttQ3B5fCjOMclJEyWsrikCADQ09il2zGhJ515dXTRj15AppARtrAu6mvQ6zPYnqmNtgRJYaDS2Pv/F2eL5h52ekM9jT5ytXSr919M+OAafL7Zq+zb/2CpjrEiX3pdeVqQrTkqkNyVxslmqKC+1mpFl1EW8n1yRnsSTBE194s89mkr7aDCRTkRERERERJQE5hRaUGI1we0VcLJlcEauQUo219YUKlrNJ00SvNU2hDHXzEwSKN37Pdns3LkT1dXVMJvNqK2tRUNDQ0T7vfDCC9BoNLjnnnsUu5a+OCvSgfgrt9vibH9izdLDoBM/A/1BVfFya5cYK9JL88zQaACXx4dee2yJbGlyIeZEerb4vvTHWO1Pk6vxJ5u7bI4Z+66bjpRIjzbZLE2uJnNrl+CKdDUwkU5ERERERESUBDQaTVDl9sy0QFG6P7qksiALZXlmeHwCTrYmvk+6w+3Fm61if/R0XGh07969qKurw/bt23HixAksXboU69evR09Pz5T7NTU14V/+5V9w8803K3o9vVJFenbsPYorC/yV23FWpFfG2P5Eo9HI1x/cAqXXHl9rF6NeixJ/NfuMVdv7K9L77a6Yq+IpvIJsI/KyDACSN+EsVctHutCoJLhtTbLGjVyRXsSKdCIiIiIiIqK0JvdJb0p8CxS314fjzQMh16EUcZJg5nrAv9k6CJfXh9m5JsxVKcEyk55++mls3rwZmzZtwuLFi7Fr1y5YLBbs3r170n28Xi8+8YlP4NFHH8W8efOmPL7T6YTNZgt5AIDb7Z7wAIArww4AQEGWPuw2kTzKrGLVdEu/Pab92/rFhFpJriHmayjMFhOi3UN2eWwD/kS61aSN+bjl/h7wLb0jUe87MuoIVMXnxPbzzTGKlfYen4C+4TF5bOHeS4peoL1LkibS5Yr06BLplQVZ0Gk1cHp86LI51Li0uKldka5X5ahEREREREREFDWp7cjx5gG4PD4Y9YmrfzvTYcOoy4u8LAOuKclV/Pirqgvx21MdM5JIl865SuGWNcnA5XLh+PHj2Lp1q/ycVqvF2rVrceTIkUn3++Y3v4nZs2fjM5/5DF599dUpz7Fjxw48+uijE54/cOAALJaJExPnG9sAaNHZ9A727bsQ+WCCDHRpAOhw8kIT9mkuR7WvIACt/ToAGrx76igGY7sE+Ea1ALT40+E3YL8oVuB2D44A0ODMidiPC7t43EOvnwRao6vs7RkDAD2MWgFH6v+IWMM5S6fDmFeD3/zhIEr8RfsHDx6UXx8dTd4e38mupsiCN1sH0ZisFekxVm0bdFpUFWShqW8UTb32pFu02e31yS2doq22jxQT6URERERERERJYsGsHBRYDBgYdePtjiEsn1OQsHNL/dFXVRdCq1U+2SxNEpxoSfwkQUNT+vZH7+3thdfrRUlJScjzJSUlOH/+fNh9XnvtNfz4xz/GqVOnIjrH1q1bUVdXJ//ZZrOhqqoK69atg9VqlZ93u904ePAg9Nn5wIAN76tdjjuuLQlzxOlZ3rmCXzWehMeUhw0b1kS1b5/dBffr9QCA++6+A6YYY+2V0dM4/2YnKuYvxO03VuLAgYMY82oBCPibde9HWV5sC46e1b+LE682Iq+sGhs2LIpq39cu9gGnjqOqKAd33vmemM4PAM+88xqa+kZx7YobcUNFLg4ePIjbb78dBoNYhS/ddUDRS/qK9N7Yq7ari7PR1DeKxj47blpQrPSlxaV9YAxenwCzQRvzGgbTYSKdiIiIiIiIKElotRqsqi7EgbPdaGjsT3AiXd1k84LZOSjMNqLf7sLp9iGsmJuYsanZsiYVDQ8P41Of+hSeffZZFBdHlggzmUwwmSYmpgwGg5x4DdY/6gEAlORZwr4eibnF4l0R7YNjUR+jZ0RMFM7ONSEnK/aE2iyrmCgfHPPAYDDA4RXboQDA7DwLDAZdTMet8icwO23OqMfWPSy2lqkqjP1nC4h90pv6RjHk8MnHCX4/4zl2ppMX5exNvqr+wVEXhsbEtj2xtLmqKc5G/YUrSTlJILesKcpWZTIYYI90IiIiIiIioqQyE73EfT5BPp9ayWaNRoNV1WLyPJFjC25Zc/Vs5VvWzLTi4mLodDp0d3eHPN/d3Y3S0tIJ21+6dAlNTU246667oNfrodfr8ZOf/AS/+93voNfrcenSpbivqc/fR7w4xxjzMSr8bSOGHR7YHNH165YW8awoiK/1RFFO6GKjdnF+AFkGHcwxJtGDr6sthsVGAwuNxjs28b2R3itSjtRWJBlbu0htXUqsJliM0ddX18gLjibfJEGzf2xqroMRUyJ9586dqK6uhtlsRm1tLRoaGibdds+ePdBoNCEPszn01hdBELBt2zaUlZUhKysLa9euxbvvvhvLpREpirFOmYKxTpmCsU6ZgrFOFKD05yERamuKAADHmvrh9UXXPzlWF7qHYXN4YDHqcG25dfodYrTaPzapjUwiqN2yZqYZjUasWLEChw4dkp/z+Xw4dOgQ1qyZ2BJl4cKFOH36NE6dOiU/PvShD+G2227DqVOnUFVVFdf1eHzAiFPMOBdmx55IzzbpkW8Rq6Lbo0w4K5Vszs8Szz/or+C1+/P58YwLACr91yVdZzSUmiQozBYnCfpHmEhXmtTa5cqwU/4sJAupkjzWHuLSfk1JOUkQ39giEXUife/evairq8P27dtx4sQJLF26FOvXr0dPT8+k+1itVnR2dsqP5ubmkNeffPJJfO9738OuXbtw9OhRZGdnY/369XA4knMFWMoMjHXKFIx1yhSMdcoUjHWiADU+D4mwqCwXOSY9hh0enO9KTJ9iqUJ8xdwC6HXq3bwutY15o3kgYZMEDY0DIedOR3V1dXj22Wfx/PPP49y5c3jooYdgt9uxadMmAMDGjRvlxUjNZjOuu+66kEd+fj5yc3Nx3XXXwWiML0ns7+oCjQawmuNrDyIlwqNNpLcplGyWEvlSK4wRjybk+VhJ1xVLtX2bQpMEeVmhYyPl5GUZ5MmWZGuBEm+yWapIb+kbTdh3eKQCFelJlEh/+umnsXnzZmzatAmLFy/Grl27YLFYsHv37kn30Wg0KC0tlR/BC2AIgoDvfOc7+NrXvoa7774bS5YswU9+8hN0dHTgxRdfjGlQREpgrFOmYKxTpmCsU6ZgrBMFKP15SBS9Tiv3D09UCxS1+6NLFpVZEzpJ4PMJONakbsuaZHDvvffiqaeewrZt27Bs2TKcOnUK+/fvl+O3paUFnZ2dCbmWMa/431yTPu47ACpirNyWEumVBfG1eLCOSzZLkwTxVqRbjHoUxFptL48tcxPpqXCnUbW/vUiyVW7LFenFsSWby/OzYNBp4PL60GVLroKKwCRBkrR2cblcOH78ONauXRs4gFaLtWvX4siRI5PuNzIygrlz56Kqqgp33303zpw5I7/W2NiIrq6ukGPm5eWhtrZ20mM6nU7YbLaQB5GSGOuUKRjrlCkY65QpGOtEAWp8HsabLNbdbveEx2TPT/ZYOScPAPD6pd6o9ovl4XK5cNTf/mR5VV7U+0czNp/Xg+X+sR25eEX1sZ1tH8DQmBsWow5Xz8pSZGzJasuWLWhubobT6cTRo0dRW1srv1ZfX489e/ZMuu+ePXsUmxyVks15cVZtA4HK7WgT6dL2lQpVbQ+O+ivS/W9/gSW+RDoQNLYoEumeoORlRX58ycJUTaSnyp1GUlV0a3/07XvUJPVIjzXZrNNq5Amulr7k6ZPu9Qlo7fdXpMc4SRCJqLrK9/b2wuv1TpiRLykpwfnz58Puc80112D37t1YsmQJhoaG8NRTT+Gmm27CmTNnUFlZia6uLvkY448pvTbejh078Oijj0Zz6URRYaxTpmCsU6ZgrFOmYKwTBajxeRhvslg/cOAALJaJSYqDBw9GfP0eGwDo8dd3uvHSS/ugUbG1d/cY0Duih14joOPtI9h3NvpjRDM2q1MDQIf/e/0cZg1MPlGhhFe7xHNVZblx4OX9MR0jeGyjo8mTOEpWo/72J/G2dQFib+3SPiC+T/G2dpGSzbYxNwRBkMdWoMQkQX4W3m63RTVJ0GVzwOsTYNBpMDvXFNf5rVliStCWYon04DuNAGDXrl146aWXsHv3bjzyyCNh95HuNIqE0+mE0+mU/zx+glQSPNEWTkWe+P409Y4k1QScVJFemW+a9LqmG1tlQRaa+kbReGUYK+eot6ZGNNoGxuD2CjDqtSjO0kU1tmjen+iXZ43SmjVrQha3uOmmm7Bo0SL88Ic/xGOPPRbTMbdu3Yq6ujr5zzabLe7FMIjixVinTMFYp0zBWKdMwVgnCoj28zBZrK9btw5WayC54Ha7cfDgQdx+++0wGCJLwDk9Puy68CeMeHxYuPoWzJ+lXoXd3jfagFNnccPcQtz9N6ui2jeWsZU0D+D3zx1Dq9OED37wVmhUnCV4ee+bALrxwZVXY8Ot86LaN9zYeIfN9MakivSs+JPNUmuWtiiSzcMON2wO8SLiXmzUX3nu8vrgcPsw4gl9Ph7lMbStkSYUyvOz4m6bk4oV6dKdRlK/fyC6O418Ph+WL1+Oxx9/HNdee23YbZWaIO3vESfxTr3bgn37mqYeWIKMeoDBMTEVfO7Yq7ism3r7ycYmDGsBaFF/7DSyu99U+Cpjc35Q/HkXGLzYv/8P024f6wRpVIn04uJi6HQ6dHd3hzzf3d0d8cyOwWDADTfcgIsXLwKAvF93dzfKyspCjrls2bKwxzCZTDCZ4pt5I5oKY50yBWOdMgVjnTIFY50oQI3Pw3iTxbrBYAibVJ7s+fDnBm6Yk4/XL/fjRKsNC8vzI9ovFsdbhgAAa+YVRXx940Uzthuqi2DSa9Fvd6Nl0IUFs3NiOud0BEHAseZBAMCa+cWKjC3WY2SSUUUT6dFXpEuJ6XyLAdmm+OpHs4066LQaeH0CBsfccCg4tliq7dsVWmgUSM1EeiLuNFJqgrS4qR8/v/QGxnTZ2LDh5liHrKgzHTbg2Osoyjbib+9aN+l2042t/bVG/PXld2EsLMeGDUvUvOSIDTS0AufO4do5s7Fhww2TbhfvBGlUPdKNRiNWrFiBQ4cOyc/5fD4cOnQoZNZ+Kl6vF6dPn5Z/Ca+pqUFpaWnIMW02G44ePRrxMYmUxlinTMFYp0zBWKdMwVgnClDj85Boq2uKAAAN/v7lapEWGpXOpzaTXocb5uSHnFsNTX2juDLshFGnxdKqfNXOQ6GkxUaVTDb3jjjhcHsj2kdKTCuRbNZoNCHtXaSx5Zjjb/AgTRJEU23fpuDYUjGRHos1a9Zg48aNWLZsGW655Rb8+te/xqxZs/DDH/4w7PYmkwlWqzXkAQQm1IIfkz1vMBgwb7a4X8egA1qdftLtEvnoGnYBAKoKLdNuO9XYqotzAQDtQ44ZH5P0aB8U1w6omZUT09giFfUnv66uDg888ABWrlyJ1atX4zvf+Q7sdrvcm2jjxo2oqKjAjh07AADf/OY3ceONN2LBggUYHBzEt7/9bTQ3N+Ozn/0sAPFL6eGHH8a//uu/4qqrrkJNTQ2+/vWvo7y8HPfcc0+0l0ekGMY6ZQrGOmUKxjplCsY6UYDSn4dEq60pBAAcbeyHIAiqtEBpGxhF++AY9FoNls/NV/z4k1ldU4TXL/fjWFM/Pl47R5VzSBMQy6ryYTZM08OAFCP1EVcikZ5vMcBi1GHU5UXH4BjmzZr+7gUlq7YBcRz9dheGHG44vFL/9/gT6dJioVFVpEuJ9Dh7vwOB92fM7YXL44v7eImQiDuNlFKSa4ZRp4XL60Pn0JjcpmgmtfgX46wqjO9a5vj3lxb3TAbSoq5VCnw2phL1J//ee+/FlStXsG3bNnR1dWHZsmXYv3+/fFtFS0sLtNpAofvAwAA2b96Mrq4uFBQUYMWKFTh8+DAWL14sb/PlL38ZdrsdDz74IAYHB/He974X+/fvh9lsVmCIRLFhrFOmYKxTpmCsU6ZgrBMFqPF5SKQb5uRDr9Wgc8iBtoGxuJMf4UgV4ddV5MFiVH0ZNZk0SaBmRXpD4wAAYLX/XJQYUmsXqwKJdI1Gg4r8LLzbM4K2gQgT6Qomm4HgBUc9cEgV6SYFqu0LQqvtI5nskSYJlEjK5gYtBmtzpEZVevCdRtJkvnSn0ZYtWyI6hnSn0YYNG1S8UkCr1aCyIAuXe+1o6R9NikS6Uslm6e+i3hEX7E5P3C2UlNA2KCb11f45xzTSLVu2TBqg9fX1IX9+5pln8Mwzz0x5PI1Gg29+85v45je/GcvlEKmGsU6ZgrFOmYKxTpmCsU4UoPTnIZEsRj2ur8zDyZZBNDT2q5pIr01wslmaJGgfHEPbgDpJpoYmsSJ9FRPpCaXkYqOAmHB+t2ck4kU521SoSAcQ0iM9V4GK9AKLAVkGHcbcM1Ntr9NqkGvWY9jhwZD0pqWAVLrTqKrQgsu9drFye77qp5tW64AyFel5WQbkZRkwNOZG68AoFpZap99JZfIkgQp/TwaLqkc6ERERERERESXOapUrtwP90RObbLYY9biuIi/kGpTUMTiG1v4xaDXAirkFih+fJqdkaxcg+kU5pe0qFapIl5LmI86ginQFEukajUauSo9kksDnE4Iq0pWutk+NinRAvNPoqaeewrZt27Bs2TKcOnVqwp1GnZ2d8vbSnUaLFi3Chg0bYLPZEnanUVWh+D61JEkLFKkVS5UCE5eB9i6RtyZSi83hlnv9K/XZmMzM194TERERERERUVi1NYX44Z8vo6FJ+WRzz7ADl3vt0GiAlXMTX7VdW1OIU61itf2Hl1cqeuxjTYGWNTlJ0HYgkzj97baVqNoGEFWyOXg7qQd5vKT4GXEEEumKjS0/Cxd7RiKaJOi1O+Hy+KDVAKV5yrRWE9u7jGHElToV6UDq3GmUTMlmQRDkxWrnKFC1XVWYhdPtQ0kxSSBNEBRmG1VvM8OKdCIiIiIiIqIktWJuITQaoLHXjh6bQ9FjS5XgC0utyLMoUz0cDTWr7Y9KlfbVbOuSaFKyWamEVjQV6Q63F1eGneJ+ClWmSmsH9NldECBW2+cq0CMdiG6SQEqClljNMOiUSedlG8W+7HanV5HjUSgpYZ0MyeYrw044/RMxZfnxT8RUJdGCo9JnQ+2FRgEm0omIiIiIiIiSVl6WAYv8/WeVrkqfqf7okpX+SYLLvXb0DKszScCFRhPP5c/JWozTL54Zicooks2dQ2IcZRl0KFBocijHJI6j2yYm6PVaDcwGZdJp0UwSKN2yBgAs/smO0RSrSE8V0toPyZBslpL5ZXlZikzEJNMkgfTzrVS5PzrARDoRERERERFRUlOrcnumE+l5FoO8SN0bTQOKHbdvxImLPSMAgFWsSE84qbhZqZY6UouWLpsDHq9vym2lZHNFQRY0Go0i55cq67v9d4TkmPSKHVtKirdFMEmg5EKjEmmSYNTFinQ1zCkSY7fP7oLdObOTFYGFRpWJnzlJWJGudn90gIl0IiIiIiIioqRWq0IifXDUhfNdwwCAVTNYta3G2I75k/LXlOSiINuo2HFpej6fAJc/1y21RInX7FwTDDoNvD4BXdO0N2ofFJN6SiabLXIiXaxIV2KhUUksFelKtawBAu8RW7uow2o2IN9/Z4SUyJ4pUp92JRYaDT5OS/8oBEFQ5JixahtQbhHV6TCRTkRERERERJTEpET3+a5hDI66FDmmlGyePysbxTkmRY4ZC6na/qiCiXQpKb+qpkCxY1JkxtxeuY94tkmZ1i5arQblESac1Ug2y61d/L3XlVy8VrrOiKrtFV5EFQj0SGdFunrkhHPfTCfSpYp0ZeKnPD8LWg3g9PjQ4/9szBR5koCtXYiIiIiIiIgyW3GOCfNnZQMIJMDj1dDYBwBYXVOkyPFiJbVeOd9lw9CoW5FjNjQlx9gykZSQ1WjEPuVKkSu3p2mB0qZC+5PxlfW5Clakz841Q68Vq+27p0lGSlW3ilaks0e66qRWKq0R3HWgJqVbuxj1WpRaxUVLI1m/QC2CIMhjY2sXIiIiIiIiIpKTwlICPF4z3R9dMivXhHnF2RAE4I3m+KvSbQ43znbYAACr2R894aREusWoU6yPOBB5CxQ1FuQcX4GerdAiqgCg02pQlu9PRk4xNkEQAtX2ivZI97d2YUW6asrzxPercwaTzYDyrV0AoCxfGpuyi0VHo9/ukr93lPxsTIaJdCIiIiIiIqIkp2Qv8RGnB29LyeYZTqQHX4MSYzvePACfAMwtsqA0zxz38Sg6I/4FFbMV6o8ukaqwp61IVyHZnD0ukW5RMJEOBFfbT976Y2jMLSe7lZwkkMYyyh7pqpGTzUPTJ5t9vth6jU+3n9cnyIvlliv42SiXxzb9JEEsYxMEYdr+69JnvsRqglnBu2Amw0Q6ERERERERUZKTks1vd9jkZGWsTjQPwOsTUFmQpWhSJVZK9kmXkvGsRp8ZwRXpSpKSzW1TVG17vD55MVIl25+Mr0A3KZysk3qeT1WRLo27OMeoaLJQmvCws7WLasr9E3odUySbW/pG8dFdhzH//+3Dx3YdkfuZT+fg2W6s2XEIC7ftx9dePA2XJ3yf/d4RJzw+AVqNuHivUqSxTTXB9frlPtz67Vdw9df+gIdfOBlRGyFBEPCf9Rex5BsHsPTRA9j9WuOk23b4z52ov8uYSCciIiIiIiJKcuX5WagsyILXJ+BEc3x90o/K/dGTI9ksTxK0D8Xdq1lOpCfJ2DKN9P4ptdCoJJKK9O5hJ7w+AXqtBrNzlbsbYXxFepZB2VRaYGyTVyy3q9D7HQiMjYuNqme69icjTg8e+K8GHGsagCAADU392Li7AfZpJkyPN/fjoZ8eR+eQAy6PDz99vQWP/f5s2G2lZHOJ1Qy9Trn4LfMn0icb28WeYWz6r2No6huFxyfgxVMdqNv75rRV5j99vRlP7r+AYacHNocH3/z9Wfzqjdaw23b4K/2lFjpqYyKdiIiIiIiIKAUo1QJF2v/GJFmMs7LAgor8LHh8Ak62DMZ8HIfbi7faxP1rk2RsmSZQka5sa5dKqWp7cGzSFhFSRXd5fhZ0WuX6s49vU6PkIqoAUBnBQqpyf3SFF1O0+Cc8mEhXT7m/B37PsAMe78SK8edevYzGXjvK88z4+eZalOWZ0dhrx3OvTl6F7fMJ+NqLZ+DxCbjj2lI8c+9SAMB/v96M021DE7aX2sqUKdzuarrWLo/+31mMub1YM68Iz25cCb1Wg/1nulB/4cqkxxywu/DEH84DAL649mp87tb5AIDH953D0NjEBam7/OdWemyTYSKdiIiIiIiIKAUo0Sfd4fbizVYx0ZJMVdtKtHc52TIIt1dAidWEqsKZb1mTiUac6rR2Kc0zQ6MBXB4feu3OsNtIPcaVrtq2jKuuN+lVqrYfmLydhxq934Gg1i5xtouiyRVnm2DQaeATxLsmgo26PPixP2H+/+5cjJvmF+P/3bkIAPDca5fhcIef4PjrpV6c67Qhx6TH4x++Hn97QyXuWVYOAPjBny9O2F5OpCscP+X5k99NcbbDhlff7YVeq8GTH1mC2xeX4NM3VYvXWH9p0mPuOdwEu8uLxWVWfOEDC1B3+9VYMDsHA6PusFXp0tgStSYGE+lEREREREREKWC1v8r6VOvgpAmW6ZxqHYTL68PsXBPmFlmUvLy4rKqWJgn6Yj5GoK1LETQa5SqSU8XOnTtRXV0Ns9mM2tpaNDQ0TLrts88+i5tvvhkFBQUoKCjA2rVrp9w+UnJrF4UT6Ua9FiX+di2T9RJXq2rboNOGVLgr3tolqCJ9spYX0iRBZYGyn9lsVqSrTqvVyEnejnF3HRw4041hpwdzCi344HWlAIAN15WhsiALww4P/vB2Z9hj/vxoCwDg/1tegcJsIwDg728RK7cPnu3G0Gho5Xan1EdcpYr03hEnnJ7QGPp5QzMAYP11pagqFOP2szfPg06rQUNTP5r77BOOJwgC/ud4GwDg72+ZB41GA71Oi797T43/mC0TPiNSIp090omIiIiIiIhIVl1kwaxcE1xeH95sHYzpGME9xJMp2SxVpJ9sGZyQkIlUQ1Ny9X5PpL1796Kurg7bt2/HiRMnsHTpUqxfvx49PT1ht6+vr8f999+PV155BUeOHEFVVRXWrVuH9vb2uK7D6V/sUOkFOYHp+6Sr1UccAEz6QPrMrPAkQZm/9YfD7UO/3RV2G7XGJlXXOydZpJKUUebv3z0+kf7iKfHz9uHlFdD6J2u0Wg3+v+WVAIA/nO6acKwxlxd/Oi9+rj+2qkp+flGZFQtLc+H2Cnj5TOh+gaptZeOnwGKQPxvdQ4Fqe59PwP63u8VrXBm4xtI8M9bMEyeEf//WxEmCk62DaB8cQ7ZRh3WLS+XnP7SsHEadFpev2HHpykjIPl2sSCciIiIiIiKi8TQaTdx90qX9apMs2Tx/VjaKso1wenxhe/xOx+Xx4bh/EdZkG1siPP3009i8eTM2bdqExYsXY9euXbBYLNi9e3fY7X/2s5/hc5/7HJYtW4aFCxfiueeeg8/nw6FDh8Ju73Q6YbPZQh4A4Ha7Qx5jTrES1qCd+Fq8jzKrCQDQ0jcS9vXWfrFqu9RqVPzcwYl0g0bZsWkF8Q4RAGjuHQ67jVRtX5JrUPTcOogJdGnyavzrpAypElxKaANim60jl8TJvw9eVxay/e2LSwAAf73YO2Fi8fClXjg9PlTkZ2FxmTXktTuvF49z8Fx3yPMdQ+pUpGs0mqD2LoFJgrfah9A74kSOSS8nziUbpGs8G3qNAHDIf90fWFSCrKAJqxyTHjctEI9zIGg/r09Aty2xi40qu/oDEREREREREammtqYQL73ViYam6BPpbm8g2bw6yRbjlCYJ/vB2F4429mNldXTJ8Lc7huBw+1BgMWDBrByVrjI5uVwuHD9+HFu3bpWf02q1WLt2LY4cORLRMUZHR+F2u1FYGP7nvmPHDjz66KMTnj9w4AAslkC7kfMtWgBadLe3Yd++lugGMg1Hv3jsI6cuoMJ2bsLr77TpAGjQduEt7Ot6U9FzCx7x2ABw8cJZ7Os/o+jxLYJ4/P/702G0FoW2rnB6gYFRMX13puFVXFYwk2dzAYAeDrcXggAcPHhQfm10dPKe7RQdeVHOoGTzG00DcHp8KLGacHVJ6HfWteVWzM41oWfYiTeaBvCeBcXya39+R1yo87aFsybcVfTeq4rx7wffwdHLffD6BLklUZdKPdLFsYmLowYvOPpn/2KiN19VDKM+tIb75qvEsZxuH8KI04McUyCgpYkFaZtgH1hUgvoLV/DqO7343K0LAIgtZTz+cc7yT0apjYl0IiIiIiIiohQhVaQfbx6A2+uDQRf5jeZvtw9hzO1FvsWAq2YnX7JZSqQfi2GSQKq0X1VdKLdIyBS9vb3wer0oKSkJeb6kpATn/3/27j0+ivreH/9r75uEbC4EEkKCgKh4gaBQUmw91BaJwlHp+apoW0GPl9ZKT23O0UqPghzb4q1qa2npsaWo1aKeU/H8CkUwNdoKQuWi3BXllpALgSSb617n98fszM5u9jKz2dlc5vV8PPLQzM5nPvPZfcf28Z73vj+HDqm6xg9/+EOUlpZizpw5MV9funQpqqur5d/dbrfcDsblClfF7tpwEKg/ifMmjse8ayansJr42v9xEm/XH4Q1fzTmzbss4jVBEPDDD2sABPH1qtk4pzC9vcSfPvx3tIUq3r9waQXmTS1N6/U3d3yMY/saUTLxQsz70viI1z5t6gR2bEWu04r/d93ctM7r7vHh4Z3vQIC4GebVc6+CzWYTXwt964D6T0pgn1JUpG/7vAUA8KVJRX0S4iaTCZefOxLr95zqk0iXHoZefm7fZPOUsXkY4bDC3evHwQY3LhmbB38gqKjaTn/7E6ltjbLafucJ8R6/OLHvA9vywmyUFWShrrUHO4+3Yvb5owAAnR4/Pgp9G2nWuX3HSd80+qiuDf5AEFaLWZ6zONcRsY+BnphIJyIiIiIiIhoizh+di7wsG9p7fNh/yo1p5fmqxw72ZLP0kODDY60R1ZRqKHu/kzaPPfYY1q1bh9raWjidsRNtDocDDkffik+bzSYnXgFAarXttFsjjqfDuJHiw5+Gdk+fa7d0etDrC8JkAsaNzIXNmt5OxhFtJrLsaV9bWSjx3+D29rl2U6fYYqWsIDvt8+YoOj77hcjPM91zGVm4tYui/UkoaTz9nIKYY6aV52P9nlPYc7JVPtbt9eNQYwcA4NJx+X3GWC1mzBhfgNrDp7HzeCsuGZuH5g4PggJgs5hQNCL9VdulURupBoMCdocS6ZeNi722ygkjUddah38cPSsn0j8+2YZAUMDY/KyYm+pOGjUCuU4rOnrF9+CSsXloDL2fmeqPDqTYIz3dO0HfdtttMJlMET9XX311KrdGlFaMdTIKxjoZBWOdjIKxTjR8mc0mfGG81Cf9jKax2wdpf3TJ5BIXcp1WdHrEakq1AkFBrmI3YiK9qKgIFosFTU2RPYebmppQUlISZ5ToqaeewmOPPYbNmzdj6tSp/b4XebPRNCeyAaBM2my0tQeCENn+ROohPjrX0aeVRDoo16PH2hJtpFqn4yaqdsU3Wnzcb1Q3xS4x0dvsFjfkFAQBe+vFRPrUsfkxx0wLJaH3nGyT4/3junYEggJKXE65EjzalLF5AID9p8TrN4aq0UfnOnV5gDoqtLaWTnFtn7d0oqPXD6fNjMljcmOOqSgX7/GA4r/z+0+5I+4/mtlskhPzu0KJ+lNtoZY1GeqPDqSQSNdrJ+irr74aDQ0N8s8f//jH1FZElCaMdTIKxjoZBWOdjIKxTjT8Vaaw4agy2Vw5yPqjSyxmE2aEqjO3a1jb4cYOdPT6kWO39Nl8zwjsdjumT58esVGotHHorFmz4o574okn8Oijj2LTpk2YMWNGWu5F2hjRYbMkOVM7qc90h8cPd48/4rV6HZPNQOR6snRYm3Tf0gMBJemY9CAhncxmk5xM9zORrhupf/eZLi+CQQF1rT1o6/bBbjHj/JLYbbYuGuOC3WJGa7cPdaEYOBBKNk8ti51sBsT+6kA4SX26wxNxD+k2KlTlLs1zoEGsmL9ojCtu67ELQ/+dltajvF/p/mORXpOq8ptDc452ZaY/OpBCIl2vnaAdDgdKSkrkn4KC2OX/RJnCWCejYKyTUTDWySgY60TD30xFIj0YFJKcLTrU6EZHr7ix24VxqgQHA2kTVC3V9tK508cXwqqhZ/xwUl1djeeffx4vvPACDh48iHvuuQddXV24/fbbAQCLFi2K2Iz08ccfx8MPP4w1a9Zg/PjxaGxsRGNjIzo7O/t1H95QNlaPqvBsuxWFOXYAQF1b5EaYUrJ5bIyWEOmgrEJ32jJbka77Q4LQ2liRrp/CHDtMJvGBZmu3V66+Pr9kBBzW2A9m7FYzJhTlAACONIt/l5+G/nl+cfz/hl80Rkyyf9LYCV8gKFeK69HWBQgn6E+H5jnS1JH0HieXiK81unvR2uUFEE6qX5QgkS5d89PQHHqvLRZNf/3STtDKzSfStRN0bW0tRo8ejQsuuAD33HMPzpyJ/z+aHo8Hbrc74oconRjrZBSMdTIKxjoZBWOdyBguLnUh226Bu9ePw6GEQjJS9fr0cwoGdbJZ+ZAgun1HPDuODe6WNZmwcOFCPPXUU1i2bBmmTZuGPXv2YNOmTfIGpCdOnEBDQ4N8/q9//Wt4vV7ccMMNGDNmjPzz1FNP9es+pNYudp1iLF7ltv7J5nCyU4+HBNJ9t/f40OmJqrZvFR8ajNWhIh0Ir8en7s+NUmCzmFGYLT4EOt3pwdGWLgDAuaMSb/o8qVh8XUqkfxb653nF8ceVF2ZhhMMKbyCIoy1dulekj84NV6QLgiAn+ycl2NA612nDuNC+AAcb3fAFgvjstDhucoJvFUmJ9E+aOiEIgpxIHzVYE+mJdoJubGxUdY1YO0FfffXVePHFF1FTU4PHH38c7777Lq655hoEAoGY11i5ciXy8vLkn/Lyci3LIEqKsU5GwVgno2Csk1Ew1omMwWoxyxvUSe1akhkqm3FOGZsHp01sZyAljxIRBGHIrE1vS5YswfHjx+HxeLB9+3ZUVlbKr9XW1mLt2rXy78eOHYMgCH1+HnnkkX7dg1fHHumAIpEeVbldJ1ek65NsVlahW83pX1uu0waX0wqg70MCeW06V6QHWJGuqyJFC5RjoUS6VHEez3mhZPSnzR0QBAGfNIsPThMlqU0mE8YXiUnqYy1dimSzvX8LiENaV68viE6PH5+oqEgHgImjckL32I1TbT3wBwXYrWaMccXfOHTiqByYTeIDp+YOT7giPVeftcVizdhMiL8T9M033yz/+5QpUzB16lSce+65qK2txde+9rU+11m6dCmqq6vl391uN//POQ0qjHUyCsY6GQVjnYyCsU40dFROKMTfPm3B9qNnsWjW+ITnKpPNg71q224147JxBdj62RnsOHYW5yVJxnze0oWWTi/sVnPCvsGUGd6Azon0gsQV6WUZqEi3WtK/YSMgtqVxN7hR39aNC0KtLzz+gNwHWo8e6UC4/ztbu+hrVK4Dh5s60KKoSE+WSJcS5p+d7sLZLi/aun0wmZJXsp8zMgf76t04cbYbLR1i65QinSrSs+wW5Dqs6PD40djei2NnuiPuPZ7xI3MAnMbxs10oOyPG9rjC7IQbojptFowrzMaxM934/HRXeG2DtSI9UztBT5w4EUVFRThy5EjM1x0OB1wuV8QPUTox1skoGOtkFIx1MgrGOpFxhHuJJ2+B8tnpLpzp8sJhNWPKEEg2z9Swmap0zqXl+XF7DVPmeHTskQ7Er0jXu/2JQ1GRbkuQ6OuPWG1rGtp6AYgV8VJ/+HST2vD4BH3WRaJRihYoR8+IiXQxmRxfeajnf31rD06G4qLE5YQzyYa340eGKtLPdMm9y/VsfyKtbW99OwJBAXaLGSUJKssByK1dTpzpxomz4t/vOYXJ9zgoC70nda3dONM1yHukZ2on6Lq6Opw5cwZjxozRcntEacNYJ6NgrJNRMNbJKBjrRMYxtSwPdqtZbBNwpjvhuXKyedzQSDZLifTtnyd/SPAPtnUZVDy+DFWkKxLp7l4f3L1iX3G92p9YTOEks157DEgV53WKtSl7v5tM+iS6pYcEflak66oo1Frl2JluuW/5+CQV6aWheG7q6MXxUPK9VEWMn1MoXvf4mW5F+xP9ks3StT862QYAGJPvTFhZDgDnhJL9xxWJ9HEjkyfSpb/xgw0d8AXE/30YqVPbmlg0//Wneyfozs5O3H///fjggw9w7Ngx1NTU4Prrr8ekSZNQVVWVpmUSacdYJ6NgrJNRMNbJKBjrRMbgtFkwrTwfALDjaPzNf5WvS1Xsg92l5QWwWUxodPfK/aHj2c5E+qDiyVSPdEVcSP+en21DjkOfDsbKnKA1gxXp9XLv9+QJxlRJnxVbu+hLqtreX98OAMh1WJGXZUs4pmiEHXarGYIA7DreCkBdIr2sMBxLUtJez6ptaW176sS1leYlv0epIv1ka7f8kEBNRbr0MO2jujYAgMtpzegDYs3/hVm4cCFOnz6NZcuWobGxEdOmTeuzE7RZsfGCcidopeXLl+ORRx6BxWLBxx9/jBdeeAFtbW0oLS3F3Llz8eijj8LhyFxpPlE0xjoZBWOdjIKxTkbBWCcyjsoJhdhx9Cy2Hz2LhV8YF/McQRDkZPNg748uybJbMGVsHnadaMP2o2dRHie5Utfajfq2HljMJlw2riDDd0mx+EI90m06VW1LrS7OdHnR4w0gy24JJ5t1qkYHEFENrldFeqxq+zqpZY2Oa5M+K1ak60tKZO8/5QYAjHIl//9QJpMJY/OzcLSlC/84Fkqk5yVumQJAbqty7EwXgqEv9YzSsSK9MFusCJceEqhJ9heH1tHR65d7xqsZJ/0tSNXvelbax5LSo7olS5ZgyZIlMV+rra2N+P3YsWMJr5WVlYW33norldsg0h1jnYyCsU5GwVgno2CsExmDml7ida09aGjvhXWIJZtnThiJXSfasOPoGdwwvSzmOf84Jq77krF5ulUikzaBUCsei05V264sK0Y4rOj0+FHf1oNJo0dEtD/Ri7KrSiZ7pEttXvTaaBQIPxhgHl1f+dli9bk/lNkuzk2eEAeA0nwnjrZ04UCDO/R78lgYHUqkS0l0u8WMHLt+VdvRa1OzV0GuwwqnzYxeXxCfNInfghydpK+68trSXEU5mU2k6/MYjYiIiIiIiIh0ddm4AljMJtS19vTZfFEiVaNPLctDlo6JlHSrVPGQYMcQq7Q3AqmlvVmnft5ShS4QrtyWE+k6JptNCK8nWe/nVEn339zhgccfABBOquuZSJceDASYSddVXlZkH+9iFRXpAFDiivzsS1RUpI9wWCMS564sm2499gH0aVGTbKNRQPxbLo46b7SK6vLoynopiZ8pTKQTERERERERDUE5DisuGZsHILzpZrSh1h9dMn18AUwmcWO+ZndvzHPk/ujjmUgfLAKhKlGdcs0AFC1QQknmTLR20XM9kpE5djhDG382tIkxn4lqe6sllEhPvK8v9VN0sjk6iRxP9EaaRSo31lRePy9L32/sFGRH3lNhjrp7jE6cq9k0dGTUtZP1mU83JtKJiIiIiIiIhiipGnt73ET60KzadjltuGiMCwCw41jftZ3u8ODz010wmYAvMJE+aARDJel6VW0D4aSy1D883P5Evw059VyPxGQyyW076tt6EAgKaGwXE+p6VtvLrV2YSNdVdOW02p7l0Unp6KR1PMrr651sjl6b+kR6ONmfn21TtWmoy2mLaB3lYiKdiIiIiIiIiNSQqrGlynOlJncvjp3phskkVngPNYl6wEv90S8ozkVehr/aT/FJFekWHdtIRG/KmYn2JzouJ4KyT3qTuxf+oACr2RSRcEw3q5kV6ZkQncxWm0iPrsBWm0hXnpfpRHqByv8mKyvQR41Q936YzaaItbmcTKQTERERERERkQpfGF8Ikwn47HQXWjo9Ea9JCeiLxrgynmxIh0R90qVjM4dYpf1wp/dmo0BksrnXF5DjXtfNRpGZTLr0MKCurQd1oQcEpflZur6f0rVZka4vW9SGn2orqZXJZpNJ/Thl8lzvRHp0//cClRXpqd6j8uGCS+e2NdGYSCciIiIiIiIaovKybbigOBdA3z7pQz3ZPCNUbX+osQNt3d6I14b62oYrabNRPSu4lRXpp0JV6dl2i66bDmaiRzoQfhhwqq0H9W3dEcf0otfGsNRXfgqV1NGV5Wofqii/qZPpivR8lfMp34Mch/qEuLJ1DHukExEREREREZFq8fqkD9X+6JKiEQ6cOyoHAPCPY63y8fYeHw42ugFwo9HBRm7tomPmuSyUWG5y9+L4mXCy2aRjQjhTyWblRqryJqo6tqwBwg8JgrrOQgCQ6wwni9VuAKocU6iyrYt4/cwl0kcokuA2i0nuu5+Mspo8x5G8P7qkICe8HrZ2ISIiIiIiIiLVZk4YCSCyBUprlxeHmzoADO3NOMNrC/eA33n8LAQBmFCUg9Eu/XpHk3byZqM6Jp6LRjhgt5gRFICdx8UHLJlKNuttbL64YWp9W4/cAz5TFekCW7voLkvZ2kVlAniEQ5EQ1/CtC2ULmFydk80Oazi9bDWrTzVHVKTb1VekK8/lZqNEREREREREpNoXJogbiR5sdKO9xwcA2BHajPO80SMwUuUmboOR3CddUZEuVd6zGn3wyURFutlsQmm++ABFenikd7J57sUlAIA8m77ZZumBQEN7D06ezUxFulTJzzy6/pQPK9Qmt0coKtJtGpLUyip0ZQJfD8pvgwgaIkmZBNfS2kV57ggN49KBiXQiIiIiIiKiIWx0rhMTi3IgCGK1NjB8eohL97+vvh1dHj+A4bO24UjasNKicwV3WYFYub3nZBsA/ZPNl4zNw1v/9iX86NKArvMU5zpgMZvgCwjYfUJ8eFSme0W6+E9WpOsvoNjR1WlTl5LNtoWT4L6g+gY8LkUC3mnTN5GupGXT2sge6ervMVvxYEDvhwTRmEgnIiIiIiIiGuJmRvVJHy7J5tL8LJQVZCEQFLDrRCu6vX7srWsHMPTXNtwEFRk0PfuVA+EKdG8gGPG7niaOyoFT55yd1WJGSahdUZdXTNpLDw30Ird2ATcd1Vsghb8Rs+LbHf6A+iy1smpbbdI+LTQk0rMVyfNsLa1dBmptYCKdiIiIiIiIaMiTkso7jp5FR68P+08Nn2Szcm17TrTBHxQwJs+JMp2rkEmbgKKkWc/WLkDfCvThFAvKtZlMQEmevvsAsCI9c6z9/KqGX0O5d5aiCt1pzWRFuvp7VPZWz9FQWa6ssHdkcG0AE+lEREREREREQ56UbN5b146/f9qCoACMK8zGmLyhn2CUeqFvP3o23B99QqHuVc+kjbLaVs/NRoG+FejSJp3DgbKVS3GuE3arvqk79kjPHL3/LpQiq7Yzm2xWS5kEz9bQ69ymeCCR6Yr0zHZkJyIiIiIiIqK0KyvIxtj8LNS39WD1e58DGB7V6EB4HXtOtsEfauUxXNY2nAQjKtL1nUtZtW2zmDA6d+huqButVJFI17v3OxBO7qrvvk2psur8TQ0lZR/xTCabtXwbxaG4L4eGB0bKh6h2vf9jE4UV6URERERERETDgJRc/ii0AeNwSTZPKMpB0QgHvP4gdp1oAwBUDpO1DSfKrhOZrEgfk5cV0Ud6qFMmzzPR+52tXTInkxXpykR6Jr+9o+VhgTIJbjWrT1Er92OwMpFORERERERElB6rVq3C+PHj4XQ6UVlZiR07diQ8//XXX8fkyZPhdDoxZcoUbNy4MUN32n/RifPhkmw2mUwRaynMsePcUSMG8I4Gp4GO9Uy2dinJc8oJ4EwkmzNJuZ5M9H6XHkIwjz74CRqedig379TSt7y/bBoqy5VV6Foq2QMaesWnGxPpRERERERENCy9+uqrqK6uxvLly7Fr1y5UVFSgqqoKzc3NMc/funUrbrnlFtxxxx3YvXs3FixYgAULFmDfvn0ZvvPUKBPpxS4HxhUOn77RyrXNHM/+6NEGQ6wrq0T13mzUZjGjxCVuwpmJ9ieZFFGRnoG1mViRnjFCBh9XKP8Gpb8VPZ07KgcAcH1Fqeoxyv+O2zRsxJrJBwPR2COdiIiIiIiIhqWnn34ad911F26//XYAwOrVq7FhwwasWbMGDz74YJ/zf/7zn+Pqq6/G/fffDwB49NFHsWXLFvzyl7/E6tWr+5zv8Xjg8Xjk391uNwDA5/PB5/PJx6V/Vx7TQ3meHSNz7DjT5cUXzimA3+/XdT4gc2u7rNwl/3tFmUv3+YDYa8vEvKkYDLHu8Xrl1wN+H3w6J9NL85041d6LMS77gMWDHkbnhFN1uXaz/msLPQARMDRiHRC/ffHkk0+isbERFRUVeO655zBz5sy457/++ut4+OGHcezYMZx33nl4/PHHMW/evAzecf9UTijE9qNn8Y3KcZrG/c93ZuFslxflGXio+vKdX8RfDzXj65eOTWn8RaWu5CeFDGRFOhPpRERERERENOx4vV7s3LkTS5culY+ZzWbMmTMH27Ztizlm27ZtqK6ujjhWVVWF9evXxzx/5cqVWLFiRZ/jmzdvRnZ238TFli1bNKwgNedmm3Gmy4y8nnps3Fin+3wSvdcWFACHxQJPwARL0wFs3HhA1/mUlGvr7u7O2LxqDZZYd3sBwAoTBLz99tsprUWLfL8ZgBn+xk+xceMnus8nycTfcXmOBS29QNfnu7DxhL5zfX5CfB8FYfDHOhD+9sXq1atRWVmJZ599FlVVVTh8+DBGjx7d53zp2xcrV67EP//zP+OVV17BggULsGvXLlxyySUZvfd5U8bgH8dacc5IbYnt39/+BRw45cZl4wo0jZsxPnPtvUrynJoT/QCwbelX4e7xY0ye+m9fTD9H2/uQTkykExERERER0bDT0tKCQCCA4uLiiOPFxcU4dOhQzDGNjY0xz29sbIx5/tKlSyOSkW63G+Xl5Zg7dy5crnB1nc/nw5YtW3DVVVfBZrOluiRVvtzjw+6Tbfin84oy0v4kk2u7uLIL7l4/KsrydJ1HEmttUiX2YDJYYr3b64e/pA4HDhzMSDxcIwg42+XFyBEOXeeRZDLWvzY3CI8vAFeWvvMAQOnJNsyqa0P78QODPtYB/b99oadFs8bjnJHZmFauLRGcbbdmNCmeSWPysjBG43/SZ4wvxMt3Vg5I+zIm0omIiIiIiIhS4HA44HD0TeLZbLaYibZ4x9NppM2GORdnPrmQibWdPyZf1+vHo1yb3mscrNTEep7Nhm99cTw2nj2QkXgAgBK7Xfc5omVibTYbMCJDrd+/MHEUppXnY2PrgUEf65n49oXeLbuuOLcwpXGZlKk2Rv0x8xwx+671HvvbsiulRHq6exEJgoDly5fj+eefR1tbG770pS/h17/+Nc4777xUbo8obRjrZBSMdTIKxjoZBWOdCCgqKoLFYkFTU1PE8aamJpSUlMQcU1JSoul8osGAsU5GkYlvXwzGll0DxShr09TGSNBo3bp1gt1uF9asWSPs379fuOuuu4T8/Hyhqakp5vnvv/++YLFYhCeeeEI4cOCA8NBDDwk2m03Yu3evfM5jjz0m5OXlCevXrxc++ugj4brrrhMmTJgg9PT0qLqn9vZ2AYDQ3t6udTk0RAzEZ8xYp4HAWBcx1oc/xrqIsT78MdZFjPXhb7B+xjNnzhSWLFki/x4IBISxY8cKK1eujHn+TTfdJPzzP/9zxLFZs2YJ3/72t1XNF+998Hq9wvr16wWv16txBYOf0dbGWBcx1oeXoRLr9fX1AgBh69atEcfvv/9+YebMmTHH2Gw24ZVXXok4tmrVKmH06NExz+/t7RXa29vln5MnTwoAhJaWFsHr9co/XV1dwvr164Wurq6I48Phx2hra2lpUR3rJkEQNG11WllZiS984Qv45S9/CQAIBoMoLy/H9773vZi9iBYuXIiuri78+c9/lo998YtfxLRp07B69WoIgoDS0lL8+7//O/7jP/4DANDe3o7i4mKsXbsWN998c59rRn/Nor29HePGjcPJkycj+tDR8CH1X2tra0NeXmb64THWaSAw1iGfz1gf3hjrkM9nrA9vjHXI5zPWh7eBiHU1Xn31VSxevBi/+c1vMHPmTDz77LN47bXXcOjQIRQXF2PRokUYO3YsVq5cCUDclG727Nl47LHHMH/+fKxbtw4//elPVW9K197ejvz8/D6x7vP5sHnzZsydO3dQtkvoD6OtjbEuYqwP/7UNxlj3er3Izs7G//zP/2DBggXy8cWLF6OtrQ1vvvlmnzHjxo1DdXU17rvvPvnY8uXLsX79enz00UdJ52SsD/+1aYr1pKl2BY/HI1gsFuGNN96IOL5o0SLhuuuuizmmvLxceOaZZyKOLVu2TJg6daogCILw2WefCQCE3bt3R5zzT//0T8K//du/xbzm8uXLBQD8MeDPZ599piVkU8ZY589A/zDW+WOUH8Y6f4zyw1jnj1F+MhXrWjz33HPCuHHjBLvdLsycOVP44IMP5Ndmz54tLF68OOL81157TTj//PMFu90uXHzxxcKGDRtUzyVVLvJn+P+cPHkyXSGaNox1/hgh1jP97QvGunF+1MS6ph7pevQikv7Zn92i29racM455+DEiROD5imZ3qSnJUap6pGqmAoLM7NLMWN98GCs64uxPngw1vXFWB88GOv6YqwPHoz1wWPJkiVYsmRJzNdqa2v7HLvxxhtx4403pjRXaWkpTp48idzcXJhMJvn4cI4Ho61NEAR0dHSgtLR0gO+uL8a6voy2tsEa69XV1Vi8eDFmzJghf/uiq6sLt99+OwD0+fbF97//fcyePRs/+9nP5G9ffPjhh/jv//5vVfMx1of/2rTEekqbjQ60eLtF5+XlDbsPOBmXy2WoNZvN5oG+hYxirIcx1oc3xnoYY314Y6yHMdaHN8Z6GGPdWMxmM8rKyuK+PpzjwUhrM8oDwUQY68ZY22CM9YULF+L06dNYtmwZGhsbMW3aNGzatEl+4H/ixImI/y26/PLL8corr+Chhx7Cj370I5x33nlYv369qhZGAGPdKGtTG+ua/l+OHjtBS//kbtE0mDDWySgY62QUjHUyCsY6ERERDXdLlizB8ePH4fF4sH37dlRWVsqv1dbWYu3atRHn33jjjTh8+DA8Hg/27duHefPmZfiOabjQlEi32+2YPn06ampq5GPBYBA1NTWYNWtWzDGzZs2KOB8AtmzZIp8/YcIElJSURJzjdruxffv2uNck0htjnYyCsU5GwVgno2CsExERERHpRFVnfYV169YJDodDWLt2rXDgwAHh7rvvFvLz84XGxkZBEATh1ltvFR588EH5/Pfff1+wWq3CU089JRw8eFBYvny5YLPZhL1798rnPPbYY0J+fr7w5ptvCh9//LFw/fXXCxMmTBB6enpU3VNvb6+wfPlyobe3V+tyhiyjrXkg1stYHxyMtmbGushon7sgGG/NjHWR0T53QTDemhnrIqN97oJgvDUbbb1aDef3h2sjpeH8nnFtpDSc3zOuLT7NiXRBSP9O0MFgUHj44YeF4uJiweFwCF/72teEw4cPp3JrRGnFWCejYKyTUTDWySgY60RERERE6WUSBEEY6Kp4IiIiIiIiIiIiIqLBythbqhMRERERERERERERJcFEOhERERERERERERFRAkykExERERERERERERElwEQ6EREREREREREREVECQyaRvmrVKowfPx5OpxOVlZXYsWNHwvNff/11TJ48GU6nE1OmTMHGjRszdKfpo2XNa9euhclkivhxOp0ZvNv+ee+993DttdeitLQUJpMJ69evTzqmtrYWl112GRwOByZNmoS1a9fqfp+ZwFhnrEdjrIsY64z1oYqxzliPxlgXMdYZ60b1k5/8BJdffjmys7ORn58/0LfTL1r/7oeKVOKd+mKsD36M9fRgrA9+6Yr1IZFIf/XVV1FdXY3ly5dj165dqKioQFVVFZqbm2Oev3XrVtxyyy244447sHv3bixYsAALFizAvn37MnznqdO6ZgBwuVxoaGiQf44fP57BO+6frq4uVFRUYNWqVarOP3r0KObPn48rr7wSe/bswX333Yc777wTb731ls53qi/GOmM9GmNdxFhnrA9VjHXGejTGuoixzlg3Mq/XixtvvBH33HPPQN9Kv6TyNzBUaI13io2xPvgx1tODsT74pS3WhSFg5syZwr333iv/HggEhNLSUmHlypUxz7/pppuE+fPnRxyrrKwUvv3tb+t6n+mkdc2///3vhby8vAzdnb4ACG+88UbCcx544AHh4osvjji2cOFCoaqqSsc70x9jnbEejbEuYqwPbYx1xjpjPYyxLmKsD21GjvV0GuoxofVvYKhSE++UGGN9aGCs9x9jfWjoT6wP+op0r9eLnTt3Ys6cOfIxs9mMOXPmYNu2bTHHbNu2LeJ8AKiqqop7/mCTypoBoLOzE+eccw7Ky8tx/fXXY//+/Zm43QEx1D/jWBjrIsZ6pKH+GcfCWBcx1iMN9c84Fsa6iLEeaah/xrEw1kWM9UhD/TOmxFL9GyAaahjrZBSMdXUGfSK9paUFgUAAxcXFEceLi4vR2NgYc0xjY6Om8webVNZ8wQUXYM2aNXjzzTfxhz/8AcFgEJdffjnq6uoyccsZF+8zdrvd6OnpGaC76h/GehhjPYyxLmKsM9aHIsZ6GGM9jLEuYqwz1mloS+VvgGgoYqyTUTDW1Rn0iXRSZ9asWVi0aBGmTZuG2bNn409/+hNGjRqF3/zmNwN9a0RpxVgno2Csk1Ew1skoGOvD24MPPthnM9non0OHDg30bRL1G2OdjIKxTrFYB/oGkikqKoLFYkFTU1PE8aamJpSUlMQcU1JSoun8wSaVNUez2Wy49NJLceTIET1uccDF+4xdLheysrIG6K76h7EexlgPY6yLGOuM9aGIsR7GWA9jrIsY64z14ebf//3fcdtttyU8Z+LEiZm5mQxIx98ADU2MdRFjffhjrIsY65EGfUW63W7H9OnTUVNTIx8LBoOoqanBrFmzYo6ZNWtWxPkAsGXLlrjnDzaprDlaIBDA3r17MWbMGL1uc0AN9c84Fsa6iLEeaah/xrEw1kWM9UhD/TOOhbEuYqxHGuqfcSyMdRFjPdJQ/4y1GjVqFCZPnpzwx263D/Rtpk06/gZoaGKsM9aNgrHOWI8pvfue6mPdunWCw+EQ1q5dKxw4cEC4++67hfz8fKGxsVEQBEG49dZbhQcffFA+//333xesVqvw1FNPCQcPHhSWL18u2Gw2Ye/evQO1BM20rnnFihXCW2+9JXz22WfCzp07hZtvvllwOp3C/v37B2oJmnR0dAi7d+8Wdu/eLQAQnn76aWH37t3C8ePHBUEQhAcffFC49dZb5fM///xzITs7W7j//vuFgwcPCqtWrRIsFouwadOmgVpCWjDWGeuMdca6hLHOWGesM9aHEsY6Y90osZ4Ox48fF3bv3i2sWLFCGDFihPy+dnR0DPStaZLsb2AoSxbvpA5jffBjrKcHY33wS1esD4lEuiAIwnPPPSeMGzdOsNvtwsyZM4UPPvhAfm327NnC4sWLI85/7bXXhPPPP1+w2+3CxRdfLGzYsCHDd9x/WtZ83333yecWFxcL8+bNE3bt2jUAd52ad955RwDQ50da4+LFi4XZs2f3GTNt2jTBbrcLEydOFH7/+99n/L71wFhnrDPWGeuCwFhnrDPWhwrGehhjnbFulFjvr8WLF8d8L995552BvjXNEv0NDGXJ4p3UYawPfoz19GCsD37pinWTIAhCGgrbiYiIiIiIiIiIiIiGpUHfI52IiIiIiIiIiIiIaCAxkU5ERERERERERERElAAT6URERERERERERERECTCRTkRERERERERERESUABPpREREREREREREREQJMJFORERERERERERERJQAE+lERERERERERERERAkwkU5ERERERERERERElAAT6URERERERERERERECTCRTkRERERERERERESUABPpREREREREREREREQJMJFORERERERERERERJQAE+lERERERERERERERAkwkU5ERERERERERERElAAT6URERERERERERERECTCRTkRERERERERERESUABPpREREREREREREREQJMJFORERERERERERDwiOPPAKTyYSWlpak5/r9fjzwwAMoLy+H2WzGggUL9L9BojRhrA8+TKQTEREREREREdGws2bNGjz55JO44YYb8MILL+AHP/hBwvODwSB+/etfY9q0acjKysLIkSPx1a9+FR999JHu9+r1evHTn/4UkydPhtPpRHFxMebPn4+6ujrd56ahbyjE+rFjx2AymeL+3HXXXbrNnS7Wgb4BIiIiIiIiIiKidPvrX/+KsWPH4plnnlF1/r/+67/i5ZdfxqJFi7BkyRJ0dXVh9+7daG5u1vU+fT4f5s+fj61bt+Kuu+7C1KlT0draiu3bt6O9vR1lZWW6zk9D31CI9VGjRuGll17qc3zTpk14+eWXMXfuXN3mThcm0omIiIiIiIiIaNhpbm5Gfn6+qnNfe+01vPDCC/jTn/6Er3/96/reWJRnnnkG7777Lv7+979j5syZGZ2bhoehEOs5OTn41re+1ef42rVr4XK5cO2112bsXlLF1i5ERERERERERDSktLS04KabboLL5cLIkSPx/e9/H729vQDCLSTeeecd7N+/X24dUVtbG/d6Tz/9NGbOnImvf/3rCAaD6OrqUn0vy5cvh9lsRk1NTcTxu+++G3a7PWG7jGAwiJ///Of4+te/jpkzZ8Lv96O7u1v13DT8DZdYj6WhoQHvvPMO/uVf/gVOp1PT2IHARDoREREREREREQ0pN910E3p7e7Fy5UrMmzcPv/jFL3D33XcDCLeQmDx5MsrKyvDSSy/hpZdewoUXXhjzWm63Gzt27MAXvvAF/OhHP0JeXh5GjBiBiRMn4rXXXkt6Lw899BCmTZuGO+64Ax0dHQCAt956C88//zyWLVuGioqKuGMPHDiAU6dOYerUqbj77ruRk5ODnJwcTJ06Fe+8804K7wwNN8Ml1mNZt24dgsEgvvnNb2oaN1BMgiAIA30TREREREREREREyTzyyCNYsWIFrrvuOrz55pvy8XvvvRe/+tWv8NFHH2Hq1KkAgK985StoaWnBvn37El5z9+7duOyyyzBy5EhYrVYsX74ceXl5+PnPf45//OMf2LhxI66++uqE19i3bx+mT5+ORYsW4cknn8Qll1yCMWPGYNu2bbBa43dWfuONN/Av//IvGDlyJAoLC/GjH/0IAPDTn/4Ux48fxz/+8Q95PWQswy3WY5kxYwZOnTqFuro6mM2Dv9578N8hERERERERERGRwr333hvx+/e+9z0AwMaNGzVfq7OzEwBw5swZvPnmm7jnnnvwjW98AzU1NRg5ciR+/OMfJ73GJZdcghUrVuC3v/0tqqqq0NLSghdeeCFpYlGau6OjAzU1Nbjttttw22234e2334YgCHjiiSc0r4eGl+ES69E++eQT7Ny5EzfffPOQSKIDTKQTEREREREREdEQc95550X8fu6558JsNuPYsWOar5WVlQUAmDBhAiorK+XjI0aMwLXXXosdO3bA7/cnvc7999+PiooK7NixA8uXL8dFF12keu4vfelLKC8vl4+PGzcOX/7yl7F161aty6FhZrjEerSXX34ZAIZMWxeAiXQiIiIiIiIiIhriTCZTymNLS0sBAMXFxX1eGz16NHw+n6oNGT///HN8+umnAIC9e/emZe7W1lZV1yHjGKqxHu2VV17BBRdcgOnTp6c0fiAwkU5EREREREREREOKlMSTHDlyBMFgEOPHj9d8rdLSUpSUlKC+vr7Pa6dOnYLT6URubm7CawSDQdx2221wuVz40Y9+hD/+8Y/405/+lHTuKVOmwGazxZ171KhR6hdCw9JwiXWl7du348iRI0OqGh1gIp2IiIiIiIiIiIaYVatWRfz+3HPPAQCuueaalK63cOFCnDx5Elu2bJGPtbS04M0338RXv/rVpD2cn376aWzduhX//d//jUcffRSXX3457rnnHrS0tCQcl5ubi3nz5mHr1q04dOiQfPzgwYPYunUrrrrqqpTWQ8PHcIl1pVdeeQUA8I1vfCOlNQwUkyAIwkDfBBERERERERERUTKPPPIIVqxYgSlTpmD8+PG4+uqrsW3bNvzhD3/AN77xDbnvMgB85StfQUtLC/bt25f0uk1NTbj00kvR2dmJ6upq5OXlYfXq1Th58iS2bduGioqKuGMPHjyIyy67DDfffDN+//vfAxCriKdNm4b58+fjtddeSzj3gQMHUFlZidzcXPzbv/0bAOAXv/gF/H4/du/ejbFjx6p5a2iYGY6xDgCBQABjx47FhAkTsG3bNhXvxODBinQiIiIiIiIiIhpSXn31VTgcDjz44IPYsGEDlixZgt/97ncpX6+4uBh///vfMWfOHDzzzDP4z//8T5SVleHdd99NmFgMBAJYvHgxioqK8Oyzz8rHzzvvPKxcuRKvv/560uTiRRddhHfffRcXX3wxfvzjH+OnP/0pZs6ciffff59JdBpWsQ4Ab7/9NpqamoZcNTrAinQiIiIiIiIiIiIiooRYkU5ERERERERERERElAAT6URERERERERERERECTCRTkRERERERERERESUgOZE+nvvvYdrr70WpaWlMJlMWL9+fdIxtbW1uOyyy+BwODBp0iSsXbu2zzmrVq3C+PHj4XQ6UVlZiR07dmi9NaK0YqyTUTDWySgY62QUjHUyCsY6ERERZZLmRHpXVxcqKiqwatUqVecfPXoU8+fPx5VXXok9e/bgvvvuw5133om33npLPufVV19FdXU1li9fjl27dqGiogJVVVVobm7WentEacNYJ6NgrJNRMNbJKBjrZBSMdSIiIsokkyAIQsqDTSa88cYbWLBgQdxzfvjDH2LDhg3Yt2+ffOzmm29GW1sbNm3aBACorKzEF77wBfzyl78EAASDQZSXl+N73/seHnzwwT7X9Hg88Hg88u/BYBBnz57FyJEjYTKZUl0ODWKCIKCjowOlpaUwmzPfkYixTpnCWId8PmN9eGOsQz6fsT68MdYhn89YH94Y65DPZ6wPbwMd64NFMBjEqVOnkJuby1gfphjrIsb68Kcp1oV+ACC88cYbCc+54oorhO9///sRx9asWSO4XC5BEATB4/EIFoulz3UWLVokXHfddTGvuXz5cgEAfwz4c/LkyVTDtV8Y6/xhrIcx1vnDWGes84exLgiMdf4w1gWBsW7kn4GK9cHi5MmTA/4Z8IexngmMdeP8qIl1K3TW2NiI4uLiiGPFxcVwu93o6elBa2srAoFAzHMOHToU85pLly5FdXW1/Ht7ezvGjRuHkydPwuVypX8RNODcbjfKy8uRm5s70LcSF2Od0oGxLmKsD3+MdRFjffhjrIsY68MfY13EWB/+hkKsZ4K0/uhY9/l82Lx5M+bOnQubzTZQt6cLo62NsS5irA//tWmJdd0T6XpwOBxwOBx9jrtcLv6flWHOaF+jYawbF2NdxFgf/hjrIsb68MdYFzHWhz/GuoixPvwNplh/77338OSTT2Lnzp1oaGhI2uYIEDfera6uxv79+1FeXo6HHnoIt912m+o5pfVHx7rP50N2djZcLtewTMAZcW2DKdYHAmPdOGtTE+u6NzkqKSlBU1NTxLGmpia4XC5kZWWhqKgIFosl5jklJSV63x5R2jDWySgY62QUjHUyCsY6GQVjnYYrPTbeJSKivnRPpM+aNQs1NTURx7Zs2YJZs2YBAOx2O6ZPnx5xTjAYRE1NjXwO0VDAWCejYKyTUTDWySgY62QUjHUarq655hr8+Mc/xte//nVV569evRoTJkzAz372M1x44YVYsmQJbrjhBjzzzDM632lsgiBgX307eryBjM0XCAoZmUuaL1M+bepAe7cvY/NRX4IgYP+pdjR39Goa5/EHsPN4K3p92v4OznR6sK++XXOcHWp0o6G9R9MYXyCIncdb0eXxaxrX2uXFnpNtCGr8uzva0oXjZ7o0jQkGBew52Yb2Hn3+DjS3duns7MSRI0fk348ePYo9e/agsLAQ48aNw9KlS1FfX48XX3wRAPCd73wHv/zlL/HAAw/gX//1X/HXv/4Vr732GjZs2CBfo7q6GosXL8aMGTMwc+ZMPPvss+jq6sLtt9+ehiUSpYaxTkbBWCejYKyTUTDWySgY60Sp2bZtG+bMmRNxrKqqCvfdd1/cMR6PBx6PR/7d7XYDENsk+HzhhJX078pjybz7yWnc+dJuLJwxFj++/mLV41K1eO2HqGvtwcYll8Nhs6gel8raXt5+Ak9u/hSrv3kpvjixUPO9avFJUwfm/3Ibyguy8NfqKzSNjbU2LeuksMc3Hcbqdz9Dls2C/73nclxUmrzNV68vgP/3663Yf8qNi8a48Ma9l8NhTR6b++rbsfA329DlDeA7s8/Fg9dMVnWP//3eZ/jpxkOwWUx44faZuHxSUdIxwaCAb/12O7YfPYvywiz8eckVyMtO3vbl+JkuXPfL99He48ON08vw5I0Vqu7xT7vqUP3aRzCZgF994zJcM2VM0jGCIOB763Zjw8cNKBphx5+/dwVK8pyq5lNLcyL9ww8/xJVXXin/Lm2ssnjxYqxduxYNDQ04ceKE/PqECROwYcMG/OAHP8DPf/5zlJWV4be//S2qqqrkcxYuXIjTp09j2bJlaGxsxLRp07Bp06Y+m7wQZRJjnYyCsU5GwVgno2Csk1Ew1olSk2zj3aysrD5jVq5ciRUrVvQ5vnnzZmRnZ/c5vmXLFtX381adCYAF7x+sw0bbcdXjUuENAFs/E1NhL6x/C2U52q+hZW2PbBPn+u4f/oEfz9C34n5z6H082dqDDRs2IpXW5sq1dXd3p+/mDOLk2W48/7fPAQA9vgAe33QIL/zrzKTj/mdnHfafEh9OHWhw47V/nMSts8YnHff4pkPoCn2T4/m/fY5vVo5DeWHfv0el1i4vntnyKQDAFxDw078cxP+35MtJ+4P/ZV8jth89CwA4ebYHv996FPfNOT/pPT779qdydfjrO+uwaNZ4TCnLSzjG4w9g5V/ETb4FAXj0zwcw9+ISWMyJ73HH0bPY8HEDAKCl04vn/vopfvL1KUnvUQuTkMnvmOjE7XYjLy8P7e3t3NBlmOJnLOL7MPzxMxbxfRj++BmL+D4Mf/yMRXwfhj9+xiK+D8PfYP+MTSZT0s1Gzz//fNx+++1YunSpfGzjxo2YP38+uru7YybSY1Wkl5eXo6Wlpc8GjFu2bMFVV12lepPC/1y/H6/trEdBtg07ll6ZfEA/fHa6C1f/4n0AwK9umYarLhqtemwqazvv4c0AAKfNjL3L5iQ5u39+Vfs5nqkRv6Wz7YezUTSi70bI8cRam9vtRlFR0aCN9UyJ9zfv8/mwceNGzJs3T37PVr1zBE++dRhj87NQ39YDswn44Edfw+jcxFXR//Kr97HrRBvKCrJQ19qDS8fl443vfinhmNMdHsz86dsQBMjj7q+6APdeOSnhuNc+PIkH/udjjM51oK3bB28giM0/+CecX5ybcG13v/ghNh9oQnlhFk6e7UF5YRbeu//KhAn4Hm8A03+8Bd3egHyPt10+Ho9cl/ibJ28faMKdL36I/GwbfP4gurwBvHxnJb6UpHL+ofV78YcPTshzuZxWfPjQVbBbw53NY61Ny3/Xde+RTkREREREREREg0OyjXdjcTgccLlcET8AYLPZ+vzEOx7vp8EtJuhbu33wCSZNY7X+NHWG25U0dHg1j9eyNqs1sgmEnuuy2Ww4261cmy8tayNt/vbpaQDAt2dPxCVjXQgKwLbPziQc097tw56TbQCA5265FABU9fh+53AzBAGYWpaH78w+FwDw3ienk95jzUHxb/+blefgi+eOVDXO6w/ivdDanrlpGmwWE06e7cHxM4m/tfDB52fQ7Q1gbH4WHpp/IQDg/SMtSe/x76Fz5k0ZI7d0+duniccJgoB3Don3+Mi1F6Mwxw53rx8f17UlnU8LJtKJiIiIiIiIiAwi2ca7mVbf2hPz3/VQ1xpO/Ok9V0unV/73YFD/TUfr28LrqdN5bdRXr0/cLBQArjhvFL44QUxSf/D52YTjPjh6BkEBOHdUDi4dV4AJRTkQBGDn8cTjdp9oAwBcfm4RvjhRnGvPyTZ4/PFbCAmCgF2hcV+aNBJXhCq8P/g8cbL/YIMbvb4g8rNtmH5OAS4dVwAA2JZk3O4T4vvxxYkjURl6Pz5t7sTpDk+iYXKy/YpJ4bVtP5p4rrrWHtS39cBuMeNLk4owc3xhaFzi91ErJtKJiIiIiIiIiIaozs5O7NmzB3v27AEQ3nhX2iNg6dKlWLRokXz+d77zHXz++ed44IEHcOjQIfzqV7/Ca6+9hh/84AcZv3dBECITwG36JoAjkvZt+vYAV67LGwgmrTDur7oMPpCgvg43dsAXEDAyx47xI7MxI5TIlZLJ8eyvbwcATD9HTE7PCP1TSpTH81Goin1aeR7OHZWDwhw7PP4gDjZ0xB1zqr0Xpzs8sJhNuLg0D9PG5Yv3EOrPHo9UMV9Rlg+TyYRLy8VxB5KM2y3d47h8FOTYcd7oEQDETVLj6fEGcOR0JwBg+vgCfGG8+H7sr3fDFwjGHSdd84KSXGTZLfjChMKIe08XJtKJiIiIiIiIiIaoDz/8EJdeeikuvVRsC1FdXY1LL70Uy5YtA4C4G+9u2bIFFRUV+NnPftZn491Maen0wuMPJ8f0rqRWJrfrM5i0BzK9Nm4UmmkHG8Sk8oVjXDCZTLhojNj+6PPTXfAnSAAfCI2Tzr8w9M/DjfET4r2+AA43ia9XlIvJ7QvHiD3OP2mKP+7jUFL5gmIx2Ty5RBzT0N6Ls13e+OPqxCT1tFAC/aJSV8S9xyIIgjxOSrxPDq3tUIK1fdrcAUEARubYMTrXifKCbGTbLfAGgjjW0hV33L5T4lyXjA29jyXJ349UWJOfQkREREREREREg9FXvvKVhG1D1q5dG3PM7t27dbwrdaKT2XpXUmeyjUx0Mru+rQeXjM3TZS53rw8dvf7wXKxIz7hwIl1M4JYVZCHbbkG3N4BjZ7owaXRunHEdoXFiAvgCFQngY2e6EAgKcDmtKHGJG5meX5yL94+cwScJktSfhSq9J4fuMddpw/iR2Th2phv7T7XjivNGJR4XureLQ4n0gw1uBIMCzOa+G46e6fKivccHkwmYFKpEn1ySi//vI+BQY/wEvJRkl94Hs9mE84tzsedkGw41duC84tjvo1Qdf1FpXsT4E2e70e31I9uenhQ4K9KJiIiIiIiIiCjjohO+uleJK67f2u1Dl8ef4Ox+zhW9Nh2T25l+H6mvT5vFZPMFJWKS2Ww2yUnfeBXYXR6//FlJid/zQ2OOn+1Gjzd2v/Ojp8XK7ImjRsBkEpPYF4TGfRK6j1g+D1V0TyzKkY9J9/j56djV3oIg4PNQIn3CKHHc+JE5sFlM6PYG0ODujX2PoblK87LgtFki7jFRtf2hhshEOhBO4CcaJ803aZSYtB85woGiEQ4IAvBJU/z3RCsm0omIiIiIiIiIKOOkqu2sUKKtvlW/liS+QBBNoaSfNVRBq2fCWbp2tt2i/1ytUXO19ui+uSlFOnFWjN3xI7PlY1JS92icJPXJULznZdmQn20HABSNsCM/2wZBCCeHox09Ix6fEJEQF+f6LEEiXWqNMqFohHxMut/jZ2L/7bV2++AOfdth/EhxPqvFjLICaVzse5SS7xNHhe/x3FBl+vEz3XHj8/MWcdx5igp+qaL9WJy5/IGg3DrpHMX7f25o7kQtYbRiIp2IiIiIiIiIiDJOSgBfdk6++LuOyebG9l4EBcBuNcuJOT2rxKXE3szQpoe6VqSH3jdpg8subwDuHv2q7SmSLxDEqdBnMK4wnMiV/j1ef/yTZ/uOMZlMKC+QxsVObkuJeWUiXRrT0N4Td1POoy19x40LJcfjJcSPhhLbY/PDleVAOGF9Ik4CPlb1e2m+EyYT0OMLoKUzdk926b1SvidS0v5knPexob0X/qAAu9Ust7pRXuPk2fQ9oGMinYiIiIiIiIiIMk5KAM8cPxIA0Nzhgdcff2PG/pASdGPzs+TEXJ2OiXspsSol0k+16z/XpFEjUJgjVjbXccPRjDnV1oOgADisZozKdcjHywuzAIQrz6NJVezKpLFyXLwEfKyE+KhcBxxWM4KC+NAoWlu3F63dPgDA+KLwfHJFepxks9TyRTkGAM4pTDzuqDwufI8OqwVjQonuEzHGCYIgPzwYW5AlH5ffxzhzSdX04wqzI/q1l0uJ9DR+04WJdCIiIiIiIiIiyjgpUTi1LA8OqxmCIFbU6jNXKEGXn4WyUJJOryrxjt5wO4yZ4/WvSJceCIwtyMLYfH3XRn0pE+JSz3IgeSJXSgyXRyXSwxXYscdJfzflUZXsUvI5VsJZGlM0whGx8eY5hTnyGoLBvu1WTrWJSXmp4l2SrJK9IZTML4saV1YYv9r+TJcXvT7xQVppfriyXFrn2S5vzH0Njp/tCq0l9gMJqfI/HZhIJyIiIiIiIiKijJMq0ssykACW5opIpOtUkS5dNz/bJm/meKbLG3fzyH7Pp6i2l99HbjiaMSfiJMSl5POptl74Y7RbiVuRXhC/Ij0QFHC60wMAGJPnjHhN/qZFjHHS/gDRY0pCv3v9QbR292230ujuiThPIsVZQ4zqd+Xx6PkStVuR7rvY5YDDGm4j43LakJ9tE8fFSMDHerAAhN9/VqQTEREREREREdGQ5e71oSNUtT22IEuuptWr3YqUbFYm7eP1oE7XXGPzs+ByWjHCIVYA6524L1O8j6xIz5yGUNW2FFeS0bkO2CwmBIICmjs8fcZJLXmU1ddAOCEe6zNs6fQgEBRgMZtQNMIRNS5+XEuJ7WJX5Fx2qxkjQ+2Amtx977ExTkK82CXO3RxjjNcfxJku8Xh0Ar409HusBHz4bzS7z2ulefET99JDgui1lYY+j8b23pjV9qlgIp2IiIiIiIiIiDJKSpoVZNuQbbdmriI9A8lmZfW7yWTStUq81xfA6VCStpQV6QOiuUNM5I7OjUxsmxXJ7liJdOnY6NzIBLDUZz3WGCmRPDrXAYuiHzgAFIeuI1WsK8VLiAPhBLSUkI41X3SSWjkmOknd3NELQQDsFjMKs+2RawuNS/xgIavPa6NDifvTMRL3UjJfSu5LpPfeHxRiVtungol0IiIiIiIiIiLKKLlqO5TU1jsBrExuS3M1d3jg8ae/3Yq0NikhqGfiXkp0ZtksKMi2hediIj1j5IR4VCIXCCfXT0cljr3+IM52icnd6ASwdJ2zXWL1uVJjnMS2clysKvHGUJI8ukJcOX+sRHqj3BImMrk9KtcBk0lMUp+NSlLL95jniNj8Ewi/H7ES6dIDgOgHEpHj1Fek261mefPdWPOlgol0IiIiIiIiIiLKKGViGwDKCvVLNgeDQrj9RkEWCnPsyLKJPZil4+lUp2i1AigfEqS/lYzygURE9Ttbu2SMlLiOriwHgFG5UgV2ZJy1hJLGVrMJBVFV2yNzHDCbgKAAnImqLpeSxiUxEumjQhXYiSrSY42TkuuNUYn0Xl8Abd2+iHMkNosZI3NiJ+Dl/uiuGJXl0oOFGEl76WHDqJiJ9PiV7OFEeqIEPBPpREREREREREQ0BIUT6dkR/9Sjkvp0pwfeQBAWswklLqeYcNaxclvZIx3QtyJdSs7LDyRCc+m5uSlFkhLXsRLAcpuWqCrxZkXSOLpq22I2YWScljBSkjpWZbmaivRYrV2kJHV0j3Tp92y7BS6ntc+4eJXscmI75j2G289Et4SRHi6MGhEjIR5nbb2+ANyhvRZGx3q4EOcbAaliIp2IiIiIiIiIiDKqT2uXAmkzwZ60bQwoqQvNVeJywmoRU2F6bjiq7MeunEvXpH1orrwsG3LsFt3mo0iBoCBXjSdq7RKdEG92x+6rHj0uOgF8OkEbGSlp3BIjSZ2o2ltKyje7Y1fNF41wwGQy9RkX7pMedY8JEuLSMV+gb99y6R6LNLR2kRLrWTYLch19k/2j43wjIFVMpBMRERERERERUUbVRbV2KQ5tnugLCGlrwyDP1RpZtQ3oVyWu3PwzExXp0e+j3tX2g8GqVaswfvx4OJ1OVFZWYseOHarGrVu3DiaTCQsWLEjbvZzp8iIoAGYT5FYnSvEqosMV6X2rqJXjohPAZ7vEcSNz7H3GKDfXbOvxycd9gSDaQ78XxhgnJ+2jWsKc7Yo/Rjkuukq8NdT7feSIvuMS9S1PVJE+Kk5rlyZpo1dX7GR/oir9VDCRTkREREREREREGSUllaVWJFaLWe7fnO5e4tEV4oCiIj3NyWap9YbTFk4YloXmanT3whcIpnW+6PcRwLDuk/7qq6+iuroay5cvx65du1BRUYGqqio0NzcnHHfs2DH8x3/8B6644oq03o9cRT1CfBAULVxZHlVJnaCyXDkuOgF8tltKbvcdZ7Mok9Th+aQ+5yYTkJ/dN7ktHYuuEJc2EY2VtAeAgpw440KJ9Oje75JYVfr+QBBnQuOKcuMn+5s7PBCEcLX9GUXVfKK52NqFiIiIiIiIiIiGnF5fQK4+jVUlXpfmBHCsZHOZTlXiyv7oUoVs0QgH7BYzgkJ408e0zRdVkQ6E38dTw7Ai/emnn8Zdd92F22+/HRdddBFWr16N7OxsrFmzJu6YQCCAb37zm1ixYgUmTpyY8PoejwdutzviBwB8Pl+fHwBobhcf+hTm2GOek58lttlp6fREHD8TSnTnO60xx43MtonXd/dEHD8b+rtxOcwxxxWFktsNrd3yseb2LnGuLBuCAX+fMS6HGKdnu7wRa2uR7jE79j3mOcW1nensjTgu/W3nOWPfY36W2IKlRbG25vZuCKHKfpe97zjpHr3+INq7wvNJ95gX533Md0rvf2/E2mJ9lmr0bR6jwqpVq/Dkk0+isbERFRUVeO655zBz5syY537lK1/Bu+++2+f4vHnzsGHDBgDAbbfdhhdeeCHi9aqqKmzatCmV2yNKG8Y6GQVjnYyCsU5GwVgno2CsEw1NUoI3225BfihhCIiV2zuQ/pYksZLNZTq1P5E3/yzIlo+ZzSaU5jtx7Ew36tt6UF6YHW+4JoGgICfmI6vt9du4dSB5vV7s3LkTS5culY+ZzWbMmTMH27Ztizvuv/7rvzB69Gjccccd+Nvf/pZwjpUrV2LFihV9jm/evBnZ2X0/t7/t2A3AgkB3OzZu3Njn9eYeALCipaMn4vUDn5kBmNFw/FNs3PhJn3ENp0wALDjw2XFs3Hg0fD23BYAJH/9jKxr39b3/YK943dqtO+D+RKzc/rRdvJZd8Ma8x26/eI9dngD+788bYQ2VXe85eASAGa2Nddi48USfcSebxet+evwUNm6sk4/XnRbv8fDHO+E/1vcee9vFe9z64R5Y63eLY7rEe8i2Cnhr01/6jBEEwGqywC+Y8MbGzSgMFaB/UC/eQ+fZpphr+6RNfP1E09mI17ds2RJef7f6b8BoTqRLX6FYvXo1Kisr8eyzz6KqqgqHDx/G6NGj+5z/pz/9CV5vuMT/zJkzqKiowI033hhx3tVXX43f//738u8OR+ySfKJMYayTUTDWySgY62QUjHUyCsY60dClTGwr+xrr1Us8ekNOcW4xKdrY3gt/IChvQpq2uRRJe2nuY2e607q2Jncv/EEBVrNJ3lRRmkt5L8NFS0sLAoEAiouLI44XFxfj0KFDMcf8/e9/x+9+9zvs2bNH1RxLly5FdXW1/Lvb7UZ5eTnmzp0Ll8slH/f5fNiyZQvGTZoMHPkU55aPwbx5FX2u19rtxU/21MITMGHO3KthD2WpX2veCZw5g8unV2DetNI+43p21WP98f3Izh+FefOmAwA8/iA8294GAHx93lXIy7L1GbehfQ+OHGjGhMmXYN7McgDAX/Y1Agc+RvnoAsyb1/dhczAo4KGdbyMQFFD5T19FYZYFW7ZsgWvUGKChCTOmXIB5X57QZ1zW4dN4+bPdsObkY968L8rHH9r9VwB+zPvabJw7KqfPuG3+A9hztg6lE87DvK9OEo99fgb4eCdK8kdg3rwv9RkDACv3v4umDg8urfwyLi4VP4uPNx0GThzHlPMnYN7VF/QZM67ejV8f/ABBqxPz5s2WP7errroKNpv4/knfOlBDcyJd+RUKAFi9ejU2bNiANWvW4MEHH+xzfmFhYcTv69atQ3Z2dp//s+JwOFBSUqLqHjweDzyecG8bLQsmUouxTkbBWCejYKyTUTDWySgY60RDV6zENqDoW57GBLAgCDEr0kfnOmCziJubNnV4+iS+U1XfJlaIl8VZWzqrxKXK/jH5zoj+3HrMNRR1dHTg1ltvxfPPP4+ioiJVYxwOR8wHqDabTU68RszhEXveF45wxHx9ZK4VJpNYUd3tB3JCye/2Xl/odWecceJn6O71y6+f7RFjy2I2oXBEFswxerJLvdM7PQF5XHvoHkfGuUdAbPtypsuLTp+AYpd4TluPHwBQlJsVc1yRS7zH1m6f/LrXH0RHrziuOC875jjpHt294Xvs9IrV8/nZ9vj3mG1HU4cHnV4hvLbegLi2OO+jdI9tinsEIj/PePPFoulxm/QVijlz5oQvoOIrFEq/+93vcPPNNyMnJ/KJRG1tLUaPHo0LLrgA99xzD86cORP3GitXrkReXp78U15ermUZREkx1skoGOtkFIx1MgrGOhkFY51oaIuV2AYUldRpTAC3dfvQ7RWTbaWK+cxmE8bkpb9yW27tEr22UAV8OvuWx3sfpSR+o1usth8uioqKYLFY0NTUFHG8qakp5gPQzz77DMeOHcO1114Lq9UKq9WKF198Ef/3f/8Hq9WKzz77rN/31NYjJsTzY1SHA2LS2+UMJaYVm3K2doXGxdmQsyBbSmaH+3ef6fTKr8VKogNAXmhca3d43NnQuMI4m4YC4Y1DpY1CldeIt9loYejeleuS/t1sQsyKefH+Q+MUa2uX3sfs+EntfHltfeeLt7GpNMbjD6LXF4h7bbU0JdITfYWisbEx6fgdO3Zg3759uPPOOyOOX3311XjxxRdRU1ODxx9/HO+++y6uueYaBAKxF7h06VK0t7fLPydPntSyDKKkGOtkFIx1MgrGOhkFY52MgrFONLQlq0ivb+2BIAjpmSuUbC4a4YDTZok9X5v6Hslq5+uzNh0eEtTJbWQie3ePGiFW2weCAhrd6d3cdCDZ7XZMnz4dNTU18rFgMIiamhrMmjWrz/mTJ0/G3r17sWfPHvnnuuuuw5VXXok9e/ak5eFnWyjZHC+RK77WNyneniQBLyeNIxLbyRPi+VlScjs8l5pxUlJcSvAD4aR6vHFS8r3LG5CT1Ge6wonteMn+/BjJful+XXHeD+U45fvYKr//sceNcFhhDd2HMgGfqpQ2G03V7373O0yZMqXP5i8333yz/O9TpkzB1KlTce6556K2thZf+9rX+lwn3tcsiAYLxjoZBWOdjIKxTkbBWCejYKwTDay6OJXUUsV4jy+A1m5fwsSf6rniJO0BxYajaapIDwQFNIRau/RdmzOtcwHxk/ZStf2Js2JP9rKC9GxuOhhUV1dj8eLFmDFjBmbOnIlnn30WXV1dcpuvRYsWYezYsVi5ciWcTicuueSSiPH5+fkA0Od4qqSEeF6CSuq8bDtwpltOinv9QXR6xPYn8RLweaGEuLvXj0BQgMVskhPb8arYxeuFWp70hJPGZ7sSV20DQEFOqH1Md9+K9HjjXE4rLGbxgU1btw8leRY5WZ2osrwgRiV7+MFCorWFxikfLiR5T0wmE/KzbWjp9KKt24ei7P6lwjVVpGv9CoVSV1cX1q1bhzvuuCPpPBMnTkRRURGOHDmi5faI0oaxTkbBWCejYKyTUTDWySgY60RDm5RMju4j7rRZUDTCEXFOf9W1itXmZTF6oKe7Sry5I7z5Z7HLGfFaWahqvL4tjdX2ckW6s89rw7VP+sKFC/HUU09h2bJlmDZtGvbs2YNNmzbJ31A6ceIEGhoaMnY/rT0qktRRldRtoTEmU/wKbGUi2h0al6yKXTlOWZHu7k1e7R2dpA4IkFsixRtnMpnktUkJdKk/ery2LvHuUUr8Jx4XqpqPUW2f6P0Pj+t/RbqmRLrWr1Aovf766/B4PPjWt76VdJ66ujqcOXMGY8aM0XJ7RGnDWCejYKyTUTDWySgY62QUjHWiocsfCMrtRqJbkgDK5HZ62q3Eq9oW50/v5qZSYrskL3LzT+mYyST2am7p7H9CD1D2SE/wPqaxAn6wWLJkCY4fPw6Px4Pt27ejsrJSfq22thZr166NO3bt2rVYv3592u6lvVtMHCfs7S1tMBpKAEv/dDltfeJEYrOYMcIhVk9LCXgpSZ3rTFD9ntU3aSwl4l3O+NXYeVHJ/tBUofnij4tOUktzJbrHWIltKamupke69CAiGBTkhwtSRX3McVHvf39oSqQD4lconn/+ebzwwgs4ePAg7rnnnj5foVi6dGmfcb/73e+wYMECjBw5MuJ4Z2cn7r//fnzwwQc4duwYampqcP3112PSpEmoqqpKcVlE/cdYJ6NgrJNRMNbJKBjrZBSMdaKhqanDg0BQgM1iwujcvq2RynRKbkdXvwPpTzZLie3SGNXvdqsZxbnOiPP6QxCEuL3mgeFbkT7YtMkV6eoTx8n6ekuk6uxwtbeUpE6U2JZau4STxmoS8NKGqNIcPaGtQbJsFtgs8dPH0r1Ic4Tnin+P0ro7ev3yZrhqNhstiKpk7/D4EQx9uUNrJXuqNDeGWbhwIU6fPo1ly5ahsbER06ZN6/MVCrM58g0+fPgw/v73v2Pz5s19rmexWPDxxx/jhRdeQFtbG0pLSzF37lw8+uij7DVHA4qxTkbBWCejYKyTUTDWySgY60RDk5T8HZOXFXMzwnS3W6mP048d6NtuxWSKXR2slpT8j9VGBhDX1ujuRX1rD6aV5/drrtZuH3pCGzyOyYvR2kWHzU0pUlAQe5gD6jbJlBK5cl/1BGOkcfVtPXIltZSkTlRZHu4/7pNjWk1yOzoh3huIPB5/nLiGzj6J9ERV84q2Nb1+FObYVW02mpcV2Vtd6jNvt5rhsFrijouuZO+PlDqsL1myBEuWLIn5Wm1tbZ9jF1xwQdz+T1lZWXjrrbdSuQ0i3THWySgY62QUjHUyCsY6GQVjnWjokVq2xEpsK4+nu0o8VtV2dLuVUTEq5NM1FyCubefx1rS0rZHen1G5DjhtfZOIZWl+H6kvbwCQ/ifFpaLaW0r8dnqStz8Bwgnndrm1i5pks/iaPyigyxvACIc1PC7BfNGJ9B6/KeJ43HEOaZw4h9yPPcE4q8WMLJsFPb4AujxiIl1N/3fpml0eMcsvJe+le4h7j6Fxncp+NSnS3NqFiIiIiIiIiIgoFYnakQDpbUnS5fHLla6xEvd2qxklrvS1Wwlv/hm/Il15Xr/mSvZAQlGRnq7NTSmSVLVtNZvgsMZPsY6QE7m+0D/FhG6OI34VNQC5R7qUgFdTWe60meW+610ePwKhhHqycSMcka1dwhXpiZP9fVu7JE/2A+H3RBqnpko/J+r9kB5IjFCZ7JfG9QcT6URERERERERElBGJWq0AQFlh+hLp0jVcTmvchGA6K+DVVKQrz+uPuiQPJMbkZaV9c1OKJCWbRzitCdsCRSdyO0MV1VLyOp4RcgW2+rYpJpMJOXaLPJ+yCjvRODkh7pEq0iOPJxunJdkPRL4nwaAgj090j+Hke2SrmxFJKtJHsCKdiIiIiIiIiIiGmmQJYCnZ3NbtkxOIqQpXv2fHPUe6j7rW/rVbidj8M0mVeDo2UpWS8fH6sdutZnkz11Psk64LKZGeY0+cyM1xRFZfh1u7JEkARyXg3So2GxVfD/ctl8Y4rGbYE1TN92ntElpbsspyaS63hs1GAUVy2+NDd6jXP5A4Ka5MvgtCOPmeNJEuVduzIp2IiIiIiIiIiIaKZAngXKdN7oXc38ptKTkeL7GtfK2/cyk3/yyNV22fxor0ZC1ygPRWwFNfnoC6PuJyZblXTORKPb7Vtnbp0LCRp/K6nR6/6jFS//To1i6Jep1H3mNkj/TcZNX2irV1hxLcZpPYmibumNC9BAWgxxcI90hXm7RnRToREREREREREQ0FgiDI1dEJE8ChCvL+tlupk5L2CedKT2sXaXzRiNibfyrn6lBUCqc8X5IWOeJ86XkfKTa5Ij3ZZpeOyERuuCWJttYuaivSlZXsHSo2/1Res9cXhC8QVGw2qq5HenRrl6Q90hX3KI3NsSdukZNlsyDU/h2dvX4NFenhBwv9xUQ6ERERERERERHp7kyXF72+IEwmsYd3PFJyuK6fldTJWq0AQJmUbO7vXNLmnwmS9tl2KwqybRH3lvp8rEgfaB6pR7raHt2hliRdcgI4cUV6/D7i6lrJdPb61bdaUayho9cf3mw02UMCuZI9crNRLVXi4Qr9xGNMJlO4kl1RbZ9ss1HpgUV/W0UBTKQTEREREREREVEGSMnj0bmOhP2ay9JVJa6mIj1Nm43Wt/WKcyVI2gPpqYDv8vjR1i0mLBNXpKevJzv11asykS4liH0BAR5/MFxJrTYh7vGjy+uHIIjHXSqrxLu8fkUVe+IxVosZWaFvUnR4/Ko3G3VFbQDq7tG+2ajU8iY7yYMF8brh/u/hinSVbWSYSCciIiIiIiIioqFATTsS5ev9rhLX0Ee8w+NHe0/q7VbUzAUApaFK/FPtqa9Nao/jcloTJkjT2ZOd+gq3dkmcAFZuRtoV1cokkcgWLeIYm8UER4KHUMrrdiiSzckS28pzOhUV6SOSJOBHKDYp9fqD8AaC4rVUtq3p6PUrKvST32NESxiV1fa57JFORERERERERERDSTjZnJ3wvHDVdnfKc3n8ATR3eMTrJUjcZ9ktGJljBxDenDQVcmuXDFSk17Vl7n2k+HpDm40mq4i2mE3IsYf7dKutSFe2P+kOVW3nOBL3EY8Y5wm3TclOkrQXzxHvsccXgCcoziHdd/wx4nW7vQH0eAPy8awk46T3LLpHejLKBLz6Huni6z2+APyhRH+qmEgnIiIiIiIiIiLdZbIivSHUasVpM6MwlCiPO18aktta19af/u/h3u/OhOeVhuZy94Y3naT0CfdIT96SJJUKbOn1Lo8f3aEkdXacjWyVchXjeqS2KUkS2wCQFUpk93gDkHLiyRLicvLdG0C3T5zLajYlbN0ERD8kkHqkJ79HZbubDpXvo7L3epci2Z8KJtKJiIiIiIiIiEh3dSrbn0ivN7k98PhTS3wpE9vJKnjTkbhX29olHf3f1SbtRzisyMuyRYyh9JET6SrapuTEaEmiNpHe4fHL1d7JEtsRc/X60eOTKtKTj5PO6fYG4A1KxxLfozTGGwjK7WfU3KP08KHLG36wkGyzUUDRW73XJz8cSvb+261mObHf2c8+6UykExERERERERGR7uTNP5MkgEfm2OG0iSkrqbJcK6lNS7L2J0D/k9vdXj9apc0/kz0kyBfvJxNJe3G+9GymSn2Fe6Rr6O3d60enN4WKdJ/6RLpc/a6oZHeqqGSXkuK9PmUiPfE45XXPdHpVjQGALFu4+r1TQyI9S24/E0R36EmGmpYwOYqHBP3BRDoREREREREREemuXk5uJ04Am0wmuS1JqgnncPsTDcnmfs6V67TClWRzRmntpzs86PX1t9o++UMCuW0NK9LTTt6QU0UCWEo4n+32QhDEY8kSx1LSOCgA7aEHNdk29b3Oe33hvuVqktvSPXb7wq1dkiXgHVYzzKEvfJztkhLp6hPi3d5AuLWLqgS81EomXG2fZU+e3pbGpfo3J2EinYiIiIiIiIiIdNXR64M71PpBU3I7xUpqqQd5mZqq7VDVel0/51KzroJsm5zUa2hPrdqeFemDgycgbcipInEsJdJDyWZAY7V3aJyaivRwsjmcpNbS2qXHq74i3WQyyYnzM12eiPnVzNXr01aRrtwQVUqKq6m2dyrG9QcT6UREREREREREpCupIjo/26YqYSYlwFPdlHMgKtLVzGUymfq1uanXH0RTR6/q+fr7PlJ8vlCyWU0iV0out3aLCXGH1Zy0d7/NYobNIp7TKiXS1SSNbeGkcbhqW32S2t3rR0AwRRxLRErut2hq7RKuSFe7+SoQZ20a3v8etnYhIiIiIiIiIqLBTEuyWXleqpXU9Zoq0sVzznZ50e3Vvhmh3GpFxVyAMnHfrXmuxvZeCIKYiC0aYVc91ykm0tNOSqSrai0SSi63dfkifk9GShyf6dKepO5RtHZRl2wWE9nKqnktFfBnOj2qxygT4l0eqWpeW0uYXg1947MVvdX7g4l0IiIiIiIiIiLSVb2G9ieAsre39mRzICigMdQ2RU1yOy/LhtzQBo2pJJw1PyToR0V6Xej9GJuflbSiub9zUWJSTtZhVV+1fTZUke5UMQZQtoRRn6SWzun1BtDtEx8MaWntIiXtLWYT7JbkqWN5nIaKdGUbGenhVY5D/bjOXj98AbHZvJYqffZIJyIiIiIiIiKiQU1LX28gvJFmKu1Wmty98AcFWM0mjM51qpwv1AIlhYRzqhXpqbRb0f4+iuc1d3jg8fcviUiRvKm0dgklqZ02dSlZOQGvobWLsiJd6pGuJQGvnEvNw5rocaoqy0P36A0E5dYuqnqdh85pC22+qnac8j3pDybSiYiIiIiIiIhIV1o25ATCieKGtl4EgoKmuaTE9ph8Jyzm5IlAINwCJpXEvdaK9LJ+VIlrrewvzLHLSduGttQ2N6XYwj3SVbR2ieqRrib5qxynpbWLsm1Kr4bNRsPV76H2MyqT/dK1W1KomgeAth5fxH2rmUva2BQQ2xypna+XrV2IiIiIiIiIiGgwO6WhZzkAFOc6YDWb4A8KaO7QlgDWmthWnqu1Ij1i80/NPdL1T9qbTKZ+b6ZKfQWDAvyhDTlVVYnbIyup1SbSnbaoKnENfcR7fUF0aeiRnh1dka6yj3u4R3oo2a9iLnGzVfHfpSp9VQlx+YGET/5dTdV8tqK3en+klEhftWoVxo8fD6fTicrKSuzYsSPuuWvXroXJZIr4cTojv1YjCAKWLVuGMWPGICsrC3PmzMGnn36ayq0RpRVjnYyCsU5GwVgno2Csk1Ew1onC0v33kG7hBHC2qvOtFjNK8pwRY9Wqa5X6iKubC0i9l3iTW9z80241oyjHoWmuxnbt1fan2rW1dhHPDbXJYZ/0tPH4w5XNWlqSyD3S1bZ2iWploqZKXJk0b+9Rv7mpnOwPjVGTEBfHWSPmUlP9bjKZ5Pt096pv7ZLV58GCtgcSGe+R/uqrr6K6uhrLly/Hrl27UFFRgaqqKjQ3N8cd43K50NDQIP8cP3484vUnnngCv/jFL7B69Wps374dOTk5qKqqQm8vv3JCA4exTkbBWCejYKyTUTDWySgY60Rhevw9pJPHH0Bzh9iKQVMCOMVKaq09y8W5UuvJXqeoEDerbCMzOtcpV9s3uTNYbc+K9LTpVfSb15IAFoTI35OOi0oUq+k/Hut+1IyLPkdtkjo64a6mal6cL3KcqhY50WNUVLEDA9gj/emnn8Zdd92F22+/HRdddBFWr16N7OxsrFmzJu4Yk8mEkpIS+ae4uFh+TRAEPPvss3jooYdw/fXXY+rUqXjxxRdx6tQprF+/Pub1PB4P3G53xA9RujHWySgY62QUjHUyCsY6GQVjnSgs3X8P0eLFus/n6/MT6/jJlk4AYjXtCFvscbF+SvPECu8TLZ2qx/h8Ppw8K1akl+TaVY8pybUBEKvZ450Ta20nznQAAMbkOVTPFQz4UeIS13a8pUP1OI/HKyf6i3NtqseNcdkBACfPdmlaG8Un9dq2WUyq+vBn2SNTsKp7pNujk9TJx1nMJtijEsxqqsSjz1Hd2iV6nMpq++j3wGHV1lsdAJwa28/0tyJd3SOCEK/Xi507d2Lp0qXyMbPZjDlz5mDbtm1xx3V2duKcc85BMBjEZZddhp/+9Ke4+OKLAQBHjx5FY2Mj5syZI5+fl5eHyspKbNu2DTfffHOf661cuRIrVqzQcutEmjDWySgY62QUjHUyCsY6GQVjnShMj7+HaPFiffPmzcjO7ts+ZcuWLRG/H243AbDAZQ3gL3/5i8qVAd2nzQDM2Lb3E4zrOqR63Cd1FgAm1H/yMTY2faRqTIcPAKxodvfi//68EfEKXaPXVntSXFuwowUbN25UfY/OoHiPG2s/QPMode1d2r2AL2CFCQJ2vf8OPlJXAI/Tp8V73PtZHTZuPBH3POXauru71V3coKSErJrkLwBk2SJTsFo3G433e6JxXkX7GTX9x6Mrwp1q19anslxlJXsqFempvh+huXq8QcCmakhMmhLpLS0tCAQCfZ5SFhcX49Ch2P9Bu+CCC7BmzRpMnToV7e3teOqpp3D55Zdj//79KCsrQ2Njo3yN6GtKr0VbunQpqqur5d/dbjfKy8u1LIUoIcY6GQVjnYyCsU5GwVgno2CsE4Xp8fcQLV6sz507Fy6XSz7u8/mwZcsWXHXVVbDZwtmqrp31wIH9uKCsCPPmTVe9tq6ddXir/gCsrlGqxwmCgB9+WAMgiK9XzcY5her6pAuCgB9/VINeXxAVl3+lz7h4a/vbG/uBunpUXnIe5l15ruq11fbsxZE9DRg9/gLMmz1R1ZjdJ9uAnTtQkpeFa+f/k+q5Rh9vxUtH/oFeSw7mzbuiz+ux1sZv2CQmVaSrrb5ONdkcnSh2aOitLvUst1vNqjbkjH4oEF3VHn9c5Hnqx0W3aVHfIife7/E409TaRVMiPRWzZs3CrFmz5N8vv/xyXHjhhfjNb36DRx99NKVrOhwOOBzqNnAgyhTGOhkFY52MgrFORsFYJ6NgrBOFaf17iBfrNpstIqkc73hjh7gx4NiCnJjnxzNuZC4A4FS7R/W4lk4Pen1BmEzieJvKpB4AlOZn4fPTXWju8GFScez5otfWEOpxPm7kCE1rKy/MEcd3eFWPaxLL5lFWkKXtfSwS38fG9l6YLda4rUiUa9NyfSOSeqQ7VCZyo5PNajcbjT7PbtGeuHeoHBOdAFc7V59xKv/mos9T83AhlTFA+P1XVumnQlOP9KKiIlgsFjQ1NUUcb2pqQklJiapr2Gw2XHrppThy5AgAyOP6c02idGOsk1Ew1skoGOtkFIx1MgrGOlGYHn8P6SZtkFmmYfNPILxZaH1rsl3XmwAAbllJREFUDwRBXfsTaa7RuQ7VCT15vhQ25ZQ3/+zH2lTPJW2iqmGjUQAoznXAEtrctLmDmyeng9TaRe1ml6kmgFNNUisT95muLFedgI86T037mf6+j95ABhPpdrsd06dPR01NjXwsGAyipqYm4klmIoFAAHv37sWYMWMAABMmTEBJSUnENd1uN7Zv3676mkTpxlgno2Csk1Ew1skoGOtkFIx1ojA9/h7Srb5N7LetNQE8Js8JQGzH0NqtbvPLVJPNAFBWILZzUZvcDgYFnGrrTWm+sfmhuTKQtLdazChxOSOuQf0jtXZRnciNShqrbUlit6TWbsWeQiK9b9JeXRP+6HGqq/QV1fZ2ixlmFZu29nkfVW42KiXpPf2sSNfc2qW6uhqLFy/GjBkzMHPmTDz77LPo6urC7bffDgBYtGgRxo4di5UrVwIA/uu//gtf/OIXMWnSJLS1teHJJ5/E8ePHceeddwIQd4m+77778OMf/xjnnXceJkyYgIcffhilpaVYsGBBvxZH1B+MdTIKxjoZBWOdjIKxTkbBWCcKS/ffQ7rJyW2NCWCnzYJRuQ6c7vCgvrUHhTn2pGPqWkNJ+wJ1vdGVpIp5tcntlk4PvIEgzCagJJT0Vyu62l5ND+vwQwLtaxtbkIX6th7Ut/VghubRFE2uSFfZoiXV1i59ktRqk+KWVCrSLQl/jz8uxZYwivPU9n63WsywmE0IBMVvqKj9RoC0lv62dtGcSF+4cCFOnz6NZcuWobGxEdOmTcOmTZvkTS1OnDgBszm8iNbWVtx1111obGxEQUEBpk+fjq1bt+Kiiy6Sz3nggQfQ1dWFu+++G21tbfjyl7+MTZs2wenU9h8honRirJNRMNbJKBjrZBSMdTIKxjpRmB5/D+kSCApoSLFqWxpzusODutZuTCnLS3q+XLWd4lzKayQjtYApdjlhU5k8lERX26t5SJBqRToAlOVnYQe0VcBTfFJlc6otWlJu7WLRPk5tYjvVhHiqLWGU56l9P6T76gkGUpqrv4l0k6C2ydQg5na7kZeXh/b29ojdomn44Gcs4vsw/PEzFvF9GP74GYv4Pgx//IxFfB+GP37GIr4Pwx8/Y1G898Hn82Hjxo2YN2+evFllQ3sPZq38K6xmEw7/+Jq4G13Gc+8ru7Dh4wY8NP9C3HnFxKTn3/nCP/D2wWY8uuAS3PrFczTN9Y9jZ3Hj6m0oL8zC3x74asRrsdb2/310Ct/7427MOKcA/3PP5ZrmAoAv/ORtnO7w4P9b8uWkDwkEQcCURzaj0+PH29WzMWn0CE1z/WzzYTz31yP4ZuU4/OTrUyJei7U2xroo3vvw0tajePj/DmDO5FH47W0zk15H+juQPHHDVNw0ozzpuJc+OI6H1++Tf/9g6ddUffvhtt/vQO3h0wCAi0td2PBvVyQd4wsEcd5//kX+/XtXTsS/V12YdNxf9jbgnpd3yb//+XtfxiVjkz/0+vfXPsL/7qoDIH4b5O8//GqSEaKKFZvR3iO2errt8vF45LqLk46R/rbHj8zGD853pxzr2h6XERERERERERERqSRVUZfkOTUn0QGxkhoA6tRWiUsbm/ajIr2hrVduHZFIqi1roueTesgn4u7xo9PjjxiX2lxDvyJ91apVGD9+PJxOJyorK7Fjx4645z7//PO44oorUFBQgIKCAsyZMyfh+Wr1+sWKaLX9wFPZWBMAHJYUq71TaO1iNZug/BNVXZFuy2xFeiobqUpr6W+PdCbSiYiIiIiIiIhIF/3Z/BNQ9BJXmQCWzitLIbld7HLCajbBHxTQ3NGbfK5+tJEBwmtT85CgLpRsH5ljV73BYqy5hvpmo6+++iqqq6uxfPly7Nq1CxUVFaiqqkJzc3PM82tra3HLLbfgnXfewbZt21BeXo65c+eivr6+X/fhC4gJWbtF3cOh6IS72lZAfTcAVTfOlkJrF5PJlNompZbo3uraW8KoHRN9X1qT/f1t7cJEOhERERERERER6aKuH329AW19y929PnT0+lOez2I2YUy+U/V8/a1IL9NQJd6f/uhAZEX6UO7y/PTTT+Ouu+7C7bffjosuugirV69GdnY21qxZE/P8l19+Gd/97ncxbdo0TJ48Gb/97W8RDAZRU1PTr/vw+cX3UHVCPOq8lBPpahPHKVSkA5EbjKpOiKdYka68vpY9BuwpjJPeN28gw5uNEhERERERERERqSFXiGegIl1KNhdk25BtTy3lNTY/CyfP9qC+rQczkpx7qp/V9qUaHhL0t7JfmqvbG0Bbtw8FKjY3HWy8Xi927tyJpUuXysfMZjPmzJmDbdu2qbpGd3c3fD4fCgsLY77u8Xjg8Xjk391uNwCxj7zP5wuf5xMf2FhMiDgeV9TDCzOCqsaZEZX4Dfrh8yWvglfmsm1mk7p7RGSFvcUkqLtHIfIeTYK6tSmL+VW/jwDs5hTuMfQ+ShXpyjFq5wWYSCciIiIiIiIiIp2kq5K6vceHTo8fIxzxU1n9nUucLxvAWVXtVqT5UmkjI86l/iFBf5P2TpsFRSMcaOn0oL6tZ0gm0ltaWhAIBFBcXBxxvLi4GIcOHVJ1jR/+8IcoLS3FnDlzYr6+cuVKrFixos/xzZs3Izs7W/79kxNmAGacqjuJjRuPq5rbarLAL4hJ4J0f/gOdnyb/ZsChNhMAsUrcYhLwl7/8JfGAkIY68f4A4OzpJmzcuFHVuIDPAkC8x8MHD2Bjy/6kY051AcoU87s1b8OpIuN8vC68tva2s6rvsacrfI9HPjmEjZ0Hk45xe8V79PiDEARgy5Yt8mvd3cn3KJAwkU5ERERERERERLoIV1JnJzkztlynDS6nFe5eP+pbe3BBSW7cc+tau0Nz9SORrrJveXuPDx2hzT9LM1Ft3882MtLYlk4P6lp7cMnYvJSvM1Q99thjWLduHWpra+F0OmOes3TpUlRXV8u/u91uua+6y+WSj+/ecBCoP4lzJ5yDefMuVDX/f+76q7xh7JdnfRFfGF+QdMzIo2fx64MfAgCcdivmzatSNddHfzmMvzWJCf5xZWMxb94UVeN+/unfcdYj/h1dNm0q5lWMTTrmaEsXHv/4ffn3+fOuVtUW5tTfj2HDyU8AAKNHFWHevGTfARG9dGoHjne2AQAqplyMeZXjko5x9/jw8M53AAABAbhm7lWw2Wzia6FvHajBRDoREREREREREaWdIAhpqRIvK8jGgQY36tu6EybS+5u0B9T3LZfWVZhjT72NTOg9aev2ocvjR46aavt+PCQoy8/CRyfbVG/cOtgUFRXBYrGgqakp4nhTUxNKSkoSjn3qqafw2GOP4e2338bUqVPjnudwOOBwOPoct9lscuIVAIKhimiHzRpxPBGH1YzOUNeYLIdN1bhsZ/ibAw6rRfVcTkVMOu3qxzls4XHZdnX3mJMV+X7lOO0wmZK3n8lS3KNdy9psyrWpvEfFNqF+IfLzVDsvwM1GiYiIiIiIiIhIB63dPvT4AgCAMXmxK4DVkCu3k1SJp6Nqu0yeK3G7h/72LAcAl9OG3FAPjFPJEveh11OtfgfUv4+Dld1ux/Tp0yM2CpU2Dp01a1bccU888QQeffRRbNq0CTNmqKt6TsYX2rQyU5tkRv+7lrm0bDZqUzQuVzvOHrWxqZokOgA4bOGNTa1mdWOAyE1K1b4nyvP8/dhvlIl0IiIiIiIiIiJKOylhOyrXAaciaaaVlKyuU1klno7WLvVtPRCE+D2s69PQRkY5PtHaen0BtHR6AaTej105V32b+p7Qg011dTWef/55vPDCCzh48CDuuecedHV14fbbbwcALFq0KGIz0scffxwPP/ww1qxZg/Hjx6OxsRGNjY3o7Ozs1334g2JsKBPPyaSSSHekmBCPSKRb1P/tKRPaaudTjtGSEFe+B1Zzig8kVN6j2WySP6v+JNLZ2oWIiIiIiIiIiNJOStj2N9lcprEivT/J5jF5WTCZgF5fEGe7vBg5om+bD+Vc/al+B8R7PdTYkXBt0lw5dgvystS3oYhWqmFz08Fq4cKFOH36NJYtW4bGxkZMmzYNmzZtkjcgPXHiBMyKpOyvf/1reL1e3HDDDRHXWb58OR555JGU78MXysZatVSJW5SJdHUJ51Qry6OrxNWypjDOqliLRWU1OhCZdLdoeCARcY8axtksZvgCAfiT7/Eaf+7UhxIREREREREREcVWl4b+6ICyklr/qm271YzRuQ40ucVNOZMm0tNUkZ5obco+82rbZiSca4i2dpEsWbIES5YsiflabW1txO/Hjh3T5R58Ae0V6TaL9op0ewptTIDUK9kjWruonE+5Fi3hqUzA2zRUsqdSNQ8AltC4YD8S6WztQkREREREREREaSdXiPc32ayiIj1dVduA9uR2v+bSsLZ+J+1Dc7V2+9Dt9ffrWkbnC2qvSI9IHKscZ0kxaay8vkNLRbpZewJeeY9aHvREVKRraO2inE9Lj3orE+lERERERERERDQYpS3ZHEogN3d44PEHks7Vn6pt8RrZEdeMOV/aKtKzI64Xc640vY95WTbkOtRtbkqJSZuNamktYjYpE8DqxkUktjUkjSOTzVqq5rX3O1eel2hfgb7jtLe6iT5XUyI9dG6AiXQiIiIiIiIiIhpM0pVsLsyxw2kTU1gNbb26zgUoerLHSTYr28ikq0pcXdI+u19zKeerG+LtXQaaX27toj61qszfqt0kU5kQR4ptU7RUeyuT2xaViXTlgystOWpLxD2qX1yqVfqsSCciIiIiIiIiokEpXRtymkympO1W6lq70zIXEE6Ox0s2S/eQbbcgPzs9bWSaOnrhDW1g2We+NFWkK+cbyhuODgZSRbraqm0gslpbbXV5xPU1JICVCXEt92hJoSI9goZ7tEVUpKfYfiaFKn1WpBMRERERERER0aDR5fGjrdsHID1V4snarcjJ5rRWbXcnmav/bWSKRthht5ohCEBju/7V9moq4Ck5f1B7RXpQkUhXm6RWVl8LGrLUyuubNSTEbSmOS4U1xYr0yN7q2jd7ZUU6ERERERERERENGlLy1+W0ItfZv6ptQFElHqeSOl3V70B4c9R4VdvpnEtZbV/X1jdx7w8E0egWE+xlrEgfNLxSRbqG3t5BxRcO1CaAU6oKj7q+lmsoN09NZW4tOWrl9bW8j6lWzVvY2oWIiIiIiIiIiAabcDuS/leIA+Ekspoq8f6SEuQdvX64e326zqW8Tqwq8UZ3LwJBAXaLGaNGOPo/FyvS08LnF7OxWlqLKPO3ar/JEFGRrqVtiuK+LBq+NaE8V0u1tySoZbPRFJP2ypYwWqrmpTkCWprNR2EinYiIiIiIiIiI0qouje1IlNeJlQD2pblqO9tuRWGOPe58p9JYkQ4krhI/FdpcdUy+My2tNliRnh7+UHm5ps1GtWTCQ1LeyDPF9ifKfUm1JOAlWpYYUZGuYUPUiLVpeUggVaTH3opAFSbSiYiIiIiIiIgoraQEdDoS24CikjpGArixvRdBAWmr2gYSJ+7T/pAgQZV4fajdS7rnanL3yhtmkna+0I6VWlqSpJBHjxqvpdo71cry/lWka2FNsUWLLdXe6qGHHgHVI/pKKZG+atUqjB8/Hk6nE5WVldixY0fcc59//nlcccUVKCgoQEFBAebMmdPn/Ntuuw0mkyni5+qrr07l1ojSirFORsFYJ6NgrJNRMNbJKBjrRINXOjfIVF6nsV1sdRJrrtI0VW0r54uVuE/7QwIVc6XrfSzKccBuNSOYYHNTSs4v9UjXEG/93JdWE2WFd6oJ8dR6pKe2IapVQ2W/pZ+tXTLaI/3VV19FdXU1li9fjl27dqGiogJVVVVobm6OeX5tbS1uueUWvPPOO9i2bRvKy8sxd+5c1NfXR5x39dVXo6GhQf754x//mNqKiNKEsU5GwVgno2Csk1Ew1skoGOtEg1t9qJd5utqfFLucsJpN8AcFNLkjE8DhfuzpmUt5reie7MrNP8fmp6f/e6Jq+/BDgvSszWxWbG7KPukpk5KxWpLUavuix5OR1i6KU1N5KKWttUtqPdIjW8Job+0SyGQi/emnn8Zdd92F22+/HRdddBFWr16N7OxsrFmzJub5L7/8Mr773e9i2rRpmDx5Mn77298iGAyipqYm4jyHw4GSkhL5p6CgILUVEaUJY52MgrFORsFYJ6NgrJNRMNaJBrd0V6RbzCaU5Dkjri2pS3PVtvJa0XM1d3gQCAqwWUwYnZveNjINbb0IRpXL1unxkIB90vtN2lTTrCE53t+CdG2bjaaWSFcuJ6Ue6RrOtURUpGtPiAPa3v+MV6R7vV7s3LkTc+bMCV/AbMacOXOwbds2Vdfo7u6Gz+dDYWFhxPHa2lqMHj0aF1xwAe655x6cOXMm7jU8Hg/cbnfED1E6MdbJKBjrZBSMdTIKxjoZBWOdaHDz+oNo7vAA0CkBHFVJHe4jnp4KcSB+3/J6afPPvKy0tZEpyXPCbAK8gSBaOj1R84XayOjxkIAV6SmTktpacs0a9tOMPaeGc1PdkNOkSPenFN+akv2pVaSnWm0vtY/JWCK9paUFgUAAxcXFEceLi4vR2Nio6ho//OEPUVpaGvF/eK6++mq8+OKLqKmpweOPP453330X11xzDQKB2O3fV65ciby8PPmnvLxcyzKIkmKsk1Ew1skoGOtkFIx1MgrGOtHg1uDuhSAATpsZI3PsabtuWYGYKI+upJar39OYtC+L027lVJor7QExoVjiEqvt6xTzCYIQnk+HtjXSAwjSLrWK9Mw1SY/oka6h2ru/z4a09EiPTIirT1GnWjVvTUNrF2vqQ7V77LHHsG7dOtTW1sLpdMrHb775Zvnfp0yZgqlTp+Lcc89FbW0tvva1r/W5ztKlS1FdXS3/7na7+X9YaFBhrJNRMNbJKBjrZBSMdTIKxjqRvk4p+nr3ty+0UrhveVQiXYfWLmWh6vaWTi96fQFYpLlCFenpTGxL1zvV3ov61h5cNk5sKXWmy4teXxAmk1gBny5Sv/VTbdxsNFVSVbOWxHO/v8CgobeLslWKpor0DO6Iqmw/o2Va5alaqvwtmW7tUlRUBIvFgqampojjTU1NKCkpSTj2qaeewmOPPYbNmzdj6tSpCc+dOHEiioqKcOTIkZivOxwOuFyuiB+idGKsk1Ew1skoGOtkFIx1MgrGOtHgJieb05jYBsLtTZRV4sGgICeEy9KY3HZlWTHCIdafKhP3p9rTn7RXXk+5NukBwehcB+zWfvYFSTIXaSNVpGtJPGdys9FUN+Tsbx5dS9W9lrYsEXOYUmztkunNRu12O6ZPnx6xGYu0OcusWbPijnviiSfw6KOPYtOmTZgxY0bSeerq6nDmzBmMGTNGy+0RpQ1jnYyCsU5GwVgno2Csk1Ew1okGN6kiPZ2JbUDZtzzckqSl0wNvIAizCfJmpOlgMpliJ7d1ekgQqyd7ujdslSjb1kRvbkrqCHJFeuaS1Fo2G43YkFNDslnLemLSMDxy01ANUyhbuwzmHukAUF1djeeffx4vvPACDh48iHvuuQddXV24/fbbAQCLFi3C0qVL5fMff/xxPPzww1izZg3Gjx+PxsZGNDY2orOzEwDQ2dmJ+++/Hx988AGOHTuGmpoaXH/99Zg0aRKqqqpSXxlRPzHWySgY62QUjHUyCsY6GQVjnWjw0i3ZrEhsC6GsotRTvMTljNi8MC3zxUhu69GzHAhvlBqrIn1sQfo2UQUUm5v6g2jp8iQfQH2Ee6SrH9PfJLWW/uOpbuTZ3/YzWoYr3w8t743ygcKg75G+cOFCnD59GsuWLUNjYyOmTZuGTZs2yZu8nDhxAmZFg5pf//rX8Hq9uOGGGyKus3z5cjzyyCOwWCz4+OOP8cILL6CtrQ2lpaWYO3cuHn30UTgcjtRXRtRPjHUyCsY6GQVjnYyCsU5GwVgnGrz0SjaPyRcrznt9QZzt8mLkCIci2ZzeuQBl5bZYAS8IwKn2oV+RbrOYUexyoiHUk71gzIi0Xt8IgqlUpOt0L7GkWpHe3/YzqVboa0qkK/5dS0W6NIWWyv5oKW02umTJEixZsiTma7W1tRG/Hzt2LOG1srKy8NZbb6VyG0S6Y6yTUTDWySgY62QUjHUyCsY60eAUrkhPbyW1w2rB6FwHmjs8qG/rwcgRDrl/ebqTzcprSsntTr+YxAfCSf30zSVeT6q2N5lM4bXp8JBgbH6WmEhv68ElTKRrJsg90tWPyWRrF5uWXTgV+t3ZJcUKfU23q3gjNPWoT8OjjPR+54WIiIiIiIiIiAwrKACN7lAiXY8EcFTltlQtrutcocrws6EuKKNzHXBYLWmdqzSUtO/0+OHu8UfMW6bHQ4IYFfCkXri1S+bqzDX1SLeE70vLuP6uR8t4S4qtXVLtcS4VrwdTGy5eox9jiYiIiIiIiIiIZG4v4AsIsJhNKM5Nf1uk6A1A5dYuaa5+V84lVYa3esRMnB5J+2y7FYU5dnG+0MMBvVrkAH3fR9Im3NplYO8jnsi+6Oozz5nskZ5ya5cUe7Ok45kHE+lERERERERERJQWrV7xnyUuJ6xp3vwTCCeV6+SKdB2TzaFrNrl74QsE0RqqSNejjYzyuvWtPej0+NHe49NtPlak909Qbu0yODPpykR6JivStbW6SXGzUS03pCDN0Z8e6UykExERERERERFRWpzVsWobCLc5kXqJ1+vYI70oxwG71Sy3q9F7bcoqcWld+dk25DhS2uJQ9VyknTAAFela8r/KTTi1jCvJ61/vf7s1tVSzlvcx1US4vNloasMBpLjZKBERERERERERUTSpj7gefb2ByErq9h4furwB8bgO85nNJpTlZ+Hzli6cauuVK9IzsTap93tpnk4PJFiR3i8D0yNdfQpYWe2tJfF804xy7K1rQ3b7cS23JrOl+C0ULZX9qSfCudkoERERERERERENEnr2EQfCvdDrWrvl9i5FI+zIsqd38095PsWGowNRka7XXNLmph0eP9yhFjKk3mDvka5UmGNTfa7NYsaj112EipHa0tVSBfxl5xRoGhc9Xo1Ue6TLm432oySdFelERERERERERJQWZ/XuIx5KLLt7/Tjc2KHrXMpr1ysq0vXY2BQIr+1UWw/q2vRrWQOENzc92+VFfVuvLnMMV8pE7mDtkQ4Aq75xGZrcvZg0Olf3uTZ9/wr8z6463DP73JTGZ+KBRPijSn0yJtKJiIiIiIiIiCgt9K5IH+GwIi/LhvYeH3YcPavrXEA4kf1JUye6A5mvSC/TeW1nu7w41c72LlooK5oz2dol16ktjTt/6hid7qSv84pzsfSaC1Mer6W3ejDFinQTuNkoERERERERERENAoIg6F6Rrrz2jmNn9Z8rlMj+8HgrACAvy4oROmz+CYST5i2dXnx2ukucPwPv4ylWpGuiTORmopL6V9+8DJeMdeGJGyr0nyzD7rpiAmafPwqXn1ukekyqiXAzNxslIiIiIiIiIqLBoK3HB29QzFaV6pzcPtDgxtEW/ZPNZQViG5eWTi8A/Tb/BIC8LBty7BZ0eQM42OAGoHO1vaL/+0jdZhl+ghlu7TJvyhjMm5K56vJM+s/5F2kek2oiPB2fFSvSiYiIiIiIiIio36TK5qIRdjht+mz+CfRtdzK2QJ+e5eK1o+bKd+o2l8lkijGffon0Ulakp0SIaO2iflx+tj39N2NAOSluLCzl0YP9mJsV6URERERERERE1G/1oQ0yS3VMNgN9k8t6JpuLcx2wmE0IhBpjj9FxLkBcyydNnQAAp82Mwhz9kq9yT/b2HsCl2zTDTmRrF/WZ9BXXXYz2bh9u+9J4He7KOG6cUY7NB5rwlQtGaxon9UjvT28XJtKJiIiIiIiIiKjf6kOVzWN1bH8CxKpI128+q8WMEpdTfkigZ0U6ENkSZ2x+lq6tQ6T38VRbL1Cu2zTDTjDFivTS/Cy89p1Z6b8hg3HaLHjpjkrN40xp6JHO1i5ERERERERERNRvpzJWkR5u5ZLrsCIvy6bvfIpEfWmezmtTzKVnyxogXJHe0umFrz/9Lgwm0z3SKT3SsdkoE+lEREREREREREPcqlWrMH78eDidTlRWVmLHjh0Jz3/99dcxefJkOJ1OTJkyBRs3buz3PcgV6Xq3P4lINus7FwCURVWJ62lsBufKz7YhO9RvutWj61RpNdCxLigeOmipSKeBZUpDSToT6UREREREREREQ9irr76K6upqLF++HLt27UJFRQWqqqrQ3Nwc8/ytW7filltuwR133IHdu3djwYIFWLBgAfbt29ev+zjVnpmK9IJsG7JCm5lGt3nRg3IOvVu7KOfSe20mk0lO1p/1DI2M8GCI9VR7pNPAkj6p/nz5gol0IiIiIiIiIqIh7Omnn8Zdd92F22+/HRdddBFWr16N7OxsrFmzJub5P//5z3H11Vfj/vvvx4UXXohHH30Ul112GX75y1/26z5OZagi3WQyyZXoes8FhKvebWZB180/gci2NSUufZP2QHhtQ6UifTDEemRrl5QvQxmWjjY83GyUiIiIiIiIiGiI8nq92LlzJ5YuXSofM5vNmDNnDrZt2xZzzLZt21BdXR1xrKqqCuvXr495vsfjgccTzrS63W4AgM/ng8/nAwB0e/1o7Rb/fXSOVT6ul7F5Thxp7kSJy6H7XGX5DgBAkRPw+/269sUucIZrXosy8D6OcYlrO+sxRcyl97ypGCyx7lW8N3rHw0CQ1jkYY6A/hKBYiy4ISDnWmUgnIiIiIiIiIhqiWlpaEAgEUFxcHHG8uLgYhw4dijmmsbEx5vmNjY0xz1+5ciVWrFjR5/jmzZuRnS1WUDf3ABaTBXYz8MHf3kllKZpcZDXhdL4JWacPYOPGA7rOFRSABeeYMD5XwJYtW3SdCwCuHWdCc48JZw9tx8bD+s7V0WQCYEGXHxFr6+7u1nfiFAyWWHd7AcAKEzITDwNluK3tsxNmAGYISD3WmUgnIiIiIiIiIqK4li5dGlHV63a7UV5ejrlz58LlcsnHb/5nL97c9Dauuuoq2Gw2Xe9pHoDqpGelT5XPhy1btmRsbZnyTx4/HvH78f67f41Ym1SJbTRqYl0QBFxb5cWWt2syEg+Z5stgrGfSVYEgPF4v3vlr6rGeUo/0dO+OKwgCli1bhjFjxiArKwtz5szBp59+msqtEaUVY52MgrFORsFYJ6NgrJNRMNaJgKKiIlgsFjQ1NUUcb2pqQklJScwxJSUlms53OBxwuVwRPwBgs9kifpwOO3JtfY8Pl59Yax7qPwUjspCX44y5tsFmsMS63W5HTpYDdsvwi4fhHOvZTgdGZDlhMaUe65oT6XrsjvvEE0/gF7/4BVavXo3t27cjJycHVVVV6O3t1Xp7RGnDWCejYKyTUTDWySgY62QUjHUikd1ux/Tp01FTUyMfCwaDqKmpwaxZs2KOmTVrVsT5gNjqIN75RIMBY50GnKDRzJkzhXvvvVf+PRAICKWlpcLKlStjnn/TTTcJ8+fPjzhWWVkpfPvb3xYEQRCCwaBQUlIiPPnkk/LrbW1tgsPhEP74xz+quqf29nYBgNDe3q51OTREDMRnzFingcBYFzHWhz/GuoixPvwx1kWM9eGPsS5irA9/g/UzXrduneBwOIS1a9cKBw4cEO6++24hPz9faGxsFARBEG699VbhwQcflM9///33BavVKjz11FPCwYMHheXLlws2m03Yu3evqvnivQ9er1dYv3694PV607e4QcJoa2Osixjrw0t/Y11Tj3Q9dsc9evQoGhsbMWfOHPn1vLw8VFZWYtu2bbj55pv7XDN6B9329nYAxu3fZATSZysIQkbmY6zTQGGsixjrwx9jXcRYH/4Y6yLG+vDHWBcx1oe/TMe6WgsXLsTp06exbNkyNDY2Ytq0adi0aZO8yeKJEydgNoebElx++eV45ZVX8NBDD+FHP/oRzjvvPKxfvx6XXHKJqvmk9UfHus/nQ3d3N9xu96BsDdIfRlsbY13EWB/+a9MS65oS6Xrsjiv9Mx076JaXl6tbCA1ZZ86cQV5enu7zMNZpoDHWRYz14Y+xLmKsD3+MdRFjffhjrIsY68NfpmJdiyVLlmDJkiUxX6utre1z7MYbb8SNN96Y0lwdHR0AGOtG0NHRwVgHY90I1MS6pkT6YBG9g25bWxvOOeccnDhxYtD9cetF2jX45MmTETtkD1ft7e0YN24cCgsLB/pWMoqxzlg3CsY6Y90oGOuMdaNgrDPWjYKxzlg3qtLSUpw8eRK5ubkwmUzy8eEcD0ZbmyAI6OjoQGlp6QDf3cBirA//tWmJdU2JdD12x5X+2dTUhDFjxkScM23atJjXdDgccDgcfY7n5eUNuw84GeUOwkag/HqOnhjrgw9jXR+M9cGHsa4Pxvrgw1jXB2N98GGs64OxPvgw1o3FbDajrKws7uvDOR6MtDajPBBMhLFujLWpjXVN/+XXY3fcCRMmoKSkJOIct9uN7du3cwddGjCMdTIKxjoZBWOdjIKxTkbBWCciIqKM07q7qR674z722GNCfn6+8Oabbwoff/yxcP311wsTJkwQenp6VN3TYN1JWE9GW/NArJexPjgYbc2MdZHRPndBMN6aGesio33ugmC8NTPWRUb73AXBeGtmrIuM9rkLgvHWbLT1ajWc3x+ujZSG83vGtcWnOZEuCILw3HPPCePGjRPsdrswc+ZM4YMPPpBfmz17trB48eKI81977TXh/PPPF+x2u3DxxRcLGzZsiHg9GAwKDz/8sFBcXCw4HA7ha1/7mnD48GHV99Pb2yssX75c6O3tTWU5Q5LR1jxQ62WsDzyjrZmxLjLa5y4IxlszY11ktM9dEIy3Zsa6yGifuyAYb82MdZHRPndBMN6ajbZerYbz+8O1kdJwfs+4tvhMgiAImat/JyIiIiIiIiIiIiIaWoy9OwYRERERERERERERURJMpBMRERERERERERERJcBEOhERERERERERERFRAkykExERERERERERERElMGQS6atWrcL48ePhdDpRWVmJHTt2JDz/9ddfx+TJk+F0OjFlyhRs3LgxQ3eaPlrWvHbtWphMpogfp9OZwbvtn/feew/XXnstSktLYTKZsH79+qRjamtrcdlll8HhcGDSpElYu3at7veZCYx1xno0xrqIsc5YH6oY64z1aIx1EWOdsT5UMdYZ69GGa6z3109+8hNcfvnlyM7ORn5+/kDfTr9o/bsfKlKJd+qLsT74pSvWh0Qi/dVXX0V1dTWWL1+OXbt2oaKiAlVVVWhubo55/tatW3HLLbfgjjvuwO7du7FgwQIsWLAA+/bty/Cdp07rmgHA5XKhoaFB/jl+/HgG77h/urq6UFFRgVWrVqk6/+jRo5g/fz6uvPJK7NmzB/fddx/uvPNOvPXWWzrfqb4Y64z1aIx1EWOdsT5UMdYZ69EY6yLGOmN9qGKsM9ajDddYTwev14sbb7wR99xzz0DfSr+k8jcwVGiNd4qNsT74pS3WhSFg5syZwr333iv/HggEhNLSUmHlypUxz7/pppuE+fPnRxyrrKwUvv3tb+t6n+mkdc2///3vhby8vAzdnb4ACG+88UbCcx544AHh4osvjji2cOFCoaqqSsc70x9jnbEejbEuYqwPbYx1xjpjPYyxLmKsD22MdcY6Yz1suMZ6Og31mND6NzBUqYl3SoyxPjT0J9YHfUW61+vFzp07MWfOHPmY2WzGnDlzsG3btphjtm3bFnE+AFRVVcU9f7BJZc0A0NnZiXPOOQfl5eW4/vrrsX///kzc7oAY6p9xLIx1EWM90lD/jGNhrIsY65GG+mccC2NdxFiPNNQ/41gY6yLGeqSh/hnHwlgXMdYjDfXPmBJL9W+AaKhhrKsz6BPpLS0tCAQCKC4ujjheXFyMxsbGmGMaGxs1nT/YpLLmCy64AGvWrMGbb76JP/zhDwgGg7j88stRV1eXiVvOuHifsdvtRk9PzwDdVf8w1sMY62GMdRFjnbE+FDHWwxjrYYx1EWOdsT4UMdbDGOthwzHWKSyVvwGioYixrs6gT6STOrNmzcKiRYswbdo0zJ49G3/6058watQo/OY3vxnoWyNKK8Y6GQVjnYyCsU5GwVgno2CsD28PPvhgn81ko38OHTo00LdJ1G+MdYrFOtA3kExRUREsFguampoijjc1NaGkpCTmmJKSEk3nDzaprDmazWbDpZdeiiNHjuhxiwMu3mfscrmQlZU1QHfVP4z1MMZ6GGNdxFhnrA9FjPUwxnoYY13EWGesD0WM9TDGethwjPVE/v3f/x233XZbwnMmTpyYmZvJgHT8DdDQxFgXMdYjDfqKdLvdjunTp6OmpkY+FgwGUVNTg1mzZsUcM2vWrIjzAWDLli1xzx9sUllztEAggL1792LMmDF63eaAGuqfcSyMdRFjPdJQ/4xjYayLGOuRhvpnHAtjXcRYjzTUP+NYGOsixnqkof4Zx8JYFzHWIw31z1irUaNGYfLkyQl/7Hb7QN9m2qTjb4CGJsY6Yz2m9O57qo9169YJDodDWLt2rXDgwAHh7rvvFvLz84XGxkZBEATh1ltvFR588EH5/Pfff1+wWq3CU089JRw8eFBYvny5YLPZhL179w7UEjTTuuYVK1YIb731lvDZZ58JO3fuFG6++WbB6XQK+/fvH6glaNLR0SHs3r1b2L17twBAePrpp4Xdu3cLx48fFwRBEB588EHh1ltvlc///PPPhezsbOH+++8XDh48KKxatUqwWCzCpk2bBmoJacFYZ6wz1hnrEsY6Y52xzlgfShjrjHXGOmNdwlgfHrGeDsePHxd2794trFixQhgxYoT8vnZ0dAz0rWmS7G9gKEsW76QOY33wS1esD4lEuiAIwnPPPSeMGzdOsNvtwsyZM4UPPvhAfm327NnC4sWLI85/7bXXhPPPP1+w2+3CxRdfLGzYsCHDd9x/WtZ83333yecWFxcL8+bNE3bt2jUAd52ad955RwDQ50da4+LFi4XZs2f3GTNt2jTBbrcLEydOFH7/+99n/L71wFhnrDPWGeuCwFhnrDPWhwrGehhjnbHOWGesCwJjfTjFen8tXrw45nv5zjvvDPStaZbob2AoSxbvpA5jffBLV6ybBEEQ0lXdTkREREREREREREQ03Az6HulERERERERERERERAOJiXQiIiIiIiIiIiIiogSYSCciIiIiIiIiIiIiSoCJdCIiIiIiIiIiIiKiBJhIJyIiIiIiIiIiIiJKgIl0IiIiIiIiIiIiIqIEmEgnIiIiIiIiIiIiIkqAiXQiIiIiIiIiIiIiogSYSCciIiIiIiIiIiIiSoCJdCIiIiIiIiIiIiKiBJhIJyIiIiIiIiIiIiJKgIl0IiIiIiIiIiIiIqIEmEgnIiIiIiIiIiIiIkqAiXQiIiIiIiIiIiIiogSYSCciIiIiIiIiIiIiSoCJdCIiIiIiIiIiIiKiBJhIJyIiIiIiIiIiIiJKgIl0IiIiIiIiIiIiokHkkUcegclkQktLS9Jz/X4/HnjgAZSXl8NsNmPBggX636ABMZFORERERERERERENEStWbMGTz75JG644Qa88MIL+MEPfhD3XJPJFPfnqquu0u0ejx07lnDuu+66S7e508U60DdARERERERERERERKn561//irFjx+KZZ55Jeu5LL73U59iHH36In//855g7d64etwcAGDVqVMy5N23ahJdfflnXudOFiXQiIiIiIiIiIiKiIaq5uRn5+fmqzv3Wt77V51htbS1MJhNuueWWNN9ZWE5OTsy5165dC5fLhWuvvVa3udOFrV2IiIiIiIiIiIiIBqGWlhbcdNNNcLlcGDlyJL7//e+jt7cXQLhdyjvvvIP9+/fLbVJqa2tVX9/j8eB///d/MXv2bJSVlSU8d/ny5TCbzaipqYk4fvfdd8Nut+Ojjz7StLaGhga88847+Jd/+Rc4nU5NYwcCE+lEREREREREREREg9BNN92E3t5erFy5EvPmzcMvfvEL3H333QDC7VImT56MsrIyvPTSS3jppZdw4YUXqr7+xo0b0dbWhm9+85tJz33ooYcwbdo03HHHHejo6AAAvPXWW3j++eexbNkyVFRUaFrbunXrEAwGVc09GJgEQRAG+iaIiIiIiIiIiIiISPTII49gxYoVuO666/Dmm2/Kx++991786le/wkcffYSpU6cCAL7yla+gpaUF+/bt0zzPDTfcgD//+c9obGxU1R5m3759mD59OhYtWoQnn3wSl1xyCcaMGYNt27bBatXWRXzGjBk4deoU6urqYDYP/nrvwX+HRERERERERERERAZ07733Rvz+ve99D4BYSd5fbrcbGzZswLx581T3WL/kkkuwYsUK/Pa3v0VVVRVaWlrwwgsvaE6if/LJJ9i5cyduvvnmIZFEB5hIJyIiIiIiIiIiIhqUzjvvvIjfzz33XJjNZhw7dqzf1/7f//1f9Pb2am6tcv/996OiogI7duzA8uXLcdFFF2me++WXXwaAIdPWBWAinYiIiIiIiIiIiGhIMJlMabvWyy+/jLy8PPzzP/+zpnGff/45Pv30UwDA3r17U5r7lVdewQUXXIDp06enNH4gMJFORERERERERERENAhJCWvJkSNHEAwGMX78+H5dt6GhAe+88w7+3//7f3A4HKrHBYNB3HbbbXC5XPjRj36EP/7xj/jTn/6kae7t27fjyJEjQ6oaHWAinYiIiIiIiIiIiGhQWrVqVcTvzz33HADgmmuu6dd1161bh2AwqDmZ/fTTT2Pr1q347//+bzz66KO4/PLLcc8996ClpUX1NV555RUAwDe+8Q1Ncw80JtKJiIiIiIiIiIiIBqGjR4/iuuuuw69+9Svceuut+NWvfoVvfOMbqKio6Nd1X375ZZSWluIrX/mK6jEHDx7Eww8/jNtuuw3XXnstzGYz1q5di87OTnz3u99VdY1AIIBXX30VX/ziF3HuueemePcDg4l0IiIiIiIiIiIiokHo1VdfhcPhwIMPPogNGzZgyZIl+N3vftevax4+fBg7d+7EzTffDLNZXXo4EAhg8eLFKCoqwrPPPisfP++887By5Uq8/vrreO2115Je5+2330ZTU9OQq0YHAJMgCMJA3wQRERERERERERER0WDFinQiIiIiIiIiIiIiogSYSCciIiIiIiIiIiIiSoCJdCIiIiIiIiIiIiKiBDQn0t977z1ce+21KC0thclkwvr165OOqa2txWWXXQaHw4FJkyZh7dq1fc5ZtWoVxo8fD6fTicrKSuzYsUPrrRGlFWOdjIKxTkbBWCejYKyTUTDWySgY60REg4PmRHpXVxcqKiqwatUqVecfPXoU8+fPx5VXXok9e/bgvvvuw5133om33npLPufVV19FdXU1li9fjl27dqGiogJVVVVobm7WentEacNYJ6NgrJNRMNbJKBjrZBSMdTIKxjoR0SAh9AMA4Y033kh4zgMPPCBcfPHFEccWLlwoVFVVyb/PnDlTuPfee+XfA4GAUFpaKqxcubI/t0eUNox1MgrGOhkFY52MgrFORsFYJ6NgrBMRDRyr3on6bdu2Yc6cORHHqqqqcN999wEAvF4vdu7ciaVLl8qvm81mzJkzB9u2bYt5TY/HA4/HI/8eDAZx9uxZjBw5EiaTKf2LoAEnCAI6OjpQWloKs3lwtvZnrFM6MNZFjPXhj7EuYqwPf4x1EWN9+GOsixjrwx9jXcRYH/6GQqxnQjAYxKlTp5Cbm8tYH6a0xLruifTGxkYUFxdHHCsuLobb7UZPTw9aW1sRCARinnPo0KGY11y5ciVWrFih2z3T4HXy5EmUlZUN9G3ExFindGKsk1Ew1skoGOtkFIx1MgrGOhnFYI71TDh16hTKy8sH+jYoA9TEuu6JdD0sXboU1dXV8u/t7e0YN24cTp48CZfLNYB3Rnpxu90oLy9Hbm7uQN9KRjHWjYexLmKsD3+MdRFjffhjrIsY68MfY13EWB/+GOsixvrwZ9RYjyatPzrWfT4fNm/ejLlz58Jmsw3U7enCaGvTEuu6J9JLSkrQ1NQUcaypqQkulwtZWVmwWCywWCwxzykpKYl5TYfDAYfD0ee4y+Xif8CHucH8NRrGOqUTY13EWB/+GOsixvrwx1gXMdaHP8a6iLE+/DHWRYz14W8wxfp7772HJ598Ejt37kRDQwPeeOMNLFiwIOGY2tpaVFdXY//+/SgvL8dDDz2E2267TfWc0vqjY93n8yE7Oxsul2tYJpuNuDY1sa57k6NZs2ahpqYm4tiWLVswa9YsAIDdbsf06dMjzgkGg6ipqZHPIRoKGOtkFIx1MgrGOhkFY52MgrFORsFYp+Gqq6sLFRUVWLVqlarzjx49ivnz5+PKK6/Enj17cN999+HOO+/EW2+9pfOd0nCluSK9s7MTR44ckX8/evQo9uzZg8LCQowbNw5Lly5FfX09XnzxRQDAd77zHfzyl7/EAw88gH/913/FX//6V7z22mvYsGGDfI3q6mosXrwYM2bMwMyZM/Hss8+iq6sLt99+exqWSJQaxjoZBWOdjIKxTkbBWCejYKyTUTDWiUTXXHMNrrnmGtXnr169GhMmTMDPfvYzAMCFF16Iv//973jmmWdQVVUVc0z0xrputxuAWMns8/kAAM0dHjyx6TCO1Zlx1VW+VJejWkunB9s+P4uqi4pht+q/8Wv92U74g5DXq6cDDW6c6fLiiklFus+1cW8j3vzoFIr9JlylWJuWdWpOpH/44Ye48sor5d+lHlmLFy/G2rVr0dDQgBMnTsivT5gwARs2bMAPfvAD/PznP0dZWRl++9vfRgTswoULcfr0aSxbtgyNjY2YNm0aNm3a1GfjC6JMYqyTUTDWySgY62QUjHUyCsY6GQVjnSg127Ztw5w5cyKOVVVV4b777os7Jt7Gups3b0Z2djYAoMMHvPmxFSaY8Je3tkDv3PbLR8zYcdqMb07ag5mjBF3naukFfrLbggsLzP9/e3cfHFd933v8s7vS7kq29WCEJesBbKDYmOAHTO2YmwR6USwH2tr3TikwU2w8PLS0bi9RCsW9xS51GgOhQEncmiEYQ9sphjsJuRNcg6vi5DYY3NimPMTQ8GQs2ytbxnp+2NXuuX+szj5IK2nP7jmypPN+zexgrc6e3zm7Hycz3/36+1OBd6+ja0nS/9ofL03/78UDmlXk7Fovf+bV6ye9una2R3v3Ju+tp6cn63N4DMNw9hMYBx0dHSotLVV7ezuzuaYoPuM43oepj884jvdh6uMzjuN9mPr4jON4H6Y+PuM43oepj884jvdh6pvon7HH4xlzRvqll16q9evXa+PGjYnndu/erRtuuEE9PT0qKhpeuc3UkV5XV6fW1tbE+2AYhhb+VZP6BmLas+HLurjS2ffnf25/U+8e79BdX52je1de6uhaP3nnpL750ruaVmDoP/78vzs6I72jN6Kl33ldkvT4jVfoNxfOdmwtSfrjF/5Te95v0f+YE9Vfr61P22y0oqIiq6w7vtkoAAAAAAAAAEx0I22sW1hYmFZUri4L6pPWHp3qjmi+wxtynmjrkySd7Ag7vvlnqDM+5qR7wKOI4VGxg+u1nO5N/Plsb9TxezvZHn8fZwbSP08r6zo/WAcAAAAAAAAAxlFVVZVaWlrSnmtpaVFJSUnGbnQrqsvirz8+WOR2Sm84qjPd4fhaZ7MfQZKr4209KX929t6Ot/Vm/LPT680M5D6chUI6AAAAAAAAgCllxYoVampqSntu7969WrFiRd7nrikLSpJOOFwAHvdi89nkGo7fW8oXA6nrOqEvElVrV/wLiXJ/7uehkA4AAAAAAABgQuvq6tLbb7+tt99+W5L06aef6u23305strtx40atXbs2cfwf/MEf6JNPPtF9992nDz74QH/3d3+nF198Ud/85jfzvpbq0vHpSE8tnp/q7Fd4IOboes2phfR2Z+8t9fxOf0lgnn+a36fiPAadU0gHAAAAAAAAMKH94he/0JIlS7RkyRJJUmNjo5YsWaJNmzZJkk6ePJkoqkvS3Llz9corr2jv3r1atGiR/uZv/kY/+MEP1NDQkPe1jFtHekph2zCkk+3OrWcYRlpB+4TTXxKcHb9ue/Nzqi4LyuPJ/TxsNgoAAAAAAABgQrv22mtlGCPPt965c2fG1xw+fNj2axmvGempM8uleMf4hedNc2Sttp6IesLRlLWdLW43p5z/i+6wesIDKvY7U6o2i/bxz6095/PQkQ4AAAAAAAAAWTI70kMdfYrFct+8cixDZ4c7OUt8aOF8PDvS4+s5f2/m55YrCukAAAAAAAAAkKVZMwLyylAkauhUZ79j65gF4JJgvFO72cFiszkf3V/gTVvbCfHNP+PvW2VJIG19JyQ60gdn2+eKQjoAAAAAAAAAZKnA51VZvP47bPyKncwC8LK5M9N+dkLz2fh9LK4tlRTf3DQSdWZzU7P7vKjQpy9Vx9dzsnDfnDIjPR8U0gEAAAAAAADAgnJ//L9OdVJHojGFOuLjVRKFdCeL9oPF5itqSlTgMRQzpFC7M+NdEqNWyotUUz44b34cOtJryuhIBwAAAAAAAIBxMzMQn43uVCd1qL1PMUPy+7xaVFvm6FpSsthcW16k8sFue6e+JEgtbNckNm51Zq2BlC8k6EgHAAAAAAAAgHFkFpud6qQ2i9jVZUHVzSyWJJ1s61PUoc1NkxtyFqnc4S8JUjvSqwcL6U5tNtrS2a9ozFChz6NZ0wN5nYtCOgAAAAAAAABY4HRHemqxubIkqAKvRwMxQ6c6HR63UhbUTIe/JEjrSHd4tIt53tmlRfJ6PXmdi0I6AAAAAAAAAFjgdEd6arHZ5/WoqjQ+lsSJcStd/QNq64lIkqrLilTuN78kcGYmu7n5Z215kWoHO9JDHX2ObG5q3kO+89ElCukAAAAAAAAAYElqR7ph2D9uxSwA15bHx7okZok7UEg3z1laVKjpgYJkR7pT3fYpXxJUTA/I7/M6trlpYq1yCukAAAAAAAAAMK7MjvSecDTRzW2n1JnlUrIQ7ERxe2jXtpPd9qmbf9aUx8etmJuAOnNv6e9jPiikAwAAAAAAAIAFhV6pYrpfkkMF4CGd1OYIFCdGu5hr1Q6uZXbbn2jrU8zmzU1PDW7+WeD1aNaMeAHdyTnpzXSkAwAAAAAAAMC5Y3ZS213cjsUMnWgb7Noeh4705rb0YnOZX/J6pHA0ptauflvXMq9/dllQvsHNPxNjaxzsSK+lIx0AAAAAAAAAxl9NqTMF4NaufoWjMXk9Smwyas5KP37W/g1AU2eWS5LPK82aEZ/vYve9DV0r/ufitN/ZxTAMnWijIx0AAAAAAAAAzpnEbG+bC8Bmh3hVSVCFvnj5NrVr2+7NTZuHjHYZup6dkjPLi5NrOdRtf6Y7rL5ITB6PNLv0HBXSt23bpjlz5igYDGr58uU6cODAiMdee+218ng8wx433HBD4pjbbrtt2O9XrVqVy6UBtiLrcAuyDrcg63ALsg63IOtwC7IOTEzJYrO9XeJD56NL8VEoktQXiemL7rC962Uobjv2JUGGe3OqaG92o8+aEZC/IP9+8gKrL9i1a5caGxu1fft2LV++XE888YQaGhr04YcfatasWcOO/+EPf6hwOPnhnjlzRosWLdKNN96YdtyqVav07LPPJn4OBAJWLw2wFVmHW5B1uAVZh1uQdbgFWYdbkHVg4koUmx3r2k4WmwMFPs2aEdCpzn4db+vVedPt+TvbF4nqdGd8Dvp4FLczzSyvTelIj8UMeQdnp+e91mDRvtqG+ehSDh3pjz32mO68806tX79eCxYs0Pbt21VcXKwdO3ZkPH7mzJmqqqpKPPbu3avi4uJh/wMeCATSjisvL8/tjgCbkHW4BVmHW5B1uAVZh1uQdbgFWQcmrkSx2eau7Uwd6ak/27m56cn2+KamxX6fyosLE8871ZFuznhPvbeq0mB8c9OBmFq77dvcNNMXEvmwVEgPh8M6ePCg6uvrkyfwelVfX6/9+/dndY5nnnlGN998s6ZNm5b2/L59+zRr1izNmzdPd999t86cOTPiOfr7+9XR0ZH2AOxE1uEWZB1uQdbhFmQdbkHW4RZkHZjYagaLzWd7IuoJD9h23kyjVuI/21+4T9380+NJdoI70ZFuGEbifKld4oU+rypL7C/cZxojkw9LhfTW1lZFo1FVVlamPV9ZWalQKDTm6w8cOKD33ntPd9xxR9rzq1at0vPPP6+mpiY9/PDD+ulPf6pvfOMbikajGc+zdetWlZaWJh51dXVWbgMYE1mHW5B1uAVZh1uQdbgFWYdbkHVgYpsRLNSMYHxytiPF7RE60u0sbpvz3YeuVV1qf2H7i8HNPyVp9uD5TWbh/kRbn23rZRojkw/LM9Lz8cwzz+iKK67QsmXL0p6/+eabE3++4oortHDhQl188cXat2+frrvuumHn2bhxoxobGxM/d3R08D/imFDIOtyCrMMtyDrcgqzDLcg63IKsA86rKSvSB6FONbf16tcqZ+R9vtSu7aEjScyCsJ2jXZrPZl7LHO3S2T+g9t6ISosKh73WKvO+zp8RULDQl/a7mvIi/eLoWVs3bh3pC4lcWepIr6iokM/nU0tLS9rzLS0tqqqqGvW13d3deuGFF3T77bePuc5FF12kiooKffTRRxl/HwgEVFJSkvYA7ETW4RZkHW5B1uEWZB1uQdbhFmQdmPgSG2XaVNzu6B1QV398TMzQ4rYjHekjFJuL/QWaOc2fdoxta2XoEK92YmzNCCNycmWpkO73+7V06VI1NTUlnovFYmpqatKKFStGfe1LL72k/v5+/d7v/d6Y6zQ3N+vMmTOaPXu2lcsDbEPW4RZkHW5B1uEWZB1uQdbhFmQdmPjsniXePNiRfd40v4r86V3bteXxgrC5Yac96/WmnTtVYsNRm+4tUdjO0CFu9/vYNdhJP9J6ubBUSJekxsZGPf3003ruued05MgR3X333eru7tb69eslSWvXrtXGjRuHve6ZZ57RmjVrdN5556U939XVpXvvvVdvvvmmPvvsMzU1NWn16tW65JJL1NDQkONtAfkj63ALsg63IOtwC7IOtyDrcAuyDkxsNTZ3pI+2QaZZbO7oG1BnX8SW9UbrEk9ubmpP4d68t0wzy837tWtsjXlfpUWFmh6wZ7q55bPcdNNNOn36tDZt2qRQKKTFixdrz549iY0vPv/8c3m96fX5Dz/8UP/+7/+u1157bdj5fD6f3nnnHT333HNqa2tTdXW1Vq5cqS1btigQCOR4W0D+yDrcgqzDLcg63IKswy3IOtyCrAMTmzk2xLau7VEK29MCBSorLlRbT0TH23o1vyq/ueUD0ZhCHfHNPWszFu7tvbcTo3Sk19rckZ7YRNWmjUalHDcb3bBhgzZs2JDxd/v27Rv23Lx582QYRsbji4qK9Oqrr+ZyGYDjyDrcgqzDLcg63IKswy3IOtyCrAMTl90d6SNtNJpYr6woXkg/26v5VfntVxDq6FM0Zsjv8+r86cO/SLN7Jvto92au1dk3oI6+iEqC+X1JYPdGo1IOo10AAAAAAAAAAMmicEtnn8IDsbzPN1YB2FzPjhEo5lqzy4Lyej0jrmX7lwQZ7q3YX6Dy4kLb1mse4wuJXFBIBwAAAAAAAIAcVEz3K1DglWFIofa+vM83Zke6jV3iY61Va+Na3f0DauuJjLqend395jkyjazJFYV0AAAAAAAAAMiBx+NJdom35b8p52hd25K9XeJjFZvNtVq7wuqLRPNba/C+SoIFmjHC2JYaG+ekj/UlQS4opAMAAAAAAABAjuzqpO4JD+iL7rAkqba8OOMxZtG72dZic+a1yooLVez3SUpuFJrzWomRNZnXSr0OWwrpg+tVU0gHAAAAAAAAgHPPrk5qs1g9I1Cg0qLMXdtmgd2WjvQxut9Tu+3zvbdsZpbb9YVE/0BUpzr7085pBwrpAAAAAAAAAJAju8atNI+x0WjqWq1d/XmPW0msNw7F7WxmlidH5OS3ljmrPljo1XnT/HmdKxWFdAAAAAAAAADIkV0bgGYz19uucSuxmJFYL5vi9njcW63NRfvqsiJ5PJ68zpWKQjoAAAAAAAAA5Mi2YnMWHel2jVtp7e5XeCAmr0eqKg2OeJx9Hek9aefLuJZN3fbZjJHJBYV0AAAAAAAAAMiRWRw+2danWMzI+TzZdG2nrpdPcdt8bVVJUIW+kUvEdo1bMe9ttM0/U7vtTw6OZ8lprSzGyOSCQjoAAAAAAAAA5KiqJCif16NwNKbWrv6cz5NNR7qUUtzOp5A+xkajJjvGrYQHYsnNP0cppHs8nkShPa8vCehIBwAAAAAAAICJpcDnVVVJfDxKPp3bljvS81grm41G478vliSFOvo0EI3ltNbJ9l4ZhhQo8Kpi+uibfybH1vTktJaU/RcSVlFIBwAAAAAAAIA81OTZSR2JxtTSER9nkm1Huh2jXcZa6/wZARV4PYrGDLV05tZtfzylaD/W5p+2jK1JfCFRnPM5MqGQDgAAAAAAAAB5yLdLPNTep5gh+Qu8qpgWGPXYWhs60rMtNvu8Hs0ui3fb51rcznaMTPx68pvJHosZOtlORzoAAAAAAAAATDj5domnjlrxekfv2q4tz3/cipUNOfMdt2JlZnm+M9lPdfYrEjXk83pUOWP0LySsopAOAAAAAAAAAHlIbJKZYyd189l4kTqbYvP50wPy+7yKxgyFBsfBWGEYhsUu8XjhPueO9Cznsacek+v7aBb7q0qCKvDZW/qmkA4AAAAAAAAAech3treVrm1vnuNWOnoH1NU/kPV6+Y6tsVS0Hzwm1N6naMywvFazQxuNShTSAQAAAAAAACAvqZ3UhmG9AJzt5p+Z1rPq2GD3e8V0v4KFvjGPrzXnlo/DlwSzZgRV4PVoIGYkNl/NZa3aLNayikI6AAAAAAAAAOTBLBJ39Q+oo3fA8uutFJtTj8uluG15rTw60mMxQyfb+tLOM5q0zU1zWM/8QqKaQjoAAAAAAAAATCxFfp/Om+aXJDXnsCmnlfEnqcflMtol1+73Ezl025/u6lc4GpPP61FVSdDSejndm8X30QoK6QAAAAAAAACQp1yL22ld2xY70nPq2jbHn5QXZ3W82SHeF4npi+6wpbXMjnkrm38mNjfNoyM92/fRipwK6du2bdOcOXMUDAa1fPlyHThwYMRjd+7cKY/Hk/YIBtO/fTAMQ5s2bdLs2bNVVFSk+vp6/epXv8rl0gBbkXW4BVmHW5B1uAVZh1uQdbgFWQcmh1yL22bXttcjVZVm2bWdx7gVq8XmQIFPs2YEclrP6hgZKXlvVsfWGIahExOpI33Xrl1qbGzU5s2bdejQIS1atEgNDQ06derUiK8pKSnRyZMnE4+jR4+m/f6RRx7Rk08+qe3bt+utt97StGnT1NDQoL4+6wPlAbuQdbgFWYdbkHW4BVmHW5B1uAVZB9LZ/cWSnXIdSZLatV2YZdd2XXmyazsWszZuxRw9k0tx2+q9WR0jIyU3Cj1hsWjf3htRdzgaX28idKQ/9thjuvPOO7V+/XotWLBA27dvV3FxsXbs2DHiazwej6qqqhKPysrKxO8Mw9ATTzyhv/iLv9Dq1au1cOFCPf/88zpx4oRefvnlnG4KsANZh1uQdbgFWYdbkHW4BVmHW5B1IMmJL5bslGuXuNVRK1K8c93rkcIDMbV291tbL4fidq7d9sfzKdpbXMv8QqJiul/BQp+l12bDUiE9HA7r4MGDqq+vT57A61V9fb32798/4uu6urp04YUXqq6uTqtXr9b777+f+N2nn36qUCiUds7S0lItX758xHP29/ero6Mj7QHYiazDLcg63IKswy3IOtyCrMMtyDqQzu4vloYaKeuRSGTYI9PzVTMGNxs925PxNSM9Pm/tkiTNLg1k/RrFoolxK0dPd2b9uvbuXp3tiV9/5fSCrO9tdkl8rc/PdFu6t2NfxAvplTP8Wb9m1vQCSdLxsz0Kh8OW38fq0uDI71uGe8tWQdZHSmptbVU0Gh0WuMrKSn3wwQcZXzNv3jzt2LFDCxcuVHt7ux599FFdffXVev/991VbW6tQKJQ4x9Bzmr8bauvWrXrwwQetXDpgCVmHW5B1uAVZh1uQdbgFWYdbkHUgyfxiaePGjYnnrHyxFIvFdOWVV+o73/mOLr/88ozHjpT11157TcXFw7vF9+7dm/Zzc7ckFejTlnbt3r07uxuTtP8TrySveluPa/fuY1m/rsjwSfLoldf360RFduNdQj3xayzyGfp//7Z3xOOG3tvZkEeST4c//Ey7PZ9kfY0fHotf4/Ffvavdp9/J6jWRWPwaeyMxvfR//0XTC7Nba9/J+DV6e9tGff9T762npye7k8tiIT0XK1as0IoVKxI/X3311brsssv01FNPacuWLTmdc+PGjWpsbEz83NHRobq6uryvFcgHWYdbkHW4BVmHW5B1uAVZh1uQdUxVTnyxNNRIWV+5cqVKSkoSz0ciEe3du1df//rXVViYrPK290b03XdeV9eAR79R36Aif3bjRX74D4ekllZ97aov6fqrhl/XSP61+x19+k5Isy6ar+u/Mjer1/z0v05L/3lYF55fouuvXzHs9yPdW/DD0/o/nx7WQKA04+syMQxDf37w3yRFtebrX9PF50/L6nWS9PD7+3S6K6wFV31FX6opGfsFkt7+lw+lz45q6WVzdf2qecN+n+nerPwLG0uF9IqKCvl8PrW0tKQ939LSoqqqqqzOUVhYqCVLluijjz6SpMTrWlpaNHv27LRzLl68OOM5AoGAAoGAlUsHLCHrcAuyDrcg63ALsg63IOtwC7IO5MfqF0sjZb2wsDCtqDzS8+cVFGh6oEBd/QM61T2gS6Zlt7Hpyfb4Rr8XnDc94zojqZs5bfD14axfF+qMjzKpLS8e9TVD7+3CiumSpBPtfVmv1d6T3PzzwooZKrQwt7ymvFinu8Jq6QprSZbrnWyPz4qvmzkt63uz8n5bmpHu9/u1dOlSNTU1JZ6LxWJqampKC+VootGo3n333cT/WM+dO1dVVVVp5+zo6NBbb72V9TkBu5F1uAVZh1uQdbgFWYdbkHW4BVkHkpz4YsluHo/H8qachmHktPln6vFWNuU0N+SstbrW4H2190bU1T+Q3VqDG42eN82fdXd+Yr3B6zOvNxvm+1BjYdNWKyyPdmlsbNS6det01VVXadmyZXriiSfU3d2t9evXS5LWrl2rmpoabd26VZL0V3/1V/ryl7+sSy65RG1tbfrud7+ro0eP6o477pAUD9g999yjb3/72/q1X/s1zZ07Vw888ICqq6u1Zs0a++4UsIiswy3IOtyCrMMtyDrcgqzDLcg6EJf6xZKZVfOLpQ0bNmR1DvOLpeuvv96x66wpL9KHLZ2J4vhY2nuTXdtmsTrrtcyifS7FZotrzQgWqiRYoI6+AR0/26t5VTPGXivHLwgkqdbiFxKpx1q9t2xZLqTfdNNNOn36tDZt2qRQKKTFixdrz549iflEn3/+ubzeZKP72bNndeeddyoUCqm8vFxLly7VG2+8oQULFiSOue+++9Td3a277rpLbW1t+spXvqI9e/YoGMzunz8ATiDrcAuyDrcg63ALsg63IOtwC7IOJNn9xZITkh3p2W1iaXZcV0z3K2hh9IkUH88SX6tXhmHI4/GM+ZrjZ+PXlUtxu6a8WB0nO3S8rSe7Qnoehe1Et32WXxL0hAf0RXc47bV28xiGkd2WrhNYR0eHSktL1d7enjb4H1MHn3Ec78PUx2ccx/sw9fEZx/E+TH18xnG8D1Mfn3Ec78PUx2ccx/sw9U3kz/j73/++vvvd7ya+WHryySe1fPlySdK1116rOXPmaOfOnZKkb37zm/rhD3+Y9sXSt7/9bS1ZsiSrtUZ6HyKRiHbv3q3rr79+2Izt7T/9WA/9ywdas7haT9w89jqvvh/S7//DQS2qLdWPN3wly3chrjcc1WWb9kiS/nPTSpUWjz3ve/l3/lUtHf36vxv+mxbWlg37/Wj3dsdzv9C/HmnRltWX69YVc8Zc69s/+aV+8O+f6o6vzNVf/OaCMY9P1XSkRbc/9wtdXl2iV/7kq2Me/9GpTtU/9jNNDxTo3b9cmfFLhUz3ZiXrljvSAQAAAAAAAOBc2LBhw4ijXPbt25f28+OPP67HH398HK4qyeqM9HzGnxT5fTpvml9nusNqbutRaXHpqMf3D0R1qrM/7TqtMOeqN2d7b22535vV+e9mZ39NWVFWnfm5sLTZKAAAAAAAAAAgM6sjSVILwE6vd7KtT4YhBQu9mjnNb30tizPZ8xrtMviatp6IurPY3DSfon22KKQDAAAAAAAAgA3MTTJDHX2KRGNjHm/OUs+5kG6hAz61sJ1L17ZZpD4xDt325uamUpb3lucXEtmgkA4AAAAAAAAANqiYHpDf51XMkELtfWMen+ykLs5pPStd4snCdp5rZVHY7g1HdWZw88/ashzXMzdTzebe6EgHAAAAAAAAgMnB6/WouiwoaXw6qc3CcXMWxWZztnltjsVmc61Tnf0KD4zebW/e+/RAgUqKctum01K3PR3pAAAAAAAAADB5ZDu3vCc8oLM9kbTXWF5rHIvN503zK1jolWFIJ9tHXy/fMTJSsuCfzb2doCMdAAAAAAAAACaPbIvbZmF7RqBApUWFua1lodhszmPPtSPd4/GoOstRMvnMRzdlO7YmEo0p1BEfo1NLRzoAAAAAAAAATHw1ZdnN9m62oYu6dnCO+BfdYfWEB0Zfz4bxJ+Zrm8co3Jsd4uaYm1xUZ/mFRKi9TzFD8vu8qpgeyHm9sVBIBwAAAAAAAACbZNslbsdc79KiQs0IxGeQnxhlvWjMSGx+ml/hPsuO9MRol9w2GpWyH5FzPKVo7/XmNkYmGxTSAQAAAAAAAMAmWY92sWmudzYbjrZ09GkgZqjA69GsGXl0iZda/JLAhtEuLZ19o25uasda2aCQDgAAAAAAAAA2Sd0kMxYzRjzOjo701NePVtxOdm0XyZdH17bVLvF87q1iul+BgvjmpmY3vVNrZYNCOgAAAAAAAADYpKo0KK9HCg/E1NrdP+JxZgHYnHOeq2yK2+NZtB9I3fwzjy5xj8eTMpO9Z8TjkveW3/s4FgrpAAAAAAAAAGCTQp9XlSXx8SlZFbfzHe2SRXG7+WyPPWsNvv5k+8jd9qGOPkVjhvw+r87Pc/PPrL4ksGlEzlgopAMAAAAAAACAjcYqbocHYmrp7Es7Nue1spiRbtf4k6qSoHxejyJRQ6c6M3fbm0Xv2TZs/mltbE3us9+zQSEdAAAAAAAAAGw0Vid1qL1PhiEFCryqmO7Pb62ysbu2m23qfi/weVVldtuPMG7FzpnlY91bLGYkR+Qw2gUAAAAAAAAAJo+xOqnNmd81ZUXyePLr2jZnrLd09ik8EMt4THIeu33F7ZE64O2axy6lfCExwvvY2t2v8EBMHk98Nr2TKKQDAAAAAAAAgI3G6ki3az66JFVM9ytQ4JVhxDvdhzIMQyds7Noeq7ht58zysb6QMN/HyhlB+QucLXVTSAcAAAAAAAAAG41ZALZx/InH40l2iWcYt3KmO6y+iH1d2+ZaJ8bh3hKbm7b1ZdzcdLw2GpUopAMAAAAAAACArWrH6EhvtnH8iTR6B3yzzV3b49ltb25uGo7G1No1fHNTO8fIjIVCOgAAAAAAAADYqHqwsNvZP6D23siw39tZbJZG74Afz7UMw97NP1M3N23OdG90pAMAAAAAAADA5FTsL9DMaX5JmTu37Rx/knqezGv1pB2T91opHemGkT5upbUrrH6bN/8c9d4mekf6tm3bNGfOHAWDQS1fvlwHDhwY8dinn35aX/3qV1VeXq7y8nLV19cPO/62226Tx+NJe6xatSqXSwNsRdbhFmQdbkHW4RZkHW5B1uEWZB2YnEbq3I7FDJ1st7lLfPA8zaMUm2tt7kjvDkeHddubc9Pt3PyzuixekM/YbT+RO9J37dqlxsZGbd68WYcOHdKiRYvU0NCgU6dOZTx+3759uuWWW/T6669r//79qqur08qVK3X8+PG041atWqWTJ08mHv/8z/+c2x0BNiHrcAuyDrcg63ALsg63IOtwC7IOTF7JTur0DUBPdfYrEjXk83oSY0tsW2scis3BQp8qpse77YcW7s21zOK3HUabyZ4cIzMBC+mPPfaY7rzzTq1fv14LFizQ9u3bVVxcrB07dmQ8/p/+6Z/0h3/4h1q8eLHmz5+vH/zgB4rFYmpqako7LhAIqKqqKvEoLy8f8Rr6+/vV0dGR9gDsRtbhFmQdbkHW4RZkHW5B1uEWZB2YvBIF4LahxeZ4Yb2qJKgCnz1d2+ZaJ9t7FYulj1uxe2NTKTkDfti9Jeax5z8f3VQzOGt96FodfRF19g0MrjfBCunhcFgHDx5UfX198gRer+rr67V///6sztHT06NIJKKZM2emPb9v3z7NmjVL8+bN0913360zZ86MeI6tW7eqtLQ08airq7NyG8CYyDrcgqzDLcg63IKswy3IOtyCrAOT20hd4k4UtqtKgvJ5PYpEDZ3q7E/7nd2jXaSR55bbPftdGrkj3fy5vLhQxf4C29YbiaVCemtrq6LRqCorK9Oer6ysVCgUyuocf/Znf6bq6uq0/xNYtWqVnn/+eTU1Nenhhx/WT3/6U33jG99QNBrNeI6NGzeqvb098Th27JiV2wDGRNbhFmQdbkHW4RZkHW5B1uEWZB2Y3EYsADsw17vA502MiTE73iWpvTeizv5413a1ncXtsb4kcKJo35a+uelxB9YajfOl+hQPPfSQXnjhBe3bt0/BYHJOzs0335z48xVXXKGFCxfq4osv1r59+3TdddcNO08gEFAgEBiXawZyQdbhFmQdbkHW4RZkHW5B1uEWZB04t0YqNh93oCNdiheUj7f1qvlsr5ZemL7WzGl+W7u2x/qSwM6Z5eb71NU/oI7eAZUWF6atVV06PoV0Sx3pFRUV8vl8amlpSXu+paVFVVVVo7720Ucf1UMPPaTXXntNCxcuHPXYiy66SBUVFfroo4+sXB5gG7IOtyDrcAuyDrcg63ALsg63IOvA5GaOUmntCqsvkvwXH050pEvJ4nVq4T5R2LZ5rZG/JIh3w9t5b0V+n86bNri5aUq3vVPv40gsFdL9fr+WLl2atkGFuWHFihUrRnzdI488oi1btmjPnj266qqrxlynublZZ86c0ezZs61cHmAbsg63IOtwC7IOtyDrcAuyDrcg68DkVlpUqGl+n6QhxW0HO9JTzx//c4+za6XcV2dfRB3m5p/jcm/OvI8jsbwtbGNjo55++mk999xzOnLkiO6++251d3dr/fr1kqS1a9dq48aNieMffvhhPfDAA9qxY4fmzJmjUCikUCikrq4uSVJXV5fuvfdevfnmm/rss8/U1NSk1atX65JLLlFDQ4NNtwlYR9bhFmQdbkHW4RZkHW5B1uEWZB2YvDwez7ACsGEYjnVSZ+oSd2JjU0mqLSuWJH3RHVZPeCBt3bLiQk0L2DtRPOO9OdRtPxLLd3TTTTfp9OnT2rRpk0KhkBYvXqw9e/YkNr74/PPP5fUm6/N///d/r3A4rN/5nd9JO8/mzZv1l3/5l/L5fHrnnXf03HPPqa2tTdXV1Vq5cqW2bNnC/C2cU2QdbkHW4RZkHW5B1uEWZB1uQdaBya2mrEj/1dKVKAC39UTUE44mfmfrWoMF5ebUrm2HivYlRQWaHihQV/+ATrT16pJZMxztEE8U0jN2pBfbvl4mOX01sGHDBm3YsCHj7/bt25f282effTbquYqKivTqq6/mchmA48g63IKswy3IOtyCrMMtyDrcgqwDk9fQjnSzsF0xPaBgoc/etVKKzYZhyOPxJAvpNhe3PR6PasqK9GFLp5rPDhbSHVpLGj5Kpi8SVWtXf9rvnGZ5tAsAAAAAAAAAYGxmt7RZAE6MWnGg+Fs9WMDujUR1ticSX/esOf7E/q5t8x5OtPWlreXEvZnF+ROD76P536JCn8qLC21fLxMK6QAAAAAAAADggJE60msd6NoOFvp0/oxAYr3ecFRnusNp12Gn5Nzy+IamzePYkZ46ssbj8di+XiYU0gEAAAAAAADAAUM3yXSyazt9vZ5EgXtGoEClRfZ3bQ/9kuCEg5t/mpubtnaF1ReJOjqPfSQU0gEAAAAAAADAAWZROdTRp4FoLFHcdqoAnLrhqJNjZKRRviRwYPNPc3NTcz2nNlEdDYV0AAAAAAAAAHDA+dMD8vu8isYMhTr6ksVthwrptSnFbSc3/5TSO9L7B6I61enc5p8ej0fVZcHEenSkAwAAAAAAAMAU4fV6NDu1AOxwJ3VqcdvpMTJm0T7U0adjX8TXChZ6Hdv8sybDlwROjJEZCYV0AAAAAAAAAHCIWQD+r1NdauuJxJ8bh3ErThebKwa77WOGdOjo2cT6Tm3+mfYlgcPd9plQSAcAAAAAAAAAh5jF3v/49AtJ0oxggUqCDnVtp8xId3JmuZTebf/W4L3VlDuzlpS8j8+/6FGovW9wPQrpAAAAAAAAADDpmcXeA2ax2cEuavPc7b0R/VdLZ9r6Tq534LMzaT87stbgfRw+dlYDMUMFXo9mzQg6tt5QFNIBAAAAAAAAwCE1KbPEJWfnes8IFqq0KN7t3tE3kLa+E8xzmzPSnby3oWtVlQbl8zozRiYTCukAAAAAAAAA4JChHeFOz/VOPX+gwKuK6X7n1hrHextapB/P+egShXQAAAAAAAAAcEztkBnlTs/1Tj1/Tblzm39Kw4vZTt7b+YObm47HWplQSAcAAAAAAAAAh1SVBpVay3Zq88/k+Ysy/tmRtcaxSzx1c1NJqqUjHQAAAAAAAACmBn+BV5Upm2I63UmdOgLFyZnlUnq3vc/rUWWJs5t/pn1JQEc6AAAAAAAAAAy3bds2zZkzR8FgUMuXL9eBAwdGPf6ll17S/PnzFQwGdcUVV2j37t3jdKXp0satjOOMdKfXqipNFs4LfR7HN/9MvzdnO/uHopAOAAAAAAAAYMLbtWuXGhsbtXnzZh06dEiLFi1SQ0ODTp06lfH4N954Q7fccotuv/12HT58WGvWrNGaNWv03nvvjfOVJwvATm/+KQ2fke4kf8H4lperUwrpF8ykkA4AAAAAAAAAaR577DHdeeedWr9+vRYsWKDt27eruLhYO3bsyHj83/7t32rVqlW69957ddlll2nLli268sor9f3vf3+crzxZ0K4pc3bzT3ON5J/Hr9jskbP3JaUX7lPnpY+HgnFdDQAAAAAAAAAsCofDOnjwoDZu3Jh4zuv1qr6+Xvv378/4mv3796uxsTHtuYaGBr388ssZj+/v71d/f3/i546ODklSJBJRJBJJPG/+OfW5sdSUBiRJteVBS6/LxQy/R+dN86u9N6K6Mr+l9XK5t5t/vVYv/Eezfm95neP3VlcWSP4QiyoSi2b92kz3ZuV6KaQDAAAAAAAAmNBaW1sVjUZVWVmZ9nxlZaU++OCDjK8JhUIZjw+FQhmP37p1qx588MFhz7/22msqLh7e2b13795sL1+FA9K1s71aGmwZlzntt18s9Qx4dOBnTTm93sq9LTSkafM8WjDwkXbv/iin9bIVM6SVNV7NmWHk/D6m3ltPT0/Wr6OQDgAAAAAAAMD1Nm7cmNbB3tHRobq6Oq1cuVIlJSWJ5yORiPbu3auvf/3rKiwszPr8/9PWq3VGrvc2nn4zx9dlujfzXx1kI6cZ6XbvjmsYhjZt2qTZs2erqKhI9fX1+tWvfpXLpQG2IutwC7IOtyDrcAuyDrcg63ALsg5IFRUV8vl8amlpSXu+paVFVVVVGV9TVVVl6fhAIKCSkpK0hyQVFhYOe4z0/FR4uO3esmW5kO7E7riPPPKInnzySW3fvl1vvfWWpk2bpoaGBvX19Vm9PMA2ZB1uQdbhFmQdbkHW4RZkHW5B1oE4v9+vpUuXqqkpOaokFoupqalJK1asyPiaFStWpB0vxcd6jHQ8MBqPYRiGlRcsX75cv/7rv57Y3TYWi6murk5//Md/rPvvv3/Y8TfddJO6u7v1k5/8JPHcl7/8ZS1evFjbt2+XYRiqrq7Wt771Lf3pn/6pJKm9vV2VlZXauXOnbr755mHnHDr4v729XRdccIGOHTuW9s8sMHWY/5Smra1NpaWl47ImWce5QNaVOJ6sT21kXYnjyfrURtaVOJ6sT21kXYnjyfrURtaVOJ6sT23nIuvZ2LVrl9atW6ennnpKy5Yt0xNPPKEXX3xRH3zwgSorK7V27VrV1NRo69atkuJfLF1zzTV66KGHdMMNN+iFF17Qd77zHR06dEhf+tKXxlyvvb1dZWVlw7IeiUT02muvaeXKlRN2/Emu3HZvlrJuWNDf32/4fD7jRz/6Udrza9euNX77t38742vq6uqMxx9/PO25TZs2GQsXLjQMwzA+/vhjQ5Jx+PDhtGO+9rWvGX/yJ3+S8ZybN282JPFw4ePjjz+2EtmckXUe5/pB1nm45UHWebjlQdZ5uOVB1nm45UHWebjlMV5Zt+J73/ueccEFFxh+v99YtmyZ8eabbyZ+d8011xjr1q1LO/7FF180Lr30UsPv9xuXX3658corr2S91rFjx875Z8BjfB7Hjh0bMw+WNht1Yndc879WdtAdOvi/ra1NF154oT7//PMJ9S2Zk8xvS9zy7a/5bffMmTPHZT2yPnGQdWeR9YmDrDuLrE8cZN1ZZH3iIOvOIusTB1l3FlmfOMj6xLFhwwZt2LAh4+/27ds37Lkbb7xRN954Y05rVVdX69ixY5oxY4Y8Hk/i+amcB7fdm2EY6uzsVHV19Zivt1RInygCgYACgcCw50tLS6fcBzyW1I0P3MDrzWl/3EmLrCeR9amNrCeR9amNrCeR9amNrCeR9amNrCeR9amNrCeRdXfxer2qra0d8fdTOQ9uurdsvxC09LfBid1xzf9aOSfgNLIOtyDrcAuyDrcg63ALsg63IOsAMHFYKqQ7sTvu3LlzVVVVlXZMR0eH3nrrLXbQxTlD1uEWZB1uQdbhFmQdbkHW4RZkHQAmkKyn6w964YUXjEAgYOzcudP45S9/adx1111GWVmZEQqFDMMwjFtvvdW4//77E8f//Oc/NwoKCoxHH33UOHLkiLF582ajsLDQePfddxPHPPTQQ0ZZWZnx4x//2HjnnXeM1atXG3PnzjV6e3uzuqa+vj5j8+bNRl9fn9XbmbTcds/n4n7J+sTgtnsm63Fu+9wNw333TNbj3Pa5G4b77pmsx7ntczcM990zWY9z2+duGO67Z7Ie57bP3TDcd89uu1+rpvL7w72NzHIh3TDs3x03FosZDzzwgFFZWWkEAgHjuuuuMz788MNcLg2wFVmHW5B1uAVZh1uQdbgFWYdbkHUAOPc8hmEY57orHgAAAAAAAACAicrdW+8CAAAAAAAAADAGCukAAAAAAAAAAIyCQjoAAAAAAAAAAKOgkA4AAAAAAAAAwCgmTSF927ZtmjNnjoLBoJYvX64DBw6MevxLL72k+fPnKxgM6oorrtDu3bvH6UrtY+Wed+7cKY/Hk/YIBoPjeLX5+dnPfqbf+q3fUnV1tTwej15++eUxX7Nv3z5deeWVCgQCuuSSS7Rz507Hr3M8kHWyPhRZjyPrZH2yIutkfSiyHkfWyfpkRdbJ+lBkPY6sk3W3+uu//mtdffXVKi4uVllZ2bm+nLxY/Xs/WeSS90wmRSF9165damxs1ObNm3Xo0CEtWrRIDQ0NOnXqVMbj33jjDd1yyy26/fbbdfjwYa1Zs0Zr1qzRe++9N85Xnjur9yxJJSUlOnnyZOJx9OjRcbzi/HR3d2vRokXatm1bVsd/+umnuuGGG/Qbv/Ebevvtt3XPPffojjvu0KuvvurwlTqLrJP1och6HFkn65MVWSfrQ5H1OLJO1icrsk7WhyLrcWSdrLtZOBzWjTfeqLvvvvtcX0pecvk7MFlYzfuIjElg2bJlxh/90R8lfo5Go0Z1dbWxdevWjMf/7u/+rnHDDTekPbd8+XLj93//9x29TjtZvednn33WKC0tHaerc5Yk40c/+tGox9x3333G5ZdfnvbcTTfdZDQ0NDh4Zc4j62R9KLIeR9YnN7JO1sl6ElmPI+uTG1kn62Q9iazHkfXJzc1Zt9Nkz4TVvwOTVTZ5H8mE70gPh8M6ePCg6uvrE895vV7V19dr//79GV+zf//+tOMlqaGhYcTjJ5pc7lmSurq6dOGFF6qurk6rV6/W+++/Px6Xe05M9s84E7IeR9bTTfbPOBOyHkfW0032zzgTsh5H1tNN9s84E7IeR9bTTfbPOBOyHkfW0032zzgTsh5H1tNN9s8Yo8v174DbTPhCemtrq6LRqCorK9Oer6ysVCgUyviaUChk6fiJJpd7njdvnnbs2KEf//jH+sd//EfFYjFdffXVam5uHo9LHncjfcYdHR3q7e09R1eVH7KeRNaTyHocWSfrkxFZTyLrSWQ9jqyT9cmIrCeR9SSyHkfWyTomt1z+DrhRwbm+ANhjxYoVWrFiReLnq6++Wpdddpmeeuopbdmy5RxeGWAvsg63IOtwC7IOtyDrcAuyDrcg61Pb/fffr4cffnjUY44cOaL58+eP0xVhIpjwhfSKigr5fD61tLSkPd/S0qKqqqqMr6mqqrJ0/ESTyz0PVVhYqCVLluijjz5y4hLPuZE+45KSEhUVFZ2jq8oPWU8i60lkPY6sk/XJiKwnkfUksh5H1sn6ZETWk8h6ElmPI+tkfar51re+pdtuu23UYy666KLxuZhxYMffATeY8KNd/H6/li5dqqampsRzsVhMTU1Nad/8pVqxYkXa8ZK0d+/eEY+faHK556Gi0ajeffddzZ4926nLPKcm+2ecCVmPI+vpJvtnnAlZjyPr6Sb7Z5wJWY8j6+km+2ecCVmPI+vpJvtnnAlZjyPr6Sb7Z5wJWY8j6+km+2ds1fnnn6/58+eP+vD7/ef6Mm1jx98BV7B331NnvPDCC0YgEDB27txp/PKXvzTuuusuo6yszAiFQoZhGMatt95q3H///Ynjf/7znxsFBQXGo48+ahw5csTYvHmzUVhYaLz77rvn6hYss3rPDz74oPHqq68aH3/8sXHw4EHj5ptvNoLBoPH++++fq1uwpLOz0zh8+LBx+PBhQ5Lx2GOPGYcPHzaOHj1qGIZh3H///catt96aOP6TTz4xiouLjXvvvdc4cuSIsW3bNsPn8xl79uw5V7dgC7JO1sk6WTeRdbJO1sn6ZELWyTpZJ+smsk7WyTpZd5ujR48ahw8fNh588EFj+vTpife1s7PzXF+aJWP9HZjMxsp7tiZFId0wDON73/ueccEFFxh+v99YtmyZ8eabbyZ+d8011xjr1q1LO/7FF180Lr30UsPv9xuXX3658corr4zzFefPyj3fc889iWMrKyuN66+/3jh06NA5uOrcvP7664akYQ/zHtetW2dcc801w16zePFiw+/3GxdddJHx7LPPjvt1O4Gsk3WyTtYNg6yTdbI+WZD1JLJO1sk6WTcMsk7WyfpkQdbts27duozv5euvv36uL82y0f4OTGZj5T1bHsMwDFtb3AEAAAAAAAAAmEIm/Ix0AAAAAAAAAADOJQrpAAAAAAAAAACMgkI6AAAAAAAAAACjoJAOAAAAAAAAAMAoKKQDAAAAAAAAADAKCukAAAAAAAAAAIyCQjoAAAAAAAAAAKOgkA4AAAAAAAAAwCgopAMAAAAAAAAAMAoK6QAAAAAAAAAAjIJCOgAAAAAAAAAAo/j/jGF+8qhBhNkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -395,26 +296,13 @@ "basis_functions = linear_FEM_basis(x_plot, n)\n", "basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'float' object has no attribute 'shape'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/home/mazen/Research/QC/QuLearn/scratch/scratch2.ipynb Cell 10\u001b[0m line \u001b[0;36m1\n\u001b[1;32m 10\u001b[0m \u001b[39mreturn\u001b[39;00m qml\u001b[39m.\u001b[39mexpval(qml\u001b[39m.\u001b[39mPauliZ(\u001b[39m0\u001b[39m)) \u001b[39m# qml.state()\u001b[39;00m\n\u001b[1;32m 13\u001b[0m x \u001b[39m=\u001b[39m \u001b[39m0.3\u001b[39m\n\u001b[0;32m---> 14\u001b[0m f \u001b[39m=\u001b[39m linear_FEM_basis(x, num_qubits)\n\u001b[1;32m 15\u001b[0m f \u001b[39m=\u001b[39m f \u001b[39m/\u001b[39m np\u001b[39m.\u001b[39mlinalg\u001b[39m.\u001b[39mnorm(f)\n\u001b[1;32m 16\u001b[0m \u001b[39mprint\u001b[39m(f)\n", - "\u001b[1;32m/home/mazen/Research/QC/QuLearn/scratch/scratch2.ipynb Cell 10\u001b[0m line \u001b[0;36m1\n\u001b[1;32m 7\u001b[0m nodes \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mtensor(nodes, dtype\u001b[39m=\u001b[39mtorch\u001b[39m.\u001b[39mfloat64)\n\u001b[1;32m 9\u001b[0m \u001b[39m# Initialize the output tensor\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m values \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mzeros(x\u001b[39m.\u001b[39;49mshape[\u001b[39m0\u001b[39m], num_nodes, dtype\u001b[39m=\u001b[39mtorch\u001b[39m.\u001b[39mfloat64)\n\u001b[1;32m 12\u001b[0m \u001b[39m# Distance between nodes\u001b[39;00m\n\u001b[1;32m 13\u001b[0m h \u001b[39m=\u001b[39m \u001b[39m2\u001b[39m \u001b[39m/\u001b[39m (num_nodes \u001b[39m-\u001b[39m \u001b[39m1\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: 'float' object has no attribute 'shape'" - ] - } - ], "source": [ "import pennylane as qml\n", "\n", @@ -432,13 +320,13 @@ "f = linear_FEM_basis(x, num_qubits)\n", "f = f / np.linalg.norm(f)\n", "print(f)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 152, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -455,23 +343,23 @@ " #Phi = sawtooth_vector(x, self.num_qubits)\n", " Phi = Phi / torch.linalg.norm(Phi)\n", " qml.AmplitudeEmbedding(features=Phi, wires=self.wires, normalize=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 153, "metadata": {}, - "outputs": [], "source": [ "num_qubits = 3\n", "var0 = qlayer.AltRotCXLayer(wires=num_qubits, n_layers=3)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 167, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -643,23 +531,13 @@ " self.wires[0],\n", " )\n", "\n" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 176, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ─╭QubitStateVector(M0)──Rot(4.83,5.52,0.12)─┤ ╭<𝓗>\n", - "1: ─├QubitStateVector(M0)──Rot(2.38,0.68,4.64)─┤ ├<𝓗>\n", - "2: ─╰QubitStateVector(M0)──Rot(3.80,1.52,4.28)─┤ ╰<𝓗>\n" - ] - } - ], "source": [ "from qulearn import qlayer\n", "import pennylane as qml\n", @@ -741,29 +619,13 @@ "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "x = torch.rand((1), dtype=torch.float64)\n", "print(drawer(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 104, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[ 0.1185+0.0000j, 0.0936+0.2561j, -0.0816+0.1230j, 0.0195+0.0892j],\n", - " [ 0.0936-0.2561j, 0.6273+0.0000j, 0.2012+0.2735j, 0.2082+0.0283j],\n", - " [-0.0816-0.1230j, 0.2012-0.2735j, 0.1837+0.0000j, 0.0791-0.0817j],\n", - " [ 0.0195-0.0892j, 0.2082-0.0283j, 0.0791+0.0817j, 0.0704+0.0000j]],\n", - " grad_fn=)\n", - "tensor([[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])\n" - ] - } - ], "source": [ "import pennylane as qml\n", "import torch\n", @@ -774,13 +636,13 @@ "res = torch.mm(torch.mm(U().conj().t(), O), U())\n", "print(res)\n", "print(O)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "\n", @@ -806,24 +668,13 @@ "print(\"IIX:\\n\", IIX)\n", "print(\"IIY:\\n\", IIY)\n", "print(\"YII:\\n\", YII)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 177, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAHWCAYAAACFeEMXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8m0lEQVR4nOzdd3gU1dfA8e+29N4TEloKvYReVEAQEBSx/FSKdFQEFBFQLBTFLlYUBZXmiyIKWAClKFV6DSV0SAikh/SyZd4/lkQiCSRhN5uE83mePLCzOzNn726ye+bee65KURQFIYQQQgghhBAWobZ1AEIIIYQQQghRk0iSJYQQQgghhBAWJEmWEEIIIYQQQliQJFlCCCGEEEIIYUGSZAkhhBBCCCGEBUmSJYQQQgghhBAWJEmWEEIIIYQQQliQJFlCCCGEEEIIYUGSZAkhhBBCCCGEBUmSJYQQFbRp0yZUKhWbNm2ydSjFLFmyhIYNG6LT6fDw8Cj3/ufPn0elUvHBBx9YPrj/yMrKYtSoUQQEBKBSqZgwYYLVz1kRM2bMQKVS2ez8sbGxODg4sH37dpvFUBnq1q3LsGHDKrSvSqVixowZ121/7733aNiwISaTqVzHO3bsGFqtliNHjlx33+OPP86jjz5aoTiFELcHSbKEEOI/Fi5ciEqlKvpxcHAgIiKCcePGkZCQYJFzrFmzpsQvhLcqOjqaYcOGERoayvz585k3b16lx1Aeb731FgsXLmTMmDEsWbKEJ554wmax5OTkMGPGjCqXNAO8/vrrtG/fns6dO9s6lGolIyODd999lxdffBG1unxfeRo3bkzfvn2ZNm3adfe9+OKL/Pzzzxw6dMhSoQohahhJsoQQohSvv/46S5YsYc6cOXTq1Im5c+fSsWNHcnJybvnYa9asYebMmRaIsrhNmzZhMpn45JNPGDZs2A2vtlsrhvL466+/6NChA9OnT2fw4MG0bt3aZrHk5OQwc+bMEpOsV199ldzc3MoPCkhKSmLRokU8/fTTNjl/dfbtt99iMBgYMGBAhfZ/+umnWblyJWfOnCm2PTIykjZt2jB79mxLhCmEqIEkyRJCiFLce++9DB48mFGjRrFw4UImTJjAuXPn+OWXX2wdWqkSExMBKjRM0BYSExOrRaxarRYHBwebnPu7775Dq9Vy//332+T81dmCBQvo169fhV+7Hj164OnpyaJFi66779FHH2XFihVkZWXdaphCiBpIkiwhhCiju+++G4Bz587d8HHLly+ndevWODo64uPjw+DBg4mLiyu6f9iwYXz++ecAxYYl3swXX3xBkyZNsLe3JygoiLFjx3LlypWi++vWrcv06dMB8PX1LXWOSnlimDdvHqGhodjb29O2bVv27Nlz3WOio6N55JFH8PLywsHBgTZt2vDrr7/e8LkUzmc7d+4cq1evLjr/+fPni4Zrnj9/vsR9ru1p6tq1K02bNuXYsWN069YNJycnatWqxXvvvXfdOfPy8pgxYwYRERE4ODgQGBjIQw89xJkzZzh//jy+vr4AzJw5syiewvYraU6WwWDgjTfeKGqfunXr8vLLL5Ofn1/scXXr1uW+++5j27ZttGvXDgcHB+rXr8/ixYtv2EaFVq1aRfv27XFxcSnadvz4cRwdHRkyZEixx27btg2NRsOLL75YpmNfq7B9f/zxR2bOnEmtWrVwdXXlkUceIT09nfz8fCZMmICfnx8uLi4MHz78uuda1jZRFIVZs2YRHByMk5MT3bp14+jRoyXGdeXKFSZMmEBISAj29vaEhYXx7rvv3nSO1blz5zh8+DA9evQotn369Omo1Wo2btxYbPuTTz6JnZ1dsSGAOp2Orl27lnhh5Z577iE7O5v169ffMA4hxG1KEUIIUcyCBQsUQNmzZ0+x7Z988okCKF9++aWiKIry999/K4Dy999/X7dv27ZtlY8++kh56aWXFEdHR6Vu3bpKWlqaoiiK8s8//yj33HOPAihLliwp+rmR6dOnK4DSo0cP5bPPPlPGjRunaDQapW3btkpBQYGiKIqycuVK5cEHH1QAZe7cucqSJUuUQ4cOlXi8G8Vw7tw5BVAiIyOVsLAw5d1331Xee+89xcfHRwkODi46n6IoypEjRxR3d3elcePGyrvvvqvMmTNHueuuuxSVSqWsWLGi1OcTHx+vLFmyRPHx8VFatmxZdP6srKyiNjx37lyxfUpq7y5duihBQUFKSEiI8txzzylffPGFcvfddyuAsmbNmqLHGQwGpXv37gqgPP7448qcOXOUt99+W7n77ruVVatWKVlZWcrcuXMVQHnwwQeL4ilsv8L2v9bQoUMVQHnkkUeUzz//XBkyZIgCKP379y/2uDp16igNGjRQ/P39lZdfflmZM2eO0qpVK0WlUilHjhwptY0URVEKCgoUR0dHZeLEidfd9/777yuA8ssvvyiKoihZWVlKaGio0rhxYyUvL++Gxy1JYfu2bNlS6dixo/Lpp58qzz77rKJSqZTHH39cGThwoHLvvfcqn3/+ufLEE08ogDJz5swKtcmrr76qAEqfPn2UOXPmKCNGjFCCgoIUHx8fZejQoUWPy87OVpo3b654e3srL7/8svLll18qQ4YMUVQqlfLcc88VOyagTJ8+vej2d999pwDK4cOHr2vTyMhIpU6dOkpGRoaiKIryxx9/KIDyxhtvXNcus2bNUtRqtZKenl5su16vVxwdHZUXXnihrE0shLiNSJIlhBD/Ufglf8OGDUpSUpISGxur/PDDD4q3t7fi6OioXLx4UVGU67/0FxQUKH5+fkrTpk2V3NzcouP9/vvvCqBMmzataNvYsWOv+9JemsTERMXOzk7p2bOnYjQai7bPmTNHAZRvv/22aFthMpCUlHTT45YWQ2GS5e3traSmphZt/+WXXxRA+e2334q2de/eXWnWrFmxL/Umk0np1KmTEh4eftMY6tSpo/Tt27fYtvImWYCyePHiom35+flKQECA8vDDDxdt+/bbbxVA+fDDD6+LwWQyKYqiKElJSdd9US/03yTr4MGDCqCMGjWq2OMmTZqkAMpff/1V7DkCypYtW4q2JSYmKvb29jf9gn769GkFUD777LPr7jMajcodd9yh+Pv7K8nJycrYsWMVrVZ73cWBsips36ZNmxZLpAcMGKCoVCrl3nvvLfb4jh07KnXq1Cm6XdY2KXw/9+3bt6jtFUVRXn75ZQUolmS98cYbirOzs3Ly5Mlix3zppZcUjUajxMTEFG3772tXmMhlZmZe91yjoqIUOzs7ZdSoUUpaWppSq1YtpU2bNoper7/usUuXLlUAZdeuXdfdFxERcV27CCGEoiiKDBcUQohS9OjRA19fX0JCQnj88cdxcXFh5cqV1KpVq8TH7927l8TERJ555plic0D69u1Lw4YNWb16dYXi2LBhAwUFBUyYMKFYhbTRo0fj5uZW4ePezGOPPYanp2fR7TvvvBOAs2fPApCamspff/3Fo48+SmZmJsnJySQnJ5OSkkKvXr04depUsWGS1uLi4sLgwYOLbtvZ2dGuXbuiOAF+/vlnfHx8GD9+/HX7V6Q0+5o1awCYOHFise0vvPACwHWvSePGjYvaD8zDORs0aFAsxpKkpKQAFHsdCqnVahYuXEhWVhb33nsvX3zxBVOnTqVNmzblfj7XGjJkCDqdruh2+/btURSFESNGFHtc+/btiY2NxWAwAGVvk8L38/jx44u1fUnl+5cvX86dd96Jp6dn0fsrOTmZHj16YDQa2bJlS6nPIyUlBa1WW2yYZaGmTZsyc+ZMvv76a3r16kVycjKLFi1Cq9Ve99jCtk9OTi7xvpK2CyHE9X9NhBBCAPD5558TERGBVqvF39+fBg0a3LAM9IULFwBo0KDBdfc1bNiQbdu2VSiO0o5rZ2dH/fr1i+63tNq1axe7XfhlMy0tDYDTp0+jKAqvvfYar732WonHSExMLDUptZTg4ODrEiVPT08OHz5cdPvMmTM0aNCgxC/RFXHhwgXUajVhYWHFtgcEBODh4XHda/LftiyMsbAtb0ZRlBK3h4aGMmPGDCZPnkzTpk1LfR3K47+xuru7AxASEnLddpPJRHp6Ot7e3mVuk8J/w8PDiz3O19f3umTy1KlTHD58uGi+3H8VFnqpiMmTJ/PDDz+we/du3nrrLRo3blzi4wrbvqRkXFEUm66fJoSouiTJEkKIUrRr1+6WewWqM41GU+L2wi+dhYUHJk2aRK9evUp87H+/cJdFaV9ajUZjidtvFqc1lfULdkVj9Pb2BrhhMrZu3ToALl26REpKCgEBAWWKqTSlxVrW52DJpMNkMnHPPfcwZcqUEu+PiIgodV9vb28MBgOZmZm4urped//Zs2c5deoUAFFRUaUep7DtfXx8Srzvv8miEEKAJFlCCGExderUAeDEiRNFlQgLnThxouh+KN8X0WuPW79+/aLtBQUFnDt37rrqaWV1q1+GC2PR6XQVjqEkhb0Z11ZOBG6pxy40NJRdu3ah1+uLDYW7VnlfE5PJxKlTp2jUqFHR9oSEBK5cuVLstb4VtWvXxtHRsdSKll9++SXr16/nzTff5O233+app56y2RIDZW2Twn9PnTpV7P2clJR0XTIZGhpKVlZWhd5fDRs2BMxVBps3b17sPpPJxLBhw3Bzc2PChAm89dZbPPLIIzz00EPXHefcuXOo1errEjqDwUBsbCz9+vUrd2xCiJpP5mQJIYSFtGnTBj8/P7788stiJavXrl3L8ePH6du3b9E2Z2dn4PpEoiQ9evTAzs6OTz/9tFivwTfffEN6enqx45ZHeWIoiZ+fH127duWrr77i8uXL192flJRUoeOGhoYCFJtvYzQamTdvXoWOB/Dwww+TnJzMnDlzrruvsE2dnJyAsrVHnz59APj444+Lbf/www8BKvya/JdOp6NNmzbs3bv3uvvOnTvH5MmTefjhh3n55Zf54IMP+PXXX8tcGt7SytomPXr0QKfT8dlnnxV7P/93PzCvRbVjxw7+/PPP6+67cuVK0XywknTs2BGgxLb78MMP+eeff5g3bx5vvPEGnTp1YsyYMSXOr9q3bx9NmjQpGjZZ6NixY+Tl5dGpU6dSYxBC3L6kJ0sIISxEp9Px7rvvMnz4cLp06cKAAQNISEjgk08+oW7dujz//PNFj23dujUAzz77LL169UKj0fD444+XeFxfX1+mTp3KzJkz6d27N/369ePEiRN88cUXtG3btljRh/IoTwyl+fzzz7njjjto1qwZo0ePpn79+iQkJLBjxw4uXrxYbM2hsmrSpAkdOnRg6tSppKam4uXlxQ8//HDDL9Q3M2TIEBYvXszEiRPZvXs3d955J9nZ2WzYsIFnnnmGBx54AEdHRxo3bsyyZcuIiIjAy8uLpk2b0rRp0+uO16JFC4YOHcq8efO4cuUKXbp0Yffu3SxatIj+/fvTrVu3Csf6Xw888ACvvPIKGRkZuLm5ARQVonB0dGTu3LkAPPXUU/z8888899xz9OjRg6CgIAAWLlzI8OHDWbBgAcOGDbNYXP9V1jbx9fVl0qRJvP3229x333306dOHAwcOsHbt2uuG5E2ePJlff/2V++67j2HDhtG6dWuys7OJiorip59+4vz58yUO4wNzT2vTpk3ZsGFDsaIdx48f57XXXmPYsGFFCzwvXLiQli1b8swzz/Djjz8WPVav17N582aeeeaZ646/fv16nJycuOeee2657YQQNZBNahoKIUQVVto6Wf9VUklxRVGUZcuWKZGRkYq9vb3i5eWlDBo0qKjseyGDwaCMHz9e8fX1VVQqVZnKuc+ZM0dp2LChotPpFH9/f2XMmDFFa28VKk8J99JiKCzh/v7771+3DyWUOD9z5owyZMgQJSAgQNHpdEqtWrWU++67T/npp59uGkNJJdwLj9mjRw/F3t6+aH2p9evXl1jCvUmTJtftP3To0GLlxRVFUXJycpRXXnlFqVevnqLT6ZSAgADlkUceUc6cOVP0mH/++Udp3bq1YmdnV+y5lrROll6vV2bOnFl0vJCQEGXq1KnXrVFV2nPs0qWL0qVLl5u0kKIkJCQoWq222FpqhWu2/fzzz8UeGxMTo7i5uSl9+vQp2vbZZ58pgPLHH3/c8DyF7+fly5cX217a70NJ77WytonRaFRmzpypBAYGKo6OjkrXrl2VI0eOKHXq1ClWwl1RFCUzM1OZOnWqEhYWptjZ2Sk+Pj5Kp06dlA8++KBYqfmS3psffvih4uLiouTk5CiKYn7Pt23bVgkODlauXLlS7LGFbbps2bKibWvXrlUA5dSpU9e1V/v27ZXBgweX0ppCiNudSlEqYWawEEIIISps5MiRnDx5kq1bt5Z730cffZTz58+ze/duK0RWtaWnp1O/fn3ee+89Ro4cWe79+/fvj0qlYuXKlcW2Hzx4kFatWrF//35atmxpoWiFEDWJJFlCCCFEFRcTE0NERAQbN26kc+fOZd5PURT8/f357rvv6NmzpxUjrLreffddFixYwLFjx264BMN/HT9+nGbNmnHw4MHrhow+/vjjmEymYkMLhRDiWpJkCSGEEEIIIYQFSXVBIYQQQgghhLAgSbKEEEIIIYQQwoIkyRJCCCGEEEIIC5IkSwghhBBCCCEsSBYjvgmTycSlS5dwdXVFpVLZOhwhhBBCCCGEjSiKQmZmJkFBQTesWCpJ1k1cunSJkJAQW4chhBBCCCGEqCJiY2MJDg4u9X5Jsm7C1dUVMDekm5ubTWPR6/WsW7eOnj17otPpbBpLTSTta13SvtYl7Wtd0r7WJe1rfdLG1iXta11VqX0zMjIICQkpyhFKI0nWTRQOEXRzc6sSSZaTkxNubm42f4PVRNK+1iXta13SvtYl7Wtd0r7WJ21sXdK+1lUV2/dm04ik8IUQQgghhBBCWJAkWUIIIYQQQghhQZJkCSGEEEIIIYQFyZwsIYQQQgghbEhRFAwGA0aj0dahVEl6vR6tVkteXp7V20ij0aDVam956SZJsoQQQgghhLCRgoICLl++TE5Ojq1DqbIURSEgIIDY2NhKWbfWycmJwMBA7OzsKnwMSbKEEEIIIYSwAZPJxLlz59BoNAQFBWFnZ1cpSUR1YzKZyMrKwsXF5YYLAN8qRVEoKCggKSmJc+fOER4eXuHzSZIlhBBCCCGEDRQUFGAymQgJCcHJycnW4VRZJpOJgoICHBwcrJpkATg6OqLT6bhw4ULROStCCl8IIYQQQghhQ9ZOHET5WOL1kFdUCCGEEEIIISxIkiwhhBBCCCGEsCBJsoQQQgghhBBVUteuXXn++efL/PiFCxfi4eFhvYDKSJIsIYQQQgghhLAgSbKEEEIIIYQQwoIkyRJCCCGEsAFFUfhp30Wm/3KEsUv38/i8HfSbs42JPx7km23n2HU2hZwCg63DFJVIURRyCgw2+VEUpVyxdu3alfHjxzNhwgQ8PT3x9/dn/vz5ZGdnM3z4cFxdXQkLC2Pt2rVF+2zevJl27dphb29PYGAgL730EgbDv+/x7OxshgwZgouLC4GBgcyePfu68+bn5zNp0iRq1aqFs7Mz7du3Z9OmTRVuc2uRdbKEEEIIISqZyaTwyqojfL875rr7Dl9MZ8X+OACc7DT0bhrAI62C6VDfG7VaFqqtyXL1RhpP+9Mm5z72ei+c7MqXGixatIgpU6awe/duli1bxpgxY1i5ciUPPvggL7/8Mh999BFPPPEEMTExpKWl0adPH4YNG8bixYuJjo5m9OjRODg4MGPGDAAmT57M5s2b+eWXX/Dz8+Pll19m//79tGjRouic48aN49ixY/zwww8EBQWxcuVKevfuTVRUFOHh4ZZsklsiSZYQQgghRCUymhRe/PkwP+27iEoFQzvWpY63E94u9thpVJyIz+LIpXSiLqYTn5HHiv1xrNgfRy0PR8bdHcajbULQSLIlqoAWLVrw6quvAjB16lTeeecdfHx8GD16NADTpk1j7ty5HD58mN9++42QkBDmzJmDSqWiYcOGXLp0iRdffJFp06aRk5PDN998w3fffUf37t0BcxIXHBxcdL6YmBgWLFhATEwMQUFBAEyaNIk//viDBQsW8NZbb1VyC5ROkiwhhBBCiEpiMJqYtPwQqw5eQq2Cjx5ryQMtaxV7TO+m5n8VRWF/zBV+2neR3w9fIu5KLlNXRPHdzgvM7NeENnW9bPAMhDU56jQce72Xzc5dXs2bNy/6v0ajwdvbm2bNmhVt8/f3ByAxMZHjx4/TsWNHVKp/LxB07tyZrKwsLl68SFpaGgUFBbRv377ofi8vLxo0aFB0OyoqCqPRSERERLE48vPz8fb2Lnf81iRJlhBCCCFEJTCaFCb+eIhfD11Cq1bxyeOR9G0eWOrjVSoVret40rqOJ9Pvb8z/7Yrh4w0nOXopg0e+3MFDrWoxq3/Tcg/xElWXSqWqVq+nTqcrdlulUhXbVphQmUwmi5wvKysLjUbDvn370GiKJ4UuLi4WOYelSOELIYQQQggrM5kUpq44XJRgfT6o1Q0TrP9y0GkYeUc9/p7UlcfbhqBSwYr9cfzvyx1cupJrxciFsIxGjRqxY8eOYgU2tm/fjqurK8HBwYSGhqLT6di1a1fR/WlpaZw8ebLodmRkJEajkcTERMLCwor9BAQEVOrzuZnqkyoLIYQQoswMRhP7Y66w6UQim08mkZCRT5MgN1qGeNAyxINOYd7Ya8s/PEiUn6IozPztKD/uvYhaBZ88HkmvJhX7QujjYs87DzfnoVbBjPluH0cvZdBvznbmD2lNZG1PC0cuhOU888wzfPzxx4wfP55x48Zx4sQJpk+fzsSJE1Gr1bi4uDBy5EgmT56Mt7c3fn5+vPLKK6jV//YJRUREMGjQIIYMGcLs2bOJjIwkKSmJjRs30rx5c/r27WvDZ1icJFlCCCFEDVJgMLHon/N8vuk0V3L0xe7bfDKJzSeTAGgU6MZ3I9vh7WJvizBvG4qi8O4fJ1i04wIqFXzwvxbl6sEqTbt6Xqwa25nRi/cSHZ/JY/N28tmAiidvQlhbrVq1WLNmDZMnT6ZFixZ4eXkxcuTIosIZAO+//z5ZWVncf//9uLq68sILL5Cenl7sOAsWLGDWrFm88MILxMXF4ePjQ4cOHbjvvvsq+yndkCRZQgghRA2gKAp/RScya/VxziVnA+DhpOOucF+6NvCljrczR+LSORR7hb9OJHL8cgYD5u/k/0Z1wNdVEi1rmbflLF9uPgPArP5NeahV8E32KLsQLyd+GtOJCT8cZMPxBMYvPcDike3oUL9qFQAQNVNJa1OdP3/+um3XDg/s0qULu3fvLvWYLi4uLFmyhCVLlhRtmzx5MiaTiYyMDMA8D2zmzJnMnDmzxGMMGzaMYcOGle1JWFG1mZP19ttv07ZtW1xdXfHz86N///6cOHHipvstX76chg0b4uDgQLNmzVizZk0lRCuEEEJUntwCI2O+28/IRXs5l5yNj4s97z3cnH2v3sOnAyJ5qFUwret4MrRTXT58rCU/j+mEv5s9JxOyeHzeDhIz8mz9FGqkFfsv8vbaaABe7tOQQe3rWPwcLvZavnqiNT0b+1NgNF3t2cqw+HmEEOVTbZKszZs3M3bsWHbu3Mn69evR6/X07NmT7OzsUvf5559/GDBgACNHjuTAgQP079+f/v37c+TIkUqMXAghhLCe9Bw9T3yziz+OxmOnUfN0l1D+ntSFR9uWvpZSqK8Ly57sSKC7A2eSsnls3k7i0yXRsqRNJxKZ8tNhAEbfWY8n7wq12rk0ahWfDoikbV1PMvMMDP12N3FSDEMIm6o2SdYff/zBsGHDaNKkCS1atGDhwoXExMSwb9++Uvf55JNP6N27N5MnT6ZRo0a88cYbtGrVijlz5lRi5EIIIYR1JGbk8di8Hey9kIabg5alo9vz0r0NcXXQ3XTfuj7O/PhUR2p5OHIuOZuBX+8kKTO/EqKu+Q7FXmHMd/sxmBT6twxi6r2NrH5OB52Gr4e0JcLfhYSMfIZ+u5vMPP3NdxRCWEW1nZNVOAnOy6v0hfh27NjBxIkTi23r1asXq1atKnWf/Px88vP//ZApHP+p1+vR6237x6rw/LaOo6aS9rUuaV/rkva1rqrYvpeu5DLo271cTMvF18WOb4e2pmGAa7liDHDV8d2INgz8Zg9nk7IZ/PVOloxog6eTnRUjv15VbN+Kupyex8hFe8jVG7kjzJs3H2iM0WjAaLT+uZ108PUTrXh03i5OJ2Yx49cjvPOgeWXjmtTGVVFF21ev16MoCiaTyWJrSdVEhfO6CtvK2kwmE4qioNfrr1uPq6yvsUq5djZaNWEymejXrx9Xrlxh27ZtpT7Ozs6ORYsWMWDAgKJtX3zxBTNnziQhIaHEfWbMmFHiRLqlS5fi5OR068ELIYQQt8hggo+PaIjNVuFjrzCmsREfh4ofLzEXPjuqIUOvIthZYWxjI07V9jKs7RQY4dOj5tclyEnhuaZGHGxQJf9Mhvn1VFAxIsJIC+9q91XvtqHVagkICCAkJAQ7u8q9uCFKV1BQQGxsLPHx8RgMhmL35eTkMHDgQNLT03Fzcyv1GNXyT+jYsWM5cuTIDROsipo6dWqx3q+MjAxCQkLo2bPnDRuyMuj1etavX88999xz3Qrb4tZJ+1qXtK91SftaV1Vr39dXRxObHYOHo46fnulALQ/HWz5m5zuzGPTNHi5m61me4MPCoa1xtKucDKGqtW9FKIrC88ujiM2Ox9NJx/893YFgz1t/XSoqb91J5m09z8qLDozs3wlPB3W1b+OqrKLv4by8PGJjY3FxccHB4RaulNRwiqKQmZmJq6srKlXJc00tKS8vD0dHR+66667rXpfCUW43U+2SrHHjxvH777+zZcsWgoNvXAY1ICDguh6rhISEG64IbW9vj7399aVsdTpdlfmjVJViqYmkfa1L2te6pH2tqyq075qoyyzZGQPAh4+1oK6vZS4ANq7lyf+N6sDj83awP+YKE3+K4svBrdFqKm/6dlVo34r6/O/TrI6KR6tW8eXg1tTzs+2F2Um9GrHtdCrHLmfwyi/HmDeoJVC927g6KG/7Go1GVCoVarW62KK7orjCIYKFbWVtarUalUpV4utZ1te32ryaiqIwbtw4Vq5cyV9//UW9evVuuk/Hjh3ZuHFjsW3r16+nY8eO1gpTCCGEsJoLKdm8eLVi3VNd6nN3Q3+LHr9xkBvfDGuLvVbNhuOJvLLyCNVwVkGl23AsgQ/WmZeVmflAE9pXgXWq7LRqPnm8JfZaNZtOJLF0z0VbhyTEbaXaJFljx47lu+++Y+nSpbi6uhIfH098fDy5uf+WKB0yZAhTp04tuv3cc8/xxx9/MHv2bKKjo5kxYwZ79+5l3LhxtngKQgghRIUZTQrjlh4gM99A27qeTOrZwCrnaVvXi88GRKJWwbK9sXy4/qRVzlNTnErIZMKygygKDO5Q2yprYVVUuL8rL/ZuCMCH60+RLTUvhKg01SbJmjt3Lunp6XTt2pXAwMCin2XLlhU9JiYmhsuXLxfd7tSpE0uXLmXevHm0aNGCn376iVWrVtG0aVNbPAUhhBCiwpbvjSUqLh13Rx2fDohEZ8VhfD2bBDCrfzMAPvvrNEt2nLfauaqzKzkFjFq8l6x8Ax3qezH9/ia2Duk6QzvVpWGAKxl5Bv64WG2+9glRpGvXrjz//PNlfvzChQvx8PCwXkBlVG1+2xRFKfFn2LBhRY/ZtGkTCxcuLLbf//73P06cOEF+fj5HjhyhT58+lRu4EEIIcYuy8g18sM7co/Rs93AC3a1fUGFg+9pM6BEOwLRfj7Im6vJN9ri9GIwmxi09wIWUHII9HfliUGurJr4VpVGreO2+xgBsi1dxJinbxhEJUbkuX77MwIEDiYiIQK1WM2HChEo5b9X7ayCEEEKIYr7afIbkrHzqejvxRIfKG472XPdwBravjaLAhB8OsvNsSqWdu6p7c81xtp1OxslOw/whbfByrrrltzuH+XB3A19MqHj3zxO2DkeISpWfn4+vry+vvvoqLVq0qLTzSpIlhBBCVGGX03OZv/UsAC/d2wg7beV9dKtUKt54oCm9mvhTYDQxetFejl8uW/nimuzHPbEs2H4egA8fbUmjQNtWEiyLF3tFoFYp/H0imW2nkm0djiiNokBBtm1+ylnkpmvXrowfP54JEybg6emJv78/8+fPJzs7m+HDh+Pq6kpYWBhr164t2mfz5s20a9cOe3t7AgMDeemll4qtQ5Wdnc2QIUNwcXEhMDCQ2bNnX3fe/Px8Jk2aRK1atXB2dqZ9+/Zs2rSp1Djr1q3LJ598wpAhQ3B3dy/Xc7wV1a6EuxBCCHE7ef/PE+TpTbSr60WvJpatJlgWGrWKTx6PZMg3u9l9PpVhC3azamznShmyWBXtPZ/KK6uiAHi+RwS9m5a+LExVUt/XmTv8FbbEq5i1+hirn70Tjdr66w2JctLnwFtBtjn3y5fAzrlcuyxatIgpU6awe/duli1bxpgxY1i5ciUPPvggL7/8Mh999BFPPPEEMTExpKWl0adPH4YNG8bixYuJjo5m9OjRODg4MGPGDAAmT57M5s2b+eWXX/Dz8+Pll19m//79xXqgxo0bx7Fjx/jhhx8ICgpi5cqV9O7dm6ioKMLDwy3ZIrdEerKEEEKIKirqYjor9scB8Op9jSplEc6SOOjMQ+LC/VxIyMhn+II9ZObdfqXqLl3J5env9qE3KtzbNIDxd4fZOqRy6R1swt1RS3R8Jr8fvmTrcEQN0KJFC1599VXCw8OZOnUqDg4O+Pj4MHr0aMLDw5k2bRopKSkcPnyYL774gpCQEObMmUPDhg3p378/M2fOZPbs2ZhMJrKysvjmm2/44IMP6N69O82aNWPRokXFerpiYmJYsGABy5cv58477yQ0NJRJkyZxxx13sGDBAhu2xPWkJ0sIIYSooub8fQqAB1oG0TzYw6axuDvpWDC8LQ9+8Q/R8ZmMXXqAb4a2qZLFHqwht8DIk0v2kpxVQKNAN2Y/2gJ1NesJctbB8E51+XjjaeZuOkO/FkE2S9xFKXRO5h4lW527nJo3b170f41Gg7e3N82aNSva5u9v7n1PTEzk+PHjdOzYsdh7rnPnzmRlZXHx4kXS0tIoKCigffv2Rfd7eXnRoMG/y1VERUVhNBqJiIgoFkd+fj7e3rZfn+5akmQJIYQQVVBsag7rjyUAMK5b1egxCfZ04puhbXjsq51sOZnEtF+O8taDTWv8F3VFUZj80yGOxGXg5WzH/CGtcbKrnl+hBrcPYf7Wc0THZ7LpRBLdGvrZOiRxLZWq3EP2bEmn0xW7rVKpim0r/NtgMpkscr6srCw0Gg379u1Do9EUu8/FxcUi57CU2+PykxBCCFHNLN5xHpMCd4b7EO7vautwijQP9uCTx1uiUsH3u2P4astZW4dkdV9sOsPvhy+jVauYO6gVwZ7lv+JfVbg76hh0tULlF5tO2zgacTtp1KgRO3bsQLmmwMb27dtxdXUlODiY0NBQdDodu3btKro/LS2Nkyf/XRA9MjISo9FIYmIiYWFhxX4CAqrW/EhJsoQQQogqJjvfwA97YgEY3rmubYMpQc8mAUy7uvbSO2uja/T8nvXHEvhgnbns+cwHmtC+ftUaklQRI++oh51GzZ7zaew5n2rrcMRt4plnniE2Npbx48cTHR3NL7/8wvTp05k4cSJqtRoXFxdGjhzJ5MmT+euvvzhy5AjDhg1Drf43XYmIiGDQoEEMGTKEFStWcO7cOXbv3s3bb7/N6tWrSz33wYMHOXjwIFlZWSQlJXHw4EGOHTtm1edbPfu6hRBCiBpsxYE4MvMM1PV2omtE1RzONbxzPS6k5LDwn/NM/PEQge4OtK7jZeuwLOpkQiYTfjiAosATHeowqH3lrVFmTf5uDjzcuhbf745l7qYztB1Ws143UTXVqlWLNWvWMHnyZFq0aIGXlxcjR47k1VdfLXrM+++/T1ZWFvfffz+urq688MILpKenFzvOggULmDVrFi+88AJxcXH4+PjQoUMH7rvvvlLPHRkZWfT/ffv2sXTpUurUqcP58+ct/jwLSZIlhBBCVCEmk8LC7ecAGNqpbpUurvDafY25mJbLhuMJjF68j5XPdKKOd/WZT3IjadkFjFq0l+wCIx3qezHt/sa2DsminrwrlGV7YvkrOpHjlzOqxVpfomopaW2qkpKWa4cHdunShd27d5d6TBcXF5YsWcKSJUuKtk2ePBmTyURGhnmNPp1Ox8yZM5k5c2aJxxg2bBjDhg0rNYbKIsMFhRBCiCpk6+lkziRl42Kv5ZHWwbYO54Y0ahWfDmhJs1rupGYXMHzBHtKyC2wd1i0zGE2M+34/Mak5BHs68sWg1jWuimI9H2fubRYIwFebz9g4GiFqnpr1F0MIIYSo5hZc7cX6X5tgXB10N3m07TnZaflmWBtqeThyNjmbp5bsI99gtHVYt2TW6uNsP52Ck52Gr4e2wcvZztYhWcVTd9UHYHXUZVKy8m0cjRA1iyRZQgghRBURm5rDphNJqFQwrFNdW4dTZn6uDiwY3hZXey27z6cy5afDNhmeYwnL9sSw8J/zAHz4aEsaBtTcYXTNgz1oHuyO3qjw076Ltg5HiBpFkiwhhBCiivjtapW+DvW8q93cpgh/V+YObo1WreKXg5f4cP3Jm+9Uxew5n8qrq44A8HyPCHo3rVoloa1hYLvagLkcv8lUPRNjIaoiSbKEEEKIKuLXg+Ykq1/LIBtHUjF3hPvw1kPNAPjsr9P8sDvGxhGV3fnkbJ5cvBe9UeHepgGMv7tqLABtbfe3CMLVXsv5lBz+OZNi63CEqDEkyRJCCCGqgFMJmUTHZ6LTqLi3GvegPNompChBeXllFH8ejbdxRDd3JaeAEQv3kJajp3mwOx8+2rJKV3W0JGd7Lf0jawGwdPcFG0cjRM0hSZYQQghRBfx6yNyLdVe4Lx5O1bvQwsR7Ini0TTAmBcZ/f4BdZ6tuD0mBwcRTS/ZxNjmbWh6OfD20DY52GluHVakGtjcPGVx3NIHEzDwbRyNEzSBJlhBCCGFjiqIUJVnVdajgtVQqFW892Ix7GvtTYDAxatFejl3KsHVY11EUhZdWHGbXuVRc7LV8O6wtfq4Otg6r0jUKdCOytgcGk8LyvVIAQwhLkCRLCCGEsLHDF9O5kJKDg05Nj0b+tg7HIrQaNZ8NiKRdXS8y8w0M+XY3pxOzbB1WEUVRmLX6OCv2x6FRq/h8UCsaBLjaOiybkQIYQliWJFlCCCGEjRX2YvVo5I+zvdbG0ViOg07D/KFtaBToRnJWPgPm7+RMUtVItD776zTfbDOvSfbOQ83oEuFr44hs677mQbg5aLmYlsu208m2DkeIIl27duX5558v8+MXLlyIh4eH9QIqI0myhBBCCBsymhR+Kxwq2KL6DxX8L3dHHf83qj0NA1xJysxnwDzbJ1oLtp8rKjE//f7G/K9NiE3jqQoc7TQ80NJcAGPVgTgbRyOE5axYsYJ77rkHX19f3Nzc6NixI3/++afVzytJlhBCCGFDu86lkJiZj5uDli4NamZvipezXVGilWjjRGvprhhm/nYMMBfoGN65nk3iqIr6R5qT/D+PxpNbYLRxNEJYxpYtW7jnnntYs2YN+/bto1u3btx///0cOHDAqueVJEsIIYSwodWHLwNwb9NA7LU1t6qdt4s9/zeqPQ38zYnWI3P/Yd+F1Eo7v6IofLHpNC+vjAJg5B31bpu1sMqqVW1PQrwcyS4wsv54gq3DuS0pikKOPscmP4pSvrl4Xbt2Zfz48UyYMAFPT0/8/f2ZP38+2dnZDB8+HFdXV8LCwli7dm3RPps3b6Zdu3bY29sTGBjISy+9hMFgKLo/OzubIUOG4OLiQmBgILNnz77uvPn5+UyaNIlatWrh7OxM+/bt2bRpU6lxfvzxx0yZMoW2bdsSHh7OW2+9RXh4OL/99lu5nm951ZyB30IIIUQ1oygKf0cnAtC7Gq+NVVbeLvYsHd2e4Qv3cPhiOgPm7+KTx1rSo6GPVc+rKApvrTnO/K3mOVhju4UyqWcDVKrbYy2sslKpVDzQohZz/j7NrwfjauTw1aou15BL+6XtbXLuXQN34aRzKtc+ixYtYsqUKezevZtly5YxZswYVq5cyYMPPsjLL7/MRx99xBNPPEFMTAxpaWn06dOHYcOGsXjxYqKjoxk9ejQODg7MmDEDgMmTJ7N582Z++eUX/Pz8ePnll9m/fz8tWrQoOue4ceM4duwYP/zwA0FBQaxcuZLevXsTFRVFeHj4TWM2mUxkZmbi5eVVrudaXtKTJYQQQtjIyYQsLqXnYa9V0zHU29bhVApvF3t+eLIDPRr5UWAw8czS/Xy7/TzlvIheZnl6Iy8sP1SUYL3atxGTezWUBKsUD1xdQmDTiSTSsgtsHI2o6lq0aMGrr75KeHg4U6dOxcHBAR8fH0aPHk14eDjTpk0jJSWFw4cP88UXXxASEsKcOXNo2LAh/fv3Z+bMmcyePRuTyURWVhbffPMNH3zwAd27d6dZs2YsWrSoWE9XTEwMCxYsYPny5dx5552EhoYyadIk7rjjDhYsWFCmmD/44AOysrJ49NFHrdUsgPRkCSGEEDbz9wlzL1bHUG8cdDV3qOB/Odlp+eqJNsz49ShLdl7g7T9O0sxTTYeuBQR46Cx2ntOJWYxbup/o+Ew0ahXvPtycR1oHW+z4NVG4vyuNA904djmD1VGXGdyhjq1Duq04ah3ZNXCXzc5dXs2bNy/6v0ajwdvbm2bNmhVt8/c3L0mRmJjI8ePH6dixY7ELHJ07dyYrK4uLFy+SlpZGQUEB7dv/25Pn5eVFgwYNim5HRUVhNBqJiIgoFkd+fj7e3je/ULV06VJmzpxZ1FNmTZJkCSGEEDZSOFSwWwPrfthXRRq1itcfaEI9H2feXnucqDQ19835h/f/1+KW20NRFJbvu8j0X46Sqzfi7WzHR4+15K7bvEx7WfWPDOLY5Qx+ORgnSVYlU6lU5R6yZ0s6XfGLIiqVqti2woTKZDJZ5HxZWVloNBr27duHRlP8wpSLi8sN9/3hhx8YNWoUy5cvp0ePHhaJ50ZkuKAQQghhAxl5evZeSANuzyQLzF/ARtxRj5+eak+Ao0JyVgHDF+zhuR8OVHjh4oOxVxi6YA9TfjpMrt5I5zBv1j53pyRY5dCvRS1UKthzPo2LaTm2DkfUEI0aNWLHjh3FCmxs374dV1dXgoODCQ0NRafTsWvXvz15aWlpnDx5suh2ZGQkRqORxMREwsLCiv0EBJQ+r/X7779n+PDhfP/99/Tt29c6T/A/JMkSQgghbGDbqWSMJoX6vs7U9q4+V66toXGgGy80MzK0Y20Afjl4iXs+2sz47w9w7FLGTaueKYrCwdgrjFq0h/6fb2fLySS0ahWTekaweER7/NwcKuNp1BgB7g50qGceevXLwUs2jkbUFM888wyxsbGMHz+e6OhofvnlF6ZPn87EiRNRq9W4uLgwcuRIJk+ezF9//cWRI0cYNmwYavW/6UpERASDBg1iyJAhrFixgnPnzrF7927efvttVq9eXeJ5ly5dypAhQ5g9ezbt27cnPj6e+Ph40tPTrfp8ZbigEEIIYQO381DBkthp4NU+Dflfm9p8uvEU644l8NuhS/x26BKB7g50qO9Nx/re+LraA6CgkJSZz/bTKfxzJoXkrHwA1Cp4MDKY57qH3/bJ663oHxnEjrMp/HrwEmO7Sal7cetq1arFmjVrmDx5Mi1atMDLy4uRI0fy6quvFj3m/fffJysri/vvvx9XV1deeOGF65KhBQsWMGvWLF544QXi4uLw8fGhQ4cO3HfffSWed968eRgMBsaOHcvYsWOLtg8dOpSFCxda5bmCJFlCCCFEpTOZFDadTAIkyfqvprXcmTekDccuZTDn71OsP5bA5fQ8Vh6IY+WBuFL3c9Cp6dUkgGe7hxPqe+O5GeLmejcJ5JWVRziRkMnZpCzqS5uK/yhpbarz589ft+3anuguXbqwe/fuUo/p4uLCkiVLWLJkSdG2yZMnYzKZyMjIAMzzwGbOnMnMmTNLPMawYcMYNmzYDeOsDJJkCSGEEJXs2OUMkjLzcbLT0Laep63DqZIaB7nxxaDW5BYY2XchjR1nk9lzPo2cAgMqzJPpnew0tKvnRecwHyJre9ToxZwrm7uTjk5hPmw5mcQfR+N5pqv0ZglRHpJkCSGEEJVs09XS7Z3DfCQxuAlHOw13hPtwR7h1FywW1+vdJMCcZB2RJEuI8pLCF0IIIUQl+/uEeahg1wZS8U5UXT2b+KNSweGL6VJlUIhykiRLCCGEqERXcgo4EGMu3d5V5mOJKszHxZ62db0A+PNogo2jEaJ6kSRLCCGEqEQ7z6ZiUiDMz4VaHo62DkeIG7q3qXntoT+OXLZxJEJUL5JkCSGEEJVo17kUADrU97JxJELcXK8m5iRr74U0EjPzbByNENWHJFlCCCFEJdp1NhWA9lcXexWiKgvycKRFiAeKAutkyKAQZSZJlhBCCFFJ0nP0HI83r/XSXnqyRDVROGTwz6PxNo5EiOpDkiwhhBCikuw5n4qiQH0fZ/xcHWwdjhBl0vvqkMEdZ1K4klNg42iEqB4kyRJCCCEqSeF8LOnFEtVJXR9nGga4YjApbDieaOtwxG2ma9euPP/882V+/MKFC/Hw8LBeQGVUrZKsLVu2cP/99xMUFIRKpWLVqlU3fPymTZtQqVTX/cTHS3e3EEKIyrfrnMzHEtVTz6u9WRuPy7wsUb1s27aNzp074+3tjaOjIw0bNuSjjz6y+nm1Vj+DBWVnZ9OiRQtGjBjBQw89VOb9Tpw4gZubW9FtPz9Zl0QIIUTlyszTcyQuHZCeLFH99Gjkx6cbT7HlZBL5BiP2Wo2tQxKiTJydnRk3bhzNmzfH2dmZbdu28dRTT+Hs7MyTTz5ptfNWq56se++9l1mzZvHggw+Waz8/Pz8CAgKKftTqavW0hRBC1AB7L6RhUqC2lxOB7rI+lqhemga54+dqT3aBsahCprA8RVEw5eTY5EdRlHLF2rVrV8aPH8+ECRPw9PTE39+f+fPnk52dzfDhw3F1dSUsLIy1a9cW7bN582batWuHvb09gYGBvPTSSxgMhqL7s7OzGTJkCC4uLgQGBjJ79uzrzpufn8+kSZOoVasWzs7OtG/fnk2bNpUaZ2RkJAMGDKBJkybUrVuXwYMH06tXL7Zu3Vqu51te1aonq6JatmxJfn4+TZs2ZcaMGXTu3LnUx+bn55Ofn190OyPDXAVKr9ej1+utHuuNFJ7f1nHUVNK+1iXta13SvtZlifbdcToJgLZ1PeR1+g95/1qfJdq4WwMflu2NY/3Ry3Ss52GhyGqGiravXq83J1Ymk/knJ4dTbdpaI8SbCt+7B7WTU7n2WbRoEZMnT2bnzp38+OOPjBkzhhUrVtC/f39eeuklPv74Y5544gnOnz9PWloaffr0YejQoSxcuJDo6Gieeuop7O3tmT59OgCTJk1i8+bNrFy5Ej8/P1555RX2799PixYtAHMSOnbsWI4fP87SpUsJCgpi1apV9O7dm0OHDhEeHo7JZAIo+ve/Dhw4wD///MPrr79e6mNMJhOKoqDX69FoivfalvU1VinlTVurCJVKxcqVK+nfv3+pjzlx4gSbNm2iTZs25Ofn8/XXX7NkyRJ27dpFq1atStxnxowZzJw587rtS5cuxamcbzwhhBCi0EdRGs5nqRgUaqSdX7X86BW3uSOpKuaf0OBlrzAt0ohKZeuIqj+tVktAQAAhISHY2dlhys0lodvdNonF/++/UDuWvZf9vvvuw2g0FvVUGY1G6tSpw3333ceXX34JQEJCAg0bNmTdunX88ccf/Pbbb+zatQvV1TfP119/zcyZM7lw4QI5OTmEhoby1VdfFX2/T0tLo0mTJgwdOpS3336b2NhYIiMjiYqKIjAwsCiW/v3706pVK6ZNm8bSpUuZOnUqFy5cKBZvkyZNSE5OxmAw8NJLLzF58uRSn1tBQQGxsbHEx8cX62kDyMnJYeDAgaSnpxebjvRfNbonq0GDBjRo0KDodqdOnThz5gwfffQRS5YsKXGfqVOnMnHixKLbGRkZhISE0LNnzxs2ZGXQ6/WsX7+ee+65B51OZ9NYaiJpX+uS9rUuaV/rutX2zSkw8MKuvwGFUQ90JdhThgteS96/1meJNu5WYGTx23+Tmm8irPWdNAhwtXCU1VdF2zcvL4/Y2FhcXFxwcHBAcXXFbe8eK0ZaOpWjY1HyUxZarZbmzZsX+37s7e1Nq1atira5uprfI9nZ2Zw9e5ZOnTrh7u5e9Pju3bszefJkMjIySEtLo6CggK5duxbt7+bmRoMGDbCzswPg3LlzGI1G2rYt3tuXn5+Pn58fbm5uODg4oFKprvvevmXLFrKysti5cycvv/wyjRs3ZsCAASU+t7y8PBwdHbnrrrtwcCi+3EbhKLebtk+ZHlWDtGvXjm3btpV6v729Pfb29tdt1+l0VeYPf1WKpSaS9rUuaV/rkva1roq27+HzVzCYFGp5OFLPz7YX7Koyef9a3620sU6n444wHzZGJ7L5dCpNQ6SAy3+Vt32NRiMqlQq1Wv1vzQAXFytFZ3l2dnbFah2oVKrrtl17X+FzLVT4/2uff7G2+I/s7Gw0Gg379u27bhifi4vLdce5VmhoKAAtWrQgKSmJ119/nUGDBpV4HrVajUqlKvH1LOvre9tVgDh48GCx7kUhhBDC2goLBbSvJ19KRfXWvZE/ABuklLsop0aNGrFjx45iBTa2b9+Oq6srwcHBhIaGotPp2LVrV9H9aWlpnDx5suh2ZGQkRqORxMREwsLCiv0EBASUORaTyVSsBoM1VKuerKysLE6fPl10+9y5cxw8eBAvLy9q167N1KlTiYuLY/HixQB8/PHH1KtXjyZNmpCXl8fXX3/NX3/9xbp162z1FIQQQtyG9pw3J1ntJMkS1Vz3Rn6wEg7GXiE5Kx8fl+tH/whRkmeeeYaPP/6Y8ePHM27cOE6cOMH06dOZOHEiarUaFxcXRo4cyeTJk/H29i4qfHFtj1RERASDBg1iyJAhzJ49m8jISJKSkti4cSPNmzenb9++1533888/p3bt2jRs2BAwDxv84IMPePbZZ636fKtVkrV37166detWdLtw7lRhlZLLly8TExNTdH9BQQEvvPACcXFxODk50bx5czZs2FDsGEIIIYQ1GYwmDl80r4/Vuo6njaMR4tb4uznQrJY7UXHp/BWdyKNtQmwdkqgmatWqxZo1a5g8eTItWrTAy8uLkSNH8uqrrxY95v333ycrK4v7778fV1dXXnjhBdLT04sdZ8GCBcyaNavoO76Pjw8dOnTgvvvuK/G8JpOJqVOncu7cObRaLaGhobz77rs89dRTVn2+1SrJ6tq16w1r+C9cuLDY7SlTpjBlyhQrRyWEEEKU7kRCJrl6I672WkJ9q89cCyFK072RH1Fx6Ww8niBJ1m2spLWpzp8/f922a7+7d+nShd27d5d6TBcXF5YsWVKsQN3kyZMxmUxFBSd0Oh0zZ84ssRo4wLBhwxg2bFjR7fHjxzN+/PibPBvLu+3mZAkhhBCV6WDsFQCah7ijVkvNa1H99bg6L2vrqWTyDUYbRyNE1SRJlhBCCGFFB2OuABAZIkMFRc3QJMgNP1d7cgqM7DmXZutwhKiSJMkSQgghrOjA1Z6sliEeNo1DCEtRqVR0beALwKYTiTaORoiqSZIsIYQQwkoy8vScScoCoGVtD9sGI4QFdWvgB8DfkmQJUSJJsoQQQggrORybjqJAiJejlLoWNUrncB+0ahVnkrKJScmxdTjV3o0Ku4nKZ4nXQ5IsIYQQwkoOxJjnq7SU+ViihnFz0NGmrvl9vemk9GZVlE6nAyAnRxLVqqTw9Sh8fSqiWpVwF0IIIaqTgzIfS9RgXRv4sfNsKn9HJzKkY11bh1MtaTQaPDw8SEw0J6pOTk6oVFKF9L9MJhMFBQXk5eUVW5zY0hRFIScnh8TERDw8PNBoNBU+liRZQgghhBUoilKUZEXKfCxRA3Vr4Mc7a6P550wKeXojDrqKfyG9nQUEBAAUJVrieoqikJubi6OjY6UkoR4eHkWvS0VJkiWEEEJYQWxqLinZBeg0KhoHutk6HCEsLsLfhSB3By6l57HjbEpRMQxRPiqVisDAQPz8/NDr9bYOp0rS6/Vs2bKFu+6665aG8JWFTqe7pR6sQpJkCSGEEFZwINY8H6txoJtc4Rc1kkqlomtDP5buimFTdKIkWbdIo9FY5Mt9TaTRaDAYDDg4OFg9ybIUKXwhhBBCWMGBwkWIa0vRC1Fz/VvKPUkq5AlxDUmyhBBCCCuQohfidtAp1Bs7jZqY1BzOJmfbOhwhqgxJsoQQQggLyzcYOXYpA5AkS9RszvZa2tf3AuDvaCncIEQhSbKEEEIICzt+OZMCowlPJx11vJ1sHY4QVtX16pDBTSeSbByJEFWHJFlCCCGEhUXFpQPQPNhD1rwRNV63Br4A7DqXQna+wcbRCFE1SJIlhBBCWNjRq0lW01pSul3UfPV8nKnj7YTeqLD9dLKtwxGiSpAkSwghhLCwI5euJllB7jaORAjrU6lUxaoMCiEkyRJCCCEsqsBg4kR8JgBNa0mSJW4PXa8OGdx8IlFKuQuBJFlCCCGERZ1MyERvVHBz0BLs6WjrcISoFB3qe+OgU3MpPY+TCVm2DkcIm5MkSwghhLCgo4VDBWu5S9ELcdtw0GnoWN8bgL9PSCl3ISTJEkIIISzoSJx5fSwZKihuN90aXp2XJetlCSFJlhBCCGFJhUUvmgRJZUFxe+kaYU6y9l5IIyNPb+NohLAtSbKEEEIICzGaFI5flp4scXuq7e1EqK8zRpPCtlNSyl3c3iTJEkIIISzkbFIWeXoTznYa6nk72zocISpdUSl3GTIobnOSZAkhhBAWUjhUsHGQG2q1FL0Qt5/CeVmbTiZhMkkpd3H7kiRLCCGEsJDCohdNZBFicZtqU9cTZzsNSZn5HLs6dFaI25EkWUIIIYSFHIn7t3y7ELcje62GzmE+gAwZFLc3SbKEEEIICzCZFI5dKix6IZUFxe2rqJS7rJclbmOSZAkhhBAWEJOaQ2a+AXutmjBfF1uHI4TNdG3gC8CB2CukZhfYOBohbEOSLCGEEMICCoteNAx0Q6uRj1dx+wp0d6RhgCuKAltPJdk6HCFsQj4FhBBCCAsoLHrRVBYhFuLfIYMyL0vcpiTJEkIIISzg6CUpeiFEocL1sracSsYopdzFbUiSLCGEEMICjl8tV904UHqyhGhV2wNXBy2p2QUcvnjF1uEIUekkyRJCCCFuUXJWPslZBahUEO4vRS+E0GrU3BVuLoDx9wmZlyVuP5JkCSGEELfoZHwmALW9nHCy09o4GiGqhsIqg5uklLu4DUmSJYQQQtyi6KtJVgN/VxtHIkTV0eVqknX4YjpJmfk2jkaIyiVJlhBCCHGLTlxNshoGSJIlRCE/VweaXS0EI71Z4nYjSZYQQghxi04kXO3JCpCiF0Jcq1uDwnlZkmSJ24skWUIIIcQtMJkUThYlWVL0Qohr9WjsD8DmE0nkG4w2jkaIyiNJlhBCCHELLqblklNgxE6rpq63s63DEaJKaRrkjr+bPdkFRnacSbF1OEJUGkmyhBBCiFsQHW9eHyvM1wWtRj5WhbiWWq2iRyNzb9aG4wk2jkaIylOtPg22bNnC/fffT1BQECqVilWrVt10n02bNtGqVSvs7e0JCwtj4cKFVo9TCCHE7aNwqKAUvRCiZIVDBjccS0RRFBtHI0TlqFZJVnZ2Ni1atODzzz8v0+PPnTtH37596datGwcPHmTChAmMGjWKP//808qRCiGEuF0Ulm+PkCRLiBJ1rO+Nk52G+Iw8jsRl2DocISpFtVox8d577+Xee+8t8+O//PJL6tWrx+zZswFo1KgR27Zt46OPPqJXr17WClMIIcRtpLB8ewNJsoQokYNOQ5cIX9YeiWf98QSaBbvbOiQhrK5aJVnltWPHDnr06FFsW69evZgwYUKp++Tn55Of/++CeRkZ5isuer0evV5vlTjLqvD8to6jppL2tS5pX+uS9rWu0to332DibHI2AKHejtL+FSTvX+uzdRt3i/AxJ1lH4xnftZ5NYrAmW7dvTVeV2resMdToJCs+Ph5/f/9i2/z9/cnIyCA3NxdHR8fr9nn77beZOXPmddvXrVuHk5OT1WItj/Xr19s6hBpN2te6pH2tS9rXuv7bvnHZYDRpcdQo7N/2FyqVjQKrIeT9a322amO9HlRoOB6fyXcr1+Blb5MwrE7ew9ZVFdo3JyenTI+r0UlWRUydOpWJEycW3c7IyCAkJISePXvi5mbbRSb1ej3r16/nnnvuQafT2TSWmkja17qkfa1L2te6SmvfXw5dhsNRNAn2pG/fdjaMsHqT96/1VYU2Xpm0m70XrqAENqVPh9o2icFaqkL71mRVqX0LR7ndTI1OsgICAkhIKF4uNCEhATc3txJ7sQDs7e2xt7/+8opOp7P5i1qoKsVSE0n7Wpe0r3VJ+1rXf9v3dJL5imbDQDdpdwuQ96/12bKNezUJZO+FK/x9MpkRd4baJAZrk/ewdVWF9i3r+atVdcHy6tixIxs3biy2bf369XTs2NFGEQkhhKhJTlxdI6tBgG1HOghRHRSWct9xJoX0XNvPrRHCmqpVkpWVlcXBgwc5ePAgYC7RfvDgQWJiYgDzUL8hQ4YUPf7pp5/m7NmzTJkyhejoaL744gt+/PFHnn/+eVuEL4QQooY5mZAFyBpZQpRFPR9nwv1cMJgUNsrCxKKGq1ZJ1t69e4mMjCQyMhKAiRMnEhkZybRp0wC4fPlyUcIFUK9ePVavXs369etp0aIFs2fP5uuvv5by7UIIIW5ZRp6euCu5AET4SZIlRFn0aRYIwJqoyzaORAjrqlZzsrp27XrDlcIXLlxY4j4HDhywYlRCCCFuRyevro8V6O6Au5PMwRCiLPo0C+STjafYcjKZzDw9rg7yuyNqpmrVkyWEEEJUFdGyCLEQ5Rbh70KorzMFRhMbjyfaOhwhrEaSLCGEEKICTiZIkiVEealUqqIhg6tlyKCowSTJEkIIISqgqCfLX5IsIcqjMMnafDKJrHyDjaMRwjokyRJCCCHKSVEUTshwQSEqpGGAK/V8nCkwmKTKoKixJMkSQgghyikhI5/0XD0atYowPxdbhyNEtWIeMhgAwNqoeBtHI4R1SJIlhBBClFP01UWI6/k4Y6/V2DgaIaqfwiGDf59IJFuGDIoaqFqVcBeiqjmfnM1P+y7y++FLqFQq6vk4U8/HmQh/F7pE+BHg7mDrEIUQVlBU9ELmYwlRIY0D3ajj7cSFlBz+ik7k/hZBtg5JCIuSJEuICth1NoUP159k17nUYtvPJWcXu90yxINeTQLo1zKIWh6OlRmiEMKKpHy7ELemsMrg3E1n+O3QJUmyRI0jSZYQ5fR3dCJPLdlHgdGESgV3hfvyvzbBeDnZcTY5m3PJ2RyISWN/zBUOxpp/Plx/gsfb1mbc3WH4u0nvlhDVnRS9EOLWPdAyiLmbzvD3iUTSsgvwdLazdUhCWIwkWUKUw1/RCTy9ZD8FRhM9G/szo18Tgq7poeoU5lP0/8SMPNYdS+C3Q5fYdS6VJTsv8OPeWIZ2qsuz3cNxsZdfPyGqI4PRxKnELMBcJU0IUTENA9xoHOjGscsZ/H74Ek90rGvrkISwGCl8IUQZbTz+b4J1b9MAPh/UqliC9V9+bg4M7lCHZU915IcnO9Cmjif5BhPztpyl32fbOH45oxKjF0JYyoXUHAoMJhx1GkI8nWwdjhDV2kOtagHw8/44G0cihGVJklWNxKblcDJdZeswbkubTiQy5jtzgtWnWQCfDohEpyn7r0+H+t4sf7ojC4a1JcjdgbPJ2fT/fDs/7I5BURQrRi6EsLTCoYIR/i6o1fI3WYhb0a9lEBq1ioOxVziTlGXrcISwGEmyqonEjDyGLNjHV8fV/HUiydbh3FZ2n0vl6e/2FSVYnzxevgSrkEqloltDP1Y/eyfdGviSbzDx0ooopvx0GIPRZIXIhRDWIEUvhLAcP1cH7go3D7VfKb1ZogaRJKuacHfS0SjAFYOiYuzSg6yJumzrkCpEURSMWVnVpvcm6mI6IxbuIU9volsDXz5+rGIJ1rU8ne34ZmhbpvRugFoFy/ddZMpPhzGaqkebiMpRXX5Hbkcnrq6R1SDAzcaRCFEzPNQqGICVB+IwyWfhLVOMRvkMqQJk5n01Ya/V8MljzRn82Tr2p6gZt3Q/sx9twYORwbYO7YYUvZ60H38ke8tW9JcuoY+Lw5STgy4oCNfevXHr3QuHZs1QqarekJtTCZkM+XYXWfkG2tfzYu7g1thpLXNdQq1W8UzXMOr7uDB26X5WHIjDTqvmrQebyfCj21DukaOkzJtH/smTGLOyMGVmohgMuNxxBx6PPYrLXXeh0sqf66riZIJ5SJOskVV5DGlpXFn2I1d+/hljejqoVKhUKtTubng89DCeAx5H4yZJb3V1T2N/XO21xF3JZde5VDqGets6pGpHKSggc9Mm0lesJGvrVlRqNWoPd7QeHtjVD8XnqSdxaNzY1mHeVuRTuxrp80svUv1ScfUDRYHXDsG0w6CCUpMUFeXbXvrm8h4fWp42MnB9AYGp119N0V+6ROq335L67bfEe6mY38+R0yGakk9eilLPXcG2UFAw6A28s/wdFAWyC4wowQruahWxdlru/qn046hUKjztPQlxDaG2W23qutWlQ2AH6rrXveFz6N00gE8eb8mz3x/ghz2x6DRqXn+gSZVMOoXl5R07RtKcz8n6668S78/avJmszZvR+vnh+cRgvEeMQKUp3++JsKzcAiPnU8zr4VXl4YI5+hx2Xd7F6SunOZd+jnPp50jMScSgGDApJowmIwbFgNFkxKgYMSlVY8jya0tfK3bbJ13hgR0mukSZsDdc/3jjlSskffQRMZ9/xIaWan5vr+aKS/X7+6lT63DUOeKodcTVzpX67vWJ8Iwg3COc5r7N8Xas2UmHg05D3+aB/LAnlp/3X5QkqxwUg4HkuV+StnQpxrS0f7cbjRiTkjEmJZN/6jSZf/6JW5978Rk/Hvt69WwY8e1DkqxqxKSYUDAnLNd+B1ew4NAiCxzGM1Phmd9NtDhvPtgVJ/itg5oLvpDkriLDCZrEKHQ8rtD6tEJAqsLUxTks7q7mj9aq4k/OFvRX/1Wbk0UTkKm/weOvSs9P53zGebhmSHlt19rcFXwXvev1poVvixL3u695EHqjiYk/HmLJzgv4uNjzXI/wW3wSoipTFIWk2bNJ+fob8wa1Gvf778O9f380Hh6oXV0x5eSQvuoX0leuxJCYSNLsD8k9cJCg995D4+Js2ydwGzudlIWigLezHb6u9rYOp5j0/HT+ivmLjTEb2XFpBwWmAluHdEsaxShM/tmIS5759ll/WN1Wzekg86UulQKhlxX67TJROwnu323iziMm3n5Uw7nA6pVoFZgKKMgvID0/nfjseE6lneLP838CoFapaevflt71etOjdg88HDxsG6yVPNw6mB/2xLI26jKvP9AEJzv5inozhrQ04p6fSM7OnQBofX1x798f9wf6oXZywpiejiE1lfSVq8hYvZqMNWvJ+HMdvuPG4v3003JB18rkHVyNLO+7nA0bNtC9e3e0Wi3v/xnNj3svolLBjH6N6dOs+GrppSVeSimZVHkfXxLj5XiynpqIKe4y6HTYD3yYOsMHMd7FucTjKNk55Mz6ANZvZsR6E0+qu+H46kRUjo4Vi6nUzTc/jkFvYOPfm1iT4sWhuHS8ne2YM7AVAdcsHnyjtkvMTSQ2M5bYjFiOpRxjX+I+YjJj+O74d3x3/DvaBrRldLPRdAjscN0ftgcjg8ktMPHyyig+3niStnU9i625JWoOxWDg8mvTSF+5EgC3vn3xGTsW+/rXX1l0mDIZ3wnPkb5qFQmz3iTrr7+4MGgQIV98jq5WrcoOXQAnCocKVqFerPT8dBYdXcT/Hf8/cgw5RdtDXENo6duSeu71qOdej0CXQHRqHVqVFo1ag0alQavWolapUatsO0XboDewceNG8+ebTkve2vVk/vg26I1omzTCecIY2rVuSfsSvhQqikLBtp1kf/YlHqfO8u4yO9xnz8KuYzsbPJOK0Rv15BhyyDXkkpaXxukrpzmVdorjqcc5feU0u+J3sSt+F2/ufJMHwx9kTIsx+Dr52jpsi2pTx5M63k5cSMnh14OXeLxdbVuHVKXlRUdzcew49HFxqJycCJwxHbc+fYoNLdcFmb8XunTujPfoUSR99DFZmzaR9MmnGDMy8ZsyWRItK5IkqxrxcvDCRe2Ct6M3Op2Od/p3RsMRlu6KYcbKWDzsfejXIujmB7KSgosXiXnyBUyXLqMLDqb21/Oxq1v3xju5gPLpXNIWLybh/Q8w/Pk3hvhUai9aiNrB4cb7Wlh+fgFrz/lxMEWNi30gi57oQJMg9zLvX9+jPh0COxTdzirIYtflXWyM2cja82vZE7+HPfF7aOrdlFc6vEJTn6bF9h/YvjaHYq+wbG8sz/5wkDXP3YGfa+W2gbAuU14ecRNfMA8P1GgInDULjwf733AftZ0dno8+ikODBsSOHUf+iROce/QxQr76CsemTSoncFHk1NUkK6IKzMfKNeSy4MgClhxbQpbeHFeoeyi96vWiR+0ehHmEVZsvUHqtHhe1C14OXmR88w2Zn3wKgGvPngS99+7NPw963o+xUzcujh9Pzo6dpD/7IkFvvYl7v36VEL3l3Rl8Z9H/L2Ze5I/zf/Dn+T+JTo1m+cnl/HbmNwY3HszwpsNxs6sZc9FUKhWD2tfmrTXRLNpxgcfahlSb929ly9q6jYvPPouSm4suJITgz+fgEBFxw30cGjQg5Mu5pC5eQsJbb5G6YAGmvFwCXnsNlVrq4FmDtGo1plKpmPVAUx5rE4JJgeeXHWT9sQSbxFJw/jwXBj+B/tIl7OrUoc53S26eYF2lUqnwGjqUOosWonZ3J/fQIS6//DKKqXLnCHy44TQHUtRo1SrmDm5VrgSrJC52LnSv05237nyLtQ+tZVCjQThoHDiScoTBawYz99BcDKbikwxm9GtCA39XkrPyeX7ZQak4WIOY8vKIHf0kWX/9hcrOjuDPPr1pgnUtxxYtqPfjMuwbNsSYksLFMWPQJyRaL2BRosKerIY27sk6mXaSx39/nLmH5pKlzyLcM5yPu37MygdWMqbFGMI9w6vlF9Qr3y4g6WqC5TViBLU+/qjMF9w0Li7U/uor3Pr2BYOBS1NeJP23360ZbqUIdg1mVLNRLL9/OQt7L6SFbwvyjHl8HfU1/Vb2Y/fl3bYO0WIebROCvVbN8csZ7LuQdvMdbkN5J04SN2ECSm4uzp06UW/5jzdNsK7lNeQJAt54HVQqrnz/A5dfebXSv2/dLiTJqubUahVvP9SMhyJrYTQpjFu6nz3nUys1BkNaGheGj8AQH49d/frUXrIYXUBAuY/j1Lo1wZ98AlotGWvWkjzncytEW7Lle2P5aus5AN7s35g7wy07DCPAOYCX2r3EHw//Qe+6vTEqRr44+AVD1w7lQsaFosc52mn4fFAkjjoN20+nMOev0xaNQ9iGoijEv/4GOXv2oHZxIeTr+bjefXe5j6MLCqLOd99hHx6GISmJi8+Ox5Sfb4WIRWlOJth2jSxFUfgh+gcG/D6As+ln8XX05f0u7/PT/T/RvU73aplYFXKOjiblk08A8HvpRfynTC73FXaVnR1B77+H56BBAFx+7TXyTpy0eKy20tq/NUvuXcIn3T6hrltdUvJSGL1+NF9HfV1lipfcCg8nOx5oaR6Rs2jHhZs8+vZjSE7m4pgxmLKzcWrXjpAv56Lx8Cj3cTz/9z+C3nsXNBrSV64kZd58ywcrUClSSP+GMjIycHd3Jz09HTcbl4dVPm6BISMerVZ7XYU7BcjTGzGYFFQqcNRp0JS7+7ecH84qc5XD2A32ZMdpsXMzUefeXLSOt3b8K6c0XN5unlAedFcB7qHGsgVTHtd8EdEbFTLz9CiAnRpcHO1Kqh9YoWOXZo29hlmuOjLVKlxMCl+kFxCp//dXMc9gJDPP3Mvl4WSH7tqy7uX+EmXZ2Ct6bAWFvLx8HBwcyvFFsGrEXpGHX7tD2jET8VuMoILafTU4B//nd7OcsRekw7mfCzDlg3tDNYFdtaBSkZ2djbOz8/WhVpX3jEoNbrXAOxS8QsG/MdTuCNqqVUCiJHq9nh9/WcMre82j7I/O7IWzfeWOuC8wFjB161TWXVgHwF3Bd/FG5zfwcvCq1DisIfvkSc7971E0+fl4PPYYgTNn3NLxFKOR2CefInv7dnR1alPvp5/QuNp+iKcl5RpymbVzFr+e+RWAO2vdydt3vo27fcmjMPR6PWvWrKFPnz7odLrKDLVcjsSlc99n29CqVfzz0t34uVWPYfPWbl9TXh4xQ4eRe+gQdnXqUHfZDxVKsK515aefuPzqa6BWU2fxIpzatLFMsFZQld6/Zc0NZE5WdaLPRmfKgxIKRqkAx8L/wL8V8qws5ZgL2XFaVBqFWp2S0aoMkHdrx/QIgYKGrqREu3J5mw47h3Qcvaz3hHSAV2G7KUDODR5sIX2yoVW6hil+3hxwcOApdx0fJyTTKc/ceA6AQ2FMudaPpzIUvUcr6b1ZVeSm6EjY5gOo8G2WgbNLFly5tWPaAbU62hO72Yv0aBMOTkl4RWTjAiX+fahSkk/C2b//va1zhtBuEN4TGt0PTlU3YbicY/6lDPFyrPQEK9+Yz/N/P8/WuK1o1Vomtp7I4EaDq3XPVSFjZiaXn30OTX4+Dq0iCXjl5Vs+pkqjIeiD9zn38MPoL8RwaepUgj/7rEa0VyFHrSOzOs+itX9r3tz5JlvjtjJq3Si+7vl1qYlWddC0ljutanuwP+YK3++OlWq7mHuwL7/yKrmHDqF2dye4gj1Y/+X+8MPk7NlD+i+/EvfCJOqtWonW0/PWAxaAJFnVimHYn2z6eyNdu3ZFV8rCpJm5BsZ/f4BzKVkEezrx2YCWeDnZWT4YRSHn4BGSfnwFMOE/aTwO9/e60Q7lOravyUT+K2+TtW03l0+3od7Xs1GVeuWinJ2xVztvswoMPLt0PzFpuTT0d+WdB5uwe8d27rzrrv+0b/liL6sA4CtjHs8f+JDtyYcYFxTEBy0ncLe/+UpSUlY+oxbtJU9v5IWeDejZ2L9cx7dm7OU+NuarUNu3b6dz586lvn8rfHwrx17+pQ3MOxjSM7k45jUUUwounVvjPeO563t+Khi7C+AXsZbEeT+QcNATu+Gz2Z8UR6eOndBe275V6T1j0sOVGEg5AymnIXY3ZMVD9O/mnz+mQpvh0HEsuNmuiE9pLl+9ANPAv3JHNeQZ8pjw9wS2X9qOg8aBz7p/VqzITnWmKAqXXnwJ/fnz6N3dqTv7Q1R2lvnM0np6EvzJJ1wYOIisDRtJ/eYbvEeNssixqwqVSsVD4Q/RyKsRT294mujUaJ5a/xTze87H1a769twN7VSX/TEHWbr7As90C0Wnub1nt6Sv+oWM1atBqyX4k08sts6VSqUiYNo0cqOOUHD2LJdefJGQL7+UQhgWIklWdeJRmxx7f/CsB6UkHK7AO6Nr8/Dcf9iemsvQVSl8/2QHXCx81dWQkkLczA/BZML9gX54DHvGoutbqYDA9z7ibN/7yD97geSVm/AdO9ZixzeZFJ5bvJe/Ur0JdHdg2ojO2DtqyHQ8D74NSm1fS3MEPvX/lhe3vMiGmA1MPPgRs7vOpnvt7vj6Q5/u7ry9Npqp24y07xCBu2PVHeJxU3o96U5xENii0trXlhRF4fKbYzEkpmBXpw5BH89FZeHhSl7PtyX3fCqZ69aR+MVy0p4YjBLctvq0r8kE8Yfh5J9wbBUkHoMdc2DXV9ByAHSfAc5VZ1HSS1d7siqz6EWuIZdn/3qWnZd34qh15PPun9M2oG2lnd/a0n/5pagYzKUhT9DIx7Kvt2OzZvi/8grxM2aQ+PEnuHTpgn14zesZaeTdiK97fs2IP0dwNOUoT294mnn3zMNZVz3X1OvdNAAfFzsSMvJZdzSBvs0DbR2SzegTEkh46y0AfMePx7lDe4seX+3sTK2PPuL8o4+SvWUrqQsW4D1ypEXPcbu6pVRVr9cTGxvLiRMnSE2t3GILonQB7g4sHtkOL2c7ouLSeWrJXvINZZnXVHbxb8zCkJSEXWgoAdOnW2UIhtbLC/9XXgEg+cuvyDtpucnLH64/ycboROy1ar56orVNx3zbaex4v8v73F//foyKkalbp3Ii9QQAwzvXI9TXmZTsAj5aX3Mmb98OMv/4g6y//wadjlqffmKV+SAqlYqA115F7eZG/vHjeGz/x+LnsCq1GoJaQtcXYcw/MOgnqNPZ3OO1fzF80R6OV53qcIXDBSur6IWiKLyy7ZWiBGtuj7k1KsEyJCWR8PY7AHiOeZr84GCrnMfjsUdx6d4dDAYuz5hZYyuphXuGM7/nfNzs3DicdJhnNjxDvrF6Fsax12oYcHWdrK+3nS11zcyaTlEULk+bhikzE4fmzfEeOcIq53FoEIH/1WG6SZ9+RsHFi1Y5z+2m3ElWZmYmc+fOpUuXLri5uVG3bl0aNWqEr68vderUYfTo0ezZs8casYpyCPV1YcGwtjjZmavUTfzxkMXKgWdt3kzmH3+ARkOt999D7eRkkeOWxK1vH1zuvhv0enOZUYPh5jvdxJqoy8z521y1752Hm9E82OOWj3mrtGotr3d+nQ6BHcg15PLc38+RlpeGnVbN6w+Y19NavOM8xy5l2DhSURbG9HTi3zRfefQZPRqHBg2sdi6try/+Uyabz7VuHfrq+uGoUkH4PTB8DQz/A3wbQnYSLBsEK56EXNuWczaZlKLhgpXVk7Xw6ELWX1iPVq3li+5f0Nq/daWct7LEvzELU3o69o0b4Tl0qNXOo1KpCHjlZVROTuTu21e0EHhN1NCrIfN6zsNV58r+xP28v+d9W4dUYU90rIO9Vs2BmCtsO51s63BsIn3FSrI3b0Gl0xH01pvFFhq2NI///Q+nDh1Q8vNJeOttq53ndlKuJOvDDz+kbt26LFiwgB49erBq1SoOHjzIyZMn2bFjB9OnT8dgMNCzZ0969+7NqVOnrBW3KIMWIR589URrdBoVqw9f5s3Vx2/5mKbcXOJffwMAryeewKFx41s+5o2oVCoCpk9H7epKXlQUqYsW39LxouMzmLT8EACj7qjHg5HWuXJaEVq1lg+6fECIawhxWXFM2jwJvUlP5zAf+jYPxKTA22tv/TUU1pfw/vsYk5Oxq18f76efsvr53B9+GMe2bVHr9STNerP6X/Wt0xGe3AydnzNXJDy8DObfDWnnbRbSpfQ88k0qdBoVdX2sPwRr1+VdfLz/YwBeavsSbQKqbtWvisj4cx2Z69aBRkPQm2/eYM6tZeiCgvAdNw6AxPfex5BWc9dgauLdhPe6vAfAshPLWHturY0jqhg/V4ei3qxPNpyq/n/XykkfH0/C2+Zkx+fZ8diHhVn1fIUjI9BqyfrrLzL//vvmO4kbKleStWfPHrZs2cLu3bt57bXX6NWrF82aNSMsLIx27doxYsQIFixYQHx8PP3792fr1q3WiluU0Z3hvsx+tCUA324/x4Lt527peMlffIE+Lg5tYCC+48dZIMKb0/n74f/iFACS5sxBn1ixBVjTsgsYvXgvOQVG7gjz4aV7G1oyTItwt3fn026f4qR1Ynf87qKrkC/1bohWrWLrqWT2x9TcLwc1Qfau3aT/9DMAgW+8jtpCk/hvRKVS4TvtNUxaLTnbt5Px+2qrn9PqdA5wz+sw4k9wrw2pZ+GbXhB/xCbhnLi6Plaoj7PVJ+HHZ8czefNkTIqJfqH9eLTBo1Y9X2UzXrlC/Bvmi3Xeo0bh0KhRpZzX64nB2DdogDE9ncT3qm8PT1ncUesORjcbDcD0f6ZzNv2sjSOqmDFdQ7HTqtl7IY0dZ1JsHU6lSnjzTUxZWTi0aI738OGVck770FC8hw29ev63MOXdYrno21y5Pim+//57mjRpctPH2dvb8/TTTzNihHXGjory6dciiBd7mxOK138/xp9H4yt0nLwTJ0lZsBDAPA/EufIm1Lo//DCOLVui5OaS/Nln5d7fYDQx7vv9xKbmEuLlyGcDItFW0WpFYZ5hvH2n+erV99Hfs+XiFkK8nHioVS0APt0oPcRVlSk/n/hp0wDweOwxnFpX3vAuu7p1Se1uXuA48YMPMOXWkNr/Ie1g5Drwa2yuRLigD1yo/LlnJxOyAIjwt+5QQb1Jz8RNE0nLT6ORVyNe6/BajSo7DpD06adFPb0+z4yptPOqdDrz+lsqFekrV5JTw6c2jG05lnYB7cg15PLCphfINVS/vwn+bg483jYEgI9vo8++7B07yFy/wdzTO2uWVYcJ/pfPmDFoAwLQX7woixTfogp/y0xKSir1vqioqIoeVljJ013qM7B9bRQFnvvhAAfK2RuimEzEz5gBBgMuPbrjevfd1gm0FCqVCr8p5t6sKz+vIO9E+YpAvLM2mu2nU3Cy0zB/SBs8na3fu3Ar7q59N0MaDwHg9R2vk1WQxdhuYWjUKjadSOJg7BXbBihKlLpoMQUXLqD19cVv0guVfv60u+5CGxSEISGB1CXfVfr5rcYt0DxXq3ZHyE+HJQ/C+e2VGsKJoiTLxarnWXx0MVHJUbjZufFh1w9x0FaPhVjLKv/0adKW/QhAwLRpqO0rdyFqx5Yt8fjf/wBIeO/9Gj0ETaPW8O5d7+Lj6MPpK6f5YN8Htg6pQsZ0DcVOo2b3uVR2nq35vVmKwVA0J8pzwIBKr4apdnbG/6WXAEj5+msKYmIq9fw1SYWTrGbNmrF69fVDUj744APatWt3S0EJy1OpVLzerwndGviSpzcxatFeLqRkl3n/jLVryT1wAJWTEwFXK/5VNqdWkbj27AkmE4kflP3DYsX+i3y9zTxMcvb/WtAwoHLXuKmocZHjCHENISEngY/2fUQdb2f6tzT3Zn12G13Rqy4MKSmkfPUVAH6TXrBKNcGbUbRavMePByBl3ryaNe/E0ROeWAnhvcCQZy6IkXKm0k5/qhKSrNiMWL489CUAU9pOIdi16swZtZSEd98DoxGXHt0tXoq6rHyfHY/KyYm8qCgy/1xnkxgqi4+jD+/e+S4AK8+s5ILhgo0jKr9Ad0cebWv+XfhkQ83/7LuyfDn5p06hcXfHd5zllq4pD9dePXHu1AmloICkT8s/ekiYVTjJmjhxIg8//DBjxowhNzeXuLg4unfvznvvvcfSpUstGaOwEK1GzZyBrWhay42U7AKGL9hDWnbBTfczFRSQ9OFHAHiPHIEu0HbrVfi9MBG0WrK3biVr+82vZB++eIWXVph7VsffHca9zarPWhuOWkdmdJwBwI8nf2RP/B7G3R2GWgUboxOJuphu2wBFMUlz5mDKzsahSRPc7r/fZnG49LkX+8aNMGVlkfLllzaLwyp0jvDoIqjVxlxt8P/+BznWXz6kwGDibLL5olQDKyVZiqLwxs43yDPm0T6gPf1C+1nlPLaUtXUr2Vu3gk6H/+TJNotD6+OD97BhACR9/LFFqtZWZe0C29E/rD8Av+b8it6kt21AFTCmaxg6jYodZ1PYdqrmVho0XrlC0iefAuZiFxoPD5vEoVKpikZjZKxeTd6JEzaJo7qrcJI1ZcoUduzYwdatW2nevDnNmzfH3t6ew4cP8+CDD1oyRmFBzvZavh3alloejpxNzubJJXvJ0994Da20pUvNxS58fStt8mVp7OrUwXPgAMBcIUoxlh57YmYeTy7eR4HBRPeGfjzfI6KywrSYdoHteCTiEQBm/DODAA81D1ztzfr0r5p/Ra+6yD9zhis/LgfA78UpqNS2m++nUqvxe8H84Zi69Puat96JzhEGfA/uIZB6BpY9AYabXyy6FWeTszCYFBw1CoHu1hm+9/vZ39lxeQd2ajte61jz5mEpBgMJ75p7VLwGD8auTh2bxuM1YjgaT08Kzp/nyooVNo2lMkxsPRF3O3cSTAn8cOIHW4dTbrU8HBl4tdLgjN+OUmComWudJX3+BcYrV7APD8PzscdsGotD48a43tsbFIWkjz+xaSzV1S19EwgLC6Np06acP3+ejIwMHnvsMQICAiwVm7ASPzcHFgxvi6uDlj3n03hh+SFMpayhZUxPJ3mu+Wq4z7PjrbomVln5jBmD2tWV/BMnSP/ttxIfk28wMua7/cRn5BHm58LHj7dEra6eX1omtp6In5MfMZkxzDs8j3F3h6FSwfpjCZy8WvFM2Fbie++bh0B1745zFRgu7dK5M86dOoFeT9JHH9s6HMtz8YOBy8DOFS5sgzXWnf92It78exbghFWSnyt5V4oqiT7d4mnquNk2AbGGtB9/pOD0GTSenviMedrW4aBxccHn6vIKyXM+rzmFYkrh6eDJc5HPAfBl1JfEZ1esAJYtTbynAd7OdpxOzGLhP7dWKbkqyj93jrSrI8H8p06t1GIXpfF99lnQaMj6+29y9h+wdTjVToWTrO3bt9O8eXNOnTrF4cOHmTt3LuPHj+exxx4jrSbNA6ihIvxd+Wrwv2tovftndImPS/5qnnmxyPAwPB56qJKjLJnW0xPvJ82laZPnzr1uqIeiKExbdZR9F9Jwc9Ayf0gbXB2suwaLNbnaufJye/NK7EuOLcHZKYtejc0XMxbvOG/DyASYq0Blbd4MWm1RD1JVUGyox/EauL6afxP430LzOlr7F8Pxki+4WEJhkhXoZJ0iCZ8e+JS0/DTCPMIY1mSYVc5hS8asLJI/mwOAz/hxaNyqxrxYjwED0AUFYUhMJPW7GlQophT96vejtqY2uYZc3t39rq3DKTd3Jx0vXl165ZMNp4hPr1nlxZM+/dR8sa5LF/NFsirAvl493B/sD0DSRx/V6EIx1lDhJOvuu+/mscceY+fOnTRq1IhRo0Zx4MABYmJiaNasmSVjFFbSKcyHdx9uDsBXm8/y3c7iE2ILLsaRtmQJAH6TJqHSaCo9xtJ4DRyIxtMT/YUY0n//vdh9S3ZeYNneWNQq+GxgK+pVwsKh1nZ3yN1E+kWSb8zny0NfMqST+Ur3iv1xZORVv/H1NYWiKCS+by7C4vnYY9jXr2fjiP7l0Lgxbn37Aub17Wqk8B7Q6Vnz/3+bAFmlV729FYVJVpAVkqyYjBhWnDIPV3u1w6voNNX3glBpUhctwpiWhl29eng+WnXW/FLb2eHz7NVCMfO/xphZs0cGqFVq+jn1Q6PSsCFmA7su77J1SOX2SKtgWtX2ILvAyJtras7Fo9yjR8lc+wcAvhOft3E0xfmOHYvKzo6cPXvI3l75y2dUZxVOstatW8c777yD7ppV2kNDQ9m+fTtPPfWURYIT1vdQq2Am3mOeqzTtlyNsPJ5QdF/yZ5+i6PU4deiA81132SrEEqmdnfEaYZ4fdm1v1o4zKcz87RgAL/ZuSJcIX5vFaEkqlYrnW5v/8K48vZIA7wzC/VzIKTCyYl8Nm3NTjWSuX0/esWOonZzwGfuMrcO5js+Yp0GlInP9hpo7cbnby+DXBHKS4fcJYIUrrdFW7Mn6/ODnGBUjd9a6k9b+lbeuWmUxpKWRenV9Rd9nx1eJIVDXcr//fuzCQjFlZJD2f/9n63CsLkATwCPh5nm+cw7MqXY9E2q1itcfaIpaBb8dusQ/Z2pGEYykT8xzntz69sWhQQMbR1OcLjAQzwHmufBJH39c7d4ztlThJKtLly4lH1Ct5rXXXqtwQKLyjb87jEfbBGNSYNzSA0RdTCf/7FnSfzP3EPm98EKVnITtNXAgGg8P9BdiyFi9mtjUHMYu3Y/RpPBAyyCevKu+rUO0qEi/SLqGdMWkmPj0wKcM6WjuzVq840Kpc+qE9ShGY9HC2F7DhqL18rJxRNezDwvDtXcvgKK5lTWO1h4e/BLUWoj+HQ4vs+jhM/P0xF0xz9cJdLTooTmReoK159YCMD5yvGUPXkWkfvMNpqws7Bs2xLVXL1uHcx2VRoPPU+Y5YqkLF2HKLvvSJtXViCYjsNfYczDpINsvVe56c5bQtJY7g9qbP/9eXhFFZjUfzZGzdy/ZW7aCVovvs1Xz74D3U0+icnQk78gRsrdVv/eMrZQryfrhh7JXpImNjWV7GUpsC9tTqVS8+WAz7gz3IVdvZMSiPcR8+AmYTLh0745js6a2DrFEamdnvEaOACDxi7k8vWg3qdkFNK3lxrsPN6+SieGtei7yOdQqNRtjNhJeOxUXey1nk7PZXkOu5lUnGWvWkn/qNGo3N7yuloOuinzGjAEg888/yT9VQytSBjaHLubFM1kzBdLjLHbok1fXx/J3tcfZwiP55hyYg4JCr7q9aOTdyLIHrwL0iYmkfmfuHfJ97lmbVt28Ebc+92JXpw7GK1dIK8f3nOrK19GXxxqYK9d9fuDzatkzMalnA2p5OHI+JYeXVx6pls8Brg45v1qcyOPhh21edbM0Wi+vomqHyXPnVtv2rmzl+os3d+5cGjVqxHvvvcfxEiZSp6ens2bNGgYOHEirVq1ISan5K3PXFDqNmi8GtaJhgCvOF89h2GBeoLGqXlUpVNibZbhwAf89W/BxsWPeE21w0FWd+WOWFOYZVrR+zpdRn/JQZBBg7s0SlUcxGEiaY+7F8h4xospM5C+JQ0SEeRFvRam5vVkAdzwPtVpDfjqsn2axwxbOx7L0IsQHEw+y6eImNCoNY1vaZsFRa0v5ah5KXh6OLVrg0rWrrcMplUqjwfvqNIeUbxfU+EqDACOajsBR68iRlCNsvrjZ1uGUm7uTjk8HRKJVq/jt0CW+3x1r65AqJHvLFnL37UNlb4/PM2NsHc4NeQ0fjsrOjtz9+8nZs8fW4VQL5UqyNm/ezLvvvsv69etp2rQpbm5uhIeH06xZM4KDg/H29mbEiBHUrl2bI0eO0K+f5RdT/Pzzz6lbty4ODg60b9+e3bt3l/rYhQsXolKpiv04OFhnjZOawNVBx4LhbRl1egMARyPaoAoNs3FUN6Z2dubIHfcBMPDkeuYOaEmQh4XH9FQxY1uOxU5tx76EfUQ2MF/I2Hg8gYtpOTaO7PaRvmoV+gsxaDw98XpisK3DuanCktkZa9eSf/asjaOxEo0W7vsIUMGRnyDWMl8CTsRnAJZNshRF4dMD5gVHHwh7gHruVadgiqUUXIwj7ccfAfB9/vkqP7LA/f770NWqhTElhSvLl9s6HKvzdvRmYMOBgHleoEmpfutOta7jyZTe5vlLM347yrFLGTaOqHwURSlaeNhz0CB0/v42jujGdP5+uD9srjJd4xa6t5Jy993369eP9evXk5CQwOLFixk3bhyDBg1ixowZ7Nq1i0uXLvHOO+/gb4U3y7Jly5g4cSLTp09n//79tGjRgl69epGYmFjqPm5ubly+fLno58IFueJ/Ix6xZ2kdexgTKj4N7spLP0dV6W7h/9t1gVeUhmTqHKmVlUyD0zV/HYcA5wAeDDcv+L0ubhmdw7wxKfB/u2JsHNntwVRQQNLVan3eTz6J2rnqV690aNQIl+7dzb1ZNfnDMbAFtBxk/v+fUy1SBKOw6EUDf9dbPlahA4kH2BO/B51ax9PNbb9mlDWkfPUl6PU4deyAc4f2tg7nplQ6Hd5PPglAytffYMrPt3FE1jesyTCcdc5Ep0azMWajrcOpkFF31Kd7Qz8KDCbGLt1frartZm3aRN6xY6icnPAePcrW4ZSJ98hRoNWS/c8Ocg8dsnU4VV6FB0j7+PjQv39/nnvuOV566SVGjRpF69atUVtxzPWHH37I6NGjGT58OI0bN+bLL7/EycmJb7/9ttR9VCoVAQEBRT/WSP5qkqTPzFdVCrreQ5xHICsPxPHWmuNVMtH6OzqR11YdIVfnQGL3+wFI+frrKhmrpQ1pPAQVKrbFbeOeFuYrkD/tu4jBWP2uRlY36StWYLh0Ga2fH54DHrd1OGVWODcrY/Ua9HGWm7NU5XR/DXTOcHEPHPn5lg6lKErRgt+W7MladHQRAP1C+xHoEmix41YV+rg4rqxcBYDv+Ko95Pxa7g/2RxsQgCExkfQVK2wdjtV5OHgwuJG5J/6rQ19Vy89OtVrFB/9rQZC7A+eSsxm+YA/Z+Yab72hjiqKQ/MVcALwGDkDr6WnjiMrGLrgW7ldHqSV/+ZWNo6n6qlYt1RsoKChg3759TJ06tWibWq2mR48e7Nixo9T9srKyqFOnDiaTiVatWvHWW2/RpEmTUh+fn59P/jVXsDIyzN3Per0evd62V0gKz2+tOPKiosjevAU0GiImP8usZA1TVx5l/tZz2GlUTOhedYYOHonLYOzS/ZgUeCgyiLvvepqYv38hLyqKjB07cGrbttzHtHb7WlKgYyB3h9zNxtiNHM/5DQ/HbiRl5rPlRAJ3hvvYOrwSVaf2LY2i15P81TwAPEaMwKjRYKwiz+dm7attEIFjhw7k7txJ0oIF+L74YmWGV3kcvFF3ehbN5rdR1k/DENoTdBUbQpyYmU9ajh61Cmp72HGBW3//xmTG8Hfs3wAMiBhQrX8fSpP41VdgMODYvj26Zs3K9ByrxN8HlQqP4cNJfvttkr/+Guf+/atcyflbUVIbPx7+OIuOLuJE2gl2xu2kjX8bW4VXYS52KuYOaskT3+5l34U0RizczfzBrXC0q9y52eV5D2dv3UpeVBQqRwdcBw+uVn8H3IcPI33VKrL+/pusqCjsGzaslPNWib8RV5U1BpVSjksXnp6eZR5XnZqaWtbDlsmlS5eoVasW//zzDx07dizaPmXKFDZv3syuXdcvqrdjxw5OnTpF8+bNSU9P54MPPmDLli0cPXqU4ODgEs8zY8YMZs6ced32pUuX4uTkZLknVAUFLViIS3Q06a1bkXB1wcgtl1X8fN78h6pviJGewba/0nUpG+Yc05BtUNHA3cRTDU1o1OC3ahUeO3aSHRFB3NWqgzVZrCGWr7K+QoOGBmmT2BXvSWsfE0PCpTfLWtx27ybg5xUYXF059+IUFF31WjjW6eQpgr/5BpNOx9mpL2GqBkMdK0JtKqD7sSk46VM5HvgIJwMqNj84+oqKucc1+DkovBJptEhsv+X8xq6CXURoIxjiMsQix6xKtFeuUO+991EZjcQ+/RS59arXfDNVQQH13nkXbXY2lwc8TmbLlrYOyep+zfmV3QW7aaRtxCCXQbYOp8IuZMEXxzTkGc3fDUY3NKGrigUtFYWQz7/AMTaW1DvvJPm+vraOqNwCln6P26FDZLRsQfzVNbRuJzk5OQwcOJD09HTcblD4qlyXaD7++ONbjatSdezYsVhC1qlTJxo1asRXX33FG2+8UeI+U6dOZeLEiUW3MzIyCAkJoWfPnjdsyMqg1+tZv34999xzT7FFoC0h79gxLkZHg1pNs5kzaX21jGgfIHTbOd778xSrYzU0axLByM51LXru8jiTlM3r3+wh21BA81puLBzWBlcH89tY36w5F+67D+eTJ+keGoZ9g4hyHdua7Wstu9fv5kDSAeo0u8CueE+Opmu58+6uRW1SlVTH9r2Wotdz4dPPMAABY56m4QMP2DqkYsrSvsq9CrHbt1MQHU271DS8/ve/So6y8qjqGuCXp2mYspawAW+DY/mH41zefh6On6RVaAD33NP4lt+/6fnpzFo1C4CJd02kXUC7Ch2nKkt68y3SjUYc27al29iyV02sSn8fUhMSSZ0zhzr7DxAydWqVL9pRVqW1caP0Rjy8+mGiDdE0u7MZIa4hNozy1rSPucLwRfs4kQ4/J/nw0aPN8Xa2q5Rzl/U9nPPPP1yKjUVlb0+r12ei9amao09uJL9ePWIffQy3qCM0e7s5ulI6LiwlK9/A88sO0dI+gScfsv3fiMJRbjdTrm9iQ4cOrVAwluDj44NGoyEhIaHY9oSEBAICAsp0DJ1OR2RkJKdPny71Mfb29tjb25e4r61f1ELWiCV+/nzAvNq4c1jxYYHPdItAb1Tx0YaTvPPHSXL1ChN6hFf6B8+55GyGLNhLSnYBTYLcWDKyA+5O/7aDrn493Hr3ImPNWtIXLaLW++9V6DxV6bW+mRHNRjD+r/FsTfidun6tOJ9oYsOJZB5tU3U/JKtT+17rym+/Y4iLQ+PtjfeAAair6HO4Wfv6jBrFpUmTSF+6FN9RI1HX1IqrLR+HnZ+jSohCt+8b6Db15vv8x+kkc8XOhoFuRW16K+/fVdGryDPm0cCzAZ2CO9WYL++F9AkJZPxsngfnO3ZshdqpKvx98Bk8iLRvv6XgxAkKdu3C5c47bRqPpf23jSN8Irij1h1si9vG8tPLebFd9R1K3D7Ul2+HtWX4gj3sOJtK/y928tnASNrWrbzF4m/0HlYUhbSrc5k8H38Mx8DqOSdT17w5zp07k719Oxn/t5SAV1+x2rnSc/WMWLyfAzFXOGSnYbRKY/O/EWU9/y11pJ45c4ZXX32VAQMGFFX4W7t2LUePHr2Vw5bIzs6O1q1bs3HjvxVwTCYTGzduLNZbdSNGo5GoqCgCq+mb2lryoqPJ2rARVCp8nn6qxMc82z2M53uYe4Y+2XiKab8cxWiqvKGDpxIyGTh/J4mZ+TQMcGXJyPbFEqxCXiNGApCxpoZP7r/qruC7qOdejyx9FhGhxwBYsf+ijaOqeRSDgeSvzFX5vEeMQO1YfZcJcOvdC11QEMbUVNJXrbJ1ONajUsFdL5j/v2su5JW/vHPhGlkNA269sqDeqOf7498DMKTJkBqXYAGkfPMNil6PY5vWOLWvvr10Gg8PPK/28qbM/9rG0VSOJxo9AcDK0yvJKsiycTS3pkN9b1aN7UyorzPxGXk8Pm8nczedqdTvLKXJ2bmT3AMHUNnZFX1fqa68R5njv/LTTxjS0qxyjrTsAgZ9vZMDMVdwd9QyooERO21VHANasgpHunnzZpo1a8auXbtYsWIFWVnmX8pDhw4xffp0iwV4rYkTJzJ//nwWLVrE8ePHGTNmDNnZ2QwfPhyAIUOGFCuM8frrr7Nu3TrOnj3L/v37GTx4MBcuXGDUqOpRKrOyFC5Q6nZvb+xDQ0t8jEql4rke4bz+QBNUKliy8wLP/XCAAoP15//sOJPCQ3P/4XJ6HqG+ziwZ2R6vUrr/HZs2waljBzAaSVm4yOqx2ZpapWZoY3MP8/mC9YCJnWdTZc0sC8tYs6ZoXSzPxx+zdTi3RKXV4nX1b2bKtwtQjJaZa1QlNeoHPhGQlw57vynXrkbTv5UFGwTc+lDxP87/QWJuIr6Ovtxb995bPl5Vo09M5Mqyq+tiPfNMtU8ivYYPA52OnN27b4tS1R2DOhLqHkq2PpuVp1faOpxb1iDAlV/H3UH/lkEYTQrv/hFN74+38MeRyzaroqgoCkmffw6Ax6OPovP3s0kcluLUoQMOjRuj5OWRtnSpxY+flJnPgPk7ORKXgbezHd+NaEtty64Jb3UVTrJeeuklZs2axfr167Gz+/cL7913383OnTstEtx/PfbYY3zwwQdMmzaNli1bcvDgQf7444+isuwxMTFcvny56PFpaWmMHj2aRo0a0adPHzIyMvjnn39o3LixVeKrjvJPnSJz3ToAvJ+++XotQzrW5dPHI9FpVPx++DKPzdtB3JVcq8W38sBFhny7i8w8A63reLL86U74ul4/nPNa3leTaGteXalK+tTvg6vOlcs5cTQLTQJg1YGa34tXWRSjsehChNfw4dViXayb8Xj4ITTu7uhjYshcv8HW4ViPWgN3Xu3N+mcOFJT94sOFlGzyDSYcdGpqe9160aOlx81fQgY0HIBOUzWHmt6K1G8XoOTn49iyJU5lHF1SlekCAnC/z7zQfcrXNb83S6VSMbixuZz7/x3/P4ym6n/xxdley0ePteSdh5rh5qDlVGIWT3+3n/vnbGNN1GVyCyr3Oebs3kPu3n3mNdmqybpYN6JSqYp6s9K++z9MuZb7LpicZU6wouMz8XO1Z9lTHSwyoqCyVTjJioqK4sEHH7xuu5+fH8nJybcU1I2MGzeOCxcukJ+fz65du2jf/t9FDjdt2sTChQuLbn/00UdFj42Pj2f16tVERkZaLbbqKPnLr0BRcO3ZE4eIshWKuL9FEN8Oa4ubg5YDMVfo++lW/o4ufUHoisg3GHn3j2ieX3YIvVGhb7NA/m9U6T1Y13Lu1An7xo1QcnOtcnWlqnHUOtK3vrk6kZPPHgBW7I+rlmueVEUZf/xBwblzaNzd8Rw40NbhWITayQnPQeYqYinffFOz3ytNHwGPOpCTDPsXl3m3wqGC4X6uaNS31itzIvUER1KOoFVreTji4Vs6VlVkSEkh7YcfAPAZW/17sQoVfoHM3LCR/LNnbRyN9d1X/z487D2Iy4pj88XNtg7HIlQqFY+3q83WF+9m/N1hONtpOBKXwTP/t5/IN9bx1JK9/LTvIscvZ1g96Uou7MX63yPoasiara49e6ILDsaYlsYVC60tl5ZdwOCvd3E6MYtAdwd+fKojYX7VL8GCW0iyPDw8ivUaFTpw4AC1atW6paBE5cg/e5aMNWsA8Blz816sa90Z7svqZ++kebA7V3L0DF+4h7fWHLfIIoBH4tJ5YM525m46A8CTd9XnswGROOjKtuaFSqXCe6R1rq5UVf9rYJ4/cCJzJ44OOZxNzubQxXQbR1X9KSYTyXOvLhg5bCgal+rfi1XIc/AgVPb25EVFkbN7j63DsR6NFu543vz/7Z+AIf/Gj7/qRNFQwVv/cP/5lLkYxN0hd+PlUHkT8CtLyrffouTl4dC8Oc533GHrcCzGPjQUl+7dQVFI+aZ8w02rIwetA/3D+gOw8lT1HzJ4LXdHHS/0bMCWKd0Y0zWUYE9H8vQm/jyawKTlh7j3k600mvYHnd7eyNil+9lxJsWiF59y9uwhZ/du0OnwHj3aYse1NZVWi9cI8/Dz1AULUQy39h0wPVfPkG93Ex2fia+rPUtHd6CuT/X93K1wkvX444/z4osvEh8fj0qlwmQysX37diZNmsSQITVv7Y+aKOUrcy+Wy91349CoUbn3D/FyYvnTHRnWqS4A87acpdsHm1i2J6ZCE0wz8/R8uP4k/T/fTnR8Jl7Odswd1IqX+zRCXc4ryW69eln86kpVFuEZQXPf5hgVAxFh0QCsibr+Iogon8x16yk4fQa1qyuegwfbOhyL0np54fHwQwCkfFPDh0O1HAiuQZB5CQ79UKZdLFX0Is+Qx+9nfwfg4fAa2IuVmkraUnNBD59nxtSYXqxCPleHdaX/+hv6+HgbR2N9D4abRyhtjdtKUk6SjaOxPG8Xe17s3ZCtU7qx+tk7eLZ7OK1qe+DuaB7Ceyk9j9WHLzNg/k56f7yV/9t1wSJzz5O++AIAj4ceQlfDiq95PPggGk9P9BcvFk0/qYisfAPDFuwmKi4dL2c7lo5qT71qnGDBLSRZb731Fg0bNiQkJISsrCwaN27MXXfdRadOnXj11VctGaOwgoILF0j/zfzB7zNmTIWPY6/VMKNfE+YPaUNtLycSM/N58eco+n66lWV7YkjNLrjpMWJTc3jj92N0fPsvPt14CoNJ4d6mAax7/i7ubVaxP0bmyf3DAMtcXakOHgl/BIB07TbAxOrDtpvgWxMU68UaMgSNa/UcrnAjXsOHg1pN9pat5J04YetwrEdrD53Gmf+/60sow+9FYZJ1qz1Z6y+sJ7MgkyDnIDoEdbilY1VFqQsXoeTm4tCkCS5dutg6HItzbNkSpzZtQK8ndVHZh5tWV/Xd69PStyVGxcivZ361dThWo1KpaBLkzsR7IljxTGcOTe/Jgdfu4cenOjKofW0cdRpOJGTyysojDF+4+5aGEubs30/Ojp2g1eLzZM3pxSqkdnTEc7B5+Hny119X6HtHvsHI00v2Xa0iqOO7ke0J96/+n7kVTrLs7OyYP38+Z86c4ffff+e7774jOjqaJUuWoNGUbViXsJ3kefPAZMK5y104Nmt6y8e7p7E/6yfexat9G+HuqCM6PpMXf46i7ZsbGDjfXD71x72xrDsazz+nk/l+dwyv/n979x0eVbU1cPh3pqb3HhIIvfciKKBSBSt2LID12r14bdeu12tXPttVUYq9IjZEAUFQkN4TQksIIb33ZMr5/pgkEIGQhJmczGS9zzNPkpkzZ9bsnCnr7L3XXryTaW//ydiXVvLBHymUVVvpGuHHG1cP4u1rBhPm13iBi1MJmjat/uxKyS+/nPZzbOsmdZqEn9GP/OoMfAJSOVJUyc4jMmSwpcp++43q5GR0vr6EXH+d1uG4hCkujoDJkwAomDdP42hcbOA1YPSBnEQ49Gejm1ZZbKTmlwPQ4zQ/6OuGCl7S7RJ0ivuUHm4KW1ERhR9/DHjWXKy/qytSUPTFF9iKPf89dVo3Rw/34v2L29WJumBfE8MTQnj2kn789e9xPDq1F74mPX/uz+eGBRupqGnZydq8t2p7sS65GKOHTqcJnj4dxdub6sQkKtata9Z97XaV+77czh/78/Ax6fnwhuH0jjn9iq5twWm/48fHxzNlyhSuuOIKunXr5oyYhIvVpKdT/J3jDFX4afRi/Z3ZoOem0Z35/f6zuX9SD/rEBGCzq6w9kM8LS/fwwNc7uOWjzUx/fz0PL9rJx3+lsSWtCLsKo7uFsWDWMH69dwwXDIhxyof1sWdXPH5yP+Bj9OH8zo5qWJEdtgLwkwwZbBFVVeuHdwRfdy36wECNI3KdurVain9agiUjQ+NoXMg7CAZc5fh9/buNbro/pwy7CsE+xlNWM21ManEqm7M3o1N09XNdPEn+woXYKyow9+yJ3znnaB2Oy/iOGYO5e3fsFRUUfvaZ1uG43KROk/Ax+JBaksqWnC1ah6OJQG8jN43uzIc3DsfPbGDdwXxmzd/Y7HnnFVu3Uv7nn2AwEHrridch9QSG4GCCLnOMpsl/v+nzF1VV5akfdvPjjkyMeoV3rxvCgLggF0XZ+gzN2Xj27NlN3vbVV19tdjCideS/NxesVnxHjcJ74ECn7z/Ix8Qd53TljnO6kpZfwdLdmezOKKG40kJRhYWSKgsxgd70iQmgd0wAA+OC6BjqmnG3wdOnk//+B/VnV3xHjXLJ47QVl3W/jM+TP6dA3YKin8SSnZk8NLmnx55hdpWylauoTkxC8fEhZMYMrcNxqbq15SrW/UX+ggVE/fvfWofkOsNvgU3zYM9PUJwOgR1OuNmeY4YKns5rZ9E+x3zQs2LPIso3qsX7aYtsRUUUflTbi+WBc7GOpSgKoTffRMb9D1Dw4UeEzJyJzstL67Bcxsfow+SEySzat4hF+xYxJHKI1iFpZkjHED68cTgzPtjA+pQCZs7fwMIbhuNjatrX57perMCLLsTU4cTvN54iZMYMCj/9lPK1a6lKTMSrCcslvbVyPwvXHQLg5csHMLpbuKvDbFXNSrK2bt3a4O8tW7ZgtVrp0aMHAHv37kWv1zNkSPt9QbZ1lowMir51VA0Ku+N2lz9efKgPt4w58QLHraHu7ErhRx+R//4HHp9k9QjpQb+wfuzM24l38A4O541id0YJfWM9tyfG2VRVrS+1GzL9agzBwRpH5HqhN95Exbq/KPr6G8Jvvx19UJDWIblGRC/oNBpS1ziSrXGPn3Cz5KwSAHqexiLEFpuF7w58B3hmwYuCDz/EXlaGuUcP/MeP1zoclws47zxy5/wfliNHKFq0iBAPWc7hZC7pegmL9i1i2aFlPDz8YfxMbrYKrBMNjg/m45tGcN0H69mYWshNCzcxb+awU1Y8rty+nfI//gC9nrAmrEPq7kwdYgk47zxKfvyR/A/mEfvKy41u/+3WdF7+dS8AT1zQm4sGet5QymYNF1y5cmX95YILLmDs2LGkp6ezZcsWtmzZwuHDhznnnHOYOnWqq+IVpynvvffAYsFn+HB82kkyHDJjBuj19WdXPF3dkMHA8J2ADBlsrrJVq6javdvRi3XDDVqH0yp8zxyFuWdP1IqK+vWOPNaI2iE7mxeApeqEm9T1ZHU/jflYq4+spqCqgDDvMMZ0GNPi/bRFtuJiCj78CICw229H0XnWXLMTcRRTqi1VPW++xxdTGhA+gM6Bnam0VvJz6s9ah6O5AXFBLLxhOL4mPWsP5HPbx5tPWXUwt/ZkXeCFF2KKi2uNMDUXeqPjM7Pk55+pSU8/6XbrD+bzwNc7ALh1TGdmnZnQKvG1tha/M77yyis899xzBB9zljc4OJj//Oc/vPLKK04JTjiX5cgRir5xDF8Jv+tOjaNpPaYOsQRMngxA/gcePrkfmJwwGb2ip4wUFFMuP++UKoNNpaoqeW/W9mJdMx1DiOetaXQix64tV/DRx9irTpx8eITu50FAB6jIh90nXt5hrxPWyFpy0LEG4dSEqRh0zRo00uYVLKztxereHf8Jnt+LVSfo0mOKKS317GJKiqIcLYCxb7G2wbQRg+KDa3uwdKxMzuWez7ditZ040arcsYPy1Wtqe7E8dy7W33n16uVYK89up2D+ghNucyC3jFs+2ozFpjKlXxQPTu7ZukG2ohYnWSUlJeTmHr+GQm5uLqWlpacVlHCNvPfmOnqxzjgDn2HDtA6nVdWfXVm6lJr0IxpH41ohXiGcGXsmAN5B20jNryAxs0TjqNxDg16s2rPW7UXAeZMxxsRgy8+nePFircNxHb0BhjkSyhMVwCgoryG7xLFgcUuTrLKaMn5P/x2AqZ09a2SHraSEgo/aVy9WHZ23N8HXOdbLy29hqWp3MrXzVHSKjh15OzhccljrcNqEEZ1Dee+6oZj0On7elcWD3+w84XFQ34t1wQWYOnZs7TA1FXqT4/216JtvsBYWNrgtv6yaWfM3UlxpYWBcEK9eMbDZ66C6kxa/O15yySXMmjWLRYsWkZ6eTnp6Ot988w033ngj06ZNc2aMwgnqxpEDhN95h8bRtD6v3r0d87FsNgoWLtQ6HJerGzLoE7oDUPl5p+cvonm62msvVp1jh0Plz5uPamv5ujBt3uAZoDdD5jbI3N7gpj21JyTiQ3zwM7esB2p52nKqbdUkBCbQM8SzztIWLPwQe2kp5m7d8J84QetwWl3I9OkoPj5U79njmG/jwcK8wzgj2rG225KUJRpH03aM6R7OW9cMRq9T+GZLOi/90nCNwapduyj/fTXodO2qF6uOz4gRePXpg1pVReEnn9Zfb7HZue2TLaQVVBAX4s37M4aecl6bu2txkvXOO+9w3nnnMX36dDp27EjHjh2ZPn06kydP5u3a0sei7ch7t3Yu1sgzHAsrtkP1Z1e+/vq4syue5uy4s/Ex+FBNLjrvNH7eJfOyTqU992LVCbp0GvrAQCxpaZQuW651OK7jGwq9HCci2Ppxg5uSaudj9Ypu+VDBnw7+BDiGCnpS1T1bSQkFHzoW5A27o331YtXRBwURfPnlAOTPfV/jaFxvSsIUwJFkeXrPXXNM6B3Jc5f0A+DtVQdYuDa1/raCd94BIPCC8zF16qRBdNpSFKX++1bhxx9jr6wE4JkfE9mQUoCf2cC8GcNOey1Ud9Did0gfHx/efvtt8vPz2bp1K1u3bqWgoIC3334bX1/XlOMWLVOTfmwvVvuZi/V3PiNHYu7dC7Wy0uPXOvE2eDO+o2OuhDlwKwdyyzmYW6ZxVG1Xe+/FqqPz8SH4mtq15Tx9ONQgx7AvdnzZoABGUubpVRbMrchlQ9YGAKZ0nnJ6MbYxBR9+VNuL1RX/iRO1DkczITNngMFAxYYNVG7ffuo7uLFx8eMw6UwcLD7I3sK9WofTplwxLI77JnQH4MkfdvPzrizM6elU1PZihbaDioIn4z9xIsa4OGxFRRR9s4jPN6Tx4bpDKArMuXIg3U5zkXd3cdqnoXx9fQkJCSEkJESSqzYq/913a9fFGtluKgqeyLGT+ws9fXI/R+eCmIN2AlZWJOVoG1AbJr1YRwVfew2KlxdVu3ZRsX6D1uG4TsJYCIyDqiJI/qn+6j215dt7RbcsyVqauhS7aqd/eH/i/D2nopitpKR+qHV7m4v1d8boaAIvuABwnIzwZH4mP8bGjQXgp5SfTrF1+3PnuV259ox4VBXu+3on5qW/ARAwdSrmBM+smNcUil5P6A2Oz9LMuR/wxLeOkxGzx3dnfO9ILUNrVS1+l7Tb7Tz99NMEBgbWDxcMCgrimWeewW5vvKylaD016elH18Vqx71YdQImTcIYG4utsJDi2nbxVCOiRhDmHYZNKUfvt5dlidlah9QmSS9WQ4aQEIJq59Xmf/CBxtG4kE4PA2vXOtriKORgtdnZm+3o8W3pcMFjhwp6koKPHL1Ypq5d8J80SetwNFc3HKp0+QqqDx7UOBrXqhsy+HPKz9hV+X53LEVReOrCvkzqE0l8fjpR+xJRdTrCbmu/vVh1Ai+5BCU4GF12Jmcc3s6UflHceW5XrcNqVS1Osh555BHefPNNnn/++frhgv/973954403eOyxx5wZozgNR3uxRuEzeLDW4WiuPU3u1+v09R+OxsCtbDpUQEF5jcZRtT3Si3W8kFkzQaejfM0aqpKTT7m926pLsg6ugqI0UvLKqbHa8TXpiQv2afbuUotT2Z2/G72iZ1Inz0lEbKWlFCx0zMUKb+e9WHXMXbrgN24cqKpnn4wARncYjZ/Rj6zyLLblbNM6nDZHr1P4v6sGcUfaSgD+ih9MXki0xlFpr0Zv5JfujjUCr01dzYuX9veoOapN0eJ3yoULF/L+++9z22230b9/f/r378/tt9/O3LlzWbBggRNDFC3l6MVaDEgv1rGCpl3imNx/+DCly5ZpHY5L1Q0ZNPnvwU4NK/fIkMFjSS/WiZni4giY7EgS8t/34C+QwZ0gYQygwrbP6ote9Ijyb1FZ4boKbGfEnEGod6gTA9VWwUcfYS8pkV6sv6nrzSr+/gcs2Z47UsCsNzMufhwgVQZPav9eeh3chh2F+V3OYca8DRRVtN+Tmqqq8u9FO3k/dDBVehMd8g7DZg8efn4SLU6yCgoK6Nnz+NK0PXv2pKCg4LSCEs6R9847jl6sM8/EZ/AgrcNpMxpM7p/r2ZP7e4X0ooNfB1TFgsFvjwwZ/BvpxTq5kNr5iyVLlmA54sFryw26zvFz28ckZRQB0LOF87F+TvkZ8KyhgrbSUgoW1M7Fuu02FL1nl1xuDp9BgxzVei2W+jbyVHWjIn5J/QWL3aJxNG1PXm1V7YJ+/amJjWd/Thk3LdxElcVzR8s05oM/Uli09QgVXn4w9SIACjy8x/dEWpxkDRgwgDfffPO46998800GDBhwWkGJ01dz+DDF9b1Y7W9drFMJvvYaFLOZqt27PXpyv6IoTOzkqAJmCNjJ6n257fZN/++kF6tx3n364DtqJNhs5Hvy2nK9LgBzIBSloaSscVzVgiTrYNFBUktSMegMnB13tpOD1E59L1aXLgRMnqx1OG1O6M03AVD0xRfYios1jsZ1hkcPJ8QrhKLqIv7K+EvrcNqUyl27HUteKAplE85l3vWD8fcysOlQIfd/vQO73XNP5J7IH/vy+O+SJAAemdKLvvfcCno95WvXUbl7t8bRta4WJ1kvvvgi8+bNo3fv3tx4443ceOON9O7dm/nz5/PSSy85M0bRAnnvvAM2G75nnYXPIOnF+jtDSAhBl7aDyf1Qn2QZ/fZQYalk3cF8jSNqG8pWSi/WqdT1ZhV95cFryxm9od+lAPTNcxSt6BXV/KIXK9JWAHBG9Bn4mzyjPLGtqIiC+QsA6cU6Gd8xYzB37469osKjlwYx6AxM7Oj4LPn10K8aR9O25P7f/wHgP3UqNZGRdI/0551rh2DQKfywPYOXf/Xgea1/cyi/nDs+3YJdhcuGdGDWmZ0wxsYSMMXRE1rwwTyNI2xdLU6yxo4dS3JyMtOmTaOoqIiioiKmTZvG3r17GT16tDNjFM1Uk5ZG8eLvAAiXXqyTCpk58+jk/qQkrcNxmd4hvYn1iwWdDBmso9rt9R+MIdOvll6sk/AdNQpzr3awtlz/qwAYY1uPF9X0aEGStTzNsXhz3dwVT5D/wTzHuljduxMw5Tytw2mTFEWp780q+PAjj14apO6E3W9pv8mQwVoVmzZRvmYNGAyE3H5b/fVndg3juWlHFyv+fEOaViG2mvJqK7d8uJniSgsD4oL4z8V96wtdhN54AwAlS5dSk56uZZit6rRKBIWGhnLhhRcya9YsZsyYwfDhw9m0aRPff/+9s+ITLZD7xpuOXqzRo/EeOFDrcNosU3x8/fCXvHff0zga1/n7kMEVSdntbvjC35X8tITq5GR0fn71vTXieMetLVdRoXFELhI3nCq/OPyUKq4K2Im/l7FZd88syyQxPxEFxWOGClpycij4yFHaPvzee6WiYCMCzjsPY0wMtoICj14aZHDEYEK8QiipKWFj1katw9GcqqrkzJkDQNCll2KMa7gu3uVD47i7tmT5I4t3sXpvbmuH2GrsdpXZX24jObuUcH8z7103BC/j0Z5vr5498R09Gux2CubN1zDS1tXid82lS5cSHx/PyJEjufDCC7n44ovrL5dccokzYxTNULVnDyU//ghA+L33aBxN2xd6660AlP7yCzUHUzSOxnUmdXRUBDP47SG7tJSdRzx37sCpqBYLuW+8ATjOrhmCgzWOqG0LmDwJY1wctsJCir76SutwXENR2BPuOOFyiWFts+/+22HHAqSDIgYR5h3m1NC0kv/Ou6hVVXgPGIDfOWdrHU6bphgMhNzgOFOf/8E8VKtV44hcQ6/T1/fULjvk2ZV5m6L8jz+p3LQZxWQ66bpY/5zQnUsGxWKzq9z+yZb6xc49zRu/7eeX3dmY9DreuXYIkQFex21Td8KuaNEirO2kQF6Lk6y77rqLyy+/nIyMDOx2e4OLzYPXHmrrcl+bA6pKwJTz8O7TR+tw2jyvHt3r1zop9OC5Wb1DHUMGFZ0Fg18yv7XjUu5F33yDJS0NfWgoIddfr3U4bZ5iMBB6y81A7fCx6mqNI3KNX/WO9Vz6Vm6E8ubNW6ybj+UpQwVr0tMprE2ow//5z3a3tk1LBF06DX1wMJb0dEp++UXrcFxmfMfxgGPIoM3efr/rqapaP+Q8+OqrMUZFnXA7RVF4/tJ+DE8Ioazayqz5G8ku8awhpb/uzuK15XsB+M/FfRnS8cQnLn1GDMerb1/UqioKP/64NUPUTIuTrOzsbGbPnk1kZKQz4xGnoWLTJsp+/x30esLvvlvrcNxG2D9qe7N++gmDh55dURSlftKyIWAnK5PbZ5Jlr6wk7y1Hqd2wW29F5+urcUTuIeiiizBERWHNyfHY4VBrCkPYae+EXrXB7kVNvl9BVQGbszcDMK6jZyRZeW++BRYLvqNG4XvGCK3DcQs6b2+Cr7sW8OylQYZFDSPQHEhBVQFbcrZoHY5mSpcto2rXLnQ+PoTeekuj25oNet67bgidw33JLK7ihgUbKa/2jN7Ovdml/POLbQDMHNWJK4bFnXRbx/xFxwm7go8+xlbimb16x2pxknXZZZexatUqJ4YiToeqquS8+hoAQZddhqlTJ20DciPe/frhO2oU2GyE/P671uG4TP28LL8kdhzJJafUs86mNUXhJ59gzc3FGBND0FVXah2O21BMJkJvckzuz39vLqrFsya9W212krNLWWw703HFzqYPi/z98O/YVTs9Q3o6Csy4uep9+yiunVcd/s97tQ3GzYRMn47i40P1nj2U//Gn1uG4hFFn5Ny4cwH4NbV9VhlULRZya79vhcyc0aTCSUE+JhbMHE6or4ndGSXc9dlWrDa7q0N1qeIKC7d8uInyGhsjO4fyyNRep7yP/4TxmLt1xV5aSkE76M1qcZL15ptvsmjRImbOnMkrr7zC66+/3uAiWlfZqlVUbtmCYjYTdvvtWofjdurGUwds3IQ1xzN7efqE9mkwZPD3ZM+dhHsituJi8ua+D0DYnXeiM5k0jsi9BF12KfqwMCwZGRR//4PW4ThVan45NVY7y/VnoaLA4fVQmNqk+9YNFTw3/lwXRth6cl5+Bex2/CdMwLtfP63DcSv6oCCCL78MgPy5czWOxnXqhgyuSFuBXXXvRKElir7+mprUVPQhIYTc0PTCSfGhPrw/Yyhmg47f9uTw1A+JbtvjabOr3PnZFlLzK4gN8uatawZj1J86pVB0OkL/4fi+VbDwQ2xl5a4OVVMtTrI+++wzfv31V7755hveeOMNXnvttfrLnNpqK6J1qDbb0bMq11+HMTJC44jcj8+wYXgNHoTOZqOwdl0YT6MoCuPjHR+OBv/d7W7IYN4772IvLsbUtQuBF12odThuR+flRWjtemJ5772L6kFzb5MySwEIieqIkuCYm9WU3qxySznrMtYB1L+23Fn5X+sdQ84NBsJn/1PrcNxSyMyZYDBQsWEDldu3ax2OS5wRfQb+Rn9yK3PZnuuZz/FkbGXl5NYuYh92x+3o/Zo35HxQfDBzrhyIosBHfx3igz/cs+DW8z8nsWZfHt5GPe9dP4QQ36aftAyYPBlTQgL24mIKP/3UhVFqr8VJ1iOPPMJTTz1FcXExqamppKSk1F8OHjzozBjFKRQtWkT1vn3oAgPrh/SI5gu+xTGuuuSrr7B4aG9W3ZwRg98e1uzNwuLmwxWaqiY9vX6ibeQDD8iiqi0UfNWV6AMDsRxKo2TJz1qH4zSJmY65AT2jAqB/7TDSHV/BKc4yrzmyhhp7DfH+8XQN6urqMF1KtdvJefFFAIKvuAJzQoLGEbknY3Q0geefD0D+++9rHI1rmPQmxsaNBdrfkMGC+fOx5edj6tiR4CuuaNE+zusXzSNTHEPrnl2SxNJdmc4M0eU+25DG3DWO5PCly/vTJyawWfdX9Pr60UMF8+djL/fc3qwWJ1k1NTVceeWV6GTtDE3ZysrJrR2eGX77begDm3ewi6N8Ro2iMj4etbraYz8cB4QPINQrFEVfRYVhL5tSC7UOqVXkvvoaqsWC76iRjrU6RIvofH0JmTkDgLy33vKYUtW7apc06BsbAL0uAIMX5CVD1o5G7/fbIUfp9nHx49y+Al/JTz9RlZiIzteXMFnE/rSE3uQYQla6fAXVBw5oHI1rTOg4AXAswu2uQ96ay5KTQ/58xxpP4bNnoxibt57esW48K4HrzuiIqsI9n29j8yH3KLr15/48Hlu8C4B/ju/O+f1jWrSfgClTMMbHYysspPDzL5wZYpvS4gxpxowZfPGF5zaMu8j/4H1suXkYO8YTfPXVWofj1hRFIX+i44Oj6PMvsGRnaxyR8+kUHefEnwO0nyGDldu3U7JkCSgKEfff7/ZfhrUWfN116AMDqUlNpeSnn7QO57SpqsruDEdPVt+YQPAKgG6OIjHsOnmVwRpbDauPrAbcv6qgvbqanNccQ85Db765SRP5xcmZu3bFb7xjaZC8t97SOhyXGBUzCm+DN1nlWSQWJGodTqvIe+tt1IoKvAcMwL/2u0JLKYrCExf05tyeEVRb7cyav7HNr6G1P6eMf3y8Gatd5eKBMdw9ruW994rBQFjtOqX58+Z57EL3LU6ybDYbL774ImPHjuWuu+5i9uzZDS7C9SxZWRTUzh+KuO8+FJnIf9oqunbFa/Ag1Joa8t/zzInLdWv5GPwSWbEnS+NoXEtVVbJffAmAwIsvxqvXqasficbp/fwIqT1Tn/vW225faTCrpIqC8hr0OoUeUf6OK/te6vi5e9FJhwyuz1xPuaWccO9w+oW5d4GIwo8/xpqRiSEykpAZsnacM4TfeScAJUt+pio5WeNonM/L4MVZsWcBjjWzPF1V8t76xdgj7v+XU07WGfQ63po+mCEdgympsnL9Bxs4XNA2k428smpuWLCR0iorQzoG8/yl/U+7DQIvvABjhw7Y8vM9dm5Wi5OsnTt3MmjQIHQ6Hbt27WLr1q31l23btjkxRHEyua/NQa2qwnvoEPwnnN5ZFVFLUQi5wzFUpujLL7FkutdY6aYYETUCX6MfOmMpKaVJbfZN3RlKly2jcvNmFC8vwu+9R+twPEbI9OnoQ0KwpKXVl/t2V7uOOM4ed4vww8tYO1ev20Qw+UFRGhzZfML7HVtVUKe477B5a14eef97B4Dwu+9G5+2tcUSewatnT/zPmwxA7htvaByNa5wT5xgV4elJlqqqZP/3v46qm5Mm4TN0qNP27W3SM2/GMHpE+pNTWs21H6wnt7RtLfheUmVhxrwNpBVUEBfizXvXDTn6XnkaFKORsNrvW/lz38dWWnra+2xrWvzJsHLlypNefvvNs19wbUHl7t31X24iH3xQhkA5kc/w4fgMG4ZqsZD37rtah+N0Rr2RMR0c85KMHjxk0F5VRc4Ljon8IbNmYpSF051G5+tbv6hk3ltvo9bUaBxRyx2dj3XMfFaTD/Q4r3aDb467j81uY+XhlYD7l27Pee017GVlePXpQ+DFF2kdjkcJv/NO0OkoW76Cyl27tQ7H6cZ0GINBMbC/aD9pJWlah+MypcuXU7F+PYrJRMT99zt9/4E+Rj68cThxId4cyq/gug/Wk1/WNhKtKouNmxZuYndGCaG+JhbOGk6on9lp+w+88AJMnTtjKy6mYOGHTttvW+G+p9/aMdVuJ/uZ/4CqEnD++bKWiQuE3eUY6lH0zSJq0o9oHI3z1Q8Z9N/Nij2eN/cMHOO8LUeOYIiMJKw2IRDOE3zVlejDHetmFS36VutwWmx3Rm2SFRPQ8Ia6IYO7FoG9Ybn6bbnbKKgqwN/kz7CoYa0RpktU7txFce3/LvKRR6TqppOZu3Qh8AJHpcHc1/9P42icL9AcyNAoR6+Op/Zm2aurj56su2EWpg6uWXA8MsCLj24YQbi/mT1ZpUyfu548jRMtq83OnZ9uZUNKAX5mAwtvGE7ncD+nPoai1xNe+32rYP58rIWeVYxLkiw3VPrjj1Ru24bi40PE/f/SOhyP5Dt8OD4jzwCLhTwPHOoxOnY0Rp0JnSmf9Yd3U1njOWseAVgyMurn1EU8cD86Hx+NI/I8Om9vwm52LHuQ98472KuqNI6oZeqGCzboyQLoci54BUJZFqSta3BT3VDBszucjVHX8gpjWlJVlexnn3WcrLvgAnwGD9I6JI8UdscdoNdTvnoNFVu2ah2O09X15P522DOTrIIFC7Gkp2OIiHD5ybpOYb58fssZRPibSc4u5er3/tJs6KDVZudfX21neVI2JoOO92cMPf490kn8J03C3LMn9vJyCubNc8ljaEWSLDejq6wiv3bh4fDbb5MhUC4UUVvApfj77z1u4rKP0YdRMSMBsPvsZN3BPI0jcq7sF19CrarCZ9gwAqZM0TocjxV05RUYoqOxZmVR+In7TVzOLa0mq6QKRYFe0X/ryTKYHeXcoUGVQVVV68/a1/UIu6OSH344erLuX/dpHY7HMsXHEzTtEgBy58zxuHLndfOytuVsI6/Ssz5HLFlZ9VMGIv51Hzrf5i083BJdwv34/JYziAwwsy+njKvn/kV2SeuewKq22rjj0y0s3paBXqfw5tWDOKNzqMseT9HpCL/nbgAKPvoYa26uyx6rtUmS5WZCly93LITXqRMh10sVKFfy7tcP/8mTQVXJrU1sPcmxQwZ/2+M587LK//qL0qVLQacj8tFHZL6iC+nMZsLvuguAvPfew1ZcrHFEzVM3VLBzmC++ZsPxG/SZ5viZuBjsjjXBkguTOVJ2BC+9F6NiR7VSpM5VtXcvOS+9DEDYrbfKyToXC7vtNhSTiYoNGyhfvVrrcJwqyjeKvqF9UVFZdXiV1uE4Tdkff5Jy+eX1JdsDaheYbg2dw/344paRRAd6sT+njIve/LP+vcrVKmqs3LRwE7/sdvRgvXvtECb2iXL54/qdfTZeA/qjVlXVF+LxBJJkuZHq/fsJWrsWgMhHH5WS7a0g/J67Qa+n7Pffqdi4UetwnOrsuLNR0KH3ymTFvj1ufYbVXllJ+V/ryX3rLTL//QgAwVddhVePHhpH5vkCL7oQc7du2IuLyZ/rXsse1K+PdbJhMAljwScUKvJRUtcAsDLdUfDizNgz8Ta4VyW+iq1bOXzb7aRceBHW3FyMcXH1i0sL1zHGxBB87bUA5Lz8CqrNs4Zn1w8Z9IB5WfbqarKfe47DN92ELTcPU5cuxLzwPIqudb8udwrz5ctbR9Il3Jeskiouf2cdv7l4/nRBeQ3Xf7CBNfvy8DHpWTBzGON7t84JGEVRiPinY/RQ4ZdfUp2S0iqP62onOHUn2iJVVcl77jkUux3fcePwO+tMrUNqF8wJCQRdfhlFn39Bzsuv0PHzzzymZyTYK5jBEYPZnLOJPHUz+3Im0z3S37UPqqrYSkpQy8uxFRUdcyl2/CwtxV5ZgVpZhb2yErWqEntFJfaqKtSqKlSr1fEFpfZn3e/2qio45ouLPjyM8Lvvcu1zEUDtxOX7ZpP+j9so+PAjgq+5BmN0tNZhNUl9ZcGYkyRZegP0vhg2fYBu97egn1xfVdCVQwXtlZXYCgqwFRcfvdS9ToqLsZeV1b4mKrFXVmGvqnS8ZqqqUGtqUG1WsNqOe62olZWOB1AU/CdOJGL2P9GZnVcpTJxc2K23UPTNN1Tv20fx4u8IunSa1iE5zbnx5/L61tf5K/Mvyi3l+BpdP6xOtduxl5Rgzc/Hmp/veL0UFmIrK8NeXo69vMLxs+7vykrHa8NiOXo55m/sdseJxrq/geDp04m4/1+aLWsQF+LDotvP5PZPNvPn/nxuWriJh8/rxY1nJaDTOfd7yOZDhdz56RYyi6sI8DKw4IbhDI4PdupjnIrvGSPwHTuG8t9Xk/vqa3R44/VWfXxXkCTLTVhzcrGkH8FuMBAmxS5aVdjtt1P83fdUbt9O2YoV+I8fr3VITjOh03g252yqHzJ4ukmWWlNDzeHDWNLTsWRmYcnKxJqZhSUrC0tmJl0zMkixWp0UfUOGyEh8hgzBe+gQAiZMQB8U5JLHEcfzGzsWn6FDqdi0idw33iTmv89qHVKT7KodgtMnNuDkG/W9FDZ9gJL8IwXdBrK/fD8GxcCYDmNa9JiqqmLNyaEmJRVLRgbW7CwsWdmO10pWNtasLNcNuzQaCbzwAkJvvAlz5wTXPIY4IX1gIGG33krOiy+S+/rrBEw5z2PWJOsc2JlOAZ1ILUnljyN/MKnTpNPep620FEt6OjXp6VjSj2A5csTxuZKdjS0vz1GFzkWfJfrQUKKf/Q/+Z5/tkv03R6C3kQWzhvPY4l18vvEwzy5JYmVyDi9c2p+4kNMv6KSqKvP+TOW5JUlY7Sqdw3x557ohrj/hehKR//oXB9f8QemyZVRs2YLP4MGaxOEsbpdkvfXWW7z00ktkZWUxYMAA3njjDYYPH37S7b/66isee+wxUlNT6datGy+88AJT3HAivDEygvjF3/L7++/TPdY1JUTFiRkjIgi5/nry332XnJdfwW/sWBSje1YU+7tz487l+Q3Po/c+xLI9+/nH2C5Nup+1sJCaAweoTkmh5mAKNSm1l/T0Bj1Kf1c34ELx8UEfFIg+MMjxMyjIcQkIROftjc7bC8Xbu/Z3bxQvb3ReZhSDAQxGFIPeUW5ab0AxGtB5eaEPC/OYXkZ3oygKEff/i9Qrr6J48WJCZs7Aq3t3rcNqVHGFhcMFjp6dPifryQKIHwn+0SilmRwqXwXA0KihBJobr7Rlr6mhZv9+qg8cpCY1lZqUFKpTU6hJPYRaceoFwBWTyfGaCAxEHxiILsjxUx8UhN7Pz/Ga8PZC8fJCV/+7N4rJiGIwouh1jtdH3WvFYHDc31+bL08Cgq+ZTuHHH2PJyKDgw48Iu/UWrUNyCkVROCf+HObvms+KtBVNTrJUVcWakUH1gQNU79vv+Ll/PzWpqdhLSpq0D11AAIbQUPShIRiCg9H5+qHz9XVc/PzQ+fo4fvfxQTGZUIxGdLU/MRpR6i56Peh0KIqCITy8TU3HMOp1PDetH71jAvjvkiTWHshn8pzVPHp+b64aFtfiz7292aX8d0kSq5IdhSam9o/mhUv743ei+amtxNytG0GXTqPoq6/JefElOn72qVt/rrtVkvXFF18we/Zs3nnnHUaMGMGcOXOYNGkSycnJREREHLf92rVrufrqq3nuuec4//zz+fTTT7n44ovZsmULffv21eAZnB6dtzeVXZr2JVg4V+jNN1H09dfUpKZS+NlnHlN0JNovmq6BPdlfvIedRWsprjyXQO+jCaSqqlgzM6lKSqIqMcnxMykJa2bmSfep8/HBGB+PMSoKQ3QUxqhojNFRKGHh/LEniXFXXIHZz7lrbQjteQ8YgP+kSZT+8gs5L7xI3Ptz2/SHY91E8vgQnwbH/HF0OuhzCfz1NrutyWCA8fENe7PtFRVUJSdTlZjouCQlUb1vP9QOOzqOXo+pQweMsbH1rxFDVCTGqCjH6yYqCp2fX5tuP9F8OrOZ8HvvIeOBB8mfO5egKy7HENy6Q7Jc5dy4c5m/az5r0tdgsVkw6hu+puxVVVTXvkYqd++mOnkvNQcOYG/khIM+JARjbCzGDrG1r5cOGGOi0YeGYggLwxAc3KaSIVdSFIXrR3ZidLdw/vXVdjYfKuThRTtZ8Gcqt4zpzAUDYjAZmjZvLLukiteW7eXLTYexq2DUKzw6tTfXj+zYJt5zwu66i+Iff6Jy2zZKf/mVgMmn3zOqFbdKsl599VVuvvlmZs2aBcA777zDTz/9xLx583jooYeO2/7//u//mDx5MvfXrtD9zDPPsGzZMt58803eecdzqpcI19P7+RF+z91kPf4EuW++RcAFF3jMh+N5nSfwxtY9GH128dfKTZxhy69NphKpTkw66dAlY0wMps6dMSUkYErohLn2d0NExAnfqC0WC5bcHJkD4sEi7ptN2W+/Uf7nn5StWoX/OedoHdJJ1Q0V7NvYUME6fS8lZ+O77DFY8KlSOSsniPx1C2oTqkRqDqaA3X7c3XSBgXh164YpoROmTglHf3aIbTdfDkVDAeefT/78BVQnJZH7+utEP/GE1iE5Rf/w/oR5h5FXmcfG1D8YWBJE1e7akw67d1O9f/+JRzkYjZg7dcTUtSvmLl0xd+3q+EzpENsqJdPdTUJtQYx5f6QwZ/lekrNLue+r7bz8azJXDotjWKcQ+ncIxN+rYZKbXVLFiqQcViRls2Z/HjVWx/vV5D5R3D+5B12cvMjw6TBGRBB6ww3kvfUWOa++iv+557jt+6XbJFk1NTVs3ryZhx9+uP46nU7H+PHjWbdu3Qnvs27dOmbXrnVUZ9KkSSxevPikj1NdXU119dHF30pqu6wtFguWk52VbCV1j691HJ7qVO3re+GFmD75lJrkZHLm/B/hjz7SmuE5lWq1UnPwINWJSYzevpfwv6x0yk7Ey3IDGX/f2GDA1Lkz5p49MffqiblnT0w9epx02JH1JOPk5fh1rbbQvkp0NIHXXUfRvHlkP/c85uHD2+yH447DRQD0ivQ7aZtZ8/Op3rOH6sQkDq6P5PWfrEQVQQn38vfBTPrwcMy9ejleJ717Ye7VC0N09AlPOFjh5L1c7VRbOH5bS9j993Pkhhso+uJL/C+9FHMrVUF1RRvbKyqoTk6mOjGR+1d7od9nJfD5Ozh0gmq1+pBgzL16O14fPXpi6tYVY1zcCYff2wCbmx0LrXkMzxwZx7SBUXy2MZ0F6w6RWVzFnOX7AFAUSAj1Ra+DSoudyhob+eU1De4/OD6IByd1Z3B8UKvF3BwB119H4RdfYElLI3fBAoJnzWpT7xFNjUFR3aRuc0ZGBrGxsaxdu5aRI0fWX//AAw/w+++/s379+uPuYzKZWLhwIVdffXX9dW+//TZPPfUU2dknLoX55JNP8tRTTx13/aeffoqPz+lPMhTuzfvAAeLem4uqKBy69x5qoly/fsRps1oxZ2djPpKB15EjmI8cwZyZie4EyVCVwYA9NpaamBiqYqKpjomhJjIS1UPmoAnXU6qrSXjpZQylpeROOY/CsWO1DumEnt2qJ6dK4R+9bPQKsGHMz8ecmXn0ciQD40nmhViCg6mKjaE6Jobq2FiqYmKwBTShR0yIWtGffIr/jh1UJCSQfustjm/GbZy+tBRzRibmzAzHayQjE1NuLsoJvkZa/fyo6hDreH3EOn5aAwPd4nm6G4sdNucpJBcppJYpFFQf38YKKvF+0DfYTp9glRiftv+vCNi8magvv8JuMpFy/7/a1HtsRUUF06dPp7i4mIBG4nKbnqzW8vDDDzfo/SopKSEuLo6JEyc22pCtwWKxsGzZMiZMmIBRvvQ6XVPbN/PgQcqXr6DXX+uJefedNjGGGUC1WLCkpVFz4IDjsv8ANQcPUJN66IRVmBRfX8eZ9169WOVzmA/ta0gz9OPDC19naIfGJ/W3hBy/rtWW2rdE0ZHz2GNE/L6aYfffjyEsTNN46qh2O9bsbIr3HmBE4q90LMniwv3l2A/sQ62sOv4OioKxY0d0Pboyz7KSA5Eq/1UL6fqvP8EsBSScqS0dv63BMmgQaRdehE9KCqP1esfC965+zCa2sa2oiJqUFCy1BVtq9u6lOnkvtry8E26vDw/H3LsXhp49eLroE5LCq5kz7R0Ghvd31VNpk7Q8hi865ve8smr2ZJWh14GXUY+3UU+Ev5kQ37Y5quBk1MmTSd+TTPWOHQzYtp3QZ55uM+8RJU0szOI2SVZYWBh6vf64Hqjs7GyiTtKbEBUV1aztAcxmM+YTzBkxGo2a/1PrtKVYPNGp2jfqwQc5+PtqKtetI+/Jp4j897/R+7XO2HFbScnRsrZHMhwlbdPTqTmSTs2htJMOQdIFBODVpzdevR0X7z59MMbH1y+w2C93J0eW/IHOlszKfVkMTXDdl2I5fl2rLbRvyKXTKPnyS6p27qRwzhyin3uu1RbztJeXY8l2lEK3ZGZRcziNmpRUR4W/Q4dQqxzJ1O2129fNElHMZszdu+PVswfmHj3x6tUTc4+e6P18+eHAD3z3xyo6WyAhvRwOLIMBV7bK82lv2sLx2xqM8fGE3nIzea+/Qf4rrxI0bhy6VhotYwDUY14jlsxMag6l1leKtRUVnfiOioKpU6f614ZX7fBx4zGFxwJ/z6Iw9WdWZ65hcMyQVnk+bY3Wx3B0sJHo4LYzx+p0RD/+OKmXX07ZTz8RePllgPbtWxdDU7hNkmUymRgyZAgrVqzg4osvBsBut7NixQruvPPOE95n5MiRrFixgnvvvbf+umXLljUYbihEc5ni4oh44AGy//tfihctomLTJmJffAHvgQObvA/VZqtdMPHoYom28nLspWXYCguw5uVjLcjHll/gWGgxPx9rXh72srJG96vz8XFMIO7aFXOXLpi7OX4aYmIa7XHrE9YHf0MopeTzy4E13I/7Vd8UbYei0xH574c5dPV0xxpzO3YSetNNBF5wfpPnaKk2G2qVY4Fde2Ul9pKSYxbmrV2ct/Zva05O/XpT9tLSxndsNFIeGsl2AjF36cwF08bi1bMnpo4dHUsEnMCKtBUADCIaOAy7vpEkS5y20BtuoPibRViOHCHrqacIuvIqvPr2QdfU14iqOl4jlZWolZXYKyr+tnj10Yu1sBBLVjadDx3iwEMPwylmihiiozEnJGBKSMDcrZvj5EP37qdMBM+NP5efU39mRdoK7h1yb1ObQogT8u7bh6DLLqPoq6/Ife55mDlD65CaxW2SLIDZs2czY8YMhg4dyvDhw5kzZw7l5eX11Qavv/56YmNjee655wC45557GDt2LK+88gpTp07l888/Z9OmTbz33ntaPg3hAUKuuxavnj048uCDWNLSSL3mWrz793d8MbRawGpDtVprLxawWI/+bbHUn01vCX1ICMYOHTB1iHWUt43tgLFDB8wJnU6ZTJ2MTtFxbvy5fHfwKw7XbCCndBYR/l4tjlEIn0GDiHzkEXLfeIOalBQyH3mE3P/7P4wdOqDarI7XiM0GNlvt68aKWl2NvaoKtbIStabm1A9yEjo/P4zRURgiozDGxtZW9euEOSEBY2wsN3+yjeVJ2Tw6tReBozs3uq9KayV/HvkTgATfs4ANcGAFVBSAT0iLYxRC5+VFxIMPcOTueyj+7nuKv/sexWTC3L07isFQ/7rAaj36GrFaUCur6l8nzVX3pU8xGjFER2OMjMQQHYUpvuPRKrEdO7a4V+2s2LMw6AyklqRysPggnQMbf30JcSrhs/9Jya+/UpOcTOD69XD++VqH1GRulWRdeeWV5Obm8vjjj5OVlcXAgQNZunQpkZGRAKSlpaE7ZkjKqFGj+PTTT3n00Uf597//Tbdu3Vi8eLFbrpEl2h6fYcPovHgxWU8+RcmSJVRu3dr8nRiN6H18ahdNdCyeqA8JxhASiiEsFH1IKIbQEMe6IKGhGKOiXFbW9vyuE/nu4FcY/JJYuSeLK4d1csnjiPYj5LprCbzkYoq++JKCBQscPU45Oc3ej+Llhd7fH31QILrAYxaxDnQs1msIC6tfZ8oQGYm+kXXYVFVlW21lwUHxp16GYe2RtVTZqojxjSHQMAA1oi9Kzi5I+gGGuNdZVdH2+E+YQMxLL1Hyy1Iqt2zFVlBA1a5dzd6PYjI5Fm+vW7D62EXeaxe1VkLDWH9gP2MvvRSvyEiXzCf2M/kxInoEfx75k9/SfqNzP0myxOkxBAcTfvddZD/zH4JXr3GcnHOTIcVulWQB3HnnnScdHrhq1arjrrv88su5/PLLXRyVaK/0AQHEvPIywddeizU3F8VoQDE4LhgMKAZj/XXo9Y6/TcajK9K3ofLWQyKHYFL8qDGU8V3yn5JkCafQ+/kReuMNBF93LRXr1mGvqUHRG1D0OtAbUAx6FL3e8fowmx1fFL28UOp+ms1Onc+VXlhJXlk1Rr1Cn5hTFzOqGyp4TodzULIV7L0vRp+zyzFkUJIscZoURSHwgvMJvOB8VFWlJjWV6v37Hce8Xu94rRhqXx8GA4pe73ht1F4UL2903l6O19ApWCwWqqurMISGurRg07j4cfVJ1k39bnLZ44j2I/jKK6nJzWVTeDi9m3CstxVul2QJ0dYoioLP4EFah3HajDojwyLP5M+sX9hZ8CcW29UY9a1TrEB4Pp3JhF8bKOde14vVKzoAL2PjH9YWu4VV6asAOCfuHLKysxxJ1qr/QOoaKMsBv4hG9yFEUymKgjkhAXNCgtahnJZz4s7hmXXPsDNvJ9nl2UT6RmodknBzisFA6B13YFuyROtQmkW+QQkh6l3ecwoAdp+dbEwp0DgaIZyvfqhgXNApt92YtZHSmlJCvEIYEDbAcWVwJ4gdAqodEr9zWZxCuKsw7zD615ZvX3V4laaxCKElSbKEEPXOjB2FDhM6YxGLdh+/wLcQ7m5rWiEAA+ODTrntb2m/AY4z83rdMb1efS91/Nz1jbPDE8IjjIsfB8Bvh3/TOBIhtCNJlhCinpfBi16BwwD4I2OVtsEI4WQ1Vju7MhyLSA6Ma7zohV211ydZdV8Y6/W5BFAgbR0Up7siVCHc2rnx5wKwIXMDJTVNW7hVCE8jSZYQooFpPScDUKLbyuGCCo2jEcJ5kjJLqLHaCfIx0im08RLVO/N2kluZi6/RlxHRIxreGBAD8bXrLe7+1kXRCuG+OgZ0pEtgF6yqlTXpa7QORwhNSJIlhGhgUsI5oOrQe2WzaOc2rcMRwmnq5mMNjAs6ZXW1uqqCYzqMwaQ/QRXQvtMcP3ctcmaIQniMut6suh5hIdobSbKEEA0EmgPp4N0PgJ8PLtM4GiGc59gkqzGqqrLikCPJOm6oYJ3eF4Oig4wtUHDQeUEK4SHqXjt/HPmDalu1xtEI0fokyRJCHOe8hAkAHK7eQGWNTeNohHCOuqIXp1qEeH/RftJK0zDpTIyOHX3ijfzCIaG2JL30ZglxnN6hvYnwiaDCWsH6TCmkJNofSbKEEMe5so9jXpbOO42f9+zROBohTl9heQ2p+Y45hgM7BDW6bd1QwZExI/ExNjJ3q77KoCRZQvydoiicGydDBkX7JUmWEOI4kb6RBOu7AvBN0i8aRyPE6duWXgRA53BfAn2MjW570qqCf9frfNAZIWc35CQ5I0whPMq4jo7X0MrDK7HZZVSEaF8kyRJCnNDomHMA2F38J6qqahyNEKdna1oRcOr5WIdLD5NUkIRe0XN23NmN79Q7GLrWJmLSmyXEcYZEDsHf5E9BVQHbc7drHY4QrUqSLCHECc0YcAEAVtN+th7J0DgaIU7PxpQCAIZ0bHw+1rJDjmIvw6KGEezV+LbA0SGDuxeBnIwQogGjzsjYDo65i8vTlmscjRCtS5IsIcQJdQ9NwEuNRVHsfLT9Z63DEaLFqq02ttQWvRiRENrotstSHUnWhI4TmrbzHueBwQvy90PWjtOKUwhPNL7jeACWH1ouoyJEuyJJlhDipAaGngXA+uzVGkciRMvtSC+m2monzM9Ml3Dfk253pOwIu/J3oVN09Wv8nJLZH7pPcvy+6xsnRCuEZzkz5kx8DD5klmeyM2+n1uEI0WokyRJCnNQ1facCUKLsIru0RONohGiZ9QfzARiRENLoIsTLDzmGMw2JHEKYd1jTH6DPMQsTy5l6IRrwMngxNs4xZPDX1F81jkaI1iNJlhDipMZ2GojOFoKis7Bgq1QZFO5pfe18rBGdQxrd7tdDji+AEztObN4DdJsIJj8oPgzpG1sUoxCebFJHR2/vskPLZMigaDckyRJCnJSiKHT1PQOAFbLOiXBDFpudzYdOPR8rqzyLHbk7UFBOXbr970w+0GOK43epMijEcc6MdQwZzCjPYFfeLq3DEaJVSJIlhGjUBd0cZ/UzLZupttZoHI0QzbPzSDEVNTaCfYx0i/A76XZ1VQUHRQwi3Ce8+Q9UX2XwW5D1gIRowMvgVV9lsK7HWAhPJ0mWEKJRV/Ubg2rzBV0lX+2WAhjCvaw/6BgqODwhBJ3u5POx6pKsiZ2aOVSwTpdzwSsQyrIg9Y+W7UMID1b32vo19VcZMijaBUmyhBCN8jIaiTIMAeDbvUs0jkaI5lmfUlf04uRDBbPLs9masxWA8fHjW/ZABhP0ucTx+7ZPWrYPITzYWbFn4W3wliGDot2QJEsIcUqTO00GYF/Zn1hsFo2jEaJprDY7m1Jr52M1UvSibpHUgeEDifSNbPkDDrrO8TPxO6gqbvl+hPBAMmRQtDeSZAkhTumGIRNQrf6ougq+SVqhdThCNEliZgll1VYCvAz0jAo46XZLDjp6aFs8VLBO7BAI7wnWKlkzS4gTkCGDoj2RJEsIcUohvl5E6EYA8EXS9xpHI0TTHDsfS3+S+VhpJWnsyNuBTtFxXsJ5p/eAigKDrnX8vvXj09uXEB7o2CGD23O3ax2OEC4lSZYQokmmdnaUqD5Qvp4KS4XG0Qhxak2Zj7UkxdGLNSJqRPMWID6Z/leCzgBHNkN24unvTwgP4m3wrl8i4aeDP2kcjRCuJUmWEKJJrh88GntNKKpSwzd7ZGFi0bbZ7OopFyFWVbX+i97UzlOd88B+EdDdMYdRCmAIcbzzO58PwNLUpVjsMsdXeC5JsoQQTRLu70WEzrEw8Vd7ftA4GiEat+tIMaVVVvzNBnpHn3g+VmJBIqklqZj15uYvQNyYuiGD2z8HWVtOiAZGRI8g1CuUouoi1h5Zq3U4QriMJFlCiCY7v3bIYEr5ZoqqirQNRohGrEzOAeCsbmEY9Cf+qKvrxTo77mz8TCdfqLjZuk4Av0ioyIN90usrxLEMOkP9/McfD/6ocTRCuI4kWUKIJps+eBi2qmhQ7CxKljWzRNu1MjkXgHN6RJzwdpvdxtKUpQBMSZji3AfXG2DAVY7ft3zk3H0L4QHO7+IYMrjy8ErKaso0jkYI15AkSwjRZNGB3oQrjiGDXyfLkEHRNuWVVbMjvQiAsT3CT7jNxuyN5FbmEmAKYHTsaOcHMeh6x899v0JhqvP3L4Qb6x3Sm4TABKpt1axIk2VBhGeSJEsI0Sznd3Gc9T9csZsjZUc0jkaI463em4uqQp+YACIDvE64Td1QwYmdJmLUG50fRFhX6HIuoMLG952/fyHcmKIo9QUwZMig8FSSZAkhmuWKgf2wlncBReWzRFlwVbQ9q04xVLDKWsXyQ8sBmJrgpKqCJzL8FsfPLR9BjSx7IMSx6obprs9cT05FjsbRCOF8kmQJIZqlY6gvUcoYAL7dtxi7atc4IiGOstlVft/rSLLOPslQwWWHllFmKSPWL5bBkYNdF0y3iRDUEaqKYOdXrnscIdxQB/8ODIoYhIrKkoMyx1d4HkmyhBDNdmXv81BtXpRYc/kr8y+twxGi3rbDhRRXWgj0NjIwLuiE23yzz9EDe0nXS9ApLvwY1Olh2E2O3zfMBVV13WMJ4Ybqhgx+u/9bVHl9CA8jSZYQotmmDUrAWjIQgE92yxl60Xas3OPoxRrTPfyEpdtTilPYnL0ZnaLjoq4XuT6gQdeCwRuyd0LaOtc/nhBuZErCFLwN3hwsPsjWnK1ahyOEU0mSJYRotogAL3r7TQDgj4xVsmaWaDPq1sc65yRDBb/d9y0Ao2NHE+Ub5fqAfEKg/+WO39e/6/rHE8KN+Jn86tfM+nrv1xpHI4RzSZIlhGiRqweOxFYVjR2rVIcSbUJ2SRW7M0pQFEdP1t9ZbBa+O/AdANO6TWu9wIbf6viZ9AMUS0VOIY51WbfLAPgl9ReKq4s1jkYI55EkSwjRIpP7RqGWDAfgs6SvZTy90NzvtVUF+3cIIszPfNztq9JXUVBVQJh3GKM7uGBtrJOJ6gsdzwTVBuv/13qPK4Qb6BvWlx7BPaix1/DDAVl/UXgOSbKEEC3i72VkdPQkVLuBtLIDJBYkah2SaOeWJWUDcPYJerHgaMGLi7tejFHngrWxGnPmPY6fG+dBRUHrPrYQbZiiKFzW3dGb9fVeOWEnPIckWUKIFrtsUDespX0A+HKPFMAQ2imutNT3ZJ3X7/i5VhllGaw9shaAaV1bcahgnW4TIaofWMrhL+nNEuJYUztPxUvvxYHiA2zL3aZ1OEI4hSRZQogWO7tHBKaKswD44eAPUgBDaOaXXVnU2Ox0j/SjZ1TAcbcv2rcIFZURUSOIC4hr/QAVBcbc7/h9w7tQJXNPhKjjb/JncsJkQApgCM8hSZYQosVMBh1Tuo3CVhmLxV7D1/vkw1Fo4/vtGQBcNDD2uNuqrFV8mfwlAJf1uKxV42qg5wUQ1sORYG18X7s4hGiDLu/uqMIpBTCEp3CbJKugoIBrrrmGgIAAgoKCuPHGGykrK2v0PmeffTaKojS4/OMf/2iliIVoH64cFkdNwZkAfJL4KRa7ReOIRHuTU1rF2gN5AFzQP+a42388+COF1YXE+MYwPn58a4d3lE4Ho+9z/L7uLagp1y4WIdqYfmH96BHcg2pbdf1JESHcmdskWddccw27d+9m2bJl/Pjjj6xevZpbbrnllPe7+eabyczMrL+8+OKLrRCtEO3HwLgguvqeid3qT15VLr+m/qp1SKKdWbIjE7vqOBbjQ30a3GZX7XyY+CEA1/S6BoPOoEWIR/W9FII7QUU+bF6obSxCtCGKojCjzwwAPkn6hGpbtcYRCXF63CLJSkpKYunSpbz//vuMGDGCs846izfeeIPPP/+cjIyMRu/r4+NDVFRU/SUg4Pix+kKIllMUhWtGdMFSeAYAHyV+JNWhRKuqGyp44YDje7H+OPIHKcUp+Bn9WndtrJPRG+Csfzp+/3MOVDc+IkOI9mRywmQifSLJr8rnxwOy/qJwbxqf0muadevWERQUxNChQ+uvGz9+PDqdjvXr13PJJZec9L6ffPIJH3/8MVFRUVxwwQU89thj+Pj4nHT76upqqquPnj0pKSkBwGKxYLFoOwyq7vG1jsNTSfu23NQ+ETz3yyjU0JXszt/N5szNDAgf0GAbaV/Xaq/tm15YyZa0InQKTOodftzzX7BrAQCXdLkEs2Jucfs4tX37XI7hjzkohSnY1ryKfezDp79PN9dej9/W5C5tPL3HdF7b+hoLdi/g/E7no1Pcoj/AbdrXXbWl9m1qDG6RZGVlZREREdHgOoPBQEhICFlZWSe93/Tp0+nYsSMxMTHs2LGDBx98kOTkZBYtWnTS+zz33HM89dRTx13/66+/NpqctaZly5ZpHYJHk/ZtmQH+ZraUDMQUtIlXVr3CVb5XnXA7aV/Xam/tu+yIAujp4m9n05oVDW7LtGaysWwjOnREZkSyJGvJ6T+ek9o3Ouh8hhe+gfrnG/xW2IEqU6hT9uvu2tvxq4W23sa+qi9mzKSWpDLn+zn0NPbUOqRmaevt6+7aQvtWVFQ0aTtNk6yHHnqIF154odFtkpKSWrz/Y+ds9evXj+joaMaNG8eBAwfo0qXLCe/z8MMPM3v27Pq/S0pKiIuLY+LEiZoPNbRYLCxbtowJEyZgNLbyQprtgLTv6Yk/UsKl83MwBW0i0ZJI39F9ifePr79d2te12mv7vv3mWqCMmef0ZcrQDg1ue2ztY1AGEzpOYPqZ00/rcZzevup52D/ejCFtLROUP7FNeef09+nG2uvx25rcqY0Pbz3MwqSF7PbZzewJs099hzbAndrXHbWl9q0b5XYqmiZZ9913HzNnzmx0m86dOxMVFUVOTk6D661WKwUFBURFHb/o5MmMGDECgP379580yTKbzZjN5uOuNxqNmv9T67SlWDyRtG/LDOoUSt/wHuwr64HBL5l5ifN49qxnj9tO2te12lP7JmaUkJxdhlGvcP6ADg2ed0ZZBr8c+gWAWX1nOa1NnNq+k5+D985Gt+trdGfcDh2GOGe/bqw9Hb9acYc2vr7v9XyS/Albc7eSVJRE//D+WofUZO7Qvu6sLbRvUx9f04Gu4eHh9OzZs9GLyWRi5MiRFBUVsXnz5vr7/vbbb9jt9vrEqSm2bdsGQHR0tLOfihACmD48nupcR4nsHw/+yMHigxpHJDzZwrWpAEzsHUWgT8MPvf9t/x9W1cqIqBH0CeujQXRNEDMQBtb2sP3yMEjBGCEAiPCJYGrCVADe3ylrygn35BazCXv16sXkyZO5+eab2bBhA3/++Sd33nknV111FTExjmpSR44coWfPnmzYsAGAAwcO8Mwzz7B582ZSU1P5/vvvuf766xkzZgz9+7vPGREh3MkFA2LwVROwlPbCrtp5Z1v7HgIlXKegvIbF244AMOvMTg1uO1h8kO8PfA/A3YPvbu3Qmufcx8DoC4fXww5ZG0iIOjf0uwGdomPl4ZVsy9mmdThCNJtbJFngqBLYs2dPxo0bx5QpUzjrrLN477336m+3WCwkJyfXT0YzmUwsX76ciRMn0rNnT+677z4uvfRSfvjhB62eghAez9ds4JozOlKTOwGApalL2Ve4T+OohCf6bEMa1VY7/WIDGdIxuMFtb219C7tq55y4c9r+MKOAaBhdO+fk5wegJFPbeIRoIzoHdubirhcD8Nrm12RpEOF23KK6IEBISAiffvrpSW/v1KlTgxdgXFwcv//+e2uEJoQ4xg1ndmLenylYSvphDNjJ29ve5rVzXtM6LOFBLDY7H607BDh6sRRFqb8tMT+RXw/9ioLCnYPu1CrE5jnzHkj6ATK3wfd3wjVfwzHPSYj26rYBt/HTwZ/YkrOFNUfWMKbDGK1DEqLJ3KYnSwjhHiICvLhsSAdqcseDqrA8bTlJ+S2vEirE3/28K4uskirC/MxM7d9wju0bW98AYErnKXQP7q5FeM2nN8Il74LeDPuXw5aFWkckRJsQ5RvF9F6OeYtztszBZrdpHJEQTSdJlhDC6W4d0xkskVhKHAsSv7L5FRnqIZxm/p8pAFwzIh6zQV9//ebszfxx5A8MioHbB9yuVXgtE9ETxj3u+P2XR6AwVdNwhGgrbux7I/4mf/YV7uOnlJ+0DkeIJpMkSwjhdB1DfZnaP4bq3AnoMLI+c319OW0hTse2w0VsTSvCqFe45oyj67BZ7VZe3PgiAJd0u4T4gPiT7aLtOuM2iB8FNWXw7T/AZtE6IiE0F2gO5KZ+NwHw5tY3qbZVaxyREE0jSZYQwiX+MbYzqiWUqtyzAXh1y6tUqVXaBiXc3tw1jmUBLugfQ4S/V/31nyZ9SmJ+Iv4mf24f6Ga9WHV0erj4bTD5Qdo6+Gm2lHUXApjeczoRPhFklmcyd8dcrcMRokkkyRJCuESfmEDO7hFOdf5YfJVo8qryWF65XOuwhBvbdriIn3Zkoihw0+jO9ddnlGXw5rY3AZg9ZDZh3mFahXj6QhLgsnmg6GDLh7D2Da0jEkJzXgYvHhr+EAAf7PyA5IJkjSMS4tQkyRJCuMxd53YD1UDeIceikutr1pNYkKhxVMIdqarKf350HDvTBnWgd0xA/fXPrn+WSmslgyMGM63bNC3DdI7uk2DSc47flz0OST9qG48QbcCEjhMYHz8eq2rl8bWPY7VbtQ5JiEZJkiWEcJkhHYOZ2j8aa3lXAm0jUFH574b/SoUo0WxLd2Wx6VAhXkYd90/qUX/9L4d+YXX6aow6I0+MfAKd4iEfayNuhWE3ASosuhkOb9Q6IiE09+8R/8bf5E9ifiIfJn6odThCNMpDPo2EEG3VQ5N7YjLoOHJgPEbVi8SCRN7e/rbWYQk3UmO18/zSPQDcMrozUYGOuVgFVQU8v/55AG7udzOdgzqfdB9uR1Fg8gvQdTxYKuDDi2D/Cq2jEkJT4T7hPDDsAQDe3vY2qcWp2gYkRCMkyRJCuFRciA83nJmAavOH3IsBeG/He/xx5A9tAxNu48N1qRzKryDc38ytY7sAjmqCD6x+gPyqfDoHdubGfjdqHKUL6A1w+ULofA5YyuHTK2Hn11pHJYSmLupyEaNiRlFtq+aRPx6hxlajdUhCnJAkWUIIl7vjnC6E+pooyB9IP//JADy85mGyyrM0jky0dQXlNbzx234A7pvQHV+zAXAsOrw+cz3eBm9eGfsKJr1JyzBdx+wH07+EvpeC3QLf3Ajr3paqg6LdUhSFJ0Y+gb/Jnx15O3jmr2dkHUbRJkmSJYRwOX8vI/eO6wrArp1n0z2oF0XVRdz3+31YZC0gcRJ2u8rsL7dRXGmhZ5Q/lw+NA2DZoWXM2zUPgKfPfJquwV21DNP1DCaY9j4Mv8Xx9y8Pw6dXQEmmtnEJoZEYvxheHvMyOkXH4v2L+XTPp1qHJMRxJMkSQrSKy4fEEuujUlIJ3kWz8Df6syN3B89teE7OQooTemf1AVYl52I26HjtyoHodQoHiw/y6B+PAjCj9wwmd5qscZStRKeD816ESf8FvQn2/QpvnwE7vpReLdEujYodxewhswF4aeNL/JX5l8YRCdGQJFlCiFah1ylc09WGUa/wR5KdyZH3oqDw1d6veGnTS5JoiQbWH8zn5V8ca+E8fVEfekUHcLj0MP9Y9g8qrBUMixrGvUPu1TbI1qYoMPIOuHU1RA+EqiJH5cF5k2HvL5JsiXbn+t7Xc0HnC7CpNv71+784WHRQ65CEqCdJlhCi1cT6wj/HO4Z2ff57AHf0cywu+VHiR8zZMkcSLQFAXlk1d322FbsK0wbFcsXQONJK0pi1dBaZ5Zl0CujES2NewqAzaB2qNiJ6wU3L4ZxHHL1ah/9yDB/835mw9WMoz9c6QiFahaIoPDHqCfqF9aO4upiZS2eSmC9rMYq2QZIsIUSrumFUJ87oHEJFjY2lf3Xk4eGPADBv1zze2vaWJFrtXEmVhX98tJmc0mq6Rvjxn0v6cqjkELOWziK7IpvOgZ2ZP3k+od6hWoeqLb0Rxj4A9+yAUXeDyQ9ydsN3d8DLXeH9CbD6Jdi/HApTQdamEx7KrDfz9ri36RPah8LqQm785Ua25mzVOiwhaKenAYUQWtHrFF65YiCT56xma1oRZx0exIPDHuSFjS/w7o53ySjL4NEzHsXH6KN1qKKV5ZRWMWPeRpIyS/A3G3j7msEkF+1k9qrZ5FXm0TWoK3MnziXMO0zrUNuOgGiY+AyMng2b5sGuRZC9C9I3OC519CbwjwKdEXR60BlA0df+rnf8riiaPQ29qnJWYSH63Dc1jcOTeXIbBwHvY+cOvYktljJuXTKD1+zBnKmaWy0GT27ftkCvqvSpDgamaB1Kk0mSJYRodbFB3vzn4r7c8/k23vhtPy9eOpaHhiu8tPElfjj4A0kFSbxy9it0DvSgxWVFow4XVHDtB+s5lF9BmJ+Z+bMGszLrU/63/X/YVBvdgrvx/sT3CfEK0TrUtsk7GEbf57gUpzsKYxxYCXl7oSAFbNVQlKZ1lCelA0IByjUOxIN5ehv7Ae8oCv+MCONPH29u0+Uzs7iUOwuLaI0FHjy9fbWmA/z9+2kdRrNIkiWE0MRFA2PZm13KWysP8PC3O3nvuvHMndidB1Y/wP6i/Vz949U8MOwBLu56MXqdXutwhYuoqsqKpBz+/e1OckqriQvxZs70BF7b9S82Zm0E4PzO5/PoGY/ia/TVOFo3EdgBht7guIBjqGDJESjNBtUGdqvjOrsVVPvRvzVktdnYvHkzQ4YMwaCX17srtIc29gZet1v576Hv+SZ3I/ODAvgzujvPdbmS7j5RLn3s9tC+WrLabCRv38dIrQNpBkmyhBCa+dfEHmSXVPP15nTu+HQLn9x0Bl9d8BUPrH6AjVkbeXLdk3yc9DH3DL6HsR3GosgQDI+yN7uUZ35MZM2+PAC6RaucOWQ9t656gGpbNd4Gbx4941Eu7HKhxpG6OZ0eguIdlzZKtVjIOgBqjylgNGodjkdqL21sAp7sczFj01by5Lon2VuZxVWJbzOt2zRm9Z1FrF+sSx63vbSvVlSLhcIDS7QOo1mk8IUQQjOKovDctH6c0yOcKoudGxduJC1Xz3sT3uNfQ/9FgCmA/UX7ueu3u7j+5+tZvH8xJTUlWoctTkNBeQ2Ltx7hrs+2ct7/rWHNvlzMPlkMH/IHhaFP8c2BT6m2VTM4YjBfnv+lJFhCiBY5J/4cvrnwG87ucDYWu4Uvkr/g/EXn88gfj5CYnyhFloTLSU+WEEJTRr2Ot64ZzPS569l2uIir3vuLFy7tx4xBM7ik2yXM2zmPj5M+ZlvuNrblbuPpdU9zZsyZnBl7Jt2Du9MtuBv+Jn+tn4ZoREpeOT/vyuTX3dlsT88HQyE6cw6GsIMEhyZTTS5JFY5t+4f1546BdzAyZqT0XAohTkuYdxivn/s6m7I3MXfHXNZlruP7A9/z/YHvifCJYHTsaEbHjqZrcFdifGMw6qUHSjiPJFlCCM35mAx8ctMI7v1iG8sSs/nnF9vZm13G/RN7cO+Qe7m659Us3r+YpalL2V+0n1Xpq1iVvqr+/hE+Efgb/fEx+uBt8G6wftLfz1aqqCf8vfaKJm/b6H5PcYa0sW2Pe5xj/24sPlWlsLSQz5Z+hqIoje/nFDE2tm1z9ltUYaGoooZqqx0AxWjDt3shiu7o/J9qHCWYR8WM4rLulzE6drQkV0IIp1EUhWFRwxgWNYyduTuZv3s+fxz5g5yKHL7Z9w3f7PsGAJ2iI9o3mmBzMDqdDh06dIoOvU5f/7uiKCic+P3JrtrJK8vjp5U/oVNkoJiz2VU7pkoTU6S6oBBCNI+v2cC71w7hpV+T+d+qA/xv1QG2Hy7i6Yv60DUiklsH3MqtA25lX+E+lh1axq68Xewr2kdWeRY5FTnkkKP1U2gTjhQc0TqEhgyg/9snjZfei06Bnege3J1z4s5hVMwoKdkvhHC5fuH9ePXsV6m2VbMpaxOr01ezMXsjh0sOU2Wr4kjZEY6Und576L7MfU6KVvxdN0M3rUNoFkmyhBBthk6n8ODknnSP9OPBb3ay9kA+k+es4fqRnbhnfDcCvY10C+5Gt+Cjb7TF1cWklaRRYa2g0lpJpbUSq93aYL9/7xk59kzk389KNrbt309gHnffY/fb2H5csF+rzcqmTZsYNnQYBsOJ39obe66Nxve3GBvbj6qqfLUpne+2ZQBw6eAOTO4bhZ/ZiKIoxPjFEO0bLWd6hRCaMevNnBnrGHYOjvetvMo8DpceprSmFJtqQ1VVbKoNO3bsdjt27I2OALDarGzfvp0BAwZg+PuZJXHarDYrKTtStA6jWeQoEEK0OZcM6sDg+GCe+TGJ5UnZzPszhW+3pnPZkA5cOqQDPaMC6rcNNAfSL9y91s5wBYvFQtn2MkbHjsaoUWUrVVV5fukeFq0tALry2Pm9ufGsBE1iEUKIplIUhXCfcMJ9wlu8D4vFgi5Jx5SEKZq9B3syi8XCkiT3qi4oSZYQok3qGOrL+zOGsnpvLk/9sJsDueXMXZPC3DUp9IkJYFyvSPrEBNA7OoAOwd4yj0djqqrywtJk3v39IABPXdiHGaM6aRuUEEIIoRFJsoQQbdqY7uH8cu8YViXn8vXmdFbsyWZ3Rgm7M46Wcg/wMtArOoDetUnX2O7hRAR4aRh1+/PWyv288/sBAJ65qA/XjeykbUBCCCGEhiTJEkK0eQa9jvG9IxnfO5LC8hqW7Mpka1oRiRkl7MsppaTKyvqUAtanFADg72Vg4Q3DGRwfrHHk7cO8P1J4+de9ADw6tZckWEIIIdo9SbKEEG4l2NfENSM6cs2IjgDUWO3szykjMbOExIwS1uzLZV9OGde9v575s4YzPCFE44g925cbD/P0j4kA3Du+GzeN7qxxREIIIYT2JMkSQrg1k0HnGCYYEwBDoKLGyk0LN7H2QD4z5m3g/RlDObNrmNZheqRfd2fx0KIdANw8OoF7xrlXeV0hhBDCVaSGrhDCo/iYDMybOYyx3cOptNiYtWAjv+/N1Tosj7P5UAF3fbYVuwpXDo3j31N6SfERIYQQopYkWUIIj+Nl1PPe9UMY3yuSGqudWz7cxNr9eVqH5TH255Rx48JNVFvtjOsZwbOX9JUESwghhDiGJFlCCI9kNuh5+5rBjO8VQbXVzo0LN7GhtjCGaLnskipmzNtAUYWFgXFBvDF9EAa9fJQIIYQQx5JPRiGExzIZdLx1zWDG1A0dnL+BLWmFWofltsqrrdywYCNHiirpHObLvJnD8DHJ1F4hhBDi7yTJEkJ4NLNBz3vXDWFUl1DKa2zMmLeBpMySU99RNGCzq9zz+TZ2Z5QQ6mtiwazhhPiatA5LCCGEaJMkyRJCeDwvo573ZwxlWKdgSquszJi3gcMFFVqH5Vae/zmJ5UnZmAw63rt+KPGhPlqHJIQQQrRZkmQJIdoFH5OB968fRo9If3JKq5kxbwP5ZdVah+UWPll/iLlrUgB46bL+DOkoizwLIYQQjZEkSwjRbgT6GFl4w3Big7w5mFfODQs2Ul5t1TqsNm3dgXwe/243ALMndOeigbEaRySEEEK0fZJkCSHalahALxbeMJxgHyPb04v5x8ebqbHatQ6rTTpcUMHtn2zGZle5aGAMd53bVeuQhBBCCLcgSZYQot3pGuHHvJnD8DbqWbMvjwe+3o7drmodVptSUWPl5g83UVhhoW9sAC9c2l/WwhJCCCGaSJIsIUS7NCg+mP9dOxiDTmHxtgyeXZKEqkqiBaCqKvd/tYM9WaWE+Zl477qheBn1WoclhBBCuA23SbKeffZZRo0ahY+PD0FBQU26j6qqPP7440RHR+Pt7c348ePZt2+fawMVQriNs3tE8OJl/QH44I8U3l19UOOI2oa3Vx3gp52ZGPUK/7t2CDFB3lqHJIQQQrgVt0myampquPzyy7ntttuafJ8XX3yR119/nXfeeYf169fj6+vLpEmTqKqqcmGkQgh3Mm1wBx6Z0guA53/ew3fbjmgckbZ+25PNy78mA/DkhX0Y1ilE44iEEEII9+M2SdZTTz3FP//5T/r169ek7VVVZc6cOTz66KNcdNFF9O/fnw8//JCMjAwWL17s2mCFEG7l5jGduemsBADu/2oHfx3M1zgibezPKeOez7ahqnDNiHiuGdFR65CEEEIIt2TQOgBXSUlJISsri/Hjx9dfFxgYyIgRI1i3bh1XXXXVCe9XXV1NdfXRtXNKSkoAsFgsWCwW1wZ9CnWPr3Ucnkra17XaevveP6ErhwvK+SUxh1s+3MQXNw+na4Sf1mE12em2b2mVhVs+3EhptZWhHYP49+TubfZ/pYW2fvy6O2lf15M2di1pX9dqS+3b1BgU1c1mei9YsIB7772XoqKiRrdbu3YtZ555JhkZGURHR9dff8UVV6AoCl988cUJ7/fkk0/y1FNPHXf9p59+io+Pz2nFLoRo22ps8HaSnpRShRCzyj/72ggwaR2V69lVmLtHR2KRjiCTyn392sfzFkIIIZqroqKC6dOnU1xcTEBAwEm307Qn66GHHuKFF15odJukpCR69uzZShHBww8/zOzZs+v/LikpIS4ujokTJzbakK3BYrGwbNkyJkyYgNFo1DQWTyTt61ru0r5jzq3hyrkbSM2v4PPMYD65YRi+5rbf6X867fvKsn0kFqVgNuiYf8Nw+sZq+17XFrnL8euupH1dT9rYtaR9XasttW/dKLdT0fSbw3333cfMmTMb3aZz584t2ndUVBQA2dnZDXqysrOzGThw4EnvZzabMZvNx11vNBo1/6fWaUuxeCJpX9dq6+0bGWRk4Q3DueTttezOKGX217t477ohGPTuMYW1ue37444M3lmdAsALl/ZnUKdQV4XmEdr68evupH1dT9rYtaR9XasttG9TH1/TJCs8PJzw8HCX7DshIYGoqChWrFhRn1SVlJSwfv36ZlUoFEK0Px1DfXl/xlCufu8vftuTwxPf7+Y/F/f1uMV4EzNKuP+rHQDcMqYzFw+K1TgiIYQQwjO4x6lZIC0tjW3btpGWlobNZmPbtm1s27aNsrKy+m169uzJt99+C4CiKNx777385z//4fvvv2fnzp1cf/31xMTEcPHFF2v0LIQQ7mJwfDD/d9UgFAU+WZ/GO7971hpaBeU13PzhJiotNkZ3C+PBya03LFsIIYTwdG1/okGtxx9/nIULF9b/PWjQIABWrlzJ2WefDUBycjLFxcX12zzwwAOUl5dzyy23UFRUxFlnncXSpUvx8vJq1diFEO5pct8oHj+/N0/9kMgLS/cQG+zNhQNitA7rtFlsdu74ZAtHiirpGOrDm1cPRq/zrF46IYQQQktuk2QtWLCABQsWNLrN3wslKorC008/zdNPP+3CyIQQnmzWmQkcLqhk3p8p/OvL7UT6mxnR2b3nLT37UxLrDubja9Iz9/qhBPrI/AEhhBDCmdxmuKAQQmjlkam9mNwnihqbnZs/3MT+nFKtQ2qxLzcdZsHaVABevXIg3SP9tQ1ICCGE8ECSZAkhxCnodQpzrhrIoPggSqqszJy/kdzS6lPfsY3ZmlbIo9/uAuCecd2Y1CdK44iEEEIIzyRJlhBCNIGXUc/71w+lU6gP6YWV3LhwIxU1Vq3DarLskir+8fFmamx2JvaO5J5x3bQOSQghhPBYkmQJIUQThfqZWTBrOME+RnakF3PXp1ux2uxah3VKZdVWZs3fSHZJNd0i/Hj1yoHopNCFEEII4TKSZAkhRDN0CvPl/RnDMBt0rNiTw5M/7D6u6E5bYrXZuevTLSRmlhDmZ2LezGH4md2m5pEQQgjhliTJEkKIZhrSMZg5Vw5EUeDjv9J4b3XbXENLVVWe/GE3K5Nz8TLqeH/GMOJCfLQOSwghhPB4kmQJIUQLnNcvmken9gbguZ/38NWmwxpHdLz3Vh/k47/SUBSYc+UgBsYFaR2SEEII0S5IkiWEEC1041kJ3HhWAgAPfLODb7emaxzRUZ+uT+O5n/cA8MiUXkzuK5UEhRBCiNYiSZYQQpyGR6f24poR8agq3Pfldr7fnqF1SCzeeoRHFu8E4NYxnesTQSGEEEK0DkmyhBDiNCiKwjMX9eWqYXHYVfjnF9v4aUemZvH8mpjNfV9tR1Xh+pEdeei8niiKVBIUQgghWpMkWUIIcZp0OoX/XtKPSwd3wGZXueuzLXz016FWj2N7vsK9X+7AZle5bEgHnrygjyRYQgghhAYkyRJCCCfQ6RRevKw/Vw939Gg9tngXL/+S3Grl3T/ZcJj5e3VYbCpT+0fzwqX9ZS0sIYQQQiOSZAkhhJPoa3u07h3fDYA3V+7nga93UGN13YLFqqryyq/JPPlDEioKVw3rwP9dORC9JFhCCCGEZiTJEkIIJ1IUhXvHd+e5af3QKfDV5nQuf3cdafkVTn+s8mor9325nTd+2w/AlDgbT1/QC4Ne3tqFEEIILcknsRBCuMDVw+N5f8ZQArwMbD9cxNTX1zi18uDWtEKmvL6GRVuPoFPg2Yt6M6mDKnOwhBBCiDZAkiwhhHCRc3tG8vO9YxjWKZjSait3f7aVuz/byuGClvdqVVtt/N/yfVz2zjoO5VcQE+jFJzedwRVDOzgxciGEEEKcDoPWAQghhCeLDfLms5vP4PXf9vPmb/v4fnsGP+/K5Orh8dx5TlciAryatJ+KGiufbTjM3NUHySqpAuDCATE8c3FfAr2NWCwWVz4NIYQQQjSDJFlCCOFiBr2O2RO6M75XBC/9ksyafXl8uO4QX2w8zOhu4ZzdI5xzekYQG+Td4H4F5TVsOVTIxtQCvtqcTkF5DQCRAWb+PaUXFw2M1eLpCCGEEOIUJMkSQohW0r9DEB/dOIJ1B/J56Zc9bEkrYnlSNsuTsgEI8jHiZdDjZdRhtaukF1Y2uH98iA+3nd2FaYNjMRv0WjwFIYQQQjSBJFlCCNHKRnYJ5ZvbRpGYWcKq5FxW7slhS1ohRRUWoOGwv64RfgztGMxZ3cKY3CdKKgcKIYQQbkCSLCGE0ICiKPSJCaRPTCB3nNOV4koLOSVVVFvtVFls2OwqPaL8CfIxaR2qEEIIIZpJkiwhhGgDAr2NBHobtQ5DCCGEEE4g406EEEIIIYQQwokkyRJCCCGEEEIIJ5IkSwghhBBCCCGcSJIsIYQQQgghhHAiSbKEEEIIIYQQwokkyRJCCCGEEEIIJ5IkSwghhBBCCCGcSJIsIYQQQgghhHAiSbKEEEIIIYQQwokkyRJCCCGEEEIIJ5IkSwghhBBCCCGcSJIsIYQQQgghhHAiSbKEEEIIIYQQwokkyRJCCCGEEEIIJzJoHUBbp6oqACUlJRpHAhaLhYqKCkpKSjAajVqH43GkfV1L2te1pH1dS9rXtaR9XU/a2LWkfV2rLbVvXU5QlyOcjCRZp1BaWgpAXFycxpEIIYQQQggh2oLS0lICAwNPeruinioNa+fsdjsZGRn4+/ujKIqmsZSUlBAXF8fhw4cJCAjQNBZPJO3rWtK+riXt61rSvq4l7et60sauJe3rWm2pfVVVpbS0lJiYGHS6k8+8kp6sU9DpdHTo0EHrMBoICAjQ/ADzZNK+riXt61rSvq4l7eta0r6uJ23sWtK+rtVW2rexHqw6UvhCCCGEEEIIIZxIkiwhhBBCCCGEcCJJstyI2WzmiSeewGw2ax2KR5L2dS1pX9eS9nUtaV/XkvZ1PWlj15L2dS13bF8pfCGEEEIIIYQQTiQ9WUIIIYQQQgjhRJJkCSGEEEIIIYQTSZIlhBBCCCGEEE4kSZYQQgghhBBCOJEkWW3Is88+y6hRo/Dx8SEoKKhJ91FVlccff5zo6Gi8vb0ZP348+/bta7BNQUEB11xzDQEBAQQFBXHjjTdSVlbmgmfQ9jW3LVJTU1EU5YSXr776qn67E93++eeft8ZTalNacqydffbZx7XdP/7xjwbbpKWlMXXqVHx8fIiIiOD+++/HarW68qm0Sc1t34KCAu666y569OiBt7c38fHx3H333RQXFzfYrr0ev2+99RadOnXCy8uLESNGsGHDhka3/+qrr+jZsydeXl7069ePJUuWNLi9Ke/H7Ulz2nfu3LmMHj2a4OBggoODGT9+/HHbz5w587jjdPLkya5+Gm1Wc9p3wYIFx7Wdl5dXg23k+G2oOe17os8xRVGYOnVq/TZy/B61evVqLrjgAmJiYlAUhcWLF5/yPqtWrWLw4MGYzWa6du3KggULjtumue/pLqeKNuPxxx9XX331VXX27NlqYGBgk+7z/PPPq4GBgerixYvV7du3qxdeeKGakJCgVlZW1m8zefJkdcCAAepff/2lrlmzRu3atat69dVXu+hZtG3NbQur1apmZmY2uDz11FOqn5+fWlpaWr8doM6fP7/Bdsf+D9qLlhxrY8eOVW+++eYGbVdcXFx/u9VqVfv27auOHz9e3bp1q7pkyRI1LCxMffjhh139dNqc5rbvzp071WnTpqnff/+9un//fnXFihVqt27d1EsvvbTBdu3x+P38889Vk8mkzps3T929e7d68803q0FBQWp2dvYJt//zzz9VvV6vvvjii2piYqL66KOPqkajUd25c2f9Nk15P24vmtu+06dPV9966y1169atalJSkjpz5kw1MDBQTU9Pr99mxowZ6uTJkxscpwUFBa31lNqU5rbv/Pnz1YCAgAZtl5WV1WAbOX6Pam775ufnN2jbXbt2qXq9Xp0/f379NnL8HrVkyRL1kUceURctWqQC6rffftvo9gcPHlR9fHzU2bNnq4mJieobb7yh6vV6denSpfXbNPd/1hokyWqD5s+f36Qky263q1FRUepLL71Uf11RUZFqNpvVzz77TFVVVU1MTFQBdePGjfXb/Pzzz6qiKOqRI0ecHntb5qy2GDhwoHrDDTc0uK4pbxKerqXtO3bsWPWee+456e1LlixRdTpdgy8E//vf/9SAgAC1urraKbG7A2cdv19++aVqMplUi8VSf117PH6HDx+u3nHHHfV/22w2NSYmRn3uuedOuP0VV1yhTp06tcF1I0aMUG+99VZVVZv2ftyeNLd9/85qtar+/v7qwoUL66+bMWOGetFFFzk7VLfU3PY91fcKOX4bOt3j97XXXlP9/f3VsrKy+uvk+D2xpnz+PPDAA2qfPn0aXHfllVeqkyZNqv/7dP9nriDDBd1YSkoKWVlZjB8/vv66wMBARowYwbp16wBYt24dQUFBDB06tH6b8ePHo9PpWL9+favHrCVntMXmzZvZtm0bN95443G33XHHHYSFhTF8+HDmzZuH2s6WoDud9v3kk08ICwujb9++PPzww1RUVDTYb79+/YiMjKy/btKkSZSUlLB7927nP5E2ylmv5eLiYgICAjAYDA2ub0/Hb01NDZs3b27w3qnT6Rg/fnz9e+ffrVu3rsH24DgO67Zvyvtxe9GS9v27iooKLBYLISEhDa5ftWoVERER9OjRg9tuu438/Hynxu4OWtq+ZWVldOzYkbi4OC666KIG759y/B7ljOP3gw8+4KqrrsLX17fB9XL8tsyp3n+d8T9zBcOpNxFtVVZWFkCDL591f9fdlpWVRURERIPbDQYDISEh9du0F85oiw8++IBevXoxatSoBtc//fTTnHvuufj4+PDrr79y++23U1ZWxt133+20+Nu6lrbv9OnT6dixIzExMezYsYMHH3yQ5ORkFi1aVL/fEx3jdbe1F844fvPy8njmmWe45ZZbGlzf3o7fvLw8bDbbCY+rPXv2nPA+JzsOj32vrbvuZNu0Fy1p37978MEHiYmJafClafLkyUybNo2EhAQOHDjAv//9b8477zzWrVuHXq936nNoy1rSvj169GDevHn079+f4uJiXn75ZUaNGsXu3bvp0KGDHL/HON3jd8OGDezatYsPPvigwfVy/Lbcyd5/S0pKqKyspLCw8LTfc1xBkiwXe+ihh3jhhRca3SYpKYmePXu2UkSep6ltfLoqKyv59NNPeeyxx4677djrBg0aRHl5OS+99JJHfEl1dfse+4W/X79+REdHM27cOA4cOECXLl1avF930VrHb0lJCVOnTqV37948+eSTDW7z5ONXuJ/nn3+ezz//nFWrVjUoznDVVVfV/96vXz/69+9Ply5dWLVqFePGjdMiVLcxcuRIRo4cWf/3qFGj6NWrF++++y7PPPOMhpF5ng8++IB+/foxfPjwBtfL8dv+SJLlYvfddx8zZ85sdJvOnTu3aN9RUVEAZGdnEx0dXX99dnY2AwcOrN8mJyenwf2sVisFBQX193d3TW3j022Lr7/+moqKCq6//vpTbjtixAieeeYZqqurMZvNp9y+LWut9q0zYsQIAPbv30+XLl2Iioo6rkJQdnY2gEccw63RvqWlpUyePBl/f3++/fZbjEZjo9t70vF7ImFhYej1+vrjqE52dvZJ2zIqKqrR7ZvyftxetKR967z88ss8//zzLF++nP79+ze6befOnQkLC2P//v3t6kvq6bRvHaPRyKBBg9i/fz8gx++xTqd9y8vL+fzzz3n66adP+Tjt9fhtiZO9/wYEBODt7Y1erz/t14QryJwsFwsPD6dnz56NXkwmU4v2nZCQQFRUFCtWrKi/rqSkhPXr19efsRo5ciRFRUVs3ry5fpvffvsNu91e/2XW3TW1jU+3LT744AMuvPBCwsPDT7nttm3bCA4O9ogvqK3VvnW2bdsGUP9BP3LkSHbu3NkgwVi2bBkBAQH07t3bOU9SQ65u35KSEiZOnIjJZOL7778/rmzziXjS8XsiJpOJIUOGNHjvtNvtrFixosHZ/mONHDmywfbgOA7rtm/K+3F70ZL2BXjxxRd55plnWLp0aYO5hyeTnp5Ofn5+g6SgPWhp+x7LZrOxc+fO+raT4/eo02nfr776iurqaq699tpTPk57PX5b4lTvv854TbiEZiU3xHEOHTqkbt26tb5E+NatW9WtW7c2KBXeo0cPddGiRfV/P//882pQUJD63XffqTt27FAvuuiiE5ZwHzRokLp+/Xr1jz/+ULt169auS7g31hbp6elqjx491PXr1ze43759+1RFUdSff/75uH1+//336ty5c9WdO3eq+/btU99++23Vx8dHffzxx13+fNqa5rbv/v371aefflrdtGmTmpKSon733Xdq586d1TFjxtTfp66E+8SJE9Vt27apS5cuVcPDw9ttCffmtG9xcbE6YsQItV+/fur+/fsblA62Wq2qqrbf4/fzzz9XzWazumDBAjUxMVG95ZZb1KCgoPoqltddd5360EMP1W//559/qgaDQX355ZfVpKQk9YknnjhhCfdTvR+3F81t3+eff141mUzq119/3eA4rfv8Ky0tVf/1r3+p69atU1NSUtTly5ergwcPVrt166ZWVVVp8hy11Nz2feqpp9RffvlFPXDggLp582b1qquuUr28vNTdu3fXbyPH71HNbd86Z511lnrllVced70cvw2VlpbWf8cF1FdffVXdunWreujQIVVVVfWhhx5Sr7vuuvrt60q433///WpSUpL61ltvnbCEe2P/My1IktWGzJgxQwWOu6xcubJ+G2rXs6ljt9vVxx57TI2MjFTNZrM6btw4NTk5ucF+8/Pz1auvvlr18/NTAwIC1FmzZjVI3NqTU7VFSkrKcW2uqqr68MMPq3FxcarNZjtunz///LM6cOBA1c/PT/X19VUHDBigvvPOOyfc1tM1t33T0tLUMWPGqCEhIarZbFa7du2q3n///Q3WyVJVVU1NTVXPO+881dvbWw0LC1Pvu+++BiXI24vmtu/KlStP+J4CqCkpKaqqtu/j94033lDj4+NVk8mkDh8+XP3rr7/qbxs7dqw6Y8aMBtt/+eWXavfu3VWTyaT26dNH/emnnxrc3pT34/akOe3bsWPHEx6nTzzxhKqqqlpRUaFOnDhRDQ8PV41Go9qxY0f15ptv1vQLlNaa07733ntv/baRkZHqlClT1C1btjTYnxy/DTX3/WHPnj0qoP7666/H7UuO34ZO9tlU16YzZsxQx44de9x9Bg4cqJpMJrVz584NvgvXaex/pgVFVT24Tq8QQgghhBBCtDKZkyWEEEIIIYQQTiRJlhBCCCGEEEI4kSRZQgghhBBCCOFEkmQJIYQQQgghhBNJkiWEEEIIIYQQTiRJlhBCCCGEEEI4kSRZQgghhBBCCOFEkmQJIYQQQgghhBNJkiWEEEIIIYQQTiRJlhBCCCGEEEI4kSRZQgghhBBCCOFEkmQJIYQQJ5Gbm0tUVBT//e9/669bu3YtJpOJFStWaBiZEEKItkxRVVXVOgghhBCirVqyZAkXX3wxa9eupUePHgwcOJCLLrqIV199VevQhBBCtFGSZAkhhBCncMcdd7B8+XKGDh3Kzp072bhxI2azWeuwhBBCtFGSZAkhhBCnUFlZSd++fTl8+DCbN2+mX79+WockhBCiDZM5WUIIIcQpHDhwgIyMDOx2O6mpqVqHI4QQoo2TniwhhBCiETU1NQwfPpyBAwfSo0cP5syZw86dO4mIiNA6NCGEEG2UJFlCCCFEI+6//36+/vprtm/fjp+fH2PHjiUwMJAff/xR69CEEEK0UTJcUAghhDiJVatWMWfOHD766CMCAgLQ6XR89NFHrFmzhv/9739ahyeEEKKNkp4sIYQQQgghhHAi6ckSQgghhBBCCCeSJEsIIYQQQgghnEiSLCGEEEIIIYRwIkmyhBBCCCGEEMKJJMkSQgghhBBCCCeSJEsIIYQQQgghnEiSLCGEEEIIIYRwIkmyhBBCCCGEEMKJJMkSQgghhBBCCCeSJEsIIYQQQgghnEiSLCGEEEIIIYRwov8HRtIbvkhhqPoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -857,13 +708,13 @@ "plt.legend()\n", "plt.grid(True)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "a = 0.3\n", "b = 0.5\n", @@ -891,13 +742,13 @@ " beta = beta1 * (lam1 + 1) * (1 + a - b) + beta2 * (b - a) * (lam2 + 1)\n", " # beta = np.cos(beta1) + np.sin(beta2)\n", " return beta" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -935,13 +786,13 @@ "ax.set_zlabel(\"effbeta\")\n", "ax.set_title(\"Surface Plot of effbeta\")\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from qulearn.qlayer import CircuitLayer\n", "import pennylane as qml\n", @@ -962,20 +813,20 @@ " def circuit(self, x):\n", " for xj, w in zip(x, self.wires):\n", " qml.RY(xj, w)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], - "source": [] + "source": [], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn.qlayer import (\n", @@ -1033,13 +884,13 @@ "print(\"x =\", x.shape)\n", "y = model(x)\n", "print(\"y =\", y.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -1124,13 +975,13 @@ " # Update the parameters with the new coefficients\n", " self.alpha.data = coefficients[: self.num_omegas]\n", " self.beta.data = coefficients[self.num_omegas :]" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -1217,13 +1068,13 @@ "output = model(x)\n", "print(output)\n", "print(output.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torch import nn\n", "import torch.nn.functional as F\n", @@ -1430,13 +1281,13 @@ "# tmp = torch.mm(y.t(), y)\n", "# print(tmp)\n", "# tmp.backward()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "x = torch.randn((num_features), dtype=torch.float64)\n", "print(x.shape)\n", @@ -1444,13 +1295,13 @@ "print(x.shape)\n", "x = x.squeeze(-1)\n", "print(x.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import torch.optim as optim\n", @@ -1510,13 +1361,13 @@ "\n", " if step % 10 == 0:\n", " print(f\"Step {step}, Loss: {loss.item()}\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -1565,13 +1416,13 @@ " plt.legend()\n", " plt.grid(True)\n", " plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import torch.optim as optim\n", @@ -1599,13 +1450,13 @@ "Y_train = torch.tensor(Y_train, dtype=torch.float64).view(-1, 1)\n", "X_valid = torch.tensor(X_valid, dtype=torch.float64)\n", "Y_valid = torch.tensor(Y_valid, dtype=torch.float64).view(-1, 1)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "from pyDOE import lhs\n", @@ -1682,13 +1533,13 @@ "Y_train = torch.tensor(Y_train, dtype=torch.float64).view(-1, 1)\n", "X_valid = torch.tensor(X_valid, dtype=torch.float64)\n", "Y_valid = torch.tensor(Y_valid, dtype=torch.float64).view(-1, 1)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from sklearn.preprocessing import MinMaxScaler\n", "\n", @@ -1752,13 +1603,13 @@ "Y_train = torch.tensor(Y_train, dtype=torch.float64).view(-1, 1)\n", "X_valid = torch.tensor(X_valid, dtype=torch.float64)\n", "Y_valid = torch.tensor(Y_valid, dtype=torch.float64).view(-1, 1)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -1771,13 +1622,13 @@ "X_valid = torch.tensor(X_valid, dtype=torch.float64)\n", "Y_train = torch.tensor(Y_train, dtype=torch.float64).unsqueeze(1)\n", "Y_valid = torch.tensor(Y_valid, dtype=torch.float64).unsqueeze(1)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 178, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -1916,24 +1767,13 @@ "\n", "\n", "Y_high_low = add_gaussian_noise(high_low(X))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 179, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgKElEQVR4nO3dd3wUZf4H8M/29ISQRkIghI6UUCRSFJAoCqL+sKB4guihIpyeeBYs4GEBG+opigXQsysWPEEsCEqJIL2G3iEhIaRtks2W+f2RZLOzO1uzPZ/365XXa3fmmd1nMsnOd5/yfWSCIAggIiIiChB5oCtARERELRuDESIiIgooBiNEREQUUAxGiIiIKKAYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCShnoCrjCZDLhzJkziI2NhUwmC3R1iIiIyAWCIKCyshLp6emQy+23f4REMHLmzBlkZmYGuhpERETkgZMnT6Jt27Z294dEMBIbGwug/mTi4uICXBsiIiJyRUVFBTIzM833cXtCIhhp7JqJi4tjMEJERBRinA2x4ABWIiIiCigGI0RERBRQDEaIiIgooBiMEBERUUAxGCEiIqKAYjBCREREAcVghIiIiAKKwQgREREFFIMRIiIiCigGI0RERBRQDEaIiIgooBiMEBERUUAxGCEip77ddgpr9p8LdDWIKEyFxKq9RBQ4x89r8eAXOwAAx+aNCXBtiCgcsWWEiBwqqdIFugrQGYzQG02BrgYR+QiDESJyQmZ+ZDQJfn93vdGE3OdX4bIXV0MQ/P/+ROR7DEaIyCFZUyzildYJZwHF7weKkTf/d2w9cQEAcPpCDcqq9ThbXgudga0jROGIwQgROWQRizgMRub9WIC31xx2+Fq1eiNGvvI7/vHZNrtlJi3ehEPnqnDfx1tt9umNJvy8pxALVh9yqZWkolaPn/YUQmcwOi1LRIHDAaxE5DKD0TYAOFlajfwj57Hw9/pA5N5h2ZBZNqdYWHuwBEdKtDhSooVOb8Rrt+QgSi39MVQnEfjUGUy4+6MtAID+7VvhkuzW2HCoBNtOlmHqsI6Qy8XvO+2TrVh7sARTLu2AJ8b0cOtcich/GIwQkUOWw0QsW0YEQcBrvx7E66sOisrrjQLUSulgxHLrz3uLsPFoKRQyGd5acwhzruuJLqmx5v1xEfUfTwZT03u+ufqQ+fG5yvqBtRPe3wgAyEiIxPV9M0Tvt/ZgCQDggw3HGIwQBTF20xCRQ5aDVvUWj7/cfNImEAHqZ76sO1iC8mq9zT651SeOTm/EMz/sxZ9HSnHlq3+I9sVHqgAAdYam91yy/pj5scKq9WXHqTK756CXaNEhouDBYISohTpXUYv1h0pw/YL12HOm3G45g0VriN5iAOn3O85Ilv/oz+P426KNuOmdDeZttXojlqw/irPltaKyOoPJ7tThuMZgxM44FaseGXPwU6s3Yu6P+7Dl+AU7Z+SZX/YWYdxb63GsROvV1yUidtMQtUi/7i3C3/+72fz87v9uwfrHLpcsa7BoDbHsMjlSLH1T/nrLKQDAgaIq87ZnftiLTzaesCmrM5igVDR9J6rVNw00jW3oprE3aPYfn23DxGNNAUdZTX0w8tbqQ3jn9yN45/cjovIVtXrERagkX8sVUxp+Xw8v3YGv7h3s8esQkS22jBC1QK/8ckD03FFiM8sApLHLZPOxUptWjkaHrYKUylq9ZCAC1Acjlt1AlsGIUi5HTZ0Ri9YetVMvAYvXN+0rq64DAOw9WylZvvfTP+NwcX2AJAgCdpwsQ3mNbVeSM+er6tw+hogcYzBC1AIZrFobFNZ9HqKyti0jNy7Md+l9lm0/jXUNg0il6PTizKqWeUTqDCZ0n7USK/cUuvRejdU0muxPP/6sISj642AJrluwHqNfX+vSa4vfh+NPiLzN7WDkjz/+wNixY5Geng6ZTIbvvvvO6TFr1qxBv379oNFo0KlTJ3zwwQceVJWIvMVglUnVYTBiOYDVzaRnD3y+HcfOV9vd/+zyfaisNZifW7aMuBqENDpyrgr3frQFq/cX2y3TGOys3F3/2qfLatx6DwAwMRgh8jq3gxGtVos+ffpgwYIFLpU/evQoxowZgxEjRmD79u345z//ib///e/46aef3K4sEXmHdVChdDkYcf9GfKLUfjBizTIwcVelzuA0gGlMfqZSNJ3vAovpwq5w0PBCRB5yewDr1Vdfjauvvtrl8gsXLkSHDh3wyiuvAAC6d++OdevW4dVXX8WoUaPcfXsiaqZzlbU4dUHcIqCwnnNrQTSbxoN08MWVri+0V6XzPBhxRa2+vv4qi0GzL/20H9NGdHL5NQKxPg9RuPP5mJH8/Hzk5eWJto0aNQr5+fb7nHU6HSoqKkQ/RNQ81XUGVNbq8fGftoNJpVpGLmjrsPt0uXg2jQctI+cqpQe6SmlOy4grGltGlAr7LUHOsJuGyPt8HowUFhYiNTVVtC01NRUVFRWoqZHur507dy7i4+PNP5mZmb6uJlFYEwQBvZ/+Gb2e/lky8LAeM1JnMGHk/N9xzRvrsP1kmXn7vsIKDJn3m1vvfabM9WDkmR/2uvXa7mpsGVEr7H/0fbvtFJasl57BAzAYIfKFoMwzMnPmTMyYMcP8vKKiggEJUTPoDCZzC4flIFFLP+w8g37tWiEmQomh835DRUMrheVsmBdX7nf7vR1NG7bmzvgST5hbRqy6pRavO4r1h0owrGsyZi3bAwC4vFsKYjRKzFq2R5Rmnr00RN7n82AkLS0NRUVFom1FRUWIi4tDZGSk5DEajQYajcbXVSNqMSyzmEqNeThdVoPpn25DtFqBp6+9yByIAL4JECJVCtTYCYp8qbFlxHp67pyGFplVBefM20qq6vDCygKs2FWI5bvOmrdzzAiR9/m8m2bQoEFYtWqVaNsvv/yCQYMG+fqticLK4nVH8X9vrZdM1KU3mlBnEA8uLdXWmVOkW+7TGewPQtXWGe2mX/emxuyq/tZ47o0tJI7sPVOOFbtsZ+eYGIwQeZ3bwUhVVRW2b9+O7du3A6ifurt9+3acOFE/KG7mzJmYOHGiufy9996LI0eO4JFHHkFBQQHeeustfPnll3jwwQe9cwZELcScH/Zi24kyvL9WnObcaBIw/KU1uOLV3803ylq9Ef2e+QV95vwMk0kQBSNaJzNWdHrfByOtYwLT8lmqre8ysg7cpLz88wHJ7Ux6RuR9bgcjmzdvRt++fdG3b18AwIwZM9C3b1/MmjULAHD27FlzYAIAHTp0wPLly/HLL7+gT58+eOWVV/D+++9zWi+Rh7Q68bf64kodTpfV4Pj5apRodXhrzSH8ZtHdoK0z4N0/mgIYZ9Nnfd0y8shVXTFvXC+Xy783cYDX3ruoQoeaOqPD1qFG9lLFV9cZ8fmm+s+4mjoju22IvEAmCMEf5ldUVCA+Ph7l5eWIi4sLdHWIAiLrseXmx0fnjoZMVj8D5nBxFUa+8jsAYHjXZKyxykB6aeckrLUYhGr93FrraDXOa323/srSewdhQFYithwvxQ1vO04rL5MBh58bDblchk82HscT3+52672yk6Nx6kKNqCXkm/sG49ONJ7C0YUE/T+16+koMfG4VuqbF4rtpQ5r1WkThytX7N9emIQpBlsFEhcU3eOtAxLos4DyXh68CkVsHZuKqi9LQr10rAECX1FinxwgCIG+YdqxykJitUWyEEhsfH2l+np0Ug6zWUaIyR4u1LrWMOLPh8HnU6I2iqc+uqK4zYO3BYo8SyBGFKwYjRCHonEVW0zI3V55t7KYZmJWIi9I9a2kc2CHR7r4YjfTg1Gev74WFt/c3BxcRKoVNmdwOifh0Sq7k8Sql80Rl8ZEqRFu8v1ops5nGe7REizoXBrA6Y1kbdwKL+z7ZitsXbcL8X6THpBC1RAxGiELQ7tPl5sGqFe4GIw0tI/2zWmH+zTkevX+cxWyYVlEq8+OMhEj8OmOY5DHWidVUCjnyuqeif/tW5m1qpRwpsU2DW7ukxpgfWwYV9oKhWr1JlNRNrZDbZFvde7YCP+0psj7UbY3dZIDtoOCy6jo8unQn/jpWanNcY+vVx/nHm10HonDBYIQoBH2w4Rje/v0wAKCs2rOWEZVCDo3S9Y+AHm2aWlEsWz9eHZ9jfjz/5j5Ii49w+TXfnzQAS+9tmuafHKMRpZ//fvpQ82PLxe3G9m6DEV2TbV6volYvDkaUcpsgyHJwb3NYTg+2HhQ8d0UBvth8EjctdDwmhojqBWUGViISkxpn/tJP+3FxVqLHwYhaIUN8pMpJ6XpDOyVhRLcU7G1IDhZj0TISZ/EajV0vMln9eA8A6JYWi2FdbAOHRjKZDPNv7oNPNp7AY6O7ISlag2v7pKN96yhRV45ly0ikWik566fOYBIFHxqlwuGKxM1xwWJsjXUwcri4yvkL+KZaRCGJwQhRCLA3ffTmd/JFXRnuUCvlokDCkfhIlagVJSFSbX4cF9H0GhpVfRm5TGbOx7Hyn5c5ff1x/dpiXL+25uf/ubWvTRmVxftHqhQ2Y0EaWXafaJRyyGXO7/qXd0txu8WkqKJp3I51N40Lb0lEFthNQxQCHOX+OFDkwrdwCSqFbReGPdEaBXo0DHaNVCnQM6OpyyZOIpuqwgd343aJTbNi1Eo57rks2+kxaqXtmBEprgQs1ixXI26cofTxn8exbPtpyCyaPU5dqMbXW07h4a92iIIWxitETdgyQhQC9AbvpwNSOVi51lpGQhT6tWuFT6fkontanGhgpuXslcaxJHI5AC8vPdMhKRqPXtUNq/YVYVDH1qJxK5d3S8GpC9V4fHR30TFqF1tG0uLdzwhrOaNJqzPidFkNnvzONg/K0BdWmx/vOFVmfixj8wmRGYMRohCgM3p/UTl3wps2CfWDUgd3TLLZp1LI8fotOSiv0aNtq/rWi7du64c7P9iMZ667yBtVNZs6vCOmDu9ofv72bf3w7bbTePHG3kiIUtuU1ygVDlt/Ghfsu/2SLHz8Z31W1ViNEpVOstQC4gUEK2r15nWAHPG0FYso3DEYIQoQo0nA/sJKdE2Lddpdojd6v2Xk9IUaAPXjQeylPm+UHCtuObD8Vq+Uy3BdToZo/+XdUrH/2augUdrmEvGmq3u1wdW92tjdr1HKHQ5g/fnBy6CtM6BrWiwu65KMPw4U4+7LsvGKRQ4QeysMHynWmh+XVevxn1UHPTwLIuKYEaIAeWFlAUb/Zy3mrtjntKzeCxlDrbVpmIK7/P6hmDuuFwZ3bC1Z7sb+bXFZZ/uzYeR2bva+DkRc0S0t1mE3TWZiFLql1Y9/WTRpAPJnXo4BWeIcJl/e43yF8fNVOqzcY7vCryPspSFqwmCEKEAaF697f91Rp2WtB7AmOVj19pnrewKoH0dhaVw/cevF+IszAQBtW0Xh1oHtRPlCGl3aOQkv39TH5YGuweLb+wbjxRt7Y3CnJJcGsAL13U1t4iOhtsr02jMjDivuv9ThsWcrah3ulxJav1Ei32IwQhRkNh8rxbRPtmLT0aZBotZL3v/j8k52j79tYDssmzYEb93WT7T9CYvBndY5PAAgNS4Cv84Yhmt62+/2CBV927XCzQPqgy2plpFZ1/TAbw9JZ4pVK8S/F5lMhh7pcZg9tofd91u+86zHdTWaBJRq61BZ29RV9v7aI3j3j8MevyZRqOGYEaIgc2ND1s7lu87ilosz8dCVXUUtI9f2SYfaQeZUuVyGPpkJom3p8RFo7aA1pVGnlBi8OaEffti53GnZUCE1ZuSKHqnITIySKC1eA8fy9zh5SAf8+397vVYvmUyGDYdLMOG9jQDqx+5seTIP2jojnl1e33V3y8B2ojwuROGKLSNEQezzv07i9kUbUdswgLJVlAqvjc9xu4k/Ul3/bb91dP2ME0djQFyRm10/rqJTimcJ1/zJckzL34d2wK0D29kNRABxS8p/Jw/0ad1ue3+j+XF5jR5bjl8QtZCY7CS7Iwo3bBkhChLFlTpU1NrOaikorMR/N9QvqtY1LdZmwOiPD1yKq19f6/C1o9T1/+rf3jcEP+4+i9suad+susZFqLB3ziio3chVEiiWLSNPXmO/q6WRZeb9xoyyjvRoE4e9Zys8qpt1lv9dp8vROqZpirKBwQi1EMH/SULUQty0cANGvvK75L7GmRq3XNzOZl+3tFinr93YMtKudRTuGdZRlDDMEUeJuaLUSihDIBhxd/BtpMVYGleCrTuHdnC7TgBQarG2TSOdwYQqXdM0YnvLABCFG7aMEAWBWct249j5aqflGtOwW96iHAUMD4zsjLfWHMIsF1oEwpW7wUh9wJaNuAiV3WnLllJi3c/eak+t3ihKGa93sAwAUThhMEIUBP6bf9xpGYVchnaJ0W697oNXdMF9Izp6nPOjvYOxFaHCk3VyZl7d3XmhBhoHg4ndpTOYzOvcAGwZoZYj+NtYiUKYVmdAQWEFavVG/FZQhN2ny/H+2iPmAanuGJiVaJ5F0zgQtdGLN/QGALx7e3+b4zwJRD6dkoubB7TFv0Z1dfvYYONK60ZzOJrZ1Egmg8OpwY1q9UZUWbSMcMwItRRsGSHyoRve3oCCwkpkJ0XjSElT+nCp8QLOXHlRqvlxXvdU3DE4CzkNU09vvjgT1/fNcOnG6IrBHZMk16EJRd3T4pwXagZXFhxUyGSYPKQDLu2cjLz50uOCAECnN4m6aQw+WAaAKBgxGCHyoYLCSgAQBSIA8E5D9lV3JEQ15ZuQy2V4+lrxInTeCkTCzQ392+K8tg4DOyQ6L+wBV7ppTA3TZpw10tQaxC0jdQYTvtl6ChdnJTqcjkwU6vjpRRQArowF+PBOcY4LJr/yjEIuw9ThHdG/fatmv9ZN/dsCaFrXB6hvGXE2O6nxajtaJweobxmx7ML7+M/jmPHlDlz64mrPKkwUIhiMEPmIoRkzIcb1y8CwLsn4bMol5m1xkQxGAu3FG3tj75xR6JURb96mVsoxc3Q3h8c15hOJd3INaw1G6CxS//9+oNjzyhKFEHbTEPnIhWrbBGbOqJVyPHd9T1zdq359mESLgapsGQk8mUyGKLVSNE5EpZBjwsB2yO3QGh2SonHsvBbrD5Vg1rI9Nse3ilZj/IBMfLH5pOTr1+qN0Fm0jHBqL7UUbBkh8pHzWp3bx6TGaXDTgExzs3+UumkmTGwEvzsEDYveFrVSDplMhk4pMVDIZeiYHIOJg7JE+U0s0+bfmmubuK6RzmAStYxYr9ZMFK4YjBD5yPkq92fMWE/DtbyhxTAYCR4WQ35cydL6/sQB5sc5mQmIVktPt67Vi4MRtoxQS8FghMhHznswfff4efGsm7S4CAzKbo3Lu6Ug1sUU7uR7lRYzXiLsrF9jOVQ1K0mcrO7eYR0lj9l3tkKU9ExvZ2rvthMXMGjuKny/44yLNSYKbgxGiFxQqzfi8W93Yc3+cy6V33L8An7cddbt97G++cjlMnx29yVYfMfFDtO+k3+VVDZ1wTX3unw6JRdJMU0p5X/dV2R+bG/W1bRPtuJseS3u/2xbs96bKFgwGCFywcLfD+PTjSdwx5K/HJYrqqhFdZ0BN7y9AT/uLvRT7cjfPBkPZE/fzFbIn3m5W8dUWLSeEIUDBiNELjh0rsppmf2Flch9fhVuefdPj9/HlfEHFHiu5Ilx1GBiebRaKYdKIce4fhkOX08Qmo4ymJrGkox8ZQ1mL9vttD5EwYyffEQucGUtmY//rF/sbuepco/f59tpgz0+lvznP7f2RXKsBgv/ZrsWkCtMFoFF4yBlZ1O3LdepsYhFcLhYiw/zj+PmhfmoqXN/zSOiYMBghMgFtXrHsxo+WH8UX/wlnTvCVc//Xy9clB7vvCAF3OCOSfjriTxc1TPNo+MFiYaVOCezpZZtP4PLX16DXafKYZR4gU3HSvHNtlMe1Yco0Dg8n8gF9lpGKmv1+Pf/9mLplubfBCY4yD9BoUcGGcQdMk2ktsY6aRn511c7AADP/LDXpW4iolDClhEiF9TYCUZeWFnglUCEWhiJlg2DiwGG3MGndrSa3y8pNPEvl8gF1sFIRa0eN7y1AQddGNhKZE0q7tDqXJsh8+eRUrv7IlTSydSIgh1bRohcoLMaM/Lxn8cZiJBjbqYfmZDbzunqv86x+4ZCE1tGiFxgmaJbEAS88vMBr7zuAyM7o7xGj54ZHLjakqTFR9hsS0+IxM7ZV6K0ug4Dnv3Vo9ets5OxlSjYMRghcoHlVMxtJ8u8NoCwU0oMxvZJ98prUXCZcUUXzPuxAOMHZNrsG39xJg4WVWJo52TRdrlcJsrGCgC3X9IeHzVMG3fGwLVsKEQxGCFygWXwUVzpveybnBURvu65LBuXd0tBx+QYm30qhRz/vq6n3WOnDu+It9ccxsOjuuKmAW3dCEb490ShicEIkQssW0a8uZJq21aRXnstCi4ymQxdUmM9OvbhK7vihn4ZyE6KcXmWDQDoLbKhlWrr8PaaQ7ixfya6pnlWDyJ/4QBWIiuCIOD7HWdwpLhpgKrJ4oYglQCtZ0ac2+/TOSUGA7ISPaskhTW5XIZOKbGQy2VQK+UY0TXZ+UEQt4zM+3Ef3lt7FKNe+8NX1STyGgYjRFZ+3F2I+z/bhstf+R1bT1wAAFHGS6kEaK2i1E5ft3ubONw5pIP5+XU5HCtCrlkyeSB2Pn0lEqIcJ0bTG0149ZcD+GrzSewv4mwvCh0MRoisrDtUYn487q0NAMR5Ieb9WGBzTOto58HI0E6tMWtsD/Pzaq4jQm6Ii1Bh4+Mj0but7cyrkd1SAACr95/D66sO4uGlO5Hkwt8kUbBgMEKE+lkI6w6WoEpnwPfbz0jub1QlkZyqTYL9sR+NN4+brGZVtG8d5Wl1qYXSKBWIUNomNkuOrZ+Bs/7QefO2RItgpLrOtYRqRIHCAaxEAN5bexQvrCxAtFoBrVWLhcFoksyYaWnKpdn4dW+RZCK0T/6ei/NVdchKigYAfD11ENYfOo8b+rX1Wv2p5ZBJJFNTKmw3rt5fbH5cXKlDu0QFdpwqR+eUGEQ3O7kakXexZYQIwJeb61fctQ5EAHHCM3sSo9X4ZcYwvD9xgGh7UowasREqcyACAP3bJ+L+kZ2hVPDfj9ynkIsDj1suzoRSYsGakqqmKegXqvX4YedZXL9gPe768C+f15HIXfw0JIL0t81Gpdo6h8c2NpEDQF6PVKx9ZAS+uW8whnVJxsd/z/VWFYkAAPcM6wgAGNYlGYsmDcDT114ElUTLiKUL1XX4uCFXiaO1bYgChW11RHC8jMilL652eGx8pHiGQ2ZiFDITo/DhnQO9UDMisWFdkrHhscuRGhdhbiVx1spWVl1n06JCFEzYMkIEQO6oacRKtFrh8DmRr6UnRIqCC5WTQOOCVi8qf6S4Co99vRNLt5zyWR2J3MGWESK4F4y0ilZDW1djfh6l5r8RBZazcU1l1XXQWswCu/yV3wEAn/91Ejf250BqCjy2jFCLVWfxAe5GLIIZV3QRPefMBAq0ilq9w/0FhZXYeqLMP5Uh8gCDEWoxzlXUmh//VlCEi2avxBd/nQBQv46IKz79ey7G9WuL76cPMW+L1rCbhgKrosZxHpFtJ8v8UxEiDzEYoRZhwepDGPj8Krz7x2EAwL0fbYXeKODRr3fhH59twwUnM2YAIEqtwOBOSQCA3m0TzNvbxHOxOwosZy0jzmaEEQUagxFqEV76aT8A4PkVBThXWSva978dZ1BYUSt1mEiEStwC8vJNfTCsSzKmjejovYoSecDecgRZDVl+jS6s/FuqrUMNlyigAGFnN7U4A59b5XC/WikXjSdpFGkVjNzYvy0H/1FQmDm6O2r0RvztkvY4UVqNN1Ydwn/vGohtJy7g0a93mctplHLJwa4lVToMePZXdEiKxp1DO2DbiQt46cY+nA5MfsNghMhKm/gIHD9fbbP9oSu7SJQmCrzUuAi8c3tT9t/bctsDAPaeqRCVS4xW42y5bSvg2oP1qeOPlmjx1He7AQBj+6RjRNcUX1WZSITdNERW0iXGgPz20DD8X9+MANSGyHMRKvFHfKso6e6c81W2Y0q2c/YN+RGDEQpbH6w/itX7z7l93K257Wy2ZSfHuDzjhihYaKxW+G0VrZIsd6HaNhh5fdVBm/FVRL7CYITC0rYTF/D0//Zi8hL3FgVb+Lf+GNu7jY9qReRfGquWkQQ7LSOlWunZOPsLK71eJyIpDEYoLBVVNK1Yuumo6wuD6QxGtoBQ2LBuGamosQ06TCYBlXamBluu/EvkSwxGKCwpLWYB3PxOvsvH5XVP9UV1iALCeszIzQMybcrUGU2orJVOmiY1loTIFzibhsKSwsmS6lJuuTiTqd0prFi2jPw64zKoFbbZgicv+Qu1Bun8IsWVbBkh/2DLCIUlpQf5EdRK/jtQeLHME5IcEyH5N55/5DzKJbpvAEBb5zjNPJG38GsghSV3VuFtpFZIByPjOKWXQpTGIviI0ihgFKQzsR4p1kpur2ZGVvITBiMUlgwupL+2ppL41nhZl2S8cGNvb1SJyO/SEyLxz7zOiNEooVLIRcGJK2r1DEbIPxiMUFgyGG1TXnuiR5s4qOy0mBCFgn/mNWUOdrcrUqszYtn207goPR6dUmK8XTUiMwYjFJY8aRkxSTRhc5YvhROVQo73Jg5AncGEaZ9udVr+9wPF+P1AMeQyoGdGPP51ZVdc1iXZDzWllsajr3wLFixAVlYWIiIikJubi02bNtktq9frMWfOHHTs2BERERHo06cPVq5c6XGFiazN/GYXHlm6Q7TNYPQgGJEIYOx0sROFrCt6pGKMm4n9TAKw81Q5Ji62/1lP1BxuByNffPEFZsyYgdmzZ2Pr1q3o06cPRo0ahXPnpNNuP/nkk3jnnXfwxhtvYO/evbj33nvxf//3f9i2bVuzK09UWavHZ5tO4MvNp0Spqw0m97tpPGhMISIiL3A7GJk/fz6mTJmCyZMno0ePHli4cCGioqKwePFiyfIfffQRHn/8cYwePRrZ2dmYOnUqRo8ejVdeeaXZlSeyDCDqDCYIgoDdp8vxwOfb3X4to8WLdUiKBgBcw9Tw1AK8fksOrujBhH8UOG6NGamrq8OWLVswc+ZM8za5XI68vDzk50tnudTpdIiIiBBti4yMxLp16+y+j06ng07XlGynoqLCbllq2SwDCJMJ+GzTSTz+7S6PXstyzMiPD1yK4kodMhOjml1HomA2KLs1rsvJwNqDJS4fc6S4CsfPV2NEtxQf1oxaErdaRkpKSmA0GpGaKo6gU1NTUVhYKHnMqFGjMH/+fBw8eBAmkwm//PILvvnmG5w9e9bu+8ydOxfx8fHmn8xM2xTGRIB41sxrvx7wOBABxMFIhErBQIRahMZB2nER0iv6Wrv2zXW4/JXfMfmDv7DluOvrPhE54vM5i6+//jo6d+6Mbt26Qa1WY/r06Zg8eTLkcvtvPXPmTJSXl5t/Tp486etqUoiynDXzzbbTbh0bY5X63XpRMaKWoDFB4KiLXOum2Xmq3Px409ELPqkTtTxuBSNJSUlQKBQoKioSbS8qKkJaWprkMcnJyfjuu++g1Wpx/PhxFBQUICYmBtnZ2XbfR6PRIC4uTvRDJMXZrJnGsR9Slk4dhBv6tcUdg7PQLS0W9w3v6O3qEQU9eUPK+Nzs1vjynkGiFPLvTRzg8Fi9l/L5ELkVjKjVavTv3x+rVq0ybzOZTFi1ahUGDRrk8NiIiAhkZGTAYDDg66+/xnXXXedZjYks6J3MmnGUJ6RbWhxeubkPnr72Iqz852VoHaPxcu2Igp/lMk4DOyRi0aT6AOThUV0xtFOSw2Mra6XXtCFyl9tJz2bMmIFJkyZhwIABGDhwIF577TVotVpMnjwZADBx4kRkZGRg7ty5AICNGzfi9OnTyMnJwenTp/H000/DZDLhkUce8e6ZUIvkrGWEOcuIHLNex2l41xTsm3MVItUK0QBxKYUVXNWXvMPtYGT8+PEoLi7GrFmzUFhYiJycHKxcudI8qPXEiROi8SC1tbV48sknceTIEcTExGD06NH46KOPkJCQ4LWToPC2/lAJvvjrJGaP7WHTeuEsn4iMKVSJHJJa4DpSXT9+SuFk9etqHVf1Je/wKB389OnTMX36dMl9a9asET0fNmwY9u7d68nbEAEAbnt/IwAgLlKJZ6/vJdrnrGXEOsV7bodEbDzKGQBEjZoTsNca6hfSEwSBgT81C1cAo5BxvqrOZpuzlhHrZmalgh+YRJaa8x9Rqzfh+RX70P/ZX3GgqNJrdaKWhwvlUchIiFKjSmfA6oJzGNEtBTEaJeoMjltGrFtOrPvHiVq65vxPHC3RYsvx+um99360BbcObIfEaDVu6N/WW9WjFoLBCAU1XUMzMAC0ilLhkaU7sGJXIUb3SsP0EZ1x63t/OjzeuuXEWR84UUvTnP+JUm1Ta+WREi2eW7EPAJAQpcLI7kwvT65jNw0FteLKptH60RolVuyqz/S7YlchHvl6h73DzIwmAYM7tjY/V7BlhEjE2b9EXIT731lX75deOJXIHgYjFNQsgxHrBEtSY0isGUwC3rVI3FTHJE1EIs66adY8PALj+mW49Zo/7ynCHUs2iVpOiBxhMEJB7ZyDYKSs2n7CJbWi/k979tgeiFI1pXmPj3Rt/Q2icHfnkA6Qy4D7R3ZyWC4xWo1Z1/QQbVMrHd86zlXqsGZ/MV76aX+z60ktA8eMUFATByPiwag1eqN1cbNHr+6G63LSkdSQl2TF/ZdCZzDCJAA/7DyLnhlcYoBatllje+Cxq7s5DSwAQKkQl4lQylFncN7KWFxZ63H9qGVhMEJB6/21R/Ds8n3m599sPeXysSqFzByIAECP9KbgY92jI5ASG+GdShKFMFcCEQDQWJXTqBRArfOEZ40z6/cXViImQomMhEi360gtA7tpKGhZBiIAUOLCGJFGSgerQrdtFeXyhzARASqFHL89NMz8PELl2v/PnjPlKCyvxajX/sCQeb/5qnoUBviJTEHJckqvKxKiVJiQ2878XMkpvERelZ0cY34coVQ4KNmkqEKHTzYe91WVKIwwGKGgVK1zLxi5pENr9GvXyvyc+USIfMedRGnv/H7EhzWhcMFghIJSlZsLcCkUMsRomr6tMe07ke+olXLMG9fLeUGIp9ObnKwCTC0XgxEKStV17rWMKGQyxGiapu06GjNCRJ558cbeSI+PwEs39cYtA9s5P8CK3iIjsiAIKK+xPz2fWhZ+YlNQcrdlxCQIiLZoGWE3DZH33TwgExtmjkS3NM+mxltOz3/iu93oO+dnbD9Z5qXaUShjMEJBqbrO/WAk1iJtNQewEgUfg0WXzacbT8AkAB9uOBa4ClHQYDBCQUnrZstIenykqJtGwTEjREGnsWXE8v+7feuoQFWHggiDEQpKWjdn03RJixV10xiNHChH5Gsv39QHMRrXc2c2rqK941SZeVtcBJdoIAYjFASKKmqx8ch5AMCR4iq8+dtBURp4Z7KTonFtn3REq5s+FGvdzFNCRO67sX9b7Jx9pfn5pZ2THJY3NHxJ+PNIqXkbF68kgOngKQjkPr8KAPDZlEswafEmlz6cIlUK89o0Pz14GVRWa2fU6vkBR+QPcrkMn025BOsOFaNXRgLWHiyxW7ZxscsjxVVN21xY44bCH1tGKGisP1Ti8rekaI3jwaoK/mUT+c2gjq3x8KhuNmniY626cAwNeUYsV9y2Xo2bWiZ+ZFPQMAn2x3l8fFcuspOjzc8tx4fILLJBzry6Gy7rkozRvdr4ppJEZJd1fp/4KPF4kMbAo6ymaZ2pOo7vIrCbhgJIEARRIGF0EIx0SYuByuKDznoV0Ub3DOuIe4Z19F4lichl1pmPYyNUAGrMz8f8Zx0eHtUVF7RNLSN17KYhsGWEAmT1/nPo/+yv+K2gyLzN0RoWGqVC1JwboXJtoS4i8h/LLtPRvdJEuX8avfTTfpwuawpQpLppzlXUMnV8C8NghAJi8pK/UKqtw50fbHapvFohh87iG5S9lhEiChzLzMd/u6Q94iSCEWvWwchvBUUY+PwqzFtZ4PX6UfDiJzoFNbVSjlsuzkSkWoFbLs4EAAzKbg01gxGioGM5ZiRSpWjopnHMupvmiW93AwDe/eMIPt14AoPmrsKBokrvVpSCDj/RKai9enMO5t3QGwBw7/CO+O+dA/HepAHQKNlNQxRsLMeMRKgUkMucZ0K2nkF3trzW/Pjxb3fhbHktHvt6p/cqSUGJwQj53fKdZ10uazlFV6WQ47IuyYjRKG2mEBJR4FmOGYlUKXDGYmyIPT/sPIvtJ8scTvHVcZBr2OMnOvndvJX7XCqXGqfByO6pkvvUTCRCFHQsx4xEqBT4x+WdXOpSvX7Bekz9eAvKLfKPWOJY1vDHT3TyO+tcBPYsvuNim8yqjdhNQxR8LGOGSJUCgzsloWDOVS4d++u+c+gz52fp13Uw7Z/CA4MR8jupjKlSkmI0dveN6lnfYhIfyUW2iIKFwSKBWYS6/vYid/H/3RFHCREpPDDpGfmdvdYOa62i1Hb3jeiags+mXILOqTHeqhYRNVOMxVReb3alspsm/DEYIb9TKVz7puSor1kmk2FQx9beqhIReUFGQiSeub4nEiJVouzKGQmRokRn7mLLSPhjNw353OmyGjz53S4cblipU8nBp0Rh6/ZL2mNsn3TRtm/uG4zspGg7R7iAsUjY412BfO6+j7fg4z9P4KaF+ThfpcPOU2VOj/l1xjDfV4yI/CI1LgK//Ws4ulh1q/464zKblX2lsGUk/DEYIZ/bcaocAFCqrcPYN9ZB78IqnXGR7EEkCjdvTugnet4pJRb/vWug0+M4ZiT8MRghnzp1oVr0/IxFdkVHVC5O/yWi0NElNdZmmyuLXrJlJPzxE598auY3uzw6znopciIKT64EI4xFwh+DEfKpE6XVzgs1yE5uGuDm6vRfIgptkS4FI4xGwh0/8cmndHrX15R45rqe5seuJkYjotAypFP9lPyL0uMAwKV1pjhmJPxxlCD5lPWKnI5YLvCpYDBCFJb+c0tffLn5FG7olwHAtW6awopalFTpHGZlptDGlhHymfIaPUq1dS6Xl6EpAJG5sPQ4EYWe1jEaTB3eESlxEQAAjQsL6QHAqFf/8GW1KMAYjJDPXPPGWrfK92gT56OaEFGwcvWLx3k3vthQ6GE3DflErd6Ik6XupX+Oj1Jh0xMjXRrQRkRE4YPBCHmdVmfAoLmrPDo2JTbCy7UhIqJgx24a8rqNR8+jotYQ6GoQUYj45O+5LpV76MsdnOYbphiMkNeVVLFvl4hcN6RTEu4a2sFpua+3nsK+s5V+qBH5G4MRapbC8lq89FMBzlgsD15cqQtgjYgoFLmSbwQAfj9QDIMbKQMoNHDMCDXL3R9txs5T5fhlbxF+frB+pd29ZytcOvaeYdk4U1aLbScuuPStiIjCl0bp2sD1F1YWoEZvxIwruvi4RuRPDEaoWXY2rMh7oKgKAGAyCfh9f7FLx3ZOicXMq7v7rG5EFDpczTcCAP9ZdRADsxIxtHOSD2tE/sRuGvKqilo9qnT2B692SIpGbodEKOUyjOyW4seaEVEwcyUTq6W/LdqIrMeWY+XuQh/ViPyJLSPkVReq9ZLbr+iRCoPRhPcmDoBcJoPOYEKkmvlEiKjedTnpmP39HrePu/fjLTg2b4wPakT+xGCEvOpCtfRMmvcmDhA9ZyBCRJYSotS4sX9bLN1yqlmvs7rgHGQyYHhXtryGEnbTkNdsP1mGQ+eqAl0NIgpRw7oke3TcPz7bBqA+4eLkD/7CHUv+QnUdcx2FEraMkEvOVdTiqWW7cfslWeZBY6v3nxOVuX7B+kBUjYjCxDW920ClkEMmA+75aIvLx/1vxxm8Pj4HlRbJFs9V6JCVxFtcqGDLCLlk1rI9+GlPEf62aKN52+QlfwWwRkQUbmQyGa7qmYZOKTFuH1trMIoGzw9/eQ12Ncz2o+DHYIRccrpMvOjd/kLHWRD/dkk7LnhHRB5xd2YNAGh1RmitZvI9+d0ub1WJfIzBCLnEepXvvWcdf+NoEx+JMb3b+LBGRBSuVIqmD5xXx/dx6ZjqOgMqasWz+eqMXMcmVDAYIZdYxSKo1TtOx5wcq/FdZYgorCVEqs2Px/RKt1tu3aMjzI/v/2wbbl+0SbSfaeNDB0f3kEdq9UaH+yNVCkwb0QnfbTuNCbnt/FQrIgoHaqUcW57Mg9Dw2J62raKQ1ToKx85XY4fE+BA9g5GQwWCE3JZ/+Lxky0ib+AicLa8FALRtFYkOSdHYM2eUy2tOEBE1ah3jWutqlNr+bUzPbpqQwWCEnBIEQfSt49b3/pRcR6JTSgyeH9cLx0u06NuuFQDXF78iIvJEjMb+bayiVg+D0QSlgiMSgh2vEDm1fNdZm206g23LSIekaIzomoI7hnAFXiLyjyiN/S88lbUGdHriR1TWSi9TQcGDwQg5VKqtw/RPt7lUtm2rSB/Xhohaomev74kOSdGibbENLSLRDrppGv28p8gn9SLvYTcNOfTUd7tdLhvtoLmUiMhTf7ukPXIyE3DNG+sAAIvvGIBeGQkAgCgX1rnSqPi9O9jx7kEOHSnRulzWlQ8FIiJPKC1yjwzumGROjObKl6AIjl0LegwXySGpgar2OBrVTkTUHMkWs2vUFgNSXfkSpHLjc4wCg3cPckhune3MAbaMEJGvtI7RYMnki6FRyiG3+GBypWXEaDLhv/nH0DE5BkM6JfmymuQhj8LFBQsWICsrCxEREcjNzcWmTZscln/ttdfQtWtXREZGIjMzEw8++CBqa2s9qjD5l7NMq0M6tTY/ZjBCRL40omsKBncUBxOufO78caAEs5btwW3vb3RalgLD7WDkiy++wIwZMzB79mxs3boVffr0wahRo3Du3DnJ8p9++ikee+wxzJ49G/v27cOiRYvwxRdf4PHHH2925cn3nGVazWrdNMKd3TRE5G8KF5pvP9hwzPcVoWZxOxiZP38+pkyZgsmTJ6NHjx5YuHAhoqKisHjxYsnyGzZswJAhQzBhwgRkZWXhyiuvxK233uq0NYWCQ42TYGTykCzzY7aMEJG/CW4mWRXcPYD8wq1gpK6uDlu2bEFeXl7TC8jlyMvLQ35+vuQxgwcPxpYtW8zBx5EjR7BixQqMHj3a7vvodDpUVFSIfsh/DhRVmle/dBSMDO2UJFrqmy0jRBTsmCI+OLkVjJSUlMBoNCI1NVW0PTU1FYWFhZLHTJgwAXPmzMHQoUOhUqnQsWNHDB8+3GE3zdy5cxEfH2/+yczMdKea1Aw7Tpbhylf/wFWv/gEAqKmzH4zUGU0wmpr+sdkyQkTB4OmxPbD736Mw6qJUm33OWnspMHw+32nNmjV4/vnn8dZbb2Hr1q345ptvsHz5cjzzzDN2j5k5cybKy8vNPydPnvR1NVu88ho9BEHAqn31mQrPlNfCZBIk07430htNiI1QmZ9HqhiMEJF/XZ+TgaQYNbKTm8avtW0VhRiNUnJNGmfj4Cgw3GpXT0pKgkKhQFGROLVuUVER0tLSJI956qmncPvtt+Pvf/87AKBXr17QarW4++678cQTT0Aut/1j0Wg00GhcW7GRmm/N/nO4Y8lfuOeybMRFNgUXtQbbf9rs5Gh0SYnFyj2FuPvSbCRGq/HhnQMRYTXdjojIH+KjVMifORLHz2uRN7++RVfdkFdELRGMWLb2nimrQasoNSLZqhtwbrWMqNVq9O/fH6tWrTJvM5lMWLVqFQYNGiR5THV1tU3AoVDUX3gOJAoOzy3fBwB4548jojEgE96znQb30o298eaEvljzr+G4ulcbAMCwLsnIzW5tU5aIyB9UCrlohXBVQxCiUth+QapuCEYOF1dh8LzfMOH9P/1TSXLI7RGHM2bMwKRJkzBgwAAMHDgQr732GrRaLSZPngwAmDhxIjIyMjB37lwAwNixYzF//nz07dsXubm5OHToEJ566imMHTvWHJRQYFmu26C2+OfdfrKsfr9SjtX/Go7j56vRv30iACDLatEqIqJAsmzdaAxCpLppGseMfL7pBABg24ky31eOnHI7GBk/fjyKi4sxa9YsFBYWIicnBytXrjQPaj1x4oSoJeTJJ5+ETCbDk08+idOnTyM5ORljx47Fc889572zoGaxXLfhqWV7bPbHRaqQnhCJ9ASuyktEwcmyVbexzV2qm+aGtzdg+6wrcPx8tXnb0RIt2raKxG3vbUSP9Dg8fe1Fvq4uWfFoLub06dMxffp0yX1r1qwRv4FSidmzZ2P27NmevBX5QQQHnhJRiIuwWH+mcZaf0s44tv/mH8fvB4rNz0e8vAZPjO6OTcdKselYKYORAODqQeR0MTyOPieiYGfZJWNqCEaq7Xx2bThcYjNT8Nd9RZJlyT8YjJDTlpE6B9N7iYiCRWpc/SzMnm3jAQAXtHXmfbERTR0Bfx4ptTlWKTHYlfyHKTNJNIBVSp2RwQgRBb8/HhkBncGEuIb8Rxeqm4KRy7ulYNn2M3aPVUikmSD/4W+/hRAEAYvXHcWGQyUAAK3OgFX7ilCrN0Ihc/yNgDOwiSgUaJQKcyACAGXVevNjZ8tVWI4vMZn4oedvDEZaiPzD5zHnh72Y0LCE9kNf7sBdH27GCysLYHDyjxejYQMaEYWeKy+qT8bZNTUWU4d1dFjWMu+Vs89E8j7eZVqI02U1oucr99SvJbRk/TGHx2UnR2PeuN6+qhYRkc9MG9ERnVNiMKRTEhKj1Xjj1r74x2fbJMtaDmg1MhjxOwYjLYRKYr69K357aLh3K0JE5CcapQJj+6Sbn7dLjLJb1jIY0ZtMUBplHn9ukvv4m24hLP+pmIafiFqixGi13X2WKQzWHSxB96dW4qP8Y36oFQEMRloMy2lrjlbiJSIKV61j7AcjloNd7/tkKwwmQTIjNfkGg5EWwnLBKMtVK4mIWgrrGTV3De1gfmw9ro78i8FIC1TDjKpE1EJ1SokxP74kuzUmD8kKXGXIjMFIC2EwNo0TKbXISkhE1JI8Maa7+bFaKYdGybW5ggFn07QQllPVymv0kmXuuSwbFbUGbDxyHkdKtP6qGhGR31iuxaVSyKB2sjYX+QevQgthmcTHMkWypQ5J0Zg7rhdSGtZ3ICIKN5bBiFohd7pQKPkHr0ILYdky8tzyfZJlBndMAgDIwAWjiCg8WXbLqBRyqJlLJCjwKoQpncGIvWcqzDlF9BaL3Z0tr7Upv+7REWjXuj4hkJOlaoiIQpZlt4xaKXe6UCj5B8eMhKlHl+7Ed9vP4PVbcjCmVxs8vHSnTZk28REY2ycd/dq1QttW9jMTEhGFC/GYETminSygR/7BqxCmvmtYKvu55fuQnRQjWSZao8Tjo7vbbGfLCBGFK7XVmJHYCN4GgwHbp8LcuUodTHbSv0fYaZ68oV9bAEC3tFif1YuIKBAsx4woFDLERqgCWBtqxJCwBbC3Ek2Enfn1/9c3A+1bR6MrgxEiCjOW2agBOGwZiWOrid/wN90C2G8ZkQ5GZDIZ+rdv5csqEREFhOXnXlyEEkaj/YVDYzS8RfoLf9MtgN7Ownj2ummIiMKVSiHH99OHwGASEBuhEqU9sKZ3sI+8i8FIC1BrJxjR2GkZISIKZ73bJpgfS7V+yGSAIAAGI1c49xd+NW4BdHYWxrM3ZoSIqKVQSiQ9i2r4omZw0IVD3sVgJAwIgoB3fj+MDYdLJPfP/+WA5PbEaI4iJyJa+8gIrLj/UvPzyIbcI3qTCbV6I0zsrvE5BiNh4Nd95zD3xwJMeG+j5P6CwkrJ7T3S43xZLSKikJCZGIUe6XG4tk86AODBKzoDAGr1JnR7aiWyH1+BeT8WYOOR86i109JMzcNgJAycKK0WPXe1nzOve6ovqkNEFJJeG5+D/JmXY9RFaTb7Fv5+GOPf/RP//t+eANQs/DEYCQNW0+ahszNgFQAyEiLxv+lDcXTuaCb7ISKyIJfL0CY+Eiq5/VvjZ5tO+rFGLQeDkTCgkIujEUfBSGyEEr3axkPGnO9ERJKU1t/wrAh2cjeR5zi1NwwoLKL4/+Yfw85T5XbL2kuARkRE9ZwFI8VVOqTERvipNi0Dg5EwYDkzbdYyx/2ZjhL8EBERHHbTAMDBoioGI17GbpowIHejy4WxCBGRY3K548/UA0WV7KrxMgYjLUCfzATzY4OJGQWJiJz53/ShdvdtO1GGgc+vwn9WHfRjjcIbg5EwYJBo7nhzQl/z40uyE/H3oR0AAE+M7u63ehERhapubWLRKSVGct/3O86guFJnN6EkuY9jRsKA3iqvSIRKjmt6p8NgFPDz3kI8MLIzIlUKTBvRCa2i1QGqJRFR6FAp5Pj5n5ch+/EV5m2XZCfizyOlAaxV+GLLSBjQW62fENmwrsL1fTPw1m39EaVWQiaTMRAhInKD9diR0b3aSJYrKKzAf1YdRE0ds7N6ii0jYcA642oEV+MlIvKqe4d1RJTa9pYpCAKuem0tAEBbZ8DMq9kV7gm2jISBaqtoPJLBCBGRV3w9dRDuHNIB/7i8E6LVtp+thRW15sfbT5T5sWbhhS0jIa5Wb8TrViO62TJCROQd/dsnon/7RABApEQwcvXra82Pmdjac2wZCXFbjl+w2Rah4mUlIvK2aI3t9/eyar35sQyMRjzFu1aIk8qoKhW9ExFR80Txs9VnGIyEqPk/78eVr/6O4kqdzT6OGSEi8r4YiZYRS466aQRBwILVh7D+UImXaxUeOGYkxPxWUITXfz2IHQ2L4S1Yc8imjIbBCBGR16UnRDrcf/x8NTYeOY/c7NY2+5bvOouXftoPADg2b4xP6hfK2DISYu78YLM5EAGAEraMEBH5hUrh+JZ5uqwG49/9EweKKm32HT6n9VW1wgKDkRBXUWuw2cZghIjIN76fPsT8OClGI1nmylf/gMliPN+c/+3Fq78ydbwjDEbCEGfTEBH5Ru+2CXj39v64Picdax4ebrfcztP1LdjlNXosXn/UT7ULXRwzEobYMkJE5DtXXpSGKy9KAwC0jlbjvLbOpszBokrkZCbYZMgmafwKHYQOFFVixa6zHh/PAaxERP6hUUrfRo+drx8jIpV+gWwxGAlCV776B+77ZCs2HK6fAmYwmvDFXydw4ny1ZPlxfTPw5oS+5udsGSEi8g97X/6KKuonF+gMbBlxBbtpgtjeMxUY3DEJi9YdxdwfC6BRypEcq7HJLZIUq0FCZNOKvEx6RkTkH/ZaRpZuOYXs5GiMaujOIcfYMhLEhIbWvZV7CgHUR9hSSc7iIpRIjG4KRjiAlYjIP+wFIwDw4sr9qNYZ7e6nJrxrhYALEoOjLMVFqtA6pikY0SjZMkJE5A8dkqId7h/75jo/1SS0MRgJEoIg4GRpNQTBdrBTqZNgJD5ShVZRTcGInqO3iYj84t/X9gx0FcICg5Eg8dJP+3Hpi6vx3toj5m0CBOgMRsnEZtkW0XhchApqi6bC6jo2CxIR+UN8lAqHnrs60NUIeQxGgsRbaw4DAJ5fUWDeptUZcekLqyXL3zu8o/lxbIR4HHK/dq18UEMiIpKiVMiRk5ngcnmpFvCWjrNpgtiu0+U4JzFgFRAHHNENK0luemIkisp16JoW65f6ERFRPUcDWa0ZTQKUCgdL/LZADEaCjEzWNIvG5CB6jtEo8Z9b++JosRbdGoKPlNgIpMRG+KOaRERkoU9mAjYeLXWprFEQePO1wt9HECuv0dvdp1bKcW2fdD/WhoiI7PlnXme8+8cR5wUBmDjHwAbHjAQZy8YQR8GIik18RERBI0qtRP/2ro3XM3LMiA0GIwFmMgn465h0015FQzAyuGNrm31qN/oniYjI914bn4O87qlOy3G9Glu8owXY0q2ncNPCfMl9JVX1+UUsc4g0Usl56YiIgklmYhTenzQAX08d7LAcgxFbvKMF2LdbTzstU1Fr210jl7ObhogoGDnrrmEwYovBSIC50sDx90uzfV8RIiLyC0czJVsqBiMBJpc5buHITo7GZZ2TRNsuyU70ZZWIiMiH2DJii8FIgMmcBCNJ0RpRmR5t4vD2bf19XS0iIvKRxmBk56kynC6rAcCsrAxGAszZ0I9W0SrR8zuGZKFVtO2AViIiCh5X9rA/q8ZgEnCsRItr31yPIfN+w5u/HUTfZ37B11tO+bGGwYXBSIApnLSMJFoFHhy2SkQU/N7+W39kJ0dL7vvn59uw63S5+fnLPx9AWbUeD321w1/VCzoeBSMLFixAVlYWIiIikJubi02bNtktO3z4cMhkMpufMWPGeFzpULf7dDk2NaQNdjYrxjoY6ZgS47N6ERGRdyjkMtx+SXvJfTtOlWP1/nN+rlFwczsd/BdffIEZM2Zg4cKFyM3NxWuvvYZRo0Zh//79SElJsSn/zTffoK6uzvz8/Pnz6NOnD2666abm1TxECYKAa95YBwDY/GSe826ahhwjy6YNwfHSaq7IS0QUIm6/pD0yW0WhX/tW+GHnGcxatse87xsX0jq0JG63jMyfPx9TpkzB5MmT0aNHDyxcuBBRUVFYvHixZPnExESkpaWZf3755RdERUW12GBEZ2halOB8VZ3T2TSNLSN9MhO4Fg0RUQhRKuTI65GKxGg1Jg7KCnR1gppbwUhdXR22bNmCvLy8pheQy5GXl4f8fOksotYWLVqEW265BdHR0n1p4U6rM5gfq5Vyl4MRIiKicOVWN01JSQmMRiNSU8WjhFNTU1FQUOD0+E2bNmH37t1YtGiRw3I6nQ46nc78vKKiwp1qBrXqOqP5sdEkuD1mhIiIKNz4dTbNokWL0KtXLwwcONBhublz5yI+Pt78k5mZ6aca+p62rqllZOwb63CwqNJh+bT4CF9XiYiIKKDcCkaSkpKgUChQVFQk2l5UVIS0tDSHx2q1Wnz++ee46667nL7PzJkzUV5ebv45efKkO9UMapbdNDV6IwoK7QcjSyZfjJRYBiNERC1FS01+5lYwolar0b9/f6xatcq8zWQyYdWqVRg0aJDDY7/66ivodDr87W9/c/o+Go0GcXFxop9wodUZnRcCkBqnwYiutrOTiIgofEnNslm87ijG/GctSrV1EkeEB7e7aWbMmIH33nsPH374Ifbt24epU6dCq9Vi8uTJAICJEydi5syZNsctWrQI119/PVq3bt38WoewaotuGksapRw39m+LKLUC7VtH4c0J/fxcMyIiCrSnlu2GziD+0jrnh73Yc6YCb/52KEC18j2384yMHz8excXFmDVrFgoLC5GTk4OVK1eaB7WeOHECcqulaPfv349169bh559/9k6tQ1iVnZaRF2/sjetyMvDyTX38XCMiIgoW1XVG/GfVQTw8qpvNPstu/nDjdjACANOnT8f06dMl961Zs8ZmW9euXVtsP5g1ey0jagUz8xMRtRTtW0dh9tge+HrLaSzfdVa074edZyWDEWMY30d5B/SB3wqKcPPCfBw/r7XZV1GjlzxGxWCEiKjFuHNIB1zeLVUyvYO9hA8mE4MRcsOdH2zGpmOlmPGl7aJH5XaCkYpa6e1ERBQe3pzQ1/y4Md+lO70GbBkhjxRV1GLHyTJc9dofWHuwGID9YKRdYpQ/q0ZERH52Te+mJT0au+alwotj56uR9dhyLNsunlljZMsIecJoEjBpySYUFFbi9kX1KxuXVdsGI7Ou6YH+7bkAHhFRuLtnWDZ6ZsThupwMAI5bRh74fLvoeTgHIx4NYCXXGEyCTfAh1TJyfd8MyJysUUNERKFv5tXdRc/d6XkJ52CELSM+JPWHIxWMxEYwJiQiaolMbkQj7pQNNQxGfMhgNNlsk8qgx5k0REQtE1tG6vEu6EMVteKcIu/+cRjnKnV2ShMRUUvjLLwoKGxatd4YvrEIgxF/en5Fgc22Nf8a7v+KEBFRUHA2tXfsG+vMj8M5zwgHK3hRrd6In/YUunVMVlK0j2pDRETBzll8obdoDgnnbhoGI1708k/78f66ow7LRKsV0Na5tnIvERGFNw5grcduGi/6YvNJp2X6ZyX6oSZERBQK3IkvrMchhhMGI17kSqaQ1tFqSCxFQERELZA7bR2HzlWiVh+eLesMRvysdbQan989CJ1TYvDplNxAV4eIiALIcgBr+9aOlwXRGwUcOlfl6yoFBMeMeJErWVQTY9QY2CERv8wY5ocaERFRMLNcl+z3h0fgbHkNBs39zW55qVxV4YDBiBe50v2SEhvh+4oQEVFIeGRUN+gMJozrV79WTZv4SIfly2r0KKuuQ6RaAY1S4Y8q+gWDES9ype+vd9t4n9eDiIhCQ3yUCi/f1Mfl8geLKnH/Z9uQnRyN3x4a7ruK+RnHjHiR3mCb/t1ap+QYP9SEiIhC1frHLscLN/SS3Pfd9tMAgCPFWuw6Ve7PavkUgxEPlGrrcPuijfh+xxnRdr2TXL2vju8DOafSEBGRAxkJkRjRLUVy38nSGvPjsW+uw5bjpf6qlk8xGPHA678ewNqDJbj/s23mbYIgoE5iYTxL/dsxxwgRETkXo3FtFMXqgmIf18Q/GIx4oKxGb7PNWasIAESqw2ewERER+U6UWomMBMeDWQGETWs7gxEPKCSm8DprFemZEYfW0WpfVYmIiMLM1OEdzY/njpMeQxImsQiDEU8oJK6+5eDVKZd2QE5mgvn53HG98P20oWETwRIRke+plU23aHtfZqW+HIciBiNuOllajYrapm6a2ct2i8aLKOQyPDGmB1JiNeYytw5sx0CEiIjcorEMRmKkgxG5XAZBEESZXEMR84y4obhSh0tfXC3a9mH+cVzTJx3JMfXBh0pRH3RItZ4QERG5yjIYiYtQSZbRG024+vW1yEiIxKI7LvZX1byOwYgbdp0uk9x+08J8xDaMfFYr6v942BJCRETNkWaRjTUmQvp2vWLXWRwoqkJBYSUEQXBpWZJgxGDEDQYHM2YqdfVLOzf28YVLPx4REQVGTmYCHh7VFZmJUYi10zJyoKhp4TydwYQIVWjO2mQw4gajyXmfXGPLCLtpiIiouaaN6AQAMLlw/6nVG0M2GOEAVjc4m74LNLWMyNkyQkREXiKXy/Dc//XEQ1d0sVumRm/0Y428i8GIC77afBIPfL4N5RLJzqw1tojkZHJBPCIi8p7bctvjHyM7291fXRe6wQi7aVzw8NKdAIDdp50vSlTVMHbk1oHtUGcUMCi7tU/rRkREBAA1IRyMsGXEDafLapyWuaCtbz1RKuS4a2gH9EiP83W1iIiIsHTLKQD140tCLe8IgxE31OqdjxlxZVwJERGRpyzTxFv6YMMxmEwCrn9rPW54e0NIBSQMRpwoqdI53D/l0g5+qgkRERHwyKiumD22h+S+77afxs5T5dh6osylcY7BgsGIA4XltRjw7K9291/eLQWPj+4u2vbMdRf5ulpERNSCyWQytI7RSO6b8eUO82OdIXRa6hmMOLD+UInD/f3btxJlu8vtkIjbB2X5uFZERNTSJURKJ0Gz9Paaw36oiXcwGHEg1k763UaN69AQERH5U0JUUzCSZGcRvQ82HENdiLSOMBhxIFrjOBhRyMW/PuY5IyIif2gV1RSAvHBDb7vl/v2/Pf6oTrMxGGkGJVO+ExFRAFi2jCjkMiTHSo8h+WTjCdSGQGZWBiMOGJysBaC06qaRgcEJERH5XoxFy32dwWReF03K1hMX/FGlZmEw4oDBSc4QtowQEVEgWE6e6N4mDmXVdXbLllUH/xRfpoN3wGnLCMeMEBFRgGx8fCRKtXXITIxCZmIUCgorJcuFwpo1bBlxwOhuNw2DESIi8pPUuAh0b1O/5MiiOy7GsC7JkuX+9dUObHCSqiLQGIw44KxlRMFuGiIiCgIZCZH48M6Bom3d0mLNj29fvMnfVXILgxE7Nh8rxe/7ix2Wsemm4QBWIiIKEgOyWpkfO2vpDzSOGZFgMgm4cWG+03JqJYMPIiIKTtHqplt8sLfks2VEQrWLc7IzEqJEzzlmhIiIgoXluMYYJ0k8A43BiIRqncHuvtfG55gft0sUByNxLqwVQERE5CuN9yWFXAatrumLdXmNHm+sOoiqhvub0SRg9+nyoOm+afHBiNEkmC8OAAiCAK3VNKjGvP/j+maItkeqFQCA12/JQd92CXhyjHgFXyIiIn9afMfFyOueim/vG4zKWvEX61d+OYAHv9gOAFj4+2Fc88Y6vL7qYABqaSu422384JZ38/HXsQv4c+ZIVNcZMOG9jeiQFC0qM7RTEh67ujuSYzXQG024ancahnZOMu+/LicD1+VkWL80ERGRX3VKicH7kwYAAKI1p2z2/7K3CADw0k/7AQD/WXUQM67o4r8K2tHig5G/jtWnyV2x6yw+3XQChRW1KKyoFZVRyOVIi49oeKzAwtv7+72eRERE7ph+eScUFFZi09FS87YIVX2HSHZyNI4UawE0pJNXBrajpMV30zQymEwoKq+V3Me070REFGpSYiPw5T2D8PXUwRjbJ120Lz0+0vx41+kyP9fMFoORBnqjAJMgPZBHoWAwQkREoal/+1aYdU0PAIDOYGoYG9k0nmTvWek08v7EYKSB3miCvUHFbBkhIqJQpmnonhGE+i/fWouJGzoX01n4EoORBnqjCUY7LSPWmVaJiIhCicZiTIjOYESVxUwbncHxCvX+wLtsg/IaPersXBDrBfGIiIhCiVrRdLt/ZOlOVOqCKxhp8bNpGn385wm7+wQ7LSZEREShQGaRIvzH3YWifToDu2kCytUgo0oX+AtFRETkCzV1gb/HtehgxNUsuJW1et9WhIiIKED+m38cL64sCGgdWnQwYjDZ9pPNHdfLZpt1Sl0iIqJw8taawwF9/xYdjEgtEKRS2P5K2DJCRETkOy06GNEbbYMRtVKOP2eOxA//GGreVuVgFV8iIiJqnhYdjEi1jKgV9evQ9MyIx80D2gIA/nF5Z39XjYiIqMVo0VN7pcaMWCaGmTeuNx7I64KMhEibckRERKFKLgP6tmuFLccvmLcJgiCaAuxPLToYkWwZsQhG5HIZAxEiIgoLL9zQC//NP473Jw1AbIQK6w6WYMvxLeb9OoMJESpFQOrWooMRg50xI0REROFm/MXtMP7idubnGqv7XZXOELBgpEXfeV2dTUNERBRurIOR6gAm+GzRd16DnQGsRERE4a5xJd9GgZw56tGdd8GCBcjKykJERARyc3OxadMmh+XLysowbdo0tGnTBhqNBl26dMGKFSs8qrA3ORszQkREFK7iI1Wi59V1gQtG3B4z8sUXX2DGjBlYuHAhcnNz8dprr2HUqFHYv38/UlJSbMrX1dXhiiuuQEpKCpYuXYqMjAwcP34cCQkJ3qh/s+iNjmfTEBERhavEaI358cCsRHRMjglYXdwORubPn48pU6Zg8uTJAICFCxdi+fLlWLx4MR577DGb8osXL0ZpaSk2bNgAlao+CsvKymperb2ELSNERNRSJVi0jAzq2BqtotUBq4tbd966ujps2bIFeXl5TS8glyMvLw/5+fmSx3z//fcYNGgQpk2bhtTUVPTs2RPPP/88jEb7A2V0Oh0qKipEP74gNWaEA1iJiKglkMubcopoA5xp3K07b0lJCYxGI1JTU0XbU1NTUVhYKHnMkSNHsHTpUhiNRqxYsQJPPfUUXnnlFTz77LN232fu3LmIj483/2RmZrpTTZexZYSIiCjwy574/M5rMpmQkpKCd999F/3798f48ePxxBNPYOHChXaPmTlzJsrLy80/J0+e9EndpDKwcjYNERG1FNfnpAMA7hzaIaD1cGvMSFJSEhQKBYqKikTbi4qKkJaWJnlMmzZtoFKpoFA0JVLp3r07CgsLUVdXB7Xato9Ko9FAo9HYbPc265aRCbnt2DJCREQtxqvjc/DM9T0RG6FyXtiH3LrzqtVq9O/fH6tWrTJvM5lMWLVqFQYNGiR5zJAhQ3Do0CGYLFohDhw4gDZt2kgGIv7UOGYkKUaD3x4ahuf/r1dA60NERORPMpks4IEI4EE3zYwZM/Dee+/hww8/xL59+zB16lRotVrz7JqJEydi5syZ5vJTp05FaWkpHnjgARw4cADLly/H888/j2nTpnnvLDxkbEgHn9EqEtkBnNJERETUkrk9tXf8+PEoLi7GrFmzUFhYiJycHKxcudI8qPXEiROQy5tinMzMTPz000948MEH0bt3b2RkZOCBBx7Ao48+6r2z8NCh4ioAgFIemFUKiYiICJAJgmA7pSTIVFRUID4+HuXl5YiLi/PKa2p1Blz64mqUausw5dIOeGJMD6+8LhEREdVz9f7dYkdrRmuUeOf2/ri2TzoeHtUt0NUhIiJqsdzupgknF2cl4uKsxEBXg4iIqEVrsS0jREREFBwYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCisEIERERBRSDESIiIgooBiNEREQUUAxGiIiIKKAYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCKiRW7RUEAQBQUVER4JoQERGRqxrv2433cXtCIhiprKwEAGRmZga4JkREROSuyspKxMfH290vE5yFK0HAZDLhzJkziI2NhUwm89rrVlRUIDMzEydPnkRcXJzXXjeYhPs58vxCX7ifI88v9IX7Ofry/ARBQGVlJdLT0yGX2x8ZEhItI3K5HG3btvXZ68fFxYXlH5ilcD9Hnl/oC/dz5PmFvnA/R1+dn6MWkUYcwEpEREQBxWCEiIiIAqpFByMajQazZ8+GRqMJdFV8JtzPkecX+sL9HHl+oS/czzEYzi8kBrASERFR+GrRLSNEREQUeAxGiIiIKKAYjBAREVFAMRghIiKigAr7YOS5557D4MGDERUVhYSEBJeOEQQBs2bNQps2bRAZGYm8vDwcPHhQVKa0tBS33XYb4uLikJCQgLvuugtVVVU+OAPH3K3HsWPHIJPJJH+++uorczmp/Z9//rk/TknEk9/z8OHDbep+7733isqcOHECY8aMQVRUFFJSUvDwww/DYDD48lTscvccS0tL8Y9//ANdu3ZFZGQk2rVrh/vvvx/l5eWicoG6hgsWLEBWVhYiIiKQm5uLTZs2OSz/1VdfoVu3boiIiECvXr2wYsUK0X5X/h/9zZ1zfO+993DppZeiVatWaNWqFfLy8mzK33HHHTbX6qqrrvL1adjlzvl98MEHNnWPiIgQlQm2a+jO+Ul9nshkMowZM8ZcJpiu3x9//IGxY8ciPT0dMpkM3333ndNj1qxZg379+kGj0aBTp0744IMPbMq4+3/tNiHMzZo1S5g/f74wY8YMIT4+3qVj5s2bJ8THxwvfffedsGPHDuHaa68VOnToINTU1JjLXHXVVUKfPn2EP//8U1i7dq3QqVMn4dZbb/XRWdjnbj0MBoNw9uxZ0c+///1vISYmRqisrDSXAyAsWbJEVM7y/P3Fk9/zsGHDhClTpojqXl5ebt5vMBiEnj17Cnl5ecK2bduEFStWCElJScLMmTN9fTqS3D3HXbt2CePGjRO+//574dChQ8KqVauEzp07CzfccIOoXCCu4eeffy6o1Wph8eLFwp49e4QpU6YICQkJQlFRkWT59evXCwqFQnjxxReFvXv3Ck8++aSgUqmEXbt2mcu48v/oT+6e44QJE4QFCxYI27ZtE/bt2yfccccdQnx8vHDq1ClzmUmTJglXXXWV6FqVlpb665RE3D2/JUuWCHFxcaK6FxYWisoE0zV09/zOnz8vOrfdu3cLCoVCWLJkiblMMF2/FStWCE888YTwzTffCACEb7/91mH5I0eOCFFRUcKMGTOEvXv3Cm+88YagUCiElStXmsu4+zvzRNgHI42WLFniUjBiMpmEtLQ04aWXXjJvKysrEzQajfDZZ58JgiAIe/fuFQAIf/31l7nMjz/+KMhkMuH06dNer7s93qpHTk6OcOedd4q2ufJH7Guent+wYcOEBx54wO7+FStWCHK5XPSB+fbbbwtxcXGCTqfzSt1d5a1r+OWXXwpqtVrQ6/XmbYG4hgMHDhSmTZtmfm40GoX09HRh7ty5kuVvvvlmYcyYMaJtubm5wj333CMIgmv/j/7m7jlaMxgMQmxsrPDhhx+at02aNEm47rrrvF1Vj7h7fs4+W4PtGjb3+r366qtCbGysUFVVZd4WTNfPkiufAY888ohw0UUXibaNHz9eGDVqlPl5c39nrgj7bhp3HT16FIWFhcjLyzNvi4+PR25uLvLz8wEA+fn5SEhIwIABA8xl8vLyIJfLsXHjRr/V1Rv12LJlC7Zv34677rrLZt+0adOQlJSEgQMHYvHixU6XgPa25pzfJ598gqSkJPTs2RMzZ85EdXW16HV79eqF1NRU87ZRo0ahoqICe/bs8f6JOOCtv6Xy8nLExcVBqRQvN+XPa1hXV4ctW7aI/nfkcjny8vLM/zvW8vPzReWB+mvRWN6V/0d/8uQcrVVXV0Ov1yMxMVG0fc2aNUhJSUHXrl0xdepUnD9/3qt1d4Wn51dVVYX27dsjMzMT1113nej/KJiuoTeu36JFi3DLLbcgOjpatD0Yrp8nnP0PeuN35oqQWCjPnwoLCwFAdKNqfN64r7CwECkpKaL9SqUSiYmJ5jL+4I16LFq0CN27d8fgwYNF2+fMmYPLL78cUVFR+Pnnn3HfffehqqoK999/v9fq74yn5zdhwgS0b98e6enp2LlzJx599FHs378f33zzjfl1pa5v4z5/8sY1LCkpwTPPPIO7775btN3f17CkpARGo1Hyd1tQUCB5jL1rYfm/1rjNXhl/8uQcrT366KNIT08XfbhfddVVGDduHDp06IDDhw/j8ccfx9VXX438/HwoFAqvnoMjnpxf165dsXjxYvTu3Rvl5eV4+eWXMXjwYOzZswdt27YNqmvY3Ou3adMm7N69G4sWLRJtD5br5wl7/4MVFRWoqanBhQsXmv0374qQDEYee+wxvPDCCw7L7Nu3D926dfNTjbzL1fNrrpqaGnz66ad46qmnbPZZbuvbty+0Wi1eeuklr9zIfH1+ljflXr16oU2bNhg5ciQOHz6Mjh07evy67vDXNayoqMCYMWPQo0cPPP3006J9vryG5Jl58+bh888/x5o1a0SDPG+55Rbz4169eqF3797o2LEj1qxZg5EjRwaiqi4bNGgQBg0aZH4+ePBgdO/eHe+88w6eeeaZANbM+xYtWoRevXph4MCBou2hfP2CRUgGIw899BDuuOMOh2Wys7M9eu20tDQAQFFREdq0aWPeXlRUhJycHHOZc+fOiY4zGAwoLS01H98crp5fc+uxdOlSVFdXY+LEiU7L5ubm4plnnoFOp2v2+gX+Or9Gubm5AIBDhw6hY8eOSEtLsxkJXlRUBABeuX6Af86xsrISV111FWJjY/Htt99CpVI5LO/NayglKSkJCoXC/LtsVFRUZPdc0tLSHJZ35f/Rnzw5x0Yvv/wy5s2bh19//RW9e/d2WDY7OxtJSUk4dOiQX29mzTm/RiqVCn379sWhQ4cABNc1bM75abVafP7555gzZ47T9wnU9fOEvf/BuLg4REZGQqFQNPtvwiVeG30S5NwdwPryyy+bt5WXl0sOYN28ebO5zE8//RSwAaye1mPYsGE2MzDsefbZZ4VWrVp5XFdPeOv3vG7dOgGAsGPHDkEQmgawWo4Ef+edd4S4uDihtrbWeyfgAk/Psby8XLjkkkuEYcOGCVqt1qX38sc1HDhwoDB9+nTzc6PRKGRkZDgcwHrNNdeItg0aNMhmAKuj/0d/c/ccBUEQXnjhBSEuLk7Iz8936T1OnjwpyGQyYdmyZc2ur7s8OT9LBoNB6Nq1q/Dggw8KghB819DT81uyZImg0WiEkpISp+8RyOtnCS4OYO3Zs6do26233mozgLU5fxMu1dVrrxSkjh8/Lmzbts08fXXbtm3Ctm3bRNNYu3btKnzzzTfm5/PmzRMSEhKEZcuWCTt37hSuu+46yam9ffv2FTZu3CisW7dO6Ny5c8Cm9jqqx6lTp4SuXbsKGzduFB138OBBQSaTCT/++KPNa37//ffCe++9J+zatUs4ePCg8NZbbwlRUVHCrFmzfH4+1tw9v0OHDglz5swRNm/eLBw9elRYtmyZkJ2dLVx22WXmYxqn9l555ZXC9u3bhZUrVwrJyckBndrrzjmWl5cLubm5Qq9evYRDhw6JphMaDAZBEAJ3DT///HNBo9EIH3zwgbB3717h7rvvFhISEswzl26//XbhscceM5dfv369oFQqhZdfflnYt2+fMHv2bMmpvc7+H/3J3XOcN2+eoFarhaVLl4quVeNnUGVlpfCvf/1LyM/PF44ePSr8+uuvQr9+/YTOnTv7PTj25Pz+/e9/Cz/99JNw+PBhYcuWLcItt9wiRERECHv27DGXCaZr6O75NRo6dKgwfvx4m+3Bdv0qKyvN9zkAwvz584Vt27YJx48fFwRBEB577DHh9ttvN5dvnNr78MMPC/v27RMWLFggObXX0e/MG8I+GJk0aZIAwOZn9erV5jJoyMfQyGQyCU899ZSQmpoqaDQaYeTIkcL+/ftFr3v+/Hnh1ltvFWJiYoS4uDhh8uTJogDHX5zV4+jRozbnKwiCMHPmTCEzM1MwGo02r/njjz8KOTk5QkxMjBAdHS306dNHWLhwoWRZX3P3/E6cOCFcdtllQmJioqDRaIROnToJDz/8sCjPiCAIwrFjx4Srr75aiIyMFJKSkoSHHnpINC3Wn9w9x9WrV0v+TQMQjh49KghCYK/hG2+8IbRr105Qq9XCwIEDhT///NO8b9iwYcKkSZNE5b/88kuhS5cuglqtFi666CJh+fLlov2u/D/6mzvn2L59e8lrNXv2bEEQBKG6ulq48sorheTkZEGlUgnt27cXpkyZ4tUPene5c37//Oc/zWVTU1OF0aNHC1u3bhW9XrBdQ3f/RgsKCgQAws8//2zzWsF2/ex9PjSe06RJk4Rhw4bZHJOTkyOo1WohOztbdD9s5Oh35g0yQfDzfE0iIiIiC8wzQkRERAHFYISIiIgCisEIERERBRSDESIiIgooBiNEREQUUAxGiIiIKKAYjBAREVFAMRghIiKigGIwQkRERAHFYISIiIgCisEIERERBRSDESIiIgqo/wfd7evdEKsKXQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -1946,13 +1786,13 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 180, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -1972,13 +1812,13 @@ "data_valid = TensorDataset(X_valid, Y_valid)\n", "loader_train = DataLoader(data_train, batch_size=batch_size, shuffle=False)\n", "loader_valid = DataLoader(data_valid, batch_size=batch_size, shuffle=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "model = relu\n", "y = model(X_train)\n", @@ -1992,13 +1832,13 @@ "model = hybrid\n", "y = model(X_train)\n", "print(y.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -2012,13 +1852,13 @@ "data_valid = TensorDataset(X_valid, Y_valid)\n", "loader_train = DataLoader(data_train, batch_size=batch_size, shuffle=True)\n", "loader_valid = DataLoader(data_valid, batch_size=batch_size, shuffle=True)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 181, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -2033,13 +1873,13 @@ "optimizer = Adam(model.parameters(), lr=lr, amsgrad=True)\n", "loss_fn = torch.nn.MSELoss()\n", "metric = MeanAbsolutePercentageError()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 182, "metadata": {}, - "outputs": [], "source": [ "logger = logging.getLogger(\"train_function\")\n", "logger.setLevel(level=logging.INFO)\n", @@ -2051,441 +1891,23 @@ " num_epochs=num_epochs,\n", " logger=logger,\n", ")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 183, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:train_function:Train - Epoch: 1, Loss: 0.748526, Metrics: MARE: 0.779388\n", - "INFO:train_function:Validate - Epoch: 1, Loss: 0.471923, Metrics: MARE: 0.732617\n", - "INFO:train_function:Train - Epoch: 2, Loss: 0.330638, Metrics: MARE: 0.500763\n", - "INFO:train_function:Validate - Epoch: 2, Loss: 0.199134, Metrics: MARE: 0.512214\n", - "INFO:train_function:Train - Epoch: 3, Loss: 0.108261, Metrics: MARE: 0.311547\n", - "INFO:train_function:Validate - Epoch: 3, Loss: 0.068448, Metrics: MARE: 0.300680\n", - "INFO:train_function:Train - Epoch: 4, Loss: 0.075707, Metrics: MARE: 0.248871\n", - "INFO:train_function:Validate - Epoch: 4, Loss: 0.059307, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 5, Loss: 0.107496, Metrics: MARE: 0.256872\n", - "INFO:train_function:Validate - Epoch: 5, Loss: 0.084355, Metrics: MARE: 0.254385\n", - "INFO:train_function:Train - Epoch: 6, Loss: 0.108931, Metrics: MARE: 0.272904\n", - "INFO:train_function:Validate - Epoch: 6, Loss: 0.087002, Metrics: MARE: 0.279545\n", - "INFO:train_function:Train - Epoch: 7, Loss: 0.077698, Metrics: MARE: 0.244016\n", - "INFO:train_function:Validate - Epoch: 7, Loss: 0.068788, Metrics: MARE: 0.239149\n", - "INFO:train_function:Train - Epoch: 8, Loss: 0.050440, Metrics: MARE: 0.222615\n", - "INFO:train_function:Validate - Epoch: 8, Loss: 0.052167, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 9, Loss: 0.045671, Metrics: MARE: 0.218862\n", - "INFO:train_function:Validate - Epoch: 9, Loss: 0.048768, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 10, Loss: 0.052218, Metrics: MARE: 0.230028\n", - "INFO:train_function:Validate - Epoch: 10, Loss: 0.052631, Metrics: MARE: 0.210205\n", - "INFO:train_function:Train - Epoch: 11, Loss: 0.054264, Metrics: MARE: 0.233039\n", - "INFO:train_function:Validate - Epoch: 11, Loss: 0.054121, Metrics: MARE: 0.206753\n", - "INFO:train_function:Train - Epoch: 12, Loss: 0.049888, Metrics: MARE: 0.226327\n", - "INFO:train_function:Validate - Epoch: 12, Loss: 0.051560, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 13, Loss: 0.045684, Metrics: MARE: 0.219105\n", - "INFO:train_function:Validate - Epoch: 13, Loss: 0.048955, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 14, Loss: 0.044942, Metrics: MARE: 0.217761\n", - "INFO:train_function:Validate - Epoch: 14, Loss: 0.048586, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 15, Loss: 0.045538, Metrics: MARE: 0.217519\n", - "INFO:train_function:Validate - Epoch: 15, Loss: 0.049113, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 16, Loss: 0.045271, Metrics: MARE: 0.216639\n", - "INFO:train_function:Validate - Epoch: 16, Loss: 0.049019, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 17, Loss: 0.044523, Metrics: MARE: 0.216220\n", - "INFO:train_function:Validate - Epoch: 17, Loss: 0.048566, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 18, Loss: 0.044292, Metrics: MARE: 0.215994\n", - "INFO:train_function:Validate - Epoch: 18, Loss: 0.048449, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 19, Loss: 0.044489, Metrics: MARE: 0.215875\n", - "INFO:train_function:Validate - Epoch: 19, Loss: 0.048592, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 20, Loss: 0.044560, Metrics: MARE: 0.215844\n", - "INFO:train_function:Validate - Epoch: 20, Loss: 0.048626, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 21, Loss: 0.044418, Metrics: MARE: 0.215877\n", - "INFO:train_function:Validate - Epoch: 21, Loss: 0.048521, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 22, Loss: 0.044297, Metrics: MARE: 0.215951\n", - "INFO:train_function:Validate - Epoch: 22, Loss: 0.048445, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 23, Loss: 0.044281, Metrics: MARE: 0.216047\n", - "INFO:train_function:Validate - Epoch: 23, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 24, Loss: 0.044289, Metrics: MARE: 0.216144\n", - "INFO:train_function:Validate - Epoch: 24, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 25, Loss: 0.044283, Metrics: MARE: 0.216229\n", - "INFO:train_function:Validate - Epoch: 25, Loss: 0.048429, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 26, Loss: 0.044288, Metrics: MARE: 0.216291\n", - "INFO:train_function:Validate - Epoch: 26, Loss: 0.048432, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 27, Loss: 0.044307, Metrics: MARE: 0.216325\n", - "INFO:train_function:Validate - Epoch: 27, Loss: 0.048445, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 28, Loss: 0.044316, Metrics: MARE: 0.216334\n", - "INFO:train_function:Validate - Epoch: 28, Loss: 0.048451, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 29, Loss: 0.044308, Metrics: MARE: 0.216325\n", - "INFO:train_function:Validate - Epoch: 29, Loss: 0.048446, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 30, Loss: 0.044295, Metrics: MARE: 0.216305\n", - "INFO:train_function:Validate - Epoch: 30, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 31, Loss: 0.044288, Metrics: MARE: 0.216283\n", - "INFO:train_function:Validate - Epoch: 31, Loss: 0.048433, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 32, Loss: 0.044286, Metrics: MARE: 0.216265\n", - "INFO:train_function:Validate - Epoch: 32, Loss: 0.048432, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 33, Loss: 0.044286, Metrics: MARE: 0.216253\n", - "INFO:train_function:Validate - Epoch: 33, Loss: 0.048433, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 34, Loss: 0.044288, Metrics: MARE: 0.216248\n", - "INFO:train_function:Validate - Epoch: 34, Loss: 0.048435, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 35, Loss: 0.044291, Metrics: MARE: 0.216249\n", - "INFO:train_function:Validate - Epoch: 35, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 36, Loss: 0.044292, Metrics: MARE: 0.216253\n", - "INFO:train_function:Validate - Epoch: 36, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 37, Loss: 0.044292, Metrics: MARE: 0.216259\n", - "INFO:train_function:Validate - Epoch: 37, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 38, Loss: 0.044291, Metrics: MARE: 0.216266\n", - "INFO:train_function:Validate - Epoch: 38, Loss: 0.048436, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 39, Loss: 0.044290, Metrics: MARE: 0.216273\n", - "INFO:train_function:Validate - Epoch: 39, Loss: 0.048435, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 40, Loss: 0.044291, Metrics: MARE: 0.216278\n", - "INFO:train_function:Validate - Epoch: 40, Loss: 0.048435, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 41, Loss: 0.044292, Metrics: MARE: 0.216282\n", - "INFO:train_function:Validate - Epoch: 41, Loss: 0.048436, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 42, Loss: 0.044293, Metrics: MARE: 0.216285\n", - "INFO:train_function:Validate - Epoch: 42, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 43, Loss: 0.044294, Metrics: MARE: 0.216286\n", - "INFO:train_function:Validate - Epoch: 43, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 44, Loss: 0.044294, Metrics: MARE: 0.216286\n", - "INFO:train_function:Validate - Epoch: 44, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 45, Loss: 0.044294, Metrics: MARE: 0.216287\n", - "INFO:train_function:Validate - Epoch: 45, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 46, Loss: 0.044293, Metrics: MARE: 0.216287\n", - "INFO:train_function:Validate - Epoch: 46, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 47, Loss: 0.044293, Metrics: MARE: 0.216288\n", - "INFO:train_function:Validate - Epoch: 47, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 48, Loss: 0.044294, Metrics: MARE: 0.216289\n", - "INFO:train_function:Validate - Epoch: 48, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 49, Loss: 0.044294, Metrics: MARE: 0.216291\n", - "INFO:train_function:Validate - Epoch: 49, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 50, Loss: 0.044294, Metrics: MARE: 0.216292\n", - "INFO:train_function:Validate - Epoch: 50, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 51, Loss: 0.044295, Metrics: MARE: 0.216294\n", - "INFO:train_function:Validate - Epoch: 51, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 52, Loss: 0.044295, Metrics: MARE: 0.216296\n", - "INFO:train_function:Validate - Epoch: 52, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 53, Loss: 0.044295, Metrics: MARE: 0.216298\n", - "INFO:train_function:Validate - Epoch: 53, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 54, Loss: 0.044295, Metrics: MARE: 0.216299\n", - "INFO:train_function:Validate - Epoch: 54, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 55, Loss: 0.044295, Metrics: MARE: 0.216300\n", - "INFO:train_function:Validate - Epoch: 55, Loss: 0.048437, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 56, Loss: 0.044296, Metrics: MARE: 0.216302\n", - "INFO:train_function:Validate - Epoch: 56, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 57, Loss: 0.044296, Metrics: MARE: 0.216303\n", - "INFO:train_function:Validate - Epoch: 57, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 58, Loss: 0.044296, Metrics: MARE: 0.216304\n", - "INFO:train_function:Validate - Epoch: 58, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 59, Loss: 0.044296, Metrics: MARE: 0.216305\n", - "INFO:train_function:Validate - Epoch: 59, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 60, Loss: 0.044296, Metrics: MARE: 0.216306\n", - "INFO:train_function:Validate - Epoch: 60, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 61, Loss: 0.044297, Metrics: MARE: 0.216308\n", - "INFO:train_function:Validate - Epoch: 61, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 62, Loss: 0.044297, Metrics: MARE: 0.216309\n", - "INFO:train_function:Validate - Epoch: 62, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 63, Loss: 0.044297, Metrics: MARE: 0.216310\n", - "INFO:train_function:Validate - Epoch: 63, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 64, Loss: 0.044297, Metrics: MARE: 0.216311\n", - "INFO:train_function:Validate - Epoch: 64, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 65, Loss: 0.044297, Metrics: MARE: 0.216312\n", - "INFO:train_function:Validate - Epoch: 65, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 66, Loss: 0.044298, Metrics: MARE: 0.216313\n", - "INFO:train_function:Validate - Epoch: 66, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 67, Loss: 0.044298, Metrics: MARE: 0.216314\n", - "INFO:train_function:Validate - Epoch: 67, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 68, Loss: 0.044298, Metrics: MARE: 0.216315\n", - "INFO:train_function:Validate - Epoch: 68, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 69, Loss: 0.044298, Metrics: MARE: 0.216316\n", - "INFO:train_function:Validate - Epoch: 69, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 70, Loss: 0.044298, Metrics: MARE: 0.216317\n", - "INFO:train_function:Validate - Epoch: 70, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 71, Loss: 0.044298, Metrics: MARE: 0.216318\n", - "INFO:train_function:Validate - Epoch: 71, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 72, Loss: 0.044299, Metrics: MARE: 0.216319\n", - "INFO:train_function:Validate - Epoch: 72, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 73, Loss: 0.044299, Metrics: MARE: 0.216320\n", - "INFO:train_function:Validate - Epoch: 73, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 74, Loss: 0.044299, Metrics: MARE: 0.216321\n", - "INFO:train_function:Validate - Epoch: 74, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 75, Loss: 0.044299, Metrics: MARE: 0.216322\n", - "INFO:train_function:Validate - Epoch: 75, Loss: 0.048438, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 76, Loss: 0.044299, Metrics: MARE: 0.216323\n", - "INFO:train_function:Validate - Epoch: 76, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 77, Loss: 0.044299, Metrics: MARE: 0.216324\n", - "INFO:train_function:Validate - Epoch: 77, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 78, Loss: 0.044299, Metrics: MARE: 0.216325\n", - "INFO:train_function:Validate - Epoch: 78, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 79, Loss: 0.044300, Metrics: MARE: 0.216325\n", - "INFO:train_function:Validate - Epoch: 79, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 80, Loss: 0.044300, Metrics: MARE: 0.216326\n", - "INFO:train_function:Validate - Epoch: 80, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 81, Loss: 0.044300, Metrics: MARE: 0.216327\n", - "INFO:train_function:Validate - Epoch: 81, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 82, Loss: 0.044300, Metrics: MARE: 0.216328\n", - "INFO:train_function:Validate - Epoch: 82, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 83, Loss: 0.044300, Metrics: MARE: 0.216329\n", - "INFO:train_function:Validate - Epoch: 83, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 84, Loss: 0.044300, Metrics: MARE: 0.216329\n", - "INFO:train_function:Validate - Epoch: 84, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 85, Loss: 0.044300, Metrics: MARE: 0.216330\n", - "INFO:train_function:Validate - Epoch: 85, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 86, Loss: 0.044300, Metrics: MARE: 0.216331\n", - "INFO:train_function:Validate - Epoch: 86, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 87, Loss: 0.044301, Metrics: MARE: 0.216332\n", - "INFO:train_function:Validate - Epoch: 87, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 88, Loss: 0.044301, Metrics: MARE: 0.216332\n", - "INFO:train_function:Validate - Epoch: 88, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 89, Loss: 0.044301, Metrics: MARE: 0.216333\n", - "INFO:train_function:Validate - Epoch: 89, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 90, Loss: 0.044301, Metrics: MARE: 0.216334\n", - "INFO:train_function:Validate - Epoch: 90, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 91, Loss: 0.044301, Metrics: MARE: 0.216335\n", - "INFO:train_function:Validate - Epoch: 91, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 92, Loss: 0.044301, Metrics: MARE: 0.216335\n", - "INFO:train_function:Validate - Epoch: 92, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 93, Loss: 0.044301, Metrics: MARE: 0.216336\n", - "INFO:train_function:Validate - Epoch: 93, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 94, Loss: 0.044301, Metrics: MARE: 0.216337\n", - "INFO:train_function:Validate - Epoch: 94, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 95, Loss: 0.044302, Metrics: MARE: 0.216337\n", - "INFO:train_function:Validate - Epoch: 95, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 96, Loss: 0.044302, Metrics: MARE: 0.216338\n", - "INFO:train_function:Validate - Epoch: 96, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 97, Loss: 0.044302, Metrics: MARE: 0.216339\n", - "INFO:train_function:Validate - Epoch: 97, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 98, Loss: 0.044302, Metrics: MARE: 0.216339\n", - "INFO:train_function:Validate - Epoch: 98, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 99, Loss: 0.044302, Metrics: MARE: 0.216340\n", - "INFO:train_function:Validate - Epoch: 99, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 100, Loss: 0.044302, Metrics: MARE: 0.216340\n", - "INFO:train_function:Validate - Epoch: 100, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 101, Loss: 0.044302, Metrics: MARE: 0.216341\n", - "INFO:train_function:Validate - Epoch: 101, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 102, Loss: 0.044302, Metrics: MARE: 0.216342\n", - "INFO:train_function:Validate - Epoch: 102, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 103, Loss: 0.044302, Metrics: MARE: 0.216342\n", - "INFO:train_function:Validate - Epoch: 103, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 104, Loss: 0.044303, Metrics: MARE: 0.216343\n", - "INFO:train_function:Validate - Epoch: 104, Loss: 0.048439, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 105, Loss: 0.044303, Metrics: MARE: 0.216343\n", - "INFO:train_function:Validate - Epoch: 105, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 106, Loss: 0.044303, Metrics: MARE: 0.216344\n", - "INFO:train_function:Validate - Epoch: 106, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 107, Loss: 0.044303, Metrics: MARE: 0.216345\n", - "INFO:train_function:Validate - Epoch: 107, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 108, Loss: 0.044303, Metrics: MARE: 0.216345\n", - "INFO:train_function:Validate - Epoch: 108, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 109, Loss: 0.044303, Metrics: MARE: 0.216346\n", - "INFO:train_function:Validate - Epoch: 109, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 110, Loss: 0.044303, Metrics: MARE: 0.216346\n", - "INFO:train_function:Validate - Epoch: 110, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 111, Loss: 0.044303, Metrics: MARE: 0.216347\n", - "INFO:train_function:Validate - Epoch: 111, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 112, Loss: 0.044303, Metrics: MARE: 0.216347\n", - "INFO:train_function:Validate - Epoch: 112, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 113, Loss: 0.044303, Metrics: MARE: 0.216348\n", - "INFO:train_function:Validate - Epoch: 113, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 114, Loss: 0.044303, Metrics: MARE: 0.216348\n", - "INFO:train_function:Validate - Epoch: 114, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 115, Loss: 0.044304, Metrics: MARE: 0.216349\n", - "INFO:train_function:Validate - Epoch: 115, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 116, Loss: 0.044304, Metrics: MARE: 0.216349\n", - "INFO:train_function:Validate - Epoch: 116, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 117, Loss: 0.044304, Metrics: MARE: 0.216350\n", - "INFO:train_function:Validate - Epoch: 117, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 118, Loss: 0.044304, Metrics: MARE: 0.216350\n", - "INFO:train_function:Validate - Epoch: 118, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 119, Loss: 0.044304, Metrics: MARE: 0.216351\n", - "INFO:train_function:Validate - Epoch: 119, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 120, Loss: 0.044304, Metrics: MARE: 0.216351\n", - "INFO:train_function:Validate - Epoch: 120, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 121, Loss: 0.044304, Metrics: MARE: 0.216352\n", - "INFO:train_function:Validate - Epoch: 121, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 122, Loss: 0.044304, Metrics: MARE: 0.216352\n", - "INFO:train_function:Validate - Epoch: 122, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 123, Loss: 0.044304, Metrics: MARE: 0.216352\n", - "INFO:train_function:Validate - Epoch: 123, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 124, Loss: 0.044304, Metrics: MARE: 0.216353\n", - "INFO:train_function:Validate - Epoch: 124, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 125, Loss: 0.044304, Metrics: MARE: 0.216353\n", - "INFO:train_function:Validate - Epoch: 125, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 126, Loss: 0.044304, Metrics: MARE: 0.216354\n", - "INFO:train_function:Validate - Epoch: 126, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 127, Loss: 0.044305, Metrics: MARE: 0.216354\n", - "INFO:train_function:Validate - Epoch: 127, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 128, Loss: 0.044305, Metrics: MARE: 0.216355\n", - "INFO:train_function:Validate - Epoch: 128, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 129, Loss: 0.044305, Metrics: MARE: 0.216355\n", - "INFO:train_function:Validate - Epoch: 129, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 130, Loss: 0.044305, Metrics: MARE: 0.216356\n", - "INFO:train_function:Validate - Epoch: 130, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 131, Loss: 0.044305, Metrics: MARE: 0.216356\n", - "INFO:train_function:Validate - Epoch: 131, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 132, Loss: 0.044305, Metrics: MARE: 0.216356\n", - "INFO:train_function:Validate - Epoch: 132, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 133, Loss: 0.044305, Metrics: MARE: 0.216357\n", - "INFO:train_function:Validate - Epoch: 133, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 134, Loss: 0.044305, Metrics: MARE: 0.216357\n", - "INFO:train_function:Validate - Epoch: 134, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 135, Loss: 0.044305, Metrics: MARE: 0.216358\n", - "INFO:train_function:Validate - Epoch: 135, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 136, Loss: 0.044305, Metrics: MARE: 0.216358\n", - "INFO:train_function:Validate - Epoch: 136, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 137, Loss: 0.044305, Metrics: MARE: 0.216358\n", - "INFO:train_function:Validate - Epoch: 137, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 138, Loss: 0.044305, Metrics: MARE: 0.216359\n", - "INFO:train_function:Validate - Epoch: 138, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 139, Loss: 0.044305, Metrics: MARE: 0.216359\n", - "INFO:train_function:Validate - Epoch: 139, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 140, Loss: 0.044305, Metrics: MARE: 0.216359\n", - "INFO:train_function:Validate - Epoch: 140, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 141, Loss: 0.044306, Metrics: MARE: 0.216360\n", - "INFO:train_function:Validate - Epoch: 141, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 142, Loss: 0.044306, Metrics: MARE: 0.216360\n", - "INFO:train_function:Validate - Epoch: 142, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 143, Loss: 0.044306, Metrics: MARE: 0.216361\n", - "INFO:train_function:Validate - Epoch: 143, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 144, Loss: 0.044306, Metrics: MARE: 0.216361\n", - "INFO:train_function:Validate - Epoch: 144, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 145, Loss: 0.044306, Metrics: MARE: 0.216361\n", - "INFO:train_function:Validate - Epoch: 145, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 146, Loss: 0.044306, Metrics: MARE: 0.216362\n", - "INFO:train_function:Validate - Epoch: 146, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 147, Loss: 0.044306, Metrics: MARE: 0.216362\n", - "INFO:train_function:Validate - Epoch: 147, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 148, Loss: 0.044306, Metrics: MARE: 0.216362\n", - "INFO:train_function:Validate - Epoch: 148, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 149, Loss: 0.044306, Metrics: MARE: 0.216363\n", - "INFO:train_function:Validate - Epoch: 149, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 150, Loss: 0.044306, Metrics: MARE: 0.216363\n", - "INFO:train_function:Validate - Epoch: 150, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 151, Loss: 0.044306, Metrics: MARE: 0.216363\n", - "INFO:train_function:Validate - Epoch: 151, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 152, Loss: 0.044306, Metrics: MARE: 0.216364\n", - "INFO:train_function:Validate - Epoch: 152, Loss: 0.048440, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 153, Loss: 0.044306, Metrics: MARE: 0.216364\n", - "INFO:train_function:Validate - Epoch: 153, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 154, Loss: 0.044306, Metrics: MARE: 0.216364\n", - "INFO:train_function:Validate - Epoch: 154, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 155, Loss: 0.044306, Metrics: MARE: 0.216365\n", - "INFO:train_function:Validate - Epoch: 155, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 156, Loss: 0.044306, Metrics: MARE: 0.216365\n", - "INFO:train_function:Validate - Epoch: 156, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 157, Loss: 0.044306, Metrics: MARE: 0.216365\n", - "INFO:train_function:Validate - Epoch: 157, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 158, Loss: 0.044307, Metrics: MARE: 0.216365\n", - "INFO:train_function:Validate - Epoch: 158, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 159, Loss: 0.044307, Metrics: MARE: 0.216366\n", - "INFO:train_function:Validate - Epoch: 159, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 160, Loss: 0.044307, Metrics: MARE: 0.216366\n", - "INFO:train_function:Validate - Epoch: 160, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 161, Loss: 0.044307, Metrics: MARE: 0.216366\n", - "INFO:train_function:Validate - Epoch: 161, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 162, Loss: 0.044307, Metrics: MARE: 0.216367\n", - "INFO:train_function:Validate - Epoch: 162, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 163, Loss: 0.044307, Metrics: MARE: 0.216367\n", - "INFO:train_function:Validate - Epoch: 163, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 164, Loss: 0.044307, Metrics: MARE: 0.216367\n", - "INFO:train_function:Validate - Epoch: 164, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 165, Loss: 0.044307, Metrics: MARE: 0.216368\n", - "INFO:train_function:Validate - Epoch: 165, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 166, Loss: 0.044307, Metrics: MARE: 0.216368\n", - "INFO:train_function:Validate - Epoch: 166, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 167, Loss: 0.044307, Metrics: MARE: 0.216368\n", - "INFO:train_function:Validate - Epoch: 167, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 168, Loss: 0.044307, Metrics: MARE: 0.216368\n", - "INFO:train_function:Validate - Epoch: 168, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 169, Loss: 0.044307, Metrics: MARE: 0.216369\n", - "INFO:train_function:Validate - Epoch: 169, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 170, Loss: 0.044307, Metrics: MARE: 0.216369\n", - "INFO:train_function:Validate - Epoch: 170, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 171, Loss: 0.044307, Metrics: MARE: 0.216369\n", - "INFO:train_function:Validate - Epoch: 171, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 172, Loss: 0.044307, Metrics: MARE: 0.216369\n", - "INFO:train_function:Validate - Epoch: 172, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 173, Loss: 0.044307, Metrics: MARE: 0.216370\n", - "INFO:train_function:Validate - Epoch: 173, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 174, Loss: 0.044307, Metrics: MARE: 0.216370\n", - "INFO:train_function:Validate - Epoch: 174, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 175, Loss: 0.044307, Metrics: MARE: 0.216370\n", - "INFO:train_function:Validate - Epoch: 175, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 176, Loss: 0.044307, Metrics: MARE: 0.216371\n", - "INFO:train_function:Validate - Epoch: 176, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 177, Loss: 0.044308, Metrics: MARE: 0.216371\n", - "INFO:train_function:Validate - Epoch: 177, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 178, Loss: 0.044308, Metrics: MARE: 0.216371\n", - "INFO:train_function:Validate - Epoch: 178, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 179, Loss: 0.044308, Metrics: MARE: 0.216371\n", - "INFO:train_function:Validate - Epoch: 179, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 180, Loss: 0.044308, Metrics: MARE: 0.216372\n", - "INFO:train_function:Validate - Epoch: 180, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 181, Loss: 0.044308, Metrics: MARE: 0.216372\n", - "INFO:train_function:Validate - Epoch: 181, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 182, Loss: 0.044308, Metrics: MARE: 0.216372\n", - "INFO:train_function:Validate - Epoch: 182, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 183, Loss: 0.044308, Metrics: MARE: 0.216372\n", - "INFO:train_function:Validate - Epoch: 183, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 184, Loss: 0.044308, Metrics: MARE: 0.216372\n", - "INFO:train_function:Validate - Epoch: 184, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 185, Loss: 0.044308, Metrics: MARE: 0.216373\n", - "INFO:train_function:Validate - Epoch: 185, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 186, Loss: 0.044308, Metrics: MARE: 0.216373\n", - "INFO:train_function:Validate - Epoch: 186, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 187, Loss: 0.044308, Metrics: MARE: 0.216373\n", - "INFO:train_function:Validate - Epoch: 187, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 188, Loss: 0.044308, Metrics: MARE: 0.216373\n", - "INFO:train_function:Validate - Epoch: 188, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 189, Loss: 0.044308, Metrics: MARE: 0.216374\n", - "INFO:train_function:Validate - Epoch: 189, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 190, Loss: 0.044308, Metrics: MARE: 0.216374\n", - "INFO:train_function:Validate - Epoch: 190, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 191, Loss: 0.044308, Metrics: MARE: 0.216374\n", - "INFO:train_function:Validate - Epoch: 191, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 192, Loss: 0.044308, Metrics: MARE: 0.216374\n", - "INFO:train_function:Validate - Epoch: 192, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 193, Loss: 0.044308, Metrics: MARE: 0.216375\n", - "INFO:train_function:Validate - Epoch: 193, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 194, Loss: 0.044308, Metrics: MARE: 0.216375\n", - "INFO:train_function:Validate - Epoch: 194, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 195, Loss: 0.044308, Metrics: MARE: 0.216375\n", - "INFO:train_function:Validate - Epoch: 195, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 196, Loss: 0.044308, Metrics: MARE: 0.216375\n", - "INFO:train_function:Validate - Epoch: 196, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 197, Loss: 0.044308, Metrics: MARE: 0.216375\n", - "INFO:train_function:Validate - Epoch: 197, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 198, Loss: 0.044308, Metrics: MARE: 0.216376\n", - "INFO:train_function:Validate - Epoch: 198, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 199, Loss: 0.044308, Metrics: MARE: 0.216376\n", - "INFO:train_function:Validate - Epoch: 199, Loss: 0.048441, Metrics: MARE: 0.204016\n", - "INFO:train_function:Train - Epoch: 200, Loss: 0.044308, Metrics: MARE: 0.216376\n", - "INFO:train_function:Validate - Epoch: 200, Loss: 0.048441, Metrics: MARE: 0.204016\n" - ] - } - ], "source": [ "# Train\n", "trainer.train(model, train_data=loader_train, valid_data=loader_valid)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 184, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhf0lEQVR4nOzdd3gUVdvH8e+mh95C772DgiA2RGmi+KKoiApIE/HBAiqKUsSGPipFBVGpYkMR0UcBQRQVQVAUpElHegk9BNJ23z8Ok0ISSNnd2fL7XFeuTDab3TuZzMy555xzH4fL5XIhIiIiIiIiIm4XYncAIiIiIiIiIoFKSbeIiIiIiIiIhyjpFhEREREREfEQJd0iIiIiIiIiHqKkW0RERERERMRDlHSLiIiIiIiIeIiSbhEREREREREPUdItIiIiIiIi4iFKukVEREREREQ8REm3iIiIBLz777+fqlWr5ulnr7/+eq6//nq3xiMiIsFDSbeIiEgOzZgxA4fDke3Hb7/9Zmt8L7/8MvPmzbM1hkux/lb9+vXL8vvPPvts6nNiY2O9HJ2IiIj7hdkdgIiIiL95/vnnqVatWqbHa9asaUM0aV5++WXuuOMOunTpYmsclxIVFcUXX3zBpEmTiIiIyPC9Tz75hKioKM6dO2dTdCIiIu6lpFtERCSXbrrpJpo3b253GH6rY8eOfP311yxYsID/+7//S318+fLl7Ny5k65du/LFF1/YGKGIiIj7aHi5iIiIm40aNYqQkBCWLFmS4fEHHniAiIgI1q5dC0BiYiIjR46kWbNmFC1alIIFC3Lttdfy448/ZnpNp9PJhAkTaNSoEVFRUcTExNCxY0f++OMPwAzbPnPmDDNnzkwdnn3//fdnGd+hQ4cICwtj9OjRmb63efNmHA4Hb7/9NgBJSUmMHj2aWrVqERUVRcmSJbnmmmtYvHhxnv8+FSpU4LrrruPjjz/O8PhHH31Eo0aNaNiwYZY/9/nnn9OsWTOio6MpVaoU9913H/v27cv0vHnz5tGwYUOioqJo2LAhX375ZZav53Q6GT9+PA0aNCAqKooyZcowYMAAjh8/nuffTURE5EJKukVERHLp5MmTxMbGZvg4evRo6veHDx9O06ZN6du3L6dPnwbgu+++4/3332fkyJE0adIEgFOnTjFlyhSuv/56Xn31VZ577jmOHDlChw4dWLNmTYb37Nu3L4899hiVKlXi1Vdf5emnnyYqKip1HvmsWbOIjIzk2muvZdasWcyaNYsBAwZkGX+ZMmVo3bo1n332WabvzZ49m9DQUO68804AnnvuOUaPHk2bNm14++23efbZZ6lcuTJ//vlnvv6G99xzD//73/+Ii4sDIDk5mc8//5x77rkny+fPmDGDu+66i9DQUMaMGUP//v2ZO3cu11xzDSdOnEh93qJFi+jatSsOh4MxY8bQpUsXevfunXpzIr0BAwbw5JNPcvXVVzNhwgR69+7NRx99RIcOHUhKSsrX7yciIpLKJSIiIjkyffp0F5DlR2RkZIbnrlu3zhUREeHq16+f6/jx464KFSq4mjdv7kpKSkp9TnJysishISHDzx0/ftxVpkwZV58+fVIf++GHH1yA65FHHskUk9PpTN0uWLCgq1evXjn6Xd59910X4Fq3bl2Gx+vXr++64YYbUr9u0qSJ6+abb87Ra+YE4PrPf/7jOnbsmCsiIsI1a9Ysl8vlcn377bcuh8Ph2rVrl2vUqFEuwHXkyBGXy+VyJSYmukqXLu1q2LCh6+zZs6mv9c0337gA18iRI1Mfa9q0qatcuXKuEydOpD62aNEiF+CqUqVK6mO//PKLC3B99NFHGeJbuHBhpsdbt27tat26tdv+BiIiElzU0y0iIpJLEydOZPHixRk+FixYkOE5DRs2ZPTo0UyZMoUOHToQGxvLzJkzCQtLK6cSGhqaWkjM6XRy7NgxkpOTad68eYae5C+++AKHw8GoUaMyxeJwOPL0O9x+++2EhYUxe/bs1MfWr1/Pxo0b6datW+pjxYoVY8OGDWzdujVP75Od4sWL07FjRz755BMAPv74Y6666iqqVKmS6bl//PEHhw8f5qGHHiIqKir18Ztvvpm6devy7bffAnDgwAHWrFlDr169KFq0aOrz2rVrR/369TO85ueff07RokVp165dhhELzZo1o1ChQlkO8RcREckLJd0iIiK51KJFC9q2bZvho02bNpme9+STT9KkSRNWrVrFqFGjMiV+ADNnzqRx48ap86VjYmL49ttvOXnyZOpztm/fTvny5SlRooTbfodSpUpx4403ZhhiPnv2bMLCwrj99ttTH3v++ec5ceIEtWvXplGjRjz55JP8/fffbonhnnvuYfHixezevZt58+ZlO7T833//BaBOnTqZvle3bt3U71ufa9Wqlel5F/7s1q1bOXnyJKVLlyYmJibDR1xcHIcPH87X7yYiImJR9XIREREP2bFjR2oP8bp16zJ9/8MPP+T++++nS5cuPPnkk5QuXTp1zvL27ds9Ht/dd99N7969WbNmDU2bNuWzzz7jxhtvpFSpUqnPue6669i+fTtfffUVixYtYsqUKYwbN47Jkydnu9Z2Tt16661ERkbSq1cvEhISuOuuu/L7K+WY0+mkdOnSfPTRR1l+PyYmxmuxiIhIYFNPt4iIiAc4nU7uv/9+ihQpwjPPPMMnn3zC3LlzMzxnzpw5VK9enblz59KjRw86dOhA27ZtM61RXaNGDfbv38+xY8cu+p65HWrepUsXIiIimD17NmvWrGHLli3cfffdmZ5XokQJevfuzSeffMKePXto3Lgxzz33XK7eKyvR0dF06dKFpUuX0q5duwzJfnrWkPPNmzdn+t7mzZtTv299zmoo/IU/W6NGDY4ePcrVV1+dadRC27ZtU4vdiYiI5JeSbhEREQ8YO3Ysy5cv57333uOFF17gqquuYuDAgcTGxqY+JzQ0FACXy5X62MqVK1mxYkWG1+ratSsulyvLJb7S/2zBggUzVPK+lGLFitGhQwc+++wzPv30UyIiIujSpUuG56Svyg5QqFAhatasSUJCQupjJ0+e5J9//skwJD6nnnjiCUaNGsWIESOyfU7z5s0pXbo0kydPzvC+CxYsYNOmTdx8880AlCtXjqZNmzJz5swMsSxevJiNGzdmeM277rqLlJQUXnjhhUzvl5ycnKu/o4iIyMVoeLmIiEguLViwgH/++SfT41dddRXVq1dn06ZNjBgxgvvvv5/OnTsDZsmrpk2b8tBDD6XOo77llluYO3cut912GzfffDM7d+5k8uTJ1K9fP3UpLYA2bdrQo0cP3nzzTbZu3UrHjh1xOp388ssvtGnThkGDBgHQrFkzvv/+e8aOHUv58uWpVq0aLVu2vOjv0q1bN+677z4mTZpEhw4dKFasWIbv169fn+uvv55mzZpRokQJ/vjjD+bMmZP6ngBffvklvXv3Zvr06dmuDZ6dJk2aXLJXOTw8nFdffZXevXvTunVrunfvzqFDh5gwYQJVq1Zl8ODBqc8dM2YMN998M9dccw19+vTh2LFjvPXWWzRo0CDD37R169YMGDCAMWPGsGbNGtq3b094eDhbt27l888/Z8KECdxxxx25+l1ERESyZHP1dBEREb9xsSXDANf06dNdycnJriuuuMJVsWLFDMtWuVwu14QJE1yAa/bs2S6Xyyz39fLLL7uqVKniioyMdF122WWub775xtWrV68My1u5XGZ5sddee81Vt25dV0REhCsmJsZ10003uVavXp36nH/++cd13XXXuaKjo11AjpYPO3XqVOrzP/zww0zff/HFF10tWrRwFStWzBUdHe2qW7eu66WXXnIlJiZm+rtMnz79ku/H+SXDLubCJcMss2fPdl122WWuyMhIV4kSJVz33nuva+/evZl+/osvvnDVq1fPFRkZ6apfv75r7ty5Wf5NXS6X67333nM1a9bMFR0d7SpcuLCrUaNGrqFDh7r279+f+hwtGSYiIvnhcLnSjUsTEREREREREbfRnG4RERERERERD1HSLSIiIiIiIuIhSrpFREREREREPERJt4iIiIiIiIiHKOkWERERERER8RAl3SIiIiIiIiIeEmZ3AL7I6XSyf/9+ChcujMPhsDscERERERER8TEul4vTp09Tvnx5QkKy789W0p2F/fv3U6lSJbvDEBERERERER+3Z88eKlasmO33lXRnoXDhwoD54xUpUsTmaLKWlJTEokWLaN++PeHh4XaHIxfQ/vFd2je+TfvHd2nf+C7tG9+m/eO7tG98mz/sn1OnTlGpUqXU/DE7SrqzYA0pL1KkiE8n3QUKFKBIkSI++08YzLR/fJf2jW/T/vFd2je+S/vGt2n/+C7tG9/mT/vnUlOSVUhNRERERERExEOUdIuIiIiIiIh4iJJuEREREREREQ/RnG4REREREREPSElJISkpye4w/FJSUhJhYWGcO3eOlJQUW2IIDw8nNDQ036+jpFtERERERMSNXC4XBw8e5MSJE3aH4rdcLhdly5Zlz549lyxU5knFihWjbNmy+YpBSbeIiIiIiIgbWQl36dKlKVCggK1Jo79yOp3ExcVRqFAhQkK8Pyva5XIRHx/P4cOHAShXrlyeX0tJt4iIiIiIiJukpKSkJtwlS5a0Oxy/5XQ6SUxMJCoqypakGyA6OhqAw4cPU7p06TwPNVchNRERERERETex5nAXKFDA5kjEHaz9mJ+5+Uq6RURERERE3ExDygODO/ajkm4RERERERERD1HSLSIiIiIiIuIhSrpFRERERETEdg6Hg3nz5tkdhtsp6RYRERERERHxECXdIiIiIiIigtPpZMyYMVSrVo3o6GiaNGnCnDlzcLlctG3blg4dOuByuQA4duwYFStWZOTIkYBZKq1v376pP1unTh0mTJiQ6T2mTZtGgwYNiIyMpFy5cgwaNAiAqlWrAnDbbbfhcDioXr26d35pL9A63SIiIiIiIh7ickF8vD3vXaAA5Kb49pgxY/jwww+ZPHkytWrV4ueff+a+++4jJiaGmTNn0qhRI958800effRRHnzwQSpUqJCadDudTipWrMjnn39OyZIlWb58OQ888ADlypXjrrvuAuCdd95hyJAhvPLKK9x0002cPHmSX3/9FYDff/+d0qVLM336dDp27BhQ1d+VdIuIiIiIiHhIfDwUKmTPe8fFQcGCOXtuQkICL7/8Mt9//z2tWrUCoHr16ixbtox3332Xjz/+mHfffZeePXty8OBB5s+fz19//UVYmEkpw8PDGT16dOrrVatWjRUrVvDZZ5+lJt0vvvgijz/+OI8++mjq86644goAYmJiAChWrBhly5bF6XRy6tSpfP8NfIGtw8t//vlnOnfuTPny5XM8aX7p0qVcfvnlREZGUrNmTWbMmJHpORMnTqRq1apERUXRsmVLVq1a5f7gRUREREREAsS2bduIj4+nXbt2FCpUKPXjgw8+YPv27QDceeed3Hbbbbzyyiu8/vrr1KpVK8NrTJw4kWbNmhETE0OhQoV477332L17NwCHDx9m//793HjjjV7/3exma0/3mTNnaNKkCX369OH222+/5PN37tzJzTffzIMPPshHH33EkiVL6NevH+XKlaNDhw4AzJ49myFDhjB58mRatmzJ+PHj6dChA5s3b6Z06dKe/pVERERERERSFShgepzteu+cijsf5LfffkuFChUyfC8yMhKA+Ph4Vq9eTWhoKFu3bs3wnE8//ZQnnniCN954g1atWlG4cGFee+01Vq5cCUB0dHQ+fhP/ZmvSfdNNN3HTTTfl+PmTJ0+mWrVqvPHGGwDUq1ePZcuWMW7cuNSke+zYsfTv35/evXun/sy3337LtGnTePrpp93/S4iIiIiIiGTD4cj5EG871a9fn8jISHbv3k3r1q2zfM7jjz9OSEgICxYsoFOnTtx8883ccMMNAPz6669cddVVPPTQQ6nPt3rIAQoXLkzVqlVZsmQJbdq0yfL1w8PDSUlJceNv5Rv8ak73ihUraNu2bYbHOnTowGOPPQZAYmIiq1evZtiwYanfDwkJoW3btqxYsSLb101ISCAhISH1a2vuQFJSEklJSW78DdzHistX4wt22j++S/vGt2n/eF5cHOzfDwcOOIiNhVOn4MQJBydOwMmTZvvcOUhMhKQk85GYCImJIZw6dQ1vvBFCeLiTsDAIC4PwcChSBIoUcVG4MBQtar4uVsxF2bJQtqyLcuXsm88YDHTc+DbtH9/lqX2TlJSEy+XC6XTidDrd+tqeVLBgQR5//HEGDx5McnIy11xzDSdPnmT58uUULlyYUqVKMW3aNH799Vcuv/xynnjiCXr16sWaNWsoXrw4NWvW5IMPPmDBggVUq1aNDz/8kN9//51q1aql/h1GjhzJQw89RExMDB07duT06dMsX748QwVza055REQEYWFhqX9LuzidTlwuF0lJSYSGhmb4Xk7/d/wq6T548CBlypTJ8FiZMmU4deoUZ8+e5fjx46SkpGT5nH/++Sfb1x0zZkyGSf+WRYsWUSA3YzJssHjxYrtDkIvQ/vFd2je+Tfsn7+LjwzhwoCAHDhTk4EHz+fDhAhw/HsWxY1HEx4fn49VLcpHL6UVFRSVTvPg5SpU6S5ky8ZQte+b8h9kuVEgJSX7puPFt2j++y937JiwsjLJlyxIXF0diYqJbX9vTnnjiCQoXLsyYMWPYtWsXRYsWpUmTJgwePJg+ffrw1FNPUbNmTU6dOsWQIUNYuHAh/fv3Z9q0adx9992sWrWKu+++G4fDQdeuXenTpw/ff/99aqfmbbfdxokTJ5g4cSJPPvkkJUuW5NZbb039/ujRoxk+fDhTpkyhXLly/P3335w+fdrOPwmJiYmcPXuWn3/+meTk5Azfi89hWXqHy1pozWYOh4Mvv/ySLl26ZPuc2rVr07t37ww92fPnz+fmm28mPj6e48ePU6FCBZYvX55acQ9g6NCh/PTTT6nzCS6UVU93pUqViI2NpUiRIvn/5TwgKSmJxYsX065dO8LD89OAEk/Q/vFd2je+Tfsn586ehY0bHaxbB+vWOVi3zsGGDQ6OHLn0EisFC7ooXx5iYlwUK2Z6p4sVc1G0qNkuUAAiIlyEh0NEhPlwOFL466+1NGjQBJcrlKQkSEmBhAQHp0+bXvLTp+HUKQcnT8KxY3DokIMDB+DMmUvHVLq0i4YNXTRoYH2G+vVd6iHPAR03vk37x3d5at+cO3eOPXv2pBZ2lrxxuVycPn2awoUL27p82Llz59i1axeVKlXKtD9PnTpFqVKlOHny5EXzRr/q6S5btiyHDh3K8NihQ4coUqQI0dHRhIaGEhoamuVzypYtm+3rRkZGphYHSC88PNznT47+EGMw0/7xXdo3vk37J6PkZFi/Hn77zXysXAlbtkB2o+1Kl4aaNdM+qlWDihWhXDkoXx4KF7YaLzlvxCQluYiMPECnTpcRHp675kNcHBw4YD7+/Rd27IDt29M+HzwIhw87+OEHBz/8kPFn69aFli3TPho1MkPaJTMdN75N+8d3uXvfpKSk4HA4CAkJISTE1sWi/Jo1pNz6W9olJCQEh8OR5f9JTv9v/CrpbtWqFfPnz8/w2OLFi1N7tSMiImjWrBlLlixJ7TF3Op0sWbIkdZ6AiIiIr4uPh+XL4YcfzOfffzePXahUKWjSBBo3Nh8NG0Lt2mZOtS8pVAhq1TIfWYmLg02bYN06c3PB9N7DoUPwzz/mY+ZM89yoKGjeHK67Dtq0gauuyl11XhEREW+zNemOi4tj27ZtqV/v3LmTNWvWUKJECSpXrsywYcPYt28fH3zwAQAPPvggb7/9NkOHDqVPnz788MMPfPbZZ3z77beprzFkyBB69epF8+bNadGiBePHj+fMmTOp1cxFRER8TVKS6b3+4QfzsWKFKV6WXpEipqf3yivN52bNoEwZUxXX3xUqBFdcYT7SO3wYVq0yf5uVK832yZOwbJn5ePll0+vdsqVJwG+4Aa6+Wj3hIiLiW2xNuv/4448M5eKHDBkCQK9evZgxYwYHDhxIXUwdoFq1anz77bcMHjyYCRMmULFiRaZMmZK6XBhAt27dOHLkCCNHjuTgwYM0bdqUhQsXZiquJiIiYqfDh2HBAvjmG/juOzMfOr0KFeDGG+Haa6FVK6hXD4JtlGLp0nDLLeYDzHD6rVvh119h6VL48UfYuzctCX/hBXNzon176NQJbroJLjK7TERExCtsTbqvv/56LlbHbcaMGVn+zF9//XXR1x00aJCGk4uIiM/ZuBHmzYP//c/03Ka/BJYqZXpqrY+aNQOjF9udQkKgTh3z0aeP+fvt2GGS7x9/hMWL4cgRmDPHfIAZit65M9xxB9Svb2/8IiISnPxqTreIiIi/2bQJPv8cPvsMNmzI+L3LLkvryW3ePPh6svPL4YAaNcxHv36mJ/yPP+Dbb2H+fLNtfYwaZZLuO+6AO++EBg10U0NERLxDSbeIiIib7dgBH39sEu1169IeDw83Q59vvRVuvtkMIRf3CQmBFi3Mx+jRpir6/Pnw5ZewaJEZafD88+ajbl24+27o0QOqV7c7chERCWRKukVERNzg9GkzpHnGDPj557THrUT7rrtMsl2smF0RBp+yZc0w9D59TAG2r782+2jhQlMR/bnnzMe110KvXqYXvGhRu6MWEZFAo4FsIiIieeR0mrnEvXqlJXg//2yGLbdrB9OmmWWvvvkGevZUwm2nokVNr/ZXX5l537NmmX3kcMAvv5jh6WXLwj33mAryFyk5IyIikitKukVERHLp+HEYN85UFL/hBvjgA7OOdu3aZhmr3bvNcObevaF4cbujlQsVKQL33Wf20Z498MorZl+eOweffGKqxtetC2PHwrFjdkcrIhKYqlatyvjx41O/djgczJs3z+txPPfcczRt2tSj76GkW0REJIdWr4a+fc1c7CFDYMsWKFwYHnjArK39zz8wbBhUrGh3pJJTFSrAU0+ZIne//w4DB5p9umULPP44lC9vRjKsWKHebxERTzpw4AA33XRTjp7rjUTZnZR0i4iIXERyMsyeDS1bmgrj06bB2bPQuDFMngz798O778KVV6oatj9zOMz+nTQJ9u0z+7RpU0hIMCMZrrrK7OPZs83/hIiIQGJiotteq2zZskRGRrrt9XyJkm4REZEsnD4N48eb9bLvvhtWrYKICLj3Xvj1V1izBgYMgEKF7I5U3M0avfDnn2Y99fvvh8hI8z9w991mibI33jDF2UREAsn111/PoEGDGDRoEEWLFqVUqVKMGDEC1/mhPlWrVuWFF16gZ8+eFClShAceeACAZcuWce211xIdHU2lSpV45JFHOHPmTOrrHj58mM6dOxMdHU21atX46KOPMr33hcPL9+7dS9++fSlVqhQFCxakefPmrFy5khkzZjB69GjWrl2Lw+HA4XAwY8YMAE6cOEG/fv2IiYmhSJEi3HDDDaxduzbD+7zyyiuUKVOGwoUL07dvX86dO+fmv2JmSrpFRETS2bfPDDeuVAkGD4Z//4WYGFPles8e+PBD0+upXu3A53CY5cemTzfz9EePhtKlzfYTT5hpBIMHw969dkcqIj7N5YIzZ+z5yMO8mJkzZxIWFsaqVauYMGECY8eOZcqUKanff/3112nSpAl//fUXI0aMYPv27XTs2JGuXbvy999/M3v2bJYtW8agQYNSf+b+++9nz549/Pjjj8yZM4dJkyZx+PDhbGOIi4ujTZs2HDhwgHnz5rF27VqGDh2K0+mkW7duPP744zRo0IADBw5w4MABunXrBsCdd97J4cOHWbBgAatXr+byyy/nxhtv5Nj5Ah2fffYZzz33HC+//DJ//PEH5cqVY9KkSbn+G+WWlgwTERHBJNevvGKGj1uj5erUMXO3e/SA6Gh74xN7lS4NI0fC0KHw0UemyNrGjWY0xKRJpjf8qae05reIZCE+3r5hUXFxULBgrn6kUqVKjBs3DofDQZ06dVi3bh3jxo2jf//+ANxwww08/vjjqc/v168f9957L4899hgAtWrV4s0336R169a888477N69mwULFrBq1SquuOIKAKZOnUq9evWyjeHjjz/myJEjfP/991SpUoWQkBBq1qyZ+v1ChQoRFhZG2bJlUx9btmwZq1at4vDhw6nD1F9//XXmzZvHnDlzeOCBBxg/fjx9+/alb9++ALz44ot8//33Hu/tVk+3iIgEtR07oH9/M4x88mSTcF97LfzvfyapeuABJdySJirKFNNbvx4WLIDWrc3/zHvvmer1vXqZgnoiIv7qyiuvxJFuOFerVq3YunUrKSkpADRv3jzD89euXcuMGTMoVKhQ6keHDh1wOp3s3LmTTZs2ERYWRrNmzVJ/pm7duhS7yDqaa9as4bLLLqN4LpYAWbt2LXFxcZQsWTJDLDt37mT79u0AbNq0iZYtW2b4uVatWuX4PfJKPd0iIhKUtmwxy3t9+CGcb0fQti2MGAHXXWdvbOL7HA7o2NF8/PILvPQSfPedKbo2axbcdZcZjl6njt2RiojtChQwPc52vbebFbyg5zwuLo4BAwbwyCOPZHpu5cqV2bJlS67fIzoPd7vj4uIoV64cS5cuzfS9iyX43qCkW0REgsq//5r52R98AE6neaxjR5NsX3WVraGJn7r2Wli4EP74wyTf8+aZKueff26GnY8aBZUr2x2liNjG4cj1EG87rVy5MsPXv/32G7Vq1SI0NDTL519++eVs3Lgxw/Dv9OrWrUtycjKrV69OHV6+efNmTpw4kW0MjRs3ZsqUKRw/fpwiRYpk+n5ERERqz3v6OA4ePEhYWBhVq1bN8nXr1avHypUr6dmzZ4bfz9M0vFxERIJCbKwpelW7NsyYYRLuW24x1akXLFDCLfnXvDl8+SWsXQv/93/mf2zaNKhVCx59FA4dsjtCEZFL2717N0OGDGHz5s188sknvPXWWzz66KPZPv+pp55i+fLlDBo0iDVr1rB161a++uqr1EJqderUoWPHjgwYMICVK1eyevVq+vXrd9He7O7du1O2bFnuvfdefv31V3bs2MEXX3zBihUrAFNFfefOnaxZs4bY2FgSEhJo27YtrVq1okuXLixatIhdu3axfPlynn32Wf744w8AHn30UaZNm8b06dPZsmULo0aNYsOGDW7862VNSbeIiAS0uDh44QVT4Gr8eDP/tk0bk2z/73+mOrWIOzVubHq7V6yAG24w/3Nvvmn+B599Fi7SuSMiYruePXty9uxZWrRowX/+8x8effTR1KXBstK4cWN++ukntmzZwrXXXstll13GyJEjKV++fOpzpk+fTvny5WndujW33347DzzwAKVLl872NSMiIli4cCExMTHccsstNGrUiFdeeSW1t71r16507NiRNm3aEBMTwyeffILD4WD+/Plcd9119O7dm9q1a3P33Xfz77//UqZMGQC6devGiBEjGDp0KM2aNePff/9l4MCBbvrLZU/Dy0VEJCAlJZniVi+8kNbDeNllpkJ5u3Za8ks878orYckS8/HMM2ad75dfNv+Xo0ebIn1haomJiI8JDw9n/PjxvPPOO5m+t2vXrix/5oorrmDRokXZvmbZsmX55ptvMjzWo0ePDF+7LljerEqVKsycOZMiRYoQEpKxrzgyMpI5c+Zkep/ChQvz5ptv8uabb2YbyzPPPMMzzzyT4bFXX3012+e7g3q6RUQk4Hz3HTRpAoMGmYS7Rg345BMz57Z9eyXc4l033gi//WZ6v+vVM1Md/vMf8z+6cKHd0YmIiKcp6RYRkYCxZQt07mwKo23aBKVKwcSJZvvuuyFEVz2xicNh5nmvXQtvvw0lS5ol6W66yXxs3Gh3hCIi4ilqfoiIiN87eRKeeAIaNoRvvjFDdgcPhq1b4aGHIDzc7ghFjPBw08u9dSsMGWK+XrjQzAP/z3/g2DG7IxSRYLZ06VLGjx9vdxgBR0m3iIj4rfTVod94w8zj7tQJ1q2DsWPB5mU5RbJVvLj5n92wAbp0MWvFT5pk1vWeMQMumNooIiJ+TEm3iIj4pQ0boHVr6NsXjhwxycq335qPunXtjk4kZ2rVMsuM/fAD1K9v5nv37g3XXWduHomIiP9T0i0iIn4lPh6GDYOmTWHZMihYEF57zSQonTrZHZ1I3rRpA2vWwH//CwUKmP/tyy6Dxx+H06ftjk5E8sLpdNodgriBO/ajFqoQERG/8e23piK5tWJJly4wYQJUrmxnVCLuER4OTz5piv4NHgxffGGmSXz6qVnnu2tXuyMUkZyIiIggJCSE/fv3ExMTQ0REBA4tm5FrTqeTxMREzp07l2nJMG9wuVwkJiZy5MgRQkJCiIiIyPNrKekWERGft38/PPwwzJ1rvq5UyVSAvvVWe+MS8YRKlWDOHFiwwPzfb98Od9wBt99u/u/LlbM7QhG5mJCQEKpVq8aBAwfYv3+/3eH4LZfLxdmzZ4mOjrb1pkWBAgWoXLlyvhJ/Jd0iIuKzXC6YOdP0+p04AaGhZnvUKChUyO7oRDzrpptg/Xp46SV45RVz0+mHH0zv9/33a715EV8WERFB5cqVSU5OJiUlxe5w/FJSUhI///wz1113HeE2LUMSGhpKWFhYvpN+Jd0iIuKT9uyBAQNMbx9A8+YwdapZWkkkWERFwQsvwJ13Qp8+sHq1+fzJJ/Dee1C1qt0Rikh2HA4H4eHhtiWM/i40NJTk5GSioqL8/m+oQmoiIuJTXC6YOtVBgwYm4Y6MNL18K1Yo4Zbg1bgx/PabKbQWFQWLF5t16d980yydJyIivktJt4iI+Ixdu+C551oxcGAYp0/DlVeais5PPQVhGpslQS4szBRa+/tvs6TYmTPw6KPQrl0ohw5F2x2eiIhkQ0m3iIjYzuWC6dPh8svDWLu2NNHRLsaONcsmac1tkYxq1YIff4R33jG1DX75JYTHHmvDzJkOXC67oxMRkQsp6RYREVvFxprKzH36QFycg3r1jvLHH8kMHmwKp4lIZiEh8OCDsHYtXHWVk7Nnw+nfP4zbboPDh+2OTkRE0lPSLSIitvnuO2jUyFRlDg+Hl15K4cUXl1Grlt2RifiH6tVhyZIUevbcQHi4i6++MsfU11/bHZmIiFiUdIuIiNfFx5v1hzt2hIMHoX59WLkSnnzSqd5tkVwKDYXbb9/G8uXJNGpkerr/7/+gb1+Ii7M7OhERUdItIiJe9ddfZvmvt982Xz/yCPzxB1x2mb1xifi7Jk3g999NsTWHA6ZNM8famjV2RyYiEtyUdIuIiFe4XCbRvvJK2LQJypUzw8snTIBoFV4WcYvISLOs2I8/QoUKsHkztGwJb72FiqyJiNhESbeIiHjc8ePQtasZUp6YaIa+rlsH7dvbHZlIYGrd2hRZ69zZHHOPPAJdusDRo3ZHJiISfJR0i4iIR/32mxk6/uWXEBEBb75ptkuWtDsykcBWsiR89ZU55iIiTHG1Jk3gp5/sjkxEJLgo6RYREY9wOuH11+Haa+Hff6FGDVi+3PR2Oxx2RycSHBwOc8ytXAl16sC+fXDDDfD88+YYFRERz1PSLSIibnf0qBnW+uSTkJwM3brBn39Cs2Z2RyYSnJo2hdWroXdvk2yPGgU336zh5iIi3qCkW0RE3Gr1apNcz58PUVHw3nvwySdQpIjdkYkEt4IFTUXzmTNN8cKFC+Hyy03FcxER8Rwl3SIi4jZTp8LVV5vh5DVrmiGt/ftrOLmIL+nZ09RaqFkTdu+Ga66ByZNV3VxExFOUdIuISL6dO2eS6379ICEBbr3V9J41bmx3ZCKSlcaN4Y8/4LbbTHXzgQOhVy+Ij7c7MhGRwKOkW0RE8uXff01P2ZQppkf7pZdMdfJixeyOTEQupmhR+OILeO01CA2FWbPMmt7bttkdmYhIYFHSLSIiebZokZkTunq1WZ5o4UJ45hkI0dVFxC84HPDEE7BkCZQpA+vXwxVXmGNbRETcQ80iERHJNZcLxo6Fm26CY8egeXOTeLdvb3dkIpIXrVvDX3/BlVfCiRPm2B47VvO8RUTcQUm3iIjkyrlzZtmhxx83Sw/17g2//AJVqtgdmYjkR7lysHRp2rJijz9uiq6dPWt3ZCIi/k1Jt4iI5NjBg9CmjVlyKCQEJkwwFcujouyOTETcITLSHNNvvmnmeX/4IVx3Hezda3dkIiL+S0m3iIjkyOrVZq7nb7+ZImkLF8Ijj2g5MJFA43DAww+bed0lS5oq582bw/LldkcmIuKfbE+6J06cSNWqVYmKiqJly5asWrUq2+cmJSXx/PPPU6NGDaKiomjSpAkLFy7M8JznnnsOh8OR4aNu3bqe/jVERALap5+aCuV790LdurBqFbRrZ3dUIuJJN9yQtvTfoUNmlMuHH9odlYiI/7E16Z49ezZDhgxh1KhR/PnnnzRp0oQOHTpw+PDhLJ8/fPhw3n33Xd566y02btzIgw8+yG233cZff/2V4XkNGjTgwIEDqR/Lli3zxq8jIhJwXC4YNQq6dzdzuTt1Mj3dtWrZHZmIeEO1aqaH+/bbzXrePXqYc4IKrImI5JytSffYsWPp378/vXv3pn79+kyePJkCBQowbdq0LJ8/a9YsnnnmGTp16kT16tUZOHAgnTp14o033sjwvLCwMMqWLZv6UapUKW/8OiIiASUhAe67D55/3nz95JPw9ddmbV8RCR4FC8Lnn8NTT5mvn38e7r3X3IgTEZFLsy3pTkxMZPXq1bRt2zYtmJAQ2rZty4oVK7L8mYSEBKIuqNYTHR2dqSd769atlC9fnurVq3Pvvfeye/du9/8CIiIB7OhRM3z8448hLMwUVvrvf01hJREJPiEh8MorMGWKOSd88gnceCMcOWJ3ZCIivi/MrjeOjY0lJSWFMmXKZHi8TJky/PPPP1n+TIcOHRg7dizXXXcdNWrUYMmSJcydO5eUlJTU57Rs2ZIZM2ZQp04dDhw4wOjRo7n22mtZv349hQsXzvJ1ExISSEhISP361KlTgJlDnpSUlN9f1SOsuHw1vmCn/eO7tG8ubds2uPXWMLZtc1CkiIvZs1O48UYX3viTaf/4Lu0b3+XNfdOzJ1Sq5KBbt1CWL3fQsqWLefOSqVfP42/tt3Ts+C7tG9/mD/snp7E5XC57ZuXs37+fChUqsHz5clq1apX6+NChQ/npp59YuXJlpp85cuQI/fv353//+x8Oh4MaNWrQtm1bpk2bxtlsFpE8ceIEVapUYezYsfTt2zfL5zz33HOMHj060+Mff/wxBQoUyONvKCLifzZtKsHLL7fg9OlIYmLiGTHiNypXPm13WCLiY/buLcQLL1zJoUMFKVAgiaeeWkWTJrF2hyUi4lXx8fHcc889nDx5kiJFimT7PNt6ukuVKkVoaCiHDh3K8PihQ4coW7Zslj8TExPDvHnzOHfuHEePHqV8+fI8/fTTVK9ePdv3KVasGLVr12bbtm3ZPmfYsGEMGTIk9etTp05RqVIl2rdvf9E/np2SkpJYvHgx7dq1Izw83O5w5ALaP75L+yZ7n33m4LnnQklIcNCsmZMvvwynbNlrvRqD9o/v0r7xXXbtm9tugzvvdLJ8eTgvvHAVkyen0LOnKqxdSMeO79K+8W3+sH+sEdKXYlvSHRERQbNmzViyZAldunQBwOl0smTJEgYNGnTRn42KiqJChQokJSXxxRdfcNddd2X73Li4OLZv306PHj2yfU5kZCSRkZGZHg8PD/fZHWzxhxiDmfaP79K+SeNymbmazzxjvv6//4OPPgqhYEH7am1q//gu7Rvf5e19U748LFkCffvCxx876NcvjEOHYNgws9a3ZKRjx3dp3/g2X94/OY3L1urlQ4YM4f3332fmzJls2rSJgQMHcubMGXr37g1Az549GTZsWOrzV65cydy5c9mxYwe//PILHTt2xOl0MnTo0NTnPPHEE/z000/s2rWL5cuXc9tttxEaGkr37t29/vuJiPi6lBR4+OG0hHvwYPjiC1OtWETkUqKizNrdVmXzZ5+FQYPMuUVERAzberoBunXrxpEjRxg5ciQHDx6kadOmLFy4MLW42u7duwkJSbsvcO7cOYYPH86OHTsoVKgQnTp1YtasWRQrViz1OXv37qV79+4cPXqUmJgYrrnmGn777TdiYmK8/euJiPg0a0mwOXNMr9T48fDII3ZHJSL+xuEwo2XKl4fHHoNJk+DgQfjoI5OUi4gEO1uTboBBgwZlO5x86dKlGb5u3bo1GzduvOjrffrpp+4KTUQkYJ08aeZj/vgjhIebnqqLzNQREbmkRx6BsmWhRw+YOxfat4evvoLixe2OTETEXrYOLxcREe87eBCuv94k3IULw4IFSrhFxD3uugu++w6KFIFffoFrr4U9e+yOSkTEXkq6RUSCyNatcNVVsGYNlC4NS5fCjTfaHZWIBJLrrzcJd/nysGEDtGoF69fbHZWIiH2UdIuIBIk//oCrr4adO6F6dVi+HC6/3O6oRCQQNW4MK1ZAvXqwbx9cdx389pvdUYmI2ENJt4hIEFiyBNq0gSNH4LLLTMJdo4bdUYlIIKtcGZYtMz3dx49D27bmXCQiEmyUdIuIBLivv4ZOnSAuzgwlX7oUzi8SISLiUSVKwKJFJuE+c8aci776yu6oRES8S0m3iEgA++QTuP12SEw01cq//dYUOBIR8ZZCheCbb8w5KDERunaFWbPsjkpExHuUdIuIBKj334d774WUFLOEz2efQWSk3VGJSDCKjDTnoF69zDmpZ0+YONHuqEREvENJt4hIABo7Fh54AFwuGDgQZsyAsDC7oxKRYBYWBtOmmfW8AQYNgpdfNucpEZFApqRbRCSAuFzw3HPw+OPm66FDTW9SiM72IuIDQkJg/HgYNcp8/eyz5jylxFtEApmaYSIiAcLlgieegNGjzdcvvQSvvAIOh71xiYik53CYm4Njx5qvX3/d9Ho7nbaGJSLiMRpsKCISAJxOM4z8vffM1xMmpA3hFBHxRYMHm8KO/fvDpEmQlASTJ2tkjogEHiXdIiJ+LiXFNFqnTzeN1SlToHdvu6MSEbm0vn0hIgLuv98Uf0xKMuew0FC7IxMRcR8l3SIifiwlBfr0gQ8+MAn3hx9C9+52RyUiknM9epgiaz16mKKPSUkq/igigUUDeERE/FRKiukd+uAD0yv0ySdKuEXEP3Xvbs5hYWHw0Udw330m+RYRCQRKukVE/FBysukV+vBD00idPRvuusvuqERE8u7OO+HzzyE83JzT7r4bEhPtjkpEJP+UdIuI+JnkZNMLZPUKffYZdO1qd1QiIvnXpQvMnWvmec+daxLxhAS7oxIRyR8l3SIifiQpyQzDnD3b9AZ98QXcdpvdUYmIuM8tt8BXX0FkJHz9Ndx+uxJvEfFvSrpFRPxEUpIZbjlnTlov0K232h2ViIj7dewI33wD0dEwf76ZPqOh5iLir5R0i4j4geRk08M9d67p/fnyS9MbJCISqNq2NT3dUVHmc/fuKq4mIv5JSbeIiI9LSYGePc1Q8ogImDcPOnWyOyoREc9r29ac86zRPffdZ25Cioj4EyXdIiI+zOmEfv3SiqbNmWOGXYqIBIsOHUzCHR5uCkf26mVuRoqI+Asl3SIiPsrlgoEDYcYMsw737NnQubPdUYmIeN/NN5vlxMLC4OOPoU8fJd4i4j+UdIuI+CCXCx55BN57D0JCzHrct99ud1QiIvb5v/+DTz81NyE/+AAeeMCMBhIR8XVKukVEfIzLBU88AW+/DQ4HTJ9uqpaLiAS7rl3ho4/Mzchp0+Chh8w5U0TElynpFhHxIS4XPPssjB1rvn7vPVNETUREjG7dTE+3wwHvvguPP67EW0R8m5JuEREf8sILMGaM2X77bVNETUREMrr3XtPTDTBuHDz/vL3xiIhcjJJuEREfMWECjBpltseOhf/8x954RER82f33w5tvmu3nnksbISQi4muUdIuI+IAZM+Cxx8z288/D4MF2RiMi4h8efhhefNFsP/44vP++vfGIiGRFSbeIiM3mzoW+fc32kCEwfLi98YiI+JNnnoGhQ832gAGmwrmIiC9R0i0iYqPFi6F7d7PsTZ8+8PrrpjiQiIjkjMMBr7wCDz5oCqr16AHffGN3VCIiaZR0i4jYZMUK6NIFEhPhjjtMpXIl3CIiuedwwMSJcN99kJxszqk//mh3VCIihpJuEREb/P03dOoE8fHQvj18+CGEhtodlYiI/woJgenTzc3MhATo3BlWrrQ7KhERJd0iIl63datJtE+cgKuuMnO6IyPtjkpExP+FhZk53W3bwpkz5ubmpk12RyUiwU5Jt4iIF+3dC+3awaFD0KQJfPstFCxod1QiIoEjMhLmzYOWLeHYMXOTc88eu6MSkWCmpFtExEuOHjWNv3//hVq14LvvoFgxu6MSEQk8BQuam5p165qbnR06mHOwiIgdlHSLiHhBfDzccosZ5lixoqlaXqaM3VGJiASukiXNzc2KFc2595ZbzJBzERFvU9ItIuJhycnQrRv89hsUL24agVWq2B2ViEjgq1zZnHOLFzfn4DvvhKQku6MSkWCjpFtExINcLhgwwKwZGxUF//sf1K9vd1QiIsGjfn0z1Dw6GhYsgL59wem0OyoRCSZKukVEPGjkSJg2zSxlM3s2XH213RGJiASfVq3g88/N0oyzZsHQoXZHJCLBREm3iIiHTJoEL75otidPhltvtTceEZFgdvPN5iYowBtvwGuv2RuPiAQPJd0iIh4wZw4MGmS2R4+G/v3tjUdERKBnz7Rke+hQmDnT3nhEJDgo6RYRcbOffoJ7702bzz1ihN0RiYiI5YknzAeY+d3ffWdvPCIS+JR0i4i40bp18H//B4mJ0KULTJwIDofdUYmISHqvvgr33QcpKXDHHbBmjd0RiUggU9ItIuImu3dDx45w8iRccw18/LEp2iMiIr4lJASmToU2bSAuDjp1MudwERFPUNItIuIGJ0+aRtv+/dCgAXz9tVmeRkTEJ+3bB0OGwOWXw2WXme29e+2OyqsiImDuXHPOPnDAnMNPnLA7KhEJREq6RUTyKTERunaFDRugXDmzDmzx4nZHJSKSjUWLoGFDGDcO/vrLjK0eNw4aNQq6Cc7Fiplzdvny5hx+++2QkGB3VCISaJR0i4jkg8sFDz4IS5ZAwYLw7bdQqZLdUYmIZOPnn6FzZ9Ole8UVZvHqOXPM9okTZm3DpUttDtK7KlUy5+5CheDHH01xNZfL7qhEJJDYnnRPnDiRqlWrEhUVRcuWLVm1alW2z01KSuL555+nRo0aREVF0aRJExYuXJiv1xQRyY+XXoLp0838wM8+M6M0RUR80pEjcOedaZUely0zVcS6djXbt91mvnfXXWa8dRBp2tTcewgNhY8+guHD7Y5IRAKJrUn37NmzGTJkCKNGjeLPP/+kSZMmdOjQgcOHD2f5/OHDh/Puu+/y1ltvsXHjRh588EFuu+02/vrrrzy/pohIXn34YdpyYBMnmvmAIiI+a+hQOHzYDCP/6CMzqdkSEWFOak2amOT8P/+xL06bdOgA771ntl9+OW1bRCS/bE26x44dS//+/enduzf169dn8uTJFChQgGnTpmX5/FmzZvHMM8/QqVMnqlevzsCBA+nUqRNvvPFGnl9TRCQvfvoJ+vQx20OHmiHmIiI+69dfYcYMs/3ee1CgQObnFCgAM2dCWBh8+SX88otXQ/QFffrAyJFm+6GHYP58e+MRkcBgW9KdmJjI6tWradu2bVowISG0bduWFStWZPkzCQkJREVFZXgsOjqaZcuW5fk1RURya9MmMzIzKcmM1Bwzxu6IREQuwuWCRx812/36wZVXZv/cJk3MpGaAZ58NysnNzz0HvXqZNbzvusvUmhMRyY8wu944NjaWlJQUypQpk+HxMmXK8M8//2T5Mx06dGDs2LFcd9111KhRgyVLljB37lxSUlLy/JpgkvmEdKUqT506BZg55ElJSXn6/TzNistX4wt22j++K7/75tAh6NQpjBMnHLRq5WTKlBRSUkzjTPJPx47v0r7xXZfaN44ffiBs9Wpc0dEkjx5t7hhezFNPETZjBo5ffiF5/nxc7du7O2SfN3Ei7N0bypIlIXTu7GLZsmQqVMjba+nY8V3aN77NH/ZPTmOzLenOiwkTJtC/f3/q1q2Lw+GgRo0a9O7dO99Dx8eMGcPo0aMzPb5o0SIKZDX8yocsXrzY7hDkIrR/fFde9k1CQijDh1/Nrl3FKVcujoEDf+HHHxM9EJ3o2PFd2je+K7t90+q55ygN7GzThnW//56j12rQoQM1v/6aE089xa/JyW6M0n/07h3G5s3XsXdvYW688Qwvv7yMqKi832HVseO7/GXfhCYkEH7mDAlFi+IKDbU7HK/x5f0THx+fo+fZlnSXKlWK0NBQDh06lOHxQ4cOUbZs2Sx/JiYmhnnz5nHu3DmOHj1K+fLlefrpp6levXqeXxNg2LBhDBkyJPXrU6dOUalSJdq3b0+RIkXy+it6VFJSEosXL6Zdu3aEh4fbHY5nxMURMmECIXPnwrFjuBo1wvnww7jatbM7sksKiv3jp/K6b5xOuPvuULZuDaFkSRfffx9JrVptL/2Dkis6dnyX9o3vuui+WbuW8DVrcIWEUGncOCpVq5azF23cGNe331JqwwY6Va0K9eu7PW5/0Lw5XHONix07ivHpp5349NMUQnI5OVPHju/ym32zcyehw4bh+N//cCQl4SpeHGf//jifeSbr+gwBwh/2jzVC+lJsS7ojIiJo1qwZS5YsoUuXLgA4nU6WLFnCoEGDLvqzUVFRVKhQgaSkJL744gvuuuuufL1mZGQkkZGRmR4PDw/32R1s8YcY82T7dlMKesuW1Icc+/YRsnChmZc2diy5vurZIGD3TwDI7b555hmYN88U+J03z0H9+tqvnqRjx3dp3/iuLPfN++8D4LjjDsJr1875i1WrZtbznjeP8KlT4c033Rip/6hTx5z7b7gB5s0LYdSoEF55JW+vpWPHd/n0vlmxAm6+GY4fN1+HhOA4fpzQ//6X0B9+gAULoFQpe2P0MF/ePzmNy9asZciQIbz//vvMnDmTTZs2MXDgQM6cOUPv3r0B6NmzJ8OGDUt9/sqVK5k7dy47duzgl19+oWPHjjidToYOHZrj1xQ/cPAgtGljEu6KFU0l1RUr4OGHweGACRPgiSfsjlKCyKxZacXSpk6Fa66xNx4RkRw5exZmzzbbAwbk/uetZRlmzoQzZ9wXl5+5+mqwZjK++ipMn25vPBJENm82nVDHj0OLFrB2LSQmwty5JtH+4w+49VY4d87uSOUSbJ3T3a1bN44cOcLIkSM5ePAgTZs2ZeHChamF0Hbv3k1Iut7Mc+fOMXz4cHbs2EGhQoXo1KkTs2bNolixYjl+TfFxTid07w579kDt2mZdJmtqwJVXmnFevXrBuHHm6/OjHEQ85ddfTbFfML3d991nbzwiIjn29ddw8iRUrgzXX5/7n2/XDmrUMKPPvvgCevZ0e4j+4t57Tf7zwgvm/kX16tC6td1RSUBLTIRu3eDECWjVCr7/Pm0o+W23Qd265o7QihVmpYF0SyiL77F9fO6gQYP4999/SUhIYOXKlbRs2TL1e0uXLmWGtaYk0Lp1azZu3Mi5c+eIjY3lgw8+oHz58rl6TfFxs2bB0qVQsKBpLFw4F79nT5P5gFlAMzbW6yFK8Ni1y1zXEhOha1fT2BIR8RszZ5rPPXrkbUpWSIj5WUjrMQ9io0ebHCgpCW6/HbZutTsiCWhvv216tkuVgjlzMs/drlcPPvjAbI8bZ3q9xWfZnnSLpDp5EqypAqNGmYlUWRk1Cho1gqNHyfPEKpFLOHUKbrkFjhyByy83bVc/KCMgImIcOgTffWe2e/XK++tYI8oWLYJjx/Iflx9zOMzQ8pYtzZ/illuC/k8inhIbC88/b7ZfeQWy6GQEzD/hffeBy2VqHrlc3otRckVNSPEdL78Mhw+bZPvRR7N/XkSEmVQF5i7g3r3eiU+CRkqKmeWwYQOUK2cGXRQsaHdUIiK58NVXZsrWFVdArVp5f5169cyN7uRk+PJL98Xnp6KjzZ+2cmVTeuaOO8xoKBG3Gj3adEY1bQr333/x5/73vxAVBcuXw48/eiM6yQMl3eIbTpyASZPM9uuvm8T6Yjp2hOuug4QEc2IScaMnn4T5803j6uuvoUIFuyMSEcklK0G+7bb8v1a3buazhpgDUKYMfPMNFC5scpxBg9TBKG505EjqqgO8/jpcaj3ucuXSis+8+KJnY5M8U9ItvuH99yEuDho0MMsiXIrDAS+9ZLY/+MCcoETc4P33zdQoMEPKmze3Nx6/c/Ys/POP6i2I2OnkSViyxGy7M+n+4Ye0ZYuCXKNG8OmnZtrR+++n9RuI5Nt775lOpebNzVp1OfHkkxAWZu4CrVjh2fgkT5R0i/0SE80yYACPP24S6py45hpzQkpMTFvLQyQffvzR1OcDM5XqzjvtjcevnDpluntKljTDUWNioH172LjR7shEgs+CBabaV506psJxftWsaY7rlBQzt1sAs5KTNdvt0UfNPQmRfElMhIkTzfZjj+W8TVy5ctrqAm+95ZHQJH+UdIv95s2DfftMpfJ77sndz1oZ0uTJpjEgkkfbt5u5ecnJ5t9w+HC7I/IjBw/CVVeZhsLZs2bMJcDixWZd0e+/tzc+kWDjzqHlFmsU2rffuu81A8Djj5sC7ykp5kbt9u12RyR+bc4cOHDADBnP7Z3/gQPN57lzNSLFBynpFvtZyx306QORkbn72bvvhuLFzdpOCxa4PTQJDqdPw//9n6lC26IFTJ2a85vLQS8+3nT3bNhgqqsuXmyGtu7YYYbFnTkDXbqYZU9ExPOSk9Oqlt96q/te10q6FyzQTe50HA4zGrhFC3MNufVWM/BHJE+sZf4eeODS9Y0u1KwZNG5shqZ//LH7Y5N8UdIt9jp0CBYuNNvWsJjciI5Oq+o4a5bbwpLg4XSa1XSsSuVffmmKgEoOPfEE/PWXGU7+88/Qtq1phVarZqrR3XijSby7dTMJuoh41u+/mxtfxYubTNBdrr4aihY19Rp+/919rxsAoqLMtaN8eTOj5r77zLVFJFcOHEgbGdajR+5/3uGAvn3N9tSp7otL3EJJt9jrk0/MHfOWLbNfl/tS7r3XfP7f/0wxNpFceOEF01iKiDAjsrJbClOy8Mcf8M47Zvujj6BGjYzfj4w0lYbKl4fNm2HMGO/HKBJsrF7utm0vXfU4N8LDTZ0G0BDzLJQvb2bLRUaa5siIEXZHJH7n00/N3ZpWrTJfT3Pq3ntNg+avv2DdOvfGJ/mipFvsZQ0tz8sdPcvll5siL2fPmiudSA7NmwfPPWe2J0+GK6+0Mxo/43KZXm4wo1Tatcv6eaVKpRV1+e9/Ye9e78QnEqysQmdWguxON91kPi9e7P7XDgBXXJHWwfjyy6ZfQSTHPvrIfL7vvry/RsmSZlldgC++yH9M4jZKusU+27ebO3GhoWnLkeSFw2HmdoOucJJj69en3et55BHo3dveePzO//4HP/1kxlVeal3Q226D664zVVn/+1/vxCcSjI4fh5UrzXaHDu5//RtvNJ+tIeySyb33wlNPme0+fWD1anvjET+xdav5ZwkLg7vuyt9r3XGH+ayk26co6Rb7fPWV+dy6tekNyw8r6V64UBUb5ZJOnw7njjvCiIsztb5ef93uiPyMy2XWVAMYPBgqVbr48x2OtLGW779v5q2JiNs5fvzRDE+tV+/Sx2VeVK5sRpY5nfDLL+5//QDx0kum7ty5c6ZI58GDdkckPu/rr83nNm3y3ybu3NlMB1m/HrZsyX9s4hZKusU+8+aZz1265P+1GjSA+vXNuqTWfDaRLCQnw+uvN2fHDgdVq8Ls2ebaJLnw22/mjnxkpEm6c+LGG808tXPnYOxYz8YnEqQcS5eajbZtPfcmN9xgPmtR6myFhpqRwnXrmhVR77orlKQkLYkhF2F1RLljxYFixdJGpai322co6RZ7HD4Mv/5qtv/v/9zzmrfcYj5/8417Xk8C0jPPhLB2bWkKFHDx1Vf5v6EclN5803y+5x5TtTwnHA4YNsxsT5tmljQREbcK+ekns3H99Z57E6sxr6T7oooWNZ2XxYrBb7+FMHVqI7tDEl8VG5vWJu7c2T2v2bWr+Tx3rnteT/JNSbfY45tvzPC0yy83w9XcwUq6tYaoZOODD2D8eFPNd9q0FBo3tjkgf7R/P8yZY7Yffjh3P9upE1SoYBaztUa6iIhbRJw8iWPTJvPFddd57o3atDGf166FI0c89z4BoFYt0+PtcLhYuLAa06ert1uyMH++aRM3aQJVqrjnNa028R9/mI4usZ2SbrGH1Rvtrl5uMENXixc3DfrffnPf60pA+P13eOABs33nnZu5/XaXvQH5qw8/NGP0r74aLrssdz8bGmoqCwFMmeL+2ESCWMkNG8xGw4aeHcITE0PqHUurZ12y1akTjBplFu1++OFQVq2yOSDxPdZ8bncMLbeULZt2jbZWNBBbKekW70tOhiVLzLa1/Ig7hIWlLZOgIeaSzqFDpoB2QgLcfLOT7t3/sTsk/2UtadKrV95+vk8fM9T8++9h5073xSUS5EpZSXfr1p5/s2uvNZ+tIbFyUU8/7aRFiwMkJjro2lUdj5JOcnLaEnxW77S7WG3ihQvd+7qSJ0q6xftWrYJTp6BECTO83J2sE9b8+e59XfFbSUlm9Y19+0xRm5kzUwjRmS9v1q+Hv/82lees+WK5VbVq2pzQTz91W2giwa7k+vVmwxtJ9zXXmM/Llnn+vQJASAg89tif1K7tYu9ec01KSrI7KvEJv/9u2sTFi0OzZu59bSvp/u47M3xdbKWmp3ifNcylXTsz3NSd2rUzn//+W7eSBTDrpf78MxQuDF9+CUWK2B2RH/v4Y/O5Uydz0yyvunUzn6254SKSP8eOUfTff822J+dzW6yk+6+/IC7O8+8XAAoUSGbOnGQKFzaj8p980u6IxCdYvdw33OD+NnGrVqbxExurBeN9gJJu8T4r6W7f3v2vnX6u2Y8/uv/1xa98+imMG2e2Z8wwPd2SRy4XfPKJ2b7nnvy9VpcupnHx55+wY0e+QxMJdo6VKwFw1awJZcp4/g0rVjQFn1JS4Px7y6XVrWsKegJMmGBKZEiQs5Juq9PIncLD05YP1HK6tlPSLd514kTaBdoTJxhIG7pqzRuXoLR+PfTta7afegpuv93eePze2rWwaxdER+d/3lmpUmlLGmkNUZF8S026r7zSe2+qIeZ50qULPPus2X7gATNYQILU6dNphX893SZeutQzry85pqRbvOvHH828krp1oVIlz7zHDTeYz0q6g9bJkybJjo8315sXX7Q7ogDwv/+Zz+3aQYEC+X+9O+4wnz//PP+vJRLkbEm6r77afFbSnWujR5s6smfPmmvV0aN2RyS2+OknU0itenXz4QnWEn/Ll5tqsmIbJd3iXdbyItZJwBOuu84MXd2xw/TMSVBxOqFnT9i61dzX+eQTU9he8sndS5rcdpupYv7773DggHteUyQYpaTgOL8OlbNFC++9r9XTvWKFSRwkx0JDzUIQNWqYZkr37makvgQZaxqkNQTcE+rVM1Mvz54111uxjZJu8a6ffzafPVldtUgRsBoeP/zgufcRnzRmjMkPIyLMyOWYGLsjCgD798Mff5jtm292z2uWKZNWqVVzzUTy7p9/cJw+TXJUlFmj21vq14dCheDMGdi0yXvvGyCKFzfFPQsUMNN6rSHnEkS80SZ2ONKmc2mIua2UdIv3nDgBa9aYbU9XV7V60q0TmgSF776DESPM9sSJcMUV9sYTMKx171u2hLJl3fe6N91kPi9Y4L7XFAk2K1YAcLxmTe8O6wkNhebNzfb5nnbJnUaNYNo0s/3qqzBvnq3hiDedPm2KiULauveeYiXdKjBsKyXd4j3LlpkKyLVqQblynn0v6wSmuWZBY9cuU1Tb5YJ+/cyHuIm17n3nzu59XSvpXrRIw1NF8up8Iabjdep4/72tUWVKuvOsWzcYPNhs9+oF27bZG494yfLlZj5ctWqeq3Fk0bxun6CkW7zHms/tyWE0llatzJCa7ds1XzQIWMVojh0zHS9vvWV3RAEkOTnt7niHDu597RYtzHrf6Vc1EJHcsXq6lXT7rVdfNXXpTp2Crl1NEVAJcNZITE+P/ARTvDgmBs6d03rdNlLSLd5jJd3eOMEULZq2Xrd6uwOaywUPPWSWXSlVyszjjoqyO6oA8scfpiVYvDhcdpl7Xzs0FNq3N9saYi6SeydOwMaNAByrXdv7728l3evWKVPMh/BwmD0bSpeGv/+G//zHXNskgHkz6XY4TGcUpN6kE+9T0i3eER+fNnfFGycY0BDzIDF1KsyYASEhptFSubLdEQWY7783n2+4wSTJ7mb1nlvvIyI5d76H2VW9OonFinn//StWNHUeUlK04HQ+VahgVtsICTHXtKlT7Y5IPObcubTRId5qE191lfmspNs2SrrFO1avNhflcuW8lxVZy5ko6Q5Yf/0FgwaZ7ZdeSluiXdxo8WLz2VNLmlhzzf74wxSWEZGcOz+f29WypT3v73BoiLkb3XADvPii2R40KK2vQgLMn39CYqIZ2lCjhnfeM31Pt4ZR2EJJt3jH+YZB6lxrb7CS7jVr1JgPQCdPwp13mpogt9wCQ4faHVEAiotLuyverp1n3qNKFVNIJiVFN8hEcuv8ursuO5dqsBJ+Jd1u8dRT5pqWkAB33AHHj9sdkbid1Sa+8krvtYmbNzerG+zfD3v2eOc9JQMl3eId6U8w3lKhgmnQO51pawxLQHC5oHdvUyevShWYOdMMyRM3W7YMkpLMH7l6dc+9j9XbreVMRHLnfFEk1+WX2xeDerrdKiQEPvjA3IvcudNUNHc67Y5K3MoqHOrNNnGBAtCkidlevtx77yup1EwVz3O50nrLvHmCgbQ78KqMHFDGj4cvv4SICPj8c1MAWzzAKvTSpo1n78Yr6RbJvQMHzEdICC6rMW0Ha63uHTsgNta+OAJI8eIwZw5ERsL//meqm0sAsTqivD0tRMXUbKWkWzxv717TMAgNhWbNvPveugMfcJYvTxtKPnYs2DmqMuD98ov5bBUl9JTrrzef//zTzBsQkUuzJvzWrQsFC9oXR7FiYC1Xdn64u+Tf5ZfD22+b7eHDdU8yYBw4ALt3mxvZ3m7AqJiarZR0i+dZB3eTJmZ4izcp6Q4osbHQrZtZOvruu81SYeIh3qyuWrEi1KwJTicOzesWyRlrvV1v38zOipU8KOl2q7594f77zfDyu++GffvsjkjyzRp52aABFC7s3fe2err/+gvOnvXue4uSbvECO+ZzWy6/3PSw79unq5WfczrhvvvMwIk6deC997xXfyQorVplqquWLeud6qrne9Md1vlCRC7OSrrtnM9tsWLQsmFu5XDAxInQuDEcPmxuOicl2R2V5Isd87ktVaqYa3pysmod2UBJt3he+srl3lawIDRsaLbV2+3XXnoJvvsOoqPNXDdv3yAOOumHlnvj7sb584OSbpEc8qWe7ssuM5+VdLtdgQLwxRdQpAj8+iuMGGF3RJIvds3nBnMt17xu2yjpFs9KSEibd2bHXT3QEPMAsGQJjBpltt95J+0+iniQVUTN00PLLefnmjl+/x1HSop33lPEXx06ZEZvORxpCa+dmjY1n//9F44dszWUQFSzJkybZrZffRXmz7c3HsmjlJS0KRh2tYmtpFsFhr1OSbd41tq1JvEuWdI7Q1SzYiXdOsH4pf374Z57TBH8vn3N8iniYSkpaXfBPV1EzVKvHhQtiiM+niK7dnnnPUX8lXUzu04dKFTI3ljAFFOrWtVsr1ljYyCBq2tXGDTIbPfsaaZaiZ/ZsAHOnDHHbL169sRgrTZgjZQRr1HSLZ5lJbotW9o3AddKuv/4wyQT4jesgmmHD5s6fG+9ZXdEQWLTJjh92jQMvDWsICQk9c5/ic2bvfOeIv7Kl4aWWzTE3ONef91Mnz96FLp3N9dI8SNWm7hFC1NvyA5W/YV//zX/SOI1SrrFs6yGgZ3rOjVoYOZ2nz4Nasz7lZEjzdTiIkXMetzR0XZHFCSshkHz5t5tGJwf9lb8n3+8954i/siXiqhZlHR7XGQkfPaZuSYuW2aukeJH0ndE2aVoUTNfAdTb7WVKusWzfOFufPr1wTXE3G8sWgRjxpjtKVOgVi174wkqdhV6OT+vWz3dIpdgDS9XT3fQqVHDXBPBXCMXLrQ3HskF67i1hnjbxTpvKOn2KiXd4jnx8bBxo9m2+268iqn5lQMHoEcPsz1wINx5p73xBB277sa3bInL4aDgoUNw8KB331vEX8TGwu7dZtsXiqhZrFj++cdc/8Vj7rzTXBvBXCu1IqofSEiA9evNtt1tYivp17JhXqWkWzzn77/N4splykD58vbGYt3V0x14n5eSYtbjPnzYrE06dqzdEQWZuDhT7AW8n3QXKWKmg6Clw0Sy9fff5nONGuaY8RXly0NMjLnur1tndzQBb+xYUzQ+Nlbzu/3Chg1mkfXixc162XZST7ctlHSL51jDaC6/3L4iahbrDvzatboy+bgxY+CHH8zapLNnQ1SU3REFmT/+MI3mSpVsuVnmPF9MTUm3SDaspLtxY3vjuFD65ct0g9vjoqLM/O5ChUztE2tZTfFRvtQmVjE1WyjpFs/xhfncllq1zJXp3DkVU/NhP/+ccT3uunXtjSco2TWf+zyXkm6Ri/PVpBuUdHtZrVrw/vtme8wY+O47e+ORi0ifdNtNxdRsoaRbPMeXqquGhJg1p0CNAR8VG2vW43Y6zRqkPXvaHVGQsrm6quv8SgeONWu0xJ9IVtauNZ+VdAtmWc0BA8DlMvO79++3OyLJki8l3aAh5jZQ0i2ece5c2rxQX+jpBjUGfJjLBfffb4rB1KkDEyfaHVGQcrnSerrP9zh7Xe3aJEdF4YiPNwWZRCRNcnLatdW6kexLrOvsunW6aeZF48aZf4cjRzS/2yclJ6fdLFPSHbRsT7onTpxI1apViYqKomXLlqy6RHXp8ePHU6dOHaKjo6lUqRKDBw/m3Llzqd9/7rnncDgcGT7qaoyq961bZ04ypUqZuaG+QEm3zxo3Dr791qxBOnu2mQkgNtizx1QNDw21r2EQGsrJatXMthoDIhlt3WqqIBcsCNZx4ktq1IDoaHPjfft2u6MJGtHRafO7f/4ZXnrJ7ogkg02bzDFRqFDasG67qYK519madM+ePZshQ4YwatQo/vzzT5o0aUKHDh04fPhwls//+OOPefrppxk1ahSbNm1i6tSpzJ49m2eeeSbD8xo0aMCBAwdSP5YtW+aNX0fS86WCEZb0SbfLZW8skmrVKnj6abNt3a0Xm1hDyxs3NpXsbHLCapSoMSCSkdVb1qiRmTbla0JDU1cgUAVz76pd29RCAXj+eVNcTXyE1Sa+7DLfOW5VTM3rbN3zY8eOpX///vTu3Zv69eszefJkChQowLRp07J8/vLly7n66qu55557qFq1Ku3bt6d79+6ZesfDwsIoW7Zs6kepUqW88etIer5URM3SoAGEh8OJE7Brl93RCHDypJmPlpQEd9wBDz5od0RBzjpuz8+rtsuJGjXMhnq6RTKyiqj58t3JRo3MZyXdXnfffaYeitMJ994Lx47ZHZEAaUm3L7WJixaF6tXNtnUzTzwqzK43TkxMZPXq1QwbNiz1sZCQENq2bcuKFSuy/JmrrrqKDz/8kFWrVtGiRQt27NjB/Pnz6dGjR4bnbd26lfLlyxMVFUWrVq0YM2YMlStXzjaWhIQEEhISUr8+deoUAElJSSQlJeXn1/QYKy5fjS909WpCgOTGjXH5SowOB2ENGuBYs4bk33/HVbGix97K1/ePL3C5oE+fUHbuDKFqVReTJiV7ZR6a9k32Uo/bpk1tO26TkpJSk27XmjUknz0LYbZdqiQdHTv2C127lhAgpUEDnOn2gy/tm5D69QkFnGvXkuID8fgCb+6fceNg+fIwtm1z0KePk88+S/GZAYe+yBv7xifbxEBow4aE7NhByp9/4rz2WrvDyZIvnduyk9PYbGvJxMbGkpKSQpkyZTI8XqZMGf7JpnjOPffcQ2xsLNdccw0ul4vk5GQefPDBDMPLW7ZsyYwZM6hTpw4HDhxg9OjRXHvttaxfv57ChQtn+bpjxoxh9OjRmR5ftGgRBWwcYpkTixcvtjuETBwpKdx8/m78jydOED9/vs0RpWlasiRVgO1z5vBPZKTH388X94+vWLiwKnPnNiE01MlDD/3C8uUnvPr+2jcXcLnouHIlkcCv8fGcsPO4LV+e5KgowuLj+eX99zldpYp9sUgmOnbs037lSqKB5XFxHMviGPWFfRMTH89VQPyqVSzxoeu/L/DW/nnwwaI8/fR1fPVVCI8+uo6OHXd55X39mcf2jdPJzeeT7p/j4jjtQ8dEneho6gL75s/nr1q17A7nonzh3Jad+Pj4HD3P4XLZM7l1//79VKhQgeXLl9OqVavUx4cOHcpPP/3ESmtuYTpLly7l7rvv5sUXX6Rly5Zs27aNRx99lP79+zNixIgs3+fEiRNUqVKFsWPH0rdv3yyfk1VPd6VKlYiNjaVIkSL5/E09IykpicWLF9OuXTvCw8PtDiejjRsJb9oUV6FCJMfG+s78FSBk0iRCH3sMZ6dOpMyb57H38en94wPWrYOrrgojIcHBq6+mMHiw02vvrX2Tjd27Ca9ZE1dYGMnHjkFUlC1hWPvnltdeI/TXX0meMgWX1o/zCTp2bHbsGOFlywKQdOSIGR56nk/tm0OHCK9UCZfDQfLx47bWh/AVduyf8eNDGDo0lKgoF8uXJ9OwoVfe1u94fN9s3Up4gwa4oqLMtdWHRm455s0j7K67cDVpQvLvv9sdTpZ86tyWjVOnTlGqVClOnjx50bzRtj1fqlQpQkNDOXToUIbHDx06RNnzF5ULjRgxgh49etCvXz8AGjVqxJkzZ3jggQd49tlnCckiuStWrBi1a9dm27Zt2cYSGRlJZBa9nuHh4T67gy0+GeOmTQA4Gjcm3Au9yblyvlpjyF9/EeKFv5tP7h+bnT1r1hJNSICbboInngglJCTU63Fo31zg/PxLR4MGhGczKsirmjeHX38lbM0ayOaGqdhDx45NrFGAVasSnk2tGp/YNxUrQkwMjiNHCN+6Na1Ksnh1/zz+OPzwAyxc6KBHj3B+/91UOZeseWzfWG3iBg0I97UdcH6OuWPTJsLB1D3yUT5xbstGTuOyrQsyIiKCZs2asWTJktTHnE4nS5YsydDznV58fHymxDo01DTWs+uwj4uLY/v27ZQrV85NkcslWQUZGje2N46sNGliqqkfOAAX3PAR73jiCdi4EcqUgRkzfGogRHCzltLzkTVEXdZqAyqmJmJYRdR88dp6IRVTs11IiLnGliljlnYfMsTuiIKULx+3VatC4cKQmJh2U088xtbm7pAhQ3j//feZOXMmmzZtYuDAgZw5c4bevXsD0LNnzwyF1jp37sw777zDp59+ys6dO1m8eDEjRoygc+fOqcn3E088wU8//cSuXbtYvnw5t912G6GhoXTv3t2W3zEo+fIJplAhs44oqDFgg6+/hkmTzPYHH0Dp0vbGI+mkX+bPB7isONaswSsV9kR8nS/f0L6Qkm6fUKYMzJpltidPhrlz7Y0nKPlymzgkJC0uVTD3OFsnFnTr1o0jR44wcuRIDh48SNOmTVm4cGFqcbXdu3dn6NkePnw4DoeD4cOHs2/fPmJiYujcuTMvvfRS6nP27t1L9+7dOXr0KDExMVxzzTX89ttvxMTEeP33C1q+fIIB0xjYts00Btq2tTuaoLF/P/TpY7Yffxzat7c3HrmAjyXd1K5tbpLFxZnheVYjXiRY+fq1NT0l3T6jXTsYOhT++18zU6d5c7jIgj7ibtYx4KvHbZMm8OuvJum+7z67owlots/mHzRoEIMGDcrye0uXLs3wdVhYGKNGjWLUqFHZvt6nn37qzvAkt44dg717zbavVu1o1Ai+/FKNAS9yOs3aoUePwmWXQbr7ZOILDh40d0UcDt9pGISEmH+WX34xQ9+VdEswS0mB9evNti+v0W1R0u1TXngBfvwRfv/d5FU//OBT9bwCV1wcbN9utn31GmadT9TT7XGaTSnuZV1gq1bNUFnVp6gx4HWvvw5Llpgitp98Ar5WXy/oWfO569Qxvcu+Qo0BEWPbNlOFMjo6bYqUL2vQwNzEO3QIjhyxO5qgFxFhrr2FC5v7mC++aHdEQcK6UVauHPjqiFtdZ71GSbe4lz8Mf7NiW7/e9B6IR/3xBzz7rNmeMMHkdeJjfG1ouUWNARHDurY2bAih3l/tIdcKFoTq1c22bnD7hBo1zLxuMD3fP/9sbzxBwR/axA0bmhtkhw+rwLCHKekW9/KHE0yNGqa34Ny5tGE/4hFxcdC9u6mD1bWrVn7yWT5WuTxV06bm89q1kM0KFSJBweox89UhqlnRqDKfc8890KuXmfJ1771w/LjdEQU4f2gTFywItWqZbd3g9igl3eJe1gnGl+echYZC/fpmW40Bj3rkETMqsmJFeO89czNVfJDV020t0+UrGjQwc7tjY80yfyLBauNG87lBA3vjyA0l3T7p7bdNjrV3LwwYoPuZHmW1iX39ZplGlXmFkm5xn/SFXnz5rh6oMeAFs2fD9Okm0f7oIyhRwu6IJEunTsHOnWbb6ln2FdHRafMR1qyxNRQRW23YYD5bN4z9ga6zPqlQIXNNDguDzz83y3eKB7hcvl+53GIl3dZNAvEIJd3iPjt2QHy8fxR6UWPAo/7919xBBzOf+7rr7I1HLsK6UVahgm/eGdEdeAl2iYmwdavZ9see7g0bzHhm8RlXXAGjR5vtQYM0084j9u6FEyfM3Y26de2O5uKs1Yasm3viEUq6xX2sRrE/FHqx7joq6Xa75GQzV+zkSbjyShg50u6I5KJ8fc6Zkm4Jdlu3mhNr4cJmro6/qFnTLFVx5kzaaBrxGU89Bddea2qv9Ohh/sXEjaxra926vr9ki5V0b9yoAsMepKRb3MfXG+/pWXfgt20zDQJxm5degl9/Ne3Djz6C8HC7I5KL8vXjVkm3BLv0Q8v9qTBGWFjacHhrRI34jNBQmDULihSBFSvMtVvcyNevrelVq2ZGqSYkaNiDBynpFvfxpxNMmTJmzUSXK61AjeTbihXw/PNm+5130laMER9mjfbw1UIv1jzzLVvM9BWRYGMl3f40tNxiJd2bNtkbh2SpShVzrQazjNiKFfbGE1D8qU0cEqIbZF6gpFvcx59OMKB53W52+jTcd1/aUiT33mt3RHJJLpfvH7dly5obZE6nGgMSnPyxcrnFillzRX3WPfeY63VKirmGnz5td0QBwl+KqFk0r9vjlHSLe6SvgOwvJxgl3W712GOmll7lyjBxot3RSI7s3m2O3fDwtCrhvsbh0BBzCW6B0NOtEWU+beJE0+u9Y4dZ6lPyKSEB/vnHbPtLm9hKunVz22OUdIt7+HoF5KyomJrbzJsH06aZ/OiDD6BoUbsjkhyxernr1YOICHtjuRgl3RKs0lcu96flwizph5ergrnPKlrUzO8OCYEZM8xSYpIPmzaZoQMlSkD58nZHkzPWTT0l3R6jpFvcw7qLbd0p8wfq6XaLAwegXz+z/eST0Lq1vfFILvj6fG6Lkm4JVlbl8iJF/KtyuaVaNVO5+exZs5ak+Kxrr4Vhw8z2gAFmxSvJI+uGdqNG/lP80Gq/b9libvaJ2ynpFvdIX13VXzRoYE6Ghw/DoUN2R+OXXC7o2xeOHjV5kVVETfyEr8/ntqRf79flsjcWEW/y18rllrCwtKkrGmLu80aNMmt4Hz8OPXtqcEKeWcetP3VEVaxobu4lJ5vEW9xOSbe4hz/OOStQAGrUMNvq7c6Td96BBQtMR8ZHH/n+UpRyAX9JuuvWNeMejx83QytEgoU/3tC+kOZ1+43wcPjwQ9M8+vFHeOMNuyPyU9b/uj8dtw6H5nV7mJJucQ9/PMFAWg+aTjC59s8/8MQTZvvVV/3rfosA586l3c329eHlUVFQq5bZ1rEqwcSfK5dblHT7ldq1YcIEs/3ss/DXX/bG45f89bjVvG6PUtIt+XfiBOzbZ7b9Lem2TjBqDORKYqJZWuTsWWjXDh5+2O6IJNf8rdCL7sBLMPLHUWQXUtLtd/r2hS5dICnJLCl29qzdEfmR+Pi01Xz8rU2sZcM8Skm35J91Ia1Y0f/KVqsxkCfPPw+rV0Px4jB9uhn5K34m/dByf5grqvV+Jdikr1weKEm3ajL4BYcD3n8fypUzo9qsAmuSA//8Y/7PY2LMhz/RzW2PUlNZ8s9fh5aDGgN58OuvMGaM2X73XbNKnPih9NVV/YEaAxJs0lcu9+cTbc2apqBaXBzs2WN3NJJDpUrB1Klme8IEWLLE3nj8hj/XYbCus9u3mx57cSsl3ZJ//jz8rU6dtAJNqmB+SadOQY8epqJpz55w5512RyR5ZhUP9PUiapb0w95UUleCgb9XLreEh5uJwqBRZX7mppvgwQfN9v33m9mEcgn+3BFVurS52+JymR57cSsl3ZJ//nyCiYpKq2CuYauX9NhjZqpSlSrw5pt2RyP54i+Vyy01a0JEBJw5o/V+JTj48w3tC2kql996/XXTTNq7V/VbcsTfj1uNKvMYJd2Sf/5+glFjIEfmzjXztx0OmDXL/6bvSzqHDpkPh8N/jtvwcLN0GOgGmQQHf76hfSFdZ/1WwYLmmh8SYpYTmzPH7oh8nL8ft0q6PUZJt+SPP1cut6gxcEkHDsADD5jtp56Ca6+1Nx7JJytprV7dtKj8hRoDEkz8/YZ2errO+rVWreDpp832gAGmTSBZiI+HHTvMtr8et1o2zGOUdEv+bNpkPleo4L9dn2oMXJTLBX36wNGjcNllMHq03RFJvlmNeSuJ9RdqDEiwCJTK5RYVLfV7o0aZNsCxY2ZJMe3GLGzebP4wJUv6X+Vyi25ue4ySbsmfQLgTr6T7ot57DxYuhMhIM7QsIsLuiCTf/HX4mxoDEiwCpXK5pXZtCA2FkyfVTeqnIiLMMPPISFiwwCwpJhdI3yb21+KHVrtgzx6z4oC4jZJuyR9/XhrBUreuOTnGxsKRI3ZH41O2b4fHHzfbY8b4926WdPz1uLWS7k2bTEIiEqgCpXK5JTLSFEME3eD2Yw0awMsvm+0hQ0wbQdLx1xva6ZUoYaqYgyqYu5mSbskf6wTjzz3dBQpAtWpmWwWaUqWkmCVCzpyB1q3h0UftjkjcwuXy3xEqVaua4zUxUa09CWz+eoxejJWI6Drr1x57zLQJzpwxS4empNgdkQ/x1xvaF6pXz3y2ppCKWyjplvwJlBOMhphnMn48LFsGhQqZquUhOlsEhiNHzKQ8h8OsU+9PQkI0r1uCg9XDZDV+A4H1u+g669dCQmDmTChcGJYvh//+1+6IfEggdESBkm4PUTNa8u7kSf+vXG5R0p3Bhg3w7LNme9y4tIEAEgCsG2XVqpleY3+jed0SDKyk21omLxBYDfnNm+2NQ/KtShV4802zPWoUrFljazi+4ezZtMrl/t4mVtLtEUq6Je+sBLVCBShWzNZQ8k1Jd6qkJDNkLCEBbrrJVCmVAOLvd+LV0y2BLiUFtmwx24GUdFu/i+aJBoRevaBLF9NmuO8+OHfO7ohstnkzOJ1mTnSZMnZHkz9Kuj1CSbfkXaAMLQcl3em89BL8+ScULw5TpgRGDR9Jx98LvainWwLd7t0mg4mIMHUMAoU1neXQITh+3N5YJN8cDrO6SenSpjk4fLjdEdks/bXV3xtOVtK9bZupoSJuoaRb8s7fe8zSs+7AHzpkFqQOUqtXw4svmu1Jk6B8eXvjEQ/w9wJNVtK9dasZjiESaKyeYGuZrUBRuHDa8mfq7Q4IMTHm5jzA2LHw00/2xmMrf7+2plehgjleU1JM4i1uoaRb8i6QeroLF4bKlc12kPZ2nzuXVon0rrvg7rvtjkg8wt97usuXh6JFzT/q1q12RyPifoE4n9uiIeYBp3NnMw3N5TIrnpw+bXdENvH3a2t6Dkfasaoh5m6jpFvyLpDu6kHa7xGkSffw4eZXL1PG9HJLADpyJG0ten9t0DscqoIsgU1Jt/iZceNMcbVdu+DJJ+2OxiaB1BEFus56gJJuyZtAqlxuCeJ53T//bIaGgRkqVrKkvfGIh1j/29WqQcGC9saSHyryIoEskJNu69hV0h1QChc2S4sCvPsuLFpkbzxed+4cbN9utgOlI8pqE+s66zZKuiVvrMZ7+fL+X7ncEqRJd1ycGRLmckGfPnDLLXZHJB4TKMPflHRLIAvkpFs93QGrTRsYNMhs9+1r+maChlW5vFgxKFvW7mjcQ9dZt1PSLXkTKI339IK0MfDEE7BzpxkaNm6c3dGIRwXK8Dc1BiRQHTsGhw+bbavadyCxrrPbt6sqcgB65RWoUQP27oUhQ+yOxovSFxb298rlFus6a91QkHxT0i15YyWm1kEZCKzGwN69QVMJZOFCMxQMzNCwIkXsjUc8LFBWHEjfGEhJsTcWEXfavNl8rlQJChWyNxZPKF/e/F4pKWnDcSVgFCxo2hIOB0ybBt9+a3dEXmJdWwOpTVytmlm28OxZ+Pdfu6MJCEq6JW8CcfhbiRJmwUmALVvsjcULjh83Q8AAHnnEDA2TABcoPd1Vq0JUlFkybNcuu6MRcZ9AvLaml74qcpCNKgsW114Ljz1mtvv3D5Il2a3/ZX+/tqYXFmaWLQSNKnMTJd2SN4HaMAiixsDDD8P+/eacOmaM3dGIx8XGpg1b9fe78aGhaUNv1RiQQBKo19b0gug6G6xeesmcog8cMDf1A551HQq041ZTudxKSbfkXkIC7NhhtgPtBBMk6xJ+9RV89BGEhMAHH0CBAnZHJB5n/U9XqRIYw1a1nIkEomBKugP8OhvMoqNhxgzTxvjwQ5g3z+6IPCg5GbZuNduBdtwq6XYrJd2Se9u2maIKhQtDuXJ2R+NeQXAH/tgxGDDAbD/5JLRsaW884iWBMrTcosaABKJgSroD+DorcOWVaWt2DxhgBlsFpF27TFHAqCioXNnuaNxL11m3UtItuZe+URAoVRotQdAYeOQROHTInEufe87uaMRrAqWImkWNAQk0iYlpxcUCOelOv1a3y2VvLOJRo0ebS87hw2nLiQUcq71Yu7aZ+hRI0l9ndazmm5Juyb1AvhNvnWC2bjVDhgJM+mHlM2aYG7MSJAJtmT81BiTQbN9uqnoH4iiy9GrUMMnJ6dNm0q8ErMhImDnT7O7Zs+Hzz+2OyAMCuU1cu7bpXDt+PK0mjOSZkm7JvUA+wVSubDLRxMSAq4p84bDyFi3sjUe8LNCGl9eqZVpyp06p4S6BIZBHkaUXGQnVq5vtAB5VJkazZvDMM2Z74EAz0i6gBOISupboaLN0GGhUmRvkOunu1asXP//8sydiEX8RyEl3SEhaVeQAawxoWHkQO3YMDh4024GSdEdGmh4zUGNAAkMgX1svFARTuSTN8OHQpAkcPWoS74AanBTox62KlrpNrpPukydP0rZtW2rVqsXLL7/Mvn37PBGX+CqXK/BPMAHYGNCw8iBnXSwrVTJDVwOF5nVLIAn0a2t6AXidlexFRJhh5uHh8OWX8PHHdkfkRoF+3Oo66za5TrrnzZvHvn37GDhwILNnz6Zq1arcdNNNzJkzh6SkpFwHMHHiRKpWrUpUVBQtW7Zk1apVF33++PHjqVOnDtHR0VSqVInBgwdz7ty5fL2m5ML+/RAXZ4Z1Wr1MgSbAljPRsHJJ/V8OlF5ui+7ASyAJ9MZ7ekq6g06TJjBypNl++GHTnPR7sbGm+x7M/OdApKTbbfI0pzsmJoYhQ4awdu1aVq5cSc2aNenRowfly5dn8ODBbLXWq7uE2bNnM2TIEEaNGsWff/5JkyZN6NChA4ezmaz/8ccf8/TTTzNq1Cg2bdrE1KlTmT17Ns9Yk0Xy8JqSS9YFsnp1M7wzEAVYY0DDyiVg55ypMSCBIhhGkaUXYNdZyZmnnjJzvI8fN50Bfj/M3Pr/rVIFChSwNxZPsW7W6zqbb/kqpHbgwAEWL17M4sWLCQ0NpVOnTqxbt4769eszbty4S/782LFj6d+/P71796Z+/fpMnjyZAgUKMG3atCyfv3z5cq6++mruueceqlatSvv27enevXuGnuzcvqbkUjA0CgKoKrKGlQsQuMetkm4JFAcPmqKAgTyKLD3rXLRnjxk9J0EhPDxtmPk33wTAMPNAvbamZ11n9+835yjJs7Dc/kBSUhJff/0106dPZ9GiRTRu3JjHHnuMe+65hyJFigDw5Zdf0qdPHwYPHpzt6yQmJrJ69WqGDRuW+lhISAht27ZlxYoVWf7MVVddxYcffsiqVato0aIFO3bsYP78+fTo0SPPrwmQkJBAQkJC6tenzv9TJSUl5WnIvDdYcXk7vpCNGwkFUmrVwumjf5t8q1qVMIcDx/HjJB04ADExuX4Ju/ZPekePwoABYYCDIUNSuOwyJ4G6y3LDF/aNt4X98w8OILlmTVw+/nvnav/UqEE4wKFDJB0+DMWLezS2YBeMx463ONavJwxwVatGckgIuT1Z+92+KVyYsNKlcRw+TNKGDXD55XZH5FF+t388qHZtePbZEJ57LpRHHnHRunUyZcrYF09+9k1qm7h27cBtExcoQFjZsjgOHiR5wwZczZt79e394djJaWy5TrrLlSuH0+lM7WFu2rRppue0adOGYsWKXfR1YmNjSUlJocwFR1qZMmX4J5vhRvfccw+xsbFcc801uFwukpOTefDBB1OHl+flNQHGjBnD6NGjMz2+aNEiCvj4cJHFixd79f1a/forpYG/ExPZPX++V9/bm9rGxFDw8GF+mzGDYw0a5Pl1vL1/0hs37nIOHapExYqnadFiKfPnO22LxRfZuW+8KSQxkVt27gTg+717SfCT4zan+6ddqVIUiI1lxfTpHA/k3gYfEizHjjdVXbCAJsDB4sVZlY9j1J/2zdUxMZQ6fJi/Z89mr7W6QoDzp/3jSQ0bOqhe/Tp27CjGXXcd4amnfrc7pDztm5a//EJZYH1SErv85NqaF1eXLEmpgwdZ+9ln7LVpuq4vHzvx8fE5el6uk+5x48Zx5513EnWRcarFihVj5/lGnjstXbqUl19+mUmTJtGyZUu2bdvGo48+ygsvvMCIESPy/LrDhg1jyJAhqV+fOnWKSpUq0b59+9Tee1+TlJTE4sWLadeuHeHh4V5737BBgwBodOedNGzVymvv622hl10G331HqxIlcHXqlOuft2v/WL7+2sFPP4UREuJi9uxorriio9dj8FV27xuvW7cOh8uFq1gxbuze3efX/83t/gm97DJYvJirihfP07EqORd0x44XhXz/PQClr72WTn54zcmLkG++gQ0baBoVReMAP3b9cf94WuXKcNVVLlasKE98/M3ccYc90/nys2/CHn8cgAZdu1K/dWtPhOcTQr791rZj1R+OnVM5HHaf66TbGsqdX6VKlSI0NJRDhw5lePzQoUOULVs2y58ZMWIEPXr0oF+/fgA0atSIM2fO8MADD/Dss8/m6TUBIiMjicyiKFh4eLjP7mCLV2M8fRr27gUgrEEDMyknUNWrB999R9iWLfn6Pe34Hzp6FP7zH7P95JMOrroq14d5UPCH49sttm8HwFG3LuERETYHk3M53j/168Pixfk+ViXngubY8aYtWwAIbdCAUD+75uTZ+QJNoVu35ut39id+tX887IorYNgweOEFePTRMNq2zdNsPrfJ9b45dw7OdzCGNWwY2Nef8/O6Q7dts+1Y9eVjJ6dx5auQWn5ERETQrFkzlixZkvqY0+lkyZIltMqmBzU+Pp6QkIwhh4aGAuByufL0mpIL5xsFxMRAyZL2xuJpflxZ9dFHVa1c0gn0Qi9aNkwCQaAfp1nx4+usuMfw4dCwIRw5YtoufmXrVnA6oWhRbJ2U7g06Vt3CtqQbYMiQIbz//vvMnDmTTZs2MXDgQM6cOUPv3r0B6NmzZ4aiaJ07d+add97h008/ZefOnSxevJgRI0bQuXPn1OT7Uq8p+RBMjQKrIe9nJxhVK5dMAv24VQVz8XdnzsDu3Wa7Th17Y/Em65y0ZQukpNgbi9giIgKmTzdF+z/5xLRh/Eb6a6uPT9vKN+u8tHWrjtV8sHXcabdu3Thy5AgjR47k4MGDNG3alIULF6YWQtu9e3eGnu3hw4fjcDgYPnw4+/btIyYmhs6dO/PSSy/l+DUlHwK98Z6e9Tvu2gVnz0J0tK3h5MSxY2bdS4Ann4QWLeyNR3xEoB+31hqi//4L8fGBu1aqBK5gGkWWXuXK5s7wuXPmWhsMS6VJJs2bmzbLK6/Agw/CtddCiRJ2R5UD1rXVuvEbyKpUgchISEgw19rq1e2OyC/Z2tMNMGjQIP79918SEhJYuXIlLVu2TP3e0qVLmTFjRurXYWFhjBo1im3btnH27Fl2797NxIkTM1VKv9hrSj4EeuM9vZgYs/yQy2Xu7PmBxx7TsHK5gNMZ+MdtqVLmw+WCzZvtjkYk9wL9GM1OaGhaD5pGqgS1UaPMv//Bg3CR1YZ9SzAdt6GhUKuW2dZ1Ns9sT7rFjwTTCcbh8Ks5LAsWwKxZJuxp0zSsXM7bu9f0/oaFBfadaetYVWNA/FEwXVsvZP3OSrqDWlSUabs4HPDBB+AXq28F23HrR21iX6WkW3ImJSVtCFywnWB8vDFw6lTasPLHHoMrr7Q1HPEl1sWxZs3ArqyqxoD4s2BrvKenG2ZyXqtWab3cDzwAJ0/aG89FBcMosgtZo1J0rOaZkm7JmV27IDHRzOmoUsXuaLzDTxryTz8Ne/aYjswXXrA7GvEpwdIoUGNA/FmwHKdZ0bEr6bzwgrlHvG8fPPGE3dFcxL59wTGKLD0/aRP7MiXdkjPWQVa7tpnbEQz8oIL5Tz/BO++Y7fffh4IF7Y1HfEywFHpRY0D8VTCOIktPx66kU6AATJ1qtqdMgcWL7Y0nW8Eyiiw93SDLNyXdkjPBeCc+/bA3p9PeWLJw9iz062e2+/eHG26wNx7xQcFy3FqNgS1bfPJYFcnW7t2mencwjSJLr3Zt8zk21nxI0LvuOhg0yGz37w+nT9sbT5aC5dqannWdPXjQx8f++y4l3ZIzwXiCqVbN3ME8e9aM3/Yxo0bBtm1Qvjy89prd0YhPCpbj1jpW4+NN8TgRfxGMo8jSK1jQLB0G6kGTVGPGQNWqZnWqp5+2O5osBMu1Nb0iRaBcObOtYzVPlHRLzgTjCSYsLG2JBB8b+vb77/DGG2Z78mQoWtTeeMQHnTwJBw6YbesOdaAKCzPD/MDnjlWRiwrGa+uFVExNLlCokBleDjBpEixdams4mQXrcavpIPmipFtyRicYe+NIJzER+vY1o2i7d4fOne2OSHyS1YAtVy447sqo4S7+yFodI9iurelZNwV96Dor9rvxRlPFHEyb58wZe+PJIFjbxDpW80VJt1xa+rlW1vyrYOGDy4a98gqsWwelSsGECXZHIz4r2BoFagyIPwq24zQrPnhzW3zDa69BpUqwY4eZUucTTp2C/fvNdqCPIruQbm7ni5JuuTTr4KpUyYz5CSY+VsF8/Xp48UWz/dZbEBNjbzziw4KtMa/GgPijYDtOs6KkW7JRpIiZQgcwbpyZWmc76/+0bFkoVszWULxON7fzRUm3XFowNwp8aImElBQzxCopCW69Fbp1szsi8WnBdtyqMSD+5uhROHLEbAfbKLL0rHPUjh1m/pRIOp06wT33mCl1/fqZNpCtgu3amp71O2/bBsnJ9sbih5R0y6UFy1q/WUm/RMKJE7aGMn48rFpl7vxOmgQOh63hiK8LtoaBdazu2+eja8yIXCCYR5GlV66c+f1TUmD7drujER80fjyULAl//w3//a/NwQRzm7hyZYiKMjfHdu2yOxq/o6RbLi3YGu/pFSli1uQCW3u7t22DESPM9htvQIUKtoUi/iApyfzTQPAct8WLQ+nSZnvLFntjEcmJYL62pudwaIi5XFRMTFoNm+eft/nfJJiP25CQtFE5PjAC1N8o6ZZLC+YTDNjeGHA6oX9/s1z4jTeaIeYiF7Vzp0m8CxSAihXtjsZ7NK9b/EmwX1vTU9Itl3DPPXDTTaaTtV8/0zayRbAft5rKlWdKuuXiEhLMPCvQCcamhvz775s1KgsUgPfe07ByyQHrYlinjrkzHSzUGBB/EuyN9/SUdMslOBymqFqhQvDrr/DOOzYEEYyjyC6km9t5FkStMcmTbdvM7cQiRUylxmBkY2Ng71548kmz/dJLUL2610MQfxSsjXk1BsSfBOtxmhUdu5IDlSvDmDFm++mnYfduLwcQrKPI0tPN7TxT0i0Xl75REKxdrDYl3S4XPPigqQnVqhU8/LBX3178WbA25tUYEH+hUWQZpT92XS57YxGf9tBDcNVVEBcHAwd6+d8lWEeRpacbZHkWpP8xkmPB2nhPz6YlEj7+GL79FiIiYOpUCA312luLvwvW49b6fbdssXHCn0gObN9uqnUXLmyqdwe7mjVNEnPyJBw6ZHc04sNCQmDKFNM2mj8fPvnEi28erNfW9KxCaocPw/Hj9sbiZ5R0y8XpBGOGEEVHmyFFO3d65S2PHIFHHzXbI0YE58oUkkcuV/Aet1WrmpbYuXM2jDsUyQWNIssoKgqqVTPbGqkil1CvHgwfbrYffRRiY730xsF6bU2vcOG0JXTU250rSrrl4nSCMbdVvTxsdcgQOHoUGjWCp57yyltKoLDuPjscUKuW3dF4V2ho2u+sxoD4Ml1bM9OwVcmFp56Chg1Nwv3YY156Ux23hqZy5YmSbsleMPeYXciL87q/+w4+/NDkTFOmQHi4x99SAon1P1qtmhmhEWzUGBB/oGtrZjp2JResqXchIfDRR7BggYffUG3iNLpBlidKuiV7+/ebShWhoVCjht3R2MtLSfeZM6Z4GsAjj0CLFh59OwlEwd4oUGNA/EGwH6dZ0bJhkkstWqRNxRswwBSe9ZgjR4J3FNmFdIMsT5R0S/asg6lGDXNLMZh56QQzahTs2mWWxXjxRY++lQSqYG/MqzEgvk49ZllT0i158MILZmDXnj3wzDMefKNNm8znqlWDcxRZerq5nSdKuiV7ahSk8cIJZvVqGDfObL/zDhQq5LG3kkAW7MetGgPi6w4cMF1yGkWWkXXs/vsvnD1rbyziNwoWhPfeM9sTJ8Ly5R56o2C/tqZn3dz28qo+/k5Jt2RPJ5g01hIJR496pExmcjL0729WObr7bujUye1vIcEi2I9bqzGwfz+cOmVvLCJZsY7R6tUhMtLeWHxJqVJQvLgZCbB1q93RiB9p2xbuv9/86/TrBwkJHngT67jVcjJQqZLXV/UJBEq6JXvB3nhPr0ABqFLFbHtg6Nu4cfDXX6a9MX68219egkV8vOklguA9bosWhbJlzbZ6u8UX6dqaNYdDQ8wlz954A8qUMaPAX3rJA2+g4zZNSEhaZ5SO1RxT0i3Z0wkmIw/NFd2+HUaONNvWRUMkT7ZuNbf6S5QwvUbByjpWlXSLL9K1NXtKuiWPSpSAt98222PGwN9/u/kNdNxmpKlcuaakW7J2+jTs3Wu2rQZssPPACcblMhU3z52DG24ww6NE8ix9o8DhsDcWO6nhLr5Mjffs6diVfOjaFbp0MVP2HngAUlLc9MJnz6aNIlOb2FDR0lxT0i1Z27LFfC5d2tw+FI80Bj74AJYsgagoePfd4M6TxA3UmDfU0y2+TMdp9tR7JvngcJje7sKFYeVKU5TWLbZsSRtFFhPjphf1czpWc01Jt2RNjYLM3Jx0Hz4MQ4aY7eeeg5o13fKyEsx03BrqLRNfFRdn1jYC9ZhlJX3vmdNpbyzilypUgFdeMdvDhqUN2swXjSLLTD3duaakW7Kmxntm1glmxw63lMYcPBiOHYMmTdKSb5F80XFrWMfq1q1uHF8o4gbWKLKYGChZ0t5YfFH16hAWZopC7ttndzTipx58EFq1Mve4Hn7YDS+oa2tmViG12Fizso9ckpJuyZpOMJmVK2fGLDmdpvpZPixYAB9/bApATpkC4eFuilGCl9OZNswr2I/bKlXMUkwJCWnz8ER8ga6tFxcenjbsSz1okkchIWbt7rAwmDcPvvwyny+o4zazQoXM0mGgIeY5pKRbsqYTTGZuWs4kLs7chQV49FFo3twNsYns2WOKvYSHQ7Vqdkdjr9BQqFXLbKsxIL7EunZoaHn2NFdU3KBhQxg61GwPGgQnT+bjxdQmzprqp+SKkm7JLCUlbQicTjAZuSHpHjECdu82nXHPP++muESs/8latczt/WCned3iizZtMp/r1bM3Dl+muaLiJsOHm4ET+/fDs8/m8UU0iix7us7mipJuyWzXLkhMNCW1K1e2Oxrfks/GwO+/w5tvmu3Jk83oHBG30J34jHQHXnyRjtNLU0Ne3CQ62qwMAzBpEqxYkYcX0Siy7Ok6mytKuiUz60JXu7YZpilp8jHsLSkJ+vUzN03vvRc6dnRzbBLc1JjPSA138TXpR5Gppzt7OnbFjW64AXr1Mit+PfCA6VPKFY0iy56O1VxR0i2ZqfGevfQnGJcrVz/6xhvw99+mYO24cR6ITYKbjtuMdAdefI1GkeWMdezu2wenT9sbiwSE11+HUqVg/XqznSvWNUR1GDKz/ibbt5ueJbkoJd2SmRrv2atZ05TFPHUKDh7M8Y9t2wajR5vtsWPNajEibqXjNiOrMXDwYD4r6Ii4iTWfW6PILq54cShTxmxbIwNE8qFUqbTOjuefN6tJ5piurdmrUAEKFoTkZLOcrlyUkm7JTCeY7EVGmnVEIcfDaVwuGDAAzp2Ddu2gRw8PxifB6cSJtJtAOm6NIkXMMn+g3m7xDdY1Q0PLL03F1MTN7r3XtMESEswKMjkerKg2cfZCQtLW69Z19pKUdEtmOsFcXC6Hrc6aBT/8YAp6TJ5sVh4TcSvrf7F8ebOWvBiabya+RNfWnNOxK27mcMA775jZHT/8AB98kMMf1HF7cTpWc0xJt2QUG2s+IO3ulWSUixNMbCwMGWK2R41K6yQXcSs1CrKmed3iS6zh5TpOL01rdYsH1KgBzz1nth9/HI4cucQPnDwJBw6Ybc3pzpquszmmpFsysg6aypXNPA3JLBdJ97BhoRw9Cg0bpiXfIm6npDtrugMvvsLlUtKdGzp2xUOGDIHGjeHoUZN4X5TVJi5XDooW9XhsfknHao4p6ZaMrINGd/Syl8MTzLp1JZk50xxi771nlngU8Qgl3VnTvFDxFbGxcPy4GeOqUWSXZh27W7aYpdZE3CQ8HN5/3xyKs2bB999fZM6frq2Xpp7uHFPSLRmp0MulWSeYf/+F+Pgsn5KQAJMnNwFMwY5WrbwVnAQlNQyyZv09tm0z1VVF7GIdo1WqQIEC9sbiD6pUMYVLExLMtVbEjVq0gEGDzPagQaEkJGSzmoCurZdm3UQ8ejRteqpkSUm3ZKThb5dWqhSUKGG2s1l34rXXQti3rzBlyrgYM8aLsUnwSUoySSXouL1Q5cqmak5iolkjWcQuurbmTmhoWmNeI1XEA156CSpWhB07HHz2WTajT5R0X1qBAuZaCzpWL0FJt2Sknu5LczguOsR8yxZ45RVzaL3xRgrFinkxNgk+O3aYXtyCBc2amZJGy5mIr1DjPfdUTE08qHBhmDjRbH/5ZU3+/juLJ+m4zRkdqzmipFvSnDsHO3eabZ1gLi6bpNvlMsPJExMdXH75Ie68M6cLQYrkUfo6DCE6pWeiIi/iC3RDO/d07IqH3XordOnixOkM4aGHQjOWD9AospzTsZojPtFCmzhxIlWrViUqKoqWLVuyatWqbJ97/fXX43A4Mn3cfPPNqc+5//77M32/Y8eO3vhV/NvWreB0mgqNZcrYHY1vy6ZA06xZ8OOPEB3tYsCAv7Umt3ie7sRfnIqpiS/Q8PLc07ErXjBuXAoFCiSxalUIkyal+8bOnSbxLlDAjEOX7CnpzhHbk+7Zs2czZMgQRo0axZ9//kmTJk3o0KEDhw8fzvL5c+fO5cCBA6kf69evJzQ0lDvvvDPD8zp27JjheZ988ok3fh3/lv5OvLLFi8tiKE365SeGD3dSpkzWRdZE3EpJ98Vp2JvYLT4+rRiYjtOcU0NevKBCBejRYyMAzz4L+/ad/4ZGkeWcNYLHurkoWbL9v2js2LH079+f3r17U79+fSZPnkyBAgWYNm1als8vUaIEZcuWTf1YvHgxBQoUyJR0R0ZGZnhe8eLFvfHr+Dc13nMufUPe6QRg6FBTuLFhQ3jsMaeNwUlQ0XF7cWq4i922bjVzj0qUgJgYu6PxH1ZP9+HDZrk1EQ/p0GEXLVs6OX0aHnvs/IO6tuac9TfaudNMVZUs2Zp0JyYmsnr1atq2bZv6WEhICG3btmXFihU5eo2pU6dy9913U7BgwQyPL126lNKlS1OnTh0GDhzI0aNH3Rp7QNLwt5yrVs0s9hgfD3v38tNPYN0nevddrcktXuJyqWFwKVYhtSNHzHAUEW9Lf4xqFFnOFSqUNqxXI1XEg0JC4O23UwgNhTlzYP58dG3NjTJlzNRUpzNtHrxkEmbnm8fGxpKSkkKZC+YPlylThn9y0CuxatUq1q9fz9SpUzM83rFjR26//XaqVavG9u3beeaZZ7jppptYsWIFoaGZ1+JLSEggISEh9etTp04BkJSURFJSUl5+NY+z4nJnfGGbNuEAkmvWxOWjv7cvCateHcfmzZz9az0DnqoEOOjfP4UrrnB6ZP+IewTUvjl0iPATJ3A5HCRXrWrmn/k5t++fyEjCKlXCsWcPyRs24GrVyj2vG4QC6tjxopD16wkFnLVrk+Khv12g7pvQ2rUJ2bvXHLvNmtkdTp4F6v4JBNY+qV8/iUceCWHcuFD+8x8XW0tvIgy1iXMqtE4dQlatInn9elzWKBU38IdjJ6ex2Zp059fUqVNp1KgRLVq0yPD43XffnbrdqFEjGjduTI0aNVi6dCk33nhjptcZM2YMo0ePzvT4okWLKFCggPsDd6PFixe754WcTm7eZE4wSw8d4sz8+e553QDWolgxygGzX/iVzZs7UazYOVq3/oH589MOPrftH3G7QNg3Jdev5xogvnRpvv/hB7vDcSt37p9WJUpQes8e1n3+Obs1TDXfAuHY8aZmS5dSEdjkcrHNw9fWQNs3jaKiqA7snD+fjaVK2R1OvgXa/gkkixcvpkWLUEqVuoFdu6I5u28ThYFfjhzhlNrEl3RZwYJUBrZ+/TVboqPd/vq+fOzEx+eshpOtSXepUqUIDQ3l0KFDGR4/dOgQZcuWvejPnjlzhk8//ZTnn3/+ku9TvXp1SpUqxbZt27JMuocNG8aQIUNSvz516hSVKlWiffv2FClSJIe/jXclJSWxePFi2rVrR7g7xjLv3k1YQgKu8HBa33+/xkfnQMivv8LKlZz7yzTi33orjLvuagd4YP+I2wTSvgk5X/El+vLL6dSpk83RuIcn9k/I4sWwdi2NIyJoGCB/JzsE0rHjTWEjRwJQp0sXanvo/y9Q903Irl0wfz41kpOp6sfHbqDun0Bw4b4JD3cw8I4jFE46icvh4JrevcEDSWSgCdmwAX78kTouFzXdeKz6w7FjjZC+FFuT7oiICJo1a8aSJUvo0qULAE6nkyVLljBo0KCL/uznn39OQkIC99133yXfZ+/evRw9epRy5cpl+f3IyEgiIyMzPW4OPt/cwRa3xXh+DoajZk3Cfbx331e46jcAoJZzMx06wL33hmWarucP/0PBKiD2zdatAITUq0eIv/8uF3Dr/qlfH4DQrVsJDbC/kx0C4tjxFqcTtmwBIKxhQ4/f0A64fdPAXGdDtmwJiHNcwO2fAGLtm65dYfXV/8CvcCCiKmULFVHx8pzw8LHqy8dOTuOy/d9oyJAhvP/++8ycOZNNmzYxcOBAzpw5Q+/evQHo2bMnw4YNy/RzU6dOpUuXLpQsWTLD43FxcTz55JP89ttv7Nq1iyVLlvB///d/1KxZkw4dOnjld/JL6ZcLkxxZuNPMWanHP0yapPo4YgMVeskZVTAXu/z7r6nmGxEBVavaHY3/seaGbtsWEDUrxD88fou5VqxJqMv06TYH4y/SX2edWsEnK7bP6e7WrRtHjhxh5MiRHDx4kKZNm7Jw4cLU4mq7d+8m5IJbTJs3b2bZsmUsWrQo0+uFhoby999/M3PmTE6cOEH58uVp3749L7zwQpa92XKeGu+5cvQoPPx2HbYB5dkPMaeBwnaHJcFGx23OWH+fHTsgIQF0LRBvsY7R2rUhzPYml/+pUAEKFoQzZ8zx68YCTSLZKXnYHLf/UJeXhsKtt2q1v0uqXt2c486v6kPlynZH5HN84gowaNCgbIeTL126NNNjderUweVyZfn86OhovvvuO3eGFxy0XFiuPPUUbD9WnNiwMpRKPmSWM2ne3O6wJJjEx5teNNBxeynlykHhwnD6NGzfnjrcXMTjdGMsf0JCTKL955/mOqukW7zh/HF7pmJdju2FJ5+EGTPsDcnnhYdDzZrmb/fPP0q6s2D78HLxERpenmM//wzWKnXhjTRsVWyydatZp7tECQiAqr4e5XBoiLnYQze080/Hrnjb+f+125+pi8MBM2dCFn2AciErh9CxmiUl3QLHj4NVQV53kS8qIQEGDDDbAwZA0SvO/710ghFv27zZfK5bVwUFckINd7GDerrzT8eueNPZs7BrFwANutZNbfM9+KBpA8pF6Fi9KCXdknZwVKhghmBKtl57zfy5SpeGMWNIO8FYCZCIt6gxnztqDIgdNIos/+ro5rZ4kTWKrHhxiIlhzBjT5tu82bQB5SJ0nb0oJd2ixnsObdsGL75otsePN+djnWDENjpuc0fHqnjb0aNw5IjZrl3b3lj8WfpjN5t6PiJuY10j6tQBh4NixWDcOPPQiy+mrrArWbGOVWtajWSgpFt0Jz4HXC74z3/M0KJ27eDuu89/wzrBbNkCKSm2xSdBSEl37qjhLt5mHaOVKkGhQvbG4s9q1TJTaI4fh9hYu6ORQJfFtbV7d2jb1rQBH3pIl5BsWX+zgwfhxAlbQ/FFSrpFhV5y4PPPYdEis9LQxInpptBWrgxRUZCYmDoHSMTjnM6Mc7rl0mrUgNBQU8H8wAG7o5FgoBtj7hEdnbbGuUaqiKdlcdw6HDBpkmkDLl4Ms2fbFJuvK1IEypc325p2mYmSblHD4BJOnYLHHjPbTz9tbrqnCg1Ne0CNAfGWvXvNkmHh4VCtmt3R+IfISLOOKOhYFe/QKDL30bxu8ZZs2sS1asEzz5jtxx5TR262NJUrW0q6g11CAuzYYbbVMMjSqFGmY6xmTZN0Z6JiauJt1sWsVi0IC7M3Fn+ixoB4k0aRuY+OXfGGS4wie+opU57h0KG0BFwuoHnd2VLSHey2bTNzkQsXhnLl7I7G56xZA2++abYnTjQjyTNRY0C8TaNT8kbHqniTjlP30c1t8YZ9+8wosrCwtJFR6URGwuTJZnvyZFi50svx+QNdZ7OlpDvYpW8UaK3fDJxOGDjQfL7rLmjfPpsn6gQj3qbGfN7oWBVvOXcOdu402xpFln86dsUbrP+vmjXN9K0stGkDPXqYYmoPPgjJyV6Mzx9Y5zsdq5ko6Q52mnOWrSlT4LffzCAAa7mILGmumXibku68UcNdvGXbNnPHtmhRKFPG7mj8n3Xs7txpbmiIeEIOr62vv26WjU0/GlLOs/5227dDUpK9sfgYJd3BTo33LB0+nDZ/+4UX0ooxZslKuo8cgWPHPB6biI7bPLKO1T17IC7O3lgksG3caD5rFJl7lC5tbmA4nVooWTzHmodsXSuyUbo0vPqq2R450lxS5LwKFaBgQTMEYPt2u6PxKUq6g50KvWRp6FCzJGjTpmZ97osqVAgqVjTbmm8mnnbyZNqSV5doGMgFSpaEmBizvWWLvbFIYLOS7gYN7I0jUDgcmtctnme1ievXv+RT+/aFq6+GM2fgkUc8HJc/SX+sqphaBkq6g5nLpR6zLPz8M8ycac4bkyfnsDi0hq2Kt1gNzvLlzZqYkjs6VsUbrKQ7B413ySEdu+JpVpKYgymXISFpbcR58+Cbbzwbml/RsZolJd3BbN8+c4suLMwUjRASE03xNIAHHoCWLXP4g5rXLd6iG2X5o8aAeIOSbvfTsSuedOyYWQsMcnx9bdjQrNkN8PDDpvC5oGJq2VDSHcysO3o1amRbpTHYjBtn2koxMTBmTC5+UMPexFuUdOePGu7iaUlJadMXlHS7j25uiwc5rP+rSpVMBd0cGjXKTGPetSuX7cZAputslpR0BzM13jP49194/nmzbVWmzDGdYMRbdNzmj45V8TSram/BgqYBL+6R/ua2y2VvLBJ4cjGfO71ChWDCBLP93/+q7wXIOKdbx2oqJd3BTMuFZfDII2ZoUOvWZg3GXNESCeItSrrzx+ot27IFUlLsjUUCkzW0vF49M/FT3KNGDQgNhdOnYf9+u6ORAOPIR5v49tuhY0czRXHQIOWZ1Kxpzn2nT6cVfhUl3UFNlctTff21+QgLg0mT8rDCi5ZIEG9ISkpbLkfHbd5UrQoREZCQYIa3iLib5nN7RkREWv0ZVUUWN3PksacbTJvxrbcgMhK+/x4++8zNwfmbyEhzkww0qiwdJd3BTD1mgKkl9/DDZvvxx/PYTnI40nrQNLZIPGXnzrRhqxUq2B2NfwoNhdq1zbYaA+IJSro9x/qbWn9jETfJT083mPtBw4aZ7cGD4dQpNwXmrzSVKxMl3cEq/Vq/QZ50v/AC7N4NVarAiBH5eCGdYMTTrP+tOnU0bDU/VPhQPElJt+dY655v2GBvHBJQQs+exbF7t/kiH1Mun3rKdPAeOGAKrAU1tYkzUastWFnDaMqXh6JF7Y3FRhs2wBtvmO033zQdiHmmE4x4WvqkW/JOx6p4SkpK2v+Vkm73U0+3eEDhffvMRunSULJknl8nKgrefttsv/kmrFmT/9j8VvpiagIo6Q5euhOPywUPPWSmYd96q/nIFy1nIp6m49Y9lHSLp+zcaeoFREWZ+gHiXta5b8MGVasStym8Z4/ZcMO1tWNHuOMOcDpNG9PpzPdL+iddZzNR0h2s1Hjngw/g55+hQAFzRzLftJyJeJp1x1grDuSPGgPiKda1tW5dUz9A3Kt2bTO15vhxOHzY7mgkQBTau9dsuKlNPG6cGTm5YgVMn+6Wl/Q/1nV2715TxVyUdAetIE+6jx2DJ54w2yNHmvnc+Varlimodvw4HDnihhcUScflCvrj1m2sUSmHD5uTgYi76Bj1rOhoqF7dbGuIubhJak+3m25oV6wIo0eb7aFDITbWLS/rX0qUMMP1wSzRKUq6g1aQNwyGDTMnwfr1TZVJt4iOTh1O6FAPmrjb3r0QF2fWtbOWzZG8KVTItIpAxdTEvaxrq1XwS9xP87rFzQq7uacb4JFHoGFDc1/XqmoedDSvOwMl3cEoLi5tfdogTLp/+w3ee89sv/OOWfrTbc7fJVXSLW5nXbRq1YLwcHtjCQQaYi6eEOQ3tL1CSbe407lzFDx40Gy7cepWeLhpYwJMmWKGmgcdXWczUNIdjKx//nxWafRHycnw4INmu1cvuO46N7+B1RjQXT1xNzXm3UuNAXE3pzPt3K/j1HOUdIs7bd2Kw+nEVawYlC3r1pe+5hq4/36zPXCgaYMGFV1nM1DSHYyCuPH+9tuwdi0ULw6vveaBNzj/N3Uo6RZ3UxE191JjQNxt926IjzfDp6x5x+J+6SuYi+ST1V5z1a1r6vK42X//a9qca9fCxIluf3nfZrVXdJ0FlHQHpyCdc7Z/vymaBvDKKxAT44E3UdItnhLEN8s8Qkm3uJt1jNapY2oviGdYx+6RIypaKvmWOh3QQze0Y2JgzBizPWKEaYsGDetY3bIlCLv5M1PSHYysu8NB1nh/8kmzakGLFtDv/9u78/imqrx/4J8kTVNaKAVauiD7UrZCAaW/uuHMsAkzwjiPG6iIio8IiKBsoiAggoCIMjzyDAPizDiD4KPCjJVVmVHZlEX2pWWpLK1AgW60TZvz++Nwk6Zr2ia5N/d+3q9XXrlNb5NvenJyz/feszzroxdRxnRfugRrbq6PXoQMp/TM5bzS7R1KYyAtDSgqUjcW0geeGPOPsDCgdWu5zRPcVEduV7p95NlnZdszJwd4+WWfvYz2tGgh1+W12+Wx1uCYdBuRARsG27cDf/+77Dn0P/8jl/n0ifBw56zIznUfierq8mU5BarJ5FruiuomLk7OYl5SwsYAeYcBj62q4bhu8hLlSrfw4Qlti8XV9lyzBti2zWcvpS1mM4eDlMKk22jy84EzZ+S2QRoGdjswZozcfv55oFcvH7/grf+rc91HorpSGpatW8ul6ajuTCbX1W423MkbmHT7D5Nu8obiYuca0r680g3ItucLL8jtMWOAwkKfvpx2sK46Mek2mhMnZFfVJk18NKhZe957T9b1yEhg7lw/vCCTbvI2zojsG1xtgLyl9BAQ1lPfY0OevOH0aZjsdhTbbLIrtI/NmQNER8um+Dvv+PzltIF11YlJt9GUbhT4YJZGrTl/HnjjDbmtzCDpc0y6yds4nts32Bggb7lwQQ7YDAoC2rVTOxr9Y90lb7j1+clt1syH4w5dIiJcyfacOa6Op7qmTNrM7uVMug3HYGfiX34ZyMsD7rxTrsvtF0y6ydt4pds32HAnb1E+Q+3byyXDyLeUE5CXLgHXrqkbCwWuW8fWnObN/faSw4YB990HFBQA48f77WXVoxxnT5ww/AzmTLqNxkBJ99atwNq18uTlsmV+OYkp3WoMhF65AmRn++lFSdcMVG/9Svl/Hj8uJ1Qjqi3WUf9q0ABQEiWeNKPauvXZybk1Aa4/KBP6BgUB//wnsGGD315aHa1aybloCgsNcmm/cky6jcYgDYPCQmDsWLk9ZgyQmOjHF2/cGCImBgBgOnHCjy9MunT9uryaA7gm/iLvaNUKCAlhY4DqziDHVk1hTxWqKxWudAPy2swrr8jtF1+UPTJ1y2x29UwxeBdzJt1GUlgIpKbKbZ03DN59V/ZkiY4GZs/2/+s7l57gBE1UV8pn6Lbb5JJ05D0Wi+tEBusq1QWTbv9j0k114XA4v/dz/Zx0A8Brr8m5286dA9580+8v71+sqwCYdBvLyZPyS6ZhQyA2Vu1ofCY9XU5QAQALF8qJK/xNSbpNBv+CIS/gJGq+xcYA1VXpmcuVSYPI91h3qS5+/hnIz4ewWpF3q3eiP4WFAe+/L7ffeUdeKNIt1lUATLqNxSAzl0+YIJcjv+ce4PHHVQpCSbqPH1cpANINTqLmW8rJDIM3BqgOMjPlZF5mM9Chg9rRGIdygoN1l2qj1OSHwmJRJYQHHgAGDQLsdtnNXAhVwvA91lUATLqNxQBn4jduBD77TPYaXbZMvXMLzivd7LJKdcUr3b7FM/BUV8o4xbZtAZtN3ViMRPlOPH+ek5ZSzd1qnwkVj60mE/Dee3LBg82bZftVl5Tj7LFjhp60lEm3keh8zFlhITBunNx+8UUgIUG9WJxf4mfP6nyGDPI5Xun2rdKNAYdD3VgoMB0+LO/VPOgYUUQEEBcnt3mCm2rq1skyofIEpe3aAVOmyO0JE3TaZGzdWk5aWlAg28UGxaTbSJSz8TptvC9cKOeJi40F3nhD5WCiolAYHg6TEDofqEM+lZfnOkDxSrdvtG0LWK3yf/3zz2pHQ4Ho0CF537WrunEYEXuqUG0pSbcGen9OnQq0bCkPQXPnqh2ND5SetNTAdZVJt1EUFQGnTsltHSbdZ8+6vqjeeUcbkzzncA1RqitlToCoKCAyUt1Y9MpqdY3DZV2l2lCudDPp9j8m3VQbQriSbg20iUNDZTdzAFi0SKfXapT/s4GXDWPSbRSpqUBxMVC/vlx6SGfGj5e9Vu67D3j0UbWjkZh0U52xa7l/sOFOteVwuBqR7F7uf2zIU22kpwO5ufKka/v2akcDwACTqvE4y6TbMHQ8c/m//gVs2AAEBak7eVpZTLqpzjiJmn+wMUC1de6cbLwHB8vBmeRfrLtUG0rvlI4dZeKtAbqfVI0zmGsj6V62bBlatWqFkJAQJCUlYc+ePZXue99998FkMpW7DR482LmPEAIzZsxAbGws6tWrh759++KU0rXaqHQ6idrNm/KMICAnoNDS22PSTXXGK93+wYY71ZbSeO/USZ75Jf9S6q5y8oPIE0q91cB47tJ0PakaJy1VP+n+5JNPMHHiRMycORP79u1D9+7dMWDAAPzyyy8V7v/ZZ5/h0qVLztvhw4dhsVjw0EMPOfdZsGAB3n//fSxfvhy7d+9GWFgYBgwYgIKCAn+9Le3RadL99tvAmTNAs2bA66+rHY07Z9Kdlib7vhPVFK90+0fppFt3ffrIpzieW11NmgDR0XKbJ83IU8pwBA3WW91OqtamjbyMn58vT5IZkOpJ9+LFizFq1CiMHDkSnTt3xvLlyxEaGopVq1ZVuH/jxo0RExPjvG3ZsgWhoaHOpFsIgSVLluC1117DkCFD0K1bN/zlL3/BxYsX8cUXX/jxnWmMDpPutDRg/ny5vXgx0KCBuvGUVRgRAdGokTyjd/Kk2uFQoCkslB9yQFf1VpPat5ezq2ZnA5cuqR0NBRJl5nKO51aP8r9XyoKoOhq90g3oeFK1oCDDz2CuatJdVFSEvXv3om/fvs7HzGYz+vbti507d3r0HCtXrsSjjz6KsLAwAMCZM2eQkZHh9pwNGzZEUlKSx8+pO8XFrlqrk8a7ELJbeWEh0LcvUKqjg3aYTK71ug36BUN1cOoUUFIip+KPjVU7Gn2z2VzjcVlXqSZ4pVt9yv9eKQuiqpSUuIZuabTe6nZSNYNPfKjqAKQrV66gpKQE0UrXoFuio6NxXFkqpwp79uzB4cOHsXLlSudjGRkZzuco+5zK78oqLCxEYWGh8+fs7GwAgN1uh91u9+zN+JkSl0fxHT8Oa1ERRGgoiuPiZC0OcBs2mJCSEgSrVeDdd4tRXKx2RO6UcnHEx8O8YwdKDh2C4w9/UDkqAmpYd1RkOngQQQAcnTqhRGsfcB9Sq3wsHTvCfOKErKt9+vj1tQNFoNQdv7HbEXT8OEwA7PHxqh5bjVw2ps6d5XfloUMo0ej7N3L5aM6pU7AWFECEhKD4tts0WzaLFgFbtwZh82YT1q4txoMPBn7mbY6PhwWA4/Bhj+uqVsunNE9jC+hZP1auXImEhAT07t27Ts8zb948zJo1q9zjmzdvRmhoaJ2e29e2bNlS7T6xO3agN4DrzZrhPxs3+j4oHysstGDs2F8DCMIDD5xCWtoxZy9crTlmMiEBQOY33+CHOn5Oybs8qTtqit+wAR0B/Fy/Pg6kpKgdjt/5u3w6Wa3oACB90yYcbNPGr68daLRed/ylQXo6fm23w16vHlIOH9bE1Rsjlk3E9evoA6Bo715s0vh3pRHLR2tid+1CbwA34uLw702bnI9rsWyGDu2ItWvjMXZsEYCvERJSonZIdRJbUCD/97t24T81rKtaLB9Ffn6+R/upmnRHRkbCYrEgMzPT7fHMzEzExMRU+bd5eXlYs2YNZs+e7fa48neZmZmILdUlMzMzE4mJiRU+17Rp0zBx4kTnz9nZ2WjevDn69++P8PDwmrwlv7Hb7diyZQv69esHazXLHZh/+AEA0PCuuzBo0CB/hOdTM2eacfmyBc2bC/z5z60RFtZa7ZDKUcqn/ZAhwKpViL12TRf/ez2oSd1Rk+WjjwAAtw0ciDgDfXbUKh/T9evAp5+iZV4ebjPQ/7smAqXu+Itp7VoAgKV7dwwqtYKKGgxdNn36AJMnI+T6dQy64w4gKkrtiMoxdPlojPnAAQBA+J13YtCgQZoum/vuA3bvFjh3LhT79t2PN98M8Fm/27QB3n4bERcvYtD993u0xq+Wy0eh9JCujqpJd3BwMHr16oVt27Zh6NChAACHw4Ft27Zh7NixVf7tunXrUFhYiMcff9zt8datWyMmJgbbtm1zJtnZ2dnYvXs3Ro8eXeFz2Ww22Gy2co9brVbNFrDCoxhvjV0xd+sGs8bfT3VOnQLeeUduL1liQkSEtt+P5dYEL6bUVFiFkDM3kiZovn7fGlts6dYNFi3H6SN+L59u3QAA5qNHYQ4K8qgxYFSarzv+cmsYnDkhQTPHVkOWTUSEbMyfPg3riRNAXJzaEVXKkOWjNUqbuEy91WLZNGwoJ1UbOhR4910Lnn7agvh4taOqg1vropvy8mC9dElO0+4hLZaPwtO4VJ+9fOLEiVixYgU++ugjHDt2DKNHj0ZeXh5GjhwJAHjyyScxbdq0cn+3cuVKDB06FE2aNHF73GQy4aWXXsKbb76JDRs24NChQ3jyyScRFxfnTOwNR5lcJMBnVxUCGDsWKCoCBg4Efv97tSPyQLNmclr14mJ5xoDIEwUFrs+LRid60Z34eJloZ2UBly+rHQ0FAs5crh1KGXAyNaqOhpcLq4iuJlWzWuE8a2DASUtVT7ofeeQRLFq0CDNmzEBiYiIOHDiAjRs3OidCS09Px6UyS7icOHEC3333HZ555pkKn3Py5MkYN24cnnvuOdxxxx3Izc3Fxo0bERIS4vP3ozk3bwKpqXI7QL5gKvPZZ8DmzfJi8fvvB8iFKJPJ8LM1Ui2cOCGXmmvUiDOX+0toKND61lAVAzYGqBY4c7l2KGXAZcOoKkVFzh4qWlwurCImk7zaHRws28CffaZ2RHWktIkNeJxVPekGgLFjx+LcuXMoLCzE7t27kZSU5Pzd9u3bsXr1arf94+PjIYRAv379Knw+k8mE2bNnIyMjAwUFBdi6dSs6dOjgy7egXceOycZ7kyZAmRndA0leHjBhgtyePFkuqxswuIYo1VTpNUQD4uySThi4MUA1lJcHnD4tt5l0q49XuskTp07Jnof16wMtWqgdjcfatQOmTJHbEybIr5+AZeALUZpIusmHSnd/C+DG+1tvAT//LId/VDDaQNu4hijVFK+gqYNJN3nq6FHZz7NpU01O3GU4pY+zAd3/lnyqdNfyAGsTT50q28A//wzMnat2NHWg9DAw4HGWSbfe6aDxfuqUXK8QkF1sNL6KW3k8A081FWBjznSDSTd5SidzpehGhw5yvGhODpCernY0pFWle5EFmNBQ2QYGZJv45El146m10le6DXaCjEm33gV4w0AIOXGEMnnaAw+oHVEtKIlTWlqA9wkivwnghkFAUxoDt2a3JaqUDk5o64rVKmdGBjiUiyoX4PW29KRq48YFaM7avr0coJ6bC5w7p3Y0fsWkW++Ug0+AfsH885/Axo3yePreewHXG0hq2lTehGBjnqqXmwucOSO3mXT7l9Joz8iQs5gTVSbAj626xKFcVB2lF1mAHlt1MamagU+QMenWs2vXgAsX5HYAfsHcvAm89JLcfvll2XssYHFmVfKUcmImOppjRf2tQQPX5DrsYk5VCfBeZLrESUupKgUFuljNRxeTqhm0rjLp1jOlUdCiBdCwobqx1MLChfKCX7NmwPTpakdTRzwDT55i13J1Kf93A86sSh66ehVQljJVhiSQ+nicpaocP+5aijMmRu1o6iTgJ1Uz6FxHTLr1LIDHrpw9C8ybJ7ffeUeu7hDQDHpWj2ohgOutLrBXClVHqaOtWsneEaQNynH22DE56JWotNLH1oAcq+gS8JOqGbRNzKRbzwK4+9vEibIn0K9+BTz8sNrReAHPwJOnOHO5ulhXqTocz61NLVrIM/R2u1z2hKg0nZ3QDuhJ1ZQyOH5czpRsEEy69SxAGwabNgGffw5YLMDSpQF/QlJSuqxeuiS7JhJVht3L1cX1fqk6P/0k77t3VzcOcmc2s6cKVU5nx9aAnlSteXM57LW4GDhxQu1o/IZJt14JEZBXugsL5Rk7QC4VppPvRtkFsVUruc0raFSZ69cDevJDXejUSTber14FMjPVjoa0iEm3drGnClVGORHTrZu6cXhRwE6qZjIZ8gQZk269unhRzl5usQDx8WpH47ElS2SvsOhoYOZMtaPxMoNOHEE1oHQtV84Ck//VqydbMgDrKpVXUuL6XDDp1h6DjhWlaly/DqSny+0AuhDlidKTqilzIQUEA7aJmXTrlfIhbt8eCAlRNxYPnT8PzJkjtxcs0GHOYcCzelRDOuv+FrBYV6kyp07J9SxDQ4G2bdWOhsrilW6qiPJd3qIFEBGhaijeFhoKvPuu3F640LUqmuYZ8DjLpFuvlA9xAJ3RmzRJdo25807g8cfVjsYHDHhWj2pIZxO9BCw23KkyStfyhATZk4y0RTnOnj4dQH1tyecOHpT3OupaXtrQoUD//nJOsgkT1I7GQwbslcKkW68CrPG+fTuwZo0cSvnHP8p73eEETVQdpXs5r3Sri0k3VYbjubUtKgpo2lQeY5XvUyKdJ93KpGpBQcC//gV8+aXaEXlASbrPnQOys9WNxU/0mNoQEFCTqCnLHQDA888DPXqoG4/PxMfLb8QbN2RfeqKyAuxkmW4p35tHjgAOh7qxkLYw6dY+JbFSEi0inSfdANCxo+sq9/jxctldTWvUCGjWTG4b5AQ3k249KikJqLV+ly2T9a1JE9eYbl0KDnZNameg7jTkoV9+AS5flqesO3VSOxpja9dO1te8PHkWnkjBpFv7EhPl/YEDakZBWuFw6HLm8oq8/joQGwukpQGLF6sdjQcM1sWcSbcenT4tT3HVqwe0aaN2NFXKyHDNUj5vHtC4sbrx+By7rVJllBNlrVsDYWHqxmJ0QUGuEx8GaQyQB65edS3pp/PGe0BTTogoJ0jI2M6ckSdQbTY5ubCONWggJ1MDgLlz5YzmmmawNjGTbj1SDjRdumh+opepU+VQjttvB55+Wu1o/MBgZ/WoBti1XFsM1hggDyjH1jZtZOuWtElJug8e5Pwp5N4mDgpSNxY/GDYMuPtuID8feOUVtaOphsHaxEy69ShAur/t2AF89JHc/uMfNX9+wDvYkKfKKAcdTqKmDayrVJZybOVVbm3r2FEOD8nOBs6eVTsaUpsBxnOXZjK5JiReuxb45hu1I6pC6aTbACfImHTrUQAk3SUlwNixcvvpp4GkJHXj8RvlC+bYMaC4WN1YSFuUhoGG662hcIk/KisAjq0EwGp1nbzkuG4y4LG1e3dg9Gi5PW6cnLBYkzp1kmcHsrKAS5fUjsbnmHTrUQA0DFasAPbvByIi5Fhuw2jVSo7XLSwEUlPVjoa0wkATvQQM5Ur38eMabrGQXxmw8R6wOK6bFAa70q2YPRuIjJTTxSxbpnY0lQgJcY2zN0AXcybdenPtGpCeLrc1+gVz9SowfbrcnjNHLqlpGGaz6wy8Ab5gyEOnT8sBWAaY6CVgtGgB1K8vE+6TJ9WOhtRmt7smO2TSrX1MugkAcnPlVN5AQCyh602NG7suas2cCWRmqhtPpQzUq4xJt94oZ/RatpSXkTXo1VdlT5Ju3eS63IajfMFwDVFSKJ+Frl0NMdFLQDCZOK6bXE6cAIqK5ARqrVqpHQ1Vh0k3Aa7v7thYICpK3VhU8PTTcqLi7Gw5cbEmGWgyNSbdeqPxruU//ii7lgNyogdD5hdsDFBZBu3+pnlMuklRehI1M5tOmqccZ8+cAW7cUDcWUo/Bj61ms2xrA8Dq1cDOnaqGUzEm3RSwNJx0Oxxy8jQhgOHDgXvuUTsilTDpprIM3jDQLAN1e6NqaPjYShVo3Bho3lxus1eZcfHYiqQkYORIuT1unJzIWFOUk9tHj2owOO9i0q03Gm4YfPQRsHu3HCa5YIHa0ahI+fJPT5dj8InYMNAmXukmhYaPrVQJnuAmHlsByLHdDRsCe/cCK1eqHU0ZbdoAoaFAQQFw6pTa0fgUk249KS52NQ411jC4fh2YMkVuz5wJxMWpGo66IiLkmHuAZ+AJyMkx7EQvmqck3WlpQF6eurGQuph0Bx6lrLhsmDEJwaT7luhoOZs54JpXSTMsFlf56LyuMunWk5Mn5VJU9evLM0caMnMmcPky0LEj8OKLakejAWwMkMLgE71oWtOmskyEAI4dUzsaUktmpryVnlyPtC8xUd7zSrcx/fyzHM8fFCQbnwb3wgvy6+vqVeD119WOpgyD9Eph0q0nyoc1IUFTE70cPOiayGHpUiA4WN14NIGNAVJw7V9tU5IsA0zyQpVQvqfbtwfCwtSNhTynfKcePix7ApKxKMfWTp3Y8IQ897B0qdxevlxj13yUNrGmgvI+7WRmVHca7P4mhJw8zeEA/uu/gL591Y5IIwxyVo88wO5v2qaUC4eCGJcGj63kgbZt5UkSA4wVpQrwhHY5990HPPqo+8TGmmCQNjGTbj3RYMPgH/8Avv0WqFcPeOcdtaPREKWMjhzhGXijY9KtbQZpDFAV9u+X9xo6tpIHzGbXPBk6v4JGFeCxtUILF8p5y77/Hvj4Y7WjuSUhQQ7fuXRJDuXRKSbdeqKxpDsnB3jlFbk9fTrQooW68WhK69Zy7H1hIXDihNrRkFo40Yv2lU66NXNZgPxKSbp79VI3Dqo5DuUyrtJDLsnptttcY7onTQKys9WNB4BsD7drJ7d1XFeZdOvF5cvyDJHJpJkvmDlzZEht2wIvv6x2NBpjNruSLB1/wVA10tPlEc9qBeLj1Y6GKtK5s5xdNSsLuHBB7WjI33JzXSdGe/RQNxaqOfZUMaa8PFe9VU68kNOECXKKiowM2VbXBAOcIGPSrRfKh7RtW3nGSGXHjwPvviu333sPCAlRNx5NYmOAlLLnRC/aFRLiOiHCumo8Sg+HZs3kujsUWHicNaaDB2W9jYmRN3Jjs8m2OQAsWaKRxTkMMJkak2690FDXciHksmDFxcBvfwsMHqx2RBrFxgBxopfAwLpqXPv2yXte5Q5MpceK/vKL2tGQvyhDQlhvK3X//cADD8i2+osvamD0lAGOs0y69UJDSfcXXwBbtsgLd0uWqB2NhnGtbuJ47sBggMYAVUJJunv2VDcOqh2DjBWlMph0e+Tdd+VV761bgc8/VzkY5Ur38eNyxQEdYtKtFxpJum/eBCZOlNuTJsne7lQJ5Qx8ZqauZ2ukKjDpDgxMuo1Labwz6Q5cBui2SmUw6fZImzbA5Mlye8IEID9fxWDi4oAmTYCSErmyjw4x6daDoiLXgAyVk+5Fi4CzZ+XsiNOmqRqK9oWFyZksADbmjSg/37V2LJNubVO+V0+dUrlVQn5VUOBq/DHpDlxK4qX0WiB9s9uBQ4fkNpPuak2dKlcXSk8H3n5bxUBMJt2fIGPSrQfHjskvmYgIVdflOncOmDdPbi9aJHNKqgavoBnX0aOAwwFERXGCJq2LiZHl5HDo9gw8VeDwYTngMTJSnkmmwKScMGHSbQzHjsmLUeHhcnlWqlJoKLB4sdx++23g9GkVg9F5m5hJtx4oZ4S6dZNnilQyaZLsXn7vvcDDD6sWRmDR+RcMVaF013IV6y15wGRiXTWi0pOosY4GLuVq58mTQE6OurGQ75XuWm5mmuOJBx8E+vYFCgtdQ0RVwSvdpHkaGHP2zTfAunXy++3999k+8Rgb8sbFmcsDC+uq8Wjg2Epe0LSpq6cC66/+cTx3jZlMsu0eFASsXw989ZVKgZQ+zqo+nbr3MenWA5VnV1WWGwCA559nDlEjyj/r+HF5ipGMo3QPFdI+pZzYaDcOzlyuH+xibhxMumulUydg/Hi5PX68Sk3Sjh3l0kfZ2XKCKJ1h0h3oHA7Vv2A++EAOfWvcGJgzR5UQAtdttwGNGskzF0ePqh0N+YsG6i3VkHKC7OBBXZ6BpzLsdtcJFibdgY+TqRkDj611MmOGnMLk1CmVlvwNDga6dJHbOuxizqQ70KWmArm5QEiIPEPkZ5cvy0oKAHPnysSbaqD0WFEdfsFQJc6ckWdybTZ5epm0r1MnwGoFbtyQs0aSvim9j8LD5bo6FNh4pdsYTp+W4/ZtNlXaxIEuPBxYuFBuz5kDXLigQhA6HsrFpDvAmZQzet27y8EYfvbaa8D163Lug1Gj/P7y+qDziSOoAkq97dpVJnKkfcHBrhMkOmwMUBlKcpaYyMmY9EBJuo8elUvBkT4px9aEBB5ba2n4cOCuu4C8POCVV1QIQMdtYh5JApxJxYle9u0DVqyQ20uXAhaL30PQB6ULlFKWpH/s/haYdHwGnsrgJGr60qyZXPavpMS1hjPpD4+tdWYyAX/8ozzXuGYN8O23fg5Ax8dZ/18aJa8yKWeC/NwwEAIYN07eDxsG3H23X19eX5Sy279fjkfiVRX9Y8MgMHXvDvz1r7psDOhSURFw9Spw7Zq8bFPRzW6Xc2qUlLjui4pcZ5SZdOuDySS/bzdvllcM7rhD7YjIF3hs9YrEROC554Dly2Vbf+9eP15YU5Lus2dlV9qwMD+9sO8x6Q5kQqiWdH/8MbBjh6wLCxb49aX1p2NHOSY/NxdISwPat1c7IvI1NgwCk47PwAeUoiI52DA9Xd7OnZP3Fy4AV664btnZdXud6Ghg4EDvxEzq69nTlXSTPvHY6jVz5gCffCIPd3/6EzB6tJ9euFEjoGVL+b1+4IDs664Tqifdy5Ytw8KFC5GRkYHu3btj6dKl6N27d6X7X79+HdOnT8dnn32GrKwstGzZEkuWLMGgQYMAAG+88QZmzZrl9jfx8fE4fvy4T9+HGupdvgxTVpYcy63M9ucHOTnA5Mlye/p02WuL6iAoSC5HtGePbAww6da3jAx5M5u5XFigUZLutDT5Rdiggbrx6F1BgVwa48gR4Ngx1y0tTfYK8oTZDEREyDPEZW+hoXLCJYtFfg8HBbm2GzWSrcyoKJ++RfIj5eLEDz+oGwf5xqVLQGYmj61eEhkpE++xY+X8TQ8/DDRp4qcX79lTJt379zPp9pZPPvkEEydOxPLly5GUlIQlS5ZgwIABOHHiBJo2bVpu/6KiIvTr1w9NmzbFp59+imbNmuHcuXOIiIhw269Lly7YunWr8+cgFSYY84eI06flRteusuHgJ2++Kb/b2rYFJk7028vqW8+erqT7kUfUjoZ8STkTHx+vq25ThhAVJddTyciQyWBystoR6Ycy1vaHH4Aff5T3hw7JLt8VsdmAFi1ct5Yt5RKMUVGytajcIiI4ZIeke+6Rn4X9++UKEq1bqx0ReVPpY2toqLqx6MR//7e8yn3woFypaNkyP71wz57A55/Lfu06omo2unjxYowaNQojR44EACxfvhxffvklVq1ahalTp5bbf9WqVcjKysKOHTtgvTUrYatWrcrtFxQUhJiYGJ/GrgUN09Lkhh+7lp88Cbz7rtxessSvub6+lR7XTfqmdG1k97fA1L27TLp/+olJd12UlMiug9u3y9u338rl2MqKjJQzEXfqBHTuLO87dgRiY+U4XSJPxcQA990HfP21HDYQFSWT8LI3k6nqx4ODZeMnONh9u6LHQkKA+vVhCglBo+PHZdfARo2A+vXlrV49nhTyFnYt97qgIOD992W1Wb5cjvNWOnz5lE6X+FMt6S4qKsLevXsxbdo052Nmsxl9+/bFzp07K/ybDRs2IDk5GWPGjMH69esRFRWFYcOGYcqUKbCUGuF/6tQpxMXFISQkBMnJyZg3bx5atGhRaSyFhYUoLCx0/px9axyY3W6H3W6v61v1Cbvdjoa3rnSXdO8Oh5/ifOklC+x2MwYOdKB//xJo9N+jOuVz4+nnx5SQgCAAYt8+FBcVsTHpQzUtG2+z7N0LM4CSbt38Vm8DidrlUx1zQgIsmzahZO9ew5Vfncvml19g2rgR5q++gmnrVpjKJNkiPBzijjsgevaE6NUL4vbbgebNK/4+rOwKuEFpvd5ohemJJxD09dfyCsLJk3573SAA91byOxEWJhPwBg0gGjeWSXlEhNyOiAAaNYJo1Eg+3qgRREQE0Lix7OsbEuK396B1tT22su5U7c47gYcesmDdOjPGjnVg27YS3zdRExJgBSCOH4f9+nUA2i4fT2NTLem+cuUKSkpKEB0d7fZ4dHR0peOvT58+ja+//hrDhw9HSkoKUlNT8cILL8But2PmzJkAgKSkJKxevRrx8fG4dOkSZs2ahXvuuQeHDx9Gg0rG382bN6/cOHAA2Lx5M0I13EVlwK2k+/ubN3EtJcXnr/fjj9H46qv/h6AgB373u6/x1Vd5Pn/NQLdlyxaP9jMXFWGwxQLz1av45i9/wU2OI/Q5T8vG2/ru2IEwALsKC3HFD/U2UKlVPtWJA3AHgOx//xv/MWj5eVw2QiD8zBnE/PADYn78ERGpqTAJ4fy1PTQUVzt3xpWuXXGla1fcaN3afYrcw4fljTym1XqjGRERaPLmm7Dm5srPohAw3ZofwORwyMeUeyHc9jEp98XFMBcXw2y3u99XsG0pKoKlsBBBN2/CUlCAoFI3hUmZST8zEzXNZYptNhQ1aICiBg1gv3Vf0c0eHu7aDg3V5dX1uh5bWXcq179/CNav/w2++y4Ir766D/fcc8H3r9m4MeplZeHHVauAjh01XT75+fke7WcSotQR0I8uXryIZs2aYceOHUgu1UVv8uTJ+Pe//43du3eX+5sOHTqgoKAAZ86ccV7ZXrx4MRYuXIhLly5V+DrXr19Hy5YtsXjxYjzzzDMV7lPRle7mzZvjypUrCA8Pr8vb9Bl7ejpC27WDMJtRfPWqz8eGFhYCPXoEITXVhJdfLsG8eR5OYmNQdrsdW7ZsQb9+/ZxDIaoTdPvtMB08iOJ16yCGDPFxhMZVm7Lxmhs3YL11QsWekSGvVpAbVcvHE6dOwdqlC4TNhuKsLECLMfqIx2Vz8iTMn3wC8yefwFTmaqJITIRj0CCIQYMgevXy4zo0+qb5emNw5crH4QBu3pSrlty6mbKz5fJ2167BdOse16/LCXOvX3d//No1mEpKahWLMJvlsadxY4gmTZxXzZVtt8eUK+pNmmh7POHFi7C2agVhMqH40qUaHVtZdzzz1ltmvPGGBc2aCRw+XOzzKWksQ4fCnJKConfewVdt22q6fLKzsxEZGYkbN25UmTeqdqU7MjISFosFmZmZbo9nZmZWOh47NjYWVqvVrSt5p06dkJGRgaKiIgQHB5f7m4iICHTo0AGpqamVxmKz2WCr4MvEarVqtoBNR47Ijfh4WMtMJOcL77wDpKbKIVEzZ1pgtbKh5IkafYZ69gQOHkTQoUPAf/2XbwMjdeq3Um9btIC1TC8fcqfZ79+OHYEGDWDKyYE1LU2ONzaYCsvmwgW5vsw//iEnQlOEhAADBgC//S0waBBMcXHg0cN3NFtvCECZ8rHZZPfx2nA45JJ4V6/W7JaXJ6/s31pWr0ZX1sPCXAl42VtEhByfHhrqui+9XfreZpMnK5XVArzhm28AAKZevWp9bGXdqdqUKcBHHwFnzpiwaJEVb77p4xe8/XYgJQVBBw8Cbdtqunw8vrjm4zgqFRwcjF69emHbtm0YOnQoAMDhcGDbtm0YO3ZshX9z11134e9//zscDgfMt7rGnDx5ErGxsRUm3ACQm5uLtLQ0PPHEEz55H2ox3ZowQiQm1rg7Uk1duABn5VqwgKvk+EzPnsDq1bqbOIJKUSZ68ePkh+RlZrOcqOc//5F11YBJt1NWFvB//ycT7e3bAaXjnMUC9OsHDBsGDBkCaLTHGFHAUpbCi4iQS8l4qrCw5ol6VpZM8pVu8Onp3nsfJpNMvq1WVyJe+t5qld8nJpNrIjtlu/Ttwq3uzgMHei82chMSIidSHjoUWLgQGDmyZh+9GrvVTjLt2wf8/vc+fCH/UXX28okTJ2LEiBG4/fbb0bt3byxZsgR5eXnO2cyffPJJNGvWDPPmzQMAjB49Gn/84x8xfvx4jBs3DqdOncJbb72FF1980fmcr7zyCn73u9+hZcuWuHjxImbOnAmLxYLHHntMlffoK86k2w+zNE6eLL9nk5OBxx/3+csZl05na6RSOHO5PpROukeMUDsav7IUFMD0ySfA2rXAxo1wm03z7ruBxx4DHnqI61sTaZHNBsTFyZunHA65skBVifmNG7K7/M2bQH5+5fdlJ5wSQj7mrUmybl3EI9944AGgf39g82a5ZPD69T58MaVNfPQozEVFPnwh/1E16X7kkUdw+fJlzJgxAxkZGUhMTMTGjRudk6ulp6c7r2gDQPPmzbFp0yZMmDAB3bp1Q7NmzTB+/HhMmTLFuc/58+fx2GOP4erVq4iKisLdd9+NXbt2IUpnDQDHiBE4DaBlnz4+7ar33XfA3/8uTyQuXcpJtX2qe3d5dvfiReD0aaBNG7UjIm/jkib6YLQl/ux2YPNmWP72Nwz84gu3SaDQvbtMtB99VK6VTUT6YjY7Z05Hu3Z1e67iYqCoSN4rybayXfZe2S4ulsn5rUnunNtlb3FxQGKiV94yVcxkkssFd+sGbNggz7v6rHPBbbcBUVEwXb6M8HPnfPQi/qVq0g0AY8eOrbQ7+fbt28s9lpycjF27dlX6fGvWrPFWaJomfvtbHDGb0dKHjfeSEmDcOLn97LNAr14+eykC5JIhyclyvdpNm4DRo9WOiLzp5k3g2DG5zaQ7sJVOuh0OXc4EDIfDddb100+Bq1dhBmAGINq0gemxx2Sy3aWL2pESUaAICpI3ClidOgEvvggsXgy89BJw8KBckt7rTCZ5rN20yblEcqDjJ58q9ec/AwcOyCFDc+eqHY1BDBggk+7XXgM++EA25pUxTMp2dT9brbILWXCwvFW0Xfq+fn15U9YKrWjbJ9+oBnP4sDyTFRkJNGumdjRUFx07ygFuublyhskOHdSOyDuEAPbskV3H164Fzp93/S46GiUPPYTvW7RA8vjxsPI7gYjIkGbMAD7+GDhxQvaCffllH73QraQ7Ii3NRy/gX0y6qUJZWcD06XJ79mwOz/Ob3/9efptlZcmbVlitcjIkpYtZo0ZySY7Kfi69zEhIiNrRa0PpruUcpxHYgoJkt+rdu2W5BnLSLYQcm64k2mfPun7XsCHw4INyQrT77oNDCFxLSeHnl4jIwBo2BObPl5OpzZoFDB8uVzfyulu9yupdueKDJ/c/Jt1UoRkz5NwYXbqwl7Nfde4MHD8O/Pyza+ySw1H+VtHjQsgrqXa7HDNVVCRnKq1qu6BAzpKnrBVadluZvMJud02YUlOhoZUvM1LZrWFD/XXZ5XhufenRQybd+/YBjzyidjQ1U1IC7NoF/POfcvbx0ktqhoXJ2XIeflgO1it90sxbkx0REVFAe/JJ2SFzzx5g6lS5+I7X3X8/7OfPY9ePP2KQD57e35h0UzkHD8qKBMhuIxx+42ft28ubFhQVuRLxGzeAa9fK37Kyyv+s3EpK5Iyl+fnyRIKnLBZ5xbymybrN5rv/RV398IO853Jh+hBoqw1kZ8u5Iv71LyAlRa7Tq6hXT66j/cgjwP33yxNlRERElTCbZY6QlCTX737+eeD//T8vv4jOhjcynSI3QsgJEhwOuerLr36ldkSkKmUseKNGQPPmNftbh0M29Gu6JmhenkzWr1xxTww8ERZWcTLeqJH8Xb16MNlsuO3kSZgKCmSX+dBQeatXT97bbOXXDLVaXWPna+PMGWDvXvn3995bu+cgbSk9mZoQ2utyXVQkL0F8/bW87djhfqU6IkIm2EOGAIMHy/kbiIiIPNS7t+xi/uGHcuLl3bv110nRm5h0k5u1a4F//1vmHwsXqh0NBTSzWTbsIyKAtm09/7vCwpon6llZMsnPy5O39PRKnz4IQK0n4q8oGVcmsTOZXLfSP5vNMiZAnsWKja3tq5OWdO0qPwdXr8peHC1aqBtPVpbsTbFnj5x1/LvvZA+T0jp0AH73O3lV+6675OeXiIiolubNk6OUfvxRdjF/+mm1I9IuJt3klJcHvPKK3J46lUuukkpsNrneZlyc53/jcMju75Ul5NeuySW78vPhyM3FlZ9/RmRYGMy3HlN+h/x8mfQXF1f8OsraobX17LO1/1vSFptNJt4HDsgu5v5KuoWQJ5WOHJG3n36SlxdKj8tWREXJEz2//rW8aWXYChER6UJ0NPDGG8DEiTJ3ePBBea2FymPSTU7z58sVYlq1AiZNUjsaohowm10zp7drV+WuJXY7dqakYNCgQTBXdqVPCJl4Fxe7Em27vfzPdrvcV7kpE9pV9Fh4OJCQ4IM3T6rp0cOVdA8d6r3nLSiQifW5c3I2ceWWmgocPSrnWKhI+/ayv19Skky2u3TRXrd3IiLSlbFjgRUrgGPH5Gzm776rdkTaxKSbAACnT7u6ky9eLLuXExmWyeTqPs7KQJXp2VMOZlu/XvapczhcJ2uKi+XcBMXFMolWVgXIzQVyclz3V68Cly8Dv/ziur9xo+rXtVplV/EuXeSJnDvukLfGjf3zvomIiG6xWoH33gP695eTq40aJRfjIXdMugmA7BZSWAj07evdCzZERLp1993y/uBBoHVr7z53aKjsdlT61rq1bMm0b8/x2EREpBn9+sn84Ysv5ITMW7awo1VZTLoJmzbJCzVBQfJMFSsJEZEHEhOB//1fYPp0edU6KKjiW3Aw0KCBnCG87K1JEzn2OioKaNrUdd+4Mb+MiYgoYLzzDvDVV8C2bTL5/v3v1Y5IW5h0G1xRETB+vNweN47dQYiIauS55+SNiIjIwNq0ASZPBubMkT1oBw7kCL3SuJqawS1dCpw4IS+szJypdjRERERERBSIpk4FmjeXc39y6WF3TLoNLCNDzjIIyHX2GjZUNx4iIiIiIgpMoaHAokVye948uQgHSUy6DWzaNDkM8Y47gKeeUjsaIiIiIiIKZA89BPTpIxfu4BLELky6DWrXLmD1arm9dKlc5piIiIiIiKi2TCbg/fdlbrFuHfDNN2pHpA1MtQzI4ZCTpgHyCndSkqrhEBERERGRTnTrBrzwgtx+8UWguFjdeLSASbcBrV4N/PijXMFm3jy1oyEiIiIiIj2ZNUuuinn4MPDBB2pHoz4m3QZz/bqcWRCQs5XHxKgaDhERERER6UzjxsDcuXJ7xgzg8mV141Ebk26DmTVLfug7dnR1MSciIiIiIvKmZ58FEhPlRb/XXlM7GnUx6TaQo0flpGkA8N57QHCwuvEQEREREZE+WSyu3GPFCmDfPnXjUROTboMQQk5kUFICDBkC9O+vdkRERERERKRnd98NDBsmc5Fx4+S9ETHpNogvvgC2bQNsNmDxYrWjISIiIiIiI1iwAAgLA3bsAD7+WO1o1MGk2wBu3gQmTpTbkyYBbdqoGw8RERERERlDs2auMd2TJwM5OerGowYm3QawcCFw9ixw222umcuJiIiIiIj8YcIEoG1b4NIl16zmRsKkW+fOnXOtxb1okezaQURERERE5C82G7BkidxevBg4dUrVcPyOSbfOvfIKUFAA9OkDPPyw2tEQEREREZERDR4M3H8/YLfLK99GwqRbx77+Gvj0U8BsBt5/HzCZ1I6IiIiIiIiMyGSSV7utVuDLL+XNKJh061RxsVwiDABGjwa6dVM3HiIiIiIiMrYOHVxXuV96CSgsVDUcv2HSrVMffAAcOQI0aQLMnq12NERERERERHIm85gYIDXVNc5b75h069Dly8CMGXJ77lygcWN14yEiIiIiIgKABg3k2t0AMGcOcPGiuvH4A5NuHZo+Hbh+HUhMBJ59Vu1oiIiIiIiIXIYPB5KTgbw8YMoUtaPxPSbdOrN3L/DnP8vtpUsBi0XdeIiIiIiIiEozm2WuYjIBf/sb8P33akfkW0y6dUQIYNw4eT98OHD33WpHREREREREVF6vXq5euePGASUl6sbjS0y6deRvfwN27gTCwoC331Y7GiIiIiIiosrNnQs0bAjs3w+sXKl2NL7DpFsncnKAyZPl9muvAc2aqRsPERERERFRVaKiXCstvfoqcO2auvH4CpNunXjzTSAjA2jXzrX2HRERERERkZaNHg106QJcvepagUlvmHTrwIkTwLvvyu0lSwCbTdVwiIiIiIiIPGK1Au+/L7c/+AA4dEjdeHyBSXeAEwJ46SXAbgcGDQIGD1Y7IiIiIiIiIs/9+tfAH/4gJ1MbP17mOHrCpDvApaSYsHGjPEOkXO0mIiIiIiIKJIsWASEhwDffAP/3f2pH411MugOY3W7GK6/IhbgnTgQ6dFA5ICIiIiIiolpo1QqYMkVuv/wykJ+vajhexaQ7gK1f3xZpaSbExgLTp6sdDRERERERUe1Nngy0aAGkpwOLFuknVdXPOzGY8+eBdevkpe0FC4AGDVQOiIiIiIiIqA5CQ4F33pHbixaZ8csv9dQNyEuYdAeoV1+1oLAwCMnJDgwfrnY0REREREREdfeHPwC/+hVQUGDC6tVd1A7HK5h0ByAhgE6dBEJCirFkSQlMJrUjIiIiIiIiqjuTCXjvPaBBA4EWLXLgcKgdUd0FqR0A1ZzJBEyb5kC7dpvRo0d/tcMhIiIiIiLymoQE4MyZYnz33QmYzW3VDqfOeKU7gIWFFasdAhERERERkdeFh6sdgfeonnQvW7YMrVq1QkhICJKSkrBnz54q979+/TrGjBmD2NhY2Gw2dOjQASkpKXV6TiIiIiIiIiJfUDXp/uSTTzBx4kTMnDkT+/btQ/fu3TFgwAD88ssvFe5fVFSEfv364ezZs/j0009x4sQJrFixAs2aNav1cxIRERERERH5iqpJ9+LFizFq1CiMHDkSnTt3xvLlyxEaGopVq1ZVuP+qVauQlZWFL774AnfddRdatWqFPn36oHv37rV+TiIiIiIiIiJfUW0itaKiIuzduxfTpk1zPmY2m9G3b1/s3Lmzwr/ZsGEDkpOTMWbMGKxfvx5RUVEYNmwYpkyZAovFUqvnBIDCwkIUFhY6f87OzgYA2O122O32ur5Vn1Di0mp8Rsfy0S6WjbaxfLSLZaNdLBttY/loF8tG2wKhfDyNTbWk+8qVKygpKUF0dLTb49HR0Th+/HiFf3P69Gl8/fXXGD58OFJSUpCamooXXngBdrsdM2fOrNVzAsC8efMwa9asco9v3rwZoaGhtXh3/rNlyxa1Q6AqsHy0i2WjbSwf7WLZaBfLRttYPtrFstE2LZdPfn6+R/sF1JJhDocDTZs2xZ/+9CdYLBb06tULFy5cwMKFCzFz5sxaP++0adMwceJE58/Z2dlo3rw5+vfvj3CNTptnt9uxZcsW9OvXD1arVe1wqAyWj3axbLSN5aNdLBvtYtloG8tHu1g22hYI5aP0kK6Oakl3ZGQkLBYLMjMz3R7PzMxETExMhX8TGxsLq9UKi8XifKxTp07IyMhAUVFRrZ4TAGw2G2w2W7nHrVarZgtYEQgxGhnLR7tYNtrG8tEulo12sWy0jeWjXSwbbdNy+Xgal2oTqQUHB6NXr17Ytm2b8zGHw4Ft27YhOTm5wr+56667kJqaCofD4Xzs5MmTiI2NRXBwcK2ek4iIiIiIiMhXVJ29fOLEiVixYgU++ugjHDt2DKNHj0ZeXh5GjhwJAHjyySfdJkUbPXo0srKyMH78eJw8eRJffvkl3nrrLYwZM8bj5yQiIiIiIiLyF1XHdD/yyCO4fPkyZsyYgYyMDCQmJmLjxo3OidDS09NhNrvOCzRv3hybNm3ChAkT0K1bNzRr1gzjx4/HlClTPH5OIiIiIiIiIn9RfSK1sWPHYuzYsRX+bvv27eUeS05Oxq5du2r9nERERERERET+omr3ciIiIiIiIiI9Y9JNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREflIkNoBaJEQAgCQnZ2tciSVs9vtyM/PR3Z2NqxWq9rhUBksH+1i2Wgby0e7WDbaxbLRNpaPdrFstC0QykfJF5X8sTJMuiuQk5MDAGjevLnKkRAREREREZGW5eTkoGHDhpX+3iSqS8sNyOFw4OLFi2jQoAFMJpPa4VQoOzsbzZs3x88//4zw8HC1w6EyWD7axbLRNpaPdrFstItlo20sH+1i2WhbIJSPEAI5OTmIi4uD2Vz5yG1e6a6A2WzGbbfdpnYYHgkPD9fsh5BYPlrGstE2lo92sWy0i2WjbSwf7WLZaJvWy6eqK9wKTqRGRERERERE5CNMuomIiIiIiIh8hEl3gLLZbJg5cyZsNpvaoVAFWD7axbLRNpaPdrFstItlo20sH+1i2WibnsqHE6kRERERERER+QivdBMRERERERH5CJNuIiIiIiIiIh9h0k1ERERERETkI0y6NWzu3Lm48847ERoaioiICI/+RgiBGTNmIDY2FvXq1UPfvn1x6tQpt32ysrIwfPhwhIeHIyIiAs888wxyc3N98A70q6b/w7Nnz8JkMlV4W7dunXO/in6/Zs0af7wlXanNZ/y+++4r979//vnn3fZJT0/H4MGDERoaiqZNm2LSpEkoLi725VvRnZqWTVZWFsaNG4f4+HjUq1cPLVq0wIsvvogbN2647ce6UzvLli1Dq1atEBISgqSkJOzZs6fK/detW4eOHTsiJCQECQkJSElJcfu9J8cg8kxNymbFihW455570KhRIzRq1Ah9+/Ytt/9TTz1Vro4MHDjQ129Dl2pSNqtXry73fw8JCXHbh/XGu2pSPhUd+00mEwYPHuzch3XHO/7zn//gd7/7HeLi4mAymfDFF19U+zfbt29Hz549YbPZ0K5dO6xevbrcPjU9jqlGkGbNmDFDLF68WEycOFE0bNjQo7+ZP3++aNiwofjiiy/ETz/9JB544AHRunVrcfPmTec+AwcOFN27dxe7du0S3377rWjXrp147LHHfPQu9Kmm/8Pi4mJx6dIlt9usWbNE/fr1RU5OjnM/AOLDDz9026902ZFnavMZ79Onjxg1apTb//7GjRvO3xcXF4uuXbuKvn37iv3794uUlBQRGRkppk2b5uu3oys1LZtDhw6JBx98UGzYsEGkpqaKbdu2ifbt24s//OEPbvux7tTcmjVrRHBwsFi1apU4cuSIGDVqlIiIiBCZmZkV7v/9998Li8UiFixYII4ePSpee+01YbVaxaFDh5z7eHIMourVtGyGDRsmli1bJvbv3y+OHTsmnnrqKdGwYUNx/vx55z4jRowQAwcOdKsjWVlZ/npLulHTsvnwww9FeHi42/89IyPDbR/WG++paflcvXrVrWwOHz4sLBaL+PDDD537sO54R0pKipg+fbr47LPPBADx+eefV7n/6dOnRWhoqJg4caI4evSoWLp0qbBYLGLjxo3OfWpa3mpi0h0APvzwQ4+SbofDIWJiYsTChQudj12/fl3YbDbxj3/8QwghxNGjRwUA8cMPPzj3+eqrr4TJZBIXLlzweux65K3/YWJionj66afdHvPkS4iqVtvy6dOnjxg/fnylv09JSRFms9mtsfTBBx+I8PBwUVhY6JXY9c5bdWft2rUiODhY2O1252OsOzXXu3dvMWbMGOfPJSUlIi4uTsybN6/C/R9++GExePBgt8eSkpLEf//3fwshPDsGkWdqWjZlFRcXiwYNGoiPPvrI+diIESPEkCFDvB2q4dS0bKprw7HeeFdd6867774rGjRoIHJzc52Pse54nyfH7MmTJ4suXbq4PfbII4+IAQMGOH+ua3n7E7uX68iZM2eQkZGBvn37Oh9r2LAhkpKSsHPnTgDAzp07ERERgdtvv925T9++fWE2m7F7926/xxyIvPE/3Lt3Lw4cOIBnnnmm3O/GjBmDyMhI9O7dG6tWrYLgqn41Upfy+fjjjxEZGYmuXbti2rRpyM/Pd3vehIQEREdHOx8bMGAAsrOzceTIEe+/ER3y1vfPjRs3EB4ejqCgILfHWXc8V1RUhL1797odL8xmM/r27es8XpS1c+dOt/0BWQeU/T05BlH1alM2ZeXn58Nut6Nx48Zuj2/fvh1NmzZFfHw8Ro8ejatXr3o1dr2rbdnk5uaiZcuWaN68OYYMGeJ2zGC98R5v1J2VK1fi0UcfRVhYmNvjrDv+V90xxxvl7U9B1e9CgSIjIwMA3JIC5WfldxkZGWjatKnb74OCgtC4cWPnPlQ1b/wPV65ciU6dOuHOO+90e3z27Nn49a9/jdDQUGzevBkvvPACcnNz8eKLL3otfr2rbfkMGzYMLVu2RFxcHA4ePIgpU6bgxIkT+Oyzz5zPW1HdUn5H1fNG3bly5QrmzJmD5557zu1x1p2auXLlCkpKSir8TB8/frzCv6msDpQ+viiPVbYPVa82ZVPWlClTEBcX59YYHThwIB588EG0bt0aaWlpePXVV3H//fdj586dsFgsXn0PelWbsomPj8eqVavQrVs33LhxA4sWLcKdd96JI0eO4LbbbmO98aK61p09e/bg8OHDWLlypdvjrDvqqOyYk52djZs3b+LatWt1/q70JybdfjZ16lS8/fbbVe5z7NgxdOzY0U8RkcLTsqmrmzdv4u9//ztef/31cr8r/ViPHj2Ql5eHhQsXMnGA78undBKXkJCA2NhY/OY3v0FaWhratm1b6+c1An/VnezsbAwePBidO3fGG2+84fY71h0iaf78+VizZg22b9/uNmHXo48+6txOSEhAt27d0LZtW2zfvh2/+c1v1AjVEJKTk5GcnOz8+c4770SnTp3wv//7v5gzZ46KkVFZK1euREJCAnr37u32OOsOeQOTbj97+eWX8dRTT1W5T5s2bWr13DExMQCAzMxMxMbGOh/PzMxEYmKic59ffvnF7e+Ki4uRlZXl/Huj8rRs6vo//PTTT5Gfn48nn3yy2n2TkpIwZ84cFBYWwmazVbu/nvmrfBRJSUkAgNTUVLRt2xYxMTHlZsTMzMwEANYdP5RNTk4OBg4ciAYNGuDzzz+H1Wqtcn/WnapFRkbCYrE4P8OKzMzMSssiJiamyv09OQZR9WpTNopFixZh/vz52Lp1K7p161blvm3atEFkZCRSU1OZOHioLmWjsFqt6NGjB1JTUwGw3nhTXconLy8Pa9aswezZs6t9HdYd/6jsmBMeHo569erBYrHUuT76E8d0+1lUVBQ6duxY5S04OLhWz926dWvExMRg27Ztzseys7Oxe/du51nW5ORkXL9+HXv37nXu8/XXX8PhcDiTDKPytGzq+j9cuXIlHnjgAURFRVW774EDB9CoUSMmDfBf+SgOHDgAAM5GUHJyMg4dOuSWNG7ZsgXh4eHo3Lmzd95kgPJ12WRnZ6N///4IDg7Ghg0byi23UxHWnaoFBwejV69ebscLh8OBbdu2uV2VKy05Odltf0DWAWV/T45BVL3alA0ALFiwAHPmzMHGjRvd5k2ozPnz53H16lW3RI+qVtuyKa2kpASHDh1y/t9Zb7ynLuWzbt06FBYW4vHHH6/2dVh3/KO6Y4436qNfqT2TG1Xu3LlzYv/+/c6lpfbv3y/279/vtsRUfHy8+Oyzz5w/z58/X0RERIj169eLgwcPiiFDhlS4ZFiPHj3E7t27xXfffSfat2/PJcNqqLr/4fnz50V8fLzYvXu329+dOnVKmEwm8dVXX5V7zg0bNogVK1aIQ4cOiVOnTon/+Z//EaGhoWLGjBk+fz96U9PySU1NFbNnzxY//vijOHPmjFi/fr1o06aNuPfee51/oywZ1r9/f3HgwAGxceNGERUVxSXDaqimZXPjxg2RlJQkEhISRGpqqtuSLcXFxUII1p3aWrNmjbDZbGL16tXi6NGj4rnnnhMRERHOGfqfeOIJMXXqVOf+33//vQgKChKLFi0Sx44dEzNnzqxwybDqjkFUvZqWzfz580VwcLD49NNP3eqI0l7IyckRr7zyiti5c6c4c+aM2Lp1q+jZs6do3769KCgoUOU9Bqqals2sWbPEpk2bRFpamti7d6949NFHRUhIiDhy5IhzH9Yb76lp+Sjuvvtu8cgjj5R7nHXHe3Jycpy5DACxePFisX//fnHu3DkhhBBTp04VTzzxhHN/ZcmwSZMmiWPHjolly5ZVuGRYVeWtJUy6NWzEiBECQLnbN99849wHt9amVTgcDvH666+L6OhoYbPZxG9+8xtx4sQJt+e9evWqeOyxx0T9+vVFeHi4GDlypFsiT9Wr7n945syZcmUlhBDTpk0TzZs3FyUlJeWe86uvvhKJiYmifv36IiwsTHTv3l0sX768wn2pajUtn/T0dHHvvfeKxo0bC5vNJtq1aycmTZrktk63EEKcPXtW3H///aJevXoiMjJSvPzyy27LVlH1alo233zzTYXfgwDEmTNnhBCsO3WxdOlS0aJFCxEcHCx69+4tdu3a5fxdnz59xIgRI9z2X7t2rejQoYMIDg4WXbp0EV9++aXb7z05BpFnalI2LVu2rLCOzJw5UwghRH5+vujfv7+IiooSVqtVtGzZUowaNUqTDdNAUJOyeemll5z7RkdHi0GDBol9+/a5PR/rjXfV9Hvt+PHjAoDYvHlzuedi3fGeyo7nSnmMGDFC9OnTp9zfJCYmiuDgYNGmTRu3nEdRVXlriUkIrqlCRERERERE5Asc001ERERERETkI0y6iYiIiIiIiHyESTcRERERERGRjzDpJiIiIiIiIvIRJt1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIqIKXb58GTExMXjrrbecj+3YsQPBwcHYtm2bipEREREFDpMQQqgdBBEREWlTSkoKhg4dih07diA+Ph6JiYkYMmQIFi9erHZoREREAYFJNxEREVVpzJgx2Lp1K26//XYcOnQIP/zwA2w2m9phERERBQQm3URERFSlmzdvomvXrvj555+xd+9eJCQkqB0SERFRwOCYbiIiIqpSWloaLl68CIfDgbNnz6odDhERUUDhlW4iIiKqVFFREXr37o3ExETEx8djyZIlOHToEJo2bap2aERERAGBSTcRERFVatKkSfj000/x008/oX79+ujTpw8aNmyIf/3rX2qHRkREFBDYvZyIiIgqtH37dixZsgR//etfER4eDrPZjL/+9a/49ttv8cEHH6gdHhERUUDglW4iIiIiIiIiH+GVbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGP/H9XQeL7GzYUyQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "# Plotting\n", "X = torch.linspace(-1, 1, 1000, dtype=torch.float64).reshape(-1, 1)\n", @@ -2507,13 +1929,13 @@ "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torchmetrics.regression import MeanAbsolutePercentageError\n", "\n", @@ -2525,24 +1947,24 @@ "loss_valid = metric(predicted_valid, Y_valid)\n", "print(\"train loss: \", loss_train)\n", "print(\"valid_loss: \", loss_valid)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "from torchmetrics.regression import MeanAbsolutePercentageError\n", "\n", "model.fit_fourier_coefficients(X_train, Y_train)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "predicted_train = model(X_train)\n", "predicted_valid = model(X_valid)\n", @@ -2553,7 +1975,8 @@ "loss_valid = metric(predicted_valid, Y_valid)\n", "print(\"train loss: \", loss_train)\n", "print(\"valid_loss: \", loss_valid)" - ] + ], + "outputs": [] }, { "cell_type": "markdown", @@ -2598,7 +2021,6 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -2634,13 +2056,13 @@ "ax.set_zlabel(\"effbeta\")\n", "ax.set_title(\"Surface Plot of effbeta\")\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -2675,7 +2097,8 @@ "ax.set_zlabel(\"effbeta\")\n", "ax.set_title(\"Surface Plot of effbeta\")\n", "plt.show()" - ] + ], + "outputs": [] } ], "metadata": { diff --git a/scratch/scratch3.ipynb b/scratch/scratch3.ipynb index 4e3cb8b..d9198e1 100644 --- a/scratch/scratch3.ipynb +++ b/scratch/scratch3.ipynb @@ -4,17 +4,6 @@ "cell_type": "code", "execution_count": 8, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Left Points: tensor([-1.0000, -1.0000, -0.1429, -0.4286, 0.7143, 0.7143])\n", - "Right Points: tensor([-0.7143, -0.7143, 0.1429, -0.1429, 1.0000, 1.0000])\n", - "Position: tensor([0., 0., 3., 2., 6., 6.])\n" - ] - } - ], "source": [ "import torch\n", "\n", @@ -46,23 +35,13 @@ "print(\"Left Points:\", left_points)\n", "print(\"Right Points:\", right_points)\n", "print(\"Position:\", position)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[0.8660, 0.5000, 0.5000, 0.8660, 0.8660, 0.5000, 0.8660, 0.5000]],\n", - " dtype=torch.float64)\n", - "torch.Size([1, 8])\n" - ] - } - ], "source": [ "import torch\n", "\n", @@ -111,28 +90,13 @@ "n = 3\n", "print(sawtooth_vector(x, n))\n", "print(sawtooth_vector(x, n).shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [0.9650, 0.0350, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [0.0000, 0.0000, 0.0000, 0.5000, 0.5000, 0.0000, 0.0000, 0.0000],\n", - " [0.0000, 0.0000, 0.5500, 0.4500, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.3500, 0.6500],\n", - " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000]],\n", - " dtype=torch.float64)\n", - "torch.Size([6, 8])\n" - ] - } - ], "source": [ "import numpy as np\n", "import torch\n", @@ -166,30 +130,13 @@ "result, _ = linear_FEM_basis(x_tensor, n)\n", "print(result)\n", "print(result.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [0.9750, 0.0250, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [0.0000, 0.0000, 0.5000, 0.5000, 0.0000, 0.0000],\n", - " [0.0000, 0.2500, 0.7500, 0.0000, 0.0000, 0.0000],\n", - " [0.0000, 0.0000, 0.0000, 0.0000, 0.2500, 0.7500],\n", - " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000]], dtype=torch.float64)\n", - "tensor([0., 0., 2., 1., 4., 5.], dtype=torch.float64)\n", - "(tensor([-1.0000, -1.0000, -0.2000, -0.6000, 0.6000, 1.0000],\n", - " dtype=torch.float64), tensor([-0.6000, -0.6000, 0.2000, -0.2000, 1.0000, 1.4000],\n", - " dtype=torch.float64))\n" - ] - } - ], "source": [ "from qulearn.hat_basis import HatBasis\n", "import torch\n", @@ -204,65 +151,23 @@ "print(vals)\n", "print(hb.position(x))\n", "print(hb.grid_points(x))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.9999808199999999\n", - "0.9999808199999999\n" - ] - } - ], "source": [ "print(2*0.7071**2)\n", "print(2*0.7071**2)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(1., dtype=torch.float64)\n", - "tensor(1., dtype=torch.float64)\n", - "tensor(1., dtype=torch.float64)\n", - "torch.Size([1000, 1])\n" - ] - }, - { - "ename": "IndexError", - "evalue": "index 9 is out of bounds for axis 0 with size 9", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 29\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(norms\u001b[38;5;241m.\u001b[39mshape)\n\u001b[1;32m 28\u001b[0m \u001b[38;5;66;03m#basis_functions = sawtooth_vector(x_plot, n)\u001b[39;00m\n\u001b[0;32m---> 29\u001b[0m \u001b[43mplot_basis_combinations\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_plot\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbasis_functions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[3], line 12\u001b[0m, in \u001b[0;36mplot_basis_combinations\u001b[0;34m(x_values, basis_functions, n)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;66;03m# Generate all unique combinations of basis functions\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(basis_functions\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m]):\n\u001b[0;32m---> 12\u001b[0m \u001b[43maxs\u001b[49m\u001b[43m[\u001b[49m\u001b[43midx\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39mplot(x_values, basis_functions[:, idx])\n\u001b[1;32m 13\u001b[0m axs[idx]\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbf \u001b[39m\u001b[38;5;132;01m{\u001b[39;00midx\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 14\u001b[0m axs[idx]\u001b[38;5;241m.\u001b[39mgrid(\u001b[38;5;28;01mTrue\u001b[39;00m)\n", - "\u001b[0;31mIndexError\u001b[0m: index 9 is out of bounds for axis 0 with size 9" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAATFCAYAAACuBx8OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5xcVZnv/2/duro7SRMxkEBoTcALoJJAOOTEGzKTC4TBieeoDCAwGcUDEgfon0riQDLxQhxRxEs4mUEzUdQj6hl1jmSANpBRhkiGQJRBLkYIQSAJkUt3+lJdXbV/f1TtXdXp7nTttdeuy67P+/XyBV2pXb2z7N4P61nPelbMcRxHAAAAAAAAQMTEa30DAAAAAAAAQBhIfAEAAAAAACCSSHwBAAAAAAAgkkh8AQAAAAAAIJJIfAEAAAAAACCSSHwBAAAAAAAgkkh8AQAAAAAAIJJIfAEAAAAAACCSSHwBAAAAAAAgkkh8AWP4+7//e8ViMR04cGDC9w4PD+tTn/qUOjs7FY/HtWzZsvBvEADQ0IgzAIAwEWeAEhJfQEAbN27UjTfeqPe///369re/rWuuueaw73/sscd09tlna/LkyTryyCN18cUX68UXX6zS3QIAGo2fOLN9+3Z97GMf07x585RKpRSLxap4pwCARlRpnMnn89q0aZPe+973qrOzU5MmTdJb3/pWfe5zn9Pg4GCV7xqoXLLWNwA0unvuuUczZ87UV77ylQnf+8c//lHvfve7dcQRR+iGG27QwYMH9aUvfUmPPPKItm/frpaWlircMQCgkfiJM5s3b9Y3v/lNnXLKKTr++OP15JNPVuEOAQCNrNI409/fr+XLl+u///f/rssvv1xHH320tm3bpjVr1mjLli265557WHBBXSLxBQS0f/9+TZ06taL33nDDDerr69OOHTv0ute9TpJ0xhlnaNGiRdq0aZM++tGPhninAIBG5CfOXHHFFbr22mvV1tamFStWkPgCAEyo0jjT0tKi//iP/9Db3/5277XLLrtMs2bN8pJfCxcuDPFOATNsdQQO48CBA/rgBz+ojo4Ovfa1r9VVV13llfHu3r1bsVhM9957rx599FHFYjHFYjFt3bp13M/7v//3/+ov/uIvvKSXJC1cuFBvetOb9MMf/jDsvw4AoM7YjjPTp09XW1tble4eAFDvbMaZlpaWEUkv1/ve9z5JhZYuQD0i8QUcxgc/+EENDg5q3bp1Wrp0qb72ta95VVlHHXWUbrvtNp144ok67rjjdNttt+m2227TSSedNOZnPffcc9q/f79OP/30UX92xhln6OGHHw717wIAqD824wwAAIeqRpzZu3evJGnatGnW7x+wga2OwGHMnj1bP/vZzyRJV155pTo6OnTLLbfoE5/4hE455RR96EMf0je/+U0lEgl96EMfOuxnvfDCC5KkY445ZtSfHXPMMXrppZeUyWSUTqft/0UAAHXJZpwBAOBQ1YgzX/ziF9XR0aFzzjnH5q0D1lDxBRzGlVdeOeLrj3/845IKzYP9GhgYkKQxE1utra0j3gMAaA424wwAAIcKO87ccMMN+sUvfqEvfOELFfejBKqNxBdwGG984xtHfH3CCScoHo9r9+7dvj/L7bmSyWRG/Zm7z56+LADQXGzGGQAADhVmnLn99tt13XXX6cMf/rCuuOKKwJ8HhIXEF+BDkON53S2O7pbHci+88IKOPPJItjkCQJPjGHgAQJhsxZnu7m5dcsklOvfcc7VhwwYrnwmEhcQXcBi///3vR3y9a9cu5fN5zZo1y/dnzZw5U0cddZQefPDBUX+2fft2zZ071/AuAQCNymacAQDgUGHEmQceeEDve9/7dPrpp+uHP/yhkklah6O+kfgCDmP9+vUjvv76178uScaNG//n//yf+vnPf65nn33We23Lli168skn9YEPfMD8RgEADcl2nAEAoJztOPPYY4/p3HPP1axZs/Tzn/+cVi1oCKRmgcN4+umn9d73vldnn322tm3bpu9+97u68MILNWfOHKPP+/SnP60f/ehHOuuss3TVVVfp4MGDuvHGG/W2t71Ny5cvt3z3AIB6ZzvOPPPMM7rtttskyasw/tznPidJev3rX6+LL77Yzo0DABqCzTjT29urJUuW6OWXX9YnP/lJ3XHHHSP+/IQTTtCCBQts3TpgDYkv4DBuv/12rV69WitXrlQymdSKFSt04403Gn9eZ2en/v3f/11dXV1auXKlWlpadO655+rLX/4y/b0AoAnZjjNPP/20rr/++hGvuV+feeaZJL4AoMnYjDN/+tOfvJ0rK1euHPXnl156KYkv1KWY4zhOrW8CAAAAAAAAsI0eXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiKRkrW+gEvl8Xs8//7ymTJmiWCxW69sBgIbnOI56e3t17LHHKh5nDYQ4AwB2EWdGIs4AgF1+4kxDJL6ef/55dXZ21vo2ACBynn32WR133HG1vo2aI84AQDiIMwXEGQAIRyVxpiESX1OmTJFU+At1dHT4ujabzeruu+/W4sWLlUqlwri9SGLczDBu/jFmZoKOW09Pjzo7O73na7MLEmckfo5NMGZmGDczjJt/xBm7iDO1wbj5x5iZYdzMBBk3P3GmIRJfbjlwR0eHUeKrvb1dHR0d/AD6wLiZYdz8Y8zM2Bo3tlsUBIkzEj/HJhgzM4ybGcbNP+KMXcSZ2mDc/GPMzDBuZmyMWyVxhg33AAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAJrGL3/5S5133nk69thjFYvF9NOf/nTCa7Zu3arTTjtN6XRab3jDG7Rp06bQ7xMAYAeJLwBAXWFCAgAIU19fn+bMmaP169dX9P6nn35a5557rs466yzt3LlTV199tT7ykY/orrvuCvlOAQA2+E58MSEBAISJCQkAIEznnHOOPve5z+l973tfRe/fsGGDZs+erS9/+cs66aSTtGLFCr3//e/XV77ylZDvFABgQ9LvBe6E5G/+5m/0P/7H/5jw/e6E5PLLL9f3vvc9bdmyRR/5yEd0zDHHaMmSJUY3DQCIrnPOOUfnnHNOxe8vn5BI0kknnaT77rtPX/nKV4gzAIDAtm3bpoULF454bcmSJbr66qtrc0MAAF98J76YkAAA6gkTEgBAmPbu3avp06ePeG369Onq6enRwMCA2traRl2TyWSUyWS8r3t6eiRJ2WxW2WzW9z2415hc28wYN/8YMzOMm5kg4+bnGt+JL79qPSH5z90v66EDMZ3em9HMI1NV+Z4AgOpplAlJNpfXb//4qt428wi1JGmxyX8gmmHczDBu/gUds2Yf63Xr1mnt2rWjXr/77rvV3t5u/Lnd3d1Bbsvzxz5pWlpqDX02WB9sjVszYczMMG5mTMatv7+/4veG/qir9YTk85sf16MvJPTf97yko6ekDf4GzYn/QDTDuPnHmJlhQhJMLSYkd+yJ6+7n4nrX9Lzef3ze+HtEDf+BaIZxM8O4+Wc6Zn4mJPVuxowZ2rdv34jX9u3bp46OjjHnMpK0atUqdXV1eV/39PSos7NTixcvVkdHh+97yGaz6u7u1qJFi5RKBVvMf3Jfr676xjYdOSml+z/1HiXisUCfV89sjluzYMzMMG5mgoybmyeqRF3m+G1OSLL9cUlx3f/gTg0987ClO2we/AeiGcbNP8bMDBOSxpmQXHX93ZKkX+2La+OKs31/j6jhPxDNMG5mGDf/go6ZnwlJvVuwYIE2b9484rXu7m4tWLBg3GvS6bTS6dGL7qlUKtDPYNDrJempPw1Kkl7qy2rfwaxe/9pJgT6vEdgYt2bDmJlh3MyYjJuf94ee+Kr1hOSOVx7Wk6++qFlvPElL3z7L9/03K/4D0Qzj5h9jZoYJSUmjTEhaEnEN5fLe+1DAfyCaYdzMMG7+mY5ZPY/zwYMHtWvXLu/rp59+Wjt37tSRRx6p173udVq1apWee+45fec735EkXX755frGN76hT33qU/qbv/kb3XPPPfrhD3+oO+64o1Z/hUD6MsPev/cMDB/mnQAQDaEnvmo9ITmivUWS1JfN13UArlf8B6IZxs0/xswME5LGmZC0pxMa6meLIwDU2oMPPqizzjrL+9pdcL/00ku1adMmvfDCC9qzZ4/357Nnz9Ydd9yha665Rl/96ld13HHH6Zvf/GbDHtTVM5gd898BIKp8J74abULSUezY2DPIagYANIKoTkii20EFABrLe97zHjmOM+6fb9q0acxrHn44Gm1Tyqu8ekl8AWgCvhNfjTYhmZwu/BV5qANAY4jqhKT8b5TPO4pHuJkwAKB+jaj4YqsjgCbgO/HVaBOSjrbCdh4e6gCAWioPnQeHhtXRWr/bTQEA0dUzwFZHAM0lXusbCJu71bE3Q+ILAFA7meGc9++9bL8HANRIeQsY2sEAaAaRT3xN8Xp8sZoBAKiNzHBOg9lSY/vy1XYAAKqpPAbRDgZAM4h84svdStLLVkcAQI0cut2eii8AQK3Q4wtAs4l84msKpzoCAGrs0KpjKr4AALVSnuxiVwyAZhD5xFdH2VbHwzXlBwAgLIcmunozTDQAALVRnuxiqyOAZhD5xNeU4lbHbM5RZjg/wbsBALDv0K2NbC0BANRCNpdX/1DpsBXiEYBmEPnE16SWhGIqVHpRygsAqIVDE1+ssAMAamFUPKICGUATiHziKx6PqS1R+HdWNAAAtXBooou+kwCAWjh06z3zIwDNIPKJL0kqtvmi4gsAUBNUfAEA6oE7H4rHCl/30gcZQBNoisRXqeKLiQYAoPpGVXyxwg4AqAF3IWbma9okSXlH6ivr+QUAUdQcia+k2+OLiQYAoPrc+HPsEa3Fr1mIAQBUn7sQc/SUViWLZV9UIQOIuuZIfFHxBQCoITfRdezUtuLXLMQAAKrPjT9TWpPqaEsVXqMKGUDENUfiq9jj69AeKwAAVMOhW0t6WYgBANTAQS/xldKUYiNkKr4ARF1zJL7cii8e6gCAGuil4gsAUAd6yyu+WosVX8yRAERccyS+3FMdWWEHANSAV/HlJb6IRwCA6nMXYqakk17FF1sdAURdkyS+aG4PAKidQxNfQ8N5DWY5RQsAUF1jVXyx1RFA1DVH4ovm9gCAGnInFcdMbVUs5r7GYgwAoLoOZkb3+KI4AEDUNUfiy2tuT+ILAFBdjuN4Sa4j2lKanKaZMACgNtyt9iNOdSQeAYi45kh8ec3tWc0AAFTXQDan4Xxhy/2U1lRZM2FiEgCgutyFmMn0+ALQRJoj8eX2+GKrIwCgytxJRjwmTWpJcHw8AKBmvOb2ZQsxxCMAUdcciS+v4ouHOgCgutwJxeR0UrFYrFTxxQo7AKDKSj2+yrc6Eo8ARFtzJL6KPb4Gs3llhjlFCwBQPT2DpUbCktTRRsUXAKA23CrkjrLm9sQjAFHXFImv1kTp3zlFCwBQTeVHx0sq6/HFRAMAUD3Dubz6hwpFAJNbk2UVyMQjANHWFImveEyalC5kv3iwAwCqyV1Jd7eUlFbYWYgBAFRPX6a082VKa1lze+IRgIhrisSXJE0pHh/v7msHAKAaSttKihVfbaywAwCqz600bk3FlUrEdQTxCECTaJrE12Q38cWKBgCgitwJhdvji4ovAEAtuHFncnpkPMoM55XN5Wt2XwAQtqZJfHkTDSq+AABVRI8vAEA98LbeF+PRpGJhgCT1MUcCEGFNk/ii4gsAUAvuRMNNfE1p5fh4AED1uS1f3HiUSsSVThamg1QhA4iypkt8cVwvAKCaShVfhYTX5OKEg9V1AEA1HRqPCv9OH2QA0dc8iS8e6gCAGug5ZKvj5OIpw8QjAEA1uQUAk8u2OE7mADAATaB5El9penwBAKqv1FOlWPFVbCrM1nsAQDUduhAjURwAoDk0UeKruMLORAMAUEWHNrefzGErAIAaKPX4Km11nNRCH2QA0ddEiS9WMwAA1dfjNbd3K74K8WhoOK+hYY6PBwBUx6GHrZT/O3MkAFHWfIkvVjMAAFXkVnx1eD2+OD4eAFB9h1YgS8yRADSHpkt8sbUEAFAtjuOM2lqSiMfUlqLBPQCgusZMfLH9HkATaJ7EVyurGQCA6hrI5pTLO5JKcaj833uJSQCAKjk4OLrHFweuAGgGzZP4oscXAKDK3JgTi0mTWhLe61OISQCAKus5TI8vtt4DiLKmSXwxyQAAVJu7gj6pJalYLOa9Xjo+PluT+wIANB+3yri816S7KMMcCUCUNU3ii62OAIBq68vkJI2cZJR/fbD45wAAhK33kFOGJWly8d/p8QUgypon8ZUurGYM5fLKDDPRAACEz11Bn5ROjHh9EqdoAQCqqPywlY4xT3WkAhlAdDVN4qu9pfSAp5kwAKAa3EnG5LLVdal8+z0TDQBA+PqHciqetTKi4mtKK+1gAERf0yS+EvFYaQ87iS8AQBW4zYInH1LxxfZ7AEA1uYmtRDym1lRpCuhWfPWx9R5AhDVN4ksqbybMRAMAED5vq2PL2D2+6KkCAKiGUjxKjHnYSi9bHQFEWHMlvtyJBivsAIAqKG11PCTxxfHxAIAqKlUgj3fYyrAcx6n6fQFANTRX4qu4n52KLwBANVQy0QAAIGylw1bGjkd5RxrIst0RQDQ1VeKLZsIAgGqaaKJBBTIAoBrcHl6HxqP2loTcnY/0nQQQVU2V+JrM8fEAgCpy4w0VXwCAWnIX/g+NR7FYjL6TACKvuRJfrTzUAQDV0zc0TuKLUx0BAFV00Kv4Soz6sylp+k4CiLamSnxNYaIBAKiig+NsLZmSLvScZJIBAKiGvnG23pe/xhwJQFQ1V+KLrSUAgCo6ODj21hJ3xZ0KZACojfXr12vWrFlqbW3V/PnztX379sO+/+abb9ab3/xmtbW1qbOzU9dcc40GBwerdLfBjXfYisSuGADR11SJL7aWAEBjiMqExG0mPO5WR46PB4Cqu/3229XV1aU1a9booYce0pw5c7RkyRLt379/zPd///vf18qVK7VmzRo99thj+ta3vqXbb79dn/70p6t85+bGO2xFog8ygOgzSnw16oRkcnFrCasZAFC/ojQhKU00RvZUcbc6Oo7UP8Tx8QBQTTfddJMuu+wyLV++XCeffLI2bNig9vZ2bdy4ccz333///XrHO96hCy+8ULNmzdLixYt1wQUXTDgHqieHq/ia0squGADR5jvx1cgTEq+Mt7j1BABQf6I0IXEnEe6kwtWaiisRL5wfT58vAKieoaEh7dixQwsXLvRei8fjWrhwobZt2zbmNW9/+9u1Y8cOL6489dRT2rx5s5YuXVqVe7bBrUCe1DK6uT0nDQOIutEp/wmUT0gkacOGDbrjjju0ceNGrVy5ctT7yyckkjRr1ixdcMEFeuCBBwLeun/0+AKA+uZOSFatWuW9VsmE5Lvf/a62b9+uM844w5uQXHzxxdW67TE5jjNuM2H3+PhXB7LqzQzr6FrcIAA0oQMHDiiXy2n69OkjXp8+fboef/zxMa+58MILdeDAAb3zne+U4zgaHh7W5ZdfftiF/Ewmo0wm433d09MjScpms8pm/S/Cu9eYXCtJvYNDkqTWZGzUZ7SnCrUQPf1Dxp9fr4KOWzNizMwwbmaCjJufa3wlvqo1IbEZKMoH0l1w7x0Y5gdyAvzimmHc/GPMzAQdt3od7yhNSDLZnIbzhf5d6bgz6nMntST06kBWrxwcVHZq2vf3bHT87pth3Mwwbv5FNc6Y2Lp1q2644Qbdcsstmj9/vnbt2qWrrrpKn/3sZ3X99dePec26deu0du3aUa/ffffdam9vN76X7u5uo+ue3ZuQFNMTj/5Wm/f+ZsSfvbAnLimuR5/8gzYP/9743uqZ6bg1M8bMDONmxmTc+vv7K36vr8RXtSYkYQSK7u5uPdcnSUn9qbdPmzdvNvqcZsMvrhnGzT/GzIzpuPkJFPWuXickvVnJDbP/vqVbxZ2NHmeoMAnZ8qv79ccjmrfBPb/7Zhg3M4ybf1GLM9OmTVMikdC+fftGvL5v3z7NmDFjzGuuv/56XXzxxfrIRz4iSXrb296mvr4+ffSjH9Xf/d3fKR4f3T1m1apV6urq8r7u6elRZ2enFi9erI6ODt/3nc1m1d3drUWLFimVSvm+/n8/db/Ue1DvXnCG3vmG1474s+fv2627nntSr50xU0uXvs33Z9ezoOPWjBgzM4ybmSDj5i5cV8L3Vke/TCYkNgNF+UDuOzisL/72V8o6CS1duiTQ3yvq+MU1w7j5x5iZCTpufgJFNUVpQvLMS/3Sg/epvSWhvzh38ahrvv3cdr2w5xW9Zc5pWnzy9FF/HnX87pth3Mwwbv5FNc60tLRo3rx52rJli5YtWyZJyufz2rJli1asWDHmNf39/aNiSSJR6JU13sm86XRa6fToat5UKhXoZ9D0+r5socfXEZPSo64/or1wn31D+cj+fgQd92bEmJlh3MyYjJuf9/tKfFVrQhJGoEilUnrN5MJfNzOclxNLqCVpdKhlU+EX1wzj5h9jZsZ03Op1rKM0ISn2EdakdHLMz5zSWnhtcLh+//+oBn73zTBuZhg3/6IWZySpq6tLl156qU4//XSdccYZuvnmm9XX1+f1ML7kkks0c+ZMrVu3TpJ03nnn6aabbtKpp57qLeRff/31Ou+887x4U+8ODo5/qqN7ABiHrQCIKl+Jr2pNSMJS3ly4f2hYLcmWqn5/AMDEojIhcScZU8aYZEiliQYHrgBAdZ1//vl68cUXtXr1au3du1dz587VnXfe6bVz2bNnz4j5y3XXXadYLKbrrrtOzz33nI466iidd955+vznP1+rv4Jv3qmOY8QkDgADEHW+tzo28oQklYirJRnX0HBefUM5TTVv4wIACElUJiR9Q2Of6Oia3MJEAwBqZcWKFeMu3G/dunXE18lkUmvWrNGaNWuqcGf2DQ3nNZTLSyrFnnJunOodjM6BBABQznfiq9EnJJNaEhoazqufiQYA1K0oTEgOeqvrYy/yuBVfvYPEIwBAeMq3MI4Vk9zX+odyVbsnAKgmo+b2jTwhaW9J6uX+LCvsAIBQlfqpjN3nZrK3tYQVdgBAeNx5TzoZVzIxusfxpGIVGIkvAFHVdN3dWdEAAFSDu8I+ebyKr2Liqz9DPAIAhMfdej9WY3tJai/Gqb6h4ar3YAaAamjCxBenlgAAwueusI/X46t8ogEAQFj6JohHbsWX40iD2XzV7gsAqqX5El/FBzsTDQBAmNzEl9vL61BsLQEAVMPBw5zoKEltqVJlMnMkAFHUdImv9pbiCjtbSwAAIfK2Oo5xgpZUHo+YZAAAwjPR1vt4PObFJLbfA4iipkt8eT1VWM0AAIRooq2Ok9JUfAEAwjdRPJIKB4BJVHwBiKamS3x5PVVYzQAAhGiirY5exReTDABAiCbq8VX4M/cAMGISgOhpusSX1+OLrSUAgBCVtpaMl/jiVEcAQPgm2novlVV8EZMARFDTJb5KZbw81AEA4ZmomTAVXwCAauitpOKrhYovANHVdIkvyngBANVwMJOVNH4zYXcCMpjNK5d3qnZfAIDmMlFze0lqT1PxBSC6mjDxxVZHAED4+ius+JJYjAEAhGeieCRR8QUg2pou8VU6Pp7VDABAeNzTGieN01MlnYwrEY+NeC8AALa5W+rbKzrVkXgEIHqaLvE12Ts+ntUMAEA48nlHA9nC5KGtZeytJbFYrGwxhpgEAAiHu7jSnhp/q6PXDoZ4BCCCmi7xxWoGACBsbtJLGr/iq/zPqPgCAITFq0A+XI8v5kgAIqzpEl/uA5/VdQBAWNxtJbGY1JoaP9S2E5MAACFzE19th12IoccXgOhqwsQXze0BAOEacCcZqYRisdi476PiCwAQtgG3x9c4W+8lTnUEEG3Nl/gqm2Q4DsfHAwDscycO7YdZXS/8ebHiixV2AEBI3O2Lh0t8UfEFIMqaLvHlbisZzjvKDOdrfDcAgCgayE68ui6VqpD7WWEHAIRkYGjixRgqvgBEWfMlvspOM2FrCQAgDP0VrK6X/zkVXwCAMDiO41VxUfEFoFk1XeIrmYh7jYbp8wUACENpq+MEFV/0+AIAhCgznFe+2N3lsD2+ONURQIQ1XeJLYqIBAAiXu9XR3co4Hk51BACEqXy+c7itju7J9/3EIwAR1JSJL3eicZAHOwAgBG7FV1uKii8AQO24WxdbknEl4uOfMkzFF4Aoa8rEV2miQeILAGCf20iYii8AQC158WjCw1bo8QUgupoz8cWpJQCAELnN6tvo8QUAqKG+Ck50LP/zbM7R0DAn3wOIlqZMfHmnaLHCDgAIgXd0/ARbHTnVEQAQpv4KF2LKG99T9QUgapoy8cVWRwBAmNxEVvsEWx3dCuR+KpABACGodKtjKhFXS7IwNaTPF4Coac7EV5rmjQCA8PR7W0uo+AIA1I4735mo4ksqJcc42RFA1DRp4ouHOgAgPJU3E6bHFwAgPANuBfIEPb7K30NxAICoacrEl/tQP8jWEgBACEor7BM1E6bnJAAgPJVWIEsUBwCIrqZMfHllvGwtAQCEwF1hn7Dii1MdAQAh8pP4ouILQFQ1ZeLL3eM+kOWhDgCwry9TWU+V9nSpx5fjOKHfFwCgufT72OroVXxRHAAgYpo68cUKOwAgDO7CyqSJTnUsTkQcRxrM5kO/LwBAczGp+DrIVkcAEdOUiS/3wT9A4gsAEAK3Z1db6vATjfI/52RHAIBt/Rk/iS/mSACiqSkTX22pwmoGWx0BAGEYqHCFPR6P0eAeABCa/mxlh61IpcWYQeZIACKmORNfbHUEAITEcRxvojHRVkepbIWdiQYAwLJKD1uRpNYUcyQA0dSUia9SGS+r6wAAuzLDeeXyhUb1EzW3l0oTDbaWAABsq/SwFYmFGADR1ZSJL7eMl4c6AMC28gRW+wQ9viR6qgAAwuNWIFdyqiNbHQFEVXMmvtjqCAAIidukviUZVzIxcZhlMQYAEBZ3h0slze2ZIwGIqqZMfLkPflYzAAC2uZVblfRTkcq2OhKTAACW9fk41bGNCmQAEdWcia/iqY7ZnKNsLl/juwEAREnfUOXbSiQmGgCA8AwYbHVkIQZA1DRl4qu1pfTXppQXAGBTv49tJeXvY6IBALDNT0xq47AVABHVlImvlkRciXhMEtsdAQB29fvYViJxqiMAIBy5vKPBbGF3i6+tjsyPAERMUya+YrGYt6JBxRcAwCb3BK1Kjo6X2FoCAAhHeVxhqyOAZtaUiS+p/NSS4RrfCQAgStwTtCZV2uOLiQYAIATuPCcWk1pTFZwyTM9JABHVtIkvTnYEAITBPUGr0oqvdiYaAIAQuHGlPZVQLBab8P30nAQQVU2b+GKrIwAgDKUTtCrs8UXiCwAQgtJCTGUVyPScBBBVzZv4YqIBAAhBppj4cicQE2GrIwAgDIPDbuKrsimfG48yw3nl8k5o9wUA1da0iS9KeQEAYXDjSluFiS+23gMAwjA45DcelSrDiEkAoqRpE19sdQQAhGHAZ8VXK/EIABACt+Kr0niUTpamhhQHAIiS5k18FVc02OoIALBpMJuXxFZHAEBtDQz5i0fxeMw7/ZE5EoAoad7El/tQZ6IBALCotNWxwp4q9JwEgKpbv369Zs2apdbWVs2fP1/bt28/7PtfeeUVXXnllTrmmGOUTqf1pje9SZs3b67S3ZrxW4EslbY7MkcCECVNm/hyH+r9Q8M1vhMAwKEaeULi9lSpdKJBjy8AqK7bb79dXV1dWrNmjR566CHNmTNHS5Ys0f79+8d8/9DQkBYtWqTdu3frxz/+sZ544gndeuutmjlzZpXv3J9BnwsxhfeyGAMgeowSX408IXGVVtjzNb0PAMBIjT4hKZ2i5a/HF6vrAFAdN910ky677DItX75cJ598sjZs2KD29nZt3LhxzPdv3LhRL730kn7605/qHe94h2bNmqUzzzxTc+bMqfKd+zNoUPHlbnWk7ySAKPGd+Gr0CYmr1FOFii8AqCeNPiEZ8FnxxWErAFA9Q0ND2rFjhxYuXOi9Fo/HtXDhQm3btm3Ma/71X/9VCxYs0JVXXqnp06frrW99q2644QblcvX93B70ecqwVNoVQxUygChJTvyWkconJJK0YcMG3XHHHdq4caNWrlw56v3uhOT+++9XKpWSJM2aNSvYXVvgbi1hogEA9cOdkKxatcp7zc+E5Gc/+5mOOuooXXjhhbr22muVSFT+H/u2DPhsbs8kAwCq58CBA8rlcpo+ffqI16dPn67HH398zGueeuop3XPPPbrooou0efNm7dq1Sx/72MeUzWa1Zs2aMa/JZDLKZDLe1z09PZKkbDarbDbr+77da/xc2zdYeG8qEav4unQyJknqHcgY3We9MRm3ZseYmWHczAQZNz/X+Ep8VWtCYjNQjDeQ7g6U/swwP5xj4BfXDOPmH2NmJui41et4R2FCMljsHZmKORV9VjJWSJRlc476BzNKJZqj/Sa/+2YYNzOMm39RjTMm8vm8jj76aP3TP/2TEomE5s2bp+eee0433njjuHFm3bp1Wrt27ajX7777brW3txvfS3d3d8XvfWx3XFJcz+/Zrc2bn6romoOvFK554MGH5exxzG6yDvkZNxQwZmYYNzMm49bf31/xe30lvqo1IQkjUBw6kE++GJOU0J7n99a831g94xfXDOPmH2NmxnTc/ASKeldvE5KXexOSYnpo+za9+LuJrxnOS244/n933KlW37XYjY3ffTOMmxnGzb+oxZlp06YpkUho3759I17ft2+fZsyYMeY1xxxzjFKp1IhF+5NOOkl79+7V0NCQWlpaRl2zatUqdXV1eV/39PSos7NTixcvVkdHh+/7zmaz6u7u1qJFi7xdNBPZ9q+/k174o97y5jdq6Z+dUNE1d7y6U4+/ul9vPPmtWnpGp+/7rDcm49bsGDMzjJuZIOPmLlxXIvT/vDaZkNgMFOMNZOLRffrurt9o8hFHaunSM8z+chHGL64Zxs0/xsxM0HHzEyiqKQoTkjU775OU1Z+9591649GTJ7zWcRx9cnu38o70zrP+XEdPSfv+/o2I330zjJsZxs2/qMaZlpYWzZs3T1u2bNGyZcskFeYrW7Zs0YoVK8a85h3veIe+//3vK5/PKx4vVOU++eSTOuaYY8aMMZKUTqeVTo9+nqdSqUA/g36uH8oVKrYmtVZ+zaR04X3ZnCL1uxJ03JsRY2aGcTNjMm5+3u8r8VWtCUkYgeLQa6e0Fz5/IJvnB/Mw+MU1w7j5x5iZMR23eh3rKExI3FMdp7SlK/6s9pakDmaGNezE6vb/m7Dwu2+GcTPDuPkXtTgjSV1dXbr00kt1+umn64wzztDNN9+svr4+r4fxJZdcopkzZ2rdunWSpCuuuELf+MY3dNVVV+njH/+4fv/73+uGG27Q3/7t39byrzEhs1Md6YMMIHp8NRIpn5C43AnJggULxrzmHe94h3bt2qV8Pu+9NtGEpBrc001oJgwA9aWrq0u33nqrvv3tb+uxxx7TFVdcMWpCUt5r8oorrtBLL72kq666Sk8++aTuuOMO3XDDDbryyiurfu+O42iw2Ny+rcX/RGOAmAQAoTv//PP1pS99SatXr9bcuXO1c+dO3XnnnV47lz179uiFF17w3t/Z2am77rpL//mf/6lTTjlFf/u3f6urrrpqzIO96okXj3yd6kg8AhA9vrc6RmWFpDVVyPmR+AKA+nL++efrxRdf1OrVq7V3717NnTt31ITEreySShOSa665Rqeccopmzpypq666Stdee23V7z0zXFrk8bPC3tZS+PsMsMIOAFWxYsWKcSuJt27dOuq1BQsW6Ne//nXId2WXG1PSqcprHSgOABBFvhNfjTwhKZdOFh/qZZMUAEB9aNQJSfkKeWvS/0SDxBcAwBZ3672fii+3Wrm/eEIxAESBUXP7Rp2QlKPiCwBgm7utpCURVzLhI/HVUgjHbC0BANjiLqaY9PgayFIcACA6fPX4ipLWsjJex3FqfDcAgChwF1P8bCuRpLbi+0l8AQBscbff++s5SXEAgOhp3sRXcatj3pGG8yS+AADBuYkrP9tKyt/PVkcAgC1exVfSR+IrSY8vANHTtImv8tV4HuwAABtMTnQsfz/xCABgi9fjq6XyKZ+7KyZDH2QAEdK8ia9keeKLBzsAIDg3ceVndV0qO3CFeAQAsMSsx1dhjpRhIQZAhDRt4isWi3nJL1bYAQA2uFsdW31WfHkTjWHiEQAguHze8aq2TJrbsxADIEqaNvEllZfyMtEAAATnbXX02dyeii8AgE3lWxX99J30CgOYHwGIkCZPfLkVX0w0AADBeVsdfTa3T3OKFgDAovJ4YlbxRTwCEB1Nnvii4gsAYM+g4amO3ilaxCMAgAXu1vuWRFyJeKzi60pb7ykMABAdzZ34YmsJAMCiAW+ro98eX8WFGOIRAMACdyEmbbz1noUYANHR1IkvtpYAAGwqTTT8nuro9lQh8QUACG7AsAI5XdYKxnEc6/cFALXQ1IkvKr4AADYNBqz4YiEGAGCDG4/89pwsfz/bHQFERVMnvqj4AgDYNOA1t/cXXumpAgCwKWjPSYmYBCA6mjrxVWpuz0MdABCce1iK760l9FQBAFg0aLgQk0rE5PbCzxCTAEQEiS8x0QAA2DEwVNzq2OJ3a0mx4ot4BACwoFSB7C8exWKxsjkSxQEAoqG5E19eM2EmGgCA4Nx44re5PRXIAACbTHt8SeUHrjBHAhANTZ34Kj+1BACAoDLuRCPp9/h4ek4CAOwxPdVRYlcMgOhp6sSX27yRrSUAABsyASu+WIgBANjgzm/SPnt8SVQhA4ie5k58sZoBALDInSSkfVZ8uT2+2FYCALDBjUflpzRWiipkAFHT5Ikvjo8HANhjmvhKexXIxCMAQHBePDKo+EpThQwgYpo88UXFFwDAniEv8eVvhT1dVvHlOI71+wIANBd3631LwmCrIxVfACKmqRNfrGYAAGwyXWF3F2IcRxrKEZMAAMG4FcT0+AKAZk98cVQvAMCiIeOtjqX3M9EAAASVMaxAlsr6TlLxBSAimjrxxVZHAIBNphONlkRcsVjh34lJAICgvFOGfS7ESMyRAERPcye+vP3rrK4DAIIznWjEYjHv5C0a3AMAgjKtQC6/hgpkAFHR3Ikv9q8DACxxnKCnaLkTDVbYAQDBuPGoxWirIxVfAKKFxJekDA91AEBAeafwP8mwp0qSA1cAAHZkAlR8URwAIGqaPPFF40YAgB1Zp/TvZhMNYhIAwA53Yd/oVMck8QhAtDR14stdkR9kNQMAEFB5KGlJmPRUoeILAGBHkFMdW9weX8QjABHR1IkvVtcBALa484OWRFzxeMz39a30+AIAWBKkub2b+BrKkfgCEA1Nnvhi/zoAwA438WUyyZCkdIqKLwCAHe4iSovRqY6FeDTEHAlARDR34qv4UM/lHWVZ0QAABODOD0z6qUilhNlQjoovAEAwQZrbe1sdSXwBiIimTnyVT07Y7ggACCIb4ERHqdQXjBV2AEBQgXp8JdjqCCBamjvxlSxPfPFgBwCYGw641dHrqULiCwAQUJBTHUvxiMIAANHQ1ImvWCzmrWiw1REAEEQ2X2hob9JPpfw6tpYAAIJyq7XY6ggATZ74klhhBwDYUerxFXCrIwsxAIAAHMfxklYmizHMjwBEDYkvjusFAFhQ6vHFVkcAQO1kc46cAH0n0/ScBBAxJL54sAMALLDV44utJQCAIDJlvblMYpLbF4zCAABRQeKLiQYAwIKsl/gy3OpIxRcAwILyeY1Rj69EIY4RjwBEBYkvJhoAAAtKPb7MQitbSwAANgyV9feKxWK+r6cwAEDUkPiimTAAwIJhenwBAOqAm7ByF1T8Ih4BiBoSXzzYAQAWWNvqyEIMACAAt8eXaQUy8yMAUUPiiwc7AMCC4XxhO4lxxRdbHQEAFmSKKzHGCzFlO2Ic93hIAGhgTZ/4Snsr7LkJ3gkAwPiyQXt8pQoTFHqqAACC8LY6Btx6L1GFDCAamj7xxQo7AMCG4aBbHek5CQCwoLy5vYnyhBlzJABRQOKLrY4AAAuy1prbU4EMADBX6vEVbCGm8FnMkQA0vqZPfKUSHNcLAAjODSMtnKIFAKihoKc6xuMxpRKFvpXEJABR0PSJL07RAgDYkCtWfJluLSEeAQBscCu+TOORRDsYANFC4osVdgCABW4YSRmusKeZZAAALMgOF1ZiTLfeSyzGAIgWEl9MNAAAFrgVX+72EL9YiAEA2OAmq0wXYiRiEoBoafrEV5qHOgDAgmFbWx2JRwCAALJu4stCxRd9kAFEQdMnvijjBYD6s379es2aNUutra2aP3++tm/fXtF1P/jBDxSLxbRs2bJwb3AMuXyh0st0hZ14BADV1YixphJe4suwAlmS0snCiZAZThoGEAFG/3UepSDhbnXMMtEAgLpw++23q6urS2vWrNFDDz2kOXPmaMmSJdq/f/9hr9u9e7c+8YlP6F3veleV7nSk0lZHw8QXpwwDQNU0aqypRLYYkFJxmtsDgGSQ+IpakKCMFwDqy0033aTLLrtMy5cv18knn6wNGzaovb1dGzduHPeaXC6niy66SGvXrtXxxx9fxbstGabHFwA0jEaNNZVw40gqaV7xRUwCECVJvxeUBwlJ2rBhg+644w5t3LhRK1euHPOa8iDxq1/9Sq+88kqgm7aJhzoA1I+hoSHt2LFDq1at8l6Lx+NauHChtm3bNu51n/nMZ3T00Ufrwx/+sH71q19V41ZHccNIS8CtjpnhvBzHUSxmPmEBAIyvGrEmk8kok8l4X/f09EiSstmsstms73t2r6nk2kx2WJKUiFX2/rG4izgDGbP7rRd+xg0FjJkZxs1MkHHzc42vxFe1JiQ2A8VEA5mIFZboM9kcP6Rl+MU1w7j5x5iZCTpu9TreBw4cUC6X0/Tp00e8Pn36dD3++ONjXnPffffpW9/6lnbu3Fnx9wljQuJudYwpb/QZcae0ANM/OGTcJL9R8LtvhnEzw7j5F9U4I1Un1qxbt05r164d9frdd9+t9vZ23/fs6u7unvA9T+yOS4rr2Wd2a/Pmp4y+T8/Lhc/4z4celp51jD6jnlQybhiJMTPDuJkxGbf+/v6K3+sr8VWtCUkYgWK8gXx8f0xSQn98Ya82b95s9NlRxi+uGcbNP8bMjOm4+QkU9ay3t1cXX3yxbr31Vk2bNq3i68KIMzmn0Aj4P3+9Tfsf9X/9UE5yw/LP/+1OtSaMbqPh8LtvhnEzw7j51+xxRjKLNatWrVJXV5f3dU9Pjzo7O7V48WJ1dHT4vodsNqvu7m4tWrRIqVTqsO998I7HpRf26M1vPEFLF77R9/eSpJ++9JCeePWATnrL27T09OOMPqMe+Bk3FDBmZhg3M0HGzV24roTvrY5+mE5IbAaKiQYy99sX9P0/PKKpR07T0qWn+/rsKOMX1wzj5h9jZibouPkJFNU0bdo0JRIJ7du3b8Tr+/bt04wZM0a9/w9/+IN2796t8847z3stny9UTiWTST3xxBM64YQTRl0XxoTk+gfvkSS9593v0knHTPH9Gbm8o09uL0ww3/NnC3XkpBbfn9FI+N03w7iZYdz8i2qckaoTa9LptNLp9KjPSqVSgX4GK7nerUBuDfC92loK08RhJxaJ35mg496MGDMzjJsZk3Hz835fia9qTUjCCBTjXdueLryWzTn8gI6BX1wzjJt/jJkZ03Gr17FuaWnRvHnztGXLFu8E4Hw+ry1btmjFihWj3n/iiSfqkUceGfHaddddp97eXn31q19VZ2fnmN8njDjjTjTaWw3/P5GUiMeUyztyYom6/f/INn73zTBuZhg3/6IWZ6TqxZpaGc5ZaG7PqY4AIsRX4iuKQcJrbp/joQ4A9aCrq0uXXnqpTj/9dJ1xxhm6+eab1dfX5x2qcskll2jmzJlat26dWltb9da3vnXE9VOnTpWkUa+HrXSqo3lvrnQyrv6hHBMNAAhZo8aaSmSLKzGmh61IzJEARIvvrY5RCxItiUITFSYZAFAfzj//fL344otavXq19u7dq7lz5+rOO+/0+kvu2bNH8Xj9NX535wZBEl8tbuIrl7N0VwCAsTRqrKmEm6wKGo+kwknDANDofCe+ohYkvNUMHuoAUDdWrFgxZiWxJG3duvWw127atMn+DU3AcRxvq2OgiUaCiQYAVEujxZpKZYsxJJkIstWR4gAA0WHU3D5KQYLVDABAULm8I0eFCYaVrSXEJACAoayFiq9UMWk2zFZHABHQOKVZIfEaN/JQBwAYKo8hgZoJk/gCAARko8eXmzQbzjtW7gkAaonEF5MMAEBA7iRDsrPVkcUYAIApGz2+3G2SxCMAUUDii6N6AQABZcsmBsm4ecWXt8KeY4UdAGCmtNXRRjxijgSg8ZH44qheAEBA3raSZFyxWJCJRqz4ecQkAIAZL/GVDN7jK8tCDIAIIPFVDAi5vKMce9gBAAaGLKyuS1KyuMLORAMAYCo7bK/HFwsxAKKg6RNf5ZMUHuwAABPu0fFBJhlS2SlaeeIRAMCMjVMdkyS+AEQIia+ygMCpJQAAE26FVpBJRvn19J0EAJiyUYXc4i7EUIEMIAKaPvFV3oQ4y0QDAGDARiNhSUrGOT4eABDMsIXFmBSnDAOIkKZPfCXiMbl9iLNsLQEAGLCxrUSSWpLuCjvxCABgxuZWRyq+AERB0ye+YrGYUnEe7AAAc9aa28fdFXbiEQDAjM2tjvT4AhAFTZ/4kqQke9gBAAHY6vFVikdMNAAAZqxUfBUXYrJsvQcQASS+VOrzxVZHAIAJt0dk4K2OnKIFAAjIXYxpSQbo8VW8lh7IAKKAxJdKExUmGgAAE9a2OnpbS1hhBwD4l8s7yuUtNLePs9URQHSQ+FIpKLDVEQBgwsbqulR+qiMTDQCAf+WJqiCLMW7FF6cMA4gCEl8qX2FnogEA8M/eqY5uBTITDQCAfyMTX0F6fBXmR0NsdQQQASS+VFbxxYoGAMCAV/EVtLk9W0sAAAGUL5wE2uqYoAIZQHSQ+FLZRIMVDQCAgaylHl9svQcABOHGo0Q8pkQ8wFbHBBXIAKKDxJekZILjegEA5mxtdUyx9R4AEIC7NTEZIOklEY8ARAuJL5Ue7MM82AEABtwV8aCJryQr7ACAANxEVdCt95x6DyBKSHyJUl4AQDDuCrutrY5MNAAAJtyexamApwyz9R5AlJD4UqkUmOaNAAATtrc6Eo8AACbsLcS48ciR45D8AtDYSHyJFXYAQDBDlpvbU4EMADBhayEmWXY9MQlAoyPxJSnpNW/koQ4A8M/dWpKMB5xoxGkmDAAw585ngvb4ahmR+CImAWhsJL5Umqiwhx0AYCLnJr4sVXwRjwAAJuxVfJXiGTEJQKMj8SWpJUlPFQCAObfiKxH4+PhCWB5idR0AYMDbep8MFo+SZfGMmASg0ZH4Uqnii62OAAATXsVXwMSXu8I+zCQDAGDArc5KBNx6H4vFOHAFQGSQ+FJ5jy8e6gAA/2xVfLk9VdzPAwDAj1wxSZUKGI+ksgNXholJABobiS9JKa/HF4kvAIB/uZzdii/3OHoAAPywtRAjlWIaFV8AGh2JL3GqIwAgmJyliYZ32AoVXwAAA7bikSQlqUIGEBEkvlR2iharGQAAAznHTsWXd9gKFcgAAAM2E1/uZ3CqI4BGR+JL8ho3UvEFADBRmmgEPD6ew1YAAAEMWzpsRSr1CctR8QWgwZH4UqmMl+b2AAATbsVw4K2OHLYCAAjAasUXpzoCiAgSXyqtZlDGCwAwkbO0wu5WfOUd4hEAwD+rPb7oOwkgIkh8qbxxI6sZAAD/bJ2i5V7PVkcAgInSQkzwaR49vgBEBYkvcaojACAYexVf9FMBAJiztRAjEZMARAeJL0kt9PgCAARga2uJt7pOBTIAwEDeZuLLLQ4gJgFocCS+VAoMrGYAAEzYOkXLnWQQjwAAJmxWfLknFefYFQOgwZH4EokvAEAwXsVXwlbFF/EIAOBfrlidFXQhpvwziEkAGh2JL5H4AgAE4zb+DbrC7jYjdpzSdhUAACrlJqniViq+mCMBiAYSX6JxIwAgGFvN7csTZ6ywAwD8yluKR5KUStB3EkA0kPhSaf86kwwAgAlbPVXKJyosxgAA/Aqjx9cwPb4ANDgSX6LiCwAQTKniK1hYHVnxxQo7AMAfWxXI5Z/BHAlAoyPxJY6PBwAE4zYTpuILAFBLuRB6fGWZIwFocCS+VHqo80wHAJgYpscXAKAO2IpH5Z/BQgyARkfiS1R8AQCCyVnqqRKLxThFCwBgrBSPgk/zkgl6fAGIBhJfYjUDABCM3WbC7mIMMQkA4E/OKcajmL2KL4oDADQ6El9ikgEACCaUZsKssAMAfHJjRzIRPB7FY25xQOCPAoCaIvGl0ilcVHwBAEzY2upY/hmssAMA/LJbgVz4Z95hjgSgsZH4kuRugSfxBQAwQTNhAEA9cJNUNuIRPScBRAWJL1HxBQAIxm7FV7GZMDEJAOCTGzviFnp8lbY6Eo8ANDajxNf69es1a9Ystba2av78+dq+ffu477311lv1rne9S695zWv0mte8RgsXLjzs+2uBHl8AUF8aKc44jhNKxRenaAFAuBop1lQqV9wmb6PHlztHYqsjgEbnO/F1++23q6urS2vWrNFDDz2kOXPmaMmSJdq/f/+Y79+6dasuuOAC3Xvvvdq2bZs6Ozu1ePFiPffcc4Fv3ha2lQBA/Wi0OFMeOmwcH+9tLWGiAQChabRYUyl30cRGBTIVXwCiwvd/od9000267LLLtHz5cp188snasGGD2tvbtXHjxjHf/73vfU8f+9jHNHfuXJ144on65je/qXw+ry1btgS+eVvYvw4A9aPR4kx5E3obEw13dwor7AAQnkaLNZVyY0fCwlZHFmIAREXSz5uHhoa0Y8cOrVq1ynstHo9r4cKF2rZtW0Wf0d/fr2w2qyOPPNLfnYbILQVmqyMA1FYjxpnyRRObzYQdJhoAEIpqxJpMJqNMJuN93dPTI0nKZrPKZrO+79m9ZqJrs8PFxRgnb/R9RnAKnzU8nAv+WTVS6bihhDEzw7iZCTJufq7xlfg6cOCAcrmcpk+fPuL16dOn6/HHH6/oM6699lode+yxWrhw4bjvsRkoKhnIfC4nqbAnnh/UAn5xzTBu/jFmZoKOW72OdyPGmcFM6f35/HDgsXVTZ5mh4J9Vz/jdN8O4mWHc/ItqnJGqE2vWrVuntWvXjnr97rvvVnt7u/+bLuru7j7sn+/dH5cU13898lu17f2N8feRpGeeKXzWrqee1ubNfwj0WbU20bhhNMbMDONmxmTc+vv7K36vr8RXUF/4whf0gx/8QFu3blVra+u47wsjUBxuIPcPSFJSg5khbd682ejzo4pfXDOMm3+MmRnTcfMTKBpJLeJMX1Zyw+m9W7YoaNHXQH9CUkzbtm3Ti78L9lmNgN99M4ybGcbNP+LMaJXEmlWrVqmrq8v7uqenx+sL1tHR4ft7ZrNZdXd3a9GiRUqlUuO+7wf7HpRefUnzTp2rpacc4/v7lHv8F7/XL55/Wq97/SwtXXpioM+qlUrHDSWMmRnGzUyQcXMXrivhK/E1bdo0JRIJ7du3b8Tr+/bt04wZMw577Ze+9CV94Qtf0C9+8Qudcsoph32vzUBRyUDuealfn995n2KJpJYuXeLr86OKX1wzjJt/jJmZoOPmJ1BUUyPGmQMHM9KD/66YHC1ZHPzn+Ou7/kP7Bvr03+bP14LjXxvos+oZv/tmGDczjJt/UY0zUnViTTqdVjqdHvV6KpUK9DM40fXugcAtAb+PJKWS7lQx1vC/N0HHvRkxZmYYNzMm4+bn/b4SXy0tLZo3b562bNmiZcuWSZLX1HHFihXjXvfFL35Rn//853XXXXfp9NNPn/D7hBEoDndtS/H1vOPwQ3oIfnHNMG7+MWZmTMetXse6EeNMLF7YLh+P2fk5TiYK587E48m6/f/JJn73zTBuZhg3/6IWZ6TqxZpacPtO2jhsxW2QT3N7AI3O91bHrq4uXXrppTr99NN1xhln6Oabb1ZfX5+WL18uSbrkkks0c+ZMrVu3TpL0D//wD1q9erW+//3va9asWdq7d68kafLkyZo8ebLFv4o5NzCUHcwFAKiRRosz7qmOFuYYkqRYcaLBqY4AEJ5GizWVchNfdg5bKfwzzwFgABqc78TX+eefrxdffFGrV6/W3r17NXfuXN15551ec8g9e/YoHo977//f//t/a2hoSO9///tHfM6aNWv093//98Hu3hIv8cUkAwBqrtHijDvJsJX4cj+HFXYACE+jxZpK2az4ihc/g5PvATQ6o+b2K1asGLcMeOvWrSO+3r17t8m3qKoYkwwAqCuNFGfcCUHC0ue5kxWHmAQAoWqkWFOp4RC2OlLxBaDRxSd+S/S5D3XHYaIBAPDHXV2PWd7qmGP7PQDAp7zVrY70+AIQDSS+JMXLZissaAAA/LC91TFR/By23wMA/HL7TlrZ6ugtxBCPADQ2El8q7V+XeLADAPxx81OW8l7eRIMKZACAX1ZPdaQPMoCIIPGlkYGBBzsAwA83blhLfMXZ6ggAMGO1x1ecii8A0UDiSyO3p5D4AgAYsXyqI/EIAOBXqcdX8GlegoUYABFB4ksje3yxogEA8MP2Vke2lgAATLkVXxbyXqVTHYlHABociS8dstWRFQ0AgA/Wtzoy0QAAGMpZrPiKs9URQESQ+NKhpzryYAcAVM6NGjFLma+Ym/hiIQYA4FPOcXt8Bf8s9zOYHwFodCS+NLLHV44HOwDAB9sVX4niBxGPAAB+uT2+YhZWY9ziACq+ADQ6El8qBAaaCQMATNju8eVONBziEQDAJzdyxC0kvjjVEUBUkPgqirO1BABgwLGc+YpzihYAwJDNkERzewBRQeKryJto8GAHAPjgra5b+jwqkAEAptzYYaPiK+ZVIAf+KACoKRJfRd6KBqW8AAAfbMcNd2sJiS8AgF9exZeFki8WYgBEBYmvIh7sAAAT4Z3qSDwCAPjjHbhiJfHlLsQE/ywAqCUSX0VxmjcCAAzYPtWRiQYAwJS7hm9jq2M87n4mAQlAYyPxVcREAwBgxHLcSFCBDAAw5Mhijy8xPwIQDSS+iuipAgAwYXurY5xTtAAAhvIWe3y5n+HYXuEBgCoj8VXkTjTY6ggA8MP6Vkdv672lDwQANA0njB5fxCMADY7EVxHN7QEAJrwTtCx9HvEIAGAqb7PHFxXIACKCxFeRt9WRFQ0AgA82T9CSSvGIZsIAAD/K44aNkORtdSQcAWhwJL6KvK2OPNkBAD54Pb4sfV4sxlZHAIB/5dMYK83t6fEFICJIfBW5x/VSygsA8MN2ZRZbHQEAJsrjht2tjoE/CgBqisRXUcJr3siTHQBQOcfrp2Ln8xL0VAEAGBgxjbHZ3J54BKDBkfgqKp2ixYMdAFA522EjxkQDAGCgfEuijcWYOD2+AEQEia8iSnkBACa8o+MtfZ532ArxCADgQ3mCKmaxxxcLMQAaHYmvIraWAABMuAkqW6c6ej2+yHwBAHwY2eMr+Oe5yTOmRwAaHYmvInfCwlZHAIA/lpvbx1mIAQD4Z/tUR3p8AYgKEl9FCSYaAAADXnN7S5/nTjRyeUsfCABoCrbnMfT4AhAVJL6KSHwBAEzYLhSO01MFAGAgb7niKybmRwCigcRXUYwVdgCAAfcUrVjMzsQg4fVUYaIBAPBhROIr+MfFqPgCEBEkvooSrLADAAx4ze0tfZ63EEM8AgD4UD6PsXGqIz2+AEQFia8ib6sjze0BAD64lVm2TnUsbb2383kAgOZg+1THeNz93OCfBQC1ROKrKBZjogEA8M/2QrjX44uABADwoTxq2Kj4cnt8sfUeQKMj8VWUYGsJAMCA2+PL2qmOHLYCADCQt1yB7J3qaOfjAKBmSHwVsdURAGAib/lQlDiHrQAADLjrJTZOdJTKd8QwPwLQ2Eh8FcVobg8AMOBGDWs9vjjVEQBgwLF82Apb7wFEBYmvIrfiK8eDHQDgg7e1xNLnsRADADDhxg1bFV9xbyHGyscBQM2Q+CpKUMoLADBhvbm923PS7ucCAKLNdo8vFmIARAWJryJOdQQAmPCa29va6khzewCAAW+ro7Xm9sWKLzsfBwA1Q+KrKFEcCbY6AgD8sB026KkCADBhv7l94Z8sxABodCS+iuJsdQQAGLDeTJiKLwCAgbB6fLEOA6DRkfgq8iYaPNkBAD7Y7qnCRAMAYMI7ZdjS57lxjVOGATQ6El9FCZoJAwAM2J5oeIetkPkCAPgQ1kIMeS8AjY7EVxE9VQAAJtyVcNsr7Gx1BAD44fX4snTaCvEIQFSQ+CqipwoAwERYp2hRgQwA8MP2Qgxb7wFEBYmvotJWR57sAIDK2V4wScTdrSXEIwBA5fKWT3Us/xxiEoBGRuKrKE5PFQCAAdunOrK1BABgwpHdHl/lH0NIAtDISHwVlbY61vhGAAANxXYzYbfiK0dAAgD4kM8X/hkLoeKLxRgAjYzEV1GiOBJMNAAAtURPFQCACTc5Zam3vWJlM0ViEoBGRuKrqDTR4KkOAKicd4qWpc9j6z0AIIiYpc33VHwBiAoSX0UkvgAAJvKWm3zF6fEFADBgveKr7N8JSQAamVHia/369Zo1a5ZaW1s1f/58bd++/bDv/9GPfqQTTzxRra2tetvb3qbNmzcb3WyYvOPj8zW+EQBAQ8UZdy7A8fEA0FgaKdZUwo0bYfT4ckRQAtC4fCe+br/9dnV1dWnNmjV66KGHNGfOHC1ZskT79+8f8/3333+/LrjgAn34wx/Www8/rGXLlmnZsmX6r//6r8A3b5Pb44sVdgCorUaLM15ze0ufl4hTgQwAYWu0WFMJx/JhK+Wfw2IMgEbmO/F100036bLLLtPy5ct18skna8OGDWpvb9fGjRvHfP9Xv/pVnX322frkJz+pk046SZ/97Gd12mmn6Rvf+Ebgm7fJO9WRpzoA1FSjxRlvp6PliQaJLwAIT6PFmkq405g4pzoCwAhJP28eGhrSjh07tGrVKu+1eDyuhQsXatu2bWNes23bNnV1dY14bcmSJfrpT3/q/25D5D7YH3zmZX2l+8ka303t5fM5/f7ZuHbds0vxeKLWt9MwGDf/GDMz7ri9YyCraalUrW/HmkaMM05IFV97X81EOh7xu2+GcTPDuPnnjtmxz76i/3b8UbW+HasaLdbs7xnUbduenvBn+IVXByTZ6/FV/jnr792l1mTj/e7wu+8fY2aGcTOTz+f08osxLQ35+/hKfB04cEC5XE7Tp08f8fr06dP1+OOPj3nN3r17x3z/3r17x/0+mUxGmUzG+7qnp0eSlM1mlc1m/dyy9/6JrmtPFp7sO599RTuffcXX94iuuO7841O1vokGxLj5x5iZieua3gEd0eY/8eX3WVotjRhnhovNIWOyM67p4n8rHTiY0Ve3/D7w59U3fvfNMG5mGDf/4jr1mZc1t3Oq7yvrNc5I1Yk1NuPM8y/36ev3PqVKf4bbUgkr45/PO0on48oM5/WP/97Ivzv87vvHmJlh3EyceETM6Jnl5xpfia9qWbdundauXTvq9bvvvlvt7e1Gn9nd3X3YP39NVlp4bFwDOaOPB4CaeHDbfXrcoOCrv7/f/s00EJtxZuDlmN45PabZU5wJY00l8o703tfF9KeMrRoyADDX++zj2rz5Md/XEWfsxZmXM9I7plfWoSYu6bTXvmyt8f5Fx8f0xKvEIwDhmdFm9t/QfuKMr8TXtGnTlEgktG/fvhGv79u3TzNmzBjzmhkzZvh6vyStWrVqRClxT0+POjs7tXjxYnV0dPi5ZWWzWXV3d2vRokVKTbAd6HxfnxxtfsYNJYybf4yZmaDj5q4815tGjDNLZf/n+C8Cf0L943ffDONmhnHzL6pxRqpOrLEZZyTpgzX6GQ57+1HY+N33jzEzw7iZCTJufuKMr8RXS0uL5s2bpy1btmjZsmWSpHw+ry1btmjFihVjXrNgwQJt2bJFV199tfdad3e3FixYMO73SafTSqfTo15PpVLGP0RBrm1mjJsZxs0/xsyM6bjV61g3cpyxcX0zYszMMG5mGDf/ohZnpOrEGuJMfWHc/GPMzDBuZkzGzc/7fW917Orq0qWXXqrTTz9dZ5xxhm6++Wb19fVp+fLlkqRLLrlEM2fO1Lp16yRJV111lc4880x9+ctf1rnnnqsf/OAHevDBB/VP//RPfr81AKAJEGcAAGEj1gBA8/Cd+Dr//PP14osvavXq1dq7d6/mzp2rO++802v2uGfPHsXjpT3ob3/72/X9739f1113nT796U/rjW98o37605/qrW99q72/BQAgMogzAICwEWsAoHkYNbdfsWLFuGXAW7duHfXaBz7wAX3gAx8w+VYAgCZEnAEAhI1YAwDNobLjQQAAAAAAAIAGQ+ILAAAAAAAAkUTiCwAAAAAAAJFE4gsAAAAAAACRROILAAAAAAAAkUTiCwAAAAAAAJFE4gsAAAAAAACRROILAAAAAAAAkZSs9Q1UwnEcSVJPT4/va7PZrPr7+9XT06NUKmX71iKLcTPDuPnHmJkJOm7u89R9vja7IHFG4ufYBGNmhnEzw7j5R5yxizhTG4ybf4yZGcbNTJBx8xNnGiLx1dvbK0nq7Oys8Z0AQLT09vbqiCOOqPVt1BxxBgDCQZwpIM4AQDgqiTMxpwGWYfL5vJ5//nlNmTJFsVjM17U9PT3q7OzUs88+q46OjpDuMHoYNzOMm3+MmZmg4+Y4jnp7e3XssccqHmfXe5A4I/FzbIIxM8O4mWHc/CPO2EWcqQ3GzT/GzAzjZibIuPmJMw1R8RWPx3XccccF+oyOjg5+AA0wbmYYN/8YMzNBxo0V+BIbcUbi59gEY2aGcTPDuPlHnLGDOFNbjJt/jJkZxs2M6bhVGmdYfgEAAAAAAEAkkfgCAAAAAABAJEU+8ZVOp7VmzRql0+la30pDYdzMMG7+MWZmGLf6wv8f/jFmZhg3M4ybf4xZfeH/DzOMm3+MmRnGzUy1xq0hmtsDAAAAAAAAfkW+4gsAAAAAAADNicQXAAAAAAAAIonEFwAAAAAAACKJxBcAAAAAAAAiKZKJr89//vN6+9vfrvb2dk2dOrWiaxzH0erVq3XMMceora1NCxcu1O9///twb7TOvPTSS7rooovU0dGhqVOn6sMf/rAOHjx42Gve8573KBaLjfjf5ZdfXqU7ro3169dr1qxZam1t1fz587V9+/bDvv9HP/qRTjzxRLW2tuptb3ubNm/eXKU7rR9+xmzTpk2jfqZaW1ureLf14Ze//KXOO+88HXvssYrFYvrpT3864TVbt27VaaedpnQ6rTe84Q3atGlT6PfZrIgzZogzlSHOmCHW+EOcqX/EGv+IM5UhzpghzvhTT3EmkomvoaEhfeADH9AVV1xR8TVf/OIX9bWvfU0bNmzQAw88oEmTJmnJkiUaHBwM8U7ry0UXXaRHH31U3d3d+vnPf65f/vKX+uhHPzrhdZdddpleeOEF739f/OIXq3C3tXH77berq6tLa9as0UMPPaQ5c+ZoyZIl2r9//5jvv//++3XBBRfowx/+sB5++GEtW7ZMy5Yt03/9139V+c5rx++YSVJHR8eIn6lnnnmmindcH/r6+jRnzhytX7++ovc//fTTOvfcc3XWWWdp586duvrqq/WRj3xEd911V8h32pyIM2aIMxMjzpgh1vhHnKl/xBr/iDMTI86YIc74V1dxxomwf/7nf3aOOOKICd+Xz+edGTNmODfeeKP32iuvvOKk02nn//yf/xPiHdaP3/3ud44k5z//8z+91/7t3/7NicViznPPPTfudWeeeaZz1VVXVeEO68MZZ5zhXHnlld7XuVzOOfbYY51169aN+f4PfvCDzrnnnjvitfnz5zv/63/9r1Dvs574HbNKf2+biSTnJz/5yWHf86lPfcp5y1veMuK1888/31myZEmIdwbiTOWIM5Uhzpgh1gRDnKlvxJrKEGcqQ5wxQ5wJptZxJpIVX349/fTT2rt3rxYuXOi9dsQRR2j+/Pnatm1bDe+serZt26apU6fq9NNP915buHCh4vG4HnjggcNe+73vfU/Tpk3TW9/6Vq1atUr9/f1h325NDA0NaceOHSN+TuLxuBYuXDjuz8m2bdtGvF+SlixZ0jQ/VyZjJkkHDx7U61//enV2duov//Iv9eijj1bjdhtas/+s1TviDHGmEsQZM8Sa6uBnrf41e6whzkyMOGOGOFMdYf6sJQN/QgTs3btXkjR9+vQRr0+fPt37s6jbu3evjj766BGvJZNJHXnkkYcdgwsvvFCvf/3rdeyxx+q3v/2trr32Wj3xxBP6l3/5l7BvueoOHDigXC435s/J448/PuY1e/fubeqfK5Mxe/Ob36yNGzfqlFNO0auvvqovfelLevvb365HH31Uxx13XDVuuyGN97PW09OjgYEBtbW11ejOIBFnJOJMJYgzZog11UGcqX/NHmuIMxMjzpghzlRHmHGmYSq+Vq5cOao53KH/G++HrpmFPW4f/ehHtWTJEr3tbW/TRRddpO985zv6yU9+oj/84Q8W/xZoJgsWLNAll1yiuXPn6swzz9S//Mu/6KijjtI//uM/1vrWEHHEGTPEGTQiYg1qhVjjH3EGjYg4U18apuLr//v//j/99V//9WHfc/zxxxt99owZMyRJ+/bt0zHHHOO9vm/fPs2dO9foM+tFpeM2Y8aMUY35hoeH9dJLL3njU4n58+dLknbt2qUTTjjB9/3Ws2nTpimRSGjfvn0jXt+3b9+4YzRjxgxf748akzE7VCqV0qmnnqpdu3aFcYuRMd7PWkdHB6vwFSLOmCHO2EOcMUOsqQ7ijB3EGv+IM/YQZ8wQZ6ojzDjTMImvo446SkcddVQonz179mzNmDFDW7Zs8YJCT0+PHnjgAV+nqNSjSsdtwYIFeuWVV7Rjxw7NmzdPknTPPfcon897D/9K7Ny5U5JGBNuoaGlp0bx587RlyxYtW7ZMkpTP57VlyxatWLFizGsWLFigLVu26Oqrr/Ze6+7u1oIFC6pwx7VnMmaHyuVyeuSRR7R06dIQ77TxLViwYNTR0s30s2YDccYMccYe4owZYk11EGfsINb4R5yxhzhjhjhTHaHGmcDt8evQM8884zz88MPO2rVrncmTJzsPP/yw8/DDDzu9vb3ee9785jc7//Iv/+J9/YUvfMGZOnWq87Of/cz57W9/6/zlX/6lM3v2bGdgYKAWf4WaOPvss51TTz3VeeCBB5z77rvPeeMb3+hccMEF3p//8Y9/dN785jc7DzzwgOM4jrNr1y7nM5/5jPPggw86Tz/9tPOzn/3MOf744513v/vdtforhO4HP/iBk06nnU2bNjm/+93vnI9+9KPO1KlTnb179zqO4zgXX3yxs3LlSu/9//Ef/+Ekk0nnS1/6kvPYY485a9ascVKplPPII4/U6q9QdX7HbO3atc5dd93l/OEPf3B27Njh/NVf/ZXT2trqPProo7X6K9REb2+v9+yS5Nx0003Oww8/7DzzzDOO4zjOypUrnYsvvth7/1NPPeW0t7c7n/zkJ53HHnvMWb9+vZNIJJw777yzVn+FSCPOmCHOTIw4Y4ZY4x9xpv4Ra/wjzkyMOGOGOONfPcWZSCa+Lr30UkfSqP/de++93nskOf/8z//sfZ3P553rr7/emT59upNOp50///M/d5544onq33wN/elPf3IuuOACZ/LkyU5HR4ezfPnyEYH16aefHjGOe/bscd797nc7Rx55pJNOp503vOENzic/+Unn1VdfrdHfoDq+/vWvO6973euclpYW54wzznB+/etfe3925plnOpdeeumI9//whz903vSmNzktLS3OW97yFueOO+6o8h3Xnp8xu/rqq733Tp8+3Vm6dKnz0EMP1eCua+vee+8d8znmjtWll17qnHnmmaOumTt3rtPS0uIcf/zxI55xsIs4Y4Y4UxnijBlijT/EmfpHrPGPOFMZ4owZ4ow/9RRnYo7jOMHrxgAAAAAAAID60jCnOgIAAAAAAAB+kPgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+AIAAAAAAEAkkfgCAAAAAABAJJH4AgAAAAAAQCSR+ALG8Pd///eKxWI6cODAhO8dHh7Wpz71KXV2dioej2vZsmXh3yAAoKERZwAAYSLOACUkvoCANm7cqBtvvFHvf//79e1vf1vXXHPNuO+99dZbdeaZZ2r69OlKp9OaPXu2li9frt27d1fvhgEADcVPnCmXzWZ18sknKxaL6Utf+lLIdwkAaFR+4sxf//VfKxaLjfrfiSeeWMU7BvxJ1voGgEZ3zz33aObMmfrKV74y4XsffvhhzZ49W+9973v1mte8Rk8//bRuvfVW/fznP9dvfvMbHXvssVW4YwBAI/ETZ8p9/etf1549e0K6KwBAVPiNM+l0Wt/85jdHvHbEEUeEcWuAFSS+gID279+vqVOnVvTeW265ZdRry5Yt0+mnn67vfOc7WrlypeW7AwA0Oj9xpvyaz3zmM7r22mu1evXqcG4MABAJfuNMMpnUhz70ofBuCLCMrY7AYRw4cEAf/OAH1dHRode+9rW66qqrNDg4KEnavXu3YrGY7r33Xj366KNeme/WrVt9fY9Zs2ZJkl555RW7Nw8AqHthxZmVK1fqzW9+MxMTAGhyYcWZXC6nnp6ekO8esIPEF3AYH/zgBzU4OKh169Zp6dKl+trXvqaPfvSjkqSjjjpKt912m0488UQdd9xxuu2223TbbbfppJNOmvBz//SnP2n//v168MEHtXz5cknSn//5n4f6dwEA1J8w4sz27dv17W9/WzfffLNisVg1/hoAgDoVRpzp7+9XR0eHjjjiCB155JG68sordfDgwWr8dQAjbHUEDmP27Nn62c9+Jkm68sor1dHRoVtuuUWf+MQndMopp+hDH/qQvvnNbyqRSPhaVZ85c6YymYwk6bWvfa2+9rWvadGiRaH8HQAA9ct2nHEcRx//+Md1/vnna8GCBRyeAgBNznacOeaYY/SpT31Kp512mvL5vO68807dcsst+s1vfqOtW7cqmSTFgPpDxRdwGFdeeeWIrz/+8Y9LkjZv3hzoc//t3/5Nmzdv1pe//GW97nWvU19fX6DPAwA0JttxZtOmTXrkkUf0D//wD4HvDQDQ+GzHmXXr1ukLX/iCPvjBD+qv/uqvtGnTJn3+85/Xf/zHf+jHP/5x4PsFwkDiCziMN77xjSO+PuGEExSPxwOvoJ911lk655xz1NXVpR/96Edau3atvvGNbwT6TABA47EZZ3p6erRq1Sp98pOfVGdnp6U7BAA0srDmM+WuueYaxeNx/eIXv7D2mYBNJL4AH8LolXLCCSfo1FNP1fe+9z3rnw0AaCxB4syXvvQlDQ0N6fzzz9fu3bu1e/du/fGPf5Qkvfzyy9q9e7eGhoZs3SoAoAGFMZ9pa2vTa1/7Wr300kvWPxuwgcQXcBi///3vR3y9a9cu5fN57yRGWwYGBvTqq69a/UwAQP2zGWf27Nmjl19+WW95y1s0e/ZszZ49W+9617skSTfccINmz56t3/3udzZuGwDQIKoxn+nt7dWBAwd01FFHWftMwCYSX8BhrF+/fsTXX//61yVJ55xzju/PGh4e1ssvvzzq9e3bt+uRRx7R6aefbnaTAICGZTPO/O3f/q1+8pOfjPjfP/7jP0qS/vqv/1o/+clPNHv27OA3DQBoGDbjzODgoHp7e0e9/tnPflaO4+jss882u0kgZBy5ABzG008/rfe+9706++yztW3bNn33u9/VhRdeqDlz5vj+rIMHD6qzs1Pnn3++3vKWt2jSpEl65JFH9M///M864ogjdP3114fwNwAA1DObcea0007TaaedNuI1t4fLW97yFi1btszCHQMAGonNOLN3716deuqpuuCCC3TiiSdKku666y5t3rxZZ599tv7yL//S9u0DVpD4Ag7j9ttv1+rVq7Vy5Uolk0mtWLFCN954o9Fntbe36yMf+Yjuvfde/fjHP9bAwICOPfZYXXDBBbruuuusb58EANQ/m3EGAIBD2YwzU6dO1V/8xV+ou7tb3/72t5XL5fSGN7xBN9xwgz7xiU8oHmdDGepTzHEcp9Y3AQAAAAAAANhGShYAAAAAAACRROILAAAAAAAAkUTiCwAAAAAAAJFE4gsAAAAAAACRROILAAAAAAAAkUTiCwAAAAAAAJGUrPUNVCKfz+v555/XlClTFIvFan07ANDwHMdRb2+vjj32WMXjrIEQZwDALuLMSMQZALDLT5xpiMTX888/r87OzlrfBgBEzrPPPqvjjjuu1rdRc8QZAAgHcaaAOAMA4agkzjRE4mvKlCmSCn+hjo4OX9dms1ndfffdWrx4sVKpVBi3F0mMmxnGzT/GzEzQcevp6VFnZ6f3fG12QeKMxM+xCcbMDONmhnHzjzhjF3GmNhg3/xgzM4ybmSDj5ifONETiyy0H7ujoMEp8tbe3q6Ojgx9AHxg3M4ybf4yZGVvjxnaLgiBxRuLn2ARjZoZxM8O4+UecsYs4UxuMm3+MmRnGzYyNcaskzrDhHgAAAAAAAJFE4gsAAAAAAACRROILAAAAAAAAkUTiCwAAAAAAAJFE4gsAAAAAAACRROILAAAAAAAAkeQ78fXLX/5S5513no499ljFYjH99Kc/nfCarVu36rTTTlM6ndYb3vAGbdq0yeBWAQAAAAAAgMr5Tnz19fVpzpw5Wr9+fUXvf/rpp3XuuefqrLPO0s6dO3X11VfrIx/5iO666y7fNwsAiD4WWAAAYSLOAEBz8Z34Ouecc/S5z31O73vf+yp6/4YNGzR79mx9+ctf1kknnaQVK1bo/e9/v77yla/4vlkAQPSxwAIACBNxBgCaSzLsb7Bt2zYtXLhwxGtLlizR1VdfHfa3BgA0oHPOOUfnnHNOxe8vX2CRpJNOOkn33XefvvKVr2jJkiVh3SYAoEERZwCguYSe+Nq7d6+mT58+4rXp06erp6dHAwMDamtrG3VNJpNRJpPxvu7p6ZEkZbNZZbNZX9/ffb/f65od42aGcfOPMTMTdNyiNN4ssAAAwkScAYDGFnriy8S6deu0du3aUa/ffffdam9vN/rM7u7uoLfly95+6Vd741o0M6+p6ap+a6uqPW5Rwbj5x5iZMR23/v5+y3dSO7VeYHGvK/9nPenLDOumX+zS0rdO17zXv6bWt+Op5zGrZ4ybGcbNPxZYSogz9tx639Oa2taiD8ybWZXvF5VxqybGzAzjZibIuPm5JvTE14wZM7Rv374Rr+3bt08dHR1jBglJWrVqlbq6uryve3p61NnZqcWLF6ujo8PX989ms+ru7taiRYuUSqX8/wUMnfKZX2ggm1fbkTN0y/vmVu372lKrcWt0jJt/jJmZoOPm/gd4swpjgUWqzwTuvz4T15bn4/rOr/foqwuGa307o9TjmDUCxs0M4+YfCyxmminOVOrAoPTFhwvTz9a9v1EiVr3v3cjjViuMmRnGzYzJuPmJM6EnvhYsWKDNmzePeK27u1sLFiwY95p0Oq10enSZVCqVMp4YB7nWxEA2L0na9WJfQ0/mqz1uUcG4+ceYmTEdtyiNda0XWKT6TuD+cNMOSX+SJC1durS2N1OmnsesnjFuZhg3/1hgKSHO2PG7F3qkh38tSVpw5p9r2uTwt8VEYdyqjTEzw7iZCTJufuKM78TXwYMHtWvXLu/rp59+Wjt37tSRRx6p173udVq1apWee+45fec735EkXX755frGN76hT33qU/qbv/kb3XPPPfrhD3+oO+64w++3bkhHTmqp9S0AQKTVywKLjevDkHdK/15v9ybV55g1AsbNDOPmHwssxBlbhvKlEq9XM3kd85rq/T0aedxqhTEzw7iZMRk3P++P+72hBx98UKeeeqpOPfVUSVJXV5dOPfVUrV69WpL0wgsvaM+ePd77Z8+erTvuuEPd3d2aM2eOvvzlL+ub3/xmpE9AyZfNMqpYwQsAkXDw4EHt3LlTO3fulFRaYHFjy6pVq3TJJZd477/88sv11FNP6VOf+pQef/xx3XLLLfrhD3+oa665pha3X3eG8/la3wIA1BXiTG282l/qx3Ogd6iGdwKg2fiu+HrPe94jx3HG/fNNmzaNec3DDz/s91s1rINDpR4q448UAGAsDz74oM466yzva3eryKWXXqpNmzaNu8ByzTXX6Ktf/aqOO+64yC+w+FFe8ZXPO4rHWZIB0NyIM7XRM1hKfL06QANwANVTl6c6Nrqesgd5ZjhXwzsBgMbDAotd5WPZNzSsKa2U3wNobsSZ2iifI5UnwQAgbL63OmJivYOliq+egfo7QQsA0DyGcqWtjuXxCQCAauopi0G9JL4AVBGJrxCUr2bwUAcA1NKIxRhiEgCgRsq3N1IcAKCaSHyFYOQkY/iwpdQAAISph4kGAKAOsNURQK2Q+ApB+YM8l3fUP0SfLwBA9TmOM2JrSQ/NhAEANVI+R2LrPYBqIvEVgkMnFjzYAQC1MJDNKVd2rGNvhsQXAKA2yquOWYgBUE0kvkJwaKKLUl4AQC0curWRrY4AgFqh4gtArZD4CsGhiS5WNAAAtUA8AgDUCw5bAVArJL5CcOgKBisaAIBaOPRkYSYaAIBa6aXiC0CNkPgKwagVdiYaAIAaOHRrIxMNAEAtOI4zsuKLCmQAVUTiKwSje3wx0QAAVB8LMQCAejCYzWu47LCVg0PDypd9DQBhIvEVAncF47WTWkZ8DQBANR268EJzewBALRy69d5xpN4MMQlAdZD4CoFb8TXzNW2SWGEHANSGu/AybXJxIYZ4BACoATf+HNGWUkuyMAU9NBkGAGEh8RUC98E+c2oh8UVPFQBALRCPAAD1wK1AntKaVEdrqvAaVcgAqoTEVwjcB7s70WCrIwCgFtxE13GvaZdEPAIA1Eavl/hKqaM1WXyNmASgOpK1voGoGczmNDSclyQd5211ZDUDAFB9bqLruLKt947jKBaL1fK2AABNxk1ydbQmNVjc6sgcCUC1UPFlmbutJBaTZhzhbi1hNQMAUH09h/SczOYcDWbztbwlAEATouILQC2R+LLMe6inkzqizd2/zkMdAFB97qRiekerEvFClRcN7gEA1ebOhzpG9PgiHgGoDhJflrkP8CmtKXW0FVYzKOMFANSCG5OOaEtpCivsAIAa6S1rbu/GI+ZIAKqFxJdl7kO9oy3lrWYwyQAA1MJYp2i9yilaAIAqc+dDheIA5kgAqovEl2U93kO9NMkYzOaVGc7V8rYAAE2o1Ey4vAqZiQYAoLpGVHyli/GIhRgAVULiyzKv4qs1pcmtyVGvAwBQDZnhnNfIvqMtpSlpeqoAAGqjp3xXjFvxlSEeAagOEl+WlTduTMRjmpx2e6qQ+AIAVE953JmcTnoVX8QjAEC1le+K8Xp8UfEFoEpIfFlW3uNLkndcLyvsAIBqKj9lOBGPlU7RYqsjAKDKSlsd6YMMoPpIfFnWM1iq+JIKD3eJFXYAQHWVThkuxCN3QYYVdgBAtfWOVfHF/AhAlSQnfgv8KF/NkORtLXmVii8AQBUdzIyMR6WJBvEIAFBdpT7ISWVzTvE14hGA6iDxZZnX46ttZMXXQZo3AgCqqPwErcI/i/GIFXYAQBU5juMtxnS0ppTNFxJfVCADqBa2OlpWatxYmGC4ze0PZnI1uycAQPNxJxnuCcNTvHjERAMAUD39QznlismuKa0pb0FmKJfXYJY5EoDwkfiy7NAVdnfCwQo7AKCaDhYXYtwFGOIRAKAW3MKAZDym1lRck1uSisVG/hkAhInEl2V9Q8UV9vShK+w81AEA1TNqIaYYj3qp+AIAVFF5PIrFYorHY15MYrsjgGog8WWZu5LuPswnsbUEAFAD3lbHQyu+WIgBAFRR7yGtYKRScUAfcyQAVUDiy6Lyxo2TD11hZ2sJAKCKer3EV/FUxzRbHQEA1dfjnujYVjpXrbQYQ0wCED4SXxZlhvPe8byjV9h5qAMAqserQD6052RmWI7j1Oy+AADNxdvqmC5VfFEcAKCaSHxZVJ7cmtRySI8vHuoAgCpyY5Ibh9xJRjbnKDOcr9l9AQCaS8+Au9WxvOKrkASjOABANZD4sshNbk1qSSgeLxxVQsUXAKAWDq34chdkJGISAKB6Ss3t6fEFoDZIfFl0aH8viTJeAEBt9B7S3L78FC2qkAEA1VJqbl+aI01KJySxEAOgOkh8WXToCVpS6QHPQx0AUE3u6Y1jLcYQkwAA1eIWAHSMiEepEX8GAGEi8WVRaVtJeePG0v51mgkDAKrl4FgTjVaqkAEA1TXmrhivOCBbk3sC0FxIfFl0aCNhqfRQz+VpJgwAqA7HccqqkEefokXFFwCgWsaKRxwABqCaSHxZ5PZTcfesS1J7KqFYrPjnPNgBAFWQGc4rmytUGZevsE9hhR0AUGV9Y8yRShVfuZrcE4DmQuLLor4xVjPi8Zgmt7DCDgCoHnehJRYrLMC4aG4PAKg2b1fMiOb2LMQAqB4SXxYdHBz9UJfKVjSYaAAAqsDbVtKSVDwe8173ThpmIQYAUCVuTJrUUlaBzNZ7AFVE4suisU51lEorGr2saAAAqqB02AoLMQCA2nJjzqQx+iATjwBUA4kvi3rHm2iwtQQAUEXuQsuhCzGssAMAqq1vjK2OHLYCoJpIfFnk7lGfdOhEo5UHOwCgeqj4AgDUg3zeUd9QoYH9iIovEl8AqojEl0V9xVNJpqTHqfjiwQ4AqILxtt67h6/Q4wsAUA19Q6V4M3mMxNdgNq9sLl/1+wLQXEh8WdQ77kSj2OOLFXYAQBWMdYKWRMUXAKC63MKAZDymdLI09Syv/upjMQZAyEh8WXRwsNhTZbyJBg91AEAVuAstU4oVXi56fAEAqsk70TGdVCxWOmW4JRn3EmEUBwAIG4kvi8bbWjKF5vYAgCry4hELMQCAGhpvfiSVqpLLt0MCQBhIfFnkNRM+dKsjEw0AQBWNG4/Yeg8AqKK+wyS+JlEcAKBKSHxZUn5iyagV9uJWExJfAIBqGLfHl7fVMVv1ewIANJ/ecU4ZlsoWY5gjAQiZUeJr/fr1mjVrllpbWzV//nxt3779sO+/+eab9eY3v1ltbW3q7OzUNddco8HBQaMbrlfjnVgi0UwYAFBdvW7PyUO33rdyihYAoHr6ynp8HWoyFV8AqsR34uv2229XV1eX1qxZo4ceekhz5szRkiVLtH///jHf//3vf18rV67UmjVr9Nhjj+lb3/qWbr/9dn36058OfPP1xF1dTyVGnlgi0UwYAPxigSWY8VbYyyceTDQANDPiTHW4xQGT04lRfzaFdjAAqsR34uumm27SZZddpuXLl+vkk0/Whg0b1N7ero0bN475/vvvv1/veMc7dOGFF2rWrFlavHixLrjgggmDS6NxJxCHnlgi0eMLAPxggSW48ZoJpxJxtabiI94DAM2GOFM9veP0nCx/rY94BCBkvhJfQ0ND2rFjhxYuXFj6gHhcCxcu1LZt28a85u1vf7t27NjhJbqeeuopbd68WUuXLg1w2/Wn93CNG1toJgwAlWKBJbjxenxJpb6TxCQAzYo4Uz2H2+o4iQNXAFTJ6CfQYRw4cEC5XE7Tp08f8fr06dP1+OOPj3nNhRdeqAMHDuid73ynHMfR8PCwLr/88sOukGQyGWUyGe/rnp4eSVI2m1U2668hr/t+v9f59Wpf4X4ntyRGfa/WpCOp0Ew47PuwpVrjFjWMm3+MmZmg41av4+0usKxatcp7rZIFlu9+97vavn27zjjjDG+B5eKLL67Wbded0qmOqVF/NqU1qQMHM1R8AWhKxJnqGq8CWWJXDIDq8ZX4MrF161bdcMMNuuWWWzR//nzt2rVLV111lT772c/q+uuvH/OadevWae3ataNev/vuu9Xe3m50H93d3UbXVWrnn2KSEhrq79XmzZtH/FlfVpKSGszm9f9+vlmJBjpLM+xxiyrGzT/GzIzpuPX391u+EzsacYHFva78n7XmViG3JpxR9zSppdBn5ZW+wZreb72NWaNg3Mwwbv5FdYGFOFNdvQNDkqS2VGzUvbcX+yL3DAyF9vdq1HGrJcbMDONmJsi4+bnGV+Jr2rRpSiQS2rdv34jX9+3bpxkzZox5zfXXX6+LL75YH/nIRyRJb3vb29TX16ePfvSj+ru/+zvF46OzQKtWrVJXV5f3dU9Pjzo7O7V48WJ1dHT4uWVls1l1d3dr0aJFSqVGr3zb0v/Qc9KTj6pzxlFauvS0EX82NJzXpx/8hSTpXX+2SFPbw7sPW6o1blHDuPnHmJkJOm7uf4BHQb0ssEj1kcAdzktDw4Xwvu2X96rtkEifORiXFNd9DzyogT841b/BQ9TDmDUixs0M4+Zf1BZYTBBnzP1hTyHmPP3k49rc89iIP9vzQqFw4Pe7n9Xmzc+Eeh+NNm71gDEzw7iZMRk3P3HGV+KrpaVF8+bN05YtW7Rs2TJJUj6f15YtW7RixYpxb+bQ5FYiUVhtdpyx/4M7nU4rnU6Pej2VShlPjINcW4mBbOHvMqVt9PdJpaR0Mq7McF6DOTXU5D7scYsqxs0/xsyM6bjV61g34gKLVF8J3Jf6hqQHtkqSlv3FOUrERx648v9efli/73lRbzjprVr63zprcIcF9TRmjYRxM8O4+RfVBRbiTHXdvu9B6aWX9N/nzdXSOceM+LPBh5/T/939qDqOPEpLl84L5fs36rjVEmNmhnEzE2Tc/MQZ31sdu7q6dOmll+r000/XGWecoZtvvll9fX1avny5JOmSSy7RzJkztW7dOknSeeedp5tuukmnnnqqt0Jy/fXX67zzzvMSYFFwuEbC7uuZg0PsYQeAw2jkBRYb19swlC+UfbelEmpNt4z68462wmsDWafm9yrVx5g1IsbNDOPmX9QWWIgz1dWXzUuSjmhPj7rvI9oL49M3lA/979Ro41YPGDMzjJsZk3Hz837fia/zzz9fL774olavXq29e/dq7ty5uvPOO7198nv27BkRGK677jrFYjFdd911eu6553TUUUfpvPPO0+c//3m/37qu9R2mcaNUOLXkAIkvAJgQCyzB9A25J2iN/Xd3T9HqG8pV7Z4AoJ4QZ6rncKc6ugewHORURwAhM2puv2LFinFXRLZu3TryGySTWrNmjdasWWPyrRpGb2b8E7QkaVJLYaj7mWgAwGGxwBJMX6YQZ8aaZEhSezEh1sdCDIAmRZypHjepNdauGE51BFAtoZ/q2Czch/r4K+yF1/t5sAPAhFhgMecmtNpbxqlA9hZiiEcAmhdxpjoOX/FF4gtAdYzuxAgj/UPjP9Sl0gSErSUAgDB58ahlgq2OGeIRACA8juPo4ND47WCmlFV8jdcrDQBsIPFliTuBaB93osHWEgBA+Cba6ugmxKj4AgCEqX8oJzefNVbiy41TubyjwWITfAAIA4kvS/oPs5ohlVd8MdEAAIRnoub27WwtAQBUgbvgH49JranR0862VClOMUcCECYSX5a4WxjH76ni9vhiawkAIDylCuSx49Fkt+ckW+8BACHqLTv1PhaLjfrzRDzmJb+YIwEIE4kvS/ozla2ws5oBAAhTxRXIVHwBAELUlzl8PJLKDgDLEpMAhIfElyUTVXy5D3xWMwAAYTroneo4Ts9J71RH4hEAIDzuqfeTW8dPfJUWY4hJAMJD4suS/ol6qhQnIFR8AQDC1D9Bc/v2YpyixxcAIEwHM4c/9V4qzZE4cAVAmEh8WTA0nFc2VziyZPweX6ywAwDC5y6wjFfx5VUgD+U4Ph4AEJq+CbbeS6WkGBVfAMJE4suC8hWK8SYa7go7PVUAAGHqm2CF3Y1TubyjzDDHxwMAwuFtdaTiC0CNkfiywO3v1ZKMK5UYe0ip+AIAVIMbkyaNU4FcXplMTAIAhGWiHshSKVb1EY8AhIjElwXeiY7jVHtJZT2+qPgCAITIXTVvH6fnZCIeU2uqEP6JSQCAsEx06r1UilX9xCMAISLxZUFFqxnu/nXKeAEAIXL7pBxua8lkYhIAIGRUfAGoFyS+LKhoNcPdv07jRgBAiNwqrvF6Thb+jGbCAIBw9XuJLyq+ANQWiS8LKlnNKF9d5xQtAEBY+ifo8SXRTBgAEL7+CU4Zlqj4AlAdJL4scB/qh9+/Xnio5x1xihYAIBSO43jbF8c71VEqW4yh4gsAEJL+CooDWIgBUA0kvixwJw6He6i3pUpJMZoJAwDCMJDNyS0qrmQxhngEAAhLJcUBk1iIAVAFJL4s8B7qhynjTcRjXvKL4+MBAGFwJw6x2MgFl0NNYoUdABAyd85zuHhExReAaiDxZYFX8XWYbSVSabWDU7QAAGFwK7gmtSQVi8XGfV87PVUAACFzD/U63NZ7enwBqAYSXxb0Zyeu+JI4RQsAEK6+ChoJS9JkTtECAITMnSO1caojgBoj8WVBfwU9vgp/Xqz44sEOAAiBd6LjBBXIboXyQRZiAAAh8Sq+DjNHcv+MVjAAwkTiy4K+Cho3Fv7cfbCT+AIA2HcwU1nFFz2+AABhK53qeLjm9rSCARA+El8W+K/4YkUDAGBfJf1UJHp8AQDClc87GshOnPhy41E/8yMAISLxZUGlFV+TqfgCAISor4JThqWyeMTWewBACNykl3T44gA3KTaUy2toOB/6fQFoTiS+LCiV8bLCDgCoHbeH5ESnDLvNhA+S+AIAhMBdiInFpNbU+FPO8vnTAHMkACEh8WVB+fHxhzOJU0sAACFyF2ImTxSPaCYMAAiRm8RqTyUUi8XGfV9LMq5UovDn9PkCEBYSXxZ4FV8TbHWk4gsAEKZSxVdlh60wyQAAhMHtaTxRBbJU1ueLmAQgJCS+LOgfqrDii1O0AAAhqrQC2e2pQjNhAEAY3PnORKcMS+VzJGISgHCQ+LLAW9GY4MHurnhwqiMAIAx9FVYgU/EFAAhTpT2QJeZIAMJH4iugXNlRvRMdH++uZvTR4wsAEAK3p0qlFch9mWE5jhP6fQEAmotZxRdzJADhIPEV0Mijeius+OKhDgAIgTtpaEtVFo/yjpTh+HgAgGWliq+JE1/0QQYQNhJfAbknNCbiMaWThx9O9q8DAMLkxpe2CSYa5Ykxjo8HANjW5yPxxcn3AMJG4iug8of64Y7qlUoTDSYZAIAwDGYrm2gk4jG1FBdr+rPEJACAXQMVHv4lUfEFIHwkvgLyjo6vYDXDXYEfYJIBAAiBV/E1wVZHqRS3WIwBANjmNqqfqAJZouILQPhIfAXkNbavYDWjjUkGACBElW51lKhCBgCEp9LDvyQqvgCEj8RXQO6EobWS1fVU4aFOxRcAIAylrY6VL8ZwihYAwDZ3V0wlFcjlJw0DQBhIfAXkZ3W9taUw3APZHMfHAwCs87PV0av4YjEGAGCZWxzgbmM8nLYWigMAhIvEV0Du6rqfSYbD8fEAAMscx/EmDZUsxtDjCwAQlr5iNXFbJRXIqVJxAACEgcRXQH4mGRwfDwAIy2C2tKBSUUxihR0AEBK3AnmSjwPABpkfAQgJia+ABnxsK0km4mpJcHw8AMC+8l5dlVUhF+MREw0AgGVubGmvpB0MW+8BhIzEV0ADPrY6SpzsCAAIhxuP0sm4EvHYhO93G+APMtEAAFhWSnxVfqojCzEAwkLiK6ABH83tJY6PBwCEw288clfYmWgAAGxzq5Arqfhy50csxAAIC4mvgPz0+JLKmgnzYAcAWOTGlfYKK5DdeETiCwBgm5+Kr7YWmtsDCBeJr4D8HB0vla+wD0/wTgAAKtdvWIHMCjsAwLb+TOUVX63siAEQMhJfAQ367PHlPvyZaAAAbPK99b6FhRgAgH2O43gHeVWS+HKrwkh8AQgLia+ATCcalPICAGwqbXWceFuJVNZzMpsP7Z4AAM0nM5yX4xT+vT1dwVZHTnUEEDISXwH1+z3VkWbCAIAQuHGl1W/PSSq+AAAWle9saU1OPN1050fDeUfZHIsxAOwj8RXQoGnFF4kvAIBFbgKr0ub2VCADAMLgxpVUIqZkYuLpZmtL6T3EJABhIPEV0IBhxReJLwCATQM++qlIVCADAMLhznNaK5wftSTiSsRjI64FAJtIfAXkJb7o8QUAqCH/Wx1pJgwAsG+w2Duy0sRXLBajOABAqEh8BeQ1t6fHFwCghkrN7StdiImPuA4AABv87oiRSkkyYhKAMJD4CshvxZe7BWWQhzoAwCJ3IabyrY6Fii8WYgAANg0aJL5YjAEQJqPE1/r16zVr1iy1trZq/vz52r59+2Hf/8orr+jKK6/UMccco3Q6rTe96U3avHmz0Q3XG78VX61UfAHAhIgz/vnd6ugu2AwSjwA0IeJMeNzEV2uq8qlme4rt9wDCk/R7we23366uri5t2LBB8+fP180336wlS5boiSee0NFHHz3q/UNDQ1q0aJGOPvpo/fjHP9bMmTP1zDPPaOrUqTbuv6byeceg4qv4UGc1AwDGRJwx43ero1sZ1p/NyXEcxWKx0O4NAOoJcSZcA1l/ze2l0qINiS8AYfCd+Lrpppt02WWXafny5ZKkDRs26I477tDGjRu1cuXKUe/fuHGjXnrpJd1///1KpVKSpFmzZgW76zqRGc57/15xj69iGS9bHQFgbMQZM14FcoULMe6EJJd3lM05akmS+ALQHIgz4fIbjySpLcVWRwDh8ZX4Ghoa0o4dO7Rq1SrvtXg8roULF2rbtm1jXvOv//qvWrBgga688kr97Gc/01FHHaULL7xQ1157rRKJsR+GmUxGmUzG+7qnp0eSlM1mlc1m/dyy936/11Wip3/I+/eE8hV9j2LeS32Z4VDuyZYwxy3KGDf/GDMzQcetXse7WnEmivqHhiVJbS2VhfbyXmADQzm1JGn7CSD6iDPhGywWB7Qm/SS+aG4PIDy+El8HDhxQLpfT9OnTR7w+ffp0Pf7442Ne89RTT+mee+7RRRddpM2bN2vXrl362Mc+pmw2qzVr1ox5zbp167R27dpRr999991qb2/3c8ue7u5uo+sO56WMJCWVijm6685/q+iax16JSUpo34GXG6IvQBjj1gwYN/8YMzOm49bf32/5TuyoVpyxucDiXlf+z1pwE18tcafi+0jGYxrOO3q1f1DtqTDvbrR6GLNGxLiZYdz8i+oCC3EmfH2DheKAdDJW8f22FhdfDg4MWf07NtK41QvGzAzjZibIuPm5xvdWR7/y+byOPvpo/dM//ZMSiYTmzZun5557TjfeeOO4gWLVqlXq6uryvu7p6VFnZ6cWL16sjo4OX98/m82qu7tbixYt8kqTbdm1/6D00P2a1NqipUvPquiao3a/rA2P/adSbZO0dOk7rd6PTWGOW5Qxbv4xZmaCjpv7H+BRYBJnwlhgkWqbwN3/p4SkmH778A5lnnIquiYVS2hYMd31i3t0dFu49zcekt5mGDczjJt/UVtgMUGc8ee3fyws9L/4wnPavPnZiq750/64pLh2PvKoXvvSf1m/p0YYt3rDmJlh3MyYjJufOOMr8TVt2jQlEgnt27dvxOv79u3TjBkzxrzmmGOOUSqVGlEGfNJJJ2nv3r0aGhpSS0vLqGvS6bTS6fSo11OplPHEOMi14xl2CisTbS2Jij+7o73w9xrM5htikh/GuDUDxs0/xsyM6bjV61hXK87YXGCR6iOBe+Pjv5IGBvSedy7QqZ1TK7rm8//17xrozei/LXin3nKs/793EPUwZo2IcTPDuPkX1QUW4kz4Huv+vfTs03rjCbO0dOmJFV3zwP/7nba/+Ee9/oQ3aumfvcHavTTSuNULxswM42YmyLj5iTO+El8tLS2aN2+etmzZomXLlkkqrIBs2bJFK1asGPOad7zjHfr+97+vfD6veLyQKHryySd1zDHHjBkkGol3oqOfE0uK73W3pAAASqoVZ8JYYLFxfRCD2UJPlcmt6Yrvwe3zNezEanbfJL3NMG5mGDf/orbAQpwJXyZXqDqelK78XielC+8byoXzs9MI41ZvGDMzjJsZk3Hz837fnWy7urp066236tvf/rYee+wxXXHFFerr6/NORbnkkktGNIu84oor9NJLL+mqq67Sk08+qTvuuEM33HCDrrzySr/fuu6UGglXnvhyJxnuBAUAMBJxxkzGOz6+8tBeWoyhmTCA5kGcCdegQXGAezAL8QhAGHz3+Dr//PP14osvavXq1dq7d6/mzp2rO++802sQuWfPHm8lRJI6Ozt111136ZprrtEpp5yimTNn6qqrrtK1115r729RI0YP9eJ7h3J5DefySiY4RQsAyhFnzAwOu4kv/1XIg5yiBaCJEGfC5S7w+4lHnOoIIExGze1XrFgxbinw1q1bR722YMEC/frXvzb5VnXN2+roo+KrPABkhkl8AcBYiDP+5PKOssWtJf4SX4UYlBmmChlAcyHOhGegWLXV6mOO1FaMRyS+AISBrEsAbimun4qvdLI05KywAwBsKI8nJlsdiUcAAFtM+iC7hQSDbHUEEAISXwF4qxk+HurxeEwtxSqvQVbYAQAWlFdstSZ9VHwV30s8AgDYMmDQc5IeXwDCROIrAHei4eehLklpd2sJK+wAAAvciq2WRFzxeKzi64hHAADbMgH6ILPVEUAYSHwFUDpBq/KHevn7OdkRAGCDm/hK+1yI8Sq+mGgAACwx2uroJr6o+AIQAhJfAbhbQ8r7dlXCfb97AhcAAEGYnKBVeD/N7QEAdg14izEmh60wPwJgH4mvAIJWfGWo+AIAWOAupPhdiKG5PQDANncxxk/FFztiAISJxFcAGcOKL3dFg4ovAIANg4YLMV4FMhMNAIAl7smM7kmNlWBHDIAwkfgKwHyi4VZ88WAHAASXyZoetkLFFwDALpMeX+yIARAmEl8BBK34oqcKAMAGbyEmaXjYCvEIAGBBNpfXcN6R5G8xJl22I8ZxnFDuDUDzIvEVwKBB40apVPHFCjsAwAZ3IcW4uT3xCABgQfn8xk9McudHjiMN5ViMAWAXia8AAvf4opQXAGBBaeu9z3iUpOILAGCPu80xFvM3RyqPX+yKAWAbia8ATHt8uRMNjusFANhgXIHsLcQQjwAAwXk9J5MJxWKxiq9rScTlvp2YBMA2El8BmFZ8pan4AgBY5FZs+e7xxWErAACLvMb2Pk50lKRYLObNqWhwD8A2El8BBD3VkdUMAIANxlsd3VO02FYCALBgYMj/iY6uUkxijgTALhJfAZj3+GKiAQCwx60gTvs+1ZGtjgAAe0pb7/1PM72+k1R8AbCMxFcA7kPZf8UXEw0AgD1BK76YZAAAbDDdei/RdxJAeEh8BeCW4VLxBQCoJTceGS/EsK0EAGBBxkLFF3MkALaR+AogQ8UXAKAOlCqQTSu+iEcAgOBMW8FIbL8HEB4SX4byeUdDuWA9vthaAgCwwbjiqzjJyAzn5TiO9fsCADSXUuLLYKsjPb4AhITEl6HyEty0z4lGqzfRYDUDABCcV/Hlu7l94f2OI28xBwAAU6atYKTyxRjmSADsIvFlqPyB3Orzwe6uZmRYzQAAWGB6ilZ5oowVdgBAUO78xm9hgMSuGADhIfFlyK34SsRjSib8bnWkmTAAwJ7SqY7+JhqpREyxWOHfM/RUAQAEFKTHF32QAYSFxJchb5Jh1LiRii8AgD3u6rjfiUYsFvOqvlhhBwAEFWSrozdH4lRHAJaR+DLkrWYYlPFyfDwAwKZBw+b2hWvoqQIAsCNIc3tOdQQQFhJfhmxUfPFQBwDY4FYQmyW+qPgCANhR6vFlstWxGI9YiAFgGYkvQzYqvijjBQDYUOrxFWAxhokGACCgYFsdi3MkFmIAWEbiy5B3ghYVXwCAGitVIQfYfk9MAgAEFGirY9Lt8UU8AmAXiS9DQY7qTXv71/NyHMfqfQEAmo870TDZ6phmqyMAwJJApzqWzZEAwCYSX4a8RsJGR/WWJiZDOR7sAABzw7m8hvOFRRSjrY5JmtsDAOzIuLtiAmy9Jx4BsI3El6EgFV/lExNWNAAAQQyW9YukuT0AoJZsbHUkHgGwjcSXoSAVXy2JuGKxwr9n6KkCAAigvDdXkGbC9PgCAAQVpLl9mngEICQkvgwFqfiKxWKc7AgAsMKdILQk44q5qyo+eMfHM9EAAAQUqMeX19ye+REAu0h8GQpS8SVxsiMAwI6hAJMMqez4eCYaAICAAh0AVoxjQ8QjAJaR+DJUeqibDSEVXwAAG9xDUswTX8UVdhZiAAABBdnq2ELiC0BISHwZKlV8+V/NkKj4AgDY4U4QWhJmId29joUYAEBQQbY6eokvTr0HYBmJL0NBK744tQQAYIOX+DKs+GKiAQCwJcipju5CDBVfAGwj8WXIfaibVnylkoUGxEM5Kr4AAOasJb6YaAAAAnK3zZsUB7TQCgZASEh8GQryUJfKVzQca/cEAGg+mRyJLwBAfbCy1XGYwgAAdpH4MhSkjFdiawkAwA5bPb6IRwCAIBzHsbPVkXgEwDISX4aCnFgiSS3FYMAKOwAgiKBbHTk+HgBgQ3nCymRXDPEIQFhIfBnKBO2pkij0+MqyogEACKCU+DLsOUkzYQCABeW9uYJsdcw70jBzJAAWkfgy5CasUqZbS1jRAABY4K6wG291ZOs9AMCCTNlp9SYxqbyggJgEwCYSX4YCn6LFCjsAwIKhAI2EJU7RAgDYUd4KJhaL+b6+PFnGHAmATSS+DGVzhdMYTVfYUzRvBABYYGshhq33AIAggpzoKEnJRFzxYr6MxBcAm0h8GQo80WCrIwDAAmtbHYlHAIAA3K2O6ZRZz0mJKmQA4SDxZchajy9W2AEAAQQ+bIXEFwDAgmzAhZjya5kjAbCJxJeh4Kc6MtEAAAQXtAI5zUIMAMACrwLZMB4Vri1UizFHAmATiS9DpYov/40bpVJAoKcKACCI4D2+mGQAAILLDgebH0llizHEJAAWkfgy5K5oGJ+iRcUXAMCCoVzhFC3jw1aShQkK8QgAEMRQwFYwEu1gAISDxJeh0ooGPVUAALVj61RH4hEAIAjv1PsgWx2JSQBCQOLLUNA97CkaNwIALBgKeHy8d4IW8QgAEEDQw78kigMAhMPoqbR+/XrNmjVLra2tmj9/vrZv317RdT/4wQ8Ui8W0bNkyk29bNxzH8VY0qPgCAPuaPc74EXQhprznpOM41u4LAOodscYuK6c6uosxzJEAWOT7qXT77berq6tLa9as0UMPPaQ5c+ZoyZIl2r9//2Gv2717tz7xiU/oXe96l/HN1ovyKq3Ax8ezwg4AIxBn/PG2OhpONNLF5vaOIw3nSXwBaA7EGvsyFprbt7ArBkAIfP9X8k033aTLLrtMy5cv18knn6wNGzaovb1dGzduHPeaXC6niy66SGvXrtXxxx8f6IbrgVvtJZlPNNi/DgBjI874kwna46vsOmISgGZBrLGPrY4A6lXSz5uHhoa0Y8cOrVq1ynstHo9r4cKF2rZt27jXfeYzn9HRRx+tD3/4w/rVr3414ffJZDLKZDLe1z09PZKkbDarbDbr55a99/u97nD6B4dKX+Rzymb9P5jjKlwzNJyzem+2hDFuzYBx848xMxN03Op1vBsxzrjXlf+zmjLZwqmOCTlG3z9Wtr2xbzCjlnh1qr743TfDuJlh3PyLapyRqhNrohRnKjU4NCxJSsbN7zNVzJkNZMzG6VCNMG71hjEzw7iZCTJufq7xlfg6cOCAcrmcpk+fPuL16dOn6/HHHx/zmvvuu0/f+ta3tHPnzoq/z7p167R27dpRr999991qb2/3c8ue7u5uo+vG8uqQJCUVl6O77vw3o8/4r5dikhLaf+Blbd682dq92WZz3JoJ4+YfY2bGdNz6+/st34kdjRxnpNr8HO8/kJAU0yO/eVh61ixpFVdCecV0592/0BEtdu9vIvzum2HczDBu/kUtzkjViTVRijOV+u3zhfnNi3tf0ObNzxl9xp9ejEuKa+dvH1HHi7+1dm/1PG71ijEzw7iZMRk3P3HGV+LLr97eXl188cW69dZbNW3atIqvW7Vqlbq6uryve3p61NnZqcWLF6ujo8PXPWSzWXV3d2vRokVKpVK+rh3PH18ekHb8SulUQkuXLjH6jCm7DujWJx5S++QpWrr07Vbuy6Ywxq0ZMG7+MWZmgo6bu/Lc6Oohzki1/Tn+x93bpIO9WjD/v+ndb6x8DMqtfPAXGsjm9c4z36PO15hPyPzgd98M42aGcfOPOFNiEmuiFGcqteffn5Ke2aVZr+/U0qVvMfqMe/sf0cN/ekEnvPlELX3n7MD31AjjVm8YMzOMm5kg4+YnzvhKfE2bNk2JREL79u0b8fq+ffs0Y8aMUe//wx/+oN27d+u8887zXsvnC1v8ksmknnjiCZ1wwgmjrkun00qn06NeT6VSxj9EQa49VD5WKFtOJeLGn9nWUlhSz+aduv7FsDluzYRx848xM2M6bvU61o0cZ2xcb8LtO9mWDhAjE3ENZPPKK1H1++d33wzjZoZx8y9qcUaqTqyJUpyp1LBTaGqfTpnHktaWwvQ0l49Z/XvW87jVK8bMDONmxmTc/LzfV+fBlpYWzZs3T1u2bPFey+fz2rJlixYsWDDq/SeeeKIeeeQR7dy50/vfe9/7Xp111lnauXOnOjs7/Xz7uuEd1ZtMGH8GpzoCwGjEGf/cOJI2bG4vleJZlpgEoAkQa8Jhtbk98QiARb63OnZ1denSSy/V6aefrjPOOEM333yz+vr6tHz5cknSJZdcopkzZ2rdunVqbW3VW9/61hHXT506VZJGvd5ISkfHmx/Vm+bEEgAYE3HGn1JMMl+MISYBaDbEGvu84oAgia8E8QiAfb4TX+eff75efPFFrV69Wnv37tXcuXN15513es0h9+zZo3jc/GHXCLzVjACr6+5KiLtFBQBQQJzxx0t8Bar4YoUdQHMh1tjnzmtsxKMMiS8AFhk1t1+xYoVWrFgx5p9t3br1sNdu2rTJ5FvWlcywhdUMVtcBYFzNHmf8sJL4YoUdQBMi1tg1xFZHAHWKZQwD7mqGlYc6kwwAQACZnMWKL2ISAMBQdthi4ot4BMAiEl8GrK6u5/JyHLY7AgD8cxynrMcXW0sAALVTqvgy74NMBTKAMJD4MmCzcWPh80h8AQD8K48fthZjAAAwkbVQgcxhKwDCQOLLgM1GwhITDQCAmfL4kQ5y4AoTDQBAQEPDFtvBMD8CYBGJLwNWynjLE19MNAAABrJl8SPQRMM7aZh4BAAwY2NXTIp4BCAEJL4M2Kj4SsRjihfzZjzYAQAmsvlC/IjFCnHFFFtLAABBuXOaVIA5UrKY+BqmFQwAi0h8GchaOKpX4tQSAEAwNk4ZlohHAIDgShVf5gsxqeIiznCeeATAHhJfBmxUfEmlMmBO0QIAmBh2F2ICVHtJUrJ4fZaJBgDAkDtHCrIYk/S2OlLxBcAeEl8GbOxfl6SWZEISK+wAADPuxCAZMB6xtQQAENSQhSpkt4cyrWAA2ETiy4D7UA9e8cWDHQBgzt0KEuSwlfLrh4lHAABDXnFAkFOGWYgBEAISXwZslPFKUiLBHnYAgLmshaPjJSkZd4+PZ6IBADBjow8yW+8BhIHElwEbqxmSlIqzogEAMOdODJJBK76SVHwBAILJDgdvB+OeCMmOGAA2kfgyYKviK+lVfJH4AgD45y6cuAsppryFGOIRAMDQkFvxlQxyqiOFAQDsI/FlwF2BSAes+HK3lrCiAQAw4VZoBa34StJzEgAQkJ1THd14ROILgD0kvgy4qxnJgMfHl5oJ82AHAPg3ZKGfSvn1xCMAgCk3WRVoqyM9kAGEgMSXgWHbx8fzYAcAGLAWj2gmDAAIyOapjm6/MACwgcSXgVzePUUr4NaSOKW8AABz7sJJKmAFcpKKLwBAAPm84/WJDLbVsZj4ouckAItIfBlwVzMSgbc6UvEFADCX9Sq+LG29Jx4BAAyUVwwHKQ5wF3I4ZRiATSS+DHgVXwFP0aJ5IwAgiKylHl+lw1aIRwAA/4aGyxNfwbc65p3SnAsAgiLxZcAtvQ1a8eVONHioAwBMuFsTAye+EqywAwDMlS+cBGluX17BzEnDAGwh8WXA1vHxKSYaAIAA3K0l1k4ZZiEGAGAgW3bqfTxATCpfyCEmAbCFxJcB9yGcDLjVMUFzewBAANYqvorxbIhTtAAABtz4EXxHTOl6igMA2ELiy4C9ii+a2wMAzJV6fNmKRyzEAAD8y1k40VEqJM5ixZA2ROILgCUkvgzkvIovOysaVHwBAEyUTnUMFs7Zeg8ACMLbERNwISYWi3kHiA0zRwJgCYkvA7YmGu71PNQBACaGLVV8ufGIhRgAgAlbhQFS+YErxCQAdpD4MuCV8lprJswKOwDAv6ylrSVuPCMeAQBMuPEjaI8vqRTTssQkAJaQ+DKQtfRgd5sJs8IOADBROkWLCmQAQO3kLB3+JZWKA7JsvwdgCYkvA96D3VJPlRyrGQAAA/a2OhYnGcQjAIABt8eXjYqvJD2+AFhG4suA+xAO3Nw+QXN7AIC5Us/JgFvvmWQAAAIIo8cXFV8AbCHxZcDdwx50ouGtZrDCDgAw4MaPoD2+WIgBAAThJqlsVHy1cOAKAMtIfBkoVXzZOj6ehzoAwL/ssKXm9hy2AgAIIGdzq6M3RyImAbCDxJcBr5kwx8cDAGrI7ckVeOs9Wx0BAAEMWzplWCo7ACxPTAJgB4kvA7b2sCc5Ph4AEIBXgWxpq+MQq+sAAAO5nL2Kr1TSXYwhJgGwg8SXgaylUx29xBcr7AAAA24FckvACmS3nwqTDACAiWGLze1TcZrbA7CLxJcBaxVf3lZHHuoAAP9Kx8cHrfgqXJ93pDxbSwAAPtns8eV+BlMkALaQ+PLJcRxriS+3mXCOSQYAwEDem2gE+5zynpVZtt8DAHyydep9+WfQDgaALSS+fBouS1IF3+pI40YAgLmcU4gf8VjAhZiyijG23wMA/MpZqkAu/wyKAwDYQuLLp/IJQfCtjhzVCwAwZ2trSfkKPYkvAIBf3mErFrY6lg4AIx4BsIPEl0/lJbdBS3lTCY6PBwCYKxZ8BU98lV3P1hIAgF/DofT4Yo4EwA4SXz6NrPiyc6oj/VQAACbcSUEs4FbHWCwmd67ibp8EAKBSObfHFxVfAOoQiS+fhr1JRvAVDSq+AABBuEmqRMDEl1RazGGFHQDglztHCtoDWSqr+KIdDABLSHz5NGxzNaO4VTLLQx0AYMDWqY6S5BYxsxgDAPDL1qn35Z9BxRcAW0h8+VRq3GhvNSPPthIAgAFbpzpKVHwBAMzZ7fFFPAJgF4kvn4Ytrma4W1NYzQAAmMiH0UyYxRgAgE9UfAGoZyS+fBoubksMeqKjVFbxxUMdAGDAq/jiFC0AQA25u2KsLMQkiEcA7CLx5VMYjRtZzQAAmHBbRNpobu/FJHp8AQB84lRHAPWMxJdPpR5fVHwBAGrL6lbHGH0nAQBmsl48sniqY54DwADYQeLLJ+9URwtbHd1mxPRTAQCYcJNUFgq+qEIGABjzenxZmCNR8QXANhJfPpWa2wcfuiT71wEAAbgLJza2OpZiEivsAAB/7O6KKZ7qyNZ7AJaQ+PLJfahbeKZ7ExUSXwAAE2FsdcyR9wIA+ESPLwD1jMSXT45j/+h4HuoAABNhnOo4TMUXAMCn4VB6fDFHAmCH0ZNp/fr1+v/bu//4uKo6/+Pvmclk0tCmBQvpD6oFQRCFFovtt/ijqIViWdauK2JhoVsRVqQrmF2VukqtfrUsIqJY7fqj4ipIcUX47tItxEhXkdpKKcsPaaVQqPxISuVH0qRNJjP3+8fk3pk0STPn3jM/7p3X8/HgUTK59+bOyfR+ej7nnM+ZPn26GhoaNGfOHG3ZsmXEY7///e/rXe96lw4//HAdfvjhmj9//iGPr3bu8zducQctitsDwGC1HGdMZEuwqyMdDQC1glhjDzW+AFQz48TXunXr1NLSohUrVuihhx7SjBkztGDBAu3Zs2fY4zdu3KjFixfrvvvu06ZNmzRt2jSdddZZev755wPffCV4o+sWOhkUtweAoWo9zpjI2FzqSEcDQA0h1tjVbzMeUXMSgGXGia8bbrhBl156qZYuXaqTTjpJa9asUWNjo9auXTvs8bfccos+8YlPaObMmTrxxBP1gx/8QNlsVm1tbYFvvhKy3rKS4NeiuD0ADFXrccaEzcGYOmYhA6ghxBq7vBlfFmtOMhADwJY6k4P7+vq0detWLV++3HstHo9r/vz52rRpU1HX6OnpUTqd1hFHHDHiMb29vert7fW+7uzslCSl02ml02mTW/aONz1v5Ov1S8plDINeM5vJSMoFClv3Z4vtdqsVtJs52syfoO1Wre0dxjjjnlf4Z7m4o+FOtj/wz3b7Kr19wa9VDP7u+0O7+UO7mYtqnJHKE2uiEmeK1ZfO9WvkZIPfo5OLbf39wa9V7e1WjWgzf2g3f4K0m8k5RomvvXv3KpPJqLm5edDrzc3N2r59e1HX+OxnP6spU6Zo/vz5Ix6zatUqrVy5csjr9957rxobG01u2dPa2urrvIM9+nJMUkKvvfaa1q9fH+haXWlJqlPWke6+e70sDNhbZ6vdag3tZo4288dvu/X09Fi+EzvCHGek8n+Oe3sTkmK6/7e/1U7/ty1Jeu3V3LX+sHWr0s+Ub5Sdv/v+0G7+0G7mohZnpPLEmqjEmWI990JcUlzbn/ij1r/yeKBrbX8x19967vnntX79n63cX7W2WzWjzfyh3fzx024mccYo8RXUtddeq9tuu00bN25UQ0PDiMctX75cLS0t3tednZ3eOvqmpiajn5lOp9Xa2qozzzxTyWTS9727kn/cI+14WEccPkELF84JdK1Xe9L6/IP3SZIWnH226hLVs8mm7XarFbSbOdrMn6Dt5o48R00l4oxUuc/xF7b9Wurv1xnz5unYIw8LdK1b2/+gp7te0YyZp2rhyZMs3eHI+LvvD+3mD+1mjjgzsmJiTVTiTLH+85Vt0ssvaeYpJ2vhaUcHutbe3+/WL5/ZrkmTJ2vhwhmBrlXt7VaNaDN/aDd/grSbSZwxSnxNnDhRiURCHR0dg17v6OjQpEmH/kfy9ddfr2uvvVa/+tWvdMoppxzy2FQqpVQqNeT1ZDLp+0MU5NxC8YHkVF0iHvh6hW8xXlenZF0i0PVKwVa71RrazRxt5o/fdqvWtg5znLFxvim3/EmqPvjPTSYGYlAseHwz+rn83feFdvOHdjMXtTgjlSfWRCXOFCur3NKV+mRd4Purd/tEsZi191qt7VbNaDN/aDd//LSbyfFGU4zq6+s1a9asQUUc3aKOc+fOHfG86667Tl/+8pe1YcMGnXbaaSY/supkBjYXidnYOr7gGhS4BwDijCmbuzrG2dURQI0g1tjXb7G4vdvPon8EwBbjpY4tLS1asmSJTjvtNM2ePVs33nijuru7tXTpUknSxRdfrKlTp2rVqlWSpH/913/VNddco1tvvVXTp09Xe3u7JGns2LEaO3asxbdSHt6ujhbqcRV2VHiwA0BOrccZE96ujhaCkttZYft4ALWAWGOXGztsDMS416B7BMAW48TX+eefr5deeknXXHON2tvbNXPmTG3YsMErDrl7927F4/mJZN/97nfV19enD33oQ4Ous2LFCn3xi18MdvcV4Ca+bD7UJRJfAOCq9ThjIuvO+LIwC9kNSQ7hCEANINbY5fZl4hbjUZb+EQBLfBW3X7ZsmZYtWzbs9zZu3Djo62eeecbPj6ha+RlfLHUEgFKp5ThjIj/jK/i13KUlhCMAtYJYY48bO6wsvffiEQEJgB3Vs41gSGQt1viKx2NyL0PiCwBgwnEcb3aWzRlfdDQAAKYci+Vg3MRXhnAEwBISX4a8pY4WHuq567gPdp7sAIDiFY6X2FlakruGQzwCABhyY5KVDcDixCMAdpH4MmRzqaOUf7Az4wsAYKIwbtgobh9nqSMAwCebfSRWxACwjcSXIff5a6OTIZH4AgD4U7gk0UZNlRhLHQEAPnl9JAtdpPyujsQjAHaQ+DKUtbh+XZLcy/BcBwCYKBwwsVPjixlfAAB/HIszvrx4lA18KQCQROLLWNbiVr2F16GfAQAwUVgb0saujtRUAQD45U4OsNFFYldHALaR+DJke6mjWFoCAPAha3nGFzVVAAB+ubOz7Mz4yv3J5l8AbCHxZch2cfv8LlpWLgcAqBGDljpS3B4AUEE2+0j5Gl+BLwUAkkh8GctkLdf4GrgOS0sAACYyBctKbGwfH2cGMgDAJ8dicft8jS/iEQA7SHwZch/qNpaVSNT4AgD4U7J4ROILAGAoX+PLwkAMuzoCsIzElyGbD3Upv6sjD3YAgImM5c1WYix1BAD4lF/qGPxacWpOArCMxJehjMWHupTvaJD3AgCY8BJfliI5Sx0BAH55Sx0tdJIS9I8AWEbiy5C3tMRS5ouOBgDADzdu2F7qyAA7AMCUzRlf7sQAdnUEYAuJL0NukUVrSx294vZWLgcAqBH5GV92B2Ko8QUAMOUOmtjoI3m7OjISA8ASEl+GbC91jDOVFwDggzfjy1JAytf4IiABAMzkZ3yxyzCA6kPiy1DW8lJHitsDAPzIZHN/stQRAFBpXo0vG8Xt4yx1BGAXiS9DjsXRDKmguL2VqwEAaoXtpY6JgX8RMBADADBld8aXu9Qx8KUAQBKJL2MZr8aXnevFmMoLAPChVMXtCUcAAFNuTLIRkhIsvQdgGYkvQ95SRzoaAIAKsrmDllRQ44u1jgAAQ1lvqWPwoMTEAAC2kfgy5C11tFZMePB1AQAoRql2dSTvBQAwZbMcjFtLOcNSRwCWkPgyZHupY5waXwAAH2zv6hhnaQkAwKeszeL23ooY4hEAO0h8GbK91NHb1ZEhdgCAAfu7Oub+pKMBADCVr/FlY8ZX7k92dQRgC4kvQzZ3LJEKljpauRoAoFbYXurodlboaAAATGUtroqh5iQA20h8GSpZMWE6GgAAA6Xa1ZF+BgDAlGOxuH2CeATAMhJfhrKWi9t7l+HBDgAwUKri9ix1BACYsjk5gJqTAGwj8WXIralia6kjI+wAAD/yxe3tXM9NoGXZRQsAYMjtytjoI8XdGl90kABYQuLLkGN5qaN3XaZ8AQAMlKrmJCPsAABT+eL2wa+V39Ux+LUAQCLxZcz+UkdmfAEAzDEDGQBQLbI2a3zF2WwFgF0kvgzZ7mjEqKkCAPDBXQKSsDQQk/BG2IlHAAAzjsVZyMxABmAbiS9Dtpc6MpUXAOCH7V0d6WgAAPzKz/gKfq1EQf+IwRgANpD4MkRNFQBANcjv6mjneix1BAD4la/xZaG4fcE1iEkAbCDxZShjcf26lA8O5L0AACbyuzraqvE1+LoAABTDcRyvL2MjJBXWUmZnRwA2kPgylLW81NG9DB0NAIAJb8aXreL2cQZiAADmCuOGjZhU2M+ijwTABhJfhpwSjbDzSAcAmLBd3D7mLXUkIgEAilcYN2zu6njwtQHALxJfhtyOho3164XXoXAjAMCEY3npPUsdAQB+FK5GjFnoXVLjC4BtJL4MZUvU0aCfAQAwkbG82Yp7nUzWyuUAADXC9oyvwmtQ4wuADSS+DOWXOtq5XkzsogUAMJdf6mjneu7SEmZ8AQBMDK7xFfx6hddgVQwAG0h8GbK/1DH3p0OVLwCAAdu7OtYNXKefkRgAgIFS1vhixhcAG0h8GbK/1JEZXwAAc7Z3dXQ7Gpksax0BAMXLFCS+bISkGDW+AFhG4stQ1vZSR6/GF091AEDxbO/qWBfPBbZ0hngEAChef0HcSMbtdJJYfg/AJhJfhrIlKibMMx0AYMIbiLE+44uABAAoXv/ArijxmBS3NBjDTsMAbCLxZchdAUKNLwBAJbm7L9rqZFDjCwDghxs36izN9pIKdxomJgEIjsSXIdsj7G4CjZIqAAAT+RnIdq5Xl6DGFwDAnLvU0Y0jNrAqBoBNJL4M2e5ouJfhmQ4AMJEtUY2vfmp8AQAMpAcGTOpsdZDE8nsAdpH4MuQ+e20tdWT9OgDAj4zlmpN0MgAAfrhxI2lr9y/ly8HQRwJgA4kvQ/ldHe0udWTKFwDAhPUZXwkSXwAAc+mBopO24lHhtUh8AbCBxJcht6Nh67nOjC8AgB+lmvFFcXsAgAl3ibzNGV/54vbWLgmghpH4MuT2B2x1NNwqX/QzAAAm3M6AvRpfzPgCAJjrd2t8laC4PZMDANhA4suQV9zeUkcj7q105KEOACie7aX3+RlfDK8DAIrn7epocamjeykGYwDYQOLLUMb6UkdmfAEAzOXjkd1dHelkAABMuEvk3ThigzsYw4QvADaQ+DLkWF7q6F2GpzoAwEB+xped67mdjHSGeAQAKJ5b3L4USx0z9JEAWODrn8urV6/W9OnT1dDQoDlz5mjLli2HPP7nP/+5TjzxRDU0NOjkk0/W+vXrfd1sNchaLibMjC8AGKqW40yxstZnfFHjC0BtIdbY4caNOpvF7QcuRY0vADYYP53WrVunlpYWrVixQg899JBmzJihBQsWaM+ePcMe/8ADD2jx4sW65JJLtG3bNi1atEiLFi3SY489FvjmKyG/i5alC7o1vnioA4Ak4kyxSrerIzW+AEQfscaedElqfA1MDmAwBoAFxomvG264QZdeeqmWLl2qk046SWvWrFFjY6PWrl077PHf/OY3dfbZZ+vTn/603vzmN+vLX/6y3va2t+nb3/524JuvBG+po7Xi9sz4AoBCtR5nimV9V8cEM74A1A5ijT3ero4WE18J+kgALKozObivr09bt27V8uXLvdfi8bjmz5+vTZs2DXvOpk2b1NLSMui1BQsW6M477xzx5/T29qq3t9f7urOzU5KUTqeVTqdNblnLfrZNDz2d0A07fquYhVHx517ZL0lyMhnjexmOMxAobvr1k/r3Tc8Evp4tjuOop8deu9UK2s0cbeaP225vnd2l108cZ3y+jedXKYQxztyyebd+9MCzZf8c793Xl/sfJ2vn95nNSMqN3J/xtfuCX28U/N33h3bzh3Yz57ZZz1F/1odOm2Z8frXGGak8scZmnHlyzz5dfsu2qv0M7+vtl5SrOWn79/6PP3tIY5IJ3+fzd98cbeYP7eaP4zialIjrTB/PDpPnjVHia+/evcpkMmpubh70enNzs7Zv3z7sOe3t7cMe397ePuLPWbVqlVauXDnk9XvvvVeNjY0mt6wduxN66UBMOrDf6LxDicccbX/oAb1oYWZz+pW4pLhe6UnrlZ5q+weC3XarHbSbOdrMn5g2/ua3mthgfmZPT4/927EgjHFmy3MxPftyQpX6HL+8e4fWrx++bUz0Z6XD6hLq7o/pmb+U6/PB331/aDd/aDdzMf3hfx9T455Hjc+s1jgjlSfW2Iwzz3VLz75cp2r/DMf37bVW96wxk+sjdXT2jnrs6Kq73aoTbeYP7ebHmPFSa2ur8XkmccYo8VUuy5cvHzSi0tnZqWnTpumss85SU1OT0bVef8or2nj/Jr397W9XXZ2dtzv18DGa1OSjpzmMs7OO/vhil3r7M1auZ0t/f7/+8Ic/WG23WkC7maPN/HHb7YPvf6/GjjF/Hrkjz7XKZpw59bUDumBvV0U+x01jkjr+qLHWrvfO9/Rp195ua9c7FP7u+0O7+UO7mXPb7G/OeremHmH+nCHO2Isz3b39mvG2V6r6M1yXiOstk8dZK3D/vrOy+uMLnYGL2/N33xxt5g/t5k9/f78e2/YHnXnmmUomk0bnmsQZo9/IxIkTlUgk1NHRMej1jo4OTZo0adhzJk2aZHS8JKVSKaVSqSGvJ5NJ48Z469GHa3eTNOeNRxqfWy6nTn9dpW9hiHQ6rb/sqO52q0a0mznazB+33caOafDVbtXa1mGMM6+fmNTk8Q2R+Bw3T0iqecJhZflZ/N33h3bzh3Yz57bZ1CPGRirOSOWJNTbjzIRkUnPeWFdTn+FkUpr9xiMDX4e/++ZoM39oN3/cdvPzbDQ53iglX19fr1mzZqmtrc17LZvNqq2tTXPnzh32nLlz5w46XspNYxvpeABA7SLOAABKjVgDALXFeA5eS0uLlixZotNOO02zZ8/WjTfeqO7ubi1dulSSdPHFF2vq1KlatWqVJOnKK6/UvHnz9PWvf13nnHOObrvtNj344IP63ve+Z/edAAAigTgDACg1Yg0A1A7jxNf555+vl156Sddcc43a29s1c+ZMbdiwwSv2uHv3bsXj+Ylkp59+um699VZ9/vOf1+c+9zkdf/zxuvPOO/XWt77V3rsAAEQGcQYAUGrEGgCoHb6qri1btkzLli0b9nsbN24c8tp5552n8847z8+PAgDUIOIMAKDUiDUAUBvsbLsBAAAAAAAAVBkSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIikukrfQDEcx5EkdXZ2Gp+bTqfV09Ojzs5OJZNJ27cWWbSbP7SbOdrMn6Dt5j5P3edrrQsSZyQ+x37QZv7Qbv7QbuaIM3YRZyqDdjNHm/lDu/kTpN1M4kwoEl9dXV2SpGnTplX4TgAgWrq6ujR+/PhK30bFEWcAoDSIMznEGQAojWLiTMwJwTBMNpvVCy+8oHHjxikWixmd29nZqWnTpunPf/6zmpqaSnSH0UO7+UO7maPN/Anabo7jqKurS1OmTFE8zqr3IHFG4nPsB23mD+3mD+1mjjhjF3GmMmg3c7SZP7SbP0HazSTOhGLGVzwe19FHHx3oGk1NTXwAfaDd/KHdzNFm/gRpN0bg82zEGYnPsR+0mT+0mz+0mznijB3Emcqi3czRZv7Qbv74bbdi4wzDLwAAAAAAAIgkEl8AAAAAAACIpMgnvlKplFasWKFUKlXpWwkV2s0f2s0cbeYP7VZd+H2Yo838od38od3M0WbVhd+HP7SbOdrMH9rNn3K1WyiK2wMAAAAAAACmIj/jCwAAAAAAALWJxBcAAAAAAAAiicQXAAAAAAAAIimSia+vfOUrOv3009XY2KgJEyYUdY7jOLrmmms0efJkjRkzRvPnz9eTTz5Z2hutMi+//LIuvPBCNTU1acKECbrkkku0b9++Q55zxhlnKBaLDfrv4x//eJnuuDJWr16t6dOnq6GhQXPmzNGWLVsOefzPf/5znXjiiWpoaNDJJ5+s9evXl+lOq4dJm918881DPlMNDQ1lvNvq8Jvf/EbnnnuupkyZolgspjvvvHPUczZu3Ki3ve1tSqVSOu6443TzzTeX/D5rFXHGH+JMcYgz/hBrzBBnqh+xxhxxpjjEGX+IM2aqKc5EMvHV19en8847T5dffnnR51x33XX61re+pTVr1mjz5s067LDDtGDBAh04cKCEd1pdLrzwQj3++ONqbW3Vf/3Xf+k3v/mNLrvsslHPu/TSS/Xiiy96/1133XVluNvKWLdunVpaWrRixQo99NBDmjFjhhYsWKA9e/YMe/wDDzygxYsX65JLLtG2bdu0aNEiLVq0SI899liZ77xyTNtMkpqamgZ9pp599tky3nF16O7u1owZM7R69eqijt+1a5fOOeccvec979HDDz+sq666Sh/72Md0zz33lPhOaxNxxh/izOiIM/4Qa8wRZ6ofscYccWZ0xBl/iDPmqirOOBH2ox/9yBk/fvyox2WzWWfSpEnO1772Ne+1V1991UmlUs7PfvazEt5h9fjjH//oSHL+8Ic/eK/993//txOLxZznn39+xPPmzZvnXHnllWW4w+owe/Zs54orrvC+zmQyzpQpU5xVq1YNe/yHP/xh55xzzhn02pw5c5x/+Id/KOl9VhPTNiv2720tkeT88pe/POQxn/nMZ5y3vOUtg147//zznQULFpTwzkCcKR5xpjjEGX+INcEQZ6obsaY4xJniEGf8Ic4EU+k4E8kZX6Z27dql9vZ2zZ8/33tt/PjxmjNnjjZt2lTBOyufTZs2acKECTrttNO81+bPn694PK7Nmzcf8txbbrlFEydO1Fvf+lYtX75cPT09pb7diujr69PWrVsHfU7i8bjmz58/4udk06ZNg46XpAULFtTM58pPm0nSvn379IY3vEHTpk3TBz7wAT3++OPluN1Qq/XPWrUjzhBnikGc8YdYUx581qpfrcca4szoiDP+EGfKo5SftbrAV4iA9vZ2SVJzc/Og15ubm73vRV17e7uOOuqoQa/V1dXpiCOOOGQbXHDBBXrDG96gKVOm6JFHHtFnP/tZ7dixQ3fccUepb7ns9u7dq0wmM+znZPv27cOe097eXtOfKz9tdsIJJ2jt2rU65ZRT9Nprr+n666/X6aefrscff1xHH310OW47lEb6rHV2dmr//v0aM2ZMhe4MEnFGIs4UgzjjD7GmPIgz1a/WYw1xZnTEGX+IM+VRyjgTmhlfV1999ZDicAf/N9KHrpaVut0uu+wyLViwQCeffLIuvPBC/fu//7t++ctf6qmnnrL4LlBL5s6dq4svvlgzZ87UvHnzdMcdd+jII4/Uv/3bv1X61hBxxBl/iDMII2INKoVYY444gzAizlSX0Mz4+qd/+if9/d///SGPOfbYY31de9KkSZKkjo4OTZ482Xu9o6NDM2fO9HXNalFsu02aNGlIYb7+/n69/PLLXvsUY86cOZKknTt36o1vfKPx/VaziRMnKpFIqKOjY9DrHR0dI7bRpEmTjI6PGj9tdrBkMqlTTz1VO3fuLMUtRsZIn7WmpiZG4YtEnPGHOGMPccYfYk15EGfsINaYI87YQ5zxhzhTHqWMM6FJfB155JE68sgjS3LtY445RpMmTVJbW5sXFDo7O7V582ajXVSqUbHtNnfuXL366qvaunWrZs2aJUn69a9/rWw26z38i/Hwww9L0qBgGxX19fWaNWuW2tratGjRIklSNptVW1ubli1bNuw5c+fOVVtbm6666irvtdbWVs2dO7cMd1x5ftrsYJlMRo8++qgWLlxYwjsNv7lz5w7ZWrqWPms2EGf8Ic7YQ5zxh1hTHsQZO4g15ogz9hBn/CHOlEdJ40zg8vhV6Nlnn3W2bdvmrFy50hk7dqyzbds2Z9u2bU5XV5d3zAknnODccccd3tfXXnutM2HCBOeuu+5yHnnkEecDH/iAc8wxxzj79++vxFuoiLPPPts59dRTnc2bNzv333+/c/zxxzuLFy/2vv/cc885J5xwgrN582bHcRxn586dzpe+9CXnwQcfdHbt2uXcddddzrHHHuu8+93vrtRbKLnbbrvNSaVSzs033+z88Y9/dC677DJnwoQJTnt7u+M4jnPRRRc5V199tXf87373O6eurs65/vrrnSeeeMJZsWKFk0wmnUcffbRSb6HsTNts5cqVzj333OM89dRTztatW52PfOQjTkNDg/P4449X6i1URFdXl/fskuTccMMNzrZt25xnn33WcRzHufrqq52LLrrIO/7pp592GhsbnU9/+tPOE0884axevdpJJBLOhg0bKvUWIo044w9xZnTEGX+INeaIM9WPWGOOODM64ow/xBlz1RRnIpn4WrJkiSNpyH/33Xefd4wk50c/+pH3dTabdb7whS84zc3NTiqVct73vvc5O3bsKP/NV9Bf/vIXZ/Hixc7YsWOdpqYmZ+nSpYMC665duwa14+7du513v/vdzhFHHOGkUinnuOOOcz796U87r732WoXeQXncdNNNzutf/3qnvr7emT17tvP73//e+968efOcJUuWDDr+9ttvd970pjc59fX1zlve8hbn7rvvLvMdV55Jm1111VXesc3Nzc7ChQudhx56qAJ3XVn33XffsM8xt62WLFnizJs3b8g5M2fOdOrr651jjz120DMOdhFn/CHOFIc44w+xxgxxpvoRa8wRZ4pDnPGHOGOmmuJMzHEcJ/i8MQAAAAAAAKC6hGZXRwAAAAAAAMAEiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARBKJL2AYX/ziFxWLxbR3795Rj+3v79dnPvMZTZs2TfF4XIsWLSr9DQIAQo04AwAoJeIMkEfiCwho7dq1+trXvqYPfehD+vGPf6xPfepThzw+m83qu9/9rmbOnKkxY8boda97nd773vfqf//3f8t0xwCAMDGJM7FYbMT/zjzzzDLeNQAgLEz7M7fffrv+z//5P5owYYJe97rXad68ebr77rvLdLeAubpK3wAQdr/+9a81depUfeMb3yjq+I9+9KO65ZZbdPHFF2vZsmXq7u7Wtm3btGfPnhLfKQAgjEzizE9+8pMhrz344IP65je/qbPOOqsUtwcACDmTOHPTTTfpk5/8pM455xxde+21OnDggG6++Wb91V/9lX7xi1/ogx/8YBnuGDBD4gsIaM+ePZowYUJRx95+++368Y9/rDvuuEN/8zd/U9obAwBEgkmc+bu/+7shr23cuFGxWEyLFy+2fGcAgCgwiTM33XST3v72t+s///M/FYvFJOUG9qdOnaof//jHJL5QlVjqCBzC3r179eEPf1hNTU163etepyuvvFIHDhyQJD3zzDOKxWK677779Pjjj3tLSTZu3Dji9W644QbNnj1bf/M3f6NsNqvu7u4yvRMAQDWyHWcO1tvbq1/84heaN2+ejj766BK9CwBAtbIdZzo7O3XUUUd5SS9Jampq0tixYzVmzJhSvx3AFxJfwCF8+MMf1oEDB7Rq1SotXLhQ3/rWt3TZZZdJko488kj95Cc/0Yknnqijjz5aP/nJT/STn/xEb37zm4e9Vmdnp7Zs2aK3v/3t+tznPqfx48dr7NixOvbYY3X77beX820BAKqEzTgznPXr1+vVV1/VhRdeWKq3AACoYrbjzBlnnKENGzbopptu0jPPPKPt27friiuu0GuvvaYrr7yyXG8LMMJSR+AQjjnmGN11112SpCuuuEJNTU36zne+o3/+53/WKaecor/7u7/TD37wAyUSiWGXlxR66qmn5DiObrvtNtXV1em6667T+PHj9c1vflMf+chH1NTUpLPPPrscbwsAUCVsxpnh3HLLLUqlUvrQhz5k+9YBACFgO85861vf0t69e/XJT35Sn/zkJyVJEydOVFtbm+bOnVvS9wL4xYwv4BCuuOKKQV//4z/+o6TcCLqpffv2SZL+8pe/6K677tLll1+uCy64QG1tbXrd616n//t//2/wGwYAhIrNOHOwzs5O3X333Vq4cGHRtVsAANFiO840NjbqhBNO0JIlS/Tzn/9ca9eu1eTJk/XBD35QO3fuDHy/QCkw4ws4hOOPP37Q12984xsVj8f1zDPPGF/LXfN+zDHHaM6cOd7rY8eO1bnnnquf/vSn6u/vV10dfy0BoFbYjDMH+8UvfqEDBw6wzBEAapjtOHPeeeeprq5O//mf/+m99oEPfEDHH3+8/uVf/kXr1q0LcrtASTDjCzBQWMTR1JQpUyRJzc3NQ7531FFHKZ1OU+weAGpckDhzsFtuuUXjx4/XX/3VX1m7JgAg3ILEmaefflobNmzQX//1Xw96/YgjjtA73/lO/e53vwt6e0BJkPgCDuHJJ58c9PXOnTuVzWY1ffp042tNmTJFkyZN0vPPPz/key+88IIaGho0btw4v7cKAAghm3Gm0Isvvqj77rtPf/u3f6tUKhXoWgCA8LIZZzo6OiRJmUxmyPfS6bT6+/t93SNQaiS+gENYvXr1oK9vuukmSdL73/9+X9c7//zz9ec//1mtra3ea3v37tVdd92l9773vYrH+SsJALXEdpxx3XbbbcpmsyxzBIAaZzPOHHfccYrH41q3bp0cx/Fef+655/Tb3/5Wp556arCbBUqEYkLAIezatUt//dd/rbPPPlubNm3ST3/6U11wwQWaMWOGr+stX75ct99+u/72b/9WLS0tGj9+vNasWaN0Oq2vfvWrlu8eAFDtbMcZ1y233KIpU6bojDPOsHOjAIBQshlnjjzySH30ox/VD37wA73vfe/TBz/4QXV1dek73/mO9u/fr+XLl5fgHQDBMb0EOIR169YplUrp6quv1t13361ly5bphz/8oe/rNTc36/7779f8+fP1jW98Q//yL/+io48+Wv/zP/8TuJMDAAgf23FGknbs2KGtW7fqIx/5CDOJAaDG2Y4z3/3ud3XTTTfplVde0fLly/XVr35Vxx9/vFpbW/Xud7/b4p0D9sScwjmKAAAAAAAAQEQwDAgAAAAAAIBIIvEFAAAAAACASCLxBQAAAAAAgEgi8QUAAAAAAIBIIvEFAAAAAACASCLxBQAAAAAAgEgi8QUAAAAAAIBIqqv0DRQjm83qhRde0Lhx4xSLxSp9OwAQeo7jqKurS1OmTFE8zhgIcQYA7CLODEacAQC7TOJMKBJfL7zwgqZNm1bp2wCAyPnzn/+so48+utK3UXHEGQAoDeJMDnEGAEqjmDgTisTXuHHjJOXeUFNTk9G56XRa9957r8466ywlk8lS3F4k0W7+0G7maDN/grZbZ2enpk2b5j1fa12QOCPxOfaDNvOHdvOHdjNHnLGLOFMZtJs52swf2s2fIO1mEmdCkfhypwM3NTX5Snw1NjaqqamJD6AB2s0f2s0cbeaPrXZjuUVOkDgj8Tn2gzbzh3bzh3YzR5yxizhTGbSbOdrMH9rNHxvtVkycYcE9AAAAAAAAIonEFwAAAAAAACKJxBcAAAAAAAAiicQXAAAAAAAAIonEFwAAAAAAACKJxBcAAAAAAAAiyTjx9Zvf/EbnnnuupkyZolgspjvvvHPUczZu3Ki3ve1tSqVSOu6443TzzTf7uFUAQC0gzgAAAACwxTjx1d3drRkzZmj16tVFHb9r1y6dc845es973qOHH35YV111lT72sY/pnnvuMb5ZAED0EWcAAKXEAAsA1JY60xPe//736/3vf3/Rx69Zs0bHHHOMvv71r0uS3vzmN+v+++/XN77xDS1YsMD0xwMAIo44AwAoJXeA5aMf/ag++MEPjnq8O8Dy8Y9/XLfccova2tr0sY99TJMnTybOAEAIGCe+TG3atEnz588f9NqCBQt01VVXjXhOb2+vent7va87OzslSel0Wul02ujnu8ebnlfraDd/aDdztJk/QdstSu1d6Tjjnlf4J0ZHm/lDu/lDu5mLcpxhgAUAakvJE1/t7e1qbm4e9Fpzc7M6Ozu1f/9+jRkzZsg5q1at0sqVK4e8fu+996qxsdHXfbS2tvo6L4wcR4rF7FyrltrNJtrNHG3mj9926+npsXwnlVMtcUbic+wHbeYP7eYP7WaOOMMAS5gVtpvjOIrZ6iRFGJ81f2g3f4K0m8k5JU98+bF8+XK1tLR4X3d2dmratGk666yz1NTUZHStdDqt1tZWnXnmmUomk7Zvter822926Qf3P6OffeztOu6osb6vU2vtZgvtZo428ydou7n/AK9VNuOMxOd4OK/2pPV3a/+gk6eO16q/ecuQ79Nm/tBu/tBu5ogzeQywhN9F32nT7n0xfeaUjOoTlb6bcOCz5g/t5o+fdjMZYCl54mvSpEnq6OgY9FpHR4eampqGDRKSlEqllEqlhryeTCZ9/2MlyLlhcn3rk5Kkz931R/3yE+8IfL1aaTfbaDdztJk/ftstSm1dLXHGxvlR8sMHntKOjn3a0bFP13945ojH0Wb+0G7+0G7miDP+MMBSHdLptO69t1Vb9+b2dGt609v13hOOrPBdVTc+a/7Qbv4EaTeTAZaSJ77mzp2r9evXD3qttbVVc+fOLfWPrmm79nZX+hYAoCyIM9Xple4+7/8zWUeJOMtLAIQTAyzh1t2f//9Uso72KxKfNX9oN3/8tJvJ8XHTG9q3b58efvhhPfzww5Jyu5w8/PDD2r17t6Tc6MbFF1/sHf/xj39cTz/9tD7zmc9o+/bt+s53vqPbb79dn/rUp0x/NACgBhBnosGR4/3/vgP9hzgSAKrb3Llz1dbWNug1BljC47X8OIwOpDOVuxEAFWOc+HrwwQd16qmn6tRTT5UktbS06NRTT9U111wjSXrxxRe9zokkHXPMMbr77rvV2tqqGTNm6Otf/7p+8IMfsAMKAGBYxJlo2J/Oev/feYBCrwCqBwMstWVff37GcScDMUBNMl7qeMYZZ8hxnBG/f/PNNw97zrZt20x/FAylM9nRDwKAKkeciYbO/flk12v705pWwXsBgEIPPvig3vOe93hfu7W4lixZoptvvnnEAZZPfepT+uY3v6mjjz6aAZYQ2V+Q6yqMTQBqR1Xu6gh/ugpGMA7RZwQAoOQKZ3l1McIOoIowwFJbDhSsbmTGF1CbjJc6onoVjmD09PUfMqADAFBKhTGJpY4AgEphxhcAEl8RUtixSGcc9faz9BEAUBmFo+rM+AIAVMr+TL7GF/EIqE0kviLktYNGMBjRAABUyqAZX8QjAECFDJrxxQxkoCaR+IqQzv2DRzBYww4AqIQD6cygWcd0NAAAlbK/sMYXAzFATSLxFSEHdyzoaAAAKuHgpSQsLQEAVEphCCIeAbWJxFeEdB2U6OLBDgCohIPjESPsAIBKKazxxcQAoDaR+IqQgxNddDQAAJVw8FJ7BmIAAJXCro4ASHxFCEtLAADV4OCOBSPsAIBKKazx1dXbr2zWqdzNAKgIEl8RQo0vAEA1IB4BAKpF4VwAx5G6+5gcANQaEl8R4s7wStXlfq1M5QUAVIK7y/DhjUlJzEAGAFSG4ziDZnxJQ5fjA4g+El8R4hYTnjphzMDXPNQBAOXnzvA6+vDG3NcMxAAAKqC7LyNHueL2Y1N1kohJQC0i8RUhbqJr6uG5xBdLSwAAlbBvIB5NmdAgKRefHIeaKgCA8nL7R8lETEeOSw16DUDtIPEVIe5DfMp4ZnwBAConPwM5N+OrP+tofzpzqFMAALDOnd01rqFOTWOSg14DUDtIfEWI19FwZ3zxUAcAVIA78HJUU0qJeG6JSed+BmMAAOXV1ZuLPeNSSTU1DCx1ZFUMUHNIfEWE4zj5pY7U+AIAVJDX0Wio8zoaXXQ0AABl5haybxpTp6YGZnwBtYrEV0QcSGfVn83VT6HGFwCgktwk17iGpMa5HQ1iEgCgzNyJAONSdWoaUzfoNQC1g8RXRLidjEQ8puamfDFhAADKbbiOBtvHAwDKLT8QUzDji4EYoOaQ+IoIt0MxNlWn8QOFG/f19qs/k63kbQEAapCX+GpgaQkAoHK6vKWOSY1za3xRcxKoOSS+IqKzYDTDfahLueQXAADltM+r8VXQ0WDGFwCgzDoHzUDODcR09TIQA9QaEl8RkR9dTyqZiGtMMjHodQAAyiG32crQpSUUtwcAlNuwSx2Z8QXUHBJfEVH4UC/88zWWlgAAyqi3P6t0JrfZytiGunxxezoaAIAyG7T03qs5Sf8IqDUkviLCW78+kPDypvIy4wsAUEZu3InFpLH1hbto0dEAAJRXp9dHyu8yTP8IqD0kviKicOv43J+MaAAAys+NR2Pr6xSPxwp20aKjAQAoLzZbASCR+IqMwoe6pIKaKnQ0AADl48adsQctvaejAQAot0E1vgqWOjqOU8nbAlBmJL4i4uDEFx0NAEAlDBmIGUNxewBAZRTGJHdlTDrj6EA6W8nbAlBmJL4iovOgpY7U+AIAVMK+3oOW3qfqBl4nHgEAyquwxtdh9QnFYrnXiUlAbSHxFREjzvhihB0AUEZuJ2PsQMLLXfK4j4EYAEAZ9fZn1Nufm9k1rqFOsVjMi00kvoDaQuIrItwlJE0HjbB381AHAJTRwQMxbieji3gEACijwpUvbizyZiEzGAPUFBJfEUFHAwBQDfZ58Sg3EOPO+Oru7aeYMACgbNx4lIo7SsRzaxzdmNTVy6oYoJaQ+IqIriEdjdyfjGYAAMopPwPZHV3PxaOsI+1PZyp2XwCA2uIuZ2xI5F87jBlfQE0i8RURB3c0xqZyT3iWOgIAyqnroBpfDcm4N9JORwMAUC5uPBroHkkSNb6AGkXiKwIcx/GKCXszvgZG2HmoAwDKyY077tL7WCymw+pzgzEsvwcAlEv3MDO+3NhEHwmoLSS+ImB/OqNMNlc3xavx5a5fZ3QdAFBG7m7C7kBM4f8z4wsAUC5uciuVyNeX9OogE4+AmkLiKwLcB3ciHlPjwKg603gBAJXgLXUsWFtCTAIAlFvXMDO+WBUD1CYSXxHg1vcam6pTLBbz/l/KPdTZRQsAUC5d3oyvgsQXs5ABAGXmzjIelPhqoLg9UItIfEVAfkfHoZ2MTNZRb3+2IvcFAKg97ih6U8FSR2Z8AQDKbV9vbiBmUI0v4hFQk0h8RYD74HY7FpLUmExoYPIXI+wAgLI51GDMvoHZYAAAlFp3b0bS8DO+6B8BtYXEVwR0D5P4isdjGlvPiAYAoHz6M1n19OU6GoUxyR1h7x74HgAApeYmt4Yrbu/OBgNQG0h8RYD7UD+soJMhsYYdAFBe7ui6NHhXR3bRAgCU23BLHb3+ERMDgJpC4isChpvxJeUTYV2MaAAAyqBzYCljqi6u+rr8PzEOY4QdAFBm+4bZ1dGr8cVADFBTSHxFQPcwy0oKvy4cgQcAoFSGq+9V+DUdDQBAuRxyV0dmfAE1hcRXBLgP7oOXOnodDUbYAQBl0DUw46twmaPEro4AgPLLz/gaWuOLpfdAbSHxFQHuaMbYVGLQ62OZygsAKKPhdhmW2EULAFB+bkxKDVrqmBuY6e3Pqq8/W4nbAlABJL4ioHuEGV/eiAYj7ACAMsjPQB5hIIZ4BAAok+GWOhbGp25iElAzSHxFgDfC3jB8cXtmfAEAysGtKTk2NXipo7v0nk4GAKAcslnHq4Nc2EWqS8Q1JplLfjEYA9QOEl8R0N03/NISOhoAgHLK7zJ88IyvXCKMTgYAoBzc/pE0eMaXxPJ7oBaR+IoAd0bXYfUsdQQAVM5Im624S0voZAAAysGNR8lETHWxwd8bx/J7oOaQ+IqAkToaY9k+HgBQRt0jFLenmDAAoJwKJwbEDkp8eX0kdr4HagaJrwhwa6qMaxh+xhejGQCAcnCXlow040ti+T0AoPS6Rlh6n3uNpY5ArSHxFQGj7epI4gsAUA77BgZiDo5HFBMGAJSTO+Pr4BnIha8Rj4Da4SvxtXr1ak2fPl0NDQ2aM2eOtmzZcsjjb7zxRp1wwgkaM2aMpk2bpk996lM6cOCArxvGYI7jaJ83ws728QCigTgTTiMVt5coJgwAKJ/uEXa9L3yNcjBA7TBOfK1bt04tLS1asWKFHnroIc2YMUMLFizQnj17hj3+1ltv1dVXX60VK1boiSee0A9/+EOtW7dOn/vc5wLfPKSevowcJ/f/B49o8FAHEEbEmfAaqeaklC8mXLjTFgBUCgMs0dZVRDxicgBQO4wTXzfccIMuvfRSLV26VCeddJLWrFmjxsZGrV27dtjjH3jgAb3jHe/QBRdcoOnTp+uss87S4sWLRw0uKI47mhGPyVtG4hrH9vEAQog4E14jLb2XGIwBUD0YYIk+b6lj/cjxiBnIQO0Y+iQ4hL6+Pm3dulXLly/3XovH45o/f742bdo07Dmnn366fvrTn2rLli2aPXu2nn76aa1fv14XXXTRiD+nt7dXvb293tednZ2SpHQ6rXTabPcN93jT88LilX25kabDUnXq7x/88K5P5KaC9fRldKC3T4l4bMj5I4l6u5UK7WaONvMnaLtVa3uHMc645xX+WavcjkZDYmhbHFafG5x5tfvAoHau9TYzRbv5Q7uZi2qckQYPsEjSmjVrdPfdd2vt2rW6+uqrhxxfOMAiSdOnT9fixYu1efPmst43irfPW+o4XHF7JgcAtcYo8bV3715lMhk1NzcPer25uVnbt28f9pwLLrhAe/fu1Tvf+U45jqP+/n59/OMfP+QIyapVq7Ry5cohr997771qbGw0uWVPa2urr/Oq3e59klSnRDat9evXD/pebsf43K/4l//132o0+m3nRLXdSo12M0eb+eO33Xp6eizfiR1hjjMSn+OXuxKSYtq2ZZP2PD74e/teiUuK6/dbH1b8uW3e67XeZn7Rbv7QbuaiFmcYYKkNr/Xk2n5MXW6BU2G7jUnmJgN07u+jPYfBZ80f2s2fIO1mco6PVIiZjRs36qtf/aq+853vaM6cOdq5c6euvPJKffnLX9YXvvCFYc9Zvny5WlpavK87Ozs1bdo0nXXWWWpqajL6+el0Wq2trTrzzDOVTCYDvZdq9PunX5YefVCvGz9WCxe+Y8j3r36wVemMo3fMe68mj28o+rpRb7dSod3M0Wb+BG039x/gUVDpOCPxOXZd/eCvJGW14H1n6PVHDE4g3tfzqB595UVNP/7NWvjO6bSZT7SbP7SbuajGGQZYasMTT+cGWzqee0aaNrjdnnopJimhZ55vHzJxAHl81vyh3fzx024mAyxGia+JEycqkUioo6Nj0OsdHR2aNGnSsOd84Qtf0EUXXaSPfexjkqSTTz5Z3d3duuyyy/Qv//IviseHlhlLpVJKpVJDXk8mk77/sRLk3Gp2ILdzvMY1DP/+xjUk9XJ3nw5k5Ov9R7XdSo12M0eb+eO33aq1rcMcZ2ycH2aZrKP96awkacJhDUPaoamxXpK0P50d9L1abrMgaDd/aDdzUYszfjDAEj6ttz8idbRrxkknSF3bB7Vbavse/WTnw2oYN0ELF/6fCt9p9eGz5g/t5k+QdjMZYDFKfNXX12vWrFlqa2vTokWLJEnZbFZtbW1atmzZsOf09PQM6XQkErm11o67HSF829ebm9538I6OrrGpOr3c3UfxRgChQJwJr8LdGoctbj/wWhc1VQBUEAMstaFnYCCmqbFe6hrcbhMOy62C6e7N0JaHwGfNH9rNHz/tZnK88a6OLS0t+v73v68f//jHeuKJJ3T55Zeru7vbKw558cUXD1ozf+655+q73/2ubrvtNu3atUutra36whe+oHPPPdfrmMC/fb25KV+HpYZvy8PYrhdAyBBnwsnd0bEuHlOqbug/L9xdtLqJRwAqqHCAxeUOsMydO3fYcxhgCR9vV8dDDMTQPwJqh3GNr/PPP18vvfSSrrnmGrW3t2vmzJnasGGDt05+9+7dgwLD5z//ecViMX3+85/X888/ryOPPFLnnnuuvvKVr9h7FzXsUFvHS9K4FNvHAwgX4kw4FcajWGzoLsJ0NABUi5aWFi1ZskSnnXaaZs+erRtvvHHIAMvUqVO1atUqSbkBlhtuuEGnnnqqt9SRAZbq5s4uHpuqU9dB33PjUc/ABAIA0eeruP2yZctGXHKycePGwT+grk4rVqzQihUr/PwojMLtaIwbaaljg9vRYHcJAOFBnAkfdwbySEvvG+vdGV90NABUFgMs0dd9iMRX48BKme6+fjmOM+xgDYBoKfmujigtt3bXSDO+3NfpaAAASik/42uEpff1udd7+pjxBaDyGGCJtn29Iy91PGxgICbrSL39WTUkmbUHRJ1xjS9Ul9GWOtLRAACUw75R4lEjAzEAgDJxy7w0DjMYM6Yg0cXye6A2kPgKOXcXrVGXlvTR0QAAlE73IUbXJQZiAADl0defVV8mt6ujO7urUDweU6MbkxiMAWoCia+Q6zrEjiVSfslJD6MZAIAS8mYgD9PJkAqW3jMQAwAoof0FccZNcB0sPzmAPhJQC0h8hdxoSx2Z8QUAKAe3uP3IS+/dXbToZAAASqcnnYszyURM9XXDd3fHppiFDNQSEl8h1z3KLlqH8VAHAJRBfqnjCKPrbjxKZ5TNOmW7LwBAbXH7R40jzEAu/N4+ljoCNYHEV8jtG2UXLbaPBwCUw2jF7d0ZX44jHegnJgEASsMd8D9shGWOEuVggFpD4ivk3I7GuAaKCQMAKme0pfcNybhiMfdYEl8AgNLwZnyNEI8kysEAtYbEV4g5jjN6jS+2jwcAlMFouwzHYrF8nS8GYwAAJWI044t4BNQEEl8h1tufVf9AnZSRl5bwUAcAlN5oxe2l/O5a+1haAgAoEXcW16FqfB1GORigppD4CrHugo7DSNvHM40XAFAO+w6kJY1c3F7KJ8V6iEkAgBLpGaUGcu57buKLgRigFpD4CjG349CQjCsRjw17DIUbAQDl4MakYmZ80dEAAJRKMTO+vHjEqhigJpD4CrGeoh7qA6PrbB8PACght/NQzNISZnwBAErFZMZXD0sdgZpA4ivE8p2M0Qs3sn08AKCU9nszvkaOSY0pZnwBAEqLGV8ADkbiK8T2ew/1kTsZDXUJto8HAJSct318khlfAIDKKW5XR+IRUEtIfIVYMUsd4/GYGpPs7AgAKJ1s1tH+dC4mjTlER4MRdgBAqXkDMYeoOekOxLDLMFAbSHyFWE8RSx2l/EOfGV8AgFIoXEp/6OX31FQBAJRWMTO+3KX3TAwAagOJrxArZsaXlH/o82AHAJRC4cDKmCQzvgAAlVNMjS9v6T0DMUBNIPEVYm5x4FFnfA082LtZww4AKAG35uSYZELxeGzE45jxBQAotWJ2dWQgBqgtJL5CrJji9lL+od/DGnYAQAn0pIsbiDmMjgYAoMSKmvFFKRigppD4CrGedHFLHZnxBQAoJW/p/SFG13PfdzsaJL4AAKXh1fg6RExyv9fd1y/HccpyXwAqh8RXiPUUudTxMIo3AgBKyF262JgcreYkAzEAgNLydnUsosaX40gH0tmy3BeAyiHxFWJFj7DXM5UXAFA67sDKmFF3GWYgBgBQWvldHUdOfBVuxMLyeyD6SHyFmJf4OsQOWhK7OgIASmt/usiak+yiBQAooWzWKWpyQDwe82IWMQmIPhJfIeYmskat8UXxRgBACfUUUUg4932K2wMASscdiJEOPeNLysesfdSdBCKPxFeIFbvUkRlfAIBS6i665iQzvgAApeMOrMRiUkPy0F3dsSy/B2oGia8Qy4+wF1nji2LCAIAS2F9kPDqsnl20AACl4w6sHFZfp1gsdshj6SMBtYPEV4gVu9TR29WRabwAgBLoGVhaMnpx+1y8yjpSbz+7aAEA7OoucrMViT4SUEtIfIWY+YwvHuoAAPvcGV+j1VMZvIsWI+wAALt6vHg0euKLGV9A7SDxFWLFJr680Qwe6gCAEnBrfI02wp6Ix7zkFzVVAAC25WtOHnogRsr3kbqZ8QVEHomvENtf9C5a7q6OPNQBAPa5Sx1HG4iRCpeWMBgDALDLm/E1yuZfEqtigFpC4iuk0pms+jK5+iijFxMe2EWLGV8AgBIodqmjxNISAEDpmMz4cvtQB4hHQOSR+AqpwiTWqDO+mMYLACihYpc6Svk6XwfSdDQAAHaZzPjKL70nHgFRR+IrpNzaKHXxmOrrDv1rdEfg99PJAACUwH6DpY4NA8fsp6MBALCsp8hSMFJ+sIY+EhB9JL5Cyn2om4yupzOO0hm2jwcA2GUSkxqTdDQAAKXhTg4oZiBmDPEIqBkkvkLKpJ5KQ33+18zSEgCAbSYxKT/CzkAMAMAukxlfjcxABmoGia+QyhduHH00oz4RVzyW+38e7AAA27oZYQcAVAE3trix5lAaiEdAzSDxFVLe1vFFFG6MxWLeqAcPdgCAbUbL7xlhBwCUyH4vHo3ezXX7RxS3B6KPxFdI9fQOJL6So0/jlRjRAACURibrqK8/t2yxqKWO7OoIACiRfOKrmKX3ua4w8QiIPhJfIeUWbixmdD13XHzgPB7sAAB73HgkFVncnl20AAAlYrLUcUySGV9ArSDxFVLuQ/2wIpY6SgUj7DzYAQAWuR2GeExK1Y3+zwpmIAMASsUo8cXSe6BmkPgKqe5e96Fe3FLHMdT4AgCUQOEOWrFYbNTj6WgAAErFpMYXm60AtYPEV0jtH1haUvyMr9yvmgc7AMCmHoMdHQuP25/OluyeAAC1KT/ja/TJAY0MxAA1g8RXSHUb7KAl5Uc0WMMOALApP+OruHjEUkcAQKnsN+gjFcajbNYp6X0BqCwSXyHldTSKXOrobtfLriUAAJt6DHbQkgqWljAQAwCw7IBBja/CAZvefmYhA1FG4iuk9hsuLWmgowEAKAHTeOQex0AMAMA2bzCmiMRXQ8ExhTsUA4geEl8h5a1fL3ap40CBR5Y6AgBsMl3qSDFhAEApOI5j1EdKxGPebsTEJCDaSHyF1IGBosANRYxmSPmOBiPsAACbTEbXJamBYsIAgBIoXK5Y/OQAYhJQC0h8hdR+g/XrUr72CqMZAACbDhjOQGZXRwBAKRQmr4rtIzUyCxmoCSS+QsrtaDQki/sVsqsjAKAUvHhUxwxkAEDl9AzElfq6uBLxWFHnuLOQ6SMB0UbiK6RMdizJHcf6dQCAfe7Se9NlJT3pjBx2jwcAWLLfcOm9VDgLmT4SEGW+El+rV6/W9OnT1dDQoDlz5mjLli2HPP7VV1/VFVdcocmTJyuVSulNb3qT1q9f7+uGkeM+nFPFTuMdWOp4gNEMACFAnAmPfDwym4HsOFI/iS8AgCWmEwMKj6XGFxBtxomvdevWqaWlRStWrNBDDz2kGTNmaMGCBdqzZ8+wx/f19enMM8/UM888o//4j//Qjh079P3vf19Tp04NfPO1zBthNywmzDReANWOOBMu5jOQ88cRkgBUCgMs0WO6633u2IE6yAQkINLqTE+44YYbdOmll2rp0qWSpDVr1ujuu+/W2rVrdfXVVw85fu3atXr55Zf1wAMPKJlMSpKmT58e7K7hzdwyrfHFNF4A1Y44Ey77vZqTxXU06hJx1Sfi6stk1Ud9ewAV4A6wrFmzRnPmzNGNN96oBQsWaMeOHTrqqKOGHO8OsBx11FH6j//4D02dOlXPPvusJkyYUP6bx4hMdxnOHZvrS/XQRwIizSjx1dfXp61bt2r58uXea/F4XPPnz9emTZuGPef//b//p7lz5+qKK67QXXfdpSOPPFIXXHCBPvvZzyqRKP6hhMEO9JuNaFBMGEAYlCvO9Pb2qre31/u6s7NTkpROp5VOp43v2z3Hz7lht7+3X5JUHy/+/Tck84mvWmyzIGr5sxYE7WYuaJtVc1szwBJNXo0vgxlflIMBaoNR4mvv3r3KZDJqbm4e9Hpzc7O2b98+7DlPP/20fv3rX+vCCy/U+vXrtXPnTn3iE59QOp3WihUrhj3HZockiv/Q6c9klc7kCqPUySnqvdXHc8f39PUXdXwU260caDdztJk/Ue2QlCvOrFq1SitXrhzy+r333qvGxkbf99/a2ur73LDa/UJcUlx/euJxrX/5saLOiWUSkmLqy9Rmm9lAu/lDu5nz22Y9PT2W78QOBliia9+BPklSqi42pL1Garf6RG73x64DfbTtAD5r/tBu/gRpN5NzjJc6mspmszrqqKP0ve99T4lEQrNmzdLzzz+vr33ta2XtkETpHzoHMpL7q9vY1qpiBjWe786d82pXj1E9gii1WznRbuZoM3+i1iHxw0+cWb58uVpaWryvOzs7NW3aNJ111llqamoyvod0Oq3W1ladeeaZ3myAWnFbx4PSKy9r9qyZWnjK5KLO+caf7tdrf+lRX1Y12WZB1PJnLQjazVzQNnMTPdWGAZbo+kNHTFJCnS/vHdLfGandOp7PDd48vv1Jrd+/o/Q3GSJ81vyh3fzx024m/RmjxNfEiROVSCTU0dEx6PWOjg5NmjRp2HMmT56sZDI5aDTkzW9+s9rb29XX16f6+voh59jskETxHzp79/VKW/5HkvSBv3q/YrHYqOc885duXffI75SNJ7Vw4YJRj49iu5UD7WaONvMnqh2ScsWZVCqlVCo15PVkMhnocxj0/DDq7c8V6jqsob7o9+4WE05nYzXZZjbQbv7Qbub8tlmU2pkBlnDoeOBZ6ekdmn70FC1ceIqk0dtt+6+e1MYXd2nKtDdo4cI3l/uWqxKfNX9oN3+CtJtJf8Yo8VVfX69Zs2apra1NixYtkpQLBG1tbVq2bNmw57zjHe/Qrbfeqmw2q3g8VzzwT3/6kyZPnjxsZ0QqTYckSv/Q6XdyU/oakvER2/Bg48Y0SMrV+DJphyi1WznRbuZoM3+i1iEpV5yBPfsNdxnOHZv7PfVSUgVAmTHAEl0D4UiHpYa20UjtNrYh97vrzTi060H4rPlDu/njp91Mji9uS8ACLS0t+v73v68f//jHeuKJJ3T55Zeru7vbKw558cUXD1ozf/nll+vll1/WlVdeqT/96U+6++679dWvflVXXHGF6Y/GANOt46V8kcf+rKO+frbRAlC9iDPh0mu4q6OULyacJhwBKLPCARaXO8Ayd+7cYc95xzveoZ07dyqbzT+0GGCpPn6K27v9qR6K2wORZlzj6/zzz9dLL72ka665Ru3t7Zo5c6Y2bNjgrZPfvXu3N+IuSdOmTdM999yjT33qUzrllFM0depUXXnllfrsZz9r713UmAMDPQWTTkZhkmx/OqP6OuOcJwCUBXEmXPb7GIxx41cfiS8AFdDS0qIlS5botNNO0+zZs3XjjTcOGWCZOnWqVq1aJSk3wPLtb39bV155pf7xH/9RTz75pL761a/qk5/8ZCXfBg7S42tXx9yx7sQCANHkq7j9smXLRlxysnHjxiGvzZ07V7///e/9/CgMw08nI5mIKRGPKZN1dCCd0fgxTL8EUL2IM+FxwJvxVfyAitvRIPEFoBIYYImmIAMxB5iCDERayXd1hH3uQz1l8FCPxWJqTCbU1dvPVF4AgDX7fSx1dJNk9DMAVAoDLNHjpxxMamAVDDO+gGhjvVsI5R/qZr++hnp3DXu/9XsCANQex3F8Lb9P1eWOTWdH35UYAIBiuDW+GgyWOnozvvpJfAFRRuIrhA74GF3PHT+wixbF7QEAFhTGE5Oljsz4AgDY1jPQR2o0GYhx+0cEJCDSSHyFkJ9pvJLUUEfxRgCAPYXxxN+ML+u3BACoUQf6/Cy9Z8YXUAtIfIWQn2m8Uv7BzogGAMAGt75XXTymZMJ8xhcTkAEAtrjJqzH1xcejfI0vAhIQZSS+QujAQE/BncFVLIo3AgBscjsKxjOQk+zqCACwyx3cTxn0kfITA+gfAVFG4iuE3BlfJqMZUsGDnSF2AIAFB3zsMizlB2IIRwAAW3oHZny5MaYY+aWOBCQgykh8hZA7jdd0xpe7tIQZXwAAG9yljqYDMW6ijJUlAABb/Owy3DCQJOvrzyqbdUpyXwAqj8RXCB3wZnwZjrAnKW4PALDH22XY59J7El8AAFv8zPgqnLHMqhggukh8hZCf0QypoMYXD3UAgAXeLsM+N1tJZ2PW7wkAUJuCzPiS8okzANFD4iuE3KUlpokvdnUEANjkdTKMl96z1BEAYI/jOL5mfNUl4qqL5wZh2NkRiC4SXyHkLS1JGha3r3OLNzKaAQAIzt1spcF06b1b3J5yKgAAC/qzjtwSXSa7OuaOpw4yEHUkvkLIKyZsPOOLhzoAwJ78Ziv+dhlmcB0AYENh/yZlOjkgyeQAIOpIfIXQAZ9LHd3RD6bxAgBs8GZ8+aw52Uc4AgBYUFiY3mSpo0Q5GKAWkPgKITdx5XfGF4UbAQA2uB0N83iUO569VgAANrgTA1J1ccViZhunpFgVA0Qeia8Qorg9AKAa5Gd8mf1zwh2NJxwBAGxwB2JMZ3vlznGXOhKUgKgi8RVCvovbM5oBALDIi0eGxe3dgZiME1MmS4V7AEAw7sB+ynBigFSwKoY+EhBZJL5CyNs+3m+NL5Y6AgAs8GYgG+6gVThww/J7AEBQ3mYrhhMDpHwMY8YXEF0kvkKorz+/ht1EfjSDhzoAILigAzHS4ILEAAD44c34MhyIkVgVA9QCEl8h5K1hN+1osFUvAMCiXp8j7Il4TMlErvgwOw0DAIIKMuPLTZax1BGILhJfIeM4jpf4qk8Yzvhyp/HSyQAAWJAvJmw+wl5fx07DAAA7bMz4YgYyEF0kvkKmL5N/IKdMd9FiGi8AwKIgu2g11LHTMADAjl6fpWCk/HJ9+khAdJH4CpnCkQjjGl9uJ4PRDACABW7NyXpfHY2BwRhiEgAgoF6fNScLz2FVDBBdJL5CpnBk3HipIzO+AAAWBZnxlWKpIwDAkiAzvtxz6CMB0UXiK2QKH+qxWMzoXHc0g2UlAAAbvJoqPkbYUyx1BABY4neXYSkfw1gVA0QXia+Q6bMwut6XySqTdazeFwCg9rh1J33FJG8WMh0NAEAwwWp8MeMLiDoSXyHjLSsJsH5dyifQAADwqzdIjS+WOgIALAm29H6gxhf9IyCySHyFTKAdtAoSX4xoAACCym8f72fGFx0NAIAdbt/GX3H7gYEY+kdAZJH4Chn3gexndD0RjymZyNUFO8AIOwAgoPxgjJ8aX+6MLxJfAIBgAk0OYMYXEHkkvkImSCej8DyKCQMAggpSd7LBi0cMxAAAggmy2Yo7S4wVMUB0kfgKmSCjGVJ+pphbkBgAAD8cxwm2fXySGV8AADsOBIlHdSx1BKKOxFfIBOlkSFJ9YiDxRUcDABBAf9aRu0Gwn1nIbnF7dnUEAARlY8YXAzFAdJH4Cpm+ALs6SvkZX+yiBQAIorCD4M7eMkE8AgDY4s74avC1AZg7EEM8AqKKxFfI2FrqyIgGACCIwpnD7mxiE4ywAwBssVPji3gERBWJr5Bx156z1BEAUEnuTK1kIqZ4PGZ8PksdAQC29AaY8eX2q9j1HoguEl8h446M1/tMfLnLUUh8AQCC8EbX/e4y7M34oqMBAAjmQIAZX+x6D0Qfia+QyS919FnjK8GujgCA4IIuvU8x4wsAYEmQDcDcCQVp+kdAZJH4CpnAuzrWMeMLABBcn6WakwzEAACCcgdRGnzM+HLjUX/WUdbdrhhApJD4Cpl84cZgI+wkvgAAQbgDMX6X3rszkNPEIwBAQEFmIRfGMQZjgGgi8RUygZc6MsIOALCAeAQAqBZecXs/M74KdiZmp2Egmkh8hUzgpSUDD3aKNwIAgvDikc8ZyMlEbidIEl8AgKDyG66YxyQ3HkmsigGiisRXyFir8UVHAwAQgLfUMRG05iT1VAAA/mWzjte38dNHisVi+eX39JGASCLxFTLe0hIf03ilfEeDabwAgCB6A8748nYZJh4BAAIoHND3XXeSOshApJH4Chmvo+FzhN2txcJDHQAQRH5Zic+BGEbXAQAWFMaRZNBZyMQkIJJIfIWMt9TR7wg7oxkAAAt6AywrkehkAADsKOzX+F5+zyxkINJIfIVMkMKNUsFDPZOxdk8AgNrTmx6o8RU0HtHJAAAEkM7kakXWxWOKx2OjHD28ZF3uPMrBANFE4itkrG0fz0MdABBAb8Bdht1OhtthAQDAD3epo9+BGInl90DUkfgKGTdh5ffBniLxBQCwIPBATIKljgCA4Nx45Le+lyTVUwcZiDQSXyETdESDXR0BADb0BZ3xVTC67jjM+gIA+OP2j4IlvpgcAEQZia+Q6Qv4YKemCgDABnezlaADMY4j9WdJfAEA/Ak6ECNJKWYhA5FG4itk8iMa/go3sosWAMCGwDOQCwZwGIwBAPgVtH8k5etOEo+AaPL1r9XVq1dr+vTpamho0Jw5c7Rly5aizrvtttsUi8W0aNEiPz8WyhcB9rtVr1uLhaWOAKoZcab6pftz8cjvDOTCDgrFhAFUArEmGvosFrdncgAQTcZPh3Xr1qmlpUUrVqzQQw89pBkzZmjBggXas2fPIc975pln9M///M9617ve5ftmIaUDFm9k/TqAakecCYegI+x1ibhiyiXPiEkAyo1YEx19Vorb00cCosz46XDDDTfo0ksv1dKlS3XSSSdpzZo1amxs1Nq1a0c8J5PJ6MILL9TKlSt17LHHBrrhWufV+ApYU4WHOoBqRZwJh6A1JyXJDWXMQgZQbsSa6HBXxLCrI4CR1Jkc3NfXp61bt2r58uXea/F4XPPnz9emTZtGPO9LX/qSjjrqKF1yySX67W9/6/9uEbzGF9N4AVSxcsWZ3t5e9fb2el93dnZKktLptNLptPF9u+f4OTesetO54vZxOb7brC4mpSXt7+1TOp20fIfRVIufNRtoN3NB26ya25o+TbQErTkp0UcCos4o8bV3715lMhk1NzcPer25uVnbt28f9pz7779fP/zhD/Xwww8X/XNsdkii9A+dTNaRu/FVLJv19Z4Syj3Me9OZQ54fpXYrJ9rNHG3mT1Q7JOWKM6tWrdLKlSuHvH7vvfeqsbHR6J4Ltba2+j43bF5oj0uKa/sfH9P6vY/6ukYinpAyUtt9/6Mph9m9v6irpc+aTbSbOb9t1tPTY/lO7ClHrGGApXx6enNtUhcf2j7FtltdPNfJ2t/r7/cTJXzW/KHd/AnSbibnGCW+THV1demiiy7S97//fU2cOLHo80rRIYnCP3T6MpL7K7uvrVWphPk1/rwvd43OfT1av379qMdHod0qgXYzR5v5E8UOiQm/cWb58uVqaWnxvu7s7NS0adN01llnqampyfg+0um0WltbdeaZZyqZrI2ZSz9/aav0yl80a+YMLZw5xfj8dDqtFVt/LUmac/o7dPLU8bZvMZJq8bNmA+1mLmibuYmeKPATaxhgKZ+te2KSEnr1L3tH7N+M1m4vPJcbzHlix5Nav3+H/ZsMIT5r/tBu/vhpN5P+jFHia+LEiUokEuro6Bj0ekdHhyZNmjTk+KeeekrPPPOMzj33XO+1bDY346iurk47duzQG9/4xiHn2eyQROkfOl0H0tKW+yRJ57z/bF/TeZ/s2KfrH31A8WS9Fi58z4jHRandyol2M0eb+RPVDkm54kwqlVIqlRryejKZDPQ5DHp+mPQPTEFO1ft/zwO7x8uJxWum3Wyppc+aTbSbOb9tVs3tXI5YwwBL+by65c/SU09o6uRJWrhw5qDvFdtuj2zYod+2P6vXH3OsFi54U4nvuLrxWfOHdvMnSLuZ9GeMEl/19fWaNWuW2travO17s9ms2tratGzZsiHHn3jiiXr00cHLHz7/+c+rq6tL3/zmNzVt2rRhf04pOiRR+IeO05tfc97YUK9YzLzO12Fj6iXlCjcW0x5RaLdKoN3M0Wb+RK1DUq44g+BsFBOmuD2ASihHrGGApXyyyvWJUsnEiG0zWrs11Oe6xf3Z6v03UrnxWfOHdvPHT7uZHG+81LGlpUVLlizRaaedptmzZ+vGG29Ud3e3li5dKkm6+OKLNXXqVK1atUoNDQ1661vfOuj8CRMmSNKQ1zG6fCcj5ivpJRXs6kjhRgBVijgTDvliwv7ikSS5+7S48Q0AyoVYEx12itsP7OpIHwmIJOPE1/nnn6+XXnpJ11xzjdrb2zVz5kxt2LDBKw65e/duxeP+HzoYWdrC1vHujiXpjKNs1lE87r/DAgClQJwJB5szvtg+HkC5EWuiw40h9QHiUXJgEId4BESTr+L2y5YtG3YasCRt3LjxkOfefPPNfn4klB+BCJT4KhgJ6ctk1RD3USEfAEqMOFP9bAzGuJPF6GgAqARiTTT0DQzEBJvx5U4OIB4BUcQwRohYmfF1UOILAAA/bMSkxMD28XQ0AAB+uYMnQeJRyi0Hw0AMEEkkvkIk3T8wmpHwvzyxcApwmgc7AMCntNfR8B+TmPEFAAjK5uQA4hEQTSS+QsRb6hhgGm8sFlPdQF0vdyt6AABM9dnc1ZEZXwAAn6wUt2cDMCDSSHyFiI3RDEmqS1C8EQAQjM0aX8xABgD4lS9uH2RVTK7ucS/xCIgkEl8hYivxlRzYoYYZXwAAv/ozwXfR8nZ1ZIQdAOBTn4UZX+6yfWpOAtFE4itEvGm8AUYzpPxSSR7sAAC/0u5Sx7rgNb6Y8QUA8MtGcXtqfAHRRuIrRPr6g9dTkeTV+CLxBQDww3GcfN3JQLs65v5kxhcAwC+K2wMYDYmvELG21DHhzvhiqSMAwFzhUnl3+bwf7OoIAAjK7dMEWeqYorg9EGkkvkIkbWFXRym/hr2fBzsAwIfCGcNBljoy4wsAEFS+uH2QGl8DEwMYiAEiicRXiFir8cWMLwBAAIXxI9iujrnrMOMLAOCXjeL2dQOzl9Ns/gVEEomvEOnLWKrxlaC4PQDAv8L44daN9MPb1ZHEFwDAJxvF7VkRA0Qbia8QSVt4qEv5GWP9WR7sAABz+RnIccViAZY6Dpzazwg7AMCnfB3kAAMxA/2rflbEAJFE4itEbBW3dx/s7i6RAACYSA/Ej7qAS+/d05mBDADwK21lqePArvdMDAAiicRXiOQf6sE6Gu6DnRlfAAA/+iwNxHgzvhhhBwD4ZLO4PfEIiCYSXyFiq8aXOxrCCDsAwA9bM5DzSx2JRwAAf9wNVwLN+PJKwThyHJJfQNSQ+AoRa0sd3am8jGgAAHxwR8SD7jKcX+pIPAIA+NNro7h9PH8udSeB6CHxFSK2itsn2dURABCAt9QxwOi6JLkbQmboZAAAfLIxOaCwZiXLHYHoIfEVIvldtIKNsLOGHQAQhO2ljgzEAAD86s8Er/FVmPiiwD0QPSS+QsRWjS93q186GgAAP9z44S6d9yvu1fhiIAYA4E96IIYkAkwOGLTUkckBQOSQ+AqRtKWlJXXeUkce6gAAcza2jpckdxynn4EYAIBP7nL5ZIDBmHg8lh+MISYBkUPiK0RsLS3JL3XkoQ4AMNfXb2cGcmLgT2Z8AQD8cBzHS3wlAs5C9iYHEJOAyCHxFSL5xFfQGl8sdQQA+NeftROP4t6MLzoZAABzhQMndfGAkwMGEmdMDgCih8RXiNgaYXeDAqMZAAA/7BW3z8UhCgkDAPwoHDipCzgYQzkYILpIfIWItaWOdQMzvvrpaAAAzKUHBmKC7KAl5Xd1ZMYXAMCP/oKBk6BLHd1ZzP0MxgCRQ+IrRKwtdRyY8UVNFQCAH33uro4B41GCQsIAgAAKB05srYphMAaIHhJfIeI+hG0Vt++jowEA8MHWDGRvBy0GYgAAPhTGj4ATvrzBHOogA9FD4itE3Gm3wXcsoXAjAMA/dyDG2lJHEl8AAB/cHR2TiZhisaBLHVkVA0QVia8QcR/sdQETX25HhWm8AAA/+qwVt8/9yeg6AMAPN34EnRgg5ftYxCQgekh8hYg7+mBrxhdLHQEAfqSt1/hiIAYAYC4/MSB4t7aOyQFAZJH4ChFbD/akt1UviS8AgLn80hI7M74yLCsBAPjgloIJOhAjsasjEGUkvkIkY2nGl/tQp6MBAPDDnYEcD1hPxQ1naToZAAAf+i2Vgim8RpoZX0DkkPgKEW/GV9ClJXEKNwIA/MvaikcDpzsOgzEAAHPuskSWOgI4FBJfIWJrhN0dzaCTAQDww1Y8KsybsfweAGDKVg1kiaWOQJSR+AoRW7s6uoGB0QwAgB+24lHh6cxCBgCY6vd2Gbax1NGtg0w8AqKGxFeIuKMPgXd1jDOaAQDwz018xYMOxBScnqGjAQAwVJIZX8xABiKHxFeIuM/goDVVvPXrjK4DAHywVUy48HQK3AMATFmt8eXO+KKPBEQOia8Qybjb9Vqa8UWNLwCAH1lLI+yxWMEsZGZ8AQAMuStYgk4MKLwGM76A6CHxFSL5qbzBfm3U+AIABGFzaYnb0aC4PQDAlK2ak5KUZFdHILJIfIWI+2BPsKsjAKCCso6deCTll5aw/B4AYMotRO+WcgnC7SOx9B6IHhJfIeKNsAecypvgoQ4ACMDqjC9vMIaYBAAwk7E6A5kZX0BUkfgKEVtTed1lJcz4AgD44db4sllThe3jAQCm3BpfSQvxiF0dgegi8RUSjuNYG9HwlpXQyQAA+OB2NOJWljpSdxIA4I8bO4LWQJbyMS3jEI+AqCHxFRKFk7OCzvhKUOMLABCAOxhuo5iwu7SE5fcAAFP9lna9L7wGNSeB6CHxFRL9BR2CuKWljjzUAQB+uPW4gsYjSUoyGAMA8Knf4q6Obh3lLPEIiBwSXyFR2CEIXOPLG81gdB0AYM5dlWilo+FuuEJNFQCAof6MvZqT7k7FTA4AoofEV0gUPoCD1vhy18BnqKcCAPDBnfFlYxct9xqMxQAATOVnfAXv1tbFmfEFRBWJr5AoTFIFfbCzfh0AEITN7eMpJgwA8MvdgdHGDOQ4fSQgskh8hUThAzjoc92dCkw9FQCAH17iy8aujl5MYsoXAMCMN+PLwlJHb8YXAzFA5JD4Cgn3AVwXjykWsKORoMYXACCAksz4IiQBAAzl41Hwbq0344tyMEDkkPgKCXc0w8YOWu4IfdaRHEY0AACGbCa+EuzqCADwyeZSxzriERBZJL5Cwq3xZXMHLYkHOwDAnFuPy2pxewZiAACGbC519DYAIx4BkeMr8bV69WpNnz5dDQ0NmjNnjrZs2TLisd///vf1rne9S4cffrgOP/xwzZ8//5DHY3j9FnfQKpw1xoMdQDUizlQ3dxmIlcTXwCUoJgyg3Ig14Zff1ZF4BGBkxomvdevWqaWlRStWrNBDDz2kGTNmaMGCBdqzZ8+wx2/cuFGLFy/Wfffdp02bNmnatGk666yz9Pzzzwe++VqSsfpQz1+DMl8Aqg1xpvplLc74irN9PIAKINZEQ34gJvhCpkQidw3iERA9xk+IG264QZdeeqmWLl2qk046SWvWrFFjY6PWrl077PG33HKLPvGJT2jmzJk68cQT9YMf/EDZbFZtbW2Bb76W9Fss3JhgxheAKkacqX79Fnd1TMSoqQKg/Ig10VC4AVhQbjxixhcQPUZZlL6+Pm3dulXz58/PXyAe1/z587Vp06airtHT06N0Oq0jjjjC7E5rXL6QcPBrxWPU+AJQnYgz4ZCxWlOFxBeA8iLWRIcbOyzkvbzkGTO+gOipMzl47969ymQyam5uHvR6c3Oztm/fXtQ1PvvZz2rKlCmDAs3Bent71dvb633d2dkpSUqn00qn0ya37B1vel616e3L3X8iFgv8Xgof5r19fUoP8ymISruVG+1mjjbzJ2i7VWt7hzHOuOcV/hl1mYFdtLKZTODPoNtX6evvr5n2C6LWPmu20G7mohpnpPLEGuJMefRnMrn/cZxh28ao3ZxcbEsHiG1RwGfNH9rNnyDtZnKOUeIrqGuvvVa33XabNm7cqIaGhhGPW7VqlVauXDnk9XvvvVeNjY2+fnZra6uv86rFri5JqlPvgf1av359oGvlZgTnfvX3tv5K45IjHxv2dqsU2s0cbeaP33br6emxfCfVoZJxRqqdz/G+noSkmDZvekAvPBrsWn/Zu0dSXP/7yKMat+cRG7dXE2rls2Yb7WaOODNUMbGGOFMezzwblxTXzp1/0voDO0Y8rph2e/SlmKSE2ve8FLi/FQV81vyh3fzx024mccYo8TVx4kQlEgl1dHQMer2jo0OTJk065LnXX3+9rr32Wv3qV7/SKaeccshjly9frpaWFu/rzs5Or4BkU1OTyS0rnU6rtbVVZ555ppLJQ2R4qtwfnnlFeuwPahp7mBYufGfg67VsvldZR3rPe9+no8alhnw/Ku1WbrSbOdrMn6Dt5o48V5swxhmp9j7HX3nsf6S+Xr37Xe/SmyeP83UNt80mT2rWIy+/pJPe8hYtnPN6y3caPbX2WbOFdjMX1TgjlSfWEGfK4/47H5f2PK8TTzhBC+cdO+T7Ju3mPNqun+x8REcc8TotXPj2Ut1y1eOz5g/t5k+QdjOJM0aJr/r6es2aNUttbW1atGiRJHlFHZctWzbiedddd52+8pWv6J577tFpp5026s9JpVJKpYYmY5LJpO8PUZBzq8JAUfu6RNzK+0jEY8pmHMUTiUNeL/TtViG0mznazB+/7VatbR3mOGPj/LBwa6qk6oO/37pEQpLkyE58qxW18lmzjXYzF7U4I5Un1hBnysMZWDBfVxe8T1OfzHWNs06MNhafNb9oN3/8tJvJ8cZLHVtaWrRkyRKddtppmj17tm688UZ1d3dr6dKlkqSLL75YU6dO1apVqyRJ//qv/6prrrlGt956q6ZPn6729nZJ0tixYzV27FjTH1+z8sXtLVRulFvg3qGYMICqQ5ypfu6OwDZikruLVpZdhgGUEbEmGtzYYWWXYXezFeIREDnGia/zzz9fL730kq655hq1t7dr5syZ2rBhg1cccvfu3YrH81sPfve731VfX58+9KEPDbrOihUr9MUvfjHY3dcQ24mvhLdriZXLAYA1xJnql8lYTHwN/CoZiAFQTsSaaHBzVHEbia+Ba/QTj4DI8VXcftmyZSNOA964ceOgr5955hk/PwIH8baOt5X4ijGiAaB6EWeqmxs7bMSkxEDHkngEoNyINeHn9pHiNuJRYqB/xMwAIHLiox+CatBve6mjO5WXEQ0AgKF+mx0Nd8ZXhngEADDjLnW00UXyJgaQ9wIih8RXSORnfNn5lXlLHRlhBwAYylqchRxnBjIAwKd84stePHKIR0DkkPgKCeszvmLM+AIA+OPN+LJYTDhLPAIAGHJXJdqYgexegrwXED0kvkLCXWtur7i9e12e7ACA4hUmqOzU+KKYMADAn4zFpY4xdhkGIovEV0j0Z+zVU5Hyo/Q82AEAJgoTVFZqfLHUEQDgk7ssMWFhBrJ7CfpHQPSQ+AoJ9/mbsJP3Kkh82bkeAKA2FHYIrNT4YqkjAMCnjMWl9/kaX4EvBaDKkPgKCUf2HupSfmkJSx0BACYKZ3zZWH7vjtKz1BEAYMoNHVZrfAW+EoBqQ+IrJNyHesxy4oupvAAAExnLiS93s2LCEQDAVJYaXwCKQOIrJNwHsKW8lxccmPEFADAxKPFlo6aK2D4eAOCP20eyMRBDjS8gukh8hYT7/LVU257t4wEAvriJr1iMpSUAgMoa2PjeyqoYrwZyNvClAFQZEl8h4Y6EuyPjQcXZRQsA4IOb+LIx20tihB0A4F/G4q6OtiYYAKg+JL5Cwu0OxC39xihuDwDwo39gKNzGbC+psKaKlcsBAGqIY7HGV5waX0BkkfgKCXdJoq0ZXxS3BwD44YaNOkuJL7aPBwD45Q7i2xqMkegfAVFE4isk3MevveL27owvO9cDANQGb7MVS9dzr0NxewCAqaxXB9lijS/CERA5JL5Cwn0A2yjcKLHUEQDgj2Oxk5G7zuDrAgBQLKtLHePuNYNfC0B1IfEVEjYf6oOvw5MdAFA8b8aXpXgUo6YKAMAnt7i9jaWObkkZZiAD0UPiKyRsj7BTTBgA4Ie3rMRacfvB1wUAoFgD+61YWuo4cE0SX0DkkPgKCds1VXiwAwD8yM9AtlzcnhnIAABDQWbi5AAAFW5JREFUbl8mYSEmMTEAiC4SXyGRL25vt6PBgx0AYMKrOWnpejFqfAEAfMrarPHlxSMCEhA1JL5CwnZNlfz28TzYAQDFc2dm2R+IIR4BAMy4G3VZqfHl9Y8CXwpAlSHxFRL5Gl92rhdjqSMAwId8PRU712PGFwDAL5t1kCkFA0QXia+QcLwaX3aL2/NcBwCYyFqu8eVehY4GAMCUu6tjwkKvllIwQHSR+AoJbzTD0m8szi5aAAAfbM9Azhe3BwDATL4cjI2ljrk/2WwFiB4SXyHhFROmpgoAoIJsdjJy18n9Sc1JAIApd/k9uzoCOBQSXyHhFRO2dD12LQEA+GF7sxWvo5G1cz0AQO2wufye/hEQXSS+QiJrsXCjxIgGAMAfN2zYikdxlpYAAHzyEl/U+AJwCCS+QsKxPMLOriUAAD8cb3TdzvXcTVvoaAAATGW8nYYt1viifwREDomvkLC5VW/hdehoAABM2J6BnF9aYuVyAIAa4lhc6shADBBdJL5CwvbMLG8XLXoaAAAD2aztGl+5P4lHAABTmYHYkbCy1DH//8QkIFpIfIWE7Zoq7mWyDGkAAAzY3mU4xi7DAACf8oMxNorb569BFwmIFhJfIZG1XVOFpY4AAB/cIvS24lG+uD0AAGbcMZOExRpfuesSlYAoIfEVFt4Iu53L0dEAAPhhu+YkNVUAAH5lbNb4YsYXEFkkvkIia/GhXngdRjMAACayjr1lJVJhcXviEQDAjNdHslzji+X3QLSQ+AoJb9TBcjFhHuoAABP5XR0tXdAbiLF0PQBAzchmc3/amBxQeA1iEhAtJL5CwvbSkjg1vgAAPtifgTz4ugAAFCvr7epoucYXBWGASCHxFRLe0hJL16OjAQDww/GWOtq5XpwZXwAAnzIWYxK7OgLRReIrZOzX+LJyOQBAjXC8zVZsFbfPYSAGAGDCcZyS7epITAKihcRXSOSXlti5ntthyTKcAQAwYLvGV8wrbm/negCA2lDYjbFe4ysb+HIAqgiJr5DwOgTWa6pYuRwAoEbYrvHlDsRQTwUAYKJwVlbcRo2vgv8nJgHRQuIrJOzP+Bp8XQAAiuFYjkcMxAAA/BiU+KLGF4BDIPEVEt6EL0vl7b0aX1auBgCoFW5nwHY8YiAGAGAiW7Ac0cYsZGp8AdFF4isk7I+wu8XteagDAIqXL25v53ruZQhHAAAThcmphI2ljoNmfBGUgCgh8RUS7oiGtY4GSx0BAD5Yr/EVZyAGAGAuUxA3bPWRvPwZIQmIFBJfIeEWWLS1fXx+aYmVywEAaoSX+LL0Lwj6GAAAPwp3XkzQRwJwCCS+QiK/fbztXR15qgMAiucQjwAAVSAzqLg9dScBjIzEV0jYrqmSr/Fl53oAgNrgdgasz0DOjnIgAAAFBu3qaKsQMoMxQCSR+AoJ28XtY15Hg4c6AKB4+V0dLRm4ENEIAGAia7l/JEnJgYv1Z4hKQJSQ+AoJ99Frb/v43J/kvQAAJthlGABQDdyZwjZ2dHSlkglJUm8/05CBKCHxFRL5pSV2rsf6dQCAH6Wq8UU4AgCYsL30XpJSdbnucW9/xto1AVQeia+QyNf4srR9vNfRoKcBACie7Y6GO5OZgRgAgInMwNIVWzs6SlIDM76ASCLxFRK217C7HRa6GQAAE/ldhu1cL0YhYQCAD47leCQVzPhKk/gCosRX4mv16tWaPn26GhoaNGfOHG3ZsuWQx//85z/XiSeeqIaGBp188slav369r5utZY7lYsJsHw+gmhFnqld+IMbyDGQrVwOA4hFrwi3jxiObNb5Y6ghEknHia926dWppadGKFSv00EMPacaMGVqwYIH27Nkz7PEPPPCAFi9erEsuuUTbtm3TokWLtGjRIj322GOBb76WOLL7YM/X+LJyOQCwhjhT3bzNVqwXt7dzPQAoBrEm/GwPxEhSqo6ljkAUGSe+brjhBl166aVaunSpTjrpJK1Zs0aNjY1au3btsMd/85vf1Nlnn61Pf/rTevOb36wvf/nLetvb3qZvf/vbgW++lri7ltiqqRKnxheAKkWcqW6O5Y4Gm60AqARiTfhls3ZLwUhSKsmMLyCK6kwO7uvr09atW7V8+XLvtXg8rvnz52vTpk3DnrNp0ya1tLQMem3BggW68847ze/Wh5179mn3PunR519TXZ3R260qr+7vk2RvqaObQHupq0+PPPfqkO/39/dHot3KjXYzR5v547Zbb39WyWSl78aeMMaZjs4Dev7laMSaYjz3yn5J9mZ8uZc5kM4MG48wGM9Mf2g3c26b7d3Xq8mHRyjQKHyxZn9fRk+88Bqf4YM8+5ceSVKiBEsdn9rTXbMxieelP7SbP/39/dqzv/Q/x+g3snfvXmUyGTU3Nw96vbm5Wdu3bx/2nPb29mGPb29vH/Hn9Pb2qre31/u6s7NTkpROp5VOp01uWVff8Zj+9/k6ff3RzUbnVSsnmzVugxEuJEn61RMd+tUTHSMcFJ12Ky/azRxt5k+dzjpjn449yrxco5XnSAmEMc78bPOzurFtp2ruc+w4gT5H7rnZbG5UvaOzV3/97d9ZubXoq7HPmjW0m7k61U95QR995zHGZ1ZrnJHKE2tsxpkdL3bqg2s2i8/w8OKx2Iht6r5ebJvXJ3JJtG/ft1Pfvm+nnRsMJT5r/tBufpw4Pq4LfcQMk2dpVaYiV61apZUrVw55/d5771VjY6PRtbI9cR1eb3H+awWNTUrpPz+i9S89EvhadT3S1MaEevot3BiAinngd/dre8r8vJ6eHvs3EyI248yfX4zp8Pra2iQ5GZempJ/X+vXPBb7W849t1gnj49qzPxqxGoiaZ3Zu1/rOJ4zPI87YizMv9EiH1yds3VqkxGLSaRN6Rt1ooLW1tajrTe2P6aiGuNjUESifscni/44WMokzRomviRMnKpFIqKNj8Ayhjo4OTZo0adhzJk2aZHS8JC1fvnzQVOLOzk5NmzZNZ511lpqamkxuWWeemVZra6vOPPNMJaO0HsiCjx7ie+k07eYH7WaONvMnaLu5I8/VJoxxZqH4HPvhttn7F5ypv/4r2qxYfNb8od3MRTXOSOWJNTbjjCQt4TPsi+nneKGkz5T+tqoaz0t/aDd/grSbSZwxSnzV19dr1qxZamtr06JFiyRJ2WxWbW1tWrZs2bDnzJ07V21tbbrqqqu811pbWzV37twRf04qlVIqNXQKQzKZ9P0hCnJuLaPd/KHdzNFm/vhtt2pt6zDHGRvn1yLazB/azR/azVzU4oxUnlhDnKkutJs52swf2s0fP+1mcrzxUseWlhYtWbJEp512mmbPnq0bb7xR3d3dWrp0qSTp4osv1tSpU7Vq1SpJ0pVXXql58+bp61//us455xzddtttevDBB/W9733P9EcDAGoAcQYAUGrEGgCoHcaJr/PPP18vvfSSrrnmGrW3t2vmzJnasGGDV+xx9+7disfztU5OP/103Xrrrfr85z+vz33uczr++ON155136q1vfau9dwEAiAziDACg1Ig1AFA7fBW3X7Zs2YjTgDdu3DjktfPOO0/nnXeenx8FAKhBxBkAQKkRawCgNtTWNlQAAAAAAACoGSS+AAAAAAAAEEkkvgAAAAAAABBJJL4AAAAAAAAQSSS+AAAAAAAAEEkkvgAAAAAAABBJJL4AAAAAAAAQSSS+AAAAAAAAEEl1lb6BYjiOI0nq7Ow0PjedTqunp0ednZ1KJpO2by2yaDd/aDdztJk/QdvNfZ66z9daFyTOSHyO/aDN/KHd/KHdzBFn7CLOVAbtZo4284d28ydIu5nEmVAkvrq6uiRJ06ZNq/CdAEC0dHV1afz48ZW+jYojzgBAaRBncogzAFAaxcSZmBOCYZhsNqsXXnhB48aNUywWMzq3s7NT06ZN05///Gc1NTWV6A6jh3bzh3YzR5v5E7TdHMdRV1eXpkyZonicVe9B4ozE59gP2swf2s0f2s0cccYu4kxl0G7maDN/aDd/grSbSZwJxYyveDyuo48+OtA1mpqa+AD6QLv5Q7uZo838CdJujMDn2YgzEp9jP2gzf2g3f2g3c8QZO4gzlUW7maPN/KHd/PHbbsXGGYZfAAAAAAAAEEkkvgAAAAAAABBJkU98pVIprVixQqlUqtK3Eiq0mz+0mznazB/arbrw+zBHm/lDu/lDu5mjzaoLvw9/aDdztJk/tJs/5Wq3UBS3BwAAAAAAAExFfsYXAAAAAAAAahOJLwAAAAAAAEQSiS8AAAAAAABEEokvAAAAAAAARFIkE19f+cpXdPrpp6uxsVETJkwo6hzHcXTNNddo8uTJGjNmjObPn68nn3yytDdaZV5++WVdeOGFampq0oQJE3TJJZdo3759hzznjDPOUCwWG/Tfxz/+8TLdcWWsXr1a06dPV0NDg+bMmaMtW7Yc8vif//znOvHEE9XQ0KCTTz5Z69evL9OdVg+TNrv55puHfKYaGhrKeLfV4Te/+Y3OPfdcTZkyRbFYTHfeeeeo52zcuFFve9vblEqldNxxx+nmm28u+X3WKuKMP8SZ4hBn/CHWmCHOVD9ijTniTHGIM/4QZ8xUU5yJZOKrr69P5513ni6//PKiz7nuuuv0rW99S2vWrNHmzZt12GGHacGCBTpw4EAJ77S6XHjhhXr88cfV2tqq//qv/9JvfvMbXXbZZaOed+mll+rFF1/0/rvuuuvKcLeVsW7dOrW0tGjFihV66KGHNGPGDC1YsEB79uwZ9vgHHnhAixcv1iWXXKJt27Zp0aJFWrRokR577LEy33nlmLaZJDU1NQ36TD377LNlvOPq0N3drRkzZmj16tVFHb9r1y6dc845es973qOHH35YV111lT72sY/pnnvuKfGd1ibijD/EmdERZ/wh1pgjzlQ/Yo054szoiDP+EGfMVVWccSLsRz/6kTN+/PhRj8tms86kSZOcr33ta95rr776qpNKpZyf/exnJbzD6vHHP/7RkeT84Q9/8F777//+bycWiznPP//8iOfNmzfPufLKK8twh9Vh9uzZzhVXXOF9nclknClTpjirVq0a9vgPf/jDzjnnnDPotTlz5jj/8A//UNL7rCambVbs39taIsn55S9/echjPvOZzzhvectbBr12/vnnOwsWLCjhnYE4UzziTHGIM/4Qa4IhzlQ3Yk1xiDPFIc74Q5wJptJxJpIzvkzt2rVL7e3tmj9/vvfa+PHjNWfOHG3atKmCd1Y+mzZt0oQJE3Taaad5r82fP1/xeFybN28+5Lm33HKLJk6cqLe+9a1avny5enp6Sn27FdHX16etW7cO+pzE43HNnz9/xM/Jpk2bBh0vSQsWLKiZz5WfNpOkffv26Q1veIOmTZumD3zgA3r88cfLcbuhVuuftWpHnCHOFIM44w+xpjz4rFW/Wo81xJnREWf8Ic6URyk/a3WBrxAB7e3tkqTm5uZBrzc3N3vfi7r29nYdddRRg16rq6vTEUccccg2uOCCC/SGN7xBU6ZM0SOPPKLPfvaz2rFjh+64445S33LZ7d27V5lMZtjPyfbt24c9p729vaY/V37a7IQTTtDatWt1yimn6LXXXtP111+v008/XY8//riOPvroctx2KI30Wevs7NT+/fs1ZsyYCt0ZJOKMRJwpBnHGH2JNeRBnql+txxrizOiIM/4QZ8qjlHEmNDO+rr766iHF4Q7+b6QPXS0rdbtddtllWrBggU4++WRdeOGF+vd//3f98pe/1FNPPWXxXaCWzJ07VxdffLFmzpypefPm6Y477tCRRx6pf/u3f6v0rSHiiDP+EGcQRsQaVAqxxhxxBmFEnKkuoZnx9U//9E/6+7//+0Mec+yxx/q69qRJkyRJHR0dmjx5svd6R0eHZs6c6eua1aLYdps0adKQwnz9/f16+eWXvfYpxpw5cyRJO3fu1Bvf+Ebj+61mEydOVCKRUEdHx6DXOzo6RmyjSZMmGR0fNX7a7GDJZFKnnnqqdu7cWYpbjIyRPmtNTU2MwheJOOMPccYe4ow/xJryIM7YQawxR5yxhzjjD3GmPEoZZ0KT+DryyCN15JFHluTaxxxzjCZNmqS2tjYvKHR2dmrz5s1Gu6hUo2Lbbe7cuXr11Ve1detWzZo1S5L061//Wtls1nv4F+Phhx+WpEHBNirq6+s1a9YstbW1adGiRZKkbDartrY2LVu2bNhz5s6dq7a2Nl111VXea62trZo7d24Z7rjy/LTZwTKZjB599FEtXLiwhHcafnPnzh2ytXQtfdZsIM74Q5yxhzjjD7GmPIgzdhBrzBFn7CHO+EOcKY+SxpnA5fGr0LPPPuts27bNWblypTN27Fhn27ZtzrZt25yuri7vmBNOOMG54447vK+vvfZaZ8KECc5dd93lPPLII84HPvAB55hjjnH2799fibdQEWeffbZz6qmnOps3b3buv/9+5/jjj3cWL17sff+5555zTjjhBGfz5s2O4zjOzp07nS996UvOgw8+6Ozatcu56667nGOPPdZ597vfXam3UHK33Xabk0qlnJtvvtn54x//6Fx22WXOhAkTnPb2dsdxHOeiiy5yrr76au/43/3ud05dXZ1z/fXXO0888YSzYsUKJ5lMOo8++mil3kLZmbbZypUrnXvuucd56qmnnK1btzof+chHnIaGBufxxx+v1FuoiK6uLu/ZJcm54YYbnG3btjnPPvus4ziOc/XVVzsXXXSRd/zTTz/tNDY2Op/+9KedJ554wlm9erWTSCScDRs2VOotRBpxxh/izOiIM/4Qa8wRZ6ofscYccWZ0xBl/iDPmqinORDLxtWTJEkfSkP/uu+8+7xhJzo9+9CPv62w263zhC19wmpubnVQq5bzvfe9zduzYUf6br6C//OUvzuLFi52xY8c6TU1NztKlSwcF1l27dg1qx927dzvvfve7nSOOOMJJpVLOcccd53z60592XnvttQq9g/K46aabnNe//vVOfX29M3v2bOf3v/+997158+Y5S5YsGXT87bff7rzpTW9y6uvrnbe85S3O3XffXeY7rjyTNrvqqqu8Y5ubm52FCxc6Dz30UAXuurLuu+++YZ9jblstWbLEmTdv3pBzZs6c6dTX1zvHHnvsoGcc7CLO+EOcKQ5xxh9ijRniTPUj1pgjzhSHOOMPccZMNcWZmOM4TvB5YwAAAAAAAEB1Cc2ujgAAAAAAAIAJEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiCQSXwAAAAAAAIgkEl8AAAAAAACIJBJfAAAAAAAAiKT/D4+VdqvLAbo+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -293,24 +198,13 @@ "print(norms.shape)\n", "#basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3ykZX3///c9k5lJJofNcc/ZnQkooCAgfFnWVqlfl3Ox1q9KQQWtQlWoh21FtlUW1AoWRa3FYhHEWv2BWuuhrMCyslXqCgUBAQGFTPbIZnPanJM53b8/knuS7Ca7mWRm7vu+5vV8PHgsmczcc33mTvK5rs993ddl2bZtCwAAAAAAAAAAHCbgdgMAAAAAAAAAAPAqiugAAAAAAAAAAMyBIjoAAAAAAAAAAHOgiA4AAAAAAAAAwBwoogMAAAAAAAAAMAeK6AAAAAAAAAAAzIEiOgAAAAAAAAAAc6CIDgAAAAAAAADAHCiiAwAAAAAAAAAwB4rogE9cf/31sixL3d3dR31uOp3WNddco9bWVgUCAb3lLW8pfgMBAAD5GgAAjyNXA1gIiuiAge68807dfPPNetvb3qZvfetb+tjHPjbj+7FY7Iivv/7663XXXXcd9vjzzz+va665Rqeccopqa2u1YsUKXXjhhXrsscfm3bbx8XF94hOf0MqVK1VVVaV169Zp69at8349AACm8Gq+Hhoa0ubNm3XeeeepsbFRlmXN+j4AAJjOq7n6f//3f3X11Vfr1a9+taqrq7VmzRq94x3v0O9///v5hgYgTxTRAQP9/Oc/16pVq/SlL31J7373u3XWWWfpwQcfVCaTOey5999/vyTpmWee0d69ew/7/gsvvKCOjg5J0je+8Q3dfvvtOv300/XFL35RGzdu1AsvvKAzzzxTDz744Lza9p73vEe33HKL3vnOd+orX/mKgsGgLrjgAj388MMLDxgAAB/yar7u7u7Wpz/9aT333HM6+eSTFxckAAA+5tVc/fnPf17/8R//oTe96U36yle+oiuvvFK/+MUv9NrXvlbPPPPM4oIGMCuK6ICBDhw4oPr6+tzXtm3r9ttv15lnnqmnnnpKkpRIJHTuuefqi1/8ooaGhvT0009r/fr1uu2222TbtlKplD772c/q/PPPVyKRkCRdcskl2r17t77xjW/oyiuv1Mc//nE98sgjamxs1PXXX3/Udj366KO6++67deONN+rmm2/WlVdeqZ///Odau3atrrnmmmJ8FAAAeJZX8/WKFSv08ssva+fOnbr55puLEToAAL7g1Vy9ceNG7dy5U//0T/+k97///frkJz+pX/7yl0qn07rpppuK8VEAsAH4wubNm21J9nPPPWe//e1vt2tra+3Gxkb7wx/+sD06Omrbtm0nEglb0mH/PfTQQ7Zt2/YvfvEL+8wzz7TD4bB9yimn2D/+8Y9nvMeBAwfsv/qrv7Lr6urspqYm++///u/toaGho7btrW99q93Y2HjU53384x+3g8Gg3d/fP+Pxz33uc7Yke9euXfP8NAAA8CYT8vV0//u//2tLsr/5zW/m9ToAALzKtFw93Wtf+1r7ta997YJfD2BuzEQHfOYd73iHxsbGdOONN+qCCy7QP/3TP+nKK6+UJLW0tOjb3/62jj/+eK1evVrf/va39e1vf1snnHCCJCkQCMiyrNyxpv+/83UgEJjz+3PZv3+/mpubj/q8J554Qq985StVV1c34/EzzjhDkvTkk0/O6/0AAPA6P+drAADKgWm52rZtdXZ2kuuBIqGIDvhMPB7XT37yE1111VX69re/rQ996EP69re/rd/+9reqrq7Wu971Li1btkxLlizRu971Lr3rXe/S0qVL9c53vlMf/ehH9S//8i9asWKFfvjDH+qrX/2qzjnnHA0NDemee+7RaaedppNOOkkf/ehHdeONNyocDuukk07SQw89NGd7fvnLX2rHjh26+OKLj9r2l19+WStWrDjsceexffv2LfyDAQDAQ/ycrwEAKAem5ervfOc72rt3L7keKBKK6IDPXHXVVTO+/uu//mtJ0pYtW+Z8jWVZes973qNf//rXuQ3C4vG4HnjgAW3cuFE1NTV69atfrV/96lf64Ac/KMuyFAqF9KlPfUpbtmxRPB6f9bgHDhzQpZdeqng8Pq81zUdHRxWJRA57vLKyMvd9AABM4Od8DQBAOTApVz///PO66qqrtH79el1++eV5vx7A0VW43QAA+XnFK14x4+tjjjlGgUAgt8v3XM4+++xZHz/vvPMkSSeeeOKs3z/++ONnfXx4eFh/+qd/qsHBQT388MOqqak5SsulqqoqjY+PH/b42NhY7vsAAJjAz/kaAIByYEqu3r9/vy688EItWbJEP/jBDxQMBvN6PYD5oYgO+Nx811ab7midgqPtBp5MJvXWt75Vv/3tb3X//ffP2Uk41IoVK7R3797DHn/55ZclSStXrpzXcQAA8Bs/5WsAAMqRH3N1f3+/zj//fB08eFC//OUvGVMDRcRyLoDP/OEPf5jx9YsvvqhsNqtYLFaS989ms7rsssu0bds2ffe739VZZ50179eecsop+v3vf6+BgYEZjz/yyCO57wMAYAI/52sAAMqB33P12NiYLrroIv3+97/Xf/3Xf+lVr3pVkVoKQKKIDvjOrbfeOuPrr371q5Kk888/vyTv/9d//de655579LWvfU1vfetb83rt2972NmUyGf3rv/5r7rHx8XF985vf1Lp169Ta2lro5gIA4Ao/52sAAMqBn3N1JpPRxRdfrB07duj73/++1q9fX6RWAnCwnAvgM4lEQm9+85t13nnnaceOHfr3f/93XXrppblNTYrpy1/+sr72ta9p/fr1ikaj+vd///cZ3//zP/9zVVdXz/n6devW6e1vf7s2bdqkAwcO6Nhjj9W3vvUtdXR06I477ih28wEAKBk/52tJ+ud//mcdPHhQ+/btkyT99Kc/1Z49eyRNDPqXLFlSnMYDAFAifs7Vf/M3f6Of/OQnuuiii9Tb23vY69/1rncVpd1AOaOIDvjMPffco+uuu07XXnutKioqdPXVV+vmm28uyXs/+eSTkqQdO3Zox44dh30/kUgcdVD+b//2b/rUpz6lb3/72+rr69NrXvMa/dd//Zfe8IY3FKPJAAC4wu/5+gtf+IJ27tyZ+/qHP/yhfvjDH0qaGJhTRAcA+J2fc7Xz+p/+9Kf66U9/etj3KaIDhWfZtm273QgAAAAAAAAAALyINdEBAAAAAAAAAJgDRXQAAAAAAAAAAOZAER0AAAAAAAAAgDlQRAcAAAAAAAAAYA4U0QEAAAAAAAAAmEOF2w2Yj2w2q3379qm2tlaWZbndHAAAisK2bQ0ODmrlypUKBPx1nZtcDQAoF37N1+RqAEC5KEau9kURfd++fWptbXW7GQAAlMTu3bu1evVqt5uRF3I1AKDc+C1fk6sBAOWmkLnaF0X02tpaSROB19XVLfp4qVRKDzzwgM455xyFQqFFH88tpsQhEYsXmRKHZE4spsQhmRNLoeMYGBhQa2trLu/5Cbl6bqbEYkockjmxmBKHZE4spsQhmRNLMeLwa74udK6W+DnxIlNiMSUOyZxYTIlDMicWU+KQ/DG29kUR3bnVrK6urmAD82g0qrq6Ol//kJkSh0QsXmRKHJI5sZgSh2ROLMWKw4+3WJOr52ZKLKbEIZkTiylxSObEYkockjmxFDMOv+XrQudqiZ8TLzIlFlPikMyJxZQ4JHNiMSUOyR9ja/8s4AYAAAAAAAAAQIlRRAcAAAAAAAAAYA4U0QEAAAAAAAAAmANFdAAAAAAAAAAA5kARHQAAAAAAAACAOVBEBwAAAAAAAABgDhTRAQAAAAAAAACYA0V0AAAAAAAAAADmQBEdAAAAAAAAAIA5UEQHAAAAAAAAAGAOFNEBAAAAAAAAAJgDRXQAAAAAAAAAAOZAER0AAAAAgBL6xS9+oYsuukgrV66UZVn60Y9+dNTXbN++Xa997WsViUR07LHH6q677ip6OwEAwASK6AAAGIaBOQAA3jY8PKyTTz5Zt95667yen0gkdOGFF+qNb3yjnnzySX30ox/V+9//ft1///1FbikAAJAWUERnYA4AgLcxMAcAwNvOP/98ffazn9Wf//mfz+v5t912m+LxuL74xS/qhBNO0NVXX623ve1t+tKXvlTklgIAAEmqyPcFzsD8L//yL/XWt771qM93BuYf+MAH9J3vfEfbtm3T+9//fq1YsULnnnvughq9WLZtazTtylsDAFB0559/vs4///x5P3/6wFySTjjhBD388MP60pe+NGeuHh8f1/j4eO7rgYEBSVIqlVIqlVpE65U7zvR//cyUWEyJQzInFlPikMyJxZQ4JHNiKUYcbnwmO3bs0IYNG2Y8du655+qjH/3onK8pdq52jjX9X78yJQ7JnFhMiUMyJxZT4pDMicWUOKTCx1KMzyTvIrrfB+Z/ODCkv7j9USkT1JvP9/cPGb8s3mRKLKbEIZkTiylxSObE4odEPx8LGZjfeOONuuGGGw57/IEHHlA0Gi1Y27Zu3VqwY7lttljufimg/aOWPnRCRuGgC41aANPPiR+ZEodkTiymxCGZE0sh4xgZGSnYseZr//79WrZs2YzHli1bpoGBAY2Ojqqqquqw15QqV0v8nHhRPrGks9JXngmqOmTrL1+Z9VSfpFzPiZeZEodkTiymxCEVLpZi5Oq8i+j58trAfCQtDYxVSLL0059tVWXRP4Hi45fFm0yJxZQ4JHNiMSUOyZxYvJzo52MhA/NNmzZp48aNua8HBgbU2tqqc845R3V1dYtuUyqV0tatW3X22WcrFAot+nhumiuWXb0j2rHjYUnSslev0/q2JreaOC/lcE78xpQ4JHNiMSUOyZxYihGHM8nL64qdqyV+TrxoIbE8tadfux55RJIla83JuuDkFcVt5DyU+znxIlPikMyJxZQ4pMLHUoxcXfQSshcH5jc/+5B6R1I65pQzdfKaxkUfzy38sniTKbGYEodkTiymxCGZE4sfEn2xRCIRRSKRwx4PhUIFPaeFPp6bDo3lN7unzvf+gZRv4jT5nPiVKXFI5sRiShySObEUMg43Po/ly5ers7NzxmOdnZ2qq6ubdUwtlS5XF+uYbjAlDim/WPYcnFoJoKNn1FOfQbmeEy8zJQ7JnFhMiUMqXCzF+Dw8OQ+72Mk+3lyt3l0HtfvguE4/xv8/ZPyyeJMpsZgSh2ROLKbEIZkTi5cT/XwsZGCOxevoGc79f3v38BGeCQAod+vXr9eWLVtmPLZ161atX7/epRbBJNP7IQn6JAAwq0Cx38CLA/O1TRNLwnT0uHPbPAAAXrJ+/Xpt27ZtxmMMzItv+iC1gwErAJSVoaEhPfnkk3ryySclSYlEQk8++aR27dolaeLu7Msuuyz3/A984ANqb2/XNddco+eff15f+9rX9L3vfU8f+9jH3Gg+DNNBER0AjqroRXQvDszjFNEBAAZjYO4Pie6Raf/PgBUAysljjz2mU089VaeeeqokaePGjTr11FN13XXXSZJefvnlXN6WpHg8rnvvvVdbt27VySefrC9+8Yv6xje+oXPPPdeV9sMs0++O6+gZlm3bLrYGALwp7+VchoaG9OKLL+a+dgbmjY2NWrNmjTZt2qS9e/fq3/7t3yRNDMz/+Z//Wddcc43+8i//Uj//+c/1ve99T/fee2/hosgTM9EBACZ77LHH9MY3vjH3tbPPyOWXX6677rprzoH5xz72MX3lK1/R6tWrGZgXmW3bM2Z9dfQMK5u1FQhYLrYKAFAqf/Inf3LEQuVdd90162ueeOKJIrYK5ci2bSW6pvokI8mMDgyOa1ldpYutAgDvybuIbsLAPN5cLUnaSREdAGAgBube1zkwrtFUJvf1eDqr/QNjWlnPGvQAAKB0eoaTGhxPy7KkZbWV2j8wpkT3MEV0ADhE3kV0EwbmaxsnZqIfHE2pbziphuqwyy0CAADlxFm+JdYUVcCy1N49rET3MEV0AABQUk6fZFV9lY5pqckV0c9sa3K5ZQDgLUVfE92LqsJBLQlPXAhI9LAGKQAAKK1cEb25WrHJO+RYFx0AAJSa0/+IN1fn7tpnw3MAOFxZFtElaWnlZBG9i+QAAABKy9nAa/qAlSI6AAAotY7c3XHVik3uH0efBAAOl/dyLqZoqZT+MDBzF2oAAIBSaO+aKqJb1sRmosz6AgAApTZjJnpLzYzHAABTyreIXjUxE72d5AAAAErMuYgfa6pWMDBRRGeJOQAAUGoziuhNE3fH7ewdUTZrKzDZRwEAlPFyLi2TG00z6wsAAJRSJmtrV8+IpIkBq7Mm+q6eEaUzWTebBgAAykg2a2vnZJ8k1lytVQ1VCgUtJdNZ7esfdbl1AOAtZVtEXzo5Ez3RPSzbtl1uDQAAKBf7Do4qmckqHAxoZX2VVtRVKlIRUDpra+9BBqwAAKA0OgfHNJrKqCJgaXVDlYIBS2saWRcdAGZTtkX0pogUsKSRZEZdg+NuNwcAAJQJZ1C6timqYMBSIGApNnn7NMvMAQCAUnH6JK2NUYWCE+UhZ8Nz7toHgJnKtoheEZBW1VdJYsAKAABKxxmwOsu4TPz/xKwvBqwAAKBUOronl3JpiuYec4roicnvAQAmlG0RXZpKFAxYAQBAqUzfwMsRY9YXAAAosUT3kCQp3lyTeyyWK6IPudImAPCq8i6i55IDA1YAAFAaHT2HF9HbmlnOBQAAlJYz2zzePG0m+uQScx09zEQHgOnKu4jexIYZAACgtHLLuTRNm4meG7DSJwEAAKUxdWF/aiZ6vGWiT7Krd0SpTNaVdgGAF5V1ET1OER0AAJRQMp3Vnr5RSVJby1QR3Rmw7u0b1Xg640rbAABA+chkbe2anG0emzYTfVltpSpDAWWydq7PAgAo8yL62ski+s7eEWWytsutAQAAptvdN9HniIaDWlobyT3eUhNRdTiorC3t7uX2aQAAUFz7Do4qmckqXBHQyiVVuccDAWvqDjkmHAJATlkX0VfVVykUtJRMZ7XvIFdYAQBAcTmD0bVN1bIsK/e4ZVnT9mqhiA4AAIqrPbe8XFSBgDXje3H2agGAw5R1ET0YsLSmcWI2OmuQAgCAYnOWkGubtqmoI54rog+VtE0AAKD8dMyyR4vDubDPTHQAmFLWRXRpagMNkgMAACi23Kai09YedcSZiQ4AAErE6ZPEZ7uwz4bnAHAYiuiTg1huUwIAAMXmDEadi/jTMRMdAACUyhGL6JMbnrd3UScBAEfZF9G5TQkAAJRKossZsB4+E32qT8JMdAAAUFzOhf3YLEV0Z4mXff2jGktlStouAPCqsi+iT836oogOAACKZyyV0b7+MUmzrz/q3Dq9f2BMI8l0SdsGAADKRzKd1Z6+UUmzz0RvrgmrNlIh25Z293JxHwAkiui5hLG7b1SpTNbl1gAAAFPtmhyE1lVWqLE6fNj3G6rDqo+GJDEbHQAAFM/uvhFlsrai4aCW1kYO+75lWbkZ6ix9CwATyr6Ivqy2UlWhoDJZmyusAACgaJwNQ+PN1bIsa9bnxNjICwAAFJmznG2s6Qh9Epa+BYAZyr6IHghYWts0sS4pA1YAAFAsHT1TRfS5tLHMHAAAKLIjbSrqYOlbAJip7IvoktTGztMAAKDIdk7e8TbbBl6OGANWAABQZPMrokdnPBcAyh1FdHHrNAAAKL75DFi5dRoAABSbU/s44oV96iQAMANFdHGbEgAAKL6dLOcCAAA8oCO3T0t0zuc4/ZXOgXENj6dL0i4A8DKK6JpKDk4iAQAAKKSxtNQ1lJQ0v+VceoaTGhhLlaRtAACgfIylMtp7cFSSFG+umfN59dGwGqIhScxGBwCJIrqkqSL63oOjGktlXG4NAAAwTdfYxL/NNWHVVYbmfF5NpEIttRFJLOkCAAAKz7kzrq6yIlckn0uMCYcAkEMRXVJjdVi1lRWSphIKAABAoXSNWZKm1hc9kngTS7oAAIDiSHQPSZLiLTWyLOuIz51a+nao6O0CAK+jiC7Jsqxpa5CSHAAAQGE5M9GPtJSLIza5PilFdAAAUGgJZz30prnXQ3dMXdhnsiEAUESfFGsmOQAAgOLoGp2Y6XWkTUUdzvqkFNEBAEChOcvFze/C/uRyLqyJDgAU0R1Tm4uSHAAAQGEdGMuniD4xM4w+CQAAKDTnIv38+iQsMQcADorok0gOAACgWJzlXPKdiW7bdjGbBQAAykyiZ/5FdGcmeu9wUv2jqaK2CwC8jiL6pFwRnduUAABAAfWNJDWSnv/Gomsn1ygdGEurdzhZ1LYBAIDyMTSeVtfguKT5LedSE6nQ0tqIJO6QAwCK6JOcBNI1OK7BMa6wAgCAwujomdhvZVldRFXh4FGfXxkKauWSysnXMmAFAACF4RTCm2vCqqsMzes1Me7aBwBJFNFz6ipDaq4JS5J29rC5KAAAKAynXxGfnGE+H/GWiQFrexcDVgAAUBhOIXw+d8Y54k0U0QFAoog+g5NI2kkOAACgQBLdE0X0tXkMWJ0+CTPRAQBAoTgz0eezlIvDubBPER1AuaOIPo2TSFjrCwAAFEpuJnpzHjPRc30S7o4DAACF4RTC57OpqIML+wAwgSL6NHHW+gIAAAXW0Ts566sx/yI6d8cBAIBCSfTkX0SfXiexbbso7QIAP6CIPg1FdAAAUEi2bedmk6/NY0306XfHMWAFAACF0LGANdHXNkVlWdLgWFo9w8liNQ0API8i+jQU0QEAQCF1DY1rOJmRJVutecxEb22IKhiwNJrKqHNgvIgtBAAA5eDgSFJ9IylJUiyPJeYqQ0GtXFIliaVvAZQ3iujTOFdj+0dT6uMKKwAAWKRE18RgszEiRSrm3+0KVwS0umFiwMrFfQAAsFhOf2J5XaWi4Yq8XusU3emTAChnFNGnqQoHtWJJpSTWIAUAAIvnbMLVUpn/kiy5zUXZyAsAACzSQjYVdXDXPgBQRD9MbudpkgMAAFikxOR66C1V+b/W6ZMwYAUAAIuVWw99AUX0XJ2EC/sAyhhF9EPEWxiwAgCAwkh0D0la3Ex0+iQAAGCxEj0TF/bjeayH7mjL1UlGCtomAPATiuiHiDuzvrjCCgAAFqljcrC5tDL/11JEBwAAheJc2I831+T92ul37Nt2/hMDAMAEFNEPkRuwdjFgBQAAC5fN2lNrolctfCb6rp4RZbIMWAEAwMLYtp27sL+QmeitjVEFA5ZGUxl1DowXunkA4AsU0Q8Rm7aJF1dYAQDAQr08MKbxdFYVAUsNkfxfv7K+SuFgQMlMVvsOjha+gQAAoCx0DyU1NJ5WwJooiOcrFAyotWFigxfukANQriiiH2JNY1QBSxpJZtQ1yBVWAACwMM4GXmsaqxS08n99MGBpTdPEQJcBKwAAWCinH7GqoUqRiuCCjhFjmTkAZY4i+iHCFQGtbpgYsLaTHAAAwAI5/Yi1TfnP+HLk1iBlrxYAALBAzoV9p1+xEPRJAJQ7iuizcNYg7aCIDgAAFsjpR8QXMWBta5l4bTt7tQAAgAVKTBa+nVrHQtAnAVDuKKLPIs5tSgAAYJESzEQHAAAekOhafBGdPgmAckcRfRYU0QEAwGJN3Tq9iCJ6c3TGsQAAAPLlFL5jiyiiO3WSXT0jymTtgrQLAPyEIvos2DADAAAsRjqT1a7eEUmLvHW6uUaStLtvVKlMtiBtAwAA5SObtXNF9MUsMbeyvkrhYEDJTFb7Do4WqnkA4BsU0WfhJJadvVxhBQAA+dvTN6p01lakIqBltZEFH2dZXURVoaAyWVu7J4vyAAAA87V/YExjqawqApZWN1Qt+DjBgKU1k3fXMeEQQDmiiD6LVQ1VCgUtJdNcYQUAAPmbvoFXIGAt+DiWZXGHHAAAWDBnSbg1jVFVBBdXAmJddADljCL6LIIBS2saJ9cgJTkAAIA8ORt4xRZx27Qj3sysLwAAsDDt3YvfVNTR1jJxjPYu+iQAyg9F9DnEJ9cgZcAKAADyVYgNvBzM+gIAAAuV2+icPgkALApF9Dkw6wsAACyU039oK8CANc5yLgAAYIEKeWHf6ZN00CcBUIYoos+BmegAAGChEgWc9TU1YGVjUQAAkJ/2IlzY3903qlQmu+jjAYCfUESfQ2xyJjpXWAEAQD7G0xntndyYvBDrjzrH2HtwVGOpzKKPBwAAykM6k9Xu3omL8IW4sL+sLqKqUFCZrJ07LgCUC4roc2ibnInOFVYAAJCPXT0jsm2pJlKh5prwoo/XWB1WbWWFJGlnDwNWAAAwP/sOjimVsRWpCGhFXeWij2dZVq4Yz7roAMoNRfQ5cIUVAAAsxNRSLlFZlrXo41mWxbroAAAgb+3dQ5ImNgQNBBbfJ5Gm9o9r76JPAqC8UESfA1dYAQDAQjj9Bmd/lUKgiA4AAPLVMe3CfqHEmqiTAChPFNGPgCusAAAgX06hO95UhAErRXQAADBPHT2FWw/dwYV9AOWKIvoRxJmJDgAA8pQrorcUbsDa1sKAFQAA5Kd9st/QVoQiekc3y94CKC8U0Y/AmfXFgBUAAMxXbk30psINWHN9Ei7sAwCAeeooRp9ksoi+r39UY6lMwY4LAF5HEf0InFlfXGEFAADzMZJMq3NgXNLUTK1CcAasXYPjGhpPF+y4AADATMl0Vnv6JmoZheyTNFWHVVtZIduWdvZQKwFQPhZURL/11lsVi8VUWVmpdevW6dFHHz3i87/85S/ruOOOU1VVlVpbW/Wxj31MY2NjC2pwKTlXa/ce5AorAMBfyiVXe41z4b0hGlJ9NFyw4y6pCqmpOjz5HsxGBwBTkK9RLLv7RpW1pepwUC21kYId17Is1kUHUJbyLqLfc8892rhxozZv3qzf/OY3Ovnkk3XuuefqwIEDsz7/u9/9rq699lpt3rxZzz33nO644w7dc889+ru/+7tFN77YGqvDqquskMQVVgCAf5RTrvaa3FIuBZzx5YgxYAUAo5CvUUzO3m6x5mpZllXQY+c2PGeZOQBlpCLfF9xyyy264oor9N73vleSdNttt+nee+/VnXfeqWuvvfaw5//qV7/SH/3RH+nSSy+VJMViMV1yySV65JFHFtn04nOusD61p1+J7iEdt7zW7SYBAHBUpcjV4+PjGh8fz309MDAgSUqlUkqlUouOwTlGIY5VSi8dmPgcYo1Vh8Ww2FjWNlbp8Z19erFzQKlUy+IaugB+PSezMSUWU+KQzInFlDgkc2IpRhyFOlax83Wxc7VzrOn/+pUpcUhTMbx0YFDSRP+h0HGtbazMvUexPjMTz4nfYzElDsmcWEyJQyp8LMX4TPIqoieTST3++OPatGlT7rFAIKANGzZox44ds77mda97nf793/9djz76qM444wy1t7dry5Yteve73z3n+3hpYL6msUpP7enXi52DSh3XvOj3LiR+WbzJlFhMiUMyJxZT4pDMicWLib5UufrGG2/UDTfccNjjDzzwgKLR6KLjcGzdurVgxyqFh18MSApovGePtmzZPeN7i41lvNuSFNSvfvsHtY2+sKhjLYbfzsmRmBKLKXFI5sRiShySObEUMo6RkcXfpVyKfF2qXC3xc+JF//PbP0gKKN33srZs2VvQYx/smuiT/Ob3e7Rly86CHvtQJp0TU2IxJQ7JnFhMiUMqXCyFyNWHyquI3t3drUwmo2XLls14fNmyZXr++ednfc2ll16q7u5u/fEf/7Fs21Y6ndYHPvCBI95y5qWBeap3Ijn88skX1Dr0XMHeu5D4ZfEmU2IxJQ7JnFhMiUMyJxYvJfpS5epNmzZp48aNua8HBgbU2tqqc845R3V1dYuOI5VKaevWrTr77LMVCoUWfbxS+dbtj0o6qHPWn6oLTlouqXCxWM/s1733/FapqgZdcMG6ArV4/vx6TmZjSiymxCGZE4spcUjmxFKMOJxJXotRinxd7Fwt8XPiRU4smapGSQe1Yd1rdMGpKwv6Hqv39OvbLz6iQVXqggvOKuixHSaeE7/HYkockjmxmBKHVPhYCpGrD5X3ci752r59uz73uc/pa1/7mtatW6cXX3xRH/nIR/SZz3xGn/rUp2Z9jZcG5umnXtZ9P3hamWijLrjgjEW/dyHxy+JNpsRiShySObGYEodkTix+SPTzsZBcHYlEFIkcvklVKBQq6Dkt9PGKzdlD5dhldYe1e7GxHLtsiSSpo2fE1c/Eb+fkSEyJxZQ4JHNiMSUOyZxYChmHW59Hvvm6VLm6WMd0gylxSNLO3lFJ0rHLD++TLNaxyyf6JAcGxzWetVQTKV5pyaRzYkospsQhmROLKXFIhYulGJ9HXn/pmpubFQwG1dnZOePxzs5OLV++fNbXfOpTn9K73/1uvf/975cknXTSSRoeHtaVV16pv//7v1cgcPjepl4amL9i+UTRvqNn1LM/kPyyeJMpsZgSh2ROLKbEIZkTi5cSfalyNQ7XP5pSz3BSUrE2Fp24G+/gSEp9w0k1VIcL/h4AgNIgX6OYkhlp/8DEErnxpsL3SZZUhdRYHVbvcFId3cM6cdWSgr8HAHhNXlk2HA7rtNNO07Zt23KPZbNZbdu2TevXr5/1NSMjI4cl82AwKEmybTvf9pacMwjuHhrX4Ji/1+4FAJivHHO1V3R0D0uSltZGijIjKxqu0PK6iY28Ej3DBT8+AKB0yNcopu6xiX+XVIWKdtE9Plkr6aBPAqBM5D3C27hxoy6//HKdfvrpOuOMM/TlL39Zw8PDuR3FL7vsMq1atUo33nijJOmiiy7SLbfcolNPPTV3y9mnPvUpXXTRRbmE72V1lSE114TVPZRUR/eITlrNFVYAgLeVW672isRkEb0Ys9Adseao9g+MqaN7WK9d01C09wEAFB/5GsVyYMySNFXoLoZYU7Ue39mnRBdFdADlIe8i+sUXX6yuri5dd9112r9/v0455RTdd999uQ1Rdu3aNePq+Cc/+UlZlqVPfvKT2rt3r1paWnTRRRfpH/7hHwoXRZHFmqrVPZRUomeYIjoAwPPKMVd7gVNEL8Zt0454c7V+3d6bm/UOAPAv8jWKpWtyJnoxi+jxyWXmuDsOQLlY0L3GV199ta6++upZv7d9+/aZb1BRoc2bN2vz5s0LeStPiDdX6zGusAIAfKTccrUXOLczx1uKW0SXpHaK6ABgBPI1iqFrdGImeqyoF/ZrJE1NIgAA07HzyDzEWOsLAAAcRW45lyIOWJ1j0ycBAABz6XKWcynihX1nw3PujgNQLiiiz0PbZBGdK6wAAGA2tm3n+gltRRywOsdOdA2ziRwAAJhVbjmXElzY7xtJ6eBIsmjvAwBeQRF9HmIU0QEAwBH0DCc1OJaWZUlrGqNFe5/WxqgCljSczKhraLxo7wMAAPxpcCytwdTkci7NxeuTVEcqtKwuIolaCYDyQBF9HpwrrP2jKfUNc4UVAADM5NzKvHJJlSpDwaK9T6QiqJX1VZPvOVK09wEAAP60s2eif9BcE1ZtZaio78UycwDKCUX0eagKB7ViSaUkNvICAACHc2ZgORt/FlM8d4fcUNHfCwAA+ItT0I41FW8WumOqT8KFfQDmo4g+T05yYNMMAABwqNymokW8bdrBgBUAAMwlMTkTfW1Ji+jUSQCYjyL6PLEuOgAAmIsz6yveXFP092ImOgAAmIuznEsxNxV1xJhsCKCMUESfpzZnwMpaXwAA4BDOrPB4CWaiTw1YmYkOAABm6ijhTPS2aUV027aL/n4A4CaK6PPkbJiR6KKIDgAApti2nZuBFSvBrK/4tE28slkGrAAAYEru7rgSFNFbG6OyLGlwPK3uoWTR3w8A3EQRfZ7iLVMDVq6wAgAAR+fAuEZTGQUDllobiz9gXd1QpYqApfF0Vi8PjBX9/QAAgD/0DSfVP5qWJK0pQZ+kMhTUyiVVkqaK9wBgKoro89TaEFXAkkaSGR0YHHe7OQAAwCPaJ9cmb22oUihY/K5VRTCQGxizBikAAHA4y8/Wh21VhYMlec+2FvaPA1AeKKLPU7gioNUNEwNWkgMAAHA4a5M7a5WXgrO5aDt9EgAAMMlZfralsnR3z+eWvqVPAsBwFNHz4AxYSQ4AAMCRW3u0hEX02LSNvAAAAKSpPklLVenekz4JgHJBET0PcZIDAAA4RHsXRXQAAOA+Z8JfKWeitzHZEECZoIieB26dBgAAh3JjJjoDVgAAcCinX7C0snTvmbuw3zOsbLZ0xXsAKDWK6Hlg1hcAAJguk7W1q2dyTfSm0s9E39U7onQmW7L3BQAA3mTbdq5W0VJVumL26oYqBQOWxlJZdQ6Olex9AaDUKKLnwZn1tbNnRBmusAIAUPb2HRxVMpNVOBjQyvrSLUC6oq5SkYqA0llbew+Olux9AQCAN3UNjms4mVHAkpoipXvfUDCgNY1RSVMbmwKAiSii52FlfZXCwYCSmaz2MWAFAKDsObdNr22KKhiwSva+gYCVm/nOMnMAAMDpk6yqr1JFiSs9sabJInoPfRIA5qKInodgwNKayeTQQXIAAKDsOQPWWAnXQ3fEmif7JBTRAQAoe06NwilolxJL3wIoBxTR8+TM+mIjLwAA4PQH2lwooseba2a0AQAAlC/nzjQ3iuhseA6gHFBEz1NbC8kBAABMcHMmenxyJjp9EgAA0OHq3XHUSQCYjyJ6npiJDgAAHFO3TrswYJ18T5aYAwAAHd0jktyZiR6fLKLv6h1RJmuX/P0BoBQooucpzlpfAABAUjKd1Z6+iY3GnTvVSik++Z57+0Y1ns6U/P0BAIA3ZLO2q2uir1xSpXBFQKmMrb2TfSMAMA1F9Dw5RfTdfaNKZbIutwYAALhld9/EbKtoOKiltZGSv39LTUTV4aCytrS7d6Tk7w8AALzh5YExjaezCgUtrVxSWfL3DwQsrW2cXGaOO+QAGIoiep6W1UVUFQoqk7UZsAIAUMZya482VcuyrJK/v2VZudno7V0MWAEAKFdOn6S1MaqKoDtlHmfCYaJryJX3B4Bio4ieJ8uy2DQDAADk+gFxFzbwcrAuOgAAaJ/sk7S52CfJLX3bw2RDAGaiiL4AbRTRAQAoe04/INZc+rVHHblZX90MWAEAKFfT745zC5MNAZiOIvoCOINlkgMAAOXLmf0db65xrQ1TRXRunQYAoFzliugemIlOnQSAqSiiLwC3TgMAgESXU0R3bya6M1juYCY6AABlK+Gh5Vz29I0omc661g4AKBaK6AvQ1uJsmEERHQCAcjSWymhf/5gkd2eiO4Pl/QNjGkmmXWsHAABwRzqT1a7eiYvpbs5EX1obUTQcVNaWdvdxcR+AeSiiL4AzE31f/5jGUhmXWwMAAErNuRutrrJCDdGQa+2oj4ZVP/n+zEYHAKD87OkbVTprK1IR0PK6StfaYVlWrlbChEMAJqKIvgCN1WHVVVZIYkkXAADKkbP2aLy5WpZludoWlpkDAKB8JXqm+iSBgLt9EmdJF/okAExEEX0BLMuaSg5smgEAQNlJTM76jrt427SjjY28AAAoW7lNRZvc75PEJveJoU8CwEQU0Rdoaudpbp0GAKDcJLqHJLm79qgjRhEdAICy5eR/L/RJnH1i6JMAMBFF9AWaGrAOudwSAABQah0emokep4gOAEDZcvJ/myf6JBMz0bljH4CJKKIv0NRyLsxEBwCg3LRPWxPdbSwxBwBA+XLWH/fSTPR9/WMaS2Vcbg0AFBZF9AVyBqztDFgBACgrg2MpdQ+NS/LGgNVpQ89wUv2jKZdbAwAASmU8ndHevlFJU+uRu6khGlJdZYUkNhcFYB6K6AvkDFi7h8Y1OMaAFQCAcrGzZ+IutOaasOoqQy63RqqJVKilNiKJ2egAAJST3b0jytqTfYGaiNvNkWVZ3CEHwFgU0ReorjKk5pqwJJZ0AQCgnDh3ocWa3J+F7ohPtoVZXwAAlI/EZC0i1hyVZVkut2YCd+0DMBVF9EXIbeTFgBUAgLLR4aH10B25AWsXfRIAAMpFontI0tRa5F4QYyY6AENRRF8EZwZaggErAABlI9HtnQ28HLkBKxf2AQAoG85M9HiT++uhO6aWc+GOfQBmoYi+CPEWBqwAAJSbhCdnok8Mnpn1BQBA+ejw4IV9lnMBYCqK6IvgrD9KcgAAoHw4F8+9VUSfuI27vXtYtm273BoAAFAKXryw7xT0u4fGNTiWcrk1AFA4FNEXwZmJnugaYsAKAEAZ6BtO6uDIxIDQSxuLrp28jXtwLK3e4aTLrQEAAMU2kkxr/8CYJG8V0esqQ2qqDkuSdvawpAsAc1BEX4S1jROJamAsrb4RrrACAGA6ZzPxFUsqVRUOutyaKZWhoFbVV0mampUGAADM5aw5Xh8NqT4adrk1M7GkCwATUURfhKpwUCuWVEpiwAoAQDlwNhP30ix0R2xyXXT6JAAAmM+Ly8s5chue0ycBYBCK6IvkJCwGrAAAmM8ZsHppAy+HU9hnw3MAAMyXWw/dgxf24xTRARiIIvoicYUVAIDy4QxY2zxYROfCPgAA5cPJ9168sM9yLgBMRBF9kdoYsAIAUDb8MGBNdLOJFwAApnMm8nlyORfujgNgIIroi+QkB4roAACYzbZtTw9Yp986bdu2y60BAADF5O010Sf2aTk4klLfcNLl1gBAYVBEX6R4y9QVVgasAACYq2twXMPJjAKWtKYx6nZzDtPaGFUwYGk0lVHnwLjbzQEAAEUyMJZS99BEcdqLd8dFwxVaXlcpSUowGx2AISiiL1JrQ1QBSxpJZnRgkAErAACmcu46W9VQpXCF97pQoWBAqxuqJHGHHAAAJnPujGupjagmUuFya2bnzEZn/zgApvDeCNBnwhUBtU7ORmPACgCAuaZum65xuSVzY3NRAADM5+T5eJP3ZqE7nP4SfRIApqCIXgCsiw4AgPnacwNW7y3l4mAjLwAAzJfw8B4tjngzkw0BmIUiegFM38gLAACYycubijraJvdqae+iTwIAgKmcPokX10N3cGEfgGkooheAM5hup4gOAICxEgxYAQCAByR6RiRNzfb2IufCfqJrWLZtu9waAFg8iugFwEx0AADMls3a2pkbsHq3iO60bVfPiDJZBqwAAJjGtm0luoYkeXufltbGqAKWNJzMqGto3O3mAMCiUUQvAGfAupMBKwAARnp5YEzj6axCQUur6qvcbs6cVtZXKRwMKJnJat/BUbebAwAACqxvJKWBsbQkaa2H92mJVAS1crLP1NE94nJrAGDxKKIXAANWAADMlphcY7y1MaqKoHe7T8GApTVNbOQFAICpEt0Ts9BXLqlUZSjocmuOzJlw6LQZAPzMu6NAH2HACgCA2RKTa4zHm7y7lItjasBKnwQAANMkJmd1x1v81CdhJjoA/6OIXiC5ddHZyAsAAOM4M9G9vB66gyI6AADmcvZii/nowj77xwEwAUX0AnGSQ3sXyQEAANM4F8ljPiiiO4NqLuwDAGAe5yK5Hy7sx7iwD8AgFNELhJnoAACYy5lB1eaDASsz0QEAMJefiujxaRf2s1nb5dYAwOJQRC8QZ9YXA1YAAMySzmS1q3diLU8/zER3BtV7+kaVTGddbg0AACgU27Z9dXfc6oYqVQQsjaez2j8w5nZzAGBRKKIXyPQBayrDgBUAAFPs6RtVOmsrUhHQ8rpKt5tzVMvqIqoKBZXJ2trdx0ZeAACY4sDguEaSGQUsqbUh6nZzjqoiGNCaxol2MuEQgN9RRC+QGQPWXgasAACYItEzddt0IGC53JqjsywrNzuNjbwAADCHU4hubYwqXOGPcg7rogMwhT/+6vrA9AEryQEAAHMkJjcNd5Zu84N4M7O+AAAwjXNx3F99EuokAMxAEb2A2kgOAAAYx1l7NN7CgBUAALjHT5uKOrg7DoApFlREv/XWWxWLxVRZWal169bp0UcfPeLzDx48qKuuukorVqxQJBLRK1/5Sm3ZsmVBDfayGLO+AAAeQa4unNyA1UezvpwZas4FAACAN5GvkQ8/FtGd/lOCPgkAn6vI9wX33HOPNm7cqNtuu03r1q3Tl7/8ZZ177rl64YUXtHTp0sOen0wmdfbZZ2vp0qX6wQ9+oFWrVmnnzp2qr68vRPs9Jd5cI4kBKwDAXeTqwnIGrDE/DVidmehd9EkAwKvI18iXL/skk3fy7eoZUTqTVUWQBREA+FPeRfRbbrlFV1xxhd773vdKkm677Tbde++9uvPOO3Xttdce9vw777xTvb29+tWvfqVQKCRJisVii2u1R+XWH2XACgBwUSly9fj4uMbHx3NfDwwMSJJSqZRSqdSiY3COUYhjLcZ4Oqu9B0clSa314QW1x41YVtdHJEn7+sc0ODKmylBw0cf0yjkpBFNiMSUOyZxYTIlDMieWYsRRqGMVO18XO1c7x5r+r1/5IY5s1tbO3hFJR+6TeC2W5qqgIhUBjaez6uge1NrG6Lxe57U4FsOUWEyJQzInFlPikAofSzE+k7yK6MlkUo8//rg2bdqUeywQCGjDhg3asWPHrK/5yU9+ovXr1+uqq67Sj3/8Y7W0tOjSSy/VJz7xCQWDsw/o/DowX72k8APWI+GXxZtMicWUOCRzYjElDsmcWLyY6EuVq2+88UbdcMMNhz3+wAMPKBqd3+BoPrZu3VqwYy3E/hHJtisUCdp65L+3ybIWfqxSxmLbUlUwqNGMpX//8f1aWbhT4vo5KSRTYjElDsmcWEyJQzInlkLGMTIysuhjlCJflypXS/yclELvuJRMVyho2XrqV9v19FH6JF6KpSEU1P60pR/87L91QoOd12u9FMdimRKLKXFI5sRiShxS4WIpRK4+VF5F9O7ubmUyGS1btmzG48uWLdPzzz8/62va29v185//XO985zu1ZcsWvfjii/rQhz6kVCqlzZs3z/oavw7MZwxYf3S/VpboDit+WbzJlFhMiUMyJxZT4pDMicVLib5UuXrTpk3auHFj7uuBgQG1trbqnHPOUV1d3aLjSKVS2rp1q84+++zcbDs3PPjcAempJ/WKZUt04YVnLugYbsVy5+5f67d7B9R6wmk699XLjv6Co/DKOSkEU2IxJQ7JnFhMiUMyJ5ZixOFM8lqMUuTrYudqiZ+TUnr4xR7pN49rbVON/vTCP5rzeV6M5b8OPqn9zx1Qc9urdMH6tfN6jRfjWChTYjElDsmcWEyJQyp8LIXI1YfKezmXfGWzWS1dulT/+q//qmAwqNNOO0179+7VzTffbOTA/M49v9Zv9wyo9VWFGbAeCb8s3mRKLKbEIZkTiylxSObE4odEPx8LydWRSESRSOSwx0OhUEHPaaGPl69dfWOSpHhLzaLbUepY4i01+u3eAe0+OG7UOSkkU2IxJQ7JnFhMiUMyJ5ZCxuHW55Fvvi5Vri7WMd3g5Tj2HJzok7TNs0/ipVjaltZIzx3Q7r6xvNvkpTgWy5RYTIlDMicWU+KQChdLMT6PvIrozc3NCgaD6uzsnPF4Z2enli9fPutrVqxYoVAoNOP2shNOOEH79+9XMplUOBw+7DV+Hpi3Ndfot3sGtOtg/slhofhl8SZTYjElDsmcWEyJQzInFi8l+lLl6nLhbBYebyrsbe+lEGua3Fy0e8jllgAADkW+Rr4S3RN3LDp7sflJm7PheU/hl1cAgFLJa1vkcDis0047Tdu2bcs9ls1mtW3bNq1fv37W1/zRH/2RXnzxRWWz2dxjv//977VixQojk3y8uUaS1NHN5qIAgNIjVxdWYjKfx1tKtEZbAbVNtrmjmwErAHgN+Rr5ci6Kx5r91yfhwj4AE+RVRJekjRs36vbbb9e3vvUtPffcc/rgBz+o4eHh3I7il1122YzNUT74wQ+qt7dXH/nIR/T73/9e9957rz73uc/pqquuKlwUHhKbvCqcoIgOAHAJubpwnHzuDP78JDdg7aFPAgBeRL5GPjp6nJno/uuTOG3e2zeqZDp7lGcDgDflvSb6xRdfrK6uLl133XXav3+/TjnlFN133325DVF27dqlQGCqNt/a2qr7779fH/vYx/Sa17xGq1at0kc+8hF94hOfKFwUHtI2ORM9wawvAIBLyNWFMTyeVufAuCR/DlidmWpdg+MaHEupttL/SycBgEnI15ivVCar3b3+LaK31EZUHQ5qOJnRrt4RHbu0xu0mAUDeFrSx6NVXX62rr7561u9t3779sMfWr1+vX//61wt5K99xZqJ3DzFgBQC4h1y9eM566A3RkOqj/rtNfklVSE3VYfUMJ7WzZ0QnrlridpMAAIcgX2M+9vSNKp21VRkKaFltpdvNyZtlWYo1V+vZfQNKdA9TRAfgS3kv54Ijq60MqblmYlNU1iAFAMC/nDzux7VHHU7bWWYOAAD/6pi2vFwgYLncmoVx+iTsHwfAryiiF4GzW3Y7m2YAAOBbzkx0P9427YhTRAcAwPdyG537uE/SNtn2dvokAHyKInoROBt5MRMdAAD/au+aHLD6cFNRR5xZXwAA+J4JRfSpOgl9EgD+RBG9COItk8mhh+QAAIBf5Wait/h3wBpn1hcAAL7n9ElMWGKOOgkAv6KIXgTOjDUGrAAA+Fdi2vqjfpWb9cWAFQAA38rdHefjIrqznMvL/WMaTWZcbg0A5I8iehE4M9YSXUOybdvl1gAAgHz1j6bUO5yU5PdZXxP7tBwcSalvMh4AAOAfY6mM9vWPSvJ3Eb2hOqwlVSFJXNwH4E8U0YtgbeNEYhsYS6tvJOVyawAAQL6c9TqX1kZUE6lwuTULFw1XaHldpSQpwYAVAADf2d07ItuWaiMVaqoOu92cRYmxVwsAH6OIXgRV4aBWLpkcsJIcAADwndxSLj6e8eVwZqMzYAUAwH/ap/VJLMtyuTWL08ZeLQB8jCJ6kTiDboroAAD4j5O/2wwoosebayTRJwEAwI+ci+B+XsrFkdurhT4JAB+iiF4kcW5TAgDAt0yaiR6fnIlOER0AAP9x1g83ok/SwobnAPyLInqRxJmJDgCAb+UGrE3+H7DmZn0xYAUAwHfau5yZ6FGXW7J48SbqJAD8iyJ6kVBEBwDAn2zbnlrOpcX/RXQnhkTXsGzbdrk1AAAgH85FcGd5Nj9z9mnpHkpqYCzlcmsAID8U0Yskt+t0DwNWAAD8pGc4qcGxtCxLWtPo/1lfrY1RBSxpOJlR19C4280BAADzNDyeVufARO6OG3B3XG1lSM01EUksfQvAfyiiF0lrQ1TBgKWRZEYHBhmwAgDgF86gbuWSKlWGgi63ZvEiFUGtaqiSNDEbHQAA+IMzC70hGtKSaMjl1hQGe7UA8CuK6EUSrgho9eSAtZ0BKwAAvtHe7dw27f8ZXw7WRQcAwH86ukckGdonmYwNAPyCInoRxZsZsAIA4DfOTPSYARt4Oab2amHACgCAX+Q2OjeoiB539mrpHnK5JQCQH4roRRRj52kAAHzHpA28HFNFdAasAAD4hXNXuwnroTucWBI9XNgH4C8U0YuorYUiOgAAfpMbsBo0Ez234Tkz0QEA8I3chf0Wc4roTp8k0TUk27Zdbg0AzB9F9CJiJjoAAP6Szdra2eOsP2rOTPS2aUvMZbMMWAEA8AOnlhAzaCa6E8vAWFp9IymXWwMA80cRvYicW6d39Ywow4AVAADP6xwc02gqo2DAym0QboJV9VWqCFgaT2f18sCY280BAABH0T+aUu9wUpJZG4tWhYNasaRSEhMOAfgLRfQiWllfpXAwoGQmq30HR91uDgAAOApnMNfaUKVQ0JxuUkUwoDWNE8vTdDBgBQDA85x8vbQ2oupIhcutKSxnNjp9EgB+Ys7o0IOCAUtrmiYGrFxhBQDA+5w1w02a8eVwYmqnTwIAgOfllnIxsU/C/nEAfIgiepHFp61BCgAAvC3RPSTJzAHr1Oai9EkAAPA6p8DcZmCfJO7sH0edBICPUEQvstysry6SAwAAXpeYnIlu5IC1mVlfAAD4hTMRz8QL+3Eu7APwIYroRcZMdAAA/MPkmegMWAEA8I/cci5N5vVJYtMu7Nu27XJrAGB+KKIXmZPwmPUFAIC3ZbK2dvdObARu8oB1V++I0pmsy60BAABzsW17ajmXFvP6JGsaowpY0kgyo67BcbebAwDzQhG9yJyEt6dvVMk0A1YAALxq38FRJTNZhSsCWllf5XZzCm5FXaUiFQGls7b29I263RwAADCH3uGkBsfSsqyJgrNpwhUBrW6YiIsNzwH4BUX0IltaG1E0HJyY3dY34nZzAADAHJxB3NrGqIIBy+XWFF4gYE3dIccycwAAeJYzC33lkipVhoIut6Y42PAcgN9QRC8yy5oasJIcAADwLidPm7geuiPWPDHrK8GG5wAAeJZTRI8b3CeJN032SbiwD8AnKKKXQLyZddEBAPC63NqjJg9Ym2skseE5AABe5uRp5+K3iXJ1Ei7sA/AJiuglQBEdAADvS5TBTPS4MxOdPgkAAJ6V65MYuNG5I7ecCxf2AfgERfQSiFFEBwDA85xBnNG3Tk/ORKdPAgCAdyW6J/ZTa2sxuU/iFNFHlM3aLrcGAI6OInoJxNkwAwAAT0ums9rdOzFgNbmI7twWvvfgqMbTGZdbAwAADmXb9tQ+LQbPRF9VX6VQ0FIyndW+/lG3mwMAR0URvQScwfi+/jGNJhmwAgDgNbv7RpS1pWg4qKW1EbebUzQtNRFVh4OybWlXz4jbzQEAAIfoHBjXaCqjYMBSa6O5a6JXBAO5+Dq66ZMA8D6K6CXQEA1pSVVIkrSzl9noAAB4jbOpVaypWpZludya4rEsS/EWlpkDAMCrnPzc2lClUNDsko2zmXuCddEB+IDZf5E9wrKsqU0zGLACAOA55bAeusO5NZyNvAAA8J5y2Ojc4fRJnMkMAOBlFNFLxLnC2k4RHQAAz3EGrOVQRG9jw3MAADyrrC7sN3NhH4B/UEQvkdysLwasAAB4TlnN+qKIDgCAZ5XjhX3qJAD8gCJ6icSaJzbMYMAKAID3dOQGrOZu4OWgiA4AgHflLuw3mV9Ed/oku3pHlM5kXW4NABwZRfQSaWuukSQl2HUaAABPGU1mtK9/TJIUn8zXJnNmfXUOjGskmXa5NQAAwJHJ2trVM1EzKIeZ6MvrKhWpCCidtbWnb9Tt5gDAEVFELxFnJnr30LgGx1IutwYAADh29k7M+KqrrFBDNORya4qvPhpW/WScHVzcBwDAM/YdHFUyk1U4GNDK+iq3m1N0gYCVu1jAHXIAvI4ieonUVobUXBORxIAVAAAvyS3l0lIjy7Jcbk1pMGAFAMB7nLy8pimqYKA8+iTOsjX0SQB4HUX0EnLWWW3vHnK5JQAAwNHuFNGbzF8P3RF3NjzvYcAKAIBXOHm5HJZycTjrotMnAeB1FNFLKJ7beZqZ6AAAeIUzEz1WhgPW9i4GrAAAeEWiu/yK6G3cHQfAJyiil1AslxyYiQ4AgFeU44A1zqwvAAA8x+mTOEuclIMYRXQAPkERvYRyV1h7mIkOAIBXJCbvECvLIjoDVgAAPKOjDC/sxyaXvd17cFTj6YzLrQGAuVFEL6HcFdauIdm27XJrAADA4FhK3UPjkspzOZee4aT6R1MutwYAAKQyWe3uG5VUXkX0lpqIaiIVsm1pFxMOAXgYRfQScm7JGhhLq2+EASsAAG5z9ilprgmrrjLkcmtKpyZSoZbaiCRmowMA4AW7e0eUydqqCgW1rC7idnNKxrKs3Gx0lnQB4GUU0UuoMhTUyiWVklgXHQAAL0j0lN/ao454E2uQAgDgFc4+JbHmalmW5XJrSiveXCOJvVoAeBtF9BKLtzgDVm5TAgDAbeW49qgjzkZeAAB4RnuX0yeJutyS0os3MRMdgPdRRC+xWG7WFzPRAQBwmzNYK6f10B1OzMz6AgDAfU4+LscL+zEu7APwAYroJeYkxA5mogMA4DpnsNZWhgNWZqIDAOAdTo2gLJeYo04CwAcoopcYA1YAALyjnGeiT++T2LbtcmsAAChvCZaY0/6BMY0k0y63BgBmRxG9xOLTbp1mwAoAgHv6hpPqH01JKs9ZX2sn1x8dHEurZzjpcmsAAChfY6mM9vWPSirPInp9NKz6aEgSs9EBeBdF9BJrbYwqGLA0kszowOC4280BAKBsJSbXHl2xpFJV4aDLrSm9ylBQq+qrJE1tsAoAAEpvV++IbFuqraxQY3XY7ea4grv2AXgdRfQSCwUDWt0wMWB1dt8GAACll5jMw+U4C90Ra56Yjc6AFQAA9zi1gXhztSzLcrk17og3seE5AG+jiO6C6Uu6AAAAdzh5ON5SvkV0Zn0BAOC+XJ+kDJdyccTokwDwOIroLnBmvJEcAABwT7uzgVc5z0Rn1hcAAK7j7jgu7APwPoroLmhrITkAAOA2Zx3wWBnP+nIGrCwxBwCAexLMRJ+6Y586CQCPoojuAmaiAwDgLtu2c4M0BqzSzp4R2bbtcmsAAChP9EmmJjX0DCfVP5pyuTUAcDiK6C5wEuOunhFlsgxYAQAota7BcQ0nMwpY0prGqNvNcU1rY1TBgKXRVEadA+NuNwcAgLIzNJ7WgcGJHFzOd8fVRCrUUhuRxGx0AN5EEd0FK+urFA4GlMxkte/gqNvNAQCg7Dh3g61uiCpcUb7doVAwoNaGKklSe/eQy60BAKD8OAXjxuqwllSFXG6Nu+Ls1QLAw8p31OiiYMDS2qaJWW8s6QIAQOklWA89J5Zbg3TE5ZYAAFB+OlgPPYfNRQF4GUV0l8RIDgAAuCa3gVdT+S7l4ogx6wsAANckJjf3dvJxOaNOAsDLKKK7pI3kAACAa9jAa0pby8Rn0N5FnwQAgFJzLuw7+bicxZsnJjewJjoAL6KI7hKusAIA4B6Wc5nCTHQAANzjFIyZiS7Fm2skTfTTbNt2uTUAMBNFdJc4M98YsAIAUFrZrK2Onon1v9smB2vlzOmT7OoZUSbLgBUAgFKaurDPEnPO3nEDY2n1jqRcbg0AzEQR3SXOgHV374iS6azLrQEAoHzs6x9VMp1VKGhpZX2l281x3cr6KoWDASUzWe07OOp2cwAAKBv9Iyn1TRaLmYkuVYaCWrlkom+2s4cNzwF4y4KK6LfeeqtisZgqKyu1bt06Pfroo/N63d133y3LsvSWt7xlIW9rlKW1EUXDQWVtaXcfyQEAUFjk6rl1dE/k3dbGqCqCzCcIBiytmZz5xTJzAFBa5Ovy5qyHvqwuoupIhcut8YZ4C0vfAvCmvEeO99xzjzZu3KjNmzfrN7/5jU4++WSde+65OnDgwBFf19HRob/927/V61//+gU31iSWZU2tQUpyAAAUELn6yHIbeLEeek6cvVoAoOTI10h0D0liFvp0zmfBTHQAXpP3pc5bbrlFV1xxhd773vdKkm677Tbde++9uvPOO3XttdfO+ppMJqN3vvOduuGGG/TLX/5SBw8eXFSjTRFvqdbvXh5gwAoAKKhS5Orx8XGNj4/nvh4YGJAkpVIppVKLX8PSOUYhjnWolzon2rqmoaooxz9UMWMplDUNE7dOv3RgcM52+iGO+TIlFlPikMyJxZQ4JHNiKUYchTpWsfN1sXO1c6zp//qVW3G81DkoSYo1Fa5P4vdz4vRJ2ruHdPwS/8Yxnd/PicOUOCRzYjElDqnwsRTjM8mriJ5MJvX4449r06ZNuccCgYA2bNigHTt2zPm6T3/601q6dKne97736Ze//OVR38fPA/N8zGfAeiReiaMQiMV7TIlDMicWU+KQzInFi4m+VLn6xhtv1A033HDY4w888ICi0cJtjLV169aCHcvx6HMBSQEN7W/Xli0vFfz4cylGLIUy1GlJCup/n+/QFqv9iM/1chz5MiUWU+KQzInFlDgkc2IpZBwjI4ufIVuKfF2qXC3xc7JQv/r9RJ9k9MAubdmys6DH9us56e6b6JM803FAF5zs3zhmY0ospsQhmROLKXFIhYulELn6UHkV0bu7u5XJZLRs2bIZjy9btkzPP//8rK95+OGHdccdd+jJJ5+c9/v4eWCej4EDE8nhsRd2acuWjgUfx+04ColYvMeUOCRzYjElDsmcWLyU6EuVqzdt2qSNGzfmvh4YGFBra6vOOecc1dXVLajt06VSKW3dulVnn322QqHQoo833Zd+/7CkEf3pWWdofVtTQY89m2LGUihNiV7d0/6YhgPVuuCC2ZcH8EMc82VKLKbEIZkTiylxSObEUow4nElei1GKfF3sXC3xc7JYt+/8taQBnfdHp+nsVy0tyDH9fk6O7xrW7c//j3pTFbLtjM45x59xTOf3c+IwJQ7JnFhMiUMqfCyFyNWHKurOFYODg3r3u9+t22+/Xc3NzfN+nZ8H5vlYseugvvPSoxqyorrggjfk/XqvxFEIxOI9psQhmROLKXFI5sTih0R/NAvN1ZFIRJFI5LDHQ6FQQc9poY+XzmS1p29UknTssiUl/fkrdCyFdOyyJZKkvQfHZFtBhSvm3jbHy3Hky5RYTIlDMicWU+KQzImlkHG48XksJF+XKlcX65huKGUctm3n1v1+xfI6zsmk+NI6BSxpNJXRQMq/cczGlFhMiUMyJxZT4pAKF0sxPo+8iujNzc0KBoPq7Oyc8XhnZ6eWL19+2PNfeukldXR06KKLLso9ls1mJ964okIvvPCCjjnmmMNe59eBeb6OXT4xYH25f0xpO6CqcHBBx3E7jkIiFu8xJQ7JnFhMiUMyJxYvJfpS5Wq/2tM3qnTWVmUooOV1lW43xzOW1UVUFQpqNJXR7r4RHdNS43aTAMBo5Gt0DyU1OJ6WZUmtjYVdXsfPwhUBtTZGtbNnRAdGLbebAwA5c08zmkU4HNZpp52mbdu25R7LZrPatm2b1q9ff9jzjz/+eD399NN68sknc/+9+c1v1hvf+EY9+eSTam1tXXwEPtYQDWlJ1UTBZGcvm4sCABaPXH1kzmbesaZqBQIMzByWZSnWXC1J6mDDcwAoOvI1Onom8u3KJVWqDC1sQp2pYk0TfZKuMZcbAgDT5L2cy8aNG3X55Zfr9NNP1xlnnKEvf/nLGh4ezu0oftlll2nVqlW68cYbVVlZqRNPPHHG6+vr6yXpsMfLkTNgfWr3QSW6hnX88sKsSwcAKG/k6rlNL6JjpnhzVM+9PJD7jAAAxUW+Lm9Ovm1roU9yqHhztf77913qGmPCAwDvyLuIfvHFF6urq0vXXXed9u/fr1NOOUX33XdfbkOUXbt2KRDIa4J7WWtziug9DFgBAIVBrp6bM2CNM2A9THxyJjpFdAAoDfJ1eePC/tycPknXqMsNAYBpFrSx6NVXX62rr7561u9t3779iK+96667FvKWxnISZqKLASsAoHDI1bNzbp2OM2A9jNMn6eDCPgCUDPm6fDnLpzkFY0xxlphjJjoAL+GytsucmXAMWAEAKD5mos/NuZ2cC/sAABRfgiL6nNomP5PuMSmTtV1uDQBMoIjuMmcmHLdOAwBQXGOpjPYenLgvmFunD+d8Jvv6xzSWyrjcGgAAzJXN2rmJdDGK6IdZWV+lUNBS2rb0cj+7iwLwBoroLos1RyVJ3UNJDYylXG4NAADm2t07ItuWaiIVaq4Ju90cz2msDqu2cmKlP+6QAwCgeDoHxzSWyqoiYGl1Q5XbzfGcYMBSa8NEraSjZ8Tl1gDABIroLqutDKm5JiJpak00AABQeO3Tbpu2LNbYPJRlWbnbp+mTAABQPM6d6K2NUYWClGVmE292iuj0SQB4A3+tPcAZsLKkCwAAxeMUhrltem6xXJ+EWV8AABSLM/aPNUVdbol3OZ8NM9EBeAVFdA9wlnTpYMAKAEDRODOZ2MBrbvFcEX3I5ZYAAGCujtzdcTUut8S71lJEB+AxFNE9wEmcDFgBACie9i5nwMqsr7nEc8u5MGAFAKBYEt30SY4m3kSfBIC3UET3ACdxJrjCCgBA0Tgz0WNNzESfi/PZtLPEHAAARZNgibmjcmai7zk4qlQm63JrAIAiuifkZqJ3Dcm2bZdbAwCAeYbH0+ocGJfEci5H4gzmu4fGNTiWcrk1AACYJ5O1tat3YgIdfZK5LauNKBSwlcna2tM36nZzAIAiuhc4V1gHxtLqG2HACgBAoTmz0BuiIdVHwy63xruWVIXUVD3x+ezkDjkAAApub9+oUhlb4YqAVi6pcrs5nhUIWGqpnPh/lr4F4AUU0T2gMhTUyiUT2YHkAABA4TnraTLj6+icz4glXQAAKLzE5IX9tY1RBQKWy63xtpbKiTv1E6yLDsADKKJ7RLxlYsBKcgAAoPCci9SsPXp0sdzmohTRAQAotI7cpqL0SY6mZXKiPn0SAF5AEd0jnI28mIkOAEDhORep42wqelTOoD7BgBUAgIJLUESft6mZ6PRJALiPIrpHxHOzvpiJDgBAoTkXqZ07vzA3iugAABQPRfT5o4gOwEsoonsE648CAFA8HZObZMaYiX5UzmfkbMYKAAAKx8mvLDF3dEsnl3PZ1z+qsVTG3cYAKHsU0T0iPm39Udu2XW4NAADm6B9JqXc4KYlZX/MRa45Kkg6OpNQ3+bkBAIDFS6az2t3LZufzVVMh1UQqZNvSrl7u2gfgLoroHtHaGFUwYGk0lVHnwLjbzQEAwBiJyRlfS2sjqo5UuNwa74uGK7S8rlLS1GcHAAAWb3ffiLK2FA0HtbQ24nZzPM+ypFjTxMV9lnQB4DaK6B4RCgbU2jBxrxLJAQCAwuno5rbpfDmz0RNd9EkAACiUXJ+kqVqWZbncGn+giA7AKyiie0iMjbwAACg4Z7+RNoro8xZvrpHEuugAABQSm4rmzymid1AnAeAyiugeklsXnQErAAAFw0z0/MWbmfUFAEChUUTPHzPRAXgFRXQPcRJpO7dOAwBQMM7FaQas8+fMRGfACgBA4SS4sJ837tgH4BUU0T2EmegAABSWbdu5db0pos+fMxO9o3tYtm273BoAAMzQkZuJHnW5Jf7hzEQ/MDiu4fG0y60BUM4oontIrGlicL+rZ0SZLANWAAAWq2c4qcHxtCxLWtPIgHW+WhujCljScDKjrsFxt5sDAIDvjaUy2tc/Jmnqji8c3ZKqkBqiIUlMOATgLoroHrKyvkrhioCSmaz2HRx1uzkAAPiec+vvyiVVqgwFXW6Nf0QqglrVUCWJ26cBACgEpwBcV1mRKwpjfuIs6QLAAyiie0gwYGltI5tmAABQKGzgtXDOHXLM+gIAYPE6pvVJLMtyuTX+4qyL3kGdBICLKKJ7DFdYAQAonA6K6AvW5mx4Tp8EAIBFS3SPSKJPshBtuTrJiMstAVDOKKJ7DEV0AAAKx8mnMQaseWPWFwAAhZPoHpJEn2QhYrk6yZDLLQFQziiiewxFdAAACmdqORc2Fc1XjD4JAAAF08FM9AWbWmKOmegA3EMR3WNys75YfxQAgEXJZm3t7HEGrDUut8Z/nFund/aMKJu1XW4NAAD+luhhibmFcj6z3uGk+kdSLrcGQLmiiO4xTnLY3TuiZDrrcmsAAPCvzsExjaYyCgYsrW6ocrs5vrOqvkoVAUvj6axeHhhzuzkAAPjW4FhKXYPjkljOZSGqIxVaWhuRNHUxAgBKjSK6xyytjSgaDiprS7v7uFUJAICFcpYhWdMYVShIlydfFcGA1jRNLIOT6GLACgDAQjl3xjXXhFVXGXK5Nf7EXi0A3MaI0mMsy8qt98WAFQCAhcttKtrEeugLFXf6JMz6AgBgwab6JMxCXyhnmbl2iugAXEIR3YPiLayLDgDAYjkzlbhteuFym4tyYR8AgAVL0CdZNGaiA3AbRXQPcmZ9cYUVAICFS3RP3DrdxoB1weJseA4AwKI5hV82FV04ZxY/fRIAbqGI7kFxrrACALBoie4hScz6Wgz6JAAALF47RfRFa2uZujvOtm2XWwOgHFFE96DcrdMMWAEAWJBM1tau3omZ6AxYF8757Hb1jiidybrcGgAA/MmZPc2a6Au3pjEqy5IGx9PqGU663RwAZYgiugc5t52/3D+m0WTG5dYAAOA/e/tGlcrYClcEtHJJldvN8a3ldZWKVASUztrae3DM7eYAAOA7fcNJHRxJSZJizWx2vlCVoWCuT8cdcgDcQBHdgxqqw1pSFZIk7ewlOQAAkK/E5IyvtY1RBQKWy63xr0DAys2aS7AGKQAAeXPy5/K6SkXDFS63xt+cO+TYPw6AGyiie5STHBJdJAcAAPLFBl6FM7W56IjLLQEAwH+cPgmz0BfP+QyZiQ7ADRTRPSpXRGfWFwAAeUtQRC8YZ6+WnRTRAQDI29SF/RqXW+J/zmfYQZ0EgAsoonsUM9EBAFg4iuiFE5+c9ZXopogOAEC+2nN9EmaiL5bzGbZTJwHgAoroHhXL3TpNcgAAIF+J3K3TFNEXy5n1tZM+CQAAeXPG9M4eI1g45zPc2TOibNZ2uTUAyg1FdI9qc2ais9YXAAB5Saaz2tM3MWuameiL56w/urd/TKmsy40BAMBHbNtWx+SdXG0t9EkWq7UxqmDA0mgqo87BMbebA6DMUET3KGfmXPdQUgNjKZdbAwCAf+zuG1HWlqLhoJbWRtxuju+11ERUE6mQbUs9jFcBAJi3rqFxDY2nFbAmCsBYnFAwoNaGKklMOARQehTRPaomUqGWyYE/O08DADB/zn4isaZqWZblcmv8z7Ks3Gz0rjE+TwAA5suZhb6qoUqRiqDLrTFDbulb9moBUGIU0T0s3sSSLgAA5MtZe5SlXArHWYP0wKjLDQEAwEecCXGsh1448dzSt0MutwRAuaGI7mHOrC+K6AAAzF97N0X0QnP2amEmOgAA80efpPCmiujMRAdQWhTRPSzeXCOJ5VwAAMhHbtYXA9aCieWK6C43BAAAH+mgiF5wzqx+585DACgViugeFmcmOgAAeWPAWnjOZ9k1ykx0AADmK8GF/YJz+iS7ekaUydoutwZAOaGI7mHOTPRE97Bsm+QAAMDRjCYz2tc/MV2aInrhOJ9lf8rS8Hja5dYAAOB92aw9tU8La6IXzMr6KoWDASUzWe07yGYtAEqHIrqHrW2amIk+MJZW73DS5dYAAOB9O3snBqt1lRVqiIZcbo056qNh1VdNfJ47e1mDFACAo9k/MKbxdFYVAUurG6rcbo4xggErVyvhrn0ApUQR3cMqQ0Gtqp9Itqz3BQDA0SW6Jmd8tdTIslh6pJCcDc939lBEBwDgaJwC75rGqCqClF4KKZbbXJQ6CYDS4S+5xzkD1vYukgMAAEeTyN02HXW5JeaJNU58ph0U0QEAOCrWQy+eOEV0AC6giO5xTnJgJjoAAEc3talojcstMU9u1hdFdAAAjoqNzouHOgkAN1BE97jY5AYkHd0MWAEAOJqpWV/MRC+0WBPLuQAAMF/MRC8ep07CTHQApUQR3ePaWiaSQzvJAQCAo0pMXnRm1lfhxdjECwCAeZtaYo4+SaE5/bw9faNKprMutwZAuaCI7nFTM9GHZdu2y60BAMC7BsdS6h4al8Ssr2JYO1lE7xtJqX805XJrAADwrnQmq929kxf2W+iTFNqyuoiqQkFlsrZ293GHHIDSoIjuca2NUQUDlkZTGXUOjLvdHAAAPMtZ+qy5Jqy6ypDLrTFPTaRCdaGJC/odzEYHAGBOew+OKpWxFakIaEVdpdvNMY5lWbkJE/RJAJQKRXSPCwUDam2oksTt0wAAHEnutmlmoRdNy2QdgD4JAABzy62H3lStQMByuTVmijezzByA0qKI7gNOMYDkAADA3BJdUwNWFEdL1cRMdPokAADMjY3Oi486CYBSo4juA7nblHpIDgAAzMXJk6yHXjwtlRTRAQA4mo5u+iTFlts/jjoJgBKhiO4DbZOJt72L5AAAwFzaJwesbQxYi8ZZzoUBKwAAc0v0TOzTQp+keOK5NdHZWBRAaVBE9wFmogMAcHTM+iq+6cu52LbtcmsAAPCmRPeQJJaYKyaniL734KjGUhmXWwOgHFBE9wEn8e7qGVEmy4AVAIBD9Q0n1T+aksSAtZiaI5JlSYNjafUMJ91uDgAAnpNMZ7W3b1QSm50XU2N1WLWVFZKknT3MRgdQfBTRfWBlfZXCFQElM1ntOzjqdnMAAPAcZymXFUsqVRUOutwac4WD0oq6iTVdOlgXHQCAw+zqHVHWlqrDQbXURtxujrEsy8otl8NeLQBKgSK6DwQDltY2Tuzq3U5yAADgMLmlXJiFXnSxJvokAADMJTFteTnLslxujdliFNEBlBBFdJ+Y2jSD5AAAwKGcwVO8hSJ6scWaJ4ro9EkAADgce7SUjjN5gj4JgFKgiO4Tca6wAgAwp8Tk5ttxZqIXXW7AyobnAAAcxumTtFFEL7q2yckTCfokAEpgQUX0W2+9VbFYTJWVlVq3bp0effTROZ97++236/Wvf70aGhrU0NCgDRs2HPH5mB1FdABAPsotVzszkNjAq/hyy7l00ScBgMUqt3xdDhJdLDFXKs5nTJ0EQCnkXUS/5557tHHjRm3evFm/+c1vdPLJJ+vcc8/VgQMHZn3+9u3bdckll+ihhx7Sjh071NraqnPOOUd79+5ddOPLCWt9AQDmq9xytW3bM9YfRXE5RfSdPSPKZm2XWwMA/lVu+bpcOHdq0ScpPucz7hoc19B42uXWADBdRb4vuOWWW3TFFVfove99ryTptttu07333qs777xT11577WHP/853vjPj62984xv6j//4D23btk2XXXbZAptdfpxbwfb0jSiZzipcwUo8AIDZlSJXj4+Pa3x8PPf1wMCAJCmVSimVSi06BucY8znWgcFxjSQzCljSitpQQd6/kPKJxcuc9i+rqVAwYGk0ldGe3iGtWFLpcsvyZ9o58XsckjmxmBKHZE4sxYijUMcqdr4udq52jjX9X78qVByjyYxe7h+TJLXWh135XMrpnEQrpMbqkHqHU3pxf79evbKuVM3LSzmdE78wJRZT4pAKH0sxPpO8iujJZFKPP/64Nm3alHssEAhow4YN2rFjx7yOMTIyolQqpcbGxjmf46WBuVfUVwZUHQ5qOJlR4sCA2lqqfRnHXIjFe0yJQzInFlPikMyJxYuJvlS5+sYbb9QNN9xw2OMPPPCAotFo/g2fw9atW4/6nBf7JalCDWFbDz5wX8Heu9DmE4sfbP/5NjWEg+oes/S9LQ/pFUv8OxvdlHNiShySObGYEodkTiyFjGNkZGTRxyhFvi5Vrpb4OXHsHZakCkWDtnZsf7AgbVqocjknSwJB9crSfz74P9rZ7O0+SbmcEz8xJRZT4pAKF0shcvWh8iqid3d3K5PJaNmyZTMeX7ZsmZ5//vl5HeMTn/iEVq5cqQ0bNsz5HC8NzL2kIRTUcNLSD+7/hU5snEoOfovjSIjFe0yJQzInFlPikMyJxUuJvlS5etOmTdq4cWPu64GBgdxt5XV1i58FlEqltHXrVp199tkKhUJHfO73Htsj/e53elVrsy644LRFv3eh5ROLl02P44fdT+u//9CtZceepAv+z2q3m5Y3E8+Jn+OQzInFlDgkc2IpRhzOJK/FKEW+Lnaulvg5OdR9z3ZKv31Kx65YogsuOLOALZy/cjsn28eeUeKJfWpYc5wu+JO2ErZw/srtnPiBKbGYEodU+FgKkasPlfdyLotx00036e6779b27dtVWTn3rb9eGph7yf2DT2nPM51qjp+gC/4o5ts4ZkMs3mNKHJI5sZgSh2ROLH5I9Pmab66ORCKKRCKHPR4KhQp6TudzvF0HJ26bPmZprad/ngr92bglFAqpbWmN/vsP3drVN+rrmEw6JybEIZkTiylxSObEUsg4vPB5zCdflypXF+uYblhsHLv6JvskLe73ScrlnBy7tFaStKvX+32ScjknfmJKLKbEIRUulmJ8HnkV0ZubmxUMBtXZ2Tnj8c7OTi1fvvyIr/3CF76gm266SQ8++KBe85rXHPG5XhqYe8kxS2sldWpn39iMdvstjiMhFu8xJQ7JnFhMiUMyJxYvJfpS5WovSXRNbuDVVNhb0zG3eG7D88LfJgkA5aAc83U56HA2Om9iU9FScT7rxOSGrgBQLHntThkOh3Xaaadp27Ztucey2ay2bdum9evXz/m6f/zHf9RnPvMZ3XfffTr99NMX3toy5yQHJzEDAHCocszVHZODplgzA9ZSyQ1Yu4dcbgkA+FM55uty4PRJ4i30SUol1jwxiYI6CYBiy3s5l40bN+ryyy/X6aefrjPOOENf/vKXNTw8nNtR/LLLLtOqVat04403SpI+//nP67rrrtN3v/tdxWIx7d+/X5JUU1OjmpqaAoZiPicRJ0gOAIAjKKdcnc3a6uiZmA3d1uzttprEmYm+u3dUmaytYMByuUUA4D/llK/LhTNWjzMTvWScC/t9IykdHEmqPhp2uUUATJV3Ef3iiy9WV1eXrrvuOu3fv1+nnHKK7rvvvtyGKLt27VIgMDXB/V/+5V+UTCb1tre9bcZxNm/erOuvv35xrS8zTiJ+uX9Mo8mMKhivAgBmUU65el//qJLprEJBSyvr517DHYW1sr5K4WBAyUxW+w6OqrWRpXQAIF/llK/LweBYSt1DSUlTs6NRfNWRCi2ri6hzYFyJ7mGduoYiOoDiWNDGoldffbWuvvrqWb+3ffv2GV93dHQs5C0wi4bqsOqjIR0cSamjZ1jHNle53SQAgEeVS67umFyTe01jVBXBvFapwyIEA5bWNkX1hwNDau8epogOAAtULvm6HDh9kuaaiGor/b/nj5/Em6vVOTCujp5hnbqmwe3mADAUo02fYV10AACmOGtyx1kPveScNejpkwAAILXn+iRcWC613IbnXfRJABQPRXSfaZtMDu0MWAEAUGJy1leMtUdLLjdgpU8CAEBuJjp9ktLLbXg+uU8OABQDRXSfYdYXAABTcjPRWxiwlhpFdAAApnT0TG4qSp+k5OLUSQCUAEV0n4kxYAUAIKdjcsZRnFlfJZdbYq6HPgkAAM7d4vRJSm/6hX3btl1uDQBTUUT3GWc5FwasAIByl8pktbt3sojOrK+Sa5v8zHf3jiiZzrrcGgAA3OXMgo6xT0vJtTZGZVnS0Hha3UNJt5sDwFAU0X3GScjdQ0kNjqVcbg0AAO7Z0zeqdNZWZSigZbWVbjen7CytjSgaDiprS7v7WIMUAFC++oaT6h+dGJ+zJnrpVYaCWlVfJYm79gEUD0V0n6mJVKilNiJp6hZ2AADKUW7GV1O1AgHL5daUH8uytNbZyKuLASsAoHw5S7msWFKpqnDQ5daUJ9ZFB1BsFNF9KJ5bg5QiOgCgfOXWHuW2adewzBwAADMv7MMdzmefoE8CoEgoovvQ1BVWiugAgPLF2qPuizVHJXHrNACgvDl5kD1a3JPbXJS74wAUCUV0H4o1MxMdAABn9nOcWV+uyc36oogOAChjCfokrotzdxyAIqOI7kMkBwAApPYuZn25ra2F9UcBAOhgiTnXxabVSbJZ2+XWADARRXQfik+biW6TGwAAZWgsldG+/lFJrD/qJuez39c/ptFkxuXWAABQerZt5+7IYok596xuqFJFwNJYKqv9A2NuNweAgSii+9DapqgsSxoYS2s47XZrAAAovd29ExeSayMVaq4Ju92cstVYHVZdZYUkaWcvs9EBAOWna3BcI8mMApa0pjHqdnPKVigYUOvk588dcgCKgSK6D1WGglq5pEqS1MUFVgBAGWqfNuPLsiyXW1O+LMuatuE5A1YAQPlxZqGvbogqXEGJxU25zUVZ+hZAEfAX3qec5HBglMIBAKD8dHDbtGc456CdIjoAoAyxlIt35DY876JPAqDwKKL7VKx54jalrjGK6ACA8pNgAy/PYCY6AKCcObOe400s5eK2+GSdpIOZ6ACKgCK6T8WbayRJXaMuNwQAABdMFdEZsLotd+s0RXQAQBnq4MK+Zzh1Eu6OA1AMFNF9Ks5MdABAGXNmGDmDJbhnqog+4nJLAAAoPZZz8Q7njv3dvSNKZ7IutwaAaSii+1RuJvqYZNu2y60BAKB0hsfT6hwYlyTFmxiwus0pGnQPjWtwLOVyawAAKJ1s1tbOnomLyMxEd9/KJVUKVwSUytjad3DM7eYAMAxFdJ9a3VClYMBSMmupc3Dc7eYAAFAyziz0hmhIS6Ihl1uDusqQmqrDkqQOZqMDAMrIywNjGk9nFQpaWlVf5XZzyl4gYCk2uTZ9e/eQy60BYBqK6D4VCga0ejJJM2AFAJQTNhX1ntySLmzkBQAoI4muibzX2hhVRZDyihfEmtjwHEBx8Ffex2K5nacpogMAykcHa496jnMunGICAADlwLl4zPJy3uFc2KdOAqDQKKL7mHObUgezvgAAZcTZwLKNIrpnTA1Y6ZMAAMqHc/GYu+O8wzkX7cxEB1BgFNF9LN7ETHQAQPlJTK5xyUx078gt58KAFQBQRpyLx/RJvMM5FyznAqDQKKL72NomblMCAJQfJ+/FuHXaM5xzQREdAFBOnEItd8d5h3Nhf0/fiJLprMutAWASiug+Fp9cE31X74gyWdvl1gAAUHz9Iyn1Diclceu0lzj7tPSPptQ3eX4AADBZOpPVrt7JC/v0STxjaW1E0XBQWVu58wMAhUAR3cdW1FWqwrKVytjad3DU7eYAAFB0zgZeS2sjqo5UuNwaOKLhCi2vq5TEGqQAgPKwp29U6aytSEUglwPhPsuycnfIsaQLgEKiiO5jgYCl5slczYAVAFAOnMEQs9C9J84apACAMuJc2I83VysQsFxuDaaLt7DhOYDCo4jucy2VE8u4MGAFAJSDdoronpXbyIsBKwCgDCS6JjcVZY8Wz4lPnhMmGwIoJIroPre0auJfNvICAJQD56Ixa496j7NXCwNWAEA5cC4a0yfxnhh3xwEoAoroPufMRKeIDgAoBwlmontWvLlGEgNWAEB5cPokbfRJPMfpJ1InAVBIFNF9rqWKIjoAoDzYts2a6B7mzETv6B6WbdsutwYAgOJKcHecZzn9xJf7xzSazLjcGgCmoIjucy2TG4vu6RtRMp11tzEAABRRz3BSg+NpWZa0pjHqdnNwiNbGqAKWNJzMqGtw3O3mAABQNOPpjPYdHJUkxZrpk3hNQzSkusoKSdLOXiYcAigMiug+VxeSqsNBZW1pV++I280BAKBonBlfK5dUqTIUdLk1OFSkIqhVDRObtXCHHADAZLt7R5S1pZpIhVpqIm43B4ewLEvxloll5pwNYAFgsSii+5xlSWubpm6fBgDAVKyH7n2xJtYgBQCYr73LWcolKsuyXG4NZhOfrJMkeuiTACgMiugGiDNgBQCUAYro3udsrsaAFQBgso7JPOdcPIb3OGvVM9kQQKFQRDfAWq6wAgDKQAcbeHkeA1YAQDlwLuy30SfxLGfSBZMNARQKRXQDxJwiOmt9AQAMxoDV+xiwAgDKQYIL+5431Sdh7zgAhUER3QDObuAdzEQHABgqm7Wnbp1mwOpZzoC1o2dE2aztcmsAACiOjsnCLH0S73LOTffQuAbHUi63BoAJKKIbwJmJ/nL/mEaTGZdbAwBA4XUOjmkslVUwYGl1Q5XbzcEcVtVXqSJgKZnOal//qNvNAQCg4EaSae0fGJPE3XFeVlcZUnNNWNLURQ8AWAyK6AZoiIZVHw1JYjY6AMBMzpJlaxqjCgXpvnhVRTCgNZMX9xmwAgBM5OS3+mhI9dGwy63BkTgbv7J/HIBCYBRqCCc5sJEXAMBEzuDHufsK3hVnwAoAMJgzcS3OLHTPi7PhOYACoohuCOc2snaSAwDAQM7gJ95c43JLcDS5jbzY8BwAYCBnU1HnojG8K8aG5wAKiCK6IWJcYQUAGCw3YG1mJrrX5fokzEQHABjI6ZOwqaj3xSmiAyggiuiGIDkAAEzGgNU/6JMAAEw2dXccfRKvo08CoJAoohsizqwvAICh0pmsdvVObOLFgNX7nHO0u3dE6UzW5dYAAFBYCYrovuHsHdc/mlLfcNLl1gDwO4rohnBm5nUPJTUwlnK5NQAAFM6+g2NKZWyFKwJauaTK7ebgKJbXVSpSEVA6a2tP36jbzQEAoGAGxlLqmSzGcnec91WFg1peVymJDc8BLB5FdEPURCrUUhuRxLroAACzOIOeWFNUgYDlcmtwNIGAxe3TAAAjOWPtltqIaiIVLrcG88GG5wAKhSK6QRiwAgBMlOgakjR1Sy68zzlX9EkAACbJLeVCn8Q32PAcQKFQRDdInAErAMBAHT2sh+43MS7sAwAMNLXRedTllmC+4pPnij4JgMWiiG6QeAsDVgCAedrZwMt32pj1BQAw0NSmojUutwTz5Zwr6iQAFosiukGcW6dZEx0AYJKO3Kwviuh+wUx0AICJOnJFdGai+4Vzrjq6h2XbtsutAeBnFNEN0jY5E72d5AAAMEQyndWevonlXNooovuGc5v73oOjGktlXG4NAACLZ9v2tOVc6JP4RWtjVAFLGk5m1DU07nZzAPgYRXSDrGmMyrKkwbG0eoeTbjcHAIBF2903qqwtVYeDaqmNuN0czFNLTUQ1kQrZtrS7d8Tt5gAAsGi9w0kNjKUlsdm5n0QqglrVUCVJSnRxhxyAhaOIbpDKUFArl0wmB26fBgAYwFlTe21TtSzLcrk1mC/LsnKz0dvpkwAADOD0SVYuqVRlKOhya5CP3NK37NUCYBEoohsmzhqkAACDdPRMzGJ2Ns+GfzgbebFXCwDABIlu+iR+1Zark3B3HICFo4huGGfWF1dYAQAmyBXRuW3ad+JN9EkAAOZIdA9JYikXP5ra8HzI5ZYA8DOK6IZxZn0xEx0AYIKdk0V0NvDyH+ectbP+KADAAB3OTHT6JL7j9Ek6mIkOYBEoohsmPjkTnduUAAAmcC4KM2D1H+ecMRMdAGAC+iT+1TatT5LN2i63BoBfUUQ3zPT1R22b5AAA8K9kRto/MC6JAasfOeesc2Bcw+Npl1sDAMDC2baduyjM3XH+s6q+ShUBS+PprF4eGHO7OQB8iiK6YVY3VCkYsDSayqhzsvAAAIAfdU2OcZZUhdQQDbnbGOStPhrOnTdmowMA/OzA4LhGkhkFLKm1Iep2c5CnimBAaxon92ph6VsAC0QR3TChacmhnU0zAAA+1jVmSZqY8WVZlsutwUKwBikAwATO/h6tjVGFKyij+JFzh1w7RXQAC8RffwPFmpwrrAxYAQD+5cxEjzcx48uv4k0TA9YEF/YBAD6WW8qliaVc/Grqwj5FdAALQxHdQM666AxYAQB+1jU6MfvcyWvwH2fWFxueAwD8rINNRX2PIjqAxaKIbqB488SMPQasAAA/m1rOhZnofhVrZiY6AMD/2imi+15brk9CER3AwlBENxAz0QEAJjgwuZxLGzPRfcspNnT0cGEfAOBfzuzlGEV033LO3a7eEaUzWZdbA8CPKKIbyJmxt6t3RJms7XJrAADI3+BYWkMpZqL7nTNg7R1Oqn8k5XJrAADIXyZra2fvxMXgOGui+9aKukpFKgJKZ23tPTjqdnMA+BBFdAOtXFKlcEVAqYytvX0kBwCA/+ycnLncVB1WbWXI5dZgoWoiFWqpjUiSEj3cPg0A8J99B0eVTGcVClpa1VDldnOwQIGAldsYtp0lXQAswIKK6LfeeqtisZgqKyu1bt06Pfroo0d8/ve//30df/zxqqys1EknnaQtW7YsqLGYn4nkMLkuOgNWAChLfs/VTv6KMwvd9+Js5AUAc/J7vi4HHZN9kjWNUQUDlsutwWI4dzfSJwGwEHkX0e+55x5t3LhRmzdv1m9+8xudfPLJOvfcc3XgwIFZn/+rX/1Kl1xyid73vvfpiSee0Fve8ha95S1v0TPPPLPoxmNuzoD1xQOsiw4A5caEXO2sob22iSK638WZ9QUAszIhX5eDjtymouzR4nfOOaSIDmAhKvJ9wS233KIrrrhC733veyVJt912m+69917deeeduvbaaw97/le+8hWdd955+vjHPy5J+sxnPqOtW7fqn//5n3XbbbctsvmYy6tWLNH9z3bqJ0/u1fB42u3mHFUmk9Ef9lhqf+glBYNBt5uzKKbEYkockjmxmBKHZE4sThzrhpNaXu+dJUdMyNXOci6sPep/r1g2MWD9p21/UIVHZvCZ9jfI73FI5sRiShySObE4cTQlevXHr1zmdnNm8Hu+/s2uPv33851G/ZzMFsftv2yXxN1xJnDO4Q8e36OmmkjJ3te0v6d+j0MyJxZT4pAmYtm339IFbjfkCPIqoieTST3++OPatGlT7rFAIKANGzZox44ds75mx44d2rhx44zHzj33XP3oRz+a833Gx8c1Pj6e+3pgYECSlEqllEotflMq5xiFOJabjhTHSasmBqxP7enXU3v6S9quhQtKu19yuxEFYkospsQhmROLKXFI5sQS1Af6R9RUHV70kQqRl0zJ1e1dE3dSra4PG52v/WShcZz1ikZ9dvL/b9n6+wK3ajHM+RtkRhySObGYEodkTixBxV7s1rp4Y0GO5pd8Xexc/ViiR1/5+Usy6efkSHH8ySubfJHLy73fcSSvWVkry5KGkxkX+iTl8XviL6bEYkoc0vKqQMF+54vxNzCvInp3d7cymYyWLZt5BX/ZsmV6/vnnZ33N/v37Z33+/v3753yfG2+8UTfccMNhjz/wwAOKRgt39Xfr1q0FO5abZosja0t/usZS77g3ZnwBgMmefPRXSiy+hq6RkZFFH8OUXN0WshRuttT1h6e0Zc9Tiz6eF5jc7ziaS4+x1DFEnwSAe1IHXtKWLS8W5Fh+ydfFztUHD1p63bLy+Nu+utpW9+9+rS2/c7sl81fO/Y4j+avjLT3da8ku6FEBFEJdyC7Y73whcvWh8l7OpRQ2bdo04wr7wMCAWltbdc4556iurm7Rx0+lUtq6davOPvtshULeuf0+X0eL409daNNCmXJOJHNiMSUOyZxYTIlDMieWQsfhzBDzg2Ln6rMN+RmR+HmX5LnbMjkn3mNKLKbEIZkTSzHi8Eu+LnauvkD8nHiRKbEUKw43+iScE+8xJRZT4pD8MbbOq4je3NysYDCozs7OGY93dnZq+fLls75m+fLleT1fkiKRiCKRw9enCoVCBf2hKPTx3GJKHBKxeJEpcUjmxGJKHJI5sRQqjkIcg1ztXabEYkockjmxmBKHZE4spsQhmRNLIePwS74uVa4u1jHdYEockjmxmBKHZE4spsQhmROLKXFI3hpbHyqQz5PD4bBOO+00bdu2LfdYNpvVtm3btH79+llfs379+hnPlyZux5nr+QAAYOHI1QAAeB/5GgAAf8l7OZeNGzfq8ssv1+mnn64zzjhDX/7ylzU8PJzbUfyyyy7TqlWrdOONN0qSPvKRj+iss87SF7/4RV144YW6++679dhjj+lf//VfCxsJAACQRK4GAMAPyNcAAPhH3kX0iy++WF1dXbruuuu0f/9+nXLKKbrvvvtyG5zs2rVLgcDUBPfXve51+u53v6tPfvKT+ru/+zu94hWv0I9+9COdeOKJhYsCAADkkKsBAPA+8jUAAP6xoI1Fr776al199dWzfm/79u2HPfb2t79db3/72xfyVgAAYAHI1QAAeB/5GgAAf8hrTXQAAAAAAAAAAMoJRXQAAAAAAAAAAOZAER0AAAAAAAAAgDlQRAcAAAAAAAAAYA4U0QEAAAAAAAAAmANFdAAAAAAAAAAA5kARHQAAAAAAAACAOVBEBwAAAAAAAABgDhTRAQAAAAAAAACYA0V0AAAAAAAAAADmQBEdAAAAAAAAAIA5VLjdgPmwbVuSNDAwUJDjpVIpjYyMaGBgQKFQqCDHdIMpcUjE4kWmxCGZE4spcUjmxFLoOJw85+Q9PyFXz82UWEyJQzInFlPikMyJxZQ4JHNiKUYcfs3Xhc7VEj8nXmRKLKbEIZkTiylxSObEYkockj/G1r4oog8ODkqSWltbXW4JAADFNzg4qCVLlrjdjLyQqwEA5cZv+ZpcDQAoN4XM1Zbtg8vn2WxW+/btU21trSzLWvTxBgYG1Nraqt27d6uurq4ALXSHKXFIxOJFpsQhmROLKXFI5sRS6Dhs29bg4KBWrlypQMBfK66Rq+dmSiymxCGZE4spcUjmxGJKHJI5sRQjDr/m60LnaomfEy8yJRZT4pDMicWUOCRzYjElDskfY2tfzEQPBAJavXp1wY9bV1fn+x8yyZw4JGLxIlPikMyJxZQ4JHNiKWQcfprRNh25+uhMicWUOCRzYjElDsmcWEyJQzInlkLH4cd8XaxcLfFz4kWmxGJKHJI5sZgSh2ROLKbEIXl7bO2fy+YAAAAAAAAAAJQYRXQAAAAAAAAAAOZQlkX0SCSizZs3KxKJuN2URTElDolYvMiUOCRzYjElDsmcWEyJw4tM+mxNicWUOCRzYjElDsmcWEyJQzInFlPi8CpTPl9T4pDMicWUOCRzYjElDsmcWEyJQ/JHLL7YWBQAAAAAAAAAADeU5Ux0AAAAAAAAAADmgyI6AAAAAAAAAABzoIgOAAAAAAAAAMAcKKIDAAAAAAAAADAHiugAAAAAAAAAAMzByCL6P/zDP+h1r3udotGo6uvr5/Ua27Z13XXXacWKFaqqqtKGDRv0hz/8YcZzent79c53vlN1dXWqr6/X+973Pg0NDRUhgoW/Z0dHhyzLmvW/73//+7nnzfb9u+++2zNxSNKf/MmfHNbGD3zgAzOes2vXLl144YWKRqNaunSpPv7xjyudThctDin/WHp7e/XXf/3XOu6441RVVaU1a9bowx/+sPr7+2c8rxTn5NZbb1UsFlNlZaXWrVunRx999IjP//73v6/jjz9elZWVOumkk7Rly5YZ35/P700x5BPH7bffrte//vVqaGhQQ0ODNmzYcNjz3/Oe9xz22Z933nnFDkNSfrHcddddh7WzsrJyxnP8cE5m+922LEsXXnhh7jlunJNf/OIXuuiii7Ry5UpZlqUf/ehHR33N9u3b9drXvlaRSETHHnus7rrrrsOek+/vXTkxJV+bkqsXEovkzXxNrp7ih7xArvbeOfFqrpbI16VGriZXF5Nf87UpuVoyJ1+bkqslM/K1sbnaNtB1111n33LLLfbGjRvtJUuWzOs1N910k71kyRL7Rz/6kf3UU0/Zb37zm+14PG6Pjo7mnnPeeefZJ598sv3rX//a/uUvf2kfe+yx9iWXXFKkKBb2nul02n755Zdn/HfDDTfYNTU19uDgYO55kuxvfvObM543PVa347Bt2z7rrLPsK664YkYb+/v7Z8R64okn2hs2bLCfeOIJe8uWLXZzc7O9adOmosWxkFiefvpp+61vfav9k5/8xH7xxRftbdu22a94xSvs//f//t+M5xX7nNx99912OBy277zzTvvZZ5+1r7jiCru+vt7u7Oyc9fn/8z//YweDQfsf//Ef7d/97nf2Jz/5STsUCtlPP/107jnz+b0ptHzjuPTSS+1bb73VfuKJJ+znnnvOfs973mMvWbLE3rNnT+45l19+uX3eeefN+Ox7e3uLFsNCY/nmN79p19XVzWjn/v37ZzzHD+ekp6dnRgzPPPOMHQwG7W9+85u557hxTrZs2WL//d//vf3DH/7QlmT/53/+5xGf397ebkejUXvjxo327373O/urX/2qHQwG7fvuuy/3nHw/m3JjSr42JVcvJBbb9ma+JleTq92KhVxd/HNCvi4tcjW52kuxeCFfm5KrFxKLV/O1Kbl6IbF4NV+bmquNLKI7vvnNb84r0WezWXv58uX2zTffnHvs4MGDdiQSsf+//+//s23btn/3u9/Zkuz//d//zT3nZz/7mW1Zlr13796Ct72Q73nKKafYf/mXfznjsfn8EBfKQuM466yz7I985CNzfn/Lli12IBCY8cfuX/7lX+y6ujp7fHy8IG0/VKHOyfe+9z07HA7bqVQq91ixz8kZZ5xhX3XVVbmvM5mMvXLlSvvGG2+c9fnveMc77AsvvHDGY+vWrbP/6q/+yrbt+f3eFEO+cRwqnU7btbW19re+9a3cY5dffrn9Z3/2Z4Vu6lHlG8vR/qb59Zx86Utfsmtra+2hoaHcY26dE8d8fh+vueYa+9WvfvWMxy6++GL73HPPzX292M+mXPg5X5uSq23bnHxNriZXFxK5eoIXc7Vtk69LiVxNri40v+ZrU3K1bZuTr03J1bZtZr42KVcbuZxLvhKJhPbv368NGzbkHluyZInWrVunHTt2SJJ27Nih+vp6nX766bnnbNiwQYFAQI888khR2lWI93z88cf15JNP6n3ve99h37vqqqvU3NysM844Q3feeads2y5Y26dbTBzf+c531NzcrBNPPFGbNm3SyMjIjOOedNJJWrZsWe6xc889VwMDA3r22WcLH4gK93PQ39+vuro6VVRUzHi8WOckmUzq8ccfn/EzHggEtGHDhtzP+KF27Ngx4/nSxOfrPH8+vzeFtpA4DjUyMqJUKqXGxsYZj2/fvl1Lly7Vcccdpw9+8IPq6ekpaNsPtdBYhoaGtHbtWrW2turP/uzPZvys+/Wc3HHHHfqLv/gLVVdXz3i81OckX0f7HSnEZ4OZvJivTcnVkjn5mlxNri4UcvUUv+ZqiXxdauRqcvV8+TFfm5KrJXPytSm5WirvfO2XXF1x9KeYb//+/ZI0I2E4Xzvf279/v5YuXTrj+xUVFWpsbMw9pxjtWux73nHHHTrhhBP0ute9bsbjn/70p/V//+//VTQa1QMPPKAPfehDGhoa0oc//OGCtd+x0DguvfRSrV27VitXrtRvf/tbfeITn9ALL7ygH/7wh7njznbOnO8VQyHOSXd3tz7zmc/oyiuvnPF4Mc9Jd3e3MpnMrJ/X888/P+tr5vp8p/9OOI/N9ZxCW0gch/rEJz6hlStXzvjje9555+mtb32r4vG4XnrpJf3d3/2dzj//fO3YsUPBYLCgMTgWEstxxx2nO++8U695zWvU39+vL3zhC3rd616nZ599VqtXr/blOXn00Uf1zDPP6I477pjxuBvnJF9z/Y4MDAxodHRUfX19i/55xUxezNem5GrJnHxNriZXFwq5eoKfc7VEvi41cjW5er78mK9NydWSOfnalFwtlXe+9kuu9k0R/dprr9XnP//5Iz7nueee0/HHH1+iFi3cfGNZrNHRUX33u9/Vpz71qcO+N/2xU089VcPDw7r55pvzSirFjmN6IjzppJO0YsUKvelNb9JLL72kY445ZsHHnU2pzsnAwIAuvPBCvepVr9L1118/43uFOCc4sptuukl33323tm/fPmPjkL/4i7/I/f9JJ52k17zmNTrmmGO0fft2velNb3KjqbNav3691q9fn/v6da97nU444QR9/etf12c+8xkXW7Zwd9xxh0466SSdccYZMx73yznB4UzJ16bkasmcfE2uLg/kau8hV5uHXJ0fcnV+yNflwc/52sRcLZGvS8E3RfS/+Zu/0Xve854jPqetrW1Bx16+fLkkqbOzUytWrMg93tnZqVNOOSX3nAMHDsx4XTqdVm9vb+718zXfWBb7nj/4wQ80MjKiyy677KjPXbdunT7zmc9ofHxckUjkqM+XShfH9DZK0osvvqhjjjlGy5cvP2wn3s7OTkny5DkZHBzUeeedp9raWv3nf/6nQqHQEZ+/kHMyl+bmZgWDwdzn4+js7Jyz3cuXLz/i8+fze1NoC4nD8YUvfEE33XSTHnzwQb3mNa854nPb2trU3NysF198sWhJZTGxOEKhkE499VS9+OKLkvx3ToaHh3X33Xfr05/+9FHfpxTnJF9z/Y7U1dWpqqpKwWBw0efYj0zJ16bkasmcfE2uPhy5mlw9H+WcqyXy9WzI1eRqxtYLY0qulszJ16bkaqm887VvcnXJVl93Qb6bn3zhC1/IPdbf3z/r5iePPfZY7jn3339/STYWXeh7nnXWWYftUj2Xz372s3ZDQ8OC23okhfrsHn74YVuS/dRTT9m2PbX5yfSdeL/+9a/bdXV19tjYWOECmGahsfT399tnnnmmfdZZZ9nDw8Pzeq9Cn5MzzjjDvvrqq3NfZzIZe9WqVUfcAOVP//RPZzy2fv36wzZAOdLvTTHkG4dt2/bnP/95u66uzt6xY8e83mP37t22ZVn2j3/840W390gWEst06XTaPu644+yPfexjtm3765zY9sTf6EgkYnd3dx/1PUp1Thya5+YnJ5544ozHLrnkksM2P1nMOS4Xfs7XpuRq2zYnX5OrydWFRK72bq62bfJ1KZGrydWF5td8bUqutm1z8rUpudq2zczXJuVqI4voO3futJ944gn7hhtusGtqauwnnnjCfuKJJ+zBwcHcc4477jj7hz/8Ye7rm266ya6vr7d//OMf27/97W/tP/uzP7Pj8bg9Ojqae855551nn3rqqfYjjzxiP/zww/YrXvEK+5JLLilqLEd7zz179tjHHXec/cgjj8x43R/+8Afbsiz7Zz/72WHH/MlPfmLffvvt9tNPP23/4Q9/sL/2ta/Z0WjUvu666zwTx4svvmh/+tOfth977DE7kUjYP/7xj+22tjb7DW94Q+416XTaPvHEE+1zzjnHfvLJJ+377rvPbmlpsTdt2lS0OBYSS39/v71u3Tr7pJNOsl988UX75Zdfzv2XTqdt2y7NObn77rvtSCRi33XXXfbvfvc7+8orr7Tr6+tzO7C/+93vtq+99trc8//nf/7HrqiosL/whS/Yzz33nL1582Y7FArZTz/9dO458/m9KbR847jpppvscDhs/+AHP5jx2Tt/DwYHB+2//du/tXfs2GEnEgn7wQcftF/72tfar3jFK4rWYVxoLDfccIN9//332y+99JL9+OOP23/xF39hV1ZW2s8+++yMeL1+Thx//Md/bF988cWHPe7WORkcHMzlC0n2LbfcYj/xxBP2zp07bdu27WuvvdZ+97vfnXt+e3u7HY1G7Y9//OP2c889Z9966612MBi077vvvtxzjvbZlDtT8rUpuXohsXg1X5OrydVuxUKuLv45IV+XFrmaXO2lWLyQr03J1QuJxav52pRcvZBYHF7L16bmaiOL6Jdffrkt6bD/HnroodxzJNnf/OY3c19ns1n7U5/6lL1s2TI7EonYb3rTm+wXXnhhxnF7enrsSy65xK6pqbHr6urs9773vTM6D8VwtPdMJBKHxWbbtr1p0ya7tbXVzmQyhx3zZz/7mX3KKafYNTU1dnV1tX3yySfbt91226zPdSuOXbt22W94wxvsxsZGOxKJ2Mcee6z98Y9/3O7v759x3I6ODvv888+3q6qq7ObmZvtv/uZv7FQqVbQ4FhLLQw89NOvPoyQ7kUjYtl26c/LVr37VXrNmjR0Oh+0zzjjD/vWvf5373llnnWVffvnlM57/ve99z37lK19ph8Nh+9WvfrV97733zvj+fH5viiGfONauXTvrZ79582bbtm17ZGTEPuecc+yWlhY7FArZa9euta+44oqS/SHOJ5aPfvSjuecuW7bMvuCCC+zf/OY3M47nh3Ni27b9/PPP25LsBx544LBjuXVO5vpdddp++eWX22edddZhrznllFPscDhst7W1zcgrjiN9NuXOlHxtSq5eSCxezdfk6il+yAvkau+dE9v2Zq62bfJ1qZGrydVeisUr+dqUXG3b5uRrU3J1vrHYtjfztam52rJt2z7Kii8AAAAAAAAAAJSlgNsNAAAAAAAAAADAqyiiAwAAAAAAAAAwB4roAAAAAAAAAADMgSI6AAAAAAAAAABzoIgOAAAAAAAAAMAcKKIDAAAAAAAAADAHiugAAAAAAAAAAMyBIjoAAAAAAAAAAHOgiA4AAAAAAAAAwBwoogMAAAAAAAAAMAeK6AAAAAAAAAAAzIEiOgAAAAAAAAAAc6CIDgAAAAAAAADAHCiiAwAAAAAAAAAwB4roAAAAAAAAAADMgSI6AAAAAAAAAABzoIgOAAAAAAAAAMAcKKIDPnH99dfLsix1d3cf9bnpdFrXXHONWltbFQgE9Ja3vKX4DQQAAORrAAA8jlwNYCEoogMGuvPOO3XzzTfrbW97m771rW/pYx/72Izvx2KxI77++uuv11133XXY488//7yuueYanXLKKaqtrdWKFSt04YUX6rHHHptXu5599lm9/e1vV1tbm6LRqJqbm/WGN7xBP/3pT+cbGgAAxvBqvj7UP/zDP8iyLJ144okLej0AAH7l1Vy9fft2WZY163+//vWv5xsegDxUuN0AAIX385//XKtWrdKXvvSl3GMPPvig3vjGNyoYDM547v33369zzz1XzzzzjBoaGrRq1aoZ33/hhRcUiUQUi8X0jW98Q3fccYf+3//7f/rQhz6k/v5+ff3rX9eZZ56p++67Txs2bDhiu3bu3KnBwUFdfvnlWrlypUZGRvQf//EfevOb36yvf/3ruvLKKwv3IQAA4HFezdfT7dmzR5/73OdUXV29uGABAPAhr+fqD3/4w/o//+f/zHjs2GOPXWC0AI6EmeiAgQ4cOKD6+vrc17Zt6/bbb9eZZ56pp556SpKUSCR07rnn6otf/KKGhob09NNPa/369brttttk27ZSqZQ++9nP6vzzz1cikZAkXXLJJdq9e7e+8Y1v6Morr9THP/5xPfLII2psbNT1119/1HZdcMEFuu+++7R582ZdccUV+shHPqKHHnpIJ598sm655ZZifBQAAHiWV/P1dH/7t3+rM888U6effnqhwgYAwDe8nqtf//rX613veteM/5qbmwv5EQCYRBEd8Jnu7m694x3vUF1dnZqamvSRj3xEY2NjkqSOjg5ZlqWHHnpIzz77bO52rv/+7//WPffco1tuuUUf+MAH9PLLL+utb32rrrrqKj3wwAOqqanRJZdcov+fvXuPj+sq7/3/3XPXSNZdtmNbtqQEEkpCAuGXHKelKYfcKZfSS0o4JFCatpRQwC0lbknSQNuEAiEcGkihBDgUTtJyKPD7xYQYlxygGFJCAgESSKKRr7Gtm3Ubaa7798doz0ixZGukPbP3XvN5v155gcejmfVoZD1rPfvZaz3yyCN67LHHdOedd2rnzp2am5vT448/rpe//OWSpPPPP18tLS2LxtPV1aWXvexleuKJJ1YVTzgcVm9vr44fP76m7wsAAH5iQr7+9re/rS996Uu68847Xfu+AADgFybkakmamppSPp9355sCYFkU0YGA+b3f+z3Nzc3ptttu01VXXaX/+T//Z3kblJ6eHn3+85/XWWedpS1btujzn/+8Pv/5z+sFL3iBJCkUCsmyrPJrLfz/zp9DodCyf7+cI0eOVHW1e2ZmRiMjI3rmmWf0kY98RF//+tf1ile8YsVfDwCA3wU9XxcKBb397W/XH/7hH+qcc85Z0dcAABAkQc/VkvTmN79Zra2tSiQSevnLX77q808AnBpFdCBg+vv79bWvfU1ve9vb9PnPf15/+qd/qs9//vP6yU9+oubmZv2P//E/tGHDBrW1tZVv51q/fr3e8IY36J3vfKc+8YlP6LTTTtOXv/xlfexjH9Nll12m6elp3XfffTr//PN1zjnn6J3vfKduu+02xWIxnXPOOfrWt7617Hi+853vaO/evbr66qtXHMOf//mfq6enR2eccYb+4i/+Qr/1W7+lf/zHf3Tj2wMAgC8EPV/ffffd2rdvn97//ve79S0BAMBXgpyrY7GYfvu3f1sf/ehH9dWvflV/+7d/q8cff1wve9nL9Oijj7r5bQIwjyI6EDBve9vbFv357W9/uyRp165dy36NZVl605vepO9///s699xzJZUmDA8++KB27NihlpYWvfCFL9T3vvc9vfWtb5VlWYpGo7rpppu0a9cu9ff3L/m6x44d0zXXXKP+/n795V/+5YpjeOc736ndu3frc5/7nK688koVCgVls9kVfz0AAH4X5Hw9Ojqqm2++WTfddJN6enpWGjIAAIES5Fx90UUX6Utf+pL+4A/+QK9+9at144036vvf/74sy9LOnTtX+i0AUIWI1wMAUJ3nPe95i/58+umnKxQKaWho6KRfd+mlly75+BVXXCFJOvvss5f8+7POOmvJx2dmZvSbv/mbmpqa0ne/+90T9nM7mbPOOqv8utdee60uu+wyvepVr9IPfvCDFd/mBgCAnwU5X7/3ve9VZ2dnuZgAAICJgpyrl3LGGWfoNa95jb785S+rUCgoHA6v6nUALI0iOhBwqyk6n2pScKrTwLPZrF73utfpJz/5ib7xjW8sO0lYqd/5nd/RH//xH+uXv/ylzjzzzDW9FgAAfhSUfP3UU0/pk5/8pO68804dPny4/Pjc3JxyuZyGhobU2tqqzs7OlYQAAEBgBCVXn0xvb6+y2axmZmbU2tq6ptcCsBjbuQAB89RTTy3689NPP61isai+vr66vH+xWNS1116rPXv26Itf/KIuvvjiNb/m7OysJGliYmLNrwUAgB8ENV8fOnRIxWJRf/Znf6b+/v7yfz/4wQ/0y1/+Uv39/Xrf+95X49EDAFB7Qc3VJzM4OKhEIrHqbnYAy6MTHQiYu+66S5dddln5zx/72MckSVdeeWVd3v/tb3+77rvvPv3TP/2TXve611X1tceOHdP69esXPZbL5fS//tf/UlNTk37lV37FzaECAOCZoObrs88+W//+7/9+wuPvfe97NTU1pY9+9KM6/fTT3RwqAACeCGqulqTh4eETzi358Y9/rK997Wu68sorFQrRMwu4jSI6EDCpVEqvfvWrdcUVV2jv3r36l3/5F11zzTXlQ01q6c4779THP/5xbd++XclkUv/yL/+y6O9/67d+S83Nzct+/R//8R9rcnJSv/7rv67NmzfryJEj+sIXvqAnn3xSH/7wh7laDgAwRlDzdXd3t1772tcu+ZqSlvw7AACCKKi5WpKuvvpqNTU16aKLLtL69ev185//XJ/85CeVTCZ1++2313r4QEOiiA4EzH333aebb75ZN954oyKRiG644QZ98IMfrMt7P/bYY5KkvXv3au/evSf8fSqVOmWi//SnP61PfOITGh0d1bp163T++efrAx/4gF796lfXatgAANRdkPM1AACNIMi5+rWvfa2+8IUv6I477tDk5KR6enr0ute9TrfccovOOOOMWg0baGiWbdu214MAAAAAAAAAAMCP2CQJAAAAAAAAAIBlUEQHAAAAAAAAAGAZFNEBAAAAAAAAAFgGRXQAAAAAAAAAAJZBER0AAAAAAAAAgGVEvB7AShSLRR0+fFjr1q2TZVleDwcAgJqwbVtTU1PatGmTQqFgXecmVwMAGkVQ8zW5GgDQKGqRqwNRRD98+LB6e3u9HgYAAHVx4MABbdmyxethVIVcDQBoNEHL1+RqAECjcTNXB6KIvm7dOkmlwFtbW9f8erlcTg8++KAuu+wyRaPRNb+eV0yJQyIWPzIlDsmcWEyJQzInFrfjmJycVG9vbznvBQm5enmmxGJKHJI5sZgSh2ROLKbEIZkTSy3iCGq+djtXS/yc+JEpsZgSh2ROLKbEIZkTiylxSMFYWweiiO7catba2urawjyZTKq1tTXQP2SmxCERix+ZEodkTiymxCGZE0ut4gjiLdbk6uWZEospcUjmxGJKHJI5sZgSh2ROLLWMI2j52u1cLfFz4kemxGJKHJI5sZgSh2ROLKbEIQVjbR2cDdwAAAAAAAAAAKgziugAAAAAAAAAACyDIjoAAAAAAAAAAMugiA4AAAAAAAAAwDIoogMAAAAAAAAAsAyK6AAAAAAAAAAALIMiOgAAAAAAAAAAy6CIDgAAAAAAAADAMiiiAwAAAAAAAACwDIroAAAAAAAAAAAsgyI6AAAAAAAAAADLoIgOAAAAAAAAAMAyKKIDAAAAAFBH3/72t/WqV71KmzZtkmVZ+spXvnLKr3nooYf0kpe8RPF4XGeccYY++9nP1nycAACgpOoiOskeAAB/I1cDAOBvMzMzOvfcc3XXXXet6PmpVEqvfOUr9fKXv1yPPfaY3vnOd+oP//AP9Y1vfKPGIwUAANIqiugkewAA/I1cDQCAv1155ZX627/9W/3Wb/3Wip5/9913q7+/Xx/+8If1ghe8QDfccIN+53d+Rx/5yEdqPFIAACBJkWq/4Morr9SVV1654ucvTPaS9IIXvEDf/e539ZGPfESXX355tW8PAABOgVwNAIBZ9u7dq0suuWTRY5dffrne+c53Lvs1mUxGmUym/OfJyUlJUi6XUy6Xc2Vczuu49XpeMSUOyZxYTIlDMicWU+KQzInFlDgk92Opxfek6iJ6tfyY7E35ITMlDolYTuW9X/25UiMzuufalygeDbv2uifDZ+I/psQhmRNLEBL9SpCra8uUWEyJQzInFi/i+Mz39um+Hx7UZ990vja2Jlx7XT4T/zElllrE4cX35MiRI9qwYcOixzZs2KDJyUnNzs6qqanphK+57bbbdOutt57w+IMPPqhkMunq+Hbv3u3q63nFlDgkc2IxJQ7JnFj8Esd3j1h68FBIbzi9qDPb7VW9hl9iWStT4pDciyWdTrvyOgvVvIju52Rvyg+ZKXFIxLKUXFG674elf6p33vegzulcXXJYLT4T/zElDsmcWPyc6FeCXF0fpsRiShySObHUM46/31uak/zV/3pIvzNQdP31+Uz8x5RY3IzDq3xdrZ07d2rHjh3lP09OTqq3t1eXXXaZWltbXXmPXC6n3bt369JLL1U0GnXlNb1gShySObGYEodkTix+iqNQtPWOW0q/1/dHNutdV72oqq/3UyxrYUockvuxOE1ebqp5EX01ap3sTfkhMyUOiVhO5qlj09IPvidJ6th2lq56Wf+aX3Ml+Ez8x5Q4JHNiCUKirxVy9cqZEospcUjmxFLvOMbTWWnvQ5KkDZt7ddVVL3TttflM/MeUWGoRhxf5euPGjTp69Oiix44eParW1tYlL3ZLUjweVzweP+HxaDTq+mdai9f0gilxSObEYkockjmx+CGOI2OVi5nD09lVj8cPsbjBlDgk92Kpxfej5kV0Pyd7U37ITIlDIpalHDhe2S5hcGS27t8fPhP/MSUOyZxY/JzoV4JcXR+mxGJKHJI5sdQrjqGxqfL/H0/navKefCb+Y0osbsbhxfdj+/bt2rVr16LHdu/ere3bt9d9LADgtcGRmfL/3zcajLuDEHyhWr/B9u3btWfPnkWPkeyBlRtakByGRmdO8kwAWB1yNYCVWDgnSTEnAdZkenpajz32mB577DFJUiqV0mOPPab9+/dLKt3xde2115af/yd/8icaHBzUX/7lX+rJJ5/Uxz/+cf3rv/6r3vWud3kxfADw1MI5yZHJOc1mCx6OBo2i6iI6yR6or9TCBesIC1YAp0auBlALC7u+9o+mlS+4vyc60Ch++MMf6sUvfrFe/OIXS5J27NihF7/4xbr55pslSc8++2w5b0tSf3+/7r//fu3evVvnnnuuPvzhD+uf//mfdfnll3syfgDw0nNrIzQcoh6q3s7lhz/8oV7+8peX/+zsh3rdddfps5/97LLJ/l3vepc++tGPasuWLSR7oAoLk8PYTFYT6ZzaksG/pRZA7ZCrAdTCwq6vfNHWoeOz2tbV7OGIgOD6jd/4Ddm2vezff/azn13yax599NEajgoAguG5RfTUyIxecJo7ByYDy6m6iE6yB+rrhOQwOqPzku3eDAZAIJCrAdTCc+ckgyMzFNEBAEDdOZ3nm9ubdOj4LHftoy5qvic6gNWbyeR1bKp0sOhZG9dJWtwFBgAAUA/Fol1esDqdXsxJAABAvWXzRR0YKx0m+vKzeiSx9S3qgyI64GPOYrWrOabzetslLd6PFAAAoB6enZxTJl9UJGTp187okkQRHQAA1N+B8bSKttQcC+uCfuYkqB+K6ICPOVdT+7qb1dddul2a5AAAAOrNmX9s7UrqjPUtkriwDwAA6s+Zk2zralb//LZyHCyKeqCIDviYkxz6u5vVP19E5zYlAABQb878o7+rWf3dpSI6C1YAAFBv5TlJT7P6upOSpJHprCbncl4OCw2AIjrgY4NLFNGHRmZOemAgAACA21IL5iTOgvXQ+Kwy+YKXwwIAAA1m4YX9dYmoulvikrhrH7VHER3wMScJ9HU1a2tnUpYlTWXyGpnOejwyAADQSIYWbDHX0xJXcyysoq3ywV4AAAD14NwJ5zQa9s9f3OeufdQaRXTAxxZ2fSWiYW1qa5LE7dMAAKC+nDnJQHezLMtSf09p4To4zJwEAADUT2q4cmFfElvfom4oogM+dTyd1Xi6tKeXc9v0wPyCNcWCFQAA1Em+UNT++Y5zZ8Hax0FeAACgzuZyBR2emJNUKZ73Ldj6FqgliuiATzlXUTe2JpSMRSRVFqwpFqwAAKBODo7PKl+0FY+EtLE1IanUkS7R9QUAAOpn32jpon5bU1Qdyaik0t7okpQaZYs51BZFdMCnnM4upwtd0qLDRQEAAOohtWDv0VDIklTp+qKIDgAA6iU1Mi2pNA+xrNKcpL98x/60bNv2bGwwH0V0wKdSI6WrqP3dLeXH2OsLAADU28KDzh2VC/t0fQEAgPoo10m6Ks2G2zpLc5LJuXx5S1ygFiiiAz5VOVS0khzKe32NzqhY5AorAACovfKcpOfEIvqRyTmls3lPxgUAABqL04m+sNmwKRbWprbE/N/TcIjaoYgO+NRSXV9bOpoUCVmayxV1ZHLOq6EBAIAGUi6iL5iTtCdjap/fi5RudAAAUA/OnGPhtrelP3PXPmqPIjrgQ7Ztl3/5Dyzo+oqGQ+rtLCUL9kUHAAD1sFQnusQ2cwAAoL4WntOyUB/nx6EOKKIDPjQyndV0Jq+QpXLR3OEki0GSAwAAqLFMvqBDx2clLb47Tqp0pjuHoQMAANTK1FxOw1MZSZWiuWOAC/uoA4rogA85v/g3dzQpHgkv+jtnAcsVVgAAUGv7R9OybWldPKLultiivytf2B9mTgIAAGpr32hpK5fulphaE9FFf+fUSSiio5YoogM+tNR+6A7nVmqSAwAAqDVnvtHX3SzLshb93cIDzwEAAGopdZI6ycI5iW3bdR0XGgdFdMCHnH2+BrqXKKI7V1hZsAIAgBpzCuTPvW1aqnSic3ccAACotfIZLUvMSbZ2JhWypHS2oGPzW74AbqOIDvhQavgkC9b5TvT9o2nlC8W6jgsAADSWky1YnXnK6ExWE7O5uo4LAAA0lqGR5esksUhIWzpK58lx1z5qhSI64EMn6/o6rTWheCSkfNEuH/QFAABQC5UievKEv2uJR9SzLi6JbnQAAFBbJ7tjX1qwpQtzEtQIRXTAZ4pFu7xgXSo5hEJWeQ+wQZIDAACooUoRvWXJv3c61On6AgAAtZQ6SSe6VKmfMCdBrVBEB3zmyOScMvmiIiFLm9ublnxO33w3GFdYAQBArcxk8jo6WdpXtH+JQ7wWPs6CFQAA1Mr4TFbH06Wt45Y6WLT0ONu5oLYoogM+4/zC39qVVCS89D9RpxuM5AAAAGrF2V6uszmmtmR0yec4Z7UwJwEAALXibOVyWltCTbHwks/p7ynVSZz5C+A2iuiAz5Rvm17m6qpU2ZeUBSsAAKiVoZG0pEpn11KcbjAWrAAAoFbKh4qerE5SnpOkVSzadRkXGgtFdMBnhsp7j56siE4nOgAAqK2THXTuGFjQiW7bLFgBAID7hk6xH7okbWpPKBq2lM0XdXhitl5DQwOhiA74zKkOyyj9Xakj7PDxWWXyhbqMCwAANJbB4eUPOnds7UzKsqSpubxGZ7L1GhoAAGgggyOnnpNEwiFt7XTOj0vXZVxoLBTRAZ9x9vo6WSd6T0tcLfGIirZ0YIzkAAAA3LeSTvRENKxNbaWD0DnwHAAA1MJK5iRSpY6SGpmu+ZjQeCiiAz6SLxS1f7RUFD9ZEd2yrHI3utMlBgAA4KbUCraYW/j3gxTRAQCAy2zbLneWO+fDLcfZMz1FJzpqgCI64COHjs8qX7QVj4S0sTVx0udykBcAAKiViXROY/Pbs5zsEC+pss0cnegAAMBtw9MZTWfyCllSb+fJi+j9PXSio3YoogM+Mrig4ysUsk763IHuykFeAAAAbnK2l9vQGldzPHLS53LgOQAAqBWnC31zR5PikfBJn9tfbjakEx3uo4gO+Ej5xOlTdHxJlb3AWLACAAC3VTMncW6tZk4CAADctpo6yYGxtHKFYk3HhcZDER3wESc5OLcgnUw/RXQAAFAjgyvcD730nFIn+r7RtIpFu6bjAgAAjcWZkwysYE6ysTWhRDSkfNHWwfHZWg8NDYYiOuAj5QXrirq+Ss85OpnRTCZf03EBAIDGMlRFEX1LR5PCIUuzuYKOTs3VemgAAKCBlDvRVzAnCYWsyvlxNBzCZRTRAR9xDgldSSd6ezKmjmR00dcBAAC4wZlbrGTBGg2HtLWTLV0AAID7ynWSFcxJpMq2L8xJ4DaK6IBPZPIFHZq/3Wgle31JlYWtc9AGAADAWtm2rdTwym+dlqS+LoroAADAXcWiXZ5brLSI7jQlMieB2yiiAz5xYCytoi21xCPqbomt6Gsq+6JP13JoAACggYzOZDWVycuypN75DvNTqVzYZ8EKAADccWRyTpl8UZGQpc3tTSv6Gmd7XO7Yh9soogM+MThcubpqWdaKvqa/fJsSnegAAMAdTufW5vYmJaLhFX3NAAeeAwAAlznziq1dSUXCKyth0omOWqGIDvhENXuPOirJgU50AADgjmpvm5Yq8xcWrAAAwC3lOckKt7yVKtvjHjo+q7lcoSbjQmOiiA74xKoWrOXblOhEBwAA7nDmJCs9o0WqzF/2j6WVLxRrMi4AANBYnG3iqmk27G6JqSUekW2Xts0F3EIRHfCJShF9ZXuPlp5bSiRjM1lNpHM1GRcAAGgsQ6u4sL+prUmxSEi5gq3Dx+dqNTQAANBAVtNsaFnWgvPjuEMO7qGIDvjE0Py+5v3dLSv+muZ4ROvXxSVJKQ7NAAAALljNgjUUstTXVWoEYE4CAADc4MwpqpmTSGwzh9qgiA74QDqb15HJUtdWNXt9SZVkMkRyAAAAa1Qs2uVzWqpesDoHng9zVgsAAFibfKFY3o6lmu1cJKl//sL+EBf24SKK6IAPOF3oHcmo2pLRqr7WWeAOUkQHAABrdHRqTnO5oiIhS1s6mqr62vKFfc5qAQAAa3To+KxyBVvxSEintSaq+tr+nvk6yTB1EriHIjrgA6u5bdpBJzoAAHBLan6xubUzqUi4uqUCF/YBAIBbFh50HgpZVX2tc3ccnehwE0V0wAecX+zV3qK08GvY6wsAAKxVyoU5CRf2AQDAWq3moHOH8zVHJzOayeRdHRcaF0V0wAecW4wG1tiJbtu2q+MCAACNxelE76vyjBapMo85OJ5WNl90dVwAAKCxlDvRV1EnaU/G1DG/VS7d6HALRXTAB9bSib61MynLkqYyeY1MZ90eGgAAaCDlQ0V7qp+T9KyLqzkWVtGW9o+xLzoAAFi91PwZK/3dyVV9feUOOeYkcAdFdMAH1nKbUiIa1qa20sFfXGEFAABrUT6nZRWd6JZlsaULAABwRaVO0rKqr+9nX3S4jCI64LGJ2ZxGZ0od5Ku5dVqSBua7xVKcPA0AAFYpXyiWO8hX04kucVYLAABYu2y+qIPjpTlJ3yo70csHnlMngUsoogMec66url8XV3M8sqrXcIrvKa6wAgCAVTp8fE65gq14JKTTWhOreo1+5iQAAGCN9o+lVbSl5lhYPS3xVb1G+e445iRwCUV0wGOpNWzl4nC+lk50AACwWoMj05JKF+dDIWtVr8GcBAAArFW5TtLTLMta25yELebgForogMfcLKJzhRUAAKyWs8hc7W3Tpa9lTgIAANamPCdZ5Za3UmVOMjqT1cRszpVxobFRRAc85mon+siMikXblXEBAIDGkioX0Vc/JxmY/9pnJ+Y0my24Mi4AANBYnG3h1lInaYlH1LOutBUM3ehwA0V0wGNOp9ZaFqxbOpoUCVnK5Is6Mjnn1tAAAEADSY2WDvAaWMOcpKM5pramqCS60QEAwOo428KtpYi+8OuZk8ANFNEBD9m2Xe76WsuCNRIOaWtn6dbrFFdYAQDAKqQW7Im+FuxBCgAA1sKNZkOpcuD5IGe1wAUU0QEPjc5kNTWXl2VJvZ2r339UqiQXiugAAKBa2XxRh8ZnJZUO8VoLp4g+yJwEAABUaTZb0LMTpTvs+9d4YZ+zWuAmiuiAh5wOrU1tTUpEw2t6rX6K6AAAYJX2j6VVtKXmWFg9LfE1vZbTyU4nOgAAqJZT8G5PRtXRHFvTa1EngZsoogMecjq0BtbY8SUtuMJKcgAAAFUqH3Te0yzLstb0Wk4nOwtWAABQLaemsdbt5aTFRXTbttf8emhsFNEBD7mZHJw91VPcpgQAAKrk6oK1i1unAQDA6jg1jbWcG+fY1lXaNndqLq+xmeyaXw+NjSI64KFy15cLycHpRN8/mla+UFzz6wEAgMYx6OqcpLRgHZnOanIut+bXAwAAjSM17M6hopKUiIa1ub2p9LrcIYc1oogOeMjNIvpprQnFIyHli7YOHZ9d8+sBAIDGMeTinGRdIqru+X3V2WYOAABUw7mTzY0ieul1Shf3KaJjrSiiAx4pFm3tG01LcmfBGgpZ5VuwB0kOAACgCs7C0q0F6wAHeQEAgFVIjZTqJG5s5yItOPCcbeawRhTRAY8cnZrTbK6gSMjSlo4mV17TucJK1xcAAFip2WxBRybnJLm4YKXrCwAAVGlqLqeR6Ywk9y7s93NhHy6hiA54xPkFvrUzqUjYnX+K/d0ti14bAADgVJzOrPZkVO3JmCuv6cxJuLAPAABWami+C727Ja6WeMSV16wU0dOuvB4aF0V0wCNu3zYtSf10fQEAgCq5eUaLgzkJAACo1uDItCT37oyTKvOboZEZ2bbt2uui8VBEBzzidGY5+3O5gU50AABQrXIR3cU5Sd+CW6dZsAIAgJVwOtGdbeHc0NuZVDhkaTZX0NHJjGuvi8ZDER3wSHnB2uPmgrWUaA4dn1UmX3DtdQEAgLlqcXec0yQwOZfX2EzWtdcFAADmcraYc3NOEg2HyufQ0XCItaCIDnikFl1fPfP7htm2tH+U/b4AAMCpDdVgO5dENKxNbYnS64+yYAUAAKc2OD8ncXM7F4nDReGOVRXR77rrLvX19SmRSOjCCy/Uww8/fNLn33nnnTrzzDPV1NSk3t5evetd79Lc3NyqBgyYIF8oav9YqcjtZie6ZVnlbnSSA9DYyNUAVqoWe6JLlTnO4DBzEmA55GsAqBiqwd1xUuUOOS7sYy2qLqLfd9992rFjh2655Rb96Ec/0rnnnqvLL79cx44dW/L5X/ziF3XjjTfqlltu0RNPPKFPf/rTuu+++/RXf/VXax48EFSHj88pV7AVj4R0WmvC1ddmX3QA5GoAKzU5l9Po/HYrLFiB+iJfA0DF+ExWE7M5SdK2TjrR4T+Rar/gjjvu0PXXX683v/nNkqS7775b999/v+655x7deOONJzz/e9/7nn71V39V11xzjSSpr69Pr3/96/WDH/xgjUMHgis1WjlUNBSyXH3t/q5SJzoLVqBxkasBrJTT8dWzrrQlnJucBatzSBiAxWqdrzOZjDKZyiF6k5OTkqRcLqdcLudKDM7ruPV6XjElDsmcWEyJQzInllrH8dSRCUnSaW0JRayicrmia6/d2xGXJA0OTy/6Hchn4h9ux1KL70lVM+VsNqtHHnlEO3fuLD8WCoV0ySWXaO/evUt+zUUXXaR/+Zd/0cMPP6wLLrhAg4OD2rVrl974xjcu+z61Tvam/JCZEofUeLE8fbT0M721s8n1mLd2lDrbnzk2vabXbrTPJAhMiUMyJxY/Jnpytf+YEospcUjmxOJGHE8dKf3b7etKuv796HXmJMOnnpPwmfiPKbHUIo6g5OvbbrtNt9566wmPP/jgg0omk2uOYaHdu3e7+npeMSUOyZxYTIlDMieWWsXx8LAlKawWO61du3a5+tqjc5IU0dDItP6/+3fJ6WXkM/Eft2JJp91v4qiqiD4yMqJCoaANGzYsenzDhg168sknl/yaa665RiMjI/q1X/s12batfD6vP/mTPznpLWf1Svam/JCZEofUOLH831RIUkjFiSOuJ4dDU5IU0S8Ojbny2o3ymQSJKXFI5sTip0RPrvYvU2IxJQ7JnFjWEsfuA6UFazg96vqc5OisJEU0eGxS99+/S9YKbr7jM/EfU2JxM46g5OudO3dqx44d5T9PTk6qt7dXl112mVpbW9ccg1S6oLB7925deumlikajrrymF0yJQzInFlPikMyJpdZx/OKbT0tPD+qlZ27VVVf9iquvXSjauu0n31SuIJ130cu1oSXCZ+IzbsfiNHm5yd17Npfw0EMP6e///u/18Y9/XBdeeKGefvppveMd79D73/9+3XTTTUt+Ta2TvSk/ZKbEITVeLF/63COSRvWKC87WVedvcfX9j6dz+shPv6WJnKWLX3GZmld5a3ajfSZBYEockjmxBCHRrwS5urZMicWUOCRzYnEjjm/+20+kg0f0a+eeqat+vd/V8WXzRX3gJ3uULUrnv+y/a+NJzoHhM/EfU2KpRRxBydfxeFzxePyEx6PRqOufaS1e0wumxCGZE4spcUjmxFKrOPaNz0qSTl+/zv3fUZK2dTXr6WPTOnA8oy0dTaXH+Ux8x61YavH9qKq61t3drXA4rKNHjy56/OjRo9q4ceOSX3PTTTfpjW98o/7wD/9QknTOOedoZmZGf/RHf6S//uu/Vih04tmm9Ur2pvyQmRKH1Dix7BtzkkOr6/H2tEXVkYxqPJ3TocmsXripaU2v1yifSZCYEodkTix+SvTkav8yJRZT4pDMiWUtceyfn5OcscH9OUk0Km3paNK+0bQOHs+qt2vdCr6Gz8RvTInFzTiClK8BICicc1qcg8nd1jdfRB8andH2/vaavAfMVlWWjcViOv/887Vnz57yY8ViUXv27NH27duX/Jp0On1CMg+Hw5Ik27arHS8QeNl8UQfHS7eA9vfUJjlwkBfQuMjVAFbKtm0Nzi9YnbmD25zXTY1w4DmwEPkaACps2y4X0WtXJyltOcmcBKtV9T4PO3bs0HXXXaeXvvSluuCCC3TnnXdqZmamfKL4tddeq82bN+u2226TJL3qVa/SHXfcoRe/+MXlW85uuukmvepVryonfKCR7B9Lq2hLzbGwelpO7OJ0Q193s360/7hSI9M1eX0A/kauBrASYzNZTc3lZVnSti53Dxl0lLrJhjU0yoIVeC7yNQCUDE9lNJMtKGRJvR21mZP0d7dIooiO1au6iH711VdreHhYN998s44cOaLzzjtPDzzwQPlAlP379y+6Ov7e975XlmXpve99rw4dOqSenh696lWv0t/93d+5FwUQIAuvrlorOWFrFQbKXV90ogONiFwNYCWcwvamtiYlorUpwA300IkOLId8DQAlzjxhS0dSsUhttqbqm+9EH2JOglVa1YmDN9xwg2644YYl/+6hhx5a/AaRiG655Rbdcsstq3krwDipGu/zJZU60UvvRSc60KjI1QBOZXC4tlu5SJX5DkV0YGnkawCozBNqOScZmO9EPzA+q1yhWLP3gbk4eQSos9Ro7ZNDeU/0UTrRAQDA0pxOdKczqxacOcn+0bQKRfZsBgAAJ6pHnWRDa1xN0bAKRVsHx2dr9j4wF0V0oM5Sdez6GpvJaiKdq9n7AACA4Kp0fbXU7D02tTcpFg4pWyjq8HEWrAAA4ERD5Tv2a3dh37Ks8hkwNBxiNSiiA3VW6fqqXRG9OR7R+nWlQ0tTHOQFAACW4Jyd0l/DTvRwyNLW+QUrW7oAAICllC/s99Tuwr5UOauFIjpWgyI6UEez2YKenZiTVDn8s1b62RcdAAAsw7btBV1f9ZqTUEQHAACLFYu29s0XtftrPCdx5jxDNBtiFSiiA3Xk/KJuT0bVnozV9L0qC1ausAIAgMWOTmY0mysoHLLU21m7TnSJIjoAAFjes5NzyuSLioYtbWpP1PS9+jg/DmtAER2oo6E6nDjtYMEKAACWMzh/p1pvR5Oi4douCSoHnjMnAQAAiznnxm3tTCpS4zmJsyPAEM2GWAWK6EAdDTpF9BrfoiQtuMJKER0AADzHUHk/9DrMSbq4sA8AAJbmnONWlznJ/Hs8OzmnXLHmbwfDUEQH6qi892gdksPAgk5027Zr/n4AACA46nHQucNZFB8cn1U2z4oVAABU1POO/a7mmNbFI7JtaWSu5m8Hw1BEB+ooVcfk0NuZlGVJ05m8RqazNX8/AAAQHIPzt07X+qBzSdrQGldTNKxC0daBcW6fBgAAFak6NhtalqX+ntL7HJu1av5+MAtFdKCOhup4m1IiGtbm9iZJ3D4NAAAWq2cnumVZbDMHAACWNFTHbW+lyjZzdKKjWhTRgTqZnMuVO8LrsWCVFhzkxYIVAADMKxRt7R8tdYT31WnBOsCB5wAA4DnyhaL2j82f09JT3zrJ8Byd6KgORXSgTpxCds+6uFrikbq8p5McnIM6AAAADh+fVbZQVCwS0qb5u9Zqra87KYkiOgAAqDg4Pqt80VYiGtKGdYm6vKdTJ2E7F1SLIjpQJ/XcD93hdJelhlmwAgCAksH5Ocm2zqTCofosIPu7WyRVtpEBAABwGv76upoVqtOcpK/ciV6Xt4NBKKIDdZKq8z5fUuV2KBasAADAMeTBhf1+pxOdC/sAAGCeMy+o65xkviYzmbM0k8nX7X0RfBTRgToZquOJ0w4nOaRGZlQs2nV7XwAA4F9e3h13eGJOc7lC3d4XAAD4Vz0POne0JaPqSEbn3z9dt/dF8FFEB+rEiwXrlo4mRUKWMvmijkxyrxIAAPBmTtLZHFNronQmDHfIAQAAyZs79iWpr6t0h9w+iuioAkV0oA5s2/ZkwRoJh7S1k4O8AABAhRddX5ZlledAQ8xJAACAFhTRe+pcRJ+fk6QooqMKFNGBOhibyWpyLi/LkrbNX/GsF2fBShEdAABk80UdGCstGOt5YX/h+w0yJwEAoOFl8gUdPj4rqbLtW730dTqd6MxJsHIU0YE6cDq+NrU1KREN1/W9+yiiAwCAeQfG0yraUjIW1vp18bq+dx+d6AAAYN6BsdKcpCUeUXdLrK7v7Wznwp7oqAZFdKAOUiPedHxJLFgBAEBFanh+K5euZlmWVdf3rmznwoIVAIBGNzhc2fK23nOSvm6K6KgeRXSgDlIj05Iqv6jraYBOdAAAMM+5O67ee49KbOcCAAAqvDijxbFtfjuX8XROE+lc3d8fwUQRHaiDoXInekvd39tJSPvH0soXinV/fwAA4B/lA7zqvPeoVJmTjExnNDXHghUAgEbm5R37zfGIWqN2aRzsi44VoogO1IHTcdXvQSf6aa0JxSMh5Yu2Do7P1v39AQCAf5SL6B4sWFsT0fKep2zpAgBAY3Pu2PeiTiJJ65sWjwM4FYroQI3Ztl3ej7zeJ05LUihkld+XK6wAADS28pzEgyK6JOYkAABAUuWCuhd1EknqScx3onNhHytEER2osaOTGc3mCgqHLPV2enOF1ek2cw4TAwAAjWc2W9DhiTlJ3nSiL3xf5iQAADSudDavI5PezkmcIvoQZ7VghSiiAzXm3Dbd29GkaNibf3JOt9kQXV8AADSsfWOleUBbU1QdyagnY2BOAgAAnC70jmRU7cmYJ2PoKW/nwpwEK0MRHagxL/cedQw4XV8kBwAAGpbT/d3X3SzLsjwZgzMnGWROAgBAw3Iupnu1vZy0uBPdtm3PxoHgoIgO1JgfkkMfRXQAABqesw/5gA/mJNw6DQBA4/JDs2F3QrIsaSqT1+hM1rNxIDgoogM15iQHLxesTmI6dHxWmXzBs3EAAADvlDvRPTrAa+F7T8zmNM6CFQCAhlQuons4J4mGpE1tiUXjAU6GIjpQY84vYy870btbYmqJR2Tb0v5RTp4GAKAROXfH9fd4NydpioV12vyClS1dAABoTEM+qJNI0raupCSK6FgZiuhADRWKdrlo7WXXl2VZ5W50kgMAAI0pNX+Il5ddX1JlTsSWLgAANCY/bOciVeZE1EmwEhTRgRo6fHxW2UJRsUhIm9qbPB0L+6IDANC4puZyGpnOSJL6upOejsXphGdOAgBA45mcy5X3IPdLJzoX9rESFNGBGnIWh9s6kwqHLE/H4lzhdW7lBgAAjWNovgu9uyWudYmop2Mpd30xJwEAoOE4BeuedXG1xCOejqWP7VxQBYroQA355Ral0hhKyWFwmOQAAECjGRyZllSZD3ipvMUccxIAABqOH+skQ6MzKhZtj0cDv6OIDtSQv5JDiyQ60QEAaEROJ7of5iR9C+6Os20WrAAANJJyncTjM1okaXN7k8IhS3O5oo5OzXk9HPgcRXSghpyCtR8WrE6COjqZ0Uwm7/FoAABAPaXmO9G93ntUkrZ2JhWypHS2oOGpjNfDAQAAdeRs5+KckeKlaDik3o7S+XVs6YJToYgO1JDzS9gPC9a2ZFQdydIeqHSjAwDQWFKjpU70AR/MSWKRkLZ0zG8zx4IVAICGUq6T+KATXVqwzRxzEpwCRXSgRrL5og6Oz0ryRye6RHIAAKAR2bat1LB/OtGlBVu6MCcBAKBh2Lbtq21vJeYkWDmK6ECNHByfVaFoKxkLa/26uNfDkURyAACgEY2nc5qcK23ltq3THwvWAS7sAwDQcMZmspqcy8uypG1d3h92Li2ck6Q9Hgn8jiI6UCNDY6VfwH1dzbIsy+PRlDjJgVunAQBoHE6helNbQk2xsMejKembXzhTRAcAoHE4W8tuamtSIuqTOUm5iD7t8UjgdxTRgRrx02EZDjrRAQBoPH46o8XR39MiiSI6AACNxOn27uv2Rxe6VNmb/cBYaTcBYDkU0YEaGZo/wKvfJ4dlSOyJDgBAIxry2d6jUmV+tG8srSILVgAAGoLT7e2nOcmm9ibFIiFlC0UdPj7r9XDgYxTRgRrZ5xTRfZQcnCus4+mcJtI5j0cDAADqwW8HeEnS5o4mRcOWsvmiDk+wYAUAoBEMjVS2vfWLcMjSts5SZzxb3+JkKKIDNZIadW5T8k9yaI5HtKG1dMhpapTkAABAI/BjET0csrS1k33RAQBoJH6ck0hsfYuVoYgO1EC2ID07MSfJh8mhi0MzAABoFLZtlw/x8tOFfakyR2LBCgCA+RbOSfxWJxlg61usAEV0oAZGSvVztTVF1ZGMejuY5xjocZJD2uORAACAWjs2lVE6W1DIkno7/HOIl1RZQHPrNAAA5nPmJOGQpd5Of81J+iiiYwUoogM1MDxnSSr9IrYsy+PRLFbpRCc5AABgOiff93YmFYv4a+rPrdMAADSO8pyko0nRsM/mJPN1kiG2vcVJ+OunFjDEsflO9AGf3aIkces0AACNxFmw+ukAL0c/XV8AADSM8pzEh3US5479A2NpZfNFj0cDv6KIDtTA8Ox8J7rPF6y2bXs8GgAAUEtDPj3AS6qM6cD4rHIFFqwAAJhsyMcX9teviysZC6toSwfG2foWS6OIDtTAyPx2Lv09/ksOW7uSsixpOpPXyHTW6+EAAIAaGvRxEX3DuoSaomEVirYOHZ/1ejgAAKCGnE70AR/WSSzL0rYu7trHyVFEB2rA2c6l34dXWOORsDa3N0ni9mkAAEzn5070UMjStq7SwWIceA4AgNn8vMWcVNmOlzoJlkMRHXDZ1FxeUznnYFF/nTjtYF90AADMVyja2jdWKk77sYguVbrRhkYpogMAYKogzEmc+g1FdCyHIjrgsn3zi8DulpjWJaIej2ZpTtIaJDkAAGCsw8dnlc0XFQuHtGn+LjS/cbrRhkaZkwAAYKogzEn6u1skMSfB8iiiAy5zfuH2dfmzC11asGCliA4AgLGcOcnWrqTCIcvj0Sytr5tOdAAATBeEOUm/04k+TJ0ES6OIDrgsNb8I9Os+X1LlwFNuUwIAwFx+33tUquw/OsSe6AAAGGsoAHMSZ2yHJ+Y0lyt4PBr4EUV0wGX7ykV0/3ai9y+4dbpYtD0eDQAAqAWniO7sO+5HTif6s5NzyrJeBQDASIMBmJN0NsfUmohIqtR1gIUoogMuSwVgO5ctHU2KhCxl8kU9Oznn9XAAAEANBKETvas5pnWJiGxbGsl4PRoAAFALQehEtyyrfH5camTa49HAjyiiAy4LQid6JBzS1s7S+NgXHQAAMzk53lkQ+tHCBevwrD/3SAUAAGvjnH3S1+3fOolUuUMuxTZzWAJFdMBF4zNZTczmJUnbfFxElyoL6kGK6AAAGCdXKOrA+KwkfxfRpcr4Rrg5DgAA4+QKRe0fKxWlB7pbPB7NydGJjpOhiA64yClIt8dsJaJhj0dzcn3lg7woogMAYJoDY2kViraaomFtaI17PZyTcm7tPjZHJzoAAKY5OD4bmDlJPwee4yQoogMucgrSPQn/H9bZTxEdAABjDTlntHQ3y7L8XZxmOxcAAMxV3g89AHMS58K+c9YdsBBFdMBFzgFe65s8HsgKVG5TIjkAAGCawWFnP3R/by8nLSiis50LAADGGRwJzpzEuWN/eCqjqbmcx6OB31BEB1zkXK0MUif6/rG08oWix6MBAABucjrR/b4fulRZsE7mLE1n8h6PBgAAuKncid7l/zlJW1NUXc0xSdK+UbZ0wWIU0QEXpea7vnoC0Im+sTWheCSkfNHWwfmDxwAAgBlSAVuwdjZHJbFgBQDANEG6sC9VLu5z1z6eiyI64BLbtsvJIQid6KGQVdnShf2+AAAwinMg1kBPQBas88X+IYroAAAYpbLFXDDmJGx9i+VQRAdcMjyVUTpbUDhkqcvfB06XlQ/NGCY5AABgirlcQYeOl+4yC0InuiT1dZX2SaWIDgCAOeZyBR2emJ+TBKyIPkQRHc9BER1wiXNYxub2hCIB+ZfV3+N0fZEcAAAwhbMlyrpERJ3z+3r6XbmIzoIVAABj7B9Ly7ZLc5KugMxJuGMfywlIqQ/wv8phGf4/cdrR38VtSgAAmMbJ6wPdzbIsy+PRrEy5iD5GJzoAAKZw5iT9gZqTUCfB0lZVRL/rrrvU19enRCKhCy+8UA8//PBJn3/8+HG97W1v02mnnaZ4PK7nP//52rVr16oGDPhVkA7wcjid6CQHwDzkaqBxleckAbltWlqwJ/oIRXQ0FvI1AJMNBbBO0tddurB/PJ3T+EzW49HATyLVfsF9992nHTt26O6779aFF16oO++8U5dffrl+8YtfaP369Sc8P5vN6tJLL9X69ev1pS99SZs3b9a+ffvU3t7uxvgB30gt7EQf83gwK+QkskPHZzWXKygRDXs8IgBuIFcDjW1oJFgHeEnStq4mSdLx2dKCtSMgt3wDa0G+BmC6VADnJMlYRBtbEzoyOafU6AxzEpRVXUS/4447dP311+vNb36zJOnuu+/W/fffr3vuuUc33njjCc+/5557NDY2pu9973uKRqOSpL6+vrWNGvChStdXUlMBKaJ3t8TUEo9oOpPXgbG0nrdhnddDAuACcjXQ2IK6YG2L2ZrIWixY0TBqna8zmYwymUz5z5OTk5KkXC6nXC7nSgzO67j1el4xJQ7JnFhMiUMyJ5bVxDE4PC1J6u1I+Cr+U8WyratJRybn9MzRSZ1zWks9h1YVU362JPdjqcX3pKoiejab1SOPPKKdO3eWHwuFQrrkkku0d+/eJb/ma1/7mrZv3663ve1t+upXv6qenh5dc801es973qNweOmu11one1N+yEyJQwp+LMWirX3ze3huaY3pCQUnlr6upH56eFJPHZlUX2ei/HjQP5OFTInFlDgkc2LxY6InV/uPKbGYEodkTizLxZEamV+wtscDE2Mul1NPolRE9/uC9WRM+dmSzImlFnEEJV/fdtttuvXWW094/MEHH1Qy6e45Trt373b19bxiShySObGYEodkTizVxPGLQ2FJlg4/+ah2HXq0doNapeViCc2EJIX0ze//RLHDj9V1TKthys+W5F4s6bT7WwRWVUQfGRlRoVDQhg0bFj2+YcMGPfnkk0t+zeDgoP7jP/5Db3jDG7Rr1y49/fTT+tM//VPlcjndcsstS35NvZK9KT9kpsQhBTeWsYyUzUcUtmz97L++q5AVnFhimVJyeOA/H1FuyD7h74MSx0qYEospcUjmxOKnRE+u9i9TYjElDsmcWBbGMZeXhqdLU/xfPvKfOvBjr0ZVvfWJkJ6eVGAWrCdjys+WZE4sbsYRlHy9c+dO7dixo/znyclJ9fb26rLLLlNra+uaY5BKFxR2796tSy+9tNwdH0SmxCGZE4spcUjmxFJtHDOZvCb2/ock6ZpXX6q2Jv/EfqpYDn93SHu/8UtFOjbpqqte5MEIV8aUny3J/VicJi83Vb2dS7WKxaLWr1+vT37ykwqHwzr//PN16NAhffCDH1x2YV7rZG/KD5kpcUjBj+W7T49KP3pEfd0tuvyyCwIVy1Pxp/WjhwaV6Nmqq656YfnxoH8mC5kSiylxSObEEoREvxLk6toyJRZT4pDMiWWpOH52eFL6r++rqzmm3371ZR6PcOVyuZz+4/A3Jcn3C9aTMeVnSzInllrEEZR8HY/HFY/HT3g8Go26/pnW4jW9YEockjmxmBKHZE4sK43j0HDpgmNnc0zdre7e/eKW5WI5fX1pq9t94+lAfGam/GxJ7sVSi+9HVUX07u5uhcNhHT16dNHjR48e1caNG5f8mtNOO03RaHTR7WUveMELdOTIEWWzWcViJ+53WK9kb8oPmSlxSMGN5eDxOUlSf3dLefxBieX0+X3Q943NLjneoMSxEqbEYkockjmx+CnRk6v9y5RYTIlDMieWhXEcOF7aZqm/uzlwsfXM7yoXlAXryZjysyWZE4ubcQQpXwOAV4ZGSkX0IJ3R4nDGPDSSlm3bsizL4xHBD0LVPDkWi+n888/Xnj17yo8Vi0Xt2bNH27dvX/JrfvVXf1VPP/20isVi+bFf/vKXOu2000jyMMbg/AFeAz1BTA6lPUeHRmc8HgkAN5CrgcZWOeg8eHOSnkRpW7nU8Ixs+8Qt5gCTkK8BmM45o6WvK3hzkq1dSVmWNJ3Ja3g6c+ovQEOoqoguSTt27NCnPvUpfe5zn9MTTzyht771rZqZmSmfKH7ttdcuOhzlrW99q8bGxvSOd7xDv/zlL3X//ffr7//+7/W2t73NvSgAjw05C9YAJof++TEfncxoJpP3eDQA3ECuBhqXMycJYtdXd0IKWdJMtsCCFQ2BfA3AZKlyJ7o/t3I5mXgkrM3tTZIqHfVA1XuiX3311RoeHtbNN9+sI0eO6LzzztMDDzxQPhBl//79CoUqtfne3l594xvf0Lve9S696EUv0ubNm/WOd7xD73nPe9yLAvBYKsAL1rZkVJ3NMY3NZDU0OqMXbmrzekgA1ohcDTSuwQDPSSIhaVN7kw6Ozyo1PKP16xJeDwmoKfI1AJM5d7s7d78HTX93sw6Oz2poZEYX9Hd6PRz4wKoOFr3hhht0ww03LPl3Dz300AmPbd++Xd///vdX81aA7+UKRR0Yn5UUzAWrJPV1JTU2k1VqhCI6YApyNdCYKgvW4M5JDo7Pamh0RhcOdHk9HKDmyNcATFXZYi54nehSaS71nadGyg0KQNXbuQBY7OD4rApFW03RsDa0nnjIXhCU90UnOQAAEFjjM1kdT+ckBXOLOUnq7yottFPcOg0AQGBNpHMam8lKCu6cxBk3dRI4KKIDa1Q+LKO7ObAnNjt7lHGFFQCA4ErNd6Gf1pZQUyzs8WhWZ1u5iD7t8UgAAMBqOXOSDa1xNcdXtQmG5/p75ovoo9RJUEIRHVgjp1NqIKC3TUt0ogMAYILUcHAPOnc429BwiBcAAMHl1BYCPSeZH3tqZEbFou3xaOAHFNGBNap0ogdzny+pMvYURXQAAALL6ZTqC/CFfacTfWiUBSsAAEGVCvBB544tHU2KhCxl8kUdmZzzejjwAYrowBo5nVJBvsLqjH08ndPxdNbj0QAAgNVwFqxBvjtuc1uivGB9lgUrAACBZEIRPRIOaWsnDYeooIgOrFF5wdoT3OTQHI+UD0UlOQAAEExODg9yJ3okHNJWZ1/0YeYkAAAEkQl3x0mV8VMngUQRHViTuVxBhydmJQW7E11asAcph2YAABA4tm2X9x8NcteXtGAPUuYkAAAEjm3bRnSiS5U6D+fHQaKIDqzJvtG0bFtqTUTU2Rzzejhr4iQ3ur4AAAie4amMZrIFhSyVbz0OKuYkAAAE1+hMVlNzeVkmzEl66ERHBUV0YA0WXl21LMvj0axNX7nrK+3xSAAAQLWcOcmWjqRikWBP8fu4Ow4AgMByurY3tTUpEQ17PJq14e44LBTsGTbgMWdxF/RblKQFXV8j0x6PBAAAVMuE/dAdzsGo3DoNAEDwmHBunKOvu9RJf2AsrXyh6PFo4DWK6MAaOLcZm7BgLe+JPpKWbdsejwYAAFTD6ZDq7wr2bdNSZV61nwUrAACBU76wH/Bz46RSN30sElKuYOvQ8VmvhwOPUUQH1iBlUCf61q6kLEuazuQ1PJ3xejgAAKAKphwqKkkbWxOKR0LKF20dHGfBCgBAkDh37JvQbBgKWeqbb1BgX3RQRAfWwJQTpyUpHglrc3uTpFI3OgAACA6TtnMJhawF28yxYAUAIEgG5+/YHzBgTiItvGufOUmjo4gOrNJ0Jq/hqVLHtgkLVonkAABAEBWLtobmDwYf6G7xeDTuKB94zpwEAIDAsG1b++bnJKbUSfq4sI95FNGBVXIKzd0tMbUmoh6Pxh1OEX2Q5AAAQGA8OzmnbL6oaNjSpvaE18NxRX8PC1YAAILm6GRGs7mCwiFLWzqavB6OK/qdC/uj3LHf6CiiA6tk0mEZDjrRAQAIHqcLfWtnUpGwGdN7Z8Hq7KsKAAD8b3BkWlJpThI1ZU5CnQTzzPiJBjxg0gFeDm5TAgAgeEyck9CJDgBA8DjnqzmHcZrAmV8dHE8rmy96PBp4iSI6sEomHeDlcA7+GBqdUbFoezwaAACwEk4nukl3xzmxHDo+q7lcwePRAACAlXDuIDOpTtKzLq7mWFhFW9o/xpYujYwiOrBKqVHzur42tzcpErKUyRd1ZHLO6+EAAIAVcIroTve2CbpbYmqJR2Tb0gEWrAAABMLgcKlOMmBQncSyLO7ahySK6MCqpQy8dToSDmnr/G1XQxyaAQBAIJSL6AZ1oluWxYHnAAAEjImd6FIlHvZFb2wU0YFVGJ/J6ng6J8msW6clTp4GACBICkXp4PisJLM60SUWrAAABEmhaGu/gVvMSQvrJMxJGhlFdGAVnF+cp7Ul1BQLezwadzldX/soogMA4HujGSlftJWIhrRhXcLr4biqn1unAQAIjMPHZ5UtFBWLhLSpvcnr4biqPCcZZk7SyCiiA6vgdESZdnVVEnt9AQAQIMNzlqTSnCQUsjwejbv6u0tbzDEnAQDA/5x8va0zqbBhc5Ly3XF0ojc0iujAKjhFdNNum5YqB4DQiQ4AgP8Nz58DbtIZLY7+7hZJLFgBAAgCJ1+bOScpxfTsxJxmswWPRwOvUEQHVsE54MqkA7wczhXWA+OzKtgeDwYAAJzU8Ox8J7qJC9b5edbRyYxmMnmPRwMAAE5mcNjcInpHMqq2pqgkLu43MorowCqYeuK0JG1sTSgRDSlftDU25/VoAADAyZjcid6WjKojyYIVAIAgMLlOYlkWB56DIjpQLdu2y4dJmLhgDYWs8l7vx+bM2scMAADTOHuimzgnkThcFACAoHBytalzEmfr2xQX9hsWRXSgSsPTGc1kCwpZ0tbOpNfDqQmniD5MJzoAAL6VyRU0nin9f1MXrHR9AQDgf7lCUQfHZyUZPCeZr5M4TZVoPBTRgSo5vzC3dCQVi5j5T8g5MNXZZxUAAPjP/rFZ2bLUEo+oqznm9XBqwun6GqSIDgCAbx0YS6tQtJWMhbV+Xdzr4dREX3epiZIt5hqXmRVAoIZM3ufL0U8nOgAAvjc0mpYk9XcnZVlmXvimEx0AAP9ztnLp62o2dk4y0N0iSUqNpD0eCbxCER2okvMLc8DkIrrTic6e6AAA+JazJ+c2Q7eXkyq3hDsXDAAAgP+Yvh+6VOlEH5nOaGou5/Fo4AWK6ECVUiPTkqS+LnMXrM5eX+OZ0n6rAADAf/bNF5YbYU4yNpPVRJoFKwAAflS5Y9/cOcm6RFTdLaXt84boRm9IFNGBKjm/LPt7WjweSe10t8TUEo/IlqX984eDAAAAf0k5RXSDu76a4xFtaC3trZpiD1IAAHyp0olubp1EqnTaD843V6KxUEQHqlAs2uUrrM6+4SayLKvc1cYVVgAA/KkROtGlSjd6igUrAAC+VG42NLgTXarMSaiTNCaK6EAVnp2cUyZfVDRsaVN7wuvh1FS5iD5G1xcAAH4zk8nr2FRGkvlFdKfri4O8AADwn7lcQYcnSnewm96JXj7wnLvjGhJFdKAKqeHSL8qtnUlFwmb/86ETHQAA/3Jum26O2Gprino8mtqqFNFZsAIA4Df7RtOybak1EVFH0uw5yUB5OxfmJI3I7Cog4DJnL06TT5x2VK6wUkQHAMBvnA6o9U0eD6QOynMSFqwAAPhOZT/0ZlmW5fFoaos5SWOjiA5UwelEb4giutOJThEdAADfceYkPQnb45HU3sCCTnTbNj9eAACCZKiRmg3n90SfmM1pfCbr8WhQbxTRgSo4yaGvIZJDqYh+bCqjmUze49EAAICFnLvjGqGI3tuZlGVJ05m8RqZZsAIA4CfOhf1GqJM0xcI6ra10Ph5bujQeiuhAFYZGGucKa1tTVM2R0sKcPUgBAPAXJzf3NMB2LoloWJvbS4FykBcAAP7SSNveSpVudLZ0aTwU0YEVyheK2j9W2tqkUZKDs88qC1YAAPzFWbg1Qie6tOBw0WHmJAAA+EmqgZoNJam/xzk/jjlJo6GIDqzQwfFZ5Yu2EtGQNqxLeD2cunAW5ixYAQDwj+PprMbTOUlST2NMScpdXykWrAAA+MZ0Jq/hqYykxtjORZL65+ckbOfSeCiiAyvkXF3t62pWKGT2idOOchGdBSsAAL7hzEk2rIsrHvZ4MHVCJzoAAP7j3BnX1RxTayLq8Wjqw7lYwHYujYciOrBCjXaLklTZZ5U90QEA8I/KQedJj0dSP878i1unAQDwj0ask/QvKKLbdmNsq4cSiujACjVicnA60bnCCgCAfzjd2H1djVdET43MqFhkwQoAgB84tYJG2cpFkrZ2JhWypJlsobyVDRoDRXRghSpdX42THJx9VsfTOR1PZ70dDAAAkCSlRksHnW9roCL6lo4mRUKWMvmijkzOeT0cAACgytavjdRsGIuEtLmjdNs+d+03ForowAo5vxwHGig5xMOl/VYlkgMAAH6RGpmWVDnYqhFEwiFt7SxdNOAOOQAA/KER79iXpP7uFknUSRoNRXRgBeZyBR06PiupsTrRpcp+q+xBCgCA92zb1tBI43WiS5U52CALVgAAfKG8nUsDXdiXpP75OViKOklDoYgOrMCBsbRsW1oXj6irOeb1cOrK2W/V2X8VAAB4Z2Q6q+lMXpalcmd2o3AW6HSiAwDgvePprMbTOUmNddi5VLmwz5yksVBEB1bA6Xjq72mWZVkej6a+nAWrs/8qAADwjnPb8Ob2JsUjjTWV7++pHC4KAAC85eTjja0JJWMRj0dTXwsPPEfjaKyZN7BKjXqLkrSgE31+/1UAAOCdoQbde1Sq7AHPrdMAAHjP2fK10brQpco8bN9oWsWi7fFoUC8U0YEVaNTDMqRKEX1oJC3bJjkAAOClwQaekzid6PtH08oXih6PBgCAxpaaP6PFOWSzkWxub1IkZCmTL+rZyTmvh4M6oYgOrEAjF9F7O5MKWdJ0Jq/h6YzXwwEAoKE18t1xp7UmFI+ElC/a5QPfAQCANyp1ksbrRI+EQ9rK+XENhyI6sALObUqNWESPR0La3NEkqdSNDgAAvJNacE5LowmFrMpZLexBCgCApxr5wr7ENnONiCI6cAozmbyOTpY6sPsasIguLThclH3RAQDwTLFoVy7sN+iC1dl3lSI6AADesW27nIsHGvDCvlRpshxiTtIwKKIDp+AsVjubY2prino8Gm8MlE+ephMdAACvPDs5p0y+qEjI0pb5u8QaTR8LVgAAPDcyndV0Jq+QVdoCthH1dXN3XKOhiA6cQiPvh+6oJAc60QEA8IpTON7amVQk3JjTeOfC/iALVgAAPOM0G25qb1I8EvZ4NN6gE73xNObsG6hCo+/zJS1MDnSiAwDgFS7sV+ZjQ+w/CgCAZ5zDNBt5TuLEvn8srXyh6PFoUA8U0YFTGGzwfb6kBUX00RkVi7bHowEAoDE5RfRGPaNFqhyoemh8Vpl8wePRAADQmJzDNBu5iL6xNaF4JKR80dbB8Vmvh4M6oIgOnAKd6NLm9iZFw5Yy+aKenZzzejgAADSkITrR1dMSV3MsrKItHRjjDjkAALxAnUQKhaxy/CnukGsIFNGBUxgaLS3QGnnBGgmHyoeFOLdtAQCA+mI7F8myrHI3OgeeAwDgjfKcpIHv2JcqczLqJI2BIjpwEhPpnMZmspKkvu7GPHHa0c8VVgAAPJMvFLV/vvO6kbdzkSpdbxx4DgBA/RWLdvlskv4G7kSXKnMyzmppDBTRgZNwCsYbWxNKxiIej8ZbnDwNAIB3Do7PKl+0FY+EdFprwuvheGqgm050AAC8cnQqo7lcUZGQpS0dTV4Px1P9882WKeokDYEiOnASTodTo3ehS5UrrCQHAADqz7mw39fVrFDI8ng03qrMSehEBwCg3pyu662dSUXCjV1W7O9ukUSdpFE09k87cApOh1Mj7z3qGKATHQAAz3CoaEX51mk60QEAqDvn3LhG315OqjRcHj4+q0y+4PFoUGsU0YGT4ACvCidB7h9LK18oejwaAAAaizMnYcFaubB/ZHJO6Wze49EAANBY9o3SbOjoaYmrORZW0ZYOjHFx33QU0YGTcLq++hr8sAyptC98IhpSvmjr4Pis18MBAKChOEX0ARasak/G1J6MSqIbHQCAenPu2OfCvmRZlvp7St+HwWHu2jcdRXRgGbZtVxasPSSHUMgqX0xgvy8AAOqLTvTF+jmrBQAATzjbufTTbCip0nTp7BUPc62qiH7XXXepr69PiURCF154oR5++OEVfd29994ry7L02te+djVvC9TVyHRW05m8QpbU28nBohILViBIyNWAOTL5gg4dL90FxmHnJf0sWGEI8jWAICnY0oHx+SI6zYaSKncJprg7znhVF9Hvu+8+7dixQ7fccot+9KMf6dxzz9Xll1+uY8eOnfTrhoaG9Bd/8Rd62cteturBAvXkLMo2dzQpHgl7PBp/6KOIDgQCuRowy/7RtGxbaolH1NMS93o4vsCFfZiAfA0gaMYzUq5gKx4J6bTWhNfD8YVKnWTa45Gg1iLVfsEdd9yh66+/Xm9+85slSXfffbfuv/9+3XPPPbrxxhuX/JpCoaA3vOENuvXWW/Wd73xHx48fX9OggXpIDbMf+nM5C1a6vgB/I1cDZqls5ZKUZVkej8YfuLAPE9Q6X2cyGWUymfKfJycnJUm5XE65XM6VGJzXcev1vGJKHJI5sZgSh2ROLLlcTsNzpXnI1s4mFQp5FQoeD2qV3PxMtrSXGhxSIzN1/4xN+dmS3I+lFt+Tqoro2WxWjzzyiHbu3Fl+LBQK6ZJLLtHevXuX/br3ve99Wr9+vd7ylrfoO9/5zinfp9bJ3pQfMlPikPwZyzPHpiRJ2zqbqhqXH2NZjaXi6J1PDoPD04GKz+TPJKhMicWPiZ5c7T+mxGJKHFLwYqnMSZKLxhy0OE6m2lh6ywtWf81JGvkz8ataxBGUfH3bbbfp1ltvPeHxBx98UMmku1tD7d6929XX84opcUjmxGJKHJIZsQzPloroTfkp7dq1y+PRrJ0bn8lMTpIiOjqZ0b//v7sU92AjAxN+thxuxZJOu7+9TlVF9JGRERUKBW3YsGHR4xs2bNCTTz655Nd897vf1ac//Wk99thjK36feiV7U37ITIlD8lcse38RkhRS+uiQdu1KVf31foplLRbGMTWfHA4fn9VX/79digbsaGITP5OgMyUWPyV6crV/mRKLKXFIwYnl28+U5iT5scPatevgCX8flDhWYqWxzBUkKaKxmZy+9LVdSlZ9f21tNeJn4nduxhGUfL1z507t2LGj/OfJyUn19vbqsssuU2tr66rHvlAul9Pu3bt16aWXKhqNuvKaXjAlDsmcWEyJQzInllwup//zyT2SpAt/ZUBXXf58j0e0em5/Jv/ws2/p+GxOZ730ZXrBaetcGOHKmPKzJbkfi9Pk5aaaTjenpqb0xje+UZ/61KfU3d294q+rdbI35YfMlDgkf8by8cHvSZrWVS97qS5+fs+Kv86PsazGUnHYtq3bH/+WpjN5/cr/8+t63oYWj0e5MiZ/JkFlSixBSPSnQq6uPVNiMSUOKXixfPGe/5I0rkv/24t01Xmbyo8HLY6TWU0sH/r5Qxqezur5L/lVvWhLW41HuDKN/pn4US3iCEq+jsfjisdPPEchGo26/pnW4jW9YEockjmxmBKHZEYsw3Ol/z19/brAxyK595n0dTfrsQPHdXAioxdt7XRhZNUx4WfL4VYstfh+VFVE7+7uVjgc1tGjRxc9fvToUW3cuPGE5z/zzDMaGhrSq171qvJjxWKx9MaRiH7xi1/o9NNPP+Hr6pXsTfkhMyUOyT+xFIu2hkZLHSbP29i2qjH5JZa1em4cAz3N+snBCR2YyOhXtnR4OLLqmfqZBJkpsfgp0ZOr/cuUWEyJQwpOLM6c5PQNrUuONyhxrEQ1sfT3tGh4ekwHjmd0fr+/4m/Uz8TP3IwjSPkaANx0bH47F+e8NJQMzBfROavFbFVtxhCLxXT++edrz5495ceKxaL27Nmj7du3n/D8s846S48//rgee+yx8n+vfvWr9fKXv1yPPfaYent71x4BUANHJueUyRcVCVna3N7k9XB8xTloleQA+BO5GjDLTCavo5Ol8wdYsC7Wz5wEAUa+BhA02XxRY/NHIjEnWYwDzxtD1du57NixQ9ddd51e+tKX6oILLtCdd96pmZmZ8oni1157rTZv3qzbbrtNiURCZ5999qKvb29vl6QTHgf8ZGj+F9/WrqQi4YBt/F1jTrIcIjkAvkWuBswxNFrKtx3JqNqTMY9H4y/9PfNzklHmJAgm8jWAIDk4PitblppjYfWsO/GO1EbWR52kIVRdRL/66qs1PDysm2++WUeOHNF5552nBx54oHwgyv79+xUKUXREsA3O/+JzOpxQ0c8VVsD3yNWAOYZGSlu59NHxdQLujkPQka8BBElq/qL1tq6kLMvyeDT+MkCdpCGs6mDRG264QTfccMOSf/fQQw+d9Gs/+9nPruYtgbpyrh6yYD0RtykBwUCuBszgdFlz2/SJFl7Yt22bBT0CiXwNICj2zZ/R0teV9Hgk/uPUSUZnspqcy6k1EfyzRHAiLmsDS3AKxCxYT+R05x+bymgmk/d4NAAAmG1wmLvjllPqhJOm5vIancl6PRwAAIw2VC6iMyd5rpZ4RN0tpS1u2NLFXBTRgSWk6PpaVlsyqs7m0p6sdKMDAFBb5U70HuYkz5WIhrWprXQAPAtWAABqa4hO9JNiSxfzUUQHniNfKGr/fHKgiL608uGiHOQFAEBNOQsxur6W5sxJBlmwAgBQUxTRT66vu/R9oYhuLorowHMcOj6rfNFWPBLSxtaE18PxpfJBXsMkBwAAamUindPY/DYlnNOyNGfBSic6AAC1M5st6NmJOUmV3IvF+rtbJDEnMRlFdOA5Fu6HHgpxQNVSBuZvKU/RiQ4AQM04eXb9urha4hGPR+NP5QUrcxIAAGpm31gpzybDtjqSMY9H40/9dKIbjyI68BzcNn1q5U50kgMAADXjdDLRhb48Z8E6yN1xAADUjDMn6WnyeCA+1rdgT3Tbtj0eDWqBIjrwHCxYT628JzpFdAAAasbZ53uAOcmynAv7+0bTKhZZsAIAUAvOnKQnQa5djjMnmZzLl7fjg1koogPPwYL11Jw90MbTOR1PkxwAAKgFLuyfWm9nUuGQpdlcQUen5rweDgAARhqiiH5KiWhYm9pK5+qxzZyZKKIDz+H8smPBurxkLFI+dJUtXQAAqA1nTtLPnGRZ0XBIvR2le8uZkwAAUBtDI2lJbOdyKpUtXdIejwS1QBEdWCCTL+jQ+KwkFqyn0sehGQAA1Ixt20oNU0Rfif5uzmoBAKCWnDv219OJflKVOcm0xyNBLVBEBxY4MJZW0ZZa4hF1t3Di9Mn0d7dIYl90AABqYXQmq6lMXpYlbe1Mej0cX+vjrBYAAGpmai6nkemMJKkn4fFgfK5yfhyd6CaiiA4s4Nxy09/dLMuyPB6Nv/XPd6IPsmAFAMB1Tlf1prYmJaJhj0fjbwPcOg0AQM3sGy3l1+6WmBIRjwfjc87hotwdZyaK6MACzi037Id+auVOdA7MAADAdc7ii61cTq2PW6cBAKgZp3Gur4s7406lv2e+E310RrbN1jemoYgOLFDuRCc5nJLTiZ4aJjkAAOA2iugr53R97R9Lq1BkTgIAgJuc7dK2USc5pd6OpEKWlM4WdGwq4/Vw4DKK6MACTgeTc/UQy+vtLCWHmWxBw9MkBwAA3OQsWLk77tQ2tTcpFgkpV7DLB8QDAAB3lC/sdzEnOZVYJKTe+bNs2NLFPBTRgQWcwx/6SA6nFI+EtbmjSRKHZgAA4DZn4TVAEf2UwiFL25wFK9vMAQDgqhSd6FVhX3RzUUQH5qWzeR2ZnJPErdMrVUkO7EEKAIBbikW7fOYInegr48zdUsPMSQAAcFN5TkIRfUWcOckQRXTjUEQH5jnd1B3JqNqTMY9HEwwD5YO86EQHAMAtR6fmNJcrKhyytGX+ri+cXHnBOsqcBAAAt4zPZHU8nZOk8l1fOLnyhX2K6MahiA7M4wCv6vV104kOAIDbUsOlOcnWzqSiYabrK+HM3wZZsAIA4Bpnm7TT2hJqioU9Hk0w9FFENxazcmAet01Xr3KbEl1fAAC4JcVt01Xr49ZpAABcVz7onHPjVsw5gHXfWFqFou3xaOAmiujAPA7wql7l1ukZFUkOAAC4wulE7+9u8XgkweHM3w6Op5XNFz0eDQAAZijfsd9DnWSlNnc0KRq2lM0Xdfj4rNfDgYsoogPznORAJ/rKbW4vJYdMvqhn5w9lBQAAa+PcHdffTSf6SvWsi6s5FlbRlvaPcYccAABuKBfR6URfsXDI0tb5/eOdOR3MQBEdmMdtStWLhEPqnU8OTtccAABYm8o5LXSir5RlWdrWxZYuAAC4iW1vV6efbeaMRBEdkDQxm9PoTFYSB4tWy7l9OsUVVgAA1ixfKJY7qfvoRK+Kc6s5B3kBALB2tm0v2GKOOkk1OPDcTBTRAVWuDq5fF1dzPOLxaILF6dynEx0AgLU7fHxOuYKtWCSkTW1NXg8nUJxbzbmwDwDA2g1PZzSTLShkqbw9CVaGA8/NRBEd0MLbprm6Wi2n64u9vgAAWLvBkWlJUl9XUqGQ5fFogsWZx3FhHwCAtRsaKd0Zt6UjqViE8mE1nAv7Q6Oc02IS/hUAooi+FuWuL66wAgCwZpzRsnrlri8u7AMAsGYp58I+dZKqOc2G+8fSyhWKHo8GbqGIDqiy2KKIXj0nORwgOQAAsGblC/s9zEmq5ZzT8uzEnGazBY9HAwBAsKXmO9H7u9jKpVob1iWUiIZUKNo6OD7r9XDgEorogCoLVq6wVs9JDnmSAwAAa5YadRaszEmq1dEcU1tTVBLd6AAArJXTiU6zYfVCIat8VyH7opuDIjoanm3bbOeyBiQHAADcw4J1bTjICwAAdzh7otNsuDrOXG6QOYkxKKKj4Y3OZDU1l5fFidOrRnIAAGDtsvmiDs3f1UURfXUGmJMAALBmxaLNtrdrxIV981BER8NzfqFtamtSIhr2eDTB1E9yAABgzfaPpVW0peZYWD3r4l4PJ5C4Ow4AgLV7dnJOmXxR0bClze1NXg8nkPo58Nw4FNHR8JxOpQEO8Fq1PpIDAABrtvCMFsuyPB5NMDkHsqYoogMAsGrOxejezqQiYUqHq1G+Y3+YOYkp+JeAhuckhz4O8Fo1kgMAAGs3xEHna+YcyMqFfQAAVq98bhx1klVzakyHJ2Y1lyt4PBq4gSI6Gh77fK2d870jOQAAsHrlu+OYk6xaX3fpfJuR6awm53IejwYAgGAqF9GZk6xad0tM6+IR2XZpyz4EH0V0NDyne5rksHpdzSQHAADWirvj1m5dIqrultJ+8uyLDgDA6nB33NpZllX+/rHNnBkooqOhFYu29o2Wir4kh9WzLIs9SAEAWKNy1xfntKxJ/3w3OnMSAABWJzXK3XFuKJ8fx5zECBTR0dCOTs1pNldQJGRpSwcnTq+F0zXHghUAgOrNZgs6Mjknif1H16qfri8AAFYtXyhqP82GrmBOYhaK6GhoqQUnTkc5cXpN+rnCCgDAqjlntLQ1RdXRHPN4NMFG1xcAAKt36Pis8kVb8UhIG1sTXg8n0Lg7zixUDdHQOCzDPc73cJDkAABA1ZiTuGeAri8AAFZt4ZwkFLI8Hk2wOXfsO80SCDaK6GhoHODlHjrRAQBYPYro7ll4iJdt2x6PBgCAYElRJ3GNM687OpnRTCbv8WiwVhTR0dBSI6V9vjjAa+2cBeuxqYymSQ4AAFSFIrp7nEX/5Fxe4+mcx6MBACBYys2GzEnWrD0ZU0cyKoludBNQREdDS41MS+IALze0NUXVNb+HK93oAABUhwWrexLRsDa1lfZwdeZ6AABgZZwtWgeYk7iictd+2uORYK0ooqNhFYq29o85J04nPR6NGfrYgxQAgFVJsWB1VWVOwoIVAIBqOB3TXNh3R2VOwoX9oKOIjoZ1aHxWuYKtWCSkTW1NXg/HCOyLDgBA9SbnchqdyUpiweqWfhasAABULZMv6ND4rCSaDd3i7HzAhf3go4iOhpVyrq52JTlx2iX9dKIDAFA15+Jzz7q4WuIRj0djBm6dBgCgegfG0iraUks8op6WuNfDMYJzBh97ogcfRXQ0rNTw/H7odHy5plxEJzkAALBi5UNFOaPFNc6cZJAL+wAArJjTLd3XnZRl0Wzohr4umg1NQREdDWto1EkOLFjd4iQHtnMBAGDlUuVDRblt2i19C7aYs23b49EAABAM5YPOubDvGmdOMjaT1UQ65/FosBYU0dGwOHHafc7ifzyd0/F01uPRAAAQDOVO9O4Wj0dijt6OpMIhS7O5go5OZrweDgAAgUCdxH0t8YjWryttjcNd+8FGER0Niyus7kvGItrYmpDErUoAAKzUULmITie6W2KRkLZ0lA6OZ04CAMDKlOskFNFdtfAOOQQXRXQ0pGy+qIPjpe1cnEMe4A4OFwUAYOVs2y53fdGJ7q7y4aJ0fQEAsCJOzuTsOHf1sy+6ESiioyHtnz9xujkW5sRpl3GFFQCAlRubyWpqLi9J2tZFJ7qbOMgLAICVm80W9OzEnCSK6G5zmjeZkwQbRXQ0pIW3KHHitLucW9EHSQ4AAJyS0/G1ub1JiWjY49GYhbvjAABYOWdO0p6Mqj0Z83g0ZnEu7HN3XLBRREdDqhzgxdVVtzm3opMcAAA4tcFh58I+Xehuo4gOAMDKDVEnqZmFcxLbtj0eDVaLIjoaUop9vmrG6URPDZMcAAA4FeeiMwedu8+Z5+0fTatQZE4CAMDJlM9oYU7ium1dSVmWNDWX1+hM1uvhYJUooqMhpYYpotdKb2dSIUuayRY0PJ3xejgAAPgad8fVzqb2JsXCIWULRR0+Puv1cAAA8LWF297CXYloWJvamiRxflyQUURHQyp3fZEcXBePhLW5o5QcnIsVAABgaamRtCSK6LUQDlnaOn9YK1u6AABwclzYry22mQs+iuhoOAtPnB4gOdQE+6IDAHBqtm2z/2iNOd9X5iQAAJzcENve1pRz/g1F9OCiiI6Gw4nTtdc/3/U1SHIAAGBZRyczms0VFA5Z6u3kYNFacAoBg9wdBwDAsibnchqZLu3VzR37teGcf8OF/eCiiI6GU97ni8Myaqbc9UURHQCAZQ2OTEuSejuaFA0zLa8FFqwAAJyas3bvWRdXSzzi8WjMNNDDhf2gY7aOhuN0R7OVS+30sdcXAACnNDS/HzodX7XD/qMAAJxaeT90mg1rxrmwv280Ldu2PR4NVoMiOhoOJ07X3kB5T/S0ikWSAwAASykfdM6CtWacIvrB8Vll80WPRwMAgD9VLuyzvVyt9HYmFQ5Zms0VdHQy4/VwsAoU0dFwOHG69ja1JxQNW8rmizo8Mev1cAAA8CXndl7n9l64b0NrXE3RsApFWwfG014PBwAAX0rNbzHXP98QB/dFwyH1djRJqmzph2ChiI6Gw4nTtRcJh7R1/oA054o2AABYjE702rMsq3z3IWe1AACwtNRoad3eTyd6TVXmJNRJgogiOhoKJ07XT3kPUg7yAgDgBIWirf3lBStzkloaYF90AACWZdu2UsN0otcDB54HG0V0NBROnK6fchGdk6cBADjB4eOzyhaKioVD2tTe5PVwjObs70oRHQCAE42nc5qcy0uStnXRiV5LzhZ+g9RJAokiOhoKJ07XT/k2Ja6wAgBwgsH5Ocm2rtIhU6gdur4AAFieUyfZ1JZQIhr2eDRmY04SbBTR0VA4VLR++rl1GgCAZTl3x7G9XO05XV/cHQcAwImcOUk/B53XnFMn2T+aVqFoezwaVGtVRfS77rpLfX19SiQSuvDCC/Xwww8v+9xPfepTetnLXqaOjg51dHTokksuOenzgVpiwVo/TnI4MJZWrlD0eDRA4yFXA/7Ghf36cbq+Dk/MaS5X8Hg0wGLkawBec+YkHHRee5vamxQLh5QtFHX4+KzXw0GVqi6i33fffdqxY4duueUW/ehHP9K5556ryy+/XMeOHVvy+Q899JBe//rX61vf+pb27t2r3t5eXXbZZTp06NCaBw9UiwVr/WxYl1AiGlK+aOvgOMkBqCdyNeB/zEnqp7M5ptZE6Swcbp+Gn5CvAfhBapQ5Sb2EQ5a2dnFWS1BVfbLiHXfcoeuvv15vfvObJUl333237r//ft1zzz268cYbT3j+F77whUV//ud//mf9n//zf7Rnzx5de+21qxw2UD3btlmw1lEoZKmvq1lPHpnS0MgM33OgjsjVgP85xVy6vmrPsiz1dzfrxwcnNDQyo7M2tno9JEBS7fN1JpNRJpMp/3lyclKSlMvllMvlXInBeR23Xs8rpsQhmROLKXFI/o9l8Ni0JKm3I3HSMfo9jmp4GUtfZ5OePjatZ45Nant/+5pei8/k1K/npqqK6NlsVo888oh27txZfiwUCumSSy7R3r17V/Qa6XRauVxOnZ2dyz6n1snelB8yU+KQ6hPL2ExWk3N5WZa0qTVas/cy5XNxI45tnU168siUnjo6qV87vcOtoVWNz8R/TInFj4meXO0/psRiShyS97Fk80UdGEtLknrbY6seh9dxuKnWsWzrTOrHByf09NEp5c7srsl7SHwmflSLOIKSr2+77TbdeuutJzz+4IMPKplMrm7gy9i9e7err+cVU+KQzInFlDgkf8Zi29Izx8KSLO376X9p1zOn/ho/xrFaXsRSnAhJCulbP/y5Okd/6spr8pmcKJ1Ou/I6C1VVRB8ZGVGhUNCGDRsWPb5hwwY9+eSTK3qN97znPdq0aZMuueSSZZ9Tr2Rvyg+ZKXFItY0lNSVJEbVHbf3H7m/U7H0cpnwua4mjMJ8cvv2jJ7Th+M/cG9Qq8Zn4jymx+CnRk6v9y5RYTIlD8i6Wo7NS0Y4oFrL1w+/8hyxrba/HZ3Jq2TFLUljfeewX6p1+oibvsRCfif+4GUdQ8vXOnTu1Y8eO8p8nJyfLW8C0trpzR0Yul9Pu3bt16aWXKhqNuvKaXjAlDsmcWEyJQ/J3LMemMsp+//8qZElveM0VikWW3/XZz3FUy8tYJv/roP7jaz+XtW69rrrqJWt6LT6T5TlNXm6qejuXtbj99tt177336qGHHlIikVj2ebVO9qb8kJkSh1SfWL786CHppz/TC7Z06aqrXlqT95DM+VzciCP9o0P65r//TMWW7pp+z0+Fz8R/TIklCIm+WuRq95kSiylxSN7HsufJY9Jjj+n09a165Su3r/p1vI7DTbWOJf/jZ/XAlx5XIdmpq666wPXXd/CZ+E8t4ghKvo7H44rH4yc8Ho1GXf9Ma/GaXjAlDsmcWEyJQ/JnLAeOl36f9XYm1dx04u+LpfgxjtXyIpYzNpTWSkNjadfem89k6ddxW1VF9O7uboXDYR09enTR40ePHtXGjRtP+rUf+tCHdPvtt+ub3/ymXvSiF530ufVK9qb8kJkSh1TbWPaPz0mSBta31OX7ZcrnspY4njefHPaNzvrie8Fn4j+mxOKnRE+u9i9TYjElDsm7WA4eL22FNNDjzpyEz+TUnje/D/pQneYkfCb+42YcQcrXAHAyQyOc0VJvznlxB8dnlSsUFQ0v3/0Pf6nqk4rFYjr//PO1Z8+e8mPFYlF79uzR9u3Ld9H8wz/8g97//vfrgQce0Etf6l03Khrb0EjptkuSQ/30zSeHwxOzmssVPB4N0BjI1YD/OQed93W7uycxlufMSUamM5qaC/Ye3zAD+RqAH6TmDzp3CruovQ2tcTVFwyoU7fIZOQiGqi937NixQ5/61Kf0uc99Tk888YTe+ta3amZmpnyi+LXXXrvocJQPfOADuummm3TPPfeor69PR44c0ZEjRzQ9Pe1eFMAKDM4vWAd6SA710tUc07pERLYt7Sc5AHVDrgb8zSmi93e3eDySxtGaiKq7JSap0lgBeI18DcBrqWGK6PVmWVb54r4zJ0QwVL0n+tVXX63h4WHdfPPNOnLkiM477zw98MAD5QNR9u/fr1CoUpv/xCc+oWw2q9/5nd9Z9Dq33HKL/uZv/mZtowdWyLZtblPygGVZ6u9u1k8OTmhweEbP37DO6yEBDYFcDfjbULmITid6PfV1NWtkOqvU6IzO2dLm9XAA8jUAzw2NOnfHUSepp/7upJ54dpIiesCs6mDRG264QTfccMOSf/fQQw8t+vPQ0NBq3gJw1dHJjGZzBYVDlno7WbDWk1NEd5IzgPogVwP+NJst6PBE6ZwWOtHrq7+7WT/cN17uugP8gHwNwCvFoq2h0dLdWQMU0evKae6kThIs7F6PhuBc3evtaOLQhjorJweusAIAoH1jpXzYmoioIxn8wxqDxOmyY8EKAEDp7LJsvqhYOKRN7U1eD6eh9LOdSyBRTURDGOKwDM84e9APkhwAAKjsPdrTIsuyPB5NYxlgwQoAQJlzRkhvZ5PCIeYk9eTUpjinJVgooqMhOIsl9vmqPzrRAQCoSDkX9rvYXq7eOMQLAICK8pyE7eXqzimiH56Y1Vyu4PFosFIU0dEQUiN0onvFWbAem8poOpP3eDQAAHjL6UTnwn79ORf2J2ZzGp/JejwaAAC8Vb47joPO666zOaZ1iYhsW9o3Sjd6UFBER0OgiO6dtqaouppjkuhGBwCALea80xQL67S2hCS2mQMAwJmTcGG//izLYl/0AKKIDuMVirb2z1/ZczqQUF8kBwAASlLze19SRPcG28wBAFBCs6G3+jnwPHAoosN4h4/PKlsoKhbhxGmv9HWzYAUAYGoup5HpjCS6vrzS38OFfQAA8oWiDoxxYd9LzoV9Z1sd+B9FdBjPWSRt60xy4rRH6EQHAEAamu9C726JqTUR9Xg0janfWbDS9QUAaGAHx2eVL9pKREPasC7h9XAaUrlOwpwkMCiiw3jsPeo9kgMAANLgyLQk5iRe6ufuOAAAyg1ufV3NCtFs6AmaDYOHIjqMNzhMEd1r5duUSA4AgAbmdKJzRot3+hYsWG3b9ng0AAB4g/3QvefMSYanMprO5D0eDVaCIjqMx4nT3uvrTkqSjqdzGp/JejwaAAC8kZrvRGdO4p2tnUmFLCmdLWh4KuP1cAAA8AR1Eu+1NUXV2RyTxB1yQUERHcbjCqv3krGINraW9lljSxcAQKNKjZY60QeYk3gmFglpS0fp4v4gC1YAQIOiTuIPbOkSLBTRYbRsvqiD47OSSA5eYw9SAEAjs21bqWE60f2gjzkJAKDBUUT3B2eLP+YkwUARHUY7MJ5WoWgrGQtr/bq418NpaH1cYQUANLDxdE6Tc6X9LtkT3VsDzEkAAA0sky/o0HGaDf2gf37rW+7YDwaK6DDa0IITpy2LE6e9xIIVANDInPx3WltCTbGwx6NpbH1d8wtW5iQAgAa0fzQt25bWxSPqmt+TG97o726RxJwkKCiiw2jlW5R6uLrqNTrRAQCNjNum/aO/p7RgHaLrCwDQgJw5SV83zYZe65vvRGc7l2CgiA6jlRes3DbtuYV7otu27fFoAACor6EFC1Z4y5kXDo2mVSwyJwEANBYu7PuHs8XfeDqn4+msx6PBqVBEh9GcDiMWrN7b2plUyJJmsgUNT2e8Hg4AAHXFhX3/2NSeUDRsKZsv6vDErNfDAQCgrqiT+EdzPKINraXz+7hr3/8oosNoqWGusPpFLBLSlo75PUiHSQ4AgMZC15d/RMIhbe1kX3QAQGOqzEmSHo8EUqUbnW3m/I8iOow1lyvo8MScJBasfuFc6SY5AAAaiW3bdH35zMJt5gAAaCSVInqLxyOBJA30OOfHpT0eCU6FIjqM5SxW25qi6khGPR4NJGlgfsE6yIIVANBAjk1llM4WFLJU7oCGt/qZkwAAGlA6m9fRydL2qmwx5w9OJzp3x/kfRXQYa4gTp32nr4uTpwEAjcdZFG3pSCoWYfrtB310ogMAGtDQfLdzRzKqNpoNfYE5SXAwi4exnFthBrht2jf6e0q3i3GFFQDQSNgP3X/K27mMcus0AKBxMCfxH6dmlRqZkW3bHo8GJ0MRHcZKjUxLqtwaA+/1d1UWrMUiyQEA0BiGWLD6jvNZ7B9LK1coejwaAADqgzNa/Ke3MynLkqYzeY1MZ70eDk6CIjqM5dym1MeJ076xqT2haNhSNl/U4YlZr4cDAEBdOPtuO9uawXsb1iWUiIZUKNo6OM6cBADQGMqd6DQb+kYiGtamtiZJlYsc8CeK6DCWs2Ad4MRp34iEQ+UD1YY4eRoA0CDKneg9zEn8IhSyFhzkNe3xaAAAqI9yEb2HIrqfDMx/Hqlhiuh+RhEdRpqay2lkunTiNJ3o/tLfzYIVANA4CkVb+8ZKF47p+vKXypyEC/sAgMYwVL47jjmJn5Qv7NOJ7msU0WEkp8u5uyWudQlOnPYTFqwAgEZy+PissvmiomFLmzuavB4OFuDCPgCgkUzM5jQ6U9pzm3Na/MXZo965yAF/oogOIzlX7/rpQvedPhasAIAG4uxtubUzqXDI8ng0WKiyYOXCPgDAfE6Bdv26uJrjEY9Hg4UGynUSiuh+RhEdRnL2keLqqv84n8nQKAtWAID5ynuPckaL77BgBQA0EufCfh91Et8pX9gfnVGxaHs8GiyHIjqMRHLwL6eIvn8srVyh6PFoAACorUoRnbvj/MaZJx6emNVcruDxaAAAqK3B+WbDAeokvrOlo0mRkKW5XFFHp+a8Hg6WQREdRnIWrCQH/9mwLqGmaFiFoq2D47NeDwcAgJqiE92/uppjWpeIyLZLF/cBADAZzYb+FQ2H1NtZarhwdlaA/1BEh5GcBSvJwX9CIUvbuuaTA/uiAwAMN1Sek9CJ7jeWZZXvkBtkwQoAMFx5TtJFncSP+pw6yShzEr+iiA7jjM9kNTGbkyRt6yQ5+NFAj7MHKV1fAABz5QpFHZi/64pzWvzJKSQMmoylAQAAmmJJREFUsWAFABjMtm0NOnfs9zAn8SPnrsUhzmrxLYroMI6TGDa1JdQUC3s8GiylvGAlOQAADHZgLK1C0VZTNKwN6xJeDwdLcC5ucOs0AMBkYzNZTc3lZVnS1k7ujvMj5/wcDjz3L4roMM4QW7n4XnnBSnIAABjM6W7e1pVUKGR5PBospTwnoRMdAGAwZ06yqa1JiSjNhn7UR53E9yiiwziVA7woovsVRXQAQCNw9tnmtmn/Yk4CAGgEzpyEOol/OZ/N/rG08oWix6PBUiiiwzhOJxHJwb+cz+bwxKzmcgWPRwMAQG04XV8c4OVfTtfX8FRG05m8x6MBAKA2ynMSDjr3rU1tTYpFQsoVbB0+Puf1cLAEiugwzhCd6L7X2RzTukREtl26ygoAgIm4O87/2pqi6mqOSeKsFgCAuYZGSutu5/BK+E8oZGnb/H71bDPnTxTRYRTbtssLVvZE9y/LsjQw//kMcpAXAMBQlQUrcxI/Yw9SAIDpBssX9ulE97PKgefTHo8ES6GIDqMMT2WUzhYUsqTeDpKDnzkL1iGusAIADDSXK+jQ8VlJXNj3O2e7HTrRAQAmsm1b+9hiLhD6y3US7tj3I4roMIpzdbW3M6lYhB9vP3OSd4pOdACAgfbNL37WJSLl7ULgT87Br3SiAwBMdGy+2TAcstTbSbOhn3F3nL9RZYRRnA4irq76X3nBSic6AMBAC/dDtyzL49HgZMoX9pmTAAAM5Gyh2tvRpGiYMqCf9VNE9zX+9cAoHOAVHOUFK8kBAGAg5iTBwYIVAGAyZwtVtpfzP2dOcnA8rWy+6PFo8FwU0WEUFqzB4STw4amMpjN5j0cDAIC7uDsuOPrmD1k7ns7peDrr8WgAAHAXdZLgWL8urmQsrKItHRhnX3S/oYgOozhXWEkO/tfWFC3vEctBXgAA0zgLVmf7MvhXMhbRxtaEJLrRAQDmoYgeHJZlcX6cj1FEhzGKRbt8gjHJIRi4fRoAYCpnf2060YPB6UZnTgIAMA13xwWLUycZ4qwW36GIDmMcnphVNl9ULBzSpvYmr4eDFeDkaQCAiabmchqeykhi/9GgKC9YmZMAAAxSKNraR7NhoNBs6F8U0WEM5xfM1q6kwiHL49FgJViwAgBM5CxWu5pjamuKejwarIQzJxlkTgIAMMjh47PKFmg2DBKaDf2LIjqMwS1KwVO+wsptSgAAgziLHrrQg8OZP3LrNADAJE5eo9kwOPrnt5ij2dB/KKLDGIMc4BU43KYEADARB3gFjzN/TA3PyLZtj0cDAIA7mJMET393iyTp8MScZrMFj0eDhSiiwxh0ogeP81kdT+c0PpP1eDQAALhjiAVr4PR2JhWypJlsQcPTGa+HAwCAKyiiB09HMqrWRESStG+MhkM/oYgOYwxxWEbgNMXCOq0tIYktXQAA5hhkwRo48UhYmztKe8UOjaQ9Hg0AAO7gwn7wWJbF+XE+RREdRsgVito/RhE9iMp7kJIcAACGcPYf5e64YHE+r9TItMcjAQDAHSnu2A8kDjz3J4roMMLB8VkViraaomFtaI17PRxUob+HfdEBAOYYn8nqeDonSeqbPxgKwVA5q4VOdABA8OUKRR0Yn5VEs2HQ9NGJ7ksU0WEEp2Oor7tZlsWJ00HS30URHQBgDmd7so2tCSVjEY9Hg2pUiuh0ogMAgo9mw+CqbOfChX0/oYgOIzgdQ/10fAVOZcFKER0AEHyp4fnbppmTBE4fC1YAgEFoNgwutnPxJ4roMIKTHLhFKXgW3qZk27bHowEAYG2c/dD7u1s8HgmqNeDMSUZnVCwyJwEABBvNhsHl1ElGpjOamst5PBo4KKLDCE7HEIdlBM/WzqRCljSTLWh4KuP1cAAAWBPnzioWrMGzub1JkZClTL6oZyfnvB4OAABrQrNhcLUmoupuiUmS9o1yh5xfUESHEZwF60APySFoYpGQtnSUCg1s6QIACLpKEZ1O9KCJhEPa2jU/JxlmTgIACDaaDYPN+dzY0sU/KKIj8OZyBR2eKJ04TXIIpj72RQcAGMC2bQ3RiR5o5QPPR5mTAACCrXJhnzpJEC3c+hb+QBEdgbd/LC3blloTEXU2x7weDlbB2YOUBSsAIMiGpzKayRYUsqTeToroQdTPghUAYICFzYYU0YOpn2ZD36GIjsAbHK5cXeXE6WDq49ZpAIABnEXO5o4mxSNhj0eD1eDuOACACZxmw3U0GwYWRXT/oYiOwBua717u4+pqYPX3lPaNHaITHQAQYM4ih+3lgotOdACACRZu5UKzYTA580nqJP5BER2Blxpmn6+g6y8nh7SKRdvj0QAAsDrOtmQDzEkCy5lP7h9LK18oejwaAABWh/3Qg69v/nyd4+mcxmeyHo8GEkV0GMBZsJIcgmtzR5OiYUvZfLG8bxsAAEHjdC9zd1xwbWxNKB4JKV+0dXCcOQkAIJiGuDsu8JKxiDa2JiRxfpxfUERH4HGFNfjCIUtb5w9gGxpJezwaAABWJ0URPfBCIYs9SAEAgefksIEe5iRB5nSjs82cP1BER6BNZ/IanspIYsEadP3dpX3RUyPTHo8EAIDq5QvF8oL1jPmzPhBMTtceRXQAQFBxTosZKnUS5iR+sKoi+l133aW+vj4lEgldeOGFevjhh0/6/H/7t3/TWWedpUQioXPOOUe7du1a1WCB53KuxnW3xNSaiHo8GqxF//wV1hSd6IAryNVAfR0Yn1WuYCsRDWlze5PXw8Ea9PdwkBfqh3wNwG0zmbyO0WxohEqdhDmJH1RdRL/vvvu0Y8cO3XLLLfrRj36kc889V5dffrmOHTu25PO/973v6fWvf73e8pa36NFHH9VrX/tavfa1r9VPf/rTNQ8eGOTqqjHoRAfcQ64G6u+ZY6X8NdDdolDI8ng0WAvnwPPBYRasqC3yNYBacC4CdzXH1NZEs2GQObUuLuz7Q6TaL7jjjjt0/fXX681vfrMk6e6779b999+ve+65RzfeeOMJz//oRz+qK664Qu9+97slSe9///u1e/du/eM//qPuvvvuNQ6/elNzOf3zt5/RUwctDX7rGYXD4bqPwS2FQsGIOKTVx/K9Z0YkSWedtq5WQ0OdOHt9PX5oUv9zz1OuvrYp/1ZMiUMyJxYnjgtnstrY7p8JatBztST92yOH9F0DfkYk837egx6HVJtYHjtwXJJ0+nq2cgm6F5zWKqn0mVY7J+Hfif84cXSlxvRrz9/g9XAWCXq+/tH+cf3fJ48a9XMS9Dgkc2IxJQ6p/rHsfWZUEl3oJnD2tP/poUnd9vUn1BxbXMY17d/J4SOWrvJ6ICdRVRE9m83qkUce0c6dO8uPhUIhXXLJJdq7d++SX7N3717t2LFj0WOXX365vvKVryz7PplMRplMpvznyclJSVIul1Mul6tmyCcYn57TR//jGUlh6cAza3otfzAlDmktsVzY17Hmnw23OOPwy3hWq95xbOsonTo9Mp3RHbt/WYN3MOXfiilxSObEEtafTKTV1Rxb8yu58e/NhFwtSff91wH9+JApPyOSST/vZsQh1SqWM7qTdcudpsw5JH/F8ryeJrU1RTQxm1/lnIR/J/4TVt/TI7qwv9OVVwtKvq51rv5hapS1tW+ZEospcUhexPLi3jZX86qfcvVaBSWW3ra4+ruSSo2m9U//d3CZZ5nz72RjU8i1z6QWn21VRfSRkREVCgVt2LD4Cv6GDRv05JNPLvk1R44cWfL5R44cWfZ9brvtNt16660nPP7ggw8qmUxWM+QTpPPSRRs4T9Uk7TFb+aFHtGuf1yNZbPfu3V4PwRX1jOP1p1vaN80t8Aiexx7+nlJrr6ErnV77mQAm5GpJ2hq21LyB3wcIlqaw1DPxpHbtWvrfWq2YMueQ/BPLNX2WfjzG7yCT5I49o127nnbltYKSr2udq48ft3QRuRrwpc64rbNyT7v2e28hv+RqNwQhlt/ZLH0/ElLB64HUQWvUdu0zcSNXP1fV27nUw86dOxddYZ+cnFRvb68uu+wytba2rvn1X5PLaffu3br00ksVjfrn9vtq5QyJQyIWP/IijlrdtsNn4j+mxOJ2HE6HWBDUOldfasjPiMTPux+ZEospcUj+i2W1cxK/xbEWpsRSiziCkq9rnauvEj8nfmRKLKbEIZkTiylxSMGL5Y+WeTxocZxMENbWVRXRu7u7FQ6HdfTo0UWPHz16VBs3blzyazZu3FjV8yUpHo8rHo+f8Hg0GnX1h8Lt1/OKKXFIxOJHpsQhmROLKXFI5sTiVhxuvAa52r9MicWUOCRzYjElDsmcWEyJQzInFjfjCEq+rleurtVresGUOCRzYjElDsmcWEyJQzInFlPikPy1tn6uqvY1icViOv/887Vnz57yY8ViUXv27NH27duX/Jrt27cver5Uul1iuecDAIDVI1cDAOB/5GsAAIKl6u1cduzYoeuuu04vfelLdcEFF+jOO+/UzMxM+UTxa6+9Vps3b9Ztt90mSXrHO96hiy++WB/+8If1yle+Uvfee69++MMf6pOf/KS7kQAAAEnkagAAgoB8DQBAcFRdRL/66qs1PDysm2++WUeOHNF5552nBx54oHzAyf79+xUKVRrcL7roIn3xi1/Ue9/7Xv3VX/2Vnve85+krX/mKzj77bPeiAAAAZeRqAAD8j3wNAEBwrOpg0RtuuEE33HDDkn/30EMPnfDY7/7u7+p3f/d3V/NWAABgFcjVAAD4H/kaAIBgqGpPdAAAAAAAAAAAGglFdAAAAAAAAAAAlkERHQAAAAAAAACAZVBEBwAAAAAAAABgGRTRAQAAAAAAAABYBkV0AAAAAAAAAACWQREdAAAAAAAAAIBlUEQHAAAAAAAAAGAZFNEBAAAAAAAAAFgGRXQAAAAAAAAAAJZBER0AAAAAAAAAgGVEvB7ASti2LUmanJx05fVyuZzS6bQmJycVjUZdeU0vmBKHRCx+ZEockjmxmBKHZE4sbsfh5Dkn7wUJuXp5psRiShySObGYEodkTiymxCGZE0st4ghqvnY7V0v8nPiRKbGYEodkTiymxCGZE4spcUjBWFsHoog+NTUlSert7fV4JAAA1N7U1JTa2tq8HkZVyNUAgEYTtHxNrgYANBo3c7VlB+DyebFY1OHDh7Vu3TpZlrXm15ucnFRvb68OHDig1tZWF0boDVPikIjFj0yJQzInFlPikMyJxe04bNvW1NSUNm3apFAoWDuukauXZ0ospsQhmROLKXFI5sRiShySObHUIo6g5mu3c7XEz4kfmRKLKXFI5sRiShySObGYEocUjLV1IDrRQ6GQtmzZ4vrrtra2Bv6HTDInDolY/MiUOCRzYjElDsmcWNyMI0gdbQuRq0/NlFhMiUMyJxZT4pDMicWUOCRzYnE7jiDm61rlaomfEz8yJRZT4pDMicWUOCRzYjElDsnfa+vgXDYHAAAAAAAAAKDOKKIDAAAAAAAAALCMhiyix+Nx3XLLLYrH414PZU1MiUMiFj8yJQ7JnFhMiUMyJxZT4vAjk763psRiShySObGYEodkTiymxCGZE4spcfiVKd9fU+KQzInFlDgkc2IxJQ7JnFhMiUMKRiyBOFgUAAAAAAAAAAAvNGQnOgAAAAAAAAAAK0ERHQAAAAAAAACAZVBEBwAAAAAAAABgGRTRAQAAAAAAAABYBkV0AAAAAAAAAACWYWQR/e/+7u900UUXKZlMqr29fUVfY9u2br75Zp122mlqamrSJZdcoqeeemrRc8bGxvSGN7xBra2tam9v11ve8hZNT0/XIILVv+fQ0JAsy1ryv3/7t38rP2+pv7/33nt9E4ck/cZv/MYJY/yTP/mTRc/Zv3+/XvnKVyqZTGr9+vV697vfrXw+X7M4pOpjGRsb09vf/nadeeaZampq0tatW/Vnf/ZnmpiYWPS8enwmd911l/r6+pRIJHThhRfq4YcfPunz/+3f/k1nnXWWEomEzjnnHO3atWvR36/k300tVBPHpz71Kb3sZS9TR0eHOjo6dMkll5zw/De96U0nfO+vuOKKWochqbpYPvvZz54wzkQiseg5QfhMlvq3bVmWXvnKV5af48Vn8u1vf1uvetWrtGnTJlmWpa985Sun/JqHHnpIL3nJSxSPx3XGGWfos5/97AnPqfbfXSMxJV+bkqtXE4vkz3xNrq4IQl4gV/vvM/FrrpbI1/VGriZX11JQ87UpuVoyJ1+bkqslM/K1sbnaNtDNN99s33HHHfaOHTvstra2FX3N7bffbre1tdlf+cpX7B//+Mf2q1/9aru/v9+enZ0tP+eKK66wzz33XPv73/++/Z3vfMc+44wz7Ne//vU1imJ175nP5+1nn3120X+33nqr3dLSYk9NTZWfJ8n+zGc+s+h5C2P1Og7btu2LL77Yvv766xeNcWJiYlGsZ599tn3JJZfYjz76qL1r1y67u7vb3rlzZ83iWE0sjz/+uP26173O/trXvmY//fTT9p49e+znPe959m//9m8vel6tP5N7773XjsVi9j333GP/7Gc/s6+//nq7vb3dPnr06JLP/8///E87HA7b//AP/2D//Oc/t9/73vfa0WjUfvzxx8vPWcm/G7dVG8c111xj33XXXfajjz5qP/HEE/ab3vQmu62tzT548GD5Odddd519xRVXLPrej42N1SyG1cbymc98xm5tbV00ziNHjix6ThA+k9HR0UUx/PSnP7XD4bD9mc98pvwcLz6TXbt22X/9139tf/nLX7Yl2f/+7/9+0ucPDg7ayWTS3rFjh/3zn//c/tjHPmaHw2H7gQceKD+n2u9NozElX5uSq1cTi237M1+Tq8nVXsVCrq79Z0K+ri9yNbnaT7H4IV+bkqtXE4tf87UpuXo1sfg1X5uaq40sojs+85nPrCjRF4tFe+PGjfYHP/jB8mPHjx+34/G4/b//9/+2bdu2f/7zn9uS7P/6r/8qP+frX/+6bVmWfejQIdfH7uZ7nnfeefYf/MEfLHpsJT/EblltHBdffLH9jne8Y9m/37Vrlx0KhRb9svvEJz5ht7a22plMxpWxP5dbn8m//uu/2rFYzM7lcuXHav2ZXHDBBfbb3va28p8LhYK9adMm+7bbblvy+b/3e79nv/KVr1z02IUXXmj/8R//sW3bK/t3UwvVxvFc+XzeXrdunf25z32u/Nh1111nv+Y1r3F7qKdUbSyn+p0W1M/kIx/5iL1u3Tp7enq6/JhXn4ljJf8e//Iv/9J+4QtfuOixq6++2r788svLf17r96ZRBDlfm5KrbducfE2uJle7iVxd4sdcbdvk63oiV5Or3RbUfG1KrrZtc/K1Kbnats3M1yblaiO3c6lWKpXSkSNHdMkll5Qfa2tr04UXXqi9e/dKkvbu3av29na99KUvLT/nkksuUSgU0g9+8IOajMuN93zkkUf02GOP6S1vecsJf/e2t71N3d3duuCCC3TPPffItm3Xxr7QWuL4whe+oO7ubp199tnauXOn0un0otc955xztGHDhvJjl19+uSYnJ/Wzn/3M/UDk3s/BxMSEWltbFYlEFj1eq88km83qkUceWfQzHgqFdMkll5R/xp9r7969i54vlb6/zvNX8u/GbauJ47nS6bRyuZw6OzsXPf7QQw9p/fr1OvPMM/XWt75Vo6Ojro79uVYby/T0tLZt26be3l695jWvWfSzHtTP5NOf/rR+//d/X83NzYser/dnUq1T/Rtx43uDxfyYr03J1ZI5+ZpcTa52C7m6Iqi5WiJf1xu5mly9UkHM16bkasmcfG1KrpYaO18HJVdHTv0U8x05ckSSFiUM58/O3x05ckTr169f9PeRSESdnZ3l59RiXGt9z09/+tN6wQteoIsuumjR4+973/v03//7f1cymdSDDz6oP/3TP9X09LT+7M/+zLXxO1YbxzXXXKNt27Zp06ZN+slPfqL3vOc9+sUvfqEvf/nL5ddd6jNz/q4W3PhMRkZG9P73v19/9Ed/tOjxWn4mIyMjKhQKS36/nnzyySW/Zrnv78J/E85jyz3HbauJ47ne8573aNOmTYt++V5xxRV63etep/7+fj3zzDP6q7/6K1155ZXau3evwuGwqzE4VhPLmWeeqXvuuUcvetGLNDExoQ996EO66KKL9LOf/UxbtmwJ5Gfy8MMP66c//ak+/elPL3rci8+kWsv9G5mcnNTs7KzGx8fX/POKxfyYr03J1ZI5+ZpcTa52C7m6JMi5WiJf1xu5mly9UkHM16bkasmcfG1KrpYaO18HJVcHpoh+44036gMf+MBJn/PEE0/orLPOqtOIVm+lsazV7OysvvjFL+qmm2464e8WPvbiF79YMzMz+uAHP1hVUql1HAsT4TnnnKPTTjtNr3jFK/TMM8/o9NNPX/XrLqVen8nk5KRe+cpX6ld+5Vf0N3/zN4v+zo3PBCd3++23695779VDDz206OCQ3//93y///3POOUcvetGLdPrpp+uhhx7SK17xCi+GuqTt27dr+/bt5T9fdNFFesELXqB/+qd/0vvf/34PR7Z6n/70p3XOOefoggsuWPR4UD4TnMiUfG1KrpbMydfk6sZArvYfcrV5yNXVIVdXh3zdGIKcr03M1RL5uh4CU0T/8z//c73pTW866XMGBgZW9dobN26UJB09elSnnXZa+fGjR4/qvPPOKz/n2LFji74un89rbGys/PUrtdJY1vqeX/rSl5ROp3Xttdee8rkXXnih3v/+9yuTySgej5/y+VL94lg4Rkl6+umndfrpp2vjxo0nnMR79OhRSfLlZzI1NaUrrrhC69at07//+78rGo2e9Pmr+UyW093drXA4XP7+OI4ePbrsuDdu3HjS56/k343bVhOH40Mf+pBuv/12ffOb39SLXvSikz53YGBA3d3devrpp2uWVNYSiyMajerFL36xnn76aUnB+0xmZmZ077336n3ve98p36cen0m1lvs30traqqamJoXD4TV/xkFkSr42JVdL5uRrcvWJyNXk6pVo5Fwtka+XQq4mV7O2Xh1TcrVkTr42JVdLjZ2vA5Or67b7ugeqPfzkQx/6UPmxiYmJJQ8/+eEPf1h+zje+8Y26HCy62ve8+OKLTzilejl/+7d/a3d0dKx6rCfj1vfuu9/9ri3J/vGPf2zbduXwk4Un8f7TP/2T3draas/NzbkXwAKrjWViYsL+b//tv9kXX3yxPTMzs6L3cvszueCCC+wbbrih/OdCoWBv3rz5pAeg/OZv/uaix7Zv337CASgn+3dTC9XGYdu2/YEPfMBubW219+7du6L3OHDggG1Zlv3Vr351zeM9mdXEslA+n7fPPPNM+13vepdt28H6TGy79Ds6Ho/bIyMjp3yPen0mDq3w8JOzzz570WOvf/3rTzj8ZC2fcaMIcr42JVfbtjn5mlxNrnYTudq/udq2ydf1RK4mV7stqPnalFxt2+bka1NytW2bma9NytVGFtH37dtnP/roo/att95qt7S02I8++qj96KOP2lNTU+XnnHnmmfaXv/zl8p9vv/12u7293f7qV79q/+QnP7Ff85rX2P39/fbs7Gz5OVdccYX94he/2P7BD35gf/e737Wf97zn2a9//etrGsup3vPgwYP2mWeeaf/gBz9Y9HVPPfWUbVmW/fWvf/2E1/za175mf+pTn7Iff/xx+6mnnrI//vGP28lk0r755pt9E8fTTz9tv+9977N/+MMf2qlUyv7qV79qDwwM2L/+679e/pp8Pm+fffbZ9mWXXWY/9thj9gMPPGD39PTYO3furFkcq4llYmLCvvDCC+1zzjnHfvrpp+1nn322/F8+n7dtuz6fyb333mvH43H7s5/9rP3zn//c/qM/+iO7vb29fAL7G9/4RvvGG28sP/8///M/7UgkYn/oQx+yn3jiCfuWW26xo9Go/fjjj5efs5J/N26rNo7bb7/djsVi9pe+9KVF33vn98HU1JT9F3/xF/bevXvtVCplf/Ob37Rf8pKX2M973vNqNmFcbSy33nqr/Y1vfMN+5pln7EceecT+/d//fTuRSNg/+9nPFsXr98/E8Wu/9mv21VdffcLjXn0mU1NT5Xwhyb7jjjvsRx991N63b59t27Z944032m984xvLzx8cHLSTyaT97ne/237iiSfsu+66yw6Hw/YDDzxQfs6pvjeNzpR8bUquXk0sfs3X5GpytVexkKtr/5mQr+uLXE2u9lMsfsjXpuTq1cTi13xtSq5eTSwOv+VrU3O1kUX06667zpZ0wn/f+ta3ys+RZH/mM58p/7lYLNo33XSTvWHDBjsej9uveMUr7F/84heLXnd0dNR+/etfb7e0tNitra32m9/85kWTh1o41XumUqkTYrNt2965c6fd29trFwqFE17z61//un3eeefZLS0tdnNzs33uuefad99995LP9SqO/fv327/+679ud3Z22vF43D7jjDPsd7/73fbExMSi1x0aGrKvvPJKu6mpye7u7rb//M//3M7lcjWLYzWxfOtb31ry51GSnUqlbNuu32fysY99zN66dasdi8XsCy64wP7+979f/ruLL77Yvu666xY9/1//9V/t5z//+XYsFrNf+MIX2vfff/+iv1/Jv5taqCaObdu2Lfm9v+WWW2zbtu10Om1fdtlldk9Pjx2NRu1t27bZ119/fd1+EVcTyzvf+c7yczds2GBfddVV9o9+9KNFrxeEz8S2bfvJJ5+0JdkPPvjgCa/l1Wey3L9VZ+zXXXedffHFF5/wNeedd54di8XsgYGBRXnFcbLvTaMzJV+bkqtXE4tf8zW5uiIIeYFc7b/PxLb9mattm3xdb+RqcrWfYvFLvjYlV9u2OfnalFxdbSy27c98bWqutmzbtk+x4wsAAAAAAAAAAA0p5PUAAAAAAAAAAADwK4roAAAAAAAAAAAsgyI6AAAAAAAAAADLoIgOAAAAAAAAAMAyKKIDAAAAAAAAALAMiugAAAAAAAAAACyDIjoAAAAAAAAAAMugiA4AAAAAAAAAwDIoogMAAAAAAAAAsAyK6AAAAAAAAAAALIMiOgAAAAAAAAAAy6CIDgAAAAAAAADAMiiiAwAAAAAAAACwDIroAAAAAAAAAAAsgyI6AAAAAAAAAADLoIj+/7d39+FR1Xf+/18zk8kkQwjkjnBjIEFbtVWB4g++0Xat2whWv96su1uLrVDa2npDV81uq7QCWltxa0vpDZatSu3V1YXaba3XShGksq0r1RXlW7VqxcwIggm5AXIzuZnMnN8fyZkQk0AmOTNnzpnn47pyaU7OzHzeMySfc17ncz4fAAAAAAAAAABGQIgOAAAAAAAAAMAICNEBh7jzzjvl8XjU1NR00n17e3v1ta99TRUVFfJ6vbryyitT30AAAEB/DQAAALgQITrgQps2bdJ9992nf/iHf9DPf/5z3XrrrYN+XllZecLH33nnnXr44YeHbH/jjTf0ta99TXPnztXEiRM1bdo0XXrppXrxxReTat9LL72kyy+/XMXFxQoGgzrrrLP0wx/+MKnnAADA6TK1v/7c5z4nj8cz4tfBgwdHWyIAAADgCjl2NwCA9X7/+99rxowZ+v73v5/Y9vTTT+vCCy+Uz+cbtO9TTz2lxYsX69VXX1VRUZFmzJgx6OdvvvmmAoGAKisr9eCDD+qhhx7S3//93+vGG2/UsWPH9G//9m/6P//n/2jbtm2qqak5adu2b9+uyy67TPPmzdOqVatUUFCgt99+W++++641xQMA4BCZ2l9/+ctfHrKPYRi6/vrrVVlZOeS1AQAAALcjRAdc6PDhw5o8eXLie8Mw9MADD2jlypV68MEHJUmhUEjXX3+9DMPQ+eefr1deeUW33Xabvv71r8swDEWjUX3rW9/Spk2b9NBDD6myslJLlizRnXfeqYKCgsRzf/7zn9eZZ56pO++886Qn5a2trVq6dKkuvfRS/epXv5LXy80wAIDslan9dXV1taqrqwdte/bZZxWJRPSZz3zGujcAAAAAcAgSLMBhmpqa9KlPfUqFhYUqKSnRzTffrK6uLklSOByWx+PRM888o9deey1x2/V///d/a8uWLVq3bp2uv/56vffee7rqqqt00003afv27SooKNCSJUu0Z88e7d27V+vXr9fKlSvV1dWlV155RRdeeKEkaf78+YNOyCWppKREH/vYx/T666+ftO2PPvqoGhoa9O1vf1ter1cdHR2Kx+PWv0kAANjMyf31cB599FF5PB5dc80143tjAAAAAAciRAcc5lOf+pS6urq0du1aXXLJJfrhD3+oL33pS5KksrIy/eIXv9AZZ5yhU045Rb/4xS/0i1/8QmeeeaYkyev1yuPxJJ7r+P83vz9+dPj7fz6S+vp6lZaWnnS/p59+WoWFhTp48KBOP/10FRQUqLCwUDfccEMiWAAAwA2c3F+/XzQa1S9/+Uudd955J52nHQAAAHAjQnTAYaqqqvTEE0/opptu0i9+8QvdeOON+sUvfqE///nPmjBhgj772c+qvLxckyZN0mc/+1l99rOf1ZQpU/SZz3xGt9xyi37yk59o2rRp+vWvf60f/ehHWrRokdrb27VlyxbNnz9fZ599tm655RatXbtWubm5Ovvss/XMM8+M2J4//vGP2r17t66++uqTtv2tt95Sb2+vrrjiCi1evFj/+Z//qc9//vPauHGjli9fbuXbBACArZzcX7/fU089pebmZqZyAQAAQNYiRAcc5qabbhr0/Ve+8hVJ0tatW0d8jMfj0ec+9zn96U9/0pw5cyT1ndxv375dtbW1Kigo0Ic//GE999xzuuGGG+TxeOT3+7Vq1Spt3bpVVVVVwz7v4cOHdc0116iqqkpf+9rXTtr29vZ2RSIRLV26VD/84Q911VVX6Yc//KG+/OUva/PmzXrrrbdG+zYAAJDRnNxfv9+jjz4qv9+vT33qU0k/FgAAAHADFhYFHOYDH/jAoO9PPfVUeb1ehcPhEz7uoosuGnb7xRdfLEk666yzhv35GWecMez2jo4O/d//+3/V1tamZ599dsjcq8PJz8+XJC1ZsmTQ9muuuUb/9m//pt27dw+pDwAAJ3Jyf3289vZ2/fa3v9XixYtVUlKS1GMBAAAAtyBEBxxutPOgHu9kJ/B33nnnCX/e09Ojq666Sn/+85/11FNPjXhC/37Tp0/Xa6+9pvLy8kHbp0yZIkk6cuTIqJ4HAACncVJ/fbzHH39ckUiEqVwAAACQ1ZjOBXCY9095sm/fPsXj8bQt9BWPx7V06VLt3LlTjz76qC644IJRP3b+/PmSpIMHDw7afujQIUl9C60BAOAGTu6vj/fII4+ooKBAl19+ucUtBAAAAJyDEB1wmA0bNgz6/kc/+pEk6ZOf/GRaXv8rX/mKtmzZovvvv19XXXVVUo8151J96KGHBm1/8MEHlZOTo49//ONWNRMAAFs5ub82NTY26umnn9bf/d3fKRgMWtxCAAAAwDmYzgVwmFAopMsvv1wXX3yxdu/erX//93/XNddck1iALJXWr1+v+++/X9XV1QoGg/r3f//3QT//u7/7O02YMGHEx8+bN0+f//zntWnTJvX29uqCCy7Qrl279Nhjj2nlypWaPn16qksAACAtnNxfm7Zs2aLe3l6mcgEAAEDWI0QHHGbLli1avXq1br/9duXk5GjFihW677770vLae/fulSTt3r1bu3fvHvLzUCh00pPyjRs3aubMmfrZz36m3/zmN5o1a5a+//3v65ZbbklBiwEAsIfT+2upbyqXKVOmqKamxuomAgAAAI7iMQzDsLsRAAAAAAAAAABkIuZEBwAAAAAAAABgBIToAAAAAAAAAACMgBAdAAAAAAAAAIAREKIDAAAAAJBGf/jDH3TZZZdp+vTp8ng8evzxx0/6mF27dukjH/mIAoGATjvtND388MMpbycAAOhDiA4AAAAAQBp1dHRozpw52rBhw6j2D4VCuvTSS3XhhRdq7969uuWWW/TFL35RTz31VIpbCgAAJMljGIZhdyNOJh6P69ChQ5o4caI8Ho/dzQEAICUMw1BbW5umT58ur9dZ17npqwEA2cLq/trj8eg3v/mNrrzyyhH3ue222/Tkk0/q1VdfTWz79Kc/raNHj2rbtm3DPqa7u1vd3d2J7+PxuFpaWlRSUkJfDQBwtVScW+dY8iwpdujQIVVUVNjdDAAA0uLAgQM65ZRT7G5GUuirAQDZJp399e7du1VTUzNo2+LFi3XLLbeM+Ji1a9fqrrvuSnHLAADIXFb21Y4I0SdOnCipr/DCwsJxP180GtX27du1aNEi+f3+cT+fXdxSh0QtmcgtdUjuqcUtdUjuqcXqOlpbW1VRUZHo95yEvnpkbqnFLXVI7qnFLXVI7qnFLXVI7qklFXXY0V/X19ervLx80Lby8nK1traqs7NT+fn5Qx6zcuVK1dbWJr4/duyYZs6caVlfDQBApkpFX+2IEN281aywsNCyE/NgMKjCwkLHHxC6oQ6JWjKRW+qQ3FOLW+qQ3FNLqupw4i3W9NUjc0stbqlDck8tbqlDck8tbqlDck8tqawj0/vrQCCgQCAwZLtVfTUAAJnOyr7aWROuAgAAAACQZaZOnaqGhoZB2xoaGlRYWDjsKHQAAGAtQnQAAAAAADJYdXW1du7cOWjbjh07VF1dbVOLAADILoToAAAAAACkUXt7u/bu3au9e/dKkkKhkPbu3av9+/dL6pvPfOnSpYn9r7/+etXV1elrX/ua3njjDd1///365S9/qVtvvdWO5gMAkHUI0QEAAAAASKMXX3xR8+bN07x58yRJtbW1mjdvnlavXi1Jeu+99xKBuiRVVVXpySef1I4dOzRnzhx973vf04MPPqjFixfb0n4AALKNIxYWBQAAAADALT7+8Y/LMIwRf/7www8P+5iXX345ha0CAAAjYSQ6AAAAAAAAAAAjIEQHAAAAAAAAAGAEhOgAAAAAAAAAAIyAEB0AAAAAAAAAgBEQogMAAAAAAAAAMAJCdAAAAAAAAAAARkCIDgAAAAAAAADACAjRAQAAAAAAAAAYQdIh+h/+8Adddtllmj59ujwejx5//PGTPmbXrl36yEc+okAgoNNOO00PP/zwGJoKAAAAAAAAAEB6JR2id3R0aM6cOdqwYcOo9g+FQrr00kt14YUXau/evbrlllv0xS9+UU899VTSjQUAACfHBW8AAAAAAKyTk+wDPvnJT+qTn/zkqPffuHGjqqqq9L3vfU+SdOaZZ+rZZ5/V97//fS1evHjYx3R3d6u7uzvxfWtrqyQpGo0qGo0m2+QhzOew4rns5JY6JGrJRG6pQ3JPLW6pQ3JPLVbXYdXzmBe8P//5z+uqq6466f7mBe/rr79ejzzyiHbu3KkvfvGLmjZt2oh9NQAAThDp6VXMsLsVAADA6ZIO0ZO1e/du1dTUDNq2ePFi3XLLLSM+Zu3atbrrrruGbN++fbuCwaBlbduxY4dlz2Unt9QhUUsmcksdkntqcUIdOw969EKjV18+M6biwMj7OaGW0bCqjkgkYsnzcME7s7ilFrfUIbmnFrfUIbmnFrfUIbmnlvufeVsPPu/TW7l/Ve1FH7TkOZ3+ngAAgOSlPESvr69XeXn5oG3l5eVqbW1VZ2en8vPzhzxm5cqVqq2tTXzf2tqqiooKLVq0SIWFheNuUzQa1Y4dO3TRRRfJ7/eP+/ns4pY6JGrJRG6pQ3JPLU6q4+ZV2yVJ/90+VQ/83UeG/NxJtZyI1XWYQXS6ccE7PdxSi1vqkNxTi1vqkNxTi1vqkJxfy/N/9SpmePXeO29r69Z9ljynVRe9AQCAc6Q8RB+LQCCgQGDo0EW/329p2GL189nFLXVI1JKJ3FKH5J5aMr2OaCye+P+3mzpO2NZMr2W0rKrDrveCC96p5ZZa3FKH5J5a3FKH5J5a3FKH5J5afhJ6TlK7FlXP1UUfnmbJc9p10RsAANgn5SH61KlT1dDQMGhbQ0ODCgsLhz0pBwA424GWgdFZnT0xG1uCVOKCd/LcUotb6pDcU4tb6pDcU4tb6pCcXYthGNrf0ilJOq280LI6nPp+AACAsfOm+gWqq6u1c+fOQdt27Nih6urqVL80AMAG4eaOxP83tfeorYt5QzMdF7wBAG50uK1bkZ6YvDJ0ShH9GQAAGLukQ/T29nbt3btXe/fulSSFQiHt3btX+/fvl9R3e/fSpUsT+19//fWqq6vT1772Nb3xxhu6//779ctf/lK33nqrNRUAADJKXWPHoO/DTcwbmum44A0AcCPzmKQ4T/L7Uj5+DAAAuFjSRxIvvvii5s2bp3nz5kmSamtrNW/ePK1evVqS9N577yUCdUmqqqrSk08+qR07dmjOnDn63ve+pwcffFCLFy+2qAQAQCY5fiS6JNU1tdvUkuzFBW8AAAaOScryDJtbAgAAnC7pOdE//vGPyzBGPgh5+OGHh33Myy+/nOxLAQAc6P0jzxmJnn4vvviiLrzwwsT35gKgy5Yt08MPPzziBe9bb71VP/jBD3TKKadwwRsA4Hjhpr4QfUqezQ0BAACOl/KFRQEA2SXUf8L6t2dM0e/fODxkZDpSjwveAABIdf3HJGX5jEQHAADjw8RwAADLdEVjOnSsU5J04RlTJA2cwAIAAKSTORK9jJHoAABgnAjRAQCWeac5IsOQJublaP7MIklSqLH9hKOiAQAArBaLG3qnuW9KOeZEBwAA40WIDgCwjDmVS1XpBFWVTpAktXb16kgkamezAABAljl0tFM9sbj8Po+KAna3BgAAOB0hOgDAMub851WlE5Sf69PUwr77p0NM6QIAANLIPPaYVRyU12NzYwAAgOMRogMALBNq7DthrSzpG4VujkYPE6IDAIA0Mi/sV5YEbW4JAABwA0J0AIBlQseNRJekyv7/MhIdAACkU515Yb//WAQAAGA8CNEBAJY5fk50SZpthujNhOgAACB9GIkOAACsRIgOALBEe3evGtu6JQ2M+kqMRG8kRAcAAOljXtgnRAcAAFYgRAcAWMKc97x4Qq4m5fslSVWlfSeu4eYOGYZhW9sAAED26OmN690jnZII0QEAgDUI0QEAlnj/VC6SVFEclNcjRXpiiVHqAAAAqXTgSESxuKFgrk9TJgbsbg4AAHABQnQAgCXCidumB0L0QI5PM4ryJUl1LC4KAADS4PhjEo/HY3NrAACAGxCiAwAsYS4eOrtswqDtVaUFkgZOaAEAAFIpcXfc+45JAAAAxooQHQBgidAwI9Elqap/LlIzZAcAAEilRIheQogOAACsQYgOALBE4tbp0sELeFX2z5EeaiREBwAAqTfcOi0AAADjQYgOABi3o5EeHYlEJQ0zEr3/BDbMSHQAAJAGAxf2CdEBAIA1CNEBAONmjvgqLwxoQiBn0M8GQvSI4nEj7W0DAADZo7MnpkPHuiQxEh0AAFiHEB0AMG7mKPPhTlZnTM6X3+dRT29ch451prtpAAAgi7zT0ndMMinfr6Kg3+bWAAAAtyBEBwCMmznf+XAheo7Pq4rivnnSw02RtLYLAABkl+OncvF4PDa3BgAAuAUhOgBg3ELNfeH4++dDN1X1bw81taetTQAAIPvU9Yfos5nKBQAAWIgQHQAwbmY4PtLco+b2ECPRAQBACiVGoo9wYR8AAGAsCNEBAONiGEZimpaRQvTKUkaiAwCA1DMXO68qI0QHAADWIUQHAIxLU3uP2rt75fFIM0uCw+5j3lIdbmYkOgAASB3zrrcqRqIDAAALEaIDAMbFHPE1Y3K+Ajm+YfcxR6IfaIkoGounrW0AACB7tHVF1dTeLUmqLB3+wj4AAMBYEKIDAMbFnHt0pKlcJGlqYZ4COV71xg29e6QzXU0DAABZxJxerrQgoIl5fptbAwAA3IQQHQAwLnWjCNG9Xk/i52boDgAAYKW6/rVXZp/gmAQAAGAsCNEBAONihuKVJ5l71Px5HSE6AABIAXMkOlO5AAAAqxGiAwDGJdzcPxK97MQhuvlzRqIDAIBUCPWPRK8qLbC5JQAAwG0I0QEAYxaPG4mFRatOMhLd/LkZugMAAFgp1Nw3Er2KkegAAMBihOgAgDGrb+1Sd29cOV6PTinKP+G+lf3zk9Y1EqIDAABrGYahUCMj0QEAQGoQogMAxswchT6zOKgc34m7FHNh0UPHOtUdjaW8bQAAIHsciUTV2tUrSZpVwkh0AABgLUJ0AMCYmSG6Ocr8REoLclUQyJFhSPtbOlPdNAAAkEXM+dBnTM5Xnt9nc2sAAIDbEKIDAMbMXCS0ahQhusfjSewX7p+zFAAAwAqhpr5ji0rmQwcAAClAiA4AGLNkRqIfv1+4hXnRAQCAdcyR6JUnWegcAABgLAjRAQBjFmruH4k+yhPWqv45SsNNjEQHAADWMY8tRnN3HAAAQLII0QEAY9Ibi2t//7QsVWWjDNHLmM4FAABYL5TEFHMAAADJIkQHAIzJwaOd6o0bCuR4Na0wb1SPMW+xJkQHAABWMQxD4WZCdAAAkDqE6ACAMUnMh14yQV6vZ1SPMU9sD7d1qzuWsqYBAIAscritW5GemHxejyqKWVgUAABYjxAdADAmA4uKjv5kdXIwV0VBvySpsSslzQIAAFmmrrHvmKSiKF9+H6e4AADAehxhAADGJJwI0ZO7bdrcv7FzdKPXAQAATsScyiXZYxIAAIDRIkQHAIxJXX+IPjvJE1ZzShdGogMAACuwqCgAAEg1QnQAwJgkRn2VJBmi9+9/uIuR6AAAYPwI0QEAQKoRogMAktbdG9PBI52SpKoypnMBAAD2IUQHAACpRogOAEjagZaI4oY0IdensoJAUo9lOhcAAGCVWNzQ/uaIpOTvjgMAABgtQnQAQNJCTf0nq6UT5PEkN6LcHIne0evRsc6o5W0DAADZ49DRTvXE4srN8Wr65Hy7mwMAAFyKEB0AkLRQU7uksd02XRDI0ZSJfaPXw/0jxwAAAMbCnMplVnFQPi9TxQEAgNQgRAcAJM0ciT7WuUdnlQQlEaIDAIDxYT50AACQDoToAICkhcd5wlpphuj9zwMAADAWhOgAACAdCNEBAEkzT1grxxuiMxIdAACMAyE6AABIB0J0AEBSOntiqm/tkiRVlRCiAwAA+4Sbx3dhHwAAYDQI0QEASTFPVicH/SqakDum5zDD93BzRIZhWNY2AACQPXp64zrQMr51WgAAAEaDEB0AkJTEVC5jHIUuSTOL8+WRofbuXjV39FjVNAAAkEUOHIkobkjBXJ+mTAzY3RwAAOBihOgAgKRYMfdowO/T5NzBzwcAAJCM8HEX9j0ej82tAQAAbkaIDgBIilULeJXlG4OeDwAAIBmJY5IypnIBAACpRYgOAEhKYtTXeEP0vL7/EqIDAICxSITo45hiDgAAYDQI0QEASTEXFp09zhB9Sv9I9DAhOgAAGAOr7o4DAAA4GUJ0AMCotXZF1dTetxAoI9EBAICdrLo7DgAA4GQI0QEAo2aerJYWBFQQyBnXc5Xl9Y9Eb+5QPG6Mu20AACB7dPbEdOhYl6Tx3x1npw0bNqiyslJ5eXlauHChXnjhhRPuv379ep1++unKz89XRUWFbr31VnV1daWptQAAZC9CdADAqJmjxq04WS0JSD6vR13RuBraOPkDAACj905L3zHJpHy/iibk2tyasdmyZYtqa2u1Zs0avfTSS5ozZ44WL16sw4cPD7v/o48+qttvv11r1qzR66+/roceekhbtmzR17/+9TS3HACA7EOIDgAYtVDitunguJ/L55VOmZzf97yNTOkCAABGzzx2cPJ86OvWrdN1112n5cuX60Mf+pA2btyoYDCoTZs2Dbv/c889p/PPP1/XXHONKisrtWjRIi1ZsmTE0evd3d1qbW0d9AUAAMaGEB0AMGrhxAJeBZY8nxnGh5oJ0QEAwOiZxw5ODdF7enq0Z88e1dTUJLZ5vV7V1NRo9+7dwz7mvPPO0549exKheV1dnbZu3apLLrlk2P3Xrl2rSZMmJb4qKiqsLwQAgCxBiA4AGLVQIkQf/0h0Saos6XueMIuLAgCAJDh9JHpTU5NisZjKy8sHbS8vL1d9ff2wj7nmmmv0zW9+Ux/96Efl9/t16qmn6uMf//iI07msXLlSx44dS3wdOHDA8joAAMgWhOgAgFExDOO46VysOWE1Q/QQIToAAEhCuNnaYxIn2LVrl+655x7df//9eumll/TrX/9aTz75pO6+++5h9w8EAiosLBz0BQAAxibH7gYAAJyhpaNHrV29kqTKEqtC9L7nIUQHAADJsHKxczuUlpbK5/OpoaFh0PaGhgZNnTp12MesWrVK1157rb74xS9Kks4++2x1dHToS1/6kr7xjW/I62WMHAAAqUIvCwAYFXPE1/RJecrz+yx5TnMk+v6WiHpjcUueEwAAuFtrV1RN7T2SnDsSPTc3V/Pnz9fOnTsT2+LxuHbu3Knq6uphHxOJRIYE5T5f3zGZYRipaywAAGAkOgBgdEJNEUlSVZl1J6vTJuUpN8ernt64Dh3t0swSa+ZaBwAA7mWupVJaEFBBwLmntLW1tVq2bJnOPfdcLViwQOvXr1dHR4eWL18uSVq6dKlmzJihtWvXSpIuu+wyrVu3TvPmzdPChQu1b98+rVq1SpdddlkiTAcAAKnh3CMOAEBahZraJVk3lYsk+bwezSoO6q3D7Qo1dxCiAwCAk3L6VC6mq6++Wo2NjVq9erXq6+s1d+5cbdu2LbHY6P79+weNPL/jjjvk8Xh0xx136ODBgyorK9Nll12mb3/723aVAABA1iBEBwCMStgciW7xCWtl6YS+EL2xXRd8sMzS5wYAAO4zsNC58y++r1ixQitWrBj2Z7t27Rr0fU5OjtasWaM1a9akoWUAAOB4Y5oTfcOGDaqsrFReXp4WLlyoF1544YT7r1+/Xqeffrry8/NVUVGhW2+9VV1dXWNqMADAHnX9J6xWh+jmKLJwc8TS58129NUAALcKJ45JCmxuCQAAyBZJh+hbtmxRbW2t1qxZo5deeklz5szR4sWLdfjw4WH3f/TRR3X77bdrzZo1ev311/XQQw9py5Yt+vrXvz7uxgMA0sMwDL3TbI76sn4kujQQ0mP86KsBAG4WSoTozh+JDgAAnCHp6VzWrVun6667LrHYycaNG/Xkk09q06ZNuv3224fs/9xzz+n888/XNddcI0mqrKzUkiVL9Pzzz4/4Gt3d3eru7k5839raKkmKRqOKRqPJNnkI8zmseC47uaUOiVoykVvqkNxTi511NLR2KdITk8/r0dQC/7jbcHwtFZMDkqRQY7vjPiOrPxOrnicdfTUAAHYwDOO4EJ2R6AAAID2SCtF7enq0Z88erVy5MrHN6/WqpqZGu3fvHvYx5513nv793/9dL7zwghYsWKC6ujpt3bpV11577Yivs3btWt11111Dtm/fvl3BoHWjDXbs2GHZc9nJLXVI1JKJ3FKH5J5a7KjjrWMeST4V+eN6evs2y553x44dOtYjSTl690hET/zXVuWMaaIxe1n1mUQi45/SJl19NRe8R88ttbilDsk9tbilDsk9tbilDilza2np6FFrV68kaXrhyS/sp6KOTHtPAABA6iUVojc1NSkWiyVWCzeVl5frjTfeGPYx11xzjZqamvTRj35UhmGot7dX119//QlvEV+5cqVqa2sT37e2tqqiokKLFi1SYWFhMk0eVjQa1Y4dO3TRRRfJ7/eP+/ns4pY6JGrJRG6pQ3JPLXbWseXFd6W//EUfmlmqSy6ZP+7nO76WnJwc3fvK7xXpienDCy/QqWXWTheTSlZ/JmYQPR7p6qu54J08t9Tiljok99Tiljok99TiljqkzKsl1CZJOSrKNfT7HU+N+nFW1mHFRW8AAOAsSU/nkqxdu3bpnnvu0f3336+FCxdq3759uvnmm3X33Xdr1apVwz4mEAgoEAgM2e73+y0Njqx+Pru4pQ6JWjKRW+qQ3FOLHXXsP9K3wOTssokp+TtcWTJBf3mvVe8e7dYZ0ydb9vzpYtVnYte/z7H01VzwHj231OKWOiT31OKWOiT31OKWOqTMreXXLx+UXn1NZ55SoksuOfek+6eiDisuegMAAGdJKkQvLS2Vz+dTQ0PDoO0NDQ2aOnXqsI9ZtWqVrr32Wn3xi1+UJJ199tnq6OjQl770JX3jG9+Q1+vA+/YBIMsMzD2amlHiVaV9IXqIxUXHLV19NRe8k+eWWtxSh+SeWtxSh+SeWtxSh5R5tSQu7E8pSKpdVtaRSe8HAABIj6QS7NzcXM2fP187d+5MbIvH49q5c6eqq6uHfUwkEhly8u3z+ST1LQoDAMh84TSE6JIUaiZEHy/6agCAm4Wb+qZSqSxxzvRvAADA+ZKezqW2tlbLli3TueeeqwULFmj9+vXq6OjQ8uXLJUlLly7VjBkztHbtWknSZZddpnXr1mnevHmJW8RXrVqlyy67LHGCDgDIXLG4oXea+05YUxWiV/Y/b5iR6JagrwYAuFVd/7HCbAetoQIAAJwv6RD96quvVmNjo1avXq36+nrNnTtX27ZtSyxgtn///kGj2e644w55PB7dcccdOnjwoMrKynTZZZfp29/+tnVVAABS5tDRTvXE4sr1eTV9cn5KXqOqtG8hSqZzsQZ9NQDAjQzDSFxwZyQ6AABIpzEtLLpixQqtWLFi2J/t2rVr8Avk5GjNmjVas2bNWF4KAGAzM9ieWRKUz+tJyWtUlRZIkt471qXOnpjycxn9PF701QAAt2lo7VZnNCaf16OK4qDdzQEAAFmEVT0BACcUbk79iK+ioF+FeX3Xdd9pYTQ6AAAYyrywX1GUL7+PU1kAAJA+HHkAAE4olIa5Rz0ej6rK+kajhxoJ0QEAwFChFC90DgAAMBJCdADACYXSNPdoVUn/vOjNhOgAAGCoxN1xhOgAACDNCNEBACeUWMCrNLVzj5onxIxEBwAAw6lrZCQ6AACwByE6AGBE0VhcB450SpJm9y/+mSrmCXGYkegAAGAY5jECIToAAEg3QnQAwIgOtEQUixvK9/tUXhhI6WuZJ8ShpkhKXwcAADhPLG5of3PfMUKqp5gDAAB4P0J0AMCIjp971OPxpPS1zOlcmtq71dYVTelrAQAAZzl0tFM9sbhyc7yaPjnf7uYAAIAsQ4gOABjRwNyjqZ0PXZIK8/wqLciVJIUZjQ4AAI5T179Gy6zioHze1F7YBwAAeD9CdADAiBIj0dN027T5OnVN7Wl5PQAA4AzmQufMhw4AAOxAiA4AGJE5IjxdJ6yJxUUZiQ4AAI4TIkQHAAA2IkQHAIwo3Ses5rzo5gh4AAAAiRAdAADYixAdADCsrmhMh451Skr/SHRz3lMAAABp8GLnAAAA6UaIDgAY1jvNERmGNDEvR8UTctPymmaIHmpsl2EYaXlNAACQ2Xp64zrQ0jfV22xCdAAAYANCdADAsI6/bdrj8aTlNc2FRVu7enUkEk3LawIAgMx24EhEcUOakOtT2cSA3c0BAABZiBAdADAs87bpdM49mp/r07RJeZIGQnwAAJDdQo0DU7mk68I+AADA8QjRAQDDSpywlqT3tmnz9cKE6AAAQMyHDgAA7EeIDgAYVqj/hHV2WZpDdHNedEJ0AACggQXHmQ8dAADYhRAdADAsM8RO90h08wTZDPEBAEB2C9t0TAIAAGAiRAcADNHe3avGtm5J6b91OjESvZEQHQAAHHdhn5HoAADAJoToAIAhzBFfJRNyNSnfn9bXNhcyDTd3yDCMtL42AADILJ09Mb13rEsS07kAAAD7EKIDAIawc8TXzOKgvB4p0hNLjIYHAADZyVxUdFK+X0UTcm1uDQAAyFaE6ACAIeycezQ3x6sZRfmSBhYSAwAA2ck8JqliFDoAALARIToAYAhzJPrsMntOWKtKCyQNnDgDAIDsVEeIDgAAMgAhOgBgiFCzfSPRJamqJNjXDkJ0AACyGiPRAQBAJiBEBwAMYfcJq/m6hOgAAGQ3O9dpAQAAMBGiAwAGORrp0ZFIVJJUWRq0pQ3mibK5mBgAAMhO5rHAbEJ0AABgI0J0AMAg5oiv8sKAgrk5trShKhGiRxSPG7a0AQAA2Ku1K6qm9h5JjEQHAAD2IkQHAAwSyoC5R2dMzpff51FPb1yHjnXa1g4AAGAfc3q5sokBFQTsubAPAAAgEaIDAN7H7vnQJSnH51VFMYuLAgCQzRIX9m1a6BwAAMBEiA4AGCTUHJFkb4guDcx9GiZEBwAgK2XC3XEAAAASIToA4H1CTe2SpEqbR32Zrx9qitjaDgAAYA/zQjrzoQMAALsRogMAEgzDULgpM0aimyfMZqgPAACyCyPRAQBApiBEBwAkNLZ3q727Vx6PNLMkaGtbEtO5NDMSHQCAbGMYBiE6AADIGIToAIAEcxT6jMn5CuT4bG2LORJ9f0tE0Vjc1rYAAID0aunoUWtX34X9WTZf2AcAACBEBwAkhDNoxNfUwjzl+b2KxQ29e6TT7uYAAIA0Cjf3HZNMn5SvPL+9F/YBAAAI0QEACXUZFKJ7vZ7E4qJmuA8AALJDXaO5qCij0AEAgP0I0QEACWZYbYbXdjPbUUeIDgBAVjFHomfChX0AAABCdABAQmIBr7LMOGE128FIdAAAsksowy7sAwCA7EaIDgCQJMXjxsCorww5YTXbYbYLAABkh1D/YuezM+TCPgAAyG6E6AAASVJ9a5e6e+PK8Xp0SlG+3c2RNDAS3ZwXFQAAuJ9hGBk3xRwAAMhuhOgAAEkDt03PLA4qx5cZ3YN54nzoWKe6ojGbWwMAANKhobVbndGYfF6PKopZWBQAANgvM1ISAIDtEnOPZtACXqUFuSoI5MgwpP0tEbubAwAA0qCuqV2SVFGUL3+GXNgHAADZjSMSAICkgcU7qzIoRPd4PIn2hFhcFACArBDunw89k45JAABAdiNEBwBIysyR6NJAe8KE6AAAZIVQ/0j0TDsmAQAA2YsQHQAgSQo194XUszPshJWR6AAAZJdQ/0j0TDsmAQAA2YsQHQCg3lhc+5v7TlgzbdRXVWnfgmKE6AAAZIdwc2beHQcAALIXIToAQAePdqo3biiQ49W0wjy7mzNIZQkj0QEAyBaxuJG4sM+c6AAAIFMQogMABuZDL5kgr9djc2sGM0+gD7d1q6O71+bWAACAVDp0tFM9sbhyc7yaPinf7uYAAABIIkQHAOj4RUWDNrdkqMnBXBUF/ZIGbu8GAADuVJe4sB/MuAv7AAAgexGiAwAU7j9hrSotsLklw2NxUQAAskP4uLvjAAAAMgUhOgAgMeqrKgNHoksDC4uFCdEBAHC1UOKYhBAdAABkDkJ0AEBimpRMHfVV1d+uOkJ0AABcjRAdAABkIkJ0AMhy3b0xHTzSKUmqKsvME1azXYxEBwDA3QbWacnMYxIAAJCdCNEBIMsdaIkobkgTcn0qKwjY3ZxhmSPkw80Rm1sCAABSpac3rneP9PX1swnRAQBABiFEB4AsF2rqO1mtKpsgj8djc2uGZ97S3dLRo2ORqM2tAQAAqbD/+Av7EzPzwj4AAMhOhOgAkOVCTe2SMnc+dEmaEMjRlP6T6VAzU7oAAOBG4eOmcsnUC/sAACA7EaIDQJZLjETP8NumzblRzdAfAAC4C/OhAwCATEWIDgBZzhz1lekh+uxEiM686AAAuJF5txnzoQMAgExDiA4AWc4po77M9pmhPwAAcJdQY/8xSQZPMQcAALITIToAZLFIT6/qW7skZf6oL/OEOkSIDgCAK4X7R6JXlWX2MQkAAMg+hOgAkMXC/VOjTA76NTmYa3NrTmx22cBIdMMwbG4NAACwUmdPTO8d67uwX8VIdAAAkGEI0QEgi5kjvpxw2/TM4qA8Hqmtu1dN7T12NwcAAFjIPCaZHPSraEJmX9gHAADZhxAdALKYOTVKpk/lIkl5fp+mT8qXNHCiDQAA3MFc88QJF/YBAED2IUQHgCzmlEVFTVWlzIsOAIAb1Tnowj4AAMg+hOgAkMXCDgvRK0uDkgjRAQBwG6cdk1hlw4YNqqysVF5enhYuXKgXXnjhhPsfPXpUN910k6ZNm6ZAIKAPfvCD2rp1a5paCwBA9sqxuwEAAPs4aToXSaoqLZA0cKINAADcwTwmqXLIMYkVtmzZotraWm3cuFELFy7U+vXrtXjxYr355puaMmXKkP17enp00UUXacqUKfrVr36lGTNm6J133tHkyZPT33gAALIMIToAZKnWrqiaO/oW6HTKqK8qRqIDAOBK5non2RSir1u3Ttddd52WL18uSdq4caOefPJJbdq0SbfffvuQ/Tdt2qSWlhY999xz8vv9kqTKysp0NhkAgKzFdC4AkKXM0dxlEwMqCDjjmmpiJHpzh+Jxw+bWAAAAK7R2RdXU7qwL++PV09OjPXv2qKamJrHN6/WqpqZGu3fvHvYxTzzxhKqrq3XTTTepvLxcZ511lu655x7FYrFh9+/u7lZra+ugLwAAMDZjCtGZtw0AnC9x23SJc05WTynKl8/rUVc0roa2Lrubk9HoqwEATuHEC/vj1dTUpFgspvLy8kHby8vLVV9fP+xj6urq9Ktf/UqxWExbt27VqlWr9L3vfU/f+ta3ht1/7dq1mjRpUuKroqLC8joAAMgWSYfo5rxta9as0UsvvaQ5c+Zo8eLFOnz48LD7m/O2hcNh/epXv9Kbb76pBx54QDNmzBh34wEAYxdKLOAVtLklo+f3eVVRlC9JCjUypctI6KsBAE7ixAv7dojH45oyZYp++tOfav78+br66qv1jW98Qxs3bhx2/5UrV+rYsWOJrwMHDqS5xQAAuEfSl/nTMW9bd3e3uru7E9+bt51Fo1FFo9FkmzyE+RxWPJed3FKHRC2ZyC11SO6pxeo63j7cJkmaWZSf9vdmPLXMKgkq3BzRvsOt+v9mTbK6aUmx+jOx6nmYYxUA4CTZuKhoaWmpfD6fGhoaBm1vaGjQ1KlTh33MtGnT5Pf75fP5EtvOPPNM1dfXq6enR7m5uYP2DwQCCgQC1jceAIAslFSIbs7btnLlysS2ZOZt++1vf6uysjJdc801uu222wZ1/sdbu3at7rrrriHbt2/frmDQuhGTO3bssOy57OSWOiRqyURuqUNyTy1W1fH/3vZJ8qjlnTe0devrljxnssZUS6tXklfP/O9rmtT4iuVtGgurPpNIJDLu50hXX80F79FzSy1uqUNyTy1uqUNyTy1uqUNKby3mhf2KojzLXy8VdVjxXLm5uZo/f7527typK6+8UlLfSPOdO3dqxYoVwz7m/PPP16OPPqp4PC6vt++m8r/+9a+aNm3akAAdAABYK6kQ/UTztr3xxhvDPqaurk6///3v9ZnPfEZbt27Vvn37dOONNyoajWrNmjXDPmblypWqra1NfN/a2qqKigotWrRIhYWFyTR5WNFoVDt27NBFF12UGHHnRG6pQ6KWTOSWOiT31GJlHYZhaNXLz0jq1d8v+qg+WD7RmkaO0nhqOfL8fv33f70hT2G5LrlkXopaODpW/9uyYsGvdPXVXPBOnltqcUsdkntqcUsdkntqcUsdUnpqSceFfSvrsOKityTV1tZq2bJlOvfcc7VgwQKtX79eHR0diTvJli5dqhkzZmjt2rWSpBtuuEE//vGPdfPNN+srX/mK3nrrLd1zzz36p3/6J0vaAwAARpbyVVuOn7fN5/Np/vz5OnjwoO67774RT8xHuu3M7/dbGoBZ/Xx2cUsdErVkIrfUIbmnFivqaG7vVmtXryTp1PJJ8vuHH22camOp5dTyvoup77REMubztOrfll31jKWv5oL36LmlFrfUIbmnFrfUIbmnFrfUIaWvFsMwdEcKL+ynog4rLnpL0tVXX63GxkatXr1a9fX1mjt3rrZt25a4EL5///7EiHNJqqio0FNPPaVbb71V55xzjmbMmKGbb75Zt912myXtAQAAI0sqRE/HvG0AgNQLN/fNPTp9Up7ybArQx6qyf9Gx/S0R9cbiyvElvUa2q6Wrr+aCd/LcUotb6pDcU4tb6pDcU4tb6pBSX0tze7faunrl8aT2wr6VdVj5fqxYsWLE6Vt27do1ZFt1dbX+9Kc/Wfb6AABgdJJKHo6ft81kzttWXV097GPOP/987du3T/F4PLGNedsAwF6hpr7bkKvKnLeA1/TJ+crN8SoaM3ToaJfdzck49NUAACcxFxWdPinfcRf2AQBA9kh6+F5tba0eeOAB/fznP9frr7+uG264Yci8bccvZnbDDTeopaVFN998s/7617/qySef1D333KObbrrJuioAAEkJNbVLGhjV7SQ+r0ezivvm3A71j6jHYPTVAACnMEP0qlLnHZMAAIDskfSc6MzbBgDOFzZHojv0hLWqdILeOtyuUGO7Lvhgmd3NyTj01QAApzBD9MpS6xalBgAAsNqYFhZl3jYAcLY6h4/6Mtsdbo7Y3JLMRV8NAHACc52WqtICm1sCAAAwMlZjA4AsYxiG3mk2R305M0Q3221eDAAAAM6UWKeFkegAACCDEaIDQJY53NatSE9MPq9HFUXOPGFNjEQnRAcAwLEMw0j05YxEBwAAmYwQHQCyTF1j38nqKUX5ys1xZjdghujvHomopzduc2sAAMBYNLR2qzPad2H/lKJ8u5sDAAAwImemJwCAMRuYe9SZU7lI0pSJAQVzfYob0v4W5kUHAMCJ6praJUkzi4Py+zg1BQAAmYsjFQDIMqH+26YrS5wbons8nkT7mdIFAABnCvfPh15Z4szp5QAAQPYgRAeALBNqcv5IdGmg/SFCdAAAHCnUPxLdqQudAwCA7EGIDgBZJuy2EL2ZEB0AACcK9Y9En+3wYxIAAOB+hOgAkEVicUPvNPedsDo9RDdHrTGdCwAAzsRIdAAA4BSE6ACQRQ4d7VRPLK5cn1fTJ+fb3ZxxYToXAACcKxY3EouDO/3CPgAAcD9CdADIImbgPLMkKJ/XY3Nrxsc84X7vWJc6e2I2twYAACTj4JFORWOGcnO8mj7J2Rf2AQCA+xGiA0AWCffPH15Z4vwRX0VBvwrzciQN1AUAAJwhlDgmCcrr8Av7AADA/QjRASCLmCPRZ5c5P0T3eDyqKiuQxLzoAAA4Taixfz50F1zYBwAA7keIDgBZxAzR3XLCWlUSlDQwmg0AADhD2Fzo3AUX9gEAgPsRogNAFjFHbLtlAa+q0r6R6KFGQnQAAJykzjwmccmFfQAA4G6E6ACQJaKxuA4c6ZTknhC9srRvJDpzogMA4Cxuu7APAADcjRAdALLEgZaIYnFD+X6fygsDdjfHEuaJd4g50QEAcIye3rjePdI/nQshOgAAcABCdADIEuZo7crSCfJ4PDa3xhqV/SfeTe09auuK2twaAAAwGvtbIoob0oRcn8omuuPCPgAAcDdCdADIEnWN5m3TQZtbYp3CPL9KC3IlSeGmiM2tAQAAo5FY6NxFF/YBAIC7EaIDQJYwR6K77bZps566pnabWwIAAEaD+dABAIDTEKIDQJZIjPoqcdcJq1kPI9EBAHCGkEsv7AMAAPciRAeALGGGzG47Ya1MLC7KSHQAAJwg1OjOC/sAAMC9CNEBIAt0RWM6dKxTkvtC9NlmiN7MSHQAAJwgMcVcmbuOSQAAgHsRogNAFninOSLDkCbm5ah4Qq7dzbFUYiR6Y7sMw7C5NQAA4EQ6e2J671iXJKmKkegAAMAhCNEBIAuY86HPLp0gj8djc2usZd4K3trVqyORqM2tAQAAJ2KOQp8c9KvIZRf2AQCAexGiA0AWSCwq6rKpXCQpP9enaZPyJA3UCQAAMpNbFzoHAADuRogOAFkg7PITVrOuMCE6AAAZ7fi74wAAAJyCEB0AskCo/9bp2S5dwMtcmIyR6AAAZDY33x0HAADcixAdALKA22+dNhcmMy8WAACAzGTeNVZFiA4AAByEEB0AXK69u1eNbd2S3Dvqy6wr1EiIDgBAJgsRogMAAAciRAcAlzNHfJVMyNWkfL/NrUkN80Q83NwhwzBsbg0AABjOsc6omjt6JLn3wj4AAHAnQnQAcLlsmHt0ZnFQXo8U6YklRt0DAIDMYl7YL5sYUEEgx+bWAAAAjB4hOgC4XDbMPZqb49UpRUFJUh2LiwIAkJHCze4/JgEAAO5EiA4ALpctc4+aI+3DhOgAAGSkuv61S6pcutA5AABwL0J0AHC5UP+or0qXn7BWlfSNRA8RogMAkJESI9HL3H1MAgAA3IcQHQBcLhumc5EG6iNEBwAgMyXWaXH5hX0AAOA+hOgA4GJHIz06EolKkipLgza3JrUS07k0E6IDAJBpDMNIhOizGYkOAAAchhAdAFzMPFmdWpinYG6Oza1JrdmlBZKkcHNE8bhhc2sAAMDxWjp61NbVK49Hmlns7gv7AADAfQjRAcDFErdNu3wUuiRNn5wnv8+jnt64Dh3rtLs5AADgOOYxyfRJ+crz+2xuDQAAQHII0QHAxbJlPnRJyvF5VVHM4qIAAGSiUBYdkwAAAPchRAcAFws1RyRlzwnrbHNedEJ0AAAySjbdHQcAANyHEB0AXCzU1C5JqizJjhDdrDPUFLG5JQAA4Hjmwt9V/WuYAAAAOAkhOgC4lGEYCveHybPLsiNEryozQ/R2m1sCAACOV9dohuiMRAcAAM5DiA4ALtXY3q327l55PUrMFe52Vf0j0cPNjEQHACBTxOOG3klMMcdIdAAA4DyE6ADgUuYo9OmT8xXI8dncmvSo7J8TfX9LRNFY3ObWAAAASWpo61JnNCaf16NTivLtbg4AAEDSCNEBwKXMxTWzZVFRSZpamKc8v1exuKF3j3Ta3RwAAKCBRUVnFgfl93EKCgAAnIcjGABwqbosDNG9Xk9icVHzIgIAALCXGaJXlmTH9HIAAMB9CNEBwKWycSS6NFBvHSE6AAAZYeCYhPnQAQCAMxGiA4BLJUZ9ZVmIbtbLSHQAADJDKBGiMxIdAAA4EyE6ALhQPG4o3Nx/wlqSXSG6WW+IEB0AgIwQYiQ6AABwOEJ0AHCh+tYudffGleP16JSifLubk1ZVZYToAABkit5YXPtbIpKkSkaiAwAAhyJEBwAXMgPkmcVB5fiy60+9ubDooWOd6orGbG4NAADZ7dDRLkVjhnJzvJo+Kbsu7AMAAPfIrmQFALJEKEsXFZWk0oJcTQzkyDCUGPkGAADsUdfULkmqLAnK6/XY3BoAAICxIUQHABfK1kVFJcnj8STqZkoXAADsZS70XZlla7QAAAB3IUQHABcKZ3GILokQHQCADBFu7rsrzFyzBAAAwIkI0QHAhULNfeHx7CwN0c1pbMKE6AAA2KrOnGKOkegAAMDBCNEBwGV6Y3Ht7x/1la0j0atKg5IYiQ4AgN3CWbxOCwAAcA9CdABwmYNHO9UbNxTI8WpaYZ7dzbFFVWmBJEJ0AADs1NMb17tH+qdzIUQHAAAORogOAC5Td9wCXl6vx+bW2MO8ZfxwW7c6unttbg0AANlpf0tEcUOakOtT2cSA3c0BAAAYM0J0AHCZgUVFgza3xD6Tgn4VBf2SpHAzo9EBALBD6LiFzj2e7LywDwAA3IEQHQBcZmDu0QKbW2Iv87ZxpnQBAMAezIcOAADcghAdAFymLnHCmr0j0aWBRVXDhOgAANiijhAdAAC4BCE6ALiMOX1Jto9En91/wl5HiA4AgC0YiQ4AANyCEB0AXKS7N6aDRzolZfec6BIj0QEAsNvxc6IDAAA4GSE6ALjIgZaI4oY0IdensoKA3c2xVWVJf4jeHLG5JQAAZJ9IT6/qW7skDdwdBgAA4FSE6ADgIqGmvsC4qmyCPB6Pza2xl3nreEtHj45Foja3BgCA7BLuPyaZHPRrcjDX5tYAAACMDyE6ALhIqKld0sAo7Gw2IZCjKRP7RuOHmpnSBQCAdBpYo4VjEgAA4HyE6ADgIuZIdG6b7mOeuJsXFwAAQHqY86FXcWEfAAC4ACE6ALhImAW8BhkI0ZkXHQCAdEqE6ByTAAAAFxhTiL5hwwZVVlYqLy9PCxcu1AsvvDCqx23evFkej0dXXnnlWF4WAHASIUL0Qcz3wby4kE3oqwEAduKYBAAAuEnSIfqWLVtUW1urNWvW6KWXXtKcOXO0ePFiHT58+ISPC4fD+pd/+Rd97GMfG3NjAQAji/T0qr61SxLTuZgGRqJnV4hOXw0AsFuYkegAAMBFcpJ9wLp163Tddddp+fLlkqSNGzfqySef1KZNm3T77bcP+5hYLKbPfOYzuuuuu/THP/5RR48ePeFrdHd3q7u7O/F9a2urJCkajSoajSbb5CHM57DiuezkljokaslEbqlDck8tJ6tjX32bJGlyvl8T/J6Mrjddn0nFpP6FRZs61NPTI4/HY+nzW12HVc+Tjr4aAICRHOuMqrmjRxIj0QEAgDskFaL39PRoz549WrlyZWKb1+tVTU2Ndu/ePeLjvvnNb2rKlCn6whe+oD/+8Y8nfZ21a9fqrrvuGrJ9+/btCgaDyTT5hHbs2GHZc9nJLXVI1JKJ3FKH5J5aRqpjb7NHkk+TfT3aunVrehs1Rqn+TKJxySOf2rt7teW3v1Nhbmpex6o6IpHxz92err6aC96j55Za3FKH5J5a3FKH5J5a3FKHNL5a9tUfkySVFeQq4DVsfT9S8Zm44fMFAADJSSpEb2pqUiwWU3l5+aDt5eXleuONN4Z9zLPPPquHHnpIe/fuHfXrrFy5UrW1tYnvW1tbVVFRoUWLFqmwsDCZJg8rGo1qx44duuiii+T3+8f9fHZxSx0StWQit9QhuaeWk9Wx/7/rpL/u09xTp+uSS862oYWjl87P5Ptv/kEHj3bptHnVOndWkaXPbXUdZhA9Hunqq7ngnTy31OKWOiT31OKWOiT31OKWOqSx1fJiY9+F/UJPd8Zc2LfyM7Hiordpw4YNuu+++1RfX685c+boRz/6kRYsWHDSx23evFlLlizRFVdcoccff9yy9gAAgOElPZ1LMtra2nTttdfqgQceUGlp6agfFwgEFAgEhmz3+/2Whi1WP59d3FKHRC2ZyC11SO6pZaQ63jnSPx/6lImOqTMdn0lVaYEOHu3SgaPdqj4tNa9lVR12fG5j7au54D16bqnFLXVI7qnFLXVI7qnFLXVI46tl3+/3Sfvq9JEPnqJLLvlwilo4Oqn4TKy46C0NrGGyceNGLVy4UOvXr9fixYv15ptvasqUKSM+jjVMAABIv6RC9NLSUvl8PjU0NAza3tDQoKlTpw7Z/+2331Y4HNZll12W2BaPx/teOCdHb775pk499dSxtBsA8D4s4DW8qtIJenZfU9YsLpquvpoL3slzSy1uqUNyTy1uqUNyTy1uqUMaWy37+y/sn5pBF/at/Eyseh7WMAEAwDm8yeycm5ur+fPna+fOnYlt8XhcO3fuVHV19ZD9zzjjDL3yyivau3dv4uvyyy/XhRdeqL1796qiomL8FQAAJCkREhOiD2YuaBbOkhCdvhoAYDfzmKSyhGOSkZhrmNTU1CS2JbuGycl0d3ertbV10BcAABibpKdzqa2t1bJly3TuuedqwYIFWr9+vTo6OhJXz5cuXaoZM2Zo7dq1ysvL01lnnTXo8ZMnT5akIdsBAGPX2hVVc0ePpIHQGH2qSvvm586WkegSfTUAwD6GYST63NllHJOMJB1rmIy0fgkAAEhe0iH61VdfrcbGRq1evVr19fWaO3eutm3bluj89+/fL683qQHuAIBxMkdZl00MqCCQ0uUuHKeqtECSFG7uUDxuyOv12Nyi1KOvBgDYpbmjR21dvfJ4pJnF1i00ne3GsobJSOuXAACA5I0paVmxYoVWrFgx7M927dp1wsc+/PDDY3lJAMAJJKZy4bbpIU4pypfP61FXNK6Gti5Nm5Rvd5PSgr4aAGAH88L+9En5yvP7bG5N5krHGiYjrV8CAACSxzA0AHAB5kMfmd/nTYyECzVmz5QuAADYoY5jklFhDRMAAJyFe/4BwAUSC3hxwjqsypKgQk0dCjV36LzTRncLNAAASF6YEH3UWMMEAADnIEQHABcYOGFl7tHhVJZOkN5sZCQ6AAApxoX90WMNEwAAnIMQHQAczjCM46ZzKbC5NZlpdv+JfLiZEB0AgFQyj0lmE6KPCmuYAADgDFzWBgCHa+noUWtXryRpVgkj0YdjjoYzT+wBAID14nEjccGakegAAMBNCNEBwOHMk9UZk/OV5/fZ3JrMZM7Lur8lot5Y3ObWAADgTg1tXeqKxuXzenRKUb7dzQEAALAMIToAOFxdoznii1HoI5k+KV+5OV5FY4YOHe2yuzkAALiSufbIzOKg/D5ONQEAgHtwZAMADpe4bbqE26ZH4vV6NKu47yJDXVO7za0BAMCdQoljEi7sAwAAdyFEBwCHCzdFJA1MWYLhme9PmHnRAQBICXMkOgudAwAAtyFEBwCHq2syT1gJ0U8kEaI3R2xuCQAA7mTeHVfFFHMAAMBlCNEBwMEMw0iMrCZEPzHz/aljJDoAACkRamIkOgAAcCdCdABwsIbWbnVGY/J5PaooZtTXiVQynQsAACnTG4trf0vf3V4sdg4AANyGEB0AHMwc8XVKUb78Pv6kn4g5Ev3dIxH19MZtbg0AAO5y6GiXojFDuTleTZ+Ub3dzAAAALEXiAgAONjD3KFO5nMyUiQEFc32KG0qMlAMAANaoa2qXJFWWBOX1emxuDQAAgLUI0QHAwcyR6JUlhOgn4/F4Eu8TU7oAAGAt1mgBAABuRogOAA5mhuizyzhhHY2q/vcpRIgOAIClEhf2CdEBAIALEaIDgIMxEj05Vf3vU6iZEB0AACuFmvumSptNiA4AAFyIEB0AHCoWN7S//4SVW6dHxxwdx3QuAABYK5SYE51jEgAA4D6E6ADgUIeOdqonFleuz6vpk/Ptbo4jmBcbmM4FAADrdPfGdPBIp6SBqdMAAADchBAdABzKDIJnlgTl83psbo0zmCH6e8e61NkTs7k1AAC4w4GWiOKGNCHXp7KCgN3NAQAAsBwhOgA4VLh/Xm+mchm9oqBfk/L9kgbePwAAMD6hpv7p5comyOPhwj4AAHAfQnQAcChzJDoh+uh5PB7mRQcAwGLMhw4AANyOEB0AHMoM0TlhTU5VSVCSFGIkOgAAlkiMROfCPgAAcClCdABwqDAj0cekqrRAkhRqJEQHAMAK5kh0jkkAAIBbEaIDgANFY3EdONIpiRPWZFWW9o1EZ050AACsEe4fiV7JMQkAAHApQnQAcKADLRHF4oby/T6VFwbsbo6jzDZHojMnOgAA4xbp6VV9a5ckaTYhOgAAcClCdABwIHMUdWXpBHk8Hptb4yzmSPSm9h61dUVtbg0AAM5mjkKfHPRrcjDX5tYAAACkBiE6ADhQXaM5H3rQ5pY4z8Q8v0oL+k7yzRN/AAAwNuaFfaaXAwAAbkaIDgAOxAnr+JjvW13/QmgAAGBszOnRqko4JgEAAO5FiA4ADmSesFZywjom5vvGSHQAAMYnEaJzYR8AALgYIToAOJAZ/s4u44R1LKr637cQI9EBABiXxIV9QnQAAOBihOgA4DBd0ZgOHeuUxEj0sTJvOQ81MxIdAIDxCDMSHQAAZAFCdABwmP0tERmGNDEvR8UTcu1ujiOZo+VCje0yDMPm1gAA4EzHOqNq7uiRxEh0AADgboToAOAw4f7R07NLJ8jj8djcGmcyR/C3dvXqSCRqc2sAAHAmcxT6lIkBFQRybG4NAABA6hCiA4DDhPrnQ2fE19jl5/o0bVKepIG5XAEAQHKYDx0AAGQLQnQAcJh3WvpCdOYeHR/z/SNEBwBgbMw+dDbHJAAAwOUI0QHAYczpXAjRx8ccNRcmRAcAYEwYiQ4AALIFIToAOIwZ+przemNsqvrfv1AzIToAAGMR7u9DubAPAADcjhAdABykKyY1tvdIYtTXeCWmc2kkRAcAIFmGYST6UEJ0AADgdoToAOAgjZ19/y2ZkKtJ+X57G+NwielcmjtkGIbNrQEAwFmaO3rU1t0rj0eaWRy0uzkAAAApRYgOAA7S2OWRxCh0K8wsDsrrkSI9MR1u67a7OQAAOIo5H/r0SfnK8/tsbg0AAEBqEaIDgIM0dvX9l9umxy83x6tTivpGzoVYXBQAgKSYfSfHJAAAIBsQogOAgzR29o1E54TVGokpXQjRAQBICiE6AADIJoToAOAg5nQunLBaY7a5uCghOgAASTEvQDPFHAAAyAaE6ADgIIf7p3OpLOGE1QqVJUznAgDAWJh952xCdAAAkAUI0QHAIY5Goor0mguLBm1ujTtUMhIdAICkxeOGws2MRAcAANmDEB0AHMI8WS0vDCiYm2Nza9xhdmmBJOmdlojiccPm1gAA4AwNbV3qisaV4/XolKJ8u5sDAACQcoToAOAQ4eaIpIEpSDB+0yfnye/zqKc3rkPHOu1uDgAAjhBq7LuwX1EclN/HKSUAAHA/jngAwCEGQnRum7ZKjs+rmcXMiw4AQDJC/XfHsdA5AADIFoToAOAQ4SZGoqeCGQCECdEBABgVcyQ6F/YBAEC2IEQHAIcIt5gnrIToVjIDgFD/RQoAAHBi5jotVWWE6AAAIDsQogOAAxiGwZzoKWIGAKGmdptbAgCAM9T1371VxUh0AACQJQjRAcABGtu71dEdk0eGKooJ0a1kBgDmRQoAADCy3lhcB1r6+kxGogMAgGxBiA4ADmDOh14ckAI5/Om2khkA7G+JKBqL29waAAAy28GjnYrGDAVyvJpWmGd3cwAAANKCJAYAHMCcaqQsz7C5Je5TPjFPeX6vYnFD7x7ptLs5AABktFD/VC6zSoLyej02twYAACA9CNEBwAHMRS/LGPBlOa/Xk1hcNNwfDAAAgOGZIXpVKVO5AACA7EGIDgAOYIa7ZfmMRE8FMwioI0QHAOCEzGOSSkJ0AACQRQjRAcABzFFfjERPDTMIYCQ6AAAnZl5wnk2IDgAAsgghOgBkuHjcULi574R1CiPRU8IciR4iRAcA4ITMYxJzKjQAAIBsQIgOABmuvrVL3b1x5Xg9KgrY3Rp3IkQHAODkuntjOti/CHdVGSE6AADIHoToAJDhzGC3oihfPo/NjXEpczTdoWOd6orGbG4NAACZ6UBLRHFDmpDrU1kBV/YBAED2IEQHgAwXSizgFbS5Je5VWpCriYEcGYa0vyVid3MAAMhIdY19xyRVZRPk8XBlHwAAZA9CdADIcIkQnblHU8bj8SQWF2VKFwAAhsd86AAAIFsRogNAhgsnQnRGoqcS86IDAHBioaa+u7VmlxKiAwCA7EKIDgAZLtRMiJ4O5kj0MCE6AADDCjW1SxroMwEAALIFIToAZLDeWFz7m/tGfRGip1ZV/5zzjEQHAGB44f6R6FWE6AAAIMsQogNABjt4tFO9cUOBHK+mFubZ3RxXqyotkESIDgDAcCI9vapv7ZJEiA4AALIPIToAZLC64xYV9Xo9NrfG3ar6F0k73Natju5em1sDAEBmMUehFwX9mhzMtbk1AAAA6TWmEH3Dhg2qrKxUXl6eFi5cqBdeeGHEfR944AF97GMfU1FRkYqKilRTU3PC/QEAA8z5uRnxlXqTgn4VT+gLBdwwGp2+GgBgJbNvZD50AACQjZIO0bds2aLa2lqtWbNGL730kubMmaPFixfr8OHDw+6/a9cuLVmyRM8884x2796tiooKLVq0SAcPHhx34wHA7cKcsKaVOe98uNnZITp9NQDAambfyIV9AACQjXKSfcC6det03XXXafny5ZKkjRs36sknn9SmTZt0++23D9n/kUceGfT9gw8+qP/8z//Uzp07tXTp0mFfo7u7W93d3YnvW1tbJUnRaFTRaDTZJg9hPocVz2Unt9QhUUsmcksdkrNrebuxXZI0syjg6DreL1NrmVWcr5f2H9XbDW2japvVdVj1POnoqwEA2aWusT9ELyFEBwAA2SepEL2np0d79uzRypUrE9u8Xq9qamq0e/fuUT1HJBJRNBpVcXHxiPusXbtWd91115Dt27dvVzAYTKbJJ7Rjxw7LnstObqlDopZM5JY6JGfW8voBnySP6t/6s3Y09G1zYh0jybRaepo9knx69s9/VWXkjVE/zqo6IpHIuJ8jXX01F7xHzy21uKUOyT21uKUOyT21uKUOaWgtoaa+C/sVRXmOqi8Vn4mT6gcAANZIKkRvampSLBZTeXn5oO3l5eV6443RhQ233Xabpk+frpqamhH3WblypWpraxPft7a2Jm4tLywsTKbJw4pGo9qxY4cuuugi+f3+cT+fXdxSh0QtmcgtdUjOraW7N65b//S0JOnTl35Ck/O8jqxjOBn7mbxSrycP/Fm9eUW65JKFJ93d6jrMIHo80tVXc8E7eW6pxS11SO6pxS11SO6pxS11SAO1vHmo78L+wTde0tYD9rZpLKz8TKy46A0AAJwl6elcxuPee+/V5s2btWvXLuXl5Y24XyAQUCAQGLLd7/dbGrZY/Xx2cUsdErVkIrfUITmvlneOtCluSAWBHE0rmqDe3l5JzqvjRDKtltOm9l2oDTdHkmqXVXVkwnsx2r6aC96j55Za3FKH5J5a3FKH5J5a3FKHNLiWSK/UsfsZSdI1ly9SQSCtp5HjkorPxIqL3gAAwFmSOvopLS2Vz+dTQ0PDoO0NDQ2aOnXqCR/73e9+V/fee6+efvppnXPOOcm3FACyTKipb5RTZWlQHo/H5tZkh8r+eV6PRKI6FolqUtB5AUi6+moueCfPLbW4pQ7JPbW4pQ7JPbW4pQ6pr5Z3+xcVnTIxoKKCfJtbNDZWfiZu+WwBAMDoeZPZOTc3V/Pnz9fOnTsT2+LxuHbu3Knq6uoRH/ed73xHd999t7Zt26Zzzz137K0FgCxizj1ayQJeaTMhkKMpE/uC4VB/YOA09NUAAKuFm/r6xMpSjkkAAEB2SipEl6Ta2lo98MAD+vnPf67XX39dN9xwgzo6OrR8+XJJ0tKlSwctZvav//qvWrVqlTZt2qTKykrV19ervr5e7e3t1lUBAC5kjkSfzQlrWlX1v9/mRQwnoq8GAFiprj9E55gEAABkq6Qns7v66qvV2Nio1atXq76+XnPnztW2bdsSC5jt379fXu9ANv+Tn/xEPT09+od/+IdBz7NmzRrdeeed42s9ALhYYiQ6J6xpVVU6Qc+HWhIXMZyIvhoAYCVGogMAgGw3phVhVqxYoRUrVgz7s127dg36PhwOj+UlACDrhftD3CpOWNNqYCS6M6dzMdFXAwCsYvaJHJMAAIBslfR0LgCA1Iv09Kq+tUsSJ6zpZo6yCzs8RAcAwAqGYST6RI5JAABAtiJEB4AMZI5Cnxz0a3Iw1+bWZJeq40J0wzBsbg0AAPZq6ehRW3evPB5pZnHQ7ua4zoYNG1RZWam8vDwtXLhQL7zwwoj7PvDAA/rYxz6moqIiFRUVqaam5oT7AwAA6xCiA0AGCjcz4ssuM4uD8niktu5eNbX32N0cAABsFWruu7A/fVK+8vw+m1vjLlu2bFFtba3WrFmjl156SXPmzNHixYt1+PDhYffftWuXlixZomeeeUa7d+9WRUWFFi1apIMHD6a55QAAZB9CdADIQIm5R0sI0dMtz+/T9En5kgYuZgAAkK3C/SH67DKOSay2bt06XXfddVq+fLk+9KEPaePGjQoGg9q0adOw+z/yyCO68cYbNXfuXJ1xxhl68MEHFY/HtXPnzmH37+7uVmtr66AvAAAwNoToAJCBWMDLXmZQ4PTFRQEAGC9zirlKLuxbqqenR3v27FFNTU1im9frVU1NjXbv3j2q54hEIopGoyouLh7252vXrtWkSZMSXxUVFZa0HQCAbESIDgAZyFzAq5IQ3RZmUECIDgDIdkwxlxpNTU2KxWIqLy8ftL28vFz19fWjeo7bbrtN06dPHxTEH2/lypU6duxY4uvAgQPjbjcAANkqx+4GAACGYiS6vSqPW1wUAIBsZk7nwjFJZrn33nu1efNm7dq1S3l5ecPuEwgEFAgE0twyAADciRAdADLMsc6omjv6FrRkJLo9ZpcyEh0AgLghvdPSP50LxySWKi0tlc/nU0NDw6DtDQ0Nmjp16gkf+93vflf33nuvnn76aZ1zzjmpbCYAAOjHdC4AkGHM0c9lEwMqCHCt0w6JkejNHYrHDZtbAwCAPY71SF3RuHK8Hp1SlG93c1wlNzdX8+fPH7QoqLlIaHV19YiP+853vqO7775b27Zt07nnnpuOpgIAADESHQAyTmLuURbwss0pRfnyeT3qisbV0NalaZMIDgAA2aexyyNJqigOyu9j/JXVamtrtWzZMp177rlasGCB1q9fr46ODi1fvlyStHTpUs2YMUNr166VJP3rv/6rVq9erUcffVSVlZWJudMLCgpUUFBgWx0AAGQDQnQAyDDMh24/v8+rmcVBhZo6FGrsIEQHAGSlw519/+WYJDWuvvpqNTY2avXq1aqvr9fcuXO1bdu2xGKj+/fvl9c7cPHiJz/5iXp6evQP//APg55nzZo1uvPOO9PZdAAAsg4hOgBkGDNEZ+5Re1WW9IfozR0677RSu5sDAEDamSPRK7k7LmVWrFihFStWDPuzXbt2Dfo+HA6nvkEAAGBY3JMHABkmzEj0jFBV2ndbdKiRxUUBANmpsavvv1VlHJMAAIDsRogOABnEMAymc8kQVaVBSQNz1AMAkG0aO/tGorNOCwAAyHaE6ACQQVo6etTa1StJmlUStLk12c2cTse8qAEAQDbpjcXV1N33/4xEBwAA2Y4QHQAyiDnqecbkfOX5fTa3JruZdwLsb4moNxa3uTUAAKTXwWNdihseBXK8mlaYZ3dzAAAAbEWIDgAZpK7RXFSUUeh2mz4pX7k5XkVjhg4d7bK7OQAApJW5Rsus4qC8Xo/NrQEAALAXIToAZBBzJDrzodvP6/Wosn9KnbqmdptbAwBAeoWbI5KYXg4AAEAiRAeAjBJu6jthrWQBr4xgfg5h5kUHAGQZM0Sv4u44AAAAQnQAyCR1TYxEzyTm52AGCQAAZAuz76tkJDoAAAAhOgBkCsMwEiOeCdEzg/k51DESHQCQZQZCdI5JAAAACNEBIEM0tHarMxqTz+tRRTGjvjJBZSnTuQAAsk93b0yHjnZKYiQ6AACARIgOABkj1B/UVhTly+/jz3MmmN0for97JKKe3rjNrQEAID0OtEQUN6SAz1BpQa7dzQEAALAdKQ0AZIhwc1+IXslULhmjbGJAE3J9ihvS/hbmRQcAZIe6xr5jkrI8yePx2NwaAAAA+xGiA0CGMEeiM/do5vB4PJpVwpQuAIDsYl7YL8szbG4JAABAZiBEB4AMYYbos8sI0TNJVf/nESJEBwBkCbPPm5Jnc0MAAAAyBCE6AGQIRqJnpqr+zyPUTIgOAMgO5jFJWT4j0QEAACRCdADICLG4of3NfXNuVzEnekYxP49QIyE6ACA7JEJ0pnMBAACQRIgOABnh0NFO9cTiyvV5NX1yvt3NwXHMhV7DjEQHAGSBju5eNbR2S+pbWBQAAACE6ACQEcwRXzNLgvJ5PTa3BsczR6K/d6xLnT0xm1sDAEBqmReNi4J+TfDb3BgAAIAMQYgOABnAPGFlKpfMUxT0a1J+X4rAaHQAgNuFm/qml5tVErS5JQAAAJmDEB0AMkBdIyF6pvJ4PANTujQRogMA3C3U1C5JqiJEBwAASCBEB4AMwEj0zDa7/3OpI0QHALhcKDESnWMSAAAAEyE6AGQAc4RzJSesGcn8XBiJDgBwO0aiAwAADEWIDgA2i8biOnCkUxIj0TNVZWlfkMCc6AAAtws3Myc6AADA+xGiA4DNDrREFIsbyvf7VF4YsLs5GMbs0gJJUoiR6AAAFzsWiaqlo0eSVEmIDgAAkECIDgA2M4PZytIJ8ng8NrcGwzFHoje196itK2pzawAASI1Q/x1XUyYGNCGQY3NrAAAAMgchOgDYzAzRZzOVS8aamOdXaUHfXQLh/gXXAABwG3PtD6aXAwAAGIwQHQBsZs6zbY52Rmaq6v986voXXAMAwG3qCNEBAACGRYgOADZLTOdSwglrJjM/H0aiAwDcipHoAAAAwyNEBwCbmaHs7DJOWDNZVf/nE2IkOgDApY5fpwUAAAADCNEBwEZd0ZgOHu2UxEj0TFfV//mEmhmJDgBwH8MwGIkOAAAwAkJ0ALDRO/2BbGFejoon5NrcGpxIYiR6Y7sMw7C5NQAAWKupvUdt3b3yeKSZxazTAgAAcDxCdACwUei4EV8ej8fm1uBEZhX3heitXb06Eona3BoAAKxlLnQ+fVK+8vw+m1sDAACQWQjRAcBGzD3qHPm5Pk2blCdp4HMDAMAtQo19fRtrtAAAAAxFiA4ANmLuUWcxPydCdACA24T6R6KzRgsAAMBQhOgAYKMQIbqjmHcMhAnRAQAuY45E55gEAABgKEJ0ALCROeqLE1ZnmG2ORG8mRAcAuEuYYxIAAIAREaIDgE3au3vV2NYtiTnRncK8xd0crQcAgBvE4wZ3xwEAAJwAIToA2MScEqRkQq4K8/w2twajkZjOpblDhmHY3BoAAKxR39ql7t64crwenVKUb3dzAAAAMg4hOgDYhBFfzjOzOCivR4r0xHS4/y4CAACczjwmmVkcVI6PU0QAAID34wgJAGxijkRnKhfnyM3x6pSioKSBwAEAAKcLcUwCAABwQoToAGATRqI7k/l5hQnRAQAuwTEJAADAiRGiA4BNQs2csDqR+XkxEh0A4BbcHQcAAHBihOgAYJPErdMlnLA6SWUJ07kAANzFvLA/mxAdAABgWIToAGCDo5EeHY1EJUmVpUGbW4NkVJUVSCJEBwC4Q28srv3NEUmMRAcAABgJIToA2MAMYKcW5imYm2Nza5CMqv47B95piSgeN2xuDQAA43PwaKd644YCOV5NK8yzuzkAAAAZiRAdAGyQmMqFUeiOM31ynvw+j3p643qvtcvu5gAAMC51x00v5/V6bG4NAABAZiJEBwAbmAt4VZUW2NwSJCvH59XMYnNe9IjNrQEAYHzCXNgHAAA4KUJ0ALBBXSJE54TViar654x9p5l50QEAzhbiwj4AAMBJEaIDgA3CzZywOpkZooeaGYkOAHC2EBf2AQAATooQHQDSzDAMhfunAeGE1Zkq+0P0MCE6AMDhGIkOAABwcoToAJBmje3dau/uldcjVRQTojtRVYk5nQshOgDAubp7Yzp4tFMSc6IDAACcCCE6AKSZOQp9RlG+Ajk+m1uDsagq6wvRDxzpVCxuc2MAABij/c0RGYZUEMhRWUHA7uYAAABkLEJ0AEizUFO7JKmyfzQznKd8Yp7y/F7F4oaau+1uDQAAY2NO5VJZGpTH47G5NQAAAJmLEB0A0izUPxJ9dikhulN5vZ7ERZDGLkIHAIAzMR86AADA6BCiA0CahROjvgjRnayq1AzRbW4IAABjFG7uD9FLmA8dAADgRAjRASDNQoTormB+fo2djEQHADhTXWN/iF7GMQkAAMCJjClE37BhgyorK5WXl6eFCxfqhRdeOOH+jz32mM444wzl5eXp7LPP1tatW8fUWABwunjcSIz6YjoXZzNHoh/O0JHo9NUAgJMxj0lYpwUAAODEkg7Rt2zZotraWq1Zs0YvvfSS5syZo8WLF+vw4cPD7v/cc89pyZIl+sIXvqCXX35ZV155pa688kq9+uqr4248ADjNe61d6u6NK8fr0YzJ+XY3B+NghuhNGTgnOn01AOBk2rqiamjtWx27igv7AAAAJ5ST7APWrVun6667TsuXL5ckbdy4UU8++aQ2bdqk22+/fcj+P/jBD3TxxRfrq1/9qiTp7rvv1o4dO/TjH/9YGzduHGfzk9fWFdWDf3hbb73rUd0zb8vn86W9DVaJxWKuqEOilkzkljqkzKplx18aJPWdrOb4mFHLyczA4Ui31B2Nye/329yiAU7vqyXpsT0H9WyG/N6OVyb9DRoPt9QhuacWt9QhuacWJ9VR39p3K9WMyfmaHMy1uTUAAACZLakQvaenR3v27NHKlSsT27xer2pqarR79+5hH7N7927V1tYO2rZ48WI9/vjjI75Od3e3uru7E9+3trZKkqLRqKLRaDJNHuJIe5d+8Pu3JfmkA2+P67kyg1vqkKglE7mlDinTavnb08uS/ntm7j/ev4OZwA21FOZ6VBDwqb07prcPt+lDM8Yflljxfrihr5akLf97QP/vYGb93o6PW2pxSx2Se2pxSx2Se2pxVh3nzCgc9u+2G/pqKTV1OP09AQAAyUsqRG9qalIsFlN5efmg7eXl5XrjjTeGfUx9ff2w+9fX14/4OmvXrtVdd901ZPv27dsVDI5v5fhIr3ReOaM/AdgnzydVdr2lrVvfGtPjd+zYYXGL7OP0Ws4t7utP9jz/nMJ543++SCQy7udwQ18tSTN9Hk0oz7ypcgDATXI80kf8B7V168ER93F6X22ysg4r+msAAOAsSU/nkg4rV64cNCKutbVVFRUVWrRokQoLC8f9/FdEo9qxY4cuuuiijLr9PllRl9QhUUsmcksdkntqcUsdkntqucjiOszR3E6Q6r7a6vfWTm759+6WOiT31OKWOiT31OKWOiT31JKKOpzUXwMAAGskFaKXlpbK5/OpoaFh0PaGhgZNnTp12MdMnTo1qf0lKRAIKBAIDNnu9/stPYCz+vns4pY6JGrJRG6pQ3JPLW6pQ3JPLVbVYcVz0FdnLrfU4pY6JPfU4pY6JPfU4pY6JPfUYmUdbng/AABAcpKa1yQ3N1fz58/Xzp07E9vi8bh27typ6urqYR9TXV09aH+p71a6kfYHAABjR18NAAAAAIC1kp7Opba2VsuWLdO5556rBQsWaP369ero6NDy5cslSUuXLtWMGTO0du1aSdLNN9+sCy64QN/73vd06aWXavPmzXrxxRf105/+1NpKAACAJPpqAAAAAACslHSIfvXVV6uxsVGrV69WfX295s6dq23btiUWJNu/f7+83oEB7uedd54effRR3XHHHfr617+uD3zgA3r88cd11llnWVcFAABIoK8GAAAAAMA6Y1pYdMWKFVqxYsWwP9u1a9eQbf/4j/+of/zHfxzLSwEAgDGgrwYAAAAAwBpJzYkOAAAAAAAAAEA2IUQHAAAAAAAAAGAEhOgAAAAAAAAAAIyAEB0AAAAAAAAAgBEQogMAAAAAAAAAMAJCdAAAAAAAAAAARkCIDgAAAAAAAADACAjRAQAAAAAAAAAYASE6AAAAAAAAAAAjIEQHAAAAAMAGGzZsUGVlpfLy8rRw4UK98MILJ9z/scce0xlnnKG8vDydffbZ2rp1a5paCgBAdiNEBwAAAAAgzbZs2aLa2lqtWbNGL730kubMmaPFixfr8OHDw+7/3HPPacmSJfrCF76gl19+WVdeeaWuvPJKvfrqq2luOQAA2SfH7gaMhmEYkqTW1lZLni8ajSoSiai1tVV+v9+S57SDW+qQqCUTuaUOyT21uKUOyT21WF2H2c+Z/Z6T0FePzC21uKUOyT21uKUOyT21uKUOyT21pKIOq/rrdevW6brrrtPy5cslSRs3btSTTz6pTZs26fbbbx+y/w9+8ANdfPHF+upXvypJuvvuu7Vjxw79+Mc/1saNG4fs393dre7u7sT3x44dG9R+AADcKhXn1o4I0dva2iRJFRUVNrcEAIDUa2tr06RJk+xuRlLoqwEA2WY8/XVPT4/27NmjlStXJrZ5vV7V1NRo9+7dwz5m9+7dqq2tHbRt8eLFevzxx4fdf+3atbrrrruGbKevBgBki+bmZsvOrR0Rok+fPl0HDhzQxIkT5fF4xv18ra2tqqio0IEDB1RYWGhBC+3hljokaslEbqlDck8tbqlDck8tVtdhGIba2to0ffp0C1qXXvTVI3NLLW6pQ3JPLW6pQ3JPLW6pQ3JPLamow4r+uqmpSbFYTOXl5YO2l5eX64033hj2MfX19cPuX19fP+z+K1euHBS6Hz16VLNmzdL+/fsdd7HeKdzye5PJeI9Tj/c49XiPU+/YsWOaOXOmiouLLXtOR4ToXq9Xp5xyiuXPW1hY6Ip/rG6pQ6KWTOSWOiT31OKWOiT31GJlHU49qaWvPjm31OKWOiT31OKWOiT31OKWOiT31GJ1HU7orwOBgAKBwJDtkyZNcsVnmsnc8nuTyXiPU4/3OPV4j1PP67VuOVAWFgUAAAAAII1KS0vl8/nU0NAwaHtDQ4OmTp067GOmTp2a1P4AAMA6hOgAAAAAAKRRbm6u5s+fr507dya2xeNx7dy5U9XV1cM+prq6etD+krRjx44R9wcAANZxxHQuVgsEAlqzZs2wt7Y5iVvqkKglE7mlDsk9tbilDsk9tbiljkzkpvfWLbW4pQ7JPbW4pQ7JPbW4pQ7JPbVkch21tbVatmyZzj33XC1YsEDr169XR0eHli9fLklaunSpZsyYobVr10qSbr75Zl1wwQX63ve+p0svvVSbN2/Wiy++qJ/+9Kejer1Mfi/cgvc49XiPU4/3OPV4j1MvFe+xxzAMw7JnAwAAAAAAo/LjH/9Y9913n+rr6zV37lz98Ic/1MKFCyVJH//4x1VZWamHH344sf9jjz2mO+64Q+FwWB/4wAf0ne98R5dccolNrQcAIHsQogMAAAAAAAAAMALmRAcAAAAAAAAAYASE6AAAAAAAAAAAjIAQHQAAAAAAAACAERCiAwAAAAAAAAAwAleG6N/+9rd13nnnKRgMavLkyaN6jGEYWr16taZNm6b8/HzV1NTorbfeGrRPS0uLPvOZz6iwsFCTJ0/WF77wBbW3t6eggrG/ZjgclsfjGfbrscceS+w33M83b96cMXVIfavRv7+N119//aB99u/fr0svvVTBYFBTpkzRV7/6VfX29qasDin5WlpaWvSVr3xFp59+uvLz8zVz5kz90z/9k44dOzZov3R8Jhs2bFBlZaXy8vK0cOFCvfDCCyfc/7HHHtMZZ5yhvLw8nX322dq6deugn4/m9yYVkqnjgQce0Mc+9jEVFRWpqKhINTU1Q/b/3Oc+N+S9v/jii1NdhqTkann44YeHtDMvL2/QPk74TIb73fZ4PLr00ksT+9jxmfzhD3/QZZddpunTp8vj8ejxxx8/6WN27dqlj3zkIwoEAjrttNP08MMPD9kn2d+7bOKW/totffVYapEys7+mrx7ghH6BvjrzPpNM7asl+uuTsfpvCIay+u8bhhrr7+PmzZvl8Xh05ZVXpraBLpDse3z06FHddNNNmjZtmgKBgD74wQ/y9+Ikkn2P169fnzgWraio0K233qqurq40tdZ5UnU8cEKGC61evdpYt26dUVtba0yaNGlUj7n33nuNSZMmGY8//rjx//7f/zMuv/xyo6qqyujs7Ezsc/HFFxtz5swx/vSnPxl//OMfjdNOO81YsmRJiqoY22v29vYa77333qCvu+66yygoKDDa2toS+0kyfvaznw3a7/ha7a7DMAzjggsuMK677rpBbTx27NigWs866yyjpqbGePnll42tW7capaWlxsqVK1NWx1hqeeWVV4yrrrrKeOKJJ4x9+/YZO3fuND7wgQ8Yf//3fz9ov1R/Jps3bzZyc3ONTZs2Ga+99ppx3XXXGZMnTzYaGhqG3f9//ud/DJ/PZ3znO98x/vKXvxh33HGH4ff7jVdeeSWxz2h+b6yWbB3XXHONsWHDBuPll182Xn/9deNzn/ucMWnSJOPdd99N7LNs2TLj4osvHvTet7S0pKyGsdbys5/9zCgsLBzUzvr6+kH7OOEzaW5uHlTDq6++avh8PuNnP/tZYh87PpOtW7ca3/jGN4xf//rXhiTjN7/5zQn3r6urM4LBoFFbW2v85S9/MX70ox8ZPp/P2LZtW2KfZN+bbOOW/totffVYajGMzOyv6avpq+2qhb469Z8J/fXIUvE3BIOl4u8bBhvr72MoFDJmzJhhfOxjHzOuuOKK9DTWoZJ9j7u7u41zzz3XuOSSS4xnn33WCIVCxq5du4y9e/emueXOkex7/MgjjxiBQMB45JFHjFAoZDz11FPGtGnTjFtvvTXNLXeOVBwPnIwrQ3TTz372s1GdlMfjcWPq1KnGfffdl9h29OhRIxAIGP/xH/9hGIZh/OUvfzEkGf/7v/+b2Od3v/ud4fF4jIMHD1reditfc+7cucbnP//5QdtG8w/MKmOt44ILLjBuvvnmEX++detWw+v1Djox+clPfmIUFhYa3d3dlrT9/az6TH75y18aubm5RjQaTWxL9WeyYMEC46abbkp8H4vFjOnTpxtr164ddv9PfepTxqWXXjpo28KFC40vf/nLhmGM7vcmFZKt4/16e3uNiRMnGj//+c8T25YtW2bLgVaytZzsb5pTP5Pvf//7xsSJE4329vbENrs+E9Nofh+/9rWvGR/+8IcHbbv66quNxYsXJ74f73uTLZzcX7ulrzYM9/TX9NX01Vair+6TiX21YdBfv5/Vf0MwVCr+vmGwsbzHvb29xnnnnWc8+OCDGfG3KdMl+x7/5Cc/MWbPnm309PSkq4mOl+x7fNNNNxl/+7d/O2hbbW2tcf7556e0nW5h1fHAybhyOpdkhUIh1dfXq6amJrFt0qRJWrhwoXbv3i1J2r17tyZPnqxzzz03sU9NTY28Xq+ef/75lLTLitfcs2eP9u7dqy984QtDfnbTTTeptLRUCxYs0KZNm9T3785646njkUceUWlpqc466yytXLlSkUhk0POeffbZKi8vT2xbvHixWltb9dprr1lfiKz7d3Ds2DEVFhYqJydn0PZUfSY9PT3as2fPoH/jXq9XNTU1iX/j77d79+5B+0t976+5/2h+b6w2ljreLxKJKBqNqri4eND2Xbt2acqUKTr99NN1ww03qLm52dK2v99Ya2lvb9esWbNUUVGhK664YtC/dad+Jg899JA+/elPa8KECYO2p/szSdbJfkeseG8wWCb2127pqyX39Nf01fTVVqGvHuDUvlrKnv46FX9DMFgq/76hz1jf429+85uaMmXKsMdSGGws7/ETTzyh6upq3XTTTSovL9dZZ52le+65R7FYLF3NdpSxvMfnnXee9uzZk5jypa6uTlu3btUll1ySljZnAyv6vJyT7+J+9fX1kjTo5M783vxZfX29pkyZMujnOTk5Ki4uTuyTinaN9zUfeughnXnmmTrvvPMGbf/mN7+pv/3bv1UwGNT27dt14403qr29Xf/0T/9kWftNY63jmmuu0axZszR9+nT9+c9/1m233aY333xTv/71rxPPO9xnZv4sFaz4TJqamnT33XfrS1/60qDtqfxMmpqaFIvFhn2/3njjjWEfM9L7e/zvhLltpH2sNpY63u+2227T9OnTB/3xvPjii3XVVVepqqpKb7/9tr7+9a/rk5/8pHbv3i2fz2dpDaax1HL66adr06ZNOuecc3Ts2DF997vf1XnnnafXXntNp5xyiiM/kxdeeEGvvvqqHnrooUHb7fhMkjXS70hra6s6Ozt15MiRcf97xWCZ2F+7pa+W3NNf01fTV1uFvrqPk/tqKXv661T8DcFgqfr7hgFjeY+fffZZPfTQQ9q7d28aWuh8Y3mP6+rq9Pvf/16f+cxntHXrVu3bt0833nijotGo1qxZk45mO8pY3uNrrrlGTU1N+uhHPyrDMNTb26vrr79eX//619PR5KxwsuOB/Pz8kz6HY0L022+/Xf/6r/96wn1ef/11nXHGGWlq0diNtpbx6uzs1KOPPqpVq1YN+dnx2+bNm6eOjg7dd999SZ0EprqO409czz77bE2bNk2f+MQn9Pbbb+vUU08d8/MOJ12fSWtrqy699FJ96EMf0p133jnoZ1Z8Jjixe++9V5s3b9auXbsGLfL16U9/OvH/Z599ts455xydeuqp2rVrlz7xiU/Y0dRhVVdXq7q6OvH9eeedpzPPPFP/9m//prvvvtvGlo3dQw89pLPPPlsLFiwYtN0pnwmGckt/7Za+WnJPf01fnR3oqzMPfTVgjZH+vmHs2tradO211+qBBx5QaWmp3c1xrXg8rilTpuinP/2pfD6f5s+fr4MHD+q+++4jRLfIrl27dM899+j+++/XwoULtW/fPt188826++67hz1PgD0cE6L/8z//sz73uc+dcJ/Zs2eP6bmnTp0qSWpoaNC0adMS2xsaGjR37tzEPocPHx70uN7eXrW0tCQeP1qjrWW8r/mrX/1KkUhES5cuPem+Cxcu1N13363u7m4FAoGT7i+lr47j2yhJ+/bt06mnnqqpU6cOWd24oaFBkjLyM2lra9PFF1+siRMn6je/+Y38fv8J9x/LZzKS0tJS+Xy+xPtjamhoGLHdU6dOPeH+o/m9sdpY6jB997vf1b333qunn35a55xzzgn3nT17tkpLS7Vv376UnQSOpxaT3+/XvHnztG/fPknO+0w6Ojq0efNmffOb3zzp66TjM0nWSL8jhYWFys/Pl8/nG/dn7ERu6a/d0ldL7umv6auHoq+mrx6NbO6rpezpr1PxNwSDpevvWzZL9j1+++23FQ6HddlllyW2xeNxSX13ob355puWD8BzurH8O542bZr8fv+gu4zOPPNM1dfXq6enR7m5uSlts9OM5T1etWqVrr32Wn3xi1+U1HdxuqOjQ1/60pf0jW98Q14vs3GP18mOB0bDMZ9CWVmZzjjjjBN+jfUXt6qqSlOnTtXOnTsT21pbW/X8888nRpJUV1fr6NGj2rNnT2Kf3//+94rH44mTRatrGe9rPvTQQ7r88stVVlZ20n337t2roqKipE4A01XH8W2UlDjhqK6u1iuvvDLoRHnHjh0qLCzUhz70oVE/bzpqaW1t1aJFi5Sbm6snnnhiVCMPxvKZjCQ3N1fz588f9G88Ho9r586dg0ZLHa+6unrQ/lLf+2vuP5rfG6uNpQ5J+s53vqO7775b27ZtGzRH7kjeffddNTc3Dzq5tdpYazleLBbTK6+8kminkz4TSXrsscfU3d2tz372syd9nXR8Jsk62e+IFZ+xE7mlv3ZLX53OWo5vp2R9f01fPRR9NX31aGRzXy1lT3+dir8hGCxdf9+yWbLv8RlnnKFXXnlFe/fuTXxdfvnluvDCC7V3715VVFSks/mOMJZ/x+eff7727duXuEAhSX/96181bdo0AvRhjOU9jkQiQ4Jy86JFKtdEyiaW9HnJrXfqDO+8847x8ssvG3fddZdRUFBgvPzyy8bLL79stLW1JfY5/fTTjV//+teJ7++9915j8uTJxm9/+1vjz3/+s3HFFVcYVVVVRmdnZ2Kfiy++2Jg3b57x/PPPG88++6zxgQ98wFiyZElKaznZa7777rvG6aefbjz//PODHvfWW28ZHo/H+N3vfjfkOZ944gnjgQceMF555RXjrbfeMu6//34jGAwaq1evzpg69u3bZ3zzm980XnzxRSMUChm//e1vjdmzZxt/8zd/k3hMb2+vcdZZZxmLFi0y9u7da2zbts0oKyszVq5cmbI6xlLLsWPHjIULFxpnn322sW/fPuO9995LfPX29hqGkZ7PZPPmzUYgEDAefvhh4y9/+YvxpS99yZg8ebJRX19vGIZhXHvttcbtt9+e2P9//ud/jJycHOO73/2u8frrrxtr1qwx/H6/8corryT2Gc3vjdWSrePee+81cnNzjV/96leD3nvz70FbW5vxL//yL8bu3buNUChkPP3008ZHPvIR4wMf+IDR1dWVsjrGUstdd91lPPXUU8bbb79t7Nmzx/j0pz9t5OXlGa+99tqgejP9MzF99KMfNa6++uoh2+36TNra2hL9hSRj3bp1xssvv2y88847hmEYxu23325ce+21if3r6uqMYDBofPWrXzVef/11Y8OGDYbP5zO2bduW2Odk7022c0t/7Za+eiy1ZGp/TV9NX21XLfTVqf9M6K9Hloq/IRjM6r9vGGqsf69My5YtM6644oo0tdaZkn2P9+/fb0ycONFYsWKF8eabbxr/9V//ZUyZMsX41re+ZVcJGS/Z93jNmjXGxIkTjf/4j/8w6urqjO3btxunnnqq8alPfcquEjJeKo4HTsaVIfqyZcsMSUO+nnnmmcQ+koyf/exnie/j8bixatUqo7y83AgEAsYnPvEJ48033xz0vM3NzcaSJUuMgoICo7Cw0Fi+fHnKO7+TvWYoFBpSm2EYxsqVK42KigojFosNec7f/e53xty5c42CggJjwoQJxpw5c4yNGzcOu69ddezfv9/4m7/5G6O4uNgIBALGaaedZnz1q181jh07Nuh5w+Gw8clPftLIz883SktLjX/+5382otFoyuoYSy3PPPPMsP8eJRmhUMgwjPR9Jj/60Y+MmTNnGrm5ucaCBQuMP/3pT4mfXXDBBcayZcsG7f/LX/7S+OAHP2jk5uYaH/7wh40nn3xy0M9H83uTCsnUMWvWrGHf+zVr1hiGYRiRSMRYtGiRUVZWZvj9fmPWrFnGddddl7aTpmRqueWWWxL7lpeXG5dcconx0ksvDXo+J3wmhmEYb7zxhiHJ2L59+5DnsuszGel31Wz7smXLjAsuuGDIY+bOnWvk5uYas2fPHtSvmE703mQ7t/TXbumrx1JLpvbX9NUDnNAv0Fdn3mdiGJnZVxsG/fXJWP03BENZ+fcNw0v23/HxCNFHJ9n3+LnnnjMWLlxoBAIBY/bs2ca3v/3txEADDC+Z9zgajRp33nmnceqppxp5eXlGRUWFceONNxpHjhxJf8MdIlXHAyfiMQzuCwAAAAAAAAAAYDiOmRMdAAAAAAAAAIB0I0QHAAAAAAAAAGAEhOgAAAAAAAAAAIyAEB0AAAAAAAAAgBEQogMAAAAAAAAAMAJCdAAAAAAAAAAARkCIDgAAAAAAAADACAjRAQAAAAAAAAAYASE6AAAAAAAAAAAjIEQHAAAAAAAAAGAEhOgAAAAAAAAAAIzg/wcIQbvFpodx6AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -338,24 +232,13 @@ "basis_functions, _ = linear_FEM_basis(x_plot, n)\n", "#basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAXRCAYAAACaYm8JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU5d3///dM9gAJhEBC2ALKLSoKCgVD603VSBBc4kKBalmK+HVJK6Z1wZ+CijVaN1yoVBRBbyno3UrvFoqkEbSWKAWkdQFblRBEEggQAgkkk8z5/TGZCSGTZZKZzMw5r+fjMQ/ImXNmriu8M8bPXPO5bIZhGAIAAAAAAAAAAF7Zgz0AAAAAAAAAAABCGYV0AAAAAAAAAABaQCEdAAAAAAAAAIAWUEgHAAAAAAAAAKAFFNIBAAAAAAAAAGgBhXQAAAAAAAAAAFpAIR0AAAAAAAAAgBZQSAcAAAAAAAAAoAUU0gEAAAAAAAAAaAGF9A566KGHZLPZVFZW1uq5tbW1uueee9S/f3/Z7XZlZ2cHfoCAn5B1WAVZh1WQdVgFWYdVkHVYBVmHVZD10EMhvRMtW7ZMTz75pG644QatWLFCd911V4vn79y5UxMmTFDXrl2VlJSkn/zkJzp48GCnjHXz5s36wQ9+oPj4eKWmpurnP/+5jh8/3inPjfAXLlnfsGGDZs+erWHDhikiIkLp6ekBf06YSzhkvaqqSosXL9b48ePVp08fdevWTRdccIFeeukl1dXVBfS5YR7hkHVJeuyxx3TRRRepV69eio2N1ZAhQzR37txO+/0J4S9csn6q8vJy9e7dWzabTf/7v//bqc+N8BUuWf/hD38om83W5DZhwoSAPzfMIVyyLkk1NTV67LHHNHToUMXGxiolJUWTJk3St99+2ynPj/AWDlkvKiry+pruvs2ZMyegz+8PkcEegJW899576tu3r5599tlWz/3222/13//930pMTNRjjz2m48eP66mnntKnn36qLVu2KDo6OmDj3LFjhy677DKdffbZeuaZZ/Ttt9/qqaee0n/+8x/95S9/CdjzwjzCJesrV67U6tWrdeGFFyotLS1gzwPzCoesf/PNN/rZz36myy67TLm5uUpISNC7776r22+/XR999JFWrFgRkOeFuYRD1iVp27ZtGjFihKZOnapu3bpp586dWrp0qdauXasdO3aoS5cuAXtumEO4ZP1U8+fPV1VVVac8F8wjnLLer18/5eXlNTrG7+5oq3DJusPh0KRJk7R582bNmTNH559/vo4cOaKPP/5YR48eVb9+/QL23DCHcMh6r1699MYbbzQ5vn79er355psaP358QJ7Xnyikd6IDBw6oe/fubTr3scceU2VlpbZt26YBAwZIkkaPHq3LL79cy5cv1y233BKwcd5///3q0aOHNm3apISEBElSenq65syZow0bNoRFsBFc4ZL1xx57TEuXLlVUVJSuvPJKffbZZwF7LphTOGQ9NTVVn376qc4991zPsf/3//6ffvrTn+q1117Tgw8+qDPPPDMgzw3zCIesS9Lvf//7JscyMjJ0ww036E9/+pOmTp0asOeGOYRL1t0+++wzvfTSS5o/f77mz58f8OeDeYRT1hMTE3XTTTcF9DlgXuGS9WeffVbvv/++PvzwQ40ePTpgzwPzCoesd+nSxevr+fLly5WQkKCrrroqIM/rT7R28ZOysjL96Ec/UkJCgnr27Kk777xTJ0+elNTw0YWNGzfq888/93xkYdOmTc0+3u9//3tdeeWVnkBLUmZmpv7rv/5Lb731VotjWbBggex2uwoKChodv+WWWxQdHa1//vOfzV5bUVGh/Px83XTTTZ4iuiRNnz5dXbt2bfW5YX5mybrkWskSFRXVyoxhVWbJenJycqMiutu1114ryfWRPlibWbLeHHfbrvLycp+vhbmYMet33nmnrr32Wl188cVtOh/WYMas19bW0moUTZgl606nU88995yuvfZajR49WrW1tXzSCI2YJeve7N+/Xxs3btR1112n2NhYn64NCgMdsmDBAkOScd555xlXXXWV8eKLLxo33XSTIcn4yU9+YhiGYRw/ftx44403jKFDhxr9+vUz3njjDeONN94wSkpKvD7mt99+a0gynnjiiSb33XTTTUZSUlKLY6qpqTEuuOACY+DAgUZFRYVhGIaxfv16Q5KxcOHCFq/98MMPDUnG6tWrm9z3gx/8wLjwwgtbvB7mZbasn27SpEnGwIEDfboG5mT2rLu9/PLLhiRj8+bN7boe4c+sWXc6ncbBgweN/fv3Gx988IExduxYIyIiwti5c2ebrof5mDXrb731lhEbG2vs3r3b2LhxoyHJePvtt9t0LczJjFkfN26cERUVZURHRxuSjJSUFOOBBx4wampqWr0W5mW2rH/66aeGJOPRRx815syZ48n7eeedZ7z33ntt+ZbApMyWdW+eeeYZQ5KRn5/v87XBQCG9g9yhvvrqqxsdv/322w1Jxj//+U/PsXHjxhnnnntuq4/5j3/8w5BkvP76603uu/vuuw1JxsmTJ1t8jE8//dSIjo42br75ZuPIkSNG3759jVGjRhkOh6PF695++21DkvHBBx80uW/y5MlGampqq+OHOZkt66ejkA43s2fdMAyjurraOOecc4xBgwa163qYg1mzvn//fkOS59avXz+vCwRgHWbMelVVlTFgwABj3rx5hmEYFNJhGIY5s/7Tn/7UeOihh4zf//73xuuvv25cffXVhiTjRz/6UavXwrzMlvU//OEPhiSjZ8+expAhQ4zXXnvNeO2114whQ4YY0dHRjeYDazFb1r0ZOXKk0adPH6Ours7na4OB1i5+cscddzT6+mc/+5kkad26dT4/1okTJyRJMTExTe5zf8zBfU5zhg0bpocfflivvPKKsrKyVFZWphUrVigysuW2+K09d2vPC/MzS9aB1pg56zk5Ofriiy/04osv8rMC02U9KSlJ+fn5+tOf/qRHHnlEycnJtAOAJHNl/fHHH5fD4dD999/v89hhfmbK+quvvqoFCxbouuuu009+8hP98Y9/1Jw5c/TWW2/po48+8nk+MBezZN39e8qxY8dUUFCgmTNnaubMmfrrX/8qwzD061//2uf5wFzMkvXT/fvf/9a2bds0depU2e3hUaIOj1GGgSFDhjT6+owzzpDdbldRUZHPjxUXFydJqq6ubnKfuweS+5yW3H333Ro+fLi2bNmiBQsW6Jxzzunwc7fleWFuZsk60BqzZv3JJ5/U0qVLtXDhQk2cONHn62E+Zst6dHS0MjMzdeWVV+rBBx/U4sWLNXv2bP35z39u82PAnMyS9aKiIj355JP61a9+pa5du/o4cliBWbLenF/84heSpL/+9a/tfgyYg1my7n7c73//++rfv7/n+IABA/SDH/xAmzdvbtMcYF5myfrp3nzzTUnSjTfe6PO1wUIhPUBsNlu7r+3Tp48kV8P90+3fv19JSUle3zk63TfffKP//Oc/kqRPP/3UL8+dlpbWpseBdYRr1gFfmSHry5cv17333qtbb71VDzzwgM/XwxrMkPVTjR07Vn369PH8og64hWvW58+fr759++qHP/yhioqKVFRUpJKSEknSwYMHVVRUJKfT2dapwALCNevNcRcaDx8+3KHHgfmEa9bddZaUlJQm9/Xu3VtHjhxp0+PAOsI166dbuXKlzjrrLI0cObJd1wcDhXQ/cYfH7auvvpLT6VR6errPj9W3b1/16tVLW7dubXLfli1bNGLEiFYfw+l0aubMmUpISND999+v3/3ud/rDH/7Q6nXDhg1TZGRkk+euqanRjh072vTcMDezZB1ojdmy/sc//lE333yzrrvuOi1evNiX4cPkzJZ1b06ePKmjR4926DEQ/syS9eLiYn311VcaPHiwBg0apEGDBmnatGmSpNtvv12DBg1SRUWFz3OCeZgl68355ptvJEm9evVq92PAHMyS9fPOO09RUVHat29fk/u+++47sg7TZP1UH3/8sb766quwWo0uUUj3m9OLEi+88IIk6YorrmjX411//fX685//rL1793qOFRQU6N///rcmT57c6vXPPPOMNm/erJdfflkLFy7U2LFjddttt6msrKzF6xITE5WZman/+Z//0bFjxzzH33jjDR0/frxNzw1zM0vWgdaYKesffPCBpk6dqv/+7//Wm2++GTb959A5zJL1yspKVVVVNTn++9//XkeOHNGoUaN8nwxMxSxZf/TRR/XOO+80ui1cuFCSdM899+idd95Rly5d2jUnmINZsl5RUdGk9YBhGHr00UclSVlZWe2YDczELFnv1q2bJk6cqM2bN2vXrl2e4zt37tTmzZt1+eWXt2s+MA+zZP1UK1eulCT9+Mc/9n0CwRTs3U7DnXsH3fPOO8+46qqrjMWLFxs33XSTIcn48Y9/3Ojctu6gaxiGUVxcbPTs2dM444wzjOeff9547LHHjB49ehjnnXdeq7vnfvHFF0ZsbKwxc+ZMz7F///vfRnx8vDF58uRWn3vbtm1GTEyMccEFFxgvvfSS8f/9f/+fERsba4wfP75NY4c5mTHr//znP42FCxcaCxcuNM466yyje/funq//7//+r03jh/mYLetFRUVGYmKiERcXZyxevNh44403Gt1O3ekd1mK2rH/yySdGz549jdtvv914/vnnjRdffNGYOXOmERkZaaSnpxtlZWVtGj/Mx2xZ92bjxo2GJOPtt9/2+VqYh9myvnHjRiM1NdW46667jMWLFxtPPfWU8f3vf9+QZNxyyy1tGjvMyWxZNwzD+Pzzz42uXbsaffr0MfLy8oy8vDyjT58+Rq9evYxvv/22TeOH+Zgx64ZhGLW1tUZKSopx0UUXten8UEIhvYPcof7iiy+MG264wejWrZvRo0cPIycnxzhx4kSjc30JtWEYxmeffWaMHz/eiI+PN7p3727ceOONRklJSYvX1NbWGt/73veMfv36GeXl5Y3ue+655wxJxurVq1t97r/97W/G2LFjjdjYWKNXr17GHXfcYVRUVLR57DAfM2b9tddeMyR5vc2YMaPN44e5mC3r7uJKc7cFCxa0efwwF7Nl/eDBg8Ytt9xiDB061OjSpYsRHR1tDBkyxJg7d65x8ODBNo8d5mO2rHtDIR2GYb6sf/PNN8bkyZON9PR0IzY21oiPjzdGjhxpLFmyxHA6nW0eO8zHbFl327Ztm5GZmWl06dLF6Natm3HNNdcY//73v9s8dpiPWbO+fv16Q5Lx/PPPt3m8ocJmGIbh92XuAAAAAAAAAACYBE1SAQAAAAAAAABoAYV0AAAAAAAAAABaQCEdAAAAAAAAAIAWUEgHAAAAAAAAAKAFFNIBAAAAAAAAAGhBZLAH4A9Op1PfffedunXrJpvNFuzhIAAMw9CxY8eUlpYmu93a7/+Qd3Mj6w3IurmR9QZk3dzIegOybm5kvQFZNzey3oCsmxtZb0DWzc2XrJuikP7dd9+pf//+wR4GOsHevXvVr1+/YA8jqMi7NZB1sm4VZJ2sWwVZJ+tWQdbJulWQdbJuFWSdrFtFW7JuikJ6t27dJLkmnJCQ4DnucDi0YcMGjR8/XlFRUcEaXkCYdW7NzauiokL9+/f3/Ftbmbe8mzUPknnnRtZbR9bNgay3jqybA1lvHVk3B7LeOrJuDmS9dWTdHMh668i6eXibm09ZN/zs/fffN6688kqjT58+hiTjnXfeafWajRs3GhdccIERHR1tnHHGGcZrr73m03MePXrUkGQcPXq00fGamhpjzZo1Rk1NjU+PFw7MOrfm5tXcv7EVeftemDUPhmHeuYVa1l988UVj4MCBRkxMjDF69Gjj448/bvH8t956yzjrrLOMmJgYY9iwYcbatWsb3T9jxgxDUqNbVlaWT2Mi6+ZA1ltH1s2BrLeOrJsDWW8dWTcHst46sm4OZL11ZN08vM3Nl6z7vclRZWWlhg8frsWLF7fp/N27d2vSpEm65JJLtGPHDs2dO1c333yz3n33XX8PDQDgxerVq5Wbm6sFCxZo+/btGj58uLKysnTgwAGv52/evFnTpk3T7Nmz9cknnyg7O1vZ2dn67LPPGp03YcIE7d+/33P73e9+1xnTAZpF1mEVZB1WQdZhFWQdVkHWEer8Xki/4oor9Oijj+raa69t0/lLlizRoEGD9PTTT+vss89WTk6ObrjhBj377LMdHoujzqny6g4/DBD2DMOQYRjBHgZC1DPPPKM5c+Zo1qxZOuecc7RkyRLFx8dr2bJlXs9/7rnnNGHCBN199906++yztXDhQl144YV68cUXG50XExOj1NRUz61Hjx6dMR2gWWQdVkHWYRVkHVZB1mEVZB2hLug90gsLC5WZmdnoWFZWlubOndvsNdXV1aqubqiQV1RUSHL1uXE4HJKk/5Qe11WLCxUXEaHJVzr8P/Agc8/T/adZNDcvs82zM63+R7Ee+dMX6tsjTstmfk/9esQHe0gIITU1Ndq2bZvmzZvnOWa325WZmanCwkKv1xQWFio3N7fRsaysLK1Zs6bRsU2bNql3797q0aOHLr30Uj366KPq2bNns2Npy2u7WV/7JPPOLVRe18l66DDr3Mh6U2TdnHMj602RdXPOjaw3RdbNOTey3hRZt9bcfJln0AvpJSUlSklJaXQsJSVFFRUVOnHihOLi4ppck5eXp4cffrjJ8Q0bNig+3lUkPFkr1RmROl5r05/W5ys2IjDjD7b8/PxgDyEgTp9XVVVVkEYS3r4+eFz/3zufqdZp6N+lrr+v+OnoYA8LIaSsrEx1dXVeX4d37drl9ZrmXrdLSko8X0+YMEHXXXedBg0apK+//lr333+/rrjiChUWFioiwvsLclte293M+tonmXduwX5dJ+uhx6xzI+sNyLqLWedG1huQdRezzo2sNyDrLmadG1lvQNZdrDI3X7Ie9EJ6e8ybN6/RO07u3VXHjx/v2T1Xkp74fKMOVzl05oiLdH7/pGAMNWAcDofy8/N1+eWXm2oH3ebm5X73D75586Ni1ToN9e0ep/1HT+j9fx/UVweO68zeXYM9NJjc1KlTPX8/77zzdP755+uMM87Qpk2bdNlll3m9pi2v7WZ97ZPMOzezv66Tdd+ZdW5kvSmybs65kfWmyLo550bWmyLr5pwbWW+KrFtrbr5kPeiF9NTUVJWWljY6VlpaqoSEBK+r0SVXb6OYmJgmx6Oiohr9Aw/oGa/DVUe172iNRg421z+82+lzNovT52XGOQaa02nojzv2SZIezR6m//lojwp2HdCf//Wd5mb+V5BHh1CRnJysiIgIr6/DqampXq9p7nW7ufMlafDgwUpOTtZXX33V7C8rbX1tb+6YWZh1bsF+XSfrocescyPrDci6i1nnRtYbkHUXs86NrDcg6y5mnRtZb0DWXawyN1/m6PfNRn2VkZGhgoKCRsfy8/OVkZHR4cceUN8LuvjwiQ4/FhBudpUc06HKGnWJjtAPhiQr8xzXx50+/E9ZkEeGUBIdHa2RI0c2eh12Op0qKCho9nW4Pa/b3377rQ4dOqQ+ffr4Z+CAj8g6rIKswyrIOqyCrMMqyDrCgd8L6cePH9eOHTu0Y8cOSdLu3bu1Y8cOFRcXS3J9PGL69Ome82+99VZ98803uueee7Rr1y795je/0VtvvaW77rqrw2MZ2NO1on3vEfprw3o2f+0qmH9vUJKiIuz6wZnJkqRP9pbreHVtMIeGEJObm6ulS5dqxYoV2rlzp2677TZVVlZq1qxZkqTp06c32vDlzjvv1Pr16/X0009r165deuihh7R161bl5ORIcv134O6779ZHH32koqIiFRQU6JprrtGZZ56prKysoMwRkMg6rIOswyrIOqyCrMMqyDpCnd9bu2zdulWXXHKJ52t3T6EZM2Zo+fLl2r9/v6eoLkmDBg3S2rVrddddd+m5555Tv3799Morr/gl0AOSXCvS9xyikA7r+WRvuSRp9CDX/gD9k+LVJzFW+4+e1BffVXiOA1OmTNHBgwc1f/58lZSUaMSIEVq/fr1n05bi4mLZ7Q3vu44dO1YrV67UAw88oPvvv19DhgzRmjVrNGzYMElSRESE/vWvf2nFihUqLy9XWlqaxo8fr4ULF3r9eBzQWcg6rIKswyrIOqyCrMMqyDpCnd8L6T/84Q9lGEaz9y9fvtzrNZ988om/h+IppNPaBVa08zvXZgnD0hI9x85NS9T+oyf12b6jFNLRSE5Ojudd+9Nt2rSpybHJkydr8uTJXs+Pi4vTu+++68/hAX5D1mEVZB1WQdZhFWQdVkHWEcqC3iM9kAYmuVq77K84qerauiCPBug8VTW12n2oUpJ0dp8Ez/FhfV1//+y7o0EZFwAAAAAAABCOTF1IT+oSrRi7IcOQ9rIqHRayq+SYDEPq1S1Gvbo1fFzpnPqi+pclx4I1NAAAAAAAACDsmLqQbrPZlBzr+nvx4crgDgboRP8pdRXKh6Z2a3R8cK8ukqSissoWWzABAAAAAAAAaGDqQrokJce6ioVsOAorKT7syvvAnvGNjvdPipfdJlXW1OngsepgDA0AAAAAAAAIOxYopLv+pJAOK3HnfWBSl0bHYyIj1K+Hq7i+u4xPaQAAAAAAAABtYYFCuntFOkVDWMfe+hXpA05bkS5J6cmu4jqFdAAAAAAAAKBtLFBId/255zAr0mEd7rwPSGpaSB9UX1wv4lMaAAAAAAAAQJtYoJDuWpG+93CV6pxsrgjzO3rCofIqhyTvhfS07nGSpJKjJzp1XAAAAAAAAEC4Mn0hvXu0FBVhk6PO0H4Kh7AAd1uX5K7R6hIT2eT+PvWF9O+OnuzUcQEAAAAAAADhyvSFdLtN6t/DVTgsppUFLKCkvkDuXnl+urREV78j3lgCAAAAAAAA2sb0hXRJ6p9ET2hYx4Fj1ZKk3t1ivd6fWl9ILzl6Uk7aHQEAAAAAAACtskQh3d0nes/hyiCPBAi80grXivTeCTFe709JiJXNJjnqDJVVVnfm0AAAAAAAAICwZIlC+sAkWrsgcBYvXqz09HTFxsZqzJgx2rJlS5uuW7VqlWw2m7Kzs/06ngPHXIX0lGZWpEdF2NW7m6vIvr+cPukAAAAAAABAayxRSB9AaxcEyOrVq5Wbm6sFCxZo+/btGj58uLKysnTgwIEWrysqKtIvf/lLXXzxxX4f04EK1yrzlGZWpEtSaoKryO5evQ4AAAAAAACgeZYqpBcfqpRh0BMa/vPMM89ozpw5mjVrls455xwtWbJE8fHxWrZsWbPX1NXV6cYbb9TDDz+swYMH+31Mpcdabu0iScldXfcdqqzx+/MDAAAAAAAAZhMZ7AF0hn494mSzSZU1dTpUWeMpIgIdUVNTo23btmnevHmeY3a7XZmZmSosLGz2ukceeUS9e/fW7Nmz9be//a3V56murlZ1dUMv84qKCkmSw+GQw+Hw/N39Z+lRVyE9KS7Sc/x0PeKjJEkHjp5o9pxQcfoczaK5eZltngAAAAAAAGZgiUJ6TKRdaYlx2ld+QnsOVVJIh1+UlZWprq5OKSkpjY6npKRo165dXq/58MMP9eqrr2rHjh1tfp68vDw9/PDDTY5v2LBB8fHxjY6t35CvsuMRkmz6dMuH2hPt/THLS+2S7Nr2+b+1rsr7WENNfn5+sIcQEKfPq6qKFlQAAAAAAAChxhKFdMnV3sVVSK/SyIFJwR4OLOjYsWP6yU9+oqVLlyo5ObnN182bN0+5ubmerysqKtS/f3+NHz9eCQkJklyrmPPz8zUy479lfLRZdps0+eorFGG3eX3M0s179Nd9X6pbcpomTjy/YxMLMPfcLr/8ckVFRQV7OH7T3LzcnzgAAAAAAABA6LBMIT09OV6F3xzSHjYchZ8kJycrIiJCpaWljY6XlpYqNTW1yflff/21ioqKdNVVV3mOOZ1OSVJkZKS+/PJLnXHGGU2ui4mJUUxM009RREVFNSksH6tx7QHQIz5asTHNLEeXlJIYJ0k6XOUIm+K0t/mawenzMuMcAQAAAAAAwp0lNhuVpAFJXSRJew5VBnkkMIvo6GiNHDlSBQUFnmNOp1MFBQXKyMhocv7QoUP16aefaseOHZ7b1VdfrUsuuUQ7duxQ//79Ozym8hOu/trd41suxjZsNlrd4nkAAAAAAAAALLQifWBPVy/pPYdZkQ7/yc3N1YwZMzRq1CiNHj1aixYtUmVlpWbNmiVJmj59uvr27au8vDzFxsZq2LBhja7v3r27JDU53l5HqlyF9B7xza9Gl6SeXV33lx2v8cvzAgAAAAAAAGZmuUJ6Ma1d4EdTpkzRwYMHNX/+fJWUlGjEiBFav369ZwPS4uJi2e2d98GP8ir3ivSWC+nuFelHqmpUW+dUZIRlPpwCAAAAAAAA+MxChXRXa5dDlTU6dtKhbrH0IYZ/5OTkKCcnx+t9mzZtavHa5cuX+3Us5VWuFeY9Wmnt0j3Odb9hSBUna5XUpeXCOwAAAAAAAGBlllmG2jUmUj3ri4VsOAqzcvdI79FKYTwywq6uMa730Y7WXwMAAAAAAADAO8sU0qVT2rvQJx0mdaSqbZuNSlJi/ap0CukAAAAAAABAyyxWSHe1dyk6VBnkkQCBUd7GzUYlKYFCOgAAAAAAANAmliqkD0hiw1GYm6e1S5tWpLtau7j7qgMAAAAAAADwzlKF9PRkVyGdHukwK3dRvHsbVqS7W7tUsCIdAAAAAAAAaJGlCukDklytXfbQ2gUmdcSH1i70SAcAAAAAAADaxlKFdPdmo/srTqq6ti7IowH8yzCkipO1khqK5C2hkA4AAAAAAAC0jaUK6T27RKtrTKQMQ9p7+ESwhwP4lcMp1TkNSVK32MhWz6eQDgAAAAAAALSNpQrpNputYcPRw7R3gbmcrP+Qhc0mxUdHtHp+Yn37FwrpAAAAAAAAQMssVUiXGtq7FJWx4SjMxV1I7xoTKZvN1ur5rEgHAAAAAAAA2sZyhfQBPd0r0imkw1zchfRuMa23dZGkhPr2L0dP1AZqSAAAAAAAAIApWK6Qnt6ziyRpzyFau8BcTta5VqF3bUN/dMm1cl2SKqsppAMAAAAAAAAtsVwhfWB9j/Q9h1iRDnM5tbVLW3SpP6+qhkI6AAAAAAAA0BLLFdLdrV32HqlSndMI8mgA//EU0mOj2nS+u+B+nBXpAAAAAAAAQIssV0jvkxin6Ai7HHWG9h89EezhAH5T7WOPdPeK9JMOp2rrnIEaFgAAAAAAABD2LFdIj7Db1C8pThLtXWAuvrZ2iY+O8Py9sqYuEEMCAAAAAAAATMFyhXSJPukwp5O1vm02GhNpV6TddQ190gEAAAAAAIDmWbOQ3rOLJGnP4cogjwTwH19XpNtsNk97l0r6pAMAAAAAAADNsmghvX5Fehkr0mEe7kJ6tzauSJdO3XCU1i4AAAAAAABAc6xdSD9MIR3m4S6kd2njinTXua4+6axIBwAAAAAAAJpn0UK6q7VL8aFKGYYR5NEA/lHdjkJ6fDStXQAAAAAAAIDWWLKQ3q9HnGw2qbKmTmXHa4I9HMAvapyujUPjoyLafI27tUslm40CAAAAAAAAzbJkIT0mMkJpiXGSpGI2HIVJ1Dhdf8b6UEh3t3ahRzoAAAAAAADQvIAV0hcvXqz09HTFxsZqzJgx2rJlS7PnLl++XDabrdEtNjY2UEOTdEqf9EP0SYc5OOoL6XHRbf+xdreBobULfHnNlqS3335bQ4cOVWxsrM477zytW7eu0f2GYWj+/Pnq06eP4uLilJmZqf/85z+BnALQJmQdVkHWYRVkHVZB1mEVZB2hLCCF9NWrVys3N1cLFizQ9u3bNXz4cGVlZenAgQPNXpOQkKD9+/d7bnv27AnE0DzchfQiCukwCUf9ovKYyLavSHevXj/pYEW6lfn6mr1582ZNmzZNs2fP1ieffKLs7GxlZ2frs88+85zz61//Ws8//7yWLFmijz/+WF26dFFWVpZOnjzZWdMCmiDrsAqyDqsg67AKsg6rIOsIdW3fldAHzzzzjObMmaNZs2ZJkpYsWaK1a9dq2bJluu+++7xeY7PZlJqaGojheDUgqWHDUcAMGlak+1BIj3QX0p2BGBLChK+v2c8995wmTJigu+++W5K0cOFC5efn68UXX9SSJUtkGIYWLVqkBx54QNdcc40k6fXXX1dKSorWrFmjqVOntmuchmGoqqZW1XVSVU2togxbO2ccmhwOc87NPa9Q2NybrIcGsh54ZD00kPXAI+uhgawHHlkPDWQ98Mh6aDBr1qWO593vhfSamhpt27ZN8+bN8xyz2+3KzMxUYWFhs9cdP35cAwcOlNPp1IUXXqjHHntM5557rtdzq6urVV1d7fm6oqJCkuRwOORwODzH3X8/9Zhbv+4xkqSiQ5Ve7w91Lc0tnDU3L7PNMxDcPdLjfOiRHhvl+lAKK9Ktqz2v2YWFhcrNzW10LCsrS2vWrJEk7d69WyUlJcrMzPTcn5iYqDFjxqiwsLDZX1Zae22vqqnV8IXvSYrUPVvea890w4BZ5xapSy+tVqKt4Zewzn5dJ+uhxqxzI+unIuuSeedG1k9F1iXzzo2sn4qsS+adG1k/FVmXzD63U/PuS9b9XkgvKytTXV2dUlJSGh1PSUnRrl27vF5z1llnadmyZTr//PN19OhRPfXUUxo7dqw+//xz9evXr8n5eXl5evjhh5sc37Bhg+Lj45scz8/Pb3Ls20pJitR/9pc36Z8UTrzNzQxOn1dVFS14WlLnNFRb/y6hL5uNuovu1bUU0q2qPa/ZJSUlXs8vKSnx3O8+1tw53rT22u7aEzcgH6RCJ3jvvfcUc8rLU2e/rpN1dBay3oCsmxtZb0DWzY2sNyDr5kbWG5B18zs1775kPST+1TMyMpSRkeH5euzYsTr77LP129/+VgsXLmxy/rx58xq941RRUaH+/ftr/PjxSkhI8Bx3OBzKz8/X5ZdfrqioqEaPcby6Vk/+6z1V1tp08aXj1S02JL4VbdbS3MJZc/Nyv/sH704thPu2It117okaCukIvtZe2w3D0KWXVuu9997TpZdeqqio8Hrdbo3DUWvKubnnNSkrU9HR0Z7jVn5dJ+tk3SrIOlm3CrJO1q2CrJN1qyDr5sy65D3vvmTd79+N5ORkRUREqLS0tNHx0tLSNvdAj4qK0gUXXKCvvvrK6/0xMTGKiYnxep23orK34z2iopTcNVplx2v0XUWNhnWLa9PYQk1zcw53p8/LjHP0pxOn9DiPiWz7HsINrV3okW5V7XnNTk1NbfF895+lpaXq06dPo3NGjBjR7Fja8tqeaLMpJkJK7BJrutcFh8Nhyrm55xUdHR3U13WyHjrIemCR9dBB1gOLrIcOsh5YZD10kPXAIuuhw6xZl7zn3Zc5tr3i1kbR0dEaOXKkCgoKPMecTqcKCgoarTpvSV1dnT799NNGIQ+EAUmuNjB7DtE2BOHN3eM8JtIuu73tG0HE1K9IP0lrF8tqz2t2RkZGo/MlVzsm9/mDBg1Sampqo3MqKir08ccft/m/A4C/kXVYBVmHVZB1WAVZh1WQdYSDgKzPz83N1YwZMzRq1CiNHj1aixYtUmVlpWfX3enTp6tv377Ky8uTJD3yyCO66KKLdOaZZ6q8vFxPPvmk9uzZo5tvvjkQw/MY2LOLtheXa8/hyoA+DxBo7hXlvrR1kRpau7DZqLX5+pp95513aty4cXr66ac1adIkrVq1Slu3btXLL78sSbLZbJo7d64effRRDRkyRIMGDdKDDz6otLQ0ZWdnB2uaAFmHZZB1WAVZh1WQdVgFWUeoC0ghfcqUKTp48KDmz5+vkpISjRgxQuvXr/c09y8uLpbd3rAY/siRI5ozZ45KSkrUo0cPjRw5Ups3b9Y555wTiOF5DOzpWpFezIp0hDnPivQo3z5kEhtJaxf4/po9duxYrVy5Ug888IDuv/9+DRkyRGvWrNGwYcM859xzzz2qrKzULbfcovLycv3gBz/Q+vXrFRsb2+nzA9zIOqyCrMMqyDqsgqzDKsg6Ql3AOsbn5OQoJyfH632bNm1q9PWzzz6rZ599NlBDaZa7kF50iBXpCG8n6gvprEhHe/nymi1JkydP1uTJk5t9PJvNpkceeUSPPPKIv4YI+AVZh1WQdVgFWYdVkHVYBVlHKPN7j/RwMiCpiyRWpKNjFi9erPT0dMXGxmrMmDHasmVLs+cuXbpUF198sXr06KEePXooMzOzxfPbyr2iPNaHjUYlCukAAAAAAABAW1i6kJ5evyJ9f8VJColol9WrVys3N1cLFizQ9u3bNXz4cGVlZenAgQNez9+0aZOmTZumjRs3qrCwUP3799f48eO1b9++Do3Dnd/YaF9XpNPaBQAAAAAAAGiNpQvpSV2i1TUmUoYhfXuEVenw3TPPPKM5c+Zo1qxZOuecc7RkyRLFx8dr2bJlXs9/8803dfvtt2vEiBEaOnSoXnnlFc8u1B3R4dYutbyRBAAAAAAAADQnYD3Sw4HNZtOApHh9sb9Cew5V6cze3YI9JISRmpoabdu2TfPmzfMcs9vtyszMVGFhYZseo6qqSg6HQ0lJSc2eU11drerqas/XFRUVkiSHwyGHwyFJqjzp+jM6wuY51haRNtdK9JOOOp+u60zucYXq+NqruXmZbZ4AAAAAAABmYOlCuiSlJzcU0gFflJWVqa6uzrN7tFtKSop27drVpse49957lZaWpszMzGbPycvL08MPP9zk+IYNGxQf72pP9K8Sm6QIlR86qHXr1rV5DhU1khSpkw6n1q5dJ5utzZd2uvz8/GAPISBOn1dVFa9FAAAAAAAAocbyhXT3hqN7DlUGeSSwmscff1yrVq3Spk2bFBsb2+x58+bNU25urufriooKT2/1hIQESVLJh99Iu79S3z6pmjhxRJvHcPSEQw9u2yhJujxrgqJ93Ky0MzgcDuXn5+vyyy9XVFRUsIfjN83Ny/2JAwAAAAAAAIQOyxfSB9ZvOLrnMKtA4Zvk5GRFRESotLS00fHS0lKlpqa2eO1TTz2lxx9/XH/96191/vnnt3huTEyMYmJimhyPioryFGDr5FpKHhMV4VOxuYtxSuHcHqGoqNB9STh1vmZy+rzMOEcAAAAAAIBwF3rLTzuZu5BeTGsX+Cg6OlojR45stFGoe+PQjIyMZq/79a9/rYULF2r9+vUaNWqUX8biqDUkSVERvv1IR0U09HJx1Dn9MhYAAAAAAADAbEJ3+WknGdjT1dpl75Eq1TkNRdhDuEk0Qk5ubq5mzJihUaNGafTo0Vq0aJEqKys1a9YsSdL06dPVt29f5eXlSZKeeOIJzZ8/XytXrlR6erpKSkokSV27dlXXrl3bPQ53EdzXQnqE3SabTTIMqaaWQjoAAAAAAADgjeUL6akJsYqOsKumzqnvyk+of1J8sIeEMDJlyhQdPHhQ8+fPV0lJiUaMGKH169d7NiAtLi6W3d5Q3H7ppZdUU1OjG264odHjLFiwQA899FC7x+Goc69I9+2NIJvNpqgIu2pqnaphRToAAAAAAADgleUL6RF2m/onxenrg5UqPlxFIR0+y8nJUU5Ojtf7Nm3a1OjroqKigIyhvSvSJSmmvpDuLsYDAAAAAAAAaMzyPdKlhvYue+iTjjDVkUJ6VKS90WMAAAAAAAAAaIxCuqQB9avQ9xyqDPJIgPapaWdrl1OvoUc6AAAAAAAA4B2FdEnpPd2FdFakIzzVOjuwIr3+GnqkAwAAAAAAAN5RSNcprV0OU0hHeHLUulakR0f6/iPtvsbBinQAAAAAAADAKwrpkgb0bGjtYhhsuIjw09Aj3ffWLtER7h7pZB8AAAAAAADwhkK6pH494mS3SVU1dSo7XhPs4QA+69BmoxFsNgoAAAAAAAC0hEK6pJjICPVJjJMkFR9mw1GEH4cfNhutprULAAAAAAAA4BWF9HoD69u7FJXRJx3hhxXpAAAAAAAAQOBQSK/HhqMIZzUdKKRH1q9Id7I/AAAAAAAAAOAVhfR67hXpxYdo7YLw05HWLhF218tALZuNAgAAAAAAAF5RSK83MKm+tcshVqQj/LjbskS3Y0W6u/Ze56SQDgAAAAAAAHhDIb3eAPeKdFq7IAy5C+mRHViRXkdrFwAAAAAAAMArCun13D3SD1fWqOKkI8ijAXzjXkxut/leSI+0u66pZUU6AAAAAAAA4BWF9HpdYyKV3DVaklRMexeEGWd9Ebw9hfSI+lXsdfWr2gEAAAAAAAA0RiH9FAPq+6TvoZCOMNOwIt33ayNsrEgHAAAAAAAAWkIh/RTp9e1d9hyuDPJIAN846/ub29tRSXe3dnHSIx0AAAAAAADwikL6Kdwbju4pY0U6wothdKC1Cz3SAQAAAAAAgBZRSD/FQHchnRXpCDMdau1id/dIp5AOAAAAAAAAeEMh/RQD61u7sNkowo2TFekAAAAAAABAwFBIP8XA+s1G91ec1ElHXZBHA7Sdu715O+ro9EgHAAAAAAAAWkEh/RRJXaLVNSZShiF9e4RV6QgfdR1ake56GWBFOgAAAAAAAOAdhfRT2Gy2hj7ptHdBGGlo7eL7tRH1rwJ1FNIBAAAAAAAAryikn8ZdSC+ikI4w0tDapQMr0tlsFAAAAAAAAPCKQvppBiS5NxytDPJIgLbryGaj9EgHAAAAAAAAWkYh/TTp7tYuh1mRjvDh7srSntYu9vqLap1OP44IAAAAAAAAMA8K6acZQI90hCHPivR2VNLdK9LrqKMDAAAAAAAAXlFIP83Anq7WLt8eqWLzRYQNowMr0iM8hXQq6QAAAAAAAIA3FNJP0ychVtGRdjnqDH1XfiLYwwHapCM90iNYkQ4AAAAAAAC0iEL6aex2m/r3iJNEexeED/enJ9pVSLexIh0AAAAAAABoCYV0L9ztXfYcrgzySIC2cbd2aUcdvWFFOp2MAAAAAAAAAK8opHsxsH7D0WJWpCNM+KO1i5M9AQAAAAAAAACvKKR7MTDJVUgvOsSKdIQHpx82G62ltQsAAAAAAADgFYV0LzytXViRjjBgGA0ryW1sNgoAAAAAAAD4HYV0LzytXQ5XNSpSAqHo1I4sHVmRzmajAAAAAAAAgHcU0r3o1yNedptUVVOnsuM1wR4O0CLnKW/2tKtHuo3NRgEAAAAAAICWBKyQvnjxYqWnpys2NlZjxozRli1bWjz/7bff1tChQxUbG6vzzjtP69atC9TQWhUdaVefxDhJ0h76pKMVwc56nbNjhfTICFakW9nhw4d14403KiEhQd27d9fs2bN1/PjxFq85efKk7rjjDvXs2VNdu3bV9ddfr9LS0kbn2Gy2JrdVq1YFcipAi8g6rIKswyrIOqyCrMMqyDrCQUAK6atXr1Zubq4WLFig7du3a/jw4crKytKBAwe8nr9582ZNmzZNs2fP1ieffKLs7GxlZ2frs88+C8Tw2iQ92dXehT7paEkoZN3oYGsXd/H91II8rOPGG2/U559/rvz8fP35z3/WBx98oFtuuaXFa+666y796U9/0ttvv633339f3333na677rom57322mvav3+/55adnR2gWQCtI+uwCrIOqyDrsAqyDqsg6wgHkYF40GeeeUZz5szRrFmzJElLlizR2rVrtWzZMt13331Nzn/uuec0YcIE3X333ZKkhQsXKj8/Xy+++KKWLFnS5Pzq6mpVV1d7vq6oqJAkORwOORwOz3H330891lb9urtWpP/63V1a9vdvfL4+0AzDUEVFhH5btLldG0yGKve8zh19TAOTu3mOt+ffsDMEOutS63mvrqn13FdXV+v798pwrUT/17dHNen5D3y7thOYPevpw8t1Tt/unuOdmfWdO3dq/fr1+sc//qFRo0ZJkl544QVNnDhRTz31lNLS0ppcc/ToUb366qtauXKlLr30UkmuX0rOPvtsffTRR7rooos853bv3l2pqaltHk9bXts78roe6sw6t+bmRdbJutnmRtabIuvmnBtZb4qsm3NuZL0psm7OuZH1psi6tebmyzz9XkivqanRtm3bNG/ePM8xu92uzMxMFRYWer2msLBQubm5jY5lZWVpzZo1Xs/Py8vTww8/3OT4hg0bFB8f3+R4fn6+DzOoH/MRm6QIlVZUq7SiutXzg8MmVbb8MZfwZNPG9/+m3nENR6qqQu+TAZ2Rdan1vJ+sldw/yhvfe09RPn7OZO9x1/VVNXX6/Ltjvl3cacyb9ff/vllFXRuOdGbWCwsL1b17d88vKpKUmZkpu92ujz/+WNdee22Ta7Zt2yaHw6HMzEzPsaFDh2rAgAEqLCxs9MvKHXfcoZtvvlmDBw/WrbfeqlmzZrX4Zogvr+3teV0PF2ad2+nzIutk3axzI+sNyLqLWedG1huQdRezzo2sNyDrLmadG1lvQNZdrDI3X7Lu90J6WVmZ6urqlJKS0uh4SkqKdu3a5fWakpISr+eXlJR4PX/evHmNipEVFRXq37+/xo8fr4SEBM9xh8Oh/Px8XX755YqKivJpHhOchq799qiOVde2fnIQ1NbW6pPtn+iCCy9QZGRAPlgQFO55XTvhUiV2ifUcd7/7F0o6I+tS63l31DnVY8gBbdv+ibIuz1RsTLTPc/nhfx9T6bHQfMPI7FmfcsUlSurW8K5RZ2a9pKREvXv3bnQsMjJSSUlJzWaypKRE0dHR6t69e6Pjp+f4kUce0aWXXqr4+Hht2LBBt99+u44fP66f//znzY6nLa/tHXldD3VmnVtz8yLrZN1scyPrTZF1c86NrDdF1s05N7LeFFk359zIelNk3Vpz8yXrYVmViomJUUxMTJPjUVFRXv+BmzvemtFn9GrX+DqDw+HQyd2GLj071VShds8rsUtso3mZaY6+ai3vUVHSJWen6sRuQ7Ex0e36Xg3rn6Rh/hhsAJg960nd4vye9fvuu09PPPFEi+fs3Lmzw8/TkgcffNDz9wsuuECVlZV68sknW/xlxZfX9va+rocDs87t9HmRdbJu1rmR9QZk3cWscyPrDci6i1nnRtYbkHUXs86NrDcg6y5WmZsvc/R7IT05OVkRERFNdsktLS1tth9RamqqT+cDoYCsI1T94he/0MyZM1s8Z/DgwUpNTW2yMW5tba0OHz7cYoZrampUXl7e6J3/1nI8ZswYLVy4UNXV1V5/IQHag6zDKsg6rIKswyrIOqyCrMNs/F5Ij46O1siRI1VQUODZBdfpdKqgoEA5OTler8nIyFBBQYHmzp3rOZafn6+MjAx/Dw/wG7KOUNWrVy/16tX6J2oyMjJUXl6ubdu2aeTIkZKk9957T06nU2PGjPF6zciRIxUVFaWCggJdf/31kqQvv/xSxcXFLeZ4x44d6tGjB7+owK/IOqyCrMMqyDqsgqzDKsg6zCYgrV1yc3M1Y8YMjRo1SqNHj9aiRYtUWVmpWbNmSZKmT5+uvn37Ki8vT5J05513aty4cXr66ac1adIkrVq1Slu3btXLL7/cpuczDENS0542DodDVVVVqqioMN1HEcw6t+bm5f63df9bh4rOzrrkPe9mzYNk3rmFQtbPPvtsTZgwQXPmzNGSJUvkcDiUk5OjqVOnenZF37dvny677DK9/vrrGj16tBITEzV79mzl5uYqKSlJCQkJ+tnPfqaMjAzPZi5/+tOfVFpaqosuukixsbHKz8/XY489pl/+8pc+jY+smwNZbx1ZNwey3jqybg5kvXVk3RzIeuvIujmQ9daRdfPwNjefsm4EyAsvvGAMGDDAiI6ONkaPHm189NFHnvvGjRtnzJgxo9H5b731lvFf//VfRnR0tHHuuecaa9eubfNz7d2715DEzQK3vXv3+iuiftOZWTcM8m6VW2dl/dChQ8a0adOMrl27GgkJCcasWbOMY8eOee7fvXu3IcnYuHGj59iJEyeM22+/3ejRo4cRHx9vXHvttcb+/fs99//lL38xRowYYXTt2tXo0qWLMXz4cGPJkiVGXV2dT2Mj69a4kXWybpUbWSfrVrmRdbJulRtZJ+tWuZF1sm6VW1uybjOMEFvi2w5Op1PfffedunXrJpvN5jnu3lV37969nl11zcKsc2tuXoZh6NixY0pLS5Pdbg/iCIPPW97NmgfJvHMj660j6+ZA1ltH1s2BrLeOrJsDWW8dWTcHst46sm4OZL11ZN08vM3Nl6wHpLVLZ7Pb7erXr1+z9yckJJjuH97NrHPzNq/ExMQgjSa0tJR3s+ZBMu/cyHrzyLq5kPXmkXVzIevNI+vmQtabR9bNhaw3j6ybC1lvHlk3n9Pn1tasW/stJQAAAAAAAAAAWkEhHQAAAAAAAACAFpi6kB4TE6MFCxYoJiYm2EPxO7POzazzCjQzf9/MOjezzivQzPx9M+vczDqvQDPz982sczPrvALNzN83s87NrPMKNDN/38w6N7POK9DM/H0z69zMOq9AM/P3jbk1zxSbjQIAAAAAAAAAECimXpEOAAAAAAAAAEBHUUgHAAAAAAAAAKAFFNIBAAAAAAAAAGgBhXQAAAAAAAAAAFpAIR0AAAAAAAAAgBZYppD+q1/9SmPHjlV8fLy6d+8e7OF0yOLFi5Wenq7Y2FiNGTNGW7ZsCfaQOuyDDz7QVVddpbS0NNlsNq1ZsybYQwpbZD20kXX/Ieuhjaz7D1kPbWTdf8h6aCPr/kPWQx959x+z5J2sozVkPbT5K+uWKaTX1NRo8uTJuu2224I9lA5ZvXq1cnNztWDBAm3fvl3Dhw9XVlaWDhw4EOyhdUhlZaWGDx+uxYsXB3soYY+shzay7j9kPbSRdf8h66GNrPsPWQ9tZN1/yHroI+/+Y4a8k3W0BVkPbX7LumExr732mpGYmBjsYbTb6NGjjTvuuMPzdV1dnZGWlmbk5eUFcVT+Jcl45513gj2MsEfWQx9Z9w+yHvrIun+Q9dBH1v2DrIc+su4fZD08kHf/COe8k3X4gqyHvo5k3TIr0s2gpqZG27ZtU2ZmpueY3W5XZmamCgsLgzgywL/IOqyCrMMqyDqsgqzDKsg6rIKswyrIettQSA8jZWVlqqurU0pKSqPjKSkpKikpCdKoAP8j67AKsg6rIOuwCrIOqyDrsAqyDqsg620T1oX0++67TzabrcXbrl27gj1MoMPIOqyCrMMqyDqsgqzDKsg6rIS8wyrIOk4XGewBdMQvfvELzZw5s8VzBg8e3DmD6QTJycmKiIhQaWlpo+OlpaVKTU0N0qjQGci6C1k3P7LuQtbNj6y7kHXzI+suZN38yLoLWbcGK+WdrFsbWSfrpwvrQnqvXr3Uq1evYA+j00RHR2vkyJEqKChQdna2JMnpdKqgoEA5OTnBHRwCiqyTdasg62TdKsg6WbcKsk7WrYKsk3UrsVLeybq1kXWyfrqwLqT7ori4WIcPH1ZxcbHq6uq0Y8cOSdKZZ56prl27BndwPsjNzdWMGTM0atQojR49WosWLVJlZaVmzZoV7KF1yPHjx/XVV195vt69e7d27NihpKQkDRgwIIgjCz9kPbSRdf8h66GNrPsPWQ9tZN1/yHpoI+v+Q9ZDH3n3HzPknayjLch6aPNb1g2LmDFjhiGpyW3jxo3BHprPXnjhBWPAgAFGdHS0MXr0aOOjjz4K9pA6bOPGjV7/fWbMmBHsoYUdsh7ayLr/kPXQRtb9h6yHNrLuP2Q9tJF1/yHroY+8+49Z8k7W0RqyHtr8lXWbYRhG28vuAAAAAAAAAABYiz3YAwAAAAAAAAAAIJRRSAcAAAAAAAAAoAUU0gEAAAAAAAAAaAGFdAAAAAAAAAAAWkAhHQAAAAAAAACAFlBIBwAAAAAAAACgBRTSAQAAAAAAAABoAYV0AAAAAAAAAABaQCEdAAAAAAAAAIAWUEgHAAAAAAAAAKAFFNIBAAAAAAAAAGgBhXQAAAAAAAAAAFpAIR0AAAAAAAAAgBZQSAcAAAAAAAAAoAUU0gEAAAAAAAAAaAGFdAAAAAAAAAAAWkAhHQAAAAAAAACAFlBIB9AmDz30kGw2m8rKylo9t7a2Vvfcc4/69+8vu92u7OzswA8Q8BOyDqsg67AKsg6rIOuwCrIOqyDroYdCOgC/W7ZsmZ588kndcMMNWrFihe66665mz92yZYtuv/12jRw5UlFRUbLZbJ02zmA+N8whHLLudDq1fPlyXX311erfv7+6dOmiYcOG6dFHH9XJkyc7ZQwIf+GQdUlaunSpxo0bp5SUFMXExGjQoEGaNWuWioqKOm0MCG/hkvVTORwOnXPOObLZbHrqqaeCMgaEn3DJ+syZM2Wz2Zrchg4d2mljQHgLl6xLrt/bX3rpJY0YMUJxcXHq2bOnLr30Uv3zn//s1HEgPIVL1r29prtvl19+eaeNo70igz0AAObz3nvvqW/fvnr22WdbPXfdunV65ZVXdP7552vw4MH697//3QkjDP5zwxzCIetVVVWaNWuWLrroIt16663q3bu3CgsLtWDBAhUUFOi9997jTSS0KhyyLkmffPKJBg0apKuvvlo9evTQ7t27tXTpUv35z3/WP//5T6WlpXXaWBCewiXrp3rhhRdUXFwclOdG+AqnrMfExOiVV15pdCwxMbFTx4DwFU5Z/+lPf6o333xT06dPV05OjiorK/XJJ5/owIEDnToOhKdwyfobb7zR5NjWrVv13HPPafz48Z02jvaikA7A7w4cOKDu3bu36dzbbrtN9957r+Li4pSTk9OpL+DBfG6YQzhkPTo6Wn//+981duxYz7E5c+YoPT3dU0zPzMzslLEgfIVD1iXpN7/5TZNj2dnZGjVqlF5//XXdd999nTYWhKdwybrbgQMH9Mgjj+jee+/V/PnzO/35Eb7CKeuRkZG66aabOvU5YR7hkvW33npLK1as0B/+8Adde+21nfa8MI9wybq31/NNmzbJZrNp2rRpnTaO9qK1CwCflJWV6Uc/+pESEhLUs2dP3XnnnZ72EEVFRbLZbNq4caM+//xzz8dzNm3a1OzjpaSkKC4url1jee2112Sz2bRs2bJGxx977DHZbDatW7euxes78twwP7NkPTo6ulER3c39C/rOnTvbNSaYh1my3pz09HRJUnl5ebvGBPMwY9bvu+8+nXXWWRQZ0YgZs15XV6eKiop2jQHmZaasP/PMMxo9erSuvfZaOZ1OVVZWtmscMCczZf101dXV+v3vf69x48apX79+7RpTZ6KQDsAnP/rRj3Ty5Enl5eVp4sSJev7553XLLbdIknr16qU33nhDQ4cOVb9+/fTGG2/ojTfe0Nlnnx2QscyaNUtXXnmlcnNztXfvXknSp59+qocfflizZ8/WxIkTA/K8sAazZ72kpESSlJyc7NexIvyYMeuHDh3SgQMHtHXrVs2aNUuSdNlllwVkzAgfZsv6li1btGLFCi1atIgWXWjEbFmvqqpSQkKCEhMTlZSUpDvuuEPHjx8PyHgRXsyS9YqKCm3ZskXf+973dP/99ysxMVFdu3bV4MGD9dZbbwVkvAgvZsm6N+vWrVN5ebluvPHGQAzX/wwAaIMFCxYYkoyrr7660fHbb7/dkGT885//9BwbN26cce655/r8HHfccYfh68vS/v37jaSkJOPyyy83qqurjQsuuMAYMGCAcfTo0YA/N8zJ7Fl3y8zMNBISEowjR46063qEPzNnPSYmxpBkSDJ69uxpPP/8874OHSZixqw7nU5j9OjRxrRp0wzDMIzdu3cbkownn3zS57HDPMyY9fvuu8+49957jdWrVxu/+93vjBkzZhiSjO9///uGw+HwefwwB7Nlffv27Z7fWVJSUozf/OY3xptvvmmMHj3asNlsxl/+8hefxw9zMFvWvbn++uuNmJiYsPn/UlakA/DJHXfc0ejrn/3sZ5LUro/b+0NqaqoWL16s/Px8XXzxxdqxY4eWLVumhISEoIwH5mHmrD/22GP661//qscff7zNffRgXmbM+l/+8hetW7dOTz/9tAYMGMDHoyHJXFlfvny5Pv30Uz3xxBOdMFKEGzNlPS8vT48//rh+9KMfaerUqVq+fLl+9atf6e9//7v+93//txNGj1Bmlqy7P2Fx6NAh/fGPf9Rtt92mH//4xyooKFDPnj316KOPdsbwEcLMkvXTVVRUaO3atZo4cWLY/H8phXQAPhkyZEijr8844wzZ7XYVFRUFZ0CSpk6dqkmTJmnLli2aM2cOH9+HX5g166tXr9YDDzyg2bNn67bbbgvAKBFuzJj1Sy65RFdccYVyc3P19ttv6+GHH9aLL74YoNEiXJgl6xUVFZo3b57uvvtu9e/fvxNGiXBjlqw356677pLdbtdf//pXP44Q4cgsWXf3qh40aJDGjBnjOd61a1ddddVV2rJli2prawM2ZoQ+s2T9dL///e918uTJ8GnrIgrpADooFHpyHjp0SFu3bpUkffHFF3I6nUEeEczIDFnPz8/X9OnTNWnSJC1ZsiQQQ4QJmCHrpzrjjDN0wQUX6M033/TX8GAS4Zr1p556SjU1NZoyZYqKiopUVFSkb7/9VpJ05MgRFRUVqaamJqDjRngJ16w3Jy4uTj179tThw4f9NTyYRLhmPS0tTZJrA8jT9e7dWw6Hg0/XoZFwzfrp3nzzTSUmJurKK6/09/AChkI6AJ/85z//afT1V199JafTqfT09OAMSK6POR07dkx5eXn68MMPtWjRoqCNBeZhtqx//PHHuvbaazVq1Ci99dZbioyMDNxAEVbMlnVvTpw4oaNHj/pncAhbZsl6cXGxjhw5onPPPVeDBg3SoEGDdPHFF0tyte4aNGiQvvjiiwCPHKHMLFlvzrFjx1RWVqZevXr5b4AIS2bJelpamlJTU7Vv374m93333XeKjY1Vt27dAjBahAuzZP1U+/fv18aNG3X99dcrJiYmMIMMAArpAHyyePHiRl+/8MILkqQrrrgiGMPR//7v/2r16tV6/PHHdd9992nq1Kl64IEH9O9//zso44F5mCnrO3fu1KRJk5Senq4///nPno+PApJ5sl5bW6sjR440Ob5lyxZ9+umnGjVqVKCGjDBhlqz//Oc/1zvvvNPo9tvf/laSNHPmTL3zzjsaNGhQZ0wBIcosWT958qSOHTvW5PjChQtlGIYmTJgQqCEjTJgl65I0ZcoU7d27V/n5+Z5jZWVl+uMf/6hLL71UdjvlOyszU9bdVq1aJafTGVZtXSSJ5WgAfLJ7925dffXVmjBhggoLC/U///M/+vGPf6zhw4e36/H27NmjN954Q5I8Hwtyb6YycOBA/eQnP2n22gMHDui2227TJZdcopycHEnSiy++qI0bN2rmzJn68MMPW/yFoyPPDfMzS9aPHTumrKwsHTlyRHfffbfWrl3b6P4zzjhDGRkZ7ZoTzMEsWT9+/Lj69++vKVOm6Nxzz1WXLl306aef6rXXXlNiYqIefPDBds0H5mGWrF944YW68MILGx1z90g999xzlZ2d3a75wDzMkvWSkhJdcMEFmjZtmoYOHSpJevfdd7Vu3TpNmDBB11xzTbvmA/MwS9Ylad68eXrrrbd0/fXXKzc3V4mJiVqyZIkcDocee+yxds0H5mGmrLu9+eabSktL0w9/+MN2zSFoDABogwULFhiSjC+++MK44YYbjG7duhk9evQwcnJyjBMnTjQ6d9y4cca5557bpsfduHGjIcnrbdy4cS1ee9111xndunUzioqKGh3/4x//aEgynnjiiYA9N8zLbFnfvXt3s88ryZgxY0abxg/zMVvWq6urjTvvvNM4//zzjYSEBCMqKsoYOHCgMXv2bGP37t1tGjvMyWxZ98b9Wv/kk0/6dB3MxWxZP3LkiHHTTTcZZ555phEfH2/ExMQY5557rvHYY48ZNTU1bRo7zMlsWXf7+uuvjWuvvdZISEgw4uLijEsvvdTYsmVLm8YOczJr1nft2mVIMnJzc9s03lBiMwzD6EAdHgAAAAAAAAAAU6PJEgAAAAAAAAAALaCQDgAAAAAAAABAC3wupH/wwQe66qqrlJaWJpvNpjVr1rR6zaZNm3ThhRcqJiZGZ555ppYvX97knMWLFys9PV2xsbEaM2aMtmzZ4uvQAAAAAAAAAADwO58L6ZWVlRo+fLgWL17cpvN3796tSZMm6ZJLLtGOHTs0d+5c3XzzzXr33Xc956xevVq5ublasGCBtm/fruHDhysrK0sHDhzwdXgAAAAAAAAAAPhVhzYbtdlseuedd5Sdnd3sOffee6/Wrl2rzz77zHNs6tSpKi8v1/r16yVJY8aM0fe+9z29+OKLkiSn06n+/fvrZz/7me677772Dg8AAAAAAAAAgA6LDPQTFBYWKjMzs9GxrKwszZ07V5JUU1Ojbdu2ad68eZ777Xa7MjMzVVhY6PUxq6urVV1d7fna6XTq8OHD6tmzp2w2m/8ngaAzDEPHjh1TWlqa7HZrt/Z3Op367rvv1K1bN/JuQmS9AVk3N7LegKybG1lvQNbNjaw3IOvmRtYbkHVzI+sNyLq5+ZL1gBfSS0pKlJKS0uhYSkqKKioqdOLECR05ckR1dXVez9m1a5fXx8zLy9PDDz8csDEjdO3du1f9+vUL9jCC6rvvvlP//v2DPQwEGFkn61ZB1sm6VZB1sm4VZJ2sWwVZJ+tWQdbJulW0JesBL6QHwrx585Sbm+v5+ujRoxowYID27t2rhISEII4MgVJRUaH+/furW7duwR5K0Lm/B6fm3eFwaMOGDRo/fryioqKCOTy/M+vcmpsXWW9A1s2BrLeOrJsDWW8dWTcHst46sm4OZL11ZN0cyHrryLp5eJubL1kPeCE9NTVVpaWljY6VlpYqISFBcXFxioiIUEREhNdzUlNTvT5mTEyMYmJimhxPSEigkG5yofQRmg8++EBPPvmktm3bpv3797e6X4Akbdq0Sbm5ufr888/Vv39/PfDAA5o5c6ZPz+v+Hpyad4fDofj4eCUkJJjyRc6Mc2ttXqGU9WAh6+YQallfvHixnnzySZWUlGj48OF64YUXNHr06GbPf/vtt/Xggw+qqKhIQ4YM0RNPPKGJEyd67p85c6ZWrFjR6JqsrCzPPjBtQdbNgay3jqybA1lvHVk3B7LeOrJuDmS9dWTdPFqaW1uyHvAmRxkZGSooKGh0LD8/XxkZGZKk6OhojRw5stE5TqdTBQUFnnOAUFRZWanhw4dr8eLFbTp/9+7dmjRpki655BLt2LFDc+fO1c0336x33303wCMFAEjS6tWrlZubqwULFmj79u0aPny4srKydODAAa/nb968WdOmTdPs2bP1ySefKDs7W9nZ2Y02UJekCRMmaP/+/Z7b7373u86YDtAssg6rIOuwCrIOqyDrCHU+F9KPHz+uHTt2aMeOHZJcxcEdO3aouLhYkqvtyvTp0z3n33rrrfrmm290zz33aNeuXfrNb36jt956S3fddZfnnNzcXC1dulQrVqzQzp07ddttt6myslKzZs3q4PSAwLniiiv06KOP6tprr23T+UuWLNGgQYP09NNP6+yzz1ZOTo5uuOEGPfvssy1eV11drYqKikY3yfUu2qk3b8facqs6Wa0/7fhWpeWV7bq+M27tnVuo35qbF4Lju/ITWvPJPh08Vt36yQhLzzzzjObMmaNZs2bpnHPO0ZIlSxQfH69ly5Z5Pf+5557ThAkTdPfdd+vss8/WwoULdeGFF+rFF19sdF5MTIxSU1M9tx49enTGdIBmkXVYBVmHVZB1WAVZR6jzubXL1q1bdckll3i+dvcqnzFjhpYvX679+/d7iuqSNGjQIK1du1Z33XWXnnvuOfXr10+vvPKKsrKyPOdMmTJFBw8e1Pz581VSUqIRI0Zo/fr1TTYgBcJZYWGhMjMzGx3LysrS3LlzW7yuuc11N2zYoPj4+EbH8vPzfR7XlgM2vfl1hC7q7dS0M5w+X99Z2jO3cHD6vKqqqoI0EmsrKqvU1S9+qIqTteqTGKs//ewHSu7atIUYwldNTY22bdumefPmeY7Z7XZlZmaqsLDQ6zWFhYWN9mSRXK/ba9asaXRs06ZN6t27t3r06KFLL71Ujz76qHr27NnsWKqrq1Vd3fCGzelvkLr/fuqfZmLWuTU3r86eJ1kPHWadG1lviqybc25kvSmybs65kfWmyLq15ubLPH0upP/whz+UYRjN3r98+XKv13zyySctPm5OTo5ycnJ8HQ4QNkpKSpq8OZSSkqKKigqdOHFCcXFxXq87fXNd9yYI48ePb9SbKz8/X5dffrnP/at2/OVL6es9qozqrokTL/JxVoHXkbmFsubm5f4PNDrX0/n/VsXJWknS/qMntXjjV1pw1blBHhX8qaysTHV1dV5fh3ft2uX1muZet0tKSjxfT5gwQdddd50GDRqkr7/+Wvfff7+uuOIKFRYWKiIiwuvjBvoN0nBh1rkF+w1Ssh56zDo3st6ArLuYdW5kvQFZdzHr3Mh6A7LuYpW5+ZL1gG82CqBjmttcNyoqqklh2dux1uw9clKSVHz4REgXqtszt3Bw+rzMOMdQV15Vo3Wf7pck3Z11lp5890u988k+zbvibEVHBnwrEYS5qVOnev5+3nnn6fzzz9cZZ5yhTZs26bLLLvN6TaDfIA11Zp2b2d8gJeu+M+vcyHpTZN2ccyPrTZF1c86NrDdF1q01N1+yTiEd6CSpqakqLS1tdKy0tFQJCQnNrkbvDHsOVUqSjp5wqLyqRt3jo4M2FiAYNn15UHVOQ0NTu+nWcWdo+eYiHTxWrY93H9LFQ3oFe3jwk+TkZEVERHh9HU5NTfV6TXOv282dL0mDBw9WcnKyvvrqq2Z/MQ/0G6ThwqxzC/YbpGQ99Jh1bmS9AVl3MevcyHoDsu5i1rmR9QZk3cUqc/Nljiy1AzpJRkaGCgoKGh3Lz89XRkZGkEYkOZ2Gig83fIRlzyH6c8N6Nn3p2gH+kqG9FWG36eIhyZKkj745FMxhwc+io6M1cuTIRq/DTqdTBQUFzb4Ot+d1+9tvv9WhQ4fUp08f/wwc8BFZh1WQdVgFWYdVkHWEAwrpQDsdP35cO3bs0I4dOyRJu3fv1o4dOzyb7c6bN0/Tp0/3nH/rrbfqm2++0T333KNdu3bpN7/5jd566y3dddddwRi+JOnAsWpV1zZsMLrnMIV0WM8ne8slSRmDXZvNXFT/50ffHA7WkBAgubm5Wrp0qVasWKGdO3fqtttuU2VlpWbNmiVJmj59eqPNje68806tX79eTz/9tHbt2qWHHnpIW7du9ezpcvz4cd1999366KOPVFRUpIKCAl1zzTU688wzG22qDnQ2sg6rIOuwCrIOqyDrCHW0dgHaaevWrbrkkks8X7v7Z82YMUPLly/X/v37PUV1SRo0aJDWrl2ru+66S88995z69eunV155Jagv3kX1bV3c9pRVNnMmYE5HqxyeT2Kc3y9RkvS99CRJ0mf7jqq2zqnICN5zNospU6bo4MGDmj9/vkpKSjRixAitX7/es0FRcXGx7PaGf++xY8dq5cqVeuCBB3T//fdryJAhWrNmjYYNGyZJioiI0L/+9S+tWLFC5eXlSktL0/jx47Vw4UKvHwUFOgtZh1WQdVgFWYdVkHWEOgrpQDv98Ic/lGEYzd6/fPlyr9d88sknARyVb4pPa+XCinRYzb/2lUuSBiTFe/YHGJgUry7REaqsqdPuskoNSekWxBHC33JycjwrVE63adOmJscmT56syZMnez0/Li5O7777rj+HB/gNWYdVkHVYBVmHVZB1hDKW2QEWtuewawV6j3jXxgqnF9YBs/v8O9fu3OfVr0aXJLvdprNSXcXzL/abY6d6AAAAAADQMRTSAQsrqi+c/2BIr/qvae0Ca9l90JX5M3t1bXT87D4JkqRdJcc6fUwAAAAAACD0UEgHLMy9Av2/hyRLcm0+eqKmLphDAjrV7vp9AQb36tLo+Bn1hfUi9g0AAAAAAACikA5YlmEYnhXo5/frroRY15YJxfRJh4V8U18oH5TcuJCenhwvqeFTGwAAAAAAwNoopAMWVV7l0LGTtZJcGy2m1xcSae8Cq6g46VDZ8WpJ8uTfbWBP19fFhypb3FQYAAAAAABYA4V0wKL21K88T0mIUVx0hAYkuVbgsuEorMLdtiW5a4wSYqMa3devR5zsNqmypk5lx2uCMTwAAAAAABBCKKQDFrWnfuX5wCTXytuBPV2F9D2HWZEOa9hT/6ZRen32TxUTGaG07nGS+JQGAAAAAACgkA5YlruI6C6gu1tZ7GFFOiyi5OhJSVKf+oL56fr3cP1s7DtyotPGBAAAAAAAQhOFdMCimhTS61u7UEiHVex3F9ITY73e7z5eUnGy08YEAAAAAABCE4V0wKKK61u4DOjpbu3i+nNf+Qk56pxBGxfQWUrrC+SpCd4L6SnuQvpRCukAAAAAAFgdhXTAoopO6w/du1uMYqPsqnMatLKAJew/6sp5ayvS3ecBAAAAAADropAOWFBVTa0OHquW1LDZqN1u0wB3e5fDtHeB+blXmqc2U0hPSXC3dqnutDEBAAAAAIDQRCEdsKDi+kJ5YlyUEuOjPMcH1BfViw9VBmVcCG2LFy9Wenq6YmNjNWbMGG3ZsqVN161atUo2m03Z2dmBHaAP6pyGSuvfTOqT6H2zUU+PdFakAwAAAABgeRTSAQsqKmvc1sXNvfFoERuO4jSrV69Wbm6uFixYoO3bt2v48OHKysrSgQMHWryuqKhIv/zlL3XxxRd30kjb5tDxatU5DUXYberVLcbrOe7e6QePVauWfQMAAAAAALC0yGAPAEDnO32jUTd3YX0PhXSc5plnntGcOXM0a9YsSdKSJUu0du1aLVu2TPfdd5/Xa+rq6nTjjTfq4Ycf1t/+9jeVl5e3+BzV1dWqrm5oo1JRUSFJcjgccjgcnr+f+md7fXv4uCQpuUu0nHW1ctY1PSchxq4Iu011TkMl5ZWeVi+B4q+5hZrm5mW2eQIAAAAAzK1dhfTFixfrySefVElJiYYPH64XXnhBo0eP9nruD3/4Q73//vtNjk+cOFFr166VJM2cOVMrVqxodH9WVpbWr1/fnuEBaIW7UD4wqfGKdHdh3V1oBySppqZG27Zt07x58zzH7Ha7MjMzVVhY2Ox1jzzyiHr37q3Zs2frb3/7W6vPk5eXp4cffrjJ8Q0bNig+vnFW8/PzfZhBU18csUmKUGTdSa1bt67Z8+IiInTcadP/vfue+nZp9jS/6ujcQtXp86qq4g07AAAAAED48LmQ7v54/5IlSzRmzBgtWrRIWVlZ+vLLL9W7d+8m5//hD39QTU2N5+tDhw5p+PDhmjx5cqPzJkyYoNdee83zdUyM94/aA+g4d4/0gae3dklqWJHudBqy222dPjaEnrKyMtXV1SklJaXR8ZSUFO3atcvrNR9++KFeffVV7dixo83PM2/ePOXm5nq+rqioUP/+/TV+/HglJCRIcq1izs/P1+WXX66oqKjmHqpV1Z98J+36TOl9kjVx4shmz3vx67/rPwcqdc6FY/T9M3q2+/nawl9zCzXNzcv9iQMAAAAAAMKBz4V0Xz/en5SU1OjrVatWKT4+vkkhPSYmRqmpqW0aQ3Mf/wfQNkX1m4kOPK21S98ecYqw21Rd69SBY9VKTQxsKwuY07Fjx/STn/xES5cuVXJycpuvi4mJ8fomalRUVJPCsrdjvjh60tXLJblbTIuP07NrjP5zoFJHT9Z1WnG7o3MLVafPy4xzBAAAAACYl0+bjbo/3p+ZmdnwAG34eP+pXn31VU2dOlVdujQu4G3atEm9e/fWWWedpdtuu02HDh1q9jHy8vKUmJjoufXv39+XaQCW5qhz6rvyk5KarkiPirCrb/c4SdKeQ7R3gUtycrIiIiJUWlra6HhpaanXN0C//vprFRUV6aqrrlJkZKQiIyP1+uuv6//+7/8UGRmpr7/+urOG3qzDVa5PSvWIj27xvJ5dXYX9Q8drWjwPAAAAAACYm0+F9JY+3l9SUtLq9Vu2bNFnn32mm2++udHxCRMm6PXXX1dBQYGeeOIJvf/++7riiitUV+dl9ze5Pv5/9OhRz23v3r2+TAOwtH1HTqjOaSg2yq7e3Zqu/h3IhqM4TXR0tEaOHKmCggLPMafTqYKCAmVkZDQ5f+jQofr000+1Y8cOz+3qq6/WJZdcoh07doTEm5+H6wvjPbu0Ukivv/9wJYV0AAAAAACsrF2bjbbXq6++qvPOO6/JxqRTp071/P28887T+eefrzPOOEObNm3SZZdd1uRxmvv4P4DWedq6JHWRzda0B/rAnvH623+kPWw4ilPk5uZqxowZGjVqlEaPHq1FixapsrLS0+Zr+vTp6tu3r/Ly8hQbG6thw4Y1ur579+6S1OR4sByqL4wndW25kJ5UX0g/RCEdAAAAAABL86mQ7uvH+09VWVmpVatW6ZFHHmn1eQYPHqzk5GR99dVXXgvpANrPvdHogNPaurgNTHK1XWJFOk41ZcoUHTx4UPPnz1dJSYlGjBih9evXez6hVFxcLLvdpw85BdXhStc+G21fkV7d4nkAAAAAAMDcfCqkn/rx/uzsbEkNH+/Pyclp8dq3335b1dXVuummm1p9nm+//VaHDh1Snz59fBkegDZwF8jTmymkuwvs7oI74JaTk9Psa/2mTZtavHb58uX+H1AHuFu1JHVp+dNN9EgHAAAAAACSjz3SJdfH+5cuXaoVK1Zo586duu2225p8vH/evHlNrnv11VeVnZ2tnj17Njp+/Phx3X333froo49UVFSkgoICXXPNNTrzzDOVlZXVzmkBaI57E9EBPbt4vT+9/nhRGa1dYF4NhfSWV6S7NyN1b04KAAAAAACsyece6e35eP+XX36pDz/8UBs2bGjyeBEREfrXv/6lFStWqLy8XGlpaRo/frwWLlxIH3QgANwr0gcmNbMivf54xclalVfVqHt8y4VGINw46pyqOFkrqfVCemJclCSp4kRtwMcFAAAAAABCV7s2G/X14/1nnXWWDMPwen5cXJzefffd9gwDgI+cTsPTsmVgM61d4qIj1LtbjA4cq9aeQ1UU0mE65VUOSZLN1lAob05ifH0h/aQj4OMCAAAAAAChK3x2hgPQYaXHTqq61qlIu019u8c1e56nvcsh2rvAfI7VF8W7Rkcqwm5r8dyEWNf7zTW1Tp101AV8bAAAAAAAIDRRSAcsxN3WpW+POEVGNP/j79lw9BAbjsJ83G1dElpZjS5JXaIj5a61V5xgVToAAAAAAFZFIR2wEHdhfEAz/dHd3P3T9xymkA7zca9I7xbbenczu92mbrG0dwEAAAAAwOoopAMW4m7V4m7d0pyBya7799DaBSZ0rH5FelsK6VJDH/WjbDgKAAAAAIBlUUgHLGRPKxuNunlWpNPaBSbkbtGSENt6axdJSohzFdxZkQ4AAAAAgHVRSAcspM2tXeoL7QeOVauqhlW4MBdfV6S7C+70SAcAAAAAwLoopAMWYRhGQ2uX5JZbu3SPj/a0syimTzpMxr2yvC2bjUqnFNJP8qYSAAAAAABWRSEdsIjyKodnJW5rK9KlhlXptHeB2fi8It3d2oUV6QAAAAAAWBaFdMAi3P3RUxJiFBsV0er57mJ7MYV0mIx7RXq3NvZId386g0I6AAAAAADWRSEdsIg99W1dBvZsua2LW3r9ee52MIBZVJxwrUhv62aj3TytXSikAwAAAABgVRTSAYtwt2gZ2Ia2LpI0oL61Cz3SYTbHPCvS29bapUuM67zK6rqAjQkAAAAAAIQ2CumARXgK6T3bVkh3F9zpkQ6zqfCxR3qXaFcrpKoaNhsFAAAAAMCqKKQDFuFza5dk13n7yk/IUecM2LiAzuYuiHeNaVshPZ4V6QAAAAAAWB6FdMAi3JuNtnVFeu9uMYqNsqvOaWjfkROBHBrQqdwF8fhoH1ekOyikAwAAAABgVRTSAQuoqqnVwWPVkqSBSW1bkW6z2TTA3d6FPukwkRP1K9Lj6wvkrXEX3Kuqae0CAAAAAIBVUUgHLMDd57x7fJQS46PafJ27DYy7LQwQ7gzD8Kwsb2shvUuMu0c6K9IBAAAAALAqCumABXg2Gk1qW1sXNzYchdlU1zplGK6/x/m4Ir2SzUYBAAAAALAsCumABRQfdq0oH9DGjUbd3P3UKaTDLE5dVd7WHunuletVbDYKAAAAAIBlUUgHLKCovhCe3saNRt0G0NoFJlNVv6o8JtKuCLutTdd0qS+419Q5VVPrDNjYAAAAAABA6KKQDlhAcX0hfYCPrV3chffiw1VyOg2/jwvobO4V6W3tjy41bgFzgj7pAAAAAABYUrsK6YsXL1Z6erpiY2M1ZswYbdmypdlzly9fLpvN1ugWGxvb6BzDMDR//nz16dNHcXFxyszM1H/+85/2DA3odP7+eQiEPfWtXQb62NolrXucIuw2Vdc6deBYdSCGBnSqhkJ629q6SFJ0pF3REa7/XNInPfz58potSW+//baGDh2q2NhYnXfeeVq3bl2j+/kdBqGKrMMqyDqsgqzDKsg6QlnbKwn1Vq9erdzcXC1ZskRjxozRokWLlJWVpS+//FK9e/f2ek1CQoK+/PJLz9c2W+OP0//617/W888/rxUrVmjQoEF68MEHlZWVpS+++KJTioxAewXi58Hfamqd2nfkhCTfW7tERdjVt3ucig9XqehQpVIT+XlEeHO3dmnrRqNu8TERqqlyeq5HePL1NXvz5s2aNm2a8vLydOWVV2rlypXKzs7W9u3bNWzYMEmB+R3GMAxV1dSqus6V2SgjsP+d6GwOhznn5p6XYQT/E1xkPTSQ9cAj66GBrAceWQ8NZD3wyHpoMGvWpY7n3Wb4eOWYMWP0ve99Ty+++KIkyel0qn///vrZz36m++67r8n5y5cv19y5c1VeXu718QzDUFpamn7xi1/ol7/8pSTp6NGjSklJ0fLlyzV16tQm11RXV6u6umF1bEVFhfr376+jR48qISHBl+kgTFRUVCgxMTHk/o39/fPgTXN5Lysr83wvHA6H8vPzdfnllysqKqrR9UWHKnX5or8rLsqufz54mc+F+1krtunDrw7psexzNXlkX5+u9YeW5hbOmptXRUWFkpOTQy7rweDt597hcGjdunWaOHFiu/JQsLNUs1ds1fn9EvV/OT9o83Xff/w97Ss/oT/e8X0N79/d5+dti47OLVQ1N69gvK77+po9ZcoUVVZW6s9//rPn2EUXXaQRI0ZoyZIl7fodRmr9db2qplbDF77nz6mjE22977+V2KXhf8qC8bpO1tEZyHoDsm5uZL0BWTc3st6ArJvfqXn3Jes+rUivqanRtm3bNG/ePM8xu92uzMxMFRYWNnvd8ePHNXDgQDmdTl144YV67LHHdO6550qSdu/erZKSEmVmZnrOT0xM1JgxY1RYWOg11Hl5eXr44Yd9GTrgd4H4efCmubxv2LBB8fGNV5jn5+c3OW/nEZukCHWPrNNf/vKXNsysMeOYXZJdG//xqbqU/tPn6/3F29zM4PR5VVVVBWkk1tCeHulSwwp2WruEr/a8ZhcWFio3N7fRsaysLK1Zs0ZS+36HkVp/Xa+uk9rxoUGEiPfee08xp7zEdPbrOllHZyHrDci6uZH1BmTd3Mh6A7Jufqfm3Zes+/SvXlZWprq6OqWkpDQ6npKSol27dnm95qyzztKyZct0/vnn6+jRo3rqqac0duxYff755+rXr59KSko8j3H6Y7rvO928efMa/aC43xkCOlMgfh68aS7v48ePb9OK9EMfFUu7dmlYeoomThzh8zz3/71If1//b0X16KOJE4f7fH1HWXFFOgLnRDt6pEtSbJSrR3p1rdPvY0LnaM9rdklJSYu/n7Tndxip9dd1wzB06aXVeu+993TppZcqKspcv6Q7HLWmnJt7XpOyMhUdHe053tmv62Q9dJD1wCLroYOsBxZZDx1kPbDIeugwa9Yl73n3JesB/25kZGQoIyPD8/XYsWN19tln67e//a0WLlzYrseMiYlRTEyMv4YIdJr2/Dw0l/eoqKgmhWVvx74td30cKT25S7sK0YN7dZMk7T1yMqiFbG9zM4PT52XGOYaSynb2SI+NdJ1f7ajz+5hgPW15XU+02RQTISV2iTXd64LD4TDl3Nzzio6O5nW9Hlkn61ZB1sm6VZB1sm4VZN2cWZe8592XOdp9ebLk5GRFRESotLS00fHS0lKlpqa26TGioqJ0wQUX6KuvvpIkz3UdeUwgGALx8xAIxYcrJUkDenZp1/UD668rOlQZEpuPAB3hae0S5VshPYYV6WGvPa/ZqampLZ7P7zAIRWQdVkHWYRVkHVZB1hEOfCqkR0dHa+TIkSooKPAcczqdKigoaLTKtiV1dXX69NNP1adPH0nSoEGDlJqa2ugxKyoq9PHHH7f5MYFgCMTPQyAUHXL1ekrvGd/Kmd4NSHJdd+xkrcqrHH4bFxAM7hXlsb4W0j0r0imkh6v2vGZnZGQ0Ol9y7WvgPp/fYRCKyDqsgqzDKsg6rIKsIxz43NolNzdXM2bM0KhRozR69GgtWrRIlZWVmjVrliRp+vTp6tu3r/Ly8iRJjzzyiC666CKdeeaZKi8v15NPPqk9e/bo5ptvliTZbDbNnTtXjz76qIYMGaJBgwbpwQcfVFpamrKzs/03UyAA/P3z4G9Op6Hiw65C+sCk9q1Ij4uOUEpCjEorqrXncJV6dIlu/SIgRFXXuQrhMZE+vY/sOb+6ltYu4czX1+w777xT48aN09NPP61JkyZp1apV2rp1q15++WVJ/A6D0EXWYRVkHVZB1mEVZB2hzudC+pQpU3Tw4EHNnz9fJSUlGjFihNavX+9p3F9cXCy7vaFAceTIEc2ZM0clJSXq0aOHRo4cqc2bN+ucc87xnHPPPfeosrJSt9xyi8rLy/WDH/xA69evV2xsrB+mCAROIH4e/Kn02EnV1DoVabcprXv7f54GJnVxFdIPVWpE/+7+GyDQyWrqW7NE+1hId69gp7VLePP1NXvs2LFauXKlHnjgAd1///0aMmSI1qxZo2HDhnnO4XcYhCKyDqsg67AKsg6rIOsIde3abDQnJ0c5OTle79u0aVOjr5999lk9++yzLT6ezWbTI488okceeaQ9wwGCyt8/D/5UVOZajd6vR5wiI3wrHJ5qQM94bSk6rD31bWKAcFXdzkK6e0X6STYbDXu+vGZL0uTJkzV58uRmH4/fYRCqyDqsgqzDKsg6rIKsI5S1v7IGIOR1dKNRN3d/dQrp1rZ48WKlp6crNjZWY8aM0ZYtW5o9d+nSpbr44ovVo0cP9ejRQ5mZmS2e31ncK9LdPc/bqqG1CyvSAQAAAACwIgrpgIm5C98Dk9q30aibuxDvLszDelavXq3c3FwtWLBA27dv1/Dhw5WVlaUDBw54PX/Tpk2aNm2aNm7cqMLCQvXv31/jx4/Xvn37OnnkjbW3tUsMrV0AAAAAALA0CumAiXkK6T07Vkh3F+KLWJFuWc8884zmzJmjWbNm6ZxzztGSJUsUHx+vZcuWeT3/zTff1O23364RI0Zo6NCheuWVVzw7rgeTe7NQXzcbjXWvSKe1CwAAAAAAltSuHukAwsOe+hXkAzvc2sV1/cFj1aqqqVV8NC8dVlJTU6Nt27Zp3rx5nmN2u12ZmZkqLCxs02NUVVXJ4XAoKSmp2XOqq6tVXV3t+bqiokKS5HA45HA4PH8/9U9fuXucR9gMnx7DXXevqqlt93O3pqNzC1XNzcts8wQAAAAAmBvVMMCkDMPw24r0xPgoJcZF6egJh4oPV2loaoI/hogwUVZWprq6Os9O6W4pKSnatWtXmx7j3nvvVVpamjIzM5s9Jy8vTw8//HCT4xs2bFB8fOMM5+fnt+l5T7e/1C7Jri8+/ZfWlfyzzdd9851NUoS+2bNX69btaddzt1V75xbqTp9XVRWfcAEAAAAAhA8K6YBJHaly6NjJWknSgA72SJdcxfh/fXtURWUU0uGbxx9/XKtWrdKmTZsUGxvb7Hnz5s1Tbm6u5+uKigpPb/WEBFfmHA6H8vPzdfnllysqKsrnsby+b4t0tFxjRl2orHNTWr+g3pGPi7Vmzy4l907VxIkjfH7etujo3EJVc/Nyf+IAAAAAAIBwQCEdMKk9h1xtXVITYhVbv1FiRwzs2UX/+vYoG45aUHJysiIiIlRaWtroeGlpqVJTU1u89qmnntLjjz+uv/71rzr//PNbPDcmJkYxMTFNjkdFRTUpLHs71hYOpyFJio/17fr42Oj66xXwInd75xbqTp+XGecIAAAAADAvNhsFTKr4sKttwoAOtnVxc284uocNRy0nOjpaI0eObLRRqHvj0IyMjGav+/Wvf62FCxdq/fr1GjVqVGcMtVXVDqckKTrCtzeX3JuTnmSzUQAAAAAALIkV6YBJuQve6X4qpLsL8hTSrSk3N1czZszQqFGjNHr0aC1atEiVlZWaNWuWJGn69Onq27ev8vLyJElPPPGE5s+fr5UrVyo9PV0lJSWSpK5du6pr165Bm0dNnauQHhPl2/vIMZGuwnt1rdPvYwIAAAAAAKGPQjpgUkX1rV0G9uzil8dLr3+cPbR2saQpU6bo4MGDmj9/vkpKSjRixAitX7/eswFpcXGx7PaG4vRLL72kmpoa3XDDDY0eZ8GCBXrooYc6c+iN1NS6V6T7WEiPYkU6AAAAAABWRiEdMKni+pXj/thoVHJtNipJ+46cUE2tU9GRdIaympycHOXk5Hi9b9OmTY2+LioqCvyA2qG61lUI93VFelT9mwS1dYbfxwQAAAAAAEIflTDApPYcdrd28c+K9N7dYhQbZZfTkPaVn/DLYwKdrbqdK9IjI2ySJIeT1i4AAAAAAFgRhXTAhCqra3XwWLUk/202arPZNDCpvr3LIdq7IDx5Wrv4+ImKqPpCOivSAQAAAACwJgrpgAkV169G7x4fpcS4KL89rrso7358IJwYhuFZke7ePLStoiLcrV1YkQ4AAAAAgBVRSAdMaE99f3R/bTTqNrC+33pRGYV0hB/HKavJfV2RHlnfI93hZEU6AAAAAABWRCEdMCF365WBftpo1G1gsqswX3yY1i4IP7Wn9Dd3t2ppq4bWLqxIBwAAAADAiiikAybk3mh0oJ/6o7u5C/PuFe9AOKk7ZTW53eZbIT3S09qFFekAAAAAAFgRhXTAhIoD1dqlvjC/53CVnLS4QJg5ZUG6Iu0+FtLrz3c4WZEOAAAAAIAVUUgHTKjI3drFzyvS+3aPU6Tdpppap0qPnfTrYwOBdmprlwgfC+lRrEgHAAAAAMDSKKQDJlNT69R35Sck+b9HemSEXX17xEmivQvCT53hKoLbbJLN59Yu9T3SnYYMg2I6AAAAAABW065C+uLFi5Wenq7Y2FiNGTNGW7ZsafbcpUuX6uKLL1aPHj3Uo0cPZWZmNjl/5syZstlsjW4TJkxoz9AAy9tXfkJOQ4qLilCvbjF+f/wBnj7pbDiK8OJekB7hYxFdkqLsDf+5rKWtEQAAAAAAluNzIX316tXKzc3VggULtH37dg0fPlxZWVk6cOCA1/M3bdqkadOmaePGjSosLFT//v01fvx47du3r9F5EyZM0P79+z233/3ud+2bEWBxp7Z18XXVbVt4+qSzIh1hxt3axde2LlLDinSJ9i4AAAAAAFiRz4X0Z555RnPmzNGsWbN0zjnnaMmSJYqPj9eyZcu8nv/mm2/q9ttv14gRIzR06FC98sorcjqdKigoaHReTEyMUlNTPbcePXo0O4bq6mpVVFQ0ugFwcW80OsDPbV3c0us3MN1zmEI6wotnRXoHC+lsOAoAAAAAgPX4VEivqanRtm3blJmZ2fAAdrsyMzNVWFjYpseoqqqSw+FQUlJSo+ObNm1S7969ddZZZ+m2227ToUOHmn2MvLw8JSYmem79+/f3ZRqAqblXiqcndwnI49PaBeHK3SO9w61dWJEOAAAAAIDl+FRILysrU11dnVJSUhodT0lJUUlJSZse495771VaWlqjYvyECRP0+uuvq6CgQE888YTef/99XXHFFaqrq/P6GPPmzdPRo0c9t7179/oyDcDU3AXuQK1IH+hekX6oik0XEVbq6nub29uxIt1ut8l9WW0dK9IBAAAAALCayM58sscff1yrVq3Spk2bFBsb6zk+depUz9/PO+88nX/++TrjjDO0adMmXXbZZU0eJyYmRjEx/t9EETADd8sVdy9zf3MX6I+drFV5lUM9ukQH5HkAf3MX0iPbUUiXpMgIu2pqnXKw2SgAAAAAAJbj04r05ORkRUREqLS0tNHx0tJSpaamtnjtU089pccff1wbNmzQ+eef3+K5gwcPVnJysr766itfhgdYntNpqLi+kO7uZe5vcdERSklwvZFFn3SEk46sSJekqPrrWJEOAAAAAID1+FRIj46O1siRIxttFOreODQjI6PZ6379619r4cKFWr9+vUaNGtXq83z77bc6dOiQ+vTp48vwAMsrPVatmlqnIu029UmMbf2CdhqY5G7vQp90hA9nB3qkSw2blNaxIh0AAAAAAMvxqZAuSbm5uVq6dKlWrFihnTt36rbbblNlZaVmzZolSZo+fbrmzZvnOf+JJ57Qgw8+qGXLlik9PV0lJSUqKSnR8ePHJUnHjx/X3XffrY8++khFRUUqKCjQNddcozPPPFNZWVl+miZgDe7V6P16xCkywucf7zZzt41xb2wKhIPa+gJ4RDtXpFNIBwAAAADAunzukT5lyhQdPHhQ8+fPV0lJiUaMGKH169d7NiAtLi6W3d5QwHvppZdUU1OjG264odHjLFiwQA899JAiIiL0r3/9SytWrFB5ebnS0tI0fvx4LVy4kD7ogI+KPf3RA9PWxY1COsJRXYcL6a7/ttVSSAcAAAAAwHLatdloTk6OcnJyvN63adOmRl8XFRW1+FhxcXF699132zMMAKfZc+iEpMBtNOo2oCetXRB+PK1d2rvZKCvSAQAAAACwrMD1fgDQ6dwr0gckBbaQnu5ekc5mowgjns1G21dHp7ULAAAAAAAWRiEdMJHiI67CdnqgW7vUbzZ68Fi1qmpqA/pcgL+4C+CR9vb9p89dSKe1CwAAAAAA1kMhHTAJw+i81i6J8VFKjIuSRJ90hA/PivQOtnZxt4gBAAAAAADWQSEdMInKWul4tWt1eP8At3aRTmnvQiEdYaLO0yO9fdd7VqTXUUgHAAAAAMBqKKQDJlF20vVnn8RYxUZFBPz53BuOFh9mw1GEB2f9ivQIW/tWpNMjHQAAAAAA66KQDphE2UlXkS/QG426Dax/niJWpCNMuHubR7SztUtDj3Sn38YEAAAAAADCA4V0wCTcK9ID3R/dzf08xRTSESacHSyk0yMdAAAAAADropAOmERZtavIN7C+5UqguZ9nD61dECbcPdLtHWztQo90AAAAAACsh0I6YBLu1i6dvSJ935ETqqml1QVCX52fWrvQIx0AAAAAAOuhkA6YhKe1S1LnrEjv3S1GsVF2OQ1pX/mJTnlOoCP8VkintQsAAAAAAJZDIR0wgcrqWh1z1G822kkr0m02m6dov+cQ7V0Q+jpaSI+02xs9DgAAAAAAsA4K6YAJFB92rQjvER+lxLioTnted9F+DxuOIgy4NwmNoEc6AAAAAADwEYV0wASKD7sK2f2T4jr1edMppCOM1NIjHQAAAAAAtBOFdMAEio+4CtkDenROWxe3AT1drV2KD9PaBaHPSY90AAAAAADQThTSgQ5avHix0tPTFRsbqzFjxmjLli0tnv/2229r6NChio2N1Xnnnad169Z1eAx7DrlauwzspP7obgOTXM9XxIp0SwiFrHeEeyW5vd090utbu7AiPSwdPnxYN954oxISEtS9e3fNnj1bx48fb/GakydP6o477lDPnj3VtWtXXX/99SotLW10js1ma3JbtWpVIKcCtIiswyrIOqyCrMMqyDrCAYV0oANWr16t3NxcLViwQNu3b9fw4cOVlZWlAwcOeD1/8+bNmjZtmmbPnq1PPvlE2dnZys7O1meffdahceytb+0yoNNbu7hXpFd5VvvCnEIl6x3hae3Szh7p7gJ8XZ3Tb2NC57nxxhv1+eefKz8/X3/+85/1wQcf6JZbbmnxmrvuukt/+tOf9Pbbb+v999/Xd999p+uuu67Jea+99pr279/vuWVnZwdoFkDryDqsgqzDKsg6rIKsIxxEBnsAQDh75plnNGfOHM2aNUuStGTJEq1du1bLli3Tfffd1+T85557ThMmTNDdd98tSVq4cKHy8/P14osvasmSJe0eR7GnkN65K9LTuscq0m5TTa1TH31zSEldo/3+HLWOWn1XKX1ZckyRUeZ5yXLP60RNnaKiOm+D2PYKlax/WXKs3XkorTgpqWFlua/c1+0/elK7Sira9RgtMXvWj1fXqkeQsr5z506tX79e//jHPzRq1ChJ0gsvvKCJEyfqqaeeUlpaWpNrjh49qldffVUrV67UpZdeKsn1C/jZZ5+tjz76SBdddJHn3O7duys1NbVzJgO0gKzDKsg6rIKswyrIOsKFef5PHehkNTU12rZtm+bNm+c5ZrfblZmZqcLCQq/XFBYWKjc3t9GxrKwsrVmzptnnqa6uVnV1tefrigpXAc/hcMjhcKim1qnvjroKhGkJUXI4HO2dUrukdY9V8eET+vErHwfwWSL1xL+8f0/DW6Qu/F65Lkzv6TnS2f9+bREqWZeka37zkeqMjubBaNf32V1//+0H3+i3H3zTgedviXmzPuS8Qxo3NMVzpDOzXlhYqO7du3t+KZekzMxM2e12ffzxx7r22mubXLNt2zY5HA5lZmZ6jg0dOlQDBgxQYWFho1/M77jjDt18880aPHiwbr31Vs2aNUu2Fj750Jasn/6nmZh1bs3Ni6yTdbPNjaw3RdbNOTey3hRZN+fcyHpTZN1ac/NlnhTSgXYqKytTXV2dUlJSGh1PSUnRrl27vF5TUlLi9fySkpJmnycvL08PP/xwk+MbNmxQfHy8jtZIyTEROu6QPtn8gXa0b7Ftu41MsOnoMbtodtE+W//xsUq+aPi6qir0+s2HStYlqWtkRIeyFmWXep3Yq3Xrin2+ttcJm5Ji7HIQ9nb55yfbVHnK+w+dmfWSkhL17t270bHIyEglJSU1m8mSkhJFR0ere/fujY6fnuNHHnlEl156qeLj47VhwwbdfvvtOn78uH7+8583O562ZN0tPz+/temFLbPO7fR5kXWybta5kfUGZN3FrHMj6w3IuotZ50bWG5B1F6vMzZesU0gHQty8efMareytqKhQ//79NX78eCUkJEiSbpjk0Lsb8jV+/OWd3iZkYoAf3+FwKD8/X5df3vlzC6Tm5uV+p9uK2pL1yy8PXh4mSro7gI9P1n1333336YknnmjxnJ07d3b4eVry4IMPev5+wQUXqLKyUk8++WSLv5i3JetmzYNk3rmR9abIujnnRtabIuvmnBtZb4qsm3NuZL0psm6tufmS9XYV0hcvXqwnn3xSJSUlGj58uF544QWNHj262fPffvttPfjggyoqKtKQIUP0xBNPaOLEhvKbYRhasGCBli5dqvLycn3/+9/XSy+9pCFDhrRneECnSE5OVkRERJMdoUtLS5vtvZWamurT+ZIUExOjmJiYJsejoqIavaDZbU2PmYlZ53b6vEJxjqGW9eaOmYVZ5xaIrP/iF7/QzJkzWzxn8ODBSk1NbbIxbm1trQ4fPtxihmtqalReXt5olUtrOR4zZowWLlyo6upqr3mWyLqbWedG1huQdRezzo2sNyDrLmadG1lvQNZdzDo3st6ArLtYZW6+zNHnQvrq1auVm5urJUuWaMyYMVq0aJGysrL05ZdfNvkYhiRt3rxZ06ZNU15enq688kqtXLlS2dnZ2r59u4YNGyZJ+vWvf63nn39eK1as0KBBg/Tggw8qKytLX3zxhWJjY30dItApoqOjNXLkSBUUFHh2fHY6nSooKFBOTo7XazIyMlRQUKC5c+d6juXn5ysjI6MTRgy0D1lHqOrVq5d69erV6nkZGRkqLy/Xtm3bNHLkSEnSe++9J6fTqTFjxni9ZuTIkYqKilJBQYGuv/56SdKXX36p4uLiFnO8Y8cO9ejRo9lfyoH2IOuwCrIOqyDrsAqyDrPxuZD+zDPPaM6cOZo1a5YkacmSJVq7dq2WLVum++67r8n5zz33nCZMmKC773Z9IH7hwoXKz8/Xiy++qCVLlsgwDC1atEgPPPCArrnmGknS66+/rpSUFK1Zs0ZTp07tyPyAgMrNzdWMGTM0atQojR49WosWLVJlZaXn52P69Onq27ev8vLyJEl33nmnxo0bp6efflqTJk3SqlWrtHXrVr388svBnAbQKrKOcHb22WdrwoQJmjNnjpYsWSKHw6GcnBxNnTpVaWlpkqR9+/bpsssu0+uvv67Ro0crMTFRs2fPVm5urpKSkpSQkKCf/exnysjI8Gxc9Kc//UmlpaW66KKLFBsbq/z8fD322GP65S9/GczpwsLIOqyCrMMqyDqsgqwjXPhUSK+pqdG2bds0b948zzG73a7MzEwVFhZ6vaawsLBRXyFJysrK0po1ayRJu3fvVklJSaNddhMTEzVmzBgVFhZ6LaSfvnvu0aNHJVm7t7DZuf9tDcMI8kgamzJlig4ePKj58+erpKREI0aM0Pr16z2bLBYXF8tut3vOHzt2rFauXKkHHnhA999/v4YMGaI1a9Z4Pp3RFu7vwal5dzgcqqqqUkVFhek+dmPWuTU3L7LegKybQ6hk/c0331ROTo4uu+wy2e12XX/99Xr++ecbjfPLL79stNHMs88+6zm3urpaWVlZ+s1vfuO5PyoqSosXL9Zdd90lwzB05plnehYc+IKsmwNZbx1ZNwey3jqybg5kvXVk3RzIeuvIunl4m5tPWTd8sG/fPkOSsXnz5kbH7777bmP06NFer4mKijJWrlzZ6NjixYuN3r17G4ZhGH//+98NScZ3333X6JzJkycbP/rRj7w+5oIFCwxJ3Cx4+/rrr32JrCnt3bs36P8O3AJ/27t3b7CjFnRk3Ro3sk7WrXIj62TdKjeyTtatciPrZN0qN7JO1q1ya0vW27XZaLCdvntueXm5Bg4cqOLiYiUmJgZxZJ3HvWPw3r17PTsGm9nRo0c1YMAAJSUlBXsoQZeWlqa9e/eqW7dustlsksydB7POrbl5GYahY8eOeT6+ZmVk3RzIeuvIujmQ9daRdXMg660j6+ZA1ltH1s2BrLeOrJuHt7n5knWfCunJycmKiIhQaWlpo+Mt7Yibmpra4vnuP0tLS9WnT59G54wYMcLrYza3e25iYqLp/oFbk5CQYKk5n9o6wqrsdrv69evn9T4z58Gsc/M2L6u8Idgasm4uZL15ZN1cyHrzyLq5kPXmkXVzIevNI+vmQtabR9bN5/S5tTXrPlUlo6OjNXLkSBUUFHiOOZ1OFRQUNLsjbkZGRqPzJSk/P99z/qBBg5SamtronIqKCn388cct7rILAAAAAAAAAEBn8Lm1S25urmbMmKFRo0Zp9OjRWrRokSorKzVr1ixJ0vTp09W3b1/l5eVJku68806NGzdOTz/9tCZNmqRVq1Zp69atevnllyVJNptNc+fO1aOPPqohQ4Zo0KBBevDBB5WWlqbs7Gz/zRQAAAAAAAAAgHbwuZA+ZcoUHTx4UPPnz1dJSYlGjBih9evXKyUlRZJUXFzcqP3G2LFjtXLlSj3wwAO6//77NWTIEK1Zs0bDhg3znHPPPfeosrJSt9xyi8rLy/WDH/xA69evV2xsbJvGFBMTowULFnht92JWVpuz1ebrKzN/f8w6N7POK9DM/H0z69zMOq9AM/P3zaxzM+u8As3M3zezzs2s8wo0M3/fzDo3s84r0Mz8fTPr3Mw6r0Az8/eNuTXPZhiG4ecxAQAAAAAAAABgGuzcCAAAAAAAAABACyikAwAAAAAAAADQAgrpAAAAAAAAAAC0gEI6AAAAAAAAAAAtCJtC+uLFi5Wenq7Y2FiNGTNGW7ZsafH8t99+W0OHDlVsbKzOO+88rVu3rpNG6h++zHf58uWy2WyNbrGxsZ042o754IMPdNVVVyktLU02m01r1qxp9ZpNmzbpwgsvVExMjM4880wtX7484OMMF7/61a80duxYxcfHq3v37sEeTof4+nMfDtqTd3hH1kMbWfcfsh7ayLr/kPXQRtb9h6yHPvLuP2bJO1lHa8h6aPNX1sOikL569Wrl5uZqwYIF2r59u4YPH66srCwdOHDA6/mbN2/WtGnTNHv2bH3yySfKzs5Wdna2Pvvss04eefv4Ol9JSkhI0P79+z23PXv2dOKIO6ayslLDhw/X4sWL23T+7t27NWnSJF1yySXasWOH5s6dq5tvvlnvvvtugEcaHmpqajR58mTddtttwR5Kh7Tn5yAc+Jp3NI+shzay7j9kPbSRdf8h66GNrPsPWQ995N1/zJB3so62IOuhzW9ZN8LA6NGjjTvuuMPzdV1dnZGWlmbk5eV5Pf9HP/qRMWnSpEbHxowZY/y///f/AjpOf/F1vq+99pqRmJjYSaMLLEnGO++80+I599xzj3Huuec2OjZlyhQjKysrgCMLP+GeC19/DsJRW/KO1pH10EfW/YOshz6y7h9kPfSRdf8g6+GBvPtHOOedrMMXZD30dSTrIb8ivaamRtu2bVNmZqbnmN1uV2ZmpgoLC71eU1hY2Oh8ScrKymr2/FDSnvlK0vHjxzVw4ED1799f11xzjT7//PPOGG5QhPO/L9qmvT8HQLgh67AKsg6rIOuwCrIOqyDrsAqy3jYhX0gvKytTXV2dUlJSGh1PSUlRSUmJ12tKSkp8Oj+UtGe+Z511lpYtW6Y//vGP+p//+R85nU6NHTtW3377bWcMudM19+9bUVGhEydOBGlU8Kf2/BwA4YiswyrIOqyCrMMqyDqsgqzDKsh624R8IR2ty8jI0PTp0zVixAiNGzdOf/jDH9SrVy/99re/DfbQ4Cf33Xdfkw1lT7/t2rUr2MMEOoyswyrIOqyCrMMqyDqshLzDKsg6ThcZ7AG0Jjk5WRERESotLW10vLS0VKmpqV6vSU1N9en8UNKe+Z4uKipKF1xwgb766qtADDHomvv3TUhIUFxcXJBGFVi/+MUvNHPmzBbPGTx4cOcMphP44+cA4Ymsu5B18yPrLmTd/Mi6C1k3P7LuQtatwUp5J+vWRtbJ+ulCvpAeHR2tkSNHqqCgQNnZ2ZIkp9OpgoIC5eTkeL0mIyNDBQUFmjt3rudYfn6+MjIyOmHEHdOe+Z6urq5On376qSZOnBjAkQZPRkaG1q1b1+hYuPz7tlevXr3Uq1evYA+j0/jj5wDhiayTdasg62TdKsg6WbcKsk7WrcRKeSfr1kbWyfrpQr6QLkm5ubmaMWOGRo0apdGjR2vRokWqrKzUrFmzJEnTp09X3759lZeXJ0m68847NW7cOD399NOaNGmSVq1apa1bt+rll18O5jTazNf5PvLII7rooot05plnqry8XE8++aT27Nmjm2++OZjTaLPjx483Wj2/e/du7dixQ0lJSRowYIDmzZunffv26fXXX5ck3XrrrXrxxRd1zz336Kc//anee+89vfXWW1q7dm2wphBSiouLdfjwYRUXF6uurk47duyQJJ155pnq2rVrcAfng9Z+DsJVa3lH25H10EbW/Yeshzay7j9kPbSRdf8h66GPvPuPGfJO1tEWZD20+S3rRph44YUXjAEDBhjR0dHG6NGjjY8++shz37hx44wZM2Y0Ov+tt94y/uu//suIjo42zj33XGPt2rWdPOKO8WW+c+fO9ZybkpJiTJw40di+fXsQRt0+GzduNCQ1ubnnOGPGDGPcuHFNrhkxYoQRHR1tDB482Hjttdc6fdyhasaMGV6/nxs3bgz20HzW0s9BuGot72g7sh7ayLr/kPXQRtb9h6yHNrLuP2Q99JF3/zFL3sk6WkPWQ5u/sm4zDMNoe9kdAAAAAAAAAABrsQd7AAAAAAAAAAAAhDIK6QAAAAAAAAAAtIBCOgAAAAAAAAAALaCQDgAAAAAAAABACyikAwAAAAAAAADQAgrpAAAAAAAAAAC0gEI6AAAAAAAAAAAtoJAOAAAAAAAAAEALKKQDAAAAAAAAANACCukAAAAAAAAAALSAQjoAAAAAAAAAAC2gkA4AAAAAAAAAQAsopAMAAAAAAAAA0AIK6QAAAAAAAAAAtIBCOgAAAAAAAAAALaCQDgAAAAAAAABACyikAwAAAAAAAADQAgrpAACc4qGHHpLNZlNZWVmr59bW1uqee+5R//79ZbfblZ2dHfgBAn5C1mEVZB1WQdZhFWQdVkHWQw+FdOD/Z+/u46Is8/7/v4d7UEGQBFEQTDfLvEtXsr26LCMx3cp2a9WrvTTX3G837lZcW8n+SjP7ZmW1tmXLrmVaW6u1u7m/Xc1kKerXRrlqbnfaVa2Ad6CggIDAwJy/P2AGR25nmIGZc17Px2Meycl5nnMc8mbCD8d8DgBw04YNG7RmzRrdeOON2rRpk+655552z7PZbNq4caOuu+46JScnq1+/frr44ov1yCOPqK6uzqtj7Mvnhnn4Q9Ylaf369Zo2bZoSEhIUHh6utLQ0LVq0SIWFhV5/bpiDv2T9bFarVRdddJEsFouefPLJXn1u+C9/yfott9wii8XS5jF69GivPzfMwV+ybh/Db37zG02YMEGRkZEaNGiQpk+frn/961+98vzwb/6S9fZe0+2Pq6++2uvP31MhfT0AAAD81TvvvKOhQ4fqV7/6Vafn1dbWatGiRbr00kt12223afDgwSooKNCKFSuUl5end955RxaLxStj7Mvnhnn4Q9Yl6ZNPPlFaWpquu+46xcbG6uDBg1q/fr3+9re/6V//+peSkpK89twwB3/J+tmeffZZFRcX98pzwTz8Kevh4eF64YUXnI7FxMR49TlhHv6U9Z/85Cd69dVXtWDBAi1dulQ1NTX65JNPdPz4ca8+L8zBX7L+yiuvtDm2e/duPfPMM5oxY4bXntdTKKQDAOCm48ePa+DAgV2eFxYWpn/84x+67LLLHMeWLFmi1NRUxw8sGRkZXhljXz43zMMfsi5Jzz//fJtjc+bM0eTJk/Xyyy9r2bJlXntumIO/ZN3u+PHjevjhh3X//fdr+fLlXn8+mIc/ZT0kJEQ//vGPvfocMC9/yfrrr7+uTZs26c9//rNuuOEGrz0PzMtfst7e63l+fr4sFovmz5/vtef1FFq7AADQjrKyMv3oRz9SdHS0Bg0apLvuusvxVrfCwkJZLBa9++67+uKLLxxvRcvPz2/3XmFhYU4/qNjZf0jev39/p2N56aWXZLFYtGHDBqfjjz76qCwWi7Zv397htT19bpifWbLekdTUVElSRUWFy9fCXMyY9WXLlumCCy6gyAgnZsx6U1OTqqqqunUuAoeZsv70009rypQpuuGGG2Sz2VRTU9Pp+QgsZsr6uerr6/WnP/1J06ZN07Bhw1y6ti9QSAcAoB0/+tGPVFdXp9WrV2vWrFn69a9/rZ/+9KeSpPPOO0+vvPKKRo8erWHDhumVV17RK6+8ogsvvNCl5ygpKZEkxcfHd3reokWL9P3vf19ZWVk6dOiQJOmzzz7TypUrtXjxYs2aNcvl+XX3uWF+Zsx6eXm5jh8/rt27d2vRokWSpKuuusqlMcN8zJb1Xbt2adOmTVq7di0tuuDEbFmvra1VdHS0YmJiFBcXpzvvvFPV1dUujRfmZJasV1VVadeuXfrud7+rX/7yl4qJiVH//v01YsQIvf766y6NF+Zklqy3Z/v27aqoqNDNN9/s0nV9xgAAAA4rVqwwJBnXXXed0/E77rjDkGT861//chybNm2aMWbMGLefKyMjw4iOjjZOnTrV5bnHjh0z4uLijKuvvtqor683Jk6caKSkpBiVlZVef26Yk5mzHh4ebkgyJBmDBg0yfv3rX7s9dvg/M2bdZrMZU6ZMMebPn28YhmEcPHjQkGSsWbPG7bHD/5kx68uWLTPuv/9+Y8uWLcYf/vAHY+HChYYk43vf+55htVrdHj/8m9myvnfvXsfPLAkJCcbzzz9vvPrqq8aUKVMMi8VivPXWW26PH/7NbFlvzw9/+EMjPDzcb/5dyop0AADaceeddzp9/LOf/UyS3Got0Z5HH31Uf//73/XYY491q5ddYmKi1q1bp9zcXF1++eXat2+fNmzYoOjoaK8/N8zNjFl/6623tH37dj311FNKSUnh7dGQZK6sb9y4UZ999pkef/xxD4wcZmOmrK9evVqPPfaYfvSjH2nevHnauHGj/u///b/6xz/+oT/+8Y8emA38mVmybn+HRXl5uf7yl7/o9ttv13/9138pLy9PgwYN0iOPPOKJ6cCPmSXr56qqqtK2bds0a9Ysv/l3KYV0AADaMWrUKKePzz//fAUFBamwsLDH996yZYseeOABLV68WLfffnu3r5s3b55mz56tXbt2acmSJW61qnD3uWFeZsz6lVdeqWuuuUZZWVl64403tHLlSj333HOuDh8mY5asV1VVKTs7W/fee6+Sk5N7MmyYlFmy3pF77rlHQUFB+vvf/+72PWAOZsl6ZGSkJCktLU3p6emO4/3799e1116rXbt2qbGx0fVJwDTMkvVz/elPf1JdXZ3/tHURhXQAALrFU/1nc3NztWDBAs2ePVs5OTkuXVteXq7du3dLkr788kvZbLZee24EDjNk/Wznn3++Jk6cqFdffdXte8Cc/DXrTz75pBoaGjR37lwVFhaqsLBQhw8fliSdOnVKhYWFamhocH0iMC1/zXpHIiMjNWjQIJ08edLte8Cc/DXrSUlJkqSEhIQ2nxs8eLCsVivvroMTf836uV599VXFxMTo+9//vsvX9hUK6QAAtOPrr792+vibb76RzWZTamqq2/f8+OOPdcMNN2jy5Ml6/fXXFRIS4tL1d955p06fPq3Vq1frgw8+0Nq1a3vtuWFeZst6e86cOaPKysoe3QP+zyxZLy4u1qlTpzRmzBilpaUpLS1Nl19+uaTmt2anpaXpyy+/dGc6MAmzZL0jp0+fVllZmc477zy37wFzMEvWk5KSlJiYqCNHjrT53NGjRxUREaEBAwa4NA6Yi1myfrZjx47p3Xff1Q9/+EOFh4e7dG1fopAOAEA71q1b5/Txs88+K0m65ppr3Lrf/v37NXv2bKWmpupvf/ub4y2c3fXHP/5RW7Zs0WOPPaZly5Zp3rx5euCBB/S///u/Xn9umJtZst7Y2KhTp061Ob5r1y599tlnmjx5skvjgPmYJes///nP9eabbzo9fvvb30qSbrnlFr355ptKS0tza04wB7Nkva6uTqdPn25zfNWqVTIMQzNnznRpHDAfs2RdkubOnatDhw4pNzfXcaysrEx/+ctfNH36dAUFUb4LZGbKut3mzZtls9n8qq2LJFkMwzD6ehAAAPiKhx56SCtXrtTYsWOVmpqqmTNnqqCgQL///e/1X//1X07tIa644gqVlZXp888/7/Sep0+f1pgxY3TkyBE9+uijGjp0qNPnzz//fE2dOrXD648fP64xY8Zo7NixysvLk8ViUXl5ucaMGaMRI0bogw8+6PCH654+N8zLbFmvqKjQsGHDNHfuXI0ZM0b9+vXTZ599ppdeekkRERH66KOP2vSXRGAwW9bbU1hYqLS0NK1Zs0a/+MUvun0dzMVsWS8sLNTEiRM1f/58jR49WpL09ttva/v27Zo5c6a2bdtGcTFAmS3rklRaWqqJEyequrpaWVlZiomJUU5Ojg4dOqSCggKNHz++m387MBMzZt1u8uTJOnbsmA4dOuRfr+UGAABwWLFihSHJ+PLLL40bb7zRGDBggBEbG2ssXbrUOHPmjNO506ZNM8aMGdPlPQ8ePGhI6vCxcOHCTq//wQ9+YAwYMMAoLCx0Ov6Xv/zFkGQ8/vjjXntumJfZsl5fX2/cddddxrhx44zo6GgjNDTUGD58uLF48WLj4MGDXY4d5mW2rHc2njVr1rh0HczFbFk/deqU8eMf/9gYOXKkERUVZYSHhxtjxowxHn30UaOhoaHLscO8zJZ1u2+//da44YYbjOjoaCMyMtKYPn26sWvXri6vg3mZNesHDhwwJBlZWVldnutrWJEOAAAAAAAAAEAn/GjtPAAAAAAAAAAAvY9COgAAAAAAAAAAnaCQDgAAAAAAAABAJ1wupL///vu69tprlZSUJIvFoq1bt3Z5TX5+vi655BKFh4dr5MiR2rhxY5tz1q1bp9TUVEVERCg9PV27du1ydWiAR5F1AAAAAAAAAJIbhfSamhqNHz9e69at69b5Bw8e1OzZs3XllVdq3759uvvuu3Xrrbfq7bffdpyzZcsWZWVlacWKFdq7d6/Gjx+vzMxMHT9+3NXhAR5D1gEAAAAAAABIksUwDMPtiy0Wvfnmm5ozZ06H59x///3atm2bPv/8c8exefPmqaKiQjt27JAkpaen67vf/a6ee+45SZLNZlNycrJ+9rOfadmyZe4OD/AYsg4AAAAAAAAErhBvP0FBQYEyMjKcjmVmZuruu++WJDU0NGjPnj3Kzs52fD4oKEgZGRkqKCho95719fWqr693fGyz2XTy5EkNGjRIFovF85NAnzMMQ6dPn1ZSUpKCgnyztb83si6R90DjD1nvLTabTUePHtWAAQPIugmR9VZk3dzIeiuybm5kvRVZNzey3oqsmxtZb0XWzc2VrHu9kF5SUqKEhASnYwkJCaqqqtKZM2d06tQpNTU1tXvOgQMH2r3n6tWrtXLlSq+NGb7r0KFDGjZsWF8Po13eyLpE3gOVL2e9txw9elTJycl9PQx4GVkn64GCrJP1QEHWyXqgIOtkPVCQdbIeKLqTda8X0r0hOztbWVlZjo8rKyuVkpKiQ4cOKTo6ug9HBm+pqqpScnKyBgwY0NdD6XXkPbD4Ytbff/99rVmzRnv27NGxY8e6bHMkNW+8m5WVpS+++ELJycl64IEHdMstt7j0vPa/g7OzbrVatXPnTs2YMUOhoaHuTMdnmXVuHc3LF7PeV8i6OZD1rpF1cyDrXSPr5kDWu0bWzYGsd42sm0d7c3Ml614vpCcmJqq0tNTpWGlpqaKjoxUZGang4GAFBwe3e05iYmK79wwPD1d4eHib49HR0RQWTc6X30LjjaxL5D1Q+VLW7Rvv/uQnP9EPfvCDLs+3b7x722236dVXX1VeXp5uvfVWDRkyRJmZmd1+XvvfwdlZt1qtioqKUnR0tCn/h27GuXU1L1/Kel8h6+bga1lft26d1qxZo5KSEo0fP17PPvuspkyZ0uH5b7zxhh588EEVFhZq1KhRevzxxzVr1izH52+55RZt2rTJ6ZrMzEzHPjDdQdbNgax3jaybA1nvGlk3B7LeNbJuHp3NrTtZ93qTo6lTpyovL8/pWG5urqZOnSpJCgsL06RJk5zOsdlsysvLc5wD+AOyDrO65ppr9Mgjj+iGG27o1vk5OTlKS0vTU089pQsvvFBLly7VjTfeqF/96ldeHikAQJK2bNmirKwsrVixQnv37tX48eOVmZmp48ePt3v+hx9+qPnz52vx4sX65JNPNGfOHM2ZM8dpA3VJmjlzpo4dO+Z4/OEPf+iN6QAdIusIFGQdgYKsw9e5vCK9urpa33zzjePjgwcPat++fYqLi1NKSoqys7N15MgRvfzyy5Kk2267Tc8995zuu+8+/eQnP9E777yj119/Xdu2bXPcIysrSwsXLtTkyZM1ZcoUrV27VjU1NVq0aJEHpgi4h6wD7ulq492OnLuxblVVlaTm3xhbrVbHn8/+b296Y88RffBNmR65/iINiPD8b+X7cm7e1NG8zDbPQFF5xqrV2/errLpe988crVEJvNXXFz399NNasmSJ4+eLnJwcbdu2TRs2bNCyZcvanP/MM89o5syZuvfeeyVJq1atUm5urp577jnl5OQ4zgsPD+/0XXTn8vXXdW8z69x86XWdrPsGs86NrLdF1s05N7LeFlkPrLm5Mk+XC+m7d+/WlVde6fjY3rt54cKF2rhxo44dO6bi4mLH59PS0rRt2zbdc889euaZZzRs2DC98MILTm/vnzt3rk6cOKHly5erpKREEyZM0I4dO9psygj0JrIOuKerjXcjIyPbva6jjXV37typqKgop2O5ubmeG3A3/bKg5X+ZlUeVOczw2vP0xdx6w7nzqq2t7aORoCd++efPtO2zY5Kkr49X6+27/1MRocF9PCqcraGhQXv27FF2drbjWFBQkDIyMlRQUNDuNQUFBU77sUjNvwDdunWr07H8/HwNHjxYsbGxmj59uh555BENGjSow7H4+ut6bzHr3Pr6dZ2s+x6zzo2styLrzcw6N7Leiqw3C5S5uZJ1lwvpV1xxhQyj4wLCxo0b273mk08+6fS+S5cu1dKlS10dDuA1ZB3oXedurGvf8GPGjBlOfehyc3N19dVX92qvtjprk1TQ3JZpQEKKZs0a4/Hn6Ku5eVtH87Kv6oD/+Ob4aUcRXZKKymu17dNj+uGkzne2R+8qKytTU1NTu7/QPHDgQLvXdPQL0JKSEsfHM2fO1A9+8AOlpaXp22+/1S9/+Utdc801KigoUHBw+79M8eXX9d5g1rn5yus6WfcdZp0bWW+LrJtzbmS9LbIeWHNzJete32wUABBYutp4tyMdbawbGhra5n/e7R3zpsKTdY4/VzfYvPrcvT233nLuvMw4R7P7894jkqSMCxM0MWWg1rz9lf645zCF9AAxb948x5/Hjh2rcePG6fzzz1d+fr6uuuqqdq/x5df13mTWuZn1dZ2su8+scyPrrch6M7POjay3IuvNAmVurszR65uNAgACS1cb7/qjovLWt3oVl9OSBIHp/a9PSJJmj0vUrLFDJEm7i06qur6xL4eFc8THxys4OLjdX2h21Bu0o1+AdtZLdMSIEYqPj3faTwboTWQdgYKsI1CQdfgDCukAgE5VV1dr37592rdvn6TWjXftewRkZ2drwYIFjvNvu+02/fvf/9Z9992nAwcO6Pnnn9frr7+ue+65py+G7xFFJ1uL54XlNZ22fQLM6GRNg7442vyWx++NjFdafD+lxEXJ2mTon4Un+3h0OFtYWJgmTZrk9AtNm82mvLy8Dn+h6c4vQA8fPqzy8nINGTLEMwMHXETWESjIOgIFWYc/oJAOAOjU7t27NXHiRE2cOFFS88a7EydO1PLlyyWpw413c3NzNX78eD311FNtNt71N0XlNY4/n65rVEWt+XYvBzqz79ApGYY0cnB/DR4QIUmaPDxWkvSvQxV9ODK0JysrS+vXr9emTZu0f/9+3X777aqpqdGiRYskSQsWLHDayOuuu+7Sjh079NRTT+nAgQN66KGHtHv3bseeLtXV1br33nv10UcfqbCwUHl5ebr++us1cuRIv35th/8j6wgUZB2BgqzD19EjHQDQKW9tvOtPis5p51J0slax/cL6aDRA7/uyZTX6xUnRjmPjkwfqz58coZDug+bOnasTJ05o+fLlKikp0YQJE7Rjxw7HZlzFxcUKCmpdT3PZZZfptdde0wMPPKBf/vKXGjVqlLZu3aqLL75YkhQcHKxPP/1UmzZtUkVFhZKSkjRjxgytWrWq3f6hQG8h6wgUZB2BgqzD11FIBwCgC8Unzymkl9doQvLAvhkM0AfsbV3GJMU4jo0b1vznz45U9smY0LmlS5c6VmOdKz8/v82xm266STfddFO750dGRurtt9/25PAAjyHrCBRkHYGCrMOX0doFAIBONNkMHT7VXEi/7PxBktquUAfMzl5Iv+isFenfSRggSSqrblBFbUOfjAsAAAAAeguFdAAAOnG04oysTYZCgy1KT6OQjsBTZ21yvCvjgsQBjuP9wkM0JKa5X/q3J2ravRYAAAAAzIJCOgAAnbAXEJPjopR2Xr+WYxQNETgOtXwPDAgP0aBz9gY4/7z+kqRvT1T3+rgAAAAAoDdRSAcAoBP21efD46I0PC5KklTIinQEEHveUwZFyWKxOH3u/JZfLlFIBwAAAGB2FNIBAOhEUXnz6vPhg/opdVBz0fDE6XrVNjT25bCAXmP/HrDn/2wjWlakH6S1CwAAAACTo5AOAEAn7CvSU+KiFBMVqpjIUKfjgNnZ2xulDIpq87lhsZGSpKOVZ3p1TAAAAADQ2yikAwDQiaKWIuLwliKi/b8U0hEo7FlPbaeQPrSlkH7kFIV0AAAAAOZGIR0AgA4YhqFiR2sXeyGdDUcRWA6dteHuuZIGNhfST9VaaXcEAAAAwNQopAMA0IHymgbVNDTJYpGGxbYU0tlwFAHEMAyVVNVJkpJiItt8PjoiVAPCQyRJRytYlQ4AAADAvCikAwDQAXtLiyHREYoIDZbU2ie6mEI6AkB1faNqG5okSYOjw9s9x9HepaKu18YFAAAAAL2NQjoAAB2wt285e5PF1JbWLkW0dkEAKK2qlyQNiAhRVFhIu+fY27vQJx0AAACAmVFIBwCgA4VlLRuNxvVzHLP3Sj9y6owaGm19Mi5417p165SamqqIiAilp6dr165d3bpu8+bNslgsmjNnjncH2IuOt7R1SYiO6PAc++eOn2ZFOgAAAADzopAOAEAHils2WTx7RfrgAeGKCA2SzZCO0BPadLZs2aKsrCytWLFCe/fu1fjx45WZmanjx493el1hYaF+8Ytf6PLLL++lkfaO0tP2Qnr7bV0k6bwBzZ87cbq+V8YEAAAAAH2BQjoAAB0oKm9u3zL8rEK6xWJxrFC3fx7m8fTTT2vJkiVatGiRLrroIuXk5CgqKkobNmzo8JqmpibdfPPNWrlypUaMGNGLo/W+ksrm4njCgI5XpJ/XP0ySVFZNIR0AAACAeblVSHflLc9XXHGFLBZLm8fs2bMd59xyyy1tPj9z5kx3hgZ4FFkHApt9RfrZrV2k1hXqRWw4aioNDQ3as2ePMjIyHMeCgoKUkZGhgoKCDq97+OGHNXjwYC1evLhbz1NfX6+qqiqnhyRZrVanR3vHevtxrKI54/H9Qzs8JzayuXf68aq6bt/XF+bmjUdH8wIAAADg/9rfNaoT9rc85+TkKD09XWvXrlVmZqa++uorDR48uM35f/7zn9XQ0OD4uLy8XOPHj9dNN93kdN7MmTP10ksvOT4OD+/4LcRAbyDrQGCrrm9UWXXz9/TZrV0kKZVCuimVlZWpqalJCQkJTscTEhJ04MCBdq/54IMP9OKLL2rfvn3dfp7Vq1dr5cqVbY7v3LlTUVHOWcvNze32fb3h0/8NkhSkskPfavv2b9o9599VkhSi4uMV2r59e7fv3ddz85Zz51Vby+sEAAAAYAYuF9LPfsuzJOXk5Gjbtm3asGGDli1b1ub8uLg4p483b96sqKioNsXF8PBwJSYmujocwGvIOhDYiluK5LFRoYqJDHX6XMqg5hXqxSdp7RLITp8+rf/+7//W+vXrFR8f3+3rsrOzlZWV5fi4qqpKycnJmjFjhqKjoyU1r2rOzc3V1VdfrdDQ0I5u5XWvHN0lnazQf06ZqFlj2/9/V9HJWj3zxQeqtQVr1qzMLu/pK3PztI7mZX/HAQAAAAD/5lIh3f6W5+zsbMex7rzl+Wwvvvii5s2bp379nN8mn5+fr8GDBys2NlbTp0/XI488okGDBrV7j/r6etXXt/bh5B8o8DRfybpE3oG+Yi+S24vmZxse17xquJAV6aYSHx+v4OBglZaWOh0vLS1t9xeg3377rQoLC3Xttdc6jtlsNklSSEiIvvrqK51//vltrgsPD2/33UihoaFtCsvtHetNlWcaJUnnRUd2OI4hA5u/R85YbWqwWdQvvHs/Xvb13Lzl3HmZcY4AAABAIHKpR3pnb3kuKSnp8vpdu3bp888/16233up0fObMmXr55ZeVl5enxx9/XO+9956uueYaNTU1tXuf1atXKyYmxvFITk52ZRpAl3wl6xJ5B/qKvUhuL5qfLdWxIr1WNpvRq+OC94SFhWnSpEnKy8tzHLPZbMrLy9PUqVPbnD969Gh99tln2rdvn+Nx3XXX6corr9S+fftM8Xp9qra5vVFsVFiH5/QLD1FUWLAk6cRpNhwFAAAAYE4ut3bpiRdffFFjx47VlClTnI7PmzfP8eexY8dq3LhxOv/885Wfn6+rrrqqzX06eks04Cs8lXWJvAN9xd7/fPigtoX0pIERCgmyqKHRptLTdRoSE9nbw4OXZGVlaeHChZo8ebKmTJmitWvXqqamxtHma8GCBRo6dKhWr16tiIgIXXzxxU7XDxw4UJLaHPdHhmHoVG3zRpmx/TpfVT2of5hqT55ReU29UuPbvosDAAAAAPydS4V0V9/yfLaamhpt3rxZDz/8cJfPM2LECMXHx+ubb75pt7jY0VuiAU/xlaxL5B3oK47WLu2sSA8JDtLQ2EgVldeqsKyWQrqJzJ07VydOnNDy5ctVUlKiCRMmaMeOHY53KBUXFysoyKU39PmtqrpGNbW846KzFemSNDAyTId0RpVnrL0xNAAAAADodS79S9DVtzyf7Y033lB9fb1+/OMfd/k8hw8fVnl5uYYMGeLK8ACPIesA7CvSO1pdO5wNR01r6dKlKioqUn19vT7++GOlp6c7Ppefn6+NGzd2eO3GjRu1detW7w+yF1S0tHWJDA1WRGhwp+cOjAptuYZCOgAAAABzcnlJVVZWltavX69NmzZp//79uv3229u85fnsDRrtXnzxRc2ZM6fNporV1dW699579dFHH6mwsFB5eXm6/vrrNXLkSGVmZro5LaDnyDoQuBoabTpacUZS+z3Szz7OhqMwK3tbl7h+na9Gl6SYyFCnawAAAADAbFzuke7OW56/+uorffDBB9q5c2eb+wUHB+vTTz/Vpk2bVFFRoaSkJM2YMUOrVq2inQX6FFkHAteRijOyGc0rcc8b0P73p713ejGFdJjUqZrmFen21eadsZ9T2bKKHQAAAADMxq3NRpcuXaqlS5e2+7n8/Pw2xy644AIZhtHu+ZGRkXr77bfdGQbgdWQdCExF5a390S0WS7vn2Fu7FNHaBSZ1qqUo3p0V6QMjm8+poEc6AAAAAJMKjN2yAABwgb0/esqg9tu6SK0r0ovKajv8BRrgz046VqR3o5BOj3QAAAAAJkchHQCAc9gL6R31R5eaV6tL0un6RvpCw5TsRfG4brR2sfdIZ0U6AAAAALOikA4AwDmKW9q1DO9kRXpEaLASoyMktbaCAczE3tqleyvSm8+hRzoAAAAAs6KQDgDAORwr0lv6oHfE3vqliA1HYUKn6xolSdGR3d9slBXpAAAAAMyKQjoAAGex2QwVn7QX0jtekS5JqRTSYWLV9c2F9AHhXe9NH9tSSD9Vw4p0AAAAAOZEIR0AgLMcP12v+kabgoMsShoY2em59hXrRSdp7QLzqW5Zkd4/outCenREcyH9dH0jm+8CAAAAMCUK6QAAnMXe73zowEiFBnf+v0n7hqOsSIcZVdU1t2np340V6f1azjEMqbahyavjAgAAAIC+QCEdAICztPZH77ytiySl2lekU0iHCdlbu3RnRXpUWLAsluY/17RcBwAAAABmQiEdAICz2Nu02Febd8a+2WhZdT3FQ5iOvZAe3Y1CusVicaxcP833AgAAAAATopAOAMBZXFmRHhMZ6thkkVXpMBPDMFp7pIeHdusa+6ak9usAAAAAwEwopAMAcJbik/ZCer9unZ/Scl4xG47CROqsNjXamjcN7U5rF6m1TzrvzgAAAABgRhTSAQA4iysr0iVpeEsLmEJWpMNETtc3bzRqsUhRocHdusZecKe1CwAAAAAzopAOAECLylqrKs80FxC70yNdklJbCu60doGZtLZ1CVFQkKVb1/SntQsAAAAAE6OQDgBAC/tGo+cNCFdUWPfaWdDaBWZk32jU3ve8Owa0rEivaaCQDgAAAMB8KKQDANDC3p5leDdXo0utLWAKy1iRDvM4bV+R3s3+6JLUr+WXT6dZkQ4AAADAhCikAwDQori8eVV5Sjf7o0uthfRjlWfU0GjzyriA3nb6rNYu3WUvulfTIx0AAACACVFIBwCghb3PeWpLu5buOK9/uKLCgmUzpMOnWJUOc6hpKYb3c6W1S8u5NRTSAQAAAJgQhXQAAFoUnWxp7eLCinSLxeLYmJQNR2EWZ6xNkqSosOBuX9OPzUYBAAAAmBiFdAAAWhS3FMJTXOiRLrUW3ovK2XAU5lDXUkiPDO1+IT2ypehe19jklTEBAAAAQF+ikA4AgJoLhyVVdZKk4S60djn7fPuKdsDfnWloKaS7sCI9oqXobr8WAAAAAMzErUL6unXrlJqaqoiICKWnp2vXrl0dnrtx40ZZLBanR0REhNM5hmFo+fLlGjJkiCIjI5WRkaGvv/7anaEBHkXWgVae/n7wNcUtRfAB4SGKjQp16drWFekU0mEO9tYuEa6sSLcX0q0U0n2BK6/ZkvTGG29o9OjRioiI0NixY7V9+3anz/MzDHwVWUegIOsIFGQdvszlQvqWLVuUlZWlFStWaO/evRo/frwyMzN1/PjxDq+Jjo7WsWPHHI+ioiKnzz/xxBP69a9/rZycHH388cfq16+fMjMzVVdX5/qMAA8h60Arb3w/+Bp7ETxlUJQsFotL1w6Pa1mRTmsXmMQZN1q72PupsyK977n6mv3hhx9q/vz5Wrx4sT755BPNmTNHc+bM0eeff+44h59h4IvIOgIFWUegIOvwdSGuXvD0009ryZIlWrRokSQpJydH27Zt04YNG7Rs2bJ2r7FYLEpMTGz3c4ZhaO3atXrggQd0/fXXS5JefvllJSQkaOvWrZo3b56rQwQ8gqwDrTz9/eCL7EVwVzYatbNfc+jkGTXZDAUHuVaIB3yNWz3SWZHuM1x9zX7mmWc0c+ZM3XvvvZKkVatWKTc3V88995xycnK89jOMYRiqbWhUfZNU29CoUMNcr51WqznnZp+XYRh9PRSy7iPIuveRdd9A1r2PrPsGs2Zd6nneXSqkNzQ0aM+ePcrOznYcCwoKUkZGhgoKCjq8rrq6WsOHD5fNZtMll1yiRx99VGPGjJEkHTx4UCUlJcrIyHCcHxMTo/T0dBUUFLQb6vr6etXX1zs+rqqqcmUaQJd8JesSeUff88b3Q3s6yrrVapXVanX8+ez/elJhWbUkKXlgpMv3j48KVmiwRQ1NNh0uP62kgZEuP78359aXOpqX2eZpNm71SA+jkO4L3HnNLigoUFZWltOxzMxMbd26VZLnf4axv67XNjRq/Kp3JIXovl3vuDNdP2DWuYVo+vR6xZz1Dq7efl0n677GrHMj62cj65J550bWz0bWJbPP7ey8u5J1lwrpZWVlampqUkJCgtPxhIQEHThwoN1rLrjgAm3YsEHjxo1TZWWlnnzySV122WX64osvNGzYMJWUlDjuce497Z871+rVq7Vy5UpXhg64xFeyLpF39D1vfD+0p6Os79y5U1FRzqvEc3Nz3ZxNx/Z8FSQpSJVHvtH27a73zBsYGqwTTRa98Va+RsW4v5rDG3PzBefOq7aWfvK+rEc90htsXhkTused1+ySkpJOfz7x9M8w9tf1+ibJjTfIwke88847Cj/rJaK3X9fJOnoLWW9F1s2NrLci6+Z3dt5dybrXv+pTp07V1KlTHR9fdtlluvDCC/Xb3/5Wq1atcuue2dnZTr9xqqqqUnJyco/HCvSEN7IukXf4J3e+HzrK+owZMxQdHS2p+TfFubm5uvrqqxUa6tqGoF351f9+IKlWs6el69IRcS5f/6eyPTrxdbmGjBqrWZPb/2VBZ7w5t77U0bx4d41vO2NtLoZHubAi3V5Ir2NFOlp09bpuGIamT6/XO++8o+nTpys01Fz/ILVaG005N/u8ZmdmKCwszHE8kF/XyTpZDxRknawHCrJuzqxL7efdlay79LcRHx+v4OBglZaWOh0vLS3tdh/c0NBQTZw4Ud98840kOa4rLS3VkCFDnO45YcKEdu8RHh6u8PBwV4YOuMRXsi6Rd/Q9b3w/tKejrIeGhrYpLLd3rCcam2w6UnFGkjQiIdqte6fF99f7X5frUEV9j8bm6bn5inPnZcY5mkldgxs90s9q7WIYhsub9sIz3HnNTkxM7PR8T/8Mc/brQYzFovBgKaZfhOleF6xWqynnZp9XWFhYn76uk3XfQda9i6z7DrLuXWTdd5g161L7eXdljkGuPFlYWJgmTZqkvLw8xzGbzaa8vDynlYedaWpq0meffeYIcFpamhITE53uWVVVpY8//rjb9wQ8jawDrbzx/eBrjlXWydpkKCw4SInREW7dI2VQP0lS8ckaTw4N6BOO1i6u9EhvKbo32QxZm/p+s6pA5c5r9tSpU53Ol5rbMdnP52cY+CKyjkBB1hEoyDr8gcvr87OysrRw4UJNnjxZU6ZM0dq1a1VTU+PYUXfBggUaOnSoVq9eLUl6+OGHdemll2rkyJGqqKjQmjVrVFRUpFtvvVWSZLFYdPfdd+uRRx7RqFGjlJaWpgcffFBJSUmaM2eO52YKuIisA608/f3ga4rKm3uiDYuLVHCQe6toh8c193EvLKP3N/yfvZDuyor0s9vAnGloUliIS+s14EGuvmbfddddmjZtmp566inNnj1bmzdv1u7du/W73/1OEj/DwHeRdQQKso5AQdbh61wupM+dO1cnTpzQ8uXLVVJSogkTJmjHjh2Oxv3FxcUKCmr9h9OpU6e0ZMkSlZSUKDY2VpMmTdKHH36oiy66yHHOfffdp5qaGv30pz9VRUWF/uM//kM7duxQRIR7qwIBTyDrQCtvfD/4kqKWVeSpLavK3ZEa31xILz5ZS1sL+L0zbrR2CQ0OUkiQRY02Q2esTYqRud4G6k9cfc2+7LLL9Nprr+mBBx7QL3/5S40aNUpbt27VxRdf7DiHn2Hgi8g6AgVZR6Ag6/B1FsMw/P69t1VVVYqJiVFlZaVjQzqYC1/jVvxdmBtf31bt/V1YrVZt375ds2bN8mivttXb9+u37/9bt1yWqoeuG+PWPeqsTbpw+Q4ZhrTngQwN6u/a3gbemltf62heZL1Vb2a9uy5ZlauTNQ3aec9/6jsJA7p93dgVb+t0faPe/cUVSotv/xdTfT03byHrXfPFrHuTWedG1rtG1s2BrHeNrJsDWe8aWTeP9ubmStZ5zy0AIODZW7sMHxTl9j0iQoM1pKW/emE57V3g39xZkS5J4S3n17W0hgEAAAAAs6CQDgAIeEUne15Il6SUQfb2Lmw46s/WrVun1NRURUREKD09Xbt27erw3PXr1+vyyy9XbGysYmNjlZGR0en5/sAwjNbNRl0spIcFN7c0ami0eXxcAAAAANCXKKQDAAKaYRgqLm8ufKfEud8jXZKGt1xfxIp0v7VlyxZlZWVpxYoV2rt3r8aPH6/MzEwdP3683fPz8/M1f/58vfvuuyooKFBycrJmzJihI0eO9PLIPaehqbUIHh7q2o+K9g1Gz74HAAAAAJiBy5uNAgBgJmXVDappaJLFIiXHRfboXsNbNhylkO6/nn76aS1ZskSLFi2SJOXk5Gjbtm3asGGDli1b1ub8V1991enjF154QX/605+Ul5enBQsWtPsc9fX1qq+vd3xcVVUlqblfn9Vqdfz57P/2ptr6Rsefg2xNcmUIoS0r0mvrGjoce1/OzZs6mpfZ5gkAAAAEKgrpAICAZm/DMiQ6QuEhrrWxOFfrinRau/ijhoYG7dmzR9nZ2Y5jQUFBysjIUEFBQbfuUVtbK6vVqri4uA7PWb16tVauXNnm+M6dOxUV5dxeKDc3t5uj95xqq2T/ETF359sKsnT/2jM1wZIs+sdHu1TxVef72ffF3HrDufOqreUXawAAAIAZUEgHAAS01o1Ge9bWpfke9h7pFM78UVlZmZqampSQkOB0PCEhQQcOHOjWPe6//34lJSUpIyOjw3Oys7OVlZXl+LiqqsrREsa+S7zValVubq6uvvpqx27yvaW0qk7a/b5Cgiz6/uxZLl278fDHOlxTqfETL9GMixLaPacv5+ZNHc3L/o4DAAAAAP6NQjoAIKC1FtJ7ttGo1LrZaFl1g6rrG9U/nP/NBpLHHntMmzdvVn5+viIiIjo8Lzw8XOHh4W2Oh4aGtikst3fM2wxLcyuS0OAgl587vGVz0iZ1fW1fzK03nDsvM84RAAAACERsNgoACGj21eMpHiikR0eEKq5fmCTau/ij+Ph4BQcHq7S01Ol4aWmpEhMTO732ySef1GOPPaadO3dq3Lhx3hym19k3CrX3O3dFWEt7JGsjm40CAAAAMBcK6QCAgGYveNv7m/dUSlxLexc2HPU7YWFhmjRpkvLy8hzHbDab8vLyNHXq1A6ve+KJJ7Rq1Srt2LFDkydP7o2helVDSxE8zI09A8KCm3+0tBfjAQAAAMAsKKQDAAKafUW6J1q7SFJqy30KKaT7paysLK1fv16bNm3S/v37dfvtt6umpkaLFi2SJC1YsMBpM9LHH39cDz74oDZs2KDU1FSVlJSopKRE1dXVfTWFHrO2FMHD3FiRHh7SUkhnRToAAAAAk6F5KwAgYFXXN6qsukGSZ1q7NN+neWV78Ulau/ijuXPn6sSJE1q+fLlKSko0YcIE7dixw7EBaXFxsYKCWtch/OY3v1FDQ4NuvPFGp/usWLFCDz30UG8O3WNaV6S7vt4ijEI6AAAAAJOikA4ACFj2ti5x/cIUHeGZDQHtK9KLWJHut5YuXaqlS5e2+7n8/HynjwsLC70/oF7W2iPdjUI6rV0AAAAAmBStXQAAAcvex9ze19wThlNIh5/zxIr0elakAwAAADAZCukAgIBV5OH+6JKU0rJp6dHKM6pvbPLYfYHeYm0yJLm5Ip3WLgAAAABMikI6ACBg2VeND/fgivT4/mHqFxYsw5AOnTzjsfsCvcWx2Sg90gEAAADAgUI6ACBg2TcEtW8Q6gkWi4UNR+HXHK1detQjnXdjAAAAADAXCukAgIDlWJHuwdYuUusKd/qkwx81eGBFurXR8OiYAAAAAKCvUUgHAASkhkabjlY0t17xZGsXSRoeTyEd/su+Ij002OLytSFBzdc02iikAwAAADAXCukAgIB0+FStbIYUGRqs8waEe/Tew1s2HC0qp7UL/E9rj/Rgl68NbimkN9nokQ4AAADAXCikAwACUtHJ1rYuFovrK287k9rSKsb+HIA/sRfSQ4PcX5FuZUU6AAAAAJOhkA4ACEjFLW1XUjzc1kWSUloK6YdO1qqJgiL8TEsdXUHuFNJbNhttaiL3AAAAAMzFrUL6unXrlJqaqoiICKWnp2vXrl0dnrt+/Xpdfvnlio2NVWxsrDIyMtqcf8stt8hisTg9Zs6c6c7QAI8i64B5eWujUUkaEhOp0GCLrE2GjlWe8fj9AW+yGc1F8GA33qlBj3QAAAAAZuVyIX3Lli3KysrSihUrtHfvXo0fP16ZmZk6fvx4u+fn5+dr/vz5evfdd1VQUKDk5GTNmDFDR44ccTpv5syZOnbsmOPxhz/8wb0ZAR5C1gFzKz7Z3L88ZVA/j987OMii5JaV7sVsOAo/Y38XhTsr0oMdhXR6pAMAAAAwF5cL6U8//bSWLFmiRYsW6aKLLlJOTo6ioqK0YcOGds9/9dVXdccdd2jChAkaPXq0XnjhBdlsNuXl5TmdFx4ersTERMcjNja2wzHU19erqqrK6QF4mi9kXSLvgLc4VqR7obXL2fctpJAOP+NYke7G+xZDgu2bjbIiHQAAAIC5uPRPpIaGBu3Zs0cZGRmtNwgKUkZGhgoKCrp1j9raWlmtVsXFxTkdz8/P1+DBg3XBBRfo9ttvV3l5eYf3WL16tWJiYhyP5ORkV6YBdMlXsi6Rd8AbbDbDsRFoqhdWpEvS8Jb7FrWsfAf8hc2+It2t1i7NP1o20iMdAAAAgMm4VEgvKytTU1OTEhISnI4nJCSopKSkW/e4//77lZSU5FSgnDlzpl5++WXl5eXp8ccf13vvvadrrrlGTU1N7d4jOztblZWVjsehQ4dcmQbQJV/JukTeAW8oPV2nhkabQoIsShoY4ZXnsPdep7UL/E2T0ZNCOivSAQAAAJhTSG8+2WOPPabNmzcrPz9fERGthYt58+Y5/jx27FiNGzdO559/vvLz83XVVVe1uU94eLjCw8N7ZcyAOzyVdYm8A95gb+syNDZSIe70r+gGeyGd1i7wN00t7c2De9Aj3UqPdAAAAAAm41L1ID4+XsHBwSotLXU6XlpaqsTExE6vffLJJ/XYY49p586dGjduXKfnjhgxQvHx8frmm29cGR7gMWQdMDf7KvEUL/VHb753v5bnqpFhsDoX/qO1R7rrhfTQll9MsSIdAAAAgNm4VEgPCwvTpEmTnDZPtG+mOHXq1A6ve+KJJ7Rq1Srt2LFDkydP7vJ5Dh8+rPLycg0ZMsSV4QEeQ9YBc7P3LbevGveG5LhIWSxSTUOTyqobvPY8gKf1pEe6vfhOj3QAAAAAZuPy+9mzsrK0fv16bdq0Sfv379ftt9+umpoaLVq0SJK0YMECZWdnO85//PHH9eCDD2rDhg1KTU1VSUmJSkpKVF1dLUmqrq7Wvffeq48++kiFhYXKy8vT9ddfr5EjRyozM9ND0wRcR9YB87K3dhke552NRiUpPCRYSTGRkqRiNhyFH2ntke76tfYe6Y20dgEAAABgMi73SJ87d65OnDih5cuXq6SkRBMmTNCOHTscmzIWFxcrKKi1Pv+b3/xGDQ0NuvHGG53us2LFCj300EMKDg7Wp59+qk2bNqmiokJJSUmaMWOGVq1aRV9o9CmyDphX8cmW1i5eXJEuNa94P1JxRkXltZo0PM6rzwV4in1FujutXSwtq9jp7AIAAADAbNzabHTp0qVaunRpu5/Lz893+riwsLDTe0VGRurtt992ZxiA15F1wJwKy5pXiKcO8t6KdKm5kP7ht+VsOAq/0roi3f3WLjYq6QAAAABMxuXWLgAA+LOK2gZV1TVK8u5mo833b91wFPAXTS1dWdxZkd6y16ijGA8AAAAAZkEhHQAQUOz90QcPCFdkWLBXnyu1pXVM0UlWpMN/GD3okW5fxd7EinQAAAAAJkMhHQAQUOxF7eFe7o8utfZgL6K1C/yIvQge5EYl3V5IZ0E6AAAAALOhkA4ACCj2Niv2tiveNLylB/vJmgadrrN6/fkAT7C3ZQnuQY90VqQDAAAAMBsK6QCAgGJfHd4bK9L7h4covn+Y0/MCvs6+Uag7PdIdrV1Ykg4AAADAZCikAwACSm+2dpFaNzSlkA5/YV9MHuTGivSglp8sbaxIBwAAAGAyFNIBAAGlqKW1i73tirfZn6foZE2vPB/QU0092GzU3g7Gxop0AAAAACZDIR0AEDDqrE0qraqXJA2P650V6faV78WsSIef6FFrF3qkAwAAADApCukAgIBR3NLWZUBEiAZGhfbKc9oL6YXlrEiHf7AXwYPcKKS3rkj36JAAAAAAoM9RSAcABIyzNxq1uNH/2R321i6sSIe/sLdlCXanR7qFFekAAAAAzIlCOgAgYDj6o8f1Tn/05udqXpF+rKpOddamXntewF2OzUbdau1ivweFdAAAAADmQiEdABAw7K1dUgb1Tn90SYrrF6b+4SEyDOnwKValw/c5Wru4sSLd3ledQjoAAAAAs6GQDgAIGIUt7VVSe7GQbrFYHH3Si2jvAj/gaO3ixk+JwbR2AQAAAGBSFNIBAAGjuKW1S0ovtnaRzt5wlEI6fF9PVqRbztps1GBVOgAAAAAToZAOAOiWdevWKTU1VREREUpPT9euXbs6Pf+NN97Q6NGjFRERobFjx2r79u29NNL2NTbZdPjUGUmthe3eYi/c2wv58G3+nvWeal2R7n5rF0mijt43Tp48qZtvvlnR0dEaOHCgFi9erOrq6k6vqaur05133qlBgwapf//++uEPf6jS0lKncywWS5vH5s2bvTkVoFNkHYGCrCNQkHX4AwrpAIAubdmyRVlZWVqxYoX27t2r8ePHKzMzU8ePH2/3/A8//FDz58/X4sWL9cknn2jOnDmaM2eOPv/8814eeatjlXVqtBkKCwlSYnRErz63vZVM0UlWpPs6M2S9p2y25v8Gu9Mj/axrmqik94mbb75ZX3zxhXJzc/W3v/1N77//vn760592es0999yjv/71r3rjjTf03nvv6ejRo/rBD37Q5ryXXnpJx44dczzmzJnjpVkAXSPrCBRkHYGCrMMfhPT1AAAAvu/pp5/WkiVLtGjRIklSTk6Otm3bpg0bNmjZsmVtzn/mmWc0c+ZM3XvvvZKkVatWKTc3V88995xycnLafY76+nrV19c7Pq6qqpIkWa1WWa1WSdKj2/frYGGQ9m7br+Ag134XvLvolCRp2MBINTU1qqnJpct7ZGhMuCTpX4cq9PD/236BtclmU1GRe3PzZfZ5jTxWqe8MiXEct39NfY2vZP3pnV9pv5tZ76milndO2GxNLn+dmppaz1/11y8U0s6qdrNnPfnQKY1NjnUc782s79+/Xzt27NA///lPTZ48WZL07LPPatasWXryySeVlJTU5prKykq9+OKLeu211zR9+nRJzf/YvPDCC/XRRx/p0ksvdZw7cOBAJSYmdns83cn6uf81E7POraN5kXWybra5kfW2yLo550bW2yLrgTU3V+ZJIR0A0KmGhgbt2bNH2dnZjmNBQUHKyMhQQUFBu9cUFBQoKyvL6VhmZqa2bt3a4fOsXr1aK1eubHN8586diopqXtG9qSBYNgVJxw65MZNm0bbTvd56o7JBsihYp2qt2vBhUSdn9mxuvitIF777oUYPbF2hXFvre6vzfSnrL/8zWDWNfZuH/f/aq8ZC11aVN9qkEEuwGg2LXv6ouJMzzZv11PyPdGhQ32S9oKBAAwcOdPwDVJIyMjIUFBSkjz/+WDfccEOba/bs2SOr1aqMjAzHsdGjRyslJUUFBQVO/wi98847deutt2rEiBG67bbbtGjRIkdf/PZ0J+t2ubm5Ls3Vn5h1bufOi6yTdbPOjay3IuvNzDo3st6KrDcLlLm5knUK6QCATpWVlampqUkJCQlOxxMSEnTgwIF2rykpKWn3/JKSkg6fJzs726kgWVVVpeTkZM2YMUPR0dGSpM+DDujfBwuVlpqqoGDXV7KGBgdp7uRhGhLTu61dJGngyBJ9frSqw8/bmmw6WOj+3HyVfV7XTr9MoxJbV6TbV3X4El/K+tdh/6v9X/+7z/KQGB2h/5qS7Faf9AGjTjjeAdIes2f9+isv1cXDWlek92bWS0pKNHjwYKdjISEhiouL6zCTJSUlCgsL08CBA52On5vjhx9+WNOnT1dUVJR27typO+64Q9XV1fr5z3/e4Xi6k3Wr1arc3FxdffXVCg0NdXXKPs2sc+toXmSdrJttbmS9LbJuzrmR9bbIemDNzZWsU0gHAPiE8PBwhYeHtzkeGhrq+B/cfTNHa/v2f2vWNaP97n/o101M1nUTO/681Wr127l1xj6vUYkxTvMy0xxd1Z2s35XxHW1v+MYv8zDj4iTNuLjt22/tzJ71i4fFejzry5Yt0+OPP97pOfv37+/x83TmwQcfdPx54sSJqqmp0Zo1azr9R2h3st7ZMbMw69zOnRdZJ+tmnRtZb0XWm5l1bmS9FVlvFihzc2WObi0DWrdunVJTUxUREaH09HTt2rWr0/PfeOMNjR49WhERERo7dmybt9QbhqHly5dryJAhioyMVEZGhr7++mt3hgZ4FFkHpPj4eAUHB7fZ/by0tLTDPnOJiYkunQ/4ArIOX/U///M/2r9/f6ePESNGKDExsc3GuI2NjTp58mSnGW5oaFBFRYXT8a5ynJ6ersOHDzv1DwV6iqwjUJB1BAqyDrNxuZC+ZcsWZWVlacWKFdq7d6/Gjx+vzMzMNoG3+/DDDzV//nwtXrxYn3zyiebMmaM5c+bo889bN1t74okn9Otf/1o5OTn6+OOP1a9fP2VmZqqurs79mQE9RNaBZmFhYZo0aZLy8vIcx2w2m/Ly8jR16tR2r5k6darT+VJzD7KOzgd8AVmHrzrvvPM0evToTh9hYWGaOnWqKioqtGfPHse177zzjmw2m9LT09u996RJkxQaGuqU46+++krFxcWd5njfvn2KjY1td7UW4C6yjkBB1hEoyDrMxuXWLk8//bSWLFmiRYsWSZJycnK0bds2bdiwQcuWLWtz/jPPPKOZM2fq3nvvlSStWrVKubm5eu6555STkyPDMLR27Vo98MADuv766yVJL7/8shISErR161bNmzevzT3P3T23srJSkm/2W4Vn2L+2huHapmc94QtZl8h7oOmLrHdHVlaWFi5cqMmTJ2vKlClau3atampqHN8fCxYs0NChQ7V69WpJ0l133aVp06bpqaee0uzZs7V582bt3r1bv/vd77r9nPa/g7OzbrVaVVtbq6qqKtO9xcysc+toXmS9FVk3B1/I+oUXXqiZM2dqyZIlysnJkdVq1dKlSzVv3jwlJTW32zly5Iiuuuoqvfzyy5oyZYpiYmK0ePFiZWVlKS4uTtHR0frZz36mqVOnOjbp+utf/6rS0lJdeumlioiIUG5urh599FH94he/cGl8ZN0cyHrXyLo5kPWukXVzIOtdI+vm0d7cXMq64YL6+nojODjYePPNN52OL1iwwLjuuuvavSY5Odn41a9+5XRs+fLlxrhx4wzDMIxvv/3WkGR88sknTuf853/+p/Hzn/+83XuuWLHCkMQjAB/ffvutK5F1m69k3TDIe6A+eivrrnj22WeNlJQUIywszJgyZYrx0UcfOT43bdo0Y+HChU7nv/7668Z3vvMdIywszBgzZoyxbds2l57v0KFDff514OH9x6FDhzwRT48i6zz8Oevl5eXG/Pnzjf79+xvR0dHGokWLjNOnTzs+f/DgQUOS8e677zqOnTlzxrjjjjuM2NhYIyoqyrjhhhuMY8eOOT7/1ltvGRMmTDD69+9v9OvXzxg/fryRk5NjNDU1uTQ2sh4YD7JO1gPlQdbJeqA8yDpZD5RHd7JuMYzu/2rp6NGjGjp0qD788EOnt0ncd999eu+99/Txxx+3uSYsLEybNm3S/PnzHceef/55rVy5UqWlpfrwww/1ve99T0ePHtWQIUMc5/zoRz+SxWLRli1b2tzz3BW6FRUVGj58uIqLixUTE9Pd6fg1+47Bhw4dcuwYbGaVlZVKSUnRqVOn2uzI7A2+knWJvJP1wGWz2XT06FENGDBAFotFkrnzYNa5dTQvwzB0+vRpJSUlKSjIrS1bTIOsmwNZ7xpZNwey3jWybg5kvWtk3RzIetfIunm0NzdXsu5yaxdf0NHuuTExMab7AnclOjo6oOYciC/e5L0ZWQ88QUFBGjZsWLufM3MezDq39uYVCL8M7A6ybi5kvWNk3VzIesfIurmQ9Y6RdXMh6x0j6+Zz7ty6m3WXKjXx8fEKDg5WaWmp0/HOdsRNTEzs9Hz7f125J+BtZB0AAAAAAACAnUuF9LCwME2aNMlpR1ybzaa8vLwOd8SdOnWq0/mSlJub6zg/LS1NiYmJTudUVVXp448/7nSXXcCbyDoAAAAAAAAAO5dbu2RlZWnhwoWaPHmypkyZorVr16qmpkaLFi2SJC1YsEBDhw7V6tWrJUl33XWXpk2bpqeeekqzZ8/W5s2btXv3bv3ud7+TJFksFt1999165JFHNGrUKKWlpenBBx9UUlKS5syZ060xhYeHa8WKFe22vzCrQJtzX8zXF7Mu8bU3u0Cbr6vM/Pdj1rmZdV7eZua/N7POzazz8jYz/72ZdW5mnZe3mfnvzaxzM+u8vM3Mf29mnZtZ5+VtZv57Y24dc2mzUbvnnntOa9asUUlJiSZMmKBf//rXSk9PlyRdccUVSk1N1caNGx3nv/HGG3rggQdUWFioUaNG6YknntCsWbMcnzcMQytWrNDvfvc7VVRU6D/+4z/0/PPP6zvf+Y5bkwI8hawDAAAAAAAAcKuQDgAAAAAAAABAoHCpRzoAAAAAAAAAAIGGQjoAAAAAAAAAAJ2gkA4AAAAAAAAAQCcopAMAAAAAAAAA0Am/KaSvW7dOqampioiIUHp6unbt2tXp+W+88YZGjx6tiIgIjR07Vtu3b++lkXqGK/PduHGjLBaL0yMiIqIXR9sz77//vq699lolJSXJYrFo69atXV6Tn5+vSy65ROHh4Ro5cqQ2btzo9XH2lkDLuhQ4eSfrnvV//+//1WWXXaaoqCgNHDiwr4fTI65+3/sDd/KO9pF130bWPYes+zay7jlk3feRd88xS97JOrpC1n2bp7LuF4X0LVu2KCsrSytWrNDevXs1fvx4ZWZm6vjx4+2e/+GHH2r+/PlavHixPvnkE82ZM0dz5szR559/3ssjd4+r85Wk6OhoHTt2zPEoKirqxRH3TE1NjcaPH69169Z16/yDBw9q9uzZuvLKK7Vv3z7dfffduvXWW/X22297eaTeF2hZlwIr72TdsxoaGnTTTTfp9ttv7+uh9Ig73wP+wNW8o2Nk3beRdc8h676NrHsOWfd95N1zzJB3so7uIOu+zWNZN/zAlClTjDvvvNPxcVNTk5GUlGSsXr263fN/9KMfGbNnz3Y6lp6ebvyf//N/vDpOT3F1vi+99JIRExPTS6PzLknGm2++2ek59913nzFmzBinY3PnzjUyMzO9OLLeEWhZN4zAzXugZ92T/D0Trn4P+KPu5B1dI+u+j6x7Bln3fWTdM8i6fyDvnuHPeSfrcAVZ9309ybrPr0hvaGjQnj17lJGR4TgWFBSkjIwMFRQUtHtNQUGB0/mSlJmZ2eH5vsSd+UpSdXW1hg8fruTkZF1//fX64osvemO4fcKfv76dCbSsS+S9K/7+9UXX3P0eAPwNWUegIOsIFGQdgYKsI1CQ9e7x+UJ6WVmZmpqalJCQ4HQ8ISFBJSUl7V5TUlLi0vm+xJ35XnDBBdqwYYP+8pe/6Pe//71sNpsuu+wyHT58uDeG3Os6+vpWVVXpzJkzfTSqngu0rEvkvStmzTpaufM9APgjso5AQdYRKMg6AgVZR6Ag693j84V0dG3q1KlasGCBJkyYoGnTpunPf/6zzjvvPP32t7/t66EBHkfezW3ZsmVtNpM993HgwIG+HibQY2QdgYKsI1CQdQQS8o5AQdZxrpC+HkBX4uPjFRwcrNLSUqfjpaWlSkxMbPeaxMREl873Je7M91yhoaGaOHGivvnmG28Msc919PWNjo5WZGRkH42q5wIt6xJ574pZs96Z//mf/9Ett9zS6TkjRozoncH0Ak98D8A/kfVmZN38yHozsm5+ZL0ZWQ8MgZR3sh7YyDpZP5fPF9LDwsI0adIk5eXlac6cOZIkm82mvLw8LV26tN1rpk6dqry8PN19992OY7m5uZo6dWovjLhn3JnvuZqamvTZZ59p1qxZXhxp35k6daq2b9/udMxfvr6dCbSsS+S9K2bNemfOO+88nXfeeX09jF7jie8B+CeyTtYDBVkn64GCrJP1QBJIeSfrgY2sk/Vz+XwhXZKysrK0cOFCTZ48WVOmTNHatWtVU1OjRYsWSZIWLFigoUOHavXq1ZKku+66S9OmTdNTTz2l2bNna/Pmzdq9e7d+97vf9eU0us3V+T788MO69NJLNXLkSFVUVGjNmjUqKirSrbfe2pfT6Lbq6mqn1cQHDx7Uvn37FBcXp5SUFGVnZ+vIkSN6+eWXJUm33XabnnvuOd133336yU9+onfeeUevv/66tm3b1ldT8JhAy7oUWHkn655VXFyskydPqri4WE1NTdq3b58kaeTIkerfv3/fDs4FXX0P+Kuu8o7uI+u+jax7Dln3bWTdc8i67yPvnmOGvJN1dAdZ920ey7rhJ5599lkjJSXFCAsLM6ZMmWJ89NFHjs9NmzbNWLhwodP5r7/+uvGd73zHCAsLM8aMGWNs27atl0fcM67M9+6773acm5CQYMyaNcvYu3dvH4zaPe+++64hqc3DPseFCxca06ZNa3PNhAkTjLCwMGPEiBHGSy+91Ovj9pZAy7phBE7eybpnLVy4sN2/z3fffbevh+ayzr4H/FVXeUf3kXXfRtY9h6z7NrLuOWTd95F3zzFL3sk6ukLWfZunsm4xDMPoftkdAAAAAAAAAIDAEtTXAwAAAAAAAAAAwJdRSAcAAAAAAAAAoBMU0gEAAAAAAAAA6ASFdAAAAAAAAAAAOkEhHQAAAAAAAACATlBIBwAAAAAAAACgExTSAQAAAAAAAADoBIV0AAAAAAAAAAA6QSEdAAAAAAAAAIBOUEgHAAAAAAAAAKATFNIBAAAAAAAAAOgEhXQAAAAAAAAAADpBIR0AAAAAAAAAgE5QSAcAAAAAAAAAoBMU0gEAAAAAAAAA6ASFdAAAAAAAAAAAOkEhHQAAAAAAAACATlBIBwAACEAPPfSQLBaLysrKujy3sbFR9913n5KTkxUUFKQ5c+Z4f4CAh5B1BAqyjkBB1hEoyLrvoZAOAACATm3YsEFr1qzRjTfeqE2bNumee+7p8Nz169dr2rRpSkhIUHh4uNLS0rRo0SIVFhZ6fZx9+dwwB3/J+tmsVqsuuugiWSwWPfnkk7363PBf/pL1W265RRaLpc1j9OjRXn9umIO/ZF2SbDabfvOb32jChAmKjIzUoEGDNH36dP3rX//qleeHf/OXrLf3mm5/XH311V5//p4K6esBAAAAwLe98847Gjp0qH71q191ee4nn3yitLQ0XXfddYqNjdXBgwe1fv16/e1vf9O//vUvJSUleW2cffncMAd/yfrZnn32WRUXF/fKc8E8/Cnr4eHheuGFF5yOxcTEePU5YR7+lPWf/OQnevXVV7VgwQItXbpUNTU1+uSTT3T8+HGvPi/MwV+y/sorr7Q5tnv3bj3zzDOaMWOG157XUyikAwAAoFPHjx/XwIEDu3Xu888/3+bYnDlzNHnyZL388statmyZh0fnG88Nc/CXrNsdP35cDz/8sO6//34tX77c688H8/CnrIeEhOjHP/6xV58D5uUvWX/99de1adMm/fnPf9YNN9zgteeBeflL1tt7Pc/Pz5fFYtH8+fO99ryeQmsXAACAAFZWVqYf/ehHio6O1qBBg3TXXXeprq5OklRYWCiLxaJ3331XX3zxheNtl/n5+S49R2pqqiSpoqKi0/NeeuklWSwWbdiwwen4o48+KovFou3bt7v0vK48N8zPjFlftmyZLrjgAoqMcGLGrDc1NamqqsqlMcL8zJT1p59+WlOmTNENN9wgm82mmpoal8YJczNT1s9VX1+vP/3pT5o2bZqGDRvm0rV9wgAAAEDAWbFihSHJGDt2rHHttdcazz33nPHjH//YkGT893//t2EYhlFdXW288sorxujRo41hw4YZr7zyivHKK68YJSUlXd6/rKzMKC0tNf75z38a1157rSHJ2LlzZ5fXff/73zdiYmKM4uJiwzAM49NPPzXCwsKMxYsXd3tu7j43zMmsWf/444+NoKAg48MPPzQOHjxoSDLWrFnTrWthTmbM+sKFCw2LxWJERUUZkozY2FjjjjvuME6fPt3ltTAvs2W9srLSsFgsxp133mlkZ2cb/fv3NyQZaWlpxpYtW7rxNwKzMlvW2/PnP//ZkGSsX7/e5Wv7AoV0AACAAGT/wfy6665zOn7HHXcYkox//etfjmPTpk0zxowZ49L9w8PDDUmGJGPQoEHGr3/9625dd+zYMSMuLs64+uqrjfr6emPixIlGSkqKUVlZ6fXnhjmZMes2m82YMmWKMX/+fMMwDArpMAzDnFlftmyZcf/99xtbtmwx/vCHPxgLFy40JBnf+973DKvV6tL4YR5my/revXsdz5WQkGA8//zzxquvvmpMmTLFsFgsxltvveXS+GEeZst6e374wx8a4eHhxqlTp1y+ti/QIx0AACCA3XnnnU4f/+xnP9Pzzz+v7du3a9y4cW7f96233lJdXZ3279+v3//+991+i3JiYqLWrVun+fPn6/LLL9e+ffuUm5ur6Ohorz83zM1MWd+4caM+++wz/fGPf3R73DAvM2V99erVTh/PmzdP3/nOd/T//D//j/74xz9q3rx5bs0F5mCWrFdXV0uSysvL9dFHHyk9PV2SdN111yktLU2PPPKIZs6c6fZ84P/MkvVzVVVVadu2bZo1a1a3+7v3NQrpAAAAAWzUqFFOH59//vkKCgpSYWFhj+575ZVXSpKuueYaXX/99br44ovVv39/LV26tMtr582bp9///vfatm2bfvrTn+qqq67qteeGeZkl61VVVcrOzta9996r5OTkHo0d5mSWrHfknnvu0YMPPqi///3vFNIDnFmyHhkZKUlKS0tzFNElqX///rr22mv1+9//Xo2NjQoJoYQXqMyS9XP96U9/Ul1dnW6++WaXr+0rbDYKAAAAB4vF4vF7nn/++Zo4caJeffXVbp1fXl6u3bt3S5K+/PJL2Wy2XntuBA5/zfqTTz6phoYGzZ07V4WFhSosLNThw4clSadOnVJhYaEaGhrcnwRMx1+z3pHIyEgNGjRIJ0+edPseMCd/zXpSUpIkKSEhoc3nBg8eLKvVyrvr4MRfs36uV199VTExMfr+97/v8rV9hUI6AABAAPv666+dPv7mm29ks9mUmprq0ec5c+aMKisru3XunXfeqdOnT2v16tX64IMPtHbt2l57bpiXWbJeXFysU6dOacyYMUpLS1NaWpouv/xySdKjjz6qtLQ0ffnllz2ZAvycWbLekdOnT6usrEznnXee2/eAOZgl60lJSUpMTNSRI0fafO7o0aOKiIjQgAEDXB02TMQsWT/bsWPH9O677+qHP/yhwsPD3Rht36CQDgAAEMDWrVvn9PGzzz4rqfktnq5qbGzUqVOn2hzftWuXPvvsM02ePLnLe/zxj3/Uli1b9Nhjj2nZsmWaN2+eHnjgAf3v//6v158b5maWrP/85z/Xm2++6fT47W9/K0m65ZZb9OabbyotLc3lOcE8zJL1uro6nT59us3xVatWyTAMekbDNFmXpLlz5+rQoUPKzc11HCsrK9Nf/vIXTZ8+XUFBlO8CmZmybrd582bZbDa/ausi0SMdAAAgoB08eFDXXXedZs6cqYKCAv3+97/Xf/3Xf2n8+PEu36u6ulrJycmaO3euxowZo379+umzzz7TSy+9pJiYGD344IOdXn/8+HHdfvvtuvLKKx29GZ977jm9++67uuWWW/TBBx90+A/Jnj43zM8sWb/kkkt0ySWXOB2z90gdM2aM5syZ4/J8YC5myXpJSYkmTpyo+fPna/To0ZKkt99+W9u3b9fMmTN1/fXXuzwfmItZsi5J2dnZev311/XDH/5QWVlZiomJUU5OjqxWqx599FGX5wNzMVPW7V599VUlJSXpiiuucHkOfcoAAABAwFmxYoUhyfjyyy+NG2+80RgwYIARGxtrLF261Dhz5ozTudOmTTPGjBnT5T3r6+uNu+66yxg3bpwRHR1thIaGGsOHDzcWL15sHDx4sMvrf/CDHxgDBgwwCgsLnY7/5S9/MSQZjz/+uNeeG+Zltqy35+DBg4YkY82aNS5dB3MxW9ZPnTpl/PjHPzZGjhxpREVFGeHh4caYMWOMRx991GhoaOjyuWFeZsu63bfffmvccMMNRnR0tBEZGWlMnz7d2LVrV5fXwbzMmvUDBw4YkoysrKwuz/U1FsMwjL4p4QMAAAAAAAAA4PtosgQAAAAAAAAAQCcopAMAAAAAAAAA0AkK6QAAAAAAAAAAdMLlQvr777+va6+9VklJSbJYLNq6dWuX1+Tn5+uSSy5ReHi4Ro4cqY0bN7Y5Z926dUpNTVVERITS09O1a9cuV4cGeBRZR6Ag6wAAAAAAAJ1zuZBeU1Oj8ePHa926dd06/+DBg5o9e7auvPJK7du3T3fffbduvfVWvf32245ztmzZoqysLK1YsUJ79+7V+PHjlZmZqePHj7s6PMBjyDoCBVkHAAAAAADonMUwDMPtiy0Wvfnmm5ozZ06H59x///3atm2bPv/8c8exefPmqaKiQjt27JAkpaen67vf/a6ee+45SZLNZlNycrJ+9rOfadmyZW3uWV9fr/r6esfHNptNJ0+e1KBBg2SxWNydDnyYYRg6ffq0kpKSFBTU+x2J+irrEnkPNGSdrAeKvs66L7HZbDp69KgGDBhA1k2IrLci6+ZG1luRdXMj663IurmR9VZk3dxcyXqItwdTUFCgjIwMp2OZmZm6++67JUkNDQ3as2ePsrOzHZ8PCgpSRkaGCgoK2r3n6tWrtXLlSq+NGb7r0KFDGjZsWF8Po13eyLpE3gMVWUeg8OWs95ajR48qOTm5r4cBLyPrZD1QkHWyHijIOlkPFGSdrAeK7mTd64X0kpISJSQkOB1LSEhQVVWVzpw5o1OnTqmpqandcw4cONDuPbOzs5WVleX4uLKyUikpKTp06JCio6M9Pwn0uaqqKiUnJ2vAgAF9PZQOeSPrEnkPNGSdrAcKf8h6b7H/HZyddavVqp07d2rGjBkKDQ3ty+F5nFnn1tG8yHorsm4OZL1rZN0cyHrXyLo5kPWukXXzaG9urmTd64V0bwgPD1d4eHib49HR0RRbTC4Q30JD3gMTWW9F1s3N17L+/vvva82aNdqzZ4+OHTvWZasjqXnz3aysLH3xxRdKTk7WAw88oFtuuaXbz2n/Ozg761arVVFRUYqOjjblD69mnFtX8/K1rPcFsm4Ovpb1devWac2aNSopKdH48eP17LPPasqUKR2e/8Ybb+jBBx9UYWGhRo0apccff1yzZs1yfP6WW27Rpk2bnK7JzMx0tK/rDrJuDmS9a2TdHMh618i6eXQ2t+5k3etNjhITE1VaWup0rLS0VNHR0YqMjFR8fLyCg4PbPScxMdHbwwM8hqwjUJB1mJk3Nt8FAHiHq5ubf/jhh5o/f74WL16sTz75RHPmzNGcOXOc9n2RpJkzZ+rYsWOOxx/+8IfemA7QIbKOQEHW4eu8XkifOnWq8vLynI7l5uZq6tSpkqSwsDBNmjTJ6Rybzaa8vDzHOYA/IOsIFGQdZnbNNdfokUce0Q033NCt83NycpSWlqannnpKF154oZYuXaobb7xRv/rVr7w8Ut9VVWdVQ6Otr4cB9Lny6no1NPX1KMzt6aef1pIlS7Ro0SJddNFFysnJUVRUlDZs2NDu+c8884xmzpype++9VxdeeKFWrVqlSy65xLE5ul14eLgSExMdj9jY2N6YDtAhso5AQdbh61xu7VJdXa1vvvnG8fHBgwe1b98+xcXFKSUlRdnZ2Tpy5IhefvllSdJtt92m5557Tvfdd59+8pOf6J133tHrr7+ubdu2Oe6RlZWlhQsXavLkyZoyZYrWrl2rmpoaLVq0yANTBNxD1hEoyDrgvq42321PfX296uvrHR9XVVVJan6bodVqdfz57P/6i6ozVl3x9P+nEfH99Mf/k97uOf46t650NC+zzRPds+btA1r37rfqHxqsMenVumgo/2D3NHc2Ny8oKHDaj0Vqfs3eunWr07H8/HwNHjxYsbGxmj59uh555BENGjSow7GY+XW9O8w6N195XSfrvsOscyPrbZH1wJqbK/N0uZC+e/duXXnllY6P7YFduHChNm7cqGPHjqm4uNjx+bS0NG3btk333HOPnnnmGQ0bNkwvvPCCMjMzHefMnTtXJ06c0PLly1VSUqIJEyZox44dbTaqA3oTWUegIOuA+7rafDcyMrLNNatXr9bKlSvbHN+5c6eioqKcjuXm5np2wF726UmLTtcF61+HK/XmX7crPLjjc/1tbt117rxqa2v7aCToK3uKTmndu99KkqqtFi3/f7/UH2//Xh+PynzKyspc3ty8o9fskpISx8czZ87UD37wA6Wlpenbb7/VL3/5S11zzTUqKChQcHD7L2pmfl13hVnn1tev62Td95h1bmS9FVlvFihzcyXrLhfSr7jiChmG0eHnN27c2O41n3zySaf3Xbp0qZYuXerqcACvIesIFGQd6F3Z2dlOK2fsu8TPmDHDafOi3NxcXX311X61wU/NnsPSV19Kkr4z6T80JqntRsH+OreudDQv+womBI5XPyqSJF12fpw++ne5dhdVaP+xKl04hI2z/cG8efMcfx47dqzGjRun888/X/n5+brqqqvavcbMr+vdYda5mf11nay7zqxzI+ttkfXAmpsrWXe5kA4AAIBmXW2+257w8HCFh4e3OR4aGtrmB9X2jvmywxWtb4E9XFmvCcM7Hru/za27zp2XGeeIjtU3Numtz5tXwd191Ug9cqpMn5606K3PSyike5g7m5t39Jrd2WboI0aMUHx8vL755psOCy5mfl13hVnn1tev62Td95h1bmS9FVlvFihzc2WOXt9sFAAAwKy62nw30BSV17b7ZyBQfFJcoTPWJsX3D9eEYTG6aGDzO74++PpEH4/MfNzZ3Nyd1+zDhw+rvLxcQ4YM8czAAReRdQQKsg5/QCEdAACgRXV1tfbt26d9+/ZJat18175PQHZ2thYsWOA4/7bbbtO///1v3XfffTpw4ICef/55vf7667rnnnv6Yvh9ruhkjePPxRTSEYAKvi2XJF06Ik4Wi0UXtBTS9x2qUHV9Y18OzZSysrK0fv16bdq0Sfv379ftt9/utLn5ggULnDatu+uuu7Rjxw499dRTOnDggB566CHt3r3b0Yquurpa9957rz766CMVFhYqLy9P119/vUaOHOm0FwzQ28g6AgVZh6+jtQsAAEALb2y+GygMw3BahV5YXtPJ2YA57TtUIUmakhYnSYoLlxKjw1VSVa8vj1Y5jsMzutrcvLi4WEFBrWvHLrvsMr322mt64IEH9Mtf/lKjRo3S1q1bdfHFF0uSgoOD9emnn2rTpk2qqKhQUlKSZsyYoVWrVrX7Fn+gt5B1BAqyDl9HIR0AAKCFtzbfDQQVtVadrmtdcVt8khXpCDz7jzVvVnX2RrtjkqJVUnVCnx2ppJDuBZ1tbp6fn9/m2E033aSbbrqp3fMjIyP19ttve3J4gMeQdQQKsg5fRmsXAAAA9Jh9BXpYSPOPlyVVdaqzNvXlkIBeVV5dr+OnmzfcvSDRuZAuSV8cqeyTcQEAAMAzKKQDAACgx+wr0CckD1T/8BAZhnT4FKvSETgOlJyWJA0fFKX+4a1v/B2dMECS9M2J6j4ZFwAAADyDQjoAAAB6zN4ffXhclFLioiRJhWUU0hE4/re0uZB+QUvh3C41vvn74eCJmk5bRwEAAMC3UUgHAABAjzkK6YOiHIXDIvqkI4DY35WRGt/P6XhKXJQsFul0faPKqhv6YmgAAADwAArpAAAA6LHik8090ocP6qeUuOZCYnFL33QgEBxqKaTb35FhFx4SpGGxkZKkg2V8TwAAAPgrCukAAADoscKzVqQPH8SKdAQe+7syzi2kS1JafH9J0r/pkw4AAOC3Qro+BQAAAOhYbUOjTpyulyQNj+un6rpGSa2FRcDsDMNwtHax/yLpbMNbiuuH2IAXAADAb7EiHQAAAD1iLyDGRIYqJipUw1t6RB8+VasmG5srwvyOn65XfaNNwUEWJQ2MbPP5IQMjJEnHKup6e2gAAADwEArpAAAA6BH7yvPUlpW4idERCgsOkrXJ0NGKM305NKBX2H+ZNCQmQqHBbf+JlRTTXFw/Wsn3AwAAgL+ikA4AAIAeKWrZVDRlUPNK9OAgi4bFNRcOi+mTjgBwrLJ5pXl7q9Gl5gL72ecBAADA/1BIBwAAQI/YV6QPP2uTRfufC1uK7ICZHa9qLpAPHhDe7uftBfZjlXUyDNodAQAA+CMK6QAAAOgR+6rzlLM2WRzesjq9mA1HEQDsm+0mREe0+/mE6AhZLFJDo03lNQ29OTQAAAB4CIV0AAAA9Ei7K9JbiupFFNJ91rp165SamqqIiAilp6dr165d3bpu8+bNslgsmjNnjncH6EdKu1iRHhYSpPj+zZ9jw1EAAAD/RCEdAAAAbrM22XSkZUPR1Ph+juOOQjo90n3Sli1blJWVpRUrVmjv3r0aP368MjMzdfz48U6vKyws1C9+8QtdfvnlvTRS/3C8ixXpzZ9rLqSfqKaQDgAA4I8opAMAAMBtR06dUZPNUERokNNqXHtrl6LyGnpC+6Cnn35aS5Ys0aJFi3TRRRcpJydHUVFR2rBhQ4fXNDU16eabb9bKlSs1YsSIXhyt7+tqRbokDerX/Lmyalq7AAAA+CO3CumuvA30iiuukMViafOYPXu245xbbrmlzednzpzpztAAjyLrCBRkHYC77CvOU+KiZLFYHMeHxUbKYpFqG5ooHPqYhoYG7dmzRxkZGY5jQUFBysjIUEFBQYfXPfzwwxo8eLAWL17creepr69XVVWV00OSrFar06O9Y/72sK9Ij4sK6XBucf1CJUnHK8/0+Xh7+ujoawYAAGBmIa5eYH8baE5OjtLT07V27VplZmbqq6++0uDBg9uc/+c//1kNDa3/eCovL9f48eN10003OZ03c+ZMvfTSS46Pw8M7Xs0B9AayjkBB1gH0RHF5jSQpJa6f0/HwkGAlxUTqSMUZFZ+s0XmdrNRF7yorK1NTU5MSEhKcjickJOjAgQPtXvPBBx/oxRdf1L59+7r9PKtXr9bKlSvbHN+5c6eioqKcjuXm5nb7vr6moUk6Xdf8z6p9Be/pq3P+hWWfW2VpkKQg7f78KyVX7+/lUXreuV+z2lraOAEAAHNzuZB+9ttAJSknJ0fbtm3Thg0btGzZsjbnx8XFOX28efNmRUVFtSm4hIeHKzExsVtjqK+vV319veNj++oWwJN8IesSeYf3kXUAPWHfTDR1UFSbz6XERelIxRkVlddq0vC4Np+Hfzh9+rT++7//W+vXr1d8fHy3r8vOzlZWVpbj46qqKiUnJ2vGjBmKjo6W1LyqOTc3V1dffbVCQ0M9PvbeUHyyVtr1gSJCg/SDa69xvDPj3Lkd+0eh3jn6vxpwXpJmzRrXx6N2X0dfM/6/DQAAzM6lQrr9baDZ2dmOY915G+jZXnzxRc2bN0/9+jmvWsrPz9fgwYMVGxur6dOn65FHHtGgQYPavUdHq1sAT/GVrEvkHd5F1gH0VGFLIX14O4X01PgoFfy73HEOfEN8fLyCg4NVWlrqdLy0tLTdX4B+++23Kiws1LXXXus4ZrPZJEkhISH66quvdP7557e5Ljw8vN13I4WGhrYpmrd3zF+cbmjeA2BQv3CFhYW1+bx9boOjIyVJp2ob/XauZzv3a2aGOQEAAHTGpR7pnb0NtKSkpMvrd+3apc8//1y33nqr0/GZM2fq5ZdfVl5enh5//HG99957uuaaa9TU1NTufbKzs1VZWel4HDp0yJVpAF3ylaxL5B3eRdYB9FTxyZbWLoP6tfmcvd2Lvf0LfENYWJgmTZqkvLw8xzGbzaa8vDxNnTq1zfmjR4/WZ599pn379jke1113na688krt27dPycnJvTl8n3Oqtrnd2cCozgvJg/rbNxut7/Q8AAAA+CaXW7v0xIsvvqixY8dqypQpTsfnzZvn+PPYsWM1btw4nX/++crPz9dVV13V5j4drW4BfIWnsi6Rd/g2sg4ENsMwmttaSBoe13ZFun2Vun1DUviOrKwsLVy4UJMnT9aUKVO0du1a1dTUONp8LViwQEOHDtXq1asVERGhiy++2On6gQMHSlKb44GoopuF9Pj+zavV2XwXAADAP7m0It3Vt4GeraamRps3b9bixYu7fJ4RI0YoPj5e33zzjSvDAzyGrCNQkHUAPXH8dL3qrDYFB1k0NDayzedTWorrxbR28Tlz587Vk08+qeXLl2vChAnat2+fduzY4XiHUnFxsY4dO9bHo/QPp2qskqSBUW3bupwtvmVF+smaetlshtfHBQAAAM9yqZDu6ttAz/bGG2+ovr5eP/7xj7t8nsOHD6u8vFxDhgxxZXiAx5B1BAqyDqAn7BuNDh0YqdDgtj9W2lekl9c06HSdtVfHhq4tXbpURUVFqq+v18cff6z09HTH5/Lz87Vx48YOr924caO2bt3q/UH6gYozzdmO7WJFekxk8+dthnS6vtHr4wIAAIBnuVRIl5rfBrp+/Xpt2rRJ+/fv1+23397mbaBnb1pn9+KLL2rOnDltNpqrrq7Wvffeq48++kiFhYXKy8vT9ddfr5EjRyozM9PNaQE9R9YRKMg6AHcVtvQ+b2+jUUkaEBGqQf2aV+kWsSodJmVv7RLbxYr0iNBghYc0//Or6gy/WAIAAPA3LvdInzt3rk6cOKHly5erpKREEyZMaPM20KAg5/r8V199pQ8++EA7d+5sc7/g4GB9+umn2rRpkyoqKpSUlKQZM2Zo1apV9MpFnyLrCBRkHYC77C1bUtrpj26XMihK5TUNKj5Zq4uHxvTW0IBec6q2e61dms8JVWlVvSrPWBXYW7QCAAD4H7c2G126dKmWLl3a7ufy8/PbHLvgggtkGO33AYyMjNTbb7/tzjAAryPrCBRkHYA77JuIdrQiXWrehPST4gpWpMO0Wlekd97aRWpu72IvpAMAAMC/uNzaBQAAAJCkYkdrl34dnmP/XFHLuYDZnOpmaxeptU86hXQAAAD/QyEdAAAAbiks78aK9JbPsSIdZnWqxt7apXsr0iUK6QAAAP6IQjoAAABcVllrdRQDO+uRbi+kF5+kkA5zsrd26U6P9OiWQnpFLYV0AAAAf0MhHQAAAC4rOtncquW8AeGKCut4252UuObWLkcrz6i+salXxgb0FmuTTTUNzbkeGNn1ivSBkc3FdlakAwAA+B8K6QAAAHCZvVXL8E5Wo0tSfP8w9QsLlmFIh06e6Y2hAb2mpr7R8ecBER3/QsmO1i4AAAD+i0I6AAAAXGZv1dLZRqOSZLFYlNJyTvFJNhyFuZyuay6kR4QGKSS4639axUQ2F9urKKQDAAD4HQrpAAAAcFlhWXNRvLONRu3sq9bZcBRmU92yIr1/eNdtXSQpJooV6QAAAP6KQjoAAABcVuRYkd6NQno8hXSYk72Q3p22LpIUHdFcSD9dRyEdAADA31BIBwAAgMuKW4riKV30SJek4S0bjhaV09oF5lJdZ1+R3r1Cun1j3uqzeqsDAADAP1BIBwAAgEvqrE0qqaqT1HWP9OZzWlakn2RFOszldL1rhXT7eTX1TV4bEwAAALyDQjoAAABcYt9odEBEiGKjuu4NbV+1fvjkGTXZDK+ODehN9hXp/bpZSO8XHixJqmFFOgAAgN+hkA4AAACX2HudDx8UJYvF0uX5SQMjFRpsUUOTzbGSHTCD6vrmXufd7ZHuWJHe0CjD4JdKAAAA/oRCOgAAAFxi73Vu733eleAgi5Jjm1elF9PeBSZS3dKipbutXewr122GVGe1eW1cAAAA8DwK6QAAAHCJvRieMqjrjUbt7OcWnzzjlTEBfcGx2Wg3V6RHhQXL/iYONhwFAADwLxTSAQAA4BJ7a5dUFwrpw+NYkQ7zsbd26e6KdIvFon5h9g1HKaQDAAD4EwrpAAAAcIm9tUtKN1u7SNLwQf1arqWQDvOwryrvbo90qXXDUVakAwAA+BcK6QAAAOi2xiabDp9qbs8y3JUV6bR2gQmdtrd26eaKdKm1Tzor0gEAAPwLhXQAAAB027HKOjXaDIWFBCkxOqLb1zkK6adqZRjeGh3Qu+yryvu5Ukhvae1S29DklTEBAADAOyikAwAAoNvsrVmSYyMVFGTp9nXDYqNksUg19U2qYSEuTOJMSzE8MjS429fQ2gUAAMA/UUgHAABAtxW29EdPHdT9/uiSFBEarCEtK9hP1Hl8WECfqG+0SZIiw7pfSO9PaxcAAAC/5FYhfd26dUpNTVVERITS09O1a9euDs/duHGjLBaL0yMiwvltwIZhaPny5RoyZIgiIyOVkZGhr7/+2p2hAR5F1hEoyDrQytPfD2ZTfLJ5RXqKC/3R7ezXlNV1fyU74MvsK9IjQrpfSI9qae1SQ2sXj3DlNVuS3njjDY0ePVoREREaO3astm/f7vR5foaBryLrCBRkHb6s+838WmzZskVZWVnKyclRenq61q5dq8zMTH311VcaPHhwu9dER0frq6++cnxssTj/4+mJJ57Qr3/9a23atElpaWl68MEHlZmZqS+//NL0/xiF7yLrCBRkHWjlje8HsylqWZE+PM71QvrwuH766N8nVcaKdJhEXWNLa5ew7q9PightPrfOSiG9p1x9zf7www81f/58rV69Wt///vf12muvac6cOdq7d68uvvhiSd75GcYwDNU2NKq+SaptaFSoYa7/T1it5pybfV6GD2zsQdZ9A1n3PrLuG8yadannebcYLl6Znp6u7373u3ruueckSTabTcnJyfrZz36mZcuWtTl/48aNuvvuu1VRUdHu/QzDUFJSkv7nf/5Hv/jFLyRJlZWVSkhI0MaNGzVv3rw219TX16u+vt7xcVVVlZKTk1VZWano6GhXpgM/UVVVpZiYmF79GvtC1iXyHmjIOlkPFH2R9e7w9PdDezrKellZmePvwmq1Kjc3V1dffbVCQ0N7NikPu/a5D3WgtFrr/3uirvjOeS5dm/Pev/XU37/Rd+Nt2nTHVT43t57o6GtWVVWl+Ph4n8t6X2jv+95qtWr79u2aNWuWX+bhggfeUn2jTf/ffVcq+ZxfLnU0t+V/+VwvFxTp59NHKmvGBb095B7raF7+8DPM3LlzVVNTo7/97W+OY5deeqkmTJignJwcj/8MY39dr21o1PhV73hy6uhFu5f9p2L6tRbb+uJ1nayjN5D1VmTd/M7OuytZd2lFekNDg/bs2aPs7GzHsaCgIGVkZKigoKDD66qrqzV8+HDZbDZdcsklevTRRzVmzBhJ0sGDB1VSUqKMjAzH+TExMUpPT1dBQUG7oV69erVWrlzpytABl/hK1iXyDu8i60Arb3w/tKejrO/cuVNRUc6FuNzcXDdm4j2GIf37RLAkiwo/+6e2f+Pa9eXlFknBOlFn8bm5ecq586qtre2jkcDbbDbDrR7pES0bk9a1XAv3uPOaXVBQoKysLKdjmZmZ2rp1qyTP/wxjf12vb5LceDM4fMQ777yj8LO+xXv7dZ2so7eQ9VZk3fzOzrsrWXfpq15WVqampiYlJCQ4HU9ISNCBAwfaveaCCy7Qhg0bNG7cOFVWVurJJ5/UZZddpi+++ELDhg1TSUmJ4x7n3tP+uXNlZ2c7faPYfzMEeIqvZF0i7/Ausg608sb3Q3s6yvqMGTN8fkX6idP1avjoPQVZpP+6fqbCQlzbbmf40Spt/N+PVFYvn5tbT3W2Ih3mVH9WIdxeHO+OiBBau3iCO6/ZJSUlnf584umfYeyv64ZhaPr0er3zzjuaPn26QkPNVXyxWhtNOTf7vGZnZigsLMxxvLdf18m67yDr3kXWfYdZsy61n3dXsu71v42pU6dq6tSpjo8vu+wyXXjhhfrtb3+rVatWuXXP8PBwhYeHe2qIgEd4I+sSeYfvIetAK3e+HzrKemhoaJvCcnvH+tLRqtOSpCExkeoX6fr364iE5l8UVFstqrdZFOVDc/OUc79mvvT1g2edOasQHuHCL5UiWlavn2GzUdPozut6jMWi8GAppl+E6V4XrFarKedmn1dYWBiv6y3IOlkPFGTdnFmX2s+7K3N0aRlRfHy8goODVVpa6nS8tLRUiYmJ3bpHaGioJk6cqG++aX4vsP26ntwT8DSyjkBB1oFW3vh+MJui8ua3PQ4f5PpGo5IUHRGq2KjmH1QPnTzjsXEBfcG+ojw02KKQYBcK6SG0dvEEd16zExMTOz2fn2Hgi8g6AgVZhz9wqZAeFhamSZMmKS8vz3HMZrMp8f3qSwABAABJREFULy/PaTVWZ5qamvTZZ59pyJAhkqS0tDQlJiY63bOqqkoff/xxt+8JeBpZR6Ag60Arb3w/mE3RyZ4V0iUppWVDRvu9AH9lX5HuSluXs8+ntUvPuPOaPXXqVKfzpeZ9Dezn8zMMfBFZR6Ag6/AHLrd2ycrK0sKFCzV58mRNmTJFa9euVU1NjRYtWiRJWrBggYYOHarVq1dLkh5++GFdeumlGjlypCoqKrRmzRoVFRXp1ltvlSRZLBbdfffdeuSRRzRq1CilpaXpwQcfVFJSkubMmeO5mQIuIusIFGQdaOXp7wezKSqvkSQNH9TP7XukxEXqX4crVUwhHX6uzu1COj3SPcXV1+y77rpL06ZN01NPPaXZs2dr8+bN2r17t373u99J4mcY+C6yjkBB1uHrXC6kz507VydOnNDy5ctVUlKiCRMmaMeOHY7G/cXFxQoKal3ofurUKS1ZskQlJSWKjY3VpEmT9OGHH+qiiy5ynHPfffeppqZGP/3pT1VRUaH/+I//0I4dOxQREeGBKQLuIesIFGQdaOWN7wczcbR2iev5ivRiWrvAz9kL4ZEuFtIjWZHuMa6+Zl922WV67bXX9MADD+iXv/ylRo0apa1bt+riiy92nMPPMPBFZB2BgqzD11kMwzD6ehA9VVVVpZiYGFVWVio6OrqvhwMv4Gvcir8Lc+Pr24q/C3Pj69uqvb8Lq9Wq7du3a9asWT61wc8lq3J1sqZB237+HxqTFOPWPV7fVaT7/vy5LhsRp9d+ap631Hb0NSPrrfwp693xj2/KdPMLH+s7Cf21855pbT7f0dzePXBcizb+U2OHxuivP/uP3hyyR5D1rpkt610x69zIetfIujmQ9a6RdfNob26uZN2lHukAAAAITKfrrDpZ0yCp561dJHqk+4J169YpNTVVERERSk9P165duzo8d/369br88ssVGxur2NhYZWRkdHp+IDjT4N6K9HBauwAAAPglCukAAADokr2ty6B+Yeof7nJ3QAd7a5djlXVqaLR5ZGxw3ZYtW5SVlaUVK1Zo7969Gj9+vDIzM3X8+PF2z8/Pz9f8+fP17rvvqqCgQMnJyZoxY4aOHDnSyyP3HXWNzYXwcHc3G22kkA4AAOBPKKQDAACgS47+6IPc748uSfH9wxQWZMhmSIdPsSq9rzz99NNasmSJFi1apIsuukg5OTmKiorShg0b2j3/1Vdf1R133KEJEyZo9OjReuGFF2Sz2ZSXl9fLI/cd7q5IjwgJbrmeXyQBAAD4E/eXEwEAACBgFJ2skdSzti6SZLFYFB8hHa1tbu8y4rz+nhgeXNDQ0KA9e/YoOzvbcSwoKEgZGRkqKCjo1j1qa2tltVoVFxfX4Tn19fWqr693fFxVVSWpuTel1Wp1/Pns//qTmvrmMYcFW9odf0dzCw1qLqDXWZv8ct4dzcsf5wIAAOAKCukAAADoUnHLinR7a5aeiI8wdLTWoqKyGumCHt8OLiorK1NTU5MSEhKcjickJOjAgQPdusf999+vpKQkZWRkdHjO6tWrtXLlyjbHd+7cqago5xzl5uZ263l9yb6jFknBKj9eou3bt3d43rlzO1UvSSE602Dt9Dpfd+68amt5hwkAADA3CukAAADokqdau0hSfHjLPdlw1C899thj2rx5s/Lz8xUREdHhednZ2crKynJ8XFVV5eitHh0dLal5FXNubq6uvvpqhYaGen3snnTo/YNS0ddKTRmmWbMubvP5juZWVl2vh/a+J5ssuuaaa2SxWHpz2D3W0bzs7zgAAAAwKwrpAAAA6FJRuWdau0jSoAhDUusqd/Su+Ph4BQcHq7S01Ol4aWmpEhMTO732ySef1GOPPaa///3vGjduXKfnhoeHKzw8vM3x0NDQNkXz9o75OpuaC+DhoSGdjv3cuUW1/JUYhhQUHKKQYP/cturcefnb1w8AAMBV/vlTGwAAAHpNfWOTjlXVSfLMivTzWhYxsyK9b4SFhWnSpElOG4XaNw6dOnVqh9c98cQTWrVqlXbs2KHJkyf3xlB9mrWpudd5WLBrK8pDQ1rPtzYZHh0TAAAAvIcV6QAAAOjUoZNnZBhSv7BgDeoX1uP7xdtXpJ+slc1mKCjIv1pbmEFWVpYWLlyoyZMna8qUKVq7dq1qamq0aNEiSdKCBQs0dOhQrV69WpL0+OOPa/ny5XrttdeUmpqqkpISSVL//v3Vv39gbhjb0FJId3VFeUhQ6/kNTTZFKtij4wIAAIB3UEgHAABAp4pPNrd1SRnUzyP9nAeGSyFBFjU02lRSVaekgZE9vidcM3fuXJ04cULLly9XSUmJJkyYoB07djg2IC0uLlbQWQXf3/zmN2poaNCNN97odJ8VK1booYce6s2h+wxrY/MvhEJdLKSHBp+9It3m0TEBAADAeyikAwAAoFOOjUbjet7WRZKCLdLQgZEqOlmrovJaCul9ZOnSpVq6dGm7n8vPz3f6uLCw0PsD8jONNvdau1gsFoUGW2RtMtRIaxcAAAC/QY90AAAAdMpRSI/3TCFdkoYPai6e21e7A/7Gvprc1RXpZ1/DinQAAAD/QSEdAAAAnSoqby52D4/r57F7prSsbi8sZ8NR+KcGe2uXEPcL6Q0U0gEAAPwGhXQAAAB0quhky4r0QZ5bkW4vpBdTSIefsq8mD3Fjs1x7n3RWpAMAAPgPCukAAADoUJPN0OGTZyS1Fr89ISW2ubVLEa1d4KfsRfCwHqxIt29YCgAAAN9HIR0AAAAdOlZ5Rg1NNoUGWzy6KWhKy+r2ovJaGQbFRPgfT/RIp7ULAACA/6CQDgAAgA7ZW68kx0Yp2I0WFh1JblmRfrquUadqrR67L9BbrE0tPdLdKqQ3fy81UkgHAADwGxTSAQAA0CF7f/QUD/ZHl6SI0GAlRkc0P0c57V3gf1pXpLvTI72ltUsT78YAAADwFxTSAQAA0KGilhXpwz3YH93Ovnlp8Uk2HIX/cfRId2NFur2vOpuNAgAA+A8K6QAAAOhQcctmoCmD+nn83sPP6pMO+JuGltXkIW4U0kNa2iTRIx0AAMB/uFVIX7dunVJTUxUREaH09HTt2rWrw3PXr1+vyy+/XLGxsYqNjVVGRkab82+55RZZLBanx8yZM90ZGuBRZB2BgqwD6EhhWXORO9XDrV0kaXhLcb6Q1i7wQ9ZGT7R2oZAOAADgL1wupG/ZskVZWVlasWKF9u7dq/HjxyszM1PHjx9v9/z8/HzNnz9f7777rgoKCpScnKwZM2boyJEjTufNnDlTx44dczz+8Ic/uDcjwEPIOgIFWQfQEcMwHG1XhnuhkJ7S0i6mmBXp8EONtp63dmmkRzoAAIDfcPmnvqefflpLlizRokWLdNFFFyknJ0dRUVHasGFDu+e/+uqruuOOOzRhwgSNHj1aL7zwgmw2m/Ly8pzOCw8PV2JiouMRGxvr3owADyHrCBRkHUBHTtY0qLq+URaLNCzW84X01JYV6UX0SIcfsm8UGhrieiHdviKd1i4AAAD+w6Wf+hoaGrRnzx5lZGS03iAoSBkZGSooKOjWPWpra2W1WhUXF+d0PD8/X4MHD9YFF1yg22+/XeXl5R3eo76+XlVVVU4PwJN8JesSeYd3kXUAnbEXuBOjIxQRGuzx+6e0rHI/cbpetQ2NHr8/4E0NLa1d7P3OXWG/htYuAAAA/sOlQnpZWZmampqUkJDgdDwhIUElJSXdusf999+vpKQkp6LNzJkz9fLLLysvL0+PP/643nvvPV1zzTVqampq9x6rV69WTEyM45GcnOzKNIAu+UrWJfIO7yLrADpjb7nijbYukhQTGaqBUaGS2HAU/scwmlekB7tTSG/pq26z0doFAADAX4T05pM99thj2rx5s/Lz8xUREeE4Pm/ePMefx44dq3Hjxun8889Xfn6+rrrqqjb3yc7OVlZWluPjqqoqCi7wKZ7KukTe4dvIOmBu9k1Ah8f189pzDI+LUkVtpYrKa3XhkGivPQ/gafYaeJDF9UK6/ZpGCukAAAB+w6UV6fHx8QoODlZpaanT8dLSUiUmJnZ67ZNPPqnHHntMO3fu1Lhx4zo9d8SIEYqPj9c333zT7ufDw8MVHR3t9AA8yVeyLpF3eBdZB9AZ+4r0FC+tSJek4S190otP1njtOQBvsLWsSHejju5o7dJEIR0AAMBvuFRIDwsL06RJk5w2lLNvMDd16tQOr3viiSe0atUq7dixQ5MnT+7yeQ4fPqzy8nINGTLEleEBHkPWESjIOoDO2Huke6u1y9n3LqS1C/xMj1akU0gHAADwOy5vMZ+VlaX169dr06ZN2r9/v26//XbV1NRo0aJFkqQFCxYoOzvbcf7jjz+uBx98UBs2bFBqaqpKSkpUUlKi6upqSVJ1dbXuvfdeffTRRyosLFReXp6uv/56jRw5UpmZmR6aJuA6so5AQdYBdMTet9ybrV1S4poL6cUU0uFn7D3S3SmkB7dc02RQSAcAAPAXLvdInzt3rk6cOKHly5erpKREEyZM0I4dOxwb1RUXFysoqLU+/5vf/EYNDQ268cYbne6zYsUKPfTQQwoODtann36qTZs2qaKiQklJSZoxY4ZWrVql8PDwHk4PcB9ZR6Ag6wDaU13fqLLqekm909qliNYu8DNNjs1GXb/WvtloUxOFdAAAAH/h1majS5cu1dKlS9v9XH5+vtPHhYWFnd4rMjJSb7/9tjvDALyOrCNQkHUA57KvEI+NClVMZKjXnie1pUh/5NQZNTTaFBbiRlUS6AM2m71HuvubjbIiHQAAwH/wLxUAAAC0Yd/8M2WQ99q6SNJ5A8IVGRosmyEdqTjj1ecCPMnoQY90NhsFAADwPxTSAQAA0EZrf3TvtXWRmlfz2vukF5XT3gX+w+boke76tWw2CgAA4H8opAMAAKCNopMthXQv9ke3s/dgLz7JhqPwH7YerEhns1EAAAD/QyEdAAAAbdhXhw/3cmsXqbVPun0VPOAP7CvS3aijK7hlRbqNFekAAAB+g0I6AAAA2nC0dumVFen9Wp6T1i7wH/ZCerAbvV1aW7t4dEgAAADwIgrpAAAAcNLQaNPRlo0/vd0j/eznYEU6/ElPWru0bjZKJR0AAMBfUEgHAACAkyMVZ2QzpMjQYJ03INzrz5fasiK9+GQtrS7gN3rS2iWIHukAAAB+h0I6AAAAnBQ6+qNHyeJOldBFSQMjFBJkUX2jTcdP13v9+YCeMgxDRk82G6W1CwAAgN+hkA4AAAAnxS0tVlJ6oa2LJIUEB2lobKSk1iI+4MvOXkjek0I678AAAADwHxTSAQAA4KQ3Nxq1sxfti+mTDj9gO6uSHuxGId1efG+kkA4AAOA3KKQDAADASfHJ5lXhKS29y3uDvU960UlWpMP3nV3/trjxLyr7ZqM2eqQDAAD4DQrpAAAAcOJYkd5LrV2k1tXvRaxIhx84uwDuTmuXIEePdArpAAAA/oJCOgAAABxsNkNFJ5uL2am9uCLd3tqFQjr8gXMh3fXrg1uuaWJFOgAAgN+gkA4AAACH0tN1ami0KSTIoqSBEb32vMPtrV3YbBR+wMZmowAAAAGHQjoAAAAc7CvCh8ZGKiS4935UtK9Ir6prVEVtQ689L+COs1eku1FHd7R2YbNRAAAA/0EhHQAA4Czr1q1TamqqIiIilJ6erl27dnV6/htvvKHRo0crIiJCY8eO1fbt23tppN5R3FJIT+nF/uiSFBkWrITocEm0d+ktgZ71njBsrX8OdqOSHsKK9B47efKkbr75ZkVHR2vgwIFavHixqqurO72mrq5Od955pwYNGqT+/fvrhz/8oUpLS53OsVgsbR6bN2/25lSATpF1BAqyDn9AIR0AAKDFli1blJWVpRUrVmjv3r0aP368MjMzdfz48XbP//DDDzV//nwtXrxYn3zyiebMmaM5c+bo888/7+WRe05hS2uV3uyPbjc8rp/TGOA9ZL1nerzZaMs19Eh3380336wvvvhCubm5+tvf/qb3339fP/3pTzu95p577tFf//pXvfHGG3rvvfd09OhR/eAHP2hz3ksvvaRjx445HnPmzPHSLICukXUECrIOfxDS1wMAAADwFU8//bSWLFmiRYsWSZJycnK0bds2bdiwQcuWLWtz/jPPPKOZM2fq3nvvlSStWrVKubm5eu6555STk9Puc9TX16u+vt7xcVVVlSTJarXKarVKkq761f+nsqpgLd/3jixyo29ED1ScaR7D8LgIx3g8yX7P9u49LDZCuwqlZX/6VCv+8oXHn9ubDBmyWoMVlHJUMy9Ochz3xt+hJ/hK1uc8X6CDJ/om6z1xdiG9sdEqSzvF9M6ybl/S/sHXZZqwcqd3Bukl9qzXDj6kGycnO473Ztb379+vHTt26J///KcmT54sSXr22Wc1a9YsPfnkk0pKSmpzTWVlpV588UW99tprmj59uqTmwsqFF16ojz76SJdeeqnj3IEDByoxMbHb4+lO1jvNg58z69w6mhdZJ+tmmxtZb4usB9bcXJknhXQAAABJDQ0N2rNnj7Kzsx3HgoKClJGRoYKCgnavKSgoUFZWltOxzMxMbd26tcPnWb16tVauXNnm+M6dOxUV1dxOpbwqWLWNFqmx0Y2Z9FyQxVDjkS+0fbv3itm5ubltjkWdtkgK1hmrTWestrYX+TyL9nzyL9mK9zmO1Nb6XpsaX8p66cm+zXpPJUUZeuuttzo9p72sH6+RgizBarS1/vLKv1i077PPFXX8M8eR3sx6QUGBBg4c6Ci2SFJGRoaCgoL08ccf64YbbmhzzZ49e2S1WpWRkeE4Nnr0aKWkpKigoMCp4HLnnXfq1ltv1YgRI3Tbbbdp0aJF7f6yxK47WbdrLw9mYda5nTsvsk7WzTo3st6KrDcLlLm5knUK6QAAAJLKysrU1NSkhIQEp+MJCQk6cOBAu9eUlJS0e35JSUmHz5Odne1UkKyqqlJycrJmzJih6OhoSdKoSyr1wT/+ocsuu0whIaHuTsltsVGhiusX5pV7W61W5ebm6uqrr1ZoqPPcZkn6aWWdahuavPLc3tTYaNWHH36oOZlXKrZ/pOO4fQWTL/GlrF8wqUrvf/BBn2W9p5JjIxUW0n63zM6yLkk3zmrQqVr/K6Lbs37djCs0aEBrMaE3s15SUqLBgwc7HQsJCVFcXFyHmSwpKVFYWJgGDhzodPzcHD/88MOaPn26oqKitHPnTt1xxx2qrq7Wz3/+8w7H052sd5UHf2bWuXU0L7JO1s02N7LeFlkPrLm5knW3Cunr1q3TmjVrVFJSovHjx+vZZ5/VlClTOjz/jTfe0IMPPqjCwkKNGjVKjz/+uGbNmuX4vGEYWrFihdavX6+Kigp973vf029+8xuNGjXKneEBHkPWESjIOtB7wsPDFR4e3uZ4aGio44e5UYkx+jpSumDIQNP98Gp39nzPlhLvn/O1Wq36NlKK7R/pNC+zfv26oztZPz8hWl8FaNYTBoYqYWDvj6en7FkfNCDK41lftmyZHn/88U7P2b9/f4+fpzMPPvig488TJ05UTU2N1qxZ02nBpTtZ7+yYWZh1bufOi6yTdbPOjay3IuvNAmVurszR5c1GvbEx0RNPPKFf//rXysnJ0ccff6x+/fopMzNTdXV1rg4P8BiyjkBB1oFm8fHxCg4OVmlpqdPx0tLSDnsqJiYmunQ+4AvIOnzV//zP/2j//v2dPkaMGKHExMQ2P6c0Njbq5MmTnWa4oaFBFRUVTse7ynF6eroOHz7s1CsX6CmyjkBB1mE2LhfSz96Y6KKLLlJOTo6ioqK0YcOGds8/e2OiCy+8UKtWrdIll1yi5557TlLzqsW1a9fqgQce0PXXX69x48bp5Zdf1tGjRzvtuQh4G1lHoCDrQLOwsDBNmjRJeXl5jmM2m015eXmaOnVqu9dMnTrV6Xypud9eR+cDvoCsw1edd955Gj16dKePsLAwTZ06VRUVFdqzZ4/j2nfeeUc2m03p6ent3nvSpEkKDQ11yvFXX32l4uLiTnO8b98+xcbGtrsyEXAXWUegIOswG5dau3hjY6KDBw+qpKTEaXOAmJgYpaenq6CgQPPmzWtzz3N3z62srJTkmz0o4Rn2r61hGL3yfL6SdYm8BxqyTtYDRW9nvbuysrK0cOFCTZ48WVOmTNHatWtVU1OjRYsWSZIWLFigoUOHavXq1ZKku+66S9OmTdNTTz2l2bNna/Pmzdq9e7d+97vfdfs57X8HZ2fdarWqtrZWVVVVpns7pVnn1tG8yHorsm4OvpD1Cy+8UDNnztSSJUuUk5Mjq9WqpUuXat68eUpKSpIkHTlyRFdddZVefvllTZkyRTExMVq8eLGysrIUFxen6Oho/exnP9PUqVMdG9L99a9/VWlpqS699FJFREQoNzdXjz76qH7xi1+4ND6ybg5kvWtk3RzIetfIunm0NzeXsm644MiRI4Yk48MPP3Q6fu+99xpTpkxp95rQ0FDjtddeczq2bt06Y/DgwYZhGMY//vEPQ5Jx9OhRp3Nuuukm40c/+lG791yxYoUhiUcAPr799ltXIus2X8m6YZD3QH2QdR6B8uitrLvi2WefNVJSUoywsDBjypQpxkcffeT43LRp04yFCxc6nf/6668b3/nOd4ywsDBjzJgxxrZt21x6vkOHDvX514GH9x+HDh3yRDw9iqzz8Oesl5eXG/Pnzzf69+9vREdHG4sWLTJOnz7t+PzBgwcNSca7777rOHbmzBnjjjvuMGJjY42oqCjjhhtuMI4dO+b4/FtvvWVMmDDB6N+/v9GvXz9j/PjxRk5OjtHU1OTS2Mh6YDzIOlkPlAdZJ+uB8uhO1t3abLSvnbt7bkVFhYYPH67i4mLFxMT04ch6j33H4EOHDjl2DDazyspKpaSkKC4urq+H0usCPe9kPXCQdbLuK5YuXaqlS5e2+7n8/Pw2x2666SbddNNNbj9fUlKSDh06pAEDBshisUgydx7MOreO5mUYhk6fPu1YTeVLyLp3mXVuvpL1uLg4vfbaax1+PjU1tc3KsoiICK1bt07r1q1r95qZM2dq5syZPR4bWTcHst41sm4OZL1rZN082pubK1l3qZDujY2J7P8tLS3VkCFDnM6ZMGFCu/fsaPfcmJgY032BuxIdHR1Qcw4Kcrmtv1t8JesSebcj695B1n0PWQ88QUFBGjZsWLufM3MezDq39uYVCL8M7A6ybi5kvWNk3VzIesfIurmQ9Y6RdfM5d27dzbpL/3r1xsZEaWlpSkxMdDqnqqpKH3/8MZsXoc+QdQQKsg4AAAAAANA1l1u7eHpjIovForvvvluPPPKIRo0apbS0ND344INKSkrSnDlzPDdTwEVkHYGCrAMAAAAAAHTO5UL63Llz9f+zd+/hUZX3+v/vyWmSAAFCJCGQEBAqihAUCmLr9hQJwteK3Vqgthy2QqvSVtNqiZcQKVY81XqiTTeKYFsLslvp3oVfII1EtxJly6GewBYlCQgJBAghCTnNrN8fyUwYcpzJzGRm1vt1XXNBVtZa8zzJnRE/eebznDhxQsuXL1dZWZkmTJigvLw8JSYmSpJKS0td3qZ99dVX6/XXX9cjjzyihx9+WKNHj9bmzZt1+eWXO8956KGHVFNTo8WLF6uyslLf/OY3lZeXp+jo6G6NyWq1Kicnp92WAKHKbHPujfkGYtYlvvehjqy34nsf2sw2X3eF8tcnVOcWqvPytVD+uoXq3EJ1Xr4Wyl+3UJ1bqM7L10L56xaqcwvVeflaKH/dmFvHLMaFnfoBAAAAAAAAAIATO3wBAAAAAAAAANAJCukAAAAAAAAAAHSCQjoAAAAAAAAAAJ2gkA4AAAAAAAAAQCeCppC+evVqpaWlKTo6WlOmTNGuXbs6PX/Tpk0aM2aMoqOjNW7cOG3dutVPI/UOd+a7bt06WSwWl0d0dLQfR9sz77zzjm655RYlJyfLYrFo8+bNXV5TWFioK6+8UlarVaNGjdK6det8Pk5/MVvWJfPknay3Zba8k/WOhXrWe+KXv/ylrr76asXGxmrAgAG9PZwecfdnPhh4kne0j6wHNrLuPWQ98JF37wmVvJN1dIWsBzZvZT0oCukbN25UVlaWcnJytGfPHqWnpyszM1PHjx9v9/ydO3dq7ty5uuuuu7R3717NmjVLs2bN0ieffOLnkXvG3flKUlxcnI4dO+Z8lJSU+HHEPVNTU6P09HStXr26W+cfOnRIM2fO1PXXX699+/bp/vvv1913361t27b5eKS+Z7asS+bKO1l3Zba8k/WOhXrWe6qhoUF33HGH7rnnnt4eSo948jMQDNzNOzpG1gMbWfcesh74yLv3hELeyTq6g6wHNq9l3QgCkydPNu677z7nxzabzUhOTjZWrVrV7vnf+c53jJkzZ7ocmzJlivGDH/zAp+P0Fnfn++qrrxr9+/f30+h8S5Lx5ptvdnrOQw89ZIwdO9bl2OzZs43MzEwfjsw/zJZ1wzBv3s2edcMwX97JesdCPeveEuyZcPdnIBh1J+/oGlkPfGTdO8h6cCDv3hHMeSfrcAdZD3w9yXrAr0hvaGjQ7t27lZGR4TwWFhamjIwMFRUVtXtNUVGRy/mSlJmZ2eH5gcST+UpSdXW1hg8frpSUFN1666369NNP/THcXhHM39/OmC3rEnnvSrB/fztjtryT9c4F8/cW3ePpzwAQbMg6zIKswyzIOsyCrHdPwBfSKyoqZLPZlJiY6HI8MTFRZWVl7V5TVlbm1vmBxJP5XnLJJVq7dq3++te/6g9/+IPsdruuvvpqHTlyxB9D9ruOvr9VVVU6d+5cL42q58yWdYm8dyVUsy6ZL+9kvXOhnHU08+RnAAhGZB1mQdZhFmQdZkHWuyfgC+no2tSpUzVv3jxNmDBB1157rf7yl7/ooosu0u9+97veHhrgdeQdZkHWQ9vSpUvbbCZ74ePAgQO9PUygx8g6zIKsw0zIO8yCrONCEb09gK4kJCQoPDxc5eXlLsfLy8uVlJTU7jVJSUlunR9IPJnvhSIjI3XFFVfo4MGDvhhir+vo+xsXF6eYmJheGlXPmS3rEnnvSqhmXTJf3sl650I56x356U9/qgULFnR6zsiRI/0zGD/wxs8AghNZb0bWQx9Zb0bWzcFMeSfr5kbWyfqFAn5FelRUlCZOnKiCggLnMbvdroKCAk2dOrXda6ZOnepyviTl5+d3eH4g8WS+F7LZbPr44481ZMgQXw2zVwXz97czZsu6RN67Euzf386YLe9kvXPB/L311EUXXaQxY8Z0+oiKiurtYXqNN34GEJzIOlk3C7JO1s3ETHkn6+ZG1sl6G97d99Q3NmzYYFitVmPdunXGZ599ZixevNgYMGCAUVZWZhiGYXz/+983li5d6jz/vffeMyIiIoxnnnnG2L9/v5GTk2NERkYaH3/8cW9NwS3uznfFihXGtm3bjC+++MLYvXu3MWfOHCM6Otr49NNPe2sKbjl79qyxd+9eY+/evYYk49lnnzX27t1rlJSUGIZhGEuXLjW+//3vO8//8ssvjdjYWOPBBx809u/fb6xevdoIDw838vLyemsKXmO2rBuGufJO1l2ZLe9k3bxZ76mSkhJj7969xooVK4y+ffs6v7Znz57t7aG5paufgWDVVd7RfWQ9sJF17yHrgY+8e08o5J2sozvIemDzVtaDopBuGIbx4osvGqmpqUZUVJQxefJk4/3333d+7tprrzXmz5/vcv4bb7xhfO1rXzOioqKMsWPHGlu2bPHziHvGnfnef//9znMTExONGTNmGHv27OmFUXtmx44dhqQ2D8cc58+fb1x77bVtrpkwYYIRFRVljBw50nj11Vf9Pm5fMVvWDcM8eSfrbZkt72R9vmEY5sx6T8yfP7/dr+eOHTt6e2hu6+xnIFh1lXd0H1kPbGTde8h64CPv3hMqeSfr6ApZD2zeyrrFMAzD4+XsAAAAAAAAAACEuIDvkQ4AAAAAAAAAQG+ikA4AAAAAAAAAQCcopAMAAAAAAAAA0AkK6QAAAAAAAAAAdIJCOgAAAAAAAAAAnaCQDgAAAAAAAABAJyikAwAAAAAAAADQCQrpAAAAAAAAAAB0gkI6AAAAAAAAAACdoJAOAAAAAAAAAEAnKKQDAAAAAAAAANAJCukAAAAAAAAAAHSCQjoAAAAAAAAAAJ2gkA4AAAAAAAAAQCcopAMAAAAAAAAA0AkK6QAAAAAAAAAAdIJCOgAAAAAAAAAAnaCQDgAAACBkPfroo7JYLKqoqOjy3KamJj300ENKSUlRWFiYZs2a5fsBAl5C1mEWZB1mQdYDD4V0AAAAAJC0du1aPf3007r99tu1fv16PfDAA926rrGxUZdddpksFoueeeYZH4/SVWVlpQYPHiyLxaL/+q//8utzI3gFS9avu+46WSyWNo/p06f7/LkRGoIl65LU0NCgxx9/XGPGjFF0dLQSExM1c+ZMHTlyxC/Pj+AWDFkvLi5u9zXd8Vi0aJFPn98bInp7AAAAAAAQCN566y0NHTpUv/71r9267sUXX1RpaamPRtW55cuXq7a2tleeG8ErmLI+bNgwrVq1yuVYcnKyX8eA4BUsWW9sbNTMmTO1c+dOLVq0SOPHj9fp06f1wQcf6MyZMxo2bJjfxoLgFAxZv+iii/T73/++zfG8vDz98Y9/1LRp0/wyjp6gkA4AAAAAko4fP64BAwa4fc0vfvEL/fznP9fy5ct9M7AOfPLJJ/rtb3+r5cuX+/25EdyCKev9+/fX9773Pb89H0JLsGT917/+td5++229++67mjx5sl+eE6ElGLLep0+fdl/P161bp7i4ON1yyy0+H0NP0doFAAAAQMirqKjQd77zHcXFxWnQoEH6yU9+orq6OkmtbzXesWOHPv30U+dbjAsLC7u879KlS3XJJZe4VejLyclRWFiYCgoKXI4vXrxYUVFR+sc//tGt+/zkJz/Rbbfdpmuuuabbz43QF4pZb2pqUnV1dbefF+YQKlm32+16/vnnddttt2ny5MlqamrinUZwESpZb8+xY8e0Y8cOffvb31Z0dLRb1/YGCukAAAAAQt53vvMd1dXVadWqVZoxY4ZeeOEFLV68WFLrW43HjBmjYcOG6fe//71+//vf69JLL+30nrt27dL69ev13HPPyWKxdHssjzzyiCZMmKC77rpLZ8+elSRt27ZNa9as0fLly5Went7lPTZt2qSdO3fqqaee6vbzwhxCLev//Oc/1adPH/Xr109JSUlatmyZGhsbuz0GhK5Qyfpnn32mo0ePavz48Vq8eLH69OmjPn36aPz48dqxY0e3x4DQFSpZb8+GDRtkt9t15513unVdrzEAAAAAIETl5OQYkoxvfetbLsfvvfdeQ5Lxj3/8w3ns2muvNcaOHdut+9rtdmPy5MnG3LlzDcMwjEOHDhmSjKeffrpb13/88cdGVFSUcffddxunT582hg4dakyaNMlobGzs8tra2lojNTXVyM7ONgzDMHbs2GFIMjZt2tSt50ZoCsWs/8d//Ifx6KOPGn/+85+N1157zfjWt75lSDK+853vdOu5EZpCLet/+ctfDEnGoEGDjNGjRxuvvvqq8eqrrxqjR482oqKiXOYDcwm1rLdn4sSJxpAhQwybzeb2tb2BFekAAAAAQt59993n8vGPfvQjSdLWrVs9ut+6dev08ccf68knn/To+ssvv1wrVqzQyy+/rMzMTFVUVGj9+vWKiOh6G6snnnhCjY2Nevjhhz16boS2UMr6K6+8opycHH3729/W97//ff31r3/VokWL9MYbb+j999/3aDwIHaGSdUfborNnz6qgoEALFizQggUL9Pe//12GYfDOI4RM1i/0z3/+U7t379acOXMUFhYcJergGCUAAAAA9MDo0aNdPr744osVFham4uJit+9VVVWl7OxsPfjgg0pJSfF4TA8++KDS09O1a9cu5eTk6LLLLuvymuLiYj399NP65S9/qb59+3r83AhdoZL1jvz0pz+VJP3973/3+B4IDaGS9ZiYGEnSN77xDZfnTk1N1Te/+U3t3LnT4/EgNIRK1i/0xz/+UZKCp62LKKQDAAAAMCF3+oFe6JlnnlFDQ4Nmz56t4uJiFRcX68iRI5Kk06dPq7i4WA0NDV3e58svv9S//vUvSdLHH3/credevny5hg4dquuuu8753GVlZZKkEydOqLi4WHa73cOZIRQFa9Y74ij8nDp1qkf3QegJ1qwnJydLkhITE9t8bvDgwTp9+nR3pwGTCNasX+j111/XJZdcookTJ3p0fW+gkA4AAAAg5Dn+Z8/h4MGDstvtSktLc/tepaWlOn36tMaOHasRI0ZoxIgRuuaaayRJjz/+uEaMGKHPPvus03vY7XYtWLBAcXFxevjhh/WnP/1Jf/nLX7r13AcPHtTIkSOdzz137lxJ0r333qsRI0aoqqrK7TkhdIRK1jvy5ZdfSmreYA/mFipZHzdunCIjI/XVV1+1+dzRo0fJOkIm6+f74IMPdPDgwaBajS5J7jWvAQAAAIAgtHr1ak2bNs358YsvvihJuvnmm92+149//GPNmjXL5djx48f1gx/8QAsWLNCtt96qESNGdHqPZ599Vjt37tR///d/a+bMmSosLNQ999yjf/u3f1NCQkKH1z322GOqqKhwOfbJJ59o2bJleuihhzR16lT16dPH7TkhdIRK1quqqmS1WmW1Wp3HDMPQY489JknKzMx0ez4ILaGS9X79+mnGjBn629/+pgMHDmjMmDGSpP3792vnzp36wQ9+4PZ8EFpCJevne/311yVJ3/3ud92eQ2+ikA4AAAAg5B06dEjf+ta3NH36dBUVFekPf/iDvvvd7yo9Pd3te1155ZW68sorXY45+pSOHTu2zf+gXmj//v1atmyZFixYoFtuuUVS88ZfEyZM0L333qs33nijw2u/+c1vtjk2YMAASdLXv/71Lp8boS9Usr5nzx7NnTtXc+fO1ahRo3Tu3Dm9+eabeu+997R48eI244L5hErWpeaVwAUFBbrhhhv04x//WJL0wgsvKD4+no2lEVJZlySbzaaNGzfqqquu0sUXX+z2HHoTrV0AAAAAhLyNGzfKarVq6dKl2rJli5YsWaJXXnnF7+Ow2WyaP3++EhIS9NxzzzmPjx49WqtWrdKmTZu69T+hQEdCJevDhw/XNddcozfffFM//elPtXz5ctXV1Sk3N1e5ubl+mAECXahkXZIuu+wyvf322xo7dqwee+wxPf7445o8ebLee+89DR061MczQKALpaxLzZtFl5eXB91qdEmyGIZh9PYgAAAAAAAAAAAIVKxIBwAAAAAAAACgExTSAQAAAAAAAADoBIV0AAAAAAAAAAA64XYh/Z133tEtt9yi5ORkWSwWbd68uctrCgsLdeWVV8pqtWrUqFFat25dm3NWr16ttLQ0RUdHa8qUKdq1a5e7QwO8iqzDLMg6zIKsAwAAAAA85XYhvaamRunp6Vq9enW3zj906JBmzpyp66+/Xvv27dP999+vu+++W9u2bXOes3HjRmVlZSknJ0d79uxRenq6MjMzdfz4cXeHB3gNWYdZkHWYBVkHAAAAAHjKYhiG4fHFFovefPNNzZo1q8Nzfv7zn2vLli365JNPnMfmzJmjyspK5eXlSZKmTJmir3/963rppZckSXa7XSkpKfrRj36kpUuXejo8wGvIOsyCrMMsyDoAAAAAwB0Rvn6CoqIiZWRkuBzLzMzU/fffL0lqaGjQ7t27lZ2d7fx8WFiYMjIyVFRU1O496+vrVV9f7/zYbrfr1KlTGjRokCwWi/cngV5nGIbOnj2r5ORkhYUFZmt/X2RdIu9mQ9bJulmQdbJuFsGQdX+x2+06evSo+vXrR9ZDEFlvRdZDG1lvRdZDG1lvRdZDmztZ93khvaysTImJiS7HEhMTVVVVpXPnzun06dOy2WztnnPgwIF277lq1SqtWLHCZ2NG4Dp8+LCGDRvW28Noly+yLpF3syLrMAuyDrMI5Kz7y9GjR5WSktLbw4CPkXWybhZknaybBVkn62bRnaz7vJDuC9nZ2crKynJ+fObMGaWmpurw4cOKi4vrxZHBV6qqqpSSkqJ+/fr19lD8jrybC1kn62ZB1sm6WZg56xdyfA3Oz3pjY6O2b9+uadOmKTIysjeH53WhOreO5kXWW5H10EDWu0bWQwNZ7xpZDx3tzc2drPu8kJ6UlKTy8nKXY+Xl5YqLi1NMTIzCw8MVHh7e7jlJSUnt3tNqtcpqtbY5HhcXx/+AhrhAfguNL7IukXezIuutyHpoI+utyHpoC7Ssv/POO3r66ae1e/duHTt2rMs9AySpsLBQWVlZ+vTTT5WSkqJHHnlECxYs6PZzOr4G52e9sbFRsbGxiouLC8n/UQvFuXU1r0DLem8g66Eh0LK+evVqPf300yorK1N6erpefPFFTZ48ucPzN23apGXLlqm4uFijR4/Wk08+qRkzZjg/v2DBAq1fv97lmszMTOc+MN1B1kMDWe8aWQ8dnc2tO1n3eZOjqVOnqqCgwOVYfn6+pk6dKkmKiorSxIkTXc6x2+0qKChwngMEA7IOsyDrMAuyjlBWU1Oj9PR0rV69ulvnHzp0SDNnztT111+vffv26f7779fdd9+tbdu2+XikAICNGzcqKytLOTk52rNnj9LT05WZmanjx4+3e/7OnTs1d+5c3XXXXdq7d69mzZqlWbNmuWygLknTp0/XsWPHnI8//elP/pgO0CGyjkDn9or06upqHTx40PnxoUOHtG/fPsXHxys1NVXZ2dn66quv9Nprr0mSfvjDH+qll17SQw89pP/4j//QW2+9pTfeeENbtmxx3iMrK0vz58/XpEmTNHnyZD333HOqqanRwoULvTBFwDNkHWZB1mEWZB1odfPNN+vmm2/u9vm5ubkaMWKEfvWrX0mSLr30Ur377rv69a9/rczMzHavuXBj3aqqKknNK4EaGxudfz//z1DS2dzO1jVp44dHNHNckob0j/b30Hqko3mF4vcQvrfvcKXe/dcJTb98iEYN7tvbwwlYzz77rBYtWuT890Vubq62bNmitWvXaunSpW3Of/755zV9+nQ9+OCDkqSVK1cqPz9fL730knJzc53nWa3WTt9FdyFe10NzboH0uk7WA4PZ5ubOPN0upH/44Ye6/vrrnR87enzOnz9f69at07Fjx1RaWur8/IgRI7RlyxY98MADev755zVs2DC9/PLLLv/gnj17tk6cOKHly5errKxMEyZMUF5eXpvNuwB/IuswC7IOsyDrgOeKioqUkZHhciwzM1P3339/h9d0tLHu9u3bFRsb63IsPz/fK+MMRO3N7a2jFv21JFxv7z2guRfbe2FUPXfhvGpra3tpJAhW/zhcqTtyd6rRZuh373ypbff/m5IHxPT2sAJOQ0ODdu/erezsbOexsLAwZWRkqKioqN1rioqKXPZjkZpfszdv3uxyrLCwUIMHD9bAgQN1ww036LHHHtOgQYM6HAuv681CdW69/bpO1gOPWebmTtbdLqRfd911Mgyjw8+vW7eu3Wv27t3b6X2XLFmiJUuWuDscwGfIOsyCrMMsyDrgubKysja/IEpMTFRVVZXOnTunmJi2xa8LN9Z1bOQ0bdo0l/6i+fn5uummm0KyB2dHc3t386dSyVdqiI7XjBkd930NRB3Ny7FaD+iuZ7Z/rkZb83+Xz9Y1afWOg/rlbeN6eVSBp6KiQjabrd3X4AMHDrR7TUev2WVlZc6Pp0+frm9/+9saMWKEvvjiCz388MO6+eabVVRUpPDw8Hbvy+t6aM4tUF7XyXrgMNvc3Mm6zzcbBQAAAGA+HW2sGxkZ2eZ/yto7Firam1vpqXMtf9YG7bwvnFewzgO94/CpWv3vvypksUhPfnu8HvrzR/rrvqNa9v8uU3Rk+4UteNecOXOcfx83bpzGjx+viy++WIWFhbrxxhvbvYbX9WahOrdQfV0n654zy9zcmaPPNxsFAAAAENySkpJUXl7ucqy8vFxxcXHtrkZH50pPNb+FuKK6QdX1Tb08GsD/3jrQvHHglBHxun3iMCXGWVVd36QPi0/38sgCT0JCgsLDw9t9De6o53NHr9md9YgeOXKkEhISXPaTAfyJrCMYUEgHAAAA0KmpU6eqoKDA5Vh+fr6mTp3aSyMKXnWNNh07U+f8uPQkvcVhPu8drJAkXTP6IoWFWfTNURdJkv734IneHFZAioqK0sSJE11eg+12uwoKCjp8DfbkNfvIkSM6efKkhgwZ4p2BA24i6wgGFNIBAAAAk6murta+ffu0b98+SdKhQ4e0b98+54a72dnZmjdvnvP8H/7wh/ryyy/10EMP6cCBA/rNb36jN954Qw888EBvDD+oHT7lWjgvOVnTSyMBeodhGNpVfEqSdPXFzZv9fWNU85+7Dp3qtXEFsqysLK1Zs0br16/X/v37dc8996impkYLFy6UJM2bN89lg8af/OQnysvL069+9SsdOHBAjz76qD788EPnni7V1dV68MEH9f7776u4uFgFBQW69dZbNWrUKJdN1QF/I+sIdPRIBwAAAEzmww8/1PXXX+/82LGh1vz587Vu3TodO3bMWVSXpBEjRmjLli164IEH9Pzzz2vYsGF6+eWX+Z9QD5RcsAK95BQr0mEuX1WeU2VtoyLDLRqb3F+SlJ4yQJK0/1iVbHZD4WGWXhxh4Jk9e7ZOnDih5cuXq6ysTBMmTFBeXp5zk8XS0lKFhbWuk7z66qv1+uuv65FHHtHDDz+s0aNHa/Pmzbr88sslSeHh4froo4+0fv16VVZWKjk5WdOmTdPKlSvb7QsN+AtZR6CjkA4AAACYzHXXXSfDMDr8/Lp169q9Zu/evT4clTlcWDi/sLAOhLr9x85Kki6+qK+iIpoLYiMG9VFsVLhqG2z68kS1Rif2680hBqQlS5Y4V9leqLCwsM2xO+64Q3fccUe758fExGjbtm3eHB7gNWQdgYzWLgAAAADgJ6UtrVwS45pXwtHaBWbz2dEqSdJlyXHOY2FhFl02pPnjT1s+DwBAoKGQDgAAAAB+UtyyAv3fRjdvrsiKdJjN/mMthfQhcS7HHavQvzhR7fcxAQDQHRTSAQAAAMBPSltau1zzteZC+rEz51TfZOvNIQF+VdzyLoyLL+rrcnxkQh9J0qEK3qUBAAhMFNIBAAAAwA+abHYdOd1cSJ84fKBio8JlN6Qjp8/18sgA/zAMw/nLpNRBsS6fS6OQDgAIcBTSAQAAAMAPjp2pU6PNUFREmIbERSs1vrmQWEp7F5hERXWDahtsslikYQNjXD43oqWQXlxR0+lmyAAA9BYK6QAAAADgB45+6CkDYxQWZtHwlhW5bDgKsyg91Zz1IXHRskaEu3wuNT5WYRappsGm42fre2N4AAB0ikI6AAAAAPhBSUsRcfig5pW3aS1/FrMiHSbRUVsXSc3v1OjfvEqddkcAgEBEIR0AAAAA/MCxIt2xEt1RTHQUF4FQ5/wZiO/T7ueTB0RLat6EFwCAQEMhHQAAAAD8wNHCZXhLb3RHMZHWLjCLo5XNBfIL+6M7JLWsSC87U+e3MQEA0F0U0gEAAADAD1pXpPdp+bO5oH741DnZ7GyuiNBXXtXc+zyxf3S7n09uOX60kkI6ACDwUEgHAAAAAB8zDMPZwsVRQE8eEKPIcIsabHaVVVE4ROgrb8n54H7Wdj8/pKWQXlZFaxcAQOChkA4AAAAAPnaiul61DTaFWaRhA5sL6eFhFuffae8CMzh+tmVFelz7K9IdrV1YkQ4ACEQU0gEAAADAx0pb2roM6R+jqIjW/w1zrE53tH2B961evVppaWmKjo7WlClTtGvXrm5dt2HDBlksFs2aNcu3AzSJhia7TtU0SOq4kM5mowCAQEYhHQAAAAB8zFEoT0uIdTnu2HiUQrpvbNy4UVlZWcrJydGePXuUnp6uzMxMHT9+vNPriouL9bOf/UzXXHONn0Ya+k5UN69Gjwy3aGBsZLvnDO7XXEg/Wd0gO/sGAAACjEeFdHd+o3/dddfJYrG0ecycOdN5zoIFC9p8fvr06Z4MDfAqsg6zIOswC7IOoLc4WrekxvdxOZ7asvFo6Slau/jCs88+q0WLFmnhwoW67LLLlJubq9jYWK1du7bDa2w2m+68806tWLFCI0eO7PI56uvrVVVV5fKQpMbGRpdHe8dC5dGduX11qlqSdFFfq5qamto9p1+URZLUZDd08uy5gJ0XAMCcIty9wPEb/dzcXE2ZMkXPPfecMjMz9fnnn2vw4MFtzv/LX/6ihoYG58cnT55Uenq67rjjDpfzpk+frldffdX5sdXa/uYjgL+QdZgFWYdZkHUAvankgo1GHdJaPi6uYEW6tzU0NGj37t3Kzs52HgsLC1NGRoaKioo6vO4Xv/iFBg8erLvuukv/+7//2+XzrFq1SitWrGhzfPv27YqNdf1+5+fnuzGD4NLV3P5x0iIpXFG2c9q6dWuH58WGh6vWZtFftuYrKbbD0/zmwnnV1vKzCgBm5XYh/fzf6EtSbm6utmzZorVr12rp0qVtzo+Pj3f5eMOGDYqNjW3zP6FWq1VJSUnuDgfwGbIOsyDrMAuyDqA3OVq3OFq5ODgK66WnamUYhiwWi9/HFqoqKipks9mUmJjocjwxMVEHDhxo95p3331Xr7zyivbt29ft58nOzlZWVpbz46qqKqWkpGjatGmKi4uT1LyqOT8/XzfddJMiI9tvaxKsuju3k++XSv88oNEpiZoxY0KH5z3/r3f1ZUWtxk68SlNGxHd4nq91NC/HOw4AAObjViHd09/on++VV17RnDlz1KeP61saCwsLNXjwYA0cOFA33HCDHnvsMQ0aNKjde9TX16u+vt75Mf8hg7cFStYl8g7fIuswC7IOoLc5WrsMH+T6GjJsYKwsFqm6vkmnaho0qC/vauktZ8+e1fe//32tWbNGCQkJ3b7OarW2+26kyMjINoXl9o6Fiq7mVllnkyQNjovu9LyEvtH6sqJWZ+rsAfG1unBegTAmAEDvcKtHeme/0S8rK+vy+l27dumTTz7R3Xff7XJ8+vTpeu2111RQUKAnn3xSb7/9tm6++WbZbLZ277Nq1Sr179/f+UhJSXFnGkCXAiXrEnmHb5F1mAVZB9Cbquoadbq2ua9y6gWtXaIjwzUkrnmDxWI2HPWqhIQEhYeHq7y83OV4eXl5u+8k+uKLL1RcXKxbbrlFERERioiI0Guvvab//u//VkREhL744gt/DT0kVdY2t0sbGBvV6XmD+jZ/vqK6vtPzAADwN7dbu/TEK6+8onHjxmny5Mkux+fMmeP8+7hx4zR+/HhdfPHFKiws1I033tjmPh29dQ4IFN7KukTeEdjIOsyCrAPoidKWAnlC3yj1tbb9X7DUQbE6eqZOpadqNHH4QH8PL2RFRUVp4sSJKigo0KxZsyRJdrtdBQUFWrJkSZvzx4wZo48//tjl2COPPKKzZ8/q+eef57W6hxy/TBoQ2/mKbkch/SSFdABAgHFrRbq7v9E/X01NjTZs2KC77rqry+cZOXKkEhISdPDgwXY/b7VaFRcX5/IAvClQsi6Rd/gWWYdZkHUAvcnZH/2Cti4Ow+P7uJwH78nKytKaNWu0fv167d+/X/fcc49qamqc+2XMmzfP2fYrOjpal19+uctjwIAB6tevny6//HJFRXW+khqd6/aK9D7NbXIqaho6PQ8AAH9zq5B+/m/0HRy/0Z86dWqn127atEn19fX63ve+1+XzHDlyRCdPntSQIUPcGR7gNWQdZkHWYRZkHUBvKnb0R79go1EHR7sXCuneN3v2bD3zzDNavny5JkyYoH379ikvL8/Z6qu0tFTHjh3r5VGaw2lHIb1P5yvSE1iRDgAIUG63dsnKytL8+fM1adIkTZ48Wc8991yb3+gPHTpUq1atcrnulVde0axZs9psvlVdXa0VK1bo3//935WUlKQvvvhCDz30kEaNGqXMzMweTA3oGbIOsyDrMAuyDqC3OFq7XNgf3SFtkGNFeo3fxmQmS5YsabeVi9S8YXRn1q1b5/0BmdTpmubWLl2tSO/f8vnKllYwAAAECrcL6bNnz9aJEye0fPlylZWVacKECW1+ox8W5rrQ/fPPP9e7776r7du3t7lfeHi4PvroI61fv16VlZVKTk7WtGnTtHLlynZ3Pgf8hazDLMg6zIKsA+gtJadaVqR3UEh3HC89xYp0hK7T3Wzt0j+mecX6mXMU0gEAgcWjzUbd/Y3+JZdcIsMw2j0/JiZG27Zt82QYgM+RdZgFWYdZkHUAvaGrHumOleoV1Q2qrm9qd0NSIJjVN9lU22CT1P1CehWFdABAgHGrRzoAAAAAoPvqG20qq6qT1HGP9LjoSMX3aS4u0t4FocjRpiXMIvWL7vwXRaxIBwAEKgrpAAAAAOAjh0+fk2FIfa0RzmJ5e1JbiuylbDiKEORo6zIgNkphYZZOz3UU0msabGq02X0+NgAAuotCOgAAAAD4SMkpR1uXWFksHRcQHX3SiymkIwS1bjQa2eW5ceetWKe9CwAgkFBIBwAAAAAfKT11TlLHG406OPqnl56itQtCz5lzrSvSuxIRHubcJ4D2LgCAQEIhHQAAAAB85HDLivTU+PY3GnVw9E8vYUU6QlBVXZMk19XmnaFPOgAgEFFIBwAAAAAfcaxIT+tyRTqFdISu6pZCet/orlu7SFIchXQAQACikA4AAAAAPuLokZ7azdYuR8+cU32TzefjAvypur6lkG7t7or05vMcK9kBAAgEFNIBAAAAwAfshvRVpaNHeuetXRL6Rik2KlyGIR05fc4fwwP8xlFI70drFwBAEKOQDgAAAAA+cLpearQZigoPU1JcdKfnWiwWpTr7pLPhKELL2Tr3VqTHtbSAqaKQDgAIIBTSAQAAAMAHKuoskqSU+BiFh1m6PD+tZdU6fdIRahwr0vt0s5DuOK+2gdYuAIDAQSEdAAAAAHygor75z67aujiw4ShCVXVd88ryft0spDtWrtfUs18AACBwUEgHAAAAAB9wrEh3tGzpSuogWrsgNDk3G+1mj/RYa7jLdQAABAIK6QAAAADgAxV1zX+mDepeId3Z2uUUK9IRWtztkd6X1i4AgABEIR0AAAAAfMCxIr27rV0cK9ePnDonm93w2bgAf3N3RXqfqIiW62jtAgAIHBTSAQAAAMDLDMNwrkhP7eaK9OQBMYoMt6jBZldZVZ0PRwf4l6OQ3t0e6X1aWrvU0NoFABBAKKQDAAAAgJedrGlQg92iMIs0bGBMt64JD7MoZWBLn/QK+qQjNBiGoeo6N1ekOzcbpZAOAAgcFNIBAAAAwMtKTjb3OR/SP1rWiPBuX+fccJQ+6QgR9U12NbW0Kupuj/TYltYuNfRIBwAEEArpAAAAAOBlpafOSWrte95dw1vOdxTigWBXfd6qckfv8670da5Ip0c6ACBwUEgHAAAAAC8rbVlRnhrfvbYuDo6NSUtO0toFoeFcQ3MxPDoyTGFhlm5dQ490AEAgopAOAAAAAF5W4iyku7kifRAr0hFa6hqbC+kxkd1vceRYuV7fZFeTze6TcQEA4C4K6QAAAADgZR63dmkppJeeqpVhGF4fF+Bv5zwppJ/XS532LgCAQOFRIX316tVKS0tTdHS0pkyZol27dnV47rp162SxWFwe0dHRLucYhqHly5dryJAhiomJUUZGhv71r395MjTAq8g6zIKswyzIOtDK2z8PcOVpa5dhA2NlsTT3lT5Z0+CLoQF+1drapfuF9KiIMEWGN7eBYcPRZu68ZkvSpk2bNGbMGEVHR2vcuHHaunWry+f5NwwCFVlHIOveTh/n2bhxo7KyspSbm6spU6boueeeU2Zmpj7//HMNHjy43Wvi4uL0+eefOz+2WFz7oj311FN64YUXtH79eo0YMULLli1TZmamPvvsM/6Bjl5D1mEWZB1mQdaBVr74eUCrqrpGna5tlOT+ivToyHANiYvW0TN1KjlZq4S+Vl8MEfCbuqbm1izuFNIlKToiXI22JmdrGDNz9zV7586dmjt3rlatWqX/9//+n15//XXNmjVLe/bs0eWXXy7JN/+GMQxDtQ1NqrdJtQ1NijRC678TjY2hOTfHvALhXVBkPTCEatalnufd7UL6s88+q0WLFmnhwoWSpNzcXG3ZskVr167V0qVL273GYrEoKSmp3c8ZhqHnnntOjzzyiG699VZJ0muvvabExERt3rxZc+bMaXNNfX296uvrnR9XVVW5Ow2gS4GQdYm8w/fIOsyCrAOtvP3z0J6Ost7Y2KjGxkbn38//M1R8Wd48176RhqxhhtvzS4mP0dEzdTp0vErjk/v6Yoge6+h7FmrfQ3iPY0V6TJR7hXRrZLjO1jeprpEe6e6+Zj///POaPn26HnzwQUnSypUrlZ+fr5deekm5uble/zeM43W9tqFJ6SvfkhShh3a95c0vQQAJ1blF6IYb6tX/vF+S98brOlkPJKE9t/Pz7k7W3SqkNzQ0aPfu3crOznYeCwsLU0ZGhoqKijq8rrq6WsOHD5fdbteVV16pxx9/XGPHjpUkHTp0SGVlZcrIyHCe379/f02ZMkVFRUXthnrVqlVasWKFO0MH3BIoWZfIO3yLrMMsyDrQyhc/D+3pKOvbt29XbKzrKu38/HwPZhK49p60SApXgtWzuYXVhEkK098/+EiRR/d5e3heceG8amvZHBXt82SzUUmKiWruRFvXZO4V6Z68ZhcVFSkrK8vlWGZmpjZv3izJ+/+GcbyuN7ezd3u9JgLEW2+9Jet5P6b+fl0n6/Cn8/PuTtbd+q5XVFTIZrMpMTHR5XhiYqIOHDjQ7jWXXHKJ1q5dq/Hjx+vMmTN65plndPXVV+vTTz/VsGHDVFZW5rzHhfd0fO5C2dnZLj8oVVVVSklJcWcqQKcCJesSeYdvkXWYBVkHWvni56E9HWV92rRpiouLk9S8Aig/P1833XSTIiMjvTTD3nf4nUPSP/+li6INj+Z2+J1DKsr/l6yDhmrGjHE+GqVnOvqe8e4adMSx2agnrV0kmb61iyev2WVlZZ3++8Tb/4ZxvK4bhqEbbqjXW2+9pRtuuEGRkaFVaGxsbArJuTnmNTMzQ1FRUc7j/n5dJ+uBI1SzLrWfd3ey7vOvxtSpUzV16lTnx1dffbUuvfRS/e53v9PKlSs9uqfVapXVSq9ABBZfZF0i7wg8ZB1mQdaBVp78PHSU9cjIyDaF5faOBbPDp+skSYOiDY/mNuKifi33ORewX5cL5xWo40Tvq3MW0sPcus5ReK+ntUvA6M7ren+LRdZwqX+f6JB7XWhsbAzJuTnmFRUVxet6C7IemlmX2s+7O3N0679kCQkJCg8PV3l5ucvx8vLybvdLjIyM1BVXXKGDBw9KkvO6ntwT8DayDrMg6zALsg608sXPA1yVnKqRJCV4uOfw8EHNrW9KTtIuBcHvnIetXRyFd7OvSPfkNTspKanT8/k3DAIRWUcwcKuQHhUVpYkTJ6qgoMB5zG63q6CgwGWFSmdsNps+/vhjDRkyRJI0YsQIJSUludyzqqpKH3zwQbfvCXgbWYdZkHWYBVkHWvni5wGuSlsK4AnRhkfXOwrpJ2saVF3f5LVxAb2hzsPNRh0r0s3eI92T1+ypU6e6nC8172vgOJ9/wyAQkXUEA7dbu2RlZWn+/PmaNGmSJk+erOeee041NTXOHXXnzZunoUOHatWqVZKkX/ziF7rqqqs0atQoVVZW6umnn1ZJSYnuvvtuSZLFYtH999+vxx57TKNHj9aIESO0bNkyJScna9asWd6bKeAmsg6zIOswC7IOtPL2zwNa1TXadKyqubXLRR6uSO8XHan4PlE6VdOgkpM1Gpvc34sjBPzL0xXp1pYe6ecaaO3i7mv2T37yE1177bX61a9+pZkzZ2rDhg368MMP9Z//+Z+S+DcMAhdZR6Bzu5A+e/ZsnThxQsuXL1dZWZkmTJigvLw8Z+P+0tJShYW1LnQ/ffq0Fi1apLKyMg0cOFATJ07Uzp07ddlllznPeeihh1RTU6PFixersrJS3/zmN5WXl6foaA//5Ql4AVmHWZB1mAVZB1r54ucBzY6crpVhSH2s4eoT4flq8tT42JZCei2FdAS1upYe51Zau3jM3dfsq6++Wq+//roeeeQRPfzwwxo9erQ2b96syy+/3HkO/4ZBICLrCHQWwzA8e79hAKmqqlL//v115swZxcXF9fZw4AN8j1vxtQhtfH9b8bUIbXx/W/G1CG18f1u197VobGzU1q1bNWPGjJDZzKpgf7nuWv+hLk3qpx+OOO3x3O7fsFeb9x3Vz6eP0T3XXeyDkXqmo+8ZWW9llqw7dDW3n236h/5r9xG3s+y47qHpl+je60Z5c8jdQta7RtZDA1nvGlkPHe3NzZ2su7dtNgAAAACgQ44NQh19zj2VOqiPJKm0ZeNSeG716tVKS0tTdHS0pkyZol27dnV47po1a3TNNddo4MCBGjhwoDIyMjo9H11rbe3iXvmhdUU6rV0AAIGBQjoAAAAAeEnJyebCd2p8TI/uMzy+uRBfXFHb4zGZ2caNG5WVlaWcnBzt2bNH6enpyszM1PHjx9s9v7CwUHPnztWOHTtUVFSklJQUTZs2TV999ZWfRx466hs93Gy0pUd6Pa1dAAABwu0e6QAAAACA9pWcai58p8bHSu3XarslLaG5kF56ikJ6Tzz77LNatGiRc6O63NxcbdmyRWvXrtXSpUvbnP/HP/7R5eOXX35Zf/7zn1VQUKB58+a1+xz19fWqr693flxVVSWp+e3jjY2Nzr+f/2co6WputfXNewVEWNybv6Olem19Y6983TqaVyh+DwEA3UMhHQAAAAC8pPSko5Aeo9M9KKSnxje3djl65pzqm2yyRri3mhdSQ0ODdu/erezsbOexsLAwZWRkqKioqFv3qK2tVWNjo+Lj4zs8Z9WqVVqxYkWb49u3b1dsrGuLn/z8/G6OPvh0NLfyE+GSLPrko32K+Gpvt+9XesQiKVz/OlSirVsPeWeQHrhwXrW1/HILAMyKQjoAAAAAeIHNbujw6ZYe6fGxOt2DeyX0jVJsVLhqG2w6fOqcRg3u651BmkhFRYVsNpsSExNdjicmJurAgQPdusfPf/5zJScnKyMjo8NzsrOzlZWV5fy4qqrK2RLm/E3p8vPzddNNN4Xkxm2dzW3dkQ+ks2c0edJEZVw6uNv3LXuvWFsO/1MXJSVrxozx3hxyt3Q0L8c7DgAA5kMhHQAAAAC84GjlOTXaDEWFhykxLrpH97JYLBo+qI/2H6tS6akaCum94IknntCGDRtUWFio6OiOv59Wq1VWq7XN8cjIyDaF5faOhYqO5mY3mv+0RkW4NfdYa/O5TXb16tfswnmF6vcPANA1NhsFAAAAAC9w9DMfFh+j8DBLj+/n2HC05CStJDyRkJCg8PBwlZeXuxwvLy9XUlJSp9c+88wzeuKJJ7R9+3aNH+//1dChpNHWXEkPD3Ov/BAZHtZyvd3rYwIAwBMU0gEAAADAC4pP1kiS0gb18cr9hg+ikN4TUVFRmjhxogoKCpzH7Ha7CgoKNHXq1A6ve+qpp7Ry5Url5eVp0qRJ/hhqSLO1LEmPcPOXS45CekNLIR4AgN5GaxcAAAAA8ILWjUZjuzize4a3FORLWgr0cF9WVpbmz5+vSZMmafLkyXruuedUU1OjhQsXSpLmzZunoUOHatWqVZKkJ598UsuXL9frr7+utLQ0lZWVSZL69u2rvn1pr+OJJnvzinK3C+kRLSvSm1iRDgAIDBTSAQAAAMALHCvHHSvJe8q5Iv0UK9I9NXv2bJ04cULLly9XWVmZJkyYoLy8POcGpKWlpQo7r+XIb3/7WzU0NOj22293uU9OTo4effRRfw49ZDhXpIe7V0iPorULACDAUEgHAAAAAC9wFLy91drFsbL98Kla2eyGV/qum9GSJUu0ZMmSdj9XWFjo8nFxcbHvB2QynvZIj4qwtFxPIR0AEBjokQ4AAAAAPWQYhrMFS6qXVqQnD4hRZLhFjTZDx86c88o9AX+jRzoAIFRQSAcAAACAHqqoblBtg00WizRsYIxX7hkeZlHKwOaifCkbjiJINXnY2iWS1i4AgABDIR0AAAAAeqj0VPNq9OT+MbJGhHvtvo7V7cUU0hGkbJ5uNkohHQAQYCikAwAAAEAPFVd4d6NRB0e/9ZKWQj0QbJo87ZHuaO3SRCEdABAYKKQDAAAAQA85Nhr1diHdseEorV0QrJo87ZHOZqMAgABDIR0AAAAAeqjUsdFofB+v3nc4rV0Q5Gw97JHOinQAQKCgkA4AAAAAPeQodKd5eUX68JbWLqUna2QYhlfvDfhDU0uP9HA3V6RHOXukk3sAQGCgkA4AAAAAPVTa0tol1cuF9JT4GFksUk2DTSdrGrx6b8DX7HZDLQvSFeFmj3TninRauwAAAgSFdAAAAADogbN1jTrVUuR2rCD3FmtEuIbERUuSSk6y4SiCi6M/uuR+axfHCnabnRXpAIDA4FEhffXq1UpLS1N0dLSmTJmiXbt2dXjumjVrdM0112jgwIEaOHCgMjIy2py/YMECWSwWl8f06dM9GRrgVWQdZkHWYRZkHYAvlLS0dUnoG6W+1giv399RnC+hTzqCzPlFcHc3Gz3/fDvFdABAAHC7kL5x40ZlZWUpJydHe/bsUXp6ujIzM3X8+PF2zy8sLNTcuXO1Y8cOFRUVKSUlRdOmTdNXX33lct706dN17Ngx5+NPf/qTZzMCvISswyzIOsyCrAPwFUeBOzXeu21dHBwbjlJIR7Bx9EeX3O+RHnbe+U0U0gEAAcDtQvqzzz6rRYsWaeHChbrsssuUm5ur2NhYrV27tt3z//jHP+ree+/VhAkTNGbMGL388suy2+0qKChwOc9qtSopKcn5GDhwYIdjqK+vV1VVlcsD8LZAyLpE3uF7ZB1mQdYB+ErJqeaWK95u6+KQ6iyk09oFwaXJdv6KdPfKD+evSKe9CwAgELj1X7KGhgbt3r1bGRkZrTcIC1NGRoaKioq6dY/a2lo1NjYqPj7e5XhhYaEGDx6sSy65RPfcc49OnjzZ4T1WrVql/v37Ox8pKSnuTAPoUqBkXSLv8C2yDrMg6wB8qdTHK9LTHK1dTrEiHcHFsZLcYnF/Rfr559sMCukAgN7nViG9oqJCNptNiYmJLscTExNVVlbWrXv8/Oc/V3Jyssv/yE6fPl2vvfaaCgoK9OSTT+rtt9/WzTffLJvN1u49srOzdebMGefj8OHD7kwD6FKgZF0i7/Atsg6zIOsAfKm4ZaV4WoJvCumOAn0prV0QZBwryd3tjy5dUEi3UUgHAPQ+7++E04knnnhCGzZsUGFhoaKjo53H58yZ4/z7uHHjNH78eF188cUqLCzUjTfe2OY+VqtVVqvVL2MGPOGtrEvkHYGNrMMsyDqAzrSuSPdNaxdHj/STNQ06W9eoftGRPnkewNscPdLdXY0uSeEWVqQDAAKLWyvSExISFB4ervLycpfj5eXlSkpK6vTaZ555Rk888YS2b9+u8ePHd3ruyJEjlZCQoIMHD7ozPMBryDrMgqzDLMg6AF+pb7LpWFWdpNaCt7f1i47UoD5RkthwFMHF0SPd3f7oUvNmo45a+vmblgIA0Fvc+q9ZVFSUJk6c6LLJlmPTralTp3Z43VNPPaWVK1cqLy9PkyZN6vJ5jhw5opMnT2rIkCHuDA/wGrIOsyDrMAuyDsBXDp86J8OQ+lojnMVuX3BsOFpKn3QEEUeP9Ihw91ekS60tYaijAwACgdu/Fs7KytKaNWu0fv167d+/X/fcc49qamq0cOFCSdK8efOUnZ3tPP/JJ5/UsmXLtHbtWqWlpamsrExlZWWqrq6WJFVXV+vBBx/U+++/r+LiYhUUFOjWW2/VqFGjlJmZ6aVpAu4j6zALsg6zIOsAfKGkpT96anysLBbPioXdMbylT7qjHzsQDHrSI12Swlp+pliRDgAIBG73SJ89e7ZOnDih5cuXq6ysTBMmTFBeXp5z867S0lKFnfe2rd/+9rdqaGjQ7bff7nKfnJwcPfroowoPD9dHH32k9evXq7KyUsnJyZo2bZpWrlxJ/1D0KrIOsyDrMAuyDsAXHK1WfNXWxSF1UHP/dTYcRTDpSY90qbkAXy9WpAMAAoNHm40uWbJES5YsafdzhYWFLh8XFxd3eq+YmBht27bNk2EAPkfWYRZkHWZB1gF4m6PVSqqPC+lpLfenRzqCSU96pEvNfdIlVqQDAAKDZ/81AwAAAAA4W62ktawY95XhzkI6rV0QPLzWI90wvDYmAAA8RSEdAAAAADzkaLXi6GHuK6nxzYX6Y1V1qm+y+fS5AG9x9Ej3tLVLuHNFOoV0AEDvo5AOAAAAAB6w2Q0dPu2f1i4JfaPUJypchiEdPnXOp88FeIujJYunm406Cuk2CukAgABAIR0AAAAAPHC08pwabYaiwsM0pH+MT5/LYrE4NxylvQuCRU97pDuuc9wHAIDeRCEdAAAAADzg2Gh0WHyMx60r3OFoH8OGowgWth72SHeuSKdHOgAgAFBIBwAAAAAPlPipP7rD8ITm53EU8IFA1+SlHum0dgEABAIK6QAAAADggZJTzS1Whre0XPG14S0bjhbT2gVBwualHum0dgEABAIK6QAAAADggZKKlhXpPt5o1MHxPKW0dkGQaOxxj3RWpAMAAgeFdAAAAADwQMmp3imkHz5dS2ERQYEe6QCAUEIhHQAAAADcZBiGSltarKTG+6e1y5D+MYoMt6jRZuho5Tm/PCfQEz3tkd66It3utTEBAOApCukAAAAA4KaK6gbVNNhksUgp8TF+ec7wMItSBrLhKIIHPdIBAKGEQjoAAAAAuKm0ZaPR5P4xskaE++15He1dSuiTjiDQ8x7pzdfRyggAEAgopAMAAACAmxyF7NR4//RHdxg+qLmNTElLIR8IZI4CeHgPe6Q3UUgHAAQACukAAAAA4KbilkJ6WoJ/+qM7OAr3JRWsSEfgcxTAPW3t4tiklBXpAIBAQCEdAAAAMKHVq1crLS1N0dHRmjJlinbt2tXp+Zs2bdKYMWMUHR2tcePGaevWrX4aaWAqadloNG2Qf1ekpyW0FNLpkd5tZL33OHqke7rZKCvSpVOnTunOO+9UXFycBgwYoLvuukvV1dWdXlNXV6f77rtPgwYNUt++ffXv//7vKi8vdznHYrG0eWzYsMGXUwE6RdYRDCikAwAAACazceNGZWVlKScnR3v27FF6eroyMzN1/Pjxds/fuXOn5s6dq7vuukt79+7VrFmzNGvWLH3yySd+HnngcKxId7Ra8ZfU+ObnKz1ZI8Mwb3Gxu8h673L0SI/0uEe6Y0W63WtjCjZ33nmnPv30U+Xn5+tvf/ub3nnnHS1evLjTax544AH9z//8jzZt2qS3335bR48e1be//e0257366qs6duyY8zFr1iwfzQLoGllHMIjo7QEAAAAA8K9nn31WixYt0sKFCyVJubm52rJli9auXaulS5e2Of/555/X9OnT9eCDD0qSVq5cqfz8fL300kvKzc31eBw7vzipT05ZZD1wXBHhwfW/JodONK+Sc6wQ95eU+BhZLFJNg03//Y+j6hPl369bk61Jn5yyKL3ynNIuivTrc3siULK+q/hU0Ga9K45MtDe3f5WfldTzHumffFWlQX3KuzjbuxzzGnuyVqOS+vv1uR3279+vvLw8/d///Z8mTZokSXrxxRc1Y8YMPfPMM0pOTm5zzZkzZ/TKK6/o9ddf1w033CCpuYh46aWX6v3339dVV13lPHfAgAFKSkryz2SATpB1BIvQ+i84AAAAgE41NDRo9+7dys7Odh4LCwtTRkaGioqK2r2mqKhIWVlZLscyMzO1efPmDp+nvr5e9fX1zo+rqqokSY2NjWpsbJQkPfLXz3T4dLjWfL7Pw9n0viH9Ip3zOZ/jWHuf64kwSUPionX0TJ1+smGfV+/dfeEaNvq4hg6IcR7x9jy9IZCy/vjWz/XpseDOeuc6n1uExbOMOFak//79Ev3+/RJPB9cD4YpLOaYfntfCyZ9ZLyoq0oABA5yFRUnKyMhQWFiYPvjgA912221trtm9e7caGxuVkZHhPDZmzBilpqaqqKjIpbh433336e6779bIkSP1wx/+UAsXLpTF0vEvPbqTdV+99gWCUJ1bR/Mi62TdLHNzZ54U0gEAAAATqaiokM1mU2JiosvxxMREHThwoN1rysrK2j2/rKysw+dZtWqVVqxY0eb49u3bFRvbXJSKt4QprK9nK1UDwdiBdhX+fXun5+Tn53v9ea9PsOg9W5h6s7HL4X99pq0nP3V+XFsbeD3bAynrfZrCNDyIs94TUWGGBtd8qa1bv3T72pE26eJ+4WrqxbCXF/9TW2s+d37sz6yXlZVp8ODBLsciIiIUHx/fYSbLysoUFRWlAQMGuBy/MMe/+MUvdMMNNyg2Nlbbt2/Xvffeq+rqav34xz/ucDzdybqDL177AkWozu3CeZF1sm6WubmTdQrpAAAAALwuOzvbZWVvVVWVUlJSNG3aNMXFxUmSbrqpUfn5+brpppsUGRn4bULc0djou7nN8Ord3NPRvByr9cyoW1n3YR56my+zLkkdl7p8y5dZX7p0qZ588slOz9m/f3+Pn6czy5Ytc/79iiuuUE1NjZ5++ulOi4vdybqv89CbQnVuZL0tsm6uubmTdY8K6atXr9bTTz+tsrIypaen68UXX9TkyZM7PH/Tpk1atmyZiouLNXr0aD355JOaMaP1n3+GYSgnJ0dr1qxRZWWlvvGNb+i3v/2tRo8e7cnwAK8h6zALsg6zIOuAlJCQoPDwcJWXu/YbLi8v77B/aFJSklvnS5LVapXVam1zPDIyss3/lLV3LFSE6twunFcgzpGs+1eozs0XWf/pT3+qBQsWdHrOyJEjlZSU1GZj3KamJp06darTDDc0NKiystJlpW5XOZ4yZYpWrlyp+vr6dvMskXWHUJ0bWW9F1puZZW7uzNHtrbN9sev5U089pRdeeEG5ubn64IMP1KdPH2VmZqqurs7d4QFeQ9ZhFmQdZkHWgWZRUVGaOHGiCgoKnMfsdrsKCgo0derUdq+ZOnWqy/lS81tiOzofCARkHYHqoosu0pgxYzp9REVFaerUqaqsrNTu3bud17711luy2+2aMmVKu/eeOHGiIiMjXXL8+eefq7S0tNMc79u3TwMHDuywsAh4gqwj1FgMw3Cr29iUKVP09a9/XS+99JKk5n+IpKSk6Ec/+lG7u57Pnj1bNTU1+tvf/uY8dtVVV2nChAnKzc2VYRhKTk7WT3/6U/3sZz+T1LzzbmJiotatW6c5c+a0ueeFTf/PnDmj1NRUHT582PkWC4QWx9toKisr1b+/f3ZMD4SsS+TdbMg6WTcLsk7WzaI3st4dGzdu1Pz58/W73/1OkydP1nPPPac33nhDBw4cUGJioubNm6ehQ4dq1apVkpp/sXTttdfqiSee0MyZM7VhwwY9/vjj2rNnjy6//PJuPeeZM2c0YMAAl6w3NjZq+/btmjZtWsiteArVuXU0L7LeiqyHhkDJ+s0336zy8nLl5uaqsbFRCxcu1KRJk/T6669Lkr766ivdeOONeu2115zvsrvnnnu0detWrVu3TnFxcfrRj34kqTnfkvQ///M/Ki8v11VXXaXo6Gjl5+frZz/7mX72s5+12xe6I2Q9NJD1rpH10NHe3NzKuuGG+vp6Izw83HjzzTddjs+bN8/41re+1e41KSkpxq9//WuXY8uXLzfGjx9vGIZhfPHFF4YkY+/evS7n/Nu//Zvx4x//uN175uTkGJJ4mPDxxRdfuBNZjwVK1g2DvJv1QdZ5mOVB1nmY5eGvrLvjxRdfNFJTU42oqChj8uTJxvvvv+/83LXXXmvMnz/f5fw33njD+NrXvmZERUUZY8eONbZs2eLW8x0+fLjXvw88fP84fPiwN+LpVWSdRzBn/eTJk8bcuXONvn37GnFxccbChQuNs2fPOj9/6NAhQ5KxY8cO57Fz584Z9957rzFw4EAjNjbWuO2224xjx445P////X//nzFhwgSjb9++Rp8+fYz09HQjNzfXsNlsbo2NrJvjQdbJulke3cm6Wz3SfbHrueNPd3ZGv7Dpf2VlpYYPH67S0tKAWv3gS47flphl9ZpjtV58fLxfni9Qsi6Rd7LuW2Q9cJB13yLrgYOsB44lS5ZoyZIl7X6usLCwzbE77rhDd9xxh8fPl5ycrMOHD6tfv36yWCySQjsPoTq3juZlGIbOnj2r5OTkXhxd+8i6b4Xq3AIl6/Hx8c4Vue1JS0uTcUGjgejoaK1evVqrV69u95rp06dr+vTpPR4bWQ8NZL1rZD10tDc3d7Lu0Wajva2jpv/9+/cPuW9wV+Li4kw157Awt9v6Bz3y3oyshz6y3oyshz6y3oysm09YWJiGDRvW7udCOQ+hOrf25mWGXwZ2B1kPLWS9Y2Q9tJD1jpH10HPh3Lqbdbf+Re+LXc8df7q7MzrgS2QdZkHWYRZkHQAAAADQE24V0n2x6/mIESOUlJTkck5VVZU++OADdkZHryHrMAuyDrMg6wAAAACAHnGru75hGBs2bDCsVquxbt0647PPPjMWL15sDBgwwCgrKzMMwzC+//3vG0uXLnWe/9577xkRERHGM888Y+zfv9/IyckxIiMjjY8//th5zhNPPGEMGDDA+Otf/2p89NFHxq233mqMGDHCOHfuXLfGVFdXZ+Tk5Bh1dXXuTidomW3OvTHfQMy6YfC9D3VkvRXf+9BG1lvxvQ9tZpuvu0L56xOqcwvVeflaKH/dQnVuoTovXwvlr1uozi1U5+Vrofx1Y24dc7uQbhje3/Xcbrcby5YtMxITEw2r1WrceOONxueff+7J0ACvIuswC7IOsyDrAAAAAABPWAzjgi1vAQAAAAAAAACAk1s90gEAAAAAAAAAMBsK6QAAAAAAAAAAdIJCOgAAAAAAAAAAnaCQDgAAAAAAAABAJ4KmkL569WqlpaUpOjpaU6ZM0a5duzo9f9OmTRozZoyio6M1btw4bd261U8j9Q535rtu3TpZLBaXR3R0tB9H2zPvvPOObrnlFiUnJ8tisWjz5s1dXlNYWKgrr7xSVqtVo0aN0rp163w+Tn8xW9Yl8+SdrLdltryT9Y6RdVdknayb0S9/+UtdffXVio2N1YABA3p7OD3i7s98MPAk72gfWQ985N17QiXvZB1dIeuBzVtZD4pC+saNG5WVlaWcnBzt2bNH6enpyszM1PHjx9s9f+fOnZo7d67uuusu7d27V7NmzdKsWbP0ySef+HnknnF3vpIUFxenY8eOOR8lJSV+HHHP1NTUKD09XatXr+7W+YcOHdLMmTN1/fXXa9++fbr//vt19913a9u2bT4eqe+ZLeuSufJO1l2ZLe9kvWNk3RVZJ+tm1dDQoDvuuEP33HNPbw+lRzz5GQgG7uYdHSPrgY+8e08o5J2sozvIemDzWtaNIDB58mTjvvvuc35ss9mM5ORkY9WqVe2e/53vfMeYOXOmy7EpU6YYP/jBD3w6Tm9xd76vvvqq0b9/fz+NzrckGW+++Wan5zz00EPG2LFjXY7Nnj3byMzM9OHI/MNsWTcM8+bd7Fk3DPPlnax3jKy7IuvBiax7T7Bnwt2fgWDUnbyja2Q9OJB37wjmvJN1uIOsB76eZD3gV6Q3NDRo9+7dysjIcB4LCwtTRkaGioqK2r2mqKjI5XxJyszM7PD8QOLJfCWpurpaw4cPV0pKim699VZ9+umn/hhurwjm729nzJZ1ibx3Jdi/v50xW97JeueC+XvbFbJO1s8XzN9bdI+nPwNAsCHrMAuyDrMg690T8IX0iooK2Ww2JSYmuhxPTExUWVlZu9eUlZW5dX4g8WS+l1xyidauXau//vWv+sMf/iC73a6rr75aR44c8ceQ/a6j729VVZXOnTvXS6PqObNlXSLvXQnVrEvmyztZ7xxZd0XWyTqClyc/A0AwIuswC7IOsyDr3RPwhXR0berUqZo3b54mTJiga6+9Vn/5y1900UUX6Xe/+11vDw3wOvIOsyDrMAuyHtqWLl3aZjPZCx8HDhzo7WECPUbWYSbkHWZB1nGhiN4eQFcSEhIUHh6u8vJyl+Pl5eVKSkpq95qkpCS3zg8knsz3QpGRkbriiit08OBBXwyx13X0/Y2Li1NMTEwvjarnzJZ1ibx3JVSzLpkv72S9c2TdFVkn66Hkpz/9qRYsWNDpOSNHjvTPYPzAGz8DCE5kvRlZNwcz5Z2smxtZJ+sXCvgV6VFRUZo4caIKCgqcx+x2uwoKCjR16tR2r5k6darL+ZKUn5/f4fmBxJP5Xshms+njjz/WkCFDfDXMXhXM39/OmC3rEnnvSrB/fztjtryT9c4F8/e2K2SdrJ8vmL+3nrrooos0ZsyYTh9RUVG9PUyv8cbPAIITWSfrZmKmvJN1cyPrZL0N7+576hsbNmwwrFarsW7dOuOzzz4zFi9ebAwYMMAoKyszDMMwvv/97xtLly51nv/ee+8ZERERxjPPPGPs37/fyMnJMSIjI42PP/64t6bgFnfnu2LFCmPbtm3GF198YezevduYM2eOER0dbXz66ae9NQW3nD171ti7d6+xd+9eQ5Lx7LPPGnv37jVKSkoMwzCMpUuXGt///ved53/55ZdGbGys8eCDDxr79+83Vq9ebYSHhxt5eXm9NQWvMVvWDcNceSfrrsyWd7JO1sk6WQ/1rPdUSUmJsXfvXmPFihVG3759nV/bs2fP9vbQ3NLVz0Cw6irv6D6yHvjIu/eEQt7JOrqDrAc2b2U9KArphmEYL774opGammpERUUZkydPNt5//33n56699lpj/vz5Lue/8cYbxte+9jUjKirKGDt2rLFlyxY/j7hn3Jnv/fff7zw3MTHRmDFjhrFnz55eGLVnduzYYUhq83DMcf78+ca1117b5poJEyYYUVFRxsiRI41XX33V7+P2FbNl3TDMk3ey3pbZ8k7W5xuGQdbJOlkP5az3xPz589v9eu7YsaO3h+a2zn4GglVXeUf3kfXAR969J1TyTtbRFbIe2LyVdYthGEbP1rQDAAAAAAAAABC6Ar5HOgAAAAAAAAAAvYlCOgAAAAAAAAAAnaCQDgAAAAAAAABAJyikAwAAAAAAAADQCQrpAAAAAAAAAAB0gkI6AAAAAAAAAACdoJAOAAAAAAAAAEAnKKQDAAAAAAAAANAJCukAAAAAAAAAAHSCQjoAAAAAAAAAAJ2gkA4AAAAAAAAAQCcopAMAAAAAAAAA0AkK6QAAAAAAAAAAdIJCOgAAAAAAAAAAnaCQDgAAAAAAAABAJyikAwAAAAAAAADQCQrpAAAAAAAAAAB0gkI6AAAAAABB7tFHH5XFYlFFRUWX5zY1Nemhhx5SSkqKwsLCNGvWLN8PEPASsg6zIOuBh0I6AAAAAAAmsnbtWj399NO6/fbbtX79ej3wwAMdnrtgwQJZLJY2jzFjxvh8nNddd127zz19+nSfPzdCQ7BkXZIaGhr0+OOPa8yYMYqOjlZiYqJmzpypI0eO+OX5EdyCIevFxcXtPq/jsWjRIp8+vzdE9PYAAAAAAACA/7z11lsaOnSofv3rX3frfKvVqpdfftnlWP/+/X0xtDaGDRumVatWuRxLTk72y3Mj+AVL1hsbGzVz5kzt3LlTixYt0vjx43X69Gl98MEHOnPmjIYNG+bzMSC4BUPWL7roIv3+979vczwvL09//OMfNW3aNJ8+vzdQSAcAAAAAwESOHz+uAQMGdPv8iIgIfe973/PdgDrRv3//XntuBL9gyfqvf/1rvf3223r33Xc1efJkvz8/gl8wZL1Pnz7tPue6desUFxenW265xa/j8QStXQAAAAAACBEVFRX6zne+o7i4OA0aNEg/+clPVFdXJ6n1bfU7duzQp59+6nw7fWFhYZf3tdlsqqqqcmssOTk5CgsLU0FBgcvxxYsXKyoqSv/4xz+6dZ+mpiZVV1e79dwIfaGSdbvdrueff1633XabJk+erKamJtXW1rr1/AhtoZL19hw7dkw7duzQt7/9bUVHR7t1bW+gkA4AAAAAQIj4zne+o7q6Oq1atUozZszQCy+8oMWLF0tqfVv9mDFjNGzYMP3+97/X73//e1166aWd3rO2tlZxcXHq37+/4uPjdd9993WrsP3II49owoQJuuuuu3T27FlJ0rZt27RmzRotX75c6enpXd7jn//8p/r06aN+/fopKSlJy5YtU2NjYze+Egh1oZL1zz77TEePHtX48eO1ePFi9enTR3369NH48eO1Y8cON74iCFWhkvX2bNiwQXa7XXfeeadb1/UWi2EYRm8PAgAAAAAAeO7RRx/VihUr9K1vfUt//etfncfvu+8+/eY3v9E//vEPjR8/XlLzJp4VFRX65JNPurxvdna2DMPQlVdeKbvdrry8PK1fv17f+MY3VFhYqIiIzjvGfvLJJ5o4caLmzZunp59+WpdffrmGDBmioqKiLq+96667lJqaqnHjxqmmpkb/9V//pf/+7//Wd77zHW3cuLEbXxWEolDL+ptvvqlvf/vbGjRokOLj4/Xwww9Lkh5//HGVlJTo//7v/5zzgbmEWtbbM2nSJB09elRHjhxRWFgQrPc2AAAAAABAUMvJyTEkGdu2bXM5vn//fkOSsWrVKuexa6+91hg7dqzHz/XLX/7SkGT86U9/6tb5q1atMiQZkydPNqxWq/Hpp596/NyLFi0yJBlFRUUe3wPBLdSy/tprrxmSjKioKKO0tNR5vKSkxIiMjDTuvPNOj8eP4BZqWb/Q559/bkgyHnjgAbev7S1BUOoHAAAAAADdMXr0aJePL774YoWFham4uNhrz/HAAw8oLCxMf//737t1/oMPPqj09HTt2rVLOTk5uuyyyzx+7p/+9KeS1O3nRugKlazHxMRIkr7xjW8oJSXFeTw1NVXf/OY3tXPnTs8Gj5ARKlm/0B//+EdJCpq2LhI90gEAAAAACFkWi8Xr94yJidGgQYN06tSpbp3/5Zdf6l//+pck6eOPP+7RczsKjd19bphHsGY9OTlZkpSYmNjmc4MHD9bp06e7OVqYRbBm/UKvv/66LrnkEk2cONGj63sDhXQAAAAAAEKEo7DhcPDgQdntdqWlpXntOc6ePauKigpddNFFXZ5rt9u1YMECxcXF6eGHH9af/vQn/eUvf/H4ub/88ktJ6tZzI7SFStbHjRunyMhIffXVV20+d/ToUbKOkMn6+T744AMdPHgwqFajSxTSAQAAAAAIGatXr3b5+MUXX5Qk3XzzzW7fq66uTmfPnm1zfOXKlTIMQ9OnT+/yHs8++6x27typ//zP/9TKlSt19dVX65577lFFRUWn11VVVam+vt7lmGEYeuyxxyRJmZmZbswEoShUst6vXz/NmDFDO3fu1IEDB5zH9+/fr507d+qmm25yez4ILaGS9fO9/vrrkqTvfve73R98AHBvK1UAAAAAABCwDh06pG9961uaPn26ioqK9Ic//EHf/e53lZ6e7va9ysrKdMUVV2ju3LkaM2aMJGnbtm3aunWrpk+frltvvbXT6/fv369ly5ZpwYIFuuWWWyRJ69at04QJE3TvvffqjTfe6PDaPXv2aO7cuZo7d65GjRqlc+fO6c0339R7772nxYsX68orr3R7PggtoZJ1SXr88cdVUFCgG264QT/+8Y8lSS+88ILi4+P18MMPuz0fhJZQyrok2Ww2bdy4UVdddZUuvvhit+fQq3p3r1MAAAAAANBTOTk5hiTjs88+M26//XajX79+xsCBA40lS5YY586dczn32muvNcaOHdvlPU+fPm1873vfM0aNGmXExsYaVqvVGDt2rPH4448bDQ0NnV7b1NRkfP3rXzeGDRtmVFZWunzu+eefNyQZGzdu7PD6L7/80rjjjjuMtLQ0Izo62oiNjTUmTpxo5ObmGna7vcuxI3SFWtYddu/ebWRkZBh9+vQx+vXrZ9x6663GP//5zy6vQ+gK1azn5eUZkowXXnihy3MDjcUwDKMX6/gAAAAAAAAAAAQ0eqQDAAAAAAAAANAJCukAAAAAAAAAAHSCQjoAAAAAAAAAAJ1wu5D+zjvv6JZbblFycrIsFos2b97c5TWFhYW68sorZbVaNWrUKK1bt67NOatXr1ZaWpqio6M1ZcoU7dq1y92hAV5F1mEWZB1mQdZhFmQdAAAA8D63C+k1NTVKT0/X6tWru3X+oUOHNHPmTF1//fXat2+f7r//ft19993atm2b85yNGzcqKytLOTk52rNnj9LT05WZmanjx4+7OzzAa8g6zIKswyzIOsyCrAMAAADeZzEMw/D4YotFb775pmbNmtXhOT//+c+1ZcsWffLJJ85jc+bMUWVlpfLy8iRJU6ZM0de//nW99NJLkiS73a6UlBT96Ec/0tKlS9vcs76+XvX19c6P7Xa7Tp06pUGDBslisXg6HQQwwzB09uxZJScnKyzM/x2JeivrEnk3G7JO1s2CrJN1syDrZN0sejvrgcRut+vo0aPq168fWQ9BZL0VWQ9tZL0VWQ9t7mQ9wteDKSoqUkZGhsuxzMxM3X///ZKkhoYG7d69W9nZ2c7Ph4WFKSMjQ0VFRe3ec9WqVVqxYoXPxozAdfjwYQ0bNqy3h9EuX2RdIu9mRdZhFmQdZkHWYRaBnHV/OXr0qFJSUnp7GPAxsk7WzYKsk3Wz6E7WfV5ILysrU2JiosuxxMREVVVV6dy5czp9+rRsNlu75xw4cKDde2ZnZysrK8v58ZkzZ5SamqrDhw8rLi7O+5NAr6uqqlJKSor69evX20PpkC+yLpF3syHrZN0syDpZNwuyTtbNIhiy7i+Or8H5WW9sbNT27ds1bdo0RUZG9ubwvC5U59bRvMh6K7IeGsh618h66Ghvbu5k3eeFdF+wWq2yWq1tjsfFxfGP8hBnxrfQkHdzIuutyHpoI+utyHpoI+utyHpoC7Ssv/POO3r66ae1e/duHTt2rMtWR1Lz5rtZWVn69NNPlZKSokceeUQLFizo9nM6vgbnZ72xsVGxsbGKi4sLyaJEKM6tq3kFWtZ7A1kPDWS9a2Q9dHQ2t+5k3edNjpKSklReXu5yrLy8XHFxcYqJiVFCQoLCw8PbPScpKcnXwwO8hqzDLMg6zIKswyzIOkKZLzbfBQD4zurVq5WWlqbo6GhNmTJFu3bt6vT8TZs2acyYMYqOjta4ceO0detWl88vWLBAFovF5TF9+nRfTgEhzOeF9KlTp6qgoMDlWH5+vqZOnSpJioqK0sSJE13OsdvtKigocJ4DBAOyDrMg6zALsg6zIOsIZTfffLMee+wx3Xbbbd06Pzc3VyNGjNCvfvUrXXrppVqyZIluv/12/frXv/bxSAEAGzduVFZWlnJycrRnzx6lp6crMzNTx48fb/f8nTt3au7cubrrrru0d+9ezZo1S7NmzXLZQF2Spk+frmPHjjkff/rTn/wxHYQgt1u7VFdX6+DBg86PDx06pH379ik+Pl6pqanKzs7WV199pddee02S9MMf/lAvvfSSHnroIf3Hf/yH3nrrLb3xxhvasmWL8x5ZWVmaP3++Jk2apMmTJ+u5555TTU2NFi5c6IUpAp4h6zALsg6zIOswC7IOeK6rzXfbU19fr/r6eufHVVVVkprfPt7Y2Oj8+/l/hhJfzm19UYn+vOeoXpl3pS7q17ZVlC91NK9Q/B4isB0+VauH/usjna5t0C9vG6eJwwf29pB85tlnn9WiRYuc/77Izc3Vli1btHbtWi1durTN+c8//7ymT5+uBx98UJK0cuVK5efn66WXXlJubq7zPKvV6ta76HhdN9fc3Jmn24X0Dz/8UNdff73zY8cGQvPnz9e6det07NgxlZaWOj8/YsQIbdmyRQ888ICef/55DRs2TC+//LIyMzOd58yePVsnTpzQ8uXLVVZWpgkTJigvL6/NhkaAP5F1mAVZh1mQdZgFWQc819XmuzExMW2uWbVqlVasWNHm+Pbt2xUbG+tyLD8/37sDDiC+mNuafeEqP2fRS39+S1MGG16/f3dcOK/a2tpeGQfMyTAM3b9xn3aXnJYk3fOH3Sp88DrFRgXlloedamho0O7du5Wdne08FhYWpoyMDBUVFbV7TVFRkcvG5lLzLz83b97scqywsFCDBw/WwIEDdcMNN+ixxx7ToEGDOhwLr+vNzDI3d17XLYZh9M5/jbyoqqpK/fv315kzZ9i4KETxPW7F1yK08f1txdcitPH9bcXXIrTx/W3F1yK0BcP312KxdLnZ6Ne+9jUtXLjQpZCzdetWzZw5U7W1te0W0ttbuZiSkqKKigqXTeny8/N10003heTGbb6Ym91uaNzKAjU02XXPtSOUlTHaa/fujo7mVVVVpYSEhIDOur+093Pf2NiorVu3asaMGSGZdX/PbW/pad32m52SJGtEmOqb7Hr8tnH67pRUrz1HR/Py9+v60aNHNXToUO3cudOlddxDDz2kt99+Wx988EGba6KiorR+/XrNnTvXeew3v/mNVqxY4dzbZcOGDYqNjdWIESP0xRdf6OGHH1bfvn1VVFSk8PDwdsfC67q55ubO63ro/QoLAAAAAAAPdLX5bnusVqus1rZtRyIjI9sUINo7Fiq8PbejlefU0GSXJB2prO+1r9uF8wrV7x8C03/tPiJJ+vaVQzUmqZ8e33pAm/d95dVCeqibM2eO8+/jxo3T+PHjdfHFF6uwsFA33nhju9fwut7MLHNzZ44+32wUAAAAAIBg0NXmu/CfkpOtb7UvPVnTiyMBes+7ByskSTPHDdH0sUMkSbtLTquqLvR6VyckJCg8PLzdX2Z21N+8o19+dtYPfeTIkUpISHDZTwboLgrpAAAAAICQVF1drX379mnfvn2SWjffdewTkJ2drXnz5jnP/+EPf6gvv/xSDz30kA4cOKDf/OY3euONN/TAAw/0xvBNreS84nnxSfqSw3wOn6pVyclahYdZNGXkIKUOilXaoFjZ7IazZ3ooiYqK0sSJE11+mWm321VQUNDhLzM9+eXnkSNHdPLkSQ0ZMsQ7A4epUEgHAAAAAISkDz/8UFdccYWuuOIKSc2b715xxRVavny5JHW4+W5+fr7S09P1q1/9qs3mu/CPklOtxfMz5xp1pjb0VuACndl3uFKSdPnQ/uprbe7MfGXqQEnSP1o+F2qysrK0Zs0arV+/Xvv379c999yjmpoaLVy4UJI0b948lz0sfvKTnygvL0+/+tWvdODAAT366KP68MMPtWTJEknNv0x98MEH9f7776u4uFgFBQW69dZbNWrUKF7X4RF6pAMAAAAAQtJ1110nwzA6/Py6devavWbv3r0+HBW6o/SCVeglp2o0PnZA7wwG6AWfHauSJF2e3Lr5YXrKAP1l71chW0ifPXu2Tpw4oeXLl6usrEwTJkxQXl6eEhMTJUmlpaUKC2tdE3z11Vfr9ddf1yOPPKKHH35Yo0eP1ubNm3X55ZdLksLDw/XRRx9p/fr1qqysVHJysqZNm6aVK1e22wMd6AqFdAAAAAAAEFCKW1q7WCySYTS3dxk/bEDvDgrwo0+PNhfSLzuvkD5+WH9J0ictnwtFS5Ysca4ov1BhYWGbY3fccYfuuOOOds+PiYnRtm3bvDk8mBytXQAAAAAAQMAwDMO5In380ObCIRuOwmw+cxTSh7QW0kcN7itJOnG2XmfO0e4I8DcK6QAAAAAAIGCcqmnQ2fomSdI3RiVIkkrYcBQmUlnboIrqeknS1xL7OY/3i45UUly0JOnLE9W9MjbAzCikAwAAAACAgOHYaHRI/2hdktRcRKSQDjNx5H1wP6v6WF27Ml88uI8k6eBxCumAv1FIBwAAAAAAAcPR1iU1Plap8bGSmjcbBczC8cuk4YNi23zu4oua27t8cYKfCcDfKKQDAAAAAICA4dhoNG1QHw0f1Lz6tryqXnWNtt4cFuA3jj0BUuP7tPnciITmY8UVFNIBf6OQDgAAAAAAAoZzRfqgWA2MjVS/6ObWFqWnaO8Cc3C0dklrZ0X60AExkqSjZ875dUwAKKQDAAAAAIAAcn5bC4vF4mxvwQpcmIXjZyC1vUL6wOZC+lenKaQD/kYhHQAAAAAABIyS81q7SNLwlvYWrEiHWRw+1bpPwIWGDWg+drKmgXZHgJ9RSAcAAAAAAAGhur5JFdUNklpX4zpWpDvaXQChzG43dPxsvSQpuaWNy/niYiLUJypckvRVJavSAX+ikA4AAAAAAAKCoz/6wNhIxUVHSmotpDs2IQVC2cmaBtnshsIs0qA+UW0+b7FYnO1djlJIB/yKQjoAAAAAAAgIjrYuw1vaukhSKq1dYCLlVXWSpIS+VkWEt1+2c6xUp5AO+BeFdAAAAAAAEBDO32jUIS2h+e9fnT6nRpu9V8YVDFavXq20tDRFR0drypQp2rVrV7eu27BhgywWi2bNmuXbAaJbjp9tLqQnxkV3eE5iv+bPnWhpAQPAPyikAwAAAACAgODogz78vE0WE/tFKyoiTE12gxW4Hdi4caOysrKUk5OjPXv2KD09XZmZmTp+/Hin1xUXF+tnP/uZrrnmGj+NFF0pr2oujifGWTs8J6Ffc8sXCumAf1FIBwAAAAAAAaG91i5hYRalxrPhaGeeffZZLVq0SAsXLtRll12m3NxcxcbGau3atR1eY7PZdOedd2rFihUaOXKkH0eLzpSdaV6RPriTFekX9W0usp+oppAO+JNHhXR33i503XXXyWKxtHnMnDnTec6CBQvafH769OmeDA3wKrIOsyDrMAuyDrMg6wCClXNF+nmtXSQpreXjEvqkt9HQ0KDdu3crIyPDeSwsLEwZGRkqKirq8Lpf/OIXGjx4sO66665uPU99fb2qqqpcHpLU2Njo8mjvWKg8/DG3sjPNGU/oE9nhOfGxEZKk41V1Pp0XAFcR7l7geLtQbm6upkyZoueee06ZmZn6/PPPNXjw4Dbn/+Uvf1FDQ4Pz45MnTyo9PV133HGHy3nTp0/Xq6++6vzYau34LSyAP5B1mAVZh1mQdZgFWQcQrOqbbDp6prl1y/kr0qXWDUdLKmr8Pq5AV1FRIZvNpsTERJfjiYmJOnDgQLvXvPvuu3rllVe0b9++bj/PqlWrtGLFijbHt2/frthY11985Ofnd/u+wcbXc/v4YJikMB0v/qe2bv283XMOVklShErKT2vr1q1eed4L51Vbyy+tgAu5XUg//+1CkpSbm6stW7Zo7dq1Wrp0aZvz4+PjXT7esGGDYmNj2/zD3Gq1Kikpyd3hAD5D1mEWZB1mQdZhFmQdQLA6cvqcDEOKjQpXQt8ol88NZ0W615w9e1bf//73tWbNGiUkJHT7uuzsbGVlZTk/rqqqUkpKiqZNm6a4uDhJzaua8/PzddNNNykyMtLrY+9N/prby6XvS5VVum7qRN04pu0vwCXpUEWNXvz0PZ0zIjVjRmaPnq+jeTnecQCglVuFdMfbhbKzs53HuvN2ofO98sormjNnjvr0cf3tcmFhoQYPHqyBAwfqhhtu0GOPPaZBgwa1e4/6+nrV17f2geKHG94WKFmXyDt8i6zDLMg6zIKsAwhmpS1tXVLjY2WxWFw+5yikl9IjvY2EhASFh4ervLzc5Xh5eXm7vwD94osvVFxcrFtuucV5zG63S5IiIiL0+eef6+KLL25zndVqbffdSJGRkW0Ky+0dCxW+nlvlueaWKhfFxXb4PEMGNv83urq+SU1GmGKiwnv8vBfOK1S/f0BPuNUjvbO3C5WVlXV5/a5du/TJJ5/o7rvvdjk+ffp0vfbaayooKNCTTz6pt99+WzfffLNsNlu791m1apX69+/vfKSkpLgzDaBLgZJ1ibzDt8g6zIKswyzIOoBgVtyy0WjaBW1dpNZWLyWnamQYhl/HFeiioqI0ceJEFRQUOI/Z7XYVFBRo6tSpbc4fM2aMPv74Y+3bt8/5+Na3vqXrr79e+/bt4/W6l52uaS6kD4ztuJDd1xoha0RzSa+CDUcBv3G7tUtPvPLKKxo3bpwmT57scnzOnDnOv48bN07jx4/XxRdfrMLCQt14441t7tPR24mAQOGtrEvkHYGNrMMsyDrMgqwD6E0dbTQqSUMHxCjMItU12nX8bL0S46L9PbyAlpWVpfnz52vSpEmaPHmynnvuOdXU1DjbfM2bN09Dhw7VqlWrFB0drcsvv9zl+gEDBkhSm+Pwr4Ymu6rrmyRJ8X2iOjzPYrFoUJ8oHT1Tp9O1DUqJb/szA8D73FqR7u7bhc5XU1OjDRs2dGs36JEjRyohIUEHDx5s9/NWq1VxcXEuD8CbAiXrEnmHb5F1mAVZh1mQdQDBrLSl/3lqO4X0qIgwDR0YI6m14I5Ws2fP1jPPPKPly5drwoQJ2rdvn/Ly8pzvUCotLdWxY8d6eZToSuW55s2/wyxSXHTnrVX6xzYX2k/XNvp8XACauVVId/ftQufbtGmT6uvr9b3vfa/L5zly5IhOnjypIUOGuDM8wGvIOsyCrMMsyDrMgqwDCGadtXaRpOHxfVzOg6slS5aopKRE9fX1+uCDDzRlyhTn5woLC7Vu3boOr123bp02b97s+0GiU5UtRfH+MZEKC7N0eu6AmMiWaxp8Pi4AzdwqpEvNbxdas2aN1q9fr/379+uee+5p83ah8zc3cnjllVc0a9asNhsSVVdX68EHH9T777+v4uJiFRQU6NZbb9WoUaOUmdmznYeBniDrMAuyDrMg6zALsg4gGNnsho6cOiepebPR9qSy4ShC3Kma5qL4wE7aujgMaOmhfuYcK9IBf3G7R/rs2bN14sQJLV++XGVlZZowYUKbtwuFhbnW5z///HO9++672r59e5v7hYeH66OPPtL69etVWVmp5ORkTZs2TStXrmx3N2jAX8g6zIKswyzIOsyCrAMIRmVVdWqw2RUZblHygJh2z0lrKaSXnKKQjtDkWF0+MLY7hfSolmsopAP+4tFmo0uWLNGSJUva/VxhYWGbY5dcckmHu2rHxMRo27ZtngwD8DmyDrMg6zALsg6zIOsAgk1JRXO7lpSBsQrvoKVFaktrlxJauyBEOfqdD4ztvD+61Loi/TStXQC/cbu1CwAAAAAAgDeVdLLRqMNwx4p0WrsgRDlauwzozor0lh7pZ1iRDvgNhXQAAAAAANCrHMXx4R30R5daC+lnzjVSPERIcrR2iXejR3olPdIBv6GQDgAAAAAAepWjXcvwQX06PCc2KkIX9Wvem6HkFO1dEHocrV0GdKO1S/8YR490WrsA/kIhHQAAAAAA9CrnivROWrtIrSvWi2nvghB0tq65kB4X3f0e6Ww2CvgPhXQAAAAAANBrDMPo1or08z9fyoajCEHV9U2SpH7REV2eS2sXwP8opAMAAAAAgF5zsqZBNQ02WSxSSnxMp+ey4ShCWXVdcyG9r7XrQnq/llXrjmsA+B6FdAAAAAAA0GscRfEhcdGyRoR3ei6FdISys3WOFeldt3ZxFNsbbHbVN9l8Oi4AzSikAwAAAACAXtPdti7nn8NmowhFZ+u7vyL9/HNYlQ74B4V0AAAAAADQa7q70ajUutloeVW9zjWwChehpbqu+z3Sw8Msio1qfgdHTT0/C4A/UEgHAAAAAAC9pvRUcyE9tRuF9AGxkc4io+M6IBQ02ew619hcEO/OinRJ6tNy3tl6NhwF/IFCOgAAAAAA6DXFLa1d0rrR2sVisTjPc7SEAULB+avK+3ZjRbok9WsppNPaBfAPCukAAAAAAKDXlLa0dkmN73pFutS6cp0V6QgljlXl0ZFhigzvXrnOUXCvrqeQDvgDhXQAAAAAANArztY16mRNg6Tu9UiXWvukF7MiHSHkbJ1jo9HIbl/jaAFDIR3wDwrpAAAAAACgVzg2Gh3UJ0r9ortXQGxt7cKKdIQORzG8OxuNOlBIB/yLQjoAAAAAAOgV7mw06kBrF4SiaueKdA8K6fRIB/yCQjoAAAAAAOgVjlXl3dlo1MHRAubI6XNqtNl9Mi7A387We1BIp0c64FcU0gEAAAAAQK8oaelz3t2NRiUpsV+0rBFhstkNHa0856uhAX7lXJHuQWuXs6xIB/yCQjoAAAAAAOgVjhXp3d1oVJLCwizOwjt90hEqzjXaJEmxUeHdvqZPSyH9XIPNJ2MC4IpCOgAAAAAA6BWOFenD3Wjt0ny+o5Be4/UxAb2hrqWQHhPZ/UJ6dMu5jiI8AN+ikA4AAAAAAPyuvsmmY1V1ktxbkd58fnPhnRXpCBWOVeXRbhTSYyikA37lUSF99erVSktLU3R0tKZMmaJdu3Z1eO66detksVhcHtHR0S7nGIah5cuXa8iQIYqJiVFGRob+9a9/eTI0wKvIOsyCrMMsyDrMgqwDrbz98wDvOXzqnAxD6hMVrkF9oty61rki/RSFdIQGRzE8xo3WLjFRzWW9UGrt4s5rtiRt2rRJY8aMUXR0tMaNG6etW7e6fJ5/w8Cb3C6kb9y4UVlZWcrJydGePXuUnp6uzMxMHT9+vMNr4uLidOzYMeejpKTE5fNPPfWUXnjhBeXm5uqDDz5Qnz59lJmZqbq6OvdnBHgJWYdZkHWYBVmHWZB1oJUvfh7gPee3dbFYLG5d29ojndYuCA2OQnp0hDsr0iNcrg127r5m79y5U3PnztVdd92lvXv3atasWZo1a5Y++eQT5zn8Gwbe5HYh/dlnn9WiRYu0cOFCXXbZZcrNzVVsbKzWrl3b4TUWi0VJSUnOR2JiovNzhmHoueee0yOPPKJbb71V48eP12uvvaajR49q8+bNHk0K8AayDrMg6zALsg6zIOtAK2//PMC7PNlo1CGtpbVL6alaGYbh1XEBvaGuwbEivfulOsfq9VBZke7ua/bzzz+v6dOn68EHH9Sll16qlStX6sorr9RLL70kyXf/hjEMQ7UNTaq3SbUNTSH5CPW5efrfjQh3Tm5oaNDu3buVnZ3tPBYWFqaMjAwVFRV1eF11dbWGDx8uu92uK6+8Uo8//rjGjh0rSTp06JDKysqUkZHhPL9///6aMmWKioqKNGfOnDb3q6+vV319vfPjqqoqd6YBdClQsi6Rd/gWWYdZkHWYBVkHWvni56E9HWW9sbFRjY2Nzr+f/2co6cncDlVUS5KGDYh2+/rBfSMUHmZRXaNdX52qVmKcd1vwdDSvUPweIjCc82CzUce5dSGwIt2T1+yioiJlZWW5HMvMzHQWyb39bxjH63ptQ5PSV74lKUIP7XrLk+kGgdCe2w031Kt/yzuh3Hldd6uQXlFRIZvN1uY38omJiTpw4EC711xyySVau3atxo8frzNnzuiZZ57R1VdfrU8//VTDhg1TWVmZ8x4X3tPxuQutWrVKK1ascGfogFsCJesSeYdvkXWYBVmHWZB1oJUvfh7a01HWt2/frthY15XW+fn5Hs4m8Hkytw8PhEkKU9XRL7R160G3rx8QGa6T9RZt3PqWRsW5fXm3XDiv2lp6ssM3HMVws2426slrdllZWaf/PvH2v2Ecr+v1NsnNkioCzFtvvSVry4+aO6/rPv+uT506VVOnTnV+fPXVV+vSSy/V7373O61cudKje2ZnZ7v8xqmqqkopKSk9HivQE77IukTeEXjIOsyCrMMsyDrQypOfh46yPm3aNMXFNVd3GxsblZ+fr5tuukmRkZG+nYSf9WRuz/3zXUm1mnntZE0dOcjt537j+G6998VJJX8tXTOuHOr29Z3paF68uwa+4tlmo83n1oZIa5dA0dXrumEYuuGGer311lu64YYbFBkZWkX1xsamkJ/bzMwMRUU1b3Ltzuu6W1+NhIQEhYeHq7y83OV4eXm5kpKSunWPyMhIXXHFFTp4sPm3zY7rysvLNWTIEJd7Tpgwod17WK1WWa1Wd4YOuCVQsi6Rd/gWWYdZkHWYBVkHWvni56E9HWU9MjKyTWG5vWOhwt252eyGjlSekySNHBzn0dclLaGP3vvipL6qrPfZ1/XCeYXq9w+971yjXZKbrV2iQmdFuiev2UlJSZ2e7+1/w5z/etDfYpE1XOrfJzrkXhcaGxtDfm5RUVHOubkzR7c2G42KitLEiRNVUFDgPGa321VQUODyW/vO2Gw2ffzxx84AjxgxQklJSS73rKqq0gcffNDtewLeRtZhFmQdZkHWYRZkHWjli58HeM/RynNqtBmKCg/TkP4xHt3DsUlpySnarSD4OTcb9aC1S0OTXTZ7cG+668lr9tSpU13Ol5rbMTnO598w8Da31+dnZWVp/vz5mjRpkiZPnqznnntONTU1WrhwoSRp3rx5Gjp0qFatWiVJ+sUvfqGrrrpKo0aNUmVlpZ5++mmVlJTo7rvvltS8I/r999+vxx57TKNHj9aIESO0bNkyJScna9asWd6bKeAmsg6zIOswC7IOsyDrQCtv/zzAe0pbit/D4mMUHmbx6B7DB/WRJJWcrPHauIDe4lhVHu1Oa5fziu51jTb1sQZ3Gw53X7N/8pOf6Nprr9WvfvUrzZw5Uxs2bNCHH36o//zP/5TEv2HgfW7/hM2ePVsnTpzQ8uXLVVZWpgkTJigvL8/ZuL+0tFRhYa0L3U+fPq1FixaprKxMAwcO1MSJE7Vz505ddtllznMeeugh1dTUaPHixaqsrNQ3v/lN5eXlKTrau7tuA+4g6zALsg6zIOswC7IOtPLFzwO8o+RkcyE9raUY7gnnivSTrEhH8HP2SHdjRXp0ZOvrV21D8BfS3X3Nvvrqq/X666/rkUce0cMPP6zRo0dr8+bNuvzyy53n8G8YeJPFMIzgfu+Hmt+W0b9/f505c8a5mQtCC9/jVnwtQhvf31Z8LUIb399WfC1CG9/fVnwtQhvf31btfS0aGxu1detWzZgxIyT7zXoyt1Vb9+t373ypBVen6dFvjfXouWsbmnTZ8m2SpH3Lb9KA2CiP7tOejuZF1luRde8al7NNZ+ubtONn12lEQvd/wXTpsjyda7Tpfx+6XinxsW4/L1nvGlkPHe3NzZ2su9UjHQAAAAAAoKccq8gdq8o9ERsVocH9rC73A4KVJyvSJSkqorm0V99k9/qYALiikA4AAAAAAPyquKWveU9au0hsOHq+1atXKy0tTdHR0ZoyZYp27drV4blr1qzRNddco4EDB2rgwIHKyMjo9Hz4VqPNrqaWzUI9LaQ3UEgHfI5COgAAAAAA8BvDMJybjab2YEW6JKXGNxfiS02+4ejGjRuVlZWlnJwc7dmzR+np6crMzNTx48fbPb+wsFBz587Vjh07VFRUpJSUFE2bNk1fffWVn0cOqXU1uiRZI90r1UWFtxTSbRTSAV8L7l0IAAAAAABAUKmoblBtg00WizRsYEyP7pXWUogvNnlrl2effVaLFi3SwoULJUm5ubnasmWL1q5dq6VLl7Y5/49//KPLxy+//LL+/Oc/q6CgQPPmzWv3Oerr61VfX+/8uKqqSlJzz+HGxkbn38//M5T4cm61dQ3Ov1vsNjU2dr8oHhVucd7Dk7F1NK9Q/B4CPUUhHQAAAAAA+E1Jy+rx5P4xska418biQo4V7aUmLqQ3NDRo9+7dys7Odh4LCwtTRkaGioqKunWP2tpaNTY2Kj4+vsNzVq1apRUrVrQ5vn37dsXGur6zID8/v5ujDz6+mFtlvSRFKMxiKC/v/3Pr2rpz4ZIsenfn+zrxmeHxGC6cV22teX+mgI5QSAcAAAAAAH7jjY1GHYa39FgvOWXe1i4VFRWy2WxKTEx0OZ6YmKgDBw506x4///nPlZycrIyMjA7Pyc7OVlZWlvPjqqoqZ0uYuLg4Sc2rmPPz83XTTTcpMjLSg9kELl/OrfRUrbTnXUVHRmjGjEy3rn259H0dq63ShImTdP0lF7n93B3Ny/GOAwCtKKQDAAAAAAC/cWwM6o1CuqO1S3lVvc412BQT1bMV7mb0xBNPaMOGDSosLFR0dHSH51mtVlmt1jbHIyMj2xSW2zsWKnwxN8PSnNvI8DC37+14V4ddlh6N68J5her3D+gJNhsFAAAAAAB+42jt4lhN3hMDYqMUF928RtCxganZJCQkKDw8XOXl5S7Hy8vLlZSU1Om1zzzzjJ544glt375d48eP9+Uw0YnGlo1CoyLcL9M5rqlvYrNRwNcopAMAAAAAAL9xtnaJ7/mKdOm89i4nzdneJSoqShMnTlRBQYHzmN1uV0FBgaZOndrhdU899ZRWrlypvLw8TZo0yR9DRQcaWorgUeEU0oFARiEdAAAAAAD4TamztUvPV6Q336e5IF9i4g1Hs7KytGbNGq1fv1779+/XPffco5qaGi1cuFCSNG/ePJfNSJ988kktW7ZMa9euVVpamsrKylRWVqbq6uremoKpOVakR4Zb3L7WUXxvoJAO+Bw90gEAAAAAgF9U1TXqVE2DJCnVCz3SpfMK6SbecHT27Nk6ceKEli9frrKyMk2YMEF5eXnODUhLS0sVFta6lvK3v/2tGhoadPvtt7vcJycnR48++qg/hw5JDV5o7UIhHfA9CukAAAAAAMAvSltWjSf0jVJfq3dKEsPjHa1dzLsiXZKWLFmiJUuWtPu5wsJCl4+Li4t9PyB0m6MIHtmD1i6OYjwA36G1CwAAAAAA8Atnf3QvtXVpvhetXRDcGm2GJM8K6VZWpAN+QyEdAAAAAAD4RXHLhqDe2mhUai3Kf1V5ztlrGggmjT1p7UKPdMBvKKQDAAAAAAC/cLR28VZ/dEka3M8qa0SYbHZDRyvPee2+gL84iuBRtHYBAhqFdAAAAAAA4BeOFelpXmztEhZmcbZ3Kaa9C4KQowgeGW5x+9pIVqQDfkMhHQAAAAAA+EXpKe+vSJek1JYNR0tbCvVAMOlJa5eIlkJ6k51COuBrFNIBAAAAAIDP1TXadOxMnSTv9kiX2HAUwa2xybEi3f0yXWRY8yp2m93w6pgAtEUhHQAAAAAA+NzhltXo/awRiu8T5dV7pzkK6acopCP4OFq7eNIjPbylHUyjjUI64GsU0gEAAAAAgM+VnLfRqMXifi/ozqS29FwvobULgpCjCO5RaxdWpAN+41EhffXq1UpLS1N0dLSmTJmiXbt2dXjumjVrdM0112jgwIEaOHCgMjIy2py/YMECWSwWl8f06dM9GRrgVWQdZkHWYRZkHWZB1gEEIsdq8eFe7o8utbaKKT1VK8OgoIjg4uiRHh7m/i+YIsLCXO4BwHfcLqRv3LhRWVlZysnJ0Z49e5Senq7MzEwdP3683fMLCws1d+5c7dixQ0VFRUpJSdG0adP01VdfuZw3ffp0HTt2zPn405/+5NmMAC8h6zALsg6zIOswC7IOIFA5VosPb1k97k1DB8YoPMyiuka7jp+t9/r9AV+yt6wm96iQHs6KdMBf3C6kP/vss1q0aJEWLlyoyy67TLm5uYqNjdXatWvbPf+Pf/yj7r33Xk2YMEFjxozRyy+/LLvdroKCApfzrFarkpKSnI+BAwd6NiPAS8g6zIKswyzIOsyCrAMIVI7WLt7eaFRq3qRx6IAYSVJxBe1dEFxsLe+iCPOg5ZFjRXoThXTA59wqpDc0NGj37t3KyMhovUFYmDIyMlRUVNSte9TW1qqxsVHx8fEuxwsLCzV48GBdcskluueee3Ty5MkO71FfX6+qqiqXB+BNgZJ1ibzDt8g6zIKswyzIOoBAVups7eL9FenN92XDUQQnR1cWz1q7NF/TRGsXwOfcKqRXVFTIZrMpMTHR5XhiYqLKysq6dY+f//znSk5OdvnH/fTp0/Xaa6+poKBATz75pN5++23dfPPNstls7d5j1apV6t+/v/ORkpLizjSALgVK1iXyDt8i6zALsg6zIOsAAlWTza7DPuyRfv59S09SSEdwsRs9b+3CinTA9yL8+WRPPPGENmzYoMLCQkVHRzuPz5kzx/n3cePGafz48br44otVWFioG2+8sc19srOzlZWV5fy4qqqKf5gjoHgr6xJ5R2Aj6zALsg6zIOsAfOXYmTo12Q1FRYQpKS666ws8MDy+eaV78UlauyC4OPqbe9LaJdy5Ip1COuBrbq1IT0hIUHh4uMrLy12Ol5eXKykpqdNrn3nmGT3xxBPavn27xo8f3+m5I0eOVEJCgg4ePNju561Wq+Li4lwegDcFStYl8g7fIuswC7IOsyDrAAKVoz96anyswjxYddsdqY4V6bR2QZCxO3uku39tZHhzaY/NRgHfc6uQHhUVpYkTJ7psPOTYiGjq1KkdXvfUU09p5cqVysvL06RJk7p8niNHjujkyZMaMmSIO8MDvIaswyzIOsyCrMMsyDqAQOVYJe6LjUYd0lp6r5fQ2gVBxm73vLWL45pGOz3SAV9zq5AuSVlZWVqzZo3Wr1+v/fv365577lFNTY0WLlwoSZo3b56ys7Od5z/55JNatmyZ1q5dq7S0NJWVlamsrEzV1dWSpOrqaj344IN6//33VVxcrIKCAt16660aNWqUMjMzvTRNwH1kHWZB1mEWZB1mQdYBBCLHKvFUH/VHl5pXu0vSmXONqqxt8NnzAN5mMzxv7eLYbNTOinTA59zukT579mydOHFCy5cvV1lZmSZMmKC8vDznhkalpaUKC2utz//2t79VQ0ODbr/9dpf75OTk6NFHH1V4eLg++ugjrV+/XpWVlUpOTta0adO0cuVKWa3WHk4P8BxZh1mQdZgFWYdZkHUAgaikZUW6Y9W4L8REhWtwP6uOn61XyclaDYiN8tlzAd5ka1lM7smKdEfx3VGMB+A7Hm02umTJEi1ZsqTdzxUWFrp8XFxc3Om9YmJitG3bNk+GAfgcWYdZkHWYBVmHWZB1AIHG2SPdhyvSpeZC/fGz9So5Vav0lAE+fS7AW3rS2iXMuSLdq0MC0A63W7sAAAAAAAB0l2EYzkK6L3ukS62F+pKKGp8+D+BNPWnt4qi921mRDvgchXQAAAAAAOAzJ87W61yjTWEWadhA3xbSHYX6klNsOIrg0boi3f1rwx2tXeiRDvgchXQAAAAAAOAzjqJ28oAYRUX4tgwxPKG5B3vpSQrpCB72nqxId7R2YUU64HMU0gEAAAAAgM842rr4cqNRB8eK9OKTtHZB8LC11MA9a+3iKKR7c0QA2kMhHQAAAAAA+ExJS1Hb1xuNStLwluc4frZe5xpsPn8+wBt6stmoox0MK9IB36OQDgAAAAAAfMZfG41K0oDYKPWPiZQkldInHUHC0d88zINCuoUe6YDfUEgHAAAAAAA+4+iRPtwPrV2an4f2LggutpbV5OEetHZxXGOnkA74HIV0AAAAAADgM47WLsP90NpFklJbVr6z4SiCRWtrF/evDQ+jRzrgLxTSAQAAAACAT5w516jK2kZJrQVuX3NsalpyihXpCA6OFemebDbquMRGj3TA5yikAwAAAAAAn3CsCr+on1V9rBF+eU7HpqYlrEhHkLD1aLPR5msMCumAz1FIBwAAAAAAPuHoU+6PjUYdHM9FIR3BwlED92RFejibjQJ+QyEdAAAAAAD4RGnLRqOpfuqPLklpCc2tXb6qPKdGm91vzwt4ylEED/NgRbqFQjrgNxTSAQAAAACATzg2GnX0LfeHwf2sio4Mk81u6GjlOb89L+ApR3/zcE9WpDtbu3h1SADaQSEdAAAAAAD4RHFLe5XhflyRbrFYnBubFtPeBUHA7uyR7v61YWw2CvgNhXQAAAAAAOATjs1GU/3YI12ShresgC9tWREPBDJHEdyTHumOa+wU0gGfo5AOAAAAAAhZq1evVlpamqKjozVlyhTt2rWr0/M3bdqkMWPGKDo6WuPGjdPWrVv9NNLQU9doU1lVnST/tnaRzLnhKFkPXq0r0j1v7WIP8u0ATp06pTvvvFNxcXEaMGCA7rrrLlVXV3d6TV1dne677z4NGjRIffv21b//+7+rvLzc5RyLxdLmsWHDBl9OBSGMQjoAAAAAICRt3LhRWVlZysnJ0Z49e5Senq7MzEwdP3683fN37typuXPn6q677tLevXs1a9YszZo1S5988omfRx4aHBuN9ouO0IDYSL8+t6OVjFlau5D14OZcke5BId2xIj3YW7vceeed+vTTT5Wfn6+//e1veuedd7R48eJOr3nggQf0P//zP9q0aZPefvttHT16VN/+9rfbnPfqq6/q2LFjzsesWbN8NAuEuojeHgAAAAAAAL7w7LPPatGiRVq4cKEkKTc3V1u2bNHatWu1dOnSNuc///zzmj59uh588EFJ0sqVK5Wfn6+XXnpJubm57T5HfX296uvrnR9XVVVJkhobG9XY2ChJWrV1vz78PEx/O71XFg8KZYHMsBsqP97+3D46ckZS8+rwpqYmv45r6ACrJOn/ik9q8Wv/5/b1jnlZUo7q5nHJzuOO72mgCZSs/zr/n3rXhFnvKcc7Jwy7ze2M2W3NP1s2u9GjrNcnHdFtVw5zHvdn1vfv36+8vDz93//9nyZNmiRJevHFFzVjxgw988wzSk5ObnPNmTNn9Morr+j111/XDTfcIKm5YH7ppZfq/fff11VXXeU8d8CAAUpKSur2eLqT9Qv/DCVmm5s786SQDgAAAAAIOQ0NDdq9e7eys7Odx8LCwpSRkaGioqJ2rykqKlJWVpbLsczMTG3evLnD51m1apVWrFjR5vj27dsVG9u8Kjr/o3AdrgmTTp3wYCbBoPO5xTVV+r1tSGW9FKZwnTnXpO2ftb8qu2th+vv7/5BxeJ/zSG1t4K1wD6Ss//2zMP3zjHmz3lP79+7S2X+6d029TYq0hKvRsPQo6/m7PpG17CPnEX9mvaioSAMGDHAW0SUpIyNDYWFh+uCDD3Tbbbe1uWb37t1qbGxURkaG89iYMWOUmpqqoqIil0L6fffdp7vvvlsjR47UD3/4Qy1cuFCWTvrRdyfrDvn5+W7NNZiYZW7uZJ1COgAAAAAg5FRUVMhmsykxMdHleGJiog4cONDuNWVlZe2eX1ZW1uHzZGdnuxQkq6qqlJKSomnTpikuLk6SZAz7Su99+JEuvfRShYeHezqlgGSz2bR///4O5xYbFa6bLh2sPlb/lx9GXXFKB497ttmoY15zbpqi8SnxzuOOlamBJJCyHpF6TIW79pky6z01bGCM/m10gkfXXnzFGX1y1LNsOub17eu/rkkjWp/fn1kvKyvT4MGDXY5FREQoPj6+w0yWlZUpKipKAwYMcDl+YY5/8Ytf6IYbblBsbKy2b9+ue++9V9XV1frxj3/c4Xi6k/XGxkbl5+frpptuUmSkf1tX+ZrZ5uZO1imkAwAAAADgIavVKqvV2uZ4ZGSk83/SZ44fKsuRf2jG1LSQLEpsPf1ZQM7tG6MT9Y3Rnl3rmNf4lHiXeQXaHP2pO1mfdvkQNZXuDcg89FQgZ33iiARNHOFZEd4xr0kjErye9aVLl+rJJ5/s9Jz9+/f3+Hk6s2zZMuffr7jiCtXU1Ojpp5/utJDenax3dixUmGVu7szRo81Gvb0TtGEYWr58uYYMGaKYmBhlZGToX//6lydDA7yKrMMsyDrMgqzDLMg6ICUkJCg8PFzl5eUux8vLyzvslZuUlOTW+UAgIOsIVD/96U+1f//+Th8jR45UUlJSm41xm5qadOrUqU4z3NDQoMrKSpfjXeV4ypQpOnLkiEsPdKC73C6k+2In6KeeekovvPCCcnNz9cEHH6hPnz7KzMxUXV2d5zMDeoiswyzIOsyCrMMsyDrQLCoqShMnTlRBQYHzmN1uV0FBgaZOndruNVOnTnU5X2ruo9rR+cD/3969x0dd3/kef09uEwIkENCESAJ4xQsExSYNp110jQThqHRPFexWLlVpqbhr02qhpyWydhtv9Z4urorRVgt4VnFP4QBpJLrVKFsuCghWFBJQEgyXBAK5kPmeP5KZYcjkMpOZzOX3ej4e89D85nf5fuf3HtvHJ998fuGArCNcnXPOORo7dmy3r4SEBOXl5enYsWPavHmz69i3335bDodDubm5Xs89ceJExcfHe+T4008/VXV1dbc53rZtm4YOHep1xTnQE5sxxvhyQG5urr7xjW/o2WefldT+H+fMzEzdc889Xp8EPXPmTDU2NupPf/qTa9s3v/lNTZgwQcuWLZMxRhkZGfrpT3+qn/3sZ5Lan7yblpam0tJSzZo1q9M5z356bn19vbKysrR//35XryJEF2c/qmPHjiklJaVfrhkOWZfIu9WQdbJuFWSdrFsFWSfrVhGKrPfGypUrNWfOHD333HPKycnRk08+qVWrVmn37t1KS0vT7Nmzdd5556m4uFhS+y+WJk+erIceekjTp0/XihUr9Jvf/EZbtmzRFVdc0atr1tfXa8iQIR5Zb21t1YYNGzRlypSo+zP5aJ1bV/Mi625kPTqES9ZvuOEG1dbWatmyZWptbdW8efN09dVX67XXXpMkffnll7ruuuv0yiuvKCcnR5K0YMECrV27VqWlpUpOTtY999wjqT3fkvR//+//VW1trb75zW8qMTFRZWVl+tnPfqaf/exnXh8m2hWyHj28zc2nrBsfNDc3m9jYWPPmm296bJ89e7a56aabvB6TmZlpnnjiCY9tS5YsMePHjzfGGPP5558bSWbr1q0e+/zd3/2d+ad/+iev5ywqKjKSeFnw9fnnn/sSWb+FS9aNIe9WfZF1XlZ5kXVeVnmRdV5WefVX1n3xzDPPmKysLJOQkGBycnLMBx984Hpv8uTJZs6cOR77r1q1ylx88cUmISHBXH755WbNmjU+XW///v0hvw+8gv/av39/IOIZUGSdVyRn/fDhw+a2224zgwYNMsnJyWbevHnm+PHjrvf37t1rJJmNGze6tp06dcr8+Mc/NkOHDjVJSUnmO9/5jjl48KDr/f/3//6fmTBhghk0aJAZOHCgyc7ONsuWLTNtbW0+jY2sW+PVm6z79LDRYDwJ2vlPX54WffbTc48dO6ZRo0apuro6rH4jHEzO35ZYZUWPcwVTampqzzsHQLhkXSLvZD24yHr4IOvBRdbDB1kPLrIePsh6+Fi4cKEWLlzo9b2KiopO22655Rbdcsstfl8vIyND+/fv1+DBg2Wz2SRFdx6idW5dzcsYo+PHjysjIyOEo/OOrAdXtM4tXLKemprqWn3uzejRo2XOaqqRmJiokpISlZSUeD1m6tSpmjp1ap/HRtajh7e5+ZJ1nwrp4aKrp+empKRE3Q3uSXJysqXmHBPj1/NxIxp5b0fWox9Zb0fWox9Zb0fWox9Zb0fWrScmJkYjR470+l405yFa5+ZtXlb4ZWBvkPXoQta7Rtajz9lz623Wffp/OcF4ErTznzwtGuGErMMqyDqsgqzDKsg6AAAAEBw+FdKD8SToMWPGKD093WOfhoYGffjhhzwtGiFD1mEVZB1WQdZhFWQdAAAACBKfuusbY1asWGHsdrspLS01n3zyiZk/f74ZMmSIqampMcYYc/vtt5tFixa59n/vvfdMXFyceeyxx8yuXbtMUVGRiY+PN9u3b3ft89BDD5khQ4aYt956y3z88cfm5ptvNmPGjDGnTp3q1ZiamppMUVGRaWpq8nU6Ectqcw7FfMMx68Zw76MdWXfj3kc3su7GvY9uZN2Nex/drDZfX0Xz5xOtc4vWeQVbNH9u0Tq3aJ1XsEXz58bcuuZzId2YwD8J2uFwmF/96lcmLS3N2O12c91115lPP/3Un6EBAUXWYRVkHVZB1mEVZB0AAAAILJsxZz3yFgAAAAAAAAAAuPBIdQAAAAAAAAAAukEhHQAAAAAAAACAblBIBwAAAAAAAACgGxTSAQAAAAAAAADoRsQU0ktKSjR69GglJiYqNzdXmzZt6nb/119/XWPHjlViYqLGjRuntWvX9tNIA8OX+ZaWlspms3m8EhMT+3G0ffPuu+/qxhtvVEZGhmw2m1avXt3jMRUVFbrqqqtkt9t14YUXqrS0NOjj7C9Wy7pknbyT9c6slney3jWy7omsk/VIRdbJulO0Z70v/vVf/1WTJk1SUlKShgwZEurh9Imv3/lI4U/m4V205J2soydkPbwFKusRUUhfuXKlCgsLVVRUpC1btig7O1sFBQU6dOiQ1/3ff/993Xbbbbrjjju0detWzZgxQzNmzNCOHTv6eeT+8XW+kpScnKyDBw+6XlVVVf044r5pbGxUdna2SkpKerX/3r17NX36dF177bXatm2b7r33Xt15551av359kEcafFbLumStvJN1T1bLO1nvGln3RNbJeqQi62TdKdqz3lctLS265ZZbtGDBglAPpU/8+Q5ECl8zj65FQ97JOnqDrIe3gGXdRICcnBxz9913u35ua2szGRkZpri42Ov+t956q5k+fbrHttzcXPPDH/4wqOMMFF/n+9JLL5mUlJR+Gl1wSTJvvvlmt/vcf//95vLLL/fYNnPmTFNQUBDEkfUPq2XdGOvm3epZN8Z6eSfrXSPrnsh6ZCLrZJ2su0V71gMl0jPh63cgUvUm8+hZJOedrMMXZD389SXrYb8ivaWlRZs3b1Z+fr5rW0xMjPLz81VZWen1mMrKSo/9JamgoKDL/cOJP/OVpBMnTmjUqFHKzMzUzTffrJ07d/bHcEMiku9vd6yWdYm89yTS7293rJZ3st69SL63PSHrZP1MkXxve0LWyfqZIvneonf8/Q4AkYaswyrIeu+EfSG9rq5ObW1tSktL89ielpammpoar8fU1NT4tH848We+l1xyiZYvX6633npLf/jDH+RwODRp0iQdOHCgP4bc77q6vw0NDTp16lSIRtV3Vsu6RN57Eq1Zl6yXd7LePbLuiayT9UhE1tuR9XbRnHW08+c7AEQisg6rIOu9E/aFdPQsLy9Ps2fP1oQJEzR58mS98cYbOuecc/Tcc8+FemhAwJF3WAVZh1WQdVgFWY9uixYt6vQw2bNfu3fvDvUwgYAg77AKso6zxYV6AD0ZPny4YmNjVVtb67G9trZW6enpXo9JT0/3af9w4s98zxYfH68rr7xSe/bsCcYQQ66r+5ucnKwBAwaEaFR9Z7WsS+S9J9Gadcl6eSfr3SPrnsg6WY9EZL0dWW8XzVnvyk9/+lPNnTu3233OP//8/hlMPwjEdwCRy0p5J+vWRtbJ+tnCfkV6QkKCJk6cqPLyctc2h8Oh8vJy5eXleT0mLy/PY39JKisr63L/cOLPfM/W1tam7du3a8SIEcEaZkhF8v3tjtWyLpH3nkT6/e2O1fJO1rsXyfe2J2SdrJ8pku9tT8g6WT9TJN9bf51zzjkaO3Zst6+EhIRQDzNgAvEdQOSyUt7JurWRdbLeSWCfexocK1asMHa73ZSWlppPPvnEzJ8/3wwZMsTU1NQYY4y5/fbbzaJFi1z7v/feeyYuLs489thjZteuXaaoqMjEx8eb7du3h2oKPvF1vkuXLjXr1683n3/+udm8ebOZNWuWSUxMNDt37gzVFHxy/Phxs3XrVrN161YjyTz++ONm69atpqqqyhhjzKJFi8ztt9/u2v+LL74wSUlJ5r777jO7du0yJSUlJjY21qxbty5UUwgYq2XdGGvlnax7slreyTpZJ+tknayTdbIeHVnvq6qqKrN161azdOlSM2jQINdne/z48VAPzSc9fQciWU+ZR+9FQ97JOnqDrIe3QGU9IgrpxhjzzDPPmKysLJOQkGBycnLMBx984Hpv8uTJZs6cOR77r1q1ylx88cUmISHBXH755WbNmjX9POK+8WW+9957r2vftLQ0M23aNLNly5YQjNo/GzduNJI6vZxznDNnjpk8eXKnYyZMmGASEhLM+eefb1566aV+H3ewWC3rxlgn72S9M6vlnazPMcaQdbJO1sm6G1kn61Y0Z84cr5/nxo0bQz00n3X3HYhkPWUevRcteSfr6AlZD2+ByrrNGGMCsLAdAAAAAAAAAICoFPY90gEAAAAAAAAACCUK6QAAAAAAAAAAdINCOgAAAAAAAAAA3aCQDgAAAAAAAABANyikAwAAAAAAAADQDQrpAAAAAAAAAAB0g0I6AAAAAAAAAADdoJAOAAAAAAAAAEA3KKQDAAAAAAAAANANCukAAAAAAAAAAHSDQjoAAAAAAAAAAN2gkA4AAAAAAAAAQDcopAMAAAAAAAAA0A0K6QAAAAAAAAAAdINCOgAAAAAAAAAA3aCQDgAAAAAAAABANyikAwAAAAAAAADQDQrpAAAAAAAAiAgPPPCAbDab6urqetz39OnTuv/++5WZmamYmBjNmDEj+AMEAoSshx8K6QAAAAAAAIg6y5cv16OPPqrvfve7evnll/WTn/yk2/0dDof+7d/+TRMmTNCAAQM0bNgw/f3f/70++uijoI+1paVFv/nNbzR27FglJiYqLS1N06dP14EDB4J+bUS+SMj6vn37ZLPZunzdddddQbt2oMSFegAAAAAAAABAoL399ts677zz9MQTT/Rq/x/84Ad69dVXNXv2bC1cuFCNjY3aunWrDh06FNRxtra2avr06Xr//fd11113afz48Tp69Kg+/PBD1dfXa+TIkUG9PiJfJGT9nHPO0e9///tO29etW6dXX31VU6ZMCdq1A4VCOgAAAAAAAKLOoUOHNGTIkF7tu2rVKr388st644039J3vfCe4AzvLE088oXfeeUd/+ctflJOT06/XRnSIhKwPHDhQ3//+9zttLy0tVXJysm688cZ+G4u/aO0CAAAAAACAiFJXV6dbb71VycnJGjZsmP75n/9ZTU1NktwtJDZu3KidO3e6WkdUVFR0eb7HH39cOTk5+s53viOHw6HGxsZej6WoqEgxMTEqLy/32D5//nwlJCR02y7D4XDoqaee0ne+8x3l5OTo9OnTOnnyZK+vjegXLVn35uDBg9q4caP+4R/+QYmJiT4dGwoU0gEAAAAAABBRbr31VjU1Nam4uFjTpk3T008/rfnz50tyt5AYO3asRo4cqd///vf6/e9/r0svvdTruRoaGrRp0yZ94xvf0C9+8QulpKRo0KBBOv/887Vq1aoex/LLX/5SEyZM0B133KHjx49LktavX6/nn39eS5YsUXZ2dpfHfvLJJ/rqq680fvx4zZ8/XwMHDtTAgQM1fvx4bdy40Y9PBtEmWrLuzYoVK+RwOPSP//iPPh0XKjZjjAn1IAAAAAAAAICePPDAA1q6dKluuukmvfXWW67td999t373u9/po48+0vjx4yVJ11xzjerq6rRjx45uz7l161ZdddVVGjZsmOLi4lRUVKSUlBQ99dRT+u///m+tXbtWU6dO7fYcO3bs0MSJEzV79mw9+uijuuKKKzRixAhVVlYqLq7rzspvvvmm/uEf/kHDhg1TamqqfvGLX0iSfvOb36iqqkr//d//7ZoPrCXasu7N1Vdfra+++koHDhxQTEz4r/cO/xECAAAAAAAAZ7j77rs9fr7nnnskSWvXrvX5XCdOnJAkHT58WG+99ZYWLFig733veyovL9ewYcP061//usdzXHHFFVq6dKleeOEFFRQUqK6uTi+//HKPhUXntY8fP67y8nLNnTtXc+fO1Z///GcZY/TII4/4PB9El2jJ+tn+9re/afPmzZo1a1ZEFNElCukAAAAAAACIMBdddJHHzxdccIFiYmK0b98+n881YMAASdKYMWOUm5vr2j5o0CDdeOON2rRpk06fPt3jee677z5lZ2dr06ZNKioq0mWXXdbra/+P//E/lJmZ6dqelZWlb33rW3r//fd9nQ6iTLRk/WyvvvqqJEVMWxeJQjoAAAAAAAAinM1m8/vYjIwMSVJaWlqn984991y1trb26oGMX3zxhT777DNJ0vbt2wNy7aNHj/bqPLCOSM362V577TVdcsklmjhxol/HhwKFdAAAAAAAAEQUZxHPac+ePXI4HBo9erTP58rIyFB6erq+/PLLTu999dVXSkxM1ODBg7s9h8Ph0Ny5c5WcnKxf/OIX+uMf/6g33nijx2uPGzdO8fHxXV77nHPO6f1EEJWiJetn+vDDD7Vnz56IWo0uUUgHAAAAAABAhCkpKfH4+ZlnnpEk3XDDDX6db+bMmdq/f7/Kyspc2+rq6vTWW2/p7//+73vs4fz444/r/fff17//+7/rwQcf1KRJk7RgwQLV1dV1e9zgwYM1bdo0vf/++9q9e7dr+65du/T+++/r+uuv92s+iB7RkvUzvfbaa5Kk733ve37NIVRsxhgT6kEAAAAAAAAAPXnggQe0dOlSjRs3TqNHj9bUqVNVWVmpP/zhD/re977n6rssSddcc43q6uq0Y8eOHs9bW1urK6+8UidOnFBhYaFSUlK0bNky7d+/X5WVlcrOzu7y2F27dumqq67SrFmz9NJLL0lqX0U8YcIETZ8+XatWrer22p988olyc3M1ePBg/dM//ZMk6emnn9bp06e1detWnXfeeb35aBBlojHrktTW1qbzzjtPY8aMUWVlZS8+ifDBinQAAAAAAABElJUrV8put2vRokVas2aNFi5cqBdffNHv86Wlpekvf/mL8vPz9cQTT+h//+//rZEjR+qdd97ptrDY1tamOXPmaPjw4XryySdd2y+66CIVFxfr9ddf77G4eNlll+mdd97R5Zdfrl//+tf6zW9+o5ycHL333nsU0RFVWZekP//5z6qtrY241egSK9IBAAAAAAAAAOgWK9IBAAAAAAAAAOgGhXQAAAAAAAAAALpBIR0AAAAAAAAAgG74XEh/9913deONNyojI0M2m02rV6/u8ZiKigpdddVVstvtuvDCC1VaWtppn5KSEo0ePVqJiYnKzc3Vpk2bfB0aEFBkHVZB1mEVZB1WQdZhFWQdAAD0J58L6Y2NjcrOzlZJSUmv9t+7d6+mT5+ua6+9Vtu2bdO9996rO++8U+vXr3fts3LlShUWFqqoqEhbtmxRdna2CgoKdOjQIV+HBwQMWYdVkHVYBVmHVZB1WAVZBwAA/clmjDF+H2yz6c0339SMGTO63OfnP/+51qxZox07dri2zZo1S8eOHdO6deskSbm5ufrGN76hZ599VpLkcDiUmZmpe+65R4sWLep0zubmZjU3N7t+djgcOnLkiIYNGyabzebvdBDGjDE6fvy4MjIyFBPT/x2JQpV1ibxbDVkn61ZB1sm6VZB1sm4VZJ2sW0Wosx5OHA6HvvrqKw0ePJisRyGy7kbWo5tPWTd9IMm8+eab3e7z7W9/2/zzP/+zx7bly5eb5ORkY4wxzc3NJjY2ttN5Zs+ebW666Sav5ywqKjKSeFnwtX//fn/j2iehyrox5N2qL7LOyyovss7LKi+yzssqL7LOyyqvUGU9nOzfvz/k94EXWe8PZN0ar95kPU5BVlNTo7S0NI9taWlpamho0KlTp3T06FG1tbV53Wf37t1ez7l48WIVFha6fq6vr1dWVpb279+v5OTkwE8CIdfQ0KDMzEwNHjw41EPpUjCyLpF3qyHrZN0qyDpZtwqyTtatgqyTdauIhKz3F+dncGbWW1tbtWHDBk2ZMkXx8fGhHF7ARevcupoXWXcj69HD29x8yXrQC+nBYLfbZbfbO21PTk7m/6hEOSv+CQ15tyay7kbWoxtZdyPr0Y2su5H16EbW3ch6dAu3rL/77rt69NFHtXnzZh08eLDHVkdS+8N3CwsLtXPnTmVmZuqXv/yl5s6d2+trOj+DM7Pe2tqqpKQkJScnR2UBLhrn1tO8wi3roUDWo0d3c+tN1oPe5Cg9PV21tbUe22pra5WcnKwBAwZo+PDhio2N9bpPenp6sIcHBAxZh1WQdVgFWYdVkHVYBVlHNAvGw3cBAJ6CXkjPy8tTeXm5x7aysjLl5eVJkhISEjRx4kSPfRwOh8rLy137AJGArMMqyDqsgqzDKsg6rIKsI5rdcMMN+vWvf63vfOc7vdp/2bJlGjNmjH7729/q0ksv1cKFC/Xd735XTzzxRJBHimCoPnxSRxtbQj0MIKQcDqNt+4/pUENT0K7hc2uXEydOaM+ePa6f9+7dq23btik1NVVZWVlavHixvvzyS73yyiuSpB/96Ed69tlndf/99+sHP/iB3n77ba1atUpr1qxxnaOwsFBz5szR1VdfrZycHD355JNqbGzUvHnzAjBFwD9kHVZB1mEVZB1WQdZhFWQd8F9lZaXy8/M9thUUFOjee+/t8pjm5mY1Nze7fm5oaJDU3iqhtbXV9e9n/jOahOvcDtY36bon/kvnDrar4qd/5/PxXc0r3OYJdMcYo3v+uFVrth/UgPhY/XH+NzUhc0jAr+NzIf2vf/2rrr32WtfPzoeqzJkzR6WlpTp48KCqq6td748ZM0Zr1qzRT37yEz311FMaOXKkXnjhBRUUFLj2mTlzpr7++mstWbJENTU1mjBhgtatW9fpIS9AfyLrsAqyDqsg67AKsg6rIOuA/3p6+O6AAQM6HVNcXKylS5d22r5hwwYlJSV5bCsrKwvsgMNIuM1tS51NrW2x+vJYk15/a60G+tnS+ux5nTx5MgCjA/pH2Se1WrP9oCTpVGublry1Q2/d/T8C3uPfZowxAT1jCDQ0NCglJUX19fU8zCVKcY/d+CyiG/fXjc8iunF/3fgsohv3143PIrpxf934LKJbJNxfm83W48NGL774Ys2bN0+LFy92bVu7dq2mT5+ukydPei2ke1uRnpmZqbq6Oo8HMJaVlen666+PyocUhuPclr+3T8Xr/iZJ+o8f5mr8yBSfju9qXg0NDRo+fHhYZ72/ePvet7a2au3atZo2bVpY5SEQInFuPyj9b729+5C+O3Gk/vOjr9Ry2qG37v4fyj5rVbq3ufny33WfV6QDAAAAAAAgcvX08F1v7Ha77HZ7p+3x8fGdim3etkWLcJvbgWPuX2582dCiiX6O7ex5hdMcge40NLXqnb99LUlacM0FOtXapjUfH9SGT2o6FdL7KugPGwUAAAAAAED46Onhu4gcVUfcLViqDzeGcCRAaGz64ojaHEZjhg/UBecM0t9fcq4kuYrrgUQhHQAAAAAAIIKdOHFC27Zt07Zt2yS5H77rfE7A4sWLNXv2bNf+P/rRj/TFF1/o/vvv1+7du/W73/1Oq1at0k9+8pNQDB99cGbxvOowfc1hPR98cViS9M3zh0mSvnXRcEnSJ1816GTL6YBei0I6AAAAAABABPvrX/+qK6+8UldeeaWk9ofvXnnllVqyZIkkdfnw3bKyMmVnZ+u3v/1tp4fvIvydbnPowNFTrp/PXJ0OWMVHB45Jkr4xeqgkKS05UWnJdjmMtOPLhoBeix7pAAAAAAAAEeyaa66RMabL90tLS70es3Xr1iCOCsH21bEmnXa473sVrV1gMcYY7T54XJJ0WYb7QaHjRw5R2Se1+vjAMeWMSQ3Y9ViRDgAAAAAAAESYqiPthfPhg9ofAlvb0Kym1rZQDgnoVweOntLx5tNKiI3RBecMcm0fd16KJGlXR5E9UCikAwAAAAAAABHG2RM9e2SKBie2N52opr0LLOSTg+2tWy48d5DiY91lbmdR/Yu6EwG9HoV0AAAAAAAAIMI4i+ZZw5I0aliSJB44CmvZc6i9UH5J+mCP7RecO1CS9PmhE922vfIVhXQAAAAAAAAgwjh7oo9KTdKo1IEe2wAr2N/xyyTnL5KcRg8bKJtNamg6rboTLQG7HoV0AAAAAAAAIMI4V5+PGj7QVUiktQusxPVXGamehfTE+FhlDm3f5ly1HggU0gEAAAAAAIAIYoxxFRFHpbpbu+yjtQsspKtCuuRepb7/aOC+E3EBOxMAAAAAAACAoPv6RLNOtrQpxiaNHJqk2oZmSVI1rV1gES2nHfrq2ClJ3gvpI4cOkCR9efRUwK7JinQAAAAAAAAgglR3rDwfkTJACXExrtW3B46e0uk2RyiHBvSLr46dksNIifExOmewvdP7GSkDXPsFCoV0AAAAAAAAIIK4+qN3FNDTkxOVEBej0w6jg/VNoRwa0C+cbV0yhybJZrN1ej9jSEchvZ5COgAAAAAAAGBJVc7+6MMGSpJiYmyu9hZV9EmHBdQ0tP/CaERHwfxs59HaBQAAAAAAALC2qo5e6M4V6VL7Q0claR990mEBXx9vfy5Ampe2LpJ0nmtFepMcDhOQa1JIBwAAAAAAACKIq7XLGQ9ZzOooqjtbXgDRrLZjRfq5yd4L6WnJibLZ2h9KerixJSDXpJAOAAAAAAAARBBnsTzLy4r0qihfkV5SUqLRo0crMTFRubm52rRpU6+OW7FihWw2m2bMmBHcAaJfHGpoX5F+7uBEr+8nxMVoaFKCJKnuRHNArkkhHQAAAAAAAIgQx5tadaRjha2zR/qZ/x7NPdJXrlypwsJCFRUVacuWLcrOzlZBQYEOHTrU7XH79u3Tz372M33729/up5Ei2A4db1+RntbFinRJOmdQ+3uBKqTHBeQsAAAAAAAAAILOWSgfNjBBg+zu0t6ZrV2MMbLZbCEZXzA9/vjjuuuuuzRv3jxJ0rJly7RmzRotX75cixYt8npMW1ub/vEf/1FLly7Vf/3Xf+nYsWPdXqO5uVnNze7Ca0NDgySptbVVra2trn8/85/RJFLm5mztkjogrsuxDhsYL0mqOXbS6/07+9974lchvaSkRI8++qhqamqUnZ2tZ555Rjk5OV73veaaa/TOO+902j5t2jStWbNGkjR37ly9/PLLHu8XFBRo3bp1/gwPCBiyDqsg67AKsg6rIOuwCrIOwIpc/dHPaOsiSSOHDlCMTTrZ0qavTzR32fIiUrW0tGjz5s1avHixa1tMTIzy8/NVWVnZ5XH/8i//onPPPVd33HGH/uu//qvH6xQXF2vp0qWdtm/YsEFJSZ6feVlZmQ8ziCzhPDdjpJr6WEk27dz8vg7u8L5fc0OMpBj95a8fKeGrba7tZ87t5Mne/wWHz4V0559QLFu2TLm5uXryySdVUFCgTz/9VOeee26n/d944w21tLgbuh8+fFjZ2dm65ZZbPPabOnWqXnrpJdfPdnvXy/KB/kDWYRVkHVZB1mEVZB1WQdYBWFXVkfYe6Ge2dZEke1ysRqQM0JfHTqn68MmoK6TX1dWpra1NaWlpHtvT0tK0e/dur8f85S9/0Ysvvqht27b1+jqLFy9WYWGh6+eGhgZlZmZqypQpSk5OltS+irmsrEzXX3+94uPjfZ9MGIuEuR072aq2DzZKkm65carscd67l3/0/z7V5roqDR95vqZNvcTr3Jx/cdAbPhfSff0TitTUVI+fV6xYoaSkpE7/Z8Vutys9Pb1XY+jqTyyAQAqHrEvkHcFH1mEVZB1WQdZhFWQdgFVVd6xIz0pN6vTeqGFJ+vLYKVUdPqmrR6d2et9Kjh8/rttvv13PP/+8hg8f3uvj7Ha711+ixsfHdyose9sWLcJ5bkeb2tu6DEmK16ABXf/C+9yUAZKkIydPe8zlzLn5MkefHjbq/BOK/Px89wl68ScUZ3rxxRc1a9YsDRzo+VuziooKnXvuubrkkku0YMECHT58uMtzFBcXKyUlxfXKzMz0ZRpAj8Il6xJ5R3CRdVgFWYdVkHVYBVkHYGVdtXY5c1vVkeh74Ojw4cMVGxur2tpaj+21tbVefwH6+eefa9++fbrxxhsVFxenuLg4vfLKK/rP//xPxcXF6fPPP++voSPAnA/bTU1K6Ha/QD9s1KdCend/QlFTU9Pj8Zs2bdKOHTt05513emyfOnWqXnnlFZWXl+vhhx/WO++8oxtuuEFtbW1ez7N48WLV19e7Xvv37/dlGkCPwiXrEnlHcJF1WAVZh1WQdVgFWQdgZdVHui6kZ6W2/3Kw+nBjv46pPyQkJGjixIkqLy93bXM4HCovL1deXl6n/ceOHavt27dr27ZtrtdNN92ka6+9Vtu2beMXnxHs2Mn2QvqQpO5Xkw8f3F5I//p4YArpfj1s1F8vvviixo0b1+nhL7NmzXL9+7hx4zR+/HhdcMEFqqio0HXXXdfpPF39iQUQLgKVdYm8I7yRdVgFWYdVkHVYBVkHEKmaT7fpq/pTkjr3SJek0VG8Il2SCgsLNWfOHF199dXKycnRk08+qcbGRlebr9mzZ+u8885TcXGxEhMTdcUVV3gcP2TIEEnqtB2R5ejJVknS0B5WpA8bmNCxf0u3+/WWTyvSff0TijM1NjZqxYoVuuOOO3q8zvnnn6/hw4drz549vgwPCBiyDqsg67AKsg6rIOuwCrIOwKr2HzklY6SBCbGuIuGZspyF9MPRWUifOXOmHnvsMS1ZskQTJkzQtm3btG7dOtdfKFVXV+vgwYMhHiWC7VhHIX1ID4X0lAHxHvv3lU+FdF//hOJMr7/+upqbm/X973+/x+scOHBAhw8f1ogRI3wZHhAwZB1WQdZhFWQdVkHWYRVkHYBVVR9pb9mSNWygbDZbp/edq9SPNLboeFNgiofhZuHChaqqqlJzc7M+/PBD5ebmut6rqKhQaWlpl8eWlpZq9erVwR8kgsrZ2mVoD61dnK1fmk871NTadZu23vKpkC61/wnF888/r5dfflm7du3SggULOv0JxeLFizsd9+KLL2rGjBkaNmyYx/YTJ07ovvvu0wcffKB9+/apvLxcN998sy688EIVFBT4OS2g78g6rIKswyrIOqyCrMMqyDoAK3I9aDS1c390SRpkj3OtVI/WVenA0V72SB9kj1NsTPsvnAKxKt3nHukzZ87U119/rSVLlqimpkYTJkzo9CcUMTGe9flPP/1Uf/nLX7Rhw4ZO54uNjdXHH3+sl19+WceOHVNGRoamTJmiBx98kD5zCCmyDqsg67AKsg6rIOuwCrIOwIpchXQvDxp1yhqWpMONLao+clJXnJfSX0MD+s3RXrZ2sdlsGjIgXocbW3TsVIuGJQ3o03X9etjowoULtXDhQq/vVVRUdNp2ySWXyBjjdf8BAwZo/fr1/gwDCDqyDqsg67AKsg6rIOuwCrIOwGqqDjtbu3RdSB89bKC2Vh9jRTqilru1S/eFdElKSeoopJ9slYb1rZDuc2sXAAAAAAAAAP2v6kh7cXx0Ry90b7JSnQ8cbeyXMQH9zbkivace6ZI0JIAPHKWQDgAAAAAAAIS5NofRgSOnJLmL5d44276wIh3R6pirR3rPK9Kd+zScopAOAAAAAAAARL2ahia1tDkUH2tTxpCuW1Q4C+nVRyikI/oYY1yry3t62Kh0xor0Uy19vjaFdAAAAAAAACDMOVu1jByapNgYW5f7ZaW2t335qv6Umk+39cvYgP5yovm0Tjvan3fSm0J6ShKtXQAAAAAAAADLqO5o1dJdWxdJGj4oQUkJsTJGOnD0VH8MDeg3J5pPS5LiYmwaEB/b4/5DBrS3djlKIR0AAAAAAACIfvs6CunO1i1dsdlsGtXxMFIeOIpo09hRSB9oj5PN1vVfZjgNToyT5C7A9wWFdAAAAAAAACDMVR9pL4o7i+TdGZXKA0cRnY43tRfEB9njerX/IGchvYkV6QAAAAAAAEDUcxbFR/XQ2kVyr1qnkI5o41xZ7lxp3hNnwb2xue/PC6CQDgAAAAAAAIQxY4yrR3pPrV0kKatjn+ojFNIRXU74uiK9Y7/jtHYBAAAAAAAAotvRk62uQmBmb1akp9IjHdHpxBk90nvDud+JZlq7AAAAAAAAAFFtX0dBPD05UYnxsT3u71y1vv/IKbU5TFDHBvQnZyF9UC9buzhbwNDaBQAAAAAAAIhyvrR1kaSMIQMUH2tTS5tDNQ1NwRwa0K+crV0G+7oivYnWLgAAAAAAAEBUq/KxkB4bY9PIoc4HjtLeBdHjRIt/PdJb2hxqPu3o07UppAMAAAAAAABhrOpIezF81LCBvT4mq6OXunM1OxANnCvLe90jPcHdCqmxjw8cpZAOAAAAAAAAhDFnMTyrFw8adXKuXq86QiEd0cPZI31wL3ukx8XGaEDHcwVOUEgHAAAAAAAAotc+H1u7tO/bvnqdFemIJs5V5b1t7SK5V6/39YGjFNIBAAAAAACAMNXYfFp1J5olSaNSe9/aZVTH6vV99EhHFDne0dplUC9XpEvu1eusSAcAAAAAAACiVHVHa5YhSfFKSYrv9XHO1evVh0/KGBOUsQH9zVkM722PdElK6uiT3thCIR0AAAAAAACISlXOti4+9EeXpMyO/Y83n9bRk60BHxcQCqda2tuzJMXH9rCnm7OQ3tTq6NO1KaQDAAAAAAAAYar6SHtrlqxhvW/rIkmJ8bFKT06UJFXR3gVRoqm1vZA+IKH3hfTEeGchPQQ90ktKSjR69GglJiYqNzdXmzZt6nLf0tJS2Ww2j1diYqLHPsYYLVmyRCNGjNCAAQOUn5+vzz77zJ+hAQFF1mEVZB1WQdZhFWQdVkHWAbdAfx8QPvb5uSJdkrKc7V2O8MBRRIdTHcXwRB9WpA/o2PdUfxfSV65cqcLCQhUVFWnLli3Kzs5WQUGBDh061OUxycnJOnjwoOtVVVXl8f4jjzyip59+WsuWLdOHH36ogQMHqqCgQE1NTb7PCAgQsg6rIOuwCrIOqyDrsAqyDrgF4/uA8FHdUUh3FsV9MbrjmH11FNIRHZztWQb4UkgPUGuX3ndl7/D444/rrrvu0rx58yRJy5Yt05o1a7R8+XItWrTI6zE2m03p6ele3zPG6Mknn9Qvf/lL3XzzzZKkV155RWlpaVq9erVmzZrV6Zjm5mY1Nze7fm5oaPB1GkCPwiHrEnlH8JF1WAVZh1WQdVgFWQfcAv198KarrLe2tqq1tdX172f+M5qEcm77OtqyjEyx+3z9kUPa/9JgX91xr8d2Na9ovIeIfMYYNZ1uX1Vuj+/9+nDXivSWvq1I96mQ3tLSos2bN2vx4sWubTExMcrPz1dlZWWXx504cUKjRo2Sw+HQVVddpd/85je6/PLLJUl79+5VTU2N8vPzXfunpKQoNzdXlZWVXv/PSnFxsZYuXerL0AGfhEvWJfKO4CLrsAqyDqsg67AKsg64BeP74E1XWd+wYYOSkjxXSpeVlfkxk8jQ33Nrc0hfHY2VZNOebZX6+hPfjj9cZ5MUq22ff6W1a/d3ud/Z8zp5khXsCD/Npx0ypv3ffVmRHqge6T4V0uvq6tTW1qa0tDSP7Wlpadq9e7fXYy655BItX75c48ePV319vR577DFNmjRJO3fu1MiRI1VTU+M6x9nndL53tsWLF6uwsND1c0NDgzIzM32ZCtCtcMm6RN4RXGQdVkHWYRVkHVZB1gG3YHwfvOkq61OmTFFycrKk9lXMZWVluv766xUfHx+gGYaHUM2t6vBJOT78ixLjYzTr5htks9l8Oj7zy3q9/NmHOmHsmjbtmk7vdzUv/roG4aj5jNYsPvVITwhMj3SfW7v4Ki8vT3l5ea6fJ02apEsvvVTPPfecHnzwQb/OabfbZbfbAzVEICCCkXWJvCP8kHVYBVmHVZB1WAVZB9z8+T50lfX4+PhOhWVv26JFf8/ty4YWSVJWapISEhJ8Pv6Cc1MkSV+faFGrsSkpwXsp8Ox5Rev9Q2RzFsJjY2yKj/WjtUurQ+pDtH162Ojw4cMVGxur2tpaj+21tbW97qsVHx+vK6+8Unv27JEk13F9OScQaGQdVkHWYRVkHVZB1mEVZB1wC8b3AeGjqqM/elbqQL+OT0mK15Ck9sph9RHatSCyOVuz+NLW5cz9+9raxadCekJCgiZOnKjy8nLXNofDofLyco/fZHanra1N27dv14gRIyRJY8aMUXp6usc5Gxoa9OGHH/b6nECgkXVYBVmHVZB1WAVZh1WQdcAtGN8HhI+qw+3F71HDknrYs2ujUtuP3VdHIR2RzbkiPdGHB41KUmKoWrsUFhZqzpw5uvrqq5WTk6Mnn3xSjY2NridDz549W+edd56Ki4slSf/yL/+ib37zm7rwwgt17NgxPfroo6qqqtKdd94pqf0p0ffee69+/etf66KLLtKYMWP0q1/9ShkZGZoxY0afJgf0BVmHVZB1WAVZh1WQdVgFWQfcAv19QPhwFtJH96GQnjVsoD46UK/qI42BGhYQEk2uQnpoVqT7XEifOXOmvv76ay1ZskQ1NTWaMGGC1q1b53qoRXV1tWJi3L8VOHr0qO666y7V1NRo6NChmjhxot5//31ddtllrn3uv/9+NTY2av78+Tp27Ji+9a1vad26dUpMTOzT5IC+IOuwCrIOqyDrsAqyDqsg64BbML4PCA/O4nfWMP9au0juFenOojwQqU71sZB+6oyHlfrDZowxfTpDGGhoaFBKSorq6+tdT4pGdOEeu/FZRDfurxufRXTj/rrxWUQ37q8bn0V04/668VlEN+6vm7fPorW1VWvXrtW0adOi7mGVoZibw2F0WdE6NbU6VPGzazR6uH/F9FV/3a/7/8/H+vZFw/X7O3I93utqXmTdjayHj427D2le6X9r3Hkp+r/3fKvXx729u1Y/KP2rxp2XrDuzjnjMzZes+9ZQBgAAAAAAAEDQHTrerKZWh2JjbDpv6AC/zzO6YzV7tKxILykp0ejRo5WYmKjc3Fxt2rSpy32ff/55ffvb39bQoUM1dOhQ5efnd7s/wluTvz3S40LwsFEAAAAAAAAAwVd1uL2tS8aQRMXH+l/Ccz6o9Mtjp9Ta1rfWFqG2cuVKFRYWqqioSFu2bFF2drYKCgp06NAhr/tXVFTotttu08aNG1VZWanMzExNmTJFX375ZT+PHIHgb2uXhLj270/L6b41ZqGQDgAAAAAAAISZqiPOB4363x9dks4dbFdifIzaHEZfHj0ViKGFzOOPP6677rpL8+bN02WXXaZly5YpKSlJy5cv97r/q6++qh//+MeaMGGCxo4dqxdeeEEOh0Pl5eX9PHIEQlNHj3NfC+nOX0S19PEXST4/bBQAAAAAAABAcFV3tGLJ6nhYqL9sNpuyUpP0t9oTqjpy0u9e66HW0tKizZs3a/Hixa5tMTExys/PV2VlZa/OcfLkSbW2tio1NbXLfZqbm9Xc3Oz6uaGhQVJ77/DW1lbXv5/5z2gSznM70dQiSbLH2nwaX4zaC+gtp9v/eeaxvpyHQjoAAAAAAAAQZpwr0p2tWfoiK3Wg/lZ7QtWHGyWd0+fzhUJdXZ3a2tqUlpbmsT0tLU27d+/u1Tl+/vOfKyMjQ/n5+V3uU1xcrKVLl3bavmHDBiUled6LsrKyXl03EoXj3D7+0iYpVl/XfKW1aw/0+rjaU5IUp5NN7b8gOXNuJ0/2/tkBFNIBAAAAAACAMOPskZ6V2vcV5M5ifLQ8cNQfDz30kFasWKGKigolJiZ2ud/ixYtVWFjo+rmhocHVWz05OVlS+yrmsrIyXX/99YqPjw/62PtTOM/t87c/l6o/1/mjszRt2mW9Pu7A0VP6zbb/krHFSmrzmJvzLw56g0I6AAAAAAAAEGacRe9ArEgf3XGOfRFcSB8+fLhiY2NVW1vrsb22tlbp6endHvvYY4/poYce0p///GeNHz++233tdrvsdnun7fHx8Z0Ky962RYtwnFtbxz/t8XE+jW1gYvuRzh7pZ87Nl/PwsFEAAAAAAAAgjNSfbFX9qfbezX3tkS5JWR0PLK0+0tjnc4VKQkKCJk6c6PGgUOeDQ/Py8ro87pFHHtGDDz6odevW6eqrr+6PoSJITrcZSVJCnG8lbef+DiN1nMIvrEgHAAAAAAAAwkhVR8H7nMF2DbT3vXw3qqMYX33kpIwxstlsfT5nKBQWFmrOnDm6+uqrlZOToyeffFKNjY2aN2+eJGn27Nk677zzVFxcLEl6+OGHtWTJEr322msaPXq0ampqJEmDBg3SoEGDQjYP+Me5ojwuxrf8xse6C+8dzxv1C4V0AAAAAAAAIIy42roEYDW6JJ03dIBiY2xqanXo0PFmpSV33SM8nM2cOVNff/21lixZopqaGk2YMEHr1q1zPYC0urpaMTHuoum//du/qaWlRd/97nc9zlNUVKQHHnigP4eOAGh1tmaJ9W9FusSKdAAAAAAAACBquB40GoD+6FJ74TFjSKL2HzmlqsMnI7aQLkkLFy7UwoULvb5XUVHh8fO+ffuCPyD0G2drl/hY31akx8XYZLNJxvRtRTo90gEAAAAAAIAw4l6RPjBg5xzd0SfdWaQHIk2LnyvSbTabEjqOOd2HFekU0gEAAAAAAIAwUnWko5AeoBXpkvuhpc4iPRBpWl0r0n0vaTvbu7AiHQAAAAAAAIgS1R3F7kC1dpHcRXlnkR6INKddK9J9f1iua0U6hXQAAAAAAAAg8jW1tqmmoUmSux1LIGR1tImpprULIpS/DxuV3CvS+/KwUQrpAAAAAAAAQJjY37FifLA9TkOT4gN2XlakI9K1BKK1C4V0AAAAAAAAIPLtO6Oti83mewuLrjgL6cdOtqr+ZGvAzgv0F2drl7g+tXbx/ztFIR0AAAAAAAAIE1UdrVcC+aBRSUpKiNM5g+3t1zhCexdEHmdrlwQ/VqTHxrQX0GntAgAAAAAAAESB6o7WK86e5oE0KrWjvcth2rsg8jhbu8T5UUh3toNxUEgHAAAAAAAAIp+zyD06wCvSpfZ2MZK7WA9EktOuh4363p7FuSK93wvpJSUlGj16tBITE5Wbm6tNmzZ1ue/zzz+vb3/72xo6dKiGDh2q/Pz8TvvPnTtXNpvN4zV16lR/hgYEFFmHVZB1WAVZh1WQdVgFWQcQjVwr0oNQSB/Vscrd2T4GiCR9ae0SF4rWLitXrlRhYaGKioq0ZcsWZWdnq6CgQIcOHfK6f0VFhW677TZt3LhRlZWVyszM1JQpU/Tll1967Dd16lQdPHjQ9frjH//o34yAACHrsAqyDqsg67AKsg6rIOsAotHpNof2dxTSRw0LQmuXYbR2QeRq7UNrF9eK9D5c3+erPv7447rrrrs0b948XXbZZVq2bJmSkpK0fPlyr/u/+uqr+vGPf6wJEyZo7NixeuGFF+RwOFReXu6xn91uV3p6uus1dOhQ/2YEBAhZh1WQdVgFWYdVkHVYBVkHEI0O1jfptMMoITZG6cmJAT8/hXREstY+tHaJi+3n1i4tLS3avHmz8vPz3SeIiVF+fr4qKyt7dY6TJ0+qtbVVqampHtsrKip07rnn6pJLLtGCBQt0+PDhLs/R3NyshoYGjxcQSOGSdYm8I7jIOqyCrMMqyDqsgqwDiFbOAvfI1AGuFbSB5FzlXtPQpKbWtoCfHwgmdyHdnxXp/fyw0bq6OrW1tSktLc1je1pammpqanp1jp///OfKyMjw+D88U6dO1SuvvKLy8nI9/PDDeuedd3TDDTeorc37F7q4uFgpKSmuV2Zmpi/TAHoULlmXyDuCi6zDKsg6rIKswyrIOoBoVXWkvXf5qNTA90eXpKFJ8Rpsj5MkVwsZIFKcdrV28WNFegB6pMf5f6jvHnroIa1YsUIVFRVKTHT/ecqsWbNc/z5u3DiNHz9eF1xwgSoqKnTdddd1Os/ixYtVWFjo+rmhoYH/s4KwEqisS+Qd4Y2swyrIOqyCrMMqyDqAcFV9OHj90SXJZrMpa1iSdn7VoKrDJzU6NfDtY4BgcZj2KniszfdCuqtHen+tSB8+fLhiY2NVW1vrsb22tlbp6endHvvYY4/poYce0oYNGzR+/Phu9z3//PM1fPhw7dmzx+v7drtdycnJHi8gkMIl6xJ5R3CRdVgFWYdVkHVYBVkHEK32He5YkT4sOCvSzzx3FSvSEWHaOqrgNj8K6c6+6n1Zke5TIT0hIUETJ070eBiL8+EseXl5XR73yCOP6MEHH9S6det09dVX93idAwcO6PDhwxoxYoQvwwMChqzDKsg6rIKswyrIOqyCrAOIVlWuFenBLKS3r3av7ijaA5GiY0G6X88P6Pce6ZJUWFio559/Xi+//LJ27dqlBQsWqLGxUfPmzZMkzZ49W4sXL3bt//DDD+tXv/qVli9frtGjR6umpkY1NTU6ceKEJOnEiRO677779MEHH2jfvn0qLy/XzTffrAsvvFAFBQX+zwzoI7IOqyDrsAqyDqsg67AKsg4g2hhjVN2xSjwrNTitXSR3//V9h1mRjsjibO3iz3N44wLQ2sXnHukzZ87U119/rSVLlqimpkYTJkzQunXrXA95qa6uVkyMuz7/b//2b2ppadF3v/tdj/MUFRXpgQceUGxsrD7++GO9/PLLOnbsmDIyMjRlyhQ9+OCDstvt/s8M6COyDqsg67AKsg6rIOuwCrIOINrUnWjRyZY22WxSZuqAoF0nq2O1ezWtXRBhnEXwmBD1SPfrYaMLFy7UwoULvb5XUVHh8fO+ffu6PdeAAQO0fv16f4YBBB1Zh1WQdVgFWYdVkHVYBVkHEE2qj7S3WslIGSB7XGzQruNs7XLg6ElXz2kgErQZZ4903491PqC033qkAwAAAAAAAAi8fXXOti7B648uSenJiUqIjVFrm9HB+qagXgsIJNNRSPenR7o/xfezUUgHAAAAAAAAQqzqSPAfNCq1FyGdrWNo74JI0pfWLraOY/ryNxgU0gEAAAAAAIAQqz7c3tolK8iFdMnd3qWKQjoiiKMPrV2cxxhauwAAAAAAAACRy7UiPXVg0K/lbB9TfeRU0K8FBIIxxlUE92dFurMbDCvSAQAAAAAAgAhWfbh/WruceQ1auyBSnPlc3Fh/WrvI2drF/2bpFNIBAAAAAACAEDre1KrDjS2S+qu1CyvSEVkcZ/Rk6cuK9L4sSaeQDgAAAAAAAIRQVcdq9NSBCUpOjA/69bI62sfsP3KyTz2jgf5yZiHd5kdFm4eNAgAAAAAAABHO2WLF2bs82DJTB8hmkxpb2nS8tV8uCfSJ6WNrF9d5+jAGCukAAAAAAABACFX1Y390SbLHxSojZYAk6XBzv1wS6JM2R19bu3SsSKe1CwAAAAAAABCZqo80SpJG9dOKdMm9+r2uyf/VvUB/8Wjt4kdkncewIh0AAAAAAACIUO4V6QP77ZrO1e8U0hEJzliQ3qeHjVJIBwAAAAAAACJUf7d2kaQsVyG93y4J+M2csSI9Nsb3QrotAEvSKaQDAAAAAAAAIdJ8uk1f1Z+S5C5u94fRHavfWZGOSODZI9334511dEcfxkAhHQAAAAAAAAiRA0dPyRgpKSFW5wyy99t13T3S++2SgN/ObO1i86O1i019/4URhXQAAAAAAIAIV1JSotGjRysxMVG5ubnatGlTt/u//vrrGjt2rBITEzVu3DitXbu2n0aKs1V3tHXJSk3yq0DoL2cbmROnbTrRfLrfrttXZN2anK1d/FmNfuZxhtYuAAAAAAAA1rRy5UoVFhaqqKhIW7ZsUXZ2tgoKCnTo0CGv+7///vu67bbbdMcdd2jr1q2aMWOGZsyYoR07dvTzyCFJVYcbJblXiPeXwYnxGpoUL0mqPnKyX6/tL7JuXc4V6f70R5fcrV368rDRuD4cCwAAAAAAgBB7/PHHddddd2nevHmSpGXLlmnNmjVavny5Fi1a1Gn/p556SlOnTtV9990nSXrwwQdVVlamZ599VsuWLfN7HKda2tTUJp1oPq14R3T13W5tPR20ue38qkGSNHr4wICetzeyUpN09GS9qo+cUnZWv1/eZ+GS9aZWst7fTjS3SvKvrYskxXQcRyEdAAAAAADAglpaWrR582YtXrzYtS0mJkb5+fmqrKz0ekxlZaUKCws9thUUFGj16tVdXqe5uVnNzc2unxsa2ou/ra2tam1tL3DN/8MWfbA3Tj/f9La/0wlzwZ3beSl212fZXzKHJuqjA/Xa9/Vxj2v39zh6I5yy/tPXP9aGXWQ9FGJs/uXT4eh4zKiR31mnkA4AAAAAABCh6urq1NbWprS0NI/taWlp2r17t9djampqvO5fU1PT5XWKi4u1dOnSTts3bNigpKT2liRHjsSILsL+GRRnZL7crrVrt/frdVuPtt+zzZ/s0dqTf3NtP3ky/Fq9hFPWa2vJeqhcMvi0X33u9+xvv2cOSWVlZa7tvmSdQjoAAAAAAAC6tXjxYo+VvQ0NDcrMzNSUKVOUnJwsSZr8983685/Ldd11f6/4uPhQDTUoWk+3qrz87aDNLS42xu/ez33xzeOndF3FRv3PqdcrPt49L+cqbCsi68HNel/Z42P9Ou76NoeaW1q0sfxtXX+9O+++ZN2vX50E+um4xhgtWbJEI0aM0IABA5Sfn6/PPvvMn6EBAUXWYRVkHVZB1mEVZB1WQdYBafjw4YqNjVVtba3H9traWqWnp3s9Jj093af9Jclutys5OdnjJUnx8fGu18BEu+JjpEEDEjUoKcpeAxKDOrdEe4LHZ9lfr9TBA2SPldf3wg1Zj46s9/Xlb9aTEu0aNCBRsTGd895bPhfSg/F03EceeURPP/20li1bpg8//FADBw5UQUGBmpqafB0eEDBkHVZB1mEVZB1WQdZhFWQdaJeQkKCJEyeqvLzctc3hcKi8vFx5eXlej8nLy/PYX2pvddDV/kA4IOsIOeOjnJwcc/fdd7t+bmtrMxkZGaa4uNjr/rfeequZPn26x7bc3Fzzwx/+0BhjjMPhMOnp6ebRRx91vX/s2DFjt9vNH//4x16Nqb6+3kgy9fX1vk4HESIU9zgcs24MeY92ZN2NrEc3su5G1qMbWXcj69GNrLuR9egWrvd3xYoVxm63m9LSUvPJJ5+Y+fPnmyFDhpiamhpjjDG33367WbRokWv/9957z8TFxZnHHnvM7Nq1yxQVFZn4+Hizffv2Xl/T22fR0tJiVq9ebVpaWgI3uTARrXPral5k3Y2sRw9vc/Ml6z71SA/G03H37t2rmpoa5efnu95PSUlRbm6uKisrNWvWrE7nPPvpufX19ZKs3b8p2jnvrTGmX64XLlmXyLvVkHWybhVknaxbBVkn61ZB1sm6VfR31ntr5syZ+vrrr7VkyRLV1NRowoQJWrduneshi9XV1YqJcTclmDRpkl577TX98pe/1C9+8QtddNFFWr16ta644opeX9P5GZyZ9dbWVp08eVINDQ1h2RqkL6J1bl3Ni6y7kfXo4W1uvmTdp0J6MJ6O6/ynL0/Q7erpuZmZmb2bCCLW4cOHlZKSEvTrhEvWJfJuVWTdjaxHN7LuRtajG1l3I+vRjay7kfXo1l9Z98XChQu1cOFCr+9VVFR02nbLLbfolltu8ft6x48fl0TWo93x48fJOlm3hN5k3adCerg4++m5x44d06hRo1RdXR12X+5gcT4xeP/+/a6HHkSz+vp6ZWVlKTU1NdRD6XdWzztZtw6yTtatgqyTdasg62TdKsg6WbeqjIwM7d+/X4MHD5bNZpMU3XmI1rl1NS9jjI4fP66MjIwQji48kPXo4W1uvmTdp0J6MJ6O6/xnbW2tRowY4bHPhAkTvJ7TbrfLbrd32p6SkhJ1N7gnZz492ArO/POcYAqXrEvk3YmsBwdZDz9kPTjIevgh68FB1sMPWQ8Osh5+yLr1xMTEaOTIkV7fi+Y8ROvcvM3LCr8M7A2yHn3Onltvs+7Tf/mD8XTcMWPGKD093WOfhoYGffjhhzxBFyFD1mEVZB1WQdZhFWQdVkHWAQBAv/P16abBeDruQw89ZIYMGWLeeust8/HHH5ubb77ZjBkzxpw6dapXYwrXJwkHk9XmHIr5hmPWjeHeRzuy7sa9j25k3Y17H93Iuhv3PrqRdTfufXSz2nx9Fc2fT7TOLVrnFWzR/Lkxt675XEg3xphnnnnGZGVlmYSEBJOTk2M++OAD13uTJ082c+bM8dh/1apV5uKLLzYJCQnm8ssvN2vWrPF43+FwmF/96lcmLS3N2O12c91115lPP/201+NpamoyRUVFpqmpyZ/pRCSrzTlU8w23rBvDvY92ZN2Nex/dyLob9z66kXU37n10I+tu3PvoZrX5+iqaP59onVu0zivYovlzY25dsxljTP+tfwcAAAAAAAAAILLwdAwAAAAAAAAAALpBIR0AAAAAAAAAgG5QSAcAAAAAAAAAoBsU0gEAAAAAAAAA6EbEFNJLSko0evRoJSYmKjc3V5s2bep2/9dff11jx45VYmKixo0bp7Vr1/bTSAPDl/mWlpbKZrN5vBITE/txtH3z7rvv6sYbb1RGRoZsNptWr17d4zEVFRW66qqrZLfbdeGFF6q0tDTo4+wvVsu6ZJ28k/XOrJZ3st41su6JrJP1SEXWyboTWfdE1sm6Vf3rv/6rJk2apKSkJA0ZMiTUw/Gbr9/5SOFP5uEdWQ9vgcp6RBTSV65cqcLCQhUVFWnLli3Kzs5WQUGBDh065HX/999/X7fddpvuuOMObd26VTNmzNCMGTO0Y8eOfh65f3ydryQlJyfr4MGDrldVVVU/jrhvGhsblZ2drZKSkl7tv3fvXk2fPl3XXnuttm3bpnvvvVd33nmn1q9fH+SRBp/Vsi5ZK+9k3ZPV8k7Wu0bWPZF1sh6pyDpZdyLrnsg6WbeylpYW3XLLLVqwYEGoh+I3f74DkcLXzKNrZD28BSzrJgLk5OSYu+++2/VzW1ubycjIMMXFxV73v/XWW8306dM9tuXm5pof/vCHQR1noPg635deesmkpKT00+iCS5J58803u93n/vvvN5dffrnHtpkzZ5qCgoIgjqx/WC3rxlg371bPujHWyztZ7xpZ90TWIxNZJ+tk3Y2seyLrkYmsB1Yk58LX70Ck6k3m0TOyHv76kvWwX5He0tKizZs3Kz8/37UtJiZG+fn5qqys9HpMZWWlx/6SVFBQ0OX+4cSf+UrSiRMnNGrUKGVmZurmm2/Wzp07+2O4IRHJ97c7Vsu6RN57Eun3tztWyztZ714k39uekHWyfqZIvrc9Ietk/UyRfG97QtbJ+pki+d6id/z9DgCRhqz3TtgX0uvq6tTW1qa0tDSP7WlpaaqpqfF6TE1NjU/7hxN/5nvJJZdo+fLleuutt/SHP/xBDodDkyZN0oEDB/pjyP2uq/vb0NCgU6dOhWhUfWe1rEvkvSfRmnXJenkn690j657IOlmPRGS9HVlvR9Y9kXWyjsjlz3cAiERkvXfCvpCOnuXl5Wn27NmaMGGCJk+erDfeeEPnnHOOnnvuuVAPDQg48g6rIOuwCrIOqyDrsAqyHv0WLVrU6YGyZ792794d6mECfUbWcba4UA+gJ8OHD1dsbKxqa2s9ttfW1io9Pd3rMenp6T7tH078me/Z4uPjdeWVV2rPnj3BGGLIdXV/k5OTNWDAgBCNqu+slnWJvPckWrMuWS/vZL17ZN0TWSfrkYistyPr7ci6J7JO1qPNT3/6U82dO7fbfc4///z+GUyQBeI7gMhF1sn62cJ+RXpCQoImTpyo8vJy1zaHw6Hy8nLl5eV5PSYvL89jf0kqKyvrcv9w4s98z9bW1qbt27drxIgRwRpmSEXy/e2O1bIukfeeRPr97Y7V8k7WuxfJ97YnZJ2snymS721PyDpZP1Mk39uekHWyfqZIvrd9cc4552js2LHdvhISEkI9zIAIxHcAkYusk/VOAvvc0+BYsWKFsdvtprS01HzyySdm/vz5ZsiQIaampsYYY8ztt99uFi1a5Nr/vffeM3Fxceaxxx4zu3btMkVFRSY+Pt5s3749VFPwia/zXbp0qVm/fr35/PPPzebNm82sWbNMYmKi2blzZ6im4JPjx4+brVu3mq1btxpJ5vHHHzdbt241VVVVxhhjFi1aZG6//XbX/l988YVJSkoy9913n9m1a5cpKSkxsbGxZt26daGaQsBYLevGWCvvZN2T1fJO1sk6WSfrZJ2sk3WyTtbDG1kPvKqqKrN161azdOlSM2jQINfne/z48VAPrdd6+g5Esp4yj94j6+EtUFmPiEK6McY888wzJisryyQkJJicnBzzwQcfuN6bPHmymTNnjsf+q1atMhdffLFJSEgwl19+uVmzZk0/j7hvfJnvvffe69o3LS3NTJs2zWzZsiUEo/bPxo0bjaROL+cc58yZYyZPntzpmAkTJpiEhARz/vnnm5deeqnfxx0sVsu6MdbJO1nvzGp5J+tzjDFknayTdbLuRtbJeqQi62T9zGOiOet9NWfOHK+f6caNG0M9NJ909x2IZD1lHr1H1sNboLJuM8aYQK1uBwAAAAAAAAAg2oR9j3QAAAAAAAAAAEKJQjoAAAAAAAAAAN2gkA4AAAAAAAAAQDcopAMAAAAAAAAA0A0K6QAAAAAAAAAAdINCOgAAAAAAAAAA3aCQDgAAAAAAAABANyikAwAAAAAAAADQDQrpAAAAAAAAAAB0g0I6AAAAAAAAAADdoJAOAAAAAAAAAEA3KKQDAAAAAAAAANANCukAAAAAAAAAAHSDQjoAAAAAAAAAAN2gkA4AAAAAAAAAQDcopAMAAAAAAAAA0A0K6QAAAAAAAAAAdINCOgAAAAAAAACEkQceeEA2m011dXU97nv69Gndf//9yszMVExMjGbMmBH8AVoQhXQAAAAAAAAAiFDLly/Xo48+qu9+97t6+eWX9ZOf/KTLfW02W5ev66+/Pmhj3LdvX7fXvuuuu4J27UCJC/UAAAAAAAAAAAD+efvtt3XeeefpiSee6HHf3//+9522/fWvf9VTTz2lKVOmBGN4kqRzzjnH67XXrVunV199NajXDhQK6QAAAAAAAAAQoQ4dOqQhQ4b0at/vf//7nbZVVFTIZrPptttuC/DI3AYOHOj12qWlpUpOTtaNN94YtGsHCq1dAAAAAAAAACAM1dXV6dZbb1VycrKGDRumf/7nf1ZTU5Mkd7uUjRs3aufOna42KRUVFb0+f3Nzs/7jP/5DkydP1siRI7vdt6ioSDExMSovL/fYPn/+fCUkJOijjz7yaW4HDx7Uxo0b9Q//8A9KTEz06dhQoJAOAAAAAAAAAGHo1ltvVVNTk4qLizVt2jQ9/fTTmj9/viR3u5SxY8dq5MiR+v3vf6/f//73uvTSS3t9/rVr1+rYsWP6x3/8xx73/eUvf6kJEybojjvu0PHjxyVJ69ev1/PPP68lS5YoOzvbp7mtWLFCDoejV9cOBzZjjAn1IAAAAAAAAAAA7R544AEtXbpUN910k9566y3X9rvvvlu/+93v9NFHH2n8+PGSpGuuuUZ1dXXasWOHz9f57ne/qz/96U+qqanpVXuYHTt2aOLEiZo9e7YeffRRXXHFFRoxYoQqKysVF+dbF/Grr75aX331lQ4cOKCYmPBf7x3+IwQAAAAAAAAAC7r77rs9fr7nnnskta8k76uGhgatWbNG06ZN63WP9SuuuEJLly7VCy+8oIKCAtXV1enll1/2uYj+t7/9TZs3b9asWbMiooguUUgHAAAAAAAAgLB00UUXefx8wQUXKCYmRvv27evzuf/jP/5DTU1NPrdWue+++5Sdna1NmzapqKhIl112mc/XfvXVVyUpYtq6SBTSAQAAAAAAACAi2Gy2gJ3r1VdfVUpKiv7n//yfPh33xRdf6LPPPpMkbd++3a9rv/baa7rkkks0ceJEv44PBQrpAAAAAAAAABCGnAVrpz179sjhcGj06NF9Ou/Bgwe1ceNG/a//9b9kt9t7fZzD4dDcuXOVnJysX/ziF/rjH/+oN954w6drf/jhh9qzZ09ErUaXKKQDAAAAAAAAQFgqKSnx+PmZZ56RJN1www19Ou+KFSvkcDh8LmY//vjjev/99/Xv//7vevDBBzVp0iQtWLBAdXV1vT7Ha6+9Jkn63ve+59O1Q41COgAAAAAAAACEob179+qmm27S7373O91+++363e9+p+9973vKzs7u03lfffVVZWRk6Jprrun1Mbt27dKvfvUrzZ07VzfeeKNiYmJUWlqqEydO6Mc//nGvztHW1qaVK1fqm9/8pi644AI/Rx8aFNIBAAAAAAAAIAytXLlSdrtdixYt0po1a7Rw4UK9+OKLfTrnp59+qs2bN2vWrFmKieldebitrU1z5szR8OHD9eSTT7q2X3TRRSouLtbrr7+uVatW9XieP//5z6qtrY241eiSZDPGmFAPAgAAAAAAAACAcMWKdAAAAAAAAAAAukEhHQAAAAAAAACAblBIBwAAAAAAAACgGz4X0t99913deOONysjIkM1m0+rVq3s8pqKiQldddZXsdrsuvPBClZaWdtqnpKREo0ePVmJionJzc7Vp0yZfhwYEFFmHVZB1WAVZh1WQdVgFWYdVkHUACA8+F9IbGxuVnZ2tkpKSXu2/d+9eTZ8+Xddee622bdume++9V3feeafWr1/v2mflypUqLCxUUVGRtmzZouzsbBUUFOjQoUO+Dg8IGLIOqyDrsAqyDqsg67AKsg6rIOsAECZMH0gyb775Zrf73H///ebyyy/32DZz5kxTUFDg+jknJ8fcfffdrp/b2tpMRkaGKS4u7svwgIAh67AKsg6rIOuwCrIOqyDrsAqyDgChExfsQn1lZaXy8/M9thUUFOjee++VJLW0tGjz5s1avHix6/2YmBjl5+ersrLS6zmbm5vV3Nzs+tnhcOjIkSMaNmyYbDZb4CeBkDPG6Pjx48rIyFBMTHi29g9G1iXybjVknaxbBVkn61ZB1sm6VZB1sm4VZJ2sW0UkZL2/OBwOffXVVxo8eDBZj0K+ZD3ohfSamhqlpaV5bEtLS1NDQ4NOnTqlo0ePqq2tzes+u3fv9nrO4uJiLV26NGhjRvjav3+/Ro4cGepheBWMrEvk3arIOqyCrMMqyDqsgqzDKsg6rCKcs95fvvrqK2VmZoZ6GAiy3mQ96IX0YFi8eLEKCwtdP9fX1ysrK0v79+9XcnJyCEeGYGloaFBmZqYGDx4c6qH0O/JuLWSdrFsFWSfrVkHWybpVkHWybhVknaxbhZWzfjbnZ3Bm1ltbW7VhwwZNmTJF8fHxoRxewFltbr5kPeiF9PT0dNXW1npsq62tVXJysgYMGKDY2FjFxsZ63Sc9Pd3rOe12u+x2e6ftycnJ/Mc7yoXzn9AEI+sSebcqsu5G1qMbWXcj69GNrLuR9ehG1t3IenQj625kPbqFW9bfffddPfroo9q8ebMOHjyoN998UzNmzOj2mIqKChUWFmrnzp3KzMzUL3/5S82dO7fX13R+BmdmvbW1VUlJSUpOTo7KYrMV59abrAe9yVFeXp7Ky8s9tpWVlSkvL0+SlJCQoIkTJ3rs43A4VF5e7toHiARkHVZB1mEVZB1WQdZhFWQdVkHWEc0aGxuVnZ2tkpKSXu2/d+9eTZ8+Xddee622bdume++9V3feeafWr18f5JEiGvm8Iv3EiRPas2eP6+e9e/dq27ZtSk1NVVZWlhYvXqwvv/xSr7zyiiTpRz/6kZ599lndf//9+sEPfqC3335bq1at0po1a1znKCws1Jw5c3T11VcrJydHTz75pBobGzVv3rwATBHwD1mHVZB1WAVZh1WQdVgFWYdVkHXA7YYbbtANN9zQ6/2XLVumMWPG6Le//a0k6dJLL9Vf/vIXPfHEEyooKPB6zNkP1m1oaJDUvpq5tbXV9e9n/jOaROvc1u+s1X9s+VJpp226/oy5+TJPnwvpf/3rX3Xttde6fnb2x5ozZ45KS0t18OBBVVdXu94fM2aM1qxZo5/85Cd66qmnNHLkSL3wwgseYZ05c6a+/vprLVmyRDU1NZowYYLWrVvX6cEXQH8i67AKsg6rIOuwCrIOqyDrsAqyDvivsrJS+fn5HtsKCgp07733dnlMVw/W3bBhg5KSkjy2lZWVBWSc4Sja5vafVTHa+FWMvp1u85jbyZMne30OmzHGBGNw/amhoUEpKSmqr6+nL1eU4h678VlEN+6vG59FdOP+uvFZRDfurxufRXTj/u3FQr8AACRXSURBVLrxWUQ37q8bn0V0i4T7a7PZeuyRfvHFF2vevHlavHixa9vatWs1ffp0nTx5UgMGDOh0jLcV6ZmZmaqrq/PokV5WVqbrr78+KvuIR+Pc7lnxkdbtrNV3RrfpX2fnezxsdPjw4b3KetAfNgoAAAAAAAAAkaCrB+vGx8d3Kix72xYtom1u+4+ekiQNT/Scmy9zDPrDRgEAAAAAAACgv6Wnp6u2ttZjW21trZKTk72uRkd0Msao6nB7C5fhdv+bs1BIBwAAAAAAABB18vLyVF5e7rGtrKxMeXl5IRoRQuFIY4tONJ+WzSYNS/T/PBTSAQAAAAAAAIS9EydOaNu2bdq2bZskae/evdq2bZvrgbuLFy/W7NmzXfv/6Ec/0hdffKH7779fu3fv1u9+9zutWrVKP/nJT0IxfIRI1ZH21ehpg+2K70M1nEI6AAAAAAAAgLD317/+VVdeeaWuvPJKSVJhYaGuvPJKLVmyRJJ08OBBV1FdksaMGaM1a9aorKxM2dnZ+u1vf6sXXnhBBQUFIRk/QqO6o63LqGFJfToPDxsFAAAAAAAAEPauueYaGdN1j+vS0lKvx2zdujWIo0K423e4UZKUldq3Qjor0gEAAAAAAAAAUcm5Ij1raN8eMEshHQAAAAAAAAAQlZw90lmRDgAAAAAAAACAF1UB6pFOIR0AAAAAAAAAEHVONJ9W3YlmSVJWKq1dAAAAAAAAAADw4OyPPjQpXoMT4/t0LgrpAAAAAAAAAICoU32kUZKUNWxgn89FIR0AAAAAAAAAEHWc/dFH97E/ukQhHQAAAAAAAAAQhfY5HzSaSiEdAAAAAAAAAIBOaO0CAAAAAAAAAEA3nK1dRtHaBQAAAAAAAAAATy2nHfrq2ClJFNIBAAAAAAAAAOjkwNGTchgpKSFW5wyy9/l8FNIBAAAAAAAAAFGl6kh7W5es1CTZbLY+n49COgAAAAAAAAAgqlQfdhfSA8GvQnpJSYlGjx6txMRE5ebmatOmTV3ue80118hms3V6TZ8+3bXP3LlzO70/depUf4YGBBRZh1WQdVgFWYdVkHVYBVmHVZB1APDdvsONkqTRwwcG5Hxxvh6wcuVKFRYWatmyZcrNzdWTTz6pgoICffrppzr33HM77f/GG2+opaXF9fPhw4eVnZ2tW265xWO/qVOn6qWXXnL9bLf3vW8N0BdkHVZB1mEVZB1WQdZhFWQdVkHWAcA/IV+R/vjjj+uuu+7SvHnzdNlll2nZsmVKSkrS8uXLve6fmpqq9PR016usrExJSUmd/gNut9s99hs6dKh/MwIChKzDKsg6rIKswyrIOqyCrMMqyDoA+MfZI33UsBAU0ltaWrR582bl5+e7TxATo/z8fFVWVvbqHC+++KJmzZqlgQM9l9RXVFTo3HPP1SWXXKIFCxbo8OHDXZ6jublZDQ0NHi8gkMIl6xJ5R3CRdVgFWYdVkHVYBVmHVZB1APCPw2FU7SykpwamtYtPhfS6ujq1tbUpLS3NY3taWppqamp6PH7Tpk3asWOH7rzzTo/tU6dO1SuvvKLy8nI9/PDDeuedd3TDDTeora3N63mKi4uVkpLiemVmZvoyDaBH4ZJ1ibwjuMg6rIKswyrIOqyCrMMqyDoA+KemoUktpx2Ki7EpY0hiQM7pc4/0vnjxxRc1btw45eTkeGyfNWuW69/HjRun8ePH64ILLlBFRYWuu+66TudZvHixCgsLXT83NDTwH3CElUBlXSLvCG9kHVZB1mEVZB1WQdZhFWQdgFVVdfRHHzl0gOJife5u7pVPZxk+fLhiY2NVW1vrsb22tlbp6endHtvY2KgVK1bojjvu6PE6559/voYPH649e/Z4fd9utys5OdnjBQRSuGRdIu8ILrIOqyDrsAqyDqsg67AKsg4A/qk+0ihJyhoWmLYuko+F9ISEBE2cOFHl5eWubQ6HQ+Xl5crLy+v22Ndff13Nzc36/ve/3+N1Dhw4oMOHD2vEiBG+DA8IGLIOqyDrsAqyDqsg67AKsg6rIOsA4B/nivRRqYF50KjkYyFdkgoLC/X888/r5Zdf1q5du7RgwQI1NjZq3rx5kqTZs2dr8eLFnY578cUXNWPGDA0bNsxj+4kTJ3Tffffpgw8+0L59+1ReXq6bb75ZF154oQoKCvycFtB3ZB1WQdZhFWQdVkHWYRVkHVZB1gHAd65C+rDAFdJ97pE+c+ZMff3111qyZIlqamo0YcIErVu3zvXgi+rqasXEeNbnP/30U/3lL3/Rhg0bOp0vNjZWH3/8sV5++WUdO3ZMGRkZmjJlih588EHZ7XY/pwX0HVmHVZB1WAVZh1WQdVgFWYdVkHUA8F1VR2uXUQFs7WIzxpiAnS1EGhoalJKSovr6enp0RSnusRufRXTj/rrxWUQ37q8bn0V04/668VlEN+6vG59FdOP+uvFZRDfur5u3z6K1tVVr167VtGnTFB8fH+IRBlY0zM0Yo/FLN+h402lt+Mnf6eK0wZK8z82XrAfmkaUAAAAAAAAAAITYsZOtOt50WpKUFcoe6QAAAAAAAAAAhKN9h9vbuqQnJyoxPjZg56WQDgAAAAAAAACICtVH2h80mhXAB41KFNIBAAAAAAAAAFGi6nB7IX1UANu6SBTSAQAAAAAAAABRwlVIZ0U6AAAAAAAAAACdVXX0SB81bGBAz0shHQAAAAAAAAAQFaqOsCIdAAAAAAAAAACvTrac1tfHmyVJo1JZkQ4AAAAAAAAAgIfqjtXoKQPilZIUH9BzU0gHAAAAAAAAAES8fXXthfTRAW7rIlFIBwAAAAAAAABEgeoj7Q8azQrwg0YlCukAAAAAAAAAgChQdbjjQaOprEgHAAAAAAAAAKATZ4/0UbR2AQAAAAAAAACgs32H21u7jKK1CwAAAAAAAAAAnlrbHPrqWJMkVqQDAAAAAAAAANDJl0dPqc1hlBgfo3MH2wN+fgrpAAAAAAAAAICI5mrrkjpQNpst4OenkA4AAAAAAAAAiGjOB41mBaGti0QhHQAAAAAAAAAQ4aoOtxfSR6VSSAcAAAAAAAAAoBNXIT2cVqSXlJRo9OjRSkxMVG5urjZt2tTlvqWlpbLZbB6vxMREj32MMVqyZIlGjBihAQMGKD8/X5999pk/QwMCiqzDKsg6rIKswyrIOqyCrMMqyDrgFujvA6JHlbNH+rCBQTm/z4X0lStXqrCwUEVFRdqyZYuys7NVUFCgQ4cOdXlMcnKyDh486HpVVVV5vP/II4/o6aef1rJly/Thhx9q4MCBKigoUFNTk+8zAgKErMMqyDqsgqzDKsg6rIKswyrIOuAWjO8DooPDYVw90oO1Il3GRzk5Oebuu+92/dzW1mYyMjJMcXGx1/1feuklk5KS0uX5HA6HSU9PN48++qhr27Fjx4zdbjd//OMfezWm+vp6I8nU19f3bhKIOKG4x+GYdWPIe7Qj625kPbqRdTeyHt3IuhtZj25k3Y2sRzey7kbWo1u43t9Afx96w9tn0dLSYlavXm1aWlr6dO5wFKlzO3jslBn18z+Z8xevMS2n27zu421uvmTdpxXpLS0t2rx5s/Lz813bYmJilJ+fr8rKyi6PO3HihEaNGqXMzEzdfPPN2rlzp+u9vXv3qqamxuOcKSkpys3N7fKczc3Namho8HgBgRQuWZfIO4KLrMMqyDqsgqzDKsg6rIKsA27B+D5401XWW1tbPV7etkXLKxLn9vmheklSRkqi5GjzaW69FdfrPSXV1dWpra1NaWlpHtvT0tK0e/dur8dccsklWr58ucaPH6/6+no99thjmjRpknbu3KmRI0eqpqbGdY6zz+l872zFxcVaunSpL0MHfBIuWZfIO4KLrMMqyDqsgqzDKsg6rIKsA27B+D5401XWN2zYoKQkz5YhZWVlfs4m/EXa3D44ZJMUq4GORq1du7bbfc+c28mTJ3t9DZ8K6f7Iy8tTXl6e6+dJkybp0ksv1XPPPacHH3zQr3MuXrxYhYWFrp8bGhqUmZnZ57ECfRGMrEvkHeGHrMMqyDqsgqzDKsg6rIKsA27+fB+6yvqUKVOUnJwsqX1Fc1lZma6//nrFx8cHdxL9LFLntrvsM+nzvbrqkixNm3aZ1328zc2Xv67xqZA+fPhwxcbGqra21mN7bW2t0tPTe3WO+Ph4XXnlldqzZ48kuY6rra3ViBEjPM45YcIEr+ew2+2y2+2+DB3wSbhkXSLvCC6yDqsg67AKsg6rIOuwCrIOuAXj++BNV1mPj4/vVFj2ti1aRNrc9h9rf1jymOGDexz3mXPzZY4+9UhPSEjQxIkTVV5e7trmcDhUXl7u8dud7rS1tWn79u2u/1iPGTNG6enpHudsaGjQhx9+2OtzAoFG1mEVZB1WQdZhFWQdVkHWYRVkHXALxvcB0aP6SHuLlqxhST3s2Qe+PgF1xYoVxm63m9LSUvPJJ5+Y+fPnmyFDhpiamhpjjDG33367WbRokWv/pUuXmvXr15vPP//cbN682cyaNcskJiaanTt3uvZ56KGHzJAhQ8xbb71lPv74Y3PzzTebMWPGmFOnTvVqTOH6JGEETijucThm3RjyHu3IuhtZj25k3Y2sRzey7kbWoxtZdyPr0Y2su5H16Bau9zcY34eeePssWlpazOrVq01LS0vgJhcmInVu44rWmVE//5PZfbChy328zc2XrPvcI33mzJn6+uuvtWTJEtXU1GjChAlat26dq9F/dXW1YmLcC92PHj2qu+66SzU1NRo6dKgmTpyo999/X5dd5u5Vc//996uxsVHz58/XsWPH9K1vfUvr1q1TYmKiH78aAAKDrMMqyDqsgqzDKsg6rIKswyrIOuAWjO8DIt+xky1qaDotScpKDd6KdJsxxgTt7P2koaFBKSkpqq+vdzX9R3ThHrvxWUQ37q8bn0V04/668VlEN+6vG59FdOP+uvFZRDfurxufRXTj/rp5+yxaW1u1du1aTZs2LaL6iPdGJM7to/3HdHPJezp3sF2b/nd+l/t5m5svWfepRzoAAAAAAAAAAOGiqqM/+qhg9kcXhXQAAAAAAAAAQISqqmuUJI0aNjCo16GQDgAAAAAAAACISK4V6UHsjy5RSAcAAAAAAAAARKjqw+2F9CxauwAAAAAAAAAA0FnVEVq7AAAAAAAAAADg1amWNtU2NEuSRrMiHQAAAAAAAAAAT9Ud/dGTE+M0JCkhqNeikA4AAAAAAAAAiDhVh/unrYtEIR0AAAAAAAAAEIGcK9KD/aBRiUI6AAAAAAAAACAC7etYkR7s/ugShXQAAAAAAAAAQASqOty+In1UKq1dAAAAAAAAAADohNYuAAAAAAAAAAB0obXNoS+PnpIkjaKQDgAAAAAAAACAp6+OndJph5E9LkZpgxODfj0K6QAAAAAAAACAiOLsj56VmqSYGFvQr0chHQAAAAAAAAAQUao6+qP3R1sXiUI6AAAAAAAAACDCVB9ulCRlpQ7sl+tRSAcAAAAAAAAARJR9Ha1dRg9nRToAAAAAAAAAAJ1Un9EjvT9QSAcAAAAAAAAARAxjjKqOtLd2GTWM1i4AAAAAAAAAAHg4dLxZTa0Oxdik84YM6Jdr+lVILykp0ejRo5WYmKjc3Fxt2rSpy32ff/55ffvb39bQoUM1dOhQ5efnd9p/7ty5stlsHq+pU6f6MzQgoMg6rIKswyrIOqyCrMMqyDqsgqwDgKeqjrYu5w0doIS4/lkr7vNVVq5cqcLCQhUVFWnLli3Kzs5WQUGBDh065HX/iooK3Xbbbdq4caMqKyuVmZmpKVOm6Msvv/TYb+rUqTp48KDr9cc//tG/GQEBQtZhFWQdVkHWYRVkHVZB1mEVZB0AOqs63NHWJbV/2rpIkoyPcnJyzN133+36ua2tzWRkZJji4uJeHX/69GkzePBg8/LLL7u2zZkzx9x88829HkNTU5Opr693vfbv328kmfr6+l6fA5Glvr6+3+9xOGTdGPJuNWSdrFsFWSfrVkHWybpVkHWybhVknaxbRSiyHq68fRYtLS1m9erVpqWlJYQjC45Imdtj63ebUT//k1n8xse9Psbb3HzJuk8r0ltaWrR582bl5+e7tsXExCg/P1+VlZW9OsfJkyfV2tqq1NRUj+0VFRU699xzdckll2jBggU6fPhwl+coLi5WSkqK65WZmenLNIAehUvWJfKO4CLrsAqyDqsg67AKsg6rIOsA4N2+jtYuo1KT+u2aPhXS6+rq1NbWprS0NI/taWlpqqmp6dU5fv7znysjI8PjfwSmTp2qV155ReXl5Xr44Yf1zjvv6IYbblBbW5vXcyxevFj19fWu1/79+32ZBtCjcMm6RN4RXGQdVkHWYRVkHVZB1mEVZB0AvKt2tnYZ1n+tXeL67UqSHnroIa1YsUIVFRVKTEx0bZ81a5br38eNG6fx48frggsuUEVFha677rpO57Hb7bLb7f0yZsAfgcq6RN4R3sg6rIKswyrIOqyCrMMqyDqAaFV1pGNF+rAwXZE+fPhwxcbGqra21mN7bW2t0tPTuz32scce00MPPaQNGzZo/Pjx3e57/vnna/jw4dqzZ48vwwMChqzDKsg6rIKswyrIOqyCrMMqyDoAdFZ/slXHTrZKkrLCtbVLQkKCJk6cqPLyctc2h8Oh8vJy5eXldXncI488ogcffFDr1q3T1Vdf3eN1Dhw4oMOHD2vEiBG+DA8IGLIOqyDrsAqyDqsg67AKsg6rIOsA0FnVkfa2LsMH2TXQ3o8NV3x9IuqKFSuM3W43paWl5pNPPjHz5883Q4YMMTU1NcYYY26//XazaNEi1/4PPfSQSUhIMP/n//wfc/DgQdfr+PHjxhhjjh8/bn72s5+ZyspKs3fvXvPnP//ZXHXVVeaiiy4yTU1NvRoTTxKOfqG4x+GYdWPIe7Qj625kPbqRdTeyHt3IuhtZj25k3Y2sRzey7kbWoxv3183bZ9HS0mJWr15tWlpaQjiy4IiEuf3nti/NqJ//yfyv373n03He5uZL1n0upBtjzDPPPGOysrJMQkKCycnJMR988IHrvcmTJ5s5c+a4fh41apSR1OlVVFRkjDHm5MmTZsqUKeacc84x8fHxZtSoUeauu+5y/Q9Cb/Dljn6husfhlnVjyHu0I+tuZD26kXU3sh7dyLobWY9uZN2NrEc3su5G1qMb99eNQnr4efbtz8yon//J/GTlVp+O62sh3WaMMX1c1B5yDQ0NSklJUX19vZKTk0M9HAQB99iNzyK6cX/d+CyiG/fXjc8iunF/3fgsohv3143PIrpxf934LKIb99fN22fR2tqqtWvXatq0aYqPjw/xCAMrEuZ2///5SKv+ekA/yb9Y/5x/Ua+P8zY3X7LuU490AAAAAAAAAABCZd/hk5KkUcP670GjEoV0AAAAAAAAAECEqKaQDgAAAAAAAACAd02tbappaJIkjRo2sF+vTSEdAAAAAAAAABD29h9pX40+2B6noUn928OdQjoAAAAAAAAAIOw5+6NnDUuSzWbr12tTSAcAAAAAAAAAhL2qw42SpNH93NZFopAOAAAAAAAAAIgA1UfcK9L7G4V0AAAAAAAAAEDYq+po7TIqlUI6AAAAAAAAAACdOFu7sCIdAAAAAAAAAICznG5z6MDRU5LokQ4AAAAAAAAAQCcH65t02mGUEBej9OTEfr8+hXQAAAAAAAAAQFhz9kfPHDpAMTG2fr8+hXQAAAAAAAAAQFjb19EfPRRtXSQK6QAAAAAAAACAMFd9pH1FeigeNCpRSAcAAAAAAAAQIUpKSjR69GglJiYqNzdXmzZt6nb/119/XWPHjlViYqLGjRuntWvX9tNIEWhVHSvSR6VSSAcAAAAAAAAAr1auXKnCwkIVFRVpy5Ytys7OVkFBgQ4dOuR1//fff1+33Xab7rjjDm3dulUzZszQjBkztGPHjn4eOQLB2SN9VIhau8SF5KoAAAAAAAAA4IPHH39cd911l+bNmydJWrZsmdasWaPly5dr0aJFnfZ/6qmnNHXqVN13332SpAcffFBlZWV69tlntWzZMr/HUfG3r/XuQZvqPqhWbEx0rVNuczj0SZjObW9d+4r088+hkA4AAAAAAAAAnbS0tGjz5s1avHixa1tMTIzy8/NVWVnp9ZjKykoVFhZ6bCsoKNDq1au7vE5zc7Oam5tdPzc0NEiSWltb1draKkl6/a8HtGFfrP5j325/pxPmwndu9rgYnTswznUvfOE85sxjfTkPhXQAAAAAAAAAYa2urk5tbW1KS0vz2J6Wlqbdu70XfWtqarzuX1NT0+V1iouLtXTp0k7bN2zYoKSk9t7cSSdtunKYzdcpIACuGNqmDevX9ekcZWVlrn8/efJkr4+jkA4AAAAAAAAAkhYvXuyxir2hoUGZmZmaMmWKkpOTJUnXt7aqrKxM119/veLj40M11KBotdjcnH9x0Bt+NboJ9NNxjTFasmSJRowYoQEDBig/P1+fffaZP0MDAoqswyrIOqyCrMMqyDqsgqzDKsg6IA0fPlyxsbGqra312F5bW6v09HSvx6Snp/u0vyTZ7XYlJyd7vCQpPj7e4+VtW7S8rDa33vK5kB6Mp+M+8sgjevrpp7Vs2TJ9+OGHGjhwoAoKCtTU1OTr8ICAIeuwCrIOqyDrsAqyDqsg67AKsg60S0hI0MSJE1VeXu7a5nA4VF5erry8PK/H5OXleewvtbf16Gp/oDs2Y4zx5YDc3Fx94xvf0LPPPiupPbCZmZm65557vD4dd+bMmWpsbNSf/vQn17ZvfvObmjBhgpYtWyZjjDIyMvTTn/5UP/vZzyRJ9fX1SktLU2lpqWbNmtXpnGc3/a+vr1dWVpb279/v+i0Roovzz2iOHTumlJSUfrlmOGRdIu9WQ9bJulWQdbJuFWSdrFsFWSfrVkHWybpVhCLrvbFy5UrNmTNHzz33nHJycvTkk09q1apV2r17t9LS0jR79mydd955Ki4ultT+i6XJkyfroYce0vTp07VixQr95je/0ZYtW3TFFVf06pr19fUaMmSIR9ZbW1u1YcMGTZkyJSrbn1hpbj5l3figubnZxMbGmjfffNNj++zZs81NN93k9ZjMzEzzxBNPeGxbsmSJGT9+vDHGmM8//9xIMlu3bvXY5+/+7u/MP/3TP3k9Z1FRkZHEy4Kvzz//3JfI+i1csm4Mebfqi6zzssqLrPOyyous87LKi6zzssqLrPOyyqu/su6LZ555xmRlZZmEhASTk5NjPvjgA9d7kydPNnPmzPHYf9WqVebiiy82CQkJ5vLLLzdr1qzx6Xr79+8P+X3gFfzX/v37e8yCTw8bDcbTcZ3/9OUJumc3/T927JhGjRql6urqsPotWTA5f1tild/8On/TnZqa2i/XC5esS+SdrAcXWQ8fZD24yHr4IOvBRdbDB1kPLrIePsh6cJH18EHWw8fChQu1cOFCr+9VVFR02nbLLbfolltu8ft6GRkZ2r9/vwYPHiybzSYpuvNgtbkZY3T8+HFlZGT0eLxPhfRwYbfbZbfbO21PSUmJuhvckzMfemAFMTF+PR83opH3dmQ9+pH1dmQ9+pH1dmQ9+pH1dmQ9+pH1dmQ9+pH1dmTdemJiYjRy5Eiv70VzHqw0t97+MtCnb0Mwno7r/KevT9AFgomswyrIOqyCrMMqyDqsgqzDKsg6AIQPnwrpwXg67pgxY5Senu6xT0NDgz788EOeoIuQIeuwCrIOqyDrsAqyDqsg67AKsg4AYcSn7vrGmBUrVhi73W5KS0vNJ598YubPn2+GDBliampqjDHG3H777WbRokWu/d977z0TFxdnHnvsMbNr1y5TVFRk4uPjzfbt2137PPTQQ2bIkCHmrbfeMh9//LG5+eabzZgxY8ypU6d6NaampiZTVFRkmpqafJ1OxLLanEMx33DMujHc+2hH1t2499GNrLtx76MbWXfj3kc3su7GvY9uZN2Nex/drDZfX0Xz58PcuuZzId2YwD8d1+FwmF/96lcmLS3N2O12c91115lPP/3Un6EBAUXWYRVkHVZB1mEVZB1WQdZhFWQdAELPZowxoV4VDwAAAAAAAABAuOLRuwAAAAAAAAAAdINCOgAAAAAAAAAA3aCQDgAAAAAAAABANyikAwAAAAAAAADQjYgppJeUlGj06NFKTExUbm6uNm3a1O3+r7/+usaOHavExESNGzdOa9eu7aeRBoYv8y0tLZXNZvN4JSYm9uNo++bdd9/VjTfeqIyMDNlsNq1evbrHYyoqKnTVVVfJbrfrwgsvVGlpadDH2V+slnXJOnkn651ZLe9kvWtk3RNZJ+uRiqyTdSey7omsk/VIRdajM+sSeQ+0f/3Xf9WkSZOUlJSkIUOGhHo4fvP1Ox8p/Mm7NxFRSF+5cqUKCwtVVFSkLVu2KDs7WwUFBTp06JDX/d9//33ddtttuuOOO7R161bNmDFDM2bM0I4dO/p55P7xdb6SlJycrIMHD7peVVVV/TjivmlsbFR2drZKSkp6tf/evXs1ffp0XXvttdq2bZvuvfde3XnnnVq/fn2QRxp8Vsu6ZK28k3VPVss7We8aWfdE1sl6pCLrZN2JrHsi62Q9UpH16M26RN4DraWlRbfccosWLFgQ6qH4zZ/vQKTwNe9dMhEgJyfH3H333a6f29raTEZGhikuLva6/6233mqmT5/usS03N9f88Ic/DOo4A8XX+b700ksmJSWln0YXXJLMm2++2e0+999/v7n88ss9ts2cOdMUFBQEcWT9w2pZN8a6ebd61o2xXt7JetfIuieyHpnIOlkn625k3RNZj0xknaxbJevGkPdAiuRc+PodiFS9yXtXwn5FektLizZv3qz8/HzXtpiYGOXn56uystLrMZWVlR77S1JBQUGX+4cTf+YrSSdOnNCoUaOUmZmpm2++WTt37uyP4YZEJN/f7lgt6xJ570mk39/uWC3vZL17kXxve0LWyfqZIvne9oSsk/UzRfK97QlZJ+tniuR72xOyTtbPFsn3Fz3z9ztgNWFfSK+rq1NbW5vS0tI8tqelpammpsbrMTU1NT7tH078me8ll1yi5cuX66233tIf/vAHORwOTZo0SQcOHOiPIfe7ru5vQ0ODTp06FaJR9Z3Vsi6R955Ea9Yl6+WdrHePrHsi62Q9EpH1dmS9HVn3RNbJeiQi6+3Iuls05x3+fQesKC7UA0Df5eXlKS8vz/XzpEmTdOmll+q5557Tgw8+GMKRAYFH3mEVZB1WQdZhFWQdVkHWYRVkPfotWrRIDz/8cLf77Nq1S2PHju2nESHUwr6QPnz4cMXGxqq2ttZje21trdLT070ek56e7tP+4cSf+Z4tPj5eV155pfbs2ROMIYZcV/c3OTlZAwYMCNGo+s5qWZfIe0+iNeuS9fJO1rtH1j2RdbIeich6O7Lejqx7IutkPRKR9XZk3S2a896Vn/70p5o7d263+5x//vn9M5ggC8R3wArCvrVLQkKCJk6cqPLyctc2h8Oh8vJyj9/8nSkvL89jf0kqKyvrcv9w4s98z9bW1qbt27drxIgRwRpmSEXy/e2O1bIukfeeRPr97Y7V8k7WuxfJ97YnZJ2snymS721PyDpZP1Mk39uekHWyfqZIvrc9Ietk/WyRfH/9dc4552js2LHdvhISEkI9zIAIxHfAEgL73NPgWLFihbHb7aa0tNR88sknZv78+WbIkCGmpqbGGGPM7bffbhYtWuTa/7333jNxcXHmscceM7t27TJFRUUmPj7ebN++PVRT8Imv8126dKlZv369+fzzz83mzZvNrFmzTGJiotm5c2eopuCT48ePm61bt5qtW7caSebxxx83W7duNVVVVcYYYxYtWmRuv/121/5ffPGFSUpKMvfdd5/ZtWuXKSkpMbGxsWbdunWhmkLAWC3rxlgr72Tdk9XyTtbJOlkn62SdrJN1sk7WwxtZ90TWozfrxpD3QKuqqjJbt241S5cuNYMGDXJ9tsePHw/10Hqtp+9AJOsp770VEYV0Y4x55plnTFZWlklISDA5OTnmgw8+cL03efJkM2fOHI/9V61aZS6++GKTkJBgLr/8crNmzZp+HnHf+DLfe++917VvWlqamTZtmtmyZUsIRu2fjRs3GkmdXs45zpkzx0yePLnTMRMmTDAJCQnm/PPPNy+99FK/jztYrJZ1Y6yTd7LemdXyTtbnGGPIOlkn62TdjayT9UhF1sn6mceQdTeyHhlZN4a8B9qcOXO8fp4bN24M9dB80t13IJL1lPfeshljTECXuAMAAAAAAAAAEEXCvkc6AAAAAAAAAAChRCEdAAAAAAAAAIBuUEgHAAAAAAAAAKAbFNIBAAAAAAAAAOgGhXQAAAAAAAAAALpBIR0AAAAAAAAAgG5QSAcAAAAAAAAAoBsU0gEAAAAAAAAA6AaFdAAAAAAAAAAAukEhHQAAAAAAAACAblBIBwAAAAAAAACgG/8f5jmPB8FjB78AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -387,13 +270,13 @@ "basis_functions, _ = linear_FEM_basis(x_plot, n)\n", "#basis_functions = sawtooth_vector(x_plot, n)\n", "plot_basis_combinations(x_plot, basis_functions, n)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -410,13 +293,13 @@ " #Phi = sawtooth_vector(x, self.num_qubits)\n", " #Phi = Phi / torch.linalg.norm(Phi)\n", " qml.AmplitudeEmbedding(features=Phi, wires=self.wires, normalize=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -588,13 +471,13 @@ " self.wires[0],\n", " )\n", "\n" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "from torch import nn\n", @@ -609,13 +492,13 @@ " basis, norms = linear_FEM_basis(x, self.n)\n", " basis *= norms\n", " return torch.matmul(basis, self.coefficients)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -639,28 +522,13 @@ " print(\"norms: \", norms)\n", " \n", " return out" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ─╭QubitStateVector(M0)──Rot(2.42,0.96,6.12)─┤ <𝓗(-2.50)>\n", - "1: ─├QubitStateVector(M0)──Rot(1.07,3.21,4.06)─┤ \n", - "2: ─├QubitStateVector(M0)──Rot(1.74,5.69,4.00)─┤ \n", - "3: ─├QubitStateVector(M0)──Rot(4.42,4.18,4.04)─┤ \n", - "4: ─╰QubitStateVector(M0)──Rot(2.29,0.72,6.19)─┤ \n", - "torch.Size([2, 1])\n", - "tensor([[-2.2204e-16],\n", - " [ 1.4323e+00]], dtype=torch.float64, grad_fn=)\n" - ] - } - ], "source": [ "from qulearn import qlayer\n", "import pennylane as qml\n", @@ -760,31 +628,13 @@ "print(model(x))\n", "#model = LinearFEMModel(num_qubits)\n", "#model = CombinedModel(model1, model2)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([200, 1])\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAHWCAYAAACFeEMXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHWUlEQVR4nO3deXgT1foH8G+SJl1oSyktlKVQWctSFkFqEQSlLIIormyyiegFUbGAgiJQURFFLlfWn142UQQREK4iUkEQASmyyL4KstkFSpvuTZPz++OQlNA1y5Cm/X6eh4d2MpOcvJlm5p1z5j0qIYQAEREREREROYXa1Q0gIiIiIiKqSJhkERERERERORGTLCIiIiIiIidikkVERERERORETLKIiIiIiIiciEkWERERERGREzHJIiIiIiIiciImWURERERERE7EJIuIiIiIiMiJmGQREdlpx44dUKlU2LFjh6ubYmXlypUIDw+HVqtFQECAzdtfvHgRKpUKs2fPdn7j7pCRkYEXXngBISEhUKlUGDdunOKvaY/p06dDpVK57PUvX74MLy8v7N6922VtuBvCwsIwfPhwu7ZVqVSYPn16oeUfffQRwsPDYTKZbHq+EydOwMPDA8eOHSv02IABA/Dss8/a1U4iqhyYZBER3WH58uVQqVSWf15eXmjSpAnGjh2LxMREp7zG5s2bizwhdNSpU6cwfPhwNGzYEJ9//jk+++yzu94GW3zwwQdYvnw5Ro8ejZUrV2LIkCEua0tWVhamT59e7pJmAHj33XcRGRmJBx54wNVNcSt6vR6zZs3Cm2++CbXatlOe5s2bo0+fPpg6dWqhx958802sW7cOf/75p7OaSkQVDJMsIqJivPvuu1i5ciXmz5+Pjh07YtGiRYiKikJWVpbDz71582bExsY6oZXWduzYAZPJhP/85z8YPnx4iVfblWqDLbZv3477778f06ZNw3PPPYd27dq5rC1ZWVmIjY0tMsmaMmUKsrOz736jACQnJ2PFihX417/+5ZLXd2dLly5Ffn4+Bg4caNf2//rXv7BhwwacP3/eannbtm3Rvn17fPLJJ85oJhFVQEyyiIiK8cgjj+C5557DCy+8gOXLl2PcuHG4cOECNm7c6OqmFSspKQkA7Bom6ApJSUlu0VYPDw94eXm55LW//PJLeHh4oG/fvi55fXe2bNkyPPbYY3Z/dtHR0ahWrRpWrFhR6LFnn30W69evR0ZGhqPNJKIKiEkWEVEZPfzwwwCACxculLje2rVr0a5dO3h7eyMoKAjPPfccrl69anl8+PDhWLBgAQBYDUsszcKFC9GiRQt4enqidu3aePnll5Gammp5PCwsDNOmTQMABAcHF3uPii1t+Oyzz9CwYUN4enrivvvuw/79+wutc+rUKTz99NMIDAyEl5cX2rdvj02bNpX4Xsz3s124cAE//PCD5fUvXrxoGa558eLFIre5vaepa9euaNmyJU6cOIGHHnoIPj4+qFOnDj766KNCr5mTk4Pp06ejSZMm8PLyQq1atfDkk0/i/PnzuHjxIoKDgwEAsbGxlvaY41fUPVn5+fmYMWOGJT5hYWF46623kJuba7VeWFgYHn30Ufz222/o0KEDvLy80KBBA3zxxRclxsjsu+++Q2RkJHx9fS3LTp48CW9vbwwdOtRq3d9++w0ajQZvvvlmmZ77dub4fvPNN4iNjUWdOnXg5+eHp59+GmlpacjNzcW4ceNQo0YN+Pr6YsSIEYXea1ljIoTAe++9h7p168LHxwcPPfQQjh8/XmS7UlNTMW7cOISGhsLT0xONGjXCrFmzSr3H6sKFCzhy5Aiio6Otlk+bNg1qtRrbtm2zWv7iiy9Cp9NZDQHUarXo2rVrkRdWunfvjszMTMTFxZXYDiKqpAQREVlZtmyZACD2799vtfw///mPACAWL14shBDil19+EQDEL7/8Umjb++67T/z73/8WkyZNEt7e3iIsLEzcvHlTCCHEnj17RPfu3QUAsXLlSsu/kkybNk0AENHR0WLevHli7NixQqPRiPvuu0/k5eUJIYTYsGGDeOKJJwQAsWjRIrFy5Urx559/Fvl8JbXhwoULAoBo27ataNSokZg1a5b46KOPRFBQkKhbt67l9YQQ4tixY6Jq1aqiefPmYtasWWL+/PniwQcfFCqVSqxfv77Y95OQkCBWrlwpgoKCRJs2bSyvn5GRYYnhhQsXrLYpKt5dunQRtWvXFqGhoeK1114TCxcuFA8//LAAIDZv3mxZLz8/X3Tr1k0AEAMGDBDz588XM2fOFA8//LD47rvvREZGhli0aJEAIJ544glLe8zxM8f/dsOGDRMAxNNPPy0WLFgghg4dKgCIfv36Wa1Xv3590bRpU1GzZk3x1ltvifnz54t7771XqFQqcezYsWJjJIQQeXl5wtvbW8TExBR67OOPPxYAxMaNG4UQQmRkZIiGDRuK5s2bi5ycnBKftyjm+LZp00ZERUWJTz/9VLz66qtCpVKJAQMGiEGDBolHHnlELFiwQAwZMkQAELGxsXbFZMqUKQKA6N27t5g/f754/vnnRe3atUVQUJAYNmyYZb3MzEzRqlUrUb16dfHWW2+JxYsXi6FDhwqVSiVee+01q+cEIKZNm2b5/csvvxQAxJEjRwrFtG3btqJ+/fpCr9cLIYTYsmWLACBmzJhRKC7vvfeeUKvVIi0tzWq5wWAQ3t7eYvz48WUNMRFVIkyyiIjuYD7J//nnn0VycrK4fPmyWL16tahevbrw9vYWV65cEUIUPunPy8sTNWrUEC1bthTZ2dmW5/v+++8FADF16lTLspdffrnQSXtxkpKShE6nEz169BBGo9GyfP78+QKAWLp0qWWZORlITk4u9XmLa4M5yapevbpISUmxLN+4caMAIP73v/9ZlnXr1k1ERERYndSbTCbRsWNH0bhx41LbUL9+fdGnTx+rZbYmWQDEF198YVmWm5srQkJCxFNPPWVZtnTpUgFAzJkzp1AbTCaTEEKI5OTkQifqZncmWYcPHxYAxAsvvGC13oQJEwQAsX37dqv3CED8+uuvlmVJSUnC09Oz1BP0c+fOCQBi3rx5hR4zGo2iU6dOombNmuL69evi5ZdfFh4eHoUuDpSVOb4tW7a0SqQHDhwoVCqVeOSRR6zWj4qKEvXr17f8XtaYmPfnPn36WGIvhBBvvfWWAGCVZM2YMUNUqVJFnDlzxuo5J02aJDQajbh06ZJl2Z2fnTmRS09PL/Rejx49KnQ6nXjhhRfEzZs3RZ06dUT79u2FwWAotO6qVasEALFv375CjzVp0qRQXIiIhBCCwwWJiIoRHR2N4OBghIaGYsCAAfD19cWGDRtQp06dItf/448/kJSUhDFjxljdA9KnTx+Eh4fjhx9+sKsdP//8M/Ly8jBu3DirCmmjRo2Cv7+/3c9bmv79+6NatWqW3zt37gwA+OuvvwAAKSkp2L59O5599lmkp6fj+vXruH79Om7cuIGePXvi7NmzVsMkleLr64vnnnvO8rtOp0OHDh0s7QSAdevWISgoCK+88kqh7e0pzb5582YAQExMjNXy8ePHA0Chz6R58+aW+AFyOGfTpk2t2liUGzduAIDV52CmVquxfPlyZGRk4JFHHsHChQsxefJktG/f3ub3c7uhQ4dCq9Vafo+MjIQQAs8//7zVepGRkbh8+TLy8/MBlD0m5v35lVdesYp9UeX7165di86dO6NatWqW/ev69euIjo6G0WjEr7/+Wuz7uHHjBjw8PKyGWZq1bNkSsbGx+O9//4uePXvi+vXrWLFiBTw8PAqta4799evXi3ysqOVERIW/TYiICACwYMECNGnSBB4eHqhZsyaaNm1aYhnov//+GwDQtGnTQo+Fh4fjt99+s6sdxT2vTqdDgwYNLI87W7169ax+N59s3rx5EwBw7tw5CCHwzjvv4J133inyOZKSkopNSp2lbt26hRKlatWq4ciRI5bfz58/j6ZNmxZ5Em2Pv//+G2q1Go0aNbJaHhISgoCAgEKfyZ2xNLfRHMvSCCGKXN6wYUNMnz4dEydORMuWLYv9HGxxZ1urVq0KAAgNDS203GQyIS0tDdWrVy9zTMz/N27c2Gq94ODgQsnk2bNnceTIEcv9cncyF3qxx8SJE7F69WrEx8fjgw8+QPPmzYtczxz7opJxIYRL508jovKLSRYRUTE6dOjgcK+AO9NoNEUuN590mgsPTJgwAT179ixy3TtPuMuiuJNWo9FY5PLS2qmksp5g29vG6tWrA0CJydjWrVsBANeuXcONGzcQEhJSpjYVp7i2lvU9ODPpMJlM6N69O954440iH2/SpEmx21avXh35+flIT0+Hn59focf/+usvnD17FgBw9OjRYp/HHPugoKAiH7szWSQiAphkERE5Tf369QEAp0+ftlQiNDt9+rTlccC2E9Hbn7dBgwaW5Xl5ebhw4UKh6mll5ejJsLktWq3W7jYUxdybcXvlRAAO9dg1bNgQ+/btg8FgsBoKdztbPxOTyYSzZ8+iWbNmluWJiYlITU21+qwdUa9ePXh7exdb0XLx4sWIi4vD+++/j5kzZ+Kll15y2RQDZY2J+f+zZ89a7c/JycmFksmGDRsiIyPDrv0rPDwcgKwy2KpVK6vHTCYThg8fDn9/f4wbNw4ffPABnn76aTz55JOFnufChQtQq9WFErr8/HxcvnwZjz32mM1tI6KKj/dkERE5Sfv27VGjRg0sXrzYqmT1jz/+iJMnT6JPnz6WZVWqVAFQOJEoSnR0NHQ6HT799FOrXoMlS5YgLS3N6nltYUsbilKjRg107doV//d//4d//vmn0OPJycl2PW/Dhg0BwOp+G6PRiM8++8yu5wOAp556CtevX8f8+fMLPWaOqY+PD4CyxaN3794AgLlz51otnzNnDgDY/ZncSavVon379vjjjz8KPXbhwgVMnDgRTz31FN566y3Mnj0bmzZtKnNpeGcra0yio6Oh1Woxb948q/35zu0AORfV3r178dNPPxV6LDU11XI/WFGioqIAoMjYzZkzB3v27MFnn32GGTNmoGPHjhg9enSR91cdOHAALVq0sAybNDtx4gRycnLQsWPHYttARJUXe7KIiJxEq9Vi1qxZGDFiBLp06YKBAwciMTER//nPfxAWFobXX3/dsm67du0AAK+++ip69uwJjUaDAQMGFPm8wcHBmDx5MmJjY9GrVy889thjOH36NBYuXIj77rvPquiDLWxpQ3EWLFiATp06ISIiAqNGjUKDBg2QmJiIvXv34sqVK1ZzDpVVixYtcP/992Py5MlISUlBYGAgVq9eXeIJdWmGDh2KL774AjExMYiPj0fnzp2RmZmJn3/+GWPGjMHjjz8Ob29vNG/eHGvWrEGTJk0QGBiIli1bomXLloWer3Xr1hg2bBg+++wzpKamokuXLoiPj8eKFSvQr18/PPTQQ3a39U6PP/443n77bej1evj7+wOApRCFt7c3Fi1aBAB46aWXsG7dOrz22muIjo5G7dq1AQDLly/HiBEjsGzZMgwfPtxp7bpTWWMSHByMCRMmYObMmXj00UfRu3dvHDp0CD/++GOhIXkTJ07Epk2b8Oijj2L48OFo164dMjMzcfToUXz77be4ePFikcP4ANnT2rJlS/z8889WRTtOnjyJd955B8OHD7dM8Lx8+XK0adMGY8aMwTfffGNZ12AwYOfOnRgzZkyh54+Li4OPjw+6d+/ucOyIqAJySU1DIqJyrLh5su5UVElxIYRYs2aNaNu2rfD09BSBgYFi8ODBlrLvZvn5+eKVV14RwcHBQqVSlamc+/z580V4eLjQarWiZs2aYvTo0Za5t8xsKeFeXBvMJdw//vjjQtugiBLn58+fF0OHDhUhISFCq9WKOnXqiEcffVR8++23pbahqBLu5ueMjo4Wnp6elvml4uLiiizh3qJFi0LbDxs2zKq8uBBCZGVlibffflvcc889QqvVipCQEPH000+L8+fPW9bZs2ePaNeundDpdFbvtah5sgwGg4iNjbU8X2hoqJg8eXKhOaqKe49dunQRXbp0KSVCQiQmJgoPDw+rudTMc7atW7fOat1Lly4Jf39/0bt3b8uyefPmCQBiy5YtJb6OeX9eu3at1fLi/h6K2tfKGhOj0ShiY2NFrVq1hLe3t+jatas4duyYqF+/vlUJdyGESE9PF5MnTxaNGjUSOp1OBAUFiY4dO4rZs2dblZovat+cM2eO8PX1FVlZWUIIuc/fd999om7duiI1NdVqXXNM16xZY1n2448/CgDi7NmzheIVGRkpnnvuuWKiSUSVnUqIu3BnMBEREdlt5MiROHPmDHbt2mXzts8++ywuXryI+Ph4BVpWvqWlpaFBgwb46KOPMHLkSJu379evH1QqFTZs2GC1/PDhw7j33ntx8OBBtGnTxkmtJaKKhEkWERFROXfp0iU0adIE27ZtwwMPPFDm7YQQqFmzJr788kv06NFDwRaWX7NmzcKyZctw4sSJEqdguNPJkycRERGBw4cPFxoyOmDAAJhMJquhhUREt2OSRURERERE5ESsLkhERERERORETLKIiIiIiIiciEkWERERERGREzHJIiIiIiIiciJORlwKk8mEa9euwc/PDyqVytXNISIiIiIiFxFCID09HbVr1y6xYimTrFJcu3YNoaGhrm4GERERERGVE5cvX0bdunWLfZxJVin8/PwAyED6+/u7tC0GgwFbt25Fjx49oNVqXdqWiojxVRbjqyzGV1mMr7IYX+UxxspifJVVnuKr1+sRGhpqyRGKwySrFOYhgv7+/uUiyfLx8YG/v7/Ld7CKiPFVFuOrLMZXWYyvshhf5THGymJ8lVUe41vabUQsfEFEREREROREbpdkLViwAGFhYfDy8kJkZCTi4+NLXH/u3Llo2rQpvL29ERoaitdffx05OTl3qbVERERERFTZuFWStWbNGsTExGDatGk4ePAgWrdujZ49eyIpKanI9VetWoVJkyZh2rRpOHnyJJYsWYI1a9bgrbfeusstJyIiIiKiysKt7smaM2cORo0ahREjRgAAFi9ejB9++AFLly7FpEmTCq2/Z88ePPDAAxg0aBAAICwsDAMHDsS+ffuc2i4hBPLz82E0Gp36vHcyGAzw8PBATk6O4q/lrjQaDTw8PFhun4iIiIhcxm2SrLy8PBw4cACTJ0+2LFOr1YiOjsbevXuL3KZjx4748ssvER8fjw4dOuCvv/7C5s2bMWTIkGJfJzc3F7m5uZbf9Xo9AJngGAyGQusbDAYkJiYiOzvb3rdWZkIIhISE4NKlS0wiSuDt7Y2aNWvafGOk+fMt6nMmxzG+ymJ8lcX4KovxVR5jrCzGV1nlKb5lbYNKCCEUbotTXLt2DXXq1MGePXsQFRVlWf7GG29g586dxfZOffrpp5gwYYKlt+lf//oXFi1aVOzrTJ8+HbGxsYWWr1q1Cj4+PoWW16xZE76+vggMDISHh9vkrBVWfn4+UlJSkJGRgcTERFc3h4iIiIgqkKysLAwaNAhpaWklVh6v0FnBjh078MEHH2DhwoWIjIzEuXPn8Nprr2HGjBl45513itxm8uTJiImJsfxuroXfo0ePQoHMzc3FpUuXUK9evSITMGczzzDt5+fHnqwS+Pv749KlS2jZsiU8PT3LvJ3BYEBcXBy6d+9ebsqDViSMr7IYX2UxvspifJXHGCuL8VVWeYqveZRbadwmyQoKCoJGoynUO5GYmIiQkJAit3nnnXcwZMgQvPDCCwCAiIgIZGZm4sUXX8Tbb78Ntbpw3Q9PT88iT8y1Wm2hD9VoNEKlUsHDw6PI53I2k8kEQNblvxuv567M92R5eHjY9YdY1GdNzsP4KovxVRbjqyzGV3mMsbIYX2WVh/iW9fXd5kxdp9OhXbt22LZtm2WZyWTCtm3brIYP3i4rK6tQMqLRaADIXiEiIiIiIiJnc5ueLACIiYnBsGHD0L59e3To0AFz585FZmampdrg0KFDUadOHcycORMA0LdvX8yZMwdt27a1DBd855130LdvX0uyRURERERE5ExulWT1798fycnJmDp1KhISEtCmTRts2bIFNWvWBABcunTJqudqypQpUKlUmDJlCq5evYrg4GD07dsX77//vqveQqXTtWtXtGnTBnPnzi3T+suXL8e4ceOQmpqqaLuIiIiIiJTiVkkWAIwdOxZjx44t8rEdO3ZY/e7h4YFp06Zh2rRpd6FlREREREREbnRPFhERERERkTtwu56s8kwIgWyDUbHnN5lMyM4zwiMvv1BBD2+txqay7l27dkVERAQ0Gg1WrFgBnU6H9957D4MGDcLYsWPx7bffombNmpg3bx4eeeQRAMDOnTsxceJE/PnnnwgMDMSwYcPw3nvvWeYHy8zMxOjRo7F+/Xr4+flhwoQJhV43NzcXb7/9Nr7++mukpqaiZcuWmDVrFrp27Wp/YIiIypkcgxFjVx3ClZtZrm6KWxBCQJ+uwcK/9nCKEoUwxspifJUlhEAQ1Ojt6obYgEmWE2UbjGg+9SeXvPaJd3vCR2fbx7lixQq88cYbiI+Px5o1azB69Ghs2LABTzzxBN566y38+9//xpAhQ3Dp0iXcvHkTvXv3xvDhw/HFF1/g1KlTGDVqFLy8vDB9+nQAwMSJE7Fz505s3LgRNWrUwFtvvYWDBw+iTZs2ltccO3YsTpw4gdWrV6N27drYsGEDevXqhaNHj6Jx48ZOjAgRkevsu5CCn09yQnTbqPBPVoarG1HBMcbKYnyVpKrq6hbYhklWJda6dWtMmTIFgJyE+cMPP0RQUBBGjRoFAJg6dSoWLVqEI0eO4H//+x9CQ0Mxf/58qFQqhIeH49q1a3jzzTcxdepUZGVlYcmSJfjyyy/RrVs3ADKJq1u3ruX1Ll26hGXLluHSpUuoXbs2AGDChAnYsmULli1bhg8++OAuR4CISBnJ6bkAgNZ1q2Jiz3AXt6b8yzfmI35fPDpEdoCHhqcmSmCMlcX4KivfmI/jB/e5uhk24V7gRN5aDU6821Ox5zeZTEjXp8PP36/I4YK2atWqleVnjUaD6tWrIyIiwrLMXLUxKSkJJ0+eRFRUlFUX+AMPPICMjAxcuXIFN2/eRF5eHiIjIy2PBwYGomnTppbfjx49CqPRiCZNmli1Izc3F9WrV7e5/URE5dX1DJlkNQz2RafGQS5uTflnMBiQdlrggYbVXT7RaEXFGCuL8VWWjK+rW2EbJllOpFKpbB6yZwuTyYR8nQY+Oo9CSZY97vwSUKlUVsvMCZXJZHL4tQAgIyMDGo0GBw4cKDRPma+vr1Neg4ioPDD3ZAX7ebq4JURE5ApMsqhMmjVrhnXr1kEIYUm+du/eDT8/P9StWxeBgYHQarXYt28f6tWrBwC4efMmzpw5gy5dugAA2rZtC6PRiKSkJHTu3Nll74WISGnmnqwgXyZZRESVEUu4U5mMGTMGly9fxiuvvIJTp05h48aNmDZtGmJiYqBWq+Hr64uRI0di4sSJ2L59O44dO4bhw4db9bg1adIEgwcPxtChQ7F+/XpcuHAB8fHxmDlzJn744QcXvjsiIucy92QF+elc3BIiInIF9mRRmdSpUwebN2/GxIkT0bp1awQGBmLkyJGWwhkA8PHHHyMjIwN9+/aFn58fxo8fj7S0NKvnWbZsGd577z2MHz8eV69eRVBQEO6//348+uijd/stEREpxtyTFezr5eKWEBGRKzDJqqR27NhRaNnFixcLLRNCWH7u0qUL4uPji31OX19frFy5EitXrrQsmzhxotU6Wq0WsbGxiI2NLfI5hg8fjuHDh5fceCKico49WURElRuHCxIRETmRwWjCzSwDACCY92QREVVKTLKIiIicKCUzDwCgUatQzYc9WURElRGTLCIiIicyDxWsXkUHtVpVytpERFQRMckiIiJyomSWbyciqvSYZBERETlRQdELJllERJUVkywiIiInKijfziSLiKiyYpJFRETkRCzfTkRETLKIiIic6HqGrC7IniwiosqLSRYREZETXb/VkxXMe7KIiCotJlmkqK5du2LcuHFlXn/58uUICAhQrD1EREpL5j1ZRESVHpMsKtf++ecfDBo0CE2aNIFarbYpYSMicgVz4QtWFyQiqryYZFG5lpubi+DgYEyZMgWtW7d2dXOIiEqUl29CapYBAOfJIiKqzJhkOZMQQF6msv8MWUUvF8Kmpnbt2hWvvPIKxo0bh2rVqqFmzZr4/PPPkZmZiREjRsDPzw+NGjXCjz/+aNlm586d6NChAzw9PVGrVi1MmjQJ+fn5lsczMzMxdOhQ+Pr6olatWvjkk08KvW5ubi4mTJiAOnXqoEqVKoiMjMSOHTuKbWdYWBj+85//YOjQoahatapN75GI6G67kSl7sTzUKgR4a13cGiIichUPVzegQjFkAR/UVuzp1QACinvwrWuAropNz7dixQq88cYbiI+Px5o1azB69Ghs2LABTzzxBN566y38+9//xpAhQ3Dp0iXcvHkTvXv3xvDhw/HFF1/g1KlTGDVqFLy8vDB9+nQAwMSJE7Fz505s3LgRNWrUwFtvvYWDBw+iTZs2ltccO3YsTpw4gdWrV6N27drYsGEDevXqhaNHj6Jx48Z2RIWIqPwwl2+v7quDWq1ycWuIiMhV2JNVibVu3RpTpkxB48aNMXnyZHh5eSEoKAijRo1C48aNMXXqVNy4cQNHjhzBwoULERoaivnz5yM8PBz9+vVDbGwsPvnkE5hMJmRkZGDJkiWYPXs2unXrhoiICKxYscKqp+vSpUtYtmwZ1q5di86dO6Nhw4aYMGECOnXqhGXLlrkwEkREzmGZiJj3YxERVWrsyXImrY/sUVKIyWSCPj0d/n5+UKvvyI+1PjY/X6tWrSw/azQaVK9eHREREZZlNWvWBAAkJSXh5MmTiIqKgkpVcGX2gQceQEZGBq5cuYKbN28iLy8PkZGRlscDAwPRtGlTy+9Hjx6F0WhEkyZNrNqRm5uL6tWr29x+IqLy5nq6nCOL92MREVVuTLKcSaWyecieTUwmQGuUr3FnkmUHrdb6fgGVSmW1zJxQmUwmh18LADIyMqDRaHDgwAFoNBqrx3x9fZ3yGkRErsTy7UREBDDJojJq1qwZ1q1bByGEJfnavXs3/Pz8ULduXQQGBkKr1WLfvn2oV68eAODmzZs4c+YMunTpAgBo27YtjEYjkpKS0LlzZ5e9FyIipZjvyWL5diKiyo33ZFGZjBkzBpcvX8Yrr7yCU6dOYePGjZg2bRpiYmKgVqvh6+uLkSNHYuLEidi+fTuOHTuG4cOHWw1rbNKkCQYPHoyhQ4di/fr1uHDhAuLj4zFz5kz88MMPxb724cOHcfjwYWRkZCA5ORmHDx/GiRMn7sbbJiKyibkni8MFiYgqN/ZkUZnUqVMHmzdvxsSJE9G6dWsEBgZi5MiRmDJlimWdjz/+GBkZGejbty/8/Pwwfvx4pKWlWT3PsmXL8N5772H8+PG4evUqgoKCcP/99+PRRx8t9rXbtm1r+fnAgQNYtWoV6tevj4sXLzr9fRIROeJ6OgtfEBERk6xKq6i5qYpKWsRt82916dIF8fHxxT6nr68vVq5ciZUrV1qWTZw40WodrVaL2NhYxMbGFvkcw4cPx/Dhw4ttAxFReVbQk6VzcUuIiMiVOFyQiIjIScw9WTXYk0VEVKkxySIiInKC3Hwj9DlybkDek0VEVLkxySIiInKC6xlyjiytRoWq3tpS1iYiooqMSRYREZETmIcKBvl6Wk3cTkRElY/bJVkLFixAWFgYvLy8EBkZWWIhBgBITU3Fyy+/jFq1asHT0xNNmjTB5s2bndomFmYoX/h5EJErJKezfDsREUluVV1wzZo1iImJweLFixEZGYm5c+eiZ8+eOH36NGrUqFFo/by8PHTv3h01atTAt99+izp16uDvv/9GQECAU9qj1crhIFlZWfD29nbKc5LjsrKyABR8PkREd8P1DJZvJyIiya2SrDlz5mDUqFEYMWIEAGDx4sX44YcfsHTpUkyaNKnQ+kuXLkVKSgr27NljOeEOCwtzWns0Gg0CAgKQlJQEAPDx8VF0iIjJZEJeXh5ycnKsJvklSQiBrKwsJCUlISAgABqNxtVNIqJKpKAni+XbiYgqO7dJsvLy8nDgwAFMnjzZskytViM6Ohp79+4tcptNmzYhKioKL7/8MjZu3Ijg4GAMGjQIb775ZrEn4Lm5ucjNzbX8rtfrAQAGgwEGg6HQ+tWrV4fRaERiYqIjb69MhBDIycmBl5cXx/uXwN/fH9WrVy/y8yqJeX1bt6OyYXyVxfgqqyzxTdJnAwCq+2j5OdiI+6/yGGNlMb7KKk/xLWsb3CbJun79OoxGI2rWrGm1vGbNmjh16lSR2/z111/Yvn07Bg8ejM2bN+PcuXMYM2YMDAYDpk2bVuQ2M2fOLHKi3K1bt8LHx6fY9qlUKvaclANGo9Hhe7Li4uKc1BoqCuOrLMZXWSXF9+g5NQA1Ei+dw+bNZ+9eoyoQ7r/KY4yVxfgqqzzE13xbSmncJsmyh8lkQo0aNfDZZ59Bo9GgXbt2uHr1Kj7++ONik6zJkycjJibG8rter0doaCh69OgBf3//u9X0IhkMBsTFxaF79+6830gBjK+yGF9lMb7KKkt8V16LB26k4sEObdE7IuQut9C9cf9VHmOsLMZXWeUpvuZRbqVxmyQrKCgIGo2m0LC8xMREhIQUfTCrVasWtFqtVQ9Ts2bNkJCQgLy8POh0hcfNe3p6wtOz8E3LWq3W5R+qWXlqS0XE+CqL8VUW46uskuKbli0nIq7h783PwE7cf5XHGCuL8VVWeYhvWV/fbaon6HQ6tGvXDtu2bbMsM5lM2LZtG6Kioorc5oEHHsC5c+dgMpksy86cOYNatWoVmWARERHZS58jx+n7cyJiIqJKz22SLACIiYnB559/jhUrVuDkyZMYPXo0MjMzLdUGhw4dalUYY/To0UhJScFrr72GM2fO4IcffsAHH3yAl19+2VVvgYiIKqi0bJlkVWWSRURU6bnNcEEA6N+/P5KTkzF16lQkJCSgTZs22LJli6UYxqVLl6xKm4eGhuKnn37C66+/jlatWqFOnTp47bXX8Oabb7rqLRARUQWUm29EjkGOmvD3YpJFRFTZuVWSBQBjx47F2LFji3xsx44dhZZFRUXh999/V7hVRERUmelv3Y+lUgF+Xm53aCUiIidzq+GCRERE5ZF5qKCfpwfUas5jSERU2THJIiIicpA5yWLRCyIiAphkEREROcxcWZBFL4iICGCSRURE5DA9KwsSEdFtmGQRERE5yJxksbIgEREBTLKIiIgcxjmyiIjodkyyiIiIHFRQ+ILl24mIiEkWERGRw8zzZLEni4iIACZZREREDuNwQSIiuh2TLCIiIgdxniwiIrodkywiIiIHmefJYpJFREQAkywiIiKHcbggERHdjkkWERGRgzhPFhER3Y5JFhERkQNMJoH0XFYXJCKiAkyyiIiIHJCekw8h5M+cJ4uIiAAmWURERA4xF73w0qrh6aFxcWuIiKg8YJJFRETkABa9ICKiOzHJIiIickAai14QEdEdmGQRERE5QM+eLCIiugOTLCIiIgdwuCAREd2JSRYREZEDzIUv/JlkERHRLUyyiIiIHMCeLCIiuhOTLCIiIgcUFL7gHFlERCQxySIiInKAPjsfAIcLEhFRASZZREREDuBwQSIiuhOTLCIiIgdYhgsyySIioluYZBERETnAXF2QPVlERGTGJIuIiMgBnIyYiIjuxCSLiIjITkIIFr4gIqJCmGQRERHZKcdgQp7RBIA9WUREVIBJFhERkZ3MRS80ahWq6DQubg0REZUXTLKIiIjsZC564e/lAZVK5eLWEBFRecEki4iIyE6cI4uIiIrCJIuIiMhOaVmcI4uIiApjkkVERGQnzpFFRERFcbska8GCBQgLC4OXlxciIyMRHx9fpu1Wr14NlUqFfv36KdtAIiKqNMzDBdmTRUREt3OrJGvNmjWIiYnBtGnTcPDgQbRu3Ro9e/ZEUlJSidtdvHgREyZMQOfOne9SS4mIqDKwzJHlxSSLiIgKuFWSNWfOHIwaNQojRoxA8+bNsXjxYvj4+GDp0qXFbmM0GjF48GDExsaiQYMGd7G1RERU0bHwBRERFcXD1Q0oq7y8PBw4cACTJ0+2LFOr1YiOjsbevXuL3e7dd99FjRo1MHLkSOzatavU18nNzUVubq7ld71eDwAwGAwwGAwOvAPHmV/f1e2oqBhfZTG+ymJ8lVVcfG9myeOFr07N2DuA+6/yGGNlMb7KKk/xLWsb3CbJun79OoxGI2rWrGm1vGbNmjh16lSR2/z2229YsmQJDh8+XObXmTlzJmJjYwst37p1K3x8fGxqs1Li4uJc3YQKjfFVFuOrLMZXWXfG99xFNQA1Lp0/hc0ZJ13TqAqE+6/yGGNlMb7KKg/xzcrKKtN6bpNk2So9PR1DhgzB559/jqCgoDJvN3nyZMTExFh+1+v1CA0NRY8ePeDv769EU8vMYDAgLi4O3bt3h1bLoSnOxvgqi/FVFuOrrOLi++U/+4GbN/FA+7boHRHiwha6N+6/ymOMlcX4Kqs8xdc8yq00bpNkBQUFQaPRIDEx0Wp5YmIiQkIKH9jOnz+Pixcvom/fvpZlJpMJAODh4YHTp0+jYcOGhbbz9PSEp6dnoeVardblH6pZeWpLRcT4KovxVRbjq6w745ueIwtfVPP1YtydgPuv8hhjZTG+yioP8S3r67tN4QudTod27dph27ZtlmUmkwnbtm1DVFRUofXDw8Nx9OhRHD582PLvsccew0MPPYTDhw8jNDT0bjafiIgqID0LXxARURHcpicLAGJiYjBs2DC0b98eHTp0wNy5c5GZmYkRI0YAAIYOHYo6depg5syZ8PLyQsuWLa22DwgIAIBCy4mIiOzB6oJERFQUt0qy+vfvj+TkZEydOhUJCQlo06YNtmzZYimGcenSJajVbtM5R0REbizfaEJmnhEAJyMmIiJrbpVkAcDYsWMxduzYIh/bsWNHidsuX77c+Q0iIqJKSX/rfiwA8Pdyu8MpEREpiN0+REREdjAPFayi08BDw8MpEREV4FGBiIjIDix6QURExWGSRUREZAdzTxbvxyIiojsxySIiIrIDkywiIioOkywiIiI76HM4XJCIiIrGJIuIiMgOnCOLiIiKwySLiIjIDvpsWcLd34tJFhERWWOSRUREZAf2ZBERUXGYZBEREdlBbyl8wYmIiYjIGpMsIiIiO7DwBRERFYdJFhERkR04XJCIiIrDJIuIiMgOnCeLiIiKwySLiIjIDnr2ZBERUTGYZBEREdlICAF9jizhziSLiIjuxCSLiIjIRpl5RhhNAgDnySIiosKYZBEREdnIfD+WTqOGl5aHUiIissYjAxERkY3SsgrmyFKpVC5uDRERlTdMsoiIiGxkniOLlQWJiKgoTLKIiIhsxDmyiIioJEyyiIiIbGSZI4tFL4iIqAhMsoiIiGzEObKIiKgkTLKIiIhsxCSLiIhKwiSLiIjIRuaJiP29PVzcEiIiKo+YZBEREdmIhS+IiKgkTLKIiIhsxMIXRERUEiZZRERENuI9WUREVBImWURERDbicEEiIioJkywiIiIbWYYLMskiIqIiMMkiIiKykT6HPVlERFQ8JllEREQ2yM03IsdgAsCeLCIiKhqTLCIiIhvos+UcWSoV4OfJebKIiKgwJllEREQ2MN+P5efpAbVa5eLWEBFRecQki4iIyAYsekFERKVhkkVERGQDFr0gIqLSMMkiIiKyASciJiKi0rhdkrVgwQKEhYXBy8sLkZGRiI+PL3bdzz//HJ07d0a1atVQrVo1REdHl7g+ERFRaSzDBb2YZBERUdHcKslas2YNYmJiMG3aNBw8eBCtW7dGz549kZSUVOT6O3bswMCBA/HLL79g7969CA0NRY8ePXD16tW73HIiIqoo2JNFRESlcaska86cORg1ahRGjBiB5s2bY/HixfDx8cHSpUuLXP+rr77CmDFj0KZNG4SHh+O///0vTCYTtm3bdpdbTkREFYW5J6uqD5MsIiIqmttM8JGXl4cDBw5g8uTJlmVqtRrR0dHYu3dvmZ4jKysLBoMBgYGBxa6Tm5uL3Nxcy+96vR4AYDAYYDAY7Gy9c5hf39XtqKgYX2UxvspifJV1e3xTs/IAAFW0asbbSbj/Ko8xVhbjq6zyFN+ytkElhBAKt8Uprl27hjp16mDPnj2IioqyLH/jjTewc+dO7Nu3r9TnGDNmDH766SccP34cXl5eRa4zffp0xMbGFlq+atUq+Pj42P8GiIioQlhyWo0jKWo8fY8RnUPc4hBKREROkpWVhUGDBiEtLQ3+/v7Fruc2PVmO+vDDD7F69Wrs2LGj2AQLACZPnoyYmBjL73q93nIvV0mBvBsMBgPi4uLQvXt3aLUcpuJsjK+yGF9lMb7Kuj2+XyccBlJuIqpdG/RuXcvVTasQuP8qjzFWFuOrrPIUX/Mot9K4TZIVFBQEjUaDxMREq+WJiYkICQkpcdvZs2fjww8/xM8//4xWrVqVuK6npyc8PT0LLddqtS7/UM3KU1sqIsZXWYyvshhfZWm1WqTnGgEAgX5ejLWTcf9VHmOsLMZXWeUhvmV9fbcpfKHT6dCuXTurohXmIha3Dx+800cffYQZM2Zgy5YtaN++/d1oKhERVWBprC5IRESlcJueLACIiYnBsGHD0L59e3To0AFz585FZmYmRowYAQAYOnQo6tSpg5kzZwIAZs2ahalTp2LVqlUICwtDQkICAMDX1xe+vr4uex9EROS+OE8WERGVxq2SrP79+yM5ORlTp05FQkIC2rRpgy1btqBmzZoAgEuXLkGtLuicW7RoEfLy8vD0009bPc+0adMwffr0u9l0IiKqAEwmgYzcfADsySIiouK5VZIFAGPHjsXYsWOLfGzHjh1Wv1+8eFH5BhERUaWRnpsPc01ef2+3O4QSEdFd4jb3ZBEREbmaPkcOFfTSquHpoXFxa4iIqLxikkVERFRG+mwOFSQiotIxySIiIiojFr0gIqKyYJJFRERURvoc9mQREVHpmGQRERGVkZ5zZBERURkwySIiIiqjtFuFL/yZZBERUQmYZBEREZVROgtfEBFRGTDJIiIiKiNLT5YX58giIqLiMckiIiIqI3MJdw4XJCKikjDJIiIiKiPzZMQcLkhERCVhkkVERFRGaezJIiKiMmCSRUREVEbp7MkiIqIycOjOXYPBgISEBGRlZSE4OBiBgYHOahcREVG5k8bqgkREVAY292Slp6dj0aJF6NKlC/z9/REWFoZmzZohODgY9evXx6hRo7B//34l2kpEROQyQhTck8XhgkREVBKbkqw5c+YgLCwMy5YtQ3R0NL777jscPnwYZ86cwd69ezFt2jTk5+ejR48e6NWrF86ePatUu4mIiO4qgwkwGAUA9mQREVHJbBouuH//fvz6669o0aJFkY936NABzz//PBYvXoxly5Zh165daNy4sVMaSkRE5EpZcqQgNGoVqug0rm0MERGVazYlWV9//XWZ1vP09MS//vUvuxpERERUHmUb5f/+Xh5QqVSubQwREZVrdlcXTE5OLvaxo0eP2vu0RERE5ZK5J4tDBYmIqDR2J1kRERH44YcfCi2fPXs2OnTo4FCjiIiIypvsfNl7xaIXdsjPBa6fBW6cB25eBNITZCURIqIKyu4S7jExMXjqqacwYsQIzJkzBykpKRg6dCiOHj2KVatWObONRERELmceLsieLBuZTMD/PQgkn7JeXvteoOskoHEP17SLiEhBdvdkvfHGG9i7dy927dqFVq1aoVWrVvD09MSRI0fwxBNPOLONRERELmceLsieLBslHb+VYKkAnR+g9QFUauDaQWDVs8DnD0F1Ls7VraxYbl4Erh5wdSuIKjWHJiNu1KgRWrZsiXXr1gEA+vfvj5CQEKc0jIiIqDyxJFleFSjJEgJIPAbk6IGwB5R5jb92yP8bdwcGr5U/ZyQDez4F9v8XuHYIHmsGon3AfUBGe6BaHWXa4WpZKbeGTJ4FjHlA26GAxqHTsKLl5wFLewHp/wAPTwE6TwBYqIXorrP7r3v37t147rnnEBgYiCNHjmD37t145ZVXsHnzZixevBjVqlVzZjuJiIhcKtsoT1Tdfrhgfi5w6nvgzFbg/HYgM0kuH7gGaNrL+a93/hf5f4OuBct8g4EeM4COrwK750L8vgh1UvdDfPYA0GsW0OrZipEY6K8BB1YAh74E9FesH1NpgHbDnP+aZ3+SCRYAbH8PSLsC9P7E+a9DRCWye7jgww8/jP79++P3339Hs2bN8MILL+DQoUO4dOkSIiIinNlGopKZTMD294HNbwAXfgWM+a5uERFVQNmW4YIK9D7cDdk3gV1zgLmtgG+fB46sLkiwAODAcue/Zn4u8Pce+XODhwo/7hsM9Hwf+c/HIdW7HlTZN4ENLwLfDAFy0pzfnrvl8n5gzRDg3y2BnR8WJFj+dYHqjeTPp75X5rUPfSn/r90WgEp+rqsHAXmZyrweERXJ7iPF1q1b0aVLF6tlDRs2xO7du/H+++873DCiMjv8JfDrR/Ln+P8DfIKAZo8C7UcCtVq5tm0VxbltQNw0edX1vhcqxhVmIhtlu2sJ95w0mVzFfw4Ybp1o+9UGWj0DNIoGvAOBxQ8AZ7cC6YmAX03nvfbleCA/G6hSA6jRrPj1Qlrh16bT0SfgL2h2fQSc/B+QeALovxKo2cJ57VFa0ilg27vA6duqL9d/ALhvJNC4J+DpK9/Xoijgr50y8dFVcd7rpycAZ2/d3/bEZ8D1M8C6kcDZn+Cxog+8g0Y477WogBCA0eDqVlA5Y3dP1p0JluUJ1Wq88847djeIKgCjQR5oTEblXysrRZ78A/JA5l0NyLour9z9X2dg5ZOyd6uilgrOSpEJ0O+LgdRLyryGEEDcVCDxKLB5grxRPaP4efKIKqqsfDcbLmjMl/c8fdoW2D1XJlg1WgD9FgOv/Ql0fxe450EgpCVQ9z5AGIGj3zi3DX/dNlSwlIszQuUB0wPjgOe3AFVDgZTzwOfdgD/XOLdNSshIBjaOlcnT6R9kYY+2zwGj9wIjNgMtn5IJFiCTzYB6gDG34H41Z/lztfwcQyOB4CbyguOw74EqwVAlHUOX09OguvCrc1+zsjOZgJVPwOOjUDxw9n2od/8buHZYLifnSE+AZmVfhN74za3O52xKslavXl3mdS9fvozdu3fb3CByU9fPAnvmA189A8wKAxZGAmuHKf/H8PN0IDsFqNEcGLoRmHAWGLJBHtBUauD8NmBFX2BJD+DSPmXbcjcY8+X9DRvHAv9pDXx0D/Dlk8CWN4FvhioT73/+lDfGq7WAxlNe7V4UBZz5yfmvRVSOZd26buQWhS8u/S57p34YD2TdAIKaAANXA6N3A20GAh466/XbDJL/H17l3O8RcxLRsIihgsWp0w54cSfQ8GHZC7bhReCXmeXz5EoIGbMF9wGHVgLCBIQ/Coz5HXh8AVCzeeFtVCqgySPy59M/Orct5qGCbZ8rWB56H/DiDphqtYGnMQOar58G9i4on/F0RwdXAH/9ApUpH0EZp6HZ8T7wWRdgfntgzzx5MbSiMxmV3Z8OrYT60l7Uv/GLW42ksSnJWrRoEZo1a4aPPvoIJ0+eLPR4WloaNm/ejEGDBuHee+/FjRs3nNZQKoeyUuTwk88fll8mW9+WJ+B5GfLxk/+TV0+Vcnk/cPAL+XOfOYBGK/81fBh4einwykE5tM3DC7gSDyztAXwzDEi5oFyblJJ4HPhhAjAnHFjZTx7Mb16UjwU2kO/x2qGCq8bOdPgr+X+zvsCLv8iENjNZ9mitHQ7o/3H+axKVQ24xXDAvC/jpbVldLvmUHArYezYweg/Q9JHiT1BaPCkvoiSdAP457Jy2ZN+U30uAddGLsqhSHRj8LdB5vPx954fADzF3Z4REWaVckN/H342W77VmBDAyDhjwFRDctORtzQVGzvzkvB6Py/GycqHWB2hxx1Q6VevCOOR/uBTYCSphAn56C1j/ImDIds5rlwe5GfIi5Pb3gS8el0U/lO5NykiWF3sBGB8Yjz/rDoOpcS9AW0X2xG6dAnwSDqx/SY7wqSiSzwD7PgO+exlY3Al4r4a8oK3E36fJCByQ53p/V7fhYk05YNM9WTt37sSmTZswb948TJ48GVWqVEHNmjXh5eWFmzdvIiEhAUFBQRg+fDiOHTuGmjWdOK6byo+EY/Iq2LFvZRlaQFZJatBFJjj3dAGu7JcHxG3vyptvbT3AlsaYL58fAmgzGKgfVXidwHuAPp8AD04EfnkfOLgSOPEdcHoz0ClGHrzvvJpbnhjzgTM/Avv+D7i4q2C5dyDQ/HE5DKROOzlE8sdJwL5F8r6Lhg87rw2GHODIreFDbQfLeyNG/QJsnwH8vhA4vgE4+7MsE9xhFKDWOO+1K7OT3wPfvw741pA9EMFNgVqtgbDOBUOO6K4r90nW5Xhgw7/kyR0gvxt7vi+/I0rjHSC/U46tkz0ztds63p4Lu2TPTlBTwL+27durNUC3qXLbHyYAfyyVvXJPfg54eDrePkcc/06OKMhLlxe5uk4CosbKC31lUb+TnDMsM0kmonXbOd6mQyvl/y2eADz9Cj+u9caheqNQp31vaOLekUNDk0/JpDCgnuOv7woZycDJTfLY/vcewHRb4au/dgApf8nhsUod6+PeAXJSgZAImB6ciItbtqJ5795Qm3LlOdL+JUDCEVlk5sgaeezu8oZ73WcIyF6qqwdkrE/9ANw4V3idi7vkd8e9Q5z72ue3A2mXILwCcLVaB7hTaT2bC1889thjeOyxx3D9+nX89ttv+Pvvv5GdnY2goCC0bdsWbdu2hVpt961eVF4JIb+wdv/HurckJAJoPQiIeFqeEN6+/OpBWZTi25HAS78CVZ0498kft764vKoC0bElr+sXAjw2D+jwkuxt+2uHvCp6cpMczlHnXue1yxmM+fLgt3NWQW+VSiNPgNoOlcnsnQfyjmPlvRcXd8lhkfUindOW05vlAcS/TkFlMK2XPHFr9axMBK4ekMMV/1wFPPpvmfhVREYDkJ0qr1jnpcsePa23818n+ybwv9fkvYWZSXKopplGB9TvCDTqDjR/zH1PjEoiBJD6txye6szvDAcZjCbkmmQvULmbjFgI+fe/ZZI8yfSrBfT9FGjSw7bnaTNIJllH1wI93nM8kTEPFXT0Itt9LwA+1WXPy4mNsrdu4NdlT2icKT9PnljvWyx/rxcljyPVG9r2PB46oNHD8v2c+dHxJCsvU170AqyHCt5JpYLpvhehqdVKDulPOAJ81hV4epk8triD/Fw5UubQylv3XN/WW1U1VH5HVg2VI2mOrZPfqc+udP4Fqgu/An9+DUAFPDoXUN92Su3pC7QbDtw7TJ4L7Z5bkAye+E72HHePLf/f4RlJ8j0e+lIWUTFTa4GwTvJezlqtgYSj8rxq27tAi35FJ/n2+mMZAMDUqj9MhnJ8YbwIdlcXDAoKQr9+/ZzYFCq3rvwhu8PNvSkqtbwaEzUWqNu+6G1UKqDPbPkFnnBE3i804kfnXE1KuyL/kAGg2zRZArgsQloCQ76TB6LNE+WwmP92Ax54DXjobcfb5SiTUR4QdnxYcCXaOxBoPwJo/zxQtW7x21atC7QeIA86v80BBjnpRnHzUMHWAwv3UtVqLYfGHFgO/Bwr7936vJs8Ier2jkyA3ZUhR/bGXj0AXDsIXD0EpN1RWKRBV7k/OXt8+Pb3ZIIV1EQWJrh+Bkg+Dfy9Wybdf+2Q/7a+LU/wIp6RV661Tjyo3U0ZycDfv8mr0P8ckX+XuXr5WKcY2UtaDnpI03MKrpD7e5WjEu75ubIgjXnodIsn5Amfd4Dtz9XgIVl1MP2avFeoRT/H2nZ70QtHtXhCfh9+PQA4Fyff86Nz7+79GemJwOqB8nsBAB4YBzz8jv0TCjftLZOs01vkfu6Iw6vkUP3ABvJ7oTT3dJb3va0ZLL+7v7jVw/LgG8pMkOwMN/+WF1gPfSl7NM1qtwWa95MXngIbFCyvHwWsGSp7Qlb0BZ5bB/gEOqct+XnyfkdAHp/rtgcMRVQXVKlkAt1/pRz2/+vHshf0+Hp5EfOB1+Q/Z1aYdIarB+Vk4Sc2yUIqgByG2vQRec9ho2jAy79g/cY95MWZlPNyRE30NOe0I+2qvAgBwNR2GBBfRA9aOVZO/5KoXEj5C9j6TsFcHhod0G4EEPUyUK1+6dtrvYFnv5BXya7+If9gH5zgWJuEkAlSXoasntTOxnK0KhXQ8klZUevHN2V3/m//lolkv88da5sjrh2WvULXDsrffarLL977Xij7l2+n12VSdGaLvKoU4mCnetpVeXACCm6Kv5NaI0sTN+srx54fWQPs/1xeqXt4CtB2SLk4QS6VEEDSSXnydv4X4NJeID+n6HW9qsqx/3/tkAl7yyed146rB+XwEkAOdb3nQXlQM7fxxjlZnvn0ZuDib7Kdl/YCWyZD07wfAnLDndcWpRjzgcu/A6c2y/0rufD9vVBrAZNBXjD45zDw1BLnnRwVR4gST9j1OfIEqopOAw9NORmtkXlDJh1X4gGogOjp8nvD3sRDrZEXa36bAxxYJi+m2ftcN/+WxxCVRl7xdoYGXYCn/gusHiwv7lS7B+g0zjnPXZrM68AXj8nhdV4BwBP/5/jEzY17yIuWiUdldVh7ezVu/m25LwiR/yr7ZxYQCjz/kzymHlopR09c2CVjXI56kZF0Sh6nj64tOOH3qwXcO1ReAAy8p+jtGkUDw/4HfPW0PLZumQQ8+Zlz2vTLe/ICWJVgOaS1LGq2AJ5ZDnQ+Kof4//2bjPmhL4HHPpXtdSUh5PFl939k28zq3id7R1s8aZ1Y3c5DJ3u/Vw+Ut5O0GwZUC3O8TeZiMvUfkBceUYGTrGrVqkFVxj/elJRKUE2lojKZ5HxTP8fKyk4qtRwS2HWS/FK2ReA9wCMfyepQOz+SV5uCGtnftpOb5AmmWgv0/Q9g79DUKkHA00vkla/vxgAXd8FjaTSq1nrR/rbZIydN9lzs/6/8IvH0lycNHV6yfWhD9YYyvsfXywPS00sda9ufXxd8uZU2FMa3hjx4tRks75W7cU4OeYv/XA4tdPY9ec4ghDzwntgkh56Yew/NfEPksMva98ohpTWay3tb1BpZ6Wznh/IiRJOezrkKaTLeujIqZO/UPQ9aP65SAUGN5b+oMTIJPrZO3jOXeBTqo2vQBYBp6Uag4yvyyn95SXCN+TIpPfatvAiQfdP68Zot5Yl4nfbyRCSosbzau+kVmYh91gUYsMrxCweW9hjkSelfOwqGgBrzZILRY0aR9zDpb92QVW6GCppMwPpRMsHyqgo8tRRo7ISTtLbPyQtif+2QF01aD7DvecxV8+q2L/7EzB7hfYBeM+UJ88/T5AW/O4s8OFtWCvBFP5lg+dUGhn9v+/DAovgEyouFl/bKAhgdRtn+HCYTsPHlWxce75cX5myh9QYeny+/o/83Dri0R1al7Leo4AKPq9w4Lz/jk/8rWNagK9DhRTnnWFl63Oq2kwVUlkTL/TniWcf/Tk79IBMRQBbdsrXXOCRC7kMnNwE/TZGjJL58Sr6v6FhA5+NY++xx5Q95ofTSXvm72gNo+bS8FaGs37tNH5H35F/YKafWeXaFY20y5hf00Nt6Qb2csCnJmjt3rkLNoHLj+jn5hX35d/l7WGdZmaqGA1fIWz0rv9zOb5Mn3sP+Z19ylJ0KbH5D/tzp9ZIntiyr5o/Lm7JXD4Iq5Tw6p8+AOFUfiOjn+HOX5ubfwPI+QNpl+XvEM0CP9x2bCLRzjEyyjm+QX9j17rfveYz5cvgJIBOnsmrQRc4Ls/9zeYUu8ZgchtLkEeBhJw0fcFR6gpxL5tCXshKXmUYnDxANH5blpoPDi78i3GmcjE/aJZnQOjrUB5BlgK8dlIl2j/dKX79qHeCBV2VCdfUgTPv+D+LYemj+OSwnH935kRz+48pkK/GEjPOxb4GMxILl3tWAJr1kghr2oKwkd6dWz8i/8TWD5TDJFY/J4amOXKQBZDK7/kX5d3KnQyvlyW7vjwv14qTd6smqWl6GCv6+UH6nengBwzfL4dDOUL0h0GWSvFK/eaK8v8XWHpbL8fLkGJBDi5zt/tGysl/8/8mqbVVDix+67qicNDlNRuJROaHysP85J8Eya9JLntie3GTfRO/xn8mh/FofoN9C+//WI56Ww+6+fV72Hn89ALh/jOwdvdtFRvIygV2fyPLn5uJazfrK4cP23ENdtx0QORr4fYEcMTJmr/33Z6X8BWwYLX++/2V5odYeKpX8jmnUXf6txH8m//21Q/Yk1mpt3/PaKvWyfP1j6+TvHl5yP7x/dMm3KBRFpQJ6fiDnKD3xHXDuZ8d6587FAfqrt4p9PQa44YwDNh0thg0bplQ7qDw4/4schmHIBHS+8n6QdiPs7y0yU6mAR+cAC6NkF/ShlbIr2VY/TwcyEoDqjQrK+jpDjXBg1HaYvh0JzfmfIb57EagaYn+CUhbpCTL5SLssu9QfnWvbPDLFCYmQJ9XHNwBfPQsM/5/tX9Z5mcDaEbJnR+cnDwS28NDJIaWtBwI7Zsrhb2d+hMe5OLSs/jCQHQVoa5T+PM6WcEz2Pp3abD3GvElPeQBv3KPsN+tqvYGe78l7DXd/KhPR4oaslMXpLcDWW0NOHnpbFmspq1tj/o01F+BnPIge1S5DE78YuH5aJlu/fiyHNtVuY3/7bGEukrNnnkwCzLwD5fx1LfrJK+5luQod0hJ4cYecVPzaQXmyOzLO/gsR5qv+x9fL3vA+n8i/Ge8Aea/nD+PlEKC1w+TJb5c3LIVczD1ZfuWhJ+vaoYLhYT0/cF6CZdbpdTkdx5V4eUJpy4WxG+eBVf3lcNsmveSJuhJ6zZRD7M78CKx5Tu4ntvzdlEVWipyq4tohOYR72CbHk/w7NesrP8sLv8r7cR+aXPZtr58tSGZ7zHA8+aveEBi5VY5i+X2BTOT/3i2LYjgzsSzJmZ/k36H54mOjaHnRydGLqg+9JXvE0i7JasO9Ztr+HIZs+Z2fmyZ7ILuXUnSrLHQ+8qJOk56yHPr1M8CyPnJfU7oo17XD8js16wYAlbwt4KG3HRsqGtJSnjf+sQRYMwQYvNa+4cJ5WfLYCsh2eXgWfc9bOefQ2fP58+cxZcoUDBw4EElJSQCAH3/8EcePH3dK44qyYMEChIWFwcvLC5GRkYiPjy9x/bVr1yI8PBxeXl6IiIjA5s2bFWubWzv1gzyYGDJladkxe+W9Ns6qFFktTH7JAbIyU3piiatbycuUV58OyAoz6PsfWeHOmbwDYHz2K/xT9V6ojLnA1wPlyYISslKAlU8ANy8AAfWBEVuck2CZPb5Q3vicmyZfJ/lM6duYZV6XNwif/Ule0Xrqc/uv+PkEyoPHmL1A4x5QmfLRMHkrPBbeJ0/8c9Pte15bJZ+W86MtfkAeZIVRHiD7fgqMPy3HyLd8yvZqSM0ekz1fxlw5L5E9jPlyWMXX/WXFwvqdbB/uc5s8Dz+YOk8Axh2VvWteAXKI05Luck4TpScfPf+LvIq5sp9MsFRqeRI5cDUw4YwshhPWybYb672rAYO+kfffpP4NrHrGvn1HCOD7cXIYrEoDPLNMXuypc6+8Wf6eB4GXdskb/9Uecljj5w/LE54zW6HPzgVQDnqycjNkxVaTQfYStX/e+a+h8QCe/D8518/fvwF755dtu4xkOewpO0X2ijy9VLkiCmqN/H4Kbgak/yMTrfxc5z1/2lVg2SOyAI5XgCxy44zRE3eq3hB4ZJb8eeeHBcPQSnPzorwYlp8jC5a0H+mc9nh4Ar0+AAaukX97//wJLOooe8adGd87mUzALx/I85C0y7J3sv9XcqifM+Lu6Sur3wKyMuSVA7Ztn6OXtxYkHJUJ99PLnFvdslG0PFaGdZbHgi+flCMBlHJxtzzWZ92QF2L/tUv2hDrjXryeHwANuwGGLHmx9+89tm2ffEYWJbu0R44wUeI77i6x+wx6586diIiIwL59+7B+/XpkZMgJaP/8809Mm6bMsKA1a9YgJiYG06ZNw8GDB9G6dWv07NnTkuDdac+ePRg4cCBGjhyJQ4cOoV+/fujXrx+OHTtW5PrlnerPVaiVut/5kwf+uUZecTDmyROiIeuVKSsaORqo1UYOv/jiMXnFqrSTvit/AIs7y/lRAKDrZOfdRH0ntQYH6o+GqVZbeZLw1dPyxnJnSk+Qz5t0Qt64O3Qj4F/Lua+h85HVBWu1ll+gXzxetoTx6kFgSQ9ZOcu7mrx67Ywx+cFNgcFrkT9wLfRedaDKSZX3oc1tJasQ3Xl/jrMkHJNDXxbeL4cuAPLG3TG/y6u17YY5dq+ISiVPjlQa4PQPwJdPF0y8WhaJx+XfgXnC7g4vAUM2OOek1Mtfzg/36iGgaR/5t/3jROCbIc7fpwGZnK9/USZXCUdlD2GHl+Tr9/9S7keOnJD4Bt+qDBYkT/q+GVb2CzUmk5x3bEl3OSRTpZb3DzbrW3hdrRfw8Nty4t7Wg2Sy9fdvwKpn8MTORzDFYyUicEb5ZLW493F5P7DuBdnL7FdbTk2hVHW9wAYFV/u3z5Dfwfl5xa9/4Vf5+d+8II8fg75RvmKap5+c48mrasHcjM74bJJPy+9C8z1Yz28BarVy/HmLE/mSrJQLAHFT5b2sxRFC3qey6AE5hNErQN5T5ez9oGkv4F+75T1Q+Tmy92dhlBwC5uz9P0cvhwXvvJVsdngJeDleTlvizPfVOFrekyVM8rvw8NelT55rMsmh4fPa3RpirFKuMIhPoJyaoE57eVxc2U+Zi71ntsokLlcvL+wN+95597sC8nt0wCo59N6QKY+NF3aVvp0Q8h7jz7rKc6QqNeT3/t3qRVWASgj7/lqioqLwzDPPICYmBn5+fvjzzz/RoEEDxMfH48knn8SVK1ec3VZERkbivvvuw/z58qqayWRCaGgoXnnlFUyaNKnQ+v3790dmZia+//57y7L7778fbdq0weLFi8v0mnq9HlWrVkVaWhr8/Z14866tTEaIT5pClZkMoasCVdPeclhYzRayuk1ZDmb5ufJkKDNZFiZIPC7vmTm7VT7eepA8aCtZvjXhGLDi0YIT63od5ZCc4KbyfWi0cozwX7/IG97N5UP9agNPLFK0gILBYMDmzZvR+8H20K7oJYeihLSSY9WDm8lhhb41yzY+PT9PXl1NT5Bjii/Hy5tBk25dmfIOlCXtHbnXrTSZN+SV2Oun5Yllw4flsLamveV7MBrkzdInNspKXf8clttVrScT7aDGTm2OwWDA5h++R5/62fD47ZOCyQxVGtmz1KSn7E3wC5FXCm25D8BouLVvJwH6a8CBFZayrwDkFf+uk50/rAqQw+LiphUMQQx/VMY5uKnsqdR4yINHbrps25kfgSNrgaRbPf46P+DxeQ7fvG/Zf3v3hlZ7W0IjhLxyu/Ud2fuh9pBxbv64HCJp/rsr8wvlyLnT0q4C+ityyNLe+bf+plXyXsCuk5SpBnjlgPz+MGTJ/aZxdxnrsE7yRNt8P0pWivxb++dPOceK+d47jafsCW8zsGyvl3ZVTvJ9YEVBWXlAFkUJvU8OJazTTn4vaHRyn81KkUOsLu6SSZF3ABDaQQ6RrHOvXNcroORRAsZ8+f1x86L8l3BUVnnVX721gkpeBLmns03hs5kQsofIXGE2oD7Q5U2ZoAqTnJMr8bjs5TBXI/OuBjy/FQhuYtNLFbv/lsW5bfLilTDJeYnCOsvXr96o5GOjEHJfyroh7/FKOimrXR7/Tu7jQU2A59bbXvDJXtvfk738gOwlb/64jLV3oExek04Ah76SIw0AOWKh30LrsuUlsCvGQsj7dX56q+C+Sr9aQKNusvelVhv5fe3pV3pCJIS8SJx9U+7LN87L48CJjfJvVOMJ9J1bfDVbZ8i8Dnz2UMGUHNUbywtSoffJ8wytlzxXSjgqE/dj6+T/ABDYUI7OaNStyKd2aB++XVYKsPxReYyoWg9oP1zeIxzUVN4n5eFZtljnZcpjYkayjO/VA/JfwlH5t9KklxzJocR8j4D8rL8eUDBfXp12QKsBcuSI+T5cIeQ0P8e/kxdDU/6Sy8M6y6qytw0Nd1p8naCsuYHdSZavry+OHj2Ke+65xyrJunjxIsLDw5GTU0z5Yzvl5eXBx8cH3377rdX8XMOGDUNqaio2btxYaJt69eohJiYG48aNsyybNm0avvvuO/z5559Fvk5ubi5ycwu6xPV6PUJDQ3H9+nXXJlm56cDOj2A4/A18DIWvRAsPb3mSodHKf2qtPAAa8+QXhiETqrzMYp/e2P4FmHp8IE/GlZadCvXe/0C9/3OobiuTLaACvPyhykmzWt3U4kkYe35k37wvNjAYDIiLi0P37t2hTbsAjxWPFGoLAAgPL1mcQFdFftGp1ABUt+KcBeRlQpVffG+jqVYbGB/55O7c2Kr/B5r/jYH6YsFVJKFSQ3X75I3m5RodRHhfGLvFOv/eBtwRX40KquProfl9PlTmxPPO9uh8ZY+Ih2fBPg0hDw7CdCve2YAhu8h4C6ggmj8OY9Rrzr1KV5SUv6DZ9TFUx76F6ra7c4VGJ6/GZadAZciybp9aC9G4B4wPvSNPBh1kFd8iDkCqa4eg+XE8VAlHCj0mtD7yJMnDSyYqag+5X5vy5Qm/KV9WGs1Nh8pYdG+GqNESxt5zIBS+j0D1926of5kB9dU/rF8fKvkdofaAKjPZ+jGvqjDd+zxM970gkxxb5efgq1XLEXBxM3prD0Nnyip9mxIIlUaemGp9bvsOEXIoYF5GoX3Fsp2uCkSjHjC1HQoRpnCCZZafC/WhFVDvngtVZtGjRgC5r5vaDIGp4zi7eudL239Lo/59ATTbCo+iERqd3Ld1fnLfFibZe2HMA3JSrY5BtzPVbgdj/6+VnzrAqrEC6l9mQLP304JFKjWg1sph7OZlGh1MXd+CqcNomwpdOBTjHD3Uv34I9aGVRX/fqrUywdboCs5DhLj1HWKQw6pz0or//vANgfHpLxT//gAA5GVA/cdSqH+fB9UdIymEd6D8G7ytnUJbBaZO42Hq8FKJF/8c3YetZCTC44tHobp5odBDQq2VoxV0vvLzN5+DCKM8Jubn3DouFn8eboroD2OfucpP6G3IguaH16E68R1U5guRuPUdKH+yOh8RHl4w3T8Wps4TC+3bTo2vg/R6PYKCgpRLsurWrYtvvvkGHTt2tEqyNmzYgAkTJuD8eed2cV67dg116tTBnj17EBVVMNHeG2+8gZ07d2Lfvn2FttHpdFixYgUGDiy4arlw4ULExsYiMbHooSbTp09HbGzhmxlXrVoFHx8XlNW8kxColvUXat/chxD9IXjnpUAjyn4zoAlq5Hn4IcszGHqvUOi96yLVpwFu+jS4u5M6AvDKS0HThO9QU/8nPA1pUMNkaePNKg2R7NcCSf6tcbOKa7qKq+QkoM7N3+GfcwV+OVfhm5sA9W1fEqUxqjyQow1AjrYa9F51cd2vBa77NUOeh433/jhBldxEhN7YhXopv8HbYD29QrpnLfwd1BWXAzu5pG3eucmoqf8TIfrDqJr1N3T56ZZ9wRbmfTvXwx83qzTEuRqPINPLyUMxS+GbcxWNkragatYF+OYkwENYn1Dkq71w0+ceXK12P64FdIDB4+5PQFkl5x/UTv0DtVP3IyD7ol3PIaBCjjYA2brqyNYG4oZvOC4GdYVQ3b37lXxzrqHejV2oe3NvoX0aADJ1QdB7heK6XzNcqt4F+RrHrtYuO6PG4Rtq9K+fjb7+5xGQ+ReqZZ1HQNZFaI1ZUIt8qE0GmNQeSKnSBNd9w3HDtyl0xkwEZpxFYOYZ+GdfgdZUtuHeJpUGWbpgZOpqINOzBpL8I5Ds1wImtRMmdLeDxpiLe67/jEZJm+GZX3BPXL7aE5cDO+FMzb7I0d3FhOROQqB26j4Ep5+Eb841+OVchacxo0ybGlUeyNYGIt27LvRedaH3DkVC1bYui7VPbhJqp+5H7dT9qJYlr+znq3VIv9W288E9ke5tY+U3J1Gb8lA94wxq6I+gRvpR+ORdh4fJtnu1TNAgV1sVGZ4hyPAKQYZnLVypFoU87d29kO1hzEaD5J9QN2UvvPNuWH1f53r44aZPQ9ys0giXAju5ZN/WGfSof2Mn/HKuynOQnH8KHVNKk6/2RK6HP7J0QUj1uQc3fRogtUoDZOuCFGp10TwNaahz83eEpuwudNzJV+mQVLU1rgbchyT/1g5/V98NWVlZGDRoUKlJlt1HxAEDBuDNN9/E2rVroVKpYDKZsHv3bkyYMAFDhw6192ldbvLkyYiJibH8bu7J6tGjh2t7slCQxbfv9y9ota8AAExCwGTIlF3gOWlQmfLlkCBjnrzyr/GE8NDJ7mDv6oBXVWhUKvgB8APg+ukGnwMAGIUJxqwUOZTRvw78vfzhD+BupldFXyUpuOHSaDLCmJsuhw3lpN262izk1TphAjy8ZI+AzkdeYfIOhE6lgg6APwDXHBJvNwIwGWHISJJD2G5dcfTS+qApgKYKv3pZr0IZhYAxVy+H8Biy5RVcY568GqpS3/qnkvu21kfu27oqgHc1aFRq+ADwgSv3bTnXjRAmGPRXocpIhPCpLnu0dFUQACAAQAsnv6ptV/nkTfIGo0H2kufqgVw9VEaDvPJsypdXRdUe8ntErSno7dL5Aboq8FBrLN8jNQAoUBKgDF4oeB/ZN+W//GwgsCF0nn4IAhAEwBmDctck7gdu3ETbtvcisl3hipsCgBGQF8JUKlQDUNSAW0N+rhwOlHVd7tvmnhUAwtOvIMZeVeGp1sATQCCAuzRgrRRPyO8QY96tfUNeRa8Lx7/fnHOVuo/1c+boZRGBHD1UuXq5T6tkT61Qe8ieF59AQFsFnioVPCH3l/JhOADAoP9H9gIF1IOvSg1fALXtfEYlegIEAIMhW97HnH1T9gCZ8uVIA5VKHmfUHrJH0StA9jZrq8BDpbJ8FwLO+Ru1z1MAACEEDDmpcpiu1hvqgDBUV6lQHUBZxxko09NSME+dECYYcjMK9um8DLlPC9OtydTVEFpv2UOu9ZbDTHVVoAOgg4x1mJNaZR/Z4WHISikozQ8A3gEI9vBCcClbl7eerLKwO8n64IMP8PLLLyM0NBRGoxHNmzeH0WjEoEGDMGWKE+aMuUNQUBA0Gk2hHqjExESEhBQ9tCkkJMSm9QHA09MTnp6Fu4O1Wq3LP1SzQm3R6YAqhSfPdDu6WkDA3e15KErxn7UW8PQCSv0qKM+0gKcCRU1saUFZ/pZ0QYBf+TndsVtQA/nvLrLpu0qrBbx8ADgwN1t5YH4f1ZRLrdNzZSJUzdfLsWOBVgt4+wLVXft3aD8tACdXd7392Z15rNVWB1DEHGzuRIH9xOnnM1ot4OMPV5/CO0xXA/B3fHoRRc8XdZ5w+326qmPHm/JwPl7W17f7BhydTofPP/8c58+fx/fff48vv/wSp06dwsqVK6HROH/iS51Oh3bt2mHbtoJ5V0wmE7Zt22Y1fPB2UVFRVusDQFxcXLHrExERFSUtWw7L9nd1CXciInILDh8t6tWrh3r17s4VuZiYGAwbNgzt27dHhw4dMHfuXGRmZmLEiBEAgKFDh6JOnTqYOVOWnX3ttdfQpUsXfPLJJ+jTpw9Wr16NP/74A5999tldaS8REVUM6TlyMuKqXuVjRAMREZVvNiVZt9+rVJo5c+bY3JjS9O/fH8nJyZg6dSoSEhLQpk0bbNmyBTVryq7HS5cuQX1bWdyOHTti1apVmDJlCt566y00btwY3333HVq2VKCMMxERVUhCCOhvJVn+3uzJIiKi0tl0tDh0yHqizYMHDyI/Px9Nm8pb5s+cOQONRoN27do5r4V3GDt2LMaOHVvkYzt27Ci07JlnnsEzzzyjWHuIiKhiy8wzwmiShXj92ZNFRERlYFOS9csvv1h+njNnDvz8/LBixQpUqyaLLty8eRMjRoxA5853af4OIiIihZnvx9KoBLy0d2EuQSIicnt2Hy0++eQTzJw505JgAUC1atXw3nvv4ZNPPnFK44iIiFwtLUsmWd4egOouzydIRETuye4kS6/XIzk5udDy5ORkpKenF7EFERGR+9HnyCTLx/mFc4mIqIKyO8l64oknMGLECKxfvx5XrlzBlStXsG7dOowcORJPPvmkM9tIRETkMubhgj6seUFERGVk9yFj8eLFmDBhAgYNGgSDQR6APDw8MHLkSHz88cdOayAREZErmZMsbw/h4pYQEZG7sDvJ8vHxwcKFC/Hxxx/j/PnzAICGDRuiSpUqTmscERGRq+nNSRaHCxIRURk5PPihSpUqCAwMtPxMRERUkeg5XJCIiGxk9z1ZJpMJ7777LqpWrYr69eujfv36CAgIwIwZM2AymZzZRiIiIpcxT0TMeYiJiKis7D5kvP3221iyZAk+/PBDPPDAAwCA3377DdOnT0dOTg7ef/99pzWSiIjIVQoKX/CeLCIiKhu7k6wVK1bgv//9Lx577DHLslatWqFOnToYM2YMkywiIqoQ0nhPFhER2cju4YIpKSkIDw8vtDw8PBwpKSkONYqIiKi8sBS+4HBBIiIqI7uTrNatW2P+/PmFls+fPx+tW7d2qFFERETlBefJIiIiW9l9yPjoo4/Qp08f/Pzzz4iKigIA7N27F5cuXcKPP/7otAYSERG5UsFwQd6TRUREZWN3T1aXLl1w+vRpPPnkk0hNTUVqaiqefPJJnDlzBp07d3ZmG4mIiFxGn8OeLCIiso1Dh4zq1avjsccew/33328p2/7HH38AgFVBDCIiIneUm29EjkEe33hPFhERlZXdh4wtW7Zg6NChuHHjBoSwHkKhUqlgNBodbhwREZEr6bPlHFkqFeDF6oJERFRGdg8XfOWVV/DMM8/g2rVrMJlMVv+YYBERUUVgvh/Lz9MDapWLG0NERG7D7iQrMTERMTExqFmzpjPbQ0REVG6Ykyx/L44VJCKisrM7yXr66aexY8cOJzaFiIiofDEXvfD31rq4JURE5E7svjQ3f/58PPPMM9i1axciIiKg1VofgF599VWHG0dERORK5omIqzLJIiIiG9idZH399dfYunUrvLy8sGPHDqhUBYPVVSoVkywiInJ7lnuyOFyQiIhsYPdR4+2330ZsbCwmTZoEtdruUYdERETlFnuyiIjIHnZnR3l5eejfvz8TLCIiqrBY+IKIiOxhd4Y0bNgwrFmzxpltISIiKlfM82T5e7Eni4iIys7uS3NGoxEfffQRfvrpJ7Rq1apQ4Ys5c+Y43DgiIiJXSrMMF/QAslzcGCIicht2J1lHjx5F27ZtAQDHjh2zeuz2IhhERETuqqDwBXuyiIio7OxOsn755RdntoOIiKjcMc+TVdXbA5kubgsREbkPVq0gIiIqhqXwBasLEhGRDZhkERERFaOguiCTLCIiKjsmWUREREUwmQQycmV1wareLOFORERlxySLiIioCOk5+RBC/szCF0REZAsmWUREREUwF73w0qrh6cHDJRERlR2PGkREREUomCOLvVhERGQbJllERERFYNELIiKyF5MsIiKiIujZk0VERHZymyQrJSUFgwcPhr+/PwICAjBy5EhkZGSUuP4rr7yCpk2bwtvbG/Xq1cOrr76KtLS0u9hqIiJyVxwuSERE9nKbJGvw4ME4fvw44uLi8P333+PXX3/Fiy++WOz6165dw7Vr1zB79mwcO3YMy5cvx5YtWzBy5Mi72GoiInJXnIiYiIjs5RYTf5w8eRJbtmzB/v370b59ewDAvHnz0Lt3b8yePRu1a9cutE3Lli2xbt06y+8NGzbE+++/j+eeew75+fnw8HCLt05ERC5iri7IniwiIrKVW2Qae/fuRUBAgCXBAoDo6Gio1Wrs27cPTzzxRJmeJy0tDf7+/iUmWLm5ucjNzbX8rtfrAQAGgwEGg8HOd+Ac5td3dTsqKsZXWYyvshhf57uZKY8Fvjo146swxld5jLGyGF9llaf4lrUNbpFkJSQkoEaNGlbLPDw8EBgYiISEhDI9x/Xr1zFjxowShxgCwMyZMxEbG1to+datW+Hj41P2RisoLi7O1U2o0BhfZTG+ymJ8nefUeTUANa5cOIu43DMAGF+lMb7KY4yVxfgqqzzENysrq0zruTTJmjRpEmbNmlXiOidPnnT4dfR6Pfr06YPmzZtj+vTpJa47efJkxMTEWG0bGhqKHj16wN/f3+G2OMJgMCAuLg7du3eHVsvhK87G+CqL8VUW4+t8664fAG7cwP33tkL3iBqMr4K4/yqPMVYW46us8hRf8yi30rg0yRo/fjyGDx9e4joNGjRASEgIkpKSrJbn5+cjJSUFISEhJW6fnp6OXr16wc/PDxs2bCj1g/H09ISnp2eh5Vqt1uUfqll5aktFxPgqi/FVFuPrPPocIwCgmq+XJaaMr7IYX+UxxspifJVVHuJb1td3aZIVHByM4ODgUteLiopCamoqDhw4gHbt2gEAtm/fDpPJhMjIyGK30+v16NmzJzw9PbFp0yZ4eXk5re1ERFSxsfAFERHZyy1KuDdr1gy9evXCqFGjEB8fj927d2Ps2LEYMGCApbLg1atXER4ejvj4eAAywerRowcyMzOxZMkS6PV6JCQkICEhAUaj0ZVvh4iI3AAnIyYiInu5ReELAPjqq68wduxYdOvWDWq1Gk899RQ+/fRTy+MGgwGnT5+23Ix28OBB7Nu3DwDQqFEjq+e6cOECwsLC7lrbiYjIvQghOE8WERHZzW2SrMDAQKxatarYx8PCwiCEsPzetWtXq9+JiIjKKsdggsEojyGyJ4vHEyIiKju3GC5IRER0N5l7sTRqFaroNC5uDRERuRsmWURERHcwF73w9/KASqVycWuIiMjdMMkiIiK6QxqLXhARkQOYZBEREd0hLYtFL4iIyH5MsoiIiO7AObKIiMgRTLKIiIjuwPLtRETkCCZZREREd7AkWV5MsoiIyHZMsoiIiO6gz84HwOGCRERkHyZZREREd2B1QSIicgSTLCIiojtY5sny9nBxS4iIyB0xySIiIroDe7KIiMgRTLKIiIjuoGfhCyIicgCTLCIiojvo2ZNFREQOYJJFRER0Bw4XJCIiRzDJIiIiuo3BaEJmnhEAJyMmIiL7MMkiIiK6TXpOvuVnfy9WFyQiItsxySIiIrqNeaigr6cHPDQ8TBIRke149CAiIrpNQWVB9mIREZF9mGQRERHdxtyTxfuxiIjIXkyyiIiIbsMki4iIHMUki4iI6Db6HJZvJyIixzDJIiIiug3nyCIiIkcxySIiIrqNZbigF5MsIiKyD5MsIiKi2+iz5TxZ7MkiIiJ7MckiIiK6jd4yXJAl3ImIyD5MsoiIiG5jLnzB6oJERGQvJllERES3YeELIiJyFJMsIiKi23CeLCIichSTLCIiotvo2ZNFREQOYpJFRER0ixAC+hxWFyQiIscwySIiIrolIzcfRpMAwHmyiIjIfkyyiIiIbjH3Yuk0anhpeYgkIiL78AhCRER0S1pWQdELlUrl4tYQEZG7YpJFRER0S8EcWZyImIiI7Mcki4iI6BbOkUVERM7AJIuIiOgWyxxZLHpBREQOcJskKyUlBYMHD4a/vz8CAgIwcuRIZGRklGlbIQQeeeQRqFQqfPfdd8o2lIiI3BbnyCIiImdwmyRr8ODBOH78OOLi4vD999/j119/xYsvvlimbefOncsbmImIqFRMsoiIyBnc4s7ekydPYsuWLdi/fz/at28PAJg3bx569+6N2bNno3bt2sVue/jwYXzyySf4448/UKtWrVJfKzc3F7m5uZbf9Xo9AMBgMMBgMDj4Thxjfn1Xt6OiYnyVxfgqi/F1jpuZ8vvfV6e2iiXjqyzGV3mMsbIYX2WVp/iWtQ0qIYRQuC0OW7p0KcaPH4+bN29aluXn58PLywtr167FE088UeR2WVlZaN++PWbOnInHH38cKpUKGzZsQL9+/Yp9renTpyM2NrbQ8lWrVsHHx8fh90JEROXXyrNq/HFdjcfrG/Fw7XJ/eCQiorssKysLgwYNQlpaGvz9/Ytdzy16shISElCjRg2rZR4eHggMDERCQkKx273++uvo2LEjHn/88TK/1uTJkxETE2P5Xa/XIzQ0FD169CgxkHeDwWBAXFwcunfvDq2WQ1mcjfFVFuOrLMbXOTasPAhcv47IthHo3a6uZTnjqyzGV3mMsbIYX2WVp/iaR7mVxqVJ1qRJkzBr1qwS1zl58qRdz71p0yZs374dhw4dsmk7T09PeHp6Flqu1Wpd/qGalae2VESMr7IYX2Uxvo7JyDUCAKpV8Soyjoyvshhf5THGymJ8lVUe4lvW13dpkjV+/HgMHz68xHUaNGiAkJAQJCUlWS3Pz89HSkoKQkJCitxu+/btOH/+PAICAqyWP/XUU+jcuTN27NjhQMuJiKgi4jxZRETkDC5NsoKDgxEcHFzqelFRUUhNTcWBAwfQrl07ADKJMplMiIyMLHKbSZMm4YUXXrBaFhERgX//+9/o27ev440nIqIKxzJPFpMsIiJygFvck9WsWTP06tULo0aNwuLFi2EwGDB27FgMGDDAUlnw6tWr6NatG7744gt06NABISEhRfZy1atXD/fcc8/dfgtEROQG9DnsySIiIse5zTxZX331FcLDw9GtWzf07t0bnTp1wmeffWZ53GAw4PTp08jKynJhK4mIyF3l5huRYzABYE8WERE5xi16sgAgMDAQq1atKvbxsLAwlFaN3g2q1RMRkYuYhwqqVICfp9scHomIqBxym54sIiIiJemz8wHIBEutVrm4NURE5M6YZBEREeG2yoI+HCpIRESOYZJFRESEgqIX/l5MsoiIyDFMsoiIiADoOUcWERE5CZMsIiIi3DZHFnuyiIjIQUyyiIiIwJ4sIiJyHiZZREREYOELIiJyHiZZREREuH24IOfIIiIixzDJIiIiQsE8WRwuSEREjmKSRUREhNt6sphkERGRg5hkERER4bZ5sphkERGRg5hkERER4bbCF0yyiIjIQUyyiIiIwHmyiIjIeZhkERFRpWcyCWTksvAFERE5B5MsIiKq9NJz8iGE/NnfmyXciYjIMUyyiIio0jMPFfTSquHpoXFxa4iIyN0xySIiokrPXFmQQwWJiMgZmGQREVGlx8qCRETkTEyyiIio0tOzsiARETkRkywiIqr02JNFRETOxCSLiIgqPcscWUyyiIjICZhkERFRpcfCF0RE5ExMsoiIqNJjTxYRETkTkywiIqr00rLzAQD+XpyImIiIHMcki4iIKj09C18QEZETMckiIqJKj9UFiYjImZhkERFRpWcufMF7soiIyBmYZBERUaXH4YJERORMTLKIiKhSE0KwuiARETkVkywiIqrUcgwmGIwCAHuyiIjIOZhkERFRpWbuxdKoVaii07i4NUREVBEwySIiokrNMlTQywMqlcrFrSEiooqASRYREVVq5sqCHCpIRETOwiSLiIgqtbQsFr0gIiLnYpJFRESVGnuyiIjI2dwmyUpJScHgwYPh7++PgIAAjBw5EhkZGaVut3fvXjz88MOoUqUK/P398eCDDyI7O/sutJiIiNwBy7cTEZGzuU2SNXjwYBw/fhxxcXH4/vvv8euvv+LFF18scZu9e/eiV69e6NGjB+Lj47F//36MHTsWarXbvG0iIlJYqnm4oBeTLCIicg4PVzegLE6ePIktW7Zg//79aN++PQBg3rx56N27N2bPno3atWsXud3rr7+OV199FZMmTbIsa9q06V1pMxERuYcbmbkAgGBfnYtbQkREFYVbJFl79+5FQECAJcECgOjoaKjVauzbtw9PPPFEoW2SkpKwb98+DB48GB07dsT58+cRHh6O999/H506dSr2tXJzc5Gbm2v5Xa/XAwAMBgMMBoMT35XtzK/v6nZUVIyvshhfZTG+9ktMywEABPp4FBs/xldZjK/yGGNlMb7KKk/xLWsbVEIIoXBbHPbBBx9gxYoVOH36tNXyGjVqIDY2FqNHjy60ze+//46oqCgEBgZi9uzZaNOmDb744gssXLgQx44dQ+PGjYt8renTpyM2NrbQ8lWrVsHHx8c5b4iIiMqNucc0uJCuwogmRrSpXu4PiURE5EJZWVkYNGgQ0tLS4O/vX+x6Lu3JmjRpEmbNmlXiOidPnrTruU0mEwDgpZdewogRIwAAbdu2xbZt27B06VLMnDmzyO0mT56MmJgYy+96vR6hoaHo0aNHiYG8GwwGA+Li4tC9e3dotbx3wNkYX2UxvspifO03+9QuANno8eD9aF+/WpHrML7KYnyVxxgri/FVVnmKr3mUW2lcmmSNHz8ew4cPL3GdBg0aICQkBElJSVbL8/PzkZKSgpCQkCK3q1WrFgCgefPmVsubNWuGS5cuFft6np6e8PT0LLRcq9W6/EM1K09tqYgYX2UxvspifG13IzMPAFAroEqpsWN8lcX4Ko8xVhbjq6zyEN+yvr5Lk6zg4GAEBweXul5UVBRSU1Nx4MABtGvXDgCwfft2mEwmREZGFrlNWFgYateuXWiI4ZkzZ/DII4843ngiInJ7mbn5yMozAgCC/ApfYCMiIrKHW9Qyb9asGXr16oVRo0YhPj4eu3fvxtixYzFgwABLZcGrV68iPDwc8fHxAACVSoWJEyfi008/xbfffotz587hnXfewalTpzBy5EhXvh0iIionrmfIQkfeWg2q6DQubg0REVUUblFdEAC++uorjB07Ft26dYNarcZTTz2FTz/91PK4wWDA6dOnkZWVZVk2btw45OTk4PXXX0dKSgpat26NuLg4NGzY0BVvgYiIyhlzkhXkp4NKpXJxa4iIqKJwmyQrMDAQq1atKvbxsLAwFFUocdKkSVbzZBEREZklp5vnyOJQQSIich63GC5IRESkhOQMWfQiiEkWERE5EZMsIiKqtK6nm4cLMskiIiLnYZJFRESVVnIGhwsSEZHzMckiIqJKiz1ZRESkBCZZRERUabEni4iIlMAki4iIKi1zCfdgP52LW0JERBUJkywiIqqUhBC4ni6rCwb7erm4NUREVJEwySIiokopM8+IbIMRgJyMmIiIyFmYZBERUaVkLnrho9PAR+fh4tYQEVFFwiSLiIgqJUvRC1YWJCIiJ2OSRURElZKlfDsrCxIRkZMxySIiokrpOsu3ExGRQphkERFRpZRsmYiYRS+IiMi5mGQREVGllJzB8u1ERKQMJllERFQpsSeLiIiUwiSLiIgqJfM9WSx8QUREzsYki4iIKqXrLOFOREQKYZJFRESVjhDCMlyQ1QWJiMjZmGQREVGlk5Gbj9x8EwAOFyQiIudjkkVERJWOuRfL19MD3jqNi1tDREQVDZMsIiKqdK6by7fzfiwiIlIAkywiIqp0CioLsnw7ERE5H5MsIiKqdCxzZPF+LCIiUgCTLCIiqnRYvp2IiJTEJIuIiCod9mQREZGSmGQREVGlw54sIiJSEpMsIiKqdJJvVRdkTxYRESmBSRYREVU619PZk0VERMrxcHUDqOwGL9mPy0kaLPxrD1QqlaubU+EIIaBPZ3yVwvgqi/G1zT9p2QBYwp2IiJTBJMuNnE/OxI0sFf7JynB1UyowxldZjK+yGF9bBFbRoYafl6ubQUREFRCTLDfy6YBW2L1nHzpEdoCHhh+ds+Ub8xG/L57xVQjjqyzG13ZNQnyh8+CoeSIicj4eid1Ih7BAXD8h8EDD6tBqta5uToVjMBiQdprxVQrjqyzGl4iIqPzgJTwiIiIiIiInYpJFRERERETkREyyiIiIiIiInMhtkqyUlBQMHjwY/v7+CAgIwMiRI5GRUXIVrYSEBAwZMgQhISGoUqUK7r33Xqxbt+4utZiIiIiIiCojt0myBg8ejOPHjyMuLg7ff/89fv31V7z44oslbjN06FCcPn0amzZtwtGjR/Hkk0/i2WefxaFDh+5Sq4mIiIiIqLJxiyTr5MmT2LJlC/773/8iMjISnTp1wrx587B69Wpcu3at2O327NmDV155BR06dECDBg0wZcoUBAQE4MCBA3ex9UREREREVJm4RQn3vXv3IiAgAO3bt7csi46Ohlqtxr59+/DEE08UuV3Hjh2xZs0a9OnTBwEBAfjmm2+Qk5ODrl27Fvtaubm5yM3Ntfyu1+sByPLIBoPBOW/ITubXd3U7KirGV1mMr7IYX2UxvspifJXHGCuL8VVWeYpvWdugEkIIhdvisA8++AArVqzA6dOnrZbXqFEDsbGxGD16dJHbpaamon///ti6dSs8PDzg4+ODtWvXokePHsW+1vTp0xEbG1to+apVq+Dj4+PYGyEiIiIiIreVlZWFQYMGIS0tDf7+/sWu59KerEmTJmHWrFklrnPy5Em7n/+dd95Bamoqfv75ZwQFBeG7777Ds88+i127diEiIqLIbSZPnoyYmBjL73q9HqGhoejRo0eJgbwbDAYD4uLi0L17d042qgDGV1mMr7IYX2UxvspifJXHGCuL8VVWeYqveZRbaVyaZI0fPx7Dhw8vcZ0GDRogJCQESUlJVsvz8/ORkpKCkJCQIrc7f/485s+fj2PHjqFFixYAgNatW2PXrl1YsGABFi9eXOR2np6e8PT0LLRcq9W6/EM1K09tqYgYX2UxvspifJXF+CqL8VUeY6wsxldZ5SG+ZX19lyZZwcHBCA4OLnW9qKgopKam4sCBA2jXrh0AYPv27TCZTIiMjCxym6ysLACAWm1d20Oj0cBkMjnYciIiIiIioqK5RXXBZs2aoVevXhg1ahTi4+Oxe/dujB07FgMGDEDt2rUBAFevXkV4eDji4+MBAOHh4WjUqBFeeuklxMfH4/z58/jkk08QFxeHfv36ufDdEBERERFRReYWSRYAfPXVVwgPD0e3bt3Qu3dvdOrUCZ999pnlcYPBgNOnT1t6sLRaLTZv3ozg4GD07dsXrVq1whdffIEVK1agd+/ernobRERERERUwblFCXcACAwMxKpVq4p9PCwsDHcWSmzcuDHWrVundNOIiIiIiIgs3CbJchVz4lbWSiJKMhgMyMrKgl6vd/lNfxUR46ssxldZjK+yGF9lMb7KY4yVxfgqqzzF15wTlDYLFpOsUqSnpwMAQkNDXdwSIiIiIiIqD9LT01G1atViH3eLyYhdyWQy4dq1a/Dz84NKpXJpW8xzdl2+fNnlc3ZVRIyvshhfZTG+ymJ8lcX4Ko8xVhbjq6zyFF8hBNLT01G7du1CVcxvx56sUqjVatStW9fVzbDi7+/v8h2sImN8lcX4KovxVRbjqyzGV3mMsbIYX2WVl/iW1INl5jbVBYmIiIiIiNwBkywiIiIiIiInYpLlRjw9PTFt2jR4enq6uikVEuOrLMZXWYyvshhfZTG+ymOMlcX4Kssd48vCF0RERERERE7EniwiIiIiIiInYpJFRERERETkREyyiIiIiIiInIhJFhERERERkRMxySpH3n//fXTs2BE+Pj4ICAgo0zZCCEydOhW1atWCt7c3oqOjcfbsWat1UlJSMHjwYPj7+yMgIAAjR45ERkaGAu+g/LM1FhcvXoRKpSry39q1ay3rFfX46tWr78ZbKlfs2de6du1aKHb/+te/rNa5dOkS+vTpAx8fH9SoUQMTJ05Efn6+km+lXLI1vikpKXjllVfQtGlTeHt7o169enj11VeRlpZmtV5l3X8XLFiAsLAweHl5ITIyEvHx8SWuv3btWoSHh8PLywsRERHYvHmz1eNl+T6uTGyJ7+eff47OnTujWrVqqFatGqKjowutP3z48EL7aa9evZR+G+WWLfFdvnx5odh5eXlZrcP915ot8S3qOKZSqdCnTx/LOtx/C/z666/o27cvateuDZVKhe+++67UbXbs2IF7770Xnp6eaNSoEZYvX15oHVu/0xUnqNyYOnWqmDNnjoiJiRFVq1Yt0zYffvihqFq1qvjuu+/En3/+KR577DFxzz33iOzsbMs6vXr1Eq1btxa///672LVrl2jUqJEYOHCgQu+ifLM1Fvn5+eKff/6x+hcbGyt8fX1Fenq6ZT0AYtmyZVbr3f4ZVBb27GtdunQRo0aNsopdWlqa5fH8/HzRsmVLER0dLQ4dOiQ2b94sgoKCxOTJk5V+O+WOrfE9evSoePLJJ8WmTZvEuXPnxLZt20Tjxo3FU089ZbVeZdx/V69eLXQ6nVi6dKk4fvy4GDVqlAgICBCJiYlFrr97926h0WjERx99JE6cOCGmTJkitFqtOHr0qGWdsnwfVxa2xnfQoEFiwYIF4tChQ+LkyZNi+PDhomrVquLKlSuWdYYNGyZ69epltZ+mpKTcrbdUrtga32XLlgl/f3+r2CUkJFitw/23gK3xvXHjhlVsjx07JjQajVi2bJllHe6/BTZv3izefvttsX79egFAbNiwocT1//rrL+Hj4yNiYmLEiRMnxLx584RGoxFbtmyxrGPrZ3Y3MMkqh5YtW1amJMtkMomQkBDx8ccfW5alpqYKT09P8fXXXwshhDhx4oQAIPbv329Z58cffxQqlUpcvXrV6W0vz5wVizZt2ojnn3/eallZviQqOnvj26VLF/Haa68V+/jmzZuFWq22OiFYtGiR8Pf3F7m5uU5puztw1v77zTffCJ1OJwwGg2VZZdx/O3ToIF5++WXL70ajUdSuXVvMnDmzyPWfffZZ0adPH6tlkZGR4qWXXhJClO37uDKxNb53ys/PF35+fmLFihWWZcOGDROPP/64s5vqlmyNb2nnFdx/rTm6//773/8Wfn5+IiMjw7KM+2/RynL8eeONN0SLFi2slvXv31/07NnT8rujn5kSOFzQjV24cAEJCQmIjo62LKtatSoiIyOxd+9eAMDevXsREBCA9u3bW9aJjo6GWq3Gvn377nqbXckZsThw4AAOHz6MkSNHFnrs5ZdfRlBQEDp06IClS5dCVLIp6ByJ71dffYWgoCC0bNkSkydPRlZWltXzRkREoGbNmpZlPXv2hF6vx/Hjx53/RsopZ/0tp6Wlwd/fHx4eHlbLK9P+m5eXhwMHDlh9d6rVakRHR1u+O++0d+9eq/UBuR+a1y/L93FlYU9875SVlQWDwYDAwECr5Tt27ECNGjXQtGlTjB49Gjdu3HBq292BvfHNyMhA/fr1ERoaiscff9zq+5P7bwFn7L9LlizBgAEDUKVKFavl3H/tU9r3rzM+MyV4lL4KlVcJCQkAYHXyaf7d/FhCQgJq1Khh9biHhwcCAwMt61QWzojFkiVL0KxZM3Ts2NFq+bvvvouHH34YPj4+2Lp1K8aMGYOMjAy8+uqrTmt/eWdvfAcNGoT69eujdu3aOHLkCN58802cPn0a69evtzxvUfu4+bHKwhn77/Xr1zFjxgy8+OKLVssr2/57/fp1GI3GIverU6dOFblNcfvh7d+15mXFrVNZ2BPfO7355puoXbu21UlTr1698OSTT+Kee+7B+fPn8dZbb+GRRx7B3r17odFonPoeyjN74tu0aVMsXboUrVq1QlpaGmbPno2OHTvi+PHjqFu3Lvff2zi6/8bHx+PYsWNYsmSJ1XLuv/Yr7vtXr9cjOzsbN2/edPg7RwlMshQ2adIkzJo1q8R1Tp48ifDw8LvUooqnrDF2VHZ2NlatWoV33nmn0GO3L2vbti0yMzPx8ccfV4iTVKXje/sJf0REBGrVqoVu3brh/PnzaNiwod3P6y7u1v6r1+vRp08fNG/eHNOnT7d6rCLvv+R+PvzwQ6xevRo7duywKs4wYMAAy88RERFo1aoVGjZsiB07dqBbt26uaKrbiIqKQlRUlOX3jh07olmzZvi///s/zJgxw4Utq3iWLFmCiIgIdOjQwWo599/Kh0mWwsaPH4/hw4eXuE6DBg3seu6QkBAAQGJiImrVqmVZnpiYiDZt2ljWSUpKstouPz8fKSkplu3dXVlj7Ggsvv32W2RlZWHo0KGlrhsZGYkZM2YgNzcXnp6epa5fnt2t+JpFRkYCAM6dO4eGDRsiJCSkUIWgxMREAKgQ+/DdiG96ejp69eoFPz8/bNiwAVqttsT1K9L+W5SgoCBoNBrLfmSWmJhYbCxDQkJKXL8s38eVhT3xNZs9ezY+/PBD/Pzzz2jVqlWJ6zZo0ABBQUE4d+5cpTpJdSS+ZlqtFm3btsW5c+cAcP+9nSPxzczMxOrVq/Huu++W+jqVdf+1R3Hfv/7+/vD29oZGo3H4b0IJvCdLYcHBwQgPDy/xn06ns+u577nnHoSEhGDbtm2WZXq9Hvv27bNcsYqKikJqaioOHDhgWWf79u0wmUyWk1l3V9YYOxqLJUuW4LHHHkNwcHCp6x4+fBjVqlWrECeodyu+ZocPHwYAy4E+KioKR48etUow4uLi4O/vj+bNmzvnTbqQ0vHV6/Xo0aMHdDodNm3aVKhsc1Eq0v5bFJ1Oh3bt2ll9d5pMJmzbts3qav/toqKirNYH5H5oXr8s38eVhT3xBYCPPvoIM2bMwJYtW6zuPSzOlStXcOPGDaukoDKwN763MxqNOHr0qCV23H8LOBLftWvXIjc3F88991ypr1NZ9197lPb964y/CUW4rOQGFfL333+LQ4cOWUqEHzp0SBw6dMiqVHjTpk3F+vXrLb9/+OGHIiAgQGzcuFEcOXJEPP7440WWcG/btq3Yt2+f+O2330Tjxo0rdQn3kmJx5coV0bRpU7Fv3z6r7c6ePStUKpX48ccfCz3npk2bxOeffy6OHj0qzp49KxYuXCh8fHzE1KlTFX8/5Y2t8T137px49913xR9//CEuXLggNm7cKBo0aCAefPBByzbmEu49evQQhw8fFlu2bBHBwcGVtoS7LfFNS0sTkZGRIiIiQpw7d86qdHB+fr4QovLuv6tXrxaenp5i+fLl4sSJE+LFF18UAQEBliqWQ4YMEZMmTbKsv3v3buHh4SFmz54tTp48KaZNm1ZkCffSvo8rC1vj++GHHwqdTie+/fZbq/3UfPxLT08XEyZMEHv37hUXLlwQP//8s7j33ntF48aNRU5OjkveoyvZGt/Y2Fjx008/ifPnz4sDBw6IAQMGCC8vL3H8+HHLOtx/C9gaX7NOnTqJ/v37F1rO/ddaenq65RwXgJgzZ444dOiQ+Pvvv4UQQkyaNEkMGTLEsr65hPvEiRPFyZMnxYIFC4os4V7SZ+YKTLLKkWHDhgkAhf798ssvlnVwaz4bM5PJJN555x1Rs2ZN4enpKbp16yZOnz5t9bw3btwQAwcOFL6+vsLf31+MGDHCKnGrTEqLxYULFwrFXAghJk+eLEJDQ4XRaCz0nD/++KNo06aN8PX1FVWqVBGtW7cWixcvLnLdis7W+F66dEk8+OCDIjAwUHh6eopGjRqJiRMnWs2TJYQQFy9eFI888ojw9vYWQUFBYvz48VYlyCsLW+P7yy+/FPmdAkBcuHBBCFG599958+aJevXqCZ1OJzp06CB+//13y2NdunQRw4YNs1r/m2++EU2aNBE6nU60aNFC/PDDD1aPl+X7uDKxJb7169cvcj+dNm2aEEKIrKws0aNHDxEcHCy0Wq2oX7++GDVqlEtPoFzNlviOGzfOsm7NmjVF7969xcGDB62ej/uvNVu/H06dOiUAiK1btxZ6Lu6/1oo7NpljOmzYMNGlS5dC27Rp00bodDrRoEEDq3Nhs5I+M1dQCVGB6/QSERERERHdZbwni4iIiIiIyImYZBERERERETkRkywiIiIiIiInYpJFRERERETkREyyiIiIiIiInIhJFhERERERkRMxySIiIiIiInIiJllEREREREROxCSLiIiIiIjIiZhkERERERERORGTLCIiIiIiIidikkVERFSM5ORkhISE4IMPPrAs27NnD3Q6HbZt2+bClhERUXmmEkIIVzeCiIiovNq8eTP69euHPXv2oGnTpmjTpg0ef/xxzJkzx9VNIyKicopJFhERUSlefvll/Pzzz2jfvj2OHj2K/fv3w9PT09XNIiKicopJFhERUSmys7PRsmVLXL58GQcOHEBERISrm0REROUY78kiIiIqxfnz53Ht2jWYTCZcvHjR1c0hIqJyjj1ZREREJcjLy0OHDh3Qpk0bNG3aFHPnzsXRo0dRo0YNVzeNiIjKKSZZREREJZg4cSK+/fZb/Pnnn/D19UWXLl1QtWpVfP/9965uGhERlVMcLkhERFSMHTt2YO7cuVi5ciX8/f2hVquxcuVK7Nq1C4sWLXJ184iIqJxiTxYREREREZETsSeLiIiIiIjIiZhkERERERERORGTLCIiIiIiIidikkVERERERORETLKIiIiIiIiciEkWERERERGREzHJIiIiIiIiciImWURERERERE7EJIuIiIiIiMiJmGQRERERERE5EZMsIiIiIiIiJ/p/zQx/UEU2r5wAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -818,13 +668,13 @@ "plt.legend()\n", "plt.grid(True)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -963,24 +813,13 @@ "\n", "\n", "Y_high_low = add_gaussian_noise(high_low(X))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsPklEQVR4nO3df3RU5Z3H8c8EyIQoSaQJ+aER+WETlUAQS0jWFSgpCbIWjh4X0FN+LIXVxVYNqxLXwgJ6AhXFsy6Ktgi6K4s/qmAtohgBFwwgSCog5BgKBoGJAmWGBA2QPPtHN1OnZDIzITe5N75f59xzmDvPnfk+uZnMh/vc516XMcYIAADAIaLauwAAAIBIEF4AAICjEF4AAICjEF4AAICjEF4AAICjEF4AAICjEF4AAICjEF4AAICjdG7vAlpbQ0ODjh49qm7dusnlcrV3OQAAIAzGGJ0+fVppaWmKimr+2EqHCy9Hjx5Venp6e5cBAABa4PDhw7riiiuabdPhwku3bt0k/aXzcXFx7VwNAAAIh8/nU3p6uv97vDkdLrw0DhXFxcURXgAAcJhwTvnghF0AAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAoloaXkpIS/ehHP1K3bt3Uo0cPjR07VhUVFSG3e+2115SZmamYmBhlZWVp7dq1VpYJAAAcxNLwsmnTJs2YMUNbt27V+vXrde7cOY0cOVK1tbVBt/noo480YcIETZ06Vbt27dLYsWM1duxY7dmzx8pSAQCAQ7iMMaat3uzrr79Wjx49tGnTJt10001Nthk3bpxqa2v19ttv+9cNGTJE2dnZWrp0acj38Pl8io+Pl9fr5d5GAAA4RCTf3216Y0av1ytJ6t69e9A2ZWVlKioqClhXUFCg1atXN9m+rq5OdXV1/sc+n+/iC23C8Zo6LdlQaclrAwg0IjNZN16d2N5lALCpNgsvDQ0Nuu+++/R3f/d36tevX9B2Ho9HycnJAeuSk5Pl8XiabF9SUqK5c+e2aq1N8X1zTsu3HLL8fQBIa3cf07aH89u7DAA21WbhZcaMGdqzZ482b97cqq9bXFwccKTG5/MpPT29Vd9DkhJiozVjeJ9Wf10Af3XqzDm9vK1KZ+rq27sUADbWJuHlnnvu0dtvv60PP/xQV1xxRbNtU1JSVF1dHbCuurpaKSkpTbZ3u91yu92tVmsw3S+J1gMFmZa/D/B9duh4rV7eVtXeZQCwOUtnGxljdM899+jNN9/UBx98oF69eoXcJjc3V6WlpQHr1q9fr9zcXKvKBGAzbTaLAIAjWXrkZcaMGVq5cqXWrFmjbt26+c9biY+PV9euXSVJEydO1OWXX66SkhJJ0r333quhQ4fqiSee0OjRo7Vq1Srt2LFDzz//vJWlAgAAh7D0yMuzzz4rr9erYcOGKTU11b+88sor/jZVVVU6duyY/3FeXp5Wrlyp559/XgMGDNDrr7+u1atXN3uSL4COweVq7woAOIGlR17CuYTMxo0bL1h3++236/bbb7egIgBO0IaXnwLgQNzbCAAAOArhBYBtuMS4EYDQCC8AbIdBIwDNIbwAAABHIbwAsA1mGwEIB+EFgO0w2QhAcwgvAADAUQgvAADAUQgvAGzHMN8IQDMILwAAwFEILwBso3G2ESfsAmgO4QUAADgK4QWAbbi40AuAMBBeANgOo0YAmkN4AQAAjkJ4AWAbDBoBCAfhBYD9MG4EoBmEFwAA4CiEFwC2wWQjAOEgvACwHW4PAKA5hBcAAOAohBcAtuFivhGAMBBeANgO9zYC0BzCCwAAcBTCCwDbYLYRgHAQXgDYDqNGAJpDeAEAAI5CeAFgG4waAQgH4QWA7RimGwFoBuEFAAA4CuEFgH0wbgQgDJaGlw8//FC33HKL0tLS5HK5tHr16mbbb9y4US6X64LF4/FYWSYAm2HQCEBzLA0vtbW1GjBggJYsWRLRdhUVFTp27Jh/6dGjh0UVAgAAp+ls5YuPGjVKo0aNini7Hj16KCEhofULAmBr3NsIQDhsec5Ldna2UlNT9ZOf/ERbtmxptm1dXZ18Pl/AAsDZmGwEoDm2Ci+pqalaunSpfve73+l3v/ud0tPTNWzYMH3yySdBtykpKVF8fLx/SU9Pb8OKAQBAW7N02ChSGRkZysjI8D/Oy8vTgQMHtHjxYv3Xf/1Xk9sUFxerqKjI/9jn8xFgAIfi3kYAwmGr8NKUwYMHa/PmzUGfd7vdcrvdbVgRAABoT7YaNmpKeXm5UlNT27sMAABgE5YeeampqVFlZaX/8cGDB1VeXq7u3bvryiuvVHFxsY4cOaKXXnpJkvTUU0+pV69euu666/Ttt9/qt7/9rT744AO99957VpYJwCYYNQIQDkvDy44dOzR8+HD/48ZzUyZNmqQVK1bo2LFjqqqq8j9/9uxZzZw5U0eOHFFsbKz69++v999/P+A1AHw/GGPk4iQYAE1wmQ52BzSfz6f4+Hh5vV7FxcW1dzkAInCipk6DHn1fknSw5GbCC/A9Esn3t+3PeQHw/fHdsNKx/lsFoDURXgAAgKMQXgAAgKMQXgDYxnfPcGHUCEAwhBcAAOAohBcAtsHkIgDhILwAsKUOdhUHAK2I8AIAAByF8ALANlzcIABAGAgvAGyJQSMAwRBeAACAoxBeANgHo0YAwkB4AWBLTDYCEAzhBQAAOArhBYBtcJE6AOEgvACwJcN8IwBBEF4AAICjEF4A2AajRgDCQXgBYEvMNgIQDOEFAAA4CuEFgG24mG4EIAyEFwAA4CiEFwAA4CiEFwC2waARgHAQXgDYErONAARDeAEAAI5CeAFgG0w2AhAOwgsAW+LeRgCCIbwAAABHIbwAsA0X840AhIHwAsCWmG0EIBhLw8uHH36oW265RWlpaXK5XFq9enXIbTZu3Kjrr79ebrdbffv21YoVK6wsEQAAOIyl4aW2tlYDBgzQkiVLwmp/8OBBjR49WsOHD1d5ebnuu+8+/fznP9e7775rZZkAbILZRgDC0dnKFx81apRGjRoVdvulS5eqV69eeuKJJyRJ11xzjTZv3qzFixeroKDAqjIB2BCjRgCCsdU5L2VlZcrPzw9YV1BQoLKysqDb1NXVyefzBSwAAKDjslV48Xg8Sk5ODliXnJwsn8+nb775psltSkpKFB8f71/S09PbolQAFjOcsQsgCFuFl5YoLi6W1+v1L4cPH27vkgAAgIUsPeclUikpKaqurg5YV11drbi4OHXt2rXJbdxut9xud1uUB8BinLALIBy2OvKSm5ur0tLSgHXr169Xbm5uO1UEoL0waAQgGEvDS01NjcrLy1VeXi7pL1Ohy8vLVVVVJekvQz4TJ070t7/rrrv0pz/9SQ8++KD279+vZ555Rq+++qruv/9+K8sEAAAOYml42bFjhwYOHKiBAwdKkoqKijRw4EDNnj1bknTs2DF/kJGkXr166Q9/+IPWr1+vAQMG6IknntBvf/tbpkkD3xPcHgBAOCw952XYsGHNzhho6uq5w4YN065duyysCoATMNkIQDC2OucFAAAgFMILANtgthGAcBBeANgTw0YAgiC8AAAARyG8ALANRo0AhIPwAsCWDONGAIIgvAAAAEchvACwDRfTjQCEgfACwJa4SB2AYAgvAADAUQgvAGyDQSMA4SC8ALAlRo0ABEN4AQAAjkJ4AWAbTDYCEA7CCwBbMkw3AhAE4QUAADgK4QWAbXCROgDhILwAsCUGjQAEQ3gBAACOQngBAACOQngBYEtMNgIQDOEFAAA4CuEFgK0w4QhAKIQXALZkmG8EIAjCCwAAcBTCCwBb8Y8aceAFQBCEFwAA4CiEFwAA4CiEFwC20nh/I0aNAARDeAEAAI5CeAFgK1zmBUAobRJelixZoquuukoxMTHKycnR9u3bg7ZdsWKFXC5XwBITE9MWZQKwEW4PACAYy8PLK6+8oqKiIs2ZM0effPKJBgwYoIKCAn311VdBt4mLi9OxY8f8yxdffGF1mQAAwCEsDy9PPvmkpk2bpilTpujaa6/V0qVLFRsbqxdeeCHoNi6XSykpKf4lOTnZ6jIB2AS3BwAQiqXh5ezZs9q5c6fy8/P/+oZRUcrPz1dZWVnQ7WpqatSzZ0+lp6drzJgx2rt3b9C2dXV18vl8AQsA5+P2AACCsTS8HD9+XPX19RccOUlOTpbH42lym4yMDL3wwgtas2aN/vu//1sNDQ3Ky8vTl19+2WT7kpISxcfH+5f09PRW7wcAALAP2802ys3N1cSJE5Wdna2hQ4fqjTfeUFJSkp577rkm2xcXF8vr9fqXw4cPt3HFAFqTi/lGAELobOWLJyYmqlOnTqqurg5YX11drZSUlLBeo0uXLho4cKAqKyubfN7tdsvtdl90rQDshdlGAIKx9MhLdHS0Bg0apNLSUv+6hoYGlZaWKjc3N6zXqK+v1+7du5WammpVmQAAwEEsPfIiSUVFRZo0aZJuuOEGDR48WE899ZRqa2s1ZcoUSdLEiRN1+eWXq6SkRJI0b948DRkyRH379tWpU6f0+OOP64svvtDPf/5zq0sFYAeMGgEIwfLwMm7cOH399deaPXu2PB6PsrOztW7dOv9JvFVVVYqK+usBoD//+c+aNm2aPB6PLrvsMg0aNEgfffSRrr32WqtLBWAjjBoBCMZlTMcaWfb5fIqPj5fX61VcXFx7lwMgQj985B2dPd+gLbN+rMsTurZ3OQDaSCTf37abbQTg+41RIwChEF4A2FIHOygMoBURXgAAgKMQXgDYCvc2AhAK4QWALTFqBCAYwgsAAHAUwgsAW+HeRgBCIbwAAABHIbwAAABHIbwAsBVmGwEIhfACwJaYbQQgGMILAABwFMILAFth1AhAKIQXALZkxLgRgKYRXgAAgKMQXgDYiovpRgBCILwAsCVmGwEIhvACAAAchfACwFYaB4048AIgGMILAABwFMILAHvhfF0AIRBeANiS4YxdAEEQXgAAgKMQXgDYCqNGAEIhvACwJQaNAARDeAEAAI5CeAFgK9weAEAohBcAtsRkIwDBEF4AAICjEF4A2AqjRgBCIbwAsCnGjQA0rU3Cy5IlS3TVVVcpJiZGOTk52r59e7PtX3vtNWVmZiomJkZZWVlau3ZtW5QJAAAcwPLw8sorr6ioqEhz5szRJ598ogEDBqigoEBfffVVk+0/+ugjTZgwQVOnTtWuXbs0duxYjR07Vnv27LG6VAA2wKgRgFBcxuIbiOTk5OhHP/qR/vM//1OS1NDQoPT0dP3iF7/QrFmzLmg/btw41dbW6u233/avGzJkiLKzs7V06dKQ7+fz+RQfHy+v16u4uLjW6wiANjFw3nv685lzWn//Tbo6uVt7lwOgjUTy/W3pkZezZ89q586dys/P/+sbRkUpPz9fZWVlTW5TVlYW0F6SCgoKgravq6uTz+cLWAAAQMdlaXg5fvy46uvrlZycHLA+OTlZHo+nyW08Hk9E7UtKShQfH+9f0tPTW6d4AO2Ci9QBCMXxs42Ki4vl9Xr9y+HDh9u7JACtgLlGAILpbOWLJyYmqlOnTqqurg5YX11drZSUlCa3SUlJiai92+2W2+1unYIBAIDtWXrkJTo6WoMGDVJpaal/XUNDg0pLS5Wbm9vkNrm5uQHtJWn9+vVB2wPoWBg0AhCKpUdeJKmoqEiTJk3SDTfcoMGDB+upp55SbW2tpkyZIkmaOHGiLr/8cpWUlEiS7r33Xg0dOlRPPPGERo8erVWrVmnHjh16/vnnrS4VgI1wbyMAwVgeXsaNG6evv/5as2fPlsfjUXZ2ttatW+c/KbeqqkpRUX89AJSXl6eVK1fqkUce0cMPP6yrr75aq1evVr9+/awuFQAAOIDl13lpa1znBXC2Gx5dr+M1Z/XufTcpI4XrvADfF7a5zgsAtJRhvhGAIAgvAADAUQgvAGyG+UYAmkd4AWBLHetsPACtifACAAAchfACwFa4tRGAUAgvAGyJYSMAwRBeAACAoxBeANhK46gR13kBEAzhBQAAOArhBQAAOArhBYCtNM424oRdAMEQXgAAgKMQXgDYiovbAwAIgfACAAAchfACAAAchfACwFa4PQCAUAgvAGyJ2UYAgiG8AAAARyG8ALAVRo0AhEJ4AWBL3NsIQDCEFwAA4CiEFwC24mK6EYAQCC8AbInZRgCCIbwAAABHIbwAAABHIbwAsCVGjQAEQ3gBAACOQngBYCtMNgIQCuEFgC0ZphsBCILwAgAAHMXS8HLy5EndeeediouLU0JCgqZOnaqamppmtxk2bJhcLlfActddd1lZJgAbYdgIQCidrXzxO++8U8eOHdP69et17tw5TZkyRdOnT9fKlSub3W7atGmaN2+e/3FsbKyVZQKwIQaNAARjWXjZt2+f1q1bp48//lg33HCDJOnpp5/WzTffrEWLFiktLS3otrGxsUpJSbGqNAAA4GCWDRuVlZUpISHBH1wkKT8/X1FRUdq2bVuz27788stKTExUv379VFxcrDNnzgRtW1dXJ5/PF7AAcC6XGDcC0DzLjrx4PB716NEj8M06d1b37t3l8XiCbnfHHXeoZ8+eSktL06effqqHHnpIFRUVeuONN5psX1JSorlz57Zq7QDaH5ONAAQTcXiZNWuWFi5c2Gybffv2tbig6dOn+/+dlZWl1NRUjRgxQgcOHFCfPn0uaF9cXKyioiL/Y5/Pp/T09Ba/PwAAsLeIw8vMmTM1efLkZtv07t1bKSkp+uqrrwLWnz9/XidPnozofJacnBxJUmVlZZPhxe12y+12h/16AOyN2UYAQok4vCQlJSkpKSlku9zcXJ06dUo7d+7UoEGDJEkffPCBGhoa/IEkHOXl5ZKk1NTUSEsF4GiMGwFommUn7F5zzTUqLCzUtGnTtH37dm3ZskX33HOPxo8f759pdOTIEWVmZmr79u2SpAMHDmj+/PnauXOnDh06pLfeeksTJ07UTTfdpP79+1tVKgAAcBBLL1L38ssvKzMzUyNGjNDNN9+sG2+8Uc8//7z/+XPnzqmiosI/myg6Olrvv/++Ro4cqczMTM2cOVO33Xabfv/731tZJgAbYdQIQCiWXqSue/fuzV6Q7qqrrgq4f0l6ero2bdpkZUkAHILZRgCC4d5GAADAUQgvAGzF9f/TjTjwAiAYwgsAAHAUwgsAW+GEXQChEF4A2BIn7AIIhvACAAAchfACwF4YNwIQAuEFgC0Zxo0ABEF4AQAAjkJ4AWArjBoBCIXwAsCWGDQCEAzhBQAAOArhBYCtNN4eAACCIbwAsCUmGwEIhvACAAAchfACwFYYNAIQCuEFgC0Z5hsBCILwAgAAHIXwAsBWmGwEIBTCCwB7YtQIQBCEFwAA4CiEFwC24mK+EYAQCC8AbIlRIwDBEF4AAICjEF4A2AqzjQCEQngBYEvc2whAMIQXAADgKIQXAADgKIQXALbEvY0ABEN4AQAAjkJ4AWArLqYbAQjBsvDy2GOPKS8vT7GxsUpISAhrG2OMZs+erdTUVHXt2lX5+fn6/PPPrSoRgI0x2whAMJaFl7Nnz+r222/X3XffHfY2v/71r/Uf//EfWrp0qbZt26ZLLrlEBQUF+vbbb60qEwAAOExnq1547ty5kqQVK1aE1d4Yo6eeekqPPPKIxowZI0l66aWXlJycrNWrV2v8+PFWlQrARhoHjTjwAiAY25zzcvDgQXk8HuXn5/vXxcfHKycnR2VlZUG3q6urk8/nC1gAAEDHZZvw4vF4JEnJyckB65OTk/3PNaWkpETx8fH+JT093dI6AQBA+4oovMyaNUsul6vZZf/+/VbV2qTi4mJ5vV7/cvjw4TZ9fwCtq3GykeGMXQBBRHTOy8yZMzV58uRm2/Tu3btFhaSkpEiSqqurlZqa6l9fXV2t7OzsoNu53W653e4WvScAAHCeiMJLUlKSkpKSLCmkV69eSklJUWlpqT+s+Hw+bdu2LaIZSwCcjcu8AAjFsnNeqqqqVF5erqqqKtXX16u8vFzl5eWqqanxt8nMzNSbb74p6S8Xprrvvvv06KOP6q233tLu3bs1ceJEpaWlaezYsVaVCcCmGDQCEIxlU6Vnz56tF1980f944MCBkqQNGzZo2LBhkqSKigp5vV5/mwcffFC1tbWaPn26Tp06pRtvvFHr1q1TTEyMVWUCAACHcZkOdlacz+dTfHy8vF6v4uLi2rscABG65enN2n3Eq+VTfqThGT3auxwAbSSS72/bTJUGgAAd6r9VAFoT4QUAADgK4QWArTDbCEAohBcAtmQYNwIQBOEFAAA4CuEFgK0wagQgFMILAFvqWBdxANCaCC8AAMBRCC8A7IXpRgBCILwAsCWGjQAEQ3gBAACOQngBYCsMGgEIhfACwJYYNQIQDOEFAAA4CuEFgK0w2QhAKIQXALZkmG4EIAjCCwAAcBTCCwBbYdQIQCiEFwC2xKARgGAILwAAwFEILwBsxcV0IwAhEF4A2BKTjQAEQ3gBAACOQngBYCsMGgEIhfACwKYYNwLQNMILAABwFMILAFtpnGzECbsAgiG8AAAARyG8ALAVF6fsAgiB8ALAlhg1AhAM4QUAADiKZeHlscceU15enmJjY5WQkBDWNpMnT5bL5QpYCgsLrSoRgB0xagQghM5WvfDZs2d1++23Kzc3V8uWLQt7u8LCQi1fvtz/2O12W1EeAJtjthGAYCwLL3PnzpUkrVixIqLt3G63UlJSLKgIAAB0BLY752Xjxo3q0aOHMjIydPfdd+vEiRPNtq+rq5PP5wtYADgXo0YAQrFVeCksLNRLL72k0tJSLVy4UJs2bdKoUaNUX18fdJuSkhLFx8f7l/T09DasGIBVDPONAAQRUXiZNWvWBSfU/u2yf//+Fhczfvx4/fSnP1VWVpbGjh2rt99+Wx9//LE2btwYdJvi4mJ5vV7/cvjw4Ra/PwAAsL+IznmZOXOmJk+e3Gyb3r17X0w9F7xWYmKiKisrNWLEiCbbuN1uTuoFOhAX40YAQogovCQlJSkpKcmqWi7w5Zdf6sSJE0pNTW2z9wRgD8w2AhCMZee8VFVVqby8XFVVVaqvr1d5ebnKy8tVU1Pjb5OZmak333xTklRTU6MHHnhAW7du1aFDh1RaWqoxY8aob9++KigosKpMAADgMJZNlZ49e7ZefPFF/+OBAwdKkjZs2KBhw4ZJkioqKuT1eiVJnTp10qeffqoXX3xRp06dUlpamkaOHKn58+czLAR8j3BvIwChWBZeVqxYEfIaL+Y7x4W7du2qd99916pyADgMo0YAgrHVVGkAAIBQCC8AbIXZRgBCIbwAsCXDdCMAQRBeAACAoxBeANgKw0YAQiG8AAAARyG8AAAARyG8ALAVLlIHIBTCCwBbYrIRgGAILwAAwFEILwBshdlGAEIhvACwJcPdjQAEQXgBAACOQngBAACOQngBYEvMNgIQDOEFAAA4CuEFgK24/n+6EUdeAARDeAEAAI5CeAEAAI5CeAFgK43XqGPUCEAwhBcAAOAohBcAtsLtAQCEQngBYEuG6UYAgiC8AAAARyG8ALAVRo0AhEJ4AWBLDBoBCIbwAgAAHIXwAsBWXEw3AhAC4QWAPTFuBCAIwgsAAHAUwgsAW2HQCEAoloWXQ4cOaerUqerVq5e6du2qPn36aM6cOTp79myz23377beaMWOGfvCDH+jSSy/VbbfdpurqaqvKBGBThnEjAEFYFl7279+vhoYGPffcc9q7d68WL16spUuX6uGHH252u/vvv1+///3v9dprr2nTpk06evSobr31VqvKBAAADtPZqhcuLCxUYWGh/3Hv3r1VUVGhZ599VosWLWpyG6/Xq2XLlmnlypX68Y9/LElavny5rrnmGm3dulVDhgyxqlwANsFkIwChWBZemuL1etW9e/egz+/cuVPnzp1Tfn6+f11mZqauvPJKlZWVNRle6urqVFdX53/s8/lat2gA7eKtPx7Vfs/p9i4DQBMSL3VrxvC+7fb+bRZeKisr9fTTTwc96iJJHo9H0dHRSkhICFifnJwsj8fT5DYlJSWaO3dua5YKoB11i+kiSdpSeUJbKk+0czUAmtI76RJnhZdZs2Zp4cKFzbbZt2+fMjMz/Y+PHDmiwsJC3X777Zo2bVrkVTajuLhYRUVF/sc+n0/p6emt+h4A2k7RT36onj+I1bn6hvYuBUAQl8VGt+v7RxxeZs6cqcmTJzfbpnfv3v5/Hz16VMOHD1deXp6ef/75ZrdLSUnR2bNnderUqYCjL9XV1UpJSWlyG7fbLbfbHXb9AOwtvXus7sv/YXuXAcDGIg4vSUlJSkpKCqvtkSNHNHz4cA0aNEjLly9XVFTzk5sGDRqkLl26qLS0VLfddpskqaKiQlVVVcrNzY20VAAA0AFZNlX6yJEjGjZsmK688kotWrRIX3/9tTweT8C5K0eOHFFmZqa2b98uSYqPj9fUqVNVVFSkDRs2aOfOnZoyZYpyc3OZaQQAACRZeMLu+vXrVVlZqcrKSl1xxRUBzxnzl4tPnTt3ThUVFTpz5oz/ucWLFysqKkq33Xab6urqVFBQoGeeecaqMgEAgMO4TGOS6CB8Pp/i4+Pl9XoVFxfX3uUAAIAwRPL9zb2NAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAo1h2e4D20njBYJ/P186VAACAcDV+b4dz4f8OF15Onz4tSUpPT2/nSgAAQKROnz6t+Pj4Ztt0uHsbNTQ06OjRo+rWrZtcLlervrbP51N6eroOHz7cIe+b1NH7J3X8PtI/5+vofaR/zmdVH40xOn36tNLS0hQV1fxZLR3uyEtUVNQFd7FubXFxcR32l1Lq+P2TOn4f6Z/zdfQ+0j/ns6KPoY64NOKEXQAA4CiEFwAA4CiElwi43W7NmTNHbre7vUuxREfvn9Tx+0j/nK+j95H+OZ8d+tjhTtgFAAAdG0deAACAoxBeAACAoxBeAACAoxBeAACAoxBevuOxxx5TXl6eYmNjlZCQENY2xhjNnj1bqamp6tq1q/Lz8/X5558HtDl58qTuvPNOxcXFKSEhQVOnTlVNTY0FPQgt0loOHTokl8vV5PLaa6/52zX1/KpVq9qiSwFa8rMeNmzYBbXfddddAW2qqqo0evRoxcbGqkePHnrggQd0/vx5K7vSpEj7d/LkSf3iF79QRkaGunbtqiuvvFK//OUv5fV6A9q15/5bsmSJrrrqKsXExCgnJ0fbt29vtv1rr72mzMxMxcTEKCsrS2vXrg14PpzPZFuKpH+/+c1v9Pd///e67LLLdNlllyk/P/+C9pMnT75gXxUWFlrdjWZF0scVK1ZcUH9MTExAGyfvw6b+nrhcLo0ePdrfxk778MMPP9Qtt9yitLQ0uVwurV69OuQ2Gzdu1PXXXy+3262+fftqxYoVF7SJ9HMdMQO/2bNnmyeffNIUFRWZ+Pj4sLZZsGCBiY+PN6tXrzZ//OMfzU9/+lPTq1cv88033/jbFBYWmgEDBpitW7ea//3f/zV9+/Y1EyZMsKgXzYu0lvPnz5tjx44FLHPnzjWXXnqpOX36tL+dJLN8+fKAdt/9GbSVlvyshw4daqZNmxZQu9fr9T9//vx5069fP5Ofn2927dpl1q5daxITE01xcbHV3blApP3bvXu3ufXWW81bb71lKisrTWlpqbn66qvNbbfdFtCuvfbfqlWrTHR0tHnhhRfM3r17zbRp00xCQoKprq5usv2WLVtMp06dzK9//Wvz2WefmUceecR06dLF7N69298mnM9kW4m0f3fccYdZsmSJ2bVrl9m3b5+ZPHmyiY+PN19++aW/zaRJk0xhYWHAvjp58mRbdekCkfZx+fLlJi4uLqB+j8cT0MbJ+/DEiRMBfduzZ4/p1KmTWb58ub+Nnfbh2rVrzb/927+ZN954w0gyb775ZrPt//SnP5nY2FhTVFRkPvvsM/P000+bTp06mXXr1vnbRPozawnCSxOWL18eVnhpaGgwKSkp5vHHH/evO3XqlHG73eZ//ud/jDHGfPbZZ0aS+fjjj/1t3nnnHeNyucyRI0davfbmtFYt2dnZ5p/+6Z8C1oXzS2+1lvZv6NCh5t577w36/Nq1a01UVFTAH9hnn33WxMXFmbq6ulapPRyttf9effVVEx0dbc6dO+df1177b/DgwWbGjBn+x/X19SYtLc2UlJQ02f4f//EfzejRowPW5eTkmH/+5382xoT3mWxLkfbvb50/f95069bNvPjii/51kyZNMmPGjGntUlss0j6G+vva0fbh4sWLTbdu3UxNTY1/nd32YaNw/g48+OCD5rrrrgtYN27cOFNQUOB/fLE/s3AwbHQRDh48KI/Ho/z8fP+6+Ph45eTkqKysTJJUVlamhIQE3XDDDf42+fn5ioqK0rZt29q03taoZefOnSovL9fUqVMveG7GjBlKTEzU4MGD9cILL4R1W/PWdDH9e/nll5WYmKh+/fqpuLhYZ86cCXjdrKwsJScn+9cVFBTI5/Np7969rd+RIFrrd8nr9SouLk6dOwfe2qyt99/Zs2e1c+fOgM9PVFSU8vPz/Z+fv1VWVhbQXvrLvmhsH85nsq20pH9/68yZMzp37py6d+8esH7jxo3q0aOHMjIydPfdd+vEiROtWnu4WtrHmpoa9ezZU+np6RozZkzA56ij7cNly5Zp/PjxuuSSSwLW22UfRirUZ7A1fmbh6HA3ZmxLHo9HkgK+1BofNz7n8XjUo0ePgOc7d+6s7t27+9u0ldaoZdmyZbrmmmuUl5cXsH7evHn68Y9/rNjYWL333nv6l3/5F9XU1OiXv/xlq9UfSkv7d8cdd6hnz55KS0vTp59+qoceekgVFRV64403/K/b1D5ufK6ttMb+O378uObPn6/p06cHrG+P/Xf8+HHV19c3+bPdv39/k9sE2xff/bw1rgvWpq20pH9/66GHHlJaWlrAF0FhYaFuvfVW9erVSwcOHNDDDz+sUaNGqaysTJ06dWrVPoTSkj5mZGTohRdeUP/+/eX1erVo0SLl5eVp7969uuKKKzrUPty+fbv27NmjZcuWBay30z6MVLDPoM/n0zfffKM///nPF/17H44OH15mzZqlhQsXNttm3759yszMbKOKWl+4fbxY33zzjVauXKlf/epXFzz33XUDBw5UbW2tHn/88Vb58rO6f9/9Is/KylJqaqpGjBihAwcOqE+fPi1+3XC11f7z+XwaPXq0rr32Wv37v/97wHNW7j+0zIIFC7Rq1Spt3Lgx4ITW8ePH+/+dlZWl/v37q0+fPtq4caNGjBjRHqVGJDc3V7m5uf7HeXl5uuaaa/Tcc89p/vz57VhZ61u2bJmysrI0ePDggPVO34d20OHDy8yZMzV58uRm2/Tu3btFr52SkiJJqq6uVmpqqn99dXW1srOz/W2++uqrgO3Onz+vkydP+re/WOH28WJref3113XmzBlNnDgxZNucnBzNnz9fdXV1F33/i7bqX6OcnBxJUmVlpfr06aOUlJQLzpSvrq6WpFbZh23Rv9OnT6uwsFDdunXTm2++qS5dujTbvjX3XzCJiYnq1KmT/2fZqLq6Omh/UlJSmm0fzmeyrbSkf40WLVqkBQsW6P3331f//v2bbdu7d28lJiaqsrKyzb/4LqaPjbp06aKBAweqsrJSUsfZh7W1tVq1apXmzZsX8n3acx9GKthnMC4uTl27dlWnTp0u+nciLK129kwHEukJu4sWLfKv83q9TZ6wu2PHDn+bd999t11P2G1pLUOHDr1glkowjz76qLnssstaXGtLtNbPevPmzUaS+eMf/2iM+esJu989U/65554zcXFx5ttvv229DoTQ0v55vV4zZMgQM3ToUFNbWxvWe7XV/hs8eLC55557/I/r6+vN5Zdf3uwJu//wD/8QsC43N/eCE3ab+0y2pUj7Z4wxCxcuNHFxcaasrCys9zh8+LBxuVxmzZo1F11vS7Skj991/vx5k5GRYe6//35jTMfYh8b85XvE7Xab48ePh3yP9t6HjRTmCbv9+vULWDdhwoQLTti9mN+JsGpttVfqAL744guza9cu/1TgXbt2mV27dgVMCc7IyDBvvPGG//GCBQtMQkKCWbNmjfn000/NmDFjmpwqPXDgQLNt2zazefNmc/XVV7frVOnmavnyyy9NRkaG2bZtW8B2n3/+uXG5XOadd9654DXfeust85vf/Mbs3r3bfP755+aZZ54xsbGxZvbs2Zb3529F2r/Kykozb948s2PHDnPw4EGzZs0a07t3b3PTTTf5t2mcKj1y5EhTXl5u1q1bZ5KSktptqnQk/fN6vSYnJ8dkZWWZysrKgKmZ58+fN8a07/5btWqVcbvdZsWKFeazzz4z06dPNwkJCf6ZXT/72c/MrFmz/O23bNliOnfubBYtWmT27dtn5syZ0+RU6VCfybYSaf8WLFhgoqOjzeuvvx6wrxr/Bp0+fdr867/+qykrKzMHDx4077//vrn++uvN1Vdf3aZB+mL6OHfuXPPuu++aAwcOmJ07d5rx48ebmJgYs3fvXn8bJ+/DRjfeeKMZN27cBevttg9Pnz7t/66TZJ588kmza9cu88UXXxhjjJk1a5b52c9+5m/fOFX6gQceMPv27TNLlixpcqp0cz+z1kB4+Y5JkyYZSRcsGzZs8LfR/18Po1FDQ4P51a9+ZZKTk43b7TYjRowwFRUVAa974sQJM2HCBHPppZeauLg4M2XKlIBA1JZC1XLw4MEL+myMMcXFxSY9Pd3U19df8JrvvPOOyc7ONpdeeqm55JJLzIABA8zSpUubbGu1SPtXVVVlbrrpJtO9e3fjdrtN3759zQMPPBBwnRdjjDl06JAZNWqU6dq1q0lMTDQzZ84MmGrcViLt34YNG5r8nZZkDh48aIxp//339NNPmyuvvNJER0ebwYMHm61bt/qfGzp0qJk0aVJA+1dffdX88Ic/NNHR0ea6664zf/jDHwKeD+cz2ZYi6V/Pnj2b3Fdz5swxxhhz5swZM3LkSJOUlGS6dOlievbsaaZNm9aqXwotEUkf77vvPn/b5ORkc/PNN5tPPvkk4PWcvA+NMWb//v1GknnvvfcueC277cNgfyMa+zRp0iQzdOjQC7bJzs420dHRpnfv3gHfiY2a+5m1BpcxbTyfFQAA4CJwnRcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAo/wf3evcPZQGq+AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -995,13 +834,13 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -1021,13 +860,13 @@ "data_valid = TensorDataset(X_valid, Y_valid)\n", "loader_train = DataLoader(data_train, batch_size=batch_size, shuffle=False)\n", "loader_valid = DataLoader(data_valid, batch_size=batch_size, shuffle=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "import logging\n", @@ -1041,13 +880,13 @@ "optimizer = Adam(model.parameters(), lr=lr, amsgrad=True)\n", "loss_fn = torch.nn.MSELoss()\n", "metric = MeanAbsolutePercentageError()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "logger = logging.getLogger(\"train_function\")\n", "logger.setLevel(level=logging.INFO)\n", @@ -1059,241 +898,23 @@ " num_epochs=num_epochs,\n", " logger=logger,\n", ")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:train_function:Train - Epoch: 1, Loss: 8.342393, Metrics: MARE: 1.440194\n", - "INFO:train_function:Validate - Epoch: 1, Loss: 7.607440, Metrics: MARE: 1.366828\n", - "INFO:train_function:Train - Epoch: 2, Loss: 5.895769, Metrics: MARE: 1.212957\n", - "INFO:train_function:Validate - Epoch: 2, Loss: 5.577182, Metrics: MARE: 1.177464\n", - "INFO:train_function:Train - Epoch: 3, Loss: 4.131848, Metrics: MARE: 1.016340\n", - "INFO:train_function:Validate - Epoch: 3, Loss: 4.109858, Metrics: MARE: 1.013616\n", - "INFO:train_function:Train - Epoch: 4, Loss: 2.913098, Metrics: MARE: 0.852639\n", - "INFO:train_function:Validate - Epoch: 4, Loss: 3.092991, Metrics: MARE: 0.877199\n", - "INFO:train_function:Train - Epoch: 5, Loss: 2.072767, Metrics: MARE: 0.716553\n", - "INFO:train_function:Validate - Epoch: 5, Loss: 2.389320, Metrics: MARE: 0.763794\n", - "INFO:train_function:Train - Epoch: 6, Loss: 1.476303, Metrics: MARE: 0.599679\n", - "INFO:train_function:Validate - Epoch: 6, Loss: 1.887640, Metrics: MARE: 0.666399\n", - "INFO:train_function:Train - Epoch: 7, Loss: 1.040128, Metrics: MARE: 0.494947\n", - "INFO:train_function:Validate - Epoch: 7, Loss: 1.518669, Metrics: MARE: 0.579122\n", - "INFO:train_function:Train - Epoch: 8, Loss: 0.720350, Metrics: MARE: 0.398397\n", - "INFO:train_function:Validate - Epoch: 8, Loss: 1.246001, Metrics: MARE: 0.498664\n", - "INFO:train_function:Train - Epoch: 9, Loss: 0.494334, Metrics: MARE: 0.308837\n", - "INFO:train_function:Validate - Epoch: 9, Loss: 1.050949, Metrics: MARE: 0.424031\n", - "INFO:train_function:Train - Epoch: 10, Loss: 0.346951, Metrics: MARE: 0.226811\n", - "INFO:train_function:Validate - Epoch: 10, Loss: 0.921175, Metrics: MARE: 0.355676\n", - "INFO:train_function:Train - Epoch: 11, Loss: 0.263601, Metrics: MARE: 0.153660\n", - "INFO:train_function:Validate - Epoch: 11, Loss: 0.844856, Metrics: MARE: 0.294717\n", - "INFO:train_function:Train - Epoch: 12, Loss: 0.228201, Metrics: MARE: 0.090822\n", - "INFO:train_function:Validate - Epoch: 12, Loss: 0.808968, Metrics: MARE: 0.242352\n", - "INFO:train_function:Train - Epoch: 13, Loss: 0.224114, Metrics: MARE: 0.040548\n", - "INFO:train_function:Validate - Epoch: 13, Loss: 0.800001, Metrics: MARE: 0.200456\n", - "INFO:train_function:Train - Epoch: 14, Loss: 0.236081, Metrics: MARE: 0.079844\n", - "INFO:train_function:Validate - Epoch: 14, Loss: 0.805512, Metrics: MARE: 0.233204\n", - "INFO:train_function:Train - Epoch: 15, Loss: 0.252067, Metrics: MARE: 0.107103\n", - "INFO:train_function:Validate - Epoch: 15, Loss: 0.815635, Metrics: MARE: 0.255919\n", - "INFO:train_function:Train - Epoch: 16, Loss: 0.264255, Metrics: MARE: 0.122950\n", - "INFO:train_function:Validate - Epoch: 16, Loss: 0.823891, Metrics: MARE: 0.269125\n", - "INFO:train_function:Train - Epoch: 17, Loss: 0.269052, Metrics: MARE: 0.128530\n", - "INFO:train_function:Validate - Epoch: 17, Loss: 0.827214, Metrics: MARE: 0.273775\n", - "INFO:train_function:Train - Epoch: 18, Loss: 0.266328, Metrics: MARE: 0.125400\n", - "INFO:train_function:Validate - Epoch: 18, Loss: 0.825323, Metrics: MARE: 0.271166\n", - "INFO:train_function:Train - Epoch: 19, Loss: 0.258158, Metrics: MARE: 0.115369\n", - "INFO:train_function:Validate - Epoch: 19, Loss: 0.819724, Metrics: MARE: 0.262807\n", - "INFO:train_function:Train - Epoch: 20, Loss: 0.247526, Metrics: MARE: 0.100359\n", - "INFO:train_function:Validate - Epoch: 20, Loss: 0.812650, Metrics: MARE: 0.250299\n", - "INFO:train_function:Train - Epoch: 21, Loss: 0.237259, Metrics: MARE: 0.082291\n", - "INFO:train_function:Validate - Epoch: 21, Loss: 0.806210, Metrics: MARE: 0.235242\n", - "INFO:train_function:Train - Epoch: 22, Loss: 0.229342, Metrics: MARE: 0.062978\n", - "INFO:train_function:Validate - Epoch: 22, Loss: 0.801833, Metrics: MARE: 0.219149\n", - "INFO:train_function:Train - Epoch: 23, Loss: 0.224649, Metrics: MARE: 0.044044\n", - "INFO:train_function:Validate - Epoch: 23, Loss: 0.800057, Metrics: MARE: 0.203370\n", - "INFO:train_function:Train - Epoch: 24, Loss: 0.223018, Metrics: MARE: 0.053147\n", - "INFO:train_function:Validate - Epoch: 24, Loss: 0.800600, Metrics: MARE: 0.210956\n", - "INFO:train_function:Train - Epoch: 25, Loss: 0.223581, Metrics: MARE: 0.067561\n", - "INFO:train_function:Validate - Epoch: 25, Loss: 0.802638, Metrics: MARE: 0.222968\n", - "INFO:train_function:Train - Epoch: 26, Loss: 0.225187, Metrics: MARE: 0.078524\n", - "INFO:train_function:Validate - Epoch: 26, Loss: 0.805153, Metrics: MARE: 0.232103\n", - "INFO:train_function:Train - Epoch: 27, Loss: 0.226796, Metrics: MARE: 0.085724\n", - "INFO:train_function:Validate - Epoch: 27, Loss: 0.807259, Metrics: MARE: 0.238103\n", - "INFO:train_function:Train - Epoch: 28, Loss: 0.227727, Metrics: MARE: 0.089190\n", - "INFO:train_function:Validate - Epoch: 28, Loss: 0.808402, Metrics: MARE: 0.240992\n", - "INFO:train_function:Train - Epoch: 29, Loss: 0.227743, Metrics: MARE: 0.089245\n", - "INFO:train_function:Validate - Epoch: 29, Loss: 0.808420, Metrics: MARE: 0.241037\n", - "INFO:train_function:Train - Epoch: 30, Loss: 0.226979, Metrics: MARE: 0.086437\n", - "INFO:train_function:Validate - Epoch: 30, Loss: 0.807487, Metrics: MARE: 0.238697\n", - "INFO:train_function:Train - Epoch: 31, Loss: 0.225792, Metrics: MARE: 0.081470\n", - "INFO:train_function:Validate - Epoch: 31, Loss: 0.805971, Metrics: MARE: 0.234558\n", - "INFO:train_function:Train - Epoch: 32, Loss: 0.224580, Metrics: MARE: 0.075123\n", - "INFO:train_function:Validate - Epoch: 32, Loss: 0.804283, Metrics: MARE: 0.229269\n", - "INFO:train_function:Train - Epoch: 33, Loss: 0.223643, Metrics: MARE: 0.068171\n", - "INFO:train_function:Validate - Epoch: 33, Loss: 0.802756, Metrics: MARE: 0.223476\n", - "INFO:train_function:Train - Epoch: 34, Loss: 0.223121, Metrics: MARE: 0.061326\n", - "INFO:train_function:Validate - Epoch: 34, Loss: 0.801579, Metrics: MARE: 0.217772\n", - "INFO:train_function:Train - Epoch: 35, Loss: 0.222991, Metrics: MARE: 0.055182\n", - "INFO:train_function:Validate - Epoch: 35, Loss: 0.800800, Metrics: MARE: 0.212651\n", - "INFO:train_function:Train - Epoch: 36, Loss: 0.223121, Metrics: MARE: 0.050174\n", - "INFO:train_function:Validate - Epoch: 36, Loss: 0.800359, Metrics: MARE: 0.208479\n", - "INFO:train_function:Train - Epoch: 37, Loss: 0.223346, Metrics: MARE: 0.046573\n", - "INFO:train_function:Validate - Epoch: 37, Loss: 0.800150, Metrics: MARE: 0.205478\n", - "INFO:train_function:Train - Epoch: 38, Loss: 0.223528, Metrics: MARE: 0.044476\n", - "INFO:train_function:Validate - Epoch: 38, Loss: 0.800070, Metrics: MARE: 0.203730\n", - "INFO:train_function:Train - Epoch: 39, Loss: 0.223592, Metrics: MARE: 0.043824\n", - "INFO:train_function:Validate - Epoch: 39, Loss: 0.800051, Metrics: MARE: 0.203186\n", - "INFO:train_function:Train - Epoch: 40, Loss: 0.223532, Metrics: MARE: 0.044434\n", - "INFO:train_function:Validate - Epoch: 40, Loss: 0.800068, Metrics: MARE: 0.203695\n", - "INFO:train_function:Train - Epoch: 41, Loss: 0.223389, Metrics: MARE: 0.046033\n", - "INFO:train_function:Validate - Epoch: 41, Loss: 0.800126, Metrics: MARE: 0.205027\n", - "INFO:train_function:Train - Epoch: 42, Loss: 0.223225, Metrics: MARE: 0.048294\n", - "INFO:train_function:Validate - Epoch: 42, Loss: 0.800239, Metrics: MARE: 0.206912\n", - "INFO:train_function:Train - Epoch: 43, Loss: 0.223090, Metrics: MARE: 0.050879\n", - "INFO:train_function:Validate - Epoch: 43, Loss: 0.800411, Metrics: MARE: 0.209066\n", - "INFO:train_function:Train - Epoch: 44, Loss: 0.223011, Metrics: MARE: 0.053474\n", - "INFO:train_function:Validate - Epoch: 44, Loss: 0.800630, Metrics: MARE: 0.211228\n", - "INFO:train_function:Train - Epoch: 45, Loss: 0.222990, Metrics: MARE: 0.055814\n", - "INFO:train_function:Validate - Epoch: 45, Loss: 0.800868, Metrics: MARE: 0.213179\n", - "INFO:train_function:Train - Epoch: 46, Loss: 0.223006, Metrics: MARE: 0.057703\n", - "INFO:train_function:Validate - Epoch: 46, Loss: 0.801088, Metrics: MARE: 0.214753\n", - "INFO:train_function:Train - Epoch: 47, Loss: 0.223035, Metrics: MARE: 0.059024\n", - "INFO:train_function:Validate - Epoch: 47, Loss: 0.801257, Metrics: MARE: 0.215853\n", - "INFO:train_function:Train - Epoch: 48, Loss: 0.223057, Metrics: MARE: 0.059736\n", - "INFO:train_function:Validate - Epoch: 48, Loss: 0.801352, Metrics: MARE: 0.216446\n", - "INFO:train_function:Train - Epoch: 49, Loss: 0.223061, Metrics: MARE: 0.059870\n", - "INFO:train_function:Validate - Epoch: 49, Loss: 0.801371, Metrics: MARE: 0.216558\n", - "INFO:train_function:Train - Epoch: 50, Loss: 0.223050, Metrics: MARE: 0.059512\n", - "INFO:train_function:Validate - Epoch: 50, Loss: 0.801322, Metrics: MARE: 0.216260\n", - "INFO:train_function:Train - Epoch: 51, Loss: 0.223029, Metrics: MARE: 0.058786\n", - "INFO:train_function:Validate - Epoch: 51, Loss: 0.801225, Metrics: MARE: 0.215655\n", - "INFO:train_function:Train - Epoch: 52, Loss: 0.223008, Metrics: MARE: 0.057837\n", - "INFO:train_function:Validate - Epoch: 52, Loss: 0.801105, Metrics: MARE: 0.214864\n", - "INFO:train_function:Train - Epoch: 53, Loss: 0.222994, Metrics: MARE: 0.056805\n", - "INFO:train_function:Validate - Epoch: 53, Loss: 0.800981, Metrics: MARE: 0.214004\n", - "INFO:train_function:Train - Epoch: 54, Loss: 0.222990, Metrics: MARE: 0.055822\n", - "INFO:train_function:Validate - Epoch: 54, Loss: 0.800869, Metrics: MARE: 0.213185\n", - "INFO:train_function:Train - Epoch: 55, Loss: 0.222992, Metrics: MARE: 0.054987\n", - "INFO:train_function:Validate - Epoch: 55, Loss: 0.800780, Metrics: MARE: 0.212489\n", - "INFO:train_function:Train - Epoch: 56, Loss: 0.222998, Metrics: MARE: 0.054369\n", - "INFO:train_function:Validate - Epoch: 56, Loss: 0.800717, Metrics: MARE: 0.211974\n", - "INFO:train_function:Train - Epoch: 57, Loss: 0.223002, Metrics: MARE: 0.054000\n", - "INFO:train_function:Validate - Epoch: 57, Loss: 0.800681, Metrics: MARE: 0.211666\n", - "INFO:train_function:Train - Epoch: 58, Loss: 0.223004, Metrics: MARE: 0.053877\n", - "INFO:train_function:Validate - Epoch: 58, Loss: 0.800669, Metrics: MARE: 0.211565\n", - "INFO:train_function:Train - Epoch: 59, Loss: 0.223003, Metrics: MARE: 0.053972\n", - "INFO:train_function:Validate - Epoch: 59, Loss: 0.800678, Metrics: MARE: 0.211643\n", - "INFO:train_function:Train - Epoch: 60, Loss: 0.222999, Metrics: MARE: 0.054235\n", - "INFO:train_function:Validate - Epoch: 60, Loss: 0.800704, Metrics: MARE: 0.211862\n", - "INFO:train_function:Train - Epoch: 61, Loss: 0.222995, Metrics: MARE: 0.054604\n", - "INFO:train_function:Validate - Epoch: 61, Loss: 0.800741, Metrics: MARE: 0.212170\n", - "INFO:train_function:Train - Epoch: 62, Loss: 0.222992, Metrics: MARE: 0.055017\n", - "INFO:train_function:Validate - Epoch: 62, Loss: 0.800783, Metrics: MARE: 0.212514\n", - "INFO:train_function:Train - Epoch: 63, Loss: 0.222990, Metrics: MARE: 0.055417\n", - "INFO:train_function:Validate - Epoch: 63, Loss: 0.800825, Metrics: MARE: 0.212847\n", - "INFO:train_function:Train - Epoch: 64, Loss: 0.222990, Metrics: MARE: 0.055757\n", - "INFO:train_function:Validate - Epoch: 64, Loss: 0.800862, Metrics: MARE: 0.213130\n", - "INFO:train_function:Train - Epoch: 65, Loss: 0.222990, Metrics: MARE: 0.056006\n", - "INFO:train_function:Validate - Epoch: 65, Loss: 0.800890, Metrics: MARE: 0.213339\n", - "INFO:train_function:Train - Epoch: 66, Loss: 0.222990, Metrics: MARE: 0.056151\n", - "INFO:train_function:Validate - Epoch: 66, Loss: 0.800906, Metrics: MARE: 0.213459\n", - "INFO:train_function:Train - Epoch: 67, Loss: 0.222990, Metrics: MARE: 0.056192\n", - "INFO:train_function:Validate - Epoch: 67, Loss: 0.800910, Metrics: MARE: 0.213493\n", - "INFO:train_function:Train - Epoch: 68, Loss: 0.222990, Metrics: MARE: 0.056142\n", - "INFO:train_function:Validate - Epoch: 68, Loss: 0.800905, Metrics: MARE: 0.213451\n", - "INFO:train_function:Train - Epoch: 69, Loss: 0.222990, Metrics: MARE: 0.056023\n", - "INFO:train_function:Validate - Epoch: 69, Loss: 0.800891, Metrics: MARE: 0.213353\n", - "INFO:train_function:Train - Epoch: 70, Loss: 0.222990, Metrics: MARE: 0.055863\n", - "INFO:train_function:Validate - Epoch: 70, Loss: 0.800874, Metrics: MARE: 0.213219\n", - "INFO:train_function:Train - Epoch: 71, Loss: 0.222990, Metrics: MARE: 0.055689\n", - "INFO:train_function:Validate - Epoch: 71, Loss: 0.800855, Metrics: MARE: 0.213074\n", - "INFO:train_function:Train - Epoch: 72, Loss: 0.222990, Metrics: MARE: 0.055526\n", - "INFO:train_function:Validate - Epoch: 72, Loss: 0.800837, Metrics: MARE: 0.212938\n", - "INFO:train_function:Train - Epoch: 73, Loss: 0.222990, Metrics: MARE: 0.055391\n", - "INFO:train_function:Validate - Epoch: 73, Loss: 0.800823, Metrics: MARE: 0.212826\n", - "INFO:train_function:Train - Epoch: 74, Loss: 0.222990, Metrics: MARE: 0.055298\n", - "INFO:train_function:Validate - Epoch: 74, Loss: 0.800813, Metrics: MARE: 0.212749\n", - "INFO:train_function:Train - Epoch: 75, Loss: 0.222991, Metrics: MARE: 0.055251\n", - "INFO:train_function:Validate - Epoch: 75, Loss: 0.800808, Metrics: MARE: 0.212709\n", - "INFO:train_function:Train - Epoch: 76, Loss: 0.222991, Metrics: MARE: 0.055247\n", - "INFO:train_function:Validate - Epoch: 76, Loss: 0.800807, Metrics: MARE: 0.212706\n", - "INFO:train_function:Train - Epoch: 77, Loss: 0.222990, Metrics: MARE: 0.055279\n", - "INFO:train_function:Validate - Epoch: 77, Loss: 0.800811, Metrics: MARE: 0.212733\n", - "INFO:train_function:Train - Epoch: 78, Loss: 0.222990, Metrics: MARE: 0.055337\n", - "INFO:train_function:Validate - Epoch: 78, Loss: 0.800817, Metrics: MARE: 0.212781\n", - "INFO:train_function:Train - Epoch: 79, Loss: 0.222990, Metrics: MARE: 0.055407\n", - "INFO:train_function:Validate - Epoch: 79, Loss: 0.800824, Metrics: MARE: 0.212839\n", - "INFO:train_function:Train - Epoch: 80, Loss: 0.222990, Metrics: MARE: 0.055478\n", - "INFO:train_function:Validate - Epoch: 80, Loss: 0.800832, Metrics: MARE: 0.212898\n", - "INFO:train_function:Train - Epoch: 81, Loss: 0.222990, Metrics: MARE: 0.055539\n", - "INFO:train_function:Validate - Epoch: 81, Loss: 0.800838, Metrics: MARE: 0.212950\n", - "INFO:train_function:Train - Epoch: 82, Loss: 0.222990, Metrics: MARE: 0.055585\n", - "INFO:train_function:Validate - Epoch: 82, Loss: 0.800843, Metrics: MARE: 0.212988\n", - "INFO:train_function:Train - Epoch: 83, Loss: 0.222990, Metrics: MARE: 0.055611\n", - "INFO:train_function:Validate - Epoch: 83, Loss: 0.800846, Metrics: MARE: 0.213010\n", - "INFO:train_function:Train - Epoch: 84, Loss: 0.222990, Metrics: MARE: 0.055618\n", - "INFO:train_function:Validate - Epoch: 84, Loss: 0.800847, Metrics: MARE: 0.213015\n", - "INFO:train_function:Train - Epoch: 85, Loss: 0.222990, Metrics: MARE: 0.055607\n", - "INFO:train_function:Validate - Epoch: 85, Loss: 0.800846, Metrics: MARE: 0.213006\n", - "INFO:train_function:Train - Epoch: 86, Loss: 0.222990, Metrics: MARE: 0.055584\n", - "INFO:train_function:Validate - Epoch: 86, Loss: 0.800843, Metrics: MARE: 0.212987\n", - "INFO:train_function:Train - Epoch: 87, Loss: 0.222990, Metrics: MARE: 0.055553\n", - "INFO:train_function:Validate - Epoch: 87, Loss: 0.800840, Metrics: MARE: 0.212961\n", - "INFO:train_function:Train - Epoch: 88, Loss: 0.222990, Metrics: MARE: 0.055520\n", - "INFO:train_function:Validate - Epoch: 88, Loss: 0.800836, Metrics: MARE: 0.212933\n", - "INFO:train_function:Train - Epoch: 89, Loss: 0.222990, Metrics: MARE: 0.055490\n", - "INFO:train_function:Validate - Epoch: 89, Loss: 0.800833, Metrics: MARE: 0.212908\n", - "INFO:train_function:Train - Epoch: 90, Loss: 0.222990, Metrics: MARE: 0.055467\n", - "INFO:train_function:Validate - Epoch: 90, Loss: 0.800831, Metrics: MARE: 0.212889\n", - "INFO:train_function:Train - Epoch: 91, Loss: 0.222990, Metrics: MARE: 0.055451\n", - "INFO:train_function:Validate - Epoch: 91, Loss: 0.800829, Metrics: MARE: 0.212876\n", - "INFO:train_function:Train - Epoch: 92, Loss: 0.222990, Metrics: MARE: 0.055445\n", - "INFO:train_function:Validate - Epoch: 92, Loss: 0.800828, Metrics: MARE: 0.212871\n", - "INFO:train_function:Train - Epoch: 93, Loss: 0.222990, Metrics: MARE: 0.055447\n", - "INFO:train_function:Validate - Epoch: 93, Loss: 0.800829, Metrics: MARE: 0.212872\n", - "INFO:train_function:Train - Epoch: 94, Loss: 0.222990, Metrics: MARE: 0.055455\n", - "INFO:train_function:Validate - Epoch: 94, Loss: 0.800829, Metrics: MARE: 0.212879\n", - "INFO:train_function:Train - Epoch: 95, Loss: 0.222990, Metrics: MARE: 0.055467\n", - "INFO:train_function:Validate - Epoch: 95, Loss: 0.800831, Metrics: MARE: 0.212889\n", - "INFO:train_function:Train - Epoch: 96, Loss: 0.222990, Metrics: MARE: 0.055479\n", - "INFO:train_function:Validate - Epoch: 96, Loss: 0.800832, Metrics: MARE: 0.212899\n", - "INFO:train_function:Train - Epoch: 97, Loss: 0.222990, Metrics: MARE: 0.055490\n", - "INFO:train_function:Validate - Epoch: 97, Loss: 0.800833, Metrics: MARE: 0.212909\n", - "INFO:train_function:Train - Epoch: 98, Loss: 0.222990, Metrics: MARE: 0.055499\n", - "INFO:train_function:Validate - Epoch: 98, Loss: 0.800834, Metrics: MARE: 0.212916\n", - "INFO:train_function:Train - Epoch: 99, Loss: 0.222990, Metrics: MARE: 0.055504\n", - "INFO:train_function:Validate - Epoch: 99, Loss: 0.800835, Metrics: MARE: 0.212920\n", - "INFO:train_function:Train - Epoch: 100, Loss: 0.222990, Metrics: MARE: 0.055505\n", - "INFO:train_function:Validate - Epoch: 100, Loss: 0.800835, Metrics: MARE: 0.212921\n" - ] - } - ], "source": [ "# Train\n", "trainer.train(model, train_data=loader_train, valid_data=loader_valid)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhy0lEQVR4nO3dfXxT9d3/8XfapneUUrCFFi13wqjIrSCsXE5ACi0wlenFvOdmCE7lpwjDiVMQcSIbU9Sh6BTKnIjiDXopMArKvAFBkSoqIjAQBcqtbSmVkrbn90dNJPYubXOSk57X8/HoI8nJOck3+RDSdz/fc47DMAxDAAAAAADA78KCPQAAAAAAABorQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAsIWxY8eqXbt29dp24MCBGjhwoF/HAwCwB0I3AAB1kJ2dLYfDUe3Phx9+GNTxPfjgg1qxYkVQx1Ab93t14403Vnn/n/70J886R48eDfDoAADwr4hgDwAAgFB0//33q3379pWWd+zYMQij+cmDDz6o//3f/9XIkSODOo7aREdH65VXXtETTzyhyMhIr/teeOEFRUdH69SpU0EaHQAA/kPoBgCgHoYNG6Y+ffoEexghKysrS2+88YZWrVqlyy+/3LN8w4YN2rNnj6688kq98sorQRwhAAD+wfRyAABMMHPmTIWFhWndunVeyydOnKjIyEh9+umnkqTTp09rxowZ6t27t5o1a6YmTZroV7/6ld55551Kj1leXq5HH31U3bp1U3R0tJKSkpSVlaWPP/5YUsW07ZMnT2rJkiWe6dljx46tcnyHDh1SRESEZs2aVem+HTt2yOFw6O9//7skyeVyadasWerUqZOio6N11lln6aKLLlJOTk6935+zzz5bF198sZYuXeq1/Pnnn1e3bt3UtWvXKrdbvny5evfurZiYGCUmJur666/X/v37K623YsUKde3aVdHR0eratatee+21Kh+vvLxc8+fP1/nnn6/o6Gi1atVKN910k77//vt6vzYAAM5E6AYAoB4KCgp09OhRr59jx4557r/nnnvUs2dPjR8/XidOnJAk/fvf/9Y//vEPzZgxQz169JAkFRYW6plnntHAgQM1d+5c3XfffTpy5IgyMzOVm5vr9Zzjx4/X5MmTlZqaqrlz5+quu+5SdHS0Zz/y5557TlFRUfrVr36l5557Ts8995xuuummKsffqlUrDRgwQC+99FKl+1588UWFh4dr1KhRkqT77rtPs2bN0qBBg/T3v/9df/rTn9SmTRt98sknDXoPr732Wv3f//2fioqKJEmlpaVavny5rr322irXz87O1m9/+1uFh4drzpw5mjBhgl599VVddNFFys/P96y3Zs0aXXnllXI4HJozZ45GjhypcePGef44caabbrpJ06ZN0//8z//o0Ucf1bhx4/T8888rMzNTLperQa8PAABJkgEAAHy2ePFiQ1KVP1FRUV7rbtu2zYiMjDRuvPFG4/vvvzfOPvtso0+fPobL5fKsU1paapSUlHht9/333xutWrUyfve733mWvf3224Yk47bbbqs0pvLycs/1Jk2aGGPGjPHptTz11FOGJGPbtm1ey7t06WJccsklnts9evQwRowY4dNj+kKSceuttxrHjx83IiMjjeeee84wDMN46623DIfDYezdu9eYOXOmIck4cuSIYRiGcfr0aaNly5ZG165djR9++MHzWG+++aYhyZgxY4ZnWc+ePY2UlBQjPz/fs2zNmjWGJKNt27aeZe+9954hyXj++ee9xrd69epKywcMGGAMGDDAb+8BAMA+6HQDAFAPCxYsUE5OjtfPqlWrvNbp2rWrZs2apWeeeUaZmZk6evSolixZooiInw6pEh4e7jmQWHl5uY4fP67S0lL16dPHq5P8yiuvyOFwaObMmZXG4nA46vUarrjiCkVEROjFF1/0LPv888/15Zdf6qqrrvIsS0hI0BdffKGdO3fW63mq07x5c2VlZemFF16QJC1dulT9+/dX27ZtK6378ccf6/Dhw7rlllsUHR3tWT5ixAilpaXprbfekiQdPHhQubm5GjNmjJo1a+ZZb8iQIerSpYvXYy5fvlzNmjXTkCFDvGYs9O7dW3FxcVVO8QcAoK4I3QAA1EPfvn2VkZHh9TNo0KBK602bNk09evTQ5s2bNXPmzErBT5KWLFmi7t27e/aXTkpK0ltvvaWCggLPOrt371br1q3VokULv72GxMREDR482GuK+YsvvqiIiAhdccUVnmX333+/8vPz9Ytf/ELdunXTtGnT9Nlnn/llDNdee61ycnK0b98+rVixotqp5d98840kqXPnzpXuS0tL89zvvuzUqVOl9X6+7c6dO1VQUKCWLVsqKSnJ66eoqEiHDx9u0GsDAEDi6OUAAJjqv//9r6dDvG3btkr3/+tf/9LYsWM1cuRITZs2TS1btvTss7x7927Tx3f11Vdr3Lhxys3NVc+ePfXSSy9p8ODBSkxM9Kxz8cUXa/fu3Xr99de1Zs0aPfPMM3rkkUe0cOHCas+17avLLrtMUVFRGjNmjEpKSvTb3/62oS/JZ+Xl5WrZsqWef/75Ku9PSkoK2FgAAI0XnW4AAExSXl6usWPHKj4+XnfffbdeeOEFvfrqq17rvPzyy+rQoYNeffVV3XDDDcrMzFRGRkalc1Sfe+65OnDggI4fP17jc9Z1qvnIkSMVGRmpF198Ubm5ufr666919dVXV1qvRYsWGjdunF544QV9++236t69u+677746PVdVYmJiNHLkSK1fv15DhgzxCvtnck8537FjR6X7duzY4bnffVnVVPifb3vuuefq2LFj+p//+Z9KsxYyMjI8B7sDAKAhCN0AAJjk4Ycf1oYNG/T0009r9uzZ6t+/v26++WYdPXrUs054eLgkyTAMz7JNmzZp48aNXo915ZVXyjCMKk/xdea2TZo08TqSd20SEhKUmZmpl156ScuWLVNkZKRGjhzptc6ZR2WXpLi4OHXs2FElJSWeZQUFBfrqq6+8psT76g9/+INmzpype++9t9p1+vTpo5YtW2rhwoVez7tq1Spt375dI0aMkCSlpKSoZ8+eWrJkiddYcnJy9OWXX3o95m9/+1uVlZVp9uzZlZ6vtLS0Tu8jAADVYXo5AAD1sGrVKn311VeVlvfv318dOnTQ9u3bde+992rs2LG69NJLJVWc8qpnz5665ZZbPPtR//rXv9arr76q3/zmNxoxYoT27NmjhQsXqkuXLp5TaUnSoEGDdMMNN+ixxx7Tzp07lZWVpfLycr333nsaNGiQJk2aJEnq3bu31q5dq4cfflitW7dW+/bt1a9fvxpfy1VXXaXrr79eTzzxhDIzM5WQkOB1f5cuXTRw4ED17t1bLVq00Mcff6yXX37Z85yS9Nprr2ncuHFavHhxtecGr06PHj1q7So7nU7NnTtX48aN04ABA3TNNdfo0KFDevTRR9WuXTvdcccdnnXnzJmjESNG6KKLLtLvfvc7HT9+XI8//rjOP/98r/d0wIABuummmzRnzhzl5uZq6NChcjqd2rlzp5YvX65HH31U//u//1un1wIAQCVBPno6AAAhpaZThkkyFi9ebJSWlhoXXnihcc4553idtsowDOPRRx81JBkvvviiYRgVp/t68MEHjbZt2xpRUVFGr169jDfffNMYM2aM1+mtDKPi9GJ//etfjbS0NCMyMtJISkoyhg0bZmzZssWzzldffWVcfPHFRkxMjCHJp9OHFRYWetb/17/+Ven+Bx54wOjbt6+RkJBgxMTEGGlpacaf//xn4/Tp05Xel8WLF9f6fPrxlGE1+fkpw9xefPFFo1evXkZUVJTRokUL47rrrjO+++67Stu/8sorxnnnnWdERUUZXbp0MV599dUq31PDMIynn37a6N27txETE2M0bdrU6Natm3HnnXcaBw4c8KzDKcMAAPXlMIwz5qQBAAAAAAC/YZ9uAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJBHBHoDVlZeX68CBA2ratKkcDkewhwMAAAAAsADDMHTixAm1bt1aYWHV97MJ3bU4cOCAUlNTgz0MAAAAAIAFffvttzrnnHOqvZ/QXYumTZtKqngj4+PjgzyaqrlcLq1Zs0ZDhw6V0+kM9nBwBmpjXdTGuqiNdVEba6M+1kVtrIvaWFco1KawsFCpqamezFgdQnct3FPK4+PjLR26Y2NjFR8fb9l/kHZFbayL2lgXtbEuamNt1Me6qI11URvrCqXa1LYbMgdSAwAAAADAJIRuAAAAAABMQugGAAAAAMAk7NMNAAAAACYoKyuTy+UK9jBCksvlUkREhE6dOqWysrKgjMHpdCo8PLzBj0PoBgAAAAA/MgxDeXl5ys/PD/ZQQpZhGEpOTta3335b64HKzJSQkKDk5OQGjYHQDQAAAAB+5A7cLVu2VGxsbFBDY6gqLy9XUVGR4uLiFBYW+L2iDcNQcXGxDh8+LElKSUmp92MRugEAAADAT8rKyjyB+6yzzgr2cEJWeXm5Tp8+rejo6KCEbkmKiYmRJB0+fFgtW7as91RzDqQGAAAAAH7i3oc7NjY2yCOBP7jr2JB98wndAAAAAOBnTClvHPxRR0I3AAAAAAAmIXQDAAAAAGASQjcAAAAAIOgcDodWrFgR7GH4HaEbAAAAAACTELoBAAAAACovL9ecOXPUvn17xcTEqEePHnr55ZdlGIYyMjKUmZkpwzAkScePH9c555yjGTNmSKo4Vdr48eM923bu3FmPPvpopedYtGiRzj//fEVFRSklJUWTJk2SJLVr106S9Jvf/EYOh0MdOnQIzIsOAM7TDQAAAAAmMQypuDg4zx0bK9Xl4Ntz5szRv/71Ly1cuFCdOnXSu+++q+uvv15JSUlasmSJunXrpscee0y33367fv/73+vss8/2hO7y8nKdc845Wr58uc466yxt2LBBEydOVEpKin77299Kkp588klNmTJFDz30kIYNG6aCggJ98MEHkqSPPvpILVu21OLFi5WVldWojv5O6AYAAAAAkxQXS3FxwXnuoiKpSRPf1i0pKdGDDz6otWvXKj09XZLUoUMHvf/++3rqqae0dOlSPfXUUxo9erTy8vK0cuVKbd26VRERFZHS6XRq1qxZnsdr3769Nm7cqJdeeskTuh944AFNnTpVt99+u2e9Cy+8UJKUlJQkSUpISFBycrLKy8tVWFjY4PfACkJmevmcOXN04YUXqmnTpmrZsqVGjhypHTt21Lrd8uXLlZaWpujoaHXr1k0rV64MwGgBAAAAIHTs2rVLxcXFGjJkiOLi4jw///znP7V7925J0qhRo/Sb3/xGDz30kObNm6dOnTp5PcaCBQvUu3dvJSUlKS4uTk8//bT27dsnSTp8+LAOHDigwYMHB/y1BVvIdLr/85//6NZbb9WFF16o0tJS3X333Ro6dKi+/PJLNanmzzcbNmzQNddcozlz5ujXv/61li5dqpEjR+qTTz5R165dA/wKAAAAANhNbGxFxzlYz+2roh8H+dZbb+nss8/2ui8qKkqSVFxcrC1btig8PFw7d+70WmfZsmX6wx/+oL/97W9KT09X06ZN9de//lWbNm2SJMXExDTglYS2kAndq1ev9rqdnZ2tli1basuWLbr44our3ObRRx9VVlaWpk2bJkmaPXu2cnJy9Pe//10LFy40fcwAAAAA7M3h8H2KdzB16dJFUVFR2rdvnwYMGFDlOlOnTlVYWJhWrVql4cOHa8SIEbrkkkskSR988IH69++vW265xbO+u0MuSU2bNlW7du20bt06DRo0qMrHdzqdKisr8+OrsoaQCd0/V1BQIElq0aJFtets3LhRU6ZM8VqWmZlZ47nfSkpKVFJS4rnt3o/A5XLJ5XI1YMTm+fWvw7R376/05z+HyeEoD/ZwcAbDCFNBAbWxImpjXdTGfCkp0jPPlKlZs7pt5/4etOr3od1RH+uiNtZlRm1cLpcMw1B5ebnKy0Pne6xJkyaaOnWq7rjjDpWWluqiiy5SQUGBNmzYoKZNmyoxMVGLFi3SBx98oAsuuEB/+MMfNGbMGOXm5qp58+bq2LGj/vnPf2rVqlVq3769/vWvf+mjjz5S+/btPe/DjBkzdMsttygpKUlZWVk6ceKENmzY4HUEc/c+5ZGRkYqIiPC8l8FSXl4uwzDkcrkUHh7udZ+v/24chvuY7yGkvLxcl112mfLz8/X+++9Xu15kZKSWLFmia665xrPsiSee0KxZs3To0KEqt7nvvvu8DgDgtnTpUsXWZX5GAI0dm6n8/OhgDwMAEELuumuTfvnLvGAPAwAanYiICCUnJys1NVWRkZHBHk6dGIahp556SosWLdLevXvVrFkz9ejRQ3fccYd+97vf6aabbvI0NV0ul4YOHar27dtr0aJFKikp0ZQpU/Tmm2/K4XDoyiuvVHx8vNauXav33nvP8xyLFy/Wk08+qb179+qss87SZZddprlz50qSVq1apXvuuUf79u1TSkqKPvvss6C8D2c6ffq0vv32W+Xl5am0tNTrvuLiYl177bUqKChQfHx8tY8RkqH75ptv1qpVq/T+++/rnHPOqXa9+oTuqjrdqampOnr0aI1vZDCtWlWmTZty1atXr0p/fUFwlZWVaevWrdTGgqiNdVEbc91zT7i+/NKhpUtL9b//W7dfAVwul3JycjRkyBA5nU6TRoj6oj7WRW2sy4zanDp1St9++63atWun6GgaY/VlGIZOnDihpk2bBvX0YadOndLevXuVmppaqZ6FhYVKTEysNXSH3PTySZMm6c0339S7775bY+CWpOTk5Erh+tChQ0pOTq52m6ioKM+BAs7kdDot+5/ksL7H5CzYqYz/aWvZMdqVy+VSkx+ojRVRG+uiNubKTpB2K07h4dGq79tr5e9EUB8rozbW5c/alJWVyeFwKCwsTGFhIXOyKMtxTyl3v5fBEhYWJofDUeW/EV//zYRM6DYMQ//v//0/vfbaa1q/fr3at29f6zbp6elat26dJk+e7FmWk5PjOe9cYxHRs6eGVdO5R3A5JQ0L9iBQJWpjXdTGXK9LKlIT/efbjyWlBXs4AAA0eiETum+99VYtXbpUr7/+upo2baq8vIr90Jo1a+Y5/Pzo0aN19tlna86cOZKk22+/XQMGDNDf/vY3jRgxQsuWLdPHH3+sp59+OmivAwCAYIvTSaXkrhKhGwAA84VM6H7yySclSQMHDvRavnjxYo0dO1aStG/fPq+pB/3799fSpUt1zz336O6771anTp20YsWKRneO7tJ9+7Ry5UoNHz6cKUsW43K5qI1FURvrojbm+ue5szR6zyw1++bTYA8FAABbCJnQ7cvx3tavX19p2ahRozRq1CgTRmQhDof3D6yD2lgXtbEuamOqPfE9JEnN9wX/iLAAANgBe/YDAGAj7tDdbP8XEucMBgDAdIRuAABs5HBsOxWqqcJLT0s7dgR7OAAANHqEbgAAbMQRHqZt6lZx41P26wYAwGyEbgAAbMThkD5VxRRzQjcAAOYjdAMAYCNhYWeE7s84mBoAIDjatWun+fPne247HA6tWLEi4OO477771LNnT1Ofg9ANAICNeIVuOt0AAIs4ePCghg0b5tO6gQjK/kToBgDARhwO6XN1leFwSHl50uHDwR4SACBEnT592m+PlZycrKioKL89npUQugEAsJGwMOmk4lSQeG7FArrdAIAfDRw4UJMmTdKkSZPUrFkzJSYm6t5775VhGJIqpoTPnj1bo0ePVnx8vCZOnChJev/99/WrX/1KMTExSk1N1W233aaTJ096Hvfw4cO69NJLFRMTo/bt2+v555+v9Nw/n17+3Xffafz48UpMTFSTJk3Up08fbdq0SdnZ2Zo1a5Y+/fRTORwOORwOZWdnS5Ly8/N14403KikpSfHx8brkkkv06c++5x566CG1atVKTZs21fjx43Xq1Ck/v4uVRZj+DAAAwDIcjorLY2f3UMKRXRWhe8iQ4A4KABozw5CKi4Pz3LGxP/3H76MlS5Zo/Pjx2rx5sz7++GNNnDhRbdq00YQJEyRJ8+bN04wZMzRz5kxJ0u7du5WVlaUHHnhAixYt0pEjRzzBffHixZKksWPH6sCBA3rnnXfkdDp122236XANM62Kioo0aNAgtWrVSitWrFDr1q31ySefqLy8XFdddZU+//xzrV69WmvXrpUkNWvWTJI0atQoxcTEaNWqVWrWrJmeeuopDR48WF9//bVatGihl156Sffdd58WLFigiy66SM8995wee+wxdejQoc5vbV0QugEAsJGwH+e4HTm7h87NfYWDqQGA2YqLpbi44Dx3UZHUpEmdNklNTdUjjzwih8Ohzp07a9u2bXrkkUc8ofuSSy7R1KlTPevfeOONuu666zR58mRJUqdOnfTYY49pwIABevLJJ7Vv3z6tWrVKmzdv1oUXXihJevbZZ3XeeedVO4alS5fqyJEjWrt2rdq2bauwsDB17NjRc39cXJwiIiKUnJzsWfb+++9r8+bNOnz4sGea+rx587RixQq9/PLLmjhxoubPn6/x48dr/PjxkqQHHnhAa9euNb3bzfRyAABsxN3wONqag6kBACr75S9/KccZ3fH09HTt3LlTZWVlkqQ+ffp4rf/pp58qOztbcXFxnp/MzEyVl5drz5492r59uyIiItS7d2/PNmlpaUpISKh2DLm5uerVq5eaN2/u87g//fRTFRUV6ayzzvIay549e7R7925J0vbt29WvXz+v7dLT031+jvqi0w0AgI24O92Hk7tXXNm+XTp9WoqMDN6gAKAxi42t6DgH67n9rMnPOudFRUW66aabdNttt1Vat02bNvr666/r/BwxMTF13qaoqEgpKSlav359pftqCviBQOgGAMBG3M2LwuZtpYgIyeWSDh2SUlODOzAAaKwcjjpP8Q6mTZs2ed3+8MMP1alTJ4WHh1e5/gUXXKAvv/zSa/r3mdLS0lRaWqotW7Z4ppfv2LFD+fn51Y6he/fueuaZZ/T9998rPj6+0v2RkZGezvuZ48jLy1NERITatWtX5eOed9552rRpk0aPHu31+szG9HIAAGzE3ekuNxzSjweeUUFB8AYEALCUffv2acqUKdqxY4deeOEFPf7447r99turXf+Pf/yjNmzYoEmTJik3N1c7d+7U66+/rkmTJkmSOnfurKysLN10003atGmTtmzZohtvvLHGbvY111yj5ORkXXfddfrggw/03//+V6+88oo2btwoqeIo6nv27FFubq6OHj2qkpISZWRkKD09XSNHjtSaNWu0d+9ebdiwQX/605/08ccfS5Juv/12LVq0SIsXL9bXX3+tmTNn6osvvvDju1c1QjcAADbi7nQbhgjdAIBKRo8erR9++EF9+/bVrbfeqttvv91zarCqdO/eXf/5z3/09ddf61e/+pV69eqlGTNmqHXr1p51Fi9erNatW2vAgAG64oorNHHiRLVs2bLax4yMjNTq1auVlJSkX//61+rWrZseeughT7f9yiuvVFZWlgYNGqSkpCS98MILcjgcWrlypS6++GKNGzdOv/jFL3T11Vfrm2++UatWrSRJV111le69917deeed6t27t7755hvdfPPNfnrnqsf0cgAAbMTT6S4XoRsAUInT6dT8+fP15JNPVrpv7969VW5z4YUXas2aNdU+ZnJyst58802vZTfccIPXbfe5wN3atm2rJUuWKD4+XmFh3r3iqKgovfzyy5Wep2nTpnrsscf02GOPVTuWu+++W3fffbfXsrlz51a7vj/Q6QYAwEbcnW5CNwAAgUHoBgDARtzNAqaXAwAQGEwvBwDARryml7tPoULoBgBIVZ5uCw1HpxsAABvhQGoAAAQWoRsAABvhQGoAAAQWoRsAABupstOdnx+s4QBAo1VeXh7sIcAP/FFH9ukGAMBG6HQDgLkiIyMVFhamAwcOKCkpSZGRkXK4/+IJn5WXl+v06dM6depUpVOGBYJhGDp9+rSOHDmisLAwRUZG1vuxCN0AANgI+3QDgLnCwsLUvn17HTx4UAcOHAj2cEKWYRj64YcfFBMTE9Q/WsTGxqpNmzYNCv6EbgAAbIRONwCYLzIyUm3atFFpaanKysqCPZyQ5HK59O677+riiy+W0+kMyhjCw8MVERHR4NBP6AYAwEbodANAYDgcDjmdzqAFxlAXHh6u0tJSRUdHh/x7yIHUAACwETrdAAAEFqEbAAAbqbLTXVj4YwoHAAD+RugGAMBGqux0G4ZUVBS0MQEA0JgRugEAsBGv0B0TI7n3k2OKOQAApiB0AwBgI17Tyx0O9usGAMBkhG4AAGzEq9MtEboBADAZoRsAABvx6nRLP4Xu/PxgDAcAgEaP0A0AgI3Q6QYAILAI3QAA2Ei1nW5CNwAApiB0AwBgI3S6AQAILEI3AAA2QqcbAIDAInQDAGAjdLoBAAgsQjcAADZCpxsAgMAidAMAYCOVOt0JCRWXhG4AAExB6AYAwEbodAMAEFiEbgAAbIR9ugEACCxCNwAANlJt6M7PD8ZwAABo9AjdAADYCNPLAQAILEI3AAA2Um2n+8SJMxYCAAB/IXQDAGAj1Xa6DaMieAMAAL8KqdD97rvv6tJLL1Xr1q3lcDi0YsWKGtdfv369HA5HpZ+8vLzADBgAAIup1OmOjpaczorrTDEHAMDvQip0nzx5Uj169NCCBQvqtN2OHTt08OBBz0/Lli1NGiEAANZWqdPtcLBfNwAAJooI9gDqYtiwYRo2bFidt2vZsqUSEhL8PyAAAEJMpU63VBG6jx4ldAMAYIKQ6nTXV8+ePZWSkqIhQ4bogw8+CPZwAAAImkqdbkly/2Ga0A0AgN+FVKe7rlJSUrRw4UL16dNHJSUleuaZZzRw4EBt2rRJF1xwQZXblJSUqKSkxHO7sLBQkuRyueRyuQIy7rpyj8uq47MzamNd1Ma6qI25DCNMUrhKS8vlcpVJksLj4xUmqfTYMRk1vO/Uxtqoj3VRG+uiNtYVCrXxdWwOw/D6W3fIcDgceu211zRy5Mg6bTdgwAC1adNGzz33XJX333fffZo1a1al5UuXLlVsbGx9hgoAgGWsXNlOTz/dQ+npB/THP34kSbrwoYfU+sMP9elNN2lvPXbjAgDAjoqLi3XttdeqoKBA8fHx1a7XqDvdVenbt6/ef//9au+fPn26pkyZ4rldWFio1NRUDR06tMY3MphcLpdycnI0ZMgQOd1HoIUlUBvrojbWRW3M9d13FXuWtWyZrOHDh0uSwl99VfrwQ3VNTVWXH5dVhdpYG/WxLmpjXdTGukKhNu5Z0bWxXejOzc1VSkpKtfdHRUUpKiqq0nKn02nZYruFwhjtitpYF7WxLmpjjogfv/kdjjA5nT8e2qV5c0lS+IkTCvfhPac21kZ9rIvaWBe1sS4r18bXcYVU6C4qKtKuXbs8t/fs2aPc3Fy1aNFCbdq00fTp07V//37985//lCTNnz9f7du31/nnn69Tp07pmWee0dtvv601a9YE6yUAABBU1R69XOJAagAAmCCkQvfHH3+sQYMGeW67p4GPGTNG2dnZOnjwoPbt2+e5//Tp05o6dar279+v2NhYde/eXWvXrvV6DAAA7ITQDQBAYIVU6B44cKBqOu5bdna21+0777xTd955p8mjAgAgdFR5yjBCNwAAprHFeboBAEAFOt0AAAQWoRsAABuh0w0AQGARugEAsBE63QAABBahGwAAG6my052QUHFJ6AYAwO8I3QAA2EiNne4TJ352BwAAaChCNwAANlLjPt2GURG8AQCA3xC6AQCwkSo73dHRUmRkxXWmmAMA4FeEbgAAbKTKTrf0U7c7Pz+QwwEAoNEjdAMAYCNVdroljmAOAIBJCN0AANiIO3RX2+kmdAMA4FeEbgAAbMQ9vZxONwAAgUHoBgDARpheDgBAYBG6AQCwkVoPpEboBgDArwjdAADYSLWd7oSEiktCNwAAfkXoBgDARuh0AwAQWIRuAABshH26AQAILEI3AAA2QqcbAIDAInQDAGAjtXa68/MDORwAABo9QjcAADZCpxsAgMAidAMAYCPs0w0AQGARugEAsBE63QAABBahGwAAG6m1033ihFRWFtAxAQDQmBG6AQCwEXforrbTLVUEbwAA4BeEbgAAbMQ9vbxSpzs6WoqKqrjOFHMAAPyG0A0AgI1UO71cYr9uAABMQOgGAMBGqj2QmkToBgDABIRuAABshE43AACBRegGAMBG6HQDABBYhG4AAGzEp053fn6ghgMAQKNH6AYAwEbodAMAEFiEbgAAbIR9ugEACCxCNwAANkKnGwCAwCJ0AwBgI3S6AQAILEI3AAA24g7ddLoBAAgMQjcAADbinl5eZac7IaHiktANAIDfELoBALAROt0AAAQWoRsAABupsdNN6AYAwO8I3QAA2AgHUgMAILAI3QAA2IhPpww7cUIqKwvYmAAAaMwI3QAA2IhPnW5JKiwMyHgAAGjsCN0AANhIjZ3uqKiKH4kp5gAA+AmhGwAAG6mx0y2xXzcAAH5G6AYAwEZq7HRLhG4AAPyM0A0AgI3Q6QYAILAI3QAA2Eitne6EhIpLQjcAAH5B6AYAwEbodAMAEFghFbrfffddXXrppWrdurUcDodWrFhR6zbr16/XBRdcoKioKHXs2FHZ2dmmjxMAAKtyh2726QYAIDBCKnSfPHlSPXr00IIFC3xaf8+ePRoxYoQGDRqk3NxcTZ48WTfeeKP+/e9/mzxSAACsyT29nE43AACBERHsAdTFsGHDNGzYMJ/XX7hwodq3b6+//e1vkqTzzjtP77//vh555BFlZmaaNUwAACyLTjcAAIEVUp3uutq4caMyMjK8lmVmZmrjxo1BGhEAAMHl7nRL1QRvd+jOzw/EcAAAaPRCqtNdV3l5eWrVqpXXslatWqmwsFA//PCDYmJiKm1TUlKikpISz+3CwkJJksvlksvlMnfA9eQel1XHZ2fUxrqojXVRG3OVlUmSU5JUUuJSeLj3/Y64OEVIKs/PV9nPakBtrI36WBe1sS5qY12hUBtfx9aoQ3d9zJkzR7Nmzaq0fM2aNYqNjQ3CiHyXk5MT7CGgGtTGuqiNdVEbc5w44ZQ0XJK0cuUqhYd7t7tTdu1SX0n5e/fqvZUrq3wMamNt1Me6qI11URvrsnJtiouLfVqvUYfu5ORkHTp0yGvZoUOHFB8fX2WXW5KmT5+uKVOmeG4XFhYqNTVVQ4cOVXx8vKnjrS+Xy6WcnBwNGTJETqcz2MPBGaiNdVEb66I25jpz1nhm5jBFRnrf74iOlubOVfOwMA0fPtzrPmpjbdTHuqiNdVEb6wqF2rhnRdemUYfu9PR0rfzZX+lzcnKUnp5e7TZRUVGKioqqtNzpdFq22G6hMEa7ojbWRW2si9qY48yQHRHhVKW3+KyzJEmOwsJq339qY23Ux7qojXVRG+uycm18HVdIHUitqKhIubm5ys3NlVRxSrDc3Fzt27dPUkWXevTo0Z71f//73+u///2v7rzzTn311Vd64okn9NJLL+mOO+4IxvABAAi6sDO++as8bVhCQsUlRy8HAMAvQip0f/zxx+rVq5d69eolSZoyZYp69eqlGTNmSJIOHjzoCeCS1L59e7311lvKyclRjx499Le//U3PPPMMpwsDANiWz0cvLypyH3UNAAA0QEhNLx84cKCMak8sKmVnZ1e5zdatW00cFQAAoaPWTrc7dEtSYaHUvLnpYwIAoDELqU43AABomFo73ZGRUnR0xXWmmAMA0GCEbgAAbKTWTrf0U7eb0A0AQIMRugEAsJEzQ3e1e2wRugEA8BtCNwAANnLm9PJaO91nntQbAADUC6EbAAAbodMNAEBgEboBALCROnW6Cd0AADQYoRsAABshdAMAEFiEbgAAbMYdvJleDgCA+QjdAADYjHu/7mo73QkJFZeEbgAAGozQDQCAzdDpBgAgcAjdAADYTK2dbkI3AAB+Q+gGAMBm6HQDABA4hG4AAGyGTjcAAIFD6AYAwGbcobvWTnd+fiCGAwBAo0boBgDAZtzTy+l0AwBgPkI3AAA243On++RJqbQ0IGMCAKCxInQDAGAzPne6Jamw0PTxAADQmBG6AQCwmVo73ZGRUnR0xXWmmAMA0CCEbgAAbKbWTrckJSRUXBK6AQBoEEI3AAA2U+spwyQOpgYAgJ8QugEAsBl3p7va6eUSoRsAAD8hdAMAYDN0ugEACBxCNwAANkOnGwCAwCF0AwBgM3S6AQAIHEI3AAA2U6dOd36+2cMBAKBRI3QDAGAzdLoBAAgcQjcAADbjDt3s0w0AgPkI3QAA2Ix7ejmdbgAAzEfoBgDAZuh0AwAQOIRuAABsxqdOd0JCxSWhGwCABiF0AwBgM3S6AQAIHEI3AAA2wz7dAAAEDqEbAACbqdMpw06elEpLTR8TAACNFaEbAACbcXe6fZpeLkmFhaaOBwCAxozQDQCAzfjU6XY6pZiYiutMMQcAoN4I3QAA2IxPnW7pp253fr6ZwwEAoFEjdAMAYDM+dbolDqYGAIAfELoBALAZn04ZJhG6AQDwA0I3AAA249MpwyRCNwAAfkDoBgDAZnzudCckVFwSugEAqDdCNwAANkOnGwCAwCF0AwBgM+zTDQBA4BC6AQCwGTrdAAAEDqEbAACbodMNAEDgELoBALAZOt0AAAQOoRsAAJtxd7p9Dt35+WYOBwCARo3QDQCAzbg73UwvBwDAfCEXuhcsWKB27dopOjpa/fr10+bNm6tdNzs7Ww6Hw+snOjo6gKMFAMB66tzpJnQDAFBvIRW6X3zxRU2ZMkUzZ87UJ598oh49eigzM1OHDx+udpv4+HgdPHjQ8/PNN98EcMQAAFgPnW4AAAInpEL3ww8/rAkTJmjcuHHq0qWLFi5cqNjYWC1atKjabRwOh5KTkz0/rVq1CuCIAQCwHp873QkJFZfFxZLLZeaQAABotCKCPQBfnT59Wlu2bNH06dM9y8LCwpSRkaGNGzdWu11RUZHatm2r8vJyXXDBBXrwwQd1/vnnV7t+SUmJSkpKPLcLCwslSS6XSy6L/sLhHpdVx2dn1Ma6qI11URvzORzhksLkcpXK5aqh3R0TI+ePV13HjskVH19xndpYEp8d66I21kVtrCsUauPr2EImdB89elRlZWWVOtWtWrXSV199VeU2nTt31qJFi9S9e3cVFBRo3rx56t+/v7744gudc845VW4zZ84czZo1q9LyNWvWKDY2tuEvxEQ5OTnBHgKqQW2si9pYF7Uxz9Gj6ZJaauvWT9Ws2Xc1rjsiKkoRJSVa//rrKk5OlkRtrI76WBe1sS5qY11Wrk1xcbFP64VM6K6P9PR0paene273799f5513np566inNnj27ym2mT5+uKVOmeG4XFhYqNTVVQ4cOVfyPf+G3GpfLpZycHA0ZMkROp7P2DRAw1Ma6qI11URvzPfFEuCSpe/ceGj68e43rhrdoIR08qIG9esnVtSu1sTA+O9ZFbayL2lhXKNTGPSu6NiETuhMTExUeHq5Dhw55LT906JCSf/zLe22cTqd69eqlXbt2VbtOVFSUoqKiqtzWqsV2C4Ux2hW1sS5qY13UxjzufbrDwiJU61vcrJl08KCcxcVyr0xtrI36WBe1sS5qY11Wro2v4wqZA6lFRkaqd+/eWrdunWdZeXm51q1b59XNrklZWZm2bdumlJQUs4YJAIDluUN3rUcvlziCOQAADRQynW5JmjJlisaMGaM+ffqob9++mj9/vk6ePKlx48ZJkkaPHq2zzz5bc+bMkSTdf//9+uUvf6mOHTsqPz9ff/3rX/XNN9/oxhtvDObLAAAgqNynDKv16OUSoRsAgAYKqdB91VVX6ciRI5oxY4by8vLUs2dPrV692nNwtX379iks7Kfm/ffff68JEyYoLy9PzZs3V+/evbVhwwZ16dIlWC8BAICgq1enOz/frOEAANCohVTolqRJkyZp0qRJVd63fv16r9uPPPKIHnnkkQCMCgCA0EGnGwCAwAmZfboBAIB/uDvdhG4AAMxH6AYAwGbcnW4OpAYAgPkI3QAA2EydOt0JCRWXhG4AAOqF0A0AgM3Q6QYAIHAI3QAA2Az7dAMAEDiEbgAAbKZepwwjdAMAUC+EbgAAbIZThgEAEDiEbgAAbIZONwAAgUPoBgDAZurV6S4ullwu08YEAEBjRegGAMBm6tTpjo//6TrdbgAA6ozQDQCAzdSp0+10SrGxFdcJ3QAA1BmhGwAAm6lTp1v6aYp5YaEp4wEAoDEjdAMAYDN16nRLUkJCxXZ0ugEAqDNCNwAANuPudPscujmCOQAA9UboBgDAZtyd7jpPLyd0AwBQZ4RuAABspr6dbgf7dAMAUGeEbgAAbKbeB1Kj0w0AQJ0RugEAsJk6H0iNo5cDAFBvhG4AAGymvp1ujl4OAEDdEboBALCZene68/PNGA4AAI0aoRsAAJup9z7dTC8HAKDOCN0AANhMvTvdTC8HAKDOCN0AANhMnTvdCQmS2KcbAID6IHQDAGAzHL0cAIDAIXQDAGAznKcbAIDAIXQDAGAz9e10O374QY7SUnMGBQBAI0XoBgDAZtydbp9Dd3y856qzuNj/AwIAoBEjdAMAYDPuTrfP08sjIqQmTSqunjxpzqAAAGikCN0AANhMnTvdkmeKOZ1uAADqhtANAIDN1PlAahKhGwCAeiJ0AwBgM3U+kJr0U+hmejkAAHVC6AYAwGYa0ulmn24AAOqG0A0AgM00qNPN9HIAAOqE0A0AgM3Uq9OdkCBJiiB0AwBQJ4RuAABshn26AQAIHEI3AAA2w9HLAQAIHEI3AAA205BON9PLAQCoG0I3AAA206BON9PLAQCoE0I3AAA2w9HLAQAIHEI3AAA24+50M70cAADzEboBALAZppcDABA4hG4AAGyG6eUAAAQOoRsAAJtpSKc7/PRp6fRp/w8KAIBGitANAIDN1KvTHR//0/WCAr+OBwCAxozQDQCAzdSr0x0RISMuruI6oRsAAJ8RugEAsJl6dbolzxRzFRb6dTwAADRmIRe6FyxYoHbt2ik6Olr9+vXT5s2ba1x/+fLlSktLU3R0tLp166aVK1cGaKQAAFhTvTrdkmeKuYNONwAAPgup0P3iiy9qypQpmjlzpj755BP16NFDmZmZOnz4cJXrb9iwQddcc43Gjx+vrVu3auTIkRo5cqQ+//zzAI8cAADrqG+n23B3ugndAAD4rM6he8yYMXr33XfNGEutHn74YU2YMEHjxo1Tly5dtHDhQsXGxmrRokVVrv/oo48qKytL06ZN03nnnafZs2frggsu0N///vcAjxwAAOuod6eb6eUAANRZnUN3QUGBMjIy1KlTJz344IPav3+/GeOq5PTp09qyZYsyMjI8y8LCwpSRkaGNGzdWuc3GjRu91pekzMzMatcHAMAO6r1PN9PLAQCos4i6brBixQodOXJEzz33nJYsWaKZM2cqIyND48eP1+WXXy6n02nGOHX06FGVlZWpVatWXstbtWqlr776qspt8vLyqlw/Ly+v2ucpKSlRSUmJ53bhj3/Nd7lccrlc9R2+qdzjsur47IzaWBe1sS5qYz7DcEiKUFlZuVyuMt83bNpUYZLKvv9e5dTHcvjsWBe1sS5qY12hUBtfx1bn0C1JSUlJmjJliqZMmaJPPvlEixcv1g033KC4uDhdf/31uuWWW9SpU6f6PHTQzZkzR7Nmzaq0fM2aNYqNjQ3CiHyXk5MT7CGgGtTGuqiNdVEb82zb1kZSLx06dFgrV27yebsux4+rk6R9n32mLzgwqWXx2bEuamNd1Ma6rFyb4uJin9arV+h2O3jwoHJycpSTk6Pw8HANHz5c27ZtU5cuXfSXv/xFd9xxR0Me3ktiYqLCw8N16NAhr+WHDh1ScnJyldskJyfXaX1Jmj59uqZMmeK5XVhYqNTUVA0dOlTxP06rsxqXy6WcnBwNGTLEtJkGqB9qY13UxrqojfmOHq2YX56Y2FLDhw/3eTtj61ZpxQq1S0hQ2zpsh8Dgs2Nd1Ma6qI11hUJtCn08xkmdQ7fL5dIbb7yhxYsXa82aNerevbsmT56sa6+91hNKX3vtNf3ud7/za+iOjIxU7969tW7dOo0cOVKSVF5ernXr1mnSpElVbpOenq5169Zp8uTJnmU5OTlKT0+v9nmioqIUFRVVabnT6bRssd1CYYx2RW2si9pYF7UxT2Sk+1qYnE7fD+9S1qJFxVYnTiiM2lgWnx3rojbWRW2sy8q18XVcdQ7dKSkpKi8v1zXXXKPNmzerZ8+eldYZNGiQEhIS6vrQtZoyZYrGjBmjPn36qG/fvpo/f75OnjypcePGSZJGjx6ts88+W3PmzJEk3X777RowYID+9re/acSIEVq2bJk+/vhjPf30034fGwAAoaLepwxzz/ji6OUAAPiszqH7kUce0ahRoxQdHV3tOgkJCdqzZ0+DBlaVq666SkeOHNGMGTOUl5ennj17avXq1Z6Dpe3bt09hYT/9xb5///5aunSp7rnnHt19993q1KmTVqxYoa5du/p9bAAAhIoGnzKMo5cDAOCzOofuG264wYxx+GzSpEnVTidfv359pWWjRo3SqFGjTB4VAACho96nDPsxdHPKMAAAfFfn83QDAIDQVt9ON9PLAQCoO0I3AAA209BON9PLAQDwHaEbAACbaeg+3Y5Tp6TTp/07KAAAGilCNwAANlPvTrd7erlEtxsAAB8RugEAsJl6d7rDw1XqPnsJoRsAAJ8QugEAsJl6d7oluZo0qbiSn++38QAA0JgRugEAsJl6d7oluWJjK67Q6QYAwCeEbgAAbMYvnW5CNwAAPiF0AwBgM+5Od31CdymdbgAA6oTQDQCAzTRoejmdbgAA6oTQDQCAzTRoejmdbgAA6oTQDQCAzTSk0830cgAA6obQDQCAzdDpBgAgcAjdAADYTIM63ezTDQBAnRC6AQCwGTrdAAAEDqEbAACbadDRy92hOz/fb+MBAKAxI3QDAGAzDel0M70cAIC6IXQDAGAznKcbAIDAIXQDAGAz7NMNAEDgELoBALAZd6e7QaG7pKTiBwAA1IjQDQCAzTTolGExMT/doNsNAECtCN0AANhMQ6aXKzxcRtOmFdcJ3QAA1IrQDQCAzTSk0y1Jatas4pLQDQBArQjdAADYTIM63ZIUH19xSegGAKBWhG4AAGymoZ1ug043AAA+I3QDAGAzDe50E7oBAPAZoRsAAJtp8D7d7unl+fn+GA4AAI0aoRsAAJtpaKfbSEiouEKnGwCAWhG6AQCwGb91ugndAADUitANAIDNsE83AACBQ+gGAMBmOE83AACBQ+gGAMBmGrxPN9PLAQDwGaEbAACbcXe6mV4OAID5CN0AANgM08sBAAgcQjcAADbD9HIAAAKH0A0AgM3Q6QYAIHAI3QAA2IzfThlWUiKdOuWXMQEA0FgRugEAsJkGd7qbNv3pOt1uAABqROgGAMBmGtzpDg+X2K8bAACfELoBALCZBne6JfbrBgDAR4RuAABspsGdbonQDQCAjwjdAADYDJ1uAAACh9ANAIDN0OkGACBwCN0AANhM2Bnf/pyrGwAAcxG6AQCwGUI3AACBQ+gGAMBm3NPLpQZMMSd0AwDgk5AJ3cePH9d1112n+Ph4JSQkaPz48SoqKqpxm4EDB8rhcHj9/P73vw/QiAEAsCY63QAABE5EsAfgq+uuu04HDx5UTk6OXC6Xxo0bp4kTJ2rp0qU1bjdhwgTdf//9ntuxsbFmDxUAAEvza6c7P7+hwwEAoFELidC9fft2rV69Wh999JH69OkjSXr88cc1fPhwzZs3T61bt65229jYWCUnJwdqqAAAWJ5fOt0JCRWXdLoBAKhRSEwv37hxoxISEjyBW5IyMjIUFhamTZs21bjt888/r8TERHXt2lXTp09XcXGx2cMFAMDS2KcbAIDACYlOd15enlq2bOm1LCIiQi1atFBeXl6121177bVq27atWrdurc8++0x//OMftWPHDr366qvVblNSUqKSkhLP7cLCQkmSy+WSy+Vq4Csxh3tcVh2fnVEb66I21kVtzFdWJklOSdLp0y45nb5td2ZtHE2aKEKSUVCgUmplCXx2rIvaWBe1sa5QqI2vYwtq6L7rrrs0d+7cGtfZvn17vR9/4sSJnuvdunVTSkqKBg8erN27d+vcc8+tcps5c+Zo1qxZlZavWbPG8vuD5+TkBHsIqAa1sS5qY13UxjwlJWGSLpUkrV69RjExpXXaPicnR0337tUlkk4fOaLVK1f6f5CoNz471kVtrIvaWJeVa+PrLGqHYdR7b64GO3LkiI4dO1bjOh06dNC//vUvTZ06Vd9//71neWlpqaKjo7V8+XL95je/8en5Tp48qbi4OK1evVqZmZlVrlNVpzs1NVVHjx5VfHy8T88TaC6XSzk5ORoyZIicvrYrEBDUxrqojXVRG/OVlEhNm1a8t0ePuuTr15tXbQ4elLNjRxmRkSqt5WwiCAw+O9ZFbayL2lhXKNSmsLBQiYmJKigoqDErBrXTnZSUpKSkpFrXS09PV35+vrZs2aLevXtLkt5++22Vl5erX79+Pj9fbm6uJCklJaXadaKiohQVFVVpudPptGyx3UJhjHZFbayL2lgXtTHPmX9uDw93+jy93M3pdMqZmChJcpw+LWdZmRQd7ccRoiH47FgXtbEuamNdVq6Nr+MKiQOpnXfeecrKytKECRO0efNmffDBB5o0aZKuvvpqz5HL9+/fr7S0NG3evFmStHv3bs2ePVtbtmzR3r179cYbb2j06NG6+OKL1b1792C+HAAAgsovRy9v2vSnI7JxMDUAAKoVEqFbqjgKeVpamgYPHqzhw4froosu0tNPP+253+VyaceOHZ559ZGRkVq7dq2GDh2qtLQ0TZ06VVdeeaX+7//+L1gvAQAAS/DL0cvDwiqCt0ToBgCgBiFx9HJJatGihZYuXVrt/e3atdOZu6enpqbqP//5TyCGBgBASPFLp1uqOG1YYSGhGwCAGoRMpxsAAPiHXzrdEufqBgDAB4RuAABsyB28/RK68/MbOhwAABotQjcAADbknmLeoOnlCQkVl3S6AQCoFqEbAAAb8munm9ANAEC1CN0AANiQXzrdhG4AAGpF6AYAwIbodAMAEBiEbgAAbIhONwAAgUHoBgDAhuh0AwAQGIRuAABsiE43AACBQegGAMCG6HQDABAYhG4AAGyITjcAAIFB6AYAwIb82unOz2/ocAAAaLQI3QAA2JBfOt0JCRWXBQUNfCAAABovQjcAADbkDt1+6XS7XNKpUw0eEwAAjRGhGwAAG/LL9PK4uJ8eiP26AQCoEqEbAAAb8sv08rAwKT6+4jqhGwCAKhG6AQCwIb90uiWOYA4AQC0I3QAA2JBfOt0SoRsAgFoQugEAsCE63QAABAahGwAAG6LTDQBAYBC6AQCwITrdAAAEBqEbAAAbotMNAEBgELoBALAhv3W6ExIqLvPzG/hAAAA0ToRuAABsiE43AACBQegGAMCG3KGbfboBADAXoRsAABtyTy+n0w0AgLkI3QAA2BCdbgAAAoPQDQCADXHKMAAAAoPQDQCADXEgNQAAAoPQDQCADZnS6W5wggcAoPEhdAMAYEN+73S7XNKpUw18MAAAGh9CNwAANuS3Tndc3E8PxhRzAAAqIXQDAGBDfut0h4VJ8fEV1wndAABUQugGAMCG/NbplqSEhIrL/Hw/PBgAAI0LoRsAABvyW6db4gjmAADUgNANAIAN+bXTTegGAKBahG4AAGyITjcAAIFB6AYAwIbcoZtONwAA5iJ0AwBgQ+7p5XS6AQAwF6EbAAAbotMNAEBgELoBALAhDqQGAEBgELoBALAhDqQGAEBgELoBALAhOt0AAAQGoRsAABvya6c7IaHiMj/fDw8GAEDjQugGAMCG6HQDABAYhG4AAGyIfboBAAgMQjcAADZkWqfbLykeAIDGI2RC95///Gf1799fsbGxSnDvO1YLwzA0Y8YMpaSkKCYmRhkZGdq5c6e5AwUAIASY0ukuLZV++MEPDwgAQOMRMqH79OnTGjVqlG6++Waft/nLX/6ixx57TAsXLtSmTZvUpEkTZWZm6tSpUyaOFAAA63OHbr90uuPifnpAppgDAOAlZEL3rFmzdMcdd6hbt24+rW8YhubPn6977rlHl19+ubp3765//vOfOnDggFasWGHuYAEAsDj39HK/dLodDik+vuI6oRsAAC8RwR6AWfbs2aO8vDxlZGR4ljVr1kz9+vXTxo0bdfXVV1e5XUlJiUpKSjy3CwsLJUkul0sul8vcQdeTe1xWHZ+dURvrojbWRW0CJVxSmFyuUrlcviXvmmoT0ayZHPn5Kj12TAa1Cwo+O9ZFbayL2lhXKNTG17E12tCdl5cnSWrVqpXX8latWnnuq8qcOXM0a9asSsvXrFmj2NhY/w7Sz3JycoI9BFSD2lgXtbEuamOuI0f6SkrRZ59t08qV++q0bVW1GehwqJmkzTk5OnL0qH8GiXrhs2Nd1Ma6qI11Wbk2xcXFPq0X1NB91113ae7cuTWus337dqWlpQVoRNL06dM1ZcoUz+3CwkKlpqZq6NChindPnbMYl8ulnJwcDRkyRE6nM9jDwRmojXVRG+uiNoGxaFG4JOn887tp+PCuPm1TU23C582T9u5V386dZQwf7vfxonZ8dqyL2lgXtbGuUKiNe1Z0bYIauqdOnaqxY8fWuE6HDh3q9djJycmSpEOHDiklJcWz/NChQ+rZs2e120VFRSkqKqrScqfTadliu4XCGO2K2lgXtbEuamOu8IrMLYcjQnV9m6usTfPmkqSIkydV5weEX/HZsS5qY13UxrqsXBtfxxXU0J2UlKSkpCRTHrt9+/ZKTk7WunXrPCG7sLBQmzZtqtMR0AEAaIz8esow6afThuXn++kBAQBoHELm6OX79u1Tbm6u9u3bp7KyMuXm5io3N1dFRUWeddLS0vTaa69JkhwOhyZPnqwHHnhAb7zxhrZt26bRo0erdevWGjlyZJBeBQAA1uA+erlfThkm/RS6OXo5AABeQuZAajNmzNCSJUs8t3v16iVJeueddzRw4EBJ0o4dO1Rwxpf9nXfeqZMnT2rixInKz8/XRRddpNWrVys6OjqgYwcAwGpM63QTugEA8BIyoTs7O1vZ2dk1rmP87DcHh8Oh+++/X/fff7+JIwMAIPTQ6QYAIDBCZno5AADwHzrdAAAEBqEbAAAbotMNAEBgELoBALAhOt0AAAQGoRsAABtyh2463QAAmIvQDQCADbmnl9PpBgDAXIRuAABsyNROt9+SPAAAoY/QDQCADfm9052QUHFZWioVF/vpQQEACH2EbgAAbMjvne4mTaTw8IrrTDEHAMCD0A0AgA35/ZRhDocUH19xndANAIAHoRsAABvy+ynDJA6mBgBAFQjdAADYkN873RKhGwCAKhC6AQCwITrdAAAEBqEbAAAbotMNAEBgELoBALAhOt0AAAQGoRsAABui0w0AQGAQugEAsCE63QAABAahGwAAG3KHbr92uhMSKi4J3QAAeBC6AQCwIff0clM63fn5fnxQAABCG6EbAAAbMqXTzfRyAAAqIXQDAGBDpna6Cd0AAHgQugEAsCE63QAABAahGwAAG+KUYQAABAahGwAAGzL9lGF+fWAAAEIXoRsAABsytdNdViYVF/vxgQEACF2EbgAAbMiUTneTJlJ4eMV1ppgDACCJ0A0AgC2Z0ul2OKT4+IrrhG4AACQRugEAsCVTOt2SlJBQcUnoBgBAEqEbAABbMuWUYRJHMAcA4GcI3QAA2JB7ernfO93u0J2f7+cHBgAgNBG6AQCwITrdAAAEBqEbAAAbMr3TTegGAEASoRsAAFui0w0AQGAQugEAsCE63QAABAahGwAAG6LTDQBAYBC6AQCwIXenm9ANAIC5CN0AANiQu9PN9HIAAMxF6AYAwIbodAMAEBiEbgAAbMi0TndCQsUloRsAAEmEbgAAbMn0Tnd+vp8fGACA0EToBgDAhkzfp7uw0IQHBwAg9BC6AQCwIdNPGVZWJp086ecHBwAg9BC6AQCwIff0cr83o2NjpfDwiuvs1w0AAKEbAAA7Mq3T7XBwBHMAAM5A6AYAwIZM63RLhG4AAM5A6AYAwIZM63RLhG4AAM5A6AYAwIbodAMAEBghE7r//Oc/q3///oqNjVVCQoJP24wdO1YOh8PrJysry9yBAgAQAuh0AwAQGBHBHoCvTp8+rVGjRik9PV3PPvusz9tlZWVp8eLFnttRUVFmDA8AgJDi7nSbErrdfxwndAMAEDqhe9asWZKk7OzsOm0XFRWl5ORkE0YEAEDocne6mV4OAIC5QiZ019f69evVsmVLNW/eXJdccokeeOABnXXWWdWuX1JSopKSEs/twsJCSZLL5ZLL5TJ9vPXhHpdVx2dn1Ma6qI11UZvAKCtzSIpQWVm5XK4yn7bxtTZhcXEKl1R2/LjKqWPA8NmxLmpjXdTGukKhNr6OzWEYpvyN2zTZ2dmaPHmy8vPza1132bJlio2NVfv27bV7927dfffdiouL08aNGxUeHl7lNvfdd5+nq36mpUuXKjY2tqHDBwDAEt5992w9/HAfde9+RPffv8Gvj33uihXqmp2tbwcM0Cd33OHXxwYAwCqKi4t17bXXqqCgQPHx8dWuF9RO91133aW5c+fWuM727duVlpZWr8e/+uqrPde7deum7t2769xzz9X69es1ePDgKreZPn26pkyZ4rldWFio1NRUDR06tMY3MphcLpdycnI0ZMgQOZ3OYA8HZ6A21kVtrIvaBEZRUcVO3S1anKXhw4f7tI2vtXEcPChlZ+vsuDgl+/jYaDg+O9ZFbayL2lhXKNTGPSu6NkEN3VOnTtXYsWNrXKdDhw5+e74OHTooMTFRu3btqjZ0R0VFVXmwNafTadliu4XCGO2K2lgXtbEuamOun97aMDmddTuZSa21adGi4pFPnFAYNQw4PjvWRW2si9pYl5Vr4+u4ghq6k5KSlJSUFLDn++6773Ts2DGlpKQE7DkBALAiThkGAEBghMx5uvft26fc3Fzt27dPZWVlys3NVW5uroqKijzrpKWl6bXXXpMkFRUVadq0afrwww+1d+9erVu3Tpdffrk6duyozMzMYL0MAAAswX3KMI5eDgCAuULm6OUzZszQkiVLPLd79eolSXrnnXc0cOBASdKOHTtU8OMXfHh4uD777DMtWbJE+fn5at26tYYOHarZs2dzrm4AgO3R6QYAIDBCJnRnZ2fXeo7uMw/EHhMTo3//+98mjwoAgNAUkE53YWHFE7ifDAAAGwqZ6eUAAMB/TO10JyRUXJaVSSdPmvAEAACEDkI3AAA2ZGqnOyZGivhxMh1TzAEANkfoBgDAhkztdDscP00xz8834QkAAAgdhG4AAGzI3ek2JXRLHEwNAIAfEboBALAhd6fblOnlEqEbAIAfEboBALAhOt0AAAQGoRsAABui0w0AQGAQugEAsCFTD6QmEboBAPgRoRsAABsy9ZRhEqEbAIAfEboBALAhOt0AAAQGoRsAABui0w0AQGAQugEAsCHTO90JCRWXhG4AgM0RugEAsCE63QAABAahGwAAGwrYPt35+SY9AQAAoYHQDQCADdHpBgAgMAjdAADYEEcvBwAgMAjdAADYkLvTbXroLiw0sZ0OAID1EboBALAhd6fb9Onl5eVSUZFJTwIAgPURugEAsCHTO90xMVJERMV1ppgDAGyM0A0AgA2Z3ul2ONivGwAAEboBALAl0w+kJhG6AQAQoRsAAFsy/ZRhkpSQUHFJ6AYA2BihGwAAG6LTDQBAYBC6AQCwoYB0ugndAAAQugEAsKOAdrrz8018EgAArI3QDQCADdHpBgAgMAjdAADYEPt0AwAQGIRuAABsiE43AACBQegGAMCG6HQDABAYhG4AAGzI3ekmdAMAYC5CNwAANuTudDO9HAAAcxG6AQCwIU4ZBgBAYBC6AQCwoYAcSO3ssysu9++XTp0y8YkAALAuQjcAADYUkE732WdLzZtLZWXSl1+a+EQAAFgXoRsAABsKSKfb4ZB69Ki4/umnJj4RAADWRegGAMCGAtLpln4K3Z99ZvITAQBgTYRuAABsKCCdbolONwDA9gjdAADYUEBOGSZJ3btXXH76aQCeDAAA6yF0AwBgQ+5Ot2RyFj7/fCk8XDp+vOIo5gAA2AyhGwAAGwo74zcAU/frjo6WOneuuM5+3QAAGyJ0AwBgQwHrdEvs1w0AsDVCNwAANhSwTrdE6AYA2BqhGwAAGzqz02166D7zYGoAANgMoRsAABs6s9MdsOnlX38t/fCDyU8GAIC1ELoBALChgE4vT0mREhMrnuiLL0x+MgAArIXQDQCADQX0QGoOB/t1AwBsKyLYA/DF3r17NXv2bL399tvKy8tT69atdf311+tPf/qTIiMjq93u1KlTmjp1qpYtW6aSkhJlZmbqiSeeUKtWrQI4egAArCegnW6pInSvWyfdfLM0eXIAntB+IiSNKC1VeERI/HpnK9TGuqiNdUVIuuicc6Thw4M9lAYLiX9dX331lcrLy/XUU0+pY8eO+vzzzzVhwgSdPHlS8+bNq3a7O+64Q2+99ZaWL1+uZs2aadKkSbriiiv0wQcfBHD0AABYT0A73VLFL03z50suV8UP/M6hEPnFzoaojXVRG+tySAovKQn2MPwiJP6NZWVlKSsry3O7Q4cO2rFjh5588slqQ3dBQYGeffZZLV26VJdccokkafHixTrvvPP04Ycf6pe//GVAxg4AgBUFvNM9eLB06JBUWBiAJ7Mnl8ul9evXa+DAgXI6ncEeDs5AbayL2liXy+XSpvff1yXBHogfhETorkpBQYFatGhR7f1btmyRy+VSRkaGZ1laWpratGmjjRs3EroBALZ2Zqf7/fel+Pjatyktdejzz89SXJxD9ZuJmfjjD8xQWlqqzUePKOy7cxXBVFlLoTbWRW2sq7S0VJ/nHyR0B8uuXbv0+OOP1zi1PC8vT5GRkUpISPBa3qpVK+Xl5VW7XUlJiUrOmMZQ+ONf5F0ul1wWnQ7nHpdVx2dn1Ma6qI11UZvAMAzJ4YiQYTh02WW+bhUh6SITR4WGoT7WRW2si9pYV4Tat++pm2+27u8Dvv6uEtTQfdddd2nu3Lk1rrN9+3alpaV5bu/fv19ZWVkaNWqUJkyY4PcxzZkzR7Nmzaq0fM2aNYqNjfX78/lTTk5OsIeAalAb66I21kVtzPeb33TR5s3JwR4GAABVatWqWDk5/wn2MKpVXFzs03oOwwjI4VOqdOTIER07dqzGdTp06OA5QvmBAwc0cOBA/fKXv1R2drbCwqo/49nbb7+twYMH6/vvv/fqdrdt21aTJ0/WHXfcUeV2VXW6U1NTdfToUcX7MvcuCFwul3JycjRkyBD2RbEYamNd1Ma6qI11URtroz7WRW2si9pYVyjUprCwUImJiSooKKgxKwa1052UlKSkpCSf1t2/f78GDRqk3r17a/HixTUGbknq3bu3nE6n1q1bpyuvvFKStGPHDu3bt0/p6enVbhcVFaWoqKhKy51Op2WL7RYKY7QramNd1Ma6qI11URtroz7WRW2si9pYl5Vr4+u4ak6uFrF//34NHDhQbdq00bx583TkyBHl5eV57Zu9f/9+paWlafPmzZKkZs2aafz48ZoyZYreeecdbdmyRePGjVN6ejoHUQMAAAAABERIHEgtJydHu3bt0q5du3TOOed43eeeHe9yubRjxw6vefWPPPKIwsLCdOWVV6qkpESZmZl64oknAjp2AAAAAIB9hUToHjt2rMaOHVvjOu3atdPPd0+Pjo7WggULtGDBAhNHBwAAAABA1UJiejkAAAAAAKGI0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASSKCPQCrMwxDklRYWBjkkVTP5XKpuLhYhYWFcjqdwR4OzkBtrIvaWBe1sS5qY23Ux7qojXVRG+sKhdq4M6I7M1aH0F2LEydOSJJSU1ODPBIAAAAAgNWcOHFCzZo1q/Z+h1FbLLe58vJyHThwQE2bNpXD4Qj2cKpUWFio1NRUffvtt4qPjw/2cHAGamNd1Ma6qI11URtroz7WRW2si9pYVyjUxjAMnThxQq1bt1ZYWPV7btPprkVYWJjOOeecYA/DJ/Hx8Zb9B2l31Ma6qI11URvrojbWRn2si9pYF7WxLqvXpqYOtxsHUgMAAAAAwCSEbgAAAAAATELobgSioqI0c+ZMRUVFBXso+BlqY13UxrqojXVRG2ujPtZFbayL2lhXY6oNB1IDAAAAAMAkdLoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhOwT8+c9/Vv/+/RUbG6uEhASftjEMQzNmzFBKSopiYmKUkZGhnTt3eq1z/PhxXXfddYqPj1dCQoLGjx+voqIiE15B41bX93Hv3r1yOBxV/ixfvtyzXlX3L1u2LBAvqdGoz7/xgQMHVnrff//733uts2/fPo0YMUKxsbFq2bKlpk2bptLSUjNfSqNT19ocP35c/+///T917txZMTExatOmjW677TYVFBR4rcfnpu4WLFigdu3aKTo6Wv369dPmzZtrXH/58uVKS0tTdHS0unXrppUrV3rd78v3D3xTl9r84x//0K9+9Ss1b95czZs3V0ZGRqX1x44dW+nzkZWVZfbLaJTqUpvs7OxK73t0dLTXOnxu/KcutanqO9/hcGjEiBGedfjc+Me7776rSy+9VK1bt5bD4dCKFStq3Wb9+vW64IILFBUVpY4dOyo7O7vSOnX9DgsaA5Y3Y8YM4+GHHzamTJliNGvWzKdtHnroIaNZs2bGihUrjE8//dS47LLLjPbt2xs//PCDZ52srCyjR48exocffmi89957RseOHY1rrrnGpFfReNX1fSwtLTUOHjzo9TNr1iwjLi7OOHHihGc9ScbixYu91juzfqhdff6NDxgwwJgwYYLX+15QUOC5v7S01OjatauRkZFhbN261Vi5cqWRmJhoTJ8+3eyX06jUtTbbtm0zrrjiCuONN94wdu3aZaxbt87o1KmTceWVV3qtx+embpYtW2ZERkYaixYtMr744gtjwoQJRkJCgnHo0KEq1//ggw+M8PBw4y9/+Yvx5ZdfGvfcc4/hdDqNbdu2edbx5fsHtatrba699lpjwYIFxtatW43t27cbY8eONZo1a2Z89913nnXGjBljZGVleX0+jh8/HqiX1GjUtTaLFy824uPjvd73vLw8r3X43PhHXWtz7Ngxr7p8/vnnRnh4uLF48WLPOnxu/GPlypXGn/70J+PVV181JBmvvfZajev/97//NWJjY40pU6YYX375pfH4448b4eHhxurVqz3r1LXewUToDiGLFy/2KXSXl5cbycnJxl//+lfPsvz8fCMqKsp44YUXDMMwjC+//NKQZHz00UeedVatWmU4HA5j//79fh97Y+Wv97Fnz57G7373O69lvvyHhOrVtzYDBgwwbr/99mrvX7lypREWFub1C9OTTz5pxMfHGyUlJX4Ze2Pnr8/NSy+9ZERGRhoul8uzjM9N3fTt29e49dZbPbfLysqM1q1bG3PmzKly/d/+9rfGiBEjvJb169fPuOmmmwzD8O37B76pa21+rrS01GjatKmxZMkSz7IxY8YYl19+ub+Hajt1rU1tv7/xufGfhn5uHnnkEaNp06ZGUVGRZxmfG//z5bv6zjvvNM4//3yvZVdddZWRmZnpud3QegcS08sboT179igvL08ZGRmeZc2aNVO/fv20ceNGSdLGjRuVkJCgPn36eNbJyMhQWFiYNm3aFPAxhyp/vI9btmxRbm6uxo8fX+m+W2+9VYmJierbt68WLVokgzP8+awhtXn++eeVmJiorl27avr06SouLvZ63G7duqlVq1aeZZmZmSosLNQXX3zh/xfSCPnr/5+CggLFx8crIiLCazmfG9+cPn1aW7Zs8fquCAsLU0ZGhue74uc2btzotb5U8e/fvb4v3z+oXX1q83PFxcVyuVxq0aKF1/L169erZcuW6ty5s26++WYdO3bMr2Nv7Opbm6KiIrVt21apqam6/PLLvb4v+Nz4hz8+N88++6yuvvpqNWnSxGs5n5vAq+37xh/1DqSI2ldBqMnLy5Mkr1Dgvu2+Ly8vTy1btvS6PyIiQi1atPCsg9r543189tlndd5556l///5ey++//35dcsklio2N1Zo1a3TLLbeoqKhIt912m9/G35jVtzbXXnut2rZtq9atW+uzzz7TH//4R+3YsUOvvvqq53Gr+my570Pt/PG5OXr0qGbPnq2JEyd6Ledz47ujR4+qrKysyn/PX331VZXbVPfv/8zvFvey6tZB7epTm5/74x//qNatW3v9QpqVlaUrrrhC7du31+7du3X33Xdr2LBh2rhxo8LDw/36Ghqr+tSmc+fOWrRokbp3766CggLNmzdP/fv31xdffKFzzjmHz42fNPRzs3nzZn3++ed69tlnvZbzuQmO6r5vCgsL9cMPP+j7779v8P+TgUToDpK77rpLc+fOrXGd7du3Ky0tLUAjwpl8rU9D/fDDD1q6dKnuvffeSveduaxXr146efKk/vrXv9o+PJhdmzNDXLdu3ZSSkqLBgwdr9+7dOvfcc+v9uHYQqM9NYWGhRowYoS5duui+++7zuo/PDSA99NBDWrZsmdavX+91wK6rr77ac71bt27q3r27zj33XK1fv16DBw8OxlBtIT09Xenp6Z7b/fv313nnnaennnpKs2fPDuLIcKZnn31W3bp1U9++fb2W87mBPxC6g2Tq1KkaO3Zsjet06NChXo+dnJwsSTp06JBSUlI8yw8dOqSePXt61jl8+LDXdqWlpTp+/LhnezvztT4NfR9ffvllFRcXa/To0bWu269fP82ePVslJSWKioqqdf3GKlC1cevXr58kadeuXTr33HOVnJxc6ciYhw4dkiTbf3YCUZsTJ04oKytLTZs21WuvvSan01nj+nxuqpeYmKjw8HDPv1+3Q4cOVVuH5OTkGtf35fsHtatPbdzmzZunhx56SGvXrlX37t1rXLdDhw5KTEzUrl27CA8+akht3JxOp3r16qVdu3ZJ4nPjLw2pzcmTJ7Vs2TLdf//9tT4Pn5vAqO77Jj4+XjExMQoPD2/wZzGQ2Kc7SJKSkpSWllbjT2RkZL0eu3379kpOTta6des8ywoLC7Vp0ybPX1rT09OVn5+vLVu2eNZ5++23VV5e7gkZduZrfRr6Pj777LO67LLLlJSUVOu6ubm5at68ue2DQ6Bq45abmytJnl+E0tPTtW3bNq/QmJOTo/j4eHXp0sU/LzJEmV2bwsJCDR06VJGRkXrjjTcqnXKnKnxuqhcZGanevXt7fVeUl5dr3bp1Xl25M6Wnp3utL1X8+3ev78v3D2pXn9pI0l/+8hfNnj1bq1ev9jpmQnW+++47HTt2zCvooWb1rc2ZysrKtG3bNs/7zufGPxpSm+XLl6ukpETXX399rc/D5yYwavu+8cdnMaCCfSQ31O6bb74xtm7d6jmt1NatW42tW7d6nV6qc+fOxquvvuq5/dBDDxkJCQnG66+/bnz22WfG5ZdfXuUpw3r16mVs2rTJeP/9941OnTpxyrB6qO19/O6774zOnTsbmzZt8tpu586dhsPhMFatWlXpMd944w3jH//4h7Ft2zZj586dxhNPPGHExsYaM2bMMP31NCZ1rc2uXbuM+++/3/j444+NPXv2GK+//rrRoUMH4+KLL/Zs4z5l2NChQ43c3Fxj9erVRlJSEqcMq6O61qagoMDo16+f0a1bN2PXrl1ep24pLS01DIPPTX0sW7bMiIqKMrKzs40vv/zSmDhxopGQkOA5Ov8NN9xg3HXXXZ71P/jgAyMiIsKYN2+esX37dmPmzJlVnjKstu8f1K6utXnooYeMyMhI4+WXX/b6fLh/Vzhx4oTxhz/8wdi4caOxZ88eY+3atcYFF1xgdOrUyTh16lRQXmOoqmttZs2aZfz73/82du/ebWzZssW4+uqrjejoaOOLL77wrMPnxj/qWhu3iy66yLjqqqsqLedz4z8nTpzwZBhJxsMPP2xs3brV+OabbwzDMIy77rrLuOGGGzzru08ZNm3aNGP79u3GggULqjxlWE31thJCdwgYM2aMIanSzzvvvONZRz+em9atvLzcuPfee41WrVoZUVFRxuDBg40dO3Z4Pe6xY8eMa665xoiLizPi4+ONcePGeQV5+Ka293HPnj2V6mUYhjF9+nQjNTXVKCsrq/SYq1atMnr27GnExcUZTZo0MXr06GEsXLiwynVRvbrWZt++fcbFF19stGjRwoiKijI6duxoTJs2zes83YZhGHv37jWGDRtmxMTEGImJicbUqVO9TluF2tW1Nu+8806V/w9KMvbs2WMYBp+b+nr88ceNNm3aGJGRkUbfvn2NDz/80HPfgAEDjDFjxnit/9JLLxm/+MUvjMjISOP888833nrrLa/7ffn+gW/qUpu2bdtW+fmYOXOmYRiGUVxcbAwdOtRISkoynE6n0bZtW2PChAmW/OU0FNSlNpMnT/as26pVK2P48OHGJ5984vV4fG78p67/p3311VeGJGPNmjWVHovPjf9U9z3urseYMWOMAQMGVNqmZ8+eRmRkpNGhQwevrONWU72txGEYnEsFAAAAAAAzsE83AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwCAGh05ckTJycl68MEHPcs2bNigyMhIrVu3LogjAwDA+hyGYRjBHgQAALC2lStXauTIkdqwYYM6d+6snj176vLLL9fDDz8c7KEBAGBphG4AAOCTW2+9VWvXrlWfPn20bds2ffTRR4qKigr2sAAAsDRCNwAA8MkPP/ygrl276ttvv9WWLVvUrVu3YA8JAADLY59uAADgk927d+vAgQMqLy/X3r17gz0cAABCAp1uAABQq9OnT6tv377q2bOnOnfurPnz52vbtm1q2bJlsIcGAIClEboBAECtpk2bppdfflmffvqp4uLiNGDAADVr1kxvvvlmsIcGAIClMb0cAADUaP369Zo/f76ee+45xcfHKywsTM8995zee+89Pfnkk8EeHgAAlkanGwAAAAAAk9DpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATPL/AQD9NRt1MxKAAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "# Plotting\n", "X = torch.linspace(-1, 1, 300, dtype=torch.float64).reshape(-1, 1)\n", @@ -1315,87 +936,35 @@ "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Parameter containing:\n", - "tensor([-1.9678], requires_grad=True)\n" - ] - } - ], "source": [ "print(model.observable_weights)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Parameter containing:\n", - "tensor([0.6115, 0.7766, 0.9200, 1.0011, 0.9861, 0.9143, 0.7843, 0.6087],\n", - " dtype=torch.float64, requires_grad=True)\n", - "tensor([[0.6115+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.7766+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.9200+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 1.0011+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.9861+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.9143+0.j, 0.0000+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.7843+0.j,\n", - " 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.6087+0.j]], grad_fn=)\n" - ] - } - ], "source": [ "import torch\n", "print(model.coefficients)\n", "D = torch.diag(model.coefficients)\n", "D = D.type(torch.complex64)\n", "print(D)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ──Rot(5.12,2.71,1.30)─╭●──Rot(2.72,4.57,1.35)─╭●──Rot(4.07,5.89,0.10)─╭●──Rot(2.49,5.49,3.95)─┤\n", - "1: ──Rot(3.05,2.99,3.77)─╰X──Rot(1.46,4.08,1.75)─╰X──Rot(3.79,4.54,1.10)─╰X──Rot(2.56,2.23,5.75)─┤\n", - "\n", - " ╭Sample\n", - " ╰Sample\n", - "tensor([[-0.1825-0.5123j, -0.5127-0.1049j, 0.0955-0.1297j, -0.2530-0.5834j],\n", - " [-0.1597-0.0348j, 0.3080-0.6627j, 0.3754-0.1744j, -0.4636+0.2302j],\n", - " [ 0.0107-0.7958j, 0.0552+0.1769j, 0.0404+0.1368j, 0.0945+0.5504j],\n", - " [-0.1716+0.1210j, -0.2968-0.2639j, -0.0368+0.8837j, -0.0871+0.0909j]],\n", - " grad_fn=)\n" - ] - } - ], "source": [ "import torch\n", "from qulearn import qlayer\n", @@ -1416,36 +985,25 @@ "\n", "U = qml.matrix(layer.circuit)()\n", "print(U)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[0.6136+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " [0.0000+0.j, 0.9758+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.9746+0.j, 0.0000+0.j],\n", - " [0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.6154+0.j]],\n", - " grad_fn=)\n" - ] - } - ], "source": [ "O = U @ D @ U.conj().t()\n", "print(D)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], - "source": [] + "source": [], + "outputs": [] } ], "metadata": { diff --git a/scratch/scratch4.ipynb b/scratch/scratch4.ipynb index cbe9191..628003e 100644 --- a/scratch/scratch4.ipynb +++ b/scratch/scratch4.ipynb @@ -4,88 +4,19 @@ "cell_type": "code", "execution_count": 56, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import torch\n", "import torch.nn.functional as F\n", "import tntorch as tn\n", "import pennylane as qml" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 10 5 4 1\n", - "\n", - "TT norm tensor(1.0000)\n", - "Norm core 0: tensor([[0.3487]])\n", - "Norm core 4: tensor([[1.7319]])\n", - "ID core 0: tensor([[ 0.0757, -0.0292],\n", - " [-0.0292, 0.0459]])\n", - "ID core 4: tensor([[ 0.1012, -0.1466, 0.2673, 0.3762],\n", - " [-0.1466, 0.2150, -0.3552, -0.5211],\n", - " [ 0.2673, -0.3552, 1.0784, 1.2707],\n", - " [ 0.3762, -0.5211, 1.2707, 1.6047]])\n", - "ID core 2 right: tensor([[ 3.6082, 0.8655, 0.9239, 0.1447, 0.4107],\n", - " [ 0.8655, 3.9974, -0.7578, -0.3593, 0.1775],\n", - " [ 0.9239, -0.7578, 7.7339, 2.9870, 0.1378],\n", - " [ 0.1447, -0.3593, 2.9870, 6.0718, -0.4856],\n", - " [ 0.4107, 0.1775, 0.1378, -0.4856, 7.0138]])\n", - "ID core 2 left: tensor([[ 4.0549e+00, -1.5177e-01, -8.8430e-01, -2.4782e+00, 1.4548e+00,\n", - " -5.2108e-01, -3.7645e-01, -1.3652e+00, 7.5933e-01, -5.1444e-01],\n", - " [-1.5177e-01, 9.4737e-01, 2.3455e-02, -3.1784e-01, 2.7663e-01,\n", - " 5.0287e-01, 8.1556e-01, 3.2639e-01, 1.1861e+00, -1.7724e-01],\n", - " [-8.8430e-01, 2.3455e-02, 1.7176e+00, 5.3296e-01, -1.3614e+00,\n", - " -1.6024e-02, -2.4122e-01, -8.8985e-01, -1.1925e+00, 2.1777e-01],\n", - " [-2.4782e+00, -3.1784e-01, 5.3296e-01, 2.9084e+00, -1.0749e+00,\n", - " -6.6761e-04, -2.5467e-01, 9.9021e-01, -6.0403e-01, -4.2304e-02],\n", - " [ 1.4548e+00, 2.7663e-01, -1.3614e+00, -1.0749e+00, 4.1499e+00,\n", - " 6.8497e-01, 1.5759e-01, -1.0277e+00, 2.9372e+00, -1.4246e+00],\n", - " [-5.2108e-01, 5.0287e-01, -1.6024e-02, -6.6761e-04, 6.8497e-01,\n", - " 2.0788e+00, 1.6609e+00, 1.1150e+00, 1.0020e+00, -2.8539e-01],\n", - " [-3.7645e-01, 8.1556e-01, -2.4122e-01, -2.5467e-01, 1.5759e-01,\n", - " 1.6609e+00, 3.6048e+00, 1.1099e+00, 1.7220e+00, -7.4960e-01],\n", - " [-1.3652e+00, 3.2639e-01, -8.8985e-01, 9.9021e-01, -1.0277e+00,\n", - " 1.1150e+00, 1.1099e+00, 3.4033e+00, 9.7740e-02, 2.6975e-01],\n", - " [ 7.5933e-01, 1.1861e+00, -1.1925e+00, -6.0403e-01, 2.9372e+00,\n", - " 1.0020e+00, 1.7220e+00, 9.7740e-02, 3.9436e+00, -1.3406e+00],\n", - " [-5.1444e-01, -1.7724e-01, 2.1777e-01, -4.2304e-02, -1.4246e+00,\n", - " -2.8539e-01, -7.4960e-01, 2.6975e-01, -1.3406e+00, 1.6164e+00]])\n", - "------------AFTER------------\n", - "Norm core 0: tensor([[1.4142]])\n", - "Norm core 4: tensor([[1.0000]])\n", - "ID core 0: tensor([[1.0000, 0.0000],\n", - " [0.0000, 1.0000]])\n", - "ID core 4: tensor([[ 0.0536, -0.0917, -0.1132, 0.1275],\n", - " [-0.0917, 0.1603, 0.2200, -0.2305],\n", - " [-0.1132, 0.2200, 0.4391, -0.3627],\n", - " [ 0.1275, -0.2305, -0.3627, 0.3470]])\n", - "ID core 2 right: tensor([[ 1.0000e+00, -2.1497e-08, -5.6876e-08, 3.3715e-08, -3.9321e-08],\n", - " [-2.1497e-08, 1.0000e+00, 1.6917e-08, -4.4865e-08, 2.0349e-08],\n", - " [-5.6876e-08, 1.6917e-08, 1.0000e+00, -3.0453e-08, -4.7811e-08],\n", - " [ 3.3715e-08, -4.4865e-08, -3.0453e-08, 1.0000e+00, 1.2750e-08],\n", - " [-3.9321e-08, 2.0349e-08, -4.7811e-08, 1.2750e-08, 1.0000e+00]])\n", - "ID core 2 left: tensor([[ 1.0903, -0.3303, 0.1690, 0.5503],\n", - " [-0.3303, 1.3604, 0.3068, -0.2793],\n", - " [ 0.1690, 0.3068, 1.4919, 0.0782],\n", - " [ 0.5503, -0.2793, 0.0782, 1.0575]])\n", - "\n" - ] - } - ], "source": [ "tt = tn.randn([2]*5, ranks_tt=[2, 10, 5, 4])\n", "tt /= tt.norm()\n", @@ -206,22 +137,13 @@ "print(\"ID core 2 left: \", cm)\n", "\n", "print(type(tt))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([1, 2, 2, 4])\n", - "\n" - ] - } - ], "source": [ "def contract(tt, L):\n", " cores = tt.cores\n", @@ -234,21 +156,13 @@ "tmp = contract(tt, L=2)\n", "print(tmp.shape)\n", "print(type(tmp))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([2, 2, 4])\n" - ] - } - ], "source": [ "core = tt.cores[1]\n", "print(core.shape)\n", @@ -258,25 +172,13 @@ " U, _, _ = torch.linalg.svd(Q, full_matrices=True)\n", " Q_ = torch.cat((Q, U[:, k:]), dim=1)\n", " return Q_" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[4 0]\n", - " [0 4]]\n", - "False\n", - "-4.0\n", - "0: ──U(M0)─┤ \n" - ] - } - ], "source": [ "dev = qml.device('default.qubit', wires=1)\n", "U = 1 / np.sqrt(2) * np.array([[1, 1], [1, -1]])\n", @@ -297,46 +199,13 @@ "print(example_circuit())\n", "drawer = qml.draw(example_circuit, show_all_wires=True, expansion_strategy=\"device\")\n", "print(drawer())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 4 4 4 2 1\n", - "\n", - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 4 4 4 4 1\n", - "\n", - "tensor(0.)\n", - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 4 4 4 1\n", - "\n", - "tensor(0.)\n" - ] - } - ], "source": [ "tt = tn.randn([2]*5, ranks_tt=[4, 4, 4, 2])\n", "\n", @@ -403,51 +272,25 @@ "print(tt_)\n", "diff = tt - tt_\n", "print(diff.norm())" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n", - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 4 4 4 1\n", - "\n", - "torch.Size([1, 2, 2, 2, 4])\n" - ] - } - ], "source": [ "print(s)\n", "print(tt_)\n", "core = contract(tt_, L=s+1)\n", "print(core.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "torch.Size([2, 16])\n" - ] - } - ], "source": [ "# left, inner and right reshapings\n", "def left_core_reshape(core, s):\n", @@ -466,32 +309,13 @@ "print(type(core))\n", "Q = reg_core_reshape(core)\n", "print(Q.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 170, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 4 4 4 2 1\n", - "\n", - "3\n", - "torch.Size([8, 8])\n", - "torch.Size([8, 8])\n", - "torch.Size([8, 8])\n" - ] - } - ], "source": [ "# tt to unitary list\n", "def tt2unitaries(tt):\n", @@ -522,24 +346,13 @@ "\n", "for U in Us:\n", " print(U.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n", - "torch.Size([8, 8])\n", - "torch.Size([8, 8])\n", - "torch.Size([8, 8])\n" - ] - } - ], "source": [ "from qulearn.mps import MPSQGates\n", "mpsgates = MPSQGates(tt)\n", @@ -548,73 +361,13 @@ "\n", "for U in Us:\n", " print(U.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.)\n", - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 4 4 4 1\n", - "\n", - "torch.Size([8, 8])\n", - "torch.Size([1, 2, 2, 2, 4])\n", - "torch.Size([8, 4])\n", - "torch.Size([8, 4])\n", - "tensor([[-0.2215, -0.2835, 0.1553, -0.1158],\n", - " [ 0.1198, -0.2948, 0.2174, 0.5350],\n", - " [ 0.0343, -0.1878, -0.2774, -0.2362],\n", - " [ 0.3005, -0.6267, 0.4129, -0.3863],\n", - " [-0.8508, -0.0562, 0.3794, -0.1160],\n", - " [-0.2567, -0.6109, -0.6357, 0.2219],\n", - " [ 0.2188, -0.1267, 0.1062, -0.2699],\n", - " [-0.0862, 0.1112, -0.3490, -0.5998]])\n", - "tensor([[-0.2215, 0.1198, 0.0343, 0.3005],\n", - " [-0.2835, -0.2948, -0.1878, -0.6267],\n", - " [ 0.1553, 0.2174, -0.2774, 0.4129],\n", - " [-0.1158, 0.5350, -0.2362, -0.3863],\n", - " [-0.8532, 0.1663, 0.3136, 0.1325],\n", - " [-0.2999, -0.4312, -0.7473, 0.2175],\n", - " [ 0.1159, 0.0668, -0.0296, -0.3636],\n", - " [-0.0407, 0.5891, -0.4162, -0.0133]])\n", - "tensor([[-0.2215, -0.2835, 0.1553, -0.1158],\n", - " [ 0.1198, -0.2948, 0.2174, 0.5350],\n", - " [ 0.0343, -0.1878, -0.2774, -0.2362],\n", - " [ 0.3005, -0.6267, 0.4129, -0.3863],\n", - " [-0.8508, -0.0562, 0.3794, -0.1160],\n", - " [-0.2567, -0.6109, -0.6357, 0.2219],\n", - " [ 0.2188, -0.1267, 0.1062, -0.2699],\n", - " [-0.0862, 0.1112, -0.3490, -0.5998]])\n", - "tensor([[ 1.0000e+00, 8.8043e-09, -4.6874e-08, -1.3498e-08, -4.5033e-09,\n", - " 1.5863e-08, 1.5490e-09, 9.5434e-09],\n", - " [ 8.8043e-09, 1.0000e+00, -7.7029e-08, 6.8826e-08, -1.7819e-08,\n", - " 3.3268e-08, 6.0539e-09, -2.7204e-08],\n", - " [-4.6874e-08, -7.7029e-08, 1.0000e+00, -1.0998e-08, -3.4523e-08,\n", - " 1.2822e-07, -1.8700e-08, 5.8764e-08],\n", - " [-1.3498e-08, 6.8826e-08, -1.0998e-08, 1.0000e+00, -2.8051e-08,\n", - " 2.0244e-08, 5.0906e-08, 1.2412e-08],\n", - " [-4.5033e-09, -1.7819e-08, -3.4523e-08, -2.8051e-08, 1.0000e+00,\n", - " -4.7569e-08, -2.2003e-09, 7.7574e-09],\n", - " [ 1.5863e-08, 3.3268e-08, 1.2822e-07, 2.0244e-08, -4.7569e-08,\n", - " 1.0000e+00, 1.7790e-10, 5.1386e-09],\n", - " [ 1.5490e-09, 6.0539e-09, -1.8700e-08, 5.0906e-08, -2.2003e-09,\n", - " 1.7790e-10, 1.0000e+00, -1.1085e-08],\n", - " [ 9.5434e-09, -2.7204e-08, 5.8764e-08, 1.2412e-08, 7.7574e-09,\n", - " 5.1386e-09, -1.1085e-08, 1.0000e+00]])\n" - ] - } - ], "source": [ "# unitary list to circuit\n", "num_qubits = 5\n", @@ -649,88 +402,13 @@ "print(Q2_.T[:, :4])\n", "\n", "print(torch.mm(U.T, U))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 4 4 4 4 1\n", - "\n", - "0: ───────────────╭U(M2)─┤ State\n", - "1: ────────╭U(M1)─├U(M2)─┤ State\n", - "2: ─╭U(M0)─├U(M1)─╰U(M2)─┤ State\n", - "3: ─├U(M0)─╰U(M1)────────┤ State\n", - "4: ─╰U(M0)───────────────┤ State\n", - "circuit: [-0.07365078 -0.02891789 0.04293878 0.00879231 -0.11568183 0.20524918\n", - " 0.08236877 -0.03957362 0.01616416 -0.00902177 0.00623437 -0.03029924\n", - " 0.23249778 -0.29886121 -0.18842358 0.10022443 0.01141569 0.03721769\n", - " 0.01251542 0.00741011 -0.1085564 0.00099249 0.10626377 0.03202021\n", - " -0.05252615 -0.07636401 0.05182039 -0.07001516 0.50385233 -0.47584493\n", - " -0.43514359 0.16150526]\n", - "psi.T: tensor([[-0.0532, -0.1086, 0.0783, 0.0169, 0.4960, -0.5010, -0.4284, 0.2094,\n", - " -0.3013, 0.2482, 0.2344, -0.0198, 0.0449, -0.2040, -0.0554, -0.0119,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])\n", - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 4 4 4 1\n", - "\n", - "torch.Size([1, 2, 2, 2, 4])\n", - "=====================================\n", - "Q3 reshaped: tensor([[ 0.7226, -0.4620, -0.0541, -0.1402, -0.2029, 0.4181, 0.1520, -0.0525]])\n", - "U3: tensor([[ 0.7226, -0.4620, -0.0541, -0.1402, -0.2029, 0.4181, 0.1520, -0.0525]])\n", - "=====================================\n", - "=====================================\n", - "Q2 reshaped: tensor([[-0.1869, -0.3106, -0.6207, -0.4007],\n", - " [ 0.0685, -0.0093, 0.1640, 0.4053],\n", - " [ 0.5936, 0.5591, -0.3297, 0.2003],\n", - " [-0.3667, 0.6466, 0.2480, -0.5136],\n", - " [-0.5070, -0.0742, 0.0708, 0.4960],\n", - " [ 0.4402, -0.3870, 0.2676, -0.3315],\n", - " [-0.1188, 0.0841, -0.5755, 0.1221],\n", - " [-0.0921, 0.1023, -0.0986, -0.0220]])\n", - "torch.Size([4, 2, 4, 1])\n", - "U2: tensor([[-0.1869, -0.3106, -0.6207, -0.4007],\n", - " [ 0.0685, -0.0093, 0.1640, 0.4053],\n", - " [ 0.5936, 0.5591, -0.3297, 0.2003],\n", - " [-0.3667, 0.6466, 0.2480, -0.5136],\n", - " [-0.5070, -0.0742, 0.0708, 0.4960],\n", - " [ 0.4402, -0.3870, 0.2676, -0.3315],\n", - " [-0.1188, 0.0841, -0.5755, 0.1221],\n", - " [-0.0921, 0.1023, -0.0986, -0.0220]])\n", - "=====================================\n", - "Q2 shape torch.Size([4, 2, 4])\n", - "torch.Size([2, 2, 2, 4])\n", - "torch.Size([4, 2, 4])\n", - "torch.Size([4, 2, 1])\n", - "torch.Size([2, 2, 2, 2, 2, 1])\n", - "psi = tensor([[-0.0532, -0.1086, 0.0783, 0.0169, 0.4960, -0.5010, -0.4284, 0.2094,\n", - " -0.3013, 0.2482, 0.2344, -0.0198, 0.0449, -0.2040, -0.0554, -0.0119,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])\n", - "vec = tensor([-0.0532, -0.1086, 0.0783, 0.0169, 0.4960, -0.5010, -0.4284, 0.2094,\n", - " -0.3013, 0.2482, 0.2344, -0.0198, 0.0449, -0.2040, -0.0554, -0.0119,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", - " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000])\n" - ] - } - ], "source": [ "num_qubits = 5\n", "tt = tn.randn([2]*num_qubits, ranks_tt=4)\n", @@ -822,43 +500,13 @@ "\n", "print(\"psi = \", psi.T)\n", "print(\"vec = \", vec)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 4 4 4 4 1\n", - "\n", - "(32,)\n", - "torch.Size([32])\n", - "[-0.07365078 -0.02891789 0.04293878 0.00879231 -0.11568183 0.20524918\n", - " 0.08236877 -0.03957362 0.01616416 -0.00902177 0.00623437 -0.03029924\n", - " 0.23249778 -0.29886121 -0.18842358 0.10022443 0.01141569 0.03721769\n", - " 0.01251542 0.00741011 -0.1085564 0.00099249 0.10626377 0.03202021\n", - " -0.05252615 -0.07636401 0.05182039 -0.07001516 0.50385233 -0.47584493\n", - " -0.43514359 0.16150526]\n", - "=======\n", - "tensor([-0.0737, -0.0289, 0.0429, 0.0088, -0.1157, 0.2052, 0.0824, -0.0396,\n", - " 0.0162, -0.0090, 0.0062, -0.0303, 0.2325, -0.2989, -0.1884, 0.1002,\n", - " 0.0114, 0.0372, 0.0125, 0.0074, -0.1086, 0.0010, 0.1063, 0.0320,\n", - " -0.0525, -0.0764, 0.0518, -0.0700, 0.5039, -0.4758, -0.4351, 0.1615])\n", - "================DIFF===================\n", - "tensor(2.4191e-07, dtype=torch.float64)\n" - ] - } - ], "source": [ "psi = ttunitaries2circuit(Us, num_qubits, s)\n", "ttfull = tt.torch().reshape(2**num_qubits)\n", @@ -871,13 +519,13 @@ "print(\"================DIFF===================\")\n", "diff = torch.tensor(psi.real) - ttfull\n", "print(torch.linalg.norm(diff))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import torch\n", @@ -903,33 +551,13 @@ " #norms = torch.linalg.norm(values, dim=1, keepdim=True)\n", " #values /= norms\n", " return values.squeeze(0)#, norms" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x = tensor([-2.0000, -1.0000, -0.9900, 0.0000, -0.3000, 0.9000, 1.0000, 1.3000],\n", - " dtype=torch.float64)\n", - "Left Points: tensor([-1.2857, -1.0000, -1.0000, -0.1429, -0.4286, 0.7143, 1.0000, 1.0000],\n", - " dtype=torch.float64)\n", - "Right Points: tensor([-1.0000, -0.7143, -0.7143, 0.1429, -0.1429, 1.0000, 1.2857, 1.2857],\n", - " dtype=torch.float64)\n", - "Position: tensor([-1., 0., 0., 3., 2., 6., 7., -2.], dtype=torch.float64)\n", - "First: tensor([ 3.5000, 1.0000, 0.9650, 0.5000, 0.5500, 0.3500, 1.0000, -0.0500],\n", - " dtype=torch.float64)\n", - "Second: tensor([-2.5000, 0.0000, 0.0350, 0.5000, 0.4500, 0.6500, 0.0000, 1.0500],\n", - " dtype=torch.float64)\n", - "Should sum to one: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],\n", - " dtype=torch.float64)\n" - ] - } - ], "source": [ "def find_grid_points(x, n, a=-1.0, b=1.0):\n", " num_segments = 2**n - 1\n", @@ -987,33 +615,13 @@ "print(\"First: \", first)\n", "print(\"Second: \", second)\n", "print(\"Should sum to one: \", first+second)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3D TT tensor:\n", - "\n", - " 2 2 2\n", - " | | |\n", - " (0) (1) (2)\n", - " / \\ / \\ / \\\n", - "1 1 1 1\n", - "\n", - "pos: 1\n", - "tt vectorized:\n", - "tensor([0.9500, 0.0500, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000])\n", - "tensor([0.0000, 0.9500, 0.0500, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " dtype=torch.float64)\n" - ] - } - ], "source": [ "# TT for even case\n", "def tt_lin1dfembasis_evenidx(first, second, idx, n):\n", @@ -1050,67 +658,23 @@ "print(tt.torch().reshape(2**n))\n", "Phi = linear_FEM_basis(x, n)\n", "print(Phi)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello there\n" - ] - } - ], "source": [ "print(\"hello \"\\\n", " \"there\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "k: 13\n", - "binary: 01101\n", - "zero bit: 3\n", - "TT EVEN\n", - "3D TT tensor:\n", - "\n", - " 2 2 2\n", - " | | |\n", - " (0) (1) (2)\n", - " / \\ / \\ / \\\n", - "1 1 1 1\n", - "\n", - "TT ODD\n", - "3D TT tensor:\n", - "\n", - " 2 2 2\n", - " | | |\n", - " (0) (1) (2)\n", - " / \\ / \\ / \\\n", - "1 1 2 1\n", - "\n", - "pos: 5\n", - "tt_even vectorized:\n", - "tensor([0.0000, 0.0000, 0.0000, 0.0000, 0.2250, 0.7750, 0.0000, 0.0000])\n", - "tt_odd vectorized:\n", - "tensor([0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2250, 0.7750, 0.0000])\n", - "exact Phi:\n", - "tensor([0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2250, 0.7750, 0.0000],\n", - " dtype=torch.float64)\n" - ] - } - ], "source": [ "# TT for odd case\n", "import math\n", @@ -1193,26 +757,13 @@ "Phi = linear_FEM_basis(x, n)\n", "print(\"exact Phi:\")\n", "print(Phi)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Phi\n", - "tensor([0.0000, 0.0000, 0.9000, 0.1000], dtype=torch.float64)\n", - "psi\n", - "[0. 0. 0.89999998 0.1 ]\n", - "tensor([ 0.0000e+00, 0.0000e+00, -2.3842e-08, 1.4901e-09],\n", - " dtype=torch.float64)\n" - ] - } - ], "source": [ "num_qubits = 2\n", "dev = qml.device('default.qubit', wires=num_qubits)\n", @@ -1258,24 +809,13 @@ "print(\"psi\")\n", "print(psi.real)\n", "print(torch.tensor(psi.real)-Phi)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3yT9fn/8XfSpikF0gqFpoVi8QjKURisbvNYqIJubOrQOXGM4XfO7qt2X6c4BZn7Wp3IcJON39hQ5+Erc3NusxXoqkydnQjYUY6eQJQ2LRXbQEvTtL1/f7QJ1CbQtElzej0fDx4ud+9P7uu+Vq/K1U+u22QYhiEAAAAAAAAAANCNOdwBAAAAAAAAAAAQqWiiAwAAAAAAAADgB010AAAAAAAAAAD8oIkOAAAAAAAAAIAfNNEBAAAAAAAAAPCDJjoAAAAAAAAAAH7QRAcAAAAAAAAAwA+a6AAAAAAAAAAA+EETHQAAAAAAAAAAP2iiIyLdd999MplMqqurO+m5ra2t+vGPf6zs7GyZzWbNmTMn9AECAHqF+g4AsYn6DgCxixoP0ERHDFizZo0efvhhXX311XryySd1++23n/D8Xbt26bLLLtOgQYM0ZMgQ3XDDDTp48GC/xPrmm2/qy1/+slJSUmS32/Xf//3fOnLkSL9cGwCiTbTU9w0bNmjBggUaN26cEhISlJOTE/JrAkA0i4b63tTUpJUrV2rmzJnKzMzU4MGDNXnyZP3mN79RW1tbSK8NANEsGmq8JD3wwAP64he/qGHDhik5OVlnnnmmbrvttn7rDyH6JIY7AKCvXnnlFY0YMUK/+MUvTnruJ598ogsuuECpqal64IEHdOTIES1btkyVlZXatGmTkpKSQhZnRUWFLr30Uo0dO1bLly/XJ598omXLlum9997Tyy+/HLLrAkC0ipb6/uyzz2rt2rU677zzlJWVFbLrAECsiIb6/uGHH+qHP/yhLr30UhUWFspms2n9+vX6wQ9+oH//+9968sknQ3JdAIh20VDjJWnLli2aNGmSrr32Wg0ePFi7du3S6tWrVVxcrIqKCg0cODBk10Z0oomOqFdbW6u0tLQenfvAAw+osbFRW7Zs0ahRoyRJ06ZN04wZM/TEE0/opptuClmcd999t0455RRt3LhRNptNkpSTk6OFCxdqw4YNmjlzZsiuDQDRKFrq+wMPPKDVq1fLYrHoiiuu0Pbt20N2LQCIBdFQ3+12uyorK3Xuued6j/3Xf/2Xvvvd7+rxxx/XvffeqzPOOCMk1waAaBYNNV6S/vznP3c7lpubq6uvvlp///vfde2114bs2ohOjHNBRKurq9M3v/lN2Ww2DR06VLfeequam5slSfv27ZPJZNKrr76qHTt2yGQyyWQyaePGjX7f789//rOuuOIKb3GWpLy8PJ111ln64x//eMJYlixZIrPZrLKysi7Hb7rpJiUlJek///mP37VOp1OlpaX69re/7W2gS9K8efM0aNCgk14bAGJNrNR3ScrKypLFYjnJHQNAfIiV+p6ent6lge7x9a9/XVLH+AEAiDexUuP98YxlrK+vD3gtYh9NdES0b37zm2publZRUZFmzZqlX/7yl97fRA4bNkxPPfWUxowZo5EjR+qpp57SU089pbFjx/p8rwMHDqi2tlZTp07t9rVp06bpnXfeOWEs99xzjyZNmqQFCxbo8OHDkqT169dr9erVWrx4sSZOnOh3bWVlpVpbW7tdOykpSZMmTTrptQEg1sRKfQcAdBXr9d3hcEjqaLIDQLyJtRpvGIbq6urkcDj0+uuv67//+7+VkJCgiy666KRrEYcMIAItWbLEkGR89atf7XL8Bz/4gSHJ+M9//uM9duGFFxrnnnvuSd/z7bffNiQZf/jDH7p97Y477jAkGc3NzSd8j8rKSiMpKcn43ve+Z3z22WfGiBEjjKlTpxput/uE655//nlDkvHaa691+9o111xj2O32k8YPALEg1ur7582ePds49dRTA1oDALEg1uu7YRiGy+UyzjnnHGP06NG9Wg8A0SpWa3x1dbUhyftn5MiRxtq1a3u0FvGHneiIaLfcckuX1z/84Q8lSSUlJQG/19GjRyVJVqu129eSk5O7nOPPuHHjtHTpUv3ud79Tfn6+6urq9OSTTyox8cSPFzjZtU92XQCINbFS3wEAXcVyfS8oKNDOnTv12GOP8fMBQFyKtRo/ZMgQlZaW6u9//7t++tOfKj09XUeOHAnwThAv+MmPiHbmmWd2eX366afLbDZr3759Ab/XgAEDJEkul6vb1zwzvDznnMgdd9yh5557Tps2bdIDDzygc845p8/X7sl1ASCWxEp9BwB0Fav1/eGHH9bq1at1//33a9asWQGvB4BYEGs1PikpSXl5eZKkK664Qpdeeqm+9KUvafjw4briiit6/D6ID+xER1QxmUy9XpuZmSlJqq6u7va16upqDRkyxOdvQD/vww8/1HvvvSepY9Z5MK6dlZXVo/cBgFgVrfUdAHBisVDfn3jiCd155536/ve/r3vuuSfg9QAQq2Khxh/v/PPPV2Zmpp555pk+vQ9iE010RDRPIfR4//331d7e7n1iciBGjBihYcOGafPmzd2+tmnTJk2aNOmk79He3q7vfOc7stlsuvvuu/V///d/euGFF066bty4cUpMTOx27ZaWFlVUVPTo2gAQS2KlvgMAuoq1+v7Xv/5V3/ve9/SNb3xDK1euDCR8AIg5sVbjfWlublZDQ0Of3gOxiSY6Itrn/0P1V7/6lSTp8ssv79X7XXXVVXrppZf08ccfe4+VlZXp3Xff1TXXXHPS9cuXL9ebb76p3/72t7r//vt1/vnn6+abb1ZdXd0J16WmpiovL09PP/2096nRkvTUU0/pyJEjPbo2AMSSWKnvAICuYqm+v/baa7r22mt1wQUX6JlnnpHZzF+fAcS3WKnxjY2Nampq6nb8z3/+sz777DNNnTo18JtBzDMZhmGEOwjg8+677z4tXbpU48ePV05Oji677DKVl5fr6aef1re+9a0uH6256KKLVFdXp+3bt5/0fT/++GNNnjxZaWlpuvXWW3XkyBE9/PDDGjlypN5+++0TflRo165dOu+883Tttdfq8ccfl9TxW9hJkyZp9uzZ+uMf/3jCa2/dulXnn3++zjnnHN1000365JNP9Mgjj+iCCy7Q+vXre5gZAIhusVjft23bpr/97W+SpKefflo1NTX60Y9+JEmaOHGirrzyypPGDwDRLtbq+0cffaSJEyeqpaVFy5Ytk81m6/L1CRMmaMKECSeNHwBiQazV+IqKCuXl5Wnu3LkaM2aMzGazNm/erKefflojR47U5s2bNXTo0AAyhLhgABFoyZIlhiRj586dxtVXX20MHjzYOOWUU4yCggLj6NGjXc698MILjXPPPbfH7719+3Zj5syZRkpKipGWlmZcf/31hsPhOOGa1tZW4wtf+IIxcuRIo76+vsvXHn30UUOSsXbt2pNe+/XXXzfOP/98Izk52Rg2bJhxyy23GE6ns8exA0C0i8X6/vjjjxuSfP658cYbexw/AESzWKvvr776qt/aLslYsmRJj+MHgGgXazX+4MGDxk033WSMGTPGGDhwoJGUlGSceeaZxm233WYcPHiwx7EjvrATHQAAAAAAAAAAPxjqBgAAAAAAAACAHzTRAQAAAAAAAADwgyY6AAAAAAAAAAB+0EQHAAAAAAAAAMAPmugAAAAAAAAAAPiRGO4AeqK9vV1VVVUaPHiwTCZTuMMBgD4xDEOHDx9WVlaWzOb4/l0m9R1ALKG+H0N9BxBrqPHHUOMBxJKe1veoaKJXVVUpOzs73GEAQFB9/PHHGjlyZLjDCCvqO4BYRH2nvgOIXdR4ajyA2HSy+h4VTfTBgwdL6rgZm83W43Vut1sbNmzQzJkzZbFYQhVe1CEvvpEX/8iNb73Ni9PpVHZ2tre2xTPqe3CRF//IjW/kxTfqe99R34OP3PhGXnwjL/5R4/uOGh9c5MU38uIfufEt1PU9Kprono8H2Wy2gAt0SkqKbDYb31THIS++kRf/yI1vfc0LH32kvgcbefGP3PhGXnyjvvcd9T34yI1v5MU38uIfNb7vqPHBRV58Iy/+kRvfQl3f43uQFwAAAAAAAAAAJ0ATHQAAAAAAAAAAP2iiAwAAAAAAAADgB010AAAAAAAAAAD8oIkOAAAAAAAAAIAfNNEBAAAAAAAAAPCDJjoAAAAAAAAAAH7QRAcAAAAAAAAAwI+Am+ivvfaarrzySmVlZclkMunFF1886ZqNGzfqvPPOk9Vq1RlnnKEnnniiF6ECAAAAAAAAANC/Am6iNzY2auLEiVq5cmWPzt+7d69mz56tiy++WBUVFbrtttv0ve99T+vXrw84WAAAAAAAAAAA+lNioAsuv/xyXX755T0+f9WqVRo9erQeeeQRSdLYsWP1xhtv6Be/+IXy8/N9rnG5XHK5XN7XTqdTkuR2u+V2u3t03fdqj+jpf3+keodJM3q4Jl54ctjTXMYL8uIfufGtt3khj9Ftj+OwnnnrI7nb2k96rmH0/H17eq7VYtb8L43W6PSBPX9zAAAAAADQawE30QNVXl6uvLy8Lsfy8/N12223+V1TVFSkpUuXdju+YcMGpaSk9Oi62z8z6dndCUq1mLV+Q6nMpoDCjgulpaXhDiEikRf/yI1vgealqakpRJGgPzy8fo/+sasmrDE0utr0yDcnhjUGAAAAAADiRcib6A6HQxkZGV2OZWRkyOl06ujRoxowYEC3NYsWLVJhYaH3tdPpVHZ2tmbOnCmbzdaj617a2q7/e/BVNbjalD7mC/ri6cP6diMxxO12q7S0VDNmzJDFYgl3OBGDvPhHbnzrbV48n65BdPr4UMcvQeZOzVb2kO4/w3rCZOrdb3bfrTmsv1ZUeWMAAAAAAAChF/Imem9YrVZZrdZuxy0WS48bVRaLlDdmuF78T7VKd3+qr4zJCnaYUS+QfMYT8uIfufEt0LyQw+hW3XBUkrTwgtE6Y/jgfr325n2H9NeKKlV1xgAAAAAAAEIv4AeLBsput6umpuvH3mtqamSz2XzuQg+my8Z17IBfv6NG7e0BDKYFAMCHRlernM2tkiR7amh/hvliT02WJNU4m/m5BgAAAABAPwl5Ez03N1dlZWVdjpWWlio3NzfUl9aXz0hXcoKhmsMubd3/WcivBwCIbdUNzZKkwcmJGmTt/w9zZdiSZTJJ7jZDdY2uky8AAAAAAAB9FnAT/ciRI6qoqFBFRYUkae/evaqoqND+/fsldcwznzdvnvf873//+/rwww/14x//WLt379avf/1r/fGPf9Ttt98enDs4AWuiWeNO6dipV1xZHfLrAQBim6OziZ7ZuSO8v1kSzBo+uGPcWXV9c1hiAAAAAAAg3gTcRN+8ebMmT56syZMnS5IKCws1efJkLV68WJJUXV3tbahL0ujRo1VcXKzS0lJNnDhRjzzyiH73u98pPz8/SLdwYpOHdjTRX6508NF3AECfeGaRZ4ZhlIuH59rVzEUHAAAAAKBfBPxZ9IsuukiG4b8Z/cQTT/hc88477wR6qaAYk2ZokDVRDmez3vn4M005dUhY4gAARL9w70SXpKy0ZFV8LFWxEx0AAAAAgH4R8pno4ZZoli4dM0yS9NI2RroAAHrPs/vbHsYmut3GTnQAAAAAAPpTzDfRJenyczMkMdIFANA3ngeLZoVxnEtWWnKXWAAAAAAAQGjFRRP9y2cM7TLSBQCA3vCMcwnnTvRjM9FpogMAAAAA0B/ioolutSQob+xwSVLxNkeYowEARKuqes+DRcPYRPfsRK9nnAsAAAAAAP0hLprokjRrfKYk6eXt1Yx0AQAErNHVKmdzqyQpMy2M41w6d6LXHHapjZ9nAAAAAACEXNw00S84a5gGWRNV3dCsdz6uD3c4AIAo43B2jE8ZbE3UIGti2OIYNtiqBLNJbe2Gag8z0gUAAAAAgFCLmyZ6siVBl3aOdCmprA5zNACAaFNd39Gw9oxTCZcEs0kZg62SmIsOAAAAAEB/iJsmuiTN9ox0qWSkCwAgMNUNHTPI7anhG+Xi4Rkn42nsAwAAAACA0ImrJrpnpEtVQ7MqPqkPdzgAgCji6Nz1nWkL70506diDTT2NfQAAAAAAEDpx1UQ/fqRL8TZGugAAeq6qITLGuUhSVudO9Cp2ogMAAAAAEHJx1USXpFmMdAEA9IKjc9e3Zxd4ONlt7EQHAAAAAKC/xF0T/cKzhmlgUgIjXQAAAfE8xDMSZqJnpXma6OxEBwAAAAAg1OKuid4x0iVDklTCSBcAQA95GtZZEbATPbOzkc9OdAAAAAAAQi/umujScSNdtjtkGIx0AQCcWFNLqxqOuiVJ9khoonfuRK897JK7rT3M0QAAAAAAENvisol+0dkdI10O1B9Vxcf14Q4HABDhPLvQB1kTNTjZEuZopPSBVlkSTDIMqcbJSBcAAAAAAEIpLpvoyZYEXeIZ6VLJSBcAwIk5OpvokfBQUUkym03KsDEXHQAAAACA/hCXTXRJmt050qWkkpEuAIATO/ZQ0chooktSlncuOk10AAAAAABCKW6b6MePdPnPJw3hDgcAEMGq6zse4OlpXEcCz1x0T2wA4tvKlSuVk5Oj5ORkTZ8+XZs2bTrh+c8//7zGjBmj5ORkjR8/XiUlJX7P/f73vy+TyaQVK1YEOWoAwMlQ3wEgMsRtE/34kS7F26rCHA0AIJJVOyNvJ3omO9EBdFq7dq0KCwu1ZMkSbd26VRMnTlR+fr5qa2t9nv/mm2/quuuu04IFC/TOO+9ozpw5mjNnjrZv397t3L/85S/697//raysrFDfBgDgc6jvABA54raJLkmzx9slMdIFAHBint3ekTITXZKyOneiV7ETHYh7y5cv18KFCzV//nydc845WrVqlVJSUrRmzRqf5z/66KO67LLLdMcdd2js2LG6//77dd555+mxxx7rct6BAwf0wx/+UM8884wslvA/VBkA4g31HQAiR2K4Awini84erpTjRrpMyk4Ld0gAgAjk2e2dmRY541zsPFgUgKSWlhZt2bJFixYt8h4zm83Ky8tTeXm5zzXl5eUqLCzsciw/P18vvvii93V7e7tuuOEG3XHHHTr33HNPGofL5ZLL5fK+djqdkiS32y23293j+/GcG8iaeEFufCMvvpEX/3qbm/7OZaTUd4kaH2rkxTfy4h+58S3U9T2um+jJlgRdMma4XtpWrZLKaproAACfHJ3jXCJrJzrjXABIdXV1amtrU0ZGRpfjGRkZ2r17t881DofD5/kOh8P7+qGHHlJiYqL++7//u0dxFBUVaenSpd2Ob9iwQSkpKT16j+OVlpYGvCZekBvfyItv5MW/QHPT1NQUokh8i5T6LlHj+wt58Y28+EdufAtVfY/rJrokzR6fqZe2Vat4W7UWXT5GJpMp3CEBACLI0ZY21Td1/GY6smaid8RSd8QlV2ubrIkJYY4IQKzYsmWLHn30UW3durXH/228aNGiLrsfnU6nsrOzNXPmTNlsth5f2+12q7S0VDNmzGDEwOeQG9/Ii2/kxb/e5saz+zqa9aa+S9T4UCMvvpEX/8iNb6Gu73HfRL/o7OEaYOkY6bLtkwZNZDc6AOA41Q0dM8cHWRNlS46c/0AZMjBJ1kSzXK3tqmlwadTQwHcBAYh+6enpSkhIUE1NTZfjNTU1stvtPtfY7fYTnv/666+rtrZWo0aN8n69ra1NP/rRj7RixQrt27ev23tarVZZrdZuxy0WS6/+ctfbdfGA3PhGXnwjL/4Fmpv+zmOk1HeJGt9fyItv5MU/cuNbqOp7XD9YVJIGJCXokrHDJUklldVhjgYAEGkcneNSImkXuiSZTCbvbvSqBh4uCsSrpKQkTZkyRWVlZd5j7e3tKisrU25urs81ubm5Xc6XOj726jn/hhtu0LZt21RRUeH9k5WVpTvuuEPr168P3c0AALyo7wAQWeJ+J7okXTE+U8XbqlVcWa27GOkCADhOVUPkzUP3sKcma9+nTd7d8gDiU2FhoW688UZNnTpV06ZN04oVK9TY2Kj58+dLkubNm6cRI0aoqKhIknTrrbfqwgsv1COPPKLZs2frueee0+bNm/Xb3/5WkjR06FANHTq0yzUsFovsdrvOPvvs/r05AIhj1HcAiBw00XVspMsnnx1V5YEGTRiZFu6QAAARwtHZoI7EJnpWKg8XBSDNnTtXBw8e1OLFi+VwODRp0iStW7fO+3C5/fv3y2w+9gHU888/X88++6zuuece3X333TrzzDP14osvaty4ceG6BQCAD9R3AIgcNNF1bKRLcecDRmmiAwA8qr3jXAaEOZLuMtM6GvvV9TTRgXhXUFCggoICn1/buHFjt2PXXHONrrnmmh6/v785uQCA0KK+A0BkiPuZ6B6zx2dKkoorq2UYRpijAQBECk8TPSsCd6JneneiM84FAAAAAIBQoYne6eLPjXQBAEA6fid65DXRszp3olexEx0AAAAAgJChid5pQFKCLhkzXFLHbnQAAKRju7wzI3Cci93GTnQAAAAAAEKNJvpxZnWOdClhpAsAQNLRljbVN7klHZs/Hkk8O9E/a3Kr2d0W5mgAAAAAAIhNNNGPc/GYYUq2mPXxoaPafsAZ7nAAoN+tXLlSOTk5Sk5O1vTp07Vp06YerXvuuedkMpk0Z86c0AbYzxzOjjEpA5MSNNgaec/iTh1g0QBLgqRjY2cAAAAAAEBw0UQ/TkpSIiNdAMSttWvXqrCwUEuWLNHWrVs1ceJE5efnq7a29oTr9u3bp//5n//RV77ylX6KtP9U13eMSbGnJstkMoU5mu5MJpN3h7wnVgAAAAAAEFyRt60uzGaPz1JJpUMlldW687KzI7JpAgChsHz5ci1cuFDz58+XJK1atUrFxcVas2aN7rrrLp9r2tradP3112vp0qV6/fXXVV9ff8JruFwuuVwu72uns+NTP263W263u8exes4NZE1vfHKoUZJktyWH/Fq9ZbdZ9eHBRn186IgmZaVICn1eolF/fc9EG/LiW2/zQh4BAACA2EQT/XM8I132H2rSjiqnxo1IDXdIABByLS0t2rJlixYtWuQ9ZjablZeXp/Lycr/rfvrTn2r48OFasGCBXn/99ZNep6ioSEuXLu12fMOGDUpJSQk47tLS0oDXBOKfn5gkJajVeVAlJSUhvVZvtTrNksz659vblFzd8TyPUOclmpEb38iLb4HmpampKUSRAAAAAAgnmuif4xnpUlLp0EvbqmmiA4gLdXV1amtrU0ZGRpfjGRkZ2r17t881b7zxhn7/+9+roqKix9dZtGiRCgsLva+dTqeys7M1c+ZM2Wy2Hr+P2+1WaWmpZsyYIYvF0uN1gfr333ZKH3+iL5x7hmZdekbIrtMX75a9r00bP5TNfqpmzDizX/ISjfrreybakBffepsXz6drAAAAAMQWmug+zBqfyUgXADiBw4cP64YbbtDq1auVnp7e43VWq1VWq7XbcYvF0qsGXm/X9VTt4RZJ0oghAyO2wThyyEBJUo3T5Y0x1HmJZuTGN/LiW6B5IYcAAABAbKKJ7sMlY4Yz0gVAXElPT1dCQoJqamq6HK+pqZHdbu92/gcffKB9+/bpyiuv9B5rb2+XJCUmJmrPnj06/fTTQxt0P6hqaJbU8WDRSJXZGVt1Z6wAAAAAACC4zOEOIBKlJCXq4rOHS5KKK6vDHA0AhF5SUpKmTJmisrIy77H29naVlZUpNze32/ljxoxRZWWlKioqvH+++tWv6uKLL1ZFRYWys7P7M/yQcTQclSRlpQ4IcyT+ZaV1xFZVfzTMkQAAAAAAEJvYie7HrPGZenl7x0iXH+cz0gVA7CssLNSNN96oqVOnatq0aVqxYoUaGxs1f/58SdK8efM0YsQIFRUVKTk5WePGjeuyPi0tTZK6HY9Wze42fdbklhTZO9E9sTmbW9Xoag1zNAAAAAAAxB6a6H5cMma4rIlmffQpI10AxIe5c+fq4MGDWrx4sRwOhyZNmqR169Z5Hza6f/9+mc3x8wEmz3iUlKQE2ZIj98elLdmiQdZEHXG1yuF0hTscAAAAAABiTuR2BcJsoDVRl4wZ7t2NThMdQDwoKChQQUGBz69t3LjxhGufeOKJ4AcURtWdo1wyU5Mj/tNImanJeq/2CHPRAQAAAAAIgfjZUtgLs8ZnSpJKKqtlGEaYowEA9CdHZ0M6M4LnoXtkds5Fp4kOAAAAAEDw0UQ/Ac9Il32fNmlntTPc4QAA+pGnIR3J89A9sjpjdNBEBwAAAAAg6HrVRF+5cqVycnKUnJys6dOna9OmTSc8f8WKFTr77LM1YMAAZWdn6/bbb1dzc+T/RX+gNVEXnz1cklS8rTrM0QAA+pNnnEtWFDTRPY3+amfk/2wFAAAAACDaBNxEX7t2rQoLC7VkyRJt3bpVEydOVH5+vmpra32e/+yzz+quu+7SkiVLtGvXLv3+97/X2rVrdffdd/c5+P4wawIjXQAgHjm8O9Ejf5xLVmeM7EQHAAAAACD4Am6iL1++XAsXLtT8+fN1zjnnaNWqVUpJSdGaNWt8nv/mm2/qS1/6kr71rW8pJydHM2fO1HXXXXfS3euR4lJGugBAXKqq75yJnhb5O9E9MTITHQAAAACA4EsM5OSWlhZt2bJFixYt8h4zm83Ky8tTeXm5zzXnn3++nn76aW3atEnTpk3Thx9+qJKSEt1www1+r+NyueRyubyvnc6O5rXb7Zbb7e5xvJ5zA1nzeUlm6YIz01W6q1YvVRzQWcNSev1ekSIYeYlF5MU/cuNbb/NCHqODw+l5sGgUNNE7d6IzzgUAAAAAgOALqIleV1entrY2ZWRkdDmekZGh3bt3+1zzrW99S3V1dfryl78swzDU2tqq73//+ycc51JUVKSlS5d2O75hwwalpATexC4tLQ14zfEyW02SEvSnTR/q7Jb3ZDL16e0iRl/zEqvIi3/kxrdA89LU1BSiSBAsze42HWpskSRl2iJ/nIun0d/oatPR1jAHAwAAAABAjAmoid4bGzdu1AMPPKBf//rXmj59ut5//33deuutuv/++3Xvvff6XLNo0SIVFhZ6XzudTmVnZ2vmzJmy2Ww9vrbb7VZpaalmzJghi8XS63u4wNWq5x7cqIPN7TrtvK9obObgXr9XJAhWXmINefGP3PjW27x4Pl2DyOWZLZ6SlCDbgJD/qOyzgdZE2ZIT5Wxu1Wct4Y4GAAAAAIDYElBnID09XQkJCaqpqelyvKamRna73eeae++9VzfccIO+973vSZLGjx+vxsZG3XTTTfrJT34is7n7WHar1Sqr1drtuMVi6VUDr7frPE6xWHTx2cO0fkeNNuw6qAmjhvT6vSJJX/MSq8iLf+TGt0DzQg4jX7X3oaLJMkXJx4+y0gbI6TisBld0xAsAAAAAQLQI6MGiSUlJmjJlisrKyrzH2tvbVVZWptzcXJ9rmpqaujXKExISJEmGYQQab9jMGp8pSSqprI6quAEAgatuOCopOuahe3hiZSc6AAAAAADBFfBn1AsLC3XjjTdq6tSpmjZtmlasWKHGxkbNnz9fkjRv3jyNGDFCRUVFkqQrr7xSy5cv1+TJk73jXO69915deeWV3mZ6NLh0bIaSEs36sK5Rux2HNTaz52NlAADRxbMT3fPAzmiQmdYRaz070QEAAAAACKqAm+hz587VwYMHtXjxYjkcDk2aNEnr1q3zPmx0//79XXae33PPPTKZTLrnnnt04MABDRs2TFdeeaX+93//N3h30Q8GWRN10VnDtGFnjYq3VdNEB4AY5vA20aNnJ3oWO9EBAAAAAAiJXj0traCgQAUFBT6/tnHjxq4XSEzUkiVLtGTJkt5cKqLMnpCpDTtrVFJZrR/NPCtq5uQCAALjGedij6Imur1z13w9TXQAAAAAAIIqoJno8e7zI10AALHJM84lK4rGuXh2ojPOBQAAAACA4KKJHoBB1kRdeNYwSR0PGAUAxCZPEz2adqJ7Z6K3RNeDuwEAAAAAiHQ00QM0e3ymJKm4spomBQDEoGZ3mw41dsxEiaad6J757S3tJjUcbQ1zNAAAAAAAxA6a6AG6dOzwjpEuBxu1p4aRLgAQa2qcHbvQB1gSZBvQq0eHhEWyJUGnpFgkHdtJDwAAAAAA+o4meoAGJ1uOjXTZxkgXAIg1VfUdDejM1OSoe4C03daxG93hpIkOAAAAAECw0ETvBUa6AEDscjiPSpIy06JnHrqHZ6QLO9EBAAAAAAgemui94Bnp8sHBRr1bcyTc4QAAgsj7UFFb9MxD9/A00R000QEAAAAACBqa6L0wONmiC87sGOlSvK0qzNEAAIKp+rhxLtGGnegAAAAAAAQfTfRemj3BLomRLgAQazwN6Ggc52L3NNGZiQ4AAAAAQNDQRO+lS8dmKCmBkS4AEGuqGzpnokfhTnS7zSpJcjS4whwJAAAAAACxgyZ6L9mSLbrgrHRJHbvRAQCxwTNPPDM1imeiO5v5lBQAAAAAAEFCE70PZo3PlCSV0EQHgJjQ7G7Tp40tkqJzJ3qGrSNmV2u7DnXeBwAAAAAA6Bua6H2Qd07HSJf3a4/o3ZrD4Q4HANBHNZ2zxJMtZqUOsIQ5msBZE80abOnYgc7DRQEAAAAACA6a6H3QZaTLNnajA0C08zSes1IHyGQyhTma3klL6vhnVf3R8AYCAAAAAECMoIneR4x0AYDY4ZmHbo/CUS4eaUkdO9EdTnaiAwAAAAAQDDTR+8gz0uU9RroAQNSraujYvR3NTfRTrB3/rKqniQ4AAAAAQDDQRO8jW7JFXzmTkS4AEAscx41ziVaenejVDYxzAQAAAAAgGGiiBwEjXQAgNlTHwDgXz070anaiAwAAAAAQFDTRgyDvnAxZEkx6r/aI3mOkCwBELc/u7cwobqJ7dqJXsRMdiCsrV65UTk6OkpOTNX36dG3atOmE5z///PMaM2aMkpOTNX78eJWUlHi/5na7deedd2r8+PEaOHCgsrKyNG/ePFVVVYX6NgAAn0N9B4DIQBM9CFIHWPSVM4dJkorZjQ4AUcszziUzmse5dO5Er3E2q73dCG8wAPrF2rVrVVhYqCVLlmjr1q2aOHGi8vPzVVtb6/P8N998U9ddd50WLFigd955R3PmzNGcOXO0fft2SVJTU5O2bt2qe++9V1u3btULL7ygPXv26Ktf/Wp/3hYAxD3qOwBEjsRwBxArZo3P1Cu7a1VSWa3b8s4KdzgAgAC5WttUd6RFUnTvRE+1SCaT5G4zVNfo0vDB0XsvAHpm+fLlWrhwoebPny9JWrVqlYqLi7VmzRrddddd3c5/9NFHddlll+mOO+6QJN1///0qLS3VY489plWrVik1NVWlpaVd1jz22GOaNm2a9u/fr1GjRnV7T5fLJZfL5X3tdDoldex6dLvdPb4Xz7mBrIkX5MY38uIbefGvt7kJRy4job5L1PhQIy++kRf/yI1voa7vNNGDZEbnSJd3a47o/drDOmP44HCHBAAIQE1Dx18Mki1mpaVYwhxN7yWYpeGDrKo57FJ1fTNNdCDGtbS0aMuWLVq0aJH3mNlsVl5ensrLy32uKS8vV2FhYZdj+fn5evHFF/1ep6GhQSaTSWlpaT6/XlRUpKVLl3Y7vmHDBqWkpJz8Rj7n800eHENufCMvvpEX/wLNTVNTU4gi8S1S6rtEje8v5MU38uIfufEtVPWdJnqQeEa6vLK7VsXbHLo1jyY6AESTY/PQB8hkMoU5mr6xpyZ3NNEbjmpidlq4wwEQQnV1dWpra1NGRkaX4xkZGdq9e7fPNQ6Hw+f5DofD5/nNzc268847dd1118lms/k8Z9GiRV0aN06nU9nZ2Zo5c6bfNb643W6VlpZqxowZslii9xeaoUBufCMvvpEX/3qbG8/u6/4SKfVdosaHGnnxjbz4R258C3V9p4keRMePdLk178xwhwMACEB15zx0uy36d25npibrP580qKq+OdyhAIhybrdb3/zmN2UYhn7zm9/4Pc9qtcpqtXY7brFYevWXu96uiwfkxjfy4ht58S/Q3MRaHnta3yVqfH8hL76RF//IjW+hqu88WDSIPCNd9tQc1vu1h8MdDgAgAJ4memZa9DfR7baOv+Q4nDTRgViXnp6uhIQE1dTUdDleU1Mju93uc43dbu/R+Z4Gy0cffaTS0tKAdhsCAPqG+g4AkYUmehClDrDoy2ekS5KKt/n+uBQAIDI5vONcor+J7rmHqvqjYY4EQKglJSVpypQpKisr8x5rb29XWVmZcnNzfa7Jzc3tcr7UMTvy+PM9DZb33ntP//jHPzR06NDQ3AAAwCfqOwBEFproQTZrfKYkqaSyOsyRAAACUeUZ55I6IMyR9J2nie7ZXQ8gthUWFmr16tV68skntWvXLt18881qbGzU/PnzJUnz5s3r8mC6W2+9VevWrdMjjzyi3bt367777tPmzZtVUFAgqaPBcvXVV2vz5s165pln1NbWJofDIYfDoZaWlrDcIwDEI+o7AEQOZqIH2cxz7Lo7obJzpMsRnTF8ULhDAgD0gKOz4ZwVAzvR7Z4mOjvRgbgwd+5cHTx4UIsXL5bD4dCkSZO0bt0678Pl9u/fL7P52N6Z888/X88++6zuuece3X333TrzzDP14osvaty4cZKkAwcO6G9/+5skadKkSV2u9eqrr+qiiy7ql/sCgHhHfQeAyEETPchSUyz60hnp2rjnoEoqq/Xfl/KAUQCIBtWd41zsMdBE9+xErznsUlu7oQSzKcwRAQi1goIC707Dz9u4cWO3Y9dcc42uueYan+fn5OTIMIxghgcA6CXqOwBEBsa5hAAjXQAgurha21R3pOMjrJkxMM5l2CCrEswmtbUbOnjYFe5wAAAAAACIajTRQyD/HLsSzSbtdhzWBwePhDscAMBJ1Do7Gs3WRLNOSbGEOZq+SzCblDHYKkmqamCkCwAAAAAAfUETPQRSUyz68pnpkqSSbexGB4BIV9U5OzwzNVkmU2yMPslM69hRX13Pw0UBAAAAAOgLmugh4hnpUsxIFwCIeA5nR6M5Fka5eHjmolezEx0AAAAAgD6hiR4iM8/JYKQLAESJ6gZPEz36HyrqkdW5E72KnegAAAAAAPQJTfQQSUtJ0pfOYKQLAESD6s5xLvYYaqLbbR334nCyEx0AAAAAgL6giR5CsxnpAiDKrFy5Ujk5OUpOTtb06dO1adMmv+e+8MILmjp1qtLS0jRw4EBNmjRJTz31VD9GGzzenehpsTPOJSuto4nOTnQAAAAAAPqGJnoIzTz32EiXDxnpAiDCrV27VoWFhVqyZIm2bt2qiRMnKj8/X7W1tT7PHzJkiH7yk5+ovLxc27Zt0/z58zV//nytX7++nyPvO+9MdFvs7ET3zHdnJjoAAAAAAH1DEz2E0lKSdL5npAu70QFEuOXLl2vhwoWaP3++zjnnHK1atUopKSlas2aNz/Mvuugiff3rX9fYsWN1+umn69Zbb9WECRP0xhtv9HPkfefZrR1L41wyO3ei1x52yd3WHuZoAAAAAACIXonhDiDWzR5v12vvHlRxpUMFl5wZ7nAAwKeWlhZt2bJFixYt8h4zm83Ky8tTeXn5SdcbhqFXXnlFe/bs0UMPPeT3PJfLJZfL5X3tdDolSW63W263u8fxes4NZI0/La3tqjvSEdOwgYlBec9wOT4vqUmJsiSY5G4zdODQEY2IoVE1vRHM75lYQl58621eyCMAAAAQm2iih9jMc+y6+y/btavaqb11jRqdPjDcIQFAN3V1dWpra1NGRkaX4xkZGdq9e7ffdQ0NDRoxYoRcLpcSEhL061//WjNmzPB7flFRkZYuXdrt+IYNG5SSkhJw3KWlpQGv+bxPmyUpURaTofKN/5DJ1Oe3DDtPXgYnJuhQm0l/WfeqTrOFOagIEYzvmVhEXnwLNC9NTU0higQAAABAONFED7FTBibp/NOH6vX36lRSWa1bLj4j3CEBQNAMHjxYFRUVOnLkiMrKylRYWKjTTjtNF110kc/zFy1apMLCQu9rp9Op7OxszZw5UzZbz7u8brdbpaWlmjFjhiwWS5/u4e19n0nvvK2sUwZq9uwv9+m9wu3zeXmqapMOfVSvnHMma9aEzHCHF1bB/J6JJeTFt97mxfPpGgAAAACxhSZ6P7hiQqZef69OxdtoogOITOnp6UpISFBNTU2X4zU1NbLb7X7Xmc1mnXFGR12bNGmSdu3apaKiIr9NdKvVKqvV2u24xWLpVQOvt+uOd7CxY/xCZlpyzDQRPXkZcUqKNn9Ur9oj7pi5t74KxvdMLCIvvgWaF3IIAAAAxCYeLNoPZp5jV4LZpJ2dI10AINIkJSVpypQpKisr8x5rb29XWVmZcnNze/w+7e3tXWaeR4Pqho6Himamxt7McM89ee4RAAAAAAAEjiZ6P/CMdJGkksrqMEcDAL4VFhZq9erVevLJJ7Vr1y7dfPPNamxs1Pz58yVJ8+bN6/Lg0aKiIpWWlurDDz/Url279Mgjj+ipp57St7/97XDdQq84vE305DBHEnxZaR33VFV/NMyRAAAAAAAQvRjn0k9mj2ekC4DINnfuXB08eFCLFy+Ww+HQpEmTtG7dOu/DRvfv3y+z+djvXhsbG/WDH/xAn3zyiQYMGKAxY8bo6aef1ty5c8N1C71S3dDRYI7FJrrd1nFPDic70QEAAAAA6C2a6P1k5rl2/eTF7dpZ7dS+ukblpA8Md0gA0E1BQYEKCgp8fm3jxo1dXv/sZz/Tz372s36IKrQ8o07sMTjOJSut456q6mmiAwAAAADQW70a57Jy5Url5OQoOTlZ06dP16ZNm054fn19vW655RZlZmbKarXqrLPOUklJSa8CjlZDjhvpUsxIFwCIGNUxPM7Fc091R1xytbaFORoAAAAAAKJTwE30tWvXqrCwUEuWLNHWrVs1ceJE5efnq7a21uf5LS0tmjFjhvbt26c//elP2rNnj1avXq0RI0b0OfhoM2t8piTmogNApGhpbVfdkY4HocZiE33IwCRZEzt+1Nc0RNcDXwEAAAAAiBQBj3NZvny5Fi5c6H3Q3KpVq1RcXKw1a9borrvu6nb+mjVrdOjQIb355puyWCySpJycnBNew+VyyeU69pd9p9MpSXK73XK73T2O1XNuIGtC6ZKzhirBbNKOKqfer2nQqUNSwhJHpOUlUpAX/8iNb73NC3mMHDXOZhmGlJRo1pCBSeEOJ+hMJpMyU5O179MmVTUc1aih4fm5AwAAAABANAuoid7S0qItW7Zo0aJF3mNms1l5eXkqLy/3ueZvf/ubcnNzdcstt+ivf/2rhg0bpm9961u68847lZCQ4HNNUVGRli5d2u34hg0blJISeAOgtLQ04DWhcvpgs95tMGvFn/+pGSOMsMYSSXmJJOTFP3LjW6B5aWpqClEkCJTngZuZqckymUxhjiY07J1NdEcDc9EBAAAAAOiNgJrodXV1amtrU0ZGRpfjGRkZ2r17t881H374oV555RVdf/31Kikp0fvvv68f/OAHcrvdWrJkic81ixYtUmFhofe10+lUdna2Zs6cKZvN1uN43W63SktLNWPGDO8u+HBzDvtE9/5tp/a2pmnWrNywxBCJeYkE5MU/cuNbb/Pi+XQNwq+q/qgkyW6LvVEuHlmdD0ytajga5kgAAAAAAIhOAY9zCVR7e7uGDx+u3/72t0pISNCUKVN04MABPfzww36b6FarVVartdtxi8XSqwZeb9eFwqwJWbrvpV3aUXVY1U53WD9aH0l5iSTkxT9y41ugeSGHkcOzOzsrbUCYIwmdzLSOXxBU17MTHQAAAACA3gjowaLp6elKSEhQTU1Nl+M1NTWy2+0+12RmZuqss87qMrpl7Nixcjgcamlp6UXI0W3oIKtyTxsqSSrmAaMAEFbVnU10eww+VNQjs3MnejU70QEAAAAA6JWAmuhJSUmaMmWKysrKvMfa29tVVlam3Fzfo0m+9KUv6f3331d7e7v32LvvvqvMzEwlJcXeQ9x6Ytb4TElScWVVmCMBgPjmaSxnxnATPatzJ3oVO9EBAAAAAOiVgJroklRYWKjVq1frySef1K5du3TzzTersbFR8+fPlyTNmzevy4NHb775Zh06dEi33nqr3n33XRUXF+uBBx7QLbfcEry7iDL552YowWzS9gNO7f+UBwwCQLh4xrl4dmvHIrut4948D1EFAAAAAACBCXgm+ty5c3Xw4EEtXrxYDodDkyZN0rp167wPG92/f7/M5mO9+ezsbK1fv1633367JkyYoBEjRujWW2/VnXfeGby7iDJDB1n1xdOG6F/vf6riymrdfNHp4Q4JAOJStbeJHvs70Q81tqjZ3aZkS8JJVgAAAAAAgOP16sGiBQUFKigo8Pm1jRs3djuWm5urf//73725VMyaNT5T/3r/U5XQRAeAsGhpbdfBIy5JsT0TPXWARQMsCTrqblN1Q7NGpw8Md0gAAAAAAESVgMe5IDjyz7XLbJIqDzQw0gUAwqD2cLMMQ0pKMGvowNh9RofJZFJm52706noeLgoAAAAAQKBooodJ+iCrvnjaUElSyfbqMEcDAPHHM8rFnposk8kU5mhCK6tz5ntVA3PRAQAAAAAIFE30MJo1PlOSVFJJEx0A+tvxTfRY57lHRwM70QEAAAAACBRN9DC6bFzHSJdtnzTo40OMdAGA/uRpKGfFQRPdc4/sRAcAAAAAIHA00cOoy0gXdqMDQL+qqvfsRB8Q5khCLzOt4x6ZiQ4AAAAAQOBooocZI10AIDwcnbuys9Jifyd6ZudO9Gp2ogMAAAAAEDCa6GHmGenyH0a6AEC/qnZ27kS3xX4TPatzJ3oVO9EBAAAAAAgYTfQwSx9k1fTRjHQBgP7mGW2SGQfjXDwPFnU2t6rR1RrmaAAAAAAAiC400SPArAmMdAGA/uRua9fBIy5JUmYcjHOxJVs0yJooiZEuAAAAAAAEiiZ6BLjsXEa6AEB/qnE2yzCkpASzhqQkhTucfnFsLjojXQAAAAAACARN9AgwbLBV00YPkSS9vJ3d6AAQap6HimakWmU2m8IcTf/I7JyLXl3PTnQAAAAAAAJBEz1CzB7fMdKluNIR5kgAIPZ5RprEwzx0j6zOnehV7EQHAAAAACAgNNEjRP44u0wm6T8f1+uTzxjpAgCh5Blp4hlxEg88Dxd1MBMdAAAAAICA0ESPEMMHJ2taTudIF3ajA0BIeXai2+OoiZ7Vueu+iiY6AAAAAAABoYkeQa6Y4Bnpwlx0AAglz27srDga55KZ1vlg0XrGuQAAAAAAEAia6BHEM9KlgpEuABBSVXG4E90z/72anegAAAAAAASEJnoEYaQLAPQPR+dM9Ljaid75C4MjrlY5m91hjgYAAAAAgOhBEz3CzGakCwCElLutXbWHXZLiayf6QGuibMmJkni4KBCLVq5cqZycHCUnJ2v69OnatGnTCc9//vnnNWbMGCUnJ2v8+PEqKSnp8nXDMLR48WJlZmZqwIABysvL03vvvRfKWwAA+EB9B4DIkBjuANDVZePsWvK3Har4uF4H6o9qRFr87JIEgP5Qe9glw5AsCSYNHZgU7nD6VVbaADkdh1VVf1RnZQwOdzgAgmTt2rUqLCzUqlWrNH36dK1YsUL5+fnas2ePhg8f3u38N998U9ddd52Kiop0xRVX6Nlnn9WcOXO0detWjRs3TpL085//XL/85S/15JNPavTo0br33nuVn5+vnTt3Kjk5NL+ANAxDTS2tcrVJTS2tshimkFwnWrnd5MYX8uIbefHPkxvDMMIdyknFSn2XqPEnwr+vvpEX/8iNb6Gu7zTRI8zwwcn6Qs4Qbdp7SC9XVut7Xzkt3CEBQEzxjHKxpybLbI6v/+DITE3Wbsdh5qIDMWb58uVauHCh5s+fL0latWqViouLtWbNGt11113dzn/00Ud12WWX6Y477pAk3X///SotLdVjjz2mVatWyTAMrVixQvfcc4++9rWvSZL+8Ic/KCMjQy+++KKuvfbabu/pcrnkcrm8r51OpyTJ7XbL7e7ZCKmmllZNvP8VSYn68aZXAspB/CA3vpEX38iLf4m65BKXUk09/2/BntayYIqE+i5R4/sHefGNvPhHbnwLXX2niR6BZo/P1Ka9h1RMEx0Agq6qvqOBnGmLv0/6ZHZ+uqm6/miYIwEQLC0tLdqyZYsWLVrkPWY2m5WXl6fy8nKfa8rLy1VYWNjlWH5+vl588UVJ0t69e+VwOJSXl+f9empqqqZPn67y8nKfTZaioiItXbq02/ENGzYoJSWlR/fiapP46wmA/vLKK6/ImtDz85uamkIXjA+RUt8lajyA6BKq+k4Fi0CXj7Prvr/v0Dv761VVf1RZjHQBgKDxzAOPp3noHlmd91zFTnQgZtTV1amtrU0ZGRldjmdkZGj37t0+1zgcDp/nOxwO79c9x/yd83mLFi3q0rhxOp3Kzs7WzJkzZbPZenQvhmHokktceuWVV3TJJZfIYuGvKsdzu1vJjQ/kxTfy4p8nN7Pz85SU1PPRfp7d1/0lUuq7RI0PNf599Y28+EdufAt1fSfTEWi4LVlfOHWINu07pBJ2owNAUHlGmWSmxV8T3Z7a8UtZHiwKINisVqusVmu34xaLRRaLpcfvk2oyyZogpQ5MDmhdPHC73eTGB/LiG3nxz5ObpKSkgHITz3mkxocW/776Rl78Ize+hbq+m3sbGEJr1ni7JKmksjrMkQBAbKnunImeaYu/JvqxneiMcwFiRXp6uhISElRTU9PleE1Njex2u881drv9hOd7/hnIewIAgov6DgCRhSZ6hLp8fKZMJmlr50gXAEBwHNuJHn+jso7NRG8O2RPLAfSvpKQkTZkyRWVlZd5j7e3tKisrU25urs81ubm5Xc6XpNLSUu/5o0ePlt1u73KO0+nUW2+95fc9AQDBRX0HgMhCEz1CZXSOdJHYjQ4AweQZZZIZhzPRPfd81N2mhqM9ewI5gMhXWFio1atX68knn9SuXbt08803q7GxUfPnz5ckzZs3r8uD6W699VatW7dOjzzyiHbv3q377rtPmzdvVkFBgSTJZDLptttu089+9jP97W9/U2VlpebNm6esrCzNmTMnHLcIAHGJ+g4AkYOZ6BFs1ng7c9EBIIha29pVezh+HyyabEnQkIFJOtTYoqr6ZqWl9PxhKwAi19y5c3Xw4EEtXrxYDodDkyZN0rp167wPjtu/f7/M5mN7Z84//3w9++yzuueee3T33XfrzDPP1Isvvqhx48Z5z/nxj3+sxsZG3XTTTaqvr9eXv/xlrVu3TsnJ8Vc7ASBcqO8AEDlookewy8dnaulLO70jXbLicPQAAART7WGX2g3JkmBS+sDuD0eKB3Zbsg41tsjhPKpzsmzhDgdAkBQUFHh3Gn7exo0bux275pprdM011/h9P5PJpJ/+9Kf66U9/GqwQAQC9QH0HgMjAOJcIlmFL1tRTT5EkvbzdEeZoACD6eR4qmmFLltlsCnM04ZGV1vlw0frmMEcCAAAAAEB0oIke4WaNz5TEXHQACIbqOJ6H7pGZ2vlw0QYeWg0AAAAAQE/QRI9wl4/raKJv+egzGh4A0EfHHioav+OxMjt3olezEx0AAAAAgB6hiR7h7KnHjXSpZKQLAPSFZ4RJPO9Ez+r8BUIVv5gFAAAAAKBHaKJHAUa6AEBwOJwdjWN7HDfRPffu2ZUPAAAAAABOjCZ6FLh8vF2StPmjz2h6AEAfVDPOxbsTvbqhWYZhhDkaAAAAAAAiH030KJCZOkBTPCNdtrMbHQB6q5pxLspItUqSXK3tOtTYEuZoAAAAAACIfDTRo8TszpEuxdtoogNAb7S2tav2cGcTPS1+m+jWxASlD+popFfz6SYAAAAAAE6KJnqUYKQLAPRN7WGX2g0p0WxS+kBruMMJq6zOXyJU1fNwUQAAAAAAToYmepRgpAsA9I1n13WGLVlmsynM0YSX3db5cFEnv5QFAAAAAOBkaKJHkVmdI11KKmmiAwiNlStXKicnR8nJyZo+fbo2bdrk99zVq1frK1/5ik455RSdcsopysvLO+H54eb5FE9WHI9y8chK63i4aFU9TXQAAAAAAE6GJnoUmXXcSJcadg8CCLK1a9eqsLBQS5Ys0datWzVx4kTl5+ertrbW5/kbN27Uddddp1dffVXl5eXKzs7WzJkzdeDAgX6OvGeqGzpGl9hTB4Q5kvDzPFjVkxMAAAAAAOAfTfQokpk6QOeNSpNhSC+zGx1AkC1fvlwLFy7U/Pnzdc4552jVqlVKSUnRmjVrfJ7/zDPP6Ac/+IEmTZqkMWPG6He/+53a29tVVlbWz5H3jGeci6eBHM8yO3eiV7MTHQAAAACAk0oMdwAIzKzxmdq6v14llQ5950ujwx0OgBjR0tKiLVu2aNGiRd5jZrNZeXl5Ki8v79F7NDU1ye12a8iQIX7Pcblccrlc3tdOp1OS5Ha75Xa7exyv59xA1lR91iRJGj7IEtC6aNLTvAwf2PHjv6q+KWZz8Xm9+Z6JB+TFt97mhTwCAAAAsYkmepSZNT5TPyvepbc/OqRaZ7OG29hRCaDv6urq1NbWpoyMjC7HMzIytHv37h69x5133qmsrCzl5eX5PaeoqEhLly7tdnzDhg1KSUkJLGhJpaWlPT5310cJkkyqen+nSj7bEfC1osnJ8nLIJUmJqm44qpeKSxRPz1kN5HsmnpAX3wLNS1NTU4giAQAAABBONNGjTFbaAE0elaZ39tfr5e0O3Xh+TrhDAgA9+OCDeu6557Rx40YlJ/v/5d6iRYtUWFjofe10Or2z1G02W4+v53a7VVpaqhkzZshisfRoTdGOf0pyadbF52viyNQeXyua9DQv7rZ2/fSdf6jNMGn6BZdq2GBrP0YZHr35nokH5MW33ubF8+kaAAAAALGFJnoUmj0+U+/sr1dxZTVNdABBkZ6eroSEBNXU1HQ5XlNTI7vdfsK1y5Yt04MPPqh//OMfmjBhwgnPtVqtslq7N2wtFkuvGng9Xdfa1q6DR1okSaOGDor5ZuHJ8mKxSMMHW1XjdOlgY6uyhgzqx+jCq7ffa7GOvPgWaF7IIQAAABCbevVg0ZUrVyonJ0fJycmaPn26Nm3a1KN1zz33nEwmk+bMmdOby6LT5eMzJUlv7+sY6QIAfZWUlKQpU6Z0eSio5yGhubm5ftf9/Oc/1/33369169Zp6tSp/RFqrxw84lJbu6FEs0lDB8X+ruueyEztfLhow9EwRwIAAAAAQGQLuIm+du1aFRYWasmSJdq6dasmTpyo/Px81dbWnnDdvn379D//8z/6yle+0utg0WFE50gXw5Be3u4IdzgAYkRhYaFWr16tJ598Urt27dLNN9+sxsZGzZ8/X5I0b968Lg8efeihh3TvvfdqzZo1ysnJkcPhkMPh0JEjR8J1C35VN3T8wjHDlqyEeBoAfgJZaR1jd6rq+WUsAAAAAAAnEnATffny5Vq4cKHmz5+vc845R6tWrVJKSorWrFnjd01bW5uuv/56LV26VKeddlqfAkaH2Z270Ysrq8McCYBYMXfuXC1btkyLFy/WpEmTVFFRoXXr1nkfNrp//35VVx+rOb/5zW/U0tKiq6++WpmZmd4/y5YtC9ct+FXd2SjOTOVhzB52W8dOdAefaAIAAAAA4IQCmone0tKiLVu2dNmJaDablZeXp/Lycr/rfvrTn2r48OFasGCBXn/99ZNex+VyyeVyeV97HtLkdrvldrt7HK/n3EDWRIsZY9L1s+KOkS4HDh3R8AAeChfLeekL8uIfufGtt3mJ5DwWFBSooKDA59c2btzY5fW+fftCH1CQeEaW2Gmiex3bic44FwAAAAAATiSgJnpdXZ3a2tq8uxI9MjIytHv3bp9r3njjDf3+979XRUVFj69TVFSkpUuXdju+YcMGpaSkBBKyJKm0tDTgNdHg1EEJ+uiISb94/hV9xW4EvD5W89JX5MU/cuNboHlpamoKUSTwx9E5ziUrbUCYI4kcx2aisxMdAAAAAIATCaiJHqjDhw/rhhtu0OrVq5Went7jdYsWLVJhYaH3tdPpVHZ2tmbOnCmbzdbj93G73SotLdWMGTNksVgCij0aVKfu04Pr3tV+I12zZn2hx+tiPS+9RV78Ize+9TYvnk/XoP94GsV2GzvRPTI7d6JXsxMdAAAAAIATCqiJnp6eroSEBNXU1HQ5XlNTI7vd3u38Dz74QPv27dOVV17pPdbe3t5x4cRE7dmzR6effnq3dVarVVZr9/EkFoulVw283q6LdFdMHKEH172rtz/6TJ81t2n44MCaQ7Gal74iL/6RG98CzQs57H+ecS7MRD8mq3Mnes1hl9raDR64CgAAAACAHwE9WDQpKUlTpkxRWVmZ91h7e7vKysqUm5vb7fwxY8aosrJSFRUV3j9f/epXdfHFF6uiokLZ2dl9v4M4NvKUFE3MTpNhSOu3O8IdDgBELM84l0zGuXgNG2xVgtmktnZDBw+7Tr4AAAAAAIA4FfA4l8LCQt14442aOnWqpk2bphUrVqixsVHz58+XJM2bN08jRoxQUVGRkpOTNW7cuC7r09LSJKnbcfTO7PF2/efjehVXVuuG3JxwhwMAEaet3VBNZ5OYnejHJJhNyhhsVVVDs6oajvLQVQAAAAAA/Ai4iT537lwdPHhQixcvlsPh0KRJk7Ru3Trvw0b3798vszmgDe7og8vHZeqBkt16a+8h1R5uDnikCwDEuoOd40oSzSalD+o+KiyeZaYNUFVDs6rrm6VR4Y4GAAAAAIDI1KsHixYUFKigoMDn1zZu3HjCtU888URvLgk/sod0jHT5z8f1Wr/dwW50APicqs556Bm2ZOZ+f45nZ75nZjwAAAAAAOiOLeMxYPb4joe6FldWhzkSAIg8nnnojCvpLqtzRnxVfXOYIwEAAAAAIHLRRI8Bl4/LlCRt2nuIh8MBwOdUex4qShO9G7utIycOJzvRAQAAAADwhyZ6DMgekqKJI1PVbkjrdjjCHQ4ARJTq+o4GMU307rLSOnLCTnQAAAAAAPyjiR4jZo3v2I1eso2RLgBwvGqnZ5zLgDBHEnkyO3PCTHQAAAAAAPyjiR4jPE30t/Z+qrojjHQBAA/PTPQsdqJ3k9m5E732sEvutvYwRwMAAAAAQGSiiR4jsoekaIJnpMt2RroAgIdnnAsPFu0ufaBVlgSTDEOqcTLSBQAAAAAAX2iixxDvSJdKRroAgCS1tRuq6XzgcibjXLoxm03K8DxctIEmOgAAAAAAvtBEjyGzO5vo//6QkS4AIEl1R1xqazeUYDZp2GBruMOJSFmdv1yoookOAAAAAIBPNNFjSPaQFI0fwUgXAPCo6hzlkjHYqgSzKczRRCbPXHTP2BsAAAAAANAVTfQYM3sCI10AwMMzoiQzjVEu/njG3FSzEx0AAAAAAJ9ooscYRroAwDGeESU8VNS/rM6d6FXsRAcAAAAAwCea6DHm+JEu63cw0gVAfHM0dDSGM2000f2xex4s6mQnOgAAAAAAvtBEj0GzxjPSBQCkYyNKGOfiX1ZnbqrqaaIDAAAAAOALTfQY5BnpUv7Bp/qUkS4A4pi3ic44F788uak74pKrtS3M0QAAAAAAEHloosegUUNTNG6ErXOkS024wwGAsHEwE/2khgxMkjWx4z8Hahr4xSsAAAAAAJ9HEz1GMdIFQLxrazdU0znnOyuVcS7+mEwm7270qgYeLgoAAAAAwOfRRI9R3pEuH36qQ40tYY4GAPpf3RGXWtsNJZhNGjbYGu5wIppnp75n5z4AAAAAADiGJnqMOnXoQJ2bZVNbu6H1OxzhDgcA+p1nHvrwwVYlmE1hjiayeXbqsxMdiD6HDh3S9ddfL5vNprS0NC1YsEBHjhw54Zrm5mbdcsstGjp0qAYNGqSrrrpKNTXHRgD+5z//0XXXXafs7GwNGDBAY8eO1aOPPhrqWwEAHIf6DgCRhSZ6DPOMdCnexkgXAPGnur6jIcxDRU8uM60jR9X17EQHos3111+vHTt2qLS0VC+99JJee+013XTTTSdcc/vtt+vvf/+7nn/+ef3zn/9UVVWVvvGNb3i/vmXLFg0fPlxPP/20duzYoZ/85CdatGiRHnvssVDfDgCgE/UdACJLYrgDQOjMHp+ph9fv8Y50GTIwKdwhAUC/8exEz2Qe+kl5clTNTnQgquzatUvr1q3T22+/ralTp0qSfvWrX2nWrFlatmyZsrKyuq1paGjQ73//ez377LO65JJLJEmPP/64xo4dq3//+9/64he/qO9+97td1px22mkqLy/XCy+8oIKCgtDfGADEOeo7AEQemugxLCe9Y6TLjiqn1u9w6Lppo8IdEgD0G4fT00RnJ/rJZHXuRK9iJzoQVcrLy5WWluZtsEhSXl6ezGaz3nrrLX3961/vtmbLli1yu93Ky8vzHhszZoxGjRql8vJyffGLX/R5rYaGBg0ZMsRvLC6XSy6Xy/va6XRKktxut9xud4/vyXNuIGviBbnxjbz4Rl78621u+jOXkVTfJWp8qJEX38iLf+TGt1DXd5roMW7W+EztqHKqpLKaJjqAuFLVOc7FThP9pOy2jp3onl88AIgODodDw4cP73IsMTFRQ4YMkcPh+5k4DodDSUlJSktL63I8IyPD75o333xTa9euVXFxsd9YioqKtHTp0m7HN2zYoJSUlJPcSXelpaUBr4kX5MY38uIbefEv0Nw0NTWFKJLuIqm+S9T4/kJefCMv/pEb30JV32mixzjPSJc3P2CkC4D44mCcS495dqIfamxRs7tNyZaEMEcExLe77rpLDz300AnP2bVrV7/Esn37dn3ta1/TkiVLNHPmTL/nLVq0SIWFhd7XTqdT2dnZmjlzpmw2W4+v53a7VVpaqhkzZshisfQp9lhDbnwjL76RF/96mxvP7uu+iMb6LlHjQ428+EZe/CM3voW6vtNEj3E56QN1TqZNO6ud2rDDoWvZjQ4gTnhnoqexE/1kUgdYNMCSoKPuNlU3NGt0+sBwhwTEtR/96Ef6zne+c8JzTjvtNNntdtXW1nY53traqkOHDslut/tcZ7fb1dLSovr6+i67FWtqarqt2blzpy699FLddNNNuueee04Yj9VqldVq7XbcYrH06i93vV0XD8iNb+TFN/LiX6C5CUYeo7G+S9T4/kJefCMv/pEb30JV32mix4HZEzK1s9qp4spqmugA4kJbu6EaZqL3mMlkUmZasj482Kjq+qM00YEwGzZsmIYNG3bS83Jzc1VfX68tW7ZoypQpkqRXXnlF7e3tmj59us81U6ZMkcViUVlZma666ipJ0p49e7R//37l5uZ6z9uxY4cuueQS3Xjjjfrf//3fINwVAID6DgDRyxzuABB6s8ZnSpLe/OBTfdbYEuZoACD0Pj3iUmu7IbNJGjao+64ZdJfVOfamqoG56EC0GDt2rC677DItXLhQmzZt0r/+9S8VFBTo2muvVVZWliTpwIEDGjNmjDZt2iRJSk1N1YIFC1RYWKhXX31VW7Zs0fz585Wbm+t96Nz27dt18cUXa+bMmSosLJTD4ZDD4dDBgwfDdq8AEE+o7wAQeWiix4HR6QM1NtOmtnZDG3b6fqAIAMQSzyiXDFuyEhP4UdcTngewOhqOhjkSAIF45plnNGbMGF166aWaNWuWvvzlL+u3v/2t9+tut1t79uzp8sCkX/ziF7riiit01VVX6YILLpDdbtcLL7zg/fqf/vQnHTx4UE8//bQyMzO9f77whS/0670BQDyjvgNAZGGcS5yYPd6uXdVOFVc69I1JmeEOBwBCqrqzEWxnlEuPZXXmip3oQHQZMmSInn32Wb9fz8nJkWEYXY4lJydr5cqVWrlypc819913n+67775ghgkACBD1HQAiC9vz4oRnpMu/3q/TZ02MdAEQ2zw70T0jSnBymWkduaquZyc6AAAAAADHo4keJ04bNsg70uUfu2pPvgAAopinic5O9J7zPIC1mp3oAAAAAAB0QRM9jsweb5ckvby9JsyRAEBoeRrBmTTReyyrcyd6FTvRAQAAAADogiZ6HPGMdCn/8JAa3WEOBgBCyPNwzEzGufSYZ9e+s7lVja7WMEcDAAAAAEDkoIkeR04bNkhj7IPV2m6o8jNTuMMBgJCpqmecS6BsyRYNsnY8b5yRLgAAAAAAHEMTPc7M7tyNXvEpTXQAsam93VCNk3EuvXFsLjojXQAAAAAA8KCJHmdmTehoou9pMKm+iZkuAGJPXaNLre2GzCZp+GBruMOJKpmdc9Gr69mJDgAAAACAB030OHP6sEE6O2OQ2g2T/rG7NtzhAEDQeRrAwwcnKzGBH3OByOrciV7FTnQAAAAAALzoLsShy87NkCSt214T5kgAIPg887yZhx44T84czEQHAAAAAMCLJnocunycXZL05oefqoGRLgBijGeed1YaTfRAZaV2jHOpookOAAAAAIAXTfQ4dPqwgcpMMeRuM7RhpyPc4QBAUHl2UdttA8IcSfTJ7PzFQ3U941wAAAAAAPCgiR6nJg9tlyQVV1aHORIACC7POBd2ogcus3MnejU70QEAAAAA8KKJHqcmDTUkSf96v46RLgBiimecCzPRA5fZmbMjrlY5m/nZAAAAAACARBM9bmUMkM4aPoiRLgBijmcXdSZN9IANtCbKlpwoiYeLAgAAAADgQRM9jl02LkOSVMJIFwCdVq5cqZycHCUnJ2v69OnatGmT33N37Nihq666Sjk5OTKZTFqxYkX/BepHe7uhGqenic5M9N7ISut8uChz0QEAAAAAkEQTPa5dfm5HE/2N9+vUcJSP7QPxbu3atSosLNSSJUu0detWTZw4Ufn5+aqtrfV5flNTk0477TQ9+OCDstvt/Rytb3WNLrnbDJlN0rDB1nCHE5U8O/iZiw4AAAAAQAea6HHsjOGDdFZGx0iX0p014Q4HQJgtX75cCxcu1Pz583XOOedo1apVSklJ0Zo1a3ye/4UvfEEPP/ywrr32WlmtkdGw9owgGTbYKksCP+J6I7NzJ3o1O9EBAAAAAJAkJYY7AITXrPGZerfmPZVUVuvqKSPDHQ6AMGlpadGWLVu0aNEi7zGz2ay8vDyVl5cH7Toul0sul8v72ul0SpLcbrfc7p5/IsZz7ufXfPJpoyTJbksO6P1ihb+8BCJjUJIk6UB9U0zlMBi5iUXkxbfe5oU8AgAAALGpV030lStX6uGHH5bD4dDEiRP1q1/9StOmTfN57urVq/WHP/xB27dvlyRNmTJFDzzwgN/z0b9mj8/Uin+8p9ffO6iGo26lDrCEOyQAYVBXV6e2tjZlZGR0OZ6RkaHdu3cH7TpFRUVaunRpt+MbNmxQSkpKwO9XWlra5fVr1SZJCVLTZyopKeltmFHv83kJRG1tRw4rP/hEJSX7gxdUhOhLbmIZefEt0Lw0NTWFKBIAAAAA4RRwE90zM3fVqlWaPn26VqxYofz8fO3Zs0fDhw/vdv7GjRt13XXX6fzzz1dycrIeeughzZw5Uzt27NCIESOCchPovTMzBuvM4YP0Xu0R/WNnja5iNzqAEFq0aJEKCwu9r51Op7KzszVz5kzZbLYev4/b7VZpaalmzJghi+XYL/+2r39X2rdPk87O0axZY4IaezTwl5dAnPLhp3rmgy1qtQzSrFlfDnKE4ROM3MQi8uJbb/Pi+XQNAAAAgNgScBP9+Jm5krRq1SoVFxdrzZo1uuuuu7qd/8wzz3R5/bvf/U5//vOfVVZWpnnz5vm8Rqg/7h/vPp+Xy8/N0Hu1R/TStgP66oSMEy2NaXy/+EdufIulj/unp6crISFBNTVdn49QU1MT1IeGWq1Wn/PTLRZLrxp4n19Xc7hFkjTylIFx3RDsbT4lKXvoYElSdYNLiYmJMplMwQwt7PqSm1hGXnwLNC/kEAAAAIhNATXRgzEzt6mpY8bqkCFD/J4T6o/7o4MnLwObJClRr717UH/6W4lS4nxSPt8v/pEb32Lh4/5JSUmaMmWKysrKNGfOHElSe3u7ysrKVFBQEN7gAuB5sKg9NTnMkUSvzM7cHXW3qeGoW2kpSWGOCAAAAACA8AqoXRqMmbl33nmnsrKylJeX5/ecUH/cP975ysvzVf/S+wcblZA9SbMmZ4U5wvDg+8U/cuNbrH3cv7CwUDfeeKOmTp2qadOmacWKFWpsbPR+8mjevHkaMWKEioqKJHX8YnXnzp3e/33gwAFVVFRo0KBBOuOMM8JyD9XOo5KkrDSa6L2VbEnQkIFJOtTYouqGZproAAAAAIC41697jh988EE999xz2rhxo5KT/Tc4Qv1xf3Q4Pi+zJ2Tp0bL3tH5nrb457dQwRxZefL/4R258i5WP+8+dO1cHDx7U4sWL5XA4NGnSJK1bt877i9P9+/fLbDZ7z6+qqtLkyZO9r5ctW6Zly5bpwgsv1MaNG/s7fLW3G8ftRB/Q79ePJXZbcmcT/ajGZvb8l9cAAAAAAMSigJrofZmZu2zZMj344IP6xz/+oQkTJgQeKUJq9oRMPVr2nl5/r07OZrdsyZHZ5AMQWgUFBX7Ht3y+MZ6TkyPDMPohqp75tLFF7jZDJpM0fHD3X8Si57LSkrWz2qmq+uZwhwIAAAAAQNiZT37KMcfPzPXwzMzNzc31u+7nP/+57r//fq1bt05Tp07tfbQImbMyBuuM4YPU0tauf+ysOfkCAIgwnl3owwdbZUkI6McbPiezcyd/dcPRMEcCAAAAAED4BdxlKCws1OrVq/Xkk09q165duvnmm7vNzD3+waMPPfSQ7r33Xq1Zs0Y5OTlyOBxyOBw6cuRI8O4CQTFrfKYkqaSyOsyRAEDgqjobvoxy6bvMzpny1exEBwAAAAAg8Cb63LlztWzZMi1evFiTJk1SRUVFt5m51dXHmrC/+c1v1NLSoquvvlqZmZneP8uWLQveXSAoZnc20V97t2OkCwBEE89O9EwbDxXtqyzvTnSa6AAAAAAA9OrBooHMzN23b19vLoEwOCtjkE4fNlAfHGxU2a4afX3yyHCHBAA95tmJ7tlFjd6zp3buRGecCwAAAAAAge9ER+wymUyaPSFLklS8zRHmaAAgMN6d6Kk00fvq+J3okfTwWAAAAAAAwoEmOro4NtLloA4z0gVAFKn2NtGZid5XGalWSZKrtV2HGlvCHA0AAAAAAOFFEx1deEa6tLS16x+7asIdDgD0mGf0CDvR+86amKD0QR2NdOaiAwAAAADiHU10dGEymby70RnpAiBatLcbqmlwSTo2zxt9k5XmmYtOEx0AAAAAEN9ooqObWRM6R7q8x0gXANHhUFOLWtraZTJJGTaa6MFgt/FwUQAAAAAAJJro8OHsjME6bdhAtbS2q2xXbbjDAYCTqq7v2C09bJBVlgR+tAVDVlrHbPmqenaiAwAAAADiG50GdNNlpEtldZijAYCTYx568HlyyU50AAAAAEC8o4kOn2Z1NtH/+S4jXQBEPs/c7szUAWGOJHZkdu5Er2YnOgAAAAAgztFEh09j7IN1WnrHSJdXdjPSBUBk8zTReaho8GR5dqI72YkOAAAAAIhvNNHhk8lk8u5GL97GSBcAkc3BOJeg8/xCwtHQrPZ2I8zRAAAAAAAQPjTR4dfsCR1N9I3vHtQRV2uYowEA/6o841zSGOcSLBm2ZJlMkrvNUF2jK9zhAAAAAAAQNjTR4dfxI13KdtWEOxwA8MvhnYnOTvRgsSSYNXywVRJz0QEAAAAA8Y0mOvxipAuAaGAYBk30EPE8qLW6gbnoAAAAAID4RRMdJ+RpojPSBUCk+rSxRS1t7TKZpOGDaaIHU1Za58NFG9iJDgAAAACIXzTRcUJjMwdrNCNdAEQwzy709EFWJSXyYy2Y7DbPTnSa6AAAAACA+EW3ASfUMdLFLkkqqWSkC4DI42nwZjHKJeg8O9Gr6hnnAgAAAACIXzTRcVLekS57DqqRkS4AIoxnXredJnrQHZuJzk50AAAAAED8oomOkzon06acoSlytbarbHdtuMMBgC6qvQ8VHRDmSGJPpmcmOjvRgYh16NAhXX/99bLZbEpLS9OCBQt05MiRE65pbm7WLbfcoqFDh2rQoEG66qqrVFPje2zfp59+qpEjR8pkMqm+vj4EdwAA8IX6DgCRhSY6TqpjpEvHbvSSbYx0ARBZPA3eTHaiB11W5y8mag671NZuhDkaAL5cf/312rFjh0pLS/XSSy/ptdde00033XTCNbfffrv+/ve/6/nnn9c///lPVVVV6Rvf+IbPcxcsWKAJEyaEInQAwAlQ3wEgsiSGOwBEh1njM/XrjR/o1T21anS1aqCVbx0AkcGzE51xLsE3bLBVCWaT2toNHTzsIsdAhNm1a5fWrVunt99+W1OnTpUk/epXv9KsWbO0bNkyZWVldVvT0NCg3//+93r22Wd1ySWXSJIef/xxjR07Vv/+97/1xS9+0Xvub37zG9XX12vx4sV6+eWXTxiLy+WSy+XyvnY6nZIkt9stt9vd43vynBvImnhBbnwjL76RF/96m5v+zGUk1XeJGh9q5MU38uIfufEt1PWdTih65NysjpEu+z5t0iu7a3XlxO4/tAEgHBxOxrmESoLZpIzBVlU1NKuq4ShNdCDClJeXKy0tzdtgkaS8vDyZzWa99dZb+vrXv95tzZYtW+R2u5WXl+c9NmbMGI0aNUrl5eXeJsvOnTv105/+VG+99ZY+/PDDk8ZSVFSkpUuXdju+YcMGpaSkBHxvpaWlAa+JF+TGN/LiG3nxL9DcNDU1hSiS7iKpvkvU+P5CXnwjL/6RG99CVd9poqNHPCNdfr3xA5VUVtNEBxARDMM4biY6Dd5QyEwboKqGZlXXN0ujwh0NgOM5HA4NHz68y7HExEQNGTJEDofD75qkpCSlpaV1OZ6RkeFd43K5dN111+nhhx/WqFGjetRkWbRokQoLC72vnU6nsrOzNXPmTNlsth7fk9vtVmlpqWbMmCGLxdLjdfGA3PhGXnwjL/71Njee3df9IZLqu0SNDzXy4ht58Y/c+Bbq+k4THT3GSBcAkeZQk1stre0ymaQMG030UPD8cqK6gYeLAv3lrrvu0kMPPXTCc3bt2hWy6y9atEhjx47Vt7/97R6vsVqtslqt3Y5bLJZe/eWut+viAbnxjbz4Rl78CzQ3wchjNNZ3iRrfX8iLb+TFP3LjW6jqO11Q9Ni5WTadOjRFHzHSBUCEcHTuQk8fZFVSIs/KDoWstI4xOZ4d/wBC70c/+pG+853vnPCc0047TXa7XbW1tV2Ot7a26tChQ7Lb7T7X2e12tbS0qL6+vstuxZqaGu+aV155RZWVlfrTn/4kqeNTP5KUnp6un/zkJz4/0g8AODnqOwBEL5ro6DHPSJffMNIFQIRwMMol5Ow2dqID/W3YsGEaNmzYSc/Lzc1VfX29tmzZoilTpkjqaJC0t7dr+vTpPtdMmTJFFotFZWVluuqqqyRJe/bs0f79+5WbmytJ+vOf/6yjR4/9O//222/ru9/9rl5//XWdfvrpfb09AIhb1HcAiF400RGQ2Z1N9Ff31KqppVUpSXwLAQgfz0NF7YxyCZmstI7cVtWzEx2INGPHjtVll12mhQsXatWqVXK73SooKNC1116rrKyOzQ4HDhzQpZdeqj/84Q+aNm2aUlNTtWDBAhUWFmrIkCGy2Wz64Q9/qNzcXO9D5z7fSKmrq/Ne7/OzdgEAwUd9B4DIw2ffEZBzs2waNSRFze52vbK79uQLACCEqhtcko6NHEHwZaZ6xrmwEx2IRM8884zGjBmjSy+9VLNmzdKXv/xl/fa3v/V+3e12a8+ePWpqavIe+8UvfqErrrhCV111lS644ALZ7Xa98MIL4QgfAOAH9R0AIgvbiBEQz0iXVf/sGOlyxQRGugAIH+9OdMa5hExm50702sMuudvaZUng9+9AJBkyZIieffZZv1/Pycnxzrz1SE5O1sqVK7Vy5coeXeOiiy7q9h4AgNCivgNAZOFvwgjY7PGZkqRXdneMdAGAcPE00ZmJHjrpA62yJJhkGB2NdAAAAAAA4g1NdARs3AibsocMULO7Xa/uPhjucADEsWrvg0UZ5xIqZrNJGZ6Hi9Yz0gUAAAAAEH9ooiNgJpNJs8d3jHEpqawOczQA4pVhSA5nx85odqKHVlbnLymqGni4KAAAAAAg/tBER68cP9LlaEtbmKMBEI8aW6WW1nZJ8u6URmh45qKzEx0AAAAAEI9ooqNXPCNdjrrb9Oqe2nCHAyAO1bd0/DN9kFVJifw4CyXPuJxqdqIDAAAAAOIQXQf0islk0qzO3ejF2xjpAqD/1btMkhjl0h+yPDvRG9iJDgAAAACIPzTR0WuMdAEQTp6d6DTRQ8/uebAoO9EBAAAAAHGIJjp6bfyIVI08hZEuAMLjsxZ2oveXrLTOB4vW00QHAAAAAMQfmujoNZPJ5N2NXlzJSBcA/avB1fFPe+e8boSO5xcVdUdccrXyySMAAAAAQHyhiY4+8cxFf2UXI10A9K/POse5eOZ1I3SGDEyStfPhrTWe314AAAAAABAnaKKjTyaMPDbSZSMjXQD0o/rOcS6eed0IHZPJ5N2NzsNFAQAAAADxhiY6+oSRLgDCwTAM7ziXTMa59At7Kg8XBQAAAADEJ5ro6DPvSJfdtWp2M9IFQOh91uSW2+jYiZ6Rag1zNPEhq/OXFVXsRAcAAAAAxBma6Ogzz0iXphZGugDoHw5nx27ooQOTZE1MCHM08SGzc/Z8dT070QEAAAAA8YUmOvrMZDJ5d6MXVzrCHA2AeOBwdsxy8czpRuh5xuYwEx0AAAAAEG8Swx0AYsOs8Zn67WsfqmxXjZrdbUq2sDMUQOh45nLbbYxy6S9ZnTvRN+09pMK1FRo1NEWjhqTo1KEpGjVkoNIHJclkMoU5SgAAAAAAgo8mOoJi4shUjUgboAP1R7VxT60uG5cZ7pAAxLAaTxOdnej9ZozdpkSzSc7mVr3wzoFuX09JStCoIcc31lM0auhAnTokRVlpA5SUyIffAAAAAADRqVd/o125cqVycnKUnJys6dOna9OmTSc8//nnn9eYMWOUnJys8ePHq6SkpFfBInJ1jHSxS2KkCxDNoqW+H9uJThO9v2SlDdArP7pIv7pusu7IP1tzp2bri6cN0Yi0ATKZpKaWNu12HNaGnTVa/fpe3fvXHbpxzSZdtGyjxtz7sr780Cu6/nf/1qIXtuk3Gz9QSWW1th9okLPZHe5bAwAAAADghALeib527VoVFhZq1apVmj59ulasWKH8/Hzt2bNHw4cP73b+m2++qeuuu05FRUW64oor9Oyzz2rOnDnaunWrxo0bF5SbQGSYNT5Tq1/fy0gXIEpFU333PFiUnej9a9TQFI0amtLtuKu1TZ98dlT7DzVp/6dN+ujTpo7/fahR+w81qdndrk8+O6pPPjuqf+nTbutPSbF02bne8b87drRnDE6W2cyYGAAAAABA+ATcRF++fLkWLlyo+fPnS5JWrVql4uJirVmzRnfddVe38x999FFddtlluuOOOyRJ999/v0pLS/XYY49p1apVPq/hcrnkcrm8r51OpyTJ7XbL7e75jjXPuYGsiQehysu59oHKSk1WVUOz/usPmzVkoMX/ySeZm3uydsmJlptOutq39vZ2HThg1j//XCmzmbEDxyM3vnnycuFRlwYGsC5Sa1I01XfPTvRhKQkRm89wCNfPPbOkUWlWjUqzSqed0uVrhmHo4JGWzqZ6kz4+dFT7Dx3V/s86/venjS36rMmtz5oa9J9PGrq9d1KiWSPTBmjUkAEaOiiJGh9k5MU3T16G763T1NHpPV5HPQIAAABiU0BN9JaWFm3ZskWLFi3yHjObzcrLy1N5ebnPNeXl5SosLOxyLD8/Xy+++KLf6xQVFWnp0qXdjm/YsEEpKd13wJ1MaWlpwGviQSjyMnagWVUNZv3zvbqgv3f/MEsHq8MdRIQiN76ZteEfZbIG8MGLpqam0IXTS9FU3w1DqvosQZJJ71duVv17PVoWVyL1516ypDMlnTlQ0kBJI6XmNunTZqmu2aRPXZ3/7Hx9qEVqaW3Xh3WN+rCuMQgRUMd8Iy++mVXy2tuq3WX0eEUk1ncAAAAAfRdQE72urk5tbW3KyMjocjwjI0O7d+/2ucbhcPg83+HwPzd70aJFXRozTqdT2dnZmjlzpmw2W4/jdbvdKi0t1YwZM2SxnGBXdJwJZV4ucLXqrxVVanK3nfRco+d/Jw3o3N5qa2vTe++/pzPPOFMJCYyiOR658c2Tl5kzLtXAZGuP13l2X0eSaKrvrW3tOjRkv8r/s1tXXX6pBg7oee5jXaz93Gtta1e1s7lj5/qhJjmPtvb6vahjvpEX3zx5uTovV+eMSOvxukis7wAAAAD6LuBxLv3BarXKau3eFLFYLL1qCvR2XawLRV5OsVj0nS+fHtT37C9ut1slR9/VrIvP4Pvlc8iNb568DEy2BpSXeM5hMOq7xSLdkJujoZ/t1MABgeU+XsTKzz2LRTot2arThqf2+b2oY76RF988eTlnRBr1HQAAAIACGn6Znp6uhIQE1dTUdDleU1Mju93uc43dbg/ofABA/6O+AwAAAAAA+BZQEz0pKUlTpkxRWVmZ91h7e7vKysqUm5vrc01ubm6X86WOWa3+zgcA9D/qOwAAAAAAgG8Bj3MpLCzUjTfeqKlTp2ratGlasWKFGhsbNX/+fEnSvHnzNGLECBUVFUmSbr31Vl144YV65JFHNHv2bD333HPavHmzfvvb3wb3TgAAfUJ9BwAAAAAA6C7gJvrcuXN18OBBLV68WA6HQ5MmTdK6deu8D5fbv3+/zOZjG9zPP/98Pfvss7rnnnt0991368wzz9SLL76ocePGBe8uAAB9Rn0HAAAAAADorlcPFi0oKFBBQYHPr23cuLHbsWuuuUbXXHNNby4FAOhH1HcAAAAAAICuApqJDgAAAAAAAABAPKGJDgAAAAAAAACAHzTRAQAAAAAAAADwgyY6AAAAAAAAAAB+0EQHAAAAAAAAAMAPmugAAAAAAAAAAPiRGO4AesIwDEmS0+kMaJ3b7VZTU5OcTqcsFksoQotK5MU38uIfufGtt3nx1DJPbYtn1PfgIi/+kRvfyItv1Pe+o74HH7nxjbz4Rl78o8b3HTU+uMiLb+TFP3LjW6jre1Q00Q8fPixJys7ODnMkABA8hw8fVmpqarjDCCvqO4BYRH2nvgOIXdR4ajyA2HSy+m4youDXqO3t7aqqqtLgwYNlMpl6vM7pdCo7O1sff/yxbDZbCCOMLuTFN/LiH7nxrbd5MQxDhw8fVlZWlszm+J6qRX0PLvLiH7nxjbz4Rn3vO+p78JEb38iLb+TFP2p831Hjg4u8+EZe/CM3voW6vkfFTnSz2ayRI0f2er3NZuObygfy4ht58Y/c+NabvMT77hUP6ntokBf/yI1v5MU36nvvUd9Dh9z4Rl58Iy/+UeN7jxofGuTFN/LiH7nxLVT1Pb5/fQoAAAAAAAAAwAnQRAcAAAAAAAAAwI+YbqJbrVYtWbJEVqs13KFEFPLiG3nxj9z4Rl7Ch9z7Rl78Ize+kRffyEv4kHv/yI1v5MU38uIfuQkfcu8befGNvPhHbnwLdV6i4sGiAAAAAAAAAACEQ0zvRAcAAAAAAAAAoC9oogMAAAAAAAAA4AdNdAAAAAAAAAAA/KCJDgAAAAAAAACAHzHVRP/f//1fnX/++UpJSVFaWlqP1hiGocWLFyszM1MDBgxQXl6e3nvvvdAGGgaHDh3S9ddfL5vNprS0NC1YsEBHjhw54ZqLLrpIJpOpy5/vf//7/RRxaKxcuVI5OTlKTk7W9OnTtWnTphOe//zzz2vMmDFKTk7W+PHjVVJS0k+R9r9AcvPEE090+95ITk7ux2j7x2uvvaYrr7xSWVlZMplMevHFF0+6ZuPGjTrvvPNktVp1xhln6Iknngh5nPGCGu8b9f0Yarxv1PfuqO+RhfruG/X9GOq7b9T37qjvkYX67h81vgP13T9qfHfhrvEx1URvaWnRNddco5tvvrnHa37+85/rl7/8pVatWqW33npLAwcOVH5+vpqbm0MYaf+7/vrrtWPHDpWWluqll17Sa6+9pptuuumk6xYuXKjq6mrvn5///Of9EG1orF27VoWFhVqyZIm2bt2qiRMnKj8/X7W1tT7Pf/PNN3XddddpwYIFeueddzRnzhzNmTNH27dv7+fIQy/Q3EiSzWbr8r3x0Ucf9WPE/aOxsVETJ07UypUre3T+3r17NXv2bF188cWqqKjQbbfdpu9973tav359iCOND9R436jvHajxvlHffaO+Rxbqu2/U9w7Ud9+o775R3yML9d0/ajz1/USo8b6FvcYbMejxxx83UlNTT3pee3u7YbfbjYcffth7rL6+3rBarcb//d//hTDC/rVz505DkvH22297j7388suGyWQyDhw44HfdhRdeaNx66639EGH/mDZtmnHLLbd4X7e1tRlZWVlGUVGRz/O/+c1vGrNnz+5ybPr06cZ//dd/hTTOcAg0Nz39dyyWSDL+8pe/nPCcH//4x8a5557b5djcuXON/Pz8EEYWf6jxx1Dfj6HG+0Z9Pznqe+Sgvh9DfT+G+u4b9f3kqO+Rg/reFTW+A/XdP2r8yYWjxsfUTvRA7d27Vw6HQ3l5ed5jqampmj59usrLy8MYWXCVl5crLS1NU6dO9R7Ly8uT2WzWW2+9dcK1zzzzjNLT0zVu3DgtWrRITU1NoQ43JFpaWrRly5Yu/1+bzWbl5eX5/f+6vLy8y/mSlJ+fH1PfG1LvciNJR44c0amnnqrs7Gx97Wtf044dO/oj3IgWL98z0SIeajz1vQM13jfqe/DEw/dLNKG+U9+p79T3YImH75doEg/1XaLGS9T3E6HGB0+wv2cSgxFUtHI4HJKkjIyMLsczMjK8X4sFDodDw4cP73IsMTFRQ4YMOeF9futb39Kpp56qrKwsbdu2TXfeeaf27NmjF154IdQhB11dXZ3a2tp8/n+9e/dun2scDkfMf29IvcvN2WefrTVr1mjChAlqaGjQsmXLdP7552vHjh0aOXJkf4Qdkfx9zzidTh09elQDBgwIU2TxKR5qPPW9AzXeN+p78FDfIwv1nfpOfae+Bwv1PbLEQ32XqPES9f1EqPHBE+waH/E70e+6665uw/E//8ffN1GsC3VubrrpJuXn52v8+PG6/vrr9Yc//EF/+ctf9MEHHwTxLhCNcnNzNW/ePE2aNEkXXnihXnjhBQ0bNkz/7//9v3CHhihDjfeN+o5wob4jWKjvvlHfES7UdwQL9d0/ajzChRrfPyJ+J/qPfvQjfec73znhOaeddlqv3ttut0uSampqlJmZ6T1eU1OjSZMm9eo9+1NPc2O327s9fKC1tVWHDh3y5qAnpk+fLkl6//33dfrppwccbzilp6crISFBNTU1XY7X1NT4zYHdbg/o/GjVm9x8nsVi0eTJk/X++++HIsSo4e97xmazsYvFD2q8b9T3wFDjfaO+Bw/1PXDUd9+o74GhvvtGfQ8e6nvgqO/+UeN7jvruHzU+eIJd4yO+iT5s2DANGzYsJO89evRo2e12lZWVeQuy0+nUW2+9FdDTo8Olp7nJzc1VfX29tmzZoilTpkiSXnnlFbW3t3uLbk9UVFRIUpcfZtEiKSlJU6ZMUVlZmebMmSNJam9vV1lZmQoKCnyuyc3NVVlZmW677TbvsdLSUuXm5vZDxP2nN7n5vLa2NlVWVmrWrFkhjDTy5ebmqqSkpMuxWPyeCSZqvG/U98BQ432jvgcP9T1w1HffqO+Bob77Rn0PHup74Kjv/lHje4767h81PniCXuN79TjSCPXRRx8Z77zzjrF06VJj0KBBxjvvvGO88847xuHDh73nnH322cYLL7zgff3ggw8aaWlpxl//+ldj27Ztxte+9jVj9OjRxtGjR8NxCyFz2WWXGZMnTzbeeust44033jDOPPNM47rrrvN+/ZNPPjHOPvts46233jIMwzDef/9946c//amxefNmY+/evcZf//pX47TTTjMuuOCCcN1Cnz333HOG1Wo1nnjiCWPnzp3GTTfdZKSlpRkOh8MwDMO44YYbjLvuust7/r/+9S8jMTHRWLZsmbFr1y5jyZIlhsViMSorK8N1CyETaG6WLl1qrF+/3vjggw+MLVu2GNdee62RnJxs7NixI1y3EBKHDx/21hFJxvLly4133nnH+OijjwzDMIy77rrLuOGGG7znf/jhh0ZKSopxxx13GLt27TJWrlxpJCQkGOvWrQvXLcQUarxv1PcO1HjfqO++Ud8jC/XdN+p7B+q7b9R336jvkYX67h81nvp+ItR438Jd42OqiX7jjTcakrr9efXVV73nSDIef/xx7+v29nbj3nvvNTIyMgyr1Wpceumlxp49e/o/+BD79NNPjeuuu84YNGiQYbPZjPnz53f5wbV3794uudq/f79xwQUXGEOGDDGsVqtxxhlnGHfccYfR0NAQpjsIjl/96lfGqFGjjKSkJGPatGnGv//9b+/XLrzwQuPGG2/scv4f//hH46yzzjKSkpKMc8891yguLu7niPtPILm57bbbvOdmZGQYs2bNMrZu3RqGqEPr1Vdf9VlTPLm48cYbjQsvvLDbmkmTJhlJSUnGaaed1qXeoG+o8b5R34+hxvtGfe+O+h5ZqO++Ud+Pob77Rn3vjvoeWajv/lHjO1Df/aPGdxfuGm8yDMPo3R52AAAAAAAAAABimzncAQAAAAAAAAAAEKloogMAAAAAAAAA4AdNdAAAAAAAAAAA/KCJDgAAAAAAAACAHzTRAQAAAAAAAADwgyY6AAAAAAAAAAB+0EQHAAAAAAAAAMAPmugAAAAAAAAAAPhBEx0AAAAAAAAAAD9oogMAAAAAAAAA4AdNdAAAAAAAAAAA/KCJDgAAAAAAAACAHzTRAQAAAAAAAADwgyY6AAAAAAAAAAB+0EQHAAAAAAAAAMAPmugAAAAAAAAAAPhBEx0AAAAAAAAAAD9oogMAgH5z3333yWQyqa6u7qTntra26sc//rGys7NlNps1Z86c0AcIAOgV6jsAxC5qPEATHQAARKg1a9bo4Ycf1tVXX60nn3xSt99+u99zN23apB/84AeaMmWKLBaLTCZTv8UZzmsDQDSKhvre3t6uJ554Ql/96leVnZ2tgQMHaty4cfrZz36m5ubmfokBAKJRNNR4SVq9erUuvPBCZWRkyGq1avTo0Zo/f7727dvXbzEguiSGOwAAAABfXnnlFY0YMUK/+MUvTnpuSUmJfve732nChAk67bTT9O677/ZDhOG/NgBEo2io701NTZo/f76++MUv6vvf/76GDx+u8vJyLVmyRGVlZXrllVf4pSkA+BANNV6S3nnnHY0ePVpf/epXdcopp2jv3r1avXq1XnrpJf3nP/9RVlZWv8WC6MBOdAAAEJFqa2uVlpbWo3NvvvlmNTQ0aPPmzZoxY0ZoA4ugawNANIqG+p6UlKR//etfKi8v109+8hMtXLhQa9as0ZIlS7Rx40aVlZX1WywAEE2iocZL0q9//Ws98cQT+tGPfqTvfve7uv/++1VcXKy6ujr94Q9/6NdYEB1oogMAgH5XV1enb37zm7LZbBo6dKhuvfVW78fj9+3bJ5PJpFdffVU7duyQyWSSyWTSxo0b/b5fRkaGBgwY0KtYHn/8cZlMJq1Zs6bL8QceeEAmk0klJSUnXN+XawNArImV+p6UlKTzzz+/2/Gvf/3rkqRdu3b1KiYAiGaxUuP9ycnJkSTV19f3KibENproAACg333zm99Uc3OzioqKNGvWLP3yl7/UTTfdJEkaNmyYnnrqKY0ZM0YjR47UU089paeeekpjx44NSSzz58/XFVdcocLCQn388ceSpMrKSi1dulQLFizQrFmzQnJdAIhFsV7fHQ6HJCk9PT2osQJANIjFGv/pp5+qtrZWmzdv1vz58yVJl156aUhiRnRjJjoAAOh3o0eP1l//+ldJ0i233CKbzaZf//rX+p//+R9NmDBB3/72t/W73/1OCQkJ+va3vx3yeFavXq1zzz1XCxYs0EsvvaQbb7xRdrtdy5cvD/m1ASCWxHp9//nPfy6bzabLL788yJECQOSLxRo/YsQIuVwuSdLQoUP1y1/+khGN8Imd6AAAoN/dcsstXV7/8Ic/lKRefewyGOx2u1auXKnS0lJ95StfUUVFhdasWSObzRaWeAAgWsVyfX/ggQf0j3/8Qw8++GCP5/0CQCyJxRr/8ssvq6SkRI888ohGjRqlxsbGEEaMaMZOdAAA0O/OPPPMLq9PP/10mc1m7du3LzwBSbr22mv19NNPq7i4WDfddBMf4wSAXojV+r527Vrdc889WrBggW6++eYQRAkAkS8Wa/zFF18sSbr88sv1ta99TePGjdOgQYNUUFAQinARxdiJDgAAws5kMoU7BH366afavHmzJGnnzp1qb28Pc0QAEP1iob6XlpZq3rx5mj17tlatWhWKEAEgKsVCjT/e6aefrsmTJ+uZZ54JVniIITTRAQBAv3vvvfe6vH7//ffV3t6unJyc8ASkjo+nHj58WEVFRXrjjTe0YsWKsMUCANEq1ur7W2+9pa9//euaOnWq/vjHPyoxkQ9zA4hfsVbjfTl69KgaGhqCExxiCk10AADQ71auXNnl9a9+9StJCtuD2v70pz9p7dq1evDBB3XXXXfp2muv1T333KN33303LPEAQLSKpfq+a9cuzZ49Wzk5OXrppZc0YMCAfogYACJXrNT41tZWffbZZ92Ob9q0SZWVlZo6dWqoQkYU49foAACg3+3du1df/epXddlll6m8vFxPP/20vvWtb2nixIm9er+PPvpITz31lCR5P875s5/9TJJ06qmn6oYbbvC7tra2VjfffLMuvvhi7+zDxx57TK+++qq+853v6I033pDZ7H/fQV+uDQCxJlbq++HDh5Wfn6/PPvtMd9xxh4qLi7t8/fTTT1dubm6v7gkAolWs1PgjR44oOztbc+fO1bnnnquBAweqsrJSjz/+uFJTU3Xvvff26n4Q4wwAAIB+smTJEkOSsXPnTuPqq682Bg8ebJxyyilGQUGBcfTo0S7nXnjhhca5557bo/d99dVXDUk+/1x44YUnXPuNb3zDGDx4sLFv374ux//6178akoyHHnooZNcGgFgRa/V97969fq8rybjxxht7FD8AxIJYq/Eul8u49dZbjQkTJhg2m82wWCzGqaeeaixYsMDYu3dvj2JH/DEZhmGEtEsPAAAAAAAAAECUYiY6AAAAAAAAAAB+0EQHAAAAAAAAAMAPmugAAAAAAAAAAPgRcBP9tdde05VXXqmsrCyZTCa9+OKLJ12zceNGnXfeebJarTrjjDP0xBNP9CJUAAAAAAAAAAD6V8BN9MbGRk2cOFErV67s0fl79+7V7NmzdfHFF6uiokK33Xabvve972n9+vUBBwsAAAAAAAAAQH8yGYZh9HqxyaS//OUvmjNnjt9z7rzzThUXF2v79u3eY9dee63q6+u1bt263l4aAAAAAAAAAICQSwz1BcrLy5WXl9flWH5+vm677Ta/a1wul1wul/d1e3u7Dh06pKFDh8pkMoUqVADoF4Zh6PDhw8rKypLZHN+Ppmhvb1dVVZUGDx5MfQcQ9ajvx1DfAcQaavwx1HgAsaSn9T3kTXSHw6GMjIwuxzIyMuR0OnX06FENGDCg25qioiItXbo01KEBQFh9/PHHGjlyZLjDCKuqqiplZ2eHOwwACCrqO/UdQOyixlPjAcSmk9X3kDfRe2PRokUqLCz0vm5oaNCoUaP08ccfy2azhTEyAOg7p9Op7OxsDR48ONyhhJ0nB4HWd7fbrQ0bNmjmzJmyWCyhCi/qkBf/yI1v5MW33uaF+n4M9T34yI1v5MU38uIfNb7vqPHBRV58Iy/+kRvfQl3fQ95Et9vtqqmp6XKspqZGNpvN5y50SbJarbJard2O22w2mugAYgYffTyWg0Dru9vtVkpKimw2G//RcBzy4h+58Y28+NbXvFDfqe+hQG58Iy++kRf/qPF9R40PLvLiG3nxj9z4Fur6HvJBXrm5uSorK+tyrLS0VLm5uaG+NAAAAAAAAAAAfRJwE/3IkSOqqKhQRUWFJGnv3r2qqKjQ/v37JXWMYpk3b573/O9///v68MMP9eMf/1i7d+/Wr3/9a/3xj3/U7bffHpw7AAAAAAAAAAAgRAJuom/evFmTJ0/W5MmTJUmFhYWaPHmyFi9eLEmqrq72NtQlafTo0SouLlZpaakmTpyoRx55RL/73e+Un58fpFsAAAAAAAAAACA0Ap6JftFFF8kwDL9ff+KJJ3yueeeddwK9FAAAAAAAAAAAYRXymegAAAAAAAAAAEQrmugAAAAAAAAAAPhBEx0AAAAAAAAAAD9oogMAJEmvvfaarrzySmVlZclkMunFF1886ZqNGzfqvPPOk9Vq1RlnnOHzuRgAAAAAAADRjCY6AECS1NjYqIkTJ2rlypU9On/v3r2aPXu2Lr74YlVUVOi2227T9773Pa1fvz7EkQIAAAAAAPSfxHAHAACIDJdffrkuv/zyHp+/atUqjR49Wo888ogkaezYsXrjjTf0i1/8Qvn5+aEKE2G0/UCD0gdZZU9NDncoAIAYcbSlTf96v06u1nbvMUNGl3OMri+7fLWttVXv1JnUtq1aCQkJ3d6/+9quBywJZl1w1jDZki29ih8AAMQHmugAgF4pLy9XXl5el2P5+fm67bbb/K5xuVxyuVze106nU5Lkdrvldrt7fG3PuYGsiQehzMuu6sOa85tyjU4fqJd/eL5MJlPQrxFKfM/4Rl58621eyCMQuIfX79Gaf+3t47sk6A/vVfZ69bVfyNaDV03oYwwAACCW0UQHAPSKw+FQRkZGl2MZGRlyOp06evSoBgwY0G1NUVGRli5d2u34hg0blJKSEnAMpaWlAa+JB6HIy98+MqvdMOuDg436f8+/rFGDgn6JfsH3jG/kxbdA89LU1BSiSIDYtau64xfqZw4fpCEDk7p87fO/rzXJ1O3rhmGorq5O6enpMplMPVrjcaixRTuqnNrtONy3mwAAADGPJjoAoN8sWrRIhYWF3tdOp1PZ2dmaOXOmbDZbj9/H7XartLRUM2bMkMXCx689QpUXwzD08C/ekHRUkuRMPUOz8s8K2vv3B75nfCMvvvU2L55P1wDoueqGjp8t988Zpy+eNjTg9W63WyUlJZo1a2rAdew/H9frayv/5Y0BAADAH5roAIBesdvtqqmp6XKspqZGNpvN5y50SbJarbJard2OWyyWXjXwersu1gU7L9s+qdcnnx1rMLy8o0Z3zz4n6ka6SHzP+ENefAs0L+QQCIxhGKpuaJYkZaX6/m+HUMpM63jGR+1hl9xt7bIkmPs9BgAAEB34rwQAQK/k5uaqrKysy7HS0lLl5uaGKSKESnFltSTpkjHDNcCSoE8+O6rKAw3/n717j4+qvvM//p7cJgRIAgRywWDEGwgBFCoN1ao1EIWqdFuL6IplKf600rWmawWLILU1WpHiKspKi9pWV6q1tGsiEqPUW5QKIncQAVGSmRAwmZCQySQ5vz8mZyBmApmQub+ejweP3Zyck/mcr9ND+MznvE+QqwIAhLuaBpfngaLpKR0/ZPe3tN5WxcdaZBiS3dEY8NcHAADhgyY6AECSdPToUW3atEmbNm2SJO3bt0+bNm3SgQMHJLmjWGbMmOHZ/7bbbtPevXv1i1/8Qjt37tSTTz6pv/zlL7rrrruCUT78xDAMlbQ10b9/0Rn6zrBBko431gEA6K6KthiVtD4JssbFBvz1Y2IsykhxT6ObE/EAAADe0EQHAEiSPvroI1144YW68MILJUmFhYW68MILtWDBAklSZWWlp6EuSWeddZaKi4tVWlqq0aNH69FHH9Xvf/97FRQUBKV++MfWgw59ceSYEuNjdMWwgZqcmylJKtlSKcMwglwdACCc2doa12YjOxgy22JkKmrIRQcAAJ0jEx0AIEm6/PLLT9oUffbZZ70e8/HHH/uxKgTbiVEuSQlxumLYQCXGx+iLI8e09aBDuWekBLlCAEC4Mqe/M5IDn4duymISHQAAdAGT6AAAwKsTo1zMCfSkhDgiXQAAPaKyLc4lKzWIk+ip7gZ+JZPoAADgJGiiAwAAr7ZVOHTgSIMS42M8jXNJmpKbJYlIFwDA6akMgTgXcxK9gkl0AABwEjTRAQCAV+ak+RXnu6NcTGaky4EjDdpW4QhWeQCAMFdZ425cZ4ZAJro5FQ8AAOANTXQAANDBiVEuU0ZltvveiZEur24m0gUA0D02h9lED14memZblIzZ0AcAAPCGJjoAAOhgW4VDnx/uGOViMjPSiXQBAHSHYRie6e9gTqJntTXwD9c3qdHVErQ6AABAaKOJDgAAOugsysX0nWGDiHQBAHRbTYNLja5WSVJ6cvCa6KlJ8UqMd/+z2EYuOgAA6ARNdAAA0M6JUS7mxPnXJSXE6Yrz3RPqZsMdAICuMh8qOqB3ghLjY4NWh8Vi8UyjV5CLDgAAOkETHQAAtGNGuVjjvEe5mIh0AQB0l83hblhnBDHKxUQuOgAAOBWa6AAAoJ2SE6Jcels7RrmYvjNskKxxMfr8MJEuAADfVNQE/6GiJrOGSibRAQBAJ2iiAwAAj3ZRLqO8R7mYelvjPJPqJUS6AAB8YOaPB/OhoqasthoqyEQHAACdoIkOAAA8tlc6tL8tyuXKk0S5mIh0AQB0h5mJHhpxLm2T6DVMogMAAO9oogMAAA9zovzy8weeNMrFZEa67CfSBQDgAzM6JSs1BJrobY38SibRAQBAJ2iiAwAASWaUi03S8QnzU+ltjdMV5xPpAgDwjRnnkpEc/Ez0rLZJ9Aom0QEAQCdoogMAAEnSjso67auud0e5DE/v8nFmdjqRLgCArjAMQxUhOInuaGxWvbM5yNUAAIBQRBMdAABIah/l0qcLUS6mK0+IdNleSaQLAODkao+51OhqlSSlJwe/id43MV592/7eM2NmAAAATkQTHQAAyDAMFbc10bsa5WLqbY3T5ecPlESkCwDg1Mzs8f69E5QYHxvkatwy2ybiK2rIRQcAAB3RRAcAAJ4olwQfo1xMZuO9ZIuNSBcAwEmZ095mjEooyExx56IziQ4AALyhiQ4AAI5HuZznW5SL6crh6bLGxWhfdb12VNb1dHkAgAhiTqKHUhM9i0l0hKhly5YpJydHiYmJGj9+vNavX3/S/V966SUNGzZMiYmJys3NVUlJSaf73nbbbbJYLFq6dGkPVw0AkYcmOgAAUc4wDE8Tfcoo36JcTH2IdAEAdJGtrYmeEUJNdCbREYpWrVqlwsJCLVy4UBs3btTo0aNVUFCgqqoqr/u///77mj59umbNmqWPP/5YU6dO1dSpU7V169YO+/7tb3/TBx98oKysLH+fBgBEBJroAABEuZ22Ou09jSgXkxnpUrylkkgXAECnzGlvs3EdCsypeHNKHggFS5Ys0ezZszVz5kxdcMEFWr58uZKSkrRy5Uqv+z/22GO66qqrdPfdd2v48OF64IEHdNFFF+mJJ55ot9/Bgwf105/+VM8//7zi4+MDcSoAEPZ8v18bAABEFHNy/LJuRrmYrhyeroQTIl0uyEruqRIBABHE5gi9TPSsVHdDv6KGSXSEhqamJm3YsEHz5s3zbIuJiVF+fr7Ky8u9HlNeXq7CwsJ22woKCrR69WrP162trbr55pt19913a8SIEV2qxel0yul0er52OBySJJfLJZfL1dVT8uzryzHRgHXxjnXpHGvjXXfXpav700QHACCKGYahYjPKJbd7US6mPtY4XX7eQK3dblfJlkqa6AAAryprQjHO5fgkumEYslgsQa4I0a66ulotLS1KT29/l2B6erp27tzp9RibzeZ1f5vN5vn64YcfVlxcnP7zP/+zy7UUFRVp0aJFHbavXbtWSUlJXf45ptLSUp+PiQasi3esS+dYG+98XZeGhoYu7UcTHQCAKLbLXqe9h8wol0Gn/fOmjMr0NNF/Puk8mhAAgHYMw/BEpmSFVJyLu5aGphY5GpuV0ouIC0SeDRs26LHHHtPGjRt9+h1t3rx57SbcHQ6HsrOzNWnSJCUnd31owuVyqbS0VBMnTiRG5gSsi3esS+dYG++6uy7m3TWnQhMdAIAoVrLZPYX+7XMHqm/i6f8CZka67K2u105bnYZnMo0OADjOcaxZx1wtkkJrEr1XQqz6JcXrqwaXKmuP0URH0KWlpSk2NlZ2u73ddrvdroyMDK/HZGRknHT/d955R1VVVRoyZIjn+y0tLfr5z3+upUuXav/+/V5/rtVqldVq7bA9Pj6+Ww287h4X6VgX71iXzrE23vm6Ll3dlweLAgAQpU6McvnuqNOLcjH1scbpsvMGSjqetQ4AgKmi1p053r93ghLjY4NcTXvmNLoZNwMEU0JCgsaOHauysjLPttbWVpWVlSkvL8/rMXl5ee32l9yxBub+N998szZv3qxNmzZ5/mRlZenuu+/W66+/7r+TAYAIwCQ6AABRape9Tp/1YJSL6bujMlW63a7iLZUqnEikCwDgOFtblEtGcuhMoZuyUhO1vdLhafQDwVZYWKhbbrlF48aN08UXX6ylS5eqvr5eM2fOlCTNmDFDgwcPVlFRkSTpzjvv1GWXXaZHH31UU6ZM0YsvvqiPPvpITz/9tCRpwIABGjBgQLvXiI+PV0ZGhs4///zAnhwAhBma6AAARKmejnIxeSJdDtVrl71OwzKIdAEAuJl56JkhFOViYhIdoWbatGk6dOiQFixYIJvNpjFjxmjNmjWeh4ceOHBAMTHHAwYmTJigF154QfPnz9e9996rc889V6tXr9bIkSODdQoAEDFoogMAEIVOjHKZMsp7rmZ3mZEupdvtKt5cSRMdAOBR2TblnZkagk30tpqYREcomTNnjubMmeP1e+vWreuw7frrr9f111/f5Z/fWQ46AKA9MtEBAIhCu+1H3VEusTG6cnh6j//8KbnujPXiLZUyDKPHfz4AIDwdn0TvFeRKOspiEh0AAHSCJjoAAFHInEL/9nlpSu7BKBfTlcMHtYt0AQBACu1MdDNippJJdAAA8DU00QEAiEIlbU30yW0T4z2tb2K8vn3uQPdrtWWvAwBQEcJxLlmpbZPotY3cRQUAANqhiQ4AQJTZba/TnqqjSoiNUf4FPR/lYjKz1ol0AQBI7udx2EI4ziU9OVEWi+RsbtWR+qZglwMAAEIITXQAAKJMcdtk+KXn+ifKxXTl8HQlxMbos0P12m0/6rfXAdA1y5YtU05OjhITEzV+/HitX7++S8e9+OKLslgsmjp1qn8LRMRzHGtWQ1OLpOPRKaEkIS5GaX2sko5ntwMAAEg00QEAiDr+jnIxJSfG69vnuSNdzAx2AMGxatUqFRYWauHChdq4caNGjx6tgoICVVVVnfS4/fv367/+67906aWXBqhSRLJKhzvKpV9SvBLjY4NcjXdZbc39ihpy0QEAwHFxwS4AAAAEzm57nT4NQJSLacqoDL2xw66SLZW6K/9cWSwWv78mgI6WLFmi2bNna+bMmZKk5cuXq7i4WCtXrtTcuXO9HtPS0qKbbrpJixYt0jvvvKOamppOf77T6ZTT6fR87XA4JEkul0sul6vLdZr7+nJMtIiEtfnysPuupPTkxB47j55el/Rk9yT6l0fqw3qtI+H94i/dXRvWEgCiG010AACiyIlRLim9/BflYjIjXfZUHdVu+1Gdn9HX768JoL2mpiZt2LBB8+bN82yLiYlRfn6+ysvLOz3uV7/6lQYNGqRZs2bpnXfeOelrFBUVadGiRR22r127VklJST7XXFpa6vMx0SKc1+Z9u0VSrGKdtSopKenRn91T6+I8EiMpRu99vF0DjmztkZ8ZTOH8fvE3X9emoaHBT5UAAMIBTXQAAKJIoKJcTO5IlzS9saNKxVsqaaIDQVBdXa2Wlhalp7e/+yQ9PV07d+70esy7776rP/zhD9q0aVOXXmPevHkqLCz0fO1wOJSdna1JkyYpOTm5y7W6XC6VlpZq4sSJio/3/wd94SQS1mZ32R5p716NOmeIJk++oEd+Zk+vS+V7+/XPNbvVa0CWJk8e1QMVBkckvF/8pbtrY95hAwCITt1qoi9btkyPPPKIbDabRo8erccff1wXX3xxp/svXbpUTz31lA4cOKC0tDT94Ac/UFFRkRITQ+9hMgAARKpP26Jc4mMtAYlyMU3OzdQbO6pUsqVShRPPC9jrAuieuro63XzzzVqxYoXS0tK6dIzVapXVau2wPT4+vlsNvO4eFw3CeW2q6pokSYP7JfX4OfTUupzRv7ckyV7nDNt1PlE4v1/8zde1YR0BILr53EQ3H0q0fPlyjR8/XkuXLlVBQYF27dqlQYMGddj/hRde0Ny5c7Vy5UpNmDBBu3fv1o9+9CNZLBYtWbKkR04CAACcmvlwz0vPHRiQKBdT/gUnRrrU6bx0ptGBQEpLS1NsbKzsdnu77Xa7XRkZGR32/+yzz7R//35dc801nm2tra2SpLi4OO3atUtnn322f4tGRKqsbZQkZab0CnIlnTNrq6hpDHIlAAAglMT4esCJDyW64IILtHz5ciUlJWnlypVe93///ff1rW99SzfeeKNycnI0adIkTZ8+XevXrz/t4gEAQNcFOsrFlJwYr0vPdU+zmpnsAAInISFBY8eOVVlZmWdba2urysrKlJeX12H/YcOGacuWLdq0aZPnz7XXXqsrrrhCmzZtUnZ2diDLRwSprD0mScpMCd07krNS3bXZHY1qaTWCXA0AAAgVPjXRzYcS5efnH/8Bp3go0YQJE7RhwwZP03zv3r0qKSnR5MmTO30dp9Mph8PR7g8AAOi+PVV12m13R7lMDGCUi8ls3JuNfACBVVhYqBUrVui5557Tjh07dPvtt6u+vl4zZ86UJM2YMcPz4NHExESNHDmy3Z/U1FT17dtXI0eOVEJCQjBPBWHKMAzPJHpGCDfRB/VNVGyMRc2thqqPOoNdDgAACBE+xbl056FEN954o6qrq3XJJZfIMAw1Nzfrtttu07333tvp6xQVFWnRokW+lAYAAE6ieLNNknTJOWkBjXIxmZEun1Yd1af2Op1LpAsQUNOmTdOhQ4e0YMEC2Ww2jRkzRmvWrPH8Xn/gwAHFxPh8kyrQZY7GZjU0tUgK7TiX2BiLBvW1qrK2URU1x5SeHLoNfwAAEDh+/0153bp1evDBB/Xkk09q48aNeuWVV1RcXKwHHnig02PmzZun2tpaz58vvvjC32UCABDRghXlYkrpdUKkC9PoQFDMmTNHn3/+uZxOpz788EONHz/e871169bp2Wef7fTYZ599VqtXr/Z/kYhYtrYp9NSkePVKiA1yNSdnxs2Yk/MAAAA+TaL7+lAiSbrvvvt0880368c//rEkKTc3V/X19br11lv1y1/+0uvEi9VqldVq9aU0AADQiT1VR7XLXqf4WIsmXeD97+tAmJybqbKdVSreXKmf5Z8XtDoAAIFX4clDD90pdFNmai/pQI0qao4FuxQAABAifJpE9/WhRJLU0NDQoVEeG+uePDAMHtQCAIC/mVPo3zonTSlJgY9yMeVfkK74WIsn0gUAED3MSfRQfqioKYtJdAAA8DU+x7n48lAiSbrmmmv01FNP6cUXX9S+fftUWlqq++67T9dcc42nmQ4AAPyneLO7iT4lSFEuJneky0BJRLoAQLQJh4eKmsxp+cpaJtEBAICbz030adOmafHixVqwYIHGjBmjTZs2dXgoUWXl8X8Yz58/Xz//+c81f/58XXDBBZo1a5YKCgr0P//zPz13FgCAHrFs2TLl5OQoMTFR48eP1/r160+6/9KlS3X++eerV69eys7O1l133aXGRqa2QkmoRLmYzEz2EproABBVKtuiUbLCoImelequsaKG32kAAICbT5nopjlz5mjOnDlev7du3br2LxAXp4ULF2rhwoXdeSkAQICsWrVKhYWFWr58ucaPH6+lS5eqoKBAu3bt0qBBgzrs/8ILL2ju3LlauXKlJkyYoN27d+tHP/qRLBaLlixZEoQzgDehEuVimtgW6bLbflR7qup0zqC+wS4JABAANoc5iR4GmehMogMAgK/pVhMdABB5lixZotmzZ3viuZYvX67i4mKtXLlSc+fO7bD/+++/r29961u68cYbJUk5OTmaPn26Pvzww05fw+l0yul0er52OBySJJfLJZfL1eVazX19OSYaeFuX4s0VkqSCCwaFxHolxUkTzh6gf+6u1j82HdRPrzg7IK/Le8Y71sW77q4L6wh0znxIZzhkome2TaJX1TnlamlVfKzPN3ADAIAIQxMdAKCmpiZt2LCh3TMtYmJilJ+fr/Lycq/HTJgwQX/+85+1fv16XXzxxdq7d69KSkp08803d/o6RUVFWrRoUYfta9euVVJSks91l5aW+nxMNDDXxX5M2mWPU4zFkPHFJyqxfRLkytzOaLFIitVL5Xt09rFdAX1t3jPesS7e+bouDQ0NfqoECG+GYXgy0cOhiZ7W26r4WItcLYbsjkad0c/331EAAEBkoYkOAFB1dbVaWlo8z7cwpaena+fOnV6PufHGG1VdXa1LLrlEhmGoublZt912m+69995OX2fevHkqLCz0fO1wOJSdna1JkyYpOTm5y/W6XC6VlpZq4sSJio8PfkRJqPj6uixbt1fSHl1yTpquv25ssMvzuOSYS395eJ0qj0nnjfu2zhnUx++vyXvGO9bFu+6ui3l3DYD26pzNamhqkXQ8KiWUxcRYlJGSqC+OHFNlLU10AABAEx0A0E3r1q3Tgw8+qCeffFLjx4/Xnj17dOedd+qBBx7Qfffd5/UYq9Uqq9XaYXt8fHy3GnjdPS7SmeuyZptdkvTdUYNDap0GxMfrknPS9NauQ1q7o1rDB/cL2GvznvGOdfHO13VhDQHvKtse0JmaFK9eCbFBrqZrMlN66YsjxzwxNAAAILoR7gYAUFpammJjY2W329ttt9vtysjI8HrMfffdp5tvvlk//vGPlZubq+9973t68MEHVVRUpNbW1kCUjZPYe+iodtrqFBdj0aQR6ac+IMAm52ZKOv7gUwBA5DIf0JmRHPpRLqasttgZM4YGAABEN5roAAAlJCRo7NixKisr82xrbW1VWVmZ8vLyvB7T0NCgmJj2f43ExrqnywzD8F+x6BKzOT3hnDSlJiUEuZqOJl2QofhYi3bZ67Sn6miwywEA+JEtjPLQTZmp7tiZSibRAQCAaKIDANoUFhZqxYoVeu6557Rjxw7dfvvtqq+v18yZMyVJM2bMaPfg0WuuuUZPPfWUXnzxRe3bt0+lpaW67777dM0113ia6Qie4i02SdKUXO93EgRbSlK8vnVOmiSm0QEg0lWYTfTU0M9DN5mT6BVMogMAAJGJDgBoM23aNB06dEgLFiyQzWbTmDFjtGbNGs/DRg8cONBu8nz+/PmyWCyaP3++Dh48qIEDB+qaa67Rb37zm2CdAtrsq67XjkqHO8rlgtBsokvuSJd1uw6pZEul/vPKc4NdDgDAT2xtcS6ZYRTnYj4A1YyiAQAA0Y0mOgDAY86cOZozZ47X761bt67d13FxcVq4cKEWLlwYgMrgi9e2urPtJ5yTpn69Qy/KxTTpgnTdG2PRTludPjt0VGcP7BPskgAAfmDmimeEVZxLWyZ6DZPoAACAOBcAACLOa9vcTfRQjXIxpSYl6JJz2yJdNhPpAgCRymyiZ4VVnIu71sP1TWp0tQS5GgAAEGw00QEAiCBVx6SdtjrFhniUi2lybqYkqZhcdACIWLYwnERPTYpXYrz7n8s2ctEBAIh6NNEBAIggmw5bJEkTzh4Q0lEupkkXpCvuhEgXAEBkcTS6dNTZLEnKDKMmusVi8UyjV5CLDgBA1KOJDgBABNl02P1X+5S2Ce9Ql5qUoG+dQ6QLAEQqc4o7pVe8khLC65Fc5KIDAAATTXQAACLE54cbdLDB4o5yGRH6US6mKUS6AEDEMvPQw2kK3ZTZNoleySQ6AABRjyY6AAAR4rWtNknSN8/qr/5hEOVimjTieKTLXiJdACCiVNa4G9Dh2ETPaqu5gkx0AACiHk10AAAixGvb7JKkq0emB7kS36QmJWiCGenCNDoARJRKz0NFewW5Et9lprZNotcwiQ4AQLSjiQ4AQAT4/HC9tlfWKUaGJg4fFOxyfDYl1x0/U7zFFuRKAAA9yRbWcS5tmehMogMAEPVoogMAEAHMPPFzU4ywinIxTbogQ3ExFu2odGhfdX2wywEA9JCK2jCOc2mbRK9gEh0AgKhHEx0AgAhQvNndRB8zwAhyJd3TrzeRLgAQiY5PoodhnEtb49/R2Kx6Z3OQqwEAAMFEEx0AgDD3+eF6batwKDbGolH9w7OJLh2PdHl1M010AIgUxzPRw28SvW9ivPpa4yRJlbVMowMAEM1oogMAEObMKJfxZ/VTn/ggF3MaJl2QoVgiXQAgYtQ1unS0bYI7HONcJCkz1V13RQ256AAARDOa6AAAhDkz/uTqERlBruT09OudoAlnD5BEpAsARAIzyiU5MU692ya6w40ZQ8MkOgAA0Y0mOgAAYezA4QZtPeiOcpl4waBgl3PapuRmSjqe8Q4ACF8VbU108wGd4SiLSXQAACCa6AAAhDUzyuWbQ/trQO+EIFdz+iaNcEe6bK90aD+RLgAQ1mxt09vhmIduYhIdAABINNEBAAhrZuzJ5LYJ7nDX/4RIl2IiXQAgrJkPFQ3XPHTpeO3muQAAgOhEEx0AgDB14HCDthysVYxFKgjzPPQTmZEu5KIDQHirrDGb6OEc5+KuvaKGSXQAAKIZTXQAAMJUyVYzymWA0vpYg1xNzzEjXbZVEOkCAOGs0uFuood3nMvxSXTDMIJcDaLRsmXLlJOTo8TERI0fP17r168/6f4vvfSShg0bpsTEROXm5qqkpMTzPZfLpXvuuUe5ubnq3bu3srKyNGPGDFVUVPj7NAAg7NFEBwAgTEValIuJSBcAiAyVbdPb4R3n4p5Eb2hqkaOxOcjVINqsWrVKhYWFWrhwoTZu3KjRo0eroKBAVVVVXvd///33NX36dM2aNUsff/yxpk6dqqlTp2rr1q2SpIaGBm3cuFH33XefNm7cqFdeeUW7du3StddeG8jTAoCwFBfsAgAAgO8OHG7Q5i/dUS5XjYycKBfT5NxMvfNptUq2VOqOK84JdjkAgG6w1YZ/nEuvhFj1S4rXVw0uVdYeU0qv+GCXhCiyZMkSzZ49WzNnzpQkLV++XMXFxVq5cqXmzp3bYf/HHntMV111le6++25J0gMPPKDS0lI98cQTWr58uVJSUlRaWtrumCeeeEIXX3yxDhw4oCFDhnitw+l0yul0er52OByS3JPtLpery+dj7uvLMdGAdfGOdekca+Ndd9elq/vTRAcAIAxFapSLqWBEhuav3qptFQ59frheZw7oHeySAAA+qGt0qc7pntwO50l0yf0hwFcNLlXWNGpYRnKwy0GUaGpq0oYNGzRv3jzPtpiYGOXn56u8vNzrMeXl5SosLGy3raCgQKtXr+70dWpra2WxWJSamtrpPkVFRVq0aFGH7WvXrlVSUtLJT8SLrzfy4ca6eMe6dI618c7XdWloaOjSfjTRAQAIQ5Ea5WLq3ztBeUMH6N091SreUqmfXM40OgCEE3MKPTkxTr2t4f3PzqzURG2vdKiiloeLInCqq6vV0tKi9PT0dtvT09O1c+dOr8fYbDav+9tsNq/7NzY26p577tH06dOVnNz5B0Tz5s1r15x3OBzKzs7WpEmTTnrc17lcLpWWlmrixImKj+euDhPr4h3r0jnWxrvurot5d82phPdvMwAARKEvjkR2lItpcm6m3t3jjnShiQ4A4aUyAqJcTOY5VNY0BrkSoOe4XC798Ic/lGEYeuqpp066r9VqldXa8c7H+Pj4bjXwuntcpGNdvGNdOsfaeOfrunR1Xx4sCgBAmDGn0MefFZlRLqaCEemKjbFo60GHDhzu2i12AIDQYE6iZ4R5lIskZaa6z4FJdARSWlqaYmNjZbfb22232+3KyPA+RJGRkdGl/c0G+ueff67S0lKfpskBIFrRRAcAIMx4olxGRWaUi2lAH6vyhg6QJBW3nTMAIDyYDees1PBvomcxiY4gSEhI0NixY1VWVubZ1traqrKyMuXl5Xk9Ji8vr93+kjsb+MT9zQb6p59+qjfeeEMDBgzwzwkAQIShiQ4AQBj54kiDPjGjXEZEbpSLycx8L6GJDgBhxTOJnhwJcS7uDwIqmURHgBUWFmrFihV67rnntGPHDt1+++2qr6/XzJkzJUkzZsxo9+DRO++8U2vWrNGjjz6qnTt36v7779dHH32kOXPmSHI30H/wgx/oo48+0vPPP6+WlhbZbDbZbDY1NTUF5RwBIFyQiQ4AQBh5bau7mXzxWf01sG/kRrmYCkak676/b9WWg7U6cLhBQwYkBbskAEAXHM9Ej4BJ9NS2SfTaRhmGIYvFEuSKEC2mTZumQ4cOacGCBbLZbBozZozWrFnjeXjogQMHFBNzfDZywoQJeuGFFzR//nzde++9Ovfcc7V69WqNHDlSknTw4EH94x//kCSNGTOm3Wu99dZbuvzyywNyXgAQjmiiAwAQRoq32CRJU3IjO8rFNKCPVd8c2l/v7Tms4i2Vuv3ys4NdEgCgC8yp7cwIiHNJT06UxSI5m1t1pL5JAyL4eSQIPXPmzPFMkn/dunXrOmy7/vrrdf3113vdPycnR4Zh9GR5ABA1iHMBACBMfHGkQZ98USOLRSoYGflRLiYiXQAg/ETSJHpCXIznQd7meQEAgOhCEx0AgDBhRrmMP6u/BvUN/6ZEV101IkMxFnkiXQAAoe2os1l1jc2SpIyU8M9El6Sstg8DKmrIRQcAIBrRRAcAIExEW5SLyR3pMkCSVLKVaXQACHW2tiiXvolx6mONjATRzJTjuegAACD60EQHACAMfPlVdEa5mIh0AYDwEUlRLiYz272ilkl0AACiEU10AADCwGttU+gX50RXlIvpqpHuSJfNX9bqiyNEugBAKKusMZvokRHlIklZ5iR6DZPoAABEI5roAACEgeK2Cewpo6IrysWUdmKkC9PoABDSInkSvZJJdAAAohJNdAAAQtzBmmPa1BblclUURrmYiHQBgPBgc7gbzRmR1ET3PFiUSXQAAKIRTXQAAELca21N429EaZSLyYx0+YRIF6Bbli1bppycHCUmJmr8+PFav359p/u+8sorGjdunFJTU9W7d2+NGTNGf/rTnwJYLcKZ2WjOiqA4FzOaxu5oVEurEeRqAABAoNFEBwAgxHmiXHKjM8rFlNbHqvFnEekCdMeqVatUWFiohQsXauPGjRo9erQKCgpUVVXldf/+/fvrl7/8pcrLy7V582bNnDlTM2fO1Ouvvx7gyhGObG1xLpE0iT6or1UxFqm51VD1UWewywEAAAEWF+wCAABA5ypqjunjA+4ol6ujOMrFNHlUpsr3HlbJlkr9v8vODnY5QNhYsmSJZs+erZkzZ0qSli9fruLiYq1cuVJz587tsP/ll1/e7us777xTzz33nN59910VFBR02N/pdMrpPN5YdDgckiSXyyWXy9XlOs19fTkmWoTT2lS05Yan9Y7ze72BXJdBfa2yOZw6UF2n/r1i/f56pyOc3i+B1t21YS0BILrRRAcAIISZE9ffOLO/BiVHzkRfd101IkML/77VE+mS3T8p2CUBIa+pqUkbNmzQvHnzPNtiYmKUn5+v8vLyUx5vGIbefPNN7dq1Sw8//LDXfYqKirRo0aIO29euXaukJN//d1paWurzMdEi1NemsUWqa3T/M3PLh2/r0wD1mgOxLomtsZIsKllXrooB4RHpEurvl2DydW0aGoiSA4BoRhMdAIAQZka5TM5lCl2SBva16uKz+uuDvUf02tZK3fptptGBU6murlZLS4vS09PbbU9PT9fOnTs7Pa62tlaDBw+W0+lUbGysnnzySU2cONHrvvPmzVNhYaHna4fDoezsbE2aNEnJycldrtXlcqm0tFQTJ05UfHx8l4+LBuGyNp8dqpfWv6c+1jj92zWT/P56gVyX1+s+0f6tdmWefYEmTzjTr691usLl/RIM3V0b8w4bAEB0ookOAECIahflEuV56CeakpupD/YeUfEWG010wI/69u2rTZs26ejRoyorK1NhYaGGDh3aIepFkqxWq6xWa4ft8fHx3Wrgdfe4aBDqa3Oo3h15kZWaGNA6A7Eug/u576qw1zWF9H+DE4X6+yWYfF0b1hEAohsPFgUAIESdGOWSTpSLR8HIDFks0idf1OjLr7i1GjiVtLQ0xcbGym63t9tut9uVkdH5XS4xMTE655xzNGbMGP385z/XD37wAxUVFfm7XIS5Ss9DRXsFuZKel9l2TpVtme8AACB6dKuJvmzZMuXk5CgxMVHjx4/X+vXrT7p/TU2N7rjjDmVmZspqteq8885TSUlJtwoGACBalBDl4tWgvom6OKe/JOm1LbYgVwOEvoSEBI0dO1ZlZWWeba2trSorK1NeXl6Xf05ra2u7h4cC3tjamuiZEfjhb1aq+5wqahqDXAkAAAg0n5voq1atUmFhoRYuXKiNGzdq9OjRKigoUFVVldf9m5qaNHHiRO3fv18vv/yydu3apRUrVmjw4MGnXTwAAJGqouaYNhLl0qnvjnKviZkZD+DkCgsLtWLFCj333HPasWOHbr/9dtXX12vmzJmSpBkzZrR78GhRUZFKS0u1d+9e7dixQ48++qj+9Kc/6d///d+DdQoIE+aUdmZq5DXRmUQHACB6+ZyJvmTJEs2ePdvzC/fy5ctVXFyslStXau7cuR32X7lypY4cOaL333/fkyGWk5NzelUDABDhXtvqnrAed2Y/oly8KBiZoQX/2KZNX9ToYM0xDU6NvNgAoCdNmzZNhw4d0oIFC2Sz2TRmzBitWbPG87DRAwcOKCbm+HxNfX29fvKTn+jLL79Ur169NGzYMP35z3/WtGnTgnUKCBNmnEtmSuT93WV+MFBV55SrpVXxsaSjAgAQLXz6W7+pqUkbNmxQfn7+8R8QE6P8/HyVl5d7PeYf//iH8vLydMcddyg9PV0jR47Ugw8+qJaWlk5fx+l0yuFwtPsDAPA/4rpCx/EoF6bQvWkf6cI0OtAVc+bM0eeffy6n06kPP/xQ48eP93xv3bp1evbZZz1f//rXv9ann36qY8eOeQZiaKCjKyprIjcTPa23VfGxFhmGZHcQ6QIAQDTxqYleXV2tlpYWz8SKKT09XTab90zSvXv36uWXX1ZLS4tKSkp033336dFHH9Wvf/3rTl+nqKhIKSkpnj/Z2dm+lAkA6AbiukJHZe0xbfj8K0nS1SNpondmSluky6ubaaIDQKgwo06yInASPSbGooy28zIn7gEAQHTwOc7FV62trRo0aJCefvppxcbGauzYsTp48KAeeeQRLVy40Osx8+bNU2Fhoedrh8NBIx0A/CwQcV1Op7PdQ+nMO41cLpdcLleXazX39eWYcPLqJwclSWOHpGpAUmyXzzPS1+Xr8s9P00KLtOmLGn1+yKGsk0S6RNvadBXr4l1314V1RLSrdzbL0dgsSZ5mc6TJTOmlL44cU0UNuegAAEQTn5roaWlpio2Nld1ub7fdbrcrIyPD6zGZmZmKj49XbGysZ9vw4cNls9nU1NSkhISEDsdYrVZZrVZfSgMAnAYzruvEh8r5Etf197//XQMHDtSNN96oe+65p901/0RFRUVatGhRh+1r165VUlKSz3WXlpb6fEw4eGFrrCSLhsQc7lY8TqSuizdD+8TqszqLfvfyOl2RZZxy/2haG1+wLt75ui4NDQ1+qgQID+Z0dl9rnPomxge5Gv/IYhIdAICo5FMTPSEhQWPHjlVZWZmmTp0qyT1pXlZWpjlz5ng95lvf+pZeeOEFtba2eh5WtHv3bmVmZnptoAMAAu9kcV07d+70eszevXv15ptv6qabblJJSYn27Nmjn/zkJ3K5XD7faTRp0iQlJyd3uV6Xy6XS0lJNnDjRMwUfKWyORu0rf1uSdNcPrvDpwWyRvC6dOdz/gH5VvFP7W/tr8uTxne4XjWvTFayLd91dF57jg2hnqzXz0CNzCl2SMtvueqpkEh0AgKjic5xLYWGhbrnlFo0bN04XX3yxli5dqvr6es/t/zNmzNDgwYNVVFQkSbr99tv1xBNP6M4779RPf/pTffrpp3rwwQf1n//5nz17JgCAgOpOXFdndxrFx8d3q4HX3eNCWemOLyVJ487spyFpfbv1MyJxXTrz3dGD9UDJTm36olaH6ptPGukiRdfa+IJ18c7XdWENEe3MPPRIbqKbk+gVTKIDABBVfG6iT5s2TYcOHdKCBQtks9k0ZswYrVmzxjO9eODAAc/EuSRlZ2fr9ddf11133aVRo0Zp8ODBuvPOO3XPPff03FkAAE5LoOK6cGolW9wPyZycywNFu2JQcqK+cWZ/rd9/RCVbKvXjS4cGuyQAiFpmxElWysk/0AxnmW3nZn5gAAAAokO3Hiw6Z86cTuNb1q1b12FbXl6ePvjgg+68FAAgAIjrCg222kZ99PlXkqSrc71/eIGOJudm0EQHgBBQGRVxLm2Z6DVMogMAEE1iTr0LACAaFBYWasWKFXruuee0Y8cO3X777R3iuk588Ojtt9+uI0eO6M4779Tu3btVXFysBx98UHfccUewTiHsvbbVPYU+9sx+nkk3nNrVuZmyWKSNB2pUQUYtAASNrW0625fneYQbc8r+cH2TGl0tQa4GAAAESrcm0QEAkYe4ruAjyqV70k+IdHltq02zLjkr2CUBQFQyJ9EzT/F8inCWmhSvxPgYNbpaZattVE5a72CXBAAAAoAmOgDAg7iu4LE7jke5TCbKxWcnRrrQRAeA4PA00SN4Et1isSgrpZf2VterovYYTXQAAKIEcS4AAISA17ZUyjCki4akEuXSDWaky4bPv+JhbwAQBA1Nzao95pIU2ZnoErnoAABEI5roAACEgJItNklEuXRXenKixp3ZT9LxtQQABI45hd7HGqfkxPggV+Nf5ofdfGgLAED0oIkOAECQVTka9a/Pj0iiiX46zLUzs+UBAIFja2uiR/oUuiRltZ1jRS2T6AAARAua6AAABNlrW20yDOnCIanKiuCHsfnb1SPdTXQiXQAg8Cpq3NfdSM5DN5kPTq2s4e8aAACiBU10AACCrHize3J6ClPopyUj5Xiky2tEugBAQNmi4KGiJvMcK5lEBwAgatBEBwAgiIhy6VlEugBAcFQ6zDiXyL+jyrxrrIJJdAAAogZNdAAAgogol551dW6GJOmjz7/yTEUCAPzPjDbJiqJJdEdjs+qdzUGuBgAABAJNdAAAgqh4C1EuPSkzpZfGmpEuW5lGB4BAqYyiB4v2TYxXX2ucJPEMDgAAogRNdAAAgqTK0ah/7XdHuVxNE73HTCHSBQACrtKTiR4dd1Vlpro/LKio4a4nAACiAU10AACCZM02d5TLmOxUDSbKpcecGOlid9DcAAB/a2hqVu0xl6TjzeVIZ35YwCQ6AADRgSY6AABBUryZKBd/MCNdDEN6jWl0APA78xkUvRNiPTEnkS6LSXQAAKIKTXQAAIKgqq5R6z1RLhlBribyTG77YKKYJjoA+J0nyiW1lywWS5CrCQwm0QEAiC400QEACILXt7qjXEZnp+qMfknBLifiTCbSBQAC5ngeenREuUjHz9U8dwAAENloogMAEATmhPQUptD9IjOlly4akkqkCwAEgK1tGjsjOXqa6FltzzKpqGESHQCAaEATHQCAAKuqa9SH+9xRLpPJQ/cbc21LttiCXAkARLaKE+JcosWJk+iGYQS5GgAA4G800QEACDCiXALDbKL/6/MjqqpzBrkaAIhctqiMc3F/YNDQ1CJHY3OQqwEAAP5GEx0AgAAjyiUwslJ76cK2SJfXt9mDXQ4ARCwz0iQjiprovRJi1S8pXhIPFwUAIBrQRAcAIIAO1Tm1vi3K5eqRRLn425S2afTXaKIDgN/Y2h7gnJUSPXEu0vFp9MoaHi4K/1m2bJlycnKUmJio8ePHa/369Sfd/6WXXtKwYcOUmJio3NxclZSUtPu+YRhasGCBMjMz1atXL+Xn5+vTTz/15ykAQESgiQ4AQACt2WZTqyGNPiNF2f2JcvG3q9ua6B99/pVqm4JcDABEoGNNLappcEmKrkl0ScpKdZ9vBZPo8JNVq1apsLBQCxcu1MaNGzV69GgVFBSoqqrK6/7vv/++pk+frlmzZunjjz/W1KlTNXXqVG3dutWzz29/+1v993//t5YvX64PP/xQvXv3VkFBgRob+TAIAE4mLtgFAAAQTUo2u6NceKBoYAxui3T5+ECNNh+xaHqwCwKACGNGmfROiFVyYnT985JJdPjbkiVLNHv2bM2cOVOStHz5chUXF2vlypWaO3duh/0fe+wxXXXVVbr77rslSQ888IBKS0v1xBNPaPny5TIMQ0uXLtX8+fN13XXXSZL++Mc/Kj09XatXr9YNN9zgt3MxDEMNTc1ytkgNTc2KNyx+e61w43KxLt6wLp1jbbwz18VfD/yOrt9yAAAIouqjTn2477AkmuiBNCU3Ux8fqNGmw9yABwA9zXyoaEZKoiyW6PqHfCaT6PCjpqYmbdiwQfPmzfNsi4mJUX5+vsrLy70eU15ersLCwnbbCgoKtHr1aknSvn37ZLPZlJ+f7/l+SkqKxo8fr/Ly8k6b6E6nU07n8Ye0OxwOSZLL5ZLL5erS+TQ0NWv0A29KitMv1r/ZpWOiC+viHevSOdbGuzh95ztOpfjwO0lXr2M00QEACJA1W91RLqOIcgmoq3Mz9eviHfrMIVXVOTW4f3ywSwKAiFHZ1kTPjLI8dOl4BjyT6PCH6upqtbS0KD09vd329PR07dy50+sxNpvN6/42m83zfXNbZ/t4U1RUpEWLFnXYvnbtWiUlde13WmeLRAsKQCC8+eabssZ2ff+GhoYu7ccVDACAACnZQpRLMAxO7aXRZ6Toky9rtXa7XTMv6RPskgAgYphxLplRlocuHT/nSibREeHmzZvXbsLd4XAoOztbkyZNUnJycpd+hmEY+s53nHrzzTf1ne98R/HxtKNMLlcz6+IF69I51sY7c12mFOQrISGhy8eZd9ecCisNAEAAVB916oO97iiXKTTRA+7qken65MtavbbVrpmXnB3scgAgYhyfRI++JnpWatskem2jDMOIujgb+FdaWppiY2Nlt9vbbbfb7crIyPB6TEZGxkn3N/+v3W5XZmZmu33GjBnTaS1Wq1VWq7XD9vj4eMXHd/0OvxSLRdZYKaV3ok/HRTqXy8W6eMG6dI618c5cl4SEBJ/Wpav7Eg4KAEAAvL6NKJdgumqE+7blf33+larquO0eAHrK8Uz06ItzSU9OlMUiOZtbdaS+KdjlIMIkJCRo7NixKisr82xrbW1VWVmZ8vLyvB6Tl5fXbn9JKi0t9ex/1llnKSMjo90+DodDH374Yac/EwDgRhMdAIAAKN5MlEswDU7tpTP7GDIM6fWtnWd+AgB8U2FOoqdG3yR6QlyM0vq4p3PNiXygJxUWFmrFihV67rnntGPHDt1+++2qr6/XzJkzJUkzZsxo9+DRO++8U2vWrNGjjz6qnTt36v7779dHH32kOXPmSJIsFot+9rOf6de//rX+8Y9/aMuWLZoxY4aysrI0derUYJwiAIQN4lwAAPAzolxCw5gBrfr8aKyKt1Tq5rycYJcDABHBFsWZ6JKUlZKoQ3VOVdQc08jBKcEuBxFm2rRpOnTokBYsWCCbzaYxY8ZozZo1ngeDHjhwQDExx2cjJ0yYoBdeeEHz58/Xvffeq3PPPVerV6/WyJEjPfv84he/UH19vW699VbV1NTokksu0Zo1a5SYGJ3/GwaArqKJDgCAn5lRLrmDiXIJptH9Df39c2n9viM6VOfUwL4dsz0BAF13rKlFXzW4JEmZydEX5yJJmSm99MmXtUyiw2/mzJnjmST/unXr1nXYdv311+v666/v9OdZLBb96le/0q9+9aueKhEAogJxLgAA+FnJFqJcQsGARGnU4GS1GtKabUS6AMDpsjncjeOkhFgl94rO+ayMtgn8iraJfAAAEJloogMA4EeHjzpV/hlRLqHi6pEZkqSStox6AED3VbY1jjNSEmWxWIJcTXBktWXBV9YwiQ4AQCSjiQ4AgB+9vs2uVkMaOThZQwYQ5RJsV41wZ4h+uO+wqo86g1wNAIQ3s3GclRKdUS6SO85FOv6BAgAAiEw00QEA8COiXELLGf16afQZKe5Il61EugDA6TDjXDKi9KGi0vFJ9Aom0QEAiGg00QEA8JMj9U0q30uUS6gxP9AoJtIFAE6LOX2dGcVNdHMS3e5oVEurEeRqAACAv9BEBwDAT17fZlNLq6ERWck6c0DvYJeDNmYTnUgXADg9ZpxLZhTHuQzqa1WMRWpuNfg7BQCACEYTHQAAPzGjXKaMYgo9lGT3T9IoIl0A4LRV1ppN9OidRI+LjVF6shnpQi46AACRiiY6AAB+cKS+Se9/RpRLqDKn0c0POgAAvjPjXKI5E106/iGC+aECAACIPDTRAQDwA6JcQpv5wcYHe4l0AYDuaHS16KsGlyQpK4rjXCQpM9V9/kyiAwAQuWiiAwDgB+aE82Sm0ENSdv8k5Q52R7q8vo1IFwDwla1t6rpXfKySe8UFuZrgymISHQCAiEcTHQCAHkaUS3gg0gUAuq+iLcolMzVRFoslyNUEl/lgVTPeBgAARB6a6AAA9LC1bVEuF2QmKyeNKJdQZX7AUf7ZYR0m0gVRYNmyZcrJyVFiYqLGjx+v9evXd7rvihUrdOmll6pfv37q16+f8vPzT7o/oo+Nh4p6ZKWaDxZlEh0AgEhFEx0AgB5W3DbZPGUUU+ihbMiAEyNd7MEuB/CrVatWqbCwUAsXLtTGjRs1evRoFRQUqKqqyuv+69at0/Tp0/XWW2+pvLxc2dnZmjRpkg4ePBjgyhGqzOiSjOTozkOXmEQHACAaRHd4HQAAPeyrE6JcyEMPfZNzM7XlYK1KtlTqxvFDgl0O4DdLlizR7NmzNXPmTEnS8uXLVVxcrJUrV2ru3Lkd9n/++efbff373/9ef/3rX1VWVqYZM2Z02N/pdMrpPH5Hh8PhkCS5XC65XK4u12nu68sx0SLU1ubgV/WSpPS+CUGtKRTWZWBv9z+rq+qcamh0Kj42+LNqobAuoaq7a8NaAkB0o4kOAEAPWrvdHeUyPDNZZxHlEvKm5Gbq4TU79f5n1Tp81KkBfazBLgnocU1NTdqwYYPmzZvn2RYTE6P8/HyVl5d36Wc0NDTI5XKpf//+Xr9fVFSkRYsWddi+du1aJSUl+VxzaWmpz8dEi1BZm82fxkiKUfUXn6qkZHewywnqurQaUqwlVi2GRav+sUb9Q+ivklB5v4QiX9emoaHBT5UAAMIBTXQAAHpQ8RabJGlKbkaQK0FXDBmQpJGDk7X1oEOvb7MzjY6IVF1drZaWFqWnp7fbnp6erp07d3bpZ9xzzz3KyspSfn6+1+/PmzdPhYWFnq8dDocnAiY5ObnLtbpcLpWWlmrixImKj4/v8nHRINTWZvm+ckl1yp8wTlecPzBodYTKujy66x19+dUxDbsoT+PO7Be0Okyhsi6hqLtrY95hAwCITjTRAQDoITUNTXp/T7UkolzCyeTcTG096CDSBejEQw89pBdffFHr1q1TYqL3h0harVZZrR3Hb+Pj47vVwOvucdEgVNbGXueO78ke0Cck6gn2umSl9tKXXx1T1VFXSKyHKdjrEsp8XRvWEQCiW/DD2gAAIWPZsmXKyclRYmKixo8fr/Xr13fpuBdffFEWi0VTp071b4Ehbu02u5rbolyGDuwT7HLQRVPaPvAo33tYR+qbglwN0PPS0tIUGxsru739A3TtdrsyMk5+18zixYv10EMPae3atRo1apQ/y0QYaXS1eK6XmSneP1iJNllt62A+cBUAAEQWmugAAEnSqlWrVFhYqIULF2rjxo0aPXq0CgoKVFVVddLj9u/fr//6r//SpZdeGqBKQ9erWyolEeUSbs4c0FsjspLV0mro9W22YJcD9LiEhASNHTtWZWVlnm2tra0qKytTXl5ep8f99re/1QMPPKA1a9Zo3LhxgSgVYcLW1ihOjI9RSi+mcyUpM7WXJKmy5liQKwEAAP5AEx0AIElasmSJZs+erZkzZ+qCCy7Q8uXLlZSUpJUrV3Z6TEtLi2666SYtWrRIQ4cODWC1oYcol/Bm/jcrafsgBIg0hYWFWrFihZ577jnt2LFDt99+u+rr6zVz5kxJ0owZM9o9ePThhx/Wfffdp5UrVyonJ0c2m002m01Hjx4N1ikghJjT1lkpvWSxWIJcTWgwJ9ErmEQHACAidSsTfdmyZXrkkUdks9k0evRoPf7447r44otPedyLL76o6dOn67rrrtPq1au789IAAD9oamrShg0b2jVQYmJilJ+fr/Ly8k6P+9WvfqVBgwZp1qxZeuedd075Ok6nU06n0/O1+YAml8sll8vV5XrNfX05xt9KNleoudXQsPQ+yk61BqW2UFyXUHGqtSkYPlCPvL5L7392WPaaevXvnRDI8oKG94x33V2XUF7HadOm6dChQ1qwYIFsNpvGjBmjNWvWeB42euDAAcXEHJ+veeqpp9TU1KQf/OAH7X7OwoULdf/99weydIQgm8M9bZ1BlItHZkrbJHotk+gAAEQin5vo5u3+y5cv1/jx47V06VIVFBRo165dGjRoUKfHcbs/AISu6upqtbS0eJoppvT0dO3cudPrMe+++67+8Ic/aNOmTV1+naKiIi1atKjD9rVr1yopKcmnmiWptLTU52P85U87YiTFaGhCrUpKSoJaSyitS6g52doMTorVwQbpd38pU166EcCqgo/3jHe+rktDQ4OfKukZc+bM0Zw5c7x+b926de2+3r9/v/8LQtiqqHFPW5uNY0iZqW2Z6DVMogMAEIl8bqKfeLu/JC1fvlzFxcVauXKl5s6d6/WYE2/3f+edd1RTU3NaRQMAgquurk4333yzVqxYobS0tC4fN2/ePBUWFnq+djgcys7O1qRJk5ScnNzln+NyuVRaWqqJEycqPj74Waw1DS79/MN1kgzd+b1va+jA3kGpI9TWJZR0ZW0O9N6rR9/Yoy9jBmny5LEBrjA4eM941911Me+uASKdmYnOQ0WPy2r7QOFwfZMaXS1KjI8NckUAAKAn+dRED/bt/gAA/0hLS1NsbKzsdnu77Xa7XRkZHR+S+dlnn2n//v265pprPNtaW1slSXFxcdq1a5fOPvvsDsdZrVZZrdYO2+Pj47vVwOvucT3trU9t7iiXjL46Pys12OWEzLqEopOtzTVjztCjb+xR+d4jOtpkqF+URLpIvGc64+u6sIaIFmYmOnEux6UmxSsxPkaNrlbZahuVkxacD9QBAIB/+PRg0ZPd7m+z2bweY97uv2LFii6/TlFRkVJSUjx/srOzfSkTAOCjhIQEjR07VmVlZZ5tra2tKisrU15eXof9hw0bpi1btmjTpk2eP9dee62uuOIKbdq0Kequ2+bDKHmgaHjLSeutCzKT1dJqaO1277/XAACO535npdJEN1ksFs80egW56AAARByfmui+Op3b/Wtraz1/vvjiCz9WCQCQpMLCQq1YsULPPfecduzYodtvv1319fWe+K4ZM2Z47kRKTEzUyJEj2/1JTU1V3759NXLkSCUkRM8Eb22DS+/tqZZEEz0STBnl/m/46ubKIFcCAKHLjHPJSCYT/UTkogMAELl8inMJ9u3+AAD/mTZtmg4dOqQFCxbIZrNpzJgxWrNmjefuowMHDigmxq+fvYaltdttcrW4o1zOGdQn2OXgNE3OzdQjr+/S+58d1lf1TVEV6QIAXdHoatHh+iZJZKJ/nfmg1Uom0QEAiDg+NdFPvN1/6tSpko7f7j9nzpwO+5u3+59o/vz5qqur02OPPRZ1t/sDQKibM2eO1+u5JK1bt+6kxz777LM9X1AYIMolspyV1lvDM5O1o9KhtdttmvaNIcEuCQBCit3hnrJOjI9RahLPAThRVtuHChW1TKIDABBpfGqiS+7b/W+55RaNGzdOF198sZYuXdrhdv/BgwerqKjIc7v/iVJTUyWpw3YAAMJNbYNL7xLlEnGm5GZoR6VDxVtoogPA15kPFc1M6SWLxRLkakJLZmrbJHoNk+gAAEQan5vo3O4PAICbGeVyfjpRLpFkcm6mFq/drff3VKumoUmpSUS6AIDJjCohyqUjc00qmUQHACDi+NxEl7jdHwAAiSiXSDV0YB8Ny+irnbY6rd1m1w+/QfwcAJjMBnEGTfQOstom0SuYRAcAIOIwMg4AQDfUHjse5TJlVMeHayO8TWn7YKS47YMSAICbzRPnQhP968w1cTQ2q97ZHORqAABAT6KJDgBAN5Rut8vVYui89D46Z1DfYJeDHjZ5lLuJ/l5bpAsAwK2i5ngmOtrrmxivvlb3zd5m7A0AAIgMNNEBAOgGolwi29ltkS7NrYbWbrcHuxwACBk2B5noJ5OZ6l4X88MGAAAQGWiiAwDgo9pjLr3z6SFJx2M/EHnM/7YlRLoAgEdlDZnoJ2NO6DOJDgBAZKGJDgCAj95oi3I5d1AfnZtOlEukMiNd3v2USBcAkKRGV4sO17uvh1nEuXiVxSQ6AAARiSY6AAA+MieTp4xiCj2SEekCAO1VOZySJGtcjFKT4oNcTWhiEh0AgMhEEx0AAB84Gl1659NqSUS5RIPJRLoAgEdFW2M4K7WXLBZLkKsJTWZWfGUtk+gAAEQSmugAAPjgje12NbW0EuUSJcwm+nt7qlXb4ApyNQAQXLa2xnBGMnnonclKNSfRaaIDABBJaKIDAOCD4s3uieTJTKFHhXMG9dH56X3lajG0drst2OUAQFCZjeFMHiraKc8kes0xGYYR5GoAAEBPoYkOAEAXtYtyIQ89ahDpAgBuZs53ZipN9M6Ymej1TS1yNDYHuRoAANBTaKIDANBFZpTLOYP66DyiXKLGlFEZkqR391Sr9hiRLgCilzmJntHWKEZHvRJi1a/toas8XBQAgMhBEx0AgC4yJ5GJcoku5wzqq/PS+8jVYqh0uz3Y5QBA0JiZ6Jlkop+UOY1eWUMuOgAAkYImOgAAXeBodOnt3W1RLjTRo86U3CxJRLoAiG7EuXRNVtv6VDCJDgBAxKCJDgBAF5TtcEe5nD2wt85L7xPschBgZqTLO58eItIFQFRyNreo+miTpOOT1vCOSXQAACIPTXQAALqgeLNNknsK3WKxBLkaBBqRLgCinb3WKUmyxsV4Mr/hXSaT6AAARBya6AAAnEJdo0tvf3pIkjRlVFaQq0GwmFn4RLoAiEaeKJeURD5MPoUsJtHRA44cOaKbbrpJycnJSk1N1axZs3T06NGTHtPY2Kg77rhDAwYMUJ8+ffT9739fdvvxD/8/+eQTTZ8+XdnZ2erVq5eGDx+uxx57zN+nAgARgSY6AACnULajSk3NRLlEOzMLn0gXANHI5nA3hDNSyEM/lcy2NapkEh2n4aabbtK2bdtUWlqqV199VW+//bZuvfXWkx5z11136f/+7//00ksv6Z///KcqKir0b//2b57vb9iwQYMGDdKf//xnbdu2Tb/85S81b948PfHEE/4+HQAIe3HBLgAAgFD36mb35DFRLtHt3PS+OndQH31adVRvbLfr+2PPCHZJABAwFW1T1VnkoZ9SVmrbJHptowzD4HcH+GzHjh1as2aN/vWvf2ncuHGSpMcff1yTJ0/W4sWLlZXV8c7I2tpa/eEPf9ALL7yg73znO5KkZ555RsOHD9cHH3ygb37zm/qP//iPdscMHTpU5eXleuWVVzRnzpxO63E6nXI6nZ6vHQ6HJMnlcsnl6vpggbmvL8dEA9bFO9alc6yNd91dl67uTxMdAICTODHKZfKozCBXg2CbnJupx8o+VcmWSproAKKKrW2qmkn0U0tPdq+Rs7lVR+qbNKCPNcgVIdyUl5crNTXV00CXpPz8fMXExOjDDz/U9773vQ7HbNiwQS6XS/n5+Z5tw4YN05AhQ1ReXq5vfvObXl+rtrZW/fv3P2k9RUVFWrRoUYfta9euVVJSUldPy6O0tNTnY6IB6+Id69I51sY7X9eloaGhS/vRRAcA4CTMKJehA3vr/PS+wS4HQTZllLuJ/s6n1XI0upScyMP1AESHylr3JHomTfRTSoiLUVofq6qPOlVZ20gTHT6z2WwaNGhQu21xcXHq37+/bDZbp8ckJCQoNTW13fb09PROj3n//fe1atUqFRcXn7SeefPmqbCw0PO1w+FQdna2Jk2apOTk5C6ckZvL5VJpaakmTpyo+Hh+hzKxLt6xLp1jbbzr7rqYd9ecCk10AABOongLUS447rz0vjpnUB/taYt0+beLmEYHEB2ON9GJc+mKrNREVR91qqLmmEYOTgl2OQgRc+fO1cMPP3zSfXbs2BGQWrZu3arrrrtOCxcu1KRJk066r9VqldXa8cOg+Pj4bjXwuntcpGNdvGNdOsfaeOfrunR1X5roAAB0oq7RpX/ubotyySXKBW6TczP1322RLjTRAUQLs4lOnEvXZKYkavOXtZ51AyTp5z//uX70ox+ddJ+hQ4cqIyNDVVVV7bY3NzfryJEjysjI8HpcRkaGmpqaVFNT024a3W63dzhm+/btuvLKK3Xrrbdq/vz53ToXAIg2NNEBAOjEmzvbolzSemtYBlEucPvuKHcT/e3dRLoAiA7O5hZVH3U/VJA4l64xJ/Yr2rLkAUkaOHCgBg4ceMr98vLyVFNTow0bNmjs2LGSpDfffFOtra0aP36812PGjh2r+Ph4lZWV6fvf/74kadeuXTpw4IDy8vI8+23btk3f+c53dMstt+g3v/lND5wVAESHmGAXAABAqCre7I5ymUyUC05gRro0tbSqbIc92OUAgN9VOdwN9IS4GPXvnRDkasJDVqr7w4bKGibR4bvhw4frqquu0uzZs7V+/Xq99957mjNnjm644QZlZWVJkg4ePKhhw4Zp/fr1kqSUlBTNmjVLhYWFeuutt7RhwwbNnDlTeXl5noeKbt26VVdccYUmTZqkwsJC2Ww22Ww2HTp0KGjnCgDhgiY6AABeHHU2a11blMuUUUS5oD0z3sf8oAUAItmJDxXlQ+WuMSfRK5lERzc9//zzGjZsmK688kpNnjxZl1xyiZ5++mnP910ul3bt2qWGhgbPtt/97nf67ne/q+9///v69re/rYyMDL3yyiue77/88ss6dOiQ/vznPyszM9Pz5xvf+EZAzw0AwhFxLgAAeFG2w06UCzo1JZdIFwDRw2wEE+XSdeYkegWT6Oim/v3764UXXuj0+zk5OTIMo922xMRELVu2TMuWLfN6zP3336/777+/J8sEgKjBJDoAAF6UbCHKBZ07L72Pzh7Ym0gXAFHh+CR6ryBXEj7MtbI7GtXSapxibwAAEOpoogMA8DVHnc16a5c7ysWM7QBOZLFYNMUT6WILcjUA4F+2tiZ6BpPoXTaor1UxFqm51fA8lBUAAIQvmugAAHyNGeVyVlpvDc8kygXeTW7Lyn/700Oqa3QFuRoA8J+KGnecSxZN9C6Li41RerIZ6UIuOgAA4Y4mOgAAX3M8yiWDKBd06vz0vho6sLeamltVtqMq2OUAgN/YHOYkOnEuvjAz5M04HAAAEL5oogMAcIJ6Z7PWEeWCLmgX6dL2wQsARCLz4Zg8WNQ3manuDx2YRAcAIPzRRAcA4ARlO6vkbG5VzoAkXZCZHOxyEOLMD1r+uZtIFwCRqam51ZPpTRPdN1lMogMAEDFoogMAcIKSzWaUSyZRLjilYRnHI13e3EmkC4DIY2+LckmIjVH/3glBria8ZLbF31TWMokOAEC4o4kOAECbemez3trlboQS5YKuODHS5dXNRLoAiDzmFHVGSiIfLvsoK9V8sCiT6AAAhDua6AAAtHnzhCiXEVlEuaBriHQBEMnMKWqiXHzHJDoAAJGDJjoAAG1KthDlAt8Ny+iroWlEugCITLZaHiraXZltk+hVdU65WlqDXA0AADgdNNEBAJA7ysVsgBLlAl9YLBbPe6aYSBcAEcaMc8lM7RXkSsJPWm+r4mMtMozj2fIAACA80UQHAEDHo1zOJMoF3WA20dftPqSjzuYgVwMAPYc4l+6LibEoo23dzA8jAABAeKKJDgCAiHLB6Rme2VdntUW6lO2wB7scAOgxZpxLRjJN9O4wc9ErashFBwAgnNFEBwBEvYamZr21yx3lMoUoF3SDO9IlQ9LxD2SAULJs2TLl5OQoMTFR48eP1/r16zvdd9u2bfr+97+vnJwcWSwWLV26NHCFIuRUtDXRs4hz6ZYsJtEBAIgINNEBAFHvzZ1VanS1akh/olzQfZ5Il12HVE+kC0LIqlWrVFhYqIULF2rjxo0aPXq0CgoKVFXl/UG4DQ0NGjp0qB566CFlZGQEuFqEkqbmVlUfdUqSJ5YEvjGz5CuZRAcAIKzRRAcARD2iXNATLshMVs6AJDmbW1W203tzEgiGJUuWaPbs2Zo5c6YuuOACLV++XElJSVq5cqXX/b/xjW/okUce0Q033CCr1RrgahFK7I5GGYaUEBuj/kkJwS4nLJmT6BVMogMAENbigl0AAADB1NDUrDd3EuWC02exWDRlVKaWvfWZSjZX6trRWcEuCVBTU5M2bNigefPmebbFxMQoPz9f5eXlPfY6TqdTTqfT87XD4ZAkuVwuuVyuLv8cc19fjokWwVibL48clSSlJ1vV0tKslpaAvXSXhfp7ZmCfeElSRU1DQGsM9XUJpu6uDWsJANGNJjoAwGPZsmV65JFHZLPZNHr0aD3++OO6+OKLve67YsUK/fGPf9TWrVslSWPHjtWDDz7Y6f6h6q2dhzxRLiMHE+WC0zM5191Ef2tXleqdzept5VctBFd1dbVaWlqUnp7ebnt6erp27tzZY69TVFSkRYsWddi+du1aJSUl+fzzSktLe6KsiBTItdlYbZEUq4TmBpWUlATsdbsjVN8zX9ZLUpw+r3IEZQ1DdV1Cga9r09DQ4KdKAADhgH/ZAQAkHc/MXb58ucaPH6+lS5eqoKBAu3bt0qBBgzrsv27dOk2fPl0TJkxQYmKiHn74YU2aNEnbtm3T4MGDg3AG3UOUC3qSGemy/3CDynZWMY2OqDFv3jwVFhZ6vnY4HMrOztakSZOUnNz1DyhdLpdKS0s1ceJExcfH+6PUsBWMtTn47j7p00814qwsTZ6cG5DX9FWov2e+amjSI5vX6WizRVdOLJA1PjYgrxvq6xJM3V0b8w4bAEB0ookOAJDUPjNXkpYvX67i4mKtXLlSc+fO7bD/888/3+7r3//+9/rrX/+qsrIyzZgxw+trhNrt/u4oF7skqWD4wLC/TZdbtzsXyLW5akS6lr+9T69+clBXXzDQ7693OnjPeBdJt/qnpaUpNjZWdru93Xa73d6jDw21Wq1e89Pj4+O71cDr7nHRIJBrU1Xnfk9n9UsK+f8eofqeGZgcp8T4GDW6WlXd0KKctMA+oDVU1yUU+Lo2rCMARDea6ACAHsnMbWhwZ33279+/031C7Xb/jw9bdMwVqwFWQ59velcHPjmtHxcyuHW7c4FYm75tt+6/tcOuv/1fiayBGTo8LbxnvIuEW/0TEhI0duxYlZWVaerUqZKk1tZWlZWVac6cOcEtDiHP1vYwzMyUwDZ+I4nFYlFWSi/tra5XRe0x5aT1DnZJAACgG2iiAwB6JDP3nnvuUVZWlvLz8zvdJ9Ru91/z4ieS7Pq3b5ylKQXndfvnhApu3e5cINfGMAyt+vJdHThyTAk5F2lybs9N+/Y03jPeRdqt/oWFhbrllls0btw4XXzxxVq6dKnq6+s9dx7NmDFDgwcPVlFRkST3B6vbt2/3/P8HDx7Upk2b1KdPH51zzjlBOw8EXmXtMUk00U9XZmqi9lbXq7KmMdilAACAbqKJDgA4bQ899JBefPFFrVu3TomJnf9DO5Ru9z/W1KJ1u6slSdeMGRxRDURu3e5coNZmyqgsPbXuM72+vUpTL8r2++udLt4z3kXKrf7Tpk3ToUOHtGDBAtlsNo0ZM0Zr1qzxfHB64MABxcTEePavqKjQhRde6Pl68eLFWrx4sS677DKtW7cu0OUjiCo9k+i9glxJeDPXz/xQAgAAhB+a6ACA08rMXbx4sR566CG98cYbGjVqlD/L7FFv7arSMVeLzujXS7mDU4JdDiLMlNxMPbXuM721q0oNTc1KSuBXLgTXnDlzOo1v+XpjPCcnR4ZhBKAqhLKm5lYdOup+jkkGk+inJatt/SpqmUQHACBcxZx6FwBApDsxM9dkZubm5eV1etxvf/tbPfDAA1qzZo3GjRsXiFJ7TPGWSknuZqfFYglyNYg0I7KSNaR/khpdrXpzZ1WwywEAn1XVNcowpITYGA3onRDscsJaZmrbJHoNk+gAAISrbjXRly1bppycHCUmJmr8+PFav359p/uuWLFCl156qfr166d+/fopPz//pPsDAIKjsLBQK1as0HPPPacdO3bo9ttv75CZe+KDRx9++GHdd999WrlypXJycmSz2WSz2XT06NFgnUKXHWtq0Zs73I3NybmZQa4GkchisXjeWyVtH9gAQDgxHyqanmJVTAwfNp8OM1O+kkl0AADCls9N9FWrVqmwsFALFy7Uxo0bNXr0aBUUFKiqyvuU1bp16zR9+nS99dZbKi8v9zxA7uDBg6ddPACg50ybNk2LFy/WggULNGbMGG3atKlDZm5l5fFm4FNPPaWmpib94Ac/UGZmpufP4sWLg3UKXbbuhCiXUWcQ5QL/+O4odxP9zZ3uSBcACCcV5KH3mKy2SfQKJtEBAAhbPgd0LlmyRLNnz/ZMJi5fvlzFxcVauXKl5s6d22H/559/vt3Xv//97/XXv/5VZWVlmjFjRjfLBgD4gy+Zufv37/d/QX5ClAsCwYx0OXCkQW/urNJ3R2UFuyQA6DJb20MwM8lDP23mGjoam1XvbFZvK8/JAAAg3Pg0id7U1KQNGzYoPz//+A+IiVF+fr7Ky8u79DMaGhrkcrnUv3//TvdxOp1yOBzt/gAA0BOONbV4MqqJcoE/EekCIJyZ0SM8VPT09U2MV9+2xnllLdPoAACEI5+a6NXV1WppafHc2m9KT0+XzWbr0s+45557lJWV1a4R/3VFRUVKSUnx/MnOzvalTAAAOrVuV5UamohyQWBMySXSBUB4qqxxN9GziHPpEZmp7g8jKmrIRQcAIBx168Gi3fXQQw/pxRdf1N/+9jclJnY+0TBv3jzV1tZ6/nzxxRcBrBIAEMnMKJfJRLkgAEYOTlZ2/15qdLXqrZ2Hgl0OAHRZpYNJ9J5kZssziQ4AQHjyqYmelpam2NhY2e32dtvtdrsyMjJOeuzixYv10EMPae3atRo1atRJ97VarUpOTm73BwCA09XoIsoFgUWkC4BwVVlDJnpPymISHQCAsOZTEz0hIUFjx45VWVmZZ1tra6vKysqUl5fX6XG//e1v9cADD2jNmjUaN25c96sFAOA0mFEug1N7aTRRLgiQEyNdjjW1BLkaADg1V0urDh11Sjo+QY3TwyQ6AADhzec4l8LCQq1YsULPPfecduzYodtvv1319fWaOXOmJGnGjBmaN2+eZ/+HH35Y9913n1auXKmcnBzZbDbZbDYdPXq0584CAIAuKN7ifn7H5NwMolwQMLmDU3RGv1465mrRW7uqgl0OAJxSVZ1ThiHFx1o0oHdCsMuJCOZEv/nAVgAAEF58bqJPmzZNixcv1oIFCzRmzBht2rRJa9as8Txs9MCBA6qsPH678lNPPaWmpib94Ac/UGZmpufP4sWLe+4sAAA4hUZXi8p2uOPIiHJBIFksFs80ejGRLgDCgBnlkp6cqJgYPnTuCVmp5iQ6TXQAAMJRXHcOmjNnjubMmeP1e+vWrWv39f79+7vzEgAA9Kh1uw55olzGZKcGuxxEmcm5mfqft/fqzR3uSJdeCbHBLgkAOmU2erOIcukxnkn0mmMyDIM74gAACDM+T6IDABCOzIc6EuWCYBh1BpEuAMKHra2JnsFDRXuMmYle39QiR2NzkKsBAAC+ookOAIh4RLkg2Ih0ARBOKtoefpmZShO9p/RKiFW/pHhJPFwUAIBwRBMdABDx/rn7kOqJckGQmR/gmJEuABCqzEn0zGSa6D3JnEavrCEXHQCAcEMTHQAQ8Yo3uyd/rx5JlAuC58RIl3VEugAIYZWeOBcy0XtSVttkfwWT6AAAhB2a6ACAiNYuymUUUS4IHovF4plGJ9IFQCgz40ayiHPpUUyiAwAQvmiiAwAimhnlkpWSqAuJckGQeSJddlap0UWkC4DQ42ppVVWdUxIPFu1pmUyiAwAQtmiiAwAiWknbxO/VuZlEuSDoRp+RosGpvdTQRKQLgNBUVeeUYUjxsRal9bYGu5yIksUkOgAAYYsmOgAgYrmjXNyNSnMCGAgmd6RLhiSpeIstyNUAQEe2tinp9ORExcTw4XNPMif7K5lEBwAg7NBEBwBErLd3H9JRZ7MyiXJBCDE/0CnbYSfSBUDIMR8qmkmUS4/zTKLXNsowjCBXAwAAfEETHQAQsTxRLiMzmaZDyBiTnUqkC4CQZUaNmA/BRM9JT3HH4zibW3WkvinI1SDUHTlyRDfddJOSk5OVmpqqWbNm6ejRoyc9prGxUXfccYcGDBigPn366Pvf/77sdrvXfQ8fPqwzzjhDFotFNTU1fjgDAIgsNNEBABGp0dWiN9qiXKaMIsoFoYNIFwChjEl0/7HGxSqtj7uRbq4z0JmbbrpJ27ZtU2lpqV599VW9/fbbuvXWW096zF133aX/+7//00svvaR//vOfqqio0L/927953XfWrFkaNWqUP0oHgIgUF+wCAADwh3c+rSbKBSFrcm6mVryzzxPpkhgfG+ySAECSZHO487ozaKL7RVZqoqqPOlVRc0wjB6cEuxyEqB07dmjNmjX617/+pXHjxkmSHn/8cU2ePFmLFy9WVlZWh2Nqa2v1hz/8QS+88IK+853vSJKeeeYZDR8+XB988IG++c1vevZ96qmnVFNTowULFui11147ZT1Op1NOp9PztcPhkCS5XC65XK4un5e5ry/HRAPWxTvWpXOsjXfdXZeu7k8THQAQkYo3V0giygWhyYx0OVhzTOt2HdJVIzOCXRIASJIqiHPxq8yURG3+spZJdJxUeXm5UlNTPQ10ScrPz1dMTIw+/PBDfe973+twzIYNG+RyuZSfn+/ZNmzYMA0ZMkTl5eWeJvr27dv1q1/9Sh9++KH27t3bpXqKioq0aNGiDtvXrl2rpKQkX09PpaWlPh8TDVgX71iXzrE23vm6Lg0NDV3ajyY6ACDitI9yoTmJ0GOxWHT1yAz9/t19KtlSSRMdQMiwEefiV+aHExW1x4JcCUKZzWbToEGD2m2Li4tT//79ZbN5j4Kz2WxKSEhQampqu+3p6emeY5xOp6ZPn65HHnlEQ4YM6XITfd68eSosLPR87XA4lJ2drUmTJik5ObnL5+VyuVRaWqqJEycqPj6+y8dFOtbFO9alc6yNd91dF/PumlOhiQ4AiDhmlEtGcqIuzO4X7HIAryaPytTv3yXSBUDoaG5pVVUdTXR/ykp1r6v5AFdEl7lz5+rhhx8+6T47duzw2+vPmzdPw4cP17//+7/7dJzVapXVau2wPT4+vlsNvO4eF+lYF+9Yl86xNt75ui5d3ZcmOgAg4pRsqZQkXZ2bQZQLQtaF2anKSklURW2j/rn7kApGMI0OILiq6pxqNaS4GIvnAZjoWeYkeiWT6FHp5z//uX70ox+ddJ+hQ4cqIyNDVVVV7bY3NzfryJEjysjw/vtCRkaGmpqaVFNT024a3W63e4558803tWXLFr388suSJMMwJElpaWn65S9/6TWyBQDgRhMdABBRnM0temO7XZI0JTczyNUAnbNYLLo6N1N/aIt0oYkOINjMnO705EQ+hPYTcxK9gkn0qDRw4EANHDjwlPvl5eWppqZGGzZs0NixYyW5G+Ctra0aP36812PGjh2r+Ph4lZWV6fvf/74kadeuXTpw4IDy8vIkSX/961917NjxD3D+9a9/6T/+4z/0zjvv6Oyzzz7d0wOAiEYTHQAQUd7ZXa26tiiXi4YQ5YLQNrmtiV62o4pIFwBBZ05Hm41e9DxzEt3uaFRLq6FYPqyAF8OHD9dVV12l2bNna/ny5XK5XJozZ45uuOEGZWVlSZIOHjyoK6+8Un/84x918cUXKyUlRbNmzVJhYaH69++v5ORk/fSnP1VeXp7noaJfb5RXV1d7Xu/rWeoAgPZigl0AAAA9yYxyuWokUS4IfRdmpyozJVFHnc16e/ehYJcDIMqZDxXNaGv0oucN6mtVjEVqbjVUfdQZ7HIQwp5//nkNGzZMV155pSZPnqxLLrlETz/9tOf7LpdLu3btUkNDg2fb7373O333u9/V97//fX37299WRkaGXnnllWCUDwARh0l0AEDEcDa3qLQtyuW7o4hyQeiLibHo6pGZWvnePhVvqdQkIl0ABJEZ58JDRf0nLjZG6cmJqqxtVEXNMaUns9bwrn///nrhhRc6/X5OTo4n09yUmJioZcuWadmyZV16jcsvv7zDzwAAeMckOgAgYrz7KVEuCD9T2j7wMSNdACBYzDgXmuj+Za6v+aEFAAAIfTTRAQARo5goF4QhIl0AhAom0QMjM9Udl1NRc+wUewIAgFBBEx0AEBGczS0q3eaOcplClAvCiBnpIh3P9AeAYKisIRM9ELKYRAcAIOzQRAcARAQzyiU92aqxRLkgzEwZ5c5Cf4NIFwBB0tzSqqo6d1M3i0l0v8ps+5DCjM8BAAChjyY6ACAimFEuV4/MJMoFYefC7H7KSHZHurzzaXWwywEQhQ4ddarVkOJiLBrQxxrsciJaVqr7Q4qKGibRAQAIFzTRAQBhz9ncotLt7iiXyblEuSD8xMRYdHWuexqdSBcAwWA2dNOTExXLh9F+xSQ6AADhhyY6ACDsvbenWnWNzRrU16pxZxLlgvA0pe0DoDe22+VsJtIFQGDZeKhowGS2TaJX1TnlamkNcjUAAKAraKIDAMJe8WabJOnqkRlEuSBsXTTEHelS52zWO7uJdAEQWOZUdAZNdL9L621VfKxFhiHZHUS6AAAQDmiiAwDCWlNzq0q3u5voRLkgnMXEWHTVSCJdAARHZdskelZqryBXEvliYiyeDyvMdQcAAKGNJjoAIKy9t6daDjPKJad/sMsBTsuUUe4PgkqJdAEQYGacS0Yyk+iBYOaiV9SQiw4AQDigiQ4ACGvFbRO7V4/M4EFoCHtjh/RTerKVSBcAAWfGuZCJHhhZTKIDABBWaKIDAMJWU3Or1m4jygWRIybGoqtHut/LRLoACCSzmZtJnEtAmOtcySQ6AABhgSY6ACBsvb/3sByNzRpIlAsiCJEuAAKtuaVVVXVOSUyiB4o5iV7BJDoAAGGBJjoAIGy9ttUuiSgXRJYTI13e/ZRIFwD+d+ioUy2thuJiLErrYw12OVHBzET//HC9ao+5glwNAAA4lbhgFwAAQHc0t0pv7KiSRJQLIosZ6fLs+/tVvKVSVw5PD3ZJACKcGeWSnpzIh9IBMrifu4m+235UoxetVXb/XhqRmaIRWckaMThZI7JSNKivVRYL/z0AAAgFNNEBAGFpd61FjsZmpfWx6htEuSDCTM51N9HNSBdrXGywSwIQwWxtTfQMolwC5vz0vvr3bw7RWzsP6WDNMX1xxP1nTduzXiQprU+CLshqa6xnuRvrZ/ZPUgwfdAAAEHA00QEAYWnTYfc/IIlyQSQad2Y/DeprVVWdU+/tqdZ3hjGNDsB/KtoebkkeeuDExFj066m5kqSahiZtr3BoW4VD2ypqta3Coc8OHVX10Sa9vfuQ3t59yHNcH2uchmf21YisFF3Q1lw/d1BfJcSR1AoAgD/xNy0AwGPZsmXKyclRYmKixo8fr/Xr1590/5deeknDhg1TYmKicnNzVVJSEpA6XS2t2nLE3TgnygWRyB3pkiFJKt5sO8XeQNeEyzUegWdOotNED47UpARNOCdNs789VEtvuFClhZdp26Kr9LefTNCvp47U9IuHaPQZKbLGxeios1n/2v+Vnn1/v37x8mZN+e93NXLh65ry3+/oFy9/oufe36+P9h9RvbM52KcFAEBEYRIdACBJWrVqlQoLC7V8+XKNHz9eS5cuVUFBgXbt2qVBgwZ12P/999/X9OnTVVRUpO9+97t64YUXNHXqVG3cuFEjR470a63le4+oocWitD4JuvgsolwQmSbnZuq58s+1drtNzuaRRLrgtITTNR6BV+kw41x6BbkSmHolxOrCIf104ZB+nm3NLa367FC9Z1p9W0Wttlc45GhsbvvaIelLSZLFIg20xmpt3WaNPCPVEwkzgAfHAgDQLTTRAQCSpCVLlmj27NmaOXOmJGn58uUqLi7WypUrNXfu3A77P/bYY7rqqqt09913S5IeeOABlZaW6oknntDy5cv9WutrW+2SpIIL0olyQcQal9NfA/tadajOqd+VfqqcAUntvu/tWXMWWb6+4WRfqqWlRVuqLGr8+KBiY+O87hONz7RraWnRJ4csGnmkQWenpwS7nB4RLtf4DZ9/pX8dsqhpU4ViY/ng6ETm+9Ifa7Oj0iFJymISPaTFxcbo/Iy+Oj+jr/7tIvc2wzD05VfHTmisu5vrdodTVY0WFW+1qXjr8TuaMpITPQ31IQN6Kxp/jWppadGB2mBXAQAINzTRAQBqamrShg0bNG/ePM+2mJgY5efnq7y83Osx5eXlKiwsbLetoKBAq1ev7vR1nE6nnE6n52uHw/2PdpfLJZfL1aVaXS2tWrvd3USfOGxAl4+LBuZasCYdhevaXHXBIP3pwy+0/J+f+fFVYvX8Z9v8+PPDVaxy9x/WkP5Jp961Tai+vwJxje+J67skvbD+gP6xJ1Z/3rO1y8dEF/+uzaA+8SH7Pu5MuF7fe1JG33hlnJ+mK89P82yz1dTr+ZK31SvzXO2qqtf2yjrtP9wgm6NRNkejynZWBbHi4BvTP0a3+/ieieb3GACAJjoAQFJ1dbVaWlqUnt7+4YXp6enauXOn12NsNpvX/W22zvObi4qKtGjRog7b165dq6SkrjWqGpql0Skx2htj0Ve7P1LJp106LKqUlpYGu4SQFW5rc45LGpsWI2fLyfczvv711zd04Riv+3Rlpwh2YNdWldi2dHn/hoYGP1bTfYG4xvfE9V2SVGPRsJQoHI0NAem9pAOfvKcvNwe7ku4Jt+t7IAxPlXRst3L6SgV9pcYW6WC9dLDeoi/rLaptCnaFwTO4t+HzeyZUr/EAgMCgiQ4ACJh58+a1m2x0OBzKzs7WpEmTlJyc3OWfc53LpdLSUk2cOFHx8fH+KDUsuViXToXz2tzox58dzuviT91dF3P6Ohr11PV9Iu/JTvG/V+9YF+9Yl85xjQcAdAdNdACA0tLSFBsbK7vd3m673W5XRkaG12MyMjJ82l+SrFarrNaOD7SKj4/v1j/wuntcpGNdOsfaeMe6eOfruoTqGgbiGs/1PXBYG+9YF+9Yl85FyjUeABAYMcEuAAAQfAkJCRo7dqzKyso821pbW1VWVqa8vDyvx+Tl5bXbX3LfSt3Z/gCA4OAaDwAAAJweJtEBAJKkwsJC3XLLLRo3bpwuvvhiLV26VPX19Zo5c6YkacaMGRo8eLCKiookSXfeeacuu+wyPfroo5oyZYpefPFFffTRR3r66aeDeRoAAC+4xgMAAADdRxMdACBJmjZtmg4dOqQFCxbIZrNpzJgxWrNmjefBcgcOHFBMzPEbmCZMmKAXXnhB8+fP17333qtzzz1Xq1ev1siRI4N1CgCATnCNBwAAALqPJjoAwGPOnDmaM2eO1++tW7euw7brr79e119/vZ+rAgD0BK7xAAAAQPeQiQ4AAAAAAAAAQCdoogMAAAAAAAAA0Ama6AAAAAAAAAAAdKJbTfRly5YpJydHiYmJGj9+vNavX3/S/V966SUNGzZMiYmJys3NVUlJSbeKBQAAAAAAAAAgkHxuoq9atUqFhYVauHChNm7cqNGjR6ugoEBVVVVe93///fc1ffp0zZo1Sx9//LGmTp2qqVOnauvWraddPAAAAAAAAAAA/uRzE33JkiWaPXu2Zs6cqQsuuEDLly9XUlKSVq5c6XX/xx57TFdddZXuvvtuDR8+XA888IAuuugiPfHEE6ddPAAAAAAAAAAA/hTny85NTU3asGGD5s2b59kWExOj/Px8lZeXez2mvLxchYWF7bYVFBRo9erVnb6O0+mU0+n0fF1bWytJcjgcvpQLACHJvJYZhhHkSoLPXANfr+8ul0sNDQ1yOByKj4/3R2lhiXXpHGvjHeviXXfXhev7cVzfex5r4x3r4h3r0jmu8aePa3zPYl28Y106x9p45+/ru09N9OrqarW0tCg9Pb3d9vT0dO3cudPrMTabzev+Nput09cpKirSokWLOmzPzs72pVwACGmHDx9WSkpKsMsIqrq6Oklc3wFElrq6Oq7vXN8BRCiu8VzjAUSmU13ffWqiB8q8efPaTa/X1NTozDPP1IEDB6LqLyuHw6Hs7Gx98cUXSk5ODnY5ARGN5yxx3tF23rW1tRoyZIj69+8f7FKCLisrS1988YX69u0ri8XS5eOi9b1zKqxL51gb71gX77q7LoZhqK6uTllZWX6sLjxwfe95rI13rIt3rEvnuMafPq7xPYt18Y516Rxr452/r+8+NdHT0tIUGxsru93ebrvdbldGRobXYzIyMnzaX5KsVqusVmuH7SkpKVH55khOTo66847Gc5Y472gTE+PzYykiTkxMjM4444xuHx+t751TYV06x9p4x7p41511iaaBj5Ph+u4/rI13rIt3rEvnuMZ3H9d4/2BdvGNdOsfaeOev67tPHZyEhASNHTtWZWVlnm2tra0qKytTXl6e12Py8vLa7S9JpaWlne4PAAAAAAAAAECo8DnOpbCwULfccovGjRuniy++WEuXLlV9fb1mzpwpSZoxY4YGDx6soqIiSdKdd96pyy67TI8++qimTJmiF198UR999JGefvrpnj0TAAAAAAAAAAB6mM9N9GnTpunQoUNasGCBbDabxowZozVr1ngeHnrgwIF2EQUTJkzQCy+8oPnz5+vee+/Vueeeq9WrV2vkyJFdfk2r1aqFCxd6jXiJZNF43tF4zhLnzXnDV6yhd6xL51gb71gX71iX4GHtO8faeMe6eMe6dI61CR7W3jvWxTvWpXOsjXf+XheLYRiGX34yAAAAAAAAAABhjqfaAQAAAAAAAADQCZroAAAAAAAAAAB0giY6AAAAAAAAAACdoIkOAAAAAAAAAEAnQqaJvmzZMuXk5CgxMVHjx4/X+vXrT7r/Sy+9pGHDhikxMVG5ubkqKSkJUKU9y5fzXrFihS699FL169dP/fr1U35+/inXKRT5+t/a9OKLL8pisWjq1Kn+LdBPfD3vmpoa3XHHHcrMzJTVatV5550Xlu9zX8976dKlOv/889WrVy9lZ2frrrvuUmNjY4Cq7Rlvv/22rrnmGmVlZclisWj16tWnPGbdunW66KKLZLVadc455+jZZ5/1e53h5je/+Y0mTJigpKQkpaamdukYwzC0YMECZWZmqlevXsrPz9enn37q30ID7MiRI7rpppuUnJys1NRUzZo1S0ePHj3pMZdffrksFku7P7fddluAKvafaP1d4lR8WZdnn322w3sjMTExgNUGBtfp0ML13Tuu78dxffeO63tHXN9DC9f3znGNd+P63jmu8R0F/RpvhIAXX3zRSEhIMFauXGls27bNmD17tpGammrY7Xav+7/33ntGbGys8dvf/tbYvn27MX/+fCM+Pt7YsmVLgCs/Pb6e94033mgsW7bM+Pjjj40dO3YYP/rRj4yUlBTjyy+/DHDl3efrOZv27dtnDB482Lj00kuN6667LjDF9iBfz9vpdBrjxo0zJk+ebLz77rvGvn37jHXr1hmbNm0KcOWnx9fzfv755w2r1Wo8//zzxr59+4zXX3/dyMzMNO66664AV356SkpKjF/+8pfGK6+8Ykgy/va3v510/7179xpJSUlGYWGhsX37duPxxx83YmNjjTVr1gSm4DCxYMECY8mSJUZhYaGRkpLSpWMeeughIyUlxVi9erXxySefGNdee61x1llnGceOHfNvsQF01VVXGaNHjzY++OAD45133jHOOeccY/r06Sc95rLLLjNmz55tVFZWev7U1tYGqGL/iNbfJU7F13V55plnjOTk5HbvDZvNFuCq/Y/rdGjh+u4d13c3ru/ecX33jut7aOH63jmu8VzfT4ZrvHfBvsaHRBP94osvNu644w7P1y0tLUZWVpZRVFTkdf8f/vCHxpQpU9ptGz9+vPH//t//82udPc3X8/665uZmo2/fvsZzzz3nrxJ7XHfOubm52ZgwYYLx+9//3rjlllvCsonu63k/9dRTxtChQ42mpqZAlegXvp73HXfcYXznO99pt62wsND41re+5dc6/akrF/Zf/OIXxogRI9ptmzZtmlFQUODHysLXM88806VfwltbW42MjAzjkUce8WyrqakxrFar8b//+79+rDBwtm/fbkgy/vWvf3m2vfbaa4bFYjEOHjzY6XGXXXaZceeddwagwsCJ1t8lTsXXdenq/74iCdfp0MH1/Tiu78dxffeO6/upcX0PHVzf2+Ma78b1vXNc408tGNf4oMe5NDU1acOGDcrPz/dsi4mJUX5+vsrLy70eU15e3m5/SSooKOh0/1DUnfP+uoaGBrlcLvXv399fZfao7p7zr371Kw0aNEizZs0KRJk9rjvn/Y9//EN5eXm64447lJ6erpEjR+rBBx9US0tLoMo+bd057wkTJmjDhg2e25T27t2rkpISTZ48OSA1B0skXNNC0b59+2Sz2dqtbUpKisaPHx8xa1teXq7U1FSNGzfOsy0/P18xMTH68MMPT3rs888/r7S0NI0cOVLz5s1TQ0ODv8v1m2j9XeJUuvv37tGjR3XmmWcqOztb1113nbZt2xaIckNaNLxfwgnXd67vXN+5vveUaHi/hJNouL5LXOMlru8nwzW+5/T0eyauJ4o6HdXV1WppaVF6enq77enp6dq5c6fXY2w2m9f9bTab3+rsad0576+75557lJWV1eENEaq6c87vvvuu/vCHP2jTpk0BqNA/unPee/fu1ZtvvqmbbrpJJSUl2rNnj37yk5/I5XJp4cKFgSj7tHXnvG+88UZVV1frkksukWEYam5u1m233aZ77703ECUHTWfXNIfDoWPHjqlXr15Bqiy8mX8nhPvfFydjs9k0aNCgdtvi4uLUv3//k57jjTfeqDPPPFNZWVnavHmz7rnnHu3atUuvvPKKv0v2i2j9XeJUurMu559/vlauXKlRo0aptrZWixcv1oQJE7Rt2zadccYZgSg7JHGdDi1c37m+c33n+t5TuL6Hlmi4vktc4yWu7yfDNb7n9PQ1PuiT6Oiehx56SC+++KL+9re/ReTDAiSprq5ON998s1asWKG0tLRglxNQra2tGjRokJ5++mmNHTtW06ZN0y9/+UstX7482KX51bp16/Tggw/qySef1MaNG/XKK6+ouLhYDzzwQLBLg5/MnTu3wwNQvv6nqx8sRhJ/r8utt96qgoIC5ebm6qabbtIf//hH/e1vf9Nnn33Wg2eBcJSXl6cZM2ZozJgxuuyyy/TKK69o4MCB+p//+Z9gl4Yww/XdO67vCBau7+gpXN87xzUewcI1PjCCPomelpam2NhY2e32dtvtdrsyMjK8HpORkeHT/qGoO+dtWrx4sR566CG98cYbGjVqlD/L7FG+nvNnn32m/fv365prrvFsa21tleT+lHbXrl06++yz/Vt0D+jOf+vMzEzFx8crNjbWs2348OGy2WxqampSQkKCX2vuCd057/vuu08333yzfvzjH0uScnNzVV9fr1tvvVW//OUvFRMTmZ/7dXZNS05Ojvjpl5///Of60Y9+dNJ9hg4d2q2fbb7P7Ha7MjMzPdvtdrvGjBnTrZ8ZKF1dl4yMDFVVVbXb3tzcrCNHjvj0d+L48eMlSXv27AmL6+rXRevvEqdyOr9rmOLj43XhhRdqz549/igxbETzdbq7uL57x/XdN1zfveP63nO4vvuO63vnuMZ3Hdf3znGN7zk9fY0PekcqISFBY8eOVVlZmWdba2urysrKlJeX5/WYvLy8dvtLUmlpaaf7h6LunLck/fa3v9UDDzygNWvWtMvPCge+nvOwYcO0ZcsWbdq0yfPn2muv1RVXXKFNmzYpOzs7kOV3W3f+W3/rW9/Snj17PB8aSNLu3buVmZkZFg10qXvn3dDQ0KFRbn6Q4H5uRGSKhGtadw0cOFDDhg076Z/uvufPOussZWRktFtbh8OhDz/8MOTXtqvrkpeXp5qaGm3YsMFz7JtvvqnW1lbPL9VdYUZmnfiPlXASrb9LnEp3f9c4UUtLi7Zs2RK2742eEg3vl57G9d07ru++4fruHdf3nhMN75eexvW9c1zju47re+e4xvecHn/PdOtxpD3sxRdfNKxWq/Hss88a27dvN2699VYjNTXVsNlshmEYxs0332zMnTvXs/97771nxMXFGYsXLzZ27NhhLFy40IiPjze2bNkSrFPoFl/P+6GHHjISEhKMl19+2aisrPT8qaurC9Yp+MzXc/66W265xbjuuusCVG3P8fW8Dxw4YPTt29eYM2eOsWvXLuPVV181Bg0aZPz6178O1il0i6/nvXDhQqNv377G//7v/xp79+411q5da5x99tnGD3/4w2CdQrfU1dUZH3/8sfHxxx8bkowlS5YYH3/8sfH5558bhmEYc+fONW6++WbP/nv37jWSkpKMu+++29ixY4exbNkyIzY21lizZk2wTiEkff7558bHH39sLFq0yOjTp49njU+8Bp5//vnGK6+84vn6oYceMlJTU42///3vxubNm43rrrvOOOuss4xjx44F4xT84qqrrjIuvPBC48MPPzTeffdd49xzzzWmT5/u+f6XX35pnH/++caHH35oGIZh7Nmzx/jVr35lfPTRR8a+ffuMv//978bQoUONb3/728E6hR4Rrb9LnIqv67Jo0SLj9ddfNz777DNjw4YNxg033GAkJiYa27ZtC9Yp+AXX6dDC9d07ru9uXN+94/ruHdf30ML1vXNc47m+nwzXeO+CfY0PiSa6YRjG448/bgwZMsRISEgwLr74YuODDz7wfO+yyy4zbrnllnb7/+UvfzHOO+88IyEhwRgxYoRRXFwc4Ip7hi/nfeaZZxqSOvxZuHBh4As/Db7+tz5RuDbRDcP3837//feN8ePHG1ar1Rg6dKjxm9/8xmhubg5w1afPl/N2uVzG/fffb5x99tlGYmKikZ2dbfzkJz8xvvrqq8AXfhreeustr/9bNc/1lltuMS677LIOx4wZM8ZISEgwhg4dajzzzDMBrzvU3XLLLV7X9a233vLsI6nd2rW2thr33XefkZ6eblitVuPKK680du3aFfji/ejw4cPG9OnTjT59+hjJzVxFoQAAv1lJREFUycnGzJkz2/3DZN++fe3W6cCBA8a3v/1to3///obVajXOOecc4+677zZqa2uDdAY9J1p/lzgVX9blZz/7mWff9PR0Y/LkycbGjRuDULV/cZ0OLVzfveP6fhzXd++4vnfE9T20cH3vHNd4N67vneMa31Gwr/EWw4jgjAQAAAAAAAAAAE5D0DPRAQAAAAAAAAAIVTTRAQAAAAAAAADoBE10AAAAAAAAAAA6QRMdAAAAAAAAAIBO0EQHAAAAAAAAAKATNNEBAAAAAAAAAOgETXQAAAAAAAAAADpBEx0AAAAAAAAAgE7QRAcAAAAAAAAAoBM00QEAAAAAAAAA6ARNdAAAAAAAAAAAOkETHQAAAAAAAACATtBEBwAAAAAAAACgEzTRAQAAAAAAAADoBE10AAAAAAAAAAA6QRMdAAAAAAAAAIBO0EQHAAAAAAAAAKATNNEBAAAAAKfl/vvvl8ViUXV19Sn3bW5u1i9+8QtlZ2crJiZGU6dO9X+BAIBu4xoP0EQHAAAAAATQypUr9cgjj+gHP/iBnnvuOd11111e92ttbdWzzz6ra6+9VtnZ2erdu7dGjhypX//612psbPRrjcF8bQAIZ+FwjZekFStW6LLLLlN6erqsVqvOOusszZw5U/v37/f7ayM8xQW7AAAAAABA9HjzzTc1ePBg/e53vzvpfg0NDZo5c6a++c1v6rbbbtOgQYNUXl6uhQsXqqysTG+++aYsFotfagzmawNAOAuHa7wkffzxxzrrrLN07bXXql+/ftq3b59WrFihV199VZ988omysrL89toITzTRAQAAAAABU1VVpdTU1FPul5CQoPfee08TJkzwbJs9e7ZycnI8TZb8/Hy/1BjM1waAcBYO13hJevLJJztsmzp1qsaNG6c//vGPmjt3rt9eG+GJOBcAAAAAQI+orq7WD3/4QyUnJ2vAgAG68847Pbfl79+/XxaLRW+99Za2bdsmi8Uii8WidevWef1ZCQkJ7Zorpu9973uSpB07dpy0lmeeeUYWi0UrV65st/3BBx+UxWJRSUlJp8ee7msDQCSKlGt8Z3JyciRJNTU1Ph+LyEcTHQAAAADQI374wx+qsbFRRUVFmjx5sv77v/9bt956qyRp4MCB+tOf/qRhw4bpjDPO0J/+9Cf96U9/0vDhw316DZvNJklKS0s76X4zZ87Ud7/7XRUWFuqLL76QJG3ZskWLFi3SrFmzNHnyZJ/Pr6uvDQCRKBKv8YcPH1ZVVZU++ugjzZw5U5J05ZVX+lQzooPFMAwj2EUAAAAAAMLX/fffr0WLFunaa6/V3//+d8/2O+64Q08++aQ++eQTjRo1SpJ0+eWXq7q6Wlu3bu3Wa02cOFHr16/X559/fsrIAJvNphEjRmjs2LF69dVX9c1vflOHDx/Wli1blJyc7NfXBoBIEcnX+MTERDmdTknSgAEDtHDhQv30pz/tVu2IbEyiAwAAAAB6xB133NHua7MR0Z3b6r158MEH9cYbb+ihhx7qUhM7IyNDy5YtU2lpqS699FJt2rRJK1eu7FYD3dfXBoBIE4nX+Ndee00lJSV69NFHNWTIENXX15/GGSCS8WBRAAAAAECPOPfcc9t9ffbZZysmJkb79+8/7Z+9atUqzZ8/X7NmzdLtt9/e5eNuuOEG/fnPf1ZxcbFuvfXWbt2m393XBoBIEonX+CuuuEKSdPXVV+u6667TyJEj1adPH82ZM8enn4PIxyQ6AAAAAMAvLBZLj/yc0tJSzZgxQ1OmTNHy5ct9Ovbw4cP66KOPJEnbt29Xa2trwF4bACJZJFzjT3T22Wfrwgsv1PPPP9/tn4HIRRMdAAAAANAjPv3003Zf79mzR62trcrJyen2z/zwww/1ve99T+PGjdNf/vIXxcX5dkP1HXfcobq6OhUVFendd9/V0qVLA/baABBJIu0a782xY8dUW1t7Wj8DkYkmOgAAAACgRyxbtqzd148//rgk923y3bFjxw5NmTJFOTk5evXVV9WrVy+fjn/55Ze1atUqPfTQQ5o7d65uuOEGzZ8/X7t37/b7awNApImUa3xzc7O++uqrDtvXr1+vLVu2aNy4cT7VgehgMQzDCHYRAAAAAIDwdf/992vRokXKzc1VTk6OrrrqKpWXl+vPf/6zbrzxxna3xl9++eWqrq7W1q1bT/oz6+rqNGLECB08eFAPPvigBg8e3O77Z599tvLy8jo9vqqqSiNGjFBubq7KyspksVh0+PBhjRgxQkOHDtW7776rmBjvc2Wn+9oAEEki7RpfU1OjM844Q9OmTdOIESPUu3dvbdmyRc8884wSExP1wQcfdMh/B7gXDQAAAADQI1atWqUFCxZo7ty5iouL05w5c/TII49062cdPnxYX3zxhSRp7ty5Hb5/yy23nLTBcvvtt8vpdOqZZ57x5PYOGDBATz/9tK677jotXrxYv/jFL/zy2gAQiSLlGp+UlKQf//jHeuutt/Tyyy/r2LFjysrK0vTp0zV//vzTiqdB5GISHQAAAAAAAACATpCJDgAAAAAAAABAJ2iiAwAAAAAAAADQCZroAAAAAAAAAAB0wucm+ttvv61rrrlGWVlZslgsWr169SmPWbdunS666CJZrVadc845evbZZ7tRKgDAn7i+AwAAAAAAdORzE72+vl6jR4/WsmXLurT/vn37NGXKFF1xxRXatGmTfvazn+nHP/6xXn/9dZ+LBQD4D9d3AAAAAACAjiyGYRjdPthi0d/+9jdNnTq1033uueceFRcXa+vWrZ5tN9xwg2pqarRmzZruvjQAwI+4vgMAAAAAALjF+fsFysvLlZ+f325bQUGBfvazn3V6jNPplNPp9Hzd2tqqI0eOaMCAAbJYLP4qFQACwjAM1dXVKSsrSzEx4ftoCq7vANBepFzfe0Jra6sqKirUt29fru8AIgLX+OO4xgOIJF29vvu9iW6z2ZSent5uW3p6uhwOh44dO6ZevXp1OKaoqEiLFi3yd2kAEFRffPGFzjjjjGCX0W1c3wHAu3C/vveEiooKZWdnB7sMAOhxXOO5xgOITKe6vvu9id4d8+bNU2Fhoefr2tpaDRkyRF988YWSk5ODWBkAnD6Hw6Hs7Gz17ds32KUEHNd3AJEsmq/vX2euga/Xd5fLpbVr12rSpEmKj4/3V3lhibXxjnXxjnXpXHfXhmv8cVzjexbr4h3r0jnWxjt/X9/93kTPyMiQ3W5vt81utys5OdnrlKIkWa1WWa3WDtuTk5NpsgCIGOF+6yPXdwDwLtyv7z3BXANfr+8ul0tJSUlKTk7mH4Vfw9p4x7p4x7p07nTXhms81/iexrp4x7p0jrXxzt/Xd78HeeXl5amsrKzdttLSUuXl5fn7pQEAfsT1HQAAAAAARAOfm+hHjx7Vpk2btGnTJknSvn37tGnTJh04cECS+1b9GTNmePa/7bbbtHfvXv3iF7/Qzp079eSTT+ovf/mL7rrrrp45AwBAj+D6DgAAAAAA0JHPTfSPPvpIF154oS688EJJUmFhoS688EItWLBAklRZWelpuEjSWWedpeLiYpWWlmr06NF69NFH9fvf/14FBQU9dAoAgJ7A9R0AAAAAAKAjnzPRL7/8chmG0en3n332Wa/HfPzxx76+FAAggLi+AwAAAAAAdOT3THQAAAAAAAAAAMIVTXQAAAAAAAAAADpBEx0AAAAAAAAAgE7QRAcAAAAi2Ntvv61rrrlGWVlZslgsWr169SmPWbdunS666CJZrVadc845Xp+LAQAAAEQLmugAAABABKuvr9fo0aO1bNmyLu2/b98+TZkyRVdccYU2bdqkn/3sZ/rxj3+s119/3c+VAgAAAKEpLtgFAAAAAPCfq6++WldffXWX91++fLnOOussPfroo5Kk4cOH691339Xvfvc7FRQU+KtMIOq0tBqySIqJsQS7FABABDnW1CJXa6sMo22Dcfx7RtsX5vc8uxjGCfvoa/u03/mEH9dhn9gYiwb1TTztcwhFNNEBAAAAeJSXlys/P7/dtoKCAv3sZz/r9Bin0ymn0+n52uFwSJJcLpdcLleXX9vc15djogVr4124rstXDU26Zlm5zk7rrWd/NFYWS8820sN1XQKhu2vDWgIIB3/d8KV+8dfNamk1Tr2zn/y/y4Zq3tXDg/b6/kITHQAAAICHzWZTenp6u23p6elyOBw6duyYevXq1eGYoqIiLVq0qMP2tWvXKikpyecaSktLfT4mWrA23oXburxnt8juiJXd4dQf/vqasnz/n0mXhNu6BJKva9PQ0OCnSgCg57y5s6rHG+jm57wWz9fHP/i1nLBPq+G+y+rdT6ulrt8EGTZoogMAAAA4LfPmzVNhYaHna4fDoezsbE2aNEnJycld/jkul0ulpaWaOHGi4uPj/VFq2GJtvAvXdVn1zEeSjkiS6vudp8lXntOjPz9c1yUQurs25h02ABDKKmuPSZL+e/qFumpEhqSOTXD3Nku7bZ59TuPOqO0VDk3+73dUWdvY7Z8RymiiAwAAAPDIyMiQ3W5vt81utys5OdnrFLokWa1WWa3WDtvj4+O71cDr7nHRgLXxLpzW5fBRpz7Yd8Tz9ZrtVfp5wbAej3SRwmtdAs3XtWEdAYQDW1sDO7tfLyXExQT0tbNS3VnoR+qb1OhqUWJ8bEBf398Cu5oAAAAAQlpeXp7KysrabSstLVVeXl6QKgIiy+vb7Go1pHMG9VFCbIz2VB3VbvvRYJcFAAhzLa2G7HXuZ9RkpngffPCnlF7xSkpwN84jcRqdJjoAAAAQwY4ePapN/5+9f4+Psr7z///n5DQhkAMQcsJo8IjIsVCyYK26DURhsX5+H7dU+xXLzcNHK/1Ys59WqAKlVmOrsuxalE+xVLe1C61r7X6aiKTRbLVSWcGUM4iAIMkEAiSBhEwmmev3x+SakGYCmcnMXHN43G+33HZzcV2Z1/UmfRteec3zqq1VbW2tJOnQoUOqra3VkSNHJHmiWBYsWOA9/8EHH9TBgwf1ve99T3v37tWLL76o3/zmN3r00UetKB+IOZU76iVJ//MLl+jLV2dLkiq6jwEAEKgTZ5zqchtKTLBpVHrfdwiGms1mU36mZxq9vulc2F8/1GiiAwAAADHso48+0pQpUzRlyhRJUllZmaZMmaJly5ZJkurr670NdUkaM2aMKioqVFVVpUmTJun555/Xyy+/rNLSUkvqB2LJybNOffBpoyRp7oR8zZmQL6mnsQ4AQKDMPPTcdLsSE4IfETYQBVmeCfi6GJxEJxMdAAAAiGE33XSTDMPo989feeUVn9d8/PHHIawKiE9mlMv40Rm6dGSasoYmnxfpckZX56ZbXSIAIEqZESr5WeGPcjGZk+h1TKIDAAAAAIBAmBPn5gR6RmqybriqO9JlO9PoAIDAmU30vO5GthXMLHZzKj6W0EQHAAAAACDETrV2aPPBk5I8US4mIl0AAMFg5pDnZ1jXRC/IMifRYy/OhSY6AAAAAAAh9vYuh7rchq4ryNBlI4d6j5eMy1VKYoI+6Y50AQAgEPUtkRDnwiQ6AAAAAAAI0N9GuZgyhxDpAgAYPIeZiW5hnIs5iV7PJDoAAAAAAPDHqdYOffBp3ygXE5EuAIDBMuNcIiET/YyzU2faXZbVEQo00QEAAAAACKFN3VEu4/IzVJQ9tM+fl4zLVXKiTZ8cP6tPiHQBAPipy22o4YxTklSQaV2cy1B7kjKHJEvqedBprKCJDgAAAABACFV0T5jPndh3Cl0yI11G9ToXAICBajzrVJfbUGKCTaPS7ZbWYsbJ1DXFVi46TXQAAAAAAELk9EWiXExEugAAAmU2rHPT7UpMsFlaS0H3g03rYiwXnSY6AAAAAAAhsmn3haNcTLO6I132N5zVgeNEugAABs58qKiVeegmcxK9vplJdAAAAAAAMAB/2H7hKBdTr0iX7Y6Q1wUAiB1m/ni+hXnoJibRAQAAAADAgJ0f5TLnAlEuJvOcih11Ia0LABBbzKnvfCbRQ4YmOgAAAAAAIWBGuVybn6ExF4hyMRHpAgAIRH1Exbl4JtHNmmIFTXQAAAAAAEKgYocnlmXuhLwBnZ85JFlfujLbcy2RLgCAAYqkOJfR3jiXczIMw+JqgocmOgAAAAAAQdbU1qEPDjRKGliUi8k8t3JHfUjqAgDEHvPBovlZ1k+i52baJUnOTrdOt7ksriZ4aKIDAAAAABBkm3Y1qNNtaGxeui4fNWzA180el6fkRJv2NZzRgeNnQ1ghACAWdLkNNbSYk+jWN9HtSYnKHuZppNc1xU4uOk10AAAAAACCrKJ7knyuH1PokpSZlqzruyNdmEYHAFxM41mnOt2GEhNsykm3vokuSQXdE/E00QEAAAAAgE9NbR36sxnlMtG/JrrU03iniQ4AuBgzDz0n3a7EBJvF1XiYE/Gx9HBRmugAAAAAAATRpt09US5X+BHlYjIjXfY6iHQBAFyYo9kz7Z0XAVEuJvMBp3XNTKIDAAAAAAAfKgOMcjER6QIAGKi6Js+0d0F34zoSmHEu9U1MogMAAAAAgL/R3ObS+58EHuVimkOkCwBgABzdDxWNxEn0eibRAQAAAADA33p7t2NQUS6m2eNylZTgiXT59ASRLgAA38yHd+ZHUBO9IKs7zoVJdAAAAAAA8LfMyfE5AUa5mLLSUnoiXbYzjQ4A8M3R/fDO/AiMc2loaVeX27C4muCgiQ4AAAAAQBA0t7n05wPdUS6DbKJLPZnqFUS6AAD6Ud8ceXEuOempSkywqdNtqPGs0+pygoImOgAAAAAAQbBpt0OuLkPX5KbrypzAo1xMs68j0gUA0L8ut6GG7kx0c/o7EiQm2JSbbpckHWuKjVx0mugAAAAAAARBsKJcTES6AAAu5ORZpzrdhhJs0qhhdqvL6SW/Oxe9PkZy0WmiAwAAAAAwSM3nXHq/O8pl7sS8oH1dIl0AAP0xo1xy0lOVlBhZbV7zQaf1zUyiAwAAAAAASVW7G+TqMnR17jBdmZMetK97fqTLQSJdAADnMRvU+REU5WIq6J5Er2MSHQAAAAAASMGPcjFlpaVophnpwjQ6AOA85iR6fgQ9VNTEJDoAAAAAAPBqPufSe5+ckNQTvxJMcyd44mEqdjiC/rUBANHLbKLnZQyxuJK+vJPozUyiAwAAAAAQ9/54XpTLVbnBi3IxzR6Xp6QEm/bUt+hQY2vQvz4AIDqZTfSCSIxzyTQfLMokOgAAAAAAcS9UUS6m4UOJdAEA9OXojkrJi8Q4l+7G/omzTnV0ui2uZvBoogMAAAAAEKDmcy79KYRRLiYz0uUP22miAwA8zId2RmIm+sihKUpJSpBhSA0t0R/pQhMdAAAAAIAAmVEuV+WEJsrFNHtcnhKJdIEPq1evVlFRkVJTU1VcXKwtW7YM6Lr169fLZrPp9ttvD22BAELC7Ta8zen8zMjLRLfZbN7mfl0MRLrQRAcAAAAAIEChjnIxDR+aoplXjOz1msCGDRtUVlam5cuXa9u2bZo0aZJKS0t1/PjxC153+PBh/Z//8390ww03hKlSAMF2srVDnW5DCTYpJ91udTk+mU30+hh4uChNdAAAAAAAAtDS7tJ7nzRKkuZODG0TXeqJi6kg0gXdVq5cqfvvv18LFy7UuHHjtGbNGqWlpWndunX9XtPV1aVvfOMbWrFihS6//PIwVgsgmMzGdE56qpISI7PFaz5ctK45+ifRk6wuAAAAAACAaPTH3Q3q6HLrypxhujqEUS6m2dfl6fE3d2p3fYsON7aqKHtoyF8Tkaujo0Nbt27VkiVLvMcSEhJUUlKizZs393vdD3/4Q+Xk5Ojee+/Ve++9d9HXcTqdcjqd3s9bWlokSS6XSy6Xa8D1muf6c008YF18Y136Z67JsdOeaK/cDHvErlNueook6diptpDXGOj3zEDPp4kOAAAAAEAAwhXlYhrRHeny3ieNqthRr4dvvjIsr4vI1NjYqK6uLuXm5vY6npubq7179/q85v3339fPf/5z1dbWDvh1ysvLtWLFij7HN23apLS0NL9qlqSqqiq/r4kHrItvrEv/arb8VVKi1HZalZWVVpfj08kGm6RE/fWTz1RZeSgsr+nv90xbW9uAzguoib569Wo9++yzcjgcmjRpkl544QVNnz693/NXrVqll156SUeOHFF2drbuuOMOlZeXKzU18p4cCwDxjP0dAABgYFraXfrT/u4olzA10c3Xeu+TRlXSRIefzpw5o7vvvltr165Vdnb2gK9bsmSJysrKvJ+3tLSosLBQs2fPVkZGxoC/jsvlUlVVlWbNmqXk5GS/ao9lrItvrEv/zLXJyi+SDh/VlGuKNGfOWKvL8ilt/wn95uDH6rJnas6cGSF9rUC/Z8x311yM301086EVa9asUXFxsVatWqXS0lLt27dPOTk5fc7/9a9/rcWLF2vdunWaOXOm9u/fr29+85uy2WxauXKlvy8PAAgR9ncAAICBq97jiXK5YtRQXZ07LGyva0a67Koj0iXeZWdnKzExUQ0NDb2ONzQ0KC8vr8/5n376qQ4fPqx58+Z5j7ndbklSUlKS9u3bpyuuuKLPdXa7XXZ734cWJicnB9TcDPS6WMe6+Ma69O/4WU8MyejhQyN2jQpHev776GhpD1uN/n7PDPRcv1Pn/X1oxQcffKDrr79ed911l4qKijR79mzdeeed2rJli78vDQAIIfZ3AACAgavY7pAkzZ1YIJvNFrbXNSNdJKliBw8YjWcpKSmaOnWqqqurvcfcbreqq6s1Y0bfic+xY8dqx44dqq2t9X7cdtttuvnmm1VbW6vCwsJwlg9gkBwtngeL5mVG7jvB87sfLHq6zaVzHV0WVzM4fjXRzYdWlJSU9HyBizy0YubMmdq6dau3qXLw4EFVVlZqzpw5/b6O0+lUS0tLrw8AQOiwvwMAAAzcmXaX/vTJCUnhjXIxmRnslTTR415ZWZnWrl2rV199VXv27NFDDz2k1tZWLVy4UJK0YMEC74NHU1NTNX78+F4fWVlZSk9P1/jx45WSkmLlrQDwk6PZ00QvyIrcJnpGapKGpiRKkuqaz1lczeD4FecSyEMr7rrrLjU2NupLX/qSDMNQZ2enHnzwQX3/+9/v93X6e2gFACA02N8BAAAGrnrPcXV0hj/KxVR6XZ6e6I50+exkqy4bSaRLvJo/f75OnDihZcuWyeFwaPLkydq4caP35/ojR44oIcHvEAIAEc5tSA1nnJKkvO5p70hks9mUnzVEB46fVX1Tu64YFf7/ZgZLyHfSmpoaPf3003rxxRe1bds2vfHGG6qoqNCTTz7Z7zVLlixRc3Oz9+Po0aOhLhMA4Cf2dwAAEK/+sN0zAT53Qn5Yo1xMI4amaMblRLrAY9GiRfrss8/kdDr14Ycfqri42PtnNTU1euWVV/q99pVXXtGbb74Z+iIBBNVZl+TqMpRgk3LS+z6zIJLkd8fNxNUkur8PrZCkpUuX6u6779Z9990nSZowYYJaW1v1wAMP6PHHH/f5G9H+HloBAAgN9ncAAICBOT/KZc7E8Ee5mOZOzNf7BxpVuaNe37rpSsvqAACEX1OH5/+OSrcrOTGy321S0D0pX9/UbnElg+PXKvv70ApJamtr69NISUz0ZOEYhuFvvQCAEGB/BwAAGBgzyuXyUUN1TW66ZXWUXpenxASbdh7zRLoAAOLHaafnXVCRHOViKsjqbqJH+SS637+q8OehFZI0b948vfTSS1q/fr0OHTqkqqoqLV26VPPmzfM2WwAA1mN/BwAAuDgzPsWqKBcTkS4AEL+auyfRCzIj96GipvwsM84luifR/Ypzkfx/aMUTTzwhm82mJ554QseOHdOoUaM0b948PfXUU8G7CwDAoLG/A0DsWr16tZ599lk5HA5NmjRJL7zwgqZPn97v+atWrdJLL72kI0eOKDs7W3fccYfKy8uVmhr5/1ADQulMu0v/tb87ymWCdVEupjkTiHQBgHjU1GFOokf+z2ZmnEtdU3RPovvdRJc8D61YtGiRzz+rqanp/QJJSVq+fLmWL18eyEsBAMKI/R0AYs+GDRtUVlamNWvWqLi4WKtWrVJpaan27dunnJycPuf/+te/1uLFi7Vu3TrNnDlT+/fv1ze/+U3ZbDatXLnSgjsAIsc7e7ujXLKHamyedVEuptLrcrX09zu181iLjpxs06Uj06wuCQAQBqednv+bHwVNdHMSvb7pnAzDsPRdXIMRUBMdAAAAQHRYuXKl7r//fm8815o1a1RRUaF169Zp8eLFfc7/4IMPdP311+uuu+6SJBUVFenOO+/Uhx9+2O9rOJ1OOZ1O7+ctLS2SJJfLJZfLNeBazXP9uSZesDa+hXtd/vDXOklS6XU56uzsDMtrXkiGPUHFRcP1wcFT+s/az/W/vjxGEt8vFxLo2rCWACJJc/cken40ZKJ319ja0aWW9k5lDkm2uKLA0EQHAAAAYlRHR4e2bt3a65kWCQkJKikp0ebNm31eM3PmTP3qV7/Sli1bNH36dB08eFCVlZW6++67+32d8vJyrVixos/xTZs2KS3N/8nYqqoqv6+JF6yNb+FYl/Yu6d29iZJsSj/9iSorPwn5aw7EJbJJStSGD/ar8OyeXn/G90v//F2btra2EFUCAP5r6s5Ej4ZJ9CEpicpKS1ZTm0v1zedoogMAAACILI2Njerq6vI+38KUm5urvXv3+rzmrrvuUmNjo770pS/JMAx1dnbqwQcf1Pe///1+X2fJkiUqKyvzft7S0qLCwkLNnj1bGRkZA67X5XKpqqpKs2bNUnJydP4DK1RYG9/CuS7/b3u9Orfs0JiRabrvjusj5u3oxa0dev3HNTraatP4v7tJl45I4/vlAgJdG/MdNgBgNbfb6GmiZ0X+JLrkmZhvanOpvqldY/MG/rNhJKGJDgAAAMCrpqZGTz/9tF588UUVFxfrwIEDeuSRR/Tkk09q6dKlPq+x2+2y2+19jicnJwfUwAv0unjA2vgWjnV5e/dxSdLciQVKSUkJ6Wv5Iy8rWTOuGKk/HzipTXsa9dBNV3j/jO+X/vm7NqwjgEhxqq1DXYZNNpuUk973569IVJCZqj31Laprjt6HiyZYXQAAAACA0MjOzlZiYqIaGhp6HW9oaFBeXp7Pa5YuXaq7775b9913nyZMmKD/8T/+h55++mmVl5fL7XaHo2wg4px1durdfSckSXMm5FtcTV9mTZU76i2uBAAQao5mz3NoRg2zKzkxOlq7Bd0T8/VN7RZXErjoWGkAAAAAfktJSdHUqVNVXV3tPeZ2u1VdXa0ZM2b4vKatrU0JCb3/mZCYmChJMgwjdMUCEax6T4M6Ot0akz1U1+anW11OH6XX5SnBJu041qwjJ8nuBoBYVt/saUTnZUbHFLok5Wd5stuZRAcAAAAQkcrKyrR27Vq9+uqr2rNnjx566CG1trZq4cKFkqQFCxb0evDovHnz9NJLL2n9+vU6dOiQqqqqtHTpUs2bN8/bTAfijTnhPWdCXsRkoZ8ve5hdf3f5SElS5U6m0QEgljlaupvoGZH/UFFTQaZnEr2uKXqb6GSiAwAAADFs/vz5OnHihJYtWyaHw6HJkydr48aN3oeNHjlypNfk+RNPPCGbzaYnnnhCx44d06hRozRv3jw99dRTVt0CYKlWZ6dqIjjKxTRnQr4++PSkKnfU696Zl1pdDgAgRLyT6FHURM/P9NRq1h6NaKIDAAAAMW7RokVatGiRzz+rqanp9XlSUpKWL1+u5cuXh6EyIPJV7z0uZ6dbRSPTNC4/w+py+nXL+Dwt+/1Obf+8WUdPE+kCALHKnEQ3G9PRwJuJ3twuwzAi8l1dF0OcCwAAAAAA/ajcbka55Ef0P/rPj3TZuKvhImcDAKKVo8XzYNG8jOjJRM/NSJXNJnV0unWytcPqcgJCEx0AAAAAAB9anZ16d99xSZEd5WIya3xrJ010AIhVZiRKNE2ipyQlKHuYp+lf3xSdkS400QEAAAAA8OGd7iiXy0am6bqCyI1yMd0yPk8JNmnHsRadjM4eBQDgAtxuQw3mg0WjqIkuSQXd9dY1R+fDRWmiAwAAAADgQ+UOT5TL3AiPcjFlD7OreIwn0qX2ZOTXCwDwz6m2Drm6DNlkKCc9euJcpPNy0ZtoogMAAAAAEBPaOqIrysU0Z6Kn1tqT/HMfAGKNGYWSniwlJ0bXPp+f2fNw0WgUXasNAAAAAEAYvLP3uNpd0RPlYrrlOk+ky5FWmz4/HZ3TfgAA3+q7o1CyUiwuJAAFWZ44l2NMogMAAAAAEBsqtnuiXOZESZSLaVS6XdOLhkuSNu7iAaMAEEvMKe4su2FxJf5jEh0AAAAAgBhyfpTL3CiKcjHdMj5PkvTWLofFlQAAgsnbRI/CSfT87kl0MtEBAAAAAIgBZpTLpSOiK8rFVDouRzYZ2v55i46earO6HABAkDi8cS7RN4le0D2J3nDGqS539NVPEx0AAAAAgPNU7ojOKBdT9jC7rsjwNCje2llvcTUAgGCp655EH263uJAAjEq3KynBpi63oeNnoi/ShSY6AAAAAADd2jo69c7e6I1yMU0e6WmiV+wg0gUAYoWju4meGYWT6IkJNuVmeCJd6ppoogMAAAAAELXe3XtC7S63CkcM0fjR0RflYpo0wpDNJv31aJM+P02kCwBEO8MwvE30aMxEl6QCMxe9Ofpy0WmiAwAAAADQLdqjXEwZKdIXLxsuSXqLaXQAiHonWzvU0eWWzSZlRmkTPb87F72eSXQAAAAAAKLTuY6umIhyMc0ZnytJqthBLjoARDtzCj17aIqSorSjm989iX6siUl0AAAAAACi0rv7juucq0uFI4ZowuhMq8sZtNnjcmWzSbVEugBA1KvrbjznZaZaXEngCsxJdOJcAAAAAACIThUxEuViGpVu1/SiEZKIdAGAaOdo8Uyi52VEbxM9P9PMRCfOBQAAAACAqHOuo0vv7ImdKBfT3ImeeyHSBQCim9l4jupJ9CzPJHodmegAAAAAAEQfM8rlkuGxEeViumV8njfSJRozaAEAHvVmnEuG3eJKAmdOojeedcrZ2WVxNf6hiQ4AAAAAiHvmpPbcGIlyMeWkp+qL3kgXptEBIFqZk+j5UTyJPmJoiuzdT0VtaHZaXI1/aKIDAAAAAOLa+VEuc2IoysVkxtMQ6QIA0SsWMtFtNltPpEuUPVyUJjoAAAAAIK7VnBflMvGS2IlyMd3aHeny8ZEm1RHpAgBRxzCMmJhEl85/uGh0/feIJjoAAAAAIK6ZE9pzYizKxZST0RPpUsk0OgBEnVOtHerodEuSctKjNxNdkvIzo/PhojTRAQAAAABxq93VpXf2xm6Ui4lIFwCIXuYUevYwu1KSorudW5DlmUSPtndGRfeqAwAAAAAwCDX7jquto0ujs4ZoUgxGuZiIdAGA6GU20c0GdDQzJ9HNe4oWNNEBAAAAAHGrYodDkjRnQl5MRrmYcjJS9cXLiHQBgGjk6M4Pj+aHiprymUQHAAAAACB6tLu6VL2nQZI0d2KBxdWE3pwJeZJoogNAtKmLkYeKSlIBk+gAAAAAAESPmn0n4iLKxXTrhHzZbNI2Il0AIKo4zCZ61hCLKxk8cxK9+ZxLbR2dFlczcDTRAQAAAABxyZzIjvUoF1PueZEub+10WFwNAGCg6rvjXGJhEj0jNVnp9iRJUl1T9Eyj00QHAAAAAMSddleX/tgd5TJnQr7F1YQPkS4AEH3qvXEu0T+JLvVMo5u/HIgGNNEBAAAAAHHn/CiXyYVZVpcTNmaky9bPThPpAgBRwDCM85ro0T+JLvX8MiCa/jtEEx0AAAAAEHfMSexbx8dHlIspNyNV0y4bLolIFwCIBqdaO9TR6ZYk5WTYLa4mOAq6J9GJcwEAAAAAIEK1u7pUbUa5TIyfKBeTGV9DpAsARD5zCj17mF32pESLqwkOcxKdOBcAAAAAACLUf+0/odaOLhVkpmpKHEW5mG4d72mib/3sdFQ1MAAgHjliLMpF6rkX8xcE0YAmOgAAAAAgrnijXCbkx1WUiykv87xIlx1EugBAJDN/2ZkXQ030giwy0QEAAAAAiFieKJfjknpiTeIRkS4AEB3Mae2CGGqinz+JbhiGxdUMDE10AAAAAEDc+NP+Ezrr7FR+nEa5mG6dkCdJ+uiz096oAESn1atXq6ioSKmpqSouLtaWLVv6PfeNN97QtGnTlJWVpaFDh2ry5Mn65S9/GcZqAfjL3KPzunPEY4E5id7W0aWWc50WVzMwNNEBAAAAAHHDnLyeMyFfCQnxF+Viys8c0hPpspNp9Gi1YcMGlZWVafny5dq2bZsmTZqk0tJSHT9+3Of5I0aM0OOPP67Nmzdr+/btWrhwoRYuXKi33347zJUDGKi67jiXgqzYmURPTU7UiKEpknruL9IlWV0AAAAAAADh0O7q0h+JcvGaMyFfH312WpU76rXw+jFWl4MArFy5Uvfff78WLlwoSVqzZo0qKiq0bt06LV68uM/5N910U6/PH3nkEb366qt6//33VVpa6vM1nE6nnE6n9/OWlhZJksvlksvlGnCt5rn+XBMPWBffWJce9U2eSfTsoUm9/ncX7WuTl2HXqdYOHTl5VldmD37KPtB1Gej5NNEBAAAAAHGBKJfebp2Qpx/+Ybc30iWWHloXDzo6OrR161YtWbLEeywhIUElJSXavHnzRa83DEPvvPOO9u3bpx//+Mf9nldeXq4VK1b0Ob5p0yalpaX5XXdVVZXf18QD1sW3eF8Xw5DqTidKsmnvtr+ocXfPn0X72iS0J0hK0B///JHaPw1eLrq/69LW1jag82iiAwAAAADighnlcuv4+I5yMeVnDtHUy4Zr62en9dZOptGjTWNjo7q6upSbm9vreG5urvbu3dvvdc3NzRo9erScTqcSExP14osvatasWf2ev2TJEpWVlXk/b2lpUWFhoWbPnq2MjIwB1+tyuVRVVaVZs2YpOTl5wNfFOtbFN9bF41Rrh1x/qZEkzb/tFtmTEmJmbf7bvUc7PzyqkYVXas6sqwb99QJdF/PdNRdDEx0AAAAAEPPOj3KZOzHP4moix5wJ+dpKpEtcSU9PV21trc6ePavq6mqVlZXp8ssv7xP1YrLb7bLb7X2OJycnB9TAC/S6WMe6+Bbv69LYPSWdPSxFw4b0/t9htK/N6OFDJUkNZzqCeh/+rstAz+XBogAAAACAmPfeJ4066+xUXkaqphQOt7qciDFngucXCh99dloNLe0WVwN/ZGdnKzExUQ0NDb2ONzQ0KC+v/18UJSQk6Morr9TkyZP1T//0T7rjjjtUXl4e6nIBBMDMQ4/FuC3zQal1TdHxYNGAmuirV69WUVGRUlNTVVxcrC1btlzw/KamJj388MPKz8+X3W7X1VdfrcrKyoAKBgCEDvs7AACIVd4olwl5RLmcJz9ziL5waZYMQ3qre40QHVJSUjR16lRVV1d7j7ndblVXV2vGjBkD/jput7vXg0MBRI767l9u5mcO/sGbkca8p/rm6PgFrt9xLhs2bFBZWZnWrFmj4uJirVq1SqWlpdq3b59ycnL6nN/R0aFZs2YpJydHr7/+ukaPHq3PPvtMWVlZwagfABAk7O8AACBWOTu79MfdnmnduRPyLa4m8syZkK9tR5pUucOhbxLpElXKysp0zz33aNq0aZo+fbpWrVql1tZWLVy4UJK0YMECjR492jtpXl5ermnTpumKK66Q0+lUZWWlfvnLX+qll16y8jYA9MPR7JnSzo/hSXRHc7vcbiPif8HtdxN95cqVuv/++70b8po1a1RRUaF169Zp8eLFfc5ft26dTp06pQ8++MCbMVNUVDS4qgEAQcf+DgAAYtV7+xt1pjvK5QuXEuXyt+ZMyNePKvbovz87peMt7crJiL1mTayaP3++Tpw4oWXLlsnhcGjy5MnauHGj92GjR44cUUJCTwhBa2urvvWtb+nzzz/XkCFDNHbsWP3qV7/S/PnzrboFABdgxrnE4iR6bkaqbDapo8utk60dGpXe99kLkcSvOJeOjg5t3bpVJSUlPV8gIUElJSXavHmzz2v+8z//UzNmzNDDDz+s3NxcjR8/Xk8//bS6urr6fR2n06mWlpZeHwCA0GF/B4DYRlwX4p0Z5XLLeKJcfCnIGqIpZqTLTofV5cBPixYt0meffSan06kPP/xQxcXF3j+rqanRK6+84v38Rz/6kT755BOdO3fOOxBDAx2IXGbUSSxOoicnJiinu3EeDbnofjXRGxsb1dXV5f2Npik3N1cOh+//0B48eFCvv/66urq6VFlZqaVLl+r555/Xj370o35fp7y8XJmZmd6PwsJCf8oEAPiJ/R0AYpcZ17V8+XJt27ZNkyZNUmlpqY4fP+7zfDOu6/Dhw3r99de1b98+rV27VqNHjw5z5UBwODu7VGVGuUwkyqU/ZsxNBbnoABAxHC2x+2BR6fxc9BhrogfC7XYrJydHP/vZzzR16lTNnz9fjz/+uNasWdPvNUuWLFFzc7P34+jRo6EuEwDgJ/Z3AIgO58d1jRs3TmvWrFFaWprWrVvn83wzruvNN9/U9ddfr6KiIt14442aNGlSmCsHguP9TzxRLrkZdk0lyqVft3Y30f/7sCfSBQBgLcMwvBPaBTEY5yL15KLXNUX+f3f8ykTPzs5WYmKiGhoaeh1vaGhQXl6ez2vy8/OVnJysxMRE77Frr71WDodDHR0dSklJ6XON3W6X3R7ZOTgAEEvY3wEgNplxXUuWLPEe8yeu6/e//71GjRqlu+66S4899livPf98TqdTTqfT+7kZ1+VyueRyuQZcr3muP9fEC9bGt4Gsyx/+ekySVDouV11dnbpA8lzMCOT7JWdokiYXZqr2aLMqth/T/1d8aajKs1Sg/1vif3sAwq2pzSVnp1uSlJMRm/+OjqZJdL+a6CkpKZo6daqqq6t1++23S/JMIlZXV2vRokU+r7n++uv161//Wm632/swi/379ys/P99ngwUAEH7s7wAQmy4U17V3716f1xw8eFDvvPOOvvGNb6iyslIHDhzQt771LblcLi1fvtznNeXl5VqxYkWf45s2bVJaWprfdVdVVfl9TbxgbXzrb1063dJbOxIl2ZR15qAqKw+GtzCL+fv9UpRgU60S9dqf9mjEyZ0hqioy+Ls2bW1tIaoEAHyr624sjxyaotRk34MM0c7Meq9rjrFJdEkqKyvTPffco2nTpmn69OlatWqVWltbtXDhQknSggULNHr0aJWXl0uSHnroIf30pz/VI488om9/+9v65JNP9PTTT+t//+//Hdw7AQAMCvs7AEDqHdeVmJioqVOn6tixY3r22Wf7baIvWbJEZWVl3s9bWlpUWFio2bNnKyMjY8Cv7XK5VFVVpVmzZik5OXnQ9xJLWBvfLrYu7+w7ofYPP1Zuul0Pf21W3DxUNNDvl8lN5/Tm8+/p0zM2TbvhK94HvsWSQNfGfIcNAISLw3yoaFZs5qFLngdbS1J9FDxY1O8m+vz583XixAktW7ZMDodDkydP1saNG73TLUeOHPFOJEpSYWGh3n77bT366KOaOHGiRo8erUceeUSPPfZY8O4CADBo7O8AEHusjutKTk4OqOEb6HXxgLXxrb91eXu35wG6t07Il90ef++U8/f75bJRyZpcmKXao02q3teoBTOKQlecxfxdG/53ByDc6rub6HkZsZmHLp3XRI/FSXRJWrRoUb9v76+pqelzbMaMGfrLX/4SyEsBAMKI/R0AYgtxXYhnzs4uVe32/AJpTvdDM3Fxcyfkq/Zokyq218d0Ex0AIp2ZE14Qy5Po3XEuDS3t6uxyKykx4SJXWCdyKwMAAAAwaGVlZVq7dq1effVV7dmzRw899FCfuK7zHzz60EMP6dSpU3rkkUe0f/9+VVRU6Omnn9bDDz9s1S0AAfnzgUadae9UTrpd0y4bbnU5UePWCZ53qWw5fErHz0T+ZCAAxCrvJHpm7DbRs4fZlZxok9uQGs44L36BhQKaRAcAAAAQHYjrQryq2O6QJN06Pi9ustCD4ZLhaZpUmKW/Hm3S2zsduptpdACwhDcTPYab6AkJNuVmpOrz0+dU33ROo7MiN7qGJjoAAAAQ44jrQrzp6HSrareniU6Ui//mTsjTX482qWJHPU10ALBIvbeJHrmN5WAoyByiz0+fU12E56IT5wIAAAAAiCl/PtColvZOjUq3a1rRCKvLiTq3jvf84mHLoVM6EeFvrweAWGQYhjcTPZYn0SUpvzvzvb7pnMWVXBhNdAAAAABATKnYUS/JE+WSSJSL3wpHpGnSJZlyG9LGXQ6rywGAuNPU5lK7yy1Jys2I8SZ696R9PZPoAAAAAACER0enW5u6G79ziXIJ2NyJnrWr3F5vcSUAEH/MhvLIoSlKTU60uJrQKuieRK9jEh0AAAAAgPAgyiU4zEiXDw+dVONZIl0AIJwcLZ6Gcl6MR7lInkx0iUl0AAAAAADChiiX4OgV6bKTSBcACKe6JvOhorHfRPdmojcziQ4AAAAAQMidH+UyhyiXQTPXsIJIFwAIK0ez2UQfYnEloWdOojee7VC7q8viavpHEx0AAAAAEBP+/KknyiV7mF1fJMpl0MwmOpEuABBeZrRJPMS5ZKUlKzXZ06J2RHCkC010AAAAAEBMMB+CSZRLcBSOSNNEIl0AIOzMaBPzoZuxzGazeafR6yI40oUmOgAAAAAg6rm63Nq0u0ESUS7BZK5l5Q4iXQAgXMyJ7LyM2I9zkc7LRW9iEh0AAAAAgJD584FGNZ9zKXuYXdPHEOUSLHO7m+h/OUikCwCEg2EY3onseHiwqNST/R7JDxeliQ4AAAAAiHrmpPQt43OJcgmiwhFpmjDaE+ny9i4iXQAg1JrPudTuckuKj0x0SSrovs86MtEBAAAAAAgNolxCi0gXAAgf86GiI4amKDU50eJqwqMgq3sSvYlJdAAAAAAAQuIvB0+pqc2l7GEpKh4z0upyYo4Z6bL505M6SaQLAISUGWmSlxEfU+iSlG820ZlEBwAAAAAgNN7a5ZlCv2V8HlEuIXDpyPMjXRqsLgcAYprZSC7Iip8muhnncoxJdAAAAAAAgq/LLVXtPi6JKJdQItIFAMLD0d1Ej5c8dKlnEv1Me6fOOjstrsY3mugAAAAAgKi1v8WmpnNEuYSaGenywaeNRLoAQAjVNXma6PmZQyyuJHyG2ZOUnpokKXJz0WmiAwAAAACiVu1JT3xL6XVEuYTSpSPTNH50BpEuABBijhZPEzk/jibRJamg+5cGdRGai04THQAAAAAQlVxdbm0/5WmczyXKJeSIdAGA0Ktvir84F0nK786AZxIdAAAAAIAg+suhU2rrtGnE0GRNHzPC6nJinvmLis0HT+pUa4fF1QBA7DEMo+fBonEU5yL1xNcwiQ4AAAAAQBBt3OmJFZk9LldJifzzNtQuGzlU1xVkqMtt6O1dDqvLAYCY03KuU+dcXZLibxJ9NJPoAAAAAAAEl6vLrao9xyVJt16Xa3E18YNIFwAInbpmTwN5eFqyUpMTLa4mvMxJ9Hom0QEAAAAACI6/HDyp020uDU0yNL1ouNXlxA0z0uWDT4l0AYBgc3Q3kPPjLMpF6slEr2MSHQAAAACA4DAnoSeNMIhyCaOi7KEal++JdNlEpAsABFW9t4keX1EuUk8GfF3zORmGYXE1ffGTBgAAAAAgqnR2ubVxp6eBOzk78v6hHevmTvRMo1cQ6QIAQVXfHediTmXHEzMDvt3lVlOby+Jq+qKJDgAAAACIKpu7o1yGpyXrygya6OE257xIl9NEugBA0NTHcZxLanKiRg5NkdSTDR9JaKIDAAAAAKKKGeUye1yuEm0WFxOHxpwf6bKbSBcACBYzEz0vI/4m0aWeCfz6psh7uChNdAAAAABA1OjscuvtXQ2SpFvH51pcTfwyI13+sJ1IFwAIlro4jnOReibw65lEBwAAAAAgcH85eEqnWjs0YmiKiouGW11O3CLSBQCCyzAM7yR6PMa5SNLoLPPhokyiAwAAAAAQMPNhlqXX5SopkX/SWmVM9lBdS6QLAARNy7lOtXV0SYrjOJdMM86FSXQAAAAAAALiiXLxNGzNSWhYZ+6EPElSxQ6a6AAwWPUtnsbx8LRkDUlJtLgaa+Sbk+hkogMAAAAAEJgPD3miXIanJWvG5SOtLifueSNdDjSqqY1IFwAYjHrzoaJxGuUiSQXdk+h1ZKIDAAAAABCYniiXPKJcIsDlo4ZpbF66Ot2GNnU/7BUAEJj67ulrs5Ecj8xJ9IaWdrndhsXV9MZPHQAAAACAiNfZ5dbbO4lyiTRzu/8uzF9wAAAC4+ievs6L4yZ6brpdCTbJ1WWo8azT6nJ6oYkOAAAAAIh4Ww6d0snWDmWlJWvGFUS5RIo5Ez1N9D8T6QIAg2LGueTHcRM9KTFBOelmpEtk5aLTRAcAAAAARDxz0vmW6/KUTJRLxLji/EiX3US6AECgepro8ZuJLkn5WZ4men1TZOWi85MHAAAAACCidXa5tZEol4hlRrpUEukCAAGr745ziedJdEkq6M5FZxIdAAAAAAA/EOUS2cxIl/c/aVRzm8viagAg+hiG4Z1Ej+dMdKnnwapMogMAAAAA4AczyqV0HFEukej8SJe3dzusLgcAok5Le6faOrokEedi3n9dM010AAAAAAAGpMtt6O1d3VEuE4lyiVRziHQBgIA5uqfQs9KSNSQl0eJqrFXQnYle10ScCwAAAAAAA/LhoZNqPOuJcplJlEvEMpvofz5ApEu4rV69WkVFRUpNTVVxcbG2bNnS77lr167VDTfcoOHDh2v48OEqKSm54PkAwqPOm4ce31PoUs8a1DOJDgAAAADAwJiTzbPH5RLlEsGuzBmma3LT5eoytIlIl7DZsGGDysrKtHz5cm3btk2TJk1SaWmpjh8/7vP8mpoa3XnnnXr33Xe1efNmFRYWavbs2Tp27FiYKwdwPnMSPd4fKipJ+d2T6MfPOOXqcltcTY8kqwsAAAAAAMCXLrehjTsbJPVMOiNyzZmQr30NZ1S5o17/OK3Q6nLiwsqVK3X//fdr4cKFkqQ1a9aooqJC69at0+LFi/uc/9prr/X6/OWXX9Z//Md/qLq6WgsWLPD5Gk6nU06n0/t5S0uLJMnlcsnlGvi7Dsxz/bkmHrAuvsXbuhw71SpJyklPueg9x/raZKYkKDnRJleXoWOnzmp01sCm8wNdl4GeTxMdAAAAABCRthw6pcazTmUOSdb1V2ZbXQ4uYu7EPP3zH/fr/QONaj7nUuaQZKtLimkdHR3aunWrlixZ4j2WkJCgkpISbd68eUBfo62tTS6XSyNGjOj3nPLycq1YsaLP8U2bNiktLc3vuquqqvy+Jh6wLr7Fy7r894EESQk64/hMlZWHB3RNLK9NRlKiTnbZ9MbGd3VFhn/X+rsubW1tAzqPJjoAAAAAICIR5RJdrsxJ19W5w7S/4ayqdjfojqmXWF1STGtsbFRXV5dyc3N7Hc/NzdXevXsH9DUee+wxFRQUqKSkpN9zlixZorKyMu/nLS0t3hiYjIyBd7dcLpeqqqo0a9YsJSfzCxYT6+JbvK3Lb17ZKp04qS9/caLmTBl9wXPjYW1eq/9vnTx8WkXjpgz4oeKBrov57pqLoYkOAAAAAIg4XW5Db+30ZGsP9B/QsN6cCfna3/CJKnfU00SPcM8884zWr1+vmpoapab2n8Nst9tlt9v7HE9OTg6ogRfodbGOdfEtXtbF0eLJRL9kxLAB328sr83o4WnS4dM6ftbl9z36uy4DPZdf5QMAAAAAIk6vKJcriHKJFnO7s+vf++SEms/FZl5vpMjOzlZiYqIaGhp6HW9oaFBeXt4Fr33uuef0zDPPaNOmTZo4cWIoywRwEYZhqJ4Hi/ZirkNd0zmLK+lBEx0AAACIA6tXr1ZRUZFSU1NVXFysLVu2DOi69evXy2az6fbbbw9tgcDfOD/KJSWJf7pGi6tyPZEuri5Df9zdcPELELCUlBRNnTpV1dXV3mNut1vV1dWaMWNGv9f95Cc/0ZNPPqmNGzdq2rRp4SgVwAWccXaqraNLkpRHE12SlN/9MNG6pnaLK+nBTyIAAABAjNuwYYPKysq0fPlybdu2TZMmTVJpaamOHz9+wesOHz6s//N//o9uuOGGMFUKeBDlEt3mdE+jm78IQeiUlZVp7dq1evXVV7Vnzx499NBDam1t1cKFCyVJCxYs6PXg0R//+MdaunSp1q1bp6KiIjkcDjkcDp09e9aqWwDiXn13ozhzSLLSUkjelqSC7l8m1DdHziR6QH8zq1ev1rPPPiuHw6FJkybphRde0PTp0y963fr163XnnXfqq1/9qt58881AXhoAEELs7wAQm1auXKn777/f21RZs2aNKioqtG7dOi1evNjnNV1dXfrGN76hFStW6L333lNTU1O/X9/pdMrpdHo/Nx/Q5HK55HINPM7BPNefa+JFvK3Nh91RLhmpSZp+aWa/9x1v6zJQVq/L7GtHadUfP9GfPjmhky1tyhgSOZm9ga5NpH6PzZ8/XydOnNCyZcvkcDg0efJkbdy40fuw0SNHjighoWd+8qWXXlJHR4fuuOOOXl9n+fLl+sEPfhDO0gF0MxvFRLn0yM/0TKKbMTeRwO8mujnFsmbNGhUXF2vVqlUqLS3Vvn37lJOT0+91TLEAQGRjfweA2NTR0aGtW7f2mkRMSEhQSUmJNm/e3O91P/zhD5WTk6N7771X77333gVfo7y8XCtWrOhzfNOmTUpLS/O75qqqKr+viRfxsjavH0yQlKCx6R3646aNFz0/XtbFX1auS96QRDnOSSt/80dNH2VYVkd//F2btra2EFUyeIsWLdKiRYt8/llNTU2vzw8fPhz6ggD4xUEeeh8FWZ61ONXaoXZXl1KTEy2uKIAmeqinWAAA1mB/B4DY1NjYqK6uLu9Uoik3N1d79+71ec3777+vn//856qtrR3QayxZskRlZWXez1taWlRYWKjZs2crIyNjwLW6XC5VVVVp1qxZSk6OnMnVSBBPa9PlNvSjZ/9LUofuv2Wqbrp6VL/nxtO6+CMS1uVA6gG98O5B1SXmas6cL1hSgy+Bro35DhsACLY6s4nenQMOM9omUW0dXapvbteY7KFWl+RfEz0cUyxS/28HBQCEBvs7AMB05swZ3X333Vq7dq2ys7MHdI3dbpfdbu9zPDk5OaAGXqDXxYN4WJttB0/qxNkOZaQm6cZr8pQ8gIeKxsO6BMLKdZk3+RK98O5B/fnAKZ3rkjJSI+vvx9+14fsLQKg4zDiXDCbRTTabTfmZqfr0RKvqm85FXxM9HFMsUv9vBwUAhAb7OwDEruzsbCUmJqqhoaHX8YaGBuXl5fU5/9NPP9Xhw4c1b9487zG32y1JSkpK0r59+3TFFVeEtmjENfNhlLPG5SllAA10RKarc9N1Zc4wHTh+Vn/c3aD/3xcusbokAIhIZu53HnEuvRRkDdGnJ1q9k/pWC+lPJIFMsUiet4M2Nzd7P44ePRrCKgEA/mJ/B4DokZKSoqlTp6q6utp7zO12q7q6WjNmzOhz/tixY7Vjxw7V1tZ6P2677TbdfPPNqq2tVWFhYTjLR5xxuw29tdMhSZo7se8veRBd5kzIl9TzixEAQF9mE72AOJdezIz4uqZzFlfi4dckerimWPp7OygAIDTY3wEgtpWVlemee+7RtGnTNH36dK1atUqtra3e52AsWLBAo0ePVnl5uVJTUzV+/Phe12dlZUlSn+NAsH302WkdP+NUemqSvnRl/1noiA5zJ+TrX6s/0Z/2N6ql3RVxkS4AEAkcTKL7lJ/p+aVCfXNkNNH9mkRnigUAYhP7OwDEtvnz5+u5557TsmXLNHnyZNXW1mrjxo3eGK8jR46ovp5JUVivJ8ollyiXGHB17jBdMWqoOrrcqt7TcPELACDOtLS7dNbZKaln8hoeBVnmJHpkxLn4NYkuMcUCALGK/R0AYtuiRYu0aNEin39WU1NzwWtfeeWV4BcE/A232/A20f9hYr7F1SAYbDab5k4s0L9Wf6KK7Q79jynkogPA+cwp9MwhyUpL8btNG9MibRLd77+d+fPn68SJE1q2bJkcDocmT57cZ4olIYGJAQCINuzvAADASkS5xCZvpMsnJ3Sm3aV0Il0AwMvMQ2cKvS9zEr0+WifRJaZYACBWsb8DAACrEOUSm8xIl09PtKp6z3HdPmW01SUBQMSo735oJk30vsxJ9DPOzoj4JSw/mQAAAAAALOV2G3prp6eJPncCUS6xxGazef9O/7CdZy8AwPnqvQ8VHWJxJZFnqD1JmUM8jXNznaxEEx0AAAAAYKmtR06rocWpdHuSvnRVttXlIMjmdGfcm5EuAAAPM++bSXTfzHWpa7I+F50mOgAAAADAUhXbe6Jc7EmJFleDYLsmN12Xjxqqjk63qvcct7ocAIgYZKJfWEGWZ0K/LgJy0WmiAwAAAAAsc36UyxyiXGLS+ZEuFTuIdAEAk8PbRCfOxRfzlwvmxL6VaKIDAAAAACyz7bwolxuuJsolVpm/IPmv/US6AICpJxOdSXRfmEQHAAAAAEA9k8klRLnEtLF56bo82xPp8s5eIl0A4Ey7S2ednZKIc+kPk+gAAAAAgLjndht6a4dDElEusc5ms3n/js0MfACIZ2aUS0ZqkobakyyuJjKZMTfmxL6VaKIDAAAAACyx7chpOVraNcyepBuuIsol1plN9Jr9J7zTlwAQr+q6G8NmZAn6Gu2NczknwzAsrYUmOgAAAADAEmaUy6xxuUpNJsol1l2b3xPpUr2nwepyAMBSju6IEvLQ+5ebaZckOTvdOt1m7fM0aKIDAAAAAMKOKJf4c36kS+UOIl0AxDczooQ89P7ZkxKVPczTSK9rsjYXnSY6AAAAACDsPj5KlEs88ka67CPSBUB8q28ym+jEuVxIQZbnlww00QEAAAAAcadiu2cKveTaHKJc4si1+ekakz1UTiJdAMS5+hZPE504lwszJ/WtfrgoTXQAAAAAQFi53Ybe2umJ8yDKJb54Il3yJBHpAiC+1XdPVhPncmHmpH5dM5PoAAAAAIA48vHRJtU3e6Jcvnz1KKvLQZidH+nSSqQLgDjlaCbOZSDMOBcz/sYqNNEBAAAAAGFlTiB/hSiXuDQuP0NFI9M8kS57j1tdDgCE3Zl2l850/xKRSfQLM3/JUM8kOgAAAAAgXrjdht7aQZRLPPNEunj+7iu3E+kCIP6YU+gZqUkaak+yuJrIVpDVHefCJDoAAAAAIF58fLRJdc3tGpqSqBuJcolbZhP93X3HiXQBEHfqiXIZMDPOpaGlXV1uw7I6aKIDAAAAAMLGjHIpGZdLlEscu64gQ5d1R7q8Q6QLgDhjTqLnEeVyUTnpqUpMsKnTbajxrNOyOmiiAwAAAADCgigXmHpFuuwg0gVAfKnrzvc2p6zRv8QEm3LT7ZKkY03W5aLTRAcAAAAAhEXt50S5oMdcIl0AxCnvJHoGcS4Dkd+di15vYS46TXQAAAAAQFiYD5H8yrVEuaAn0qXdRaQLgPhS581EZxJ9IMx1qm9mEh0AAAAAEMMMw9BbOx2SiHKBB5EuAOKVo7sZnE+cy4AUdE+i1zGJDgAAAACIZbVHm3Ss6ZyGpiTqpmuIcoHH+ZEubR1EugCID/VMovuFSXQAAAAAQFwwJ43/nigXnOe6ggxdOoJIFwDx46yzU2faPb80zMskE30gvJPozUyiAwAAAABilGEYqtzhiXKZOyHP4moQSYh0ARBvzCiX9NQkDbMnWVxNdCjINB8syiQ6AAAAACBGmVEuaSmJuumaHKvLQYQxI13e2UukC4DYR5SL/8zs+BNnnerodFtSA010AAAAAEBIeaNcxuYQ5YI+xo/OUOGIIWp3ufXu3hNWlwMAIVXfZDbRiXIZqJFDU5SSlCDDkBparIl0oYkOAAAAAAiZ86Nc/mFivsXVIBIR6QIgnjCJ7j+bzeZdrzqLIl1oogMAAAAAQuavnzcT5YKLOj/S5VxHl8XVAEDo1HdnoufRRPeL2USvt+jhojTRAQAAAAAhQ5QLBmLC6ExdMnyIzrm69O6+41aXAwAhYzaBC4hz8Yu5XnXNTKIDAAAAAGKIYRiq2O5popuTxoAvNptNc7vjfszvGQCIRY7uJjqT6P4xHy5qZsqHG010AAAAAEBIbO+OchmSTJQLLo5IFwDxwJykJhPdPwVZnkn0eibRAQAAAACxxBvlcm2OhqQQ5YILI9IFQKw76+zUmfZOSVJ+FnEu/vDGuTCJDgAAAACIFYZhqGIHUS4YOJvN5v1eMb93ACCWmFEu6fYkDbMnWVxNdPHGuTCJDgAAAACIFds/b9bnpz1RLjcT5YIBmmNGuuwh0gVA7DEbwGZDGAOX3z2JfrrNZcl/H2iiAwAAAACCzhvlMpYoFwzcxEt6Il1qiHQBEGPqvQ8VJcrFXxmpSRra/fNEnQXT6DTRAQAAAABB1SvKZSJRLhg4m83mnUYn0gVArKnvzvPOz2AS3V82m82bI19vQS46TXQAAAAAQFDtOEaUCwLnjXTZe1ztLiJdAMQORwtxLoORn+lZNybRAQAAAABRr4IoFwzCpEsyNTpriNo6iHQBEFvMOBezGQz/FGQyiQ4AAAAAiAGGYXjz0M2JYsAfnkiXPElSxQ6HxdUAQPCYzV8y0QNTYMa5MIkOAAAAAIhmO4+16Oipc0pNTtDNY0dZXQ6ilPkLmOo9DUS6XMTq1atVVFSk1NRUFRcXa8uWLf2eu2vXLv3P//k/VVRUJJvNplWrVoWvUADe5m8Bk+gBMWNw6pqZRAcAAAAARLHzo1zSUpIsrgbRanJhFpEuA7BhwwaVlZVp+fLl2rZtmyZNmqTS0lIdP+57zdra2nT55ZfrmWeeUV5eXpirBeJbq7NTLe2dkqQ8mugB6YlzCf8kOj/RAAAAAACCgigXBIsZ6bL2vUOq2OHQLeP5fvJl5cqVuv/++7Vw4UJJ0po1a1RRUaF169Zp8eLFfc7/4he/qC9+8YuS5PPPfXE6nXI6nd7PW1paJEkul0sul2vAtZrn+nNNPGBdfIvFdTl6slWSNMyepNTEwO8tFtdmoEYN9bSy65rOqaOjQzabzftnga7LQM+niQ4AAADEgdWrV+vZZ5+Vw+HQpEmT9MILL2j69Ok+z127dq3+7d/+TTt37pQkTZ06VU8//XS/5wOmncdadORUm1KTE/T3Y3OsLgdRbs6EfK1975A30iU1mYfUnq+jo0Nbt27VkiVLvMcSEhJUUlKizZs3B+11ysvLtWLFij7HN23apLS0NL+/XlVVVTDKijmsi2+xtC77mmySEjUswaXKyspBf71YWpuB6uiSpCS1dnTpP/7fW0rz0dn2d13a2toGdB5NdAAAACDGmW/3X7NmjYqLi7Vq1SqVlpZq3759ysnp2+isqanRnXfeqZkzZyo1NVU//vGPNXv2bO3atUujR4+24A4QLcwol5uvIcoFg2dGuhxrOqeafSd0y3jiR87X2Niorq4u5ebm9jqem5urvXv3Bu11lixZorKyMu/nLS0tKiws1OzZs5WRkTHgr+NyuVRVVaVZs2YpOTk5aPVFO9bFt1hcl7Ztx6Q9u3Tl6GzNmTM14K8Ti2vjj6d2vKumcy5NmH6DrslL9x4PdF3Md9dcDD/VAAAAADHO37f7v/baa70+f/nll/Uf//Efqq6u1oIFC8JSM6IPUS4INpvNplvH5+nl9w+pckc9TXSL2O122e32PseTk5MDauAFel2sY118i6V1OXHWExsyOistKPcUS2vjj/ysIWo659KJ1k6N93H//q7LQM+liQ4AAADEsGC83b+trU0ul0sjRozw+efk5YZeNKzNrrqeKJcbrhgellqjYV2sEEvrMnvcKL38vifS5Uxb+6AjXUKdmRtO2dnZSkxMVENDQ6/jDQ0NPDQUiED1ze2SeKjoYBVkpmpPfYvqmsP7cFGa6AAAAEAMC8bb/R977DEVFBSopKTE55+Tlxs+kbw2/++zBEkJuia9U/9VvSmsrx3J62KlWFgXw5CyUhLV1NGlVRs2aeIIIyhfN1SZueGUkpKiqVOnqrq6Wrfffrskye12q7q6WosWLbK2OAB91Hc3ffNpog9KQdYQSVJ9U3tYX5cmOgAAAIB+PfPMM1q/fr1qamqUmur7H33k5YZepK+NYRh6ftX7ks5pYclkzZkQninYSF8Xq8Tauvw1YZ9+8cFnOm4frTlzJg7qa4U6MzfcysrKdM8992jatGmaPn26Vq1apdbWVm9814IFCzR69GiVl5dL8rw7affu3d7//9ixY6qtrdWwYcN05ZVXWnYfQDxwdE+i53c3gRGY/CzPz6NMogMAAAAImsG83f+5557TM888oz/+8Y+aOLH/xhV5ueETqWuz81izjpw6J3tSgmZdl6/k5PD+UzNS18VqsbIu/zBptH7xwWd6Z+8JdSlh0JEuUugyc8Nt/vz5OnHihJYtWyaHw6HJkydr48aN3ncfHTlyRAkJCd7z6+rqNGXKFO/nzz33nJ577jndeOONqqmpCXf5QFwx41yYRB+cgkwm0QEAAAAEWaBv9//JT36ip556Sm+//bamTZsWpmoRrcwHit58TY6G2vlnJoJrSmGW8jNTVd/crv/af0Kl15H3fb5Fixb1u5//bWO8qKhIhhGcSBwAA9fW0anmc55nK9BEHxxz/cI9iZ5w8VP6Wr16tYqKipSamqri4mJt2bKl33PXrl2rG264QcOHD9fw4cNVUlJywfMBANZhfweA2FRWVqa1a9fq1Vdf1Z49e/TQQw/1ebv/+Q8e/fGPf6ylS5dq3bp1KioqksPhkMPh0NmzZ626BUQwwzC8TfQ5E/MtrgaxKCHBplvHe763zO81AIgm5hT6MHuS0lMj850t0cKbid7cHtZfCvrdRN+wYYPKysq0fPlybdu2TZMmTVJpaamOHz/u8/yamhrdeeedevfdd7V582ZvNuKxY8cGXTwAIHjY3wEgds2fP1/PPfecli1bpsmTJ6u2trbP2/3r63saUy+99JI6Ojp0xx13KD8/3/vx3HPPWXULiGC76lp0+GSb7EkJ+srYHKvLQYya2/0Lmuo9x9Xu6rK4GgDwj5mHnscU+qDlZqTKZpM6Ot062doRttf1u4m+cuVK3X///Vq4cKHGjRunNWvWKC0tTevWrfN5/muvvaZvfetbmjx5ssaOHauXX37Z+/ZRAEDkYH8HgNi2aNEiffbZZ3I6nfrwww9VXFzs/bOamhq98sor3s8PHz4swzD6fPzgBz8If+GIeOZk8E3XjCLKBSFjRrqcdXbqT/tPWF0OAPilrskTPUKUy+ClJCUoe5jnWTzhzEX3q4ne0dGhrVu3qqSkpOcLJCSopKREmzdvHtDXaGtrk8vl0ogRI/o9x+l0qqWlpdcHACB02N8BAEAgekW5TCDKBaFDpAuAaObgoaJBVWBBLrpfTfTGxkZ1dXV53/Zpys3NlcPhGNDXeOyxx1RQUNCrUfO3ysvLlZmZ6f0oLCz0p0wAgJ/Y3wEAQCB2158X5XJt7sUvAAZh7kTPA0X/SKQLgChT541zGWJxJbHBm4veFKFN9MF65plntH79ev3ud79Tamr/v3lZsmSJmpubvR9Hjx4NY5UAAH+xvwMAEJ/Oj3IZRpQLQmxK4XDlZXgiXd77pNHqcgBgwBzdE9MFTKIHRX5mz8NFw8WvJnp2drYSExPV0NDQ63hDQ4Py8vIueO1zzz2nZ555Rps2bdLEiRMveK7dbldGRkavDwBA6LC/AwAAf3miXDzvWCPKBeGQkGDTrRM8P5sS6QIgmtTzYNGgKsgy41witImekpKiqVOn9nponPkQuRkzZvR73U9+8hM9+eST2rhxo6ZNmxZ4tQCAkGB/BwAA/tpTf0aHGluVQpQLwmhu9y9s/ri7Qc5OIl0ARAeziW7GkGBwzEn0ukiOcykrK9PatWv16quvas+ePXrooYfU2tqqhQsXSpIWLFigJUuWeM//8Y9/rKVLl2rdunUqKiqSw+GQw+HQ2bNng3cXAIBBY38HAAD+8Ea5XE2UC8LnC5d6Il3OODv13n4iXQBEvraOTjWfc0liEj1Y8rsn0cOZie73Tzrz58/XiRMntGzZMjkcDk2ePFkbN270PozuyJEjSkjo6c2/9NJL6ujo0B133NHr6yxfvlw/+MEPBlc9ACBo2N8BAMBAeaJcPE30uROJckH4JCTYdMv4PL3ywWFV7KhXyTjeBQEgsjm6p9CHpiQqnV86B0VB9yR6wxmnutyGEhNsIX/NgP7mFi1apEWLFvn8s5qaml6fHz58OJCXAABYgP0dAAAMxJ76MzpIlAssMndivl754LA30sWelGh1SQDQLzPKJT9riGy20Dd748GodLuSEmzqdBs6fqbdG+8SSn7HuQAAAAAA4ps5hX4jUS6wwNRLhys3w06kC4Co4G2iE+USNIkJNuVmdD9ctCk8DxeliQ4AAAAAGLBeUS4TiHJB+CUk2HTreM/3nvm9CACRysztzsugiR5MBWYuenN4ctFpogMAAAAABmyv4/wolxyry0GcMrP4q7ojXQAgUtW39MS5IHjMCJd6JtEBAAAAAJHm/CiX9NRki6tBvDo/0uX9T4h0ARC5HMS5hER+9yR6HZPoAAAAAIBIYhiGKohyQQQ4P9KlgkgXABGsrjvOhSZ6cBV0T6Kb6xtqNNEBAAAAAAOyr+GMDp4gygWRYc4EIl0ARD6HGeeSSZxLMJm/lDAf3BpqNNEBAAAAAANSud0z8fvlq4hygfWmXTZcOel2nWnv1J8PEOkCIPKc6+hSU5tLkpTHJHpQFWSZk+g00QEAAAAAEaJXlMvEPIurAcxIF8/34h+2E+kCIPLUd+d1D01JVEZqksXVxBZzEr3xrDMs70aiiQ4AAAAAuKh9DWf06YlWpSQm6CvX5lpdDiCJSBcAkc18qGheZqpsNpvF1cSWEUNTZE/ytLYbmp0hfz2a6AAAAACAi/JGuVydrQyiXBAhphWN0CgiXQBEqLpm8tBDxWaz9US6NIf+4aI00QEAAAAAF3R+lIs5+QtEgsTzIl0qtjssrgYAenN0N3fzyUMPiZ6Hi9JEBwAAAABYbH/DWW+US8k4olwQWXoiXRzq6HRbXA0A9Kj3TqLTRA8Fc8I/HA8XpYkOAAAAALggcwqdKBdEoi92R7q0EOkCIMLUezPRiXMJhYIszy8n6pqYRAcAAAAAWKySKBdEsF6RLt3fqwAQCbyT6FlMooeCOYlurnMo0UQHAAAAAPRrf8MZHTh+ligXRDTzFzybdhHpAiBykIkeWvlMogMAAAAAIkHFds9k7w1XEeWCyPXFohHKHtYd6fIpkS4ArHeuo0un21ySeiamEVwFTKIDAAAAACIBUS6IBudHulRuJ9IFgPUcLZ7GblpKojJSkyyuJjaZk+jN51xq6+gM6WvRRAcAAAAA+LS/4Yw+OX5WyYk2olwQ8cxf9LxNpAuACFDfHTGSl5kqm81mcTWxKSM1Wel2zy8o6pudIX0tmugAAAAAAJ96olxGKXMIUS6IbNPHEOkCIHKYESMFRLmElDmNHupIF5roAAAAAACfiHJBNElMsOmW8Z53TBDpAsBqZpxLHg8VDan8MOWi00QHAAAAAPTxyXlRLrOIckGUMH/hs2l3g1xdRLoAsE5dd5xLPk30kCrwTqKfC+nr0EQHAAAAAPRRsYMoF0Sf4jEjlT0sRc3nXPrzASJdAFjH0T0ZnU+cS0j1TKKTiQ4AAAAACDOiXBCNEhNsKr0uT1LP9zAAWKHe20RnEj2UzPUlzgUAAAAAEFYHjp/R/gaiXBCd5k4k0gWA9cx4EfPBlwiNgiwy0QEAAAAAFqjY7pAkfenKbKJcEHXMSJemNpc++PSk1eUAiEPtri6dbnNJkvIziHMJJXMS3dHSLsMI3evQRAcAAAAA9EKUC6JZr0iX7US6AAg/cyp6SHKiMoYkWVxNbDMn0ds6unSuK3SvQxMdAAAAAOB14PgZ7Ws4o+REm2aPy7O6HCAgc7t/AfT2bgeRLgDC7vwoF5vNZnE1sS01OVEjhqZIkk6H8NmiNNEBAAAAAF5mlMv1V2YrM40oF0Sn6WNGaORQIl0AWMPBQ0XDylznpo7Q/cKCJjoAAAAAwIsoF8SCpMQElY4n0gWANcw4lzzy0MMiP9OzzkyiAwAAAABC7sDxs9rXcEZJCTbNHpdrdTnAoBDpAsAqZpxLQRaT6OFgrvNpJtEBAAAAAKFmTqFff2W2stJSLK4GGJziMSM0ojvSZTORLgDCyIxzySPOJSzMSfQmJtEBAAAAAKFmNtHnTiTKBdEvKTFBpdd1R7rsINIFQPjUNXma6AWZxLmEgzmJTiY6AAAAACCkPj1xVnsdRLkgtngjXXYR6QIgfBwtTKKHE5noAAAAAICwMB++SJQLYsnfXe6JdDnd5tJfDhLpAiD02l1dOtXaIUnKp4keFj2T6JLbbYTkNWiiAwAAAABUYUa5TCDKBbGDSBcA4WbmoQ9JTlTmkGSLq4kPuRmpuvmabP1djqGOEL3riCY6AAAAAMS5XlEu1xHlgtjSE+nSoE4iXQCEWH13Ez0/M1U2W+gyutEjOTFBP/v/vqCvXe5WanJiSF6DJjoAAAAAxDkzymUmUS6IQWaky6nWDn14+LTV5QCIcfXN5ySRhx5raKIDAAAAcWD16tUqKipSamqqiouLtWXLlgue/9vf/lZjx45VamqqJkyYoMrKyjBVCiv0RLnkWVwJEHyeSBfPOyze2umwuJrgY38HIkvPJPoQiytBMNFEBwAAAGLchg0bVFZWpuXLl2vbtm2aNGmSSktLdfz4cZ/nf/DBB7rzzjt177336uOPP9btt9+u22+/XTt37gxz5QiHg91RLokJNs0eRxMdsWlOd6TLpt3H1RWaZ85Zgv0diDyO8+JcEDuSrC4AAAAAQGitXLlS999/vxYuXChJWrNmjSoqKrRu3TotXry4z/n/8i//oltuuUXf/e53JUlPPvmkqqqq9NOf/lRr1qwJWZ2n2zp02umZ4EpK6gzZ60Sjzs7OkK3N61s/lyTNvGKkhg8lygWxacblIzU8LVmn21w60Bw7GcXRsr+f6+jSiZZ29ngfQrm/R7NoXpfDJ1slSflZNNFjCU10AAAAIIZ1dHRo69atWrJkifdYQkKCSkpKtHnzZp/XbN68WWVlZb2OlZaW6s033/R5vtPplNPp9H7e0tIiSXK5XHK5XAOu9UcVe/Sf25P0g21/GvA18SW0a3PrdTl+/X1FArPeaKs71FgX32Zdm6PfbD2m2pM2v9cmEtcyHPu7FJw9vnp3gxat/6tCvY9FL9bFt+hel1FDk0Oyd7DH+xbougz0fJroAAAAQAxrbGxUV1eXcnNzex3Pzc3V3r17fV7jcDh8nu9w+M4SLi8v14oVK/oc37Rpk9LS0gZca0N9gpJssTMhGk1GpUoJx7arsmG71aUEpKqqyuoSIhLr0tvINpsSbQnqMvxfm7a2thBVFbhw7O9ScPb47adsSrKRKIz4MTJVOrnvv1X5aehegz3et1Dt7zTRAQAAAAzKkiVLek02trS0qLCwULNnz1ZGRsaAv84sl0tVVVWaNWuWkpOTQ1Fq1HKxNj6xLr6xLr7N7nLrm21O/eW9d/1eG3P6Oh4FY4+fI+mf+L70if+9+sa69I+18S3QdRno/k4THQAAAIhh2dnZSkxMVENDQ6/jDQ0Nysvz/RDJvLw8v8632+2y2+19jicnJwf0j7tAr4sHrI1vrItvrEtvyclSUmJC9//v39pE4jqGY3+X2OPDhXXxjXXpH2vjW6j2d95LAwAAAMSwlJQUTZ06VdXV1d5jbrdb1dXVmjFjhs9rZsyY0et8yfPW2P7OBwCEH/s7AIQPk+gAAABAjCsrK9M999yjadOmafr06Vq1apVaW1u1cOFCSdKCBQs0evRolZeXS5IeeeQR3XjjjXr++ec1d+5crV+/Xh999JF+9rOfWXkbAIC/wf4OAOFBEx0AAACIcfPnz9eJEye0bNkyORwOTZ48WRs3bvQ+XO7IkSNKSOh5k+rMmTP161//Wk888YS+//3v66qrrtKbb76p8ePHW3ULAAAf2N8BIDxoogMAAABxYNGiRVq0aJHPP6upqelz7B//8R/1j//4jyGuCgAwWOzvABB6ZKIDAAAAAAAAANAPmugAAAAAAAAAAPSDJjoAAAAAAAAAAP2giQ4AAAAAAAAAQD8CaqKvXr1aRUVFSk1NVXFxsbZs2XLB83/7299q7NixSk1N1YQJE1RZWRlQsQCA0GJ/BwAAAAAA6M3vJvqGDRtUVlam5cuXa9u2bZo0aZJKS0t1/Phxn+d/8MEHuvPOO3Xvvffq448/1u23367bb79dO3fuHHTxAIDgYX8HAAAAAADoK8nfC1auXKn7779fCxculCStWbNGFRUVWrdunRYvXtzn/H/5l3/RLbfcou9+97uSpCeffFJVVVX66U9/qjVr1vh8DafTKafT6f28ublZktTS0uJvuQAQccy9zDAMiyvpjf0dAAYnUvd3K5hr4O/+7nK51NbWppaWFiUnJ4eitKjF2vjGuvjGuvQv0LVhj+/BHh9crItvrEv/WBvfQr2/+9VE7+jo0NatW7VkyRLvsYSEBJWUlGjz5s0+r9m8ebPKysp6HSstLdWbb77Z7+uUl5drxYoVfY4XFhb6Uy4ARLSTJ08qMzPT6jIksb8DQDBF0v5ulTNnzkhifwcQe86cOcMezx4PIAZdbH/3q4ne2Niorq4u5ebm9jqem5urvXv3+rzG4XD4PN/hcPT7OkuWLOnVmGlqatJll12mI0eOxNV/rFpaWlRYWKijR48qIyPD6nLCIh7vWeK+4+2+m5ubdemll2rEiBFWl+LF/h5e8fq9z31z37EuEvd3qxQUFOjo0aNKT0+XzWYb8HXx+H0zUKyNb6yLb6xL/wJdG8MwdObMGRUUFISwuujAHh9crItvrEv/WBvfQr2/+x3nEg52u112u73P8czMzLj85sjIyIi7+47He5a473iTkBDQs52jGvt7b/H6vc99x5d4vO943N//VkJCgi655JKAr4/H75uBYm18Y118Y136F8jaxNPQx4Wwx4cG6+Ib69I/1sa3UO3vfv2En52drcTERDU0NPQ63tDQoLy8PJ/X5OXl+XU+ACD82N8BAAAAAAB886uJnpKSoqlTp6q6utp7zO12q7q6WjNmzPB5zYwZM3qdL0lVVVX9ng8ACD/2dwAAAAAAAN/8jnMpKyvTPffco2nTpmn69OlatWqVWltbtXDhQknSggULNHr0aJWXl0uSHnnkEd144416/vnnNXfuXK1fv14fffSRfvaznw34Ne12u5YvX+4zAiCWxeN9x+M9S9w39x0Z2N/Dh/vmvuNBPN53PN5zsLGG/WNtfGNdfGNd+sfaWIe194118Y116R9r41uo18VmGIbh70U//elP9eyzz8rhcGjy5Mn613/9VxUXF0uSbrrpJhUVFemVV17xnv/b3/5WTzzxhA4fPqyrrrpKP/nJTzRnzpyg3QQAIDjY3wEAAAAAAHoLqIkOAAAAAAAAAEA88CsTHQAAAAAAAACAeEITHQAAAAAAAACAftBEBwAAAAAAAACgHzTRAQAAAAAAAADoR8Q00VevXq2ioiKlpqaquLhYW7ZsueD5v/3tbzV27FilpqZqwoQJqqysDFOlweXPfa9du1Y33HCDhg8fruHDh6ukpOSi6xSJ/P27Nq1fv142m0233357aAsMEX/vu6mpSQ8//LDy8/Nlt9t19dVXR+X3ub/3vWrVKl1zzTUaMmSICgsL9eijj6q9vT1M1QbHn/70J82bN08FBQWy2Wx68803L3pNTU2NvvCFL8hut+vKK6/UK6+8EvI6w4X9PX72d4k9Pp72ePZ39vdgeeqppzRz5kylpaUpKytrQNcYhqFly5YpPz9fQ4YMUUlJiT755JPQFhpmp06d0je+8Q1lZGQoKytL9957r86ePXvBa2666SbZbLZeHw8++GCYKg6deP1Z4mL8WZdXXnmlz/dGampqGKsND/bpyML+3j/2eA/29/6xx/dl+R5vRID169cbKSkpxrp164xdu3YZ999/v5GVlWU0NDT4PP/Pf/6zkZiYaPzkJz8xdu/ebTzxxBNGcnKysWPHjjBXPjj+3vddd91lrF692vj444+NPXv2GN/85jeNzMxM4/PPPw9z5YHz955Nhw4dMkaPHm3ccMMNxle/+tXwFBtE/t630+k0pk2bZsyZM8d4//33jUOHDhk1NTVGbW1tmCsfHH/v+7XXXjPsdrvx2muvGYcOHTLefvttIz8/33j00UfDXPngVFZWGo8//rjxxhtvGJKM3/3udxc8/+DBg0ZaWppRVlZm7N6923jhhReMxMREY+PGjeEpOITY3+NnfzcM9vh42uPZ39nfg2nZsmXGypUrjbKyMiMzM3NA1zzzzDNGZmam8eabbxp//etfjdtuu80YM2aMce7cudAWG0a33HKLMWnSJOMvf/mL8d577xlXXnmlceedd17wmhtvvNG4//77jfr6eu9Hc3NzmCoOjXj9WeJi/F2XX/ziF0ZGRkav7w2HwxHmqkOPfTqysL/3jz2e/f1C2ON9s3qPj4gm+vTp042HH37Y+3lXV5dRUFBglJeX+zz/a1/7mjF37txex4qLi43/9b/+V0jrDDZ/7/tvdXZ2Gunp6carr74aqhKDLpB77uzsNGbOnGm8/PLLxj333BOVDRZ/7/ull14yLr/8cqOjoyNcJYaEv/f98MMPG3//93/f61hZWZlx/fXXh7TOUBrIxv69733PuO6663odmz9/vlFaWhrCysKD/d0jHvZ3w2CPN8XDHs/+zv4eCr/4xS8G1GRxu91GXl6e8eyzz3qPNTU1GXa73fj3f//3EFYYPrt37zYkGf/93//tPfbWW28ZNpvNOHbsWL/X3XjjjcYjjzwShgrDJ15/lrgYf9dloP/7iiXs05GD/b039ngP9vf+scdfnBV7vOVxLh0dHdq6datKSkq8xxISElRSUqLNmzf7vGbz5s29zpek0tLSfs+PRIHc999qa2uTy+XSiBEjQlVmUAV6zz/84Q+Vk5Oje++9NxxlBl0g9/2f//mfmjFjhh5++GHl5uZq/Pjxevrpp9XV1RWusgctkPueOXOmtm7d6n2b0sGDB1VZWak5c+aEpWarxMKe5gv7e/zs7xJ7fDzt8ezvAxcLe1okOnTokBwOR6+1zczMVHFxccys7ebNm5WVlaVp06Z5j5WUlCghIUEffvjhBa997bXXlJ2drfHjx2vJkiVqa2sLdbkhE68/S1xMoP/NPXv2rC677DIVFhbqq1/9qnbt2hWOciNaPHy/RJN42N8l9niJ/f1C2OODJ9jfM0nBKGowGhsb1dXVpdzc3F7Hc3NztXfvXp/XOBwOn+c7HI6Q1Rlsgdz333rsscdUUFDQ5xsiUgVyz++//75+/vOfq7a2NgwVhkYg933w4EG98847+sY3vqHKykodOHBA3/rWt+RyubR8+fJwlD1ogdz3XXfdpcbGRn3pS1+SYRjq7OzUgw8+qO9///vhKNky/e1pLS0tOnfunIYMGWJRZYPD/h4/+7vEHh9Pezz7+8DF6v5uNfO/CdH+34sLcTgcysnJ6XUsKSlJI0aMuOA93nXXXbrssstUUFCg7du367HHHtO+ffv0xhtvhLrkkIjXnyUuJpB1ueaaa7Ru3TpNnDhRzc3Neu655zRz5kzt2rVLl1xySTjKjkjs05ElHvZ3iT1eYn+/EPb44An2Hm/5JDoC88wzz2j9+vX63e9+F5MPC5CkM2fO6O6779batWuVnZ1tdTlh5Xa7lZOTo5/97GeaOnWq5s+fr8cff1xr1qyxurSQqqmp0dNPP60XX3xR27Zt0xtvvKGKigo9+eSTVpcGhE087O8Se3y87fHs7/Fn8eLFfR5w9bcfA/3FYiwJ9bo88MADKi0t1YQJE/SNb3xD//Zv/6bf/e53+vTTT4N4F4hGM2bM0IIFCzR58mTdeOONeuONNzRq1Cj93//7f60uDVGG/b1/7PGwCnt8eFg+iZ6dna3ExEQ1NDT0Ot7Q0KC8vDyf1+Tl5fl1fiQK5L5Nzz33nJ555hn98Y9/1MSJE0NZZlD5e8+ffvqpDh8+rHnz5nmPud1uSZ7f0u7bt09XXHFFaIsOgkD+rvPz85WcnKzExETvsWuvvVYOh0MdHR1KSUkJac3BEMh9L126VHfffbfuu+8+SdKECRPU2tqqBx54QI8//rgSEmLz93797WkZGRlRPf3C/h4/+7vEHh9Pezz7+8DF6v4+EP/0T/+kb37zmxc85/LLLw/oa5vfZw0NDcrPz/ceb2ho0OTJkwP6muEy0HXJy8vT8ePHex3v7OzUqVOn/PpvYnFxsSTpwIEDUbGn/q14/VniYgbzs4YpOTlZU6ZM0YEDB0JRYtSI5306UOzv/WOPHzj29/6xxwdPsPd4y//FkpKSoqlTp6q6utp7zO12q7q6WjNmzPB5zYwZM3qdL0lVVVX9nh+JArlvSfrJT36iJ598Uhs3buyVnxUN/L3nsWPHaseOHaqtrfV+3Hbbbbr55ptVW1urwsLCcJYfsED+rq+//nodOHDA21CSpP379ys/Pz/imyumQO67ra2tTyPFbDJ5nhsRm2JhT/OF/T1+9neJPT6e9nj294GLhT0tUKNGjdLYsWMv+BHo9/uYMWOUl5fXa21bWlr04YcfRvzaDnRdZsyYoaamJm3dutV77TvvvCO32+1tmgyEGZd1fjMqmsTrzxIXE+jPGufr6urSjh07ovZ7I1ji4fsl2Njf+8ceP3Ds7/1jjw+eoH/PBPQ40iBbv369YbfbjVdeecXYvXu38cADDxhZWVmGw+EwDMMw7r77bmPx4sXe8//85z8bSUlJxnPPPWfs2bPHWL58uZGcnGzs2LHDqlsIiL/3/cwzzxgpKSnG66+/btTX13s/zpw5Y9Ut+M3fe/5b99xzj/HVr341TNUGj7/3feTIESM9Pd1YtGiRsW/fPuMPf/iDkZOTY/zoRz+y6hYC4u99L1++3EhPTzf+/d//3Th48KCxadMm44orrjC+9rWvWXULATlz5ozx8ccfGx9//LEhyVi5cqXx8ccfG5999plhGIaxePFi4+677/aef/DgQSMtLc347ne/a+zZs8dYvXq1kZiYaGzcuNGqWwga9vf42d8Ngz0+nvZ49nf292D67LPPjI8//thYsWKFMWzYMO8an78HXnPNNcYbb7zh/fyZZ54xsrKyjN///vfG9u3bja9+9avGmDFjjHPnzllxCyFxyy23GFOmTDE+/PBD4/333zeuuuoq48477/T++eeff25cc801xocffmgYhmEcOHDA+OEPf2h89NFHxqFDh4zf//73xuWXX258+ctftuoWgiJef5a4GH/XZcWKFcbbb79tfPrpp8bWrVuNr3/960Zqaqqxa9cuq24hJNinIwv7e//Y49nfL4Q93jer9/iIaKIbhmG88MILxqWXXmqkpKQY06dPN/7yl794/+zGG2807rnnnl7n/+Y3vzGuvvpqIyUlxbjuuuuMioqKMFccHP7c92WXXWZI6vOxfPny8Bc+CP7+XZ8vWhsshuH/fX/wwQdGcXGxYbfbjcsvv9x46qmnjM7OzjBXPXj+3LfL5TJ+8IMfGFdccYWRmppqFBYWGt/61reM06dPh7/wQXj33Xd9/m/VvNd77rnHuPHGG/tcM3nyZCMlJcW4/PLLjV/84hdhrztU2N/jZ383DPb4eNrj2d/Z34Plnnvu8bmu7777rvccSb3Wzu12G0uXLjVyc3MNu91ufOUrXzH27dsX/uJD6OTJk8add95pDBs2zMjIyDAWLlzYq/F06NChXut05MgR48tf/rIxYsQIw263G1deeaXx3e9+12hubrboDoInXn+WuBh/1uU73/mO99zc3Fxjzpw5xrZt2yyoOrTYpyML+3v/2OM92N/7xx7fl9V7vM0wYvg9tAAAAAAAAAAADILlmegAAAAAAAAAAEQqmugAAAAAAAAAAPSDJjoAAAAAAAAAAP2giQ4AAAAAAAAAQD9oogMAAAAAAAAA0A+a6AAAAAAAAAAA9IMmOgAAAAAAAAAA/aCJDgAAAAAAAABAP2iiAwAAAAAAAADQD5roAAAAAAAAAAD0gyY6AAAAAAAAAAD9oIkOAAAAAAAAAEA/aKIDAAAAAAAAANAPmugAAAAAAAAAAPSDJjoAAAAAAAAAAP2giQ4AAAAAAAAAQD9oogMAAAAAAAAA0A+a6AAAAAAAAAB8+sEPfiCbzabGxsaLntvZ2anvfe97KiwsVEJCgm6//fbQFwiEAU10AAAAAAAAAIO2bt06Pfvss7rjjjv06quv6tFHH+333LVr1+rGG29Ubm6u7Ha7xowZo4ULF+rw4cMhr9PK10Z0SrK6AAAAAAAAAADR75133tHo0aP1z//8zxc99+OPP9aYMWN02223afjw4Tp06JDWrl2rP/zhD/rrX/+qgoKCkNVp5WsjOtFEBwAAAAAAADBox48fV1ZW1oDOffHFF/scu/322zVt2jT927/9mxYvXhzk6iLjtRGdiHMBAAAAAAAAcEGNjY362te+poyMDI0cOVKPPPKI2tvbJUmHDx+WzWbTu+++q127dslms8lms6mmpsav1ygqKpIkNTU1XfC8X/ziF7LZbFq3bl2v408//bRsNpsqKyv9el1/XhvxiSY6AAAAAAAAgAv62te+pvb2dpWXl2vOnDn613/9Vz3wwAOSpFGjRumXv/ylxo4dq0suuUS//OUv9ctf/lLXXnvtRb/uyZMndfz4cX300UdauHChJOkrX/nKBa9ZuHCh/uEf/kFlZWU6evSoJGnHjh1asWKF7r33Xs2ZM2dA9xTIayM+2QzDMKwuAgAAAAAAAEDk+cEPfqAVK1botttu0+9//3vv8Ycfflgvvvii/vrXv2rixImSpJtuukmNjY3auXPngL9+amqqnE6nJGnkyJFavny5vv3tb1/0OofDoeuuu05Tp07VH/7wB/3d3/2dTp48qR07digjIyOkr434QyY6AAAAAAAAgAt6+OGHe33+7W9/Wy+++KIqKyu9TfRAvPXWW2pvb9eePXv0q1/9Sq2trQO6Li8vT6tXr9add96pG264QbW1taqqqhpwA30wr434QxMdAAAAAAAAwAVdddVVvT6/4oorlJCQoMOHDw/q6958882SpFtvvVVf/epXNX78eA0bNkyLFi266LVf//rX9atf/UoVFRV64IEH/I5iGcxrI76QiQ4AAAAAAADALzabLehf84orrtCUKVP02muvDej8kydP6qOPPpIk7d69W263O2yvjfhCEx0AAAAAAADABX3yySe9Pj9w4IDcbreKioqC+jrnzp1Tc3PzgM59+OGHdebMGZWXl+v999/XqlWrwvbaiC800QEAAAAAAABc0OrVq3t9/sILL0jyRKH4q7OzU6dPn+5zfMuWLdqxY4emTZt20a/x+uuva8OGDXrmmWe0ePFiff3rX9cTTzyh/fv3h/y1EX/IRAcAAAAAAABwQYcOHdJtt92mW265RZs3b9avfvUr3XXXXZo0aZLfX+vs2bMqLCzU/Pnzdd1112no0KHasWOHfvGLXygzM1NLly694PXHjx/XQw89pJtvvtmbX/7Tn/5U7777rr75zW/q/fffV0KC79nhwb424hNNdAAAAAAAAAAXtGHDBi1btkyLFy9WUlKSFi1apGeffTagr5WWlqb77rtP7777rl5//XWdO3dOBQUFuvPOO/XEE09cNCLmoYcektPp1C9+8QtvNvvIkSP1s5/9TF/96lf13HPP6Xvf+15IXhvxyWYYhmF1EQAAAAAAAAAARCIy0QEAAAAAAAAA6AdNdAAAAAAAAAAA+kETHQAAAAAAAACAfvjdRP/Tn/6kefPmqaCgQDabTW+++eZFr6mpqdEXvvAF2e12XXnllXrllVcCKBUAEErs7wAQm9jfAQAAgMHxu4ne2tqqSZMmafXq1QM6/9ChQ5o7d65uvvlm1dbW6jvf+Y7uu+8+vf32234XCwAIHfZ3AIhN7O8AAADA4NgMwzACvthm0+9+9zvdfvvt/Z7z2GOPqaKiQjt37vQe+/rXv66mpiZt3LjR5zVOp1NOp9P7udvt1qlTpzRy5EjZbLZAywWAiGAYhs6cOaOCggIlJERmqhb7OwD4j/2d/R1A7IqGPT5c3G636urqlJ6ezh4PIOoNdH9PCnUhmzdvVklJSa9jpaWl+s53vtPvNeXl5VqxYkWIKwMAax09elSXXHKJ1WUEjP0dAHxjfweA2BXte3ww1NXVqbCw0OoyACCoLra/h7yJ7nA4lJub2+tYbm6uWlpadO7cOQ0ZMqTPNUuWLFFZWZn38+bmZl166aU6evSoMjIyQl0yAIRUS0uLCgsLlZ6ebnUpg8L+DgC9sb+zvwOIXbGyxweDuQb+7vEul0ubNm3S7NmzlZycHKryog7r4hvr0j/WxrdA12Wg+3vIm+iBsNvtstvtfY5nZGTwQziAmBGPb31kfwcQD9jfe7C/A4g18bjH/y1zDfzd410ul9LS0pSRkUHj7zysi2+sS/9YG98Guy4X299DHuSVl5enhoaGXscaGhqUkZHhc4oFABAd2N8BIDaxvwMAAAC9hbyJPmPGDFVXV/c6VlVVpRkzZoT6pQEAIcT+DgCxif0dAAAA6M3vJvrZs2dVW1ur2tpaSdKhQ4dUW1urI0eOSPLkIS5YsMB7/oMPPqiDBw/qe9/7nvbu3asXX3xRv/nNb/Too48G5w4AAEHB/g4AsYn9HQAAABgcv5voH330kaZMmaIpU6ZIksrKyjRlyhQtW7ZMklRfX+/9gVySxowZo4qKClVVVWnSpEl6/vnn9fLLL6u0tDRItwAACAb2dwCITezvAAAAwOD4/WDRm266SYZh9Pvnr7zyis9rPv74Y39fCgAQRuzvABCb2N8BAACAwQl5JjoAAAAAAAAAANGKJjoAAAAAAAAAAP2giQ4AAAAAAAAAQD9oogMAAAAAAESZP/3pT5o3b54KCgpks9n05ptvXvSampoafeELX5DdbteVV17p87kYAIC+aKIDAAAAAABEmdbWVk2aNEmrV68e0PmHDh3S3LlzdfPNN6u2tlbf+c53dN999+ntt98OcaUAEHpOV1dIv35SSL86AAAAAAAAgu7WW2/VrbfeOuDz16xZozFjxuj555+XJF177bV6//339c///M8qLS3t9zqn0ymn0+n9vKWlRZLkcrnkcrkG/Prmuf5cEw9YF99Yl/6xNn25uty68fn3NDIpQZP/7qwKRgwb+LUDXEea6AAAAAAAADFu8+bNKikp6XWstLRU3/nOdy54XXl5uVasWNHn+KZNm5SWluZ3HVVVVX5fEw9YF99Yl/6xNj32Ntl0sjVR7Uk2bd38J9XaBn5tW1vbgM6jiQ4AAAAAABDjHA6HcnNzex3Lzc1VS0uLzp07pyFDhvi8bsmSJSorK/N+3tLSosLCQs2ePVsZGRkDfn2Xy6WqqirNmjVLycnJgd1EDGJdfGNd+sfa9PXB73dJOqaJIwzdMtu/dTHfXXMxNNEBAAAAAADgk91ul91u73M8OTk5oAZeoNfFOtbFN9alf6yNR2eXW1V7TkiSJo80/F6XgZ7Lg0UBAAAAAABiXF5enhoaGnoda2hoUEZGRr9T6AAQ6f5y8JROtXZoeFqyrso0QvY6NNEBAAAAAABi3IwZM1RdXd3rWFVVlWbMmGFRRQAweBU76iVJs8flKNGPLHR/0UQHAAAAAACIMmfPnlVtba1qa2slSYcOHVJtba2OHDkiyZNlvmDBAu/5Dz74oA4ePKjvfe972rt3r1588UX95je/0aOPPmpF+QAwaJ1dbr29yyFJuuW6vJC+Fk10AAAAAACAKPPRRx9pypQpmjJliiSprKxMU6ZM0bJlyyRJ9fX13oa6JI0ZM0YVFRWqqqrSpEmT9Pzzz+vll19WaWmpJfUDwGB9eKgnyuXvxgwP6WvxYFEAAAAAAIAoc9NNN8kw+s//feWVV3xe8/HHH4ewKgAInz9s90S5lF6Xp6TE0M6KM4kOAAAAAAAAAIga50e5zJmQH/LXo4kOAAAAAAAAAIgaZpRLVlqyZlwxMuSvRxMdAAAAAAAAABA1KnZ0R7mMy1NyiKNcJJroAAAAAAAAAIAo0dnl1ts7u6NcJoY+ykWiiQ4AAAAAAAAAiBJbDp3Sye4ol5lhiHKRaKIDAAAAAAAAAKKEGeUye1xuWKJcJJroAAAAAAAAAIAo0OU29PYuT5TL3IkFYXtdmugAAAAAAAAAgIj34aGTajwb3igXiSY6AAAAAAAAACAKVFoQ5SLRRAcAAAAAAAAARLgut6GNOxskSXMm5If1tWmiAwAAAAAAAAAi2pZDp9R41qnMIcm6/srssL42TXQAAAAAAAAAQESr2FEnKfxRLhJNdAAAAAAAAABABOsV5TIxvFEuEk10AAAAAAAAAEAEM6NcMlKTdP0V4Y1ykWiiAwAAAAAAAAAiWOWOeknS7OvylJIU/pY2TXQAAAAAAAAAQETqcht6a6dDkjR3QvijXCSa6AAAAAAAAACACPXfh8+Lcrky/FEuEk10AAAAAAAAAECEsjrKRaKJDgAAAAAAAACIQJEQ5SLRRAcAAAAAAAAARKCPDp/SiTPWRrlINNEBAAAAAAAAABHIjHKZNc66KBeJJjoAAAAAAAAAIML0inKZmGdpLTTRAQAAAAAAAAAR5aPDp3T8jFPpqUn60pWjLK2FJjoAAAAAAAAAIKL0RLnkWhrlItFEBwAAAAAAAABEEPf5US4T8i2uhiY6AAAAAAAAACCCfPTZaU+Uiz1JX7oq2+pyaKIDAAAAAAAAACLH+VEu9qREi6uhiQ4AAAAAAAAAiBCeKBdPE33uROujXCSa6AAAAAAAAACACLH1yGk1tEROlItEEx0AAAAAAAAAECEqtkdWlItEEx0AAAAAAAAAEAHOj3KZMyEyolwkmugAAAAAAAAAgAiw7bwolxuujowoF4kmOgAAAAAAAAAgAlTs8Eyhl0RQlItEEx0AAAAAAAAAYDG329BbOxySIivKRaKJDgAAAAAAAACw2LYjp+Voadcwe5JuuCpyolwkmugAAAAAAAAAAIt5o1yuzVFqcuREuUg00QEAAAAAAAAAForkKBcpwCb66tWrVVRUpNTUVBUXF2vLli0XPH/VqlW65pprNGTIEBUWFurRRx9Ve3t7QAUDAEKH/R0AYhP7OwAAACLZx0d7oly+fPUoq8vpw+8m+oYNG1RWVqbly5dr27ZtmjRpkkpLS3X8+HGf5//617/W4sWLtXz5cu3Zs0c///nPtWHDBn3/+98fdPEAgOBhfweA2MT+DgAAgEhXsd0zhR6JUS5SAE30lStX6v7779fChQs1btw4rVmzRmlpaVq3bp3P8z/44ANdf/31uuuuu1RUVKTZs2frzjvvvOD0i9PpVEtLS68PAEBosb8DQGxifwcAAEAkc7sNvbXTk4ceiVEukp9N9I6ODm3dulUlJSU9XyAhQSUlJdq8ebPPa2bOnKmtW7d6f+g+ePCgKisrNWfOnH5fp7y8XJmZmd6PwsJCf8oEAPiJ/R0AYhP7OwAAACLdx0ebVN8cuVEukpTkz8mNjY3q6upSbm5ur+O5ubnau3evz2vuuusuNTY26ktf+pIMw1BnZ6cefPDBC74ddMmSJSorK/N+3tLSwg/iABBC7O8AEJvY3wEAABDpKnd4ptC/EqFRLlKADxb1R01NjZ5++mm9+OKL2rZtm9544w1VVFToySef7Pcau92ujIyMXh8AgMjC/g4AsYn9HQAAAOHidht6a0dkR7lIfk6iZ2dnKzExUQ0NDb2ONzQ0KC8vz+c1S5cu1d1336377rtPkjRhwgS1trbqgQce0OOPP66EhJD38QEAF8H+DgCxif0dAAAAkaz28ybVNbdraEqibozQKBfJz0n0lJQUTZ06VdXV1d5jbrdb1dXVmjFjhs9r2tra+vygnZjoGcs3DMPfegEAIcD+DgCxif0dAAAAkaxyuxnlkhuxUS5SAHEuZWVlWrt2rV599VXt2bNHDz30kFpbW7Vw4UJJ0oIFC7RkyRLv+fPmzdNLL72k9evX69ChQ6qqqtLSpUs1b9487w/jAADrsb8DQGxifweA2LZ69WoVFRUpNTVVxcXF3gdD92fVqlW65pprNGTIEBUWFurRRx9Ve3t7mKoFgB5ut+HNQ4/kKBfJzzgXSZo/f75OnDihZcuWyeFwaPLkydq4caP3YUVHjhzpNbnyxBNPyGaz6YknntCxY8c0atQozZs3T0899VTw7gIAMGjs7wAQm9jfASB2bdiwQWVlZVqzZo2Ki4u1atUqlZaWat++fcrJyelz/q9//WstXrxY69at08yZM7V//35985vflM1m08qVKy24AwDx7Pwol5uuidwoF0myGVHwnsyWlhZlZmaqubmZhxQBiHrsaT1YCwCxhD2tB2sBINZE6r5WXFysL37xi/rpT38qyRPZVVhYqG9/+9tavHhxn/MXLVqkPXv29Ir5+qd/+id9+OGHev/99wf0moGuhcvlUmVlpebMmaPk5OQBXxfrWBffWJf+xdLa/OgPu/Xy+4d026QC/eudUwb1tQJdl4HuaX5PogMAAAAAAMBaHR0d2rp1a69IroSEBJWUlGjz5s0+r5k5c6Z+9atfacuWLZo+fboOHjyoyspK3X333f2+jtPplNPp9H7e0tIiydOwcrlcA67XPNefa+IB6+Ib69K/WFkbw+iJcikdN2rQ9xPougz0fJroAAAAAAAAUaaxsVFdXV3eeC5Tbm6u9u7d6/Oau+66S42NjfrSl74kwzDU2dmpBx98UN///vf7fZ3y8nKtWLGiz/FNmzYpLS3N77qrqqr8viYesC6+sS79i/a1OXxGqmtOkj3BUNunW1V5ODhf1991aWtrG9B5NNEBAAAAAADiQE1NjZ5++mm9+OKLKi4u1oEDB/TII4/oySef1NKlS31es2TJEpWVlXk/b2lpUWFhoWbPnu13nEtVVZVmzZoV9REUwcS6+Ma69C9W1uaZjfskfaaS6/J1+7yJg/56ga6L+e6ai6GJDgAAAAAAEGWys7OVmJiohoaGXscbGhqUl5fn85qlS5fq7rvv1n333SdJmjBhglpbW/XAAw/o8ccf7/WgaZPdbpfdbu9zPDk5OaAGXqDXxTrWxTfWpX/RvDaGYWjjruOSpHmTCoJ6H/6uy0DP7bs7AgAAAAAAIKKlpKRo6tSpvR4S6na7VV1drRkzZvi8pq2trU+jPDExUZKnqQUA4fDXz5t1rOmc0lISddM1OVaXMyBMogMAAAAAAEShsrIy3XPPPZo2bZqmT5+uVatWqbW1VQsXLpQkLViwQKNHj1Z5ebkkad68eVq5cqWmTJnijXNZunSp5s2b522mA0ComQ8U/fuxOUpNjo69hyY6AAAAAABAFJo/f75OnDihZcuWyeFwaPLkydq4caP3YaNHjhzpNXn+xBNPyGaz6YknntCxY8c0atQozZs3T0899ZRVtwAgzhiGoYrtnib63An5FlczcDTRAQAAAAAAotSiRYu0aNEin39WU1PT6/OkpCQtX75cy5cvD0NlANDX9u4olyHJ0RPlIpGJDgAAAAAAAAAIgwozyuXaHA1JiY4oF4kmOgAAAAAAAAAgxM6PcvmHKIpykWiiAwAAAAAAAABCLFqjXCSa6AAAAAAAAACAEKuM0igXiSY6AAAAAAAAACCEDMPw5qHPjbIoF4kmOgAAAAAAAAAghHYca9bnpz1RLjdHWZSLRBMdAAAAAAAAABBC5hT634+NvigXiSY6AAAAAAAAACBEDMPw5qHPicIoF4kmOgAAAAAAAAAgRHYea9HRU+eUmpygm8eOsrqcgNBEBwAAAAAAAACExPlRLmkpSRZXExia6AAAAAAAAACAoIuFKBeJJjoAAAAAAAAAIAR21bXoyKk2pSYn6O/H5lhdTsBoogMAAAAAAAAAgu4P26M/ykWiiQ4AAAAAAAAACLJYiXKRaKIDAAAAAAAAAIIsVqJcJJroAAAAAAAAAIAgq+ieQr/5muiOcpFoogMAAAAAAAAAgiiWolwkmugAAAAAAAAAgCDaVdeiz062yZ4U/VEuEk10AAAAAAAAAEAQVZ4X5TLUHt1RLhJNdAAAAAAAAABAkPSKcpkY/VEuEk10AAAAAAAAAECQ7K5v0eHuKJevxECUi0QTHQAAAAAAAAAQJLEW5SLRRAcAAAAAAAAABIEnysUhKXaiXCSa6AAAAAAAAACAINhd36JDja0xFeUi0UQHAAAAAAAAAASBGeVy0zWjYibKRaKJDgAAAAAAAAAYpF5RLhNiJ8pFookOAAAAAAAAABikPfVndKixVSlJCfrKtblWlxNUNNEBAAAAAAAAAIPijXK5epSGxVCUi0QTHQAAAAAAAAAwCJ4oF08Tfe7E2IpykWiiAwAAAAAAAAAGYa/jjA7GaJSLRBMdAAAAAAAAADAI5hT6jTEY5SLRRAcAAAAAAAAABMgwDFWYUS4TYi/KRaKJDgAAAAAAAAAI0L6GMzp4woxyybG6nJCgiQ4AAAAAAAAACEjl9p4ol/TUZIurCQ2a6AAAAAAAAAAAv8VDlItEEx0AAAAAAAAAEIB9DWf0aYxHuUg00QEAAAAAAAAAATCjXL58VexGuUg00QEAAAAAAAAAfuoV5TIxz+JqQosmOgAAAAAAAADAL/sbznqiXBIT9JVrc60uJ6RoogMAAAAAAAAA/GJOoX/56mxlxHCUi0QTHQAAAAAAAADgp8ruJvqcCfkWVxJ6NNEBAAAAAAAAAAO2v+GMDhw/q5TEBJWMi+0oF4kmOgAAAAAAAADADxXbPVPoN1wV+1EuUoBN9NWrV6uoqEipqakqLi7Wli1bLnh+U1OTHn74YeXn58tut+vqq69WZWVlQAUDAEKH/R0AYhP7OwAAAILJjHKZOzH2o1wkKcnfCzZs2KCysjKtWbNGxcXFWrVqlUpLS7Vv3z7l5OT0Ob+jo0OzZs1STk6OXn/9dY0ePVqfffaZsrKyglE/ACBI2N8BIDaxvwMAACCYPmk4o0/iKMpFCmASfeXKlbr//vu1cOFCjRs3TmvWrFFaWprWrVvn8/x169bp1KlTevPNN3X99derqKhIN954oyZNmtTvazidTrW0tPT6AACEFvs7AMQm9ncAiG282whAuFXsiK8oF8nPJnpHR4e2bt2qkpKSni+QkKCSkhJt3rzZ5zX/+Z//qRkzZujhhx9Wbm6uxo8fr6efflpdXV39vk55ebkyMzO9H4WFhf6UCQDwE/s7AMQm9ncAiG3mu42WL1+ubdu2adKkSSotLdXx48d9nm++2+jw4cN6/fXXtW/fPq1du1ajR48Oc+UAopmZhz5nQnxEuUh+NtEbGxvV1dWl3NzeY/q5ublyOBw+rzl48KBef/11dXV1qbKyUkuXLtXzzz+vH/3oR/2+zpIlS9Tc3Oz9OHr0qD9lAgD8xP4OALGJ/R0AYls43m0EAOczo1ySE21xE+UiBZCJ7i+3262cnBz97Gc/U2JioqZOnapjx47p2Wef1fLly31eY7fbZbfbQ10aAGAQ2N8BIDaxvwNAdDDfbbRkyRLvMX/ebfT73/9eo0aN0l133aXHHntMiYmJPq9xOp1yOp3ez83ILpfLJZfLNeB6zXP9uSYesC6+sS79s3pt/l/tMUnS9VeMVFpS5PwdBbouAz3fryZ6dna2EhMT1dDQ0Ot4Q0OD8vLyfF6Tn5+v5OTkXpvxtddeK4fDof9/e3cfFeV95338AwhDiCIaIiAhEjWJTURppVBMre0ukVTvRP9o6xqPUo5rtmvoumE3qzSpxLgN1liP3cSNG1Nje44pNnuM7V0ISki4mweijQ+R+JT4FE3qgJoICAZG+N1/EEaJg86MzOP1fp3DH1xeF/P9/TJ+nHyZ6zsdHR2KiYnxpAQAgA+Q7wAQnsh3AAhfV7vb6ODBgy6vOXr0qF5//XXNnj1blZWVOnz4sBYsWCCHw9HnL0rLysq0dOnSK45v27ZNcXFxHtddXV3t8TVWwL64xr70LVB784c9UZIilNrZEJSfp+DpvrS1tbl1nkdN9JiYGE2YMEE1NTWaMWOGpO53qtTU1KioqMjlNffcc49eeukldXV1KTKye3rMhx9+qJSUFF6AA0CQIN8BIDyR7wCAy3lzt1FJSYmKi4ud3zc3NystLU1TpkxRfHy824/tcDhUXV2te++9V9HR1vggQnewL66xL30L5N4cbjwve907io6KUPHMPMXfEDz/bbzdl567a67F43EuxcXFKigoUFZWlrKzs7V69Wq1traqsLBQkjR37lylpqaqrKxMkvTP//zPevbZZ7Vw4UL99Kc/1UcffaSnnnpK//Iv/+LpQwMAfIh8B4DwRL4DQHjy191GfY3sio6O9qqB5+114Y59cY196Vsg9mbbgTOSpG+PTtRN8Z7fieIPnu6Lu+d63ESfOXOmTp8+rSVLlshutyszM1NVVVXO24dOnDjhfMeKJKWlpWnr1q165JFHNG7cOKWmpmrhwoVatGiRpw8NAPAh8h0AwhP5DgDhibuNAPhbZf0pSdLUjJQAV+J/Xn2waFFRUZ+BXFtbe8Wx3Nxcvfvuu948FADAj8h3AAhP5DsAhCfuNgLgL4cbz+tQQ4uioyI05S7Xd7uEM6+a6AAAAAAAAAgs7jYC4C8970L/9uhEDY6z3ogdmugAAAAAAAAhiruNAPiDlUe5SFLktU8BAAAAAAAAAFjR4cbzOmi37igXiSY6AAAAAAAAAKAPPe9Cv8eio1wkmugAAAAAAAAAgD5YfZSLRBMdAAAAAAAAAODCkdPdo1wGREZoyl1JgS4nYGiiAwAAAAAAAACuULn30iiXhLiYAFcTODTRAQAAAAAAAABXqPhylMs0C49ykWiiAwAAAAAAAAC+4ujlo1zutu4oF4kmOgAAAAAAAADgK3o+UHSixUe5SDTRAQAAAAAAAABfUVFvlyRNy0gOcCWBRxMdAAAAAAAAAOB07EyrDpxqVlRkhKbcRROdJjoAAAAAAAAAwKlnlMs9oxM15EZrj3KRaKIDAAAAAAAAAC5Tsbe7ic4ol2400QEAAAAAAAAAkrpHuexnlEsvNNEBAAAAAAAAAJIujXKZOOomRrl8iSY6AAAAAAAAAEDS5aNcUgJcSfCgiQ4AAAAAAAAA0PHLR7nczSiXHjTRAQAAAAAAAACquGyUy1BGuTjRRAcAAAAAAAAAOOehT2WUSy800QEAAAAAAADA4j4+26p9f+se5ZLPKJdeaKIDAAAAAAAAgMX1jHLJHckol6+iiQ4AAAAAAAAAFscol77RRAcAAAAAAAAACztxtk0ffNozyiUp0OUEHZroAAAAAAAAAGBhl49yuWmgLcDVBB+a6AAAAAAAAABgYYxyuTqa6AAAAAAAAABgUSfOtqn+0yZGuVwFTXQAAAAAAAAAsKieUS7fGjmUUS59oIkOAAAAAAAAABbFKJdro4kOAAAAAAAAABbUM8olMkLKvzs50OUELZroAAAAAAAAAGBBlR/0jHK5SYmMcukTTXQAAAAAAAAAsCBGubiHJjoAAAAAAAAAWMzJz9q095PuUS73jWWUy9XQRAcAAAAAAAAAi+l5F3rObYxyuRaa6AAAAAAAAABgMT1N9GnjGOVyLTTRAQAAAAAAAMBCTn7WpvcZ5eI2mugAAAAAAAAAYCGvfsAoF0/QRAcAAAAAAAAAC6nY291En8ooF7fQRAcAAAAAAAAAi+g1yuVuRrm4gyY6AAAAAAAAAFhEzyiX7NuG6uZBjHJxB010AAAAAAAAALCIinq7JGlaBqNc3EUTHQAAAAAAAAAs4JPP2/T+yXOKiJDyxzLKxV000QEAAAAAAADAAl798l3o2elDNWxQbICrCR000QEAAAAAAADAAirqu+ehTxvHKBdP0EQHAAAAAAAAgDD36bkL2vPlKJf7GOXiEZroAAAAAAAAABDmXv3yXeiMcvEcTXQAAAAAAAAACHOMcvEeTXQAAAAAAAAACGOfnrug3ScY5eItmugAAAAAAAAhas2aNUpPT1dsbKxycnK0Y8cOt64rLy9XRESEZsyY4dsCAQSFnlEu32SUi1doogMAAAAAAISgTZs2qbi4WKWlpdq1a5fGjx+v/Px8NTY2XvW648eP69///d81adIkP1UKINCco1wyGOXijQGBLgAAAAAAAACeW7VqlebPn6/CwkJJ0tq1a1VRUaH169dr8eLFLq/p7OzU7NmztXTpUr355ps6d+7cVR+jvb1d7e3tzu+bm5slSQ6HQw6Hw+1ae8715BorYF9cY1/65s3enGr6wjnKJW9MYljuq7fPGXfP96qJvmbNGj399NOy2+0aP368nnnmGWVnZ1/zuvLycs2aNUvTp0/Xli1bvHloAIAPke8AEL7IeAAILx0dHdq5c6dKSkqcxyIjI5WXl6e6uro+r3vyySc1bNgwzZs3T2+++eY1H6esrExLly694vi2bdsUFxfncd3V1dUeX2MF7Itr7EvfPNmbN/4WISlKIwcavfdmje+KCgKePmfa2trcOs/jJnrPrUJr165VTk6OVq9erfz8fB06dEjDhg3r8zpuFQKA4Ea+A0D4IuMBIPycOXNGnZ2dSkpK6nU8KSlJBw8edHnNW2+9pd/85jfas2eP249TUlKi4uJi5/fNzc1KS0vTlClTFB8f7/bPcTgcqq6u1r333qvo6Gi3rwt37Itr7EvfvNmbDc9vl9SkB7/zNU391q2+LTBAvH3O9Nxdcy0eN9EDeasQAMB3yHcACF++znjyHQCCX0tLi+bMmaN169YpMTHR7etsNptsNtsVx6Ojo71qbnp7XbhjX1xjX/rm7t787dwF7T7ZpIgI6f+MTw37/fT0OePuuR59sGjPrUJ5eXmXfoCHtwq5o6ysTIMHD3Z+paWleVImAMBD5DsAhC9/ZDz5DgD+l5iYqKioKDU0NPQ63tDQoOTk5CvOP3LkiI4fP677779fAwYM0IABA/S73/1Of/rTnzRgwAAdOXLEX6UD8KNXP7BLkrJGDFFSfGyAqwldHjXRr3arkN1ud3lNz61C69atc/txSkpK1NTU5Pw6efKkJ2UCADxEvgNA+PJHxpPvAOB/MTExmjBhgmpqLs037urqUk1NjXJzc684f8yYMaqvr9eePXucXw888IC+973vac+ePfwCFAhTlfWnJElTM1ICXElo8+qDRd3V37cKAQCCA/kOAOHLm4wn3wEgMIqLi1VQUKCsrCxlZ2dr9erVam1tdY7vmjt3rlJTU1VWVqbY2FiNHTu21/UJCQmSdMVxAOHhVNMF7fz4c0nS98fSRL8eHjXRr+dWoR5dXV3dDzxggA4dOqRRo0Z5UzcAoB+R7wAQvsh4AAhfM2fO1OnTp7VkyRLZ7XZlZmaqqqrKeffRiRMnFBnp0RACAGHk1fruuw6/mT5EyYMZ5XI9PGqiX36r0IwZMyRdulWoqKjoivN7bhW63OOPP66Wlhb9+te/5lYhAAgS5DsAhC8yHgDCW1FRkcs8l6Ta2tqrXrthw4b+LwhA0GCUS//xeJwLtwoBQHgi3wEgfJHxAAAA1mJv+kLvMcql33jcROdWIQAIT+Q7AIQvMh4AAMBaet6FnjWCUS79wasPFuVWIQAIT+Q7AIQvMh4AAMA6GOXSv3i7CQAAAAAAAACEiV6jXDKu/CB5eI4mOgAAAAAAAACEiVc/6H4X+oQRQ5Qy+IYAVxMeaKIDAAAAAAAAQJhglEv/o4kOAAAAAAAAAGGgofnSKJepjHLpNzTRAQAAAAAAACAMvFp/SsZI37g1gVEu/YgmOgAAAAAAAACEgcp6uyRGufQ3mugAAAAAAAAAEOIam7/QXz/+TBJN9P5GEx0AAAAAAAAAQtyrH9ido1yGJzDKpT/RRAcAAAAAAACAEFdRf0oS70L3BZroAAAAAAAAABDCGpu/0F+PM8rFV2iiAwAAAAAAAEAI6xnl8nVGufgETXQAAAAAAAAACGE9o1ym8S50n6CJDgAAAAAAAAAh6vJRLt+nie4TNNEBAAAAAAAAIERV7ese5ZKZlqBURrn4BE10AAAAAAAAAAhRFXsZ5eJrNNEBAAAAAAAAIAQ1tnyhHc5RLskBriZ80UQHAAAAAAAAgBC09YNLo1xuGRIX6HLCFk10AAAAAAAAAAhBFfWMcvEHmugAAAAAAAAAEGIaW77Q9mOMcvEHmugAAAAAAAAAEGJ6RrmMZ5SLz9FEBwAAAAAAAIAQc2mUC+9C9zWa6AAAAAAAAAAQQs6cb9eOnlEuY5mH7ms00QEAAAAAAAAghGzd36guI42/ZbDShjLKxddoogMAAAAAAABACKn6wC5JmprBu9D9gSY6AAAAAAAAAISIFoe04/jnkmii+wtNdAAAAAAAAAAIEe+fjWCUi5/RRAcAAAAAAACAELHnbIQk3oXuTzTRAQAAAAAAACAEnD3frsPNNNH9jSY6AAAAAAAAAISArfsbZRShjNR4Rrn4EU10AAAAAAAAAAgBVfsaJEn33Z0U4EqshSY6AAAAAAAAAAS5M+fbtf3YZ5Kk74+lie5PNNEBAAAAAAAAIMht3WdXl5HSbjRKG8IoF3+iiQ4AAAAAAAAAQa6y/pQkKfOmrgBXYj000QEAAAAAAAAgiJ093666I2clSZk3mQBXYz000QEAAAAAAAAgiG3d16AuI40dHq/E2EBXYz000QEAAAAAAAAgiPWMcrnvbj5QNBBoogMAAAAAAABAkDp7vl3vHDkjSfr+WJrogUATHQAAAAAAAACClHOUS2q8bh0aF+hyLIkmOgAAAAAAAAAEqZ5RLlMzUgJciXXRRAcAAAAAAACAIPRZa4fqjp6VJE2jiR4wNNEBAAAAAAAAIAht3WdXZ5fR3cPjNeKmGwNdjmXRRAcAAAAAAACAIMQol+BAEx0AAAAAACBErVmzRunp6YqNjVVOTo527NjR57nr1q3TpEmTNGTIEA0ZMkR5eXlXPR9AYH3W2qF3jjDKJRjQRAcAAAAAAAhBmzZtUnFxsUpLS7Vr1y6NHz9e+fn5amxsdHl+bW2tZs2apTfeeEN1dXVKS0vTlClT9Omnn/q5cgDu2HbZKJf0REa5BBJNdAAAAAAAgBC0atUqzZ8/X4WFhbrrrru0du1axcXFaf369S7P37hxoxYsWKDMzEyNGTNGL7zwgrq6ulRTU+PnygG4o4JRLkFjQKALAAAAAAAAgGc6Ojq0c+dOlZSUOI9FRkYqLy9PdXV1bv2MtrY2ORwODR06tM9z2tvb1d7e7vy+ublZkuRwOORwONyut+dcT66xAvbFNfal9yiX/K/dfMWeWHlvXPF2X9w9nyY6AAAAAABAiDlz5ow6OzuVlJTU63hSUpIOHjzo1s9YtGiRhg8frry8vD7PKSsr09KlS684vm3bNsXFxXlWtKTq6mqPr7EC9sU1K+9LXUOEOruilBpntG97rfZ95c+tvDdX4+m+tLW1uXUeTXQAAAAAAACLWb58ucrLy1VbW6vY2Ng+zyspKVFxcbHz++bmZucs9fj4eLcfz+FwqLq6Wvfee6+io6Ovq/Zwwr64xr5IL/92p6Szmjnxdk2dPNJ5nL1xzdt96bm75lpoogMAAAAAAISYxMRERUVFqaGhodfxhoYGJScnX/XalStXavny5Xrttdc0bty4q55rs9lks9muOB4dHe1VA8/b68Id++KaVffl89YO1R39TJJ0f+YtLvfAqntzLZ7ui7vn8sGiAAAAAAAAISYmJkYTJkzo9aGgPR8Smpub2+d1K1as0LJly1RVVaWsrCx/lArAQ9v229XZZfS1lHjdlnhjoMuBeCc6AAAAAABASCouLlZBQYGysrKUnZ2t1atXq7W1VYWFhZKkuXPnKjU1VWVlZZKkX/7yl1qyZIleeuklpaeny263S5IGDhyogQMHBmwdAHqrqO/+uzkt4+p3lcB/vHon+po1a5Senq7Y2Fjl5ORox44dfZ67bt06TZo0SUOGDNGQIUOUl5d31fMBAIFDvgNA+CLjASD8zJw5UytXrtSSJUuUmZmpPXv2qKqqyvlhoydOnNCpU6ec5z/33HPq6OjQD37wA6WkpDi/Vq5cGaglAPiKc20deufwGUnS1IyUAFeDHh430Tdt2qTi4mKVlpZq165dGj9+vPLz89XY2Ojy/NraWs2aNUtvvPGG6urqnB8+8emnn1538QCA/kO+A0D4IuMBIHwVFRXp448/Vnt7u7Zv366cnBznn9XW1mrDhg3O748fPy5jzBVfTzzxhP8LB+DStn0NuvjlKJeRN3OHSLDwuIm+atUqzZ8/X4WFhbrrrru0du1axcXFaf369S7P37hxoxYsWKDMzEyNGTNGL7zwgnNGV1/a29vV3Nzc6wsA4FvkOwCEL19nPPkOAADQPyrqu+8eYZRLcPGoid7R0aGdO3cqLy/v0g+IjFReXp7q6urc+hltbW1yOBwaOnRon+eUlZVp8ODBzq+0tDRPygQAeIh8B4Dw5Y+MJ98BAACu37m2Dr3NKJeg5FET/cyZM+rs7HTO1uqRlJTk/DCKa1m0aJGGDx/e60X8V5WUlKipqcn5dfLkSU/KBAB4iHwHgPDlj4wn3wEAAK5fzyiXMcmDGOUSZAb488GWL1+u8vJy1dbWKjY2ts/zbDabbDabHysDAFwP8h0Awpc7GU++AwAAXL9Lo1x4F3qw8aiJnpiYqKioKDU0NPQ63tDQoOTkq8/pWblypZYvX67XXntN48aN87xSAIDPkO8AEL7IeAAAgODXa5TLOJrowcajcS4xMTGaMGFCrw8U6vmAodzc3D6vW7FihZYtW6aqqiplZWV5Xy0AwCfIdwAIX2Q8AABA8Nu2/9Iol1GMcgk6Ho9zKS4uVkFBgbKyspSdna3Vq1ertbVVhYWFkqS5c+cqNTVVZWVlkqRf/vKXWrJkiV566SWlp6c75y4OHDhQAwfyhACAYEG+A0D4IuMBAACCWyWjXIKax030mTNn6vTp01qyZInsdrsyMzNVVVXl/KCiEydOKDLy0hvcn3vuOXV0dOgHP/hBr59TWlqqJ5544vqqBwD0G/IdAMIXGQ8AABC8mtocjHIJcl59sGhRUZGKiopc/lltbW2v748fP+7NQwAAAoB8B4DwRcYDAAAEp2377XJ0MsolmHk0Ex0AAAAAAAAA0H8qvhzlMpVRLkGLJjoAAAAAAAAABECvUS400YMWTXQAAAAAAAAACICeUS53Jg3S6GGMcglWNNEBAAAAAAAAIAAqGeUSEmiiAwAAAAAAAICfNV1w6K0vR7lMG5cc4GpwNTTRAQAAAAAAAMDPqvc3yNFpdEfSQI0eNijQ5eAqaKIDAAAAAAAAgJ/1jHKZljE8wJXgWmiiAwAAAAAAAIAfNV1w6M2PTktilEsooIkOAAAAAAAAAH70GqNcQgpNdAAAAAAAAADwo4ovR7lMzUgJcCVwB010AAAAAAAAAPCTXqNcaKKHBJroAAAAAAAAAOAnPaNcbh82ULcnMcolFNBEBwAAAAAAAAA/qWSUS8ihiQ4AAAAAAAAAftD8hUNvfnRGkjRtHE30UEETHQAAAAAAAAD84LX9Dero7NLoYQN1B6NcQgZNdAAAAAAAAADwg55RLnygaGihiQ4AAAAAAAAAPtb8hUN/+ZBRLqGIJjoAAAAAAAAA+FjNAUa5hCqa6AAAAAAAAADgYxV7u0e5TGWUS8ihiQ4AAAAAAAAAPtRrlAtN9JBDEx0AAAAAAAAAfKhnlMuom2/UHUkDA10OPEQTHQAAAAAAAAB8qGKvXVL3u9AjIiICXA08RRMdAAAAAAAAAHyk5QuH/vLRaUnS1HGMcglFNNEBAAAAAAAAwEdqDjSq42KXRt58o+5MGhTocuAFmugAAAAAAAAA4CMV9ackSf+HUS4hiyY6AAAAAAAAAPhAyxcO/b8PGeUS6miiAwAAAAAAAIAPvH6QUS7hgCY6AAAAAAAAAPjAn/d2j3KZxiiXkEYTHQAAAAAAAAD6Wa9RLhmMcgllNNEBAAAAAAAAoJ85R7kk3qgxyYxyCWU00QEAAAAAAACgn1V8OcplKqNcQh5NdAAAAAAAAADoR+fbL6qWUS5hgyY6AAAAAAAAAPSjmgMN6rjYpdsSb9TXUhjlEupoogMAAAAAAABAP6qs7x7lMo1RLmGBJjoAAAAAAAAA9JPW9ouqPcQol3BCEx0AAAAAAAAA+knNwUa1M8olrNBEBwAAAAAAAIB+UrH3b5KkqRnJjHIJEzTRAQAAAAAAQtSaNWuUnp6u2NhY5eTkaMeOHVc9/+WXX9aYMWMUGxurjIwMVVZW+qlSwBoY5RKeaKIDAAAAAACEoE2bNqm4uFilpaXatWuXxo8fr/z8fDU2Nro8/5133tGsWbM0b9487d69WzNmzNCMGTP0wQcf+LlyIHz1jHJJvylOd6XEB7oc9JMBgS4AAAAAAAAAnlu1apXmz5+vwsJCSdLatWtVUVGh9evXa/HixVec/+tf/1r33XefHn30UUnSsmXLVF1drWeffVZr1651+Rjt7e1qb293ft/c3CxJcjgccjgcbtX55kdnVPp/96utLUorD/5FEuMtLjHsi0uhuy/nLnT/vbjv7iRdvHix339+z987d//+WYW3++Lu+TTRAQAAAAAAQkxHR4d27typkpIS57HIyEjl5eWprq7O5TV1dXUqLi7udSw/P19btmzp83HKysq0dOnSK45v27ZNcXFxbtX6/tkInfw8SlKEzrZ/4dY11sK+uBa6+xIZYTSk6SNVVn7ks8eorq722c8OZZ7uS1tbm1vn0UQHAAAAAAAIMWfOnFFnZ6eSkpJ6HU9KStLBgwddXmO3212eb7fb+3yckpKSXo335uZmpaWlacqUKYqPd29UxcQ2h+5taNKOHTuUnZ2tqAG0o3p0XrzIvrgQ6vsybJBNqQk3+ORnOxwOVVdX695771V0dLRPHiMUebsvPXfXXEvoPQsBAAAAAADgFzabTTab7Yrj0dHRbjeqbh4crYS4aDUekLJuS6TxdxmHw8G+uMC+XJsnfwetxNN9cfdcPlgUAAAAAAAgxCQmJioqKkoNDQ29jjc0NCg5OdnlNcnJyR6dDwDoRhMdAAAAAAAgxMTExGjChAmqqalxHuvq6lJNTY1yc3NdXpObm9vrfKl7fnBf5wMAujHOBQAAAAAAIAQVFxeroKBAWVlZys7O1urVq9Xa2qrCwkJJ0ty5c5WamqqysjJJ0sKFCzV58mT96le/0rRp01ReXq733ntPzz//fCCXAQBBjyY6AAAAAABACJo5c6ZOnz6tJUuWyG63KzMzU1VVVc4PDz1x4oQiIy8NIZg4caJeeuklPf744/rZz36m22+/XVu2bNHYsWMDtQQACAk00QEAAAAAAEJUUVGRioqKXP5ZbW3tFcd++MMf6oc//KGPqwKA8MJMdAAAAAAAAAAA+kATHQAAAAAAAACAPtBEBwAAAAAAAACgD1410desWaP09HTFxsYqJydHO3bsuOr5L7/8ssaMGaPY2FhlZGSosrLSq2IBAL5FvgNA+CLjAQAAAO943ETftGmTiouLVVpaql27dmn8+PHKz89XY2Ojy/PfeecdzZo1S/PmzdPu3bs1Y8YMzZgxQx988MF1Fw8A6D/kOwCELzIeAAAA8F6EMcZ4ckFOTo6++c1v6tlnn5UkdXV1KS0tTT/96U+1ePHiK86fOXOmWltb9ec//9l57Fvf+pYyMzO1du1al4/R3t6u9vZ25/dNTU269dZbdfLkScXHx3tSLgAEnebmZqWlpencuXMaPHhwoMtxIt8B4PoEa75Lvs948h1AuAvmjPe3pqYmJSQkeJzxDodD27Zt05QpUxQdHe3DCkML++Ia+9I39sY1b/fF3Xwf4EkxHR0d2rlzp0pKSpzHIiMjlZeXp7q6OpfX1NXVqbi4uNex/Px8bdmypc/HKSsr09KlS684npaW5km5ABDUzp49GzQvwMl3AOg/wZTvkn8ynnwHYBXBlvGB0NLSIomMBxBeWlpa+q+JfubMGXV2diopKanX8aSkJB08eNDlNXa73eX5dru9z8cpKSnp9aL93LlzGjFihE6cOGGpf6x6fhNipXfwWHHNEuu22rp73p03dOjQQJfiRL77l1Wf+6ybdYe7YMx3yT8ZT753s+LzXmLdrNsagjXjA2H48OE6efKkBg0apIiICLevs+pz51rYF9fYl76xN655uy/GGLW0tGj48OFXPc+jJrq/2Gw22Wy2K44PHjzYkk+O+Ph4y63bimuWWLfVREZ69dnOIY18782qz33WbS1WXDf5fgn5bi2s21qsum4rZvxXRUZG6pZbbvH6eqs+d66FfXGNfekbe+OaN/vizps+PEr/xMRERUVFqaGhodfxhoYGJScnu7wmOTnZo/MBAP5HvgNA+CLjAQAAgOvjURM9JiZGEyZMUE1NjfNYV1eXampqlJub6/Ka3NzcXudLUnV1dZ/nAwD8j3wHgPBFxgMAAADXx+NxLsXFxSooKFBWVpays7O1evVqtba2qrCwUJI0d+5cpaamqqysTJK0cOFCTZ48Wb/61a80bdo0lZeX67333tPzzz/v9mPabDaVlpa6vEU0nFlx3VZcs8S6WXdwIN/9h3Wzbiuw4rqDec3+zvhg3gtfYt2s2wpYt7XW3Z/YQ9fYF9fYl76xN675el8ijDHG04ueffZZPf3007Lb7crMzNR//dd/KScnR5L03e9+V+np6dqwYYPz/JdfflmPP/64jh8/rttvv10rVqzQ1KlT+20RAID+Qb4DQPgi4wEAAADveNVEBwAAAAAAAADACvhYaQAAAAAAAAAA+kATHQAAAAAAAACAPtBEBwAAAAAAAACgDzTRAQAAAAAAAADoQ9A00desWaP09HTFxsYqJydHO3bsuOr5L7/8ssaMGaPY2FhlZGSosrLST5X2L0/WvW7dOk2aNElDhgzRkCFDlJeXd819Ckae/rfuUV5eroiICM2YMcO3BfqIp+s+d+6cHn74YaWkpMhms+mOO+4Iyee5p+tevXq17rzzTt1www1KS0vTI488oi+++MJP1faPv/zlL7r//vs1fPhwRUREaMuWLde8pra2Vt/4xjdks9k0evRobdiwwed1+gv5bp18l8h4K2U8+U6+k+/kuzvI99DLd8l6GU+++8YvfvELTZw4UXFxcUpISHDrGmOMlixZopSUFN1www3Ky8vTRx995NtCA+Czzz7T7NmzFR8fr4SEBM2bN0/nz5+/6jXf/e53FRER0evrJz/5iZ8q9g2rvpZwhyd7s2HDhiueG7GxsX6s1j8CntUmCJSXl5uYmBizfv16s2/fPjN//nyTkJBgGhoaXJ7/9ttvm6ioKLNixQqzf/9+8/jjj5vo6GhTX1/v58qvj6frfvDBB82aNWvM7t27zYEDB8yPf/xjM3jwYPPJJ5/4uXLvebrmHseOHTOpqalm0qRJZvr06f4pth95uu729naTlZVlpk6dat566y1z7NgxU1tba/bs2ePnyq+Pp+veuHGjsdlsZuPGjebYsWNm69atJiUlxTzyyCN+rvz6VFZWmscee8xs3rzZSDKvvPLKVc8/evSoiYuLM8XFxWb//v3mmWeeMVFRUaaqqso/BfsQ+W6dfDeGjLdSxpPv5Dv5Tr6T71cKh3w3xpoZT777xpIlS8yqVatMcXGxGTx4sFvXLF++3AwePNhs2bLFvP/+++aBBx4wt912m7lw4YJvi/Wz++67z4wfP968++675s033zSjR482s2bNuuo1kydPNvPnzzenTp1yfjU1Nfmp4v5n1dcS7vB0b1588UUTHx/f67lht9v9XLXvBTqrg6KJnp2dbR5++GHn952dnWb48OGmrKzM5fk/+tGPzLRp03ody8nJMf/0T//k0zr7m6fr/qqLFy+aQYMGmd/+9re+KrHfebPmixcvmokTJ5oXXnjBFBQUhOQLcE/X/dxzz5mRI0eajo4Of5XoE56u++GHHzZ/93d/1+tYcXGxueeee3xapy+5E+z/8R//Ye6+++5ex2bOnGny8/N9WJl/kO/drJDvxpDxPayQ8eQ7+U6+dyPfyffLhUO+G0PGWz3ffeHFF190q4ne1dVlkpOTzdNPP+08du7cOWOz2czvf/97H1boX/v37zeSzF//+lfnsVdffdVERESYTz/9tM/rJk+ebBYuXOiHCv3Dqq8l3OHp3rj7dyycBCKrAz7OpaOjQzt37lReXp7zWGRkpPLy8lRXV+fymrq6ul7nS1J+fn6f5wcjb9b9VW1tbXI4HBo6dKivyuxX3q75ySef1LBhwzRv3jx/lNnvvFn3n/70J+Xm5urhhx9WUlKSxo4dq6eeekqdnZ3+Kvu6ebPuiRMnaufOnc7blI4eParKykpNnTrVLzUHSjhkmivku3XyXSLjrZTx5Lv7wiHTXCHfyXfyPTzzXSLj3RUOmRaMjh07Jrvd3mtvBw8erJycnLDa27q6OiUkJCgrK8t5LC8vT5GRkdq+fftVr924caMSExM1duxYlZSUqK2tzdfl+oRVX0u4w9t/d8+fP68RI0YoLS1N06dP1759+/xRblDr7+fMgP4o6nqcOXNGnZ2dSkpK6nU8KSlJBw8edHmN3W53eb7dbvdZnf3Nm3V/1aJFizR8+PArnhDByps1v/XWW/rNb36jPXv2+KFC3/Bm3UePHtXrr7+u2bNnq7KyUocPH9aCBQvkcDhUWlrqj7KvmzfrfvDBB3XmzBl9+9vfljFGFy9e1E9+8hP97Gc/80fJAdNXpjU3N+vChQu64YYbAlTZ9SHfrZPvEhlvpYwn391Hvl9Cvncj30OHFfNdIuPdFa75Hmg9/yaE+r8X12K32zVs2LBexwYMGKChQ4dedZ0PPvigRowYoeHDh2vv3r1atGiRDh06pM2bN/u65H5n1dcS7vBmb+68806tX79e48aNU1NTk1auXKmJEydq3759uuWWW/xRdlDq76wO+DvR4Z3ly5ervLxcr7zySlh+WIAktbS0aM6cOVq3bp0SExMDXY5fdXV1adiwYXr++ec1YcIEzZw5U4899pjWrl0b6NJ8qra2Vk899ZT++7//W7t27dLmzZtVUVGhZcuWBbo0wG+skO8SGW+1jCffAfLdCqyY7xIZbzWLFy++4gMMv/rl7i8Ww42v9+ahhx5Sfn6+MjIyNHv2bP3ud7/TK6+8oiNHjvTjKhCKcnNzNXfuXGVmZmry5MnavHmzbr75Zv3P//xPoEsLKwF/J3piYqKioqLU0NDQ63hDQ4OSk5NdXpOcnOzR+cHIm3X3WLlypZYvX67XXntN48aN82WZ/crTNR85ckTHjx/X/fff7zzW1dUlqfu3tIcOHdKoUaN8W3Q/8Oa/dUpKiqKjoxUVFeU89rWvfU12u10dHR2KiYnxac39wZt1//znP9ecOXP0j//4j5KkjIwMtba26qGHHtJjjz2myMjw/L1fX5kWHx8f0u9iId+tk+8SGW+ljCff3Ue+X0K+k+8S+R7s+S6R8e4K13x3x7/927/pxz/+8VXPGTlypFc/u+c51tDQoJSUFOfxhoYGZWZmevUz/cndvUlOTlZjY2Ov4xcvXtRnn33m0b+LOTk5kqTDhw+HRK5ezqqvJdxxPa83ekRHR+vrX/+6Dh8+7IsSQ0Z/Z3XA/zWLiYnRhAkTVFNT4zzW1dWlmpoa5ebmurwmNze31/mSVF1d3ef5wcibdUvSihUrtGzZMlVVVfWanxUKPF3zmDFjVF9frz179ji/HnjgAX3ve9/Tnj17lJaW5s/yvebNf+t77rlHhw8fdv4PhyR9+OGHSklJCYkX35J3625ra7viRXbP/4R0f25EeAqHTHOFfLdOvktkvJUynnx3XzhkmivkO/lOvodnvktkvLvCIdO8dfPNN2vMmDFX/fL2+X7bbbcpOTm51942Nzdr+/btIbG37u5Nbm6uzp07p507dzqvff3119XV1eVsjLujZ2TW5b9wCBVWfS3hDm9fb1yus7NT9fX1Ifnc6E/9/pzx6uNI+1l5ebmx2Wxmw4YNZv/+/eahhx4yCQkJxm63G2OMmTNnjlm8eLHz/LffftsMGDDArFy50hw4cMCUlpaa6OhoU19fH6gleMXTdS9fvtzExMSY//3f/zWnTp1yfrW0tARqCR7zdM1fVVBQYKZPn+6navuPp+s+ceKEGTRokCkqKjKHDh0yf/7zn82wYcPMf/7nfwZqCV7xdN2lpaVm0KBB5ve//705evSo2bZtmxk1apT50Y9+FKgleKWlpcXs3r3b7N6920gyq1atMrt37zYff/yxMcaYxYsXmzlz5jjPP3r0qImLizOPPvqoOXDggFmzZo2JiooyVVVVgVpCvyHfrZPvxpDxVsp48p18J9/Jd/I9PPPdGGtmPPnuGx9//LHZvXu3Wbp0qRk4cKBzjy/PwDvvvNNs3rzZ+f3y5ctNQkKC+eMf/2j27t1rpk+fbm677TZz4cKFQCzBZ+677z7z9a9/3Wzfvt289dZb5vbbbzezZs1y/vknn3xi7rzzTrN9+3ZjjDGHDx82Tz75pHnvvffMsWPHzB//+EczcuRI853vfCdQS7huVn0t4Q5P92bp0qVm69at5siRI2bnzp3mH/7hH0xsbKzZt29foJbgE4HO6qBoohtjzDPPPGNuvfVWExMTY7Kzs827777r/LPJkyebgoKCXuf/4Q9/MHfccYeJiYkxd999t6moqPBzxf3Dk3WPGDHCSLriq7S01P+FXwdP/1tfLlRfgBvj+brfeecdk5OTY2w2mxk5cqT5xS9+YS5evOjnqq+fJ+t2OBzmiSeeMKNGjTKxsbEmLS3NLFiwwHz++ef+L/w6vPHGGy7/rvastaCgwEyePPmKazIzM01MTIwZOXKkefHFF/1et6+Q79bJd2PIeCtlPPlOvpPv5HsP8v2ScMh3Y6yX8eS7bxQUFLjc1zfeeMN5jqRee9fV1WV+/vOfm6SkJGOz2czf//3fm0OHDvm/eB87e/asmTVrlhk4cKCJj483hYWFvX65cOzYsV57deLECfOd73zHDB061NhsNjN69Gjz6KOPmqampgCtoH9Y9bWEOzzZm3/91391npuUlGSmTp1qdu3aFYCqfSvQWR1hTJjeXwUAAAAAAAAAwHUK+Ex0AAAAAAAAAACCFU10AAAAAAAAAAD6QBMdAAAAAAAAAIA+0EQHAAAAAAAAAKAPNNEBAAAAAAAAAOgDTXQAAAAAAAAAAPpAEx0AAAAAAAAAgD7QRAcAAAAAAAAAoA800QEAAAAAAAAA6ANNdAAAAAAAAAAA+kATHQAAAAAAAACAPvx/lcqYGFjbvn0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", @@ -1309,13 +849,13 @@ "for m in range(M):\n", " basis_functions[m, :] = torch.tensor(linear1dFEMcircuit(x_plot[m], num_qubits, sqrt=True))\n", "plot_basis_combinations(x_plot, basis_functions, num_qubits)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 169, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -1398,33 +938,13 @@ "\n", " self.norm = torch.sqrt(first*first + second*second)\n", " return self.norm" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 2 2 2 2 1\n", - "\n", - "4\n", - "torch.Size([4, 4])\n", - "torch.Size([4, 4])\n", - "torch.Size([4, 4])\n", - "torch.Size([4, 4])\n" - ] - } - ], "source": [ "from qulearn.hat_basis import HatBasis\n", "from qulearn.mps import HatBasisMPS, MPSQGates\n", @@ -1445,13 +965,13 @@ "print(len(Us))\n", "for U in Us:\n", " print(U.shape)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -1520,13 +1040,13 @@ " self.weights[mps_layer_idx, block_idx, 1, block_layer, 2],\n", " qnext)\n", " qml.CNOT(wires=(qprev, qnext))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "from qulearn import qlayer\n", @@ -1541,33 +1061,13 @@ "\n", " def circuit(self, _):\n", " qml.QubitUnitary(self.U, wires=self.wires, unitary_check=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "Input unitary must be of shape (8, 8) or (batch_size, 8, 8) to act on 3 wires.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[80], line 42\u001b[0m\n\u001b[1;32m 40\u001b[0m drawer \u001b[38;5;241m=\u001b[39m qml\u001b[38;5;241m.\u001b[39mdraw(model\u001b[38;5;241m.\u001b[39mqnode, show_all_wires\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, expansion_strategy\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdevice\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 41\u001b[0m x \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mtensor([\u001b[38;5;241m0.1\u001b[39m])\n\u001b[0;32m---> 42\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mdrawer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 44\u001b[0m drawer \u001b[38;5;241m=\u001b[39m qml\u001b[38;5;241m.\u001b[39mdraw(model2\u001b[38;5;241m.\u001b[39mqnode, show_all_wires\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, expansion_strategy\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdevice\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 45\u001b[0m x \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mtensor([\u001b[38;5;241m0.1\u001b[39m])\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/pennylane/drawer/draw.py:190\u001b[0m, in \u001b[0;36mdraw..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 189\u001b[0m qnode\u001b[38;5;241m.\u001b[39mexpansion_strategy \u001b[38;5;241m=\u001b[39m expansion_strategy \u001b[38;5;129;01mor\u001b[39;00m original_expansion_strategy\n\u001b[0;32m--> 190\u001b[0m tapes \u001b[38;5;241m=\u001b[39m \u001b[43mqnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconstruct\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 192\u001b[0m qnode\u001b[38;5;241m.\u001b[39mexpansion_strategy \u001b[38;5;241m=\u001b[39m original_expansion_strategy\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/pennylane/qnode.py:711\u001b[0m, in \u001b[0;36mQNode.construct\u001b[0;34m(self, args, kwargs)\u001b[0m\n\u001b[1;32m 708\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconstruct\u001b[39m(\u001b[38;5;28mself\u001b[39m, args, kwargs):\n\u001b[1;32m 709\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Call the quantum function with a tape context, ensuring the operations get queued.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 711\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tape \u001b[38;5;241m=\u001b[39m \u001b[43mmake_qscript\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 712\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tape\u001b[38;5;241m.\u001b[39m_queue_category \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_ops\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 713\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qfunc_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtape\u001b[38;5;241m.\u001b[39m_qfunc_output\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/pennylane/tape/qscript.py:1346\u001b[0m, in \u001b[0;36mmake_qscript..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 1344\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1345\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m AnnotatedQueue() \u001b[38;5;28;01mas\u001b[39;00m q:\n\u001b[0;32m-> 1346\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1348\u001b[0m qscript \u001b[38;5;241m=\u001b[39m QuantumScript\u001b[38;5;241m.\u001b[39mfrom_queue(q)\n\u001b[1;32m 1349\u001b[0m qscript\u001b[38;5;241m.\u001b[39m_qfunc_output \u001b[38;5;241m=\u001b[39m result\n", - "File \u001b[0;32m~/Research/QC/QuLearn/qulearn/qlayer.py:1051\u001b[0m, in \u001b[0;36mHamiltonianLayer.expectation\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1043\u001b[0m \u001b[38;5;124;03mCompute the expectation of the Hamiltonian.\u001b[39;00m\n\u001b[1;32m 1044\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;124;03m:rtype: Expectation\u001b[39;00m\n\u001b[1;32m 1049\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1050\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m circuit \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcircuits:\n\u001b[0;32m-> 1051\u001b[0m \u001b[43mcircuit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobservable \u001b[38;5;241m=\u001b[39m qml\u001b[38;5;241m.\u001b[39mHamiltonian(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobservable_weights, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobservables)\n\u001b[1;32m 1053\u001b[0m expec \u001b[38;5;241m=\u001b[39m qml\u001b[38;5;241m.\u001b[39mexpval(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobservable)\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n", - "File \u001b[0;32m~/Research/QC/QuLearn/qulearn/qlayer.py:69\u001b[0m, in \u001b[0;36mCircuitLayer.forward\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, x: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 68\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Forward pass. See :meth:`circuit`\"\"\"\u001b[39;00m\n\u001b[0;32m---> 69\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcircuit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[79], line 13\u001b[0m, in \u001b[0;36membedU.circuit\u001b[0;34m(self, _)\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcircuit\u001b[39m(\u001b[38;5;28mself\u001b[39m, _):\n\u001b[0;32m---> 13\u001b[0m \u001b[43mqml\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mQubitUnitary\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mU\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwires\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwires\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43munitary_check\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/pennylane/ops/qubit/matrix_ops.py:87\u001b[0m, in \u001b[0;36mQubitUnitary.__init__\u001b[0;34m(self, U, wires, do_queue, id, unitary_check)\u001b[0m\n\u001b[1;32m 84\u001b[0m dim \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m \u001b[38;5;28mlen\u001b[39m(wires)\n\u001b[1;32m 86\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(U_shape) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m3\u001b[39m} \u001b[38;5;129;01mor\u001b[39;00m U_shape[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m2\u001b[39m:] \u001b[38;5;241m!=\u001b[39m (dim, dim):\n\u001b[0;32m---> 87\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 88\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInput unitary must be of shape \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m(dim,\u001b[38;5;250m \u001b[39mdim)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m or (batch_size, \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 89\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mto act on \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(wires)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m wires.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 90\u001b[0m )\n\u001b[1;32m 92\u001b[0m \u001b[38;5;66;03m# Check for unitarity; due to variable precision across the different ML frameworks,\u001b[39;00m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;66;03m# here we issue a warning to check the operation, instead of raising an error outright.\u001b[39;00m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m unitary_check \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\n\u001b[1;32m 95\u001b[0m qml\u001b[38;5;241m.\u001b[39mmath\u001b[38;5;241m.\u001b[39mis_abstract(U)\n\u001b[1;32m 96\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m qml\u001b[38;5;241m.\u001b[39mmath\u001b[38;5;241m.\u001b[39mallclose(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 100\u001b[0m )\n\u001b[1;32m 101\u001b[0m ):\n", - "\u001b[0;31mValueError\u001b[0m: Input unitary must be of shape (8, 8) or (batch_size, 8, 8) to act on 3 wires." - ] - } - ], "source": [ "from qulearn import qlayer\n", "import pennylane as qml\n", @@ -1618,24 +1118,13 @@ "\n", "nump = sum(p.numel() for p in model.parameters() if p.requires_grad)\n", "print(\"Number of parameters: \", nump)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVl0lEQVR4nO3deXhTdfr+8TvdW0rZCi1LpSwCIqsgWBwFtYC76KiIC8uo81VAYaooOAoiKiMqgyMIozOI4jgy7v4UF0SLCwjKoqCIgC2g2FLK0pZCmzaf3x+QSGhL2zSnJ03fr+viGnNykjx5mgm9OZ/zHIcxxggAAAAAUKEQuwsAAAAAgEBHcAIAAACAShCcAAAAAKASBCcAAAAAqATBCQAAAAAqQXACAAAAgEoQnAAAAACgEgQnAAAAAKgEwQkAAAAAKkFwAoBj0tPT5XA4lJ6ebncpXhYvXqwuXbooPDxcjRs3rvbjMzMz5XA49MQTT/i/uBMUFBTolltuUWJiohwOhyZOnGj5a/riwQcflMPhsO31d+3apaioKH355Ze21VAbkpOTNXr0aJ8e63A49OCDD5bZPmvWLHXp0kUul6taz/fDDz8oLCxMmzZtKnPfddddp2uvvdanOgHUHwQnAEFv0aJFcjgcnj9RUVHq1KmTxo8fr+zsbL+8xtKlS8v9Ja+mfvzxR40ePVodOnTQc889p2effbbWa6iORx99VIsWLdLtt9+uxYsX66abbrKtlsLCQj344IMBF4Ql6aGHHlL//v119tln211KnZKXl6fHHntM9957r0JCqvcrTNeuXXXJJZdo6tSpZe6799579frrr+vbb7/1V6kAghDBCUC98dBDD2nx4sWaO3euBgwYoPnz5yslJUWFhYU1fu6lS5dq+vTpfqjSW3p6ulwul5566imNHj36pP8qblUN1fHJJ5/orLPO0rRp03TjjTeqT58+ttVSWFio6dOnlxuc7r//fh0+fLj2i5KUk5OjF154Qbfddpstr1+XLVy4UCUlJRoxYoRPj7/tttv05ptvavv27V7be/furb59++rJJ5/0R5kAghTBCUC9cdFFF+nGG2/ULbfcokWLFmnixInKyMjQ22+/bXdpFdqzZ48k+bREzw579uypE7WGhYUpKirKltd+6aWXFBYWpssuu8yW16/Lnn/+eV1++eU+/+xSU1PVpEkTvfDCC2Xuu/baa/XGG2+ooKCgpmUCCFIEJwD11vnnny9JysjIOOl+r776qvr06aPo6GjFx8frxhtv1K+//uq5f/To0Zo3b54keS0JrMwzzzyj008/XZGRkWrVqpXGjRunAwcOeO5PTk7WtGnTJEnNmzev8JyP6tTw7LPPqkOHDoqMjNSZZ56pr7/+usw+P/74o66++mo1bdpUUVFR6tu3r955552Tvhf3+WEZGRl67733PK+fmZnpWSqZmZlZ7mOOPyI0aNAgdevWTT/88IPOO+88xcTEqHXr1po1a1aZ1zxy5IgefPBBderUSVFRUWrZsqWuuuoqbd++XZmZmWrevLkkafr06Z563P0r7xynkpISzZgxw9Of5ORk3XfffSoqKvLaLzk5WZdeeqm++OIL9evXT1FRUWrfvr1efPHFk/bI7a233lL//v0VGxvr2bZ582ZFR0dr5MiRXvt+8cUXCg0N1b333lul5z6eu7//+9//NH36dLVu3VoNGzbU1VdfrYMHD6qoqEgTJ05UixYtFBsbqzFjxpR5r1XtiTFGDz/8sNq0aaOYmBidd955+v7778ut68CBA5o4caKSkpIUGRmpjh076rHHHqv0nKWMjAx99913Sk1N9do+bdo0hYSEaPny5V7b//znPysiIsJr+V14eLgGDRpU7j+WDB48WIcOHdKyZctOWgeAeswAQJB7/vnnjSTz9ddfe21/6qmnjCSzYMECY4wxn376qZFkPv300zKPPfPMM83f//53M3nyZBMdHW2Sk5PN/v37jTHGrFy50gwePNhIMosXL/b8OZlp06YZSSY1NdU8/fTTZvz48SY0NNSceeaZpri42BhjzJtvvmmuvPJKI8nMnz/fLF682Hz77bflPt/JasjIyDCSTO/evU3Hjh3NY489ZmbNmmXi4+NNmzZtPK9njDGbNm0yjRo1Ml27djWPPfaYmTt3rjn33HONw+Ewb7zxRoXvJysryyxevNjEx8ebXr16eV6/oKDA08OMjAyvx5TX74EDB5pWrVqZpKQkM2HCBPPMM8+Y888/30gyS5cu9exXUlJiLrjgAiPJXHfddWbu3Llm5syZ5vzzzzdvvfWWKSgoMPPnzzeSzJVXXumpx90/d/+PN2rUKCPJXH311WbevHlm5MiRRpIZNmyY135t27Y1nTt3NgkJCea+++4zc+fONWeccYZxOBxm06ZNFfbIGGOKi4tNdHS0SUtLK3Pf448/biSZt99+2xhjTEFBgenQoYPp2rWrOXLkyEmftzzu/vbq1cukpKSYf/zjH+bOO+80DofDXHfddeb66683F110kZk3b5656aabjCQzffp0n3py//33G0nm4osvNnPnzjV/+tOfTKtWrUx8fLwZNWqUZ79Dhw6ZHj16mGbNmpn77rvPLFiwwIwcOdI4HA4zYcIEr+eUZKZNm+a5/dJLLxlJ5rvvvivT0969e5u2bduavLw8Y4wxH3zwgZFkZsyYUaYvDz/8sAkJCTEHDx702u50Ok10dLS56667qtpiAPUMwQlA0HP/4v7xxx+bnJwcs2vXLvPKK6+YZs2amejoaPPLL78YY8r+Il9cXGxatGhhunXrZg4fPux5vnfffddIMlOnTvVsGzduXJlfxCuyZ88eExERYYYMGWJKS0s92+fOnWskmYULF3q2uX/Bz8nJqfR5K6rBHZyaNWtm9u3b59n+9ttvG0nm//2//+fZdsEFF5ju3bt7/aLucrnMgAEDzKmnnlppDW3btjWXXHKJ17bqBidJ5sUXX/RsKyoqMomJieaPf/yjZ9vChQuNJDN79uwyNbhcLmOMMTk5OWV++XY7MTht2LDBSDK33HKL13533323kWQ++eQTr/coyXz22WeebXv27DGRkZGV/tK9bds2I8k8/fTTZe4rLS01f/jDH0xCQoLZu3evGTdunAkLCysT+KvK3d9u3bp5heMRI0YYh8NhLrroIq/9U1JSTNu2bT23q9oT9+f5kksu8fTeGGPuu+8+I8krOM2YMcM0aNDA/PTTT17POXnyZBMaGmp27tzp2Xbiz84dzvLz88u8140bN5qIiAhzyy23mP3795vWrVubvn37GqfTWWbfl19+2Ugyq1evLnNfp06dyvQFANxYqgeg3khNTVXz5s2VlJSk6667TrGxsXrzzTfVunXrcvf/5ptvtGfPHo0dO9brnIpLLrlEXbp00XvvvedTHR9//LGKi4s1ceJEr8lgt956q+Li4nx+3soMHz5cTZo08dw+55xzJEk///yzJGnfvn365JNPdO211yo/P1979+7V3r17lZubq6FDh2rr1q1eSxStEhsbqxtvvNFzOyIiQv369fPUKUmvv/664uPjdccdd5R5vC9jxpcuXSpJSktL89p+1113SVKZn0nXrl09/ZOOLqXs3LmzV43lyc3NlSSvn4NbSEiIFi1apIKCAl100UV65plnNGXKFPXt27fa7+d4I0eOVHh4uOd2//79ZYzRn/70J6/9+vfvr127dqmkpERS1Xvi/jzfcccdXr0vbxT9q6++qnPOOUdNmjTxfL727t2r1NRUlZaW6rPPPqvwfeTm5iosLMxriaNbt27dNH36dP3rX//S0KFDtXfvXr3wwgsKCwsrs6+793v37i33vvK2A4Aklf1GAYAgNW/ePHXq1ElhYWFKSEhQ586dTzrSeMeOHZKkzp07l7mvS5cu+uKLL3yqo6LnjYiIUPv27T33+9spp5ziddv9C+T+/fslSdu2bZMxRg888IAeeOCBcp9jz549FQZNf2nTpk2Z8NOkSRN99913ntvbt29X586dy/3F2Bc7duxQSEiIOnbs6LU9MTFRjRs3LvMzObGX7hrdvayMMabc7R06dNCDDz6oSZMmqVu3bhX+HKrjxFobNWokSUpKSiqz3eVy6eDBg2rWrFmVe+L+31NPPdVrv+bNm5cJiFu3btV3333nOf/sRO5hKL6YNGmSXnnlFa1Zs0aPPvqounbtWu5+7t6XF7CNMbZe3wtAYCM4Aag3+vXrV+N/va/LQkNDy93u/kXSfXL+3XffraFDh5a774m/RFdFRb+IlpaWlru9sjqtVNVfmn2tsVmzZpJ00oD10UcfSZJ2796t3NxcJSYmVqmmilRUa1Xfgz+DhMvl0uDBg3XPPfeUe3+nTp0qfGyzZs1UUlKi/Px8NWzYsMz9P//8s7Zu3SpJ2rhxY4XP4+59fHx8ufedGAABwI3gBAAVaNu2rSRpy5Ytngl8blu2bPHcL1Xvl8vjn7d9+/ae7cXFxcrIyCgzNayqavoLrruW8PBwn2soj/uow/ETAyXV6Mhahw4dtHr1ajmdTq9laMer7s/E5XJp69atOu200zzbs7OzdeDAAa+fdU2ccsopio6OrnCS44IFC7Rs2TI98sgjmjlzpv7v//7PtnH5Ve2J+3+3bt3q9XnOyckpExA7dOiggoICnz5fXbp0kXR0ul6PHj287nO5XBo9erTi4uI0ceJEPfroo7r66qt11VVXlXmejIwMhYSElAlpJSUl2rVrly6//PJq1wagfuAcJwCoQN++fdWiRQstWLDAa/zy+++/r82bN+uSSy7xbGvQoIGksuGgPKmpqYqIiNA//vEPr3/d//e//62DBw96PW91VKeG8rRo0UKDBg3SP//5T/32229l7s/JyfHpeTt06CBJXuevlJaW6tlnn/Xp+STpj3/8o/bu3au5c+eWuc/d05iYGElV68fFF18sSZozZ47X9tmzZ0uSzz+TE4WHh6tv37765ptvytyXkZGhSZMm6Y9//KPuu+8+PfHEE3rnnXeqPObc36rak9TUVIWHh+vpp5/2+jyf+Djp6LWSVq1apQ8//LDMfQcOHPCcX1WelJQUSSq3d7Nnz9bKlSv17LPPasaMGRowYIBuv/32cs9XWrt2rU4//XTPkkW3H374QUeOHNGAAQMqrAFA/cYRJwCoQHh4uB577DGNGTNGAwcO1IgRI5Sdna2nnnpKycnJ+stf/uLZt0+fPpKkO++8U0OHDlVoaKiuu+66cp+3efPmmjJliqZPn64LL7xQl19+ubZs2aJnnnlGZ555ptdghOqoTg0VmTdvnv7whz+oe/fuuvXWW9W+fXtlZ2dr1apV+uWXX7yuiVNVp59+us466yxNmTJF+/btU9OmTfXKK6+c9JfkyowcOVIvvvii0tLStGbNGp1zzjk6dOiQPv74Y40dO1ZXXHGFoqOj1bVrVy1ZskSdOnVS06ZN1a1bN3Xr1q3M8/Xs2VOjRo3Ss88+qwMHDmjgwIFas2aNXnjhBQ0bNkznnXeez7We6IorrtBf//pX5eXlKS4uTpI8wxqio6M1f/58SdL//d//6fXXX9eECROUmpqqVq1aSZIWLVqkMWPG6Pnnn9fo0aP9VteJqtqT5s2b6+6779bMmTN16aWX6uKLL9b69ev1/vvvl1kON2nSJL3zzju69NJLNXr0aPXp00eHDh3Sxo0b9dprrykzM7PcJXTS0SOi3bp108cff+w12GLz5s164IEHNHr0aM9FhRctWqRevXpp7Nix+t///ufZ1+l0asWKFRo7dmyZ51+2bJliYmI0ePDgGvcOQJCyZZYfANSiiq7jdKLyxmMbY8ySJUtM7969TWRkpGnatKm54YYbPCPM3UpKSswdd9xhmjdvbhwOR5VGk8+dO9d06dLFhIeHm4SEBHP77bd7rg3lVp1x5BXV4B5H/vjjj5d5jMoZ1719+3YzcuRIk5iYaMLDw03r1q3NpZdeal577bVKayhvHLn7OVNTU01kZKTn+kfLli0rdxz56aefXubxo0aN8hqVbYwxhYWF5q9//atp166dCQ8PN4mJiebqq68227dv9+yzcuVK06dPHxMREeH1Xsu7jpPT6TTTp0/3PF9SUpKZMmVKmWsoVfQeBw4caAYOHFhJh4zJzs42YWFhXtf6cl9T7PXXX/fad+fOnSYuLs5cfPHFnm1PP/20kWQ++OCDk76O+/P86quvem2v6P8P5X3WqtqT0tJSM336dNOyZUsTHR1tBg0aZDZt2mTatm3rNY7cGGPy8/PNlClTTMeOHU1ERISJj483AwYMME888YTX2PTyPpuzZ882sbGxprCw0Bhz9DN/5plnmjZt2pgDBw547evu6ZIlSzzb3n//fSPJbN26tUy/+vfvb2688cYKugkAxjiMqYWzbQEAgMfNN9+sn376SZ9//nm1H3vttdcqMzNTa9assaCywHbw4EG1b99es2bN0s0331ztxw8bNkwOh0Nvvvmm1/YNGzbojDPO0Lp169SrVy8/VQsg2BCcAACoZTt37lSnTp20fPlynX322VV+nDFGCQkJeumllzRkyBALKwxcjz32mJ5//nn98MMPJ72cwIk2b96s7t27a8OGDWWWa1533XVyuVxey/oA4EQEJwAAAACoBFP1AAAAAKASBCcAAAAAqATBCQAAAAAqQXACAAAAgErUuwvgulwu7d69Ww0bNpTD4bC7HAAAAAA2McYoPz9frVq1qnRSZ70LTrt371ZSUpLdZQAAAAAIELt27VKbNm1Ouk+9C04NGzaUdLQ5cXFxNlcjOZ1OffTRRxoyZIjCw8PtLifo0F9r0V9r0V9r0V9r0V9r0V9r0V9rBVJ/8/LylJSU5MkIJ1PvgpN7eV5cXFzABKeYmBjFxcXZ/sEJRvTXWvTXWvTXWvTXWvTXWvTXWvTXWoHY36qcwsNwCAAAAACoBMEJAAAAACpBcAIAAACAStS7c5yqwhijkpISlZaWWv5aTqdTYWFhOnLkSK28XqAJDw9XaGio3WUAAAAAJ0VwOkFxcbF+++03FRYW1srrGWOUmJioXbt21cvrSjkcDrVp00axsbF2lwIAAABUiOB0HJfLpYyMDIWGhqpVq1aKiIiwPMy4XC4VFBQoNja20otuBRtjjHJycvTLL7/o1FNP5cgTAAAAAhbB6TjFxcVyuVxKSkpSTExMrbymy+VScXGxoqKi6l1wkqTmzZsrMzNTTqeT4AQAAICAVf9+U6+C+hhg7FIflycCAACg7iEhAAAAAEAlCE4AAAAAUAlbg9Nnn32myy67TK1atZLD4dBbb71V6WPS09N1xhlnKDIyUh07dtSiRYssrxO/GzRokCZOnFjl/RctWqTGjRtbVg8AAABQG2wNTocOHVLPnj01b968Ku2fkZGhSy65ROedd542bNigiRMn6pZbbtGHH35ocaUAAAAA6jNbp+pddNFFuuiii6q8/4IFC9SuXTs9+eSTkqTTTjtNX3zxhf7+979r6NChVpUJAAAAoJ6rU+PIV61apdTUVK9tQ4cOPenSsaKiIhUVFXlu5+XlSZKcTqecTqfXvk6nU8YYuVwuuVwuSUevNXTYWeqnd1CWMUaHi0sVWuQsM2EuOjy0ylPnzj//fHXr1k2hoaF68cUXFRERoYceekjXX3+97rjjDr3++utKSEjQU0895QmrK1as0L333qtvv/1WTZs21ciRIzVjxgyFhR39WBw6dEhjx47Vm2++qYYNG+quu+7y1OzuT1FRke6//3698sorOnDggLp166aZM2dq0KBBkuTZz/2/J3K5XDLGWDaO3P0zPvFnDf+gv9aiv9aiv9bKzS/U/B9CNG/7l0xQtYAxRvkFofTXIvTXWu7+9j37kFo0amBrLdX5O6BOBaesrCwlJCR4bUtISFBeXp4OHz6s6OjoMo+ZOXOmpk+fXmb7Rx99VOZaTWFhYUpMTFRBQYGKi4slSYeLS5Uy+ys/vouqW5V2lqIjqhYmSkpK9OKLL+rOO+/Uxx9/rDfffFPjxo3Ta6+9pksvvVR33HGHnnnmGY0cOVIbN27UgQMHdOmll2rEiBGaO3eutm7dqgkTJsjhcGjy5MmSpLvuukvp6en6z3/+o/j4eM2YMUPr1q3Taaed5gmgEyZM0I8//qjnnntOLVu21LvvvquLL75YX375pTp06KAjR47IGOPZ/0TFxcU6fPiwPvvsM5WUlPinceVYtmyZZc8N+ms1+mst+muNNTkO/XgwVNIhu0sJYg79Vkh/rUN/reXQJ5+uUFyEvVUUFhZWed86FZx8MWXKFKWlpXlu5+XlKSkpSUOGDFFcXJzXvkeOHNGuXbsUGxurqKgoSVJYsXW/zFemYVxDxURU7UcUFhamnj176qGHHpIk9ejRQ3PmzFFiYqLuuOMOSdKMGTO0cOFCZWZm6t1331VSUpL++c9/yuFwqG/fvjpw4IAmT56shx9+WIWFhXrppZf04osv6rLLLpMkvfTSSzrllFMUERGhuLg47dy5U//5z3+UmZmpVq1aSZJ69uypFStW6LXXXtMjjzyiqKgoORyOMr12O3LkiKKjo3Xuued6eu5PTqdTy5Yt0+DBgxUeHu7356/v6K+16K+16K+1Nr7/o7Rtp1K7xOvGs9raXU7QKSkp0bq163RGnzM8K0XgP/TXWu7+Xjb0AjWIjrS1lor+cb88deqTkJiYqOzsbK9t2dnZiouLK/dokyRFRkYqMrLsDyQ8PLzMX5SlpaVyOBwKCQnxXAS3QWS4fnjIuvOnXC6X8vPy1TCuYZkL71ZnqZ50NCy5nyMkJETNmjXz2tayZUtJ0t69e/Xjjz8qJSXFa3ncH/7wBxUUFGj37t3av3+/iouLlZKS4nl8fHy8Onfu7OnR999/r9LSUnXp0sWrjqKiIjVr1syrjxVdVDgkJEQOh6Pcn4c/Wf389R39tRb9tRb9tcbPuYclSWd3jNegLok2VxN8nE6nDm03Gtg5gc+vBeivtdz9bRAdaXt/q/P6dSo4paSkaOnSpV7bli1bppSUFMte0+FwVPmojy9cLpdKIkIVExFWYbioqhN/8O5Acvxt92v6Q0FBgUJDQ7V27doy5yfFxsb65TUAAHXTtpwCSVLH5vx9ACA42DqOvKCgQBs2bNCGDRskHR03vmHDBu3cuVPS0WV2I0eO9Ox/22236eeff9Y999yjH3/8Uc8884z+97//6S9/+Ysd5ddpp512mlatWiVjjGfbl19+qYYNG6pNmzbq0KGDwsPDtXr1as/9+/fv108//eS53bt3b5WWlmrPnj3q2LGj15/ERP51EQDqq8PFpdq1/+gRp1Nb2HviNwD4i63B6ZtvvlHv3r3Vu3dvSVJaWpp69+6tqVOnSpJ+++03T4iSpHbt2um9997TsmXL1LNnTz355JP617/+xShyH4wdO1a7du3SHXfcoR9//FFvv/22pk2bprS0NIWEhCg2NlY333yzJk2apE8++USbNm3S6NGjvY6KderUSTfccINGjhypN954QxkZGVqzZo1mzpyp9957z8Z3BwCw0/acAhkjNQgzatrA5jO/AcBPbF2qN2jQIK8jHidatGhRuY9Zv369hVXVD61bt9bSpUs1adIk9ezZU02bNtXNN9+s+++/37PP448/roKCAl122WWeceQHDx70ep7nn39eDz/8sO666y79+uuvio+P11lnnaVLL720tt8SACBAbNtzdJleYrQY5QwgaNSpc5xQsfT09DLbMjMzy2w7PqgOHDhQa9asqfA5Y2NjtXjxYi1evNizbdKkSV77hIeHa/r06eWOfJek0aNHa/To0ScvHgAQVLbuyZckJcRU/I+jAFDX2LpUDwAABJ+t2e4jTgQnAMGD4AQAAPzq+KV6ABAsCE4AAMBvikpKlZl7SJKUyFI9AEGE4AQAAPwmY+8huYzUMCpMcVw3FEAQITiV42ST/uBf9BoAgov7/KaOzRuIgXoAggnB6Tjh4Uf/aaywsNDmSuqP4uJiSVJoaKjNlQAA/GHrsfObOraItbkSAPAvxpEfJzQ0VI0bN9aePXskSTExMZZff8Llcqm4uFhHjhzxurhsfeByuZSTk6OYmBiFhfFRBIBgsO3YKPKOzRtIByvZGQDqEH5bPUFiYqIkecKT1YwxOnz4sKKjo+vlRQJDQkJ0yimn1Mv3DgDByLNUr0WsCghOAIIIwekEDodDLVu2VIsWLeR0Oi1/PafTqc8++0znnnuuZ6lgfRIREVHvjrQBQLBylrqUsffoRL2OzRtow1abCwIAPyI4VSA0NLRWzrsJDQ1VSUmJoqKi6mVwAgAEjx25h1TiMmoQEaqWjaK0we6CAMCP+Kd+AADgF55legkNWYINIOgQnAAAgF+4J+qdykQ9AEGI4AQAAPzip+yjE/UITgCCEcEJAAD4xTb3EacEghOA4ENwAgAANVZS6tLPOUcn6p3aoqHN1QCA/xGcAABAje3cV6jiUpeiwkPUunG03eUAgN8RnAAAQI25B0N0bBGrkBAm6gEIPgQnAABQY57zm1imByBIEZwAAECNbT02Ua8jE/UABCmCEwAAqDGu4QQg2BGcAABAjZS6zHGjyFmqByA4EZwAAECN/Lr/sIpKXIoIC9EpTWPsLgcALEFwAgAANbJ1z9Hzmzo0j1UoE/UABCmCEwAAqBHObwJQHxCcAABAjWzNJjgBCH4EJwAAUCPbji3VOzWB4AQgeBGcAACAz4wxnqV6Hbn4LYAgRnACAAA+233wiAqLSxUe6lDbZkzUAxC8CE4AAMBnP2UfXabXLr6BwkP5tQJA8OIbDgAA+GybZzAEy/QABDeCEwAA8Jn7Gk4dmagHIMgRnAAAgM8813Bioh6AIEdwAgAAPjHGsFQPQL1BcAIAAD7JzitSflGJQkMcSo5noh6A4EZwAgAAPnGf39S2WYwiw0JtrgYArEVwAgAAPtnmPr+JwRAA6gGCEwAA8Enm3kOSpHbxBCcAwY/gBAAAfJKRWyhJasf5TQDqAYITAADwifuIU3KzBjZXAgDWIzgBAIBqKy5x6Zf9R484JccTnAAEP4ITAACotl37C+UyUkxEqFo0jLS7HACwHMEJAABU247co8v02jZrIIfDYXM1AGA9ghMAAKi2jL0MhgBQvxCcAABAtTEYAkB9Q3ACAADVlplLcAJQvxCcAABAtWW4jzgxUQ9APUFwAgAA1VJUUqrdBw5LkpI5xwlAPUFwAgAA1bJr32G5jNQgIlTNYxlFDqB+IDgBAIBqyTxumR6jyAHUFwQnAABQLQyGAFAfEZwAAEC1/D4YgvObANQfBCcAAFAtO3KPXvyWI04A6hOCEwAAqBb3Ead2jCIHUI8QnAAAQJUdcZZq90H3KHKCE4D6g+AEAACqbNe+QhkjxUaGqVmDCLvLAYBaQ3ACAABVdvxgCEaRA6hPCE4AAKDKGAwBoL4iOAEAgCrLyGUwBID6yfbgNG/ePCUnJysqKkr9+/fXmjVrTrr/nDlz1LlzZ0VHRyspKUl/+ctfdOTIkVqqFgCA+i1zLxe/BVA/2RqclixZorS0NE2bNk3r1q1Tz549NXToUO3Zs6fc/V9++WVNnjxZ06ZN0+bNm/Xvf/9bS5Ys0X333VfLlQMAUD9lcvFbAPWUrcFp9uzZuvXWWzVmzBh17dpVCxYsUExMjBYuXFju/itXrtTZZ5+t66+/XsnJyRoyZIhGjBhR6VEqAABQc0dHkR9d5cERJwD1TZhdL1xcXKy1a9dqypQpnm0hISFKTU3VqlWryn3MgAED9NJLL2nNmjXq16+ffv75Zy1dulQ33XRTha9TVFSkoqIiz+28vDxJktPplNPp9NO78Z27hkCoJRjRX2vRX2vRX2vR3+rbnp0vSWoYFaaGEY6T9o7+Wov+Wov+WiuQ+ludGhzGGGNhLRXavXu3WrdurZUrVyolJcWz/Z577tGKFSu0evXqch/3j3/8Q3fffbeMMSopKdFtt92m+fPnV/g6Dz74oKZPn15m+8svv6yYGJYZAABQVd/tc+jfW0KV1MDo7h6ldpcDADVWWFio66+/XgcPHlRcXNxJ97XtiJMv0tPT9eijj+qZZ55R//79tW3bNk2YMEEzZszQAw88UO5jpkyZorS0NM/tvLw8JSUlaciQIZU2pzY4nU4tW7ZMgwcPVnh4uN3lBB36ay36ay36ay36W32/fpEhbdmqnu1b6uKLe5x0X/prLfprLfprrUDqr3s1WlXYFpzi4+MVGhqq7Oxsr+3Z2dlKTEws9zEPPPCAbrrpJt1yyy2SpO7du+vQoUP685//rL/+9a8KCSl7ylZkZKQiIyPLbA8PD7f9B3W8QKsn2NBfa9Ffa9Ffa9Hfqtu1/+j5Te2bx1a5Z/TXWvTXWvTXWoHQ3+q8vm3DISIiItSnTx8tX77cs83lcmn58uVeS/eOV1hYWCYchYaGSpJsWnEIAEC9keGZqMdgCAD1j61L9dLS0jRq1Cj17dtX/fr105w5c3To0CGNGTNGkjRy5Ei1bt1aM2fOlCRddtllmj17tnr37u1ZqvfAAw/osssu8wQoAABgjcy9hZIITgDqJ1uD0/Dhw5WTk6OpU6cqKytLvXr10gcffKCEhARJ0s6dO72OMN1///1yOBy6//779euvv6p58+a67LLL9Mgjj9j1FgAAqBcOF5cqK+/oUr12jCIHUA/ZPhxi/PjxGj9+fLn3paene90OCwvTtGnTNG3atFqoDAAAuO3Yd3SZXqPocDVpEGFzNQBQ+2y9AC4AAKgbMt3nNzXjUh4A6ieCEwAAqFQG5zcBqOcITgAAoFK/H3EiOAGonwhOAACgUpm5R4NTO444AainCE4AAKBS7uDEUj0A9RXBCQAAnFRhcYmy84okMRwCQP1FcAIAACflvvBt45hwNY5hFDmA+ongBAAATsqzTI/BEADqMYITAAA4KQZDAADBCQAAVIJR5ABAcAIAAJXI9Fz8lsEQAOovghMAADipDM5xAgCCEwAAqFhBUYly8o+NIuccJwD1GMEJAABUaMexo01NG0SoUXS4zdUAgH0ITgAAoEKe85u48C2Aeo7gBAAAKsQ1nADgKIITAACoUIZ7FDnnNwGo5whOAACgQpkEJwCQRHACAAAnkZl79ByndizVA1DPEZwAAEC58o84tbfg6Cjytlz8FkA9R3ACAADl2nHsaFOzBhGKi2IUOYD6jeAEAADKxWAIAPgdwQkAAJTLMxiC85sAgOAEAADK5xkMwflNAEBwAgAA5fNc/JalegBAcAIAAOVjqR4A/I7gBAAAysg74lTuoWJJHHECAIngBAAAyuE+2hQfG6nYyDCbqwEA+xGcAABAGe5R5AyGAICjCE4AAKAM98VvOb8JAI4iOAEAgDIyufgtAHghOAEAgDIycpmoBwDHIzgBAIAyfj/ixDlOACARnAAAwAkOFjq1v9ApiSNOAOBGcAIAAF4yjy3Ta9EwUg0YRQ4AkghOAADgBO7gxGAIAPgdwQkAAHhxX8MpuRnnNwGAG8EJAAB4YRQ5AJRFcAIAAF4yjl38th2DIQDAg+AEAAC87OAcJwAog+AEAAA8DhQW68CxUeRtOccJADwITgAAwMM9GCIhLlIxEYwiBwA3ghMAAPDwjCLn/CYA8EJwAgAAHhl7jw2G4PwmAPBCcAIAAB6MIgeA8hGcAACAxw6W6gFAuQhOAABAkmSM8QyHYKkeAHgjOAEAAEnS/kKn8o6USJJOacoocgA4HsEJAABI+n0UectGUYqOCLW5GgAILAQnAAAg6bjBEJzfBABlEJwAAICk4wZDcH4TAJRBcAIAAJKkjFz3NZw4vwkATkRwAgAAkn5fqteWpXoAUAbBCQAAyBjjCU6MIgeAsghOAABAuYeKlV9UIoeDUeQAUB6CEwAA8BxtatUoWlHhjCIHgBMRnAAAgDKPDYZIZjAEAJSL4AQAABgMAQCVIDgBAABlHLuGUzuCEwCUy/bgNG/ePCUnJysqKkr9+/fXmjVrTrr/gQMHNG7cOLVs2VKRkZHq1KmTli5dWkvVAgAQnNxHnLj4LQCUL8zOF1+yZInS0tK0YMEC9e/fX3PmzNHQoUO1ZcsWtWjRosz+xcXFGjx4sFq0aKHXXntNrVu31o4dO9S4cePaLx4AgCDhPYqcc5wAoDy2BqfZs2fr1ltv1ZgxYyRJCxYs0HvvvaeFCxdq8uTJZfZfuHCh9u3bp5UrVyo8PFySlJycXJslAwAQdPYWFOtQcakcDimJUeQAUC7bglNxcbHWrl2rKVOmeLaFhIQoNTVVq1atKvcx77zzjlJSUjRu3Di9/fbbat68ua6//nrde++9Cg0tf3RqUVGRioqKPLfz8vIkSU6nU06n04/vyDfuGgKhlmBEf61Ff61Ff61Ff3+3LfugJKlVoyiFGJecTleNn5P+Wov+Wov+WiuQ+ludGhzGGGNhLRXavXu3WrdurZUrVyolJcWz/Z577tGKFSu0evXqMo/p0qWLMjMzdcMNN2js2LHatm2bxo4dqzvvvFPTpk0r93UefPBBTZ8+vcz2l19+WTEx/KsaAABf7XHov9tD1amRS+O61jw0AUBdUVhYqOuvv14HDx5UXFzcSfe1daledblcLrVo0ULPPvusQkND1adPH/366696/PHHKwxOU6ZMUVpamud2Xl6ekpKSNGTIkEqbUxucTqeWLVumwYMHe5Yfwn/or7Xor7Xor7Xo7+82L9sqbc9Q386n6OKLu/rlOemvteivteivtQKpv+7VaFVhW3CKj49XaGiosrOzvbZnZ2crMTGx3Me0bNlS4eHhXsvyTjvtNGVlZam4uFgRERFlHhMZGanIyMgy28PDw23/QR0v0OoJNvTXWvTXWvTXWvRX2rn/sCSpffOGfu8F/bUW/bUW/bVWIPS3Oq9v2zjyiIgI9enTR8uXL/dsc7lcWr58udfSveOdffbZ2rZtm1yu35cR/PTTT2rZsmW5oQkAAFQuc2+hJKkdo8gBoEK2XscpLS1Nzz33nF544QVt3rxZt99+uw4dOuSZsjdy5Eiv4RG333679u3bpwkTJuinn37Se++9p0cffVTjxo2z6y0AAFCnGWOUmcs1nACgMrae4zR8+HDl5ORo6tSpysrKUq9evfTBBx8oISFBkrRz506FhPye7ZKSkvThhx/qL3/5i3r06KHWrVtrwoQJuvfee+16CwAA1Gk5+UUqLC5ViENKasLQJACoiO3DIcaPH6/x48eXe196enqZbSkpKfrqq68srgoAgPoh49iFb1s3iVZEmK0LUQAgoPENCQBAPeZZpteMZXoAcDI1OuLkdDqVlZWlwsJCNW/eXE2bNvVXXQAAoBZkMBgCAKqk2kec8vPzNX/+fA0cOFBxcXFKTk7WaaedpubNm6tt27a69dZb9fXXX1tRKwAA8LMdHHECgCqpVnCaPXu2kpOT9fzzzys1NVVvvfWWNmzYoJ9++kmrVq3StGnTVFJSoiFDhujCCy/U1q1braobAAD4gfscp+R4BkMAwMlUa6ne119/rc8++0ynn356uff369dPf/rTn7RgwQI9//zz+vzzz3Xqqaf6pVAAAOBfxhjtyD26VI8jTgBwctUKTv/973+rtF9kZKRuu+02nwoCAAC1IzuvSIedpQoNcSipKUecAOBkfJ6ql5OTU+F9Gzdu9PVpAQBALXEv02vTJFrhoQzaBYCT8flbsnv37nrvvffKbH/iiSfUr1+/GhUFAACsx2AIAKg6n4NTWlqa/vjHP+r222/X4cOH9euvv+qCCy7QrFmz9PLLL/uzRgAAYIEMT3BimR4AVMbn4HTPPfdo1apV+vzzz9WjRw/16NFDkZGR+u6773TllVf6s0YAAGCBTM9EPY44AUBlarSguWPHjurWrZsyMzOVl5en4cOHKzEx0V+1AQAAC2Ueu/gtwQkAKudzcPryyy/Vo0cPbd26Vd99953mz5+vO+64Q8OHD9f+/fv9WSMAAPAzl8so89hSvXac4wQAlfI5OJ1//vkaPny4vvrqK5122mm65ZZbtH79eu3cuVPdu3f3Z40AAMDPsvOPqKjEpbAQh9o0iba7HAAIeNW6jtPxPvroIw0cONBrW4cOHfTll1/qkUceqXFhAADAOu5R5ElNYxTGKHIAqJTP35QnhibPE4aE6IEHHvC5IAAAYD33+U1tmagHAFVSreD0yiuvVHnfXbt26csvv6x2QQAAwHqZXMMJAKqlWsFp/vz5Ou200zRr1ixt3ry5zP0HDx7U0qVLdf311+uMM85Qbm6u3woFAAD+416q146JegBQJdU6x2nFihV655139PTTT2vKlClq0KCBEhISFBUVpf379ysrK0vx8fEaPXq0Nm3apISEBKvqBgAANbAjl2s4AUB1VHs4xOWXX67LL79ce/fu1RdffKEdO3bo8OHDio+PV+/evdW7d2+FhHCSKQAAgcrlMtqRe/QcJ0aRA0DV+DxVLz4+XsOGDfNjKQAAoDb8lvf7KPJWjaPsLgcA6gQODQEAUM9kHju/6RRGkQNAlVXriFOTJk3kcDiqtO++fft8KggAAFjLPRiC85sAoOqqFZzmzJljURkAAKC2uI84MYocAKquWsFp1KhRVtUBAABqSaZ7MEQ8F78FgKqq0cLm7du36/7779eIESO0Z88eSdL777+v77//3i/FAQAA/3Nf/LYtR5wAoMp8Dk4rVqxQ9+7dtXr1ar3xxhsqKCiQJH377beaNm2a3woEAAD+U+oy2uk54kRwAoCq8jk4TZ48WQ8//LCWLVumiIgIz/bzzz9fX331lV+KAwAA/rX7wGEVl7oUERqiVo2j7S4HAOoMn4PTxo0bdeWVV5bZ3qJFC+3du7dGRQEAAGu4l+klNY1WaEjVJuUCAGoQnBo3bqzffvutzPb169erdevWNSoKAABYI5NlegDgE5+D03XXXad7771XWVlZcjgccrlc+vLLL3X33Xdr5MiR/qwRAAD4iXsUOYMhAKB6fA5Ojz76qLp06aKkpCQVFBSoa9euOvfcczVgwADdf//9/qwRAAD4SSYXvwUAn1TrOk7Hi4iI0HPPPacHHnhAmzZtUkFBgXr37q1TTz3Vn/UBAAA/yjh2jlM7jjgBQLX4HJzcTjnlFJ1yyin+qAUAAFiopNSlXfuOnuOUzMVvAaBaqhWc0tLSqrzv7Nmzq10MAACwzm8Hj8hZahQRFqJWjRhFDgDVUa3gtH79eq/b69atU0lJiTp37ixJ+umnnxQaGqo+ffr4r0IAAOAXGe7BEE1jFMIocgColmoFp08//dTz37Nnz1bDhg31wgsvqEmTJpKk/fv3a8yYMTrnnHP8WyUAAKgx9zWcmKgHANXn81S9J598UjNnzvSEJklq0qSJHn74YT355JN+KQ4AAPiP+4hTO85vAoBq8zk45eXlKScnp8z2nJwc5efn16goAADgf4wiBwDf+RycrrzySo0ZM0ZvvPGGfvnlF/3yyy96/fXXdfPNN+uqq67yZ40AAMAPMnOPTtRjFDkAVJ/P48gXLFigu+++W9dff72cTufRJwsL080336zHH3/cbwUCAICa8x5FTnACgOryOTjFxMTomWee0eOPP67t27dLkjp06KAGDfgyBgAg0Px64LBKXEaRYSFKjIuyuxwAqHNqfAHcBg0aqGnTpp7/BgAAgcczirwZo8gBwBc+n+Pkcrn00EMPqVGjRmrbtq3atm2rxo0ba8aMGXK5XP6sEQAA1JBnMATnNwGAT3w+4vTXv/5V//73v/W3v/1NZ599tiTpiy++0IMPPqgjR47okUce8VuRAACgZjyDITi/CQB84nNweuGFF/Svf/1Ll19+uWdbjx491Lp1a40dO5bgBABAAHFf/JbBEADgG5+X6u3bt09dunQps71Lly7at29fjYoCAAD+lXncOU4AgOrzOTj17NlTc+fOLbN97ty56tmzZ42KAgAA/uMsdWnX/sOSWKoHAL7yeanerFmzdMkll+jjjz9WSkqKJGnVqlXauXOn3n//fb8VCAAAauaX/YdV6jKKCg9RQkNGkQOAL3w+4jRw4EBt2bJFV111lQ4cOKADBw7oqquu0k8//aRzzjnHnzUCAIAaOH6iHqPIAcA3NbqOU7NmzXT55ZfrrLPO8owg/+abbyTJa2gEAACwj2cwBKPIAcBnPgenDz74QCNHjlRubq6MMV73ORwOlZaW1rg4AABQc54jTpzfBAA+83mp3h133KFrrrlGu3fvlsvl8vpDaAIAIHBkHLuGUzIT9QDAZz4Hp+zsbKWlpSkhIcGf9QAAAD/jiBMA1JzPwenqq69Wenq6H0sBAAD+Vlzi0i/7jx5xYhQ5APjO53Oc5s6dq2uuuUaff/65unfvrvDwcK/777zzzhoXBwAAauaX/YVyGSkmIlQtGkbaXQ4A1Fk+B6f//ve/+uijjxQVFaX09HQ5HL+PN3U4HAQnAAACgHuiXttmDbz+rgYAVI/Pwemvf/2rpk+frsmTJyskxOcVfwAAwEIZexkMAQD+4HPiKS4u1vDhwwlNAAAEMAZDAIB/+Jx6Ro0apSVLlvizFgAA4GfupXrtuPgtANSIz0v1SktLNWvWLH344Yfq0aNHmeEQs2fPrvJzzZs3T48//riysrLUs2dPPf300+rXr1+lj3vllVc0YsQIXXHFFXrrrbeq+xYAAAh6GRxxAgC/8Dk4bdy4Ub1795Ykbdq0yeu+6px8umTJEqWlpWnBggXq37+/5syZo6FDh2rLli1q0aJFhY/LzMzU3XffrXPOOce3NwAAQJArKinV7gOHJUnJ8ZzjBAA14XNw+vTTT/1SwOzZs3XrrbdqzJgxkqQFCxbovffe08KFCzV58uRyH1NaWqobbrhB06dP1+eff64DBw74pRYAAILJrn2H5TJSg4hQNY9lFDkA1ITPwckfiouLtXbtWk2ZMsWzLSQkRKmpqVq1alWFj3vooYfUokUL3Xzzzfr8889P+hpFRUUqKiry3M7Ly5MkOZ1OOZ3OGr6DmnPXEAi1BCP6ay36ay36a6360N9t2QclSac0jVFJSUmtvnZ96K+d6K+16K+1Aqm/1anB1uC0d+9elZaWKiEhwWt7QkKCfvzxx3If88UXX+jf//63NmzYUKXXmDlzpqZPn15m+0cffaSYmMBZtrBs2TK7Swhq9Nda9Nda9NdawdzfT3c7JIUq0nlQS5cutaWGYO5vIKC/1qK/1gqE/hYWFlZ5X1uDU3Xl5+frpptu0nPPPaf4+PgqPWbKlClKS0vz3M7Ly1NSUpKGDBmiuLg4q0qtMqfTqWXLlmnw4MFlBmyg5uivteivteivtepDf7965wdpxy9KOb2DLh58aq2+dn3or53or7Xor7UCqb/u1WhVYWtwio+PV2hoqLKzs722Z2dnKzExscz+27dvV2Zmpi677DLPNpfLJUkKCwvTli1b1KFDB6/HREZGKjKy7Lru8PBw239Qxwu0eoIN/bUW/bUW/bVWMPd31/4jkqT2LRra9h6Dub+BgP5ai/5aKxD6W53Xt/XqtREREerTp4+WL1/u2eZyubR8+XKlpKSU2b9Lly7auHGjNmzY4Plz+eWX67zzztOGDRuUlJRUm+UDABDQGEUOAP5j+1K9tLQ0jRo1Sn379lW/fv00Z84cHTp0yDNlb+TIkWrdurVmzpypqKgodevWzevxjRs3lqQy2wEAqM+OOEu1++CxUeRc/BYAasz24DR8+HDl5ORo6tSpysrKUq9evfTBBx94Bkbs3LlTISG2HhgDAKDO2bWvUMZIsZFhio+NsLscAKjzbA9OkjR+/HiNHz++3PvS09NP+thFixb5vyAAAOq435fpxVTrwvQAgPJxKAcAgCC0I/foiF2W6QGAfxCcAAAIQhm5R484tWMwBAD4BcEJAIAglHlsqV5bjjgBgF8QnAAACELu4NQuPsbmSgAgOBCcAAAIMkdHkR+9+C3nOAGAfxCcAAAIMu7BEA2jwtS0AaPIAcAfCE4AAASZzOMGQzCKHAD8g+AEAECQYTAEAPgfwQkAgCDjOeLUjMEQAOAvBCcAAIJMxrEjTslcwwkA/IbgBABAkMnce3Q4BMEJAPyH4AQAQBA5XFyqrLyjo8jbcY4TAPgNwQkAgCCyY9/RZXpxUWFqHBNuczUAEDwITgAABBH3RD1GkQOAfxGcAAAIIhmc3wQAliA4AQAQRNxHnJI5vwkA/IrgBABAEPFcw4kjTgDgVwQnAACCiDs4sVQPAPyL4AQAQJAoLC5Rdl6RJCm5WYzN1QBAcCE4AQAQJNwXvm0cE67GMRE2VwMAwYXgBABAkPAs02MwBAD4HcEJAIAgkbGXwRAAYBWCEwAAQWIHR5wAwDIEJwAAgkSm5+K3DIYAAH8jOAEAECQyOOIEAJYhOAEAEAQKikqUk39sFDnnOAGA3xGcAAAIApnHBkM0bRChRtHhNlcDAMGH4AQAQBDYkXvs/CYufAsAliA4AQAQBLiGEwBYi+AEAEAQcF/DifObAMAaBCcAAIJAJsEJACxFcAIAIAi4l+q1Y6keAFiC4AQAQB2Xf8SpvQXFkrj4LQBYheAEAEAd556oFx8boYZRjCIHACsQnAAAqOPcgyHaskwPACxDcAIAoI7zDIYgOAGAZQhOAADUcRnuwRCc3wQAliE4AQBQxzGKHACsR3ACAKCOcw+HYKkeAFiH4AQAQB2Wd8Sp3EPuUeQEJwCwCsEJAIA6zL1MLz42UrGRYTZXAwDBi+AEAEAd5h5FzmAIALAWwQkAgDoscy/nNwFAbSA4AQBQh+3IZaIeANQGghMAAHWY+xpOHHECAGsRnAAAqMN+v4YT5zgBgJUITgAA1FEHC53aX+iUxBEnALAawQkAgDrKvUyvRcNINWAUOQBYiuAEAEAdxWAIAKg9BCcAAOoozzWcWKYHAJYjOAEAUEe5B0O0ZTAEAFiO4AQAQB2VkXv04rcccQIA6xGcAACoo34fRU5wAgCrEZwAAKiD9h8q1sHDjCIHgNpCcAIAoA7KPDZRLzEuStERoTZXAwDBj+AEAEAd5A5ObZsxGAIAagPBCQCAOihj77HBEJzfBAC1guAEAEAdxGAIAKhdBCcAAOog91I9BkMAQO0IiOA0b948JScnKyoqSv3799eaNWsq3Pe5557TOeecoyZNmqhJkyZKTU096f4AAAQbY4wyjh1xYqkeANQO24PTkiVLlJaWpmnTpmndunXq2bOnhg4dqj179pS7f3p6ukaMGKFPP/1Uq1atUlJSkoYMGaJff/21lisHAMAe+wudyj9SIkk6pSnDIQCgNtgenGbPnq1bb71VY8aMUdeuXbVgwQLFxMRo4cKF5e7/n//8R2PHjlWvXr3UpUsX/etf/5LL5dLy5ctruXIAAOzhPtrUshGjyAGgtoTZ+eLFxcVau3atpkyZ4tkWEhKi1NRUrVq1qkrPUVhYKKfTqaZNm5Z7f1FRkYqKijy38/LyJElOp1NOp7MG1fuHu4ZAqCUY0V9r0V9r0V9r1eX+bs8++ndZ26bRAVt/Xe5vXUB/rUV/rRVI/a1ODQ5jjLGwlpPavXu3WrdurZUrVyolJcWz/Z577tGKFSu0evXqSp9j7Nix+vDDD/X9998rKiqqzP0PPvigpk+fXmb7yy+/rJgYljcAAOqe93aG6KNfQzSghUvDO7jsLgcA6qzCwkJdf/31OnjwoOLi4k66r61HnGrqb3/7m1555RWlp6eXG5okacqUKUpLS/PczsvL85wXVVlzaoPT6dSyZcs0ePBghYeH211O0KG/1qK/1qK/1qrL/f3of99Jv2bpnN5ddPEfku0up1x1ub91Af21Fv21ViD1170arSpsDU7x8fEKDQ1Vdna21/bs7GwlJiae9LFPPPGE/va3v+njjz9Wjx49KtwvMjJSkZGRZbaHh4fb/oM6XqDVE2zor7Xor7Xor7XqYn937jssSerQomHA114X+1uX0F9r0V9rBUJ/q/P6tg6HiIiIUJ8+fbwGO7gHPRy/dO9Es2bN0owZM/TBBx+ob9++tVEqAAABwRjDxW8BwAa2L9VLS0vTqFGj1LdvX/Xr109z5szRoUOHNGbMGEnSyJEj1bp1a82cOVOS9Nhjj2nq1Kl6+eWXlZycrKysLElSbGysYmNjbXsfAADUhtxDxcovKpHDwShyAKhNtgen4cOHKycnR1OnTlVWVpZ69eqlDz74QAkJCZKknTt3KiTk9wNj8+fPV3Fxsa6++mqv55k2bZoefPDB2iwdAIBa5z7a1KpRtKLCGUUOALXF9uAkSePHj9f48ePLvS89Pd3rdmZmpvUFAQAQoDI8y/Q42gQAtcn2C+ACAICq25FbKElKbsb5TQBQmwhOAADUIRm5x444EZwAoFYRnAAAqEOYqAcA9iA4AQBQRxhjPEv12nGOEwDUKoITAAB1RE5BkQqOjSJPYhQ5ANQqghMAAHWE+2hT68bRigxjFDkA1CaCEwAAdYR7FHk7zm8CgFpHcAIAoI5wD4Zo24xlegBQ2whOAADUEZmMIgcA2xCcAACoIzL2uifqEZwAoLYRnAAAqAOOjiLnGk4AYBeCEwAAdUBOfpEKi0sV4pCSmnCOEwDUNoITAAB1gHuiXusm0YoI469vAKhtfPMCAFAHMBgCAOxFcAIAoA5gMAQA2IvgBABAHbCDI04AYCuCEwAAdYD7HCeOOAGAPQhOAAAEuKOjyI8u1WvbjIl6AGAHghMAAAEuO69Ih52lCg1xKKkpwQkA7EBwAgAgwLmX6bVpEq3wUP7qBgA78O0LAECAYzAEANiP4AQAQIDLyGUwBADYjeAEAECAyzy2VI/BEABgH4ITAAABLvPYxW+TOeIEALYhOAEAEMBcLqNM91I9znECANsQnAAACGDZ+UdUVOJSWIhDbZpE210OANRbBCcAAAKYexR5UtMYhTGKHABswzcwAAABzHN+E4MhAMBWBCcAAAKY+/ymtpzfBAC2IjgBABDA3Ev1uIYTANiL4AQAQADbceyIE6PIAcBeBCcAAAKUy2W0I/foOU6MIgcAexGcAAAIUL/lHR1FHh7qUKvGUXaXAwD1GsEJAIAAlekeRd6EUeQAYDe+hQEACFDuwRCc3wQA9iM4AQAQoDyDITi/CQBsR3ACACBAZRy7+G27eC5+CwB2IzgBABCgMhlFDgABg+AEAEAAKnUZ7Tw2ipylegBgP4ITAAABaPeBwyoudSkiNEStGkfbXQ4A1HsEJwAAApD7wrdJTaMVGuKwuRoAAMEJAIAAlHHs/KZ2nN8EAAGB4AQAQAByX/yW85sAIDAQnAAACECZXPwWAAIKwQkAgACUwcVvASCgEJwAAAgwpS6jXfuOjSLn4rcAEBAITgAABJjdBw7LWWoUERaiVo0YRQ4AgYDgBABAgMk4dn5T26YxCmEUOQAEBIITAAABJjOXwRAAEGgITgAABJgMzyhyzm8CgEBBcAIAIMDsyHUPhuCIEwAECoITAAABxn0Np3aMIgeAgEFwAgAggJSUurRzH0ecACDQEJwAAAggb67/VSUuowYRoUqMi7K7HADAMQQnAAACxPacAk19+3tJ0tjzOjKKHAACCMEJAIAAcMRZqvEvr9dhZ6kGdGim2wZ2sLskAMBxCE4AAASAv73/ozb/lqdmDSL09+G9FMrRJgAIKAQnAABs9tH3WVq0MlOS9MS1PZXAuU0AEHAITgAA2Gj3gcO65/XvJEm3/KGdzuvcwuaKAADlCYjgNG/ePCUnJysqKkr9+/fXmjVrTrr/q6++qi5duigqKkrdu3fX0qVLa6lSAAD8p6TUpYmvbNCBQqe6t26key7sYndJAIAK2B6clixZorS0NE2bNk3r1q1Tz549NXToUO3Zs6fc/VeuXKkRI0bo5ptv1vr16zVs2DANGzZMmzZtquXKAQComac/2aY1mfvUICJUT4/orYgw2/9aBgBUwPZv6NmzZ+vWW2/VmDFj1LVrVy1YsEAxMTFauHBhufs/9dRTuvDCCzVp0iSddtppmjFjhs444wzNnTu3lisHAMB3X/2cq6c/2SpJevSq7lzsFgACXJidL15cXKy1a9dqypQpnm0hISFKTU3VqlWryn3MqlWrlJaW5rVt6NCheuutt8rdv6ioSEVFRZ7beXl5kiSn0ymn01nDd1Azz6/codfW/qL8glDN2/6lHA4mKPmbMYb+Woj+Wov+Wsvu/v564IhcRrqqdytdfHoL2/9O8jf3+wm29xUo6K+16K+1Aqm/1anB1uC0d+9elZaWKiEhwWt7QkKCfvzxx3Ifk5WVVe7+WVlZ5e4/c+ZMTZ8+vcz2jz76SDExMT5W7h+rd4Topz0hkhz6rfCQrbUEN/prLfprLfprLXv7mxBtdFb4Ti1dutO2Gqy2bNkyu0sIavTXWvTXWoHQ38LCwirva2twqg1TpkzxOkKVl5enpKQkDRkyRHFxcTZWJnXNPaQRewu0bu06ndHnDIWFBf2Po9aVlJTQXwvRX2vRX2vZ3V+HpNNbxalRdHitv3ZtcDqdWrZsmQYPHqzw8OB8j3aiv9aiv9YKpP66V6NVha1/E8fHxys0NFTZ2dle27Ozs5WYmFjuYxITE6u1f2RkpCIjI8tsDw8Pt/0HdWpiYyU3a6BD240Gdk6wvZ5g5HQ66a+F6K+16K+16G/tCIS/b4MZ/bUW/bVWIPS3Oq9v63CIiIgI9enTR8uXL/dsc7lcWr58uVJSUsp9TEpKitf+0tHDfBXtDwAAAAA1Zfvaj7S0NI0aNUp9+/ZVv379NGfOHB06dEhjxoyRJI0cOVKtW7fWzJkzJUkTJkzQwIED9eSTT+qSSy7RK6+8om+++UbPPvusnW8DAAAAQBCzPTgNHz5cOTk5mjp1qrKystSrVy998MEHngEQO3fuVEjI7wfGBgwYoJdffln333+/7rvvPp166ql666231K1bN7veAgAAAIAgZ3twkqTx48dr/Pjx5d6Xnp5eZts111yja665xuKqAAAAAOAo2y+ACwAAAACBjuAEAAAAAJUgOAEAAABAJQhOAAAAAFAJghMAAAAAVILgBAAAAACVIDgBAAAAQCUITgAAAABQCYITAAAAAFSC4AQAAAAAlQizu4DaZoyRJOXl5dlcyVFOp1OFhYXKy8tTeHi43eUEHfprLfprLfprLfprLfprLfprLfprrUDqrzsTuDPCydS74JSfny9JSkpKsrkSAAAAAIEgPz9fjRo1Ouk+DlOVeBVEXC6Xdu/erYYNG8rhcNhdjvLy8pSUlKRdu3YpLi7O7nKCDv21Fv21Fv21Fv21Fv21Fv21Fv21ViD11xij/Px8tWrVSiEhJz+Lqd4dcQoJCVGbNm3sLqOMuLg42z84wYz+Wov+Wov+Wov+Wov+Wov+Wov+WitQ+lvZkSY3hkMAAAAAQCUITgAAAABQCYKTzSIjIzVt2jRFRkbaXUpQor/Wor/Wor/Wor/Wor/Wor/Wor/Wqqv9rXfDIQAAAACgujjiBAAAAACVIDgBAAAAQCUITgAAAABQCYITAAAAAFSC4FTLHnnkEQ0YMEAxMTFq3LhxlR4zevRoORwOrz8XXnihtYXWUb701xijqVOnqmXLloqOjlZqaqq2bt1qbaF11L59+3TDDTcoLi5OjRs31s0336yCgoKTPmbQoEFlPr+33XZbLVUc+ObNm6fk5GRFRUWpf//+WrNmzUn3f/XVV9WlSxdFRUWpe/fuWrp0aS1VWjdVp7+LFi0q81mNioqqxWrrjs8++0yXXXaZWrVqJYfDobfeeqvSx6Snp+uMM85QZGSkOnbsqEWLFlleZ11V3f6mp6eX+ew6HA5lZWXVTsF1zMyZM3XmmWeqYcOGatGihYYNG6YtW7ZU+ji+f6vGl/7Wle9fglMtKy4u1jXXXKPbb7+9Wo+78MIL9dtvv3n+/Pe//7WowrrNl/7OmjVL//jHP7RgwQKtXr1aDRo00NChQ3XkyBELK62bbrjhBn3//fdatmyZ3n33XX322Wf685//XOnjbr31Vq/P76xZs2qh2sC3ZMkSpaWladq0aVq3bp169uypoUOHas+ePeXuv3LlSo0YMUI333yz1q9fr2HDhmnYsGHatGlTLVdeN1S3v9LRq9gf/1ndsWNHLVZcdxw6dEg9e/bUvHnzqrR/RkaGLrnkEp133nnasGGDJk6cqFtuuUUffvihxZXWTdXtr9uWLVu8Pr8tWrSwqMK6bcWKFRo3bpy++uorLVu2TE6nU0OGDNGhQ4cqfAzfv1XnS3+lOvL9a2CL559/3jRq1KhK+44aNcpcccUVltYTbKraX5fLZRITE83jjz/u2XbgwAETGRlp/vvf/1pYYd3zww8/GEnm66+/9mx7//33jcPhML/++muFjxs4cKCZMGFCLVRY9/Tr18+MGzfOc7u0tNS0atXKzJw5s9z9r732WnPJJZd4bevfv7/5v//7P0vrrKuq29/qfC/jd5LMm2++edJ97rnnHnP66ad7bRs+fLgZOnSohZUFh6r099NPPzWSzP79+2ulpmCzZ88eI8msWLGiwn34/vVdVfpbV75/OeJUR6Snp6tFixbq3Lmzbr/9duXm5tpdUlDIyMhQVlaWUlNTPdsaNWqk/v37a9WqVTZWFnhWrVqlxo0bq2/fvp5tqampCgkJ0erVq0/62P/85z+Kj49Xt27dNGXKFBUWFlpdbsArLi7W2rVrvT57ISEhSk1NrfCzt2rVKq/9JWno0KF8VsvhS38lqaCgQG3btlVSUpKuuOIKff/997VRbtDjs1s7evXqpZYtW2rw4MH68ssv7S6nzjh48KAkqWnTphXuw2fYd1Xpr1Q3vn8JTnXAhRdeqBdffFHLly/XY489phUrVuiiiy5SaWmp3aXVee713wkJCV7bExISWBt+gqysrDLLPsLCwtS0adOT9ur666/XSy+9pE8//VRTpkzR4sWLdeONN1pdbsDbu3evSktLq/XZy8rK4rNaRb70t3Pnzlq4cKHefvttvfTSS3K5XBowYIB++eWX2ig5qFX02c3Ly9Phw4dtqip4tGzZUgsWLNDrr7+u119/XUlJSRo0aJDWrVtnd2kBz+VyaeLEiTr77LPVrVu3Cvfj+9c3Ve1vXfn+DbO7gGAwefJkPfbYYyfdZ/PmzerSpYtPz3/dddd5/rt79+7q0aOHOnTooPT0dF1wwQU+PWddYnV/67uq9tdXx58D1b17d7Vs2VIXXHCBtm/frg4dOvj8vIC/paSkKCUlxXN7wIABOu200/TPf/5TM2bMsLEy4OQ6d+6szp07e24PGDBA27dv19///nctXrzYxsoC37hx47Rp0yZ98cUXdpcSlKra37ry/Utw8oO77rpLo0ePPuk+7du399vrtW/fXvHx8dq2bVu9CE5W9jcxMVGSlJ2drZYtW3q2Z2dnq1evXj49Z11T1f4mJiaWOam+pKRE+/bt8/SxKvr37y9J2rZtW70OTvHx8QoNDVV2drbX9uzs7Ar7mZiYWK396zNf+nui8PBw9e7dW9u2bbOixHqlos9uXFycoqOjbaoquPXr148wUInx48d7Bh21adPmpPvy/Vt91enviQL1+5fg5AfNmzdX8+bNa+31fvnlF+Xm5nr9oh/MrOxvu3btlJiYqOXLl3uCUl5enlavXl3tyYd1VVX7m5KSogMHDmjt2rXq06ePJOmTTz6Ry+XyhKGq2LBhgyTVm89vRSIiItSnTx8tX75cw4YNk3R0ScPy5cs1fvz4ch+TkpKi5cuXa+LEiZ5ty5Yt8/pXOhzlS39PVFpaqo0bN+riiy+2sNL6ISUlpczoZj671tqwYUO9/56tiDFGd9xxh958802lp6erXbt2lT6G79+q86W/JwrY71+7p1PUNzt27DDr168306dPN7GxsWb9+vVm/fr1Jj8/37NP586dzRtvvGGMMSY/P9/cfffdZtWqVSYjI8N8/PHH5owzzjCnnnqqOXLkiF1vI2BVt7/GGPO3v/3NNG7c2Lz99tvmu+++M1dccYVp166dOXz4sB1vIaBdeOGFpnfv3mb16tXmiy++MKeeeqoZMWKE5/5ffvnFdO7c2axevdoYY8y2bdvMQw89ZL755huTkZFh3n77bdO+fXtz7rnn2vUWAsorr7xiIiMjzaJFi8wPP/xg/vznP5vGjRubrKwsY4wxN910k5k8ebJn/y+//NKEhYWZJ554wmzevNlMmzbNhIeHm40bN9r1FgJadfs7ffp08+GHH5rt27ebtWvXmuuuu85ERUWZ77//3q63ELDy8/M936+SzOzZs8369evNjh07jDHGTJ482dx0002e/X/++WcTExNjJk2aZDZv3mzmzZtnQkNDzQcffGDXWwho1e3v3//+d/PWW2+ZrVu3mo0bN5oJEyaYkJAQ8/HHH9v1FgLa7bffbho1amTS09PNb7/95vlTWFjo2YfvX9/50t+68v1LcKplo0aNMpLK/Pn00089+0gyzz//vDHGmMLCQjNkyBDTvHlzEx4ebtq2bWtuvfVWz1/88Fbd/hpzdCT5Aw88YBISEkxkZKS54IILzJYtW2q/+DogNzfXjBgxwsTGxpq4uDgzZswYr1CakZHh1e+dO3eac8891zRt2tRERkaajh07mkmTJpmDBw/a9A4Cz9NPP21OOeUUExERYfr162e++uorz30DBw40o0aN8tr/f//7n+nUqZOJiIgwp59+unnvvfdqueK6pTr9nThxomffhIQEc/HFF5t169bZUHXgc4+/PvGPu5+jRo0yAwcOLPOYXr16mYiICNO+fXuv72F4q25/H3vsMdOhQwcTFRVlmjZtagYNGmQ++eQTe4qvA8rr7Ym/G/D96ztf+ltXvn8dxhhj6SEtAAAAAKjjGEcOAAAAAJUgOAEAAABAJQhOAAAAAFAJghMAAAAAVILgBAAAAACVIDgBAAAAQCUITgAAAABQCYITAAAAAFSC4AQAAAAAlSA4AQAAAEAlCE4AAAAAUAmCEwCg3sjJyVFiYqIeffRRz7aVK1cqIiJCy5cvt7EyAECgcxhjjN1FAABQW5YuXaphw4Zp5cqV6ty5s3r16qUrrrhCs2fPtrs0AEAAIzgBAOqdcePG6eOPP1bfvn21ceNGff3114qMjLS7LABAACM4AQDqncOHD6tbt27atWuX1q5dq+7du9tdEgAgwHGOEwCg3tm+fbt2794tl8ulzMxMu8sBANQBHHECANQrxcXF6tevn3r16qXOnTtrzpw52rhxo1q0aGF3aQCAAEZwAgDUK5MmTdJrr72mb7/9VrGxsRo4cKAaNWqkd9991+7SAAABjKV6AIB6Iz09XXPmzNHixYsVFxenkJAQLV68WJ9//rnmz59vd3kAgADGEScAAAAAqARHnAAAAACgEgQnAAAAAKgEwQkAAAAAKkFwAgAAAIBKEJwAAAAAoBIEJwAAAACoBMEJAAAAACpBcAIAAACAShCcAAAAAKASBCcAAAAAqATBCQAAAAAq8f8BaFTJpwccTVYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -1658,13 +1147,13 @@ "plt.legend()\n", "plt.grid(True)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "import torch\n", "\n", @@ -1803,24 +1292,13 @@ "\n", "\n", "Y_high_low = add_gaussian_noise(high_low(X))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgL0lEQVR4nO3de1iUZf4G8HsOMBxnADkrioiCJoKiEh7SkkSz0s1KzPKQ6WZZW1omu6Wbtmnl+tutXC3zVFmmlWZlmJnmCUHxrGiiIKAMCMgMBxmYmff3BzDbrKiADO8c7s91zbXLO8+8cz9Ow3x55zlIBEEQQERERGRHpGIHICIiImptLHCIiIjI7rDAISIiIrvDAoeIiIjsDgscIiIisjsscIiIiMjusMAhIiIiu8MCh4iIiOyOXOwAYjAajbhy5Qo8PT0hkUjEjkNERERNIAgCysvLERwcDKn01tdoHLLAuXLlCkJCQsSOQURERC2Ql5eHDh063LKNQxY4np6eAOr+gZRKpchpiIiIqCm0Wi1CQkJMn+O34pAFTsPXUkqlkgUOERGRjWnK8BIOMiYiIiK7wwKHiIiI7A4LHCIiIrI7LHCIiIjI7rDAISIiIrvDAoeIiIjsDgscIiIisjsscIiIiMjusMAhIiIiu2PRAmfPnj146KGHEBwcDIlEgi1bttz2Mbt370afPn2gUCgQHh6OtWvX3tBm2bJlCA0NhYuLC+Li4pCent764YmIiMhmWbTAqaysRHR0NJYtW9ak9tnZ2Rg1ahTuvfdeHDt2DC+99BKeeeYZbN++3dTmq6++wqxZszB//nwcOXIE0dHRSExMRFFRkaW6QURERDZGIgiC0CZPJJFg8+bNGDNmzE3bvPbaa/jxxx9x6tQp07GkpCSUlZUhJSUFABAXF4d+/frhww8/BAAYjUaEhITghRdewNy5c5uURavVQqVSQaPRcC8qIiIiG9Gcz2+r2mwzNTUVCQkJZscSExPx0ksvAQBqamqQkZGB5ORk0/1SqRQJCQlITU296Xl1Oh10Op3pZ61W27rBiYio2QRBQFG5DheuVkCtqYZaW41KnR56gwCDUYCHixxerk7w8VAgzNcdYX7ucHO2qo8tsmJW9V+KWq1GQECA2bGAgABotVpcv34d165dg8FgaLTN2bNnb3reRYsW4c0337RIZiIiahpBEHC+qAK/nbuKAxeKcfKyFsUVuts/8A86+7qjf6gP4sJ8MLirH/w8FRZKS7bOqgocS0lOTsasWbNMP2u1WoSEhIiYiIjIcVy4WoFvj+Rjy9EruFx23ew+qQTo1M4dwV4uCFC6QOniBLlUAqlUggqdHpqqWhRqq3GxuBKllTXILq5EdnElvjqcB6kEiOvcDqN6BeGh6GCoXJ1E6iFZI6sqcAIDA1FYWGh2rLCwEEqlEq6urpDJZJDJZI22CQwMvOl5FQoFFApW+UREbcVoFPBLZiE+2ZuN9JxS03GFXIq7w9rhnm5+6N3RC90DlXB1ljXpnCUVOhzPL0PaxVLsv1CMU5e1SL1YgtSLJXh7WybG9G6PSfGhiAj0tFS3yIZYVYETHx+Pbdu2mR3bsWMH4uPjAQDOzs6IjY3Fzp07TYOVjUYjdu7ciZkzZ7Z1XCIi+h9Go4Ctx6/g/V/P4+LVSgCATCrBkG5+GNunA4Z194eLU9MKmv/VzkOB+yIDcF9k3TCFvNIqbDtZgK8z8nG+qAJfpOXii7RcjOwZiJcSurHQcXAWLXAqKiqQlZVl+jk7OxvHjh2Dj48POnbsiOTkZFy+fBmffvopAODZZ5/Fhx9+iDlz5uDpp5/Gr7/+io0bN+LHH380nWPWrFmYNGkS+vbti/79++Nf//oXKisrMWXKFEt2hYiIbmPv+atYtO0szhTUTeTwdJFjQlwnTBkYigClS6s/X4iPG/48pAum3xOGgxdLse5ADrafUeOnU2qknFZjdHQwkh/obpHnJutn0Wniu3fvxr333nvD8UmTJmHt2rWYPHkycnJysHv3brPHvPzyyzhz5gw6dOiAN954A5MnTzZ7/Icffoj33nsParUaMTExeP/99xEXF9fkXJwmTkTUetSaavx962mknFYDADwVcjw7tAsmDQiFh6Jtvyg4py7Hv3f+jm0n67K4O8vw4rCumDKwM5zlXLzf1jXn87vN1sGxJixwiIjunCAI+DwtF+/8dBYVOj1kUgkmxnfCC/d1hY+7s6jZTuSXYf7W0ziaWwYA6BGkxD8fj0b3IP7Ot2UscG6DBQ4R0Z0prtDh1U3HsevcVQBATIgXFj0SZVUFhNEo4Jsj+Xh7WyauVdXCSSbBSwnd8OyQLpBJJWLHoxZggXMbLHCIiFpuz+9XMWvjcRRX6OAslyJ5ZCQmxodabdFwtVyH5G9P4pfMuhm4A8Pb4f2k3mjnwdm1toYFzm2wwCEiaj5BELBsVxaW/Pw7AKBbgAfeH98bkYHW/3tUEAR8nZGPed+dxvVaAwKVLlg2oTdiO/mIHY2aoTmf3xxxRUREt1VVo8fML4+aipsn4jpi68xBNlHcAHX7IT7WNwTfzRyIMD93qLXVGPfRQXyZnit2NLIQFjhERHRLak01HluRih9PFMBJJsGiR6Lw9p+iWryejZi6BXhi68xBeLBXEPRGAcnfnsTin87CaHS4LzPsHgscIiK6qQtXKzB2+QGcvqJFO3dnfDHtbozv31HsWHfEQyHHB+N74+WEbgCAFb9dwAsbjqK61iByMmpNLHCIiKhRx/PK8NiKVFwuu44wX3dseX4g+oXax5gViUSCvyR0xT8fi4aTTIIfTxRg8pp0VOr0YkejVsICh4iIbnAgqxjjVx5EaWUNenVQYdOz8QjxcRM7VqsbG9sB657uDw+FHAcvluKpVWnQVteKHYtaAQscIiIycyCrGE+vO4SqGgMGhfvii2l32/WU6gFdfPH5M3FQushxJLcME1am4Vpljdix6A6xwCEiIpPUCyV4et0hVNcacV+kP1ZN7tvm2y2IISbECxumx8PH3RknL2vwxCdp0FTxSo4tY4FDREQAgLSLJXh6bV1xc2+EH5Y/2QcKue3NlGqpHsFKbPzz3fD1UCCzQIvJazkmx5axwCEiIpy+osEz6w7jeq0BQ7r5YfmTsQ5V3DQI9/fE58/0h8rVCUdzyzDt08OcXWWjWOAQETm4vNIqTF5zCOU6PeI6++Cjp2Jtco2b1hIZqMS6p/vD3VmGAxdKMPOLI9AbjGLHomZigUNE5MCKK3R4alUarpbrEBnoiY8n9nXo4qZBTIgXVk3uB4Vcil8yi/D370/DAXc2smkscIiIHFSlTo+n1x5CTkkV2nu5Yt3TdV/NUJ27w9rh30kxkEiAzw/mYuXei2JHomZggUNE5ICMRgEvf3UMJ/I18HF3xmdT+yNA6SJ2LKszomcQ/vZAdwDA29vO4scTBSInoqZigUNE5ICW7vgdP58phLNMipUT+yLMz0PsSFZr6qDOmDwgFADw8sZjyLh0TdxA1CQscIiIHMx3xy7jw11ZAIBFj0QhtpO3yImsm0QiwRsP9kBC9wDU6I149vMMFGqrxY5Ft8ECh4jIgRzPK8Ocr08AAP48JAxjYzuInMg2yKQS/DspBhEBnrharsOzn2dAp+f0cWvGAoeIyEEUV+gw/bPD0OnrVimekxgpdiSb4q6Q46OnYqF0keNobhn+vvWM2JHoFljgEBE5AINRwF82HEWhVocufu74d1IMZFKJ2LFsTqivO94f3xsSCfBlei6+SMsVOxLdBAscIiIH8O9ffsf+rBK4Osmw4slYeLpwOnhLDY3wxyvDIwAA87eewon8MnEDUaNY4BAR2bnd54rwQf2g4sVjo9A1wFPkRLbvuaFdkHhXAGoNAmZ+cRTaam7MaW1Y4BAR2bHLZdfx8lfHIAjAhLiOGB3TXuxIdkEikeDdR6PRwdsVuaVVSP72JFc6tjIscIiI7JTBKOClDUdxraoWUe1VeOPBHmJHsisqVyd8ML435FIJfjxRgC/SOR7HmrDAISKyU8t3Z+FQzjW4O8uw7Ik+3GPKAnp39MacEXXjcRZ8fwaZBVqRE1EDFjhERHboWF4Z/vXLeQDAgtE90bGdm8iJ7Nczg8IwNMIPOr0RL3x5FNW1XB/HGrDAISKyM5U6PV7acBR6o4BRvYLwSB+Ou7EkqVSCfz4WDV8PBbKKKrBk+zmxIxFY4BAR2Z0F359BTkkVglQueHtMFCQSrndjae08FHj30SgAwKr92Ui9UCJyImKBQ0RkR1JOqfHV4TxIJMDSx2OgcuN6N23lvsgAjO8fAkEAXtl0HOWcOi4qFjhERHaitLIGf9t8EgAw/Z4wxHdpJ3Iix/O3UT0Q4uOKy2XX8eb33MpBTG1S4CxbtgyhoaFwcXFBXFwc0tPTb9p26NChkEgkN9xGjRplajN58uQb7h8xYkRbdIWIyGr9fetplFTWoFuAB2bd303sOA7JQyHH0sdjIJEAX2fkY/tptdiRHJbFC5yvvvoKs2bNwvz583HkyBFER0cjMTERRUVFjbb/9ttvUVBQYLqdOnUKMpkMjz32mFm7ESNGmLX78ssvLd0VIiKr9fNpNbYevwKpBHjv0Wgo5JwSLpZ+oT6Yfk8YAOBvm0/iWmWNyIkck8ULnKVLl2LatGmYMmUKevTogRUrVsDNzQ2rV69utL2Pjw8CAwNNtx07dsDNze2GAkehUJi18/b2tnRXiIisUllVDf625RQAYPo9XRAd4iVuIMKs+7uhq78Hiitq8NaPmWLHcUgWLXBqamqQkZGBhISE/z6hVIqEhASkpqY26RyrVq1CUlIS3N3dzY7v3r0b/v7+iIiIwIwZM1BScvMR6zqdDlqt1uxGRGQvFnx/BlfL63YJfymhq9hxCIBCLsPisb0gkQDfHMnHnt+vih3J4Vi0wCkuLobBYEBAQIDZ8YCAAKjVt/9eMj09HadOncIzzzxjdnzEiBH49NNPsXPnTrzzzjv47bffMHLkSBgMjS+utGjRIqhUKtMtJCSk5Z0iIrIiv54txLdHL9d9NfVYNFcrtiKxnbwxKT4UAPDXzSdRqdOLG8jBWPUsqlWrViEqKgr9+/c3O56UlISHH34YUVFRGDNmDH744QccOnQIu3fvbvQ8ycnJ0Gg0plteXl4bpCcisqxKnR6vb677amrqoM7o05Ff1VubVxMj0N7LFfnXruOfP/8udhyHYtECx9fXFzKZDIWFhWbHCwsLERgYeMvHVlZWYsOGDZg6deptnycsLAy+vr7Iyspq9H6FQgGlUml2IyKydf/65Xdc0VQjxMcVs+6PEDsONcJdIcc//tQTALDmQDaO5l4TOZHjsGiB4+zsjNjYWOzcudN0zGg0YufOnYiPj7/lYzdt2gSdTocnn3zyts+Tn5+PkpISBAUF3XFmIiJbcOaKFqv35wAAFjzcE67O/GrKWg2N8MefereHIABzvzmJWoNR7EgOweJfUc2aNQsrV67EunXrkJmZiRkzZqCyshJTpkwBAEycOBHJyck3PG7VqlUYM2YM2rUzX6iqoqICr776Kg4ePIicnBzs3LkTo0ePRnh4OBITEy3dHSIi0RmMAv66+SQMRgEPRAXi3kh/sSPRbbzxYA94uznhXGE51h3IETuOQ5Bb+gnGjRuHq1evYt68eVCr1YiJiUFKSopp4HFubi6kUvM669y5c9i3bx9+/vnnG84nk8lw4sQJrFu3DmVlZQgODsbw4cOxcOFCKBQKS3eHiEh0X6Tn4lheGTwUcsx/6C6x41AT+Lg7Y+7ISLz2zUn8347f8WCvYASqXMSOZdckgiAIYodoa1qtFiqVChqNhuNxiMimFJVXY9g/f0N5tR5/f6gHJg/sLHYkaiKjUcCjKw7gSG4ZRvUKwrIn+ogdyeY05/PbqmdRERGRuX/8mInyaj16dVDhqfopyGQbpFIJFo7pCakE+PFEAfae59o4lsQCh4jIRhzKKcV3x65AIgH+MSYKMqlE7EjUTHcFqzCxvjCd991p6PSNr99Gd44FDhGRDTAYBcz/7jQAIKlfR0R1UImciFpq1vBu8PNUILu4Eiv3XBQ7jt1igUNEZAM2HMrFmQItlC5yvDKcO4XbMqWLE/72QHcAwIe7snCl7LrIiewTCxwiIiunqarFku3nAAAv398N7Tw4Y9TWjY4JRv9QH1TXGvFOylmx49glFjhERFbu/375HdeqatEtwANP3t1J7DjUCiQSCeY91AMSCfDdsSvIuMQVjlsbCxwiIit2Vq3FZwcvAQDmP3QXnGT8tW0verZX4bHYDgCABd+fhtHocKu2WBTfKUREVkoQBLy59QwMRgEj7grEwHBfsSNRK3slMQLuzjIcz9dgy7HLYsexKyxwiIis1M9nCpF6sQQKuRR/G9Vd7DhkAf6eLnj+vnAAwDspZ1Gp04ucyH6wwCEiskK1BiMW/1Q3+PSZwZ0R4uMmciKylKcHdkaIjysKtTqs+O2C2HHsBgscIiIr9GV6LrKLK9HO3RnPDukidhyyIBcnmWna+Md7LiL/WpXIiewDCxwiIiujra7Fv345DwB4KaErPF2cRE5ElpZ4VyDuDvOBTm80LQlAd4YFDhGRlVmx+wJKK2sQ5ueOpP4dxY5DbUAikeBvD/QAAGw5dgWnLmtETmT7WOAQEVmRK2XXsWpfNgBg7ohITgt3IFEdVHg4OhgAuPhfK+A7h4jIiiz5+Rx0eiP6h/rg/h4BYsehNvZqYgScZBLsPV/M3cbvEAscIiIrcfqKBpuP1q2F8tdR3SGRcLdwRxPi42ZarXrxT2e5+N8dYIFDRGQFBEHA29syIQjAQ9HBiAnxEjsSieSF+7rCQyHH6StafH/iithxbBYLHCIiK7D3fDH2Z5XAWSbFnMQIseOQiHzcnfHskDAAwHvbz0GnN4icyDaxwCEiEpkgCHivfmrwhLs7clE/wtODOsPfU4H8a9fx+cFcsePYJBY4REQi235ajZOXNXBzluH5e8PFjkNWwM1Zjpfv7wYA+PDX89BW14qcyPawwCEiEpHBKGDJz78DAJ4Z1Bm+HgqRE5G1eCy2A7r4ueNaVS0+/u2i2HFsDgscIiIRbTl6GVlFFVC5OuGZe8LEjkNWRC6T4tXESADAmv3ZKKnQiZzItrDAISISSY3eiP/7pe7qzYyhXaDklgz0PxLvCkDP9kpU1hjw0R5exWkOFjhERCL56lAu8q9dh5+nApPiQ8WOQ1ZIIpFg9vC6WXXrDuSgSFstciLbwQKHiEgE12sMeP/XLADAi/eFw9VZJnIislZDu/khtpM3dHojlu3KEjuOzWCBQ0Qkgk9Tc3C1XIcO3q4Y148batLN1V3FqZtR9UV6LvKvVYmcyDawwCEiamPa6los/+0CAODlhG5wlvNXMd3agC6+GNClHWoNAj78lVdxmoLvKiKiNrZufw7KqmrRxc8dY3q3FzsO2YiGqzibMvKRU1wpchrrxwKHiKgNaatr8cm+bADAXxK6QSblhprUNLGdfHBvhB8MRgH/3nle7DhWjwUOEVEbWrc/B5rrtQj398CoqCCx45CNmXV/3YyqLccu4/fCcpHTWDcWOEREbeSPV29eHNaVV2+o2aI6qJB4VwAEAfiAY3FuqU0KnGXLliE0NBQuLi6Ii4tDenr6TduuXbsWEonE7Obi4mLWRhAEzJs3D0FBQXB1dUVCQgLOn+flOiKybrx6Q63hxWFdAQA/nLiCrKIKkdNYL4sXOF999RVmzZqF+fPn48iRI4iOjkZiYiKKiopu+hilUomCggLT7dKlS2b3v/vuu3j//fexYsUKpKWlwd3dHYmJiaiu5gJIRGSdePWGWstdwSrc36PuKs6Hv/KP+5uxeIGzdOlSTJs2DVOmTEGPHj2wYsUKuLm5YfXq1Td9jEQiQWBgoOkWEBBguk8QBPzrX//C66+/jtGjR6NXr1749NNPceXKFWzZssXS3SEiahFevaHW9OJ9dVdxth6/gotXeRWnMRYtcGpqapCRkYGEhIT/PqFUioSEBKSmpt70cRUVFejUqRNCQkIwevRonD592nRfdnY21Gq12TlVKhXi4uJuek6dTgetVmt2IyJqK+V/uHrzwn3hvHpDdyyqgwrDIv1hFIBluy6IHccqWbTAKS4uhsFgMLsCAwABAQFQq9WNPiYiIgKrV6/Gd999h88//xxGoxEDBgxAfn4+AJge15xzLlq0CCqVynQLCQm5064RETXZugN1V2+6+LnjwV7BYschO/FC/VicLccu41IJ18X5X1Y3iyo+Ph4TJ05ETEwMhgwZgm+//RZ+fn746KOPWnzO5ORkaDQa0y0vL68VExMR3Vx5dS1W7uXYG2p9MSFeGNKtbl2c//Aqzg0sWuD4+vpCJpOhsLDQ7HhhYSECAwObdA4nJyf07t0bWVl10+EaHteccyoUCiiVSrMbEVFb4NUbsqSGGVXfHMlHXin3qPojixY4zs7OiI2Nxc6dO03HjEYjdu7cifj4+Cadw2Aw4OTJkwgKqhuU17lzZwQGBpqdU6vVIi0trcnnJCJqC1U1eqwyjb3h1RtqfbGdvDG4qy/0RsG0vxnVsfhXVLNmzcLKlSuxbt06ZGZmYsaMGaisrMSUKVMAABMnTkRycrKp/YIFC/Dzzz/j4sWLOHLkCJ588klcunQJzzzzDIC6GVYvvfQS3nrrLWzduhUnT57ExIkTERwcjDFjxli6O0RETfZleh6uVdWiUzs3PNiLM6fIMhqu4mw6nIfLZddFTmM95JZ+gnHjxuHq1auYN28e1Go1YmJikJKSYhoknJubC6n0v3XWtWvXMG3aNKjVanh7eyM2NhYHDhxAjx49TG3mzJmDyspKTJ8+HWVlZRg0aBBSUlJuWBCQiEgsOr0BH++p+4v62SFdIJdZ3ZBHshP9Qn0QH9YOqRdLsGL3BSwc01PsSFZBIgiCIHaItqbVaqFSqaDRaDgeh4gs4sv0XCR/exKBShf8NmcoFHKZ2JHIjqVeKMH4lQfhLJdi32v3wt/TPv/gb87nN/+kICJqZXqDEct31129mXZPGIsbsri7w3zQp6MXavRG07gvR8cCh4iolf14sgC5pVXwcXfG+P5cd4ssTyKR4Lmh4QCA9QdzobleK3Ii8bHAISJqRcY/rEny9MBQuDlbfKgjEQDgvkh/RAR4okKnx2epOWLHER0LHCKiVvRLZiHOFZbDUyHHU/GhYschByKVSjBjaBcAwOr9ObheYxA5kbhY4BARtRJBELCsfuzNU/GdoHJ1EjkROZoHewUhxMcVpZU1+OpQrthxRMUCh4iolezPKsHxvDK4OEnx9KDOYschBySXSfHne+qu4qzcm41ag1HkROJhgUNE1EqW7arbUiapX0f4eihETkOO6tHYDvDzVOBy2XV8d+yK2HFEwwKHiKgVZFy6htSLJXCSSTD9njCx45ADc3GSYWr9FcTlu7NgNDrccncAWOAQEbWKFfX7AP2pd3sEe7mKnIYc3YS4jlC6yHHhaiV+PqMWO44oWOAQEd2hrKIK/JJZCACYXj/+gUhMni5OmFg/i+8/uy/AATctYIFDRHSnPtl7EYIA3N8jAOH+HmLHIQIATBkYChcnKU7ka7A/q0TsOG2OBQ4R0R0o0lbj2yOXAQDPDuHYG7Ie7TwUSOrXEQCw/LcskdO0PRY4RER3YM2BHNQYjIjt5I3YTj5ixyEy88zgzpBJJdifVYJTlzVix2lTLHCIiFqoQqfH5wcvAQD+zJlTZIU6eLthVFQQAGDl3osip2lbLHCIiFpoQ3ouyqv1CPNzR0L3ALHjEDWqYdmCH04UIP9alchp2g4LHCKiFqg1GLFqXzYAYPrgMEilEpETETWuZ3sVBoa3g8EoYPW+HLHjtBkWOERELfD98Sso0FTDz1OBMb3bix2H6JamDa67irPhUC40VbUip2kbLHCIiJpJEAR89FvdeIa6qbgykRMR3dqQbn6IDPREVY0B69MviR2nTbDAISJqpt2/X8W5wnK4O8swIa6T2HGIbksikZiu4qzZnwOd3iByIstjgUNE1Ewf11+9Gd+/I1SuTiKnIWqah6KDEah0wdVynUNswskCh4ioGY7nlSH1YgnkUgmert/QkMgWOMulmDIwFACwcs9Fu9+EkwUOEVEzfLyn7urNw9HB3FSTbM74uI7wUMhxvqgCu38vEjuORbHAISJqotySKvx0qgAAMJ3bMpANUro4YXz/EAD/LdbtFQscIqImWr0/G0YBuKebHyIDlWLHIWqRKQM7Qy6V4ODFUpzILxM7jsWwwCEiagLN9VpsPJwHAJg2mGNvyHYFe7ni4ehgAMBHdnwVhwUOEVETbEjPRVWNAREBnhgU7it2HKI7Mq1++4afThYgt8Q+t29ggUNEdBu1BiPWHcgBAEwd1BkSCbdlINvWPUiJwV19YRTqvnq1RyxwiIhu46dTalzRVMPXwxkPxwSLHYeoVTQs/LfpcB601fa3fQMLHCKiWxAEAav21o1TeOpubstA9mNwV190C/BAZY0BX6XniR2n1bHAISK6hYxL13A8XwNnuRQT7u4odhyiViORSPD0wLoB82sP5EBvMIqcqHWxwCEiuoVP9taNT3ikd3v4eihETkPUusb0bg8fd2dcLruO7acLxY7TqtqkwFm2bBlCQ0Ph4uKCuLg4pKen37TtypUrMXjwYHh7e8Pb2xsJCQk3tJ88eTIkEonZbcSIEZbuBhE5mNySKmw/owYAbstAdsnFSYYn4+quTK7aZ19Txi1e4Hz11VeYNWsW5s+fjyNHjiA6OhqJiYkoKmp8iejdu3dj/Pjx2LVrF1JTUxESEoLhw4fj8uXLZu1GjBiBgoIC0+3LL7+0dFeIyMGsOZANoX5hv24BnmLHIbKIJ+M7wVkmxZHcMhzNvSZ2nFZj8QJn6dKlmDZtGqZMmYIePXpgxYoVcHNzw+rVqxttv379ejz33HOIiYlBZGQkPvnkExiNRuzcudOsnUKhQGBgoOnm7e1t6a4QkQPRVtdi46G6gZfP8OoN2TF/Txc8VL/w36p99jNl3KIFTk1NDTIyMpCQkPDfJ5RKkZCQgNTU1Cado6qqCrW1tfDx8TE7vnv3bvj7+yMiIgIzZsxASUnJTc+h0+mg1WrNbkREt/JVeh4qawzoFuCBwV25sB/Zt6n1RfxPp9S4XHZd5DStw6IFTnFxMQwGAwICAsyOBwQEQK1WN+kcr732GoKDg82KpBEjRuDTTz/Fzp078c477+C3337DyJEjYTAYGj3HokWLoFKpTLeQkJCWd4qI7J7eYMSa+sXPuLAfOYIewUrEh7WDwSjg0/pFLW2dVc+iWrx4MTZs2IDNmzfDxcXFdDwpKQkPP/wwoqKiMGbMGPzwww84dOgQdu/e3eh5kpOTodFoTLe8PPub709EradhYb927s4YHdNe7DhEbaLhKs4X6bmo1OlFTnPnLFrg+Pr6QiaTobDQfOpZYWEhAgMDb/nYJUuWYPHixfj555/Rq1evW7YNCwuDr68vsrKyGr1foVBAqVSa3YiIGiMIAj6pH4fw5N2duLAfOYz7Iv3R2dcd5dV6fJ2RL3acO2bRAsfZ2RmxsbFmA4QbBgzHx8ff9HHvvvsuFi5ciJSUFPTt2/e2z5Ofn4+SkhIEBQW1Sm4iclxHcq/heF4ZnOVSPHl3J7HjELUZqVSCKQNDAQBr9mfDaBTEDXSHLP4V1axZs7By5UqsW7cOmZmZmDFjBiorKzFlyhQAwMSJE5GcnGxq/8477+CNN97A6tWrERoaCrVaDbVajYqKCgBARUUFXn31VRw8eBA5OTnYuXMnRo8ejfDwcCQmJlq6O0Rk5xoW9hsTEww/Ty7sR45lbJ8OULrIkVNShZ1nG1/OxVZYvMAZN24clixZgnnz5iEmJgbHjh1DSkqKaeBxbm4uCgoKTO2XL1+OmpoaPProowgKCjLdlixZAgCQyWQ4ceIEHn74YXTr1g1Tp05FbGws9u7dC4WCv4yIqOXySquw/XTdBIipg8JETkPU9twVcoy3k4X/JIIg2PY1qBbQarVQqVTQaDQcj0NEJm/9cAaf7MvG4K6++GxqnNhxiERxpew6Br+7CwajgB9fHIS7glViRzJpzue3Vc+iIiJqK5U6Pb46XDfDsmEDQiJHFOzligei6sa02vLCfyxwiIgAfHv0Msqr9Qht54Yh3fzEjkMkqoYp498fv4IibbXIaVqGBQ4ROTxBELC2fmG/SQNCIZVyYT9ybDEhXojt5I1ag4DPDl4SO06LsMAhIoe3L6sYF65Wwt1ZhkdjO4gdh8gqNHxV+0VaLqprG98pwJqxwCEih7d2fw4A4LG+IfB0cRI3DJGVSLwrAEEqF5RU1uCHEwW3f4CVYYFDRA4tp7gSv56rW+9jYjwX9iNqIJdJ8VT9e2LN/mzY2qRrFjhE5NA+Tb0EQQCGRvghzM9D7DhEViWpX0co5FKcvqJFxqVrYsdpFhY4ROSwKnR6bKqfGj55QKi4YYiskI+7M8bUbzi7xsZ2GWeBQ0QO65uMfJTr9Ajzc8c9XTk1nKgxk+v3p0o5pcaVsuvihmkGFjhE5JCMRgHr6v8incyp4UQ31T1IibvDfGAwCvjchqaMs8AhIoe05/xVXCyuhKdCjkf6cGo40a1MHlA3ZfzLdNuZMs4Ch4gc0tr6qzeP9Q2Bh0IubhgiK5fQ3R/tvVxxraoWW49dETtOk7DAISKHc/FqBXafuwqJhFPDiZpCLpOa3itrDuTYxJRxFjhE5HA+Ta0bR3BfhD9Cfd1FTkNkG5L6dYSrkwyZBVqkZZeKHee2WOAQkUMpr67979Tw+tkhRHR7Kjcn/KlP3ZTxhtW/rRkLHCJyKF9n5KOyxoBwfw8MCvcVOw6RTWlYL+rnM2rkX6sSN8xtsMAhIofxv1PDJRJODSdqjm4BnhgY3g5GAVa/yzgLHCJyGLt/L0JOSRU8XeR4pP5SOxE1z5T6KeMb0vNQVaMXOc3NscAhIoexpn7cQFK/ELg5c2o4UUvcG+mPjj5u0FyvxZaj1jtlnAUOETmErKJy7D1fXD81PFTsOEQ2SyaVmKaMrz1gvbuMs8AhIoew7kDdeIGE7gEI8XETOQ2RbXusbwjcnGX4vbACqRdKxI7TKBY4RGT3NNdr8c2RfADAFO4aTnTHVK5OGFu/xYm17jLOAoeI7N6mw3moqjGgW4AH4ru0EzsOkV2YVP/Hwi+Zhcgtsb4p4yxwiMiuGYyCaeXiyQM6c2o4USsJ9/fAPd38IAjAp6k5Yse5AQscIrJru84WIbe0CipXJ/ypN6eGE7Wmhq98vzqch0qddU0ZZ4FDRHZtzYFsAEBS/xC4OstETkNkX4Z080NoOzeUV+vx7dHLYscxwwKHiOzW74Xl2J9VAqkEeOpu7hpO1NqkUolpLM7a/dY1ZZwFDhHZrbX1szuG9whEB29ODSeyhEdjO8BDIceFq5XYe75Y7DgmLHCIyC5pqmrxbf3UcO4aTmQ5ni5OeDS2bsr4OiuaMs4Ch4js0leHc1Fda0RkoCfiOvuIHYfIrjWsbPzruSJcKqkUOU0dFjhEZHcMRsG0cvGUgdw1nMjSwvw8MDSiYcq4dewy3iYFzrJlyxAaGgoXFxfExcUhPT39lu03bdqEyMhIuLi4ICoqCtu2bTO7XxAEzJs3D0FBQXB1dUVCQgLOnz9vyS4QkQ35JbMQl8uuw8vNCaNjODWcqC00DDbeeMg6poxbvMD56quvMGvWLMyfPx9HjhxBdHQ0EhMTUVRU1Gj7AwcOYPz48Zg6dSqOHj2KMWPGYMyYMTh16pSpzbvvvov3338fK1asQFpaGtzd3ZGYmIjq6mpLd4eIbMDa+l3Dx/fvCBcnTg0nagtDuvqhs687ynXWMWVcIlh4TldcXBz69euHDz/8EABgNBoREhKCF154AXPnzr2h/bhx41BZWYkffvjBdOzuu+9GTEwMVqxYAUEQEBwcjNmzZ+OVV14BAGg0GgQEBGDt2rVISkq6bSatVguVSgWNRgOlUtlKPSUia3BWrcWIf+2FTCrB3jn3ItjLVexIRA5jzf5svPn9GYT7e2DHy/e0+tfDzfn8tugVnJqaGmRkZCAhIeG/TyiVIiEhAampqY0+JjU11aw9ACQmJpraZ2dnQ61Wm7VRqVSIi4u76Tl1Oh20Wq3ZzRLOF5Yj+duT+PFEgUXOT0S313D1ZsRdgSxuiNrYo7Ed4O4sQ1ZRBfZnibvLuEULnOLiYhgMBgQEBJgdDwgIgFqtbvQxarX6lu0b/rc551y0aBFUKpXpFhIS0qL+3E7KKTW+TM/Fx3svWuT8RHRr1yprsLn+0jinhhO1vT9OGV8r8pRxh5hFlZycDI1GY7rl5eVZ5HnGx3WEs0yK43llOJp7zSLPQUQ3t+FQHnR6I+4KVqJvJ2+x4xA5pIkDQvFI7/Z44b5wUXNYtMDx9fWFTCZDYWGh2fHCwkIEBgY2+pjAwMBbtm/43+acU6FQQKlUmt0swddDgYeigwGIX7kSORq9wYjP6nc0njyAU8OJxNLFzwNLx8UgOsRL1BwWLXCcnZ0RGxuLnTt3mo4ZjUbs3LkT8fHxjT4mPj7erD0A7Nixw9S+c+fOCAwMNGuj1WqRlpZ203O2pSn1l8V/PFGAQi1ndRG1lR1nCnFFUw0fd2fTHxpE5Lgs/hXVrFmzsHLlSqxbtw6ZmZmYMWMGKisrMWXKFADAxIkTkZycbGr/l7/8BSkpKfjnP/+Js2fP4u9//zsOHz6MmTNnAgAkEgleeuklvPXWW9i6dStOnjyJiRMnIjg4GGPGjLF0d26rZ3sV+oV6Q28UsP6gdSx2ROQI1tRfNX2CU8OJCIDc0k8wbtw4XL16FfPmzYNarUZMTAxSUlJMg4Rzc3Mhlf63zhowYAC++OILvP766/jrX/+Krl27YsuWLejZs6epzZw5c1BZWYnp06ejrKwMgwYNQkpKClxcXCzdnSaZPKAzDuVcw/q0XDx/XzgUcv6yJbKk01c0SM8uhVwqwZPcNZyI0Abr4FgjS6+DU2sw4p53d6FAU41/PhaNsfUjyonIMuZ8fRwbD+fjwV5B+PCJPmLHISILsZp1cByVk0xq+ity7YEcOGANSdRmSip02HLsCgBgysDOIqchImvBAsdCxvfvCIVcipOXNTjCKeNEFrPhUB5q9Eb06qBCn45eYschIivBAsdCfNydMaZ+k7/V9SurElHrqjUY8Vn9zsWcGk5Ef8QCx4IadlZNOaVGgea6uGGI7ND202qotdXw9XDGqF5BYschIivCAseCegQrEdfZBwajgM85ZZyo1TXsO/VEXCfOViQiMyxwLKxh4b8v0nJRXWsQNwyRHTmZr8HhS9fgJJPgybiOYschIivDAsfCEroHoL2XK65V1WLr8StixyGyG2sOZAMARkUFwV9pHWtgEZH1YIFjYXKZFBPj66aMr9nPKeNEreFquQ4/HC8AAEzm1HAiagQLnDYwrl8IXJykyCzQIj27VOw4RDbvy/Rc1BiMiAnxQozIG/oRkXVigdMGvNyc8afedasZc5dxojtTozeaBu03jHEjIvpfLHDayOT6KePbT6txuYxTxola6qdTBSgq18HPU4GRPTk1nIgaxwKnjUQEemJgeDsYBZgWJiOi5mu4CvpkXCc4y/krjIgax98ObWjygLrBkF+m5+J6DaeMEzXXsbwyHM0tg7NMiic4NZyIboEFThu6L9IfIT6u0FyvxZZjl8WOQ2Rz1u6vmxr+YHQQ/DwVIqchImvGAqcNyaQSTIoPBVC3AiunjBM1XZG2Gj+erJsaPmUAp4YT0a2xwGljj/UNgZuzDOcKy5F6sUTsOEQ2Y31aLmoNAmI7eSOqg0rsOERk5VjgtDGVqxPG9qmfMs5dxomaRKc3YH1aLoD/zkgkIroVFjgimDSgbmXjHZmFyCutEjkNkfXbdrIAxRU6BCgVGNEzUOw4RGQDWOCIINzfE4O7+kIQgE9Tc8SOQ2TVBEHAmvqrnU/d3QlOMv7aIqLb428KkTSswLrhUB4qdXpxwxBZsSO5ZTiRr4GzXIrx/Tk1nIiahgWOSIZ280doOzeUV+ux+SinjBPdTMPCfqOjg9HOg1PDiahpWOCIRCqVYFL9YMm1BzhlnKgxak01fqqfGj6Jg4uJqBlY4Ijo0dgOcHeWIauoAvuyisWOQ2R11qddgt4ooH+oD3q259RwImo6Fjgi8nRxwmN9QwBwyjjR/6quNeCLhqnh3DWciJqJBY7IJsbXTRn/9VwRcoorRU5DZD2+P34FJZU1CFa5YHiPALHjEJGNYYEjsjA/DwyN8KufMs5dxokA86nhT8Z3gpxTw4momfhbwwpMGVi3r86mw3mo4JRxIhy8WIozBVq4OEnxBKeGE1ELsMCxAoPDfRHm545ynR7fZOSLHYdIdKv21e0aPrZPB3i5OYuchohsEQscKyCVSkz766w7kAOjkVPGyXHlFFdi59lCAMDTg7hrOBG1DAscK/FInw7wdJHjYnEldv9eJHYcItGs2Z8NQQDujfBDFz8PseMQkY1igWMlPBRyJPWrmzLecHmeyNFortdiU/3XtLx6Q0R3wqIFTmlpKSZMmAClUgkvLy9MnToVFRUVt2z/wgsvICIiAq6urujYsSNefPFFaDQas3YSieSG24YNGyzZlTYxaUAoZFIJ9meV4MwVrdhxiNrchvRcVNUYEBHgiUHhvmLHISIbZtECZ8KECTh9+jR27NiBH374AXv27MH06dNv2v7KlSu4cuUKlixZglOnTmHt2rVISUnB1KlTb2i7Zs0aFBQUmG5jxoyxYE/aRgdvN4zsGQgAWL2fV3HIsegNRqyr33fq6UGhkEgk4gYiIpsmESy0CVJmZiZ69OiBQ4cOoW/fvgCAlJQUPPDAA8jPz0dwcHCTzrNp0yY8+eSTqKyshFwurwstkWDz5s0tLmq0Wi1UKhU0Gg2USmWLzmEpR3Ov4U//OQBnmRT75t4Lf08XsSMRtYkfTlzBzC+Oop27M/bPvQ8uTjKxIxGRlWnO57fFruCkpqbCy8vLVNwAQEJCAqRSKdLS0pp8noZONBQ3DZ5//nn4+vqif//+WL169S03q9TpdNBqtWY3a9W7ozdiO3mjxmDE51z4jxxIw9izCXd3YnFDRHfMYgWOWq2Gv7+/2TG5XA4fHx+o1eomnaO4uBgLFy684WutBQsWYOPGjdixYwfGjh2L5557Dh988MFNz7No0SKoVCrTLSQkpPkdakNT6wdXfnbwEqprDSKnIbK8I7nXcDS3DM4yKZ66u5PYcYjIDjS7wJk7d26jg3z/eDt79uwdB9NqtRg1ahR69OiBv//972b3vfHGGxg4cCB69+6N1157DXPmzMF7771303MlJydDo9GYbnl5eXecz5KG9whAB29XXKuqxbdHLosdh8jiGq7ePBwTDD9PhchpiMgeyG/fxNzs2bMxefLkW7YJCwtDYGAgiorM13PR6/UoLS1FYGDgLR9fXl6OESNGwNPTE5s3b4aTk9Mt28fFxWHhwoXQ6XRQKG785ahQKBo9bq3kMikmDwjFWz9mYvX+bCT1C4FUygGXZJ8ul11Hyqm6q7pPD+TUcCJqHc0ucPz8/ODn53fbdvHx8SgrK0NGRgZiY2MBAL/++iuMRiPi4uJu+jitVovExEQoFAps3boVLi63H2R77NgxeHt721QRczvj+oXgX7+cR1ZRBX47fxX3Rvjf/kFENmjdgRwYjAIGdGmHHsHWNeifiGyXxcbgdO/eHSNGjMC0adOQnp6O/fv3Y+bMmUhKSjLNoLp8+TIiIyORnp4OoK64GT58OCorK7Fq1SpotVqo1Wqo1WoYDHVjUb7//nt88sknOHXqFLKysrB8+XK8/fbbeOGFFyzVFVF4ujhhXP3Cf6u58B/ZqUqdHl+m5wLg1Rsial3NvoLTHOvXr8fMmTMxbNgwSKVSjB07Fu+//77p/traWpw7dw5VVVUAgCNHjphmWIWHh5udKzs7G6GhoXBycsKyZcvw8ssvQxAEhIeHY+nSpZg2bZoluyKKyQNCsWZ/NvaeL8ZZtRaRgfzrluzL1xn5KK/Wo7OvO+6L5FVKImo9FlsHx5pZ8zo4/+u59RnYdlKNx/t2wLuPRosdh6jVGI0C7vvnbuSUVGHB6LswMT5U7EhEZOWsYh0cah1TB4UBALYcvYKr5TqR0xC1np1ni5BTUgWlixxj+3QQOw4R2RkWOFYutpM3enf0qlv47yAX/iP7sWrfRQDA+LiOcFdY9NtyInJALHBsQMPCf59z4T+yEyfyy3DwYinkUgkm8aspIrIAFjg2YMRdgWjv5YqSyhp8d4wL/5Ht+3hP3dWbh6KDEezlKnIaIrJHLHBsQMPCf0Ddiq8OOC6c7EheaRW2nSwAAEwbHCZyGiKyVyxwbMS4/iFwd5bh98IK7P79qthxiFps1b5sGAVgcFdfLuxHRBbDAsdGKF2cML5/RwDAx79dFDkNUcuUVdVg4+G6veCm38OrN0RkOSxwbMjTgzpDLpUg9WIJTuSXiR2HqNnWp+WiqsaA7kFKDAr3FTsOEdkxFjg2JNjLFQ9H121z8dEeXsUh26LTG7Bmfw4AYPo9nSGRcANZIrIcFjg2Zlr9Zf2fThYgt6RK5DRETbfl6GUUV+gQpHLBg72CxY5DRHaOBY6N6R6kxJBufjAKwCf7eBWHbIPRKGDl3rpNY58e2BlOMv7qISLL4m8ZG/Tn+qs4Gw/nobSyRuQ0RLe361wRsooq4KmQI6l/iNhxiMgBsMCxQfFd2iGqvQrVtUZ8mpojdhyi22pY2O+JuI7wdHESOQ0ROQIWODZIIpGYptiuO5CD6zXcvoGs1/G8MqRll8JJJsGUgZ3FjkNEDoIFjo0a2TMQIT6uuFZVi68z8sSOQ3RTH++tu3rzcHR7BKpcRE5DRI6CBY6NksukpmXuV+7NhsHI7RvI+uSWVOGnhm0Z7uHVGyJqOyxwbNhjsSHwdnNCbmkVUk6pxY5DdINV+y7CKABDuvkhMpDbMhBR22GBY8NcnWWYGB8KAPhozwVuwklWpbhChw2H6r4+/TO3ZSCiNsYCx8ZNjO8EhVyKE/kaHLxYKnYcIpM1+7Oh0xsRHeKF+C7txI5DRA6GBY6Na+ehwON969YVWfHbBZHTENUpr67Fp6mXAADPDe3CbRmIqM2xwLEDzwzuDKkE+O33qzh9RSN2HCJ8fjAX5dV6dPX3wP3dA8SOQ0QOiAWOHejUzt20t89/dvMqDomrutaAVfvqtmV4dkgXSKW8ekNEbY8Fjp2YMbQLAGDbyQJcvFohchpyZJsy8lFcoUN7L1c8HMNNNYlIHCxw7ET3ICUSuvtDEDgWh8SjNxjx8Z66//6mDeammkQkHv72sSPP3RsOAPj2yGVcLrsuchpyRD+cKEBe6XW0c3fGuH4dxY5DRA6MBY4d6dPRGwO6tIPeKGBl/eaGRG3FaBSwvH4M2JSBoXB1lomciIgcGQscO/N8/VWcL9NzUVyhEzkNOZJfzxbhXGE5PBRyPFW/ACURkVhY4NiZAV3aITrECzq9EavrZ7IQWZogCPjP7iwAwIS7O0Ll6iRyIiJydCxw7IxEIsHM+qs4n6VeguZ6rciJyBGkZZfiSG4ZnOVSTB3ITTWJSHwscOzQsEh/RAR4olynx+cHL4kdhxzAh7/WXb15NLYD/JUuIqchImKBY5ekUgmeu7duXZxV+7JRVaMXORHZs4xLpdiXVQy5VIIZQ7qIHYeICICFC5zS0lJMmDABSqUSXl5emDp1Kioqbr0I3dChQyGRSMxuzz77rFmb3NxcjBo1Cm5ubvD398err74KvZ4f4n80KioIHX3cUFpZgw3peWLHITv2/s66qzdj+3RAiI+byGmIiOpYtMCZMGECTp8+jR07duCHH37Anj17MH369Ns+btq0aSgoKDDd3n33XdN9BoMBo0aNQk1NDQ4cOIB169Zh7dq1mDdvniW7YnPkMimerf9r+qM9F1BdaxA5EdmjY3ll+O33q5D94aohEZE1sFiBk5mZiZSUFHzyySeIi4vDoEGD8MEHH2DDhg24cuXKLR/r5uaGwMBA002pVJru+/nnn3HmzBl8/vnniImJwciRI7Fw4UIsW7YMNTU1luqOTRob2x5BKhcUanXYeJhXcaj1fbDzPABgTEx7dGrnLnIaIqL/sliBk5qaCi8vL/Tt29d0LCEhAVKpFGlpabd87Pr16+Hr64uePXsiOTkZVVVVZueNiopCQMB/dyhOTEyEVqvF6dOnGz2fTqeDVqs1uzkChVxmWt34P7suQKfnVRxqPacua7DzbBGkEuB5Xr0hIitjsQJHrVbD39/f7JhcLoePjw/UavVNH/fEE0/g888/x65du5CcnIzPPvsMTz75pNl5/1jcADD9fLPzLlq0CCqVynQLCQlpabdszuN9OyBI5QK1thobD/EqDrWeD36tu3rzcHQwwvw8RE5DRGSu2QXO3LlzbxgE/L+3s2fPtjjQ9OnTkZiYiKioKEyYMAGffvopNm/ejAsXWr6BZHJyMjQajemWl+c4H/QKuQzP1e80/p/dvIpDrSOzQIvtpwshkQAz7wsXOw4R0Q3kzX3A7NmzMXny5Fu2CQsLQ2BgIIqKisyO6/V6lJaWIjAwsMnPFxcXBwDIyspCly5dEBgYiPT0dLM2hYWFAHDT8yoUCigUiiY/p715vF8Ilu26gAJNNTYezsdTd3cSOxLZuIZ1b0ZFBSHc31PkNEREN2p2gePn5wc/P7/btouPj0dZWRkyMjIQGxsLAPj1119hNBpNRUtTHDt2DAAQFBRkOu8//vEPFBUVmb4C27FjB5RKJXr06NHM3jiGurE4XTDvu9P4z64sPN63AxRyboRILfN7YTm2nSoAALxwX1eR0xARNc5iY3C6d++OESNGYNq0aUhPT8f+/fsxc+ZMJCUlITg4GABw+fJlREZGmq7IXLhwAQsXLkRGRgZycnKwdetWTJw4Effccw969eoFABg+fDh69OiBp556CsePH8f27dvx+uuv4/nnn3foqzS383jfEAQoFaarOEQt9eGvWRAEYGTPQEQE8uoNEVkni66Ds379ekRGRmLYsGF44IEHMGjQIHz88cem+2tra3Hu3DnTLClnZ2f88ssvGD58OCIjIzF79myMHTsW33//vekxMpkMP/zwA2QyGeLj4/Hkk09i4sSJWLBggSW7YvNcnGR4bmjdWInlu7I4Foda5PfCcnx/om6ZB469ISJrJhEEQRA7RFvTarVQqVTQaDRma+zYu+paA4a8twuFWh3eGtMTT3IsDjXTjM8z8NMpNUb2DMTyJ2PFjkNEDqY5n9/ci8qBuDjJTHsF/YdXcaiZTl3W4KdTakgkwMv3dxM7DhHRLbHAcTBJ/TvC31OBK5pqfMV1cagZlu74HQAwOjoY3QI49oaIrBsLHAfj4iTDC/VjJz74NQvXa3gVh27vSO41/Hq2CDKpBH9J4NUbIrJ+LHAc0Lh+HdHB2xVXy3VYl5ojdhyyAUt/rrt6M7ZPe3T25Z5TRGT9WOA4IGe5FC/X/xW+fPcFaKtrRU5E1iz1Qgn2ZRXDSSbhujdEZDNY4DioMb3bI9zfA5rrtfhkz0Wx45CVEgQBS3ecAwCM6xeCEB83kRMRETUNCxwHJZNK8Mrwuqs4q/Zlo6RCJ3IiskZ7zxfjUM41OMulmHkvr94Qke1ggePAEu8KRFR7FSprDFi+u+WbmZJ9EgQBS36uu3rz1N2dEKhyETkREVHTscBxYBKJBK8kRgAAPj14CQWa6yInImuy7aQaJ/I1cHOW4dn69ZOIiGwFCxwHd09XX/Tv7IMavRHv78wSOw5ZiVqDEe9tPwsAmH5PGPw8uc8bEdkWFjgOTiKR4NX6qzgbD+fh4tUKkRORNdiQnouckir4ejjjmcFhYschImo2FjiEfqE+uC/SHwajgHdTzokdh0RWodPj3zvPAwD+MqwrPBRykRMRETUfCxwCAMwdGQmpBEg5rcbhnFKx45CIPtl7EcUVNQht54ak/h3FjkNE1CIscAgA0C3AE4/3DQEAvL0tEw64yTwBuFquw8f16yK9mhgJJxl/RRCRbeJvLzKZdX83uDrJcCS3DD+dUosdh0Twwa/nUVVjQHQHFR6IChQ7DhFRi7HAIRN/pQum3VM3oPSdlLOo0RtFTkRtKbu4El+k5QIA5o7sDolEInIiIqKWY4FDZv58Txh8PRS4VFKF9WmXxI5DbWjJ9nPQGwUMjfBDfJd2YschIrojLHDIjLtCjpfvr1uS//2d57kRp4M4lFOKH08WQCoBXhsRKXYcIqI7xgKHbjCubwjC/T1wraqWWzg4AKNRwILvzwAAxvXriO5BSpETERHdORY4dAO5TIq59X/Fr96XjfxrVSInIkv65kg+Tl7WwFMhx+z6DViJiGwdCxxq1LDu/rg7zAc6vRFvb8sUOw5ZSKVOj3e31y3u+MKwcPh6cEsGIrIPLHCoURKJBPMfugtSSd2miwcuFIsdiSzgP7uzcLVch07t3DBpQKjYcYiIWg0LHLqp7kFKTIjrBABY8P0Z6A2cNm5P8kqrsHJvNgDgrw90h0IuEzkREVHrYYFDtzTr/m5QuTrhrLocX6Tnih2HWtHin+rWOooPa4fhPQLEjkNE1KpY4NAtebs745X6gaf//Pl3XKusETkRtYa0iyWmaeHzHurBRf2IyO6wwKHbGt+/IyIDPaG5XoulO34XOw7doVqDEfO+Ow0ASOrPaeFEZJ9Y4NBtyWVSzH/oLgDA+rRLOHNFK3IiuhPrDuTgXGE5vN2c8OrwCLHjEBFZBAscapL4Lu0wKioIRgGYv/UUjEbuNm6L1Jpq/F/9VbjXRkTC291Z5ERERJbBAoea7K+jusPNWYZDOdewKSNP7DjUAm/9eAaVNQb07uiFx/uGiB2HiMhiWOBQk7X3csXLCXUDjhf9dBYlFTqRE1Fz7M8qxg8n6gYWLxzdE1IpBxYTkf1igUPNMmVgKLoHKVFWVYu3t50VOw41UY3eiHnfnQIAPHV3J/RsrxI5ERGRZVm0wCktLcWECROgVCrh5eWFqVOnoqKi4qbtc3JyIJFIGr1t2rTJ1K6x+zds2GDJrlA9uUyKt//UExJJ3R5GqRdKxI5ETfDxngu4cLUSvh7OmMWBxUTkACxa4EyYMAGnT5/Gjh078MMPP2DPnj2YPn36TduHhISgoKDA7Pbmm2/Cw8MDI0eONGu7Zs0as3ZjxoyxZFfoD3p39MaEuI4AgL9tOQmd3iByIrqVrKIKvL8zCwDw+qgeULk6iZyIiMjy5JY6cWZmJlJSUnDo0CH07dsXAPDBBx/ggQcewJIlSxAcHHzDY2QyGQIDA82Obd68GY8//jg8PDzMjnt5ed3QltrOq4mR2H66EBevVuLj3y7ihWFdxY5EjTAaBSR/ewI1BiOGRvhhdMyN7zsiIntksSs4qamp8PLyMhU3AJCQkACpVIq0tLQmnSMjIwPHjh3D1KlTb7jv+eefh6+vL/r374/Vq1dDEG4+bVmn00Gr1Zrd6M6oXJ3wxoM9AAAf7MrChas3/+qRxLM+PReHcq7BzVmGt8b05IrFROQwLFbgqNVq+Pv7mx2Ty+Xw8fGBWq1u0jlWrVqF7t27Y8CAAWbHFyxYgI0bN2LHjh0YO3YsnnvuOXzwwQc3Pc+iRYugUqlMt5AQTo9tDQ/1CsKQbn6o0Rsx5+sTMHBtHKtSoLmOd36qGwj+amIEOni7iZyIiKjtNLvAmTt37k0HAjfczp6989k1169fxxdffNHo1Zs33ngDAwcORO/evfHaa69hzpw5eO+99256ruTkZGg0GtMtL49ruLQGiUSCtx+JgodCjoxL17Bmf7bYkaieIAh4Y8spVOj06N3RCxPjQ8WORETUppo9Bmf27NmYPHnyLduEhYUhMDAQRUVFZsf1ej1KS0ubNHbm66+/RlVVFSZOnHjbtnFxcVi4cCF0Oh0UCsUN9ysUikaP051r7+WKv43qjuRvT+K97ecwrHsAOvu6ix3L4X1/ogC/ZBbBSSbBO2N7QcY1b4jIwTS7wPHz84Ofn99t28XHx6OsrAwZGRmIjY0FAPz6668wGo2Ii4u77eNXrVqFhx9+uEnPdezYMXh7e7OIEUlSvxD8eKIA+7KK8eqm4/jqz/H8QBVRobbatObNc0PD0S3AU+RERERtz2JjcLp3744RI0Zg2rRpSE9Px/79+zFz5kwkJSWZZlBdvnwZkZGRSE9PN3tsVlYW9uzZg2eeeeaG837//ff45JNPcOrUKWRlZWH58uV4++238cILL1iqK3QbEokEix6JgruzDIcvXcO6AzliR3JYgiDgtW9OoKyqFj3bKzHzvnCxIxERicKi6+CsX78ekZGRGDZsGB544AEMGjQIH3/8sen+2tpanDt3DlVVVWaPW716NTp06IDhw4ffcE4nJycsW7YM8fHxiImJwUcffYSlS5di/vz5luwK3UaIjxuSH+gOAHh3+1lc5KwqUXyZnofd567CWS7F0sdj4CTjYuVE5Jgkwq3mV9sprVYLlUoFjUYDpVIpdhy7YTQKeHJVGg5cKEFUexW+mTEAznJ+wLaVSyWVGPnvvaiqMeD1Ud3xzOAwsSMREbWq5nx+89OHWo1UKsE/H4+GytUJJy9r8K9ffhc7ksMwGAXM3ngcVTUGxHX2wdMDO4sdiYhIVCxwqFUFqVyx+JEoAMDy3y7g4EXuVdUWVvx2AYcvXYO7swxLHovmTuFE5PBY4FCrGxkVhMf7doAgAC9/dQyaqlqxI9m1jEulWLqj7mrZ/IfuQogPF/QjImKBQxYx/6G7ENrODQWaavx188lbbqVBLVdWVYMXvzwGg1HAQ9HBeKxvB7EjERFZBRY4ZBHuCjn+ndQbcqkEP54swIZDXD26tTVMCb9cdh2d2rnh7T9xrykiogYscMhiokO8MHt4BABg/tbTOHVZI3Ii+/LZwUvYfroQTjIJPhjfG54uTmJHIiKyGixwyKL+fE8YErr7o0ZvxLOfZ3A8Tis5nleGt37MBADMHdkdvTp4iRuIiMjKsMAhi5JKJfjnYzEI8XFF/rXrmLXxGIzcdfyOFFfo8OznGajRG3F/jwA8PTBU7EhERFaHBQ5ZnMrNCcsnxMJZLsXOs0VY/tsFsSPZrFqDEc+vP4ICTTXCfN3xz8ejOe6GiKgRLHCoTfRsr8KCh+8CACz5+Rx2ZhaKnMg2Ldp2FmnZpXB3luHjibFQctwNEVGjWOBQmxnXLwTj+3eEIAAvfnkU59TlYkeyKVuOXsbq/dkAgH8+HoNwf+4STkR0MyxwqM1IJBIsGH0X7g7zQWWNAVPXHUJJhU7sWDbhUE4p5nx9AgAw895wjOgZKHIiIiLrxgKH2pSTTIrlE2LRqZ0b8q9dx4zPj6BGbxQ7llXLLq7EtE8Po8ZgxPAeAXj5/m5iRyIisnoscKjNebs7Y9WkvvBUyJGeU4o5Xx/nzKqbKK2swZQ16SirqkV0BxX+ndQbMu4zRUR0WyxwSBTh/p74cEIfyKUSbDl2Bf/YlsntHP5Hda0B0z89jJySKnTwdsUnk/rB1VkmdiwiIpvAAodEM6SbH957rBcAYNW+bKz47aLIiaxHrcGImV8cweFL1+DpIseayf3g56kQOxYRkc1ggUOi+lPvDnh9VHcAwDspZ7HxMPesMhgFvLLpOH7JLIJCLsXHT/VF1wDOmCIiag4WOCS6ZwaH4c9DwgAAc785ga3Hr4icSDyCIOD1Lafw3bErkEslWP5kH8R3aSd2LCIim8MCh6zC3BGRGNc3BEYBeGnDUYcscgRBwJvfn8GX6bmQSID/GxeD+yIDxI5FRGST5GIHIALq1shZ9EgUjIKATRn5eGnDUQDAw9HBIidrG0ajgL9tOYUv03MBAIsficJDDtJ3IiJLYIFDVkMqleCdsXWDjhuKnOoaAx7vFyJyMssyGAXM+foEvjmSD6kEePfRaDwa20HsWERENo1fUZFVaShyGr6umvPNCSzblWW3U8iraw14fv0RfHMkHzKpBP83LobFDRFRK2CBQ1ZHKpVg8dgoPDukCwDgve3nsOCHM3a3GGBJhQ5PrDyIlNNqOMukWPZEb4yOaS92LCIiu8ACh6ySRCLB3JGRpinka/bnYPpnGSivrhU5WevILq7EI8sP4EhuGVSuTvhsan+M6BkkdiwiIrvBAoes2jODw/DvpBg4y6X4JbMQj/znAHKKK8WOdUd2Zhbi4Q/34VL9CsXfzBiAuDBOBSciak0scMjqjY5pj41/jkeAUoHzRRV4+MN92JlZKHasZjMYBSzZfg5T1x1GebUefTp6YfNzAxHu7yF2NCIiu8MCh2xCTIgXvp85CH06ekFbrcfUdYcx77tTqK41iB2tSQo01zFxdRo+3JUFAJg8IBQbpsdz+wUiIguRCPY6PeUWtFotVCoVNBoNlEql2HGoGXR6A95LOYdP9mUDALr6e+D/xsWgZ3uVyMkaJwgCthy7jHnfnUZ5tR6uTjIsHhvFwcRERC3QnM9vFjgscGzSnt+vYvam47haroNMKsGUAaF4+f5ucFdYz9JOuSVVePP709h5tggAEB3ihaWPR6OLH7+SIiJqCRY4t8ECxz6UVOgw77vT+PFkAQAgWOWCOSMi8XB0MKRSiWi5qmr0+HjPRfxn9wXU6I2QSyV4KaErnh3SBXIZvxUmImopFji3wQLHvuw6V4Q3tpxC/rXrAIDuQUrMSYzA0Ag/SCRtV+hU1xqwPi0Xy3dnobiiBgAwKNwXf3/4Lg4kJiJqBc35/LbYn5P/+Mc/MGDAALi5ucHLy6tJjxEEAfPmzUNQUBBcXV2RkJCA8+fPm7UpLS3FhAkToFQq4eXlhalTp6KiosICPSBbcW+EP3a8PASvJkbAUyFHZoEWU9Yewsh/78Wmw3nQ6S07ELmovBr//uU8Br+7Cwt/OIPiihp09HHDh0/0xmdT+7O4ISISgcWu4MyfPx9eXl7Iz8/HqlWrUFZWdtvHvPPOO1i0aBHWrVuHzp0744033sDJkydx5swZuLi4AABGjhyJgoICfPTRR6itrcWUKVPQr18/fPHFF03Oxis49utaZQ2W/3YBnx+8hKqausLGy80JD/YKwp96d0DvEK9W+fqqutaAXWeL8P2JK9hxphC1hrq3UbDKBS8M64pHYzvAiV9HERG1Kqv6imrt2rV46aWXblvgCIKA4OBgzJ49G6+88goAQKPRICAgAGvXrkVSUhIyMzPRo0cPHDp0CH379gUApKSk4IEHHkB+fj6Cg5u2+zILHPunuV6LL9NzsXZ/DtTaatNxXw9nDAr3xcBwX0R1UKGLn0eTCpFKnR6/F5bjUE4pUi+UIC271FRAAUDvjl6YPCAUI3sGwVnOwoaIyBKa8/ltNVNOsrOzoVarkZCQYDqmUqkQFxeH1NRUJCUlITU1FV5eXqbiBgASEhIglUqRlpaGP/3pT42eW6fTQafTmX7WarWW6whZBZWrE54d0gXTBofhwIVibD5yGdtPq1FcUYMtx65gy7ErAABnmRQd27khQKmAv6cLFHIppFIJBEFAWVUtSitrkH/tOi6XXb/hOdp7ueLBXkF4KDrYaqepExE5KqspcNRqNQAgICDA7HhAQIDpPrVaDX9/f7P75XI5fHx8TG0as2jRIrz55putnJhsgUwqweCufhjc1Q81eiMyLl3DnvNXcTinFJkF5ajQ6ZFVVIGsotuP4/L1UKBXBxXiw9ohvks73BWsbNNBzERE1HTNKnDmzp2Ld95555ZtMjMzERkZeUehWltycjJmzZpl+lmr1SIkJETERCQGZ7kU8V3qihMAMBoF5F+7jrxrVSgqr0aRVodagxEGY117b3cneLs5I0Dpgq7+HvB2dxYxPRERNUezCpzZs2dj8uTJt2wTFhbWoiCBgYEAgMLCQgQF/XdX5cLCQsTExJjaFBUVmT1Or9ejtLTU9PjGKBQKKBRcEp/MSaUSdGznho7t3MSOQkREraxZBY6fnx/8/PwsEqRz584IDAzEzp07TQWNVqtFWloaZsyYAQCIj49HWVkZMjIyEBsbCwD49ddfYTQaERcXZ5FcREREZHssNt0jNzcXx44dQ25uLgwGA44dO4Zjx46ZrVkTGRmJzZs3AwAkEgleeuklvPXWW9i6dStOnjyJiRMnIjg4GGPGjAEAdO/eHSNGjMC0adOQnp6O/fv3Y+bMmUhKSmryDCoiIiKyfxYbZDxv3jysW7fO9HPv3r0BALt27cLQoUMBAOfOnYNGozG1mTNnDiorKzF9+nSUlZVh0KBBSElJMa2BAwDr16/HzJkzMWzYMEilUowdOxbvv/++pbpBRERENohbNXAdHCIiIptgFVs1EBEREYmFBQ4RERHZHRY4REREZHdY4BAREZHdYYFDREREdocFDhEREdkdFjhERERkd1jgEBERkd1hgUNERER2x2JbNVizhsWbtVqtyEmIiIioqRo+t5uyCYNDFjjl5eUAgJCQEJGTEBERUXOVl5dDpVLdso1D7kVlNBpx5coVeHp6QiKRtOq5tVotQkJCkJeXZ5f7XLF/ts/e+8j+2T5776O99w+wXB8FQUB5eTmCg4Mhld56lI1DXsGRSqXo0KGDRZ9DqVTa7X+4APtnD+y9j+yf7bP3Ptp7/wDL9PF2V24acJAxERER2R0WOERERGR3WOC0MoVCgfnz50OhUIgdxSLYP9tn731k/2yfvffR3vsHWEcfHXKQMREREdk3XsEhIiIiu8MCh4iIiOwOCxwiIiKyOyxwiIiIyO6wwGmmf/zjHxgwYADc3Nzg5eXVpMcIgoB58+YhKCgIrq6uSEhIwPnz583alJaWYsKECVAqlfDy8sLUqVNRUVFhgR7cWnNz5OTkQCKRNHrbtGmTqV1j92/YsKEtunSDlvxbDx069Ib8zz77rFmb3NxcjBo1Cm5ubvD398err74KvV5vya40qrn9Ky0txQsvvICIiAi4urqiY8eOePHFF6HRaMzaifkaLlu2DKGhoXBxcUFcXBzS09Nv2X7Tpk2IjIyEi4sLoqKisG3bNrP7m/KebEvN6d/KlSsxePBgeHt7w9vbGwkJCTe0nzx58g2v1YgRIyzdjZtqTv/Wrl17Q3YXFxezNtb2+gHN62Njv08kEglGjRplamNNr+GePXvw0EMPITg4GBKJBFu2bLntY3bv3o0+ffpAoVAgPDwca9euvaFNc9/XzSZQs8ybN09YunSpMGvWLEGlUjXpMYsXLxZUKpWwZcsW4fjx48LDDz8sdO7cWbh+/bqpzYgRI4To6Gjh4MGDwt69e4Xw8HBh/PjxFurFzTU3h16vFwoKCsxub775puDh4SGUl5eb2gEQ1qxZY9buj/1vSy35tx4yZIgwbdo0s/wajcZ0v16vF3r27CkkJCQIR48eFbZt2yb4+voKycnJlu7ODZrbv5MnTwqPPPKIsHXrViErK0vYuXOn0LVrV2Hs2LFm7cR6DTds2CA4OzsLq1evFk6fPi1MmzZN8PLyEgoLCxttv3//fkEmkwnvvvuucObMGeH1118XnJychJMnT5raNOU92Vaa278nnnhCWLZsmXD06FEhMzNTmDx5sqBSqYT8/HxTm0mTJgkjRowwe61KS0vbqktmmtu/NWvWCEql0iy7Wq02a2NNr58gNL+PJSUlZv07deqUIJPJhDVr1pjaWNNruG3bNuFvf/ub8O233woAhM2bN9+y/cWLFwU3Nzdh1qxZwpkzZ4QPPvhAkMlkQkpKiqlNc//NWoIFTgutWbOmSQWO0WgUAgMDhffee890rKysTFAoFMKXX34pCIIgnDlzRgAgHDp0yNTmp59+EiQSiXD58uVWz34zrZUjJiZGePrpp82ONeVN0RZa2schQ4YIf/nLX256/7Zt2wSpVGr2i3j58uWCUqkUdDpdq2RvitZ6DTdu3Cg4OzsLtbW1pmNivYb9+/cXnn/+edPPBoNBCA4OFhYtWtRo+8cff1wYNWqU2bG4uDjhz3/+syAITXtPtqXm9u9/6fV6wdPTU1i3bp3p2KRJk4TRo0e3dtQWaW7/bve71dpeP0G489fw//7v/wRPT0+hoqLCdMyaXsM/asrvgTlz5gh33XWX2bFx48YJiYmJpp/v9N+sKfgVlYVlZ2dDrVYjISHBdEylUiEuLg6pqakAgNTUVHh5eaFv376mNgkJCZBKpUhLS2uzrK2RIyMjA8eOHcPUqVNvuO/555+Hr68v+vfvj9WrVzdpu/vWdid9XL9+PXx9fdGzZ08kJyejqqrK7LxRUVEICAgwHUtMTIRWq8Xp06dbvyM30Vr/LWk0GiiVSsjl5tvVtfVrWFNTg4yMDLP3j1QqRUJCgun9879SU1PN2gN1r0VD+6a8J9tKS/r3v6qqqlBbWwsfHx+z47t374a/vz8iIiIwY8YMlJSUtGr2pmhp/yoqKtCpUyeEhIRg9OjRZu8ha3r9gNZ5DVetWoWkpCS4u7ubHbeG17AlbvcebI1/s6ZwyM0225JarQYAsw++hp8b7lOr1fD39ze7Xy6Xw8fHx9SmLbRGjlWrVqF79+4YMGCA2fEFCxbgvvvug5ubG37++Wc899xzqKiowIsvvthq+ZuipX184okn0KlTJwQHB+PEiRN47bXXcO7cOXz77bem8zb2Gjfc11Za4zUsLi7GwoULMX36dLPjYryGxcXFMBgMjf7bnj17ttHH3Oy1+OP7reHYzdq0lZb073+99tprCA4ONvuwGDFiBB555BF07twZFy5cwF//+leMHDkSqampkMlkrdqHW2lJ/yIiIrB69Wr06tULGo0GS5YswYABA3D69Gl06NDBql4/4M5fw/T0dJw6dQqrVq0yO24tr2FL3Ow9qNVqcf36dVy7du2O/7tvChY4AObOnYt33nnnlm0yMzMRGRnZRolaV1P7d6euX7+OL774Am+88cYN9/3xWO/evVFZWYn33nuv1T4cLd3HP37YR0VFISgoCMOGDcOFCxfQpUuXFp+3qdrqNdRqtRg1ahR69OiBv//972b3Wfo1pOZbvHgxNmzYgN27d5sNxE1KSjL9/6ioKPTq1QtdunTB7t27MWzYMDGiNll8fDzi4+NNPw8YMADdu3fHRx99hIULF4qYzDJWrVqFqKgo9O/f3+y4Lb+G1oIFDoDZs2dj8uTJt2wTFhbWonMHBgYCAAoLCxEUFGQ6XlhYiJiYGFOboqIis8fp9XqUlpaaHn8nmtq/O83x9ddfo6qqChMnTrxt27i4OCxcuBA6na5V9ippqz42iIuLAwBkZWWhS5cuCAwMvGEGQGFhIQDYzGtYXl6OESNGwNPTE5s3b4aTk9Mt27f2a9gYX19fyGQy079lg8LCwpv2JzAw8Jbtm/KebCst6V+DJUuWYPHixfjll1/Qq1evW7YNCwuDr68vsrKy2vTD8U7618DJyQm9e/dGVlYWAOt6/YA762NlZSU2bNiABQsW3PZ5xHoNW+Jm70GlUglXV1fIZLI7/u+iSVptNI+Dae4g4yVLlpiOaTSaRgcZHz582NRm+/btog0ybmmOIUOG3DDz5mbeeustwdvbu8VZW6q1/q337dsnABCOHz8uCMJ/Bxn/cQbARx99JCiVSqG6urr1OnAbLe2fRqMR7r77bmHIkCFCZWVlk56rrV7D/v37CzNnzjT9bDAYhPbt299ykPGDDz5odiw+Pv6GQca3ek+2peb2TxAE4Z133hGUSqWQmprapOfIy8sTJBKJ8N13391x3uZqSf/+SK/XCxEREcLLL78sCIL1vX6C0PI+rlmzRlAoFEJxcfFtn0PM1/CP0MRBxj179jQ7Nn78+BsGGd/JfxdNytpqZ3IQly5dEo4ePWqaCn306FHh6NGjZlOiIyIihG+//db08+LFiwUvLy/hu+++E06cOCGMHj260WnivXv3FtLS0oR9+/YJXbt2FW2a+K1y5OfnCxEREUJaWprZ486fPy9IJBLhp59+uuGcW7duFVauXCmcPHlSOH/+vPCf//xHcHNzE+bNm2fx/jSmuX3MysoSFixYIBw+fFjIzs4WvvvuOyEsLEy45557TI9pmCY+fPhw4dixY0JKSorg5+cn2jTx5vRPo9EIcXFxQlRUlJCVlWU2LVWv1wuCIO5ruGHDBkGhUAhr164Vzpw5I0yfPl3w8vIyzVh76qmnhLlz55ra79+/X5DL5cKSJUuEzMxMYf78+Y1OE7/de7KtNLd/ixcvFpydnYWvv/7a7LVq+B1UXl4uvPLKK0JqaqqQnZ0t/PLLL0KfPn2Erl27tmmx3dL+vfnmm8L27duFCxcuCBkZGUJSUpLg4uIinD592tTGml4/QWh+HxsMGjRIGDdu3A3Hre01LC8vN33WARCWLl0qHD16VLh06ZIgCIIwd+5c4amnnjK1b5gm/uqrrwqZmZnCsmXLGp0mfqt/s9bAAqeZJk2aJAC44bZr1y5TG9SvF9LAaDQKb7zxhhAQECAoFAph2LBhwrlz58zOW1JSIowfP17w8PAQlEqlMGXKFLOiqa3cLkd2dvYN/RUEQUhOThZCQkIEg8Fwwzl/+uknISYmRvDw8BDc3d2F6OhoYcWKFY22bQvN7WNubq5wzz33CD4+PoJCoRDCw8OFV1991WwdHEEQhJycHGHkyJGCq6ur4OvrK8yePdtsmnVbaW7/du3a1eh/0wCE7OxsQRDEfw0/+OADoWPHjoKzs7PQv39/4eDBg6b7hgwZIkyaNMms/caNG4Vu3boJzs7Owl133SX8+OOPZvc35T3ZlprTv06dOjX6Ws2fP18QBEGoqqoShg8fLvj5+QlOTk5Cp06dhGnTprXqB0dzNad/L730kqltQECA8MADDwhHjhwxO5+1vX6C0Pz/Rs+ePSsAEH7++ecbzmVtr+HNfkc09GnSpEnCkCFDbnhMTEyM4OzsLISFhZl9Jja41b9Za5AIgghzdYmIiIgsiOvgEBERkd1hgUNERER2hwUOERER2R0WOERERGR3WOAQERGR3WGBQ0RERHaHBQ4RERHZHRY4REREZHdY4BAREZHdYYFDREREdocFDhEREdkdFjhERERkd/4fWGTx45w8h7IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -1833,23 +1311,13 @@ "\n", "# Show the plot\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-02-05 15:57:49.621766: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", - "To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2024-02-05 15:57:50.640817: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" - ] - } - ], "source": [ "import torch\n", "import logging\n", @@ -1869,27 +1337,13 @@ "data_valid = TensorDataset(X_valid, Y_valid)\n", "loader_train = DataLoader(data_train, batch_size=batch_size, shuffle=False)\n", "loader_valid = DataLoader(data_valid, batch_size=batch_size, shuffle=False)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "optimizer got an empty parameter list", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[30], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Trainer\u001b[39;00m\n\u001b[1;32m 9\u001b[0m lr \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.1\u001b[39m\n\u001b[0;32m---> 10\u001b[0m optimizer \u001b[38;5;241m=\u001b[39m \u001b[43mAdam\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m loss_fn \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mnn\u001b[38;5;241m.\u001b[39mMSELoss()\n\u001b[1;32m 12\u001b[0m metric \u001b[38;5;241m=\u001b[39m MeanAbsolutePercentageError()\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/torch/optim/adam.py:33\u001b[0m, in \u001b[0;36mAdam.__init__\u001b[0;34m(self, params, lr, betas, eps, weight_decay, amsgrad, foreach, maximize, capturable, differentiable, fused)\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid weight_decay value: \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(weight_decay))\n\u001b[1;32m 29\u001b[0m defaults \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m(lr\u001b[38;5;241m=\u001b[39mlr, betas\u001b[38;5;241m=\u001b[39mbetas, eps\u001b[38;5;241m=\u001b[39meps,\n\u001b[1;32m 30\u001b[0m weight_decay\u001b[38;5;241m=\u001b[39mweight_decay, amsgrad\u001b[38;5;241m=\u001b[39mamsgrad,\n\u001b[1;32m 31\u001b[0m maximize\u001b[38;5;241m=\u001b[39mmaximize, foreach\u001b[38;5;241m=\u001b[39mforeach, capturable\u001b[38;5;241m=\u001b[39mcapturable,\n\u001b[1;32m 32\u001b[0m differentiable\u001b[38;5;241m=\u001b[39mdifferentiable, fused\u001b[38;5;241m=\u001b[39mfused)\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdefaults\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fused:\n\u001b[1;32m 36\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m differentiable:\n", - "File \u001b[0;32m/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/torch/optim/optimizer.py:187\u001b[0m, in \u001b[0;36mOptimizer.__init__\u001b[0;34m(self, params, defaults)\u001b[0m\n\u001b[1;32m 185\u001b[0m param_groups \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(params)\n\u001b[1;32m 186\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(param_groups) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 187\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moptimizer got an empty parameter list\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(param_groups[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;28mdict\u001b[39m):\n\u001b[1;32m 189\u001b[0m param_groups \u001b[38;5;241m=\u001b[39m [{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mparams\u001b[39m\u001b[38;5;124m'\u001b[39m: param_groups}]\n", - "\u001b[0;31mValueError\u001b[0m: optimizer got an empty parameter list" - ] - } - ], "source": [ "import torch\n", "import logging\n", @@ -1903,13 +1357,13 @@ "optimizer = Adam(model.parameters(), lr=lr, amsgrad=True)\n", "loss_fn = torch.nn.MSELoss()\n", "metric = MeanAbsolutePercentageError()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], "source": [ "logger = logging.getLogger(\"train_function\")\n", "logger.setLevel(level=logging.INFO)\n", @@ -1921,241 +1375,23 @@ " num_epochs=num_epochs,\n", " logger=logger,\n", ")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:train_function:Train - Epoch: 1, Loss: 0.131959, Metrics: MARE: 20383.985147\n", - "INFO:train_function:Validate - Epoch: 1, Loss: 0.335949, Metrics: MARE: 207882.968750\n", - "INFO:train_function:Train - Epoch: 2, Loss: 0.101456, Metrics: MARE: 26640.496386\n", - "INFO:train_function:Validate - Epoch: 2, Loss: 0.255100, Metrics: MARE: 274440.562500\n", - "INFO:train_function:Train - Epoch: 3, Loss: 0.085515, Metrics: MARE: 6838.446764\n", - "INFO:train_function:Validate - Epoch: 3, Loss: 0.024527, Metrics: MARE: 76795.796875\n", - "INFO:train_function:Train - Epoch: 4, Loss: 0.035256, Metrics: MARE: 16365.297700\n", - "INFO:train_function:Validate - Epoch: 4, Loss: 0.094322, Metrics: MARE: 166115.531250\n", - "INFO:train_function:Train - Epoch: 5, Loss: 0.026795, Metrics: MARE: 12965.170490\n", - "INFO:train_function:Validate - Epoch: 5, Loss: 0.061915, Metrics: MARE: 136104.000000\n", - "INFO:train_function:Train - Epoch: 6, Loss: 0.031019, Metrics: MARE: 8767.336635\n", - "INFO:train_function:Validate - Epoch: 6, Loss: 0.031825, Metrics: MARE: 94379.304688\n", - "INFO:train_function:Train - Epoch: 7, Loss: 0.027585, Metrics: MARE: 16012.669159\n", - "INFO:train_function:Validate - Epoch: 7, Loss: 0.090397, Metrics: MARE: 162100.281250\n", - "INFO:train_function:Train - Epoch: 8, Loss: 0.020032, Metrics: MARE: 11716.494468\n", - "INFO:train_function:Validate - Epoch: 8, Loss: 0.051290, Metrics: MARE: 119588.265625\n", - "INFO:train_function:Train - Epoch: 9, Loss: 0.019402, Metrics: MARE: 8264.708005\n", - "INFO:train_function:Validate - Epoch: 9, Loss: 0.030010, Metrics: MARE: 82736.515625\n", - "INFO:train_function:Train - Epoch: 10, Loss: 0.018090, Metrics: MARE: 10306.423204\n", - "INFO:train_function:Validate - Epoch: 10, Loss: 0.041377, Metrics: MARE: 104659.539062\n", - "INFO:train_function:Train - Epoch: 11, Loss: 0.017773, Metrics: MARE: 8656.066476\n", - "INFO:train_function:Validate - Epoch: 11, Loss: 0.029470, Metrics: MARE: 89213.570312\n", - "INFO:train_function:Train - Epoch: 12, Loss: 0.017518, Metrics: MARE: 8328.293514\n", - "INFO:train_function:Validate - Epoch: 12, Loss: 0.029426, Metrics: MARE: 83951.351562\n", - "INFO:train_function:Train - Epoch: 13, Loss: 0.017215, Metrics: MARE: 9590.103136\n", - "INFO:train_function:Validate - Epoch: 13, Loss: 0.036229, Metrics: MARE: 98260.312500\n", - "INFO:train_function:Train - Epoch: 14, Loss: 0.017063, Metrics: MARE: 9082.190038\n", - "INFO:train_function:Validate - Epoch: 14, Loss: 0.031311, Metrics: MARE: 91515.687500\n", - "INFO:train_function:Train - Epoch: 15, Loss: 0.016826, Metrics: MARE: 9228.470579\n", - "INFO:train_function:Validate - Epoch: 15, Loss: 0.033165, Metrics: MARE: 92577.500000\n", - "INFO:train_function:Train - Epoch: 16, Loss: 0.016565, Metrics: MARE: 9461.288975\n", - "INFO:train_function:Validate - Epoch: 16, Loss: 0.034249, Metrics: MARE: 95747.210938\n", - "INFO:train_function:Train - Epoch: 17, Loss: 0.016295, Metrics: MARE: 9086.820679\n", - "INFO:train_function:Validate - Epoch: 17, Loss: 0.031587, Metrics: MARE: 91413.171875\n", - "INFO:train_function:Train - Epoch: 18, Loss: 0.015762, Metrics: MARE: 9184.307616\n", - "INFO:train_function:Validate - Epoch: 18, Loss: 0.032784, Metrics: MARE: 92021.796875\n", - "INFO:train_function:Train - Epoch: 19, Loss: 0.014877, Metrics: MARE: 9079.888296\n", - "INFO:train_function:Validate - Epoch: 19, Loss: 0.031671, Metrics: MARE: 91370.437500\n", - "INFO:train_function:Train - Epoch: 20, Loss: 0.013196, Metrics: MARE: 8763.776303\n", - "INFO:train_function:Validate - Epoch: 20, Loss: 0.029321, Metrics: MARE: 88655.960938\n", - "INFO:train_function:Train - Epoch: 21, Loss: 0.010127, Metrics: MARE: 8350.715852\n", - "INFO:train_function:Validate - Epoch: 21, Loss: 0.025819, Metrics: MARE: 84866.078125\n", - "INFO:train_function:Train - Epoch: 22, Loss: 0.006121, Metrics: MARE: 6922.699495\n", - "INFO:train_function:Validate - Epoch: 22, Loss: 0.016705, Metrics: MARE: 70307.437500\n", - "INFO:train_function:Train - Epoch: 23, Loss: 0.004963, Metrics: MARE: 4422.147536\n", - "INFO:train_function:Validate - Epoch: 23, Loss: 0.009214, Metrics: MARE: 44403.703125\n", - "INFO:train_function:Train - Epoch: 24, Loss: 0.004911, Metrics: MARE: 3043.084448\n", - "INFO:train_function:Validate - Epoch: 24, Loss: 0.008849, Metrics: MARE: 32772.121094\n", - "INFO:train_function:Train - Epoch: 25, Loss: 0.003998, Metrics: MARE: 3998.293323\n", - "INFO:train_function:Validate - Epoch: 25, Loss: 0.009230, Metrics: MARE: 44807.437500\n", - "INFO:train_function:Train - Epoch: 26, Loss: 0.003893, Metrics: MARE: 4632.154965\n", - "INFO:train_function:Validate - Epoch: 26, Loss: 0.010313, Metrics: MARE: 51795.679688\n", - "INFO:train_function:Train - Epoch: 27, Loss: 0.003810, Metrics: MARE: 4672.284521\n", - "INFO:train_function:Validate - Epoch: 27, Loss: 0.010673, Metrics: MARE: 52000.843750\n", - "INFO:train_function:Train - Epoch: 28, Loss: 0.003562, Metrics: MARE: 4309.062213\n", - "INFO:train_function:Validate - Epoch: 28, Loss: 0.010239, Metrics: MARE: 47717.410156\n", - "INFO:train_function:Train - Epoch: 29, Loss: 0.003392, Metrics: MARE: 3767.727188\n", - "INFO:train_function:Validate - Epoch: 29, Loss: 0.009105, Metrics: MARE: 41751.613281\n", - "INFO:train_function:Train - Epoch: 30, Loss: 0.003313, Metrics: MARE: 3806.013203\n", - "INFO:train_function:Validate - Epoch: 30, Loss: 0.008655, Metrics: MARE: 41855.742188\n", - "INFO:train_function:Train - Epoch: 31, Loss: 0.003188, Metrics: MARE: 3945.168006\n", - "INFO:train_function:Validate - Epoch: 31, Loss: 0.008485, Metrics: MARE: 42657.769531\n", - "INFO:train_function:Train - Epoch: 32, Loss: 0.003126, Metrics: MARE: 4109.568849\n", - "INFO:train_function:Validate - Epoch: 32, Loss: 0.008486, Metrics: MARE: 43386.738281\n", - "INFO:train_function:Train - Epoch: 33, Loss: 0.003040, Metrics: MARE: 3908.038464\n", - "INFO:train_function:Validate - Epoch: 33, Loss: 0.008025, Metrics: MARE: 40716.046875\n", - "INFO:train_function:Train - Epoch: 34, Loss: 0.002964, Metrics: MARE: 3725.951275\n", - "INFO:train_function:Validate - Epoch: 34, Loss: 0.007582, Metrics: MARE: 38487.078125\n", - "INFO:train_function:Train - Epoch: 35, Loss: 0.002891, Metrics: MARE: 3491.428773\n", - "INFO:train_function:Validate - Epoch: 35, Loss: 0.007041, Metrics: MARE: 35822.984375\n", - "INFO:train_function:Train - Epoch: 36, Loss: 0.002848, Metrics: MARE: 3437.583365\n", - "INFO:train_function:Validate - Epoch: 36, Loss: 0.006674, Metrics: MARE: 35041.054688\n", - "INFO:train_function:Train - Epoch: 37, Loss: 0.002795, Metrics: MARE: 3356.214002\n", - "INFO:train_function:Validate - Epoch: 37, Loss: 0.006363, Metrics: MARE: 34204.386719\n", - "INFO:train_function:Train - Epoch: 38, Loss: 0.002754, Metrics: MARE: 3356.171918\n", - "INFO:train_function:Validate - Epoch: 38, Loss: 0.006230, Metrics: MARE: 34064.992188\n", - "INFO:train_function:Train - Epoch: 39, Loss: 0.002714, Metrics: MARE: 3234.641860\n", - "INFO:train_function:Validate - Epoch: 39, Loss: 0.005848, Metrics: MARE: 32896.050781\n", - "INFO:train_function:Train - Epoch: 40, Loss: 0.002677, Metrics: MARE: 3212.987450\n", - "INFO:train_function:Validate - Epoch: 40, Loss: 0.005689, Metrics: MARE: 32521.884766\n", - "INFO:train_function:Train - Epoch: 41, Loss: 0.002650, Metrics: MARE: 3135.426684\n", - "INFO:train_function:Validate - Epoch: 41, Loss: 0.005361, Metrics: MARE: 31960.115234\n", - "INFO:train_function:Train - Epoch: 42, Loss: 0.002617, Metrics: MARE: 3115.215574\n", - "INFO:train_function:Validate - Epoch: 42, Loss: 0.005219, Metrics: MARE: 31600.324219\n", - "INFO:train_function:Train - Epoch: 43, Loss: 0.002580, Metrics: MARE: 3080.327186\n", - "INFO:train_function:Validate - Epoch: 43, Loss: 0.005137, Metrics: MARE: 31569.109375\n", - "INFO:train_function:Train - Epoch: 44, Loss: 0.002580, Metrics: MARE: 2997.117785\n", - "INFO:train_function:Validate - Epoch: 44, Loss: 0.004698, Metrics: MARE: 30445.224609\n", - "INFO:train_function:Train - Epoch: 45, Loss: 0.002511, Metrics: MARE: 3046.173507\n", - "INFO:train_function:Validate - Epoch: 45, Loss: 0.005001, Metrics: MARE: 31192.021484\n", - "INFO:train_function:Train - Epoch: 46, Loss: 0.002538, Metrics: MARE: 2884.445237\n", - "INFO:train_function:Validate - Epoch: 46, Loss: 0.004276, Metrics: MARE: 29429.650391\n", - "INFO:train_function:Train - Epoch: 47, Loss: 0.002481, Metrics: MARE: 3079.439906\n", - "INFO:train_function:Validate - Epoch: 47, Loss: 0.004739, Metrics: MARE: 31100.193359\n", - "INFO:train_function:Train - Epoch: 48, Loss: 0.002426, Metrics: MARE: 2739.934922\n", - "INFO:train_function:Validate - Epoch: 48, Loss: 0.004237, Metrics: MARE: 28521.527344\n", - "INFO:train_function:Train - Epoch: 49, Loss: 0.002532, Metrics: MARE: 3071.695719\n", - "INFO:train_function:Validate - Epoch: 49, Loss: 0.004286, Metrics: MARE: 31398.109375\n", - "INFO:train_function:Train - Epoch: 50, Loss: 0.002505, Metrics: MARE: 2790.115276\n", - "INFO:train_function:Validate - Epoch: 50, Loss: 0.004121, Metrics: MARE: 30003.921875\n", - "INFO:train_function:Train - Epoch: 51, Loss: 0.002774, Metrics: MARE: 2820.679630\n", - "INFO:train_function:Validate - Epoch: 51, Loss: 0.004292, Metrics: MARE: 30731.847656\n", - "INFO:train_function:Train - Epoch: 52, Loss: 0.002662, Metrics: MARE: 2932.336605\n", - "INFO:train_function:Validate - Epoch: 52, Loss: 0.004703, Metrics: MARE: 33146.273438\n", - "INFO:train_function:Train - Epoch: 53, Loss: 0.005035, Metrics: MARE: 2505.851178\n", - "INFO:train_function:Validate - Epoch: 53, Loss: 0.002528, Metrics: MARE: 28613.730469\n", - "INFO:train_function:Train - Epoch: 54, Loss: 0.012630, Metrics: MARE: 4205.924977\n", - "INFO:train_function:Validate - Epoch: 54, Loss: 0.014271, Metrics: MARE: 43977.898438\n", - "INFO:train_function:Train - Epoch: 55, Loss: 0.011393, Metrics: MARE: 2479.923679\n", - "INFO:train_function:Validate - Epoch: 55, Loss: 0.003052, Metrics: MARE: 28138.917969\n", - "INFO:train_function:Train - Epoch: 56, Loss: 0.005660, Metrics: MARE: 5374.583279\n", - "INFO:train_function:Validate - Epoch: 56, Loss: 0.010390, Metrics: MARE: 54250.695312\n", - "INFO:train_function:Train - Epoch: 57, Loss: 0.014376, Metrics: MARE: 4154.371486\n", - "INFO:train_function:Validate - Epoch: 57, Loss: 0.013198, Metrics: MARE: 47825.808594\n", - "INFO:train_function:Train - Epoch: 58, Loss: 0.014271, Metrics: MARE: 5593.448434\n", - "INFO:train_function:Validate - Epoch: 58, Loss: 0.011447, Metrics: MARE: 59351.835938\n", - "INFO:train_function:Train - Epoch: 59, Loss: 0.005074, Metrics: MARE: 3945.095130\n", - "INFO:train_function:Validate - Epoch: 59, Loss: 0.009388, Metrics: MARE: 46654.761719\n", - "INFO:train_function:Train - Epoch: 60, Loss: 0.003774, Metrics: MARE: 3072.840018\n", - "INFO:train_function:Validate - Epoch: 60, Loss: 0.005292, Metrics: MARE: 40324.960938\n", - "INFO:train_function:Train - Epoch: 61, Loss: 0.002860, Metrics: MARE: 2597.102244\n", - "INFO:train_function:Validate - Epoch: 61, Loss: 0.004385, Metrics: MARE: 30854.837891\n", - "INFO:train_function:Train - Epoch: 62, Loss: 0.003261, Metrics: MARE: 3055.324534\n", - "INFO:train_function:Validate - Epoch: 62, Loss: 0.004540, Metrics: MARE: 34012.414062\n", - "INFO:train_function:Train - Epoch: 63, Loss: 0.002863, Metrics: MARE: 3643.430114\n", - "INFO:train_function:Validate - Epoch: 63, Loss: 0.007659, Metrics: MARE: 45167.128906\n", - "INFO:train_function:Train - Epoch: 64, Loss: 0.002115, Metrics: MARE: 2738.267819\n", - "INFO:train_function:Validate - Epoch: 64, Loss: 0.004031, Metrics: MARE: 30780.130859\n", - "INFO:train_function:Train - Epoch: 65, Loss: 0.001851, Metrics: MARE: 2167.508132\n", - "INFO:train_function:Validate - Epoch: 65, Loss: 0.003163, Metrics: MARE: 22675.935547\n", - "INFO:train_function:Train - Epoch: 66, Loss: 0.001613, Metrics: MARE: 2221.451503\n", - "INFO:train_function:Validate - Epoch: 66, Loss: 0.003105, Metrics: MARE: 22732.939453\n", - "INFO:train_function:Train - Epoch: 67, Loss: 0.001427, Metrics: MARE: 2065.812844\n", - "INFO:train_function:Validate - Epoch: 67, Loss: 0.002233, Metrics: MARE: 20880.275391\n", - "INFO:train_function:Train - Epoch: 68, Loss: 0.001268, Metrics: MARE: 1957.738367\n", - "INFO:train_function:Validate - Epoch: 68, Loss: 0.002306, Metrics: MARE: 19917.746094\n", - "INFO:train_function:Train - Epoch: 69, Loss: 0.001143, Metrics: MARE: 1572.701701\n", - "INFO:train_function:Validate - Epoch: 69, Loss: 0.001755, Metrics: MARE: 16487.427734\n", - "INFO:train_function:Train - Epoch: 70, Loss: 0.001011, Metrics: MARE: 1349.961285\n", - "INFO:train_function:Validate - Epoch: 70, Loss: 0.001480, Metrics: MARE: 14006.916016\n", - "INFO:train_function:Train - Epoch: 71, Loss: 0.000921, Metrics: MARE: 1448.125986\n", - "INFO:train_function:Validate - Epoch: 71, Loss: 0.001597, Metrics: MARE: 15217.132812\n", - "INFO:train_function:Train - Epoch: 72, Loss: 0.000820, Metrics: MARE: 1308.172465\n", - "INFO:train_function:Validate - Epoch: 72, Loss: 0.001491, Metrics: MARE: 13928.501953\n", - "INFO:train_function:Train - Epoch: 73, Loss: 0.000751, Metrics: MARE: 1146.214278\n", - "INFO:train_function:Validate - Epoch: 73, Loss: 0.001263, Metrics: MARE: 12004.869141\n", - "INFO:train_function:Train - Epoch: 74, Loss: 0.000683, Metrics: MARE: 1130.453875\n", - "INFO:train_function:Validate - Epoch: 74, Loss: 0.001241, Metrics: MARE: 11813.925781\n", - "INFO:train_function:Train - Epoch: 75, Loss: 0.000631, Metrics: MARE: 1034.145550\n", - "INFO:train_function:Validate - Epoch: 75, Loss: 0.001077, Metrics: MARE: 10649.044922\n", - "INFO:train_function:Train - Epoch: 76, Loss: 0.000588, Metrics: MARE: 925.608311\n", - "INFO:train_function:Validate - Epoch: 76, Loss: 0.000977, Metrics: MARE: 9386.807617\n", - "INFO:train_function:Train - Epoch: 77, Loss: 0.000555, Metrics: MARE: 909.985523\n", - "INFO:train_function:Validate - Epoch: 77, Loss: 0.000936, Metrics: MARE: 9144.849609\n", - "INFO:train_function:Train - Epoch: 78, Loss: 0.000527, Metrics: MARE: 894.548050\n", - "INFO:train_function:Validate - Epoch: 78, Loss: 0.000921, Metrics: MARE: 9150.914062\n", - "INFO:train_function:Train - Epoch: 79, Loss: 0.000506, Metrics: MARE: 882.292110\n", - "INFO:train_function:Validate - Epoch: 79, Loss: 0.000902, Metrics: MARE: 9200.566406\n", - "INFO:train_function:Train - Epoch: 80, Loss: 0.000489, Metrics: MARE: 896.258394\n", - "INFO:train_function:Validate - Epoch: 80, Loss: 0.000859, Metrics: MARE: 9394.876953\n", - "INFO:train_function:Train - Epoch: 81, Loss: 0.000474, Metrics: MARE: 856.672026\n", - "INFO:train_function:Validate - Epoch: 81, Loss: 0.000867, Metrics: MARE: 9138.329102\n", - "INFO:train_function:Train - Epoch: 82, Loss: 0.000464, Metrics: MARE: 854.618748\n", - "INFO:train_function:Validate - Epoch: 82, Loss: 0.000822, Metrics: MARE: 9144.812500\n", - "INFO:train_function:Train - Epoch: 83, Loss: 0.000452, Metrics: MARE: 823.485872\n", - "INFO:train_function:Validate - Epoch: 83, Loss: 0.000833, Metrics: MARE: 8832.282227\n", - "INFO:train_function:Train - Epoch: 84, Loss: 0.000444, Metrics: MARE: 811.932857\n", - "INFO:train_function:Validate - Epoch: 84, Loss: 0.000804, Metrics: MARE: 8681.813477\n", - "INFO:train_function:Train - Epoch: 85, Loss: 0.000436, Metrics: MARE: 794.202643\n", - "INFO:train_function:Validate - Epoch: 85, Loss: 0.000802, Metrics: MARE: 8472.044922\n", - "INFO:train_function:Train - Epoch: 86, Loss: 0.000429, Metrics: MARE: 780.401210\n", - "INFO:train_function:Validate - Epoch: 86, Loss: 0.000808, Metrics: MARE: 8301.388672\n", - "INFO:train_function:Train - Epoch: 87, Loss: 0.000423, Metrics: MARE: 788.891392\n", - "INFO:train_function:Validate - Epoch: 87, Loss: 0.000764, Metrics: MARE: 8315.287109\n", - "INFO:train_function:Train - Epoch: 88, Loss: 0.000416, Metrics: MARE: 784.047645\n", - "INFO:train_function:Validate - Epoch: 88, Loss: 0.000807, Metrics: MARE: 8244.316406\n", - "INFO:train_function:Train - Epoch: 89, Loss: 0.000411, Metrics: MARE: 795.461672\n", - "INFO:train_function:Validate - Epoch: 89, Loss: 0.000744, Metrics: MARE: 8291.084961\n", - "INFO:train_function:Train - Epoch: 90, Loss: 0.000404, Metrics: MARE: 795.826992\n", - "INFO:train_function:Validate - Epoch: 90, Loss: 0.000775, Metrics: MARE: 8231.525391\n", - "INFO:train_function:Train - Epoch: 91, Loss: 0.000398, Metrics: MARE: 790.026572\n", - "INFO:train_function:Validate - Epoch: 91, Loss: 0.000761, Metrics: MARE: 8177.887695\n", - "INFO:train_function:Train - Epoch: 92, Loss: 0.000398, Metrics: MARE: 812.751391\n", - "INFO:train_function:Validate - Epoch: 92, Loss: 0.000699, Metrics: MARE: 8267.812500\n", - "INFO:train_function:Train - Epoch: 93, Loss: 0.000397, Metrics: MARE: 784.078608\n", - "INFO:train_function:Validate - Epoch: 93, Loss: 0.000804, Metrics: MARE: 8055.460938\n", - "INFO:train_function:Train - Epoch: 94, Loss: 0.000399, Metrics: MARE: 814.366566\n", - "INFO:train_function:Validate - Epoch: 94, Loss: 0.000650, Metrics: MARE: 8254.869141\n", - "INFO:train_function:Train - Epoch: 95, Loss: 0.000382, Metrics: MARE: 805.633225\n", - "INFO:train_function:Validate - Epoch: 95, Loss: 0.000736, Metrics: MARE: 8088.475098\n", - "INFO:train_function:Train - Epoch: 96, Loss: 0.000384, Metrics: MARE: 782.872570\n", - "INFO:train_function:Validate - Epoch: 96, Loss: 0.000769, Metrics: MARE: 8053.558594\n", - "INFO:train_function:Train - Epoch: 97, Loss: 0.000477, Metrics: MARE: 861.751626\n", - "INFO:train_function:Validate - Epoch: 97, Loss: 0.000524, Metrics: MARE: 8799.982422\n", - "INFO:train_function:Train - Epoch: 98, Loss: 0.000612, Metrics: MARE: 756.190456\n", - "INFO:train_function:Validate - Epoch: 98, Loss: 0.001115, Metrics: MARE: 7819.584473\n", - "INFO:train_function:Train - Epoch: 99, Loss: 0.000654, Metrics: MARE: 854.410020\n", - "INFO:train_function:Validate - Epoch: 99, Loss: 0.000507, Metrics: MARE: 8548.310547\n", - "INFO:train_function:Train - Epoch: 100, Loss: 0.000488, Metrics: MARE: 963.434374\n", - "INFO:train_function:Validate - Epoch: 100, Loss: 0.000668, Metrics: MARE: 10005.293945\n" - ] - } - ], "source": [ "# Train\n", "trainer.train(model, train_data=loader_train, valid_data=loader_valid)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4rklEQVR4nOzdd3gUVRfH8e+mE1roTTq8AtIEFEGkKB1FRIqgSO9IR0Cl9y5SpEmRJiBVUQQRBAFBEBSRDorSkRoS0nbePy5JCAk9yWyS3+d58uRmZnb3JEPJ2XvvOQ7LsixEREREREREJNa52R2AiIiIiIiISGKlpFtEREREREQkjijpFhEREREREYkjSrpFRERERERE4oiSbhEREREREZE4oqRbREREREREJI4o6RYRERERERGJI0q6RUREREREROKIkm4RERERERGROKKkW0RERJKEZs2akStXrsd6bMWKFalYsWKsxiMiIkmDkm4REZFHMHfuXBwOxz0/fv75Z1vjGz58OKtWrbI1hgcJ/1m1atUqxvMffvhhxDWXLl2K5+hERERil4fdAYiIiCREgwcPJnfu3NGO58uXz4ZoIg0fPpx69epRp04dW+N4EB8fH5YvX87UqVPx8vKKcm7x4sX4+Phw69Ytm6ITERGJPUq6RUREHkONGjUoVaqU3WEkWNWrV2fNmjV8++23vP766xHHt2/fzsmTJ3nzzTdZvny5jRGKiIjEDi0vFxERiQMDBgzAzc2NjRs3Rjnepk0bvLy8+O233wAIDg6mf//+lCxZktSpU5M8eXJeeuklNm3aFO05nU4nEydOpEiRIvj4+JAhQwaqV6/O7t27AbNs++bNm8ybNy9ieXazZs1ijO/8+fN4eHgwaNCgaOcOHz6Mw+Fg8uTJAISEhDBo0CDy58+Pj48P6dKlo1y5cmzYsOGxfz7ZsmWjfPnyLFq0KMrxhQsXUqRIEQoXLhzj45YtW0bJkiVJliwZ6dOn55133uH06dPRrlu1ahWFCxfGx8eHwoULs3Llyhifz+l08vHHH/PMM8/g4+NDpkyZaNu2LVeuXHns701EROROSrpFREQew7Vr17h06VKUj//++y/i/EcffUTx4sVp2bIlN27cAOC7775j5syZ9O/fn2LFigFw/fp1Zs2aRcWKFRk1ahQDBw7k4sWLVKtWjX379kV5zZYtW9K1a1eyZ8/OqFGj6NOnDz4+PhH7yOfPn4+3tzcvvfQS8+fPZ/78+bRt2zbG+DNlykSFChVYunRptHNLlizB3d2d+vXrAzBw4EAGDRpEpUqVmDx5Mh9++CE5cuTg119/faKfYePGjfnqq6/w9/cHIDQ0lGXLltG4ceMYr587dy4NGjTA3d2dESNG0Lp1a1asWEG5cuW4evVqxHXr16/nzTffxOFwMGLECOrUqUPz5s0j3py4U9u2benVqxcvvvgiEydOpHnz5ixcuJBq1aoREhLyRN+fiIgIAJaIiIg8tDlz5lhAjB/e3t5Rrt2/f7/l5eVltWrVyrpy5YqVLVs2q1SpUlZISEjENaGhoVZQUFCUx125csXKlCmT1aJFi4hjP/zwgwVYnTt3jhaT0+mMGCdPntxq2rTpQ30v06dPtwBr//79UY4XKlTIevnllyO+LlasmFWrVq2Hes6HAVgdO3a0Ll++bHl5eVnz58+3LMuy1q5dazkcDuuvv/6yBgwYYAHWxYsXLcuyrODgYCtjxoxW4cKFrcDAwIjn+vrrry3A6t+/f8Sx4sWLW1myZLGuXr0acWz9+vUWYOXMmTPi2NatWy3AWrhwYZT41q1bF+14hQoVrAoVKsTaz0BERJIOzXSLiIg8hilTprBhw4YoH99++22UawoXLsygQYOYNWsW1apV49KlS8ybNw8Pj8iSKu7u7hGFxJxOJ5cvXyY0NJRSpUpFmUlevnw5DoeDAQMGRIvF4XA81vdQt25dPDw8WLJkScSxP/74gz///JOGDRtGHPPz8+PAgQMcPXr0sV7nXtKkSUP16tVZvHgxAIsWLaJs2bLkzJkz2rW7d+/mwoULdOjQAR8fn4jjtWrVokCBAqxduxaAs2fPsm/fPpo2bUrq1KkjrqtSpQqFChWK8pzLli0jderUVKlSJcqKhZIlS5IiRYoYl/iLiIg8KiXdIiIij+H555+ncuXKUT4qVaoU7bpevXpRrFgxdu3axYABA6IlfgDz5s2jaNGiEfulM2TIwNq1a7l27VrENcePHydr1qykTZs21r6H9OnT88orr0RZYr5kyRI8PDyoW7duxLHBgwdz9epV/ve//1GkSBF69erF77//HisxNG7cmA0bNnDq1ClWrVp1z6Xlf//9NwBPP/10tHMFChSIOB/+OX/+/NGuu/uxR48e5dq1a2TMmJEMGTJE+fD39+fChQtP9L2JiIiAqpeLiIjEqRMnTkTMEO/fvz/a+QULFtCsWTPq1KlDr169yJgxY8Se5ePHj8d5fG+99RbNmzdn3759FC9enKVLl/LKK6+QPn36iGvKly/P8ePHWb16NevXr2fWrFlMmDCBadOm3bPX9sOqXbs23t7eNG3alKCgIBo0aPCk39JDczqdZMyYkYULF8Z4PkOGDPEWi4iIJF6a6RYREYkjTqeTZs2akSpVKj744AMWL17MihUrolzz5ZdfkidPHlasWEGTJk2oVq0alStXjtajOm/evJw5c4bLly/f9zUfdal5nTp18PLyYsmSJezbt48jR47w1ltvRbsubdq0NG/enMWLF/PPP/9QtGhRBg4c+EivFZNkyZJRp04dNm/eTJUqVaIk+3cKX3J++PDhaOcOHz4ccT78c0xL4e9+bN68efnvv/948cUXo61aqFy5ckSxOxERkSehpFtERCSOjB8/nu3btzNjxgyGDBlC2bJlad++PZcuXYq4xt3dHQDLsiKO7dy5kx07dkR5rjfffBPLsmJs8XXnY5MnTx6lkveD+Pn5Ua1aNZYuXcoXX3yBl5cXderUiXLNnVXZAVKkSEG+fPkICgqKOHbt2jUOHToUZUn8w+rZsycDBgygX79+97ymVKlSZMyYkWnTpkV53W+//ZaDBw9Sq1YtALJkyULx4sWZN29elFg2bNjAn3/+GeU5GzRoQFhYGEOGDIn2eqGhoY/0cxQREbkXLS8XERF5DN9++y2HDh2Kdrxs2bLkyZOHgwcP0q9fP5o1a8Zrr70GmJZXxYsXp0OHDhH7qF999VVWrFjBG2+8Qa1atTh58iTTpk2jUKFCEa20ACpVqkSTJk345JNPOHr0KNWrV8fpdLJ161YqVapEp06dAChZsiTff/8948ePJ2vWrOTOnZvSpUvf93tp2LAh77zzDlOnTqVatWr4+flFOV+oUCEqVqxIyZIlSZs2Lbt37+bLL7+MeE2AlStX0rx5c+bMmXPP3uD3UqxYsQfOKnt6ejJq1CiaN29OhQoVaNSoEefPn2fixInkypWLbt26RVw7YsQIatWqRbly5WjRogWXL19m0qRJPPPMM1F+phUqVKBt27aMGDGCffv2UbVqVTw9PTl69CjLli1j4sSJ1KtX75G+FxERkWhsrp4uIiKSoNyvZRhgzZkzxwoNDbWee+4566mnnorStsqyLGvixIkWYC1ZssSyLNPua/jw4VbOnDktb29v69lnn7W+/vprq2nTplHaW1mWaS82ZswYq0CBApaXl5eVIUMGq0aNGtaePXsirjl06JBVvnx5K1myZBbwUO3Drl+/HnH9ggULop0fOnSo9fzzz1t+fn5WsmTJrAIFCljDhg2zgoODo/1c5syZ88DX43bLsPu5u2VYuCVLlljPPvus5e3tbaVNm9Z6++23rX///Tfa45cvX24VLFjQ8vb2tgoVKmStWLEixp+pZVnWjBkzrJIlS1rJkiWzUqZMaRUpUsR6//33rTNnzkRco5ZhIiLyuByWdceaNBERERERERGJNdrTLSIiIiIiIhJHlHSLiIiIiIiIxBEl3SIiIiIiIiJxREm3iIiIiIiISBxR0i0iIiIiIiISR5R0i4iIiIiIiMQRD7sDcHVOp5MzZ86QMmVKHA6H3eGIiIiIiIiIC7Asixs3bpA1a1bc3O49n62k+wHOnDlD9uzZ7Q5DREREREREXNA///zDU089dc/zSrofIGXKlID5QaZKlcrmaGIWEhLC+vXrqVq1Kp6ennaHI3fQvXFdujeuS/fGdeneuDbdH9ele+O6dG9cV0K4N9evXyd79uwROeO9KOl+gPAl5alSpXLppNvX15dUqVK57B/IpEr3xnXp3rgu3RvXpXvj2nR/XJfujevSvXFdCenePGgbsgqpiYiIiIiIiMQRJd0iIiIiIiIicURJt4iIiIiIiEgc0Z5uERERERGROBAWFkZISIjdYSRIISEheHh4cOvWLcLCwmyJwdPTE3d39yd+HiXdIiIiIiIisciyLM6dO8fVq1ftDiXBsiyLzJkz888//zywUFlc8vPzI3PmzE8Ug5JuERERERGRWBSecGfMmBFfX19bk8aEyul04u/vT4oUKXBzi/9d0ZZlERAQwIULFwDIkiXLYz+Xkm4REREREZFYEhYWFpFwp0uXzu5wEiyn00lwcDA+Pj62JN0AyZIlA+DChQtkzJjxsZeaq5CaiIiIiIhILAnfw+3r62tzJBIbwu/jk+zNV9ItIiIiIiISy7SkPHGIjfuopFtEREREREQkjijpFhEREREREYkjSrpFRERERETEdg6Hg1WrVtkdRqxT0i0iIiIiIiISR5R0i4iIiIiICE6nkxEjRpA7d26SJUtGsWLF+PLLL7Esi8qVK1OtWjUsywLg8uXLPPXUU/Tv3x8wrdJatmwZ8dinn36aiRMnRnuN2bNn88wzz+Dt7U2WLFno1KkTALly5QLgjTfewOFwkCdPnvj5puOB+nSLiIiIiIjEEcuCgAB7XtvXFx6l+PaIESNYsGAB06ZNI3/+/GzZsoV33nmHDBkyMG/ePIoUKcInn3xCly5daNeuHdmyZYtIup1OJ0899RTLli0jXbp0bN++nTZt2pAlSxYaNGgAwKeffkr37t0ZOXIkNWrU4Nq1a2zbtg2AX375hYwZMzJnzhyqV6+eqKq/K+kWERERERGJIwEBkCKFPa/t7w/Jkz/ctUFBQQwfPpzvv/+eMmXKAJAnTx5++uknpk+fzqJFi5g+fTrvvvsu586d45tvvmHv3r14eJiU0tPTk0GDBkU8X+7cudmxYwdLly6NSLqHDh1Kjx496NKlS8R1zz33HAAZMmQAwM/Pj8yZM+N0Orl+/foT/wxcgZJuERERERGRJO7YsWMEBARQpUqVKMeDg4N59tlnAahfvz4rV65k5MiRfPrpp+TPnz/KtVOmTGH27NmcOnWKwMBAgoODKV68OAAXLlzgzJkzvPLKK/Hy/bgSJd0iIiIiIiJxxNfXzDjb9doPy/92kGvXriVbtmxRznl7ewMQEBDAnj17cHd35+jRo1Gu+eKLL+jZsyfjxo2jTJkypEyZkjFjxrBz504AkiVL9gTfScKmpFtERERERCSOOBwPv8TbToUKFcLb25tTp05RoUKFGK/p0aMHbm5ufPvtt9SsWZNatWrx8ssvA7Bt2zbKli1Lhw4dIq4/fvx4xDhlypTkypWLjRs3UqlSpRif39PTk7CwsFj8rlyDkm4RERERkdh24wb8+ivs3o3byZOU2rcP948/hpAQCAszmVjKlJAqFaRPDzlyQK5c8PTTULgweHnZ/R1IEpMyZUp69uxJt27dcDqdlCtXLqLQWapUqUifPj2zZ89mx44dlChRgl69etG0aVN+//130qRJQ/78+fn888/57rvvyJ07N/Pnz+eXX34hd+7cEa8xcOBA2rVrR8aMGalRowY3btxg27ZtvPfeewARSfmLL76Ip6cn7u7udv04YpWSbhERERGR2PLzz9CvH2zcaMpWA+5Atvs/KipPTyhSBCpVgldfhRdfNMdE4tiQIUPIkCEDI0aM4MSJE/j5+VGiRAn69u1Lw4YNGThwICVKlABg0KBBrF+/nnbt2rFkyRLatm3L3r17adiwIQ6Hg0aNGtGhQwe+/fbbiOdv2rQpt27dYsKECfTs2ZP06dNTr169iPPjxo2je/fuzJw5k2zZsrFv3774/hHECSXdIiIiIiJP6tw5aNMGvvoq8lj27PDcc4Tly8ef//1HwQoV8EiRAtzcTEJ+4wZcuwYXLsDff8PJk/DHH3Dlipkl//VXGDcO/PygXTvo0cPMiovEEYfDQZcuXaJUFw937ty5KF97enqye/fuiK+9vb2ZM2cOc+bMiXLdiBEjonzdtm1b2rZtG+Prv/baa7z22msAql4uIiIiIiJ36NnTJNxubtCsGXz4IeTJA4AzJIQT33xDgZo1HzxjbVkmAd+5E779FtauhUuXYORImDTJJN4DBz5a82URsZWb3QGIiIiIiCRolmWWkwOsWQOffRaRcD8yh8Ps7W7YEObONTPoq1dDiRJw8yYMHgwrV8ZW5CISD5R0i4iIiIg8iWPHTHLs5QWx3YPY3R1q14bdu6FjR3Ns8eLYfQ0RiVNKukVEREREnsTWrebzc8+Bj0/cvIbDAS1bmvHatWY/uIgkCEq6RURERESeRHjSXb583L5O8eKQPz8EBkYt2CYiLi1BJd1btmzhtddeI2vWrDgcDlatWvXAx2zevJkSJUrg7e1Nvnz5mDt3bpzHKSIiIiJJyJYt5vNLL8Xt6zgcZq83wJIlcftaIhJrElTSffPmTYoVK8aUKVMe6vqTJ09Sq1YtKlWqxL59++jatSutWrXiu+++i+NIRURERCRJOH0aTpwwVcvLlo371wtPutetg6tX4/71ROSJJaiWYTVq1KBGjRoPff20adPInTs348aNA6BgwYL89NNPTJgwgWrVqsVVmCIiIiKSVIQvLS9WDFKnjvvXK1wYChWCP/+EVatMezIRcWkJKul+VDt27KBy5cpRjlWrVo2uXbvaE5CIiIiIJC63k+6rRV5i/1bw9zedvcI/AgIgNNSN48fz8O+/bvj6grc3JEsGGTJA5szmI0WKR3jNt96C/v3NEnMl3SIuL1En3efOnSNTpkxRjmXKlInr168TGBhIsmTJoj0mKCiIoKCgiK+vX78OQEhICCEhIXEb8GMKj8tV40vKdG9cl+6N69K9cV26N65N9ydu3bgBBw44+OMP+OMPB3/95eDffx0sOrCVZ4CWn5dnxef3erQ7UOS+z588uUXmzJA9u0XBghYFCkCBAhYFCpjjDscdF9eti2f//lgbNhB66hRkyRI732QSFBd/b0JCQrAsC6fTidPpjLXnTWzy5MlDly5d6NKlCwDu7u4sX76cOnXqAGBZVsTnuPw5Dho0iNWrV/Prr7/GeN7pdGJZFiEhIbi7u0c597B/bhJ10v04RowYwaBBg6IdX79+Pb6+vjZE9PA2bNhgdwhyD7o3rkv3xnXp3rgu3RvXpvvz5EJCHBw/7seBA+k5fDgNf/+divPnk0e7Lg2XeYb9APzi9QJZ0vmTLFko3t5h+PiYz97eYbi5WYSEuBEa6hbxOSjInWvXvLlyxYdbtzy4edPB8eNw/LiDzZujvk6KFMHkz3+FAgUuU6DAFf73vytUKVCAdIcOceyDDzhSv348/FQSt9j8e+Ph4UHmzJnx9/cnODg41p43sXE6ndy6dStikvPQoUP4+flFfB3uRgzt8UaOHMnatWvZGr694wkEBQURFhYW7XXDBQcHExgYyJYtWwgNDY1yLiAg4KFeI1En3ZkzZ+b8+fNRjp0/f55UqVLFOMsN0LdvX7p37x7x9fXr18mePTtVq1YlVapUcRrv4woJCWHDhg1UqVIFT09Pu8ORO+jeuC7dG9ele+O6dG9cm+7P4wsLg59/drB5s4OtWx38/LODgABHtOuyZrUoXNh85M9vUfLfzTAMQvP9j2MHMt6ejfaO9rj73xsLf/8Qzp+Hc+dM4n3okCPi48QJ8Pf3Yu/eTOzda1ZwurlZ9Mn2H8NoSq71W8k+ZRbevu7RXlceLC7+3ty6dYt//vmHFClS4BNXfdtdRHBwMF5eXo/1WDc3N3x8fCJyrLtzLcuyuHHjBilTpsThiPr30dvbG3d391jJzx70XLdu3SJZsmSUL18+2v28V6J+t0SddJcpU4ZvvvkmyrENGzZQpkyZez7G29sbb+/o/1h6enq6/H9gCSHGpEr3xnXp3rgu3RvXpXvj2nR/Hk5gIGzYYGqRffUVXLoU9Xy6dKbt9ksvwbPPQpEikC6dA7jjl/83FwLgUaMaeD34Z36ve5MmjfkoUAAqVox6LijI1EzbsQO2bYPt2+GvvxyM/6c+3elGuounqJd5I84atahVC2rW1GrzxxGbf2/CwsJwOBy4ubnh5pagmkVRsWJFChcuDMD8+fPx9PSkffv2DB48GIfDQa5cuWjZsiVHjx5l1apV1K1bl7lz5/LTTz/Rt29fdu/eTfr06XnjjTcYMWIEyZObFSIXLlygZcuWfP/992TOnJmhQ4cCRPycwscrV66MWF5+6tQpunXrxqZNmwgKCqJgwYJMmTKFgwcPMnjwYICI5d5z5syhWbNmXL16lZ49e7J69WqCgoIoVaoUEyZMoFixYhHf48iRI5kwYQIBAQE0aNCADBkyANzzXrm5ueFwOGL8M/Kwf2YSVNLt7+/PsWPHIr4+efIk+/btI23atOTIkYO+ffty+vRpPv/cbKhp164dkydP5v3336dFixb88MMPLF26lLVr19r1LYiIiIiITW7dgjVr4Isv4LvvTJGzcGnSQJUqUKGCSbYLFTJdwO7p339h9Wozbts2zmL29jZJ/7PPQocO5tiZM7BtWzJ+HdyUKn9MoOmtadReWYuVK835ChXgnXegXj3w84uz0ORhWVbUP2zxydf3roIADzZv3jxatmzJrl272L17N23atCFHjhy0bt0agLFjx9K/f38GDBgAwPHjx6levTpDhw5l9uzZXLx4kU6dOtGpUyfmzJkDQLNmzThz5gybNm3C09OTzp07c+HChXvG4O/vT6VKlciUKROrVq0ia9as/PrrrzidTho2bMgff/zBunXr+P777wFIfbtzQP369UmWLBnffvstqVOnZvr06bzyyiscOXKEtGnTsnTpUgYOHMiUKVMoV64c8+fP55NPPiFPnjyP/KN9JFYCsmnTJguI9tG0aVPLsiyradOmVoUKFaI9pnjx4paXl5eVJ08ea86cOY/0mteuXbMA69q1a7HzTcSB4OBga9WqVVZwcLDdochddG9cl+6N69K9cV26N65N9ydmTqdl/fKLZXXoYFlp0liWyYDMR44cltW5s2Vt3GhZj/xj69/fPMldv3vGJM7uzaFDlgWW083NmtDtb+u556J+f97ellWvnmWtWmVZQUGx+9KJRVzcm8DAQOvPP/+0AgMDzQF//6g3Jj4//P0fKfYKFSpYBQsWtJxOZ8Sx3r17WwULFrQsy7Jy5sxp1alTJ8pjWrZsabVp0ybKsa1bt1pubm5WYGCgdfjwYQuwdu3aFXH+4MGDFmBNmDAh4hhgrVy50rIsy5o+fbqVMmVK68SJE1ZYWFi0OAcMGGAVK1Ys2mumSpXKunXrVpTjefPmtaZPn25ZlmWVKVPG6tChQ5TzpUuXjvZcd4p2P+/wsLligprprlixYkQVu5jMnTs3xsfs3bs3DqMSERERkTjhdJo14FOnwu+/w/XrpidXwYJmGrd+fXj66RgfevUqzJkDs2fDH39EHs+eHd591zy8WLFHngQ0QkJg5kwzbt/+MZ4gljz9NFSqhGPTJromn0nXXUP45x9YtAjmz4cDB+DLL81HhgxmQr5dO8iWzb6QxfW98MILUfZQlylThnHjxhEWFgZAqVKlolz/22+/8fvvv7Nw4cKIY9btiuMnT57kyJEjeHh4ULJkyYjzBQoUwO8+yzD27dvHs88+S5o0aR467t9++w1/f3/SpUsX5XhgYCDHjx8H4ODBg7Rr1y7K+TJlyrBp06aHfp3HkaCSbhERERFJIlatgj594PDh6Od++8189OsHLVrA5Mmm8TVw/Dh88olJtv39zeU+PlC3rmlp/fLL4P6kNcdWr4azZyFTJnjjjSd8sifUrh1s2gTTpkGfPmTPnpzeveH992HfPliwwCTh587B0KEwciS8+Sa89x6ULfuYbzrIo/H1jfzDaMdrx7Lwfdrh/P39adu2LZ07d452bY4cOThy5Mgjv8a9il7fj7+/P1myZGHz3eX/4b4JfnxQ0i0iIiIirsOyTGb4wQfm61SpTGJdr57ZeO3jAz/+CMuWmY3Zs2dj7d3LL72XM3JJblatMk8BULgwdOoEDRvG8t7mqVPN59at4TErN8eaunUhb17zbsP06XC7C4/DEbkXfORI8x7GpEmwdSssWWI+SpQwyXm9ek/4RkRwsNkof+wYXLtmNs9XrGhii6FAcZLjcEDy6C3nXNXOnTujfP3zzz+TP3/+aD2qw5UoUYI///yTfPnyxXi+QIEChIaGsmfPHp577jkADh8+zNWrV+8ZQ9GiRZk1axZXrlyJsaq4l5dXxMz7nXGcO3cODw8PcuXKFePzFixYkJ07d/Luu+9G+f7iWsIqpyciIiIiiVdwMLRsGZlwd+5sCpZNmAAvvmiqm+XJA82bwzffYK3fQLBfBhx795LvrZIcXbkfy4IaNcyq9N9/N0uqYzXh/u03M7Ps5gZt2sTiEz8mDw/o29eMx4wxCe9dPD3NSvwtW2DvXvMj9vGBX3+Ft94yb04sWAB3tSB+MKcTFi82ZdebNoUhQ8wygxkzoHFjs479/ffNtgBJME6dOkX37t05fPgwixcvZtKkSXTp0uWe1/fu3Zvt27fTqVMn9u3bx9GjR1m9ejWdOnUC4Omnn6Z69eq0bduWnTt3smfPHlq1anXf2exGjRqROXNm3n77bbZt28aJEydYvnw5O3bsACBXrlwRRbUvXbpEUFAQlStXpkyZMtSpU4f169fz119/sX37dj788EN2794NQJcuXZg9ezZz5szhyJEjDBgwgAMHDsTiTy9mSrpFRERExDV07Wo2Yru5wZQpMHEipEwZ46U//ggVB79Mnqu/sovnSMsVvk37Ngf3BfHNN1C5chwtnR440Hxu0MBsEHcFTZpAjhxmDflnn9330uLFYdYs817GoEFm8cChQ+YpChaEuXPNlvUHCgw05d4bN4aTJyFzZrO/vW9f6NnTJNz//WfeCKhQwSzHlwTh3XffJTAwkOeff56OHTvSpUsX2tznDaaiRYvy448/cuTIEV566SWeffZZ+vfvT9asWSOumTNnDlmzZqVChQrUrVuXNm3akDFjxns+p5eXF+vWrSNDhgy8+uqrFClShJEjR0bMtr/55ptUr16dSpUqkSFDBhYvXozD4eCbb76hfPnyNG/enP/973+89dZb/P3332TKZHrcN2zYkH79+vH+++9TsmRJ/v77b9rHR12G+5ZZE1Uvlyeie+O6dG9cl+6N69K9cW0J/v6sXRtZcXnVqnte9tNPlvXyy1ErdH/Q6rwVmi6DOdCrV9zFuHu3eQ03N8s6ePChHxYv92bKFBNb9uyPVKr82jXLGj7cstKli/yZ5s1rWUuXmsrvMQoLs6w33zQXJ09uWUOGRK+SHRJi7mPGjOa6XLlMtXUXEy/VyxOQChUqWF26dLE7DMuyLCssLMy6cuVKjNXL41NsVC/XTLeIiIiI2OviRbNvG8xs9+uvR7vkxAlTAKxcOfjhB7NkukMHs4142MyMuM+eZS4cO9ZMg8eF8Fnuxo3NkmpX0qIFZMkC//wD8+Y99MNSpTKT03/9BaNHQ8aMZnt4gwZmRf/t1bxR9eoFy5eb/exr18JHH0Xfs+zhYe7j9u2QL595gXLlzBS7SBKjpFtERERE7GNZZm/0+fNmz/aIEVFOX79uipgXLAgrVpiV561amWR7yhR46qnbF9aubTYrW5bZXxwUFLtx7toFX39tKo717x+7zx0bfHzM/mkw68YDAh7p4SlSmFz6+HEYMMAUvd6xw1Q4b9jQvOkBmFZp48eb8Zw5Zun4/eTNaxLvYsXg0iVTbf0+LYBFEiMl3SIiIiJinw0bTGltT09YuNAkj0BYmNme/L//wahRpsZa5cqmjtnMmWYLczQTJpg2Xn//Dd9/H7tx9utnPjdpAvnzx+5zx5b27SFnTjh92hQ0ewwpUpgJ/aNHzXsYDgcsXWom9vv3DMAKL3I3ZIiZ8X8YGTKYvmXhM+MLFjxWbBL3Nm/ezMcff2x3GImOkm4RERERsc+s28vC27UzVb4w/aXLlDEz2ufPmxx3zRpYv95U2r6nlClN/yuAlStjL8a1a82Le3qapdSuytvbNOMG0yfsv/8e+6myZjW3Zt8+qFrVFFe7PG42jkuXCMic2yw/eBSFCkUuz+/SRYXVJElR0i0iIiIi9rh0ycxyA7RsSUAA9O4NpUrBL7+Y/cbjxsEff8Brrz1kNfK6dc3n1asfowdWDIKCzD5zgG7dzHJpV9a4sVnKfe0aDB/+xE9XtKhph776yxB6u48FoMe5XtRv5MHp04/4ZD17mubgV66YdnAiSYSSbhERERGxx8KFZgq1ZEk2XChGkSKmmFdYmJmwPnQIunc3q5IfWvnykDatSei3bXvyGMePNxvIs2Rx7VnucG5uZj0+wOTJpp1XLKgduITsYX9zwzcj892a8eWXZp/9pEmmXfdD8fQ0+8AdDvjyy1iLzVU5H/oHI64sNu6jRyzEISIiIiLyaCwroqf0PPcWNKtqDmfLBlOnmrpoj8XDwzx47lxTee1Bhb7u599/I5drjx59z57hLqdqVbMB/vvvoUcP83N4Ek6nWa4OpPyoK9tqJqNdO/j5ZzNhvXy5yaVz536I5ypaFF55xcQ2Zw4MHvxksbkgLy8v3NzcOHPmDBkyZMDLywtHnDSNT9ycTifBwcHcunULN7f4nyu2LIvg4GAuXryIm5sbXo/07l9USrpFREREJP79+ivs388tvOm6qxEOB3TsCMOGmWXlT6RuXZN0r1wJH3/8kOvS72JZZll5QIAp4f32208YVDxyOMz3XayY+RmsX28S8ce1bh0cOGDedGjfnmJ+ZhHBtGmmYPqPP5pcevx4sw//gT/uli0jk+4BA0xF+ETEzc2N3Llzc/bsWc6cOWN3OAmWZVkEBgaSLFkyW9+08PX1JUeOHE+U+CvpFhEREZF4FRgIe1p8RjlgBXXJkD8N38wzxdNiRZUqpm/0P//Anj1mk/ij+uILM4Xr4WF6kyW0mcpnnoFOnWDiRDMd/fvvj7hO/w4bN5rPb78Nfn6AWcXeoQNUrw7NmsHWrabz24oVpgBbtmz3eb46dcwWgH//NdXrq1d/vLhcmJeXFzly5CA0NJSwsDC7w0mQQkJC2LJlC+XLl8fT09OWGNzd3fHw8HjipF9Jt4iIiIjEm717ofnbwWw+uAiAC6+2ZO8XJkeONT4+ULMmLFtmssBHTbrPnjXT7mD2cd+uqp7gDBwIixfD4cOmhVjPno/3PIcOmc8x/Bzy5IFNm0xu/8EHZlK8cGGYPh0aNLjH8/n4wDvvmJhmzUqUSTeAw+HA09PTtoQxoXN3dyc0NBQfH58E/zNUITURERERiXNOJ4wZA6VLQ7KDe/DjGsGp0tF1daXYTbjD3VnF/FFYFrRtaypslyhhMsmEys8vYi82gwaZmf/HEZ50FygQ42l3d1Pwbu9e8/7G1avQsKHpAhcYeI/nbNnSfF6zBi5efLy4RBIIJd0iIiIiEqf++8/UNnv/fVOsvP0zWwHwevkls045LlSrZpaE//knPMq+2pkz4auvzFLsefNMxe2ErGlTsyfd3x/atzdvKjyKW7ciq4zfI+kOV7AgbN8OH35ofvTTp5s3WcJz9iiKFoXnnjN/ID7//NFiEklglHSLiIiISJzZudNMGK9dC97eJhFrkmuLOfnSS3H3wmnSmBcGs/75YezaBe+9Z8ZDh5p10gmdm5t5I8HLy9yEL754tMcfPWoSdT8/yJjxgZd7epof3Xffmcv374eSJe+RVzdtaj5//fWjxSSSwCjpFhEREZFYZ1lmn+9LL8GpU5Avn2kx1aaVE0d4/+zy5eM2iFdeMZ/DC4Hdz8WLpjl4cDC88cbj7392RYUKmelnMEXVLl16+MfeubT8EYpJVakCv/1mbkFAgMmvmzUz4wjhb7rs3m2as4skUkq6RURERCRWXb8O9eubjlshIWa8Z8/tOlx//GE2/aZIEfcFyl5+2XzeuPH+y6pDQqBRI7Pn+X//M+3GElq18gfp08fM3F+6BF26PPzjHrCf+34yZzYz3kOHmgn3efOgXDn4++/bFzzzjKmg5+9/jzXoIomDkm4RERERiTXHjpnWX8uXm6XGkybBkiV39N7ecntpedmyph1XXCpXzrzGqVOR+5LvFhZmpmA3bjQJ4MqVsdAo3AV5ecFnn5nsd9EiU9X8YTxB0g2myNqHH5ofb4YMkcXWNm26fbJkSXPhrl2P9fwiCYGSbhERERGJFRs2wPPPm9plWbPCTz+ZVtFRJo23miJqcbqfO1zy5PDCC2Yc0xJzyzLNphctMsn5kiVmKXZi9fzz0K+fGbdvf8eU830cPmw+P2bSHa5iRbOKvGRJM9lepQp8/DFYzz1vLti584meX8SVKekWERERkSdiWTBhgmm3fOWKyXN37zY5XrQLw2e643o/d7jwfd0//BD1eFiYWf8+Y4aZ/V24EGrVip+Y7PTRR+YGXbsGTZrcfy+1ZUXOdD/99BO/dI4c5j2X8Jft1g0m7SptTmqmWxIxJd0iIiIi8thu3YLmzU2fZqfTrNTevBmyZInh4uPH4dw5s9Q5WkYeR8L3df/wQ+S+7kuXoEYN+OQT8/XMmdCgQfzEYzcPD/MGQ4oUJgMePPje154+DTdvmsfkzRsrL58smdnb/fHHZnX52K3mz4H1++/3aeotkrAp6RYRERGRx3LpkplInjfPTBZPmACzZ5vWYDEKn+V+/nnw8YmfIEuXNpnehQtmCfOSJWaN84YN4Otrlpa3aBE/sbiKPHng00/NePBgWLUq5uvCZ7nz5o3VfuUOh6nltmED3EyTnXNkwhEWxonle2PtNURciZJuEREREXlk4QXTtm83LZzXrTOrte9b9Du8X3Z87OcO5+0d+XplysBbb5nCavnzmyS8UaP4i8WVvPOOaR8GZr33gQPRr3nCImoPUqkS7PjZwR/JzRLzma128v33cfJSIrZS0i0iIiIij2THDpO/HjsGuXKZxLtKlQc86OOPYcECM65cOY4jvEvNmpHjvHlN+6xffjEttJKysWNN5uvvD3XqRO/fHcdJN5gObWU6myXmRYN2UaMGzJt8A9avN8v++/eH0aPNtPij9BcXcSFx3KdBRERERBKTFSvg7bfNXu6SJeHrr00/5nuyLBg4MHLvcPfuJtGLTx07QrZsphhY4cKJrwf34/L0hKVLTQ+vY8fM/vfw3l4QL0k3QPKXS8MIeDnFLgr6/84r79UETsd8cdmy0Lataf6eLFmcxiUSWzTTLSIiIiIP5eOPoV49k3C/+ir8+OMDEm6n02zeDU+4hw41s6vxnfR6eJjAixRRwn239OnN3oDMmWH/fvOGyPnz5lw8Jd2UKgVAJv8T/OJVjqc4zWmysu+pWoS1aWcS7Hz5zLXbt0PTpvDUU6aIQEhI3MYmEguUdIuIiIjIfVkW9O5tWjxZlmnxvHKlaYN9T6GhppT5pEnm68mT4cMPlfS6ogIFTMn5rFnN3u7ixU1xudO3Z5tjoV3Yffn5RbyGd/ANzj1dgaJuB3j236+pc+ZTAuYuhaNH4cwZGDYMcuaEy5fNqolixczScxEXpqRbRERERO4pLAzatDHbagFGjoQpU8zk8T3dugVvvgnz55u+UAsWmCXe4rqeftosXciZ07R1mzPHHM+YEdKkifvXDy8K0KABmX/7jrmr/PDxMdsXqlWDq1cxfeg++MC0nps1yyyDP3gQqlaFHj006y0uS0m3iIiIiMQoKMgU9541y7QEmzXLzHjfd7L6xg1TuGzNGlM5fOVKswlcXF++fPDnn/DNN9CzJ5QrZwqZxYfRo001+cWLwdub114zE9ipU8NPP0H58nD27O1r3d2hZUs4ciTyzZzx482e9DNn4idekUegQmoiIiIiEs3Nm1C3riki7eVl2lm/+eYDHvTff1CjhqkMniIFfPUVVKwYH+FKbPH1NfewRo34fd1kyUz/9juUK2dau1erZrably1rEvHw7d34+ZltCy+/DM2bm+y8VClTDK5gwfiNX+Q+NNMtIiIiIlFcvmxW+65fb/Ztf/31QyTcp0+b6chffoF06UxPbiXc8oSKFjW10/Lmhb/+Mi3XDx6866K6dWHPHihUyEyHV6xosnQRF6GkW0REREQiXLxoCljv2GG28n7//UP04D5+3ExL/vmnac21ZUtERWqRJ5U7N2zbZorPnzsHFSrA77/fdVG+fGZPevHicOGC+UO8b58N0YpEp6RbRERERADTKapSJZPQZM5scucXXnjAg/bvNwn3X3+Z6ciffjIzjiKxKFMms3iiRInIN4Z+/fWui9Knhx9+gOeeM1sdatUyWbqIzZR0i4iIiAjnzplE5sAB0zlq82YoXPgBD9q500w7njtn1gH/9BPkyhUP0UpSlC6d2a5durTZAvHyy+aPYBRp0piN34UKmaJq9etDcLAt8YqEU9ItIiIiksSdOWO2wR48CE89ZVbpPrA186ZN8MorcOWKmQ7fvNlMj4vEIT8/U2ugXDm4ds1sffjpp7suSp3aVM0PL33erZsdoYpEUNItIiIikoT9+69JuA8fhhw5TMIdUR36Xr76ylS3vnnTJN4bNsRPL2cRIFUqWLfOrMy4ccNUN9+69a6L/vc/WLjQ9LebOhWWLLElVhFQ0i0iIiKSZIUn3EePmlXhP/4IefI84EGLF5tq0UFB8PrrprR5ihTxEK1IpOTJYe1aqFoVAgJMa/gdO+66qFYt+PBDM37/fbh1K97jFAEl3SIiIiJJ0tmzZk/s8eMm0d68+SG2Y8+YAW+/DaGh8M47sGwZ+PjEQ7Qi0SVLBqtWmcUW/v5QvbrpWBfFBx+YivqnTsGUKXaEKaKkW0RERCRJsCxwOgFT/blyZTPDnTOn2Z6dM+cDHj9mDLRta56nfXuYNw88PeM+bpH7SJYM1qwx9fyuXzcz33v33nXBkCFmPGyYqUEgEs+UdIuIiIgkRrduwYoV0KaNqTqVLh14eOBMk5bAp/Lx0Z+NeC39Dn74wezlvifLgn79zPJcgD59zIyhm36NFNfg62t2OZQtC1evmjeUovTxfvddU4r/yhUYMcKuMCUJ07+WIiIiIonJoUPQsqVpbPzmmzBzJmzbZhIOy8Lt6hVyBB+nEV+w5lJZ8rxd5q6pwTs4ndClCwwdar4eMcJ8OBzx9/2IPIQUKeCbb+D55007scqV4c8/b590d4eRI834k09MuX6ReKSkW0RERCQxOHWK4pMm4VG8OMyebdbaPvWUaZe0aBGBO/ZR5/kzFORP6qT6gSt1moOXF/z8s+llHBIS9flCQ03yPmmS+XrKFDPLLeKiUqc2Vc1LlDBbKKpUgZMnb5+sWRNKljQFANevtzVOSXqUdIuIiIgkZJYF06fjUaQIOTduxOF0mqriP/4If/8N48cTVLcRtfsVY/WuLJxNXZD+myqRZuVs+OsvyJjRVFP77LPI5wwKgrfegrlzzSzh/PnQoYNd36HIQ0uTxuTUhQubCe0qVeDcOczqjFdeMRdFa+wtEreUdIuIiIgkVP/9Z5aQt2uHIzCQS4UKEbp1qynpXL48uLkRFmYKjn//vVmCGz4TCECWLGa/NsDgwab3UkCASdqXLzcz4V9+aSqViyQQ6dLBd99B7tzm/aRq1W7XT3vxRXPBtm22xidJj5JuERERkYTor7/MBtaVK8HTk7BRo9g2dChW6dIRl1iWmaAOz59XrYIXXrjredq0Mb3Czp411Z2rVTMZi6+vaYRcp078fU8isSRrVtiwATJnNkXVXn0VbhYra04eOmTesBKJJ0q6RURERBKao0fhpZfgxAkznffzzzi7dYtWUbxfP9Na2+GAhQsjV9dG4eVlZrkBhg83S29TpzYZS+XKcf+9iMSRvHnNUnM/P9i+Hd5smx7rf0+bk9u32xqbJC1KukVEREQSkoMHzdLxf/+FAgVMkhyxXjzSxx+biWuAadOgXr37PGfjxvDMM2acIQNs3mz6L4kkcEWKmKrmvr5mAcemEC0xl/inpFtEREQkofD3N/utz52DokVNsbSsWaNdNn++KVoOJvFu0+YBz+vuDkuXwnvvmSS+ePFYD13ELmXKmK0Vnp4w/2Q5ACwl3RKPlHSLiIiIJBSdO5ul5U89BRs3msrjd1m3zkHz5mbctSv07fuQz12okOlh/L//xVq4Iq6iShVYsAC2Y2a6w37+xVTpF4kHSrpFREREEoIlS2DOHLNve+FCSJ8+2iXHjqWmUSN3wsJMwfFx48x+bhGBBg2g/fj8XCADHqFBfDfiV7tDkiRCSbeIiIiIqzt1Ctq2NeMPPzR7uu/y118wdOgL3LzpoHJl03bbTb/piUTRtZuDC3lNvYJNQ35i40a9KyVxT/8Ui4iIiLi6adPg2jXT76t//2inL1+G117z4OpVH4oUsSJahIlIdIXamCXmLzi30aCBOydOpLI5IknslHSLiIiIuLpvvjGfO3UCD48op27dMq20Dx92kC5dIGvWhJJKOYTIPbmVM0l3Rc9t3LzhZMiQMvz9t81BSaKmpFtERETElZ0+Db/9ZjZnV6sW5ZTTCU2bwtatkCqVRb9+O8iWzaY4RRKKUqUgbVr8Qi7RLsdarlzxub1SxO7AJLFS0i0iIiLiyr791nwuXTpa8bTevU2nL09PWLYsjFy5btgQoEgC4+UFLVoAMCbnZNKlC+TQIQcNGkBIiM2xSaKkpFtERETElYUvLa9ZM8rhGTNg7FgznjMHKlWy4jkwkQSsfXtwOPDduoExrb8keXKLDRvMDg5Lf5UklinpFhEREXFVQUGwYYMZ16oVcXjjRujY0YwHDYK337YhNpGELE+eiL9T5f9Yyvz5YTgc5s2s8eNtjk0SHSXdIiIiIq7qp5/A3x8yZ4bixQE4fBjq1YPQUGjcGPr1szdEkQSrUycAcvzwA69WvBGRbPfqBatW2ReWJD5KukVERERcVfjS8ho1wM2N//4zk3NXr0KZMqYXt0NthkUeT5UqWPny4RkQgNuiRXTpAh06mOXlb78Ne/bYHaAkFkq6RURERFzVHfu5g4Ohbl04fhxy5TIzcT4+dgYnksC5ueFs184MJ07E4Qxj4kSoXh0CAuC11+Dff22OURIFJd0iIiIirujoUTh0CNzdsSpXoV072LIFUqaEr76CjBntDlAk4XM2b05wypQ4jh6FL77AwwOWLIHCheHsWahTBwID7Y5SEjol3SIiIiKuaPJk87lqVcbNSs2cOeDmFpkQiEgsSJmSY7Vrm/HgwRAWRqpU5o2t9OnNEvMWLVTRXJ6Mkm4RERERV3P1qtmwDex+qRu9e5vDEyaY7d0iEntO1qqFlTYtHDkCX3wBmC0cX34JHh7m0MiR9sYoCZuSbhERERFXM3Mm3LxJ0NNFqDq6Mk4nNG8O771nd2AiiU+ory/Orl3NF7dnuwEqVIhccPLhh7BmjT3xScKnpFtERETElYSEwCefADD4RneuXHVQujRMnapK5SJxxdmhA4TPdi9aFHG8bduoFc0PHLAxSEmwlHSLiIiIuJIvv4R//+WKdybGnmlE5sywYoUqlYvEqVSpoGdPM/7oI7h1K+LUxx9DxYrg7w+1a8N//9kSoSRgSrpFREREXIVlwbhxAIwL6oTl6c2KFZA1q81xiSQFXbpAtmxw6hRMnBhx2NMTli2D3LnhxAlo0ABCQ22MUxIcJd0iIiIiruLrr2HPHm7iyzTaMXUqlCljd1AiSYSvLwwfbsbDh8PFixGn0qc3e7qTJ4cffjB7vEUelpJuEREREVfgdHKrd38AJvEeDTukp1Urm2MSSWreeQdKlIDr12HgwCinCheG2bPNePRosxNE5GEo6RYRERFxATcXrMDn4D6uk5KfXujFhAl2RySSBLm5RWzxYPp0+PPPKKcbNIAePcy4eXM4eDCe45MESUm3iIiIiM3CgsO41HEAALNTdWP26nR4edkclEhSVbEivP66aR3WsaOptXCHkSMjC6u98YaZFBe5HyXdIiIiIjZb0eALcvr/yWXSUHF1NzJmtDsikSTu448hWTLYvDlKCzEADw9YsgSeegoOH4ZmzaLl5SJRKOkWERERsdG3q4Iosdrs5f67fk+KV/SzNyARgVy5oF8/M+7RA65ejXI6Y0azp9vLC1auhFGj4j1CSUCUdIuIiIjY5K+/YGvjT8nLCa75ZubZOV3sDklEwvXoAQUKwPnzpnf3XUqXhkmTzPjDD2HDhniOTxIMJd0iIiIiNggKguZvXKVH4BAAfMcMNv2IRMQ1eHnBlClmPHUqbN8e7ZLWraFFC3A6oVEj+PvveI5REgQl3SIiIiI26NYNqu8bQTouE5y/EJ5tmtsdkojc7eWXIzdtN28OgYFRTjscJi8vVQr++w/efBNu3bInVHFdSrpFRERE4tnChfD1p6fowkQAvMaPMtWZRMT1TJgAWbPCkSMxLjP38TH7u9Olgz17oEMHG2IUl6akW0RERCQeHTgAbdrASPrgQxBUqAC1atkdlojci58fzJxpxhMmwLZt0S7JmRO++MK0+Z4zB+bOjdcIxcUp6RYRERGJJzdumOWnxQK205jFWA4HjB9v1qiKiOuqWTNymfm778bYnLtyZRg82Iw7dDBvsImAkm4RERGReGFZ0KoVHDnsZKqnqVLuaNECSpSwOTIReSgTJpgp7RMnoG3bGJtz9+0LVauard/164O/vw1xistR0i0iIiISDyZPhqVLobnb5xQP2Q0pU8KwYXaHJSIPy88PFi8Gd3ezlnz27GiXuLnB/PlmC/jBg2bGO4bcXJIYJd0iIiIiceznn03L3xTc4JMUfc3Bfv0gUyZ7AxORR1OmTOSbZe+9F+Ma8owZTW4enoBrf7co6RYRERGJQ5cvQ4MGEBICi/MPIPn1c5AvH3TubHdoIvI4evWKXENeuzZcuhTtkvLlYcgQM+7YEf74I55jFJeipFtEREQkjlgWtGgB//wDtbPvpdZx0yKMyZPB29ve4ETk8bi5mb5/efKY/d1vvAFBQdEu69MHqlXT/m5R0i0iIiISZyZPhtWrwcczjEWp2+FwOqFhQ/ObuIgkXOnTw9dfQ+rU8NNP0Lp1tM3bd+7vPnRI+7uTMiXdIiIiInFg717o2dOMv3ljJsn/2AWpUpkWYSKS8BUsCMuWmcJq8+dD+/YQFhblkgwZIvt3z59venhL0qOkW0RERCSW3bhhJrSDg6FJ1fNU/K6POTF0qJn2EpHEoUoVmDkTHA6YPh3eeivaUvOXcv3DvJZb8CGQjh1h/36bYhXbeNgdgIiIiEhi07EjHD0KTz0FM1P1wHHtGpQsadaXikji0ry5aQH49tvw5ZdmmUuuXJAihcmwT5zgHeDFFIWp6r+CBg3y88sv5rQkDZrpFhEREYlFn39ulpG6ucE3PTbi/eVCMws2bZpZhioiiU+9erB2rcmkjx+HjRtNQYcTJ8w/BilSkNv/D3Y7niPvoa/VvCCJUdItIiIiEksOH46czB760S2KTG1vvujYEUqVsi8wEYl7lSubJS5ffQULFsDUqSYRv3LF/ONQtiyprWt8zWuknDORJUvsDljii5aXi4iIiMSCW7fMPu6bN+Hll6E3o8wv4Jkzm73cIpL4Zc4Mr74a/XiqVLBpE3TpAtOmMZGujGl6kb+eH0Ku3I74j1PilWa6RURERGJBz57w22+mWvHiD/bjNmKYOTFhgmkrJCJJm5cXTJ1K2GDzJlyvoGHsK9Oe0GCnzYFJXEtwSfeUKVPIlSsXPj4+lC5dml27dt3z2rlz5+JwOKJ8+Pj4xGO0IiIikhSsXAlTppjx55+FkPH9ZhASArVrm+lvEREAhwP3fh9yacinOHFQ5/x0fi/dGpxKvBOzBJV0L1myhO7duzNgwAB+/fVXihUrRrVq1bhw4cI9H5MqVSrOnj0b8fH333/HY8QiIiKS2J06BS1amHHPnlD999Hw66+QJo0pnubQ0lERiSr9R+34udNCwnCjxL7ZnHtNiXdilqCS7vHjx9O6dWuaN29OoUKFmDZtGr6+vsyePfuej3E4HGTOnDniI1OmTPEYsYiIiCRmYWHw7rtw9So89xwMb7QfBg0yJydNgixZbI1PRFxX2UmNmPHSAsJwI/M3swlq1hYsy+6wJA4kmEJqwcHB7Nmzh759+0Ycc3Nzo3LlyuzYseOej/P39ydnzpw4nU5KlCjB8OHDeeaZZ+55fVBQEEF3NLS/fv06ACEhIYSEhMTCdxL7wuNy1fiSMt0b16V747p0b1yX7k10o0e78eOP7iRPbvH59Bt4NGkEISE4X32VsPr1zRLzeKL747p0b1yX3fem4ap69CxkMfZ8E7znzyIsTXKcY0ZrhQz235uH8bCxOSwrYbydcubMGbJly8b27dspU6ZMxPH333+fH3/8kZ07d0Z7zI4dOzh69ChFixbl2rVrjB07li1btnDgwAGeeuqpGF9n4MCBDAp/h/oOixYtwtfXN/a+IREREUnQjh1LTe/e5QkLc6NTp710P/4hub/9llt+fmz6+GOC/fzsDlFEEoCjR/348/3jzLZaAnCwUSOOqBZEghAQEEDjxo25du0aqVKluud1iTrpvltISAgFCxakUaNGDBkyJMZrYprpzp49O5cuXbrvD9JOISEhbNiwgSpVquDp6Wl3OHIH3RvXpXvjunRvXJfuTaSbN6F0aQ+OHHFQp46TpW+vxLN+PQBC167FqlIl3mPS/XFdujeuy1Xuzdixbpz9YAqf0AWAsAkTcHbsaFs8rsBV7s39XL9+nfTp0z8w6U4wy8vTp0+Pu7s758+fj3L8/PnzZM6c+aGew9PTk2effZZjx47d8xpvb2+8vb1jfKyr3uxwCSHGpEr3xnXp3rgu3RvXpXsDffrAkSOQNSvM7n8Kz8ptzIkePfCoWdPW2HR/XJfujeuy+9707g1VN3am38ZrDKE/bt274549O7z5pm0xuQq77839PGxcCaaQmpeXFyVLlmTjxo0Rx5xOJxs3bowy830/YWFh7N+/nywqaiIiIiKPac0amD7djBdOukyaRtXh8mUoWRKGD7c3OBFJkNzc4PPP4dO0HzGV9jgsC95+G7ZutTs0iQUJJukG6N69OzNnzmTevHkcPHiQ9u3bc/PmTZo3bw7Au+++G6XQ2uDBg1m/fj0nTpzg119/5Z133uHvv/+mVatWdn0LIiIikoCdOwctzbZLene5RcXxteHwYcieHVavBi8vewMUkQQra1aYM9fBe0xiFa9DUBC8/jocOmR3aPKEEszycoCGDRty8eJF+vfvz7lz5yhevDjr1q2LaAN26tQp3Nwi30e4cuUKrVu35ty5c6RJk4aSJUuyfft2ChUqZNe3ICIiIgmUZUHz5nDpEhQrBsPONINt2yB1avj2W8iWze4QRSSBe+01aNXGncYzFrHFqzKlruyAV1+FnTshXTq7w5PHlKCSboBOnTrRqVOnGM9t3rw5ytcTJkxgwoQJ8RCViIiIJHaTJ8O6deDjAyu7/oh78yXg6QmrVsF92pGKiDyKcePghx98qXFsNX8mf54Mx49DvXrw3XdaTZNAJajl5SIiIiJ2OHAAevUy4zFjIPf8weaLVq2gYkXb4hKRxCdFCpg/Hy67ZaDSza8I8UkBmzdDp05myY0kOEq6RURERO4jKAgaNzafa9aEjsW3wQ8/mFnuPn3sDk9EEqEXXoAPP4QDFOYdjy+wHA6YORNmzLA7NHkMSrpFRERE7uOjj+D33yFDBpg9GxxDh5gTTZtCjhz2BiciiVa/flCqFCz1r8VneUeYg507w65d9gYmj0xJt4iIiMg9bNli9lcCfPYZZPprp9lX6e4Od3RMERGJbZ6esGABJEsGrY+9z/Gib0BwsNnffemS3eHJI1DSLSIiIhKDGzegWTOzhbJlS1NVmGHDzMl33oE8eewMT0SSgKefNnUkwEHZw3MIypkf/vnH9PB2Ou0OTx6Skm4RERGRGPToASdPQs6cMH48cPAgfPUVOBya5RaReNOhA1SrBheCUtPEdwVWsmSwfr1pqSAJgpJuERERkbusXWtqFjkcMG8epErF7cwbeP11M/0kIhIPHA5TTyJtWlh2sDBflR9rTvTuDX/+aW9w8lCUdIuIiIjc4b//TCcwgK5doUIF4Nw5+Pxzc7BnT7tCE5EkKmtWmD7djN9Y354rL1SHW7fMMvPgYHuDkwdS0i0iIiJym2VB+/Ymxy5YMHILN1OmmF9sX3gBypa1NUYRSZrq1YMmTcBpOahxZjZW2nSwbx+MGmV3aPIASrpFREREbvviC1i2DDw8YP58UzWYmzdh6lRzQY8eZq2niIgNJk2C7Nlh56ksfP7sBHNw+nQIC7M3MLkvJd0iIiIiwOnT0LGjGX/0EZQsefvEnDlw+TLkzg1vvGFbfCIiqVOb/d0AbTY2ICSFn/nH68cfbY1L7k9Jt4iIiCR54W3BrlyBUqXggw9unwgMhBEjzLhnT9OfW0TERpUrm20wwXizlAbm4Pz59gYl96WkW0RERJK86dPhu+/A29vUS/P0vH1ixgw4c8as52zZ0tYYRUTCjR4NefLAp/5NzIEvv4SAAHuDkntS0i0iIiJJ2rFjZqs2wMiRpoAaYH6BDZ/l/ugjk5GLiLiAFCnMzpftvMhJcoG/P6xebXdYcg9KukVERCTJCguDZs1Mfl2xInTufMfJKVPg/Hmzl7t5c5siFBGJWfny0LWbgwW8A0DwbC0xd1VKukVERCTJmjQJtm2LnDVyC//N6MYNs34ToH//O9abi4i4jmHDYFtus8TcfeN680ahuBwl3SIiIpIkHT0aWTBt7FjIleuOk+PGwaVLkD8/vPOOHeGJiDxQsmQwaPH/2MnzuFth7O+z0O6QJAZKukVERCTJcTqhRQtTnPyVV6BNmztOnj1rsnAw00geHrbEKCLyMEqXhjPVWgDgPX8mFy9YNkckd1PSLSIiIknOpEnw009mWfmsWeBw3HFy4EC4edP8Jluvnl0hiog8tJrzGxHglpz/hR3ikwY/YSnvdilKukVERCRJOXYM+vY14zFj7lpWfvCgycLDT0bJxkVEXJN3hlQE1G4EwP9+nMGSJTYHJFEo6RYREZEk485l5S+/fNeycoDevc1Fr78OL71kS4wiIo8j/QfmH7T6LOPD9pc5d87mgCSCkm4RERFJMqZMga1bIXlyM6HtdudvQhs3wldfgbu7adgtIpKQlCqFVaw4PgTx6tX5dOiAlpm7CCXdIiIikiQcPw59+pjxmDGm/XaE0FDo0sWM27eHAgXiPT4RkSficOBoa2a72zCDlSstvvzS5pgEUNItIiIiSYDTCS1bQkAAVKoEbdvedcGnn8KBA5AuHQwaZEuMIiJPrHFj8PXlGf6kEpvo2BEuXrQ7KFHSLSIiIone1Knw449mWflnn921rPzSJejf34yHDIG0aW2JUUTkiaVODc2bAzA4xWguXoxcxCP2UdItIiIiidqJE6Y+GsCoUXctKwfo1w+uXoWiRWOorCYiksD06AFubpTz/45nHftYvBhWr7Y7qKRNSbeIiIgkWncuK69Y0WzXjmLXLpg+3Yw/+cQUURMRSchy54YGDQD4rOAYwPzbd+WKnUElbUq6RUREJNGaNg02bwZf3xiWlYeFmd9ELQveeQcqVLArTBGR2PX++wAUP7yEl/P8xdmz0L27zTElYUq6RUREJFE6eTLi905GjYI8ee66YOpU+PVX8PODsWPjOzwRkbjz7LNQpQqOsDDmlxiPwwFz58K6dXYHljQp6RYREZFEJ3xZ+c2bUL48dOhw1wVnzsCHH5rx8OGQKVO8xygiEqduF7PIunYWH7Q8D5iyFdev2xlU0qSkW0RERBKd6dNh0yazrHz27LuWlQN07gw3bsDzz6t4mogkTi+/DC+8AIGBDPAdQ5488M8/kYUlJf4o6RYREZFE5dSpyGXlI0dC3rx3XfDll7B8OXh4mOxcxdNEJDFyOGDAAAA8Z05l3mgz2z1tGvzwg52BJT1KukVERCTRsCxo1w78/eHFF6Fjx7su+O+/yIO9e0Px4vEdoohI/KlWDUqXhsBAyv08lnbtzOFWrcz2G4kfSrpFREQk0Vi0CL79Fry8YNasGJaVd+sGFy5AwYKmP7eISGJ2x2w3U6YwuucFsmc3hSbDy1pI3FPSLSIiIonCxYvQpYsZ9+8PBQrcdcGaNTB/vvkldPZs8PaO9xhFROJd9eqmfkVgICmnjWHmTHP4k09g2zZ7Q0sqlHSLiIhIotCli1k9XrRo5J7uCOfOmXLmYJrVvvBCvMcnImILhwMGDjTjyZOpVvg0zZub7TgtWkBgoK3RJQlKukVERCTB+/prWLzYLCf/7DPw9LzjpGVB8+Zw6ZLJyIcNsy1OERFbVK8O5crBrVswZAjjxkGWLHDkSGQ+LnFHSbeIiIgkaNevQ/v2ZtyjB5QqddcFkyfDunXg42M2fWtZuYgkNQ4HDB9uxp99Rpr/jjFtmvly7FjYvdu+0JICJd0iIiKSoPXpA//+a1qDRZux+eUX6NXLjMeMgWeeie/wRERcw0svQY0aEBoK/ftTuza89RY4naaaeUiI3QEmXkq6RUREJMHasgU+/dSMZ84EX987Tp49C3XqQFAQ1K4dQ/8wEZEkJnx7zeLF8NtvTJwIadPCb7/BuHH2hpaYKekWERGRBCkw0MzOALRuDZUq3XEyKAjefBPOnDHtwcKrlouIJGXPPgsNG5px795kzAgTJpgvBw6Eo0dtiyxRU9ItIiIiCdLgweYXxCxZYPToO0788w/Urw87doCfH6xeDalS2RWmiIhrGTbMVJv87jtYv54mTaBKFfNeZevWZrm5xC4l3SIiIpLg7N1rtmiDWV7u54f5jXHQIHj6afjqK/DwgC++gPz57QxVRMS15M0bud2mVy8czjCmTzfbc378EWbPtje8xEhJt4iIiCQooaGm5XZYmJnQfv312ycGDTLrIwMDTcGgnTuhWjU7QxURcU0ffWTerfz9d/j8c3LnhiFDzKmePU1JDIk9SrpFREQkQRk3zsx0p0kDkybdcWLZMvN57FgzXVOihC3xiYi4vHTpTOIN5vPNm3TubFouXrsG771nb3iJjZJuERERSTCOHIlsCzZhAmTKdPvE8eNw7JhZUt66tYqmiYg8SKdOkCuXKTg5ahQeHjBrFri7w/LlsHKl3QEmHkq6RUREJEFwOk0+fesWVK0K7757x8nvvjOfy5ZV0TQRkYfh7W1WBoGpRnnyJMWKwfvvm0MdO8LVq7ZFl6go6RYREZEEYeZM05c7eXKYPv2uyex168zn6tVtiU1EJEGqWxdeftkUouzZE4B+/Uz9ybNnoU8fm+NLJJR0i4iIiMs7cyZy9mXYMLMiMkJwMPzwgxmrcJqIyMNzOGDiRLOmfMUK+OEHkiUzb3KCeYNzyxZ7Q0wMlHSLiIiIy+vaFa5fh+efN9sQo9i2DW7ehIwZoXhxG6ITEUnACheG9u3NuHNnCAmhQgWznQcit/XI41PSLSIiIi7tm29MYXJ3dzPr4u5+1wXh+7mrVQM3/WojIvLIBg2C9OnhwAEYPx4w27wzZzYFLIcOtTm+BE7/M4mIiIjLunkTOnQw427d7jGRHb6fW0vLRUQeT9q0kUXVBg2Ckyfx84MpU8yhUaNMS295PEq6RURExGUNHgx//w05ckS2Covi7Fn47TezL7Fq1fgOT0Qk8Xj3XahYEQIDzT4ey6JuXXjjDQgNhVatICzM7iATJiXdIiIi4pJ+/x3GjTPjKVNM1fJoFi82n0uUgAwZ4i02EZFEx+GATz8FT0+zr2f5cgAmTzadGH/5BSZNsjnGBEpJt4iIiLgcpxPatDGzKvXqwauvxnDRjRswcqQZt20br/GJiCRKBQpE9gnr2BEuXiRrVhgzxhz68EP46y/bokuwlHSLiIiIy5k+HXbuhJQpTTebGE2cCBcvmoayzZrFZ3giIonXhx/CM8/AhQumqrll0aoVlC8PAQEmF7csu4NMWJR0i4iIiEs5ezZyomX4cMiaNYaLLl+OnHoZPNgshxQRkSfn7Q3z54OHh1livmgRbm7mzVAvr8iOEvLwlHSLiIiISwnvyf3cc5GtY6MZM8ZcVLQoNGgQn+GJiCR+zz4L/fubcadO8O+/FCgAffuaQ126wNWrtkWX4CjpFhEREZfxzTewdKnpxT1jRgw9uQFOnoxccz5smHpzi4jEhb59zbufV69C7dpw4wZ9+8LTT8O5c5ErkuTB9L+UiIiIuIQ7e3J37XqPntxOJ7RoYVraVKwItWrFX4AiIkmJhwcsWQIZM8LevdCgAd5uIUyfbk5Pnw7bt9sbYkKhpFtERERcwgN7cgNMnQqbN5v+YZ99ZlrciIhI3MidG77+Gnx9Yd06aN+eCuUtWrQwp9u0geBge0NMCJR0i4iIiO3u7smdIkUMFx07Br17m/Ho0ZAnT7zFJyKSZD33HHzxhdnK89ln8M03jB4N6dPDgQMwdqzdAbo+Jd0iIiJiqzt7cr/55j16cgcHw7vvmn41L78M7drFe5wiIknWa69B9+5mPGwY6dJaTJhgvhw82LwnKvempFtERERs9cCe3JZlGsPu2AGpUpmZFhVPExGJXz16mHZiO3bA5s28/TZUqQJBQeZ9UPXuvjf9jyUiIiK2ubsnd7ZsMVw0ZQrMmmUS7S++gFy54jNEEREByJwZWrUy4+HDcTjg00/Bxwc2boQFC+wNz5Up6RYRERHbPLAn94YN5iKAUaOgRo14jE5ERKLo1ctUNf/+e9i1i7x5I9t5d+8Oly7ZG56rUtItIiIitnhgT+5Nm+D1181m7yZNzNJGERGxT86c8M47ZjxsGAA9e0Lhwibhfv99G2NzYUq6RUREJG4EBkK/fqbP610e2JN70ybTgzswEGrWhJkz1R5MRMQV9OljtvusWQMbNuDpSUTv7jlzTFdHiUpJt4iIiMS+4GCoXx+GDoXGjeG336Kcvm9P7tWrIxPuGjVg+XJTvEdEROz39NOmuCWYfUGBgZQtG9lUom1buHXLvvBckZJuERERiV3hy8HXrjVfO53mFzSnE4D9+2H8eHMqSk9up9NsDqxTJzLhXrHCVOkRERHXMXSoqXx5/LgZAyNGmFprR46YsURS0i0iIiKxx7LMdMfSpeDpaaqOJ08O27bB/PkRPblDQ+/qyX3ihJndHjLEfN2li5nxVsItIuJ6UqWCSZPMePRoOHAAPz/45BNzaMQIOHjQtuhcjpJuERERiT0jR0a291q8GFq2hAEDzLlevZj78VV+/vmOntxXrpjKOwULwrp1JsmePx8+/tgk7SIi4prq1IHatc27qO+8AzdvUq+eef80JMQsM7+9wCnJU9ItIiIisWPpUvjgAzOePNlMZYOZtS5YEC5epE7PvCynLptK9yFbgxchQwYYM8bsAa9SBXbvjqyMKyIirsvhMHuEMmaEffugSRMclpMpU8DXF7Zuhdmz7Q7SNSjpFhERkSe3cyc0bWrGXbtGbbrt5QWzZ3PdOz1prcvUZSUlvx8F27eb/d9Fi8LXX8N338Ezz9gSvoiIPIannoKVK82/8ytXwkcfkTOnKZYJpq33+fP2hugKlHSLiIjIkzlzxiwzvHXLbNIeOzbaJd9eeYF0QWco69jBmfdGmGXnM2bAyZOmsnmtWmoJJiKSEJUta7YVgdnMPW0aXbrAs8/C1avQvbut0bkED7sDEBERkQQsKMgsIz93zsxSL1oE7u5RLgkIMD25Q/GkTLcXyDruBZuCFRGRONGkCRw+DMOGQfv2eISEMGPGe5Qubf5bePddqFbN7iDto5luEREReTyWZVqB/fwz+PmZauMpU0a7bPBg+OsvyJ4dBg2K9yhFRCQ+DBli1pMDdO5Mqc1jee8982X79uYN2KRKSbeIiIg8nmnT4LPPTKXyL76AvHmjXbJ/P4wbZ8ZRenKLiEji4nDAqFHw0Ufm6169GH2zI7mzBXPyZEQ77yRJSbeIiIg8uq1boXNnMx4xIsZ1g3f25K5bF157LZ5jFBGR+OVwmBnvkSPB4cBr1lR2pXqFjJxnzBg4cOAhn8eycBs6lGSJpAqbkm4RERF5NP/8A/XqmWy6YcPI5YR3mTGDiJ7cn3wSzzGKiIh9eveGNWsgVSrSH/yJQ97FqB26nHbtHrJ394IFuA8eTMWePeHGjTgPN64p6RYREZGH5hYcjHvDhnDhAhQrZpaXx1B1/OxZ6NPHjIcNg2zZ4jlQERGx16uvwi+/QKFCpAk6z3Lq0e2nuiwZ9+/9H3f6NOGbwY/Xrh1jrZCERkm3iIiIPLTCn32G2+7dkDat6cmaPHmM13XrBteuQalSpnK5iIgkQf/7H+zZAx9+SJibB3VZSd338xLYrL2psHk3y4JWreDaNZylSnG0bt14DzkuKOlO6MLCcOzaRZ6vvzZ/SEVEROKIY+FCcn/3HZbDYXrA5M4d43XffgtLlpj6ajNmROsgJiIiSYmPDwwdivXLHvYkfwlvgkk2bxrkywcVKpj931u3mo/hw2HdOvD2Juyzz7ASyX8g6tOd0IWF4V65MkVu3SKkSxcoXNjuiEREJDE6cAD3jh0BcH7wAe73aLga3pMboGtXePbZeIpPRERcmkeJooRu3EKFF7bwAcOoFrYetmwxH3cbOhQKFoSTJ+M/0Digme6EzssL67nnAHBs325zMCIikij5+0P9+jgCArhQrBjO8HYwMVBPbhERuZfSpeGZ9uWpzne8kus4IR9Phlq1IE8esxS9cGFo2dLsUUpElHQnAlbZsgC4bdtmcyQiIpLoWJbp+3XwIFbWrOzp1u2e68XVk1tERB5k+HDInBl++CsPw692hK+/huPH4fBh8x/JrFmJbl+Sku5EwHrxRUAz3SIiEgemTYPFi8HdnbCFCwn284vxMvXkFhGRh+HnBxMmmPHw4XDkiK3hxAsl3YmA9cILWA4HjmPHIJE0kBcRERewe7fZmA0wcmTEm7wxmTlTPblFROThNGwI1apBcDC0b5/460Er6U4M/Py4njOnGWuJuYiIxIYbN8xvRcHBUKcO9Ohxz0vPnYPevc1YPblFRORBHA6YOtUUNv/hB1i40O6I4paS7kTicoECZvDTT/YGIiIiiUOnTnDiBOTIAXPmmN+Q7kE9uUVE5FHlyQP9+plx9+5w+bK98cQlJd2JxH8FC5qBkm4REXlSixbB55+bRtsLF5oNePewbh188YV6couIyKPr2RMKFYKLF6FPH7ujiTtKuhOJy4UKmcGvv8LNm/YGIyIiCdfJk2aDHZgpiHLl7nnpnT25u3RRT24REXk0Xl6mXieY2iCJdaesku5EIjBDBqzs2SEsDHbutDscERFJiEJD4e234fp1ePFFuE8/boAhQ0yOnj276c8tIiLyqF56CVq0MON27SAkxN544oKS7kQkvF+3lpiLiMhjGTIEduyA1KnNsnIPj3teun8/jB1rxpMnqye3iIg8vtGjIX16+OMPGD/e7mhin5LuRCSilYuSbhEReVRbt8LQoWY8bRqEd8WIgdMJbduaifE33oDateMpRhERSZTSpYt8I3fQILOKKjFJcEn3lClTyJUrFz4+PpQuXZpdu3bd9/ply5ZRoEABfHx8KFKkCN988008RRr/nOEz3du3w61b9gYjIiIJx9WrZlm50wnNmsFbb9338s8+c2PHDjO7rZ7cIiISG959FypWhMBA00AjMfXuTlBJ95IlS+jevTsDBgzg119/pVixYlSrVo0LFy7EeP327dtp1KgRLVu2ZO/evdSpU4c6derwxx9/xHPk8aRIEdMc9eZN2LjR7mhERCSh6NkT/vkH8uV7YBZ95Yo3H3xgfn0YNgyeeio+AhQRkcTO4YBPPwVPT/jmG1ix4t6tKhOaBJV0jx8/ntatW9O8eXMKFSrEtGnT8PX1Zfbs2TFeP3HiRKpXr06vXr0oWLAgQ4YMoUSJEkyePDmeI4971697mj+pdeqYA6tW2RmOiIgkFN9/D599ZsZz5kDKlPe9fPbswly75qBkSejYMR7iExGRJKNAgcjWYT16uBMQcO/aIglJgvkugoOD2bNnD3379o045ubmRuXKldmxY0eMj9mxYwfdu3ePcqxatWqsuk9CGhQURFBQUMTX169fByAkJIQQFyyld/kydOrkYNOmSlStGkK6V1/FY8oUrDVrCJ00SQ1TbRb+Z8YV/+wkdbo3rkv3Jh7dvIlH69Y4gLD27XGWLn3fsrFr14axdetTuLlZTJ0aitNpVqSLa9DfHdele+O6dG9cT69esHixB8eOOVi4sCCvv+669+Zh/9wkmKT70qVLhIWFkSlTpijHM2XKxKFDh2J8zLlz52K8/ty5c/d8nREjRjBo0KBox9evX4+vr+9jRB63goLc2Lr1Zf77LzmtWx+nVdObVE+eHK8LF/j544+5XLCg3SEKsGHDBrtDkHvQvXFdujdxr/CsWeT96y8CMmRgU/nyhN6n7klQkDudO1cC4NVXj3P27AHOno2vSOVR6O+O69K9cV26N66lSZMMDBhQlp9/zsKaNRtJlizM7pBiFBAQ8FDXJZikO7707ds3yuz49evXyZ49O1WrViVVqlQ2RnZv3t5h1KkDa9fm4aOPcuDx+uuwaBFlL1zA2aOH3eElaSEhIWzYsIEqVarg6elpdzhyB90b16V7E08CA/GoVw8ArzlzqFq16n0v//BDN86fdyd9+gBmzsxKmjT3rm4u9tDfHdele+O6dG9cU82akDlzEClS/EDt2i+77L0JXxX9IAkm6U6fPj3u7u6cP38+yvHz58+TOXPmGB+TOXPmR7oewNvbG29v72jHPT09XfZm16wJL730L1u3PkWHDp7s7F0XFi3Cfc0a3MeNM3u9xVau/OcnqdO9cV26N3HswAHT8yttWjxq1rzv/xX798OECWbcps1+0qQpoXvjwvR3x3Xp3rgu3RvX07x5CN98E+rS9+Zh40owhdS8vLwoWbIkG++oyu10Otm4cSNlypSJ8TFlypSJcj2YpSP3uj4ha9HiD1KnttizB2b8VQ28veH4cfNLlYiIyN3C/38oVOi+CfedPblff93J88/fe4uWiIiIRPfISXfTpk3ZsmVLXMTyQN27d2fmzJnMmzePgwcP0r59e27evEnz5s0BePfdd6MUWuvSpQvr1q1j3LhxHDp0iIEDB7J79246depkS/xxKU2aIIYNM9Vseg9JQeBLVcyJlSttjEpERFzWn3+az888c9/LZs4koif3hAmuuadORETElT1y0n3t2jUqV65M/vz5GT58OKdPn46LuGLUsGFDxo4dS//+/SlevDj79u1j3bp1EcXSTp06xdk7qrqULVuWRYsWMWPGDIoVK8aXX37JqlWrKFy4cLzFHJ9atXLywgtw4wbMvvyGObh8ub1BiYiIa7pzpvsezp2D3r3NWD25RUREHs8jJ92rVq3i9OnTtG/fniVLlpArVy5q1KjBl19+GS+l9jt16sTff/9NUFAQO3fupHTp0hHnNm/ezNy5c6NcX79+fQ4fPkxQUBB//PEHNWvWjPMY7eLmBtOnmy5h/X99Hae7B/z2Gxw+bHdoIiLiah5iprt7d7h2DfXkFhEReQKPtac7Q4YMdO/end9++42dO3eSL18+mjRpQtasWenWrRtHjx6N7TjlIRUtCj16wGXSscWzsjm4bJm9QYmIiGu5dcvU/YB7Jt3ffQeLF5s3dGfMMG/oioiIyKN7okJqZ8+eZcOGDWzYsAF3d3dq1qzJ/v37KVSoEBPCy5xKvOvfH3LmhLm3GpoDS5bYG5CIiLiWw4dNhbQ0aeD2Fq07BQRA+/Zm3KULlCgRz/GJiIgkIo+cdIeEhLB8+XJeffVVcubMybJly+jatStnzpxh3rx5fP/99yxdupTBgwfHRbzyEJInh6lTYTWvE4wn/PFH5DJCERGR8P3czzwTY+XyoUPh5Emzh1v/nYuIiDyZR066s2TJQuvWrcmZMye7du1i9+7dtGvXjlSpUkVcU6lSJfz8/GIzTnlENWtC5XppWE9VAJxfLLU5IhERcRnhb8TGUETtjz9gzBgznjzZVC0XERGRx/fISfeECRM4c+YMU6ZMoXjx4jFe4+fnx8mTJ580NnlCEyfCGh+zxPzqzKVgWTZHJCIiLuHOme473NmTu04deP31+A9NREQksXnkpLtJkyb4+PjERSwSy7JmheeG1CYIL9KeO8jFzQfsDklERFzBPWa6Z82C7dvN7PYnn9gQl4iISCL0RIXUxPW16Jaan/1qALC142KboxEREdvdugXHjpnxHTPdd/bkHjoUsme3ITYREZFESEl3IufuDjn7NALg2YOL+PYbLTEXEUnSjhwx68j9/CBz5ojD3bvD1aumJ3enTrZFJyIikugo6U4Ccr33Grc8U5Cbv5jVcgcBAXZHJCIitomhcvmdPbmnT1dPbhERkdikpDsp8PXFvd4bALx8biFDhtgcj4iI2Oeu/dx39uTu3NnMdIuIiEjsUdKdRHg2fRuABizl4zEh/PGHzQGJiIg97qpcrp7cIiIicUtJd1LxyiuQMSMZuMTLYetp29Zs6RMRkSTEsuDnn824WLFoPblTprQvNBERkcRKSXdS4eEBb70FQFOPhWzfblrDiIhIEnLsGJw9C15eOJ8rrZ7cIiIi8UBJd1LSuDEAb7itJjn+9O4N58/bHJOIiMSfH380n59/nlkLk6knt4iISDxQ0p2UPP885MuHZ3AAPXIu5+pV0yJGRESSiNtJt3/JCurJLSIiEk+UdCclDgc0bQpAz3RzcHODRYtgwwab4xIRkbhnWRFJ9ye/VVBPbhERkXiipDupadoUHA5S/vojA5qcAEyrmMBAm+MSEZG49ddf8M8/ON09GLa5rHpyi4iIxBMl3UlN9uxQuTIAvTPNJVs2OH4chg+3OS4REYlbt2e593mUIoDk6sktIiIST5R0J0XNmwPg/cU8PvnY9A0bNQoOHrQzKBERiVO3k+71QRXUk1tERCQeKelOiurUgdSp4dQp3kj9A6+9BiEhqHe3iEgiFrTBJN0/UoEpU9STW0REJL4o6U6KkiWDRo0AcMydw6RJ4OsLW7fC3Ln2hiYiIrEv7K9/8D59kjDcSPfai9SubXdEIiIiSYeS7qTq9hJzVqwgZ+qrEcsMe/WCixftC0tERGLfDwNu7+d2K8moT1PZHI2IiEjSoqQ7qXruOShUCG7dgiVL6NIFihWDy5ehZ0+7gxMRkdhy+jRcWrQeAMfLFcmWzeaAREREkhgl3UmVwxE52z1nDh4epnWMwwGffw6bNtkbnoiIxI6unUKpGroWgGIfvGpzNCIiIkmPku6k7J13TIPWnTvh4EFKlzY9uwHatYOgIHvDExGRJ7NmDVxc9RPpuEyoXzrcXyprd0giIiJJjpLupCxzZqhZ04znzAFMv+7MmeHIERg50sbYRETkidy4AR07wuusBsDj9VfBw8PmqERERJIeJd1JXYsW5vP8+RAaSurUMHGiOTR8OBw+bF9oIiLy+Pr1g3//tXjTwyTdvP66vQGJiIgkUUq6k7patSBDBjh3DtatA6B+fahRA4KDzXJzy7I5RhEReSS//AKTJkFh/iBH6Enw8YGqVe0OS0REJElS0p3UeXqavd0An30GmGJqU6aYdt6bNsG8eTbGJyIijyQ0FNq0AacT+he9PctduTIkT25vYCIiIkmUkm6Bli3N56++Mr1lgNy5YeBAc7hHD7hwwZ7QRETk0Xz8MezbB2nTQh03LS0XERGxm5JugWeegXLlICwsYrYboHt3KF7c9O7u1s2+8ERE5OH89RcMGGDGUz44jee+3Wb50muv2RqXiIhIUqakW4zwXmEzZ5q1iZgitzNngpsbLFoE335rY3wiInJflgUdOkBAAFSoAA3dlpkTZcpApkz2BiciIpKEKekW4803IX16+PdfWLs24nCpUtClixm3bw/+/jbFJyIi97V0qXlz1MsLpk8Hx8IF5kTjxvYGJiIiksQp6RbD2zuyfdi0aVFODR4MOXPC339D//42xCYiIvd15UrkG6QffABPOw/Cnj1myVLDhvYGJyIiksQp6ZZIbdqYz999BydORBxOkSIyD5840bSiERER19GnD5w/DwUKmDELbs9y16hhVjGJiIiIbZR0S6S8eU0fV8uCTz+Ncqp6dbNC0emE1q0hJMSmGEVEJIqffoIZM8x4+nTw9nTCwoXmQHhLSBEREbGNkm6J6r33zOdZs6Jt4J4wwbSg+e03MxYREXsFB0PbtmbcsiWULw9s22b2A6VMqarlIiIiLkBJt0RVsybkywdXr8Lnn0c5lTEjjB9vxgMGwPHj8R+eiIhEGj0a/vzT/Ps8evTtg+FLy+vVg2TJbItNREREDCXdEpWbW2Q1nokTzXryO7z7LrzyCty6ZWZXLMuGGEVEhCNHYOhQM/74Y7MSicBAU8YctLRcRETERSjpluiaNoVUqcxvdOvWRTnlcJiiaj4+sHFjtMlwERGJB06nqX0ZFATVqsFbb90+sXSpWamUI4dp1i0iIiK2U9It0aVMCa1amfHHH0c7nS8fDBxoxt27w4UL8RaZiIgAn30GP/4Ivr6m7qXDcfvE1Knmc7t24O5uW3wiIiISSUm3xKxTJ7PUfMMG+P33aKe7d4dixeDyZejWzYb4RESSqDNnoFcvMx46FHLnvn1izx7YtQs8PU1VNREREXEJSrolZrlzmyI8AIMHRzvt6WkKnLu5waJF0Vahi4hIHOnUCa5dg+eeg86d7zgR3uqxfn1TWU1ERERcgpJuubf+/c2axeXLo892//03pQ4t4JvnBlCWbbRvZ3Hzpj1hiogkFStWwMqV4OFh3viMWEF+5Yp5BxSgfXvb4hMREZHolHTLvT3zDDRoYMaDBpnPW7fC009DrlzQpAnVdg5mG+VY83dRvn19GoSG2hauiEhiduUKdOxoxr17Q9Gid5ycN89ULi9SBF580Zb4REREJGZKuuX+wme7V6yA99+Hl182Vc3d3eH556FBA8K8k1GEP6i3sT3+JcrDiRN2Ry0ikui8/z6cO2fe9/zooztOhIbCpElm3L79HVXVRERExBUo6Zb7K1QIGjY04zFjzC93DRvCf//Bzp2wZAnu584w/9nxXCMVKfbvwCpWDObPtzduEZFEZNMms5wcYOZM07YxwtKl5s3OdOng3XdtiU9ERETuTUm3PFj//mYDocMBI0fC4sWQOnXkeT8/qq3rRoXUv7GVcjj8/c0vfkOGgGXZF7eISCIQGAitW5tx+/bw0kt3nHQ6YcQIM+7aFZInj+/wRERE5AGUdMuDFSxoZrV/+81sJIxh6WLGjND141xUZDNjPPqag/37Q5cu5pdCERF5LAMHwvHjkC2bed8ziq+/hj/+gJQpIzd8i4iIiEtR0i0Pp0QJU6DnPpo2hYovu/N+6HCm/G+iOThpkukXqxlvEZFH9uuvMG6cGU+dCqlS3XHSsmDYMDPu2BHSpIn3+EREROTBlHRLrHE4YPp0s9ew05HO/NhmoSm4Nncu9Oljd3giIglKaCi0agVhYaaRRO3ad13www+wa5f5R7drVztCFBERkYegpFtiVb58MHiwGddZ2pgrYz8zX4weDePH2xeYiEgCM3487N1rJrA/+eSuk05n5JuZrVpBpkzxHp+IiIg8HCXdEuu6dYNSpeDqVWi+uSnWyFHmRI8esGSJrbGJiCQER4/CgAFmPH58DDn1ggWwe7fZyx2lf5iIiIi4GiXdEus8PGD2bPD0hNWrYWnOXpFLH1u0gAMHbI1PRMSVWRa0aQO3bkHlyqZeRhT+/pGz3B99pFluERERF6ekW+JEkSLwwQdm/F5nB5f6jIVXXoGAAHjzTbhxw94ARURckWWxeOxpNm8GX19TJyNaw4hRo+DsWciTx3SIEBEREZempFvizAcfQOHCcPEidOnubvp7P/UUHD5sZrxV0VxEJIobvQbT+P2naM0MhgwxeXUUx4/D2LFmPHYseHvHe4wiIiLyaJR0S5zx8jLLzN3cYNEi+HpnBli2zKw7//JLmDXL7hBFRFyGdeofvCeMAGCo5yA6tw2KekFQEDRsaNadV6oEderEf5AiIiLyyJR0S5x67jno3t2M27WDawVfgBHml0p69IBTp+wLTkTEhZxsOhAvp0m0M4acwWPx/KgX9OwJe/ZA2rQwb14M685FRETEFSnpljg3aJBpJXb6NPTqhSmqVqaM2dfdpo2WmYtIkvfflgPk3DwXgP2FG5mDo0aZJt1gVglNnmzG8+dD9uzxH6SIiIg8FiXdEud8feGz2+26Z86EH350hzlzzF7E774zYxGRJOxEow9wx8n3qery9I8zzGz2sWOwdCl8/DG8+665sHdvqFnT1lhFRETk0SjplnhRvjy0b2/GrVrBzaeehqFDzYFu3Uy1NRGRJGjbR9/y3Jk1hOJOljnD8UqbAjp3NiebNDH/Rt66BbVqRf67KSIiIgmGkm6JNyNHmhWRJ0+a1rJ06wYlSsD16zB4sN3hiYjEuys/H6bwcLOcfFepDjxT92lz4r33IHlys7w8RQr49FP46ivw8LAxWhEREXkcSrol3qRKBTNmmPHEibBjl3tk65tp0+DIEfuCExGJb1eucKtqbVJb1/g12YuU3Dgm8lzatLBgAXToAPv3m0qUKpwmIiKSICnplnhVvbrZmmhZ0LIlBJWtZJZMhoZCnz52hyciEj+Cg7nwyltkuXGEv8kBK1bgnequntt16sCUKZArlx0RioiISCxR0i3xbsIEyJQJDh6EIUMwFXrd3GDlSvjpJ7vDExGJW6GhBDd4h4x713MTX1a8u5oS1TPaHZWIiIjEESXdEu/SpoWpU8145EjYF/IMtGhhDnz4oX2BiYjENacTWrTAa/UygvGkS7bltJtW3O6oREREJA4p6RZb1K0L9eqZGkEtWkDIBwPA3R22bIE//7Q7PBGR2BcWBm3awPz5hOJOQ5bSYml1kiWzOzARERGJS0q6xTaTJ5tZ7717YeSCp8zeboBZs+wNTEQktgUHQ6NG8NlnOHHQhPnk6lqHsmXtDkxERETimpJusU2mTDBpkhkPHgwnKrcxX8ybZ3rSiogkBjdvwmuvwbJlhLp50pAl/JK3EcOG2R2YiIiIxAcl3WKrRo3gjTdM8fL6n1XHeuopuHzZFFUTEUno/v0XXnoJ1q8nzMeXms6v+ZL6zJoFvr52ByciIiLxQUm32MrhgE8/hXTp4Nff3Pkxb0tzIryht4hIQrVzJzz3HOzdi5UuPfX8NrKBqnToABUr2h2ciIiIxBcl3WK7TJlMK1qAFj+1wHI4YPNmOHrU1rhERB6LZcHMmVChApw7B0WKMKDmL6w69wI5c5ouiSIiIpJ0KOkWl9CggalmfjIsBz8lr24OvvwyjBsH16/bG5yIyMO6fh0aNzZVyoOCoHZtfhq1jSHzcwGmTmSKFPaGKCIiIvFLSbe4BIfD9O7OkAHe8x/OjRSZzV7Inj0hRw4YMQICAuwOU0Tk3n74AZ59Fr74Ajw8YPRo/Oev5N2OKQFo3RoqV7Y5RhEREYl3SrrFZWTIYBLv3yhO5oCT/PXRLChYEK5dgw8+gPz54fPP7Q5TRCSqy5ehZUt45RU4cQJy5oStW6FXL3r1duPkSfPe4dixdgcqIiIidlDSLS6lXj1o2BACnD68urIlQXv+gAULIFcuOHMGmjaF8ePtDlNExCwlHzoU8uaF2bPNkp2OHeH33+GFF1i/HqZNM5fOmQOpUtkbroiIiNhDSbe4nMmTIWNGOHAABg91g7ffhkOHoE8fc0GPHqpuLiL2uHwZvvwS2rWD3LmhXz+4ehUKFzaz25MnQ6pUXL1qJr8B3nvPlKgQERGRpElJt7ic9OkjZ4dGjoRffgG8vWH4cHj/fXOiXTtYtMi2GEUkibl8GTp3Nu0W6teH6dPNsaefhsWL4bff4MUXIy7v2tWUpcif3/w7JiIiIkmXkm5xSW+8YQoAO51mRfmtW5ilmyNHQocOpiVPy5ZmGaeISFyaPdtkz5MmQWgoFCoEXbrA11+bJTlvvQVukf+drl4N8+aZQ3Pngq+vfaGLiIiI/ZR0i8v65BMzqXTwoFnBCZjEe9IkqFXLZOINGoC/v61xikgi9tNP5g2+y5fNEvLvvzeJ9scfm3+H3N2jXH7pkukWBqb5Qtmy8R+yiIiIuBYl3eKy0qWDmTPNeNw4+PHH2yfCp4+yZYPDhyNnvkVEYtvo0eZzo0awd6+pUH4PlgXt28OFC/DMMzBoUDzFKCIiIi5NSbe4tNdeM5NMlgXNmpliwYDZ+L14sZllmj/ffIiIxKaDB+Grr8wKmwEDTO/t+1iyxNRY8/Awy8t9fOIpThEREXFpSrrF5U2YYDqG/fUXdOt2x4mXXoqcSuraFc6fj//gRCTxGjfOfK5d2xRMu4+zZ82iG4CPPoKSJeM4NhEREUkwlHSLy0uZEj7/3Ew2zZ4Na9bccbJ3byhRAq5cMYm3iEhsOHs2cgVNeNeEe7AsaN3a/DNUogR88EE8xCciIiIJhpJuSRBeeskUJQLzy+3Fi7dPeHiYjd9ubvDFF/DNN7bFKCKJyCefQHCwqYT2gGpoc+bA2rXg5WXeIPT0jKcYRUREJEFQ0i0JxuDBpnjwhQvQtu0dtdNKlIhcd96+vaqZi8iTuXYNPv3UjHv1uu+lJ09GLrIZOtQUUBMRERG5k5JuSTB8fMxqT09PWLnSzChFGDTIbPw+dQpGjLArRBFJDCZNMol3oUJmP/c9hIVBkyZw4wa8+CJ07x6PMYqIiEiCoaRbEpTixSNrp733Hvz99+0TyZObvrlgih9FnBAReQQ3bpjqjQAffmi2rtzD6NGwbZupOzF/frSW3SIiIiKAkm5JgHr1gjJlzO/GzZqB03n7RO3aULEiBAWpkpGIPJ5PP4XLlyF/fmjY8J6X7dkD/fub8aRJkDt3PMUnIiIiCY6SbklwPDzM0nJfX9i8GSZOvH3C4TCz3A4HLFoEu3bZGaaIJDQBAZFtwj744J5T1wEB8M47EBoKb74J774bjzGKiIhIgqOkWxKkfPkifzfu2xcOHLh9okSJyN+Au3e/o9qaiMgDzJhhKjXmygVvv33Py95/Hw4dgixZYPp08z6fiIiIyL0o6ZYEq21bqF7drCZ/5x3zGYBhw8w0+LZt8O23tsYoIglEQACMHGnGffves+/XunUwZYoZz5kD6dLFU3wiIiKSYCnplgTL4YDZs80vvfv2wUcf3T6RLRt07GjGAwdqtltEHuzTT+H8eTPL3axZjJdcugTNm5vxe+9BtWrxFp2IiIgkYEq6JUHLkgU++8yMx46F77+/faJnTzPb/csvmu0Wkfvz94+c5e7fH7y8ol1iWdCmDZw7BwULwqhR8RyjiIiIJFgJJum+fPkyb7/9NqlSpcLPz4+WLVvi7+9/38dUrFgRh8MR5aNdu3bxFLHEl9dfN0vNwWzn/u8/IGNGzXaLyMOZNMlMY+fLZxpvx2DuXFi50hRyXLAAkiWL3xBFREQk4UowSffbb7/NgQMH2LBhA19//TVbtmyhTZs2D3xc69atOXv2bMTH6NGj4yFaiW/jx8PTT8PZs9Cq1e0cW7PdIvIg16/DmDFmPGCAyarvcuIEdO5sxkOGmHqNIiIiIg8rQSTdBw8eZN26dcyaNYvSpUtTrlw5Jk2axBdffMGZM2fu+1hfX18yZ84c8ZEqVap4ilrik68vLF5sah+tWgWzZhF1tnvwYM12i0h0H38MV65AgQLQqFG006GhZvLb3x9eegl69Yr/EEVERCRhSxBJ944dO/Dz86NUqVIRxypXroybmxs7d+6872MXLlxI+vTpKVy4MH379iUgICCuwxWbPPssDB9uxl27wuHDmNlub2/YuRN27LAzPBFxNVeumGUyYLahxNCXe+hQ2L4dUqaEzz+/Z+tuERERkXuKvo7OBZ07d46MGTNGOebh4UHatGk5d+7cPR/XuHFjcubMSdasWfn999/p3bs3hw8fZsWKFfd8TFBQEEERvafg+vXrAISEhBASEvKE30ncCI/LVeOLT++9B99+684PP7jRuLGTLVvSkKxxY9zmzME5bhxhzz0Xr/Ho3rgu3RvXFV/3xm3MGNyvXcMqXJjQOnXgrtf76ScHQ4a4Aw4mTQolWzbr7kuSHP29cW26P65L98Z16d64roRwbx42Nodl2bfmtk+fPox6QAnYgwcPsmLFCubNm8fhw4ejnMuYMSODBg2iffv2D/V6P/zwA6+88grHjh0jb968MV4zcOBABg0aFO34okWL8PX1fajXEXv9958PXbtW4sYNL+rWPUrH8t/wcteuWG5ubJg2jcC73sARkaTH6/p1qrRpg8etW+zq04ezL7wQ5fyNG55061aRS5d8qVTpFF267LUnUBEREXFZAQEBNG7cmGvXrt13G7OtSffFixf577//7ntNnjx5WLBgAT169ODKlSsRx0NDQ/Hx8WHZsmW88cYbD/V6N2/eJEWKFKxbt45q92iwGtNMd/bs2bl06ZLL7gcPCQlhw4YNVKlSBU9PT7vDcQmrVjlo0MADh8Piu+/CeGVUddw2biSsWzec8djrR/fGdeneuK74uDduffviPm4cVvHihO7cCQ5HxDnLgoYN3Vm1yo18+Sx27gwlZco4CSPB0d8b16b747p0b1yX7o3rSgj35vr166RPn/6BSbety8szZMhAhgwZHnhdmTJluHr1Knv27KFkyZKAmbV2Op2ULl36oV9v3759AGTJkuWe13h7e+Pt7R3tuKenp8ve7HAJIcb4Ur8+tG4NM2c6aN7cg4Nju5Fy40bcP/sM90GDiO/foHVvXJfujeuKs3tz/jx8+ikAjiFD8LyrL/f06aYgo6cnfPGFg7Rp9efjbvp749p0f1yX7o3r0r1xXa58bx42rgRRSK1gwYJUr16d1q1bs2vXLrZt20anTp146623yJo1KwCnT5+mQIEC7Nq1C4Djx48zZMgQ9uzZw19//cWaNWt49913KV++PEWLFrXz25F4MmEC/O9/cPo0tFhWA+t//zPtgebMsTs0EbHT0KEQEADPPw+1akU5deCAKcQIMGIE3H6fV0REROSxJYikG0wV8gIFCvDKK69Qs2ZNypUrx4wZMyLOh4SEcPjw4Yjq5F5eXnz//fdUrVqVAgUK0KNHD958802++uoru74FiWfJk8OiRWa26ssVbmx99naj3Vmz1D5MJKk6ccJMZQOMHBllWXlgILz1Fty6BdWqQbduNsUoIiIiiUqCqF4OkDZtWhYtWnTP87ly5eLO7enZs2fnxx9/jI/QxIWVLAmjRkH37tBgZWPOeHbHbf9++O03KF7c7vBEJL7172+qlFerBpUqRTnVsyf88QdkzAjz5oFbgnlbWkRERFyZfqWQRK9rV3j1VTgfnIb13rXNwXnzbI1JRGzw229m+QuYteN3WLUKpk41488/h0yZ4jc0ERERSbyUdEui53DA3Lnw1FMw2b+pObhoUbSevCKSyPXta7aWvPUWPPtsxOF//4WWLc24Rw8zCS4iIiISW5R0S5KQLh0sXgzfu1XjPBnhwgX47ju7wxKR+PLjj/Dtt+DhAUOGRBwOC4N33oHLl812lOHDbYxRREREEiUl3ZJklCsH/QZ7sojGAFyfpCXmIkmCZUGfPmbcujXkyxdxauhQk48nT27emLure5iIiIjIE1PSLUlKnz5wuLRZYu6zYQ2BZ67YHJGIxLk1a+Dnn8HXF/r1izj8/fcwaJAZf/op5M9vU3wiIiKSqCnpliTF3R0GrirOAY+ieFnBLH17td0hiUhcCguDDz4w465dIUsWAM6cgbffNpPgrVpBkyb2hSgiIiKJm5JuSXIyZ4bkdasDELj5Z5YutTkgEYk7n38Of/4JadPC++8DEBoKjRqZ0g5Fi8Inn9gco4iIiCRqSrolScpV/zkAnmcXrVvD8eM2ByQise/mzcjl5H37QurUgGnVvWULpEgBy5ZBsmQ2xigiIiKJnpJuSZqeM0l3Ucd+gq7fomFDCAqyOSYRiV1jx8Lp05ArF3TqBJgC5uEtumfNgv/9z77wREREJGlQ0i1JU44ckCEDHlYoFVLtY88e6NbN7qBEJNacPg2jR5vxqFHg48M//5j2YAAdOkDDhvaFJyIiIkmHkm5JmhwOeP55ACY0/gWHw1Qvnj/f5rhEJHZ8+CEEBEDZslC/PiEhJskO78c9frzdAYqIiEhSoaRbkq7bS8wL3fwlYttn27awf7+NMYnIk9uzB+bNM+MJE8DhoG9f2LHDbOteuhS8ve0NUURERJIOJd2SdN1OuvnlF/r3h6pVITAQ3nwTrl2zNzQReUyWBd27m/Hbb8Pzz7N6NYwbZw7NnQt58tgWnYiIiCRBSrol6QpPug8dwt3/GgsXmq3eR49C8+bmd3cRSWBWrjSlyX18YPhwTp6EZs3MqW7doE4dO4MTERGRpEhJtyRdGTJAzpxmvGcP6dPDl1+Cl5f5vT18ZkxEEoigoIhe3PTsSWCGHNSrB1evwgsvwMiRtkYnIiIiSZSSbkna7lhiHv7lxInmUJ8+8OOPNsUlIo9u8mQ4fhwyZ8Z6vzft28Ovv0L69LBkiXlDTURERCS+KemWpO2upBtMMbUmTSAszFQ7PnvWpthE5OFdvAhDhpjxsGFM/TwF8+aBm5tJuHPksDc8ERERSbqUdEvSdrtt2J1Jt8MB06ZBkSJw/jw0aAAhITbFJyJR7dwJ9epB4cKwb1/k8W7dTAXE4sX5KW9TunY1h0eP/n97dx5nY/n/cfx9ZmUwhsY2kRiyDkOYKFEma6W0iSwllaSUr6VkL1+pL6mkfmVJJSFbtkSksiYjhOxEI9lm7LNcvz+u5jBZZjtnzpmZ1/PxmMe5576vc+7POdfcc87nXJt0552eCBQAAMAi6UbedvPNNsvev1/au9e5OyhI+uorKThY+vFH29UcgAdt3y41amQHZ3/1lbRli3TvvdJff0nffCN9/rnk46Mjr/+fHmrrq8REqW3bixOZAwAAeApJN/K2QoXsB3lJ6ts31aGKFe3yQpI0apRd2xeAB/z6q9SwoZ2V3N/fTkd+003SgQN2jb9nnpEkJXV/Xq1fq6vYWNtT5eOP7XdqAAAAnkTSDYwebQd+TpsmLV2a6tD990u9e9vtxx+XNm70QHxAXvbLL9Idd9gx27Vq2YnSJk6U5sy52BVl717phhvU68wwrVolhYTYFQgKFPB08AAAACTdgBQZKXXrZrd79JAuXEh1ePhw6a67pDNn7Bq/R49me4RA3vTbb3ZA9rFjUlSU9N13Upky9ljlytKUKc6m7MX3j9OY8QXlcNjd4eEejBsAAOASJN2AZGc9LlZM2rpVeuedVIf8/KSpU6Xy5W2D2sMPS4mJngkTyCv8Tp+W34MP2snRGjSQFi+2TdiXatVKmjdPu16fqnvGtZQkDR0qtWiR/fECAABcDUk3IElFikgjRtjt/v0vW6C7aFHbm7VAAdvY1qePB2IE8orkZNUeM0aOnTtty/bs2bYr+RX8VaelGo97RBcuSK1bS6+8kr2hAgAApIWkG0jRubMdxJ3y6X3z5lSHq1eXJk+226NHX9wG4Fo+I0ao1Nq1MoGB0syZthfKFSQk2J4nf/whVapkr0kf3tUAAICX4eMJkMLHxy47dOuttktrixb20/wl2rSRXn3Vbj/1lPTzzx6IE8jNVq+Wz9ChkqSkd9+V6tS5YjFj7BQM338vFSxoJ067SmM4AACAR5F0A5fKn1+aO9dO0vTHH3bW5H37UhUZMkS65x7p/Hk7sdqff3omVCDXOXtW6txZjuRkHWjUSKZz56sWff996cMP7TxqX3whVamSfWECAABkBEk38G9Fi0qLFkk33ijt3GnXB96xw3nYx0f67DP7If/gQdsT/exZz4UL5BoDB0rbt8uULKlNTz551WLffiu98ILdfuMN6e67syk+AACATCDpBq6kbFnphx/sQNEDB6Tbb5diYpyHg4Olr7+2+fm6dXYNb2M8Fy6Q461aJf3vf5KkpPffV0KhQlcs9vvvdhx3UpLUsaP0n/9kZ5AAAAAZR9INXE3p0tKKFVKNGlJsrHTbbbbr+T/Cw+0cT35+0pdf2lXHAGRCQoLUtav95qpjR5mrNF0fP26Hdpw4IdWvf7F7OQAAgDcj6QaupXhxO1NTdLR0+rQdxP3mm85m7UaNpA8+sEUHDZKmTfNcqECONW6ctGWLdN11dmmAK0hMlNq2tS3dZcrYL7zy5cvmOAEAADKBpBtIS0iItGCB9MwzNtnu00d68EHb3CapSxfppZds0U6dbHdzAOl05Igdyy1Jr79ux2z8izFSz57S4sVSUJA0Z45UsmT2hgkAAJBZJN1Aevj72+mS33vPbs+cKd18s3PNsJEjpVatpHPn7MRq/1ppDMDVvPqqXaIvMlK6yuRpY8ZIY8faruSffirVqpW9IQIAAGQFSTeQXg6H1L279NNPdmbz3bulW26RBgyQb+J5TZkiVa9ulxBr1UqKi/N0wICX++UX6aOP7PY770i+vpcVmTPnYk+SkSOlNm2yMT4AAAAXIOkGMqpuXWnDhotTKL/2mnTzzQrevFLz5kklSki//io99JCdHwrAVfTrZ/uOt21rl+b7l/XrHWrXzhZ5+mmpVy8PxAgAAJBFJN1AZoSE2CnLZ8ywk61t2SLdeqvK9m2rxf+3V0FBdvzpc8/5spQYcCXff28X3Pbzk4YPv+zwX3/l1/33++rMGal5czuyg5nKAQBATkTSDWTFAw/YhLtLF5sRfPmlajxUSVvrP6FajhhNnOijGTMqejpKwLsYIw0YYLeffFIqVy7V4ZMnpddeu0WxsQ5FRNjvt/z8PBAnAACAC5B0A1kVGip9/LHtct6kiXThgm5YOlG/mFparShFfT5OPz89Xlq7VjpzxtPRAp737bfSDz9IgYFS//6pDl24ID36qK/27w9WqVJG8+dLwcEeihMAAMAFSLoBV6lZ0yYTP/0kPfKI5OurKK1VD72n+hO7SVFRUsGCUuXK0uTJno4W8Axj7IzlkvTss1Lp0s5DycnSE09IS5b4KDAwUbNnJ6pMGQ/FCQAA4CIk3YArORxSgwbS1KnSvn1KGD9BU8Ke1mLdpb8cxW3CsX27XdD7iy88HS2Q/RYutIvZBwXZidQu0a+f9Pnnkp+fUd++61gaDAAA5Aok3YC7XH+91OEx+Y1upSENFqmEOazIEn8qvv0z9njHjtKiRZ6NEchub71lb7t1s5MQ/mP0aOnNN+32hx8mqXbtvzwQHAAAgOuRdANuFhiYrJkzk1StmrTxcEnVWzdW5+9vKyUm2onYfvzR0yEC2eOXX6Rly+ysaC+84Nw9derFtbhHjJA6dGDKfwAAkHuQdAPZoGhR26hdpoy07Xcf3XngEyVGN7MTqzVrJi1d6ukQAff73//s7cMPK2Ww9tKlttOHJD3/vNSnj4diAwAAcBOSbiCblC5t1+6+7jpp5c8BekAzlXzXP4l3q1bSvHmeDhFwnwMH7NpfktSrlyQ74f/990sJCTYPHz2atbgBAEDuQ9INZKPKlaX58+0cUnOXBOmJ6+bItL5POn/eZh+TJnk6RMA9xoyRkpKkO+6QatfWtm1S06ZSfLzdNXmy5MM7EgAAyIX4iANks6go6auv7LDWT6YGqmfYNJn27e0Y78cflwYOtLOcA7nF6dPSRx/Z7V69tHevFB0t/f23dPPN0uzZdsluAACA3IikG/CA5s1to7bDIb0zzl+vlpksvfKKPThsmB3kev68R2MEXOarr6S4OCk8XH9GtlB0tHTwoFS1qp3rIDjY0wECAAC4D0k34CHt20vjxtnt4SN8NLzA67Y10NdX+uwzO8Ha8eOeDRJwhX+GTZx5uJOaNvfRrl1SuXLSt99KoaGeDQ0AAMDdSLoBD3r66YvLFvfvL405/aS0YIFUqJD0/fdS/frS7t2eDRLIin377DJhkh5d0FGbN0thYdKSJfYWAAAgtyPpBjysVy9p8GC73bOnNP5AU+mnn+ySStu3S3Xr2j64QE40ebIk6ZeQOzV3Y1ldd51t4S5f3sNxAQAAZBOSbsALDBzoXEVJXbtKX2yOkFavlurVk44dk1q2lIYOlZKTPRsokBHGKHniJEnS6BOdVaiQ/f6oalXPhgUAAJCdSLoBL+BwSG++KT3zjJ24vEMHadqPYdKKFRd3Dhok3XOPTcKBHOD80h/ls2e34lVQ3wS10cKFUp06no4KAAAge5F0A17C4ZDGjpU6dbLLGbdrJ305O9DOtjZxopQvnx3vXaeOtGGDp8MFruncOWl550mSpJl+D+urRQV0662ejQkAAMATSLoBL+LjI40fL3XubBPv9u2lL7+U3bFqlZ3yec8eO8Hae++xnje80vnz0gMPSJUPLpEk1XrjUTVs6OGgAAAAPISkG/Ayvr7Sxx9Ljz9+SYv3l5IiI6X166VWrWxW06OH3Y6N9XTIgNP589KDD0qrFxxVWe2XJNXoUtfDUQEAAHgOSTfghS5NvJOTbeI9daqkIkWkuXOlMWOkwEBp4UKpenXp009p9YbHnT1rW7jnzZPq+m+0O8uXlwoX9mxgAAAAHkTSDXgpHx+beD/xhE2827eXPvvsnwPPP29bvWvWlI4elTp2lJo1k37/3dNhI486dUq6+25p/nwpf37pncf/mXcgMtKjcQEAAHgaSTfgxXx8pI8+krp0sYl3x47SBx/8c7BaNWndOmn4cNvq/e23UuXKtqlx9WqPxo285eRJ+53Pd99JBQvaZcFuOhNjD9aq5dHYAAAAPI2kG/ByPj7S//2f9Nxztgd5t27SyJH/HPT3l15+Wdq0yS4nZow0c6adaG3CBI/Gjbzh6FGpSRNp5UopJERaskS6/XZdnGGflm4AAJDHkXQDOYCPj/TOO1L//vb3vn3ttnMYd8WKdqz35s1S06Z239KlHokVeUdsrNS4sR3pUKyYtHy5FBUlO7h72zZbiJZuAACQx5F0AzmEwyG99pr0xhv29+HD7dDu5ORLClWrJj31lN3evTvbY0TesWePbdHevFkKC5O+/95OMSDJ7kxKkkJD7UEAAIA8jKQbyGH69JHef98m4e+9Z2c4T0i4pED58vZ21y6PxIfcb+NGqUEDaccOqWxZacUKqUqVSwrExNjbWrXsHyoAAEAeRtIN5EDdukmTJ9ulxSZPlu69184eLeli0n3kiBQf77EYkTstW2ZbuGNjpYgIO5Y7PPxfhRjPDQAA4ETSDeRQjz0mzZ5tl2datMiOrT18WHZN5Ouus4XoYg4Xmj5dat5ciouzifeKFVfpPX5pSzcAAEAeR9IN5GB3321bHkND7WRW9ev/s1R3Sms3STdc5L33pEcekS5ckNq0kb75xs5WfpmkJNv/XCLpBgAAEEk3kONFRV3s4rtnjx1r+3fIP/19GdeNLEpOtrPl9+hxccm6adOkfPmucoedO6UzZ6SgIDurPgAAQB5H0g3kAhUr2sS7Th27bvKEZbR0I+tOn5YeeODiuvBDh0pjx9q5BK4qZTx3jRppFAQAAMgbSLqBXKJ4cbtOcsuW0rZE29K969tdF9fyBjLg4EGpYUM7b0BAgPTZZ9KAAemYjHztWnvLJGoAAACSSLqBXKVAAWnOHKlWG9vSnbxzt9q3l86e9XBgyFHWr5fq1bON1sWKSd99J7Vvn447JifbvueSFB3t1hgBAAByCpJuIJfx85N6vG1bum/UXk37IlGNG0t//unZuJAzzJplZyY/dEiqWlVas0a69dZ03nn5cttEHhIitWrlxigBAAByDpJuIDcKC5MCAuSvRFUv/IfWrpXq1rUtmMCVJCXZ7uNt2th50Jo1s/MElCuXgQf57DN7+9BD15hpDQAAIG8h6QZyI19fZ7Y0/51dqlLFNkDedps0aZJnQ4P3OXbMLj/32mv29x49pHnz7JLv6Xb2rDRjht3u0MHlMQIAAORUJN1AbvXPWt3Xn9+tVavsBGvnzkmPPy499ZTdBmJi7Kz3ixZJ+fNLn34qvfOOHaaQIXPnSvHxUtmyGeiPDgAAkPuRdAO5VfmLy4YVLix9/bVd8snhkD76yOZFe/Z4NkR41mefSfXr27+D8uWlVaukxx7LwoNJdsY1H95aAAAAUvDJCMitwu1katq1S5LNgwYMkL75RrruOumXX6TataX58z0YIzzi7FmpWzfbC/zcOalFC+nnn6WaNTP5gEeO2KZyKQtZOwAAQO5E0g3kVpe0dF/qrrvsUlBRUdKJE3Ysb9++0oUL2R8ist/mzXZSvQ8+sL0eBg6047eLFMnCg44cKSUmSjffLFWp4rJYAQAAcgOSbiC3+ldL96XKlJFWrLATZkk2Z6pfX9q2LRvjQ7YyRho3zibcW7ZIJUtKixdLQ4ZksTf49u3SmDF2e+hQl8QKAACQm5B0A7lVylpPJ05Ix49fdjggwE6YNWtW6u7mH35oEzTkHseO2aXAnn3Wdidv2VL69VcpOjqLD2yM1LOnlJBg1+Vu2dIV4QIAAOQqJN1AblWggG3OlK7Y2p3ivvtsAnbXXXas7zPP2H1HjmRLlHCzhQulGjWk2bMlf39p9Gg7qV6xYi548Pnz7VjulAcGAADAZUi6gdysQgV7u3nzNYuFhdncadQo2wI+d64UESHNnJkNMcItTpyQnnjCNj4fPChVrCitXm0bpl0yufjp0/bBJOnFF+0JAAAAcBmSbiA3a9jQ3i5blmZRHx+bO61dK1WtKh0+LD3wgPTgg1JsrJvjhEstWCBVry5NnGgnS+vZ067HXbu2C0/y/PO2B0VYmPTqqy58YAAAgNyFpBvIze68094uXZrugdo1a0rr10v9+0t+ftJXX9kk/JNPGOvt7Y4flx5/3A6vPnjQdnRYscL2/A4KcuGJpkyRJkywGf3nn0uFCrnwwQEAAHIXkm4gN2vQwPYXP3hQ2rEj3XfLl0967TVp3TrbOnr8uNS5s13Pec8e94WLzElOliZNkipVsrcOh+21sHGjdNttLj7Zzp3S00/b7QEDpMaNXXwCAACA3IWkG8jNgoJs4i1J332X4btHRkpr1kgjRkiBgdI339hW70GDpDNnXBsqMufXX6Xbb7ct3EeOSJUr29btUaNc3LotSXFxdszBqVN26MKAAS4+AQAAQO5D0g3kdpd2Mc8EPz+pb1/banrnnXbJqaFDbXI3fTpdzj3l5Ek7Vrt2bemnn+xk9W+84abWbUm6cMGuO/brr1Lx4raLuZ+fG04EAACQu5B0A7ldStK9bJnth5xJlSpJS5ZIM2ZIN9wgHTggPfywdH/Dv7V98T4XBYu0JCRIH3xg62PMGCkpyU52t3Wr1KePHU3gcsZIXbrYL24KFLAztZUu7YYTAQAA5D4k3UBuV6+eTZSOHrWtlFngcNjexVu32i7m+QKNhv90u8o0q6KX79uqvXtdEzIuZ4z9wqNaNalbNzu7fMWKtsv/9OlSmTJuOnFystSjh/TZZ5Kvrw3i5pvddDIAAIDch6QbyO38/e2gXylT47qvJChIGjxY+n1FrKpqq4J0VrfM6aebbpKee44lxlxt+XLpllukhx6y8+EVKya9955dfr1pUzeeOCFB6tRJGjvWfuMyfrzUvLkbTwgAAJD7kHQDeUFKF3MXJd0pyhzb6Nxurbm6JWGFxo6VypeXXn7ZNq4jc4yx1RUdLd1xh10/vUAB28Ng1y6pe3c3dSVPcfq07dbw2Wd27PZnn9kEHAAAABlC0g3kBU2a2Nvvv7cTYrnKxn+SbodDkjSv0n9UPypZZ8/aGc9vuMH2TGaZsfRLTpbmzJHq17fVtnSpzXm7d7fJ9uDB2bAs9qZNUp060tdf2/XjZs+W2rVz80kBAAByJ5JuIC+oWVMqVcou9TR/vuseNyXpfuEFqWBBBW9fp59emKavv7azap85Y7tBV6ggtW0rrV/vulPnNufPS59+KtWoId13n12qLV8+211/5077OpYo4eYgkpKkcePsPADbtklhYXb2vFat3HxiAACA3IukG8gLfHykjh3t9vjxrnvclKS7aVM7dbYkx4s9dfdNv+vnn20rbbNmtvX2yy9t4+kdd0hTp9okE7YXQL9+diK0jh2lLVuk4GDbPX/vXundd6WyZV14wsTEy9d5M8Y2r9eoIT37rF0XrkULKSZGuvVWF54cAAAg7yHpBvKKJ56wtwsXSgcPZv3xzp2Ttm+32zVrSi+9JEVE2Gm177hDjl07deed0qJFNnd77DE7+fXy5dKjj0rXX2/vsnVrBs559qz05pu2Sfjw4aw/Bw9JSpLmzZNatpTCw+362keO2Nfk9delffuk4cPd0LK9Zo2dBa9MGenJJ6X337dLgYWH2+b1336TihSR3n7bBlismIsDAAAAyHtIuoG84qabpIYNbbPz5MlZf7wtW2z2GBpqu64XKGCbtqtVkw4dsk3aO3dKsjn5p59Ku3dLAwbY5PLoUWn0aKlqVem226QPP0xHHt23r21R79hRKlnSNp2/8450/HjWn4+bJSdLK1faMe7XXy/dc4/9/sMY21Fg1izbsv3KK1JIiJuC+PhjOyP5wYO2x0P37tKECba5PSjInnz3bjtcwIe3BwAAAFfgUxWQl6S0dk+YcHkX44xK6Vpeo4ZzIjUVK2YT78qVpT/+sEnxjBnOu9xwgzR0qE0uv/5aat3atn7/9JP0zDN2CPEdd9gVqg4d+tf5Vq2yA5slqXp1e7t+vU0Qw8Lsc9uyJWvPycWSk22IffpI5crZntrvvWe/XLjuOqlXL+n33+1a2/fdZydMc2swX39tt4cPl158UbrrLhvcggV2nbfXX3djxg8AAJA35Zik+/XXX1eDBg0UFBSkkHR+KDTGaODAgSpVqpTy58+v6Oho7dixw72BAt7soYekggVtC/QPP2TtsVKS7po1U+8vUcKudVW/vnTypD3nM89IcXHOIn5+0t1320mx9++33avr1rV54fLldvKw0qWlBg2kgQOlFd+eV/ITXewXBZ062dm1Y2Ntdh4RYbu6T5xok/HWrW03ag/56y+7ulaHDrYDQJ06tkf8/v121vEOHWyO++ef0ltvSRUrZlNg69bZbL9QIZvtjxolLV5sX/wWLbJhSnQAAIC8Kcck3RcuXNBDDz2kbt26pfs+I0eO1DvvvKMPPvhAa9asUYECBdSsWTOdO3fOjZECXqxAATuNuGS7GmfF1ZJuyWab339vZwNzOGzf8QoVbJKckJCqaFiYbWxdu9b2cv7f/2y+boxt3B42TPqu6X/ls22rjgcU1zs3jtIPP0jxQSXspF8bN9qm8gcesOeaO1e65ZaLY5TdyBj7/cWUKbbhuHZt+51Dhw428f7rL/sdx4MPSl99ZXPeyZNtjuvv79bQLjd3rr1t0cLNC3wDAADgUjkm6R4yZIhefPFFRUREpKu8MUZvv/22Xn31VbVu3Vo1atTQ5MmTdejQIc2ePdu9wQLerGtXe/vFF1Jme34Yc+2kW7JZ5fDhtjW1YkU7U9hzz9mx5cOHX3EytxtvtJOrrVwpHTggffJunBbc9IIGaJgk6ekL7+qFIUV1++12hu+bbpLaPurQyB8baNGTM7R7/lYldnzcjkeeM8e2gj/xhH2wLDDGhr9ypfTJJ1L//lLz5nY4e8WKUvv2du6xDRts+Vq17Izky5bZsevTp0tt2kj582cpjKxJSbrvvdeDQQAAAOQ97hxB6FF79uxRbGysoqOjnfsKFy6sqKgorVq1Sm1TWvuAvKZePbvu8vz5NnucNi3jj3HggHTihO0nXqXKtctGR9ux1h9/LA0ebAd09+9vZ1S77Tb7c+utdkbt4GA7yHvrVpXeuFEd337bmZwffeRZNYh6SBe+t+Ok//jDfmewY4ddjsyqJGmCGob21rDk/mp0bJY0caISJk/Rxtue09Y2/RV0fREFBUkJCQ6tXVtCiYkO+fjYOeFOnpT+/tsmyim3hw7Zc5w8eeWnFxBgk+x69WwDe5Mm2bCedkbt3i1t3mxf2xYtPB0NAABAnpJrk+7Y2FhJUol/ffotUaKE89iVnD9/XucvWUA47p9xqAkJCUr4V7dYb5ESl7fGl5d5bd0MHSq/BQvkmD5diStXytStm6G7O9avl58kU7myEn18LusyfkVPPik9+qgcX30ln0mT5PPjj9KKFfbnGkx4uJLefVfB0dHqrkR1f87uP3JEiolxaMMG+7N1q0P79kmnTzv0w99V1FgzFaXVGqF+apz0vep8/z/d8P1k9dMITVJnGflJuiVDz7tMGaMKFYzCw41q1JDq1jWKiDCX9db2tur2mTVLvpKSGzZUUqFC3hfgv3jtdQPqxstRP96LuvFe1I33ygl1k97YHMZkdQrjzOvXr5/eeOONa5bZunWrKleu7Px90qRJ6tmzp06cOHHN+61cuVK33nqrDh06pFKlSjn3P/zww3I4HPryYtNYKoMHD9aQIUMu2z9lyhQFBQVd85xATlJrzBjdsGyZjlSvrpXDhl2cgTwdbpo2TVWmTNGBRo30y4svZur8QX/+qdDNm3Xdb7+pyI4dCoiPl9/p0/JJTtbpkiUVV7asjlWurD3Nmys5MDBdj2mMFB8foMOHg3T4cJCOHAnSqXg/Vdm3Ul22DteNZ+wSZr8E1tWrxUdrZ76q8vEx8vExcjiMgoISVajQBRUqdEHBwfY2JOS8SpU6rRIlTiswMDlTz9XTGgwYoGKbNmnTE09oN93LAQAAXOLMmTNq166dTp48qeDg4KuW82jSfeTIER09evSaZcqXL6+AS5qR0pt07969W+Hh4dqwYYMiIyOd+xs1aqTIyEiNGTPmive7Ukt3mTJl9Pfff1/zhfSkhIQEffvtt7rrrrvkn+2zM+FavLpu9u+XX7Vqcpw/r8RZs2RatUr3XX1btpTPkiVKGjFCyS+95Nq4kpJsN2hXu3BBPu+9J5/XXpPj1CkZf39tb9NGN3zwgfwLFHD9+a7BMX++HAsXKnnAAPf3RT9+XH5hYXIkJSlh61YpPNy953MBr75u8jjqxrtRP96LuvFe1I33ygl1ExcXp9DQ0DSTbo92Ly9WrJiKFSvmlscuV66cSpYsqaVLlzqT7ri4OK1Zs+aaM6AHBgYq8Aqtav7+/l5b2SlyQox5lVfWTXi41KOH9NZb8nv6aemXX6Trr0/7fkuXSkuWSL6+8r3/fvm6+nm563Xy95f69pUee0x69lk55s5V5S+/lNmyRY4vvri49re7ffKJ9PjjkjHy3bbNvp7uXKB7+XL7RUaVKvK/pNdQTuCV1w0kUTfejvrxXtSN96JuvJc3101648oxs5fv379fMTEx2r9/v5KSkhQTE6OYmBidOnXKWaZy5cqaNWuWJMnhcKhnz5567bXXNHfuXG3atEkdO3ZUWFiY7rvvPg89C8DLDB4s1ahh17Z68EHpkl4eV5SYKPXsabe7d7fTh+c0118vzZ6txM8/1/nCheXYvNkuEv7++7Z/ujt99JEz4ZbDYcezDxjg3nMuWmRvmUANAADAI3JM0j1w4EDVqlVLgwYN0qlTp1SrVi3VqlVLP//8s7PM9u3bdfKSKYb79OmjHj166KmnnlLdunV16tQpLVq0SPny5fPEUwC8T4EC0syZUkiItHq19MIL1y7/8cd2FuyiRaVBg7IlRLdwOGQeekjfjRmj5ObNpXPn7JcI7dpJFy64/nyJidKrr0pPPWUT7h497JJtkjRihDRvnuvPKdlzpSTdzZu75xwAAAC4phyTdE+aNEnGmMt+Gjdu7CxjjFHnzp2dvzscDg0dOlSxsbE6d+6clixZoptyYssc4E7h4dKUKbbl9cMP7Szjp09fXu7o0YutskOG2MQ7h7sQEqKk2bPtItv+/tLUqdI990iX9KDJsr17pdtvl15/3f7eu7c0Zoz0yCPS88/bfR07SvHxrjtnik2bpD//lIKCpIYNXf/4AAAASFOOSboBuFGLFtKoUTbxHj9euvlm6fvvbfKdnCxNmCBVq2YXr65SRXr6aU9H7Do+PraFf/582/K/eLFdW/zYsaw9bkKCNHq0VLOmtGqVXYN86lRp5MiLM8W/+aZ0443S8eN27LWrpbRy33GHRA8fAAAAjyDpBmD17Gkn9QoLk7Zvlxo3lgoWtC3aXbpIhw9LFStKn3/uvsnOPOmuu+zzL1pUWrNGat/efuGQUcbY7uI1akgvvSTFxUn160sxMbZ1+1IBARe7fS9dmuWncBm6lgMAAHgcSTeAi+64Q9q40Y5tLlLE7jt50rbS/u9/djx3rVqejdGdoqKk776zrcKLFtlu4OmVkGC/kIiMtF3Ut22TihWzk6f98INUrtyV79ekib1dsiTL4acSHy/9+KPdJukGAADwGI8uGQbAC4WG2uRRsuO49+61475DQjwZVfapWdN+wdC9u11irHHjq3/RkJQkrV1rX68vv7Td7yXbQ+DZZ6VXXpEKF772+VLmpdiyRYqNlUqWdM3z+O47+0VAeLhUoYJrHhMAAAAZRtIN4Oquu87+5DXdutmx3XPmSA89JHXtarvW58tnJyY7eNB2Qf/xR9t9PEWJEnZytG7dLvYUSEtoqG0dj4mxiXK7dq55DnQtBwAA8Aok3QDwbw6HXR5t3Tpp1y6pX7+rly1USGrd2o4Bj46W/DLxb7VJE5t0L13qmqT7wgXp66/tNkk3AACAR5F0A8CVhIZKK1dKEydKO3bYn4QEqVQp+xMRYZcCq1Ejc4n2pZo0sV3aly61E7GlzG6eWZ9+alvjS5S4OGYcAAAAHkHSDQBXU7asNHiw+8/TsKFN3Pftk3bvtuOwMysxURo+3G737i3lz++aGAEAAJApzF4OAJ5WsKB0yy12O6tLh33xhU3cQ0OlZ57JemwAAADIEpJuAPAGKd3As5J0JyVJr71mt3v1kgoUyHpcAAAAyBKSbgDwBnfdZW/nzZP278/cY0ybJv3+u505vXt318UGAACATCPpBgBv0KCBHdt95oz0wgsZv//Bgxfv17OnnVUdAAAAHkfSDQDewOGQ3n/fTqg2e7Zt8U6vhATp4YelI0fsmt+9e7srSgAAAGQQSTcAeIvq1aUXX7TbPXrYVu/06NPHLm9WuLA0YwYzlgMAAHgRkm4A8CYDB0qlS0t790pdu0rnzl29bFKSNHSo9Pbb9vdPPsnacmMAAABwOZJuAPAmBQtK48ZJPj7SlCl2nPeBA5eX++svqXlzadAg+/urr0qtW2dvrAAAAEiTn6cDAAD8y913S998Iz3yiPTzz1KtWnbfLbdIvr7St99KixdLJ09KQUE2Se/Y0dNRAwAA4ApIugHAG0VH24S7TRspJsZ2Hf/kk9RlqlWzy4RVreqREAEAAJA2km4A8Fblyklr1khLlkirV9uf8+elO++UmjaV6ta1s50DAADAa/FpDQC8WUCA1LKl/QEAAECOw0RqAAAAAAC4CUk3AAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CYk3QAAAAAAuAlJNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk3AAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CZ+ng7A2xljJElxcXEejuTqEhISdObMGcXFxcnf39/T4eAS1I33om68F3Xjvagb70b9eC/qxntRN94rJ9RNSo6YkjNeDUl3GuLj4yVJZcqU8XAkAAAAAABvEx8fr8KFC1/1uMOklZbnccnJyTp06JAKFSokh8Ph6XCuKC4uTmXKlNGBAwcUHBzs6XBwCerGe1E33ou68V7UjXejfrwXdeO9qBvvlRPqxhij+Ph4hYWFycfn6iO3aelOg4+Pj0qXLu3pMNIlODjYa/8g8zrqxntRN96LuvFe1I13o368F3Xjvagb7+XtdXOtFu4UTKQGAAAAAICbkHQDAAAAAOAmJN25QGBgoAYNGqTAwEBPh4J/oW68F3Xjvagb70XdeDfqx3tRN96LuvFeualumEgNAAAAAAA3oaUbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATku4c4PXXX1eDBg0UFBSkkJCQdN3HGKOBAweqVKlSyp8/v6Kjo7Vjx45UZY4dO6b27dsrODhYISEh6tKli06dOuWGZ5C7ZfR13Lt3rxwOxxV/pk+f7ix3peNTp07NjqeUa2Tmb7xx48aXve7PPPNMqjL79+9Xq1atFBQUpOLFi6t3795KTEx051PJdTJaN8eOHVOPHj1UqVIl5c+fXzfccIOef/55nTx5MlU5rpuMGzt2rG688Ubly5dPUVFRWrt27TXLT58+XZUrV1a+fPkUERGhBQsWpDqenvcfpE9G6uajjz5Sw4YNVaRIERUpUkTR0dGXle/cufNl10fz5s3d/TRypYzUzaRJky573fPly5eqDNeN62Skbq70nu9wONSqVStnGa4b11ixYoXuuecehYWFyeFwaPbs2WneZ/ny5apdu7YCAwNVoUIFTZo06bIyGX0P8xgDrzdw4EAzatQo89JLL5nChQun6z4jRowwhQsXNrNnzzYbN2409957rylXrpw5e/ass0zz5s1NzZo1zerVq80PP/xgKlSoYB599FE3PYvcK6OvY2Jiovnzzz9T/QwZMsQULFjQxMfHO8tJMhMnTkxV7tL6Q9oy8zfeqFEj07Vr11Sv+8mTJ53HExMTTfXq1U10dLTZsGGDWbBggQkNDTUvv/yyu59OrpLRutm0aZNp06aNmTt3rtm5c6dZunSpqVixonnggQdSleO6yZipU6eagIAAM2HCBLNlyxbTtWtXExISYg4fPnzF8j/99JPx9fU1I0eONL/99pt59dVXjb+/v9m0aZOzTHref5C2jNZNu3btzNixY82GDRvM1q1bTefOnU3hwoXNH3/84SzTqVMn07x581TXx7Fjx7LrKeUaGa2biRMnmuDg4FSve2xsbKoyXDeukdG6OXr0aKp62bx5s/H19TUTJ050luG6cY0FCxaY/v37m5kzZxpJZtasWdcsv3v3bhMUFGReeukl89tvv5l3333X+Pr6mkWLFjnLZLS+PYmkOweZOHFiupLu5ORkU7JkSfPmm2869504ccIEBgaaL774whhjzG+//WYkmXXr1jnLLFy40DgcDnPw4EGXx55buep1jIyMNE888USqfen5h4Sry2zdNGrUyLzwwgtXPb5gwQLj4+OT6gPTuHHjTHBwsDl//rxLYs/tXHXdTJs2zQQEBJiEhATnPq6bjKlXr57p3r278/ekpCQTFhZm/vvf/16x/MMPP2xatWqVal9UVJR5+umnjTHpe/9B+mS0bv4tMTHRFCpUyHzyySfOfZ06dTKtW7d2dah5TkbrJq3Pb1w3rpPV62b06NGmUKFC5tSpU859XDeul5736j59+phq1aql2vfII4+YZs2aOX/Pan1nJ7qX50J79uxRbGysoqOjnfsKFy6sqKgorVq1SpK0atUqhYSEqE6dOs4y0dHR8vHx0Zo1a7I95pzKFa/j+vXrFRMToy5dulx2rHv37goNDVW9evU0YcIEGVb4S7es1M3nn3+u0NBQVa9eXS+//LLOnDmT6nEjIiJUokQJ575mzZopLi5OW7Zscf0TyYVc9f/n5MmTCg4Olp+fX6r9XDfpc+HCBa1fvz7Ve4WPj4+io6Od7xX/tmrVqlTlJfv3n1I+Pe8/SFtm6ubfzpw5o4SEBBUtWjTV/uXLl6t48eKqVKmSunXrpqNHj7o09twus3Vz6tQplS1bVmXKlFHr1q1TvV9w3biGK66b8ePHq23btipQoECq/Vw32S+t9xtX1Hd28ku7CHKa2NhYSUqVFKT8nnIsNjZWxYsXT3Xcz89PRYsWdZZB2lzxOo4fP15VqlRRgwYNUu0fOnSo7rzzTgUFBWnx4sV69tlnderUKT3//PMuiz83y2zdtGvXTmXLllVYWJh+/fVX9e3bV9u3b9fMmTOdj3ulayvlGNLmiuvm77//1rBhw/TUU0+l2s91k35///23kpKSrvj3vG3btive52p//5e+t6Tsu1oZpC0zdfNvffv2VVhYWKoPpM2bN1ebNm1Urlw57dq1S6+88opatGihVatWydfX16XPIbfKTN1UqlRJEyZMUI0aNXTy5Em99dZbatCggbZs2aLSpUtz3bhIVq+btWvXavPmzRo/fnyq/Vw3nnG195u4uDidPXtWx48fz/L/yexE0u0h/fr10xtvvHHNMlu3blXlypWzKSJcKr31k1Vnz57VlClTNGDAgMuOXbqvVq1aOn36tN588808nzy4u24uTeIiIiJUqlQpNWnSRLt27VJ4eHimHzcvyK7rJi4uTq1atVLVqlU1ePDgVMe4bgBpxIgRmjp1qpYvX55qwq62bds6tyMiIlSjRg2Fh4dr+fLlatKkiSdCzRPq16+v+vXrO39v0KCBqlSpog8//FDDhg3zYGS41Pjx4xUREaF69eql2s91A1cg6faQXr16qXPnztcsU758+Uw9dsmSJSVJhw8fVqlSpZz7Dx8+rMjISGeZv/76K9X9EhMTdezYMef987L01k9WX8cZM2bozJkz6tixY5plo6KiNGzYMJ0/f16BgYFpls+tsqtuUkRFRUmSdu7cqfDwcJUsWfKymTEPHz4sSXn+2smOuomPj1fz5s1VqFAhzZo1S/7+/tcsz3VzdaGhofL19XX+/aY4fPjwVeuhZMmS1yyfnvcfpC0zdZPirbfe0ogRI7RkyRLVqFHjmmXLly+v0NBQ7dy5k+QhnbJSNyn8/f1Vq1Yt7dy5UxLXjatkpW5Onz6tqVOnaujQoWmeh+sme1zt/SY4OFj58+eXr69vlq/F7MSYbg8pVqyYKleufM2fgICATD12uXLlVLJkSS1dutS5Ly4uTmvWrHF+01q/fn2dOHFC69evd5b57rvvlJyc7Ewy8rL01k9WX8fx48fr3nvvVbFixdIsGxMToyJFiuT5xCG76iZFTEyMJDk/CNWvX1+bNm1KlTR+++23Cg4OVtWqVV3zJHMod9dNXFycmjZtqoCAAM2dO/eyJXeuhOvm6gICAnTzzTeneq9ITk7W0qVLU7XKXap+/fqpykv27z+lfHref5C2zNSNJI0cOVLDhg3TokWLUs2ZcDV//PGHjh49mirRw7Vltm4ulZSUpE2bNjlfd64b18hK3UyfPl3nz5/XY489luZ5uG6yR1rvN664FrOVp2dyQ9r27dtnNmzY4FxWasOGDWbDhg2plpeqVKmSmTlzpvP3ESNGmJCQEDNnzhzz66+/mtatW19xybBatWqZNWvWmB9//NFUrFiRJcMyIa3X8Y8//jCVKlUya9asSXW/HTt2GIfDYRYuXHjZY86dO9d89NFHZtOmTWbHjh3m/fffN0FBQWbgwIFufz65SUbrZufOnWbo0KHm559/Nnv27DFz5swx5cuXN7fffrvzPilLhjVt2tTExMSYRYsWmWLFirFkWAZltG5OnjxpoqKiTEREhNm5c2eqpVsSExONMVw3mTF16lQTGBhoJk2aZH777Tfz1FNPmZCQEOfs/B06dDD9+vVzlv/pp5+Mn5+feeutt8zWrVvNoEGDrrhkWFrvP0hbRutmxIgRJiAgwMyYMSPV9ZHyWSE+Pt785z//MatWrTJ79uwxS5YsMbVr1zYVK1Y0586d88hzzKkyWjdDhgwx33zzjdm1a5dZv369adu2rcmXL5/ZsmWLswzXjWtktG5S3HbbbeaRRx65bD/XjevEx8c7cxhJZtSoUWbDhg1m3759xhhj+vXrZzp06OAsn7JkWO/evc3WrVvN2LFjr7hk2LXq25uQdOcAnTp1MpIu+1m2bJmzjP5ZmzZFcnKyGTBggClRooQJDAw0TZo0Mdu3b0/1uEePHjWPPvqoKViwoAkODjaPP/54qkQe6ZPW67hnz57L6ssYY15++WVTpkwZk5SUdNljLly40ERGRpqCBQuaAgUKmJo1a5oPPvjgimVxdRmtm/3795vbb7/dFC1a1AQGBpoKFSqY3r17p1qn2xhj9u7da1q0aGHy589vQkNDTa9evVItW4W0ZbRuli1bdsX/g5LMnj17jDFcN5n17rvvmhtuuMEEBASYevXqmdWrVzuPNWrUyHTq1ClV+WnTppmbbrrJBAQEmGrVqpn58+enOp6e9x+kT0bqpmzZsle8PgYNGmSMMebMmTOmadOmplixYsbf39+ULVvWdO3a1Ss/nOYEGambnj17OsuWKFHCtGzZ0vzyyy+pHo/rxnUy+j9t27ZtRpJZvHjxZY/FdeM6V3sfT6mPTp06mUaNGl12n8jISBMQEGDKly+fKtdJca369iYOY1hLBQAAAAAAd2BMNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk3AAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CYk3QAA4JqOHDmikiVLavjw4c59K1euVEBAgJYuXerByAAA8H4OY4zxdBAAAMC7LViwQPfdd59WrlypSpUqKTIyUq1bt9aoUaM8HRoAAF6NpBsAAKRL9+7dtWTJEtWpU0ebNm3SunXrFBgY6OmwAADwaiTdAAAgXc6ePavq1avrwIEDWr9+vSIiIjwdEgAAXo8x3QAAIF127dqlQ4cOKTk5WXv37vV0OAAA5Ai0dAMAgDRduHBB9erVU2RkpCpVqqS3335bmzZtUvHixT0dGgAAXo2kGwAApKl3796aMWOGNm7cqIIFC6pRo0YqXLiw5s2b5+nQAADwanQvBwAA17R8+XK9/fbb+vTTTxUcHCwfHx99+umn+uGHHzRu3DhPhwcAgFejpRsAAAAAADehpRsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3ISkGwAAAAAANyHpBgAAAADATUi6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANzk/wHsfg8eqRbobQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "# Plotting\n", "X = torch.linspace(-1, 1, 300, dtype=torch.float64).reshape(-1, 1)\n", @@ -2177,25 +1413,13 @@ "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Matrix: [[ 1.+0.j 0.-1.89961775j 0.+0.22658997j 0.-0.40975701j]\n", - " [ 0.+1.89961775j 0.+0.j 0.+0.41457242j 0.-0.29266821j]\n", - " [ 0.-0.22658997j 0.-0.41457242j 0.+0.j 0.+0.02567953j]\n", - " [ 0.+0.40975701j 0.+0.29266821j 0.-0.02567953j -1.+0.j ]]\n", - "Eigenvalues: [-1.71251902 -0.88035468 0.05090306 2.54197065]\n" - ] - } - ], "source": [ "import numpy as np\n", "\n", @@ -2220,39 +1444,13 @@ "# Print the eigenvalues\n", "print(\"Matrix:\", H)\n", "print(\"Eigenvalues:\", eigenvalues)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/scipy/optimize/_differentiable_functions.py:107: ComplexWarning: Casting complex values to real discards the imaginary part\n", - " self.x = np.atleast_1d(x0).astype(float)\n", - "/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/scipy/optimize/_differentiable_functions.py:243: ComplexWarning: Casting complex values to real discards the imaginary part\n", - " self.x = np.atleast_1d(x).astype(float)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization failed.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/software/anaconda3/envs/QuLearn/lib/python3.11/site-packages/scipy/optimize/_differentiable_functions.py:243: ComplexWarning: Casting complex values to real discards the imaginary part\n", - " self.x = np.atleast_1d(x).astype(float)\n" - ] - } - ], "source": [ "import numpy as np\n", "import scipy.optimize\n", @@ -2324,21 +1522,13 @@ " print(D_optimal)\n", "else:\n", " print(\"Optimization failed.\")" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{1.61803398874989: 1, -0.618033988749895: 1, 0: 1, -1.00000000000000: 1}\n" - ] - } - ], "source": [ "import sympy as sp\n", "\n", @@ -2362,29 +1552,13 @@ "\n", "# Output the eigenvalues\n", "print(eigenvalues)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Eigenvalues: [ 1. -1. 1. -1.]\n", - "Eigenvectors: [[-0. +0.j -0. +0.j 1. +0.j\n", - " 0. +0.j ]\n", - " [ 0.70710678+0.j 0.70710678+0.j 0. +0.j\n", - " 0. +0.j ]\n", - " [-0. -0.70710678j -0. +0.70710678j 0. +0.j\n", - " 0. +0.j ]\n", - " [-0. +0.j -0. +0.j 0. +0.j\n", - " 1. +0.j ]]\n" - ] - } - ], "source": [ "import numpy as np\n", "\n", @@ -2408,39 +1582,13 @@ "# Output the eigenvalues and eigenvectors\n", "print(\"Eigenvalues:\", np.real(eigenvalues))\n", "print(\"Eigenvectors:\", eigenvectors)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimized values for the imaginary parts of c1 to c6: [-2.14680367e-08 -2.02883951e-08 8.84280981e-10 9.99999993e-01\n", - " -1.96976737e-08 -2.11726760e-08]\n", - "Cost value: 1.8154602478292675e-15\n", - "Unitary: [[ 7.65580316e-01+0.00000000e+00j 6.43340330e-01+0.00000000e+00j\n", - " 8.03059170e-09+0.00000000e+00j 6.69081704e-09+0.00000000e+00j]\n", - " [-3.12458146e-01+3.30625615e-01j 3.71827787e-01-3.93447209e-01j\n", - " -3.58264593e-01-4.06936451e-01j -3.28064884e-01-3.13723825e-01j]\n", - " [ 3.30625607e-01+3.12458154e-01j -3.93447216e-01-3.71827780e-01j\n", - " 4.06936456e-01-3.58264585e-01j 3.13723818e-01-3.28064892e-01j]\n", - " [-6.56406532e-09+8.42710728e-11j 7.81129205e-09-7.87540829e-10j\n", - " 6.38767739e-01+6.38293834e-02j -7.66675112e-01-1.05289402e-02j]]\n", - "Check: [[ 1.00000000e+00+0.00000000e+00j 1.38777878e-16+3.32759494e-18j\n", - " 1.38777878e-16-8.50014503e-17j 2.77555756e-17-5.72458747e-17j]\n", - " [ 1.38777878e-16-3.32759494e-18j 1.00000000e+00+0.00000000e+00j\n", - " -1.66533454e-16+4.51028104e-17j -2.77555756e-17+3.98986399e-17j]\n", - " [ 1.38777878e-16+8.50014503e-17j -1.66533454e-16-4.51028104e-17j\n", - " 1.00000000e+00+0.00000000e+00j -2.49800181e-16+9.71445147e-17j]\n", - " [ 2.77555756e-17+5.72458747e-17j -2.77555756e-17-3.98986399e-17j\n", - " -2.49800181e-16-9.71445147e-17j 1.00000000e+00+0.00000000e+00j]]\n" - ] - } - ], "source": [ "import numpy as np\n", "from scipy.optimize import minimize\n", @@ -2499,28 +1647,13 @@ "check = np.dot(U.conj().T, U)\n", "print(\"Unitary:\", U)\n", "print(\"Check:\", check)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimized values for the imaginary parts of c1 to c28: [ 3.97240827e-07 2.21497248e-08 -2.18192295e-07 1.34687411e-08\n", - " -1.20533485e-07 6.00647559e-03 1.32884085e-03 5.15256883e-07\n", - " -3.02343867e-08 -1.37517176e-06 2.86333692e-07 -2.77546457e-04\n", - " 6.00659574e-03 6.70015841e-01 4.84930268e-06 7.42347073e-01\n", - " 3.05031464e-07 -1.26732259e-07 7.42346847e-01 -4.77853558e-06\n", - " -1.35762768e-06 1.60213403e-08 6.70015627e-01 -2.92447307e-08\n", - " -2.90785382e-07 4.64011657e-07 6.02180525e-09 -5.82713674e-07]\n", - "Cost value: 1.4152096399592191e-09\n" - ] - } - ], "source": [ "import numpy as np\n", "from scipy.optimize import minimize\n", @@ -2574,58 +1707,25 @@ "optimized_c = result.x\n", "print(\"Optimized values for the imaginary parts of c1 to c28:\", optimized_c)\n", "print(\"Cost value:\", result.fun)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 1.+0.00000000e+00j 0.+3.97240827e-07j 0.+2.21497248e-08j\n", - " 0.-2.18192295e-07j 0.+1.34687411e-08j 0.-1.20533485e-07j\n", - " 0.+6.00647559e-03j 0.+1.32884085e-03j]\n", - " [ 0.-3.97240827e-07j 1.+0.00000000e+00j 0.+5.15256883e-07j\n", - " 0.-3.02343867e-08j 0.-1.37517176e-06j 0.+2.86333692e-07j\n", - " 0.-2.77546457e-04j 0.+6.00659574e-03j]\n", - " [ 0.-2.21497248e-08j 0.-5.15256883e-07j 0.+0.00000000e+00j\n", - " 0.+6.70015841e-01j 0.+4.84930268e-06j 0.+7.42347073e-01j\n", - " 0.+3.05031464e-07j 0.-1.26732259e-07j]\n", - " [ 0.+2.18192295e-07j 0.+3.02343867e-08j 0.-6.70015841e-01j\n", - " 0.+0.00000000e+00j 0.+7.42346847e-01j 0.-4.77853558e-06j\n", - " 0.-1.35762768e-06j 0.+1.60213403e-08j]\n", - " [ 0.-1.34687411e-08j 0.+1.37517176e-06j 0.-4.84930268e-06j\n", - " 0.-7.42346847e-01j 0.+0.00000000e+00j 0.+6.70015627e-01j\n", - " 0.-2.92447307e-08j 0.-2.90785382e-07j]\n", - " [ 0.+1.20533485e-07j 0.-2.86333692e-07j 0.-7.42347073e-01j\n", - " 0.+4.77853558e-06j 0.-6.70015627e-01j 0.+0.00000000e+00j\n", - " 0.+4.64011657e-07j 0.+6.02180525e-09j]\n", - " [ 0.-6.00647559e-03j 0.+2.77546457e-04j 0.-3.05031464e-07j\n", - " 0.+1.35762768e-06j 0.+2.92447307e-08j 0.-4.64011657e-07j\n", - " -1.+0.00000000e+00j 0.-5.82713674e-07j]\n", - " [ 0.-1.32884085e-03j 0.-6.00659574e-03j 0.+1.26732259e-07j\n", - " 0.-1.60213403e-08j 0.+2.90785382e-07j 0.-6.02180525e-09j\n", - " 0.+5.82713674e-07j -1.+0.00000000e+00j]]\n", - "[-1.00002176 -1.00001531 -1.0000002 -0.99999983 0.99999983 1.0000002\n", - " 1.00001533 1.00002173]\n" - ] - } - ], "source": [ "H = construct_matrix(optimized_c)\n", "print(H)\n", "eigs, U = np.linalg.eigh(H)\n", "print(eigs)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, - "outputs": [], "source": [ "import numpy as np\n", "import pennylane as qml\n", @@ -2641,13 +1741,13 @@ "# Example usage\n", "U1 = generate_random_unitary(num_qubits)\n", "U2 = generate_random_unitary(num_qubits)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "\n", @@ -2723,23 +1823,13 @@ " qml.Hadamard(num_qubits-1)\n", " I0 = qml.Projector(basis_state=[0]*(num_qubits-1), wires=list(range(0, num_qubits-1))) \n", " return qml.expval(I0 @ qml.PauliZ(num_qubits-1))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True\n", - "True\n", - "tensor(-0.0010, dtype=torch.float64, grad_fn=)\n" - ] - } - ], "source": [ "import pennylane as qml\n", "import torch\n", @@ -2765,120 +1855,13 @@ "print(initlayer_weights.requires_grad)\n", "print(cost.requires_grad)\n", "print(cost)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Step 0 cost = -0.0344344\n", - "Step 1 cost = -0.1233621\n", - "Step 2 cost = -0.3059672\n", - "Step 3 cost = -0.5988825\n", - "Step 4 cost = -0.8126607\n", - "Step 5 cost = -1.1314695\n", - "Step 6 cost = -1.7148277\n", - "Step 7 cost = -2.2287950\n", - "Step 8 cost = -2.7610040\n", - "Step 9 cost = -3.3439719\n", - "Step 10 cost = -3.5235141\n", - "Step 11 cost = -3.5696547\n", - "Step 12 cost = -3.8151699\n", - "Step 13 cost = -3.8460813\n", - "Step 14 cost = -4.1434242\n", - "Step 15 cost = -4.0593428\n", - "Step 16 cost = -4.2144792\n", - "Step 17 cost = -4.4050545\n", - "Step 18 cost = -4.6152069\n", - "Step 19 cost = -4.8191031\n", - "Step 20 cost = -5.1110369\n", - "Step 21 cost = -5.6183837\n", - "Step 22 cost = -6.0586526\n", - "Step 23 cost = -6.4535227\n", - "Step 24 cost = -6.9916346\n", - "Step 25 cost = -7.2834748\n", - "Step 26 cost = -7.5450682\n", - "Step 27 cost = -7.2421023\n", - "Step 28 cost = -9.2416178\n", - "Step 29 cost = -9.3476557\n", - "Step 30 cost = -8.5366928\n", - "Step 31 cost = -10.2625045\n", - "Step 32 cost = -9.1719756\n", - "Step 33 cost = -9.8920038\n", - "Step 34 cost = -10.1591320\n", - "Step 35 cost = -9.8664078\n", - "Step 36 cost = -10.6620375\n", - "Step 37 cost = -10.1642827\n", - "Step 38 cost = -10.8350436\n", - "Step 39 cost = -10.5358955\n", - "Step 40 cost = -10.7757793\n", - "Step 41 cost = -10.7334007\n", - "Step 42 cost = -10.8827956\n", - "Step 43 cost = -10.8056472\n", - "Step 44 cost = -11.1136666\n", - "Step 45 cost = -10.9828462\n", - "Step 46 cost = -11.1887404\n", - "Step 47 cost = -11.2844386\n", - "Step 48 cost = -11.2215815\n", - "Step 49 cost = -11.3767321\n", - "Step 50 cost = -11.3723748\n", - "Step 51 cost = -11.3859645\n", - "Step 52 cost = -11.4388293\n", - "Step 53 cost = -11.5227217\n", - "Step 54 cost = -11.5015141\n", - "Step 55 cost = -11.4776323\n", - "Step 56 cost = -11.5253672\n", - "Step 57 cost = -11.5249588\n", - "Step 58 cost = -11.4869767\n", - "Step 59 cost = -11.5258163\n", - "Step 60 cost = -11.5623334\n", - "Step 61 cost = -11.5244025\n", - "Step 62 cost = -11.5447513\n", - "Step 63 cost = -11.5748977\n", - "Step 64 cost = -11.5872955\n", - "Step 65 cost = -11.5541539\n", - "Step 66 cost = -11.5907788\n", - "Step 67 cost = -11.5967359\n", - "Step 68 cost = -11.6153038\n", - "Step 69 cost = -11.5950834\n", - "Step 70 cost = -11.6107133\n", - "Step 71 cost = -11.6220808\n", - "Step 72 cost = -11.6366193\n", - "Step 73 cost = -11.6189537\n", - "Step 74 cost = -11.6230058\n", - "Step 75 cost = -11.6237361\n", - "Step 76 cost = -11.6349230\n", - "Step 77 cost = -11.6373382\n", - "Step 78 cost = -11.6318095\n", - "Step 79 cost = -11.6311878\n", - "Step 80 cost = -11.6316378\n", - "Step 81 cost = -11.6410019\n", - "Step 82 cost = -11.6455987\n", - "Step 83 cost = -11.6495897\n", - "Step 84 cost = -11.6488941\n", - "Step 85 cost = -11.6495407\n", - "Step 86 cost = -11.6465290\n", - "Step 87 cost = -11.6489104\n", - "Step 88 cost = -11.6495874\n", - "Step 89 cost = -11.6517066\n", - "Step 90 cost = -11.6545979\n", - "Step 91 cost = -11.6551771\n", - "Step 92 cost = -11.6564259\n", - "Step 93 cost = -11.6575783\n", - "Step 94 cost = -11.6586536\n", - "Step 95 cost = -11.6598739\n", - "Step 96 cost = -11.6595623\n", - "Step 97 cost = -11.6600508\n", - "Step 98 cost = -11.6586958\n", - "Step 99 cost = -11.6554679\n" - ] - } - ], "source": [ "import torch\n", "steps = 100\n", @@ -2894,27 +1877,13 @@ " opt.step(closure)\n", " cost = cost_poisson(initlayer_weights, weights)\n", " print(\"Step {:3d} cost = {:9.7f}\".format(it, cost))" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([ 0.0541+0.j, 0.1001+0.j, 0.1412+0.j, 0.1726+0.j, 0.2013+0.j, 0.2228+0.j,\n", - " 0.2374+0.j, 0.2457+0.j, 0.2452+0.j, 0.2386+0.j, 0.2246+0.j, 0.2016+0.j,\n", - " 0.1729+0.j, 0.1391+0.j, 0.0945+0.j, 0.0452+0.j, -0.0152+0.j, -0.0692+0.j,\n", - " -0.1141+0.j, -0.1551+0.j, -0.1871+0.j, -0.2054+0.j, -0.2183+0.j, -0.2243+0.j,\n", - " -0.2320+0.j, -0.2261+0.j, -0.2129+0.j, -0.1922+0.j, -0.1673+0.j, -0.1344+0.j,\n", - " -0.0960+0.j, -0.0490+0.j], dtype=torch.complex128,\n", - " grad_fn=)\n" - ] - } - ], "source": [ "import pennylane as qml\n", "\n", @@ -2925,13 +1894,13 @@ "\n", "psi_vec = -extract_psi(initlayer_weights, weights, num_qubits, num_layers)\n", "print(psi_vec)" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 171, "metadata": {}, - "outputs": [], "source": [ "import pennylane as qml\n", "import numpy as np\n", @@ -2967,491 +1936,13 @@ " #print(\"Basis\", Ub)\n", " \n", " return result" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 172, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x tensor([-1.], dtype=torch.float64)\n", - "state tensor([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " dtype=torch.complex128)\n", - "0: ──I─┤ State\n", - "1: ──I─┤ State\n", - "2: ──I─┤ State\n", - "3: ──I─┤ State\n", - "4: ──I─┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([-0.7778], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 2\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([-0.7778], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 2\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "x tensor([-0.7778], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.4472+0.j, 0.8944+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([-0.7778], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 2\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "0: ──U(M0)─┤ State\n", - "1: ──U(M0)─┤ State\n", - "2: ──U(M0)─┤ State\n", - "3: ──U(M1)─┤ State\n", - "4: ──U(M2)─┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([-0.5556], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 6\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([-0.5556], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 6\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "x tensor([-0.5556], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.8944+0.j,\n", - " 0.4472+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([-0.5556], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 6\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "0: ──U(M0)─┤ State\n", - "1: ──U(M0)─┤ State\n", - "2: ──U(M3)─┤ State\n", - "3: ──U(M1)─┤ State\n", - "4: ──U(M2)─┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([-0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([0.], dtype=torch.float64)\n", - "position = 10\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([-0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([0.], dtype=torch.float64)\n", - "position = 10\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "x tensor([-0.3333], dtype=torch.float64)\n", - "state tensor([0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([-0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([0.], dtype=torch.float64)\n", - "position = 10\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "0: ──U(M1)─┤ State\n", - "1: ──U(M2)─┤ State\n", - "2: ──U(M1)─┤ State\n", - "3: ──U(M0)─┤ State\n", - "4: ──U(M3)─┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([-0.1111], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 13\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([-0.1111], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 13\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "x tensor([-0.1111], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.4472+0.j,\n", - " 0.8944+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([-0.1111], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 13\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "0: ──────────────────────╭U(M2)─┤ State\n", - "1: ───────────────╭U(M1)─╰U(M2)─┤ State\n", - "2: ────────╭U(M1)─╰U(M1)────────┤ State\n", - "3: ─╭U(M0)─╰U(M1)───────────────┤ State\n", - "4: ─╰U(M0)──────────────────────┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([0.1111], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 17\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([0.1111], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 17\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "x tensor([0.1111], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.8944+0.j, 0.4472+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([0.1111], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 17\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "0: ──────────────────────╭U(M3)─┤ State\n", - "1: ───────────────╭U(M2)─╰U(M3)─┤ State\n", - "2: ────────╭U(M1)─╰U(M2)────────┤ State\n", - "3: ─╭U(M0)─╰U(M1)───────────────┤ State\n", - "4: ─╰U(M0)──────────────────────┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([1.8319e-15], dtype=torch.float64)\n", - "position = 21\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([1.8319e-15], dtype=torch.float64)\n", - "position = 21\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "x tensor([0.3333], dtype=torch.float64)\n", - "state tensor([0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 1.0000e+00+0.j, 1.8319e-15+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j, 0.0000e+00+0.j,\n", - " 0.0000e+00+0.j, 0.0000e+00+0.j], dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([0.3333], dtype=torch.float64)\n", - "first = tensor([1.], dtype=torch.float64)\n", - "second = tensor([1.8319e-15], dtype=torch.float64)\n", - "position = 21\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 2 1\n", - "\n", - "+++++++++++++\n", - "0: ──────────────────────╭U(M2)─┤ State\n", - "1: ───────────────╭U(M1)─╰U(M2)─┤ State\n", - "2: ────────╭U(M1)─╰U(M1)────────┤ State\n", - "3: ─╭U(M0)─╰U(M1)───────────────┤ State\n", - "4: ─╰U(M0)──────────────────────┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([0.5556], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 24\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([0.5556], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 24\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "x tensor([0.5556], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.4472+0.j, 0.8944+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([0.5556], dtype=torch.float64)\n", - "first = tensor([0.4472], dtype=torch.float64)\n", - "second = tensor([0.8944], dtype=torch.float64)\n", - "position = 24\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "0: ──U(M3)─┤ State\n", - "1: ──U(M1)─┤ State\n", - "2: ──U(M0)─┤ State\n", - "3: ──U(M0)─┤ State\n", - "4: ──U(M2)─┤ State\n", - "==============\n", - "+++++++++++++\n", - "x = tensor([0.7778], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 28\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "+++++++++++++\n", - "x = tensor([0.7778], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 28\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "x tensor([0.7778], dtype=torch.float64)\n", - "state tensor([0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j, 0.0000+0.j,\n", - " 0.8944+0.j, 0.4472+0.j, 0.0000+0.j, 0.0000+0.j],\n", - " dtype=torch.complex128)\n", - "+++++++++++++\n", - "x = tensor([0.7778], dtype=torch.float64)\n", - "first = tensor([0.8944], dtype=torch.float64)\n", - "second = tensor([0.4472], dtype=torch.float64)\n", - "position = 28\n", - "mps tree = 5D TT tensor:\n", - "\n", - " 2 2 2 2 2\n", - " | | | | |\n", - " (0) (1) (2) (3) (4)\n", - " / \\ / \\ / \\ / \\ / \\\n", - "1 1 1 1 1 1\n", - "\n", - "+++++++++++++\n", - "0: ──U(M3)─┤ State\n", - "1: ──U(M0)─┤ State\n", - "2: ──U(M0)─┤ State\n", - "3: ──U(M1)─┤ State\n", - "4: ──U(M2)─┤ State\n", - "==============\n", - "x tensor([1.], dtype=torch.float64)\n", - "state tensor([0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n", - " dtype=torch.complex128)\n", - "0: ──X─┤ State\n", - "1: ──X─┤ State\n", - "2: ──X─┤ State\n", - "3: ──X─┤ State\n", - "4: ──X─┤ State\n", - "==============\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2oklEQVR4nOzdd1zU9R/A8df3jmMvUZZKglvcKzU198htmVaaaWbrZ1ZmmTbUyszKyqajHDly5R6oOUvNrbkHoThARJDNze/vjwsKAQUFDo738/Hg8fC+9/1+vu/PHXLv+0xFVVUVIYQQQohSSGPrAIQQQgghbEUSISGEEEKUWpIICSGEEKLUkkRICCGEEKWWJEJCCCGEKLUkERJCCCFEqSWJkBBCCCFKLUmEhBBCCFFqSSIkhBBCiFJLEiFRorVt25a2bdsWaJkXL15EURTmzp1boOUWtLCwMBo0aICzszOKonDr1i1bh1SgduzYgaIoLF++3Nah3JOM36PPP//c1qHYFUVRmDBhwh3PmTt3LoqiZP7ExsYWTXD3wdvbOzPeESNG2DqcUkUSIVGkjh8/Tr9+/ahUqRLOzs5UqFCBTp068c033xR5LIsWLeKrr74q8vsWhJs3b9K/f39cXFz47rvvmD9/Pm5ubne97vvvv0dRFJo1a1YEUZYOGzZsuOsHc2G7nw/Pkvz/4G6+/PJL5s+fj4eHx13P3b9/Py+//DKNGzdGp9OhKMp93z8qKoq3336bdu3a4eHhgaIo7NixI8dzZ86cyfz58+/7niL/JBESRWbPnj00adKEY8eOMXz4cL799luee+45NBoN06ZNK/J4cvsAqFSpEmlpaTz99NNFHlNeHThwgKSkJD788EOGDRvGoEGD0Ol0d71u4cKFBAcHs3//fi5cuFAEkdq/DRs2MHHiRFuHcc/sORHq06cPgwYNwsnJ6a7nbtiwgR9//BFFUahcuXKB3P/s2bNMmTKFq1evUrdu3Tue279/fwYNGlQg9xX542DrAETpMWnSJLy8vDhw4ADe3t5ZnouJibFNUDlQFAVnZ2dbh3FHGa/X7a/jnURERLBnzx5WrFjBCy+8wMKFCxk/fnwhRShKM4vFgsFgKPb/j/7rpZdeYsyYMbi4uDBixAjOnTt332U2btyYmzdv4uPjw/Lly3n88ccLIFJR0KRFSBSZ8PBwateuneOHt5+fX5bHJpOJDz/8kCpVquDk5ERwcDDjxo1Dr9ff8R4ZYwMuXryY5XjGeJOMZum2bduyfv16Ll26lNkvHxwcDOQ+Rmjbtm20bt0aNzc3vL296d27N6dPn85yzoQJE1AUhQsXLjBkyBC8vb3x8vJi6NChpKam3vU1Ali2bBmNGzfGxcWFcuXKMWjQIK5evZr5fNu2bXnmmWcAaNq0KYqiMGTIkLuWu3DhQsqUKUP37t3p168fCxcuzHbO7a9TBluOmzKbzYwbN46AgADc3Nzo1asXly9fztO1R44c4ZFHHsHT0xN3d3c6dOjAn3/+meWcjN+Z3bt3M2rUKHx9fXFzc6Nv377cuHHjjuUPGTKE7777DiDLmJTbzZw5M/N3uWnTphw4cCDbOWfOnKFfv374+Pjg7OxMkyZNWLNmTZ7qebuM93Hp0qVMmjSJihUr4uzsTIcOHbK0BN7p/wGAXq9n/PjxVK1aFScnJ4KCgnjrrbey/T/M6JpbuHAhtWvXxsnJibVr1+Lj48PQoUOzxZeYmIizszOjR48GwGAw8P7779O4cWO8vLxwc3OjdevWbN++/Z7qfy/8/f1xcXEp0DI9PDzw8fEp0DJFwZMWIVFkKlWqxN69ezlx4gR16tS547nPPfcc8+bNo1+/frzxxhvs27ePyZMnc/r0aVauXHnfsbzzzjskJCRw5coVvvzySwDc3d1zPf+3337jkUceoXLlykyYMIG0tDS++eYbWrZsyeHDh7N8eIC1mTskJITJkydz+PBhfvzxR/z8/JgyZcod45o7dy5Dhw6ladOmTJ48mevXrzNt2jR2797NkSNH8Pb25p133qFGjRrMnDmTDz74gJCQEKpUqXLXOi9cuJBHH30UR0dHnnzySX744QcOHDhA06ZN7/6C5ZHFYiEuLi5P53p5eeWpO2/SpEkoisKYMWOIiYnhq6++omPHjhw9evSOH1wnT56kdevWeHp68tZbb6HT6ZgxYwZt27Zl586d2cZJvfLKK5QpU4bx48dz8eJFvvrqK0aMGMGSJUtyvccLL7zAtWvX2LJlS67jOxYtWkRSUhIvvPACiqLw6aef8uijj/L3339n1v/kyZO0bNmSChUq8Pbbb+Pm5sbSpUvp06cPv/76K3379r3r65STTz75BI1Gw+jRo0lISODTTz9l4MCB7Nu3D7jz/wOLxUKvXr34448/eP7556lVqxbHjx/nyy+/5Ny5c6xatSrLvbZt28bSpUsZMWIE5cqVo1q1avTt25cVK1YwY8YMHB0dM89dtWoVer2eJ554ArAmRj/++CNPPvkkw4cPJykpiZ9++okuXbqwf/9+GjRocE/1FyJPVCGKyObNm1WtVqtqtVq1RYsW6ltvvaVu2rRJNRgMWc47evSoCqjPPfdcluOjR49WAXXbtm2Zx9q0aaO2adMm8/GcOXNUQI2IiMhy7fbt21VA3b59e+ax7t27q5UqVcoWZ0REhAqoc+bMyTzWoEED1c/PT71582bmsWPHjqkajUYdPHhw5rHx48ergPrss89mKbNv375q2bJlc3tpVFVVVYPBoPr5+al16tRR09LSMo+vW7dOBdT3338/Wz0PHDhwxzIzHDx4UAXULVu2qKqqqhaLRa1YsaL66quvZjkvp9dJVXN+TXKScV5efm6/x+0yYqlQoYKamJiYeXzp0qUqoE6bNu2O1/fp00d1dHRUw8PDM49du3ZN9fDwUB9++OHMYxmvZceOHVWLxZJ5/PXXX1e1Wq1669atO97nf//7n5rTn9KM16Js2bJqXFxc5vHVq1ergLp27drMYx06dFDr1q2rpqenZx6zWCzqQw89pFarVu2O91dVVQXU//3vf5mPM167WrVqqXq9PvP4tGnTVEA9fvx45rHc/h/Mnz9f1Wg06u+//57l+PTp01VA3b17d5b7azQa9eTJk1nO3bRpU7a6qqqqduvWTa1cuXLmY5PJlCVOVVXV+Ph41d/fP9v/JUAdP358Lq+EVW5/B/Iqt/f0fixbtixPv/e3v5ei8EnXmCgynTp1Yu/evfTq1Ytjx47x6aef0qVLFypUqJClC2DDhg0AjBo1Ksv1b7zxBgDr168vuqCxzvw4evQoQ4YMydLMXa9ePTp16pQZ73+9+OKLWR63bt2amzdvkpiYmOt9Dh48SExMDC+//HKWsRXdu3enZs2a91XvhQsX4u/vT7t27QBrV8aAAQNYvHgxZrP5nsu9XUBAAFu2bMnTT/369fNU5uDBg7PM+unXrx+BgYE5vu4ZzGYzmzdvpk+fPlkGvgYGBvLUU0/xxx9/ZHsvnn/++SzdWq1bt8ZsNnPp0qW8Vj9HAwYMoEyZMlnKBfj7778BiIuLY9u2bfTv35+kpCRiY2OJjY3l5s2bdOnShfPnz2fpGs2PoUOHZmmJuf3ed7Js2TJq1apFzZo1M2OKjY2lffv2ANm6rdq0aUNoaGiWY+3bt6dcuXJZWtXi4+PZsmULAwYMyDym1Woz48xoVTSZTDRp0oTDhw/ns9ZC5I90jYki1bRpU1asWIHBYODYsWOsXLmSL7/8kn79+nH06FFCQ0O5dOkSGo2GqlWrZrk2ICAAb2/v+/5gyq+M+9WoUSPbc7Vq1WLTpk2kpKRkmb7+wAMPZDkv44MwPj4eT0/PfN+nZs2a/PHHH/cUv9lsZvHixbRr146IiIjM482aNWPq1Kls3bqVzp0731PZt3N2dqZjx44FUlaGatWqZXmsKApVq1bNNg7sv27cuEFqamqu75nFYuHy5cvUrl078/id3rP7cbdyL1y4gKqqvPfee7z33ns5lhETE0OFChUK/N53cv78eU6fPo2vr2+uMf1XSEhItnMcHBx47LHHWLRoEXq9HicnJ1asWIHRaMySCAHMmzePqVOncubMGYxG4x3LvVfJyckkJydnPtZqtbnWT5QekggJm3B0dKRp06Y0bdqU6tWrM3ToUJYtW5ZlFtO9rOOR2zUF2eqRF1qtNsfjqqoWaRxgHbsRFRXF4sWLWbx4cbbnFy5cmJkI3e/rZzab7zrAOIOPj0+W1gpbK6z37G7lWiwWAEaPHk2XLl1yPPf2LwUFde87sVgs1K1bly+++CLH54OCgrI8zm281hNPPMGMGTPYuHEjffr0YenSpdSsWTNLi+CCBQsYMmQIffr04c0338TPzw+tVsvkyZMJDw+/a6x59fnnn2dZ6qBSpUp3TKhF6SCJkLC5Jk2aANYuKLD+cbJYLJw/f55atWplnnf9+nVu3bpFpUqVci0r4xvv7ass59SKlNdEK+N+Z8+ezfbcmTNnKFeuXJ4WM8zPfTK6HzKcPXv2jvW+k4ULF+Ln55c5u+m/VqxYwcqVK5k+fTouLi75ev1ycvny5Tx/g9++fXueVgU/f/58lseqqnLhwgXq1auX6zW+vr64urrm+p5pNJpsH+T36n4X3svoutPpdAXempYXucVfpUoVjh07RocOHe6rjg8//DCBgYEsWbKEVq1asW3bNt55550s5yxfvpzKlSuzYsWKLPcq6OUdBg8eTKtWrTIfF/QsMVEyyRghUWS2b9+e4zfRjLEeGd0Y3bp1A8i2yFvGN9Pu3bvneo+M2VO7du3KPGY2m5k5c2a2c93c3EhISLhr3IGBgTRo0IB58+ZlSRBOnDjB5s2bM+O9X02aNMHPz4/p06dnmZ68ceNGTp8+fcd65yYtLY0VK1bQo0cP+vXrl+1nxIgRJCUlZY7RqlSpElqtNsvrB9YVqfOiMMYI/fzzzyQlJWU+Xr58OVFRUTzyyCO5XqPVauncuTOrV6/O8o3/+vXrLFq0iFatWuXaRZlfGUnwvW5x4ufnR9u2bZkxY0bml4H/ymsL273K7f9B//79uXr1KrNmzcr2XFpaGikpKXkqX6PR0K9fP9auXcv8+fMxmUzZusUyWq7++/dh37597N27Nz9VuavKlSvTsWPHzJ+WLVsWaPmiZJIWIVFkXnnlFVJTU+nbty81a9bEYDCwZ88elixZQnBwcOZ6I/Xr1+eZZ55h5syZ3Lp1izZt2rB//37mzZtHnz59Mgf85qR27do0b96csWPHEhcXh4+PD4sXL8ZkMmU7t3HjxixZsoRRo0bRtGlT3N3d6dmzZ47lfvbZZzzyyCO0aNGCYcOGZU6f9/LyKrDtFXQ6HVOmTGHo0KG0adOGJ598MnP6fHBwMK+//nq+y1yzZg1JSUn06tUrx+ebN2+Or68vCxcuZMCAAXh5efH444/zzTffoCgKVapUYd26dXle8LIwxgj5+PjQqlUrhg4dyvXr1/nqq6+oWrUqw4cPv+N1H330EVu2bKFVq1a8/PLLODg4MGPGDPR6PZ9++mmBxde4cWMARo4cSZcuXdBqtZnTwvPqu+++o1WrVtStW5fhw4dTuXJlrl+/zt69e7ly5QrHjh0rsHhvl9v/g6effpqlS5fy4osvsn37dlq2bInZbObMmTMsXbqUTZs2Zbbm3s2AAQP45ptvGD9+PHXr1s3S0gvQo0cPVqxYQd++fenevTsRERFMnz6d0NDQLGN6CtOlS5cyl0A4ePAgYP0dAusXhP+uNJ+xBENeuhgzyjh58iQA8+fPzxzv9+677xZcBcS9s9l8NVHqbNy4UX322WfVmjVrqu7u7qqjo6NatWpV9ZVXXlGvX7+e5Vyj0ahOnDhRDQkJUXU6nRoUFKSOHTs2y/RiVc0+fV5VVTU8PFzt2LGj6uTkpPr7+6vjxo1Tt2zZkm3qanJysvrUU0+p3t7eKpA5hTi3qeK//fab2rJlS9XFxUX19PRUe/bsqZ46dSrLORnT52/cuJHleH6m8y5ZskRt2LCh6uTkpPr4+KgDBw5Ur1y5kmN5d5s+37NnT9XZ2VlNSUnJ9ZwhQ4aoOp1OjY2NVVVVVW/cuKE+9thjqqurq1qmTBn1hRdeUE+cOJGn6fMFKWMK+C+//KKOHTtW9fPzU11cXNTu3burly5dylMZhw8fVrt06aK6u7urrq6uart27dQ9e/ZkOSe31zK3pQRuZzKZ1FdeeUX19fVVFUXJnHad8Xv02WefZbuGHKaAh4eHq4MHD1YDAgJUnU6nVqhQQe3Ro4e6fPnyu9aTXKbPL1u2LMt5Of1u5/b/QFWtSzpMmTJFrV27turk5KSWKVNGbdy4sTpx4kQ1ISEh1/vfzmKxqEFBQSqgfvTRRzk+//HHH6uVKlVSnZyc1IYNG6rr1q1Tn3nmmWxT+3N67W53L9PnM16znH5u/xvTuHFjNSAgIE/l5lZmbh+/d3stRcFTVNUGozeFEEKIQpKxMOnhw4cJCgqibNmyBbKJKkBSUhI+Pj589dVX/O9//yuQMsG6jILFYsHX15f//e9/fPvttwVWtrgz6RoTQghhlxo1agRYx1mVK1euQMrctWsXFSpUuGvXbH5Vrlw5T2MWRcGTFiEhhBB2JSoqKnNMDlgXe8zLdi62tHPnzsz1k4KCgnJcA0sUDkmEhBBCCFFqyfR5IYQQQpRakggJIYQQotSSREgIIYQQpZbMGrsLi8XCtWvX8PDwKLDpl0IIIYQoXKqqkpSURPny5dFocm/3kUToLq5du1ZgexIJIYQQomhdvnyZihUr5vq8JEJ34eHhAVhfyILamwjAaDSyefNmOnfuXOyndd4re6+jvdcP7L+OUr+Sz97rKPW7d4mJiQQFBWV+judGEqG7yOgO8/T0LPBEyNXVFU9PT7v85Qb7r6O91w/sv45Sv5LP3uso9bt/dxvWIoOlhRBCCFFqSSIkhBBCiFJLEiEhhBBClFoyRkgIIYTNWCwWDAbDPV9vNBpxcHAgPT0ds9lcgJEVD1K/3Ol0OrRa7X3HIImQEEIImzAYDERERGCxWO65DFVVCQgI4PLly3a51pvU7868vb0JCAi4r9dGEiEhhBBFTlVVoqKi0Gq1BAUF3XHBuzuxWCwkJyfj7u5+z2UUZ1K/nKmqSmpqKjExMQAEBgbecwySCAkhhChyJpOJ1NRUypcvj6ur6z2Xk9G15uzsbLeJgtQvZy4uLgDExMTg5+d3z91k9veqCiGEKPYyxoM4OjraOBJRkmUk0Uaj8Z7LkERIiPw4sQI+qwYnVxbuNUKUEvY47kUUnYL4/ZFESIi8Sr4B616DlBhY+yqk3Mj/Ncl5uEYIIUSRkURIiLxQVVj3OuiTrY/1yWg3vpnva1g/qnDjFEIIkS+SCAmRFydXwJm1oP6zzoVqRnN2HeXj9+XrGk6vsXaVCSEKhNmicuBSAmuOXWNv+E3MFtXWIRU6RVFYtWqVrcOwGzJrTIi7Sb5hbdlBAf79I6uiUP/yHEj+H5SpkKdrQLF2lQW3BnffQg9dCHsWdiKKCWtOEZ2Ynnks0MuZ8T1D6Vrn3qdTi9JFWoSEuBNVtSYu+iSyJjSgoOJoTkU3LRQ+KAcfV4ApwfBZdfiqLqQnZLsG1Lx3kckgayFyFXYiipcWHM6SBAFEJ6Tz0oLDhJ2IKrR7WywWJk+eTEhICC4uLtSvX5/ly5ejqiodO3akS5cuqKr1/35cXBwVK1bk/fffB6yz5YYNG5Z5bY0aNZg2bVq2e8yePZvatWvj4uJCzZo1eeWVVwAIDg4GoG/fviiKkvlY3DtpERKl04kVsHEMdPuUc+VrM/b3sVjUf1e31SgaJjd7j+on18GZdXcvz2IEQx6nb2Z0kZ3fAtU65XxOxiDr9ATrIOtKraQFSdg1VVVJM+ZtiwWzRWX8mpPZvmaA9auHAkxYc4qWVcuh1dx9VpGLTpuv2UeTJ09mwYIFTJ8+nWrVqrFr1y4GDRqEr68v8+bNo27dunz99de8+uqrvPjii1SoUCEzEbJYLFSsWJFly5ZRtmxZ9uzZw/PPP09gYCD9+/cH4IcffmDUqFF88skndOnShWvXrnHs2DEADhw4gJ+fH3PmzKFr164FssVEaSeJkCh9/pNkqGtf5eO6rblw60LWRAiYvPoJZl+LyuzcyunPpAUNVO2Apuc0MOvBbARjOmweB5f2gHqHrQMW9oPA+hDaB2r3AZ/K1uO5DbIeML8gai9EsZRmNBP6/qYCKUsFohPTqTthc57OP/VBF1wd8/ZxqNfr+fjjj/ntt99o0aIFAJUrV+aPP/5gxowZLFq0iBkzZjB48GCio6PZsGEDR44cwcHBWr5Op2PixImZ5YWEhLB3716WLl2amQh99NFHvPHGG7z66qtYLBYCAgJo27YtAL6+1i9EGVtLiPsniZAoXW5LMrZpTRyK/SvbaRbgoJOObX4hBJXrRcDJmbiTxn+/XFpUSMKZfdXeo7PXbWOE+s3FOK0hWmMymv98b7UAqtYZbcVGELkPoo5Zf7ZO/Dcp0rlYB1lnxvyfQdZ1Hi2410IIkW8XLlwgNTWVTp2ytuYaDAYaNmwIwOOPP87KlSv55JNP+OGHH6hWrVqWc7/77jtmz55NZGQkaWlpGAwGGjRoAFhXSb527RodOnQokvoISYREaZMxkwvQK/CJjxcaVcWSS7P4B2W9SP+7MU2Nz/Gt4zdZntMoMM4wjMPbbtChqZqlCT7sool1KUOyXwOMSHueHk1fpmt/R2ssJ1dCxO//JkU5kkHWwr656LSc+qBLns7dHxHHkDkH7nre3KFNeTDEJ0/3zqvkZOuXqPXr11OhQtYvQE5OTgCkpqZy6NAhtFot58+fz3LO4sWLGT16NFOnTqVFixZ4eHjw2WefsW+fdQZqxrYRouhIIiRKj39mcqkoKKjsdHEh2uHO/wXi0uNQA95lW5kAntPXoIvhKg30eh4wmNlmacx6SwtI0PPttgu0rFqWsu5OeLvqmLD2FNGW5vQw/0lHzSEcFAsmVcMWS2PWW5pzaO0pOo1pj7bxEGg8BFJuWlt9tn0EqbE5RKJKF5mwa4qi5Ll7qnU1XwK9nIlOSM9xnJACBHg507qab57GCOVHaGgoTk5OREZG0qZNmxzPeeONN9BoNGzcuJFu3brRvXt32rdvD8Du3bt56KGHePnllzPPDw8Pz/y3h4cHwcHBbN26lXbt2uVYvk6ny9yiRNw/SYRE6fBPl5hF/29XVZu0NLzMZhLuNNhQVVAUFa1zNPucYR/Wb5euFgtpac44poVhSQviqx2JfPmb520XK7xjfJYWTifxVFNJwYV3jc+iAlEJ6eyPiKNFlbLWU93KQlCzXJKgjFj+6SKLOQ1+te79tRCihNNqFMb3DOWlBYdzWqACgPE9Qws8CQJrojJ69Ghef/11LBYLrVq1IiEhgd27d+Pp6Um5cuWYPXs2e/fupVGjRrz55ps888wz/PXXX5QpU4Zq1arx888/s2nTJkJCQpg/fz4HDhwgJCQk8x4TJkzgxRdfxM/Pjy5duhAdHc2xY8cYOXIkQGai1LJlS5ycnChTpkyB17M0kenzonSIOQ1n1qJR//0WtcfFhaS77HacdmUQyefHknZlEPrYNnillsXZopKq0aC6XcKp3A5cgubjXu1jvKpPwT1oETqfXWhdLoJi4CZejDM+xw28GGscxk28/g0pKeu0X/xqQc2eoNwhMavYVJIgIYCudQL5YVAj/D2dsxwP8HLmh0GNCnUdoQ8//JD33nuPyZMnU6tWLbp27cr69esJDg5m2LBhTJgwgUaNGgEwceJE/P39efHFFwF44YUXePTRRxkwYADNmjXj5s2bWVqHAJ555hm++uorvv/+e+rWrcsTTzyRpYtt6tSpbNmyhaCgoMxxSeLeKWrGYgciR4mJiXh5eZGQkICn5+3f+O+d0Whkw4YNdOvWDZ1OV2DlFifFqY7mS/sxzOmOCwYADjg78aK/HwaNQlmTiXitNss4IVVVcFer83TwZObsvsjNZMN/vnWa0TjFoHW5jMYlEme3q6i6aNTbGulVVYMlPRBzehDmtCAsaUFYDOXI+P7xeOOKvP1ITcq6O/17UfIN+LYxanoiSpbFG/8za63xEOjyMTi6FeArlLPi9B4WBqmf7aSnpxMREUFISAjOzs53vyAXRpOZHSevkGLR4u/pwoMhPoXSEmQrFouFxMREPD090dzli1tJdL/1u9PvUV4/v6VrTNg3iwX2foPy2we4YMKsKpx2dOAVf18MGoV2Kam8EJfAO36+hKsBuDo74e3iiKuTA1Me/pjqZapRxdf9tiZ4LRZ9IKo+EPVWU6Y+0YC2od6cvHmS47HHORbzFzsvHQJtIlqXq2hdrkKZPwFQzc6Y04Iwpwex4mwQa06co2+9GjzbKoTq/h7g7svR+uNpsC/rgosKcD2wHf5R2+HQXLi4Gx77Eco3KNKXU4jiRqtRaFrJy24TBVH4JBES9islFla+CBe2oAHWmZuzXlOZk4E7SdFoaJqWzmc3YnFSocLFfhy1NOejJxrQu0HWmSAZTfAT154iKuHf7qwALyce8U+lS21/dDodzQKb0SywGQAbj1/jf0u2o3GJ/Kfl6DJa56so2nQc3M/j4P5vM/faOB9WLQki2L0W9X3rsnRPWX5waJptkPXLEcNZ0mkwDx4dBzfPw48docN70OIV+O8HwH8Wi6R230J9iYUQoqSTREiUbLl96Ef8DiuGQ1IUqoMzqwNe4fWLwbgGzUCj1VJLb+Dr6zfQWjRs/GcmF4CfR85N9F3rBNIpNID9EXHEJKXj5+FMw4oebArbmOP5j9Qtz/dKe2vyFFPvn6Nm/MrG07WJHrPuEsdjjxOREIHGMQ6NYxxXOcbVuMW41dDyVrofjxnK0lifQki6lndShgLw6n4v/nhlN9p1I60rXm95Hy78Bn2mg1cFWZFaCCHySRIhUXLl9KHv6gO7PoOdU0C1kO5VhVHq62yMcMKl0nQ0ulug9+HTqPO4WVQSceVd47OZ023vtOaIVqP8O8sL6/iLO8kpebp9/EKiIZETsSf4I/Iw687+yU3TBTQOKaguUSx3cWE51jVFLKavcU4P4mZaELPP6Onf5zu8TnaGsLchYhf88BDnOoxj7OkfsZR1BVwABc2KbkzuuZDqZarf++sshBB2TBIhUTKpKuq610CfbB27o0+GVS+hmNLh4u8AHPbpzqCox0hVFDyCfwSnG1iMXqRFPs9nljOM181jgvEZ4v6ZyVUY021vT55u5+noyUPlH+Kh8g9Rw7kvry4+gqKLR+tyGa1LJFrny2icr6FxSEXjfhYH97N8ffI3vj4JwZ7B1G3Wj7oX91M35m8+O/Q5F5ydsDj+OyhWY0lj8rY3mP3omnztpSSEEKWFJEKiRDoaNpsG/9kMVVHNcGELACatKx/yHPOuNQfFSKVavxBnuYy3kzfPhX7O9BvJrE/wZr3e2h0W6OXM+J6hhTrdNi+s3XIKqtEHk9EHU2L9f54xoXGO+ic5ukwF/xvEpF/hYuJFLiZeZK0OqJDznkMWReFg8kW2nVtFhxoyXkgIIW4niZAocbYdPEHjP9/FAtzegGNWNfRPfZPDag0qlXXigZrrORp3ClcHV6Z3nE7tcrUZ1Fi9Y3eVrTwY4pPLarkOWNKDsKQH4ZauY/OITiQbEzkee5y/bvzF0Zij/Bm1N8cVdgEUVWXKnx/Sqmo3nLROuZwlhBClk8w1FCWK2WxBWT8KN9KzJUFgnd4+3GED/2tXhdYtdnE07nd0Gh1ft/+a2uVqA/92V/VuUIEWVcoWiyQI/l0tF3Le6R7gVpqRiWtP4qL1oFWFVrzc4GX6+TfPNQkCUBWFKIzsOrmowGMWQoiSThIhUaIcP/In7dR9OCiWHJ93UCw8oj1ArGkWq8NXolE0fNbms8xp7cVdxlT9AK+ss9cCvZzpUc/adffz3ksM/PHPzJWp29R+igB0aHJZG1VRVQLR8XDtpwo3eCGEKIGka0yUKJe0DxBtbkpnzUE0SvYPfpOqYZxnTTbGbgZgQosJdHigQ1GHeV/uNNusd4PrjFpylAMX4+n5zR9MH9SYhg+U4e3m7/Lan+NzLE9VFMY0f1e6xYTd0p1bh7JzoqydJe6JtAiJEsXP04WTlko5JkEWFX7x8GZjuWQA3mj8Bn2rlcw/irl133UK9WfViJZU8XXjeqKeATP+ZMmBSNpX70sT90o5tgoFGYy0v3a2qKsgRNFIuYHL1rGQEmNdRiP5hq0jKjJt27bltddes3UYJZ4kQqJEaZa0mTd0y3N87jc3Fz4t5w7As7WHMaTOkCKMrOhU8XVn1f9a0jnUH4PZwphfj/PuqhM8VP5tAow6quiNVDUY8DWZAIhx0BL9x2dwbImNIxeigKkqyvpRKIYU67g6fTKsH3W3q4TIQhIhUXKc24Sy+n8A/GjqSpi5CSbV+iv8h7MLb/n5ggLNynXjtcav2jLSQufhrGP6oMaM7lwdRYGF+yKZtDqB2PA3mXc1gRVXovk1MgEltSJ6jYaPy5ZBXTMCLu2xdehCFJyTK1DOrLMunwGgmuH0GuuK84UoJSWFwYMH4+7uTmBgIFOnTs3SOqMoCqtWrcpyjbe3N3Pnzs18PGbMGKpXr46rqyuVK1fmvffey7JI64QJE2jQoAHz58+nXr16lClThieeeIKkpCQAhgwZws6dO5k2bRqKoqAoChcvXmTu3Ll4e3tnufeqVauyrCOWUfbs2bN54IEHcHd35+WXX8ZsNvPpp58SEBCAn58fkyZNKtDXrbiSREiUDJF/Yl4yGEU1s8LciuU+L/KV88uk4MwxR0dG+ZfDrEC9Mg8z45GPS8XigRqNwoj21fjx6SaZs8xu4sU443PcwIt3jMNIjnocVdWyw82VrU5aWPwU3Ay3adxC5EhVwZCS95/4S7D2NdRscywV64rz8ZfyXlYuEw1y8+abb7Jz505Wr17N5s2b2bFjB4cPH85XGR4eHsydO5dTp04xbdo0Zs2axZdffpnlnPDwcFavXs3ixYtZs2YNO3fu5JNPPgFg2rRptGjRguHDhxMVFUVUVBRBQUF5vn94eDgbN24kLCyMX375hZ9++onu3btz5coVdu7cyZQpU3j33XfZt29fvupVEslgaVH8XT+FacHjOJjT2WZuwJpK41g5uDmODhq2b77EhKjZpGkUmge24LsOX6LVaG0dcZFydXLIMn1+vaV55mKRGMBwsw1O5bYxydeP5pGRuC98HJ77zbodiRDFhTEVPi6f78uyf+VRrdvuTKuXw9m5GHcNHN3ydGpycjI//fQTCxYsoEMH60SMefPmUbFixbzfD3j33Xcz/x0cHMzo0aNZvHgxb731VuZxi8XCnDlzUFUVT09Pnn76abZu3cqkSZPw8vLC0dERV1dXAgJyXlD1TiwWC7Nnz8bDw4PQ0FDatWvH2bNn2bBhAxqNhho1ajBlyhS2b99Os2YlY9btvZIWIVG8xV9CP7cPDoZEDlqqsyT4Q6Y/0xwXRy3RqdeYnLieBI1CvXL1mNbuKxy1jraOuMhlTKPPjSG2HRZDWWI1Kt8EVIS4cFg8EEz6IopQCPsRHh6OwWDIkhz4+PhQo0aNfJWzZMkSWrZsSUBAAO7u7rz77rtERkZmOSc4OBgPD4/Mx4GBgcTExNxfBXIp29/fn9DQUDQaTZZjBXW/4kxahETxlXyD1Nm9cE27zhlLED8Hf8rXg1vi5KAlNi2W5zc/T0xaDFW8qvBdh+9w1bnaOmKbsG7NcQeqjvSovrhW+pFfnDX0dC9Dncg9sOYV6DsDSkE3oigBdK7Wlpm8UFX49Tk4v9k6Luh2ihaqd4HHfsz7vQuQoiiot3W3/Xf8z969exk4cCATJ06kS5cueHl5sXjxYqZOnZo1LJ0uy2NFUbBYcl5DLYNGo7njve9U9r3czx5Ii5AoPk6sgM+qwcmVkJ5I4o+9cU26yBW1HHNDPufzwW1wctCSZEjipd9eIjIpkgruFZjRaQbezt62jt5mMrbmuFM646erQ4/KPVBRmRhcE5Oihb+WwM5PrSf897UXwhYUxdo9lZcfJ3fo9Q04uec8RsjJA3p+nffy8vFloEqVKuh0uixjZ+Lj4zl37lzmY19fX6KiojIfnz9/ntTU1MzHe/bsoVKlSrzzzjs0adKEatWqcenSpXy/ZI6OjpjNWRNBX19fkpKSSElJyTx29OjRfJddmkgiJIoFc1IMptWvoqbEYFo1kpsze+N56ySxqic/hXzBh4M74+igId2UzoitIzgTdwYfZx9mdJqBv5u/rcO3qbxszfFmlxq82fRNvJy8OJNylYXNnrQ+seNj2P+jdXBpKVyHRZRg7r7Q40uUbBvMqNDjS+vzhXFbd3eGDRvGm2++ybZt2zhx4gRDhgzJ0qXUvn17vv32W44cOcLBgwd58cUXs7S2VKtWjcjISBYvXkx4eDhff/01K1fm/0tIcHAw+/bt4+LFi8TGxmKxWGjWrBmurq6MGzeO8PBwFi1alGW2msiuxCVC3333HcHBwTg7O9OsWTP279+f67mzZs2idevWlClThjJlytCxY8c7ni9sI+z4NXZ9MQgMySiAxpBI2bjDJKkuzAn5jHee7olOq8FoMTJ652gOxxzGXefOjE4zqORZydbhFwu5bc2RsY3ar4ev4O7gzRuN3wDgu5sHuPbgc9YnN4wGvXVKrqzDIkqU2o+i1uyBqvwzQULRQq1eUOfRQr3tZ599RuvWrenZsycdO3akVatWNG7cOPP5qVOnEhQUROvWrXnqqacYPXo0rq7/dr/16tWL119/nREjRtCgQQP27NnDe++9l+84Ro8ejVarJTQ0FF9fXyIjI/Hx8WHBggVs2LCBunXr8ssvvzBhwoSCqLbdUtTbOxOLsSVLljB48GCmT59Os2bN+Oqrr1i2bBlnz57Fz88v2/kDBw6kZcuWPPTQQzg7OzNlyhRWrlzJyZMnqVChQp7umZiYiJeXFwkJCXh6ehZYXYxGIxs2bKBbt27Z+mXtRV7qGHYiinWLvuNbx2+yPTfN1Jdq/SfTrV4gFtXCO3+8w7q/1+GkdWJGpxk09m+cQ4lFpzi+h2aLmmVrDldHLU/O+pNUg5nHG1dkymN1eXbzsxy6foiHK7Tm24hTKFePZC+o3xyo82ixrGNBkvrZTnp6OhEREYSEhODsfJdxbndgSboO3zZB0SeiOHvDiIOF1hp0J23btqVBgwZ89dVXBVquxWIhMTERT0/PLK1O9uJ+63en36O8fn6XqFf1iy++YPjw4QwdOpTQ0FCmT5+Oq6srs2fPzvH8hQsX8vLLL9OgQQNq1qzJjz/+iMViYevWrUUcuciJ2aLy9Zo9TNL9hOW2dNyiwhDtJr5dtweT2cKnBz5l3d/r0CpapraZavMkqLi6fWuO+kHefPdUIzQKLDt0he+2h/N+i/dx0Diw6+rvbEmOzKGUf9ZhkS4yURK4+ZLWYTK4+UHPr2ySBImSrcQkQgaDgUOHDtGxY8fMYxqNho4dO7J37948lZGamorRaMTHR9ZPKQ72/32TkWk/4EZ6ZhdOBo0CbqTzStoPjN81jYWnFwLwUauPaBPUxgbRllztavrxQe86AEzdco5jfzvyXJ1hAHzi6UxStoGiqnSRiRLFWL0H6htnZcNVcU9KzPT52NhYzGYz/v5ZB8b6+/tz5syZPJUxZswYypcvnyWZup1er0ev/3d9lcTERMDaxJzTFMR7lVFWQZZZ3NytjimXj9FVeyDX6x0UCwnep1kTeR2Atxq/RZegLsXmNStJ7+GAxuW5GJvMj39c5K3lfzG/ZyiVjEYu6XR87ePNOzfjs17wz1YFpqgTQMmo470oSe/hvSjO9TMajaiqisViua8p2hmjOzLKspVt27YBFHgMxaV+heV+62exWFBVFaPRiFabdTHdvP7el5hE6H598sknLF68mB07dtyxP3ry5MlMnDgx2/HNmzdnGexWULZs2VLgZRY3udXx/C0wmZvQWXMwW4sQwFpXNz4ua229a+fUDs9wTzaEbyjESO9NSXkPa6vQoKyGozc1DF2bwmS/crznncASD3d6JqdQT2/IPNeChmivRhw4Yu06Kyl1vFdSv6Ln4OBAQEAAycnJGAyGu19wFxl7cNkrqV/ODAYDaWlp7Nq1C9M/G01n+O+SBXdSYgZLGwwGXF1dWb58OX369Mk8/swzz3Dr1i1Wr16d67Wff/45H330Eb/99htNmjS5431yahEKCgoiNja2wAdLb9myhU6dOhW7QYwF5W51NFtUpk0axRjNfFQ161IeO52deTXAF7Oi0L/aAMY0eavY7R9WEt/DdKOZZ+Ye4nDkLep4pVPfexxrXB2prjew+Fo0GbVQNQ6YXvkLo1OZElfH/CiJ72F+FOf6paenc/ny5cxZwPdKVVWSkpLw8PAodn8jCoLU787S09O5ePEiQUFBOQ6WLleu3F0HS5eYFiFHR0caN27M1q1bMxOhjIHPI0aMyPW6Tz/9lEmTJrFp06a7JkEATk5OODk5ZTuu0+kK5Q9JYZVbnORWxwMHD/A/ZRmQNQk64uTIaP9ymBWFhj7teKfFODRK8R3OVpLeQ51Ox4/PNOXR73dz4iY86PQE3k7LOOfkyAIvD4YmWL+VKRYTugsbocEzmdeVlDreC6lf0TObzSiKgkajua/ZUBndKRll2Rup351pNJrMVbFv/x3P6+98iXpVR40axaxZs5g3bx6nT5/mpZdeIiUlhaFDhwIwePBgxo4dm3n+lClTeO+995g9ezbBwcFER0cTHR1NcnKyraog/nEtLhmnda/grqRzxrEOO5QHMakazup0/M/fj3SNhpqeD/JT96nFOgkqiXzcHJkz9EHKuOqYHdOULjfLAPC9txeRWh3nCLaeuPk9iPvbdoEKIUQRKFGfMAMGDODzzz/n/fffp0GDBhw9epSwsLDMAdSRkZFZljX/4YcfMBgM9OvXj8DAwMyfzz//3FZVEIDRbGHL7PdpzGlScSFk+Hxaj1rIZRdPXgjwI0mroWHZOvzc81t0muL1LdZehJRzY1irEEBhxc2XaZhmIF2j4aNyZXkqfTR7zKFgTEW75n+g2t8ATSGEyFBiusYyjBgxIteusB07dmR5fPHixcIPSOTbvFUbeTppHiiQ1v4DyvpWJiY1hpcqVeKmIZ7qLv5823kGLg4utg7VbpktKgv3WQdCx+GNNuoRdCG/sdfVkTSPK7yZ9CKbtG/jfvUA1SzrgR62DVgIIQpJiWoREiXfjpNXaH5sHE6KiZiANpRtPZwEfQIvbHmBq4Z4gjyCmNFzMZ6OBTcwXWS3PyKOqIT0zMfb9Z1Iju0EgFPAWq5q3BhvGAxAzegVcP2ETeIUQpRuO3bsQFEUbt26VWj3kERIFJmohDTOL3ufOpqLpGo98Rs4k1RTGv/b+j8u3LqAr4svMzvNpJxLOVuHavdiktKzHTPcbItFXw6NQxJOfpv41dKaa/7t0KhmHNb8D0z6HEoSQthK27Ztee2112wdRolX4rrGRMlkMlv4et4vfKiuBAV0vb/C6FqWUdte4diNY3g6ejKj0wwqelS0dailgp9HDtOVVQfSo/viWmkWOu99GBMacrnlx5Rd0xmnmJOwYzJ0nFDksQqRm3Px53h719uYzCa0Gi0ooFE0TG49meplqts6PFFCSIuQKBLTwv7iudhPcVAspFTvg6ZOH8b9MY7d13bj4uDCdx2+o1qZarYOs9R4MMSHQC9nbl+1w5xaBeOtxiiKikeFVdSuVoljQdZZmeyeBpH7ijxWIXKiqiof7/uY8IRwIpIiuJBwgQu3rD+T902msJbIS0lJYfDgwbi7uxMYGMjUqVOztcwoisKqVauyXOft7c3cuXMzH48ZM4bq1avj6upK5cqVee+997KshDxhwgQaNGjA/PnzqVevHmXKlOGJJ57IXHhwyJAh7Ny5k2nTpqEoCoqicPHiRebOnYu3t3eWe69atSrLGj0ZZc+ePZsHHngAd3d3Xn75ZcxmM59++ikBAQH4+fkxadKku74eP/74I7Vq1cLZ2ZmaNWvy/fffZz730EMPMWbMmCzn37hxA51Ox65duwCYP38+7dq1w8vLi4CAAJ566iliYmLuet+CJImQKHQ7z93AZ+/HVNFEke7sh2vvL/h438eEXQzDQePAV22/ooFfA1uHWapoNQrje4YCZEuG0mO6YTG5YdFF8cu5RUR5N8FSd4B19tjKF8CQUvQBC7unqiqpxtQ8/2yM2Mih64ew3Dar0aJaOHj9IGERYXkuKz9J05tvvsnOnTtZvXo1mzdvZseOHRw+fDjf9fXw8GDu3LmcOnWKadOmMWvWLL788sss54SHh7N69WoWL17MmjVr2LlzJ5988gkA06ZNo0WLFgwfPpyoqCiioqIICgrK8/3Dw8PZuHEjYWFh/PLLL/z00090796dK1eusHPnTqZMmcK7777Lvn25f/lZuHAh77//PpMmTeL06dN8/PHHvPfee8ybNw+AgQMHsnjx4iyv75IlSyhfvjytW7cGrIt+jhs3jiNHjrBq1SouXrzIkCFD8lyPgiBdY6JQ3dLDhuW/MMNhEwDOj/3A12cXsvTcUhQUJreezEMVHrJxlKVT1zqB/DCoERPXnsoycFqruqOP6YZL+WXMPD6Tl11fxtz5YzSX/oD4CNjyPnSfasPIhT1KM6XRbFGzAivvrd/fyvO5+57ah6vu7lsoJScn89NPP7FgwQI6dOgAwLx586hYMf9d+u+++27mv4ODgxk9ejSLFy/mrbf+jdtisTBnzhxUVcXT05Onn36arVu3MmnSJLy8vHB0dMTV1ZWAgIB8399isTB79mw8PDwIDQ2lXbt2nD17lg0bNqDRaKhRowZTpkxh+/btNGuW8/syfvx4pk6dyqOPPgpASEgIp06dYsaMGTzzzDP079+f1157jT/++CMz8Vm0aBFPPvlkZgvVs88+S2JiIp6enlStWpWvv/6apk2bkpycjLu7e77rdS8kERIFymxR2R8RR0xSOt5OGpadTWem5VtQwNRoKIsM15h1fBYA7zZ/l67BXW0ccenWtU4gnUIDMt8zPw9nUFWe/NGCyesw6W7hrE1by0CngdD7O5jfBw78CDW6QdUOcGIFbBwD3T6Vnb+F3QsPD8dgMGRJDHx8fKhRo0a+y1qyZAlff/014eHhJCcnYzKZsm0DERwcjIeHR+bm34GBgQXWbZRRdgZ/f3+0Wm2W1Z39/f1zvV9KSgrh4eEMGzaM4cOHZx43mUx4eXkB4OvrS+fOnVm4cCGtW7cmIiKCvXv3MmPGjMzzDx06xHvvvcepU6eIj4/PXGk6MjKS0NDQAqnr3UgiJApM2IkoJq49RaOkHYzXzWOC8RmGao9QXhuH0SuYjdUf4rN9HwIwsuFI+tfob9uABWDtJmtRpWyWY0MeCmHewT64V57GedN5Nl/aTI9qPeDB52H/TFg9Ap5ZA+teg/QEWPsqVGoF7r62qYQo8VwcXNj3VN7GoOnNeh5f+zg3Um9gIfuCnwoKfq5+LOu5DCdt9i2Tcrp3QVIUJVt323/H/+zdu5eBAwcyceJEunTpgpeXF4sXL2bq1KwtrbdvEaEoyl13aNdoNHe8953Kzs/9MnZomDVrVrYWo//uAj9w4EBGjhzJN998w6JFi6hbty5169YFrMnUI488Qrt27Zg/fz7+/v5ERkbSpUuXAtmIN69kjJAoEGEnonhpwWEMCdf5WPcjviTwmW4Gj2l/x6Iq/FRjEO/v/xiAwaGDea7uczaOWNzJW11rEOReCX1sOwA+P/w5CfoE6DgRylaFpGvwc2/Q/7NdjT4Z1o+yYcSipFMUBVeda55+yjiXYeyDY3NMggBUVMY2G0sZ5zJ5Ki+vm31WqVIFnU6XZdxMfHw8586dy3Ker69vll0Ozp8/n2Un9D179lCpUiXeeecdmjRpQrVq1bh06VJ+Xi7Augen2WzOdu+kpCRSUv4dy3f06NF8l303/v7+lC9fnr///puqVatm+QkJCck8r3fv3qSnpxMWFsaiRYsYOHBg5nNnzpzh5s2bjB8/ntatW1OzZs0iHygNkgiJAmC2qExcewoVlUm62biRjqKAK9Z1Z953bMt3MYswq2Z6V+nN6Caj7XIXZXvi6ujAlMfqYbjZBrPel5vpN5l2eBo4ukLfGYACiVdB/eePsGqG02usXWVCFIH2D7SniX+TbHsRahQNTQOa0j6ofYHf093dnWHDhvHmm2+ybds2Tpw4wZAhQ7JtFtq+fXu+/fZbjhw5wsGDB3nxxReztLZUq1aNyMhIFi9eTHh4OF9//TUrV67MdzzBwcHs27ePixcvEhsbi8VioVmzZri6ujJu3DjCw8NZtGhRltlqBWnixIlMnjyZr7/+mnPnznH8+HHmzJnDF198kXmOm5sbffr04b333uP06dM8+eSTmc898MADODo6MnPmTP7++2/WrFnDhx9+WCix3okkQuK+ZaxS3EPzJ121B3BQMnYThpOOOtYFXgLFRH2flkx4aIIkQSVEiyplGdg0BH2UdezPsnPLOBpzFLwrgdYxhysUa1dZ8o2iDFOUUoqiMLbZWKp4VSHEI4SqXlWp6m39efvBtwvt78xnn31G69at6dmzJx07dqRVq1Y0btw4yzlTp04lKCiI1q1b89RTTzF69GhcXf8djN2rVy9ef/11RowYQYMGDdizZw/vvfdevmMZPXo0Wq2W0NBQfH19iYyMxMfHhwULFrBhwwbq1q3LL7/8woQJE+632jl67rnn+PHHH5kzZw5169alTZs2zJ07N0uLEFi7x44dO0br1q154IEHMo/7+voye/ZsVq9eTZ06dfjkk09ssheoohbWYgt2IjExES8vLxISErINZLsfRqORDRs20K1bt2z9siXN6qNX+WDxTrY5vYEHqWj++fsToXPgmUB/4rValJQHeL/5t/RrFHLnwkoQe3oPc3MrOY32n20lxedXHL0PUtW7CktTXdGdC/u3Nei/FC3U7A4D5hd9sPfA3t/D4ly/9PR0IiIiCAkJwdk5hwU+88hisWTOOrq9ZaaotG3blgYNGvDVV18VeNnFoX6F6X7rd6ffo7x+ftvfqyqKnJ+7U2aXWEYSFK3V8kKAH/FaLbX0BiZGp1HBS/YPK2ncnBx4sooF/XXr2kIXboUzL/r3nJMg+LeLLOZ00QYqhBD3SBIhcd8edL+epUssXqPh+QA/ohwcCDYYmR4dQ1/NIR50u27jSMW9qO6l8mTj6uivW3egn+5Thsu6nLrGsLYI1eoFfrWKMEIhhLh3kgiJ+6b1D+Wib3vMqkKKovBSgC8Rjjr8TSZmRsfgaYboCp3QBhTNmhCi4L3VpTp+mhaYUqqiR+Uj37Ko2dakBpw8oPsX2Y8LYcd27NhRKN1iomhIIiTumwp8qRmCQYFX/X056eSEt9nMzOgY/E1mLI7uBDz5g63DFPfB3cmBTx+rT3pUH1SLA3ucdGx0y2HtlfbvyVpCQogSRRIhcc/OxZ/jsTWP0WlpL45oP6RdpQrsc3HG2WJhevQNKhtNaBTQ9PhCPhztQKtq5XiiYUMMsdZpyVP8AkjQ3rYm6+U/bRCZKMlkvo64HwXx+yOJkLgnGTs/X7h1gevpF4l30pOi0YAKDxhNhBoMqIqWa15NUEP72DpcUUDGdatFWVNnzHo/4jDxhU9ZVMDk4IYKcHwZREoyJO4uY/XholxBWNifjIUq72dWpGyxIe7JtshtHLp+KPsTCpxzcmSbqwvtLY4cCxpCx6IPTxQSD2cdnzzWiGd/eRTX4OmscHfi4QQffk0eRBfnU/S2/Gbde2z4drDDqb6i4Dg4OODq6sqNGzfQ6XT3PDXcYrFgMBhIT0+32+nlUr/sVFUlNTWVmJgYvL29s2zrkV+SCIl805v1fLL/ExQ0qLns8zOlXFmaN3oPw6WC3cNH2F6awYQ5LRhD/IM4ltnPK+Uqk5rYhP2ptWjntBvPqKNwdAE0GmzrUEUxpigKgYGBRERE3NP2EhlUVSUtLQ0XFxe7XKxV6ndn3t7eBAQE3FcMkgiJfNt5eSfRqdG5Pq+iEqXV8LuHN/yzzYawDxnbqQDoY7ri4HEKrVMMjmV3EXuzPV+bHuVd3ULUrR+ghPYGZy8bRyyKM0dHR6pVq3Zf3WNGo5Fdu3bx8MMPF7tFIwuC1C93Op3uvlqCMkgiJPKtTVAbvB19uaW/QU4zqBUUAtwCaFWhFVtPbC36AEWhydhOBQCLK/rrPXCpsBjHctswJtZjnrELT2q3USUlCnZ+Cl0m2TZgUexpNJr7Wllaq9ViMplwdna2y0RB6lf47K/DURQ6RdVRJbpOjkkQWFuExjw4BietU9EGJgpdTFJ6lsemxPqYkquhaEw4B6zCiJYPTU9bn9w3HWLP2yBKIYTIO0mERL79vOsUQ1M25vhcYe78LGzPz+P2b+4K6dHWtYUc3C/g4HmUHZYGxFdoBxYThI21SZxCCJFXkgiJfIlOSEfd+SlbvE0AuOvcM3d8Loqdn4VtPRjiQ6CXc5bGQNVYFkNsBwCc/NcR4G3Gs89noNHBhS1wbrNtghVCiDyQMUIiX+auXM8z2g10d7eO0p/RaQb1fOvZOCpRVLQahfE9Q3lpwWEUrKuKAxhutsbB8yha5+vUrvM7Wt9e0PxF2PMNbBoLlduCQy77kwkhhA1Ji5DIs33hN+j898f86umKUVFo4NtAkqBSqGudQH4Y1IgAr/92kzmgj+4LwP6bYRyMPggPvwVufnDzgnW8kBBCFEOSCIk8MZkt7Fv+BaHacBZ7egAwuLasE1Nada0TyB9j2vPL8OZMe6IBs59pggdVMcQ3A+CDPz/AoHOGjuOtF+z8FJJjbBixEELkTBIhkScrfz/EkNS5rHV3JUGroYJ7BRkQXcppNQotqpSld4MKtK/lzysdqqOP6QJmDyISIph9YjbUfwrKNwRDEmydaOuQhRAiG0mERI7MFpVzW38mfXIVjobNwX37e7grqcz1LgfAoFqD0GrufyErYT8GNX+ACp5lSYvuAcCsv2ZxMSkSHvnUesKRhXD1sA0jFEKI7CQREtmEnYii5ycr8N81Bqf0WKrtHcMjyl52ubgS6aDirnOnb7W+tg5TFDNODlre6FwdU2I9SK2BwWLgoz8/Qq3YFOoNAFTrPmSqCidWwGfV4ORKW4cthCjlJBESWYSdiOKlBYcYmfYDbqSjKOD6zzYZn3pWAuCxao/hpnOzZZiimOrdoAI1AzxJvtYLLY7si97Hur/XQccJoHODK/vhwE+w7jVIiYG1r0LyDVuHLYQoxSQREpky9pHqrvmTrtoDOCjWDVUVBc466rjsmgKqhgE1nrRxpKK40moUxnStiWosi/6ftYU+O/AZ8Y4u0HqU9aRN40CfbP23PhnWj7JRtEIIIYmQ+I/9EXEYEq4zSfcTFjXrcz//M1NMk1iDKzfufV8gYf/a1vClWYgPaTda4a5UJF4fzxeHvoAWI8DNF8x6UM3Wk1UznF5j7SoTQggbkERIZIpJTGOSbjZupKP5z9LBN7QaNrhbu8JeTryebb8pIf5LURTGPFIT0HIjoicAqy6s4sCV38GQktMV1q4y6SITQtiAJEIiUyVzZJYusQyLPTwwKQoN09N5wXSUSuZIG0UoSopGD5Sha+0ATGmV8KMdAB/8PhaDSZ/D2ap0kQkhbEYSIZGpbsPmbFeaYVL//bVIUxSWeroDMPBWMtuV5tRt2NxWIYoSZHSXGmgUCD/7MN4OnlxU9fzklcsg+4wuspjTRRukEKLUk0RIZNJqNajdvyAdR9R/xgitdXfjllZLBaOJpqkKavepaDWyoaq4u6p+7vRvEgQWF1yS+wMwy9uLCF0OWxwqWqjVC/xqFXGUQojSThIhkUXbRrU5p6mMooAFmP/PIOlBiUlENv+I9k3q2DZAUaK81rE6Tg4azkVUIdS9AUZF4cOyPmQdi6+Akwd0/8JGUQohSjNJhEQWO/cfpJ7F2j3xu4srFx11uFss9AlsTYNHnrVxdKKkCfByZmjLEEDhxpU+OCsOHHBxZo37f7vIVOjxJbj72ipMIUQpJomQyGSxqCRv+wIHReWyR0Pml/EGoF+qEfeeX9s2OFFivdSmCl4uOv6OcqaVr3Wj3s99vInX/PPnx8EFQnvbMEIhRGkmiZDItOvwcTrrtwAQ23YY+5wc0KoqT7UYK9/WxT3zctXxctsqAPx5tDbVPCtzS6vlcx9vQAFTGpxZZ9MYhRCllyRCAgBVVbn521c4KUauutdledoZADqHdCOw0VAbRydKumceCibQy5moBCP1XV9AAdZ4uPPbAy2tJ+z93qbxCSFKL0mEBAB/HD9Pl7T1AOjbvsyGiA0APB36tC3DEnbCWafl9Y7VAZi7Q0UfZ12CYZQpmWTFAS7/CVcP2TJEIUQpJYmQQFVVroV9ibuSTrRLNdZpYjFZTDTya0Rd37q2Dk/YCTcnLWDdfF5/oysWoweqUxxve9YE4FrYVFuGJ4QopSQREuw7c4kuKasBUNq+xtJzSwFpDRIFx2xR+Wj9fxZLtDijv94LgJ1lkvlb54Df5TDMt67YKEIhRGkliZDgwoav8VZSiHV6gJ1eDiToE6jgXoF2Qe1sHZqwE/sj4ohKyLpHnSmpDqakmqBYeLNsRbSYid4isxOFEEVLEqFSbv+5q3RJXA6A5uHXmH96IWBtDdJqtLYMTdiRnDfqVUi/3gvVouOci4VV7m74nvsll41ZhRCicEgiVMqd2vA9vkoC8Tp/TlQM4WLiRTx0HvSp2sfWoQk74ufhnONx1eiD/kYnAD7z8SHZnAxHFxVlaEKIUk4SoVLs8MUYOsYvtj54aCQ/n7F+APWr3g83XS6bYwpxDx4M8SHQy5mcdqkzxrXEnB5Iklbhc58y8OcPYLEUeYxCiNJJEqFS7PDamVRUYkly8OF67dbsi96HVtHyVK2nbB2asDNajcL4nqEAOSRDWvRRj6KgsNbDjT9Tr8D5zUUdohCilJJEqJQ6HhlHuxsLADA++BLz/5kp1jm4MwFuAbYMTdiprnUC+WFQIwK8snaTaTUK3zzamydqPgHAh+V80P/5jS1CFEKUQpIIlVJ71s2hiiaKVI07pqaPZS6g+EzoMzaOTNizrnUC+WNMe34Z3pxP+9XDzVGL2aKi0SiMbDgSP+eyROp0zIw/DtHHbR2uEKIUkESoFDp9LYFW0fMASG80nMUR6zMXUKxdrraNoxP2TqtRaFGlLP2bBPHMQ8EA/Pj737g7ujO2+bsAzPT2pPvmZ+m7ui99V/flsTWPcS7+nA2jFkLYK0mESqHt6xZSW3MJveKM88PDMxdQHBw62MaRidJmyEPB6LQKBy/FczgynvZB7fFycANFIVJN58KtC5k/k/dNRlVVW4cshLAzkgiVMheuJ/LglTkAJNcbzNprf5CgT6Cie0XaBrW1bXCi1PHzdKZ3gwqAtVVo++XtJJiyryNkUS0cvH6QbZe3FXWIQgg7J4lQKbNx/a800ZzDiI4yHV5nwWnrgOlBoYNkAUVhE8+1DgEg7ORlPvpzMppc/iwpKEzZPwW9WV+U4Qkh7JwkQqWA2aJybuvPpH5cmY4RXwCQWHMAvyecz1xAsW/VvjaOUpRWNQM8ebi6Lxq3M8SmX8dCzmsIqahEpUSx68quIo5QCGHPJBGyc2Enouj5yQr8d43BRX+TWtpITKrCiZAh/HzqZwD61eiHq87VxpGK0mx46xBMyTVRjd4od2gRCnQL5OGKDxdxdEIIe1biEqHvvvuO4OBgnJ2dadasGfv378/13JMnT/LYY48RHByMoih89dVXRRdoMRB2IoqXFhxiZNoPuJGO8s9KdtH48OyGI+yP3o+D4sBTNWUBRWFbraqWo6a/D+nXe6DeoUVozINjcNI6FXF0Qgh7VqISoSVLljBq1CjGjx/P4cOHqV+/Pl26dCEmJibH81NTU6lcuTKffPIJAQGla5FAs0Vl4tpTdNf8SVftARyUfz9cKio3CSm7CoCOlTrJAorC5hRFYXjrypiSaqNJr4JGyfqnSQGaBjSlfVB72wQohLBbJSoR+uKLLxg+fDhDhw4lNDSU6dOn4+rqyuzZs3M8v2nTpnz22Wc88cQTODmVrm+R+yPiMCRcZ5LuJyy3zTiO0miJ9YwEoJFXbxtEJ0R2PeuXx9/TmaRrPSnnWImq3lUp51QGAEeLhbcdK6F8Xh1OrrRxpEIIe+Jg6wDyymAwcOjQIcaOHZt5TKPR0LFjR/bu3Vtg99Hr9ej1/85KSUxMBMBoNGI0GgvsPhllFWSZ/xUVn8wk3WzcSEdz2+ZOS73cMSsKIWk6nMxBhRZDYdfR1uy9flC0dVSAp5s9wOdb9DhEvcGS/7UgXh9P1xUd0Ws0aP78AVWfBmtfxVShGbj53vc97f09tPf6gf3XUep3/2XfTYlJhGJjYzGbzfj7+2c57u/vz5kzZwrsPpMnT2bixInZjm/evBlX14IfULxly5YCLxMg8cYVHtUeyHY8VVFY5uEOwKuJ14g8so4NVyoUSgwZCquOxYW91w+Kro5lTeCo0XL2ejJf/hJGTW+VUCryF1dY4+rEKH0alvQkbsx5mgOVRxbYfe39PbT3+oH911Hql3+pqal5Oq/EJEJFZezYsYwaNSrzcWJiIkFBQXTu3BlPT88Cu4/RaGTLli106tQJnU5XYOVmMJstbJ+ymtaWrOOD1rq7kaDVEmQ0QVpdnnz6ObS3NxkVkMKuo63Ze/3ANnU843CGeXsj+cvgx6hujXHefZTRl5az3t2VV+NvocVC+YSDdA82oIb2ua972ft7aO/1A/uvo9Tv3mX06NxNiUmEypUrh1ar5fr161mOX79+vUAHQjs5OeU4nkin0xXKL2HhlQtq9y8wrm2HAwYALMB8Lw8A+iXoUbp/ibOTY4HfO3sshVPH4sLe6wdFW8fnWldh/p+R7A6/ScTly7T/8ye8/dyJcXDgTxdnWqalAwoOG9+AKm3B/f67yOz9PbT3+oH911Hqd29l5kWJGSzt6OhI48aN2bp1a+Yxi8XC1q1badGihQ0jK74CywcRr7plPt7l4sIlnQ4Ps4XQmm/RvkkdG0YnRM6CfFx5pG4goJK+ciQ6fTKPJFubuFe7Z/w+q6BPhvWjci1HCCHyosQkQgCjRo1i1qxZzJs3j9OnT/PSSy+RkpLC0KFDARg8eHCWwdQGg4GjR49y9OhRDAYDV69e5ejRo1y4cMFWVShSu7esoLwmHjMaVEXLz/+0Bj3u6E/z7i/aODohcje8dWWqK1eol/Q7qGZ6JycDsM3VhcSMrlzVDKfXQMxpG0YqhCjpSkzXGMCAAQO4ceMG77//PtHR0TRo0ICwsLDMAdSRkZFoNP/mdteuXaNhw4aZjz///HM+//xz2rRpw44dO4o6/CKVmG4k5O8FoMDNKo8Se30rB1yccVBVnuz8ra3DE+KOGgR54/VAXcKuNaWz9jChBiNVDQYuODqyyc2Vx5NSQNFCze7gV8vW4QohSrASlQgBjBgxghEjRuT43O3JTXBwMKqq5niuvdv0xz4e4xAAvl3f4ss/0yHuLzqXrU+AX6iNoxPi7oY/XIWx85/lIe1JPEijV3IKX/g4ssbd3ZoIOXlA9y9sHaYQooQrUV1jIm9UVcWybxYaReVa2RbEuHoTFn8KgMEtxtk4OiHypmMtfzzLlWecYRgKKj2SU9CoKkednbjo4ACPfFogA6WFEKWbJEJ26M+zl+lq2AxAmXavsPjsYkyqicb+jaldrraNoxMibzQahWGtQlhnac4OTTPKWRQeSksHYI2HGyjy50sIcf/kL4kdCt86Gy8llTjH8qjV2rD07FIABocOtnFkQuTPY40qUsbVkTdSh6DXuNA7OQWwrodlOTTHxtEJIeyBJEJ25lp8Kk2vLwPA1GQ4ayLWkWhI5AGPB2hTsY2NoxMif1wctbSoUo6bePFG2rPUSdGhMzsQ7eDA/usHIfa8rUMUQpRwkgjZmT9+W0kNzRXSFSfKtRrC/FPzARgUOgitRmvj6ITIn7ATUWw4HgXAektzWqX/QEpiYwDWuLsTsek7W4YnhLADkgjZEYPJQrlT8wC4HvIoO2OPEZkUiYejB72ryC7zomQxW1Qmrj2V7bjxljUR+s3NBacLyzEb0os6NCGEHZFEyI7s2H+QNpb9AJTvPJKfT/0MwOPVH8dVV/AbxgpRmPZHxBGVkD3JsaQHYdGXI02jYZ+bhfBdi20QnRDCXkgiZEdSd89Aq6hEejXlvA4OXj+Ig+LAkzWftHVoQuRbTFJuLT0KxoSM7jE3ypxZVHRBCSHszn0nQomJiaxatYrTp2WZe1s6E3mdNslhAHi2HZE5NqhLSBcC3ApuU1ohioqfh3OuzxkTGoEKB12c0d86CLGlY9scIUTBy3ci1L9/f7791rpFQ1paGk2aNKF///7Uq1ePX3/9tcADFHlzctNPlFGSiXUIQF/tQcIirEnR06FP2zgyIe7NgyE+BHo5o+TwnGrywpRSDbBOpefwvKINTghhN/KdCO3atYvWrVsDsHLlSlRV5datW3z99dd89NFHBR6guLvENAO1r/wCQEr9Z/nl7FJMqokm/k2oXVYWUBQlk1ajML6ndTuYnJIhU0IjAFa7u2M5uhBM+iKMTghhL/KdCCUkJODj4wNAWFgYjz32GK6urnTv3p3z52VND1v447fV1FQiSceJcm0GsfScLKAo7EPXOoH8MKgRAV7Zu8neafs4bjo3ruocOGxJhjPrbRChEKKky3ciFBQUxN69e0lJSSEsLIzOnTsDEB8fj7Nz7n36onCoqorbsZ8AiKzYgzXXdpFkSLIuoBgkCyiKkq9rnUD+GNOeX4Y3Z9oTDahd3hOA+BSFLsFdAFjt7gaH5towSiFESZXvROi1115j4MCBVKxYkcDAQNq2bQtYu8zq1q1b0PGJuzj413FaGvcBENjlVRacWgBYF1DUyF5Mwk5oNQotqpSld4MKPP9wZQCWH7pCj5CeAGx2cyX14i64GW7LMIUQJVC+Pylffvll9u7dy+zZs9m9ezcajbWIypUryxghG4jd/j0OioW/3RtxQL1JZFIkno6esoCisFtdagfg5aLj6q00UhIfoKJ7RVI1Gra6usigaSFEvt1Tk0GTJk3o3r07V69exWQyAdC9e3datmxZoMGJO4u6GUez+LUAOLd8KXPKvCygKOyZs05L34YVAFh28Aq9qvYCYLWHOxxZCCaDLcMTQpQw+U6EUlNTGTZsGK6urtSuXZvIyEgAXnnlFT755JMCD1Dk7tiG2fgoydzQ+hFfpaYsoChKjf5NggDYfCqa1gFdAdjv7ESUPh7OyqBpIUTe5TsRGjt2LMeOHWPHjh1ZBkd37NiRJUuWFGhwIncGo5mQcOt4oNhag5l/1rq6bteQrvi7+dsyNCEKXWh5T+pV9MJoVvnznErTgKaoimJdU0gGTQsh8iHfidCqVav49ttvadWqFYry7+oetWvXJjxcBioWlf27NlCDCNJxxOPhfmyK2ATIAoqi9MhoFVpy4DK9Klu7x9Z4uKH+vQPi/rZhZEKIkiTfidCNGzfw8/PLdjwlJSVLYiQKyYkV8Fk1fP+0Dkw/7/8Iyy6HYVJNNA1oSmjZUBsHKETR6NWgPM46DedjkvHTNsXFwYVLOh3HnBzh8M+2Dk8IUULkOxFq0qQJ69f/2wefkfz8+OOPtGjRouAiE9mYk2IwrX4VNSWG6oYzAHh3eIFl55YBsoCiKF08nXV0qxsIwOrDN+lUqZP13+5ucGSBDJoWQuSJQ34v+Pjjj3nkkUc4deoUJpOJadOmcerUKfbs2cPOnTsLI0YBhB2/htOKIbS2JKMogAJxqgczrxwnyZBEJc9KPFzxYVuHKUSReqLpA6w4fJW1f13j+we7syZ8DZvc3RkTdwXncxshVJaREELcWb5bhFq1asXRo0cxmUzUrVuXzZs34+fnx969e2ncuHFhxFjqhZ2IYt0v39NO3YeDYsk87qUkERY+F4BBtWQBRVH6NA0uQ+VybqQazERHlyfQLZAkjcJ2VxcZNC2EyJN8twgBVKlShVmzZhV0LCIHZovK12v28IvuJywqaP4zDGuHiwvpjiloLM6ZK+wKUZooikL/pkF8svEMSw9epWeLnsz8ayar3d14JHwbxF+EMsG2DlMIUYzluwkhMjLyjj+iYO3/+yYj037AjfQsSRDAfC8PANrc0nD8SroNohPC9h5tVAGtRuFw5C3qe3UEYK+rCzFarQyaFkLcVb5bhIKDg+84O8xsNt9XQCKrtGsn6Ko9kO34SUdHDrk446CqvJt8nhNXj0OVtkUfoBA25ufhTIeafmw+dZ1dp1Qa+jXkSMwR1rm78uyRBeBbCzaNg26fQu2+tg5XCFHM5LtF6MiRIxw+fDjzZ9++fUyfPp3q1auzbNmywoixVHMpX4cwc1NMata36ud/WoO6JKdyyNAIlwqy4a0ovQY0ta4ptOLIVbr90028xtMLNfk6rB0JKTGw9lVIvmHLMIUQxVC+W4Tq16+f7ViTJk0oX748n332GY8++miBBCasHqxclp4uL9FCPwJPNRVFgWitls1u1r3EHkswMt7lJdaG+Ng4UiFsp011X/w9nbieqEeX3hAnrRPh6Dnp6EgdQ6r1JH0yrB8FA+bbNlghRLFSYNOMatSowYED2btwxP3RahRG9nqIeebOZPRILvL0wKQoNE1LZ17KEEb2egjt7QOIhChFHLQa+jWuCMDqw3G0f6C99d8ebv+epJrh9BrroqRCCPGPfCdCiYmJWX4SEhI4c+YM7777LtWqVSuMGEu9rnUCqeuWCEAyCss93AFokFieHk+9TNc6gbYMT4hiIWPLjd/P36C190MAbHBzJeuyigqse026yIQQmfLdNebt7Z1tsLSqqgQFBbF48eICC0z8KzHxFg+m7wYFVnqVIUmr4QGTmZdeXILOM8DW4QlRLFQq60aLymXZ+3cs1XfMwc/NTIyDlp2uLnRKTfvnLFW6yIQQWeQ7Edq+fXuWxxqNBl9fX6pWrYqDwz0tSyTu4tS2RTRX9EQqAfwS6A/6eAZX7i1JkBC3eeLBIG5GHKVG3A56ql785O3FGne3/yRC/NtFFnMaylS1XbBCiGIh35lLmzZtCiMOcQfOp5cDsPGBZlzWH8HLyYuerd6zcVRCFD9dagfwnlMwYeam9Er5i5+8vfjd1YVYjYZyln9WZVe0ULM7+NUCo9G2AQshbC5PidCaNWvyXGCvXr3uORiR3bUrEdRNPwwK7CyTBgnQv3p/XHWutg5NiGLHWaelb8OKvLP3WX7XvUnddD3HnZ3Y4O7G4MQkQAEnD+j+ha1DFUIUE3lKhPr06ZOnwhRFkQUVC9jf2+ZRXlHZ4Fqd4wlncNA48ETNJ2wdlhDFVv+mQczbe4mxhmfpnTyb485OrM5MhFTo8SW4+9o6TCFEMZGnWWMWiyVPP5IEFSxVVfG/uAqAleWt44G6hXTDz9XPhlEJUbzVLu9F3QperDY1o5ZzY3SqyjknR8446qBMCNSRtc6EEP+S7cqLsfPH91HNEkGkxpEDFus+bk+HPm3jqIQo/vo3DQIUPkofRrt06zig1e5uYEyDjLFCQgjBPe4+n5KSws6dO4mMjMRgyLpKx8iRIwskMAE3dv9MdeA73+qY1UQeDHiQmj41bR2WEMVer/rlmbT+FPtvONCv1pNsvvErG9zdGRV5Bd3VQxDU1NYhCiGKiXwnQkeOHKFbt26kpqaSkpKCj48PsbGxuLq64ufnJ4lQATEZjVS7vpFURWGHmx5UGBw62NZhCVEieLno6FYnkBVHrrLhehfcHbcRRzx/uLrQ7vRqSYSEEJny3TX2+uuv07NnT+Lj43FxceHPP//k0qVLNG7cmM8//7wwYiyVTuxehx9x/OLhQ6qqJ9gzmNYVW9s6LCFKjOBy1u01dpyNI+56HcDaPZZ6bCWoqi1DE0IUI/lOhI4ePcobb7yBRqNBq9Wi1+sJCgri008/Zdy4cYURY6mkP/wLZmBhmTKAdWyQRpEhXULkRdiJKL7cci7zsTGhMQA7XV3Qp11jzx9bbRWaEKKYyfcnq06nQ6OxXubn50dkpHUQr5eXF5cvXy7Y6EqppMRb1EnYwQ5XF25oDNYFFKv0tHVYQpQIZovKxLWn+G+bj0UfgDmtAiZFYYO7K+d2LMJskVYhIcQ9JEINGzbM3GW+TZs2vP/++yxcuJDXXnuNOnXqFHiApdHJbb/gpuiZ5VUWsC6g6OLgYuOohCgZ9kfEEZWQnu24MaERAGvc3Wht3MP+v28WdWhCiGIo34nQxx9/TGCgdbfzSZMmUaZMGV566SVu3LjBzJkzCzzA0sjl9DKOOzpy0lmDg8aBJ2s+aeuQhCgxYpKyJ0EApsT6qKqGU05OWJxiSbt2oogjE0IUR/meNdakSZPMf/v5+REWFlagAZV20VcvUif9MGP9fADrAoq+rrIKrhB55efhnONx1eyOKbkmOo9TrHF3o3/sNqBl0QYnhCh28t0i9NFHHxEREVEYsQggfNscbjho2ORmnfEiCygKkT8PhvgQ6OWMksNzplvWQdPr3N0IiN5ctIEJIYqlfCdCy5Yto2rVqjz00EN8//33xMbGFkZcpZKqqgRErGaRpwcWBZoFNJMFFIXIJ61GYXzPUIBsyZApuQaYXIl10LI3KQJuXij6AIUQxUq+E6Fjx47x119/0bZtWz7//HPKly9P9+7dWbRoEampqYURY6lx4cR+AtSLLPNwB2BwbVlAUYh70bVOID8MakSAV9ZuMq1GR8vAzoB10LTmzDpbhCeEKEbuaWGa2rVr8/HHH/P333+zfft2goODee211wgICCjo+EqVG3/MY5WHG8laDcGewbSq0MrWIQlRYnWtE8gfY9rzy/DmfNqvHjqtgtmi0j3EuhTFdldXks6stnGUQghbu+8V+tzc3HBxccHR0RGj0VgQMZVKJqORkOsbme/pCcgCikIUBK1GoUWVsvRvEkTnUOsXteN/u1PNqzIGjcLmlAhc9TdsHKUQwpbu6ZM2IiKCSZMmUbt2bZo0acKRI0eYOHEi0dHRBR1fqXFy91pOuqZxVeeAt6MsoChEQetRz7rsx/rj0fSq2hewbrkReOugLcMSQthYvqfPN2/enAMHDlCvXj2GDh3Kk08+SYUKFQojtlJFf/gXfvbyAODxGrKAohAFrV1NP9wctVy9lUaQYyu0fMFfzk6Ybu63dWhCCBvKd4tQhw4dOH78OEeOHGH06NGSBBWA5KQESN/NEWdnHBStLKAoRCFw1mnpFOoPwB9n9bT0fxCAndpYSLxmy9CEEDaU70Ro0qRJhIaGFkYspdapbYtY/s/slm4h3WUBRSEKSY965QFY/1cUPWs8Dlhnj6ln1toyLCGEDclo3GIg+exiNru5AjJlXojC1Lp6OTydHYhJ0uNmroenxokYBwcOnP3V1qEJIWxEEiEbi7l2kUNOFzErCg2861DDp4atQxLCbjk5aOlS2zp7bNOJWLpUbA/A2rRLkBxjy9CEEDYiiZCNnd3xEys8rQsoDm/8ko2jEcL+9axv7R7beDyabtUHALDV1YXkk9IqJERpJImQjSinVtHl+CucvbmSZI2GQMVLFlAUogg8VKUsPm6O3EwxkJhQnvIWZ9I1GjafWWbr0IQodTI+C5XTtlvc9J4SoVu3brF582YWLFjAzz//nOWnsH333XcEBwfj7OxMs2bN2L//zlNfly1bRs2aNXF2dqZu3bps2LCh0GO8G3NSDKx7HQdTAqs9rW/BwDrPygKKQhQBB62GrnWs3WMbTlynkWMjAFanX4HUOFuGJkSpkvFZ6GRKQF37uvWxDeR7HaG1a9cycOBAkpOT8fT0RFH+3dZQURQGDy68wb5Llixh1KhRTJ8+nWbNmvHVV1/RpUsXzp49i5+fX7bz9+zZw5NPPsnkyZPp0aMHixYtok+fPhw+fJg6deoUWpx3Mmf/bhYfG4GLrzspGg+idQ5oVBW9McQm8QhRGvWsV55F+yLZfOo6r9dthSZpD4ednbj810KCmr9i6/CEsHv//SxUFDdUVSFtcReeaPAdQ5s+VKSx5LsJ4o033uDZZ58lOTmZW7duER8fn/kTF1e436a++OILhg8fztChQwkNDWX69Om4uroye/bsHM+fNm0aXbt25c0336RWrVp8+OGHNGrUiG+//bZQ48zNxuPX+OnQO0TrjIQ76YjWWfNQFfj58EQ2Hpe1TIQoCg+G+ODr4URiuomoJC+auVhbiNacW2HjyISwf7d/Fl5wdPznM9HITwfHFflnYb4ToatXrzJy5EhcXV0LI55cGQwGDh06RMeOHTOPaTQaOnbsyN69e3O8Zu/evVnOB+jSpUuu5xcms0VlypbZJLjexPKfVjQAVVFIcL3JlC2zMVvUIo9NiNJGq1HoXte65cbhWIWeVfsBsMYYjSUt3pahCWHX7vRZaLHRZ2G+u8a6dOnCwYMHqVy5cmHEk6vY2FjMZjP+/v5Zjvv7+3PmzJkcr4mOjs7x/DvtiabX69Hr9ZmPExMTATAajfe1qewfF6Iwey5Do6rZ3nwARVUxey5j17lnaFUl4J7vU5xkvF72uhmvvdcP7LuOj9T2Y+6eixyPV2gS8hjux7/lmoMD+w9Op3Hz0bYOr0DY8/uXwd7raG/1K8rPwry+ZvlOhLp3786bb77JqVOnqFu3LjqdLsvzvXr1ym+RxcrkyZOZOHFituObN2++r1awndd3csvJAmR/48HaKnRLZ2HNrq9IPPvwPd+nONqyZYutQyhU9l4/sM86WlQo46gl3qAwa9Uemqtl+c3hJktP/8r1OPtaPd8e37/b2Xsd7aV+RflZmJqamqfz8p0IDR8+HIAPPvgg23OKomA2m/NbZJ6UK1cOrVbL9evXsxy/fv06AQE5Z40BAQH5Oh9g7NixjBo1KvNxYmIiQUFBdO7cGU9Pz3uO3/NCQw7s3kqigznXLNjLpKXXw6/ZVYvQli1b6NSpU7aE2R7Ye/3A/uv4l3KaOXsvc80hkGENX+S3w5P4Q5fG+LZNcHXNPgGjpLH39w/sv472Vr+i/CzM6NG5m3wnQhaLJd/BFARHR0caN27M1q1b6dOnT2YsW7duZcSIETle06JFC7Zu3cprr72WeWzLli20aNEi1/s4OTnh5OSU7bhOp7uvX8KHawSh3fg4lrJLcnxeVRS0iY/zcPWKaDU5Z8ol1f2+dsWdvdcP7LeOPeuXZ87ey+w8H8vU/o/ywIFJRGo17Dg6g95tsn/ZK6ns9f37L3uvo73Uryg/C/P6epWohWtGjRrFrFmzmDdvHqdPn+all14iJSWFoUOHAjB48GDGjh2bef6rr75KWFgYU6dO5cyZM0yYMIGDBw/mmjgVJq1GYUynZ/FKLYtGzToITKOqeKWUY0ynZ+0uCRKiOKtT3pNyTippRgtbz8bSy7sWAGsif7NxZELYp4zPQjeTNttztvosvKdEaOfOnfTs2ZOqVatStWpVevXqxe+//17QsWUzYMAAPv/8c95//30aNGjA0aNHCQsLyxwQHRkZSVRUVOb5Dz30EIsWLWLmzJnUr1+f5cuXs2rVKputIfRI3fIMazyJAKOOKnojVQ0GquiNBBh1DGs6iUfqlrdJXEKUVoqi0LCc9YvJumPX6Fl3GAD7LUlcOzADPqsGJ1faMkQh7E7Tqo6ka63DaCoYbf9ZmO+usQULFjB06FAeffRRRo4cCcDu3bvp0KEDc+fO5amnnirwIP9rxIgRubbo7NixI9uxxx9/nMcff7xQY8qPoQ+2ZHCtTahfN0JrTMKk80Qzchdaj5I/HkGIkqhRWQtbrmrYcfYG7o93oJlRZZ9OYc3eKbyYchPWvgqVWoG7r61DFcIuzD/4DWYF6qfr+SkmGUdzik0/C/PdIjRp0iQ+/fRTlixZwsiRIxk5ciRLlizhk08+4cMPPyyMGO2O1sMPenyJ3sELpeeXkgQJYUOBrlDF1w2D2cKWUzH08mkAwBpXR1QAfTKsH3WnIoQQeZRiTGHJ32sAaJbgi9r9K5t/FuY7Efr777/p2bNntuO9evUiIiKiQIIqDdTQPmyq+w1qrd62DkWIUk1RoHtd6+yUtX9do6NXDVwsFi7rdBxxcgLVDKfXwAlZdVqI+7X89GJSMBFsMOLpPwht3b42/yzMdyIUFBTE1q1bsx3/7bffCAoKKpCghBCiKHX/ZxPWU+fDcd4/k84p1vVH1ni4/XOGAuteg+QbtglQCDtgNBv5+fhPAPRJsFC7dT8bR2SV7zFCb7zxBiNHjuTo0aM89JB1Y7Tdu3czd+5cpk2bVuABCiFEYavs60atAA9evfklGFLonezAag93Nrm5MuZmPC6q+m8X2YD5tg5XiBJpQ8QGYkxJlDOZMenb0jikHCaTydZh5T8ReumllwgICGDq1KksXboUgFq1arFkyRJ695ZuHiFEyfRM1VS63joAKjRON1PBaOKqzoFtri50T0n9t4ss5jT41bJ1uEKUKBbVwtxjMwB4KiEZtf5glBwWVLSFfCdCAH379qVv374FHYsQQtjMQ81bE7avKR01h3BQLPRMTmF6GS/WuLtZEyFFCzW7SxIkxD344+ofXEi+jJvFgl9CZeo1b2jrkDKVqAUVhRCisDxQzo1Ffq+TgjMqCr2SUwDY6+JMtNYBnDyg+xc2jlKIkmn28R8B6J+YzF/efQgp53aXK4pOnhIhHx8fYmNjAShTpgw+Pj65/gghREn1cINavGMchoJKkMlEo/R0VEVhnbsr9PhS1hIS4h4cu3GMQzFHcFBV2ifoCGmWfea5LeWpa+zLL7/Ew8Mj89/FpV9PCCEKUvd6gXy0vjk9zH/SxeEwvZNSOOzszGpvH4bV7pvLftlCiDuZe2IuAD2SU9hu7MCQ+sVrhnmeEqFnnnkm899DhgwprFiEEMKmAr1caBrswzsXn6WN7jSdUlKYXLYMFzVwPPY49Xzr2TpEIUqUiwkX2RppXXJn0K1kZoX0o4ybo42jyirfY4S0Wi0xMTHZjt+8eROtNvsmakIIUZJULufOTbwYnf4seosH7VPSAJi+e4aNIxOi5Jl3ah4qKm1TUonQ16dD0/q2DimbfCdC6m07p2fQ6/U4OhavLE8IIfIj7EQUSw5eBmC9pTlN9NOplGhdbHFf3G7W/nXJluEJUaLEpsWy5oJ1O42hCUms1HaiXc3it6VUnqfPf/3114B1t+Yff/wRd3f3zOfMZjO7du2iZs2aBR+hEEIUAbNFZeLaU9mOn0xuh79pBdcd4IPfltKtzmi0GhktJMTdLDy9EIPFQP10PeXSPClbvwvOuuLXc5TnROjLL78ErC1C06dPz9IN5ujoSHBwMNOnTy/4CIUQogjsj4gjKiE92/HfLE0YlrSY+WUccHDayv6IZ2lRpawNIhSi5EgxprDkzBIAhiYkstjckz6NHrBxVDnLcyKUsaFqu3btWLFiBWXKlCm0oIQQoqjFJGVPggD0OOKWUB3KXCHF7SrhcdckERLiLpafW06SMYlgg5FWKQameXRldKXimTfke4zQ9u3bJQkSQtgdPw/nXJ/bld6Beul6VAX+Tt5ehFEJUfIYzUbmn7LuyTc0IZGtlsa0aVQHTTHtUs73FhvPPvvsHZ+fPXv2PQcjhBC28mCID4FezkQnpHP7lJD9ag3GJin85QxHYlajqq/IempC5GLjxY1cT71OObOFHskpPGvuwAcNK9g6rFzlu0UoPj4+y09MTAzbtm1jxYoV3Lp1qxBCFEKIwqfVKIzvGQqQbeFEFQ1JiU1wtKhcSI/hdNzpog9QiBJAVVXmnJgDwKCEBKIsfiSXb0llX/e7XGk7+W4RWrlyZbZjFouFl156iSpVqhRIUEIIYQtd6wTyw6BGTFx7KsvAaUetwoOPvEzU4afZ5O7G6tOLCW31gQ0jFaJ4+v3q71y4dQE3VeHxpGS+N3enb6PitZL07Qpk01WNRsOoUaMyZ5YJIURJ1bVOIH+Mac8vw5vzQe/aKIDBrBJYpT69nQIB2HBxI0az0baBClEMZbQGPZ6QgItZw0q1DT3qBdo4qjsrsN3nw8PDMZlMBVWcEELYjFaj0KJKWQa3CKZDLesCcMsOXqZFnacpZzJzy5zOrqu7bBylEMXLXzf+4uD1gzigMDAxiU2WJtSpXo2y7k62Du2O8t01NmrUqCyPVVUlKiqK9evXZ9mTTAgh7EH/JkH8djqGXw9fYfSrj9Fz/xTmeLmz+uRCOjzQwdbhCVFsZLQGdU9JJ8BsZpG5A081Kr6DpDPkOxE6cuRIlscajQZfX1+mTp161xllQghR0rSr6YevhxM3kvRsvWSmV9kGzDFd4PeYg8Slx+Hj7GPrEIWwuf9urjokPo4Iiz8ndPXoWMvfxpHdXb4Toe3bZQ0NIUTpodNqeKxRRabvDGfJgUjmPPgMobvf4pSTExvC1zOo9tO2DlEIm5t3bAYqKm1S06hqNPKV+SEeaVihWG6pcbsCGyMkhBD2akBT66yXneduEBXQht5pFgDWnF5ky7CEKBZiU2+wJmI9AM/eSkRVoa7mIn1LQLcY5LFFqGHDhnlePOzw4cP3FZAQQhQ3IeXceDDEh/0RcSw/GsvTwZ35LH4Xp1OucDbuLDV8atg6RCFsZtHv4zGgUj9dT0O9HkWBDtojWFJ2Ao/aOry7ylMi1KdPn0IOQwghircnmgaxPyKOpYcu87/+g2i7YRO/ubmy5twK3mw+1tbhCWETKfGXWHxtF2gUhiYkZi5GqqKgWf8ahLQGd19bhnhXeUqExo8fX9hxCCFEsfZInUDGrz7J5bg09hrr0kt15TdgffhqXntwNDqNztYhClG0VJVf1z9PkkYh2GCkXWpa5lMKKhZ9Mpr1o2DAfBsGeXf3PEbo0KFDLFiwgAULFmSbSSaEEPbGxVFL74blAVhy8Aqtag3Ax2zmpimFPVf32Dg6IYqeMfo4P+sjARiSkJgtodCoZji9BmKK95Y0+U6EYmJiaN++PU2bNmXkyJGMHDmSxo0b06FDB27cuFEYMQohRLEwoMkDAISdjCat+mN0S04BYPXZJbYMSwib2JAcwXUHB8qZzPRIScn2vEnVsF1pjrlcTRtEl3f5ToReeeUVkpKSOHnyJHFxccTFxXHixAkSExMZOXJkYcQohBDFQp0KntQK9MRgsrDikjO9XYMB2HFtNwn6BNsGJ0QRUlWV74/+BMCTCck4qVmft6iQgguj055hf0ScDSLMu3wnQmFhYXz//ffUqlUr81hoaCjfffcdGzduLNDghBCiOFEUhSf+mUq/+MBlatR7mhp6A0bVwsYI+fsnSo/fr/7OtdQIMDvyeFJStuc1CowzDuMmXsQkpedQQvGR70TIYrGg02UfFKjT6bBYLAUSlBBCFFd9GlTA0UHDmegkTvl0oFeK9Y/8mjOLbRyZEEUnYzuN2gk+lFEtxKvumFRrSmFSNWw0N2W9pTkAfh7ONoszL/KdCLVv355XX32Va9euZR67evUqr7/+Oh06yL47Qgj75uWq45E6AQAsPJ5M94DmOKgqxxPC+fvW3zaOTojCl7m5qsaB95PDAfjM+DgpOKP+0yX2rvFZFCDQy5kHQ4r3NjT5ToS+/fZbEhMTCQ4OpkqVKlSpUoWQkBASExP55ptvCiNGIYQoVgY0sXaPrT16Dfc6T9Hqn2nDqy+ssmFUQhSNuSfnAtC9TF1CzTe5oXqy3NKWccbnuIEXY43DiMMLgPE9Q9Fq8rYgs63ke6+xoKAgDh8+zG+//caZM2cAqFWrFh07dizw4IQQojhqXrksD/i4EhmXyoa0uvQywA43WHd+BSMbvYpWU/z3VxLiXlxKvMRvl34DYEhsNACLze0xoGO9pTnr9dbusEAvZ8b3DKVrnUCbxZpX+U6EwDpgsFOnTnTq1Kmg4xFCiGJPo1Ho36Qin28+xy+Hr7OgSk+8bmwmxpDAn9+E0rLjJ1C7r63DFKLAzTs5z7q5qm8jqu5fhQUNi0wd6NuwPP2bPEBMUjp+HtbusOLeEpQhz11je/fuZd26dVmO/fzzz4SEhODn58fzzz+PXq8v8ACFEKI46tc4CI0C+y/GcSO4D4+kpAKw2sEIa1+FZFlXTdiX2LRYVl9YDcBQg7XV8zdLY6Ioy+AWwbSoUpbeDSrQokrZEpMEQT4SoQ8++ICTJ09mPj5+/DjDhg2jY8eOvP3226xdu5bJkycXSpBCCFHcBHg507aGHwA/R/rSJ80MwDZXF5IMKbB+lC3DE6LALTq9CIPFQL2ytWl0ahMAc02dqFvBiwZB3rYN7j7kORE6evRolllhixcvplmzZsyaNYtRo0bx9ddfs3Tp0kIJUgghiqMB/6wplHhoOaGpiVQxGNBrNGxyc7JuLXBihY0jFKJgpBhTWHzWukTEs87BKIZkLioV2GOpzdMtKqEoJacF6HZ5ToTi4+Px9/fPfLxz504eeeSRzMdNmzbl8uXLBRudEEIUY+1r+lHNLZ23zdMBhV4ZW264uwMKrHtNusiEXfj13K8kGZII9qxE2zNbAZhj6IiXiyM965W3cXT3J8+JkL+/PxEREQAYDAYOHz5M8+bNM59PSkrKcaFFIYSwVzqNwreeP+NGOgoqPZJT0agqR52duOSgBX2ydJGJEs9oMfLzqZ8BeMa/JdrYc6Qrzqwwt6Z/k4q4OJbsWZJ5ToS6devG22+/ze+//87YsWNxdXWldevWmc//9ddfVKlSpVCCFEKIYinmNDXid+CgWFfV9zObaZFmXWl6tYcblJDdt4W4k7CIMK6nXqesc1l6Rp4AYLmxJUm4Mqh5JRtHd//ynAh9+OGHODg40KZNG2bNmsWsWbNwdHTMfH727Nl07ty5UIIUQohiya8W1OyJ+T9/Svv80z22zt0Ni6KFWr2s5wlRAqmqyuwTswEYVLkXTmete+r9bO5Mm+q+VCrrZsvwCkSe1xEqV64cu3btIiEhAXd3d7TarE1hy5Ytw93dvcADFEKIYktRoMeXmC/sQDEmoVGgXWoqHmYLUQ4OHPDwoln3L2wdpRD37I+rf3Dh1gVcHVzpn5AAqpmD1OKcGsSYFiW/NQjuYYsNLy+vbEkQgI+PT5YWIiGEKBXcfTnWYAIZy6Y4qdAlxdoqNN+vFrj72jA4Ie7PnJPWzVUfr/YonkcWWY8ZOlGxjEvm8hElXb4TISGEEP8KOxFF/z8CCDM3zdx9u1eSNRHaY7zCqmPhtgxPiHt2/MZxDkQfwEFxYJDWF1JiuKn4sMnShIHNKpWoRRPvRBIhIYS4R2aLysS1p1BReMf4bObu21X0GioZjRg1Kt9sn4XZoto6VCHyLaM1qFvlbgQcs64TON/YFo2DY+YaWvZAEiEhhLhH+yPiiEqwzhK7iVfm7ttvG58nJMUFgDivDXT7tTd9V/flsTWPcS7+nC1DFiJPsmyu6t8KIvdiRssiUwd61A3Ex81+hsLc06arQgghICYpPcvjf3ffVglw2gXqTUwauJYaAamgUTRM3jeZ2V1ml+iVeIX9y9hc9eGKD1PtTBgAmyxNiaEMT9vJIOkM0iIkhBD3yM/DOcfjDh4nSXGJs84q+w+LauHg9YNsu7ytKMIT4p5k2Vy12uPwl7VbbJ6x5O8rlhNJhIQQ4h49GOJDoJczWdIdxYiT/1pUNecWHwWFKfunoDfriyRGIfIrc3PVcvVofPUUGFP5Wwlin1qTp5uX7H3FciKJkBBC3COtRmF8z1CAzGTIwf0MGl0CipLzAGkVlaiUKHZd2VVEUQqRd6nG1H83V609BOXgTwDMzthXrH7J3lcsJ5IICSHEfehaJ5AfBjUiwMvaTWZKronF6HXHFqFAt0AervhwUYYpRJ78ej5jc9Vg2poUuHmBNMWVleZWdrGvWE5ksLQQQtynrnUC6RQawP6IOGKS0vkr/hWWRn6U47kqKmMeHIOT1qmIoxTizrJsrnrlPNobkwBYampFCi4MbGZfg6QzSCIkhBAFQKtRaFGlLAC91P5snLeMRM5l6yKr6VOT9kHtbRGiEHcUFhFGdEo0Zc0WesZFgRoFwM+mTrSp7ktwuZK/r1hOpGtMCCEKmKIovN5oDBa9Pxa9P5VdyuNpNgOQZkjGrJptHKEQWamqypwT1gUUByUm4fRP/h6HJ+FqBZ62g13mcyOJkBBCFIJ+dZtQxTCelL9fp4PPN6wz+eJpNnMp+QrLzi2zdXhCZLH72m7O3zqPq8XC44mJmcd9SORpj8O0q2kf+4rlRBIhIYQoBIqi8FzrEAB+/vMSbk1f5pX4BAC+OfINcelxtgxPiCxmH5sBQL+kFLz+syWMRYV31BloU2NtFVqhKzGJUFxcHAMHDsTT0xNvb2+GDRtGcnLyHa+ZOXMmbdu2xdPTE0VRuHXrVtEEK4QQQLe6gVTwdiE22cAqfRMex4OaegNJhiSmHZ5m6/CEAOD4jb84cOMoDqrK0wmJWZ7TKOBkToX1o2wUXeErMYnQwIEDOXnyJFu2bGHdunXs2rWL559//o7XpKam0rVrV8aNG1dEUQohxL90Wg1DWwYDMHPPFZQmzzHuprUlaMX5FRy/cdyG0QlhNefQ1wB0S04hwJx9/JqimuH0Gog5XdShFYkSkQidPn2asLAwfvzxR5o1a0arVq345ptvWLx4MdeuXcv1utdee423336b5s2bF2G0QgjxrwFNg/BwcuBCTDJ/ePegoVlDryRra/akfZOwqBYbRyhKs8jESH67vh+Ap2/l3MtiUjVEV+gEfrWKMrQiUyKmz+/duxdvb2+aNGmSeaxjx45oNBr27dtH3759C+xeer0evf7fpe8T/xk0ZjQaMRqNBXafjLIKsszixt7raO/1A/uvY1HUz1kL/ZtU4Kfdl/j+zzha1u3P638tYJuHJydvnmTZmWU8WvXRQrm3vb9/YP91LOz6zTk+BxUV57RqBBmvw23rgFpUSMGFZ288yQq9Aa2mYLfXKMz65bXMEpEIRUdH4+eXdcS6g4MDPj4+REdHF+i9Jk+ezMSJE7Md37x5M66urgV6L4AtW7YUeJnFjb3X0d7rB/Zfx8KuX5AeNIqWPyPiWayrxUCzhZdu3uSzsmX44sAXWM5YcNUU/N+XDPb+/oH917Ew6pdsSWZV4ioA4q63I1Y9jpsSk+UcjQLjDMM4pXfm2yVhVPPKeeuY+1UY9UtNTc3TeTZNhN5++22mTJlyx3NOny7aPsmxY8cyatS/g8ISExMJCgqic+fOeHp6Fth9jEYjW7ZsoVOnTuh0ugIrtzix9zrae/3A/utYlPU7bDrOmr+i+NO5GU9WbseTf29nhV8Q4eZkzvufZ2zTsQV+T3t//8D+61iY9fv+2PeYTpqo6FKDCvqbVHKMwaQqgIKDYsGkathiacx6i3V4SeXaDehWL7BAYyjM+iUmJt79JGycCL3xxhsMGTLkjudUrlyZgIAAYmKyZqkmk4m4uDgCAgIKNCYnJyecnLIvfa/T6QrlP1lhlVuc2Hsd7b1+YP91LIr6Pd+mCmv+imLDietMePw5yv69nXeuR/NsOXd+vfArj9d4nFplC2cMhr2/f2D/dSzo+qUaU1l6fikAPSo9SfsTEwD42dyZx7S/46mmkoIL7xqfzbwm0Nut0F7jwnj/8lqeTRMhX19ffH1973peixYtuHXrFocOHaJx48YAbNu2DYvFQrNmzQo7TCGEuG91KnjxUJWy7Am/yfSrwbxTrjpNY8/xSEhDNiad5+N9HzPvkXlolBIxh0WUcCvOryDRkEglz0o876Ki00SSqLowzfQYhyw1GK+bxwTjM9zECwUI8HLmwRAfW4ddKErE/7hatWrRtWtXhg8fzv79+9m9ezcjRozgiSeeoHz58gBcvXqVmjVrsn///szroqOjOXr0KBcuXADg+PHjHD16lLg4WchMCFH0hreuDMAvB66S1ng4AKOuhOOi0XH0xlHW7co+PlGIgpZlc9VaT6Pb9SkAP5m6kYA76y3NeVD/AxsszTPHTo/vGVrgA6WLixKRCAEsXLiQmjVr0qFDB7p160arVq2YOXNm5vNGo5GzZ89mGRw1ffp0GjZsyPDh1j84Dz/8MA0bNmTNmjVFHr8QQrSp7ks1P3eS9SYWp7cEZ28C4i7yQvwtAL4IX05SfIRtgxR2LywijKiUKHycfeiVZoLYsxh1Xsw2P3L7pDECvJz5YVAjutYp2LFBxUmJmDUG4OPjw6JFi3J9Pjg4GFXNOpp9woQJTJgwoZAjE0KIvNForNtujPn1OLP+jGZwo8Fo937N4LibrHJx5KKjjh/WD+OtQdtsHaqwU6qqMufkP5ur1nwKp52fA7DQoTdJuPJS28o8XM2PmKR0/Dys3WH22hKUocS0CAkhhD3o3aAC5dwduZaQzokU60xUHTA2Lh6ARaYYzh/4wYYRCnu2+9puzsefx9XBlf+3d9/hTZXtA8e/J0mbtIW2lFJaoGwoowwRSkGkyBZEHO8rCCi+IL7uV0VkqYgDQRH1h4gLQUXEhQoIyN6VsmcZZUMphRa6R8bz+yM0EDoYlqTj/lxXr4ue8+TkvnOS5uacZzyUq4PkI+QaA3jvQie8PfUMu7Me7epVpm/L6rSrV7nMF0EghZAQQriUyUPP4Ha1qUwK9XZ/SN517PZZ2XTJyMSqaby7/f9QaYlFHkeImzFzj/1q0L/q34/fevvSGt8bHiATE4MiaxHg4+nO8NxCCiEhhHCxQW1r8q7xa0y2LKc+GSOSL2C02dhsNPDXgiGFPl6Im7Hn/B5iEmIwaAYesRoh5QS5pipMSroDo0HH43fWcXeIbiGFkBBCuFiljMN01zZj0JzXGatusTL00urf72cdJjN+uzvCE2VU3tWgXrV7EBxtH2w02+NfZGPk4YiaBFU0uTM8t5FCSAghXC2oMRl178ai8v8JHpKSSg2zhUSDgc/PrHZ9bKJMOpF6guUnlgMwWFWAtHhyvEOYeC4ST72OJ6PquTlC95FCSAghXE3T8HlgKtk6L2xXLd3kqWB4SjYA3+77lqMpMpxe/HPf7vsWm7JxZ7X2NIz5BoDvPB8iFw8ealODYL/yeTUIpBASQgi3WHLMwqicIVw9KEcDFiX9m0a+EVhsFibGTMw3NYgQNyIpK4nf434H4D9aJchIJKdCKBMTbseg08r11SCQQkgIIVzOalOMX7CPhbZIlljbOG6R5dU7VbRUThzqhofOg43xG1l5UuYVEjdvzv455FhzaBbQhNZbfwTgW89+WDDwYKsa1Kjk7eYI3UsKISGEcLGYo8mcSckGNMaah5CBCaUgC/vQ5ccNi7iYbKRb9X4AvBfzHlmWLDdGLEqrTHMmc/fPBeA/+ipoWclk+9VlYnwL9DqNp+8q31eDQAohIYRwucS0bMe/k/BjjPlxzuHHSPMTnLRVoYqWwkP61bT2+xfBPsHEZ8Tz9Z6v3RewKLUci6tWqEHnXfblpb717I8VPX1bVKNWZR83R+h+UggJIYSLXT1MOW+RywW29nxuvQeA/xoWEurrw4jWIwD4evfXnEw76fJYRenltLiqRzD67BSyKzVk4skmaBo8fVd9N0dYMkghJIQQLhZRJ4AQP1O+BS4BfrZGkaj8qaGdJyJtOd1qdSMyJJJcWy7vbX7P5bGK0uuvde/YF1c1eHPvnmUAfGscgA0dvZuFUD+ogpsjLBmkEBJCCBfT6zTG9WkCkK8YysGTLy29ANBt+BBN2RgdMRqDZmD1ydWsPbXWtcGKUkmlJTLz0E8ADDp/FmNuGtmBTZl43H4V6LnODdwZXokihZAQQrhBz/AQpg9qVeD8LQdq/BtM/pAUB/v+oK5/XQY1GQTAxJiJ5FhzXBytKFWUYuOCxznoocfLZuOhlIsAfGsciE3p6Nk0mLDgiu6NsQSRQkgIIdykZ3gI60d25odhkXzcvyUT7gsHYN2JLM41vbTW2LopoBRPtniSKl5VOJl2km/3fuvGqEWJt3ceM1NjAfhXWjp+l2bt3HXsDADPdpa+QVeSQkgIIdxIr9NoV68yfVtWZ0BkLe5pHoJSMP7sHeBZAc7uhkNL8fHwYXjr4QB8sesLzqSfcXPkokRKP8fev15mk5cJg1I8kpIGgALeMczgvgYehFf3c2+MJYwUQkIIUYK83D0Mg05jYVwO8Q0G2DeunQxK0atOL1oFtSLbms37W953b6Ci5FEKFr7I1172r/a70zMJsVoBe180H7J5Qz/DjQGWTFIICSFECVI70IeHI2oCMDohCmUwwakYOLYOTdMY03YMOk3HsuPLiI6PdnO0okRJjOVE3GKWe3sB8FhKqtNug2bD/9gSSIx1R3QllhRCQghRwjzXpT5eHnrWnNY4UesB+8a1kwEICwijf1h/AN6NeRez1eyuMEVJE9SYb2s1w6ZpdMjMoqHZ+b1hQweN74Wgxm4KsGSSQkgIIUqYoIomht1ZB4CRCZ1ROgMcXQOntgDwzG3PEGAK4GjKUebsn+POUEUJkpSdzDxlvwo05KqrQTYFacqLlfVGuiO0Ek0KISGEKIGGdaxLgI8nfyd5c7SafbZp1n0AgK+nLy+0egGAT3d8SmJmopuiFCXJnNgfMCszTbLNtM52nmJBp8FY81DGLjuL9dIoMmEnhZAQQpRAFU0ePHNpCYRXznZBocGBRXB2LwB96/eleWBzMi2ZTNk6xZ2hihIg05zJ7Fj71cHHUy6SrkxYlP0r3qJ0LLa2YaEtkjMp2cQcTXZnqCWOFEJCCFFCDYqsSXV/L7akVeZwla72jZeuCuk0HWPajkFD488jf7IlYYsbIxXu9lvcb2Ra0gg1m+mcmcXL5ifJwIRSkIEXr5qHONpeueivkEJICCFKLKNBz/DuDQEYea6bfePe3yDpMABNA5vyr4b/AmBCzAQsNotb4hTuZbaZ+WbvNwA8lpLGImskf9kiGGN+nHP4Mdo8lCQuzx109aK/5Z0UQkIIUYL1bVmdRsEV2Zpdg0P+d4CywfoPHfufv+15/Ix+HLpwiB8P/OjGSIW7LD221L64qtVK13QL75gHAvCnLZKInOksskUC9rmEQvxMRNQJcGO0JY8UQkIIUYLpdRojezYCYMz5nvaNO+dCyinYMw//qW14vmpHAKZtn0ZSVpK7QhVuoJRi5u6vABiYksaZJs+QQOV87fIW9x3Xpwl63dVL/ZZvUggJIUQJ1ymsCm3rBLDZUo84n9vAZobVk2DhC5CRyIObZtPYvwFp5jQ+3vaxu8MVLrQxfiMHLsbhZbPRz6Mqf1Wwzzt1da0T7Gdi+qBW9AwPcUOUJZvB3QEIIYQomqZpjLy7EQ98upE3LtzNbM/tsH02aPZvO31OOmMy4RHsnWYfbPggLaq0cG/QwiVmbpsKwINp6WR3/IDPfj4JwCcPt6KSjyeJadkEVbTfDpMrQQWTQkgIIUqBVjUr0aNpVf7aq0gwVCfYctq+kiaAstLywAr6tr6XP5J2MGHTBOb0kokWy6KDFw4yet1obMpGjiWbk+mnQCnuDGzF2J2VybUmcmeDQO5uFoymSeFzPeTWmBBClBIjejSiipaKr/l8vn0KjRf2raWihw/7kvYxL26eGyIUt5JSigmbJhB3MY64i3H2IuiSDzwMLI89i0GnMa5PUymCboAUQkIIUUrUr+LDzCo/4En+9cU0FAFZaTyj/AH4eNvHXMy56NoAxS218sRKtp7dik3ZnHdoGgcz92OosI8hHepQP6iCewIspaQQEkKI0iIxlvDUtRg0W4G7dcpKv0PR1K8QSkpOCp/u/NTFAYpbJceaw8SYiegK+dpWSsMrZCFPRIW6OLLSTwohIYQoJayBjViltXUsnXA1i9KxTotkVPvxAPwa9yvxlnhXhihukXWn15GQmYCNgotgTVNguMD289Eujqz0k0JICCFKiZhjF3g56zEyMHH1upm2S0spvJw1GFtmXe6uczcKxYKsBflvpYhS587qdxLsHVx4A6UR4hNCxxodXRdUGSGFkBBClBKJadkk4cdY89B888ToNBhnfpQk/EhMy+bl1i/jbfDmpPUkfx790z0Bi2Jj3L+IhhdOF95AU4yMGIlRb3RdUGWEFEJCCFFK5K0RtdAWyRJrG8ctMnXp6lB9XbyjXZB3EMPChwHw8Y6PSc1NdX3Aolh45KYwecOrrDXqAdCU8+VADR1tgtvQObSzO8Ir9aQQEkKIUiKiTgAhfiY0NMaahzhWF8/EfhXgCf1CIiued6wlNSBsAIG6QJKzk5m+Y7o7Qxc3SdlsbEz+hDkVjGhK8XTyRRqYrQR6hGLNrgq5wdT1q8eoiFEyZP4mSSEkhBClhF6nMa5PEwCS8XOsLj7C/F+WWVvhqVn51O879Je+Dz30HtzjdQ8AP+z/gYMXDrordHETlFK8t/xJ/jBloSnF+PPJPJWSyq+n47n9YBsyj77I6OYz+P2+eTSs1NDd4ZZaUggJIUQp0jM8hOmDWhHsZ3JaXfwN82CyNSMB5zfbF2W9pL5HfbqEdsGqrLy76V3UVbdVRMmklOKd9a/x4/ktjiLo/vQMAGxovKa+4I4QG/3ayHD5f0oKISGEKGV6hoewfmRnfhgWycf9W/Jm36bEU4WPcu+3N1j6KmQmO9q/2OpFTHoTW85uYfHRxW6KWlwvm7Lxzt9v8+ORP9CU4s0riiAAHQofsvnEd7asH1YMpBASQohSSK/TaFevMn1bVufRdrV5omNdvrL24jChkHkeVox3tK3mU43Hmz0OwAdbPiDDnFHYYYWb2Yugd/jx4E9oSvHW+WTuS89/vgyajUrHl0BirBuiLFukEBJCiDLgxW4NqVnFj1E5/7Fv2DoL7dRmx/7Hwh8jtGIoiVmJfL7rczdFKYpiUzbe+vstfjr4Exoab+tCuLeAIgjApumh8b0Q1NjFUZY9UggJIUQZYPLQ8/6/mrOFRvxkiQJAv/hlNGUFwKg3MipiFADf7fuOIylH3BaryM+mbLwZ/Sa/HPwFDY132o/nzgvZaFyeHuFyW0izmVhZb6RbYi1rpBASQogy4vZaAQy9ow7vWh4mhQpoiXupe26pY3/HGh2JqhGFxWZh4qaJ0nG6hMgrgn499Cs6Tcc7Hd6h96FoKl3YRaby4OpR8ToNxpqHMnbZWaxXTzEubpgUQkIIUYYM7x6Gf2AI75gfBqDRmXmQenlG4pFtRuKp8yT6TDQrTqxwV5jiEpuyMT56vKMImtBhAn3SM9HF2G9fPm9+zmnyTIvSsdjahoW2SM6kZBNzNLmow4vrIIWQEEKUIV6eet77V3N+sUWx2dYQgy0H/dKxjv2hvqH8J9zej+i9ze+RZclyV6jlnk3ZeGPjG8w7NM9RBPX2qgELngfgY8v9LLe1dpo8MwMvXjUPcRwjMS3bXeGXGVIICSFEGdOmdgCPta/Hq+YhWJQO3YGFcPAvx/6hzYYS4hPCmYwzzNg9w42Rll82ZWPcxnH8FvcbOk3Hux3epXdwO/hxEFiyuVC9Ex9ZHgQg6YrJM0ebh5KEn+M4ecuuiJsnhZAQQpRBI3qEkVUpjK+svewbFr0MuZkAeBm8eKXNKwDM3DOTk6kn3RVmuWS1WXl9w+v8Hvc7ek3PpDsn0at2D/h1KFw8AZVq4ztgFhVNno7HXDl5JoAGhPiZHMupiJsnhZAQQpRBXp56Jt4fzlTL/ZxWle1fsOsmw5558H4DuqSl0i6kHbm2XCZtnuTucMsNq83K6xtf54/Df6DX9EzsOJGedXrCqnfg8Erw8IZ+3xN7UUdmrvXSo65eZNVuXJ8mMqFiMZBCSAghyqg2tStxe7CRN8yDAVDrP4b5z0FGItrCFxjd7L8YdAbWnFrDmpNr3Bxt2We1WXltw2vMPzzffiWo4yR61u4JsQtg3Qf2RvdOJc0/jGfnbMNiU4RX88Xf0/k4wX4mpg9qRc/wENcnUQYZ3B2AEEKIW+eemjam5tzJsvRVdNNvR+Wm2+emyUmn9poPeaTJI8zcM5NJmycRWS0So97o7pDLpLwiaMGRBY4iqEftHnDuIPz2pL1R5DOo8AcZ/cN2jiVlUt3fi5mDb2f9qmVUaRJJUqaFoIr222FyJaj4yBUhIYQow4x6ePf+pqyzNgcu31bRlBVt/wLaJXgT5BXEybSTzNozy21xlmVWm5WxG8ay4MgCDOh4/2IWPTIyITsV5g6A3HSo1QG6jef7TSdYuOsMBp3G1AG34e/tgU6DtnUC6NuyOu3qVZYiqJhJISSEEGVc5oUEhnv8XOAMxU1ixtOz8kMAfLX7K+LT490QYdllsVkYs34Mfx75E4Om5/0LaXRLToAF/4NfhkDSIahYDf49iz0Jmby5cB8Ao+5uRKualdwcffkghZAQQpRhNpvCY8kIfMgucIZiH7K5ff2v3F61NdnWbCZvmeyeQMugvCJo0dFFGDQDk/WhdE25aN+ZnQpxy0DvCf1mk2bw59k528i12OjaOIihHeq4NfbyRAohIYQow1KSTnOX2oRBsxW436DZ6Kw28WDFXug1PcuOL2Nj/EYXR1n2WGwWxqwbw+Kji+1FUJ0H6XJoLairRoK1HICq3orR83Y7+gVN/ncLtKurVnHLSCEkhBBl2BFqOC3RcDWlYK21GTaf9jzcyL4sx7ub3sVsNbsyzDLFYrMwet1oFh9bjEFn4IPIcXTZ8AWXe2hdYe9v/Lpuu6Nf0P89fBv+3p7524lbRgohIYQow3w9NccSDVevz6kUaBqE645QJzeOp1s+TYApgGOpx5gdO9s9AZdyFpuFUetGseTYEgw6A1OiPqDztl8gJ52r5wMC++i9isvtq8iP7NmI22tJvyBXk0JICCHKsHq+Cg/fIMaah3L1YCNNg+O2KgRoGTRbPpCK8bt46faXAPhs52eczTjrhohLL7PNzMi1I/nr2F8YdAY+7PQhdxmDYf+CK26JOdOUlR66GB6pm8njd0q/IHcoNYVQcnIyAwcOxNfXF39/f4YOHUp6enqR7Z977jnCwsLw8vKiZs2aPP/886SkpLgwaiGEcC+dBq/2asSftsgCVzHvnfsuuwzhaLlpMPsB+lg9aVGlBZmWTKZsneLm6EuPvCJo6fGljiKoU2gnCGoMYb0KfZxF6VilRfLSwL7SL8hNSk0hNHDgQPbu3cuyZctYuHAha9eu5Yknnii0fXx8PPHx8UyePJk9e/Ywa9YslixZwtChQ10YtRBCuF+PplWZPuh2/s/rKadVzKd4PkmuvgL/Tn+Z2IrtwZKN7sdBjKncFg2NRUcXsTlhs7vDL/HyiqBlx5fhofPgo04f2YsgAJsFzFlA/htjtkvnIaDfJ1TykX5B7lIqCqHY2FiWLFnCV199Rdu2benQoQNTp05l7ty5xMcXPOdFeHg4v/76K3369KFevXp07tyZd955hwULFmCxWFycgRBCuFfP8BAWjHqAsx0nkWMKJCFqEkvGPsi0ga3I1Tzpc+5JDgbdDTYLTRa/xkOVwgGYsGkCFpvFsUYZe39zcyYli9lm5pU1r1wugu76iKjQKPtOmxXmPQFHVpGr9Pm6Sus0GGMeyhlLBZfHLS4rFYVQdHQ0/v7+tG7d2rGta9eu6HQ6Nm3adN3HSUlJwdfXF4NBVhYRQpQ/ep1Gwy6PYhp9mLDOj6DXaXRrUpVx9zTBgoEeJwZytO4AQPHcjsX464zEXYzjx10zYOELkJFonwgw/Zy7UykRzFYzI9aMYPmJ5Y4iqGONjvadNhvMfx72zsOMgSfMLxV4a3KRLZLxC/Zhvbonu3CZUlERJCQkEBQU5LTNYDAQEBBAQkLCdR3j/PnzvPXWW0XeTgPIyckhJyfH8XtqaioAZrMZs7n4hpPmHas4j1nSlPUcy3p+UPZzlPzsBkbU4Nj5dGZFn6D7gXtYdZs/NfZ8yvOJ8bwZWJn3dn7Cj5W90eMFaGi/9uLtXt/QwL+BC7IomrvOodlqZtSGUaw6tQpPnScfdPyAdlXb2eNQCt3SMeh3zEZpOp7LeZbVttvYbatLO+NefFUmGXjxqnkICjiTkk10XCJt6wSUmPxc5Vbmd73H1JS6etJ11xk1ahSTJk0qsk1sbCzz5s3jm2++4cCBA077goKCGD9+PE899VSRx0hNTaVbt24EBAQwf/58PDw8Cm37xhtvMH78+Hzb58yZg7e3d5HPI4QQpZVNwcyDOnYl6/A2KL6utpDWiT9wR60aZOqcbx7olKIBgQzyf6FcdvC1KAs/ZvxIrCUWAwYG+gykgcflorBx/M80PLsAgF8D/svw+CjHvt66vxnn8Q1vmAezyBbp2P5oAyu3B8pVoeKUmZnJgAEDHHeDCuPWQujcuXMkJSUV2aZu3brMnj2b4cOHc+HCBcd2i8WCyWTi559/5v777y/08WlpafTo0QNvb28WLlyIyWQq8vkKuiIUGhrK+fPni3whb5TZbGbZsmV069atyMKsNCvrOZb1/KDs5yj5OcvKtTJo5mZ2nUqlZoAXI5r+wZjzKwtt/0HEOO6q37c4Q75hrj6HZquZV9a/wprTa/DUeTKl4xTaV2vv2K/b8BH61W8DYO3xHtGV72PQ11uuedzZQ1oXekVI3qM3JzU1lcDAwGsWQm69NValShWqVKlyzXbt2rXj4sWLbN26ldtvvx2AlStXYrPZaNu2baGPS01NpUePHhiNRubPn3/NIgjAaDRiNBrzbffw8Lglb8JbddySpKznWNbzg7Kfo+R3ud2MwRE8MH0DJy6k8H7CGnR6ha2Aqz6aUkyOmUBUwz4Y9fn/ZrqaK85hrjWXkWtHsub0Goyagf9LTqd9ejLkPe+mz+FSEUTX8ejb/ZfWZismDx3Z5oKXONGAYD8T7eoHFbmqvLxHb+6Y16NUdJZu3LgxPXv2ZNiwYcTExLBhwwaeffZZ+vfvT7Vq1QA4ffo0jRo1IiYmBrAXQd27dycjI4MZM2aQmppKQkICCQkJWK0FT2wlhBDlXZWKRmY+FkHDSn9zwWAtsAgCUJrGGcz8vv0zF0foHrnWXF5c/SKrT63GqPPk/86n0P5CwuXO49tnw+JX7I07vgIdXiDXYuOFuTuKLIIAxvVpUmQRJG6tUlEIAXz//fc0atSILl260KtXLzp06MAXX3zh2G82mzlw4ACZmZkAbNu2jU2bNrF7927q169PSEiI4+fkyZPuSkMIIUq8+kEVeP3+/+Fv1qG7Ru+Jt/d+xUMLHuKznZ9x6MIh3Njb4pbJK4LWnlqLUW9kqr4G7dMu2nfmpMMP/WD+c/bfI5+Gu8aQY7Hy9PfbWLI3AU+9jqc71SPEz/muRLCfiemDWtEzPMS1CQknpWLUGEBAQABz5swpdH/t2rWdPoCdOnUqkx9IIYRwhQ4NqtFy2+Oszv6i0DZ1c80c8/QkNjmW2ORYpu2YRmjFULrU7ELnmp1pUaUFOq3U/H+7QDnWHF5c9SLrTq/DpDcxte5DRC59+3IDZYXTW+3/bvUo9JhAtsXGU7O3surAOYwGHV882pqohlUY3j2MmKPJJKZlE1TRRESdALkSVAKUmkJICCGE61htis1HGuPnX5k0r/NOt8h0StEkSzHn7Bku6HSsCW3GiuB6RJ/fxcm0k8zaO4tZe2dR2VSZThVq0yUumrad38az2b/dmNGNy7Hm8MKqF1h/ej0mvYlP2r9N25+GYb+pddV/tHUecNdYsi02hn27hXWHzmPy0DFjcBvuqB8I2OdxalevssvzEEWTQkgIIUQ+MUeTSUjJQZc9iPrVp+FNFpqmUEojAy9iEp7mdcse3vD6ifuP7+T+0wfIjBrB+upNWXl6DWtPriUpO4lfs5P41d8Tny3juTNxHZ3r3s2d1e+kgmfJnk05x5rD/1b9jw2nN2DSm5jW5RMi1kwtdBV5lA3LwuEMSX+OjYeT8PbUM2NwGyl8SgEphIQQQuSTmJYNgC0nhKQjI/jZOBxfMknFh845r2PFj++oxp13DaT74QlwZBXeK96ie7VWdO87DXO7N9n8079ZmbSLld4mzhkMLDm1iiWnVmHQGWgb0pYuNbtwV+hdBHoFujlbZznWHP638n9siN+Al8GLaV2m0Ubzsa8iXxhlxXBgIedyOuLjWYtZQyJoUzv/cHhR8pTum7dCCCFuiaCKlzv2JuHHGPPjnMOP0eahJOHn2FcxuB488hvc+wkY/SB+G3zeEY95w2h/cDWvJiWz/GQ838cnMPRiCrWNgVhsFjac3sCb0W/S+afOPLLoEWbtmcWJ1BPuSNVJtiWb51c+71wEBbexryJfq0Ohj7NiXzIjwbM23z3eVoqgUkSuCAkhhMgnok4AIX4mElKyUcCftkj+zIl0aqPTwMtDD5oGrR6B+l3hz5fgwCLY9/vldkDznFya55h5IeswRx79jZVJ21l5YiW7z+9mx7kd7Di3gw+2fkB9//p0NlWjy75lNO42ES38AZflnFcERZ+Jdi6CzNmwegIc3wDYb4xd2cXZpiAdLybpn2D20La0CPV3Wczin5MrQkIIIfLR6zTG9WkCkG/V9Dw2BQ99Ec2vW0/ZN/iGQL/voVqrQh6hICeduus+4vFmjzOn9xyW/WsZY9uOJTIkEoNmIO5iHF8krKVfgJEem15j4vpxxJyJwWKzFHuOV8qyZPHcyuccRdCnXT61F0Gnt8EXUbDhY0ARYwsrdBX5AXfdLkVQKSSFkBBCiAL1DA9h+qBWBF81/02In4kpD7WgS6Mgci02hv+8kzfm78VstcG5/fbbY4VRVoidD4dXARDsE0z/Rv35svuXrH5oNRMMNemWkYWXzcYZg47vD89j6NKhdPqpE2PXj2XliZVkWbKKNc+sXXN5bubt/H3mb7wMXkzvOp3Wgc1h5dvwVVc4tx/lU4WRhpE8lPt6gavI/2mLZObGY7KKfCkkt8aEEEIUqmd4CN2aBBc4/819Lavz8YpDfLziELM2HmNffCrTBtxGlUZ97LfHVBGz+H93HwQ3g7Be9p+QFvjFLafPofX0AbI1jb9NJlb4eLHaP4iLOSnMPzyf+YfnY9KbuKP6HXSu2Zn2VdsX/hzXIeviSZ77ezybjAa8bYrpd0yklfKELzvD2d32Rk3vZ0uTsfz43UEAxpqH5FtFHuyryMccTZaRYqWMFEJCCCGKVNj8NzqdxovdGhJe3Y+XftxBzLFk+nyyga/+9Qbhx9aislPRrhhqrtDQDEaoGm6/apSw2/6zZhJUCIasZPLm6DEpRaesLDplZWNJt7K939esPLeVlSdWEp8Rz4oTK1hxYgV6TU8tfS1SD6TSrU43gn2CrzuvzNwMnpv/EDFGA942G5+dTeK2haMh+TDYzOAVAL0/gPAHiN9x2vG4vM7jeavIX9l5PG+0nSg9pBASQgjxj3RrUpXfn72DJ77dwuFzGTzwzSHeqv8S/Y6Pc2qnodhx+7u0vHsIZJyHQ0th/58QtwLSEwo5usKQk06bmG9o0+87XmnzCvuT97Py5EpWnFjBoQuHOGI5wntb3+O9re/RtHJTOtfsTJeaXajrVxft0kSQBy8cZPS60diUfd0vm7JxJu0kWcqMj83GZwmJtMzJhez99qdtdA/c8yFUsN/+23g4ySmqgjqPg/NoO1E6SCEkhBDiH6tXpQK/P3MHw3/aydJ9Zxl5oD5+Hm3oqtuKQbNhUTqW2W7n6TVVmR56xr6+VssB9p/T2+HLToUfPK9fUWIsWlBjGle2/zzT8hmOJB9h+rLpJFRMYOe5nexN2svepL1M3T6VWr616FyzM3fVuIuPt31M3MU4RyGUR6cU0/OKoDwe3o4iaPOxZMbM282hxPQi889bRT6ijgybL22ks7QQQohiUdHkwbQBrahgNAAaY81DyMCEUjj1pRm/YJ9zp+JqLaFRH9D0RT/BX2Ng7+9guVy0hFYMpYOpA1+3n8TKsym8cS6JO7PNeOg8OJ56nJl7ZvLokkfZmrg1XxEEYNM0kvVXPa8lh9z5LzJ63i7+/Vk0hxLTqezjyX/uqI1G/lF0sop86SaFkBBCiGKz5fgF0nPsQ90LmohRcblTsYOm2a/AGCtQ4GB93aWbF4dXws+DYUpjWPoqnLN3XkYp9ItfJjArjQfTM/g0IZF1Ho14P+p9utfqjlboBACgKcWkypXIubKJsuJ5cCFbNkcD0L9NKCuGRzGuT9MCR9HJKvKlm9waE0IIUWyu7ixcWF+ahNSrOhVXqGIvhn4Zkv+gD3wJ1W6D7d/B9u/t/Yk2ToWNU9GHRtI80wdd0orL7ZUVn/1/0rNCMLrUQywtaG2wvKaaxhmDgbVeXnTLtA/Lz7uNp6o04qf7mznd7ipqFJ0onaQQEkIIUWyut7Pwu4tiuZCRy0NtQi/dSgOaPoDaMw8OLEZTVpSmh7Bel2eX7vI6dBpj72S97Vs49Be6k39Th/yzPQOwZQZRGgTXqEaiXo9Ny1+saEoRbLXSMcteBNku3cabqHuCJc92wMsz/+06WUW+bJFbY0IIIYpN3tIcRV0f0TRITMvhzYX7aDdhBW8v3MfJ5EyW7E2g95EHSLUZUQpSbSZ6H7mfJXvOXH6w3gCNesGAufDCHlTlhgUXQZcYKzdkVKsXCyyCwH5FaGTSBYyXLhrlzRJ9PMeHHScv3sQrIEobKYSEEEIUm6KW5sjraPxRv5a8fV84dav4kJZj4av1R+n43iqenL2Nfakmp35Fsakmnpq9zbkYypOdgpZ0sMiii/MH6VytA62rtkZ31VeeUhr1Mj3omJEDOM8SDTInUHkhhZAQQohiVdjSHHmdivu2rM6gyFosfzGKmY+14Y56lZ168fxpiyQiZzqLbJGO7flGmgEENeZMSFfHchdXsygd+/yjGL4mlz277sKcHYQ1u6rjx5ZTleMJj5JZwMg2kDmBygvpIySEEKLYXU+nYp1O465GQZg89Gy4asLCK+WNNGv37gqqV/Kiso+RwAqeVPLxYNGZfsxnIxVVJlf2V87r6/NIQn+SEk4DlTGmvkREnQDa16vMjPVHSUrPJRMYo3OeJVrmBCpfpBASQghxS1xvp+LrvQWVmJZDYlrOVVt9GKsbyieeU5226jQYk2sfst+nRTX6tQ6lde1KmDzsnZ/rBPrw1OxtaDiPbJM5gcofKYSEEEK41fXegnqjTxOC/bxIysghKT2XzceSWXfoPAttkdxj/TvfLNZ5fX26Ng6iQ4NAp2Pl3b4bv2AfZ1IuF2LBfibG9WkicwKVI1IICSGEcKu8kWYJKdkFzviTd6vqkXa1na7SRB9OYt2h8+TNYl3QivBQeKElcwIJkM7SQggh3OxaI82g4FtVEXUCCPY1AqrAWaw1IOQafX3ybt/1bVmddvUqSxFUDkkhJIQQwu2uNdKsoFtVep3Gq70aATj6+uSNNpO+PuJ6ya0xIYQQJcLN3Krq0bQqQxraWJTgTULq5Y7U0tdHXC8phIQQQpQYN7N8RYvKilcGdmT7qTTp6yNumBRCQgghSj1Z/0vcLOkjJIQQQohySwohIYQQQpRbUggJIYQQotySQkgIIYQQ5ZYUQkIIIYQot6QQEkIIIUS5JYWQEEIIIcotKYSEEEIIUW5JISSEEEKIcktmlr4GpRQAqampxXpcs9lMZmYmqampeHh4FOuxS4qynmNZzw/Kfo6SX+lX1nOU/G5e3vd23vd4YaQQuoa0tDQAQkND3RyJEEIIIW5UWloafn5+he7X1LVKpXLOZrMRHx9PxYoV0bTiW8AvNTWV0NBQTp48ia+vb7EdtyQp6zmW9fyg7Oco+ZV+ZT1Hye/mKaVIS0ujWrVq6HSF9wSSK0LXoNPpqFGjxi07vq+vb5l8c1+prOdY1vODsp+j5Ff6lfUcJb+bU9SVoDzSWVoIIYQQ5ZYUQkIIIYQot6QQchOj0ci4ceMwGo3uDuWWKes5lvX8oOznKPmVfmU9R8nv1pPO0kIIIYQot+SKkBBCCCHKLSmEhBBCCFFuSSEkhBBCiHJLCiEhhBBClFtSCN1C77zzDu3bt8fb2xt/f//reoxSitdff52QkBC8vLzo2rUrhw4dcmqTnJzMwIED8fX1xd/fn6FDh5Kenn4LMijajcZx7NgxNE0r8Ofnn392tCto/9y5c12RUj4381p36tQpX/xPPvmkU5sTJ07Qu3dvvL29CQoKYsSIEVgslluZSoFuNL/k5GSee+45wsLC8PLyombNmjz//POkpKQ4tXPXOZw2bRq1a9fGZDLRtm1bYmJiimz/888/06hRI0wmE82aNWPRokVO+6/n8+hqN5Ljl19+yZ133kmlSpWoVKkSXbt2zdf+sccey3euevbseavTKNSN5Ddr1qx8sZtMJqc2pf0cFvT3RNM0evfu7WhTks7h2rVr6dOnD9WqVUPTNH7//fdrPmb16tW0atUKo9FI/fr1mTVrVr42N/rZviFK3DKvv/66mjJlinrppZeUn5/fdT1m4sSJys/PT/3+++9q586d6t5771V16tRRWVlZjjY9e/ZULVq0UH///bdat26dql+/vnr44YdvURaFu9E4LBaLOnPmjNPP+PHjVYUKFVRaWpqjHaBmzpzp1O7K/F3pZl7rqKgoNWzYMKf4U1JSHPstFosKDw9XXbt2Vdu3b1eLFi1SgYGBavTo0bc6nXxuNL/du3erBx54QM2fP1/FxcWpFStWqAYNGqgHH3zQqZ07zuHcuXOVp6en+vrrr9XevXvVsGHDlL+/vzp79myB7Tds2KD0er1677331L59+9Srr76qPDw81O7dux1trufz6Eo3muOAAQPUtGnT1Pbt21VsbKx67LHHlJ+fnzp16pSjzeDBg1XPnj2dzlVycrKrUnJyo/nNnDlT+fr6OsWekJDg1Ka0n8OkpCSn/Pbs2aP0er2aOXOmo01JOoeLFi1SY8eOVfPmzVOA+u2334psf+TIEeXt7a1eeukltW/fPjV16lSl1+vVkiVLHG1u9DW7UVIIucDMmTOvqxCy2WwqODhYvf/++45tFy9eVEajUf3www9KKaX27dunALV582ZHm8WLFytN09Tp06eLPfbCFFccLVu2VEOGDHHadj0fHle42RyjoqLU//73v0L3L1q0SOl0Oqc/2NOnT1e+vr4qJyenWGK/HsV1Dn/66Sfl6empzGazY5s7zmFERIR65plnHL9brVZVrVo19e677xbY/qGHHlK9e/d22ta2bVv13//+Vyl1fZ9HV7vRHK9msVhUxYoV1TfffOPYNnjwYNW3b9/iDvWm3Gh+1/rbWhbP4YcffqgqVqyo0tPTHdtK0jm80vX8HXjllVdU06ZNnbb169dP9ejRw/H7P33NrkVujZUgR48eJSEhga5duzq2+fn50bZtW6KjowGIjo7G39+f1q1bO9p07doVnU7Hpk2bXBZrccSxdetWduzYwdChQ/Pte+aZZwgMDCQiIoKvv/4a5Ybprv5Jjt9//z2BgYGEh4czevRoMjMznY7brFkzqlat6tjWo0cPUlNT2bt3b/EnUojiei+lpKTg6+uLweC8dKErz2Fubi5bt251+uzodDq6du3q+OxcLTo62qk92M9DXvvr+Ty60s3keLXMzEzMZjMBAQFO21evXk1QUBBhYWE89dRTJCUlFWvs1+Nm80tPT6dWrVqEhobSt29fp89QWTyHM2bMoH///vj4+DhtLwnn8GZc63NYHK/ZtciiqyVIQkICgNMXZN7vefsSEhIICgpy2m8wGAgICHC0cYXiiGPGjBk0btyY9u3bO21/88036dy5M97e3ixdupSnn36a9PR0nn/++WKL/3rcbI4DBgygVq1aVKtWjV27djFy5EgOHDjAvHnzHMct6Bzn7XOV4jiH58+f56233uKJJ55w2u7qc3j+/HmsVmuBr+v+/fsLfExh5+HKz1retsLauNLN5Hi1kSNHUq1aNacvlZ49e/LAAw9Qp04dDh8+zJgxY7j77ruJjo5Gr9cXaw5FuZn8wsLC+Prrr2nevDkpKSlMnjyZ9u3bs3fvXmrUqFHmzmFMTAx79uxhxowZTttLyjm8GYV9DlNTU8nKyuLChQv/+H1/LVII3aBRo0YxadKkItvExsbSqFEjF0VUvK43v38qKyuLOXPm8Nprr+Xbd+W22267jYyMDN5///1i+xK91TleWRQ0a9aMkJAQunTpwuHDh6lXr95NH/d6ueocpqam0rt3b5o0acIbb7zhtO9Wn0Nx4yZOnMjcuXNZvXq1U4fi/v37O/7drFkzmjdvTr169Vi9ejVdunRxR6jXrV27drRr187xe/v27WncuDGff/45b731lhsjuzVmzJhBs2bNiIiIcNpems9hSSCF0A0aPnw4jz32WJFt6tate1PHDg4OBuDs2bOEhIQ4tp89e5aWLVs62iQmJjo9zmKxkJyc7Hj8P3G9+f3TOH755RcyMzN59NFHr9m2bdu2vPXWW+Tk5BTLejSuyjFP27ZtAYiLi6NevXoEBwfnG/Fw9uxZgFJzDtPS0ujZsycVK1bkt99+w8PDo8j2xX0OrxYYGIher3e8jnnOnj1baC7BwcFFtr+ez6Mr3UyOeSZPnszEiRNZvnw5zZs3L7Jt3bp1CQwMJC4uzqVfov8kvzweHh7cdtttxMXFAWXrHGZkZDB37lzefPPNaz6Pu87hzSjsc+jr64uXlxd6vf4fvy+uqVh6Goki3Whn6cmTJzu2paSkFNhZesuWLY42f/31l9s6S99sHFFRUflGGhXm7bffVpUqVbrpWG9Wcb3W69evV4DauXOnUupyZ+krRzx8/vnnytfXV2VnZxdfAtdws/mlpKSoyMhIFRUVpTIyMq7ruVxxDiMiItSzzz7r+N1qtarq1asX2Vn6nnvucdrWrl27fJ2li/o8utqN5qiUUpMmTVK+vr4qOjr6up7j5MmTStM09ccff/zjeG/UzeR3JYvFosLCwtSLL76olCo751Ap+/eI0WhU58+fv+ZzuPMcXonr7CwdHh7utO3hhx/O11n6n7wvrhlnsRxFFOj48eNq+/btjiHi27dvV9u3b3caKh4WFqbmzZvn+H3ixInK399f/fHHH2rXrl2qb9++BQ6fv+2229SmTZvU+vXrVYMGDdw2fL6oOE6dOqXCwsLUpk2bnB536NAhpWmaWrx4cb5jzp8/X3355Zdq9+7d6tChQ+rTTz9V3t7e6vXXX7/l+RTkRnOMi4tTb775ptqyZYs6evSo+uOPP1TdunVVx44dHY/JGz7fvXt3tWPHDrVkyRJVpUoVtw2fv5H8UlJSVNu2bVWzZs1UXFyc03Bdi8WilHLfOZw7d64yGo1q1qxZat++feqJJ55Q/v7+jtF5jzzyiBo1apSj/YYNG5TBYFCTJ09WsbGxaty4cQUOn7/W59GVbjTHiRMnKk9PT/XLL784nau8v0FpaWnq5ZdfVtHR0ero0aNq+fLlqlWrVqpBgwYuLcpvNr/x48erv/76Sx0+fFht3bpV9e/fX5lMJrV3715Hm9J+DvN06NBB9evXL9/2knYO09LSHN91gJoyZYravn27On78uFJKqVGjRqlHHnnE0T5v+PyIESNUbGysmjZtWoHD54t6zf4pKYRuocGDBysg38+qVascbbg030oem82mXnvtNVW1alVlNBpVly5d1IEDB5yOm5SUpB5++GFVoUIF5evrq/7zn/84FVeucq04jh49mi9fpZQaPXq0Cg0NVVarNd8xFy9erFq2bKkqVKigfHx8VIsWLdRnn31WYFtXuNEcT5w4oTp27KgCAgKU0WhU9evXVyNGjHCaR0gppY4dO6buvvtu5eXlpQIDA9Xw4cOdhp+7yo3mt2rVqgLf04A6evSoUsq953Dq1KmqZs2aytPTU0VERKi///7bsS8qKkoNHjzYqf1PP/2kGjZsqDw9PVXTpk3Vn3/+6bT/ej6PrnYjOdaqVavAczVu3DillFKZmZmqe/fuqkqVKsrDw0PVqlVLDRs2rNi+YG7GjeT3wgsvONpWrVpV9erVS23bts3peKX9HCql1P79+xWgli5dmu9YJe0cFvY3Ii+nwYMHq6ioqHyPadmypfL09FR169Z1+k7MU9Rr9k9pSrlhXLIQQgghRAkg8wgJIYQQotySQkgIIYQQ5ZYUQkIIIYQot6QQEkIIIUS5JYWQEEIIIcotKYSEEEIIUW5JISSEEEKIcksKISGEEEKUW1IICSGEEKLckkJICCGEEOWWFEJCiHLl3LlzBAcHM2HCBMe2jRs34unpyYoVK9wYmRDCHWStMSFEubNo0SLuu+8+Nm7cSFhYGC1btqRv375MmTLF3aEJIVxMCiEhRLn0zDPPsHz5clq3bs3u3bvZvHkzRqPR3WEJIVxMCiEhRLmUlZVFeHg4J0+eZOvWrTRr1szdIQkh3ED6CAkhyqXDhw8THx+PzWbj2LFj7g5HCOEmckVICFHu5ObmEhERQcuWLQkLC+Ojjz5i9+7dBAUFuTs0IYSLSSEkhCh3RowYwS+//MLOnTupUKECUVFR+Pn5sXDhQneHJoRwMbk1JoQoV1avXs1HH33Ed999h6+vLzqdju+++45169Yxffp0d4cnhHAxuSIkhBBCiHJLrggJIYQQotySQkgIIYQQ5ZYUQkIIIYQot6QQEkIIIUS5JYWQEEIIIcotKYSEEEIIUW5JISSEEEKIcksKISGEEEKUW1IICSGEEKLckkJICCGEEOWWFEJCCCGEKLekEBJCCCFEufX/DkllmXzY+P8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "import numpy as np\n", "import math\n", @@ -3501,38 +1992,13 @@ "plt.legend()\n", "plt.grid(True)\n", "plt.show()" - ] + ], + "outputs": [] }, { "cell_type": "code", "execution_count": 173, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(0.925481690479002+0j)\n", - "-0.9254816802045847\n", - "=====================\n", - "(0.03674334778005489+0j)\n", - "0.03674311255339645\n", - "=====================\n" - ] - }, - { - "ename": "ValueError", - "evalue": "shapes (8,8) and (32,) not aligned: 8 (dim 1) != 32 (dim 0)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[173], line 25\u001b[0m\n\u001b[1;32m 23\u001b[0m I \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39meye(\u001b[38;5;241m2\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m(n\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 24\u001b[0m IX \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mkron(I, X)\n\u001b[0;32m---> 25\u001b[0m exact \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdot(x, \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mIX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 26\u001b[0m quantum \u001b[38;5;241m=\u001b[39m even\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(exact)\n", - "File \u001b[0;32m<__array_function__ internals>:180\u001b[0m, in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: shapes (8,8) and (32,) not aligned: 8 (dim 1) != 32 (dim 0)" - ] - } - ], "source": [ "x = psi_vec.detach().numpy()\n", "innerp_exact = np.dot(x, b)\n", @@ -3581,7 +2047,8 @@ "quantum = odd_IX\n", "print(exact)\n", "print(quantum.item())" - ] + ], + "outputs": [] } ], "metadata": { diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index b4dd151..e6fa77d 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -1,72 +1,37 @@ { "cells": [ { + "cell_type": "code", + "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T14:13:05.769616Z", - "start_time": "2024-06-08T14:13:05.764982Z" + "end_time": "2024-06-08T23:02:43.319378Z", + "start_time": "2024-06-08T23:02:43.313490Z" } }, - "cell_type": "code", "source": [ "import torch\n", "import pennylane as qml\n", "\n", "from qulearn.hat_basis import HatBasis\n", "from qulearn.qlayer import (HatBasisQFE,\n", + " CircuitLayer,\n", " MeasurementLayer,\n", - " MeasurementType)" + " MeasurementType)\n", + "from qulearn.mps import HatBasisMPS" ], - "id": "6e4cb30e217e595f", "outputs": [], - "execution_count": 6 + "execution_count": 154 }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T14:13:06.039103Z", - "start_time": "2024-06-08T14:13:06.029319Z" - } - }, "cell_type": "code", - "source": [ - "num_qubits = 5\n", - "num_nodes = 2**num_qubits\n", - "a = -1.0\n", - "b = 1.0\n", - "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", - "\n", - "embed = HatBasisQFE(wires=num_qubits, basis=hat_basis, sqrt=True, normalize=False)\n", - "obs = qml.PauliZ(0)\n", - "model = MeasurementLayer(embed, observables=obs, measurement_type=MeasurementType.Expectation)\n", - "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", - "x = torch.tensor([0.0])\n", - "print(drawer(x))" - ], - "id": "557b395bbcf03f54", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ──────────────────────╭U(M2)─┤ \n", - "1: ───────────────╭U(M1)─╰U(M2)─┤ \n", - "2: ────────╭U(M1)─╰U(M1)────────┤ \n", - "3: ─╭U(M0)─╰U(M1)───────────────┤ \n", - "4: ─╰U(M0)──────────────────────┤ \n" - ] - } - ], - "execution_count": 7 - }, - { + "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T14:46:10.206718Z", - "start_time": "2024-06-08T14:46:10.199905Z" + "end_time": "2024-06-08T22:57:40.280372Z", + "start_time": "2024-06-08T22:57:40.277339Z" } }, - "cell_type": "code", "source": [ "import torch\n", "import tntorch as tn\n", @@ -76,20 +41,29 @@ " c3 = [torch.kron(A, B) for A, B in zip(c1, c2)]\n", " \n", " t3 = tn.Tensor(c3)\n", + " return t3\n", + "\n", + "\n", + "def kron(t1, t2):\n", + " c1 = t1.cores\n", + " c2 = t2.cores\n", + " c3 = c1 + c2\n", + " t3 = tn.Tensor(c3)\n", + " \n", " return t3" ], - "id": "8d60b58b23b4e5f3", "outputs": [], - "execution_count": 34 + "execution_count": 140 }, { + "cell_type": "code", + "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T14:57:13.077588Z", - "start_time": "2024-06-08T14:57:13.071076Z" + "end_time": "2024-06-08T22:57:40.294891Z", + "start_time": "2024-06-08T22:57:40.289266Z" } }, - "cell_type": "code", "source": [ "import tntorch as tn\n", "import numpy as np\n", @@ -100,8 +74,7 @@ "T1 = t1.numpy().reshape((2**3))\n", "T2 = t2.numpy().reshape((2**3))\n", "\n", - "cores = t1.cores + t2.cores\n", - "t3 = tn.Tensor(cores)\n", + "t3 = kron(t1, t2)\n", "T3 = t3.numpy().reshape((2**6))\n", "\n", "T3_ = np.kron(T1, T2)\n", @@ -117,7 +90,6 @@ "print(\"=========\")\n", "print(T4)" ], - "id": "9e4e98216ac5dfb8", "outputs": [ { "name": "stdout", @@ -132,102 +104,709 @@ " / \\ / \\ / \\\n", "1 2 2 1\n", "\n", - "[ 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342\n", - " 0.15855342 0.15855342 -0.19791673 -0.19791673 -0.19791673 -0.19791673\n", - " -0.19791673 -0.19791673 -0.19791673 -0.19791673 -0.10040016 -0.10040016\n", - " -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016\n", - " -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476\n", - " -0.13793476 -0.13793476 -0.46558505 -0.46558505 -0.46558505 -0.46558505\n", - " -0.46558505 -0.46558505 -0.46558505 -0.46558505 0.07590834 0.07590834\n", - " 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834\n", - " -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369\n", - " -0.7543369 -0.7543369 0.29843152 0.29843152 0.29843152 0.29843152\n", - " 0.29843152 0.29843152 0.29843152 0.29843152]\n", + "[-1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161\n", + " -1.5204161 -1.5204161 -0.07047679 -0.07047679 -0.07047679 -0.07047679\n", + " -0.07047679 -0.07047679 -0.07047679 -0.07047679 8.780638 8.780638\n", + " 8.780638 8.780638 8.780638 8.780638 8.780638 8.780638\n", + " -1.424307 -1.424307 -1.424307 -1.424307 -1.424307 -1.424307\n", + " -1.424307 -1.424307 -2.357471 -2.357471 -2.357471 -2.357471\n", + " -2.357471 -2.357471 -2.357471 -2.357471 0.4497826 0.4497826\n", + " 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826\n", + " -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011\n", + " -1.8961011 -1.8961011 0.48295355 0.48295355 0.48295355 0.48295355\n", + " 0.48295355 0.48295355 0.48295355 0.48295355]\n", "=========\n", - "[ 0.15855342 0.15855342 -0.19791673 -0.19791673 0.15855342 0.15855342\n", - " -0.19791673 -0.19791673 -0.10040016 -0.10040016 -0.13793476 -0.13793476\n", - " -0.10040016 -0.10040016 -0.13793476 -0.13793476 0.15855342 0.15855342\n", - " -0.19791673 -0.19791673 0.15855342 0.15855342 -0.19791673 -0.19791673\n", - " -0.10040016 -0.10040016 -0.13793476 -0.13793476 -0.10040016 -0.10040016\n", - " -0.13793476 -0.13793476 -0.46558505 -0.46558505 0.07590834 0.07590834\n", - " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.7543369 -0.7543369\n", - " 0.29843152 0.29843152 -0.7543369 -0.7543369 0.29843152 0.29843152\n", - " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.46558505 -0.46558505\n", - " 0.07590834 0.07590834 -0.7543369 -0.7543369 0.29843152 0.29843152\n", - " -0.7543369 -0.7543369 0.29843152 0.29843152]\n" + "[-1.5204161 -1.5204161 -0.07047679 -0.07047679 -1.5204161 -1.5204161\n", + " -0.07047679 -0.07047679 8.780638 8.780638 -1.424307 -1.424307\n", + " 8.780638 8.780638 -1.424307 -1.424307 -1.5204161 -1.5204161\n", + " -0.07047679 -0.07047679 -1.5204161 -1.5204161 -0.07047679 -0.07047679\n", + " 8.780638 8.780638 -1.424307 -1.424307 8.780638 8.780638\n", + " -1.424307 -1.424307 -2.357471 -2.357471 0.4497826 0.4497826\n", + " -2.357471 -2.357471 0.4497826 0.4497826 -1.8961011 -1.8961011\n", + " 0.48295355 0.48295355 -1.8961011 -1.8961011 0.48295355 0.48295355\n", + " -2.357471 -2.357471 0.4497826 0.4497826 -2.357471 -2.357471\n", + " 0.4497826 0.4497826 -1.8961011 -1.8961011 0.48295355 0.48295355\n", + " -1.8961011 -1.8961011 0.48295355 0.48295355]\n" ] } ], - "execution_count": 42 + "execution_count": 141 }, { + "cell_type": "code", + "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T14:57:27.906931Z", - "start_time": "2024-06-08T14:57:27.902942Z" + "end_time": "2024-06-08T22:57:40.298997Z", + "start_time": "2024-06-08T22:57:40.295913Z" } }, - "cell_type": "code", "source": [ "print(t1.numpy().reshape((2**3)))\n", "print(t2.numpy().reshape((2**3)))\n", "print(T3_)\n", "print(T4)" ], - "id": "ed6556db86940912", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[ 0.15855342 -0.19791673 -0.10040016 -0.13793476 -0.46558505 0.07590834\n", - " -0.7543369 0.29843152]\n", + "[-1.5204161 -0.07047679 8.780638 -1.424307 -2.357471 0.4497826\n", + " -1.8961011 0.48295355]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[ 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342 0.15855342\n", - " 0.15855342 0.15855342 -0.19791673 -0.19791673 -0.19791673 -0.19791673\n", - " -0.19791673 -0.19791673 -0.19791673 -0.19791673 -0.10040016 -0.10040016\n", - " -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016 -0.10040016\n", - " -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476 -0.13793476\n", - " -0.13793476 -0.13793476 -0.46558505 -0.46558505 -0.46558505 -0.46558505\n", - " -0.46558505 -0.46558505 -0.46558505 -0.46558505 0.07590834 0.07590834\n", - " 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834 0.07590834\n", - " -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369 -0.7543369\n", - " -0.7543369 -0.7543369 0.29843152 0.29843152 0.29843152 0.29843152\n", - " 0.29843152 0.29843152 0.29843152 0.29843152]\n", - "[ 0.15855342 0.15855342 -0.19791673 -0.19791673 0.15855342 0.15855342\n", - " -0.19791673 -0.19791673 -0.10040016 -0.10040016 -0.13793476 -0.13793476\n", - " -0.10040016 -0.10040016 -0.13793476 -0.13793476 0.15855342 0.15855342\n", - " -0.19791673 -0.19791673 0.15855342 0.15855342 -0.19791673 -0.19791673\n", - " -0.10040016 -0.10040016 -0.13793476 -0.13793476 -0.10040016 -0.10040016\n", - " -0.13793476 -0.13793476 -0.46558505 -0.46558505 0.07590834 0.07590834\n", - " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.7543369 -0.7543369\n", - " 0.29843152 0.29843152 -0.7543369 -0.7543369 0.29843152 0.29843152\n", - " -0.46558505 -0.46558505 0.07590834 0.07590834 -0.46558505 -0.46558505\n", - " 0.07590834 0.07590834 -0.7543369 -0.7543369 0.29843152 0.29843152\n", - " -0.7543369 -0.7543369 0.29843152 0.29843152]\n" + "[-1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161\n", + " -1.5204161 -1.5204161 -0.07047679 -0.07047679 -0.07047679 -0.07047679\n", + " -0.07047679 -0.07047679 -0.07047679 -0.07047679 8.780638 8.780638\n", + " 8.780638 8.780638 8.780638 8.780638 8.780638 8.780638\n", + " -1.424307 -1.424307 -1.424307 -1.424307 -1.424307 -1.424307\n", + " -1.424307 -1.424307 -2.357471 -2.357471 -2.357471 -2.357471\n", + " -2.357471 -2.357471 -2.357471 -2.357471 0.4497826 0.4497826\n", + " 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826\n", + " -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011\n", + " -1.8961011 -1.8961011 0.48295355 0.48295355 0.48295355 0.48295355\n", + " 0.48295355 0.48295355 0.48295355 0.48295355]\n", + "[-1.5204161 -1.5204161 -0.07047679 -0.07047679 -1.5204161 -1.5204161\n", + " -0.07047679 -0.07047679 8.780638 8.780638 -1.424307 -1.424307\n", + " 8.780638 8.780638 -1.424307 -1.424307 -1.5204161 -1.5204161\n", + " -0.07047679 -0.07047679 -1.5204161 -1.5204161 -0.07047679 -0.07047679\n", + " 8.780638 8.780638 -1.424307 -1.424307 8.780638 8.780638\n", + " -1.424307 -1.424307 -2.357471 -2.357471 0.4497826 0.4497826\n", + " -2.357471 -2.357471 0.4497826 0.4497826 -1.8961011 -1.8961011\n", + " 0.48295355 0.48295355 -1.8961011 -1.8961011 0.48295355 0.48295355\n", + " -2.357471 -2.357471 0.4497826 0.4497826 -2.357471 -2.357471\n", + " 0.4497826 0.4497826 -1.8961011 -1.8961011 0.48295355 0.48295355\n", + " -1.8961011 -1.8961011 0.48295355 0.48295355]\n" + ] + } + ], + "execution_count": 142 + }, + { + "cell_type": "code", + "id": "f5d359f0ae8df759", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T22:57:40.303767Z", + "start_time": "2024-06-08T22:57:40.300002Z" + } + }, + "source": [ + "import tntorch\n", + "try:\n", + " from typing import TypeAlias\n", + "except ImportError:\n", + " from typing_extensions import TypeAlias\n", + "MPS: TypeAlias = tntorch.tensor.Tensor\n", + "Tensor: TypeAlias = torch.Tensor\n", + "\n", + "class LinearBasis2DMPS:\n", + " def __init__(self, basis: HatBasis, zorder: bool = False) -> None:\n", + " self.basis = basis\n", + "\n", + " num_qubits = 2*math.log2(basis.num_nodes)\n", + " if not num_qubits.is_integer():\n", + " raise ValueError(\n", + " f\"Number of nodes ({basis.num_nodes}) \" \"must be a power of 2.\"\n", + " )\n", + "\n", + " self.num_sites = int(num_qubits)\n", + " self.basis1Dmps = HatBasisMPS(basis)\n", + " self.zorder = zorder\n", + " \n", + " def __call__(self, x: Tensor) -> MPS:\n", + " \"\"\"\n", + " Constructs the MPS of the hat basis evaluated at a given point x.\n", + "\n", + " :param x: The input at which to evaluate the hat basis.\n", + " :type x: Tensor\n", + " :returns: The MPS at point x.\n", + " :rtype: MPS\n", + " \"\"\"\n", + "\n", + " return self.eval(x)\n", + "\n", + " def eval(self, x: Tensor) -> MPS:\n", + " \"\"\"\n", + " Constructs the MPS of the hat basis evaluated at a given point x.\n", + "\n", + " :param x: The input at which to evaluate the hat basis.\n", + " :type x: Tensor\n", + " :returns: The MPS at point x.\n", + " :rtype: MPS\n", + " \"\"\"\n", + " \n", + " mpsx = self.basis1Dmps(x[0])\n", + " mpsy = self.basis1Dmps(x[1])\n", + " \n", + " if self.zorder:\n", + " return zkron(mpsx, mpsy)\n", + " \n", + " return kron(mpsx, mpsy)" + ], + "outputs": [], + "execution_count": 143 + }, + { + "cell_type": "code", + "id": "47ef065abf26f244", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T22:57:40.312531Z", + "start_time": "2024-06-08T22:57:40.304693Z" + } + }, + "source": [ + "try:\n", + " from typing import TypeAlias\n", + "except ImportError:\n", + " from typing_extensions import TypeAlias\n", + "\n", + "from typing import Iterable, Any, Optional, Union, Dict\n", + "\n", + "from qulearn.mps import HatBasisMPS, MPSQGates\n", + "\n", + "Wires: TypeAlias = Union[int, Iterable[Any]]\n", + "\n", + "class Linear2DBasisQFE(CircuitLayer):\n", + " \"\"\"\n", + " Layer for the 1D hat basis quantum feature embedding.\n", + "\n", + " :param basis: The hat basis class.\n", + " :type basis: HatBasis\n", + " :param wires: The wires to be used by the layer\n", + " :type wires: Wires\n", + " :param sqrt: Set flag to take square roots before applying hat basis.\n", + " :type sqrt: bool\n", + " :param normalize: Set flag to normalize basis vector before embedding.\n", + " :type normalize: bool\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " wires: Wires,\n", + " basis: HatBasis,\n", + " sqrt: bool = False,\n", + " normalize: bool = False,\n", + " zorder: bool = False,\n", + " ) -> None:\n", + " super().__init__(wires)\n", + " self.basis = basis\n", + " self.sqrt = sqrt\n", + " self.normalize = normalize\n", + " self.norm = 1.0\n", + " self.hbmps = HatBasisMPS(basis)\n", + " self.zorder = zorder\n", + "\n", + " def circuit(self, x: Tensor) -> None:\n", + " \"\"\"\n", + " Define the quantum circuit for this layer.\n", + "\n", + " :param x: Input tensor that is passed to the quantum circuit.\n", + " :type x: Tensor\n", + " \"\"\"\n", + "\n", + " x1 = x[0]\n", + " x2 = x[1]\n", + " position1 = int(self.basis.position(x1))\n", + " position2 = int(self.basis.position(x2))\n", + " a1, b1 = self.basis.nonz_vals(x1)\n", + " a2, b2 = self.basis.nonz_vals(x2)\n", + "\n", + " if self.sqrt:\n", + " # sometimes the values are close to 0 and negative\n", + " a1 = torch.sqrt(torch.abs(a1))\n", + " b1 = torch.sqrt(torch.abs(b1))\n", + " a2 = torch.sqrt(torch.abs(a2))\n", + " b2 = torch.sqrt(torch.abs(b2))\n", + "\n", + " # TODO: cover the case where x or y are outside of bounds\n", + "\n", + " val1 = a1*a2\n", + " val2 = a1*b2\n", + " val3 = a2*b1\n", + " val4 = a2*b2\n", + " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2).item()\n", + " \n", + " if self.normalize:\n", + " a1 /= torch.sqrt(self.norm)\n", + " b1 /= torch.sqrt(self.norm)\n", + " a2 /= torch.sqrt(self.norm)\n", + " b2 /= torch.sqrt(self.norm)\n", + "\n", + " # for compatibility (TODO: remove)\n", + " first1 = a1.item()\n", + " second1 = b1.item()\n", + " first2 = a2.item()\n", + " second2 = a2.item()\n", + "\n", + " mps1 = self.hbmps.mps_hatbasis(first1, second1, position1)\n", + " mps2 = self.hbmps.mps_hatbasis(first2, second2, position2)\n", + "\n", + " if self.zorder:\n", + " mps = zkron(mps2, mps1)\n", + " else:\n", + " mps = kron(mps1, mps2)\n", + " \n", + " mpsgates = MPSQGates(mps)\n", + "\n", + " s = mpsgates.max_rank_power\n", + " Us = mpsgates.qgates()\n", + " N = len(Us)\n", + " count = 0\n", + " for k in range(N - 1, -1, -1):\n", + " wires_idx = list(\n", + " range(self.num_wires - count - s - 1, self.num_wires - count)\n", + " )\n", + " subwires = [self.wires[idx] for idx in wires_idx]\n", + " qml.QubitUnitary(Us[k], wires=subwires, unitary_check=False)\n", + "\n", + " count += 1\n", + " \n", + " def compute_norm(self, x: Tensor) -> float:\n", + "\n", + " x1 = x[0]\n", + " x2 = x[1]\n", + " a1, b1 = self.basis.nonz_vals(x1)\n", + " a2, b2 = self.basis.nonz_vals(x2)\n", + "\n", + " if self.sqrt:\n", + " # sometimes the values are close to 0 and negative\n", + " a1 = torch.sqrt(torch.abs(a1))\n", + " b1 = torch.sqrt(torch.abs(b1))\n", + " a2 = torch.sqrt(torch.abs(a2))\n", + " b2 = torch.sqrt(torch.abs(b2))\n", + "\n", + " # TODO: cover the case where x or y are outside of bounds\n", + "\n", + " val1 = a1*a2\n", + " val2 = a1*b2\n", + " val3 = a2*b1\n", + " val4 = a2*b2\n", + " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2).item()\n", + " \n", + " return self.norm" + ], + "outputs": [], + "execution_count": 144 + }, + { + "cell_type": "code", + "id": "557b395bbcf03f54", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T22:57:40.318637Z", + "start_time": "2024-06-08T22:57:40.313144Z" + } + }, + "source": [ + "num_qubits = 3\n", + "num_nodes = 2**num_qubits\n", + "a = -1.0\n", + "b = 1.0\n", + "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False)\n", + "obs = qml.PauliZ(0)\n", + "model = MeasurementLayer(embed, observables=obs, measurement_type=MeasurementType.Expectation)\n", + "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", + "x = torch.tensor([0.0, 0.0])\n", + "print(drawer(x))" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0: ─────────────────────────────╭U(M3)─┤ \n", + "1: ──────────────────────╭U(M0)─╰U(M3)─┤ \n", + "2: ───────────────╭U(M2)─╰U(M0)────────┤ \n", + "3: ────────╭U(M1)─╰U(M2)───────────────┤ \n", + "4: ─╭U(M0)─╰U(M1)──────────────────────┤ \n", + "5: ─╰U(M0)─────────────────────────────┤ \n" ] } ], - "execution_count": 43 + "execution_count": 145 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T23:08:15.019606Z", + "start_time": "2024-06-08T23:08:15.009965Z" + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "num_qubits = 2\n", + "num_nodes = 2**num_qubits\n", + "a = -1.0\n", + "b = 1.0\n", + "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "\n", + "embed = HatBasisQFE(wires=num_qubits, basis=hat_basis, sqrt=False, normalize=False)\n", + "\n", + "dev = qml.device(\"default.qubit\", wires=num_qubits)\n", + "@qml.qnode(dev)\n", + "def circuit(x):\n", + " embed.circuit(x)\n", + " return np.real(qml.state())\n", + "\n", + "\n", + "x = torch.tensor([0.15])\n", + "out = circuit(x)\n", + "out = np.real(out)\n", + "print(out)" + ], + "id": "3068b30bd9e6ee63", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.27500004 0.72499996 0. ]\n" + ] + } + ], + "execution_count": 164 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T23:24:11.005993Z", + "start_time": "2024-06-08T23:24:11.001894Z" + } + }, + "cell_type": "code", + "source": [ + "hbmps = HatBasisMPS(hat_basis)\n", + "x = torch.tensor([-0.333])\n", + "y = torch.tensor([0.])\n", + "mpsx = hbmps(x)\n", + "mpsy = hbmps(y)\n", + "mps = kron(mpsy, mpsx)\n", + "print(mpsx.numpy().reshape(-1))\n", + "print(mpsy.numpy().reshape(-1))\n", + "print(mps.numpy().reshape(-1))" + ], + "id": "281d58bbae58820a", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00]\n", + "[0. 0.50000006 0.49999997 0. ]\n", + "[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", + " 4.9975008e-01 2.4998191e-04 0.0000000e+00 0.0000000e+00 4.9974999e-01\n", + " 2.4998185e-04 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", + " 0.0000000e+00]\n" + ] + } + ], + "execution_count": 181 + }, + { + "cell_type": "code", + "id": "93646da4c54dfbff", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T23:43:28.088320Z", + "start_time": "2024-06-08T23:43:28.080230Z" + } + }, + "source": [ + "import numpy as np\n", + "\n", + "num_qubits = 2\n", + "num_nodes = 2**num_qubits\n", + "a = -1.0\n", + "b = 1.0\n", + "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=False, normalize=False)\n", + "\n", + "dev = qml.device(\"default.qubit\", wires=2*num_qubits)\n", + "@qml.qnode(dev)\n", + "def circuit(x):\n", + " embed.circuit(x)\n", + " return np.real(qml.state())\n", + "\n", + "x = torch.tensor([-0.95, -0.333])\n", + "out = np.real(circuit(x))\n", + "print(out)\n", + "print(out[5])" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.92453752 0.92453752 0. 0. 0.07496252\n", + " 0.07496252 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. ]\n", + "0.07496251607264348\n" + ] + } + ], + "execution_count": 217 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-08T23:55:43.880603Z", + "start_time": "2024-06-08T23:55:41.576236Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "import matplotlib.pyplot as plt\n", + "\n", + "num_pnts = 50\n", + "\n", + "# Generate a grid of x and y values\n", + "x = torch.linspace(-1.0, 1.0, num_pnts)\n", + "y = torch.linspace(-1.0, 1.0, num_pnts)\n", + "X, Y = torch.meshgrid(x, y)\n", + "Z = torch.empty(num_pnts, num_pnts)\n", + "\n", + "print(X)\n", + "print(Y)\n", + "\n", + "# Evaluate the circuit at each point in the grid and extract the j-th component\n", + "idx = 5\n", + "for i in range(num_pnts):\n", + " for k in range(num_pnts):\n", + " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", + " out = circuit(xy)[idx]\n", + " Z[i, k] = torch.tensor(out)\n", + "# Convert tensors to numpy arrays for plotting\n", + "X = X.numpy()\n", + "Y = Y.numpy()\n", + "Z = Z.numpy()\n", + "\n", + "# Create a 2D heatmap plot\n", + "plt.figure(figsize=(10, 6))\n", + "plt.imshow(Z, extent=[-1, 1, -1, 1], origin='lower', cmap='viridis', aspect='auto')\n", + "\n", + "# Add labels and title\n", + "plt.xlabel('$x$')\n", + "plt.ylabel('$y$')\n", + "plt.title(f\"$\\\\langle Z_0\\\\rangle$ (component {j})\")\n", + "\n", + "# Add a color bar which maps values to colors\n", + "plt.colorbar(label=f'$z_{j}$')\n", + "\n", + "# Save the figure\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "id": "8f41ff534081649d", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[-1.0000, -1.0000, -1.0000, ..., -1.0000, -1.0000, -1.0000],\n", + " [-0.9592, -0.9592, -0.9592, ..., -0.9592, -0.9592, -0.9592],\n", + " [-0.9184, -0.9184, -0.9184, ..., -0.9184, -0.9184, -0.9184],\n", + " ...,\n", + " [ 0.9184, 0.9184, 0.9184, ..., 0.9184, 0.9184, 0.9184],\n", + " [ 0.9592, 0.9592, 0.9592, ..., 0.9592, 0.9592, 0.9592],\n", + " [ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000]])\n", + "tensor([[-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", + " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", + " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", + " ...,\n", + " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", + " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", + " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000]])\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJOCAYAAACgF8qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrnklEQVR4nO3deXxU5d3///eZyUbAJGBCAhgFxJtFWRQkhmqlkh+Jcqt8SxVcylIKtwtVG5VFZVdBsZRqsVgLonelWK1rpRFE080IynK7FKhYFEQS1iSQhEkyc35/UKaOSZjMNTmZDHk9H4/z0DlzPtd1nTPnGnLN55zrWLZt2wIAAAAAoJm5It0AAAAAAEDrxIAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQAAAAARwYAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAQlkcffVS9evWSz+eLdFMQhmXLlunss8+Wx+OJdFMAAK0IA1IAiCLPPvusEhMTVVlZ6V+XlpYmy7JOufzP//xP0LLvv/9+de/ePaT2lJeX65FHHtG0adPkcvFPSnN47733NGfOHJWWljY6xuPxaNq0aercubPatGmjrKwsrVu3LmCb8ePHq7q6Wk899VQTtxgAgIZZtm3bkW4EAKBxRo0aperqar3xxhuSpNraWq1evbrebcvLy3XPPffI4/Hoj3/8o6688spTlv3+++8rOztbn3zyic4///xGtWfJkiWaPXu2SkpKlJCQENrOwMhjjz2me++9V7t27VLXrl0bFXPDDTfopZde0l133aXzzjtPK1eu1AcffKB3331Xl156qX+7adOm6YUXXtCuXbtkWZZDewAAwH/ERLoBAIDG8Xg8Wrt2rRYvXuxfFxMTo5tvvrnebfPy8lRVVaUnn3wy6GBUkrKyspSenq433nij0QPSZ555Rtdccw2D0RZs48aNWr16tRYtWqR77rlHkjR27FhdcMEFmjp1qt577z3/ttdff70effRRvfvuu7riiisi1WQAQCvC9VUAECXeffddVVRU6Oqrrz7ldl6vVzfeeKMKCws1Z84c3XrrrY0q37Is/fd//7c/+xrMrl279NFHHyknJ6fe9/fu3auJEyeqc+fOio+PV7du3XTrrbequrrav82WLVt05ZVXKikpSe3atdOwYcP0/vvvB5QzZ84cWZalf/7zn7r55puVnJystLQ0zZw5U7Zta8+ePbr22muVlJSkjIwM/exnP6s3fvv27br++uuVlJSkM888U3feeaeOHz9ep92htGnnzp0aP368UlJSlJycrAkTJgRcTn3yOPzoRz9Senq64uPjdf7552vFihV16m1MmXPmzNG9994rSerWrZv/kuwvvviigU9Jeumll+R2uzV58mT/uoSEBE2cOFFFRUXas2ePf/3AgQPVoUMHvfbaaw2WBwBAUyJDCgBR4o033tDFF1+sjIyMU25366236uWXX9btt9+u2bNnh1THNddco2eeeUYHDhxQWlraKbc9mVm76KKL6rz39ddfa/DgwSotLdXkyZPVq1cv7d27Vy+99JIqKysVFxenTz/9VJdddpmSkpI0depUxcbG6qmnntLQoUP15z//WVlZWQFljh49Wr1799bChQv15ptv6sEHH1SHDh301FNP6YorrtAjjzyi559/Xvfcc48uvvhiffe73w2Iv/7669W1a1ctWLBA77//vh5//HEdOXJEzz33nH+bUNt0/fXXq1u3blqwYIE2b96s3/zmN+rYsaMeeeQRSVJJSYkuueQSWZalKVOmKC0tTX/60580ceJElZeX66677qpz7E5V5ve//33985//1O9+9zv9/Oc/V2pqqiSd8rPasmWL/uu//ktJSUkB6wcPHixJ2rp1qzIzM/3rL7roIv39739vsDwAAJqUDQCICpmZmfb8+fNPuc19991nS7Kvv/562+v1hlxHRUWF3aZNG3vlypVBt33ggQdsSfbRo0frvDd27Fjb5XLZH3zwQZ33fD6fbdu2PXLkSDsuLs7+/PPP/e99/fXX9hlnnGF/97vf9a+bPXu2LcmePHmyf11tba191lln2ZZl2QsXLvSvP3LkiN2mTRt73LhxdeKvueaagHbcdttttiT7//7v//zrQm3Tj370o4Ay/9//+3/2mWee6X89ceJEu1OnTvbBgwcDthszZoydnJxsV1ZWhlzmokWLbEn2rl277MY4//zz7SuuuKLO+k8//dSWZC9btixg/eTJk+02bdo0qmwAAMLFJbsAEAW2bNmiPXv26Jprrmlwm8cff1wPP/ywcnJy9L//+79Gs94mJiZq2LBhjbps99ChQ4qJiVG7du0C1vt8Pr366qu6+uqrNWjQoDpxlmXJ6/Vq7dq1GjlyZMDMvp06ddKNN96ov/3tbyovLw+I+/GPf+z/f7fbrUGDBsm2bU2cONG/PiUlRT179tS//vWvOvXefvvtAa9/8pOfSJLWrFkjSUZtuuWWWwJeX3bZZTp06JDKy8tl27b+8Ic/6Oqrr5Zt2zp48KB/yc3NVVlZmTZv3lynnacq00RVVZXi4+PrrD95329VVVXA+vbt26uqqqrOpccAADiBASkARIE///nPSklJUb9+/ep9/3e/+53uuusuDRo0SK+88ori4uLqbHPgwAGNGDFCbdu2Vc+ePbV+/fp6yxo6dKgKCwuN23rgwAGVl5frggsuOOU2lZWV6tmzZ533evfuLZ/PF3BvoySdffbZAa+Tk5OVkJDgv2z1m+uPHDlSp9zzzjsv4PW5554rl8vlv/+yKdrUvn17SdKRI0d04MABlZaW6te//rXS0tIClgkTJkiS9u/fX6euU5Vpok2bNvU+W/Tk/bNt2rQJWG//e/J9ZtkFADQH7iEFgCgwcOBAlZaWaufOnerRo0fAe2+99ZbGjRun8847T2vWrKmTsTzp9ttvV0ZGhg4cOKC3335b119/vT777DN16NAhYLuNGzfWm9n8tjPPPFO1tbU6evSozjjjDPOdayS3292oddJ/BlWn0hQDrlPV7/P5JEk333yzxo0bV+929f3AEM4+1adTp07au3dvnfX79u2TJHXu3Dlg/ZEjR5SYmFhnoAoAgBMYkAJAFBgyZIhSU1P1+uuvKz8/379+w4YNGjVqlDp27Ki1a9c2OLnNsWPH9Oqrr+pf//qXEhMTdc0116hv37567bXX/Nk6SaqpqVFBQYEefvjhoG3q1auXpBOz7X5zYJWWlqakpCR98sknDcampaUpMTFRO3bsqPPe9u3b5XK5AibaaQqfffaZunXr5n+9c+dO+Xw+/7M8m7pNaWlpOuOMM+T1ehucidhEqAPpAQMG6N1331V5eXnAxEYbNmzwv/9Nu3btUu/evcNuJwAAjcEluwAQBdxut6666qqAezu3bdumESNGKC4uTm+99ZbOOeecBuM/++wztWvXTmeddZZ/Xd++ffXpp58GbPfnP/9Z5eXlQR8tI0nZ2dmSpA8//DBgvcvl0siRI/XGG2/UeU86kelzu90aPny4XnvttYBHlpSUlGjVqlW69NJL68wKG66lS5cGvH7iiSckyf+M1qZuk9vt1qhRo/SHP/yh3sH5gQMHDPZCatu2rSSptLS0Udv/4Ac/kNfr1a9//Wv/Oo/Ho2eeeUZZWVl1BtmbN2/WkCFDjNoGAECoyJACQJS45pprNGbMGB05ckSWZSk3N1eHDh3Sbbfdpi1btmjLli11Yjp27Kjhw4fr2LFjdQZTSUlJOnToUMC6119/Xf37969zH2N9unfvrgsuuEBvv/22fvSjHwW89/DDD2vt2rW6/PLLNXnyZPXu3Vv79u3Tiy++qL/97W9KSUnRgw8+qHXr1unSSy/VbbfdppiYGD311FPyeDx69NFHDY7Qqe3atUvXXHON8vLyVFRUpN/+9re68cYb1b9/f/82Td2mhQsX6t1331VWVpYmTZqkPn366PDhw9q8ebPefvttHT58OOQyBw4cKEm6//77NWbMGMXGxurqq6/2D1S/LSsrS9ddd51mzJih/fv3q0ePHnr22Wf1xRdfaPny5QHbbtq0SYcPH9a1114bcrsAADDBgBQAosTw4cPlcrn0pz/9Sampqf4Jdp588kk9+eST9caMHTtWw4cPV7t27erM0lpeXl7nftM33nhDN998c6Pb9KMf/UizZs1SVVVVwD2HXbp00YYNGzRz5kw9//zzKi8vV5cuXXTllVcqMTFRknT++efrr3/9q2bMmKEFCxbI5/MpKytLv/3tb+s877MpvPDCC5o1a5amT5+umJgYTZkyRYsWLQrYpqnblJ6ero0bN2revHl6+eWX9eSTT+rMM8/U+eef739WaaguvvhizZ8/X8uWLVNBQYF8Pp927drV4IBUkp577jnNnDlT//u//6sjR46oX79++uMf/1jnWa0vvviizj77bF1xxRVGbQMAIFSWbTpLAgCg2eXl5SklJUWrV68OKe7YsWPq0KGDdu3apS5dukiSvve972ns2LH+e0g//vhj9evXTxs2bNDgwYMbVW5ZWZm6d++uRx99NODxKy3JnDlzNHfuXB04cKDOjLz4D4/Ho65du2r69Om68847I90cAEArwT2kABBFrrnmGhUUFKimpiakuHbt2unaa6/V7NmzVVVVpT/+8Y/66KOPAi7NfP3115WRkaGLL7640eUmJydr6tSpWrRokX9WWUSnZ555RrGxsXWegwoAgJPIkAJAFDl+/Li++uorde3aVTExod11ceDAAY0bN06FhYU666yz9OSTTwbM/lpSUiKv11vnMSDRjgwpAAAtF/eQAkAUSUhIqPMc0sZKS0vTmjVrGnw/PT3dtFkAAABGou6S3b/85S+6+uqr1blzZ1mWpVdffTVoTGFhoS666CLFx8erR48eWrlyZZ1tli5dqq5duyohIUFZWVnauHFj0zceANDs5syZI9u2yY4CANACRd2AtKKiQv3796/zPLmG7Nq1SyNGjND3vvc9bd26VXfddZd+/OMf66233vJv88ILLyg/P1+zZ8/W5s2b1b9/f+Xm5mr//v1O7QYAAAAAtHpRfQ+pZVl65ZVXNHLkyAa3mTZtmt58882Ah5KPGTNGpaWlKigokHTiGW0XX3yxfvnLX0qSfD6fMjMz9ZOf/ETTp093dB8AAAAAoLU67e8hLSoqCpi0Q5Jyc3N11113SZKqq6u1adMmzZgxw/++y+VSTk6OioqKGizX4/HI4/H4X/t8Ph0+fFhnnnmmLMtq2p0AAAAAThO2bevo0aPq3LmzXK7ouGDz+PHjqq6udryeuLg4JSQkOF5PS3LaD0iLi4vrTNSRnp6u8vJyVVVV6ciRI/J6vfVus3379gbLXbBggebOnetImwEAAIDT3Z49e3TWWWdFuhlBHT9+XN3Oaafi/V7H68rIyNCuXbta1aD0tB+QOmXGjBnKz8/3vy4rK9PZZ5+tS3WVYhQbwZYBAAAALVetavQ3rdEZZ5wR6aY0SnV1tYr3e/Xlpq5KOsO5jG75UZ/OGfiFqqurGZCeTjIyMlRSUhKwrqSkRElJSWrTpo3cbrfcbne922RkZDRYbnx8vOLj4+usj1GsYiwGpAAAAEC9/j2DTbTd5tbuDEvtznCuzT5F1/FoKtFx0XYYsrOztX79+oB169atU3Z2tqQT12kPHDgwYBufz6f169f7twEAAAAANL2oy5AeO3ZMO3fu9L/etWuXtm7dqg4dOujss8/WjBkztHfvXj333HOSpFtuuUW//OUvNXXqVP3oRz/SO++8o9///vd68803/WXk5+dr3LhxGjRokAYPHqwlS5aooqJCEyZMaPb9AwAAANDyeG2fvA4+n8Rr+5wrvAWLugHphx9+qO9973v+1yfv4xw3bpxWrlypffv2affu3f73u3XrpjfffFM//elP9Ytf/EJnnXWWfvOb3yg3N9e/zejRo3XgwAHNmjVLxcXFGjBggAoKCupMdAQAAAAAaDpR/RzSlqS8vFzJyckaqmu5hxQAAABoQK1do0K9prKyMiUlJUW6OUGd/Du/eMfZjk9qlNFzd9Qcl6Zy2t9DCgAAAABomaLukl0AAAAAaG4++eTkXZ7Olt5ykSEFAAAAAEQEGVIAAAAARtxpaSHH2L5q6aADjXGY17bldXD6HSfLbsnIkAIAAAAAIoIMKQAAAAAE4ZMtn5zLYjpZdktGhhQAAAAAEBFkSAEAAAAgCJ9secmQNjkypAAAAACAiCBDCgAAAABBcA+pM8iQAgAAAAAiggwpAAAAAATBc0idQYYUAAAAABARZEgBAAAAmOnYIfQYr0c62PRNcZrv34uT5bdGZEgBAAAAABFBhhQAAAAAgvA6/BxSJ8tuyciQAgAAAAAiggwpAAAAAAThtU8sTpbfGpEhBQAAAABEBBlSAAAAAAiCWXadQYYUAAAAABARZEgBAAAAIAifLHllOVp+a0SGFAAAAAAQEWRIAQAAABipSU0MOaa2NjpzYj77xOJk+a1RdJ4NAAAAAICoR4YUAAAAAILwOnwPqZNlt2RkSAEAAAAAEUGGFAAAAACCIEPqDDKkAAAAAICIIEMKAAAAAEH4bEs+28HnkDpYdktGhhQAAAAAEBFkSAEAAAAgCO4hdQYZUgAAAABARJAhBQAAAGDkeIe4kGNqa3wOtMR5XrnkdTCf53Ws5JaNDCkAAAAAICLIkAIAAABAELbDs+zazLILAAAAAEDzIUMKAAAAAEEwy64zGJACAAAAQBBe2yWv7eCkRrZjRbdoXLILAAAAAIgIMqQAAAAAEIRPlnwO5vN8ap0pUjKkAAAAAICIIEMKAAAAAEEwqZEzGJACAAAAMHI8JfQLLr3VXKSJ/2BACgAAAABBOD/LLveQAgAAAADQbMiQAgAAAEAQJ2bZde4+TyfLbsnIkAIAAAAAIoIMKQAAAAAE4ZNLXp5D2uTIkAIAAAAAIoIMKQAAAAAEwSy7ziBDCgAAAACIiKgckC5dulRdu3ZVQkKCsrKytHHjxga3HTp0qCzLqrOMGDHCv8348ePrvJ+Xl9ccuwIAAAAgCvjkcnxpjaLukt0XXnhB+fn5WrZsmbKysrRkyRLl5uZqx44d6tixY53tX375ZVVXV/tfHzp0SP3799d1110XsF1eXp6eeeYZ/+v4+HjndgIAAAA4DVSnhP6oEq+ndT7eBPWLugHp4sWLNWnSJE2YMEGStGzZMr355ptasWKFpk+fXmf7Dh06BLxevXq1EhMT6wxI4+PjlZGR4VzDAQAAAEQtr23Jazs3mHay7JYsqvLC1dXV2rRpk3JycvzrXC6XcnJyVFRU1Kgyli9frjFjxqht27YB6wsLC9WxY0f17NlTt956qw4dOnTKcjwej8rLywMWAAAAAEDjRdWA9ODBg/J6vUpPTw9Yn56eruLi4qDxGzdu1CeffKIf//jHAevz8vL03HPPaf369XrkkUf05z//WVdeeaW8Xm+DZS1YsEDJycn+JTMz02ynAAAAALR43n8/h9TJpTWKukt2w7F8+XL17dtXgwcPDlg/ZswY///37dtX/fr107nnnqvCwkINGzas3rJmzJih/Px8/+vy8nIGpQAAAAAQgqgahqempsrtdqukpCRgfUlJSdD7PysqKrR69WpNnDgxaD3du3dXamqqdu7c2eA28fHxSkpKClgAAAAAnJ58tsvxpTWKqr2Oi4vTwIEDtX79ev86n8+n9evXKzs7+5SxL774ojwej26++eag9Xz11Vc6dOiQOnXqFHabAQAAAAD1i7pLdvPz8zVu3DgNGjRIgwcP1pIlS1RRUeGfdXfs2LHq0qWLFixYEBC3fPlyjRw5UmeeeWbA+mPHjmnu3LkaNWqUMjIy9Pnnn2vq1Knq0aOHcnNzm22/AAAAALRcTt/n6ZXtWNktWdQNSEePHq0DBw5o1qxZKi4u1oABA1RQUOCf6Gj37t1yuQJPlB07duhvf/ub1q5dW6c8t9utjz76SM8++6xKS0vVuXNnDR8+XPPnz+dZpAAAAADgoKgbkErSlClTNGXKlHrfKywsrLOuZ8+esu36f3Fo06aN3nrrraZsHgAAAIDTjE/OPivU51jJLVtUDkgBAAAARF51cugx3uNN3w5ELwakAAAAABCETy75HLyH1MmyW7LWudcAAAAAgIgjQwoAAAAAQXhtl7wOPivUybJbsta51wAAAACAiCNDCgAAAABB+GTJJydn2XWu7JaMDCkAAAAAICLIkAIAAABAENxD6ozWudcAAAAAgIgjQwoAAAAAQXjlktfBfJ6TZbdkDEgBAAAAGKlO9oUc44sPPQanLwakAAAAABCEz7bksx2cZdfBsluy1pkXBgAAAABEHBlSAAAAAAjC5/A9pL5WmitsnXsNAAAAAIg4MqQAAAAAEITPdsnn4LNCnSy7JWudew0AAAAAiDgypAAAAAAQhFeWvHJuJlwny27JyJACAAAAQBRaunSpunbtqoSEBGVlZWnjxo2n3H7JkiXq2bOn2rRpo8zMTP30pz/V8ePHm6m19SNDCgAAAABBtLR7SF944QXl5+dr2bJlysrK0pIlS5Sbm6sdO3aoY8eOdbZftWqVpk+frhUrVmjIkCH65z//qfHjx8uyLC1evLipdiNkZEgBAAAAIMosXrxYkyZN0oQJE9SnTx8tW7ZMiYmJWrFiRb3bv/fee/rOd76jG2+8UV27dtXw4cN1ww03BM2qOo0BKQAAAAAjvuTa0Jek2kg324hX/7mP1JnlhPLy8oDF4/HUaUt1dbU2bdqknJwc/zqXy6WcnBwVFRXV2/4hQ4Zo06ZN/gHov/71L61Zs0ZXXXVVUx+qkDAgBQAAAIAWIjMzU8nJyf5lwYIFdbY5ePCgvF6v0tPTA9anp6eruLi43nJvvPFGzZs3T5deeqliY2N17rnnaujQobrvvvsc2Y/G4h5SAAAAAAiiue4h3bNnj5KSkvzr4+Pjm6T8wsJCPfzww3ryySeVlZWlnTt36s4779T8+fM1c+bMJqnDBANSAAAAAGghkpKSAgak9UlNTZXb7VZJSUnA+pKSEmVkZNQbM3PmTP3whz/Uj3/8Y0lS3759VVFRocmTJ+v++++XyxWZi2e5ZBcAAAAAgvDaLseXxoqLi9PAgQO1fv16/zqfz6f169crOzu73pjKyso6g0632y1Jsm3b4Ig0DTKkAAAAABCELUs+WY6WH4r8/HyNGzdOgwYN0uDBg7VkyRJVVFRowoQJkqSxY8eqS5cu/ntQr776ai1evFgXXnih/5LdmTNn6uqrr/YPTCOBASkAAAAARJnRo0frwIEDmjVrloqLizVgwAAVFBT4JzravXt3QEb0gQcekGVZeuCBB7R3716lpaXp6quv1kMPPRSpXZAkWXYk87OnkfLyciUnJ2uorlWMFRvp5gAAAACO++eKQSHH+KqO66vb5qisrCzovZItwcm/8+99b4Ti2zn3d77nWI0WDXkzao5LU+EeUgAAAABARHDJLgAAAAAE4bMt+Wzn7iF1suyWjAEpAAAAACNtko6HHOONCT0Gpy8GpAAAAAAQhFcueR2849HJsluy1rnXAAAAAICII0MKAAAAAEFwD6kzyJACAAAAACKCDCkAAAAABOGTSz4H83lOlt2Stc69BgAAAABEHBlSAAAAAAjCa1vyOnifp5Nlt2RkSAEAAAAAEUGGFAAAAACCYJZdZzAgBQAAAGAkPfloyDG1MR7tdKAtiE4MSAEAAAAgCNt2yWc7d8ej7WDZLVnr3GsAAAAAQMSRIQUAAACAILyy5JWDs+w6WHZLRoYUAAAAABARZEgBAAAAIAif7exMuD7bsaJbNDKkAAAAAICIIEMKAAAAAEH4HJ5l18myW7LWudcAAAAAgIgjQwoAAAAAQfhkyefgTLhOlt2SRWWGdOnSperatasSEhKUlZWljRs3NrjtypUrZVlWwJKQkBCwjW3bmjVrljp16qQ2bdooJydHn332mdO7AQAAAES1rmccDnk5u92RSDcbLUjUDUhfeOEF5efna/bs2dq8ebP69++v3Nxc7d+/v8GYpKQk7du3z798+eWXAe8/+uijevzxx7Vs2TJt2LBBbdu2VW5uro4fP+707gAAAACIAl7bcnxpjaJuQLp48WJNmjRJEyZMUJ8+fbRs2TIlJiZqxYoVDcZYlqWMjAz/kp6e7n/Ptm0tWbJEDzzwgK699lr169dPzz33nL7++mu9+uqrzbBHAAAAANA6RdWAtLq6Wps2bVJOTo5/ncvlUk5OjoqKihqMO3bsmM455xxlZmbq2muv1aeffup/b9euXSouLg4oMzk5WVlZWacsEwAAAEDrcXKWXSeX1iiq9vrgwYPyer0BGU5JSk9PV3Fxcb0xPXv21IoVK/Taa6/pt7/9rXw+n4YMGaKvvvpKkvxxoZQpSR6PR+Xl5QELAAAAAKDxTvtZdrOzs5Wdne1/PWTIEPXu3VtPPfWU5s+fb1zuggULNHfu3KZoIgAAAIAWzidLPgfv82SW3SiQmpoqt9utkpKSgPUlJSXKyMhoVBmxsbG68MILtXPnTknyx4Va5owZM1RWVuZf9uzZE8quAAAAAECrF1UD0ri4OA0cOFDr16/3r/P5fFq/fn1AFvRUvF6vPv74Y3Xq1EmS1K1bN2VkZASUWV5erg0bNpyyzPj4eCUlJQUsAAAAAE5P9r+fQ+rUYrfSDGnUXbKbn5+vcePGadCgQRo8eLCWLFmiiooKTZgwQZI0duxYdenSRQsWLJAkzZs3T5dccol69Oih0tJSLVq0SF9++aV+/OMfSzoxA+9dd92lBx98UOedd566deummTNnqnPnzho5cmSkdhMAAAAATntRNyAdPXq0Dhw4oFmzZqm4uFgDBgxQQUGBf1Ki3bt3y+X6T+L3yJEjmjRpkoqLi9W+fXsNHDhQ7733nvr06ePfZurUqaqoqNDkyZNVWlqqSy+9VAUFBUpISGj2/QMAAADQ8vhsh+8hbaXPIbVs27Yj3YjTQXl5uZKTkzVU1yrGio10cwAAAADHXf5RVcgxx4/V6KHstSorK4uK295O/p0/6u1xim0b51g9NRXV+kPOs1FzXJpK1GVIAQAAAKC5Of2sUJ5DCgAAAABAMyJDCgAAAABBcA+pM8iQAgAAAAAiggwpAAAAAARx8nmhTpbfGpEhBQAAAABEBBlSAAAAAAiCe0idQYYUAAAAABARZEgBAAAAIAgypM5gQAoAAADASJ82e0OOqaz1OtASRCsGpAAAAAAQBBlSZ3APKQAAAAAgIsiQAgAAAEAQZEidQYYUAAAAABARZEgBAAAAIAhbkk/OZTFtx0pu2ciQAgAAAAAiggwpAAAAAATBPaTOYEAKAAAAAEEwIHUGl+wCAAAAACKCDCkAAAAAI33iSkKOORbnc6AlziND6gwypAAAAACAiCBDCgAAAABBkCF1BhlSAAAAAEBEkCEFAAAAgCBs25LtYBbTybJbMjKkAAAAAICIIEMKAAAAAEH4ZMknB+8hdbDslowMKQAAAAAgIsiQAgAAAEAQzLLrDDKkAAAAAICIIEMKAAAAwMh/xbYNOaY81udAS5zHLLvOIEMKAAAAAIgIMqQAAAAAEAT3kDqDDCkAAAAAICLIkAIAAABAENxD6gwypAAAAACAiCBDCgAAAABB2A7fQ0qGFAAAAACAZkSGFAAAAACCsCXZtrPlt0ZkSAEAAAAAEUGGtIm5k86Q24prtvps059pfL6mbUhjRFFbzY9rBH7bss2Ojx1FbXX058gGuJOSjOKMzx2JfhlEWMfWRDh9xPRcN64uetoaif4MwDnHfMcNYiLw710T8MmSJQefQ+pg2S0ZGVIAAAAAQESQIQUAAACAIHgOqTPIkAIAAAAAIoIMKQAAAAAE4bMtWQ5mMZ18xmlLRoYUAAAAABARZEgBAAAAIAjbdvg5pK10EnIypAAAAACAiCBDCgAAAABBMMuuM8iQAgAAAAAiggxpU0vtILnjQwqxfOYXjFs+n1mg1zAunIvbvV6zKk33MazjatZW032UZNxe27BOK4zP0rRO83MgjPPO8LO0UjuYxZmer5J5/zLtz2HVafhZhtFWy27m77sw+rPdzMc1mr57pAicrwAc848ad8gxFTXRmQkkQ+oMMqQAAAAAgIggQwoAAAAAQfAcUmdEZYZ06dKl6tq1qxISEpSVlaWNGzc2uO3TTz+tyy67TO3bt1f79u2Vk5NTZ/vx48fLsqyAJS8vz+ndAAAAAIBWLeoGpC+88ILy8/M1e/Zsbd68Wf3791dubq72799f7/aFhYW64YYb9O6776qoqEiZmZkaPny49u7dG7BdXl6e9u3b519+97vfNcfuAAAAAIgCJ59D6uTSGkXdgHTx4sWaNGmSJkyYoD59+mjZsmVKTEzUihUr6t3++eef12233aYBAwaoV69e+s1vfiOfz6f169cHbBcfH6+MjAz/0r59++bYHQAAAABotaJqQFpdXa1NmzYpJyfHv87lciknJ0dFRUWNKqOyslI1NTXq0CFwBs3CwkJ17NhRPXv21K233qpDhw41adsBAAAARK8TWUzLwSXSexgZUTWp0cGDB+X1epWenh6wPj09Xdu3b29UGdOmTVPnzp0DBrV5eXn6/ve/r27duunzzz/XfffdpyuvvFJFRUVyu+ufytrj8cjj8fhfl5eXG+wRAAAAALReUTUgDdfChQu1evVqFRYWKiEhwb9+zJgx/v/v27ev+vXrp3PPPVeFhYUaNmxYvWUtWLBAc+fOdbzNAAAAACKP55A6I6ou2U1NTZXb7VZJSUnA+pKSEmVkZJwy9rHHHtPChQu1du1a9evX75Tbdu/eXampqdq5c2eD28yYMUNlZWX+Zc+ePY3fEQAAAABAdGVI4+LiNHDgQK1fv14jR46UJP8ERVOmTGkw7tFHH9VDDz2kt956S4MGDQpaz1dffaVDhw6pU6dODW4THx+v+Pj4Ouu9Z7aTFZNQT0TDLG8YF4zX+ozCLK/XMC6ctprVKeO2mh0bSeZt9ZnXadfWGsVZhnGmx1WSVGP4C55lGGe6j5Jsw4/Ee+YZZoFhnAOWYX9WGP3S9LvAtI+E1S9N22paZxjnnXFsJNpaU2Mea8A2Pc8BtEj/8HQJOaaqulZS9CVz7H8vTpYfqqVLl2rRokUqLi5W//799cQTT2jw4MENbl9aWqr7779fL7/8sg4fPqxzzjlHS5Ys0VVXXWXe8DBF1YBUkvLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIksaOHasuXbpowYIFkqRHHnlEs2bN0qpVq9S1a1cVFxdLktq1a6d27drp2LFjmjt3rkaNGqWMjAx9/vnnmjp1qnr06KHc3NyI7ScAAAAANOTk4zCXLVumrKwsLVmyRLm5udqxY4c6duxYZ/vq6mr9f//f/6eOHTvqpZdeUpcuXfTll18qJSWl+Rv/DVE3IB09erQOHDigWbNmqbi4WAMGDFBBQYF/oqPdu3fL5frPlci/+tWvVF1drR/84AcB5cyePVtz5syR2+3WRx99pGeffValpaXq3Lmzhg8frvnz59ebAQUAAADQ+rS0e0i/+ThMSVq2bJnefPNNrVixQtOnT6+z/YoVK3T48GG99957io2NlSR17do17HaHK+oGpJI0ZcqUBi/RLSwsDHj9xRdfnLKsNm3a6K233mqilgEAAACAuW8/vaO+WwVPPg5zxowZ/nXBHof5+uuvKzs7W7fffrtee+01paWl6cYbb9S0adMafLJIc4iqSY0AAAAAICLsZlgkZWZmKjk52b+cvBXxm071OMyTtyh+27/+9S+99NJL8nq9WrNmjWbOnKmf/exnevDBB40PSVOIygwpAAAAAJyO9uzZo6SkJP/rprqN0OfzqWPHjvr1r38tt9utgQMHau/evVq0aJFmz57dJHWYYEAKAAAAAME4fA+p/l12UlJSwIC0PiaPw+zUqZNiY2MDLs/t3bu3iouLVV1drbi4uDB3wAyX7AIAAABAFPnm4zBPOvk4zOzs7HpjvvOd72jnzp3yfeMRdf/85z/VqVOniA1GJQakAAAAABCUbTu/hCI/P19PP/20nn32WW3btk233nprncdhfnPSo1tvvVWHDx/WnXfeqX/+859688039fDDD+v2229vysMUMi7ZBQAAAIAoE+rjMDMzM/XWW2/ppz/9qfr166cuXbrozjvv1LRp0yK1C5IYkDY5T/t4eWNDu/HY8ob4c8g3uGrMYl01vuAb1cPymsWFU6dqDdta4zWrT5JVU2sW6A2nTsPptmvNurFdXWNWnyTTuyeMz/QwzjtZZq31nJlgFGd8nsv8uyCsOg37iel3QVj90vC7QIb92bhPSrJM+2WNWb+0XOb3NBn3S7vaLM4K4+Is2/z8AeCMbVWdQ47xVJn/DRJJLe05pFJoj8OUpOzsbL3//vsh1+MkBqQAAAAAEIxt+Scecqz8Voh7SAEAAAAAEUGGFAAAAACCMJl4KNTyWyMypAAAAACAiCBDCgAAAADB2ApjJrhGlt8KkSEFAAAAAEQEGVIAAAAACKIlPvbldECGFAAAAAAQEWRIAQAAAKAxWul9nk5iQNrEPClu1ca5Q4px1ZrX564x6xWuasO4WvNe6Kr2mcXVmMZ5jeIkyaoJ7TP0x3nM65TL7IIFy/AECueiENOzwPIZRrrNj6tt2L88KWbngKvW/MITVzP35xN1mu2n27BfWoZxkuSqNjsPTPuzqg3jJFmeGrM4y6xnhvP3kXG/9Br2S9M4Sbb56QPAIZ8fSw05pqai2oGWIFoxIAUAAACAILiH1BncQwoAAAAAiAgypAAAAAAQDM8hdQQZUgAAAABARJAhBQAAAICgLIU3LWRjym99yJACAAAAACKCDCkAAAAABMM9pI4gQwoAAAAAiAgypAAAAAAQDBlSRzAgbWKeFJfccaElnl015mefu9rs5mfTOt3VEWhrtVki3+0xvwDAuE5XGBcduA1vZLfM4sK5bd7y+Yzi7Fq3WYXhHFdDnmTTvmV+ZE37l6vGuEq5Dc91X7XZOeDymMVJkjvWrK0uw+8CK4zzztXM/dKyzb+bba/XLNBt2J8BnFa+OpoScoy3wtP0DUHUYkAKAAAAAMHY1onFyfJbIe4hBQAAAABEBBlSAAAAAAjCtk8sTpbfGpEhBQAAAABEBBlSAAAAAAiGWXYdQYYUAAAAABARZEgBAAAAIBhm2XUEGVIAAAAAQESQIQUAAACAICz7xOJk+a0RA9ImVp0kueNDi3HVmKfn3R6zOFe1aX1htLXarJfFeMzibHcYbY0xjLXM63QZhrpM5wgPY25xq9ZrFhhjGFdteMJKkmV2IYgnxewDMe2TkuSqNq3T/LN0G9YZY/hd4I417yP2cbPP0m3YuVxh9GdTpv3Z8vmM67RiDP8UqK4xCrMN+ySAlulwWduQY3yVbgdagmjFgBQAAAAAgmGWXUfwMyUAAAAAICLIkAIAAABAMMyy6wgypAAAAACAiCBDCgAAAADBcA+pI8iQAgAAAAAiggwpAAAAAARDhtQRZEgBAAAAABFBhhQAAAAAgiFD6ggGpE2sJsmWNyG0s8lVbV6f+7jZ9NDuarM4X6xR2IlYj1mc7TZsq9u8V9tuw7gwZus27YyW4W5a3jC+9Wq9ZnXW1JjV5zb8QMJQk2R2fLwe85PAbdhHfHHmdfqOm+2nL8aszhi3+YU5tsusrab9Mpx/IC3bsK0+w1oN+6QkWaaxpv3S1TofawCcrmrK4kOO8VW10pEX6sWAFAAAAACC4TmkjuAeUgAAAABARJAhBQAAAIAgLNv8VqnGlt8akSEFAAAAAEQEGVIAAAAACIZZdnXkyBGtXbtWe/fulSR17txZubm5at++vXGZUZkhXbp0qbp27aqEhARlZWVp48aNp9z+xRdfVK9evZSQkKC+fftqzZo1Ae/btq1Zs2apU6dOatOmjXJycvTZZ585uQsAAAAAEDWWL1+u7OxsbdiwQT6fTz6fTxs2bNCQIUO0fPly43JDGpDu2bPHuKKm8sILLyg/P1+zZ8/W5s2b1b9/f+Xm5mr//v31bv/ee+/phhtu0MSJE7VlyxaNHDlSI0eO1CeffOLf5tFHH9Xjjz+uZcuWacOGDWrbtq1yc3N1/Pjx5totAAAAAGixHn30UW3atEmLFy/WPffco3vuuUc///nP9cEHH+iRRx4xLjekAWmvXr00a9YsVVZWGlcYrsWLF2vSpEmaMGGC+vTpo2XLlikxMVErVqyod/tf/OIXysvL07333qvevXtr/vz5uuiii/TLX/5S0ons6JIlS/TAAw/o2muvVb9+/fTcc8/p66+/1quvvtqMewYAAAAALZNlWTp69Gid9UePHpVlmT+yJqQB6bp16/TWW2/pvPPO08qVK40rNVVdXa1NmzYpJyfHv87lciknJ0dFRUX1xhQVFQVsL0m5ubn+7Xft2qXi4uKAbZKTk5WVldVgmQAAAABaF0v/mWnXkSXSOxjEY489pssvv1yjRo3SHXfcoTvuuEPf//73NXToUP3sZz8zLjekSY2GDBmiDRs26LnnntP999+vJ554QkuWLNFll11m3IBQHDx4UF6vV+np6QHr09PTtX379npjiouL692+uLjY//7JdQ1tUx+PxyOPx+N/XV5e3vgdAQAAAIAo8Pjjj+sHP/iB/vu//1tXXnmlNm7cqK+//lrSiUmNBg8eLLfbbVy+0Sy7Y8eO1Q9+8AMtXLhQV155pfLy8rRo0SJ169bNuCHRZsGCBZo7d26d9bVJXrnaeEMqy/KYzy3lizWM85j9BuMLY15mO8asTttlNuWY7Qrnd6bmn+/L8prtp+Uz+wKwasy/OGQYa5l+WYX1WZqpSfYZxbmqwujPcYZxhn0rnFjb8KO0w+laxrtpVmk4z4OzfIb9udbsvLNiw/hyrq4xi3NH5byIAJpYTFno/yD4jofxN0gk2daJxcnyW6C77rpLv/jFL1RYWKjMzExlZ2dLOnH16scffxzWYFQK86/u4cOH68c//rFeeeUV9enTR1OnTtWxY8fCatCppKamyu12q6SkJGB9SUmJMjIy6o3JyMg45fYn/xtKmZI0Y8YMlZWV+ZeWMOETAAAAAIfYzbC0UDk5Obr88ssDxjxHjhzR4MGDwy47pAHpsmXLNHHiRPXr10/JyckaNmyY/vrXv+qWW27RL37xC3344Yfq06ePPvzww7AbVp+4uDgNHDhQ69ev96/z+Xxav369f6T+bdnZ2QHbSyfuhT25fbdu3ZSRkRGwTXl5uTZs2NBgmZIUHx+vpKSkgAUAAAAATieWZWn+/Pm66aab6gxKbTv8UXRI1/g89NBDysrK0tixY3XJJZdo4MCBatOmjf/9yZMn6+GHH9b48eMDHqvSlPLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIOnE5cZcuXbRgwQJJ0p133qnLL79cP/vZzzRixAitXr1aH374oX79619LOnGA77rrLj344IM677zz1K1bN82cOVOdO3fWyJEjHdkHAAAAAFHG6SxmC86QStL8+fNlWZYuv/xy/fnPf1ZcXFxYs+ueFNKAtDGXpU6cOFEzZ840blAwo0eP1oEDBzRr1iwVFxdrwIABKigo8E9KtHv3brlc/0n8DhkyRKtWrdIDDzyg++67T+edd55effVVXXDBBf5tpk6dqoqKCk2ePFmlpaW69NJLVVBQoISEBMf2AwAAAABaum9mQefNm+cflK5evbpJyg9jFoT6dezYUe+8805TFxtgypQpmjJlSr3vFRYW1ll33XXX6brrrmuwPMuyNG/ePM2bN6+pmggAAADgNHLy8SxOlt8SPfTQQ2rbtq3/9cmJXa+++uomKb/JB6QnR8wAAAAAgOg2Y8aMOuvmzp2r2NhYPfbYY2GXz5ztAAAAABBMK55ltz4PPPCASktLwy6HASkAAAAAICKa/JJdAAAAADjttPJZdp3CgLSJxSZ55EoMbfrjmuPmH0NtrNsozq4yS47bbvOpnW2XWaxtOp10OHeG22Z1Wrb5RQeuWrP2+rxmcVaN2bkjSe5qw9gYwzjL/LhahuedkmqMwrwx5v3ZjjXtl8ZVmvdp04+kCaaHD5nhV4HlM2+rVWt2gKw4sw/Tqg6jj7ibt1+G84iAVvq3GtCixZWF3qe9ngj8W4AWiwEpAAAAAATRWmfZdRr3kAIAAAAAIoIMKQAAAAAEY1vGt3U1uvxWiAwpAAAAACAiyJACAAAAQDDMsusIMqQAAAAAgIggQwoAAAAAQTDLrjPIkAIAAAAAIoIMKQAAAAAEwz2kjmBA2sTaJ1XK3dYbUszRuHjj+o7HxBnFed1mH73tchvFnYg1jTSdAjuMqbNts28Ey2dep+U1O0BWrVlbXdVhfJYxhm11GZ4EruafBr1dUpVRXFWMeX+ujTHsl+4wPkvL8DOxIjA1veF0+JbPrDqXYZ+UJFe8Wb+0a8zqtGPDOAfchv3ZMK6V/r0FnLbiykKP8VY3fTsQvRiQAgAAAEAwDt9D2lp/seMeUgAAAABARJAhBQAAAIBguIfUEWRIAQAAAAARQYYUAAAAAIIhQ+oIMqQAAAAAgIggQwoAAAAAQVgOz7Lr6Ay+LRgZUgAAAABARDAgBQAAAABEBJfsNrHOZ5Qptm1cSDEHY9oZ13fY7TOKq3THG8V5LaOwEyx3GMEG1dnmjbV8ZrGuWvNrLVy1ZnW6Y81+V/IZxkmSK9bss7TdhnW6mvfckaROZxw1ijvo9hrXecydYBRX7QrtO+ebzPu04WcZRr+U2dedLMOPpNawT0qSq8bs+LgM+6XLtG9JUoxh/3Ibxrn4LRw4ncSXhv7l7K02/ELHaYkBKQAAAAAEwyy7juBnSgAAAABARJAhBQAAAIAgmGXXGWRIAQAAAAARQYYUAAAAABqjlWYxnUSGFAAAAAAQEWRIAQAAACAYZtl1BBlSAAAAAEBEkCEFAAAAgCCYZdcZDEibWLe2hxTfLjakmAR3rXF9bpfPKO6w4Rl/zCjqBOO9tN1GYZbXtELJ8llGca4as7gTsWZx3nizOt3Hzdtquw0vrnCZxpm3VZZZnWe3O2IUZ9onT8Sa9cvyMP4F8yjeKM5rWKVlm1+YY3kN+2WtaX82P67eOMN+GWt2fOxYs+9JSbLdht+xlmG/NI0D0CIlHAn9D67amjD+SMNph0t2AQAAACAYuxmWEC1dulRdu3ZVQkKCsrKytHHjxkbFrV69WpZlaeTIkaFX2sQYkAIAAABAlHnhhReUn5+v2bNna/Pmzerfv79yc3O1f//+U8Z98cUXuueee3TZZZc1U0tPjQEpAAAAAARx8h5SJ5dQLF68WJMmTdKECRPUp08fLVu2TImJiVqxYkWDMV6vVzfddJPmzp2r7t27h3lEmgYDUgAAAACIItXV1dq0aZNycnL861wul3JyclRUVNRg3Lx589SxY0dNnDixOZrZKExqBAAAAADBNNNzSMvLywNWx8fHKz4+cBLCgwcPyuv1Kj09PWB9enq6tm/fXm/xf/vb37R8+XJt3bq1yZrcFMiQAgAAAEALkZmZqeTkZP+yYMGCsMs8evSofvjDH+rpp59WampqE7Sy6ZAhBQAAAIBgmilDumfPHiUlJflXfzs7Kkmpqalyu90qKSkJWF9SUqKMjIw623/++ef64osvdPXVV/vX+XwnHlUXExOjHTt26Nxzz22KvQgZGVIAAAAAaCGSkpIClvoGpHFxcRo4cKDWr1/vX+fz+bR+/XplZ2fX2b5Xr176+OOPtXXrVv9yzTXX6Hvf+562bt2qzMxMR/fpVMiQAgAAAEAQJjPhhlp+KPLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIksaOHasuXbpowYIFSkhI0AUXXBAQn5KSIkl11jc3BqRNrGebfWrTJrTDmuCqMa7PZfkM45y83qB+R23LKM7rM4yrdRvFSZKr1jDO/KOUu9oszhdrdnx8ceYXSNgxhrExZp+JZZntYzh6JJ76GV4NiXV5jeuMRL8sM+yX1b44oziv1/yztAwPravWrE5XtXlbfR6zz9IXZ9ifY837s9ttuJ9uLrICIMUf9oQc464NPQZ1jR49WgcOHNCsWbNUXFysAQMGqKCgwD/R0e7du+VytfzvagakAAAAABBMM91DGoopU6ZoypQp9b5XWFh4ytiVK1eGXqEDWv6QGQAAAABwWiJDCgAAAADBtMAM6emAASkAAAAABNHSJjU6XXDJLgAAAAAgIsiQAgAAAEAwXLLrCDKkAAAAAICIiKoB6eHDh3XTTTcpKSlJKSkpmjhxoo4dO3bK7X/yk5+oZ8+eatOmjc4++2zdcccdKisrC9jOsqw6y+rVq53eHQAAAABR4uQ9pE4urVFUXbJ70003ad++fVq3bp1qamo0YcIETZ48WatWrap3+6+//lpff/21HnvsMfXp00dffvmlbrnlFn399dd66aWXArZ95plnlJeX53+dkpLi5K4AAAAAQKsXNQPSbdu2qaCgQB988IEGDRokSXriiSd01VVX6bHHHlPnzp3rxFxwwQX6wx/+4H997rnn6qGHHtLNN9+s2tpaxcT8Z/dTUlKUkZERdjt7xe1T2/jQEs+xljfsepuLz7aMY2t9Zgn5Cq9ZnT7DOEny1pq11VUdRp1xZrHeWLP6fLHmbbXdZsfHdpnFWW63UVw4eifsNYpzWb4mbklw4fRLr88sttxr9lnWGvYtSfLWmJ0Hrmqz+tweszjJvD+b9kvbHUZ/jjH8TCzDOg2/BwC0TO6DR0OOsb1hfMFGEveQOiJq/lUoKipSSkqKfzAqSTk5OXK5XNqwYUOjyykrK1NSUlLAYFSSbr/9dqWmpmrw4MFasWKFbPvUZ4TH41F5eXnAAgAAAABovKjJkBYXF6tjx44B62JiYtShQwcVFxc3qoyDBw9q/vz5mjx5csD6efPm6YorrlBiYqLWrl2r2267TceOHdMdd9zRYFkLFizQ3LlzQ98RAAAAANGHDKkjIp4hnT59er2TCn1z2b59e9j1lJeXa8SIEerTp4/mzJkT8N7MmTP1ne98RxdeeKGmTZumqVOnatGiRacsb8aMGSorK/Mve/bsCbuNAAAAANCaRDxDevfdd2v8+PGn3KZ79+7KyMjQ/v37A9bX1tbq8OHDQe/9PHr0qPLy8nTGGWfolVdeUWzsqW+6y8rK0vz58+XxeBQfH1/vNvHx8Q2+BwAAAOD0Yv17cbL81ijiA9K0tDSlpaUF3S47O1ulpaXatGmTBg4cKEl655135PP5lJWV1WBceXm5cnNzFR8fr9dff10JCQlB69q6davat2/PgBMAAAAAHBTxAWlj9e7dW3l5eZo0aZKWLVummpoaTZkyRWPGjPHPsLt3714NGzZMzz33nAYPHqzy8nINHz5clZWV+u1vfxsw+VBaWprcbrfeeOMNlZSU6JJLLlFCQoLWrVunhx9+WPfcc08kdxcAAABAS8I9pI6ImgGpJD3//POaMmWKhg0bJpfLpVGjRunxxx/3v19TU6MdO3aosrJSkrR582b/DLw9evQIKGvXrl3q2rWrYmNjtXTpUv30pz+Vbdvq0aOHFi9erEmTJjXfjgEAAABAKxRVA9IOHTpo1apVDb7ftWvXgMe1DB06NOjjW/Ly8pSXl9dkbQQAAABw+rHsE4uT5bdGEZ9lFwAAAADQOkVVhjQa9Iz1Kik2tJ833NpnXJ/XNpuPy2ub/RZR63MbxUmSp9bsdKutNavzeI357y1ej9lxdcebz4/mNZxDy3fqSaMbjosxb6sv1vDYug3rtMKYd85lFtsr7oB5nYZ8hv2yJox+6fUZ1uk1q/NYrXm/9NWafZa+arM6vWH05+bul8Z9UpJchrGGcVY4/RlAy7P/UOgxdnXTt6M5cA+pI8iQAgAAAAAiggwpAAAAADRGK81iOokMKQAAAAAgIsiQAgAAAEAQzLLrDDKkAAAAAICIIEMKAAAAAMEwy64jyJACAAAAACKCDCkAAAAABME9pM4gQwoAAAAAiAgypE2snStB7VyhjfPPcFUY15fkPm4Ul+iqNopr464xipOk+Jhaozi322cUZ7nNf2ay3YZxrjDqdFmGcYYVmlUXXqwVTqXN6wzDnynbujzGdbYz7M9t3Gb9WZJi3d5mjXOF0S+9hv3LvD+bxYUTaxwXRtcyjTX9zgJwevGWl4ceY5v/PRlR3EPqCDKkAAAAAICIIEMKAAAAAEFwD6kzyJACAAAAACKCDCkAAAAABMM9pI4gQwoAAAAAiAgypAAAAAAQDBlSR5AhBQAAAABEBBlSAAAAAAiCWXadQYYUAAAAABARZEib2M6aCrWrCW2cv706zbi+zzzpRnFfHu9gFLevKskoTpKOVLYxijteFWcUZx93G8VJUsxxyyjO5TGLkyR3tVmcq8Ywrtb8ZzhXrc8s0GcYZ4fxk6HPLHZHjdm5/pknwyhOkv5VZfZd8HVVsnGdh6oSjeKOVSYYxXmrzPul67jZb6huw/7s9hiFSQqjX9aYna+uGsO+Jcky7COW16xOXzj9GQAiiXtIHUGGFAAAAAAQEWRIAQAAACAIy7ZlOXiVh5Nlt2RkSAEAAAAAEUGGFAAAAACC4R5SR5AhBQAAAABEBBlSAAAAAAiC55A6gwwpAAAAACAiyJACAAAAQDDcQ+oIMqQAAAAAgIggQ9rEPvVkKDHOHVLMv6rTjOvbVWUWu7cyxSjuYGVbozhJOlYZbxTnrTQ7TV1V5r+3uD2GcdXGVcrtMftZzF1jFucyjJMkq9Ys1vIa1unzmcWF4VNPF6O4L46nGte5p6q9UVxxRZJxneWVCUZxNVWxRnFWVWjfj9/kPm4Zxbki0Z8NY121hnGmfUuSVWvYvyLQLwEgkriH1BlkSAEAAAAAEUGGFAAAAACC4R5SR5AhBQAAAABEBBlSAAAAAAiCe0idQYYUAAAAABARZEgBAAAAIBjuIXUEA1IAAAAAaITWelmtk7hkFwAAAAAQEWRIAQAAACAY2z6xOFl+K8SAtInt8GQoITY2pJg9x9sb17e3MsUobn9FO6O48ooEozhJqqmMM4qzqswS+e4qyyhOktzHzWLdHuMq5ao2i3NXm315WbXmX3qW12cWWOs1CrN9hvWF4bOqdKO4rwz7pCTtrzzDKK60so1xnVUV8UZxdqXbKC7GsD9Lzd8v3R7zPuKqMYt1V5ud61ZNGH2k1jDWZ3h8ItCfAQAtFwNSAAAAAAiCx744g3tIAQAAAAARQYYUAAAAAILhsS+OIEMKAAAAAIgIMqQAAAAAEITlO7E4WX5rRIYUAAAAABARZEgBAAAAIBjuIXUEGVIAAAAAQESQIQUAAACAIHgOqTMYkDaxXZWpinPFhRSzrzLJuL5DlW2N4sorEoziqitC27dvsirdRnHuSrNEfkyVZRQnSe7jhnEe828Sd7VZrKvGLM5dbX7nvFVrGOszjQvjG9o2q/OLY2caxR2oMuuTklRa0cYorqoi3rhOu9LsnwHTfukOo1/GGPdLszhXtVmc1Pz92fKa9xHLuF8axtmt9C8uAEC9ouqS3cOHD+umm25SUlKSUlJSNHHiRB07duyUMUOHDpVlWQHLLbfcErDN7t27NWLECCUmJqpjx4669957VVtb6+SuAAAAAIgmtu380gpFVYb0pptu0r59+7Ru3TrV1NRowoQJmjx5slatWnXKuEmTJmnevHn+14mJif7/93q9GjFihDIyMvTee+9p3759Gjt2rGJjY/Xwww87ti8AAAAA0NpFzYB027ZtKigo0AcffKBBgwZJkp544gldddVVeuyxx9S5c+cGYxMTE5WRkVHve2vXrtU//vEPvf3220pPT9eAAQM0f/58TZs2TXPmzFFcnPklqgAAAABOD9xD6oyouWS3qKhIKSkp/sGoJOXk5MjlcmnDhg2njH3++eeVmpqqCy64QDNmzFBlZWVAuX379lV6erp/XW5ursrLy/Xpp582WKbH41F5eXnAAgAAAABovKjJkBYXF6tjx44B62JiYtShQwcVFxc3GHfjjTfqnHPOUefOnfXRRx9p2rRp2rFjh15++WV/ud8cjEryvz5VuQsWLNDcuXNNdwcAAABANOE5pI6I+IB0+vTpeuSRR065zbZt24zLnzx5sv//+/btq06dOmnYsGH6/PPPde655xqXO2PGDOXn5/tfl5eXKzMz07g8AAAAAGhtIj4gvfvuuzV+/PhTbtO9e3dlZGRo//79Aetra2t1+PDhBu8PrU9WVpYkaefOnTr33HOVkZGhjRs3BmxTUlIiSacsNz4+XvHx5o9aAAAAABA9uIfUGREfkKalpSktLS3odtnZ2SotLdWmTZs0cOBASdI777wjn8/nH2Q2xtatWyVJnTp18pf70EMPaf/+/f5LgtetW6ekpCT16dMnxL0BAAAAADRW1Exq1Lt3b+Xl5WnSpEnauHGj/v73v2vKlCkaM2aMf4bdvXv3qlevXv6M5+eff6758+dr06ZN+uKLL/T6669r7Nix+u53v6t+/fpJkoYPH64+ffrohz/8of7v//5Pb731lh544AHdfvvtZEABAAAAnMBzSB0R8QxpKJ5//nlNmTJFw4YNk8vl0qhRo/T444/736+pqdGOHTv8s+jGxcXp7bff1pIlS1RRUaHMzEyNGjVKDzzwgD/G7Xbrj3/8o2699VZlZ2erbdu2GjduXMBzS0Ox+1h7xdihDWRLK9sY1SVJFZVmg+aaylijOKvSbRQnSe5Ks98/Yqoss/qOG4WFFev2hFFntdmXkMswzqrxGcWdiPWaxXnN6rRt87aa2ns02SjuWJX5D1kew35pV5p/lbsrDPtlZRT1y+NmfSTGY/6HgXF/NuyXLsM+KUmqNYz1hlEnAAD/FlUD0g4dOmjVqlUNvt+1a1fZ3/hlITMzU3/+85+DlnvOOedozZo1TdJGAAAAAKcf7iF1RtRcsgsAAAAAOL1EVYYUAAAAACKC55A6ggwpAAAAACAiyJACAAAAQBDcQ+oMMqQAAAAAgIggQwoAAAAAwfjsE4uT5bdCZEgBAAAAABFBhhQAAAAAgmGWXUcwIG1i+8vbyV2bEFKM53iscX2+SrOP0KpyG8XFVFlGcZLkNoyNqTKrzzROkmKOm30jmMZJkrvaLNZd7TOKc9WaxUmSZRrr9ZrF2c3/DV1anmgUV1tl/rVq2i/dVeYXu5j2E+P+XGlWnyTFVBn2S49p3zI/71ym/dIwzqox7FuS5DOr0zbtl4b1AQBOTwxIAQAAACAISw7Psutc0S0a95ACAAAAACKCDCkAAAAABGPbzt5GFIFblFoCMqQAAAAAEIWWLl2qrl27KiEhQVlZWdq4cWOD2z799NO67LLL1L59e7Vv3145OTmn3L65MCAFAAAAgCAs2/klFC+88ILy8/M1e/Zsbd68Wf3791dubq72799f7/aFhYW64YYb9O6776qoqEiZmZkaPny49u7d2wRHxxwDUgAAAACIMosXL9akSZM0YcIE9enTR8uWLVNiYqJWrFhR7/bPP/+8brvtNg0YMEC9evXSb37zG/l8Pq1fv76ZWx6IASkAAAAABGM3wyKpvLw8YPF4PHWaUl1drU2bNiknJ8e/zuVyKScnR0VFRY3ancrKStXU1KhDhw4hHYamxoAUAAAAAFqIzMxMJScn+5cFCxbU2ebgwYPyer1KT08PWJ+enq7i4uJG1TNt2jR17tw5YFAbCcyyCwAAAABBWLYty8GZcE+WvWfPHiUlJfnXx8fHN3ldCxcu1OrVq1VYWKiEhIQmLz8UDEib2PGjCXLVhvihHjdPVLurzGLdx80eveuuMn9kr/u4WVyMYZy7yvwLI+a4WazbY16n+7jPKM5VbRZn1XiN4iRJtYaxXrO2ymveVttn9pnUlscZxbnC6c9R1C+N+3MY/dL8O8SwPxv2SUlye5q3X1q15m21DPuzbdgv7Vb6WAMAaKykpKSAAWl9UlNT5Xa7VVJSErC+pKREGRkZp4x97LHHtHDhQr399tvq169f2O0NF5fsAgAAAEAwvmZYGikuLk4DBw4MmJDo5ARF2dnZDcY9+uijmj9/vgoKCjRo0KDGV+ggMqQAAAAAEGXy8/M1btw4DRo0SIMHD9aSJUtUUVGhCRMmSJLGjh2rLl26+O9BfeSRRzRr1iytWrVKXbt29d9r2q5dO7Vr1y5i+8GAFAAAAACCaK57SBtr9OjROnDggGbNmqXi4mINGDBABQUF/omOdu/eLZfrPxfE/upXv1J1dbV+8IMfBJQze/ZszZkzJ+z2m2JACgAAAABRaMqUKZoyZUq97xUWFga8/uKLL5xvkAEGpAAAAAAQzDeeFepY+a0QkxoBAAAAACKCDCkAAAAABGPbJxYny2+FGJACAAAAQBCWfWJxsvzWiEt2AQAAAAARQYa0ibnKYuTyhHZY3dWWcX3u42axLo9ZfTHHzeIkyX3c7Gcft2GdMR7zn5lijNsawhONvx3rMYt1eWqN4iyP1yhOkuQ1jDWN8zX/T4YxZW6jOLdh35Ikl8esP4dTp2mfNu3Ppn0rnFjj7x7DPilJrmqzc900TjVm3wOSpFrDOlvppWUAWjEu2XUEGVIAAAAAQESQIQUAAACAICzficXJ8lsjMqQAAAAAgIggQwoAAAAAwXAPqSPIkAIAAAAAIoIMKQAAAAAEY/97cbL8VogMKQAAAAAgIsiQAgAAAEAQlm3LcvA+TyfLbsnIkAIAAAAAIoIMKQAAAAAEwyy7jmBA2sRiy1xye0JLPLuqzetzG8a6PaZx5h2lueuM8Zg/XdhlWudxbxh1msW6qs3irJpao7hwYm2f2WdiR+ALOrbcMooz7ZNSlPXLarM6w2lrzHGz88dtHBdOfzbrI1aNYX+uNW+rvIaxpnG+1vkHFwCgfgxIAQAAACAYW5J5vqNx5bdC3EMKAAAAAIgIMqQAAAAAEASz7DqDDCkAAAAAICLIkAIAAABAMLYcnmXXuaJbMjKkAAAAAICIIEMKAAAAAMHwHFJHkCEFAAAAAEQEGVIAAAAACMYnyXK4/FaIAWkTiyuX3J7QYlw15vW5q81S+67q5q0vnFi3xzCu2rxXuz1eozgrjDpdx2sN6zSMqzGLkyTVmh0f1RrW6TWsT5Jss88krtysunD6SFT1y2buzydizc4Dl2G/dHnM+4hl2FZVG/6DEEZ/tg37s+01/L4z7JMAgNMTA1IAAAAACILnkDojqu4hPXz4sG666SYlJSUpJSVFEydO1LFjxxrc/osvvpBlWfUuL774on+7+t5fvXp1c+wSAAAAALRaUZUhvemmm7Rv3z6tW7dONTU1mjBhgiZPnqxVq1bVu31mZqb27dsXsO7Xv/61Fi1apCuvvDJg/TPPPKO8vDz/65SUlCZvPwAAAIAoxSy7joiaAem2bdtUUFCgDz74QIMGDZIkPfHEE7rqqqv02GOPqXPnznVi3G63MjIyAta98soruv7669WuXbuA9SkpKXW2BQAAAAA4J2ou2S0qKlJKSop/MCpJOTk5crlc2rBhQ6PK2LRpk7Zu3aqJEyfWee/2229XamqqBg8erBUrVshupb9QAAAAAKjHyQypk0srFDUZ0uLiYnXs2DFgXUxMjDp06KDi4uJGlbF8+XL17t1bQ4YMCVg/b948XXHFFUpMTNTatWt122236dixY7rjjjsaLMvj8cjj+c90uuXlhlNyAgAAAEArFfEM6fTp0xuceOjksn379rDrqaqq0qpVq+rNjs6cOVPf+c53dOGFF2ratGmaOnWqFi1adMryFixYoOTkZP+SmZkZdhsBAAAAtFBkSB0R8Qzp3XffrfHjx59ym+7duysjI0P79+8PWF9bW6vDhw836t7Pl156SZWVlRo7dmzQbbOysjR//nx5PB7Fx8fXu82MGTOUn5/vf11eXs6gFAAAAABCEPEBaVpamtLS0oJul52drdLSUm3atEkDBw6UJL3zzjvy+XzKysoKGr98+XJdc801japr69atat++fYODUUmKj48/5fsAAAAATiM+SZbD5bdCER+QNlbv3r2Vl5enSZMmadmyZaqpqdGUKVM0ZswY/wy7e/fu1bBhw/Tcc89p8ODB/tidO3fqL3/5i9asWVOn3DfeeEMlJSW65JJLlJCQoHXr1unhhx/WPffcY9TOuHJb7rjQ0u3uGvP0vKvGLM60Tld1OG0162XuarM4l2HciVivUZxVXWtcp1VjVqeqDU+CGvO22rWGsV7DffQ1/zd0fKnZuR5efzbsl7Vh1GnYpyPSLw37iOUxi3OF0Z9N+6Vl3J8N4yTJFz39EgBw+omaAakkPf/885oyZYqGDRsml8ulUaNG6fHHH/e/X1NTox07dqiysjIgbsWKFTrrrLM0fPjwOmXGxsZq6dKl+ulPfyrbttWjRw8tXrxYkyZNcnx/AAAAAEQHy7ZlOXifp5Nlt2RRNSDt0KGDVq1a1eD7Xbt2rfdxLQ8//LAefvjhemPy8vKUl5fXZG0EAAAAADROVA1IAQAAACAinJ4Jt5VmSCP+2BcAAAAAQOtEhhQAAAAAgvHZkuVgFtNHhhQAAAAAgGZDhhQAAAAAguEeUkeQIQUAAAAARAQZUgAAAAAIyuEMqVpnhpQBaRNLKPUqJtYbUoxVa16fq9bsxHXV+AzrM4uTJMu0TsM4qya0z6FJYmvMP0zLNNYwzq6pMatPkmoN6/SafZb1PV/YaQmlZueAZdgnpXD6ZfPXadpHTL8HwqrTG0X9udqsX9qGfVKS+X4aHle7lU7aAQCoHwNSAAAAAAiGe0gdwT2kAAAAAICIIEMKAAAAAMH4bDl6n2crvaWBDCkAAAAAICLIkAIAAABAMLbvxOJk+a0QGVIAAAAAQESQIQUAAACAYJhl1xFkSAEAAAAAEUGGFAAAAACCYZZdRzAgbWLxpTWKiXGHFGPVmp98ltfs5mertnnjJEmmdXq9hvUZxkmyTGPDqFO1tUZhtnFbzeo7UadhbE2NWZzpOSAZX/4Sd6TaKM7ymvdnl2n/CqNfmvYv4++CSPTLCHyHGPcR477V/P3ZNvz3p7VO2gHgNMAlu47gkl0AAAAAQESQIQUAAACAYGw5nCF1ruiWjAwpAAAAACAiyJACAAAAQDDcQ+oIMqQAAAAAgIggQwoAAAAAwfh8khycKdzXOmchJ0MKAAAAAIgIMqQAAAAAEAz3kDqCDCkAAAAAICLIkDax2ENVinGHeP13ONeLew1jDeu0TOsLo07jffR6zeIk2cZtNa+zuffTDqutpnWa7aPta/5fDGMPVZgFRqCP0C+DMD1/fNHTR8I6rqaxduu81wlAK0aG1BFkSAEAAAAAEUGGFAAAAACC8dmSHMxiRuCKsJaADCkAAAAAICLIkAIAAABAELbtk+3g/fNOlt2SkSEFAAAAAEQEGVIAAAAACMa2nb3Pk1l2AQAAAABoPmRIAQAAACAY2+FZdsmQAgAAAADQfMiQNrUDRyRXXPPVZzobl+EvMHY4182bttWwTjucX5l8zXtcw6nTeD8j8Fkanz+RmHXuYKlZXDhtpV8GqbOZ+6VpfYpAvwzjvGv2ftlKMwAATgM+n2Q5+DcJs+wCAAAAANB8yJACAAAAQDDcQ+oIMqQAAAAAgIggQwoAAAAAQdg+n2wH7yG1uYcUAAAAAIDmQ4YUAAAAAILhHlJHkCEFAAAAAEQEGVIAAAAACMZnSxYZ0qZGhhQAAAAAEBFkSJuY9+BBWVZspJsBIEzeAwci3QQAANCS2LYkB2fCJUMKAAAAAEDzIUMKAAAAAEHYPlu2g/eQ2mRIAQAAAABoPmRIAQAAACAY2ydn7yF1sOwWLKoypA899JCGDBmixMREpaSkNCrGtm3NmjVLnTp1Ups2bZSTk6PPPvssYJvDhw/rpptuUlJSklJSUjRx4kQdO3bMgT0AAAAAgKaxdOlSde3aVQkJCcrKytLGjRtPuf2LL76oXr16KSEhQX379tWaNWuaqaUNi6oBaXV1ta677jrdeuutjY559NFH9fjjj2vZsmXasGGD2rZtq9zcXB0/fty/zU033aRPP/1U69at0x//+Ef95S9/0eTJk53YBQAAAABRyPbZji+heOGFF5Sfn6/Zs2dr8+bN6t+/v3Jzc7V///56t3/vvfd0ww03aOLEidqyZYtGjhypkSNH6pNPPmmKw2PMsqPw7tmVK1fqrrvuUmlp6Sm3s21bnTt31t1336177rlHklRWVqb09HStXLlSY8aM0bZt29SnTx998MEHGjRokCSpoKBAV111lb766it17ty5UW0qLy9XcnKyhupaxfDYFwAAAKBetXaNCvWaysrKlJSUFOnmBOX/O9/6f47+nV9r16jQfqXRxyUrK0sXX3yxfvnLX0qSfD6fMjMz9ZOf/ETTp0+vs/3o0aNVUVGhP/7xj/51l1xyiQYMGKBly5Y13Y6EKKoypKHatWuXiouLlZOT41+XnJysrKwsFRUVSZKKioqUkpLiH4xKUk5OjlwulzZs2NDsbQYAAADQAtk+55dGqq6u1qZNmwLGOS6XSzk5Of5xzrcVFRUFbC9Jubm5DW7fXE7rSY2Ki4slSenp6QHr09PT/e8VFxerY8eOAe/HxMSoQ4cO/m3q4/F45PF4/K/LysokSbWqkaIu5wwAAAA0j1rVSIq+x5w4/Xf+yeNSXl4esD4+Pl7x8fEB6w4ePCiv11vvOGf79u31ll9cXHzKcVGkRHxAOn36dD3yyCOn3Gbbtm3q1atXM7WocRYsWKC5c+fWWf83Rf7GYAAAAKClO3TokJKTkyPdjKDi4uKUkZGhvxU7/3d+u3btlJmZGbBu9uzZmjNnjuN1R0rEB6R33323xo8ff8ptunfvblR2RkaGJKmkpESdOnXyry8pKdGAAQP823z7xt/a2lodPnzYH1+fGTNmKD8/3/+6tLRU55xzjnbv3h0VHSsalZeXKzMzU3v27ImK+w2iFce5eXCcmwfH2Xkc4+bBcW4eHOfmUVZWprPPPlsdOnSIdFMaJSEhQbt27VJ1dbXjddm2LcuyAtZ9OzsqSampqXK73SopKQlYX1JS0uAYJiMjI6Ttm0vEB6RpaWlKS0tzpOxu3bopIyND69ev9w9Ay8vLtWHDBv9MvdnZ2SotLdWmTZs0cOBASdI777wjn8+nrKysBsuuL3UunbhHlS8wZyUlJXGMmwHHuXlwnJsHx9l5HOPmwXFuHhzn5uFyRc90NgkJCUpISIh0M/zi4uI0cOBArV+/XiNHjpR0YlKj9evXa8qUKfXGZGdna/369brrrrv869atW6fs7OxmaHHDoucskLR7925t3bpVu3fvltfr1datW7V169aAZ4b26tVLr7zyiiTJsizdddddevDBB/X666/r448/1tixY9W5c2f/B9e7d2/l5eVp0qRJ2rhxo/7+979rypQpGjNmTKNn2AUAAACA5pSfn6+nn35azz77rLZt26Zbb71VFRUVmjBhgiRp7NixmjFjhn/7O++8UwUFBfrZz36m7du3a86cOfrwww8bHMA2l4hnSEMxa9YsPfvss/7XF154oSTp3Xff1dChQyVJO3bs8E8wJElTp05VRUWFJk+erNLSUl166aUqKCgI+IXj+eef15QpUzRs2DC5XC6NGjVKjz/+ePPsFAAAAACEaPTo0Tpw4IBmzZql4uJiDRgwQAUFBf6Ji3bv3h2QhR4yZIhWrVqlBx54QPfdd5/OO+88vfrqq7rgggsitQuSomxAunLlSq1cufKU23x7ti7LsjRv3jzNmzevwZgOHTpo1apVYbUtPj5es2fPrvcyXjQNjnHz4Dg3D45z8+A4O49j3Dw4zs2D49w8OM5NZ8qUKQ1mOAsLC+usu+6663Tdddc53KrQWHa0zbcMAAAAADgtRNU9pAAAAACA0wcDUgAAAABARDAgBQAAAABEBAPSRnrooYc0ZMgQJSYmKiUlpVExtm1r1qxZ6tSpk9q0aaOcnBx99tlnAdscPnxYN910k5KSkpSSkqKJEycGPMamtQn1eHzxxReyLKve5cUXX/RvV9/7q1evbo5danFMzrmhQ4fWOX633HJLwDa7d+/WiBEjlJiYqI4dO+ree+9VbW2tk7vSooV6nA8fPqyf/OQn6tmzp9q0aaOzzz5bd9xxR8Cs4RLn8tKlS9W1a1clJCQoKytLGzduPOX2L774onr16qWEhAT17dtXa9asCXi/Md/TrVEox/npp5/WZZddpvbt26t9+/bKycmps/348ePrnLd5eXlO70aLF8pxXrlyZZ1j+O1nInI+1xXKMa7v3zrLsjRixAj/NpzLdf3lL3/R1Vdfrc6dO8uyLL366qtBYwoLC3XRRRcpPj5ePXr0qHfS0lC/7xHFbDTKrFmz7MWLF9v5+fl2cnJyo2IWLlxoJycn26+++qr9f//3f/Y111xjd+vWza6qqvJvk5eXZ/fv399+//337b/+9a92jx497BtuuMGhvWj5Qj0etbW19r59+wKWuXPn2u3atbOPHj3q306S/cwzzwRs983PoTUxOecuv/xye9KkSQHHr6yszP9+bW2tfcEFF9g5OTn2li1b7DVr1tipqan2jBkznN6dFivU4/zxxx/b3//+9+3XX3/d3rlzp71+/Xr7vPPOs0eNGhWwXWs+l1evXm3HxcXZK1assD/99FN70qRJdkpKil1SUlLv9n//+99tt9ttP/roo/Y//vEP+4EHHrBjY2Ptjz/+2L9NY76nW5tQj/ONN95oL1261N6yZYu9bds2e/z48XZycrL91Vdf+bcZN26cnZeXF3DeHj58uLl2qUUK9Tg/88wzdlJSUsAxLC4uDtiG8zlQqMf40KFDAcf3k08+sd1ut/3MM8/4t+FcrmvNmjX2/fffb7/88su2JPuVV1455fb/+te/7MTERDs/P9/+xz/+YT/xxBO22+22CwoK/NuE+tkhujEgDdEzzzzTqAGpz+ezMzIy7EWLFvnXlZaW2vHx8fbvfvc727Zt+x//+Ictyf7ggw/82/zpT3+yLcuy9+7d2+Rtb+ma6ngMGDDA/tGPfhSwrjFfkK2B6TG+/PLL7TvvvLPB99esWWO7XK6AP45+9atf2UlJSbbH42mStkeTpjqXf//739txcXF2TU2Nf11rPpcHDx5s33777f7XXq/X7ty5s71gwYJ6t7/++uvtESNGBKzLysqy/+d//se27cZ9T7dGoR7nb6utrbXPOOMM+9lnn/WvGzdunH3ttdc2dVOjWqjHOdjfH5zPdYV7Lv/85z+3zzjjDPvYsWP+dZzLp9aYf6OmTp1qn3/++QHrRo8ebefm5vpfh/vZIbpwya5Ddu3apeLiYuXk5PjXJScnKysrS0VFRZKkoqIipaSkaNCgQf5tcnJy5HK5tGHDhmZvc6Q1xfHYtGmTtm7dqokTJ9Z57/bbb1dqaqoGDx6sFStW1HlmbWsQzjF+/vnnlZqaqgsuuEAzZsxQZWVlQLl9+/b1P4hZknJzc1VeXq5PP/206XekhWuqvl1WVqakpCTFxAQ+Mro1nsvV1dXatGlTwHeqy+VSTk6O/zv124qKigK2l06clye3b8z3dGtjcpy/rbKyUjU1NerQoUPA+sLCQnXs2FE9e/bUrbfeqkOHDjVp26OJ6XE+duyYzjnnHGVmZuraa68N+H7lfA7UFOfy8uXLNWbMGLVt2zZgPedyeIJ9NzfFZ4foEhN8E5goLi6WpIA/0E++PvlecXGxOnbsGPB+TEyMOnTo4N+mNWmK47F8+XL17t1bQ4YMCVg/b948XXHFFUpMTNTatWt122236dixY7rjjjuarP3RwPQY33jjjTrnnHPUuXNnffTRR5o2bZp27Nihl19+2V9ufef6yfdam6Y4lw8ePKj58+dr8uTJAetb67l88OBBeb3ees+z7du31xvT0Hn5ze/gk+sa2qa1MTnO3zZt2jR17tw54I/JvLw8ff/731e3bt30+eef67777tOVV16poqIiud3uJt2HaGBynHv27KkVK1aoX79+Kisr02OPPaYhQ4bo008/1VlnncX5/C3hnssbN27UJ598ouXLlwes51wOX0PfzeXl5aqqqtKRI0fC/h5CdGnVA9Lp06frkUceOeU227ZtU69evZqpRaenxh7ncFVVVWnVqlWaOXNmnfe+ue7CCy9URUWFFi1adNr8Ee/0Mf7moKhv377q1KmThg0bps8//1znnnuucbnRprnO5fLyco0YMUJ9+vTRnDlzAt473c9lRLeFCxdq9erVKiwsDJhwZ8yYMf7/79u3r/r166dzzz1XhYWFGjZsWCSaGnWys7OVnZ3tfz1kyBD17t1bTz31lObPnx/Blp2eli9frr59+2rw4MEB6zmXgabXqgekd999t8aPH3/Kbbp3725UdkZGhiSppKREnTp18q8vKSnRgAED/Nvs378/IK62tlaHDx/2x58OGnucwz0eL730kiorKzV27Nig22ZlZWn+/PnyeDyKj48Pun1L11zH+KSsrCxJ0s6dO3XuuecqIyOjzux3JSUlksS5/G+NPc5Hjx5VXl6ezjjjDL3yyiuKjY095fan27nckNTUVLndbv95dVJJSUmDxzQjI+OU2zfme7q1MTnOJz322GNauHCh3n77bfXr1++U23bv3l2pqanauXNnq/wjPpzjfFJsbKwuvPBC7dy5UxLn87eFc4wrKiq0evVqzZs3L2g9rf1cNtHQd3NSUpLatGkjt9sddv9AdGnV95CmpaWpV69ep1zi4uKMyu7WrZsyMjK0fv16/7ry8nJt2LDB/wtndna2SktLtWnTJv8277zzjnw+n/8P/tNBY49zuMdj+fLluuaaa5SWlhZ0261bt6p9+/anzR/wzXWMT9q6dask+f/oyc7O1scffxwwCFu3bp2SkpLUp0+fptnJFsDp41xeXq7hw4crLi5Or7/+ep1HOtTndDuXGxIXF6eBAwcGfKf6fD6tX78+IGv0TdnZ2QHbSyfOy5PbN+Z7urUxOc6S9Oijj2r+/PkqKCgIuHe6IV999ZUOHToUMHBqTUyP8zd5vV59/PHH/mPI+RwonGP84osvyuPx6Oabbw5aT2s/l00E+25uiv6BKBPpWZWixZdffmlv2bLF/0iRLVu22Fu2bAl4tEjPnj3tl19+2f964cKFdkpKiv3aa6/ZH330kX3ttdfW+9iXCy+80N6wYYP9t7/9zT7vvPNa/WNfTnU8vvrqK7tnz572hg0bAuI+++wz27Is+09/+lOdMl9//XX76aeftj/++GP7s88+s5988kk7MTHRnjVrluP70xKFeox37txpz5s3z/7www/tXbt22a+99prdvXt3+7vf/a4/5uRjX4YPH25v3brVLigosNPS0lr9Y19COc5lZWV2VlaW3bdvX3vnzp0BjxSora21bZtzefXq1XZ8fLy9cuVK+x//+Ic9efJkOyUlxT+78w9/+EN7+vTp/u3//ve/2zExMfZjjz1mb9u2zZ49e3a9j30J9j3d2oR6nBcuXGjHxcXZL730UsB5e/Lfx6NHj9r33HOPXVRUZO/atct+++237Ysuusg+77zz7OPHj0dkH1uCUI/z3Llz7bfeesv+/PPP7U2bNtljxoyxExIS7E8//dS/DedzoFCP8UmXXnqpPXr06DrrOZfrd/ToUf/fxZLsxYsX21u2bLG//PJL27Zte/r06fYPf/hD//YnH/ty77332tu2bbOXLl1a72NfTvXZ4fTCgLSRxo0bZ0uqs7z77rv+bfTv5wOe5PP57JkzZ9rp6el2fHy8PWzYMHvHjh0B5R46dMi+4YYb7Hbt2tlJSUn2hAkTAga5rU2w47Fr1646x922bXvGjBl2Zmam7fV665T5pz/9yR4wYIDdrl07u23btnb//v3tZcuW1bttaxDqMd69e7f93e9+1+7QoYMdHx9v9+jRw7733nsDnkNq27b9xRdf2FdeeaXdpk0bOzU11b777rsDHlfS2oR6nN999916v2Mk2bt27bJtm3PZtm37iSeesM8++2w7Li7OHjx4sP3+++/737v88svtcePGBWz/+9//3v6v//ovOy4uzj7//PPtN998M+D9xnxPt0ahHOdzzjmn3vN29uzZtm3bdmVlpT18+HA7LS3Njo2Ntc855xx70qRJ/GFph3ac77rrLv+26enp9lVXXWVv3rw5oDzO57pC/c7Yvn27Lcleu3ZtnbI4l+vX0L9fJ4/tuHHj7Msvv7xOzIABA+y4uDi7e/fuAX8/n3Sqzw6nF8u2W8HzAgAAAAAALU6rvocUAAAAABA5DEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQAAAAARwYAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQCnld/97ndq06aN9u3b5183YcIE9evXT2VlZRFsGQAA+DbLtm070o0AAKCp2LatAQMG6Lvf/a6eeOIJzZ49WytWrND777+vLl26RLp5AADgG2Ii3QAAAJqSZVl66KGH9IMf/EAZGRl64okn9Ne//pXBKAAALRAZUgDAaemiiy7Sp59+qrVr1+ryyy+PdHMAAEA9uIcUAHDaKSgo0Pbt2+X1epWenh7p5gAAgAaQIQUAnFY2b96soUOH6qmnntLKlSuVlJSkF198MdLNAgAA9eAeUgDAaeOLL77QiBEjdN999+mGG25Q9+7dlZ2drc2bN+uiiy6KdPMAAMC3kCEFAJwWDh8+rCFDhmjo0KFatmyZf/2IESPk9XpVUFAQwdYBAID6MCAFAAAAAEQEkxoBAAAAACKCASkAAAAAICIYkAIAAAAAIoIBKQAAAAAgIhiQAgAAAAAiggEpAAAAACAiGJACAAAAACKCASkAAAAAICIYkAIAAAAAIoIBKQAAAAAgIhiQAgAAAAAiggEpAAAAACAi/n/YLoSXB7KSSgAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 226 + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [ + { + "ename": "IndexError", + "evalue": "index 36 is out of bounds for axis 0 with size 16", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mIndexError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[147], line 18\u001B[0m\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m k \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(num_pnts):\n\u001B[1;32m 17\u001B[0m xy \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor([X[i, k], Y[i, k]], dtype\u001B[38;5;241m=\u001B[39mtorch\u001B[38;5;241m.\u001B[39mfloat32)\n\u001B[0;32m---> 18\u001B[0m out \u001B[38;5;241m=\u001B[39m \u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxy\u001B[49m\u001B[43m)\u001B[49m\u001B[43m[\u001B[49m\u001B[43midx\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 19\u001B[0m Z[i, k] \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor(out)\n\u001B[1;32m 21\u001B[0m \u001B[38;5;66;03m# Convert tensors to numpy arrays for plotting\u001B[39;00m\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/numpy/tensor.py:186\u001B[0m, in \u001B[0;36mtensor.__getitem__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 185\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m__getitem__\u001B[39m(\u001B[38;5;28mself\u001B[39m, \u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[0;32m--> 186\u001B[0m item \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43msuper\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[38;5;21;43m__getitem__\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 188\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(item, tensor):\n\u001B[1;32m 189\u001B[0m item \u001B[38;5;241m=\u001B[39m tensor(item, requires_grad\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrequires_grad)\n", + "\u001B[0;31mIndexError\u001B[0m: index 36 is out of bounds for axis 0 with size 16" + ] + } + ], + "execution_count": 147, + "source": [ + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import pennylane as qml\n", + "\n", + "num_pnts = 100\n", + "\n", + "# Generate a grid of x and y values\n", + "x = torch.linspace(-1.0, 1.0, num_pnts)\n", + "y = torch.linspace(-1.0, 1.0, num_pnts)\n", + "X, Y = torch.meshgrid(x, y)\n", + "Z = torch.empty(num_pnts, num_pnts)\n", + "\n", + "# Evaluate the circuit at each point in the grid and extract the j-th component\n", + "idx = 36\n", + "for i in range(num_pnts):\n", + " for k in range(num_pnts):\n", + " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", + " out = circuit(xy)[idx]\n", + " Z[i, k] = torch.tensor(out)\n", + "\n", + "# Convert tensors to numpy arrays for plotting\n", + "X = X.numpy()\n", + "Y = Y.numpy()\n", + "Z = Z.numpy()\n", + "\n", + "# Create a 3D surface plot\n", + "fig = plt.figure(figsize=(10, 6))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "surf = ax.plot_surface(X, Y, Z, cmap='viridis')\n", + "\n", + "# Add labels and title\n", + "ax.set_xlabel('$x$')\n", + "ax.set_ylabel('$y$')\n", + "ax.set_zlabel(f'$z_{j}$')\n", + "ax.set_title(f\"$\\langle Z_0\\\\rangle$ (component {j})\")\n", + "\n", + "ax.view_init(elev=30, azim=0)\n", + "\n", + "# Add a color bar which maps values to colors\n", + "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", + "\n", + "# Save the figure\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "id": "566631b16fa32330" + }, + { + "cell_type": "code", + "id": "69ff92d61130136a", + "metadata": {}, + "source": [ + "num_pnts = 500\n", + "xvals = torch.linspace(-1.0, 1.0, num_pnts).unsqueeze(-1)\n", + "yvals = model(xvals)\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(xvals, yvals)\n", + "plt.xlabel('$x$')\n", + "plt.title(\"$\\langle Z_0\\\\rangle$\")\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "outputs": [], + "execution_count": null + }, + { + "cell_type": "code", + "id": "66ba7a519125ef4e", + "metadata": {}, + "source": [ + "import torch\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "import numpy as np\n", + "\n", + "# Define the number of points in each dimension\n", + "num_pnts = 50\n", + "\n", + "# Generate a grid of x and y values\n", + "x = torch.linspace(-1.0, 1.0, num_pnts)\n", + "y = torch.linspace(-1.0, 1.0, num_pnts)\n", + "X, Y = torch.meshgrid(x, y)\n", + "Z = torch.empty(num_pnts, num_pnts)\n", + "\n", + "# Evaluate the model at each point in the grid\n", + "for i in range(num_pnts):\n", + " for j in range(num_pnts):\n", + " xy = torch.tensor([[X[i, j], Y[i, j]]])\n", + " Z[i, j] = model(xy).item()\n", + "\n", + "# Convert tensors to numpy arrays for plotting\n", + "X = X.numpy()\n", + "Y = Y.numpy()\n", + "Z = Z.numpy()\n", + "\n", + "# Create a 3D surface plot\n", + "fig = plt.figure(figsize=(10, 6))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "surf = ax.plot_surface(X, Y, Z, cmap='viridis')\n", + "\n", + "# Add labels and title\n", + "ax.set_xlabel('$x$')\n", + "ax.set_ylabel('$y$')\n", + "ax.set_zlabel('$z$')\n", + "ax.set_title(\"$\\langle Z_0\\\\rangle$\")\n", + "\n", + "# Add a color bar which maps values to colors\n", + "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", + "\n", + "# Save the figure\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "outputs": [], + "execution_count": null + }, + { + "cell_type": "code", + "id": "6ef1e0d8cb1b72f1", + "metadata": {}, + "source": [], + "outputs": [], + "execution_count": null } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" + "pygments_lexer": "ipython3", + "version": "3.11.8" } }, "nbformat": 4, From 995928a35efd9244c8dc8fbac6669fdaa6e86b20 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 02:55:34 +0200 Subject: [PATCH 03/21] wip (load basis): canonical ordering works --- scratch/scratch5.ipynb | 337 ++++++++++++----------------------------- 1 file changed, 94 insertions(+), 243 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index e6fa77d..086251b 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T23:02:43.319378Z", - "start_time": "2024-06-08T23:02:43.313490Z" + "end_time": "2024-06-09T00:53:51.617885Z", + "start_time": "2024-06-09T00:53:51.610904Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 154 + "execution_count": 367 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.280372Z", - "start_time": "2024-06-08T22:57:40.277339Z" + "end_time": "2024-06-09T00:53:51.624135Z", + "start_time": "2024-06-09T00:53:51.619703Z" } }, "source": [ @@ -38,7 +38,11 @@ "def zkron(t1, t2):\n", " c1 = t1.cores\n", " c2 = t2.cores\n", - " c3 = [torch.kron(A, B) for A, B in zip(c1, c2)]\n", + " c3 = []\n", + " \n", + " for i in range(len(c1)):\n", + " c3.append(c1[0])\n", + " c3.append(c2[0])\n", " \n", " t3 = tn.Tensor(c3)\n", " return t3\n", @@ -53,15 +57,15 @@ " return t3" ], "outputs": [], - "execution_count": 140 + "execution_count": 368 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.294891Z", - "start_time": "2024-06-08T22:57:40.289266Z" + "end_time": "2024-06-09T00:53:51.746272Z", + "start_time": "2024-06-09T00:53:51.626185Z" } }, "source": [ @@ -95,102 +99,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.0\n", - "3D TT tensor:\n", - "\n", - " 4 4 4\n", - " | | |\n", - " (0) (1) (2)\n", - " / \\ / \\ / \\\n", - "1 2 2 1\n", - "\n", - "[-1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161\n", - " -1.5204161 -1.5204161 -0.07047679 -0.07047679 -0.07047679 -0.07047679\n", - " -0.07047679 -0.07047679 -0.07047679 -0.07047679 8.780638 8.780638\n", - " 8.780638 8.780638 8.780638 8.780638 8.780638 8.780638\n", - " -1.424307 -1.424307 -1.424307 -1.424307 -1.424307 -1.424307\n", - " -1.424307 -1.424307 -2.357471 -2.357471 -2.357471 -2.357471\n", - " -2.357471 -2.357471 -2.357471 -2.357471 0.4497826 0.4497826\n", - " 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826\n", - " -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011\n", - " -1.8961011 -1.8961011 0.48295355 0.48295355 0.48295355 0.48295355\n", - " 0.48295355 0.48295355 0.48295355 0.48295355]\n", - "=========\n", - "[-1.5204161 -1.5204161 -0.07047679 -0.07047679 -1.5204161 -1.5204161\n", - " -0.07047679 -0.07047679 8.780638 8.780638 -1.424307 -1.424307\n", - " 8.780638 8.780638 -1.424307 -1.424307 -1.5204161 -1.5204161\n", - " -0.07047679 -0.07047679 -1.5204161 -1.5204161 -0.07047679 -0.07047679\n", - " 8.780638 8.780638 -1.424307 -1.424307 8.780638 8.780638\n", - " -1.424307 -1.424307 -2.357471 -2.357471 0.4497826 0.4497826\n", - " -2.357471 -2.357471 0.4497826 0.4497826 -1.8961011 -1.8961011\n", - " 0.48295355 0.48295355 -1.8961011 -1.8961011 0.48295355 0.48295355\n", - " -2.357471 -2.357471 0.4497826 0.4497826 -2.357471 -2.357471\n", - " 0.4497826 0.4497826 -1.8961011 -1.8961011 0.48295355 0.48295355\n", - " -1.8961011 -1.8961011 0.48295355 0.48295355]\n" + "0.0\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Core ranks do not match", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mValueError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[369], line 18\u001B[0m\n\u001B[1;32m 15\u001B[0m delta \u001B[38;5;241m=\u001B[39m np\u001B[38;5;241m.\u001B[39mlinalg\u001B[38;5;241m.\u001B[39mnorm(delta)\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28mprint\u001B[39m(delta)\n\u001B[0;32m---> 18\u001B[0m t4 \u001B[38;5;241m=\u001B[39m \u001B[43mzkron\u001B[49m\u001B[43m(\u001B[49m\u001B[43mt1\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mt2\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 19\u001B[0m T4 \u001B[38;5;241m=\u001B[39m t4\u001B[38;5;241m.\u001B[39mnumpy()\u001B[38;5;241m.\u001B[39mreshape((\u001B[38;5;241m2\u001B[39m\u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m\u001B[38;5;241m6\u001B[39m))\n\u001B[1;32m 21\u001B[0m \u001B[38;5;28mprint\u001B[39m(t4)\n", + "Cell \u001B[0;32mIn[368], line 12\u001B[0m, in \u001B[0;36mzkron\u001B[0;34m(t1, t2)\u001B[0m\n\u001B[1;32m 9\u001B[0m c3\u001B[38;5;241m.\u001B[39mappend(c1[\u001B[38;5;241m0\u001B[39m])\n\u001B[1;32m 10\u001B[0m c3\u001B[38;5;241m.\u001B[39mappend(c2[\u001B[38;5;241m0\u001B[39m])\n\u001B[0;32m---> 12\u001B[0m t3 \u001B[38;5;241m=\u001B[39m \u001B[43mtn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mTensor\u001B[49m\u001B[43m(\u001B[49m\u001B[43mc3\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 13\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m t3\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/tntorch/tensor.py:191\u001B[0m, in \u001B[0;36mTensor.__init__\u001B[0;34m(self, data, Us, idxs, device, requires_grad, ranks_cp, ranks_tucker, ranks_tt, eps, max_iter, tol, verbose, batch, algorithm)\u001B[0m\n\u001B[1;32m 183\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m n \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(\u001B[38;5;28mlen\u001B[39m(data) \u001B[38;5;241m-\u001B[39m \u001B[38;5;241m1\u001B[39m):\n\u001B[1;32m 184\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m (\n\u001B[1;32m 185\u001B[0m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mdim() \u001B[38;5;241m==\u001B[39m max_dim\n\u001B[1;32m 186\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m data[n]\u001B[38;5;241m.\u001B[39mshape[\u001B[38;5;241m-\u001B[39m\u001B[38;5;241m1\u001B[39m] \u001B[38;5;241m!=\u001B[39m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mshape[d1]\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m data[n]\u001B[38;5;241m.\u001B[39mshape[\u001B[38;5;241m-\u001B[39m\u001B[38;5;241m1\u001B[39m] \u001B[38;5;241m!=\u001B[39m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mshape[d2]\n\u001B[1;32m 190\u001B[0m ):\n\u001B[0;32m--> 191\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mCore ranks do not match\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 192\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcores \u001B[38;5;241m=\u001B[39m data\n\u001B[1;32m 193\u001B[0m N \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlen\u001B[39m(data)\n", + "\u001B[0;31mValueError\u001B[0m: Core ranks do not match" ] } ], - "execution_count": 141 + "execution_count": 369 }, { "cell_type": "code", "id": "ed6556db86940912", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.298997Z", - "start_time": "2024-06-08T22:57:40.295913Z" - } - }, + "metadata": {}, "source": [ "print(t1.numpy().reshape((2**3)))\n", "print(t2.numpy().reshape((2**3)))\n", "print(T3_)\n", "print(T4)" ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-1.5204161 -0.07047679 8.780638 -1.424307 -2.357471 0.4497826\n", - " -1.8961011 0.48295355]\n", - "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[-1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161 -1.5204161\n", - " -1.5204161 -1.5204161 -0.07047679 -0.07047679 -0.07047679 -0.07047679\n", - " -0.07047679 -0.07047679 -0.07047679 -0.07047679 8.780638 8.780638\n", - " 8.780638 8.780638 8.780638 8.780638 8.780638 8.780638\n", - " -1.424307 -1.424307 -1.424307 -1.424307 -1.424307 -1.424307\n", - " -1.424307 -1.424307 -2.357471 -2.357471 -2.357471 -2.357471\n", - " -2.357471 -2.357471 -2.357471 -2.357471 0.4497826 0.4497826\n", - " 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826 0.4497826\n", - " -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011 -1.8961011\n", - " -1.8961011 -1.8961011 0.48295355 0.48295355 0.48295355 0.48295355\n", - " 0.48295355 0.48295355 0.48295355 0.48295355]\n", - "[-1.5204161 -1.5204161 -0.07047679 -0.07047679 -1.5204161 -1.5204161\n", - " -0.07047679 -0.07047679 8.780638 8.780638 -1.424307 -1.424307\n", - " 8.780638 8.780638 -1.424307 -1.424307 -1.5204161 -1.5204161\n", - " -0.07047679 -0.07047679 -1.5204161 -1.5204161 -0.07047679 -0.07047679\n", - " 8.780638 8.780638 -1.424307 -1.424307 8.780638 8.780638\n", - " -1.424307 -1.424307 -2.357471 -2.357471 0.4497826 0.4497826\n", - " -2.357471 -2.357471 0.4497826 0.4497826 -1.8961011 -1.8961011\n", - " 0.48295355 0.48295355 -1.8961011 -1.8961011 0.48295355 0.48295355\n", - " -2.357471 -2.357471 0.4497826 0.4497826 -2.357471 -2.357471\n", - " 0.4497826 0.4497826 -1.8961011 -1.8961011 0.48295355 0.48295355\n", - " -1.8961011 -1.8961011 0.48295355 0.48295355]\n" - ] - } - ], - "execution_count": 142 + "outputs": [], + "execution_count": null }, { "cell_type": "code", "id": "f5d359f0ae8df759", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.303767Z", - "start_time": "2024-06-08T22:57:40.300002Z" - } - }, + "metadata": {}, "source": [ "import tntorch\n", "try:\n", @@ -245,17 +189,12 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 143 + "execution_count": null }, { "cell_type": "code", "id": "47ef065abf26f244", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.312531Z", - "start_time": "2024-06-08T22:57:40.304693Z" - } - }, + "metadata": {}, "source": [ "try:\n", " from typing import TypeAlias\n", @@ -297,6 +236,9 @@ " self.norm = 1.0\n", " self.hbmps = HatBasisMPS(basis)\n", " self.zorder = zorder\n", + " self.mps = None\n", + " self.mps1 = None\n", + " self.mps2 = None\n", "\n", " def circuit(self, x: Tensor) -> None:\n", " \"\"\"\n", @@ -338,7 +280,7 @@ " first1 = a1.item()\n", " second1 = b1.item()\n", " first2 = a2.item()\n", - " second2 = a2.item()\n", + " second2 = b2.item()\n", "\n", " mps1 = self.hbmps.mps_hatbasis(first1, second1, position1)\n", " mps2 = self.hbmps.mps_hatbasis(first2, second2, position2)\n", @@ -346,8 +288,11 @@ " if self.zorder:\n", " mps = zkron(mps2, mps1)\n", " else:\n", - " mps = kron(mps1, mps2)\n", + " mps = kron(mps2, mps1)\n", " \n", + " self.mps1 = mps1\n", + " self.mps2 = mps2\n", + " self.mps = mps\n", " mpsgates = MPSQGates(mps)\n", "\n", " s = mpsgates.max_rank_power\n", @@ -388,19 +333,14 @@ " return self.norm" ], "outputs": [], - "execution_count": 144 + "execution_count": null }, { "cell_type": "code", "id": "557b395bbcf03f54", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T22:57:40.318637Z", - "start_time": "2024-06-08T22:57:40.313144Z" - } - }, + "metadata": {}, "source": [ - "num_qubits = 3\n", + "num_qubits = 2\n", "num_nodes = 2**num_qubits\n", "a = -1.0\n", "b = 1.0\n", @@ -413,29 +353,11 @@ "x = torch.tensor([0.0, 0.0])\n", "print(drawer(x))" ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ─────────────────────────────╭U(M3)─┤ \n", - "1: ──────────────────────╭U(M0)─╰U(M3)─┤ \n", - "2: ───────────────╭U(M2)─╰U(M0)────────┤ \n", - "3: ────────╭U(M1)─╰U(M2)───────────────┤ \n", - "4: ─╭U(M0)─╰U(M1)──────────────────────┤ \n", - "5: ─╰U(M0)─────────────────────────────┤ \n" - ] - } - ], - "execution_count": 145 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T23:08:15.019606Z", - "start_time": "2024-06-08T23:08:15.009965Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "import numpy as np\n", @@ -461,29 +383,16 @@ "print(out)" ], "id": "3068b30bd9e6ee63", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0. 0.27500004 0.72499996 0. ]\n" - ] - } - ], - "execution_count": 164 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T23:24:11.005993Z", - "start_time": "2024-06-08T23:24:11.001894Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "hbmps = HatBasisMPS(hat_basis)\n", "x = torch.tensor([-0.333])\n", - "y = torch.tensor([0.])\n", + "y = torch.tensor([-1.])\n", "mpsx = hbmps(x)\n", "mpsy = hbmps(y)\n", "mps = kron(mpsy, mpsx)\n", @@ -492,31 +401,13 @@ "print(mps.numpy().reshape(-1))" ], "id": "281d58bbae58820a", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00]\n", - "[0. 0.50000006 0.49999997 0. ]\n", - "[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", - " 4.9975008e-01 2.4998191e-04 0.0000000e+00 0.0000000e+00 4.9974999e-01\n", - " 2.4998185e-04 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", - " 0.0000000e+00]\n" - ] - } - ], - "execution_count": 181 + "outputs": [], + "execution_count": null }, { "cell_type": "code", "id": "93646da4c54dfbff", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T23:43:28.088320Z", - "start_time": "2024-06-08T23:43:28.080230Z" - } - }, + "metadata": {}, "source": [ "import numpy as np\n", "\n", @@ -526,40 +417,47 @@ "b = 1.0\n", "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", "\n", - "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=False, normalize=False)\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=False, normalize=False, zorder=True)\n", "\n", "dev = qml.device(\"default.qubit\", wires=2*num_qubits)\n", "@qml.qnode(dev)\n", "def circuit(x):\n", " embed.circuit(x)\n", - " return np.real(qml.state())\n", + " return qml.state()\n", "\n", - "x = torch.tensor([-0.95, -0.333])\n", + "x = torch.tensor([-0.333, -0.99])\n", "out = np.real(circuit(x))\n", "print(out)\n", "print(out[5])" ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0. 0.92453752 0.92453752 0. 0. 0.07496252\n", - " 0.07496252 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. ]\n", - "0.07496251607264348\n" - ] - } + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "print(embed.basis.nonz_vals(x[1]))", + "id": "fb3331067291afc5", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "mps1 = embed.mps1\n", + "print(mps1.numpy().reshape(-1))\n", + "mps2 = embed.mps2\n", + "print(mps2.numpy().reshape(-1))\n", + "mps = embed.mps\n", + "print(mps.numpy().reshape(-1))" ], - "execution_count": 217 + "id": "136ef4cd92b91a96", + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-08T23:55:43.880603Z", - "start_time": "2024-06-08T23:55:41.576236Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "import torch\n", @@ -568,16 +466,13 @@ "num_pnts = 50\n", "\n", "# Generate a grid of x and y values\n", - "x = torch.linspace(-1.0, 1.0, num_pnts)\n", - "y = torch.linspace(-1.0, 1.0, num_pnts)\n", - "X, Y = torch.meshgrid(x, y)\n", + "x = torch.linspace(-0.99, 0.99, num_pnts)\n", + "y = torch.linspace(-0.99, 0.99, num_pnts)\n", + "X, Y = torch.meshgrid(x, y, indexing='xy')\n", "Z = torch.empty(num_pnts, num_pnts)\n", "\n", - "print(X)\n", - "print(Y)\n", - "\n", "# Evaluate the circuit at each point in the grid and extract the j-th component\n", - "idx = 5\n", + "idx = 15\n", "for i in range(num_pnts):\n", " for k in range(num_pnts):\n", " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", @@ -595,10 +490,10 @@ "# Add labels and title\n", "plt.xlabel('$x$')\n", "plt.ylabel('$y$')\n", - "plt.title(f\"$\\\\langle Z_0\\\\rangle$ (component {j})\")\n", + "plt.title(f\"$\\\\varphi_j$\")\n", "\n", "# Add a color bar which maps values to colors\n", - "plt.colorbar(label=f'$z_{j}$')\n", + "plt.colorbar(label=f'$\\\\varphi_j$')\n", "\n", "# Save the figure\n", "plt.tight_layout()\n", @@ -607,58 +502,12 @@ "plt.show()" ], "id": "8f41ff534081649d", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-1.0000, -1.0000, -1.0000, ..., -1.0000, -1.0000, -1.0000],\n", - " [-0.9592, -0.9592, -0.9592, ..., -0.9592, -0.9592, -0.9592],\n", - " [-0.9184, -0.9184, -0.9184, ..., -0.9184, -0.9184, -0.9184],\n", - " ...,\n", - " [ 0.9184, 0.9184, 0.9184, ..., 0.9184, 0.9184, 0.9184],\n", - " [ 0.9592, 0.9592, 0.9592, ..., 0.9592, 0.9592, 0.9592],\n", - " [ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000]])\n", - "tensor([[-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", - " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", - " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", - " ...,\n", - " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", - " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000],\n", - " [-1.0000, -0.9592, -0.9184, ..., 0.9184, 0.9592, 1.0000]])\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJOCAYAAACgF8qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrnklEQVR4nO3deXxU5d3///eZyUbAJGBCAhgFxJtFWRQkhmqlkh+Jcqt8SxVcylIKtwtVG5VFZVdBsZRqsVgLonelWK1rpRFE080IynK7FKhYFEQS1iSQhEkyc35/UKaOSZjMNTmZDHk9H4/z0DlzPtd1nTPnGnLN55zrWLZt2wIAAAAAoJm5It0AAAAAAEDrxIAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQAAAAARwYAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAQlkcffVS9evWSz+eLdFMQhmXLlunss8+Wx+OJdFMAAK0IA1IAiCLPPvusEhMTVVlZ6V+XlpYmy7JOufzP//xP0LLvv/9+de/ePaT2lJeX65FHHtG0adPkcvFPSnN47733NGfOHJWWljY6xuPxaNq0aercubPatGmjrKwsrVu3LmCb8ePHq7q6Wk899VQTtxgAgIZZtm3bkW4EAKBxRo0aperqar3xxhuSpNraWq1evbrebcvLy3XPPffI4/Hoj3/8o6688spTlv3+++8rOztbn3zyic4///xGtWfJkiWaPXu2SkpKlJCQENrOwMhjjz2me++9V7t27VLXrl0bFXPDDTfopZde0l133aXzzjtPK1eu1AcffKB3331Xl156qX+7adOm6YUXXtCuXbtkWZZDewAAwH/ERLoBAIDG8Xg8Wrt2rRYvXuxfFxMTo5tvvrnebfPy8lRVVaUnn3wy6GBUkrKyspSenq433nij0QPSZ555Rtdccw2D0RZs48aNWr16tRYtWqR77rlHkjR27FhdcMEFmjp1qt577z3/ttdff70effRRvfvuu7riiisi1WQAQCvC9VUAECXeffddVVRU6Oqrrz7ldl6vVzfeeKMKCws1Z84c3XrrrY0q37Is/fd//7c/+xrMrl279NFHHyknJ6fe9/fu3auJEyeqc+fOio+PV7du3XTrrbequrrav82WLVt05ZVXKikpSe3atdOwYcP0/vvvB5QzZ84cWZalf/7zn7r55puVnJystLQ0zZw5U7Zta8+ePbr22muVlJSkjIwM/exnP6s3fvv27br++uuVlJSkM888U3feeaeOHz9ep92htGnnzp0aP368UlJSlJycrAkTJgRcTn3yOPzoRz9Senq64uPjdf7552vFihV16m1MmXPmzNG9994rSerWrZv/kuwvvviigU9Jeumll+R2uzV58mT/uoSEBE2cOFFFRUXas2ePf/3AgQPVoUMHvfbaaw2WBwBAUyJDCgBR4o033tDFF1+sjIyMU25366236uWXX9btt9+u2bNnh1THNddco2eeeUYHDhxQWlraKbc9mVm76KKL6rz39ddfa/DgwSotLdXkyZPVq1cv7d27Vy+99JIqKysVFxenTz/9VJdddpmSkpI0depUxcbG6qmnntLQoUP15z//WVlZWQFljh49Wr1799bChQv15ptv6sEHH1SHDh301FNP6YorrtAjjzyi559/Xvfcc48uvvhiffe73w2Iv/7669W1a1ctWLBA77//vh5//HEdOXJEzz33nH+bUNt0/fXXq1u3blqwYIE2b96s3/zmN+rYsaMeeeQRSVJJSYkuueQSWZalKVOmKC0tTX/60580ceJElZeX66677qpz7E5V5ve//33985//1O9+9zv9/Oc/V2pqqiSd8rPasmWL/uu//ktJSUkB6wcPHixJ2rp1qzIzM/3rL7roIv39739vsDwAAJqUDQCICpmZmfb8+fNPuc19991nS7Kvv/562+v1hlxHRUWF3aZNG3vlypVBt33ggQdsSfbRo0frvDd27Fjb5XLZH3zwQZ33fD6fbdu2PXLkSDsuLs7+/PPP/e99/fXX9hlnnGF/97vf9a+bPXu2LcmePHmyf11tba191lln2ZZl2QsXLvSvP3LkiN2mTRt73LhxdeKvueaagHbcdttttiT7//7v//zrQm3Tj370o4Ay/9//+3/2mWee6X89ceJEu1OnTvbBgwcDthszZoydnJxsV1ZWhlzmokWLbEn2rl277MY4//zz7SuuuKLO+k8//dSWZC9btixg/eTJk+02bdo0qmwAAMLFJbsAEAW2bNmiPXv26Jprrmlwm8cff1wPP/ywcnJy9L//+79Gs94mJiZq2LBhjbps99ChQ4qJiVG7du0C1vt8Pr366qu6+uqrNWjQoDpxlmXJ6/Vq7dq1GjlyZMDMvp06ddKNN96ov/3tbyovLw+I+/GPf+z/f7fbrUGDBsm2bU2cONG/PiUlRT179tS//vWvOvXefvvtAa9/8pOfSJLWrFkjSUZtuuWWWwJeX3bZZTp06JDKy8tl27b+8Ic/6Oqrr5Zt2zp48KB/yc3NVVlZmTZv3lynnacq00RVVZXi4+PrrD95329VVVXA+vbt26uqqqrOpccAADiBASkARIE///nPSklJUb9+/ep9/3e/+53uuusuDRo0SK+88ori4uLqbHPgwAGNGDFCbdu2Vc+ePbV+/fp6yxo6dKgKCwuN23rgwAGVl5frggsuOOU2lZWV6tmzZ533evfuLZ/PF3BvoySdffbZAa+Tk5OVkJDgv2z1m+uPHDlSp9zzzjsv4PW5554rl8vlv/+yKdrUvn17SdKRI0d04MABlZaW6te//rXS0tIClgkTJkiS9u/fX6euU5Vpok2bNvU+W/Tk/bNt2rQJWG//e/J9ZtkFADQH7iEFgCgwcOBAlZaWaufOnerRo0fAe2+99ZbGjRun8847T2vWrKmTsTzp9ttvV0ZGhg4cOKC3335b119/vT777DN16NAhYLuNGzfWm9n8tjPPPFO1tbU6evSozjjjDPOdayS3292oddJ/BlWn0hQDrlPV7/P5JEk333yzxo0bV+929f3AEM4+1adTp07au3dvnfX79u2TJHXu3Dlg/ZEjR5SYmFhnoAoAgBMYkAJAFBgyZIhSU1P1+uuvKz8/379+w4YNGjVqlDp27Ki1a9c2OLnNsWPH9Oqrr+pf//qXEhMTdc0116hv37567bXX/Nk6SaqpqVFBQYEefvjhoG3q1auXpBOz7X5zYJWWlqakpCR98sknDcampaUpMTFRO3bsqPPe9u3b5XK5AibaaQqfffaZunXr5n+9c+dO+Xw+/7M8m7pNaWlpOuOMM+T1ehucidhEqAPpAQMG6N1331V5eXnAxEYbNmzwv/9Nu3btUu/evcNuJwAAjcEluwAQBdxut6666qqAezu3bdumESNGKC4uTm+99ZbOOeecBuM/++wztWvXTmeddZZ/Xd++ffXpp58GbPfnP/9Z5eXlQR8tI0nZ2dmSpA8//DBgvcvl0siRI/XGG2/UeU86kelzu90aPny4XnvttYBHlpSUlGjVqlW69NJL68wKG66lS5cGvH7iiSckyf+M1qZuk9vt1qhRo/SHP/yh3sH5gQMHDPZCatu2rSSptLS0Udv/4Ac/kNfr1a9//Wv/Oo/Ho2eeeUZZWVl1BtmbN2/WkCFDjNoGAECoyJACQJS45pprNGbMGB05ckSWZSk3N1eHDh3Sbbfdpi1btmjLli11Yjp27Kjhw4fr2LFjdQZTSUlJOnToUMC6119/Xf37969zH2N9unfvrgsuuEBvv/22fvSjHwW89/DDD2vt2rW6/PLLNXnyZPXu3Vv79u3Tiy++qL/97W9KSUnRgw8+qHXr1unSSy/VbbfdppiYGD311FPyeDx69NFHDY7Qqe3atUvXXHON8vLyVFRUpN/+9re68cYb1b9/f/82Td2mhQsX6t1331VWVpYmTZqkPn366PDhw9q8ebPefvttHT58OOQyBw4cKEm6//77NWbMGMXGxurqq6/2D1S/LSsrS9ddd51mzJih/fv3q0ePHnr22Wf1xRdfaPny5QHbbtq0SYcPH9a1114bcrsAADDBgBQAosTw4cPlcrn0pz/9Sampqf4Jdp588kk9+eST9caMHTtWw4cPV7t27erM0lpeXl7nftM33nhDN998c6Pb9KMf/UizZs1SVVVVwD2HXbp00YYNGzRz5kw9//zzKi8vV5cuXXTllVcqMTFRknT++efrr3/9q2bMmKEFCxbI5/MpKytLv/3tb+s877MpvPDCC5o1a5amT5+umJgYTZkyRYsWLQrYpqnblJ6ero0bN2revHl6+eWX9eSTT+rMM8/U+eef739WaaguvvhizZ8/X8uWLVNBQYF8Pp927drV4IBUkp577jnNnDlT//u//6sjR46oX79++uMf/1jnWa0vvviizj77bF1xxRVGbQMAIFSWbTpLAgCg2eXl5SklJUWrV68OKe7YsWPq0KGDdu3apS5dukiSvve972ns2LH+e0g//vhj9evXTxs2bNDgwYMbVW5ZWZm6d++uRx99NODxKy3JnDlzNHfuXB04cKDOjLz4D4/Ho65du2r69Om68847I90cAEArwT2kABBFrrnmGhUUFKimpiakuHbt2unaa6/V7NmzVVVVpT/+8Y/66KOPAi7NfP3115WRkaGLL7640eUmJydr6tSpWrRokX9WWUSnZ555RrGxsXWegwoAgJPIkAJAFDl+/Li++uorde3aVTExod11ceDAAY0bN06FhYU666yz9OSTTwbM/lpSUiKv11vnMSDRjgwpAAAtF/eQAkAUSUhIqPMc0sZKS0vTmjVrGnw/PT3dtFkAAABGou6S3b/85S+6+uqr1blzZ1mWpVdffTVoTGFhoS666CLFx8erR48eWrlyZZ1tli5dqq5duyohIUFZWVnauHFj0zceANDs5syZI9u2yY4CANACRd2AtKKiQv3796/zPLmG7Nq1SyNGjND3vvc9bd26VXfddZd+/OMf66233vJv88ILLyg/P1+zZ8/W5s2b1b9/f+Xm5mr//v1O7QYAAAAAtHpRfQ+pZVl65ZVXNHLkyAa3mTZtmt58882Ah5KPGTNGpaWlKigokHTiGW0XX3yxfvnLX0qSfD6fMjMz9ZOf/ETTp093dB8AAAAAoLU67e8hLSoqCpi0Q5Jyc3N11113SZKqq6u1adMmzZgxw/++y+VSTk6OioqKGizX4/HI4/H4X/t8Ph0+fFhnnnmmLMtq2p0AAAAAThO2bevo0aPq3LmzXK7ouGDz+PHjqq6udryeuLg4JSQkOF5PS3LaD0iLi4vrTNSRnp6u8vJyVVVV6ciRI/J6vfVus3379gbLXbBggebOnetImwEAAIDT3Z49e3TWWWdFuhlBHT9+XN3Oaafi/V7H68rIyNCuXbta1aD0tB+QOmXGjBnKz8/3vy4rK9PZZ5+tS3WVYhQbwZYBAAAALVetavQ3rdEZZ5wR6aY0SnV1tYr3e/Xlpq5KOsO5jG75UZ/OGfiFqqurGZCeTjIyMlRSUhKwrqSkRElJSWrTpo3cbrfcbne922RkZDRYbnx8vOLj4+usj1GsYiwGpAAAAEC9/j2DTbTd5tbuDEvtznCuzT5F1/FoKtFx0XYYsrOztX79+oB169atU3Z2tqQT12kPHDgwYBufz6f169f7twEAAAAANL2oy5AeO3ZMO3fu9L/etWuXtm7dqg4dOujss8/WjBkztHfvXj333HOSpFtuuUW//OUvNXXqVP3oRz/SO++8o9///vd68803/WXk5+dr3LhxGjRokAYPHqwlS5aooqJCEyZMaPb9AwAAANDyeG2fvA4+n8Rr+5wrvAWLugHphx9+qO9973v+1yfv4xw3bpxWrlypffv2affu3f73u3XrpjfffFM//elP9Ytf/EJnnXWWfvOb3yg3N9e/zejRo3XgwAHNmjVLxcXFGjBggAoKCupMdAQAAAAAaDpR/RzSlqS8vFzJyckaqmu5hxQAAABoQK1do0K9prKyMiUlJUW6OUGd/Du/eMfZjk9qlNFzd9Qcl6Zy2t9DCgAAAABomaLukl0AAAAAaG4++eTkXZ7Olt5ykSEFAAAAAEQEGVIAAAAARtxpaSHH2L5q6aADjXGY17bldXD6HSfLbsnIkAIAAAAAIoIMKQAAAAAE4ZMtn5zLYjpZdktGhhQAAAAAEBFkSAEAAAAgCJ9secmQNjkypAAAAACAiCBDCgAAAABBcA+pM8iQAgAAAAAiggwpAAAAAATBc0idQYYUAAAAABARZEgBAAAAmOnYIfQYr0c62PRNcZrv34uT5bdGZEgBAAAAABFBhhQAAAAAgvA6/BxSJ8tuyciQAgAAAAAiggwpAAAAAAThtU8sTpbfGpEhBQAAAABEBBlSAAAAAAiCWXadQYYUAAAAABARZEgBAAAAIAifLHllOVp+a0SGFAAAAAAQEWRIAQAAABipSU0MOaa2NjpzYj77xOJk+a1RdJ4NAAAAAICoR4YUAAAAAILwOnwPqZNlt2RkSAEAAAAAEUGGFAAAAACCIEPqDDKkAAAAAICIIEMKAAAAAEH4bEs+28HnkDpYdktGhhQAAAAAEBFkSAEAAAAgCO4hdQYZUgAAAABARJAhBQAAAGDkeIe4kGNqa3wOtMR5XrnkdTCf53Ws5JaNDCkAAAAAICLIkAIAAABAELbDs+zazLILAAAAAEDzIUMKAAAAAEEwy64zGJACAAAAQBBe2yWv7eCkRrZjRbdoXLILAAAAAIgIMqQAAAAAEIRPlnwO5vN8ap0pUjKkAAAAAICIIEMKAAAAAEEwqZEzGJACAAAAMHI8JfQLLr3VXKSJ/2BACgAAAABBOD/LLveQAgAAAADQbMiQAgAAAEAQJ2bZde4+TyfLbsnIkAIAAAAAIoIMKQAAAAAE4ZNLXp5D2uTIkAIAAAAAIoIMKQAAAAAEwSy7ziBDCgAAAACIiKgckC5dulRdu3ZVQkKCsrKytHHjxga3HTp0qCzLqrOMGDHCv8348ePrvJ+Xl9ccuwIAAAAgCvjkcnxpjaLukt0XXnhB+fn5WrZsmbKysrRkyRLl5uZqx44d6tixY53tX375ZVVXV/tfHzp0SP3799d1110XsF1eXp6eeeYZ/+v4+HjndgIAAAA4DVSnhP6oEq+ndT7eBPWLugHp4sWLNWnSJE2YMEGStGzZMr355ptasWKFpk+fXmf7Dh06BLxevXq1EhMT6wxI4+PjlZGR4VzDAQAAAEQtr23Jazs3mHay7JYsqvLC1dXV2rRpk3JycvzrXC6XcnJyVFRU1Kgyli9frjFjxqht27YB6wsLC9WxY0f17NlTt956qw4dOnTKcjwej8rLywMWAAAAAEDjRdWA9ODBg/J6vUpPTw9Yn56eruLi4qDxGzdu1CeffKIf//jHAevz8vL03HPPaf369XrkkUf05z//WVdeeaW8Xm+DZS1YsEDJycn+JTMz02ynAAAAALR43n8/h9TJpTWKukt2w7F8+XL17dtXgwcPDlg/ZswY///37dtX/fr107nnnqvCwkINGzas3rJmzJih/Px8/+vy8nIGpQAAAAAQgqgahqempsrtdqukpCRgfUlJSdD7PysqKrR69WpNnDgxaD3du3dXamqqdu7c2eA28fHxSkpKClgAAAAAnJ58tsvxpTWKqr2Oi4vTwIEDtX79ev86n8+n9evXKzs7+5SxL774ojwej26++eag9Xz11Vc6dOiQOnXqFHabAQAAAAD1i7pLdvPz8zVu3DgNGjRIgwcP1pIlS1RRUeGfdXfs2LHq0qWLFixYEBC3fPlyjRw5UmeeeWbA+mPHjmnu3LkaNWqUMjIy9Pnnn2vq1Knq0aOHcnNzm22/AAAAALRcTt/n6ZXtWNktWdQNSEePHq0DBw5o1qxZKi4u1oABA1RQUOCf6Gj37t1yuQJPlB07duhvf/ub1q5dW6c8t9utjz76SM8++6xKS0vVuXNnDR8+XPPnz+dZpAAAAADgoKgbkErSlClTNGXKlHrfKywsrLOuZ8+esu36f3Fo06aN3nrrraZsHgAAAIDTjE/OPivU51jJLVtUDkgBAAAARF51cugx3uNN3w5ELwakAAAAABCETy75HLyH1MmyW7LWudcAAAAAgIgjQwoAAAAAQXhtl7wOPivUybJbsta51wAAAACAiCNDCgAAAABB+GTJJydn2XWu7JaMDCkAAAAAICLIkAIAAABAENxD6ozWudcAAAAAgIgjQwoAAAAAQXjlktfBfJ6TZbdkDEgBAAAAGKlO9oUc44sPPQanLwakAAAAABCEz7bksx2cZdfBsluy1pkXBgAAAABEHBlSAAAAAAjC5/A9pL5WmitsnXsNAAAAAIg4MqQAAAAAEITPdsnn4LNCnSy7JWudew0AAAAAiDgypAAAAAAQhFeWvHJuJlwny27JyJACAAAAQBRaunSpunbtqoSEBGVlZWnjxo2n3H7JkiXq2bOn2rRpo8zMTP30pz/V8ePHm6m19SNDCgAAAABBtLR7SF944QXl5+dr2bJlysrK0pIlS5Sbm6sdO3aoY8eOdbZftWqVpk+frhUrVmjIkCH65z//qfHjx8uyLC1evLipdiNkZEgBAAAAIMosXrxYkyZN0oQJE9SnTx8tW7ZMiYmJWrFiRb3bv/fee/rOd76jG2+8UV27dtXw4cN1ww03BM2qOo0BKQAAAAAjvuTa0Jek2kg324hX/7mP1JnlhPLy8oDF4/HUaUt1dbU2bdqknJwc/zqXy6WcnBwVFRXV2/4hQ4Zo06ZN/gHov/71L61Zs0ZXXXVVUx+qkDAgBQAAAIAWIjMzU8nJyf5lwYIFdbY5ePCgvF6v0tPTA9anp6eruLi43nJvvPFGzZs3T5deeqliY2N17rnnaujQobrvvvsc2Y/G4h5SAAAAAAiiue4h3bNnj5KSkvzr4+Pjm6T8wsJCPfzww3ryySeVlZWlnTt36s4779T8+fM1c+bMJqnDBANSAAAAAGghkpKSAgak9UlNTZXb7VZJSUnA+pKSEmVkZNQbM3PmTP3whz/Uj3/8Y0lS3759VVFRocmTJ+v++++XyxWZi2e5ZBcAAAAAgvDaLseXxoqLi9PAgQO1fv16/zqfz6f169crOzu73pjKyso6g0632y1Jsm3b4Ig0DTKkAAAAABCELUs+WY6WH4r8/HyNGzdOgwYN0uDBg7VkyRJVVFRowoQJkqSxY8eqS5cu/ntQr776ai1evFgXXnih/5LdmTNn6uqrr/YPTCOBASkAAAAARJnRo0frwIEDmjVrloqLizVgwAAVFBT4JzravXt3QEb0gQcekGVZeuCBB7R3716lpaXp6quv1kMPPRSpXZAkWXYk87OnkfLyciUnJ2uorlWMFRvp5gAAAACO++eKQSHH+KqO66vb5qisrCzovZItwcm/8+99b4Ti2zn3d77nWI0WDXkzao5LU+EeUgAAAABARHDJLgAAAAAE4bMt+Wzn7iF1suyWjAEpAAAAACNtko6HHOONCT0Gpy8GpAAAAAAQhFcueR2849HJsluy1rnXAAAAAICII0MKAAAAAEFwD6kzyJACAAAAACKCDCkAAAAABOGTSz4H83lOlt2Stc69BgAAAABEHBlSAAAAAAjCa1vyOnifp5Nlt2RkSAEAAAAAEUGGFAAAAACCYJZdZzAgBQAAAGAkPfloyDG1MR7tdKAtiE4MSAEAAAAgCNt2yWc7d8ej7WDZLVnr3GsAAAAAQMSRIQUAAACAILyy5JWDs+w6WHZLRoYUAAAAABARZEgBAAAAIAif7exMuD7bsaJbNDKkAAAAAICIIEMKAAAAAEH4HJ5l18myW7LWudcAAAAAgIgjQwoAAAAAQfhkyefgTLhOlt2SRWWGdOnSperatasSEhKUlZWljRs3NrjtypUrZVlWwJKQkBCwjW3bmjVrljp16qQ2bdooJydHn332mdO7AQAAAES1rmccDnk5u92RSDcbLUjUDUhfeOEF5efna/bs2dq8ebP69++v3Nxc7d+/v8GYpKQk7du3z798+eWXAe8/+uijevzxx7Vs2TJt2LBBbdu2VW5uro4fP+707gAAAACIAl7bcnxpjaJuQLp48WJNmjRJEyZMUJ8+fbRs2TIlJiZqxYoVDcZYlqWMjAz/kp6e7n/Ptm0tWbJEDzzwgK699lr169dPzz33nL7++mu9+uqrzbBHAAAAANA6RdWAtLq6Wps2bVJOTo5/ncvlUk5OjoqKihqMO3bsmM455xxlZmbq2muv1aeffup/b9euXSouLg4oMzk5WVlZWacsEwAAAEDrcXKWXSeX1iiq9vrgwYPyer0BGU5JSk9PV3Fxcb0xPXv21IoVK/Taa6/pt7/9rXw+n4YMGaKvvvpKkvxxoZQpSR6PR+Xl5QELAAAAAKDxTvtZdrOzs5Wdne1/PWTIEPXu3VtPPfWU5s+fb1zuggULNHfu3KZoIgAAAIAWzidLPgfv82SW3SiQmpoqt9utkpKSgPUlJSXKyMhoVBmxsbG68MILtXPnTknyx4Va5owZM1RWVuZf9uzZE8quAAAAAECrF1UD0ri4OA0cOFDr16/3r/P5fFq/fn1AFvRUvF6vPv74Y3Xq1EmS1K1bN2VkZASUWV5erg0bNpyyzPj4eCUlJQUsAAAAAE5P9r+fQ+rUYrfSDGnUXbKbn5+vcePGadCgQRo8eLCWLFmiiooKTZgwQZI0duxYdenSRQsWLJAkzZs3T5dccol69Oih0tJSLVq0SF9++aV+/OMfSzoxA+9dd92lBx98UOedd566deummTNnqnPnzho5cmSkdhMAAAAATntRNyAdPXq0Dhw4oFmzZqm4uFgDBgxQQUGBf1Ki3bt3y+X6T+L3yJEjmjRpkoqLi9W+fXsNHDhQ7733nvr06ePfZurUqaqoqNDkyZNVWlqqSy+9VAUFBUpISGj2/QMAAADQ8vhsh+8hbaXPIbVs27Yj3YjTQXl5uZKTkzVU1yrGio10cwAAAADHXf5RVcgxx4/V6KHstSorK4uK295O/p0/6u1xim0b51g9NRXV+kPOs1FzXJpK1GVIAQAAAKC5Of2sUJ5DCgAAAABAMyJDCgAAAABBcA+pM8iQAgAAAAAiggwpAAAAAARx8nmhTpbfGpEhBQAAAABEBBlSAAAAAAiCe0idQYYUAAAAABARZEgBAAAAIAgypM5gQAoAAADASJ82e0OOqaz1OtASRCsGpAAAAAAQBBlSZ3APKQAAAAAgIsiQAgAAAEAQZEidQYYUAAAAABARZEgBAAAAIAhbkk/OZTFtx0pu2ciQAgAAAAAiggwpAAAAAATBPaTOYEAKAAAAAEEwIHUGl+wCAAAAACKCDCkAAAAAI33iSkKOORbnc6AlziND6gwypAAAAACAiCBDCgAAAABBkCF1BhlSAAAAAEBEkCEFAAAAgCBs25LtYBbTybJbMjKkAAAAAICIIEMKAAAAAEH4ZMknB+8hdbDslowMKQAAAAAgIsiQAgAAAEAQzLLrDDKkAAAAAICIIEMKAAAAwMh/xbYNOaY81udAS5zHLLvOIEMKAAAAAIgIMqQAAAAAEAT3kDqDDCkAAAAAICLIkAIAAABAENxD6gwypAAAAACAiCBDCgAAAABB2A7fQ0qGFAAAAACAZkSGFAAAAACCsCXZtrPlt0ZkSAEAAAAAEUGGtIm5k86Q24prtvps059pfL6mbUhjRFFbzY9rBH7bss2Ojx1FbXX058gGuJOSjOKMzx2JfhlEWMfWRDh9xPRcN64uetoaif4MwDnHfMcNYiLw710T8MmSJQefQ+pg2S0ZGVIAAAAAQESQIQUAAACAIHgOqTPIkAIAAAAAIoIMKQAAAAAE4bMtWQ5mMZ18xmlLRoYUAAAAABARZEgBAAAAIAjbdvg5pK10EnIypAAAAACAiCBDCgAAAABBMMuuM8iQAgAAAAAiggxpU0vtILnjQwqxfOYXjFs+n1mg1zAunIvbvV6zKk33MazjatZW032UZNxe27BOK4zP0rRO83MgjPPO8LO0UjuYxZmer5J5/zLtz2HVafhZhtFWy27m77sw+rPdzMc1mr57pAicrwAc848ad8gxFTXRmQkkQ+oMMqQAAAAAgIggQwoAAAAAQfAcUmdEZYZ06dKl6tq1qxISEpSVlaWNGzc2uO3TTz+tyy67TO3bt1f79u2Vk5NTZ/vx48fLsqyAJS8vz+ndAAAAAIBWLeoGpC+88ILy8/M1e/Zsbd68Wf3791dubq72799f7/aFhYW64YYb9O6776qoqEiZmZkaPny49u7dG7BdXl6e9u3b519+97vfNcfuAAAAAIgCJ59D6uTSGkXdgHTx4sWaNGmSJkyYoD59+mjZsmVKTEzUihUr6t3++eef12233aYBAwaoV69e+s1vfiOfz6f169cHbBcfH6+MjAz/0r59++bYHQAAAABotaJqQFpdXa1NmzYpJyfHv87lciknJ0dFRUWNKqOyslI1NTXq0CFwBs3CwkJ17NhRPXv21K233qpDhw41adsBAAAARK8TWUzLwSXSexgZUTWp0cGDB+X1epWenh6wPj09Xdu3b29UGdOmTVPnzp0DBrV5eXn6/ve/r27duunzzz/XfffdpyuvvFJFRUVyu+ufytrj8cjj8fhfl5eXG+wRAAAAALReUTUgDdfChQu1evVqFRYWKiEhwb9+zJgx/v/v27ev+vXrp3PPPVeFhYUaNmxYvWUtWLBAc+fOdbzNAAAAACKP55A6I6ou2U1NTZXb7VZJSUnA+pKSEmVkZJwy9rHHHtPChQu1du1a9evX75Tbdu/eXampqdq5c2eD28yYMUNlZWX+Zc+ePY3fEQAAAABAdGVI4+LiNHDgQK1fv14jR46UJP8ERVOmTGkw7tFHH9VDDz2kt956S4MGDQpaz1dffaVDhw6pU6dODW4THx+v+Pj4Ouu9Z7aTFZNQT0TDLG8YF4zX+ozCLK/XMC6ctprVKeO2mh0bSeZt9ZnXadfWGsVZhnGmx1WSVGP4C55lGGe6j5Jsw4/Ee+YZZoFhnAOWYX9WGP3S9LvAtI+E1S9N22paZxjnnXFsJNpaU2Mea8A2Pc8BtEj/8HQJOaaqulZS9CVz7H8vTpYfqqVLl2rRokUqLi5W//799cQTT2jw4MENbl9aWqr7779fL7/8sg4fPqxzzjlHS5Ys0VVXXWXe8DBF1YBUkvLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIksaOHasuXbpowYIFkqRHHnlEs2bN0qpVq9S1a1cVFxdLktq1a6d27drp2LFjmjt3rkaNGqWMjAx9/vnnmjp1qnr06KHc3NyI7ScAAAAANOTk4zCXLVumrKwsLVmyRLm5udqxY4c6duxYZ/vq6mr9f//f/6eOHTvqpZdeUpcuXfTll18qJSWl+Rv/DVE3IB09erQOHDigWbNmqbi4WAMGDFBBQYF/oqPdu3fL5frPlci/+tWvVF1drR/84AcB5cyePVtz5syR2+3WRx99pGeffValpaXq3Lmzhg8frvnz59ebAQUAAADQ+rS0e0i/+ThMSVq2bJnefPNNrVixQtOnT6+z/YoVK3T48GG99957io2NlSR17do17HaHK+oGpJI0ZcqUBi/RLSwsDHj9xRdfnLKsNm3a6K233mqilgEAAACAuW8/vaO+WwVPPg5zxowZ/nXBHof5+uuvKzs7W7fffrtee+01paWl6cYbb9S0adMafLJIc4iqSY0AAAAAICLsZlgkZWZmKjk52b+cvBXxm071OMyTtyh+27/+9S+99NJL8nq9WrNmjWbOnKmf/exnevDBB40PSVOIygwpAAAAAJyO9uzZo6SkJP/rprqN0OfzqWPHjvr1r38tt9utgQMHau/evVq0aJFmz57dJHWYYEAKAAAAAME4fA+p/l12UlJSwIC0PiaPw+zUqZNiY2MDLs/t3bu3iouLVV1drbi4uDB3wAyX7AIAAABAFPnm4zBPOvk4zOzs7HpjvvOd72jnzp3yfeMRdf/85z/VqVOniA1GJQakAAAAABCUbTu/hCI/P19PP/20nn32WW3btk233nprncdhfnPSo1tvvVWHDx/WnXfeqX/+859688039fDDD+v2229vysMUMi7ZBQAAAIAoE+rjMDMzM/XWW2/ppz/9qfr166cuXbrozjvv1LRp0yK1C5IYkDY5T/t4eWNDu/HY8ob4c8g3uGrMYl01vuAb1cPymsWFU6dqDdta4zWrT5JVU2sW6A2nTsPptmvNurFdXWNWnyTTuyeMz/QwzjtZZq31nJlgFGd8nsv8uyCsOg37iel3QVj90vC7QIb92bhPSrJM+2WNWb+0XOb3NBn3S7vaLM4K4+Is2/z8AeCMbVWdQ47xVJn/DRJJLe05pFJoj8OUpOzsbL3//vsh1+MkBqQAAAAAEIxt+Scecqz8Voh7SAEAAAAAEUGGFAAAAACCMJl4KNTyWyMypAAAAACAiCBDCgAAAADB2ApjJrhGlt8KkSEFAAAAAEQEGVIAAAAACKIlPvbldECGFAAAAAAQEWRIAQAAAKAxWul9nk5iQNrEPClu1ca5Q4px1ZrX564x6xWuasO4WvNe6Kr2mcXVmMZ5jeIkyaoJ7TP0x3nM65TL7IIFy/AECueiENOzwPIZRrrNj6tt2L88KWbngKvW/MITVzP35xN1mu2n27BfWoZxkuSqNjsPTPuzqg3jJFmeGrM4y6xnhvP3kXG/9Br2S9M4Sbb56QPAIZ8fSw05pqai2oGWIFoxIAUAAACAILiH1BncQwoAAAAAiAgypAAAAAAQDM8hdQQZUgAAAABARJAhBQAAAICgLIU3LWRjym99yJACAAAAACKCDCkAAAAABMM9pI4gQwoAAAAAiAgypAAAAAAQDBlSRzAgbWKeFJfccaElnl015mefu9rs5mfTOt3VEWhrtVki3+0xvwDAuE5XGBcduA1vZLfM4sK5bd7y+Yzi7Fq3WYXhHFdDnmTTvmV+ZE37l6vGuEq5Dc91X7XZOeDymMVJkjvWrK0uw+8CK4zzztXM/dKyzb+bba/XLNBt2J8BnFa+OpoScoy3wtP0DUHUYkAKAAAAAMHY1onFyfJbIe4hBQAAAABEBBlSAAAAAAjCtk8sTpbfGpEhBQAAAABEBBlSAAAAAAiGWXYdQYYUAAAAABARZEgBAAAAIBhm2XUEGVIAAAAAQESQIQUAAACAICz7xOJk+a0RA9ImVp0kueNDi3HVmKfn3R6zOFe1aX1htLXarJfFeMzibHcYbY0xjLXM63QZhrpM5wgPY25xq9ZrFhhjGFdteMJKkmV2IYgnxewDMe2TkuSqNq3T/LN0G9YZY/hd4I417yP2cbPP0m3YuVxh9GdTpv3Z8vmM67RiDP8UqK4xCrMN+ySAlulwWduQY3yVbgdagmjFgBQAAAAAgmGWXUfwMyUAAAAAICLIkAIAAABAMMyy6wgypAAAAACAiCBDCgAAAADBcA+pI8iQAgAAAAAiggwpAAAAAARDhtQRZEgBAAAAABFBhhQAAAAAgiFD6ggGpE2sJsmWNyG0s8lVbV6f+7jZ9NDuarM4X6xR2IlYj1mc7TZsq9u8V9tuw7gwZus27YyW4W5a3jC+9Wq9ZnXW1JjV5zb8QMJQk2R2fLwe85PAbdhHfHHmdfqOm+2nL8aszhi3+YU5tsusrab9Mpx/IC3bsK0+w1oN+6QkWaaxpv3S1TofawCcrmrK4kOO8VW10pEX6sWAFAAAAACC4TmkjuAeUgAAAABARJAhBQAAAIAgLNv8VqnGlt8akSEFAAAAAEQEGVIAAAAACIZZdnXkyBGtXbtWe/fulSR17txZubm5at++vXGZUZkhXbp0qbp27aqEhARlZWVp48aNp9z+xRdfVK9evZSQkKC+fftqzZo1Ae/btq1Zs2apU6dOatOmjXJycvTZZ585uQsAAAAAEDWWL1+u7OxsbdiwQT6fTz6fTxs2bNCQIUO0fPly43JDGpDu2bPHuKKm8sILLyg/P1+zZ8/W5s2b1b9/f+Xm5mr//v31bv/ee+/phhtu0MSJE7VlyxaNHDlSI0eO1CeffOLf5tFHH9Xjjz+uZcuWacOGDWrbtq1yc3N1/Pjx5totAAAAAGixHn30UW3atEmLFy/WPffco3vuuUc///nP9cEHH+iRRx4xLjekAWmvXr00a9YsVVZWGlcYrsWLF2vSpEmaMGGC+vTpo2XLlikxMVErVqyod/tf/OIXysvL07333qvevXtr/vz5uuiii/TLX/5S0ons6JIlS/TAAw/o2muvVb9+/fTcc8/p66+/1quvvtqMewYAAAAALZNlWTp69Gid9UePHpVlmT+yJqQB6bp16/TWW2/pvPPO08qVK40rNVVdXa1NmzYpJyfHv87lciknJ0dFRUX1xhQVFQVsL0m5ubn+7Xft2qXi4uKAbZKTk5WVldVgmQAAAABaF0v/mWnXkSXSOxjEY489pssvv1yjRo3SHXfcoTvuuEPf//73NXToUP3sZz8zLjekSY2GDBmiDRs26LnnntP999+vJ554QkuWLNFll11m3IBQHDx4UF6vV+np6QHr09PTtX379npjiouL692+uLjY//7JdQ1tUx+PxyOPx+N/XV5e3vgdAQAAAIAo8Pjjj+sHP/iB/vu//1tXXnmlNm7cqK+//lrSiUmNBg8eLLfbbVy+0Sy7Y8eO1Q9+8AMtXLhQV155pfLy8rRo0SJ169bNuCHRZsGCBZo7d26d9bVJXrnaeEMqy/KYzy3lizWM85j9BuMLY15mO8asTttlNuWY7Qrnd6bmn+/L8prtp+Uz+wKwasy/OGQYa5l+WYX1WZqpSfYZxbmqwujPcYZxhn0rnFjb8KO0w+laxrtpVmk4z4OzfIb9udbsvLNiw/hyrq4xi3NH5byIAJpYTFno/yD4jofxN0gk2daJxcnyW6C77rpLv/jFL1RYWKjMzExlZ2dLOnH16scffxzWYFQK86/u4cOH68c//rFeeeUV9enTR1OnTtWxY8fCatCppKamyu12q6SkJGB9SUmJMjIy6o3JyMg45fYn/xtKmZI0Y8YMlZWV+ZeWMOETAAAAAIfYzbC0UDk5Obr88ssDxjxHjhzR4MGDwy47pAHpsmXLNHHiRPXr10/JyckaNmyY/vrXv+qWW27RL37xC3344Yfq06ePPvzww7AbVp+4uDgNHDhQ69ev96/z+Xxav369f6T+bdnZ2QHbSyfuhT25fbdu3ZSRkRGwTXl5uTZs2NBgmZIUHx+vpKSkgAUAAAAATieWZWn+/Pm66aab6gxKbTv8UXRI1/g89NBDysrK0tixY3XJJZdo4MCBatOmjf/9yZMn6+GHH9b48eMDHqvSlPLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIOnE5cZcuXbRgwQJJ0p133qnLL79cP/vZzzRixAitXr1aH374oX79619LOnGA77rrLj344IM677zz1K1bN82cOVOdO3fWyJEjHdkHAAAAAFHG6SxmC86QStL8+fNlWZYuv/xy/fnPf1ZcXFxYs+ueFNKAtDGXpU6cOFEzZ840blAwo0eP1oEDBzRr1iwVFxdrwIABKigo8E9KtHv3brlc/0n8DhkyRKtWrdIDDzyg++67T+edd55effVVXXDBBf5tpk6dqoqKCk2ePFmlpaW69NJLVVBQoISEBMf2AwAAAABaum9mQefNm+cflK5evbpJyg9jFoT6dezYUe+8805TFxtgypQpmjJlSr3vFRYW1ll33XXX6brrrmuwPMuyNG/ePM2bN6+pmggAAADgNHLy8SxOlt8SPfTQQ2rbtq3/9cmJXa+++uomKb/JB6QnR8wAAAAAgOg2Y8aMOuvmzp2r2NhYPfbYY2GXz5ztAAAAABBMK55ltz4PPPCASktLwy6HASkAAAAAICKa/JJdAAAAADjttPJZdp3CgLSJxSZ55EoMbfrjmuPmH0NtrNsozq4yS47bbvOpnW2XWaxtOp10OHeG22Z1Wrb5RQeuWrP2+rxmcVaN2bkjSe5qw9gYwzjL/LhahuedkmqMwrwx5v3ZjjXtl8ZVmvdp04+kCaaHD5nhV4HlM2+rVWt2gKw4sw/Tqg6jj7ibt1+G84iAVvq3GtCixZWF3qe9ngj8W4AWiwEpAAAAAATRWmfZdRr3kAIAAAAAIoIMKQAAAAAEY1vGt3U1uvxWiAwpAAAAACAiyJACAAAAQDDMsusIMqQAAAAAgIggQwoAAAAAQTDLrjPIkAIAAAAAIoIMKQAAAAAEwz2kjmBA2sTaJ1XK3dYbUszRuHjj+o7HxBnFed1mH73tchvFnYg1jTSdAjuMqbNts28Ey2dep+U1O0BWrVlbXdVhfJYxhm11GZ4EruafBr1dUpVRXFWMeX+ujTHsl+4wPkvL8DOxIjA1veF0+JbPrDqXYZ+UJFe8Wb+0a8zqtGPDOAfchv3ZMK6V/r0FnLbiykKP8VY3fTsQvRiQAgAAAEAwDt9D2lp/seMeUgAAAABARJAhBQAAAIBguIfUEWRIAQAAAAARQYYUAAAAAIIhQ+oIMqQAAAAAgIggQwoAAAAAQVgOz7Lr6Ay+LRgZUgAAAABARDAgBQAAAABEBJfsNrHOZ5Qptm1cSDEHY9oZ13fY7TOKq3THG8V5LaOwEyx3GMEG1dnmjbV8ZrGuWvNrLVy1ZnW6Y81+V/IZxkmSK9bss7TdhnW6mvfckaROZxw1ijvo9hrXecydYBRX7QrtO+ebzPu04WcZRr+U2dedLMOPpNawT0qSq8bs+LgM+6XLtG9JUoxh/3Ibxrn4LRw4ncSXhv7l7K02/ELHaYkBKQAAAAAEwyy7juBnSgAAAABARJAhBQAAAIAgmGXXGWRIAQAAAAARQYYUAAAAABqjlWYxnUSGFAAAAAAQEWRIAQAAACAYZtl1BBlSAAAAAEBEkCEFAAAAgCCYZdcZDEibWLe2hxTfLjakmAR3rXF9bpfPKO6w4Rl/zCjqBOO9tN1GYZbXtELJ8llGca4as7gTsWZx3nizOt3Hzdtquw0vrnCZxpm3VZZZnWe3O2IUZ9onT8Sa9cvyMP4F8yjeKM5rWKVlm1+YY3kN+2WtaX82P67eOMN+GWt2fOxYs+9JSbLdht+xlmG/NI0D0CIlHAn9D67amjD+SMNph0t2AQAAACAYuxmWEC1dulRdu3ZVQkKCsrKytHHjxkbFrV69WpZlaeTIkaFX2sQYkAIAAABAlHnhhReUn5+v2bNna/Pmzerfv79yc3O1f//+U8Z98cUXuueee3TZZZc1U0tPjQEpAAAAAARx8h5SJ5dQLF68WJMmTdKECRPUp08fLVu2TImJiVqxYkWDMV6vVzfddJPmzp2r7t27h3lEmgYDUgAAAACIItXV1dq0aZNycnL861wul3JyclRUVNRg3Lx589SxY0dNnDixOZrZKExqBAAAAADBNNNzSMvLywNWx8fHKz4+cBLCgwcPyuv1Kj09PWB9enq6tm/fXm/xf/vb37R8+XJt3bq1yZrcFMiQAgAAAEALkZmZqeTkZP+yYMGCsMs8evSofvjDH+rpp59WampqE7Sy6ZAhBQAAAIBgmilDumfPHiUlJflXfzs7Kkmpqalyu90qKSkJWF9SUqKMjIw623/++ef64osvdPXVV/vX+XwnHlUXExOjHTt26Nxzz22KvQgZGVIAAAAAaCGSkpIClvoGpHFxcRo4cKDWr1/vX+fz+bR+/XplZ2fX2b5Xr176+OOPtXXrVv9yzTXX6Hvf+562bt2qzMxMR/fpVMiQAgAAAEAQJjPhhlp+KPLz8zVu3DgNGjRIgwcP1pIlS1RRUaEJEyZIksaOHasuXbpowYIFSkhI0AUXXBAQn5KSIkl11jc3BqRNrGebfWrTJrTDmuCqMa7PZfkM45y83qB+R23LKM7rM4yrdRvFSZKr1jDO/KOUu9oszhdrdnx8ceYXSNgxhrExZp+JZZntYzh6JJ76GV4NiXV5jeuMRL8sM+yX1b44oziv1/yztAwPravWrE5XtXlbfR6zz9IXZ9ifY837s9ttuJ9uLrICIMUf9oQc464NPQZ1jR49WgcOHNCsWbNUXFysAQMGqKCgwD/R0e7du+VytfzvagakAAAAABBMM91DGoopU6ZoypQp9b5XWFh4ytiVK1eGXqEDWv6QGQAAAABwWiJDCgAAAADBtMAM6emAASkAAAAABNHSJjU6XXDJLgAAAAAgIsiQAgAAAEAwXLLrCDKkAAAAAICIiKoB6eHDh3XTTTcpKSlJKSkpmjhxoo4dO3bK7X/yk5+oZ8+eatOmjc4++2zdcccdKisrC9jOsqw6y+rVq53eHQAAAABR4uQ9pE4urVFUXbJ70003ad++fVq3bp1qamo0YcIETZ48WatWrap3+6+//lpff/21HnvsMfXp00dffvmlbrnlFn399dd66aWXArZ95plnlJeX53+dkpLi5K4AAAAAQKsXNQPSbdu2qaCgQB988IEGDRokSXriiSd01VVX6bHHHlPnzp3rxFxwwQX6wx/+4H997rnn6qGHHtLNN9+s2tpaxcT8Z/dTUlKUkZERdjt7xe1T2/jQEs+xljfsepuLz7aMY2t9Zgn5Cq9ZnT7DOEny1pq11VUdRp1xZrHeWLP6fLHmbbXdZsfHdpnFWW63UVw4eifsNYpzWb4mbklw4fRLr88sttxr9lnWGvYtSfLWmJ0Hrmqz+tweszjJvD+b9kvbHUZ/jjH8TCzDOg2/BwC0TO6DR0OOsb1hfMFGEveQOiJq/lUoKipSSkqKfzAqSTk5OXK5XNqwYUOjyykrK1NSUlLAYFSSbr/9dqWmpmrw4MFasWKFbPvUZ4TH41F5eXnAAgAAAABovKjJkBYXF6tjx44B62JiYtShQwcVFxc3qoyDBw9q/vz5mjx5csD6efPm6YorrlBiYqLWrl2r2267TceOHdMdd9zRYFkLFizQ3LlzQ98RAAAAANGHDKkjIp4hnT59er2TCn1z2b59e9j1lJeXa8SIEerTp4/mzJkT8N7MmTP1ne98RxdeeKGmTZumqVOnatGiRacsb8aMGSorK/Mve/bsCbuNAAAAANCaRDxDevfdd2v8+PGn3KZ79+7KyMjQ/v37A9bX1tbq8OHDQe/9PHr0qPLy8nTGGWfolVdeUWzsqW+6y8rK0vz58+XxeBQfH1/vNvHx8Q2+BwAAAOD0Yv17cbL81ijiA9K0tDSlpaUF3S47O1ulpaXatGmTBg4cKEl655135PP5lJWV1WBceXm5cnNzFR8fr9dff10JCQlB69q6davat2/PgBMAAAAAHBTxAWlj9e7dW3l5eZo0aZKWLVummpoaTZkyRWPGjPHPsLt3714NGzZMzz33nAYPHqzy8nINHz5clZWV+u1vfxsw+VBaWprcbrfeeOMNlZSU6JJLLlFCQoLWrVunhx9+WPfcc08kdxcAAABAS8I9pI6ImgGpJD3//POaMmWKhg0bJpfLpVGjRunxxx/3v19TU6MdO3aosrJSkrR582b/DLw9evQIKGvXrl3q2rWrYmNjtXTpUv30pz+Vbdvq0aOHFi9erEmTJjXfjgEAAABAKxRVA9IOHTpo1apVDb7ftWvXgMe1DB06NOjjW/Ly8pSXl9dkbQQAAABw+rHsE4uT5bdGEZ9lFwAAAADQOkVVhjQa9Iz1Kik2tJ833NpnXJ/XNpuPy2ub/RZR63MbxUmSp9bsdKutNavzeI357y1ej9lxdcebz4/mNZxDy3fqSaMbjosxb6sv1vDYug3rtMKYd85lFtsr7oB5nYZ8hv2yJox+6fUZ1uk1q/NYrXm/9NWafZa+arM6vWH05+bul8Z9UpJchrGGcVY4/RlAy7P/UOgxdnXTt6M5cA+pI8iQAgAAAAAiggwpAAAAADRGK81iOokMKQAAAAAgIsiQAgAAAEAQzLLrDDKkAAAAAICIIEMKAAAAAMEwy64jyJACAAAAACKCDCkAAAAABME9pM4gQwoAAAAAiAgypE2snStB7VyhjfPPcFUY15fkPm4Ul+iqNopr464xipOk+Jhaozi322cUZ7nNf2ay3YZxrjDqdFmGcYYVmlUXXqwVTqXN6wzDnynbujzGdbYz7M9t3Gb9WZJi3d5mjXOF0S+9hv3LvD+bxYUTaxwXRtcyjTX9zgJwevGWl4ceY5v/PRlR3EPqCDKkAAAAAICIIEMKAAAAAEFwD6kzyJACAAAAACKCDCkAAAAABMM9pI4gQwoAAAAAiAgypAAAAAAQDBlSR5AhBQAAAABEBBlSAAAAAAiCWXadQYYUAAAAABARZEib2M6aCrWrCW2cv706zbi+zzzpRnFfHu9gFLevKskoTpKOVLYxijteFWcUZx93G8VJUsxxyyjO5TGLkyR3tVmcq8Ywrtb8ZzhXrc8s0GcYZ4fxk6HPLHZHjdm5/pknwyhOkv5VZfZd8HVVsnGdh6oSjeKOVSYYxXmrzPul67jZb6huw/7s9hiFSQqjX9aYna+uGsO+Jcky7COW16xOXzj9GQAiiXtIHUGGFAAAAAAQEWRIAQAAACAIy7ZlOXiVh5Nlt2RkSAEAAAAAEUGGFAAAAACC4R5SR5AhBQAAAABEBBlSAAAAAAiC55A6gwwpAAAAACAiyJACAAAAQDDcQ+oIMqQAAAAAgIggQ9rEPvVkKDHOHVLMv6rTjOvbVWUWu7cyxSjuYGVbozhJOlYZbxTnrTQ7TV1V5r+3uD2GcdXGVcrtMftZzF1jFucyjJMkq9Ys1vIa1unzmcWF4VNPF6O4L46nGte5p6q9UVxxRZJxneWVCUZxNVWxRnFWVWjfj9/kPm4Zxbki0Z8NY121hnGmfUuSVWvYvyLQLwEgkriH1BlkSAEAAAAAEUGGFAAAAACC4R5SR5AhBQAAAABEBBlSAAAAAAiCe0idQYYUAAAAABARZEgBAAAAIBjuIXUEA1IAAAAAaITWelmtk7hkFwAAAAAQEWRIAQAAACAY2z6xOFl+K8SAtInt8GQoITY2pJg9x9sb17e3MsUobn9FO6O48ooEozhJqqmMM4qzqswS+e4qyyhOktzHzWLdHuMq5ao2i3NXm315WbXmX3qW12cWWOs1CrN9hvWF4bOqdKO4rwz7pCTtrzzDKK60so1xnVUV8UZxdqXbKC7GsD9Lzd8v3R7zPuKqMYt1V5ud61ZNGH2k1jDWZ3h8ItCfAQAtFwNSAAAAAAiCx744g3tIAQAAAAARQYYUAAAAAILhsS+OIEMKAAAAAIgIMqQAAAAAEITlO7E4WX5rRIYUAAAAABARZEgBAAAAIBjuIXUEGVIAAAAAQESQIQUAAACAIHgOqTMYkDaxXZWpinPFhRSzrzLJuL5DlW2N4sorEoziqitC27dvsirdRnHuSrNEfkyVZRQnSe7jhnEe828Sd7VZrKvGLM5dbX7nvFVrGOszjQvjG9o2q/OLY2caxR2oMuuTklRa0cYorqoi3rhOu9LsnwHTfukOo1/GGPdLszhXtVmc1Pz92fKa9xHLuF8axtmt9C8uAEC9ouqS3cOHD+umm25SUlKSUlJSNHHiRB07duyUMUOHDpVlWQHLLbfcErDN7t27NWLECCUmJqpjx4669957VVtb6+SuAAAAAIgmtu380gpFVYb0pptu0r59+7Ru3TrV1NRowoQJmjx5slatWnXKuEmTJmnevHn+14mJif7/93q9GjFihDIyMvTee+9p3759Gjt2rGJjY/Xwww87ti8AAAAA0NpFzYB027ZtKigo0AcffKBBgwZJkp544gldddVVeuyxx9S5c+cGYxMTE5WRkVHve2vXrtU//vEPvf3220pPT9eAAQM0f/58TZs2TXPmzFFcnPklqgAAAABOD9xD6oyouWS3qKhIKSkp/sGoJOXk5MjlcmnDhg2njH3++eeVmpqqCy64QDNmzFBlZWVAuX379lV6erp/XW5ursrLy/Xpp582WKbH41F5eXnAAgAAAABovKjJkBYXF6tjx44B62JiYtShQwcVFxc3GHfjjTfqnHPOUefOnfXRRx9p2rRp2rFjh15++WV/ud8cjEryvz5VuQsWLNDcuXNNdwcAAABANOE5pI6I+IB0+vTpeuSRR065zbZt24zLnzx5sv//+/btq06dOmnYsGH6/PPPde655xqXO2PGDOXn5/tfl5eXKzMz07g8AAAAAGhtIj4gvfvuuzV+/PhTbtO9e3dlZGRo//79Aetra2t1+PDhBu8PrU9WVpYkaefOnTr33HOVkZGhjRs3BmxTUlIiSacsNz4+XvHx5o9aAAAAABA9uIfUGREfkKalpSktLS3odtnZ2SotLdWmTZs0cOBASdI777wjn8/nH2Q2xtatWyVJnTp18pf70EMPaf/+/f5LgtetW6ekpCT16dMnxL0BAAAAADRW1Exq1Lt3b+Xl5WnSpEnauHGj/v73v2vKlCkaM2aMf4bdvXv3qlevXv6M5+eff6758+dr06ZN+uKLL/T6669r7Nix+u53v6t+/fpJkoYPH64+ffrohz/8of7v//5Pb731lh544AHdfvvtZEABAAAAnMBzSB0R8QxpKJ5//nlNmTJFw4YNk8vl0qhRo/T444/736+pqdGOHTv8s+jGxcXp7bff1pIlS1RRUaHMzEyNGjVKDzzwgD/G7Xbrj3/8o2699VZlZ2erbdu2GjduXMBzS0Ox+1h7xdihDWRLK9sY1SVJFZVmg+aaylijOKvSbRQnSe5Ks98/Yqoss/qOG4WFFev2hFFntdmXkMswzqrxGcWdiPWaxXnN6rRt87aa2ns02SjuWJX5D1kew35pV5p/lbsrDPtlZRT1y+NmfSTGY/6HgXF/NuyXLsM+KUmqNYz1hlEnAAD/FlUD0g4dOmjVqlUNvt+1a1fZ3/hlITMzU3/+85+DlnvOOedozZo1TdJGAAAAAKcf7iF1RtRcsgsAAAAAOL1EVYYUAAAAACKC55A6ggwpAAAAACAiyJACAAAAQBDcQ+oMMqQAAAAAgIggQwoAAAAAwfjsE4uT5bdCZEgBAAAAABFBhhQAAAAAgmGWXUcwIG1i+8vbyV2bEFKM53iscX2+SrOP0KpyG8XFVFlGcZLkNoyNqTKrzzROkmKOm30jmMZJkrvaLNZd7TOKc9WaxUmSZRrr9ZrF2c3/DV1anmgUV1tl/rVq2i/dVeYXu5j2E+P+XGlWnyTFVBn2S49p3zI/71ym/dIwzqox7FuS5DOr0zbtl4b1AQBOTwxIAQAAACAISw7Psutc0S0a95ACAAAAACKCDCkAAAAABGPbzt5GFIFblFoCMqQAAAAAEIWWLl2qrl27KiEhQVlZWdq4cWOD2z799NO67LLL1L59e7Vv3145OTmn3L65MCAFAAAAgCAs2/klFC+88ILy8/M1e/Zsbd68Wf3791dubq72799f7/aFhYW64YYb9O6776qoqEiZmZkaPny49u7d2wRHxxwDUgAAAACIMosXL9akSZM0YcIE9enTR8uWLVNiYqJWrFhR7/bPP/+8brvtNg0YMEC9evXSb37zG/l8Pq1fv76ZWx6IASkAAAAABGM3wyKpvLw8YPF4PHWaUl1drU2bNiknJ8e/zuVyKScnR0VFRY3ancrKStXU1KhDhw4hHYamxoAUAAAAAFqIzMxMJScn+5cFCxbU2ebgwYPyer1KT08PWJ+enq7i4uJG1TNt2jR17tw5YFAbCcyyCwAAAABBWLYty8GZcE+WvWfPHiUlJfnXx8fHN3ldCxcu1OrVq1VYWKiEhIQmLz8UDEib2PGjCXLVhvihHjdPVLurzGLdx80eveuuMn9kr/u4WVyMYZy7yvwLI+a4WazbY16n+7jPKM5VbRZn1XiN4iRJtYaxXrO2ymveVttn9pnUlscZxbnC6c9R1C+N+3MY/dL8O8SwPxv2SUlye5q3X1q15m21DPuzbdgv7Vb6WAMAaKykpKSAAWl9UlNT5Xa7VVJSErC+pKREGRkZp4x97LHHtHDhQr399tvq169f2O0NF5fsAgAAAEAwvmZYGikuLk4DBw4MmJDo5ARF2dnZDcY9+uijmj9/vgoKCjRo0KDGV+ggMqQAAAAAEGXy8/M1btw4DRo0SIMHD9aSJUtUUVGhCRMmSJLGjh2rLl26+O9BfeSRRzRr1iytWrVKXbt29d9r2q5dO7Vr1y5i+8GAFAAAAACCaK57SBtr9OjROnDggGbNmqXi4mINGDBABQUF/omOdu/eLZfrPxfE/upXv1J1dbV+8IMfBJQze/ZszZkzJ+z2m2JACgAAAABRaMqUKZoyZUq97xUWFga8/uKLL5xvkAEGpAAAAAAQzDeeFepY+a0QkxoBAAAAACKCDCkAAAAABGPbJxYny2+FGJACAAAAQBCWfWJxsvzWiEt2AQAAAAARQYa0ibnKYuTyhHZY3dWWcX3u42axLo9ZfTHHzeIkyX3c7Gcft2GdMR7zn5lijNsawhONvx3rMYt1eWqN4iyP1yhOkuQ1jDWN8zX/T4YxZW6jOLdh35Ikl8esP4dTp2mfNu3Ppn0rnFjj7x7DPilJrmqzc900TjVm3wOSpFrDOlvppWUAWjEu2XUEGVIAAAAAQESQIQUAAACAICzficXJ8lsjMqQAAAAAgIggQwoAAAAAwXAPqSPIkAIAAAAAIoIMKQAAAAAEY/97cbL8VogMKQAAAAAgIsiQAgAAAEAQlm3LcvA+TyfLbsnIkAIAAAAAIoIMKQAAAAAEwyy7jmBA2sRiy1xye0JLPLuqzetzG8a6PaZx5h2lueuM8Zg/XdhlWudxbxh1msW6qs3irJpao7hwYm2f2WdiR+ALOrbcMooz7ZNSlPXLarM6w2lrzHGz88dtHBdOfzbrI1aNYX+uNW+rvIaxpnG+1vkHFwCgfgxIAQAAACAYW5J5vqNx5bdC3EMKAAAAAIgIMqQAAAAAEASz7DqDDCkAAAAAICLIkAIAAABAMLYcnmXXuaJbMjKkAAAAAICIIEMKAAAAAMHwHFJHkCEFAAAAAEQEGVIAAAAACMYnyXK4/FaIAWkTiyuX3J7QYlw15vW5q81S+67q5q0vnFi3xzCu2rxXuz1eozgrjDpdx2sN6zSMqzGLkyTVmh0f1RrW6TWsT5Jss88krtysunD6SFT1y2buzydizc4Dl2G/dHnM+4hl2FZVG/6DEEZ/tg37s+01/L4z7JMAgNMTA1IAAAAACILnkDojqu4hPXz4sG666SYlJSUpJSVFEydO1LFjxxrc/osvvpBlWfUuL774on+7+t5fvXp1c+wSAAAAALRaUZUhvemmm7Rv3z6tW7dONTU1mjBhgiZPnqxVq1bVu31mZqb27dsXsO7Xv/61Fi1apCuvvDJg/TPPPKO8vDz/65SUlCZvPwAAAIAoxSy7joiaAem2bdtUUFCgDz74QIMGDZIkPfHEE7rqqqv02GOPqXPnznVi3G63MjIyAta98soruv7669WuXbuA9SkpKXW2BQAAAAA4J2ou2S0qKlJKSop/MCpJOTk5crlc2rBhQ6PK2LRpk7Zu3aqJEyfWee/2229XamqqBg8erBUrVshupb9QAAAAAKjHyQypk0srFDUZ0uLiYnXs2DFgXUxMjDp06KDi4uJGlbF8+XL17t1bQ4YMCVg/b948XXHFFUpMTNTatWt122236dixY7rjjjsaLMvj8cjj+c90uuXlhlNyAgAAAEArFfEM6fTp0xuceOjksn379rDrqaqq0qpVq+rNjs6cOVPf+c53dOGFF2ratGmaOnWqFi1adMryFixYoOTkZP+SmZkZdhsBAAAAtFBkSB0R8Qzp3XffrfHjx59ym+7duysjI0P79+8PWF9bW6vDhw836t7Pl156SZWVlRo7dmzQbbOysjR//nx5PB7Fx8fXu82MGTOUn5/vf11eXs6gFAAAAABCEPEBaVpamtLS0oJul52drdLSUm3atEkDBw6UJL3zzjvy+XzKysoKGr98+XJdc801japr69atat++fYODUUmKj48/5fsAAAAATiM+SZbD5bdCER+QNlbv3r2Vl5enSZMmadmyZaqpqdGUKVM0ZswY/wy7e/fu1bBhw/Tcc89p8ODB/tidO3fqL3/5i9asWVOn3DfeeEMlJSW65JJLlJCQoHXr1unhhx/WPffcY9TOuHJb7rjQ0u3uGvP0vKvGLM60Tld1OG0162XuarM4l2HciVivUZxVXWtcp1VjVqeqDU+CGvO22rWGsV7DffQ1/zd0fKnZuR5efzbsl7Vh1GnYpyPSLw37iOUxi3OF0Z9N+6Vl3J8N4yTJFz39EgBw+omaAakkPf/885oyZYqGDRsml8ulUaNG6fHHH/e/X1NTox07dqiysjIgbsWKFTrrrLM0fPjwOmXGxsZq6dKl+ulPfyrbttWjRw8tXrxYkyZNcnx/AAAAAEQHy7ZlOXifp5Nlt2RRNSDt0KGDVq1a1eD7Xbt2rfdxLQ8//LAefvjhemPy8vKUl5fXZG0EAAAAADROVA1IAQAAACAinJ4Jt5VmSCP+2BcAAAAAQOtEhhQAAAAAgvHZkuVgFtNHhhQAAAAAgGZDhhQAAAAAguEeUkeQIQUAAAAARAQZUgAAAAAIyuEMqVpnhpQBaRNLKPUqJtYbUoxVa16fq9bsxHXV+AzrM4uTJMu0TsM4qya0z6FJYmvMP0zLNNYwzq6pMatPkmoN6/SafZb1PV/YaQmlZueAZdgnpXD6ZfPXadpHTL8HwqrTG0X9udqsX9qGfVKS+X4aHle7lU7aAQCoHwNSAAAAAAiGe0gdwT2kAAAAAICIIEMKAAAAAMH4bDl6n2crvaWBDCkAAAAAICLIkAIAAABAMLbvxOJk+a0QGVIAAAAAQESQIQUAAACAYJhl1xFkSAEAAAAAEUGGFAAAAACCYZZdRzAgbWLxpTWKiXGHFGPVmp98ltfs5mertnnjJEmmdXq9hvUZxkmyTGPDqFO1tUZhtnFbzeo7UadhbE2NWZzpOSAZX/4Sd6TaKM7ymvdnl2n/CqNfmvYv4++CSPTLCHyHGPcR477V/P3ZNvz3p7VO2gHgNMAlu47gkl0AAAAAQESQIQUAAACAYGw5nCF1ruiWjAwpAAAAACAiyJACAAAAQDDcQ+oIMqQAAAAAgIggQwoAAAAAwfh8khycKdzXOmchJ0MKAAAAAIgIMqQAAAAAEAz3kDqCDCkAAAAAICLIkDax2ENVinGHeP13ONeLew1jDeu0TOsLo07jffR6zeIk2cZtNa+zuffTDqutpnWa7aPta/5fDGMPVZgFRqCP0C+DMD1/fNHTR8I6rqaxduu81wlAK0aG1BFkSAEAAAAAEUGGFAAAAACC8dmSHMxiRuCKsJaADCkAAAAAICLIkAIAAABAELbtk+3g/fNOlt2SkSEFAAAAAEQEGVIAAAAACMa2nb3Pk1l2AQAAAABoPmRIAQAAACAY2+FZdsmQAgAAAADQfMiQNrUDRyRXXPPVZzobl+EvMHY4182bttWwTjucX5l8zXtcw6nTeD8j8Fkanz+RmHXuYKlZXDhtpV8GqbOZ+6VpfYpAvwzjvGv2ftlKMwAATgM+n2Q5+DcJs+wCAAAAANB8yJACAAAAQDDcQ+oIMqQAAAAAgIggQwoAAAAAQdg+n2wH7yG1uYcUAAAAAIDmQ4YUAAAAAILhHlJHkCEFAAAAAEQEGVIAAAAACMZnSxYZ0qZGhhQAAAAAEBFkSJuY9+BBWVZspJsBIEzeAwci3QQAANCS2LYkB2fCJUMKAAAAAEDzIUMKAAAAAEHYPlu2g/eQ2mRIAQAAAABoPmRIAQAAACAY2ydn7yF1sOwWLKoypA899JCGDBmixMREpaSkNCrGtm3NmjVLnTp1Ups2bZSTk6PPPvssYJvDhw/rpptuUlJSklJSUjRx4kQdO3bMgT0AAAAAgKaxdOlSde3aVQkJCcrKytLGjRtPuf2LL76oXr16KSEhQX379tWaNWuaqaUNi6oBaXV1ta677jrdeuutjY559NFH9fjjj2vZsmXasGGD2rZtq9zcXB0/fty/zU033aRPP/1U69at0x//+Ef95S9/0eTJk53YBQAAAABRyPbZji+heOGFF5Sfn6/Zs2dr8+bN6t+/v3Jzc7V///56t3/vvfd0ww03aOLEidqyZYtGjhypkSNH6pNPPmmKw2PMsqPw7tmVK1fqrrvuUmlp6Sm3s21bnTt31t1336177rlHklRWVqb09HStXLlSY8aM0bZt29SnTx998MEHGjRokCSpoKBAV111lb766it17ty5UW0qLy9XcnKyhupaxfDYFwAAAKBetXaNCvWaysrKlJSUFOnmBOX/O9/6f47+nV9r16jQfqXRxyUrK0sXX3yxfvnLX0qSfD6fMjMz9ZOf/ETTp0+vs/3o0aNVUVGhP/7xj/51l1xyiQYMGKBly5Y13Y6EKKoypKHatWuXiouLlZOT41+XnJysrKwsFRUVSZKKioqUkpLiH4xKUk5OjlwulzZs2NDsbQYAAADQAtk+55dGqq6u1qZNmwLGOS6XSzk5Of5xzrcVFRUFbC9Jubm5DW7fXE7rSY2Ki4slSenp6QHr09PT/e8VFxerY8eOAe/HxMSoQ4cO/m3q4/F45PF4/K/LysokSbWqkaIu5wwAAAA0j1rVSIq+x5w4/Xf+yeNSXl4esD4+Pl7x8fEB6w4ePCiv11vvOGf79u31ll9cXHzKcVGkRHxAOn36dD3yyCOn3Gbbtm3q1atXM7WocRYsWKC5c+fWWf83Rf7GYAAAAKClO3TokJKTkyPdjKDi4uKUkZGhvxU7/3d+u3btlJmZGbBu9uzZmjNnjuN1R0rEB6R33323xo8ff8ptunfvblR2RkaGJKmkpESdOnXyry8pKdGAAQP823z7xt/a2lodPnzYH1+fGTNmKD8/3/+6tLRU55xzjnbv3h0VHSsalZeXKzMzU3v27ImK+w2iFce5eXCcmwfH2Xkc4+bBcW4eHOfmUVZWprPPPlsdOnSIdFMaJSEhQbt27VJ1dbXjddm2LcuyAtZ9OzsqSampqXK73SopKQlYX1JS0uAYJiMjI6Ttm0vEB6RpaWlKS0tzpOxu3bopIyND69ev9w9Ay8vLtWHDBv9MvdnZ2SotLdWmTZs0cOBASdI777wjn8+nrKysBsuuL3UunbhHlS8wZyUlJXGMmwHHuXlwnJsHx9l5HOPmwXFuHhzn5uFyRc90NgkJCUpISIh0M/zi4uI0cOBArV+/XiNHjpR0YlKj9evXa8qUKfXGZGdna/369brrrrv869atW6fs7OxmaHHDoucskLR7925t3bpVu3fvltfr1datW7V169aAZ4b26tVLr7zyiiTJsizdddddevDBB/X666/r448/1tixY9W5c2f/B9e7d2/l5eVp0qRJ2rhxo/7+979rypQpGjNmTKNn2AUAAACA5pSfn6+nn35azz77rLZt26Zbb71VFRUVmjBhgiRp7NixmjFjhn/7O++8UwUFBfrZz36m7du3a86cOfrwww8bHMA2l4hnSEMxa9YsPfvss/7XF154oSTp3Xff1dChQyVJO3bs8E8wJElTp05VRUWFJk+erNLSUl166aUqKCgI+IXj+eef15QpUzRs2DC5XC6NGjVKjz/+ePPsFAAAAACEaPTo0Tpw4IBmzZql4uJiDRgwQAUFBf6Ji3bv3h2QhR4yZIhWrVqlBx54QPfdd5/OO+88vfrqq7rgggsitQuSomxAunLlSq1cufKU23x7ti7LsjRv3jzNmzevwZgOHTpo1apVYbUtPj5es2fPrvcyXjQNjnHz4Dg3D45z8+A4O49j3Dw4zs2D49w8OM5NZ8qUKQ1mOAsLC+usu+6663Tdddc53KrQWHa0zbcMAAAAADgtRNU9pAAAAACA0wcDUgAAAABARDAgBQAAAABEBAPSRnrooYc0ZMgQJSYmKiUlpVExtm1r1qxZ6tSpk9q0aaOcnBx99tlnAdscPnxYN910k5KSkpSSkqKJEycGPMamtQn1eHzxxReyLKve5cUXX/RvV9/7q1evbo5danFMzrmhQ4fWOX633HJLwDa7d+/WiBEjlJiYqI4dO+ree+9VbW2tk7vSooV6nA8fPqyf/OQn6tmzp9q0aaOzzz5bd9xxR8Cs4RLn8tKlS9W1a1clJCQoKytLGzduPOX2L774onr16qWEhAT17dtXa9asCXi/Md/TrVEox/npp5/WZZddpvbt26t9+/bKycmps/348ePrnLd5eXlO70aLF8pxXrlyZZ1j+O1nInI+1xXKMa7v3zrLsjRixAj/NpzLdf3lL3/R1Vdfrc6dO8uyLL366qtBYwoLC3XRRRcpPj5ePXr0qHfS0lC/7xHFbDTKrFmz7MWLF9v5+fl2cnJyo2IWLlxoJycn26+++qr9f//3f/Y111xjd+vWza6qqvJvk5eXZ/fv399+//337b/+9a92jx497BtuuMGhvWj5Qj0etbW19r59+wKWuXPn2u3atbOPHj3q306S/cwzzwRs983PoTUxOecuv/xye9KkSQHHr6yszP9+bW2tfcEFF9g5OTn2li1b7DVr1tipqan2jBkznN6dFivU4/zxxx/b3//+9+3XX3/d3rlzp71+/Xr7vPPOs0eNGhWwXWs+l1evXm3HxcXZK1assD/99FN70qRJdkpKil1SUlLv9n//+99tt9ttP/roo/Y//vEP+4EHHrBjY2Ptjz/+2L9NY76nW5tQj/ONN95oL1261N6yZYu9bds2e/z48XZycrL91Vdf+bcZN26cnZeXF3DeHj58uLl2qUUK9Tg/88wzdlJSUsAxLC4uDtiG8zlQqMf40KFDAcf3k08+sd1ut/3MM8/4t+FcrmvNmjX2/fffb7/88su2JPuVV1455fb/+te/7MTERDs/P9/+xz/+YT/xxBO22+22CwoK/NuE+tkhujEgDdEzzzzTqAGpz+ezMzIy7EWLFvnXlZaW2vHx8fbvfvc727Zt+x//+Ictyf7ggw/82/zpT3+yLcuy9+7d2+Rtb+ma6ngMGDDA/tGPfhSwrjFfkK2B6TG+/PLL7TvvvLPB99esWWO7XK6AP45+9atf2UlJSbbH42mStkeTpjqXf//739txcXF2TU2Nf11rPpcHDx5s33777f7XXq/X7ty5s71gwYJ6t7/++uvtESNGBKzLysqy/+d//se27cZ9T7dGoR7nb6utrbXPOOMM+9lnn/WvGzdunH3ttdc2dVOjWqjHOdjfH5zPdYV7Lv/85z+3zzjjDPvYsWP+dZzLp9aYf6OmTp1qn3/++QHrRo8ebefm5vpfh/vZIbpwya5Ddu3apeLiYuXk5PjXJScnKysrS0VFRZKkoqIipaSkaNCgQf5tcnJy5HK5tGHDhmZvc6Q1xfHYtGmTtm7dqokTJ9Z57/bbb1dqaqoGDx6sFStW1HlmbWsQzjF+/vnnlZqaqgsuuEAzZsxQZWVlQLl9+/b1P4hZknJzc1VeXq5PP/206XekhWuqvl1WVqakpCTFxAQ+Mro1nsvV1dXatGlTwHeqy+VSTk6O/zv124qKigK2l06clye3b8z3dGtjcpy/rbKyUjU1NerQoUPA+sLCQnXs2FE9e/bUrbfeqkOHDjVp26OJ6XE+duyYzjnnHGVmZuraa68N+H7lfA7UFOfy8uXLNWbMGLVt2zZgPedyeIJ9NzfFZ4foEhN8E5goLi6WpIA/0E++PvlecXGxOnbsGPB+TEyMOnTo4N+mNWmK47F8+XL17t1bQ4YMCVg/b948XXHFFUpMTNTatWt122236dixY7rjjjuarP3RwPQY33jjjTrnnHPUuXNnffTRR5o2bZp27Nihl19+2V9ufef6yfdam6Y4lw8ePKj58+dr8uTJAetb67l88OBBeb3ees+z7du31xvT0Hn5ze/gk+sa2qa1MTnO3zZt2jR17tw54I/JvLw8ff/731e3bt30+eef67777tOVV16poqIiud3uJt2HaGBynHv27KkVK1aoX79+Kisr02OPPaYhQ4bo008/1VlnncX5/C3hnssbN27UJ598ouXLlwes51wOX0PfzeXl5aqqqtKRI0fC/h5CdGnVA9Lp06frkUceOeU227ZtU69evZqpRaenxh7ncFVVVWnVqlWaOXNmnfe+ue7CCy9URUWFFi1adNr8Ee/0Mf7moKhv377q1KmThg0bps8//1znnnuucbnRprnO5fLyco0YMUJ9+vTRnDlzAt473c9lRLeFCxdq9erVKiwsDJhwZ8yYMf7/79u3r/r166dzzz1XhYWFGjZsWCSaGnWys7OVnZ3tfz1kyBD17t1bTz31lObPnx/Blp2eli9frr59+2rw4MEB6zmXgabXqgekd999t8aPH3/Kbbp3725UdkZGhiSppKREnTp18q8vKSnRgAED/Nvs378/IK62tlaHDx/2x58OGnucwz0eL730kiorKzV27Nig22ZlZWn+/PnyeDyKj48Pun1L11zH+KSsrCxJ0s6dO3XuuecqIyOjzux3JSUlksS5/G+NPc5Hjx5VXl6ezjjjDL3yyiuKjY095fan27nckNTUVLndbv95dVJJSUmDxzQjI+OU2zfme7q1MTnOJz322GNauHCh3n77bfXr1++U23bv3l2pqanauXNnq/wjPpzjfFJsbKwuvPBC7dy5UxLn87eFc4wrKiq0evVqzZs3L2g9rf1cNtHQd3NSUpLatGkjt9sddv9AdGnV95CmpaWpV69ep1zi4uKMyu7WrZsyMjK0fv16/7ry8nJt2LDB/wtndna2SktLtWnTJv8277zzjnw+n/8P/tNBY49zuMdj+fLluuaaa5SWlhZ0261bt6p9+/anzR/wzXWMT9q6dask+f/oyc7O1scffxwwCFu3bp2SkpLUp0+fptnJFsDp41xeXq7hw4crLi5Or7/+ep1HOtTndDuXGxIXF6eBAwcGfKf6fD6tX78+IGv0TdnZ2QHbSyfOy5PbN+Z7urUxOc6S9Oijj2r+/PkqKCgIuHe6IV999ZUOHToUMHBqTUyP8zd5vV59/PHH/mPI+RwonGP84osvyuPx6Oabbw5aT2s/l00E+25uiv6BKBPpWZWixZdffmlv2bLF/0iRLVu22Fu2bAl4tEjPnj3tl19+2f964cKFdkpKiv3aa6/ZH330kX3ttdfW+9iXCy+80N6wYYP9t7/9zT7vvPNa/WNfTnU8vvrqK7tnz572hg0bAuI+++wz27Is+09/+lOdMl9//XX76aeftj/++GP7s88+s5988kk7MTHRnjVrluP70xKFeox37txpz5s3z/7www/tXbt22a+99prdvXt3+7vf/a4/5uRjX4YPH25v3brVLigosNPS0lr9Y19COc5lZWV2VlaW3bdvX3vnzp0BjxSora21bZtzefXq1XZ8fLy9cuVK+x//+Ic9efJkOyUlxT+78w9/+EN7+vTp/u3//ve/2zExMfZjjz1mb9u2zZ49e3a9j30J9j3d2oR6nBcuXGjHxcXZL730UsB5e/Lfx6NHj9r33HOPXVRUZO/atct+++237Ysuusg+77zz7OPHj0dkH1uCUI/z3Llz7bfeesv+/PPP7U2bNtljxoyxExIS7E8//dS/DedzoFCP8UmXXnqpPXr06DrrOZfrd/ToUf/fxZLsxYsX21u2bLG//PJL27Zte/r06fYPf/hD//YnH/ty77332tu2bbOXLl1a72NfTvXZ4fTCgLSRxo0bZ0uqs7z77rv+bfTv5wOe5PP57JkzZ9rp6el2fHy8PWzYMHvHjh0B5R46dMi+4YYb7Hbt2tlJSUn2hAkTAga5rU2w47Fr1646x922bXvGjBl2Zmam7fV665T5pz/9yR4wYIDdrl07u23btnb//v3tZcuW1bttaxDqMd69e7f93e9+1+7QoYMdHx9v9+jRw7733nsDnkNq27b9xRdf2FdeeaXdpk0bOzU11b777rsDHlfS2oR6nN999916v2Mk2bt27bJtm3PZtm37iSeesM8++2w7Li7OHjx4sP3+++/737v88svtcePGBWz/+9//3v6v//ovOy4uzj7//PPtN998M+D9xnxPt0ahHOdzzjmn3vN29uzZtm3bdmVlpT18+HA7LS3Njo2Ntc855xx70qRJ/GFph3ac77rrLv+26enp9lVXXWVv3rw5oDzO57pC/c7Yvn27Lcleu3ZtnbI4l+vX0L9fJ4/tuHHj7Msvv7xOzIABA+y4uDi7e/fuAX8/n3Sqzw6nF8u2W8HzAgAAAAAALU6rvocUAAAAABA5DEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQAAAAARwYAUAAAAABARDEgBAAAAABHBgBQAAAAAEBEMSAEAAAAAEcGAFAAAAAAQEQxIAQCnld/97ndq06aN9u3b5183YcIE9evXT2VlZRFsGQAA+DbLtm070o0AAKCp2LatAQMG6Lvf/a6eeOIJzZ49WytWrND777+vLl26RLp5AADgG2Ii3QAAAJqSZVl66KGH9IMf/EAZGRl64okn9Ne//pXBKAAALRAZUgDAaemiiy7Sp59+qrVr1+ryyy+PdHMAAEA9uIcUAHDaKSgo0Pbt2+X1epWenh7p5gAAgAaQIQUAnFY2b96soUOH6qmnntLKlSuVlJSkF198MdLNAgAA9eAeUgDAaeOLL77QiBEjdN999+mGG25Q9+7dlZ2drc2bN+uiiy6KdPMAAMC3kCEFAJwWDh8+rCFDhmjo0KFatmyZf/2IESPk9XpVUFAQwdYBAID6MCAFAAAAAEQEkxoBAAAAACKCASkAAAAAICIYkAIAAAAAIoIBKQAAAAAgIhiQAgAAAAAiggEpAAAAACAiGJACAAAAACKCASkAAAAAICIYkAIAAAAAIoIBKQAAAAAgIhiQAgAAAAAiggEpAAAAACAi/n/YLoSXB7KSSgAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 226 + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "code", - "outputs": [ - { - "ename": "IndexError", - "evalue": "index 36 is out of bounds for axis 0 with size 16", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mIndexError\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[147], line 18\u001B[0m\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m k \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(num_pnts):\n\u001B[1;32m 17\u001B[0m xy \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor([X[i, k], Y[i, k]], dtype\u001B[38;5;241m=\u001B[39mtorch\u001B[38;5;241m.\u001B[39mfloat32)\n\u001B[0;32m---> 18\u001B[0m out \u001B[38;5;241m=\u001B[39m \u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxy\u001B[49m\u001B[43m)\u001B[49m\u001B[43m[\u001B[49m\u001B[43midx\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 19\u001B[0m Z[i, k] \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor(out)\n\u001B[1;32m 21\u001B[0m \u001B[38;5;66;03m# Convert tensors to numpy arrays for plotting\u001B[39;00m\n", - "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/numpy/tensor.py:186\u001B[0m, in \u001B[0;36mtensor.__getitem__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 185\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m__getitem__\u001B[39m(\u001B[38;5;28mself\u001B[39m, \u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[0;32m--> 186\u001B[0m item \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43msuper\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[38;5;21;43m__getitem__\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 188\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(item, tensor):\n\u001B[1;32m 189\u001B[0m item \u001B[38;5;241m=\u001B[39m tensor(item, requires_grad\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrequires_grad)\n", - "\u001B[0;31mIndexError\u001B[0m: index 36 is out of bounds for axis 0 with size 16" - ] - } - ], - "execution_count": 147, "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -707,7 +556,9 @@ "# Show the plot\n", "plt.show()" ], - "id": "566631b16fa32330" + "id": "566631b16fa32330", + "outputs": [], + "execution_count": null }, { "cell_type": "code", From 496d3900edbd08d1aa2aad351b73a26ed11ac13a Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 15:58:18 +0200 Subject: [PATCH 04/21] feat (zkron): zkron works --- scratch/scratch5.ipynb | 407 ++++++++++++++++++++++++++++++++++------- 1 file changed, 341 insertions(+), 66 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 086251b..13577ff 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T00:53:51.617885Z", - "start_time": "2024-06-09T00:53:51.610904Z" + "end_time": "2024-06-09T13:57:37.058555Z", + "start_time": "2024-06-09T13:57:37.055651Z" } }, "source": [ @@ -21,32 +21,58 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 367 + "execution_count": 496 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T00:53:51.624135Z", - "start_time": "2024-06-09T00:53:51.619703Z" + "end_time": "2024-06-09T13:57:37.076765Z", + "start_time": "2024-06-09T13:57:37.071536Z" } }, "source": [ "import torch\n", "import tntorch as tn\n", + "\n", "def zkron(t1, t2):\n", " c1 = t1.cores\n", " c2 = t2.cores\n", - " c3 = []\n", - " \n", - " for i in range(len(c1)):\n", - " c3.append(c1[0])\n", - " c3.append(c2[0])\n", + " c3 = [torch.kron(a, b) for a, b in zip(c1, c2)]\n", " \n", " t3 = tn.Tensor(c3)\n", " return t3\n", "\n", + "def zkron2(tleft, tright):\n", + " # assuming same length of left and right\n", + " coresleft = tleft.cores\n", + " coresright = tright.cores\n", + " coresout = []\n", + " \n", + " for i in range(len(coresleft)):\n", + " coreleft = coresleft[i]\n", + " coreright = coresright[i]\n", + " rankleft1 = coreleft.shape[0]\n", + " rankleft2 = coreleft.shape[-1]\n", + " rankright1 = coreright.shape[0]\n", + " rankright2 = coreright.shape[-1]\n", + " \n", + " site_dim = coreleft.shape[1]\n", + " core = torch.empty((rankleft1*rankright1, site_dim, rankleft2*rankright1))\n", + " for k in range(site_dim):\n", + " core[:, k, :] = torch.kron(coreleft[:, k, :], torch.eye(rankright1))\n", + " coresout.append(core)\n", + " \n", + " site_dim = coreright.shape[1]\n", + " core = torch.empty((rankleft2*rankright1, site_dim, rankleft2*rankright2))\n", + " for k in range(site_dim):\n", + " core[:, k, :] = torch.kron(torch.eye(rankleft2), coreright[:, k, :])\n", + " coresout.append(core)\n", + " \n", + " tout = tn.Tensor(coresout)\n", + " return tout\n", + "\n", "\n", "def kron(t1, t2):\n", " c1 = t1.cores\n", @@ -57,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 368 + "execution_count": 497 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T00:53:51.746272Z", - "start_time": "2024-06-09T00:53:51.626185Z" + "end_time": "2024-06-09T13:57:37.083534Z", + "start_time": "2024-06-09T13:57:37.077829Z" } }, "source": [ @@ -84,57 +110,165 @@ "T3_ = np.kron(T1, T2)\n", "delta = abs(T3_ - T3)\n", "delta = np.linalg.norm(delta)\n", - "print(delta)\n", + "print(\"delta: \", delta)\n", "\n", "t4 = zkron(t1, t2)\n", + "t5 = zkron2(t1, t2)\n", "T4 = t4.numpy().reshape((2**6))\n", + "T5 = t5.numpy().reshape((2**6))\n", + "delta = abs(T4 - T5)\n", + "delta = np.linalg.norm(delta)\n", "\n", - "print(t4)\n", "print(T3)\n", "print(\"=========\")\n", - "print(T4)" + "print(T4)\n", + "print(\"=========\")\n", + "print(T5)\n", + "print(\"=========\")\n", + "print(\"delta: \", delta)" ], "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.0\n" + "delta: 0.0\n", + "[ 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619\n", + " 2.0661619 2.0661619 -0.13385788 -0.13385788 -0.13385788 -0.13385788\n", + " -0.13385788 -0.13385788 -0.13385788 -0.13385788 1.3508455 1.3508455\n", + " 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455\n", + " -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748\n", + " -0.09869748 -0.09869748 -2.4222825 -2.4222825 -2.4222825 -2.4222825\n", + " -2.4222825 -2.4222825 -2.4222825 -2.4222825 0.1644736 0.1644736\n", + " 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736\n", + " -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539\n", + " -1.5426539 -1.5426539 0.12757136 0.12757136 0.12757136 0.12757136\n", + " 0.12757136 0.12757136 0.12757136 0.12757136]\n", + "=========\n", + "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", + " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", + " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", + " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -1.5426539 -1.5426539 0.12757136 0.12757136]\n", + "=========\n", + "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", + " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", + " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", + " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -1.5426539 -1.5426539 0.12757136 0.12757136]\n", + "=========\n", + "delta: 0.0\n" ] - }, + } + ], + "execution_count": 498 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.093027Z", + "start_time": "2024-06-09T13:57:37.091040Z" + } + }, + "cell_type": "code", + "source": [ + "print(t1)\n", + "for c in t1.cores:\n", + " print(c.shape[0])" + ], + "id": "81aca14a0bd6e607", + "outputs": [ { - "ename": "ValueError", - "evalue": "Core ranks do not match", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mValueError\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[369], line 18\u001B[0m\n\u001B[1;32m 15\u001B[0m delta \u001B[38;5;241m=\u001B[39m np\u001B[38;5;241m.\u001B[39mlinalg\u001B[38;5;241m.\u001B[39mnorm(delta)\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28mprint\u001B[39m(delta)\n\u001B[0;32m---> 18\u001B[0m t4 \u001B[38;5;241m=\u001B[39m \u001B[43mzkron\u001B[49m\u001B[43m(\u001B[49m\u001B[43mt1\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mt2\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 19\u001B[0m T4 \u001B[38;5;241m=\u001B[39m t4\u001B[38;5;241m.\u001B[39mnumpy()\u001B[38;5;241m.\u001B[39mreshape((\u001B[38;5;241m2\u001B[39m\u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m\u001B[38;5;241m6\u001B[39m))\n\u001B[1;32m 21\u001B[0m \u001B[38;5;28mprint\u001B[39m(t4)\n", - "Cell \u001B[0;32mIn[368], line 12\u001B[0m, in \u001B[0;36mzkron\u001B[0;34m(t1, t2)\u001B[0m\n\u001B[1;32m 9\u001B[0m c3\u001B[38;5;241m.\u001B[39mappend(c1[\u001B[38;5;241m0\u001B[39m])\n\u001B[1;32m 10\u001B[0m c3\u001B[38;5;241m.\u001B[39mappend(c2[\u001B[38;5;241m0\u001B[39m])\n\u001B[0;32m---> 12\u001B[0m t3 \u001B[38;5;241m=\u001B[39m \u001B[43mtn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mTensor\u001B[49m\u001B[43m(\u001B[49m\u001B[43mc3\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 13\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m t3\n", - "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/tntorch/tensor.py:191\u001B[0m, in \u001B[0;36mTensor.__init__\u001B[0;34m(self, data, Us, idxs, device, requires_grad, ranks_cp, ranks_tucker, ranks_tt, eps, max_iter, tol, verbose, batch, algorithm)\u001B[0m\n\u001B[1;32m 183\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m n \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(\u001B[38;5;28mlen\u001B[39m(data) \u001B[38;5;241m-\u001B[39m \u001B[38;5;241m1\u001B[39m):\n\u001B[1;32m 184\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m (\n\u001B[1;32m 185\u001B[0m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mdim() \u001B[38;5;241m==\u001B[39m max_dim\n\u001B[1;32m 186\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m data[n]\u001B[38;5;241m.\u001B[39mshape[\u001B[38;5;241m-\u001B[39m\u001B[38;5;241m1\u001B[39m] \u001B[38;5;241m!=\u001B[39m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mshape[d1]\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m data[n]\u001B[38;5;241m.\u001B[39mshape[\u001B[38;5;241m-\u001B[39m\u001B[38;5;241m1\u001B[39m] \u001B[38;5;241m!=\u001B[39m data[n \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m.\u001B[39mshape[d2]\n\u001B[1;32m 190\u001B[0m ):\n\u001B[0;32m--> 191\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mCore ranks do not match\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 192\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcores \u001B[38;5;241m=\u001B[39m data\n\u001B[1;32m 193\u001B[0m N \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlen\u001B[39m(data)\n", - "\u001B[0;31mValueError\u001B[0m: Core ranks do not match" + "name": "stdout", + "output_type": "stream", + "text": [ + "3D TT tensor:\n", + "\n", + " 2 2 2\n", + " | | |\n", + " (0) (1) (2)\n", + " / \\ / \\ / \\\n", + "1 2 2 1\n", + "\n", + "1\n", + "2\n", + "2\n" ] } ], - "execution_count": 369 + "execution_count": 499 }, { "cell_type": "code", "id": "ed6556db86940912", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.106369Z", + "start_time": "2024-06-09T13:57:37.093989Z" + } + }, "source": [ "print(t1.numpy().reshape((2**3)))\n", "print(t2.numpy().reshape((2**3)))\n", "print(T3_)\n", "print(T4)" ], - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 2.0661619 -0.13385788 1.3508455 -0.09869748 -2.4222825 0.1644736\n", + " -1.5426539 0.12757136]\n", + "[1. 1. 1. 1. 1. 1. 1. 1.]\n", + "[ 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619\n", + " 2.0661619 2.0661619 -0.13385788 -0.13385788 -0.13385788 -0.13385788\n", + " -0.13385788 -0.13385788 -0.13385788 -0.13385788 1.3508455 1.3508455\n", + " 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455\n", + " -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748\n", + " -0.09869748 -0.09869748 -2.4222825 -2.4222825 -2.4222825 -2.4222825\n", + " -2.4222825 -2.4222825 -2.4222825 -2.4222825 0.1644736 0.1644736\n", + " 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736\n", + " -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539\n", + " -1.5426539 -1.5426539 0.12757136 0.12757136 0.12757136 0.12757136\n", + " 0.12757136 0.12757136 0.12757136 0.12757136]\n", + "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", + " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", + " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", + " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", + " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", + " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", + " -1.5426539 -1.5426539 0.12757136 0.12757136]\n" + ] + } + ], + "execution_count": 500 }, { "cell_type": "code", "id": "f5d359f0ae8df759", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.118303Z", + "start_time": "2024-06-09T13:57:37.115322Z" + } + }, "source": [ "import tntorch\n", "try:\n", @@ -184,17 +318,22 @@ " mpsy = self.basis1Dmps(x[1])\n", " \n", " if self.zorder:\n", - " return zkron(mpsx, mpsy)\n", + " return zkron2(mpsx, mpsy)\n", " \n", " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": null + "execution_count": 501 }, { "cell_type": "code", "id": "47ef065abf26f244", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.127311Z", + "start_time": "2024-06-09T13:57:37.120930Z" + } + }, "source": [ "try:\n", " from typing import TypeAlias\n", @@ -268,13 +407,15 @@ " val2 = a1*b2\n", " val3 = a2*b1\n", " val4 = a2*b2\n", - " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2).item()\n", + " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2)\n", " \n", " if self.normalize:\n", " a1 /= torch.sqrt(self.norm)\n", " b1 /= torch.sqrt(self.norm)\n", " a2 /= torch.sqrt(self.norm)\n", " b2 /= torch.sqrt(self.norm)\n", + " \n", + " self.norm = self.norm.item()\n", "\n", " # for compatibility (TODO: remove)\n", " first1 = a1.item()\n", @@ -286,7 +427,7 @@ " mps2 = self.hbmps.mps_hatbasis(first2, second2, position2)\n", "\n", " if self.zorder:\n", - " mps = zkron(mps2, mps1)\n", + " mps = zkron2(mps2, mps1)\n", " else:\n", " mps = kron(mps2, mps1)\n", " \n", @@ -333,12 +474,17 @@ " return self.norm" ], "outputs": [], - "execution_count": null + "execution_count": 502 }, { "cell_type": "code", "id": "557b395bbcf03f54", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.133366Z", + "start_time": "2024-06-09T13:57:37.128089Z" + } + }, "source": [ "num_qubits = 2\n", "num_nodes = 2**num_qubits\n", @@ -353,11 +499,27 @@ "x = torch.tensor([0.0, 0.0])\n", "print(drawer(x))" ], - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0: ───────────────╭U(M2)─┤ \n", + "1: ────────╭U(M1)─╰U(M2)─┤ \n", + "2: ─╭U(M0)─╰U(M1)────────┤ \n", + "3: ─╰U(M0)───────────────┤ \n" + ] + } + ], + "execution_count": 503 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.138782Z", + "start_time": "2024-06-09T13:57:37.133910Z" + } + }, "cell_type": "code", "source": [ "import numpy as np\n", @@ -383,11 +545,24 @@ "print(out)" ], "id": "3068b30bd9e6ee63", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.27500004 0.72499996 0. ]\n" + ] + } + ], + "execution_count": 504 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.142680Z", + "start_time": "2024-06-09T13:57:37.139844Z" + } + }, "cell_type": "code", "source": [ "hbmps = HatBasisMPS(hat_basis)\n", @@ -401,13 +576,31 @@ "print(mps.numpy().reshape(-1))" ], "id": "281d58bbae58820a", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00]\n", + "[1. 0. 0. 0.]\n", + "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00 0.0000000e+00\n", + " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", + " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", + " 0.0000000e+00]\n" + ] + } + ], + "execution_count": 505 }, { "cell_type": "code", "id": "93646da4c54dfbff", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.149294Z", + "start_time": "2024-06-09T13:57:37.143233Z" + } + }, "source": [ "import numpy as np\n", "\n", @@ -425,24 +618,55 @@ " embed.circuit(x)\n", " return qml.state()\n", "\n", - "x = torch.tensor([-0.333, -0.99])\n", + "x = torch.tensor([-0., -0.])\n", "out = np.real(circuit(x))\n", "print(out)\n", + "print(\"norm: \", np.linalg.norm(out))\n", "print(out[5])" ], - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0. 0. 0.25000003 0. 0.\n", + " 0.25000001 0. 0. 0.24999999 0. 0.\n", + " 0.24999997 0. 0. 0. ]\n", + "norm: 0.5000000039591517\n", + "0.0\n" + ] + } + ], + "execution_count": 506 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.151618Z", + "start_time": "2024-06-09T13:57:37.149815Z" + } + }, "cell_type": "code", "source": "print(embed.basis.nonz_vals(x[1]))", "id": "fb3331067291afc5", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(tensor(0.5000), tensor(0.5000))\n" + ] + } + ], + "execution_count": 507 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:37.154773Z", + "start_time": "2024-06-09T13:57:37.152106Z" + } + }, "cell_type": "code", "source": [ "mps1 = embed.mps1\n", @@ -453,11 +677,28 @@ "print(mps.numpy().reshape(-1))" ], "id": "136ef4cd92b91a96", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.50000006 0.49999997 0. ]\n", + "[0. 0.50000006 0.49999997 0. ]\n", + "[0. 0. 0. 0.25000006 0. 0.\n", + " 0.25 0. 0. 0.25 0. 0.\n", + " 0.24999997 0. 0. 0. ]\n" + ] + } + ], + "execution_count": 508 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:39.880951Z", + "start_time": "2024-06-09T13:57:37.155358Z" + } + }, "cell_type": "code", "source": [ "import torch\n", @@ -472,7 +713,7 @@ "Z = torch.empty(num_pnts, num_pnts)\n", "\n", "# Evaluate the circuit at each point in the grid and extract the j-th component\n", - "idx = 15\n", + "idx = 12\n", "for i in range(num_pnts):\n", " for k in range(num_pnts):\n", " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", @@ -502,11 +743,27 @@ "plt.show()" ], "id": "8f41ff534081649d", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABheUlEQVR4nO3de3wU5d3///fs5gyGQIEENMrJclAgCiWG21ZacgPCw8qvJ1BaDqXw9UCrjVXBCihUwUO5qZaWakG0txQPt1qrNIqxua01QgW5VYpULAgeEgRKAgkk2Z3r9wdl25WETa7NZNjk9Xw85gGZnc91zczOzuy1n7mucYwxRgAAAAAA+CTg9woAAAAAANo3GqYAAAAAAF/RMAUAAAAA+IqGKQAAAADAVzRMAQAAAAC+omEKAAAAAPAVDVMAAAAAgK9omAIAAAAAfEXDFAAAAADgKxqmAAAAAABf0TAFALQZ27dv18SJE/Xcc8/p5z//ubp3766zzjpLTz31lN+rBgAAToGGKQCgTSgtLdWwYcP0wQcfKD09Xdddd50mTZqk9PR0XXnllfrwww/9XkUAANAIGqYAgIRXU1Ojb3/72zrnnHP06quvqqysTCkpKfrpT3+qn/zkJ6qtrVVxcbHfqwkAABpBwxQAkPCeeOIJffTRR1q2bJk6dOigN954Q+edd55SUlKUl5cnSTp48KBc19WZZ56piooKf1cYAABESfJ7BQAAiNf69euVlZWl//zP/5QkvfXWWxo1apQk6fDhw5Kkz33ucwoEAvroo4/8Wk0AANAIMqYAgIT3zjvvaODAgUpKStLhw4e1e/duDRkyRJK0Y8cOSdJFF13k5yoCAIBToGEKAEh4lZWVSk9PlyS9/fbbMsZEGqZPP/20+vbtq/POO08PPPCArrzySj9XFQAANIBbeQEACS83N1dvvvmmamtr9dZbb0mShgwZopdeeklPP/20Vq1aJUnatm2bzj//fD9XFQAANICMKQAg4X33u9/VP/7xD1122WV68sknlZGRoTvvvFPjx4/Xt771LU2fPl3S8Ybpeeed5+/KAgCAkzjGGOP3SgAAEK/bbrtNv/jFL/Tpp5/KcRz16tVLs2fP1o033qhgMChJ6tGjh/70pz+pX79+Pq8tAAD4dzRMAQBtyhlnnKFrr71WS5cujZp/8OBBnXXWWTpy5IgCAW4YAgDgdMKVGQDQZuzdu1dHjhzRgAEDTnpt27ZtGjhwII1SAABOQ1ydAQBtxvbt2yWp0YYp/UsBADg90TAFALQZp2qYvvXWWxo6dGhrrxIAAGgC+pgCANq8I0eOaPDgwXr88cf1hS98we/VAQAAn5FwGdNXXnlFl112mXr27CnHcfTMM8/EjCktLdWFF16o1NRU9evXT2vWrDlpmRUrVqhXr15KS0tTfn6+Nm3a1PIrDwBodRs3btTnP/95fe1rX6NRCgDAaSrhGqbV1dUaOnSoVqxY0aTld+3apQkTJujLX/6ytm7dquuvv17f+9739MILL0SWeeyxx1RUVKSFCxdqy5YtGjp0qMaOHat9+/Z5tRkAgFaSn5+vjz/+WD/96U/9XhUAANCIhL6V13EcPf3005o4cWKjy9x88816/vnn9c4770TmTZ48WYcOHVJxcbGk419avvCFL+jnP/+5JMl1XeXm5ur73/++5s6d6+k2AAAAAEB7l3AZ0+YqKytTYWFh1LyxY8eqrKxMklRXV6fNmzdHLRMIBFRYWBhZBgAAAADgnSS/V8Br5eXlys7OjpqXnZ2tqqoqHT16VP/4xz8UDocbXObdd99ttNza2lrV1tZG/nZdVwcPHtTnPvc5OY7TshsBAAAAtBHGGB0+fFg9e/ZMmGdLHzt2THV1dZ7Xk5KSorS0NM/rOR21+YapV5YsWaLbb7/d79UAAAAAEtLevXt11lln+b0aMR07dky9z+mo8n1hz+vKycnRrl272mXjtM03THNyclRRURE1r6KiQpmZmUpPT1cwGFQwGGxwmZycnEbLnTdvnoqKiiJ/V1ZW6uyzz9bFGq8kJbfsRgCAV9rDHR5OYvwaHw8n0A7ex3bCuAk79EfzGNfvNTi9Je4QME0SUr1e1XqdccYZfq9Kk9TV1al8X1gfbO6lzDO8u6ZUHXZ1zrDdqquro2HaFhUUFGj9+vVR8zZs2KCCggJJx9Plw4YNU0lJSWQQJdd1VVJSojlz5jRabmpqqlJTU0+an6RkJTk0TAEkCBqmbQJdSNoO47TtBsm/0DA9tTZ+HPxz8xLt3NXxDEcdz/BunV0l1v5oaQnXMD1y5Ih27twZ+XvXrl3aunWrunTporPPPlvz5s3TRx99pEceeUSSdNVVV+nnP/+5brrpJn33u9/Vyy+/rMcff1zPP/98pIyioiJNmzZNw4cP14gRI7R8+XJVV1drxowZrb59AAAAAE4/YeMq7OFvBuF2fidBwjVM33jjDX35y1+O/H3idtpp06ZpzZo1+uSTT7Rnz57I671799bzzz+vH/7wh/rZz36ms846S7/+9a81duzYyDKTJk3Sp59+qgULFqi8vFx5eXkqLi4+aUAkAAAAAEDLS+jnmJ5Oqqqq1KlTJ43S5dzKCyBxJNhtVFbaw6289DFtM+hjCkltv4+pqVepfqfKykplZmb6vToxnfieX77jbM/7mOb035Mw+6Wltf2rNQAAAADgtJZwt/ICAAAAQGtz5Xo6bJe3pZ/+yJgCAAAAAHxFxhQAWlIgaB1q3U8wnj6UlnVaD/EftN8/Cthtp/W6xtNv03Y7bde1vRwDttw4shCWff2sh/AIh+3ijldqF2fbrzWOfqImbBlr+17G02fTss64hnGxPA6s+yjH0+e3jfeH/XdhYxT2cHu9LDsRkDEFAAAAAPiKjCkAAAAAxODKyJV3WU0vy04EZEwBAAAAAL4iYwoAAAAAMbgyCpMx9QwZUwAAAACAr8iYAgAAAEAM9DH1FhlTAAAAAICvyJgCAAAAQAw8x9RbZEwBAAAAAL4iYwoADXEcu7CAXZwkKRi0qzPJ/lTuWNZpu64KxvF7aGvvn0A862oZa1mniWe/2taZZPd+mGAcnxHLz6XC9lkIx3XtAkNhuzjb+iQ5YctY2zpt65PkhEJWccZ6Gy3fD0kKW8bGsX+s66y33a921cUfnFjcf05elt+ekTEFAAAAAPiKjCkAAAAAxBD2+DmmXpadCMiYAgAAAAB8RcYUAAAAAGIIm7i6rDep/PaMjCkAAAAAwFdkTAEAAAAgBkbl9RYZUwAAAACAr8iYAgAAAEAMrhyFFcezmJtQfntGxhQAAAAA4CsypgDQEMfyd7tg0L7KJLtTspMcx6ncus7kVq3veKzdvjWWcbb1SZKxPA5Msu262v/O7FrGmqDdL/smjnU1Abs6A2H7nltOvV2sE7KMi2ddbeu0jFMobBcnyakP2cWFLeuMY11NyHJdLeMkSfWtnDkz9sddHKEJxzXHJy/Lb8/ImAIAAAAAfEXGFAAAAABiCHvcx9TLshMBGVMAAAAAgK/ImAIAAABADGRMvUXGFAAAAADgKzKmAAAAABCDaxy5xsPnmHpYdiIgYwoAAAAA8BUZUwAAAACIgT6m3iJjCgAAAADwFRlTAAAAAIghrIDCHub1wp6VnBhomAJAA5yA3e00TjBoX2ey5Sk5OcW+zpRkyzrt1tXYbmM8dabYrqv9e+km231xMZZxbpL9FyXbdXWT7D4jbrL9rWrGcjMDIWNdZ6DeLta2zkC9axUnSY5lbCBkF+fU23+NdmrtPpdOfahV4yTJCVgeeE4cx7p1oGVkHNcuhW2OAyeOjURbRcMUAAAAAGIwHo/KaxiVFwAAAAAA/5AxBQAAAIAYGJXXW2RMAQAAAAC+ImMKAAAAADGETUBh21HYmlS+Z0UnBDKmAAAAAABfkTEFAAAAgBhcOXI9zOu57fwZOmRMAQAAAAC+ImMKAAAAADEwKq+3aJgCQEty4rioBIN2VaYk29dpGWts41LtLzsmxS7WTbHbr7Zxx2Ptbkhyk+2On7BlffHVaVdf2LI+SbIdcyRYb12lAvV2t9YFLeMC9fbvZaDOcl3rXMv67D8jgWDIsk7bgyCOmwQDdsdsXE0MY/deOuGwXX1xXLva982naEk0TAEAAAAgBu9H5W3fzXz6mAIAAAAAfEXGFAAAAABiOD4qr3f9QL0sOxGQMQUAAAAA+IqMKQAAAADE4CqgMM8x9QwZUwAAAACAr8iYAgAAAEAMjMrrrYTMmK5YsUK9evVSWlqa8vPztWnTpkaXHTVqlBzHOWmaMGFCZJnp06ef9Pq4ceNaY1MAAAAAoN1LuIzpY489pqKiIq1cuVL5+flavny5xo4dqx07dqh79+4nLf/UU0+prq4u8veBAwc0dOhQffOb34xabty4cXrooYcif6empnq3EQAAAAASiquAXPqYeibhGqbLli3TrFmzNGPGDEnSypUr9fzzz2v16tWaO3fuSct36dIl6u9169YpIyPjpIZpamqqcnJyvFtxAInFsbvwOMGgfZ1JlqfkJPs6TbJdnSbVNi7ZKk6Swql22xlOs4tzU+2/fIQtY8Mpdo8KsI07HmsbZ1ena1mfJBnLQz1QF3uZxgQtYwN1dvsnWGf/xdQ21rVd11r7z0gwaFenCdrVGXDsPyPWW+nav5eO61rFmVDIrsJAQt5EiTYmoY7Curo6bd68WYWFhZF5gUBAhYWFKisra1IZq1at0uTJk9WhQ4eo+aWlperevbv69++vq6++WgcOHGjRdQcAAACQuMLG8XxqzxIqY7p//36Fw2FlZ2dHzc/Ozta7774bM37Tpk165513tGrVqqj548aN09e+9jX17t1b77//vm655RZdeumlKisrU7CR7Edtba1qa2sjf1dVVVlsEQAAAAAgoRqm8Vq1apUGDx6sESNGRM2fPHly5P+DBw/WkCFD1LdvX5WWlmr06NENlrVkyRLdfvvtnq4vAAAAgNND2OPnmIbbeR/ThLqVt2vXrgoGg6qoqIiaX1FREbN/aHV1tdatW6eZM2fGrKdPnz7q2rWrdu7c2egy8+bNU2VlZWTau3dv0zYCAAAAABAloRqmKSkpGjZsmEpKSiLzXNdVSUmJCgoKThn7xBNPqLa2Vt/+9rdj1vPhhx/qwIED6tGjR6PLpKamKjMzM2oCAAAA0Da5JuD51J4l3NYXFRXpwQcf1MMPP6zt27fr6quvVnV1dWSU3qlTp2revHknxa1atUoTJ07U5z73uaj5R44c0Y033qjXX39du3fvVklJiS6//HL169dPY8eObZVtAgAAAID2LOH6mE6aNEmffvqpFixYoPLycuXl5am4uDgyINKePXsU+MyQ1zt27NCrr76qF1988aTygsGg3nrrLT388MM6dOiQevbsqTFjxmjx4sU8yxQAAACAJPqYei3hGqaSNGfOHM2ZM6fB10pLS0+a179/fxnT8Budnp6uF154oSVXDwAAAADQDAnZMAUAAACA1uRKnj5r1PWs5MRAwxQAGhKwvPA08uzjpnCS7E7JJtn+VG5Sku3iUu3iwmn26xpOt9u34VS7265CafZfPsKpdrEhyzjb+iTJtey1EraNS7GLkySTZHebW6DWfv8E6+xig7Wxl2mIaxl3PNZuXV3L/WoC9rcd2n63T/KuTdAop5G77mIK2zcznHDYLjBgeQ1yfNixwGfQMAUAAACAGFwF5HrYx9TLshNB+956AAAAAIDvyJgCAAAAQAxhE1DYw2eNell2ImjfWw8AAAAA8B0ZUwAAAACIwZUjV16Oytu+B6EiYwoAAAAA8BUZUwAAAACIgT6m3mrfWw8AAAAA8B0ZUwAAAACIIayAwh7m9bwsOxHQMAWAlhSIY+CCgOUFKRi0rtIk28W6KXZx4VT7i65tbCjdMi7N/r0MpdnFhS3rDFvWJ0nhVMu4NGNZn12cJBnLby2BY9ZVyq21e09cy3V1k+yPO9fyVGB992A847Q4rfsFPMn+sJMTdq3iAiH7r9lOfcguLmi3X43t9QdoQTRMAQAAACAG1zhyjYej8npYdiLg5xEAAAAAgK/ImAIAAABADK7HfUzddp4zbN9bDwAAAAAJasWKFerVq5fS0tKUn5+vTZs2nXL55cuXq3///kpPT1dubq5++MMf6tixODrityAypgAAAAAQg2sCcj181mhzy37sscdUVFSklStXKj8/X8uXL9fYsWO1Y8cOde/e/aTl165dq7lz52r16tUaOXKk/va3v2n69OlyHEfLli1rqc2wRsYUAAAAABLMsmXLNGvWLM2YMUODBg3SypUrlZGRodWrVze4/Guvvab/+I//0JVXXqlevXppzJgxuuKKK2JmWVsLDVMAAAAAiCEsx/NJkqqqqqKm2trak9alrq5OmzdvVmFhYWReIBBQYWGhysrKGlz/kSNHavPmzZGG6N///netX79e48eP92BvNR8NUwAAAAA4TeTm5qpTp06RacmSJScts3//foXDYWVnZ0fNz87OVnl5eYPlXnnllVq0aJEuvvhiJScnq2/fvho1apRuueUWT7ajuehjCgAAAAAxtFYf07179yozMzMyPzU1tUXKLy0t1Z133qlf/OIXys/P186dO3Xddddp8eLFmj9/fovUEQ8apgDQAMexfMh1IGhfaZJdrEm2P5WbVLs6w7Zxafb7J5Ru92WgPt3uvQylW4VJksK2dabZ1mfsAiWFret0reJMml2cJCnJLta1PF4lyT1qd9y5yXbHgEmyPPdIMrabGbBcV/tVtWfZKHDsPyJywnbBTtj+WDf1dud1J8kyLhhHY8uxiQ1IcbwnfglLkdttvSpfkjIzM6Mapg3p2rWrgsGgKioqouZXVFQoJyenwZj58+frO9/5jr73ve9JkgYPHqzq6mrNnj1bP/7xjxUI+HszLbfyAgAAAEACSUlJ0bBhw1RSUhKZ57quSkpKVFBQ0GBMTU3NSY3PYPD4L1rG+P9LARlTAAAAAIjhdHtcTFFRkaZNm6bhw4drxIgRWr58uaqrqzVjxgxJ0tSpU3XmmWdG+qhedtllWrZsmS644ILIrbzz58/XZZddFmmg+omGKQAAAAAkmEmTJunTTz/VggULVF5erry8PBUXF0cGRNqzZ09UhvTWW2+V4zi69dZb9dFHH6lbt2667LLLdMcdd/i1CVFomAIAAABADGETUNjDjKlN2XPmzNGcOXMafK20tDTq76SkJC1cuFALFy60WT3P0ccUAAAAAOArMqYAAAAAEIORI9fDUXmNh2UnAjKmAAAAAABfkTEFAAAAgBhOxz6mbUn73noAAAAAgO/ImAJAQwJ2v9s5Qfvf+0yS3TPETLL9s8dcy9hwqt12htPs+8+ELGPDaXb1hdPjWNd0y7gMuwech9PtH4weznCt4pz0sFVcSnq9VZwkJSfb1XksJcW6znCS3Vclk2T3GTGW557jsZbHrPWhbv8ZcWwPWcs4x7Vf10C93XsSqI/juZCW1wPZXoMcclVN4RpHrvGuH6iXZScCjkIAAAAAgK/ImAIAAABADGEFFPYwr+dl2YmgfW89AAAAAMB3ZEwBAAAAIAb6mHqLjCkAAAAAwFdkTAEAAAAgBlcBuR7m9bwsOxG0760HAAAAAPiOjCkAAAAAxBA2jsIe9gP1suxEQMYUAAAAAOArMqYAAAAAEAOj8nqLhikANMSxvDgEg/Z1BixvYkmyv/nFTbaLdVPs9k/YMk6Swql2caF0uzpD6Xb1SVKog7GLy7CLczPCVnGSFMgIWcWlZdRZxWVmHLOKk6SM5HqruH8k2b+ZR4J2B159MMUqLhzPvWyObbDl59LucD3OtavTce2qC4Tszz2BFLv9Gqi1fzMDlud1x/Y6EmjfDSKcHmiYAgAAAEAMxgTkGu96QhoPy04E7XvrAQAAAAC+I2MKAAAAADGE5Shse+t7E8tvz8iYAgAAAAB8RcYUAAAAAGJwjbcj57rxDCjWBpAxBQAAAAD4iowpAAAAAMTgejwqr5dlJ4L2vfUAAAAAAN+RMQUAAACAGFw5cj0cOdfLshMBDVMAaElOHBeVpKBVmJtsf/OLm2IXG06x285Qqv3+CaXZxYbTLOtLtx+FwjbWzQhbxQU7hqziJCmjwzGruC4ZR63iumcctoqTpA5JdVZxqUH7/bM/6FrFVQXsjoFaJ8UqTpLCtl/rLG8fdFz7z7Njd6grYBtXb7+uQcvznYnj3GyS7GJN0LLOeK5dQAtJyFt5V6xYoV69eiktLU35+fnatGlTo8uuWbNGjuNETWlp0d9SjDFasGCBevToofT0dBUWFuq9997zejMAAAAAJIiwcTyf2rOEa5g+9thjKioq0sKFC7VlyxYNHTpUY8eO1b59+xqNyczM1CeffBKZPvjgg6jX7777bt13331auXKlNm7cqA4dOmjs2LE6dszuV2QAAAAAQNMlXMN02bJlmjVrlmbMmKFBgwZp5cqVysjI0OrVqxuNcRxHOTk5kSk7OzvymjFGy5cv16233qrLL79cQ4YM0SOPPKKPP/5YzzzzTCtsEQAAAIDT3YlReb2c2rOE2vq6ujpt3rxZhYWFkXmBQECFhYUqKytrNO7IkSM655xzlJubq8svv1zbtm2LvLZr1y6Vl5dHldmpUyfl5+efssza2lpVVVVFTQAAAACA5kuohun+/fsVDoejMp6SlJ2drfLy8gZj+vfvr9WrV+t3v/ud/vu//1uu62rkyJH68MMPJSkS15wyJWnJkiXq1KlTZMrNzY1n0wAAAACcxlw5co2HUzsflTehGqY2CgoKNHXqVOXl5emSSy7RU089pW7duulXv/pVXOXOmzdPlZWVkWnv3r0ttMYAAAAA0L4k1ONiunbtqmAwqIqKiqj5FRUVysnJaVIZycnJuuCCC7Rz505JisRVVFSoR48eUWXm5eU1Wk5qaqpSU1ObuQUAAAAAEpHx+Dmmhoxp4khJSdGwYcNUUlISmee6rkpKSlRQUNCkMsLhsN5+++1II7R3797KycmJKrOqqkobN25scpkAAAAAAHsJlTGVpKKiIk2bNk3Dhw/XiBEjtHz5clVXV2vGjBmSpKlTp+rMM8/UkiVLJEmLFi3SRRddpH79+unQoUO655579MEHH+h73/uepOMj9l5//fX6yU9+onPPPVe9e/fW/Pnz1bNnT02cONGvzQQAAABwGjnRF9TL8tuzhGuYTpo0SZ9++qkWLFig8vJy5eXlqbi4ODJ40Z49exQI/CsR/I9//EOzZs1SeXm5OnfurGHDhum1117ToEGDIsvcdNNNqq6u1uzZs3Xo0CFdfPHFKi4uVlpaWqtvH4DTRMDyhpKg/Y0oJsku1iTb1+km210EreNSrMIkSWHL3hNhy1N5ON3YBUpyM1yruECHkFVcRgf7525/rkONVVyPDLvR6HMz/mEVJ0mdgket4lICdvtVkpIClu+lY3f8HLKKOq7W8ktt2G4T5bj25x4nZLeuAdu4OqswSfGcJ+O4HtheS6yvXUG7OElOoPn7xzGOZHncoe1yjDH2V15EVFVVqVOnThqly5XkJPu9OgDiFDjjDLu4LlnWdbpZHa3iQln2P6LVZdqdr+rOsPvyU3eG/a/BtrEhu92q+o7235rClrGBjvVWcR060jA9lQ+OdbGu85Ojnazi9lXbHXiHjqRbxUlS7RG7X2+cI3aNkqQj9g2v5MN2n+fkatv67L/uph62+zynVIWt60w+VGsVFzxk93lW5WG7OEnugYPNjgmZev0x9D+qrKxUZmamdd2t5cT3/P9vwwwld4jjF9YY6qvr9PR/PpQw+6WlJVQfUwAAAABA25Nwt/ICAAAAQGujj6m3yJgCAAAAAHxFxhQAAAAAYnA9fo6pl2UnAjKmAAAAAABfkTEFAAAAgBjoY+otMqYAAAAAAF+RMQUAAACAGMiYeouGKQA0wHEsLw4B+xtRjGWsG7Sv0022285wimVcqv1FN5xqGZdmrOLcdLs4SXIyQlZxGR1qreI+16HGKk6SemRUWcX1yjhgFdc3bZ9VnCR9LumIVVxywO79kKSgY38c2Ijni+kh1y623vLDFQ7Zr2ug3i7W9q0M2n20JElhy/Okm2S/f0yS5Xk9KWgVZn3NA1oQDVMAAAAAiIGMqbfoYwoAAAAA8BUZUwAAAACIgYypt8iYAgAAAAB8RcYUAAAAAGIwklx5l9Vs3aHWTj9kTAEAAAAAviJjCgAAAAAx0MfUW2RMAQAAAAC+ImMKAAAAADGQMfUWDVMAaEjA8uLgxHFRSbK7icVNtq8zbBkbTrGszzJOktxUu2Ehwml2cSY9bBUnSWnp9VZxndKPWcVlZxy2ipOkXhkHrOI+n15uFXduil2cJHULHrWKC8i1rtNW2PILZsi1v5ktFLaLrQoHreLCoTjOPXV2sQHLuHCK/bq6ybZx9nWaZLv30gTs4px4rl1AC6FhCgAAAAAxkDH1Fn1MAQAAAAC+ImMKAAAAADGQMfUWGVMAAAAAgK/ImAIAAABADMY4Mh5mNb0sOxGQMQUAAAAA+IqMKQAAAADE4MqRKw/7mHpYdiIgYwoAAAAA8BUZUwAAAACIgVF5vUXDFABakAna34jiJtnFmiT7C5lreRVwk+3qdFPs6pOkcKpdnJvmWsUlpYXsKpR0RsYxq7juGYet4s5MO2QVJ0m90vZbxZ2bUm4VNyjZbt9IUudgB8vIT63rdC1vLqu3/HDV2X4oJdWGLesM2cVV18Vxvqu1i3XrLOtLsT9PhpMt64zn3Gx7LQla1hngJkr4j4YpAAAAAMTAqLze4ucRAAAAAICvyJgCAAAAQAz0MfUWGVMAAAAAgK/ImAIAAABADPQx9RYZUwAAAACAr8iYAgAAAEAMxuM+pmRMAQAAAADwERlTAAAAAIjBSDLG2/LbMxqmANCS4rhiOWHXLtAyTJIcy1gnbLedjmt/m5ITtowL2dUZDtnfVFRbb3d5ra5PtYqrCqVbxUnSP0IdrOIOJHW0ivs0eNQq7rgauzrD9vvnQMhuOyst66wOpVjFSVJNfbJVXH190K7COD4jTsg2zu7zbHv+kOI4T8Z1bra8lnjZagI8RsMUAAAAAGJw5ciRh88x9bDsREAfUwAAAACAr8iYAgAAAEAMPMfUW2RMAQAAAAC+ImMKAAAAADG4xpHjYVbTy2ekJgIapgAAAAAQgzEePy6mnQ+qzK28AAAAAABfkTEFAAAAgBgY/MhbZEwBAAAAAL4iYwoAAAAAMZAx9RYNUwBoiGs3AoFjGRdPbKDeta4zWG9340yg3u7iGay1Cjsee8yuTjfFLi6cHLSKk6SapFSruINJYau45KBdnCQlB+xiA479cWfr0+ARq7j36nKs63z/WHeruL01na3i9tWcYRUnSVU1aVZx9UeTreKcY/Y33gVrLc8hdXb1BSzjJClYb3tujuN6ELL7fDlhyzrD9ucQoKXQMAUAAACAGHhcjLfoYwoAAAAA8FVCNkxXrFihXr16KS0tTfn5+dq0aVOjyz744IP64he/qM6dO6tz584qLCw8afnp06fLcZyoady4cV5vBgAAAIAEceI5pl5O7VnCNUwfe+wxFRUVaeHChdqyZYuGDh2qsWPHat++fQ0uX1paqiuuuEJ//OMfVVZWptzcXI0ZM0YfffRR1HLjxo3TJ598Epl++9vftsbmAAAAAEC7l3AN02XLlmnWrFmaMWOGBg0apJUrVyojI0OrV69ucPlHH31U11xzjfLy8jRgwAD9+te/luu6KikpiVouNTVVOTk5kalzZ7tBCwAAAAC0Pcezmo6Hk99b6K+EapjW1dVp8+bNKiwsjMwLBAIqLCxUWVlZk8qoqalRfX29unTpEjW/tLRU3bt3V//+/XX11VfrwIEDpyyntrZWVVVVURMAAAAAtJbmdHGUpEOHDunaa69Vjx49lJqaqs9//vNav359K63tqSVUw3T//v0Kh8PKzs6Omp+dna3y8vImlXHzzTerZ8+eUY3bcePG6ZFHHlFJSYnuuusu/e///q8uvfRShU8xdPaSJUvUqVOnyJSbm2u3UQAAAABOe95mS5v/jNTmdnGsq6vTf/7nf2r37t168skntWPHDj344IM688wzW2L3xK1dPS5m6dKlWrdunUpLS5WW9q9nfU2ePDny/8GDB2vIkCHq27evSktLNXr06AbLmjdvnoqKiiJ/V1VV0TgFAAAA0Cr+vYujJK1cuVLPP/+8Vq9erblz5560/OrVq3Xw4EG99tprSk4+/vziXr16teYqn1JCZUy7du2qYDCoioqKqPkVFRXKyTn1w7PvvfdeLV26VC+++KKGDBlyymX79Omjrl27aufOnY0uk5qaqszMzKgJAAAAQNtkWmFqKpsujs8++6wKCgp07bXXKjs7W+eff77uvPPOU94l2poSKmOakpKiYcOGqaSkRBMnTpSkyEBGc+bMaTTu7rvv1h133KEXXnhBw4cPj1nPhx9+qAMHDqhHjx4tteoAEoyxHIHAcV3rOp2QXWwgZD9agm1ssM6uvnCtXZwkBVPt4txjdg8sN0lBuwolhZLs9mtVMC32Qg1wnDiOgThibbjG/jfxzknVVnG7j3W1rnN3zees4j6psfvB+mBNulWcJB2rSbGKM0ftjvWko/bvZdDycxm0PIcE6+yPc9vzXTznZidsGRuya2DYXvPgjc+OXZOamqrU1OiL4Km6OL777rsNlvv3v/9dL7/8sqZMmaL169dr586duuaaa1RfX6+FCxe27EZYSKiMqSQVFRXpwQcf1MMPP6zt27fr6quvVnV1dSSFPXXqVM2bNy+y/F133aX58+dr9erV6tWrl8rLy1VeXq4jR45Iko4cOaIbb7xRr7/+unbv3q2SkhJdfvnl6tevn8aOHevLNgIAAAA4vbRWH9Pc3NyosWyWLFnSIuvvuq66d++uBx54QMOGDdOkSZP04x//WCtXrmyR8uOVUBlTSZo0aZI+/fRTLViwQOXl5crLy1NxcXHk14I9e/YoEPhXe/uXv/yl6urq9I1vfCOqnIULF+q2225TMBjUW2+9pYcffliHDh1Sz549NWbMGC1evPikXyYAAAAAwEt79+6N6ibYUJvEpotjjx49lJycrGDwX3dJDBw4UOXl5aqrq1NKit1dFy0l4RqmkjRnzpxGb90tLS2N+nv37t2nLCs9PV0vvPBCC60ZAAAAgDapuR1BbcqXmjR+jU0Xx//4j//Q2rVr5bpuJJH3t7/9TT169PC9USol4K28AAAAANDeNbeL49VXX62DBw/quuuu09/+9jc9//zzuvPOO3Xttdf6tQlREjJjCgAAAACtyuJZo80tvzma28UxNzdXL7zwgn74wx9qyJAhOvPMM3Xdddfp5ptvbtHNsEXDFAAAAAASUHO6OEpSQUGBXn/9dY/Xyg4NUwAAAACIwZjjk5flt2f0MQUAAAAA+IqMKQAAAADEYDzuY+pp/9UEQMMUAFpS2LWPDdnFOpZxkhSos7tvKFhvGVdnFSZJco/ZXbDdJLs4E8cV0vzbM+Kaoy6QbBVX5bT+/V+u5Reoetdu30hSZtJRq7iPjmVZ11lRc4ZV3IHqDKu4muo0qzhJcmvsDtpgjd0NdMFjVmHHY2vt4gKWcfGcewKW57tAfRznZtvzumsb187vIcVpgYYpAAAAAMRinGaPnNvs8tsx+pgCAAAAAHxFxhQAAAAAYmBUXm+RMQUAAAAA+IqMKQAAAADEYv45eVl+O0bGFAAAAADgKzKmAAAAABADzzH1FhlTAAAAAICvyJgCAAAAQFO0836gXqJhCgANcd3WjZPkWMYGQvZ1BkJ2V9hgnWVcrf1tSm6yXZ1ukl2dJmi/rsaxuyEp7Nhdlmutoo6rtLx1zPaWs/pw0CpOkjokZ1jF7as5w7rOyqNpVnE11alWcW61/VezQI3dvg0etXsvbeMkKXjMMq62dc9Zx2Nb/9wsy1gnbBdnjP26Grf5+9a09+eioEE0TAEAAAAgBvqYeos+pgAAAAAAX5ExBQAAAIBYeI6pp8iYAgAAAAB8RcYUAAAAAGJy/jl5WX77RcYUAAAAAOArMqYAAAAAEAt9TD1FxhQAAAAA4CsypgAAAAAQCxlTT9EwBYCGGMurg+va1xkKW4U5Ifs6A3V2scFauwEagsn2Azu4x+xiTdCywnjuKXJst9Ou0rCxv5zXuXbreihst651Ids3REpNTreKO1yTZl1n7dFkqzhTY/eeBGrsD7yko3bvZVKNZdwxqzBJUvCY3Tk2qdYuLlhn/40/UG8X69Tbn5udervrgfU1yPaaB7QgGqYAAAAAEItxjk9elt+O0ccUAAAAAOArMqYAAAAAEIMx3t713N7vqCZjCgAAAADwFRlTAAAAAIiFUXk9RcYUAAAAAOArMqYAAAAAEAuj8nqKjCkAAAAAwFdkTAEAAAAgBsccn7wsvz2jYQoALci4rnWsEwrbxdXbxUlSoM4uNpBid8NNUq39/jFBuzqN5b1BxvHhlirL27gc242UFA7b1RkK2cUdDtmva02S3fETOmb/dcc5GrSKCx612z+2cZKUZBmbdNSuvuBR+2/RSccs66y1qzMYx7knUGcXG6iP43oQtjyvhy3rtK0PaEE0TAEAAAAgFkbl9RR9TAEAAAAAviJjCgAAAACxMCqvp8iYAgAAAAB8RcYUAAAAAGKhj6mnyJgCAAAAAHxFxhQAAAAAYiFj6ikypgAAAAAAX5ExBQAAAIBYyJh6ioYpADTEde3iwuFWr9Opt68zUG9XZ7DWrk43aD8UflLA7ortx+j7jm2lloedE7bfSCdkFxcOBa3i3Hr7m7VCSXbHQOCYfZ3BY3b71j7OKiyu2KSjdvs1nnVNOmZXp21coNbywyUpUGd3vovn3KyQZazttctt5y0inBZomAIAAABALDzH1FP0MQUAAAAA+IqMKQAAAADE4Jjjk5flt2dkTAEAAAAAviJjCgAAAACxMCqvpxIyY7pixQr16tVLaWlpys/P16ZNm065/BNPPKEBAwYoLS1NgwcP1vr166NeN8ZowYIF6tGjh9LT01VYWKj33nvPy00AAAAAgISxZMkSSdKWLVtUW1vb4uU3q2G6d+/eFl+B5nrsscdUVFSkhQsXasuWLRo6dKjGjh2rffv2Nbj8a6+9piuuuEIzZ87Um2++qYkTJ2rixIl65513Isvcfffduu+++7Ry5Upt3LhRHTp00NixY3XsWBzjoAMAAABAGzFq1ChJ0tKlS3XhhRdq8ODBmjx5su68804999xzqqioiKv8ZjVMBwwYoAULFqimpiauSuOxbNkyzZo1SzNmzNCgQYO0cuVKZWRkaPXq1Q0u/7Of/Uzjxo3TjTfeqIEDB2rx4sW68MIL9fOf/1zS8Wzp8uXLdeutt+ryyy/XkCFD9Mgjj+jjjz/WM88804pbBgAAAACnp4KCAknS448/rm3btmnTpk264YYblJ2drQ0bNmj8+PGaP3++dfnNaphu2LBBL7zwgs4991ytWbPGulJbdXV12rx5swoLCyPzAoGACgsLVVZW1mBMWVlZ1PKSNHbs2Mjyu3btUnl5edQynTp1Un5+fqNlAgAAAGhfHP1rZF5PJr83sBGHDx/WvHnzdOmll+pb3/qWfvazn2nv3r1KT0/XF77wBc2cOVM/+9nPtHnz5pO6TDZHsxqmI0eO1MaNG7VkyRLNnz9fw4YN05/+9Cfryptr//79CofDys7OjpqfnZ2t8vLyBmPKy8tPufyJf5tTpiTV1taqqqoqagIAAACAtuTKK6/UAw88oKysLCUlJemXv/ylzj33XP3Xf/3XScu+/vrr1vVYjco7depUfeMb39DSpUt16aWXaty4cbrnnnvUu3dv6xVJNEuWLNHtt9/u92oA8IgxdkPjOZZxkqRQuHXjJDl1Ibu4JLux85IC9utq/1Oy3brG8zw5x7WMs9w9gZD97+y2sYE6u7hwnf2ONUG7uGAcY3QEau2207bOeNY16ZjdvrWt07Y+SUo6avchCdZaxh2zP/cE6uxibc+vkuRYntdNyK5O22ve8WCL98Qm5nRgnOOTl+Wfhl555RU999xz+uIXvxiZ9+c//1mTJ09Wenq6rrrqqsj85ORk63riGpV3zJgx+t73vqenn35agwYN0k033aQjR47EU+Qpde3aVcFg8KSOtRUVFcrJyWkwJicn55TLn/i3OWVK0rx581RZWRmZToeBoQAAAACgJU2ZMkXjx4/X+PHjNW/ePD3++OP63Oc+pxUrVuiee+5psXqa1TBduXKlZs6cqSFDhqhTp04aPXq0/vSnP+mqq67Sz372M73xxhsaNGiQ3njjjRZbwX+XkpKiYcOGqaSkJDLPdV2VlJREOuN+VkFBQdTy0vG+sieW7927t3JycqKWqaqq0saNGxstU5JSU1OVmZkZNQEAAABoo0wrTKehiy66SL/5zW80fPhwvfPOO7rhhhs0aNAgfetb39IHH3ygq6++Wr/85S/16quvxlVPs27lveOOO5Sfn6+pU6fqoosu0rBhw5Senh55ffbs2brzzjs1ffr0qMextKSioiJNmzZNw4cP14gRI7R8+XJVV1drxowZko7fZnzmmWdGnrNz3XXX6ZJLLtFPf/pTTZgwQevWrdMbb7yhBx54QJLkOI6uv/56/eQnP9G5556r3r17a/78+erZs6cmTpzoyTYAAAAAQCJ48cUXVVdXp9/85jdKTU2VdHzsn9///veaNWuWqqqqtHLlSv3tb3/T0aNHretpVsO0Kberzpw5M65hgmOZNGmSPv30Uy1YsEDl5eXKy8tTcXFxZPCiPXv2KBD4VyJ45MiRWrt2rW699VbdcsstOvfcc/XMM8/o/PPPjyxz0003qbq6WrNnz9ahQ4d08cUXq7i4WGlpaZ5tBwAAAIAE4nVW8zTNmP70pz/V6NGjdf7552vGjBkaOnSojh07pjVr1igvL0+PPvqoJCkcjmMcCUmOiau388mMMXrllVd0ySWXtGSxp72qqip16tRJo3S5khz7Tr8ATg/OP38RbK5Axw72df7bHSjNYTLsf0Qz6SlWceEMuzg3zXL0GkmhdLvYcJrdcAqhNPtBKEKplgMDWb6VYcv64qrT7hBQOI3Bj7yIkxj86JRxNfYDEQWP2cUGauqs63SO2r0ppsYuW2UbJ0muxfgyIVOvUvOMKisrE6I73Inv+efceYcCHiau3GPH9MEtPz4t98vRo0d177336sknn9Tbb78tScrLy9NvfvMbnXfeeS1Sh9WovKfiOE67a5QCAAAAaNtOPG/Uy/JPV+np6Zo/f77mz5+vY8eOKRQKqWPHji1aR4s3TAEAAAAAbZNX3R1pmAIAAABALO20j2lries5pgAAAAAAxIuMKQA0xLX82TKeEelCdgNsOPX2g3ooyW40mYDlYCCyH6PH/oJl+VY6rv3KOmG7330DIbs6A/X2P7MH6iwH97EbH0xhy/okyVj+nB6wH4NGQcvYYK3dexLPuiZZ1hmss4yLY/Cj4DG7c6X14Ee19udmp87yfBfPuTlkub621yDXbr+2O2RMPUXDFAAAAABiaM+DH7UGbuUFAAAAAPiKjCkAAAAAxGKc45OX5bdjZEwBAAAAAL4iYwoAAAAAsTD4kafImAIAAAAAfEXGFAAAAABiYFReb5ExBQAAAAD4iowpAAAAAMRCH1NP0TAFgBZkwq59sGWsUx+yrzNod+NMwPFhSHvLC3ayaxcYDgftKpQUqLesM9Xu/QjX278f4WTLuFq7uKBlfZJkgnbbaft+SFKwzjbOrs741tWyTsu4YK39+S5YG7aKC9TZxTm19VZxx2PtzrFxnZtDlrG216Cw3X4FWhINUwAAAACIxeM+pu09Y0ofUwAAAACAr8iYAgAAAEAs9DH1FBlTAAAAAICvyJgCAAAAQCxkTD1FxhQAAAAA4CsypgAAAAAQg+PxqLyejvibAMiYAgAAAAB8RcMUAAAAAOArbuUFgIYY1y7OtYyTpFDILi5o/xujU+tYxdnebRQw9vcpOZb71oTsLnVOvf176aYEreIC9Xb7J5hk9z5KkptiF+ta1hlOtl9XE7DbPwHLj5YkBS3fE9v30jZOkgJ1dsdswPJYD9SHreIkyam1i3Us63Tq6q3ijtdpeQDZxkky9ZbrG7bbPyaOczPQUmiYAgAAAEAsjMrrKW7lBQAAAAD4iowpAAAAAMTAqLzeImMKAAAAAPAVGVMAAAAAaIp2ntX0EhlTAAAAAICvyJgCAAAAQCyMyuspMqYAAAAAAF/RMAUAAACAGE6Myuvl1FwrVqxQr169lJaWpvz8fG3atKlJcevWrZPjOJo4cWLzK/UIt/ICQAOMa3c/jRMO29cZCtkFBhzrOm0jHWN5v1HYtaxRUsjukuXU270nTnLQKk6SAnV2sSbJ7vdi1zIuvjrtjh43OY7fxC1DnZD9/XGBervYgOWx7tTbf0YCtrEh23W1P9859ZbnO8tzrHV9khSyq9PU1cdRp936GttrkOU173ilFrG21xBEeeyxx1RUVKSVK1cqPz9fy5cv19ixY7Vjxw5179690bjdu3frRz/6kb74xS+24trGRsYUAAAAAGIxrTA1w7JlyzRr1izNmDFDgwYN0sqVK5WRkaHVq1c3GhMOhzVlyhTdfvvt6tOnT/Mq9BgNUwAAAABIIHV1ddq8ebMKCwsj8wKBgAoLC1VWVtZo3KJFi9S9e3fNnDmzNVazWbiVFwAAAABisO0H2pzyJamqqipqfmpqqlJTU6Pm7d+/X+FwWNnZ2VHzs7Oz9e677zZY/quvvqpVq1Zp69atLbbOLYmMKQAAAACcJnJzc9WpU6fItGTJkrjLPHz4sL7zne/owQcfVNeuXVtgLVseGVMAAAAAiKWVnmO6d+9eZWZmRmZ/NlsqSV27dlUwGFRFRUXU/IqKCuXk5Jy0/Pvvv6/du3frsssui8xz3eMDnyUlJWnHjh3q27dvS2yFNTKmAAAAAHCayMzMjJoaapimpKRo2LBhKikpicxzXVclJSUqKCg4afkBAwbo7bff1tatWyPTV7/6VX35y1/W1q1blZub6+k2NQUZUwAAAACIpZUypk1VVFSkadOmafjw4RoxYoSWL1+u6upqzZgxQ5I0depUnXnmmVqyZInS0tJ0/vnnR8VnZWVJ0knz/ULDFAAAAAASzKRJk/Tpp59qwYIFKi8vV15enoqLiyMDIu3Zs0eBQOLcIEvDFAAAAABiaK1ReZtjzpw5mjNnToOvlZaWnjJ2zZo1za/QQzRMAaAhxrULC9vFSZITCNvVWWddpeRaXmEtt9MJhezqk+TUW16ykoJ29cXxK7OxrNN2XeP6RTzJLtbYxgUcqzhJMkG7OgMh+8+lLGMd1/YzEs+62p1DZL2ulvVJrb6uJo5zj2xjw/b7x9Tb1Wm9nZbXPKAl0TAFAAAAgFhOsz6mbU3i3HQMAAAAAGiTyJgCAAAAQCxkTD1FxhQAAAAA4CsypgAAAAAQw+k4Km9bQsYUAAAAAOArMqYAAAAAEAt9TD2VUBnTgwcPasqUKcrMzFRWVpZmzpypI0eOnHL573//++rfv7/S09N19tln6wc/+IEqKyujlnMc56Rp3bp1Xm8OAAAAAEAJljGdMmWKPvnkE23YsEH19fWaMWOGZs+erbVr1za4/Mcff6yPP/5Y9957rwYNGqQPPvhAV111lT7++GM9+eSTUcs+9NBDGjduXOTvrKwsLzcFAAAAQAKhj6m3EqZhun37dhUXF+svf/mLhg8fLkm6//77NX78eN17773q2bPnSTHnn3++/ud//ifyd9++fXXHHXfo29/+tkKhkJKS/rX5WVlZysnJ8X5DALRpJhxu9Tod17WONbaxoZBdXDCOG3WCQbs4x2nd+iQ5AcvttIyzrk+yf08s6zQBy/dDsn4vnbD9Z0TG8pui7WfLj3W1PG+ZeNbVtTxXuq27jVIc53Xb9yOeOm3fS9v9CrSghLmVt6ysTFlZWZFGqSQVFhYqEAho48aNTS6nsrJSmZmZUY1SSbr22mvVtWtXjRgxQqtXr5aJ42QCAAAAoI0xrTC1YwmTMS0vL1f37t2j5iUlJalLly4qLy9vUhn79+/X4sWLNXv27Kj5ixYt0le+8hVlZGToxRdf1DXXXKMjR47oBz/4QaNl1dbWqra2NvJ3VVVVM7YGAAAAAHCC7w3TuXPn6q677jrlMtu3b4+7nqqqKk2YMEGDBg3SbbfdFvXa/PnzI/+/4IILVF1drXvuueeUDdMlS5bo9ttvj3u9AAAAACQARuX1lO8N0xtuuEHTp08/5TJ9+vRRTk6O9u3bFzU/FArp4MGDMfuGHj58WOPGjdMZZ5yhp59+WsnJyadcPj8/X4sXL1Ztba1SU1MbXGbevHkqKiqK/F1VVaXc3NxTlgsAAAAAOJnvDdNu3bqpW7duMZcrKCjQoUOHtHnzZg0bNkyS9PLLL8t1XeXn5zcaV1VVpbFjxyo1NVXPPvus0tLSYta1detWde7cudFGqSSlpqae8nUAAAAAbYfzz8nL8tsz3xumTTVw4ECNGzdOs2bN0sqVK1VfX685c+Zo8uTJkRF5P/roI40ePVqPPPKIRowYoaqqKo0ZM0Y1NTX67//+b1VVVUX6gnbr1k3BYFC///3vVVFRoYsuukhpaWnasGGD7rzzTv3oRz/yc3MBAAAAoN1ImIapJD366KOaM2eORo8erUAgoK9//eu67777Iq/X19drx44dqqmpkSRt2bIlMmJvv379osratWuXevXqpeTkZK1YsUI//OEPZYxRv379tGzZMs2aNav1NgwAAADA6Y0+pp5KqIZply5dtHbt2kZf79WrV9RjXkaNGhXzsS/jxo3TuHHjWmwdAQAAAADNk1ANUwAAAADwg2OOT16W357RMAWAhsS426Jxrn2VIbtYEw5Y1+kEQraBVmFxXXMDdsNCOI7lcBIB+/1qvZ0+rKst+/3a+sN7xHXcuXbRse7Yarw++3OINR/W1Xr/2LJ8HyVJpvXfE2O7vrbr2trvB9AAGqYAAAAAEAt9TD3V+j+xAgAAAADwb8iYAgAAAEBTtPOsppfImAIAAAAAfEXGFAAAAABiYFReb5ExBQAAAAD4iowpAAAAAMTCqLyeImMKAAAAAPAVGVMAAAAAiIE+pt4iYwoAAAAA8BUZUwBoScaHnztN2D7UbcH1OE218x+gAQAthT6mniJjCgAAAADwFRlTAAAAAIiBPqbeImMKAAAAAPAVGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIhYypp8iYAgAAAAB8RcYUAAAAAGJgVF5vkTEFAAAAAPiKjCkAAAAAxEIfU0+RMQUAAAAA+IqMKQAAAADE4Bgjx3iX1vSy7ERAxhQAAAAA4CsypgAAAAAQC31MPUXGFAAAAADgKzKmAAAAABADzzH1Fg1TAAAAAIiFW3k9xa28AAAAAABfkTEFAAAAgBi4lddbZEwBAAAAAL4iYwoAAAAAsdDH1FNkTAEAAAAAviJjCgAAAAAx0MfUW2RMAQAAAAC+ImMKAAAAALHQx9RTZEwBAAAAAL4iYwoAAAAATdDe+4F6iYwpAAAAAMBXZEwBAAAAIBZjjk9elt+OkTEFAAAAAPiKjCkAAAAAxMBzTL1FxhQAAAAA4CsypgAAAAAQC88x9RQZUwAAAACAr8iYAgAAAEAMjnt88rL89oyMKQAAAADAV2RMAQAAACAW+ph6iowpAAAAAMBXZEwBAAAAIAaeY+otMqYAAAAAAF8lVMP04MGDmjJlijIzM5WVlaWZM2fqyJEjp4wZNWqUHMeJmq666qqoZfbs2aMJEyYoIyND3bt314033qhQKOTlpgAAAABIJMZ4P7VjCXUr75QpU/TJJ59ow4YNqq+v14wZMzR79mytXbv2lHGzZs3SokWLIn9nZGRE/h8OhzVhwgTl5OTotdde0yeffKKpU6cqOTlZd955p2fbAgAAAAA4LmEaptu3b1dxcbH+8pe/aPjw4ZKk+++/X+PHj9e9996rnj17NhqbkZGhnJycBl978cUX9de//lUvvfSSsrOzlZeXp8WLF+vmm2/WbbfdppSUFE+2BwAAAEDioI+ptxLmVt6ysjJlZWVFGqWSVFhYqEAgoI0bN54y9tFHH1XXrl11/vnna968eaqpqYkqd/DgwcrOzo7MGzt2rKqqqrRt27ZGy6ytrVVVVVXUBAAAAABovoTJmJaXl6t79+5R85KSktSlSxeVl5c3GnfllVfqnHPOUc+ePfXWW2/p5ptv1o4dO/TUU09Fyv33RqmkyN+nKnfJkiW6/fbbbTcHAAAAQCLhOaae8r1hOnfuXN11112nXGb79u3W5c+ePTvy/8GDB6tHjx4aPXq03n//ffXt29e63Hnz5qmoqCjyd1VVlXJzc63LAwAAAID2yveG6Q033KDp06efcpk+ffooJydH+/bti5ofCoV08ODBRvuPNiQ/P1+StHPnTvXt21c5OTnatGlT1DIVFRWSdMpyU1NTlZqa2uR6AQAAACQu+ph6y/eGabdu3dStW7eYyxUUFOjQoUPavHmzhg0bJkl6+eWX5bpupLHZFFu3bpUk9ejRI1LuHXfcoX379kVuFd6wYYMyMzM1aNCgZm4NAAAAAKC5Embwo4EDB2rcuHGaNWuWNm3apD//+c+aM2eOJk+eHBmR96OPPtKAAQMiGdD3339fixcv1ubNm7V79249++yzmjp1qr70pS9pyJAhkqQxY8Zo0KBB+s53vqP/+7//0wsvvKBbb71V1157LRlRAAAAAMfxHFNPJUzDVDo+uu6AAQM0evRojR8/XhdffLEeeOCByOv19fXasWNHZNTdlJQUvfTSSxozZowGDBigG264QV//+tf1+9//PhITDAb13HPPKRgMqqCgQN/+9rc1derUqOeeAgAAAAC84/utvM3RpUsXrV27ttHXe/XqJfNvvzTk5ubqf//3f2OWe84552j9+vUtso4AAAAA2h76mHoroTKmAAAAAIC2J6EypgAAAADgC55j6ikypgAAAAAAX5ExBQAAAIAY6GPqLTKmAAAAAABfkTEFAAAAgFhcc3zysvx2jIwpAAAAAMBXZEwBAAAAIBZG5fUUGVMAAAAAgK/ImAIAAABADI48HpXXu6ITAhlTAAAAAICvaJgCAAAAQCzGeD8104oVK9SrVy+lpaUpPz9fmzZtanTZBx98UF/84hfVuXNnde7cWYWFhadcvrXRMAUAAACABPPYY4+pqKhICxcu1JYtWzR06FCNHTtW+/bta3D50tJSXXHFFfrjH/+osrIy5ebmasyYMfroo49aec0bRsMUAAAAAGJwjPdTcyxbtkyzZs3SjBkzNGjQIK1cuVIZGRlavXp1g8s/+uijuuaaa5SXl6cBAwbo17/+tVzXVUlJSQvsnfjRMAUAAACA00RVVVXUVFtbe9IydXV12rx5swoLCyPzAoGACgsLVVZW1qR6ampqVF9fry5durTYuseDhikAAAAAxGJaYZKUm5urTp06RaYlS5actCr79+9XOBxWdnZ21Pzs7GyVl5c3aXNuvvlm9ezZM6px6yceFwMAAAAAp4m9e/cqMzMz8ndqamqL17F06VKtW7dOpaWlSktLa/HybdAwBQAAAIAYHGPkWIyc25zyJSkzMzOqYdqQrl27KhgMqqKiImp+RUWFcnJyThl77733aunSpXrppZc0ZMiQ+Fa6BXErLwAAAAAkkJSUFA0bNixq4KITAxkVFBQ0Gnf33Xdr8eLFKi4u1vDhw1tjVZuMjCkAAAAAxOL+c/Ky/GYoKirStGnTNHz4cI0YMULLly9XdXW1ZsyYIUmaOnWqzjzzzEgf1bvuuksLFizQ2rVr1atXr0hf1I4dO6pjx44tuik2aJgCAAAAQIKZNGmSPv30Uy1YsEDl5eXKy8tTcXFxZECkPXv2KBD41w2yv/zlL1VXV6dvfOMbUeUsXLhQt912W2uueoNomAIAAABADK3Vx7Q55syZozlz5jT4WmlpadTfu3fvtlir1kMfUwAAAACAr8iYAgAAAEAs//asUc/Kb8fImAIAAAAAfEXGFAAAAABiMeb45GX57RgZUwAAAACAr8iYAgAAAEAMjjk+eVl+e0bGFAAAAADgKzKmAAAAABALfUw9RcYUAAAAAOArMqYAAAAAEIPjHp+8LL89I2MKAAAAAPAVGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIxfxz8rL8doyMKQAAAADAV2RMAQAAACAGxxg5HvYD9bLsREDGFAAAAADgKzKmAAAAABALo/J6iowpAAAAAMBXZEwBAAAAIBYjyfW4/HaMjCkAAAAAwFdkTAEAAAAgBkbl9RYZUwAAAACAr8iYAgAAAEAsRh6Pyutd0YmAjCkAAAAAwFdkTAEAAAAgFp5j6ikypgAAAAAAX5ExBQAAAIBYXEmOx+W3Y2RMAQAAAAC+ImMKAAAAADHwHFNvJVTG9ODBg5oyZYoyMzOVlZWlmTNn6siRI40uv3v3bjmO0+D0xBNPRJZr6PV169a1xiYBAAAASAQnBj/ycmrHEipjOmXKFH3yySfasGGD6uvrNWPGDM2ePVtr165tcPnc3Fx98sknUfMeeOAB3XPPPbr00kuj5j/00EMaN25c5O+srKwWX38AAAAAwMkSpmG6fft2FRcX6y9/+YuGDx8uSbr//vs1fvx43XvvverZs+dJMcFgUDk5OVHznn76aX3rW99Sx44do+ZnZWWdtCwAAAAASOJxMR5LmFt5y8rKlJWVFWmUSlJhYaECgYA2btzYpDI2b96srVu3aubMmSe9du2116pr164aMWKEVq9eLRPjwKitrVVVVVXUBAAAAABovoTJmJaXl6t79+5R85KSktSlSxeVl5c3qYxVq1Zp4MCBGjlyZNT8RYsW6Stf+YoyMjL04osv6pprrtGRI0f0gx/8oNGylixZottvv735GwIAAAAg8ZAx9ZTvGdO5c+c2OkDRiendd9+Nu56jR49q7dq1DWZL58+fr//4j//QBRdcoJtvvlk33XST7rnnnlOWN2/ePFVWVkamvXv3xr2OAAAAANAe+Z4xveGGGzR9+vRTLtOnTx/l5ORo3759UfNDoZAOHjzYpL6hTz75pGpqajR16tSYy+bn52vx4sWqra1Vampqg8ukpqY2+hoAAACANsaV5Hhcfjvme8O0W7du6tatW8zlCgoKdOjQIW3evFnDhg2TJL388styXVf5+fkx41etWqWvfvWrTapr69at6ty5Mw1PAAAAAGgFvjdMm2rgwIEaN26cZs2apZUrV6q+vl5z5szR5MmTIyPyfvTRRxo9erQeeeQRjRgxIhK7c+dOvfLKK1q/fv1J5f7+979XRUWFLrroIqWlpWnDhg2688479aMf/ajVtg0AAADA6c0xRo6H/UC9LDsRJEzDVJIeffRRzZkzR6NHj1YgENDXv/513XfffZHX6+vrtWPHDtXU1ETFrV69WmeddZbGjBlzUpnJyclasWKFfvjDH8oYo379+mnZsmWaNWuW59sDAAAAAJAcE+u5KGiSqqoqderUSaN0uZKcZL9XBwAAADgthUy9SvU7VVZWKjMz0+/VienE9/zCc3+opKB3Xf1C4Vq99N5/Jcx+aWm+j8oLAAAAAGjfEupWXgAAAADwhWskx8ObTd32fSMrGVMAAAAAgK/ImAIAAABALMYcn7wsvx0jYwoAAAAA8BUZUwAAAACIyeOMqciYAgAAAADgGzKmAAAAABALfUw9RcYUAAAAAOArMqYAAAAAEItr5Gk/UJ5jCgAAAACAf8iYAgAAAEAsxj0+eVl+O0bGFAAAAADgKzKmAAAAABALo/J6iowpAAAAAMBXZEwBAAAAIBZG5fUUGVMAAAAAgK/ImAIAAABALPQx9RQZUwAAAACAr8iYAgAAAEAsRh5nTL0rOhGQMQUAAAAA+IqMKQAAAADEQh9TT5ExBQAAAAD4iowpAAAAAMTiupJcj8tvv8iYAgAAAAB8RcYUAAAAAGKhj6mnyJgCAAAAAHxFxhQAAAAAYiFj6ikypgAAAAAAX5ExBQAAAIBYXCPJw6ymS8YUAAAAAADfkDEFAAAAgBiMcWWMd88a9bLsREDGFAAAAADgKzKmAAAAABCLMd72A2VUXgAAAAAA/EPGFAAAAABiMR6PykvGFAAAAAAA/5AxBQAAAIBYXFdyPBw5l1F5AQAAAADwDxlTAAAAAIiFPqaeImMKAAAAAPAVGVMAAAAAiMG4royHfUwNfUwBAAAAAPAPGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIxTWSQ8bUK2RMAQAAAAC+ImMKAAAAALEYI8nDkXPJmAIAAAAA4B8ypgAAAAAQg3GNjId9TA0ZUwAAAAAA/EPGFAAAAABiMa687WPqYdkJIKEypnfccYdGjhypjIwMZWVlNSnGGKMFCxaoR48eSk9PV2Fhod57772oZQ4ePKgpU6YoMzNTWVlZmjlzpo4cOeLBFgAAAABAy1ixYoV69eqltLQ05efna9OmTadc/oknntCAAQOUlpamwYMHa/369a20prElVMO0rq5O3/zmN3X11Vc3Oebuu+/Wfffdp5UrV2rjxo3q0KGDxo4dq2PHjkWWmTJlirZt26YNGzboueee0yuvvKLZs2d7sQkAAAAAEpBxjedTczz22GMqKirSwoULtWXLFg0dOlRjx47Vvn37Glz+tdde0xVXXKGZM2fqzTff1MSJEzVx4kS98847LbF74uaYBOxlu2bNGl1//fU6dOjQKZczxqhnz5664YYb9KMf/UiSVFlZqezsbK1Zs0aTJ0/W9u3bNWjQIP3lL3/R8OHDJUnFxcUaP368PvzwQ/Xs2bNJ61RVVaVOnTpplC5XkpMc1/YBAAAAbVXI1KtUv1NlZaUyMzP9Xp2YIt/znf/P0+/5IVOvUvN0k/dLfn6+vvCFL+jnP/+5JMl1XeXm5ur73/++5s6de9LykyZNUnV1tZ577rnIvIsuukh5eXlauXJly22IpYTKmDbXrl27VF5ersLCwsi8Tp06KT8/X2VlZZKksrIyZWVlRRqlklRYWKhAIKCNGze2+joDAAAAOA0Z1/upierq6rR58+aodk4gEFBhYWGknfNZZWVlUctL0tixYxtdvrW16cGPysvLJUnZ2dlR87OzsyOvlZeXq3v37lGvJyUlqUuXLpFlGlJbW6va2trI35WVlZKkkOqlhMtBAwAAAK0jpHpJifd4FK+/55/YL1VVVVHzU1NTlZqaGjVv//79CofDDbZz3n333QbLLy8vP2W7yG++N0znzp2ru+6665TLbN++XQMGDGilNWqaJUuW6Pbbbz9p/qs6fToQAwAAAKerAwcOqFOnTn6vRkwpKSnKycnRq+Xef8/v2LGjcnNzo+YtXLhQt912m+d1+833hukNN9yg6dOnn3KZPn36WJWdk5MjSaqoqFCPHj0i8ysqKpSXlxdZ5rMdhEOhkA4ePBiJb8i8efNUVFQU+fvQoUM655xztGfPnoT4gCWiqqoq5ebmau/evQnRHyFRsZ9bB/u5dbCfvcc+bh3s59bBfm4dlZWVOvvss9WlSxe/V6VJ0tLStGvXLtXV1XlelzFGjuNEzftstlSSunbtqmAwqIqKiqj5FRUVjbZhcnJymrV8a/O9YdqtWzd169bNk7J79+6tnJwclZSURBqiVVVV2rhxY2Rk34KCAh06dEibN2/WsGHDJEkvv/yyXNdVfn5+o2U3lFKXjvdh5UTmrczMTPZxK2A/tw72c+tgP3uPfdw62M+tg/3cOgKBxBnuJi0tTWlpaX6vRkRKSoqGDRumkpISTZw4UdLxwY9KSko0Z86cBmMKCgpUUlKi66+/PjJvw4YNKigoaIU1ji1xjgZJe/bs0datW7Vnzx6Fw2Ft3bpVW7dujXrm6IABA/T0009LkhzH0fXXX6+f/OQnevbZZ/X2229r6tSp6tmzZ+QNHDhwoMaNG6dZs2Zp06ZN+vOf/6w5c+Zo8uTJTR6RFwAAAABaU1FRkR588EE9/PDD2r59u66++mpVV1drxowZkqSpU6dq3rx5keWvu+46FRcX66c//aneffdd3XbbbXrjjTcabci2Nt8zps2xYMECPfzww5G/L7jgAknSH//4R40aNUqStGPHjshARJJ00003qbq6WrNnz9ahQ4d08cUXq7i4OOoXj0cffVRz5szR6NGjFQgE9PWvf1333Xdf62wUAAAAADTTpEmT9Omnn2rBggUqLy9XXl6eiouLIwMc7dmzJyorPXLkSK1du1a33nqrbrnlFp177rl65plndP755/u1CVESqmG6Zs0arVmz5pTLfHZ0L8dxtGjRIi1atKjRmC5dumjt2rVxrVtqaqoWLlzY4O29aBns49bBfm4d7OfWwX72Hvu4dbCfWwf7uXWwn1vOnDlzGs14lpaWnjTvm9/8pr75zW96vFZ2HJNo4zQDAAAAANqUhOpjCgAAAABoe2iYAgAAAAB8RcMUAAAAAOArGqZNdMcdd2jkyJHKyMhQVlZWk2KMMVqwYIF69Oih9PR0FRYW6r333ota5uDBg5oyZYoyMzOVlZWlmTNnRj3+pr1p7v7YvXu3HMdpcHriiSciyzX0+rp161pjk047NsfcqFGjTtp/V111VdQye/bs0YQJE5SRkaHu3bvrxhtvVCgU8nJTTmvN3c8HDx7U97//ffXv31/p6ek6++yz9YMf/CBqlHGJY3nFihXq1auX0tLSlJ+fr02bNp1y+SeeeEIDBgxQWlqaBg8erPXr10e93pTzdHvUnP384IMP6otf/KI6d+6szp07q7Cw8KTlp0+fftJxO27cOK8347TXnP28Zs2ak/bhZ5+pyPF8subs44audY7jaMKECZFlOJZP9sorr+iyyy5Tz5495TiOnnnmmZgxpaWluvDCC5Wamqp+/fo1OLhpc8/3aAMMmmTBggVm2bJlpqioyHTq1KlJMUuXLjWdOnUyzzzzjPm///s/89WvftX07t3bHD16NLLMuHHjzNChQ83rr79u/vSnP5l+/fqZK664wqOtOP01d3+EQiHzySefRE2333676dixozl8+HBkOUnmoYceilru39+H9sTmmLvkkkvMrFmzovZfZWVl5PVQKGTOP/98U1hYaN58802zfv1607VrVzNv3jyvN+e01dz9/Pbbb5uvfe1r5tlnnzU7d+40JSUl5txzzzVf//rXo5Zrz8fyunXrTEpKilm9erXZtm2bmTVrlsnKyjIVFRUNLv/nP//ZBINBc/fdd5u//vWv5tZbbzXJycnm7bffjizTlPN0e9Pc/XzllVeaFStWmDfffNNs377dTJ8+3XTq1Ml8+OGHkWWmTZtmxo0bF3XcHjx4sLU26bTU3P380EMPmczMzKh9WF5eHrUMx3O05u7jAwcORO3fd955xwSDQfPQQw9FluFYPtn69evNj3/8Y/PUU08ZSebpp58+5fJ///vfTUZGhikqKjJ//etfzf3332+CwaApLi6OLNPc9w5tAw3TZnrooYea1DB1Xdfk5OSYe+65JzLv0KFDJjU11fz2t781xhjz17/+1Ugyf/nLXyLL/OEPfzCO45iPPvqoxdf9dNdS+yMvL89897vfjZrXlBNle2C7jy+55BJz3XXXNfr6+vXrTSAQiPqS9Mtf/tJkZmaa2traFln3RNJSx/Ljjz9uUlJSTH19fWReez6WR4wYYa699trI3+Fw2PTs2dMsWbKkweW/9a1vmQkTJkTNy8/PN//v//0/Y0zTztPtUXP382eFQiFzxhlnmIcffjgyb9q0aebyyy9v6VVNaM3dz7G+f3A8nyzeY/m//uu/zBlnnGGOHDkSmcexfGpNuUbddNNN5rzzzouaN2nSJDN27NjI3/G+d0hM3MrrkV27dqm8vFyFhYWReZ06dVJ+fr7KysokSWVlZcrKytLw4cMjyxQWFioQCGjjxo2tvs5+a4n9sXnzZm3dulUzZ8486bVrr71WXbt21YgRI7R69eqTnnnbHsSzjx999FF17dpV559/vubNm6eampqocgcPHhx5oLMkjR07VlVVVdq2bVvLb8hprqU+25WVlcrMzFRSUvQjp9vjsVxXV6fNmzdHnVMDgYAKCwsj59TPKisri1peOn5cnli+Kefp9sZmP39WTU2N6uvr1aVLl6j5paWl6t69u/r376+rr75aBw4caNF1TyS2+/nIkSM655xzlJubq8svvzzq/MrxHK0ljuVVq1Zp8uTJ6tChQ9R8juX4xDo3t8R7h8SUFHsR2CgvL5ekqC/qJ/4+8Vp5ebm6d+8e9XpSUpK6dOkSWaY9aYn9sWrVKg0cOFAjR46Mmr9o0SJ95StfUUZGhl588UVdc801OnLkiH7wgx+02PonAtt9fOWVV+qcc85Rz5499dZbb+nmm2/Wjh079NRTT0XKbehYP/Fae9MSx/L+/fu1ePFizZ49O2p+ez2W9+/fr3A43OBx9u677zYY09hx+e/n4BPzGlumvbHZz5918803q2fPnlFfKseNG6evfe1r6t27t95//33dcsstuvTSS1VWVqZgMNii25AIbPZz//79tXr1ag0ZMkSVlZW69957NXLkSG3btk1nnXUWx/NnxHssb9q0Se+8845WrVoVNZ9jOX6NnZurqqp09OhR/eMf/4j7PITE1K4bpnPnztVdd911ymW2b9+uAQMGtNIatU1N3c/xOnr0qNauXav58+ef9Nq/z7vgggtUXV2te+65p818mfd6H/9742jw4MHq0aOHRo8erffff199+/a1LjfRtNaxXFVVpQkTJmjQoEG67bbbol5r68cyEtvSpUu1bt06lZaWRg3MM3ny5Mj/Bw8erCFDhqhv374qLS3V6NGj/VjVhFNQUKCCgoLI3yNHjtTAgQP1q1/9SosXL/ZxzdqmVatWafDgwRoxYkTUfI5lwDvtumF6ww03aPr06adcpk+fPlZl5+TkSJIqKirUo0ePyPyKigrl5eVFltm3b19UXCgU0sGDByPxbUFT93O8++PJJ59UTU2Npk6dGnPZ/Px8LV68WLW1tUpNTY25/OmutfbxCfn5+ZKknTt3qm/fvsrJyTlptLyKigpJ4lj+p6bu58OHD2vcuHE644wz9PTTTys5OfmUy7e1Y7kxXbt2VTAYjBxXJ1RUVDS6T3Nyck65fFPO0+2NzX4+4d5779XSpUv10ksvaciQIadctk+fPuratat27tzZLr/Mx7OfT0hOTtYFF1ygnTt3SuJ4/qx49nF1dbXWrVunRYsWxaynvR/LNho7N2dmZio9PV3BYDDuzwcSU7vuY9qtWzcNGDDglFNKSopV2b1791ZOTo5KSkoi86qqqrRx48bIL54FBQU6dOiQNm/eHFnm5Zdfluu6kS/+bUFT93O8+2PVqlX66le/qm7dusVcduvWrercuXOb+SLfWvv4hK1bt0pS5MtPQUGB3n777ajG2IYNG5SZmalBgwa1zEaeBrzez1VVVRozZoxSUlL07LPPnvQoiIa0tWO5MSkpKRo2bFjUOdV1XZWUlERlkf5dQUFB1PLS8ePyxPJNOU+3Nzb7WZLuvvtuLV68WMXFxVF9qxvz4Ycf6sCBA1ENqPbEdj//u3A4rLfffjuyDzmeo8Wzj5944gnV1tbq29/+dsx62vuxbCPWubklPh9IUH6PvpQoPvjgA/Pmm29GHkXy5ptvmjfffDPqkST9+/c3Tz31VOTvpUuXmqysLPO73/3OvPXWW+byyy9v8HExF1xwgdm4caN59dVXzbnnntvuHxdzqv3x4Ycfmv79+5uNGzdGxb333nvGcRzzhz/84aQyn332WfPggw+at99+27z33nvmF7/4hcnIyDALFizwfHtOR83dxzt37jSLFi0yb7zxhtm1a5f53e9+Z/r06WO+9KUvRWJOPC5mzJgxZuvWraa4uNh069at3T8upjn7ubKy0uTn55vBgwebnTt3Rj2KIBQKGWM4ltetW2dSU1PNmjVrzF//+lcze/Zsk5WVFRkN+jvf+Y6ZO3duZPk///nPJikpydx7771m+/btZuHChQ0+LibWebq9ae5+Xrp0qUlJSTFPPvlk1HF74vp4+PBh86Mf/ciUlZWZXbt2mZdeeslceOGF5txzzzXHjh3zZRtPB83dz7fffrt54YUXzPvvv282b95sJk+ebNLS0sy2bdsiy3A8R2vuPj7h4osvNpMmTTppPsdyww4fPhz5XizJLFu2zLz55pvmgw8+MMYYM3fuXPOd73wnsvyJx8XceOONZvv27WbFihUNPi7mVO8d2iYapk00bdo0I+mk6Y9//GNkGf3z+YInuK5r5s+fb7Kzs01qaqoZPXq02bFjR1S5Bw4cMFdccYXp2LGjyczMNDNmzIhq7LY3sfbHrl27Ttrvxhgzb948k5uba8Lh8Ell/uEPfzB5eXmmY8eOpkOHDmbo0KFm5cqVDS7bHjR3H+/Zs8d86UtfMl26dDGpqammX79+5sYbb4x6jqkxxuzevdtceumlJj093XTt2tXccMMNUY85aW+au5//+Mc/NniOkWR27dpljOFYNsaY+++/35x99tkmJSXFjBgxwrz++uuR1y655BIzbdq0qOUff/xx8/nPf96kpKSY8847zzz//PNRrzflPN0eNWc/n3POOQ0etwsXLjTGGFNTU2PGjBljunXrZpKTk80555xjZs2axRdM07z9fP3110eWzc7ONuPHjzdbtmyJKo/j+WTNPWe8++67RpJ58cUXTyqLY7lhjV2/TuzbadOmmUsuueSkmLy8PJOSkmL69OkT9f35hFO9d2ibHGPawXMGAAAAAACnrXbdxxQAAAAA4D8apgAAAAAAX9EwBQAAAAD4ioYpAAAAAMBXNEwBAAAAAL6iYQoAAAAA8BUNUwAAAACAr2iYAgAAAAB8RcMUAAAAAOArGqYAAAAAAF/RMAUAAAAA+IqGKQCgTfntb3+r9PR0ffLJJ5F5M2bM0JAhQ1RZWenjmgEAgMY4xhjj90oAANBSjDHKy8vTl770Jd1///1auHChVq9erddff11nnnmm36sHAAAakOT3CgAA0JIcx9Edd9yhb3zjG8rJydH999+vP/3pTzRKAQA4jZExBQC0SRdeeKG2bdumF198UZdcconfqwMAAE6BPqYAgDanuLhY7777rsLhsLKzs/1eHQAAEAMZUwBAm7JlyxaNGjVKv/rVr7RmzRplZmbqiSee8Hu1AADAKdDHFADQZuzevVsTJkzQLbfcoiuuuEJ9+vRRQUGBtmzZogsvvNDv1QMAAI0gYwoAaBMOHjyokSNHatSoUVq5cmVk/oQJExQOh1VcXOzj2gEAgFOhYQoAAAAA8BWDHwEAAAAAfEXDFAAAAADgKxqmAAAAAABf0TAFAAAAAPiKhikAAAAAwFc0TAEAAAAAvqJhCgAAAADwFQ1TAAAAAICvaJgCAAAAAHxFwxQAAAAA4CsapgAAAAAAX9EwBQAAAAD46v8HhmH0j3fDztkAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 509 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:39.899341Z", + "start_time": "2024-06-09T13:57:39.881504Z" + } + }, "cell_type": "code", "source": [ "import torch\n", @@ -557,13 +814,31 @@ "plt.show()" ], "id": "566631b16fa32330", - "outputs": [], - "execution_count": null + "outputs": [ + { + "ename": "IndexError", + "evalue": "index 36 is out of bounds for axis 0 with size 16", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mIndexError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[510], line 18\u001B[0m\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m k \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(num_pnts):\n\u001B[1;32m 17\u001B[0m xy \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor([X[i, k], Y[i, k]], dtype\u001B[38;5;241m=\u001B[39mtorch\u001B[38;5;241m.\u001B[39mfloat32)\n\u001B[0;32m---> 18\u001B[0m out \u001B[38;5;241m=\u001B[39m \u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxy\u001B[49m\u001B[43m)\u001B[49m\u001B[43m[\u001B[49m\u001B[43midx\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 19\u001B[0m Z[i, k] \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor(out)\n\u001B[1;32m 21\u001B[0m \u001B[38;5;66;03m# Convert tensors to numpy arrays for plotting\u001B[39;00m\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/numpy/tensor.py:186\u001B[0m, in \u001B[0;36mtensor.__getitem__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 185\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m__getitem__\u001B[39m(\u001B[38;5;28mself\u001B[39m, \u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[0;32m--> 186\u001B[0m item \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43msuper\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[38;5;21;43m__getitem__\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 188\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(item, tensor):\n\u001B[1;32m 189\u001B[0m item \u001B[38;5;241m=\u001B[39m tensor(item, requires_grad\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrequires_grad)\n", + "\u001B[0;31mIndexError\u001B[0m: index 36 is out of bounds for axis 0 with size 16" + ] + } + ], + "execution_count": 510 }, { "cell_type": "code", "id": "69ff92d61130136a", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T13:57:39.900118Z", + "start_time": "2024-06-09T13:57:39.900072Z" + } + }, "source": [ "num_pnts = 500\n", "xvals = torch.linspace(-1.0, 1.0, num_pnts).unsqueeze(-1)\n", From 7d4df9ef70f93808f7eb30e25c6a9e561f9df774 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 18:22:35 +0200 Subject: [PATCH 05/21] fix (hat_basis): less or equal out of bounds --- qulearn/hat_basis.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index 50a1eb4..ae3b2cb 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -42,8 +42,8 @@ def position(self, x: Tensor) -> Tensor: :rtype: Tensor """ - left_of_a = x < self.a - right_of_b = x > self.b + left_of_a = x <= self.a + right_of_b = x >= self.b within_range = torch.logical_not(torch.logical_or(left_of_a, right_of_b)) position = torch.zeros_like(x) From 2baab713de315796fc1bcfd57c25a3dd26a70006 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 18:23:32 +0200 Subject: [PATCH 06/21] wip: try zorder models --- scratch/scratch5.ipynb | 468 +++++++++++------------------------------ 1 file changed, 124 insertions(+), 344 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 13577ff..352d98e 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.058555Z", - "start_time": "2024-06-09T13:57:37.055651Z" + "end_time": "2024-06-09T16:18:31.852420Z", + "start_time": "2024-06-09T16:18:31.849097Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 496 + "execution_count": 203 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.076765Z", - "start_time": "2024-06-09T13:57:37.071536Z" + "end_time": "2024-06-09T16:18:31.861245Z", + "start_time": "2024-06-09T16:18:31.855696Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 497 + "execution_count": 204 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.083534Z", - "start_time": "2024-06-09T13:57:37.077829Z" + "end_time": "2024-06-09T16:18:31.869517Z", + "start_time": "2024-06-09T16:18:31.862648Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[ 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619\n", - " 2.0661619 2.0661619 -0.13385788 -0.13385788 -0.13385788 -0.13385788\n", - " -0.13385788 -0.13385788 -0.13385788 -0.13385788 1.3508455 1.3508455\n", - " 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455\n", - " -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748\n", - " -0.09869748 -0.09869748 -2.4222825 -2.4222825 -2.4222825 -2.4222825\n", - " -2.4222825 -2.4222825 -2.4222825 -2.4222825 0.1644736 0.1644736\n", - " 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736\n", - " -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539\n", - " -1.5426539 -1.5426539 0.12757136 0.12757136 0.12757136 0.12757136\n", - " 0.12757136 0.12757136 0.12757136 0.12757136]\n", + "[-1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006\n", + " -1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.6198751 -1.6198751\n", + " -1.6198751 -1.6198751 -1.6198751 -1.6198751 0.9217036 0.9217036\n", + " 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036\n", + " -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684\n", + " -1.0026684 -1.0026684 1.3207638 1.3207638 1.3207638 1.3207638\n", + " 1.3207638 1.3207638 1.3207638 1.3207638 -0.23222709 -0.23222709\n", + " -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709\n", + " -1.860207 -1.860207 -1.860207 -1.860207 -1.860207 -1.860207\n", + " -1.860207 -1.860207 0.46878242 0.46878242 0.46878242 0.46878242\n", + " 0.46878242 0.46878242 0.46878242 0.46878242]\n", "=========\n", - "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", - " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", - " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", - " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -1.5426539 -1.5426539 0.12757136 0.12757136]\n", + "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", + " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", + " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", + " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", + " -1.860207 -1.860207 0.46878242 0.46878242]\n", "=========\n", - "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", - " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", - " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", - " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -1.5426539 -1.5426539 0.12757136 0.12757136]\n", + "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", + " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", + " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", + " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", + " -1.860207 -1.860207 0.46878242 0.46878242]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 498 + "execution_count": 205 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.093027Z", - "start_time": "2024-06-09T13:57:37.091040Z" + "end_time": "2024-06-09T16:18:31.873308Z", + "start_time": "2024-06-09T16:18:31.871196Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 499 + "execution_count": 206 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.106369Z", - "start_time": "2024-06-09T13:57:37.093989Z" + "end_time": "2024-06-09T16:18:31.898163Z", + "start_time": "2024-06-09T16:18:31.895065Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[ 2.0661619 -0.13385788 1.3508455 -0.09869748 -2.4222825 0.1644736\n", - " -1.5426539 0.12757136]\n", + "[-1.2320006 -1.6198751 0.9217036 -1.0026684 1.3207638 -0.23222709\n", + " -1.860207 0.46878242]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[ 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619 2.0661619\n", - " 2.0661619 2.0661619 -0.13385788 -0.13385788 -0.13385788 -0.13385788\n", - " -0.13385788 -0.13385788 -0.13385788 -0.13385788 1.3508455 1.3508455\n", - " 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455 1.3508455\n", - " -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748 -0.09869748\n", - " -0.09869748 -0.09869748 -2.4222825 -2.4222825 -2.4222825 -2.4222825\n", - " -2.4222825 -2.4222825 -2.4222825 -2.4222825 0.1644736 0.1644736\n", - " 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736 0.1644736\n", - " -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539 -1.5426539\n", - " -1.5426539 -1.5426539 0.12757136 0.12757136 0.12757136 0.12757136\n", - " 0.12757136 0.12757136 0.12757136 0.12757136]\n", - "[ 2.0661619 2.0661619 -0.13385788 -0.13385788 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 1.3508455 1.3508455 -0.09869748 -0.09869748\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 2.0661619 2.0661619\n", - " -0.13385788 -0.13385788 2.0661619 2.0661619 -0.13385788 -0.13385788\n", - " 1.3508455 1.3508455 -0.09869748 -0.09869748 1.3508455 1.3508455\n", - " -0.09869748 -0.09869748 -2.4222825 -2.4222825 0.1644736 0.1644736\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -1.5426539 -1.5426539\n", - " 0.12757136 0.12757136 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -2.4222825 -2.4222825 0.1644736 0.1644736 -2.4222825 -2.4222825\n", - " 0.1644736 0.1644736 -1.5426539 -1.5426539 0.12757136 0.12757136\n", - " -1.5426539 -1.5426539 0.12757136 0.12757136]\n" + "[-1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006\n", + " -1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.6198751 -1.6198751\n", + " -1.6198751 -1.6198751 -1.6198751 -1.6198751 0.9217036 0.9217036\n", + " 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036\n", + " -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684\n", + " -1.0026684 -1.0026684 1.3207638 1.3207638 1.3207638 1.3207638\n", + " 1.3207638 1.3207638 1.3207638 1.3207638 -0.23222709 -0.23222709\n", + " -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709\n", + " -1.860207 -1.860207 -1.860207 -1.860207 -1.860207 -1.860207\n", + " -1.860207 -1.860207 0.46878242 0.46878242 0.46878242 0.46878242\n", + " 0.46878242 0.46878242 0.46878242 0.46878242]\n", + "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", + " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", + " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", + " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", + " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", + " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", + " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", + " -1.860207 -1.860207 0.46878242 0.46878242]\n" ] } ], - "execution_count": 500 + "execution_count": 207 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.118303Z", - "start_time": "2024-06-09T13:57:37.115322Z" + "end_time": "2024-06-09T16:18:31.902408Z", + "start_time": "2024-06-09T16:18:31.899363Z" } }, "source": [ @@ -323,15 +323,15 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 501 + "execution_count": 208 }, { "cell_type": "code", "id": "47ef065abf26f244", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.127311Z", - "start_time": "2024-06-09T13:57:37.120930Z" + "end_time": "2024-06-09T16:18:31.915431Z", + "start_time": "2024-06-09T16:18:31.909037Z" } }, "source": [ @@ -425,7 +425,7 @@ "\n", " mps1 = self.hbmps.mps_hatbasis(first1, second1, position1)\n", " mps2 = self.hbmps.mps_hatbasis(first2, second2, position2)\n", - "\n", + " \n", " if self.zorder:\n", " mps = zkron2(mps2, mps1)\n", " else:\n", @@ -474,26 +474,26 @@ " return self.norm" ], "outputs": [], - "execution_count": 502 + "execution_count": 209 }, { "cell_type": "code", "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.133366Z", - "start_time": "2024-06-09T13:57:37.128089Z" + "end_time": "2024-06-09T16:18:31.931949Z", + "start_time": "2024-06-09T16:18:31.926419Z" } }, "source": [ - "num_qubits = 2\n", + "num_qubits = 3\n", "num_nodes = 2**num_qubits\n", "a = -1.0\n", "b = 1.0\n", "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", "\n", - "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False)\n", - "obs = qml.PauliZ(0)\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=False)\n", + "obs = qml.PauliZ(1)\n", "model = MeasurementLayer(embed, observables=obs, measurement_type=MeasurementType.Expectation)\n", "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "x = torch.tensor([0.0, 0.0])\n", @@ -504,101 +504,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ───────────────╭U(M2)─┤ \n", - "1: ────────╭U(M1)─╰U(M2)─┤ \n", - "2: ─╭U(M0)─╰U(M1)────────┤ \n", - "3: ─╰U(M0)───────────────┤ \n" - ] - } - ], - "execution_count": 503 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.138782Z", - "start_time": "2024-06-09T13:57:37.133910Z" - } - }, - "cell_type": "code", - "source": [ - "import numpy as np\n", - "\n", - "num_qubits = 2\n", - "num_nodes = 2**num_qubits\n", - "a = -1.0\n", - "b = 1.0\n", - "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", - "\n", - "embed = HatBasisQFE(wires=num_qubits, basis=hat_basis, sqrt=False, normalize=False)\n", - "\n", - "dev = qml.device(\"default.qubit\", wires=num_qubits)\n", - "@qml.qnode(dev)\n", - "def circuit(x):\n", - " embed.circuit(x)\n", - " return np.real(qml.state())\n", - "\n", - "\n", - "x = torch.tensor([0.15])\n", - "out = circuit(x)\n", - "out = np.real(out)\n", - "print(out)" - ], - "id": "3068b30bd9e6ee63", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0. 0.27500004 0.72499996 0. ]\n" - ] - } - ], - "execution_count": 504 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.142680Z", - "start_time": "2024-06-09T13:57:37.139844Z" - } - }, - "cell_type": "code", - "source": [ - "hbmps = HatBasisMPS(hat_basis)\n", - "x = torch.tensor([-0.333])\n", - "y = torch.tensor([-1.])\n", - "mpsx = hbmps(x)\n", - "mpsy = hbmps(y)\n", - "mps = kron(mpsy, mpsx)\n", - "print(mpsx.numpy().reshape(-1))\n", - "print(mpsy.numpy().reshape(-1))\n", - "print(mps.numpy().reshape(-1))" - ], - "id": "281d58bbae58820a", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00]\n", - "[1. 0. 0. 0.]\n", - "[0.0000000e+00 9.9950004e-01 4.9996376e-04 0.0000000e+00 0.0000000e+00\n", - " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", - " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", - " 0.0000000e+00]\n" + "0: ─────────────────────────────╭U(M3)─┤ \n", + "1: ──────────────────────╭U(M0)─╰U(M3)─┤ \n", + "2: ───────────────╭U(M2)─╰U(M0)────────┤ \n", + "3: ────────╭U(M1)─╰U(M2)───────────────┤ \n", + "4: ─╭U(M0)─╰U(M1)──────────────────────┤ \n", + "5: ─╰U(M0)─────────────────────────────┤ \n" ] } ], - "execution_count": 505 + "execution_count": 210 }, { "cell_type": "code", "id": "93646da4c54dfbff", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.149294Z", - "start_time": "2024-06-09T13:57:37.143233Z" + "end_time": "2024-06-09T16:18:31.939136Z", + "start_time": "2024-06-09T16:18:31.932723Z" } }, "source": [ @@ -610,7 +533,7 @@ "b = 1.0\n", "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", "\n", - "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=False, normalize=False, zorder=True)\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=False)\n", "\n", "dev = qml.device(\"default.qubit\", wires=2*num_qubits)\n", "@qml.qnode(dev)\n", @@ -621,82 +544,27 @@ "x = torch.tensor([-0., -0.])\n", "out = np.real(circuit(x))\n", "print(out)\n", - "print(\"norm: \", np.linalg.norm(out))\n", - "print(out[5])" - ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0. 0. 0. 0.25000003 0. 0.\n", - " 0.25000001 0. 0. 0.24999999 0. 0.\n", - " 0.24999997 0. 0. 0. ]\n", - "norm: 0.5000000039591517\n", - "0.0\n" - ] - } - ], - "execution_count": 506 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.151618Z", - "start_time": "2024-06-09T13:57:37.149815Z" - } - }, - "cell_type": "code", - "source": "print(embed.basis.nonz_vals(x[1]))", - "id": "fb3331067291afc5", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(tensor(0.5000), tensor(0.5000))\n" - ] - } + "print(\"norm: \", np.linalg.norm(out))" ], - "execution_count": 507 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T13:57:37.154773Z", - "start_time": "2024-06-09T13:57:37.152106Z" - } - }, - "cell_type": "code", - "source": [ - "mps1 = embed.mps1\n", - "print(mps1.numpy().reshape(-1))\n", - "mps2 = embed.mps2\n", - "print(mps2.numpy().reshape(-1))\n", - "mps = embed.mps\n", - "print(mps.numpy().reshape(-1))" - ], - "id": "136ef4cd92b91a96", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0. 0.50000006 0.49999997 0. ]\n", - "[0. 0.50000006 0.49999997 0. ]\n", - "[0. 0. 0. 0.25000006 0. 0.\n", - " 0.25 0. 0. 0.25 0. 0.\n", - " 0.24999997 0. 0. 0. ]\n" + "[0. 0. 0. 0. 0. 0.50000007\n", + " 0.50000003 0. 0. 0.50000007 0.50000003 0.\n", + " 0. 0. 0. 0. ]\n", + "norm: 1.000000092212006\n" ] } ], - "execution_count": 508 + "execution_count": 211 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:39.880951Z", - "start_time": "2024-06-09T13:57:37.155358Z" + "end_time": "2024-06-09T16:18:34.055577Z", + "start_time": "2024-06-09T16:18:31.939723Z" } }, "cell_type": "code", @@ -713,7 +581,7 @@ "Z = torch.empty(num_pnts, num_pnts)\n", "\n", "# Evaluate the circuit at each point in the grid and extract the j-th component\n", - "idx = 12\n", + "idx = 3\n", "for i in range(num_pnts):\n", " for k in range(num_pnts):\n", " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", @@ -749,115 +617,23 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABheUlEQVR4nO3de3wU5d3///fs5gyGQIEENMrJclAgCiWG21ZacgPCw8qvJ1BaDqXw9UCrjVXBCihUwUO5qZaWakG0txQPt1qrNIqxua01QgW5VYpULAgeEgRKAgkk2Z3r9wdl25WETa7NZNjk9Xw85gGZnc91zczOzuy1n7mucYwxRgAAAAAA+CTg9woAAAAAANo3GqYAAAAAAF/RMAUAAAAA+IqGKQAAAADAVzRMAQAAAAC+omEKAAAAAPAVDVMAAAAAgK9omAIAAAAAfEXDFAAAAADgKxqmAAAAAABf0TAFALQZ27dv18SJE/Xcc8/p5z//ubp3766zzjpLTz31lN+rBgAAToGGKQCgTSgtLdWwYcP0wQcfKD09Xdddd50mTZqk9PR0XXnllfrwww/9XkUAANAIGqYAgIRXU1Ojb3/72zrnnHP06quvqqysTCkpKfrpT3+qn/zkJ6qtrVVxcbHfqwkAABpBwxQAkPCeeOIJffTRR1q2bJk6dOigN954Q+edd55SUlKUl5cnSTp48KBc19WZZ56piooKf1cYAABESfJ7BQAAiNf69euVlZWl//zP/5QkvfXWWxo1apQk6fDhw5Kkz33ucwoEAvroo4/8Wk0AANAIMqYAgIT3zjvvaODAgUpKStLhw4e1e/duDRkyRJK0Y8cOSdJFF13k5yoCAIBToGEKAEh4lZWVSk9PlyS9/fbbMsZEGqZPP/20+vbtq/POO08PPPCArrzySj9XFQAANIBbeQEACS83N1dvvvmmamtr9dZbb0mShgwZopdeeklPP/20Vq1aJUnatm2bzj//fD9XFQAANICMKQAg4X33u9/VP/7xD1122WV68sknlZGRoTvvvFPjx4/Xt771LU2fPl3S8Ybpeeed5+/KAgCAkzjGGOP3SgAAEK/bbrtNv/jFL/Tpp5/KcRz16tVLs2fP1o033qhgMChJ6tGjh/70pz+pX79+Pq8tAAD4dzRMAQBtyhlnnKFrr71WS5cujZp/8OBBnXXWWTpy5IgCAW4YAgDgdMKVGQDQZuzdu1dHjhzRgAEDTnpt27ZtGjhwII1SAABOQ1ydAQBtxvbt2yWp0YYp/UsBADg90TAFALQZp2qYvvXWWxo6dGhrrxIAAGgC+pgCANq8I0eOaPDgwXr88cf1hS98we/VAQAAn5FwGdNXXnlFl112mXr27CnHcfTMM8/EjCktLdWFF16o1NRU9evXT2vWrDlpmRUrVqhXr15KS0tTfn6+Nm3a1PIrDwBodRs3btTnP/95fe1rX6NRCgDAaSrhGqbV1dUaOnSoVqxY0aTld+3apQkTJujLX/6ytm7dquuvv17f+9739MILL0SWeeyxx1RUVKSFCxdqy5YtGjp0qMaOHat9+/Z5tRkAgFaSn5+vjz/+WD/96U/9XhUAANCIhL6V13EcPf3005o4cWKjy9x88816/vnn9c4770TmTZ48WYcOHVJxcbGk419avvCFL+jnP/+5JMl1XeXm5ur73/++5s6d6+k2AAAAAEB7l3AZ0+YqKytTYWFh1LyxY8eqrKxMklRXV6fNmzdHLRMIBFRYWBhZBgAAAADgnSS/V8Br5eXlys7OjpqXnZ2tqqoqHT16VP/4xz8UDocbXObdd99ttNza2lrV1tZG/nZdVwcPHtTnPvc5OY7TshsBAAAAtBHGGB0+fFg9e/ZMmGdLHzt2THV1dZ7Xk5KSorS0NM/rOR21+YapV5YsWaLbb7/d79UAAAAAEtLevXt11lln+b0aMR07dky9z+mo8n1hz+vKycnRrl272mXjtM03THNyclRRURE1r6KiQpmZmUpPT1cwGFQwGGxwmZycnEbLnTdvnoqKiiJ/V1ZW6uyzz9bFGq8kJbfsRgCAV9rDHR5OYvwaHw8n0A7ex3bCuAk79EfzGNfvNTi9Je4QME0SUr1e1XqdccYZfq9Kk9TV1al8X1gfbO6lzDO8u6ZUHXZ1zrDdqquro2HaFhUUFGj9+vVR8zZs2KCCggJJx9Plw4YNU0lJSWQQJdd1VVJSojlz5jRabmpqqlJTU0+an6RkJTk0TAEkCBqmbQJdSNoO47TtBsm/0DA9tTZ+HPxz8xLt3NXxDEcdz/BunV0l1v5oaQnXMD1y5Ih27twZ+XvXrl3aunWrunTporPPPlvz5s3TRx99pEceeUSSdNVVV+nnP/+5brrpJn33u9/Vyy+/rMcff1zPP/98pIyioiJNmzZNw4cP14gRI7R8+XJVV1drxowZrb59AAAAAE4/YeMq7OFvBuF2fidBwjVM33jjDX35y1+O/H3idtpp06ZpzZo1+uSTT7Rnz57I671799bzzz+vH/7wh/rZz36ms846S7/+9a81duzYyDKTJk3Sp59+qgULFqi8vFx5eXkqLi4+aUAkAAAAAEDLS+jnmJ5Oqqqq1KlTJ43S5dzKCyBxJNhtVFbaw6289DFtM+hjCkltv4+pqVepfqfKykplZmb6vToxnfieX77jbM/7mOb035Mw+6Wltf2rNQAAAADgtJZwt/ICAAAAQGtz5Xo6bJe3pZ/+yJgCAAAAAHxFxhQAWlIgaB1q3U8wnj6UlnVaD/EftN8/Cthtp/W6xtNv03Y7bde1vRwDttw4shCWff2sh/AIh+3ijldqF2fbrzWOfqImbBlr+17G02fTss64hnGxPA6s+yjH0+e3jfeH/XdhYxT2cHu9LDsRkDEFAAAAAPiKjCkAAAAAxODKyJV3WU0vy04EZEwBAAAAAL4iYwoAAAAAMbgyCpMx9QwZUwAAAACAr8iYAgAAAEAM9DH1FhlTAAAAAICvyJgCAAAAQAw8x9RbZEwBAAAAAL4iYwoADXEcu7CAXZwkKRi0qzPJ/lTuWNZpu64KxvF7aGvvn0A862oZa1mniWe/2taZZPd+mGAcnxHLz6XC9lkIx3XtAkNhuzjb+iQ5YctY2zpt65PkhEJWccZ6Gy3fD0kKW8bGsX+s66y33a921cUfnFjcf05elt+ekTEFAAAAAPiKjCkAAAAAxBD2+DmmXpadCMiYAgAAAAB8RcYUAAAAAGIIm7i6rDep/PaMjCkAAAAAwFdkTAEAAAAgBkbl9RYZUwAAAACAr8iYAgAAAEAMrhyFFcezmJtQfntGxhQAAAAA4CsypgDQEMfyd7tg0L7KJLtTspMcx6ncus7kVq3veKzdvjWWcbb1SZKxPA5Msu262v/O7FrGmqDdL/smjnU1Abs6A2H7nltOvV2sE7KMi2ddbeu0jFMobBcnyakP2cWFLeuMY11NyHJdLeMkSfWtnDkz9sddHKEJxzXHJy/Lb8/ImAIAAAAAfEXGFAAAAABiCHvcx9TLshMBGVMAAAAAgK/ImAIAAABADGRMvUXGFAAAAADgKzKmAAAAABCDaxy5xsPnmHpYdiIgYwoAAAAA8BUZUwAAAACIgT6m3iJjCgAAAADwFRlTAAAAAIghrIDCHub1wp6VnBhomAJAA5yA3e00TjBoX2ey5Sk5OcW+zpRkyzrt1tXYbmM8dabYrqv9e+km231xMZZxbpL9FyXbdXWT7D4jbrL9rWrGcjMDIWNdZ6DeLta2zkC9axUnSY5lbCBkF+fU23+NdmrtPpdOfahV4yTJCVgeeE4cx7p1oGVkHNcuhW2OAyeOjURbRcMUAAAAAGIwHo/KaxiVFwAAAAAA/5AxBQAAAIAYGJXXW2RMAQAAAAC+ImMKAAAAADGETUBh21HYmlS+Z0UnBDKmAAAAAABfkTEFAAAAgBhcOXI9zOu57fwZOmRMAQAAAAC+ImMKAAAAADEwKq+3aJgCQEty4rioBIN2VaYk29dpGWts41LtLzsmxS7WTbHbr7Zxx2Ptbkhyk+2On7BlffHVaVdf2LI+SbIdcyRYb12lAvV2t9YFLeMC9fbvZaDOcl3rXMv67D8jgWDIsk7bgyCOmwQDdsdsXE0MY/deOuGwXX1xXLva982naEk0TAEAAAAgBu9H5W3fzXz6mAIAAAAAfEXGFAAAAABiOD4qr3f9QL0sOxGQMQUAAAAA+IqMKQAAAADE4CqgMM8x9QwZUwAAAACAr8iYAgAAAEAMjMrrrYTMmK5YsUK9evVSWlqa8vPztWnTpkaXHTVqlBzHOWmaMGFCZJnp06ef9Pq4ceNaY1MAAAAAoN1LuIzpY489pqKiIq1cuVL5+flavny5xo4dqx07dqh79+4nLf/UU0+prq4u8veBAwc0dOhQffOb34xabty4cXrooYcif6empnq3EQAAAAASiquAXPqYeibhGqbLli3TrFmzNGPGDEnSypUr9fzzz2v16tWaO3fuSct36dIl6u9169YpIyPjpIZpamqqcnJyvFtxAInFsbvwOMGgfZ1JlqfkJPs6TbJdnSbVNi7ZKk6Swql22xlOs4tzU+2/fIQtY8Mpdo8KsI07HmsbZ1ena1mfJBnLQz1QF3uZxgQtYwN1dvsnWGf/xdQ21rVd11r7z0gwaFenCdrVGXDsPyPWW+nav5eO61rFmVDIrsJAQt5EiTYmoY7Curo6bd68WYWFhZF5gUBAhYWFKisra1IZq1at0uTJk9WhQ4eo+aWlperevbv69++vq6++WgcOHGjRdQcAAACQuMLG8XxqzxIqY7p//36Fw2FlZ2dHzc/Ozta7774bM37Tpk165513tGrVqqj548aN09e+9jX17t1b77//vm655RZdeumlKisrU7CR7Edtba1qa2sjf1dVVVlsEQAAAAAgoRqm8Vq1apUGDx6sESNGRM2fPHly5P+DBw/WkCFD1LdvX5WWlmr06NENlrVkyRLdfvvtnq4vAAAAgNND2OPnmIbbeR/ThLqVt2vXrgoGg6qoqIiaX1FREbN/aHV1tdatW6eZM2fGrKdPnz7q2rWrdu7c2egy8+bNU2VlZWTau3dv0zYCAAAAABAloRqmKSkpGjZsmEpKSiLzXNdVSUmJCgoKThn7xBNPqLa2Vt/+9rdj1vPhhx/qwIED6tGjR6PLpKamKjMzM2oCAAAA0Da5JuD51J4l3NYXFRXpwQcf1MMPP6zt27fr6quvVnV1dWSU3qlTp2revHknxa1atUoTJ07U5z73uaj5R44c0Y033qjXX39du3fvVklJiS6//HL169dPY8eObZVtAgAAAID2LOH6mE6aNEmffvqpFixYoPLycuXl5am4uDgyINKePXsU+MyQ1zt27NCrr76qF1988aTygsGg3nrrLT388MM6dOiQevbsqTFjxmjx4sU8yxQAAACAJPqYei3hGqaSNGfOHM2ZM6fB10pLS0+a179/fxnT8Budnp6uF154oSVXDwAAAADQDAnZMAUAAACA1uRKnj5r1PWs5MRAwxQAGhKwvPA08uzjpnCS7E7JJtn+VG5Sku3iUu3iwmn26xpOt9u34VS7265CafZfPsKpdrEhyzjb+iTJtey1EraNS7GLkySTZHebW6DWfv8E6+xig7Wxl2mIaxl3PNZuXV3L/WoC9rcd2n63T/KuTdAop5G77mIK2zcznHDYLjBgeQ1yfNixwGfQMAUAAACAGFwF5HrYx9TLshNB+956AAAAAIDvyJgCAAAAQAxhE1DYw2eNell2ImjfWw8AAAAA8B0ZUwAAAACIwZUjV16Oytu+B6EiYwoAAAAA8BUZUwAAAACIgT6m3mrfWw8AAAAA8B0ZUwAAAACIIayAwh7m9bwsOxHQMAWAlhSIY+CCgOUFKRi0rtIk28W6KXZx4VT7i65tbCjdMi7N/r0MpdnFhS3rDFvWJ0nhVMu4NGNZn12cJBnLby2BY9ZVyq21e09cy3V1k+yPO9fyVGB992A847Q4rfsFPMn+sJMTdq3iAiH7r9lOfcguLmi3X43t9QdoQTRMAQAAACAG1zhyjYej8npYdiLg5xEAAAAAgK/ImAIAAABADK7HfUzddp4zbN9bDwAAAAAJasWKFerVq5fS0tKUn5+vTZs2nXL55cuXq3///kpPT1dubq5++MMf6tixODrityAypgAAAAAQg2sCcj181mhzy37sscdUVFSklStXKj8/X8uXL9fYsWO1Y8cOde/e/aTl165dq7lz52r16tUaOXKk/va3v2n69OlyHEfLli1rqc2wRsYUAAAAABLMsmXLNGvWLM2YMUODBg3SypUrlZGRodWrVze4/Guvvab/+I//0JVXXqlevXppzJgxuuKKK2JmWVsLDVMAAAAAiCEsx/NJkqqqqqKm2trak9alrq5OmzdvVmFhYWReIBBQYWGhysrKGlz/kSNHavPmzZGG6N///netX79e48eP92BvNR8NUwAAAAA4TeTm5qpTp06RacmSJScts3//foXDYWVnZ0fNz87OVnl5eYPlXnnllVq0aJEuvvhiJScnq2/fvho1apRuueUWT7ajuehjCgAAAAAxtFYf07179yozMzMyPzU1tUXKLy0t1Z133qlf/OIXys/P186dO3Xddddp8eLFmj9/fovUEQ8apgDQAMexfMh1IGhfaZJdrEm2P5WbVLs6w7Zxafb7J5Ru92WgPt3uvQylW4VJksK2dabZ1mfsAiWFret0reJMml2cJCnJLta1PF4lyT1qd9y5yXbHgEmyPPdIMrabGbBcV/tVtWfZKHDsPyJywnbBTtj+WDf1dud1J8kyLhhHY8uxiQ1IcbwnfglLkdttvSpfkjIzM6Mapg3p2rWrgsGgKioqouZXVFQoJyenwZj58+frO9/5jr73ve9JkgYPHqzq6mrNnj1bP/7xjxUI+HszLbfyAgAAAEACSUlJ0bBhw1RSUhKZ57quSkpKVFBQ0GBMTU3NSY3PYPD4L1rG+P9LARlTAAAAAIjhdHtcTFFRkaZNm6bhw4drxIgRWr58uaqrqzVjxgxJ0tSpU3XmmWdG+qhedtllWrZsmS644ILIrbzz58/XZZddFmmg+omGKQAAAAAkmEmTJunTTz/VggULVF5erry8PBUXF0cGRNqzZ09UhvTWW2+V4zi69dZb9dFHH6lbt2667LLLdMcdd/i1CVFomAIAAABADGETUNjDjKlN2XPmzNGcOXMafK20tDTq76SkJC1cuFALFy60WT3P0ccUAAAAAOArMqYAAAAAEIORI9fDUXmNh2UnAjKmAAAAAABfkTEFAAAAgBhOxz6mbUn73noAAAAAgO/ImAJAQwJ2v9s5Qfvf+0yS3TPETLL9s8dcy9hwqt12htPs+8+ELGPDaXb1hdPjWNd0y7gMuwech9PtH4weznCt4pz0sFVcSnq9VZwkJSfb1XksJcW6znCS3Vclk2T3GTGW557jsZbHrPWhbv8ZcWwPWcs4x7Vf10C93XsSqI/juZCW1wPZXoMcclVN4RpHrvGuH6iXZScCjkIAAAAAgK/ImAIAAABADGEFFPYwr+dl2YmgfW89AAAAAMB3ZEwBAAAAIAb6mHqLjCkAAAAAwFdkTAEAAAAgBlcBuR7m9bwsOxG0760HAAAAAPiOjCkAAAAAxBA2jsIe9gP1suxEQMYUAAAAAOArMqYAAAAAEAOj8nqLhikANMSxvDgEg/Z1BixvYkmyv/nFTbaLdVPs9k/YMk6Swql2caF0uzpD6Xb1SVKog7GLy7CLczPCVnGSFMgIWcWlZdRZxWVmHLOKk6SM5HqruH8k2b+ZR4J2B159MMUqLhzPvWyObbDl59LucD3OtavTce2qC4Tszz2BFLv9Gqi1fzMDlud1x/Y6EmjfDSKcHmiYAgAAAEAMxgTkGu96QhoPy04E7XvrAQAAAAC+I2MKAAAAADGE5Shse+t7E8tvz8iYAgAAAAB8RcYUAAAAAGJwjbcj57rxDCjWBpAxBQAAAAD4iowpAAAAAMTgejwqr5dlJ4L2vfUAAAAAAN+RMQUAAACAGFw5cj0cOdfLshMBDVMAaElOHBeVpKBVmJtsf/OLm2IXG06x285Qqv3+CaXZxYbTLOtLtx+FwjbWzQhbxQU7hqziJCmjwzGruC4ZR63iumcctoqTpA5JdVZxqUH7/bM/6FrFVQXsjoFaJ8UqTpLCtl/rLG8fdFz7z7Njd6grYBtXb7+uQcvznYnj3GyS7GJN0LLOeK5dQAtJyFt5V6xYoV69eiktLU35+fnatGlTo8uuWbNGjuNETWlp0d9SjDFasGCBevToofT0dBUWFuq9997zejMAAAAAJIiwcTyf2rOEa5g+9thjKioq0sKFC7VlyxYNHTpUY8eO1b59+xqNyczM1CeffBKZPvjgg6jX7777bt13331auXKlNm7cqA4dOmjs2LE6dszuV2QAAAAAQNMlXMN02bJlmjVrlmbMmKFBgwZp5cqVysjI0OrVqxuNcRxHOTk5kSk7OzvymjFGy5cv16233qrLL79cQ4YM0SOPPKKPP/5YzzzzTCtsEQAAAIDT3YlReb2c2rOE2vq6ujpt3rxZhYWFkXmBQECFhYUqKytrNO7IkSM655xzlJubq8svv1zbtm2LvLZr1y6Vl5dHldmpUyfl5+efssza2lpVVVVFTQAAAACA5kuohun+/fsVDoejMp6SlJ2drfLy8gZj+vfvr9WrV+t3v/ud/vu//1uu62rkyJH68MMPJSkS15wyJWnJkiXq1KlTZMrNzY1n0wAAAACcxlw5co2HUzsflTehGqY2CgoKNHXqVOXl5emSSy7RU089pW7duulXv/pVXOXOmzdPlZWVkWnv3r0ttMYAAAAA0L4k1ONiunbtqmAwqIqKiqj5FRUVysnJaVIZycnJuuCCC7Rz505JisRVVFSoR48eUWXm5eU1Wk5qaqpSU1ObuQUAAAAAEpHx+Dmmhoxp4khJSdGwYcNUUlISmee6rkpKSlRQUNCkMsLhsN5+++1II7R3797KycmJKrOqqkobN25scpkAAAAAAHsJlTGVpKKiIk2bNk3Dhw/XiBEjtHz5clVXV2vGjBmSpKlTp+rMM8/UkiVLJEmLFi3SRRddpH79+unQoUO655579MEHH+h73/uepOMj9l5//fX6yU9+onPPPVe9e/fW/Pnz1bNnT02cONGvzQQAAABwGjnRF9TL8tuzhGuYTpo0SZ9++qkWLFig8vJy5eXlqbi4ODJ40Z49exQI/CsR/I9//EOzZs1SeXm5OnfurGHDhum1117ToEGDIsvcdNNNqq6u1uzZs3Xo0CFdfPHFKi4uVlpaWqtvH4DTRMDyhpKg/Y0oJsku1iTb1+km210EreNSrMIkSWHL3hNhy1N5ON3YBUpyM1yruECHkFVcRgf7525/rkONVVyPDLvR6HMz/mEVJ0mdgket4lICdvtVkpIClu+lY3f8HLKKOq7W8ktt2G4T5bj25x4nZLeuAdu4OqswSfGcJ+O4HtheS6yvXUG7OElOoPn7xzGOZHncoe1yjDH2V15EVFVVqVOnThqly5XkJPu9OgDiFDjjDLu4LlnWdbpZHa3iQln2P6LVZdqdr+rOsPvyU3eG/a/BtrEhu92q+o7235rClrGBjvVWcR060jA9lQ+OdbGu85Ojnazi9lXbHXiHjqRbxUlS7RG7X2+cI3aNkqQj9g2v5MN2n+fkatv67L/uph62+zynVIWt60w+VGsVFzxk93lW5WG7OEnugYPNjgmZev0x9D+qrKxUZmamdd2t5cT3/P9vwwwld4jjF9YY6qvr9PR/PpQw+6WlJVQfUwAAAABA25Nwt/ICAAAAQGujj6m3yJgCAAAAAHxFxhQAAAAAYnA9fo6pl2UnAjKmAAAAAABfkTEFAAAAgBjoY+otMqYAAAAAAF+RMQUAAACAGMiYeouGKQA0wHEsLw4B+xtRjGWsG7Sv0022285wimVcqv1FN5xqGZdmrOLcdLs4SXIyQlZxGR1qreI+16HGKk6SemRUWcX1yjhgFdc3bZ9VnCR9LumIVVxywO79kKSgY38c2Ijni+kh1y623vLDFQ7Zr2ug3i7W9q0M2n20JElhy/Okm2S/f0yS5Xk9KWgVZn3NA1oQDVMAAAAAiIGMqbfoYwoAAAAA8BUZUwAAAACIgYypt8iYAgAAAAB8RcYUAAAAAGIwklx5l9Vs3aHWTj9kTAEAAAAAviJjCgAAAAAx0MfUW2RMAQAAAAC+ImMKAAAAADGQMfUWDVMAaEjA8uLgxHFRSbK7icVNtq8zbBkbTrGszzJOktxUu2Ehwml2cSY9bBUnSWnp9VZxndKPWcVlZxy2ipOkXhkHrOI+n15uFXduil2cJHULHrWKC8i1rtNW2PILZsi1v5ktFLaLrQoHreLCoTjOPXV2sQHLuHCK/bq6ybZx9nWaZLv30gTs4px4rl1AC6FhCgAAAAAxkDH1Fn1MAQAAAAC+ImMKAAAAADGQMfUWGVMAAAAAgK/ImAIAAABADMY4Mh5mNb0sOxGQMQUAAAAA+IqMKQAAAADE4MqRKw/7mHpYdiIgYwoAAAAA8BUZUwAAAACIgVF5vUXDFABakAna34jiJtnFmiT7C5lreRVwk+3qdFPs6pOkcKpdnJvmWsUlpYXsKpR0RsYxq7juGYet4s5MO2QVJ0m90vZbxZ2bUm4VNyjZbt9IUudgB8vIT63rdC1vLqu3/HDV2X4oJdWGLesM2cVV18Vxvqu1i3XrLOtLsT9PhpMt64zn3Gx7LQla1hngJkr4j4YpAAAAAMTAqLze4ucRAAAAAICvyJgCAAAAQAz0MfUWGVMAAAAAgK/ImAIAAABADPQx9RYZUwAAAACAr8iYAgAAAEAMxuM+pmRMAQAAAADwERlTAAAAAIjBSDLG2/LbMxqmANCS4rhiOWHXLtAyTJIcy1gnbLedjmt/m5ITtowL2dUZDtnfVFRbb3d5ra5PtYqrCqVbxUnSP0IdrOIOJHW0ivs0eNQq7rgauzrD9vvnQMhuOyst66wOpVjFSVJNfbJVXH190K7COD4jTsg2zu7zbHv+kOI4T8Z1bra8lnjZagI8RsMUAAAAAGJw5ciRh88x9bDsREAfUwAAAACAr8iYAgAAAEAMPMfUW2RMAQAAAAC+ImMKAAAAADG4xpHjYVbTy2ekJgIapgAAAAAQgzEePy6mnQ+qzK28AAAAAABfkTEFAAAAgBgY/MhbZEwBAAAAAL4iYwoAAAAAMZAx9RYNUwBoiGs3AoFjGRdPbKDeta4zWG9340yg3u7iGay1Cjsee8yuTjfFLi6cHLSKk6SapFSruINJYau45KBdnCQlB+xiA479cWfr0+ARq7j36nKs63z/WHeruL01na3i9tWcYRUnSVU1aVZx9UeTreKcY/Y33gVrLc8hdXb1BSzjJClYb3tujuN6ELL7fDlhyzrD9ucQoKXQMAUAAACAGHhcjLfoYwoAAAAA8FVCNkxXrFihXr16KS0tTfn5+dq0aVOjyz744IP64he/qM6dO6tz584qLCw8afnp06fLcZyoady4cV5vBgAAAIAEceI5pl5O7VnCNUwfe+wxFRUVaeHChdqyZYuGDh2qsWPHat++fQ0uX1paqiuuuEJ//OMfVVZWptzcXI0ZM0YfffRR1HLjxo3TJ598Epl++9vftsbmAAAAAEC7l3AN02XLlmnWrFmaMWOGBg0apJUrVyojI0OrV69ucPlHH31U11xzjfLy8jRgwAD9+te/luu6KikpiVouNTVVOTk5kalzZ7tBCwAAAAC0Pcezmo6Hk99b6K+EapjW1dVp8+bNKiwsjMwLBAIqLCxUWVlZk8qoqalRfX29unTpEjW/tLRU3bt3V//+/XX11VfrwIEDpyyntrZWVVVVURMAAAAAtJbmdHGUpEOHDunaa69Vjx49lJqaqs9//vNav359K63tqSVUw3T//v0Kh8PKzs6Omp+dna3y8vImlXHzzTerZ8+eUY3bcePG6ZFHHlFJSYnuuusu/e///q8uvfRShU8xdPaSJUvUqVOnyJSbm2u3UQAAAABOe95mS5v/jNTmdnGsq6vTf/7nf2r37t168skntWPHDj344IM688wzW2L3xK1dPS5m6dKlWrdunUpLS5WW9q9nfU2ePDny/8GDB2vIkCHq27evSktLNXr06AbLmjdvnoqKiiJ/V1VV0TgFAAAA0Cr+vYujJK1cuVLPP/+8Vq9erblz5560/OrVq3Xw4EG99tprSk4+/vziXr16teYqn1JCZUy7du2qYDCoioqKqPkVFRXKyTn1w7PvvfdeLV26VC+++KKGDBlyymX79Omjrl27aufOnY0uk5qaqszMzKgJAAAAQNtkWmFqKpsujs8++6wKCgp07bXXKjs7W+eff77uvPPOU94l2poSKmOakpKiYcOGqaSkRBMnTpSkyEBGc+bMaTTu7rvv1h133KEXXnhBw4cPj1nPhx9+qAMHDqhHjx4tteoAEoyxHIHAcV3rOp2QXWwgZD9agm1ssM6uvnCtXZwkBVPt4txjdg8sN0lBuwolhZLs9mtVMC32Qg1wnDiOgThibbjG/jfxzknVVnG7j3W1rnN3zees4j6psfvB+mBNulWcJB2rSbGKM0ftjvWko/bvZdDycxm0PIcE6+yPc9vzXTznZidsGRuya2DYXvPgjc+OXZOamqrU1OiL4Km6OL777rsNlvv3v/9dL7/8sqZMmaL169dr586duuaaa1RfX6+FCxe27EZYSKiMqSQVFRXpwQcf1MMPP6zt27fr6quvVnV1dSSFPXXqVM2bNy+y/F133aX58+dr9erV6tWrl8rLy1VeXq4jR45Iko4cOaIbb7xRr7/+unbv3q2SkhJdfvnl6tevn8aOHevLNgIAAAA4vbRWH9Pc3NyosWyWLFnSIuvvuq66d++uBx54QMOGDdOkSZP04x//WCtXrmyR8uOVUBlTSZo0aZI+/fRTLViwQOXl5crLy1NxcXHk14I9e/YoEPhXe/uXv/yl6urq9I1vfCOqnIULF+q2225TMBjUW2+9pYcffliHDh1Sz549NWbMGC1evPikXyYAAAAAwEt79+6N6ibYUJvEpotjjx49lJycrGDwX3dJDBw4UOXl5aqrq1NKit1dFy0l4RqmkjRnzpxGb90tLS2N+nv37t2nLCs9PV0vvPBCC60ZAAAAgDapuR1BbcqXmjR+jU0Xx//4j//Q2rVr5bpuJJH3t7/9TT169PC9USol4K28AAAAANDeNbeL49VXX62DBw/quuuu09/+9jc9//zzuvPOO3Xttdf6tQlREjJjCgAAAACtyuJZo80tvzma28UxNzdXL7zwgn74wx9qyJAhOvPMM3Xdddfp5ptvbtHNsEXDFAAAAAASUHO6OEpSQUGBXn/9dY/Xyg4NUwAAAACIwZjjk5flt2f0MQUAAAAA+IqMKQAAAADEYDzuY+pp/9UEQMMUAFpS2LWPDdnFOpZxkhSos7tvKFhvGVdnFSZJco/ZXbDdJLs4E8cV0vzbM+Kaoy6QbBVX5bT+/V+u5Reoetdu30hSZtJRq7iPjmVZ11lRc4ZV3IHqDKu4muo0qzhJcmvsDtpgjd0NdMFjVmHHY2vt4gKWcfGcewKW57tAfRznZtvzumsb187vIcVpgYYpAAAAAMRinGaPnNvs8tsx+pgCAAAAAHxFxhQAAAAAYmBUXm+RMQUAAAAA+IqMKQAAAADEYv45eVl+O0bGFAAAAADgKzKmAAAAABADzzH1FhlTAAAAAICvyJgCAAAAQFO0836gXqJhCgANcd3WjZPkWMYGQvZ1BkJ2V9hgnWVcrf1tSm6yXZ1ukl2dJmi/rsaxuyEp7Nhdlmutoo6rtLx1zPaWs/pw0CpOkjokZ1jF7as5w7rOyqNpVnE11alWcW61/VezQI3dvg0etXsvbeMkKXjMMq62dc9Zx2Nb/9wsy1gnbBdnjP26Grf5+9a09+eioEE0TAEAAAAgBvqYeos+pgAAAAAAX5ExBQAAAIBYeI6pp8iYAgAAAAB8RcYUAAAAAGJy/jl5WX77RcYUAAAAAOArMqYAAAAAEAt9TD1FxhQAAAAA4CsypgAAAAAQCxlTT9EwBYCGGMurg+va1xkKW4U5Ifs6A3V2scFauwEagsn2Azu4x+xiTdCywnjuKXJst9Ou0rCxv5zXuXbreihst651Ids3REpNTreKO1yTZl1n7dFkqzhTY/eeBGrsD7yko3bvZVKNZdwxqzBJUvCY3Tk2qdYuLlhn/40/UG8X69Tbn5udervrgfU1yPaaB7QgGqYAAAAAEItxjk9elt+O0ccUAAAAAOArMqYAAAAAEIMx3t713N7vqCZjCgAAAADwFRlTAAAAAIiFUXk9RcYUAAAAAOArMqYAAAAAEAuj8nqKjCkAAAAAwFdkTAEAAAAgBsccn7wsvz2jYQoALci4rnWsEwrbxdXbxUlSoM4uNpBid8NNUq39/jFBuzqN5b1BxvHhlirL27gc242UFA7b1RkK2cUdDtmva02S3fETOmb/dcc5GrSKCx612z+2cZKUZBmbdNSuvuBR+2/RSccs66y1qzMYx7knUGcXG6iP43oQtjyvhy3rtK0PaEE0TAEAAAAgFkbl9RR9TAEAAAAAviJjCgAAAACxMCqvp8iYAgAAAAB8RcYUAAAAAGKhj6mnyJgCAAAAAHxFxhQAAAAAYiFj6ikypgAAAAAAX5ExBQAAAIBYyJh6ioYpADTEde3iwuFWr9Opt68zUG9XZ7DWrk43aD8UflLA7ortx+j7jm2lloedE7bfSCdkFxcOBa3i3Hr7m7VCSXbHQOCYfZ3BY3b71j7OKiyu2KSjdvs1nnVNOmZXp21coNbywyUpUGd3vovn3KyQZazttctt5y0inBZomAIAAABALDzH1FP0MQUAAAAA+IqMKQAAAADE4Jjjk5flt2dkTAEAAAAAviJjCgAAAACxMCqvpxIyY7pixQr16tVLaWlpys/P16ZNm065/BNPPKEBAwYoLS1NgwcP1vr166NeN8ZowYIF6tGjh9LT01VYWKj33nvPy00AAAAAgISxZMkSSdKWLVtUW1vb4uU3q2G6d+/eFl+B5nrsscdUVFSkhQsXasuWLRo6dKjGjh2rffv2Nbj8a6+9piuuuEIzZ87Um2++qYkTJ2rixIl65513Isvcfffduu+++7Ry5Upt3LhRHTp00NixY3XsWBzjoAMAAABAGzFq1ChJ0tKlS3XhhRdq8ODBmjx5su68804999xzqqioiKv8ZjVMBwwYoAULFqimpiauSuOxbNkyzZo1SzNmzNCgQYO0cuVKZWRkaPXq1Q0u/7Of/Uzjxo3TjTfeqIEDB2rx4sW68MIL9fOf/1zS8Wzp8uXLdeutt+ryyy/XkCFD9Mgjj+jjjz/WM88804pbBgAAAACnp4KCAknS448/rm3btmnTpk264YYblJ2drQ0bNmj8+PGaP3++dfnNaphu2LBBL7zwgs4991ytWbPGulJbdXV12rx5swoLCyPzAoGACgsLVVZW1mBMWVlZ1PKSNHbs2Mjyu3btUnl5edQynTp1Un5+fqNlAgAAAGhfHP1rZF5PJr83sBGHDx/WvHnzdOmll+pb3/qWfvazn2nv3r1KT0/XF77wBc2cOVM/+9nPtHnz5pO6TDZHsxqmI0eO1MaNG7VkyRLNnz9fw4YN05/+9Cfryptr//79CofDys7OjpqfnZ2t8vLyBmPKy8tPufyJf5tTpiTV1taqqqoqagIAAACAtuTKK6/UAw88oKysLCUlJemXv/ylzj33XP3Xf/3XScu+/vrr1vVYjco7depUfeMb39DSpUt16aWXaty4cbrnnnvUu3dv6xVJNEuWLNHtt9/u92oA8IgxdkPjOZZxkqRQuHXjJDl1Ibu4JLux85IC9utq/1Oy3brG8zw5x7WMs9w9gZD97+y2sYE6u7hwnf2ONUG7uGAcY3QEau2207bOeNY16ZjdvrWt07Y+SUo6avchCdZaxh2zP/cE6uxibc+vkuRYntdNyK5O22ve8WCL98Qm5nRgnOOTl+Wfhl555RU999xz+uIXvxiZ9+c//1mTJ09Wenq6rrrqqsj85ORk63riGpV3zJgx+t73vqenn35agwYN0k033aQjR47EU+Qpde3aVcFg8KSOtRUVFcrJyWkwJicn55TLn/i3OWVK0rx581RZWRmZToeBoQAAAACgJU2ZMkXjx4/X+PHjNW/ePD3++OP63Oc+pxUrVuiee+5psXqa1TBduXKlZs6cqSFDhqhTp04aPXq0/vSnP+mqq67Sz372M73xxhsaNGiQ3njjjRZbwX+XkpKiYcOGqaSkJDLPdV2VlJREOuN+VkFBQdTy0vG+sieW7927t3JycqKWqaqq0saNGxstU5JSU1OVmZkZNQEAAABoo0wrTKehiy66SL/5zW80fPhwvfPOO7rhhhs0aNAgfetb39IHH3ygq6++Wr/85S/16quvxlVPs27lveOOO5Sfn6+pU6fqoosu0rBhw5Senh55ffbs2brzzjs1ffr0qMextKSioiJNmzZNw4cP14gRI7R8+XJVV1drxowZko7fZnzmmWdGnrNz3XXX6ZJLLtFPf/pTTZgwQevWrdMbb7yhBx54QJLkOI6uv/56/eQnP9G5556r3r17a/78+erZs6cmTpzoyTYAAAAAQCJ48cUXVVdXp9/85jdKTU2VdHzsn9///veaNWuWqqqqtHLlSv3tb3/T0aNHretpVsO0Kberzpw5M65hgmOZNGmSPv30Uy1YsEDl5eXKy8tTcXFxZPCiPXv2KBD4VyJ45MiRWrt2rW699VbdcsstOvfcc/XMM8/o/PPPjyxz0003qbq6WrNnz9ahQ4d08cUXq7i4WGlpaZ5tBwAAAIAE4nVW8zTNmP70pz/V6NGjdf7552vGjBkaOnSojh07pjVr1igvL0+PPvqoJCkcjmMcCUmOiau388mMMXrllVd0ySWXtGSxp72qqip16tRJo3S5khz7Tr8ATg/OP38RbK5Axw72df7bHSjNYTLsf0Qz6SlWceEMuzg3zXL0GkmhdLvYcJrdcAqhNPtBKEKplgMDWb6VYcv64qrT7hBQOI3Bj7yIkxj86JRxNfYDEQWP2cUGauqs63SO2r0ppsYuW2UbJ0muxfgyIVOvUvOMKisrE6I73Inv+efceYcCHiau3GPH9MEtPz4t98vRo0d177336sknn9Tbb78tScrLy9NvfvMbnXfeeS1Sh9WovKfiOE67a5QCAAAAaNtOPG/Uy/JPV+np6Zo/f77mz5+vY8eOKRQKqWPHji1aR4s3TAEAAAAAbZNX3R1pmAIAAABALO20j2lries5pgAAAAAAxIuMKQA0xLX82TKeEelCdgNsOPX2g3ooyW40mYDlYCCyH6PH/oJl+VY6rv3KOmG7330DIbs6A/X2P7MH6iwH97EbH0xhy/okyVj+nB6wH4NGQcvYYK3dexLPuiZZ1hmss4yLY/Cj4DG7c6X14Ee19udmp87yfBfPuTlkub621yDXbr+2O2RMPUXDFAAAAABiaM+DH7UGbuUFAAAAAPiKjCkAAAAAxGKc45OX5bdjZEwBAAAAAL4iYwoAAAAAsTD4kafImAIAAAAAfEXGFAAAAABiYFReb5ExBQAAAAD4iowpAAAAAMRCH1NP0TAFgBZkwq59sGWsUx+yrzNod+NMwPFhSHvLC3ayaxcYDgftKpQUqLesM9Xu/QjX278f4WTLuFq7uKBlfZJkgnbbaft+SFKwzjbOrs741tWyTsu4YK39+S5YG7aKC9TZxTm19VZxx2PtzrFxnZtDlrG216Cw3X4FWhINUwAAAACIxeM+pu09Y0ofUwAAAACAr8iYAgAAAEAs9DH1FBlTAAAAAICvyJgCAAAAQCxkTD1FxhQAAAAA4CsypgAAAAAQg+PxqLyejvibAMiYAgAAAAB8RcMUAAAAAOArbuUFgIYY1y7OtYyTpFDILi5o/xujU+tYxdnebRQw9vcpOZb71oTsLnVOvf176aYEreIC9Xb7J5hk9z5KkptiF+ta1hlOtl9XE7DbPwHLj5YkBS3fE9v30jZOkgJ1dsdswPJYD9SHreIkyam1i3Us63Tq6q3ijtdpeQDZxkky9ZbrG7bbPyaOczPQUmiYAgAAAEAsjMrrKW7lBQAAAAD4iowpAAAAAMTAqLzeImMKAAAAAPAVGVMAAAAAaIp2ntX0EhlTAAAAAICvyJgCAAAAQCyMyuspMqYAAAAAAF/RMAUAAACAGE6Myuvl1FwrVqxQr169lJaWpvz8fG3atKlJcevWrZPjOJo4cWLzK/UIt/ICQAOMa3c/jRMO29cZCtkFBhzrOm0jHWN5v1HYtaxRUsjukuXU270nTnLQKk6SAnV2sSbJ7vdi1zIuvjrtjh43OY7fxC1DnZD9/XGBervYgOWx7tTbf0YCtrEh23W1P9859ZbnO8tzrHV9khSyq9PU1cdRp936GttrkOU173ilFrG21xBEeeyxx1RUVKSVK1cqPz9fy5cv19ixY7Vjxw5179690bjdu3frRz/6kb74xS+24trGRsYUAAAAAGIxrTA1w7JlyzRr1izNmDFDgwYN0sqVK5WRkaHVq1c3GhMOhzVlyhTdfvvt6tOnT/Mq9BgNUwAAAABIIHV1ddq8ebMKCwsj8wKBgAoLC1VWVtZo3KJFi9S9e3fNnDmzNVazWbiVFwAAAABisO0H2pzyJamqqipqfmpqqlJTU6Pm7d+/X+FwWNnZ2VHzs7Oz9e677zZY/quvvqpVq1Zp69atLbbOLYmMKQAAAACcJnJzc9WpU6fItGTJkrjLPHz4sL7zne/owQcfVNeuXVtgLVseGVMAAAAAiKWVnmO6d+9eZWZmRmZ/NlsqSV27dlUwGFRFRUXU/IqKCuXk5Jy0/Pvvv6/du3frsssui8xz3eMDnyUlJWnHjh3q27dvS2yFNTKmAAAAAHCayMzMjJoaapimpKRo2LBhKikpicxzXVclJSUqKCg4afkBAwbo7bff1tatWyPTV7/6VX35y1/W1q1blZub6+k2NQUZUwAAAACIpZUypk1VVFSkadOmafjw4RoxYoSWL1+u6upqzZgxQ5I0depUnXnmmVqyZInS0tJ0/vnnR8VnZWVJ0knz/ULDFAAAAAASzKRJk/Tpp59qwYIFKi8vV15enoqLiyMDIu3Zs0eBQOLcIEvDFAAAAABiaK1ReZtjzpw5mjNnToOvlZaWnjJ2zZo1za/QQzRMAaAhxrULC9vFSZITCNvVWWddpeRaXmEtt9MJhezqk+TUW16ykoJ29cXxK7OxrNN2XeP6RTzJLtbYxgUcqzhJMkG7OgMh+8+lLGMd1/YzEs+62p1DZL2ulvVJrb6uJo5zj2xjw/b7x9Tb1Wm9nZbXPKAl0TAFAAAAgFhOsz6mbU3i3HQMAAAAAGiTyJgCAAAAQCxkTD1FxhQAAAAA4CsypgAAAAAQw+k4Km9bQsYUAAAAAOArMqYAAAAAEAt9TD2VUBnTgwcPasqUKcrMzFRWVpZmzpypI0eOnHL573//++rfv7/S09N19tln6wc/+IEqKyujlnMc56Rp3bp1Xm8OAAAAAEAJljGdMmWKPvnkE23YsEH19fWaMWOGZs+erbVr1za4/Mcff6yPP/5Y9957rwYNGqQPPvhAV111lT7++GM9+eSTUcs+9NBDGjduXOTvrKwsLzcFAAAAQAKhj6m3EqZhun37dhUXF+svf/mLhg8fLkm6//77NX78eN17773q2bPnSTHnn3++/ud//ifyd9++fXXHHXfo29/+tkKhkJKS/rX5WVlZysnJ8X5DALRpJhxu9Tod17WONbaxoZBdXDCOG3WCQbs4x2nd+iQ5AcvttIyzrk+yf08s6zQBy/dDsn4vnbD9Z0TG8pui7WfLj3W1PG+ZeNbVtTxXuq27jVIc53Xb9yOeOm3fS9v9CrSghLmVt6ysTFlZWZFGqSQVFhYqEAho48aNTS6nsrJSmZmZUY1SSbr22mvVtWtXjRgxQqtXr5aJ42QCAAAAoI0xrTC1YwmTMS0vL1f37t2j5iUlJalLly4qLy9vUhn79+/X4sWLNXv27Kj5ixYt0le+8hVlZGToxRdf1DXXXKMjR47oBz/4QaNl1dbWqra2NvJ3VVVVM7YGAAAAAHCC7w3TuXPn6q677jrlMtu3b4+7nqqqKk2YMEGDBg3SbbfdFvXa/PnzI/+/4IILVF1drXvuueeUDdMlS5bo9ttvj3u9AAAAACQARuX1lO8N0xtuuEHTp08/5TJ9+vRRTk6O9u3bFzU/FArp4MGDMfuGHj58WOPGjdMZZ5yhp59+WsnJyadcPj8/X4sXL1Ztba1SU1MbXGbevHkqKiqK/F1VVaXc3NxTlgsAAAAAOJnvDdNu3bqpW7duMZcrKCjQoUOHtHnzZg0bNkyS9PLLL8t1XeXn5zcaV1VVpbFjxyo1NVXPPvus0tLSYta1detWde7cudFGqSSlpqae8nUAAAAAbYfzz8nL8tsz3xumTTVw4ECNGzdOs2bN0sqVK1VfX685c+Zo8uTJkRF5P/roI40ePVqPPPKIRowYoaqqKo0ZM0Y1NTX67//+b1VVVUX6gnbr1k3BYFC///3vVVFRoYsuukhpaWnasGGD7rzzTv3oRz/yc3MBAAAAoN1ImIapJD366KOaM2eORo8erUAgoK9//eu67777Iq/X19drx44dqqmpkSRt2bIlMmJvv379osratWuXevXqpeTkZK1YsUI//OEPZYxRv379tGzZMs2aNav1NgwAAADA6Y0+pp5KqIZply5dtHbt2kZf79WrV9RjXkaNGhXzsS/jxo3TuHHjWmwdAQAAAADNk1ANUwAAAADwg2OOT16W357RMAWAhsS426Jxrn2VIbtYEw5Y1+kEQraBVmFxXXMDdsNCOI7lcBIB+/1qvZ0+rKst+/3a+sN7xHXcuXbRse7Yarw++3OINR/W1Xr/2LJ8HyVJpvXfE2O7vrbr2trvB9AAGqYAAAAAEAt9TD3V+j+xAgAAAADwb8iYAgAAAEBTtPOsppfImAIAAAAAfEXGFAAAAABiYFReb5ExBQAAAAD4iowpAAAAAMTCqLyeImMKAAAAAPAVGVMAAAAAiIE+pt4iYwoAAAAA8BUZUwBoScaHnztN2D7UbcH1OE218x+gAQAthT6mniJjCgAAAADwFRlTAAAAAIiBPqbeImMKAAAAAPAVGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIhYypp8iYAgAAAAB8RcYUAAAAAGJgVF5vkTEFAAAAAPiKjCkAAAAAxEIfU0+RMQUAAAAA+IqMKQAAAADE4Bgjx3iX1vSy7ERAxhQAAAAA4CsypgAAAAAQC31MPUXGFAAAAADgKzKmAAAAABADzzH1Fg1TAAAAAIiFW3k9xa28AAAAAABfkTEFAAAAgBi4lddbZEwBAAAAAL4iYwoAAAAAsdDH1FNkTAEAAAAAviJjCgAAAAAx0MfUW2RMAQAAAAC+ImMKAAAAALHQx9RTZEwBAAAAAL4iYwoAAAAATdDe+4F6iYwpAAAAAMBXZEwBAAAAIBZjjk9elt+OkTEFAAAAAPiKjCkAAAAAxMBzTL1FxhQAAAAA4CsypgAAAAAQC88x9RQZUwAAAACAr8iYAgAAAEAMjnt88rL89oyMKQAAAADAV2RMAQAAACAW+ph6iowpAAAAAMBXZEwBAAAAIAaeY+otMqYAAAAAAF8lVMP04MGDmjJlijIzM5WVlaWZM2fqyJEjp4wZNWqUHMeJmq666qqoZfbs2aMJEyYoIyND3bt314033qhQKOTlpgAAAABIJMZ4P7VjCXUr75QpU/TJJ59ow4YNqq+v14wZMzR79mytXbv2lHGzZs3SokWLIn9nZGRE/h8OhzVhwgTl5OTotdde0yeffKKpU6cqOTlZd955p2fbAgAAAAA4LmEaptu3b1dxcbH+8pe/aPjw4ZKk+++/X+PHj9e9996rnj17NhqbkZGhnJycBl978cUX9de//lUvvfSSsrOzlZeXp8WLF+vmm2/WbbfdppSUFE+2BwAAAEDioI+ptxLmVt6ysjJlZWVFGqWSVFhYqEAgoI0bN54y9tFHH1XXrl11/vnna968eaqpqYkqd/DgwcrOzo7MGzt2rKqqqrRt27ZGy6ytrVVVVVXUBAAAAABovoTJmJaXl6t79+5R85KSktSlSxeVl5c3GnfllVfqnHPOUc+ePfXWW2/p5ptv1o4dO/TUU09Fyv33RqmkyN+nKnfJkiW6/fbbbTcHAAAAQCLhOaae8r1hOnfuXN11112nXGb79u3W5c+ePTvy/8GDB6tHjx4aPXq03n//ffXt29e63Hnz5qmoqCjyd1VVlXJzc63LAwAAAID2yveG6Q033KDp06efcpk+ffooJydH+/bti5ofCoV08ODBRvuPNiQ/P1+StHPnTvXt21c5OTnatGlT1DIVFRWSdMpyU1NTlZqa2uR6AQAAACQu+ph6y/eGabdu3dStW7eYyxUUFOjQoUPavHmzhg0bJkl6+eWX5bpupLHZFFu3bpUk9ejRI1LuHXfcoX379kVuFd6wYYMyMzM1aNCgZm4NAAAAAKC5Embwo4EDB2rcuHGaNWuWNm3apD//+c+aM2eOJk+eHBmR96OPPtKAAQMiGdD3339fixcv1ubNm7V79249++yzmjp1qr70pS9pyJAhkqQxY8Zo0KBB+s53vqP/+7//0wsvvKBbb71V1157LRlRAAAAAMfxHFNPJUzDVDo+uu6AAQM0evRojR8/XhdffLEeeOCByOv19fXasWNHZNTdlJQUvfTSSxozZowGDBigG264QV//+tf1+9//PhITDAb13HPPKRgMqqCgQN/+9rc1derUqOeeAgAAAAC84/utvM3RpUsXrV27ttHXe/XqJfNvvzTk5ubqf//3f2OWe84552j9+vUtso4AAAAA2h76mHoroTKmAAAAAIC2J6EypgAAAADgC55j6ikypgAAAAAAX5ExBQAAAIAY6GPqLTKmAAAAAABfkTEFAAAAgFhcc3zysvx2jIwpAAAAAMBXZEwBAAAAIBZG5fUUGVMAAAAAgK/ImAIAAABADI48HpXXu6ITAhlTAAAAAICvaJgCAAAAQCzGeD8104oVK9SrVy+lpaUpPz9fmzZtanTZBx98UF/84hfVuXNnde7cWYWFhadcvrXRMAUAAACABPPYY4+pqKhICxcu1JYtWzR06FCNHTtW+/bta3D50tJSXXHFFfrjH/+osrIy5ebmasyYMfroo49aec0bRsMUAAAAAGJwjPdTcyxbtkyzZs3SjBkzNGjQIK1cuVIZGRlavXp1g8s/+uijuuaaa5SXl6cBAwbo17/+tVzXVUlJSQvsnfjRMAUAAACA00RVVVXUVFtbe9IydXV12rx5swoLCyPzAoGACgsLVVZW1qR6ampqVF9fry5durTYuseDhikAAAAAxGJaYZKUm5urTp06RaYlS5actCr79+9XOBxWdnZ21Pzs7GyVl5c3aXNuvvlm9ezZM6px6yceFwMAAAAAp4m9e/cqMzMz8ndqamqL17F06VKtW7dOpaWlSktLa/HybdAwBQAAAIAYHGPkWIyc25zyJSkzMzOqYdqQrl27KhgMqqKiImp+RUWFcnJyThl77733aunSpXrppZc0ZMiQ+Fa6BXErLwAAAAAkkJSUFA0bNixq4KITAxkVFBQ0Gnf33Xdr8eLFKi4u1vDhw1tjVZuMjCkAAAAAxOL+c/Ky/GYoKirStGnTNHz4cI0YMULLly9XdXW1ZsyYIUmaOnWqzjzzzEgf1bvuuksLFizQ2rVr1atXr0hf1I4dO6pjx44tuik2aJgCAAAAQIKZNGmSPv30Uy1YsEDl5eXKy8tTcXFxZECkPXv2KBD41w2yv/zlL1VXV6dvfOMbUeUsXLhQt912W2uueoNomAIAAABADK3Vx7Q55syZozlz5jT4WmlpadTfu3fvtlir1kMfUwAAAACAr8iYAgAAAEAs//asUc/Kb8fImAIAAAAAfEXGFAAAAABiMeb45GX57RgZUwAAAACAr8iYAgAAAEAMjjk+eVl+e0bGFAAAAADgKzKmAAAAABALfUw9RcYUAAAAAOArMqYAAAAAEIPjHp+8LL89I2MKAAAAAPAVGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIxfxz8rL8doyMKQAAAADAV2RMAQAAACAGxxg5HvYD9bLsREDGFAAAAADgKzKmAAAAABALo/J6iowpAAAAAMBXZEwBAAAAIBYjyfW4/HaMjCkAAAAAwFdkTAEAAAAgBkbl9RYZUwAAAACAr8iYAgAAAEAsRh6Pyutd0YmAjCkAAAAAwFdkTAEAAAAgFp5j6ikypgAAAAAAX5ExBQAAAIBYXEmOx+W3Y2RMAQAAAAC+ImMKAAAAADHwHFNvJVTG9ODBg5oyZYoyMzOVlZWlmTNn6siRI40uv3v3bjmO0+D0xBNPRJZr6PV169a1xiYBAAAASAQnBj/ycmrHEipjOmXKFH3yySfasGGD6uvrNWPGDM2ePVtr165tcPnc3Fx98sknUfMeeOAB3XPPPbr00kuj5j/00EMaN25c5O+srKwWX38AAAAAwMkSpmG6fft2FRcX6y9/+YuGDx8uSbr//vs1fvx43XvvverZs+dJMcFgUDk5OVHznn76aX3rW99Sx44do+ZnZWWdtCwAAAAASOJxMR5LmFt5y8rKlJWVFWmUSlJhYaECgYA2btzYpDI2b96srVu3aubMmSe9du2116pr164aMWKEVq9eLRPjwKitrVVVVVXUBAAAAABovoTJmJaXl6t79+5R85KSktSlSxeVl5c3qYxVq1Zp4MCBGjlyZNT8RYsW6Stf+YoyMjL04osv6pprrtGRI0f0gx/8oNGylixZottvv735GwIAAAAg8ZAx9ZTvGdO5c+c2OkDRiendd9+Nu56jR49q7dq1DWZL58+fr//4j//QBRdcoJtvvlk33XST7rnnnlOWN2/ePFVWVkamvXv3xr2OAAAAANAe+Z4xveGGGzR9+vRTLtOnTx/l5ORo3759UfNDoZAOHjzYpL6hTz75pGpqajR16tSYy+bn52vx4sWqra1Vampqg8ukpqY2+hoAAACANsaV5Hhcfjvme8O0W7du6tatW8zlCgoKdOjQIW3evFnDhg2TJL388styXVf5+fkx41etWqWvfvWrTapr69at6ty5Mw1PAAAAAGgFvjdMm2rgwIEaN26cZs2apZUrV6q+vl5z5szR5MmTIyPyfvTRRxo9erQeeeQRjRgxIhK7c+dOvfLKK1q/fv1J5f7+979XRUWFLrroIqWlpWnDhg2688479aMf/ajVtg0AAADA6c0xRo6H/UC9LDsRJEzDVJIeffRRzZkzR6NHj1YgENDXv/513XfffZHX6+vrtWPHDtXU1ETFrV69WmeddZbGjBlzUpnJyclasWKFfvjDH8oYo379+mnZsmWaNWuW59sDAAAAAJAcE+u5KGiSqqoqderUSaN0uZKcZL9XBwAAADgthUy9SvU7VVZWKjMz0+/VienE9/zCc3+opKB3Xf1C4Vq99N5/Jcx+aWm+j8oLAAAAAGjfEupWXgAAAADwhWskx8ObTd32fSMrGVMAAAAAgK/ImAIAAABALMYcn7wsvx0jYwoAAAAA8BUZUwAAAACIyeOMqciYAgAAAADgGzKmAAAAABALfUw9RcYUAAAAAOArMqYAAAAAEItr5Gk/UJ5jCgAAAACAf8iYAgAAAEAsxj0+eVl+O0bGFAAAAADgKzKmAAAAABALo/J6iowpAAAAAMBXZEwBAAAAIBZG5fUUGVMAAAAAgK/ImAIAAABALPQx9RQZUwAAAACAr8iYAgAAAEAsRh5nTL0rOhGQMQUAAAAA+IqMKQAAAADEQh9TT5ExBQAAAAD4iowpAAAAAMTiupJcj8tvv8iYAgAAAAB8RcYUAAAAAGKhj6mnyJgCAAAAAHxFxhQAAAAAYiFj6ikypgAAAAAAX5ExBQAAAIBYXCPJw6ymS8YUAAAAAADfkDEFAAAAgBiMcWWMd88a9bLsREDGFAAAAADgKzKmAAAAABCLMd72A2VUXgAAAAAA/EPGFAAAAABiMR6PykvGFAAAAAAA/5AxBQAAAIBYXFdyPBw5l1F5AQAAAADwDxlTAAAAAIiFPqaeImMKAAAAAPAVGVMAAAAAiMG4royHfUwNfUwBAAAAAPAPGVMAAAAAiIU+pp4iYwoAAAAA8BUZUwAAAACIxTWSQ8bUK2RMAQAAAAC+ImMKAAAAALEYI8nDkXPJmAIAAAAA4B8ypgAAAAAQg3GNjId9TA0ZUwAAAAAA/EPGFAAAAABiMa687WPqYdkJIKEypnfccYdGjhypjIwMZWVlNSnGGKMFCxaoR48eSk9PV2Fhod57772oZQ4ePKgpU6YoMzNTWVlZmjlzpo4cOeLBFgAAAABAy1ixYoV69eqltLQ05efna9OmTadc/oknntCAAQOUlpamwYMHa/369a20prElVMO0rq5O3/zmN3X11Vc3Oebuu+/Wfffdp5UrV2rjxo3q0KGDxo4dq2PHjkWWmTJlirZt26YNGzboueee0yuvvKLZs2d7sQkAAAAAEpBxjedTczz22GMqKirSwoULtWXLFg0dOlRjx47Vvn37Glz+tdde0xVXXKGZM2fqzTff1MSJEzVx4kS98847LbF74uaYBOxlu2bNGl1//fU6dOjQKZczxqhnz5664YYb9KMf/UiSVFlZqezsbK1Zs0aTJ0/W9u3bNWjQIP3lL3/R8OHDJUnFxcUaP368PvzwQ/Xs2bNJ61RVVaVOnTpplC5XkpMc1/YBAAAAbVXI1KtUv1NlZaUyMzP9Xp2YIt/znf/P0+/5IVOvUvN0k/dLfn6+vvCFL+jnP/+5JMl1XeXm5ur73/++5s6de9LykyZNUnV1tZ577rnIvIsuukh5eXlauXJly22IpYTKmDbXrl27VF5ersLCwsi8Tp06KT8/X2VlZZKksrIyZWVlRRqlklRYWKhAIKCNGze2+joDAAAAOA0Z1/upierq6rR58+aodk4gEFBhYWGknfNZZWVlUctL0tixYxtdvrW16cGPysvLJUnZ2dlR87OzsyOvlZeXq3v37lGvJyUlqUuXLpFlGlJbW6va2trI35WVlZKkkOqlhMtBAwAAAK0jpHpJifd4FK+/55/YL1VVVVHzU1NTlZqaGjVv//79CofDDbZz3n333QbLLy8vP2W7yG++N0znzp2ru+6665TLbN++XQMGDGilNWqaJUuW6Pbbbz9p/qs6fToQAwAAAKerAwcOqFOnTn6vRkwpKSnKycnRq+Xef8/v2LGjcnNzo+YtXLhQt912m+d1+833hukNN9yg6dOnn3KZPn36WJWdk5MjSaqoqFCPHj0i8ysqKpSXlxdZ5rMdhEOhkA4ePBiJb8i8efNUVFQU+fvQoUM655xztGfPnoT4gCWiqqoq5ebmau/evQnRHyFRsZ9bB/u5dbCfvcc+bh3s59bBfm4dlZWVOvvss9WlSxe/V6VJ0tLStGvXLtXV1XlelzFGjuNEzftstlSSunbtqmAwqIqKiqj5FRUVjbZhcnJymrV8a/O9YdqtWzd169bNk7J79+6tnJwclZSURBqiVVVV2rhxY2Rk34KCAh06dEibN2/WsGHDJEkvv/yyXNdVfn5+o2U3lFKXjvdh5UTmrczMTPZxK2A/tw72c+tgP3uPfdw62M+tg/3cOgKBxBnuJi0tTWlpaX6vRkRKSoqGDRumkpISTZw4UdLxwY9KSko0Z86cBmMKCgpUUlKi66+/PjJvw4YNKigoaIU1ji1xjgZJe/bs0datW7Vnzx6Fw2Ft3bpVW7dujXrm6IABA/T0009LkhzH0fXXX6+f/OQnevbZZ/X2229r6tSp6tmzZ+QNHDhwoMaNG6dZs2Zp06ZN+vOf/6w5c+Zo8uTJTR6RFwAAAABaU1FRkR588EE9/PDD2r59u66++mpVV1drxowZkqSpU6dq3rx5keWvu+46FRcX66c//aneffdd3XbbbXrjjTcabci2Nt8zps2xYMECPfzww5G/L7jgAknSH//4R40aNUqStGPHjshARJJ00003qbq6WrNnz9ahQ4d08cUXq7i4OOoXj0cffVRz5szR6NGjFQgE9PWvf1333Xdf62wUAAAAADTTpEmT9Omnn2rBggUqLy9XXl6eiouLIwMc7dmzJyorPXLkSK1du1a33nqrbrnlFp177rl65plndP755/u1CVESqmG6Zs0arVmz5pTLfHZ0L8dxtGjRIi1atKjRmC5dumjt2rVxrVtqaqoWLlzY4O29aBns49bBfm4d7OfWwX72Hvu4dbCfWwf7uXWwn1vOnDlzGs14lpaWnjTvm9/8pr75zW96vFZ2HJNo4zQDAAAAANqUhOpjCgAAAABoe2iYAgAAAAB8RcMUAAAAAOArGqZNdMcdd2jkyJHKyMhQVlZWk2KMMVqwYIF69Oih9PR0FRYW6r333ota5uDBg5oyZYoyMzOVlZWlmTNnRj3+pr1p7v7YvXu3HMdpcHriiSciyzX0+rp161pjk047NsfcqFGjTtp/V111VdQye/bs0YQJE5SRkaHu3bvrxhtvVCgU8nJTTmvN3c8HDx7U97//ffXv31/p6ek6++yz9YMf/CBqlHGJY3nFihXq1auX0tLSlJ+fr02bNp1y+SeeeEIDBgxQWlqaBg8erPXr10e93pTzdHvUnP384IMP6otf/KI6d+6szp07q7Cw8KTlp0+fftJxO27cOK8347TXnP28Zs2ak/bhZ5+pyPF8subs44audY7jaMKECZFlOJZP9sorr+iyyy5Tz5495TiOnnnmmZgxpaWluvDCC5Wamqp+/fo1OLhpc8/3aAMMmmTBggVm2bJlpqioyHTq1KlJMUuXLjWdOnUyzzzzjPm///s/89WvftX07t3bHD16NLLMuHHjzNChQ83rr79u/vSnP5l+/fqZK664wqOtOP01d3+EQiHzySefRE2333676dixozl8+HBkOUnmoYceilru39+H9sTmmLvkkkvMrFmzovZfZWVl5PVQKGTOP/98U1hYaN58802zfv1607VrVzNv3jyvN+e01dz9/Pbbb5uvfe1r5tlnnzU7d+40JSUl5txzzzVf//rXo5Zrz8fyunXrTEpKilm9erXZtm2bmTVrlsnKyjIVFRUNLv/nP//ZBINBc/fdd5u//vWv5tZbbzXJycnm7bffjizTlPN0e9Pc/XzllVeaFStWmDfffNNs377dTJ8+3XTq1Ml8+OGHkWWmTZtmxo0bF3XcHjx4sLU26bTU3P380EMPmczMzKh9WF5eHrUMx3O05u7jAwcORO3fd955xwSDQfPQQw9FluFYPtn69evNj3/8Y/PUU08ZSebpp58+5fJ///vfTUZGhikqKjJ//etfzf3332+CwaApLi6OLNPc9w5tAw3TZnrooYea1DB1Xdfk5OSYe+65JzLv0KFDJjU11fz2t781xhjz17/+1Ugyf/nLXyLL/OEPfzCO45iPPvqoxdf9dNdS+yMvL89897vfjZrXlBNle2C7jy+55BJz3XXXNfr6+vXrTSAQiPqS9Mtf/tJkZmaa2traFln3RNJSx/Ljjz9uUlJSTH19fWReez6WR4wYYa699trI3+Fw2PTs2dMsWbKkweW/9a1vmQkTJkTNy8/PN//v//0/Y0zTztPtUXP382eFQiFzxhlnmIcffjgyb9q0aebyyy9v6VVNaM3dz7G+f3A8nyzeY/m//uu/zBlnnGGOHDkSmcexfGpNuUbddNNN5rzzzouaN2nSJDN27NjI3/G+d0hM3MrrkV27dqm8vFyFhYWReZ06dVJ+fr7KysokSWVlZcrKytLw4cMjyxQWFioQCGjjxo2tvs5+a4n9sXnzZm3dulUzZ8486bVrr71WXbt21YgRI7R69eqTnnnbHsSzjx999FF17dpV559/vubNm6eampqocgcPHhx5oLMkjR07VlVVVdq2bVvLb8hprqU+25WVlcrMzFRSUvQjp9vjsVxXV6fNmzdHnVMDgYAKCwsj59TPKisri1peOn5cnli+Kefp9sZmP39WTU2N6uvr1aVLl6j5paWl6t69u/r376+rr75aBw4caNF1TyS2+/nIkSM655xzlJubq8svvzzq/MrxHK0ljuVVq1Zp8uTJ6tChQ9R8juX4xDo3t8R7h8SUFHsR2CgvL5ekqC/qJ/4+8Vp5ebm6d+8e9XpSUpK6dOkSWaY9aYn9sWrVKg0cOFAjR46Mmr9o0SJ95StfUUZGhl588UVdc801OnLkiH7wgx+02PonAtt9fOWVV+qcc85Rz5499dZbb+nmm2/Wjh079NRTT0XKbehYP/Fae9MSx/L+/fu1ePFizZ49O2p+ez2W9+/fr3A43OBx9u677zYY09hx+e/n4BPzGlumvbHZz5918803q2fPnlFfKseNG6evfe1r6t27t95//33dcsstuvTSS1VWVqZgMNii25AIbPZz//79tXr1ag0ZMkSVlZW69957NXLkSG3btk1nnXUWx/NnxHssb9q0Se+8845WrVoVNZ9jOX6NnZurqqp09OhR/eMf/4j7PITE1K4bpnPnztVdd911ymW2b9+uAQMGtNIatU1N3c/xOnr0qNauXav58+ef9Nq/z7vgggtUXV2te+65p818mfd6H/9742jw4MHq0aOHRo8erffff199+/a1LjfRtNaxXFVVpQkTJmjQoEG67bbbol5r68cyEtvSpUu1bt06lZaWRg3MM3ny5Mj/Bw8erCFDhqhv374qLS3V6NGj/VjVhFNQUKCCgoLI3yNHjtTAgQP1q1/9SosXL/ZxzdqmVatWafDgwRoxYkTUfI5lwDvtumF6ww03aPr06adcpk+fPlZl5+TkSJIqKirUo0ePyPyKigrl5eVFltm3b19UXCgU0sGDByPxbUFT93O8++PJJ59UTU2Npk6dGnPZ/Px8LV68WLW1tUpNTY25/OmutfbxCfn5+ZKknTt3qm/fvsrJyTlptLyKigpJ4lj+p6bu58OHD2vcuHE644wz9PTTTys5OfmUy7e1Y7kxXbt2VTAYjBxXJ1RUVDS6T3Nyck65fFPO0+2NzX4+4d5779XSpUv10ksvaciQIadctk+fPuratat27tzZLr/Mx7OfT0hOTtYFF1ygnTt3SuJ4/qx49nF1dbXWrVunRYsWxaynvR/LNho7N2dmZio9PV3BYDDuzwcSU7vuY9qtWzcNGDDglFNKSopV2b1791ZOTo5KSkoi86qqqrRx48bIL54FBQU6dOiQNm/eHFnm5Zdfluu6kS/+bUFT93O8+2PVqlX66le/qm7dusVcduvWrercuXOb+SLfWvv4hK1bt0pS5MtPQUGB3n777ajG2IYNG5SZmalBgwa1zEaeBrzez1VVVRozZoxSUlL07LPPnvQoiIa0tWO5MSkpKRo2bFjUOdV1XZWUlERlkf5dQUFB1PLS8ePyxPJNOU+3Nzb7WZLuvvtuLV68WMXFxVF9qxvz4Ycf6sCBA1ENqPbEdj//u3A4rLfffjuyDzmeo8Wzj5944gnV1tbq29/+dsx62vuxbCPWubklPh9IUH6PvpQoPvjgA/Pmm29GHkXy5ptvmjfffDPqkST9+/c3Tz31VOTvpUuXmqysLPO73/3OvPXWW+byyy9v8HExF1xwgdm4caN59dVXzbnnntvuHxdzqv3x4Ycfmv79+5uNGzdGxb333nvGcRzzhz/84aQyn332WfPggw+at99+27z33nvmF7/4hcnIyDALFizwfHtOR83dxzt37jSLFi0yb7zxhtm1a5f53e9+Z/r06WO+9KUvRWJOPC5mzJgxZuvWraa4uNh069at3T8upjn7ubKy0uTn55vBgwebnTt3Rj2KIBQKGWM4ltetW2dSU1PNmjVrzF//+lcze/Zsk5WVFRkN+jvf+Y6ZO3duZPk///nPJikpydx7771m+/btZuHChQ0+LibWebq9ae5+Xrp0qUlJSTFPPvlk1HF74vp4+PBh86Mf/ciUlZWZXbt2mZdeeslceOGF5txzzzXHjh3zZRtPB83dz7fffrt54YUXzPvvv282b95sJk+ebNLS0sy2bdsiy3A8R2vuPj7h4osvNpMmTTppPsdyww4fPhz5XizJLFu2zLz55pvmgw8+MMYYM3fuXPOd73wnsvyJx8XceOONZvv27WbFihUNPi7mVO8d2iYapk00bdo0I+mk6Y9//GNkGf3z+YInuK5r5s+fb7Kzs01qaqoZPXq02bFjR1S5Bw4cMFdccYXp2LGjyczMNDNmzIhq7LY3sfbHrl27Ttrvxhgzb948k5uba8Lh8Ell/uEPfzB5eXmmY8eOpkOHDmbo0KFm5cqVDS7bHjR3H+/Zs8d86UtfMl26dDGpqammX79+5sYbb4x6jqkxxuzevdtceumlJj093XTt2tXccMMNUY85aW+au5//+Mc/NniOkWR27dpljOFYNsaY+++/35x99tkmJSXFjBgxwrz++uuR1y655BIzbdq0qOUff/xx8/nPf96kpKSY8847zzz//PNRrzflPN0eNWc/n3POOQ0etwsXLjTGGFNTU2PGjBljunXrZpKTk80555xjZs2axRdM07z9fP3110eWzc7ONuPHjzdbtmyJKo/j+WTNPWe8++67RpJ58cUXTyqLY7lhjV2/TuzbadOmmUsuueSkmLy8PJOSkmL69OkT9f35hFO9d2ibHGPawXMGAAAAAACnrXbdxxQAAAAA4D8apgAAAAAAX9EwBQAAAAD4ioYpAAAAAMBXNEwBAAAAAL6iYQoAAAAA8BUNUwAAAACAr2iYAgAAAAB8RcMUAAAAAOArGqYAAAAAAF/RMAUAAAAA+IqGKQCgTfntb3+r9PR0ffLJJ5F5M2bM0JAhQ1RZWenjmgEAgMY4xhjj90oAANBSjDHKy8vTl770Jd1///1auHChVq9erddff11nnnmm36sHAAAakOT3CgAA0JIcx9Edd9yhb3zjG8rJydH999+vP/3pTzRKAQA4jZExBQC0SRdeeKG2bdumF198UZdcconfqwMAAE6BPqYAgDanuLhY7777rsLhsLKzs/1eHQAAEAMZUwBAm7JlyxaNGjVKv/rVr7RmzRplZmbqiSee8Hu1AADAKdDHFADQZuzevVsTJkzQLbfcoiuuuEJ9+vRRQUGBtmzZogsvvNDv1QMAAI0gYwoAaBMOHjyokSNHatSoUVq5cmVk/oQJExQOh1VcXOzj2gEAgFOhYQoAAAAA8BWDHwEAAAAAfEXDFAAAAADgKxqmAAAAAABf0TAFAAAAAPiKhikAAAAAwFc0TAEAAAAAvqJhCgAAAADwFQ1TAAAAAICvaJgCAAAAAHxFwxQAAAAA4CsapgAAAAAAX9EwBQAAAAD46v8HhmH0j3fDztkAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de3xU1b3///dMkpkkaBIwkIBGAbFc5BINEkNtpSWHRPhZ+dZWUCqQUviK4i14IR4BFQW8cahKTaUg2iMF9StqlUYxmqPWCBrkeAMqFgQpCbeSgSC5zKzfH5Rpp0mYZCc7m0lez8djPzR71mftC2OcxXvW2i5jjBEAAAAAAA5xO30CAAAAAICOjYEpAAAAAMBRDEwBAAAAAI5iYAoAAAAAcBQDUwAAAACAoxiYAgAAAAAcxcAUAAAAAOAoBqYAAAAAAEcxMAUAAAAAOIqBKQAAAADAUQxMAQDtxubNmzV27Fi99tpreuKJJ9StWzedddZZeumll5w+NQAAcBIMTAEA7UJJSYkyMjL0zTffKC4uTjfffLPGjRunuLg4XXPNNfr222+dPkUAANAIBqYAgIh39OhR/eIXv9A555yj999/X6WlpfJ4PHr00Ud1//33q7q6WkVFRU6fJgAAaAQDUwBAxHvhhRe0e/duLVq0SJ06ddLHH3+s888/Xx6PR+np6ZKkgwcPKhAI6Mwzz1RFRYWzJwwAAEJEO30CAAC01Nq1a5WUlKT/+I//kCR9+umnGjFihCTp8OHDkqQzzjhDbrdbu3fvduo0AQBAI0hMAQAR7/PPP1f//v0VHR2tw4cPa8eOHRo8eLAkaevWrZKkiy++2MlTBAAAJ8HAFAAQ8SorKxUXFydJ+uyzz2SMCQ5M16xZo3PPPVfnn3++nnrqKV1zzTVOnioAAGgAX+UFAES8tLQ0ffLJJ6qurtann34qSRo8eLDeeustrVmzRsuWLZMkffHFFxo4cKCTpwoAABpAYgoAiHi//OUv9fe//12XX365XnzxRcXHx2v+/PkaPXq0rrrqKk2ePFnS8YHp+eef7+zJAgCAelzGGOP0SQAA0FL33HOPfvOb32jfvn1yuVzq2bOnpk2bpttvv11RUVGSpO7du+u9995Tnz59HD5bAADwrxiYAgDaldNPP1033HCDFi5cGLL/4MGDOuuss3TkyBG53XxhCACAUwn/ZwYAtBu7du3SkSNH1K9fv3qvffHFF+rfvz+DUgAATkH83xkA0G5s3rxZkhodmDK/FACAUxMDUwBAu3Gygemnn36qIUOGtPUpAQCAJmCOKQCg3Tty5IgGDRqk559/XhdddJHTpwMAAP5NxCWm7777ri6//HL16NFDLpdLL7/8ctiakpISXXjhhfJ6verTp49WrFhRr82SJUvUs2dPxcbGKjMzUxs2bGj9kwcAtLn169fre9/7nn76058yKAUA4BQVcQPTqqoqDRkyREuWLGlS++3bt2vMmDH60Y9+pE2bNumWW27Rr371K73xxhvBNqtXr1Z+fr7mzp2rjRs3asiQIcrJydHevXvtugwAQBvJzMzU3/72Nz366KNOnwoAAGhERH+V1+Vyac2aNRo7dmyjbe688069/vrr+vzzz4P7xo8fr0OHDqmoqEjS8Q8tF110kZ544glJUiAQUFpamm688UbNmjXL1msAAAAAgI4u4hLT5iotLVV2dnbIvpycHJWWlkqSampqVFZWFtLG7XYrOzs72AYAAAAAYJ9op0/AbuXl5UpJSQnZl5KSIp/Pp++++05///vf5ff7G2yzZcuWRvutrq5WdXV18OdAIKCDBw/qjDPOkMvlat2LAAAAANoJY4wOHz6sHj16RMyzpY8dO6aamhrbj+PxeBQbG2v7cU5F7X5gapcFCxbo3nvvdfo0AAAAgIi0a9cunXXWWU6fRljHjh1Tr3NOU/lev+3HSk1N1fbt2zvk4LTdD0xTU1NVUVERsq+iokIJCQmKi4tTVFSUoqKiGmyTmpraaL8FBQXKz88P/lxZWamzzz5bl2i0ohXTuhcBAAAAtBN1qtX7WqvTTz/d6VNpkpqaGpXv9eubsp5KON2+hNd3OKBzMnaopqaGgWl7lJWVpbVr14bsW7dunbKysiQdj8szMjJUXFwcXEQpEAiouLhYM2bMaLRfr9crr9dbb3+0YhTtYmAKAAAANOgfS69G2vS300536bTT7TvngCLrfrS2iBuYHjlyRNu2bQv+vH37dm3atEldunTR2WefrYKCAu3evVvPPvusJOm6667TE088oTvuuEO//OUv9fbbb+v555/X66+/HuwjPz9fkyZN0tChQzVs2DAtXrxYVVVVysvLa/PrAwAAAHDq8ZuA/DY+z8RvAvZ1HgEibmD68ccf60c/+lHw5xNfp500aZJWrFihPXv2aOfOncHXe/Xqpddff1233nqrfv3rX+uss87S7373O+Xk5ATbjBs3Tvv27dOcOXNUXl6u9PR0FRUV1VsQCQAAAADQ+iL6OaanEp/Pp8TERI3QFXyVFwAAAGhEnalViV5RZWWlEhISnD6dsE58zi/ferbtc0xT++6MmPvS2iJjfWYAAAAAQLsVcV/lBQAAAIC2FlBAds4Ctbf3Ux+JKQAAAADAUSSmAAAAABCG3xj5bVyex86+IwGJKQAAAADAUSSmAAAAABBGQEYB2Zdq2tl3JCAxBQAAAAA4isQUAAAAAMIIyMhPYmobElMAAAAAgKNITAEAAAAgDOaY2ovEFAAAAADgKBJTAAAAAAiD55jai8QUAAAAAOAoElMAAAAACCPwj83O/jsyElMAAAAAgKNITAEAAAAgDL/NzzG1s+9IQGIKAAAAAHAUiSkAAAAAhOE3xzc7++/ISEwBAAAAAI4iMQUAAACAMFiV114kpgAAAAAAR5GYAgAAAEAYAbnkl8vW/jsyElMAAAAAgKNITAEAAAAgjIA5vtnZf0dGYgoAAAAAcBSJKQAAAACE4bd5jqmdfUcCElMAAAAAgKNITAEAAAAgDBJTe5GYAgAAAAAcRWIKAAAAAGEEjEsBY+NzTG3sOxKQmAIAAAAAHEViCgAAAABhMMfUXiSmAAAAAABHkZgCAAAAQBh+ueW3Mdfz29ZzZCAxBQAAAAA4isQUAAAAAMIwNq/Ka1iVFwAAAAAA55CYAgAAAEAYrMprLxJTAAAAAICjSEwBAAAAIAy/cctvbFyV19jWdUQgMQUAAAAAOIrEFAAAAADCCMilgI25XkAdOzIlMQUAAAAAOIrEFAAAAADCYFVee5GYAgAAAAAcRWIKAAAAAGHYvyovc0wBAAAAAHAMiSkAAAAAhHF8VV775oHa2XckIDEFAAAAADiKxBQAAAAAwgjILT/PMbUNiSkAAAAAwFEkpgAAAAAQBqvy2isiE9MlS5aoZ8+eio2NVWZmpjZs2NBo2xEjRsjlctXbxowZE2wzefLkeq/n5ua2xaUAAAAAQIcXcYnp6tWrlZ+fr8LCQmVmZmrx4sXKycnR1q1b1a1bt3rtX3rpJdXU1AR/PnDggIYMGaKf//znIe1yc3P19NNPB3/2er32XQQAAACAiBKQWwHmmNom4hLTRYsWaerUqcrLy9OAAQNUWFio+Ph4LV++vMH2Xbp0UWpqanBbt26d4uPj6w1MvV5vSLvOnTu3xeUAAAAAQIcXUQPTmpoalZWVKTs7O7jP7XYrOztbpaWlTepj2bJlGj9+vDp16hSyv6SkRN26dVPfvn01ffp0HThwoFXPHQAAAEDk8huX7VtHFlFf5d2/f7/8fr9SUlJC9qekpGjLli1h6zds2KDPP/9cy5YtC9mfm5urn/70p+rVq5e+/vpr3XXXXbrssstUWlqqqKioBvuqrq5WdXV18Gefz2fhigAAAAAAETUwbally5Zp0KBBGjZsWMj+8ePHB/990KBBGjx4sM4991yVlJRo5MiRDfa1YMEC3XvvvbaeLwAAAIBTg9/m55j6mWMaOZKTkxUVFaWKioqQ/RUVFUpNTT1pbVVVlVatWqUpU6aEPU7v3r2VnJysbdu2NdqmoKBAlZWVwW3Xrl1NuwgAAAAAQIiIGph6PB5lZGSouLg4uC8QCKi4uFhZWVknrX3hhRdUXV2tX/ziF2GP8+233+rAgQPq3r17o228Xq8SEhJCNgAAAADtU8C4bd86soi7+vz8fC1dulTPPPOMNm/erOnTp6uqqkp5eXmSpIkTJ6qgoKBe3bJlyzR27FidccYZIfuPHDmi22+/XR9++KF27Nih4uJiXXHFFerTp49ycnLa5JoAAAAAoCOLuDmm48aN0759+zRnzhyVl5crPT1dRUVFwQWRdu7cKbc7dLy9detWvf/++3rzzTfr9RcVFaVPP/1UzzzzjA4dOqQePXpo1KhRmjdvHs8yBQAAACCJOaZ2cxljOvYdaCU+n0+JiYkaoSsU7Ypx+nQAAACAU1KdqVWJXlFlZWVETIc78Tl/6cYMxZ/e8BM7WsPRw35NvbAsYu5La4u4xBQAAAAA2lpAsvVZowHbeo4METfHFAAAAADQvpCYAgAAAEAYAbkVsDHXs7PvSNCxrx4AAAAA4DgSUwAAAAAIw2/c8tv4rFE7+44EHfvqAQAAAACOIzEFAAAAgDACcikgO1flta/vSEBiCgAAAABwFIkpAAAAAITBHFN7deyrBwAAAAA4jsQUAAAAAMLwyy2/jbmenX1Hgo599QAAAAAAx5GYAgAAAEAYAeNSwNi4Kq+NfUcCElMAAAAAgKNITAEAAAAgjIDNc0wDHTwz7NhXDwAAAABwHIkpAAAAAIQRMG4FbHzWqJ19R4KOffUAAAAAAMeRmAIAAABAGH655Jd9K+fa2XckIDEFAAAAADiKxBQAAAAAwmCOqb069tUDAAAAQBP49c+v89qzNd+SJUvUs2dPxcbGKjMzUxs2bDhp+8WLF6tv376Ki4tTWlqabr31Vh07dszS/WhtDEwBAAAAIMKsXr1a+fn5mjt3rjZu3KghQ4YoJydHe/fubbD9ypUrNWvWLM2dO1ebN2/WsmXLtHr1at11111tfOYNY2AKAAAAAGGc+CqvnVtzLFq0SFOnTlVeXp4GDBigwsJCxcfHa/ny5Q22/+CDD/T9739f11xzjXr27KlRo0bp6quvDpuythUGpgAAAAAQQWpqalRWVqbs7OzgPrfbrezsbJWWljZYM3z4cJWVlQUHon/961+1du1ajR49uk3OORwWPwIAAACAMPzGLb+NCxSd6Nvn84Xs93q98nq9Ifv2798vv9+vlJSUkP0pKSnasmVLg/1fc8012r9/vy655BIZY1RXV6frrruOr/ICAAAAAEKlpaUpMTExuC1YsKBV+i0pKdH8+fP1m9/8Rhs3btRLL72k119/XfPmzWuV/luKxBQAAAAAwjByKSCXrf1L0q5du5SQkBDc/+9pqSQlJycrKipKFRUVIfsrKiqUmpraYP+zZ8/Wtddeq1/96leSpEGDBqmqqkrTpk3Tf/7nf8rtdjazJDEFAAAAgFNEQkJCyNbQwNTj8SgjI0PFxcXBfYFAQMXFxcrKymqw36NHj9YbfEZFRUmSjDGteAXWkJgCAAAAQBhtNce0qfLz8zVp0iQNHTpUw4YN0+LFi1VVVaW8vDxJ0sSJE3XmmWcGvwp8+eWXa9GiRbrggguUmZmpbdu2afbs2br88suDA1QnMTAFAAAAgAgzbtw47du3T3PmzFF5ebnS09NVVFQUXBBp586dIQnp3XffLZfLpbvvvlu7d+9W165ddfnll+uBBx5w6hJCuMypkNu2Az6fT4mJiRqhKxTtinH6dAAAAIBTUp2pVYleUWVlZchcylPVic/5M//8/8l7mn2f86uP1OrR778WMfeltTHHFAAAAADgKL7KCwAAAABh+OWW38Zcz86+I0HHvnoAAAAAgONITAEAAAAgjIBxKWDse46pnX1HAhJTAAAAAICjSEwBAAAAIIyA3ArYmOvZ2Xck6NhXDwAAAABwHIkpAAAAAIThNy75bZwHamffkYDEFAAAAADgKBJTAAAAAAiDVXntRWIKAAAAAHAUiSkAAAAAhGGMWwFjX65nbOw7EnTsqwcAAAAAOI7EFAAAAADC8Mslv2xcldfGviMBiSkAAAAAwFEkpgAAAAAQRsDYu3JuwNjWdUQgMQUAAAAAOIrEFAAAAADCCNi8Kq+dfUeCjn31AAAAAADHkZgCAAAAQBgBuRSwceVcO/uOBCSmAAAAAABHReTAdMmSJerZs6diY2OVmZmpDRs2NNp2xYoVcrlcIVtsbGxIG2OM5syZo+7duysuLk7Z2dn66quv7L4MAAAAABHCb1y2bx1ZxA1MV69erfz8fM2dO1cbN27UkCFDlJOTo7179zZak5CQoD179gS3b775JuT1hx56SI899pgKCwu1fv16derUSTk5OTp27JjdlwMAAAAAHV7EDUwXLVqkqVOnKi8vTwMGDFBhYaHi4+O1fPnyRmtcLpdSU1ODW0pKSvA1Y4wWL16su+++W1dccYUGDx6sZ599Vn/729/08ssvt8EVAQAAADjVnViV186tI4uoq6+pqVFZWZmys7OD+9xut7Kzs1VaWtpo3ZEjR3TOOecoLS1NV1xxhb744ovga9u3b1d5eXlIn4mJicrMzDxpn9XV1fL5fCEbAAAAAKD5Impgun//fvn9/pDEU5JSUlJUXl7eYE3fvn21fPlyvfLKK/rv//5vBQIBDR8+XN9++60kBeua06ckLViwQImJicEtLS2tJZcGAAAA4BQWkEsBY+PGqrztW1ZWliZOnKj09HRdeumleumll9S1a1f99re/bVG/BQUFqqysDG67du1qpTMGAAAAgI4lop5jmpycrKioKFVUVITsr6ioUGpqapP6iImJ0QUXXKBt27ZJUrCuoqJC3bt3D+kzPT290X68Xq+8Xm8zrwAAAABAJDI2P8fUkJhGDo/Ho4yMDBUXFwf3BQIBFRcXKysrq0l9+P1+ffbZZ8FBaK9evZSamhrSp8/n0/r165vcJwAAAADAuohKTCUpPz9fkyZN0tChQzVs2DAtXrxYVVVVysvLkyRNnDhRZ555phYsWCBJuu+++3TxxRerT58+OnTokB5++GF98803+tWvfiXp+Iq9t9xyi+6//36dd9556tWrl2bPnq0ePXpo7NixTl0mAAAAgFPIibmgdvbfkUXcwHTcuHHat2+f5syZo/LycqWnp6uoqCi4eNHOnTvldv8zCP773/+uqVOnqry8XJ07d1ZGRoY++OADDRgwINjmjjvuUFVVlaZNm6ZDhw7pkksuUVFRkWJjY9v8+gAAAACgo3EZY4zTJ9Ee+Hw+JSYmaoSuULQrxunTAQAAAE5JdaZWJXpFlZWVSkhIcPp0wjrxOf//rMtTTCePbceprarRmv94OmLuS2uLqDmmAAAAAID2J+K+ygsAAAAAbY05pvYiMQUAAAAAOIrEFAAAAADCCNj8HFM7+44EJKYAAAAAAEeRmAIAAABAGMwxtReJKQAAAADAUSSmAAAAABAGiam9SEwBAAAAAI4iMQUAAACAMEhM7UViCgAAAABwFIkpAAAAAIRBYmovElMAAAAAgKNITAEAAAAgDCMpIPtSTWNbz5GBxBQAAAAA4CgSUwAAAAAIgzmm9iIxBQAAAAA4isQUAAAAAMIgMbUXiSkAAAAAwFEkpgAAAAAQBompvUhMAQAAAACOIjEFAAAAgDBITO1FYgoAAAAAcBSJKQAAAACEYYxLxsZU086+IwGJKQAAAADAUSSmAAAAABBGQC4FZOMcUxv7jgQkpgAAAAAAR5GYAgAAAEAYrMprLxJTAAAAAICjSEwBAAAAIAxW5bUXiSkAAAAAwFEkpgAAAAAQBnNM7UViCgAAAABwFIkpAAAAAITBHFN7kZgCAAAAABxFYgoAAAAAYRib55iSmAIAAAAA4CASUwAAAAAIw0gyxt7+OzISUwAAAACAo0hMAQAAACCMgFxyycbnmNrYdyQgMQUAAAAAOIrEFAAAAADC4Dmm9iIxBQAAAAA4isQUAAAAAMIIGJdcNqaadj4jNRIwMAUAAACAMIyx+XExHfx5MXyVFwAAAADgKBJTAAAAAAiDxY/sRWIKAAAAAHAUiSkAAAAAhEFiai8SUwAAAACAo0hMAQAAACAMHhdjLxJTAAAAAICjInJgumTJEvXs2VOxsbHKzMzUhg0bGm27dOlS/eAHP1Dnzp3VuXNnZWdn12s/efJkuVyukC03N9fuywAAAAAQIU48x9TOrSOLuIHp6tWrlZ+fr7lz52rjxo0aMmSIcnJytHfv3gbbl5SU6Oqrr9Y777yj0tJSpaWladSoUdq9e3dIu9zcXO3Zsye4/eEPf2iLywEAAACADi/iBqaLFi3S1KlTlZeXpwEDBqiwsFDx8fFavnx5g+2fe+45XX/99UpPT1e/fv30u9/9ToFAQMXFxSHtvF6vUlNTg1vnzp3b4nIAAAAARIDjqabLxs3pK3RWRA1Ma2pqVFZWpuzs7OA+t9ut7OxslZaWNqmPo0ePqra2Vl26dAnZX1JSom7duqlv376aPn26Dhw4cNJ+qqur5fP5QjYAAAAAQPNF1MB0//798vv9SklJCdmfkpKi8vLyJvVx5513qkePHiGD29zcXD377LMqLi7Wgw8+qP/5n//RZZddJr/f32g/CxYsUGJiYnBLS0uzdlEAAAAATnn2pqX2PiM1EnSox8UsXLhQq1atUklJiWJjY4P7x48fH/z3QYMGafDgwTr33HNVUlKikSNHNthXQUGB8vPzgz/7fD4GpwAAAABgQUQlpsnJyYqKilJFRUXI/oqKCqWmpp609pFHHtHChQv15ptvavDgwSdt27t3byUnJ2vbtm2NtvF6vUpISAjZAAAAALRPpg22jiyiBqYej0cZGRkhCxedWMgoKyur0bqHHnpI8+bNU1FRkYYOHRr2ON9++60OHDig7t27t8p5AwAAAAAaF1EDU0nKz8/X0qVL9cwzz2jz5s2aPn26qqqqlJeXJ0maOHGiCgoKgu0ffPBBzZ49W8uXL1fPnj1VXl6u8vJyHTlyRJJ05MgR3X777frwww+1Y8cOFRcX64orrlCfPn2Uk5PjyDUCAAAAOLWcinNMlyxZop49eyo2NlaZmZnasGHDSdsfOnRIN9xwg7p37y6v16vvfe97Wrt2rdVb0qoibo7puHHjtG/fPs2ZM0fl5eVKT09XUVFRcEGknTt3yu3+53j7ySefVE1NjX72s5+F9DN37lzdc889ioqK0qeffqpnnnlGhw4dUo8ePTRq1CjNmzdPXq+3Ta8NAAAAAJpi9erVys/PV2FhoTIzM7V48WLl5ORo69at6tatW732NTU1+o//+A9169ZNL774os4880x98803SkpKavuTb4DLmI7+xJzW4fP5lJiYqBG6QtGuGKdPBwAAADgl1ZlalegVVVZWRsQ6LSc+5/d+5i5FxceGL7DIf/SY/jppfpPvS2Zmpi666CI98cQTko5PcUxLS9ONN96oWbNm1WtfWFiohx9+WFu2bFFMzKk3Xom4r/ICAAAAQHvl8/lCturq6nptampqVFZWFvIITLfbrezsbJWWljbY76uvvqqsrCzdcMMNSklJ0cCBAzV//vyTPiKzLTEwBQAAAIBw7J5f+o85pmlpaUpMTAxuCxYsqHcq+/fvl9/vD05nPCElJUXl5eUNnv5f//pXvfjii/L7/Vq7dq1mz56tRx99VPfff3/r3ysLIm6OKQAAAAC0V7t27Qr5Km9rrXsTCATUrVs3PfXUU4qKilJGRoZ2796thx9+WHPnzm2VY7QEA1MAAAAACMOY45ud/UtSQkJC2DmmycnJioqKUkVFRcj+iooKpaamNljTvXt3xcTEKCoqKrivf//+Ki8vV01NjTweT8suoIX4Ki8AAAAARBCPx6OMjAwVFxcH9wUCARUXFysrK6vBmu9///vatm2bAoFAcN9f/vIXde/e3fFBqcTAFAAAAADCOtWeY5qfn6+lS5fqmWee0ebNmzV9+nRVVVUpLy9PkjRx4kQVFBQE20+fPl0HDx7UzTffrL/85S96/fXXNX/+fN1www2tep+s4qu8AAAAABBhxo0bp3379mnOnDkqLy9Xenq6ioqKggsi7dy5U273P3PItLQ0vfHGG7r11ls1ePBgnXnmmbr55pt15513OnUJIRiYAgAAAEA4/7Jyrm39N9OMGTM0Y8aMBl8rKSmpty8rK0sffvhhs4/TFvgqLwAAAADAUSSmAAAAABBGW63K21GRmAIAAAAAHEViCgAAAADhmH9sdvbfgZGYAgAAAAAcRWIKAAAAAGFYedZoc/vvyEhMAQAAAACOIjEFAAAAgKbo4PNA7URiCgAAAABwFIkpAAAAAITBHFN7kZgCAAAAABxFYgoAAAAA4fAcU1uRmAIAAAAAHEViCgAAAABhuf6x2dl/x0ViCgAAAABwFIkpAAAAAITDHFNbkZgCAAAAABxFYgoAAAAA4ZCY2orEFAAAAADgKBJTAAAAAAjHuI5vdvbfgZGYAgAAAAAcRWIKAAAAAGEYc3yzs/+OjMQUAAAAAOAoElMAAAAACIdVeW1FYgoAAAAAcBSJKQAAAACEw6q8tiIxBQAAAAA4isQUAAAAAMJwmeObnf13ZCSmAAAAAABHkZgCAAAAQDisymsrElMAAAAAgKNITAEAAAAgHFbltRWJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhENiaisSUwAAAACAo0hMAQAAACAcElNbkZgCAAAAABxFYgoAAAAA4fAcU1uRmAIAAAAAHEViCgAAAABhuMzxzc7+OzISUwAAAACAo0hMAQAAACAcVuW1VUQmpkuWLFHPnj0VGxurzMxMbdiw4aTtX3jhBfXr10+xsbEaNGiQ1q5dG/K6MUZz5sxR9+7dFRcXp+zsbH311Vd2XgIAAAAARIwFCxZIkjZu3Kjq6upW779ZA9Ndu3a1+gk01+rVq5Wfn6+5c+dq48aNGjJkiHJycrR3794G23/wwQe6+uqrNWXKFH3yyScaO3asxo4dq88//zzY5qGHHtJjjz2mwsJCrV+/Xp06dVJOTo6OHTvWVpcFAAAAAKesESNGSJIWLlyoCy+8UIMGDdL48eM1f/58vfbaa6qoqGhR/y5jTJND406dOmnmzJmaNWuW4uPjW3RgqzIzM3XRRRfpiSeekCQFAgGlpaXpxhtv1KxZs+q1HzdunKqqqvTaa68F91188cVKT09XYWGhjDHq0aOHZs6cqdtuu02SVFlZqZSUFK1YsULjx49v0nn5fD4lJiZqhK5QtCumFa4UAAAAaH/qTK1K9IoqKyuVkJDg9OmEdeJz/tkP3i93XKxtxwl8d0w777w7Yu7Ld999p88//1yffvqpPv30U73//vsaPXq05s2bZ6m/ZiWm69at0xtvvKHzzjtPK1assHTAlqipqVFZWZmys7OD+9xut7Kzs1VaWtpgTWlpaUh7ScrJyQm23759u8rLy0PaJCYmKjMzs9E+AQAAAHQsLv1zZV5bNqcvsBGHDx9WQUGBLrvsMl111VX69a9/rV27dikuLk4XXXSRpkyZol//+tcqKyurN2WyOZo1MB0+fLjWr1+vBQsWaPbs2crIyNB7771n+eDNtX//fvn9fqWkpITsT0lJUXl5eYM15eXlJ21/4p/N6VOSqqur5fP5QjYAAAAAaE+uueYaPfXUU0pKSlJ0dLSefPJJnXfeefqv//qvem0//PBDy8extPjRxIkTtXXrVo0ZM0aXXXaZfvazn2n79u2WTyISLViwQImJicEtLS3N6VMCAAAAYBfjsn87Bb377rt6+eWX9Yc//EErV67Uli1bVFxcrEWLFqmwsDCkbUyM9SmNLVqVd9SoUfrVr36lNWvWaMCAAbrjjjt05MiRlnR5UsnJyYqKiqo3sbaiokKpqakN1qSmpp60/Yl/NqdPSSooKFBlZWVwOxUWhgIAAACA1jRhwgSNHj1ao0ePVkFBgZ5//nmdccYZWrJkiR5++OFWO06zBqaFhYWaMmWKBg8erMTERI0cOVLvvfeerrvuOv3617/Wxx9/rAEDBujjjz9utRP8Vx6PRxkZGSouLg7uCwQCKi4uVlZWVoM1WVlZIe2l43NlT7Tv1auXUlNTQ9r4fD6tX7++0T4lyev1KiEhIWQDAAAA0E6ZNthOQRdffLF+//vfa+jQofr88881c+ZMDRgwQFdddZW++eYbTZ8+XU8++aTef//9Fh0nujmNH3jgAWVmZmrixIm6+OKLlZGRobi4uODr06ZN0/z58zV58uSQx7G0pvz8fE2aNElDhw7VsGHDtHjxYlVVVSkvL0/S8a8Zn3nmmcHn7Nx888269NJL9eijj2rMmDFatWqVPv74Yz311FOSJJfLpVtuuUX333+/zjvvPPXq1UuzZ89Wjx49NHbsWFuuAQAAAAAiwZtvvqmamhr9/ve/l9frlXR87Z8//vGPmjp1qnw+nwoLC/WXv/xF3333neXjNGtg2pSvq06ZMkWzZ8+2fELhjBs3Tvv27dOcOXNUXl6u9PR0FRUVBRcv2rlzp9zufwbBw4cP18qVK3X33Xfrrrvu0nnnnaeXX35ZAwcODLa54447VFVVpWnTpunQoUO65JJLVFRUpNhY+5aDBgAAABBB7E41T9HE9NFHH9XIkSM1cOBA5eXlaciQITp27JhWrFih9PR0Pffcc5Ikv9/fouM06zmmTWGM0bvvvqtLL720Nbs95fEcUwAAACC8SH2O6TnzH5DbxuAqcOyYvrnrP0/J+/Ldd9/pkUce0YsvvqjPPvtMkpSenq7f//73Ov/881vlGM1KTJvC5XJ1uEEpAAAAgPbtxPNG7ez/VBUXF6fZs2dr9uzZOnbsmOrq6nTaaae16jFafWAKAAAAAGif7JruyMAUAAAAAMLpoHNM20qLnmMKAAAAAEBLkZgCAAAAQDgkprZiYAoAAAAAYXTkxY/aAl/lBQAAAAA4isQUAAAAAMIxruObnf13YCSmAAAAAABHkZgCAAAAQDgsfmQrElMAAAAAgKNITAEAAAAgDFbltReJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhGPzHFMSUwAAAAAAHERiCgAAAADhMMfUViSmAAAAAABHkZgCAAAAQDgkprYiMQUAAAAAOIrEFAAAAADCcNm8Kq+tK/5GABJTAAAAAICjGJgCAAAAABzFwBQAAAAA4CjmmAIAAABAOKzKaysSUwAAAACAo0hMAQAAACAMVuW1F4kpAAAAAMBRJKYAAAAA0BQdPNW0E4kpAAAAAMBRJKYAAAAAEA6r8tqKxBQAAAAA4CgSUwAAAAAIg1V57UViCgAAAABwFIkpAAAAAITDHFNbkZgCAAAAABzFwBQAAAAAwjgxx9TOrbmWLFminj17KjY2VpmZmdqwYUOT6latWiWXy6WxY8c2/6A2YWAKAAAAABFm9erVys/P19y5c7Vx40YNGTJEOTk52rt370nrduzYodtuu00/+MEP2uhMm4aBKQAAAACEY9pga4ZFixZp6tSpysvL04ABA1RYWKj4+HgtX7680Rq/368JEybo3nvvVe/evZt3QJsxMAUAAACAU4TP5wvZqqur67WpqalRWVmZsrOzg/vcbreys7NVWlraaN/33XefunXrpilTpthy7i3BwBQAAAAAwmmjxDQtLU2JiYnBbcGCBfVOZf/+/fL7/UpJSQnZn5KSovLy8gZP//3339eyZcu0dOlSy7fATjwuBgAAAABOEbt27VJCQkLwZ6/X2+I+Dx8+rGuvvVZLly5VcnJyi/uzAwNTAAAAAAjD6sq5zelfkhISEkIGpg1JTk5WVFSUKioqQvZXVFQoNTW1Xvuvv/5aO3bs0OWXXx7cFwgEJEnR0dHaunWrzj333BZeQcvwVV4AAAAAiCAej0cZGRkqLi4O7gsEAiouLlZWVla99v369dNnn32mTZs2Bbef/OQn+tGPfqRNmzYpLS2tLU+/QSSmAAAAABCOhZVzm91/M+Tn52vSpEkaOnSohg0bpsWLF6uqqkp5eXmSpIkTJ+rMM8/UggULFBsbq4EDB4bUJyUlSVK9/U5hYAoAAAAAEWbcuHHat2+f5syZo/LycqWnp6uoqCi4INLOnTvldkfOF2QZmAIAAABAOKdYYipJM2bM0IwZMxp8raSk5KS1K1asaP4BbRQ5Q2gAAAAAQLtEYgoAAAAAYbTVqrwdFYkpAAAAAMBRJKYAAAAAEM4pOMe0PYmoxPTgwYOaMGGCEhISlJSUpClTpujIkSMnbX/jjTeqb9++iouL09lnn62bbrpJlZWVIe1cLle9bdWqVXZfDgAAAABAEZaYTpgwQXv27NG6detUW1urvLw8TZs2TStXrmyw/d/+9jf97W9/0yOPPKIBAwbom2++0XXXXae//e1vevHFF0PaPv3008rNzQ3+fOK5PgAAAADAHFN7RczAdPPmzSoqKtJHH32koUOHSpIef/xxjR49Wo888oh69OhRr2bgwIH6f//v/wV/Pvfcc/XAAw/oF7/4herq6hQd/c/LT0pKUmpqqv0XAgAAAAAIETFf5S0tLVVSUlJwUCpJ2dnZcrvdWr9+fZP7qaysVEJCQsigVJJuuOEGJScna9iwYVq+fLmM6eB/ZQEAAADgn0wbbB1YxCSm5eXl6tatW8i+6OhodenSReXl5U3qY//+/Zo3b56mTZsWsv++++7Tj3/8Y8XHx+vNN9/U9ddfryNHjuimm25qtK/q6mpVV1cHf/b5fM24GgAAAADACY4PTGfNmqUHH3zwpG02b97c4uP4fD6NGTNGAwYM0D333BPy2uzZs4P/fsEFF6iqqkoPP/zwSQemCxYs0L333tvi8wIAAAAQAViV11aOD0xnzpypyZMnn7RN7969lZqaqr1794bsr6ur08GDB8PODT18+LByc3N1+umna82aNYqJiTlp+8zMTM2bN0/V1dXyer0NtikoKFB+fn7wZ5/Pp7S0tJP2CwAAAACoz/GBadeuXdW1a9ew7bKysnTo0CGVlZUpIyNDkvT2228rEAgoMzOz0Tqfz6ecnBx5vV69+uqrio2NDXusTZs2qXPnzo0OSiXJ6/We9HUAAAAA7YfrH5ud/Xdkjg9Mm6p///7Kzc3V1KlTVVhYqNraWs2YMUPjx48Prsi7e/dujRw5Us8++6yGDRsmn8+nUaNG6ejRo/rv//5v+Xy+4FzQrl27KioqSn/84x9VUVGhiy++WLGxsVq3bp3mz5+v2267zcnLBQAAAIAOI2IGppL03HPPacaMGRo5cqTcbreuvPJKPfbYY8HXa2trtXXrVh09elSStHHjxuCKvX369Anpa/v27erZs6diYmK0ZMkS3XrrrTLGqE+fPlq0aJGmTp3adhcGAAAA4NTGHFNbRdTAtEuXLlq5cmWjr/fs2TPkMS8jRowI+9iX3Nxc5ebmtto5AgAAAACaJ6IGpgAAAADgBJc5vtnZf0fmdvoEAAAAAAAdG4kpAAAAAITDHFNbkZgCAAAAABxFYgoAAAAATdHBU007kZgCAAAAABxFYgoAAAAAYbAqr71ITAEAAAAAjiIxBQAAAIBwWJXXViSmAAAAAABHkZgCAAAAQBjMMbUXiSkAAAAAwFEkpgAAICK4oq19bHF5vdaPGWPxo5LFc1VUlLU6SS63xbyhreskye2yVueyWNeCczVtfa4tqbV8f9r2XI2/Wtpi/ZCOYY6prUhMAQAAAACOIjEFAAAAgDCYY2ovElMAAAAAgKNITAEAAAAgHOaY2orEFAAAAADgKBJTAAAAAAiHxNRWJKYAAAAAAEeRmAIAAABAGKzKay8SUwAAAACAo0hMAQBARHB5vZbq3EmJlo9p4qwdU54Ya8fzWP9oFoiJslhnLacwUdbzDRPtslQXiLJWZ6JbcK7WbquM29q5SlLA4v0xFi/Tap0kGQt/JnW1x6Qt1o/pGOaY2orEFAAAAADgKBJTAAAAAAjDZYxcxr5Y086+IwGJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhMFzTO3FwBQAAAAAwuGrvLbiq7wAAAAAAEeRmAIAAABAGHyV114MTAEAQERwxVj72GLivJaPaTrFWqoLxMVYq/NGWaqTJL/F2kCMq03rJCkQbfGYlusslbXsmNb/KGUsnm8gytq5mpacq4VafzVf2kR9DEwBAAAAIBzmmNqKv64AAAAAADiKxBQAAAAAwmCOqb1ITAEAAAAAjiIxBQAAAIBwmGNqKxJTAAAAAICjSEwBAAAAoAk6+jxQO5GYAgAAAAAcRWIKAAAAAOEYc3yzs/8OjIEpAACIDNEWP7Z4YiwfMhBnrbYu3lqdP9b6l9ms1vo9Lmt1MdbqJClg8Y/Ecl20A+fagk/ZxmJtIMri8SzWSZKJbv5gyn+sYw/A0DAGpgAAAAAQBs8xtRdzTAEAAAAAjiIxBQAAAIBweI6prUhMAQAAAACOIjEFAAAAgDBcgeObnf13ZCSmAAAAAABHkZgCAAAAQDjMMbUViSkAAAAAwFEkpgAAAAAQBs8xtRcDUwAAEBmioiyVGY/1jzsBr7Vj+mOtfSmtLs76l9nqYl2W6vxei3UeS2WSpIDH2jEDMRaPZ7FOkgIW3z4tOmaMtRGKsfZ2lYm2PiKycn8Cng4+AkODIuqrvAcPHtSECROUkJCgpKQkTZkyRUeOHDlpzYgRI+RyuUK26667LqTNzp07NWbMGMXHx6tbt266/fbbVVdXZ+elAAAAAIgkxti/dWARlZhOmDBBe/bs0bp161RbW6u8vDxNmzZNK1euPGnd1KlTdd999wV/jo+PD/673+/XmDFjlJqaqg8++EB79uzRxIkTFRMTo/nz59t2LQAAAACA4yJmYLp582YVFRXpo48+0tChQyVJjz/+uEaPHq1HHnlEPXr0aLQ2Pj5eqampDb725ptv6ssvv9Rbb72llJQUpaena968ebrzzjt1zz33yONpwfdUAAAAALQLzDG1V8R8lbe0tFRJSUnBQakkZWdny+12a/369Setfe6555ScnKyBAweqoKBAR48eDel30KBBSklJCe7LycmRz+fTF1980Wif1dXV8vl8IRsAAAAAoPkiJjEtLy9Xt27dQvZFR0erS5cuKi8vb7Tummuu0TnnnKMePXro008/1Z133qmtW7fqpZdeCvb7r4NSScGfT9bvggULdO+991q9HAAAAACRhOeY2srxgemsWbP04IMPnrTN5s2bLfc/bdq04L8PGjRI3bt318iRI/X111/r3HPPtdxvQUGB8vPzgz/7fD6lpaVZ7g8AAAAAOirHB6YzZ87U5MmTT9qmd+/eSk1N1d69e0P219XV6eDBg43OH21IZmamJGnbtm0699xzlZqaqg0bNoS0qaiokKST9uv1euX1ept8XAAAAACRizmm9nJ8YNq1a1d17do1bLusrCwdOnRIZWVlysjIkCS9/fbbCgQCwcFmU2zatEmS1L1792C/DzzwgPbu3Rv8qvC6deuUkJCgAQMGNPNqAAAAAADNFTGLH/Xv31+5ubmaOnWqNmzYoD//+c+aMWOGxo8fH1yRd/fu3erXr18wAf366681b948lZWVaceOHXr11Vc1ceJE/fCHP9TgwYMlSaNGjdKAAQN07bXX6n//93/1xhtv6O6779YNN9xAIgoAAADgOJ5jaivHE9PmeO655zRjxgyNHDlSbrdbV155pR577LHg67W1tdq6dWtw1V2Px6O33npLixcvVlVVldLS0nTllVfq7rvvDtZERUXptdde0/Tp05WVlaVOnTpp0qRJIc89BQAAznO5rf19eiAmyvIx/V5rtf5Ya+daF+uyVNeSWr/Vuhb8/X3A4tP4AjHW6vwe6x/4rR7TxLTkmNZqLR8zqgUDophAs0tMTK3146HdiqiBaZcuXbRy5cpGX+/Zs6fMv/xNQ1pamv7nf/4nbL/nnHOO1q5d2yrnCAAAAKD9YY6pvSLmq7wAAAAAgPYpohJTAAAAAHAEzzG1FYkpAAAAAMBRJKYAAAAAEAZzTO1FYgoAAAAAcBSJKQAAAACEEzDHNzv778BITAEAAAAAjiIxBQAAAIBwWJXXVgxMAQBAZHBb+6JXIMb6F8QCMS5LdX6PxTqvtTpJ8sdaPGasxeN5rdW1pDbgsfbJ3WpdS2pNTAtGGTEBS2Uui3VR0dbqJCk6xt/sGr+7xvLx0H4xMAUAAACAMFyyeVVe+7qOCMwxBQAAAAA4isQUAAAAAMIx5vhmZ/8dGIkpAAAAAESgJUuWqGfPnoqNjVVmZqY2bNjQaNulS5fqBz/4gTp37qzOnTsrOzv7pO3bGgNTAAAAAAjDZezfmmP16tXKz8/X3LlztXHjRg0ZMkQ5OTnau3dvg+1LSkp09dVX65133lFpaanS0tI0atQo7d69uxXuTssxMAUAAACACLNo0SJNnTpVeXl5GjBggAoLCxUfH6/ly5c32P65557T9ddfr/T0dPXr10+/+93vFAgEVFxc3MZn3jAGpgAAAAAQjmmDrYlqampUVlam7Ozs4D63263s7GyVlpY2qY+jR4+qtrZWXbp0afqBbcTiRwAAAABwivD5fCE/e71eeb2hD//dv3+//H6/UlJSQvanpKRoy5YtTTrOnXfeqR49eoQMbp1EYgoAAAAAYbiMsX2TpLS0NCUmJga3BQsWtPq1LFy4UKtWrdKaNWsUGxvb6v1bQWIKAAAAAKeIXbt2KSEhIfjzv6elkpScnKyoqChVVFSE7K+oqFBqaupJ+3/kkUe0cOFCvfXWWxo8eHDrnHQrYGAKAAAig9vaF71MlPUviAViXJbq/FbrPJbKjtfW/+xqb12s9WcuWr3OgMVjBjwBaweUJIu1rhYcMzrGb6kuxlNnqc4Tbe14khTrqW12jd9Vbfl4jgr8Y7Ozf0kJCQkhA9OGeDweZWRkqLi4WGPHjj1e/o+FjGbMmNFo3UMPPaQHHnhAb7zxhoYOHdpaZ94qGJgCAAAAQITJz8/XpEmTNHToUA0bNkyLFy9WVVWV8vLyJEkTJ07UmWeeGfwq8IMPPqg5c+Zo5cqV6tmzp8rLyyVJp512mk477TTHruMEBqYAAAAAEMa/zgO1q//mGDdunPbt26c5c+aovLxc6enpKioqCi6ItHPnTrn/5ZsmTz75pGpqavSzn/0spJ+5c+fqnnvuafH5txQDUwAAAACIQDNmzGj0q7slJSUhP+/YscP+E2oBBqYAAAAAEE4znzVqqf8OjMfFAAAAAAAcRWIKAAAAAOEYc3yzs/8OjMQUAAAAAOAoElMAAAAACMNljm929t+RkZgCAAAAABxFYgoAACKD22WpzERbq5OkgMXaQIzF43lacK4ea3V+r8U6i8eTpECstWgoEBuwdkCPxTpJUV6/pboYT53lY3pirNXGeWqt1cVYq5OkTjE1za6pDTS/5pTAHFNbkZgCAAAAABxFYgoAAAAAYbgCxzc7++/ISEwBAAAAAI4iMQUAAACAcJhjaisSUwAAAACAo0hMAQAAACAc84/Nzv47MBJTAAAAAICjSEwBAAAAIAyXMXLZOA/Uzr4jAYkpAAAAAMBRJKYAACAyuFyWygJR1uokKRBt8ZgxFo9nsa5Fx/RYS2kCsdbTnUCsxQc2ev2WyqIt1kmSx1trqS7WY61OkjpZrI2PqbFUl+A5ZqlOkk6Prm52TU2dtfN0HKvy2orEFAAAAADgKBJTAAAAAAjHSLIY9je5/w6MxBQAAAAA4CgSUwAAAAAIg1V57UViCgAAAABwFIkpAAAAAIRjZPOqvPZ1HQlITAEAAAAAjiIxBQAAAIBweI6prUhMAQAAAACOIjEFAACRwW3t79NNtPW/hw9Y/KQUiHZZq4uxdjxJ8nuspS0By3UteKCjxdpor99SnTe21lKdJMV7ayzVdfJYq5Ok0z3VluoSYo61aZ0kJUUfbXZNda31Pw9HBSRZ+0+76f13YCSmAAAAAABHkZgCAAAAQBg8x9ReEZWYHjx4UBMmTFBCQoKSkpI0ZcoUHTlypNH2O3bskMvlanB74YUXgu0aen3VqlVtcUkAAAAAIsGJxY/s3DqwiEpMJ0yYoD179mjdunWqra1VXl6epk2bppUrVzbYPi0tTXv27AnZ99RTT+nhhx/WZZddFrL/6aefVm5ubvDnpKSkVj9/AAAAAEB9ETMw3bx5s4qKivTRRx9p6NChkqTHH39co0eP1iOPPKIePXrUq4mKilJqamrIvjVr1uiqq67SaaedFrI/KSmpXlsAAAAAkMTjYmwWMV/lLS0tVVJSUnBQKknZ2dlyu91av359k/ooKyvTpk2bNGXKlHqv3XDDDUpOTtawYcO0fPlymTBvjOrqavl8vpANAAAAANB8EZOYlpeXq1u3biH7oqOj1aVLF5WXlzepj2XLlql///4aPnx4yP777rtPP/7xjxUfH68333xT119/vY4cOaKbbrqp0b4WLFige++9t/kXAgAAACDykJjayvHEdNasWY0uUHRi27JlS4uP891332nlypUNpqWzZ8/W97//fV1wwQW68847dccdd+jhhx8+aX8FBQWqrKwMbrt27WrxOQIAAABAR+R4Yjpz5kxNnjz5pG169+6t1NRU7d27N2R/XV2dDh482KS5oS+++KKOHj2qiRMnhm2bmZmpefPmqbq6Wl6vt8E2Xq+30dcAAAAAtDMBSS6b++/AHB+Ydu3aVV27dg3bLisrS4cOHVJZWZkyMjIkSW+//bYCgYAyMzPD1i9btkw/+clPmnSsTZs2qXPnzgw8AQA4hRi3tU+EJsr6MQPR1o4ZiLF6PGt1LTqmx+LXBz3WP0VHef3WDumttVQX762xVCdJp3urrdXFWKuTpM7eo5bqEmO+s3a8aGvHk6Qu0VXNrjnmqbN8PLRfjg9Mm6p///7Kzc3V1KlTVVhYqNraWs2YMUPjx48Prsi7e/dujRw5Us8++6yGDRsWrN22bZveffddrV27tl6/f/zjH1VRUaGLL75YsbGxWrdunebPn6/bbrutza4NAAAAwKnNZYxcNs4DtbPvSBAxA1NJeu655zRjxgyNHDlSbrdbV155pR577LHg67W1tdq6dauOHg39W5/ly5frrLPO0qhRo+r1GRMToyVLlujWW2+VMUZ9+vTRokWLNHXqVNuvBwAAAAAQYQPTLl26aOXKlY2+3rNnzwYf8zJ//nzNnz+/wZrc3Fzl5ua22jkCAAAAaIdYlddWjq/KCwAAAADo2CIqMQUAAAAARwSM5LIx1QyQmAIAAAAA4BgSUwAAAAAIhzmmtiIxBQAAAAA4isQUAAAAAMKyOTFVx05MGZgCAIDI4HJZKjNua3WSFIiyWGfxE1YgxlqdJJkYax9qrda5PAFLdZIU46mzVBfrqbVU18lTY6lOkk6PqbZU19l71PIxu8RUWao7w2Jdl+gjluqs1h6N9ls+HtovBqYAAAAAEA5zTG3FHFMAAAAAgKNITAEAAAAgnICRrfNAeY4pAAAAAADOITEFAAAAgHBM4PhmZ/8dGIkpAAAAAMBRJKYAAAAAEA6r8tqKxBQAAAAA4CgSUwAAAAAIh1V5bcXAFAAARAaXy1JZINpanSQZi5+UrNYFYqx/MLVcG2NtwZXoGL+140nyxNRZquvkqbVUd7qn2lKdJHX2HrVU1yWmyvIxz7BYmxxz2Nrxoo5YqpOkrtG+ZtdURXfsRX7QMAamAAAAABAOc0xtxRxTAAAAAICjSEwBAAAAIBwjmxNT+7qOBCSmAAAAAABHkZgCAAAAQDjMMbUViSkAAAAAwFEkpgAAAAAQTiAgycZH3QQ69mN0SEwBAAAAAI4iMQUAAACAcJhjaisSUwAAAACAo0hMAQBAZHC5LJWZFvw1fCDK2jEDUdaOZyzWSZKJsZa2uGKszWuL8dRZqpOkOE+tpbr4mBpLdQkxxyzVSVJizHeW6s6IqbJ8zOSYw5bqukX7LNV1jbJWJ0ld3M2/t3HuCJ1LSWJqKxJTAAAAAICjSEwBAAAAIJyAkWRjqhkgMQUAAAAAwDEkpgAAAAAQhjEBGWPf/Fg7+44EJKYAAAAAAEeRmAIAAABAOMbYOw+UVXkBAAAAAHAOiSkAAAAAhGNsXpWXxBQAAAAAAOeQmAIAgMjgdlkqMy34a3gT1cZ10S1ITKKs1UZFW1sJ1BPtt1QnSXExtZbqEjzHrNXFWKuTpM7RRy3VdYk+YvmYZ0RZq+0a5bNY952lOknqYuG/r1iL71XHBQKSy8aVc1mVFwAAAAAA55CYAgAAAEA4zDG1FYkpAAAAAMBRJKYAAAAAEIYJBGRsnGNqmGMKAAAAAIBzSEwBAAAAIBzmmNqKxBQAAAAA4CgSUwAAAAAIJ2AkF4mpXUhMAQAAAACOIjEFAACRweWyVGairNUdr7VYF20t+Qi05JNZjLUVPaNj/JbqYj21luokqVNMjaW606OrLdUlRR+1VCdJXaKrLNYdsXzMrtE+a8d0H7NYZ6lMkpQc1anZNZ6oCF191hhJNp47iSkAAAAAAM4hMQUAAACAMEzAyNg4x9SQmAIAAAAA4BwSUwAAAAAIxwRk7xzTCJ1720oiKjF94IEHNHz4cMXHxyspKalJNcYYzZkzR927d1dcXJyys7P11VdfhbQ5ePCgJkyYoISEBCUlJWnKlCk6csT6hHUAAAAAsNuSJUvUs2dPxcbGKjMzUxs2bDhp+xdeeEH9+vVTbGysBg0apLVr17bRmYYXUQPTmpoa/fznP9f06dObXPPQQw/pscceU2FhodavX69OnTopJydHx479c9WyCRMm6IsvvtC6dev02muv6d1339W0adPsuAQAAAAAEcgEjO1bc6xevVr5+fmaO3euNm7cqCFDhignJ0d79+5tsP0HH3ygq6++WlOmTNEnn3yisWPHauzYsfr8889b4/a0mMtE4CzbFStW6JZbbtGhQ4dO2s4Yox49emjmzJm67bbbJEmVlZVKSUnRihUrNH78eG3evFkDBgzQRx99pKFDh0qSioqKNHr0aH377bfq0aNHk87J5/MpMTFRI3SFol0xLbo+AABQX9SA71mqOzS4i+VjVqVa+zv86i7WPl7VJFr/WGYSrD2+JfY0a49uSTrN+iNYzoizVpsSe9handfa41ckqbun0toxYw5ZPmZqtLVjdnVbu69do6y/76w8LsZ3OKDO3/urKisrlZCQYPnYbSX4Od/1f2z9nF9nalVi1jT5vmRmZuqiiy7SE088IUkKBAJKS0vTjTfeqFmzZtVrP27cOFVVVem1114L7rv44ouVnp6uwsLC1rsQiyIqMW2u7du3q7y8XNnZ2cF9iYmJyszMVGlpqSSptLRUSUlJwUGpJGVnZ8vtdmv9+vVtfs4AAAAATkEmYP/WRDU1NSorKwsZ57jdbmVnZwfHOf+utLQ0pL0k5eTkNNq+rbXrxY/Ky8slSSkpKSH7U1JSgq+Vl5erW7duIa9HR0erS5cuwTYNqa6uVnX1Px/yXFl5/G+26lQrRVwGDQDAqc/4q8M3akBd7bHwjRrhr7b2d/j+Y9Y+DAQ8LUhMY6wlpn63tcTU77L25yFJtQFrx6yps1ZXXWvt3kjSMU+dpbqj0X7Lx6yKtrYITpzbWl1sCxJTT1Tzj+k7crwm0r64affn/Dodf5/6fKEJv9frldfrDdm3f/9++f3+Bsc5W7ZsabD/8vLyk46LnOb4wHTWrFl68MEHT9pm8+bN6tevXxudUdMsWLBA9957b7397+vUmUAMAEC70vBnLfvqANjqwIEDSkxMdPo0wvJ4PEpNTdX75fZ/zj/ttNOUlpYWsm/u3Lm65557bD+20xwfmM6cOVOTJ08+aZvevXtb6js1NVWSVFFRoe7duwf3V1RUKD09Pdjm3ycI19XV6eDBg8H6hhQUFCg/Pz/486FDh3TOOedo586dEfEfWCTy+XxKS0vTrl27ImI+QqTiPrcN7nPb4D7bj3vcNrjPbYP73DYqKyt19tlnq0sX6/O/21JsbKy2b9+umhpriX1zGGPkcrlC9v17WipJycnJioqKUkVFRcj+ioqKRscwqampzWrf1hwfmHbt2lVdu3a1pe9evXopNTVVxcXFwYGoz+fT+vXrgyv7ZmVl6dChQyorK1NGRoYk6e2331YgEFBmZmajfTcUqUvH57Dyi8xeCQkJ3OM2wH1uG9zntsF9th/3uG1wn9sG97ltuN2Rs9xNbGysYmNjnT6NII/Ho4yMDBUXF2vs2LGSji9+VFxcrBkzZjRYk5WVpeLiYt1yyy3BfevWrVNWVlYbnHF4kfNukLRz505t2rRJO3fulN/v16ZNm7Rp06aQZ47269dPa9askSS5XC7dcsstuv/++/Xqq6/qs88+08SJE9WjR4/gH2D//v2Vm5urqVOnasOGDfrzn/+sGTNmaPz48U1ekRcAAAAA2lJ+fr6WLl2qZ555Rps3b9b06dNVVVWlvLw8SdLEiRNVUFAQbH/zzTerqKhIjz76qLZs2aJ77rlHH3/8caMD2bbmeGLaHHPmzNEzzzwT/PmCCy6QJL3zzjsaMWKEJGnr1q3BhYgk6Y477lBVVZWmTZumQ4cO6ZJLLlFRUVHI33g899xzmjFjhkaOHCm3260rr7xSjz32WNtcFAAAAAA007hx47Rv3z7NmTNH5eXlSk9PV1FRUXCBo507d4ak0sOHD9fKlSt1991366677tJ5552nl19+WQMHDnTqEkJE1MB0xYoVWrFixUnb/PvqXi6XS/fdd5/uu+++Rmu6dOmilStXtujcvF6v5s6d2+DXe9E6uMdtg/vcNrjPbYP7bD/ucdvgPrcN7nPb4D63nhkzZjSaeJaUlNTb9/Of/1w///nPbT4ra1wm0tZpBgAAAAC0KxE1xxQAAAAA0P4wMAUAAAAAOIqBKQAAAADAUQxMm+iBBx7Q8OHDFR8fr6SkpCbVGGM0Z84cde/eXXFxccrOztZXX30V0ubgwYOaMGGCEhISlJSUpClTpoQ8/qajae792LFjh1wuV4PbCy+8EGzX0OurVq1qi0s65Vh5z40YMaLe/bvuuutC2uzcuVNjxoxRfHy8unXrpttvv111dXV2Xsoprbn3+eDBg7rxxhvVt29fxcXF6eyzz9ZNN90Ussq4xHt5yZIl6tmzp2JjY5WZmakNGzactP0LL7ygfv36KTY2VoMGDdLatWtDXm/K7+mOqDn3eenSpfrBD36gzp07q3PnzsrOzq7XfvLkyfXet7m5uXZfximvOfd5xYoV9e7hvz9Tkfdzfc25xw39v87lcmnMmDHBNryX63v33Xd1+eWXq0ePHnK5XHr55ZfD1pSUlOjCCy+U1+tVnz59GlzctLm/79EOGDTJnDlzzKJFi0x+fr5JTExsUs3ChQtNYmKiefnll83//u//mp/85CemV69e5rvvvgu2yc3NNUOGDDEffvihee+990yfPn3M1VdfbdNVnPqaez/q6urMnj17QrZ7773XnHbaaebw4cPBdpLM008/HdLuX/8cOhIr77lLL73UTJ06NeT+VVZWBl+vq6szAwcONNnZ2eaTTz4xa9euNcnJyaagoMDuyzllNfc+f/bZZ+anP/2pefXVV822bdtMcXGxOe+888yVV14Z0q4jv5dXrVplPB6PWb58ufniiy/M1KlTTVJSkqmoqGiw/Z///GcTFRVlHnroIfPll1+au+++28TExJjPPvss2KYpv6c7mube52uuucYsWbLEfPLJJ2bz5s1m8uTJJjEx0Xz77bfBNpMmTTK5ubkh79uDBw+21SWdkpp7n59++mmTkJAQcg/Ly8tD2vB+DtXce3zgwIGQ+/v555+bqKgo8/TTTwfb8F6ub+3ateY///M/zUsvvWQkmTVr1py0/V//+lcTHx9v8vPzzZdffmkef/xxExUVZYqKioJtmvtnh/aBgWkzPf30000amAYCAZOammoefvjh4L5Dhw4Zr9dr/vCHPxhjjPnyyy+NJPPRRx8F2/zpT38yLpfL7N69u9XP/VTXWvcjPT3d/PKXvwzZ15RflB2B1Xt86aWXmptvvrnR19euXWvcbnfIh6Qnn3zSJCQkmOrq6lY590jSWu/l559/3ng8HlNbWxvc15Hfy8OGDTM33HBD8Ge/32969OhhFixY0GD7q666yowZMyZkX2Zmpvm///f/GmOa9nu6I2ruff53dXV15vTTTzfPPPNMcN+kSZPMFVdc0dqnGtGae5/Dff7g/VxfS9/L//Vf/2VOP/10c+TIkeA+3ssn15T/R91xxx3m/PPPD9k3btw4k5OTE/y5pX92iEx8ldcm27dvV3l5ubKzs4P7EhMTlZmZqdLSUklSaWmpkpKSNHTo0GCb7Oxsud1urV+/vs3P2WmtcT/Kysq0adMmTZkypd5rN9xwg5KTkzVs2DAtX7683jNvO4KW3OPnnntOycnJGjhwoAoKCnT06NGQfgcNGhR8oLMk5eTkyOfz6Ysvvmj9CznFtdZ/25WVlUpISFB0dOgjpzvie7mmpkZlZWUhv1Pdbreys7ODv1P/XWlpaUh76fj78kT7pvye7mis3Od/d/ToUdXW1qpLly4h+0tKStStWzf17dtX06dP14EDB1r13COJ1ft85MgRnXPOOUpLS9MVV1wR8vuV93Oo1ngvL1u2TOPHj1enTp1C9vNebplwv5tb488OkSk6fBNYUV5eLkkhH9RP/HzitfLycnXr1i3k9ejoaHXp0iXYpiNpjfuxbNky9e/fX8OHDw/Zf9999+nHP/6x4uPj9eabb+r666/XkSNHdNNNN7Xa+UcCq/f4mmuu0TnnnKMePXro008/1Z133qmtW7fqpZdeCvbb0Hv9xGsdTWu8l/fv36958+Zp2rRpIfs76nt5//798vv9Db7PtmzZ0mBNY+/Lf/0dfGJfY206Giv3+d/deeed6tGjR8iHytzcXP30pz9Vr1699PXXX+uuu+7SZZddptLSUkVFRbXqNUQCK/e5b9++Wr58uQYPHqzKyko98sgjGj58uL744gudddZZvJ//TUvfyxs2bNDnn3+uZcuWheznvdxyjf1u9vl8+u677/T3v/+9xb+HEJk69MB01qxZevDBB0/aZvPmzerXr18bnVH71NT73FLfffedVq5cqdmzZ9d77V/3XXDBBaqqqtLDDz/cbj7M232P/3VwNGjQIHXv3l0jR47U119/rXPPPddyv5Gmrd7LPp9PY8aM0YABA3TPPfeEvNbe38uIbAsXLtSqVatUUlISsjDP+PHjg/8+aNAgDR48WOeee65KSko0cuRIJ0414mRlZSkrKyv48/Dhw9W/f3/99re/1bx58xw8s/Zp2bJlGjRokIYNGxayn/cyYJ8OPTCdOXOmJk+efNI2vXv3ttR3amqqJKmiokLdu3cP7q+oqFB6enqwzd69e0Pq6urqdPDgwWB9e9DU+9zS+/Hiiy/q6NGjmjhxYti2mZmZmjdvnqqrq+X1esO2P9W11T0+ITMzU5K0bds2nXvuuUpNTa23Wl5FRYUk8V7+h6be58OHDys3N1enn3661qxZo5iYmJO2b2/v5cYkJycrKioq+L46oaKiotF7mpqaetL2Tfk93dFYuc8nPPLII1q4cKHeeustDR48+KRte/fureTkZG3btq1DfphvyX0+ISYmRhdccIG2bdsmiffzv2vJPa6qqtKqVat03333hT1OR38vW9HY7+aEhATFxcUpKiqqxf99IDJ16DmmXbt2Vb9+/U66eTweS3336tVLqampKi4uDu7z+Xxav3598G88s7KydOjQIZWVlQXbvP322woEAsEP/u1BU+9zS+/HsmXL9JOf/ERdu3YN23bTpk3q3Llzu/kg31b3+IRNmzZJUvDDT1ZWlj777LOQwdi6deuUkJCgAQMGtM5FngLsvs8+n0+jRo2Sx+PRq6++Wu9REA1pb+/lxng8HmVkZIT8Tg0EAiouLg5Jkf5VVlZWSHvp+PvyRPum/J7uaKzcZ0l66KGHNG/ePBUVFYXMrW7Mt99+qwMHDoQMoDoSq/f5X/n9fn322WfBe8j7OVRL7vELL7yg6upq/eIXvwh7nI7+XrYi3O/m1vjvAxHK6dWXIsU333xjPvnkk+CjSD755BPzySefhDySpG/fvuall14K/rxw4UKTlJRkXnnlFfPpp5+aK664osHHxVxwwQVm/fr15v333zfnnXdeh39czMnux7fffmv69u1r1q9fH1L31VdfGZfLZf70pz/V6/PVV181S5cuNZ999pn56quvzG9+8xsTHx9v5syZY/v1nIqae4+3bdtm7rvvPvPxxx+b7du3m1deecX07t3b/PCHPwzWnHhczKhRo8ymTZtMUVGR6dq1a4d/XExz7nNlZaXJzMw0gwYNMtu2bQt5FEFdXZ0xhvfyqlWrjNfrNStWrDBffvmlmTZtmklKSgquBn3ttdeaWbNmBdv/+c9/NtHR0eaRRx4xmzdvNnPnzm3wcTHhfk93NM29zwsXLjQej8e8+OKLIe/bE/9/PHz4sLnttttMaWmp2b59u3nrrbfMhRdeaM477zxz7NgxR67xVNDc+3zvvfeaN954w3z99demrKzMjB8/3sTGxpovvvgi2Ib3c6jm3uMTLrnkEjNu3Lh6+3kvN+zw4cPBz8WSzKJFi8wnn3xivvnmG2OMMbNmzTLXXnttsP2Jx8XcfvvtZvPmzWbJkiUNPi7mZH92aJ8YmDbRpEmTjKR62zvvvBNso388X/CEQCBgZs+ebVJSUozX6zUjR440W7duDen3wIED5uqrrzannXaaSUhIMHl5eSGD3Y4m3P3Yvn17vftujDEFBQUmLS3N+P3+en3+6U9/Munp6ea0004znTp1MkOGDDGFhYUNtu0ImnuPd+7caX74wx+aLl26GK/Xa/r06WNuv/32kOeYGmPMjh07zGWXXWbi4uJMcnKymTlzZshjTjqa5t7nd955p8HfMZLM9u3bjTG8l40x5vHHHzdnn3228Xg8ZtiwYebDDz8MvnbppZeaSZMmhbR//vnnzfe+9z3j8XjM+eefb15//fWQ15vye7ojas59Pueccxp8386dO9cYY8zRo0fNqFGjTNeuXU1MTIw555xzzNSpU/mAaZp3n2+55ZZg25SUFDN69GizcePGkP54P9fX3N8ZW7ZsMZLMm2++Wa8v3ssNa+z/Xyfu7aRJk8yll15aryY9Pd14PB7Tu3fvkM/PJ5zszw7tk8uYDvCcAQAAAADAKatDzzEFAAAAADiPgSkAAAAAwFEMTAEAAAAAjmJgCgAAAABwFANTAAAAAICjGJgCAAAAABzFwBQAAAAA4CgGpgAAAAAARzEwBQAAAAA4ioEpAAAAAMBRDEwBAAAAAI5iYAoAaFf+8Ic/KC4uTnv27Anuy8vL0+DBg1VZWengmQEAgMa4jDHG6ZMAAKC1GGOUnp6uH/7wh3r88cc1d+5cLV++XB9++KHOPPNMp08PAAA0INrpEwAAoDW5XC498MAD+tnPfqbU1FQ9/vjjeu+99xiUAgBwCiMxBQC0SxdeeKG++OILvfnmm7r00kudPh0AAHASzDEFALQ7RUVF2rJli/x+v1JSUpw+HQAAEAaJKQCgXdm4caNGjBih3/72t1qxYoUSEhL0wgsvOH1aAADgJJhjCgBoN3bs2KExY8borrvu0tVXX63evXsrKytLGzdu1IUXXuj06QEAgEaQmAIA2oWDBw9q+PDhGjFihAoLC4P7x4wZI7/fr6KiIgfPDgAAnAwDUwAAAACAo1j8CAAAAADgKAamAAAAAABHMTAFAAAAADiKgSkAAAAAwFEMTAEAAAAAjmJgCgAAAABwFANTAAAAAICjGJgCAAAAABzFwBQAAAAA4CgGpgAAAAAARzEwBQAAAAA4ioEpAAAAAMBR/z9taMwvBGysFwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 509 + "execution_count": 212 }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T13:57:39.899341Z", - "start_time": "2024-06-09T13:57:39.881504Z" - } - }, "cell_type": "code", - "source": [ - "import torch\n", - "import matplotlib.pyplot as plt\n", - "import pennylane as qml\n", - "\n", - "num_pnts = 100\n", - "\n", - "# Generate a grid of x and y values\n", - "x = torch.linspace(-1.0, 1.0, num_pnts)\n", - "y = torch.linspace(-1.0, 1.0, num_pnts)\n", - "X, Y = torch.meshgrid(x, y)\n", - "Z = torch.empty(num_pnts, num_pnts)\n", - "\n", - "# Evaluate the circuit at each point in the grid and extract the j-th component\n", - "idx = 36\n", - "for i in range(num_pnts):\n", - " for k in range(num_pnts):\n", - " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", - " out = circuit(xy)[idx]\n", - " Z[i, k] = torch.tensor(out)\n", - "\n", - "# Convert tensors to numpy arrays for plotting\n", - "X = X.numpy()\n", - "Y = Y.numpy()\n", - "Z = Z.numpy()\n", - "\n", - "# Create a 3D surface plot\n", - "fig = plt.figure(figsize=(10, 6))\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "surf = ax.plot_surface(X, Y, Z, cmap='viridis')\n", - "\n", - "# Add labels and title\n", - "ax.set_xlabel('$x$')\n", - "ax.set_ylabel('$y$')\n", - "ax.set_zlabel(f'$z_{j}$')\n", - "ax.set_title(f\"$\\langle Z_0\\\\rangle$ (component {j})\")\n", - "\n", - "ax.view_init(elev=30, azim=0)\n", - "\n", - "# Add a color bar which maps values to colors\n", - "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", - "\n", - "# Save the figure\n", - "plt.tight_layout()\n", - "\n", - "# Show the plot\n", - "plt.show()" - ], - "id": "566631b16fa32330", - "outputs": [ - { - "ename": "IndexError", - "evalue": "index 36 is out of bounds for axis 0 with size 16", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mIndexError\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[510], line 18\u001B[0m\n\u001B[1;32m 16\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m k \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(num_pnts):\n\u001B[1;32m 17\u001B[0m xy \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor([X[i, k], Y[i, k]], dtype\u001B[38;5;241m=\u001B[39mtorch\u001B[38;5;241m.\u001B[39mfloat32)\n\u001B[0;32m---> 18\u001B[0m out \u001B[38;5;241m=\u001B[39m \u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxy\u001B[49m\u001B[43m)\u001B[49m\u001B[43m[\u001B[49m\u001B[43midx\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 19\u001B[0m Z[i, k] \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor(out)\n\u001B[1;32m 21\u001B[0m \u001B[38;5;66;03m# Convert tensors to numpy arrays for plotting\u001B[39;00m\n", - "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/numpy/tensor.py:186\u001B[0m, in \u001B[0;36mtensor.__getitem__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 185\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m__getitem__\u001B[39m(\u001B[38;5;28mself\u001B[39m, \u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[0;32m--> 186\u001B[0m item \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43msuper\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[38;5;21;43m__getitem__\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 188\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(item, tensor):\n\u001B[1;32m 189\u001B[0m item \u001B[38;5;241m=\u001B[39m tensor(item, requires_grad\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrequires_grad)\n", - "\u001B[0;31mIndexError\u001B[0m: index 36 is out of bounds for axis 0 with size 16" - ] - } - ], - "execution_count": 510 - }, - { - "cell_type": "code", - "id": "69ff92d61130136a", + "id": "66ba7a519125ef4e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T13:57:39.900118Z", - "start_time": "2024-06-09T13:57:39.900072Z" + "end_time": "2024-06-09T16:18:38.128299Z", + "start_time": "2024-06-09T16:18:34.056641Z" } }, - "source": [ - "num_pnts = 500\n", - "xvals = torch.linspace(-1.0, 1.0, num_pnts).unsqueeze(-1)\n", - "yvals = model(xvals)\n", - "\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(xvals, yvals)\n", - "plt.xlabel('$x$')\n", - "plt.title(\"$\\langle Z_0\\\\rangle$\")\n", - "plt.tight_layout()\n", - "plt.show()" - ], - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "id": "66ba7a519125ef4e", - "metadata": {}, "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -868,8 +644,8 @@ "num_pnts = 50\n", "\n", "# Generate a grid of x and y values\n", - "x = torch.linspace(-1.0, 1.0, num_pnts)\n", - "y = torch.linspace(-1.0, 1.0, num_pnts)\n", + "x = torch.linspace(-0.99, 0.99, num_pnts)\n", + "y = torch.linspace(-0.99, 0.99, num_pnts)\n", "X, Y = torch.meshgrid(x, y)\n", "Z = torch.empty(num_pnts, num_pnts)\n", "\n", @@ -895,6 +671,7 @@ "ax.set_zlabel('$z$')\n", "ax.set_title(\"$\\langle Z_0\\\\rangle$\")\n", "\n", + "ax.view_init(elev=30, azim=100)\n", "# Add a color bar which maps values to colors\n", "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", "\n", @@ -904,16 +681,19 @@ "# Show the plot\n", "plt.show()" ], - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "id": "6ef1e0d8cb1b72f1", - "metadata": {}, - "source": [], - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAJOCAYAAABx+VuRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlZ13nj7+eZ+8z3bmqbs1zZSJjZSIBRETNL2FokR+o0L1cRFhiYxvXwrSLLziAoo0DClEE00uDQP9sQVerDQYCduzgF41MBiEBIqkhNaRu1a3hTmfe+3l+f+zhTPs59+6qW0lV5fNaq1ZV7bPPHs459573/uz35/1R1lqLIAiCIAiCIAgrRj/XByAIgiAIgiAIFxsiogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUE4Kz7+8Y8zMjJCrVZLl61fvx6l1NA///k//+dlt/3Lv/zL7Nmz53weviAIgiCcE8paa5/rgxAE4eLj9a9/Pa1Wi8985jMABEHAJz/5ycx1FxYW+MVf/EWazSZ/93d/xytf+cqh2/6Xf/kXXvziF/P4449z7bXXrvqxC4IgCMK54j/XByAIwsVHs9nkC1/4Ah/4wAfSZb7v85M/+ZOZ677iFa+gXq/zkY98ZFkBDXD77bezceNGPvOZz4iIFgRBEC5IxM4hCEJu/u///b9Uq1V+5Ed+ZOh6YRjyn/7Tf+KRRx7h137t1/jZn/3ZFW1fKcV/+A//Ia1yC4IgCMKFhohoQRBy85nPfIYXvvCFbNq0aeh6P/uzP8tf//Vf83M/93O85z3vybWP17zmNfzLv/wLs7Oz53KogiAIgnBeEBEtCEJuPvOZzyxbhf7lX/5l/uRP/oSf+Imf4A//8A9z7+OOO+6gVCrx2c9+9mwPUxAEQRDOGyKiBUHIxWOPPcbhw4d5zWte41znD//wD3nf+97HHXfcwf/4H/8DrfP/qhkZGeGHf/iHxdIhCIIgXJCIiBYEIRdf/OIXmZqa4oYbbsh8/C/+4i94+9vfzq233srf/M3fUCwWB9aZnZ3l1a9+NaOjo1x11VU8/PDDmdt6+ctfziOPPLKahy8IgiAIq4KIaEEQcnHLLbcwNzfHU089NfDY5z//ee6++26uuOIKPvvZzzI2Npa5jZ/7uZ9j06ZNzM7O8v73v5+f+Imf4PTp0wPrfeUrX+HWW29d9XMQBEEQhHNFRLQgCLl4yUtewvT0NJ/+9Kd7ln/5y1/m9a9/PRs2bOALX/gC69evz3z+0tISf/u3f8uv//qvMzIywmte8xquv/56/vf//t8967XbbR566KFlvdeCIAiC8FwgIloQhFx4nserXvWqHq/yd77zHV796ldTLBb5/Oc/z86dO53P/973vsfY2Bjbtm1Ll11//fU88cQTPet98YtfZGFhQUS0IAiCcEEiw1YEQcjNa17zGt74xjdy5swZlFLcddddnDp1iv/yX/4Ljz32GI899tjAczZs2MCdd97J0tISExMTPY9NTExw6tSpnmWf/vSn2bt3Lzt27Div5yIIgiAIZ4OIaEEQcnPnnXeiteZzn/sc09PTHD58GICPfOQjfOQjH8l8zpve9CbuvPNOxsbGWFhY6HlsYWFhwD/9mc98JnMCoiAIgiBcCIiIFgQhN+Pj4/zgD/4gn/70p/nkJz+JtXbFz73iiitYWlri6NGjbN26FYDHH3+cN73pTek63/rWtzh48KBYOQRBEIQLFvFEC4JwVrzmNa/hoYceot1u53re2NgYP/qjP8p73vMe6vU6f/d3f8c3v/lNfvRHfzRd59Of/jSbNm3ihS984WoftiAIgiCsCsrmKSEJgiDENBoNjhw5wq5du/D9fDe1Zmdnufvuu3nkkUfYtm0bH/nIR7jjjjvSx48fP04YhmzZsmW1D1sQBEEQVgUR0YIgCIIgCIKQE7FzCIIgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJO/Of6AIRLmzAMaTQaaK1RSi37RxAEQRAE4WJARLRw3rDWUq/XaTQaeJ7XsxxIRXP334nYXqnoFuEtCIIgCMJzgYho4bxhjMFai1IK3+981BIR3f1vay3WWoIgSP+fJZCPHz/OyMgIExMTAD1iW2u9rPgGRHgLgiAIgnDOiIgWzguJIM4Sw93/X6mgTcT2qVOnCMOQyclJrLWpUO9eJ9lm9767/+6vdIvwFgRBEAQhLyKihfOCMQZjDFrrnsrz2ZKIWK11z9/DGFbxDsNwYJ3+fYnwFgRBEATBhYhoYdXprkKfPn2ab3zjG3ieR6FQyPxTLBYzl2eJUKUUxpgVHce5VLz7BbhLeFtr+e53v8uVV16J7/vi7xYEQRCE5wkiooVVJ6lCK6XYt28f27dvZ+PGjQRBQLvdptVq0W63abfbVKtV5ubmepYnIjlLWC8tLdFutzl27NjAY90i9mzJW0W21nLy5EmuvPLKtDre7+9Oli23LxHegiAIgnDxICJaWFWSim1Sha7X61x77bWUy+UVC74wDFOR3S+6rbU0Gg1mZmZ6Hkv8z3mr3Z7nrZoQXYnFBM6usdKVaLJcY2WyrghvQRAEQVhdREQLq4oxhjAMUUrx1FNPsWvXrp5kjpXgeR6e51Eulwcea7fbeJ7H5Zdfni5LhLtLeLfbbWq12sBjEInQsxHeCYkozeP7PhebSfe/sxorlVLUajX27dvH9ddfn7kfSTQRBEEQhHNHRLSwalhrOXXqFEopWq0WtVqNbdu29dgazpWsRsUkQs/3fSqVyoqPNbGXZAnvZrOZWkeS5cl59Pu7rbUcOHCASqXiFN4rrVK7yCO8lVIsLS1lZnNLookgCIIgrA4iooVVIxGT4+PjzM7OplXo1RTRSqm0we9ct5MI3JVijMn0dZ85cwaAer3OwsJCz2PJsfq+v+JKd7FYXFV/d/+/h7GaiSb9QluEtyAIgnApISJaWBWSym5iJ1haWuKWW25Z9f1orVdVlOfdd7FYpFgsMjo6mi7ft28fO3bsYGxsbOA5xhinxaTdbrO0tDSwfFhj5TDhnfi789pLulmNRJNu0Z0sm5+fZ9++fdx0000D25fGSkEQBOFiRES0sCokoklrzalTp9i1axeFQiEVhK4JhHnJE3H3bDFMtGqtKZVKlEqlFW+v29+dJbzr9frA8u7GSs/zCIKAb33rW07RnQjvRKye6/l3/+16HYIgSCv/LuEtiSaCIAjCxYKIaOGc6c6FbrVaNJtNdu7ceV72tVrDW1aTc6n8ZjGssTKL/sbKxcVF/v3f/53JyclUiFer1QHhDdmNlcOq3avh74azixLs//e5JpokyxLrjCSaCIIgCHkQES2cM91V6MXFRSYmJnJ5jfNwsVWin639dzdWJraOHTt2OJ/T31jZL7AbjQaLi4s9y12NlRebvztprKzX63zta1/j+7//+4fuUxorBUEQhCxERAvnRHcVen5+nmazydq1a8/b/p4PlehzZSXi7VwaK7MsJsngnP5lSTOi53kYY/ja177mFN7d/382hHdysdEdwZinsVISTQRBEJ7fiIgWzonuKvS+ffuYnJw8q6rh8J3M4YWPAlOU/TYFLwTbALUyu8P55kIT0ZDtJz5XuhsrV0oYhgRBwKlTp9Lpld0ie3FxcUB4ZzVWLmcxOZvBOcM81/3/Xul2ViPRpNlsUiqV8DxPhLcgCMIFjIho4azprkIvLCxw5swZduzYQaPRWNX9FNp/TrH9UQB2jkd/qEGgb0bbZ7BqCqvWAFNYNYXRm4FSvDx6zKopYALU6ttMLjQRfSGJqsTfPTIygtaajRs3Dl0/sVu4qt39g3OyGitXKryToUDnymonmnz1q1/lmmuuYXx83LkvaawUBEF47hERLZw1/VXo7du3UywWqdVqmeue3U4WKbQ/lfmQtifRdgbsTM/yUN+AZ745sH6ob0ab73WJ60hgG7Udhde3fArLBKhJUMMb6S40EQ3npxL9bKCUwvM8KpVKrsE5YRg6hXf34Jz+xkqAf/qnf8pV8T7fjZXW2jRXvH95/9+SaCIIgvDcISJaOGuSKvTi4iKnTp3iuuuuY2ZmZlUb//zgf2P0HqKPqqLVbtFq1hgZnUZzHMM0igUULQAM02jzxMB2LB7KPI1iEWUXwR5OHwv1VXjmycHz0zfFYnyyR1wbvRuwcXV7inXjxykQgNkFag1QgedQdGR5dS9luhsrV4q1lrm5Of7t3/6Na6+9dqDBMhmc0y26sxorl4sQTPzdeYS36317LhNNkmp/ckehX3wn64rwFgTh+YSIaOGsMMakVej9+/ezfft2SqUSWuvVE9G2TrH1MRRn0kUVDyojEOLh2ac7q1LCqgmMuhxlz4AqYvEAhcJg7CiaWYytAFUU8ygModqZKaAtI3jmuyhC4DTKngabnPt2dJcI3xun+YXNvXjm37AUU8ENawj1FSjaGZXuNaAigY5auc94OUS8LE9i/dBaMzU1taLndA/OyRoXP6yxsnti5XLV7tX6+VlNf/eRI0dotVpceeWVQy/OpLFSEITnEyKihbMiqUIvLS0xOzvLy172MoABEX0uFSm//ZkeAZ2wWN/CeOV7PcsUTbBNPPv1qCrdd1dbqS1o+0zPMssoVq3H4GFVGSgCGgtYxtCcAttA2SqKJRRLhOoFePa7g6+HmcTjifhYWih7AuwJLAplD6DtiYHnhPoaPPPtrmNJKt1XA3USj3fH170Wqya6/N3e0Nfv+VKJPlvyWl7OdXBOlvBuNBoDy621fPWrX11xpftsGyuzGCa8Pc/LrPavZmOlCG9BEC4mREQLuemvQm/bti0dDLJqlWjbphB8DIsfe5PHsKpMEHg02oqR0U2ABRsCLaCOZSOefWxgU6G+Fi/T4jGGZ/4VhekR3RYPyySa033re0ARo7ZhqYAqAT6Li1X84hoqXgNUKxbeSygWMepyPDu4b8NGtPlO+n9FFWWrWHscbY6imMs4jyvxzL/Hx6KASFCH+noUi6nYVmacbdMn8MISyk50NVaOPqc2k+cjZzM455FHHmHv3r34vp8pvJdrrMwrvFd6XC5LynOZaHLmzBnWrFnTMzBHhLcgCM8WIqKF3CR+yqWlJU6cOJFWoWH1cpz94LNoexwAxWmI7RSGrayfOAp9Ot1SBk5FtgkqWDUOjGJtEcsYgb453pYBArBNLGvxbAPLAqpLRYf6OnzzbwPHZNmCZ7/ZvQCA8UoB1DN4tjpQAYcWRk1Hx0IZVCkW6eNotoANgAbK1oEqhh34DO7bsC0V0NF5WGAebB0/PIViKX2sCNx0GYTtr+HZfV2H68ei+ya0PdOTXBLZS9Zj9ShRBTwW3mrlVddhXKii5UI7ruR4yuUyIyMjK3pO/+CcfuE9rLEymVi5nMWk2WymVpPVbKzs//dy59n/9ze/+U1uu+229CJFGisFQXg2EREt5CKpQgPs37+frVu39lTZVqUSbUO88P8l1C/oqupGzYOWSeDo4HHpa/DMvwKgqMeiFEJ1Bb758uAuGAeejrepsIxj1TjWVgCPUO8FvHjdEEUbY6fAtqLmRDoJJEuNXUyOfG9gH6Hag2eT5SeTHWMZBUIUGVGAahxrR7FqDBiNbSYFLBMYNgAGRRtsE2VrGDbj8/WBzSzW1zNe2de7aQKwS/jhP/Ucf/oaqj1ou7/vdaoQei9E2dm0kbKTarIJVLnH5w2ToC6OXysXaoJJXhtOd7Rfnn24LCb9jZWJELfWcvTo0bSxciVJJsmf1YwSTP7uzhN3NZVKookgCOeTi+PbTrhgSL58qtUqx48fHxiZnCWi80bAeeHD+OH/HVhu2I6njrPU2EClsrbTPGgVWI9QXxeJXFsjaR50fcSNvqJLdFuIUztCfTV+vLx332vxeTJuNKRjM2EMpQz14CqKxRFAESnlAMs4oQpiT/V8JGIBo6/EMxm2E3VFKrqVrRLvKBb8zTSBpAelsVYTWTtGsYxgKVKth1RGtkVf5DYE1QTbwLIez34rY9878foEdHIAXvi1FYtugEC/qCu/O/ozoStsW2fw2yd7q99qChh/zmwmF5rQ6U/HOF8opXINzvnOd75DsVhk27ZtTuHd3ViZLE9+F/i+n8tmspKJlclrNawy/mwkmvTvr9lsUq1WmZ6e7rGYSKKJIFx6iIgWVowxhscee4zt27dz9OhRtmzZMpDle86VaGsptP8s+yG9Ds8cZqwM2BOpdSLQN0bCt0+nh+xA28MYtRkYSau6WA+LJtB746puA2VrKBbBtMnC6l3oLnGtCFCcJtSbmajEnueu0zZMo3kito/E26ASCW9bJ1RXgypg0x9Bg2UEsPGxLAELKCDUV2QK+27RDXMoOxdvaZz1U3U8G3RekyRZRAUoGlGCCOOp19ywHtTaqBESE3vNmxjW4Nl/JxLxYde+s0W3pYhnvoWiCvZQurygYfv0Zkqtvxp4TqBvQduD9DZSTmHUNlB+VwU8Ft9MgV5ZhvTFxrMlovNijMHzvHNurOzP8u5urEweS0SqS3gny5LXqNlsopQ6742VLvqF9+LiIk8//TRr167tEeLnkmjyuc99jjvuuIOxsbHMbfzjP/4j73//+/n617/OsWPH+Ju/+Rte+9rXDj3uRx55hHvvvZcnnniC7du38yu/8iv81E/9VM86H/7wh3n/+9/PzMwMe/fu5UMf+hC33Xbbil4XQXg+ICJaWDFBEFCr1VhaWmJmZoaXvvSlA+ucayVah/8MlAj0TSTxdBBgjUGZM4RMoew8WsVfTpCZfBFtbAplDqFs7BeODyHUN+GbQQtEqHaj7QEsa7BqDKsqQBFrS2AVob4p9jC3iHzMVTAZ1WHA6B345mTv60Adoy7Ds4/3HA+AYQOK2R5vdmQzmUDZBUJ1eexPLgA6fk4lsk50XQQoahh1Ob7OqnRfGQviOEGEU2BPYe0YmgOZlW6ldqDjhJQoQSSxmWwmVFNxs2V0NJHlZSKOHtTAIolsaNvNjFeODWzf4uOZ76FYAE71vCau/O5oaM4TXZXsRHTvBKUyvN5ToKYGplVeqHYOuPBE9NkmvZxNY+VywjtprGw2mwB85StfATr+7pVaTPI0Vg6jX3hba9PzHnae/f8e1lj5Yz/2Y3zve99ziuhqtcrevXt5y1vewute97plj/nAgQO8+tWv5m1vext//ud/zsMPP8xP//RPs3nzZu666y4APvWpT3Hvvfdy//33c/vtt3Pfffdx11138eSTT7Jhw4Zl9yEIzwdERAsrojuRY2Zmhk2bNmU2Pp1TJdpaiu0/xTODdoNo8EkUB4eKkjWsGseoXSgWCNUGkng6CMGAsksYNsV+6siOEEXODXqqo+2OoWwInImyplPRfTOe+fpgpTv2PIemiGEMz5uMGxzLgCLQN/c0MipbA2uw0Sn0YPRWfNN7MaCwhGpHx37RI7rX43Oqp9IdrVJA2dMs1acpj6xBqTLJoBrDKFAiSTNJvOaRvSSr0n1ZT2NimiDCCJ49hqI++BKqPWieiY9Fx17zMQKzlWqtwPj4WpKLAEuItaNojqFsOb4IqMfnt8GR363ioTlNlD0OcfMpuFNYAn0zvvnXnhhBq6YYV1u4auspCq2+KZZMYfUaohjBc2+iy8OFWol+tuISkwq07/vLTqys1+s8+uijvPzlLx8qvPsbK1utVubgnJUK7+UaK1fSfJmn4p3kjQ9rNH3lK1/JK1/5yqHb6eb+++9n9+7d/P7v/z4AV199NV/60pf44Ac/mIroD3zgA7z1rW/lzW9+c/qcBx98kI9+9KO8853vXPG+BOFSRkS0sCKSXGhrLfPz81x33XWZ6ymlzlpE6/DrmeO6oyi63mxmxVJcYS7FVoC+49U34ZnuZAoPmCDUV6I4Q6g2kohLsFirULZGqHb0eJgj0X14YPvRQYyABU+38JIEESLRnV3p3oNnvx1XmKOLgMjCMQo2el50rGGcdd3AWg/LyIAn2ertaDM7sI9IED/BWAWwJzs2DtbiM99jyUhPw57EqA10GhmLcYLIKFaN9zQyKhYxXIbHNzLOb0ePxSMS+PNga5TUHJXRKphDvc/RV+KZA53zSpoo9Z5oGA1Fut8nQwltzxAyGl8EROdkmUSbwfxuoCvlJboIIL6IKqrr2LXhcWj/Q8/6kT3oG1gSr/lUnGqyC4UaqIAnojtaNnJO/u4LtTo+LOLuuSI5puRPnsZKY0yaaJI1Lj5prOx+LGtwTpbwXlhYIAxDqtXqqjRW1mrRz/5yFxV5ePTRR7njjjt6lt111128/e1vB6DVavH1r3+dd73rXenjWmvuuOMOHn300VU7DkG42BERLSxLUoVWStFoNJiYmGB0dDRz3XOpRBfaf9ZJyWAktS8YJtAsYjFgmtRqpxkbAcs6PPudge1YxjtV65hIPJ5B2xl016TDhFDfNCDULRVCfS3aniLU0yTiMnpQoWgSqstotxbwvRqersJQ0R2J5e5GxmTfvnkso9K9Ez8Wqz152YwDYWQv6WpkhCbWVjCsBTOH1l1+7D5Pd+e8X9B73jb5awKoRwK6/zTUaaydiCwvXe+TZYJQTfdcBKQJIuobA9sxbOyJ7QPi/Z1Gm+9Fw2760dfh2d4KdfQ+XY22xzHpRYAGFNYW0GqJkErH984iUKKgnhrcPp2mzugiIPaaWwCdXbHvGZpT6Kpob42aXwcmVU5Cl+WkO0bwQq1EG2MuqWPSWqeNla7fZVn7c1lMksbKM2fOpHaTr371qz0JInmq3d2NlfV6dHdmNUX0zMwMGzdu7Fm2ceNGFhYWqNfrnDlzhjAMM9f57nezL1YF4fmIiGhhWZIqdLPZpNlssmXLFue6SbWq/5bmchU2HT6Bb/4FIBWXUTJFCU0xFj8RE/FdzVCvwZoC3cNYoIhhTTxhsNMgp2wdw1Tm4BPLOLpPdEPkYdb2ZFTp7jv8qNIdeZu9QrIdRahvRNsThOoKolHekYfZWg9si1BfTWcK4gKRt3rQKxwdwBTEgj9pZMSeTiul/Ri24RGLUh03MqoJrB0D2ybUN/Q0MkYe5nEUW1JxmUiSUF/uaGa8HM9G4lPZheTEYxuLyrR4WDWONQVaQZlCcU3qNTesiYRmehEQ2Uywa9BkvU+TPQNq0peJOtoeQdsjgxci+sYBi4dFEaprwT5Dta4ZGV1D533ygWbX+5QI7xrKDF58RXQ+54o2ys6CnSXUY3hhljd9Z9/I+pFYXK+jwDg3XdagHHwdZdZ2/N2swerJrmmVz+6v7gtx+uVqZVavlJVOrDxw4AD1ep1rrrmmx2aSJbz7q93djZW/+Iu/SLvdplKpoJTi53/+55menmb9+vVMT08zPT3Ntddey7Zt256lV0AQhH5ERAtD6a5CHzhwgHK5PPS2aZaIPnXqFM888wylUslZfRnjMwSJlcIuolXU5BblPw8KkYCd+LFnNmmQi8RcEU2pR3QnWDWCsqavQa6MZRrFUuqnjvKU61g75kigGB2oWkfHYdF2AZ14rnua5G7GM/+WUW2+DmWPYdQOrBohsi94WOuhMITqOqA7tm8ObXsbFtPj0tNgjnQdT5SXHaoNka+6b9+GaXy+nTYzpnnZjAMtQn0t3Y2M2ACrxggJ04uAJOva6BfgZQr7rZHoVlAqtMEuxu+TRjNB9mTGcZQJ6BmaEyeIdIbKdPKyra3g2YMDXnNLEd1X6Y5eF4tSS3hqhvEKYDrj4N3v0wtQ9kT8PpWJvOV+dHGEJVTX0/Gax3YgO3huAFatTS+OouOpRVYivYai+We2TQPhv5I4byxTREktJv5/PK2SSYzeAcrriwycwqp16Yj4aNnYOdtMnu8ieqV0H9e5NFb+wR/8AceOHePxxx9n//79rF27lhMnTvDtb3+bkydPcvLkSd7+9rfzMz/zM7mPcdOmTRw/frxn2fHjx5mYmKBSqaTHnbXOpk2bcu9PEC5VREQLQwnDEGstrVaLo0ePsm7duqF2jW4RnTz/ySefZHp6mkKhkHbX91dfXrb3s6jSXNd+ixgzSjtcQOsdKFVCqQJaKapLi4xNbMRqH21r8e33BbQCo691ZDDvSG0AqTcWsLYAHI0zpfueo69BmaXYwjGe2hes2hiLdA1Y6rVFtA4oFifR9mjU3Ndlg7CU0BlNctHBtNG2cxHQ2ffNjma/K9H2aDTopCu2LzqPyM+raFFdPMXoKGiqkGRO92H1DnRXgkgkphfiJsfHB9dnPKrO9pxbNBESGxLqq4jEpRd5ybEYxrB2FGOqmGCeYqGGwsQXR4P7MKxJvc3dQ3OwoFTXBUr3a6JvRJnFzkVA/D4ZtQnNIr1Dc1pYY9HmDMaW0ap34I2yRwa2Hz1QQtvO5MwE912BzfHF0QZghGhMfDEW3X78PnUaThVLYLJFqtG7ez7TybRKoybxzZcG1o+sLKM9F5KWSGgbfR3KLg1YTIzaiEoq4onwVh37wIUoWC/EY4JzO67uxsok/Wj37t38xV/8Be973/tW7Rhf/OIX89nPfrZn2d///d/z4he/GIBiscgtt9zCww8/nEblGWN4+OGHueeee1btOAThYkdEtOCkuwp98OBB1q9fn47+dZF8eST2jaNHj1IoFNizZ49zsIM1dQq1uZ5lnm7Ff+po3St0Jieg3jyFV5pLsymsVYThCM32HL63BVQZRQGlfbRSoMbwVQWt4lv0NqqiGu9aRwV1S+pzjfzUkTfWorH2VI9fdywuMoX6+lSUWspYNQGMYtRWFAuplaIT2+ehzWzsP15Iq6gWD22yBp8AqhBX6zvDWKJ939QjtCZim2eodqLt01HzW+phLmJtkWhATVZsX7YAyMqrVrQwajKz0m0pxHcFlvAUUVGbqJJv8TFqD1aV6PGaMxrbVhqpuFQsDiSFdPbRqTYnFwGpzUR5mQkfgb45EuoKjPFAT4EaxajNKGqEais9XnPbAruEYW3ayJiev/MCZTPaHEPZrs+uhVBlx/ZZKmiewjBGvVGgXFkL6bTKCqG+mWRyJraOsjUsG4BDA9uKmkv7G3FDsHW88J9Ihv70PCeOd+w9pjKhdzvKHuf67ZpieQPF5qZUdKMqqd0kqn5PDsQInk8uxGZHiH5vuiYong2NRmPZEfBLS0s89VTH43/gwAG+8Y1vsHbtWnbs2MG73vUujh49yic+8QkA3va2t/FHf/RHvOMd7+Atb3kL//AP/8Bf/uVf8uCDD6bbuPfee7n77ru59dZbue2227jvvvuoVqtpWocgCCKihSGEYZg20xw+fJgXvehFHDlyZKiI7h7Ja4xh//797NmzZ+itYFfknGUSrQcrxMYoyqWFvv1afK+KUsfw9KCVo9aYxiufJOyOiTMFao15Ct56oAxptdsDPYavJtGqjbZ1oIqyC1h9HZ4dTBBpBWsp+B3vraKBsg0soKmj7czAc0J9I9okcXCdKmoU2zcP7KLHSmEtylZjW8Mi3WPDh/mqlX2a7mEskZjbi2cHB9QY1qP5NpZSehEQ+Z2LYP2+2L4Gytaxdi2Wg6i+jRl1deZrZangmX+L1u/fv9qYpml01tfRmHG2xRXdJC87iu3Tdh5U0si4FF+wTGSKVaCnmq11CEletlrjiFfci2/+ref4rZqIRKwKCNXetJERDMq2sNZgMrzmqPLAOUOUUuKbf0MBo2Ugjlg0TOORbd8BS5I6Y9V4ajOxTBHqaHBP9wWStevx+LeBrRimBwQ0RJ9hbb6DtidYOwbwbRL9Heq9ke1l4LW6rWtaZXdW9wZQIwPLo2mVZyeEL8RmR1j9CnmtVlu2qfBrX/saP/iDP5j+/9577wXg7rvv5mMf+xjHjh3j0KHOBdfu3bt58MEH+YVf+AX+4A/+gG3btvGnf/qnabwdwBve8AZmZ2d597vfzczMDDfeeCMPPfTQQLOhIDyfEREtZNJfhZ6enmZiYgLP89KopyySKVvGGI4dO4bWmo0bN6a5rJnPcaZZrAc7KKKb7SkqpTMDyy0jmQIaoFIeXK51m3LhFL43mAKxVNvM2MgxjO0ZRMhidZFSYRJrK3GlsEi7HWLMKOOjm9A6RNOKq8VLGL0L3w42LfY3M/ZWUYuZsX2RxWN/1zaiqYNG74mrtevjardifv4M4+MjeLaFYRvJGPTEV5vlGQe6ovOaUYMcUYxeqK7Ct9/MqDaPpCKvP1nFMkKobgYsQdCiUV9gbMzHsgHP1qAvtq97GEwvRTzzRKdpsfsYkqmNAw2Fu8AqeqwUeHHFt06o1hMGNYL2PJVS1Hya5Z+OXqs+y0dsMwn0VvwM0R2qy3re847XfApsY8BrbgmBEUK1G+wSNpzH95KegF7LTWcfu/FS4dvJNY9EdRnFYIU81KMo047vksRec8oYtQETe82jz2HiNS/i2aOpNadzPtp5p0RRjRs8e20x/XdKOuexE20XMkT3ZFThTu0l3cK7AnGU5oVYiU7y9FeLer2+rIh++ctfPrR5+2Mf+1jmcx57bPA96eaee+4R+4YgDEFEtJBJfxU6GfWqtabdzh6NnaC1JgxD9u3bt2wVGhjIDk6wagyV8b3QDsYyRTRqA2SIT8vayCIwsNzD8zK2A4yONDKXl4tVCl6vqCn5MF/dgeIQ1tCTxLywVKdSqmDsKNhyZDNRPjCB59XwlOmpdhu7lgLDbQvp6cZTB63dgGd7b9+vG4cWe/Fsb7XQMkqo9qCpEepriMScF0kkExA1ye3pmoAYizHlZ1ZQjb6qSxx1YvuM3YrXlbDhaSiNRrYbGw+/6cT2jWLVCIbpKAawL7YvSlX5HtDqsVIYNnaNPe9F20No25WjndpebkztO56GYhy0EKrr0fYARm2OLwISr3kRCPpGxEcXJNq4qv8TPa9Vx2u+I/KBD1yITAJLnXPzIitMNK2yHXvN+/OyR4Fi3HC6FDd5hrGVIyv2cbTL9tKIbSaz8f9b6IwG2lDfjDJzALTDCkpPoPQYVm2IL2g6w40UbTBNlFnAMjoo4pOpof3Hpdah7NPxRUCnGu6273jAGFaV2FoZZc2OMqXG9uhORY/FZIpOjvck6JWPKj9XVlvcr0REC4Lw3CAiWhgg6RBXSvH000+zdu1aJicngZXlQGutmZ2dxRjDli1bhlauAZRxVKJTn2wvoXF4q9VEpuhGrSMZhNLLBhRZo6jLKLLFte8Q3ZWSQ3SXQgreAtBrP5mvXsbk6L7oln1XtXu+OsVYxSM0o1g7gqWEUiVgIvaHg6dCtIoSO4wtRAK67zrFWvDU4Lkpqijloc2+weqtun6gWhhVb7ej7DyhvpJIzEVWimj6YpFQXUVPKgUBRm9Am0GbjtFXd3nNO7F90ejx/WTnUl/WNXp8JK2ihmoLlk0Mjh6v4NlnsIx1pXnA0AZPWnQG+JC+Nsm0w36iEfGHiEbEj8bV7nIUkef0mmfv2eg9A6+7oo2llOk1jx5fN5CjbRnBMhZ7zRM/tZc+pjmTWnASm4llOlNAQ69FqODVieIHjxOq8cw+glBfG32uSMTuRPzarAFsX655GFtwIjtJdBHQNXZeTWZftKnL8eyTKAslL7owI/wOlhJpYkv/cakruiwmnT9G7aR7eE5a7WYquhBSZzcS/HyI6OU80YIgPDeIiBYGCIIgneh16NAhXvjCF6aPrUREK6U4cuQIu3fvTqvSQ3HZOTIaoJLtZ5Pd1GTVaKa4tnoKlVVNVBshYyCLZTIzxcNa8L0skQ4FfylTDEyMe5miqlz28XQDTzegSyTNV69kcvTf0/0l3u756uVMjASE4SihHQEbWSkWFzXj4z6+vyGudgeRLcEE6PCpAdEdkTHGmxCj10ZJIQOi+/LMZArLBNqexKjdkZ9aFQhCWFqqMjG5FvS1dE9AhEWMviLzdr9hK7pn9HgtbqoDz847BrLcgLad0eOJmItE0wLRr73ojkqjscTYaFQ5jbzm8z1irt+fnZ6jmkLZA6RWimhnncErA9XmURRP0t1wmrw2lkrqNQ/DJo36HGMjOvZUPzPwVoWJhWWAVmx7qWXYWzoDYTrHpDF6N9gSScNpJy+7gKJBqKfANmg3TlMsNlGqgXbmZXdEZzLcSNkzBHpd5Cnv97/bXr93rw/fxLnmHlH+eOTDN0ygbGxPsnOo+Afb6MszR75bRtF2PyqOZaTLD2/UHmcFXpvH6J5WmYhulOqqcicWk3VY3cnON8bgeWcnwLMQES0IFy4iooUe+qvQa9asYWpqKn18JSLaWksQBCseAqAcdg7luAWstctO4jou1xda9i3S4RXtQREdmCkK3tzgdtDQbSnoeTBbdBcLrczTGB8vZ4vuyghKGXxvEb/L51z19lDy9ycHgonPZ7G2g/GRM2mEoLGRdcHYcTxt0Oo6tAatAjzVBlNFmZMYC7pfzcVjz/sxanevjcSCp8CWxvHNgdSX3fUw2CWM2ppWdBOhG0XkTYNqdlkpFjFq14CFJdrWSE+1uXvqoFWjPRMSPQ/Ko1G1uTtuLxFzhu1RWke/mDNBdHHBtrjSvdB1To67J/ryuDmx3ZPYYex6PDqfEU9BMdFLyoDtGxGvStFESjUeH2v3iPg1eGS9JqOOvGyDsmdWlGvupbaXK1D2NFbtTIcbRXnZCqzuyjWvE9lM5jPTQACs3g49EYuRD99QwLffyHyOUuvRyeulIDAVtDeFZWLQnoTB2hE0M11JL0vxqU7EF0EZ+7CnSWIElZ1PL6idsZP6VhqV/975/3PgiRYE4blBRLTQQ3cV+umnn+bWW2/teXw5EZ0I6C1btqy4GvNYs4HPesp6lJIaoaCLFJWHbwsU1BQeAR5NNDUUVQpeLXM7rrgxMm7xxs9wLHfZRcYzxbWxU5AxNCSyiwymclgKKMfAFExGZRX3BUXRJ1NcK0fiQakc2XKSCEFim0S1sZNKoavCGFe76601VIpn0ghBY0extoKlglJNtL4WrRRaWTwdoGhiLChbjhrwuu4aVJsbKBcHfa6R6P5ez76jvzw0o1H1uP91V0WMXUc0Br0cNzJ6WMbRLBClh3SG1ETNidmNg/3JKamY09uiqLiBqu7VAxnXlrHI023rceOgT0fMhUAl9ppXY6959Bk2aSNn3z56php2vObWqnhITVau+TjKZHnN10d54T1e8xZYi7KnsHg9XnMAZU9kvlZWjceNnP255i8YiNWLXpcS2hyN/Mrx0JzEZmKpYPXeSGR32UwMG9A8M7Atw3Z0310rX9eJIv8amRasUN/Q14wbZb6H+sroDoKKhuYkme/WRo2jodoZC+8FFM34Ncn+2Qy9F/ce53lI55BKtCBcmIiIFlK6q9CHDh1iamqKNWvW9KyznIg+deoU1lrWrl2bLluusTC0TQKaNMK53n2pUUyGMLbhKIXGBGVvnJIepaRKFHSBgq1QUBN4hPi0o2g5ahB/CfajHMvdFe3sHxdjs7/grF6DMoMiGjYAg35hS8npxcbxBY5dzFysdXb1z/eLmadXGVkHGbfpC4X1wJk0QpC4YazZXkvJ762mGxNZTaz1sDrEGJ8wrnYbW6IVWhaDq9FKx9XuqKnSsBZlTwOLaNU5OJMhVgGSZJNIfJ1KFgLuhrRA34wy1dhPHQ2pabdhqQpTUyWMWh9XdDvDTzwzuJ34VRxYoljC6tjeMhAbmOVfjjzDyrZir3kk5oLAUK0uMj65FSgz4DVXVzkq8EW0+V58LB2vORbQOrPZMNQ3pRXqJLYPRjCsQ6kWgdqQnsHiwmnGRj20qRFNtFzsuwTNnsiX2CzSi8/0AmkEaA6IdwClqlg72ZNrDgUMk1jWRxcBqk27FTWo+v40HoP2Fgtoc7B320nmO43MVJdA7x24GLAUMWyN7DbqBWnSS3JnIjjPInolOdGCIDw3iIgWUubn5/nyl7/MS17yEp5++mluvvnmgXWWE9H79u2jWCzmzG91bM+69mMJVJ0lU2epaxVfrSXIsEkUtEdgSpTVBCU9RlFVKOoiRTNKgVvxle2pdoPNrM6R8YUf4frCdNhF9CQqo+kuShcZ9IdbRjIrj9GD2XYR3xv0NwO9zVt9j2ShvdHMt6dQWg8mI/FErUOrSDBqHaD1HEmVvuj7eN3iPraZ1BrrGSlHlfkgGMHYEawdIbQenr4Krb1IeCuL1gGWNfh2f5wJXe1kk7MlU0BDlA3d3zjoedDwLsfP8NJGTXLfjRsHx7CqApSwtoiCvsbBWOia7OZSo3ei++4wRHaQUTzbm9bhaSiNg7ELA+PdkzHoht2plaLTOFhBMzfgNYcxZ3Rf9wVY93RIo9fgmd587zVj0GY7Hgfi/WnS6ZB2BIsl1DfSnWuOamPsBIoNdI+IBzDqsqhpsv+QGEfbfbHVZD5ZGB1j90AYC1787RXq3VgTxT2ixtLXxjAeJZFgwbbpsZm4LGQZH3ZFC6snOrnY3Vnzah1WX9Gz/mp7omu1GuvXr1+17QmCsHqIiBaAqAptraXRaHDo0CHGx8d7qskJw0T06dOnWVxcZHR0dGCdZPtZ4to6xKlrOcq1vluMWwx1O0e9q9pd1FtpZYjZkleiGSoKapKSGqOkRymqEmUm8HghBWXxMPi00DQIrUcQVjKEq+tCIq8X2xXd15s+0XMOBZfozq5cu8V1vgsEpdZlVs2NXYOnXckmnXPwvU5+dL0VUvJ73x9rYG5xN1PjR+Pt+oSx8G6baQpeBaWKcbVbxZXtEr6dJWQNyi6g48+PtT5j5exBP1GVsdMc10nryB4yElWbn0yFbse6UARKBPpm0vSI2LoQDZYZHDO+WNvM+EhWfF4Tz3wnes8HLCbXDTTWWRShugrNsSgSr6dx0ANahPpqOkNqogE+2nHXw7IOOBy/OobEMxyqy3qG0aTrW41mpMuH3C10RwnV9YBPmkNtAwxjePYINvVTm/j1XZM5EAYim0US99hjM3F5mOO7FZZRrBojfa9sAUuh772KLkqcUzy9Fw0Mi5F0DkF4/iAiWgDoGYZy8OBBbrrppsz1hono/fv3s2PHDubn55dtPkyw1uCqRDtFtNNu4WhgyivSrQEUbVujbWtptbvsXUYjHKx0+uYyAhugghIlNUFZj1JUI5QZw+dWCtBT7YYSqHVRukDPMWTfEnd5sVHTZOXvWsbxvWyx7G50dIlrl588u9Jm1Ui2b5ypNKauZ33GUSp73+Vi9vLx8Y5A0SpA+/PAPO3GBCW/L8LOwumFPayd6MogDsuEZpRGayOKJYrF7Wjlo3Rc7cagbQPYGIvLpfTiL/JYZ5yf3olvTkFXRRcbpYt4GdadiCBODxlPrQtB6FFv+4zozdEG0ii4OtZOORoHS47GQYuiliaV9HqYb+ppHEzPg61ETZ474+p7EfA4c2aO8cliLHwb8TlGNhM7NI6uc1ydXPM5PHsClZEGg762x/ecCN1QXYZlju7Yvnp9CbCMlA2GzSQj4tP9ufoO4uNVVDt9FDYekpNh4bGAx+LAe4UqEXg/MLD+ajcWip1DEC5cREQLqRc6uQU5OjqaWYUGt4ien5/nzJkz3HDDDXzrW98aOj2rl2Hxd9mPKeUQ3TavWD4bcZ2FiZ9naNi51Ns9YovUwkGrwKg/RjVYAHqr3SOMo7mZApqCIvV2WyYpqM0ou0D3EAt35Xo6UxRbxnFNKsQlOBzi2t2s6RDXjGav7jzWchxHN4hWc5mibXREZ15fTUxM9h5hHCHYbK1jfGTwtv5ibRPjIzPppqzVBOEYoRmPhJ+6LB0Pr7TCUwaMArUjnlS5gFbR62P1Rsi429Hr3Z5PrQtaKaZGR/BMVy9AOihmCmWaUUVXTZJMYzRqOv5cdKLgsE2wAcqeoH/iYLTN7DsYRm+McrH7GgcrpbWUOJD5ukdxhptIvOaR8I6TVVSlq3GwimIJo7Y5fN2FNGc6IRG6Vq0biOgbL0G1+YKeptRE6Bq1GQgJ9XV0Nw5iQ6z1CNWurup73BvhvBjYg5dG4c332EyM11tssNbKsBVBeB4hIlpIEzkS4btr1y6np9klovft28e2bdsoFosD6yilnNtzV5s1zoqz087h2lbe9V2VcbdH++yW91a7m0yxFAz6RMf8m1kKTsbP6FS7R70pFDdSVH5PtVupUdr1KpVSG60WOtVutc4hWN22EJe4diehuF7T7F810b6zdrDe4Q/3nCkJ2LnMxZ5uZ76lxVJ25X90dD10JXYoZSh4C1gzQrEwaCmwJhLa6M5OwrCEMaO0wwU8bydQiqrdSqO1RTOJVTZKpLDxxEGlaJnLKPlPZZx3oWviYCseyZ4c4LWZGcmR9STxMHcqqJYJlLLxSHawBB2biWnHHvzeinu9NcVoedADH6odeLbrQqTrI581ECZ6oIK1UxmNg6NRikjfkBpFbUBcp5vqi7tMbCZW7XY0ea7B67sjEl2UTGAJMxsHDeOAnya9JDaTUL8AVG+xIfkdutqeaKlEC8KFiYjo5zndiRzPPBPd9u3Ohe4nS0QvLi5y8uRJXvaylznXce5/qOjK8unGMV05tpW3Qp27op1TpLuq9NYpurvX6VS7A7WRpSCr0n0jVXUmfvk61e5RfzOenaCg/Z5qt6aIz8koQtAudnlYR3NXrp1i3OlvL2a+nc4qOxsgc8okua0qLvsPqpR5TH5pHWSlrahptOp9PTzdxNNNtG7i6cELjoWlrUyMdirUUYTgKEsNH19voFAYQ6kCSvlopUCNUNBzcfxeLb4r0QA1kqZyDByW7fz8qK6YvO7R590YptFp42ASkzeGoYw1hkDdGEcndmLyDGvjam7XxRoQql14GT5+AGWeRsXZ3fHOIhzHFaqr45HsG4gGsZRAlViqNvA8n0DfGFe7m2m1W5lsj3/U5NkroqNUlgDfDjYOAqiMoSyWMQLvBwe3H//eEzuHIDw/EBH9PKe7Cn3w4EHALfIgWyDv37+frVu3Ui6Xneu4cAlWlWbs9uPhFD9OMevySufzUDu3n632cFaiHXYU98XBSq0x6Q56/p1Uu43ZQC0YjDor6ytodKUVJNXuUW8LHu0oyaS72m0NnqqjmUTbJWC+I6AcQ2Qy/a+A299eylzqnDLJuqixLPNJ2eJak+1vzntMqDWZFxWWkUwBDTA+2pfLrCy+t0TBqzGa0ex4euEy1k70VmONKVBtbqboLwIVUMXYZhI3VWKw6vK02g0LaGXBcRehe/hJz0h21rN+ajb6eA4IzG2ZI9mN2gJqksGR7AU8ezzTWuSchKhKUQ5015AaLGi1i7HikwNvl8VHcyCuvneG1ERfd+OE+ma6h9QoW8OwGZ9vDL4mjGUOZVEsYbzB9KJkOutq50SLnUMQLkxERD+P6a5CHz58mHK5TBAEQ8d09wvkarXK8ePHeelLX+pcZ+gxuHzPDhEdLc8Sv277R35P9CqJa2clOq8tZJWw2V/s/YNZkmq3NRM0M6LAPNYQ9twSVxTUBCXi3G69ra/abbDGUq1vZnyUnmp3d+xZ31E5ljvEhFpLVirIMB+4VnOOPbsEv8OS5BgrH/m9B1+/aNVsYV8sZnvNp6YmBj7eWrfxPY9SYXAwyVJ9I2OV4+l4+IQgGCW0J8FuAUpRtVsXomq3LeDrq9BptTuKEDRqa89UxQTDpp50kWQke0SzMwmx56BvRttj8euQNOqNR42Bqg7sojMUJgSaYFoYpuNqd6fCbEz2UKQomzryXCfVd2yyv/KAVQXA6g1YU6AzpCZqqowaYqt0V9+j5tEAo68f3Hf8ey9fxOdwJJ1DEC5cREQ/jwmCIG2EOXDgANdccw1PPPHEUAGcCOQkrm7//v1s2rSp55d8licacETcZQtW5YhWU/jYzCEpLvsHuMV1zgq1Q3S7K5f5lucV1y7JrRxiz/3F7vBvquzlWnl94kzRtnXatFgKT2ReU2jGMd4iiWZOqt1jfhltrxmodis7QkG9AE2tr9qdV8i6fOA+np7LPu+M0e7xWWav7/J7u1JVhlTNPZUdA+i62CiVK5kfp5HRDWCOZ2yoRMnLnkbYao/iFao9b5+xHtX6ApopfH88qgorH6180GP4ak2UkJLkL9sFUBuzBTT0TELsjsmzekPmYJ1Q7cLjYPr/ZCQ7dhQIqQcvoBDPSU+aKg0TKLbSGckeDwHvSwvpbFOhzUEU7YyYvOxIw8D7AVCFgeVJRrSIaEF4fiAi+nlKUoUGOHr0KMVikQ0bNvCd73xnWRGdPL/RaHDs2DFe8pKXDKwzrJrdexyu9VyNOcPEdZaI9shr88hboXZuP7e3Op+IHkhcWBaXuM5+TbXzPciuACpKWIdFwvYJ0KTabcIRWmawklrxrqLeEycYVbsn/CLYKztTKuNqt2aMgrounVKZJJm4hewGyBgtHR2cy1ud0+/tiCx0V81LaEfcn0vYu61NgwIPwPPWZVpuLAWKhUGbh1YhxcICJX+W/ur53OIepsb3Y2zvJ3exWqFUnMDaEaCM0kWU8oEinm7j6bG42l1P3yfles3VWroz0pOR7KGqMDkSL+/7sVFqA5oT8Xmpjq1DTROqAklWdvR4CLaA4hTKjsTV7s6dCO0YyhJ6L8pcvtrJHCDpHIJwISMi+nlKGIbpAJT9+/dz9dVXo5Ra1oqRfEEk1esNGzYwNjY2sE677ara9eK0cygvUzsqx0dWoR32D9+xj2ENink91+c3/cO9PF+F2mmRcNg8XBcyrvdG4zvPOPsCB6zN/pwMvnZRtbtum9SCQY9qlGDyZN8zSkwWRsHspqQqFLqq3Z6qYNuTmKDGWMXGQm4emIi8wJkHlV09dts/HJtxZGnDemBw+Er0JFcjpyslxVWxd+17mqyGTYCinx01ODlZzp5mWSxQ9E9BX7V9obqdidHDWNP7kxSEZWw4izHriLzdpTRCEKPx9TVoFaCIh8LYBazOtsoYtnRysUkuNJOmSpVZIQ/1zWmKCUQXFJYJjNqGUg1gG52hMAZsSKhfPLAdOD8ieiXpHB/+8Id5//vfz8zMDHv37uVDH/oQt912W+a6L3/5y/niF784sPxVr3oVDz74IAA/9VM/xcc//vGex++66y4eeuihszwLQbg0ERH9PMRamw5XOXr0KIVCgY0bNwLL+5mTL4h6vc6RI0d48YsHv0xWxxPt8u/mFdcu+4e7QTG3ncOVW52zQp1//LnjcJzL89o83FX/7O1kJ21ER+R6jRwi2rouZFZerbcYAmtZCgeF6Yh3LbXwqejQupwSo956lK1E3u7uajcKXwV4tAeq3W77h8te5LB/6InMj5JlChWPTh98MHu5yvzMD9v3ZGbDZhR35xDqjvMuFguZb9PY+DSYrNjCNRS8Y5AxIKgdVEDVMX1v7+LSaQreKJYRtB4hiRBETeDpNXgqRKtW2lRpqTiH3qi+ynxi6zBqJ555cmB9o7Zhve2Z21rtQSvGmGXTOT71qU9x7733cv/993P77bdz3333cdddd/Hkk0+yYcOGgfX/+q//mlar89k8deoUe/fu5cd//Md71nvFK17Bn/3Zn6X/L5UcjbWC8DxGRPTzkP4q9FVXXZUKqZWK6EOHDjE9Pc34+HjmOlme6Czy2jncXmnXF9cw+0eWUBtWoXZVTfPZQtwV7bwNh6vVoOgS10Mq0ZlbcS0vOi5kwDgr0fkuZPJX5bM+F5HrumFOpFMqEzwmCRkUjYoSFa0pql0U1UiPt1vbMgW1F49mJLqpxrFurvdtmP1jLuPcPGd13B3r59q3q2FzHTimNOavzGd/PrzCFGQK+AoFP3tb5WKNgjcHfRcXc0uXMzX2FNbS49tfrF9GpVjC2JHIZqJKqCTNRFs81V3tjqIeMdkV+NB7SeZy6HiiV4tGI7rCG2bn+MAHPsBb3/pW3vzmNwNw//338+CDD/LRj36Ud77znQPr9w/S+uQnP8nIyMiAiC6VSmzatOlcT0EQLmlERD/P6K5CP/PMM3ie1/OLcjk/cyKIjx496rxdqJRacSXa2ViotEMBrWaFOgsf1zS+/DaP1Ur5yNeImHf0i9vm4RDXTptHwfEeuEW00+bhbOLLV8V3VuUdFwLY7M+LVoWBpAuI3puaOUUt47iKekuG31sx4WuM2TpQ7fbtOKZ9LQR1xkZUmtvtHEjDNIqM5kEYInBdaSjZP1cuT/nw6Zd5/duui4dpsgbuAPiew2Iy4bCYFEbwvSXoyzGvNTYyUj4OloFqdzs4DHYMwwjYcmozabSvxwZVCoUChUKhp0hwPqYVAs5KdKvV4utf/zrvete70mVaa+644w4effTRFe3jgQce4I1vfCOjo71TRR955BE2bNjAmjVr+KEf+iF+8zd/k3Xr1p3lmQjCpYmI6OcZ/VXoK664oudLwPO8ZQWwUoqJiQnnUBZXNTsrf3r4xMKsna+WuHZVTX2HgBsWobc6tpDcjYjOfOqcgjJnJdpd3XekeeAPqZnns3O4X7t8lw75zzm7mTJ6LVzHlHVuirZtUc+odo/6N1E1/x5tskvrjvklgnA9ZT3aU+32GaGgtuER9FW727hGpmMdy50C15WNnZ16Eu1jdSrUbgFfHiLgs5s/XRaT8kh2iomxoxS8ZFu9iSnffPLVzC1+Nf0dl4jpQqGAMYZms8m+ffsoFAoUi8Wex4vFYq5KdSKikwz+fk6ePEkYhqkdL2Hjxo1897uDo9X7+cpXvsLjjz/OAw880LP8Fa94Ba973evYvXs3+/bt45d+6Zd45StfyaOPPrqqlXZBuNgREf08orsKfezYMZRSA7frlrNztNttrLVs2bLFuY7WeujAlp5jyuuJHhbHlkssu5e7K9Quj6tL8J3nIS9Or3S+RsS8uG0e2YkQbq90Eddr6q5Q570bkI3NKaK1s8pediaSmNzn4LKk6HRKZTcV7xrq4bcH1i+o9YCipMYyqt0aX23A7/N2Y10C11WhHnMI3GH+7VWqULMOHP5m97Af150Nx2dWr8M1lObGm18BaoowDGm327TbbVqtFu12m5MnT6bLarXawOMQ/X7sFtX9IrtQKPD4448zOTlJrVajXC6vamReNw888ADXX3/9wF3FN77xjem/r7/+em644QYuu+wyHnnkEX74h3/4vByLIFyMiIh+HtFfhb7ssssGbj0uJ6IPHTqEUmogkWO5bRw6dIhms0mxWOz54ggdnf/uamdeT3S+hInh9o8sUZR/yIt7ed586tWpyq6azcO6XmvfkeZRdAtNp1d6pWkenUcyj8mxtnIOpHHYPCgRumL9rMPCsuJEkuG4bTUlWmaWtq0NVLtdlHWIsusp6TGKqtKpdtsxCPcSNBaZHCum1W6b078N4EwYcXmuXQkjegJlBkW0pTSkAu+KJ3SlmLir4DAJRHftPM/rqRK3222MMbzgBS8YfG5cxEgEdb/ArtfrLCws0Gq1+K//9b/yzDPPpJXotWvXsn79eqanp5menmb9+vW85S1v4dZbb8XzPI4f762mHz9+fFk/c7Va5ZOf/CTvfe97h64HsGfPHqanp3nqqadERAtCFyKinydYa3nqqacYGRlJxfTmzZsH1hsmooMg4ODBgxQKhVyjwRcWFjh8+DDbtm0jDEPm5+fTL5DAf5LKrsFtNButzDvopt+4GOMWFC77R15xnb9CvVpWhfyNiKuTN53b8uDIm3ZfmGRXAQGMy0Ods7rv9lA7yHkOWhUzvdIw5BxcVdG8KSyuY1WuHO8y1uGJDm2dtp2j3lftHvGuoRZ+O/qY91hMNM1wcrDabccpqLX4hD1JJliFduVyZzRsxkflWD6sQu3K/p7LXu6sUDvsO2ojDKkKD2ssVEqlxYPleOyxx4DIl/wzP/MzfO5zn+PkyZPMzs6mfycFiVtuuYWHH36Y1772tekxPPzww9xzzz1D9/FXf/VXNJtNfvInf3LZ4zly5AinTp3K/M4QhOczIqKfJyTi1RjDM888w549ezIbYIaJ6CNHjlCpVAjDcEVTDRP279/P5s2b2b1798AXzGJb872M4pHnZ2cONxptvIzv0Nyi+yy80q7l2RXq/Ckf7si9vGPL89o8Voe8aR5a+Q4B6h6QY5wXJvksL25rS76pjq5mysgm4DrWvI2rrosch4h2NUdSJnSIaLfgd30mFW1bG6h2j/o3UA2+ObB+UW+nbaIpld3e7gJePDBn0Nvttpg4PNR6ApUxuMfio/p8zQnKYdlw2lj08OruakfcWWuZmJjgxhtvdK5z7733cvfdd3Prrbdy2223cd9991GtVtO0jje96U1s3bqV3/qt3+p53gMPPMBrX/vagWbBpaUlfv3Xf53Xv/71bNq0iX379vGOd7yDyy+/nLvuumvVzk0QLgVERD8PSG4jaq1ZWFggDEO2bt2aua4rnSMMw3Q0+L59+1YsopeWlpidneWFL3yh49iyxU/RL1PPypodHaOe8RTPL2bKrlYzQGf0RjUbbbIKdsaoTB2Vf8BIAXeFOm8j4mp5qM+vzUM5bB6uxAunH3XY5EOXRWLVbB45E0lcFWpKTsGfV7C63x/XnYKzqJrbbHHtEvzuux1uT3kypbLX2+2+2CjqcaydoKwmKOoRSqpMQfsUzBg+t1BdOMOaiTK+ioS3xWUxmwZmHI/l9Gmr4SL6fKRzLDet8A1veAOzs7O8+93vZmZmhhtvvJGHHnoobTY8dOjQwDE9+eSTfOlLX+ILX/jCwPY8z+Ob3/wmH//4x5mbm2PLli3ceeed/MZv/IZkRQtCHyKinwck9g2tNbOzs1xxxRXOX/SuSnQylGXDhg3s379/xSJ6//79bNmyhXK5nC+dw3XL1CHUCn6JMOOQRkbGaISD3fd+IVt0B+0wU1y3WyFZfXPG6mzRPbRC7YqsW51GRHclepXi4VyPOO0F7kp09oVJYciRrk7DoVsEZuMcje5opoz83o49O73S+d5n9/vjqpq7GjzdjZyuCwH36+q6CMm2R2jKQ+4utGjbOm1b73m7RrzrqIWPQwkOd72UY/4OqkGJspqgpMfSKZUlNY7Pdnxleqvdtho1VWYer6MKfgGKaIB77rnHad945JFHBpZdddVVzovqSqXC5z//+VzHKQjPV0REX+J0J3I0Gg2MMWzbts25vtY6XT8hGfGdxOGtZCCLMYZ6vc7MzAzf933f5z6+vF/GTqHm+vLOXr/gF8mKwy6XR2mawQYo31HpNoHNFtdhFBgygPVAZYslp5hYrQg9Z0Uz73IX+d4DHBVTt0VC4a6yuxoUXa9RPhGd3+YxTLDmy8x2D+3Jxv0z4qr8u73Sztc194WXY9CKKmMcUXnGdUzOC6bouOp93m5XionHBCGGghqsdhdNGV9NxN7uFpoGmhpGuVOJIPpdWSy64hDzU6/Xlx35LQjCc4eI6EscY0xacVhYWGB8fHxopcTzvJ6RsNCJw0uaSpbLkk5E9IEDB9iwYQOjo6Npl/kADpHjEl4252RCV+Xaub5juecVMyvdxWKFdkZ0l+cVMRmWBGs9lENEO33App2pTtyjsfN6q/N5qN1tVflEtMu762o4HD60Ja/POJ9XOm/kovtCwB3rZ5yC1fV+5vVKu6rmZ+GVdlbNXcfkumAqOS82jMMTndf2op0WkwqhXcisdntqkjDj53pPYYopx97h/FSiRUQLwoXL6v20Cxcc3VXo2dlZwjBc9hdyf5U5icPbs2dPrtHgYRhy5MgR9uzZA7grxXntHE4rQU6LAc4os5zReg6rgueo+nnaVaVyX8+6KtTtIFv4BGG+imbecePulrx874F2Vkxd4tpd4csvQFfH5uEe8uMSrG5Paf5sbNex5vVKu4/J6ZV22jwcnw7Xz7MjSQS8IXdaXBdSrn27RPSw884W8FqNZi5PWO3GwpXaOQRBeG4QEX0JY4xJxe6+fftYu3btstMI+wXyzMwMYRj2DFdZqZ1j7dq1TExMDN2fuzrqEmT5bB5ukeMS10OGuWQtdg1/GTK9L3s77tgrpbJfI62zRUMQZouMeiM7K7fdzilKcud55MzwHhIn58Lp6c0prvMmmDgTSZzjw4cJt5xV35w2D1dF1iX4YYj1xPG6uoW940LK8bnXuC/23b54l3fc9TvDdd7a+XnyhhwXrH4lularDYzjFgThwkFE9CVKdxX65MmTNBoN1qxZk0tEJ1Xo3bt393wxLCeik8d27969/HHm9UQ7KsjOIlTOyrWrYu4SIG5PrOv2tTsqL8/2oydli6tCIfs18ovZy10V7aXF7OSCVit7/by4qvvaOdjEJXqGicDV8krni8Rziush1XR3c19ewer6YcifK+0ir5B14b5gyl8dd1nDnCkmzmZHt1D29HBBOywn+mxoNBpSiRaECxgR0Zco/VXo3bt3UygUcono2dlZWq3WQCPiciL6mWeirNapqanlD9RRTcs/5tb1Uc7Z7JbTW+0WS67tuwRi/gp1Xh+wq3JdrmSLiXIlW8i0W9kCan7eIbqbDhGY8+6BqxFxqEVi1SYfOg7pbMaHZ27HLVjzx/q5BL/jomVIrrQLZ4Xf2ePgYvWsFi7bU/5mR7do1Swvole7Ei0iWhAuXEREX4J0V6FPnTpFrVZj+/bty4pf6PiZrbXs27ePXbt2DVRWhm0nDEMOHz6cHkf/cQ0cq/O2et4YNcdmVktc5/RWD52ImLk8b4Va4/Qsu4SjqxHRcSHjKqiNjGZ/qY+OZlfw2u3s/S7MZ6cytFuuhkaXAF3NyYd5p0ZmM7ThMINhFwJ5BWvuDOyz8kq7mv7yCfv8FXs15O5CziQR590i93kvV4k+H55osXMIwoWLiOhLkKwqtO/7eJ6XOUilmyR5o1t89zNMRB89ejQN5O9eJ3dj4ZDaVTarJK6dT8gZredsUHTd6s1bic7fiJg7Ki/n5EPPzz7nsbFsETA6lj0cIwiyPxPVqiNBwgy7kHE1R7qaL89vJN5Z2RecyRn5pje6yCv4YZhXOl+utHu4jeuCyV2Vddte8v2OGea910P2D6tfiW40GpLOIQgXMCKiLzG6q9BnzpyhWq2yY8cOYHkbRvc6+/btY+fOnfj+4Je+aztJrF2SyLEiEe2ycww9yjzk8z67pu7lbVx0VqjPZiBJ5l7dAsedpZyvQu2u1q5OmofvZZ/b6Oh49vJKtui2oSMOMXRfaIQmn0Uir/84fySeS7hp3FXwfL5kd3qFy5t+Nl5p1+uar5Lvsr0Ms1pY59TF1RHwmpEhvwcixM4hCM8vRERfYiRVaKUUTz31FLt27UqF8EpFdLvdZnFxkZ07dzrXydpOkie9adMmlFLL7gvyf7m6K3w5o++cy10ZuzkzkHOmeeRN+XBXqIdVD1drIqJLpOerXOd9jz0vW9SVStmVbs8bIrgcYs+VYNJsOXLO804+dIrrs/FK500eyeeVdovJ584rrYbaXvINZ3EnrrgE/PK2itVuLJScaEG4sBERfQnRX4VeXFxMq9CQT0Tv2LGDQsHxJZqxHWstBw4cSJM8VrKviLxVorw16ry50udbjOeM0Mud8nEWSRV5B5U47QJ5BWXeR1YnqxsUqOxjLRSz9x0aVzPlXObyRsOVYJIvkcQbKhrzWipy5kqfVXJGvgEpbq90vuo4DLG95Izjc13QarW8mJVhK4Lw/EImFl5C9Fehd+7c2SOEV+KJrtVqGGPYtWuXc50sgXzixAna7TZbt251rpPFt2sbeXTuB5jyfSY8zZgPI9rSoIJHhYJq4Kk6iiWsXRySXLxaottB7hzqnINHclaoXWkeGt9xWaJxiQaT1+aRs0KdO3s57+RD168xx9RARck55hrVznxOqeTRzDiN0bEKzYz1wzDM/O06N79AIcOV0myFmcXXoRP9nGOxV8cr7f5sn8VIc6eQdV1Eu95rl8VkBJsxIXToMeXMtF5JJVqGrQjC8wupRF8iJFVoay1zc3PMz88PCOGVCNujR4+ilKJYHNJc45hquGvXrvQLZKUiOsByKmixr1HjseoS/+/8Ep8/U+Wx6hR/edLw57NFPnFiko+f2MonZl/Aw/PX8Okz38//mX0J36zdwYHWnZwI/j/MBtto8f1Y9UK0vg5f78ZT01inDcNFPtHt9la7REDOMeSOKqu7cu0eme3CXSXMFw/nFMu5s5cd5Gz6dA/yWL3Jhy695EowcQ0fsmH2uTXqjtfa+rjTWfIOI8mXnOH2Sg9r+svnlXbhugMzvGKfL1faaSdaRkRba7HWip1DEFbAP/7jP/IjP/IjbNmyBaUUf/u3f7vscx555BFuvvlmSqUSl19+OR/72McG1vnwhz/Mrl27KJfL3H777XzlK19Z/YPvQirRlwjGmLQKklWFhuWF7eLiInNzc5lRdMO2c/r06YEkj/51XGLT5KyOWRSLYcCiguO1arp8T2UT++uzRB/p8fjPJvZULuN4s8KaQoFJz2PcU4x6ME4Fj3GKqomv6ihqYBdxTixcLc91zop23gq1qyqrKLirr3kbEZ3jmF2ixPUe5518mDOr22mFGVZJPb+TD7X2Mh8aqYxRzXiZKpVxWvZUxo5LuIbttNrVzEjtZquWWe12X+TktHlQJsSR4ZxzGqML99TFCtgzjn3n80o7L9WWsXMkv+/EziEIy1OtVtm7dy9vectbeN3rXrfs+gcOHODVr341b3vb2/jzP/9zHn74YX76p3+azZs3c9dddwHwqU99invvvZf777+f22+/nfvuu4+77rqLJ598kg0bNpyX8xARfQlgreXgwYM888wzXHnllczNzbF3796B9RJha63NFLX79+9n06ZNPPPMM851urfT/bwdO3b0JHmstBJtHF/gq5nOUTUh1WbIka6lHdGtgdH4z3r2VC7naKPIlF9kyvcZ9xRjHkzaUTw1EYluGmhVQ9klrMuD7ErhyNmgeFYV6gyBqPEdsq4Ieb3SuW0e+RoOXThtHq6qv+OCyF2VH/Za5EzCyBuJ5/hZ8xx2Dt+rENjq4AOA9oPMawTXhcD8whx+RpG12Wg6viEc1WBVInRZT3LnSjtev2FDbJy2F9dwFtd7mr2h5SrR50NESzqHcKnyyle+kle+8pUrXv/+++9n9+7d/P7v/z4AV199NV/60pf44Ac/mIroD3zgA7z1rW/lzW9+c/qcBx98kI9+9KO8853vXP2TQET0JUHig06i6Xbs2JFpx0huM2Z1kFerVY4fP87tt9/OM888M7TLvFsgz8/PZ4r2lYroMHdyw/mnaS3H202OtzvVs0h0HyeS95X4zzr2VC7jUN1nFMW6YompYiEW3RU8piipFr5q4KkaylaxlONt9J9hTs91Tq+0Ur5DXBeGiIm80/7yTQF0eXRdIsb5mXBV951DRFyvRcn9WjhTJ/JmE+eLxHPads5ifHixqMiaYzM2VqGRw9e9uLCUKbrbgXJOqc87IMXd9Of6eci2cyjKzjswed87vYyITvpNpBItDKPRaNByTH292MkqvpVKpXR2xLnw6KOPcscdd/Qsu+uuu3j7298OQKvV4utf/zrvete70se11txxxx08+uij57x/FyKiL3ISL7RSKo2mu+666zLXTX65ZwnkAwcOsGnTpnQ61kpF9P79+9m2bduAaF9pxF1eO4eb50p2KwJgHst8qwGt6At7d2UDB+on4nVK8Z817K7s4em6z4TnM1UoMulpxjzFlD+CzzRF3aaoGmhVR1MFRoiUSdi313yReK7oO3eax+A+E85/3nTeuxM5B944xXUR46xm5h29vVpNlvkqr8NEo6sSrbTNfKtHRkeoZrx14+OT1LNOw1H5t2ER5WXvuxXUMq8Tcw+MceapVwidr4fLYuKY4LkCO4fW2t1UfBaIiL60aDQa7N45xsyJ1freu7AYGxtjaak3JvQ973kPv/Zrv3bO256ZmWHjxo09yzZu3MjCwgL1ep0zZ84QhmHmOt/97nfPef8uRERf5CSJHL7v02g02L59u/Oqr1tEd1Ov13nmmWd4yUtekq4ThuGyEXdLS0vMzs7yspe9zLlOgtMTnXOIRX6xvFrbycewiD4DzIUBc2FHoewqr+dg43j8v0L8Z4Id5V0cahQY93ym/I6ve8qv4KutlHSbQmoxqYIai9MnegWCctg8XBXqaBvZaQfuiYg5o/Jy2z+yyWvzcIm94dMhXRcIqzOS20XuCwFKbtGYM83DOZlS+5kPlUtj1DPeUt8bJXTe7cgWsguLc/gZ2rFer2deD7ovNspnYTFxNJGuwM6xmlXodrtNEATL2jk+/OEP8/73v5+ZmRn27t3Lhz70IW677bbMdT/2sY+lt7oTSqVSTySjtZb3vOc9/Mmf/Alzc3N83/d9H3/8x3/MFVdcce4n9Tyn1WoxcyLkwNd3MjF+aeU6LCwadt/yNIcPH+5poF6NKvSFjIjoi5juRI5Go0EYhstG0ymlBmLuDhw4wIYNGxjrGsM8rIqstSYMQ/bv38+WLVsolweHL5yrJzqv9F2t5aslrlcrzVqjAMViGLIYhhyOl28vr+NwYzb+n0fi695S2sozzRGKKCa1x3SpxLivmfJLFNSVlHWbomrhqTqaGhofbWuYPsHsjspTuMSvMyov5zAXd7U2p/UnpwBVjupuZPPIPgd3w2HeCnU2eYez6KG+ZJetIacv2YE7zcMtZJVuZ75/I6NFWhkPuO5czc8vZUYHBm3l/JZzeaVdF0Yr8USvth8aGFqJPptGqomJCZ588sn0//0Fjt/93d/lD//wD/n4xz/O7t27+dVf/VXuuusuvv3tb2f+rhfyMzoW/bmUSH7GJyYmnClE58KmTZs4fvx4z7Ljx48zMTFBpVLB8zw8z8tcZ9OmTat+PAkioi9ikiq01pqZmRk8z1v2l1y/uG02mxw5coQXv/jF6TLP85YV0cYYZmZm+L7v+74V7Qc6EVDdv7Tz2zlWTy6f+9pns518Y8hdDWeu6quORVcLy6wJmK1H4m9TcZyZ1smuYxgBRljnT3MqmKKAYo1fYLJQYMLTTHgeZd2irAOKukWByGKibAPDaYxdyDhnl80jr/0j74htF6uT5qEpYshu4nPZPJzV+pyDatz550PGh2e+TO7x4S4fuGuojtN6Yt02mewnKadXWjnyukdGypkWk8mJCWq5LCY+ynOkmwTVTIvJcukcq50RnVSHh1Wiz6aRKpkqm4W1lvvuu49f+ZVf4Ud/9EcB+MQnPsHGjRv527/9W974xjeeyykJMQaLeU47f1af830+L37xi/nsZz/bs+zv//7vU+1SLBa55ZZbePjhh3nta18bHZMxPPzww9xzzz3n7bhERF+kWGsJwxBrLdVqlbm5uRX9Au8XtwcOHGDdunWMj48718naRhAEbNiwIfVQL7cfF87GQkfMXm6pnP8Bx9r59pzfFZlXLOfzAWvHci8WlG0sJ4IWJ4JI1Ez5a5gLuqvTZaBMWVVo2M1oSBNMJjzNmFaM+IaKDiipdmdIjq2iCMka9rJ6Ng/Xe+B4F5xpHg7f+FkI09Ubye0inyVFU3FeCFiXN9gZAecqK7s+ky4/fsVtGcqZde2KDiyXXRaTMULmHPvOfj2+88QBVP1LFAoFCoUCxWKx59+NRgNrLUtLS+nycxHVtVoN3/edtrqzbaRaWlpi586dGGO4+eabed/73se1114LRN8HMzMzPQ1ck5OT3H777Tz66KMiolcJM8TIeLGS94yWlpZ46qmn0v8fOHCAb3zjG6xdu5YdO3bwrne9i6NHj/KJT3wCgLe97W380R/9Ee94xzt4y1vewj/8wz/wl3/5lzz44IPpNu69917uvvtubr31Vm677Tbuu+8+qtXqgIVpNRERfZHSnQu9b98+Nm7cOHAbI4vEigHRL+HDhw/zwhe+cGCdYQI4CAKMMezZs2fofrqFsFIqs9rqsnM4cWVYOxe7BlKszvZd4tfdKLY6y/NXqPOJbs85tS3yVhvgdNDidCy6NR6mR+AU4z+TFFWJlt3GqFWsK1ciX7evmPB8iuoqSrpFIbWYVDG2hKI4WKVcpTQPt894yAAbZxOfyzeebyR3/ka6nDYPSu5qes7x4Xkn/bmOyaNM4Hz9XFaLvLnSruq422KivSDzDF9w1U0Uw+tpt9u0221arRbtdptms8ni4iK1Wi0Vtsnv2EQEd4vufvHd/e/uZu7lmgpPnjyZu5Hqqquu4qMf/Sg33HAD8/Pz/N7v/R4veclLeOKJJ9i2bRszMzPpNvq3mTwmnDuhtYTLzGO42Mh7Pl/72tf4wR/8wfT/9957LwB33303H/vYxzh27BiHDh1KH9+9ezcPPvggv/ALv8Af/MEfsG3bNv70T/80jbcDeMMb3sDs7Czvfve7mZmZ4cYbb+Shhx4a+DyvJiKiL0K6q9C1Wo0TJ07wwhe+kGPHjg3Nd4Zeq8bTTz/N1NQUU1NTPessJ6KPHTsGuKevZW2jWq3y2GOPobVOvzCKxSILatAWAPmFkdsv69pOzhg1pxjPV6HObzo5OzvHwPrOceP5BKXnWO4rn5ZDCAa2DSiqCqrNjjga88ZYCpP/e8AYMMb6wnpm26OMKI81hSKTcV73Gr+MrzZT0u14SE4DTZXQluJKa6/wWrU0jyGTD0PXqOlV8ko7pwnmfN+GDZhxNRy64/7cbvl8x1R2H1Nu/7arOu7yaQ8bp579no6U1jBamMx+EpH38siRI9xyyy0YY3qEdvJ38qdWqw2IcYh+b7797W/H931836fZbHLvvfcyPT3N+vXrWb9+PdPT02nlOC8vfvGLe6x7L3nJS7j66qv57//9v/Mbv/EbZ7VNIT9i54CXv/zlQwe7ZU0jfPnLX85jjz02dLv33HPPebVv9CMi+iKkvwq9ZcuWtGKxnIhOxG273ebpp5/m5ptvzlynv/kwod1u88wzz6TH4bpd2S+iDx48yOjoKJs3byYIgp4vlSw9MD8/T1b0a3cXeTfLTVkcWN8pcvOJ8bxiebVwV6hdix2i2yEcfVeFWvuZDgZfeZmNYOC+zRc6xFhICChq1lBrNTgaa7nNpQmONZNmSk3i695Z3sXTDU1Badb6BSZji8l0YQyt1kS+btVKh+SEdgStxjF2sXfHDv+sHhKJl13NVE6x7LIpONM/8lbZnZVXl4geMmBmlSwp7uQMt03G+frlHB/ubsx0jS4fTLZJj2oFOdHJ70Otda58XGtt+vvwd3/3dzl+/Dhf/epX08z+J554gpMnTzI7O8vs7Cx//Md/zJ133nnOjVSFQoGbbropva2ePO/48eNs3ry5Z5s33njjirYpLI/BEj7PRfSlgojoi4zuKnS9Xuf48eO89KUvTW8DLtfckojbQ4cOMTY2xpo1azLXcYnSw4cPMzY2xvz8/IpFdKPRYGZmhptuuomJiYkekT9+dAyWBp8/Nj7GXOv0wHJjw0yhOL+4QNb3Yr3hui2ct1Kcr6Kd116Sn9WpUGvXVEqXncNp88j+VVKgQNshiALHrfnAIa5dTaiJSG9b0zMkZ3dlPQfqx7rWjHzdeyp72F83aCwTymNdqcyEp1lfGEepDVRi0V1QTTxVwzCOp6YI7QLdxlu3zaOEc8CHM+otb4JJNm6ryjCbh2PUuUNMuj3rjmNyfvZcxzSCyfqlgFvY5z4mZxPpCKHjvFeaE302KKXSu3N33nknEAnar371q9x3333O551rI1UYhnzrW9/iVa96FRDdMt+0aRMPP/xwKpoXFhb48pe/zM/+7M+e1bkJwqWMiOiLjEREJ1XozZs3MzIykgrW5Zr5PM+j3W5z8OBBbrjhhsyqtasSHYYhBw8e5JprruEb3/jGihI8IKpCr1u3jpGRkYFKuaux0DWErlwuk/UdNzY2ynzrzMByY02m3lxYnM8U3Q2H6DZO0Z2von2+a9T5K9Q57R9OO4fL/uHTdtyCd4no0LncJa5dzamZizvPQzFnDXON6Pb97srGPtEd+bq3l3dyuOEBlimvkA7JWetXKOhrKKsgzev2VB1tQywnMHZ+QBy7/MeueECXD3zIvSbH+u5R3QMV+fSY8g1tcU9pdB2t269sbLaIdnuls18/lx3G7ZV2RwSuJCfaNaDqbKjX68umLS3XSPWmN72JrVu38lu/9VsAvPe97+VFL3oRl19+OXNzc7z//e/n6aef5qd/+qeBSMy//e1v5zd/8ze54oor0oi7LVu2pEJdOHfEznHpICL6IqI7F7perzMzM8NLX/pSwJ0B3Y/WmpMnT1KpVJiens5cxxVxd+TIEUqlEuvXrweWz5JObk8ePnyYW265JXM9V3XR3d/n8j5mLy6VS5mie3RslPnW3ODxOMTvQs5Kt1N0X3AV6tWpRGvHLXvfMeRFo52vtasSnVdE5+0WX/41Uj1DcjYVJ5hpzXat6QPjTHiTLIRTgGVUF1hT8NMhOaMeVHRIWbcpqBZ+OpnSy5w26K5Qu87N9f67srHd3mB31TyfV9qF+5jc/u3QNSDlWfBKn89KdBa1Wm3ZaYXLNVIdOnSo55jOnDnDW9/6VmZmZlizZg233HIL//zP/8w111yTrvOOd7yDarXKz/zMzzA3N8dLX/pSHnroIcmIXkWksfDSQUT0RUR3FToZ0939S3YlsXJKKU6ePMn111/v9E5nbccYw4EDB7jqqqvwPG/Zsd7dtpGJiQmmpqaiaWP955TTJuG62s3dsOc491JpmOgerHS7jnNhIdvTXW+4GtHyerHzkT/lI1+F2hvmoc44NV8VaDmqskHeyrVz+Eu+oS0u8p6zn/rGFVUTUG0GHAF8fIIeUaxJhuSMeqNUw3UULKwtFFlTKETNlIUKBbU9Ft1tfOqxr7uEZsxpe8g42uxzc3qDK1hH1dcdP5cvOcM5nCXrBwcYNjnSmXXtHCHv+txnvx6asvN4E85HTvRKRn4Pa6R65JFHev7/wQ9+kA9+8INDt6eU4r3vfS/vfe97V3ysQj4Mrk/mxculdj4rRUT0RUL/dMJkTHc3wxoCE5rNJlpr5zSrZDv9AvnYsWNordPGk+UEe1IVf/rpp7n++uud67mqi3ntEE4RmlNI5a10Fx2ie2x8nLkconvO0UhZr7tydPP+yspXoXZeYDn9rdm/SnzncncjorPhMK/Nw/Eeu+4SuHA3ZTqq745fqwVdJDDZ59COl7cVHA9aHI+jA6cLFU62uz8DFaASW0wiU8KUX2SN7zPua6b9cbRaQ0WHUTOlasS+7jE8NRn7uruiJ53JI2VCp4h2+b1Xq2o+LOs6n/XEOdDH+bl32TyGWzng/FSilxv5LVychJdgY+Gldj4rRUT0RUJ/FXrjxo09Y7ph+UmDxhhqtRrT09MrSvDo3vf+/fvZvXt3+ryVDGSpVqsUi0Wmp6edjXxuP2vO9Z2V63xCKm/10i26s5e7Kt0TE+PMNQcbKV2/lhZyim7reK/csWT50jxcDYquirbvaCobrNZ2cHuo8zUi5r37kbdZ0xUDWFAFhyyFtqO66zrn5HMaACeDFidj0T3o6y4BpbiZ0qKBCb/AGj+ymKwrjOKpHVR0SCltpqxHth2rCO08/V5nVySe21KRzyvtajj0VNnt33Y2cjq85jm90suN/Ibz44leSSVauPgILU7v/cXKpXY+K0VE9EVAfxX66NGjA1VoWFm+s1LKOWXQtZ0TJ04QBAFbt25d8b6UUlSrVa677rqhgt0lcvPbPPJuJ+f6To+zy4+bsxHR8RKVyyWy9MH45ASnG6cynpG9ofn5+Sicoo8siw3gvDfnFpQuT3ROK4QqDEntOL/ietlOxD7yXmi4xPXgoJoOLmuLu5dg+JgfA8wFbeaCaLs7ytMcanRHpBWAAtP+ek4GY4ClYhXrSqV0OuWIZyPRHed1e9TRqorFzzUkxz1gyGUlGpLt7PBKOxs2c3ullxezxhiKxWw7yNkgIvrSRewclw4ioi8CuqvQBw8eZMOGDQNVaIgq0S47R1JNnpiYGJqpbE0drW26neR5u3bt6rlVuZyIXlqKvJrL5ZW6Y8tyitCcleXcy10VbefY8pziOmf6h0uAlCslssqdk1NTuUS3y9PdqDeyn+JKNHCIa8/xq8fViKhQQ/KmV8nmkfN2ZG6bh8MqUFQFGo5jbee8cMjr93Y1lno6OVZFXcGRVpMjrWY89r37A9YZkhP5utdSUT5rCoV4MqVOh+SUdZtiOpky8XWPDA43GTYwJpMhWdc5c6VdPw8rrUSvpp2jXq+LneMSxaAIh2TsXIyYS+x8VoqI6IuAY8eO8dRTT7F3716OHDnSM3Gqm2HCdmZmhjAMGR8fd/umbQO98P/lxi1HCFCEpwuEtsA1u3y88jbq8xXQ60BvYP26OiY8QxDcgKd2oLzOR8lay8mTJymVSgNfKv1iMbcIzSlyV6uivVo2ktwe7bzResMLkQNUKpVs0T2ZLbpd1delxaVM0d1stjL37RKgrkbEAgVaDqHkitBzNRzm9eGvns3DceGgCxBm2xHaJvucQ4flxXVuLtxNk9lCtqiLNMLsqm/LRJMp6zak3gp5Jl6+oTjKiVYilBXJkJxdlT0crENBadb4BaZ8j/F4SI7HOkpeQKlrSA6Mo9VJjO2dcupRJnRlXTuaV3FchDg/lysQ0avdWFir1dIkJOHSwtjoz6XEpXY+K0VE9AWOMQZrLa1Wi4MHD7J+/XrGx8cz13U1FnZ7mlutFs2mYyJX/SNgm4RAQUGBNqg2pZLF2gUKXfeg9m4F+F9U50PKyiMEQnxCSgS2zHWXa5rBBuqL/xvUBpTeTBiuB7sTrXahdOR7DFdLnOYUv3m9z3mn7uWvaOcU9bnzqV04BKJDLI84RPfU5CRzjUFPt8u20ag1MiMDTTs719tTPuT0DbusEHnfs/Nt8yg4xPWw6nvb0aCYN6nELRod1XTHxEoY5ut2eKVtZ0jOiXaTE/Fqeyqb2F+f6VozGpITNVMWokwTq5gulZkqeEz5RYq6GQ/JaVNQDTxVR7EUf2Y0/VdmJueEyJXaOZ6LdA7h4iO8BCvRl9r5rBQR0Rc4QRCk4vjw4cO86EUvcq7raiycnZ2l2Wyybds2Dh48mF2tDr6L1/yz6N9KRRYSoo7bprF4CppWY+ObNopIfnnxLwMPg68CIABVRVdCNutZCJ7o2Y0NLI1WmQJNQnx+fq2lahQ143GqXaClfObDEk17hqPacDIocyasEMbVvdy2DacIdVUpz6/odov6nE1wOS8+3OvnJV8DYaVcyfZ0j0+w2FwYWO4Sb6YdZv62UlZhHU2cTqH5HNk8XOfmORrpiqpE05E64b5AWJ1YP1c13XfYc4ZNpmybfBczLrx43wZYVJbFVh1axP7tateaxfjPZPz/XUx6xdjT7THuKya9IgW1rXdIDlWMLaIoDDQkPleNhWLnuDQREX3pICL6AsYYQxiG+L5Pu91m3bp1TExMONfPqkRba9m3bx+7d+/G8zyn5cNr/GnP/5WKRiGE1jLR88XQ+feSCaloDVishcBGsT0tGwVILbZLKK9OEiilUbSsYVS38LD4KqDkwRovagDaUWhQ1skPYqfZqW4MGk0AtKymZjQ147FofGaDMi3r0TCTHGtbToYVTgUjqeheNU+0Y3le0Z1fXJ9fb/Uwf3weXL2jLnHtGtpSKpYz7a0j5RGaweAdFF8VaLtsHibbStIMHMLUIbrzWoXy2zzcFeqm4+1pOaq+Ln+4e/CMK6Ui+xxcvu6CLjrFct47As7X1fEh83X2RUhH2CvmwzbzYec4pvw1zKWfg2hIDoyzs7yLpxuKUeUzVSgw6fuMewq8q9iRuZcO58MTLZXoSxNjFcbVTX6Rcqmdz0oREX0BEwRB+rcxhssvv3zo+lmV6FOnTlGr1di+fXu6zoDlIzwI4dNYtQ3sIti59AurbaGU8bPRspbRri//RHT7KNo2ZEx7oJt0jyFuW0tJeWjVK7qNhaY1+EqxaBQKi+qTX0UVHccohjWeAQJqpsbNlaQCdaLn+GYDxai2NLtE95LxORP4VG2Juhlnpq04FVY4GZQJ4x8FV4XaudwpclfL5pG3cXGV0kJy16hdFWrX2vm8uK5GxKIuOH3Drgq1a9T8Um2JrIhi14Cc5QYb9eMS184sbV1wtry7BKjTH57zzoXbkuJ6H4rUTDXzsZbj/XE2Rzou7Nyvn8u/XXIKe/frFAKKqg2ptkKOxoe+pri8mF1tT7SI6EsXqURfOoiIvkBJqtAQNQUCQ6vQkN1YuH//fnbu3Inv+851vMYDaPPd9P8WRWAtTRvlylaNwWJRahRjqygUgTWUVZS94KPSSmTbWkYclbWmNZG4pld0ByTievCHcNGEjGtvQHQH8Zf/qUBR1EEsum1c7bZMex5KwUiX6IYmVWMY1Zp+0V0zlrbVGBR1o6hZn6XQZ8EUONkuEzDCiUBzMihzKqjQjn90Vs0Tfb4bKXPbP1ZrUqJLjOUc5qJdHt1soTnMXmCVySzAFitFasGgEHRdgMw7Ekxqjqxud4KJyzrhEKwUnU2Wrmq6+3OarxPV5et2HatGO33azgxsx/qur2hXGkpRF6g6LkJcwt71OpX08iOvJZ1DWCkhOr1beqmQz5x16SAi+gIlqUK3222eeSbqc7fWDs1c7q8ynzlzhvn5eW666aZ02YCINsdQrb/r2Y5SkbhtWMNoj3hpgPJiodwRvd0Ct2EsvlJYazCmhNJNFFF1WaNoW9sjugEaXeK6G2MtlfhLOzkmHwUqspJE1e7ImZ1grcVTkWM7sKSi2xA1MHlKMR8aPEUqupP1Jz0LWNZ4EP1KaMbWFEWh72UPrGU20JR1Iro9qrHong+LLIXjnAwVp4IKJ1cguvMmSeRd7rZ/rE6qiRPXEJacQ1tc9g93A1zhLKuQgxSKfqbFZHxiLHNAjusn1BUb2GxmCzqnuNYFpwh0Nfflt3lk47SkaIfgV0UaDl+3+1hdNo98x+Qa6DNs367PRslbmYheTU90rVaTSvQlir0E7Rz2EjuflSIi+gKkuwp96NAhJicnOX369LK3C/sF8r59+9i5cyeFQqFnnW6hrZp/g9WXga2CXQLmUViCFVaUoSNwlYUxnYhSQAckAjeqKHeaAxOBG8TfjEsmGhoaWI+CMmgsbQsjWg9cPFhrKTqOrWotY/F+kkp3omqaFkoZz6uakBGladmoASsR3TY+PmN9ijrsEd0GywY/EuUd0d1Kz2VMz/bsI7CWllWcCYtoQmrWYyn0WTQFFsIii+EEsz6cjkV3K7WXrE5Fe9WGwqxShdqFy+bhHGDiHPLiTrxwnVveYS6u165cLmc2U7piA10i0JVgokLlVOouEZh7aEteX/IQr3TDEd/XcnqoXTYPR8JIzmMqqhItR/Sd63Uq64yrnz4knUNYKWLnuHQQEX0B0u2Ffvrpp7nppps4ffr0sh5MrTWtViTk5ufnOXPmDDfccEPPOj2+aXMSr/FRVNdAAouibTQ126YQp3TY+CvVU+OEZhGloGEiAenT+RKrD6kol5fzT/eeCdZafGUpxNvuFrhNa/FVJIq7RbdOJFJGxb5mQkYclgCFQikV6xWdCpSGMYx5UeMkfUKnmiaW9Iru0Fq0UsyHUFBhKrp9omrz1kJSAeuIbmstVTvLWNcuwlh0L4SaEEU9Ft1LpsB8WKDJCY5omAvLzAYjy4puV6XbnY18fivUuW0ezklyLhHtGr1dzC2gVivNI29s4MT4JAvN+YHlruq7Mhqrs4+pkdGUCWfR3JfT5lHQhbOIxMtXNXcOjBni326F2a+HS9ivxM5xPnKixc4hCBc2IqIvMPqr0BMTE6xbtw6llHtISky3QN6/fz/btm0bGEPbXa3Wzf9fj4AGYtsFjGndqSin1FhS9IjeqKqsCGx0HZr4py2AjWwboTVpBbhbdAOpSO6n1mclKSpIBa4xcSpIelbRc0znOUFc7baxHAysZdFEx9i2HqVY4IbAiOMYAoeQaFnLiFLxxUBvVTDxcEd0jj+ILyRqhjT9N9p6VPVX+NRMr+guK4vyAspa0y26AZr2BIVxTRJmkojullXMBAUKCqrGZzH0mTdF2vYkR3TImbDCbFCmYaPPhduLvVqNiKvVoJgzNs45EdF3imh3FdflM16dJIy8/uNKscJCa1BcV/wyNZPtxw4c/vDF6mJmM6XL1+26E+Gy2zgr1EM86+7XO19MozP1RBedwt712VhORFtrJZ1DWDGh1YT2EvNEy7AV4UIgCIJ0zPfBgwdTP/NyY7a711lcXGR2dpaXvexlznUw86jgWxjvSpSpgl1EEeX21s1axvzB284mww4RCUlLw9rMKjT02igi0W0xFKibJr6KqtHJz19gfEo6iD3MdkB01wcEdIfun2FfKXwFoGhaw+iAZzM61iVjUEqldotE4IZxLN+SCQmt11NVblpDMeNcwyEWmMT3XUguBpJjtpZAES/v3eaiCSkqxVIsvBPRDZEGaFhFSYWp6K5o0DbkiqKNxXV3pe9kx0ceH2vbKlpWU7UwFxQJUCyFBeZNgZDTrFdtTgYlToYjqeh2eqidojsbd2pHzobDvI2IDlHn4eVugMvfVJrvW8ZVYXWNUh/mAXadW6FSIGvuiKu5b34+29fdaGRbNjzruCMwJBLPlbbiOib3gJT8w21c7/Vydo7k8y850cJKMCjMJdZYmPf326WCiOgLiKQKrZTi8OHDjI+Ps3btWsARTddH4nfev38/W7dujbyZfSTb0c1PoYOv9DxmraYVTFDwLbWuirIlLgAzik8Ng8VD4a+komw0I12/KxIrBwSESg0KYm2pG9Xnn44ELhja1hKaKIbKxlF4HtEPcFEN+qchidYbPLYgrihDt+iO9ttbUYZE4CbNjkkjZdvqWOBGx+krBVYRWk1JRZYXD5we7v6KezcFFCWl42PvPL9mTOz77rWZRNVoS8uCVr2i21jwFNRNZIXxgbKGMgZtQjaXE+GX+ApOwTgshDDhdYvuL1O3cCb0CawXe7oLWDXPGlXndFBmtl2mTjneez5x7cKdzJAvh9o1ca+gCkNi43LaDlwWCddERAfOc3NaVVbvAqFQKkBGUXZ8YpzTzZMDy10XP7VqLdPXrY3bP+nKwF69SLzsi42SKjmbIEt6uJhN7+6tUiXaGCOV6EsY8URfOoiIvoBIqtDGGA4ePMjevXtTQbiSSrTnebTbbU6dOsVLX/rSzHW01ijq6Ob/GHhMKQPedkrqW9D3BW6tpU2rRwwmUw1rJsp4rsYV5UR0R7K3QNMGA6K7aYtUtKvi1H1MsX869kBXlM70li6ZMPVwp0NfjAYVxhXlSOhqFEFs52hay0TGl153Kkg/tS7ft4/qEbjNLttKRPTvqgkpKU3TGlpGxwI3kpfG2qgaHl+YJFXlhrXOirvrij8ExpSO37re5y6ZcECsJ6JbozgTKgoqTEWvQhEag6d8WvEdgUR0TwDjusGI1vSI7jHS7Ski0d3my9QmoWY8TrRLWKWYD4sotcAUNU4FZU6GZaqmhFsqu/3Ebo+uy+YxpELtUPYuce1sRHSMlHZXavLV6102hWEJGXWbYbomf1IJjuztSmUk09c9OT7FfHNu8FhdXz3W/frVW9nn4KpQ5339ikOaIJerRK+2iE4q+8uJ6A9/+MO8//3vZ2Zmhr179/KhD32I2267LXPdP/mTP+ETn/gEjz/+OAC33HIL73vf+3rW/6mf+ik+/vGP9zzvrrvu4qGHHjqX0xH6uDTtHFKJFp5D+qvQo6OjrFu3Ln18pZXoWq3Gpk2bnL98tdZsWvN1rN6GtetQtgp2AUUNa6Honcj8To8qpr1fSonALWRVlInE9bhukwg6ay0BSSpHkcDWB0R3I/QZ8+lUdbtoW0spYz/dSSLdTYslDxYNGTYTi7WdFJHOpEWNxtC2Bl9prDVppVuRVKtdFffhjYt+7J8uedAjuh3PCaxJmxabVuOrzgWKRlEzIcZ6lHTH8uKymfQ3diZ4ShHGFwUjGc2TTZUM2onOOYwvmuomGYzTcXYnMYaBhZLyKKqO6B7XENiQbYV2V1RgJLohusAZUYqWhTZfph6L7qrxORmUaFoPrRaYosrpoMKpsMKiKQLKHYnnrOLmG2wy1Lubc5y1q0Kdf6x4zpHcukA9dIjonINQckfiOURlpTjCfGtuYHlZl4dE4rUzdfHcwnxmtbtezz5nlx2moDI2ErOcJzr53TwsgjQPybEPs3N86lOf4t577+X+++/n9ttv57777uOuu+7iySefZMOGDQPrP/LII/zH//gfeclLXkK5XOZ3fud3uPPOO3niiSfYunVrut4rXvEK/uzP/iz9f6m0fDKJkI/IznFpVW4vtfNZKSKiLxDCMEyr0AcOHOCGG27o+YW8kkp0GIa0Wi327NnjXEergCu3/j067G1MMsajaa+n7M3RtjtomgNAl5XDRlYAraKc50SArtSjDNEXTIFITI+qJVRGtbAeql7/NMRVZdAqsllAR3QrFDWjmfLsgLQwlkzxCNlReElVueF4Xs0YKrF/ujNpMRK4gbWYuHFRx363korWG3G8Pi6bSRhPg9QqalqMvkY7UYFjPdvrXAj4KOrGEI2eMel7FxhDUWsCq1BKU6RjeXFfFJiB406sKW2l4oE1vUTe82S5SkV3VPE2GHx8lbx/0XAc4osUgLJWqegGQ800uLbcW+lOOBUoxrShFYvuuvFYMh4LYYFFU0CpOTaoOqfCMieDCotxpdudQ716edN5PdR5bR7uaYJDBtJk7Dq6ZMzet+uc804+dCdnuJv+XNVgq7OH5JRHSyxkHK6xJlN0L8wtQIYmNkH2Ofiq4LTQpM+NM6JXW0RnWfISPvCBD/DWt76VN7/5zQDcf//9PPjgg3z0ox/lne9858D6f/7nf97z/z/90z/lf/2v/8XDDz/Mm970pnR5qVRi06ZNq3EaggNzCQ5bORtPdJ47KS9/+cv54he/OLD8Va96FQ8++CDw3NxJERF9AdBdhT5y5AgjIyNMT0/3rLOSSvSJEyfwfZ+xsTHnOkX7EKXiYGe/1iFlfRJljlAACl0VzZoJGUsbZqIvCRMLpMBG/mlUmTC+ZayIBrD4StGyPh7tnqSPlrUUM35/BNayxu98SSeiu4CirbKi8CKhrTXxgJeO6DYWzrSLTBaaNOKfbU1y+9/11Z4tHtN90VvpTgRuy2pGVZa4iUStR/ekxU7zYpRmEjUsahWJGh/rjAq01mbmXEMiYAc93AB1+u8URAK3HscUVq2haTwKOohfl6hC3TAMiO52l4+8n1bfRUEiug1QVB6eo3lyvKvZMRHdhqjbO2siZYhlyvPwlKLUJbqhzaKpxts73SO6Q2tZMB6+sjSMiivdHkumwGxQQqtZjrYCTofRRMr5WHQPy5t2CdDcUwNzxgm6my8dItqxfNggFHfcX74MZ7elwl01dydnuOxf2fsuV1x53ZOcaWbkdVuVebg60Hzxi1+kWCxSKBQG/i4UCunv70ajQaFQOOcGw6Sp0FXJb7VafP3rX+dd73pX5zi15o477uDRRx9d0T5qtRrtdjvtu0l45JFH2LBhA2vWrOGHfuiH+M3f/M2eu6LCuSN2jvx3Uv76r/86jfAFOHXqFHv37uXHf/zHe9Z7tu+kiIi+AAjDEGMM1loOHDjAddddNyDI+oek9NNsNjl58uRApF0PNsAP/om56hbGx3y0rQJzKEIa4RWU+Z7jiYPfLFopWsYwnn5ZtKDri3EprVAHgMLEArcdTwCsmhKGWrz1xApgKSkfhe2pGLrsCJBUlGPp1yW6UdD2ssXoQqCY8PWA6I5EriE0tqfS7StoWz1EPLptFCNKxz7n7i9orycpoxtrwUN15U9bGtanpEICaygoRWgj0a3QFGKB6xJWTZt9p8BLqtzxY6Ndkx9Da1E9Y9gj0R1gaZjE6mIJ4io8qcCN3l8vvihIqHVV/fvxu447Ed0oRcMYRj2P6NKl93WqmhBPZYjuOFGlfyKljq0uayIVz7i2JKIbGiyGi4x7vc1yxlpqFkLr0bJEOd0mHpATFjkdjrJgdDwcp8y8KdO5K+AQoC6vdM7qrgt3I2J2I93QQSirlOHswj1lMH8knuuOgMsr7RKmo5VRTjUGmybHSmPccssttFot2u12z9+1Wo1Wq0Wz2SQIAv75n/8ZiIoe/ULbJcKLxeKA6F4umePkyZOEYcjGjRt7lm/cuJHvfve7zud18//8P/8PW7Zs4Y477kiXveIVr+B1r3sdu3fvZt++ffzSL/0Sr3zlK3n00UdXNXnk+Y5BP+/TOfLeSem/2PvkJz/JyMjIgIh+tu+kiIh+jun3QpdKJdavXz+wXs+QlAwOHjzI1NQUtVp2viuAan8BL/wHpkbpuS0ahEWKhTKWy7GqjLU+tfZjKGUIbTTwpDNcpTOyO3T80GRVK3U8zKRpTVwpbNItjoy1GEUaS5eIbmMtjdijvBhqijoS5YlAAksYJ090UzOGScenO3kV+0V3y1pGyb4lOx9oKn7YY+WwWBaCAqNeyFKXlcOLq8qucebgTjOpW9PxVserjMZ+5aphwEZhLXG1O/rbJA2L8WsUxK+rVpE490iyu4c3T473HXckcBXo/pjDaL1aX+NiIrqji5OoebJfdBuibWUlqrgyuruPu1t0Q1aiSjc6mj6JjT5rEOeHGyw+S8b0iO5kdM1k+sFKRHci3k/H2eURUeMtnAo8fAV1q6kan6XQZ8EUmQ+LVMPTzCjSSndiQDrfNg+XdcIlWIcdU96BNO7Jh65UFffkw7yReM7mSKf1JPuzU/YqQ+/uAZw+fZonn3yS22+/nSAIUqGdiO3k/41GY0CMQyTsC4UCv/RLv0SxWIx6HJpNfud3fof169f3/Nm2bdvQY1kJv/3bv80nP/lJHnnkkR7LyBvf+Mb039dffz033HADl112GY888gg//MM/fM77FSJCGxVDLiWS81lYWOhZXiqVBqrBq3En5YEHHuCNb3wjo6OjPcuf7TspIqKfY86cOcPi4iLr16/nwIEDXHPNNZlfhsMq0a1Wi0OHDnHNNde4qxDW4NX/JPOhgC2UzbeATrF03FOARzXD3hDaKBdao9LhKlpNYOwCoAisoayir6Ru0b3S1AvoiG6UgsSjrHurklHUW7YVILCGk+0iJa/ZYwUwwLjntkS4KsqTnkGrqKUrEd0AVaWYcFRoPKuiSL4u0W2BZqgoeZbAdqwcic/cOirKrYwLk+jliV7vLPHYuTDpPM/ajgWnoBTGRvWDZpzPnVhxmtbEorsjzoZbXXqPLRHdLSzleDBN/Ei6zmKcqALEY+Cj6nuSEbJkwvi4OiPXW1jGnfm/K/F3q1R0QzR5cjQjzaQdf1abNhKziehOplJaW6St22l2uEc0s2TKC6loFa/dqdo2raHITLrrRHQ3reJkUMFTbWrxcJxFU2A+LGFVjYKpcSocZS7siO780wTzZWaXVImmayBNTqtK3mN1TZos6iI1U818LHfV3BWJ5/j85Bn5rbWmWCwOvyPYhbW2R3S/9a1v5cSJE/zrv/4rvu/zjW98g9nZ2Z4/n/3sZ/mBH/gBPM/j+PHjPds7fvz4slW43/u93+O3f/u3+T//5/8MTLTtZ8+ePUxPT/PUU0+JiF5FwkvQE50U1bZv396z/D3veQ+/9mu/1rPsXO+kfOUrX+Hxxx/ngQce6Fn+XNxJERH9HGKt5fTp05w4cYJWq0WhUMj0AsHwSvTTTz/N1NQUU1NTTqEdBF8FVULpy2jVT1MuNdGxnaJYKGcmE/Q2inUdi1JYa6j0CLcqKC/yRSmvxwOdVG8b1uDHFVrwsbFDONlK1nCVYakX3V+F3VXJSHB6KC+g3wqw5LACJLeiTgeKog4jSwmd4SquCmdZZ38hLwYw7kevXbfojl4PekZ8J1RDKGhFo8vKAVALixR1k4JSaNsnuodemAzaKFT83P5ElbH4AiWyUfQNg0kzsQ1V08kOb1ufkopqxj4qM1HFdWFi+yw6UXa1BhXZNZKLo+i4OuuZruE4qQ2H6KLJU4olOzgcxxkJOOS1a8TvefSZ6l2nZS1FZciymRSUpmFM+plK9hzayJ5bVCZ9/4oqurjbXqjHd2CCvu0dZXTCS1+vNtCyirb9KjOjPkpZqmGBBVNgPizi6RY6XOBMWOF0WElFd96x2AVVcIpo10Q/5/TG3NnY+TKwhw1IcVWuXdYTl7BfycjvpLEwL0qp1O4B8JM/+ZMAfO5zn+PgwYP8xV/8Rc/61tq4D0Rzyy238PDDD/Pa1742PYaHH36Ye+65x7m/3/3d3+W//bf/xuc//3luvfXWZY/vyJEjnDp1is2bN+c+N8GNsRpziXmik4vTw4cPMzExkS4/H57kBx54gOuvv36gCfG5uJMiIvo5JAiCSBAEAQcOHOAFL3iBu/PeUYkOgoCnn36am266KU3wyLo9XguOMNuIh6toojvT1sOz66gU5yioyyioMr7y8dDUG0+ArhLoROD0RsK5JvNlNcX5SuFZUMqjmB5Xp6rcLZqsjZI4rIqEZGAj4QuKRlik4jVJxpu4hqu4PMrDrACpR7lPtEFkjWgbsMqmotsSJRW0TJEl1cl51kkCSWxL6adtLRM6+z1eMh4bvehcu586okJCvIFKa2KTKGpFy9iemYYt4+OrqHlQ971/jSGJKv02iqSRUlkY115fukX0Hi6ZMB5Nnog9hcWkY2CXTBzPZxWesrHwcaeWuJrRWl3PSSIDk1UXTf/EzM5wnLLShNbS7JpIaYmEt68Uxih81bFyFOj1anezXBpNUfVWuiH6efHSxV0XBPEdgSiLO+wR3YrIox893hHdRQUN0+LqciIcu0Xtcb5/BKa8TrJNMxbdS8YyFxRpoVkMI3uJVVUOqAaz7TJnTEd0Fxxxf9G5OARrbhHtsFQ4LSnuqnne5khX1KCLlYjoMAxXdeR3rVbLjClVXXd17r33Xu6++25uvfVWbrvtNu677z6q1WrqMX3Tm97E1q1b+a3f+i0Afud3fod3v/vd/M//+T/ZtWsXMzMzAIyNjTE2NsbS0hK//uu/zutf/3o2bdrEvn37eMc73sHll1/OXXfdtWrnJlzaleiJiYkeEZ3F9PT0Wd9JqVarfPKTn+S9733vssf0bNxJERH9HJGM9vY8j0ajge/7A7c2unGlcxw6dIixsTHWrl2b+uuyqyIZX3IqJFRLLAUnMh4DY2JNmR40eBRQBBTihrlkiEpBjaLjaQutxArQXVG2NrOqDb2VMhULBeKKdbdVYkx3Ksvdw1WaRkXnYjs/yIsmJLQ+BRVXuxXxcJV8HuXUCpCI4j4rwGTBkGUFGNF0NQeSytu2tRhboKKDtFKa/BBOeNmC40ygWVcYfEyr6LUvKz2gO6vWxo15HSJ/uaZtDcb0Vkrbxosr8NFx+33vnysxBHrtIiqx4aAzvdUJSyZME1VCSAVu0hy4GHvM23FTpaegaSzFjGpff1W7m3pXaslIn4itGTKFfMsaivEdiLb1UCQZ3dFFVGjAWJ+iCjoXTTC0qp312mmlKGpFWQ1euNWNYazPdmRSYWxphgpPBT2iOzo7TTOOOywoFedyBxRVyPZC8vsjsUVEX2BnQsWUNqnoblmPmlEshh5VU2DJFJg3RZaCEU6EBU4FZU6FZWxXJd45tCXnqG63zcPtlXY2R+bMwHYdUx47x2rRaDSWHbTyhje8gdnZWd797nczMzPDjTfeyEMPPZR+jxw6dKjnmP74j/+YVqvFj/3Yj/VsJ7nd7nke3/zmN/n4xz/O3NwcW7Zs4c477+Q3fuM3JCt6lYnShy4tT3See07FYvGs7qQA/NVf/RXNZjO9azOMZ+NOiojo54ggCNJfvM1mkyuvvHJoxqjWmiDo/eWfVLCTTOnkF2aWiLaOLzOFt/KeWgUhbUILAWGnmGQBWljbV4Sz0S36KElCUTQqFdceioIqYm2LstYYaweqUNlfdYPDVUqJCFH0pV70JzuYtELXjseIJ+O6tVK0bUgjLDDiBXhxI57rtWkPqcY3YxtFbyJHXB1UUFCDiROLYYhCx82BHdEN0U2Dmgl7RHcyXMVVza0Zj1Gv9z2PfOaWUp/dJnoQlgw9zYGJaGsZlXqUu0VbMyxQ1G2KOkrv6N+m65dqaDOG48QCdzC1pEtgapOK7iC9IxBdmES2m6SC61HU0YWcq6odeZ6zH2tay7jWeHR9tuh+/xLPc+e1r4YhRa1pdb1/iSgzNrrbYq1HMR6Oo5WiFfcOZL5GGZ88rRR+/NnyMj5DSyZkwuuccxJDGcbNt3Mh6dCeZC1LNBzHQJfoDlnrwaLXdF4ELYSKija0rKJpFfU4MvB0UKSJx3xYZC4oYVSbIGhxOqz0VN5cvmTX++WyeRR1MXckXt6YvpXaOVa7Ej0snSPhnnvucYqORx55pOf/Bw8eHLqtSqXC5z//+ZUeonAOXJrpHPnOJ++dlIQHHniA1772tQPNgs/VnRQR0c8BSRVaKcXc3BzAsldKnufRbPb6EY8cOUKlUkkzpZNf4mEYph67zk5dkvQ8fgRUFBkHkZBIjz79/mxiLOj4u0vZeFCJLUaVWgVLRkd2EBShLTGi27QdFU5rbc9Y8m66vdUFiMVCtG7VdLzfY7ojjlqx0GpbS914+CpImwMT/28YxoItFt0aKLmq2gNZzh08pRjJsJK0rGFTAfoFU2AtTWNoo1FdY8ST1xF0V6JKx2d+JvBYX8hWHV6fgEmaO1vQFWXYYUwblkwnrSMR3Q2j0SoEbFpRji6jLApNG8OYMzFieRuF37fekjEZEXqRhaPc5Z9upO9hZBPyVfRaJXcqkrsqRdcxdCen9KHUclaOZHn0d2gtDWMJlaFlNV78HiavlbWR7SZJkEkuMOtDPkP9VdykEdZamEir2oM53SM6ena36DbxBclCaFCqE/moYytORXup6B7FghcAAfN+oyvRBOAwEH02qlajsXG1+19ZDGEpnkrZsD5zYYmi51NtL3EyKBN2/W7K7es+i0i80HHZdz490S7q9fqylWhBuJjJeycF4Mknn+RLX/oSX/jCFwa291zdSRER/RyQVKEBjh07tqJJV/2Nhclkw+40D601SqnMBkRnJVppnEWhZ4Eet4iKK3CqSdWmcqNHdBNGTVqe6YhuhUcx/qIv9tlMNJqicjkwI+uCK/85aYrTQMHriOue1Iu+ZIelMKSkIytK03h4KkjP01hL1YS0TYGKF6SWidaQinLT2p4otQQNjGgvreB2UzWG9X02k04jnk4TVTpVZUVooKSzmzsbRjOWYTUJba+FIRHdRc+ylDluPaJu4oa/WHSH1lILfXzdSpsDkxi80PqUtHFG3pkhFeVuC0o0cr1TvW0Yk/q4e48tSi1p2sjT3bYFPNWKPfAWa0KiVG5NQcUXUss0KGa9Dl5q5dDxRMrO8+vGUOkTZJ1G2Oj9TYbjQCKebZwvbntEN8SfY1clt2u97vSZ/rScbiIrFQOiO4zvGix1TRVNIh8bXb0AUWRjk00+QJP5sMpkuqvDENspG8bSsjq+c/SvLIRQNT4LpsDJdomaLYAKUaY+ILqHReK1co5rfy7sHPV6fSC6S7h0uDSHreQ/nzx3UgCuuuoqrEOwPFd3UkREP8t0V6GPHTuGin2hy9HfWHjkyJHMNA/3eHC3neNiI21NTEQ3QSzGwOsR3R2sjWRKYidpm2Jsd4imACaC1hifES+6MZUn9SLBU7EXFUW5S7Q1raGUiBLdK8gb1mIw1EOfgm73HL7qay5LLBPDjiFraSL2NhYHPdwAi4SUu5o7E9EdxFXtpLnTxqklGphrF1hfDDKbO12fqm4fcneMYUUblozKEG6RQNNK92SHR4kckYvaVwpsJ8bQ4lFSZqCyntC02QIaosbKiuq24oSAF/3cqv5KefSzW4ubO0NjY9+0Squ3Ydf7p+ILOmColSPrgsFTCh2nMvhK9QzHge7hRhHd6TPWRo+3rKagkosAGzdC6vj17d2fKwO+23/eH/m4ZJJc7cF3P7Cd+MLuyMfARgNtkpz15K6AjyLAxPYUgCYbY9ENkZ1kwrPAka59WJaMIiSalFo1Os7pLrAQFvlWYx1Pt6ZyJ4w8F42F9Xp96MjvC4n3ve99/PIv//LA8g9+8IO8/e1vf/YP6CLAoDCO308XK5fa+awUEdHPMkkVWinFvn372L59O/v27Vv2ed2V6KQKfcUVVwyKF0cDonXaOVZRRKvEZXlhYlUkUAIs6AaLlsxBLQSR/cQnqqRFAtSnouNWKgVBqNOEiMQy0bTWmdzQtr0jsbsZjavnZb83Nm1pSHOZxVI1hkboU/SiypqKRZ2vFNUQKrrXZ94/lrt7m90XDN2jzdvWMF0YjHMDqHu2M269K3KuFuq4Gh25g7vFUTXUsX2g/xhYUXNgmh0eUzM6o4pvadmoytqyNq2YNkKfktembS1t1TvR0I+FpesYXFYcpaLnlzKaO9vWRpaRruNNPN11YwliC0fLevgqEZGA7eR0d4v2YXag/rc1SZ8JwJnTvWTCtBLdH/lobWT1MFbFFwCdkeuuXgBXB0EY3y2IbtyonsjHJRPGVejB8/JRtGwUSdcd+RhaS2ALVOO7At1WHE+FTGkPUitHRzBXjeFQa82QhJHsCvVz5Ym+WOwcP//zP89b3vKW9P/vfve7+cIXvjDQwCh0kEr0pYOI6GeR7ir0zMwM1lo2b97M9773vcxqXjfdleikgp0VBZO7Eq30Wehel1jWzv08G5zNdfCw5xgVfXEHWFAt2vEpGzNYuUtuJkTZvwpfaVphkTE/SMV4kkihrKYU/74Zdts8a6lWUUZ34gkf1f3CO+wS8h3LRGCjALPTgeqxAWgsbRuN/86qSLp+LbasZa0ffc66RTcqeszlWR/3OkIyaXizWM60ikwWW7FHuSO6ldW43qWmYUhzYHfOs+p5raKc58HnVY2hoHqbOxthiZLXiG0U3c2dUV53IhCzaGR495PXqhRbOQCim/Ydm0lvTnd04RfGDbDVuLmzeziOiu8MZOV0D5ua2V2p7458bA4R60smRCuVTn/sz1lPRq735Kwbk+mpB7fXudWTuNJ7gbJoQtZ13eVJMNZSQNGI4x6702ea1jJnikMj8VyTD8srFNErHbCyEhqNRubk2guR8fFxxsfHAfjVX/1VvvCFL/DII4+symTFS5VLM+Lu0jqflSIi+lmkvwq9Z8+etAEwDEN83/12JJVoay379+9nz549mZUPV560dWZdnM2AgKTGNbB3nksRPYxlLOersv3QQjvOZWhaAzrgjGEwtYSoz9OL3awFpfCUxhqPshdVuxVRw15WRXJYRbm/kpo2B9ooR7nfBgCR3SCrItmOU0tOtDwqfiu1AWiiCq+nvYEqvrWWiuN3aaeS2iu6AeoemcK7BVQYnPxogGrgM+aH+ZoDh+Y8q4HmwDHdxliNVQykj4TWUrWGQnyxkiRyRHGBBmOjnO7kTkVyV6CZw8qhVGSX8C342ks/B2Nd72O1q2k2SZ9Jfcq2k6qSDMdJGhBdr5Hr8/X/Z+/Nw+S4ynPx99TS3bNqZrSN9pFkxbbwIuFFlhGEB+tBwuRezOPLjYmDwQ+xg0EQcBJD8hgbbGwHcIgx4UYkYMAXO+YGgi8Q4iAEJr/EujKxYxZjHFuaRZpV0uzTSy3n/P6orp5e6jvd56gk2aN6eRprqqtOLd1d9dZb7/d+wTJhTjdQHvkoO65O8WbDKSbihDcoXAgwBkz4QIpVps84Eh+3LSPe5Z0pyzDlBb/MlEYkXvoMeaIbSed4JeGOO+7A//7f/xtPPvkkenp6zvTmvKLBBQNfaBF3C2x/GkVCok8TylXo0dFR+L6PVatWlfzQVDfCECE5DpdduXJl5HxUZ0Pfj75AVHdjK0eBZ9Bk1l5wBFoBTNYOdYY9UZSgHkVi6y4jWU8ce8mKKnepIEtwgHnIFj+6apuJECiqn4FiOMWDCLaCn0a75cIsep5bDANM1BI+maJcbocoVyQ97qPVMNCaCnzB89sSRMpFdX50iw1MCpwVow3nFUnqmPpCoNOKvvnK+kCHVdtuHQCYGV28OOUxNJuVnR8FAIebMBkH56LCexsUOQa2h8htIPznJmOwBKslj0bQWTBlVJ5e3eINQI5zeGw+Bs/jJmyDl+wQjhAVpBsICvNkTV5Kx6SY5mEXrReZot1kfs75nHWr2KzIBStZJkTxOxmmqnBhwGKi+FlH52oD0T5uYN5DbTKGJlY8OEXMcb9M8a76HEVwHOajKFEqhjXAMOUH3R/Lb1BcCFCa8UzxnGgzm5iDjsRrRIk+Xc1WXqm488478fDDDycEukHwBahEL7TIvkaRkOjThCgV2jCMEomm2nWHCL3Ohw4dwvr168kTNmXnmJ6aACIFFVqJptolT3g2lkR8c3I8gyYj+kLEmA1ERE5RhFRI3osTr5Z7Z8bmi7IcAbAwjstwkS8n3sV/h6TbLNlLGKb4fGpJGBvoCl5UlCuPhKyBSbk3t7bzY3XnwHDbAi9teTfK8s6Bjp9Gs+WWfMohOUoV49eqURC1fvEQeW5gkSVqSHdQiGrWWB64EJj0DTSbHE6xODD85uf9NCwjjxxHSeku79wps5NUK6l2Ub3lhlF5bIsJL9VqbtBlMXAiO0LA5/MGhbyfQrPpBJ9tUQmvzlnPSYtPg3nLm+OABT7ulpqOmsHfM8IvKd1OqftjUYEPFe+ihzo8VtU3aeUQxK+PF78rBptvvBSiMs6w8lgxBIp4eCYtz+kuFP9tGdEkWhaJdyY80Y00W3ml4M4778TXv/71hEArYGG2/V5Y+9MoEhJ9GlCuQo+NjcF13ZJfjDFGFgOWI2y2wjmXes2ixvJ9H1PTE1gUYbGTqcdEd2oYxB2n7M56zmdojeDrx9xWLE/N1kz3hIEUU+mB9MqFzg3ByZL7ctItRNV4ZfdGpZxuAaDYDCS0mYRxgY6fQpsVRPJZjFbpy5uoVCOMmyuRorINynGgI+WjWi8vlHUOnCfdATXyhcCMsNBsuLWdH63o780sB9pqqkgDFZMhuvNjGh5MVtnunBcV0rwI4vDC1tbh5+xyq9ghs7bzo4qVw2QMzcVmL5YQFV0124zg6UC5muuLwL8fHitfiFLcHMDgcgtNhgfG6CzzguCwCRuFBTavdJeR2yB5hv7cQytOGPkY7qVAoEaXN8exGKuThU0/I2phRmRdyXE/jJlkZK50ShKJdybsHI02WznT+NSnPoW/+Zu/wXe/+11kMplSK/HOzs6ky6EEPoIUmYWEhbY/jSIh0acBlAodgvIxlyMk0eeee6401D9KiT569CgsO/oLLou4Y9T1irJGSDwQjBiMegQ0x1NIGdHexTk/hTarVvF2uQnTjMeTfdadDhgA5iM8qhVxgczBTNlh5cW4wCAreV6dZSLIPrbAIISJjBGkU1hg0rg50ksrgs6B1Z0fgUAxtVllUaUoepSFKC8ODKhtkILBkCsWhZrFbz4r2mColuvTvoXFdqX/P0jjAHzOIlXWHIJmJPPHK7C8ZH0TYB7c4m8hJN2iaJkwEN35sZ6PO0SYjw4WrFOwSgIfRivOco50sctk2ITGLHYyDD3UYU532GVRgLa7yJJnUiw68rF2n4J/h0WnoRXHFWHjntIOI8uD/Uix+ULKvIR4h1YOCMCSdD6c43OR7zVaWHi2NVsRQuCzn/0spqensX379or3nn76aVx22WVnaMte+UiU6IWDhESfYpSr0MePH0ehUKhRkikfczlmZmYAAGvWrJHOV61Eh3F4689rjSwFFBL12CBUH9qCIVG1qTeIRWT+KkFczMf9Fqw0p2um57mFJpNo9RvQGHJdZwpxblHc1piwpkyAl0g3RKWdBEBFjWnYGMcXNpoNf57wISig5GXTQ48raScpK6Sr2C7GAMHQZgbqbTm4EGg2K73iYTRflnMI2LBYWBYaJoQExXhUcSdl5Zj1DTQZ8wcizFNeZHHkhRG5X3kuSl0zS3nYCJrQmMyDx4NvRLhdHreQMf3IRjxAQCrJ7orFb1f4GaSKx8svJgRV20KAIFnGZEYp73nOt5Ex3WKRZxBnaCDoSBncOAXmrXSDqntpTYwhA6NY4BlOLSPeFRYeNl9IWfwc5/s+zndZnC17UkA9RbNZdLKGCZO0gJTjVBQWvtJJNGMMU1NTZ3ozXpUI0okWllTzyowUOPVISPQphu/7Jd/zyy+/jPXr19coFo3YOY4cOVKaV4ZqJXp4eBiGYaC5OY3pCGFXZueg1GMKPhekxZoi5JR6zSWrpsaidsWTEPJJvwmLrWzN9AmvCYvtXPRqiPWcjlOirEgydqIcE0SRlQbdKB1kgdJdwnwBZaHyLCzKm8sEHSnniwADtVIIC00GL3VYlHUvjCoOLEXzMYbmqqhAoOh5tj0YrFIl9SCQ8wVSRrBv5aSbFf8XFTc36zPSx11OKktNaBBkhzvCrE3SMESpcU1558fAY14sWi1TlIMbGAMZg/a658U8ka8GKx77UOluMgL7jSdESdGvRoH7EGAle0nWt5ExnaL6HtwMBR1HA1WZFa07KsQ7tJcII+IYIfBQ+xXzR49NKdRps7GGJ6ei2cqrwc6RQA+JEr1wkJDoUwghBDwvUEBPnDiBfD4fqSTT2c4BJiYmSkp0vSi8cmtIeRwe1fZbls5hkCSasmbQ+0ARcjpRQ2O7iIgdWfQOmVoBG0AtifZEGO9Vi2kvgw472oJyOnCm9XQd4k0twwF4rJjRDY5CmZGWC8AIG2MUv3Kh0m0zBo+n0GQGTaDDTGcfAiZHsUHOPOmTFQdWZyyX52FzI7pVe0FwLLGLFpKquLkpz4Zg8zakwBIT+Mwpu8uUx7CI+LmHXQXLOz8CIdmvLaAEAitEhhmlJjQcQJ6bSBleseNfZROawB8vO0aS7p2obELTUvRxRzWhQfHGI895MZ89sOKEedjh8cyXIgNZ6WZSRrxneAWFJkUDyivdiJUDOLubrSRQR9JsZeEgIdGnENUqdE9PTyQBrqdEh50N+/r66to+yq0ho6Oj8DwPK1euxPHZaDuDVImm1GOSRNMg1WOK+GpsF2XiltlMSHJPKuQGQBQ8FmADqCXRJ7wWLLWj/ZaeMJFir7wHYTqE/HQtEzkOCywWPkSpG2X5CqobyRhF0m0wwIaBAs8EUYGoJN4FjpJKGkKWOFGesVweNwcG+FZt8xUgaLDSVFSUwyY0YdzcjJ+GYRRKSne4zQaibSEAMMeB1ogCSiD4XVWT7mZDQAgDnNVGIwLArM+RMgz4ZU1o5jwbzZYTZGXzykQVo+gzpzzUBSFgRxw/izHYzKjwSod52K4QsKsiA8MumflSZGB4ZmLFYyUwLeZ/q2msxLjbieXWeQBzwFGAw3PI82zpaUM10qyx4ri4PdH5fD5RohcwBBZe22/ZdXYhIyHRpwhCCPT29qK9vR2e5yGbzWLt2rWR88pI9NTUFCYmJnDhhReir6+voQLE8qYsYRwepUTLPNGMoMVCyIl85HYp0iW5vzpOrzZFyOMj97L1U764Y24bulMzNdNdwZAiiD+9//GCspNojRXfUEoIu1FyATjMB4w5jFd9rQPrTAGi6FIK4wIDxduAAQM2E7CYARMBCaR+TQXB0UZYOcJ849A7XRHNZ/mRBXNTXuD9Lm9CE0ZS5rgJFNuIh6TbKm43RWxzEg81WEQTmpRPEu/Qn2yxyiY0OT+FZtOFJ3gxMrCyCU1d4l31nhXe7LDo/GpPCOTK7oafn3Aw4mTw3OQ4ggOcKb468drOFRjOZ9CRsrEoZaDFBposgXbWGX1MqpAo0QlUkCjRCwdn516fBvi+j5GREczMzEhVaECeznH48GGsXr0a6XS6oRSPkJCfOHECuVxuvohRaCjRpLIbvQ1UrjQgs4ZEQ5b0oTqWlqpNbICs4JE+XvT6TUXiXRB0kdOU3xI53eX0MqokVprAQi2juA7dZWT7cjLbxlhAul0IFMAxK3xMCxeTooBj3MGwn8dRP48+L4cBL48XnDn8l5PFITeLPjeHI14BxzwXAw5wwncxxX3McR8FweGL6BbkQFBI12JGb6ErAkXZLhZgNhsGWg0TrYaJ9mITmhbDRJNhIF2MKpzwjMC+ITiynGOW+5jhPsY9wOFBS/Ec5yWrBxB83jLiHaVcmyyIwmsyDLQYBloNA22GiWW2jxbG0FbcrlSxiNEVgYI/yzlyxf/OcB+z3Me4xzDH/WLHQ1F6sheCS4j3TNVTO1GcPwpCGBjOuXhhKov/d2wW+4dm8f2BOfxqvDGdKU5PtOu68DyvLon+4he/iJ6eHmQyGWzbtg1PP/20dP5/+Id/wHnnnYdMJoMLL7wQP/jBDyreF0LgjjvuwIoVK9DU1ISdO3fipZdeOun9SVCLsGPhQnudjUhI9ClA6IU2TRMzMzOYnZ3FunXryPmpdI6ZmRkcO3YM69evl85XjlCJPnz4MNatW1ci7qQnmqIXgn40KQSlakdDViQYp3pM+mtlnmiKkBOLyMbSIWpxrp/6Zkxy2tfpEJ+zy9UfTZ9pT/YZX3+x6DMg3QIuBPLgmBMepoSHLJsrke4jfh69Xg7/5WbR6+bwopPDITeHPjePo14Bw56DSe7iqMOKpJuXSDcANBORfHnOkSbO6sFTjErS3WaY6LKAZnOedIfklguBcY+VEkxmi8R7lvs45phweGClKCfdIagc6ijibbMgCs9kqCDdrYaJLivIHm8pblcYSTjrM+SKZDtbzMMOXhxznCPPOaarzlMCrHT8qkH9qlqs+skcokju47Jz5HJBLYbMzvHNb34Tt956K+688048++yzuPjii7Fr1y6MjY1Fzv/UU0/hne98J9773vfiP//zP3HNNdfgmmuuwa9+9avSPJ/5zGfw4IMPYu/evTh48CBaWlqwa9cu5PNnrs4jQYJXOhI7xylA6IU2TRPHjh2TqtAAbec4fPgwVq1ahUwmIEGN5knn83lMTU1hy5YtZe9EK9H05cMEHVqjrgTTtgm1gkMAMFULHqWFhZQSHT1ZpmrTlhWZEq1mjdGypkhAkfhxvxUrzdr4qjw30RRTFrcMOqpynJCloMQOFsQFuij29KxILpnFbPXhFqhojBOmZliMQQhgjrPKjO7ijrQSxHvWj/ZQG4xBgCETobC2pvya1JCwBXyBcxiMoSAqXcqOb8E0/Mi25gAdh1fd8txkDK1hLB+nCxtnvWp/DlBwozuqUr+cFrOxRisAYlOiQxItU6I/97nP4aabbsKNN94IANi7dy/+6Z/+CQ899BA+9rGP1cz/+c9/Hrt378af/umfAgDuvvtu7Nu3D3/913+NvXv3QgiBBx54ALfffjve9ra3AQAefvhhLF++HI8//jiuu+66WPYtQQB/Abb9Xmj70ygSEh0zyhM5PM9DoVCQqtBANDmem5vD6OgoduzYUZrWiBJtmiZmZ2exZs0apFLz2aeUekzbOSSqiqJtgQtGLiPrQBY9Ft1JkYI8C5s4nlpKtNoNgWxfqLFOl52EGsuT3Fyd8FqxzK7tPjnjp7HIKpDbcDpw2ggxtf4YlxEAmOFXZHSH/w2It1MTF2iAwec2mrlfavkeFlDmuBH4pkPvdNnBajKivwfTHkN71dUjbAFfKCrKNTA4CkU1HJgn3XluAPBgsKALZLDvQSqIECZ8CGSEiIzRq/ZJh8hxXtPEW4BhNh8dWzk9U1t/AACGxzE7O4tUKgXbtiO34VSQaMuyYNvRKrjjOHjmmWfwZ3/2Z/PbaRjYuXMnDhw4ELnMgQMHcOutt1ZM27VrFx5//HEAQG9vL0ZGRrBz587S+4sWLcK2bdtw4MCBhETHjIVof1ho+9MoEhIdM0IVmjGG2dlZtLe3kyfDEFHkuLe3F93d3RVqRCNKtOM4cBwHPT09Ve/Imo1EbhW5DtVLhVy9VYMvU7XJRA16PEqJJVP0ZPuimPQh2xctawhZCBo9f0DiVW9i1Pc/8HFHk+g5nkabWfvelJdBZ0xxgXGrylJyK3nvdCwTCRYQVmY6QWhjVXJJgRuYLv/uiCCezmAMnNtoEn5J0baKiveUn0LGdGtIN1AsjIzAnA+0mJWKsgkgZQrMcJCKcp7P2zjCtuZzvo2U6cAA4Aq/RLrDlJDpiOJnAcDKpIBcLZG2UnZUoiWyE1N45plnSudd27Zh23aJVKdSqRJ5Pn78OFKpVOk9inTXQ72M6OPHj8P3fSxfvrxi+vLly/Gb3/wmcpmRkZHI+cM23eF/ZfMkiA8chlQQeTVioe1Po0hIdIwoV6EnJydRKBSwePHiusuZpolCYZ5I5HI5DA0N4corr6yZr54SHZ7IQwvI/LYRSjTZuUPm74vPAqGqRAuJqk0uo5XOET1Zy85BLOILA7ZivJ2WNYX4jHVIvF46CQ2DiAvMiRQ6I+ICZZjzU2iPaAcvQ5yEWGc9p2sZ2f7UTGdBzJ4nBJhRwGwV6QaC1uBzXqD1hhndVjG9xASDxVlJ8Q5TNKY8G82GF3nOsahCWo6SnaS62cssR0WOdzmqiwrnxyMKrK3occ7t2YDf7rkUvu/DdV04jlPz39B+ceTIkdL0ctJdTrip/6ZSKZimCcMwkmSOswC+YPAXmHK70PanUSQkOkaUq9CHDh1CR0dHQ8tVK8y9vb1YtmwZWltbpfNVI5vNYmpqCi0ttSkNdGEhBZpEkxdqqkZRQ72kuL2cxBHrl9kZlOPidJI+1MciOzxq7AslRctIvI6dRGublW88wg6HtZgTGbSjlkTnuI1ms/rhfoA8t9BMtISnsNAuFbKbn0aItyiSbh9iXvUXqPnez3AP054LVlS6Q1LsFVu+zwlWo3jPcUYWSlJWNC4E5iKVaIa8H/1Zu4TI0GIFljjTNGGaZo04AQCzs7OYmJjApZdeWprm+34k4XZdF7lcDtPT0xXTOed417veBcuykMlkMDk5iXe+851YunQpli1bVvrvb//2b2PJkiUwTROjo6MV2zE6Ooru7u7I/eju7pbOH/53dHQUK1asqJinsrYmQRxI7BwLBwmJjgnlKnSY7dzT04O5uegmG+UoV5gLhQKOHj2KK664QjpfFHp7e9HR0QHXjSIMBFEgOQxJb9R9zBrEk/LkBiROreCR2loZISOJheREQRJyiRJNQcffrOzvlhxLncxr0s4iJf5qhZWeMJSXkRW8zPAmNJu1fliZj9sTBlIR26CjUL+Sl5GB+k43QrwFC1p4h228ffhwIkg3AOR8C8e4V1K0A8XbQMFPodXy4fq8SvEGZkV02KYQQNaPvplyefTvoNlMRU4vR1RGtGmaaGpqarhhiu/7+PGPf4yRkRHs378fjz32GLZu3YqxsTG89NJL+Pd///dSUtOWLVtwySWXYP/+/bjmmmtK27B//37s2bMncvzt27dj//79+PCHP1yatm/fPmzfvh0AsH79enR3d2P//v0l0jw9PY2DBw/illtuaWgfEjQOsQDbfsu6DC9kJCQ6JoQNTkIVeu3atUilUqV23TKUp3P09fVh8eLFaG9vl85XjUKhgMHBQWzevBmHDh2qeZ+yc3iksi1RomnDMDFZQz0loBUxR3mSNQiZ3M4R31g61gjVYyl7/EY+CZCsgkwakSxjKR8zA1SYH3XMZPtJEX8XFigf9yzPoMvI1kyf9prQaUcXrr2SISPE5DIatJy0CAkm/e5Wk24IH5y5KER8DYQIGxjVXtANGPCJRlGUQh0q0TLEkRFtmibOPfdcnHvuuZiamsL/9//9f7jtttvI+W+99Va8+93vxqWXXorLL78cDzzwAObm5kppHTfccANWrVqF++67DwDwR3/0R/jt3/5t/OVf/iXe+ta34rHHHsN//Md/4G//9m8BBLa+D3/4w/jUpz6FTZs2Yf369fj4xz+OlStXloh6gvjgg5GNtl6tWGj70ygSEh0DhBAl9Xd6ehrj4+O44IILcOzYsbqFgMC8TcNxHAwMDOCyyy4j56OU6JB8t7a2EvNEXyTy+TysiBQnSfke/VPRsHOoE3Iap6MJi1bmNLV+DX+zTmEhtVkyJUTHmkEq0RrWDGotnky9J6brWFB0PmdHcjqlCyib0EUQ74Y9zCe9jA4hVv9+yi1SsjLKWviCRX4OjNE3zTbVkRE0idZVok8GuVyurif6d3/3d3Hs2DHccccdGBkZwZYtW/DEE0+UCgMHBgYqtunKK6/Eo48+ittvvx1//ud/jk2bNuHxxx/HBRdcUJrntttuw9zcHG6++WZMTk5ix44deOKJJyItLAlODlwsPPuDTGBZyDg79feYUa1Chx0GZcpxOUKbRn9/Pzo6OkgvNTWe67oYGBjAhg0byHkoT7TjRD/eZIwmBOrFaDSUC/tkhJwYyiTyZ2UkkvYE06ANMNHQIaTUgZHG5ZF2Dho6dg7VzGupnYUktxJCTFqA1J8eSBV/nWWIJx4F0Mk9BRH9G5z21EmNDrmVEm+N6z9pUdJ4uiT7TCnYBn1Oy/nRBamNNFvhnMfWaAWon84RYs+ePejv70ehUMDBgwexbdu20ntPPvkkvva1r1XM/453vAMvvvgiCoUCfvWrX+Hqq6+ueJ8xhrvuugsjIyPI5/P40Y9+hN/6rd+KZZ8SVIIX7RwL7aUKla6bX/va18CKDZfCV22AwunvupmQ6JNEuRd6ZmYGx48fr+gw2CiJ9jwP/f392LBhAzkfpUQPDAygvb0dnZ2dtFpNtP1Op6OVFibLI1b0C2ulY+gU4xFExSdukeVKNLEvOkWSJCGPz84hf5RGjSUjpDpEUe2z9KTfsWjopKPo+Nh1fNxx3mDI1pMDrY5Sx3TOp5uG6KSQqN5IB+/FqF5LPlNqPItIHDLA4BI2j5aox3RViFuJTtI5Fj442IJ8qUC16yYAtLe3Y3h4uPTq7++veP9MdN1MSPRJgnMOznmFCh3eHTVKog3DQKFQQGtrK7q6usj5osbzfR99fX0l8h2SaFH1TJNSoqlHdYJQbwFaUdIphqPHip5fqx24RldEOq8v+rhI/cXkGjRSK4j1yFXdaMTdfdEiSB/tr9Z5EqCuKsuWoVVlnWVoUMeGsh4AgK1xI0N5zGc5TQap45PnkqdRGr8pnWXIAmPpo/Do96gnUs0mrTbL3gsRhye6HPl8PiHRCxxhxN1Ce6mgvOvm5s2bsXfvXjQ3N+Ohhx4il2GMobu7u/QqzzWv7rp50UUX4eGHH8bQ0FCpqdCpQEKiTwLlKvTs7CyOHTtWoSTLPMzV8DwPGzdulIbzR4135MgRNDU1YcmSJQBQeqxYPZ/P1sEwNsBgi1FeNEg9hjQkOdGqX5o4W1VLSZRiXJ1O90HK9+UR5FoGLX+1NLWEWETD90uReOrT8jT8cDoFfzrHTE7s1BViihBT4EK96NOTXZCo76BgyjYL2bZNcXUi53LZeSO+YkSdGiaDINFNEt9zI4WFp0KJbjTVI8GrE2fadnEq7RzT09MVr/IeGCHCrpvlHTLrdd0EAp61bt06rFmzBm9729vw/PPPl96r13XzVCEpLDwJVKvQq1atqlB2G1Wijx8/DgAlIkyhejzOOfr6+nDeeeeVyHd4Mq/26f3TVBMm3SUAlgAQaOImOu001rasBEQXmg2gyfCQZg5s5OGyNAqFCaTTeQCVrZzVG6TQ76leWHXsHIahrjYS3Y5JyOwUWk1IFIsEdQipFrmUJJ2QSnSsdpZ4VWVVhVhKiElyGx2JB9AqvSsMWFSGd8zLpFUjAyXHYJy3YKU5rbQNOtnrspsp6ntNkeg0ISSYjCEt8VGXtuUMFBYmeHWDYwHmRBd/x2vWrKmYfuedd+ITn/hExTSdrpvnnnsuHnroIVx00UWYmprC/fffjyuvvBLPP/88Vq9efca6biYkWhPlKvTc3BzGxsbw+te/vmKeRkg05xyDg4MAJN0Di6hWooeGhmAYRsWXJiTOvu9XtBsXFZ4/hpzBkfNzsFwbA7nxmnUtS3VjzCkAOYAJjhTzkDY8pJmLNPOQMTw0MR8pw0GGuWgyXDjChBdBpnTsHBR0CLlW4xZFa4pWwZuGV1er4FKLkKqt35dGz0VDKzVD6lVWv1kgvcrEanQIsc6x8YUJOsNbZ5noo+AJE2nFbXOFCVO50yb9+ZzwWtFsTka+RyV3yL67FAzi+5YiiHKzmWqobfepKCysJ6gkeHVDaHiIX+kIf5NHjhypiOhNp+vXFTSC7du3l3LNgSBx5vzzz8eXvvQl3H333bGsQwcJidZEuQp9+PBhrFy5suYRXJi6ESZ3RGFwcBCWZcFxHOl84XghKRdCoLe3Fxs2bKhYJqxarbZzcEqlo7hS2ZiCGSgghQJPlZaJ2kxfMJiMw4JAijlIMw9pw4cpPBxxu9BhWYCYRoa5yBgB8U4pdsyLM3NaR9WmKJkWiZVG3MWZXx1f8RxtjYmvEBVQjwsE1HOqtSL2YCClmFMtj+WjItziXiYaskY0MuKtSvBlirfsyRb1PZz0mtFGtHjvy66FI/JoNQtotQpoMQtBcg2xcSki+q65ASsHcGqU6MTOsbCxkDsWtre3R/a5KIdO181q2LaNrVu34uWXXwZw5rpuJiRaA+UqdDabxcjICHbs2FEzX7kqbFm1h5pzjsOHD2PDhg14/vnnyflClLf9Hh0dhe/7WLlypXS+so2m9iZyKpVOUR8MHhg8kUFWAOBFcu0LBB2ZKxUWIQQs+IGVxAhU7jRzYYLjeKENrXYeGcNDxnDQxKLj+EKo+lv1ihSj59dqR06QHmlcnVbShgYhjbFxi070nFbBH/X5S1Rl5e6HOkRVhxBreP9lhJhcRvYEJUaCL1O86c+HwdIoVj5QWAG3LB5QCAFTcMwUotVdi7B5tDSQEQ3EX1iY2DkSLHSkUinlrpvV8H0fv/zlL0tRjWeq62ZCojXgOA5mZ2fR0tKCw4cPY8WKFZEnParIL8Tw8DAYY1ixYkVDJLpc2T58+DB6enoiT95R7cEpJZqCPomuhRCIvFAGijaDDwuzwsKsP+8n98MuZlXJfD7naDZqrSUZ5hb/9tFszltMLMa1lFDlToo6vk5ifqqRRDCW+vpVfecy8qKXmhHfUwVqT2R2AVqFNaHa/VAvUUQn21pGbtVTSKhltIi3hg1Hp0mOK0xYLDqaU2bSCZTysvEZA2cmXOLzNog71kaKCoH47RxJOsfCh26u8isZqvuj2nXzrrvuwhVXXIFzzjkHk5OT+OxnP4v+/n78wR/8AYAz13UzIdGKEEJgbGwML730ErZu3Yrh4WG87nWvi5w3tERENj8pEuGwQQpAk+0QocJ84sQJ5HI5rF69mpyveiyhHMv1ynzUJGCiAKNkLak7t+Cw4CLNOJqtwGKSYS7ShgchgKyXQqudR5PhIsPckgJMFilShFCWqqJI4j1hwCYel1PQsUZQy/iyAjViHTr+Zi2vMrXNkPXYjIZOLKGOQqyTgiJvr3561qPjSz9txFtSKEndnFG7ahLb1ki8HRCct1Opxgh3I0jSORY+FrKdo1Godt2cmJjATTfdhJGREXR2duKSSy7BU089hc2bN5fmORNdNxMSrYjQB+37Pg4fPozu7m60tLREzssYI4sLy+0YsvnKESrMhw8fxrp160jVOmosTjQToO0cNKgLmMUyEIhuYXyqEe3TZvCZCUdYKEBg2qtUd0pqdymBR8CGhzTzYXIfLbaDNHNLSneGuchxG5N+Bk3MRdpojOjSnk+qSJH2nGqpuuRj9NOTmkE3btGwZkjsAjahWup4iHUUYpKoah0b9UY48qJLahnJ/lDL6JB1DWVdxzbiSCL2qrPz58eKhooSndg5EqhApznJKx06+7Nnzx7SvvHkk09W/P1Xf/VX+Ku/+ivpeGHXzbvuukt5W3SRkGgFhF5owzDgeR6GhoZw5ZVXSpeJIrRCCBw6dAjr168vnXwjfcxVMAwDruuiUChg69at0vlq7BwkiSZAMGWZX3e8AHRGFOK6fgssY7ZmOuHyOG2otZkwuLDhChsCwJRXe3Pk+gZsNziW5aklFjw0MQ9NpltSukNLCfcZmk23NrWEuKhLFdIYm1zIItno9UdPl+Y3k0o8sVkyawaVgKHVbEYjHUSq+MfX7EW2DBnLp3VTEu+2UakdsuNGWYd0rCYu0SodAHziC0f9dhotLDwVnuhEiV7YSJTohYOERCsgTOSwbRuu62L58uVobW2VLhNFoo8dO4ZCoVBhx4jyMUeN5Xkeenp6KuLrqhFFyH3uRfuSKSVajXdJMedzNEVsrscZUmb0iDnHRmu6tvqec6Ye4qwIKn0EqCSx5aklpaSHCA7hcwYzx2EKPl88aXjwHYYTaEWmOC1Qt104volWqxB5s0KTO3p/KDIUKyGmV68c1+eDwYrRmqFT2Eipo3F3MlQtbAToroSy+EetZbTIukYRKbEe2Y0RpXg7glaiOVGcQR2CRgsLEyU6gSoSEr1wkJDoBhGq0OX/3bhxY93lqkl0uQpdXozSiJ0jl8tBCIF169bVXWc5IZ+amgpyolW+4wTDoooEAYltgZwcnQEL0N7TaTeDJVa2ZrrHGWyCkMu2WRW09ZneF1b8f5+ZyAqzlFqS9ywccxbVzO96Buy8X7KWhMQ7JXzYhocxr1CMCZxPLYkz+u90NUGh4Ek92fEVNkpvPDRabtNNWNRVZRn0lok+nvJGNNQykvUQNiS99agfN1dCoj3BUd6tNQT1lO5M2Tmy2WxCohc4EhK9cJCQ6AYRqtCGYZSao1Be6HJUWyvGx8eRzWZruvo0QqLD9dYLL69Wont7ewHi6SClRHtutL9URnxVf0KyYjhyMFK9pIvx5tw0FqXzNdNzTgptmdqWpLFDI2Ku3FpSnlrCvWg7jecDLaZTk1picY4Wu1CyljSUWqLxGD3OzOlAgTwdhY3qSqcWGZR8zUmFmJg/sFOppq0AFvl7om8wKJuFDLYO8SZtMLJlotcjI9EujybRHkGimxWU6LjTORI7x8JGQqIXDhIS3QDK1WfHcTA8PAygMQWimhwfOnQosigwysdcjmw2W2oPXu+kXa5EZ7NZjI2NAT3kzkVOLhQKkd+OgPgqXlyl6q3iO9SqNXzEBWGiLWK6K7GZOK6JplTtDYZcoac2jHpDHUFqSaomtYQLwKjZXAFDCNhw0GyGcYFeUe3mYIaHHLdLDXEqUksUbQEyfzMFrUg4Da+yzMqgpUQrK+6yKMFoSJuWkHnLpnLaik47cClZl4Ai3rIfiE1smyPxRLvCB1DrKyNJdKJEJzhFCB5GLizSeWpNlq9cJCS6AZSr0L29vViyZAnGxsbgeZ401xmoJNETExOYmpqKLAqsp0T39vZi2bJlGBkZge/7UhJdTsh7e3uxfPlyumMhMYbnedEkmlyrpIU3MVn2OJ0mnnTBY1wISFz0Z1EQFpqqw6sBzBQy6GyKTiZpoHNw1QL13qzdWVLVjyT3DJwxZEUTClzUSH61nfwEUvCQYsErU1S7w9QSW3D4DJGpJTJ/M61Ea1gzpHYSQlWWdQelCCTxPdPqfiixrVCQt+mmk0uo77PeeuhlVMm6L7nJkt3kUMRbpkQ7PHoZhzjvNmrniLOwUAiReKLPAiRK9MJBQqLrQAgB3/chhIDrujh69Cguv/xyHDt2rG4hIFBJjg8dOoS1a9dGFgXK0jkKhQIGBwdxxRVXYGRkpKECRN/3K5bDCCnhRk5NpaItI7LH2SQof7VMiSYJuU7EmiLDlpF7qhhPI80k71nI2LWE3OcMtvLTYdkxVr3DqF6GwYENR9jgHDAivn4eZ7CKBZ9haoklOJqtAjLFQsqw3bvFOVrtAhxhFolkdWMg9WgzacqEhqpMKZ0UPGGSyRSyZWjbinpihdweEw2yK2HM7cApuJLjRv3WhABsIl5Sh0QXeLR1TaWwMC47Rz4f2M5U7Rzj4+P44Ac/iO9973swDAPXXnstPv/5z5OF7+Pj47jzzjvxwx/+EAMDA1i6dCmuueYa3H333Vi0aL5Og0V8CH//93+P6667Tmn7ElQiIdELBwmJrgPOeUlp6OvrQ1dXFxYtWtSQhxmYJ7RTU1OYmJjAhRdeSM5HkeO+vj4sXrwY7e3tpYxqGUIlur+/H11dXWhtawFGouelPNFNmUyxTXfV/FL1mFKU1KM+lP3VivPLID8ZqKlmXNJ9kCIqOT+FjB2tanPOYERYTSglWsd+c7LWlFJqCQNmvEz0TUQhzOmuTC1JMQ8289BiuBWpJTZ8tFiFWGPk6Ig/ic2CtEwYSKsSYg3FXd4gRq1IV76eeNuB0w1VdIi3gRRp55DlREdPp0h0s9V4s5W4lOhsNiiaVlWir7/+egwPD2Pfvn1wXRc33ngjbr75Zjz66KOR8w8NDWFoaAj3338/Nm/ejP7+frzvfe/D0NAQvvWtb1XM+9WvfhW7d+8u/d3R0aG2UwlqkJDohYOERNdBqEJ7noeBgQFcdtllABorBATmCe3hw4exevVqsiiQGs91XQwMDODSSy8tzddIZ0PXdTEyMoLXvva1JFEGaBJtkMqKejEgqShJh1IkfhqJEtQiUlWbXkkkuITE0oV9EhDrmfNSSNu1dz0+N2CZ6mkOpw9VqSWQWyO4EMiU2UoMP1C1GQSm/KaS2p2Gh2bTQdrw6cJGCSE+HR0b424HTsfLxdzaW2MZnYY31DKuMJEiboxkOdEUsl6EWoAzE3EXKtEqHdZeeOEFPPHEE/jZz35Wuk584QtfwNVXX437778fK1eurFnmggsuwLe//e3S3xs3bsQ999yD3//936+xKXZ0dKC7u1t3lxJEICHRCwcJia6D8HFWX18fOjs7S3fhKkp0LpfDsWPH8IY3vEE6X9R4AwMDaG9vR2dnJ4DGmrKYpomJiQm0tLSgs7MTnnAlcxMET81NESyjtgppOoc8Si5qMI2x1AVyutkJpURrWFak61e8uXC5hXSEhxsAsq6NtlQtgcg7Nloz0cSC3q44IVPP560ls8WfwZhbaSepmFtwpIo+7TRzSwS8yXAhEBDm8o6UtsHrpINQiqr6908vlk+9858891tnGXWVnCL4cbcDl9k5qG9UnlCie198CX7TMaRSKdi2jVQqVfFv27ZhWVasnuhsNotMJqM03oEDB9DR0VEi0ACwc+dOGIaBgwcP4u1vf3tD40xNTaG9vb2mzucDH/gA/uAP/gAbNmzA+973Ptx4442RNo8EjUMIJk+nehVioe1Po0hIdANwXRf9/f0VJykVEn3s2DGsXLlSqi5EpXP4vo++vj5cfPHFFePVU6IZY5iZmcHFF18MxliQEU2AtFpoqLRxqsfkJY8knvS6qYsxuWaNR+b0DYTOjQINk2g0o3ifIF1/XlhojfDyyPzdBddCc6r2Zk3HZqNlJyHAYaCANApRPu4a24aAKTgs5qDZ8EupJabP0ZbKI808+ILBZj4yVakl8nbg6s1EaCWaBt3aW8cvLovyU18P3do7XuLtcNklrXZdTYaFHEGie1asQpuwSl1iZ2dn4TgOHMeB67oV5/+f//znSKfTkWS7/N+maUoJqE5R4cjICJYtW1YxzbIsdHV1YWSE8PFV4fjx47j77rtx8803V0y/66678KY3vQnNzc344Q9/iPe///2YnZ3Fhz70IaVtTFCJpO33wkFCouuAMYaBgQF0dHSU1GCgcRLt+z6y2WwFAY+CaZpBrFwZjhw5gqamJixevLg0rRElenZ2Foyx0olV1vJbRj6JBUgo/4QksrZq0oc8czrGGwXqLamdgxpLrUhSRmIpyD5d1XbcPuHHBoAct9GMWhI956TQHtF5EgC4z2BaMbnZdepdI6b4zIQjmgLSXf6zKcaMBz7ucJvD1BIfFvPQbLil1BJb+GgxC8gYHnwwFLhZkVoSLK3u49bJ45YdYZ2MZnI9Gk1ldIi37IZFZudYby3FqqZl8A0fLnzkefB9HSpMRfqi169YLY25830fuVwOTz/9NNavXw/f9+G6LhzHQTabrSDcjuNACAHGWKSi/fjjj6O5uRkzMzMwTRMDAwN48MEH8Zd/+Zfk+oHAynGymJ6exlvf+lZs3rwZn/jEJyre+/jHP17699atWzE3N4fPfvazCYk+SSR2joWDhETXQehJfu1rX1sxvVESPTk5iUwmU1ddqCbHnHP09fXhvPPOq1Au6inRQgiMj4+jqamptJyQXhIVVVoZV1UkmHF6j7XGIqBTPEmTe9lY1AZET5aRaLqoUyMBhSTx6v5uGeFxhAk74rs5W0ijo6m2OY4OJKJ2DJi3lvicYZLIWQw/NyY4LPhoMgOybYJjwO1ChrmwuI9Wu1Cyluh0hqRbe8e9DNVURp1E69wUyC7WrkSJfunoDEaPV76/srUVs7MZpG0THc02WptsNKUtpFMGMqa8sNA0TaRSAcleunSp1IIRpjxVE+vw38888wyGh4cxPDyM8fFxrF+/HpxzNDc3o6urC4sXL8Y999xT0yV3w4YN6O7uDnoBlMHzPIyPj9f1Ms/MzGD37t1oa2vDd77zncjkqHJs27YNd999NwqFQt2mXwkSnA1ISHQD2LRpE7q6uiqmNdqme3p6uqFq5mpyPDQ0BNM0sXz58or56inRY2Nj4JxXnAxlJJpWotVj6VRNxjoRdzqEiCaL5ALkW6pxeVT0ndZYwgClEdK+WxqnY/2ymwjqhsAjiLfsJiJbSKE9ovukjnovA32zgrpfTsEMuDDg8uC36XMG0y8br0zIF0LAQpBaEhZRZpgLJgQm/GakWaB2t1qFkrUkznbg8mVibDses3otS+eIQrpYQF1wfYxO+RidCm7eWmwbRgN+q/BcXM8jzBiDZVmwLCtSUHnssccAAP/8z/+Me+65B88++yzGx8cxNjaGY8eOYWxsDNu3b6+5DgHA9u3bMTk5iWeeeQaXXHIJAODHP/4xOOfYtm0buU3T09PYtWsX0uk0vvvd7zZUzPjcc8+hs7MzIdAnicQTvXCQkOg6SKVSNS26gcZIdG9vbymWrh7KxxNCoLe3F+vXr69ZVqZECyFw+PBhLF26FLncfESa1M6hGj8nU1aVlWjJWDH6mCnbAukjjjN6T8NfTTaU0bqBUT8utBKu44eX3SipkTFZXKAb0c4ZCOIC24xoOwnl44ZgtAVIAzp+9ZrUkuKh8gWD6UVFHAqkmYsU4zCFjxbLKVlLhBBwhBXEBZpOqSGOTodBaXMUyXJU7rbsuku3EK+jRBOCcNRv0baivzctKbVkjrgK7UJPtGmaWLp0KZYuXVp3mfPPPx+7d+/GTTfdhL1798J1XezZswfXXXddKZljcHAQV111FR5++GFcfvnlmJ6expvf/GZks1l84xvfwPT0NKanpwEEqrppmvje976H0dFRXHHFFchkMti3bx/uvfde/Mmf/Eks+3o2I7FzLBwkJLpBhH62EPVIdKFQwNGjR3HOOedgdHS07vjl442OjsL3/choIpkSPTExgbm5Oaxbtw59fX3z266jRJ+GwkItQk4NJSE9qkq0lEQr+qu19lHH903ZKSSLqCrROkWKcm+t2vp9Iet+qObvBmjFe9LJYHGGyuk2YZjq6q0KhJAo++RSDA5ScIozTHktpXcqfdzFuQWHzVxkiqklFhdosQvIMBdpwwsa/ngcKeGhxXJKqrC0OQqxZa5gsDWeLJHEW7KMqhJtExaMljq2hhBxNloBAhKt2mgFAB555BHs2bMHV111VanZyoMPPlh633VdvPjii6Uc6meffRYHDx4EAJxzzjkVY/X29qKnpwe2beOLX/wiPvKRj0AIgXPOOQef+9zncNNNN53EHiYAEiV6ISEh0Q2gmkAD9Ul02CClra0NQ0NDddcRpnOEanJPT0+kx06mRPf29pY6IpZvG6k2A/CJynQSGiot+dOSMGU6BUNDcVX1EcssGMoe8vhuOnSKFGWroEg0tRbONToJ6ijh1Pp17CwaCRgyaucj+qQ5XWhCV1NWadviKYYMIHOTRO2lYAbyIg2n/HCWCfa+YDAL8wWUYUOc0FqSEj6aTKeiIU5eWMhyuyK1BAiIt83UzjMy4i1fzgST3rpVwiRIdLMCiY4r3g4IIu50Wn53dXWRjVUAoKenp+I68MY3vlF6XQCA3bt3VzRZSRAfxAJUohMSnUAJpmnCdaPzlx3HKTVmCTseNjKe7/s4ceIEcrkcVq9eLZ2vGjMzMzhx4gQuuOACzM3NVRBtLrmouK6rVHknVyPjU3zjSqGQqXrKg0Hdqy3fRzXPjJb9hSSXsmOsvn5qX2TLUHF9Okkn5DbrFIlKQBa7EZvmc8Akfl8z+Qw6m2oVb1/DZiHDyQ81by2ZLW/7XnUamle8w9SSgHBbCJJLArU7X2qI02S45GfqSYg3tT+eMMBhSJJNamGx6A+nNdUYiY4zIxoImq3okOgEry4IyM9Nr0YssN1pGAmJrgPGWKTfzTTNUnepavT396OjowMdHR2Ympqqm+sMzNs0Dh06hJ6enprA++r5qnH48GGsWrUK6XQauVyuYp2ynGjP96JJNPEL17NzqBEseQoFvfbIsQDCLavzyDzedAxlO4VWXF40pCSaLBJUV5Wp9cvIJQWd5iTS1BYd4k8q/tHr8QVN6nziC1jwbVhG9A36HFFAKYsfpKBz0WtsmcqGOBUdKCOItzXnI8W8Yi530BDHhodm04VVKp4MCiubDIf8rTnClG9f1JvE1+PVpkQneHWBg4EtsFzlJCc6gRIoRdjzPPT392Pr1q0AGst1DsfzPA/T09M1cXrV81WT8mw2i5GREbz+9a+P3DaZJ9okmIzOkxmKlMYoBNPNVmQ+YlI9VrUTnJ6kB1KJ1UgzoYsEaWsERQl00lRkcXkU5aFVfdn6iWXIJWSEOHqyjnovtaAQI8k+Z59QTnOeDdtULaCUbMRphGAGCkihwOeL+XwBmKEQXbFbAoxzpFlgJ0kXyXU6VK3lJ48GpgR4tXmiE7y6kHiiFw4SEq0JihwPDAygtbW1FEWk0tnQ87xSQYdsvY5TebHs6+vD8uXLSwpGdfdDaTc/y4i+xqtbbDUejxMxelLiqzSUNNtYdbtk6RB6qnZ81hBVy4rUGqGh0NL7Ej3dFwZsxdbaOqqyjCUaiukgvsbnL+vIR9146LTcluVxUwWU004GnZnop2meb8C0oj4fnd9TnGDwmAXBTOR5quLc5Qv1MxD1m1JN54gLOh0LE7z6wAUDW2Ckc6F5vBtFfL/+swyWZdWQ47BN98aNG0sWENM0IYSoa+nI5/MQQqCnp0c6X7US7TgOBgcHsX79+pp5wsIRWcSdctGTRgGfanIF0bNCjhhJP3VhlW2XHvGjx1MeS7XgUaM5jY6/m1IndFRl2fGn108vo5wOIimspKBDiHVsOzp54LLvgEcUZE4V6CxhTkbB6FjA4r8gR62JE+tvVImO2xOdkOizA0IszNfZiESJrgMq/zNKiT5y5AgymQyWLFlSmhY+6qt3sj1y5AgA1O0YVb3e0H+9aNGiinmA+UeN0og72gcRPVlCVlTtHBRXEBK1K96222pjybZLFRU+0ZrVU59JfEpsnO3I5euPhlSh1fGXx2nNkSZ9EOq54k2EdBkdH7dkPWSus84ydYh3VAfK6XwanUQHSurpjqx5jeyGVXohj3jPJ8SNM+WJTkj02YHEzrFwkCjRmqi2aXDO0dvbiw0bNlQQ7/AEK7N0ZLNZHD9+vDROvfWG83ieh4GBAWzYsKFinup1ypRoKrmDvBZRyqJkm9VbZWsoV+QGqJYi0mNpEU+NfdSKPiPzqynlUsffTIMiXWQ78BiLJAH1mwg5iY+GVO0lbRbxKv60eq5uW5EdT9NQX8YilvEllxmfULyzjsxOQT3dkFvXopbziMcbrWfQzpF4ohc+QhK90F6q+OIXv4ienh5kMhls27YNTz/9NDnv3/3d3+H1r389Ojs70dnZiZ07d9bM/573vKcUBhG+TnVMY0KiG0S1YltNogcHB2HbdmSbbsaYlBz39vaWlqvnny5Xoo8ePYqmpqbIluTAPCGXXVjo5A5Fe0Csj3LUf4yUQqaVrUytQ4N4aSnkJCGjEWfSh2pqha/x2ctVZfVlqOg56iaCIm+AjPhLltEoBiXJrfSz0SDE5LGRLaN6sypbj/rnJmua4hG2mqlsMwaOd+Ho8U6MTbRharYJuYINv2gzidp0lzjfqijRcRcWJkr0wkfYsXChvVTwzW9+E7feeivuvPNOPPvss7j44ouxa9cujI2NRc7/5JNP4p3vfCd+8pOf4MCBA1izZg3e/OY3Y3BwsGK+3bt3Y3h4uPT6+7//e+3PqREkdo4GwBiTkmjOOQ4fPoxNmzaRcXgUOc7n8xgcHMQVV1yB4eHhuiQ6VKI55+jr68N5551Xs87wDmyeRKt3LKSnU+NILBjk2qOh431VV6jVNWqtdAodVVvjHVoJjoZWfrLkhkB9/fEq4ao3EZwzMvuQVKKlxF/tSQSgG7FH/JYlC1lUHjf53dQ4njJ7jMQxRm6bBJRKPsXT6Ct0wog4hZqCI5uv9XM7PPp8q5LOkUTcJVDFQvQQq+5P2P3yxhtvBADs3bsX//RP/4SHHnoIH/vYx2rmf+SRRyr+/vKXv4xvf/vb2L9/P2644YbS9HQ6je7ubvUd0ESiRNcB5Ykut1UMDw+DMUZ+cDIS3d/fjyVLlqC9vV3ajbB6rOHhYRiGUaN8R61TZueQEexoqNs5aI8xNV1HiY4G1+oYqE5uVLdYTsipZaIhL8Q89f5mnRuCeNevnk6ic0Mkt5Ooq8qqhY3yZQjbiuznrZEoQoFSh4P1UE8DZOuhnizRx0C2DT4zIhNM8l50Q5dG0zlORbOVxM6x8BGQ6DNvv4j31fj+O46DZ555Bjt37ixNMwwDO3fuxIEDBxoaI5vNwnXdmifxTz75JJYtW4Zzzz0Xt9xyC06cONH4hmkgIdENQKYuhyr0+vXryZMpRaJd163wNDcShxfaOXp7e7F+/Xpp4WNIyKWeaEU7h+VFX1wMsqWJRgW+hkqq6m8G1LONtbzaMdo54lS1dRRSWqGV2Rzi9DdHwydTIfRUZZ0iQdVtBtRtFr7sZoEillLbSjRkZFSnvTqFuIm3x9VtFXmXINGJEp0ggRamp6crXoVCbXOo48ePw/f9GhFw+fLlGBkZaWg9H/3oR7Fy5coKIr579248/PDD2L9/Pz796U/jpz/9Kd7ylrc0FDOsi8TOoYnQBzcyMgLf97Fq1SrpvFEfYn9/PxYtWoSOjg4AtfnO1Fiu64IxhpUrV5LzlXunJ5wM9h09H4tMA10pA0ubm9BmM7jZSWRabLSnGcDyECIPR8wi78+QJKfgER5GD2gixBvLj764MeJ7LVWPFUUyaQEd+UaM6q26y0TZziDLwqaPV3x2Ci1/t9QaoZrfrJ45rWXNkGyDFokmbRaUqmzANNWOjazZi3wZteMpu5GhjqcvXU80fG7CNqKJr+yGgUKWUKKbG2z7HbcnOmn7fXZgIadzrFmzpmL6nXfeiU984hOxrusv/uIv8Nhjj+HJJ59EJjNv07ruuutK/77wwgtx0UUXYePGjXjyySdx1VVXxboNIRIS3QAoJRpAXRUaiCbHYWfDiy++uGLMRpRoz/OwadMm6cm73BriCwEfwLjPMZ7jeDk3E44Ga0bAEz6Cr0Jr8bUcWztWYcJpRcrNY1lbMzoyFjyew7G543C4iZTlIWO5yNguUrYvjV9zCb+B70Zvv3AMgLiGqSq+eko0MZSWv5oaS4fcaxRPahQpqtoM5DcE6guprl8nxlAnv1u2jKqq7HHAok4ZZBMWWfdD9ZsFnWYvZFMZyUNNWr1W3zYZWfe4oVQPbTIGjxAtWs+gEp3YORY+BOIKS33lINyfI0eOoL29vTQ9nU7XzLtkyRKYponR0dGK6aOjo3X9zPfffz/+4i/+Aj/60Y9w0UUXSefdsGEDlixZgpdffjkh0a80hCfOQqGA1atXS+eNIsdhssbixYul81Vjbm4OQoiau72o7WvMzhH1U2bI+UBftgCA4b/Gc6V33OwS2KJSvWGCw/QEUpaPFPNhgyNtekgbPmzTA4MAFwxpOyDd4TWH9vhKKKnPIr+1omAAEX0gdNTj0+Hj1WqcQk6OT7kHJPui8Sg/VoWWQPxJJ6p1ArI0C0JVFgYsxXbgMisDRfxlKSRkLJ+GbUXntyHdH0q9lnVmVFSim20bM050q/Rm+8x4opN0jrMDC1mJbm9vryDRUUilUrjkkkuwf/9+XHPNNQCCG9L9+/djz5495HKf+cxncM899+Bf/uVfcOmll9bdpqNHj+LEiRNYsWJF4zuiiIREnyRWrVpV93FeVKZ0VLIG1Uq8HGGcS72mLOXrzDu1nqTStlAXUkKhiZpbMAMFMHjMRDac6BdfLuA7Bsw8L41gCo40BOBwHJnrRMrwkTJ8pE0XGdOHxwHTFMjYLuyq1sOkekb4K/2CCdTeCAdjxSgF0DnN0ZPlLbxPPYmkIwFpQqblrybeNBjxeQm6CQ0FoUPitfzN6seMuvOJXVXWKCClux9q3JRo2Dl0POayY1DXE101ZMayJCS6sUtj0mwlgRYWshTdIG699Va8+93vxqWXXorLL78cDzzwAObm5kppHTfccANWrVqF++67DwDw6U9/GnfccQceffRR9PT0lLzTra2taG1txezsLD75yU/i2muvRXd3Nw4dOoTbbrsN55xzDnbt2hXrrpYjIdENojribnx8HACwbNmyustWk+ihoSGYplljqq+XzjE7O4uJiQkA9U/e5Ur0yGhjRv1yFAjibVCFjA1382Pwi2Tb9S1k4QVcggMoCtxe3oSVD44XEzxQtgWHxXxYjCNjekgZHtKWhybTh2078LmBqK6JOlFqPG9Gq9ouIwk5RRTiVbVPfWqInERrEDVCVeaExYdzBtMkiLeExJLrJ6Zr+ZuJGwJfRHfdAyRWBlkxZIz2B9l69DoZRp+fdJR9nd+AbD3SQsUIZKxo0t1kWTAbJMZxeqJd14Xrukp2jvHxcXzwgx/E9773PRiGgWuvvRaf//zn0draSi7zxje+ET/96U8rpv3hH/4h9u7dW/p7YGAAt9xyC37yk5+gtbUV7373u3HffffBshLKEAsWoBItEyai8Lu/+7s4duwY7rjjDoyMjGDLli144oknSrxoYGCgguP8zd/8DRzHwf/4H/+jYpzQc22aJn7xi1/g61//OiYnJ7Fy5Uq8+c1vxt133x1pKYkLyS+iAUR5og8dOtTwCaWcRAshcPjw4ZrOhtXzRaG3txfd3d0YGhqqS6LDsTzPw9ixY5E5LDLaW3CjFRqLUBCZjK6dxLlCMAMODDjFMQQvDldUuUO4WQtWthu24LAZRwYcJvNgcIET+dZ50m15sEu2ErXH9h5RIAlI1GPi49TKaSYgU2LV86slCimpqus8/o+GD7pIEJQtSapE60TPKRY2cgN2VDixBDpqr9yTrVEMGWsBpfq2yW4KqM9A9rnJrCtRSJvR5++WBosKgXiV6FwusM2pKNHXX389hoeHsW/fPriuixtvvBE333wzHn30UelyN910E+66667S3+Xr9H0fb33rW9Hd3Y2nnnoKw8PDuOGGG2DbNu69917FvUoQhSQnOsCePXtI+8aTTz5Z8XdfX590rKamJvzLv/yL+kacJBIS3QDC5iUhJiYmMDU1hUwm01B0Sjk5Hh0dBec8MllDls6Rz+cxPDyM7du3Y2hoCL7vS0l8ONaRI0eQzmSACE5sgMEnFdToi5VlGoiuZ48PWucWFnxOHjPhwURwOUrDLVjz1fwV4rqAIXzYArCZjzQ4LMNDyvABAeR9G2nLRcbykE65SNteHQtA9HTuUcWT0Wp3MFZ81hDSX01AtesUoEe6dAg59Y4s0CbWpiFST3j0eSBO37GenYMG2dpbh9xqrEenY6LsRsJVVKIp21Cj3QqBeEl0Pp8P1t8giX7hhRfwxBNP4Gc/+1nJH/qFL3wBV199Ne6//35pelNzczNZwPXDH/4Qv/71r/GjH/0Iy5cvx5YtW3D33Xfjox/9KD7xiU8g1WCGdgIaC9kTfbYhIdEaOHz4MNauXYvx8fGGSHRIaEMVuqenJ/LEK1Oi+/r6sHTp0tJjukZTPI4ePYqlq5YBRyLmkZBoO2VHEm+bRZNoJkuDVjUfx+lPIBimEAycWSgwoAALs+F6fcDNmbCrO5kJAVYAmmZc2OCBj5t5SJk+UoaHjB0o3WHxZFgcRxeJqef3giielKqaMfqrdZRLkkDFWdQWY34zl1kzqGUk49E52fEW7+lYM+KN5ZMso9FlkfzeSJbxJK3Co5Cfy0ZON30fL7/8MlKpFFKpFGzbrvh3+bk7zsLCbDYL0zTr1ruEOHDgADo6OioKrHbu3AnDMHDw4EG8/e1vJ5d95JFH8I1vfAPd3d34b//tv+HjH/94ibwfOHAAF154YYXdcNeuXbjlllvw/PPPY+vWrZp7mKAEwZTtD694LLT9aRAJiW4QoSd6amoKJ06cwAUXXICpqamGlehCoYDjx48jl8uRyRqypixHjhzBZZddBsZYw50Np6enYRgGWtvbIueRWTBMy4ok0ZYZfcEwGKMewmsgxrQJWfs/yvsbNZ0xONyCCN8MC0N40WJSrXJzgRTzYbhAZqYLacNHGh5s20fa9OB6JtJZF5mUi1RV8SRFVChCJCuepIMuosfSam2u4+8meIdOrrdO4xi6wx9TbkWt02xGLwGDBn2zQsNStK3IugVS0CkU1VkPENhqpKgasrOjA/1VEVsA0GKn4Ps+pqam4LouHMeB4zjwipnSlmWVSHWhUMDRo0cxOTlZQbZDwm1ZFtkQqxqqRYUjIyM1NTmWZaGrq0vasOL3fu/3sG7dOqxcuRK/+MUv8NGPfhQvvvgi/vEf/7E0blQTjPC9BCePxM6xcJCQaEUcPnwYa9asQTqdbiiSDpgnx6EKTRWiUOkcAwMDNU1Z6q2XMYaJiQls2rQJL2Emch6qUAsABNWx0IjOYmWEVzp4U3E6tU0RhYN1x5LUiMV131w7FgM3GPIw4HETWdjzcmWRbLtZC7YTXJQZ57AgivGAHlJGoHSn4SFl+0hbLtKWB48b4ByoFr70iicNIKJ+iXuyjO5oUCdPnaQPrU6CGgqtThazVrwbMV1KiHWU29NAbmUFlOQyGg1iPM6QIopLyW6OnEk/h8ihiJPJkvZ2nHvuuTXTOecVpNp1XUxPT8OyLOTzeUxPT1e8xzkHY6xGza7++9ChQ+jq6sLk5CSam5vxsY99DJ/+9Kel2/7CCy8o7Ws5br755tK/L7zwQqxYsQJXXXUVDh06hI0bN2qPm0ABSTrHgkFCohtA6ImenZ3FsWPH8IY3vAFAY7nO4XzhSfa1r32tdD6vqoOW7/vo7+/HhRdeWDFfPSXacZxSJ8UXj/06ch6DMbrAjBjXNsxI+2eccXGSQGRaPVb9Bce5vSc5ljAMuABcmBA8FRzL8BiXHWs3Z8LOroDJg8SSFPNhMx8mFziea0XKLFpKio1w0rYr8VdTSqxEVfUARNkhfSo1Q5ZaEaOqTUAIPTsHBTrejR4vzmQKClxjP6Xkltg0T1JASTZh0ShU5cIEiMoL6qjpdCukbvAoT7RhGEin0xWV/r/5zW+wbt26GgVZCAHf90uEOiTX4d8zMzOlf994440YHByEEAKMMfyf//N/sGXLFixZsgRdXV1YvHgxrrvuugrVecOGDeju7sbY2FjlcfA8jI+P121YUY5t27YBAF5++WVs3LgR3d3dePrppyvmCZtiqIybgEbiiV44SEh0gxBC4NChQ1i5cmWpzaQKiZ6dncXatWulfreo8QYHB5FOp7FkyZLStEaU6OnpabS2tgaEm7j4G5LGBdWRfiEswyATJygoe6Jj04jrrUNN7aIgJG23yWJAciyJcM+CAX3DhA8T+aJkXCqe9FBVPAkYgsMCR0pw2EbQDCdl+BBcIO9bSBtB4WTGDvzcQhKJRn1dqM6TvmfASlFJG9GTZXF1ykRRMFiq/mbZTUSc7eAlUE4HkSnE0mJItWYvWu3ANW5KZF0JKdTNiFZAo+kcQgiysJAxBsuyGkpw+vWvfw3HcfDtb38bf/EXf4G/+7u/w9jYWMVr/fr1NTbA7du3Y3JyEs888wwuueQSAMCPf/xjcM5LxLgRPPfccwBQakixfft23HPPPRgbGysR93379qG9vR2bN29ueNwEdXCWKrcLDQmJbhDZbBajo6PYsWNHaVqjJLpQKMB1XfT09Ejnq07n4Jyjt7cXmzZtqnj0WE+JnpqaQj6fL3UNojoWypRoqZ0jcv4YoWPB0CCryhsQ0+yAZD90DqTkePGqiMD54klrvvPkXNkCDtA06SHFfaRMH7YReLhTpg8THI5jFUm3S+Y5hwgIafTvQ7hmtJ2kYND+bsVkCJm/mW5oQgwGmTVDw06iYYGhrQwShZgYSkputdqBy+wx1DLEtklu7qmbhZISLbuhrdm26OktCi2/AcSSE51KpdDa2oqurq6G2xOff/752L17N2666Sbs3bsXrutiz549uO6660rJHIODg7jqqqvw8MMP4/LLL8ehQ4fw6KOP4uqrr8bixYvxi1/8Ah/5yEfwhje8odRC+c1vfjM2b96Md73rXfjMZz6DkZER3H777fjABz5wSvN2zyYkSvTCQUKiG0RfXx+6u7srHts1SqKPHz8O27brnoCqx6MeodVTont7e7Fo0aLS3z7BGGX1LtHtwGkSTTXPCFZEv6WE00RWZbWI9FpUbQvEOjRUbXowxWUYg8tNgDHkzCKRCBvhuAD3GYx8uG1B8aQNH4bH0D/TFSSVmB7ShoeUFbR7b+MFZOxiRGDFqijSRRMSkloRdhKhobbK0yw04t1IVZmw02ikg/gaCrFOCou8TXc04o7yI0l0Q/F2leNS4kKjSnRIouNM51BptAIEKRt79uzBVVddVWq28uCDD5bed10XL774IrLZIIkklUrhRz/6Uak73Jo1a3Dttdfi9ttvLy1jmia+//3v45ZbbsH27dvR0tKCd7/73RW50glOEoknesEgIdENwnEc/NZv/VbFNNM04RBtY0Nks1lMTk6WLCAyRDVliYrDk5H3UDHfuHEjpqamgrE07BycIB82RaJlFDOmwkIVlam0CDldfSzF2kUpyGU0BtOxhtAm9kbVxqB4sgADrmchl7KCDQm5sgN4jgErxUsbY4PDFj5sxmEJjqHpDqQsr8LL7XgmfM4iE0oMwsMr/OjvpOdKiiSJe1AdAiePalMrbJSrygTp1LCT6CjRWm26ySXomxLpMsS7jZDo6i30iKd5zXZjOchxk2idlt9dXV3Sxio9PT0V1rw1a9bUdCuMwrp16/CDH/xAaVsSqIDh9NgWTycW2v40hoRENwDGGLZu3arcYRAIVOGuri7Mzc1J5wMqFeYTJ04gn89j9erVNfPJ7Bz9/f1Yvnw5MplMqTW5TygusuglSomm2uH6XCBKQ5QlajDKUyGxJ1CgLvxaP2tVJVpGfBXTKWTkXnkfdR4OaOwLiXLSxRhcmHBZ8C3xXSOIZQsqKktwsxbsXDcMIZACRwoebMaRMlykBYed8pExvSCxxPaQsV1QkFkJKO83dyVdQBXvcHwOEImQ9DISVZn8Xmq0EJc3VNEh6xqNW6jccR0lupGM6KpFXeIc2qidw/f9mkZcJwMdEp0gQYIzi4REnwTqkeh8Po/BwUFcdNFFeP755xsaLyTHhw8fxrp16yL9dpSdw3EcHD16FJdffjmy2WxpLJIQS07+lHpNLcMFIkm0Fk7HY6E4rSEa2cqnR4lWV9tliO2JQv01gbMgIjBfPEUJD2AGagonAcCfY2jKBk1wbASFk2nDB+McLXkHadMrFU4GiSWSuDpZYSF1c+NYkf5uXxgwVYv3pHF5GuQ2RvVaBp0OgwaZbS0h3oSyHyrRKdOE12BPVdc/eTtHHH7oELlcTtnOkeBVisTOsWCQkOgGQCkN9bzJfX19WLJkCVpbW+tG0gHzpHxqagpTU1PYsmULOV/UeEeOHMGiRYuwaNEi5PP5MhJNXcjVlWhl1UXVlytFfHYOHeKrsRL1tcuKMxRV7ThVZcGLJFZpIfX161hTBDPhMDHfG6hYPOnlDVhV330hBGzBYXkCqYli10mjSLwtD37BgDEjSp0nrTILCRUJ5xE/bc81kaJi5FwW2X1S52mLjmVCBrK1t0xV1ugwSDV7kR0DatvCwkKv4AOEmNtTaEE7a4GdMWGmDNimia7FaRSEj5zvYdZ1MVnIKxUWxmXlAAIrXqJEnyVISPSCQUKiTwKWZZEk2nGcUpfBkByHOaAUQnJ8+PBhrF69GqlUtDcvirxX50mXq+SUX1nHzlGdYz0P6tGsBoemjcw0ziTBjNMCIRtKUdXWsYZo+asly1BQt6bIbqAaV0EZY/CYCQcG8owDSM8XT3qAO1OWWoJiRKDgSHEPKUsUYwI9pItFlBnTRcGzkHcspG2vQq2XxeVRN0te3gZS0XUWhFVay5qh1Q5c8gUgibdkIbIzpGQ9FPFuxBN9/FgWJ2bnH2V0tjZhYjZXMU8aQNvOxu0ccZLofD6fKNFnC5K23wsGCYlWQDUJlinR5V0Gw+LDeo//DMOA53k4duwYXv/615PzRSnRQ0NDSKVSpTzp8m0jVWVJogZVWJgv5KMX0PgBxUauoZNFHSNk4rFGgxDV9cQZlxfvTYe6qk7SZJmgSkvU9DINtvbmzIDDDBSEFawm3I6KJjgW7MJyQAhYoaUEAfnO2B5SRhnptl1kLA/Unuq0PffzVqSqDahnTgOSduDEIZN1P6QsMJ6svTox2eOARXDWhnKiq8bNO9F++pZM44WFcSvRixcvjm28BK9cJG2/Fw4SEn0SoDzRnuehv78fF198cWk+IFAuZCQ6HG/lypVSRSIk2yGEEOjr68OGDRtKJL+caFN2DpkVhSLejuNE51npRFcoO0Piu9OVbpaynSNOuTm+oWIlsRIlmOwWGaMSLU1T0Thmyq4kDrB6PI0xeDDhwUQOgOeYsAw/INxVfM0rGEhNesVW7xw285GBDyGAqXwT0lYQE5ixgkY4KdsjLRNaqRn56JxuaTEksRqt7ofCgKXYtckTJrmMTsfCnBP9VK05fWbsHElh4VmExM6xYJCQ6AYQVmBXd/GjvMlHjx5FU1NTSVUIT7T1kjxcN7jS1mvKUh2tNzY2Bs/zSh2nwnWG20blRHOfkwGvZDGiZUWbMLV+QIqkKNbkCI2xdMiaIiGREfI4vdpxJn3EelzI9ctuCNRJPLUM+bFwdRIvE4EZA7hhFIsn5+HmLNjMA6ocHUxwmL5A2gxavYedJ1OmB+4ZEAxBTGDRy20YxWJfQu2lbkg934RJ+UYKRqTi7XMDIEg0qZ5zAzCpFuLR2yxbRtauPgoZ20LePXkSHWdhYWLnOIuQ2DkWDBISfRIwTbPGIxx2GTz//PNLqjBjrKE4vKGhIQCoq0ZU20h6e3tr8qQr7BxU5jNFiEH7qNPpFJCLfCsSsSZE6AyjYTVQTqyiOJzQGEsnl041kk82FgGdXG1yLJ0iRQmUVWVBr5++Dqgr8dInJ6rbzAy4JuCFcnixeBJ+MRaQl5+HBEwe2EnSRpDLnTb8wFbCPKRSHhzXxEwujYztwrbmTwK+bwI20WWS8nG7JmBHE1LmIpJ4y9NBoqfLlmlIiS77mDIpGYk+M3aORIk+e8AEfe//asVC259GkZDoBiFTosu90kNDQ7AsC8uXL6+Yt7qldzVc18Xg4CCAQLG2LPqjKVfAJyYmMDMzg0suuaRmHiFE6RWFlJ2KjAwDJK3CJdulDFWPb4zeY2khZFwmY1kyieJOahHyWFXt+MbSat+u44kmN0B9GWlLW40nJ1rHrOFtZvANE65nosCqOk8CgFsk3kU7AxMctuBIMQ7TD33c890n03aQy+0LFrkdMhWYJN55U70RjiQPu+SJbvCwZuzo81jKMmE1GO4dd2FhQqLPIiR2jgWDhESfBMqJakiyDx8+jI0bNyo3Zjly5AhaW1sxNTVVV7EuV5l7e3uxZs0a2FWxTOHJnXNO2jksk/74KTsHBXLuGGPO4v2RSlZOkXsdxZNcu6IFQYP4xalqSxHr56j+IceZNEJ+xlJrhsY2N1jYGKIhT3bNMo1ZUESxeNJBYOewLL+kcgNA6Dfx8ibMWQ+24EEDHOHDNnwYQqBlzg2UbstFxgzU7sBWQljJZM1RCLLsF8wgPiNqXx2b7FEThZQdvf5GrRzAqVGiEzvHWYLEzrFgkJDoBhEVB1deMGgYBkZHR8E5r/Aml89LkeMwnu41r3kNfv7zn9fNlA6V6Lm5ORw/fhxveMMbpNtG2TlkpJDqcihr7x0N+kJOPbY9HfYEqQVDcSjVdWgNJSV+1Io0LCtqKXLS9ZOrkBUpxkjiKQjOAFNjRxXXL8thPx1dMXUiDuutJ4wI9GAiV1S53XzRxw1UPdkSEAUgM17sOik4UsWUEsGBrJsKGuBYAeFOFy0hJul7pon3xHArZudawBwOwxYwmABjHK3NNnJuAczkYP78oUpZ0WM1mswBxO+JTnKizyIkSvSCQUKiTwLlRNWyLBw6dAjr16+PVCdkJHpoaAi2bWPp0qUNeadDJbq3txfd3d3IZGpNh+VKNBlxJ2u2ImOZkWMRs5NrAATlGqXEM4JhaVkwdDhUjIkWp0WFp3Zd5kmmtivWJwo6/mp1O0mcRZIyO4cqIdWx5khVZXIh9TsSnWxveiEGbhgoGCzg1uEueGU+7vL6CiFgI7CUpM2g62RK+EjZHlKmB88zYM7yIuF2K4omXS8kswZ8VhSlBTA+B4Sm7LYyXYCybJxJJTqfzyck+mxBQqIXDBISrYBqbzFjrERojx8/jkKhgNWrV0cuS5FjIQR6e3tLFpB6XRDDsTzPw9DQELZv3x45T5go4vt+fN0HQf9OmoUFN6LdrsUMkM/CqdVTRV/1Ni5yFcoVdBrriA866q1Ocxh6ER1VW1WJJofS8xcr8pjTpoTLrCGEgEnvvrqqLCXEinaSYCHlN8j1RE5lDC5MFJiFPBPzM7nBy8laSJUKuQUMIZAq5nLn3cbJL0CT6CYFEh23JzqbzSZ2jrMFCYleMEhIdIOgCGdIjg8fPox169aRj/eowsJqCwgVm1c9luM46OrqQltbGzlfOBZp56DGByOVaKrgsJD3YbREzF8QMKgCIuUfnUTxU2RsBqnSqSt+Ooqrqo9X5wSlMxZt89DwV5PrVyfkpNqvoarLK1Tj82STGy2zk5DEW6ewMd5llAhxuIzqUwLJeqpH4IwVIwIteXfIEGXDGsQXvUVRiY7TzpEUFp5FSDzRCwYxBk2dnTBNE5OTk5iensbatWul81UrzGEhYnk8XSN2DiBo6LJ+/XrpPCFxp5Ro6kJiSuS4uHivDCaRGGIQ03X4naC6NWoUkOlYWch1kGPFqQTHJ7dKrQk6fgrSX0yMFKPNBYDyUxBZXB69fg1yK4GOv1n5Jk62HgI6x0ZwHasLoHrgKFHkTBcWJiT67EAYcbfQXqr44he/iJ6eHmQyGWzbtg1PP/20dP5/+Id/wHnnnYdMJoMLL7wQP/jBDyreF0LgjjvuwIoVK9DU1ISdO3fipZdeUt8wBSQkukGE9ohqmKaJwcFBrF27tiYho3q+anI8Pj6OXC5XYQFphEQfP34cANDV1SWdLxyLKhKkLjym5MonVM3E0quy2q+OEeSDisQCQLc2J1VCpU2SQ8O2cKaV6Fib1pCLaPiLycHUVWUd36+Wv5paRKb2SqIXJQupQ+NmRYcQq0LnpkjIVHpFqJLouJRoIYSynWN8fBzXX3892tvb0dHRgfe+972YnZ0l5+/r6ytdx6pf//AP/1CaL+r9xx577KT2L0EVxAJ9KeCb3/wmbr31Vtx555149tlncfHFF2PXrl0YGxuLnP+pp57CO9/5Trz3ve/Ff/7nf+Kaa67BNddcg1/96leleT7zmc/gwQcfxN69e3Hw4EG0tLRg165dyOfzkWPGgYREx4Dp6emGugxWk+PDhw9j7dq1FZnQ9fKkOeelpiz1PM31lGjKL2xIvhaq0XdSqCqYJPGVkBLiPcOJnByzShhnMZz6dumo2urFk/RQJDT2hVy/7MmBxjvKDW2k+dU6N5aS96hFdFRlVU+07MaDXEaj5kL2WyY/g/gKKBtttALEq0SHF3kVJfr666/H888/j3379uH73/8+/vVf/xU333wzOf+aNWswPDxc8frkJz+J1tZWvOUtb6mY96tf/WrFfNdcc43WfiVIQOFzn/scbrrpJtx4443YvHkz9u7di+bmZjz00EOR83/+85/H7t278ad/+qc4//zzcffdd+O1r30t/vqv/xpAcCP6wAMP4Pbbb8fb3vY2XHTRRXj44YcxNDSExx9//JTtR0KiFRDVtCT0JqfTRIBpEdUkenp6GhMTE1i3bp10vmqMjo6WyDPVRKV6LNcjuokR1x7K5gHIlGhVaZVeJFYoklUWfagAAIaqqh2nEi0bKs524JSHW2cs5TQHHctMzNYIRd+vjjVGL+kjvv3USweRvKl1g0EsE/PxpFDdaTaEihIdZ2FhLhfElDRKol944QU88cQT+PKXv4xt27Zhx44d+MIXvoDHHnusJLJUwzRNdHd3V7y+853v4H/+z/+J1tbWink7Ojoq5otKgEqQQBeO4+CZZ57Bzp07S9MMw8DOnTtx4MCByGUOHDhQMT8A7Nq1qzR/b28vRkZGKuZZtGgRtm3bRo4ZBxISfRKYm5uD67p1bRVArcJ8+PBhrF69GqlUqmY+ikSHSR5r1qwBgIai8DjnmJ6ZjnyfUqKZ5LktqURrNZyg3oiPFMZqTyDGojzczNE4JsT0eB/nx6lExxlnIX8regM01q9xLON8QhC7Ek0Qf7oeQH39empvzIWNlOKusW0zhO1havw4XnzxRfT29mJwcBDHjh3D5OQkstksPM+rEC7iVKJDEt0oWT1w4AA6Ojpw6aWXlqbt3LkThmHg4MGDDY3xzDPP4LnnnsN73/vemvc+8IEPYMmSJbj88svx0EMP1RVsEqiB4cz7l2N/Ffdtenq64lUo1F4gjx8/Dt/3azo7L1++HCMjI5HHbGRkRDp/+F+VMeNAks7RIKI80b29vchkMg354kzThOMEHoJsNouxsTHs2LEjcj6KHIce6jVr1uCll15qOMUjO5uFZRrwGjQpyjisup2DKEiTpSoojiXNHY6TlCmOxQQd70cpvoarvm51JTo+JTjOY69VpKihhMusIepxedJ31QaD+mepnTlNNpshltFq3KLh/T6VBL9slU0tLcBkrU+yc1ErTNNELpfD9PQ0HMcpvYQQMAwDtm0jlUohl8theHgY2WwWqVSqND182bbdcIxoNptFJpNpmJSPjIxg2bJlFdMsy0JXV1fDhOErX/kKzj//fFx55ZUV0++66y686U1vQnNzM374wx/i/e9/P2ZnZ/GhD32ooXETNIAFnM4Rinwh7rzzTnziE584Axt0epCQaAWUt/jO5/MYGhrC4sWLG0rTKCfHvb29WL58eeSjO1nEXW9vb0UBYyN50hMTE5iebMXwVB5taRudzSm0Z2w0pw00uU1Y67mwUwasjImCcDDn5+E6lGE4RjuHlhpHXHiFZBFlEi1jZYpkUUfxJEiEkUPYM6JxkB9JjNYA2ep1SKxqa2vZmzrFc4pjaan6GkSRhCRzmoS02U18dhKdz0Z2AOJUol0v+kNYvWI5zjlnY+06hIDneXAcB67rwnEcvPTSS0ilUvA8D9lstoJwh+fmamJdTbZ7e3uxaNEiTExMoLm5GR/72Mfw6U9/WrrtL7zwgvL+ViOXy+HRRx/Fxz/+8Zr3yqdt3boVc3Nz+OxnP5uQ6DghoOfdeyWjuD9HjhxBe3t7aXKU1XXJkiUwTROjo6MV00dHR9Hd3R05fHd3t3T+8L+jo6MVXaNHR0exZcsW5d1pFAmJ1kRfXx+WLFmCdDqtRKILhQIGBwdxxRVXSOerxszMDMbHx3HhhReWmrLUU6IZYzhx4gRaWluBqROYKXiYKcx7AV+7LI1nx6qlTwvtRgqu2Yqu5jQWNdnwnTl0LmpBOm0ibRpY1NyGY9kZHMtOg6UEmCU5I+iQaAo6Y1EFVDqkSDnKjJgsZFYWarKEXBBjWQUAEcX+hizNRFXV1iAwekkXGmpnnLYgahGNSEQZVAv+BGdgipnT8nQS9WXizJyWIkarieNF/wiowkLGGGzbrkhgOnToEFauXBlp5/N9v0S2y1+u62Jubg4TExNwHAe33HILDh8+DM45GGP45je/iS1btmDx4sWl13XXXVehOm/YsAHd3d01KQae52F8fJwkIeX41re+hWw2ixtuuKHuvNu2bcPdd9+NQqFQt/YnQYNYwCS6vb29gkRHIZVK4ZJLLsH+/ftLRaucc+zfvx979uyJXGb79u3Yv38/PvzhD5em7du3r9Rwbv369eju7sb+/ftLpHl6ehoHDx7ELbfcclK7JkNCohtEuZ3DcRwcOXIEl112GYaHh5VIdH9/P7q6usgvmWEYcN3aZ/q9vb1YuXJl6STWSBSe67oQQiBFnfiIK6ZlWph2HQxO5TA4VezLOx74qpc3t2A0O4eAUXYE7wkBu8DBJgVaMiYcz4FhchiGALiAyQA7LeBbHMwu/tK0lGjVZ/30W4J4i5oOqBNfElrqITFZYkGg9oU5DIhojBM7lO0cMssAuRS9etUiQUlrbZoQy757qoT4NNlJTpNXWa/oVLIM9XmWk+gGD3nBjS4sjKvZimmaME2zrsf52Wefhed5+L//9//ijjvuwFe+8hWMjo5ibGwMo6OjGB0dxcaNG7Fq1aqK5bZv347JyUk888wzuOSSSwAAP/7xj8E5x7Zt2+pu+1e+8hX89//+37F06dK68z733HPo7OxMCHSM0M1VfiVDdX9uvfVWvPvd78all16Kyy+/HA888ADm5uZw4403AgBuuOEGrFq1Cvfddx8A4I/+6I/w27/92/jLv/xLvPWtb8Vjjz2G//iP/8Df/u3fButnDB/+8IfxqU99Cps2bcL69evx8Y9/HCtXrjyl6TIJidbAwMAAFi1ahI6ODhw7dizSOF+NsFX3wMAAtm7dKp2vmhznWfZMjwABAABJREFU83mMjIzgda97XWlaI0r03NwcFi1aBD57IvJ96rKYsm3AjbZ0RHqiGQPnJnwGOAUASAPFXTCzgF8+lBAwIWBwH6YV/JtZAqbJwSwOwxIAB0SBAylRRZ7UL7zqvJvwcGt4T+lIPtAkWoeQx0XuQZM4swAgIjiAuYK0mcTalVGD3OlF/6ladiQbTd3cyJ5Q0KNFLyMl/sQykvG01PPTEbEnWUZHiaZI9JlotmJZFpqbm9HZ2Yk3velNDS1z/vnnY/fu3bjpppuwd+9euK6LPXv24LrrrsPKlSsBAIODg7jqqqvw8MMP4/LLLy8t+/LLL+Nf//VfaxpVAMD3vvc9jI6O4oorrkAmk8G+fftw77334k/+5E9Oej8TlGEBK9GN4nd/93dx7Ngx3HHHHRgZGcGWLVvwxBNPlAoDBwYGKn5fV155JR599FHcfvvt+PM//3Ns2rQJjz/+OC644ILSPLfddhvm5uZw8803Y3JyEjt27MATTzxxStNlEhKtCM/z0N/fj4svvhiAPE2jHIZhoFAooKWlRZrmETVeaB1paZmXD+sp0RMTE3BdFy0tLfBnjtfdvnKYkguDf7JV2ozBB4MvDLjhUG7xVYThAHwagBAwIGAyHvzXFzDnfDBLwLBEQLptDuEyWsVTtXNQ+yclvorkXidbmIL0Pkptu3SUUOZLiieJ9VDFk1ISqwi9m554k0aUiaJGwV/cqrJWAadiOkj9NyNWL/k8dUh0znnlkGgg8CirNFoBgEceeQR79uzBVVddBcMwcO211+LBBx8sve+6Ll588UVks9mK5R566CGsXr0ab37zm2vGtG0bX/ziF/GRj3wEQgicc845pTzfBDEiIdEAgD179pD2jSeffLJm2jve8Q684x3vIMdjjOGuu+7CXXfdpb4xmkhItCKOHj2K5uZmLF68GEDjbboZY3AcB5s3b5ZWbFeP57oujhw5UhFlBNRXovv6+tDW1gYAZDwRtRWynOjYmq00Mgxj4GDgRUnPLAC+iUDlLhP/jRzApwSMUOVmHKYhYBg8eBUJN7MFDJsDKS5RqHWqpAjEWlRJvCFRIpVlTR8aqrZMiY1+j/JkGwUGEL0uGPG9k6rapyHpQwZV+4+OV/l0WSakUE4H0bCtyIpOFW9+LIPB86PPnc2ZM9NsRafld1dXFx599FHy/Z6enshz/7333ot77703cpndu3dj9+7dStuRQB2JnWPhICHRDYIxBs45+vr6KoiwZVkNkeiJiQkAqIklqkZ1OsfRo0fR1taGzs7Omvmo9YYRemvWrAHnXKIeR198DMlVkc6JJhdRhvJvkQX/xxkraqJmII7y4mA1zhQBMy/AJooqNxMwzYB0wwdMzwBLcTCbzxdOanXGI6Dj/SU9AJL1KBNyjbFkHeZi8n0D9AMFM49Im4kWUZO9eTqIojQukLiJiLXDpvrNgjYhVr3BkKj0qhF3TWkbM7lou1qjSjTnvBR5Fwd0lOgEr2Is4Ii7sw0JiVbA0NAQLMuqIMKN2DmEEBgeHo7Mmq5GOTkuJ+3VkCnRfX196O7uRjqdxuzsrLIFwzDobfQbzJquByYkpCUu7zE5FoMQDD4DPJjB8sWnu2YWqPk4hYDl+TBMwCwWTBomD16WADwBw0KReJdtTKx2DopdaBTDkYRcncRR0CFKOikrZOqgxwAr+k3TFZGpJVqNPoj5Zf5m+ucVY9IJNAixiJkQk8uo23ZkNxiqdo60bUWSaMs0kLIau/MLz72N9AhoBDpKdIJXMRI7x4JBQqIVkM/nsWHDhgoi3IgSPTY2Bt/36xYCApXkeHh4GKZpRqrXlBLtOA4GBwdx+eWXY2JiApxzer0acWqx2TlOB3Qe6UfOy+DBCqwOAoHtoezQG3mA58J1CpgI1G0rz2HkRIl0h4WTzBOA7QN2deGkbLsoJVKyCEluYlSiKehYQ2RKhvK+qBM1M49ocg11f7VUOSV99/T2koJnnNYM2e+FWkSj2Y5WAaeEKDdKosO50nY08VVN5gAQmxKdzWYral4SLGwkdo6Fg4REK2DTpk01F8B6SnTYqnv16tWlPFDZiTckx+Fy69evj1SvqfWGQeeLFi3C1NQUfN8nlWh1pYwm0VqJCxTieiqkQQooSJXzihkZfJjwAQgH8DIICGV54WQO4LOYL5xE4OE2OQdMASvFwUweFFDaga2EPr46j/NpawDVSU7Zk6ujtmso0bKGJso3F9InGtFv2gUWaScxNLzq8hbqxAH1ZSxaMlzU+mO3oFALSRR/yc0iuQ2KSjSlNjcpkOjw3NtoR8J6yOfzpzRBIMErDIkSvWCQkOgGQZ0sG0nJmJ2dxcUXX6xEoo8fPw7HcUpxRVHzVSvMnHMMDAzgNa95TcU8pPJFgEm6iviUWhZjEZcqyDvg0/WjVtz30uSywkm3SPiZg8gGHuacgJgqqtyGgMmCfzPGYWStysJJmwd+ZNVkEhkZIVVNdZuJ1o0N+ZWUWVOI1cdoTREiuv+jcBkYEatrEMRXulmKSrzw1T3pUpuFjidegxDrNEFSJdE2QaJ1kjniItHZbDaxc5xNWIBKdEKiE2hB1qYbmG/VHQbV+74Py6IPe6gw9/b2Yt26daTnLkqJDj3bYYB+OI+yJ1pyXVD2RGv8sE5LfUKchZCn3MONgHCzYlJJmYph5AFecw8nwESgbAcFkwHpNoxA1YYHmFOYL560Soupbxe1kA4ho/hw7P5qxWV0srhlhajEWEaBkU1w1DtJQrmhj8xmQXrCdb4zcXaZRCWJlpp4im9YhIjRopjMEZcfGgg80WHiU4KzAIkSvWCQkGgFMMZqVN2wiUoUZmZmcOLECVxwwQUl1aKefzpUoqempqT93qvJuxACfX196OnpKakj4TykBYOyeUjUFeXfCaXGNmqPaGAsEjGr3XEVQkofTasNRYBBMAYPRlAvGX5NiraS6AY4PMjhHq8snDRNAdgcYAKGxSoLJ4vritwPiVeb/noRb2j5q6l1QF2h90GfKeMk8RJQqrIRHTIRbDMlrOp40jUUYh3iTfq4G7VzNPADonLwm1NnJiMaCOwcSTpHggSvPiQk+iRhmiaEEJEn1d7eXqxatUqpVXeobqxatQqpFK2MVCvRJ06cqLF/hEWKlHpMdVokvdKo09tDBdJYAbWhtPzYcardZAEVMbvOvuuQtUb3sejjFh7gWKgpnASKf5soEW4bADN8GL6AkbOCgkmTw7IERIpDEA1VAEisIZSqLdt2YrrUmkKtXqNIUatIUo0oyqwZpHLr0b9W04lOJ2GeAAgLSpyZ09Kvv0ZOtaqdg/r9qdg5fN+PlUQndo6zDIkSvWCQkGgFRCm0IemtJtG5XA7Dw8PYsWNHxbz1EjpCYrtmzRrpfNUKeG9vL9asWVPxiDEk2pSNOZ+PJtFUs5VYXRYa5E/RlStXrySrV16AUttjJL5a56c41dtwmbLCSQgTZh7wDVQUTgJFm8l4sfkNOFJMQBgchhn8bcxyGLaAaQmIlA+kJFJ/jNF7wcYpjqWzftlmqboAwhuYyPVrJK0Q3wvm0sSbapATa6KLxjKBPqBKoqPnb86cWSU6IdFnD5J0joWDhESfJELSWu117uvrw/LlyytiixrJlD5y5AgASFXo6rFmZmYwMTGBiy66qGbbAjuHmn4sU6LJrT8dVgvFdUj9kTFuLyU6ahH1esWIDU7XSSaRngS1CFGxxTuMgGMXG+AwD7VKtRCw8gJsKogHTBkh6eZgAjCa/GJSiQBSfN5XrHFDoFNwF2vSh2qRpkZcn9STHaMFxqTsJIi3gJNcpurHZ7gcPBM9yAUrlsLnAhnDRGdLBlO5AniZwtCcPjPdCoFAiU7sHAkSvPqQkGhFREXcVXudHcfB0aNHcfnll1fMW8/O4TgOhoaGAKAh20eoavf19WHlypUl20j5tskKC9OZNJCfq32DuMoajNWpJIqAqnysQf7OOJQZLgHJvpPuAFkxHEEWtQohY7SZRK6fBQ1wvCKLKoQdJz2AFQBRQdaKhZNMwPQ5jPFim3czzOMWAUnPFTtPlh0HaWqFVpGgIlEUsvUTY/kSEk1aQ+KzkwAgM6+p9ciOs5lDZCwgPJBt3ynUWDkk+3D0p4MwOLD4/BXAC1NoB9DSnkbzogwyrSmssBqPmDsVhYWJEn0WIbFzLBgkJFoBjcbcDQwMoKOjA4sWLZLOV42BgYGKfGcZQoKcz+cxPDyMK6+8MnK7ZIWFaULtpuwctmmiQBRRnsmIO9oGIFnmNHiiz2QhZOxjnY7jJZldVE0JCicB3zchTJQIdwgzC/g5ABBgHDAZD1q8Cw7TBgyDw2DFtu5hFrfO90hVidYoUtRSwmUPn0hCLFuGmC4rxlRehr5ZMAuIJt4uQybH4JgcvI4bI1xtqD4zANnpArLTga3N3LZJPkAZ4laiExJ9diGxcywcJCQ6BpSTY8/z0N/fj4svvlg6XzV838fAwAAuvPBC/PKXv6zrnQ7HGhgYwOLFi9Ha2lozj2EYEELAJ8ZixLNT6hpnGiYqmMqpgI7qKZk9NjsHBR31WDYWAfKQSKy6p8XKQq0iznQKnZshMT+DMIL27h7MgNyVL1NWFmDkAT4pYIkwizv4L+MCZq5IutOBpaTU4j3OpA8KGjYLvU6WxOqlmdNUMah6Mabw6WY/pI/bYbCHARvBuc5wBPixYOdTmeCmX5iAsOaPie9Hnw+bms5cYWEul0vsHGcbzlLSudCQkGgFMMbI4sKQHA8ODqKpqSky81NGogcHB5FKpbBkyZKGUzx838eRI0fIKLzwJB9Xq24qGgoALIPBieOscBq80jqrkTZ0USX9OhYI+q3oVchItCriVPR1Mpd11k95y3md48IYvJAxCgB+UdUOF8qWb1eRcCPI4DZNAWYImCYPlgMLyHaKz7d412lCo1EkKP1gKCWaggdlVVlKiHUSVcgUkvllGGMwBIMoigNuXsCAGWx/AWAiEAA8ikQr5kQn6RwJtJHYORYMEhKtiKhs5ZDQcs7R29uLc889l2zVHaUwhxnPGzduDC4EDRQgGoZRyhbt6uqKnKdU9EgUFgqqsQJxlZNdMnyHA1btcikHyEW1RfZijMujoJOCcQYtGDLiSxWDaQnqOsQ3rrFiPtGK+HiM+r4wFqjb4XJhNGCYxV1ePBm2ePeKqSRGWR63JcCsgHizPANSorLATvalVLRm6BTvST3ZWhGDlHpNL0Jus6f+C3Cc6Kdpzc1nrtlKks5xdiGxcywcxHkJOmsRkuiRkREYhoHu7m7pfNUYGxsD5xwrVqwozVfPzmEYBlzXrWiuEjUPIGnVTV0XieuSIbv6UsECRItj0yEIvKchx8boiVa+JJ+U1UABqqkdcaraivNLoZFyEmdqCIv7hqDRZRgDZwZ8bqEAG1mexqyXwXShGZNzLZiYasPUiTYcH+7E8f5OnDjcgcnDizDd24bciQzyfc0oDDXBHU3DO2HDn7YgcvTvkdwsmRtLSyGmlpEsoprTDZA3C8JX/3a6brRAoWLnONPpHPfccw+uvPJKNDc3o6Ojo6FlhBC44447sGLFCjQ1NWHnzp146aWXKuYZHx/H9ddfj/b2dnR0dOC9730vZmdnVXYlQSMQC/R1FiJRohUgs3OEXmgZqY0i0UIIHD58GOvWrSudlBuxc0xNTUEIQRL2cHsNw6CVaJKYUaRc42KqGP8me9xu+AI8YkDTEfBbIlako0RLFolnAb2xaH5BqIRxWjC0tkt9LGWokNhGhtNR6FWL5xr6XMIW7wBgwiwAvokK//b8eEGzbhPFwkkmAluJw2Fws6RyM7toK9GJy5MR1dOVDkIto6FEFwrRdxJNTY0r0XF6oj3Pg+u6Skq04zh4xzvege3bt+MrX/lKQ8t85jOfwYMPPoivf/3rWL9+PT7+8Y9j165d+PWvf41MJkgmuf766zE8PIx9+/bBdV3ceOONuPnmm/Hoo49q7VuCaCRK9MJBQqJjgGmamJ6ehuM4WLVqlXS+anI8OTmJubm5iuYqjdg5QtW73ok8LC6MAjWdgilhLKdD3SRJP6F6WQUBpzmKXIv4/BFxqqQx+pjjzPTWKlKknnLojEVBQqKVCbHu+lUR9w0JC5zHpcLJ4A9Y2WLTwiowp2gnYfOFk2GLd+YDYhKVhZMAyG5NoH9G0mOj6skGAItYpprgNzB0Lhcdbq2qRNt24/PLtycHAEok+pOf/CQA4Gtf+1pD8wsh8MADD+D222/H2972NgDAww8/jOXLl+Pxxx/HddddhxdeeAFPPPEEfvazn+HSSy8FAHzhC1/A1Vdfjfvvv7+iG26Ck8RCVG4X2v40iIREK0IIASFEhdpsmiaOHz+OdevWSX1ypmnWtNoOOw2WN2qpZ+eYnJxENpttiASbpknmRJNqMMUvZf2qY1IEY2/4EQWJgmgWBHimdkWMaGMt0/ViPafEWaQYpz8jxu2KtUiRQozHRfbU5LSQeB0lnBvwWfEGS6CixbuRA3g5vwxbvBc4MCWCLG4jzOLmMA0OYQCGw+YLJ0vLSrZbtdmNoNNBhIISHc7pONG3l88++zP09jYjlUohlUrBtu3Sv6tfvu+X1NuTRUiiT2U6R29vL0ZGRrBz587StEWLFmHbtm04cOAArrvuOhw4cAAdHR0lAg0AO3fuhGEYOHjwIN7+9refsu0765CQ6AWDhETHAM/zkM/nsXbtWul81YWFs7OzOH78ODZv3lwxXz07R29vL7q7uzE4OFhD6KPWSUXcqUqCMjfHaSnUi2ssjXWYroAXZSVxBbyUKvtS3y51UqZRDKYBZeIpUaJPx3fltNykaa4/zv0nb5Bli1Wvv9jiHZ4ZpJOUFU6WZvEC9bpUOAkOE8XEkmwKpsnBig1wDJuDpXzAJraA2jBZLGCU3C5BOm2Rdo7XvW4bGONwHKf0cl0XU1NTFdPCc7NpmhgdHSWJdjkZlz0xzGazME0zNmU7CiMjIwCA5cuXV0xfvnx56b2RkREsW7as4n3LstDV1VWaJ0E8SOwcCwcJiVYA5YmenZ1FW1tb3ZNgNTnu6+vDihUrahQNGYnOZrMYGxvDFVdcgcHBwbpV4jISTadzEGNJCgvjIgBaJEORsEhjzmJMrmBcQEQR74KAH2UzkYylTFa134xaeYxjyXAmrSGAsqpdNy7vTK5f50kAlcUs+02W2q8zcDDwYot3c67otKh+gsMBGAIGn7eTmEwEGdxCwPTNooc7IN2weeB7btTOQW5osHxTkx1Jog2DoaOjTf60LVyl7+MXv/gFWltb0dnZWUGwZ2ZmKv72is2pLMuqIdf//M//XBovnU7j/e9/P/bu3Std9wsvvIDzzjuvsX1O8MpFokQvGCQk+iQxOzuLfD7fUIV0OTkuFAoYGhrC9u3ba+ajovAAoL+/H8uXL0dLSwuA+lFLpmnC49GEnBR+/GilRnp9iYtMxVgMSA4V5yN9HVJCebgdASeqQBJQL9yUHRRVC4YMr1RriCp0rCESKLdp1ymSjNmyc9osKAYDNwLCXU4mzCxQG+EsYLgChlVGuo1A7UZKQOQNpU2w7ehLXlNTqiECDcxHh7a0tGDJkiXSeTnncF23gliHr1//+td46aWXMDw8jFwuhy996UsAAm/0kiVL0NXVhfvuuw89PT2l8TZs2NDQNlYjLEAfHR0tpUCFf4d9Brq7uzE2NlaxnOd5GB8flxawJ9BAQqIXDJKIu5NEb28v2toaUzDKSXR/fz8WL16MtrY26XzlcF0XR48exfr16+fj6+oUIAKglWiCaeXzUTEAgOxypaoS6yAuNTbWR/oxKuc0wRLkMgYRFWhSqramBYBc4Ax6tU+XNSJOVVeroYriULI3G1KVG0V198cG1q+eOc4guAGPmSjARo6nMOtlMOU1YyrbAi+nZoFIpaIFh0zGqrFxeJ4Hz/Pg+36pD0AobjQacWcYBtLpNNra2rB48WKsWLEC69atw6ZNm/ClL30JP/7xj/HlL38Z69atg+d5GBsbw8GDB/HQQw/htttuwxVXXIHzzjuv9EqlGk8QKcf69evR3d2N/fv3l6ZNT0/j4MGDJSFn+/btmJycxDPPPFOa58c//jE459i2bZvWehMkiAOq0Yvj4+P44Ac/iHPPPRdNTU1Yu3YtPvShD2FqaqpivtBdUP567LHHlLYtUaJPAvl8HsPDw1i7dm2pOESGkBx7nle306Dj1FaQHzlyBO3t7Vi0aBGA4AtQL0/add1ISwFAc4CodQfrk6zoDCrROmkT5OrjVENVH89TY0kKyEji6xJWHZ8mS2SGsoZ6Sm7XK9QaonOMZVBWouOOy9ORR+IsbJSsQtUTL21CpPjhpFLRl7zm5hRM0ywJC2EBOYDIc6zneRBCwHGckoBSbvcrF1Xqke2w5bdhGFi6dCmWLl2KCy64QLrMwMAAxsfHMTAwAN/38dxzzwEAzjnnHLS2tgIAzjvvPNx33314+9vfDsYYPvzhD+NTn/oUNm3aVIq4W7lyJa655hoAwPnnn4/du3fjpptuwt69e+G6Lvbs2YPrrrsuSeaIGYknWg2q0YtDQ0MYGhrC/fffj82bN6O/vx/ve9/7MDQ0hG9961sV8371q1/F7t27S383mrseIiHRCqhWm/v6+rBkyRI0Nzc3FEgf2jSOHj1at9Ng9Ymbc47+/v6KIsR6UXi+7yOfzyurcrZtA07tTYHcukAQ9Ri9vLGpizE23JBuL3HtjDePOJrJUnYOaQ63J+CrerhVFVcKOnYGGTT886r+Yq0bAo31KxNy2TLkAjgtnmytGEfJAtLmORFjWFb0TjY3pyNV3vA8XE6oOefI5XJoaWmpiBAVQtQVNapJNmMMMzMzyskcd9xxB77+9a+X/t66dSsA4Cc/+Qne+MY3AgBefPHFCuXttttuw9zcHG6++WZMTk5ix44deOKJJypqch555BHs2bMHV111FQzDwLXXXosHH3xQadsSNIDEztEwdKIXL7jgAnz7298u/b1x40bcc889+P3f/314nleRhtbR0XFSdqWERGvCdV0cOXIEl112Gebm5hqyVYRNWfr6+sjW4OF81eMNDw/DNM2K6ul6UXhDQ0PBPMSXmxNMK5NJA3O106WZsHHZOeJ8RK4ze1zbK8uiVoQ0So28UYj+UJiQfFiUQk18tQ1XgEe0egcCQh7VGEfLE3w6SKQMimo7gFij906LNUNDCdeK+Iu5sLFhEl2EaRIkmsiIrlaRTdPE5OQkLMtCR0dHxTk8inCX/12ubpf/+6c//SkOHz6stB9f+9rX6mZEV9v1GGO46667cNddd5HLdHV1JY1VTgMSJbpxxBW9ODU1hfb29goCDQAf+MAH8Ad/8AfYsGED3ve+9+HGG29suD4CSEi0FoQQGBgYKPlz8vl8wyTadV2kUqmaqKHq+crHE0Kgr6+vphuiTIkOl2ltbSVTOKjplhV9QaE6GcaqIuqQ0hgTNWJVu1Ufz1Ozy1RKkiwRH4rkaxqnJ5l6z8px+C0RG+0L5acZOkWdFHRV1UhoFCnKbA6xFnzGaRnS8rlI3tLZT0USTVkrmpob9xpPTEzUEOiosWUF3+Xih+/7JUtFgrMEC1iJnp6erpicTqeRTqe1h40jevH48eO4++67cfPNN1dMv+uuu/CmN70Jzc3N+OEPf4j3v//9mJ2dxYc+9KGGty8pLFQEYwy+76O/v79UKV1PEQ4Rkt6enh6pT646nePEiRPI5/M13RBlUXjHjx+H67poaWkhFWfykX88ARENvKkwu0ZBnBY0HsNHQoeoSywYqmNRPngtCwLxRdEr7COUawm5N4niSUohj9saouyT17ELxfh9kVoz4rSmxKwq63xm1b+NeucCg7hRa1Zo+T0xMYHOzs6G54/eDqP0evbZZ/E7v/M7JzVeglcZxAJ9AVizZg0WLVpUet13332Rh+BjH/tYZGFf+es3v/mN3vEtw/T0NN761rdi8+bN+MQnPlHx3sc//nG87nWvw9atW/HRj34Ut912Gz772c8qjZ8o0QoIlYehoSGk0+lSvFFo06iHmZkZAJC2Bg/Hq86TXrt2bY2yISPv4TKu6+I1qQ5YLRnkuIs5z8WUW8BkIa/c9puCrMW08hpkxIBCnIWFireVMpUuLmXxtKWJKKcz0GxVdSySEEtgFgS8tiivtgBMRQ/G6TrGcarKMkKuWPCntf8x7yf5nZF9ZjGdYJoaJNGcc0xOTmLTpk2qK47E5OQkfvWrX2HHjh2xjJfg1QGGeEtAXgkI9ycMQAhBqdB//Md/jPe85z3SMTds2HBS0YszMzPYvXs32tra8J3vfKduL49t27bh7rvvRqFQaFg9T0i0IkKbxKZNm0qkulEl+ujRowDqV2uX2zRmZmYwPj6OCy+8UDpfOWZmZjAxMYGLLroIvb29OPzraQCVj1gWGSY6fBvnO10A8yAMH+nmNDJtTWhBCud3LMGc52LSyWPaCSLvqB+9AQaflFGJhU5HegEFjYs/aSkgxom1JbRMpYwrAQQadg7ZVz7O7dIg5IJq6+4I+BFZ3IYjwJtiKo6V3UBJlqFwujo5KluG4r7xUFXPucRiRq2G2ObmBu0cMzMzMAyjlIBxsjh48CDOOeccqb0vwQLEArZztLe3V5BoCmESTT2URy9ecsklABqLXpyensauXbuQTqfx3e9+t6apXRSee+45dHZ2KtlPEhKtiNHRUQghKu6A6rXpBoIPdHJyEkDggZMR6XJS3tfXh5UrV0Z+qBR57+/vx4oVK5BOp8GI9XAO5LMejo5NlU3NA5jC1p4VONo3UZq6yLDQnDbQiRReayyHYQEz2Rm0dbXDYxwjJ2ZwPJsFTwG8ugW2zqPgCJy2dtFxFYSdafU4xkfw5EJUxSpOD/EjZ5fdwBD7KLOTUAkoFieewMRsWYjT361V8KdRihBrYaNsmUZR3D9OfGebiMLCalB+aF0cOHAAr3vd62IZK8GrB0lhYeNoJHpxcHAQV111FR5++GFcfvnlmJ6expvf/GZks1l84xvfwPT0dMmrvXTpUpimie9973sYHR3FFVdcgUwmg3379uHee+/Fn/zJnyhtX0KiFdHW1obNmzdXkOCQRAshyJNrX18fVq1ahSNHjsD3feljhXC8QqGA4eFhXHnllZHzRSnRjuNUdEKkSDRAqzLV4FxgNufDmfPx0sj4/Bv9xwAATaaJJt8qjjl/ZWtqsZHLOhApgJuAsAS4DRgZg1y5jida2cdMrkPEZgiXqrQLxM6hpR5rHC9KVaYgtYaoeoKFIAseURBAawS5dgCXEjJULzS0Y+a0QZkQy1RlCprpIKpwnOo+5AEaVaInJibIaFIdHDhwADfeeGNs4yV4lWABK9GnAvWiF13XxYsvvohsNgsAePbZZ3Hw4EEAQXZ6OXp7e9HT0wPbtvHFL34RH/nIRyCEwDnnnIPPfe5zuOmmm5S2LSHRimhra0Nzc3PFtNCrTLXgzuVyGB4exo4dOzA4OFhXtQ5J9MDAALq6ushHh1FK9MDAADo7O8s6IdJXYNWCQ+pXYhgGUNwnxuavnvmsD9M1wMFqrqlWFrCmylIJDAHGRMBZ8vOEm9sATwOI0x6hYRlRLgaUrT5G9ViZrJ4mVVuLeFFvxWgzUbYm+KDPktR2SbziVMSgNItb9SZCw48fZ9JJ7NtMLaNAosPdnp2JyO4EcOzYCF54wUYqlUIqlUI6nS79O5VKwbIsCCEwOTmJjRs3Km5pNAqFAn72s5/hK1/5SizjJXiVYaGR6FOIetGLPT09FTVeb3zjG+vWfO3evbuiyYouEhIdA0Li7Pt+JInu7+/HsmXL0NLS0pD1I1SYBwYGyK6G5fOF4JxjYGCg0j8teeyoXFhIzG7K1G7JcCHhZuGMArDnOFgE0xEFHyzFIJgIFjAAZgh4xZxivxCQbj8NCFtTuotT8Y0xRi/WPGAdxZWAlHgRhX06cXWkEn0ayD3zAUGcJcnOjxrrl2ZxE8eSeQRZjzPCEafHmqFjQdFRojOZJgC1jaQ6u4L82Hw+j6mpqYoW4EIIGIYB27bheR4OHz5Mku2QcDdi9/jP//xPtLe3x1akmODVg8TOsXCQkGgNVJPP0NoRRY7Lm7IAjfmnQyKeyWSkjw6rleihoSHYtl1KDQHkdg5KiaZAXRZMKglBtpAiDGZAMDZPuP3gZbkAcwWs3PyKhAjafDAHsKcAGAEREMwHTxtgnoCVAvxUJeHWyQomEaeyJ0NMnSL1VHhiJz0BEE1YTgvxjfHYx5ofDQ1rioQoGsR7Vl7AIYoklaGTea1Rv6Blf4pYpt5eO270ubdn3Sps2rSmZroQAp7noVAo4MiRI5iamkJXVxccx0GhUMDMzEyJbBcKhRLhribWIdmenp4u1az88Ic/xJVXXhmbvzrBqwiJnWPBICHRiog64THGSHIcxr2E/dirM6CjEJLyNWvWSE+w5Uq0EAL9/f1Yt25d5TKS5T2PaNRC/Boo8m/VSRuJAyXbB/Vm+Z9Fhdv0OYQwAD9U+kyYDmDOcVi5YB4hOJgQAckWDMwKiA43AWFw8AwDt6Hc1EFq54grscSXRLkpEjxZogW9M4RCqnMzoqGQa6nail9Vg9MfvVY77hhJNKlqSwkpYSfJqbd2lxFi1c9fdv2l16NOPguF6ChSKuKOMQbbtmHbNvL5PLq7u7F27dro7SwS7nIVu1AolP49OzuLf/u3f8Nf/dVfYWJiAoVCAaZpYvXq1Vi+fHnpdcUVV+AP//APlfctwasHiRK9cJCQaEWEIeDViCLRnHP09/fjNa95jXS+apw4cQIA6sa/hB0QAWB8fDyyIUu5R7kajhddZENd0agsbItopRtsgNIqaMT4Ay3fJMYMgBUdIp4I1G4/5A1mqf254Qj4x4otTIQIyJABgDMYDiBsAW4I8AyDn6qzvRQpUd0RHR+xzA9OLULZPEhCLkA1e1GNCtTyJMfp+44xXlDrpifO9YMm8dQF0PAkrd19AT+qtbyGqqzz9EDJzlEcX5VElxYv+qHDBluR21NGuFtaWiLn2bJlC/bs2QPf97Fu3Tp85StfwfLlyzE6Olp6Jcr0WYBEiV4wSEh0TIgix0NDQ7Asq4IMN0Ki+/v7AdT3LJumiXw+DyBI/1izZk2tJ1tyQvb96KsQybN49HbL7Byx/a40/MpxE/XSDQkrXvR9wAo93FU2S5b1kWkK9XMObhmACXCrqHKnBLgl4GcYREhSVNXjGO0nWsVo1Ow6j+Zj3MdY7RQ6hFxD7SdveuIk0VzieycmGz69CdSxIYskQRdWyhCnJzqf10vnmJ2dhRCirGD75PBf//VfKBQK+J3f+Z26DSASJEjwykVCojUQRW6ryXHYlKWnp6dCWahHoicnJzE9Pd1wASLnHLOzszhx4kSF4h1CpkRTWdUUeY8qmgQCvzIJVesCCfriq6xuakDVY2yAwS8dFzPIIfYBo1Abo1fycHtAahIA5xApIyDcloDhClhzER5uP0YSfboaupzJzGMJidQhscpeYY3PS+uGQJY0EqMSTxJyDXJr5jj8FirEm1hIcT2myUjhoF5OdJgPXa9RVqM4cOAArrjiioRAn6VI7BwLBwmJjgnVpPfYsWNwHKcUBk7NV42+vj6sXr0aw8PDdb3T4Vj9/f3o7u6O7MgjJEo0M6KvwtRvgSLR0qePMT2a1Bkl1k5zijcD5Koj7gXCGx3D5xDcAGCCOYDhBO9b1R7u4sYKziBsQLCQdAsIG/XtJFHbq1OMp0O8VD8T2X2ksp1Cssxp8FfHGr2nsX7DCyIjI8fSUHs5YZiWhbxwyk5CLSCxwLRMCWQGPfCwjsFiABewTAMOCy1X88s2ZVKYnSvUrpsBmUx9Et3Z2SmdRwVJk5WzHImdY8EgIdGKaNQT3dvbi3Xr1tUQT1lhYTabxejoKF7/+tdjbGysISXa8zwMDQ1J2l/qJGdE/xoor55UiVYFKTtKlolLco7xJEAOJV1H/R0pf7JgeKLoVzaBKqun4Qj4o0EcIGMCggWki3EGIx+klISEm9ch3dSNGLVIrMQzRt838wFBcaU4iwR17Ac6cXkxFinG2QRHSHKyqWWocwjzJD7uWY5UReyzCJ42HHfRjOCJmjAAYQW+/nSmOZJENzWlpD5kIQQmJiawbt06ch5V/Pu//zve8573xDZeglcZEhK9YJCQaE1UdycsJ9GhJeO1r31tzXIyJbq/vx/Lly9Hc3Nzw1F4uVxO2queSWQhqgUuZcWmbB7SeGHq4uz6QFPEhZNqACNZBd1lUJVdS/yaGqo2uQr1t8h1yKwO5fGGTAQk0prjYC0poIpLsLwPngKYgRLhFkWFTwgOwzVKjW+ELNKwzo6cycI+QxBtuiFRYqUkVu1LEWvet4a/OXYlnNp/6gQiUZWDeotatmz49GdmRNcIlsAYC465G2xTui2ajdezcszNzcH3ffIcq4rBwUEcOXIEV1xxRSzjJXj1IbFzLBwkJFoDUe29y0lvb28vVq9eHel3o8ix67o4evRoKU+6kSg8IOh6tXnzZskcEhJNdiyMns4JUk+qOLILPUHgjZwDtDXVTnd98CjSLVuHImSjUCQr1uJFZc4fJ+lnJdIdEu4Se/EN2MUcbgFRIklG3oA9VyTcZvFlC8Dh4CkWSbjPdOaz8likv5gmhLEWCWr4m+OM/pMuQ149iKJCaYwisQzVUAaBSl0NWwi4URF+poGuRU2Ymy1gZrZQISDUS+Y4FX7oLVu2xFakmOBViESJXjBISHRMCMlxNpvF2NgY3vCGN0jnq8bRo0fR1tZWypNuRImenp4GUCcKT6LGUiSautabVvTXZW52JnqBGAkjc30AEYqRlKirtU6ThqHEVCCp5bvWmT0u5bxqLBb4QwAApi8guBmQ0zJCY84x2DmzgnCHKxBG0cdtlrV1l9lJYlVvNcaiCKlGrnas+dU+7W+OVdUnPxcxnyrT4Pq1CiuJm20gOAbV8PIu0JKume4XXPgvDiH/q0HYjKF1cQtaulqRXtSM1Yuj4+hCJH7oBHGDCVFMqlk4WGj70ygSEq2Iep7ovr4+dHd3o6mpVk0N53Mcp2Ia5xx9fX0VinI9Ei2EwOjoKEzTlPv5ZEo0dYEifgwtzc0Apmumt7a2AXPjxDgxRWeQiQv0IsyLfkTMiAut7IIdV4FknJCds1Qbukj3TrkrIiv+P6s5boyjxkoCAGbWR2qSBR8zE6Uuk/AFrBwqCLefAmCy00NiKX91nA1loOFv1ii4jNNfLc3vJiCLyyOPv2Q/I+0cki+yZRV3UgjMHp/F7PFZAEBHit750A+9Zk1tN0NdHDhwALfffnts4yV4FSJRohcMEhIdE0JyPDw8LPW6RZHjkZERmKaJZcuWlaaVdyOMQtjxqu4jRh0lmqwYix7LpJqtxOr/JYodBdVfkS6Io8iykXfht0RcUOO0jNTxMSuNpfGmsuAr9d4qbrBkrIBwG/ObzQOias4x+FUMK1S4RbgJYVv3YpdJxoN27+WEOxyTgrLNRELutKwRMRYpnpZOih5t5yCPpU73Rdl9bR1PdOUK6PNUU2vtDXWIbDYLz/OwaNEihZXRmJqawi9/+ctEiT7LkXiiFw4SEh0TDMPA9PQ0Ojs7pQUo1eRYCIHe3t7IPGmZJzqMtRsZGZFul6xhi6onmlTlyMfH9LoZ2bmNSoJQ81YHY9FvKS0gI38FD4jwVDLXAxDhtYzTEy2DIsFVDGqRLqQzFp30UfsOAwNEWeFkkXAHlhITZpbDLBQjAVF8bMoFwBnS42X+bUuAGzxIKjEBbjd+sxQriY2xfTsQM4knYHCJSBxjYaNsmyOVaMn5jhEkurm1Nho0xMTEBBYtWhSbH/rpp5/G+vXrsWLFiljGS/AqRaJELxgkJFoRZMybYWB2dhaXXHKJdPlqcky165bZOULf9WWXXYahoSHp+nzJRcUn0zkothw92SDekKquFIEnbhxMkyGq1xiD7LG6Iiul9lsnGswhijALLpCRFzI1ug6dpiLKY0lJtKoSDRWLuhyqHm4TMAscvm0ECqaHeVvJDAJlm5U92RAcsBiYz2Dmi4TbBrgZtHbXKlKkNlfWyZBaSCN6LlYSr6PES7dZvXJXRYmWfVOb6pDouP3QO3bsiG28BK9OJEr0wkFComPCzMwMDMPA4sWLpfNVk2OqXbcsnaM8Ck8IAc45qZSQvmcAXESPTyvUxEAUmZIQeFkTmCj4LnHVluyfqj2CAuO0ZYQmkmpWkgDRHnLD8YCItsRkZFuMxFd6I6Q0kmZRpcwLr2pBoN4QAmCs2MQm/K8BcMDK8eDf1ZGAOR+ZY8XEEiYAwSHsQNEWDDDz84WTfhpShVtacKejKsdJ4jWUcOUmONAg/lxotP2OHqyZsHOEfuhqgeNk8NRTT+GGG26IbbwEr1IkSvSCQUKiY4AQAuPj48hkMtIiP6CSRIftui+44ALpfOUoj8ILibeURMuILPGW55FpupFTZTSS5N2KPlspAaKgmqOrsQ6aqFMebnKoYuOUiOk+MVbWAVpqVTTGhXKGMb1Rkvc0PNzKfnDKC88FbfEhb+qodUDZQ26I+bbuAek2Swo38wVEfn7A0MNtFgKvNgwEXSYtA8IKbtB8V8x7uMu+BzqdBHWKFFVJvFwJp59MUeDElYj6WhieuvuJEhSaIoqMASCXy8FxnNj80I7j4Gc/+xn+9m//NpbxErx6kSjRCwcxtpo7u1BuRxgdHYUQgmyLXY5yctzX14cVK1Ygna49iTcShReuT1aA6BNqtuwC5LiO5N2IsWQ50QRUybVB+Bl1urCRoFwscapuMZJ+kmB69EFhTpQpBsUIwYjpcXq442wHrnVjQyDO71DE+hkYGDNg+AwMJhg3Yfg2zIIJa85CetxE5piF5kELrb0mWl9maDvE0HoISB9jaOkHmo8CmRGB9AkBe1oEdgrKjqVYpGho+Lu1/NUy+5Fi5jZzyTMIuV2uE+3/aGqLtnOEfuhGzuuN4LnnnkNLSwvOPfdcpeXuueceXHnllWhubi5FoNaDEAJ33HEHVqxYgaamJuzcuRMvvfRSxTzj4+O4/vrr0d7ejo6ODrz3ve/F7Oys0rYl0IRYoK+zEAmJVkR1xF1YGLhs2bKGmqOEhYWFQgFDQ0Po6emRzlcOzjn6+/tLy4TbISPRk5NTxPiSiw2hRJNWaa1HvlQBYfRC3CduBmTxflSRoobqqboOZXsCoTZLx9IotiQTSwiCwQoy46naWZNJ5lcmvnEq5Br2F+kqVJ+AlH3vQsIdVBqYMF0DhmfCLJiw5yykJi1kjlloGjHmCfdLQOthoLUXaO4HmocYMqMC6WMc9rSAkRfyAlyNuDzZjQfXictTRL1uhTUQAtOTtfGcAHBi4hheeukl9Pf3Y3h4GCdOnCg9JWyUtDaCp556Cq973evqPq2shuM4eMc73oFbbrml4WU+85nP4MEHH8TevXtx8OBBtLS0YNeuXcjn86V5rr/+ejz//PPYt28fvv/97+Nf//VfcfPNNyttWwJ9hGr0QnmdrUjsHCeJiYkJzM3NYePGjZiYmKg7f1hYODAwgK6uLrJrVVQ6x+joKBhjpSg8xljdFI8hIr3DZAw+wUQC5SVasVSDBmlSvMAIglwDoAmAoo9ZStjImxHVojuZGqfGyKWh94pRfUx2Y0gQM1aIzuGOM0lFKx2DXEBjLGoZnThEnfUD80WTrHgRE4DpCMBiNXZxAQEjx5GaYIDgEBabTynxAdMV4JaAn2FB85vid44sEpTtjmrSh6RxDLV+wxV1tqIWTZnonPu2jlZ4nodsNgvHcVAoFOA4TkmcGBoaQjqdRiqVQiqVqvh3+d+2bUsJ8oEDB/DGN75RaZsB4JOf/CQA4Gtf+1pD8wsh8MADD+D222/H2972NgDAww8/jOXLl+Pxxx/HddddhxdeeAFPPPEEfvazn+HSSy8FAHzhC1/A1Vdfjfvvvx8rV65U3s4EChBC/lTy1YiFtj8NIiHRGmCMlewcvb29WLNmDVKpVN0Og0BAUD3Pw8DAAC6++GLpfNXj9fX1Yd26dRX+Z1medDabxeTEZOR7hsFIBcggHl9SKjF54ZAyAEU/q0azE9XiRS0fsyKHpsaSFy/S648eS6LOk8+e1H2spPeV8nDnXaCZYFiq9yJxKtGyximq4KDbceuMp6GqR62HgcFA0cfNDLAwFtAFzCyH785vtCgWHLPiRgujrGiymFJiOAJGHuBpVP42NZI+ZE1YyGVUlWgATiFaGNiwqQfnn7+hYloul8O//du/Yfv27fA8D47jVBDsKMLNGINt2xUk+5/+6Z+Qz+exbNky/PSnP8U73/lOHDt2DIsXL44tNq8avb29GBkZwc6dO0vTFi1ahG3btuHAgQO47rrrcODAAXR0dJQINADs3LkThmHg4MGDePvb335Kti1BgoWGhESfBMJHfq95zWvgum7DJFoIgXQ6LU3yqE7nmJycxOzsLFavXl0znizFY1FnB4DaGDyDGaCfo2ooslGjxEh0qHXL9oJWohVXHaOySyLGbola20t95DLvsaptQaoeE4Q87wFttacp5tPxHOpNaySqZkwkVjqW7EZFNWlDuv7Gdoax+ZUGViYTzEXFwylrjsPKGpWEmwlwMMAKWoKXYgHtoGCS/FxkLjjqRk1DiXby0SQ6Kp0j9EO3trY2NLbv+xWkOvz3+Pg4fvWrX2FwcBCzs7N43/veh5mZmVJzreXLl+O+++7D7t27lfZFhrB3wPLlyyumL1++vPTeyMhIRXMvALAsC11dXXV7DyQ4eSxEC8RC259GkZBoDYTKa29vL1asWIFMJgPOOXzfhxBC+kgvVB/Wrl0rnS8qCm/16tWwrMqPjFKiPc/D0aNHsXTZKgC/rt0OjU6G1G+EthjH6CWm/M1kH2EhUbXJzYqeXUokiemKsX/SKDllIqVBfKmxNAiO8rlUaKiXrg+A8ACQZI34XsdIYnXiBXVqB0hwmlxqFQnWWX054QYCO4kAKza+qYSZ9ZE6wYKbWyYAVrR+CMCe4/BTrNTaPbSUUNYQQ9VHLYB8NrpgOionWjUf2jRNNDU1oampqWL6pz/9aQDAV7/6VXzrW9/CT37yE2SzWdx666340pe+hOHhYbzlLW+JHPOFF17Aeeed1/A2JHgVoWi/WlBYaPvTIJLCQk0UCgUMDw9j/fr1AOYVZqkKiKAiGgCWLl0qna+cROdyOYyOjmLdunWR80Up0UePHkVrayuam1sixycj5kCTX2o6o6wA5BqgoRJT6yagoXpKFqDfUybqxLGKUYmWd4aL58ZCWghJdXekfhs6RZVkYxzak2wQj/MNWfHkmfRqa3jI4336o+7vrlekyQwjMJaIYkqJa8KeNmDN2UhPWGgas9By1ELrIQOtLzM0DxpoPQy09AItA0DzIJAZE0jNRK9I5pCgSHRUx8JT0WQlbPXd3NyMu+++Gy+88IL0tWHDhjqjRqO7uxtAUENTjtHR0dJ73d3dGBsbq3jf8zyMj4+X5klw6hDaqRba61RBJ0nmjW98YykIIny9733vq5hnYGAAb33rW9Hc3Ixly5bhT//0T+F5al6xRInWRH9/PxYvXlx63FceNyfzuvX39wOo88gdlQpzf38/li1bhubmZul8IYQQGBgYwDnnnIND09EXDlNyRVVVokk3r2wfVdt7UyBblMf5iD4+ewR5FDVaIus0uVEtXiRJkYb3lYwQ9AUEdSaijq9su6jkF2ofJZGA1GpMLqLE1litITJ/tQ60ov8U4/KY5HencvNaUriZABMs+B6GHu48kCZINCPOvYzRCT/VOdH5fB75fD72ZI53vetdpb+XLl1aV0jRxfr169Hd3Y39+/djy5YtAIDp6WkcPHiwlPCxfft2TE5O4plnnil12f3xj38Mzjm2bdt2SrYrQRkSJVoJ119/PYaHh7Fv3z64rosbb7wRN998Mx599FHpcjfddBPuuuuu0t/lHMr3fbz1rW9Fd3c3nnrqKQwPD+OGG26Abdu49957G962RInWQGiVCFVoAA1lNk9NTWF6elrajbB8PM55aV1UFF6UEn3s2DH4vo/u7m6ytTeTfPIkB6OUaNXmFlopDYqVZ9LsX8Wx4lRQqdk1bjiUEWs6hoZVh0KMXSelir5q0oTEZiIoVTtHqxiS0tHo7Yo5v1n5bK+hLEm1gRi7L1LLUNGd1JM3O2XBTlfewU1MTKCtra3GOqeL4eFh9Pf3Y/v27VrLDwwM4LnnnsPAwAB838dzzz2H5557rkKJO++88/Cd73wHQHA+/vCHP4xPfepT+O53v4tf/vKXuOGGG7By5Upcc801AIDzzz8fu3fvxk033YSnn34a//7v/449e/bguuuuS5I5TgPOdBzdqynmLkyS+fKXv4xt27Zhx44d+MIXvoDHHnsMQ0O19V7laG5uRnd3d+nV3t5eeu+HP/whfv3rX+Mb3/gGtmzZgre85S24++678cUvfhGO03ivjIREa2Bubg6dnZ0Vj/sYY9KkDCDwUK9atQqWZdUtQgztHEePHkVLSwupikSts6+vD2vXrpWSdVPymNYn24ETC1AKI7UCLTJHEHidbGfVdWvcDKhbRiRjKTdhIaZr2SaI2TXIKrlqDSsLSZZ0PhON40WOJW3rHg1GFLzFfWOlfEMiI7caYrt69KAgv/sGkUBD3dBT05uIosK4rRwXXXRRxQVcBXfccQe2bt2KO++8E7Ozs9i6dSu2bt2K//iP/yjN8+KLL2Jqaqr092233YYPfvCDuPnmm3HZZZdhdnYWTzzxBDKZeevKI488gvPOOw9XXXUVrr76auzYsSPppni6EEbcLbTXKUC9JBkZHnnkESxZsgQXXHAB/uzP/gzZbLZi3AsvvLCiAHfXrl2Ynp7G888/3/D2JXYODXR2dmLr1q01J2aqyyAw72t+/etfX1KKZQjJcX9/PzZt2kReBKqV6JmZGUxOTpYe41HXdCZhOlR7XFJJUyVz0ouzmkpMDiUlIBrLRCFGZVeeRU0soqhGymL0lLOoY7yBkHu4o6dzoiEQFa8HgCb3ZOdHic1E4ztERgJST4vyHpBORQ/m+4g8fZMfsNDICJfdcCrekAB6SjhVWEh9x6mbLkUS/Vu/9VuNbGFDeOqpp7Bjxw7t5b/2ta/VzYiutgcyxnDXXXdVPMquRldXV93H4QlODRZyOsf0dGUWezqdjuzK3Ch0k2R+7/d+D+vWrcPKlSvxi1/8Ah/96Efx4osv4h//8R9L40Yl2ITvNYpEiY4RMhJd7muWzVc+FhB0KZQVelQr0f39/Vi5ciVSqeDiywlVWdax0CO8g8o3mlK/MgFFpwVJGDVUNHoBdSKpXAwo217SexyfbSLWR/1aiRLRoFV4dSVYPZlE/XiRn6OkmQ65fukPLvo9Y64QPbvsdEOqyrIbJWIZ2fc4xu8YSaKpJxTE96W6qLBQKCCbzcbqh/5//+//4fWvf31s4yVYABAL9AVgzZo1WLRoUel13333RR6Cj33sYzWFf9Wv3/zmN3rHF8DNN9+MXbt24cILL8T111+Phx9+GN/5zndw6NAh7TGjkCjRmogqDKTIseu6OHLkSOlxRD3bRzgWEHwhZYWK5Uq04zgYGhqq8N4xAbSkbMw5lY+MZXyCsoDMzM5ETndJ/xClvMkULnq7oqFB1KkLrUkUJUmIOq3s0quPXoAYKcYOeHpKNLWAjKyqDSUlq8RnokOi1ZVYDbVd5p+nCh7J1toyVVst3oa5PgTh8WUFD2iOULy9GG+6ZJGTBGS/L5NH3xeQ9RnE5Op4u9APbdtEfKIiZmZm8POf/7yUzJEgAbCwlegjR45UWJcoFfqP//iP8Z73vEc65oYNG2JLkgkLZl9++WVs3LgR3d3dePrppyvmCRNtVMZNSHSMoEj00aNH0dbWVvLZ1WvVDaBUNFL9uKEa5YT8yJEj6OzsrGwlPuUh9esc0gZDe2cTmhdlkGmx0ZxKY0VXBtO5WTS1tyHne5h1XUzl8qSdI53OADO1Slc2l4/eOC0lOqbIOA0lmvxMpEkEBOLyMUtItHo7cGJ2QCPKLL59l/poFS0YBhgputJKtIa/WvV4+QKC4mWUBUGq6qp99oYvJGJ09DJm3oXfSjS0oVI4yJsI0Fcb6nvBBZnWoxqn1agnOm4/9MGDB7Fu3TqsWrUqtjETLAAs4Lbf7e3tDfn/G02oiStJ5rnnngMArFixojTuPffcg7GxsZJdZN++fWhvb8fmzZsbHjch0RoIHzVUI4pEc87R399fEZrfiJ0jjMIziRbc1WNxzjEwMIDXvOY1Fe+Hbg7BBaZOZDF1IjDWr1zejqHR0Ls0X+WdAdDUYqOpNYOmtjRSLTbMtAHYBlJpCy3dKWQ9F7MFF5PZPBzfx6JF7cDEnHQ7y8EQo4JLKtGSReKyG2ilSqiuW/JenIVicbYDVySrcsVV7QZCEFYk2ViqzVkASKwZxPHyOQTZYVE9YUZYajYXrexwqcUoerqRdYDWpprpzOMQlmLLd9l9mmIBJ7WKajvHxMQEzjnnHKWxZThw4MBJ+aETLEwsZCU6bpQnyezduxeu69YkyQwODuKqq67Cww8/jMsvvxyHDh3Co48+iquvvhqLFy/GL37xC3zkIx/BG97wBlx00UUAgDe/+c3YvHkz3vWud+Ezn/kMRkZGcPvtt+MDH/iAkoc7IdGaCBurlJPpKHI8MjICxliFolyPROfzeYyMjDREtg3DgOM4pfmr7+wodVX2fS9kPeTmXGC0Msx87eouDB4dL/3dDGBJi41F7cBFZgdSzRaO9B/DzGwe3AKYyyFsBzxtgqeN+Qu8hpeYJKXEGzpKKWXnIKFD1GMsBlR9pC50rA4aBFOVrEpPvpTFhmzoQg9FbhcBvRsF4imA1EPe8CYFkFl8yM9LcnOhuC9B9J+azcZwOfwMQaILHtBUaycxPA5OHBzqeDLqDp20c8xfLB3HwdzcXKx+6AMHDuD3fu/3YhsvwQJBmYd4weAU7s8jjzyCPXv24KqrroJhGLj22mvx4IMPlt53XRcvvvhiKX0jlUrhRz/6ER544AHMzc1hzZo1uPbaa3H77beXljFNE9///vdxyy23YPv27WhpacG73/1uaTFuFBISHSOqSa8QAn19fejp6alLtssxMDCAJUuWYHp6uqE86TDFI6qVOGXN8H06z5ZstlJdAQ4gN+fCz3o48uLx0vQ0bMAB2EwBGdcAICCEByE4BOOAxyFSLrgJcAMQNgO3DfCUUVREoy62ahd6aStnSngjjpVBETkNz6zqeYYJCYlWTDLRageuasGQ2k+olRPTZQ1dKBJNbZcsnYIkntRgMkIeY8Ej9Xl5AkipHWOpEk3tC7XJngDsGFV9aqiCB7RFX6JS41nwqQKEZUDYJoRlQlgGjKZUsN0NPm0qV6InJibQ2tpaKso+Wbiui6effhr/63/9r1jGS7BwkCjRaqiXJNPT01PBT9asWYOf/vSndcddt24dfvCDH5zUtiUkWgON2jnGx8eRy+Vq/HCywkLP83DkyBFs2bIFv/rVrxpSoguFAmZnZ7F69eqa96lmK6qtLQGJkklMXrdpGfpGpgCEx8wEYMIUHnxhodTyrbwu0eMQpgsIP7hZNzg4A4TgsLIc3GbgKQaeMsDTtNVFJ2OX9EoTHe10GkuodzLUKODTSk5QU2nJfZeqpIr+E58DhJ1Ji5ATFghlEgsNtV3LGkKM5XMIMh5Eo+BSdf0eh7Cj10/dPBqc9mST0X+yByfHs7Bma+szrCYbmawDmEZAsC0DwjLR0tWCKMNZUxWJjtMP/fOf/xxNTU3/P3t/HiVJWaeL40/skXtW1pa1dVX1vgJNA91Nw4xXuII43xmXGccZ7lW5CsdRxlFmXI87iqMwXK5cjlwd3Obq0Z/jjHO942VEHNSxiwYaUehueqO79qwt9z1j+f0RlVmZle8nuiI7G7CJ5xwOXZERb0RmRmY+7+d9Ps/TIOVz4QKA9XlswVP+ZY2L7fmsES6JbiNWk+OzZ89iaGioKfnKrhI9MzMDVVURiUTWbIWXy+UwODjITNii4sUpxw+e58jq9Vor1FX4Ql5gmUTXo3coUqfHboQgCdBNE+DEGh8RTMu6y4AENPxuGkBGhydZggkDJg+YvAlDAGCYEIpGTUqiK8IKWXAc1U3s3k5rNtIBpAWHCAotEKmW4sDJCG9iO2UhqNu5ibQwlsNvu1aq7S35RzvUkNs2CTpNZYTzqnor52+pqm/nWEPZcGK5idAwwZV1oKwDqECrsK/YWyfnSCQSWL9+PX2hDnHw4EEcOHDA1l3JxSsUrpzjooH76W4j6klvNpvF0tIS1q1bx9yPJdNYLf9YixWerusol8sYHh5mPk46bchsqwC7JEOKLFOgOJ6tZZ/IfmxkO7u7PRhQwfMCBF6CCAmSIUOpyFDTHLxZCf4lHsEZIHxGR+hEGYETRQRP5BE4nYfvTB7eiQLUmQLkhRKEkmHFNq96zSg5h33nU5uIul2npdMGSQotJRlS2t/2kX57n+b2jeXYYo5YmQBocm/rtEE2CTrXVztuEjRNmMRnrpWqelur+pQsSTPJsB1S/kacXvVZJLpcLiObzbY9qbAVf+h4PI6bb74ZwWAQ4XAY73jHOxoivlfj7NmzpM/u97///dp+rMe/+93vtvTcXLhwYcGtRLcRgiDUMtfPnj2LaDTaELNav1+x2GwLV00yrFqwrMUKLx6PQxRFeL1e5uPU8ZQPql0IC51k6Ayklyvsgl7YZxne1odnj802bR/d3ocXxpdWzgmA43nwJgdwonXR+vJ/y3ISrqDDzKFBv20CMMtl+HIGTIGDIXLLkhIegr6iSGlAS7Z0bNg1AzqVc9ja6FGV6BbIKt0I2U7i61QC0QIhb6FCTo7VVn11C02CdvrqNuqbqfPbSokoEk/Z9WkGfWnE9wdVjOAlS7ucSCTg8/napoc2TRNjY2P48Ic/7PjYm2++GbOzs3jkkUdQqVRwyy234LbbbiM1oUNDQ5idbfwO/MpXvoK7774br33taxu2f/3rX8eNN95Y+7udTZQu1g4OF6Em+qW+gJcILoluAXYR3NXK8OrQE9Z+q1FtDqxWas8l59B1HUtLS7bBAJQmmozH5XlQ8WYUoXNqd2m3ukkSdYcnoawBvV4Z+UKF+Vio049kvtyg3wYASTNQ0WSLMdfJSbiMDk+qAtQItwmDB3QYgCLAFC39tr6s3zYlvq2SEZKoU2NRkhFbD2P69MzdW7L9I8ay1Zw7rF62UL0lHUBsZSZOdd82zZPtbBIkYPfek1Ieu3m9U2lGK89fMyBKAiqV5gvheR66bTxjI85OvIDKY0kA1nfGoUOHIMsyFEWBLMvMfwuCYFsIAICTJ08ik8ng8ssvX/O1AMCxY8fw8MMP48knn6yFc91///246aabcM8999QsveohCEJTOMQ///M/481vfjP8fn/D9nA47ChIwsUFwkXsE/1Kg0ui24gq6Z2YmGgOPakDS6aRTqeRSCRw6aWXNo1HYWZmBrIs2xJMipRSkb62lWiHmmiOIjQc4XbB2fzWOiTwFFEXbBi86leBfHP64pY9I3ju+eZqd0d3APFiBeAEcMuEWzAt0t1cJjZgGhrMcgXmnN6g3zZ4E5xuQkqUm/TbtlrWNjXwteYAQo1FP9ZW/2jHXt/Oq7ekW4tpU1h2XAm2a550KM1AC9IIG/9qUl/dir0hKc0wYFJe+BSJr5jIJbLgGV6ulWwBYFSTJUnAxq1D0CoGSsUK8tkS0okcrr52H9bvHMATTzyB3t5e+P1+lMtllEollMtlZDIZlMvl2jbTNMHzPJNcJxIJHD16FH19fXjyySdx+eWXO/KbBSwJSDgcrhFoALj++uvB8zwOHTqEN7zhDecc4/Dhw3jmmWfwwAMPND32nve8B+985zuxfv16vOtd78Itt9xyzgmBi/bDdee4eOCS6PMAyyda0zSMj4/XDL1ZYJHj8fFx9Pf3Nywn8jxP+zybJsbHx9HX14fp6Wnba2SBIrK8zRcqbZfnLOmPIuqCwEOjnDAchytQ57B5fsTzoPhX71AE8ZNzTdtDHV6kMs1yHY7nIUsSKlUib6DGxvhMCYZmbTehwzQMADrMig41rltWgAIHQwQMAdBVAWbVoWT16+n0N7EVyUgLxNd5KiL9mGNLvpaq2sS5bQm5o6HAG6YNIadOYkdinV0Ar9MTAscTFdiR6FaaR4nVMhtNumGyfUvyyRyee3i8aXt0KALTNGvN2Xak1zRNaJrWQLKr/y4Wi3juuedw3333IR6PIx6PwzRNBAIB9Pb2ore3F9FoFCMjI/i7v/s78hyxWKyWnlaFKIqIRCKIxWLkcfV46KGHsG3bNlx99dUN2z/zmc/g1a9+NbxeL37yk5/g3e9+N7LZLN773veuaVwXbYTbWHjRwCXRbYQgCCgUClAUBV1dXbb71ZPjUqmE2dnZpi89u0p0PB5HqVRCT08PJiYmyHPRcg72/q1UosvlZqspO1DnFniOrTG2OTfFJ2jJDU0yqNeKJAAtnKOjN4T5xUzT9pFtUbwwlbDGhUW4AR6SCVRMqUm/jZQJ8FXCrcOEaf1b4ADTgJTTYYi8pd+WOBiqYNMMSF5ue4lvGxMD2zoW0dhnJ+dwfF0EbMdyqi82nUsj7Cr0jqvqtk2Kzl9LshKumfAGPCiWHWZ/r8LIziEEOwNYWFiA1+s9Z9WY4zhIkgRJkuDz+Zoe37FjB97+9rcDAHbt2oW77roLu3btQiwWw3333Yd/+qd/AgDce++9zPGPHTt2Xs8HAAqFAr7zne/g4x//eNNj9dt2796NXC6Hu+++2yXRLwE407S3Yf0dxMX2fNYKl0S3gGpn8+oqb9Wzefv27bZLZKvJ8cTEBCKRSJN+zc6do2qfJ0mSbfMh9RhFEHi7Si1BRErlZgmEHahqt0U+2c+XqnbTlXbi3Dak0Pk5iOdhIxmhzuHxNTegAsCGnYN4/lRztVsSeVQMc5lwV5fDrYZJvlCGAXmVHaAJpHV4k6UV/TZnWD66pgkjpzfrt+G84msnLWpr9Zi05HM+FinnoOwhbT7bjuUMrVTuqUNaaBJ80UJYCLTSPMprBvLpAni1mfTKqgSNMaTqVRDaGEUumUN6KQPTBHZea/k3t9sfOhaL4ezZs7jhhhsQDoexfft27Nq1C0tLS7bHrV+/HtFoFPPz8w3bNU1DPB5fk5b5H//xH5HP5/HWt771nPvu3bsXd955J0qlkmPZiYvzRN0q5EWDi+35rBEuiW4jstksDMNgNn/Uo55E67qOyclJpvyDqkTncjksLi5ix44dACyivFpaUgWpiaaWSluQczjVD9g3NbLhtLGQCpMReDqghSK4VBWcgl0lukJcl1OirnpkVHLsFYD+DT2Ymkk2bQ+FPUgZ5op+GwA0gMuXYer1XwUGTFO3HEpMq7pt8iYMzrQkJCIHrqJDyGuN/ttorenMcTOeZgCko4ND4teCk4ppIydoa3y602hxzaZJ0CkhRwtVdbsQFqqq3sJqA8doKKyiXKwwtdLFXAm5RStVleM4BCI+XPL72wFYJJplRdoqHn/8cezatavB+aK7uxvd3d3nPHb//v1IJpM4fPgw9uzZAwD42c9+BsMwsHfv3nMe/9BDD+EP//AP13SuZ555Bh0dHS6BfgngVqIvHrgkukWwKtFzc3MQRfGc5vr15LjaHNjZ2cncr8yo8k5MTNTs86qPG4bBdKSgtMQUb6G00tY52GNZ7iAF8ri1nttWakEs+1Lkk5KY2FaiKf058ZtNTTjsqvkVIvSBlqWwt1N+2gD9Wq3bHMWzjAbJ4S1RnJ2Mrzqv5VDCGTxMcCtVhuW3mc/qMIqWnASGYYXdcCZMTYOcMWAuR7obimAlTIo8DA9Dvw20ZslHwanzvU2EtuPrgp1dG3GKdjptGHSTIN2k2L4mwRcrhIXTTKviTB/KGm3lX6aJTDyLbfs2QdM0ZDKZtlaiqyErrWDbtm248cYbceutt+LBBx9EpVLB7bffjre85S214sz09DSuu+46fOtb38JVV11VO/bUqVP4xS9+wYwx/tGPfoS5uTns27cPqqrikUcewV133YW/+Zu/ae1Jujg/uJroiwYuiW4TUqkUcrncmtKpqjKNanNgNVxlNViV6EqlgqmpKVx55ZW1fQCros0i0aQmmvohbMF+ThSp8lc7q+DOore1CtvGzo7gOvWopr4z7OQcGhUSQSZLsq9XpBwNYCNLIfa3m7xwIs+ciPUMdSCWyFt3Ec+DW2ZJYtmAJskrqpxqf6VmwBQB09ABLEe586blUmIaEEomDNGEoYgwlOWGSTtLPuJ6nTpatOL5LPAcmHeXXYW8hbwe5yTWzjWEGMlGX/1ihLDYHkOcn9cMq+LMkHNQWmlu1T2+btsAgl0BLC4uQlVVpp9/qxgbG8MHPvCBlo//9re/jdtvvx3XXXcdeJ7Hm970JnzpS1+qPV6pVHD8+HHk8/mG4772ta9hcHAQr3nNa5rGlCQJDzzwAN7//vfDNE1s3LgR9957L2699daWr9PFecC1uLto4JLoFrGaCJ49exa9vb2Ym2vWr65GtbFwcXER5XK5Fq6yGix3junpafj9/tpSYZW0UySTVcm2g52W+1zBL6thkhZ3zp0zqMkART5FScIKg6s7h83zoyq4TpszbR1AiJeQfm0pEu1cd01+x5EWhfTEKdDhQyyRb9q+5fIRHDneXO1WZAElw1zWbwsWpzMB6ABXKMM06r+KTJhmBchX4EmZlmZbgFXdFq0VIMOnQ5d4GKrQKCFwHOhiU70lxjIIOYddtDhJ7tvaPGnjGuLUv/lFCmGxrYRTDZ8s0fMy8pkCU85h6gYUj4xAxA9vyIt9f2hJJdqth85kMvjNb36Da665puUxIpEIGawCACMjI8yJ/V133YW77rqLecyNN97YELLi4qWFa3F38cAl0W1AoVBALBbDlVdeidnZWVKfXIUgCLWI76GhITIYZHUlulq53rx5c23bueLBk6k0czst53Cuiaa10lT5j725laY/6hSWzq/ZBYNqqLQ7B6nHdugMAtj4XTt8De0r6pRkhD2WprGr9pIkoEzIT6gJB/XUA2EvSvEc87H+0W5Mx1KrxuHgkSUUOBHgLP9taMv/FStAqfqZqdNvw4BpGDDnSzAkAaZokW5D5sFphuWJvGry0VKENmnX1oLnMnVyG612K42YzvXNrYSwtM+1xK6qz9toou1QKpRRmo4D03G85cN/BMAi0YODgy2Nx8KTTz6JwcHBto7p4iKEW4m+aOCS6PNAlZSMj4+jp6enFq6i6zpEkX5pq6Q5kUjY+kmvJsfz8/MwDAO9vb1N+7EqmZqmIZ1mk+hUOsXcbhh0uEu70gRJ54wW9NjUdlkmYs3JpkaO9sGmyAFViSbkHBzo1XunyZJ2EgzSa7utJJqoxhLXay8/YV9X72gHzk41T4R6B8KYW1oh5PUJk7yuw4AAVIB6zQWfMaDnDaAW6W7C5EwYpgFjqWw1TErLloDLchKOIHHkRKwFuzpbpwtCq01XtcnTt+Aa4nxCYHt+oqpMgdPoqn41sZB1Om9ARbF87u+jHddsha7rSKfTba1Ej42NnVcV2sUrA5xxjibs30FcbM9nrXBJdIuokgVN0zA1NYU9e/Y06JPtSHRVgtHT02PbGb3aT3p1LHj9fqxK9OzsLASBfR2BQBCYa5Y7GDYJiZR0gq58ssdpRY9NNv1RLITwOuMIMiEKPMrEBIKUWlAyCCotUeCgEUSLrOYTm+209xVKd01l4lDEV6SJr9PXRLRpuKsQ9w/lsKJ6VWCJXdX2R3xIM4JuuqIhzOdKAMc3NM/yhTIMbjnSvQ4mdJjlMkxRswh3Vb8tAmZZh8yXYMj8in4bgACuheASu6q2U321XSX4woew2HXn0+cnxrKp6nOaCa2ig2d8t+UzRaacQ/bI6L9sGLIqo6MvjHBPEEtLS1AUBR6Ph7xupxgbG8Ob3/zmto3n4iKFW4m+aOCS6PPE5OQkfD4fwuFwzT/aLqobWCEHTqzwMpkMkskkLrvssqb9WHKOqvTD520OBQDoyqDH4wESjLQ9jv6MFArN+wNAPtesma1eGwt2xJCqVpLVcWIcW49qourq/Bzs5yFJAjSdTQxJUkpwLzsTCI1Y7jYImxGqam+nu6aaMKllBjudOOVYwhN2hKKNJIcaq2sggvkTzVrt9dv7cersYtN2DoAoyytuE8v6begAnynCMIXaA6ZZAUwDZrkEU6lY+m0eMAQOpsRBFwHwHIwKbQG3GnZOF6Scwk7z3k59tdOquuH8/LxBk/hW5BylQhmnn7He/xvf8Z8AtF8PXalU8MQTTzQ0AbpwwYTrznHRwCXRLaJqcTc+Po6tW7fWqnl2KYNVTE5OWprPc1RA6sc6e/ZsUyx4/X6rSVg10VBRnVVZqN9HgaerqKqqAqnmBkZq2TuVYktJKFkBYOPh7FRL3EqSoUM9NjUXsCq7bBJNaqWpCQdxvRzoFQNa+tJ8TwH21WOn+nFK9w/QjiWWdSJrLPq6KPmJSUwg7LTlvCRAZ4wXHe3AzOKKpSPHcQAnwCMpKHIChGqQgoaVwBtNB+J1+m3OsK7JMCAWClbTpGTptw2Zs22ea2cICxlO00brPWgGIBPvPzWUjRc3p5nwBtkuHJTMo/612XntNgAWiT5XIcMJnn32WciyjO3bt7dtTBcXJ1yf6IsHLok+D8zNzYHjOPT09NS2nYtEG4aBiYmJNZHtqta5XC5jdnYW+/fvJ/dbPdbExAQGBgbwzIlJ5jFkYyGVEsbzAHG9FDlTFLZtVDgcwvRcs6+0U201QIeXUKA1uy00VJLXS8kjWtAxU2cgJRg8KsRYBjEJoqRH9qExzqqBgk31mCK+lBSJakDl4HyyZWdHSFW1PT4VWGy+f9dt7sOJ0/OMIwBRFqEZZoN+Gxwg5IrQRcnSb9cv6OQrMBew3DBproTdSBxMAEJRX06XXJaT8LTi3q5JkCTkbWwS5HWTloY4tCQE7BMLtYoOXmm+b/xhL4a2dUHXDGw/sAm6riOVStUCq9qBgwcP4uqrr16TzakLFy4uDrgkukVUq9DDw8MNX5rnIsezs7O1QJZzkejqWJOTk+jo6Kg1LrL2q69E5/N5zM/P48CBA9D1ceIJsDfb2rYRhWLSR5mMTWb/yHi9KoBmCYggcKSco1hkS0my2SxxTeyfc9tKtENrP2oiYleNJc9BVbuJN0qSBJLgUudoqXmRqvgS5MvOeYWaQNDJluztsiygVCYaIanrIs4h2zRVUjIT27h34rOwZc8Ijp6INW0PBFRkdKMx/MgEUIYlOyoLdZt1mKYOrqhDSRVW9Nu8CUO2nID0itig364dS+qbyafiPFCGWsmxOT9vQ+Jtq/QEssk8jpyeRP+mKDr7IojH45Blua166IMHD+Laa69t23guLmK4muiLBi6JbhHlchmmaTZZGdmR6Kqt3fDwMCYnJ9dUidZ1HRMTE7YVk9WEfHJyEj09PZAkiZY7kBZ3hK2UHUGwS5Brw7lFgZ5wqIoHFrNYdQwRAJPJNLs9APYNlU6rm3aSGKfncBoHbmnd2bMdUpZCwK46T1a7HerdJZvKuVPHElkSaRLtUMMtyyLtTEINRby/ds+Ruof6RrqQIaranoCKQnHlPeYAcJwAlTdR5MQG/bZV4a4AeatSbem3datZEoBp6jCSGgyBgyHCcimReRtDczt9M+Vawt4MAJQBiN0PMlcx4At5UCg5uZ+t8XZdsxXAih7azo7SCUzTPO+QFRevIJiwdbP5ncQrk0M7Dsl1sQxVVbF///6mpXA7Eh2Px1EsFjEwMLDmSnT1/93d3bb7VcfSdR1TU1MYGhqyQimc2s9R221+bKjqo1N5Bkk+W6gSUzrfjo4w+9w2k4RSkR1YQwfZEJVdu4mIQ5JFOYDYSkYcEnU7y0HSAYSasxFDyTI9j6dt9Nj727mJOLXkk1pwJqHuX4UhL6iCek/s7hWK3G+4ZIi5vTsaqv2b4zhwvAiekyBwEqSKCFmToZYkeHMSfAkBgTkOgRkD4ZMVhE6UEDxZROBUAf7TeXjP5uGZKkCZK0JKlCHktJVZBdUk2Ir1HzWYYYLTTeRSzXIaAJAU9uTZG/RgYHMUO39/RQ/dzqbC06dPI5VK4YorrnB8bDwex80334xgMIhwOIx3vOMd5EpaFa961atqjezV/971rnc17DMxMYHXve518Hq96OnpwQc+8AHS8cbFi4uqJvpi+++VCLcSfR4wTbMpWMWORNeHq6xVEw0Ag4ODtiS23id6ZmYGqqoiGAyeY3xiGZda2repotL+0Tand3Ru5/7RTu31FEUGwP5hthhgM9kplkrN+wLIZIiAG5upOk1w2ftTMoTWmgHZ+7fSbEkTTLpK6/QcJPG1cb6gJSPs/SWqEQ52enDqOYpgrZYAzicKPM85fu2DYS8WkmynnI7eIOKMx8KdPsTL+rJ+exkmgJIGGGKDftuE5b+NogY1bslJIAI6b4XdcJoBk+dW6beXj3WYpMhppq3feqVUYVrc5dMFZJfi2HFgCwzDQCqVwrZt24hRnOPgwYO48sorbS1LKdx8882YnZ3FI488gkqlgltuuQW33XabbWohANx66634zGc+U/vb6/XW/q3rOl73utchGo3i4MGDmJ2dxVvf+lZIkkSmGrp4EWEtA73UV9FeXGRPZ61wSXSbQZHjXC6HxcXFmiyD5aixGtVqRH3jot05qzrtdevWwTAMcBxn51TFBMnVbVY9STcIp1VwSh/ZinOGw7TEViLHPR4vWBpuVVUBNFeSSmU26QaAcsWh9R1V7W7Blo62HHSuFyaTDKlmS8mmSkuRVeKttatEUw4gFOzIPTVWK4Scek+o115VROQLhFyHuE/trApLZfZ9N7ChB/FjzZaAPf1hzC823tscAHA8FElCqaoX15Z/XMoAly1BLVvXUNVvm6YJcCYMmDDF8oo7iWTJSTh9WTO66kXllu8JSRFsVSIsdA6GEc8uYiFlNYRX+ylkWYYoiucl7RgbG8OBAwccH3fs2DE8/PDDePLJJ2tV7Pvvvx833XQT7rnnHlv3EK/Xi2g0ynzsJz/5CY4ePYqf/vSn6O3txWWXXYY777wTH/rQh/CpT32KXKlz8SLB1URfNHDlHC2iuoS2GpRMY3x8HNFodJlgrc0Kb3x8vDamHaqEvGpr19vbC9M010TUm0D8kJg249AWcA5JNFV9s4vRJqtyjk5tHwdOJgCy96d+oAIBP30OgnymiNj2UondUGlXtaeTDNn7k6RQaiGEhRqrFS9qgkXbjUXJT2hLPueuHRS5l23IPTUWrft2Llmxa+oslajJG3t/2WbS07Ouk7l9eONKEYADwHMCBF605CSQIOsylLIMT06CLykgMM/BHzMQPqUhfLKE0IkCgicLCJzOwzdprRZVSuzXzRtkNwpyHLDxqlFomoZ4PA6e53Hs2DE8/vjjeOyxx/Doo4/il7/8JQ4dOoRnnnkGR48exalTpzA5OYm5uTkkk0nk83nyO3tsbKylpsKxsTGEw+EGGcj1118Pnudx6NAh22O//e1vo6urCzt37sRHPvIR5PMrE/qxsTHs2rWrId32hhtuQDqdxpEjRxxfp4s2w7hI/7tAcCp5Onv2bJPcqfrf97///dp+rMe/+93vOro2txLdZoii2PRFWy6XMT09jauuuqq27VwkulAoYG5ubs2yj2oD4sDAQI0Y8DxPVoMpaQFpQUu4WgB2FnA2F828JqK6apd2R2j8nDbk2cpVSN9lpzZvVNMmHTnu8XqBeHMFm9I2FouEJAU0YSNfK+J67Su+Dl+TVogvNZbNddH+0ez97Qg5ORZxZbZpjQ4r5HYacuq1pybhHOd8dcJOMkO9Lv6wD4g1e8PbNVyGu/yIlzQAwoqkxAT4YgmmacLjV1FiuHQUM0WAMYk1TeDVf3Ittm3bhsOHD2NoaKjWN6LrOkqlEsrlMsrlcu3fpVIJmUymYVu1OCHLMj796U9DlmUEg0GcPHkSJ0+exI9+9CNEo1FEo1H09vaes+Ibi8WaVhpFUUQkEkEs1uzaUsWf//mfY3h4GP39/fjtb3+LD33oQzh+/Dj+6Z/+qTZuPYEGUPvbblwXLw4uRg3xhXw+TiVPQ0NDmJ1tXEn7yle+grvvvhuvfe1rG7Z//etfx4033lj7OxwOO7o2l0S3GaxK9NTUFILBIEKhlQafc5HjiYkJdHd3I5VKrakBsVgs1mztql/0gF0YiTNNtF01i9YlO9Qrk5Vo8tR0JdpxUyPtH+04qpuAXTNgmXCVoJ6G3+cH0Fyl9no9QIItG6kQkpFslh2hDWLiZCcPcGoHaNsI2UYbPacTCDsJESW9oa6rlao2TWLttNrOqtoeVaKlIcQ9b2fTWCakIdTnWlVlVLLsFZWeoU7ET801bd915Xp89vt/ialTMUydnMfsmXnMTyUQn0shuZQDYGJ+JoVySbP6HZdPLooC9rzmEhiGgWQyiS1btixfGwdRFCGKInw+drprFaZpolKp1Mj2m9/8ZszMzODJJ59EKBTC//t//w+xWAyxWAzz82xnlXocO3bsnPtQuO2221Zek1270NfXh+uuuw6nT5/Ghg0bWh7XxYsEV86xZrQieRIEoUnq9M///M9485vfDL+/cUU4HA6Tsqi1wCXRbYYgCA1VQsMwMD4+3pRiZefOUXXYuOyyy/Dcc8+tqRKdyWTQ09MDWZah63rth9Mx0aOW3UUJpHUaQZycpgnSBN6usZDaTpybJPB01ZWK6iZTBknrO8rmTSBJtFOLQsmmUkk7Z7CvK00kS5omfT/SkhEq7MTORs+ZA0grgS6thLCQ71ULDZoU8SR13zYklpSZEJBlO3218wkUZS9IPRdFEZEhVmSp915VJUiKhNEdQxjdwXYjqUcmmcPk8VmU8mVIioRkMglBEM5JmFngOA6yLNeqy7feeisA4EMf+hC2bNmCL3/5y7V9Z2dncerUKXg8nqYf7SrWr1+PaDTaRLirkhMnP+x79+4FAJw6dQobNmxANBrFE0880bDP3Jw1KTkfwuCiTbiISXQ63VjcURSlpYbbKs4leXrDG95wzjEOHz6MZ555Bg888EDTY+95z3vwzne+E+vXr8e73vUu3HLLLY76I1wS3SLogAoBpTrXhlgsBp7nm5bsVpPtelQdNiKRyJp0zRzHIZ/PY9u2bTAMAzzP14gnWSV22EprS86cWtw5rUTbkCPyFFQVnBiHOocdAaLel3KFTUwoXmZrfUecgySl5GSAJwku5akd7ujA1Fxzc5ndykA+z64slsvUa+KcrDpthLR77k51xLa+1i3Y1VGNfdRKih2JpSrkFOz01VTzpF1MerHEfo+p7xo7rTj1Wno9VPQiG4GwD9v3bqz93W5/aMD6kb/jjjsatvX19aGvr++cx+7fvx/JZBKHDx/Gnj17AAA/+9nPYBhGjRivBc8880ztvNVxP/e5z2F+fr722/PII48gGAy6seQvB1zEJHpoqHFy+8lPfhKf+tSnWh62VclTPR566CFs27YNV199dcP2z3zmM3j1q18Nr9eLn/zkJ3j3u9+NbDaL9773vWu+PpdEtxn1Mo36cJXVX9qUnKPqsDEyMgKO49akic5kMuB5vmZrV7/kKok8OG7tn1fqx8XuR8dpLLZNjAJzaytSEsdV8FYILrHkXSas71pJBnTa1EiTP8ExkaSu15KMsMky9UIWCmytdqHAtl7jOfr+Ia+XeO6KLELTCIs5h9IQRRFRIcdydl2thLDYyV9KRLMddc/bNQlS12VnrUjdX9RzkW1cS6gJlEc9P1eJRCKBrq6u8xqjHrlcDs888wyuueaalo7ftm0bbrzxRtx666148MEHUalUcPvtt+Mtb3lLbZl6enoa1113Hb71rW/hqquuwunTp/Gd73wHN910Ezo7O/Hb3/4W73//+/F7v/d7uOSSSwAAr3nNa7B9+3b81//6X/HFL34RsVgMH/vYx/Ce97znvKqCLtoEA7aOV7+TWP74T05OIhgM1jZT99uHP/xhfOELX7Ad8nwkT1UUCgV85zvfwcc//vGmx+q37d69G7lcDnfffbdLol9MsHyiqxXKakf36lTD6n4scry0tIRyuVyrKNR7QFPnTyQSUBSlZmtXX90zjy/Ad3QB/k4ffJ0+KEEVok9BwORwyUg3KgBKFR3ZYhnpLG3BRv142nm2Oq1Qk5HjrTT9tUkT3UrQC1WJpkNCbHTBDivR9kEkzqzRKNja6BFEylrSbtZeW/7czdsFgYNBxDsXCmwC34oXNe0Awoad5zPZ2GcTwkIRcqfWdwBQIqr9rRDyCqlvpqz3JGQ19vcHNdm0Oz9VVfc4rETXo6qH3rRpU8tjrMaTTz6J/v5+rFu3ruUxvv3tb+P222/HddddB57n8aY3vQlf+tKXao9XKhUcP3685r4hyzJ++tOf4r777kMul8PQ0BDe9KY34WMf+1jtGEEQ8H//7//FX/zFX2D//v3w+Xx429ve1uAr7eKlw8XcWBgMBhtINIW//uu/xtvf/nbbfdohefrHf/xH5PN5vPWtbz3nvnv37sWdd96JUqm05smmS6LPAxzHNZGZepnG2bNnMTg42JRqWN2PssKrBrLY7VdFPB5HpVKB1+uFYRiQpMYfGdMwYRomMgtZZBZWBIjbLl+H009PNF4TAA8nYChTgSfshSEBkDj4IyGIigivJKJQ1pDJl5DOFmEYJoQWGu+ch7A4d7Vwfu4WSDS1fE/oVkmv5BZIqfM48PZFjrekYybeD1Vlf1GpqkI2nVEEM5lMMrfbNqY6bMazc6dwnoroPISFkr+0Ugm201dTGnIKiiwim6NINHssu88WZb3nIRIJ14JMJgOO40iNcisYGxtruQpdRSQSsQ1WGRkZafgsDg0N4ec///k5xx0eHsaPf/zj87o2FxcIF7GcY63o7u62TWKu4nwlTw899BD+8A//cE3neuaZZ9DR0eFotcYl0S3CThNtGAby+Tzm5+fxe7/3e8z9WI2FqwNZquOdy8Wjs7MTuVyuqQoNtNBYaALxiQQwkajbOoWhDd2YPr1Q2+LhOPgiXgR7A5B8KmSfDE4RYYo8KiZQ1HUIIo+0R0a+QMVjrzo36RjC3l8UeJQNZw4OZBIapce2I5+kxphdXSVjkVsiuOz9W3FXofSvtGSEtkyj7jeq2k0TTJpgCYSGOxgMAjGWbIT+DOTybJkJ9ZlrxR2Dgn0qorNAFzvJCtk8KdrpmynrSPb+dtIMShpiJ5UqEpVwj6d1OceF0kO/8Y1vbNt4Ll4hMEzrx/ZiglNP2zWiFclTFadOncIvfvEL5mTyRz/6Eebm5rBv3z6oqopHHnkEd911F/7mb/7G0fW5JLrNqJLe8fFx9Pb2wuNhm/+zGgZXB7IA9i4ehUIB8/Pz2L59O+LxeK0hUVEUyLIMRVEckzAKTbpO00RuKQe9UEExz/7x7oqGwMVSCKsi/F1+eDu8kAMqAiZw2bpu6DxQNkwUKhqyhTL5pWLb9Ecl51EyCOr5UUTdLoSFOIfAWHkA6EmCXXMdqWOm9LfU5dr4fJOSBtI/mg4CoRwa6EAe9mbRLlSE9ENmH+PzeRFPsaukpsl+Lqs7zKvQNLZkArBzx3DeWEfGlBP7y5KIHCkzISrBtg2PRJMgcd/ZNSlSEwLqc81x9GvpVVuvRCcSCUQikZaPXw1N03Do0CH89//+39s2pgsXLprhVPJUxde+9jUMDg7iNa95TdOYkiThgQcewPvf/36YpomNGzfi3nvvrbnurBUuiT4P2Mk5pqamcOWVV5LHrq4wVyqVpkCW6n6UJnpiYgI9PT2IRCLo6elBMplsCAYwDAOJRJJ5bLlEVYcJoteSf7R13ZWihsRUEokp61o27hzAqeemm/ZX96xD90wGvk4/PCEPJL8CXhGhqjKUkW6UNQOZQgnJTB6lsmFfwXWsx24fwaXLxOzNdmSGDBxx6P9t2sRJkTIAhy4YkiTSJJrUj7PvQzuJC13xpbS3dvcJe3s4FMYUo6ptJ4GgnEmKReI52obDUE4bxATGrhJMSUNsVgHIhkfKNcTuuTjUV3s9MnLExLzVSrRpmkgmk231UH722WchCELDyqELF2uCK+dwBKeSpyruuusu3HXXXcxjbrzxxoaQlVbhkujzAOtHQBAEVCoV+P1+2+Sb1SR6amoKgUCgIZCFtV8VVS/pSy+9FIIgYMuWLQ3aa9M0oWkafvLQabBCOcoVdmUuk2FX4HRCNmEXSmEQWmmSyIJDPlFAPtFIXjbs6Mf4kZna3yIARRLQPdwJXhGgBFUIXhmcLEDnOVRME6Zl74BkptBAEp1+zm1lEG0LeqEfcy6PoM7RRjmHjUMDBap6rBFNmLYk2mH6YCvBKdR76/N6AGSYj+lEVbtEuLUUCWcSgCae1J1lKzOhKuRUCIoioeK0SbAV/2gCiizSJLrFSnQmY71ngUCgpeNZOHjwIK6++mrbibYLF2xchCTaoW3uxQKXRLcZVfnF6Oio7X6rrfAmJiawefNmcrzVmJmZgaIoTFs7wCL4kiSR1R6fzw8g0bRd9XiY2ykiQJFrwHnDmhMPZ72io5DII7XETmsIRXwoxHOQAYSDKnxdfnjCHoQ1E5cNdMIUeWgcUNIN5EsViGQkt51PtFN7PTaoBitbf2OHYTKyLAEgkgzbJBmRbKq0FCmlnExaigOnqqQteFFTFfJWUhGtYI/m+9Tr8wCLhPVfkf265HLsdMlWJh3Ud4MsiwDRJEi7htg1CRLSEOL9sos2b5VEJxIJhMPhtuuhr7322raN5+IVBLcSfdHAJdFtRiJhEdBzdYLWk+P5+XmYpone3t6m/QRBQLnc+INeJd3r1q1j2trVg6oGU2RLIvS8/kAA84wKnG34Q5lNREpF2kqPiVYcJ5aJIQegkC6ikLaW2uXtOk4fnWnaf2DPMPzPLyLQ7YMv4resAL0yPKqE4Eg3KiZQqGjIFctIZYowDIN0JaGqdaTKw8ZHmHZcoDTf7JMoNq4GZHQ6Ve2mnEzsrORIHTP7GNvEQIfpg62EsJQJ4keNJUsCeV3U/aDIdu+Js4lmPk9Et4OWk9AkthV9M3t/Ds7fLzt9datyjmpTYbtgmibGxsbw/ve/v21jungFwTBx0VVuL1Bj4csdLok+T6z+IZqebtb6slDVOlcDWdatW8ckFCw5RyKRQLFYRG9vL3Rdb7K1qwdJtogfUIr4ktVHWQJA+fYKAJqXpSn5QIqImdaJZi6+hcQzO6mFqRtIxzJIx1YmC6Pb+nDmWGNqnwgg2O2H7FPg6fBA8inIlHIIdIYBQYAgCzB6Q8guWwGunJIgeeQkgf362T0/ClQqYSuBH5QMwNZ3mHjPqesSiAkSB/q505Vz5yEsZOqkTfWWJNHEdVETCFmmY+Cp5slwKIT5pXnmY1QqYirFlm7ZyYs04jlSr4uqSmRVnbq/7JxZWmksrOqhz7U66ARnzpxBPB637Xtx4YKEadg2e/9O4mJ7PmuES6LPA6t/nJPJJLJZa9mWJbGoR/WxVCqFVCqF3bt3M/djyTnGx8cxODhYC3qxlRxQlWgClGyDqpZS2wGawFMejF6vD0CyaXuRuCZK1w3Q/r90Qx4brMojB8AoaFhayAJnV7Yvwoog7R3sQHLKWpHw8Rz8XT74Ij4E8xou7QmDU0QYAocKgGJFhyoJUBWxyVbMrrLbtiRDSSBJtNMgEnu/a4JEExNAWmpg5wDisBHS5vUl842I290+QtuZLEaRJZJEl4iGYNvAHuJ1sVyAmivYGiFlAYAc0TxJfapUVSRJNDW5sGtSbCVsJZvNwjCMtuuhr7jiigYnJRcu1gxXznHRwCXRbcTZs2cxMDCAiYmJc0Z1V0n0+Pg4BgYGIMvsZcrV7hxVW7sDBw7ANE1bog7Y6I+ppD+qmkct4dsSeILokQlq7OcSDAYwwyDXsiQBYGtKKdJWLBJx1QRIez270I36RkbDRGY+i8x8FmGPjFO/nmzaP3LZEIRnZhDxyvB3+eHp8ELyK1CDCiphP3QOKBvGctBNGelM0XGSoX21myA5JIl2dg6AXtKn76sWHECcpg/axF5zHBGYQ4aw2JFoh5pkm7HKhPUc9dorNpMOqqodDAUxt8T+nFATLjLohrnVglZxrq9uRRNd1UO3swFwbGwMBw4caNt4Ll5hcOUcFw3ctuLzAMdxtR/CQqGAubk5jIyMnDMgBVj5oYjFYhgeHib3Wz3WxMQEuru7a6T7XI0yJJEl7neqSkydxq4S7VRrS38EqaqkjYyF0is7JAEVSkpil2RIVsGJA5Zf3FK+jKWJOKZ+M4UzvzqNxd/M4NSPj+DMvx7B9P87hvijJ1EZG4fnyDxC01msrwDbvB5c0h3GZUNduHSkGwFRxPqBCHq7AlAVcfUpmmCXwEenJbL3b0UTTclr6BAWGwmPQzmHXSXaJB2Z2bC7Lop4kmO1UNWmNBh2umtqpcGu14B6LqrCrsgSPB0AkM6wm4INolmZ4yznEKdotx4asEg0FaRlh3g8jptvvhnBYBDhcBjveMc7aquX1P5/+Zd/iS1btsDj8WDdunV473vf2yR9q/4W1f/33e9+1/H1uXiRUK1EX2z/vQLhVqLPE9XKX9Wz2ev1rolEV7/oQqGQbQxtfSW63tbOMAzwPH/O6godf0009bSRRJMWdw6dJaiAC44gshxHf54liV3x9/v8AJo12RWi8qcblI8vXXl02vhGklLTRHYhg3y2Wc6yadcA5p61dPkCgJAqINAdRChTxs6wH4Iqg1N46ByHsmGCFzkYBpDOFpsmPU6Dengint1Od01JMCgO217Sb6epd/a5acXzmRrLjpCbRN2DI8ZSbJwunEaL8zxHvsYVjf0c/T4vFpbYq0Ugqv0FoklSlgQ8//zztSCp+v/LssxclTNNE4lEwrZQ4RQLCws4ceIErr76asfH3nzzzZidncUjjzyCSqWCW265BbfddhvpgTszM4OZmRncc8892L59O8bHx/Gud70LMzMz+Md//MeGfb/+9a83+N7aWay6eIlh4uIjnRfZ01krXBLdBmiahsnJSVx++eUAzh3VDaDWVBiNRm33q9dEz87O2traMc/jMCmOlmc4C1uxI7JOiX25zNY+0+RTIBugKLkKT7yWlo4y0bRdtmmopHSrhTztC8yCbWV3jY4HWlFHYjKBvu4gzjw93rR/dCiC8mQcCgB/xAtvxA9PWIXkUyD5ZAwGvdA4oKjpyJUqyORKNiEs7GuVZREVooGPInJU9dgu7MRxCEsrITfEPW3vUtO+sUhrQwKt+EeTTYKKiHyBPamkZCb2Wm32ex8Kh4HZ5s+KRxUhiiIKhQJSqVQtVKraDC2KYgOprq6qaZqGSqWCTCYDRVFsrT/Xgscffxzbt293nH547NgxPPzww3jyySdxxRVXAADuv/9+3HTTTbjnnntqEcb12LlzJ37wgx/U/t6wYQM+97nP4b/8l/8CTdMasgHC4fA5f09cvExwMVZuL7bns0a4JPo8UK0mT01Nwev11pYM10KiY7EYOI5DMBi03a86lmmaGB8fX5OtXT2cElbqY+C0sZAXeFI6QRFZ6uQVopJHnVsQeZpkOvSuJoqry64kbHDgATSfnyKfCUJKYugtVLupSROVlrhMcjgAuXgeufgKefH6FWa1W61wGEiW4A17IYc8kDwSIAvwiCK2DndZ2u3CsnZbN2yrtGS1m9jf1gHEYQiL3VhU2An1eaLcROzGIqvattV2opeB2N9uLPL1IvZXbEg0xe1tQ1hKzl4Xn8+DTZs2NZ/bMFCpVBrSWqv/TyQSEAQBJ06cQLlchqZpNQ/91dVs1v8FQWgi3AcPHmxJDz02NoZwOFwj0ABw/fXXg+d5HDp0CG94wxvWNE4qlUIwGGwg0ADwnve8B+985zuxfv16vOtd78Itt9zSVl9sF22EYYD+1P6OguzGvrjhkujzRNWibtOmTbUvrHOR6OoxkiTRhHIZ1Up0va2dYRhNX6AUHOuPHc4mqcYwOxJNyTkokklZ+FFVc1EUUCKa5ehJBXMzCbswEIrAyxJbKhMKBjHLkJLoNpZBlFSGTKcjYKftpsYyNAPJ6RSS043XvHX3Okz+eqL2twygI+xBlyihT1Eh+2VwiohkLgNPMAANHASRR8CnILMq3IP66beNSCdJtDMZDeDc25giKxxnk2xJEfIWPLKpz5SdNIRs9iQdSOy+c2gJCIXVbjRVUJ9Fyt6O53koigJFUZocOH7729+iu7u7Fvet6zqTbJdKJeRyuYa/TdOsjf29730PL7zwArq7u/HLX/4SN910E370ox8hGo0iGo2it7eXbA6vIhaLoaenp2GbKIqIRCKIxWK2x1axuLiIO++8E7fddlvD9s985jN49atfDa/Xi5/85Cd497vfjWw2i/e+971rGtfFiwy3En3RwCXR54n5+XkYhtGwjHYuEp1MJpHP5+HxeNbk4mEYRoOtHWDfwV4P0ifa4bIwGSdNVOAEgSdorI3/MKXrJHTa1EVxLTiGUOe2I0cUnFbgqffS7/NhnhHZLko86WxAJdrlCSkJ9f4BQIUgOdRruJowcQDyyQKKvhzmp5PMYzp7gzDm0giIPALdfngjPigBFcGyicuGumAIHMqmiWJFR65Ytg8CIX2anZFoe+9sSg7Efg9VRUSh6Cxa3E4iRXtkO6+QkyS2hRAUk4g8pz26bawKidfYadBKVQ89ODhY2yYIAjweDzwezzmP1TStRqr/03/6T+ju7sb09DTm5uZw8uRJfOxjH0MsFsP8PNufux7Hjh1zdO0spNNpvO51r8P27dvxqU99quGxj3/847V/7969G7lcDnfffbdLol+ucEn0RQOXRJ8nqsmB9UToXCS6SohTqdSaSLSu6w22dk6smsjmPtL6jhqJqDgTP5J2lVqKhJHhC0QlmnoZRPHcSYZrPTcFg6gS8wJHvuZOPbvJJENFgkZ4ZKuKB0AzYabIDEW6OZ52EyFXT6gQFjtd7rLUwdAMpGbTSM1ak4atu9fhZF1Vu4q+nf3onEjB3+mHGvZADqoQFAmGyEHnOZR1A/myhkyuhEzOCrohbRspRwuF1nCTxNemekuRaKd6cDtCTo1lV9UuETpmUmZio0entdpUCIuMUpndcEg9F6f2dvl8HpqmIRQKOToOQE3yUf3ueeMb34g3vvGN+MUvfoF///d/x89//vPa+zQ7O4uTJ0+iUqlgYGCAOd769esRjUabCLemaYjH4+fUMmcyGdx4440IBAL453/+Z9uALQDYu3cv7rzzTpRKJboI4eKlg2txd9HAJdHniVAo1FDpAOxJdNUK79prr8WRI0fW7CddtbXTdd0ZiXboJ0zDYaXWrhrcJkkFSeztGrMceldToBxDRFFAmdAyO27yJJ6HXUMpdQ4qFCIUCmBxqtliS5QEVErsezOTZhNvjXBoaEX6Qr0fAs+jmCmhmGmcRMiKiPKqyqpP4BHo8iHUUcJ2vxeSTwYnLwfdmCZ8koieTj9SmWJDqp+dBIIi0aSNno07BhmFTlVvFckxiaa+K+wizylCbKshdygNUWxWFKjrckqiE4kEgsHgmhqw14qxsTFcc801De93X18f+vr6znns/v37kUwmcfjwYezZswcA8LOf/QyGYWDv3r3kcel0GjfccAMURcH/+T//Z00BL8888ww6OjpcAv0yhWkaMC+yhL+L7fmsFS6JPg9wHIfNmzc3/YCyUgarcGqFVyW7/f39a7a1qwdJWJ3OGkk9B1WJdu4f7ZTYU8vediSaroI7q66alOODJDSRuSroJjpqgsI+t22zGNnExt6fIhiyIqNSYlcKRYH9tZHLssl12SYBj7pep7IJSZGaXndTN5CeyyDkVzF5eqHpmO17hpE7PA4BQIdXghySEe7pgN+jQvd5AEmAthx0ky9pyBbK5EoGBTsvaqo5tJVURMpNhLqHVEVCVmOvZlByCrvJEBUtTlpp2vR0ULIcp2mFF8If+uDBg3j961/f0rHbtm3DjTfeiFtvvRUPPvggKpUKbr/9drzlLW+pOXNMT0/juuuuw7e+9S1cddVVSKfTeM1rXoN8Po///b//N9LpNNJpa7Wmu7sbgiDgRz/6Eebm5rBv3z6oqopHHnkEd911F/7mb/6mXU/bhQsXBFwSfQEgiiKTHGuahqmpqVrE9+o0Qhaqy38+n29NCYWrQZFlilRR+1OUmK5E2/lHt0mnTZFouwAYp3IO0m+akJjYLXk79F2mqvl21neU1Rj5vtrEgdNgHxMMhjDNSJa0SwasELrYYoGInyfGkVqobNaPWc5XUM5XkJ3NoW84gtnxOPs8/SH0ljX4Ij6oIS9EnwxeFeHlOGwf6basAIsVpLNFFIqVc/hHO2sCbcWuzk6TTMx56Aq5XSMm8T6SEi3Zub2gV127Jrqqh2bZxrUKXddx6NAh3HPPPS2P8e1vfxu33347rrvuOvA8jze96U340pe+VHu8Uqng+PHjtR6Gp59+GocOHQIAbNy4sWGsM2fOYGRkBJIk4YEHHsD73/9+mKaJjRs34t5778Wtt97a8nW6uMAwzYtP/uBqol20C1QlemZmBqqqrtkKzzRNTExYutBKpQJJkhxH17aLsFIgNdF2JJpy53AoPaHOYFeJpqp/Tl8PRWH/oNsteTsl8GQl2k5u4LAiSJEsu1hzSoJBzThUL3v52a5BkpoMpDPNjZYArY8HAN0hWbWbqFaKGrLxHLKLjQx02+XrMP70ioabBxD2SIh4VHgECXJAgeiRAdkKuikZJgyYMAwTqUyh4R5oxWnDqSuL3cSG+oxQJFpVRLJJkbq37e5hyvrOiZyjUCigXC63NXDk2WefBcdx2LlzZ8tjRCIRMlgFAEZGRho+q6961avOuUJ34403NoSsuPgdgHkRaqJdEu3CKUgCIgioVBpJQNXneXR0dM1WeIlEAoVCobZfK9o+6keM0q+SX9hkKZrY/CLokimWaUfgL3Ql2q5KTMeBO2vKstd8UxMUZw4VtkSdDCIhzkHphW0aJGWZreX0+XwAo9ptMny5qygU2KE4lKWiXSMkJdVhvYeVQgVGXsP00RnmMYoqoVysQAXg7/TCF/HDE/YgWDFw2WAnDJFHoVJGJl8ERBmqjb6atL4jbSNbsb5zTqIpDbldwyM1lhN3jgulh96/f39bx3TxCoVhANxFpiF2NdEu2gUWOV5aWkKlUmloQOF5niSzwIqLx8zMDNLpdC2Jy0niFlXdXU3yq6D9o9mbSV2yXSXaIZGlPpskr28hDpwi9hTRsguZoUD6ZpNVYvY4dtpU0oPbYaiJXSS2Ri3dEwSetJKTBRCB0GS1m/JH9/n9SMwTbg9EtTsZT7DPTThzAEC56Mx/3FZHvDwWByC3lEduyVrCVy4ZxMnfTjXt37tzAKFTcfi7/VbQTVCF6JHAyQJ0gUPFMJEva8gVykgtB92Qcoo2ykxk2+ZJoqpt87oUS+zX2Ekl+kLoocfGxnDttde2dUwXr1C4leiLBi6JbgNM02wgtSwSffbsWQwNDTVUMQRBQKnErsQVCoWarV2pVMLU1BReeOEF6LoOjuOY6Vqsf1OkimxqatMHwU524rQSTTXeUSyzpThwyjmDAL0K4VxKci5dvKNzEISRlIyQ56AnQWuNHK+B9GO20Y+TEd5s2MpoCHIfCAQRQ6b5AZtVF+repeQnlA+3JAukHpy0qxM4aCUNyakkklNJ4iItVINu/J0hbFNVSD4ZvEeCKfDQOED1yOjvCSKdKyG7KujGaZKgXQiL02hxO/9opyR627Zta97/XDBNE2NjY/jLv/zLto3p4pUL0zBgXmSVaNedw0VL4Diu6cdldcNgNptFPB7Hrl27bPerx+TkZM3WbvPmzRBFsVa5Xp20VSqVUCwWkUqlatvL5TJM07TxP2b/iDnl0E4bC+2qwU4lFVSltqU4cIcuJq1UiWkC70xCwxHEzPa1dThJsG9edGbhR1rf2UgKSOs7SjJi87qTEgzitbIkI82NhYoqoUTEXlPOJIUCO+RGViSaRBMrFlSjqeJpvq5a0M1SDhNHmuUkmy8dROo3VrU7KAnwd/lqQTeiTwbXHYTOW1aAxYqObKFsIw1pn/WdqkgkifauUc5RKBRQKpXaqoceHx/HwsICrrzyyraN6eIVDLcSfdHAJdHnATtNdD1xmJiYQDQabfLspDTRuq5jcnISl1xySZOtnSiKEEURXq/X9toMw0CxUMT/wq+Yj1M/iNlss2cwQBMhiujZ2c85TfRzbn1HeOMKNnHgDm33qPfeLgGQfN5t8o8WZdrbmapuUqBeQ47naMkIsZ2SDtmGsDj1jyZIv334DR2Yw4KsiCSJ9qheAAy/bUJ+YleFojTcpNOGDbmn7rn6z6de0WtBN4LAk/eKtGsAnZNp+Dv9ELwCoPAIdoXg8arwjnQvB91UkM6VkMla1W2qqk1BUUSwFgeAtVeiE4kEAoEA+dq3goMHD2LPnj3n/N514WJNMEyAu8hIp0uiXbSCc1WiK5UKpqencdVVVzUdS5Ho2dlZKIqCUCjUckMhz/OQZLpyI0sygOYfa6phjiLXhQJbh0pWg21ItNPqo2MCb5dk2C7vajIghSYnZBWcOAdFpmRJpEm0Q39j6jWUZbGm5W06B/H8KmW2xti2ak/prh1q82VFQjHPPj+ZGEjcWLbaX+LepYIxfH4v8mn2dVUITXA6nWJut1s1oK6L44iYcq+MXIZoxNRNFNNFFNMrj89hFpsuGcTZVRpuv8Aj0O1DgBMx6PdC8ingZKEWdKPyPLojfqSyhQZ7PDv/aCck+kL4Q19zzTVtHdPFKximCeAikz+8Qkm0M780F2tCPTmemppCIBBgRs+ySHTVxWNoaAiGYYDjOMe2dlXYxUyT1lNEkEaIWBqlri1vEydNoVJxtuxOyjyI3e08nJ1GkVOgJg92VVeySkxJF6gJit05SD22M3mE7fMgAz9ojTqFMkEkqfeJIoV2/tEUWSXjyxXn2l8KdkmGPEc0T/p8zO0mR587l2XLSagPj2TzHCknIdZkyNQNpGMZTD83g/FDZ3HqZ8dx8uGjOP2vRzDx46PQTywg/8sXIP56Fh1nk1iX07FFktEvibisP4JLh7uxc6Qbm9d1YjAaQjjogaqurebjNhW6eLnDNMyL8r8Lhc997nO4+uqr4fV61yzTMk0Tn/jEJ9DX1wePx4Prr78eJ0+ebNgnHo/j5ptvRjAYRDgcxjve8Q6yYEjBrUSfJ1gEoUqODcPA+Pg4tm7dyjyW5SddtbXr6+uDruvntSRpd1ObpHSCOoD9gIeqtAX8iMeaf8DtQlgoyQglB6BAaUfFFprlyNeQrILT5JOq4NJSEuoczok6FaDhVK5iR0qpajcdTNOCpzZFoonLsiOrJYpEE7Cz/XOaFGmrIyauSyAmuIGAH0nCmYSaSCdTSeZ2u/k6peEm/aO9MrkKUL0uDkA5V8ZSbgkAIG/vxwuEJaCfuI/qUSwWUSgU2kqiFxcXcfz4cVx99dVtG9PFKxymgYuvEn3hnk+5XMaf/MmfYP/+/XjooYfWdMwXv/hFfOlLX8I3v/lNjI6O4uMf/zhuuOEGHD16tLZCePPNN2N2dhaPPPIIKpUKbrnlFtx22222Xu6r4ZLoC4Aqia6mDfb09JD7rdYBT0xMYHBwsLa91So0YO/6QEoIHC7JkJVX4rolSUKR0CVTleV8jl1NyxHVbmog3s4Nwmkl2iHBtfePdiglaaGy6zRkhpTjtNAMSHpqU84VioiKw+h0alZj7/n8YpBo5/ci3QjpPLhE19jHhIJhzKI5uMZO8pRJsz9vFY39OiqqjZSGuB/tXFZU37kbCy+EHvrQoUPYunUrurq62jami1c2TMOEeZFpop1yByf49Kc/DQD4xje+seZrue+++/Cxj30Mf/RHfwQA+Na3voXe3l788Ic/xFve8hYcO3YMDz/8MJ588klcccUVAID7778fN910E+655541p526co4LgCqJHh8fx7p160givFrOUSgUMDc3h8HBQZimeV4EGrCXIjgl0U4lFZStmZ11GkWEvF72MjZVycwQqXaGTjc5OW12pEA7g7SR4JIk2oaoO3QloWQ3rYSw8Dz7GDttNwXSuYLYX7RL5nP4mvB2jiUOQlgA+/eKXLFo5bqIsSj4/TaNcyb7VaYmuXZhEtSkw251QlmDJvpC6aEPHDiwpn0feOABjIyMQFVV7N27F0888YTt/t///vexdetWqKqKXbt24cc//nHD42tZknbxuwfNLEEzLrL/TKuZOJ1ON/xH2fheSJw5cwaxWAzXX399bVsoFMLevXsxNjYGwJJohcPhGoEGgOuvvx48z+PQoUNrPpdbiW4DWI2FpmkilUph9+7d5HGrSXS9rZ2u6+dPom0cGUhPZrLy2p7mPkpqYZ2bOjURJ62wpSShUIjt/2vzclIE0OkyPaVWsWuic5yiSJ3Dhkw5dbvgCMLUSggLdQ6KMEmKwDK6sM7h0D/admJBSB2o+8329SVjr6nEPnoi5FTKYndvUeSeDIexa1Ik3t9gKIRpRoqk7JEBIk4nnWJbcJSJH1zVK6/p+zCRSGDTpk3n3M8JxsbG8O53v/uc+33ve9/DHXfcgQcffBB79+7FfffdhxtuuAHHjx9nrkYePHgQf/Znf4bPf/7z+IM/+AN85zvfwetf/3o8/fTTtWjxtSxJu/jdgSzLiEaj+I/Yj8+98+8g/H4/hoaGGrZ98pOfxKc+9akX9TpisRgAoLe3t2F7b29v7bFYLNb0uRRFEZFIpLbPWuCS6PMEpYkGgL6+Psg2Dhn1JNrO1q5VaBUdG7dFUSxWkFjKoJCr1LSIjivRDs9N+cDaWcCR2mDyWolzE6+b9aNDsDNiLMp9JJdz1nzQUhy4wyRDu/tFIyYDpDyCnAzQ7x814SCr3dQ57JoXSQcXYizb6ryz+40ivrIikmTVseezKiGfZRNJ6r2i3ndFlWgnFeKes5skUTZ61Ovl9agACEcRQQLLHUg3qOuyZBV2AVOmaSKfz7e1El0oFPD000+vyZnj3nvvxa233opbbrkFAPDggw/iX//1X/G1r30NH/7wh5v2/x//43/gxhtvxAc+8AEAwJ133olHHnkE//N//k88+OCDa1qSdvG7BVVVcebMGZQJx6LfdawOngPQZO1bxYc//GF84QtfsB3v2LFjZE/ZywUuiT5PcBzXdNNUG+TOpanheX45EMVoi63daixOLuL4vx1u2OaPBBDsDsITFCFHfRBUGeA4aKZVtZJVCapHRrHQ+CFvVwiL0EKSoWOHDJLA001/1NI+xSYpiUIqzZaS6DZSEscpig79o229ndsYwkKSaNJRg9Ax2+hZyYo6VT1uYQWAtL4jNC6yKjkm0bQln0iTaMqujniKsmpjR0heFyE9a6VCbqdHL7JfL8uBZLFpuz/kw8jISEPIVCaTqYVN1ZOSJ598ErIsM4l29f+SJJH3Xz0OHz6Mrq4ujI6O2u5XLpdx+PBhfOQjH6lt43ke119/fW35eDXGxsZwxx13NGy74YYb8MMf/hDAuZekXRL9uwlVVd1VBAB//dd/jbe//e22+6xfv76lsaPRKABgbm4OfX19te1zc3O47LLLavtU+9aq0DQN8Xi8dvxa4JLoC4CpKcsz9VwflCpRruqn22FrV4/YmYWmbdl4BrIiYOb4NPOYUFcAucUMZK+MYE8IvkgAql+FXwa27eqDYQKVioFCvows4ScLgGSyVNoe4Nxmzqlm2K7pjyKyVMVOkdmz645wGDFGw5adKwlFDCnLPwrU85MkgSZ5TkNYCFJqF2ri9ByijXOFUxcV0rdb4slKtNMQFjsHEKfyk1YCaEgnFUUCJaegXkfqOaqqjFyW/Xmn3l+7JkGK3FOTIZ9fbVqaXX3ckSNHYBgG+vv7G1Jdq7rM6jZd18FxHEm0Z2dnkUqlMDg4iH//93/Htddee07Cvbi4CF3XmcvHzz//PPOYWCx2zuXm6jZqHxcuflfR3d2N7u7uCzL26OgootEoHn300RppTqfTOHToEP7iL/4CALB//34kk0kcPnwYe/bsAQD87Gc/g2EY2Lt375rP5ZLoNqD+i98wDExMTJBBKvWokuh4PN42W7t6zL4wz9we6gogPpts2i6pElKLllaxnC9j8ewCFs9aRHxgYxTTp5q/uPv9HAKVPPydAXiCXkheBYIswuOTlqUkGvLZEtLJPLSKThI9wC4O3BkJI0NKKCcRmyRDqpmK7EQmzuHxqgCDXAM0ASzk2QQoS0RMU89PkmzkBm1KMpRkOs3PMYluQXtMumDYhMYUKuwlVXpVgg1ba0GHY9lNMqlKP4VWwmHIsTwSSaJpQk6sjHA2GnJiIubxsSetK2NySKfT2LBhwzldNHRdbyDV1f9Xq9v/9E//hO985ztIJBIwDAOqqmLr1q2IRqPo6+tDNBpFNBrFBz7wgbYUO1y4cGGPiYkJxONxTExMQNd1PPPMMwCAjRs3wu/3AwC2bt2Kz3/+83jDG94AjuPwvve9D5/97GexadOmWj9Bf38/Xv/61wMAtm3bhhtvvBG33norHnzwQVQqFdx+++14y1vesmZnDsAl0W3H7OxsbanwXCSa53lwHIfJycm22drVI0aQaNXP/kHq7O8gj1maTTC3lwplJGcTSK56fMeBzTj+qxMN23wdPgTMAKReD1S/CogC0rkcAsEQNM1ALltGJpVHIddIbsjYZkozzNwK8FSF2sbWi1rCJ3W+1LlJ8imQ/ruKogJoJswiIfXJZIi8ZJ6WwzhtarSrxjqNnqZg59BA2dLRemGCRKti031WG8vh9dpVop0S31YcLUxi2thOez/ZJoSFTkWk/aOp156aMKtee3u7crmMXC63Jj20IAjwer1khPfu3bvxt3/7tyiXyxgaGsJDDz2EcDiMWCyG2dlZxGIxHDt2rOEz3dXVBUEQMDc31zDW3NwcuTQcjUZt91/LkrQLF68EfOITn8A3v/nN2t9Vw4Z///d/x6te9SoAwPHjx5FKrfRgfPCDH0Qul8Ntt92GZDKJa665Bg8//HCDQuDb3/42br/9dlx33XXgeR5vetOb8KUvfcnRtbkk+jxRr4mupg0ODw9jfHz8nCQasMjV0tIStm7d2hZbu3pQlWjqHP4w+0fF3+FFNsG2scossRvsWEviuUQOZrmCM0+ebnos0heuVcclVUKoJwRvJAA14IEnoKK7sw/6spSkWKwgmy46TkiiKrV2SYZOHUOcupWIEk2iKWIoE40a4Y4w5ieaibRdM2chx652UwE3pI65jc2ArUSnO4/wpu3SnKYP2slPnHo+2zUfUDpi6h6VbEm0M9cZW5kJMRalgFBUmkRThPxclehEIgGfz2fbyO0Uzz//PDiOwxvf+MZzrg7Ksow9e/bg0UcfrVW6DMPAo48+ittvv515zP79+/Hoo4/ife97X23bI488gv379wNY25K0CxevBHzjG984p0f06u9UjuPwmc98Bp/5zGfIYyKRiKNgFRZcEt0GmKYJ0zSRTCaRz+fR39+PqampNZFoAAiHw22ztavH9Ok55nbKO1ZR2T9AkWiYJNFLDFkIABSIpV+q+79eYlIpVrA4sQhMLEIQeRi6ySQdQW0A/lIO/k4/PCEfJK8KQRbhVQVs3BZFuawjlykincyjUtZtGtlacM5oUyXazg2BqohSBJeqtKseFZkEpV935v2bz7O32zXwkT7YlASDtL4ToVMJeFT1mIrwtpNgOAxOsQ1hcWgxZzfhKRWp6m37/KOp59gKIadgFy1OkehzVaIvVNT3vn371iyvu+OOO/C2t70NV1xxBa666ircd999yOVyNbeOt771rRgYGMDnP/95AMBf/dVf4fd///fxd3/3d3jd616H7373u3jqqafwla98BQDWtCTtwoWLlxYuiW4jzp49i8HBQYiiuCZNtK7r0HUd3d3dbbO1q6KQKZJV4mySrak1iJKWN8BukKyvHq9GcoEtLaAIlepnn6OzrwPzk0vsc8xnkFpIIzXXeA1br9qA4080Vrs9IS+USgTrelQofg9ERQZEHrphuQiIIo9MqtDkjOC08knb7rVC4NnnKJfYZIpyabAjuJRUxufzg2VPJhHhJRWNtmyiyB9Jom0ix4tErgd1X1HVUFupA0WiHTYvAjbBKcT9IylssmhXhW+rfzSlX7cxC6KeI9WcYCcNoa7Lc460wkQicU4HDacYGxvDtddeu+b9//RP/xQLCwv4xCc+gVgshssuuwwPP/xwrTFwYmKi4fv96quvxne+8x187GMfw0c/+lFs2rQJP/zhD2se0cDalqRduHDx0sEl0W1CoVDA/Pw8fu/3fg+AVXk8F4menZ0Fx3FQVRWmabbF1q6KM8cmyMeWpgl9M1HlEwjiRDUoirKA5BzbHzafZrMgijgFOv1MEi0pIlIL7Ea9fKZZolBI5aHnSzjzVLOUZGTnEGaem7SuXRHh7wxA9EqI9HVCVBXwkggTHCqajmJRs6QkbYpHt7dgY98/JIluIcmQki5Q1U3qxzsQ9CG9xK52U3KVVJJ9j1B2gLYuGI79o9tYPaYaOm307hQhVhS2zET2SChQ1ndkUmQL/tHk5JDWaq+2w6yC6lmQZOfx6R4vLeeoVCrIZrNtrUSbpomDBw86lk3cfvvtpHzjsccea9r2J3/yJ/iTP/kTcry1LElXMTg4iI9+9KMNwTAHDx7E9ddfj2PHjmF4ePjcT8CFCxeO4JLo80RVEz0xMYGenh54PB4AltetHYk2TRMTExNQFAWaprXN1q6K3/zqWazb2Qt/wA9DN1EuVlDIFmGYJubONPuwAkCKqh5TS6yETrGzrwNz4+xzJObYxJf68VSIZdzO/g6mhZ/dOajEtfrnoZU0JGesSYaRLSEeYxM9cbgb3kIJgc4APGEfZK8KQZHgkQVs2t6HUmnFlaRc0mjvarsEQIfe1RTsKqWUdIGsSJJpifTzoKrdVuNk83tVLBFWakQQB0ATdTI4xUY24TTlj3p9ZUWiSTSxyiBJbBKtKCJJosnGvjb6RxvEd5ntRIEYq5VAFzs5RyKRgNfrJUMdWsHk5CTm5uYcWV291Ni7dy+efPLJ2t+maeJ973sf3v/+97sE2oWLCwSXRLcBmqZhamoKl19+eW3buSrRVf203+9vW7hKFbqu49//4SDmTjQT2W37N2H+hTkEOv0IhH1Q/SokVYIgCjAMEx29QRRzJeTSBaQXM9A1AwVGZRegyUMg4meSaNWvIJtgS0koiQkFqglS8crIxNkyFlaFGqArtcGuIEmi47MJaGUNmVXV8I27R3Dq12cbtqkBD6RCBENdKtSgB4IigRMFGCYHURYg8Bwy6QJy6UbySJMQZx9bqtpt5+3crqAXwMYCjWB5wWAQQPNqiUxUaQHaDrBQYBNyqpm0leoxRVYlRQQrfR6weU0oFxeb565RqYjEzE1WnftHa8R3meKRUSmzx6K+/+zuFaqqbSfnuBB66F/96le4/PLLSQePlyP27dvX4GDwD//wD5icnGwIgHHhwkV74ZLoNmB2dhYej6fhi/xcmujx8XEMDg4inU5jdnYWpVKpKc5WUZSWyPWhR55iEmgASC9mYOgGUvNppOZXCOD2/ZtwdOxk0/6RgQ5UiiWM7uiH7JFrVSRN0yFJPLqHIkjHsyhmS7UfbetHuhmRaBgzp9jNjvFYkrmdaoCSPeyqUyQaJl1JKIkJVY31EFaA4d4QOVYm0Uzgi5kCKtkizj7dLCXZcNk6TD9jSW8ESUCoNwxfhw+ekB+iR4IgSTDAQdOtgJtEPAOBSEukQIewiCjp7NeXImbkOahmwBYqlRRUovEVAGCyz19ND12NbI7NbkW766UqvkR53t76ro0hLA5t9Fqx5KMWyVqxvrN1XyHuCTs5RyKRaHuldWxsbE1R3y8n7Nu3Dx/+8IeRzWbBcRw++tGP4rOf/WzNR9eFCxfth0uizxMcx2Fubg7Dw8MNlR87El0sFjE3N4cDBw4gl8shkUhA0zTkcrkG8/+qTnp1ohaLbIuiWDv/Y/+/g+joDyOfKqCUW1kCHtzaj6nnZ5jXlCT0xdHhbhw9eKJpuyegQtd0lJeXXxWPjGBXAN6gB6pXwra968HxHAzNQLmkoZApItQdwPTJWFOFzBf2IUdUoilXEErs6u/wMbcrPhkZogqeTzurtIe7AiSJphotK4Qvr1I3GdArOuJTS4hPLdk2bXpz3fDmivB3BeEJe6H4lqUkCo9N2/tQLmvI58pIJ/MoFSq2cef0sr4zRw0yNU8WScLolKi3omNWVQ9zu9/nA6txkqoqA0COcCwhHS1sNdzOiG8rFnOtOG1QJFoU2RNjycYqkJJPUZM61SsjR6SgUtKxSqWCTCZzQZw5Pve5z7V1zAuNPXv2gOd5PP300/jpT3+K7u7umjOICxcuLgxcEt0GXH755U0kQhAElMvspcmJiQl0dXXVKs2RSKRpGdc0TVQqlYY0rdUxttW/q9Z4siyjnKvgqR8+C335B0xWJfgjPvhCXnQNRhCM+MHxXI0AFzIFeIMenH5mnHmtiVXOF1WM7lrXQK5LhTIWJpeg+hXMvjBXI9f1CHX6wMOAL+xFqDMIj1+FpIjwBDwoZIuolDQUc2VkU3mkl7IwdANxIuSFqlBT9lmRaAdmCcu/xDyhoaa04ESFOtQdIHXlFIGnNMZU0yZgVe0rxQoyS43n2nzFKE48daZhm+JToJQ6MNilQPWrEFXFkpKAA3ggnSggky4im2qcSJANZgTvpZxdRJsmMpKoE/tTshuOs3FRIc4hEtpjr8+DfJpwEyGeezKZZG43TJooO9Vd2xFfMkKbuF47Qk6NRZJoxbnLCQXFI9EkmtBEJ5NJeDyetrpVxONxHDt2DAcOHGjbmC8GvF4vdu3ahR/84Af46le/ih//+MduoqILFxcYLoluA1hfVFQlWtd1TE5O4pJLLqmRX9bxHMdBlmXIsnzO5ThN02qE+n/f9f0agQYsshmfSSKXymPmVAx6pfmXdeTSQfAiD3+HD/6QF56AClmRl8ltAb6QD4VsEblkDqnFDEzDRIKoxK6/ZJhZuVZ8Ck7/ZhyGbiCzmEVmcUX2sP3qzcxj1l86jEK2aF2PaklJTNMiRoLEo2ugA+l4tpGwEwyM0lDb6bSpCjVVEQ13B0kSnSC01ZSURCGWr4OdfqQJ68Jcqvl6S7kS9EIZ40+/0PTYwOYopk9YUe68wCPYE6rFt6tBFd0RD0yOg6abKBY15LJFMh1P14hJjV3jpFMPbkrjqzh3m2jF+s402AeFQmHMMhokqXMAQLHAbhIkPcBbsdEj0v/sKvrU5JSSldn6R1PWdwTsqtqUJjqZTLa9Cn3o0CFs3rwZ3d3dbR33xcC+fftw//3344/+6I9qSW4uXLi4cHBJ9AWCIAjMH7HZ2VnIsoxQKNS2hkJRFGve1E/+82+Z+2y8bBRHfnW8abvqVzB1bBaGZiC9kEG6jgT2bevG7LFmB4zhXYMoZooYuWQIikeGKIowTaBStqQDXYMRpBYzqNT9iK6/ZB2OMTTXskfCC79hV8FVn8J8LDrag9iZ+Yb9AhE/fCEvJJnH9r3rAY6DrhmolCrIZ4tQfTJM02wiYh29Ycxm2RVqSrJBaWM9frZ0IBDxIROnGiqdhZeEeoIkiaYmNlQ11hdcuV5DN2rx7aIskEvxQW0dPJkU/N1BeMM+KD4VvCyhqBcwurkbhsmhkCshnSygmC9DsAs1IW3pKEcNOoTFqdtEKyEslGyCgs/vA5BkPqaV2deVzbDvk2KJboqlniM1gaCcSTjORqvdglUgWSEn3l/ZpqpNaaITiQQGBwfJ41rBwYMHf+eq0FVceumlkCQJd99990t9KS5cvCLgkujzRNXibvUPgyAITU1NVVu7devWwTCMttva/ez7v4AgCtiwewSyIoEXeEsWUqpA1w109ncgtZhpqH5uuHSESa69QQ8WTrOlFLqhYe5sc+Ni13AHFsdXjlF8MgIdPniDXgiSgIEdvfD5fOA5HqVCGfl0AZ2DHTj6H81VaFEWcXbZu3k1LHu7FRJdzJVQXNZ+U8d4vBJE3kSw0w9fhw+qV4GkiPCGfQh3+ZHL5pFN5qCXTaSXspA9Eq2hplw+iPjncE+IJNEU8aWqtN4Am6h7AipZOafSI0VCsxvp68A8YVGYTeSQTWSRXdVAObCjB9NHGhs6JY+MQL8XcqcMNeCFqMo1KUmlokPTTZi6iUwq3yBxd1qJbsU/miaFNp7aDu0A7ZIXKULu8/rAsv2jQm4EkQNhq40i6UzCvi7VaxPHTdyPdk4blF0d5QhjN4FhVaI1TUM6nb4geujbbrutrWO+WPjud7+L22+/HRs3bnypL8WFi1cEXBJ9gcCqRFdt7aLRKAzDWHOc7FpgmiZ++o1fIj6VRHwq2fDYhstGcPLwShXYG/QgEPHDE1DBCxy2H9gCANArGkr5MnKZAnrWdeLIL9nkeu40O0Ew1BVsINGlXBmlXBnhAR0TR6eZx3CCpZv1L1eSVZ8CWZHhC3mQS+VRKWkoZArIJnJIL2XACzzGj04xx+pZ14UFRjBLRzSEM7+dhGmaiMeSDU4gm/asx8nDjVIHjuMwvHsdMksZeAIeyKq8PCEBKhUNAIfO/jDSS9kGMkRVqKnER2/AQxJyihBTRKOjN4QCoSdNLbIlJlRFMNDhI0k0ZfnHMyLtKoUyOF3H+K/PND1WTyR5gUegO2hJSUJeeEUT23b0weQ56LqxLCUpkZHY9s4VzqrddhHetGzCWQiLrEgkiSYTPYkGSa/fg3KRvTJBXW8mTTiT2LyOVLWbek9aCXSxOz9LE51MJqEoSs2bvx0oFos4fPjw75Qzh2EYWFhYwEMPPYSTJ0/iX/7lX17qS3Lh4hUDl0S3AVQlerUmenx8HAMDA7W/21mFfv6ZEzj9BDulcPUPXT5dQD5dwPpLh/HsL55nHsPBkloEOwPwhbxQvApESYQ35EEukUOpWEYhU0AmnkM2kbNkIUdnmWP1D0eRnG6urnUOhhE7bclFkrEUknUErWu0A4tnGivhHM9h/e5hZJay6F7XCcWjQKhV2zVUKhV09ncguZBuILT9G6JMTXIg4sPpZ842bTdNExzAtONbt20AE8dWJgSegIpAxA9v0AtZESwpCc9D13SUlhs3JVVkS0miIZJEU2mMVNXTF2JrvgVJQJJonKQSKhUPW5tq1zipFYkGPqJK3BEN14i6oRtIxZJILU9uoiPdiJ1tlhF1y5ugpJIIdAfgDfuhBFSIigzZq6Cjw4NyWUc+X0a2Lr6dSnckI7yJz6QoCWRVm04MpEi0CMoVndWzAND6arsqvCiw30eP1wOWDzd4OoUzl2XLjqjVAcVrQ6IdJiwCbBJ9IfyhDx8+jEgkgg0bNrR13AuJX/ziF3j1q1+NrVu34gc/+MGyz7oLFy5eDLgk+gJhNYmut7UzDKPtXdOPfPvnGL5kELzJI58uIBPPIp8uoCMawulV4R9VUJWfkV1DOPusJYtYnIpjcSpee2y1HhmwdJGbr9iA+GwSHr8CUZbA8xxMw0S5XEY+U4AnrKKYLjWQl+hwL5ZWVc0BoHOwmUADFvHJpLKIvdBMsPq29GD2+Mp1eQIq/B0+eIMqwAHbD2wGwDVU23vXdeG5XzZPIhSfghd+y9Zpr7bQK2SKKGSK6B3txtln2ZMYj0+GJFpNgd7larukSPCFfQh0eFEpayhmS8gmc0gvZSGpEql7pqQZlCtJZzTMjE0HQDZUUozN1n2EkKtQzW2BDi/m2S8x6Rlu6AbyqRzyqcZzbdw9jFO/bhxMUiUEe0KQdBOhHgWBSBicKMAEUNFMyIqAUMSLdLLQcE/aVVZpEu3Mqu+l9nymUhEDQR8ycSItkiD3iQRb8mWXCEmtDlCvveqRmd+XiUSioSjRDhw8eBDXXHMNOTlYjQceeAB33303YrEYLr30Utx///246qqrmPt+9atfxbe+9S0899xzACxLurvuuqth/7e//e0NgSkAcMMNN+Dhhx8mr+FVr3oV+Tlz4cLFhYVLotsA1hfuahJdb2unaVpbSXQqkcavvvMUiunGjn9JETG8fRDxjiRUnwJRtrykDd2AruvIpwoIdPqRWUXYFA+7E37d9gGmLEPXdCxOxTFzKtb02NZ9m3Dq8Nna34GIH/4OH3xhD0zTxI5rtsA0LN/cUr6EXCqP6GgPlqaaf5zDvSHMnWTLDBS1sfGoSm47h8MYf44tJTFNA5IqQg0o8Id98Id8kGQJvrAXmXgO5VXVdkESSM11V38Ec4wY8nBvCGeftaQkSzMJLM2sPK/NV6zHiaeapSQj24aRTWSh+lXwIo98IY9QMAStooPjOUSiIaSWso3yEcqVJOIjSTQlzaCaCqnGSVERSEJOV7vZjWJ2TZhFIvZaZoSwVIoVlHMFLE2w75eRnYOIPzcFjuPg7wog0BWEN+SDTwS27YjC5HnouolSyZKScBxH2q+RumuCh8ktEF9CfQKJ0OEDtI0ePZZddDt7eygUYjuT2JBoqnmSIoIqQw+t6zrS6TR27txJnqcVjI2N4bWvfe2a9v3e976HO+64Aw8++CD27t2L++67DzfccAOOHz+Onp6epv0fe+wx/Nmf/RmuvvpqqKqKL3zhC3jNa16DI0eONEwGbrzxRnz961+v/d3OOHMXLly0Fy6JvkCoJ9G6rmNqagq7du2ytbVrFf/vmz9tItCAVSF74TfjzKrmjgNbMHXCInC8wCPQ6Yc/7EOoOwCY1uOGYUIrV1DMFZFJ5OENsknU4JZ+TB1nh7jk043LwJl4Fpl4Fluu2si0teM4K5jE41cR6PTDG/RA8SgQJQG+kAeppSzKeau6Xa22+8JeTB1ln7+7rxtL48nm7esiWJiwKuyVoobMwsoPO0tKwos8NuweRiaeQ3R9j2W5J/AwDQPlUgXlUhnh3lAtEbKKgU1RpsuHN+jBC79trlxbATs8pk82TkimEUPf+l7MvrAiMfGGPAh0WK+RrAjYvn8DYFq62nKhgkK2CK9fZUpJwj1BUuax+j2rgtZjh7EwwSbqFCGmKn3h7iB5TGqJXQWnxgp0+JBZYo9V/UyYponMQroW377jwGYc+VXzfRld3ws5malJSdTASny7KIlQFLEmJamRbYKsii0RX8KxpAW7OrMV6zviusjXPuBFPMZeTaH8qzMZ9vvLi8CpU6cagqby+TwkSWqrHtowDDz++ONrDlm59957ceutt9YCTR588EH867/+K772ta/hwx/+cNP+3/72txv+/vu//3v84Ac/wKOPPoq3vvWtte2KoiAajZ7HM3HhwsWLBZdEtwl2muhYLAZJktpqa1eFrut47NsHmY9t3DOKE080R01zPNdA0upjwMM9QaZbhy/kxelnxuHv8CEQ8S033EkQBAHekAfeoGrJJNJ5pBczKBcq6B3tJhsKy0V2hXLD7lGcetpqRFstXegajDRISwCr2r5x9ygSseZqe6VsaZJZ1faeoe4aia5HpJ8tJTE0A5lkBrOnmqvNvRu7MHdqpeLpDXng7/DB41fBCzx2HNgC06yrtqfz6FnXhaMMsiaIPM4eYVe7I33hBhKdTxWQTxUQ6g7Wqt2rEer0QZI4y5Uk5Ku9RqpfRSFTtCwAM5aUpEpeqfAZSo8d7PSTJJqSZlCJfR5iosbxXENMfT0qZSIgRGV/zjgO5ASCqgQHwh7EXphDIZ0H0KiVl1WpgbAKkoBgbxhSKY/164KQvQo4UVyWkhjw+FWEO31IJfJN2uwykWxJarhb8I/WibHsSHSxwP68Uk2VttaGhL1fKBTGDCNFUvXIKJVKyGQyDYmugFXdrU9wpVJd6xNdKRw9ehSapuHSSy+13Q8AyuUyDh8+jI985CO1bTzP4/rrr8fY2Ng5jweAfD6PSqWCSCTSsP2xxx5DT08POjo68OpXvxqf/exn0dnZuaYxXbhw8eLCJdFtACXnMAwDhmFgfHwcQ0NDF8TW7smfPY3Y8UWEuoM14iYpInieh+JTsGnPaK2SXK2Sbtw92uRIUcVqvXMVwzuHcPRXx1EpVhqW7hWfAphAKd9YCVd9CvpGewHBhOpR4A9agTG6psM0gdRCCt6gp8mFgvqhG9k5xJRSVEoaFiYXmU2AW/dtwqmnzwKwmrwCXQH4wz54Ax5wPIcdB7YgkUhAlVWUixpyyRz6RnsQn2km0f4OH+lK4gv6AKyQ6Cq5DfcHMP4c20lE9khQvLKl2w554PGpEGURnoCKXCKPUqGMbDKH1FIa5ZxFhqj3ZmBzH7MRUfZIOPPsBCrFCpamE1iaXnle2w9sxrFVKwG8wGNwSx8MzUB0XQSSKoHnlxs3yzoEUWBKSRSGnAI4R7WbkEZQGt9INNwghWkYK80eywCbrHX0hkgpC+VwIilsHbG/w9sUTa9XdCSmlhCOeHHmt8337NarNmDp16cBDgh0BhHoCsAT8kH2qxBkEeAFaLqJUllDPltCJlmw8Xxmf5fIikinIjp02rBvqiScNlog5FS1PRwJYMeOHQ3bnnjiCfT09KCzs7OBWJdKJdtE19WEe3p6GtPT0xgYGMB//Md/4KqrrlqTa9Li4iJ0XUdvb2/D9t7eXjz/PLtZezU+9KEPob+/H9dff31t24033og3vvGNGB0dxenTp/HRj34Ur33tazE2NtbW4osLFy7aA5dEXyBUv/Di8Tjy+Tz6+vrabmsHAD/+6qMwDROphXQDkeod6cYcw+HA3+GD7JGx/tJhyJ5lScJylVT1ypg5PQdJlRqCUgBgaaq5agsAGy4ZxtGx5opqpazh5OEXkEs1SwN2HNiC2LJ+WFLEmgNIsNMPwzAtKYluWJrkbAmZRBYKkVg2sCnaJH2oolhXyTYMs1Zt33TFemZDIQDwggB/2At/xA9vwAPZs1JtTy2km6rtkiph+nn2+QdG+5CcaV6iDnT5MHPCIv2lfLmB3PZt6cbs8cb3TRAFK+AmV8KGy0cgKzJ4noNhGKiUNHAcEOoOIr2YbtC7ju5ah+OMlQgAzNfM0A0EIn4c+Y/mlQjFp8DQ9Jo1my/kheQVEIwE4fHL2L7PcjPQNQPFZblNIOJHYi7FnBhR7iNUxTUQ8ZMkOunQySQQ8ZMkOk1IRsh49u5gE4muIkcF6VQJpglkFtPILFrX39nfQT7HitdARKjA1+GHEvBAVCzPba9PwujmXhQKZWRTRWSXJ6WyKpMkmrLRo9xEFI8MrcJ2kXHqTCIIdDgM9X6tdubQdR2ZTAY7duyAz+dDIBBgHldFfaJr/f8LhQIef/xx/MM//AOWlpaQSln3RHd3N/r6+tDX14doNIq+vj584AMfaGs1+G//9m/x3e9+F4899lhDZPlb3vKW2r937dqFSy65BBs2bMBjjz2G6667rm3nd+HCRXvgkug2oBq4Uo8qiZ6YmGh7B3kVsxMxHPlpM4EFrB9kFolW/QqO/AebQG7aM1qTS9RrkjuiYZTzZXQNRiy9bb6MfDqPTCKHxAKbjGzcPYrjT5xq2s5xwNSJFSu8SkmrNdztuGYLUyftCagYf24KoZ4g/OHGarslJfGgmFt2t1jMQNcMdA1GyCZACsM7BjF+xKocr04SHNzc13DdgFVt33zlBqQXM5A9MkRZAAcOuqajmC+hkC3BF/I2TSTWbRnEkUVGeqRPwQJDSqJrOipaGTMnmolvoNuPzIIlVeE4Dv6IF/6wF56AB76wd7lx07IArDZuBrr8OMuokAK0zGFkx1DD+5lL5YEUkJzNIDWfYZLi7oEwZJlrtEmURfAiD72io2ugA4VMEZllKQnHcSgRMh9WcxlgVduppkaTaIajGiQFSaAt/AiZBxV+A9BBOqRjic1EIT6bQnIuhYVVqxE7rt6MU3WfGUEUEOwNoSfkhxEMQPIq4CURJnhouoFisQJR5C0yu4q0knZ1qogc+7aARla1iUAXj4wc4TBDkWuPr7GxLpVKQRRFeL1sW8fVqCa6+ny+psd27tyJD37wgwCAzZs34+/+7u+wYcMGxGIxzM7O1v6/evWwq6sLgiBgbq5xBWxubu6ceuZ77rkHf/u3f4uf/vSnuOSSS2z3Xb9+Pbq6unDq1CmXRLtw8TKES6IvEKpfugsLCw22du1tKHwUQzv64fF4oJU1FPIl5JN5FPMlnGE0rQFAz7puLE42V5XDPcEGK7xCtljTJCteBccPNRPiwc1RzE0soXOgwwpKWSZJHM9B8cro3dgJQwOK6WJNb7vh8lGcOtwcvgGADPgY3bUORw+eQDFXatDFCpIA1as0kVR/2Iuhrf0IdgZqlWTTNKFVNGgVHemFDGSPhPKqRDWKEPWOdjcRaMBKSsyl8kyyvv7S4VpkuSgJFpEMe6F4ZUiKtNy4aaBc1FDKFZBJ5NG3oQfPP86eeCSn2eSud7irRqJN00Q2nkM2noPkETH+3BSzuheKBuAJqPCFvfAFrfdNkAVIkohioYyRXUM1m8SqvIEifvUTj9VILVjV+tU2iVuu2tBUIRdEAYFOH0xNw4ZLBiGrEnhBgLE8AfAEVIR7g0gvZhueUyQarq1qrEalwCa+VCphpDeEBWLFhQq/oawFA510U2M1XXM1WF7IgL0efLUXva7pSEzHEe70k98BHb0hlOdS8Ef8CHQH4Qn5oPhVeCUO23b2oVTRkE7nwEFCJlloyUaPguyRSBJdISQjnlWvS9Ufeq02dGvB5OQkYrEY/uAP/oBJtldDlmXs2bMHjz76KF7/+tcDsD4jjz76KG6//XbyuC9+8Yv43Oc+h3/7t3/DFVdccc7zTE1NYWlpCX19fWt+Li5cuHjx4JLoNoGl5+M4DuFw+ILY2pVKJTz2rTGkZpvJ1bb9mzF+dBLR0W54Ah4oHtlaQuZMmKalL86n80gtZVFa/kEf2NzHrEL6wj7SZzrYFcTUiViT3rZnXSfmVzWa8QKPYGcAHr8HGy8fhaRUvaQNlMsaZEXCzKkYuGV/6XpQnskbdo8wGyezyTzGn5tiNrXtOLAFLzxjkVvZIyHcHYI36FlOb7SaAK2glHKNSHb2dzDt64KdAZz5DdvsWFZXNLRaRa8lJfZt6KnptFejayCCYKcf/g4/IBiQPQp8Pi9Un4z0Ug4dvSHkUvmGMJlsnC0Z2HDpKJ5//GTzAxwQOz1fswBcxAppHNwVxdSzjdVuSRHR0R9GMVfExj2jkBUJHMchkUhA5CVEomHEZxNNjhqRvjDp2MJyrdA1Hf4O+l4b3jGIxLR1T9XLbTr6woj0BmHC0iJbcpsCEgsppBedWan5O3wkiaYq1JQDR7grSJJoymWEasbr6A0hPptkPlYgbP/sCHn1c56NZ5GNr3y2tu7dgOcPNX+eei5dhw6uDF/Evyq+3ZI/cQCy6QIySfZEox6y6pyQq6sq0clkkmkhdz44ePAgdu/evSYCXcUdd9yBt73tbbjiiitw1VVX4b777kMul6u5dbz1rW/FwMAAPv/5zwMAvvCFL+ATn/gEvvOd72BkZASxmPVZ8/v98Pv9yGaz+PSnP403velNiEajOH36ND74wQ9i48aNuOGGG9r6fF24cNEeuCT6AkHXdZimiZ6engtia/fvP/gPJoEGrKa9anNbPbbu3YjnV1WUFY+MUE8Q5UIZm6/cUKs6VYlkqDuAk0+daVrOVrxyrdK6Gt1DXU0k2tANmKaJI788xuzo37p3I5LzaXAch0DEbzmA+FUEOgOoFMsIdm5uqLanFjPQCT/j0UvWkVW4xPzKEnu5UMH8so/wlr0bcWysWWIBWBXyzv6OWix51QHEE/IgMZNAIVdCNp6r6Wllj0SePxLtwOzp5gbBYGcAZ347DsMwmyYN2/ZtamoE9YY8GNrSj3Kxgq17N4Jf1tlWw2QEUYDqV5q8lUd30a9NJdf8elZKGiRVwOQxNiGOzySRjefACzz8HV74QpaUJNIXRt/63iabxEK2QMpsQl0BsGragYivweUlm8zX5DbbPDKOMSYLHf1B5JMldPUFa1ISQRLAcRwUn4TRXYPLenvLA5zjuCayVoWkSsgQkhHKTcNDRL0DztMogxE/SaKzCfYEk/qusSPkpKe3IuHM+AQWx5snkqIs1r4beIFHsCcEf2cAqlHBls1dlpSE56FpVny7xydjKZZmNiqSJLpuQmAYBpLJJLZs2cLct1WMjY05jvr+0z/9UywsLOATn/gEYrEYLrvsMjz88MO1ZsOJiYmG9+HLX/4yyuUy/viP/7hhnE9+8pP41Kc+BUEQ8Nvf/hbf/OY3kUwm0d/fj9e85jW48847Xa9oFy5epnBJdBvA0kTHYjGLaHk8y96/7eusNk0TY//nqYYfsCqGtg9gkrCVY0VMW0Q5iJNPsd06uoc6kUvlIcqiVSUNWzZpoe4g8ulCUwNgPl1oiMWux+CWPhz5j2YC4QmoOL1MyE3TrHlJA1blmOXbG+4NIXZmHr0j3cte0nKNSHr8KkzDRC5TQGYpUyOS/RujmCGaEFc3UlZRL8tYrVft3xhtCJjheQ6BzgBGL1lnSSpUS7dtGiYqZQ35bAGZZA6C2NxcNbS1n2ktKMoizjCSEPOpAkRJZDYO+jt8mDg2DUM3mqLbQ90BeIMeGJrREN3uCaiYYyRBAiC1p/2bejFz0tKEGrqB9GIW6UXrfUvGU4hPJJuOWbezH4sTCfT0dNXeN1GyZBuCKGB4x2BD4yZg+ZAfG2smyhwHTD7PvtcifR1IzIxjIV/CQl3YjOKVoWtGw+dGEAUEu/xQVREbLx2CpIjgeB7Gcpy8IAqYn1hCajHTtEpCyjxktptHsNNPrqyUCNcKhSD3HAck5lpoqiQJOXuiQFXIV0tWDN1AcjaB5GwCqswzV1w2Xj6C0ukJ+Dp8CHSH4Al5ofpVCIoMQRYRiXhRKuko5MvIpPIo5MoNco50Og1BEBxVjNeCsbExfPrTn3Z83O23307KNx577LGGv8+ePWs7lsfjwb/92785vgYXLly8dHBJdJtgmmYt1MI0TYyPj0OWZei63nZbu6WlJbz6L/bhE9/+G+RTBSRiScTnUkjEkihki5g5FUMiZv2dmEsiPptERzREejZTP7j18d9aWUN8Nln7AaYCVjZfuQGzL8TQORRGR3cHZFWq+TbzPI/BLf2WddtCukZIqprn1RBEHuOEZ/LAxiiO/Op4kx7aE1ChVfQGUlwlktHRHvg7fKhoZZgwoSoqyoUKDEPH/CRbj10vy6hH3/qepoRGY9klJbOUwelnmqv09TZ9qx1AZK+E7VdvhlbRkFhKQctryKXyGNm5DieeZDtssBpHAWDdtoHa61mvSeYFHt6A2tQ0CQAjOwahlTT4lidJVbmNARN6Wa+9b/VhMh094RqJrke4J8gk0ABgwkQ+XWgin+H+IJIzjYRQ9kgIRPwQRB6brlgPaXkFQNd0lIsVKF6ZnLCxwocASxZy4snGCaOu6UjEkhAEHovTzXKO7fs3ITFjEfFq4qY34IHslSGKAkKd/uVm0jJyqQLS8Sxp1xaI+EgSTZFYKuQm1BNiBvkAtI2cx09XNCl/cMoxJdRJS1ZyKfbkQl62CswlcsjVPV/WxBJYjm/3rDz/C6GHTiQSOHLkCA4cONC2MV24cPHKgEuiLwCSySTy+Ty8Xi80TWu7v+fU1BQGBgYgCMKy9MGPddsHbY/JZwo1Yh1fJteJWAqZpQwWppYwuKUfiblkgy0XK04ZsCqwlN5VK2vWD+sSsDSZrG0fvWQdzqxadq8SEl7gsXXfpmW7PRNaWUMxX0Kg08/UPAPAHGNpGQBGdw7h6KqqZblQQXw2iVK+XKtw12PHNVtw9tkpiJKAQGcA/rAl21C8MgAO2/ZvQqVkJQBmE3mkF9OI9HVg9oVmWUbApqGrfom/XpLQPdTZUC2tBy9w6FlnVW3rHUBEWUB6KQtBFpCN5xomE1R1dHTXEJPcA8DSbBKJuVSTo8SWvRubSLwaUBDuCUHTdOb7Fu4JIZc6UbPDW3kuPBbH2e4TvUPdTSS6XKggHc8gMZdiehuP7B5ELpmHIArwR3zwhb2QFBGmYCDgDyDYFWh636jJbO9oN1P3DjSm9dWvktg1VRYyOXT3W3p7xatAlESAB0zehGZ0AjpnaZJThRohJN08yJAbH0miyaoy4d9sWyEnHFPsJCvpRWfpkuGeENOZpFKsINIbrP2dSCTQ1dVFnrcVHDp0CBs3bmzyfHbhwoWLc8El0W3AajnH+Pg4BgYGkE6nsbCwAMMw4PF4Gkz+W61MFwoFLC4uYuvWrY6O8wY88AY8GNhkb79UKpSRnEtZRDtmVZ4Tc8vEe5mER/rCTVVYwLLVo3TSLEKeiWfh7/CRns0bLhuuOTMEI5YMQfbK8Ie8KOZK6OzvsBrJ6mQblHZ1w+4RUrJSJbBaxapIJpYbErft28TU2/ICj8RcEv0bo/AEVMiKBH6ZSHqDHsyPLzY1AAqSQGqBe9Z1MUm0J6Di1NNnmfZqOw5saSDrVblN12AnTNPE9qs3WysAhoFKsYJ8pkhau/UMd2H2dHNFGQAMhg9wMVOCNCgxHVsAS4/LfN86fChmik02ifl0oSlRsor1u4ZJr+v4lEUgdU2veYADQN+2bhx5plkawws8FqaX0DvaDW9dw61pmvCGrElKVW9ffc0lRcT4UTZR9newJQW+sBdnfjPBrEYP7epH7PjKZ8dybvGjZ7gLum5AkiVLSrLsAV7MlaDrBjgOWD2cx0eT2OQ8m1yTVeWuAEmiKb9ryrVD8cpMf3iA9qgOdPhIe7+uASvRr6qH3rRpE3O/VjE2NuZWoV24cNESXBLdZhSLRczNzeHAgQNIJBJYWlrC4uJiLUGrUrFkBrIsN8TSsqJqFUVpIttTU1Po7u5uMOhvJxSPjN6RbvSOdNvup1U0JOfTK5XtWAqlfAnPHjqKzGIWlZxFSJPzaUvz/MxZ5jgd0TCTwIV7Q3jhNxZJrDpJVEGR28HNfShkixjeMVir/nG85T/rDaiIjvYguZhCMbOy1D+4tR9Tz7Or6sU8WxIwsnOInCwMbO7DdJ0dni/kRSDiR//GKPJpq2pqwqrYlwtl5FI5xOeS5HlYWmAATZZ7VblNdH0vjjK01YIkIDGXrOm2/WEvPH4PJFVEIOJHV38ElbKGQq6I3LJsQ1QkkvgHI2wCGYj4atXZpvdt/ybm84mOdqOUL2Pd9oEGm0Rd0+ENeNG/MYpMIttAtPs30fp2WWBLFrpHIw3x7A2PjUSwcHZFyqH6FPgjPvRt6EEpV4EkCwA4aBUd5YI1AaBI5+CWfnKCsTTVSBSrzi3R9T1NTb+ApXv2BDwwNa22cuMJqJBVGYFOP7bt27C8ArAsJVnKwBNQSZkFXVWm/a5TTqvK3UHMEXaVRcLejvIBB1ZIdCaTAc/z8Pv95L6t4ODBg3jHO97R1jFduHDxyoBLotuMyclJdHV1QVEUdHV1IRqNNhBhwzAaImrr42kzmUzD3wAgSVJDBXt+fh79/f2IxWINZPvFjoQVJRFdA5HaDxxgJYP5t0u48sorEQxaS7C6biC9kEairrptEe9lDXeuiJ51XYjHkg0V14FNUeZSteJTcPo3Z5nXFOoJYuo/jjd4EgNWxbCQKdbS1YRl32Z/2Iue4S4EI/5a1bZc1FDMFmDCJJfqKZ1073BXA4EGrFCSXCqPQKefWQmvassVr4JAxAdTMBDpjkBSRHj8Krbu3WjZ7WUKNdlGvVZ9NTKEfdroJetq/tyr0y2joz3MSPGt+0awNJOo6bZNmMhksvB5vNB1E91DnUgvZRpcHYa29DfJaYBqEyB7stLZH8GRXx1vqkQKkgBJFmu+yrzAI7Dc3Nq3vhehroC1AqBbjZvZdA7ZVJYpswGArt5OJon2hr1NMpNiroRirgQ5IGLmKEO20+3H3PgiJEWEv8NnObf4rVUJb8iLbfs3oVxYabjNLGXRPdyJhXG2bKdMNLYObRuo9TKklzINiYrUfTC6ox8eVaqtAIhS1XHHgKAI6B3uRHoph3xmRUpCVZU9AZWMQqfcNHxhH0CQaGqlSJDY569KqwBLyhEOh9uqhy4Wi3jqqafwjW98o21junDh4pUDl0S3EYZhYHJyEjt37qz5Qq+uJPM8D1VVz1lJNk2ziWwvLS2B53mUSiWMj4/XHjdNE6IoNlWxWZVuQRDa+iNUj1gsBp/PVyPQgBXz2xENoyMaxvpLh22fbzaRq1W2U4sZ7HnNpXWVbkuz2zUYwbM/P9Z0PMcBU8ebA1EAYHj7YIPzhb4s20gvZbA0k2BqiHdcswWx0/MIdgUQiPjh8amQVLGmKd20Z31D1VbXDHQNdTIrcN6gh/STDnb5geNAKV9CabnyvTSeRLAzgAyjQc2SbQQwtG3AagBcbrYzDAMwLaIV7Aw0xVdTWtjoaDeTQAOWJjnGIKRDW/sx+fxKYI7iVRDs9FsOID4F2w9sriU3VicAgQ4/Tj3NDtmhiNXIznU4/euVYwzdqMk2TMPAzKnmFYyhnf2YnJ9patzkeR6SImLzletRylse4NUJwLptA3ieqPjnFtkEsmuwA5mFLColbVnmtDzh4wDZK6Oca6z4cjwHX6cHptmBYCQAWVUsLblholyqQNd0dERDtXupikCEXXVVvDJpOyjJIrNnwBf2IZ/K1+4pSRFr75vqk7BuRy9ESYQsK8ta8hIkj4Tx59jNmwWG2w8AKB72JBOgEzEp7+76SXoikUAkEmHu1yp+/etfIxwOY+PGjW0d14ULF68MuCS6DaiS0tnZWUiShHA4XPOGPp8xq8S3ipmZGWzYsAHr1q2rbTNNE5VKpaGCXf13KpVq2FZNTTyXhESWZUiS5JhsVxseW32+a2mSNE0ThUyxoaqdmEuhkClg5vScpeFe3lbVZSYIfeiGS4dxwkYnbRgm0ouZhiYpltc2YOlgC5ki1l86bNntCTxM05K9eIMeTB2fQWox0+AaYkf8B7f0MR1LDN3A6V+fZWpOd1yzBdPLEod62YYv5IWwHCRTtdurTgA6+yPMxD/VrzCt9QDL07oepXwJC/lSzd6Q1QjX2ddR023XHEBkEaIsolKqYOPuEeQzRWQTdX7bRDBHZ38Hk0ADgLxsLVffuAkAvSPdTDcTxatAEgWM7BxaadzkOOgVHaIsYHEqAS2sNemCebAnJUNb+5nk1jSsNMnFiQQWJxqr3r2bujF3cuXaPEHVqm4HPRBlwXrfsCIByqfz6IiGaa14jH2/D2yKNjSJVkoalmYSWJpJoJAtMnX52/ZtAmdo1r3UYXm3S4oEjucgSiJUr7wsJbHCm/SKTkZ+h3uCJImmKvFdgxZpNk0TyWQSGzZsYO7XKg4ePIgDBw5csMKCCxcuLm64JLpNME0TExMTGBoaqlV62mlrl8lkkMlksHv37obtHMfV9NWBQIA42ro+TdOYZDuTyWBxcbG2rToBqCfXlH5blmVwHId0Oo1cLnfB42k5joM36IE36MHgZvtzlQplxGcTSM6lMHM2ht88+Sw6/V1IzqcRn03C41cQPNNctbUqrewqH/ljPxAhddIjO4dqEhMrQMYPb9AKJCnlysAWS6uajCfBGwKyiRxSi2yysf7SdWTiYb27Q9VuL7WQxuYr1jMJOWA1fK6u2gqCAE9QRXoxs5wAmEdqYWUCEDvLrlyv2z5AarinT8WabBIBYPvVm5uO4XkOwa4AitkiNu4ebfLb9kd8MAyjqWoLDpg9RUg5BiNMEq1VNJx46gWmR/OOA1tqVfr66HZfyFtLt6yXAGUTObJyrPoVLBG2f4GQD3NYubZCuohCuoi0T8bZ56aYqYj+Lh9kVbJcSUJeqD7VmpRIAsqlCjx+FYVMAel4DrmkVemn4s47+ztIdxjTNBvupSp6hrswz1p1CXnAcQZGtvdbjZuyAJiWlERSJUiKiGwi3yAlAdAUDFVF10AHAOv7D4Dtd1wrGBsbw3/+z/+5rWO6cOHilQOXRLcJqVSqRiINw2i7RnlychJ9fX2QJHqp1A4cx0GSJEiSdM7GHIps5/N5JBKJ2t+aptVIvGEYkCQJJ06cYFa5z8eRpFUoHhl963vRt74XfMRE764Idu7c2bRfpawhOb/sqx1LIZvKY+7MfIOUJB5LARxI+zpvkN2Y1RENNTTnFbJFFJabq1Sfyozm7hqMYH5iCZ0DyymJdc12Hr+K9ZcN10JSqlZmPcNdZKMdVWXr29BTS09c7R29ac/6ppRE2SNhdNcwSvkSugYidVpbK25bFAV4g54mecy6bQO0n3OuuXnTMEyEuoM4Q+i+R3YO1eQT/rDVuMnLPDwdKhResaq2FQ2lXKkW3EK5f4zsGCRt/5J1pLE+un3TnlHmagRg6e+DXQEEqlVbddm5hdORWsxCgNDk3JJZoOUsZIPidALlYgXxmSTiM8na9v7tvZg52lil50UrTbKYL2LD7mHIqvVZrDqA+Du8KJfKyCZyMFctIpD68oEIk0TnUwWceWac6UW+48AWzJ+xrk32SAhGlkOA/ApkRUZHbwCGZqBc0lDIlpBN5tC5TKLj8Xjb9dCGYeDxxx9vKWTFhQsXLgCXRLcN09PTNSkDK8HwfFCpVDA7O4urrrqqbWPaQRRFiKJ4zlQwXddRLpdRKBTw61//Gn19feB5HsVisSYlWe1IYlfVphxJzheGYWB2dhaXXHIJ83FJFtE92InuwU7bcTRNR3oxU9ccaZHu+Kylq9avNGqPVWON+zdGV/SydRBlEWcJuUTvSDcWp+JYmk5gaXpl6V9SJfAc11A1FUTLIm1wcx9CXQGI8nJIyjJBKudLWJpNMC3SqAhySspRLlQgygKOP9FMbj0BFZViBVpFt7S2XYHaBCDUE0JgOZCkXNRQyBSQTWRh6Abp/uELs1MSfWEfJuos5+plGxuvGMGRp5qdSQIRHxamlph+256gilHDbGjcBIBQd7CpSbQKKo0w3BuqyWlW+yQP7oxi+ljjJMcb9KB/YxS6pmPr3o3Lzi0m9Io1KVG9MjO6vWsogsXJ5lAYAPB6midzhmaAEzic+Q37tR7a0We5eXCAr8MLf9hyAAl2BqCXdQxsikIraygVlmUbixmyqXB1imc9ynXOIOVCBYvTcSxOxzG4OYoTJ9jSlNEdlrSrGrLSTjz//PMolUq47LLL2jquCxcuXjlwSXQbwHEctm3bBk3TaqmF7SSCs7OzCAQCbV/KPF8IggCPx4NEIgGPx4PNmzczJw+tOJKshWyvtdq/uLgIQRDO+0dYFAVEomFEomHb/UzTRGYpi3gsieRCGvH/mmjUcMdS8IY8ePYXzQ2SAJrcRaoY3dWcXqhrOhJzKcgnYsxmsi1XbcDE8zPgOM6Kbe/w1nStkmqlJFZKGkr5Uq1COrxjiKyAUimJw9sHa9XZSklrmAB0DnQ0TAaq2LpvI2IvLMDfsSxHqKYkLsuJWCmJ67axI8CBZvu4Kqqx4SyXiY7eUIMMpqrbHt4xiGwiV9P/Grrlt51N50mpTf/6HjL8pD54qIp8ugBZkXCUaLgMdvpRzJaao9t7Augd7m6Kbs8mcpg7w3bFGFjfh1SM7dyyOLn8uplALpFHLmFNJPq39zCdSQBgfnIRXYMReIMeqD61NinxBlQoXtny/o5nG1YlpomVklB3CFMnmh/jeQ7b9m+u6aHXr1/PPL5VHDx4EPv27Vvz6t4DDzyAu+++G7FYDJdeeinuv/9+srDxjW98A7fcckvDNkVRUCyu3IOmaeKTn/wkvvrVryKZTOLAgQP48pe/3HYfbBcuXFw4uCS6TRAEAYZhQNf1tko5TNPE5ORk239A2ompqSkMDg6S1ffzcSSpkutcLtcgL3HiSDIzM4P+/v4XrXmI4yxNb7DLftJTbZJ88ldPIbOYQ0AJIbWQwdL0Us0CsFrxzqcLMAkHA7vqX5V8mqbZYJHWvylKShJ4jkN0tBue5UCSslaGrukIdQSRWshYGvhV1nY6EaJhd216xUByPtUUDMI6puqRrHiVppTETCoLCMDiGfbkgxVWA1iNdquJXVW33dnfgZOHm8lt9RiW37Y35MP2/Zub/La7hiIkuS2X2Br7+murj24HgI2XjzKdTga39iOXyGFwSz88fqVhVUL1qRjY3IdcMofUYqYWujK4OcoksADgUdirAV3DESyOs1/rvi09mD2+QrxFWYQ/4kN0tBtaSYOsWj0Uhm6gXCyjkCtBJ+7r0UuH4Qt5kclkYJrmBdFDrzVk5Xvf+x7uuOMOPPjgg9i7dy/uu+8+3HDDDTh+/Dh6enqYxwSDQRw/vrIysvr754tf/CK+9KUv4Zvf/CZGR0fx8Y9/HDfccAOOHj16wXIAXLhw0V64JLqNqLpftLMKHY/HUalUXraRtNlsltnw2ApYjiQsOHUkAazGpHg8bku2RVF8Ubv0OY6D6ldgqBqu+f/2IRwOk/uW8qUmYl2NbhdlEZIsIh5LNsSaewIqqSvu6A0xNdSKT8HJp88QKYn+Bu/sqrVdqDsIXuCbre3SBXT2s9MtZY+Es8+x5SwdvaGmYzLxLEqFEhanlprixAFLyjFbmm9KSbQsAK2K/Op0y3BPiFkdFWU6pTDcG8b0yVhTs50oi+AFDuVCMyn2dXrRqXUgFAnWGjcBoFzWYGoG02+7XhpSD0HkyabXUFcAU8/PNMWH8wIPSZFqFoorTjg+RNf3QvSKAMfB6/VAK1nR7blUHvMTbOLfO9jNJNEczyG+quKulTUkYyn4ulRMP8dwVOGApZk4OJ6zHEnCXngDKmRVwRU3XApgxR+63TIvJyEr9957L2699dZadfnBBx/Ev/7rv+JrX/saPvzhDzOP4TgO0Sg7IdY0Tdx333342Mc+hj/6oz8CAHzrW99Cb28vfvjDH+Itb3lLC8/IhQsXLzZcEt0mVKuj7W4orNrGvdhNeWvF9PQ0enp6Wm54bAVOHEnOnj2Lubk5bNq0ybEjCUW2W7H/o7C4uAhRFBEKhWz3U7wK+tb3oG89u+pVRaWs1WLb04sZLE4tV7XnkjX7v/hsAgsTbDeGkZ20lGM1qapa20X6OnD8CfYxQNWPeFkj7bOaJL1BFblkwapG1gWSAMDSLFuWMbJjiLQkzMYtCcLqlMSNe0ZrITP1kD0SysUyI91Sh+JVMX92vsHZooo0IeVYt30QLxCpnKmFNJYmk1iabHxeo5esa2hUrffblhSJ6bcdjPiZFXIAZNT20Nb+hsmPaZrIxLPIxLNQvArO/rZ5wrBuxwCWjkw3TUpEkYfqV7Hlqo01u71qdPvgln5MEg2kqkREzo90Yv6MdS9mlhpTKTf/53U4ePAgyuUyVFVtaFpeLetqxY5zenoae/fuPee+5XIZhw8fxkc+8pHaNp7ncf3112NsbIw8LpvNYnh4GIZh4PLLL8ddd92FHTt2AADOnDmDWCyG66+/vrZ/KBTC3r17MTY25pJoFy5+R+CS6Dbh1ltvxY9//GP09vair68Pvb29iEajtX/39fXV/g6FQmtqPjx9+jS+/OUv4957732RnoUz6Lpu27D3UoPjOMzNzWFoaAidnedqGmQ7kuRyOdKR5Fy67bU4ksRiMUSj0baRckkW0T3Uie4h++er6wZSC+mmJkmtoiHcHWzQcOua0eDksRqrA2Gq6B3uqmmoq37EVWy5amMT8eYFHkPbBqCVNWy8fBSSIi67SJjQyhX4Ql6Ee0MNGmkACHT5mKEw1deDBW/AQ5LR7VdvrrlSCKKAYJcl2wh0BgDTrFnbVUoaCllLtqF42ZNIb9BDWtt5V0VtVycl2WSO9Nvu6o8w/barbhsbdo/W7PbSSxmYJuAPsxuEJUUkq9qBsOXgs3pSIog8BEloqrhLqoRIXxgchwY3GUM3UCqUoJV1BDr9TS4p3QNdNRJdD47jcNOfvwaiKuDZZ59FMBiErutIJpMNn1OW9z1lzVk/+R0bG8Nll122JonI4uIidF1vWg3s7e3F888/zzxmy5Yt+NrXvoZLLrkEqVQK99xzD66++mocOXIEg4ODiMVitTFWj1l9zIULFy9/uCS6TfjKV76CyclJzMzMYGZmBrOzs5iZmcEzzzyDWCyG2dlZxGIx5PN5qKqKaDSKaDTaQLB7e3vR399fe+z+++/HmTNn4PWytYkvNebn5yFJUtu75tuFTCaDXC63JimMU0eS1brtVhxJBEHA/Pz8i+a6Ug9B4NfUJPmr//gVeiNRCIZc1xi5EtuenE8hm8hB9sgor/JaphIcBUnA+JFmmYmhG/CHvA3pklVwPAdvwFOrtlY10hBMdPSFwWlcTSNtyREKSC+lyTCb/o1RMvhj9vSK7EDX9Npz3rp/E5lsKCmSJZHo9MOzHP/NCzwMwfKzFsxma7vFabaueGjLAE48xXarSMynmH7bmy4fxclVOmlLt+2HYRjYuHvEcnfhLS15pVSB6lMx8fwUMvEsDK1xIkRXtQeYjiqVYgWZpWwtorzhmG0DtQp1fXS7x69C9SnLkxJrolTMFZFJ5NE1EEHfUBTZrJXauXXr1qYJqZ33fTabxdLSUm27pmn4/ve/j3/7t39DZ2cn0uk0Ojs78alPfQp9fX21/6LRKPr7+897RXH//v3Yv39/7e+rr74a27Ztw//6X/8Ld95553mN7cKFi5cPXBLdJoTDYYTDYezatYv5uGmaVnNXOo3p6ekaya4S7qNHj+LRRx9FLBZDLBarhQt0dXXhVa96VY1YV7/o6//d2dkJnudf9NStqq3fyzXta3Z2Fr29vRDF9t3mVUcSD8NKrB5rcSQpFAowTROHDh1quyNJO5DNZlEsFTG6ZQSCIGB05xC5r2mayKcLy3KRJOJzSeSSeWzcPdpQ6U7MJdG/MUpHgMcpP+ehBtu9qhwBACRJxsSRZknC0NYBLE4voXekG96g1STJL8efqz4FIzuHGjTSgNVwSfltG0TzZH3wyOrrH9jei+lVvs2WtV0vdM1gW9sFVCg+BaVVHtrBzgB5bZJHbr5ew5pUPP/4KeZqwY4DW5Cat75nfCHLb9sbVKEGPODAYfuBLZa13XIaZXopA1+IPaEXJAGTx9lV7WDnii99fXQ7x1le6VXf9Hpc+8eWzMJOD+3E+17XdWzevBl//Md/jOnpadx5553YtGkTxsfH8fjjj9cKHQsLCzh69Ci2bt1aO7arqwuCIGBurvF9nJubIzXPqyFJEnbv3o1Tp6zVl+pxc3NzDQFVc3NzruWeCxe/Q3BJ9IuEqnyjSrar2rjVqP7Yff3rX8enP/1pPPTQQ7Uv+JmZGZw4cQI///nPMTs7i7m5OaRSKYiiWKtkVwk2i3R3d3e3pB9kIZ/PI5lMkpOGlxpVb2hWuMqLgbU4kjz99NMIh8MYGBiwdSSp/l11JLFbsj4fnehqzM3N1QjEucBxHHwhK81vcEu/7b6FXAnJ5abIetKdXkhjaSYBjuOYTZIsyD4JU4QkIdjlx+Tz003WdpIqAabZ0KCoeGQEuwLoG+2BP+yrWbZZ3tYV5DMFpk0fAHQPdjKDRwA0RXwDy9Z2qkymSHb0hlDKlWrX5A16LL10VwCFdKF2Tbl0vuZtvTjF1rgPbunDiSfZOvJ6V5RcKl+rPm/cPYJTvz7LPKaQK6J7qBO+kLfBb1tSJaQW0k1+2wCY1oIAMLC5H1ME8d55jUVi2+UPLQgChoeHMTw8jFQqhb/8y7/EAw880JSwWqlUmu53WZaxZ88ePProo3j9618PwPp+efTRR3H77bev6fy6ruPZZ5/FTTfdBAAYHR1FNBrFo48+WiPN6XQahw4dwl/8xV+c35N14cLFiwaXRL/MUCU+3/jGN/BXf/VXDY0n9aiS7Vwu1yQhicViOHv2LA4ePFirbCcSCQiCgJ6eHqZuu5509/T0nNOp4q677kI4HCav76XG0tISeJ5HJBJ5qS+FiXK5jHg8jm3btrXkSFK/fM1yJFmtE23FkWRubu6CWCt6fAo8y0mSdqiUKkjMLctGFtK49o/3WaR7mYDPno3BH/Hi5ONnmccvEXKJkZ1DOLmqQbFUKGNhcgmKV2ESu9FL1iH2wnxD/LfqUyApElSfgm37NzXEf6eXMujd0IMYEUNOxcdHR3tqUePVa6piy96NzKbP7qFOaGUNQ9sGahppjrOs7TwBK9Clek1V+Dt8pG+z4mXfi4pXxvhzU9A1vSkmfMc1WxqaJKu67WAkAFEWsf3qzbVrqhQrKGSLiPSFMH1ipikEiOM47DiwBaZpIpFIYGiIXgFpBY8//jjWr1/fRKABkA3Sd9xxB972trfhiiuuwFVXXYX77rsPuVyu5tbx1re+FQMDA/j85z8PAPjMZz6Dffv2YePGjUgmk7j77rsxPj6Od77znbXn+L73vQ+f/exnsWnTpprFXX9/f42ou3Dh4uUPl0S/DPHss8/iqaeewr/8y7+Q+1SJj9/vx+bNm7F582bmflWyXSgUmiQks7OzmJ6exlNPPVWrdlfJZ3d3N1nZ7uzsxNe+9jXcd999tXCZlxtmZmbQ19f3srw2wCKooVDonLKQKpw4klA6USeOJABq+v1yudxWR5K1QlIk9KzrQs+6Lubz/MUvfoFdu3YhFAwhWWuSXCHdS9NxJJadSqqP6ZoOUWRX1oOdAbIyWm0CrI//Bqx0x0pRa/LJ5nkO3rCK7pFOhDoCK3pkw9Ija5qOjqjVJKlrKw2EnQMdNRK9GlSCYtdgBMfGTjZopGvj9XfUGjrrva17R3uQXExC0zX4vf4Gb+vEKt/uKoa29JMV6mr8fBVV3XYg4m8KCKrC41ctu71Of0NMetdABIGIH7lcDpqmIRgMMo9vFWNjY7jmmmscHfOnf/qnWFhYwCc+8QnEYjFcdtllePjhh2v9FhMTEw2Sk0QigVtvvRWxWAwdHR3Ys2cPDh48iO3bt9f2+eAHP4hcLofbbrsNyWQS11xzDR5++GHXI9qFi98hcCbVWu/iJUM6ncYTTzzxolZ5q7dBqVSqke36/8disVqVe3x8HKmU9UPb1dXVRLRZcpJqpfXFIGKVSgW/+MUvsG/fvnM2Cr5UeOKJJ9DX19f2KpsTUGS7VCohmUyiUqmA47gmRxI77fZaHEnagWQyiV//+tf4/d///TWfzzAMZJaylt1fvef2rEWKFY+MY4+fRCKWbKoUdw1GmEmSm69cT8olIoMhxKeaCelqa7uq84fHryLUHUS5UIZpAlplJUnSG/Qwm/bsrqF7qLOpYlzFtv2bmMmPgYgP2UQevpAH/ogf3oCn5m3tC3uQnE9bftvpPNKLGZQLFcgeCXrFYAbu7DiwhWwUVTwyiqt03wDwunf9Z9x2z3/B1NQUYrEYrrjiCuZzaBU33HAD3v72t6/ZI9qFCxcuKLiV6JchgsHgiy6TqJJbVVUxOjqK0dFRct+bbroJV111Ff7bf/tvTZXt2dlZHDlypFbZnp+fh2EY6OjoYFr/1RPtvr6+WmX2fMh2NSb95UqgC4UC0un0S95AZOdIMjY2ho0bN6Kvrw+6rjOJdqFQcOxIUr/tfMj2wsICuru7HY3B8zxC3UGEuoMYsZHKm6aJXCpfq2on5lJYmk00xLZbkpIkqRf3R7xMAg00W9tlk3lkk3nIHgkTx6aJoJst8PhVBDr9y02SCkRJADjANK1I+HrPZsCeRMfOsOPb+zdGcfyJ07VranysFzOnGpvrFK+CTZePIJvMQ/HKECXrJ6XqbQ2Y8AY9DfHfADC4uY+019t1bXv10PUolUp46qmn8Pd///dtHdeFCxevTLgk2oUjTExM4Kc//Sm++tWvYmBgAOvWrSP3rUoL5ufnGxxJqpXt48eP1zTbc3Nz0DQN4XC4QbNdbwFYJdp9fX014sci23/+53+O97///S+Jddxa8P9v787Doqr3P4C/Z0aQRQdQUBY1FUsyEdSSQEsUFRRveTMLr4aWaZZLije3J7UrZgvmYy43WlCpXK54tTSKQhOt66gp4vZTrgvEFRlkG5BhH+b3B82JYQaYMwybvl/P45Nz5syZM5OOH77zOe+PUqlE165dhbaJtkatVqOkpAQuLi4Aai7KsrOzazRqsbq62mixXTuRRHcbQJMSSXJycuDp6Wn5F4+aP1OdHO3RydEePb0auUiyuEwYbiMU2MoC5OXl4/bVLFQWV6EgW4V7+X+2O9QXbffQoz0MYup0ilVqlBaXGSRZ9BrgYbBCbWVjBYeunWHV0QqPPOGJDlYySKQSaKpqRm1LpZJ6M7+lMuM/lHRysjcooIGabGstYDT2rsMfGd1VFVUGA3ccuskh79r5z/HffwzcKc4v1uuH9vDwMHo+5kpJSRFa4IiImopFNIkSGxuLkJAQk/5x00VQeXh4NLi/VquFRqNBTk6OsLJdO5FEoVDoZW1XVlaic+fOelnbugK7tLQUly5dgru7OwoLC9G5c2eTBtu0JKVSid69e7f2adQrOzsbXbt2FR0NKJVKTY7/q3uRpJhEEqlUipKSElRVVemNcrdU8owYtp1sYNvJBm6e+hdJKhQK9OnzVyHKrKKsoqY/+4+pkboLJnX/zc9SobNzzZ/Vuh12Np061j8UpYthtFtlWSXysgqgLiwxGh83IOARqAtLIJVJ4eDcGfaO9rDt1BEyqw7oaGuNR/0frhkkoy5Dcb4aRblFcO/Xvd62Fd3o87p69HdD+h9j5yvLq/QG7ngO7o2bRvqrew/sCblzZ5SUlKCioqLRSZ5inTx5EsOHD29TnwdE1H6xiCZRlixZgrw8418Rm0sikaBDhw7CKvPQoUON7qfValFdXY28vDxkZmYKfdq6Yvvs2bM4deoUrK2tERoaivLyctjb2xtcINmUKZJNde/ePb1V3rYoOzu7WYv82skhDakvkSQnJwdWVlbIzMzUm1wnk8kaXdVuLJHEEsrKyqBWq/WmZFrbWKP7Qy7o/lDD/9+rKqtQmFOk17Ndcq8MWTeUQiqJrviu1lQbTADU6fmoOzKuGO+hrvyjXaRaU11TxGfXtJ3U1/4hkUhgY9cR7v1cYdv5z0EyWq0WmqpqlKrL0NXdSW+QDADYy41/cyGRSuq9SHJAQM0KcUFBARwcHCyei65QKDBq1CiLHpOIHlwsokkUU77Wby4SiUSI6evWrZvB/VVVVejVqxf+/e9/Y+zYsSgoKDBIJGnqFMkuXbo0qdhOS0uDi4uLRQfAWJJarYZarW4TRX59iSS6Vo4ePXoAMEwkqd1SUlRUpLetoUSSusW3uYkkeXl5cHBwqDcurSEdrDqgq3sXdHVvOJqxuroaRbnFyFcWCO0kwiq3shA2nTqirLgcBcpCVJb/eZGkRIJ6E0icexgvorVaLe7czDZ6YeXDj/fVG3RjJ7eFvGtn2MlrkjYeG94fWkBvaIudgy1+v2w4HAcABj71KIDm6Yeurq7GqVOnsGrVKosel4geXG3zX3IiMxw5cgQSiQRjx46FTCaDs7MznJ2dLTpF0tra2uhgm9qr2vVNkdRoNJg0aRK2bNmCQYMGtdTbIsrdu3fNauVoKbrC2MfHR9gmZnJdfYkkarUaBQUFwu2mJJLk5ubC2dkwls+SpFIpHLvJ4dit4fg3rVYLtapE6NlW5Rbhf/+9jVvX0mEns68pvP9IKzGWrgEAXdwcjRbQQE0MYW0lRaUoKSqFlY0Vqq9kGk/seKh/zfCYrp1g72CHjnZ/XiT52PA/V6Jrx8FZQmpqKkpKSjB48GCLHpeIHlxt819KIjMcPnwY06dPN/krYLFTJO/duycU2LWL7uvXr+PEiRONTpEsLi5GYWEhqqqqcP78eYtPkbSE7OzsBi8WbW05OTmQy+WNtoLUp6FEktqakkiSn5+PDh064H//+59BAd4S8X+1SSQSdHKyRycne/R6tOa6hP/+978YUvWYQZFacq8UKl2P9h8j2vOzVKjWVCPtUobQRlI7Ezr/jvEpjj37u+PWhd+N3lemLkd5STlySsr1Vr579HeHYzcHlJaWory8HI6Ojk189foUCgX8/Pza7AW9RNT+sIim+8aWLVtQVmZ8xHBT6ApcuVwOuVwOLy8vo/s1NkXyxIkTcHJyQmRkZLNMkWyqkpISFBcXt4lWjvroou2am7mJJAUFBSgoqCksc3Nz600kMbay3VgiiaXk5eUZjbC062wLuz8mHDak9kWSeq0k2X+2kzi5OkBy0fAiSYlUgtupxvuhB47oD6BmFVoulzdLP7TYIStERA1hEU33DalU2mr92kDDUyQrKyuxY8cOHDhwAE899RQAcVMkJRIJXFxcjPZt1y64XV1dze7lPX/+vNm9vC1Bo9EgPz+/TcWT1U0kUalUcHV1NfhWo7q6GhUVFQYr27pWksYSSRq6SFKM8vJyFBcXo0uXhnuuGyLmIknV3aI/VrZriutilRp303OEiyTzswqguluEak11s/ZDAzXJHDNmzLD4cYnowcUimqgFJCYmwtbWFiNGjBAKXDs7O3h6etabd2zKFEndRZJKpRI5OTnQarVmT5F844038Nprr+GJJ55ogXdEvLy8PNjY2LTZITpAzeqzsf+fUqkUNjY2jY50ri+RRDdFsvY2cxJJ8vPz0blz5xZpaehg1QHOHl3g7NFwwa7RVONe7j3YOdT8IFJQUFDvtz3munPnDjIyMvDkk09a9LhE9GBjEU3UAlJSUjBt2jRRPbFipkjqii9d7J/YKZK2tra4efMmioqKsH//fotPkbSEu3fvGk1laStKS0tRUlLSpFXe+hJJ6jI3kUSj0cDKygrXrl0zWmyb+y1GU8hkUjh2r8mDLisrQ2lpabP0Q/v4+EAub/hCTJ1t27YhKioKSqUSPj4+2LJlS73DmwIDA3H8+HGD7RMmTEB8fDwAYObMmYiNjdW7Pzg4GAkJCSJfCRG1JSyiiVrAypUrDfpDLUlXfPXq1cusKZL79++Hh4cHkpOT8f3331t8imRTVVdXIzc3t9VHpTckNzcXjo6OLdIOY04iSVlZGS5dugQnJydIpVIUFxfrtZc0JZHEUnT90JZOh1EoFBg+fLhJ+/7rX/9CREQEoqOj4efnh02bNiE4OBipqalGf4g7cOCA0PMO1Hxj4uPjgylTpujtFxISgh07dgi3zb04lojaDhbRRC2ktVdydedgbIpkTEwMIiMjMXPmTACWnSKpy9rWFd/mTJG8dOkSMjMzMXLkSEu/JRbTEtF25tAlkgA1feX9+/c3etGeuYkkjY1uF1NsN1c/tEKhwIoVK0zad+PGjZg9ezZefvllAEB0dDTi4+Oxfft2LF++3GD/ut887N27F3Z2dgZFdMeOHYUJlkR0f2ARTfSAu3XrFi5evIhnn31W2GbJKZK6QjsrK6veKZLG8rZrT5HcunUr1Go1pk2b1lJviyi6ix4ffvjh1j6VeuXn58PR0bHe1AtzE0lq/7p3756oRJLa22QyGQoKCix+4WhRUREuXrxo0kp0RUUFzp07p1dwS6VSjBkzBgqFwqTni4mJQVhYmEHvflJSErp16wYnJyeMHj0a69at05tqSUTtD4toogdcWloaXnrpJbNWABubIqmjK7brmyJ54cIF/Pjjj0anSHbv3h0XLlxAQEAAoqKiLD5F0hJUKhWsra3b9EWPeXl5TerX1qmbSFIfsYkkMpkMGo0G6enpUCqVFkskOX36NB566CG9b17qk5ubC41Gg+7du+tt7969O65du9bo48+cOYPLly8jJiZGb3tISAiee+459OnTBzdv3sTKlSsxfvx4KBSKZo0zJKLmxSKa6AEXFBSEoKCgZn0OXbFtzhTJU6dOITk5GV5eXmZNkdT93tgUSUvJzc1F165d20TLjjG6H2D69u3bYs8pNpEkMzMTmZmZcHd3b3IiiVarhb29PaRSKRQKhRAr2dxiYmLg7e1tcBFiWFiY8Htvb28MGjQInp6eSEpKava/e0TUfFhEE1GbYWyKpEKhwMSJE7Ft2zZhv4amSGZlZdU7RbJ2oV1f1rY5UyT37duHl156yeLvh6UUFRVBIpE0mPjRWnQXM5aVlcHFxaXeFWMxiSSRkZE4f/48unTpguLiYjzyyCOYP38+3N3dhRYlNzc3PPbYY3or287OzpDJZMjOztZ77uzs7Eb7mdVqNfbu3Yu1a9c2+pr79u0LZ2dn3Lhxg0U0UTvGIpqI2rRvv/0WCxcu1NtmqSmS6enpOHnypLCybc4UycuXL2PDhg1YsGBB874RTZCfny+0vbRVBQUF6NevX733i0kkGTJkCDIyMpCWloYZM2Zg7NixqK6uFr7J0P05uHXrll6Li7W1NYYOHYqjR49i0qRJAGpW8Y8ePYr58+c3+JxxcXEoLy/H9OnTG32tt2/fRl5eHtzc3Brdl4jaLhbRRNRmVVZWok+fPggNDTXr8Q1NkaxNV2ybM0VSKpXC3t4ey5cvNyi0mzpF0lLaesFWUVEBtVptsXxo3TcZ5eXlkMvleP/9901+/yMiIjBjxgw8/vjjGDZsGDZt2gS1Wi2kdYSHh8PDwwPvvfee3uNiYmIwadIkg4sFi4uL8Y9//AOTJ0+Gq6srbt68iaVLl6Jfv34IDg62yOslotbBIpqI2iwrKyvExcU1+/OYM0VSqVQiMzMT8+bNQ9++feHh4WHxKZKWUFVVhcLCQgwcONBix7S0goICdOrUyeKTFE+ePImAgABR7+eLL76InJwcrF69GkqlEr6+vkhISBAuNszIyDCI7UtNTcWvv/6Kn376yeB4MpkMFy9eRGxsLFQqFdzd3TFu3DhERkYyK5qonZNom3MCxAPsxIkTiIqKwrlz55CVlYWDBw8KXw/WJykpCREREbhy5Qp69uyJt99+W8jt1REzSYuImpdarUbXrl1x8eJFg1XuxqZI1o7+MzZFsqH4PzFTJJOSknD27Fn8/e9/b5b3wBJ0yReWHvf94osv4umnn8Zbb71l0eMSEQFciW42arUaPj4+eOWVV/Dcc881un9aWhpCQ0Mxd+5c7Nq1C0ePHsWrr74KNzc34Ss/sZO0iKh5HTt2DB4eHkbzoZsyRbJ23/Yvv/wiFNx1p0gau0iy7hTJ3bt3o6SkpDnfhiZrjuQQrVYLhUKBlStXWvS4REQ6XIluARKJpNGV6GXLliE+Ph6XL18WtoWFhUGlUiEhIQEA4OfnhyeeeAJbt24FUHPBS8+ePbFgwQKjk7SIqHn9/PPPuHbtGt54441mf67GpkjWXtmuPUWyrKwMvXv3ho+Pj0WnSFpKRUUFjh8/jqefftqi7Q2pqakICAhAYWGhxdtEiIgArkS3GQqFAmPGjNHbFhwcjEWLFgGwzCQtIrKs0aNHY/To0S3yXOZMkbxw4QJCQkIwb948IQ6w9hRJpVKJsrIys6ZIWopKpYK9vb3F+4MVCgX8/PxYQBNRs2ER3UYolUqjU7KKiopQWlqKgoKCJk3SqktMb3VgYCCOHz9usH3ChAmIj48HAMycOROxsbF69wcHBwur6ETUMmpPkczOzsaQIUPw5ptvGuxXd4pk7aztxqZI1m0hacoUyb1796Jbt24ICAiw6PugUChMGvVNRGQuFtEPILG91QcOHEBFRYVwOy8vDz4+PpgyZYrefiEhIdixY4dwm1eeE7WuI0eOYOzYsUbva8oUydoXSpo7RdLV1RXOzs6IiYlpNIPZHCdPnsS0adMsflwiIh0W0W2Eq6ur0SlZcrkctra2kMlkZk/Sqmvjxo2YPXu2kHsaHR2N+Ph4bN++3Whvde1hBEDNypGdnZ1BEd2xY0fR50JEzScgIACPP/54k45hbIqkMaZOkdQV24WFhZDJZNBoNIiJiUFiYqLFpkhmZWUhPT0d/v7+TXrtREQNYRHdRvj7++P777/X25aYmCj8I9CUSVq1WaK3OiYmBmFhYbC3t9fbnpSUhG7dusHJyQmjR4/GunXrDAYPEFHLmTNnTos9lzlTJHfv3o3IyEisWLHColMkT506BW9vbzg4OLTY6yeiBw+L6GZSXFyMGzduCLfT0tKQkpKCLl26oFevXlixYgUyMzPx5ZdfAgDmzp2LrVu3YunSpXjllVfw888/Y9++fULPMdD4JC1T5ObmNqm3+syZM7h8+TJiYmL0toeEhOC5555Dnz59cPPmTaxcuRLjx4+HQqGATCYz+fwAcf3aO3fuNHj9HTt2RFlZmXBbq9VizZo1+Pzzz6FSqTB8+HB88sknRmPJiKh51Z4ief36dYSEhGDq1KkG+zVliqRGo4GPj0+Lvi4ievCwiG4mZ8+exahRo4TbERERAIAZM2Zg586dyMrKQkZGhnB/nz59EB8fj8WLF+Pjjz9Gjx498MUXX+iNhW1sklZLiImJgbe3t0FRGxYWJvze29sbgwYNgqenJ5KSkhAUFGTy8c3JwpbL5UhNTRVu1/3K98MPP8TmzZsRGxuLPn36YNWqVQgODsb//d//wcbGxuRzIyLLOn78OBYuXGj0vqZMkTxx4kS9I96JiCxGSw+U8vJyrUwm0x48eFBve3h4uPaZZ55p8LHFxcVauVyu3bRpk0nP5ezsrI2OjhZ1fsOGDdPOmzdPuK3RaLTu7u7a9957z+j+O3bs0Do4ONR7vOrqaq2rq6s2KipK2KZSqbQdO3bU7tmzR9S5EZFlffTRR9o7d+609mkQEZlF2tpFPLWs2r3VOrre6sYuwomLi0N5eTmmT5/e6PPcvn0beXl5cHNzM/ncdP3atfOyTenXLi4uxkMPPYSePXvi2WefxZUrV4T70tLSoFQq9Y7p4OAAPz8/5msTtbKIiAhRnxFERG0Ji+gHUEREBD7//HPExsbi6tWreP311/V6q8PDw/UuPNSJiYnBpEmTDC4WLC4uxltvvYVTp04hPT0dR48exbPPPot+/frptaM0pqF+baVSafQx/fv3x/bt2/Htt9/i66+/RnV1NQICAnD79m0AEB4n5pgN2bZtG3r37g0bGxv4+fnhzJkz9e77+eef46mnnoKTkxOcnJwwZswYg/1nzpwppB/ofoWEhIg+LyIS78SJE/jLX/4Cd3d3SCQSfPPNN40+JikpCUOGDEHHjh3Rr18/7Ny502AfMZ8TRNR+sYh+AL344ovYsGEDVq9eDV9fX6SkpOj1VmdkZCArK0vvMampqfj1118xa9Ysg+PJZDJcvHgRzzzzDB555BHMmjULQ4cOxS+//NLsWdH+/v4IDw+Hr68vRo4ciQMHDsDFxQWffvqpxZ9L16+9Zs0aJCcnw8fHB8HBwbh7967R/ZOSkjB16lQcO3YMCoUCPXv2xLhx45CZmam3X0hIiHCxVFZWFvbs2WPxcyciQ2q1Gj4+Pti2bZtJ+6elpSE0NBSjRo1CSkoKFi1ahFdffRU//vijsI/Yzwkiar8kWu0fV2UQtbKKigrY2dlh//79QowfUHMxpkqlwrfffmvScaZMmYIOHTpgz549uHXrFjw9PXH+/Hn4+voK+4wcORK+vr74+OOPTT4/Pz8/PPHEE9i6dSuAmjaYnj17YsGCBUbztevSaDRwcnLC1q1bER4eDqBmJVqlUpm0AkZEzUcikeDgwYN6nz11LVu2DPHx8bh8+bKwLSwsDCqVSpjO2tTPCSJqP7gSTW1GU/q1dTQaDS5duiT0Wfbp0weurq56xywqKsLp06dFDWIwt1+7tpKSElRWVhoMr9Hla/fv3x+vv/468vLyTD4vImo5CoVC7zMAAIKDg4XPAEt8ThBR+8EimtoUsf3aa9euxU8//YRbt24hOTkZ06dPx++//45XX30VQM3q0qJFi7Bu3TocOnQIly5dQnh4ONzd3RtccarLnH7tupYtWwZ3d3e9f2BDQkLw5Zdf4ujRo/jggw9w/PhxjB8/HhqNxuRz0xHbhxkXFwcvLy/Y2NjA29vbYNiPVqvF6tWr4ebmBltbW4wZMwbXr18XfV5E9wulUmn0M6CoqAilpaUW+ZwgovaDOdHUpjSWhZ2RkQGp9M+f/QoKCjB79mwolUo4OTlh6NChOHnyJAYMGCDss3TpUqjVasyZMwcqlQojRoxAQkJCi2ZEv//++9i7dy+SkpL0nre18rVPnjyJqVOn4r333sPEiROxe/duTJo0CcnJyRg4cCAA5msTERE1qJUj9ojahabka0dFRWkdHBy0v/32m0nP1RL52i+88II2NDRUb5ufn5/2tdde02q1zNemBw8Ag7/fdT311FPaN998U2/b9u3btXK5XKvVNu1zgojaH7ZzEJnA3H7tDz/8EJGRkUhISMDjjz/e6PO0VL52Y72dzNcmMuTv76/3GQAAiYmJwmeAJa7rIKL2g0U0kYnE9mt/8MEHWLVqFbZv347evXtDqVRCqVSiuLgYQOvma9fX26nb39L52nXl5+dj2rRpkMvlcHR0xKxZs4T3pb79FyxYgP79+8PW1ha9evXCwoULUVhYqLdf3cxtiUSCvXv3Nvl86f5UXFyMlJQUpKSkAKj54TElJQUZGRkAgBUrVghJOgAwd+5c3Lp1C0uXLsW1a9fwz3/+E/v27cPixYuFfRr7nCCi+wd7oolMJLZf+5NPPkFFRQWef/55veOsWbMG77zzjpCvHRsbC5VKBXd3d4wbNw6RkZHNnq/d2qZNm4asrCwkJiaisrISL7/8MubMmYPdu3cb3f/OnTu4c+cONmzYgAEDBuD333/H3LlzcefOHezfv19v3x07dugNrHF0dGzOl0Lt2NmzZzFq1CjhdkREBICaWM2dO3ciKytLKKiBmrSf+Ph4LF68GB9//DF69OiBL774Qu+H3sY+J4jo/sGcaKJ2zpx87V69eiEiIgKLFi0Stq1ZswbffPMNLly4YNF87bquXr2KAQMG4LfffhNaXBISEjBhwgTcvn0b7u7uJh0nLi4O06dPh1qtRocONesBpmT9EhERWQLbOYjaOXP6MBvr7bRUvrYxCoUCjo6Oej3iY8aMgVQqxenTp00+TmFhIeRyuVBA68ybNw/Ozs4YNmwYtm/fDq4TEBFRc2ARTXQfENuv/eabbyIhIQEfffQRrl27hnfeeQdnz57F/PnzAVguX9sYpVJpELvXoUMHdOnSxeR+69zcXERGRmLOnDl629euXYt9+/YhMTERkydPxhtvvIEtW7aIPkexPdsAEBgYaNCPPXfuXL19MjIyEBoaCjs7O3Tr1g1vvfUWqqqqRJ8fERG1PvZEE90HxPZrBwQEYPfu3Xj77bexcuVKPPzww/jmm2+EjGhAfL728uXL8cEHHzR4nlevXm3yay0qKkJoaCgGDBiAd955R+++VatWCb8fPHgw1Go1oqKisHDhQlHPIbZnW2f27NlYu3atcNvOzk74vUajQWhoKFxdXXHy5ElkZWUhPDwcVlZWWL9+vajzIyKi1seeaCKyiJycnEZHlvft2xdff/01lixZgoKCAmF7VVUVbGxsEBcXh7/+9a/1Pv7evXsIDg6GnZ0dvvvuu0aHvsTHx2PixIkoKysz+WJNc3u2AwMD4evri02bNhm9/4cffsDEiRNx584d4Yeb6OhoLFu2DDk5ObC2tjbp/IiIqG1gOwcRWYSLiwu8vLwa/GVtbQ1/f3+oVCqcO3dOeOzPP/+M6upq+Pn51Xv8oqIijBs3DtbW1jh06JBJUxNTUlLg5OQkKu2kKT3bu3btgrOzMwYOHIgVK1agpKRE77je3t56KQ3BwcEoKirClStXTD4/IiJqG1hEE1GLevTRRxESEoLZs9kAxoQAAAc0SURBVGfjzJkz+M9//oP58+cjLCxMWOXNzMyEl5cXzpw5A+DPAlqtViMmJgZFRUVC7rZGowEAHD58GF988QUuX76MGzdu4JNPPsH69euxYMECUednbs/23/72N3z99dc4duwYVqxYga+++grTp0/XO66x3G3dfWKI7dlOT083mqEtkUgQFxcn7MecbSIi07Enmoha3K5duzB//nwEBQVBKpVi8uTJ2Lx5s3B/ZWUlUlNThZXc5ORkYRW4X79+esdKS0tD7969YWVlhW3btmHx4sXQarXo168fNm7ciNmzZwNo/p7t2hc5ent7w83NDUFBQbh58yY8PT3NPq4xYnu2e/bsiaysLL1tn332GaKiojB+/Hi97czZJiIyDYtoImpxXbp0afAivd69e+tF0wUGBjYaVRcSEqJX/NW1ZMkSzJw5s8Fj9O3bF66urrh7967e9qqqKuTn58PV1bXBx9ema025ceMGPD094erqKqys62RnZwOAqONevXoVCQkJej3bW7ZswYQJE7BhwwajPdsymczgOQ4ePIgXXngBnTp10tvu6Ogo6nyIiB5UbOcgogdCc/ds16UbJe3m5gagJpv70qVLegV6YmIi5HI5BgwYYPJxLZGzfe7cOaSkpGDWrFkG9zFnm4jINCyiiYhqMadn++bNm4iMjMS5c+eQnp6OQ4cOITw8HE8//TQGDRoEABg3bhwGDBiAl156CRcuXMCPP/6It99+G/PmzRN14aMlcrZjYmLw6KOPIiAgQG+7pXK23333XQQEBMDOzs7kdhCtVovVq1fDzc0Ntra2GDNmDK5fv663jzn53UREzYVFNBFRHbt27YKXlxeCgoIwYcIEjBgxAp999plwf92ebWtraxw5cgTjxo2Dl5cXlixZgsmTJ+Pw4cPCY2QyGb777jvIZDL4+/tj+vTpCA8PF3Klly9fXu/Ff7pf165da/JrKy0txe7du42uQq9atQrDhw/H4MGDsWzZMixduhRRUVGin6OiogJTpkzB66+/bvJjPvzwQ2zevBnR0dE4ffo07O3tERwcjLKyMmGfadOm4cqVK0hMTMR3332HEydOGAzcISJqKcyJJiJqA1oiZxsAvvrqK8yaNQuZmZlwcXFpcF9zcrZr27lzJxYtWgSVStXgflqtFu7u7liyZAn+/ve/A6gZ6969e3fs3LkTYWFhZud3ExE1F15YSETUBri4uDRa1ALQ69keOnQoAHE92zExMXjmmWdMei5zcrbNkZaWBqVSiTFjxgjbHBwc4OfnB4VCgbCwsEZ7wRv74YGIyNJYRBMRtSO1e7ajo6NRWVlptGc7KCgIX375JYYNGyY89saNGzhx4gS+//57g+MePnwY2dnZePLJJ2FjY4PExESsX79eWBluTrpebmM52rr7LNELTkRkSeyJJiJqZ8T2bOts374dPXr0wLhx4wyOqcvZ9vf3h6+vLz799FNs3LgRa9asAdByPdtERO0FV6KJiNoZsTnbOuvXr8f69euNPsZSOdvm0OVSZ2dnC5GAutu+vr7CPpbI7yYishSuRBPdx/bs2QNbW1u9aXUvv/wyBg0ahMLCwlY8M2pvTM3ZNkefPn3g6uqKo0ePCtuKiopw+vRp+Pv7A4DF8ruJiCyFRTTRfSwsLAyPPPKIsPq4Zs0aHDlyBD/88AMcHBxa+ezofpWRkYGUlBRkZGRAo9EgJSUFKSkpepnOXl5eOHjwIABAIpFg0aJFWLduHQ4dOoRLly4hPDwc7u7umDRpEgDT8ruJiFoS2zmI7mMSiQTvvvsunn/+ebi6umLLli345Zdf4OHh0dqnRvex1atXIzY2Vrg9ePBgAMCxY8cQGBgIAEhNTdX7NmTp0qVQq9WYM2cOVCoVRowYgYSEBNjY2Aj77Nq1C/Pnz0dQUBCkUikmT56MzZs3t8yLIiKqgznRRA+AIUOG4MqVK/jpp58wcuTI1j4dIiKido/tHET3uYSEBFy7dg0ajcYgQoyIiIjMw5VoovtYcnIyAgMD8emnn2Lnzp2Qy+WIi4tr7dMiIiJq99gTTXSfSk9PR2hoKFauXImpU6eib9++8Pf3R3JyMoYMGdLap0dERNSucSWa6D6Un5+PgIAABAYGIjo6WtgeGhoKjUaDhISEVjw7IiKi9o9FNBERERGRSLywkIiIiIhIJBbRREREREQisYgmIiIiIhKJRTQRERERkUgsoomIiIiIRGIRTUREREQkEotoIiIiIiKRWEQTEREREYnEIpqIiIiISCQW0UREREREIrGIJiIiIiISiUU0EREREZFILKKJiIiIiERiEU1EREREJBKLaCIiIiIikVhEExERERGJxCKaiIiIiEgkFtFERERERCKxiCYiIiIiEolFNBERERGRSCyiiYiIiIhEYhFNRERERCQSi2giIiIiIpFYRBMRERERicQimoiIiIhIJBbRREREREQisYgmIiIiIhLp/wEUBLHTS4lV8QAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 213 } ], "metadata": { From 2824b5fccc623e36093df6af8b4ddd05b7e35f2b Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 9 Jun 2024 19:58:59 +0200 Subject: [PATCH 07/21] wip: add var layers --- scratch/scratch5.ipynb | 211 +++++++++++++++++++++-------------------- 1 file changed, 110 insertions(+), 101 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 352d98e..b30a7fe 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.852420Z", - "start_time": "2024-06-09T16:18:31.849097Z" + "end_time": "2024-06-09T17:54:32.819903Z", + "start_time": "2024-06-09T17:54:32.815451Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 203 + "execution_count": 262 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.861245Z", - "start_time": "2024-06-09T16:18:31.855696Z" + "end_time": "2024-06-09T17:54:32.829701Z", + "start_time": "2024-06-09T17:54:32.823254Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 204 + "execution_count": 263 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.869517Z", - "start_time": "2024-06-09T16:18:31.862648Z" + "end_time": "2024-06-09T17:54:32.847083Z", + "start_time": "2024-06-09T17:54:32.840239Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[-1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006\n", - " -1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.6198751 -1.6198751\n", - " -1.6198751 -1.6198751 -1.6198751 -1.6198751 0.9217036 0.9217036\n", - " 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036\n", - " -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684\n", - " -1.0026684 -1.0026684 1.3207638 1.3207638 1.3207638 1.3207638\n", - " 1.3207638 1.3207638 1.3207638 1.3207638 -0.23222709 -0.23222709\n", - " -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709\n", - " -1.860207 -1.860207 -1.860207 -1.860207 -1.860207 -1.860207\n", - " -1.860207 -1.860207 0.46878242 0.46878242 0.46878242 0.46878242\n", - " 0.46878242 0.46878242 0.46878242 0.46878242]\n", + "[-1.138229 -1.138229 -1.138229 -1.138229 -1.138229 -1.138229\n", + " -1.138229 -1.138229 1.6021234 1.6021234 1.6021234 1.6021234\n", + " 1.6021234 1.6021234 1.6021234 1.6021234 0.7902335 0.7902335\n", + " 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335\n", + " -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875\n", + " -0.8486875 -0.8486875 -4.053289 -4.053289 -4.053289 -4.053289\n", + " -4.053289 -4.053289 -4.053289 -4.053289 5.506906 5.506906\n", + " 5.506906 5.506906 5.506906 5.506906 5.506906 5.506906\n", + " 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893\n", + " 1.9971893 1.9971893 -2.535824 -2.535824 -2.535824 -2.535824\n", + " -2.535824 -2.535824 -2.535824 -2.535824 ]\n", "=========\n", - "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", - " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", - " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", - " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", - " -1.860207 -1.860207 0.46878242 0.46878242]\n", + "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", + " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", + " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", + " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", + " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", + " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", + " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n", "=========\n", - "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", - " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", - " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", - " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", - " -1.860207 -1.860207 0.46878242 0.46878242]\n", + "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", + " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", + " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", + " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", + " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", + " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", + " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 205 + "execution_count": 264 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.873308Z", - "start_time": "2024-06-09T16:18:31.871196Z" + "end_time": "2024-06-09T17:54:32.868962Z", + "start_time": "2024-06-09T17:54:32.866826Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 206 + "execution_count": 265 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.898163Z", - "start_time": "2024-06-09T16:18:31.895065Z" + "end_time": "2024-06-09T17:54:32.873572Z", + "start_time": "2024-06-09T17:54:32.870440Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[-1.2320006 -1.6198751 0.9217036 -1.0026684 1.3207638 -0.23222709\n", - " -1.860207 0.46878242]\n", + "[-1.138229 1.6021234 0.7902335 -0.8486875 -4.053289 5.506906\n", + " 1.9971893 -2.535824 ]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[-1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006 -1.2320006\n", - " -1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.6198751 -1.6198751\n", - " -1.6198751 -1.6198751 -1.6198751 -1.6198751 0.9217036 0.9217036\n", - " 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036 0.9217036\n", - " -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684 -1.0026684\n", - " -1.0026684 -1.0026684 1.3207638 1.3207638 1.3207638 1.3207638\n", - " 1.3207638 1.3207638 1.3207638 1.3207638 -0.23222709 -0.23222709\n", - " -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709 -0.23222709\n", - " -1.860207 -1.860207 -1.860207 -1.860207 -1.860207 -1.860207\n", - " -1.860207 -1.860207 0.46878242 0.46878242 0.46878242 0.46878242\n", - " 0.46878242 0.46878242 0.46878242 0.46878242]\n", - "[-1.2320006 -1.2320006 -1.6198751 -1.6198751 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 0.9217036 0.9217036 -1.0026684 -1.0026684\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 -1.2320006 -1.2320006\n", - " -1.6198751 -1.6198751 -1.2320006 -1.2320006 -1.6198751 -1.6198751\n", - " 0.9217036 0.9217036 -1.0026684 -1.0026684 0.9217036 0.9217036\n", - " -1.0026684 -1.0026684 1.3207638 1.3207638 -0.23222709 -0.23222709\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 -1.860207 -1.860207\n", - " 0.46878242 0.46878242 -1.860207 -1.860207 0.46878242 0.46878242\n", - " 1.3207638 1.3207638 -0.23222709 -0.23222709 1.3207638 1.3207638\n", - " -0.23222709 -0.23222709 -1.860207 -1.860207 0.46878242 0.46878242\n", - " -1.860207 -1.860207 0.46878242 0.46878242]\n" + "[-1.138229 -1.138229 -1.138229 -1.138229 -1.138229 -1.138229\n", + " -1.138229 -1.138229 1.6021234 1.6021234 1.6021234 1.6021234\n", + " 1.6021234 1.6021234 1.6021234 1.6021234 0.7902335 0.7902335\n", + " 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335\n", + " -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875\n", + " -0.8486875 -0.8486875 -4.053289 -4.053289 -4.053289 -4.053289\n", + " -4.053289 -4.053289 -4.053289 -4.053289 5.506906 5.506906\n", + " 5.506906 5.506906 5.506906 5.506906 5.506906 5.506906\n", + " 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893\n", + " 1.9971893 1.9971893 -2.535824 -2.535824 -2.535824 -2.535824\n", + " -2.535824 -2.535824 -2.535824 -2.535824 ]\n", + "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", + " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", + " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", + " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", + " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", + " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", + " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", + " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", + " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n" ] } ], - "execution_count": 207 + "execution_count": 266 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.902408Z", - "start_time": "2024-06-09T16:18:31.899363Z" + "end_time": "2024-06-09T17:54:32.884267Z", + "start_time": "2024-06-09T17:54:32.881208Z" } }, "source": [ @@ -323,15 +323,15 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 208 + "execution_count": 267 }, { "cell_type": "code", "id": "47ef065abf26f244", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.915431Z", - "start_time": "2024-06-09T16:18:31.909037Z" + "end_time": "2024-06-09T17:54:32.905690Z", + "start_time": "2024-06-09T17:54:32.899106Z" } }, "source": [ @@ -474,27 +474,29 @@ " return self.norm" ], "outputs": [], - "execution_count": 209 + "execution_count": 268 }, { "cell_type": "code", "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.931949Z", - "start_time": "2024-06-09T16:18:31.926419Z" + "end_time": "2024-06-09T17:54:32.912846Z", + "start_time": "2024-06-09T17:54:32.906545Z" } }, "source": [ + "from qulearn.qlayer import AltRotCXLayer\n", "num_qubits = 3\n", "num_nodes = 2**num_qubits\n", "a = -1.0\n", "b = 1.0\n", "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "var = AltRotCXLayer(wires=2*num_qubits, n_layers=1)\n", "\n", - "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=False)\n", - "obs = qml.PauliZ(1)\n", - "model = MeasurementLayer(embed, observables=obs, measurement_type=MeasurementType.Expectation)\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=True)\n", + "obs = qml.PauliZ(3)\n", + "model = MeasurementLayer(embed, var, observables=obs, measurement_type=MeasurementType.Expectation)\n", "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", "x = torch.tensor([0.0, 0.0])\n", "print(drawer(x))" @@ -504,24 +506,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ─────────────────────────────╭U(M3)─┤ \n", - "1: ──────────────────────╭U(M0)─╰U(M3)─┤ \n", - "2: ───────────────╭U(M2)─╰U(M0)────────┤ \n", - "3: ────────╭U(M1)─╰U(M2)───────────────┤ \n", - "4: ─╭U(M0)─╰U(M1)──────────────────────┤ \n", - "5: ─╰U(M0)─────────────────────────────┤ \n" + "0: ──────────────────────────────────────────────────╭U(M3)────────────────Rot(0.04,1.41,4.65)─╭●\n", + "1: ─────────────────────────────╭U(M2)───────────────├U(M3)────────────────Rot(3.84,1.40,0.54)─╰X\n", + "2: ────────╭U(M1)───────────────├U(M2)───────────────╰U(M3)────────────────Rot(4.14,3.46,2.86)─╭●\n", + "3: ─╭U(M0)─├U(M1)───────────────╰U(M2)────────────────Rot(5.40,1.00,3.75)──────────────────────╰X\n", + "4: ─├U(M0)─╰U(M1)────────────────Rot(4.10,3.87,2.31)─╭●────────────────────Rot(5.50,0.97,3.80)───\n", + "5: ─╰U(M0)──Rot(5.07,2.43,4.67)──────────────────────╰X────────────────────Rot(0.95,5.19,0.61)───\n", + "\n", + "───Rot(0.77,0.93,1.89)─────────────────────────┤ \n", + "───Rot(3.31,2.89,4.73)─╭●──Rot(2.28,2.13,1.95)─┤ \n", + "───Rot(3.41,4.14,1.48)─╰X──Rot(3.16,1.78,2.16)─┤ \n", + "───Rot(1.43,0.07,4.32)─╭●──Rot(2.49,0.36,5.65)─┤ \n", + "───────────────────────╰X──Rot(2.47,2.66,4.92)─┤ \n", + "───────────────────────────────────────────────┤ \n" ] } ], - "execution_count": 210 + "execution_count": 269 }, { "cell_type": "code", "id": "93646da4c54dfbff", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:31.939136Z", - "start_time": "2024-06-09T16:18:31.932723Z" + "end_time": "2024-06-09T17:54:32.919258Z", + "start_time": "2024-06-09T17:54:32.913494Z" } }, "source": [ @@ -558,13 +567,13 @@ ] } ], - "execution_count": 211 + "execution_count": 270 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:34.055577Z", - "start_time": "2024-06-09T16:18:31.939723Z" + "end_time": "2024-06-09T17:54:35.026543Z", + "start_time": "2024-06-09T17:54:32.920185Z" } }, "cell_type": "code", @@ -623,15 +632,15 @@ "output_type": "display_data" } ], - "execution_count": 212 + "execution_count": 271 }, { "cell_type": "code", "id": "66ba7a519125ef4e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T16:18:38.128299Z", - "start_time": "2024-06-09T16:18:34.056641Z" + "end_time": "2024-06-09T17:55:26.230439Z", + "start_time": "2024-06-09T17:55:11.300584Z" } }, "source": [ @@ -671,7 +680,7 @@ "ax.set_zlabel('$z$')\n", "ax.set_title(\"$\\langle Z_0\\\\rangle$\")\n", "\n", - "ax.view_init(elev=30, azim=100)\n", + "ax.view_init(elev=30, azim=45)\n", "# Add a color bar which maps values to colors\n", "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", "\n", @@ -687,13 +696,13 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAJOCAYAAABx+VuRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlZ13nj7+eZ+8z3bmqbs1zZSJjZSIBRETNL2FokR+o0L1cRFhiYxvXwrSLLziAoo0DClEE00uDQP9sQVerDQYCduzgF41MBiEBIqkhNaRu1a3hTmfe+3l+f+zhTPs59+6qW0lV5fNaq1ZV7bPPHs459573/uz35/1R1lqLIAiCIAiCIAgrRj/XByAIgiAIgiAIFxsiogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUEQBEEQBCEnIqIFQRAEQRAEISciogVBEARBEAQhJyKiBUE4Kz7+8Y8zMjJCrVZLl61fvx6l1NA///k//+dlt/3Lv/zL7Nmz53weviAIgiCcE8paa5/rgxAE4eLj9a9/Pa1Wi8985jMABEHAJz/5ycx1FxYW+MVf/EWazSZ/93d/xytf+cqh2/6Xf/kXXvziF/P4449z7bXXrvqxC4IgCMK54j/XByAIwsVHs9nkC1/4Ah/4wAfSZb7v85M/+ZOZ677iFa+gXq/zkY98ZFkBDXD77bezceNGPvOZz4iIFgRBEC5IxM4hCEJu/u///b9Uq1V+5Ed+ZOh6YRjyn/7Tf+KRRx7h137t1/jZn/3ZFW1fKcV/+A//Ia1yC4IgCMKFhohoQRBy85nPfIYXvvCFbNq0aeh6P/uzP8tf//Vf83M/93O85z3vybWP17zmNfzLv/wLs7Oz53KogiAIgnBeEBEtCEJuPvOZzyxbhf7lX/5l/uRP/oSf+Imf4A//8A9z7+OOO+6gVCrx2c9+9mwPUxAEQRDOGyKiBUHIxWOPPcbhw4d5zWte41znD//wD3nf+97HHXfcwf/4H/8DrfP/qhkZGeGHf/iHxdIhCIIgXJCIiBYEIRdf/OIXmZqa4oYbbsh8/C/+4i94+9vfzq233srf/M3fUCwWB9aZnZ3l1a9+NaOjo1x11VU8/PDDmdt6+ctfziOPPLKahy8IgiAIq4KIaEEQcnHLLbcwNzfHU089NfDY5z//ee6++26uuOIKPvvZzzI2Npa5jZ/7uZ9j06ZNzM7O8v73v5+f+Imf4PTp0wPrfeUrX+HWW29d9XMQBEEQhHNFRLQgCLl4yUtewvT0NJ/+9Kd7ln/5y1/m9a9/PRs2bOALX/gC69evz3z+0tISf/u3f8uv//qvMzIywmte8xquv/56/vf//t8967XbbR566KFlvdeCIAiC8FwgIloQhFx4nserXvWqHq/yd77zHV796ldTLBb5/Oc/z86dO53P/973vsfY2Bjbtm1Ll11//fU88cQTPet98YtfZGFhQUS0IAiCcEEiw1YEQcjNa17zGt74xjdy5swZlFLcddddnDp1iv/yX/4Ljz32GI899tjAczZs2MCdd97J0tISExMTPY9NTExw6tSpnmWf/vSn2bt3Lzt27Div5yIIgiAIZ4OIaEEQcnPnnXeiteZzn/sc09PTHD58GICPfOQjfOQjH8l8zpve9CbuvPNOxsbGWFhY6HlsYWFhwD/9mc98JnMCoiAIgiBcCIiIFgQhN+Pj4/zgD/4gn/70p/nkJz+JtXbFz73iiitYWlri6NGjbN26FYDHH3+cN73pTek63/rWtzh48KBYOQRBEIQLFvFEC4JwVrzmNa/hoYceot1u53re2NgYP/qjP8p73vMe6vU6f/d3f8c3v/lNfvRHfzRd59Of/jSbNm3ihS984WoftiAIgiCsCsrmKSEJgiDENBoNjhw5wq5du/D9fDe1Zmdnufvuu3nkkUfYtm0bH/nIR7jjjjvSx48fP04YhmzZsmW1D1sQBEEQVgUR0YIgCIIgCIKQE7FzCIIgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJOREQLgiAIgiAIQk5ERAuCIAiCIAhCTkREC4IgCIIgCEJO/Of6AIRLmzAMaTQaaK1RSi37RxAEQRAE4WJARLRw3rDWUq/XaTQaeJ7XsxxIRXP334nYXqnoFuEtCIIgCMJzgYho4bxhjMFai1IK3+981BIR3f1vay3WWoIgSP+fJZCPHz/OyMgIExMTAD1iW2u9rPgGRHgLgiAIgnDOiIgWzguJIM4Sw93/X6mgTcT2qVOnCMOQyclJrLWpUO9eJ9lm9767/+6vdIvwFgRBEAQhLyKihfOCMQZjDFrrnsrz2ZKIWK11z9/DGFbxDsNwYJ3+fYnwFgRBEATBhYhoYdXprkKfPn2ab3zjG3ieR6FQyPxTLBYzl2eJUKUUxpgVHce5VLz7BbhLeFtr+e53v8uVV16J7/vi7xYEQRCE5wkiooVVJ6lCK6XYt28f27dvZ+PGjQRBQLvdptVq0W63abfbVKtV5ubmepYnIjlLWC8tLdFutzl27NjAY90i9mzJW0W21nLy5EmuvPLKtDre7+9Oli23LxHegiAIgnDxICJaWFWSim1Sha7X61x77bWUy+UVC74wDFOR3S+6rbU0Gg1mZmZ6Hkv8z3mr3Z7nrZoQXYnFBM6usdKVaLJcY2WyrghvQRAEQVhdREQLq4oxhjAMUUrx1FNPsWvXrp5kjpXgeR6e51Eulwcea7fbeJ7H5Zdfni5LhLtLeLfbbWq12sBjEInQsxHeCYkozeP7PhebSfe/sxorlVLUajX27dvH9ddfn7kfSTQRBEEQhHNHRLSwalhrOXXqFEopWq0WtVqNbdu29dgazpWsRsUkQs/3fSqVyoqPNbGXZAnvZrOZWkeS5cl59Pu7rbUcOHCASqXiFN4rrVK7yCO8lVIsLS1lZnNLookgCIIgrA4iooVVIxGT4+PjzM7OplXo1RTRSqm0we9ct5MI3JVijMn0dZ85cwaAer3OwsJCz2PJsfq+v+JKd7FYXFV/d/+/h7GaiSb9QluEtyAIgnApISJaWBWSym5iJ1haWuKWW25Z9f1orVdVlOfdd7FYpFgsMjo6mi7ft28fO3bsYGxsbOA5xhinxaTdbrO0tDSwfFhj5TDhnfi789pLulmNRJNu0Z0sm5+fZ9++fdx0000D25fGSkEQBOFiRES0sCokoklrzalTp9i1axeFQiEVhK4JhHnJE3H3bDFMtGqtKZVKlEqlFW+v29+dJbzr9frA8u7GSs/zCIKAb33rW07RnQjvRKye6/l3/+16HYIgSCv/LuEtiSaCIAjCxYKIaOGc6c6FbrVaNJtNdu7ceV72tVrDW1aTc6n8ZjGssTKL/sbKxcVF/v3f/53JyclUiFer1QHhDdmNlcOq3avh74azixLs//e5JpokyxLrjCSaCIIgCHkQES2cM91V6MXFRSYmJnJ5jfNwsVWin639dzdWJraOHTt2OJ/T31jZL7AbjQaLi4s9y12NlRebvztprKzX63zta1/j+7//+4fuUxorBUEQhCxERAvnRHcVen5+nmazydq1a8/b/p4PlehzZSXi7VwaK7MsJsngnP5lSTOi53kYY/ja177mFN7d/382hHdysdEdwZinsVISTQRBEJ7fiIgWzonuKvS+ffuYnJw8q6rh8J3M4YWPAlOU/TYFLwTbALUyu8P55kIT0ZDtJz5XuhsrV0oYhgRBwKlTp9Lpld0ie3FxcUB4ZzVWLmcxOZvBOcM81/3/Xul2ViPRpNlsUiqV8DxPhLcgCMIFjIho4azprkIvLCxw5swZduzYQaPRWNX9FNp/TrH9UQB2jkd/qEGgb0bbZ7BqCqvWAFNYNYXRm4FSvDx6zKopYALU6ttMLjQRfSGJqsTfPTIygtaajRs3Dl0/sVu4qt39g3OyGitXKryToUDnymonmnz1q1/lmmuuYXx83LkvaawUBEF47hERLZw1/VXo7du3UywWqdVqmeue3U4WKbQ/lfmQtifRdgbsTM/yUN+AZ745sH6ob0ab73WJ60hgG7Udhde3fArLBKhJUMMb6S40EQ3npxL9bKCUwvM8KpVKrsE5YRg6hXf34Jz+xkqAf/qnf8pV8T7fjZXW2jRXvH95/9+SaCIIgvDcISJaOGuSKvTi4iKnTp3iuuuuY2ZmZlUb//zgf2P0HqKPqqLVbtFq1hgZnUZzHMM0igUULQAM02jzxMB2LB7KPI1iEWUXwR5OHwv1VXjmycHz0zfFYnyyR1wbvRuwcXV7inXjxykQgNkFag1QgedQdGR5dS9luhsrV4q1lrm5Of7t3/6Na6+9dqDBMhmc0y26sxorl4sQTPzdeYS36317LhNNkmp/ckehX3wn64rwFgTh+YSIaOGsMMakVej9+/ezfft2SqUSWuvVE9G2TrH1MRRn0kUVDyojEOLh2ac7q1LCqgmMuhxlz4AqYvEAhcJg7CiaWYytAFUU8ygModqZKaAtI3jmuyhC4DTKngabnPt2dJcI3xun+YXNvXjm37AUU8ENawj1FSjaGZXuNaAigY5auc94OUS8LE9i/dBaMzU1taLndA/OyRoXP6yxsnti5XLV7tX6+VlNf/eRI0dotVpceeWVQy/OpLFSEITnEyKihbMiqUIvLS0xOzvLy172MoABEX0uFSm//ZkeAZ2wWN/CeOV7PcsUTbBNPPv1qCrdd1dbqS1o+0zPMssoVq3H4GFVGSgCGgtYxtCcAttA2SqKJRRLhOoFePa7g6+HmcTjifhYWih7AuwJLAplD6DtiYHnhPoaPPPtrmNJKt1XA3USj3fH170Wqya6/N3e0Nfv+VKJPlvyWl7OdXBOlvBuNBoDy621fPWrX11xpftsGyuzGCa8Pc/LrPavZmOlCG9BEC4mREQLuemvQm/bti0dDLJqlWjbphB8DIsfe5PHsKpMEHg02oqR0U2ABRsCLaCOZSOefWxgU6G+Fi/T4jGGZ/4VhekR3RYPyySa033re0ARo7ZhqYAqAT6Li1X84hoqXgNUKxbeSygWMepyPDu4b8NGtPlO+n9FFWWrWHscbY6imMs4jyvxzL/Hx6KASFCH+noUi6nYVmacbdMn8MISyk50NVaOPqc2k+cjZzM455FHHmHv3r34vp8pvJdrrMwrvFd6XC5LynOZaHLmzBnWrFnTMzBHhLcgCM8WIqKF3CR+yqWlJU6cOJFWoWH1cpz94LNoexwAxWmI7RSGrayfOAp9Ot1SBk5FtgkqWDUOjGJtEcsYgb453pYBArBNLGvxbAPLAqpLRYf6OnzzbwPHZNmCZ7/ZvQCA8UoB1DN4tjpQAYcWRk1Hx0IZVCkW6eNotoANgAbK1oEqhh34DO7bsC0V0NF5WGAebB0/PIViKX2sCNx0GYTtr+HZfV2H68ei+ya0PdOTXBLZS9Zj9ShRBTwW3mrlVddhXKii5UI7ruR4yuUyIyMjK3pO/+CcfuE9rLEymVi5nMWk2WymVpPVbKzs//dy59n/9ze/+U1uu+229CJFGisFQXg2EREt5CKpQgPs37+frVu39lTZVqUSbUO88P8l1C/oqupGzYOWSeDo4HHpa/DMvwKgqMeiFEJ1Bb758uAuGAeejrepsIxj1TjWVgCPUO8FvHjdEEUbY6fAtqLmRDoJJEuNXUyOfG9gH6Hag2eT5SeTHWMZBUIUGVGAahxrR7FqDBiNbSYFLBMYNgAGRRtsE2VrGDbj8/WBzSzW1zNe2de7aQKwS/jhP/Ucf/oaqj1ou7/vdaoQei9E2dm0kbKTarIJVLnH5w2ToC6OXysXaoJJXhtOd7Rfnn24LCb9jZWJELfWcvTo0bSxciVJJsmf1YwSTP7uzhN3NZVKookgCOeTi+PbTrhgSL58qtUqx48fHxiZnCWi80bAeeHD+OH/HVhu2I6njrPU2EClsrbTPGgVWI9QXxeJXFsjaR50fcSNvqJLdFuIUztCfTV+vLx332vxeTJuNKRjM2EMpQz14CqKxRFAESnlAMs4oQpiT/V8JGIBo6/EMxm2E3VFKrqVrRLvKBb8zTSBpAelsVYTWTtGsYxgKVKth1RGtkVf5DYE1QTbwLIez34rY9878foEdHIAXvi1FYtugEC/qCu/O/ozoStsW2fw2yd7q99qChh/zmwmF5rQ6U/HOF8opXINzvnOd75DsVhk27ZtTuHd3ViZLE9+F/i+n8tmspKJlclrNawy/mwkmvTvr9lsUq1WmZ6e7rGYSKKJIFx6iIgWVowxhscee4zt27dz9OhRtmzZMpDle86VaGsptP8s+yG9Ds8cZqwM2BOpdSLQN0bCt0+nh+xA28MYtRkYSau6WA+LJtB746puA2VrKBbBtMnC6l3oLnGtCFCcJtSbmajEnueu0zZMo3kito/E26ASCW9bJ1RXgypg0x9Bg2UEsPGxLAELKCDUV2QK+27RDXMoOxdvaZz1U3U8G3RekyRZRAUoGlGCCOOp19ywHtTaqBESE3vNmxjW4Nl/JxLxYde+s0W3pYhnvoWiCvZQurygYfv0Zkqtvxp4TqBvQduD9DZSTmHUNlB+VwU8Ft9MgV5ZhvTFxrMlovNijMHzvHNurOzP8u5urEweS0SqS3gny5LXqNlsopQ6742VLvqF9+LiIk8//TRr167tEeLnkmjyuc99jjvuuIOxsbHMbfzjP/4j73//+/n617/OsWPH+Ju/+Rte+9rXDj3uRx55hHvvvZcnnniC7du38yu/8iv81E/9VM86H/7wh3n/+9/PzMwMe/fu5UMf+hC33Xbbil4XQXg+ICJaWDFBEFCr1VhaWmJmZoaXvvSlA+ucayVah/8MlAj0TSTxdBBgjUGZM4RMoew8WsVfTpCZfBFtbAplDqFs7BeODyHUN+GbQQtEqHaj7QEsa7BqDKsqQBFrS2AVob4p9jC3iHzMVTAZ1WHA6B345mTv60Adoy7Ds4/3HA+AYQOK2R5vdmQzmUDZBUJ1eexPLgA6fk4lsk50XQQoahh1Ob7OqnRfGQviOEGEU2BPYe0YmgOZlW6ldqDjhJQoQSSxmWwmVFNxs2V0NJHlZSKOHtTAIolsaNvNjFeODWzf4uOZ76FYAE71vCau/O5oaM4TXZXsRHTvBKUyvN5ToKYGplVeqHYOuPBE9NkmvZxNY+VywjtprGw2mwB85StfATr+7pVaTPI0Vg6jX3hba9PzHnae/f8e1lj5Yz/2Y3zve99ziuhqtcrevXt5y1vewute97plj/nAgQO8+tWv5m1vext//ud/zsMPP8xP//RPs3nzZu666y4APvWpT3Hvvfdy//33c/vtt3Pfffdx11138eSTT7Jhw4Zl9yEIzwdERAsrojuRY2Zmhk2bNmU2Pp1TJdpaiu0/xTODdoNo8EkUB4eKkjWsGseoXSgWCNUGkng6CMGAsksYNsV+6siOEEXODXqqo+2OoWwInImyplPRfTOe+fpgpTv2PIemiGEMz5uMGxzLgCLQN/c0MipbA2uw0Sn0YPRWfNN7MaCwhGpHx37RI7rX43Oqp9IdrVJA2dMs1acpj6xBqTLJoBrDKFAiSTNJvOaRvSSr0n1ZT2NimiDCCJ49hqI++BKqPWieiY9Fx17zMQKzlWqtwPj4WpKLAEuItaNojqFsOb4IqMfnt8GR363ioTlNlD0OcfMpuFNYAn0zvvnXnhhBq6YYV1u4auspCq2+KZZMYfUaohjBc2+iy8OFWol+tuISkwq07/vLTqys1+s8+uijvPzlLx8qvPsbK1utVubgnJUK7+UaK1fSfJmn4p3kjQ9rNH3lK1/JK1/5yqHb6eb+++9n9+7d/P7v/z4AV199NV/60pf44Ac/mIroD3zgA7z1rW/lzW9+c/qcBx98kI9+9KO8853vXPG+BOFSRkS0sCKSXGhrLfPz81x33XWZ6ymlzlpE6/DrmeO6oyi63mxmxVJcYS7FVoC+49U34ZnuZAoPmCDUV6I4Q6g2kohLsFirULZGqHb0eJgj0X14YPvRQYyABU+38JIEESLRnV3p3oNnvx1XmKOLgMjCMQo2el50rGGcdd3AWg/LyIAn2ertaDM7sI9IED/BWAWwJzs2DtbiM99jyUhPw57EqA10GhmLcYLIKFaN9zQyKhYxXIbHNzLOb0ePxSMS+PNga5TUHJXRKphDvc/RV+KZA53zSpoo9Z5oGA1Fut8nQwltzxAyGl8EROdkmUSbwfxuoCvlJboIIL6IKqrr2LXhcWj/Q8/6kT3oG1gSr/lUnGqyC4UaqIAnojtaNnJO/u4LtTo+LOLuuSI5puRPnsZKY0yaaJI1Lj5prOx+LGtwTpbwXlhYIAxDqtXqqjRW1mrRz/5yFxV5ePTRR7njjjt6lt111128/e1vB6DVavH1r3+dd73rXenjWmvuuOMOHn300VU7DkG42BERLSxLUoVWStFoNJiYmGB0dDRz3XOpRBfaf9ZJyWAktS8YJtAsYjFgmtRqpxkbAcs6PPudge1YxjtV65hIPJ5B2xl016TDhFDfNCDULRVCfS3aniLU0yTiMnpQoWgSqstotxbwvRqersJQ0R2J5e5GxmTfvnkso9K9Ez8Wqz152YwDYWQv6WpkhCbWVjCsBTOH1l1+7D5Pd+e8X9B73jb5awKoRwK6/zTUaaydiCwvXe+TZYJQTfdcBKQJIuobA9sxbOyJ7QPi/Z1Gm+9Fw2760dfh2d4KdfQ+XY22xzHpRYAGFNYW0GqJkErH984iUKKgnhrcPp2mzugiIPaaWwCdXbHvGZpT6Kpob42aXwcmVU5Cl+WkO0bwQq1EG2MuqWPSWqeNla7fZVn7c1lMksbKM2fOpHaTr371qz0JInmq3d2NlfV6dHdmNUX0zMwMGzdu7Fm2ceNGFhYWqNfrnDlzhjAMM9f57nezL1YF4fmIiGhhWZIqdLPZpNlssmXLFue6SbWq/5bmchU2HT6Bb/4FIBWXUTJFCU0xFj8RE/FdzVCvwZoC3cNYoIhhTTxhsNMgp2wdw1Tm4BPLOLpPdEPkYdb2ZFTp7jv8qNIdeZu9QrIdRahvRNsThOoKolHekYfZWg9si1BfTWcK4gKRt3rQKxwdwBTEgj9pZMSeTiul/Ri24RGLUh03MqoJrB0D2ybUN/Q0MkYe5nEUW1JxmUiSUF/uaGa8HM9G4lPZheTEYxuLyrR4WDWONQVaQZlCcU3qNTesiYRmehEQ2Uywa9BkvU+TPQNq0peJOtoeQdsjgxci+sYBi4dFEaprwT5Dta4ZGV1D533ygWbX+5QI7xrKDF58RXQ+54o2ys6CnSXUY3hhljd9Z9/I+pFYXK+jwDg3XdagHHwdZdZ2/N2swerJrmmVz+6v7gtx+uVqZVavlJVOrDxw4AD1ep1rrrmmx2aSJbz7q93djZW/+Iu/SLvdplKpoJTi53/+55menmb9+vVMT08zPT3Ntddey7Zt256lV0AQhH5ERAtD6a5CHzhwgHK5PPS2aZaIPnXqFM888wylUslZfRnjMwSJlcIuolXU5BblPw8KkYCd+LFnNmmQi8RcEU2pR3QnWDWCsqavQa6MZRrFUuqnjvKU61g75kigGB2oWkfHYdF2AZ14rnua5G7GM/+WUW2+DmWPYdQOrBohsi94WOuhMITqOqA7tm8ObXsbFtPj0tNgjnQdT5SXHaoNka+6b9+GaXy+nTYzpnnZjAMtQn0t3Y2M2ACrxggJ04uAJOva6BfgZQr7rZHoVlAqtMEuxu+TRjNB9mTGcZQJ6BmaEyeIdIbKdPKyra3g2YMDXnNLEd1X6Y5eF4tSS3hqhvEKYDrj4N3v0wtQ9kT8PpWJvOV+dHGEJVTX0/Gax3YgO3huAFatTS+OouOpRVYivYai+We2TQPhv5I4byxTREktJv5/PK2SSYzeAcrriwycwqp16Yj4aNnYOdtMnu8ieqV0H9e5NFb+wR/8AceOHePxxx9n//79rF27lhMnTvDtb3+bkydPcvLkSd7+9rfzMz/zM7mPcdOmTRw/frxn2fHjx5mYmKBSqaTHnbXOpk2bcu9PEC5VREQLQwnDEGstrVaLo0ePsm7duqF2jW4RnTz/ySefZHp6mkKhkHbX91dfXrb3s6jSXNd+ixgzSjtcQOsdKFVCqQJaKapLi4xNbMRqH21r8e33BbQCo691ZDDvSG0AqTcWsLYAHI0zpfueo69BmaXYwjGe2hes2hiLdA1Y6rVFtA4oFifR9mjU3Ndlg7CU0BlNctHBtNG2cxHQ2ffNjma/K9H2aDTopCu2LzqPyM+raFFdPMXoKGiqkGRO92H1DnRXgkgkphfiJsfHB9dnPKrO9pxbNBESGxLqq4jEpRd5ybEYxrB2FGOqmGCeYqGGwsQXR4P7MKxJvc3dQ3OwoFTXBUr3a6JvRJnFzkVA/D4ZtQnNIr1Dc1pYY9HmDMaW0ap34I2yRwa2Hz1QQtvO5MwE912BzfHF0QZghGhMfDEW3X78PnUaThVLYLJFqtG7ez7TybRKoybxzZcG1o+sLKM9F5KWSGgbfR3KLg1YTIzaiEoq4onwVh37wIUoWC/EY4JzO67uxsok/Wj37t38xV/8Be973/tW7Rhf/OIX89nPfrZn2d///d/z4he/GIBiscgtt9zCww8/nEblGWN4+OGHueeee1btOAThYkdEtOCkuwp98OBB1q9fn47+dZF8eST2jaNHj1IoFNizZ49zsIM1dQq1uZ5lnm7Ff+po3St0Jieg3jyFV5pLsymsVYThCM32HL63BVQZRQGlfbRSoMbwVQWt4lv0NqqiGu9aRwV1S+pzjfzUkTfWorH2VI9fdywuMoX6+lSUWspYNQGMYtRWFAuplaIT2+ehzWzsP15Iq6gWD22yBp8AqhBX6zvDWKJ939QjtCZim2eodqLt01HzW+phLmJtkWhATVZsX7YAyMqrVrQwajKz0m0pxHcFlvAUUVGbqJJv8TFqD1aV6PGaMxrbVhqpuFQsDiSFdPbRqTYnFwGpzUR5mQkfgb45EuoKjPFAT4EaxajNKGqEais9XnPbAruEYW3ayJiev/MCZTPaHEPZrs+uhVBlx/ZZKmiewjBGvVGgXFkL6bTKCqG+mWRyJraOsjUsG4BDA9uKmkv7G3FDsHW88J9Ihv70PCeOd+w9pjKhdzvKHuf67ZpieQPF5qZUdKMqqd0kqn5PDsQInk8uxGZHiH5vuiYong2NRmPZEfBLS0s89VTH43/gwAG+8Y1vsHbtWnbs2MG73vUujh49yic+8QkA3va2t/FHf/RHvOMd7+Atb3kL//AP/8Bf/uVf8uCDD6bbuPfee7n77ru59dZbue2227jvvvuoVqtpWocgCCKihSGEYZg20xw+fJgXvehFHDlyZKiI7h7Ja4xh//797NmzZ+itYFfknGUSrQcrxMYoyqWFvv1afK+KUsfw9KCVo9aYxiufJOyOiTMFao15Ct56oAxptdsDPYavJtGqjbZ1oIqyC1h9HZ4dTBBpBWsp+B3vraKBsg0soKmj7czAc0J9I9okcXCdKmoU2zcP7KLHSmEtylZjW8Mi3WPDh/mqlX2a7mEskZjbi2cHB9QY1qP5NpZSehEQ+Z2LYP2+2L4Gytaxdi2Wg6i+jRl1deZrZangmX+L1u/fv9qYpml01tfRmHG2xRXdJC87iu3Tdh5U0si4FF+wTGSKVaCnmq11CEletlrjiFfci2/+ref4rZqIRKwKCNXetJERDMq2sNZgMrzmqPLAOUOUUuKbf0MBo2Ugjlg0TOORbd8BS5I6Y9V4ajOxTBHqaHBP9wWStevx+LeBrRimBwQ0RJ9hbb6DtidYOwbwbRL9Heq9ke1l4LW6rWtaZXdW9wZQIwPLo2mVZyeEL8RmR1j9CnmtVlu2qfBrX/saP/iDP5j+/9577wXg7rvv5mMf+xjHjh3j0KHOBdfu3bt58MEH+YVf+AX+4A/+gG3btvGnf/qnabwdwBve8AZmZ2d597vfzczMDDfeeCMPPfTQQLOhIDyfEREtZNJfhZ6enmZiYgLP89KopyySKVvGGI4dO4bWmo0bN6a5rJnPcaZZrAc7KKKb7SkqpTMDyy0jmQIaoFIeXK51m3LhFL43mAKxVNvM2MgxjO0ZRMhidZFSYRJrK3GlsEi7HWLMKOOjm9A6RNOKq8VLGL0L3w42LfY3M/ZWUYuZsX2RxWN/1zaiqYNG74mrtevjardifv4M4+MjeLaFYRvJGPTEV5vlGQe6ovOaUYMcUYxeqK7Ct9/MqDaPpCKvP1nFMkKobgYsQdCiUV9gbMzHsgHP1qAvtq97GEwvRTzzRKdpsfsYkqmNAw2Fu8AqeqwUeHHFt06o1hMGNYL2PJVS1Hya5Z+OXqs+y0dsMwn0VvwM0R2qy3re847XfApsY8BrbgmBEUK1G+wSNpzH95KegF7LTWcfu/FS4dvJNY9EdRnFYIU81KMo047vksRec8oYtQETe82jz2HiNS/i2aOpNadzPtp5p0RRjRs8e20x/XdKOuexE20XMkT3ZFThTu0l3cK7AnGU5oVYiU7y9FeLer2+rIh++ctfPrR5+2Mf+1jmcx57bPA96eaee+4R+4YgDEFEtJBJfxU6GfWqtabdzh6NnaC1JgxD9u3bt2wVGhjIDk6wagyV8b3QDsYyRTRqA2SIT8vayCIwsNzD8zK2A4yONDKXl4tVCl6vqCn5MF/dgeIQ1tCTxLywVKdSqmDsKNhyZDNRPjCB59XwlOmpdhu7lgLDbQvp6cZTB63dgGd7b9+vG4cWe/Fsb7XQMkqo9qCpEepriMScF0kkExA1ye3pmoAYizHlZ1ZQjb6qSxx1YvuM3YrXlbDhaSiNRrYbGw+/6cT2jWLVCIbpKAawL7YvSlX5HtDqsVIYNnaNPe9F20No25WjndpebkztO56GYhy0EKrr0fYARm2OLwISr3kRCPpGxEcXJNq4qv8TPa9Vx2u+I/KBD1yITAJLnXPzIitMNK2yHXvN+/OyR4Fi3HC6FDd5hrGVIyv2cbTL9tKIbSaz8f9b6IwG2lDfjDJzALTDCkpPoPQYVm2IL2g6w40UbTBNlFnAMjoo4pOpof3Hpdah7NPxRUCnGu6273jAGFaV2FoZZc2OMqXG9uhORY/FZIpOjvck6JWPKj9XVlvcr0REC4Lw3CAiWhgg6RBXSvH000+zdu1aJicngZXlQGutmZ2dxRjDli1bhlauAZRxVKJTn2wvoXF4q9VEpuhGrSMZhNLLBhRZo6jLKLLFte8Q3ZWSQ3SXQgreAtBrP5mvXsbk6L7oln1XtXu+OsVYxSM0o1g7gqWEUiVgIvaHg6dCtIoSO4wtRAK67zrFWvDU4Lkpqijloc2+weqtun6gWhhVb7ej7DyhvpJIzEVWimj6YpFQXUVPKgUBRm9Am0GbjtFXd3nNO7F90ejx/WTnUl/WNXp8JK2ihmoLlk0Mjh6v4NlnsIx1pXnA0AZPWnQG+JC+Nsm0w36iEfGHiEbEj8bV7nIUkef0mmfv2eg9A6+7oo2llOk1jx5fN5CjbRnBMhZ7zRM/tZc+pjmTWnASm4llOlNAQ69FqODVieIHjxOq8cw+glBfG32uSMTuRPzarAFsX655GFtwIjtJdBHQNXZeTWZftKnL8eyTKAslL7owI/wOlhJpYkv/cakruiwmnT9G7aR7eE5a7WYquhBSZzcS/HyI6OU80YIgPDeIiBYGCIIgneh16NAhXvjCF6aPrUREK6U4cuQIu3fvTqvSQ3HZOTIaoJLtZ5Pd1GTVaKa4tnoKlVVNVBshYyCLZTIzxcNa8L0skQ4FfylTDEyMe5miqlz28XQDTzegSyTNV69kcvTf0/0l3u756uVMjASE4SihHQEbWSkWFzXj4z6+vyGudgeRLcEE6PCpAdEdkTHGmxCj10ZJIQOi+/LMZArLBNqexKjdkZ9aFQhCWFqqMjG5FvS1dE9AhEWMviLzdr9hK7pn9HgtbqoDz847BrLcgLad0eOJmItE0wLRr73ojkqjscTYaFQ5jbzm8z1irt+fnZ6jmkLZA6RWimhnncErA9XmURRP0t1wmrw2lkrqNQ/DJo36HGMjOvZUPzPwVoWJhWWAVmx7qWXYWzoDYTrHpDF6N9gSScNpJy+7gKJBqKfANmg3TlMsNlGqgXbmZXdEZzLcSNkzBHpd5Cnv97/bXr93rw/fxLnmHlH+eOTDN0ygbGxPsnOo+Afb6MszR75bRtF2PyqOZaTLD2/UHmcFXpvH6J5WmYhulOqqcicWk3VY3cnON8bgeWcnwLMQES0IFy4iooUe+qvQa9asYWpqKn18JSLaWksQBCseAqAcdg7luAWstctO4jou1xda9i3S4RXtQREdmCkK3tzgdtDQbSnoeTBbdBcLrczTGB8vZ4vuyghKGXxvEb/L51z19lDy9ycHgonPZ7G2g/GRM2mEoLGRdcHYcTxt0Oo6tAatAjzVBlNFmZMYC7pfzcVjz/sxanevjcSCp8CWxvHNgdSX3fUw2CWM2ppWdBOhG0XkTYNqdlkpFjFq14CFJdrWSE+1uXvqoFWjPRMSPQ/Ko1G1uTtuLxFzhu1RWke/mDNBdHHBtrjSvdB1To67J/ryuDmx3ZPYYex6PDqfEU9BMdFLyoDtGxGvStFESjUeH2v3iPg1eGS9JqOOvGyDsmdWlGvupbaXK1D2NFbtTIcbRXnZCqzuyjWvE9lM5jPTQACs3g49EYuRD99QwLffyHyOUuvRyeulIDAVtDeFZWLQnoTB2hE0M11JL0vxqU7EF0EZ+7CnSWIElZ1PL6idsZP6VhqV/975/3PgiRYE4blBRLTQQ3cV+umnn+bWW2/teXw5EZ0I6C1btqy4GvNYs4HPesp6lJIaoaCLFJWHbwsU1BQeAR5NNDUUVQpeLXM7rrgxMm7xxs9wLHfZRcYzxbWxU5AxNCSyiwymclgKKMfAFExGZRX3BUXRJ1NcK0fiQakc2XKSCEFim0S1sZNKoavCGFe76601VIpn0ghBY0extoKlglJNtL4WrRRaWTwdoGhiLChbjhrwuu4aVJsbKBcHfa6R6P5ez76jvzw0o1H1uP91V0WMXUc0Br0cNzJ6WMbRLBClh3SG1ETNidmNg/3JKamY09uiqLiBqu7VAxnXlrHI023rceOgT0fMhUAl9ppXY6959Bk2aSNn3z56php2vObWqnhITVau+TjKZHnN10d54T1e8xZYi7KnsHg9XnMAZU9kvlZWjceNnP255i8YiNWLXpcS2hyN/Mrx0JzEZmKpYPXeSGR32UwMG9A8M7Atw3Z0310rX9eJIv8amRasUN/Q14wbZb6H+sroDoKKhuYkme/WRo2jodoZC+8FFM34Ncn+2Qy9F/ce53lI55BKtCBcmIiIFlK6q9CHDh1iamqKNWvW9KyznIg+deoU1lrWrl2bLluusTC0TQKaNMK53n2pUUyGMLbhKIXGBGVvnJIepaRKFHSBgq1QUBN4hPi0o2g5ahB/CfajHMvdFe3sHxdjs7/grF6DMoMiGjYAg35hS8npxcbxBY5dzFysdXb1z/eLmadXGVkHGbfpC4X1wJk0QpC4YazZXkvJ762mGxNZTaz1sDrEGJ8wrnYbW6IVWhaDq9FKx9XuqKnSsBZlTwOLaNU5OJMhVgGSZJNIfJ1KFgLuhrRA34wy1dhPHQ2pabdhqQpTUyWMWh9XdDvDTzwzuJ34VRxYoljC6tjeMhAbmOVfjjzDyrZir3kk5oLAUK0uMj65FSgz4DVXVzkq8EW0+V58LB2vORbQOrPZMNQ3pRXqJLYPRjCsQ6kWgdqQnsHiwmnGRj20qRFNtFzsuwTNnsiX2CzSi8/0AmkEaA6IdwClqlg72ZNrDgUMk1jWRxcBqk27FTWo+v40HoP2Fgtoc7B320nmO43MVJdA7x24GLAUMWyN7DbqBWnSS3JnIjjPInolOdGCIDw3iIgWUubn5/nyl7/MS17yEp5++mluvvnmgXWWE9H79u2jWCzmzG91bM+69mMJVJ0lU2epaxVfrSXIsEkUtEdgSpTVBCU9RlFVKOoiRTNKgVvxle2pdoPNrM6R8YUf4frCdNhF9CQqo+kuShcZ9IdbRjIrj9GD2XYR3xv0NwO9zVt9j2ShvdHMt6dQWg8mI/FErUOrSDBqHaD1HEmVvuj7eN3iPraZ1BrrGSlHlfkgGMHYEawdIbQenr4Krb1IeCuL1gGWNfh2f5wJXe1kk7MlU0BDlA3d3zjoedDwLsfP8NJGTXLfjRsHx7CqApSwtoiCvsbBWOia7OZSo3ei++4wRHaQUTzbm9bhaSiNg7ELA+PdkzHoht2plaLTOFhBMzfgNYcxZ3Rf9wVY93RIo9fgmd587zVj0GY7Hgfi/WnS6ZB2BIsl1DfSnWuOamPsBIoNdI+IBzDqsqhpsv+QGEfbfbHVZD5ZGB1j90AYC1787RXq3VgTxT2ixtLXxjAeJZFgwbbpsZm4LGQZH3ZFC6snOrnY3Vnzah1WX9Gz/mp7omu1GuvXr1+17QmCsHqIiBaAqAptraXRaHDo0CHGx8d7qskJw0T06dOnWVxcZHR0dGCdZPtZ4to6xKlrOcq1vluMWwx1O0e9q9pd1FtpZYjZkleiGSoKapKSGqOkRymqEmUm8HghBWXxMPi00DQIrUcQVjKEq+tCIq8X2xXd15s+0XMOBZfozq5cu8V1vgsEpdZlVs2NXYOnXckmnXPwvU5+dL0VUvJ73x9rYG5xN1PjR+Pt+oSx8G6baQpeBaWKcbVbxZXtEr6dJWQNyi6g48+PtT5j5exBP1GVsdMc10nryB4yElWbn0yFbse6UARKBPpm0vSI2LoQDZYZHDO+WNvM+EhWfF4Tz3wnes8HLCbXDTTWWRShugrNsSgSr6dx0ANahPpqOkNqogE+2nHXw7IOOBy/OobEMxyqy3qG0aTrW41mpMuH3C10RwnV9YBPmkNtAwxjePYINvVTm/j1XZM5EAYim0US99hjM3F5mOO7FZZRrBojfa9sAUuh772KLkqcUzy9Fw0Mi5F0DkF4/iAiWgDoGYZy8OBBbrrppsz1hono/fv3s2PHDubn55dtPkyw1uCqRDtFtNNu4WhgyivSrQEUbVujbWtptbvsXUYjHKx0+uYyAhugghIlNUFZj1JUI5QZw+dWCtBT7YYSqHVRukDPMWTfEnd5sVHTZOXvWsbxvWyx7G50dIlrl588u9Jm1Ui2b5ypNKauZ33GUSp73+Vi9vLx8Y5A0SpA+/PAPO3GBCW/L8LOwumFPayd6MogDsuEZpRGayOKJYrF7Wjlo3Rc7cagbQPYGIvLpfTiL/JYZ5yf3olvTkFXRRcbpYt4GdadiCBODxlPrQtB6FFv+4zozdEG0ii4OtZOORoHS47GQYuiliaV9HqYb+ppHEzPg61ETZ474+p7EfA4c2aO8cliLHwb8TlGNhM7NI6uc1ydXPM5PHsClZEGg762x/ecCN1QXYZlju7Yvnp9CbCMlA2GzSQj4tP9ufoO4uNVVDt9FDYekpNh4bGAx+LAe4UqEXg/MLD+ajcWip1DEC5cREQLqRc6uQU5OjqaWYUGt4ien5/nzJkz3HDDDXzrW98aOj2rl2Hxd9mPKeUQ3TavWD4bcZ2FiZ9naNi51Ns9YovUwkGrwKg/RjVYAHqr3SOMo7mZApqCIvV2WyYpqM0ou0D3EAt35Xo6UxRbxnFNKsQlOBzi2t2s6RDXjGav7jzWchxHN4hWc5mibXREZ15fTUxM9h5hHCHYbK1jfGTwtv5ibRPjIzPppqzVBOEYoRmPhJ+6LB0Pr7TCUwaMArUjnlS5gFbR62P1Rsi429Hr3Z5PrQtaKaZGR/BMVy9AOihmCmWaUUVXTZJMYzRqOv5cdKLgsE2wAcqeoH/iYLTN7DsYRm+McrH7GgcrpbWUOJD5ukdxhptIvOaR8I6TVVSlq3GwimIJo7Y5fN2FNGc6IRG6Vq0biOgbL0G1+YKeptRE6Bq1GQgJ9XV0Nw5iQ6z1CNWurup73BvhvBjYg5dG4c332EyM11tssNbKsBVBeB4hIlpIEzkS4btr1y6np9klovft28e2bdsoFosD6yilnNtzV5s1zoqz087h2lbe9V2VcbdH++yW91a7m0yxFAz6RMf8m1kKTsbP6FS7R70pFDdSVH5PtVupUdr1KpVSG60WOtVutc4hWN22EJe4diehuF7T7F810b6zdrDe4Q/3nCkJ2LnMxZ5uZ76lxVJ25X90dD10JXYoZSh4C1gzQrEwaCmwJhLa6M5OwrCEMaO0wwU8bydQiqrdSqO1RTOJVTZKpLDxxEGlaJnLKPlPZZx3oWviYCseyZ4c4LWZGcmR9STxMHcqqJYJlLLxSHawBB2biWnHHvzeinu9NcVoedADH6odeLbrQqTrI581ECZ6oIK1UxmNg6NRikjfkBpFbUBcp5vqi7tMbCZW7XY0ea7B67sjEl2UTGAJMxsHDeOAnya9JDaTUL8AVG+xIfkdutqeaKlEC8KFiYjo5zndiRzPPBPd9u3Ohe4nS0QvLi5y8uRJXvaylznXce5/qOjK8unGMV05tpW3Qp27op1TpLuq9NYpurvX6VS7A7WRpSCr0n0jVXUmfvk61e5RfzOenaCg/Z5qt6aIz8koQtAudnlYR3NXrp1i3OlvL2a+nc4qOxsgc8okua0qLvsPqpR5TH5pHWSlrahptOp9PTzdxNNNtG7i6cELjoWlrUyMdirUUYTgKEsNH19voFAYQ6kCSvlopUCNUNBzcfxeLb4r0QA1kqZyDByW7fz8qK6YvO7R590YptFp42ASkzeGoYw1hkDdGEcndmLyDGvjam7XxRoQql14GT5+AGWeRsXZ3fHOIhzHFaqr45HsG4gGsZRAlViqNvA8n0DfGFe7m2m1W5lsj3/U5NkroqNUlgDfDjYOAqiMoSyWMQLvBwe3H//eEzuHIDw/EBH9PKe7Cn3w4EHALfIgWyDv37+frVu3Ui6Xneu4cAlWlWbs9uPhFD9OMevySufzUDu3n632cFaiHXYU98XBSq0x6Q56/p1Uu43ZQC0YjDor6ytodKUVJNXuUW8LHu0oyaS72m0NnqqjmUTbJWC+I6AcQ2Qy/a+A299eylzqnDLJuqixLPNJ2eJak+1vzntMqDWZFxWWkUwBDTA+2pfLrCy+t0TBqzGa0ex4euEy1k70VmONKVBtbqboLwIVUMXYZhI3VWKw6vK02g0LaGXBcRehe/hJz0h21rN+ajb6eA4IzG2ZI9mN2gJqksGR7AU8ezzTWuSchKhKUQ5015AaLGi1i7HikwNvl8VHcyCuvneG1ERfd+OE+ma6h9QoW8OwGZ9vDL4mjGUOZVEsYbzB9KJkOutq50SLnUMQLkxERD+P6a5CHz58mHK5TBAEQ8d09wvkarXK8ePHeelLX+pcZ+gxuHzPDhEdLc8Sv277R35P9CqJa2clOq8tZJWw2V/s/YNZkmq3NRM0M6LAPNYQ9twSVxTUBCXi3G69ra/abbDGUq1vZnyUnmp3d+xZ31E5ljvEhFpLVirIMB+4VnOOPbsEv8OS5BgrH/m9B1+/aNVsYV8sZnvNp6YmBj7eWrfxPY9SYXAwyVJ9I2OV4+l4+IQgGCW0J8FuAUpRtVsXomq3LeDrq9BptTuKEDRqa89UxQTDpp50kWQke0SzMwmx56BvRttj8euQNOqNR42Bqg7sojMUJgSaYFoYpuNqd6fCbEz2UKQomzryXCfVd2yyv/KAVQXA6g1YU6AzpCZqqowaYqt0V9+j5tEAo68f3Hf8ey9fxOdwJJ1DEC5cREQ/jwmCIG2EOXDgANdccw1PPPHEUAGcCOQkrm7//v1s2rSp55d8licacETcZQtW5YhWU/jYzCEpLvsHuMV1zgq1Q3S7K5f5lucV1y7JrRxiz/3F7vBvquzlWnl94kzRtnXatFgKT2ReU2jGMd4iiWZOqt1jfhltrxmodis7QkG9AE2tr9qdV8i6fOA+np7LPu+M0e7xWWav7/J7u1JVhlTNPZUdA+i62CiVK5kfp5HRDWCOZ2yoRMnLnkbYao/iFao9b5+xHtX6ApopfH88qgorH6180GP4ak2UkJLkL9sFUBuzBTT0TELsjsmzekPmYJ1Q7cLjYPr/ZCQ7dhQIqQcvoBDPSU+aKg0TKLbSGckeDwHvSwvpbFOhzUEU7YyYvOxIw8D7AVCFgeVJRrSIaEF4fiAi+nlKUoUGOHr0KMVikQ0bNvCd73xnWRGdPL/RaHDs2DFe8pKXDKwzrJrdexyu9VyNOcPEdZaI9shr88hboXZuP7e3Op+IHkhcWBaXuM5+TbXzPciuACpKWIdFwvYJ0KTabcIRWmawklrxrqLeEycYVbsn/CLYKztTKuNqt2aMgrounVKZJJm4hewGyBgtHR2cy1ud0+/tiCx0V81LaEfcn0vYu61NgwIPwPPWZVpuLAWKhUGbh1YhxcICJX+W/ur53OIepsb3Y2zvJ3exWqFUnMDaEaCM0kWU8oEinm7j6bG42l1P3yfles3VWroz0pOR7KGqMDkSL+/7sVFqA5oT8Xmpjq1DTROqAklWdvR4CLaA4hTKjsTV7s6dCO0YyhJ6L8pcvtrJHCDpHIJwISMi+nlKGIbpAJT9+/dz9dVXo5Ra1oqRfEEk1esNGzYwNjY2sE677ara9eK0cygvUzsqx0dWoR32D9+xj2ENink91+c3/cO9PF+F2mmRcNg8XBcyrvdG4zvPOPsCB6zN/pwMvnZRtbtum9SCQY9qlGDyZN8zSkwWRsHspqQqFLqq3Z6qYNuTmKDGWMXGQm4emIi8wJkHlV09dts/HJtxZGnDemBw+Er0JFcjpyslxVWxd+17mqyGTYCinx01ODlZzp5mWSxQ9E9BX7V9obqdidHDWNP7kxSEZWw4izHriLzdpTRCEKPx9TVoFaCIh8LYBazOtsoYtnRysUkuNJOmSpVZIQ/1zWmKCUQXFJYJjNqGUg1gG52hMAZsSKhfPLAdOD8ieiXpHB/+8Id5//vfz8zMDHv37uVDH/oQt912W+a6L3/5y/niF784sPxVr3oVDz74IAA/9VM/xcc//vGex++66y4eeuihszwLQbg0ERH9PMRamw5XOXr0KIVCgY0bNwLL+5mTL4h6vc6RI0d48YsHv0xWxxPt8u/mFdcu+4e7QTG3ncOVW52zQp1//LnjcJzL89o83FX/7O1kJ21ER+R6jRwi2rouZFZerbcYAmtZCgeF6Yh3LbXwqejQupwSo956lK1E3u7uajcKXwV4tAeq3W77h8te5LB/6InMj5JlChWPTh98MHu5yvzMD9v3ZGbDZhR35xDqjvMuFguZb9PY+DSYrNjCNRS8Y5AxIKgdVEDVMX1v7+LSaQreKJYRtB4hiRBETeDpNXgqRKtW2lRpqTiH3qi+ynxi6zBqJ555cmB9o7Zhve2Z21rtQSvGmGXTOT71qU9x7733cv/993P77bdz3333cdddd/Hkk0+yYcOGgfX/+q//mlar89k8deoUe/fu5cd//Md71nvFK17Bn/3Zn6X/L5UcjbWC8DxGRPTzkP4q9FVXXZUKqZWK6EOHDjE9Pc34+HjmOlme6Czy2jncXmnXF9cw+0eWUBtWoXZVTfPZQtwV7bwNh6vVoOgS10Mq0ZlbcS0vOi5kwDgr0fkuZPJX5bM+F5HrumFOpFMqEzwmCRkUjYoSFa0pql0U1UiPt1vbMgW1F49mJLqpxrFurvdtmP1jLuPcPGd13B3r59q3q2FzHTimNOavzGd/PrzCFGQK+AoFP3tb5WKNgjcHfRcXc0uXMzX2FNbS49tfrF9GpVjC2JHIZqJKqCTNRFs81V3tjqIeMdkV+NB7SeZy6HiiV4tGI7rCG2bn+MAHPsBb3/pW3vzmNwNw//338+CDD/LRj36Ud77znQPr9w/S+uQnP8nIyMiAiC6VSmzatOlcT0EQLmlERD/P6K5CP/PMM3ie1/OLcjk/cyKIjx496rxdqJRacSXa2ViotEMBrWaFOgsf1zS+/DaP1Ur5yNeImHf0i9vm4RDXTptHwfEeuEW00+bhbOLLV8V3VuUdFwLY7M+LVoWBpAuI3puaOUUt47iKekuG31sx4WuM2TpQ7fbtOKZ9LQR1xkZUmtvtHEjDNIqM5kEYInBdaSjZP1cuT/nw6Zd5/duui4dpsgbuAPiew2Iy4bCYFEbwvSXoyzGvNTYyUj4OloFqdzs4DHYMwwjYcmozabSvxwZVCoUChUKhp0hwPqYVAs5KdKvV4utf/zrvete70mVaa+644w4effTRFe3jgQce4I1vfCOjo71TRR955BE2bNjAmjVr+KEf+iF+8zd/k3Xr1p3lmQjCpYmI6OcZ/VXoK664oudLwPO8ZQWwUoqJiQnnUBZXNTsrf3r4xMKsna+WuHZVTX2HgBsWobc6tpDcjYjOfOqcgjJnJdpd3XekeeAPqZnns3O4X7t8lw75zzm7mTJ6LVzHlHVuirZtUc+odo/6N1E1/x5tskvrjvklgnA9ZT3aU+32GaGgtuER9FW727hGpmMdy50C15WNnZ16Eu1jdSrUbgFfHiLgs5s/XRaT8kh2iomxoxS8ZFu9iSnffPLVzC1+Nf0dl4jpQqGAMYZms8m+ffsoFAoUi8Wex4vFYq5KdSKikwz+fk6ePEkYhqkdL2Hjxo1897uDo9X7+cpXvsLjjz/OAw880LP8Fa94Ba973evYvXs3+/bt45d+6Zd45StfyaOPPrqqlXZBuNgREf08orsKfezYMZRSA7frlrNztNttrLVs2bLFuY7WeujAlp5jyuuJHhbHlkssu5e7K9Quj6tL8J3nIS9Or3S+RsS8uG0e2YkQbq90Eddr6q5Q570bkI3NKaK1s8pediaSmNzn4LKk6HRKZTcV7xrq4bcH1i+o9YCipMYyqt0aX23A7/N2Y10C11WhHnMI3GH+7VWqULMOHP5m97Af150Nx2dWr8M1lObGm18BaoowDGm327TbbVqtFu12m5MnT6bLarXawOMQ/X7sFtX9IrtQKPD4448zOTlJrVajXC6vamReNw888ADXX3/9wF3FN77xjem/r7/+em644QYuu+wyHnnkEX74h3/4vByLIFyMiIh+HtFfhb7ssssGbj0uJ6IPHTqEUmogkWO5bRw6dIhms0mxWOz54ggdnf/uamdeT3S+hInh9o8sUZR/yIt7ed586tWpyq6azcO6XmvfkeZRdAtNp1d6pWkenUcyj8mxtnIOpHHYPCgRumL9rMPCsuJEkuG4bTUlWmaWtq0NVLtdlHWIsusp6TGKqtKpdtsxCPcSNBaZHCum1W6b078N4EwYcXmuXQkjegJlBkW0pTSkAu+KJ3SlmLir4DAJRHftPM/rqRK3222MMbzgBS8YfG5cxEgEdb/ArtfrLCws0Gq1+K//9b/yzDPPpJXotWvXsn79eqanp5menmb9+vW85S1v4dZbb8XzPI4f762mHz9+fFk/c7Va5ZOf/CTvfe97h64HsGfPHqanp3nqqadERAtCFyKinydYa3nqqacYGRlJxfTmzZsH1hsmooMg4ODBgxQKhVyjwRcWFjh8+DDbtm0jDEPm5+fTL5DAf5LKrsFtNButzDvopt+4GOMWFC77R15xnb9CvVpWhfyNiKuTN53b8uDIm3ZfmGRXAQGMy0Ods7rv9lA7yHkOWhUzvdIw5BxcVdG8KSyuY1WuHO8y1uGJDm2dtp2j3lftHvGuoRZ+O/qY91hMNM1wcrDabccpqLX4hD1JJliFduVyZzRsxkflWD6sQu3K/p7LXu6sUDvsO2ojDKkKD2ssVEqlxYPleOyxx4DIl/wzP/MzfO5zn+PkyZPMzs6mfycFiVtuuYWHH36Y1772tekxPPzww9xzzz1D9/FXf/VXNJtNfvInf3LZ4zly5AinTp3K/M4QhOczIqKfJyTi1RjDM888w549ezIbYIaJ6CNHjlCpVAjDcEVTDRP279/P5s2b2b1798AXzGJb872M4pHnZ2cONxptvIzv0Nyi+yy80q7l2RXq/Ckf7si9vGPL89o8Voe8aR5a+Q4B6h6QY5wXJvksL25rS76pjq5mysgm4DrWvI2rrosch4h2NUdSJnSIaLfgd30mFW1bG6h2j/o3UA2+ObB+UW+nbaIpld3e7gJePDBn0Nvttpg4PNR6ApUxuMfio/p8zQnKYdlw2lj08OruakfcWWuZmJjgxhtvdK5z7733cvfdd3Prrbdy2223cd9991GtVtO0jje96U1s3bqV3/qt3+p53gMPPMBrX/vagWbBpaUlfv3Xf53Xv/71bNq0iX379vGOd7yDyy+/nLvuumvVzk0QLgVERD8PSG4jaq1ZWFggDEO2bt2aua4rnSMMw3Q0+L59+1YsopeWlpidneWFL3yh49iyxU/RL1PPypodHaOe8RTPL2bKrlYzQGf0RjUbbbIKdsaoTB2Vf8BIAXeFOm8j4mp5qM+vzUM5bB6uxAunH3XY5EOXRWLVbB45E0lcFWpKTsGfV7C63x/XnYKzqJrbbHHtEvzuux1uT3kypbLX2+2+2CjqcaydoKwmKOoRSqpMQfsUzBg+t1BdOMOaiTK+ioS3xWUxmwZmHI/l9Gmr4SL6fKRzLDet8A1veAOzs7O8+93vZmZmhhtvvJGHHnoobTY8dOjQwDE9+eSTfOlLX+ILX/jCwPY8z+Ob3/wmH//4x5mbm2PLli3ceeed/MZv/IZkRQtCHyKinwck9g2tNbOzs1xxxRXOX/SuSnQylGXDhg3s379/xSJ6//79bNmyhXK5nC+dw3XL1CHUCn6JMOOQRkbGaISD3fd+IVt0B+0wU1y3WyFZfXPG6mzRPbRC7YqsW51GRHclepXi4VyPOO0F7kp09oVJYciRrk7DoVsEZuMcje5opoz83o49O73S+d5n9/vjqpq7GjzdjZyuCwH36+q6CMm2R2jKQ+4utGjbOm1b73m7RrzrqIWPQwkOd72UY/4OqkGJspqgpMfSKZUlNY7Pdnxleqvdtho1VWYer6MKfgGKaIB77rnHad945JFHBpZdddVVzovqSqXC5z//+VzHKQjPV0REX+J0J3I0Gg2MMWzbts25vtY6XT8hGfGdxOGtZCCLMYZ6vc7MzAzf933f5z6+vF/GTqHm+vLOXr/gF8mKwy6XR2mawQYo31HpNoHNFtdhFBgygPVAZYslp5hYrQg9Z0Uz73IX+d4DHBVTt0VC4a6yuxoUXa9RPhGd3+YxTLDmy8x2D+3Jxv0z4qr8u73Sztc194WXY9CKKmMcUXnGdUzOC6bouOp93m5XionHBCGGghqsdhdNGV9NxN7uFpoGmhpGuVOJIPpdWSy64hDzU6/Xlx35LQjCc4eI6EscY0xacVhYWGB8fHxopcTzvJ6RsNCJw0uaSpbLkk5E9IEDB9iwYQOjo6Npl/kADpHjEl4252RCV+Xaub5juecVMyvdxWKFdkZ0l+cVMRmWBGs9lENEO33App2pTtyjsfN6q/N5qN1tVflEtMu762o4HD60Ja/POJ9XOm/kovtCwB3rZ5yC1fV+5vVKu6rmZ+GVdlbNXcfkumAqOS82jMMTndf2op0WkwqhXcisdntqkjDj53pPYYopx97h/FSiRUQLwoXL6v20Cxcc3VXo2dlZwjBc9hdyf5U5icPbs2dPrtHgYRhy5MgR9uzZA7grxXntHE4rQU6LAc4os5zReg6rgueo+nnaVaVyX8+6KtTtIFv4BGG+imbecePulrx874F2Vkxd4tpd4csvQFfH5uEe8uMSrG5Paf5sbNex5vVKu4/J6ZV22jwcnw7Xz7MjSQS8IXdaXBdSrn27RPSw884W8FqNZi5PWO3GwpXaOQRBeG4QEX0JY4xJxe6+fftYu3btstMI+wXyzMwMYRj2DFdZqZ1j7dq1TExMDN2fuzrqEmT5bB5ukeMS10OGuWQtdg1/GTK9L3s77tgrpbJfI62zRUMQZouMeiM7K7fdzilKcud55MzwHhIn58Lp6c0prvMmmDgTSZzjw4cJt5xV35w2D1dF1iX4YYj1xPG6uoW940LK8bnXuC/23b54l3fc9TvDdd7a+XnyhhwXrH4lularDYzjFgThwkFE9CVKdxX65MmTNBoN1qxZk0tEJ1Xo3bt393wxLCeik8d27969/HHm9UQ7KsjOIlTOyrWrYu4SIG5PrOv2tTsqL8/2oydli6tCIfs18ovZy10V7aXF7OSCVit7/by4qvvaOdjEJXqGicDV8krni8Rziush1XR3c19ewer6YcifK+0ir5B14b5gyl8dd1nDnCkmzmZHt1D29HBBOywn+mxoNBpSiRaECxgR0Zco/VXo3bt3UygUcono2dlZWq3WQCPiciL6mWeirNapqanlD9RRTcs/5tb1Uc7Z7JbTW+0WS67tuwRi/gp1Xh+wq3JdrmSLiXIlW8i0W9kCan7eIbqbDhGY8+6BqxFxqEVi1SYfOg7pbMaHZ27HLVjzx/q5BL/jomVIrrQLZ4Xf2ePgYvWsFi7bU/5mR7do1Swvole7Ei0iWhAuXEREX4J0V6FPnTpFrVZj+/bty4pf6PiZrbXs27ePXbt2DVRWhm0nDEMOHz6cHkf/cQ0cq/O2et4YNcdmVktc5/RWD52ImLk8b4Va4/Qsu4SjqxHRcSHjKqiNjGZ/qY+OZlfw2u3s/S7MZ6cytFuuhkaXAF3NyYd5p0ZmM7ThMINhFwJ5BWvuDOyz8kq7mv7yCfv8FXs15O5CziQR590i93kvV4k+H55osXMIwoWLiOhLkKwqtO/7eJ6XOUilmyR5o1t89zNMRB89ejQN5O9eJ3dj4ZDaVTarJK6dT8gZredsUHTd6s1bic7fiJg7Ki/n5EPPzz7nsbFsETA6lj0cIwiyPxPVqiNBwgy7kHE1R7qaL89vJN5Z2RecyRn5pje6yCv4YZhXOl+utHu4jeuCyV2Vddte8v2OGea910P2D6tfiW40GpLOIQgXMCKiLzG6q9BnzpyhWq2yY8cOYHkbRvc6+/btY+fOnfj+4Je+aztJrF2SyLEiEe2ycww9yjzk8z67pu7lbVx0VqjPZiBJ5l7dAsedpZyvQu2u1q5OmofvZZ/b6Oh49vJKtui2oSMOMXRfaIQmn0Uir/84fySeS7hp3FXwfL5kd3qFy5t+Nl5p1+uar5Lvsr0Ms1pY59TF1RHwmpEhvwcixM4hCM8vRERfYiRVaKUUTz31FLt27UqF8EpFdLvdZnFxkZ07dzrXydpOkie9adMmlFLL7gvyf7m6K3w5o++cy10ZuzkzkHOmeeRN+XBXqIdVD1drIqJLpOerXOd9jz0vW9SVStmVbs8bIrgcYs+VYNJsOXLO804+dIrrs/FK500eyeeVdovJ584rrYbaXvINZ3EnrrgE/PK2itVuLJScaEG4sBERfQnRX4VeXFxMq9CQT0Tv2LGDQsHxJZqxHWstBw4cSJM8VrKviLxVorw16ry50udbjOeM0Mud8nEWSRV5B5U47QJ5BWXeR1YnqxsUqOxjLRSz9x0aVzPlXObyRsOVYJIvkcQbKhrzWipy5kqfVXJGvgEpbq90vuo4DLG95Izjc13QarW8mJVhK4Lw/EImFl5C9Fehd+7c2SOEV+KJrtVqGGPYtWuXc50sgXzixAna7TZbt251rpPFt2sbeXTuB5jyfSY8zZgPI9rSoIJHhYJq4Kk6iiWsXRySXLxaottB7hzqnINHclaoXWkeGt9xWaJxiQaT1+aRs0KdO3s57+RD168xx9RARck55hrVznxOqeTRzDiN0bEKzYz1wzDM/O06N79AIcOV0myFmcXXoRP9nGOxV8cr7f5sn8VIc6eQdV1Eu95rl8VkBJsxIXToMeXMtF5JJVqGrQjC8wupRF8iJFVoay1zc3PMz88PCOGVCNujR4+ilKJYHNJc45hquGvXrvQLZKUiOsByKmixr1HjseoS/+/8Ep8/U+Wx6hR/edLw57NFPnFiko+f2MonZl/Aw/PX8Okz38//mX0J36zdwYHWnZwI/j/MBtto8f1Y9UK0vg5f78ZT01inDcNFPtHt9la7REDOMeSOKqu7cu0eme3CXSXMFw/nFMu5s5cd5Gz6dA/yWL3Jhy695EowcQ0fsmH2uTXqjtfa+rjTWfIOI8mXnOH2Sg9r+svnlXbhugMzvGKfL1faaSdaRkRba7HWip1DEFbAP/7jP/IjP/IjbNmyBaUUf/u3f7vscx555BFuvvlmSqUSl19+OR/72McG1vnwhz/Mrl27KJfL3H777XzlK19Z/YPvQirRlwjGmLQKklWFhuWF7eLiInNzc5lRdMO2c/r06YEkj/51XGLT5KyOWRSLYcCiguO1arp8T2UT++uzRB/p8fjPJvZULuN4s8KaQoFJz2PcU4x6ME4Fj3GKqomv6ihqYBdxTixcLc91zop23gq1qyqrKLirr3kbEZ3jmF2ixPUe5518mDOr22mFGVZJPb+TD7X2Mh8aqYxRzXiZKpVxWvZUxo5LuIbttNrVzEjtZquWWe12X+TktHlQJsSR4ZxzGqML99TFCtgzjn3n80o7L9WWsXMkv+/EziEIy1OtVtm7dy9vectbeN3rXrfs+gcOHODVr341b3vb2/jzP/9zHn74YX76p3+azZs3c9dddwHwqU99invvvZf777+f22+/nfvuu4+77rqLJ598kg0bNpyX8xARfQlgreXgwYM888wzXHnllczNzbF3796B9RJha63NFLX79+9n06ZNPPPMM851urfT/bwdO3b0JHmstBJtHF/gq5nOUTUh1WbIka6lHdGtgdH4z3r2VC7naKPIlF9kyvcZ9xRjHkzaUTw1EYluGmhVQ9klrMuD7ErhyNmgeFYV6gyBqPEdsq4Ieb3SuW0e+RoOXThtHq6qv+OCyF2VH/Za5EzCyBuJ5/hZ8xx2Dt+rENjq4AOA9oPMawTXhcD8whx+RpG12Wg6viEc1WBVInRZT3LnSjtev2FDbJy2F9dwFtd7mr2h5SrR50NESzqHcKnyyle+kle+8pUrXv/+++9n9+7d/P7v/z4AV199NV/60pf44Ac/mIroD3zgA7z1rW/lzW9+c/qcBx98kI9+9KO8853vXP2TQET0JUHig06i6Xbs2JFpx0huM2Z1kFerVY4fP87tt9/OM888M7TLvFsgz8/PZ4r2lYroMHdyw/mnaS3H202OtzvVs0h0HyeS95X4zzr2VC7jUN1nFMW6YompYiEW3RU8piipFr5q4KkaylaxlONt9J9hTs91Tq+0Ur5DXBeGiIm80/7yTQF0eXRdIsb5mXBV951DRFyvRcn9WjhTJ/JmE+eLxHPads5ifHixqMiaYzM2VqGRw9e9uLCUKbrbgXJOqc87IMXd9Of6eci2cyjKzjswed87vYyITvpNpBItDKPRaNByTH292MkqvpVKpXR2xLnw6KOPcscdd/Qsu+uuu3j7298OQKvV4utf/zrvete70se11txxxx08+uij57x/FyKiL3ISL7RSKo2mu+666zLXTX65ZwnkAwcOsGnTpnQ61kpF9P79+9m2bduAaF9pxF1eO4eb50p2KwJgHst8qwGt6At7d2UDB+on4nVK8Z817K7s4em6z4TnM1UoMulpxjzFlD+CzzRF3aaoGmhVR1MFRoiUSdi313yReK7oO3eax+A+E85/3nTeuxM5B944xXUR46xm5h29vVpNlvkqr8NEo6sSrbTNfKtHRkeoZrx14+OT1LNOw1H5t2ER5WXvuxXUMq8Tcw+MceapVwidr4fLYuKY4LkCO4fW2t1UfBaIiL60aDQa7N45xsyJ1freu7AYGxtjaak3JvQ973kPv/Zrv3bO256ZmWHjxo09yzZu3MjCwgL1ep0zZ84QhmHmOt/97nfPef8uRERf5CSJHL7v02g02L59u/Oqr1tEd1Ov13nmmWd4yUtekq4ThuGyEXdLS0vMzs7yspe9zLlOgtMTnXOIRX6xvFrbycewiD4DzIUBc2FHoewqr+dg43j8v0L8Z4Id5V0cahQY93ym/I6ve8qv4KutlHSbQmoxqYIai9MnegWCctg8XBXqaBvZaQfuiYg5o/Jy2z+yyWvzcIm94dMhXRcIqzOS20XuCwFKbtGYM83DOZlS+5kPlUtj1DPeUt8bJXTe7cgWsguLc/gZ2rFer2deD7ovNspnYTFxNJGuwM6xmlXodrtNEATL2jk+/OEP8/73v5+ZmRn27t3Lhz70IW677bbMdT/2sY+lt7oTSqVSTySjtZb3vOc9/Mmf/Alzc3N83/d9H3/8x3/MFVdcce4n9Tyn1WoxcyLkwNd3MjF+aeU6LCwadt/yNIcPH+5poF6NKvSFjIjoi5juRI5Go0EYhstG0ymlBmLuDhw4wIYNGxjrGsM8rIqstSYMQ/bv38+WLVsolweHL5yrJzqv9F2t5aslrlcrzVqjAMViGLIYhhyOl28vr+NwYzb+n0fi695S2sozzRGKKCa1x3SpxLivmfJLFNSVlHWbomrhqTqaGhofbWuYPsHsjspTuMSvMyov5zAXd7U2p/UnpwBVjupuZPPIPgd3w2HeCnU2eYez6KG+ZJetIacv2YE7zcMtZJVuZ75/I6NFWhkPuO5czc8vZUYHBm3l/JZzeaVdF0Yr8USvth8aGFqJPptGqomJCZ588sn0//0Fjt/93d/lD//wD/n4xz/O7t27+dVf/VXuuusuvv3tb2f+rhfyMzoW/bmUSH7GJyYmnClE58KmTZs4fvx4z7Ljx48zMTFBpVLB8zw8z8tcZ9OmTat+PAkioi9ikiq01pqZmRk8z1v2l1y/uG02mxw5coQXv/jF6TLP85YV0cYYZmZm+L7v+74V7Qc6EVDdv7Tz2zlWTy6f+9pns518Y8hdDWeu6quORVcLy6wJmK1H4m9TcZyZ1smuYxgBRljnT3MqmKKAYo1fYLJQYMLTTHgeZd2irAOKukWByGKibAPDaYxdyDhnl80jr/0j74htF6uT5qEpYshu4nPZPJzV+pyDatz550PGh2e+TO7x4S4fuGuojtN6Yt02mewnKadXWjnyukdGypkWk8mJCWq5LCY+ynOkmwTVTIvJcukcq50RnVSHh1Wiz6aRKpkqm4W1lvvuu49f+ZVf4Ud/9EcB+MQnPsHGjRv527/9W974xjeeyykJMQaLeU47f1af830+L37xi/nsZz/bs+zv//7vU+1SLBa55ZZbePjhh3nta18bHZMxPPzww9xzzz3n7bhERF+kWGsJwxBrLdVqlbm5uRX9Au8XtwcOHGDdunWMj48718naRhAEbNiwIfVQL7cfF87GQkfMXm6pnP8Bx9r59pzfFZlXLOfzAWvHci8WlG0sJ4IWJ4JI1Ez5a5gLuqvTZaBMWVVo2M1oSBNMJjzNmFaM+IaKDiipdmdIjq2iCMka9rJ6Ng/Xe+B4F5xpHg7f+FkI09Ubye0inyVFU3FeCFiXN9gZAecqK7s+ky4/fsVtGcqZde2KDiyXXRaTMULmHPvOfj2+88QBVP1LFAoFCoUCxWKx59+NRgNrLUtLS+nycxHVtVoN3/edtrqzbaRaWlpi586dGGO4+eabed/73se1114LRN8HMzMzPQ1ck5OT3H777Tz66KMiolcJM8TIeLGS94yWlpZ46qmn0v8fOHCAb3zjG6xdu5YdO3bwrne9i6NHj/KJT3wCgLe97W380R/9Ee94xzt4y1vewj/8wz/wl3/5lzz44IPpNu69917uvvtubr31Vm677Tbuu+8+qtXqgIVpNRERfZHSnQu9b98+Nm7cOHAbI4vEigHRL+HDhw/zwhe+cGCdYQI4CAKMMezZs2fofrqFsFIqs9rqsnM4cWVYOxe7BlKszvZd4tfdKLY6y/NXqPOJbs85tS3yVhvgdNDidCy6NR6mR+AU4z+TFFWJlt3GqFWsK1ciX7evmPB8iuoqSrpFIbWYVDG2hKI4WKVcpTQPt894yAAbZxOfyzeebyR3/ka6nDYPSu5qes7x4Xkn/bmOyaNM4Hz9XFaLvLnSruq422KivSDzDF9w1U0Uw+tpt9u0221arRbtdptms8ni4iK1Wi0Vtsnv2EQEd4vufvHd/e/uZu7lmgpPnjyZu5Hqqquu4qMf/Sg33HAD8/Pz/N7v/R4veclLeOKJJ9i2bRszMzPpNvq3mTwmnDuhtYTLzGO42Mh7Pl/72tf4wR/8wfT/9957LwB33303H/vYxzh27BiHDh1KH9+9ezcPPvggv/ALv8Af/MEfsG3bNv70T/80jbcDeMMb3sDs7Czvfve7mZmZ4cYbb+Shhx4a+DyvJiKiL0K6q9C1Wo0TJ07wwhe+kGPHjg3Nd4Zeq8bTTz/N1NQUU1NTPessJ6KPHTsGuKevZW2jWq3y2GOPobVOvzCKxSILatAWAPmFkdsv69pOzhg1pxjPV6HObzo5OzvHwPrOceP5BKXnWO4rn5ZDCAa2DSiqCqrNjjga88ZYCpP/e8AYMMb6wnpm26OMKI81hSKTcV73Gr+MrzZT0u14SE4DTZXQluJKa6/wWrU0jyGTD0PXqOlV8ko7pwnmfN+GDZhxNRy64/7cbvl8x1R2H1Nu/7arOu7yaQ8bp579no6U1jBamMx+EpH38siRI9xyyy0YY3qEdvJ38qdWqw2IcYh+b7797W/H931836fZbHLvvfcyPT3N+vXrWb9+PdPT02nlOC8vfvGLe6x7L3nJS7j66qv57//9v/Mbv/EbZ7VNIT9i54CXv/zlQwe7ZU0jfPnLX85jjz02dLv33HPPebVv9CMi+iKkvwq9ZcuWtGKxnIhOxG273ebpp5/m5ptvzlynv/kwod1u88wzz6TH4bpd2S+iDx48yOjoKJs3byYIgp4vlSw9MD8/T1b0a3cXeTfLTVkcWN8pcvOJ8bxiebVwV6hdix2i2yEcfVeFWvuZDgZfeZmNYOC+zRc6xFhICChq1lBrNTgaa7nNpQmONZNmSk3i695Z3sXTDU1Badb6BSZji8l0YQyt1kS+btVKh+SEdgStxjF2sXfHDv+sHhKJl13NVE6x7LIpONM/8lbZnZVXl4geMmBmlSwp7uQMt03G+frlHB/ubsx0jS4fTLZJj2oFOdHJ70Otda58XGtt+vvwd3/3dzl+/Dhf/epX08z+J554gpMnTzI7O8vs7Cx//Md/zJ133nnOjVSFQoGbbropva2ePO/48eNs3ry5Z5s33njjirYpLI/BEj7PRfSlgojoi4zuKnS9Xuf48eO89KUvTW8DLtfckojbQ4cOMTY2xpo1azLXcYnSw4cPMzY2xvz8/IpFdKPRYGZmhptuuomJiYkekT9+dAyWBp8/Nj7GXOv0wHJjw0yhOL+4QNb3Yr3hui2ct1Kcr6Kd116Sn9WpUGvXVEqXncNp88j+VVKgQNshiALHrfnAIa5dTaiJSG9b0zMkZ3dlPQfqx7rWjHzdeyp72F83aCwTymNdqcyEp1lfGEepDVRi0V1QTTxVwzCOp6YI7QLdxlu3zaOEc8CHM+otb4JJNm6ryjCbh2PUuUNMuj3rjmNyfvZcxzSCyfqlgFvY5z4mZxPpCKHjvFeaE302KKXSu3N33nknEAnar371q9x3333O551rI1UYhnzrW9/iVa96FRDdMt+0aRMPP/xwKpoXFhb48pe/zM/+7M+e1bkJwqWMiOiLjEREJ1XozZs3MzIykgrW5Zr5PM+j3W5z8OBBbrjhhsyqtasSHYYhBw8e5JprruEb3/jGihI8IKpCr1u3jpGRkYFKuaux0DWErlwuk/UdNzY2ynzrzMByY02m3lxYnM8U3Q2H6DZO0Z2von2+a9T5K9Q57R9OO4fL/uHTdtyCd4no0LncJa5dzamZizvPQzFnDXON6Pb97srGPtEd+bq3l3dyuOEBlimvkA7JWetXKOhrKKsgzev2VB1tQywnMHZ+QBy7/MeueECXD3zIvSbH+u5R3QMV+fSY8g1tcU9pdB2t269sbLaIdnuls18/lx3G7ZV2RwSuJCfaNaDqbKjX68umLS3XSPWmN72JrVu38lu/9VsAvPe97+VFL3oRl19+OXNzc7z//e/n6aef5qd/+qeBSMy//e1v5zd/8ze54oor0oi7LVu2pEJdOHfEznHpICL6IqI7F7perzMzM8NLX/pSwJ0B3Y/WmpMnT1KpVJiens5cxxVxd+TIEUqlEuvXrweWz5JObk8ePnyYW265JXM9V3XR3d/n8j5mLy6VS5mie3RslPnW3ODxOMTvQs5Kt1N0X3AV6tWpRGvHLXvfMeRFo52vtasSnVdE5+0WX/41Uj1DcjYVJ5hpzXat6QPjTHiTLIRTgGVUF1hT8NMhOaMeVHRIWbcpqBZ+OpnSy5w26K5Qu87N9f67srHd3mB31TyfV9qF+5jc/u3QNSDlWfBKn89KdBa1Wm3ZaYXLNVIdOnSo55jOnDnDW9/6VmZmZlizZg233HIL//zP/8w111yTrvOOd7yDarXKz/zMzzA3N8dLX/pSHnroIcmIXkWksfDSQUT0RUR3FToZ0939S3YlsXJKKU6ePMn111/v9E5nbccYw4EDB7jqqqvwPG/Zsd7dtpGJiQmmpqaiaWP955TTJuG62s3dsOc491JpmOgerHS7jnNhIdvTXW+4GtHyerHzkT/lI1+F2hvmoc44NV8VaDmqskHeyrVz+Eu+oS0u8p6zn/rGFVUTUG0GHAF8fIIeUaxJhuSMeqNUw3UULKwtFFlTKETNlIUKBbU9Ft1tfOqxr7uEZsxpe8g42uxzc3qDK1hH1dcdP5cvOcM5nCXrBwcYNjnSmXXtHCHv+txnvx6asvN4E85HTvRKRn4Pa6R65JFHev7/wQ9+kA9+8INDt6eU4r3vfS/vfe97V3ysQj4Mrk/mxculdj4rRUT0RUL/dMJkTHc3wxoCE5rNJlpr5zSrZDv9AvnYsWNordPGk+UEe1IVf/rpp7n++uud67mqi3ntEE4RmlNI5a10Fx2ie2x8nLkconvO0UhZr7tydPP+yspXoXZeYDn9rdm/SnzncncjorPhMK/Nw/Eeu+4SuHA3ZTqq745fqwVdJDDZ59COl7cVHA9aHI+jA6cLFU62uz8DFaASW0wiU8KUX2SN7zPua6b9cbRaQ0WHUTOlasS+7jE8NRn7uruiJ53JI2VCp4h2+b1Xq2o+LOs6n/XEOdDH+bl32TyGWzng/FSilxv5LVychJdgY+Gldj4rRUT0RUJ/FXrjxo09Y7ph+UmDxhhqtRrT09MrSvDo3vf+/fvZvXt3+ryVDGSpVqsUi0Wmp6edjXxuP2vO9Z2V63xCKm/10i26s5e7Kt0TE+PMNQcbKV2/lhZyim7reK/csWT50jxcDYquirbvaCobrNZ2cHuo8zUi5r37kbdZ0xUDWFAFhyyFtqO66zrn5HMaACeDFidj0T3o6y4BpbiZ0qKBCb/AGj+ymKwrjOKpHVR0SCltpqxHth2rCO08/V5nVySe21KRzyvtajj0VNnt33Y2cjq85jm90suN/Ibz44leSSVauPgILU7v/cXKpXY+K0VE9EVAfxX66NGjA1VoWFm+s1LKOWXQtZ0TJ04QBAFbt25d8b6UUlSrVa677rqhgt0lcvPbPPJuJ+f6To+zy4+bsxHR8RKVyyWy9MH45ASnG6cynpG9ofn5+Sicoo8siw3gvDfnFpQuT3ROK4QqDEntOL/ietlOxD7yXmi4xPXgoJoOLmuLu5dg+JgfA8wFbeaCaLs7ytMcanRHpBWAAtP+ek4GY4ClYhXrSqV0OuWIZyPRHed1e9TRqorFzzUkxz1gyGUlGpLt7PBKOxs2c3ullxezxhiKxWw7yNkgIvrSRewclw4ioi8CuqvQBw8eZMOGDQNVaIgq0S47R1JNnpiYGJqpbE0drW26neR5u3bt6rlVuZyIXlqKvJrL5ZW6Y8tyitCcleXcy10VbefY8pziOmf6h0uAlCslssqdk1NTuUS3y9PdqDeyn+JKNHCIa8/xq8fViKhQQ/KmV8nmkfN2ZG6bh8MqUFQFGo5jbee8cMjr93Y1lno6OVZFXcGRVpMjrWY89r37A9YZkhP5utdSUT5rCoV4MqVOh+SUdZtiOpky8XWPDA43GTYwJpMhWdc5c6VdPw8rrUSvpp2jXq+LneMSxaAIh2TsXIyYS+x8VoqI6IuAY8eO8dRTT7F3716OHDnSM3Gqm2HCdmZmhjAMGR8fd/umbQO98P/lxi1HCFCEpwuEtsA1u3y88jbq8xXQ60BvYP26OiY8QxDcgKd2oLzOR8lay8mTJymVSgNfKv1iMbcIzSlyV6uivVo2ktwe7bzResMLkQNUKpVs0T2ZLbpd1delxaVM0d1stjL37RKgrkbEAgVaDqHkitBzNRzm9eGvns3DceGgCxBm2xHaJvucQ4flxXVuLtxNk9lCtqiLNMLsqm/LRJMp6zak3gp5Jl6+oTjKiVYilBXJkJxdlT0crENBadb4BaZ8j/F4SI7HOkpeQKlrSA6Mo9VJjO2dcupRJnRlXTuaV3FchDg/lysQ0avdWFir1dIkJOHSwtjoz6XEpXY+K0VE9AWOMQZrLa1Wi4MHD7J+/XrGx8cz13U1FnZ7mlutFs2mYyJX/SNgm4RAQUGBNqg2pZLF2gUKXfeg9m4F+F9U50PKyiMEQnxCSgS2zHWXa5rBBuqL/xvUBpTeTBiuB7sTrXahdOR7DFdLnOYUv3m9z3mn7uWvaOcU9bnzqV04BKJDLI84RPfU5CRzjUFPt8u20ag1MiMDTTs719tTPuT0DbusEHnfs/Nt8yg4xPWw6nvb0aCYN6nELRod1XTHxEoY5ut2eKVtZ0jOiXaTE/Fqeyqb2F+f6VozGpITNVMWokwTq5gulZkqeEz5RYq6GQ/JaVNQDTxVR7EUf2Y0/VdmJueEyJXaOZ6LdA7h4iO8BCvRl9r5rBQR0Rc4QRCk4vjw4cO86EUvcq7raiycnZ2l2Wyybds2Dh48mF2tDr6L1/yz6N9KRRYSoo7bprF4CppWY+ObNopIfnnxLwMPg68CIABVRVdCNutZCJ7o2Y0NLI1WmQJNQnx+fq2lahQ143GqXaClfObDEk17hqPacDIocyasEMbVvdy2DacIdVUpz6/odov6nE1wOS8+3OvnJV8DYaVcyfZ0j0+w2FwYWO4Sb6YdZv62UlZhHU2cTqH5HNk8XOfmORrpiqpE05E64b5AWJ1YP1c13XfYc4ZNpmybfBczLrx43wZYVJbFVh1axP7tateaxfjPZPz/XUx6xdjT7THuKya9IgW1rXdIDlWMLaIoDDQkPleNhWLnuDQREX3pICL6AsYYQxiG+L5Pu91m3bp1TExMONfPqkRba9m3bx+7d+/G8zyn5cNr/GnP/5WKRiGE1jLR88XQ+feSCaloDVishcBGsT0tGwVILbZLKK9OEiilUbSsYVS38LD4KqDkwRovagDaUWhQ1skPYqfZqW4MGk0AtKymZjQ147FofGaDMi3r0TCTHGtbToYVTgUjqeheNU+0Y3le0Z1fXJ9fb/Uwf3weXL2jLnHtGtpSKpYz7a0j5RGaweAdFF8VaLtsHibbStIMHMLUIbrzWoXy2zzcFeqm4+1pOaq+Ln+4e/CMK6Ui+xxcvu6CLjrFct47As7X1fEh83X2RUhH2CvmwzbzYec4pvw1zKWfg2hIDoyzs7yLpxuKUeUzVSgw6fuMewq8q9iRuZcO58MTLZXoSxNjFcbVTX6Rcqmdz0oREX0BEwRB+rcxhssvv3zo+lmV6FOnTlGr1di+fXu6zoDlIzwI4dNYtQ3sIti59AurbaGU8bPRspbRri//RHT7KNo2ZEx7oJt0jyFuW0tJeWjVK7qNhaY1+EqxaBQKi+qTX0UVHccohjWeAQJqpsbNlaQCdaLn+GYDxai2NLtE95LxORP4VG2Juhlnpq04FVY4GZQJ4x8FV4XaudwpclfL5pG3cXGV0kJy16hdFWrX2vm8uK5GxKIuOH3Drgq1a9T8Um2JrIhi14Cc5QYb9eMS184sbV1wtry7BKjTH57zzoXbkuJ6H4rUTDXzsZbj/XE2Rzou7Nyvn8u/XXIKe/frFAKKqg2ptkKOxoe+pri8mF1tT7SI6EsXqURfOoiIvkBJqtAQNQUCQ6vQkN1YuH//fnbu3Inv+851vMYDaPPd9P8WRWAtTRvlylaNwWJRahRjqygUgTWUVZS94KPSSmTbWkYclbWmNZG4pld0ByTievCHcNGEjGtvQHQH8Zf/qUBR1EEsum1c7bZMex5KwUiX6IYmVWMY1Zp+0V0zlrbVGBR1o6hZn6XQZ8EUONkuEzDCiUBzMihzKqjQjn90Vs0Tfb4bKXPbP1ZrUqJLjOUc5qJdHt1soTnMXmCVySzAFitFasGgEHRdgMw7Ekxqjqxud4KJyzrhEKwUnU2Wrmq6+3OarxPV5et2HatGO33azgxsx/qur2hXGkpRF6g6LkJcwt71OpX08iOvJZ1DWCkhOr1beqmQz5x16SAi+gIlqUK3222eeSbqc7fWDs1c7q8ynzlzhvn5eW666aZ02YCINsdQrb/r2Y5SkbhtWMNoj3hpgPJiodwRvd0Ct2EsvlJYazCmhNJNFFF1WaNoW9sjugEaXeK6G2MtlfhLOzkmHwUqspJE1e7ImZ1grcVTkWM7sKSi2xA1MHlKMR8aPEUqupP1Jz0LWNZ4EP1KaMbWFEWh72UPrGU20JR1Iro9qrHong+LLIXjnAwVp4IKJ1cguvMmSeRd7rZ/rE6qiRPXEJacQ1tc9g93A1zhLKuQgxSKfqbFZHxiLHNAjusn1BUb2GxmCzqnuNYFpwh0Nfflt3lk47SkaIfgV0UaDl+3+1hdNo98x+Qa6DNs367PRslbmYheTU90rVaTSvQlir0E7Rz2EjuflSIi+gKkuwp96NAhJicnOX369LK3C/sF8r59+9i5cyeFQqFnnW6hrZp/g9WXga2CXQLmUViCFVaUoSNwlYUxnYhSQAckAjeqKHeaAxOBG8TfjEsmGhoaWI+CMmgsbQsjWg9cPFhrKTqOrWotY/F+kkp3omqaFkoZz6uakBGladmoASsR3TY+PmN9ijrsEd0GywY/EuUd0d1Kz2VMz/bsI7CWllWcCYtoQmrWYyn0WTQFFsIii+EEsz6cjkV3K7WXrE5Fe9WGwqxShdqFy+bhHGDiHPLiTrxwnVveYS6u165cLmc2U7piA10i0JVgokLlVOouEZh7aEteX/IQr3TDEd/XcnqoXTYPR8JIzmMqqhItR/Sd63Uq64yrnz4knUNYKWLnuHQQEX0B0u2Ffvrpp7nppps4ffr0sh5MrTWtViTk5ufnOXPmDDfccEPPOj2+aXMSr/FRVNdAAouibTQ126YQp3TY+CvVU+OEZhGloGEiAenT+RKrD6kol5fzT/eeCdZafGUpxNvuFrhNa/FVJIq7RbdOJFJGxb5mQkYclgCFQikV6xWdCpSGMYx5UeMkfUKnmiaW9Iru0Fq0UsyHUFBhKrp9omrz1kJSAeuIbmstVTvLWNcuwlh0L4SaEEU9Ft1LpsB8WKDJCY5omAvLzAYjy4puV6XbnY18fivUuW0ezklyLhHtGr1dzC2gVivNI29s4MT4JAvN+YHlruq7Mhqrs4+pkdGUCWfR3JfT5lHQhbOIxMtXNXcOjBni326F2a+HS9ivxM5xPnKixc4hCBc2IqIvMPqr0BMTE6xbtw6llHtISky3QN6/fz/btm0bGEPbXa3Wzf9fj4AGYtsFjGndqSin1FhS9IjeqKqsCGx0HZr4py2AjWwboTVpBbhbdAOpSO6n1mclKSpIBa4xcSpIelbRc0znOUFc7baxHAysZdFEx9i2HqVY4IbAiOMYAoeQaFnLiFLxxUBvVTDxcEd0jj+ILyRqhjT9N9p6VPVX+NRMr+guK4vyAspa0y26AZr2BIVxTRJmkojullXMBAUKCqrGZzH0mTdF2vYkR3TImbDCbFCmYaPPhduLvVqNiKvVoJgzNs45EdF3imh3FdflM16dJIy8/uNKscJCa1BcV/wyNZPtxw4c/vDF6mJmM6XL1+26E+Gy2zgr1EM86+7XO19MozP1RBedwt712VhORFtrJZ1DWDGh1YT2EvNEy7AV4UIgCIJ0zPfBgwdTP/NyY7a711lcXGR2dpaXvexlznUw86jgWxjvSpSpgl1EEeX21s1axvzB284mww4RCUlLw9rMKjT02igi0W0xFKibJr6KqtHJz19gfEo6iD3MdkB01wcEdIfun2FfKXwFoGhaw+iAZzM61iVjUEqldotE4IZxLN+SCQmt11NVblpDMeNcwyEWmMT3XUguBpJjtpZAES/v3eaiCSkqxVIsvBPRDZEGaFhFSYWp6K5o0DbkiqKNxXV3pe9kx0ceH2vbKlpWU7UwFxQJUCyFBeZNgZDTrFdtTgYlToYjqeh2eqidojsbd2pHzobDvI2IDlHn4eVugMvfVJrvW8ZVYXWNUh/mAXadW6FSIGvuiKu5b34+29fdaGRbNjzruCMwJBLPlbbiOib3gJT8w21c7/Vydo7k8y850cJKMCjMJdZYmPf326WCiOgLiKQKrZTi8OHDjI+Ps3btWsARTddH4nfev38/W7dujbyZfSTb0c1PoYOv9DxmraYVTFDwLbWuirIlLgAzik8Ng8VD4a+komw0I12/KxIrBwSESg0KYm2pG9Xnn44ELhja1hKaKIbKxlF4HtEPcFEN+qchidYbPLYgrihDt+iO9ttbUYZE4CbNjkkjZdvqWOBGx+krBVYRWk1JRZYXD5we7v6KezcFFCWl42PvPL9mTOz77rWZRNVoS8uCVr2i21jwFNRNZIXxgbKGMgZtQjaXE+GX+ApOwTgshDDhdYvuL1O3cCb0CawXe7oLWDXPGlXndFBmtl2mTjneez5x7cKdzJAvh9o1ca+gCkNi43LaDlwWCddERAfOc3NaVVbvAqFQKkBGUXZ8YpzTzZMDy10XP7VqLdPXrY3bP+nKwF69SLzsi42SKjmbIEt6uJhN7+6tUiXaGCOV6EsY8URfOoiIvoBIqtDGGA4ePMjevXtTQbiSSrTnebTbbU6dOsVLX/rSzHW01ijq6Ob/GHhMKQPedkrqW9D3BW6tpU2rRwwmUw1rJsp4rsYV5UR0R7K3QNMGA6K7aYtUtKvi1H1MsX869kBXlM70li6ZMPVwp0NfjAYVxhXlSOhqFEFs52hay0TGl153Kkg/tS7ft4/qEbjNLttKRPTvqgkpKU3TGlpGxwI3kpfG2qgaHl+YJFXlhrXOirvrij8ExpSO37re5y6ZcECsJ6JbozgTKgoqTEWvQhEag6d8WvEdgUR0TwDjusGI1vSI7jHS7Ski0d3my9QmoWY8TrRLWKWYD4sotcAUNU4FZU6GZaqmhFsqu/3Ebo+uy+YxpELtUPYuce1sRHSMlHZXavLV6102hWEJGXWbYbomf1IJjuztSmUk09c9OT7FfHNu8FhdXz3W/frVW9nn4KpQ5339ikOaIJerRK+2iE4q+8uJ6A9/+MO8//3vZ2Zmhr179/KhD32I2267LXPdP/mTP+ETn/gEjz/+OAC33HIL73vf+3rW/6mf+ik+/vGP9zzvrrvu4qGHHjqX0xH6uDTtHFKJFp5D+qvQo6OjrFu3Ln18pZXoWq3Gpk2bnL98tdZsWvN1rN6GtetQtgp2AUUNa6Honcj8To8qpr1fSonALWRVlInE9bhukwg6ay0BSSpHkcDWB0R3I/QZ8+lUdbtoW0spYz/dSSLdTYslDxYNGTYTi7WdFJHOpEWNxtC2Bl9prDVppVuRVKtdFffhjYt+7J8uedAjuh3PCaxJmxabVuOrzgWKRlEzIcZ6lHTH8uKymfQ3diZ4ShHGFwUjGc2TTZUM2onOOYwvmuomGYzTcXYnMYaBhZLyKKqO6B7XENiQbYV2V1RgJLohusAZUYqWhTZfph6L7qrxORmUaFoPrRaYosrpoMKpsMKiKQLKHYnnrOLmG2wy1Lubc5y1q0Kdf6x4zpHcukA9dIjonINQckfiOURlpTjCfGtuYHlZl4dE4rUzdfHcwnxmtbtezz5nlx2moDI2ErOcJzr53TwsgjQPybEPs3N86lOf4t577+X+++/n9ttv57777uOuu+7iySefZMOGDQPrP/LII/zH//gfeclLXkK5XOZ3fud3uPPOO3niiSfYunVrut4rXvEK/uzP/iz9f6m0fDKJkI/IznFpVW4vtfNZKSKiLxDCMEyr0AcOHOCGG27o+YW8kkp0GIa0Wi327NnjXEergCu3/j067G1MMsajaa+n7M3RtjtomgNAl5XDRlYAraKc50SArtSjDNEXTIFITI+qJVRGtbAeql7/NMRVZdAqsllAR3QrFDWjmfLsgLQwlkzxCNlReElVueF4Xs0YKrF/ujNpMRK4gbWYuHFRx363korWG3G8Pi6bSRhPg9QqalqMvkY7UYFjPdvrXAj4KOrGEI2eMel7FxhDUWsCq1BKU6RjeXFfFJiB406sKW2l4oE1vUTe82S5SkV3VPE2GHx8lbx/0XAc4osUgLJWqegGQ800uLbcW+lOOBUoxrShFYvuuvFYMh4LYYFFU0CpOTaoOqfCMieDCotxpdudQ716edN5PdR5bR7uaYJDBtJk7Dq6ZMzet+uc804+dCdnuJv+XNVgq7OH5JRHSyxkHK6xJlN0L8wtQIYmNkH2Ofiq4LTQpM+NM6JXW0RnWfISPvCBD/DWt76VN7/5zQDcf//9PPjgg3z0ox/lne9858D6f/7nf97z/z/90z/lf/2v/8XDDz/Mm970pnR5qVRi06ZNq3EaggNzCQ5bORtPdJ47KS9/+cv54he/OLD8Va96FQ8++CDw3NxJERF9AdBdhT5y5AgjIyNMT0/3rLOSSvSJEyfwfZ+xsTHnOkX7EKXiYGe/1iFlfRJljlAACl0VzZoJGUsbZqIvCRMLpMBG/mlUmTC+ZayIBrD4StGyPh7tnqSPlrUUM35/BNayxu98SSeiu4CirbKi8CKhrTXxgJeO6DYWzrSLTBaaNOKfbU1y+9/11Z4tHtN90VvpTgRuy2pGVZa4iUStR/ekxU7zYpRmEjUsahWJGh/rjAq01mbmXEMiYAc93AB1+u8URAK3HscUVq2haTwKOohfl6hC3TAMiO52l4+8n1bfRUEiug1QVB6eo3lyvKvZMRHdhqjbO2siZYhlyvPwlKLUJbqhzaKpxts73SO6Q2tZMB6+sjSMiivdHkumwGxQQqtZjrYCTofRRMr5WHQPy5t2CdDcUwNzxgm6my8dItqxfNggFHfcX74MZ7elwl01dydnuOxf2fsuV1x53ZOcaWbkdVuVebg60Hzxi1+kWCxSKBQG/i4UCunv70ajQaFQOOcGw6Sp0FXJb7VafP3rX+dd73pX5zi15o477uDRRx9d0T5qtRrtdjvtu0l45JFH2LBhA2vWrOGHfuiH+M3f/M2eu6LCuSN2jvx3Uv76r/86jfAFOHXqFHv37uXHf/zHe9Z7tu+kiIi+AAjDEGMM1loOHDjAddddNyDI+oek9NNsNjl58uRApF0PNsAP/om56hbGx3y0rQJzKEIa4RWU+Z7jiYPfLFopWsYwnn5ZtKDri3EprVAHgMLEArcdTwCsmhKGWrz1xApgKSkfhe2pGLrsCJBUlGPp1yW6UdD2ssXoQqCY8PWA6I5EriE0tqfS7StoWz1EPLptFCNKxz7n7i9orycpoxtrwUN15U9bGtanpEICaygoRWgj0a3QFGKB6xJWTZt9p8BLqtzxY6Ndkx9Da1E9Y9gj0R1gaZjE6mIJ4io8qcCN3l8vvihIqHVV/fvxu447Ed0oRcMYRj2P6NKl93WqmhBPZYjuOFGlfyKljq0uayIVz7i2JKIbGiyGi4x7vc1yxlpqFkLr0bJEOd0mHpATFjkdjrJgdDwcp8y8KdO5K+AQoC6vdM7qrgt3I2J2I93QQSirlOHswj1lMH8knuuOgMsr7RKmo5VRTjUGmybHSmPccssttFot2u12z9+1Wo1Wq0Wz2SQIAv75n/8ZiIoe/ULbJcKLxeKA6F4umePkyZOEYcjGjRt7lm/cuJHvfve7zud18//8P/8PW7Zs4Y477kiXveIVr+B1r3sdu3fvZt++ffzSL/0Sr3zlK3n00UdXNXnk+Y5BP+/TOfLeSem/2PvkJz/JyMjIgIh+tu+kiIh+jun3QpdKJdavXz+wXs+QlAwOHjzI1NQUtVp2viuAan8BL/wHpkbpuS0ahEWKhTKWy7GqjLU+tfZjKGUIbTTwpDNcpTOyO3T80GRVK3U8zKRpTVwpbNItjoy1GEUaS5eIbmMtjdijvBhqijoS5YlAAksYJ090UzOGScenO3kV+0V3y1pGyb4lOx9oKn7YY+WwWBaCAqNeyFKXlcOLq8qucebgTjOpW9PxVserjMZ+5aphwEZhLXG1O/rbJA2L8WsUxK+rVpE490iyu4c3T473HXckcBXo/pjDaL1aX+NiIrqji5OoebJfdBuibWUlqrgyuruPu1t0Q1aiSjc6mj6JjT5rEOeHGyw+S8b0iO5kdM1k+sFKRHci3k/H2eURUeMtnAo8fAV1q6kan6XQZ8EUmQ+LVMPTzCjSSndiQDrfNg+XdcIlWIcdU96BNO7Jh65UFffkw7yReM7mSKf1JPuzU/YqQ+/uAZw+fZonn3yS22+/nSAIUqGdiO3k/41GY0CMQyTsC4UCv/RLv0SxWIx6HJpNfud3fof169f3/Nm2bdvQY1kJv/3bv80nP/lJHnnkkR7LyBvf+Mb039dffz033HADl112GY888gg//MM/fM77FSJCGxVDLiWS81lYWOhZXiqVBqrBq3En5YEHHuCNb3wjo6OjPcuf7TspIqKfY86cOcPi4iLr16/nwIEDXHPNNZlfhsMq0a1Wi0OHDnHNNde4qxDW4NX/JPOhgC2UzbeATrF03FOARzXD3hDaKBdao9LhKlpNYOwCoAisoayir6Ru0b3S1AvoiG6UgsSjrHurklHUW7YVILCGk+0iJa/ZYwUwwLjntkS4KsqTnkGrqKUrEd0AVaWYcFRoPKuiSL4u0W2BZqgoeZbAdqwcic/cOirKrYwLk+jliV7vLPHYuTDpPM/ajgWnoBTGRvWDZpzPnVhxmtbEorsjzoZbXXqPLRHdLSzleDBN/Ei6zmKcqALEY+Cj6nuSEbJkwvi4OiPXW1jGnfm/K/F3q1R0QzR5cjQjzaQdf1abNhKziehOplJaW6St22l2uEc0s2TKC6loFa/dqdo2raHITLrrRHQ3reJkUMFTbWrxcJxFU2A+LGFVjYKpcSocZS7siO780wTzZWaXVImmayBNTqtK3mN1TZos6iI1U818LHfV3BWJ5/j85Bn5rbWmWCwOvyPYhbW2R3S/9a1v5cSJE/zrv/4rvu/zjW98g9nZ2Z4/n/3sZ/mBH/gBPM/j+PHjPds7fvz4slW43/u93+O3f/u3+T//5/8MTLTtZ8+ePUxPT/PUU0+JiF5FwkvQE50U1bZv396z/D3veQ+/9mu/1rPsXO+kfOUrX+Hxxx/ngQce6Fn+XNxJERH9HGKt5fTp05w4cYJWq0WhUMj0AsHwSvTTTz/N1NQUU1NTTqEdBF8FVULpy2jVT1MuNdGxnaJYKGcmE/Q2inUdi1JYa6j0CLcqKC/yRSmvxwOdVG8b1uDHFVrwsbFDONlK1nCVYakX3V+F3VXJSHB6KC+g3wqw5LACJLeiTgeKog4jSwmd4SquCmdZZ38hLwYw7kevXbfojl4PekZ8J1RDKGhFo8vKAVALixR1k4JSaNsnuodemAzaKFT83P5ElbH4AiWyUfQNg0kzsQ1V08kOb1ufkopqxj4qM1HFdWFi+yw6UXa1BhXZNZKLo+i4OuuZruE4qQ2H6KLJU4olOzgcxxkJOOS1a8TvefSZ6l2nZS1FZciymRSUpmFM+plK9hzayJ5bVCZ9/4oqurjbXqjHd2CCvu0dZXTCS1+vNtCyirb9KjOjPkpZqmGBBVNgPizi6RY6XOBMWOF0WElFd96x2AVVcIpo10Q/5/TG3NnY+TKwhw1IcVWuXdYTl7BfycjvpLEwL0qp1O4B8JM/+ZMAfO5zn+PgwYP8xV/8Rc/61tq4D0Rzyy238PDDD/Pa1742PYaHH36Ye+65x7m/3/3d3+W//bf/xuc//3luvfXWZY/vyJEjnDp1is2bN+c+N8GNsRpziXmik4vTw4cPMzExkS4/H57kBx54gOuvv36gCfG5uJMiIvo5JAiCSBAEAQcOHOAFL3iBu/PeUYkOgoCnn36am266KU3wyLo9XguOMNuIh6toojvT1sOz66gU5yioyyioMr7y8dDUG0+ArhLoROD0RsK5JvNlNcX5SuFZUMqjmB5Xp6rcLZqsjZI4rIqEZGAj4QuKRlik4jVJxpu4hqu4PMrDrACpR7lPtEFkjWgbsMqmotsSJRW0TJEl1cl51kkCSWxL6adtLRM6+z1eMh4bvehcu586okJCvIFKa2KTKGpFy9iemYYt4+OrqHlQ971/jSGJKv02iqSRUlkY115fukX0Hi6ZMB5Nnog9hcWkY2CXTBzPZxWesrHwcaeWuJrRWl3PSSIDk1UXTf/EzM5wnLLShNbS7JpIaYmEt68Uxih81bFyFOj1anezXBpNUfVWuiH6efHSxV0XBPEdgSiLO+wR3YrIox893hHdRQUN0+LqciIcu0Xtcb5/BKa8TrJNMxbdS8YyFxRpoVkMI3uJVVUOqAaz7TJnTEd0Fxxxf9G5OARrbhHtsFQ4LSnuqnne5khX1KCLlYjoMAxXdeR3rVbLjClVXXd17r33Xu6++25uvfVWbrvtNu677z6q1WrqMX3Tm97E1q1b+a3f+i0Afud3fod3v/vd/M//+T/ZtWsXMzMzAIyNjTE2NsbS0hK//uu/zutf/3o2bdrEvn37eMc73sHll1/OXXfdtWrnJlzaleiJiYkeEZ3F9PT0Wd9JqVarfPKTn+S9733vssf0bNxJERH9HJGM9vY8j0ajge/7A7c2unGlcxw6dIixsTHWrl2b+uuyqyIZX3IqJFRLLAUnMh4DY2JNmR40eBRQBBTihrlkiEpBjaLjaQutxArQXVG2NrOqDb2VMhULBeKKdbdVYkx3Ksvdw1WaRkXnYjs/yIsmJLQ+BRVXuxXxcJV8HuXUCpCI4j4rwGTBkGUFGNF0NQeSytu2tRhboKKDtFKa/BBOeNmC40ygWVcYfEyr6LUvKz2gO6vWxo15HSJ/uaZtDcb0Vkrbxosr8NFx+33vnysxBHrtIiqx4aAzvdUJSyZME1VCSAVu0hy4GHvM23FTpaegaSzFjGpff1W7m3pXaslIn4itGTKFfMsaivEdiLb1UCQZ3dFFVGjAWJ+iCjoXTTC0qp312mmlKGpFWQ1euNWNYazPdmRSYWxphgpPBT2iOzo7TTOOOywoFedyBxRVyPZC8vsjsUVEX2BnQsWUNqnoblmPmlEshh5VU2DJFJg3RZaCEU6EBU4FZU6FZWxXJd45tCXnqG63zcPtlXY2R+bMwHYdUx47x2rRaDSWHbTyhje8gdnZWd797nczMzPDjTfeyEMPPZR+jxw6dKjnmP74j/+YVqvFj/3Yj/VsJ7nd7nke3/zmN/n4xz/O3NwcW7Zs4c477+Q3fuM3JCt6lYnShy4tT3See07FYvGs7qQA/NVf/RXNZjO9azOMZ+NOiojo54ggCNJfvM1mkyuvvHJoxqjWmiDo/eWfVLCTTOnkF2aWiLaOLzOFt/KeWgUhbUILAWGnmGQBWljbV4Sz0S36KElCUTQqFdceioIqYm2LstYYaweqUNlfdYPDVUqJCFH0pV70JzuYtELXjseIJ+O6tVK0bUgjLDDiBXhxI57rtWkPqcY3YxtFbyJHXB1UUFCDiROLYYhCx82BHdEN0U2Dmgl7RHcyXMVVza0Zj1Gv9z2PfOaWUp/dJnoQlgw9zYGJaGsZlXqUu0VbMyxQ1G2KOkrv6N+m65dqaDOG48QCdzC1pEtgapOK7iC9IxBdmES2m6SC61HU0YWcq6odeZ6zH2tay7jWeHR9tuh+/xLPc+e1r4YhRa1pdb1/iSgzNrrbYq1HMR6Oo5WiFfcOZL5GGZ88rRR+/NnyMj5DSyZkwuuccxJDGcbNt3Mh6dCeZC1LNBzHQJfoDlnrwaLXdF4ELYSKija0rKJpFfU4MvB0UKSJx3xYZC4oYVSbIGhxOqz0VN5cvmTX++WyeRR1MXckXt6YvpXaOVa7Ej0snSPhnnvucYqORx55pOf/Bw8eHLqtSqXC5z//+ZUeonAOXJrpHPnOJ++dlIQHHniA1772tQPNgs/VnRQR0c8BSRVaKcXc3BzAsldKnufRbPb6EY8cOUKlUkkzpZNf4mEYph67zk5dkvQ8fgRUFBkHkZBIjz79/mxiLOj4u0vZeFCJLUaVWgVLRkd2EBShLTGi27QdFU5rbc9Y8m66vdUFiMVCtG7VdLzfY7ojjlqx0GpbS914+CpImwMT/28YxoItFt0aKLmq2gNZzh08pRjJsJK0rGFTAfoFU2AtTWNoo1FdY8ST1xF0V6JKx2d+JvBYX8hWHV6fgEmaO1vQFWXYYUwblkwnrSMR3Q2j0SoEbFpRji6jLApNG8OYMzFieRuF37fekjEZEXqRhaPc5Z9upO9hZBPyVfRaJXcqkrsqRdcxdCen9KHUclaOZHn0d2gtDWMJlaFlNV78HiavlbWR7SZJkEkuMOtDPkP9VdykEdZamEir2oM53SM6ena36DbxBclCaFCqE/moYytORXup6B7FghcAAfN+oyvRBOAwEH02qlajsXG1+19ZDGEpnkrZsD5zYYmi51NtL3EyKBN2/W7K7es+i0i80HHZdz490S7q9fqylWhBuJjJeycF4Mknn+RLX/oSX/jCFwa291zdSRER/RyQVKEBjh07tqJJV/2Nhclkw+40D601SqnMBkRnJVppnEWhZ4Eet4iKK3CqSdWmcqNHdBNGTVqe6YhuhUcx/qIv9tlMNJqicjkwI+uCK/85aYrTQMHriOue1Iu+ZIelMKSkIytK03h4KkjP01hL1YS0TYGKF6SWidaQinLT2p4otQQNjGgvreB2UzWG9X02k04jnk4TVTpVZUVooKSzmzsbRjOWYTUJba+FIRHdRc+ylDluPaJu4oa/WHSH1lILfXzdSpsDkxi80PqUtHFG3pkhFeVuC0o0cr1TvW0Yk/q4e48tSi1p2sjT3bYFPNWKPfAWa0KiVG5NQcUXUss0KGa9Dl5q5dDxRMrO8+vGUOkTZJ1G2Oj9TYbjQCKebZwvbntEN8SfY1clt2u97vSZ/rScbiIrFQOiO4zvGix1TRVNIh8bXb0AUWRjk00+QJP5sMpkuqvDENspG8bSsjq+c/SvLIRQNT4LpsDJdomaLYAKUaY+ILqHReK1co5rfy7sHPV6fSC6S7h0uDSHreQ/nzx3UgCuuuoqrEOwPFd3UkREP8t0V6GPHTuGin2hy9HfWHjkyJHMNA/3eHC3neNiI21NTEQ3QSzGwOsR3R2sjWRKYidpm2Jsd4imACaC1hifES+6MZUn9SLBU7EXFUW5S7Q1raGUiBLdK8gb1mIw1EOfgm73HL7qay5LLBPDjiFraSL2NhYHPdwAi4SUu5o7E9EdxFXtpLnTxqklGphrF1hfDDKbO12fqm4fcneMYUUblozKEG6RQNNK92SHR4kckYvaVwpsJ8bQ4lFSZqCyntC02QIaosbKiuq24oSAF/3cqv5KefSzW4ubO0NjY9+0Squ3Ydf7p+ILOmColSPrgsFTCh2nMvhK9QzHge7hRhHd6TPWRo+3rKagkosAGzdC6vj17d2fKwO+23/eH/m4ZJJc7cF3P7Cd+MLuyMfARgNtkpz15K6AjyLAxPYUgCYbY9ENkZ1kwrPAka59WJaMIiSalFo1Os7pLrAQFvlWYx1Pt6ZyJ4w8F42F9Xp96MjvC4n3ve99/PIv//LA8g9+8IO8/e1vf/YP6CLAoDCO308XK5fa+awUEdHPMkkVWinFvn372L59O/v27Vv2ed2V6KQKfcUVVwyKF0cDonXaOVZRRKvEZXlhYlUkUAIs6AaLlsxBLQSR/cQnqqRFAtSnouNWKgVBqNOEiMQy0bTWmdzQtr0jsbsZjavnZb83Nm1pSHOZxVI1hkboU/SiypqKRZ2vFNUQKrrXZ94/lrt7m90XDN2jzdvWMF0YjHMDqHu2M269K3KuFuq4Gh25g7vFUTXUsX2g/xhYUXNgmh0eUzM6o4pvadmoytqyNq2YNkKfktembS1t1TvR0I+FpesYXFYcpaLnlzKaO9vWRpaRruNNPN11YwliC0fLevgqEZGA7eR0d4v2YXag/rc1SZ8JwJnTvWTCtBLdH/lobWT1MFbFFwCdkeuuXgBXB0EY3y2IbtyonsjHJRPGVejB8/JRtGwUSdcd+RhaS2ALVOO7At1WHE+FTGkPUitHRzBXjeFQa82QhJHsCvVz5Ym+WOwcP//zP89b3vKW9P/vfve7+cIXvjDQwCh0kEr0pYOI6GeR7ir0zMwM1lo2b97M9773vcxqXjfdleikgp0VBZO7Eq30Wehel1jWzv08G5zNdfCw5xgVfXEHWFAt2vEpGzNYuUtuJkTZvwpfaVphkTE/SMV4kkihrKYU/74Zdts8a6lWUUZ34gkf1f3CO+wS8h3LRGCjALPTgeqxAWgsbRuN/86qSLp+LbasZa0ffc66RTcqeszlWR/3OkIyaXizWM60ikwWW7FHuSO6ldW43qWmYUhzYHfOs+p5raKc58HnVY2hoHqbOxthiZLXiG0U3c2dUV53IhCzaGR495PXqhRbOQCim/Ydm0lvTnd04RfGDbDVuLmzeziOiu8MZOV0D5ua2V2p7458bA4R60smRCuVTn/sz1lPRq735Kwbk+mpB7fXudWTuNJ7gbJoQtZ13eVJMNZSQNGI4x6702ea1jJnikMj8VyTD8srFNErHbCyEhqNRubk2guR8fFxxsfHAfjVX/1VvvCFL/DII4+symTFS5VLM+Lu0jqflSIi+lmkvwq9Z8+etAEwDEN83/12JJVoay379+9nz549mZUPV560dWZdnM2AgKTGNbB3nksRPYxlLOersv3QQjvOZWhaAzrgjGEwtYSoz9OL3awFpfCUxhqPshdVuxVRw15WRXJYRbm/kpo2B9ooR7nfBgCR3SCrItmOU0tOtDwqfiu1AWiiCq+nvYEqvrWWiuN3aaeS2iu6AeoemcK7BVQYnPxogGrgM+aH+ZoDh+Y8q4HmwDHdxliNVQykj4TWUrWGQnyxkiRyRHGBBmOjnO7kTkVyV6CZw8qhVGSX8C342ks/B2Nd72O1q2k2SZ9Jfcq2k6qSDMdJGhBdr5Hr8/X/Z+/Nw+S4ynPx99TS3bNqZrSN9pFkxbbwIuFFlhGEB+tBwuRezOPLjYmDwQ+xg0EQcBJD8hgbbGwHcIgx4UYkYMAXO+YGgi8Q4iAEJr/EujKxYxZjHFuaRZpV0uzTSy3n/P6orp5e6jvd56gk2aN6eRprqqtOLd1d9dZb7/d+wTJhTjdQHvkoO65O8WbDKSbihDcoXAgwBkz4QIpVps84Eh+3LSPe5Z0pyzDlBb/MlEYkXvoMeaIbSed4JeGOO+7A//7f/xtPPvkkenp6zvTmvKLBBQNfaBF3C2x/GkVCok8TylXo0dFR+L6PVatWlfzQVDfCECE5DpdduXJl5HxUZ0Pfj75AVHdjK0eBZ9Bk1l5wBFoBTNYOdYY9UZSgHkVi6y4jWU8ce8mKKnepIEtwgHnIFj+6apuJECiqn4FiOMWDCLaCn0a75cIsep5bDANM1BI+maJcbocoVyQ97qPVMNCaCnzB89sSRMpFdX50iw1MCpwVow3nFUnqmPpCoNOKvvnK+kCHVdtuHQCYGV28OOUxNJuVnR8FAIebMBkH56LCexsUOQa2h8htIPznJmOwBKslj0bQWTBlVJ5e3eINQI5zeGw+Bs/jJmyDl+wQjhAVpBsICvNkTV5Kx6SY5mEXrReZot1kfs75nHWr2KzIBStZJkTxOxmmqnBhwGKi+FlH52oD0T5uYN5DbTKGJlY8OEXMcb9M8a76HEVwHOajKFEqhjXAMOUH3R/Lb1BcCFCa8UzxnGgzm5iDjsRrRIk+Xc1WXqm488478fDDDycEukHwBahEL7TIvkaRkOjThCgV2jCMEomm2nWHCL3Ohw4dwvr168kTNmXnmJ6aACIFFVqJptolT3g2lkR8c3I8gyYj+kLEmA1ERE5RhFRI3osTr5Z7Z8bmi7IcAbAwjstwkS8n3sV/h6TbLNlLGKb4fGpJGBvoCl5UlCuPhKyBSbk3t7bzY3XnwHDbAi9teTfK8s6Bjp9Gs+WWfMohOUoV49eqURC1fvEQeW5gkSVqSHdQiGrWWB64EJj0DTSbHE6xODD85uf9NCwjjxxHSeku79wps5NUK6l2Ub3lhlF5bIsJL9VqbtBlMXAiO0LA5/MGhbyfQrPpBJ9tUQmvzlnPSYtPg3nLm+OABT7ulpqOmsHfM8IvKd1OqftjUYEPFe+ihzo8VtU3aeUQxK+PF78rBptvvBSiMs6w8lgxBIp4eCYtz+kuFP9tGdEkWhaJdyY80Y00W3ml4M4778TXv/71hEArYGG2/V5Y+9MoEhJ9GlCuQo+NjcF13ZJfjDFGFgOWI2y2wjmXes2ixvJ9H1PTE1gUYbGTqcdEd2oYxB2n7M56zmdojeDrx9xWLE/N1kz3hIEUU+mB9MqFzg3ByZL7ctItRNV4ZfdGpZxuAaDYDCS0mYRxgY6fQpsVRPJZjFbpy5uoVCOMmyuRorINynGgI+WjWi8vlHUOnCfdATXyhcCMsNBsuLWdH63o780sB9pqqkgDFZMhuvNjGh5MVtnunBcV0rwI4vDC1tbh5+xyq9ghs7bzo4qVw2QMzcVmL5YQFV0124zg6UC5muuLwL8fHitfiFLcHMDgcgtNhgfG6CzzguCwCRuFBTavdJeR2yB5hv7cQytOGPkY7qVAoEaXN8exGKuThU0/I2phRmRdyXE/jJlkZK50ShKJdybsHI02WznT+NSnPoW/+Zu/wXe/+11kMplSK/HOzs6ky6EEPoIUmYWEhbY/jSIh0acBlAodgvIxlyMk0eeee6401D9KiT569CgsO/oLLou4Y9T1irJGSDwQjBiMegQ0x1NIGdHexTk/hTarVvF2uQnTjMeTfdadDhgA5iM8qhVxgczBTNlh5cW4wCAreV6dZSLIPrbAIISJjBGkU1hg0rg50ksrgs6B1Z0fgUAxtVllUaUoepSFKC8ODKhtkILBkCsWhZrFbz4r2mColuvTvoXFdqX/P0jjAHzOIlXWHIJmJPPHK7C8ZH0TYB7c4m8hJN2iaJkwEN35sZ6PO0SYjw4WrFOwSgIfRivOco50sctk2ITGLHYyDD3UYU532GVRgLa7yJJnUiw68rF2n4J/h0WnoRXHFWHjntIOI8uD/Uix+ULKvIR4h1YOCMCSdD6c43OR7zVaWHi2NVsRQuCzn/0spqensX379or3nn76aVx22WVnaMte+UiU6IWDhESfYpSr0MePH0ehUKhRkikfczlmZmYAAGvWrJHOV61Eh3F4689rjSwFFBL12CBUH9qCIVG1qTeIRWT+KkFczMf9Fqw0p2um57mFJpNo9RvQGHJdZwpxblHc1piwpkyAl0g3RKWdBEBFjWnYGMcXNpoNf57wISig5GXTQ48raScpK6Sr2C7GAMHQZgbqbTm4EGg2K73iYTRflnMI2LBYWBYaJoQExXhUcSdl5Zj1DTQZ8wcizFNeZHHkhRG5X3kuSl0zS3nYCJrQmMyDx4NvRLhdHreQMf3IRjxAQCrJ7orFb1f4GaSKx8svJgRV20KAIFnGZEYp73nOt5Ex3WKRZxBnaCDoSBncOAXmrXSDqntpTYwhA6NY4BlOLSPeFRYeNl9IWfwc5/s+zndZnC17UkA9RbNZdLKGCZO0gJTjVBQWvtJJNGMMU1NTZ3ozXpUI0okWllTzyowUOPVISPQphu/7Jd/zyy+/jPXr19coFo3YOY4cOVKaV4ZqJXp4eBiGYaC5OY3pCGFXZueg1GMKPhekxZoi5JR6zSWrpsaidsWTEPJJvwmLrWzN9AmvCYvtXPRqiPWcjlOirEgydqIcE0SRlQbdKB1kgdJdwnwBZaHyLCzKm8sEHSnniwADtVIIC00GL3VYlHUvjCoOLEXzMYbmqqhAoOh5tj0YrFIl9SCQ8wVSRrBv5aSbFf8XFTc36zPSx11OKktNaBBkhzvCrE3SMESpcU1558fAY14sWi1TlIMbGAMZg/a658U8ka8GKx77UOluMgL7jSdESdGvRoH7EGAle0nWt5ExnaL6HtwMBR1HA1WZFa07KsQ7tJcII+IYIfBQ+xXzR49NKdRps7GGJ6ei2cqrwc6RQA+JEr1wkJDoUwghBDwvUEBPnDiBfD4fqSTT2c4BJiYmSkp0vSi8cmtIeRwe1fZbls5hkCSasmbQ+0ARcjpRQ2O7iIgdWfQOmVoBG0AtifZEGO9Vi2kvgw472oJyOnCm9XQd4k0twwF4rJjRDY5CmZGWC8AIG2MUv3Kh0m0zBo+n0GQGTaDDTGcfAiZHsUHOPOmTFQdWZyyX52FzI7pVe0FwLLGLFpKquLkpz4Zg8zakwBIT+Mwpu8uUx7CI+LmHXQXLOz8CIdmvLaAEAitEhhmlJjQcQJ6bSBleseNfZROawB8vO0aS7p2obELTUvRxRzWhQfHGI895MZ89sOKEedjh8cyXIgNZ6WZSRrxneAWFJkUDyivdiJUDOLubrSRQR9JsZeEgIdGnENUqdE9PTyQBrqdEh50N+/r66to+yq0ho6Oj8DwPK1euxPHZaDuDVImm1GOSRNMg1WOK+GpsF2XiltlMSHJPKuQGQBQ8FmADqCXRJ7wWLLWj/ZaeMJFir7wHYTqE/HQtEzkOCywWPkSpG2X5CqobyRhF0m0wwIaBAs8EUYGoJN4FjpJKGkKWOFGesVweNwcG+FZt8xUgaLDSVFSUwyY0YdzcjJ+GYRRKSne4zQaibSEAMMeB1ogCSiD4XVWT7mZDQAgDnNVGIwLArM+RMgz4ZU1o5jwbzZYTZGXzykQVo+gzpzzUBSFgRxw/izHYzKjwSod52K4QsKsiA8MumflSZGB4ZmLFYyUwLeZ/q2msxLjbieXWeQBzwFGAw3PI82zpaUM10qyx4ri4PdH5fD5RohcwBBZe22/ZdXYhIyHRpwhCCPT29qK9vR2e5yGbzWLt2rWR88pI9NTUFCYmJnDhhReir6+voQLE8qYsYRwepUTLPNGMoMVCyIl85HYp0iW5vzpOrzZFyOMj97L1U764Y24bulMzNdNdwZAiiD+9//GCspNojRXfUEoIu1FyATjMB4w5jFd9rQPrTAGi6FIK4wIDxduAAQM2E7CYARMBCaR+TQXB0UZYOcJ849A7XRHNZ/mRBXNTXuD9Lm9CE0ZS5rgJFNuIh6TbKm43RWxzEg81WEQTmpRPEu/Qn2yxyiY0OT+FZtOFJ3gxMrCyCU1d4l31nhXe7LDo/GpPCOTK7oafn3Aw4mTw3OQ4ggOcKb468drOFRjOZ9CRsrEoZaDFBposgXbWGX1MqpAo0QlUkCjRCwdn516fBvi+j5GREczMzEhVaECeznH48GGsXr0a6XS6oRSPkJCfOHECuVxuvohRaCjRpLIbvQ1UrjQgs4ZEQ5b0oTqWlqpNbICs4JE+XvT6TUXiXRB0kdOU3xI53eX0MqokVprAQi2juA7dZWT7cjLbxlhAul0IFMAxK3xMCxeTooBj3MGwn8dRP48+L4cBL48XnDn8l5PFITeLPjeHI14BxzwXAw5wwncxxX3McR8FweGL6BbkQFBI12JGb6ErAkXZLhZgNhsGWg0TrYaJ9mITmhbDRJNhIF2MKpzwjMC+ITiynGOW+5jhPsY9wOFBS/Ec5yWrBxB83jLiHaVcmyyIwmsyDLQYBloNA22GiWW2jxbG0FbcrlSxiNEVgYI/yzlyxf/OcB+z3Me4xzDH/WLHQ1F6sheCS4j3TNVTO1GcPwpCGBjOuXhhKov/d2wW+4dm8f2BOfxqvDGdKU5PtOu68DyvLon+4he/iJ6eHmQyGWzbtg1PP/20dP5/+Id/wHnnnYdMJoMLL7wQP/jBDyreF0LgjjvuwIoVK9DU1ISdO3fipZdeOun9SVCLsGPhQnudjUhI9ClA6IU2TRMzMzOYnZ3FunXryPmpdI6ZmRkcO3YM69evl85XjlCJPnz4MNatW1ci7qQnmqIXgn40KQSlakdDViQYp3pM+mtlnmiKkBOLyMbSIWpxrp/6Zkxy2tfpEJ+zy9UfTZ9pT/YZX3+x6DMg3QIuBPLgmBMepoSHLJsrke4jfh69Xg7/5WbR6+bwopPDITeHPjePo14Bw56DSe7iqMOKpJuXSDcANBORfHnOkSbO6sFTjErS3WaY6LKAZnOedIfklguBcY+VEkxmi8R7lvs45phweGClKCfdIagc6ijibbMgCs9kqCDdrYaJLivIHm8pblcYSTjrM+SKZDtbzMMOXhxznCPPOaarzlMCrHT8qkH9qlqs+skcokju47Jz5HJBLYbMzvHNb34Tt956K+688048++yzuPjii7Fr1y6MjY1Fzv/UU0/hne98J9773vfiP//zP3HNNdfgmmuuwa9+9avSPJ/5zGfw4IMPYu/evTh48CBaWlqwa9cu5PNnrs4jQYJXOhI7xylA6IU2TRPHjh2TqtAAbec4fPgwVq1ahUwmIEGN5knn83lMTU1hy5YtZe9EK9H05cMEHVqjrgTTtgm1gkMAMFULHqWFhZQSHT1ZpmrTlhWZEq1mjdGypkhAkfhxvxUrzdr4qjw30RRTFrcMOqpynJCloMQOFsQFuij29KxILpnFbPXhFqhojBOmZliMQQhgjrPKjO7ijrQSxHvWj/ZQG4xBgCETobC2pvya1JCwBXyBcxiMoSAqXcqOb8E0/Mi25gAdh1fd8txkDK1hLB+nCxtnvWp/DlBwozuqUr+cFrOxRisAYlOiQxItU6I/97nP4aabbsKNN94IANi7dy/+6Z/+CQ899BA+9rGP1cz/+c9/Hrt378af/umfAgDuvvtu7Nu3D3/913+NvXv3QgiBBx54ALfffjve9ra3AQAefvhhLF++HI8//jiuu+66WPYtQQB/Abb9Xmj70ygSEh0zyhM5PM9DoVCQqtBANDmem5vD6OgoduzYUZrWiBJtmiZmZ2exZs0apFLz2aeUekzbOSSqiqJtgQtGLiPrQBY9Ft1JkYI8C5s4nlpKtNoNgWxfqLFOl52EGsuT3Fyd8FqxzK7tPjnjp7HIKpDbcDpw2ggxtf4YlxEAmOFXZHSH/w2It1MTF2iAwec2mrlfavkeFlDmuBH4pkPvdNnBajKivwfTHkN71dUjbAFfKCrKNTA4CkU1HJgn3XluAPBgsKALZLDvQSqIECZ8CGSEiIzRq/ZJh8hxXtPEW4BhNh8dWzk9U1t/AACGxzE7O4tUKgXbtiO34VSQaMuyYNvRKrjjOHjmmWfwZ3/2Z/PbaRjYuXMnDhw4ELnMgQMHcOutt1ZM27VrFx5//HEAQG9vL0ZGRrBz587S+4sWLcK2bdtw4MCBhETHjIVof1ho+9MoEhIdM0IVmjGG2dlZtLe3kyfDEFHkuLe3F93d3RVqRCNKtOM4cBwHPT09Ve/Imo1EbhW5DtVLhVy9VYMvU7XJRA16PEqJJVP0ZPuimPQh2xctawhZCBo9f0DiVW9i1Pc/8HFHk+g5nkabWfvelJdBZ0xxgXGrylJyK3nvdCwTCRYQVmY6QWhjVXJJgRuYLv/uiCCezmAMnNtoEn5J0baKiveUn0LGdGtIN1AsjIzAnA+0mJWKsgkgZQrMcJCKcp7P2zjCtuZzvo2U6cAA4Aq/RLrDlJDpiOJnAcDKpIBcLZG2UnZUoiWyE1N45plnSudd27Zh23aJVKdSqRJ5Pn78OFKpVOk9inTXQ72M6OPHj8P3fSxfvrxi+vLly/Gb3/wmcpmRkZHI+cM23eF/ZfMkiA8chlQQeTVioe1Po0hIdIwoV6EnJydRKBSwePHiusuZpolCYZ5I5HI5DA0N4corr6yZr54SHZ7IQwvI/LYRSjTZuUPm74vPAqGqRAuJqk0uo5XOET1Zy85BLOILA7ZivJ2WNYX4jHVIvF46CQ2DiAvMiRQ6I+ICZZjzU2iPaAcvQ5yEWGc9p2sZ2f7UTGdBzJ4nBJhRwGwV6QaC1uBzXqD1hhndVjG9xASDxVlJ8Q5TNKY8G82GF3nOsahCWo6SnaS62cssR0WOdzmqiwrnxyMKrK3occ7t2YDf7rkUvu/DdV04jlPz39B+ceTIkdL0ctJdTrip/6ZSKZimCcMwkmSOswC+YPAXmHK70PanUSQkOkaUq9CHDh1CR0dHQ8tVK8y9vb1YtmwZWltbpfNVI5vNYmpqCi0ttSkNdGEhBZpEkxdqqkZRQ72kuL2cxBHrl9kZlOPidJI+1MciOzxq7AslRctIvI6dRGublW88wg6HtZgTGbSjlkTnuI1ms/rhfoA8t9BMtISnsNAuFbKbn0aItyiSbh9iXvUXqPnez3AP054LVlS6Q1LsFVu+zwlWo3jPcUYWSlJWNC4E5iKVaIa8H/1Zu4TI0GIFljjTNGGaZo04AQCzs7OYmJjApZdeWprm+34k4XZdF7lcDtPT0xXTOed417veBcuykMlkMDk5iXe+851YunQpli1bVvrvb//2b2PJkiUwTROjo6MV2zE6Ooru7u7I/eju7pbOH/53dHQUK1asqJinsrYmQRxI7BwLBwmJjgnlKnSY7dzT04O5uegmG+UoV5gLhQKOHj2KK664QjpfFHp7e9HR0QHXjSIMBFEgOQxJb9R9zBrEk/LkBiROreCR2loZISOJheREQRJyiRJNQcffrOzvlhxLncxr0s4iJf5qhZWeMJSXkRW8zPAmNJu1fliZj9sTBlIR26CjUL+Sl5GB+k43QrwFC1p4h228ffhwIkg3AOR8C8e4V1K0A8XbQMFPodXy4fq8SvEGZkV02KYQQNaPvplyefTvoNlMRU4vR1RGtGmaaGpqarhhiu/7+PGPf4yRkRHs378fjz32GLZu3YqxsTG89NJL+Pd///dSUtOWLVtwySWXYP/+/bjmmmtK27B//37s2bMncvzt27dj//79+PCHP1yatm/fPmzfvh0AsH79enR3d2P//v0l0jw9PY2DBw/illtuaWgfEjQOsQDbfsu6DC9kJCQ6JoQNTkIVeu3atUilUqV23TKUp3P09fVh8eLFaG9vl85XjUKhgMHBQWzevBmHDh2qeZ+yc3iksi1RomnDMDFZQz0loBUxR3mSNQiZ3M4R31g61gjVYyl7/EY+CZCsgkwakSxjKR8zA1SYH3XMZPtJEX8XFigf9yzPoMvI1kyf9prQaUcXrr2SISPE5DIatJy0CAkm/e5Wk24IH5y5KER8DYQIGxjVXtANGPCJRlGUQh0q0TLEkRFtmibOPfdcnHvuuZiamsL/9//9f7jtttvI+W+99Va8+93vxqWXXorLL78cDzzwAObm5kppHTfccANWrVqF++67DwDwR3/0R/jt3/5t/OVf/iXe+ta34rHHHsN//Md/4G//9m8BBLa+D3/4w/jUpz6FTZs2Yf369fj4xz+OlStXloh6gvjgg5GNtl6tWGj70ygSEh0DhBAl9Xd6ehrj4+O44IILcOzYsbqFgMC8TcNxHAwMDOCyyy4j56OU6JB8t7a2EvNEXyTy+TysiBQnSfke/VPRsHOoE3Iap6MJi1bmNLV+DX+zTmEhtVkyJUTHmkEq0RrWDGotnky9J6brWFB0PmdHcjqlCyib0EUQ74Y9zCe9jA4hVv9+yi1SsjLKWviCRX4OjNE3zTbVkRE0idZVok8GuVyurif6d3/3d3Hs2DHccccdGBkZwZYtW/DEE0+UCgMHBgYqtunKK6/Eo48+ittvvx1//ud/jk2bNuHxxx/HBRdcUJrntttuw9zcHG6++WZMTk5ix44deOKJJyItLAlODlwsPPuDTGBZyDg79feYUa1Chx0GZcpxOUKbRn9/Pzo6OkgvNTWe67oYGBjAhg0byHkoT7TjRD/eZIwmBOrFaDSUC/tkhJwYyiTyZ2UkkvYE06ANMNHQIaTUgZHG5ZF2Dho6dg7VzGupnYUktxJCTFqA1J8eSBV/nWWIJx4F0Mk9BRH9G5z21EmNDrmVEm+N6z9pUdJ4uiT7TCnYBn1Oy/nRBamNNFvhnMfWaAWon84RYs+ePejv70ehUMDBgwexbdu20ntPPvkkvva1r1XM/453vAMvvvgiCoUCfvWrX+Hqq6+ueJ8xhrvuugsjIyPI5/P40Y9+hN/6rd+KZZ8SVIIX7RwL7aUKla6bX/va18CKDZfCV22AwunvupmQ6JNEuRd6ZmYGx48fr+gw2CiJ9jwP/f392LBhAzkfpUQPDAygvb0dnZ2dtFpNtP1Op6OVFibLI1b0C2ulY+gU4xFExSdukeVKNLEvOkWSJCGPz84hf5RGjSUjpDpEUe2z9KTfsWjopKPo+Nh1fNxx3mDI1pMDrY5Sx3TOp5uG6KSQqN5IB+/FqF5LPlNqPItIHDLA4BI2j5aox3RViFuJTtI5Fj442IJ8qUC16yYAtLe3Y3h4uPTq7++veP9MdN1MSPRJgnMOznmFCh3eHTVKog3DQKFQQGtrK7q6usj5osbzfR99fX0l8h2SaFH1TJNSoqlHdYJQbwFaUdIphqPHip5fqx24RldEOq8v+rhI/cXkGjRSK4j1yFXdaMTdfdEiSB/tr9Z5EqCuKsuWoVVlnWVoUMeGsh4AgK1xI0N5zGc5TQap45PnkqdRGr8pnWXIAmPpo/Do96gnUs0mrTbL3gsRhye6HPl8PiHRCxxhxN1Ce6mgvOvm5s2bsXfvXjQ3N+Ohhx4il2GMobu7u/QqzzWv7rp50UUX4eGHH8bQ0FCpqdCpQEKiTwLlKvTs7CyOHTtWoSTLPMzV8DwPGzdulIbzR4135MgRNDU1YcmSJQBQeqxYPZ/P1sEwNsBgi1FeNEg9hjQkOdGqX5o4W1VLSZRiXJ1O90HK9+UR5FoGLX+1NLWEWETD90uReOrT8jT8cDoFfzrHTE7s1BViihBT4EK96NOTXZCo76BgyjYL2bZNcXUi53LZeSO+YkSdGiaDINFNEt9zI4WFp0KJbjTVI8GrE2fadnEq7RzT09MVr/IeGCHCrpvlHTLrdd0EAp61bt06rFmzBm9729vw/PPPl96r13XzVCEpLDwJVKvQq1atqlB2G1Wijx8/DgAlIkyhejzOOfr6+nDeeeeVyHd4Mq/26f3TVBMm3SUAlgAQaOImOu001rasBEQXmg2gyfCQZg5s5OGyNAqFCaTTeQCVrZzVG6TQ76leWHXsHIahrjYS3Y5JyOwUWk1IFIsEdQipFrmUJJ2QSnSsdpZ4VWVVhVhKiElyGx2JB9AqvSsMWFSGd8zLpFUjAyXHYJy3YKU5rbQNOtnrspsp6ntNkeg0ISSYjCEt8VGXtuUMFBYmeHWDYwHmRBd/x2vWrKmYfuedd+ITn/hExTSdrpvnnnsuHnroIVx00UWYmprC/fffjyuvvBLPP/88Vq9efca6biYkWhPlKvTc3BzGxsbw+te/vmKeRkg05xyDg4MAJN0Di6hWooeGhmAYRsWXJiTOvu9XtBsXFZ4/hpzBkfNzsFwbA7nxmnUtS3VjzCkAOYAJjhTzkDY8pJmLNPOQMTw0MR8pw0GGuWgyXDjChBdBpnTsHBR0CLlW4xZFa4pWwZuGV1er4FKLkKqt35dGz0VDKzVD6lVWv1kgvcrEanQIsc6x8YUJOsNbZ5noo+AJE2nFbXOFCVO50yb9+ZzwWtFsTka+RyV3yL67FAzi+5YiiHKzmWqobfepKCysJ6gkeHVDaHiIX+kIf5NHjhypiOhNp+vXFTSC7du3l3LNgSBx5vzzz8eXvvQl3H333bGsQwcJidZEuQp9+PBhrFy5suYRXJi6ESZ3RGFwcBCWZcFxHOl84XghKRdCoLe3Fxs2bKhYJqxarbZzcEqlo7hS2ZiCGSgghQJPlZaJ2kxfMJiMw4JAijlIMw9pw4cpPBxxu9BhWYCYRoa5yBgB8U4pdsyLM3NaR9WmKJkWiZVG3MWZXx1f8RxtjYmvEBVQjwsE1HOqtSL2YCClmFMtj+WjItziXiYaskY0MuKtSvBlirfsyRb1PZz0mtFGtHjvy66FI/JoNQtotQpoMQtBcg2xcSki+q65ASsHcGqU6MTOsbCxkDsWtre3R/a5KIdO181q2LaNrVu34uWXXwZw5rpuJiRaA+UqdDabxcjICHbs2FEzX7kqbFm1h5pzjsOHD2PDhg14/vnnyflClLf9Hh0dhe/7WLlypXS+so2m9iZyKpVOUR8MHhg8kUFWAOBFcu0LBB2ZKxUWIQQs+IGVxAhU7jRzYYLjeKENrXYeGcNDxnDQxKLj+EKo+lv1ihSj59dqR06QHmlcnVbShgYhjbFxi070nFbBH/X5S1Rl5e6HOkRVhxBreP9lhJhcRvYEJUaCL1O86c+HwdIoVj5QWAG3LB5QCAFTcMwUotVdi7B5tDSQEQ3EX1iY2DkSLHSkUinlrpvV8H0fv/zlL0tRjWeq62ZCojXgOA5mZ2fR0tKCw4cPY8WKFZEnParIL8Tw8DAYY1ixYkVDJLpc2T58+DB6enoiT95R7cEpJZqCPomuhRCIvFAGijaDDwuzwsKsP+8n98MuZlXJfD7naDZqrSUZ5hb/9tFszltMLMa1lFDlToo6vk5ifqqRRDCW+vpVfecy8qKXmhHfUwVqT2R2AVqFNaHa/VAvUUQn21pGbtVTSKhltIi3hg1Hp0mOK0xYLDqaU2bSCZTysvEZA2cmXOLzNog71kaKCoH47RxJOsfCh26u8isZqvuj2nXzrrvuwhVXXIFzzjkHk5OT+OxnP4v+/n78wR/8AYAz13UzIdGKEEJgbGwML730ErZu3Yrh4WG87nWvi5w3tERENj8pEuGwQQpAk+0QocJ84sQJ5HI5rF69mpyveiyhHMv1ynzUJGCiAKNkLak7t+Cw4CLNOJqtwGKSYS7ShgchgKyXQqudR5PhIsPckgJMFilShFCWqqJI4j1hwCYel1PQsUZQy/iyAjViHTr+Zi2vMrXNkPXYjIZOLKGOQqyTgiJvr3561qPjSz9txFtSKEndnFG7ahLb1ki8HRCct1Opxgh3I0jSORY+FrKdo1Godt2cmJjATTfdhJGREXR2duKSSy7BU089hc2bN5fmORNdNxMSrYjQB+37Pg4fPozu7m60tLREzssYI4sLy+0YsvnKESrMhw8fxrp160jVOmosTjQToO0cNKgLmMUyEIhuYXyqEe3TZvCZCUdYKEBg2qtUd0pqdymBR8CGhzTzYXIfLbaDNHNLSneGuchxG5N+Bk3MRdpojOjSnk+qSJH2nGqpuuRj9NOTmkE3btGwZkjsAjahWup4iHUUYpKoah0b9UY48qJLahnJ/lDL6JB1DWVdxzbiSCL2qrPz58eKhooSndg5EqhApznJKx06+7Nnzx7SvvHkk09W/P1Xf/VX+Ku/+ivpeGHXzbvuukt5W3SRkGgFhF5owzDgeR6GhoZw5ZVXSpeJIrRCCBw6dAjr168vnXwjfcxVMAwDruuiUChg69at0vlq7BwkiSZAMGWZX3e8AHRGFOK6fgssY7ZmOuHyOG2otZkwuLDhChsCwJRXe3Pk+gZsNziW5aklFjw0MQ9NpltSukNLCfcZmk23NrWEuKhLFdIYm1zIItno9UdPl+Y3k0o8sVkyawaVgKHVbEYjHUSq+MfX7EW2DBnLp3VTEu+2UakdsuNGWYd0rCYu0SodAHziC0f9dhotLDwVnuhEiV7YSJTohYOERCsgTOSwbRuu62L58uVobW2VLhNFoo8dO4ZCoVBhx4jyMUeN5Xkeenp6KuLrqhFFyH3uRfuSKSVajXdJMedzNEVsrscZUmb0iDnHRmu6tvqec6Ye4qwIKn0EqCSx5aklpaSHCA7hcwYzx2EKPl88aXjwHYYTaEWmOC1Qt104volWqxB5s0KTO3p/KDIUKyGmV68c1+eDwYrRmqFT2Eipo3F3MlQtbAToroSy+EetZbTIukYRKbEe2Y0RpXg7glaiOVGcQR2CRgsLEyU6gSoSEr1wkJDoBhGq0OX/3bhxY93lqkl0uQpdXozSiJ0jl8tBCIF169bVXWc5IZ+amgpyolW+4wTDoooEAYltgZwcnQEL0N7TaTeDJVa2ZrrHGWyCkMu2WRW09ZneF1b8f5+ZyAqzlFqS9ywccxbVzO96Buy8X7KWhMQ7JXzYhocxr1CMCZxPLYkz+u90NUGh4Ek92fEVNkpvPDRabtNNWNRVZRn0lok+nvJGNNQykvUQNiS99agfN1dCoj3BUd6tNQT1lO5M2Tmy2WxCohc4EhK9cJCQ6AYRqtCGYZSao1Be6HJUWyvGx8eRzWZruvo0QqLD9dYLL69Wont7ewHi6SClRHtutL9URnxVf0KyYjhyMFK9pIvx5tw0FqXzNdNzTgptmdqWpLFDI2Ku3FpSnlrCvWg7jecDLaZTk1picY4Wu1CyljSUWqLxGD3OzOlAgTwdhY3qSqcWGZR8zUmFmJg/sFOppq0AFvl7om8wKJuFDLYO8SZtMLJlotcjI9EujybRHkGimxWU6LjTORI7x8JGQqIXDhIS3QDK1WfHcTA8PAygMQWimhwfOnQosigwysdcjmw2W2oPXu+kXa5EZ7NZjI2NAT3kzkVOLhQKkd+OgPgqXlyl6q3iO9SqNXzEBWGiLWK6K7GZOK6JplTtDYZcoac2jHpDHUFqSaomtYQLwKjZXAFDCNhw0GyGcYFeUe3mYIaHHLdLDXEqUksUbQEyfzMFrUg4Da+yzMqgpUQrK+6yKMFoSJuWkHnLpnLaik47cClZl4Ai3rIfiE1smyPxRLvCB1DrKyNJdKJEJzhFCB5GLizSeWpNlq9cJCS6AZSr0L29vViyZAnGxsbgeZ401xmoJNETExOYmpqKLAqsp0T39vZi2bJlGBkZge/7UhJdTsh7e3uxfPlyumMhMYbnedEkmlyrpIU3MVn2OJ0mnnTBY1wISFz0Z1EQFpqqw6sBzBQy6GyKTiZpoHNw1QL13qzdWVLVjyT3DJwxZEUTClzUSH61nfwEUvCQYsErU1S7w9QSW3D4DJGpJTJ/M61Ea1gzpHYSQlWWdQelCCTxPdPqfiixrVCQt+mmk0uo77PeeuhlVMm6L7nJkt3kUMRbpkQ7PHoZhzjvNmrniLOwUAiReKLPAiRK9MJBQqLrQAgB3/chhIDrujh69Cguv/xyHDt2rG4hIFBJjg8dOoS1a9dGFgXK0jkKhQIGBwdxxRVXYGRkpKECRN/3K5bDCCnhRk5NpaItI7LH2SQof7VMiSYJuU7EmiLDlpF7qhhPI80k71nI2LWE3OcMtvLTYdkxVr3DqF6GwYENR9jgHDAivn4eZ7CKBZ9haoklOJqtAjLFQsqw3bvFOVrtAhxhFolkdWMg9WgzacqEhqpMKZ0UPGGSyRSyZWjbinpihdweEw2yK2HM7cApuJLjRv3WhABsIl5Sh0QXeLR1TaWwMC47Rz4f2M5U7Rzj4+P44Ac/iO9973swDAPXXnstPv/5z5OF7+Pj47jzzjvxwx/+EAMDA1i6dCmuueYa3H333Vi0aL5Og0V8CH//93+P6667Tmn7ElQiIdELBwmJrgPOeUlp6OvrQ1dXFxYtWtSQhxmYJ7RTU1OYmJjAhRdeSM5HkeO+vj4sXrwY7e3tpYxqGUIlur+/H11dXWhtawFGouelPNFNmUyxTXfV/FL1mFKU1KM+lP3VivPLID8ZqKlmXNJ9kCIqOT+FjB2tanPOYERYTSglWsd+c7LWlFJqCQNmvEz0TUQhzOmuTC1JMQ8289BiuBWpJTZ8tFiFWGPk6Ig/ic2CtEwYSKsSYg3FXd4gRq1IV76eeNuB0w1VdIi3gRRp55DlREdPp0h0s9V4s5W4lOhsNiiaVlWir7/+egwPD2Pfvn1wXRc33ngjbr75Zjz66KOR8w8NDWFoaAj3338/Nm/ejP7+frzvfe/D0NAQvvWtb1XM+9WvfhW7d+8u/d3R0aG2UwlqkJDohYOERNdBqEJ7noeBgQFcdtllABorBATmCe3hw4exevVqsiiQGs91XQwMDODSSy8tzddIZ0PXdTEyMoLXvva1JFEGaBJtkMqKejEgqShJh1IkfhqJEtQiUlWbXkkkuITE0oV9EhDrmfNSSNu1dz0+N2CZ6mkOpw9VqSWQWyO4EMiU2UoMP1C1GQSm/KaS2p2Gh2bTQdrw6cJGCSE+HR0b424HTsfLxdzaW2MZnYY31DKuMJEiboxkOdEUsl6EWoAzE3EXKtEqHdZeeOEFPPHEE/jZz35Wuk584QtfwNVXX437778fK1eurFnmggsuwLe//e3S3xs3bsQ999yD3//936+xKXZ0dKC7u1t3lxJEICHRCwcJia6D8HFWX18fOjs7S3fhKkp0LpfDsWPH8IY3vEE6X9R4AwMDaG9vR2dnJ4DGmrKYpomJiQm0tLSgs7MTnnAlcxMET81NESyjtgppOoc8Si5qMI2x1AVyutkJpURrWFak61e8uXC5hXSEhxsAsq6NtlQtgcg7Nloz0cSC3q44IVPP560ls8WfwZhbaSepmFtwpIo+7TRzSwS8yXAhEBDm8o6UtsHrpINQiqr6908vlk+9858891tnGXWVnCL4cbcDl9k5qG9UnlCie198CX7TMaRSKdi2jVQqVfFv27ZhWVasnuhsNotMJqM03oEDB9DR0VEi0ACwc+dOGIaBgwcP4u1vf3tD40xNTaG9vb2mzucDH/gA/uAP/gAbNmzA+973Ptx4442RNo8EjUMIJk+nehVioe1Po0hIdANwXRf9/f0VJykVEn3s2DGsXLlSqi5EpXP4vo++vj5cfPHFFePVU6IZY5iZmcHFF18MxliQEU2AtFpoqLRxqsfkJY8knvS6qYsxuWaNR+b0DYTOjQINk2g0o3ifIF1/XlhojfDyyPzdBddCc6r2Zk3HZqNlJyHAYaCANApRPu4a24aAKTgs5qDZ8EupJabP0ZbKI808+ILBZj4yVakl8nbg6s1EaCWaBt3aW8cvLovyU18P3do7XuLtcNklrXZdTYaFHEGie1asQpuwSl1iZ2dn4TgOHMeB67oV5/+f//znSKfTkWS7/N+maUoJqE5R4cjICJYtW1YxzbIsdHV1YWSE8PFV4fjx47j77rtx8803V0y/66678KY3vQnNzc344Q9/iPe///2YnZ3Fhz70IaVtTFCJpO33wkFCouuAMYaBgQF0dHSU1GCgcRLt+z6y2WwFAY+CaZpBrFwZjhw5gqamJixevLg0rRElenZ2Foyx0olV1vJbRj6JBUgo/4QksrZq0oc8czrGGwXqLamdgxpLrUhSRmIpyD5d1XbcPuHHBoAct9GMWhI956TQHtF5EgC4z2BaMbnZdepdI6b4zIQjmgLSXf6zKcaMBz7ucJvD1BIfFvPQbLil1BJb+GgxC8gYHnwwFLhZkVoSLK3u49bJ45YdYZ2MZnI9Gk1ldIi37IZFZudYby3FqqZl8A0fLnzkefB9HSpMRfqi169YLY25830fuVwOTz/9NNavXw/f9+G6LhzHQTabrSDcjuNACAHGWKSi/fjjj6O5uRkzMzMwTRMDAwN48MEH8Zd/+Zfk+oHAynGymJ6exlvf+lZs3rwZn/jEJyre+/jHP17699atWzE3N4fPfvazCYk+SSR2joWDhETXQehJfu1rX1sxvVESPTk5iUwmU1ddqCbHnHP09fXhvPPOq1Au6inRQgiMj4+jqamptJyQXhIVVVoZV1UkmHF6j7XGIqBTPEmTe9lY1AZET5aRaLqoUyMBhSTx6v5uGeFxhAk74rs5W0ijo6m2OY4OJKJ2DJi3lvicYZLIWQw/NyY4LPhoMgOybYJjwO1ChrmwuI9Wu1Cyluh0hqRbe8e9DNVURp1E69wUyC7WrkSJfunoDEaPV76/srUVs7MZpG0THc02WptsNKUtpFMGMqa8sNA0TaRSAcleunSp1IIRpjxVE+vw38888wyGh4cxPDyM8fFxrF+/HpxzNDc3o6urC4sXL8Y999xT0yV3w4YN6O7uDnoBlMHzPIyPj9f1Ms/MzGD37t1oa2vDd77zncjkqHJs27YNd999NwqFQt2mXwkSnA1ISHQD2LRpE7q6uiqmNdqme3p6uqFq5mpyPDQ0BNM0sXz58or56inRY2Nj4JxXnAxlJJpWotVj6VRNxjoRdzqEiCaL5ALkW6pxeVT0ndZYwgClEdK+WxqnY/2ymwjqhsAjiLfsJiJbSKE9ovukjnovA32zgrpfTsEMuDDg8uC36XMG0y8br0zIF0LAQpBaEhZRZpgLJgQm/GakWaB2t1qFkrUkznbg8mVibDses3otS+eIQrpYQF1wfYxO+RidCm7eWmwbRgN+q/BcXM8jzBiDZVmwLCtSUHnssccAAP/8z/+Me+65B88++yzGx8cxNjaGY8eOYWxsDNu3b6+5DgHA9u3bMTk5iWeeeQaXXHIJAODHP/4xOOfYtm0buU3T09PYtWsX0uk0vvvd7zZUzPjcc8+hs7MzIdAnicQTvXCQkOg6SKVSNS26gcZIdG9vbymWrh7KxxNCoLe3F+vXr69ZVqZECyFw+PBhLF26FLncfESa1M6hGj8nU1aVlWjJWDH6mCnbAukjjjN6T8NfTTaU0bqBUT8utBKu44eX3SipkTFZXKAb0c4ZCOIC24xoOwnl44ZgtAVIAzp+9ZrUkuKh8gWD6UVFHAqkmYsU4zCFjxbLKVlLhBBwhBXEBZpOqSGOTodBaXMUyXJU7rbsuku3EK+jRBOCcNRv0baivzctKbVkjrgK7UJPtGmaWLp0KZYuXVp3mfPPPx+7d+/GTTfdhL1798J1XezZswfXXXddKZljcHAQV111FR5++GFcfvnlmJ6expvf/GZks1l84xvfwPT0NKanpwEEqrppmvje976H0dFRXHHFFchkMti3bx/uvfde/Mmf/Eks+3o2I7FzLBwkJLpBhH62EPVIdKFQwNGjR3HOOedgdHS07vjl442OjsL3/choIpkSPTExgbm5Oaxbtw59fX3z266jRJ+GwkItQk4NJSE9qkq0lEQr+qu19lHH903ZKSSLqCrROkWKcm+t2vp9Iet+qObvBmjFe9LJYHGGyuk2YZjq6q0KhJAo++RSDA5ScIozTHktpXcqfdzFuQWHzVxkiqklFhdosQvIMBdpwwsa/ngcKeGhxXJKqrC0OQqxZa5gsDWeLJHEW7KMqhJtExaMljq2hhBxNloBAhKt2mgFAB555BHs2bMHV111VanZyoMPPlh633VdvPjii6Uc6meffRYHDx4EAJxzzjkVY/X29qKnpwe2beOLX/wiPvKRj0AIgXPOOQef+9zncNNNN53EHiYAEiV6ISEh0Q2gmkAD9Ul02CClra0NQ0NDddcRpnOEanJPT0+kx06mRPf29pY6IpZvG6k2A/CJynQSGiot+dOSMGU6BUNDcVX1EcssGMoe8vhuOnSKFGWroEg0tRbONToJ6ijh1Pp17CwaCRgyaucj+qQ5XWhCV1NWadviKYYMIHOTRO2lYAbyIg2n/HCWCfa+YDAL8wWUYUOc0FqSEj6aTKeiIU5eWMhyuyK1BAiIt83UzjMy4i1fzgST3rpVwiRIdLMCiY4r3g4IIu50Wn53dXWRjVUAoKenp+I68MY3vlF6XQCA3bt3VzRZSRAfxAJUohMSnUAJpmnCdaPzlx3HKTVmCTseNjKe7/s4ceIEcrkcVq9eLZ2vGjMzMzhx4gQuuOACzM3NVRBtLrmouK6rVHknVyPjU3zjSqGQqXrKg0Hdqy3fRzXPjJb9hSSXsmOsvn5qX2TLUHF9Okkn5DbrFIlKQBa7EZvmc8Akfl8z+Qw6m2oVb1/DZiHDyQ81by2ZLW/7XnUamle8w9SSgHBbCJJLArU7X2qI02S45GfqSYg3tT+eMMBhSJJNamGx6A+nNdUYiY4zIxoImq3okOgEry4IyM9Nr0YssN1pGAmJrgPGWKTfzTTNUnepavT396OjowMdHR2Ympqqm+sMzNs0Dh06hJ6enprA++r5qnH48GGsWrUK6XQauVyuYp2ynGjP96JJNPEL17NzqBEseQoFvfbIsQDCLavzyDzedAxlO4VWXF40pCSaLBJUV5Wp9cvIJQWd5iTS1BYd4k8q/tHr8QVN6nziC1jwbVhG9A36HFFAKYsfpKBz0WtsmcqGOBUdKCOItzXnI8W8Yi530BDHhodm04VVKp4MCiubDIf8rTnClG9f1JvE1+PVpkQneHWBg4EtsFzlJCc6gRIoRdjzPPT392Pr1q0AGst1DsfzPA/T09M1cXrV81WT8mw2i5GREbz+9a+P3DaZJ9okmIzOkxmKlMYoBNPNVmQ+YlI9VrUTnJ6kB1KJ1UgzoYsEaWsERQl00lRkcXkU5aFVfdn6iWXIJWSEOHqyjnovtaAQI8k+Z59QTnOeDdtULaCUbMRphGAGCkihwOeL+XwBmKEQXbFbAoxzpFlgJ0kXyXU6VK3lJ48GpgR4tXmiE7y6kHiiFw4SEq0JihwPDAygtbW1FEWk0tnQ87xSQYdsvY5TebHs6+vD8uXLSwpGdfdDaTc/y4i+xqtbbDUejxMxelLiqzSUNNtYdbtk6RB6qnZ81hBVy4rUGqGh0NL7Ej3dFwZsxdbaOqqyjCUaiukgvsbnL+vIR9146LTcluVxUwWU004GnZnop2meb8C0oj4fnd9TnGDwmAXBTOR5quLc5Qv1MxD1m1JN54gLOh0LE7z6wAUDW2Ckc6F5vBtFfL/+swyWZdWQ47BN98aNG0sWENM0IYSoa+nI5/MQQqCnp0c6X7US7TgOBgcHsX79+pp5wsIRWcSdctGTRgGfanIF0bNCjhhJP3VhlW2XHvGjx1MeS7XgUaM5jY6/m1IndFRl2fGn108vo5wOIimspKBDiHVsOzp54LLvgEcUZE4V6CxhTkbB6FjA4r8gR62JE+tvVImO2xOdkOizA0IszNfZiESJrgMq/zNKiT5y5AgymQyWLFlSmhY+6qt3sj1y5AgA1O0YVb3e0H+9aNGiinmA+UeN0og72gcRPVlCVlTtHBRXEBK1K96222pjybZLFRU+0ZrVU59JfEpsnO3I5euPhlSh1fGXx2nNkSZ9EOq54k2EdBkdH7dkPWSus84ydYh3VAfK6XwanUQHSurpjqx5jeyGVXohj3jPJ8SNM+WJTkj02YHEzrFwkCjRmqi2aXDO0dvbiw0bNlQQ7/AEK7N0ZLNZHD9+vDROvfWG83ieh4GBAWzYsKFinup1ypRoKrmDvBZRyqJkm9VbZWsoV+QGqJYi0mNpEU+NfdSKPiPzqynlUsffTIMiXWQ78BiLJAH1mwg5iY+GVO0lbRbxKv60eq5uW5EdT9NQX8YilvEllxmfULyzjsxOQT3dkFvXopbziMcbrWfQzpF4ohc+QhK90F6q+OIXv4ienh5kMhls27YNTz/9NDnv3/3d3+H1r389Ojs70dnZiZ07d9bM/573vKcUBhG+TnVMY0KiG0S1YltNogcHB2HbdmSbbsaYlBz39vaWlqvnny5Xoo8ePYqmpqbIluTAPCGXXVjo5A5Fe0Csj3LUf4yUQqaVrUytQ4N4aSnkJCGjEWfSh2pqha/x2ctVZfVlqOg56iaCIm+AjPhLltEoBiXJrfSz0SDE5LGRLaN6sypbj/rnJmua4hG2mqlsMwaOd+Ho8U6MTbRharYJuYINv2gzidp0lzjfqijRcRcWJkr0wkfYsXChvVTwzW9+E7feeivuvPNOPPvss7j44ouxa9cujI2NRc7/5JNP4p3vfCd+8pOf4MCBA1izZg3e/OY3Y3BwsGK+3bt3Y3h4uPT6+7//e+3PqREkdo4GwBiTkmjOOQ4fPoxNmzaRcXgUOc7n8xgcHMQVV1yB4eHhuiQ6VKI55+jr68N5551Xs87wDmyeRKt3LKSnU+NILBjk2qOh431VV6jVNWqtdAodVVvjHVoJjoZWfrLkhkB9/fEq4ao3EZwzMvuQVKKlxF/tSQSgG7FH/JYlC1lUHjf53dQ4njJ7jMQxRm6bBJRKPsXT6Ct0wog4hZqCI5uv9XM7PPp8q5LOkUTcJVDFQvQQq+5P2P3yxhtvBADs3bsX//RP/4SHHnoIH/vYx2rmf+SRRyr+/vKXv4xvf/vb2L9/P2644YbS9HQ6je7ubvUd0ESiRNcB5Ykut1UMDw+DMUZ+cDIS3d/fjyVLlqC9vV3ajbB6rOHhYRiGUaN8R61TZueQEexoqNs5aI8xNV1HiY4G1+oYqE5uVLdYTsipZaIhL8Q89f5mnRuCeNevnk6ic0Mkt5Ooq8qqhY3yZQjbiuznrZEoQoFSh4P1UE8DZOuhnizRx0C2DT4zIhNM8l50Q5dG0zlORbOVxM6x8BGQ6DNvv4j31fj+O46DZ555Bjt37ixNMwwDO3fuxIEDBxoaI5vNwnXdmifxTz75JJYtW4Zzzz0Xt9xyC06cONH4hmkgIdENQKYuhyr0+vXryZMpRaJd163wNDcShxfaOXp7e7F+/Xpp4WNIyKWeaEU7h+VFX1wMsqWJRgW+hkqq6m8G1LONtbzaMdo54lS1dRRSWqGV2Rzi9DdHwydTIfRUZZ0iQdVtBtRtFr7sZoEillLbSjRkZFSnvTqFuIm3x9VtFXmXINGJEp0ggRamp6crXoVCbXOo48ePw/f9GhFw+fLlGBkZaWg9H/3oR7Fy5coKIr579248/PDD2L9/Pz796U/jpz/9Kd7ylrc0FDOsi8TOoYnQBzcyMgLf97Fq1SrpvFEfYn9/PxYtWoSOjg4AtfnO1Fiu64IxhpUrV5LzlXunJ5wM9h09H4tMA10pA0ubm9BmM7jZSWRabLSnGcDyECIPR8wi78+QJKfgER5GD2gixBvLj764MeJ7LVWPFUUyaQEd+UaM6q26y0TZziDLwqaPV3x2Ci1/t9QaoZrfrJ45rWXNkGyDFokmbRaUqmzANNWOjazZi3wZteMpu5GhjqcvXU80fG7CNqKJr+yGgUKWUKKbG2z7HbcnOmn7fXZgIadzrFmzpmL6nXfeiU984hOxrusv/uIv8Nhjj+HJJ59EJjNv07ruuutK/77wwgtx0UUXYePGjXjyySdx1VVXxboNIRIS3QAoJRpAXRUaiCbHYWfDiy++uGLMRpRoz/OwadMm6cm73BriCwEfwLjPMZ7jeDk3E44Ga0bAEz6Cr0Jr8bUcWztWYcJpRcrNY1lbMzoyFjyew7G543C4iZTlIWO5yNguUrYvjV9zCb+B70Zvv3AMgLiGqSq+eko0MZSWv5oaS4fcaxRPahQpqtoM5DcE6guprl8nxlAnv1u2jKqq7HHAok4ZZBMWWfdD9ZsFnWYvZFMZyUNNWr1W3zYZWfe4oVQPbTIGjxAtWs+gEp3YORY+BOIKS33lINyfI0eOoL29vTQ9nU7XzLtkyRKYponR0dGK6aOjo3X9zPfffz/+4i/+Aj/60Y9w0UUXSefdsGEDlixZgpdffjkh0a80hCfOQqGA1atXS+eNIsdhssbixYul81Vjbm4OQoiau72o7WvMzhH1U2bI+UBftgCA4b/Gc6V33OwS2KJSvWGCw/QEUpaPFPNhgyNtekgbPmzTA4MAFwxpOyDd4TWH9vhKKKnPIr+1omAAEX0gdNTj0+Hj1WqcQk6OT7kHJPui8Sg/VoWWQPxJJ6p1ArI0C0JVFgYsxXbgMisDRfxlKSRkLJ+GbUXntyHdH0q9lnVmVFSim20bM050q/Rm+8x4opN0jrMDC1mJbm9vryDRUUilUrjkkkuwf/9+XHPNNQCCG9L9+/djz5495HKf+cxncM899+Bf/uVfcOmll9bdpqNHj+LEiRNYsWJF4zuiiIREnyRWrVpV93FeVKZ0VLIG1Uq8HGGcS72mLOXrzDu1nqTStlAXUkKhiZpbMAMFMHjMRDac6BdfLuA7Bsw8L41gCo40BOBwHJnrRMrwkTJ8pE0XGdOHxwHTFMjYLuyq1sOkekb4K/2CCdTeCAdjxSgF0DnN0ZPlLbxPPYmkIwFpQqblrybeNBjxeQm6CQ0FoUPitfzN6seMuvOJXVXWKCClux9q3JRo2Dl0POayY1DXE101ZMayJCS6sUtj0mwlgRYWshTdIG699Va8+93vxqWXXorLL78cDzzwAObm5kppHTfccANWrVqF++67DwDw6U9/GnfccQceffRR9PT0lLzTra2taG1txezsLD75yU/i2muvRXd3Nw4dOoTbbrsN55xzDnbt2hXrrpYjIdENojribnx8HACwbNmyustWk+ihoSGYplljqq+XzjE7O4uJiQkA9U/e5Ur0yGhjRv1yFAjibVCFjA1382Pwi2Tb9S1k4QVcggMoCtxe3oSVD44XEzxQtgWHxXxYjCNjekgZHtKWhybTh2078LmBqK6JOlFqPG9Gq9ouIwk5RRTiVbVPfWqInERrEDVCVeaExYdzBtMkiLeExJLrJ6Zr+ZuJGwJfRHfdAyRWBlkxZIz2B9l69DoZRp+fdJR9nd+AbD3SQsUIZKxo0t1kWTAbJMZxeqJd14Xrukp2jvHxcXzwgx/E9773PRiGgWuvvRaf//zn0draSi7zxje+ET/96U8rpv3hH/4h9u7dW/p7YGAAt9xyC37yk5+gtbUV7373u3HffffBshLKEAsWoBItEyai8Lu/+7s4duwY7rjjDoyMjGDLli144oknSrxoYGCgguP8zd/8DRzHwf/4H/+jYpzQc22aJn7xi1/g61//OiYnJ7Fy5Uq8+c1vxt133x1pKYkLyS+iAUR5og8dOtTwCaWcRAshcPjw4ZrOhtXzRaG3txfd3d0YGhqqS6LDsTzPw9ixY5E5LDLaW3CjFRqLUBCZjK6dxLlCMAMODDjFMQQvDldUuUO4WQtWthu24LAZRwYcJvNgcIET+dZ50m15sEu2ErXH9h5RIAlI1GPi49TKaSYgU2LV86slCimpqus8/o+GD7pIEJQtSapE60TPKRY2cgN2VDixBDpqr9yTrVEMGWsBpfq2yW4KqM9A9rnJrCtRSJvR5++WBosKgXiV6FwusM2pKNHXX389hoeHsW/fPriuixtvvBE333wzHn30UelyN910E+66667S3+Xr9H0fb33rW9Hd3Y2nnnoKw8PDuOGGG2DbNu69917FvUoQhSQnOsCePXtI+8aTTz5Z8XdfX590rKamJvzLv/yL+kacJBIS3QDC5iUhJiYmMDU1hUwm01B0Sjk5Hh0dBec8MllDls6Rz+cxPDyM7du3Y2hoCL7vS0l8ONaRI0eQzmSACE5sgMEnFdToi5VlGoiuZ48PWucWFnxOHjPhwURwOUrDLVjz1fwV4rqAIXzYArCZjzQ4LMNDyvABAeR9G2nLRcbykE65SNteHQtA9HTuUcWT0Wp3MFZ81hDSX01AtesUoEe6dAg59Y4s0CbWpiFST3j0eSBO37GenYMG2dpbh9xqrEenY6LsRsJVVKIp21Cj3QqBeEl0Pp8P1t8giX7hhRfwxBNP4Gc/+1nJH/qFL3wBV199Ne6//35pelNzczNZwPXDH/4Qv/71r/GjH/0Iy5cvx5YtW3D33Xfjox/9KD7xiU8g1WCGdgIaC9kTfbYhIdEaOHz4MNauXYvx8fGGSHRIaEMVuqenJ/LEK1Oi+/r6sHTp0tJjukZTPI4ePYqlq5YBRyLmkZBoO2VHEm+bRZNoJkuDVjUfx+lPIBimEAycWSgwoAALs+F6fcDNmbCrO5kJAVYAmmZc2OCBj5t5SJk+UoaHjB0o3WHxZFgcRxeJqef3giielKqaMfqrdZRLkkDFWdQWY34zl1kzqGUk49E52fEW7+lYM+KN5ZMso9FlkfzeSJbxJK3Co5Cfy0ZON30fL7/8MlKpFFKpFGzbrvh3+bk7zsLCbDYL0zTr1ruEOHDgADo6OioKrHbu3AnDMHDw4EG8/e1vJ5d95JFH8I1vfAPd3d34b//tv+HjH/94ibwfOHAAF154YYXdcNeuXbjlllvw/PPPY+vWrZp7mKAEwZTtD694LLT9aRAJiW4QoSd6amoKJ06cwAUXXICpqamGlehCoYDjx48jl8uRyRqypixHjhzBZZddBsZYw50Np6enYRgGWtvbIueRWTBMy4ok0ZYZfcEwGKMewmsgxrQJWfs/yvsbNZ0xONyCCN8MC0N40WJSrXJzgRTzYbhAZqYLacNHGh5s20fa9OB6JtJZF5mUi1RV8SRFVChCJCuepIMuosfSam2u4+8meIdOrrdO4xi6wx9TbkWt02xGLwGDBn2zQsNStK3IugVS0CkU1VkPENhqpKgasrOjA/1VEVsA0GKn4Ps+pqam4LouHMeB4zjwipnSlmWVSHWhUMDRo0cxOTlZQbZDwm1ZFtkQqxqqRYUjIyM1NTmWZaGrq0vasOL3fu/3sG7dOqxcuRK/+MUv8NGPfhQvvvgi/vEf/7E0blQTjPC9BCePxM6xcJCQaEUcPnwYa9asQTqdbiiSDpgnx6EKTRWiUOkcAwMDNU1Z6q2XMYaJiQls2rQJL2Emch6qUAsABNWx0IjOYmWEVzp4U3E6tU0RhYN1x5LUiMV131w7FgM3GPIw4HETWdjzcmWRbLtZC7YTXJQZ57AgivGAHlJGoHSn4SFl+0hbLtKWB48b4ByoFr70iicNIKJ+iXuyjO5oUCdPnaQPrU6CGgqtThazVrwbMV1KiHWU29NAbmUFlOQyGg1iPM6QIopLyW6OnEk/h8ihiJPJkvZ2nHvuuTXTOecVpNp1XUxPT8OyLOTzeUxPT1e8xzkHY6xGza7++9ChQ+jq6sLk5CSam5vxsY99DJ/+9Kel2/7CCy8o7Ws5br755tK/L7zwQqxYsQJXXXUVDh06hI0bN2qPm0ABSTrHgkFCohtA6ImenZ3FsWPH8IY3vAFAY7nO4XzhSfa1r32tdD6vqoOW7/vo7+/HhRdeWDFfPSXacZxSJ8UXj/06ch6DMbrAjBjXNsxI+2eccXGSQGRaPVb9Bce5vSc5ljAMuABcmBA8FRzL8BiXHWs3Z8LOroDJg8SSFPNhMx8mFziea0XKLFpKio1w0rYr8VdTSqxEVfUARNkhfSo1Q5ZaEaOqTUAIPTsHBTrejR4vzmQKClxjP6Xkltg0T1JASTZh0ShU5cIEiMoL6qjpdCukbvAoT7RhGEin0xWV/r/5zW+wbt26GgVZCAHf90uEOiTX4d8zMzOlf994440YHByEEAKMMfyf//N/sGXLFixZsgRdXV1YvHgxrrvuugrVecOGDeju7sbY2FjlcfA8jI+P121YUY5t27YBAF5++WVs3LgR3d3dePrppyvmCZtiqIybgEbiiV44SEh0gxBC4NChQ1i5cmWpzaQKiZ6dncXatWulfreo8QYHB5FOp7FkyZLStEaU6OnpabS2tgaEm7j4G5LGBdWRfiEswyATJygoe6Jj04jrrUNN7aIgJG23yWJAciyJcM+CAX3DhA8T+aJkXCqe9FBVPAkYgsMCR0pw2EbQDCdl+BBcIO9bSBtB4WTGDvzcQhKJRn1dqM6TvmfASlFJG9GTZXF1ykRRMFiq/mbZTUSc7eAlUE4HkSnE0mJItWYvWu3ANW5KZF0JKdTNiFZAo+kcQgiysJAxBsuyGkpw+vWvfw3HcfDtb38bf/EXf4G/+7u/w9jYWMVr/fr1NTbA7du3Y3JyEs888wwuueQSAMCPf/xjcM5LxLgRPPfccwBQakixfft23HPPPRgbGysR93379qG9vR2bN29ueNwEdXCWKrcLDQmJbhDZbBajo6PYsWNHaVqjJLpQKMB1XfT09Ejnq07n4Jyjt7cXmzZtqnj0WE+JnpqaQj6fL3UNojoWypRoqZ0jcv4YoWPB0CCryhsQ0+yAZD90DqTkePGqiMD54klrvvPkXNkCDtA06SHFfaRMH7YReLhTpg8THI5jFUm3S+Y5hwgIafTvQ7hmtJ2kYND+bsVkCJm/mW5oQgwGmTVDw06iYYGhrQwShZgYSkputdqBy+wx1DLEtklu7qmbhZISLbuhrdm26OktCi2/AcSSE51KpdDa2oqurq6G2xOff/752L17N2666Sbs3bsXrutiz549uO6660rJHIODg7jqqqvw8MMP4/LLL8ehQ4fw6KOP4uqrr8bixYvxi1/8Ah/5yEfwhje8odRC+c1vfjM2b96Md73rXfjMZz6DkZER3H777fjABz5wSvN2zyYkSvTCQUKiG0RfXx+6u7srHts1SqKPHz8O27brnoCqx6MeodVTont7e7Fo0aLS3z7BGGX1LtHtwGkSTTXPCFZEv6WE00RWZbWI9FpUbQvEOjRUbXowxWUYg8tNgDHkzCKRCBvhuAD3GYx8uG1B8aQNH4bH0D/TFSSVmB7ShoeUFbR7b+MFZOxiRGDFqijSRRMSkloRdhKhobbK0yw04t1IVZmw02ikg/gaCrFOCou8TXc04o7yI0l0Q/F2leNS4kKjSnRIouNM51BptAIEKRt79uzBVVddVWq28uCDD5bed10XL774IrLZIIkklUrhRz/6Uak73Jo1a3Dttdfi9ttvLy1jmia+//3v45ZbbsH27dvR0tKCd7/73RW50glOEoknesEgIdENwnEc/NZv/VbFNNM04RBtY0Nks1lMTk6WLCAyRDVliYrDk5H3UDHfuHEjpqamgrE07BycIB82RaJlFDOmwkIVlam0CDldfSzF2kUpyGU0BtOxhtAm9kbVxqB4sgADrmchl7KCDQm5sgN4jgErxUsbY4PDFj5sxmEJjqHpDqQsr8LL7XgmfM4iE0oMwsMr/OjvpOdKiiSJe1AdAiePalMrbJSrygTp1LCT6CjRWm26ySXomxLpMsS7jZDo6i30iKd5zXZjOchxk2idlt9dXV3Sxio9PT0V1rw1a9bUdCuMwrp16/CDH/xAaVsSqIDh9NgWTycW2v40hoRENwDGGLZu3arcYRAIVOGuri7Mzc1J5wMqFeYTJ04gn89j9erVNfPJ7Bz9/f1Yvnw5MplMqTW5TygusuglSomm2uH6XCBKQ5QlajDKUyGxJ1CgLvxaP2tVJVpGfBXTKWTkXnkfdR4OaOwLiXLSxRhcmHBZ8C3xXSOIZQsqKktwsxbsXDcMIZACRwoebMaRMlykBYed8pExvSCxxPaQsV1QkFkJKO83dyVdQBXvcHwOEImQ9DISVZn8Xmq0EJc3VNEh6xqNW6jccR0lupGM6KpFXeIc2qidw/f9mkZcJwMdEp0gQYIzi4REnwTqkeh8Po/BwUFcdNFFeP755xsaLyTHhw8fxrp16yL9dpSdw3EcHD16FJdffjmy2WxpLJIQS07+lHpNLcMFIkm0Fk7HY6E4rSEa2cqnR4lWV9tliO2JQv01gbMgIjBfPEUJD2AGagonAcCfY2jKBk1wbASFk2nDB+McLXkHadMrFU4GiSWSuDpZYSF1c+NYkf5uXxgwVYv3pHF5GuQ2RvVaBp0OgwaZbS0h3oSyHyrRKdOE12BPVdc/eTtHHH7oELlcTtnOkeBVisTOsWCQkOgGQCkN9bzJfX19WLJkCVpbW+tG0gHzpHxqagpTU1PYsmULOV/UeEeOHMGiRYuwaNEi5PP5MhJNXcjVlWhl1UXVlytFfHYOHeKrsRL1tcuKMxRV7ThVZcGLJFZpIfX161hTBDPhMDHfG6hYPOnlDVhV330hBGzBYXkCqYli10mjSLwtD37BgDEjSp0nrTILCRUJ5xE/bc81kaJi5FwW2X1S52mLjmVCBrK1t0xV1ugwSDV7kR0DatvCwkKv4AOEmNtTaEE7a4GdMWGmDNimia7FaRSEj5zvYdZ1MVnIKxUWxmXlAAIrXqJEnyVISPSCQUKiTwKWZZEk2nGcUpfBkByHOaAUQnJ8+PBhrF69GqlUtDcvirxX50mXq+SUX1nHzlGdYz0P6tGsBoemjcw0ziTBjNMCIRtKUdXWsYZo+asly1BQt6bIbqAaV0EZY/CYCQcG8owDSM8XT3qAO1OWWoJiRKDgSHEPKUsUYwI9pItFlBnTRcGzkHcspG2vQq2XxeVRN0te3gZS0XUWhFVay5qh1Q5c8gUgibdkIbIzpGQ9FPFuxBN9/FgWJ2bnH2V0tjZhYjZXMU8aQNvOxu0ccZLofD6fKNFnC5K23wsGCYlWQDUJlinR5V0Gw+LDeo//DMOA53k4duwYXv/615PzRSnRQ0NDSKVSpTzp8m0jVWVJogZVWJgv5KMX0PgBxUauoZNFHSNk4rFGgxDV9cQZlxfvTYe6qk7SZJmgSkvU9DINtvbmzIDDDBSEFawm3I6KJjgW7MJyQAhYoaUEAfnO2B5SRhnptl1kLA/Unuq0PffzVqSqDahnTgOSduDEIZN1P6QsMJ6svTox2eOARXDWhnKiq8bNO9F++pZM44WFcSvRixcvjm28BK9cJG2/Fw4SEn0SoDzRnuehv78fF198cWk+IFAuZCQ6HG/lypVSRSIk2yGEEOjr68OGDRtKJL+caFN2DpkVhSLejuNE51npRFcoO0Piu9OVbpaynSNOuTm+oWIlsRIlmOwWGaMSLU1T0Thmyq4kDrB6PI0xeDDhwUQOgOeYsAw/INxVfM0rGEhNesVW7xw285GBDyGAqXwT0lYQE5ixgkY4KdsjLRNaqRn56JxuaTEksRqt7ofCgKXYtckTJrmMTsfCnBP9VK05fWbsHElh4VmExM6xYJCQ6AYQVmBXd/GjvMlHjx5FU1NTSVUIT7T1kjxcN7jS1mvKUh2tNzY2Bs/zSh2nwnWG20blRHOfkwGvZDGiZUWbMLV+QIqkKNbkCI2xdMiaIiGREfI4vdpxJn3EelzI9ctuCNRJPLUM+bFwdRIvE4EZA7hhFIsn5+HmLNjMA6ocHUxwmL5A2gxavYedJ1OmB+4ZEAxBTGDRy20YxWJfQu2lbkg934RJ+UYKRqTi7XMDIEg0qZ5zAzCpFuLR2yxbRtauPgoZ20LePXkSHWdhYWLnOIuQ2DkWDBISfRIwTbPGIxx2GTz//PNLqjBjrKE4vKGhIQCoq0ZU20h6e3tr8qQr7BxU5jNFiEH7qNPpFJCLfCsSsSZE6AyjYTVQTqyiOJzQGEsnl041kk82FgGdXG1yLJ0iRQmUVWVBr5++Dqgr8dInJ6rbzAy4JuCFcnixeBJ+MRaQl5+HBEwe2EnSRpDLnTb8wFbCPKRSHhzXxEwujYztwrbmTwK+bwI20WWS8nG7JmBHE1LmIpJ4y9NBoqfLlmlIiS77mDIpGYk+M3aORIk+e8AEfe//asVC259GkZDoBiFTosu90kNDQ7AsC8uXL6+Yt7qldzVc18Xg4CCAQLG2LPqjKVfAJyYmMDMzg0suuaRmHiFE6RWFlJ2KjAwDJK3CJdulDFWPb4zeY2khZFwmY1kyieJOahHyWFXt+MbSat+u44kmN0B9GWlLW40nJ1rHrOFtZvANE65nosCqOk8CgFsk3kU7AxMctuBIMQ7TD33c890n03aQy+0LFrkdMhWYJN55U70RjiQPu+SJbvCwZuzo81jKMmE1GO4dd2FhQqLPIiR2jgWDhESfBMqJakiyDx8+jI0bNyo3Zjly5AhaW1sxNTVVV7EuV5l7e3uxZs0a2FWxTOHJnXNO2jksk/74KTsHBXLuGGPO4v2RSlZOkXsdxZNcu6IFQYP4xalqSxHr56j+IceZNEJ+xlJrhsY2N1jYGKIhT3bNMo1ZUESxeNJBYOewLL+kcgNA6Dfx8ibMWQ+24EEDHOHDNnwYQqBlzg2UbstFxgzU7sBWQljJZM1RCLLsF8wgPiNqXx2b7FEThZQdvf5GrRzAqVGiEzvHWYLEzrFgkJDoBhEVB1deMGgYBkZHR8E5r/Aml89LkeMwnu41r3kNfv7zn9fNlA6V6Lm5ORw/fhxveMMbpNtG2TlkpJDqcihr7x0N+kJOPbY9HfYEqQVDcSjVdWgNJSV+1Io0LCtqKXLS9ZOrkBUpxkjiKQjOAFNjRxXXL8thPx1dMXUiDuutJ4wI9GAiV1S53XzRxw1UPdkSEAUgM17sOik4UsWUEsGBrJsKGuBYAeFOFy0hJul7pon3xHArZudawBwOwxYwmABjHK3NNnJuAczkYP78oUpZ0WM1mswBxO+JTnKizyIkSvSCQUKiTwLlRNWyLBw6dAjr16+PVCdkJHpoaAi2bWPp0qUNeadDJbq3txfd3d3IZGpNh+VKNBlxJ2u2ImOZkWMRs5NrAATlGqXEM4JhaVkwdDhUjIkWp0WFp3Zd5kmmtivWJwo6/mp1O0mcRZIyO4cqIdWx5khVZXIh9TsSnWxveiEGbhgoGCzg1uEueGU+7vL6CiFgI7CUpM2g62RK+EjZHlKmB88zYM7yIuF2K4omXS8kswZ8VhSlBTA+B4Sm7LYyXYCybJxJJTqfzyck+mxBQqIXDBISrYBqbzFjrERojx8/jkKhgNWrV0cuS5FjIQR6e3tLFpB6XRDDsTzPw9DQELZv3x45T5go4vt+fN0HQf9OmoUFN6LdrsUMkM/CqdVTRV/1Ni5yFcoVdBrriA866q1Ocxh6ER1VW1WJJofS8xcr8pjTpoTLrCGEgEnvvrqqLCXEinaSYCHlN8j1RE5lDC5MFJiFPBPzM7nBy8laSJUKuQUMIZAq5nLn3cbJL0CT6CYFEh23JzqbzSZ2jrMFCYleMEhIdIOgCGdIjg8fPox169aRj/eowsJqCwgVm1c9luM46OrqQltbGzlfOBZp56DGByOVaKrgsJD3YbREzF8QMKgCIuUfnUTxU2RsBqnSqSt+Ooqrqo9X5wSlMxZt89DwV5PrVyfkpNqvoarLK1Tj82STGy2zk5DEW6ewMd5llAhxuIzqUwLJeqpH4IwVIwIteXfIEGXDGsQXvUVRiY7TzpEUFp5FSDzRCwYxBk2dnTBNE5OTk5iensbatWul81UrzGEhYnk8XSN2DiBo6LJ+/XrpPCFxp5Ro6kJiSuS4uHivDCaRGGIQ03X4naC6NWoUkOlYWch1kGPFqQTHJ7dKrQk6fgrSX0yMFKPNBYDyUxBZXB69fg1yK4GOv1n5Jk62HgI6x0ZwHasLoHrgKFHkTBcWJiT67EAYcbfQXqr44he/iJ6eHmQyGWzbtg1PP/20dP5/+Id/wHnnnYdMJoMLL7wQP/jBDyreF0LgjjvuwIoVK9DU1ISdO3fipZdeUt8wBSQkukGE9ohqmKaJwcFBrF27tiYho3q+anI8Pj6OXC5XYQFphEQfP34cANDV1SWdLxyLKhKkLjym5MonVM3E0quy2q+OEeSDisQCQLc2J1VCpU2SQ8O2cKaV6Fib1pCLaPiLycHUVWUd36+Wv5paRKb2SqIXJQupQ+NmRYcQq0LnpkjIVHpFqJLouJRoIYSynWN8fBzXX3892tvb0dHRgfe+972YnZ0l5+/r6ytdx6pf//AP/1CaL+r9xx577KT2L0EVxAJ9KeCb3/wmbr31Vtx555149tlncfHFF2PXrl0YGxuLnP+pp57CO9/5Trz3ve/Ff/7nf+Kaa67BNddcg1/96leleT7zmc/gwQcfxN69e3Hw4EG0tLRg165dyOfzkWPGgYREx4Dp6emGugxWk+PDhw9j7dq1FZnQ9fKkOeelpiz1PM31lGjKL2xIvhaq0XdSqCqYJPGVkBLiPcOJnByzShhnMZz6dumo2urFk/RQJDT2hVy/7MmBxjvKDW2k+dU6N5aS96hFdFRlVU+07MaDXEaj5kL2WyY/g/gKKBtttALEq0SHF3kVJfr666/H888/j3379uH73/8+/vVf/xU333wzOf+aNWswPDxc8frkJz+J1tZWvOUtb6mY96tf/WrFfNdcc43WfiVIQOFzn/scbrrpJtx4443YvHkz9u7di+bmZjz00EOR83/+85/H7t278ad/+qc4//zzcffdd+O1r30t/vqv/xpAcCP6wAMP4Pbbb8fb3vY2XHTRRXj44YcxNDSExx9//JTtR0KiFRDVtCT0JqfTRIBpEdUkenp6GhMTE1i3bp10vmqMjo6WyDPVRKV6LNcjuokR1x7K5gHIlGhVaZVeJFYoklUWfagAAIaqqh2nEi0bKs524JSHW2cs5TQHHctMzNYIRd+vjjVGL+kjvv3USweRvKl1g0EsE/PxpFDdaTaEihIdZ2FhLhfElDRKol944QU88cQT+PKXv4xt27Zhx44d+MIXvoDHHnusJLJUwzRNdHd3V7y+853v4H/+z/+J1tbWink7Ojoq5otKgEqQQBeO4+CZZ57Bzp07S9MMw8DOnTtx4MCByGUOHDhQMT8A7Nq1qzR/b28vRkZGKuZZtGgRtm3bRo4ZBxISfRKYm5uD67p1bRVArcJ8+PBhrF69GqlUqmY+ikSHSR5r1qwBgIai8DjnmJ6ZjnyfUqKZ5LktqURrNZyg3oiPFMZqTyDGojzczNE4JsT0eB/nx6lExxlnIX8regM01q9xLON8QhC7Ek0Qf7oeQH39empvzIWNlOKusW0zhO1havw4XnzxRfT29mJwcBDHjh3D5OQkstksPM+rEC7iVKJDEt0oWT1w4AA6Ojpw6aWXlqbt3LkThmHg4MGDDY3xzDPP4LnnnsN73/vemvc+8IEPYMmSJbj88svx0EMP1RVsEqiB4cz7l2N/Ffdtenq64lUo1F4gjx8/Dt/3azo7L1++HCMjI5HHbGRkRDp/+F+VMeNAks7RIKI80b29vchkMg354kzThOMEHoJsNouxsTHs2LEjcj6KHIce6jVr1uCll15qOMUjO5uFZRrwGjQpyjisup2DKEiTpSoojiXNHY6TlCmOxQQd70cpvoarvm51JTo+JTjOY69VpKihhMusIepxedJ31QaD+mepnTlNNpshltFq3KLh/T6VBL9slU0tLcBkrU+yc1ErTNNELpfD9PQ0HMcpvYQQMAwDtm0jlUohl8theHgY2WwWqVSqND182bbdcIxoNptFJpNpmJSPjIxg2bJlFdMsy0JXV1fDhOErX/kKzj//fFx55ZUV0++66y686U1vQnNzM374wx/i/e9/P2ZnZ/GhD32ooXETNIAFnM4Rinwh7rzzTnziE584Axt0epCQaAWUt/jO5/MYGhrC4sWLG0rTKCfHvb29WL58eeSjO1nEXW9vb0UBYyN50hMTE5iebMXwVB5taRudzSm0Z2w0pw00uU1Y67mwUwasjImCcDDn5+E6lGE4RjuHlhpHXHiFZBFlEi1jZYpkUUfxJEiEkUPYM6JxkB9JjNYA2ep1SKxqa2vZmzrFc4pjaan6GkSRhCRzmoS02U18dhKdz0Z2AOJUol0v+kNYvWI5zjlnY+06hIDneXAcB67rwnEcvPTSS0ilUvA8D9lstoJwh+fmamJdTbZ7e3uxaNEiTExMoLm5GR/72Mfw6U9/WrrtL7zwgvL+ViOXy+HRRx/Fxz/+8Zr3yqdt3boVc3Nz+OxnP5uQ6DghoOfdeyWjuD9HjhxBe3t7aXKU1XXJkiUwTROjo6MV00dHR9Hd3R05fHd3t3T+8L+jo6MVXaNHR0exZcsW5d1pFAmJ1kRfXx+WLFmCdDqtRKILhQIGBwdxxRVXSOerxszMDMbHx3HhhReWmrLUU6IZYzhx4gRaWluBqROYKXiYKcx7AV+7LI1nx6qlTwvtRgqu2Yqu5jQWNdnwnTl0LmpBOm0ibRpY1NyGY9kZHMtOg6UEmCU5I+iQaAo6Y1EFVDqkSDnKjJgsZFYWarKEXBBjWQUAEcX+hizNRFXV1iAwekkXGmpnnLYgahGNSEQZVAv+BGdgipnT8nQS9WXizJyWIkarieNF/wiowkLGGGzbrkhgOnToEFauXBlp5/N9v0S2y1+u62Jubg4TExNwHAe33HILDh8+DM45GGP45je/iS1btmDx4sWl13XXXVehOm/YsAHd3d01KQae52F8fJwkIeX41re+hWw2ixtuuKHuvNu2bcPdd9+NQqFQt/YnQYNYwCS6vb29gkRHIZVK4ZJLLsH+/ftLRaucc+zfvx979uyJXGb79u3Yv38/PvzhD5em7du3r9Rwbv369eju7sb+/ftLpHl6ehoHDx7ELbfcclK7JkNCohtEuZ3DcRwcOXIEl112GYaHh5VIdH9/P7q6usgvmWEYcN3aZ/q9vb1YuXJl6STWSBSe67oQQiBFnfiIK6ZlWph2HQxO5TA4VezLOx74qpc3t2A0O4eAUXYE7wkBu8DBJgVaMiYcz4FhchiGALiAyQA7LeBbHMwu/tK0lGjVZ/30W4J4i5oOqBNfElrqITFZYkGg9oU5DIhojBM7lO0cMssAuRS9etUiQUlrbZoQy757qoT4NNlJTpNXWa/oVLIM9XmWk+gGD3nBjS4sjKvZimmaME2zrsf52Wefhed5+L//9//ijjvuwFe+8hWMjo5ibGwMo6OjGB0dxcaNG7Fq1aqK5bZv347JyUk888wzuOSSSwAAP/7xj8E5x7Zt2+pu+1e+8hX89//+37F06dK68z733HPo7OxMCHSM0M1VfiVDdX9uvfVWvPvd78all16Kyy+/HA888ADm5uZw4403AgBuuOEGrFq1Cvfddx8A4I/+6I/w27/92/jLv/xLvPWtb8Vjjz2G//iP/8Df/u3fButnDB/+8IfxqU99Cps2bcL69evx8Y9/HCtXrjyl6TIJidbAwMAAFi1ahI6ODhw7dizSOF+NsFX3wMAAtm7dKp2vmhznWfZMjwABAABJREFU83mMjIzgda97XWlaI0r03NwcFi1aBD57IvJ96rKYsm3AjbZ0RHqiGQPnJnwGOAUASAPFXTCzgF8+lBAwIWBwH6YV/JtZAqbJwSwOwxIAB0SBAylRRZ7UL7zqvJvwcGt4T+lIPtAkWoeQx0XuQZM4swAgIjiAuYK0mcTalVGD3OlF/6ladiQbTd3cyJ5Q0KNFLyMl/sQykvG01PPTEbEnWUZHiaZI9JlotmJZFpqbm9HZ2Yk3velNDS1z/vnnY/fu3bjpppuwd+9euK6LPXv24LrrrsPKlSsBAIODg7jqqqvw8MMP4/LLLy8t+/LLL+Nf//VfaxpVAMD3vvc9jI6O4oorrkAmk8G+fftw77334k/+5E9Oej8TlGEBK9GN4nd/93dx7Ngx3HHHHRgZGcGWLVvwxBNPlAoDBwYGKn5fV155JR599FHcfvvt+PM//3Ns2rQJjz/+OC644ILSPLfddhvm5uZw8803Y3JyEjt27MATTzxxStNlEhKtCM/z0N/fj4svvhiAPE2jHIZhoFAooKWlRZrmETVeaB1paZmXD+sp0RMTE3BdFy0tLfBnjtfdvnKYkguDf7JV2ozBB4MvDLjhUG7xVYThAHwagBAwIGAyHvzXFzDnfDBLwLBEQLptDuEyWsVTtXNQ+yclvorkXidbmIL0Pkptu3SUUOZLiieJ9VDFk1ISqwi9m554k0aUiaJGwV/cqrJWAadiOkj9NyNWL/k8dUh0znnlkGgg8CirNFoBgEceeQR79uzBVVddBcMwcO211+LBBx8sve+6Ll588UVks9mK5R566CGsXr0ab37zm2vGtG0bX/ziF/GRj3wEQgicc845pTzfBDEiIdEAgD179pD2jSeffLJm2jve8Q684x3vIMdjjOGuu+7CXXfdpb4xmkhItCKOHj2K5uZmLF68GEDjbboZY3AcB5s3b5ZWbFeP57oujhw5UhFlBNRXovv6+tDW1gYAZDwRtRWynOjYmq00Mgxj4GDgRUnPLAC+iUDlLhP/jRzApwSMUOVmHKYhYBg8eBUJN7MFDJsDKS5RqHWqpAjEWlRJvCFRIpVlTR8aqrZMiY1+j/JkGwUGEL0uGPG9k6rapyHpQwZV+4+OV/l0WSakUE4H0bCtyIpOFW9+LIPB86PPnc2ZM9NsRafld1dXFx599FHy/Z6enshz/7333ot77703cpndu3dj9+7dStuRQB2JnWPhICHRDYIxBs45+vr6KoiwZVkNkeiJiQkAqIklqkZ1OsfRo0fR1taGzs7Omvmo9YYRemvWrAHnXKIeR198DMlVkc6JJhdRhvJvkQX/xxkraqJmII7y4mA1zhQBMy/AJooqNxMwzYB0wwdMzwBLcTCbzxdOanXGI6Dj/SU9AJL1KBNyjbFkHeZi8n0D9AMFM49Im4kWUZO9eTqIojQukLiJiLXDpvrNgjYhVr3BkKj0qhF3TWkbM7lou1qjSjTnvBR5Fwd0lOgEr2Is4Ii7sw0JiVbA0NAQLMuqIMKN2DmEEBgeHo7Mmq5GOTkuJ+3VkCnRfX196O7uRjqdxuzsrLIFwzDobfQbzJquByYkpCUu7zE5FoMQDD4DPJjB8sWnu2YWqPk4hYDl+TBMwCwWTBomD16WADwBw0KReJdtTKx2DopdaBTDkYRcncRR0CFKOikrZOqgxwAr+k3TFZGpJVqNPoj5Zf5m+ucVY9IJNAixiJkQk8uo23ZkNxiqdo60bUWSaMs0kLIau/MLz72N9AhoBDpKdIJXMRI7x4JBQqIVkM/nsWHDhgoi3IgSPTY2Bt/36xYCApXkeHh4GKZpRqrXlBLtOA4GBwdx+eWXY2JiApxzer0acWqx2TlOB3Qe6UfOy+DBCqwOAoHtoezQG3mA58J1CpgI1G0rz2HkRIl0h4WTzBOA7QN2deGkbLsoJVKyCEluYlSiKehYQ2RKhvK+qBM1M49ocg11f7VUOSV99/T2koJnnNYM2e+FWkSj2Y5WAaeEKDdKosO50nY08VVN5gAQmxKdzWYral4SLGwkdo6Fg4REK2DTpk01F8B6SnTYqnv16tWlPFDZiTckx+Fy69evj1SvqfWGQeeLFi3C1NQUfN8nlWh1pYwm0VqJCxTieiqkQQooSJXzihkZfJjwAQgH8DIICGV54WQO4LOYL5xE4OE2OQdMASvFwUweFFDaga2EPr46j/NpawDVSU7Zk6ujtmso0bKGJso3F9InGtFv2gUWaScxNLzq8hbqxAH1ZSxaMlzU+mO3oFALSRR/yc0iuQ2KSjSlNjcpkOjw3NtoR8J6yOfzpzRBIMErDIkSvWCQkOgGQZ0sG0nJmJ2dxcUXX6xEoo8fPw7HcUpxRVHzVSvMnHMMDAzgNa95TcU8pPJFgEm6iviUWhZjEZcqyDvg0/WjVtz30uSywkm3SPiZg8gGHuacgJgqqtyGgMmCfzPGYWStysJJmwd+ZNVkEhkZIVVNdZuJ1o0N+ZWUWVOI1cdoTREiuv+jcBkYEatrEMRXulmKSrzw1T3pUpuFjidegxDrNEFSJdE2QaJ1kjniItHZbDaxc5xNWIBKdEKiE2hB1qYbmG/VHQbV+74Py6IPe6gw9/b2Yt26daTnLkqJDj3bYYB+OI+yJ1pyXVD2RGv8sE5LfUKchZCn3MONgHCzYlJJmYph5AFecw8nwESgbAcFkwHpNoxA1YYHmFOYL560Soupbxe1kA4ho/hw7P5qxWV0srhlhajEWEaBkU1w1DtJQrmhj8xmQXrCdb4zcXaZRCWJlpp4im9YhIjRopjMEZcfGgg80WHiU4KzAIkSvWCQkGgFMMZqVN2wiUoUZmZmcOLECVxwwQUl1aKefzpUoqempqT93qvJuxACfX196OnpKakj4TykBYOyeUjUFeXfCaXGNmqPaGAsEjGr3XEVQkofTasNRYBBMAYPRlAvGX5NiraS6AY4PMjhHq8snDRNAdgcYAKGxSoLJ4vritwPiVeb/noRb2j5q6l1QF2h90GfKeMk8RJQqrIRHTIRbDMlrOp40jUUYh3iTfq4G7VzNPADonLwm1NnJiMaCOwcSTpHggSvPiQk+iRhmiaEEJEn1d7eXqxatUqpVXeobqxatQqpFK2MVCvRJ06cqLF/hEWKlHpMdVokvdKo09tDBdJYAbWhtPzYcardZAEVMbvOvuuQtUb3sejjFh7gWKgpnASKf5soEW4bADN8GL6AkbOCgkmTw7IERIpDEA1VAEisIZSqLdt2YrrUmkKtXqNIUatIUo0oyqwZpHLr0b9W04lOJ2GeAAgLSpyZ09Kvv0ZOtaqdg/r9qdg5fN+PlUQndo6zDIkSvWCQkGgFRCm0IemtJtG5XA7Dw8PYsWNHxbz1EjpCYrtmzRrpfNUKeG9vL9asWVPxiDEk2pSNOZ+PJtFUs5VYXRYa5E/RlStXrySrV16AUttjJL5a56c41dtwmbLCSQgTZh7wDVQUTgJFm8l4sfkNOFJMQBgchhn8bcxyGLaAaQmIlA+kJFJ/jNF7wcYpjqWzftlmqboAwhuYyPVrJK0Q3wvm0sSbapATa6KLxjKBPqBKoqPnb86cWSU6IdFnD5J0joWDhESfJELSWu117uvrw/LlyytiixrJlD5y5AgASFXo6rFmZmYwMTGBiy66qGbbAjuHmn4sU6LJrT8dVgvFdUj9kTFuLyU6ahH1esWIDU7XSSaRngS1CFGxxTuMgGMXG+AwD7VKtRCw8gJsKogHTBkh6eZgAjCa/GJSiQBSfN5XrHFDoFNwF2vSh2qRpkZcn9STHaMFxqTsJIi3gJNcpurHZ7gcPBM9yAUrlsLnAhnDRGdLBlO5AniZwtCcPjPdCoFAiU7sHAkSvPqQkGhFREXcVXudHcfB0aNHcfnll1fMW8/O4TgOhoaGAKAh20eoavf19WHlypUl20j5tskKC9OZNJCfq32DuMoajNWpJIqAqnysQf7OOJQZLgHJvpPuAFkxHEEWtQohY7SZRK6fBQ1wvCKLKoQdJz2AFQBRQdaKhZNMwPQ5jPFim3czzOMWAUnPFTtPlh0HaWqFVpGgIlEUsvUTY/kSEk1aQ+KzkwAgM6+p9ciOs5lDZCwgPJBt3ynUWDkk+3D0p4MwOLD4/BXAC1NoB9DSnkbzogwyrSmssBqPmDsVhYWJEn0WIbFzLBgkJFoBjcbcDQwMoKOjA4sWLZLOV42BgYGKfGcZQoKcz+cxPDyMK6+8MnK7ZIWFaULtpuwctmmiQBRRnsmIO9oGIFnmNHiiz2QhZOxjnY7jJZldVE0JCicB3zchTJQIdwgzC/g5ABBgHDAZD1q8Cw7TBgyDw2DFtu5hFrfO90hVidYoUtRSwmUPn0hCLFuGmC4rxlRehr5ZMAuIJt4uQybH4JgcvI4bI1xtqD4zANnpArLTga3N3LZJPkAZ4laiExJ9diGxcywcJCQ6BpSTY8/z0N/fj4svvlg6XzV838fAwAAuvPBC/PKXv6zrnQ7HGhgYwOLFi9Ha2lozj2EYEELAJ8ZixLNT6hpnGiYqmMqpgI7qKZk9NjsHBR31WDYWAfKQSKy6p8XKQq0iznQKnZshMT+DMIL27h7MgNyVL1NWFmDkAT4pYIkwizv4L+MCZq5IutOBpaTU4j3OpA8KGjYLvU6WxOqlmdNUMah6Mabw6WY/pI/bYbCHARvBuc5wBPixYOdTmeCmX5iAsOaPie9Hnw+bms5cYWEul0vsHGcbzlLSudCQkGgFMMbI4sKQHA8ODqKpqSky81NGogcHB5FKpbBkyZKGUzx838eRI0fIKLzwJB9Xq24qGgoALIPBieOscBq80jqrkTZ0USX9OhYI+q3oVchItCriVPR1Mpd11k95y3md48IYvJAxCgB+UdUOF8qWb1eRcCPI4DZNAWYImCYPlgMLyHaKz7d412lCo1EkKP1gKCWaggdlVVlKiHUSVcgUkvllGGMwBIMoigNuXsCAGWx/AWAiEAA8ikQr5kQn6RwJtJHYORYMEhKtiKhs5ZDQcs7R29uLc889l2zVHaUwhxnPGzduDC4EDRQgGoZRyhbt6uqKnKdU9EgUFgqqsQJxlZNdMnyHA1btcikHyEW1RfZijMujoJOCcQYtGDLiSxWDaQnqOsQ3rrFiPtGK+HiM+r4wFqjb4XJhNGCYxV1ePBm2ePeKqSRGWR63JcCsgHizPANSorLATvalVLRm6BTvST3ZWhGDlHpNL0Jus6f+C3Cc6Kdpzc1nrtlKks5xdiGxcywcxHkJOmsRkuiRkREYhoHu7m7pfNUYGxsD5xwrVqwozVfPzmEYBlzXrWiuEjUPIGnVTV0XieuSIbv6UsECRItj0yEIvKchx8boiVa+JJ+U1UABqqkdcaraivNLoZFyEmdqCIv7hqDRZRgDZwZ8bqEAG1mexqyXwXShGZNzLZiYasPUiTYcH+7E8f5OnDjcgcnDizDd24bciQzyfc0oDDXBHU3DO2HDn7YgcvTvkdwsmRtLSyGmlpEsoprTDZA3C8JX/3a6brRAoWLnONPpHPfccw+uvPJKNDc3o6Ojo6FlhBC44447sGLFCjQ1NWHnzp146aWXKuYZHx/H9ddfj/b2dnR0dOC9730vZmdnVXYlQSMQC/R1FiJRohUgs3OEXmgZqY0i0UIIHD58GOvWrSudlBuxc0xNTUEIQRL2cHsNw6CVaJKYUaRc42KqGP8me9xu+AI8YkDTEfBbIlako0RLFolnAb2xaH5BqIRxWjC0tkt9LGWokNhGhtNR6FWL5xr6XMIW7wBgwiwAvokK//b8eEGzbhPFwkkmAluJw2Fws6RyM7toK9GJy5MR1dOVDkIto6FEFwrRdxJNTY0r0XF6oj3Pg+u6Skq04zh4xzvege3bt+MrX/lKQ8t85jOfwYMPPoivf/3rWL9+PT7+8Y9j165d+PWvf41MJkgmuf766zE8PIx9+/bBdV3ceOONuPnmm/Hoo49q7VuCaCRK9MJBQqJjgGmamJ6ehuM4WLVqlXS+anI8OTmJubm5iuYqjdg5QtW73ok8LC6MAjWdgilhLKdD3SRJP6F6WQUBpzmKXIv4/BFxqqQx+pjjzPTWKlKknnLojEVBQqKVCbHu+lUR9w0JC5zHpcLJ4A9Y2WLTwiowp2gnYfOFk2GLd+YDYhKVhZMAyG5NoH9G0mOj6skGAItYpprgNzB0Lhcdbq2qRNt24/PLtycHAEok+pOf/CQA4Gtf+1pD8wsh8MADD+D222/H2972NgDAww8/jOXLl+Pxxx/HddddhxdeeAFPPPEEfvazn+HSSy8FAHzhC1/A1Vdfjfvvv7+iG26Ck8RCVG4X2v40iIREK0IIASFEhdpsmiaOHz+OdevWSX1ypmnWtNoOOw2WN2qpZ+eYnJxENpttiASbpknmRJNqMMUvZf2qY1IEY2/4EQWJgmgWBHimdkWMaGMt0/ViPafEWaQYpz8jxu2KtUiRQozHRfbU5LSQeB0lnBvwWfEGS6CixbuRA3g5vwxbvBc4MCWCLG4jzOLmMA0OYQCGw+YLJ0vLSrZbtdmNoNNBhIISHc7pONG3l88++zP09jYjlUohlUrBtu3Sv6tfvu+X1NuTRUiiT2U6R29vL0ZGRrBz587StEWLFmHbtm04cOAArrvuOhw4cAAdHR0lAg0AO3fuhGEYOHjwIN7+9refsu0765CQ6AWDhETHAM/zkM/nsXbtWul81YWFs7OzOH78ODZv3lwxXz07R29vL7q7uzE4OFhD6KPWSUXcqUqCMjfHaSnUi2ssjXWYroAXZSVxBbyUKvtS3y51UqZRDKYBZeIpUaJPx3fltNykaa4/zv0nb5Bli1Wvv9jiHZ4ZpJOUFU6WZvEC9bpUOAkOE8XEkmwKpsnBig1wDJuDpXzAJraA2jBZLGCU3C5BOm2Rdo7XvW4bGONwHKf0cl0XU1NTFdPCc7NpmhgdHSWJdjkZlz0xzGazME0zNmU7CiMjIwCA5cuXV0xfvnx56b2RkREsW7as4n3LstDV1VWaJ0E8SOwcCwcJiVYA5YmenZ1FW1tb3ZNgNTnu6+vDihUrahQNGYnOZrMYGxvDFVdcgcHBwbpV4jISTadzEGNJCgvjIgBaJEORsEhjzmJMrmBcQEQR74KAH2UzkYylTFa134xaeYxjyXAmrSGAsqpdNy7vTK5f50kAlcUs+02W2q8zcDDwYot3c67otKh+gsMBGAIGn7eTmEwEGdxCwPTNooc7IN2weeB7btTOQW5osHxTkx1Jog2DoaOjTf60LVyl7+MXv/gFWltb0dnZWUGwZ2ZmKv72is2pLMuqIdf//M//XBovnU7j/e9/P/bu3Std9wsvvIDzzjuvsX1O8MpFokQvGCQk+iQxOzuLfD7fUIV0OTkuFAoYGhrC9u3ba+ajovAAoL+/H8uXL0dLSwuA+lFLpmnC49GEnBR+/GilRnp9iYtMxVgMSA4V5yN9HVJCebgdASeqQBJQL9yUHRRVC4YMr1RriCp0rCESKLdp1ymSjNmyc9osKAYDNwLCXU4mzCxQG+EsYLgChlVGuo1A7UZKQOQNpU2w7ehLXlNTqiECDcxHh7a0tGDJkiXSeTnncF23gliHr1//+td46aWXMDw8jFwuhy996UsAAm/0kiVL0NXVhfvuuw89PT2l8TZs2NDQNlYjLEAfHR0tpUCFf4d9Brq7uzE2NlaxnOd5GB8flxawJ9BAQqIXDJKIu5NEb28v2toaUzDKSXR/fz8WL16MtrY26XzlcF0XR48exfr16+fj6+oUIAKglWiCaeXzUTEAgOxypaoS6yAuNTbWR/oxKuc0wRLkMgYRFWhSqramBYBc4Ax6tU+XNSJOVVeroYriULI3G1KVG0V198cG1q+eOc4guAGPmSjARo6nMOtlMOU1YyrbAi+nZoFIpaIFh0zGqrFxeJ4Hz/Pg+36pD0AobjQacWcYBtLpNNra2rB48WKsWLEC69atw6ZNm/ClL30JP/7xj/HlL38Z69atg+d5GBsbw8GDB/HQQw/htttuwxVXXIHzzjuv9EqlGk8QKcf69evR3d2N/fv3l6ZNT0/j4MGDJSFn+/btmJycxDPPPFOa58c//jE459i2bZvWehMkiAOq0Yvj4+P44Ac/iHPPPRdNTU1Yu3YtPvShD2FqaqpivtBdUP567LHHlLYtUaJPAvl8HsPDw1i7dm2pOESGkBx7nle306Dj1FaQHzlyBO3t7Vi0aBGA4AtQL0/add1ISwFAc4CodQfrk6zoDCrROmkT5OrjVENVH89TY0kKyEji6xJWHZ8mS2SGsoZ6Sm7XK9QaonOMZVBWouOOy9ORR+IsbJSsQtUTL21CpPjhpFLRl7zm5hRM0ywJC2EBOYDIc6zneRBCwHGckoBSbvcrF1Xqke2w5bdhGFi6dCmWLl2KCy64QLrMwMAAxsfHMTAwAN/38dxzzwEAzjnnHLS2tgIAzjvvPNx33314+9vfDsYYPvzhD+NTn/oUNm3aVIq4W7lyJa655hoAwPnnn4/du3fjpptuwt69e+G6Lvbs2YPrrrsuSeaIGYknWg2q0YtDQ0MYGhrC/fffj82bN6O/vx/ve9/7MDQ0hG9961sV8371q1/F7t27S383mrseIiHRCqhWm/v6+rBkyRI0Nzc3FEgf2jSOHj1at9Ng9Ymbc47+/v6KIsR6UXi+7yOfzyurcrZtA07tTYHcukAQ9Ri9vLGpizE23JBuL3HtjDePOJrJUnYOaQ63J+CrerhVFVcKOnYGGTT886r+Yq0bAo31KxNy2TLkAjgtnmytGEfJAtLmORFjWFb0TjY3pyNV3vA8XE6oOefI5XJoaWmpiBAVQtQVNapJNmMMMzMzyskcd9xxB77+9a+X/t66dSsA4Cc/+Qne+MY3AgBefPHFCuXttttuw9zcHG6++WZMTk5ix44deOKJJypqch555BHs2bMHV111FQzDwLXXXosHH3xQadsSNIDEztEwdKIXL7jgAnz7298u/b1x40bcc889+P3f/314nleRhtbR0XFSdqWERGvCdV0cOXIEl112Gebm5hqyVYRNWfr6+sjW4OF81eMNDw/DNM2K6ul6UXhDQ0PBPMSXmxNMK5NJA3O106WZsHHZOeJ8RK4ze1zbK8uiVoQ0So28UYj+UJiQfFiUQk18tQ1XgEe0egcCQh7VGEfLE3w6SKQMimo7gFij906LNUNDCdeK+Iu5sLFhEl2EaRIkmsiIrlaRTdPE5OQkLMtCR0dHxTk8inCX/12ubpf/+6c//SkOHz6stB9f+9rX6mZEV9v1GGO46667cNddd5HLdHV1JY1VTgMSJbpxxBW9ODU1hfb29goCDQAf+MAH8Ad/8AfYsGED3ve+9+HGG29suD4CSEi0FoQQGBgYKPlz8vl8wyTadV2kUqmaqKHq+crHE0Kgr6+vphuiTIkOl2ltbSVTOKjplhV9QaE6GcaqIuqQ0hgTNWJVu1Ufz1Ozy1RKkiwRH4rkaxqnJ5l6z8px+C0RG+0L5acZOkWdFHRV1UhoFCnKbA6xFnzGaRnS8rlI3tLZT0USTVkrmpob9xpPTEzUEOiosWUF3+Xih+/7JUtFgrMEC1iJnp6erpicTqeRTqe1h40jevH48eO4++67cfPNN1dMv+uuu/CmN70Jzc3N+OEPf4j3v//9mJ2dxYc+9KGGty8pLFQEYwy+76O/v79UKV1PEQ4Rkt6enh6pT646nePEiRPI5/M13RBlUXjHjx+H67poaWkhFWfykX88ARENvKkwu0ZBnBY0HsNHQoeoSywYqmNRPngtCwLxRdEr7COUawm5N4niSUohj9saouyT17ELxfh9kVoz4rSmxKwq63xm1b+NeucCg7hRa1Zo+T0xMYHOzs6G54/eDqP0evbZZ/E7v/M7JzVeglcZxAJ9AVizZg0WLVpUet13332Rh+BjH/tYZGFf+es3v/mN3vEtw/T0NN761rdi8+bN+MQnPlHx3sc//nG87nWvw9atW/HRj34Ut912Gz772c8qjZ8o0QoIlYehoSGk0+lSvFFo06iHmZkZAJC2Bg/Hq86TXrt2bY2yISPv4TKu6+I1qQ5YLRnkuIs5z8WUW8BkIa/c9puCrMW08hpkxIBCnIWFireVMpUuLmXxtKWJKKcz0GxVdSySEEtgFgS8tiivtgBMRQ/G6TrGcarKMkKuWPCntf8x7yf5nZF9ZjGdYJoaJNGcc0xOTmLTpk2qK47E5OQkfvWrX2HHjh2xjJfg1QGGeEtAXgkI9ycMQAhBqdB//Md/jPe85z3SMTds2HBS0YszMzPYvXs32tra8J3vfKduL49t27bh7rvvRqFQaFg9T0i0IkKbxKZNm0qkulEl+ujRowDqV2uX2zRmZmYwPj6OCy+8UDpfOWZmZjAxMYGLLroIvb29OPzraQCVj1gWGSY6fBvnO10A8yAMH+nmNDJtTWhBCud3LMGc52LSyWPaCSLvqB+9AQaflFGJhU5HegEFjYs/aSkgxom1JbRMpYwrAQQadg7ZVz7O7dIg5IJq6+4I+BFZ3IYjwJtiKo6V3UBJlqFwujo5KluG4r7xUFXPucRiRq2G2ObmBu0cMzMzMAyjlIBxsjh48CDOOeccqb0vwQLEArZztLe3V5BoCmESTT2URy9ecsklABqLXpyensauXbuQTqfx3e9+t6apXRSee+45dHZ2KtlPEhKtiNHRUQghKu6A6rXpBoIPdHJyEkDggZMR6XJS3tfXh5UrV0Z+qBR57+/vx4oVK5BOp8GI9XAO5LMejo5NlU3NA5jC1p4VONo3UZq6yLDQnDbQiRReayyHYQEz2Rm0dbXDYxwjJ2ZwPJsFTwG8ugW2zqPgCJy2dtFxFYSdafU4xkfw5EJUxSpOD/EjZ5fdwBD7KLOTUAkoFieewMRsWYjT361V8KdRihBrYaNsmUZR3D9OfGebiMLCalB+aF0cOHAAr3vd62IZK8GrB0lhYeNoJHpxcHAQV111FR5++GFcfvnlmJ6expvf/GZks1l84xvfwPT0dMmrvXTpUpimie9973sYHR3FFVdcgUwmg3379uHee+/Fn/zJnyhtX0KiFdHW1obNmzdXkOCQRAshyJNrX18fVq1ahSNHjsD3feljhXC8QqGA4eFhXHnllZHzRSnRjuNUdEKkSDRAqzLV4FxgNufDmfPx0sj4/Bv9xwAATaaJJt8qjjl/ZWtqsZHLOhApgJuAsAS4DRgZg1y5jida2cdMrkPEZgiXqrQLxM6hpR5rHC9KVaYgtYaoeoKFIAseURBAawS5dgCXEjJULzS0Y+a0QZkQy1RlCprpIKpwnOo+5AEaVaInJibIaFIdHDhwADfeeGNs4yV4lWABK9GnAvWiF13XxYsvvohsNgsAePbZZ3Hw4EEAQXZ6OXp7e9HT0wPbtvHFL34RH/nIRyCEwDnnnIPPfe5zuOmmm5S2LSHRimhra0Nzc3PFtNCrTLXgzuVyGB4exo4dOzA4OFhXtQ5J9MDAALq6ushHh1FK9MDAADo7O8s6IdJXYNWCQ+pXYhgGUNwnxuavnvmsD9M1wMFqrqlWFrCmylIJDAHGRMBZ8vOEm9sATwOI0x6hYRlRLgaUrT5G9ViZrJ4mVVuLeFFvxWgzUbYm+KDPktR2SbziVMSgNItb9SZCw48fZ9JJ7NtMLaNAosPdnp2JyO4EcOzYCF54wUYqlUIqlUI6nS79O5VKwbIsCCEwOTmJjRs3Km5pNAqFAn72s5/hK1/5SizjJXiVYaGR6FOIetGLPT09FTVeb3zjG+vWfO3evbuiyYouEhIdA0Li7Pt+JInu7+/HsmXL0NLS0pD1I1SYBwYGyK6G5fOF4JxjYGCg0j8teeyoXFhIzG7K1G7JcCHhZuGMArDnOFgE0xEFHyzFIJgIFjAAZgh4xZxivxCQbj8NCFtTuotT8Y0xRi/WPGAdxZWAlHgRhX06cXWkEn0ayD3zAUGcJcnOjxrrl2ZxE8eSeQRZjzPCEafHmqFjQdFRojOZJgC1jaQ6u4L82Hw+j6mpqYoW4EIIGIYB27bheR4OHz5Mku2QcDdi9/jP//xPtLe3x1akmODVg8TOsXCQkGgNVJPP0NoRRY7Lm7IAjfmnQyKeyWSkjw6rleihoSHYtl1KDQHkdg5KiaZAXRZMKglBtpAiDGZAMDZPuP3gZbkAcwWs3PyKhAjafDAHsKcAGAEREMwHTxtgnoCVAvxUJeHWyQomEaeyJ0NMnSL1VHhiJz0BEE1YTgvxjfHYx5ofDQ1rioQoGsR7Vl7AIYoklaGTea1Rv6Blf4pYpt5eO270ubdn3Sps2rSmZroQAp7noVAo4MiRI5iamkJXVxccx0GhUMDMzEyJbBcKhRLhribWIdmenp4u1az88Ic/xJVXXhmbvzrBqwiJnWPBICHRiog64THGSHIcxr2E/dirM6CjEJLyNWvWSE+w5Uq0EAL9/f1Yt25d5TKS5T2PaNRC/Boo8m/VSRuJAyXbB/Vm+Z9Fhdv0OYQwAD9U+kyYDmDOcVi5YB4hOJgQAckWDMwKiA43AWFw8AwDt6Hc1EFq54grscSXRLkpEjxZogW9M4RCqnMzoqGQa6nail9Vg9MfvVY77hhJNKlqSwkpYSfJqbd2lxFi1c9fdv2l16NOPguF6ChSKuKOMQbbtmHbNvL5PLq7u7F27dro7SwS7nIVu1AolP49OzuLf/u3f8Nf/dVfYWJiAoVCAaZpYvXq1Vi+fHnpdcUVV+AP//APlfctwasHiRK9cJCQaEWEIeDViCLRnHP09/fjNa95jXS+apw4cQIA6sa/hB0QAWB8fDyyIUu5R7kajhddZENd0agsbItopRtsgNIqaMT4Ay3fJMYMgBUdIp4I1G4/5A1mqf254Qj4x4otTIQIyJABgDMYDiBsAW4I8AyDn6qzvRQpUd0RHR+xzA9OLULZPEhCLkA1e1GNCtTyJMfp+44xXlDrpifO9YMm8dQF0PAkrd19AT+qtbyGqqzz9EDJzlEcX5VElxYv+qHDBluR21NGuFtaWiLn2bJlC/bs2QPf97Fu3Tp85StfwfLlyzE6Olp6Jcr0WYBEiV4wSEh0TIgix0NDQ7Asq4IMN0Ki+/v7AdT3LJumiXw+DyBI/1izZk2tJ1tyQvb96KsQybN49HbL7Byx/a40/MpxE/XSDQkrXvR9wAo93FU2S5b1kWkK9XMObhmACXCrqHKnBLgl4GcYREhSVNXjGO0nWsVo1Ow6j+Zj3MdY7RQ6hFxD7SdveuIk0VzieycmGz69CdSxIYskQRdWyhCnJzqf10vnmJ2dhRCirGD75PBf//VfKBQK+J3f+Z26DSASJEjwykVCojUQRW6ryXHYlKWnp6dCWahHoicnJzE9Pd1wASLnHLOzszhx4kSF4h1CpkRTWdUUeY8qmgQCvzIJVesCCfriq6xuakDVY2yAwS8dFzPIIfYBo1Abo1fycHtAahIA5xApIyDcloDhClhzER5uP0YSfboaupzJzGMJidQhscpeYY3PS+uGQJY0EqMSTxJyDXJr5jj8FirEm1hIcT2myUjhoF5OdJgPXa9RVqM4cOAArrjiioRAn6VI7BwLBwmJjgnVpPfYsWNwHKcUBk7NV42+vj6sXr0aw8PDdb3T4Vj9/f3o7u6O7MgjJEo0M6KvwtRvgSLR0qePMT2a1Bkl1k5zijcD5Koj7gXCGx3D5xDcAGCCOYDhBO9b1R7u4sYKziBsQLCQdAsIG/XtJFHbq1OMp0O8VD8T2X2ksp1Cssxp8FfHGr2nsX7DCyIjI8fSUHs5YZiWhbxwyk5CLSCxwLRMCWQGPfCwjsFiABewTAMOCy1X88s2ZVKYnSvUrpsBmUx9Et3Z2SmdRwVJk5WzHImdY8EgIdGKaNQT3dvbi3Xr1tUQT1lhYTabxejoKF7/+tdjbGysISXa8zwMDQ1J2l/qJGdE/xoor55UiVYFKTtKlolLco7xJEAOJV1H/R0pf7JgeKLoVzaBKqun4Qj4o0EcIGMCggWki3EGIx+klISEm9ch3dSNGLVIrMQzRt838wFBcaU4iwR17Ac6cXkxFinG2QRHSHKyqWWocwjzJD7uWY5UReyzCJ42HHfRjOCJmjAAYQW+/nSmOZJENzWlpD5kIQQmJiawbt06ch5V/Pu//zve8573xDZeglcZEhK9YJCQaE1UdycsJ9GhJeO1r31tzXIyJbq/vx/Lly9Hc3Nzw1F4uVxO2queSWQhqgUuZcWmbB7SeGHq4uz6QFPEhZNqACNZBd1lUJVdS/yaGqo2uQr1t8h1yKwO5fGGTAQk0prjYC0poIpLsLwPngKYgRLhFkWFTwgOwzVKjW+ELNKwzo6cycI+QxBtuiFRYqUkVu1LEWvet4a/OXYlnNp/6gQiUZWDeotatmz49GdmRNcIlsAYC465G2xTui2ajdezcszNzcH3ffIcq4rBwUEcOXIEV1xxRSzjJXj1IbFzLBwkJFoDUe29y0lvb28vVq9eHel3o8ix67o4evRoKU+6kSg8IOh6tXnzZskcEhJNdiyMns4JUk+qOLILPUHgjZwDtDXVTnd98CjSLVuHImSjUCQr1uJFZc4fJ+lnJdIdEu4Se/EN2MUcbgFRIklG3oA9VyTcZvFlC8Dh4CkWSbjPdOaz8likv5gmhLEWCWr4m+OM/pMuQ149iKJCaYwisQzVUAaBSl0NWwi4URF+poGuRU2Ymy1gZrZQISDUS+Y4FX7oLVu2xFakmOBViESJXjBISHRMCMlxNpvF2NgY3vCGN0jnq8bRo0fR1tZWypNuRImenp4GUCcKT6LGUiSautabVvTXZW52JnqBGAkjc30AEYqRlKirtU6ThqHEVCCp5bvWmT0u5bxqLBb4QwAApi8guBmQ0zJCY84x2DmzgnCHKxBG0cdtlrV1l9lJYlVvNcaiCKlGrnas+dU+7W+OVdUnPxcxnyrT4Pq1CiuJm20gOAbV8PIu0JKume4XXPgvDiH/q0HYjKF1cQtaulqRXtSM1Yuj4+hCJH7oBHGDCVFMqlk4WGj70ygSEq2Iep7ovr4+dHd3o6mpVk0N53Mcp2Ia5xx9fX0VinI9Ei2EwOjoKEzTlPv5ZEo0dYEifgwtzc0Apmumt7a2AXPjxDgxRWeQiQv0IsyLfkTMiAut7IIdV4FknJCds1Qbukj3TrkrIiv+P6s5boyjxkoCAGbWR2qSBR8zE6Uuk/AFrBwqCLefAmCy00NiKX91nA1loOFv1ii4jNNfLc3vJiCLyyOPv2Q/I+0cki+yZRV3UgjMHp/F7PFZAEBHit750A+9Zk1tN0NdHDhwALfffnts4yV4FSJRohcMEhIdE0JyPDw8LPW6RZHjkZERmKaJZcuWlaaVdyOMQtjxqu4jRh0lmqwYix7LpJqtxOr/JYodBdVfkS6Io8iykXfht0RcUOO0jNTxMSuNpfGmsuAr9d4qbrBkrIBwG/ObzQOias4x+FUMK1S4RbgJYVv3YpdJxoN27+WEOxyTgrLNRELutKwRMRYpnpZOih5t5yCPpU73Rdl9bR1PdOUK6PNUU2vtDXWIbDYLz/OwaNEihZXRmJqawi9/+ctEiT7LkXiiFw4SEh0TDMPA9PQ0Ojs7pQUo1eRYCIHe3t7IPGmZJzqMtRsZGZFul6xhi6onmlTlyMfH9LoZ2bmNSoJQ81YHY9FvKS0gI38FD4jwVDLXAxDhtYzTEy2DIsFVDGqRLqQzFp30UfsOAwNEWeFkkXAHlhITZpbDLBQjAVF8bMoFwBnS42X+bUuAGzxIKjEBbjd+sxQriY2xfTsQM4knYHCJSBxjYaNsmyOVaMn5jhEkurm1Nho0xMTEBBYtWhSbH/rpp5/G+vXrsWLFiljGS/AqRaJELxgkJFoRZMybYWB2dhaXXHKJdPlqcky165bZOULf9WWXXYahoSHp+nzJRcUn0zkothw92SDekKquFIEnbhxMkyGq1xiD7LG6Iiul9lsnGswhijALLpCRFzI1ug6dpiLKY0lJtKoSDRWLuhyqHm4TMAscvm0ECqaHeVvJDAJlm5U92RAcsBiYz2Dmi4TbBrgZtHbXKlKkNlfWyZBaSCN6LlYSr6PES7dZvXJXRYmWfVOb6pDouP3QO3bsiG28BK9OJEr0wkFComPCzMwMDMPA4sWLpfNVk2OqXbcsnaM8Ck8IAc45qZSQvmcAXESPTyvUxEAUmZIQeFkTmCj4LnHVluyfqj2CAuO0ZYQmkmpWkgDRHnLD8YCItsRkZFuMxFd6I6Q0kmZRpcwLr2pBoN4QAmCs2MQm/K8BcMDK8eDf1ZGAOR+ZY8XEEiYAwSHsQNEWDDDz84WTfhpShVtacKejKsdJ4jWUcOUmONAg/lxotP2OHqyZsHOEfuhqgeNk8NRTT+GGG26IbbwEr1IkSvSCQUKiY4AQAuPj48hkMtIiP6CSRIftui+44ALpfOUoj8ILibeURMuILPGW55FpupFTZTSS5N2KPlspAaKgmqOrsQ6aqFMebnKoYuOUiOk+MVbWAVpqVTTGhXKGMb1Rkvc0PNzKfnDKC88FbfEhb+qodUDZQ26I+bbuAek2Swo38wVEfn7A0MNtFgKvNgwEXSYtA8IKbtB8V8x7uMu+BzqdBHWKFFVJvFwJp59MUeDElYj6WhieuvuJEhSaIoqMASCXy8FxnNj80I7j4Gc/+xn+9m//NpbxErx6kSjRCwcxtpo7u1BuRxgdHYUQgmyLXY5yctzX14cVK1Ygna49iTcShReuT1aA6BNqtuwC5LiO5N2IsWQ50QRUybVB+Bl1urCRoFwscapuMZJ+kmB69EFhTpQpBsUIwYjpcXq442wHrnVjQyDO71DE+hkYGDNg+AwMJhg3Yfg2zIIJa85CetxE5piF5kELrb0mWl9maDvE0HoISB9jaOkHmo8CmRGB9AkBe1oEdgrKjqVYpGho+Lu1/NUy+5Fi5jZzyTMIuV2uE+3/aGqLtnOEfuhGzuuN4LnnnkNLSwvOPfdcpeXuueceXHnllWhubi5FoNaDEAJ33HEHVqxYgaamJuzcuRMvvfRSxTzj4+O4/vrr0d7ejo6ODrz3ve/F7Oys0rYl0IRYoK+zEAmJVkR1xF1YGLhs2bKGmqOEhYWFQgFDQ0Po6emRzlcOzjn6+/tLy4TbISPRk5NTxPiSiw2hRJNWaa1HvlQBYfRC3CduBmTxflSRoobqqboOZXsCoTZLx9IotiQTSwiCwQoy46naWZNJ5lcmvnEq5Br2F+kqVJ+AlH3vQsIdVBqYMF0DhmfCLJiw5yykJi1kjlloGjHmCfdLQOthoLUXaO4HmocYMqMC6WMc9rSAkRfyAlyNuDzZjQfXictTRL1uhTUQAtOTtfGcAHBi4hheeukl9Pf3Y3h4GCdOnCg9JWyUtDaCp556Cq973evqPq2shuM4eMc73oFbbrml4WU+85nP4MEHH8TevXtx8OBBtLS0YNeuXcjn86V5rr/+ejz//PPYt28fvv/97+Nf//VfcfPNNyttWwJ9hGr0QnmdrUjsHCeJiYkJzM3NYePGjZiYmKg7f1hYODAwgK6uLrJrVVQ6x+joKBhjpSg8xljdFI8hIr3DZAw+wUQC5SVasVSDBmlSvMAIglwDoAmAoo9ZStjImxHVojuZGqfGyKWh94pRfUx2Y0gQM1aIzuGOM0lFKx2DXEBjLGoZnThEnfUD80WTrHgRE4DpCMBiNXZxAQEjx5GaYIDgEBabTynxAdMV4JaAn2FB85vid44sEpTtjmrSh6RxDLV+wxV1tqIWTZnonPu2jlZ4nodsNgvHcVAoFOA4TkmcGBoaQjqdRiqVQiqVqvh3+d+2bUsJ8oEDB/DGN75RaZsB4JOf/CQA4Gtf+1pD8wsh8MADD+D222/H2972NgDAww8/jOXLl+Pxxx/HddddhxdeeAFPPPEEfvazn+HSSy8FAHzhC1/A1Vdfjfvvvx8rV65U3s4EChBC/lTy1YiFtj8NIiHRGmCMlewcvb29WLNmDVKpVN0Og0BAUD3Pw8DAAC6++GLpfNXj9fX1Yd26dRX+Z1medDabxeTEZOR7hsFIBcggHl9SKjF54ZAyAEU/q0azE9XiRS0fsyKHpsaSFy/S648eS6LOk8+e1H2spPeV8nDnXaCZYFiq9yJxKtGyximq4KDbceuMp6GqR62HgcFA0cfNDLAwFtAFzCyH785vtCgWHLPiRgujrGiymFJiOAJGHuBpVP42NZI+ZE1YyGVUlWgATiFaGNiwqQfnn7+hYloul8O//du/Yfv27fA8D47jVBDsKMLNGINt2xUk+5/+6Z+Qz+exbNky/PSnP8U73/lOHDt2DIsXL44tNq8avb29GBkZwc6dO0vTFi1ahG3btuHAgQO47rrrcODAAXR0dJQINADs3LkThmHg4MGDePvb335Kti1BgoWGhESfBMJHfq95zWvgum7DJFoIgXQ6LU3yqE7nmJycxOzsLFavXl0znizFY1FnB4DaGDyDGaCfo2ooslGjxEh0qHXL9oJWohVXHaOySyLGbola20t95DLvsaptQaoeE4Q87wFttacp5tPxHOpNaySqZkwkVjqW7EZFNWlDuv7Gdoax+ZUGViYTzEXFwylrjsPKGpWEmwlwMMAKWoKXYgHtoGCS/FxkLjjqRk1DiXby0SQ6Kp0j9EO3trY2NLbv+xWkOvz3+Pg4fvWrX2FwcBCzs7N43/veh5mZmVJzreXLl+O+++7D7t27lfZFhrB3wPLlyyumL1++vPTeyMhIRXMvALAsC11dXXV7DyQ4eSxEC8RC259GkZBoDYTKa29vL1asWIFMJgPOOXzfhxBC+kgvVB/Wrl0rnS8qCm/16tWwrMqPjFKiPc/D0aNHsXTZKgC/rt0OjU6G1G+EthjH6CWm/M1kH2EhUbXJzYqeXUokiemKsX/SKDllIqVBfKmxNAiO8rlUaKiXrg+A8ACQZI34XsdIYnXiBXVqB0hwmlxqFQnWWX054QYCO4kAKza+qYSZ9ZE6wYKbWyYAVrR+CMCe4/BTrNTaPbSUUNYQQ9VHLYB8NrpgOionWjUf2jRNNDU1oampqWL6pz/9aQDAV7/6VXzrW9/CT37yE2SzWdx666340pe+hOHhYbzlLW+JHPOFF17Aeeed1/A2JHgVoWi/WlBYaPvTIJLCQk0UCgUMDw9j/fr1AOYVZqkKiKAiGgCWLl0qna+cROdyOYyOjmLdunWR80Up0UePHkVrayuam1sixycj5kCTX2o6o6wA5BqgoRJT6yagoXpKFqDfUybqxLGKUYmWd4aL58ZCWghJdXekfhs6RZVkYxzak2wQj/MNWfHkmfRqa3jI4336o+7vrlekyQwjMJaIYkqJa8KeNmDN2UhPWGgas9By1ELrIQOtLzM0DxpoPQy09AItA0DzIJAZE0jNRK9I5pCgSHRUx8JT0WQlbPXd3NyMu+++Gy+88IL0tWHDhjqjRqO7uxtAUENTjtHR0dJ73d3dGBsbq3jf8zyMj4+X5klw6hDaqRba61RBJ0nmjW98YykIIny9733vq5hnYGAAb33rW9Hc3Ixly5bhT//0T+F5al6xRInWRH9/PxYvXlx63FceNyfzuvX39wOo88gdlQpzf38/li1bhubmZul8IYQQGBgYwDnnnIND09EXDlNyRVVVokk3r2wfVdt7UyBblMf5iD4+ewR5FDVaIus0uVEtXiRJkYb3lYwQ9AUEdSaijq9su6jkF2ofJZGA1GpMLqLE1litITJ/tQ60ov8U4/KY5HencvNaUriZABMs+B6GHu48kCZINCPOvYzRCT/VOdH5fB75fD72ZI53vetdpb+XLl1aV0jRxfr169Hd3Y39+/djy5YtAIDp6WkcPHiwlPCxfft2TE5O4plnnil12f3xj38Mzjm2bdt2SrYrQRkSJVoJ119/PYaHh7Fv3z64rosbb7wRN998Mx599FHpcjfddBPuuuuu0t/lHMr3fbz1rW9Fd3c3nnrqKQwPD+OGG26Abdu49957G962RInWQGiVCFVoAA1lNk9NTWF6elrajbB8PM55aV1UFF6UEn3s2DH4vo/u7m6ytTeTfPIkB6OUaNXmFlopDYqVZ9LsX8Wx4lRQqdk1bjiUEWs6hoZVh0KMXSelir5q0oTEZiIoVTtHqxiS0tHo7Yo5v1n5bK+hLEm1gRi7L1LLUNGd1JM3O2XBTlfewU1MTKCtra3GOqeL4eFh9Pf3Y/v27VrLDwwM4LnnnsPAwAB838dzzz2H5557rkKJO++88/Cd73wHQHA+/vCHP4xPfepT+O53v4tf/vKXuOGGG7By5Upcc801AIDzzz8fu3fvxk033YSnn34a//7v/449e/bguuuuS5I5TgPOdBzdqynmLkyS+fKXv4xt27Zhx44d+MIXvoDHHnsMQ0O19V7laG5uRnd3d+nV3t5eeu+HP/whfv3rX+Mb3/gGtmzZgre85S24++678cUvfhGO03ivjIREa2Bubg6dnZ0Vj/sYY9KkDCDwUK9atQqWZdUtQgztHEePHkVLSwupikSts6+vD2vXrpWSdVPymNYn24ETC1AKI7UCLTJHEHidbGfVdWvcDKhbRiRjKTdhIaZr2SaI2TXIKrlqDSsLSZZ0PhON40WOJW3rHg1GFLzFfWOlfEMiI7caYrt69KAgv/sGkUBD3dBT05uIosK4rRwXXXRRxQVcBXfccQe2bt2KO++8E7Ozs9i6dSu2bt2K//iP/yjN8+KLL2Jqaqr092233YYPfvCDuPnmm3HZZZdhdnYWTzzxBDKZeevKI488gvPOOw9XXXUVrr76auzYsSPppni6EEbcLbTXKUC9JBkZHnnkESxZsgQXXHAB/uzP/gzZbLZi3AsvvLCiAHfXrl2Ynp7G888/3/D2JXYODXR2dmLr1q01J2aqyyAw72t+/etfX1KKZQjJcX9/PzZt2kReBKqV6JmZGUxOTpYe41HXdCZhOlR7XFJJUyVz0ouzmkpMDiUlIBrLRCFGZVeeRU0soqhGymL0lLOoY7yBkHu4o6dzoiEQFa8HgCb3ZOdHic1E4ztERgJST4vyHpBORQ/m+4g8fZMfsNDICJfdcCrekAB6SjhVWEh9x6mbLkUS/Vu/9VuNbGFDeOqpp7Bjxw7t5b/2ta/VzYiutgcyxnDXXXdVPMquRldXV93H4QlODRZyOsf0dGUWezqdjuzK3Ch0k2R+7/d+D+vWrcPKlSvxi1/8Ah/96Efx4osv4h//8R9L40Yl2ITvNYpEiY4RMhJd7muWzVc+FhB0KZQVelQr0f39/Vi5ciVSqeDiywlVWdax0CO8g8o3mlK/MgFFpwVJGDVUNHoBdSKpXAwo217SexyfbSLWR/1aiRLRoFV4dSVYPZlE/XiRn6OkmQ65fukPLvo9Y64QPbvsdEOqyrIbJWIZ2fc4xu8YSaKpJxTE96W6qLBQKCCbzcbqh/5//+//4fWvf31s4yVYABAL9AVgzZo1WLRoUel13333RR6Cj33sYzWFf9Wv3/zmN3rHF8DNN9+MXbt24cILL8T111+Phx9+GN/5zndw6NAh7TGjkCjRmogqDKTIseu6OHLkSOlxRD3bRzgWEHwhZYWK5Uq04zgYGhqq8N4xAbSkbMw5lY+MZXyCsoDMzM5ETndJ/xClvMkULnq7oqFB1KkLrUkUJUmIOq3s0quPXoAYKcYOeHpKNLWAjKyqDSUlq8RnokOi1ZVYDbVd5p+nCh7J1toyVVst3oa5PgTh8WUFD2iOULy9GG+6ZJGTBGS/L5NH3xeQ9RnE5Op4u9APbdtEfKIiZmZm8POf/7yUzJEgAbCwlegjR45UWJcoFfqP//iP8Z73vEc65oYNG2JLkgkLZl9++WVs3LgR3d3dePrppyvmCRNtVMZNSHSMoEj00aNH0dbWVvLZ1WvVDaBUNFL9uKEa5YT8yJEj6OzsrGwlPuUh9esc0gZDe2cTmhdlkGmx0ZxKY0VXBtO5WTS1tyHne5h1XUzl8qSdI53OADO1Slc2l4/eOC0lOqbIOA0lmvxMpEkEBOLyMUtItHo7cGJ2QCPKLL59l/poFS0YBhgputJKtIa/WvV4+QKC4mWUBUGq6qp99oYvJGJ09DJm3oXfSjS0oVI4yJsI0Fcb6nvBBZnWoxqn1agnOm4/9MGDB7Fu3TqsWrUqtjETLAAs4Lbf7e3tDfn/G02oiStJ5rnnngMArFixojTuPffcg7GxsZJdZN++fWhvb8fmzZsbHjch0RoIHzVUI4pEc87R399fEZrfiJ0jjMIziRbc1WNxzjEwMIDXvOY1Fe+Hbg7BBaZOZDF1IjDWr1zejqHR0Ls0X+WdAdDUYqOpNYOmtjRSLTbMtAHYBlJpCy3dKWQ9F7MFF5PZPBzfx6JF7cDEnHQ7y8EQo4JLKtGSReKyG2ilSqiuW/JenIVicbYDVySrcsVV7QZCEFYk2ViqzVkASKwZxPHyOQTZYVE9YUZYajYXrexwqcUoerqRdYDWpprpzOMQlmLLd9l9mmIBJ7WKajvHxMQEzjnnHKWxZThw4MBJ+aETLEwsZCU6bpQnyezduxeu69YkyQwODuKqq67Cww8/jMsvvxyHDh3Co48+iquvvhqLFy/GL37xC3zkIx/BG97wBlx00UUAgDe/+c3YvHkz3vWud+Ezn/kMRkZGcPvtt+MDH/iAkoc7IdGaCBurlJPpKHI8MjICxliFolyPROfzeYyMjDREtg3DgOM4pfmr7+wodVX2fS9kPeTmXGC0Msx87eouDB4dL/3dDGBJi41F7cBFZgdSzRaO9B/DzGwe3AKYyyFsBzxtgqeN+Qu8hpeYJKXEGzpKKWXnIKFD1GMsBlR9pC50rA4aBFOVrEpPvpTFhmzoQg9FbhcBvRsF4imA1EPe8CYFkFl8yM9LcnOhuC9B9J+azcZwOfwMQaILHtBUaycxPA5OHBzqeDLqDp20c8xfLB3HwdzcXKx+6AMHDuD3fu/3YhsvwQJBmYd4weAU7s8jjzyCPXv24KqrroJhGLj22mvx4IMPlt53XRcvvvhiKX0jlUrhRz/6ER544AHMzc1hzZo1uPbaa3H77beXljFNE9///vdxyy23YPv27WhpacG73/1uaTFuFBISHSOqSa8QAn19fejp6alLtssxMDCAJUuWYHp6uqE86TDFI6qVOGXN8H06z5ZstlJdAQ4gN+fCz3o48uLx0vQ0bMAB2EwBGdcAICCEByE4BOOAxyFSLrgJcAMQNgO3DfCUUVREoy62ahd6aStnSngjjpVBETkNz6zqeYYJCYlWTDLRageuasGQ2k+olRPTZQ1dKBJNbZcsnYIkntRgMkIeY8Ej9Xl5AkipHWOpEk3tC7XJngDsGFV9aqiCB7RFX6JS41nwqQKEZUDYJoRlQlgGjKZUsN0NPm0qV6InJibQ2tpaKso+Wbiui6effhr/63/9r1jGS7BwkCjRaqiXJNPT01PBT9asWYOf/vSndcddt24dfvCDH5zUtiUkWgON2jnGx8eRy+Vq/HCywkLP83DkyBFs2bIFv/rVrxpSoguFAmZnZ7F69eqa96lmK6qtLQGJkklMXrdpGfpGpgCEx8wEYMIUHnxhodTyrbwu0eMQpgsIP7hZNzg4A4TgsLIc3GbgKQaeMsDTtNVFJ2OX9EoTHe10GkuodzLUKODTSk5QU2nJfZeqpIr+E58DhJ1Ji5ATFghlEgsNtV3LGkKM5XMIMh5Eo+BSdf0eh7Cj10/dPBqc9mST0X+yByfHs7Bma+szrCYbmawDmEZAsC0DwjLR0tWCKMNZUxWJjtMP/fOf/xxNTU3/P3t/HiVJWaeL40/skXtW1pa1dVX1vgJNA91Nw4xXuII43xmXGccZ7lW5CsdRxlFmXI87iqMwXK5cjlwd3Obq0Z/jjHO942VEHNSxiwYaUehueqO79qwt9z1j+f0RlVmZle8nuiI7G7CJ5xwOXZERb0RmRmY+7+d9Ps/TIOVz4QKA9XlswVP+ZY2L7fmsES6JbiNWk+OzZ89iaGioKfnKrhI9MzMDVVURiUTWbIWXy+UwODjITNii4sUpxw+e58jq9Vor1FX4Ql5gmUTXo3coUqfHboQgCdBNE+DEGh8RTMu6y4AENPxuGkBGhydZggkDJg+YvAlDAGCYEIpGTUqiK8IKWXAc1U3s3k5rNtIBpAWHCAotEKmW4sDJCG9iO2UhqNu5ibQwlsNvu1aq7S35RzvUkNs2CTpNZYTzqnor52+pqm/nWEPZcGK5idAwwZV1oKwDqECrsK/YWyfnSCQSWL9+PX2hDnHw4EEcOHDA1l3JxSsUrpzjooH76W4j6klvNpvF0tIS1q1bx9yPJdNYLf9YixWerusol8sYHh5mPk46bchsqwC7JEOKLFOgOJ6tZZ/IfmxkO7u7PRhQwfMCBF6CCAmSIUOpyFDTHLxZCf4lHsEZIHxGR+hEGYETRQRP5BE4nYfvTB7eiQLUmQLkhRKEkmHFNq96zSg5h33nU5uIul2npdMGSQotJRlS2t/2kX57n+b2jeXYYo5YmQBocm/rtEE2CTrXVztuEjRNmMRnrpWqelur+pQsSTPJsB1S/kacXvVZJLpcLiObzbY9qbAVf+h4PI6bb74ZwWAQ4XAY73jHOxoivlfj7NmzpM/u97///dp+rMe/+93vtvTcXLhwYcGtRLcRgiDUMtfPnj2LaDTaELNav1+x2GwLV00yrFqwrMUKLx6PQxRFeL1e5uPU8ZQPql0IC51k6Ayklyvsgl7YZxne1odnj802bR/d3ocXxpdWzgmA43nwJgdwonXR+vJ/y3ISrqDDzKFBv20CMMtl+HIGTIGDIXLLkhIegr6iSGlAS7Z0bNg1AzqVc9ja6FGV6BbIKt0I2U7i61QC0QIhb6FCTo7VVn11C02CdvrqNuqbqfPbSokoEk/Z9WkGfWnE9wdVjOAlS7ucSCTg8/napoc2TRNjY2P48Ic/7PjYm2++GbOzs3jkkUdQqVRwyy234LbbbiM1oUNDQ5idbfwO/MpXvoK7774br33taxu2f/3rX8eNN95Y+7udTZQu1g4OF6Em+qW+gJcILoluAXYR3NXK8OrQE9Z+q1FtDqxWas8l59B1HUtLS7bBAJQmmozH5XlQ8WYUoXNqd2m3ukkSdYcnoawBvV4Z+UKF+Vio049kvtyg3wYASTNQ0WSLMdfJSbiMDk+qAtQItwmDB3QYgCLAFC39tr6s3zYlvq2SEZKoU2NRkhFbD2P69MzdW7L9I8ay1Zw7rF62UL0lHUBsZSZOdd82zZPtbBIkYPfek1Ieu3m9U2lGK89fMyBKAiqV5gvheR66bTxjI85OvIDKY0kA1nfGoUOHIMsyFEWBLMvMfwuCYFsIAICTJ08ik8ng8ssvX/O1AMCxY8fw8MMP48knn6yFc91///246aabcM8999QsveohCEJTOMQ///M/481vfjP8fn/D9nA47ChIwsUFwkXsE/1Kg0ui24gq6Z2YmGgOPakDS6aRTqeRSCRw6aWXNo1HYWZmBrIs2xJMipRSkb62lWiHmmiOIjQc4XbB2fzWOiTwFFEXbBi86leBfHP64pY9I3ju+eZqd0d3APFiBeAEcMuEWzAt0t1cJjZgGhrMcgXmnN6g3zZ4E5xuQkqUm/TbtlrWNjXwteYAQo1FP9ZW/2jHXt/Oq7ekW4tpU1h2XAm2a550KM1AC9IIG/9qUl/dir0hKc0wYFJe+BSJr5jIJbLgGV6ulWwBYFSTJUnAxq1D0CoGSsUK8tkS0okcrr52H9bvHMATTzyB3t5e+P1+lMtllEollMtlZDIZlMvl2jbTNMHzPJNcJxIJHD16FH19fXjyySdx+eWXO/KbBSwJSDgcrhFoALj++uvB8zwOHTqEN7zhDecc4/Dhw3jmmWfwwAMPND32nve8B+985zuxfv16vOtd78Itt9xyzgmBi/bDdee4eOCS6PMAyyda0zSMj4/XDL1ZYJHj8fFx9Pf3Nywn8jxP+zybJsbHx9HX14fp6Wnba2SBIrK8zRcqbZfnLOmPIuqCwEOjnDAchytQ57B5fsTzoPhX71AE8ZNzTdtDHV6kMs1yHY7nIUsSKlUib6DGxvhMCYZmbTehwzQMADrMig41rltWgAIHQwQMAdBVAWbVoWT16+n0N7EVyUgLxNd5KiL9mGNLvpaq2sS5bQm5o6HAG6YNIadOYkdinV0Ar9MTAscTFdiR6FaaR4nVMhtNumGyfUvyyRyee3i8aXt0KALTNGvN2Xak1zRNaJrWQLKr/y4Wi3juuedw3333IR6PIx6PwzRNBAIB9Pb2ore3F9FoFCMjI/i7v/s78hyxWKyWnlaFKIqIRCKIxWLkcfV46KGHsG3bNlx99dUN2z/zmc/g1a9+NbxeL37yk5/g3e9+N7LZLN773veuaVwXbYTbWHjRwCXRbYQgCCgUClAUBV1dXbb71ZPjUqmE2dnZpi89u0p0PB5HqVRCT08PJiYmyHPRcg72/q1UosvlZqspO1DnFniOrTG2OTfFJ2jJDU0yqNeKJAAtnKOjN4T5xUzT9pFtUbwwlbDGhUW4AR6SCVRMqUm/jZQJ8FXCrcOEaf1b4ADTgJTTYYi8pd+WOBiqYNMMSF5ue4lvGxMD2zoW0dhnJ+dwfF0EbMdyqi82nUsj7Cr0jqvqtk2Kzl9LshKumfAGPCiWHWZ/r8LIziEEOwNYWFiA1+s9Z9WY4zhIkgRJkuDz+Zoe37FjB97+9rcDAHbt2oW77roLu3btQiwWw3333Yd/+qd/AgDce++9zPGPHTt2Xs8HAAqFAr7zne/g4x//eNNj9dt2796NXC6Hu+++2yXRLwE407S3Yf0dxMX2fNYKl0S3gGpn8+oqb9Wzefv27bZLZKvJ8cTEBCKRSJN+zc6do2qfJ0mSbfMh9RhFEHi7Si1BRErlZgmEHahqt0U+2c+XqnbTlXbi3Dak0Pk5iOdhIxmhzuHxNTegAsCGnYN4/lRztVsSeVQMc5lwV5fDrYZJvlCGAXmVHaAJpHV4k6UV/TZnWD66pgkjpzfrt+G84msnLWpr9Zi05HM+FinnoOwhbT7bjuUMrVTuqUNaaBJ80UJYCLTSPMprBvLpAni1mfTKqgSNMaTqVRDaGEUumUN6KQPTBHZea/k3t9sfOhaL4ezZs7jhhhsQDoexfft27Nq1C0tLS7bHrV+/HtFoFPPz8w3bNU1DPB5fk5b5H//xH5HP5/HWt771nPvu3bsXd955J0qlkmPZiYvzRN0q5EWDi+35rBEuiW4jstksDMNgNn/Uo55E67qOyclJpvyDqkTncjksLi5ix44dACyivFpaUgWpiaaWSluQczjVD9g3NbLhtLGQCpMReDqghSK4VBWcgl0lukJcl1OirnpkVHLsFYD+DT2Ymkk2bQ+FPUgZ5op+GwA0gMuXYer1XwUGTFO3HEpMq7pt8iYMzrQkJCIHrqJDyGuN/ttorenMcTOeZgCko4ND4teCk4ppIydoa3y602hxzaZJ0CkhRwtVdbsQFqqq3sJqA8doKKyiXKwwtdLFXAm5RStVleM4BCI+XPL72wFYJJplRdoqHn/8cezatavB+aK7uxvd3d3nPHb//v1IJpM4fPgw9uzZAwD42c9+BsMwsHfv3nMe/9BDD+EP//AP13SuZ555Bh0dHS6BfgngVqIvHrgkukWwKtFzc3MQRfGc5vr15LjaHNjZ2cncr8yo8k5MTNTs86qPG4bBdKSgtMQUb6G00tY52GNZ7iAF8ri1nttWakEs+1Lkk5KY2FaiKf058ZtNTTjsqvkVIvSBlqWwt1N+2gD9Wq3bHMWzjAbJ4S1RnJ2Mrzqv5VDCGTxMcCtVhuW3mc/qMIqWnASGYYXdcCZMTYOcMWAuR7obimAlTIo8DA9Dvw20ZslHwanzvU2EtuPrgp1dG3GKdjptGHSTIN2k2L4mwRcrhIXTTKviTB/KGm3lX6aJTDyLbfs2QdM0ZDKZtlaiqyErrWDbtm248cYbceutt+LBBx9EpVLB7bffjre85S214sz09DSuu+46fOtb38JVV11VO/bUqVP4xS9+wYwx/tGPfoS5uTns27cPqqrikUcewV133YW/+Zu/ae1Jujg/uJroiwYuiW4TUqkUcrncmtKpqjKNanNgNVxlNViV6EqlgqmpKVx55ZW1fQCros0i0aQmmvohbMF+ThSp8lc7q+DOore1CtvGzo7gOvWopr4z7OQcGhUSQSZLsq9XpBwNYCNLIfa3m7xwIs+ciPUMdSCWyFt3Ec+DW2ZJYtmAJskrqpxqf6VmwBQB09ABLEe586blUmIaEEomDNGEoYgwlOWGSTtLPuJ6nTpatOL5LPAcmHeXXYW8hbwe5yTWzjWEGMlGX/1ihLDYHkOcn9cMq+LMkHNQWmlu1T2+btsAgl0BLC4uQlVVpp9/qxgbG8MHPvCBlo//9re/jdtvvx3XXXcdeJ7Hm970JnzpS1+qPV6pVHD8+HHk8/mG4772ta9hcHAQr3nNa5rGlCQJDzzwAN7//vfDNE1s3LgR9957L2699daWr9PFecC1uLto4JLoFrGaCJ49exa9vb2Ym2vWr65GtbFwcXER5XK5Fq6yGix3junpafj9/tpSYZW0UySTVcm2g52W+1zBL6thkhZ3zp0zqMkART5FScIKg6s7h83zoyq4TpszbR1AiJeQfm0pEu1cd01+x5EWhfTEKdDhQyyRb9q+5fIRHDneXO1WZAElw1zWbwsWpzMB6ABXKMM06r+KTJhmBchX4EmZlmZbgFXdFq0VIMOnQ5d4GKrQKCFwHOhiU70lxjIIOYddtDhJ7tvaPGnjGuLUv/lFCmGxrYRTDZ8s0fMy8pkCU85h6gYUj4xAxA9vyIt9f2hJJdqth85kMvjNb36Da665puUxIpEIGawCACMjI8yJ/V133YW77rqLecyNN97YELLi4qWFa3F38cAl0W1AoVBALBbDlVdeidnZWVKfXIUgCLWI76GhITIYZHUlulq53rx5c23bueLBk6k0czst53Cuiaa10lT5j725laY/6hSWzq/ZBYNqqLQ7B6nHdugMAtj4XTt8De0r6pRkhD2WprGr9pIkoEzIT6gJB/XUA2EvSvEc87H+0W5Mx1KrxuHgkSUUOBHgLP9taMv/FStAqfqZqdNvw4BpGDDnSzAkAaZokW5D5sFphuWJvGry0VKENmnX1oLnMnVyG612K42YzvXNrYSwtM+1xK6qz9toou1QKpRRmo4D03G85cN/BMAi0YODgy2Nx8KTTz6JwcHBto7p4iKEW4m+aOCS6PNAlZSMj4+jp6enFq6i6zpEkX5pq6Q5kUjY+kmvJsfz8/MwDAO9vb1N+7EqmZqmIZ1mk+hUOsXcbhh0uEu70gRJ54wW9NjUdlkmYs3JpkaO9sGmyAFViSbkHBzo1XunyZJ2EgzSa7utJJqoxhLXay8/YV9X72gHzk41T4R6B8KYW1oh5PUJk7yuw4AAVIB6zQWfMaDnDaAW6W7C5EwYpgFjqWw1TErLloDLchKOIHHkRKwFuzpbpwtCq01XtcnTt+Aa4nxCYHt+oqpMgdPoqn41sZB1Om9ARbF87u+jHddsha7rSKfTba1Ej42NnVcV2sUrA5xxjibs30FcbM9nrXBJdIuokgVN0zA1NYU9e/Y06JPtSHRVgtHT02PbGb3aT3p1LHj9fqxK9OzsLASBfR2BQBCYa5Y7GDYJiZR0gq58ssdpRY9NNv1RLITwOuMIMiEKPMrEBIKUWlAyCCotUeCgEUSLrOYTm+209xVKd01l4lDEV6SJr9PXRLRpuKsQ9w/lsKJ6VWCJXdX2R3xIM4JuuqIhzOdKAMc3NM/yhTIMbjnSvQ4mdJjlMkxRswh3Vb8tAmZZh8yXYMj8in4bgACuheASu6q2U321XSX4woew2HXn0+cnxrKp6nOaCa2ig2d8t+UzRaacQ/bI6L9sGLIqo6MvjHBPEEtLS1AUBR6Ph7xupxgbG8Ob3/zmto3n4iKFW4m+aOCS6PPE5OQkfD4fwuFwzT/aLqobWCEHTqzwMpkMkskkLrvssqb9WHKOqvTD520OBQDoyqDH4wESjLQ9jv6MFArN+wNAPtesma1eGwt2xJCqVpLVcWIcW49qourq/Bzs5yFJAjSdTQxJUkpwLzsTCI1Y7jYImxGqam+nu6aaMKllBjudOOVYwhN2hKKNJIcaq2sggvkTzVrt9dv7cersYtN2DoAoyytuE8v6begAnynCMIXaA6ZZAUwDZrkEU6lY+m0eMAQOpsRBFwHwHIwKbQG3GnZOF6Scwk7z3k59tdOquuH8/LxBk/hW5BylQhmnn7He/xvf8Z8AtF8PXalU8MQTTzQ0AbpwwYTrznHRwCXRLaJqcTc+Po6tW7fWqnl2KYNVTE5OWprPc1RA6sc6e/ZsUyx4/X6rSVg10VBRnVVZqN9HgaerqKqqAqnmBkZq2TuVYktJKFkBYOPh7FRL3EqSoUM9NjUXsCq7bBJNaqWpCQdxvRzoFQNa+tJ8TwH21WOn+nFK9w/QjiWWdSJrLPq6KPmJSUwg7LTlvCRAZ4wXHe3AzOKKpSPHcQAnwCMpKHIChGqQgoaVwBtNB+J1+m3OsK7JMCAWClbTpGTptw2Zs22ea2cICxlO00brPWgGIBPvPzWUjRc3p5nwBtkuHJTMo/612XntNgAWiT5XIcMJnn32WciyjO3bt7dtTBcXJ1yf6IsHLok+D8zNzYHjOPT09NS2nYtEG4aBiYmJNZHtqta5XC5jdnYW+/fvJ/dbPdbExAQGBgbwzIlJ5jFkYyGVEsbzAHG9FDlTFLZtVDgcwvRcs6+0U201QIeXUKA1uy00VJLXS8kjWtAxU2cgJRg8KsRYBjEJoqRH9qExzqqBgk31mCK+lBSJakDl4HyyZWdHSFW1PT4VWGy+f9dt7sOJ0/OMIwBRFqEZZoN+Gxwg5IrQRcnSb9cv6OQrMBew3DBproTdSBxMAEJRX06XXJaT8LTi3q5JkCTkbWwS5HWTloY4tCQE7BMLtYoOXmm+b/xhL4a2dUHXDGw/sAm6riOVStUCq9qBgwcP4uqrr16TzakLFy4uDrgkukVUq9DDw8MNX5rnIsezs7O1QJZzkejqWJOTk+jo6Kg1LrL2q69E5/N5zM/P48CBA9D1ceIJsDfb2rYRhWLSR5mMTWb/yHi9KoBmCYggcKSco1hkS0my2SxxTeyfc9tKtENrP2oiYleNJc9BVbuJN0qSBJLgUudoqXmRqvgS5MvOeYWaQNDJluztsiygVCYaIanrIs4h2zRVUjIT27h34rOwZc8Ijp6INW0PBFRkdKMx/MgEUIYlOyoLdZt1mKYOrqhDSRVW9Nu8CUO2nID0itig364dS+qbyafiPFCGWsmxOT9vQ+Jtq/QEssk8jpyeRP+mKDr7IojH45Blua166IMHD+Laa69t23guLmK4muiLBi6JbhHlchmmaTZZGdmR6Kqt3fDwMCYnJ9dUidZ1HRMTE7YVk9WEfHJyEj09PZAkiZY7kBZ3hK2UHUGwS5Brw7lFgZ5wqIoHFrNYdQwRAJPJNLs9APYNlU6rm3aSGKfncBoHbmnd2bMdUpZCwK46T1a7HerdJZvKuVPHElkSaRLtUMMtyyLtTEINRby/ds+Ruof6RrqQIaranoCKQnHlPeYAcJwAlTdR5MQG/bZV4a4AeatSbem3datZEoBp6jCSGgyBgyHCcimReRtDczt9M+Vawt4MAJQBiN0PMlcx4At5UCg5uZ+t8XZdsxXAih7azo7SCUzTPO+QFRevIJiwdbP5ncQrk0M7Dsl1sQxVVbF///6mpXA7Eh2Px1EsFjEwMLDmSnT1/93d3bb7VcfSdR1TU1MYGhqyQimc2s9R221+bKjqo1N5Bkk+W6gSUzrfjo4w+9w2k4RSkR1YQwfZEJVdu4mIQ5JFOYDYSkYcEnU7y0HSAYSasxFDyTI9j6dt9Nj727mJOLXkk1pwJqHuX4UhL6iCek/s7hWK3G+4ZIi5vTsaqv2b4zhwvAiekyBwEqSKCFmToZYkeHMSfAkBgTkOgRkD4ZMVhE6UEDxZROBUAf7TeXjP5uGZKkCZK0JKlCHktJVZBdUk2Ir1HzWYYYLTTeRSzXIaAJAU9uTZG/RgYHMUO39/RQ/dzqbC06dPI5VK4YorrnB8bDwex80334xgMIhwOIx3vOMd5EpaFa961atqjezV/971rnc17DMxMYHXve518Hq96OnpwQc+8AHS8cbFi4uqJvpi+++VCLcSfR4wTbMpWMWORNeHq6xVEw0Ag4ODtiS23id6ZmYGqqoiGAyeY3xiGZda2repotL+0Tand3Ru5/7RTu31FEUGwP5hthhgM9kplkrN+wLIZIiAG5upOk1w2ftTMoTWmgHZ+7fSbEkTTLpK6/QcJPG1cb6gJSPs/SWqEQ52enDqOYpgrZYAzicKPM85fu2DYS8WkmynnI7eIOKMx8KdPsTL+rJ+exkmgJIGGGKDftuE5b+NogY1bslJIAI6b4XdcJoBk+dW6beXj3WYpMhppq3feqVUYVrc5dMFZJfi2HFgCwzDQCqVwrZt24hRnOPgwYO48sorbS1LKdx8882YnZ3FI488gkqlgltuuQW33XabbWohANx66634zGc+U/vb6/XW/q3rOl73utchGo3i4MGDmJ2dxVvf+lZIkkSmGrp4EWEtA73UV9FeXGRPZ61wSXSbQZHjXC6HxcXFmiyD5aixGtVqRH3jot05qzrtdevWwTAMcBxn51TFBMnVbVY9STcIp1VwSh/ZinOGw7TEViLHPR4vWBpuVVUBNFeSSmU26QaAcsWh9R1V7W7Blo62HHSuFyaTDKlmS8mmSkuRVeKttatEUw4gFOzIPTVWK4Scek+o115VROQLhFyHuE/trApLZfZ9N7ChB/FjzZaAPf1hzC823tscAHA8FElCqaoX15Z/XMoAly1BLVvXUNVvm6YJcCYMmDDF8oo7iWTJSTh9WTO66kXllu8JSRFsVSIsdA6GEc8uYiFlNYRX+ylkWYYoiucl7RgbG8OBAwccH3fs2DE8/PDDePLJJ2tV7Pvvvx833XQT7rnnHlv3EK/Xi2g0ynzsJz/5CY4ePYqf/vSn6O3txWWXXYY777wTH/rQh/CpT32KXKlz8SLB1URfNHDlHC2iuoS2GpRMY3x8HNFodJlgrc0Kb3x8vDamHaqEvGpr19vbC9M010TUm0D8kJg249AWcA5JNFV9s4vRJqtyjk5tHwdOJgCy96d+oAIBP30OgnymiNj2UondUGlXtaeTDNn7k6RQaiGEhRqrFS9qgkXbjUXJT2hLPueuHRS5l23IPTUWrft2Llmxa+oslajJG3t/2WbS07Ouk7l9eONKEYADwHMCBF605CSQIOsylLIMT06CLykgMM/BHzMQPqUhfLKE0IkCgicLCJzOwzdprRZVSuzXzRtkNwpyHLDxqlFomoZ4PA6e53Hs2DE8/vjjeOyxx/Doo4/il7/8JQ4dOoRnnnkGR48exalTpzA5OYm5uTkkk0nk83nyO3tsbKylpsKxsTGEw+EGGcj1118Pnudx6NAh22O//e1vo6urCzt37sRHPvIR5PMrE/qxsTHs2rWrId32hhtuQDqdxpEjRxxfp4s2w7hI/7tAcCp5Onv2bJPcqfrf97///dp+rMe/+93vOro2txLdZoii2PRFWy6XMT09jauuuqq27VwkulAoYG5ubs2yj2oD4sDAQI0Y8DxPVoMpaQFpQUu4WgB2FnA2F828JqK6apd2R2j8nDbk2cpVSN9lpzZvVNMmHTnu8XqBeHMFm9I2FouEJAU0YSNfK+J67Su+Dl+TVogvNZbNddH+0ez97Qg5ORZxZbZpjQ4r5HYacuq1pybhHOd8dcJOMkO9Lv6wD4g1e8PbNVyGu/yIlzQAwoqkxAT4YgmmacLjV1FiuHQUM0WAMYk1TeDVf3Ittm3bhsOHD2NoaKjWN6LrOkqlEsrlMsrlcu3fpVIJmUymYVu1OCHLMj796U9DlmUEg0GcPHkSJ0+exI9+9CNEo1FEo1H09vaes+Ibi8WaVhpFUUQkEkEs1uzaUsWf//mfY3h4GP39/fjtb3+LD33oQzh+/Dj+6Z/+qTZuPYEGUPvbblwXLw4uRg3xhXw+TiVPQ0NDmJ1tXEn7yle+grvvvhuvfe1rG7Z//etfx4033lj7OxwOO7o2l0S3GaxK9NTUFILBIEKhlQafc5HjiYkJdHd3I5VKrakBsVgs1mztql/0gF0YiTNNtF01i9YlO9Qrk5Vo8tR0JdpxUyPtH+04qpuAXTNgmXCVoJ6G3+cH0Fyl9no9QIItG6kQkpFslh2hDWLiZCcPcGoHaNsI2UYbPacTCDsJESW9oa6rlao2TWLttNrOqtoeVaKlIcQ9b2fTWCakIdTnWlVlVLLsFZWeoU7ET801bd915Xp89vt/ialTMUydnMfsmXnMTyUQn0shuZQDYGJ+JoVySbP6HZdPLooC9rzmEhiGgWQyiS1btixfGwdRFCGKInw+drprFaZpolKp1Mj2m9/8ZszMzODJJ59EKBTC//t//w+xWAyxWAzz82xnlXocO3bsnPtQuO2221Zek1270NfXh+uuuw6nT5/Ghg0bWh7XxYsEV86xZrQieRIEoUnq9M///M9485vfDL+/cUU4HA6Tsqi1wCXRbYYgCA1VQsMwMD4+3pRiZefOUXXYuOyyy/Dcc8+tqRKdyWTQ09MDWZah63rth9Mx0aOW3UUJpHUaQZycpgnSBN6usZDaTpybJPB01ZWK6iZTBknrO8rmTSBJtFOLQsmmUkk7Z7CvK00kS5omfT/SkhEq7MTORs+ZA0grgS6thLCQ71ULDZoU8SR13zYklpSZEJBlO3218wkUZS9IPRdFEZEhVmSp915VJUiKhNEdQxjdwXYjqUcmmcPk8VmU8mVIioRkMglBEM5JmFngOA6yLNeqy7feeisA4EMf+hC2bNmCL3/5y7V9Z2dncerUKXg8nqYf7SrWr1+PaDTaRLirkhMnP+x79+4FAJw6dQobNmxANBrFE0880bDP3Jw1KTkfwuCiTbiISXQ63VjcURSlpYbbKs4leXrDG95wzjEOHz6MZ555Bg888EDTY+95z3vwzne+E+vXr8e73vUu3HLLLY76I1wS3SLogAoBpTrXhlgsBp7nm5bsVpPtelQdNiKRyJp0zRzHIZ/PY9u2bTAMAzzP14gnWSV22EprS86cWtw5rUTbkCPyFFQVnBiHOocdAaLel3KFTUwoXmZrfUecgySl5GSAJwku5akd7ujA1Fxzc5ndykA+z64slsvUa+KcrDpthLR77k51xLa+1i3Y1VGNfdRKih2JpSrkFOz01VTzpF1MerHEfo+p7xo7rTj1Wno9VPQiG4GwD9v3bqz93W5/aMD6kb/jjjsatvX19aGvr++cx+7fvx/JZBKHDx/Gnj17AAA/+9nPYBhGjRivBc8880ztvNVxP/e5z2F+fr722/PII48gGAy6seQvB1zEJHpoqHFy+8lPfhKf+tSnWh62VclTPR566CFs27YNV199dcP2z3zmM3j1q18Nr9eLn/zkJ3j3u9+NbDaL9773vWu+PpdEtxn1Mo36cJXVX9qUnKPqsDEyMgKO49akic5kMuB5vmZrV7/kKok8OG7tn1fqx8XuR8dpLLZNjAJzaytSEsdV8FYILrHkXSas71pJBnTa1EiTP8ExkaSu15KMsMky9UIWCmytdqHAtl7jOfr+Ia+XeO6KLELTCIs5h9IQRRFRIcdydl2thLDYyV9KRLMddc/bNQlS12VnrUjdX9RzkW1cS6gJlEc9P1eJRCKBrq6u8xqjHrlcDs888wyuueaalo7ftm0bbrzxRtx666148MEHUalUcPvtt+Mtb3lLbZl6enoa1113Hb71rW/hqquuwunTp/Gd73wHN910Ezo7O/Hb3/4W73//+/F7v/d7uOSSSwAAr3nNa7B9+3b81//6X/HFL34RsVgMH/vYx/Ce97znvKqCLtoEA7aOV7+TWP74T05OIhgM1jZT99uHP/xhfOELX7Ad8nwkT1UUCgV85zvfwcc//vGmx+q37d69G7lcDnfffbdLol9MsHyiqxXKakf36lTD6n4scry0tIRyuVyrKNR7QFPnTyQSUBSlZmtXX90zjy/Ad3QB/k4ffJ0+KEEVok9BwORwyUg3KgBKFR3ZYhnpLG3BRv142nm2Oq1Qk5HjrTT9tUkT3UrQC1WJpkNCbHTBDivR9kEkzqzRKNja6BFEylrSbtZeW/7czdsFgYNBxDsXCmwC34oXNe0Awoad5zPZ2GcTwkIRcqfWdwBQIqr9rRDyCqlvpqz3JGQ19vcHNdm0Oz9VVfc4rETXo6qH3rRpU8tjrMaTTz6J/v5+rFu3ruUxvv3tb+P222/HddddB57n8aY3vQlf+tKXao9XKhUcP3685r4hyzJ++tOf4r777kMul8PQ0BDe9KY34WMf+1jtGEEQ8H//7//FX/zFX2D//v3w+Xx429ve1uAr7eKlw8XcWBgMBhtINIW//uu/xtvf/nbbfdohefrHf/xH5PN5vPWtbz3nvnv37sWdd96JUqm05smmS6LPAxzHNZGZepnG2bNnMTg42JRqWN2PssKrBrLY7VdFPB5HpVKB1+uFYRiQpMYfGdMwYRomMgtZZBZWBIjbLl+H009PNF4TAA8nYChTgSfshSEBkDj4IyGIigivJKJQ1pDJl5DOFmEYJoQWGu+ch7A4d7Vwfu4WSDS1fE/oVkmv5BZIqfM48PZFjrekYybeD1Vlf1GpqkI2nVEEM5lMMrfbNqY6bMazc6dwnoroPISFkr+0Ugm201dTGnIKiiwim6NINHssu88WZb3nIRIJ14JMJgOO40iNcisYGxtruQpdRSQSsQ1WGRkZafgsDg0N4ec///k5xx0eHsaPf/zj87o2FxcIF7GcY63o7u62TWKu4nwlTw899BD+8A//cE3neuaZZ9DR0eFotcYl0S3CThNtGAby+Tzm5+fxe7/3e8z9WI2FqwNZquOdy8Wjs7MTuVyuqQoNtNBYaALxiQQwkajbOoWhDd2YPr1Q2+LhOPgiXgR7A5B8KmSfDE4RYYo8KiZQ1HUIIo+0R0a+QMVjrzo36RjC3l8UeJQNZw4OZBIapce2I5+kxphdXSVjkVsiuOz9W3FXofSvtGSEtkyj7jeq2k0TTJpgCYSGOxgMAjGWbIT+DOTybJkJ9ZlrxR2Dgn0qorNAFzvJCtk8KdrpmynrSPb+dtIMShpiJ5UqEpVwj6d1OceF0kO/8Y1vbNt4Ll4hMEzrx/ZiglNP2zWiFclTFadOncIvfvEL5mTyRz/6Eebm5rBv3z6oqopHHnkEd911F/7mb/7G0fW5JLrNqJLe8fFx9Pb2wuNhm/+zGgZXB7IA9i4ehUIB8/Pz2L59O+LxeK0hUVEUyLIMRVEckzAKTbpO00RuKQe9UEExz/7x7oqGwMVSCKsi/F1+eDu8kAMqAiZw2bpu6DxQNkwUKhqyhTL5pWLb9Ecl51EyCOr5UUTdLoSFOIfAWHkA6EmCXXMdqWOm9LfU5dr4fJOSBtI/mg4CoRwa6EAe9mbRLlSE9ENmH+PzeRFPsaukpsl+Lqs7zKvQNLZkArBzx3DeWEfGlBP7y5KIHCkzISrBtg2PRJMgcd/ZNSlSEwLqc81x9GvpVVuvRCcSCUQikZaPXw1N03Do0CH89//+39s2pgsXLprhVPJUxde+9jUMDg7iNa95TdOYkiThgQcewPvf/36YpomNGzfi3nvvrbnurBUuiT4P2Mk5pqamcOWVV5LHrq4wVyqVpkCW6n6UJnpiYgI9PT2IRCLo6elBMplsCAYwDAOJRJJ5bLlEVYcJoteSf7R13ZWihsRUEokp61o27hzAqeemm/ZX96xD90wGvk4/PCEPJL8CXhGhqjKUkW6UNQOZQgnJTB6lsmFfwXWsx24fwaXLxOzNdmSGDBxx6P9t2sRJkTIAhy4YkiTSJJrUj7PvQzuJC13xpbS3dvcJe3s4FMYUo6ptJ4GgnEmKReI52obDUE4bxATGrhJMSUNsVgHIhkfKNcTuuTjUV3s9MnLExLzVSrRpmkgmk231UH722WchCELDyqELF2uCK+dwBKeSpyruuusu3HXXXcxjbrzxxoaQlVbhkujzAOtHQBAEVCoV+P1+2+Sb1SR6amoKgUCgIZCFtV8VVS/pSy+9FIIgYMuWLQ3aa9M0oWkafvLQabBCOcoVdmUuk2FX4HRCNmEXSmEQWmmSyIJDPlFAPtFIXjbs6Mf4kZna3yIARRLQPdwJXhGgBFUIXhmcLEDnOVRME6Zl74BkptBAEp1+zm1lEG0LeqEfcy6PoM7RRjmHjUMDBap6rBFNmLYk2mH6YCvBKdR76/N6AGSYj+lEVbtEuLUUCWcSgCae1J1lKzOhKuRUCIoioeK0SbAV/2gCiizSJLrFSnQmY71ngUCgpeNZOHjwIK6++mrbibYLF2xchCTaoW3uxQKXRLcZVfnF6Oio7X6rrfAmJiawefNmcrzVmJmZgaIoTFs7wCL4kiSR1R6fzw8g0bRd9XiY2ykiQJFrwHnDmhMPZ72io5DII7XETmsIRXwoxHOQAYSDKnxdfnjCHoQ1E5cNdMIUeWgcUNIN5EsViGQkt51PtFN7PTaoBitbf2OHYTKyLAEgkgzbJBmRbKq0FCmlnExaigOnqqQteFFTFfJWUhGtYI/m+9Tr8wCLhPVfkf265HLsdMlWJh3Ud4MsiwDRJEi7htg1CRLSEOL9sos2b5VEJxIJhMPhtuuhr7322raN5+IVBLcSfdHAJdFtRiJhEdBzdYLWk+P5+XmYpone3t6m/QRBQLnc+INeJd3r1q1j2trVg6oGU2RLIvS8/kAA84wKnG34Q5lNREpF2kqPiVYcJ5aJIQegkC6ikLaW2uXtOk4fnWnaf2DPMPzPLyLQ7YMv4resAL0yPKqE4Eg3KiZQqGjIFctIZYowDIN0JaGqdaTKw8ZHmHZcoDTf7JMoNq4GZHQ6Ve2mnEzsrORIHTP7GNvEQIfpg62EsJQJ4keNJUsCeV3U/aDIdu+Js4lmPk9Et4OWk9AkthV9M3t/Ds7fLzt9datyjmpTYbtgmibGxsbw/ve/v21jungFwTBx0VVuL1Bj4csdLok+T6z+IZqebtb6slDVOlcDWdatW8ckFCw5RyKRQLFYRG9vL3Rdb7K1qwdJtogfUIr4ktVHWQJA+fYKAJqXpSn5QIqImdaJZi6+hcQzO6mFqRtIxzJIx1YmC6Pb+nDmWGNqnwgg2O2H7FPg6fBA8inIlHIIdIYBQYAgCzB6Q8guWwGunJIgeeQkgf362T0/ClQqYSuBH5QMwNZ3mHjPqesSiAkSB/q505Vz5yEsZOqkTfWWJNHEdVETCFmmY+Cp5slwKIT5pXnmY1QqYirFlm7ZyYs04jlSr4uqSmRVnbq/7JxZWmksrOqhz7U66ARnzpxBPB637Xtx4YKEadg2e/9O4mJ7PmuES6LPA6t/nJPJJLJZa9mWJbGoR/WxVCqFVCqF3bt3M/djyTnGx8cxODhYC3qxlRxQlWgClGyDqpZS2wGawFMejF6vD0CyaXuRuCZK1w3Q/r90Qx4brMojB8AoaFhayAJnV7Yvwoog7R3sQHLKWpHw8Rz8XT74Ij4E8xou7QmDU0QYAocKgGJFhyoJUBWxyVbMrrLbtiRDSSBJtNMgEnu/a4JEExNAWmpg5wDisBHS5vUl842I290+QtuZLEaRJZJEl4iGYNvAHuJ1sVyAmivYGiFlAYAc0TxJfapUVSRJNDW5sGtSbCVsJZvNwjCMtuuhr7jiigYnJRcu1gxXznHRwCXRbcTZs2cxMDCAiYmJc0Z1V0n0+Pg4BgYGIMvsZcrV7hxVW7sDBw7ANE1bog7Y6I+ppD+qmkct4dsSeILokQlq7OcSDAYwwyDXsiQBYGtKKdJWLBJx1QRIez270I36RkbDRGY+i8x8FmGPjFO/nmzaP3LZEIRnZhDxyvB3+eHp8ELyK1CDCiphP3QOKBvGctBNGelM0XGSoX21myA5JIl2dg6AXtKn76sWHECcpg/axF5zHBGYQ4aw2JFoh5pkm7HKhPUc9dorNpMOqqodDAUxt8T+nFATLjLohrnVglZxrq9uRRNd1UO3swFwbGwMBw4caNt4Ll5hcOUcFw3ctuLzAMdxtR/CQqGAubk5jIyMnDMgBVj5oYjFYhgeHib3Wz3WxMQEuru7a6T7XI0yJJEl7neqSkydxq4S7VRrS38EqaqkjYyF0is7JAEVSkpil2RIVsGJA5Zf3FK+jKWJOKZ+M4UzvzqNxd/M4NSPj+DMvx7B9P87hvijJ1EZG4fnyDxC01msrwDbvB5c0h3GZUNduHSkGwFRxPqBCHq7AlAVcfUpmmCXwEenJbL3b0UTTclr6BAWGwmPQzmHXSXaJB2Z2bC7Lop4kmO1UNWmNBh2umtqpcGu14B6LqrCrsgSPB0AkM6wm4INolmZ4yznEKdotx4asEg0FaRlh3g8jptvvhnBYBDhcBjveMc7aquX1P5/+Zd/iS1btsDj8WDdunV473vf2yR9q/4W1f/33e9+1/H1uXiRUK1EX2z/vQLhVqLPE9XKX9Wz2ev1rolEV7/oQqGQbQxtfSW63tbOMAzwPH/O6godf0009bSRRJMWdw6dJaiAC44gshxHf54liV3x9/v8AJo12RWi8qcblI8vXXl02vhGklLTRHYhg3y2Wc6yadcA5p61dPkCgJAqINAdRChTxs6wH4Iqg1N46ByHsmGCFzkYBpDOFpsmPU6Dengint1Od01JMCgO217Sb6epd/a5acXzmRrLjpCbRN2DI8ZSbJwunEaL8zxHvsYVjf0c/T4vFpbYq0Ugqv0FoklSlgQ8//zztSCp+v/LssxclTNNE4lEwrZQ4RQLCws4ceIErr76asfH3nzzzZidncUjjzyCSqWCW265BbfddhvpgTszM4OZmRncc8892L59O8bHx/Gud70LMzMz+Md//MeGfb/+9a83+N7aWay6eIlh4uIjnRfZ01krXBLdBmiahsnJSVx++eUAzh3VDaDWVBiNRm33q9dEz87O2traMc/jMCmOlmc4C1uxI7JOiX25zNY+0+RTIBugKLkKT7yWlo4y0bRdtmmopHSrhTztC8yCbWV3jY4HWlFHYjKBvu4gzjw93rR/dCiC8mQcCgB/xAtvxA9PWIXkUyD5ZAwGvdA4oKjpyJUqyORKNiEs7GuVZREVooGPInJU9dgu7MRxCEsrITfEPW3vUtO+sUhrQwKt+EeTTYKKiHyBPamkZCb2Wm32ex8Kh4HZ5s+KRxUhiiIKhQJSqVQtVKraDC2KYgOprq6qaZqGSqWCTCYDRVFsrT/Xgscffxzbt293nH547NgxPPzww3jyySdxxRVXAADuv/9+3HTTTbjnnntqEcb12LlzJ37wgx/U/t6wYQM+97nP4b/8l/8CTdMasgHC4fA5f09cvExwMVZuL7bns0a4JPo8UK0mT01Nwev11pYM10KiY7EYOI5DMBi03a86lmmaGB8fX5OtXT2cElbqY+C0sZAXeFI6QRFZ6uQVopJHnVsQeZpkOvSuJoqry64kbHDgATSfnyKfCUJKYugtVLupSROVlrhMcjgAuXgeufgKefH6FWa1W61wGEiW4A17IYc8kDwSIAvwiCK2DndZ2u3CsnZbN2yrtGS1m9jf1gHEYQiL3VhU2An1eaLcROzGIqvattV2opeB2N9uLPL1IvZXbEg0xe1tQ1hKzl4Xn8+DTZs2NZ/bMFCpVBrSWqv/TyQSEAQBJ06cQLlchqZpNQ/91dVs1v8FQWgi3AcPHmxJDz02NoZwOFwj0ABw/fXXg+d5HDp0CG94wxvWNE4qlUIwGGwg0ADwnve8B+985zuxfv16vOtd78Itt9zSVl9sF22EYYD+1P6OguzGvrjhkujzRNWibtOmTbUvrHOR6OoxkiTRhHIZ1Up0va2dYRhNX6AUHOuPHc4mqcYwOxJNyTkokklZ+FFVc1EUUCKa5ehJBXMzCbswEIrAyxJbKhMKBjHLkJLoNpZBlFSGTKcjYKftpsYyNAPJ6RSS043XvHX3Okz+eqL2twygI+xBlyihT1Eh+2VwiohkLgNPMAANHASRR8CnILMq3IP66beNSCdJtDMZDeDc25giKxxnk2xJEfIWPLKpz5SdNIRs9iQdSOy+c2gJCIXVbjRVUJ9Fyt6O53koigJFUZocOH7729+iu7u7Fvet6zqTbJdKJeRyuYa/TdOsjf29730PL7zwArq7u/HLX/4SN910E370ox8hGo0iGo2it7eXbA6vIhaLoaenp2GbKIqIRCKIxWK2x1axuLiIO++8E7fddlvD9s985jN49atfDa/Xi5/85Cd497vfjWw2i/e+971rGtfFiwy3En3RwCXR54n5+XkYhtGwjHYuEp1MJpHP5+HxeNbk4mEYRoOtHWDfwV4P0ifa4bIwGSdNVOAEgSdorI3/MKXrJHTa1EVxLTiGUOe2I0cUnFbgqffS7/NhnhHZLko86WxAJdrlCSkJ9f4BQIUgOdRruJowcQDyyQKKvhzmp5PMYzp7gzDm0giIPALdfngjPigBFcGyicuGumAIHMqmiWJFR65Ytg8CIX2anZFoe+9sSg7Efg9VRUSh6Cxa3E4iRXtkO6+QkyS2hRAUk4g8pz26bawKidfYadBKVQ89ODhY2yYIAjweDzwezzmP1TStRqr/03/6T+ju7sb09DTm5uZw8uRJfOxjH0MsFsP8PNufux7Hjh1zdO0spNNpvO51r8P27dvxqU99quGxj3/847V/7969G7lcDnfffbdLol+ucEn0RQOXRJ8nqsmB9UToXCS6SohTqdSaSLSu6w22dk6smsjmPtL6jhqJqDgTP5J2lVqKhJHhC0QlmnoZRPHcSYZrPTcFg6gS8wJHvuZOPbvJJENFgkZ4ZKuKB0AzYabIDEW6OZ52EyFXT6gQFjtd7rLUwdAMpGbTSM1ak4atu9fhZF1Vu4q+nf3onEjB3+mHGvZADqoQFAmGyEHnOZR1A/myhkyuhEzOCrohbRspRwuF1nCTxNemekuRaKd6cDtCTo1lV9UuETpmUmZio0entdpUCIuMUpndcEg9F6f2dvl8HpqmIRQKOToOQE3yUf3ueeMb34g3vvGN+MUvfoF///d/x89//vPa+zQ7O4uTJ0+iUqlgYGCAOd769esRjUabCLemaYjH4+fUMmcyGdx4440IBAL453/+Z9uALQDYu3cv7rzzTpRKJboI4eKlg2txd9HAJdHniVAo1FDpAOxJdNUK79prr8WRI0fW7CddtbXTdd0ZiXboJ0zDYaXWrhrcJkkFSeztGrMceldToBxDRFFAmdAyO27yJJ6HXUMpdQ4qFCIUCmBxqtliS5QEVErsezOTZhNvjXBoaEX6Qr0fAs+jmCmhmGmcRMiKiPKqyqpP4BHo8iHUUcJ2vxeSTwYnLwfdmCZ8koieTj9SmWJDqp+dBIIi0aSNno07BhmFTlVvFckxiaa+K+wizylCbKshdygNUWxWFKjrckqiE4kEgsHgmhqw14qxsTFcc801De93X18f+vr6znns/v37kUwmcfjwYezZswcA8LOf/QyGYWDv3r3kcel0GjfccAMURcH/+T//Z00BL8888ww6OjpcAv0yhWkaMC+yhL+L7fmsFS6JPg9wHIfNmzc3/YCyUgarcGqFVyW7/f39a7a1qwdJWJ3OGkk9B1WJdu4f7ZTYU8vediSaroI7q66alOODJDSRuSroJjpqgsI+t22zGNnExt6fIhiyIqNSYlcKRYH9tZHLssl12SYBj7pep7IJSZGaXndTN5CeyyDkVzF5eqHpmO17hpE7PA4BQIdXghySEe7pgN+jQvd5AEmAthx0ky9pyBbK5EoGBTsvaqo5tJVURMpNhLqHVEVCVmOvZlByCrvJEBUtTlpp2vR0ULIcp2mFF8If+uDBg3j961/f0rHbtm3DjTfeiFtvvRUPPvggKpUKbr/9drzlLW+pOXNMT0/juuuuw7e+9S1cddVVSKfTeM1rXoN8Po///b//N9LpNNJpa7Wmu7sbgiDgRz/6Eebm5rBv3z6oqopHHnkEd911F/7mb/6mXU/bhQsXBFwSfQEgiiKTHGuahqmpqVrE9+o0Qhaqy38+n29NCYWrQZFlilRR+1OUmK5E2/lHt0mnTZFouwAYp3IO0m+akJjYLXk79F2mqvl21neU1Rj5vtrEgdNgHxMMhjDNSJa0SwasELrYYoGInyfGkVqobNaPWc5XUM5XkJ3NoW84gtnxOPs8/SH0ljX4Ij6oIS9EnwxeFeHlOGwf6basAIsVpLNFFIqVc/hHO2sCbcWuzk6TTMx56Aq5XSMm8T6SEi3Zub2gV127Jrqqh2bZxrUKXddx6NAh3HPPPS2P8e1vfxu33347rrvuOvA8jze96U340pe+VHu8Uqng+PHjtR6Gp59+GocOHQIAbNy4sWGsM2fOYGRkBJIk4YEHHsD73/9+mKaJjRs34t5778Wtt97a8nW6uMAwzYtP/uBqol20C1QlemZmBqqqrtkKzzRNTExYutBKpQJJkhxH17aLsFIgNdF2JJpy53AoPaHOYFeJpqp/Tl8PRWH/oNsteTsl8GQl2k5u4LAiSJEsu1hzSoJBzThUL3v52a5BkpoMpDPNjZYArY8HAN0hWbWbqFaKGrLxHLKLjQx02+XrMP70ioabBxD2SIh4VHgECXJAgeiRAdkKuikZJgyYMAwTqUyh4R5oxWnDqSuL3cSG+oxQJFpVRLJJkbq37e5hyvrOiZyjUCigXC63NXDk2WefBcdx2LlzZ8tjRCIRMlgFAEZGRho+q6961avOuUJ34403NoSsuPgdgHkRaqJdEu3CKUgCIgioVBpJQNXneXR0dM1WeIlEAoVCobZfK9o+6keM0q+SX9hkKZrY/CLokimWaUfgL3Ql2q5KTMeBO2vKstd8UxMUZw4VtkSdDCIhzkHphW0aJGWZreX0+XwAo9ptMny5qygU2KE4lKWiXSMkJdVhvYeVQgVGXsP00RnmMYoqoVysQAXg7/TCF/HDE/YgWDFw2WAnDJFHoVJGJl8ERBmqjb6atL4jbSNbsb5zTqIpDbldwyM1lhN3jgulh96/f39bx3TxCoVhANxFpiF2NdEu2gUWOV5aWkKlUmloQOF5niSzwIqLx8zMDNLpdC2Jy0niFlXdXU3yq6D9o9mbSV2yXSXaIZGlPpskr28hDpwi9hTRsguZoUD6ZpNVYvY4dtpU0oPbYaiJXSS2Ri3dEwSetJKTBRCB0GS1m/JH9/n9SMwTbg9EtTsZT7DPTThzAEC56Mx/3FZHvDwWByC3lEduyVrCVy4ZxMnfTjXt37tzAKFTcfi7/VbQTVCF6JHAyQJ0gUPFMJEva8gVykgtB92Qcoo2ykxk2+ZJoqpt87oUS+zX2Ekl+kLoocfGxnDttde2dUwXr1C4leiLBi6JbgNM02wgtSwSffbsWQwNDTVUMQRBQKnErsQVCoWarV2pVMLU1BReeOEF6LoOjuOY6Vqsf1OkimxqatMHwU524rQSTTXeUSyzpThwyjmDAL0K4VxKci5dvKNzEISRlIyQ56AnQWuNHK+B9GO20Y+TEd5s2MpoCHIfCAQRQ6b5AZtVF+repeQnlA+3JAukHpy0qxM4aCUNyakkklNJ4iItVINu/J0hbFNVSD4ZvEeCKfDQOED1yOjvCSKdKyG7KujGaZKgXQiL02hxO/9opyR627Zta97/XDBNE2NjY/jLv/zLto3p4pUL0zBgXmSVaNedw0VL4Diu6cdldcNgNptFPB7Hrl27bPerx+TkZM3WbvPmzRBFsVa5Xp20VSqVUCwWkUqlatvL5TJM07TxP2b/iDnl0E4bC+2qwU4lFVSltqU4cIcuJq1UiWkC70xCwxHEzPa1dThJsG9edGbhR1rf2UgKSOs7SjJi87qTEgzitbIkI82NhYoqoUTEXlPOJIUCO+RGViSaRBMrFlSjqeJpvq5a0M1SDhNHmuUkmy8dROo3VrU7KAnwd/lqQTeiTwbXHYTOW1aAxYqObKFsIw1pn/WdqkgkifauUc5RKBRQKpXaqoceHx/HwsICrrzyyraN6eIVDLcSfdHAJdHnATtNdD1xmJiYQDQabfLspDTRuq5jcnISl1xySZOtnSiKEEURXq/X9toMw0CxUMT/wq+Yj1M/iNlss2cwQBMhiujZ2c85TfRzbn1HeOMKNnHgDm33qPfeLgGQfN5t8o8WZdrbmapuUqBeQ47naMkIsZ2SDtmGsDj1jyZIv334DR2Yw4KsiCSJ9qheAAy/bUJ+YleFojTcpNOGDbmn7rn6z6de0WtBN4LAk/eKtGsAnZNp+Dv9ELwCoPAIdoXg8arwjnQvB91UkM6VkMla1W2qqk1BUUSwFgeAtVeiE4kEAoEA+dq3goMHD2LPnj3n/N514WJNMEyAu8hIp0uiXbSCc1WiK5UKpqencdVVVzUdS5Ho2dlZKIqCUCjUckMhz/OQZLpyI0sygOYfa6phjiLXhQJbh0pWg21ItNPqo2MCb5dk2C7vajIghSYnZBWcOAdFpmRJpEm0Q39j6jWUZbGm5W06B/H8KmW2xti2ak/prh1q82VFQjHPPj+ZGEjcWLbaX+LepYIxfH4v8mn2dVUITXA6nWJut1s1oK6L44iYcq+MXIZoxNRNFNNFFNMrj89hFpsuGcTZVRpuv8Aj0O1DgBMx6PdC8ingZKEWdKPyPLojfqSyhQZ7PDv/aCck+kL4Q19zzTVtHdPFKximCeAikz+8Qkm0M780F2tCPTmemppCIBBgRs+ySHTVxWNoaAiGYYDjOMe2dlXYxUyT1lNEkEaIWBqlri1vEydNoVJxtuxOyjyI3e08nJ1GkVOgJg92VVeySkxJF6gJit05SD22M3mE7fMgAz9ojTqFMkEkqfeJIoV2/tEUWSXjyxXn2l8KdkmGPEc0T/p8zO0mR587l2XLSagPj2TzHCknIdZkyNQNpGMZTD83g/FDZ3HqZ8dx8uGjOP2vRzDx46PQTywg/8sXIP56Fh1nk1iX07FFktEvibisP4JLh7uxc6Qbm9d1YjAaQjjogaqurebjNhW6eLnDNMyL8r8Lhc997nO4+uqr4fV61yzTMk0Tn/jEJ9DX1wePx4Prr78eJ0+ebNgnHo/j5ptvRjAYRDgcxjve8Q6yYEjBrUSfJ1gEoUqODcPA+Pg4tm7dyjyW5SddtbXr6+uDruvntSRpd1ObpHSCOoD9gIeqtAX8iMeaf8DtQlgoyQglB6BAaUfFFprlyNeQrILT5JOq4NJSEuoczok6FaDhVK5iR0qpajcdTNOCpzZFoonLsiOrJYpEE7Cz/XOaFGmrIyauSyAmuIGAH0nCmYSaSCdTSeZ2u/k6peEm/aO9MrkKUL0uDkA5V8ZSbgkAIG/vxwuEJaCfuI/qUSwWUSgU2kqiFxcXcfz4cVx99dVtG9PFKxymgYuvEn3hnk+5XMaf/MmfYP/+/XjooYfWdMwXv/hFfOlLX8I3v/lNjI6O4uMf/zhuuOEGHD16tLZCePPNN2N2dhaPPPIIKpUKbrnlFtx22222Xu6r4ZLoC4Aqia6mDfb09JD7rdYBT0xMYHBwsLa91So0YO/6QEoIHC7JkJVX4rolSUKR0CVTleV8jl1NyxHVbmog3s4Nwmkl2iHBtfePdiglaaGy6zRkhpTjtNAMSHpqU84VioiKw+h0alZj7/n8YpBo5/ci3QjpPLhE19jHhIJhzKI5uMZO8pRJsz9vFY39OiqqjZSGuB/tXFZU37kbCy+EHvrQoUPYunUrurq62jami1c2TMOEeZFpop1yByf49Kc/DQD4xje+seZrue+++/Cxj30Mf/RHfwQA+Na3voXe3l788Ic/xFve8hYcO3YMDz/8MJ588klcccUVAID7778fN910E+655541p526co4LgCqJHh8fx7p160givFrOUSgUMDc3h8HBQZimeV4EGrCXIjgl0U4lFZStmZ11GkWEvF72MjZVycwQqXaGTjc5OW12pEA7g7SR4JIk2oaoO3QloWQ3rYSw8Dz7GDttNwXSuYLYX7RL5nP4mvB2jiUOQlgA+/eKXLFo5bqIsSj4/TaNcyb7VaYmuXZhEtSkw251QlmDJvpC6aEPHDiwpn0feOABjIyMQFVV7N27F0888YTt/t///vexdetWqKqKXbt24cc//nHD42tZknbxuwfNLEEzLrL/TKuZOJ1ON/xH2fheSJw5cwaxWAzXX399bVsoFMLevXsxNjYGwJJohcPhGoEGgOuvvx48z+PQoUNrPpdbiW4DWI2FpmkilUph9+7d5HGrSXS9rZ2u6+dPom0cGUhPZrLy2p7mPkpqYZ2bOjURJ62wpSShUIjt/2vzclIE0OkyPaVWsWuic5yiSJ3Dhkw5dbvgCMLUSggLdQ6KMEmKwDK6sM7h0D/admJBSB2o+8329SVjr6nEPnoi5FTKYndvUeSeDIexa1Ik3t9gKIRpRoqk7JEBIk4nnWJbcJSJH1zVK6/p+zCRSGDTpk3n3M8JxsbG8O53v/uc+33ve9/DHXfcgQcffBB79+7FfffdhxtuuAHHjx9nrkYePHgQf/Znf4bPf/7z+IM/+AN85zvfwetf/3o8/fTTtWjxtSxJu/jdgSzLiEaj+I/Yj8+98+8g/H4/hoaGGrZ98pOfxKc+9akX9TpisRgAoLe3t2F7b29v7bFYLNb0uRRFEZFIpLbPWuCS6PMEpYkGgL6+Psg2Dhn1JNrO1q5VaBUdG7dFUSxWkFjKoJCr1LSIjivRDs9N+cDaWcCR2mDyWolzE6+b9aNDsDNiLMp9JJdz1nzQUhy4wyRDu/tFIyYDpDyCnAzQ7x814SCr3dQ57JoXSQcXYizb6ryz+40ivrIikmTVseezKiGfZRNJ6r2i3ndFlWgnFeKes5skUTZ61Ovl9agACEcRQQLLHUg3qOuyZBV2AVOmaSKfz7e1El0oFPD000+vyZnj3nvvxa233opbbrkFAPDggw/iX//1X/G1r30NH/7wh5v2/x//43/gxhtvxAc+8AEAwJ133olHHnkE//N//k88+OCDa1qSdvG7BVVVcebMGZQJx6LfdawOngPQZO1bxYc//GF84QtfsB3v2LFjZE/ZywUuiT5PcBzXdNNUG+TOpanheX45EMVoi63daixOLuL4vx1u2OaPBBDsDsITFCFHfRBUGeA4aKZVtZJVCapHRrHQ+CFvVwiL0EKSoWOHDJLA001/1NI+xSYpiUIqzZaS6DZSEscpig79o229ndsYwkKSaNJRg9Ax2+hZyYo6VT1uYQWAtL4jNC6yKjkm0bQln0iTaMqujniKsmpjR0heFyE9a6VCbqdHL7JfL8uBZLFpuz/kw8jISEPIVCaTqYVN1ZOSJ598ErIsM4l29f+SJJH3Xz0OHz6Mrq4ujI6O2u5XLpdx+PBhfOQjH6lt43ke119/fW35eDXGxsZwxx13NGy74YYb8MMf/hDAuZekXRL9uwlVVd1VBAB//dd/jbe//e22+6xfv76lsaPRKABgbm4OfX19te1zc3O47LLLavtU+9aq0DQN8Xi8dvxa4JLoC4CpKcsz9VwflCpRruqn22FrV4/YmYWmbdl4BrIiYOb4NPOYUFcAucUMZK+MYE8IvkgAql+FXwa27eqDYQKVioFCvows4ScLgGSyVNoe4Nxmzqlm2K7pjyKyVMVOkdmz645wGDFGw5adKwlFDCnLPwrU85MkgSZ5TkNYCFJqF2ri9ByijXOFUxcV0rdb4slKtNMQFjsHEKfyk1YCaEgnFUUCJaegXkfqOaqqjFyW/Xmn3l+7JkGK3FOTIZ9fbVqaXX3ckSNHYBgG+vv7G1Jdq7rM6jZd18FxHEm0Z2dnkUqlMDg4iH//93/Htddee07Cvbi4CF3XmcvHzz//PPOYWCx2zuXm6jZqHxcuflfR3d2N7u7uCzL26OgootEoHn300RppTqfTOHToEP7iL/4CALB//34kk0kcPnwYe/bsAQD87Gc/g2EY2Lt375rP5ZLoNqD+i98wDExMTJBBKvWokuh4PN42W7t6zL4wz9we6gogPpts2i6pElKLllaxnC9j8ewCFs9aRHxgYxTTp5q/uPv9HAKVPPydAXiCXkheBYIswuOTlqUkGvLZEtLJPLSKThI9wC4O3BkJI0NKKCcRmyRDqpmK7EQmzuHxqgCDXAM0ASzk2QQoS0RMU89PkmzkBm1KMpRkOs3PMYluQXtMumDYhMYUKuwlVXpVgg1ba0GHY9lNMqlKP4VWwmHIsTwSSaJpQk6sjHA2GnJiIubxsSetK2NySKfT2LBhwzldNHRdbyDV1f9Xq9v/9E//hO985ztIJBIwDAOqqmLr1q2IRqPo6+tDNBpFNBrFBz7wgbYUO1y4cGGPiYkJxONxTExMQNd1PPPMMwCAjRs3wu/3AwC2bt2Kz3/+83jDG94AjuPwvve9D5/97GexadOmWj9Bf38/Xv/61wMAtm3bhhtvvBG33norHnzwQVQqFdx+++14y1vesmZnDsAl0W3H7OxsbanwXCSa53lwHIfJycm22drVI0aQaNXP/kHq7O8gj1maTTC3lwplJGcTSK56fMeBzTj+qxMN23wdPgTMAKReD1S/CogC0rkcAsEQNM1ALltGJpVHIddIbsjYZkozzNwK8FSF2sbWi1rCJ3W+1LlJ8imQ/ruKogJoJswiIfXJZIi8ZJ6WwzhtarSrxjqNnqZg59BA2dLRemGCRKti031WG8vh9dpVop0S31YcLUxi2thOez/ZJoSFTkWk/aOp156aMKtee3u7crmMXC63Jj20IAjwer1khPfu3bvxt3/7tyiXyxgaGsJDDz2EcDiMWCyG2dlZxGIxHDt2rOEz3dXVBUEQMDc31zDW3NwcuTQcjUZt91/LkrQLF68EfOITn8A3v/nN2t9Vw4Z///d/x6te9SoAwPHjx5FKrfRgfPCDH0Qul8Ntt92GZDKJa665Bg8//HCDQuDb3/42br/9dlx33XXgeR5vetOb8KUvfcnRtbkk+jxRr4mupg0ODw9jfHz8nCQasMjV0tIStm7d2hZbu3pQlWjqHP4w+0fF3+FFNsG2scossRvsWEviuUQOZrmCM0+ebnos0heuVcclVUKoJwRvJAA14IEnoKK7sw/6spSkWKwgmy46TkiiKrV2SYZOHUOcupWIEk2iKWIoE40a4Y4w5ieaibRdM2chx652UwE3pI65jc2ArUSnO4/wpu3SnKYP2slPnHo+2zUfUDpi6h6VbEm0M9cZW5kJMRalgFBUmkRThPxclehEIgGfz2fbyO0Uzz//PDiOwxvf+MZzrg7Ksow9e/bg0UcfrVW6DMPAo48+ittvv515zP79+/Hoo4/ife97X23bI488gv379wNY25K0CxevBHzjG984p0f06u9UjuPwmc98Bp/5zGfIYyKRiKNgFRZcEt0GmKYJ0zSRTCaRz+fR39+PqampNZFoAAiHw22ztavH9Ok55nbKO1ZR2T9AkWiYJNFLDFkIABSIpV+q+79eYlIpVrA4sQhMLEIQeRi6ySQdQW0A/lIO/k4/PCEfJK8KQRbhVQVs3BZFuawjlykincyjUtZtGtlacM5oUyXazg2BqohSBJeqtKseFZkEpV935v2bz7O32zXwkT7YlASDtL4ToVMJeFT1mIrwtpNgOAxOsQ1hcWgxZzfhKRWp6m37/KOp59gKIadgFy1OkehzVaIvVNT3vn371iyvu+OOO/C2t70NV1xxBa666ircd999yOVyNbeOt771rRgYGMDnP/95AMBf/dVf4fd///fxd3/3d3jd616H7373u3jqqafwla98BQDWtCTtwoWLlxYuiW4jzp49i8HBQYiiuCZNtK7r0HUd3d3dbbO1q6KQKZJV4mySrak1iJKWN8BukKyvHq9GcoEtLaAIlepnn6OzrwPzk0vsc8xnkFpIIzXXeA1br9qA4080Vrs9IS+USgTrelQofg9ERQZEHrphuQiIIo9MqtDkjOC08knb7rVC4NnnKJfYZIpyabAjuJRUxufzg2VPJhHhJRWNtmyiyB9Jom0ix4tErgd1X1HVUFupA0WiHTYvAjbBKcT9IylssmhXhW+rfzSlX7cxC6KeI9WcYCcNoa7Lc460wkQicU4HDacYGxvDtddeu+b9//RP/xQLCwv4xCc+gVgshssuuwwPP/xwrTFwYmKi4fv96quvxne+8x187GMfw0c/+lFs2rQJP/zhD2se0cDalqRduHDx0sEl0W1CoVDA/Pw8fu/3fg+AVXk8F4menZ0Fx3FQVRWmabbF1q6KM8cmyMeWpgl9M1HlEwjiRDUoirKA5BzbHzafZrMgijgFOv1MEi0pIlIL7Ea9fKZZolBI5aHnSzjzVLOUZGTnEGaem7SuXRHh7wxA9EqI9HVCVBXwkggTHCqajmJRs6QkbYpHt7dgY98/JIluIcmQki5Q1U3qxzsQ9CG9xK52U3KVVJJ9j1B2gLYuGI79o9tYPaYaOm307hQhVhS2zET2SChQ1ndkUmQL/tHk5JDWaq+2w6yC6lmQZOfx6R4vLeeoVCrIZrNtrUSbpomDBw86lk3cfvvtpHzjsccea9r2J3/yJ/iTP/kTcry1LElXMTg4iI9+9KMNwTAHDx7E9ddfj2PHjmF4ePjcT8CFCxeO4JLo80RVEz0xMYGenh54PB4AltetHYk2TRMTExNQFAWaprXN1q6K3/zqWazb2Qt/wA9DN1EuVlDIFmGYJubONPuwAkCKqh5TS6yETrGzrwNz4+xzJObYxJf68VSIZdzO/g6mhZ/dOajEtfrnoZU0JGesSYaRLSEeYxM9cbgb3kIJgc4APGEfZK8KQZHgkQVs2t6HUmnFlaRc0mjvarsEQIfe1RTsKqWUdIGsSJJpifTzoKrdVuNk83tVLBFWakQQB0ATdTI4xUY24TTlj3p9ZUWiSTSxyiBJbBKtKCJJosnGvjb6RxvEd5ntRIEYq5VAFzs5RyKRgNfrJUMdWsHk5CTm5uYcWV291Ni7dy+efPLJ2t+maeJ973sf3v/+97sE2oWLCwSXRLcBmqZhamoKl19+eW3buSrRVf203+9vW7hKFbqu49//4SDmTjQT2W37N2H+hTkEOv0IhH1Q/SokVYIgCjAMEx29QRRzJeTSBaQXM9A1AwVGZRegyUMg4meSaNWvIJtgS0koiQkFqglS8crIxNkyFlaFGqArtcGuIEmi47MJaGUNmVXV8I27R3Dq12cbtqkBD6RCBENdKtSgB4IigRMFGCYHURYg8Bwy6QJy6UbySJMQZx9bqtpt5+3crqAXwMYCjWB5wWAQQPNqiUxUaQHaDrBQYBNyqpm0leoxRVYlRQQrfR6weU0oFxeb565RqYjEzE1WnftHa8R3meKRUSmzx6K+/+zuFaqqbSfnuBB66F/96le4/PLLSQePlyP27dvX4GDwD//wD5icnGwIgHHhwkV74ZLoNmB2dhYej6fhi/xcmujx8XEMDg4inU5jdnYWpVKpKc5WUZSWyPWhR55iEmgASC9mYOgGUvNppOZXCOD2/ZtwdOxk0/6RgQ5UiiWM7uiH7JFrVSRN0yFJPLqHIkjHsyhmS7UfbetHuhmRaBgzp9jNjvFYkrmdaoCSPeyqUyQaJl1JKIkJVY31EFaA4d4QOVYm0Uzgi5kCKtkizj7dLCXZcNk6TD9jSW8ESUCoNwxfhw+ekB+iR4IgSTDAQdOtgJtEPAOBSEukQIewiCjp7NeXImbkOahmwBYqlRRUovEVAGCyz19ND12NbI7NbkW766UqvkR53t76ro0hLA5t9Fqx5KMWyVqxvrN1XyHuCTs5RyKRaHuldWxsbE1R3y8n7Nu3Dx/+8IeRzWbBcRw++tGP4rOf/WzNR9eFCxfth0uizxMcx2Fubg7Dw8MNlR87El0sFjE3N4cDBw4gl8shkUhA0zTkcrkG8/+qTnp1ohaLbIuiWDv/Y/+/g+joDyOfKqCUW1kCHtzaj6nnZ5jXlCT0xdHhbhw9eKJpuyegQtd0lJeXXxWPjGBXAN6gB6pXwra968HxHAzNQLmkoZApItQdwPTJWFOFzBf2IUdUoilXEErs6u/wMbcrPhkZogqeTzurtIe7AiSJphotK4Qvr1I3GdArOuJTS4hPLdk2bXpz3fDmivB3BeEJe6H4lqUkCo9N2/tQLmvI58pIJ/MoFSq2cef0sr4zRw0yNU8WScLolKi3omNWVQ9zu9/nA6txkqoqA0COcCwhHS1sNdzOiG8rFnOtOG1QJFoU2RNjycYqkJJPUZM61SsjR6SgUtKxSqWCTCZzQZw5Pve5z7V1zAuNPXv2gOd5PP300/jpT3+K7u7umjOICxcuLgxcEt0GXH755U0kQhAElMvspcmJiQl0dXXVKs2RSKRpGdc0TVQqlYY0rdUxttW/q9Z4siyjnKvgqR8+C335B0xWJfgjPvhCXnQNRhCM+MHxXI0AFzIFeIMenH5mnHmtiVXOF1WM7lrXQK5LhTIWJpeg+hXMvjBXI9f1CHX6wMOAL+xFqDMIj1+FpIjwBDwoZIuolDQUc2VkU3mkl7IwdANxIuSFqlBT9lmRaAdmCcu/xDyhoaa04ESFOtQdIHXlFIGnNMZU0yZgVe0rxQoyS43n2nzFKE48daZhm+JToJQ6MNilQPWrEFXFkpKAA3ggnSggky4im2qcSJANZgTvpZxdRJsmMpKoE/tTshuOs3FRIc4hEtpjr8+DfJpwEyGeezKZZG43TJooO9Vd2xFfMkKbuF47Qk6NRZJoxbnLCQXFI9EkmtBEJ5NJeDyetrpVxONxHDt2DAcOHGjbmC8GvF4vdu3ahR/84Af46le/ih//+MduoqILFxcYLoluA1hfVFQlWtd1TE5O4pJLLqmRX9bxHMdBlmXIsnzO5ThN02qE+n/f9f0agQYsshmfSSKXymPmVAx6pfmXdeTSQfAiD3+HD/6QF56AClmRl8ltAb6QD4VsEblkDqnFDEzDRIKoxK6/ZJhZuVZ8Ck7/ZhyGbiCzmEVmcUX2sP3qzcxj1l86jEK2aF2PaklJTNMiRoLEo2ugA+l4tpGwEwyM0lDb6bSpCjVVEQ13B0kSnSC01ZSURCGWr4OdfqQJ68Jcqvl6S7kS9EIZ40+/0PTYwOYopk9YUe68wCPYE6rFt6tBFd0RD0yOg6abKBY15LJFMh1P14hJjV3jpFMPbkrjqzh3m2jF+s402AeFQmHMMhokqXMAQLHAbhIkPcBbsdEj0v/sKvrU5JSSldn6R1PWdwTsqtqUJjqZTLa9Cn3o0CFs3rwZ3d3dbR33xcC+fftw//3344/+6I9qSW4uXLi4cHBJ9AWCIAjMH7HZ2VnIsoxQKNS2hkJRFGve1E/+82+Z+2y8bBRHfnW8abvqVzB1bBaGZiC9kEG6jgT2bevG7LFmB4zhXYMoZooYuWQIikeGKIowTaBStqQDXYMRpBYzqNT9iK6/ZB2OMTTXskfCC79hV8FVn8J8LDrag9iZ+Yb9AhE/fCEvJJnH9r3rAY6DrhmolCrIZ4tQfTJM02wiYh29Ycxm2RVqSrJBaWM9frZ0IBDxIROnGiqdhZeEeoIkiaYmNlQ11hdcuV5DN2rx7aIskEvxQW0dPJkU/N1BeMM+KD4VvCyhqBcwurkbhsmhkCshnSygmC9DsAs1IW3pKEcNOoTFqdtEKyEslGyCgs/vA5BkPqaV2deVzbDvk2KJboqlniM1gaCcSTjORqvdglUgWSEn3l/ZpqpNaaITiQQGBwfJ41rBwYMHf+eq0FVceumlkCQJd99990t9KS5cvCLgkujzRNXibvUPgyAITU1NVVu7devWwTCMttva/ez7v4AgCtiwewSyIoEXeEsWUqpA1w109ncgtZhpqH5uuHSESa69QQ8WTrOlFLqhYe5sc+Ni13AHFsdXjlF8MgIdPniDXgiSgIEdvfD5fOA5HqVCGfl0AZ2DHTj6H81VaFEWcXbZu3k1LHu7FRJdzJVQXNZ+U8d4vBJE3kSw0w9fhw+qV4GkiPCGfQh3+ZHL5pFN5qCXTaSXspA9Eq2hplw+iPjncE+IJNEU8aWqtN4Am6h7AipZOafSI0VCsxvp68A8YVGYTeSQTWSRXdVAObCjB9NHGhs6JY+MQL8XcqcMNeCFqMo1KUmlokPTTZi6iUwq3yBxd1qJbsU/miaFNp7aDu0A7ZIXKULu8/rAsv2jQm4EkQNhq40i6UzCvi7VaxPHTdyPdk4blF0d5QhjN4FhVaI1TUM6nb4geujbbrutrWO+WPjud7+L22+/HRs3bnypL8WFi1cEXBJ9gcCqRFdt7aLRKAzDWHOc7FpgmiZ++o1fIj6VRHwq2fDYhstGcPLwShXYG/QgEPHDE1DBCxy2H9gCANArGkr5MnKZAnrWdeLIL9nkeu40O0Ew1BVsINGlXBmlXBnhAR0TR6eZx3CCpZv1L1eSVZ8CWZHhC3mQS+VRKWkoZArIJnJIL2XACzzGj04xx+pZ14UFRjBLRzSEM7+dhGmaiMeSDU4gm/asx8nDjVIHjuMwvHsdMksZeAIeyKq8PCEBKhUNAIfO/jDSS9kGMkRVqKnER2/AQxJyihBTRKOjN4QCoSdNLbIlJlRFMNDhI0k0ZfnHMyLtKoUyOF3H+K/PND1WTyR5gUegO2hJSUJeeEUT23b0weQ56LqxLCUpkZHY9s4VzqrddhHetGzCWQiLrEgkiSYTPYkGSa/fg3KRvTJBXW8mTTiT2LyOVLWbek9aCXSxOz9LE51MJqEoSs2bvx0oFos4fPjw75Qzh2EYWFhYwEMPPYSTJ0/iX/7lX17qS3Lh4hUDl0S3AVQlerUmenx8HAMDA7W/21mFfv6ZEzj9BDulcPUPXT5dQD5dwPpLh/HsL55nHsPBkloEOwPwhbxQvApESYQ35EEukUOpWEYhU0AmnkM2kbNkIUdnmWP1D0eRnG6urnUOhhE7bclFkrEUknUErWu0A4tnGivhHM9h/e5hZJay6F7XCcWjQKhV2zVUKhV09ncguZBuILT9G6JMTXIg4sPpZ842bTdNExzAtONbt20AE8dWJgSegIpAxA9v0AtZESwpCc9D13SUlhs3JVVkS0miIZJEU2mMVNXTF2JrvgVJQJJonKQSKhUPW5tq1zipFYkGPqJK3BEN14i6oRtIxZJILU9uoiPdiJ1tlhF1y5ugpJIIdAfgDfuhBFSIigzZq6Cjw4NyWUc+X0a2Lr6dSnckI7yJz6QoCWRVm04MpEi0CMoVndWzAND6arsqvCiw30eP1wOWDzd4OoUzl2XLjqjVAcVrQ6IdJiwCbBJ9IfyhDx8+jEgkgg0bNrR13AuJX/ziF3j1q1+NrVu34gc/+MGyz7oLFy5eDLgk+gJhNYmut7UzDKPtXdOPfPvnGL5kELzJI58uIBPPIp8uoCMawulV4R9VUJWfkV1DOPusJYtYnIpjcSpee2y1HhmwdJGbr9iA+GwSHr8CUZbA8xxMw0S5XEY+U4AnrKKYLjWQl+hwL5ZWVc0BoHOwmUADFvHJpLKIvdBMsPq29GD2+Mp1eQIq/B0+eIMqwAHbD2wGwDVU23vXdeG5XzZPIhSfghd+y9Zpr7bQK2SKKGSK6B3txtln2ZMYj0+GJFpNgd7larukSPCFfQh0eFEpayhmS8gmc0gvZSGpEql7pqQZlCtJZzTMjE0HQDZUUozN1n2EkKtQzW2BDi/m2S8x6Rlu6AbyqRzyqcZzbdw9jFO/bhxMUiUEe0KQdBOhHgWBSBicKMAEUNFMyIqAUMSLdLLQcE/aVVZpEu3Mqu+l9nymUhEDQR8ycSItkiD3iQRb8mWXCEmtDlCvveqRmd+XiUSioSjRDhw8eBDXXHMNOTlYjQceeAB33303YrEYLr30Utx///246qqrmPt+9atfxbe+9S0899xzACxLurvuuqth/7e//e0NgSkAcMMNN+Dhhx8mr+FVr3oV+Tlz4cLFhYVLotsA1hfuahJdb2unaVpbSXQqkcavvvMUiunGjn9JETG8fRDxjiRUnwJRtrykDd2AruvIpwoIdPqRWUXYFA+7E37d9gGmLEPXdCxOxTFzKtb02NZ9m3Dq8Nna34GIH/4OH3xhD0zTxI5rtsA0LN/cUr6EXCqP6GgPlqaaf5zDvSHMnWTLDBS1sfGoSm47h8MYf44tJTFNA5IqQg0o8Id98Id8kGQJvrAXmXgO5VXVdkESSM11V38Ec4wY8nBvCGeftaQkSzMJLM2sPK/NV6zHiaeapSQj24aRTWSh+lXwIo98IY9QMAStooPjOUSiIaSWso3yEcqVJOIjSTQlzaCaCqnGSVERSEJOV7vZjWJ2TZhFIvZaZoSwVIoVlHMFLE2w75eRnYOIPzcFjuPg7wog0BWEN+SDTwS27YjC5HnouolSyZKScBxH2q+RumuCh8ktEF9CfQKJ0OEDtI0ePZZddDt7eygUYjuT2JBoqnmSIoIqQw+t6zrS6TR27txJnqcVjI2N4bWvfe2a9v3e976HO+64Aw8++CD27t2L++67DzfccAOOHz+Onp6epv0fe+wx/Nmf/RmuvvpqqKqKL3zhC3jNa16DI0eONEwGbrzxRnz961+v/d3OOHMXLly0Fy6JvkCoJ9G6rmNqagq7du2ytbVrFf/vmz9tItCAVSF74TfjzKrmjgNbMHXCInC8wCPQ6Yc/7EOoOwCY1uOGYUIrV1DMFZFJ5OENsknU4JZ+TB1nh7jk043LwJl4Fpl4Fluu2si0teM4K5jE41cR6PTDG/RA8SgQJQG+kAeppSzKeau6Xa22+8JeTB1ln7+7rxtL48nm7esiWJiwKuyVoobMwsoPO0tKwos8NuweRiaeQ3R9j2W5J/AwDQPlUgXlUhnh3lAtEbKKgU1RpsuHN+jBC79trlxbATs8pk82TkimEUPf+l7MvrAiMfGGPAh0WK+RrAjYvn8DYFq62nKhgkK2CK9fZUpJwj1BUuax+j2rgtZjh7EwwSbqFCGmKn3h7iB5TGqJXQWnxgp0+JBZYo9V/UyYponMQroW377jwGYc+VXzfRld3ws5malJSdTASny7KIlQFLEmJamRbYKsii0RX8KxpAW7OrMV6zviusjXPuBFPMZeTaH8qzMZ9vvLi8CpU6cagqby+TwkSWqrHtowDDz++ONrDlm59957ceutt9YCTR588EH867/+K772ta/hwx/+cNP+3/72txv+/vu//3v84Ac/wKOPPoq3vvWtte2KoiAajZ7HM3HhwsWLBZdEtwl2muhYLAZJktpqa1eFrut47NsHmY9t3DOKE080R01zPNdA0upjwMM9QaZbhy/kxelnxuHv8CEQ8S033EkQBAHekAfeoGrJJNJ5pBczKBcq6B3tJhsKy0V2hXLD7lGcetpqRFstXegajDRISwCr2r5x9ygSseZqe6VsaZJZ1faeoe4aia5HpJ8tJTE0A5lkBrOnmqvNvRu7MHdqpeLpDXng7/DB41fBCzx2HNgC06yrtqfz6FnXhaMMsiaIPM4eYVe7I33hBhKdTxWQTxUQ6g7Wqt2rEer0QZI4y5Uk5Ku9RqpfRSFTtCwAM5aUpEpeqfAZSo8d7PSTJJqSZlCJfR5iosbxXENMfT0qZSIgRGV/zjgO5ASCqgQHwh7EXphDIZ0H0KiVl1WpgbAKkoBgbxhSKY/164KQvQo4UVyWkhjw+FWEO31IJfJN2uwykWxJarhb8I/WibHsSHSxwP68Uk2VttaGhL1fKBTGDCNFUvXIKJVKyGQyDYmugFXdrU9wpVJd6xNdKRw9ehSapuHSSy+13Q8AyuUyDh8+jI985CO1bTzP4/rrr8fY2Ng5jweAfD6PSqWCSCTSsP2xxx5DT08POjo68OpXvxqf/exn0dnZuaYxXbhw8eLCJdFtACXnMAwDhmFgfHwcQ0NDF8TW7smfPY3Y8UWEuoM14iYpInieh+JTsGnPaK2SXK2Sbtw92uRIUcVqvXMVwzuHcPRXx1EpVhqW7hWfAphAKd9YCVd9CvpGewHBhOpR4A9agTG6psM0gdRCCt6gp8mFgvqhG9k5xJRSVEoaFiYXmU2AW/dtwqmnzwKwmrwCXQH4wz54Ax5wPIcdB7YgkUhAlVWUixpyyRz6RnsQn2km0f4OH+lK4gv6AKyQ6Cq5DfcHMP4c20lE9khQvLKl2w554PGpEGURnoCKXCKPUqGMbDKH1FIa5ZxFhqj3ZmBzH7MRUfZIOPPsBCrFCpamE1iaXnle2w9sxrFVKwG8wGNwSx8MzUB0XQSSKoHnlxs3yzoEUWBKSRSGnAI4R7WbkEZQGt9INNwghWkYK80eywCbrHX0hkgpC+VwIilsHbG/w9sUTa9XdCSmlhCOeHHmt8337NarNmDp16cBDgh0BhHoCsAT8kH2qxBkEeAFaLqJUllDPltCJlmw8Xxmf5fIikinIjp02rBvqiScNlog5FS1PRwJYMeOHQ3bnnjiCfT09KCzs7OBWJdKJdtE19WEe3p6GtPT0xgYGMB//Md/4KqrrlqTa9Li4iJ0XUdvb2/D9t7eXjz/PLtZezU+9KEPob+/H9dff31t24033og3vvGNGB0dxenTp/HRj34Ur33tazE2NtbW4osLFy7aA5dEXyBUv/Di8Tjy+Tz6+vrabmsHAD/+6qMwDROphXQDkeod6cYcw+HA3+GD7JGx/tJhyJ5lScJylVT1ypg5PQdJlRqCUgBgaaq5agsAGy4ZxtGx5opqpazh5OEXkEs1SwN2HNiC2LJ+WFLEmgNIsNMPwzAtKYluWJrkbAmZRBYKkVg2sCnaJH2oolhXyTYMs1Zt33TFemZDIQDwggB/2At/xA9vwAPZs1JtTy2km6rtkiph+nn2+QdG+5CcaV6iDnT5MHPCIv2lfLmB3PZt6cbs8cb3TRAFK+AmV8KGy0cgKzJ4noNhGKiUNHAcEOoOIr2YbtC7ju5ah+OMlQgAzNfM0A0EIn4c+Y/mlQjFp8DQ9Jo1my/kheQVEIwE4fHL2L7PcjPQNQPFZblNIOJHYi7FnBhR7iNUxTUQ8ZMkOunQySQQ8ZMkOk1IRsh49u5gE4muIkcF6VQJpglkFtPILFrX39nfQT7HitdARKjA1+GHEvBAVCzPba9PwujmXhQKZWRTRWSXJ6WyKpMkmrLRo9xEFI8MrcJ2kXHqTCIIdDgM9X6tdubQdR2ZTAY7duyAz+dDIBBgHldFfaJr/f8LhQIef/xx/MM//AOWlpaQSln3RHd3N/r6+tDX14doNIq+vj584AMfaGs1+G//9m/x3e9+F4899lhDZPlb3vKW2r937dqFSy65BBs2bMBjjz2G6667rm3nd+HCRXvgkug2oBq4Uo8qiZ6YmGh7B3kVsxMxHPlpM4EFrB9kFolW/QqO/AebQG7aM1qTS9RrkjuiYZTzZXQNRiy9bb6MfDqPTCKHxAKbjGzcPYrjT5xq2s5xwNSJFSu8SkmrNdztuGYLUyftCagYf24KoZ4g/OHGarslJfGgmFt2t1jMQNcMdA1GyCZACsM7BjF+xKocr04SHNzc13DdgFVt33zlBqQXM5A9MkRZAAcOuqajmC+hkC3BF/I2TSTWbRnEkUVGeqRPwQJDSqJrOipaGTMnmolvoNuPzIIlVeE4Dv6IF/6wF56AB76wd7lx07IArDZuBrr8OMuokAK0zGFkx1DD+5lL5YEUkJzNIDWfYZLi7oEwZJlrtEmURfAiD72io2ugA4VMEZllKQnHcSgRMh9WcxlgVduppkaTaIajGiQFSaAt/AiZBxV+A9BBOqRjic1EIT6bQnIuhYVVqxE7rt6MU3WfGUEUEOwNoSfkhxEMQPIq4CURJnhouoFisQJR5C0yu4q0knZ1qogc+7aARla1iUAXj4wc4TBDkWuPr7GxLpVKQRRFeL1sW8fVqCa6+ny+psd27tyJD37wgwCAzZs34+/+7u+wYcMGxGIxzM7O1v6/evWwq6sLgiBgbq5xBWxubu6ceuZ77rkHf/u3f4uf/vSnuOSSS2z3Xb9+Pbq6unDq1CmXRLtw8TKES6IvEKpfugsLCw22du1tKHwUQzv64fF4oJU1FPIl5JN5FPMlnGE0rQFAz7puLE42V5XDPcEGK7xCtljTJCteBccPNRPiwc1RzE0soXOgwwpKWSZJHM9B8cro3dgJQwOK6WJNb7vh8lGcOtwcvgGADPgY3bUORw+eQDFXatDFCpIA1as0kVR/2Iuhrf0IdgZqlWTTNKFVNGgVHemFDGSPhPKqRDWKEPWOdjcRaMBKSsyl8kyyvv7S4VpkuSgJFpEMe6F4ZUiKtNy4aaBc1FDKFZBJ5NG3oQfPP86eeCSn2eSud7irRqJN00Q2nkM2noPkETH+3BSzuheKBuAJqPCFvfAFrfdNkAVIkohioYyRXUM1m8SqvIEifvUTj9VILVjV+tU2iVuu2tBUIRdEAYFOH0xNw4ZLBiGrEnhBgLE8AfAEVIR7g0gvZhueUyQarq1qrEalwCa+VCphpDeEBWLFhQq/oawFA510U2M1XXM1WF7IgL0efLUXva7pSEzHEe70k98BHb0hlOdS8Ef8CHQH4Qn5oPhVeCUO23b2oVTRkE7nwEFCJlloyUaPguyRSBJdISQjnlWvS9Ufeq02dGvB5OQkYrEY/uAP/oBJtldDlmXs2bMHjz76KF7/+tcDsD4jjz76KG6//XbyuC9+8Yv43Oc+h3/7t3/DFVdccc7zTE1NYWlpCX19fWt+Li5cuHjx4JLoNoGl5+M4DuFw+ILY2pVKJTz2rTGkZpvJ1bb9mzF+dBLR0W54Ah4oHtlaQuZMmKalL86n80gtZVFa/kEf2NzHrEL6wj7SZzrYFcTUiViT3rZnXSfmVzWa8QKPYGcAHr8HGy8fhaRUvaQNlMsaZEXCzKkYuGV/6XpQnskbdo8wGyezyTzGn5tiNrXtOLAFLzxjkVvZIyHcHYI36FlOb7SaAK2glHKNSHb2dzDt64KdAZz5DdvsWFZXNLRaRa8lJfZt6KnptFejayCCYKcf/g4/IBiQPQp8Pi9Un4z0Ug4dvSHkUvmGMJlsnC0Z2HDpKJ5//GTzAxwQOz1fswBcxAppHNwVxdSzjdVuSRHR0R9GMVfExj2jkBUJHMchkUhA5CVEomHEZxNNjhqRvjDp2MJyrdA1Hf4O+l4b3jGIxLR1T9XLbTr6woj0BmHC0iJbcpsCEgsppBedWan5O3wkiaYq1JQDR7grSJJoymWEasbr6A0hPptkPlYgbP/sCHn1c56NZ5GNr3y2tu7dgOcPNX+eei5dhw6uDF/Evyq+3ZI/cQCy6QIySfZEox6y6pyQq6sq0clkkmkhdz44ePAgdu/evSYCXcUdd9yBt73tbbjiiitw1VVX4b777kMul6u5dbz1rW/FwMAAPv/5zwMAvvCFL+ATn/gEvvOd72BkZASxmPVZ8/v98Pv9yGaz+PSnP403velNiEajOH36ND74wQ9i48aNuOGGG9r6fF24cNEeuCT6AkHXdZimiZ6engtia/fvP/gPJoEGrKa9anNbPbbu3YjnV1WUFY+MUE8Q5UIZm6/cUKs6VYlkqDuAk0+daVrOVrxyrdK6Gt1DXU0k2tANmKaJI788xuzo37p3I5LzaXAch0DEbzmA+FUEOgOoFMsIdm5uqLanFjPQCT/j0UvWkVW4xPzKEnu5UMH8so/wlr0bcWysWWIBWBXyzv6OWix51QHEE/IgMZNAIVdCNp6r6Wllj0SePxLtwOzp5gbBYGcAZ347DsMwmyYN2/ZtamoE9YY8GNrSj3Kxgq17N4Jf1tlWw2QEUYDqV5q8lUd30a9NJdf8elZKGiRVwOQxNiGOzySRjefACzz8HV74QpaUJNIXRt/63iabxEK2QMpsQl0BsGragYivweUlm8zX5DbbPDKOMSYLHf1B5JMldPUFa1ISQRLAcRwUn4TRXYPLenvLA5zjuCayVoWkSsgQkhHKTcNDRL0DztMogxE/SaKzCfYEk/qusSPkpKe3IuHM+AQWx5snkqIs1r4beIFHsCcEf2cAqlHBls1dlpSE56FpVny7xydjKZZmNiqSJLpuQmAYBpLJJLZs2cLct1WMjY05jvr+0z/9UywsLOATn/gEYrEYLrvsMjz88MO1ZsOJiYmG9+HLX/4yyuUy/viP/7hhnE9+8pP41Kc+BUEQ8Nvf/hbf/OY3kUwm0d/fj9e85jW48847Xa9oFy5epnBJdBvA0kTHYjGLaHk8y96/7eusNk0TY//nqYYfsCqGtg9gkrCVY0VMW0Q5iJNPsd06uoc6kUvlIcqiVSUNWzZpoe4g8ulCUwNgPl1oiMWux+CWPhz5j2YC4QmoOL1MyE3TrHlJA1blmOXbG+4NIXZmHr0j3cte0nKNSHr8KkzDRC5TQGYpUyOS/RujmCGaEFc3UlZRL8tYrVft3xhtCJjheQ6BzgBGL1lnSSpUS7dtGiYqZQ35bAGZZA6C2NxcNbS1n2ktKMoizjCSEPOpAkRJZDYO+jt8mDg2DUM3mqLbQ90BeIMeGJrREN3uCaiYYyRBAiC1p/2bejFz0tKEGrqB9GIW6UXrfUvGU4hPJJuOWbezH4sTCfT0dNXeN1GyZBuCKGB4x2BD4yZg+ZAfG2smyhwHTD7PvtcifR1IzIxjIV/CQl3YjOKVoWtGw+dGEAUEu/xQVREbLx2CpIjgeB7Gcpy8IAqYn1hCajHTtEpCyjxktptHsNNPrqyUCNcKhSD3HAck5lpoqiQJOXuiQFXIV0tWDN1AcjaB5GwCqswzV1w2Xj6C0ukJ+Dp8CHSH4Al5ofpVCIoMQRYRiXhRKuko5MvIpPIo5MoNco50Og1BEBxVjNeCsbExfPrTn3Z83O23307KNx577LGGv8+ePWs7lsfjwb/92785vgYXLly8dHBJdJtgmmYt1MI0TYyPj0OWZei63nZbu6WlJbz6L/bhE9/+G+RTBSRiScTnUkjEkihki5g5FUMiZv2dmEsiPptERzREejZTP7j18d9aWUN8Nln7AaYCVjZfuQGzL8TQORRGR3cHZFWq+TbzPI/BLf2WddtCukZIqprn1RBEHuOEZ/LAxiiO/Op4kx7aE1ChVfQGUlwlktHRHvg7fKhoZZgwoSoqyoUKDEPH/CRbj10vy6hH3/qepoRGY9klJbOUwelnmqv09TZ9qx1AZK+E7VdvhlbRkFhKQctryKXyGNm5DieeZDtssBpHAWDdtoHa61mvSeYFHt6A2tQ0CQAjOwahlTT4lidJVbmNARN6Wa+9b/VhMh094RqJrke4J8gk0ABgwkQ+XWgin+H+IJIzjYRQ9kgIRPwQRB6brlgPaXkFQNd0lIsVKF6ZnLCxwocASxZy4snGCaOu6UjEkhAEHovTzXKO7fs3ITFjEfFq4qY34IHslSGKAkKd/uVm0jJyqQLS8Sxp1xaI+EgSTZFYKuQm1BNiBvkAtI2cx09XNCl/cMoxJdRJS1ZyKfbkQl62CswlcsjVPV/WxBJYjm/3rDz/C6GHTiQSOHLkCA4cONC2MV24cPHKgEuiLwCSySTy+Ty8Xi80TWu7v+fU1BQGBgYgCMKy9MGPddsHbY/JZwo1Yh1fJteJWAqZpQwWppYwuKUfiblkgy0XK04ZsCqwlN5VK2vWD+sSsDSZrG0fvWQdzqxadq8SEl7gsXXfpmW7PRNaWUMxX0Kg08/UPAPAHGNpGQBGdw7h6KqqZblQQXw2iVK+XKtw12PHNVtw9tkpiJKAQGcA/rAl21C8MgAO2/ZvQqVkJQBmE3mkF9OI9HVg9oVmWUbApqGrfom/XpLQPdTZUC2tBy9w6FlnVW3rHUBEWUB6KQtBFpCN5xomE1R1dHTXEJPcA8DSbBKJuVSTo8SWvRubSLwaUBDuCUHTdOb7Fu4JIZc6UbPDW3kuPBbH2e4TvUPdTSS6XKggHc8gMZdiehuP7B5ELpmHIArwR3zwhb2QFBGmYCDgDyDYFWh636jJbO9oN1P3DjSm9dWvktg1VRYyOXT3W3p7xatAlESAB0zehGZ0AjpnaZJThRohJN08yJAbH0miyaoy4d9sWyEnHFPsJCvpRWfpkuGeENOZpFKsINIbrP2dSCTQ1dVFnrcVHDp0CBs3bmzyfHbhwoWLc8El0W3AajnH+Pg4BgYGkE6nsbCwAMMw4PF4Gkz+W61MFwoFLC4uYuvWrY6O8wY88AY8GNhkb79UKpSRnEtZRDtmVZ4Tc8vEe5mER/rCTVVYwLLVo3TSLEKeiWfh7/CRns0bLhuuOTMEI5YMQfbK8Ie8KOZK6OzvsBrJ6mQblHZ1w+4RUrJSJbBaxapIJpYbErft28TU2/ICj8RcEv0bo/AEVMiKBH6ZSHqDHsyPLzY1AAqSQGqBe9Z1MUm0J6Di1NNnmfZqOw5saSDrVblN12AnTNPE9qs3WysAhoFKsYJ8pkhau/UMd2H2dHNFGQAMhg9wMVOCNCgxHVsAS4/LfN86fChmik02ifl0oSlRsor1u4ZJr+v4lEUgdU2veYADQN+2bhx5plkawws8FqaX0DvaDW9dw61pmvCGrElKVW9ffc0lRcT4UTZR9newJQW+sBdnfjPBrEYP7epH7PjKZ8dybvGjZ7gLum5AkiVLSrLsAV7MlaDrBjgOWD2cx0eT2OQ8m1yTVeWuAEmiKb9ryrVD8cpMf3iA9qgOdPhIe7+uASvRr6qH3rRpE3O/VjE2NuZWoV24cNESXBLdZhSLRczNzeHAgQNIJBJYWlrC4uJiLUGrUrFkBrIsN8TSsqJqFUVpIttTU1Po7u5uMOhvJxSPjN6RbvSOdNvup1U0JOfTK5XtWAqlfAnPHjqKzGIWlZxFSJPzaUvz/MxZ5jgd0TCTwIV7Q3jhNxZJrDpJVEGR28HNfShkixjeMVir/nG85T/rDaiIjvYguZhCMbOy1D+4tR9Tz7Or6sU8WxIwsnOInCwMbO7DdJ0dni/kRSDiR//GKPJpq2pqwqrYlwtl5FI5xOeS5HlYWmAATZZ7VblNdH0vjjK01YIkIDGXrOm2/WEvPH4PJFVEIOJHV38ElbKGQq6I3LJsQ1QkkvgHI2wCGYj4atXZpvdt/ybm84mOdqOUL2Pd9oEGm0Rd0+ENeNG/MYpMIttAtPs30fp2WWBLFrpHIw3x7A2PjUSwcHZFyqH6FPgjPvRt6EEpV4EkCwA4aBUd5YI1AaBI5+CWfnKCsTTVSBSrzi3R9T1NTb+ApXv2BDwwNa22cuMJqJBVGYFOP7bt27C8ArAsJVnKwBNQSZkFXVWm/a5TTqvK3UHMEXaVRcLejvIBB1ZIdCaTAc/z8Pv95L6t4ODBg3jHO97R1jFduHDxyoBLotuMyclJdHV1QVEUdHV1IRqNNhBhwzAaImrr42kzmUzD3wAgSVJDBXt+fh79/f2IxWINZPvFjoQVJRFdA5HaDxxgJYP5t0u48sorEQxaS7C6biC9kEairrptEe9lDXeuiJ51XYjHkg0V14FNUeZSteJTcPo3Z5nXFOoJYuo/jjd4EgNWxbCQKdbS1YRl32Z/2Iue4S4EI/5a1bZc1FDMFmDCJJfqKZ1073BXA4EGrFCSXCqPQKefWQmvassVr4JAxAdTMBDpjkBSRHj8Krbu3WjZ7WUKNdlGvVZ9NTKEfdroJetq/tyr0y2joz3MSPGt+0awNJOo6bZNmMhksvB5vNB1E91DnUgvZRpcHYa29DfJaYBqEyB7stLZH8GRXx1vqkQKkgBJFmu+yrzAI7Dc3Nq3vhehroC1AqBbjZvZdA7ZVJYpswGArt5OJon2hr1NMpNiroRirgQ5IGLmKEO20+3H3PgiJEWEv8NnObf4rVUJb8iLbfs3oVxYabjNLGXRPdyJhXG2bKdMNLYObRuo9TKklzINiYrUfTC6ox8eVaqtAIhS1XHHgKAI6B3uRHoph3xmRUpCVZU9AZWMQqfcNHxhH0CQaGqlSJDY569KqwBLyhEOh9uqhy4Wi3jqqafwjW98o21junDh4pUDl0S3EYZhYHJyEjt37qz5Qq+uJPM8D1VVz1lJNk2ziWwvLS2B53mUSiWMj4/XHjdNE6IoNlWxWZVuQRDa+iNUj1gsBp/PVyPQgBXz2xENoyMaxvpLh22fbzaRq1W2U4sZ7HnNpXWVbkuz2zUYwbM/P9Z0PMcBU8ebA1EAYHj7YIPzhb4s20gvZbA0k2BqiHdcswWx0/MIdgUQiPjh8amQVLGmKd20Z31D1VbXDHQNdTIrcN6gh/STDnb5geNAKV9CabnyvTSeRLAzgAyjQc2SbQQwtG3AagBcbrYzDAMwLaIV7Aw0xVdTWtjoaDeTQAOWJjnGIKRDW/sx+fxKYI7iVRDs9FsOID4F2w9sriU3VicAgQ4/Tj3NDtmhiNXIznU4/euVYwzdqMk2TMPAzKnmFYyhnf2YnJ9patzkeR6SImLzletRylse4NUJwLptA3ieqPjnFtkEsmuwA5mFLColbVnmtDzh4wDZK6Oca6z4cjwHX6cHptmBYCQAWVUsLblholyqQNd0dERDtXupikCEXXVVvDJpOyjJIrNnwBf2IZ/K1+4pSRFr75vqk7BuRy9ESYQsK8ta8hIkj4Tx59jNmwWG2w8AKB72JBOgEzEp7+76SXoikUAkEmHu1yp+/etfIxwOY+PGjW0d14ULF68MuCS6DaiS0tnZWUiShHA4XPOGPp8xq8S3ipmZGWzYsAHr1q2rbTNNE5VKpaGCXf13KpVq2FZNTTyXhESWZUiS5JhsVxseW32+a2mSNE0ThUyxoaqdmEuhkClg5vScpeFe3lbVZSYIfeiGS4dxwkYnbRgm0ouZhiYpltc2YOlgC5ki1l86bNntCTxM05K9eIMeTB2fQWox0+AaYkf8B7f0MR1LDN3A6V+fZWpOd1yzBdPLEod62YYv5IWwHCRTtdurTgA6+yPMxD/VrzCt9QDL07oepXwJC/lSzd6Q1QjX2ddR023XHEBkEaIsolKqYOPuEeQzRWQTdX7bRDBHZ38Hk0ADgLxsLVffuAkAvSPdTDcTxatAEgWM7BxaadzkOOgVHaIsYHEqAS2sNemCebAnJUNb+5nk1jSsNMnFiQQWJxqr3r2bujF3cuXaPEHVqm4HPRBlwXrfsCIByqfz6IiGaa14jH2/D2yKNjSJVkoalmYSWJpJoJAtMnX52/ZtAmdo1r3UYXm3S4oEjucgSiJUr7wsJbHCm/SKTkZ+h3uCJImmKvFdgxZpNk0TyWQSGzZsYO7XKg4ePIgDBw5csMKCCxcuLm64JLpNME0TExMTGBoaqlV62mlrl8lkkMlksHv37obtHMfV9NWBQIA42ro+TdOYZDuTyWBxcbG2rToBqCfXlH5blmVwHId0Oo1cLnfB42k5joM36IE36MHgZvtzlQplxGcTSM6lMHM2ht88+Sw6/V1IzqcRn03C41cQPNNctbUqrewqH/ljPxAhddIjO4dqEhMrQMYPb9AKJCnlysAWS6uajCfBGwKyiRxSi2yysf7SdWTiYb27Q9VuL7WQxuYr1jMJOWA1fK6u2gqCAE9QRXoxs5wAmEdqYWUCEDvLrlyv2z5AarinT8WabBIBYPvVm5uO4XkOwa4AitkiNu4ebfLb9kd8MAyjqWoLDpg9RUg5BiNMEq1VNJx46gWmR/OOA1tqVfr66HZfyFtLt6yXAGUTObJyrPoVLBG2f4GQD3NYubZCuohCuoi0T8bZ56aYqYj+Lh9kVbJcSUJeqD7VmpRIAsqlCjx+FYVMAel4DrmkVemn4s47+ztIdxjTNBvupSp6hrswz1p1CXnAcQZGtvdbjZuyAJiWlERSJUiKiGwi3yAlAdAUDFVF10AHAOv7D4Dtd1wrGBsbw3/+z/+5rWO6cOHilQOXRLcJqVSqRiINw2i7RnlychJ9fX2QJHqp1A4cx0GSJEiSdM7GHIps5/N5JBKJ2t+aptVIvGEYkCQJJ06cYFa5z8eRpFUoHhl963vRt74XfMRE764Idu7c2bRfpawhOb/sqx1LIZvKY+7MfIOUJB5LARxI+zpvkN2Y1RENNTTnFbJFFJabq1Sfyozm7hqMYH5iCZ0DyymJdc12Hr+K9ZcN10JSqlZmPcNdZKMdVWXr29BTS09c7R29ac/6ppRE2SNhdNcwSvkSugYidVpbK25bFAV4g54mecy6bQO0n3OuuXnTMEyEuoM4Q+i+R3YO1eQT/rDVuMnLPDwdKhResaq2FQ2lXKkW3EK5f4zsGCRt/5J1pLE+un3TnlHmagRg6e+DXQEEqlVbddm5hdORWsxCgNDk3JJZoOUsZIPidALlYgXxmSTiM8na9v7tvZg52lil50UrTbKYL2LD7mHIqvVZrDqA+Du8KJfKyCZyMFctIpD68oEIk0TnUwWceWac6UW+48AWzJ+xrk32SAhGlkOA/ApkRUZHbwCGZqBc0lDIlpBN5tC5TKLj8Xjb9dCGYeDxxx9vKWTFhQsXLgCXRLcN09PTNSkDK8HwfFCpVDA7O4urrrqqbWPaQRRFiKJ4zlQwXddRLpdRKBTw61//Gn19feB5HsVisSYlWe1IYlfVphxJzheGYWB2dhaXXHIJ83FJFtE92InuwU7bcTRNR3oxU9ccaZHu+Kylq9avNGqPVWON+zdGV/SydRBlEWcJuUTvSDcWp+JYmk5gaXpl6V9SJfAc11A1FUTLIm1wcx9CXQGI8nJIyjJBKudLWJpNMC3SqAhySspRLlQgygKOP9FMbj0BFZViBVpFt7S2XYHaBCDUE0JgOZCkXNRQyBSQTWRh6Abp/uELs1MSfWEfJuos5+plGxuvGMGRp5qdSQIRHxamlph+256gilHDbGjcBIBQd7CpSbQKKo0w3BuqyWlW+yQP7oxi+ljjJMcb9KB/YxS6pmPr3o3Lzi0m9Io1KVG9MjO6vWsogsXJ5lAYAPB6midzhmaAEzic+Q37tR7a0We5eXCAr8MLf9hyAAl2BqCXdQxsikIraygVlmUbixmyqXB1imc9ynXOIOVCBYvTcSxOxzG4OYoTJ9jSlNEdlrSrGrLSTjz//PMolUq47LLL2jquCxcuXjlwSXQbwHEctm3bBk3TaqmF7SSCs7OzCAQCbV/KPF8IggCPx4NEIgGPx4PNmzczJw+tOJKshWyvtdq/uLgIQRDO+0dYFAVEomFEomHb/UzTRGYpi3gsieRCGvH/mmjUcMdS8IY8ePYXzQ2SAJrcRaoY3dWcXqhrOhJzKcgnYsxmsi1XbcDE8zPgOM6Kbe/w1nStkmqlJFZKGkr5Uq1COrxjiKyAUimJw9sHa9XZSklrmAB0DnQ0TAaq2LpvI2IvLMDfsSxHqKYkLsuJWCmJ67axI8CBZvu4Kqqx4SyXiY7eUIMMpqrbHt4xiGwiV9P/Grrlt51N50mpTf/6HjL8pD54qIp8ugBZkXCUaLgMdvpRzJaao9t7Augd7m6Kbs8mcpg7w3bFGFjfh1SM7dyyOLn8uplALpFHLmFNJPq39zCdSQBgfnIRXYMReIMeqD61NinxBlQoXtny/o5nG1YlpomVklB3CFMnmh/jeQ7b9m+u6aHXr1/PPL5VHDx4EPv27Vvz6t4DDzyAu+++G7FYDJdeeinuv/9+srDxjW98A7fcckvDNkVRUCyu3IOmaeKTn/wkvvrVryKZTOLAgQP48pe/3HYfbBcuXFw4uCS6TRAEAYZhQNf1tko5TNPE5ORk239A2ompqSkMDg6S1ffzcSSpkutcLtcgL3HiSDIzM4P+/v4XrXmI4yxNb7DLftJTbZJ88ldPIbOYQ0AJIbWQwdL0Us0CsFrxzqcLMAkHA7vqX5V8mqbZYJHWvylKShJ4jkN0tBue5UCSslaGrukIdQSRWshYGvhV1nY6EaJhd216xUByPtUUDMI6puqRrHiVppTETCoLCMDiGfbkgxVWA1iNdquJXVW33dnfgZOHm8lt9RiW37Y35MP2/Zub/La7hiIkuS2X2Br7+murj24HgI2XjzKdTga39iOXyGFwSz88fqVhVUL1qRjY3IdcMofUYqYWujK4OcoksADgUdirAV3DESyOs1/rvi09mD2+QrxFWYQ/4kN0tBtaSYOsWj0Uhm6gXCyjkCtBJ+7r0UuH4Qt5kclkYJrmBdFDrzVk5Xvf+x7uuOMOPPjgg9i7dy/uu+8+3HDDDTh+/Dh6enqYxwSDQRw/vrIysvr754tf/CK+9KUv4Zvf/CZGR0fx8Y9/HDfccAOOHj16wXIAXLhw0V64JLqNqLpftLMKHY/HUalUXraRtNlsltnw2ApYjiQsOHUkAazGpHg8bku2RVF8Ubv0OY6D6ldgqBqu+f/2IRwOk/uW8qUmYl2NbhdlEZIsIh5LNsSaewIqqSvu6A0xNdSKT8HJp88QKYn+Bu/sqrVdqDsIXuCbre3SBXT2s9MtZY+Es8+x5SwdvaGmYzLxLEqFEhanlprixAFLyjFbmm9KSbQsAK2K/Op0y3BPiFkdFWU6pTDcG8b0yVhTs50oi+AFDuVCMyn2dXrRqXUgFAnWGjcBoFzWYGoG02+7XhpSD0HkyabXUFcAU8/PNMWH8wIPSZFqFoorTjg+RNf3QvSKAMfB6/VAK1nR7blUHvMTbOLfO9jNJNEczyG+quKulTUkYyn4ulRMP8dwVOGApZk4OJ6zHEnCXngDKmRVwRU3XApgxR+63TIvJyEr9957L2699dZadfnBBx/Ev/7rv+JrX/saPvzhDzOP4TgO0Sg7IdY0Tdx333342Mc+hj/6oz8CAHzrW99Cb28vfvjDH+Itb3lLC8/IhQsXLzZcEt0mVKuj7W4orNrGvdhNeWvF9PQ0enp6Wm54bAVOHEnOnj2Lubk5bNq0ybEjCUW2W7H/o7C4uAhRFBEKhWz3U7wK+tb3oG89u+pVRaWs1WLb04sZLE4tV7XnkjX7v/hsAgsTbDeGkZ20lGM1qapa20X6OnD8CfYxQNWPeFkj7bOaJL1BFblkwapG1gWSAMDSLFuWMbJjiLQkzMYtCcLqlMSNe0ZrITP1kD0SysUyI91Sh+JVMX92vsHZooo0IeVYt30QLxCpnKmFNJYmk1iabHxeo5esa2hUrffblhSJ6bcdjPiZFXIAZNT20Nb+hsmPaZrIxLPIxLNQvArO/rZ5wrBuxwCWjkw3TUpEkYfqV7Hlqo01u71qdPvgln5MEg2kqkREzo90Yv6MdS9mlhpTKTf/53U4ePAgyuUyVFVtaFpeLetqxY5zenoae/fuPee+5XIZhw8fxkc+8pHaNp7ncf3112NsbIw8LpvNYnh4GIZh4PLLL8ddd92FHTt2AADOnDmDWCyG66+/vrZ/KBTC3r17MTY25pJoFy5+R+CS6Dbh1ltvxY9//GP09vair68Pvb29iEajtX/39fXV/g6FQmtqPjx9+jS+/OUv4957732RnoUz6Lpu27D3UoPjOMzNzWFoaAidnedqGmQ7kuRyOdKR5Fy67bU4ksRiMUSj0baRckkW0T3Uie4h++er6wZSC+mmJkmtoiHcHWzQcOua0eDksRqrA2Gq6B3uqmmoq37EVWy5amMT8eYFHkPbBqCVNWy8fBSSIi67SJjQyhX4Ql6Ee0MNGmkACHT5mKEw1deDBW/AQ5LR7VdvrrlSCKKAYJcl2wh0BgDTrFnbVUoaCllLtqF42ZNIb9BDWtt5V0VtVycl2WSO9Nvu6o8w/barbhsbdo/W7PbSSxmYJuAPsxuEJUUkq9qBsOXgs3pSIog8BEloqrhLqoRIXxgchwY3GUM3UCqUoJV1BDr9TS4p3QNdNRJdD47jcNOfvwaiKuDZZ59FMBiErutIJpMNn1OW9z1lzVk/+R0bG8Nll122JonI4uIidF1vWg3s7e3F888/zzxmy5Yt+NrXvoZLLrkEqVQK99xzD66++mocOXIEg4ODiMVitTFWj1l9zIULFy9/uCS6TfjKV76CyclJzMzMYGZmBrOzs5iZmcEzzzyDWCyG2dlZxGIx5PN5qKqKaDSKaDTaQLB7e3vR399fe+z+++/HmTNn4PWytYkvNebn5yFJUtu75tuFTCaDXC63JimMU0eS1brtVhxJBEHA/Pz8i+a6Ug9B4NfUJPmr//gVeiNRCIZc1xi5EtuenE8hm8hB9sgor/JaphIcBUnA+JFmmYmhG/CHvA3pklVwPAdvwFOrtlY10hBMdPSFwWlcTSNtyREKSC+lyTCb/o1RMvhj9vSK7EDX9Npz3rp/E5lsKCmSJZHo9MOzHP/NCzwMwfKzFsxma7vFabaueGjLAE48xXarSMynmH7bmy4fxclVOmlLt+2HYRjYuHvEcnfhLS15pVSB6lMx8fwUMvEsDK1xIkRXtQeYjiqVYgWZpWwtorzhmG0DtQp1fXS7x69C9SnLkxJrolTMFZFJ5NE1EEHfUBTZrJXauXXr1qYJqZ33fTabxdLSUm27pmn4/ve/j3/7t39DZ2cn0uk0Ojs78alPfQp9fX21/6LRKPr7+897RXH//v3Yv39/7e+rr74a27Ztw//6X/8Ld95553mN7cKFi5cPXBLdJoTDYYTDYezatYv5uGmaVnNXOo3p6ekaya4S7qNHj+LRRx9FLBZDLBarhQt0dXXhVa96VY1YV7/o6//d2dkJnudf9NStqq3fyzXta3Z2Fr29vRDF9t3mVUcSD8NKrB5rcSQpFAowTROHDh1quyNJO5DNZlEsFTG6ZQSCIGB05xC5r2mayKcLy3KRJOJzSeSSeWzcPdpQ6U7MJdG/MUpHgMcpP+ehBtu9qhwBACRJxsSRZknC0NYBLE4voXekG96g1STJL8efqz4FIzuHGjTSgNVwSfltG0TzZH3wyOrrH9jei+lVvs2WtV0vdM1gW9sFVCg+BaVVHtrBzgB5bZJHbr5ew5pUPP/4KeZqwY4DW5Cat75nfCHLb9sbVKEGPODAYfuBLZa13XIaZXopA1+IPaEXJAGTx9lV7WDnii99fXQ7x1le6VXf9Hpc+8eWzMJOD+3E+17XdWzevBl//Md/jOnpadx5553YtGkTxsfH8fjjj9cKHQsLCzh69Ci2bt1aO7arqwuCIGBurvF9nJubIzXPqyFJEnbv3o1Tp6zVl+pxc3NzDQFVc3NzruWeCxe/Q3BJ9IuEqnyjSrar2rjVqP7Yff3rX8enP/1pPPTQQ7Uv+JmZGZw4cQI///nPMTs7i7m5OaRSKYiiWKtkVwk2i3R3d3e3pB9kIZ/PI5lMkpOGlxpVb2hWuMqLgbU4kjz99NMIh8MYGBiwdSSp/l11JLFbsj4fnehqzM3N1QjEucBxHHwhK81vcEu/7b6FXAnJ5abIetKdXkhjaSYBjuOYTZIsyD4JU4QkIdjlx+Tz003WdpIqAabZ0KCoeGQEuwLoG+2BP+yrWbZZ3tYV5DMFpk0fAHQPdjKDRwA0RXwDy9Z2qkymSHb0hlDKlWrX5A16LL10VwCFdKF2Tbl0vuZtvTjF1rgPbunDiSfZOvJ6V5RcKl+rPm/cPYJTvz7LPKaQK6J7qBO+kLfBb1tSJaQW0k1+2wCY1oIAMLC5H1ME8d55jUVi2+UPLQgChoeHMTw8jFQqhb/8y7/EAw880JSwWqlUmu53WZaxZ88ePProo3j9618PwPp+efTRR3H77bev6fy6ruPZZ5/FTTfdBAAYHR1FNBrFo48+WiPN6XQahw4dwl/8xV+c35N14cLFiwaXRL/MUCU+3/jGN/BXf/VXDY0n9aiS7Vwu1yQhicViOHv2LA4ePFirbCcSCQiCgJ6eHqZuu5509/T0nNOp4q677kI4HCav76XG0tISeJ5HJBJ5qS+FiXK5jHg8jm3btrXkSFK/fM1yJFmtE23FkWRubu6CWCt6fAo8y0mSdqiUKkjMLctGFtK49o/3WaR7mYDPno3BH/Hi5ONnmccvEXKJkZ1DOLmqQbFUKGNhcgmKV2ESu9FL1iH2wnxD/LfqUyApElSfgm37NzXEf6eXMujd0IMYEUNOxcdHR3tqUePVa6piy96NzKbP7qFOaGUNQ9sGahppjrOs7TwBK9Clek1V+Dt8pG+z4mXfi4pXxvhzU9A1vSkmfMc1WxqaJKu67WAkAFEWsf3qzbVrqhQrKGSLiPSFMH1ipikEiOM47DiwBaZpIpFIYGiIXgFpBY8//jjWr1/fRKABkA3Sd9xxB972trfhiiuuwFVXXYX77rsPuVyu5tbx1re+FQMDA/j85z8PAPjMZz6Dffv2YePGjUgmk7j77rsxPj6Od77znbXn+L73vQ+f/exnsWnTpprFXX9/f42ou3Dh4uUPl0S/DPHss8/iqaeewr/8y7+Q+1SJj9/vx+bNm7F582bmflWyXSgUmiQks7OzmJ6exlNPPVWrdlfJZ3d3N1nZ7uzsxNe+9jXcd999tXCZlxtmZmbQ19f3srw2wCKooVDonLKQKpw4klA6USeOJABq+v1yudxWR5K1QlIk9KzrQs+6Lubz/MUvfoFdu3YhFAwhWWuSXCHdS9NxJJadSqqP6ZoOUWRX1oOdAbIyWm0CrI//Bqx0x0pRa/LJ5nkO3rCK7pFOhDoCK3pkw9Ija5qOjqjVJKlrKw2EnQMdNRK9GlSCYtdgBMfGTjZopGvj9XfUGjrrva17R3uQXExC0zX4vf4Gb+vEKt/uKoa29JMV6mr8fBVV3XYg4m8KCKrC41ctu71Of0NMetdABIGIH7lcDpqmIRgMMo9vFWNjY7jmmmscHfOnf/qnWFhYwCc+8QnEYjFcdtllePjhh2v9FhMTEw2Sk0QigVtvvRWxWAwdHR3Ys2cPDh48iO3bt9f2+eAHP4hcLofbbrsNyWQS11xzDR5++GHXI9qFi98hcCbVWu/iJUM6ncYTTzzxolZ5q7dBqVSqke36/8disVqVe3x8HKmU9UPb1dXVRLRZcpJqpfXFIGKVSgW/+MUvsG/fvnM2Cr5UeOKJJ9DX19f2KpsTUGS7VCohmUyiUqmA47gmRxI77fZaHEnagWQyiV//+tf4/d///TWfzzAMZJaylt1fvef2rEWKFY+MY4+fRCKWbKoUdw1GmEmSm69cT8olIoMhxKeaCelqa7uq84fHryLUHUS5UIZpAlplJUnSG/Qwm/bsrqF7qLOpYlzFtv2bmMmPgYgP2UQevpAH/ogf3oCn5m3tC3uQnE9bftvpPNKLGZQLFcgeCXrFYAbu7DiwhWwUVTwyiqt03wDwunf9Z9x2z3/B1NQUYrEYrrjiCuZzaBU33HAD3v72t6/ZI9qFCxcuKLiV6JchgsHgiy6TqJJbVVUxOjqK0dFRct+bbroJV111Ff7bf/tvTZXt2dlZHDlypFbZnp+fh2EY6OjoYFr/1RPtvr6+WmX2fMh2NSb95UqgC4UC0un0S95AZOdIMjY2ho0bN6Kvrw+6rjOJdqFQcOxIUr/tfMj2wsICuru7HY3B8zxC3UGEuoMYsZHKm6aJXCpfq2on5lJYmk00xLZbkpIkqRf3R7xMAg00W9tlk3lkk3nIHgkTx6aJoJst8PhVBDr9y02SCkRJADjANK1I+HrPZsCeRMfOsOPb+zdGcfyJ07VranysFzOnGpvrFK+CTZePIJvMQ/HKECXrJ6XqbQ2Y8AY9DfHfADC4uY+019t1bXv10PUolUp46qmn8Pd///dtHdeFCxevTLgk2oUjTExM4Kc//Sm++tWvYmBgAOvWrSP3rUoL5ufnGxxJqpXt48eP1zTbc3Nz0DQN4XC4QbNdbwFYJdp9fX014sci23/+53+O97///S+Jddxa8P9v787Doqr3P4C/Z0aQRQdQUBY1FUsyEdSSQEsUFRRveTMLr4aWaZZLije3J7UrZgvmYy43WlCpXK54tTSKQhOt66gp4vZTrgvEFRlkG5BhH+b3B82JYQaYMwybvl/P45Nz5syZM5OOH77zOe+PUqlE165dhbaJtkatVqOkpAQuLi4Aai7KsrOzazRqsbq62mixXTuRRHcbQJMSSXJycuDp6Wn5F4+aP1OdHO3RydEePb0auUiyuEwYbiMU2MoC5OXl4/bVLFQWV6EgW4V7+X+2O9QXbffQoz0MYup0ilVqlBaXGSRZ9BrgYbBCbWVjBYeunWHV0QqPPOGJDlYySKQSaKpqRm1LpZJ6M7+lMuM/lHRysjcooIGabGstYDT2rsMfGd1VFVUGA3ccuskh79r5z/HffwzcKc4v1uuH9vDwMHo+5kpJSRFa4IiImopFNIkSGxuLkJAQk/5x00VQeXh4NLi/VquFRqNBTk6OsLJdO5FEoVDoZW1XVlaic+fOelnbugK7tLQUly5dgru7OwoLC9G5c2eTBtu0JKVSid69e7f2adQrOzsbXbt2FR0NKJVKTY7/q3uRpJhEEqlUipKSElRVVemNcrdU8owYtp1sYNvJBm6e+hdJKhQK9OnzVyHKrKKsoqY/+4+pkboLJnX/zc9SobNzzZ/Vuh12Np061j8UpYthtFtlWSXysgqgLiwxGh83IOARqAtLIJVJ4eDcGfaO9rDt1BEyqw7oaGuNR/0frhkkoy5Dcb4aRblFcO/Xvd62Fd3o87p69HdD+h9j5yvLq/QG7ngO7o2bRvqrew/sCblzZ5SUlKCioqLRSZ5inTx5EsOHD29TnwdE1H6xiCZRlixZgrw8418Rm0sikaBDhw7CKvPQoUON7qfValFdXY28vDxkZmYKfdq6Yvvs2bM4deoUrK2tERoaivLyctjb2xtcINmUKZJNde/ePb1V3rYoOzu7WYv82skhDakvkSQnJwdWVlbIzMzUm1wnk8kaXdVuLJHEEsrKyqBWq/WmZFrbWKP7Qy7o/lDD/9+rKqtQmFOk17Ndcq8MWTeUQiqJrviu1lQbTADU6fmoOzKuGO+hrvyjXaRaU11TxGfXtJ3U1/4hkUhgY9cR7v1cYdv5z0EyWq0WmqpqlKrL0NXdSW+QDADYy41/cyGRSuq9SHJAQM0KcUFBARwcHCyei65QKDBq1CiLHpOIHlwsokkUU77Wby4SiUSI6evWrZvB/VVVVejVqxf+/e9/Y+zYsSgoKDBIJGnqFMkuXbo0qdhOS0uDi4uLRQfAWJJarYZarW4TRX59iSS6Vo4ePXoAMEwkqd1SUlRUpLetoUSSusW3uYkkeXl5cHBwqDcurSEdrDqgq3sXdHVvOJqxuroaRbnFyFcWCO0kwiq3shA2nTqirLgcBcpCVJb/eZGkRIJ6E0icexgvorVaLe7czDZ6YeXDj/fVG3RjJ7eFvGtn2MlrkjYeG94fWkBvaIudgy1+v2w4HAcABj71KIDm6Yeurq7GqVOnsGrVKosel4geXG3zX3IiMxw5cgQSiQRjx46FTCaDs7MznJ2dLTpF0tra2uhgm9qr2vVNkdRoNJg0aRK2bNmCQYMGtdTbIsrdu3fNauVoKbrC2MfHR9gmZnJdfYkkarUaBQUFwu2mJJLk5ubC2dkwls+SpFIpHLvJ4dit4fg3rVYLtapE6NlW5Rbhf/+9jVvX0mEns68pvP9IKzGWrgEAXdwcjRbQQE0MYW0lRaUoKSqFlY0Vqq9kGk/seKh/zfCYrp1g72CHjnZ/XiT52PA/V6Jrx8FZQmpqKkpKSjB48GCLHpeIHlxt819KIjMcPnwY06dPN/krYLFTJO/duycU2LWL7uvXr+PEiRONTpEsLi5GYWEhqqqqcP78eYtPkbSE7OzsBi8WbW05OTmQy+WNtoLUp6FEktqakkiSn5+PDh064H//+59BAd4S8X+1SSQSdHKyRycne/R6tOa6hP/+978YUvWYQZFacq8UKl2P9h8j2vOzVKjWVCPtUobQRlI7Ezr/jvEpjj37u+PWhd+N3lemLkd5STlySsr1Vr579HeHYzcHlJaWory8HI6Ojk189foUCgX8/Pza7AW9RNT+sIim+8aWLVtQVmZ8xHBT6ApcuVwOuVwOLy8vo/s1NkXyxIkTcHJyQmRkZLNMkWyqkpISFBcXt4lWjvroou2am7mJJAUFBSgoqCksc3Nz600kMbay3VgiiaXk5eUZjbC062wLuz8mHDak9kWSeq0k2X+2kzi5OkBy0fAiSYlUgtupxvuhB47oD6BmFVoulzdLP7TYIStERA1hEU33DalU2mr92kDDUyQrKyuxY8cOHDhwAE899RQAcVMkJRIJXFxcjPZt1y64XV1dze7lPX/+vNm9vC1Bo9EgPz+/TcWT1U0kUalUcHV1NfhWo7q6GhUVFQYr27pWksYSSRq6SFKM8vJyFBcXo0uXhnuuGyLmIknV3aI/VrZriutilRp303OEiyTzswqguluEak11s/ZDAzXJHDNmzLD4cYnowcUimqgFJCYmwtbWFiNGjBAKXDs7O3h6etabd2zKFEndRZJKpRI5OTnQarVmT5F844038Nprr+GJJ55ogXdEvLy8PNjY2LTZITpAzeqzsf+fUqkUNjY2jY50ri+RRDdFsvY2cxJJ8vPz0blz5xZpaehg1QHOHl3g7NFwwa7RVONe7j3YOdT8IFJQUFDvtz3munPnDjIyMvDkk09a9LhE9GBjEU3UAlJSUjBt2jRRPbFipkjqii9d7J/YKZK2tra4efMmioqKsH//fotPkbSEu3fvGk1laStKS0tRUlLSpFXe+hJJ6jI3kUSj0cDKygrXrl0zWmyb+y1GU8hkUjh2r8mDLisrQ2lpabP0Q/v4+EAub/hCTJ1t27YhKioKSqUSPj4+2LJlS73DmwIDA3H8+HGD7RMmTEB8fDwAYObMmYiNjdW7Pzg4GAkJCSJfCRG1JSyiiVrAypUrDfpDLUlXfPXq1cusKZL79++Hh4cHkpOT8f3331t8imRTVVdXIzc3t9VHpTckNzcXjo6OLdIOY04iSVlZGS5dugQnJydIpVIUFxfrtZc0JZHEUnT90JZOh1EoFBg+fLhJ+/7rX/9CREQEoqOj4efnh02bNiE4OBipqalGf4g7cOCA0PMO1Hxj4uPjgylTpujtFxISgh07dgi3zb04lojaDhbRRC2ktVdydedgbIpkTEwMIiMjMXPmTACWnSKpy9rWFd/mTJG8dOkSMjMzMXLkSEu/JRbTEtF25tAlkgA1feX9+/c3etGeuYkkjY1uF1NsN1c/tEKhwIoVK0zad+PGjZg9ezZefvllAEB0dDTi4+Oxfft2LF++3GD/ut887N27F3Z2dgZFdMeOHYUJlkR0f2ARTfSAu3XrFi5evIhnn31W2GbJKZK6QjsrK6veKZLG8rZrT5HcunUr1Go1pk2b1lJviyi6ix4ffvjh1j6VeuXn58PR0bHe1AtzE0lq/7p3756oRJLa22QyGQoKCix+4WhRUREuXrxo0kp0RUUFzp07p1dwS6VSjBkzBgqFwqTni4mJQVhYmEHvflJSErp16wYnJyeMHj0a69at05tqSUTtD4toogdcWloaXnrpJbNWABubIqmjK7brmyJ54cIF/Pjjj0anSHbv3h0XLlxAQEAAoqKiLD5F0hJUKhWsra3b9EWPeXl5TerX1qmbSFIfsYkkMpkMGo0G6enpUCqVFkskOX36NB566CG9b17qk5ubC41Gg+7du+tt7969O65du9bo48+cOYPLly8jJiZGb3tISAiee+459OnTBzdv3sTKlSsxfvx4KBSKZo0zJKLmxSKa6AEXFBSEoKCgZn0OXbFtzhTJU6dOITk5GV5eXmZNkdT93tgUSUvJzc1F165d20TLjjG6H2D69u3bYs8pNpEkMzMTmZmZcHd3b3IiiVarhb29PaRSKRQKhRAr2dxiYmLg7e1tcBFiWFiY8Htvb28MGjQInp6eSEpKava/e0TUfFhEE1GbYWyKpEKhwMSJE7Ft2zZhv4amSGZlZdU7RbJ2oV1f1rY5UyT37duHl156yeLvh6UUFRVBIpE0mPjRWnQXM5aVlcHFxaXeFWMxiSSRkZE4f/48unTpguLiYjzyyCOYP38+3N3dhRYlNzc3PPbYY3or287OzpDJZMjOztZ77uzs7Eb7mdVqNfbu3Yu1a9c2+pr79u0LZ2dn3Lhxg0U0UTvGIpqI2rRvv/0WCxcu1NtmqSmS6enpOHnypLCybc4UycuXL2PDhg1YsGBB874RTZCfny+0vbRVBQUF6NevX733i0kkGTJkCDIyMpCWloYZM2Zg7NixqK6uFr7J0P05uHXrll6Li7W1NYYOHYqjR49i0qRJAGpW8Y8ePYr58+c3+JxxcXEoLy/H9OnTG32tt2/fRl5eHtzc3Brdl4jaLhbRRNRmVVZWok+fPggNDTXr8Q1NkaxNV2ybM0VSKpXC3t4ey5cvNyi0mzpF0lLaesFWUVEBtVptsXxo3TcZ5eXlkMvleP/9901+/yMiIjBjxgw8/vjjGDZsGDZt2gS1Wi2kdYSHh8PDwwPvvfee3uNiYmIwadIkg4sFi4uL8Y9//AOTJ0+Gq6srbt68iaVLl6Jfv34IDg62yOslotbBIpqI2iwrKyvExcU1+/OYM0VSqVQiMzMT8+bNQ9++feHh4WHxKZKWUFVVhcLCQgwcONBix7S0goICdOrUyeKTFE+ePImAgABR7+eLL76InJwcrF69GkqlEr6+vkhISBAuNszIyDCI7UtNTcWvv/6Kn376yeB4MpkMFy9eRGxsLFQqFdzd3TFu3DhERkYyK5qonZNom3MCxAPsxIkTiIqKwrlz55CVlYWDBw8KXw/WJykpCREREbhy5Qp69uyJt99+W8jt1REzSYuImpdarUbXrl1x8eJFg1XuxqZI1o7+MzZFsqH4PzFTJJOSknD27Fn8/e9/b5b3wBJ0yReWHvf94osv4umnn8Zbb71l0eMSEQFciW42arUaPj4+eOWVV/Dcc881un9aWhpCQ0Mxd+5c7Nq1C0ePHsWrr74KNzc34Ss/sZO0iKh5HTt2DB4eHkbzoZsyRbJ23/Yvv/wiFNx1p0gau0iy7hTJ3bt3o6SkpDnfhiZrjuQQrVYLhUKBlStXWvS4REQ6XIluARKJpNGV6GXLliE+Ph6XL18WtoWFhUGlUiEhIQEA4OfnhyeeeAJbt24FUHPBS8+ePbFgwQKjk7SIqHn9/PPPuHbtGt54441mf67GpkjWXtmuPUWyrKwMvXv3ho+Pj0WnSFpKRUUFjh8/jqefftqi7Q2pqakICAhAYWGhxdtEiIgArkS3GQqFAmPGjNHbFhwcjEWLFgGwzCQtIrKs0aNHY/To0S3yXOZMkbxw4QJCQkIwb948IQ6w9hRJpVKJsrIys6ZIWopKpYK9vb3F+4MVCgX8/PxYQBNRs2ER3UYolUqjU7KKiopQWlqKgoKCJk3SqktMb3VgYCCOHz9usH3ChAmIj48HAMycOROxsbF69wcHBwur6ETUMmpPkczOzsaQIUPw5ptvGuxXd4pk7aztxqZI1m0hacoUyb1796Jbt24ICAiw6PugUChMGvVNRGQuFtEPILG91QcOHEBFRYVwOy8vDz4+PpgyZYrefiEhIdixY4dwm1eeE7WuI0eOYOzYsUbva8oUydoXSpo7RdLV1RXOzs6IiYlpNIPZHCdPnsS0adMsflwiIh0W0W2Eq6ur0SlZcrkctra2kMlkZk/Sqmvjxo2YPXu2kHsaHR2N+Ph4bN++3Whvde1hBEDNypGdnZ1BEd2xY0fR50JEzScgIACPP/54k45hbIqkMaZOkdQV24WFhZDJZNBoNIiJiUFiYqLFpkhmZWUhPT0d/v7+TXrtREQNYRHdRvj7++P777/X25aYmCj8I9CUSVq1WaK3OiYmBmFhYbC3t9fbnpSUhG7dusHJyQmjR4/GunXrDAYPEFHLmTNnTos9lzlTJHfv3o3IyEisWLHColMkT506BW9vbzg4OLTY6yeiBw+L6GZSXFyMGzduCLfT0tKQkpKCLl26oFevXlixYgUyMzPx5ZdfAgDmzp2LrVu3YunSpXjllVfw888/Y9++fULPMdD4JC1T5ObmNqm3+syZM7h8+TJiYmL0toeEhOC5555Dnz59cPPmTaxcuRLjx4+HQqGATCYz+fwAcf3aO3fuNHj9HTt2RFlZmXBbq9VizZo1+Pzzz6FSqTB8+HB88sknRmPJiKh51Z4ief36dYSEhGDq1KkG+zVliqRGo4GPj0+Lvi4ievCwiG4mZ8+exahRo4TbERERAIAZM2Zg586dyMrKQkZGhnB/nz59EB8fj8WLF+Pjjz9Gjx498MUXX+iNhW1sklZLiImJgbe3t0FRGxYWJvze29sbgwYNgqenJ5KSkhAUFGTy8c3JwpbL5UhNTRVu1/3K98MPP8TmzZsRGxuLPn36YNWqVQgODsb//d//wcbGxuRzIyLLOn78OBYuXGj0vqZMkTxx4kS9I96JiCxGSw+U8vJyrUwm0x48eFBve3h4uPaZZ55p8LHFxcVauVyu3bRpk0nP5ezsrI2OjhZ1fsOGDdPOmzdPuK3RaLTu7u7a9957z+j+O3bs0Do4ONR7vOrqaq2rq6s2KipK2KZSqbQdO3bU7tmzR9S5EZFlffTRR9o7d+609mkQEZlF2tpFPLWs2r3VOrre6sYuwomLi0N5eTmmT5/e6PPcvn0beXl5cHNzM/ncdP3atfOyTenXLi4uxkMPPYSePXvi2WefxZUrV4T70tLSoFQq9Y7p4OAAPz8/5msTtbKIiAhRnxFERG0Ji+gHUEREBD7//HPExsbi6tWreP311/V6q8PDw/UuPNSJiYnBpEmTDC4WLC4uxltvvYVTp04hPT0dR48exbPPPot+/frptaM0pqF+baVSafQx/fv3x/bt2/Htt9/i66+/RnV1NQICAnD79m0AEB4n5pgN2bZtG3r37g0bGxv4+fnhzJkz9e77+eef46mnnoKTkxOcnJwwZswYg/1nzpwppB/ofoWEhIg+LyIS78SJE/jLX/4Cd3d3SCQSfPPNN40+JikpCUOGDEHHjh3Rr18/7Ny502AfMZ8TRNR+sYh+AL344ovYsGEDVq9eDV9fX6SkpOj1VmdkZCArK0vvMampqfj1118xa9Ysg+PJZDJcvHgRzzzzDB555BHMmjULQ4cOxS+//NLsWdH+/v4IDw+Hr68vRo4ciQMHDsDFxQWffvqpxZ9L16+9Zs0aJCcnw8fHB8HBwbh7967R/ZOSkjB16lQcO3YMCoUCPXv2xLhx45CZmam3X0hIiHCxVFZWFvbs2WPxcyciQ2q1Gj4+Pti2bZtJ+6elpSE0NBSjRo1CSkoKFi1ahFdffRU//vijsI/Yzwkiar8kWu0fV2UQtbKKigrY2dlh//79QowfUHMxpkqlwrfffmvScaZMmYIOHTpgz549uHXrFjw9PXH+/Hn4+voK+4wcORK+vr74+OOPTT4/Pz8/PPHEE9i6dSuAmjaYnj17YsGCBUbztevSaDRwcnLC1q1bER4eDqBmJVqlUpm0AkZEzUcikeDgwYN6nz11LVu2DPHx8bh8+bKwLSwsDCqVSpjO2tTPCSJqP7gSTW1GU/q1dTQaDS5duiT0Wfbp0weurq56xywqKsLp06dFDWIwt1+7tpKSElRWVhoMr9Hla/fv3x+vv/468vLyTD4vImo5CoVC7zMAAIKDg4XPAEt8ThBR+8EimtoUsf3aa9euxU8//YRbt24hOTkZ06dPx++//45XX30VQM3q0qJFi7Bu3TocOnQIly5dQnh4ONzd3RtccarLnH7tupYtWwZ3d3e9f2BDQkLw5Zdf4ujRo/jggw9w/PhxjB8/HhqNxuRz0xHbhxkXFwcvLy/Y2NjA29vbYNiPVqvF6tWr4ebmBltbW4wZMwbXr18XfV5E9wulUmn0M6CoqAilpaUW+ZwgovaDOdHUpjSWhZ2RkQGp9M+f/QoKCjB79mwolUo4OTlh6NChOHnyJAYMGCDss3TpUqjVasyZMwcqlQojRoxAQkJCi2ZEv//++9i7dy+SkpL0nre18rVPnjyJqVOn4r333sPEiROxe/duTJo0CcnJyRg4cCAA5msTERE1qJUj9ojahabka0dFRWkdHBy0v/32m0nP1RL52i+88II2NDRUb5ufn5/2tdde02q1zNemBw8Ag7/fdT311FPaN998U2/b9u3btXK5XKvVNu1zgojaH7ZzEJnA3H7tDz/8EJGRkUhISMDjjz/e6PO0VL52Y72dzNcmMuTv76/3GQAAiYmJwmeAJa7rIKL2g0U0kYnE9mt/8MEHWLVqFbZv347evXtDqVRCqVSiuLgYQOvma9fX26nb39L52nXl5+dj2rRpkMvlcHR0xKxZs4T3pb79FyxYgP79+8PW1ha9evXCwoULUVhYqLdf3cxtiUSCvXv3Nvl86f5UXFyMlJQUpKSkAKj54TElJQUZGRkAgBUrVghJOgAwd+5c3Lp1C0uXLsW1a9fwz3/+E/v27cPixYuFfRr7nCCi+wd7oolMJLZf+5NPPkFFRQWef/55veOsWbMG77zzjpCvHRsbC5VKBXd3d4wbNw6RkZHNnq/d2qZNm4asrCwkJiaisrISL7/8MubMmYPdu3cb3f/OnTu4c+cONmzYgAEDBuD333/H3LlzcefOHezfv19v3x07dugNrHF0dGzOl0Lt2NmzZzFq1CjhdkREBICaWM2dO3ciKytLKKiBmrSf+Ph4LF68GB9//DF69OiBL774Qu+H3sY+J4jo/sGcaKJ2zpx87V69eiEiIgKLFi0Stq1ZswbffPMNLly4YNF87bquXr2KAQMG4LfffhNaXBISEjBhwgTcvn0b7u7uJh0nLi4O06dPh1qtRocONesBpmT9EhERWQLbOYjaOXP6MBvr7bRUvrYxCoUCjo6Oej3iY8aMgVQqxenTp00+TmFhIeRyuVBA68ybNw/Ozs4YNmwYtm/fDq4TEBFRc2ARTXQfENuv/eabbyIhIQEfffQRrl27hnfeeQdnz57F/PnzAVguX9sYpVJpELvXoUMHdOnSxeR+69zcXERGRmLOnDl629euXYt9+/YhMTERkydPxhtvvIEtW7aIPkexPdsAEBgYaNCPPXfuXL19MjIyEBoaCjs7O3Tr1g1vvfUWqqqqRJ8fERG1PvZEE90HxPZrBwQEYPfu3Xj77bexcuVKPPzww/jmm2+EjGhAfL728uXL8cEHHzR4nlevXm3yay0qKkJoaCgGDBiAd955R+++VatWCb8fPHgw1Go1oqKisHDhQlHPIbZnW2f27NlYu3atcNvOzk74vUajQWhoKFxdXXHy5ElkZWUhPDwcVlZWWL9+vajzIyKi1seeaCKyiJycnEZHlvft2xdff/01lixZgoKCAmF7VVUVbGxsEBcXh7/+9a/1Pv7evXsIDg6GnZ0dvvvuu0aHvsTHx2PixIkoKysz+WJNc3u2AwMD4evri02bNhm9/4cffsDEiRNx584d4Yeb6OhoLFu2DDk5ObC2tjbp/IiIqG1gOwcRWYSLiwu8vLwa/GVtbQ1/f3+oVCqcO3dOeOzPP/+M6upq+Pn51Xv8oqIijBs3DtbW1jh06JBJUxNTUlLg5OQkKu2kKT3bu3btgrOzMwYOHIgVK1agpKRE77je3t56KQ3BwcEoKirClStXTD4/IiJqG1hEE1GLevTRRxESEoLZs9kAxoQAAAc0SURBVGfjzJkz+M9//oP58+cjLCxMWOXNzMyEl5cXzpw5A+DPAlqtViMmJgZFRUVC7rZGowEAHD58GF988QUuX76MGzdu4JNPPsH69euxYMECUednbs/23/72N3z99dc4duwYVqxYga+++grTp0/XO66x3G3dfWKI7dlOT083mqEtkUgQFxcn7MecbSIi07Enmoha3K5duzB//nwEBQVBKpVi8uTJ2Lx5s3B/ZWUlUlNThZXc5ORkYRW4X79+esdKS0tD7969YWVlhW3btmHx4sXQarXo168fNm7ciNmzZwNo/p7t2hc5ent7w83NDUFBQbh58yY8PT3NPq4xYnu2e/bsiaysLL1tn332GaKiojB+/Hi97czZJiIyDYtoImpxXbp0afAivd69e+tF0wUGBjYaVRcSEqJX/NW1ZMkSzJw5s8Fj9O3bF66urrh7967e9qqqKuTn58PV1bXBx9ema025ceMGPD094erqKqys62RnZwOAqONevXoVCQkJej3bW7ZswYQJE7BhwwajPdsymczgOQ4ePIgXXngBnTp10tvu6Ogo6nyIiB5UbOcgogdCc/ds16UbJe3m5gagJpv70qVLegV6YmIi5HI5BgwYYPJxLZGzfe7cOaSkpGDWrFkG9zFnm4jINCyiiYhqMadn++bNm4iMjMS5c+eQnp6OQ4cOITw8HE8//TQGDRoEABg3bhwGDBiAl156CRcuXMCPP/6It99+G/PmzRN14aMlcrZjYmLw6KOPIiAgQG+7pXK23333XQQEBMDOzs7kdhCtVovVq1fDzc0Ntra2GDNmDK5fv663jzn53UREzYVFNBFRHbt27YKXlxeCgoIwYcIEjBgxAp999plwf92ebWtraxw5cgTjxo2Dl5cXlixZgsmTJ+Pw4cPCY2QyGb777jvIZDL4+/tj+vTpCA8PF3Klly9fXu/Ff7pf165da/JrKy0txe7du42uQq9atQrDhw/H4MGDsWzZMixduhRRUVGin6OiogJTpkzB66+/bvJjPvzwQ2zevBnR0dE4ffo07O3tERwcjLKyMmGfadOm4cqVK0hMTMR3332HEydOGAzcISJqKcyJJiJqA1oiZxsAvvrqK8yaNQuZmZlwcXFpcF9zcrZr27lzJxYtWgSVStXgflqtFu7u7liyZAn+/ve/A6gZ6969e3fs3LkTYWFhZud3ExE1F15YSETUBri4uDRa1ALQ69keOnQoAHE92zExMXjmmWdMei5zcrbNkZaWBqVSiTFjxgjbHBwc4OfnB4VCgbCwsEZ7wRv74YGIyNJYRBMRtSO1e7ajo6NRWVlptGc7KCgIX375JYYNGyY89saNGzhx4gS+//57g+MePnwY2dnZePLJJ2FjY4PExESsX79eWBluTrpebmM52rr7LNELTkRkSeyJJiJqZ8T2bOts374dPXr0wLhx4wyOqcvZ9vf3h6+vLz799FNs3LgRa9asAdByPdtERO0FV6KJiNoZsTnbOuvXr8f69euNPsZSOdvm0OVSZ2dnC5GAutu+vr7CPpbI7yYishSuRBPdx/bs2QNbW1u9aXUvv/wyBg0ahMLCwlY8M2pvTM3ZNkefPn3g6uqKo0ePCtuKiopw+vRp+Pv7A4DF8ruJiCyFRTTRfSwsLAyPPPKIsPq4Zs0aHDlyBD/88AMcHBxa+ezofpWRkYGUlBRkZGRAo9EgJSUFKSkpepnOXl5eOHjwIABAIpFg0aJFWLduHQ4dOoRLly4hPDwc7u7umDRpEgDT8ruJiFoS2zmI7mMSiQTvvvsunn/+ebi6umLLli345Zdf4OHh0dqnRvex1atXIzY2Vrg9ePBgAMCxY8cQGBgIAEhNTdX7NmTp0qVQq9WYM2cOVCoVRowYgYSEBNjY2Aj77Nq1C/Pnz0dQUBCkUikmT56MzZs3t8yLIiKqgznRRA+AIUOG4MqVK/jpp58wcuTI1j4dIiKido/tHET3uYSEBFy7dg0ajcYgQoyIiIjMw5VoovtYcnIyAgMD8emnn2Lnzp2Qy+WIi4tr7dMiIiJq99gTTXSfSk9PR2hoKFauXImpU6eib9++8Pf3R3JyMoYMGdLap0dERNSucSWa6D6Un5+PgIAABAYGIjo6WtgeGhoKjUaDhISEVjw7IiKi9o9FNBERERGRSLywkIiIiIhIJBbRREREREQisYgmIiIiIhKJRTQRERERkUgsoomIiIiIRGIRTUREREQkEotoIiIiIiKRWEQTEREREYnEIpqIiIiISCQW0UREREREIrGIJiIiIiISiUU0EREREZFILKKJiIiIiERiEU1EREREJBKLaCIiIiIikVhEExERERGJxCKaiIiIiEgkFtFERERERCKxiCYiIiIiEolFNBERERGRSCyiiYiIiIhEYhFNRERERCQSi2giIiIiIpFYRBMRERERicQimoiIiIhIJBbRREREREQisYgmIiIiIhLp/wEUBLHTS4lV8QAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAJOCAYAAAB4EvvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZQk53neif6+iFwrs/Z9zazeG41uAASaAEiRpsYUaUsWpbm8lnwlD3k1HtmmSJsWr85Qsj2m5BlT91pjDq2xaI444hkdz1iSR5YsLhBJCRTQIAGwwSYbe++1ZO37knss3/0jO7IiIrOqa8nK6qr+fufgkBWdmV9EZGTEE2883/MKKaVEoVAoFAqFQqFQ7BrtoFdAoVAoFAqFQqE47ChRrVAoFAqFQqFQ7BElqhUKhUKhUCgUij2iRLVCoVAoFAqFQrFHlKhWKBQKhUKhUCj2iBLVCoVCoVAoFArFHlGiWqFQKBQKhUKh2CNKVCsUCoVCoVAoFHtEiWqFQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhqAu///u/T0NDA9lstryss7MTIcSW//2Df/AP7vnZ/+yf/TOOHTu2n6uvUCgUCsWWCCmlPOiVUCgUR58Pf/jDFItFvvrVrwJgmiZ/+Id/WPW1a2tr/Mqv/AqFQoGvfe1r/M2/+Te3/OyXX36Zp59+mjfeeINz587VfN0VCoVCobgXgYNeAYVCcfQpFAp861vf4nOf+1x5WSAQ4O/+3b9b9bV/42/8DXK5HF/4whfuKagBnnzySbq7u/nqV7+qRLVCoVAoDgRl/1AoFPvOX/3VX5HJZPjJn/zJLV9nWRY/93M/x3PPPcev//qv87GPfWxbny+E4G/9rb9VroIrFAqFQlFvlKhWKBT7zle/+lUuXrxIT0/Plq/72Mc+xp/8yZ/w8Y9/nM985jM7GuNDH/oQL7/8MvPz83tZVYVCoVAodoUS1QqFYt/56le/es8q9T/7Z/+ML33pS/zMz/wMv/3bv73jMd7//vcTDod55plndruaCoVCoVDsGiWqFQrFvvLDH/6QVCrFhz70oU1f89u//dt89rOf5f3vfz//4T/8BzRt56emhoYG/vpf/+vKAqJQKBSKA0GJaoVCsa88//zztLS0cOHChar//gd/8Af8k3/yT3jiiSf40z/9U0KhUMVr5ufn+Ymf+AlisRinT5/m2WefrfpZ73vf+3juuedqufoKhUKhUGwLJaoVCsW+8vjjj7OyssKtW7cq/u2b3/wmH/3oRzl58iTPPPMM8Xi86md8/OMfp6enh/n5eX7rt36Ln/mZn2FpaanidZcvX+aJJ56o+TYoFAqFQnEvlKhWKBT7yrve9S46Ojr4yle+4ln+ve99jw9/+MN0dXXxrW99i87OzqrvT6fT/Jf/8l/4jd/4DRoaGvjQhz7E+fPn+bM/+zPP6wzD4Bvf+MY9vdsKhUKhUOwHSlQrFIp9Rdd1fvzHf9zjdX777bf5iZ/4CUKhEN/85jdJJBKbvv/mzZvE43EGBgbKy86fP8+bb77ped3zzz/P2tqaEtUKhUKhOBBU8xeFQrHvfOhDH+Lv/J2/w/LyMkIIPvjBD7K4uMgv/dIv8cMf/pAf/vCHFe/p6uriAx/4AOl0mqamJs+/NTU1sbi46Fn2la98hUceeYShoaF93RaFQqFQKKqhRLVCodh3PvCBD6BpGn/+539OR0cHqVQKgC984Qt84QtfqPqej3zkI3zgAx8gHo+ztrbm+be1tbUK//VXv/rVqh0aFQqFQqGoB0pUKxSKfaexsZEf/dEf5Stf+Qp/+Id/iJRy2+89efIk6XSayclJ+vv7AXjjjTf4yEc+Un7N66+/zujoqLJ+KBQKheLAUJ5qhUJRFz70oQ/xjW98A8MwdvS+eDzOT/3UT/GZz3yGXC7H1772NV577TV+6qd+qvyar3zlK/T09HDx4sVar7ZCoVAoFNtCyJ2UjBQKhWKX5PN5JiYmSCaTBAI7e0g2Pz/PRz/6UZ577jkGBgb4whe+wPvf//7yv8/OzmJZFn19fbVebYVCoVAotoUS1QqFQqFQKBQKxR5R9g+FQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhUCgUCoVCsUeUqFYoFAqFQqFQKPaIEtUKhUKhUCgUCsUeUaJaoVAoFAqFQqHYI0pUKxQKhUKhUCgUe0SJaoVCoVAoFAqFYo8oUa1QKBQKhUKhUOwRJaoVCoVCoVAoFIo9okS1QqFQKBQKhUKxR5SoVigUCoVCoVAo9ogS1QqFQqFQKBQKxR5RolqhUCgUCoVCodgjSlQrFAqFQqFQKBR7RIlqhUKhUCgUCoVijyhRrVAoFAqFQqFQ7BElqhUKhUKhUCgUij2iRLVCoVAoFAqFQrFHlKhWKBQKhUKhUCj2iBLVCoVCoVAoFArFHlGiWqFQKBQKhUKh2CNKVCsUCoVCoVAoFHtEiWqFQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhUCgUCoVCsUeUqFYoFAqFQqFQKPaIEtUKhUKhUCgUCsUeUaJaoVAoFAqFQqHYI0pUKxQKhUKhUCgUe0SJaoVCoVAoFAqFYo8oUa1QKBQKhUKhUOwRJaoVCoVCoVAoFIo9okS1QqFQKBQKhUKxR5SoVigUCoVCoVAo9ogS1QqFQqFQKBQKxR5RolqhUCgUCoVCodgjSlQrFAqFQqFQKBR7RIlqhUKhUCgUCoVijyhRrVAoFAqFQqFQ7JHAQa+AQqFQ7AQpJZZlIYRA0zSEEAe9SgqFQqFQKFGtUCgOB7ZtYxgGxWIRwzAIhUIEAgECgQC6ritxrVAoFIoDRUgp5UGvhEKhUGyGZVkUi0WKxaKnQh0Oh5FSIqVE0zQ0TSMQCCCEUAJboVAoFHVHiWqFQnHfIaXENM1yVdq27bJwdgRzKBQqv9Z9GnPEtbKGKBQKhaKeKPuHQqG4b5BSYhgGhUIB0zTLVWinAl0NpzLtCGvLsrBtGyGEsoYoFAqFom6oSrVCoThwbNumUChQLBaxbRugXJneDKdSXQ2neq2sIQqFQqGoF0pUKxSKA8FJ8XD80k51ebuV5a1EtXsM9ylO13V0XVfWEIVCoVDUHGX/UCgUdcWxeBSLRcbGxrBtm8HBwS0tHrvFbw2ZmZlhaWmJM2fOKGuIQqFQKGqKEtUKhaIu2LbtSfGQUlIoFLBtG13X93VsRzgbhkE6nS4Le9M0PdVrhUKhUCh2ixLVCoVi33BbPJwUD6BcIT4oj7OmaWVrSDVxrarXCoVCodgpSlQrFIqa40TiFQoFDMMoTxisZrc4qGkdfmuIaZpYllVeT2UNUSgUCsVOUKJaoVDUDKfrYaFQKFs83FXpg6aagHfWS9d1pJTYto1t25imWc67VtYQhUKhUNwLJaoVCsWeqdb1cDuV3oMQ2luN6a5eSykpFovlbVGRfAqFQqHYCiWqFQrFrtis6+F+pHjUG7+4dltDVLdGhUKhUFRDiWqFQrEjHItHsVgsdz10V3KPEu7KtGMNcarXKpJPoVAoFG6UqFYoFNuimsXjoPzGTgW5noK2mjVEdWtUKBQKhYMS1QqFYlPqYfHYSfqHZVnMzMyQSqWwLIvBwUEGBwcJh8M1H2sz/OLasiwsy1KRfAqFQvGAo0S1QqGowMlvLhQKZYvHQfql8/k8k5OTTE5OEolESCQSRKNRxsbGuHPnDr29vSSTSRobG+/5WbVa/80i+ZQ1RKFQKB5MlKhWKBRlbNsml8sxPz9PY2Nj2d6wXxaPe4nO1dVVUqkU8/PztLe3c/78eVpaWhBCEAqF6OrqYn19nbGxMV566SVaWlpIJpN0dnbWTdD6I/kca8jq6irNzc1EIhFlDVEoFIoHACWqFYoHHHfXQ8fm8eqrr/IjP/IjBAL1P0XYts38/DypVIpMJkNfXx9PPfUU0Wi06usbGxt5+OGHOXXqFKlUijfffBNd10kkEvT399d1G9zV69dee43z58/T2tqqrCEKhULxAKBEtULxgOJYPBwh7bZ4QP0ypB37hGEYTE1NMTExgRCCwcFBent7ty2KQ6EQx48fZ3h4mJmZGUZHR7l58yYDAwMMDQ3R0NCwn5vhwdl3jshW3RoVCoXi6KNEtULxgOHEwjkpHv6uh5ZlAfVrH26aJtevX2d6epqmpiZOnTpFR0fHrkWnpmn09fXR29vLysoKY2NjvPDCC3R1dRGJROq2XU46idM8xt+t0V29VigUCsXhR4lqheIBwG3xMAxjy66H9aigSilZWlpidnaWXC5HT08Pjz/++LYmGm4XIQStra20traSy+UYHx9nbGwMTdOYmpqip6dn3wWte1/6U0MMw6gQ16p6rVAoFIcXJaoViiOME4lXKBQqLB73EnD7UdF1IvEmJiYoFos0NDTQ2NjIQw89VPOx3ESjUU6fPk0oFGJycpJbt25x/fp1hoaGGBwcJBQK1XzMzXK0N0sNUdYQhUKhONwoUa1QHEGcroeFQqGqxWMr9kPQFQoFJiYmypF4Q0NDdHV1MT4+Tj6fr/l4m6FpGg0NDTz22GPMz88zNjbG7du36evrI5FI1LRSfi/8qSFua4jTCl1ZQxQKheLwoES1QnGEqNb1cLeVz1pUqtfW1kilUszNzVVE4h0kQgi6uroqIvlaW1tJJBI1ieTbScfHat0ane9OdWtUKBSKw4ES1QrFIafWXQ+d9+xWVNu2zcLCAqlUinQ6TW9vL08++eSm6Rv1mji42VibRfIlk0n6+voOLJLP+V4da4hTvVbiWqFQKO5PlKhWKA4pjsWjWCyWux66K5t7YTfv90fiDQwM8MgjjxxI1vVWbLZt1SL5bty4weDgIENDQ5vmZG/GTirV1dbR7bt2EltUt0aFQqG4f7m/rnYKheKeVLN47If/drsV5Ewmw8TERM0i8Q4afyTf6Ogoly5doru7m0QisW37Si0q8O68a7c1xPm+lTVEoVAo7h+UqFYoDgFOJJ6T4rFXi0ct1md5eZlUKsXy8jJdXV01j8Q7aNyRfNlslvHxca5cuUIsFiORSGwrkq+W343fGmJZFpZlqUg+hUKhuE9QolqhuI9xdz18++23GRwcJBKJ7LuY3uyzLctidnaWVCpFsVikv7+fM2fOEA6HazrO/UZDQwNnzpzhxIkTdYvk24xqkXxvvvkmx44dIxaLKWuIQqFQHBBKVCsU9yGOh7ZQKGDbNgAzMzMMDQ2h63pd1sFtX3Ai8aampgiFQgwODtLd3V23dblfCAQCJBIJhoaGmJ+fZ3R0tBzJl0wmicfj5dfuxVO9HdyRfBMTEwwODpatIe68ayWwFQqFoj4oUa1Q3Ce4ux4Wi0Vs2/ZE4rmrk/uNI8ScSLz5+Xna2to4d+4cra2tNRVqB53+sRv8kXyjo6O8+OKLtLa2kkwm6ejoqPt2OT5rJzVEdWtUKBSK+qJEtUJxwLgtHlt1PayXqLZtGyklb775Jrlcjt7eXt75znduGol32Ki1uGxsbOT8+fPlSL7XX3+dYDBYbuhSD5yquOrWqFAoFAeHEtUKxQHhWDycFI/tdD3cT1FtGAbT09NMTExg2zatra089thjBIPBfRvzKBEOhzlx4gTHjh1jenqa119/ne9973u7juTbLs4x4b8Bg+rdGt3Va4VCoVDUDnVWVSjqiPNoPpvNsr6+TjabLSc4BIPBLR/T71elOpvNcuPGDV588UXm5+c5ceIEuq7T09OjBPUu0DSN/v5+AM6dO0c2m+XSpUtcvXqVlZWVfRt3q+PGOa6cpyKFQsFzM6dQKBSKvaMq1QpFHXDEtBOJt5nFYytqKar9kXidnZ089thjNDU1AXD9+vWajHMvjqoVwfmeWltb6e3tJZvNMjY2xiuvvEI8HieZTNLd3V2TanG1SnU1lDVEoVAo9hclqhWKfcTpelgoFLZt8diMWggefyReX1/fppF4qoJZOxoaGjh79iwnT55kYmKCGzducO3aNRKJBAMDA3uK5NuuqHbYyhritEJX1hCFQqHYOUpUKxT7QLWuh3utBO6lUl0oFJicnGRycnJbkXj1rFgexvSP7Y7j34+BQIBkMkkikaiI5EskEp5Ivr2OtR38DWWcVujudveqeq1QKBTbQ4lqhaJGOBYPJ8Wj1l0PdyOq19fXSaVSzM3N0drauqNIvKNaqb4fRKI7km9tbY2xsTFefPFF2traSCQSO2rzvhdR7V4ft7h2W0Oc6vX9sN8UCoXifkaJaoVij7gnf5mmWbZ41Lrr4XZFtZSShYUFUqkU6+vr9PT0cPHiRWKx2I7GqgdHVajtROg2NTVVjeRLJBL09/ffs8FOLUS1g9937STUCCEIBALKd61QKBRboES1QrFLqlk89tuPupWoNk2TqakpJiYmkFIyODjI+fPnd53gcVQr1fVgN/vOH8k3OjrKzZs3GRgYIJFIEIlEthyr1jdwzv+6rSHO8a2sIQqFQlGJEtUKxQ5wdz2cn59nZmaG06dP17wqXY3NKtXZbJaJiQmmp6eJx+OcOHGCjo6OPYn7enZvrCf13qbdHBNOJF9fXx/Ly8uMjo7y/PPP09PTQyKRoKWlxfP6/d4mvzXk9u3bZV++6taoUCgUGyhRrVBsg2pdDw3DIJ1O3/PxfK1wCxcpJSsrK6RSKRYXF+nq6vJE4ik2px4CsFY+57a2Ntra2jyRfI2NjSQSiXIk335UqjdbHyEE6XSahoaGsu9aWUMUCoWihBLVCsUWOJ7SQqFQbjntfgRez8qnEALLssoWj3w+T39/P6dPn64aibfXseqdlKHYnGqRfNevX2doaIj29nagfv50pyW6E8nn3GC6uzUqa4hCoXgQUaJaofDhtngUi0Vs264aiSeEKAvt/aZQKFAoFLh27RqRSISBgQF6enr2rUquBNHe2K/qsTuSb25ujtHRUW7dugVAOp3eVSTfTnEaF0GlNcQvrpU1RKFQPEgoUa1Q3KWaxWOrSLx6VHPdkXiapjEwMMCxY8fqamHYT5Tg2h1CCLq7u+nu7mZmZoarV6+WI/mSySTt7e37tm+dSrV/fVS3RoVC8aCjRLXigWe3XQ/3S1S7I/HW1tbo7e3l4sWLXLt2jVgsVhdxogTQ3qiXzxkgHo+j6zrvfe97GR8f57XXXiMUCpFIJOjr66v50wznyU01turW6K5eKxQKxVFEiWrFA4nb4mEYxq66HronidUC0zSZnp4mlUohpWRgYMATiVfvRI771etcLBaZnJzEtm2GhoZ2lL99FH3iTuU4HA5z8uTJciTf2NgYN27cYHBwkKGhoU0j+XYz3naEsbKGKBSKBw0lqhUPFE63uEKhsC2Lx1bUSuTmcjkmJiaYmpoiFotx/PhxOjs7K4RLPUX1/dimPJPJkEqlmJmZoaWlhXA4zHe/+106OjpIJpPb7hRZz22rl03HPY6u6wwMDNDf38/S0hJjY2PlSL5kMklzc3NNx7sXyhqiUCgeFJSoVjwQ7NbisRV7majoj8Tr7Ozk0Ucf3VLw1Ft43A+Vaikly8vLpFIplpeX6e7u5oknniAejxMKhcjn84yNjfGDH/yAWCxGMpksR80d9HrXc6zNPP/t7e20t7eTyWQYHx/n8uXLNDY2kkwm6erq2tV+2sr+sRVbWUOcVugH/b0pFArFXlCiWnGkqdb1sFaVsd1Ujm3bZnZ2llQqVY7EO3Xq1LYezR/VhizV8O+ngYEBzpw5UxEdGIlEOH36NMePH2dycrIcNZdIJBgYGNh1N8lacRCV6mrEYjHOnj3LiRMnmJiY4Nq1a1y7dm1X+2mnlepq+K0hTit0XddVt0aFQnFoUaJaceRwLB6OX9q27V1bPLZiJyLX8QFPTk4SCAQYHBzccSTeUbR/+McxDIPJyUkmJiZ2tJ8CgQCJRIKhoSFmZ2fLUXMDAwMkk0mi0ShwtD3V2yEYDDI8PFyO5BsbG+PWrVv09/eTSCS25U/frqd6O/jFtdsa4lSvlbhWKBSHBSWqFUcGZzJUoVDANM2yxWO/WohvR+Sur68zMTHB7OwsLS0tnD17lra2tl2vz1GdqOhutd7Y2MiZM2d2FQsnhKCnp4eenh5WVlYYHR3l0qVLdHd3k0wm92flt1iXerCb70nTtPJ+Wl1dZWxsjO9+97u0t7eTSCS23Pe1qFT78fuunaZLqlujQqE4TChRrTj0OBaPTCbD22+/zblz5+oS3eV8vl9k+CPxenp6uHjx4o5SKqpx1CrVUkpyuRxra2t873vfq3mr9ZaWFh599FFPi+9gMEgsFtsXYejmfq1UV6O5uZkLFy5w6tQpUqkUr776KuFwmGQySW9vb8VTgt16qreD87nu6vVrr73GwMAALS0tyhqiUCjua5SoVhxKqnU9lFKytLRUtwlPzoXdETVOJN7ExAS2bdPf3++JxKvVePViv4ShbdvMz8+TSqVIp9OEQiGefvrpmkW++XFafJ84cYKrV6+ysrLCCy+8QCKRoL+/n0Bgf06D9W4bvlcikYgnkm90dLTcCn1wcLD8/dTS/rEVjnheXFykq6sLy7KwLEtF8ikUivsWJaoVh4rtdD20bXvf2ne7ccbLZDLMzMyUI/GOHTtWNRKvFuPVqy36flTFTdNkamqKiYkJAAYHB+nq6mJ5eXnfBLWbYDBIS0sLkUiE9vZ2j+86kUjUdB32uxK+n2P5I/kcC01PTw+JRKKu2wZ4knpgI5JPWUMUCsX9hhLVikOB47EsFAplYemvSLvtGPuNlJK1tTUAvv/9728rEm+vHFbhkM/nSaVS5ZuOEydO0NHRgaZpZYFdT4QQ9PX10dvby/Lyskc0JpPJmtlP6sV+iVx/JN/Y2BiXL1/Gtm2Wl5f3NDdgJzgTjf2RfNUayihriEKhOEiUqFbct1SzeGwViee2Y+wXTtTbxMQEuVwOgMcff7xuQqyenuq9jrW2tsb4+Djz8/N0dHRUvek4SEuLEIK2tjba2trIZDKMjo7y8ssv09LSwvDwMB0dHXuaUHqUmszEYjEeeughTp48yXPPPcf4+DiTk5MMDQ3te3RhtX2pujUqFIr7ESWqFfcd27F4VMO50O6HRcIfiTcwMEB3dzcvvPBCRXbyfnEYcqqdSZrj4+Ok02l6e3t56qmnypF29yuxWIxz585x8uRJUqkUb7zxBoFAgGQySV9fX13sRLulngI+GAyi6zrveMc7yOfzZQvNTiL5dopTqa6G6taoUCjuJ5SoVtw31KLrYa1FdTqdJpVKVY3Ecy7kh6l6vF9jWZbF9PQ0qVQK27YZGBjgwoULB958pRpbHUuhUIjjx48zPDzM1NQUo6Oj3Lx5k8HBQYaGhrZ9A3WYPdXbGc8fyTc6Osp3vvOdcsv4WlpDthLVDlt1a3RXrxUKhWI/UaJacaC4LR6GYey566GmaXsWnlJKFhcXSaVSrK6u0tPTU26N7WY/K+PVuB8r1YVCgYmJCSYnJ4lEIgwPD++4/fX9tk1QOo6cyXqLi4uMjo7y/PPP09fXRzKZrDgW/BymSL2d4o/Ua25u5pFHHuH06dOMj49z9erVLSP5dspOt09ZQxQKxUGhRLXiQHC6pxUKhR1ZPO7FXkSuaZrMzMyQSqWwLIuBgQHOnTtHKBTacryjlB3tHmur7Uqn04yPjzM3N0drayvnz5+npaXlyIkVIQQdHR10dHSwvr7O6OgoL774Im1tbQwPD29ZkT3qlWo/kUiEU6dOcfz48XKV/8aNGzuu8vvH2m2En+rWqFAo6o0S1Yq6UguLx1bsplKdy+XK3fyi0eiOqq33syVjr2P5cXLAx8fHyxX8WjS1qSd72X+NjY2cP3+eU6dOlSuykUikXJF1Hy+Hyf4hpURaK2iB1pqMp+s6g4ODDAwMsLi4yNjYGM8//3w5km8nCTnupJ/d4j63ONYQd7fGeuXaKxSKo48S1Yq64E7x2KvFYyu2W6mWUrK6ukoqlWJhYYHOzk4eeeQRmpqadvyouZ5Ct15WE9gQoJZlMTs7SyqVolgsbquCv10OolK41zHD4XC5Scrk5CR37tzhxo0b5SYptdgvO2E3olqar0H+j8F8GWlPYkmJgYkghNAaQX8ngcbPV3yuU/XdznjuKr/zZOPy5cs0NTWRTCbp6uq65+c4x2CtRK+/eu2Ia13XVbdGhUKxZ5SoVuwbziNXxy/tTDjaq8VjK+5VqbZtm7m5OVKpFLlcjr6+vj2lU9TCw70T6ingTdNkZGSEiYkJQqEQg4ODdHd339dJGPVE1/WykJ6fn2d0dJQ7d+7Q399Pa2trXSvV235t8S8g8z8h5axnuYbERiIpIO0Ctv0tcis/Rrz5z9G0jcmmuxW58Xi8HMk3MTHB22+/zbVr18pdLTeb0OrcRO7HzbeyhigUilqjRLWi5jiTg5aXl1laWqKnp2ffxbSDpmlVq7nFYrHczc95PN3T07PnFtVH0f6RyWRIp9MsLi7S0tLCQw89tK+NPu7HiYo7QQhBV1cXXV1d5SSM1157DSEEy8vL++41307lWJpvQ/pTSHuk6r8LIcD1NQhpYFi3WV/5URpbvommxcpjlV+/C4LBIMPDwyQSCebm5srpKk5Xy4aGBs/ra2H/2Ap/JJ/zVCYYDNLZ2aki+RQKxY5QolpRM/wWj/X1dSYnJxkYGKjbOviFpzsSr7m5mTNnztDe3l6zC+VRSf+QUrKyssL4+DjLy8sEg0EGBwc5ceLEvox3VHGSMLq7u3njjTe4cuUKsViMZDJJd3f3vojDrUS1lBIyv4os/plnucCjoTfFtCdZX34fja1/iaY171lUO7gj+VZWVhgbG+OFF16gs7OTRCJRvolzkkb2W9i6I/lmZ2eJRqM0NzeX/dbKGqJQKLaDEtWKPVGt66FzEQoGg3WvQmqahmVZLCwslCPxuru7q0bi1YLDXql27DDj4+Pk83n6+/s5c+YMN27cqLs3+CgRDAYJBoO8+93vZmJighs3bnD9+nUSiUTNOxBuJqqlXUCu/T+w7TEqpfzWstpduTblApm1X6Cx5U/2xY7R0tJCS0uLJ5IvEomUJzXWW8jatl2O3nPOb5ZlqUg+hUJxT5SoVuyK7XQ93MyKsV84/u1bt24B0N/fX7MJdZtx0Ikcu8UwDKampkilUmU7jDtT+KiKhnre5DnpEslkkkQiwezsbLkD4eDgIIlEoiadJquJamnPYq/+FFIulf5GINjZdxoAzLv/35LZ8liwP3YMfyTfyMgIxWIRKSWFQqFunUudwsBm3Rqd71VZQxQKhR8lqhU7womjKhQKHr9jtYtsvUR1Pp9nYmKCqakppJR0dXVx+vTpusRkHbaJitlsthwf2NjYyOnTp+no6Ng0Qm+/OYzpH9vBv++EEGW7w/LyMmNjY1y6dInu7m6SySQtLS17Gs+9TdJ8FXvt7yIpbPx75RpWLNEQ2K7lOhompd+vbU+VJ/X5x6s17ki+8fFxrl27xvPPP09vby+JRIKmpqZ9GxsqOzj6uzVu1lBGoVAolKhW3JPddj3cT7+xlJK1tTVSqRTz8/N0dHRw4cIFRkdHaWxsrNtFrp6V6t0KeH98YFdXF4899tiW4kRV4PbOZvuwtbWV1tZWstksY2NjvPLKKzuKmfPjrlTb5jjm2t9Dcwnqu2vjfU+19fVZQjTXe6RcR8p5bDu+5bbVEiEEzc3NhEIhLl68yNjYGC+//DItLS0kEold7avtsFVbdNWtUaFQbIUS1YpN2Y7FYyv2o1LteIAnJibIZDIVkXhONale1Lt1+E7Gsm2bhYUFxsfHyWQy9Pf38/TTTxOJRGo+1l447Okf1djONjU0NHD27FlOnDhRjplzfNf9/f3bTqZxRLVtW+TWfxZNrqJtS9h5RXRFAojv1ZZ5BynP17Uq6wjceDzOuXPnqkbyDQwM7DnFxz/mvWIjN7OGaJpWFthKXCsUDx5KVCsqqFXXw1qKasMwmJycvGckXr1F7v2Y/mGaJtPT06RSKYCyX7qWwuOwUu9jYzu4Y+ZmZmY8vuuhoaF73gQ5orqY/u+w7Nm7FWe/KJRUyuQIkNtYX6JA2vW3F8u6jZQP170lunu8UCjEsWPHSCaTZY/6VpF8u2GrSrUfvzXEtm1s21bWEIXiAUVdZRXARvveQqGwI4vHVjgXk51cpPxkMhlSqRQzMzPbisSr9+TI+2miYj6fJ5VKMTU1RSwW48SJE3R0dOxq39f75uSosZt9p2kafX199Pb2sry8zOjoKJcuXaKnp4dkMrmpXUdKSUvsaxSN5wGwqpg7qknqSktItd/NRjW7JKrr134dNj93aJpGb28vvb29rKysMDo6ygsvvEBXVxeJRGJPzXd2e75S1hCFQqFE9QOO003MEdM7tXhsxW5FtZSSpaUlUqkUKysrO4rEq3cr7/shUs/xls/NzdHR0cGjjz5Kc3NzXdZJsTm7/f0IIWhra6OtrY1MJsPo6Cgvv/wyra2tJJPJiomlAXGb5qbfK/8tqazwyrv5H17yvr+9PmwhBDo9WHIauCuqse8LUe2mpaWFRx99lFwux/j4OD/84Q+JRqMkEgl6e3t3LJD3UgQA1a1RoXiQUaL6AcWxeBSLRUzT3LXFYyucC9N2RadlWczMzJBKpTBNk/7+fh566KEdReLVO42jnuO5RbWUspzFvb6+Tm9vL08++WRNHn/7x9pPjnL6Ry3GicViZS9xKpXi9ddfJxgMkkwm6evrQwDtzf89CO+NZLXKdKWw9r6n2toGtA4syxHVdxCarKudYSf7MRqNcvr06XIk3507d7h+/Xq5lfx2I/n2Kqod3OdS50lgsVgsR/JtlpqkUCgOL0pUP2D4ux7u1eKxFe5K9Va4I/Gcpg+77T53lCvVUNqXExMTpFIpbNtmYGCA8+fP17SZiOL+IxQKcfz4cYaHh5mamip7iY8fv0ZbPF1h+JDoVIrme//G/S1hNLFxk2bbkwiy912l2k8gECgL6YWFBcbGxrhz5862I/lqJard+KvXjrjWdV11a1QojhBKVD8AOI8gc7lceeJhrSweW+FcKDYTuU7MmxOJd/78eVpaWva0Tgfhqa7HeIVCgfn5eVZXVzFNk+HhYbq6uvat0lXPm4Wj6N3eL++xpmkMDAzQ39/P4uIiZv7foiEqfNRSRICsf62oXo/eQCCQ7lg9z8sl0h6770W1gxCCzs5OOjs7SafTZRtNS0sLyWSSzs7OqtuyH6LavU7VrCFSSkKhkEoNUSgOOUpUH2GcyTKFQgHTNLl06VLZIlCvE7df5Nq2zfz8PKlUqmok3l45apXqdDrN+Pg4c3NzNDQ00NDQwMWLF/f9+zuqF/Z6T7TbL4QQtLe3U1wew5aVotreogX5jsaRGc/fkhE0bbAmn70daiVw4/E4Dz/8MKdOnSKVSvHmm2+i63rV+ML9FNUO/ki+b3/721y8eJGmpibVrVGhOMQoUX0EcVs83F0PD6IFtSNynbbYExMTCCH2Leat3p7q/RDVzkTN8fFxVldX6enp4eLFi6TTaVKpVN2+v/u1glwoFMr2l0QiQWNj40GvUgX1EO9G8S8JkqdYpfps2TnYhi60iKGzIZwFQaC48QJ7wfN6KccQYmi3q7xjar0f3TaamZkZxsbGypF8Q0NDRKPRuohqB2fbLMsqx/IVi8Wy31pZQxSKw4US1UcEd9dDR0w7Qto5IWuahmVZdV0vIQQjIyMsLS3R1NTEqVOnNm2LXavxDmul2rIsZmdnSaVSFItFBgYGOHfuXHmiZiaTuccn1I778SLurtq3tbURiUR46aWXaGtrY3h4mLa2tm2t90G0Kd8PzPwfEMDb+bA8vjCR0lvttAmg4f395+wMcZd+NLG8nyYXgCgbedajCPHeGm3BvdkvgeuOL1xZWWFsbIwXXniBzs5OoL7Hv2MFcSYvOn9bllUW2yqST6E4HChRfcjZSdfDevmN3ZF4hmFg2zaPP/54XSqKhzH9o1gslhvbhEIhBgcH6e7urujqdj93b9wt9xIJUkpWVlYYHx9neXmZ7u5uLl68SCwWIxQKcfLkScbGxrh69SrRaJTh4eFdT3KtNfstgHTrDaC6qIZKB7UtjVLV07W0NBFxw3sdElCUQQRGeVlA68O0bwMgGD00nurtIIQot43P5XKMjo4CcOXKFYaHh+np6dn3Y8kpdDjjVOvWaJpm+byurCEKxf2LEtWHFCeeyUnxAO4Z0aTr+r6KancknmEYDAwMkMvlGBwcrNsj+sM0UdHf2Oahhx7astp6PzWaqSXVtsnx3o+Pj5PL5ejv7+fMmTMVsWjhcJhTp05x7NgxJiYmuHHjBjdu3CCZTO6o1Xet2e/vyTReIcgaAIVN/NMWDWiujomagKIVIKxvVKsFlU+uNK0faY+W/w5oLZjlQ3ycet6v1NMDH41GOX78OGNjY/T393Pr1i1PJN9Ooj13gnP+qHYT7SzfqqGMQqG4f1Ci+hDhtnjspuvhfgnOfD7P5OQkk5OTFZF48/Pzh97jXMvx/JXXrq6ubTe2cd5fLw7CU21ZFlNTUztusR4IBEgmkwwNDTE7O8vIyAi3bt1iaGiIoaGhbWcU15L9FING7ss4W5SxBVHNm9oBkLUzNOte0WX58qwDvoYvAEJrQbpeprEhJoXIEwws723ld0A9/c3OeACJRIJEIsHCwgKjo6Pcvn2bvr6+ffHwu+e9bIbq1qhQHA6UqD4E1KrrYa091e5Ofu3t7VUj8Q5T5Xi3421HfNq2zdzcHOPj4+Tz+U0rr7UYqxbU++akWCwyMTHBxMREuWLY2dm5Y0HltK/u6elhaWmJkZERnn/+efr6+kgmk3WNCdzXuErzlfL/X5cQlgIhfAkgVca3sHGbQoICLAm666VCeI9JzWUFAQiFp/ew5jvDtuvbwdEpVDhjOpF86+vrjI2N8dJLL9Ha2koikdg0km+vY25FNWuI063REdhKXCsUB4cS1fcxTmpGoVAoZ5nupethLQSuPxLvXp386i2q7zcR70490TStXHn1P+rd7lj1pB4CtFAokMvlePHFF2lpaeHhhx+mtbV1z9vqRM61t7ezvr7OyMgIL774IuFwmJaWltqs/AFhmTcIki79fynJSsjacWL6mud1uojgbz1eLau6KCHqWiStou8tq54/w6H6iWqngFAvNquMNzY2bjuSbzdj7vR84LeG2LaNbdvKGqJQHDBKVN9nuNvZ1rrr4V4E524j8epdOb5fIvVyuRypVIrp6WkaGxtrknpSz3253wJ+dXWVsbExFhcXCQQCO7LA7JTGxkYuXLjAqVOnuHLlCjMzM+RyuXIDnf3Y1v2sVBdzv1u2fqzLkkxOywwx3+uELFT0eqkms0zf37nMHGF3bLw94/n3YHBqx+u8W2zbrmu30HvZTfyRfE5ny4GBARKJxK7y9p1K825R1hCF4v5Bier7BMfi4filnZN7Lbse7maiYiaTYWJigunp6V1F4u335Eg/9bYt+G9UVldXGR8fZ2Fhga6uLh577LF7tkXeLlvt81VjildWv8XF5r9Fc7CjJuPtR/620zY6k8nQ399Pe3s709PT+yao3UQiEVpaWmhvbyccDvPWW29x/fr18qTG3Tw92Iz9PAaF8R0AVm3J5F03lyErjw0NE0vq6K7jJlDlEAporcCGTzrWkMb0rH4OTXRgy1JmdTA0uddN2Db1btaz3aqxP5JvdHSUS5cu0dXVRTKZ3FFn2N1UqquxWbdG5zqixLVCsf8oUX3AOBaPYrGIaZpli8d+tBDfrqdaSsny8jKpVKo8mW63kXgHUak+CPuH45d2xOLTTz9NJBKp+VjVxNpc4QbfXPwsBXudO7mvoolOEtGnuNj0N2kJdu96rFrhToWxLIuBgQEeffRRAoEAc3NzdZ98qWkaw8PDJBIJpqenKyY11irlYT8EjG1NEZQrLNqCaXtjvxmAlOAeUohSGxd37TQA2NLbfjys94G1IaoFaRDNHttHPhcjFLkrqgP1E9UHMVFxJ+P5I/nGxsa4cuUKDQ0NJJPJbUXy7bVSXW2dnGPP/eRTCFEW18oaolDsD0pUHxDuRi21tHhsxb0EpyN+JiYmKBaLu5pMt9Mxa009K9WmabK6usry8jJra2v71iXSjX/bxnPf59mlf4MlSz7Yklia43r6Gabyf4opg+iimQatl77wKZoCHbSGBukMDhPRt64Ou8cy7Rwrxk0EkvbwI9taV8MwypMPQ6GQJxXmfkDTNPr7++nr62NhYYGRkRFGRkbo7+8nmUxuOk9gO+zXMVjIfomMDDJte33PQghMwG+UMH1KWwjI2WFiYsNrrcksfoTWg7Q2RHU01IrFGACBwBK53CLRaPveN+ge3O+i2k00GuXMmTOcOHGCycnJbUfy1apSXQ1/9doR1+7CjapeKxS1Q4nqOuI8kstms0xNTZUFxn5UpauxmcAtFApMTEwwNTVFOBzetPlILcfcL+oxXj6fZ2JigsnJSQKBAPF4nHe84x37fvH33zBcy/wl313+35BsbK8tJaat0xgoiaaAMLDkAivmMqa8Wn6dYWuEtRClWqaOEEGCRAlqeSQWVhgIS6bmdUx7GUGBoLBAQIP+MI+1/M+EtOpPLhw/+dTU1Lbyt+uNfz2EEOWUh9XVVUZGRnjhhRfo7u5meHiY5ubmmoxTCxYKf8GalaeaO9qQgqAvAcSqYgvJScvrv7ZLEw9N7QTLspuxYo5V2cZSoUhYCxHWQvSEhxgScyBLfuor3/8TmpqfJJlM1szeVI2DsH/s9XccCARIJBIMDQ0xPz/P2NjYlpF8ta5UV6OaNcT5fTY1NSlriEJRI5SorgPO5JFCoVCOxrtx4wZ9fX11rcL4/c3+SLyHH354R17A7XC/pXHsBff+6ujo4NFHH2V1dZWVlZW6fI/ORdGw8/xw/T8zU3ibqNZK1l4EICgayNtZYoGNKmbB1gkJi7heWmZLiSGDxLQCQhjYEixp0aClkSyAbMCWORoCBjGtUGoYInQMdCwpCAibnPUG3138SY7F/hGJhg979s/4+Djz8/N0dnbyjne8456C6367kDc3N/Poo4+SzWYZGxvj8uXLNDc3Mzw8vKO5BPshBpdzf4ltT2JV1KNLGAjwZVVbohnwpoJYrpdIwiyKd/B6LseiOQWsA9Ae6sTEwrRzZOwcUhR42+jk3aFm4sG3OX+hkYkJnZdffpnW1laSyeSeJ+JW4zBVqv0IIejq6qKrq6siks+9v/azUl1tnZzzyJ07dzh+/DiRSKRsDVGRfArF3lCieh9xWzzcAf/OY8B6N9fQNI1iscjc3BypVIp0On3PSLxajHnY2oa7cSbXpVIp1tfXK/ZXOp2ua3b0esMI/2n2D0hb8+Xlcb2LNr0PQ+YYN29hmRqasNAIEdBySEri2rYFugBN2GTtIBqSBl1HkMewBBEdYpqNJYsEhIUAbKlholG0AxRkgKwZJCRCaGRZXfv33Mw8xzn53zM9MV/eP0899dSuUhDuJxoaGjh79izHjx8nlUrx+uuvEwqFSCaTdb8ZdpjL/GsigJSCarqn2mRFu5q1Q4BEkNGe4HvZVZbN27QET3jf54viK9jLZOwC38pL3mm8kxPtU5w793c4efJkef8Eg8Hy/qmVSDzMotqNP5LvjTfeQNd1kslkXSrVfoQQWJZFMBgsi+xisVj2WytriEKxO5SorjHuroeOmHaC+f0nKMuy6lahMAyDtbU1VlZWWFlZYWBggAsXLux7XJWmaZimP7Rr/6hVpdqyLKanp8uT6wYHBzl//nzF/qrXRMy0ucilzJeY6Pk+7s7SUdFMo97KZPEqABEdCraGJgRRvSSoipaGLiRNwQK21DCkIKIVsSU0aDE0cjTp+bufmMGSgnU7wqIZwkBHczfzEYKclEAULFi1xliU/4hH2v4Hzp9/V13jz+qBE6GWTCaZmppiZGSEmzdvkkgkGBwc3HR7a32jtZj/KzTrNibVBTVAQcbwV6VDooCU3kf7Aa2bl4sdTBbHXcu8N0FFl58aIGstoBHBxuKytUY2Z/J0zLt/pqenyxFztZr0eVREtYM7km96epqxsTHS6TSRSIRcLlfXm1Hn+uO3hliWVf43FcmnUOwMJaprhGPxcCLxtup66Pxdy+6Gm5HNZkmlUszMzBAMBuvm/3U4CE/1XgSN4y93Wq47Wcab7a/9nhhZsNNcXf8atzLfJSIaiWR70eJ58vYqPaEzLBq3mCteByCutZGxszQFSo/wC5ZOSAsSFDlsKchYAeJ6CFtm0aQkphUJCZ2CLVgxo9hSUJQhLESpnCnAtjU0l09Xw7+tAl3P84b+67Ta/1+6ObfjbTwMrdd1XWdwcJCBgQHm5+cZGRnh9u3bDA4ObppPXEshMr72r2kTNlm5+U24IStbjgeFJC81one/w0mrg6uFOHl7xhdh7T2+s9YcAnfrc0k80MGaOQvAVH7E83pd1xkYGKC/v5/FxUVGRka4c+dOuZPlbiMTD6Oneju4J8m++eabLCwscOnSJbq7u0kkEjW34VXDbzup1q3RNM3ydUxZQxSKe3N/TMM/xNi2TT6fZ319nUwmg2EY9zwJObOv90tsSilZWlri1Vdf5fLly1iWxWOPPUYikSAYDNa18nMQbcN3M146neatt97ipZdeIp1Oc/78eS5evHjPSKz9EtVFO8eV1f/M/zn1CX6w9iesWbPMmbfIRmaI6520BHrI2Us06t10h84wED5HPNBEQGismyEKlk5MLxAWBkJIonqRMCYxYdIXXKUntEZzIE9UWyptvx1h2Y5jCc2TFiHx3xACePevhUATRV5Y+hVuZ56t+b64n3B8sk8++SQXL14kl8tx6dIlXnvtNdbWNqrEtTwmFvPPodsjCAEZ2bLFytkUZeWxWiSKlPC2McRLuRA5e42w8E2Wk3nP3xKTBt2bd96gb7xn1ZzElpVFASEEHR0dXLx4kaeffhopJS+++CJXrlxhcXFxx/vlqFWq/QghCIVCdHR08J73vIdIJMKVK1d4+eWXmZqa2tdzpyOYq62Tc41yihTOnCCnh4JCcVD8zu/8DslkkkgkwpNPPsnly5e3fP3Kygof//jH6e3tJRwOc+rUKZ555pl9Wz9Vqd4FbouHYRi7isTbbmb0TrAsi9nZWVKpVNVIvEwmU5fquJt6N39xLhLbqXA5Nx/j4+Osrq7S09PDxYsXicX8vek2p9aiOmet8Wb6L5gpXidnrWBJxzoj6QocYz03x6JWqkxHRRPxUC+LxevYGLQGBohrQZAr2FKQtwM0ajq6zBMSBgFdIgSk7TCabVOQAQoyhHa3MB2kmkiq3DbNkzdS8l0jbDRhc2Xt36DRxnDssZrtk1pTq2pbS0sLjz32GJlMhtHR0fKkveHh4ZpWWG+v/v9o14qs20HmjE4GQuubvjZr64R07+8tJ4O8XhhgxrJwWixGAp0UjY3PKVgrFZ8V0ZrJuLz7QbFhdbGkQdqcpynYs+m6NDY2cv78eU6dOsX4+DhXr14lEomQTCbp7e3dlng96qIaNmwYDQ0NVSP5EokEAwMDNctPh9J2Oj0RtkJ1a1TcT/zRH/0Rn/rUp/jiF7/Ik08+yec//3k++MEPcv36dbq6uipeXywW+bEf+zG6urr44z/+Y/r7+xkbG6OlpWXf1lGJ6h3gRBE5d+xbWTzuha7rNRO4hUKByclJJicnCYVCm0bi1duKAQfT/AW2zn7133wMDAxw7ty5XV20ajUxcslI8dr617mRfQFLGuXlugiSCD2CTR7LtgiYMboak+jY2BhI26I//DCmXCZnLxDRYuRsi5CQCCmIahbdwWX0sjjOsGJGWbEbKNpBGnT3WJKirRHSNr6vQFk+u33VElffkXJsmyE1VswGfrD+zW2L6qNwQY7FYpw7d44TJ04wPj7Oq6++iqZpRKPRPYu05fx3sKwJAgHJG4Uky4bOwBaHacFXqbalxivZOAXfzVFAeG8cs9Y8Ah3purEKav7mRd7z1aqR2lJUO4TDYU6ePMmxY8eYnJzk9u3b3LhxY1ti8ajaP/xjurPt/ZF8o6Oj3Lp1i/7+fhKJRE26jzrn5O3O6almDXEmWDoC+yj8lu9X8vk8xWLx3i88ZIRCoR01Sfvc5z7HL/7iL/ILv/ALAHzxi1/k61//Ol/+8pf51V/91YrXf/nLX2ZpaYkXX3yxPP8lmUzWZN03Q4nqbeB0PSwUCliWVb7D38vs6FpUcNfW1piYmGBubo7W1lbOnTtHa2vrput0EKL6ICL1oPrj92KxyOTkZLkZSS3yuPdSqTbsPHdylxnJXSZvpSnY6+VH6iERpTOUYM2cYKr4A0DSqg+gaQbzxR+iodMVPAZajqK9ToPeQIPWDdJi3bTRkYR0gwatUBbUWSvEvNmIpkk0IbCruL8sNNz2Dk1AUQpPe2v/uyw08laANbsBiWDOuLGr/XHYcYvHq1evsrS0xKVLl0gmkwwMDOyqKdCt1c/SHAiSMrtYtzRW7TCWFK6bJC8G3mP5e7leilpfOV/aQQj/MW8T1XvJWtOeZW5Mmfb8vWJMMMjFbW+LruvlRihuX/pWzXYehEr1ZgUAdyTf2toaY2NjvPjii7S1tZFIJPYUYegUdHZ67nPG03W93K3Rtu2K6rWiduTzeYYTcWbm6vuUuR709PQwMjKyLWFdLBa5cuUKv/Zrv1Zepmka73//+3nppZeqvucrX/kKTz/9NB//+Mf5sz/7Mzo7O/m5n/s5Pv3pT+9bSIQS1Zvgbu+6H10Pd2v/kFIyPz/vicR75zvfua1IvHpbMeDgRLV7zEwmU56sWetmJDutxFvSYDL/BjeyLzCSewXTM7lMljodalFsDAQWrYEBAmIQIWxMu4BlG/SGz5GzpzHlLM2BTvLWNEE0QkJD1yVddpqgtnFsZewI08VGgppF6Xon7q779m4G5F17R3mbkZQEl1Zesmw1lFNCbJlmIjfCQHR42/ulXtRjUqSu6zQ3NxMMBunq6qpog77dysx89iUy1hQRLc/N4tDdKYMaeTtETK+clAiAiAKl1JebxQGmrQgx3V9jptyB001Yb/GIakvmPP+esxY8f68YqW1tR8UqusTi6uoqo6OjvPDCC3R1dZFMJj2T9GzbPvKV6u1E6jU1NZWtNO4Iw0QiQV9f345v2Jzr2V62VVlD6kOxWGRmzmLkSoKmxqNzw7K2bjP8+BgLCwuefgbhcLhqF+eFhQUsy6K7u9uzvLu7m2vXrlUd486dO3z729/m53/+53nmmWe4desWv/RLv4RhGHzmM5+p7QbdRYlqH47Fw/FLOyfZWnc93KnAdTpgTUxMIKVkcHBwx5F4++Hj3s6YB2X/WF5eZnx8nOXlZbq6unjiiSdq8ujUjb9SvWbMoQkNXQTRRRCBYMEYZbrwJpOFN5gt3MDGoiXQT1domLyVIW+laQt1k7HmWDFvA9Ac6CGuN7Fq3saQGdr1ktjOB9JIGaEl0IlppwkLsMkSFA1YLJI1Zwi6zrtZK8iy1YYQJsI36TAkTCR4lgbEvb8rIUBIf5sRtz0Efrj+FwxE//629mG989rrcaF3bAs9PT10d3ezvLzMyMgIly5dore3l+Hh4S2PRSklb658Bh3JqNGGjYZ119pRpJUYM1Xfl7NyoMOs2cnrhdKFKWstEhEBpNiItiz4IvMAdLw2jLy16Pm7aKfR7UYsrSToV42JbeyJrWlubuaRRx4p+66vXLlCLBYjmUzS3d1dttjVC8uyaupd3g47af4SDoc5ceIEx44d80QYDgwMkEgktn3DVss412rdGp0bhUAgoMR1jYjFS/8dFZwmVIODg57ln/nMZ/j1X//1moxh2zZdXV387u/+Lrqu8/jjjzM5Oclv/dZvKVG93zgWj2KxiGmaZYvHfrUQ366nOpvNMjExwfT0NPF4nBMnTtDR0bGrC81B2T8OIjLt1VdfpVAoVEzWrDVuUW1Lmy9N/kv6I+2ExDor5ggCjebAACGtkYy1jEUBDR0N0IWNruWx7DmWjBWaAr20BR+mYK9gyTy2zNIdOk7WnCRn36FBP05IN8hYbxLTzxEKRChaGWLBBAVrhqjehyUNTFkSQ3PFRnIyiCYMdAEFO0BE3xBWJQ+1TthV1Q4KG0uC7jrk9SpCW/O4b0HzVK5hsvB6TfbvYcY5bwghaGtro62tjXQ6zcjICC+++CLt7e0MDw9XtWxdW/33wDwFO8ScVUrdsO9611dMQesmeiggiixZDVzObbRWl9hE9S6y9oYFpOSh9lp9/HaPvL2ELmJYrqcpYdlEltLkxZUaiGqHaDTK6dOnOX78OBMTE9y4cYPr169jmmZdz1n3a6XajzuSb3l5mdHRUZ5//nm6u7vL1f57jVnrx99uO6T7Sa/q1lgbbCR2RaTp4cXZllQqVVGprkZHRwe6rjM7O+tZPjs7S09P9bkdvb29BINBz7F+9uxZZmZmKBaL+3ID/cCLanejllpbPLZiq6qxlJKVlRVSqRSLi4t0dXXx2GOP3bPl83bGPKr2D8MwypV8gM7OThKJxL4313HfNCwZs2TtLDezpcfvbYEkfeEewsIEuU5cixAN9qOJALoIoUmIa800hdrQBBh2BtNeIyzCRPRmTJlFSJOmQDdNtFK0M0g7SFOgg2Xzh4CkI/gwq8YPAMjbU5Qqxv2M5QuEddvTuKUoA0TwNuIxpE7YZw4w7AC6W3wjsSSezwpqUSx7w0KgC/uuH7tEwV5kxVigJeiNZXtQ2OxGMh6Pc/78eU6ePMnY2Bg/+MEPiMViDA8P093djRCCnLnCVOb3EVIybTbhPAVwPPCr1uanbSEEr+SGMHzfc1BvAZeoLkXmdZKzNi5QhsxUfF5M72DNnCz/HZAbF6GctUzBShPWa1c+CwQCJJNJhoaGmJub4+rVq3z/+9/fMg+8ltxPnurt4L5hy2azjI2N8corrxCPx8vV/mrbs99dHP3Va0dcuwtVSmDvDBub+l699xdna5qamralbUKhEI8//jjPPvssP/3TP136DNvm2Wef5ROf+ETV97z73e/mP/7H/+j5Xd+4cYPe3t59eyL1QIpqt8VjdHSUeDxOc3PzvlWlq1HN/uGkUkxMTFAoFOjr6+P06dM1q7IeRU91LpcjlUqVK/mnTp3irbfeoqurqy7dKt2V6pnimOfflsxVIMKSOYsudPpDnbQGWgkKsOUCS+ZtSknQgrbgMUKazqoxgkWBNXQ6Q6dJmzcx5Dolv/VZjOgdcrYJCDqCD7FmvuZbIwk0k7HThPVKkbQd/N2uRZUmMDmr6OnsV6pwb5hJgsLkxZVv8eOdP7flWEf5wrrVtkUiEU9l9tq1a9y4cYNkMslk+DcRFEmZ7Zi4Y+xKx/OKtfkFKG9HQBsEy9ucRROV55Cw1uIR1Tmf3aP0Gm+eteY7OFaNCbr0M5uuz27RNI2enh6EEJw/f57p6elyc5Th4WGam5vv/SG74LBUqqvR0NDA2bNnOXnypKfaPzQ0VJGyshchvxP84tqZ33L69GllDdkhlpR3z7FHg91sy6c+9Sk++tGP8sQTT/DOd76Tz3/+82QymXIayEc+8hH6+/v5zd/8TQA+9rGP8e/+3b/jk5/8JP/oH/0jbt68yWc/+1n+8T/+xzXdFjcPlKh2h9g7rbMXFxfRdZ22tra6rou7Uu2PxBsYGKCnp6fmJz2nqlrPC8d+ierV1VXGx8dZWFigs7PTU8mvp+XEI6oL455/09BZNkuPyi1pMV6YQRMnmMyWcqYjWi/9oUHCmoHExJIFInonYdGEKWdYNkqCOSCitAcHWTVfB427Ivw0a2alxSKkdXA7n6n6kDAgKp+MVPNQV3ZNdJrAbCyPaAZZO1i2iWhCYtslP3Vpv8BY/lVga1F9VNluFJy7MjszM8O1qW9h915mrNhJUQY88YYWDYBBTmqYMkhAGBWfZ4sThPRWMj5RbcnK7zngi8wr2qsEiGGycTOma75LhG/MFSNFV6T2ohooC7GWlhZ6enrKldjLly/T1NREMpmkq6urpqLsoCrVtRzTOaYSiQRzc3OMjY1x+/Zt+vr6ypF8+2H/2ApHXDsJTCdOnChPQlXWkO1xVO0fO+Fnf/ZnmZ+f51/8i3/BzMwMjz76KN/4xjfKkxfHx8c9v6XBwUG++c1v8su//MtcuHCB/v5+PvnJT/LpT3+6Ztvh54EQ1W6LhyPwNE0rT6So9+Q9KFWN8/k8b7311rYj8faKexJfvS4ctcyptm2bhYUFxsfHyWQy9PX18fTTT1dMzqmnzcW9ff5KdWugk0XTO6GsYG/EkuXtAkUEI7nR8rKQiCLvTkJr0BI0aFFag61MGysIHiklvjQNkrNeqbo+q2Y/hpwmKDSk9DRHJKxZmFLzCOmQZmFKQcBVhQ4Kq+K9mi8pRAgo2jpR3f3b8R63GXOGgp0jrO3vI/udUO9JkdtF0zR6e3t5m//MaKGDFStOCybcnRRo22CU88sFGbuBZr1ysmGGXvJ25TYW7cqnFnaVfdEQ6GTN3HitlF4bia15P6eWvmo/znflnKucSuyJEydIpVK89dZb5eYo/f39u4os9HPY7B9bIYSgu7ub7u5u1tbWGB0dLUfyxePxA4m+c8S8E8nnWEPc12NlDamOjcR6wEU1wCc+8YlN7R7PPfdcxbKnn36al19+eVdj7YYjK6rdXQ8dMe0E1bt/sLVswrLd9VpYWGBubo5isUhfX9+Ou/jtFreorhe1ELimaTI9PU0qVYrwGhgY2DJGqp4NZ9yPNqd9leoGvbFCVK+Yc1t+XkugnWWzJLyzdo6snSUn0xRlyadNCEJmEZsBBkOLFG3XpI3CQ0xTikQLaDYFqRPxVafzVoB4wBunVrQDBFxNYLS7gjnkem9pamXJduLgb2Hun6wY1Iq8vPIsf63tb225zUc5/WMnvL7ye4zkJSt2yaNsaaJ8grak1/+3Yuk0V9FhN3NZAkKrOLFnzAU0vDdKpi8yDyCoec9Dhu3t3mjqqyA3Bq5FAshmOL9h/34MBoMcO3aMZDLJzMxMuTnK4ODgjiILNxuznhVc2H9/M5R8qxcuXOD06dOMj48zOjoKlCaJ9fX11W2bLcsqn7f91hDLsjyiW1lDFIeRIyeqHYuHE4l3r66H9RLVbmEopSQWi9HU1MTp06f3fWwH58Rdz5uIvYjqfD7PxMQEk5OTxGIxjh8/Tmdn5z0vQAdh/1g1F8lXqQa6aQl0kLG8M5cLvvdEfFXdmNZMUS55luXsVdL2Cjk7zqlQhCJjyGILY3LJUyzO20Eimve7tqo0fKneBMYnmIVJ2gzRENgQ3wFf9do/WTEoLN5IX76nqD6K7PT4e33l23x76duY0uV9FhupG4avqpO2KoWjrvWzYGQJCYMuX9KmITM06k0Ycq28rJqHWhPeS0LOmgd38KKwaKCDrFwGdp9VvR3cTxWroWkafX199Pb2srS0xOjoKJcuXaKnp4dkMrmrid1HqVJdDadBkaZpzM7OMj4+zo0bN2pyQ7IdqtlOqnVrNE2zfN1W1pASyv5xODgyotrfqAUo3+lu9YPcb1HtjsRzC8PJyUlWVlb2bdxqOGH/B5Ubvd2L1draGqlUirm5OTo6OnjkkUdobm7e9on1ICrV04Wxin/zi+xGvalCVK/c9Vxv4F3vxkAbi6ZLVNsaGUpiKGvneC0rOBs8SUYPY0tvFdySlRfqan5prYqvutqezttBGtgQ1VGteFdEO5MTvZMVhYA1YwrLttC1+lb/7ge2c7xKKfkv0/8LP1z7AXG9UPakSynRXd+V4fsuV63KZk8GCSBHURpE9TZylvdmLKJ3YpgborpgrxAkgkW+vMySXs+0KbOERRsFlxiPiMayqF4zprGlWSHGa8G9RLWDEIL29nba29tJp9OMjY3x8ssv09raSjKZ3FHnwcM8UXEnSCnLSTRLS0uMjY3x/PPP09PTQyKRuGck327Zysvt79a4WUOZBxU1UfFwcKhFtZSSkZERWlpayuJ4p5F4uq5TLFZ2F9vrevkj8R599FHPjPWDaMTijHs/imrHFpNKpVhfX6e3t5cnn3xyW50iq41Zr0q1s00zxfGKf1v2CeaArzV0c6CDdcv7mrztbQUd0ryP/UNGE8XwSvlvW5NM0ULOrBy/moAOaya23JhQCKUmMP5lAXTwxbIJ3+cFNZucGSCk3fW++iYrAuhanlfTL/GOph+pWBeof/pHvY6L7dg/1o1Fvjz+GRaMZfxmGh3bY9Wwpfe3k7Yr46DmzBhQsnSEtfYKUR0QlRazBr2LdWvj2Cnaa5WvCbRTMDaWB4UrRQKTNXOGluBAtU3cE853tZNjJB6Pc+7cOU6ePMn4+Divv/46oVCo3HnwXhXheotqZ+L4QVhOnOukc0PijuRrbGwsTwSt5f4wTXNb3nfVrbESG3/J5XBzlLbFzaEW1QB/7a/9NX73d3+Xp59+eleReLWsVNu2zezsLKlUinw+T39/P6dOnar6SK3eXm6HgxLVm4kZy7LKthjLshgYGOD8+fM76hTpp96VaoCZwqhneUugs6IKXfR5WON6s0dUC2DN57m2fcJWtyuj0XStmbjoIu2rggc1qyRyXdfEUsMXbxOYkoc6QMTVcS+gFchZAaKu10U077oAmFIn5FlH7+8vLEyurL64qajeLZZlYRjGno6T/Warc9GVpWf5+vz/gXG3sh/A2nJiaFHqnoY8FgEMGSUoNo6pt9c3Ji5qVQS0FJXCLag3enqY5yz/kxMI+SxJwvdkY9WY2BdRvReBGwqFOHHiBMPDw57Og06r+M0yaustqrdbjd+Pcf1C3j0RdHJykuvXr3Pt2jUSiQQDAwM1+a3tNHWkmjXEsizC4fADJ6qtIzZR8Shti5tDLaqFEMRiMbLZ7K7v9Gshbp2YoImJCYLBIIODg/eMxDuIzGhn3Hp7qqFycmShUCj7pSORyJaNCnYzZj091QAzRa+3NKY3+US1ZM0nsnXfI/PmQCcZyzuxcS0/7577d7cLnhdDBmjQ2sEnqjUBORkihm9iotQrmsDYMoC/Mp02wx5RHQsUKdgaQW1j3/ova/7JigFhM54fp2gbhLS9X5QNw2BiYoKJiYnyTVgymdzRE416TVSsxmTuNn86/b+QNmcxXP7pgOb9ffi7WNpSq1gWCRzDst68O2A/6y5rTs6sHN+0K5/IacIrLi1ZIKK1k7c3/Naa75izXXYRgJXiBImdP1C6J7UQuLquMzAwQH9/PwsLC4yOjnLnzh36+vpIJpMVreIPSlQfRKV6s/4HwWDQE8nnTATt7+9naGioYp/tdNzdbKvzm613h977CUtutPY+ChylbXFzqEU1lB73pdPpe79wE/YiMtfX18ve35aWFh566CHa2tq2ddF+UOwfTqXBGTOdTjM+Pl6OEXz44YdrHiNY70p1Uc+RtlY8y3W8F4641kzeXvYsM6RXnMT1Ro+oFlKQ07yfK7XKbOI1s0AwUL3yVrQDxHS/mKrc11kzTIPuXR9LVoqLVTOKLkATDaQtk6wZpCmYpzlQem9QExiuk6UQYMki31z4Fj/Z9RNV13E7F8l8Ps/4+DjT09M0NTVx7tw5GhoaGBkZ4YUXXqC7u5tjx47tuetoLXEf01lznf88/b8wk38VIcD0nXp138PQUnW49F3bdvU88aJsLR9lRVHyUzssrK0Q82mfvFUZwef3UANE9DaPqLZ8Iroovcfxfk1W3E2CymYIIejs7KSzs5P19fVyvFx7ezvJZLJ83q63qHbP/6kn2xG37ki+1dVVxsbGyvsskUjQ3t6+4++nVvnYD1qVGpT947CgRPUORbXb+7u2tkZvb++uIvEeFPsHlE6AS0tLzM3Nsbq6Sk9Pz77GCNa7Up0JLVUsL/isHs3BNuaKXjGyZnrTF2xfdbEl0EVaTnqWGYHKhJG54io6zQSqXGfsKgI6WKUJTETPuTMeAAjfrVJnrRgzxQgrRoy0HSLguv5LCRPFVmJakb7wCu3BPEWpAwKbKJO5CMvFKK+tv7ypqN4K901Ye3u7p8lPKBTikUce4eTJk4yOjvLyyy/T1tbG8PDwtm9ud8N2hJdz/I1mb/OVmT9mOn8bSQFdNKBjE9Gj4BKrIS2KTdb1CRvJHwUZoNqmpO0wziyNOSOKW1SbVaLBM9Y8YaGD6/sv+iLzoNRsyE3Bd8NYlKsERVP5pnC/YvX2S+A2NjZy/vx5Tp06xfj4OFevXi0/Lav3pEGnAcr9KKrdNDc3c+HCBU6dOkUqleK1117bkVfdwTTNfU8YOarYiIpUpsNMtWvTUUCJ6m2KWycSb2JiAtu29+z9PSj7Rz1FtW3bzMzMYNs2t2/fZnBwkHPnzm3qZ6wV9axUa5pGOrRcsXzFWPD8HRLe46RBayTnmxSWzq2A64lsQ6CRtKuQGBYxCr7W4zG9nZRdZKqwwlDE2/UQqlc4Q5pFwQqURXNpLIOsGSJ2N8PatDWWig3cynZhuWwqwtdZUYiS2SNjR7iZ62GiYBMWWRaLjVh366imLcjaq9zJjnKsIVmxPtVYWVlhfHycpaUlenp6eOc737mpxaOhoYGHHnqI48ePl0VSQ0MDw8PDdHd311RcLxdW+efX/xXtoRZ+uufHeUfLoxWvyZl5rsrv8UbxNdZv5wBBVDMAHVPqgMSm4BLKEkvmPcJZd4tqu/o5ZsGwab77Tzfz3nPgurVGeyCC6XoaIrEJyjYMsWFDylpzFTdTFdtjzSPQkK7vvTHQzpJRuuHbrwYwjuDcL5x4uWPHjjE5Ocnt27eRUjIxMcGxY8fq4tc/iOQPZ9zdVIwjkUh5nzle9Z1E8rlzqnfDg2r9ALBl6b+jwlHaFjdHQlRnMlvnA2/FvUR1LpdjYmKCqakpYrEYx44d21ZW8r04SPvHfo/reMwnJyfLOaPnz5+ntbV1X8d1qLfvzl+pbtRbWbe8QtuUXgtGY6CNvOFLWogWPM/EdOE9xuKBDgqG91iPam3AIgVpENO7KiL7gpqNYQcJ+mwjS8UovVFvlXLdDBPSTOaKPUwVA0ihk7MDhPWNldKFfbfbovAsc9IpcrZGkWhZUAMENMlCvoGvzf8Z/zjxSc+Y7s+RUrK4uMjY2BjpdJr+/n5Onz69qffTjyOShoeHmZiY4Nq1a9y4cYPh4WH6+/trclz87th/Imdnmchn+Xej/zsRLcyTze8gY68zkZ9ixVjFsIuEdPvuvYdAYOOWrQIN4ZqIqBNAiA3xa/u6WeasEEG98uZoqrDO8SAUcj2sV/ilBQ16N2umN+rRNiKeGzdLFohqbRTsJdcyr91DYtGgd5OxNibRRlxNYgr2GnlrlYjeTC1xegzsN7quMzQ0RH9/P3/xF3/B8vIyzz33HP39/Tv26++Ug4jwg72LebdX3Z0R3t3dTTKZ9CRd+cfdq/3jQe24aB2xSvVR2hY3R0JU17pS7UTiTUxMsLCwQGdnZ0Uk3l5xKtW19A3uZNz9IJPJkEqlmJmZobm5mbNnz9LW1sZLL720L+NtRr091dsR1Wnf37m1PLieskdFnJzt9bwaMuv5OyQqn+lLGXX9exsZZiteM5+P0tfgyx+2vRc2W8J8Ic54sQ2EVtaAtvQ3gQHDFp4kCiGkp0Ae0RrI+X5TayZM5scxbZOA5j3t2LbN9PQ04+PjGIbB4OAgjzzyyK4rWoFAgGQyydDQEFNTU4yMjHDr1i2SyeSejou5/BJvrr9NwLXr8naBF5Zf9LxO9yV3BH1PCwS+hjy+VuD+SfGd4W5WzOmK9UnbRTTRxkqho2qpOaA1Vixramxn2TepNkgLBTaOYb/3HyCq9yIJk83kiTY0IoTXu75ipOipsag+iHg7gMcff5xsNsvo6CgvvPACXV1dJJNJWlpaan6uPog4vVqO647ky2QyjI2NcfnyZZqamkgkEhWRfE4snmLnKFF9OFCi+q6odvIw3ZF4fX19PP300/viAXNOLPU+qdba/uHcgIyPj7O8vExXVxePP/44jY0bF/SDiPGrV6U6b2XJB73Hn180hkW0QlQ3xCOkXdqqOdjGouEW1ZJ1y2shqVBbQM61X91pEp51rGIfCLk6LS4VGxjJdZCxIjQEvRVPf7QblDowuifW+WVPvspXrQtYLYb5xsK3+FtdPw6UqlZzc3MUCgVGR0cZGhq6Z2rOTtA0rVxNm5ubY2RkhNXVVWzbpq+vb9sVcIf/deT/Qgj/xD5ZYZ/w77OQ0LBcQtofSVeZ9OEdoSEQZaUyzfDuh/UyZzVAoHLCoU2lzcqu8rvIpk1wFWNz1gKCIA2BBGtWL6+tmcQCfVxL313PNBxvaKMl+C46gtfI20usGJP0RB7eZCV3R70q1Q7ueLvm5mYeeeQRTp06xdjYGFeuXCEWi9U0pQgOn/1jK2KxGA899BAnT54sPynyR/Lt1f4BD+YkRSgVOPxFjsPMUdoWN4deVDc2NjI/X5mtul2cE8udO3eYnp4mEAhsKxJvr7ij5g6jqLZtm7m5OVKpFLlcjv7+fs6cOVNVqNTbjlFPEV+t6YthFzx/R80GMgGv8C4Ir40jJLz7rUFrouCrGPobwwAsuuwgK6ZRdbKiP64NoDmUw7A1bqS7yMgoCEFYN7Gl8IjCYFl8u+0L3u+ydI3biNKzZBEpNZ9FRLJmwYsrV/hAy/vLsXihUIhgMMhTTz21bxdLJ8Wgq6uLy5cvk8/nef7558uP97czYTaVneZWZoRooPI49q61rKi/+M1W/kp2VA+AK/bQ/+9Za/OiQcFuZVLLVv23fJXfQNGufG1zcwvLxt3jWOpI6xGuFdq4lVsAShahU77tzlg53lxfJaYN8IGu46wUa++r3m9PdbXxwJvEEY1GOXPmDCdOnGBiYoIbN25w/fp1kskkAwMDexaIB1Wp3g9R7RAMBhkeHi5H8o2NjZUj+QzDqIn940FEVaoPB4deVO+lUu0kCwCsrq6W7Qr1+NE6J27LsurawGKv9g/DMJiammJiYgJN0xgcHKS3t3fLE+VBxPjVS8TPVGlPvmp67SARLYpbQusiyKrprUJLn/RqDLSxZHpFtb/7YkCEPNXt0mTFynVsChbu+qA3lmWtEG+t9xAKUlaFQkDe0mkIuJvASAqW7smm9os+AN29BaKyeqtrEsOEydw6X/3e1zkWT/Lww6XK5rVr1+rymxNCEAqF6O7upr29nZGREb7zne/Q3d3N8PDwlvau/3Xk/0KrkpoSFkEMVyydLoQvqUPiltVSyorKvpRFz85yN9mRUrDuO57cTBqtFLXqc0pWzSz+W9yMtVgxvn1X0Ef1R7m0GGTWNOg0Lc/VIWd7fdZLd7tAZmyLP53J8iPtGk+1b7qau+Ig4u028+u6LUXOU49bt24xMDBAIpEgGq0St7LNMY9KpdqPpmn09PTQ09NTjuTL5XLcunULIUTdrrVHBQsNq0qfgsNK/WeU1YcjIap3MlHRmQyVSqXK8W4AZ8+e3fWJcTc4MUr1nqy42zFzuRypVIrp6Wni8TinTp2io6Nj25nc9bZ/HFSlOkIDWV9MWTgadCek0RroZMn0RuX5/dQhzSuH4no7aWvRt6wb6ZLrG5MVvV0ZQ7rFSjFKa7gUubZQiHMr30nWDhHCW1W3bJ0geeKiyLIseQJMW3NVrEui2pSgub77qB4mbW2IwaAIYuH3LEgMGeBmzzwfPvlfA7C8XOnfrQeNjY1cuHCBEydOMDo6yuXLl2lpaeHYsWMVF/vr6yOMZ6dKkw99+K0aES2I6druUuqLVyS7JynaUhBwiWhbQtRl5Yjo7Vim9ztys2xW+qYdFotL9Ic0pMuqU7TXieuNmHLjGLWkxu38e3g7vY6TjR2Pxpk3Nr6blaJ3Um3RNmgJtLBilgoat9OVXv69chCNWO41nlsoLi8veybo3evGbLMxj1qluhpOJN/s7CzxeJyrV68SDodJJpP3LMooSsgjZv+QR2hb3Bx6Ud3Y2LitSrU7Es/pxPbwww8TDAaZnZ09kCSOg4jV0zQNw6j0X27G6uoq4+Pj5Qmb7pzg7VLPiYPOePWqVE/7KtUhI0Y+6H3EnrW8giSqxzzNC3V01u5RuY7pLRWiOiAaAe8NZVh0kMErqgHWzQit4RzjmVamzRYQ4q5RQfJkdJbHGubpCmRp1IsEhIVhg41k1YowWmjmjXw7rxe6y59n2xqavrGP06bpqbYGNQ3L95VrQmIjeD0zhmEZBPVg3StV/uPCieM7ceIEY2NjXL16lWg0yrFjx8pxfP9+9A8BSUDzvteWEsvnsS7KPJprkwzbwK0XInoEt9XD31XMMMOI4MZ3GtLagMpJig7r5ubxlDY2DXpnRSJMRO8kbZZEdTTwDv5kFizpPY4CoQCuBo2sW2mCBDFcB25bKF4W1bOFJQzbJKjV7pJS70ncOxXxra2ttLa2ks1mPRP0kskkXV1d21r3g6hUSykPdILksWPHOHv2LFNTU55IvsHBwXvOX6r3MXE/oewfh4NDL6rvVal2IvGmp6eJRqMMDw9XzEg+yEYsB1GpvpfAtW2bhYUFxsfHyWQy9PX18dRTT+26kl/vm4d6VaqX1le4uRSnW+/BiM4hhU1LvJW1woZNIyACrJpbe/6bg52s+yrXeV/lWheV4smUlT/foqwusiypcXO9kwU7XnrEjc3Ptt3k/U0pBJKAL3IvIMBE0hrI0RrI8UjDDP/7EtxyhLXvfBjWTfKWXr7gWVVaYutCYsvS1L6vzH2XD/e+D7g/smdDoVDVOL5st85MYR69ii9dSg18kww1337xT0LM2zlibg3lq9YYvlQWTWzt957OmzRqUcxAruq/h7TWKjGLcQQ6Rd7F16ZXAUF3uJ354saNXc7K46eRGEtsHJcNgY2nKTY2M4UFBqM9W67vTjiISvVuhGZDQwNnz57lxIkTpFIp3nrrrbLvuq+vb0vf9UGI24Pq4uikXem6jq7rDA4OMjAwUI7RvHTpEj09PSQSiZombSkU9eTQi+qmpibS6bTnDlZKyerqKqlUqlxhfeSRR2hqaqp6l3tQovogxt1K4DrV/FQqhZSSwcHBe14UtsNBVKr3czwn7eSNlRFuRfPcIkSrMcwTbTFsn52iNdDJiumdxJW3fQ1ctDhuw4iGxrpPiFdrJ71uVgrXzSYrZqwQaRFBF5KfabnJu2Iz5cYwUlbmivg/QhPwY/GbZVFd+e8S09Y38pQ1E+kS2bDhq0bAs4vfK4vqerNVpcvtnZ2enuafp74EgUpxDJUTNg1L8zTUkVIS9Ilxvx+9QQvhftrQGvJW6my5teAaz2c5H4rDJqKaqjGMYcbzT/Pq+hrONxnXY8yzIaqXjdWK97U2NLOU3VieXvPanKZy84deVO9lvGAwyLFjx0gmk8zMzDAyMsLNmze3bIxyEJVq59y41/P6TjHN0m/DfRMhhKCjo4OOjo6KSL5qFf8HNaMaSoURSx4hT/XB11L2hUMvqt2V6mKxyNLSUjmRYrsV1oMU1Qdh//Bvaz6fLze4aWho4Pjx4zVpcOMe87BH6jnt6cfGxshkMvT39xNv74Sp0r8vmwZ/MbdCR7CR9tA5kjENkyka9JgnDk0AK6bXnqH5LhLNgU7StrdynbUqRc5ssXJZ9cmKGnNGE0PhVf4/PT+kSS/e7Yx4d53u/t977bH2QI5joXnuFDsJCPtuk5KNz3H7/YQATegeP+/GKIJlY5Xb6Sna2b/GGntB0zRe0yfIBdZAigoxLKX0ZHUDFXcaRStAg0tkWxJiutdnrmleMdwS1D1O9EKVmymHmN5KxjKxzM0fmRdt70oFRQPXMn28uj7qXe6zbWSsLA1alKy9sX4BvAJfhHA7WUhlZ3my7fym67JT7nf7x2ZomkZfXx+9vb2exig9PT0MDw974kYPslJdb3HqjLvZ9voj+d5+++1yJF9/fz/BYPC+eKp1UNgI7CM0UdG+5xXncHIkRPX6+jr/9J/+U/7gD/6Az372s7z3ve+lp6dn23fiD6r9Y319nfHxcebm5ujo6ODChQs0NzfX/GR7EOkftRrPsixmZmYYHx/Htm1P9f4bI295XtughVgw1lkw4HoGoIF3tXYTD0YJa6usmCkaAy2s+VI8/DFnDXojadfqawQqMqsbtDZyduUEtmqTFUOc5a83X+fn2t5CCImocmIWCE8b6moEheD9Tdf53YVOhICcEaQhuCEB/cIzJIIUpHcdHV+1EPAH09/iE50/veWYtWa7F2UpJX8w+TUADBsafD8JW2oVlhD3ZM5qFCyduOuUZEtBWPeK6pCexXR9TM7a3NoW0ToAg6wdrEj5cMhYG/tfI0Cq8CiT+co5KLas/L20hprJ5jfWzz/xtKB5n5T8cOx1Hs2Xqvyh0OZe7+1y2CrVftyNUdLpNGNjY7z00ku0traSTCbp6Og4kEq1M0nxIET1dsb1R/KNjo5y8+ZNBgYGGBgYqMmxdRhRnurDwaEW1a+//jr/6l/9K/L5PC+//DL/+l//az784Q/v+M7/QbJ/CCEoFAr84Ac/YG1tjb6+Pp588sl9bcV7GCvVhmF4spSrNX24nfVOIOsOtzKSc/tXBZP5HKmVFQAiWoKnW3toCfQixDKr5hQ2Jms+q4e/PXmT3sWKNeVZFtXbwNUFz01ItJcnK2roPB15kdORmXtscWnSovtPX6NEdAGNeo6h4CLjRjuGpYNLVId001tJ8X8AJQuIcyhcy9zB6qjvk5rt8n+mvknx7uS9ajnfFVnUNjQEvb/lgM8y4p/tLmQYIbKufy81XnH/vWZtHqdnEwNWWLWha5PXLBrLtN89y6ftp7i6toKOhoaGdK1ftoqHOqp7n/BlLe8NwLKxSkAEMe8K8kLcZnl5mZGRkZq0+D7sotpNPB7n3LlznDx5kvHxcV5//XVCoRChUIh4PL4vY25GvZM/djuuO2llZWWFsbEx3nrrLd797nfv41revxw9+4eqVN8X2LbNM888w+c//3m++93v8rf/9t8G4E//9E9paWnZ1Wc+CPYPp+I6MjKCYRj09PRw/vz5umRk17v5y14q1U504NTUFM3NzTz00ENV81QN22Qs57VxNOjeeqEGzBQ2YsnytsV8McBbS2uATkQkebS5jaBeIK6nydlz5OxVDOkVLxG9sUqo5+aWJqezoobN/zM+TUtgzfcKf4p01S7XaAgslyrW7wrvDza9zZcWf6TCUxzWLdKGhn73vG/JQsUn60JiUop5s6TJ15Yvc4LNY+H2g3tVyoq2wTOzfwUCcoZGWPfufCllRddE/8VOSunJ+waI+GYxmra/st/kiUhsCPSyaG6ebJQ2S6fvedvcVFTn7DwhrQmLh7m0sFJaV2zaQ813s6ZLLBmrFVnm/pu7ks9649iRSDpCLcwUSsJ/zlzmiSeeYG1trdzie7dRc3B47R9bEQqFOHHiBMPDw0xPT3Pt2jVWV1cJhUI1q/Dfi83ErbTXMM23EBSQFEEaCO0YgeCZmoy7lxblLS0tNDc3H8h1+n6hZP84OtXdo7QtbnZ1Bvmd3/kdkskkkUiEJ598ksuXL2/5+pWVFT7+8Y/T29tLOBzm1KlTPPPMM7ta4X/zb/4Nf//v/31+9Ed/lPHxcX7v934PoCatyutNPewfhUKBO3fu8OKLLzI5OUl3dzeRSIRkMlm3pjOHoVK9trbGG2+8wcsvv4xhGDz++OM89thjtLe3V72wp/LzmNL73fnvvLtCLRjSK6zyrsfxeWmxUAzyrflVvjpr8Zfz7dxYf4ipXBchnqBZv0CLfhxR5d43t8Vhs2qZgOS/jo/RoFX+Lra7Z4TvpOecLJoCOQaCy0QC/hxqsOyNU4qmWVT7GgKydNwJAS+lX7vvfJJfuPMn2Bis5aMs5RtYyMeZSjei3W37Xeo66X2PX2QXLb1imV9kC58Qbw+2AKCLMAHxNFdXHkUXm/9G5/Ilv3VBSGJ666av08Q7+Pqc13/fFPRWR7NWjpjurSobts/uIYtEbO+NY3Nw4z1ZK8+KsV5u8f2e97yHcDjM5cuX+d73vsfc3NyOvuujVKn2o+s6AwMDdHR00N3dzfLyMs899xxvvPHGnq5l28EtqqW9hpH/Y3Jr/y3ZtZ8ht/5zZNd/gdz6PyCf+XWWVj9EOvM/I7fw9u9kXNWifPfYd5u/HJX/jpI/3M2Oj/A/+qM/4lOf+hRf/OIXefLJJ/n85z/PBz/4Qa5fv05XV2W9pFgs8mM/9mN0dXXxx3/8x/T39zM2NrbrqvI//If/kE9+8pPlO3rbtolGoztqAOPnKFaq0+k0qVSK2dlZWltbOXfuHK2traysrOyprftuuF891U4joPHxcdbX1+nt7d12dOCdTKWdYsVXVWwNxplzVQNBMu+bXBjWvKKpYAkur7jzqAUPxTs4Fj/BinmrvHTJ2PzCO1VY4b9rnaBJz6MhqGykLe9+snAtq6RiHp4QBCnFF3+w6S0mjHeTt/SqTVEcQiKIgfeCnDUNnPu5VWuVSbGy6fvrzZqR4TuLr7JWbKRob+yDoh3kzlqA5pBGLFD0+KellFWq2d4LhmFpRENei4XA+3c8GEa3HufZeY25YpaTDb00BQZYNkaqrKlgLLuRvhHV28lY1Rvp3MrGAa8nP1QlorE11EQ2v2FHyVTxc0ftMHmXlzrsm+A4mZ+jNVTKsXei5o4fP04qleKNN94oW6n6+vruKWBt265rQkW9RTyUjh0n6WJ9fZ3R0VFefPFF2tvbSSaT+9J10LIswqE0hcxvYeR/DyeQXAu80/tC/RjYL5PN/TuKxW/T1Pg5AoHdV61rYTtR6R9HR4gq+8ddPve5z/GLv/iL/MIv/AIAX/ziF/n617/Ol7/8ZX71V3+14vVf/vKXWVpa4sUXXyxXRpPJ5K5X2D1zGko/Mmey4m45Kp5qKWU5/WRlZYWenh4uXrxILLaRdVtvgQv1j9S7V6Xatm1mZmZIpVIYhsHAwMCOrTB+P3UAjbnCimeZ7rtANwfirFteMeyvZHeEmhnPe8VMKrfM22n4QOc7yNg/QBMBFqpEnjl8MPYWfcHSODYSTVZWeKpdlkoV2HtMVqR0CW4JZOkNrPB2oZuQviGy/P5jIXTwVbksW0O3wmh6DiEkL+m3+dktR60f/+rtP2Ehv3Fa1DwNXwSrxQbSRhSBJKQbRHSTkGbSGCrivjXxT1oMiDC4RLSUkoagwXqxhbm8TkRvJ21084PVaddrNEy7DagU1Y2BDgquyYVSVs+zbg70MpOrPK6r/RqjmvdmcrG4UvGaMN7Psn2+pKn8PA83nfAsC4VCHD9+nGQyydTUVDlqLpFIMDg4uOnvTkp5ZCvVDu6Jio2NjZw/f77su7569Wr5qWJvb29N1k3KAgHxHzg1/PtY5jk2OvyEsMy3Xa8MUHDdxJvWWyytfIj21ufQ9b5djX1QXu6jgn3Eqrsq/YNS1fnKlSv82q/9WnmZpmm8//3v56WXXqr6nq985Ss8/fTTfPzjH+fP/uzP6Ozs5Od+7uf49Kc/XbMfWCwW23OluliszPzdb3ba3XAz3CKxWCwyMDDAQw89VNWfdxAxfvUeczMRbxgGU1NTpFIpAoEAQ0NDdHd37+o4vOMT1R16MzO+SmHO8iZfdIaaWM95RfWK4b0ZjPp82TE9yrpVqh5+c36Ns6FzJOPrSKpXqt/TMMGTMW8cX/W6TuVSU+qEhDf/z7a9DU0CQuB4On4kfou30t5c4ohuUpR6+fP9+drZYpD5fEkANgQELdEcC/oaRdskVMNufJux1c3WnfVZLi/fxll3W0oCvmtYAO3uxDyBaYbJmmFAMpvfyKXWhUVcg9m8hZAghCQiNYQWZ82QBLUg64aNHvB6hvt8kwWzlsFcPkC0iuYMiTZwZaJnzeoXW40eMlalTafaxETN56E2pUlrsNmTWe0vEuZ8kxcnc5XdPB3cDT/m5+cZGRnh9u3bDA4OkkgkKp4QHWX7h3tM//knEolw6tQpjh8/zuTkJLdv3+bGjRv3vAm5F2bxOxQy/wORwDi2HcY2N9KLtMA5TPMHrr/PYxtXPO8PBp/ctaCGkqe63tnYRwlLCqwj1Nr7KG2Lmx0d4QsLC1iWRXd3t2d5d3c3165dq/qeO3fu8O1vf5uf//mf55lnnuHWrVv80i/9EoZh8JnPfGb3a34XIQSxWOzQVqoLhcpYtO1SLBaZnJxkcnJy2yLxIGL8DrpSnc/ny5MP4/E4p0+fpqOjY9ePES1pM5L12j9iWsg3mVAy56v0RXTvTU5YBCsqztLn0+4ItpBxCZe3iwXkej+Er1esVyKwzN9svF2xXFa4o6tTTW8K36TGgCskpEEvkDWCpI0wUgriwRBps4iuWbRESse1FEWQGiCw7QBT6TgIgWUK8lqQ2YxOPFjg3916lk+d+uA21nL/+J+u/RdPrGAprcPnlbYlm+kuIQSm1CnaGoYEXFXddSuA0O96oO2SnaTB1eI8IHTmfcfLcjHDUjHP4+2VY1myAbeoni+axKtorVRWY7GYrVi+bPgnr1Y+NQFoCjR6RLXlq0z7Jy9O5jcX1Q5CCLq6uujq6mJlZYWRkREuXbpEb28vyWSSpqaSfeRBENVbRerpus7Q0BCDg4Oem5DdJKsUc1/ELPw50h4HoFAcJhrZuGbb0ltUMuzKYybe8MvbHq8atapUP7D2j7te5KOCpSrVu8O2bbq6uvjd3/1ddF3n8ccfZ3Jykt/6rd+qiaiG0mOzw+ip3q3AzWQy5dbrzc3NnD17dtveO0dw1nNm/UF5qv053I8++mhN2t9O55fI21s/YWgNNrJqem/0TJ9o6Q63MlHwtpB2qtIO/so1wJoZpiESwvBdCP964y3kNiV00RaENO9Jzd/9Dyrr2U4CCECjVmDZiGHZJZ/jigEQwLAEa8UiffE1AprEtHRsJGOrjUjhvahKNNaNCH+18DYf6DnPw027r4Rtl2rH/Xfnb3ArPe0RzP7JiFBKxJAeYSnRhDfjO6QFsD2ZzhIpzC2/lZ5IKzOFDUEaIMBCcQ0JxPVO0r5s81XTux9T2XXO+g7toAjz2uoappR0RXXPxNp1M0OjHvZkna8blefQsO9GMKd5iwBZK0dcj5O+W/meyu9svkZLSwuPPfYYmUyG0dFRXn75ZVpbWxkeHsa27SOX/lFtzHsJTfdNyOrqajlZpauri2QySUtLy6b7ScoChfSvYRkvI+XG8aVpG08qhOjBst7c+FtLYFhvez4nFHwfweA7drOJZZT9Y2/YUsM+Qp5qW3mqoaOjA13XmZ31CoHZ2Vl6eqq3p+3t7SUYDHp+TGfPnmVmZoZisViTCKFYLHYo0z92YouQUrKyskIqlWJpaYmuri4ef/zxCo/5vXAuGvXs5FVPUS2lJJ1OUygUuHLlCr29vTXP4fb7qQHStvdxekeoqUJUL/smF8YDEXexER3BXNFrIbGruF/XLZOBYB+zxdHysi59ndbAGvKu7HVTGaAH1Rq9BEQVr+0WXuywZtEZXGMq3+LpLqgJWC9GubUcoi++RlMwwNhaA6arI5/QpCvCTbBqGHzmrf/Cf3rnP6zwoteDz779NYRwV6llhaiWspTy4dlzdgDp65IYJETBJaqFHURo3psw3XdDE5XeMnNbqIWVYun4CWo94BPVs3mvuM3ZFnG9nbS1Mcm1OZDEuCuk20OtzBa8kxVbgy3kXDd1i8YKyLsB5eWN9ryFrChNfnX7IdtDzaRzpeN/vrBMwTYqJuDei1gsVs5xHhsb49VXXy3ZaYLBuondg2rEspMxnWSVU6dOMTY2xpUrV4jFYlVz9G17jvz6P8Q2X0ULPIk0S9+1aXUSCo6WXyf0ITBdXn6tEyyvjz/W8KldbuEGe4nUg+03bjqqqEr14WBH31AoFOLxxx/n2WefLS+zbZtnn32Wp59+uup73v3ud3Pr1i2PqLpx4wa9vb01y+RsbGw8tKL6XuM6funvf//7vP7668RiMZ5++mkeeuihHQtqZ0znc+tFPUS1s59eeeUVRkZGEELwrne9i9OnT9e8sY3fTy2ABcsroP2pCGERZKHKxC83XaEWLJ/9I2N6PatSwqKVwbS8kWgfaLqOEFXirNlMQNv37KAI1RNApO26QY5PV3yKI04tqZNab2E23UbaV1nVNO7aQpw32cznc/zG21+95zrthWoX5j8ce4kVY81z/yClqPAP27LyJseoclgXfJ0u86Z/TEnAlxZSyHqfUMQDGxMP1wzv8auhk8pVnu9KDYE2WDc3zg8xvbLBSIMvQs+SFm0hb7m7YHufhkghaQu1+NZ142mKRDK9w2q1m1AoxMmTJ3nf+95HOBxmbm6OS5cuMTo6imlW2lNqyf1aqa5GNBrlzJkzvO9976O3t5fr16979pNtz5Nb/bvY5quAwLZS5feaVrfr2NawrFHXJ8comG/iJhR6P8HghR2vo59apX88qNhs+KqPwn/3Z9uvvbPjM8inPvUpvvSlL/H7v//7vP3223zsYx8jk8mU00A+8pGPeCYyfuxjH2NpaYlPfvKT3Lhxg69//et89rOf5eMf/3jNNiIejx85+4dhGOW2tiMjI/T29vLud7+b48ePEw5v1pR4e2MCdd3e/Wz+Ypom4+PjvPTSS9y5c4e+vj4eeeQRNE3bt0YKflHdLuJYvlNE0a60evj3QMY3yas5WJngMO+rXMeIkpMGY5mNymdcy9N9t8FLtROVjazY/0JsNoHRi1blVZar4nw8ulApvD1rIpjNVD/WTNfKCgFhPcCzczf4zvzNbaxZbbBsm39/+3l0fTvHZ+XpMqJ7l0lbgL9due+jTUtUVKojTV6Ba+Y3PuNO2vt5jYEuzCq/J1t6P+Ot1Q1xr1NZOdZEpcBpDHhv1NfMyrkqTQGvQPc3iZnaYrLidtF1nXA4zOnTpzlz5gzT09M899xzXL9+nXy+cpJlLbjfPNXbIRAIkEwmee9731veT88//y1mpn8FaZfmV2j6GZBOR1aBrm2cvzT9IaTceFohAg8hpftaKojt0UvtUIucanhwhbWT/nGU/juK7PgI/9mf/Vnm5+f5F//iXzAzM8Ojjz7KN77xjfLkxfHxcc9JYnBwkG9+85v88i//MhcuXKC/v59PfvKTfPrTn67ZRhzmSrW/gut09JueniYej3Pq1Kk9Tarz4+R8HvZKdaFQYGJigsnJSRoaGjh58iSdnZ0IIchms/u2fVLKiozqmAizIL3H35JvIpjf6iGA2YK3BXXAJ07ag80s+iYyxogD69zJrvFUQ5ysneZvNF4vV4dNKQlXOVaq+6wrlxVtnZBLFGpCYPq8rQHX2/rDK3cF4sZCIUoWEKdhoBbY5Lvw6cKCXUCi8Zm3nuGr7/6HNAR2f/O4Xf7nG3+OJS3PNgEeK4hDWNMxXbctUkqk8No6QiKMhfdmyS+gbVvDf/vjnziYKWxUiK+vpznRGMGQJTEZEK1A5USyjCsBpCnQxUR+Yz0KduX2FKtMTAxr3hvRZWOVADqm6xmI39rh9/ZP7qFS7cap4vb09JQbpLgnNQ4PD9e0xfdBVaprMabT0rurq4vlpb+P4bL1mFa4LF80/SxBNlI/pO9mq2h5z23h0AcIBs7tef1AVaoVDwa7um38xCc+wSc+8Ymq//bcc89VLHv66ad5+eWXdzPUtojFYiwsLNz7hZtwP1SqV1dXGR8fZ2Fhgc7OTh577LHyLPj9GPewiupMJsP4+Hi5qc358+crJuoIIfatMj5fXGXdV2H2R5HFtDBLxtZpNB2h5pKH1YX/UXtLsLFCVG9UHAXNei9F+22SoQ0frbmJpaOar9q0BQGf4DOwuFd9PyTAWdOOYAZdkxgmaC4Tsu4S1UKUJt6Z+DoKenzVpb8DUiNnG/zy1T/hf3vi/3WPNdkdzrFye32OP029ClieE6GGAN9+kRJMn4A2ba3yhsEXEyWlJBjwNYbxfRNRLcSy73jRoqGybpYIAmYHhj4BgCGjVBPVcwWTprtfnk4vuFqerxQrq7vrZuXTvWpHT1uolbnixvnVny+b9n3OdhJAtoNbcAohaGtro62tjXQ6zcjISLlJyvDwMK2trXsWXIfJ/rEZ+dy/QYjvEwvn735+BCnfYuPhUmTjxaIZy3p940/9DJYrZq+WVWrYu6f6QefoNX85Otvi5khsVVNTU00q1fWeCOHkVH//+98vB/0/9dRTPPzww/smqKH+udF7FdVSSpaXl3n11Vd55ZVXALh48SKPPPJI1YupO+Gk1lSbpJj3ZTF3h1sqXpP2pXq0Bir98P7qdkhU3vMWXZuUMcP8WOMtz8QyC4ldpSpZjXwVB3a1irZ/ckzYNV5cKxLEQPpeE/G119bsyouppoHwf/ZdO8Vra5N8e/bGPbZg9xi2xSeu/AGWtAj6hHGwym1FtcM3WKUmUZBeP7Vp6hXebH/2dXfE22JcSpgveEV2trBRkV3MVy8ApLJrOLdOUznvuk3nKyP0FosrFTcBuSr51Y0Bry0p73vNkrHi+RZrYf8ANk0oisfjnD9/nve+973E43F+8IMf8PLLLzMzM7On3/xBRPjVssFNIf+fyeW+QEA/g7h7AxgIPYx+tzmTZUUwjA0RremnwdXt1HYLbiAc+vE9dVD0o9qU7w0bceT+O4ocCVEdi8XIZisrN9ul3pP3TNMst+21LIuuri7e/e53c/LkyW21yN4r9c6q3q3dRErJ3NwcV65c4fXXXycej/P0009z9uxZT5fIauPB/nyffj81wKLtvaFr8MXgacBsweuNDmpekRnXoqyaW3dbBFh3TYK7trzC2Ujl+phVftZmlaB9v+UBqj+6yvsEcUTY5Sq0LiQnY5WP+wvS22Ewv9ncAd/iUrVeIgT8q2vfwLD35zj9+Pf/gMW71WG/PSPnXykgqFfumaDPT40E3TcB0a6y3yO+j4oHvGImFoiWI+oc1gMbN9mja9WfghSkTWOgnYAI8uqK9zV526Ql6L1RN6VFq29i4kqV/OqA7+ZuxfQ+PfFPcJzKz9fkhvZeIjcSiXD69OnyZL1r165x6dIlxsbGdnV+OwhRDdSkemsYb5JO/1MANJdHWsqN4yAYOofuSqHJ553JixpoD1GwJUJ/CKGdQGhDxBr+yZ7Xy42K1NsbTqX6KP23G37nd36HZDJJJBLhySef5PLly9t63x/+4R8ihOCnf/qndzXudjkS7Y1q0aYc9v9Hn8/nmZiYYGpqimg0ytDQEDdv3mRwcLCud+D3u/3Dsiymp6dJpVLYts3g4CB9fX3brnI4F8Z9qVRnvCK2M9jMvM+i4Z+02BlqZd7w+qeLvup2Z7iJlK89uV9k6+gs2huv+WttP0QTVbKlRanjn2c8LII+sR2klBWqefzSlQ1P/HnWmgApdRAl4XKyYZbX1vo9Y2qaxDYEzr2DFNsTOUKThAlSsC1ydpHPvPkMnz3/k9t673aQUvKf5l7n6uooUpYmFtrSnUktEXrlzYzfBS2lxBTeqnSAMLbwiuGKSZxSYPvi9fzRfa2BFubwHi9vrmZ5ulMQECGWMKt8comI1kZItHhamDs0B5oqRHNTIM6yy4a0ZqaJaEHP8elPPFk3M0REhLyrKt8SjLNQLP0O8naRJWOVdl9KyE7Zrsh1JusNDQ0xMzPDyMgIt27dYmhoiEQise0Jy/WMGYWNyeK1EPLZ7G8DRXT9NNilib5CG0BaG02i3F1Yi+YwaSPMcqaRXHiZUKCNNZcVZDD+/6YzcHLP6+Vmr9dXFal31CL1dr4tf/RHf8SnPvUpvvjFL/Lkk0/y+c9/ng9+8INcv36drq6uTd83OjrKr/zKr/Ce97xnL6u8LY6EqG5qatpT+sd+J2K4m5C0t7dz4cIFmpubMQyDmzdv1rURC9y/orpYLJYnH4bDYYaHh+nq6trxRWd/K9XeiTxtocYKUb3iy6NuDcYqRPVi0fsef3U7gF4WKQ5xO8YSG77r97dUt0dU2+pqAloIyFkaMVfyRUBAXpZ80+X3Vpm0J4SGE+CXCC+ha7KyKmtT9nJqm6RraD5fNUBAExTubsRzC9d5dfkdPNLaD5QurEtLS4yNjWGaJslkkr6+vm0fI6PGGn+08gOwg+SKAIJ8MUhTWGBTQNdtwiF/tRlM4RXatq2j+bzShiXxF691X0OdQkEj2uB9n79leFSvfFq1Zlo0BXrQRYCtclssO0rOCgIrFf8W0iJVllVOBm0LeRvRZH1zCADaws1MubzTUV8lfzI3t2dRvdPzoqZp9PX10dvby+LiIiMjI4yMjJQ7EG71dAsOrlK91zGLxjVM468A0LXG8glAaP1Ie2Lj/1vXkdppxlYFhXCMvH4NoiCsLlbNN8q/wVjgBMONH9vTOlWjFm3KH2j7hxRVn3wdVnazLZ/73Of4xV/8xXLa3Be/+EW+/vWv8+Uvf5lf/dVfrfoey7L4+Z//eX7jN36DF154gZWVlb2s9j05EqI6FovtSVQLIWo+WVFKyeLiIuPj46ytrVVtQuKukNfzZF7viZnuhjPVtjObzZYTT5qbmzl37tyeJh7tV6V6IZ+hwe4mFAoyUyyJ5IAvliwo9IoGLgHfNse0CCu+KrQ/M7or3MqUr1lHgx4DsySqhyMLtAQKVOvrmLY1wj4RKwTkpaDB39CkSlXbsDVC+oYYDAnI2BohV1XcHbXXHVovZWQXdPSQOznEO35QhjCEdzKmECBsAa71LfmStfJ6/fM3v8qfvevvs7CwwOjoKIVCgcHBQRoaGrhz5w63bt1ieHiYgYGBLSthq/kcv716lYIVLLvJneYz60WAMLYJjQ0FGqKuPetviAJEtBCmL+XDlO72NmDbkoDveyila7i/NclCYcW7T6i+DRpdaFjA5vNHppbSTNrVU1NMu/L3VO0XEvPlVy/5JtS2B9tppI8evZOMAWtFi3mrieFwmCljlIJdZDI/z4XmU5uu53bYrcgVQtDR0UFHRwdra2uMjo7yne98h66uLoaHh2lpaanpeLvFOe/vVSiuZ/5HwECIRjDevPuz0bCtO3dfoVMUZ5ixm1gqjiNFJ4KN3OpIuJuiUZrsLG2d/OiHmSrO0dvbW9PK/V4r1U5y1YOKfcQq1TuN1CsWi1y5csUT2axpGu9///t56aWXNn3fv/yX/5Kuri7+3t/7e7zwwgu7Xt/tciREtTNRcS8V31oJTcuymJmZIZVKYZomAwMDnD9/nmCwSk6sq0Je7d/3i4OoVEPlRctJPFlcXKSzs3NXHSKrsV+V6utrC7w4XRLMj3Ucp7EhS86X2NEbbmWi4PUY5yzva7rCzYzlvYLMn8QQsip/muFwHO56s3+64y0CAowqqkhiUO2nnbd1GjR/EkVlLki1vZa1A4T0je1wJ4C0BHKAxLLwyEFdtz0XAcOSVc84hi0IusSnENCgB8laperwopHm0y/8IT8dSJBIJMoX+1AoRH9/P7Ozs9y5c4fbt2+TSCQYGhqq+D19Y/Iav/7qN8hYWx8TEo10IUK+GKSzuYiFSVgPVsTG4bfdVEn5MC2dQNC7LKgLz/TQ5kCMtOUVyXmrepOT5WKExqBJUCxjyOrnizW9gYl8lmrV7LRZeQuWswoVy3Sfhzpn5ekKdSHzMW6tSn6YK/J4W5jvL2wc56eborw9uU5TqJt39cWZy6/6P3bH1ELkNjU1ceHChXKnxldeeYWmpiaGh4fLEZy1HG8n1MJuYtmrSPMKAgjoZxHW94FS/rRtvYGlP8qkabGaewP77s2YbUZxus83BE6zamwkfiSb/gFBfoTR0VFu3LjB0NAQQ0NDe878dyZlKk/17jl6bcpL27K25rWkhcPhqr04FhYWsCyrHN/s0N3dzbVr16qO8Z3vfIff+73f4+rVq7VZ6W1wJET1XivVsHdRXSgUmJycLFsXEolERdtYP0KIugtcODhR7SRyLCwsMD4+Tjqdpq+vj6eeeopIpPLR9F7HrHWl+u0153G34IcLK4DkodYWhkL9zMk58hg0BqKePGqQzPs6KTbo3m3VqGzyYhSLFdOI06Yj7CTviM3ebUheuY2aAMuW6D6zrqjia652C+r3+AKY0j9ZUZaTSCLCpCu0RirX7nlNIGBjGgJx9wMN26rSgsS3EhLsYohcMUz+bj1cE/BdscxaS4SPx44x4LowCyHKOcYLCwvcuXOHkZGRsp82EAzyjy7/Kc/N3EHTZPkRd7VDQ8qSp9vZ3umVCI3RHFrYdyMiJYYoeFZbk0HQvaJVyA2LjIPlq9R3hpvJ+LojrhqVdguAm+sGxxpHeG/7NFkrxGyxkVS2FUNunMbDehsa+YrYO4D5QrrimPLnY0Op4u7QFGgkYCW4syi4ue5YmETFBNKFfGkb1oom3xhdYTXTxEcTVTdj29TSFud0IDx+/DipVIo333yz7MXu6+srJyIdRKV6L6ym/yXi7glHkxtPtkzRwYw8z3zuJk3Bx7EpVa0jepJcdHTjdS7vfVPwPMnG/xbRpNPf319+MuQ01Uomk7vOBXe6YSpP9e6xEFhHKDHD2ZbBwUHP8s985jP8+q//+p4/f319nf/mv/lv+NKXvkRHR8eeP2+7HAlRfZCV6nQ6TSqVKucm79S6UO8kDmfMgxDVU1NTTE9PY5omg4ODXLhwYd8q9PvR4ObaqteO0R5u4K27/qwgTTzR00rQ9723BOKs+SqR/olfHaEWlnye62AsjNtdICXMFUrVv6eaxmjSDbYqumYBf80/IGz8qmq7CSD+c3lE2KzYJcErBJxumGE62+J5sRAgba0sVDfrWqjf9VUbBZ18IVh6LChNECA0sCQY0uLV5Vk+8tL/TW+kiZ8dusAvnn2y/DsTQtDZ2UlnZyfLy8vcuXOH/+Mvn+H37RQrVpGGoE7B1+XS/xOVlsDr5hHkCg3kCpJoOE8kZJYa28gg+CYb5i1JxKcXgr6qkrQlUi96dmVU91YAhRTl79m3drSH36Y1WLr5igWKHAsskowuslCMkbHCLBUbKJo6neGWirQZgMVihr5o6G4yS4k1M01M8y7LmDkiWpg2/QTPptbI28s8etfT7uAX/ovFLFE9RO5ulX0k7T2ed8N+iNxgMMixY8dIJpNMTU0xOjrKzZs3SSQSdbfh7bVSLaXELH4NHdD1U2DfAuKsa09wJ/sDwEITDWSMjQ6lAREvH/fx4AWWi6WW5JqIcKb1f0Tc/QG4f0/r6+ueXPBkMklbW9uOrrXONW6v9o8HmaNaqU6lUp4I4c06Rnd0dKDrOrOzs57ls7Oz9PT0VLz+9u3bjI6O8pM/uTHR3dEEgUCA69evc/z48T1vh58jIaobGxsxTZNCobDrSLqdiGpnslQqlWJlZYXu7m4uXrx4z4kwm41b70p1PT3VhmEwOTkJlER1IpGgp6dn3y9e+1Gpvrbmzd/tiTSyWCxFORpIXppZYjjWSkH2c7Y9ypo9T0uwgTVfJXLNZ/XQc1bFL9E/kbFJjzNhlCa0/XhbaYJiRoYpSoOQVmkXSFsBGn1Wj2qXsyBgSYnuumAFhaiYPBik0qPtTgA5Fl3khYCkUNAJBF1WDtd7NF0iEBX+cQC53khWutZXlJqi5F0TM/PSQNqlzOXP3/gOX7z1Pf6rnuP89xfeR1dko4J2JbfAby+/zq3iAoiSmM1bZoWIrlgHKiv3US3EmlHEyEbJFizi0QKNwQBGhZu9SttwzfDcwgRkGIQ/B9r7vtZQM+sVlWqbd3fcoTdSmXBUsAN0hdNoYp3jMbBliqwVZrkYpmAHWTWirBhRVo0oEo2IEaIQ8FbL20KtTLs68IVFEzfmoiwWV2gJrvOerjGON77Bo21rNASKFG2d//PO+yr2WE9DIyPrJTE/k0uTMYvEAruzDThPtfbrPKFpGgMDA/T39zM/P8/IyAiGYTA6OsrJkyc9c1/2i72K+PXs76Df/X3oohlbP8/twhq6buI8IYkHzrJmXAEgqg+TNt8AQBAga240jTrW9EkaAtUfLTQ2NnLhwgVOnTrF+Pg4V69eJRqNkkwmt30ud/zUexXGD7KwtuCIVapLNDU1basvRygU4vHHH+fZZ58tx+LZts2zzz5btRnhmTNneP311z3L/vk//+esr6/zb//tv62okNeKIyOqoVQ13k9Rbdt22S9dLBbp7+/noYce2pPfbLcC15RFXl37Cjk7w6ONP0k80Lbt9+6kUp02xkmbN8nb0+TteYr2CkW7iCZCBLUWIlo7Me0UfQ1Ped7nbrfe2NiIpmmcP3++pm2Ft6LWleo1o8BE1uf98lVdNGAyt0bRtpjO5gGd/6q3g+PhCLPmNGkrh4ZgzldFbIk3M+/yoMb1BtZ9zWJagi1M5BcIYnI2WroY3jKa6NKXqnZAlFWc0QEqBbQQsGKGaAtsiMSAkCxbQZrv2hlMKchJnZwZIS5M4ncj50pVrdKx2xcurb+0NHD5iHXN9oT8CyuA9NkkjEyAfBbw/3SrqNygpmFIuzTx0jZ4Zuoafz51nVONHbyv5zj/99hrLN290Sm9V5aazLg+p9KU4Xq5D8N1v2JaOivpBmRIRw8VCbkmZUYDwiOPLVMQDHq/AyEDFdLb3xSoKdCI+xGFhsGPdN6hK1yZw5+1gsT0gmfbbCQRrcix2MaNm5SSgh0gopnY6BRtQdHWMWydgGYT1aboDhaw0IlpMbLFv+S/O7FOQDMJaJKCrXtSTaSE93S/zg/mL7JQ2Fiv5pDX1jSWXuahFq//cbs4N8T7LaKEEHR1ddHV1cU3v/lNDMPghRdeoLu7m+HhYZqbm+/9Ibtkr5X4fO7L6IAQzazYIcYL1whpXWSN1wDQCJM1b5dfr4mNG4VY8BGWi1fRRZy2yAfpb/jZe44XiUQ4deoUx44dY2pqilu3bnH9+nUSiQSDg4NbPnWsRZzeg27/OKqV6p3wqU99io9+9KM88cQTvPOd7+Tzn/88mUymnAbykY98hP7+fn7zN3+TSCTCww8/7Hm/M0nZv7yWHAlRHY1G0TSNdDpNZ2fnrj5jK3FbLBbLfulAIMDg4CA9PT01mXSxG/vHTOE6zy9/gRWzVAF+I/1VwloLicgTDEbO0R0+RaPetekFqZqotm2LtDXBmnmN5cL3yFjXKcopkHlsBFJqdy/epRObLSErQ2TsMEUZ4kPB/43mYK8nPtDdbv3SpUt1PSnWulJ9fa1KgxOfr7Qv2sREzi28BfM5m9en19BFjHMt3bRoOeYD81iur8byeZ3bg00VYisoSoLlx9uvExKS24UmUmacuJamsUoGSFAz8demhYCsHaTRl8Psf7cpBaPFOFmpkZYa67YOQpC3A6V5AFg0CpN2PU1/sFQp6whUn9MQ0G2KciPJo2hZBNyrJSGXD5Wyon3vzdlG2QJSXjfsiiq6LSXj6VX+/dvfozEYxrZL3RqhJAD1gPc4MA2BFvQuk5KKFZAS8v69I2E1L5H5OC1hQSyawxYGMuDdp1ZR//+z9+dRml13fS/82fsMz1jz3N1V3dVSS7JmW7aM7ZghMXDhJoG8kOuQXMwlvISE5bXeFYc3IQnLTm5WFoRwCUkWiRPA8fW9EHMJvCRgsA0GSbYlWZZkDbbUg7qrunqqeXrGM+y93z/O8zx1puqu7i6p3eX+rdVLqvOcedj7u7/7+/v+MpUaPRWmBkCG5ZTzhyt2pj6nips8PHgZV4bUwgISTdEKsIShoVz67GSSoa8krlQ4sUFLoAWWgP7eugqJZMBq4XZmMkK9xaBtKAkfZSSmkHSkMCntvhBw/+AVVlqa1dgpOCmAeK62fsOger/s5vYaXdD2wAMPYIxhfn6e5557joGBAWZnZxkdHd13gH8z8o+m93ksNkCMsMo7WPGeBaBoHcHX0Yxa1X2Qbb/LUh+nEUZSD6MKtGUN234PG6Hh3QN//7quzbZtZmZmmJ6eZnl5mfn5ec6ePduzLsxj+e+UKL/5uFOmHD74wQ+ysrLCRz/6URYXF3n00Uf57Gc/20teXFhYeEslXHlxIEC1lJJKpbIvpcrj0Wg0uHjxYs/q7b777mNkZGRfG9frYaoD3ear2/+VV+t/RLqT8/Qmc63PMd/+HBABAldWKEoHbTSWsHFFCVdAq7KFMQGnl1yEaGJMC2OaOCLAAmypsUTUlSLAwmBQtI1DTRUIjEWI0+lso4P96covc3zpb7K1tdVLPozPGnyzemPvNU5uZUH1cjv5vo0UyilQHdnwQaQLfmWjzn2lQc56ikdHBxguK64EVzLlyUtWNmnT7wwQvmvwHHVtcdLvBwHbusAEWUArcuQIAA1tZUB1910KjOAb3gDzoUtNuZS64Ewk/oPGYstY1EKbQatBRQZULY+C9AnS7L1l0N5OEZg0Hew3OhpqSQYsI6Jy52njQEsKtImSDrUGlKAhooIotcDHGBktlypjaZd3DpCnpwY0mFThm4JxOuXdBZsebHpFXO0w0N/CLe3cV5NnX5eS6Yy6A2yGm4llyoArAt4xfJGJmNyj2HlmTeXSVg4lK6AeuljC4AiFrwV9tp8oYuNpm4r0ess8JZACHBGijKClLFwRUJIqKjMvLCwBvpFYsffHEarzre9cky0U7x5/iq+tPd5blk5evBld9a0A1d3jFQoF7r//fu6++24WFhZ49dVXcV2X2dlZpqam9u2cbkb+Ua//K5QRXFIjBDqa4nbkKNsdllpQoBnM9da3RNQWO+IYi9tDbJQXcaThL0/9O1x5/bJFiFj+iYkJJiYm2NraYn5+ni9+8YuMj49z7NgxBgcHe33lfpUo/1aWf5gDVtrb3OC1fPjDH86VewA88cQTV932k5/85A0d83riQIBqiCQg+wGqjTFsbm5y4cIF1tfXGR8f3zert7zYC/gzxjDfep7TzSdY8k8RB9SD9iEsodgOL3fX7jSgTWCbtgYLB23aGKFpG4MtClhWi9CECGNwhaJiaSwRq6JmbFpmmM1QIYWLp4Me4gmMTDpECMG6Ose9gx7ve/B9u9oHvpWgWgixr0z1yRRT3WcXWPFS2miR7CALQnKlndTBVkplwvYGz69sAjDgjHCs32W2OkFNr7EabGQSGQE2giZDdoNDbp2vdwA1wJbKlztJAW0NxVSf3dY5nbgwvNzu41xQQnU7rZyCL2k9hkHw9fYh3l0+jyM0d5dX+Lo6TKgEMv6CxHyoZcz/GgPtduddkVA0Dp5IOWjkNLwGE7mEmEhuku5new4fgcRInRhgGA0iB2gbk6+nbpHUH9vChrj2G4EXOCzXLAp1xWh/gCi0s8VujMkUlRl2+1Kg2iDEG3zXxBsUrfRA29BWNq5U9MU00aEWBNqianloIwlN5DPuCE1BhmgkYadqZJ/VRgqDr20c6WFjUNgIkezelBaJpFJbGnwtkgV6hKFg13lo6CKvbhwBYDulBZ+r3TiofqvkH93IA/Gu63L33XczOzvLpUuXOHv2LKdPn+bYsWNMT0/fNEi8UUmEH76Br+ZZ1w6ufQRPfxWAojVDoKNk6j7nwZ6WumzfRUhIWzzOoq+plS4ikHzn2D+h3zm863GuJwYGBnjkkUe45557OH/+PC+88AKVSqVXwOtOifKbjztM9e0RBwZU36ytnpSSWq3G888/T6vV4vDhw9x77727ZqLuV1yLqb7ineTZzd9k0d8pNztgH6JqjeAgaZt1fOPhUkEREpo2ggZCSJRRSASGNo4sYWhGZa1NA2mgzyqgTA1bKmRnWj2gn4YuU1ceUoTUtUtBhkkKMUfraouQ0+X/Hw86SW11N253pvr1FFN9uNzHyVoy6WzH8i6KEVngcqoaXSO1zkSxj1fWV3llHcBhunwUUawkEvokFkveFh+a+AZngwqeseg+gLoppMps70TN2BRJsqOllJ55Vbl8uTGC3lFoACSYym6kDfwMkiVVYTUsM2o3mXXWeWLtXgJfRpINAQVbEqiQcr+PlJEsQxoLLRRBl6XuhhIZCUbLBGCSEhAAS0oC32SW985NA0hCT1JxLXyrHSVXhgLp5lxbzn6MMJn8w1YYZDM+ZXR3PGNzacvGxaa/lCpyoxywksuKsSqEQ06de6orVG0fbaClbAyCggwwHflVHEwbY2jrSFNtiR1JljaSQTu61lALQi0pSR+FoKVsitLHJcQSkSzEUxI3pTDPq3QWaCtREChqR+A7Dp3hGxtTaCwW2zXijUM3afFGovvt3kpQ3Q3LshJyh7m5Oc6ePcv09DRHjx69YTvQG9VUX9j6ZwRGENJHu8NMO3KEWhAx1gKHVrgAQNF+G+vhGBe80wjqlMU4CHjX8E9xqPTYDZ331aJrXXj33Xdz8eJFTp48yalTpxgYGLjl0/K3e9ypqHh7xIEA1UIIqtXqDTHVQRBw+fJlLl+OmN677rqLycnJm2Yh9hq7uX+s+xf4yvZ/Zb71fGK5LVyq1iAbwRsEJtLdluUgI+4R1oJTSKGjl9UoyjIy3EeALTawcLAxFKwWpdhUtDY2q+EQ64FN1QkAv1fOWubJCHK+BUsYLvtzrPnzjLjHMr/fzkx1SwXM15MAoZzjanCxsZn4e6J/iMsbcVBtOsBjJ6pOcj8Xmi2WLvjc3X+cweo6q8EGo+4QG36d6dIam9pFawh76FPgY1HMSb1rapkBgMWOftsYeM3v45RfwYjob5lgIlVGjiGFyRylKAJebh/huyqnOVzYIDQWxojeO9IOwWib2oZNdaCFZRuCECwbWu3kjEY7UIicXCcbGxUbHBgD+DbSGLRQua4e0aAk+qHhazAOdiHMCrfpsNd5emoTJN51oyGUyQlYY0hUgwTwlcNq08FpFukrt6lUPVxcVIr1VkZTsdrc07fMsBNLThRQskJ0J8HQFpHr9LpfQiMQRmFLQ1GGnZLk0ZXaUiEw1FSkvy6IkLL0UMbCFR4GCynAjZVOL8kAZcCKXVRBKtIj5/Qtjv6OyrL/laOv8t/PP0pbhYwWqr3kxfn6BtqYXltyPdEFnG8VqO4SG9eqK9CVO2xsbDA3N8dTTz3F5OQks7Oz1z2beSOa6rX287SD57AE2NZxTBgVvShZxwh0xEz3uQ/h6xbr4THWgj7W/ai4y3jhAZa8V+irP8r9x/7adR33eqPrAT4zM8PS0hKnTp3C8zxOnjzJ0aNHb9hQ4FtZ/nEnbo84EKAauG5QHXenqFarjI2N9SogvpWRTlRc8t7gpdp/52L76ww6U0y697EdLtLW20wVTrAdXmS54y1akgOMOBOsBadYDVbos8awTJGNcAGBg9YVCpZGEuIIF4eQgqxjiwig1FWB1bCKLUAIQ15/4shIP5o45xyqujvF/ucb/54fnvg/cq/zrU5U3C8Qf2Z7LVNMIzRJeNmPzXbKBzltHTfsltkIkgmIOnVPJotVFtt1XtusUdgu8J1HToAIebByEq+rzBDJ+78WlDnsZu3WghwmoCwVdW3zTHOUGlaUCAi0lU0pprWWAvxMaXKNSqF0Ryi2dYUL4RCHipvR+aXfIwE6FNQ2ylQHWlQsB7/tZMrUGouIlU6dtiV2qhAaE5VD192iFYGAFPNsNFhIVPz+C0HQsnAKmjT9XBRuJiHRMhKVqppYFF09dSxCsq2oEiANARbrzQrNdoWSbjM0YWE6yYF9douK/SxvH2ygjIzudQfsdlloV4ZUYq4s3VdlqAPAI9DtULU8HKkJTQToq1aLEEmgomwICwXYlO0o4bEgd7ILhQA/9extqfGN1WPAAQpWmHheQkTvg8biSHUDgcJgMVaq9EC1p0OuNLc5XLl+B439LPyyl9BaX5dmd2hoiKGhIer1OvPz8zzzzDMMDw8zOzu7Zw/nG9FUz2/9HBWh0caiFpwBAY4c7rHURfttXPJdLnmLWKJFSUTvStWeYMV7nWF5PyPbf/m6jnkzIaVkamqKRqPBxsYGrVarNxA5duzYm+quctBCHbAy5QfpWuLxLQequ6WxV1dXE+4Uly5dYmUlm4z2ZodlWYQq4HzrRV6q/Q8uezslY5f9N7CFy4Q7i6cLeHqLijXCsDONBDQeygRMuA8CTZpqGVtKQmNRtRo0whBtNOPOJuXYtP922Mdlv0zV9nFiiVhFGWb9iYWmre1EB2sJQ2hSrIEQWCgW/Qus+GcYc08krvNWMNX7dby0nhpgOeU9PWy5bKfKS2/5SXnIZKmaAdXbQXKdkUKFxU4CpKc1n1vY4i8dGuP7J15lhx9MdtgNCkAWVBdE1hVkWzl8oT6BnXbEyNG3RZZH8Sn/yPM5/tztDvD8evsw31Y6G60vd1h06Hhad7JeG1sljBWgKJDRVggokk1M9EzYk4BoXyISgwURnVP89EOJyktQ1BZB08K1vERSosxp3IvSoWGS7homa6gS6cXT15H6s62h3S5TXy7xXcd8Rspfp9+ux76zCGj7OrK7k0SsszYCZbpgWtBvtzBAoA2NsETZ9nGEoqUc2lpjYXBlgG9sKrKNEBKwqcRkIypnoJXXuSktsWK6bksYAiWwYu2FIzSesbCl4W3DS7y2foiynZxqOFdfvyFQfStKht/I8arVKg8++CAnTpxIeDjPzs5es6Lu9TLVZ7d/HUvPRUm9chRM9M2X7Fl8VWNVDbIZDrHoRQB73L2XZe9lQOCIModKd3Mi+FEWrbe+n9NaUy6XeeCBB2g2mz13ld1KxqfjW91OD+7IP26XOFCgejdNtTGGlZUVFhYWaDQaue4Ub2VBlG401RYXnKdZFK9Q2a4SGh+rM01cEBXG3Gk2gnmWO9N3g/YUrrBY9V/FoBhz7sISPhvBaQbtGcacI0gRUgtW0UYwU1hPaGhbyuFKMIArNSU7ckuIhxSGVoq1giihwErZvpmcFDJXaFrG5s/X/wP/y+S/Sfz2ZlQ4vFrsJzP++lay6IsrBIteElTbKWDS9ayOR8lKAg6Rs05BZjvZt1U+T8XyaZpI3+/r5Gdb1/k+6QUZdKwQoydVUw5/3pykYVwGSIL5vEzsvGUZGUBnsBVicTEcYqayxkJjDB2QdNPoYE+DoBG6USJknoxIW5ly3wDCSJQPpBMtBRBIKHRY3mzRyJ3QES0fNFwKfQFGRJUcW8rPgOXAZNuCttZZh5C8fkGm/1Q8PLPAPcMrFJ0g48zS9ZG2JPQ7OwA4UAKjBWUrcvXQBuphkT67zWSxRqAFvnYYcpqAohaUsIgkIPWwhJDQbyU1/QWZvS4rJzE2r8NTRiS09jp2GfcORKA6re2fq63z/onZzL6uFbcLqO5GoVDgxIkTvaTG06dPc/r0aY4ePcqRI0dy5YRKqT3XOAh0g4XaJ5iyo+fXCLdASIrW3Sz6DgtenaK0CXXkYV+xRlntEDQThQcpWJO8b/TDLF9avSUJg3FLvXK5zP3338+JEyd6JeMty+LYsWMcPnx41/P7Vnf/0MjM7N7tHAfpWuJxYEB1nvtHGIZcuXKFCxcuYIxhenqaQ4cO5TZwbxWoVlpx0XuFk40/Y771PLrTSG77AIYRe4ayVcUQApoh+yg2EltKFB7CwHTxIbSpE+omFdmPYw9g06AoylgiZNzdpK01m6rMWiipWoLNUCClodBJNrIxNEInMb0MEBoLSFuu7S0socDAcnCJpfZJJor37fz2FleO3FemOpWkOOlWWPCTzHCQAiZZz+osUJsq9WXcQfyULdl4cYuHB14lMDsdTZskOG/sAqptYWgai4rQ1JXNk61JAmHh53z2Ms/tI9cBZPeYD0YZKddZaIyRRpu2FPQ+LwG2koR29vl4gcot/VgUDo0wzAexUQpBBHjDrI4cuomL3f+XuF4Zr9iAQGByPKt9kzxWnnY6bxkmchcxwHhlk3dMXuJIZRNbJq81NIK67+LIEEtEvuJ25377WiIMVDuFXbQxbPsFXCukZPm0lU0zjGz1bKFoKZsR20dYkae8EhYDroc2HSAce44lKyDQIjFDVbJCQiN6x4fugCw5G5W+hninOFXeQqBpphJxz92gA8itkH/sB9i0bbtXDGVpaSmT1BhPfL+eY76y/k+oyE0ADBZYh/GZZUOVWeqA5wHnUO//K9YwbbVMyRrGlkd478hPUZClW+bCoZTKuELFS8YvLi4yNzfHmTNnmJ6eZmZm5oYTQA9qKCNyZ5pu1zhI1xKPAwOq4z7VtVqNpaUlLl++TKlU4q677mJsbOyqTMSbCao93eBi+2UW2i9wof0SBVmlJAcZsCfZCC5h4TJZmKVtNtkO59lWUBBVRtwjNNRlmnqNshxi2Jmgps7SNjDmnMAIiWtJHFwcaeOb0/hqCUtAxYKK5bPs97GtShgRJjpXgMDYpEt/5IErR2Tvi8jRVccUlzyx+Z/4YIytvh2ZaqUUC5cucmZ7NbF8tNKXAdUbOuX8keNZve4lpR+jhUoGVHfLnnfjp+/+IrbQbIRVnM4Mgkk1RgqLlrYTyae9Y4Yulh3wVGuSdgdt5iWfujnPON8BREedeicMEgvV0VoLhsutznrpML09AKjA5LY+gdCIVOKgMeDVoeA4eHkDPgGEEiP07iy1EomT2m4r7NCOLP5SoDrSTie/iwI2XgpUokgAeEso7hla5vjwKhPlbVwZ4mknsqA0escvWkeV0fqdNnYH3Bpj8LWDLRQlESVI+sbC6Og7Hi82aIYOvrYYd2toY2ioIo4IiTypJS1tU3VCih3ZjxRQD10G0kVijIOTSpoMjNXLtYDIRs8zFvEakJbQkZ919z7JkLqKZkIcqblvaJHLm0m3pHSC717jdmOq09HVEk9OTrK+vs7c3BxPPvkkhw4d4tixY1Sr1T1rqrf811luP8tR28cYeCM4zoqCAUezGXQAtX2EJe91AEbcu1nzT1K2xqnYj/H+0b9D0YoKstxsafQbjav5VEspOXToEFNTU6yvrzM/P89TTz3F1NQUx44d6yWAfiuz1HBH/nG7xIEB1dVqleeff56//tf/OmfPnuW//Jf/wsMPP8zAwMCePsb9ANX1cIXtcImW3qCpon9t3eBi+xXqegeYtfQWNVYZdWYYlTP4YQMjAkr0M1AYQwiFMQEGzYgzzQhjaFpYQjHqzrAVvI7RGxQsC6GhYFXZCp6HWGJVoC0ueEMU7RAhAhpBEVcmp4LzAHSxx1DtLHOloq2thEOAhUGlmKwIaEfz78v+Is2wTtmOypLfTprqIAi4ePEiFy9eZNkKCVPgMp202Ge5bKuUn3FKxuEKyZVWEkA7qXUKwmIxts77xs5wqLjOhWAYG9Xjp0NjZVBrU7u5oLpmbF5rjdCMfepOjgTAlSrjAuHkOoBkS3wXRECzw6T3FzsATiYHXVqYCNjuUgSmFyICsH4cPHuSUEEYaNitToUkkoHs1qJpkTlmGFjYGmQxeUW2kBlddBCQ2Pc7puaZqW7Q77R3LO2ItMeuDHrfRVd+FWhJLYgkHhKNJaLy7aHWKGNRlAEDdvR9eqqbF+GhhcDXkg2/1KmAaFj3y0y621ScbWqqhC00TV0gwEl4zUN34JwE1XmdWZ7UR2sJMV21LQye3nGJkcKgjOwx3PcOLnFy41AnSTSKs9trmf3uJW53UN0NIQQjIyOMjIxQq9WYm5vj6aefZnR0FN/393TMl9Z+lj4ZSYDm/BkuBRJHqoQAzxIu0RDXRuk6g+47CMwkf3H8/03R2vlo9ouRv97YC0Mev1fxBNChoSGOHj16w9WSD0qYA1am3Byga4nHbQ+qtdZ85jOf4dOf/jTnz5/nh37oh/jUpz513bXd9wNUu7JCTS1ypvEEi/7rid9G7RlKcghlog53JTjDanAaMJQYpSAk2/o8m8E2ZTnEoD1JU12kptcZtU9Qli6BaWKLAmPOcTy9imSEbfUyKLBElao1GyUvasOCv0bRjjt3ZB91SfqZZdauumoroasWImJME12xELhofCRCaJ7d+hx/ceSHgFvjU329THW73WZhYYErV67Q39/PAw88wFr9CqTItg0/OTiZLFapNZLT3Gk/6sOVAeZT67RTiY1T5X7mG9HBbEK+79A3OOuPo5BM2pu99SKNe/La6sZhJOeaLgVlaim5SEEqAhMVCImHr5PPXezRASRu4l+0AypOiwYljEoicqEEXRWLyUsk7IRjdkC1UWDaHYZdysj1Iw+QG8AXYOfsd1dGRKA8G6Mksj/oseMtlZWZKJOEnRPVOsKW1HSRogwpCZ+q5XeAskVL2dgyqkToSk1RKoqd4i/aQFs5WMJQkiFShKiON7UrFQOOBxhaKmKuq7ZPn9WmFhYZtJv4xmY9KDNge0y4NdaDMpY0hCrbSdki+83lzTztVVcdaJeClW03AKbK2xg0hytDXGhsAdHMy9MvPs+Dd99Df39/7nZ5cSvkH282iO/r6+Phhx/uFUhZWVnB8zyKxSLj4+O513u+9jvU1RKTVsCKmmIuqGChGC+8jeUOMz3m3seKH1nrTRQf4nLbo64D/vrUD1Cyqon93Sr5x/WWKe8mgN5zzz0sLCzw9a9/nfe85z3f0pIQhUAdoIqKB+la4nHbgupms8mnPvUp/s2/+TfUajXe+c53cvToUX7jN37jhvYXr6h4o425K8vcW/kA91Y+wHa4yELrq9TUEiv+aVaDM2ypeQD6rQmm3KNIoBmsE4oQi4AJ5ziBqaFMG2MaDDvTNJWhrr+BI09gixq18AID9r1YNNkOL/aOrUydrfBVStZjbGiBbSWT64rpqWvAkZqmsimnAPSeddVZBQi2KOObqNM93Xz2loHq62Gq6/U6CwsLLC8vMzIy0nOEATh15dXEupYQXGwmZR2VHM/qyynpx6CTLSK0kkp2HHB2OowfOPYSm6bDMGmTSACTQpO+8ethmaPOVmJZTRW4EA7TbyeTEgFaysVJLc977moPDiBtbfcAaVGGHOrb4sx6iYKy8ezUQKz7hxVJtvPwbqBMj9E2bbt3rRqTa6EXnagAZUGoMsDaCSR+nj5cRSellYXeEFSHwBM+Kp2Um9FOKwpdBldI2salqR0cXaQgQkrSZ9ht9gY+nraoBQWk0JF1JR3QSOSsY4zARuBYAQZDLXQwWuBaCmUEG34FRwYMOS1KVkjDK3K0FA2+GsqljRP5FucA6IrlZXTVRStMWPhBd6AlcBI2ellddVtLCgnJy8676ErFvYPLOPpwD1QDrBifZ5999ros5w4KU50XxWKRe++9l/X1dcrlMq+//jqnTp3KJOp54Tavbv1q5NJuLL7ejlxUbGGzHSwCEUPdUKs4oky/8xAvbi+ggb808jc4XMomiOZpm9+KuNEy5d2qlseOHbsl5/3NFFFxp4MDRPX1cV63TdwUqP7VX/1V/vW//tcsLi7yyCOP8O///b/n8ccfv+Z2n/70p/mRH/kRfuAHfoDf//3fv6Fjf8/3fA+1Wo1/+k//KX/jb/wNfuu3fov//J//8w3tC+g1ZPs1PdZvT/Jg31/p/d1W26wHc7TUMnV1hYZaphmu0i+mqOklauoNVNhiyDlGWbpshadp6YAh+x5G7CMYfArWNIPOvax4n8s9ZsF6Fydb55gqPJD5zZXNTDISgK+dDKjOk4Xkddh5/aJnWnQRUUtfphHWqdjVW+JTfa3jbW5usrCwwPr6OpOTkzz++OOUy+XEOulKitPlAeabSeo6TIH3kUKJNS8ttUnerIrl5JQ5j9Z5x+h57u5f7THCbswNQ+n8DPiWyQL7k944INBxl7tOxBMfrx7XdgBxpO4Vo3GlYqAU6cIDXydamIidFr2diEBgcgBy24SRkkmJCEQnTjwfVDvKJsDgBDaBlSzaEgQGcvpjEZejIKmvG4YGKmxbjWRJbiMJY/dvslrLvPtKS2zL0DYubeWyHhoEhoIMqVge/U67J99oKxvP2FSsIKpWSgSym8qlYnk9h47QCEJjMeh2B1+GFa+P6WL0/nnaYkOVe0mHJZlNQpQiGkBVrbSu2sZN6apDY3U02p3rFllddSElMXKl6khMorh/+AoLm+9K3pyxAb7jwcd6lnPlcrlnObcbuD7IoLobxhgmJyd56KGHuHLlCnNzc7zxxhvMzMwwMzPDl9b/PoI2ljG80p7uSXSG3aOsB2eAiKX2jeBCe5Mt1SIwPm+rvo/3jXxv7jGVUreE7b1Zhvxb3fkDIovTgyT/OEjXEo8bBtW//du/zUc+8hE+/vGP8+53v5tf+ZVf4Xu/93s5deoU4+Pju243Pz/Pz/zMz/D+97//Rg8NwH/7b/8t0ShfzVJvL9H94N+s6bGi1c8h65HM8o2NDV6fe533vve9KB2AMAhkVBHOgEzpbo1RXLLfxrnGf0KzA9wc+S5Ot+YAQSvM+nULAfWgwIDTTi3PApR0xwngihDfyAQ4lOhOQ7+zrChCGiaqUe3IkC9tfo7vHf0hpJSE4Y25itxI7MZUG2NYW1vj/Pnz1Ov1q5aj18ZwKpWkOFQoZUD1Wsp7eqLQlwHV20ES1Bwq9/NGPak3bYQBo8Ua33P49QQjEU8iDHZpiHxjJQZN26rA5XAAIaBpXKopAKVzwHLeYCrv/UhHUQbUOzZ/QkCf27nWtMTDMVFebId2z3Gt6xwUHGMRtmVW6ytEV7a/EyEEYcSYBqFBtAWm1EkA1OS6geQfV6CbNrYsEpbbPfY9DEiA8snqdnbTzK4EoZFIBJvKARWBbGk0JcvHRney+aGtHUoiYNjZeY+ayqFiRZISiN7bdb/aA9TawCV/KOHeIwRshyVG3OT7mPfO5MOTHBs9bWPHBnUVy+sUhon+LogQT9u9mZTJ0jZzG8nv/FxtncLMjuXcxYsXef311zl9+jTHjx/n0KFDGUB7EOUf6egmDUopOXz4MIcOHWJ1dZX5+Xm+sfGbWJPfIDSwrCYIYs9mw58HIRh23sZc22fJW2WycJRlf54he5oPHvp7Vz3mN6um+k5cPTQit92+XeMgXUs8bhhU//Iv/zI/+ZM/yY//+I8D8PGPf5zPfOYzfOITn+Bnf/Znc7dRSvG3/tbf4p//83/OF7/4RTY3N2/08ExOTib+7u/vp16v33Bj3G1Q32qv6rjVnCVTPsY5lyGExZHyX2e08H5O1/4168FXEeLtvNGe662zGV6kICxEKiEtzEEXJZn1BLaFxtNWwtNWCAi1ldTXiqhqX6K8tdSoQGB1+qc3Wl/le/mhW6KpjoN4rTVLS0ssLCwQBAHT09M88sgjV52SPL+9yX3uBBf1RoZV7kZBWr1iLd0o2Wla1GTkIH12jhykvcmP3vMcFpow9mnGZwm6XtWZEIJtXWS440v8mjfZe4HayumBs27s1eUlzykk7QDiSoVSpse0l50AV/r4BbcjEYqx00rQw3hX+UwLqoCvdnH6CAQUYufly8TOTCChqHbY8DystIufdc3z0BIsr4A7pPFlQMUp0Igl+w2Vmpnt8u5nUvceAWhbCjxTwAMaYYlARwPRLWmwQo2FxmiLPqdBTRVpKE1oBC1VoCBDzjQjjX1TORwuZcG9b3LsQnPOzRXZe5v3/H3lUIiBaimgGbr0dQrKRJZ/onf9rlRU3DeAnZLdczFbvXj56suXL/ds1I4dO8b09HTve/xWYKrTs6JCCMbGxigMeFxZ+hMCY3HRH+61pQC2cBgqzHLZUyz6ZZa8eQRFlrzz2KLM3z36sav2f7fK/SMMwxuSf3TjDlN9x1Lvdokbest93+eFF17gH//jf9xbJqXkAx/4AM8888yu2/3v//v/zvj4OD/xEz/BF7/4xRs59K5xs0y1EOKWFIBJlynfaxStSR4a+CVerX2Kr9V+L/mj0PQ7M9TUXHKbdGUGOs4eyqaYkoD42s4UishzCJDCIW3L16v0AbTUJeph7S231OseTynF5cuXWVhYQErJzMwMk5OTe2JNTq6t8eL5FSwBj8wcZslsZSogHikPcLaeTED0U+XKxwt9rKQs+NIwZ8Ap8r0zT9HneL0Ket0IlOwBwKuVdt1WEajeDIsshX29XYQ5Uo9CDqjaqwNIS7mdJNjY9RjZ87UuWIqp/m3Ob44iWoL4OECYnWs3tsnV5QPI1lV0/aGEQuf4mqyzhxDQklDWEIpc6QdZWTqWEaiOdEIhaK5Lqv1uVFkxto+Kmx2IypQ8yhiTAEOQrVDZ2RKkjC4Di4AOI6V3Esw8Jel3PDxcOpXlqQVFIAuq88B9SfoZXbUjswNnW+iM1rpitxJEhTbgaYe+2MxHGutMVN4AHqV7g+dybPWklBw5coTDhw+zvLzc83OemZnh6NGj3xKgOg/gGmN4euUjtLRkzh+jIiXECjU1leTF7SVGnCOsBfMY07U6dPnJox+jaJe4Wtyotvlm4w5TffNxR/5xe8QNfV2rq6sopZiYmEgsn5iY4OTJk7nbfOlLX+I3fuM3eOmll27kkNeMvOIv1xu3AlTfaFGUroxhY7EEQ9nfbZHNtC/KVoJV6kZbZ0F13rR/nq66rVyKqQp48eSlgvR5Yv3zPGI9/paCamMM29vbfPnLX6ZUKnHixIlrlsJNx8m1SPqhDLx0fhUp4OHpQWbKmoXmJgD9TlafuNJOMpnjpXIGVKfB+XvGz3O4skldFWgrm2qstHT82UQuLPmSjC0VncvX21MJpJM3GHKkxtdWR+e7E3txAImed7pB3DmnsuUzVGpxfrPDTMd+M3GrPSty3tNphUcoaNR9KJMLuBHsMM2+yJ/SCUUkL9ml3U7qqaMoSYd63G9cCBqbBmlbMBjdp6LtZb4DpcFJHUcZmeuokTmP1LM0xmSeSaCzYER32Opy6tsrW35GQ7+brjowFoWUQWKQ0lo3lctSUCXAoa1tAmPjG4vz7RGmCluMOnVsoRL+1ROlTfqdAttBtJ/z9Q1CrbFzQKsQgomJCcbHx9nY2Oj5Off397+lIOybgakGeH7937IYrHMlmAAExniJb8AzoLXFsn8RS4AyBcDif5v+/zJVPLKnY96K6zTG3NTzvFOmvDPYPkDs7h35x01ErVbjR3/0R/m1X/s1RkdH35RjdJnqm0k0vFWg2hiz58ZOa83i4iIXLlwgCAIOHXmQ+Zz1AuNllgmhqYcu/aliEHmYJK8YiCsUoUlPw2WP44oQv0PtCQHnWi/wqPXutwRUt1otLly4wKVLl7BtmwcffJChoaEbmjp8fS2peZ6q9PHSwgpgeODQIfyilwCMACVps5gq6FKQyc9MkHQHOdq/ykT/HKthNBAqiZ17aoxJTNXrFOMYj7ousBGWWNOVREecNxiCSMubBnB7cQApSEVN2QlGM9JyRwctWiHlgrdzsfFwulR1R1ftA6lxSV9YoIFChgadxzILIjBdMJBjIxetIxANibmOnCylsnZ9IoigsVwTMBxyqG87m6RoRA4ZvhfNukm4bQCEJskU5+3KdGYTamExA6otYahrl36ZTkLcm666GbpYQnPFG2BTldDCoqmcneRHATYaz9ic90Y57w3TL9u9aovRHJXhxNA2LywXO8fWXGxucayaM/rvnosQDA8PMzw8TK1W45VXXmFzc5OXXnqJ2dlZBgYGdt12P+Kbgam+2Pw6z24+QV0P95alMVSoLZSJfKp9LUEX+OFDf5u7qyf2fMy3mjHuyvDuJCreXJgDpqnOI3sOQtwQqB4dHcWyLJaWlhLLl5aWMlpngLNnzzI/P89f+Ss7bhhdgGXbNqdOneKuu+66kVPpRbfqUqPRuC4/1HjcKvkHXFvrFgQBly9f5sKFC9i2zczMDBMTE1iWxTeWptkKLyTW3wqvIMkC5jzXh9zExE6jHe/gpTCE2k74G5elj6+tXmU4iGzV2sruJTW29GVaVvNNBdX1ep3z58+zvLzM2NgYR44cod1uMzw8fO2Nc8IYw8n1VCXFUplL9Rog+MblSPLxzukqD1Qn+EY9+hYOVwZ4o5YE415KDjJRrLLUsdObrGzxjskLHcayAzRjOEtgEs/wanxNgODl1qHMQy/IEKUFlkxu7ec6gGQbuu2gRMlKDhQ8ZePGgJsjQoIOtLSFpmAHSBGinR1LPCBihz12WGKzIxXqXmBzOwQhKGDT2k0CoiT4ORqO+JX4HXeR9Ge1i566pcNsUmPn1LSxqNRcRo9kZ8P2muBppQY3oREUZJr1tiA1a5QeFLW0Eylcckcc0NYu/anE1PSxIfvdbwdFFv1+FoKR6B3qSuFTz0j2dNQAkm1dRimRYKsHq0uwfLT393xt/aqgOh59fX1MTExQLpdxXZfnnnuOwcFBjh8/vic7vhuJtxpUG2N67K3Sis+tfJyvb7+Awk2sY5N+Z6o4lkegJe2wj8f8d7P+wgYnp09y9OhRSqVryz/ealDd7VNv9Ljde/WtHncqKt4ecUOg2nVdHnvsMb7whS/wgz/4g0DUKH3hC1/gwx/+cGb9++67j1dfTfr9/tzP/Ry1Wo1/+2//LdPT0zdyGonogup6vX5bgurdAGe73ebChQtcvnyZarXKvffey+joaKJjGXfvzYDqwDQZtqdo6iuJ5U5Oh1SUYUZfCZHdniuTTHTUce6cqxDQCl36YutFhWF2NLZFq82z/jPcr6+vIM+1whjD1tYW58+fZ2Njg6mpKd797ndTLpe5dOkSzWY2oWyvcaVRZ8tLXrud0qRL4OVLKwRaM1woM3NkANvOdszpJMfRQoUlr85Ioc57Ds11ZgViDiox9jFdkjz9dzw0klVVpWAl3yUhoKkL9Mmk5CRfI599D/NAY1rbXZQBgd4B0LYwTFRqXDFD4Buwd44VLwJDCuhXtUurczx5tUZXEFVQvMoqUgtogy4nj5Fj842NIMwrSBO7zIavGHCznt95UCx9z7SBgkwvy9FYZ07B9KoydqOtIjDt58hCIP8dKcogo6u2hWY7KCCFYa49Gs0uSYGvBW58vRyPe5ESw0fVFXd+l1aTdw4O8Uazxabf5lx9ne9k78SJMQbHcbj//vu5++67OX/+PC+99BKlUonjx49f1Y7vRuKtTuDr9jNvtF7kjy9+gs3QwxUBbly2kx5QG/CMRz0s0FYl/trU/8z3TXwfm5ubzM3N8dRTTzE5Ocns7OyufeCtAtWWZX3LM8134lsjblj+8ZGPfIQf+7Ef453vfCePP/44v/Irv0Kj0ei5gXzoQx/i8OHD/PzP/zzFYjFT4XBwcBDguisf7haO41AoFG7aVu9WgGohROa4tVqNhYUFVlZWGBkZ4dFHH911CnTMvY8zzT/NLC9YoxlQXbY8tIF0zmJbOxlQnXu+FIEkW5eujGRMNCVudRCCJQyX9evcp++/5v73EsYYVldXOX/+PM1mk8OHD/O2t70N191heW42MfJkSvoBUA+S4OZwXx8XahGDu+5p1s9u8K5DkzzWd4RTrWXqoU/FclhOuYMULJt+t8W3z7wBQiRcF4wxCS9xGQNdxuQDnN75qQJ1VaRgZQcTbW3H/BiiyJOR2Dmyn7RmPjqvVIEVqdGh6Gl5CzJkuNrkSn0IEcgoKbEbcaBgk0hW9Dd3EG87CKMEwby+2BAVb9m1LHm0jvQEumQS+ygJm1bKz6+ITT2dcKs65xfbaSmTpGhyALQhPbbKY2XyLstOfYOtwGawkATyvraQEozIB4HFXtGWnWV5uupQS95ojaGlRMT2FWobN+YK5EiFp1N2miKJ/yUmoc5WRhLydTbPHueuyQm2t/OrMO4WcebYdd2EHd/Jkyc5ffo0s7OzHDp0aF9Aotb6LU3g2/BWeXXqj/ji0gZ0bEmt1DeVfq9C47DqVdE4fGD0O/i+ie8Dor707W9/O41Gg/n5eZ599lmGhoaYnZ1lZGQkAWZvJai+mbgj/7iTqHi7xA23Ih/84AdZWVnhox/9KIuLizz66KN89rOf7SUvdt0W3qoQQlCtVqnVatdeeZe4FaC6e9xuMsfGxgbnz59na2uLqamp3IIk6Rhz78tdrnKmzKRQNEM3kQgH+eyWkwOyBQ2MMYTGQuDgGUOoJUteH7WwQEMVe9PSo26dUbce2fHJJRrmxgc8sGOLd/78ecIwZGZmhkOHDuV2hjdbbOb1tdXMskupd2u4WO6B6m6sNtrMXd6kaDu8Y3oC7Ya8vHU5sU7IFt8+faaHehKuDClQG5+29/TuSYoAzbBAU7mMkAXVuzmApMFXIUf2U7H8zEAsz35NIXpgu2z59BU8RENCSyB8iZEG25GERu/ABwkiAONG7huhip+PQIQGk6NysAKJCQ16lxZMKBAd2CpbIsFWi5x33QtUpjWUAYljDw/UskBHC9y9MNA5kd6XMWanUmMnmqGbAdUa2WExBQ3lUknZJTpS09LZJMa43Gex3c9CMExdFxmwUjMYOa+YNjJxvpbQue9Ubx8IJkc3ERjOLW4xIJbgsV1Xzx4vR44Rt+OLF0s5evQo09PTN1Vx762Sfyx7l/gfi7/GoneKViE5Yky/D+m3tKYcpCjxP439Jf5fh/5yZt+VSoUHHniAEydOcP78eV5++WWKxSKzs7NMTk72yJtboam+4/xx83FH/nF7xE0NzT/84Q/nyj0Annjiiatu+8lPfvJmDp0blUrlphxAbhWollKyvLzM6uoqnudx+PBhHnjggQTzerUYsA/jigp+CrTWwpXc9T3tZIqB5OmqCzIkMAIbaKphLrQdaqpAXTsJKYQxEeuVZBIMl9pD1MIiM6V1SpbHNwqv8J18556uKR5hGPb05JZl9WzxrtYJ3jRTndJTj5fLLKfkJHlykIu1KAGxHSpemFvhHROTPOgeoeE0mWuuM1beZnLodZyO1CAC/juaVZWywogPbPKqJsajqd2eNCAd+ayojgqPpMBXPSwyHCsgIoVhOyjQ7+ywnGXLzxT+iT+NkhVQsENMSyICC9O5rtADjIVsK3R/5/no6PplTaBTbJQIBcbJYdQDSagUsuOanbne2OssvagYjOm4hrR0mNFsBHnJnKlGf2p4M5OjoLXI0X/sLUkxXd20EbgMpQF0boLhzna1sJAB1QDNHFAdhBahlLzWmKItXIQUuDkVeNLae+gOupOgOoh983lDPY1kZnqFhQsTzG9kbfWuFsaYXb/veLGUlZUV5ubmOHfuHNPT0xw9evSGKgbuBVR/YfnLXPYu8jcP/zCWvD6QON88xR8tfYLNYK7j7Z3eXmfeLZkamAW6xP888X38lcnvueqxusz+8ePHuXTpEm+88QanT5/m6NFI434rmOpbYeN30OJO8ZfbIw7Mm95lqm8nUN0Fi90kxGPHjjE1NXXdjZ4QkjH3Xi55LyaWt/Q6VTlIyGZiea6XrRVkGMqtsMh6MM6SbycKeGhtQ6owjOnxgr2lSDTbYZmTdZdj5VW23PPXdV2+73Px4kUuXrxIuVzmnnvuyejJd4v9ZqrHy5UMqK75STBzqFrlYur9MxpeWVgHDI/f12Zw9DJubABjYRJJbWl5R7w4j6edjPdxPFra2TV5LS9RDWA7LGZAtZej1fWMTdzpxZWKmiom3EMsseNhV5AhRsDQQIONzf5IVBx7h2jJKOGtb+e8dFtk8KiLpJ2yfRM+aGUivrZt0DkYKq6bFgismiDsNwg/LekAB0lg5dyf1L0e6c+2LXkANJukmAXQeUmKnnKIexJDdrbI01biHWip/IGWr+ysP7eA5+szWJbs3eaCpQi0xImdiyuzMxgy9WCylvciU3irEbocP7rEwoUJNtptNlothq6RSNcNrfU1mWchBOPj4z07vnPnzvHUU09x6NAhZmdnqVQqezpW93jXAtV/uPSnbKkVnt74Cj9y6If49tH3XXX9+eY5/mz185ysnUKzRVH6FK1I5qFTXW/2KWatFR/t/wvXBNTx6BIQ09PTLC0tce7cOQDOnTvHsWPH3rJy5fvFjt+Rf9xhqm+HODCgGvanVPlbAao9z+PixYtcunSJcrlMoVDo+SjfaIy592VANUDFPsRWuJlcZgW5NTfaysUWHstBH+vBIHVtUfcLlJ0k6MovXZ3doyUM2kBobN5oTNAHzDUuMlu5up9qq9ViYWGBK1euMDg4yEMPPcTg4OB1Nao3w1SvtZqspAB0wcp+KpfrSenHUKGYAdXdZMdH7p1jcHQTEAmAK1PAKm5lqI2hGAPgobGw2P39bCmHwMhczXzRCvGUlZEXeLt61iUjjzH1VNLn2hUKv4NEpYis18ZGttnY6s/on4UQ0LSwhEAWNFJZBCI9MINA68yrJf3YHzmWfCVjE6TlKaEAbZChyEhGbCMJ0nINBWkysVrKs6nMAui0REcZkQCt0EnkTR1T5PC9VSd5zDSI9nbRv6TP4VJzgAvBUFS4JZP4aOPEnFykgLayKMbeFVuEnbOLJZymjhkoC9feuSbL0kihqVYb1OsV5jY2rwtUX48cY2hoiMcee4xarcbc3Bxf/vKXGRsb4/jx43uy47vW8ZZaq2yGKwgBnvb55MX/yh8sf47/9fD/giUk6/46m+EWW8E2DbXGyfop2jq6z7YIsYQkUEVqqoAjFGVLEreudGQRYrOHSgusVOLsd41//57vRzyEEExOTjIwMMCTTz5Jo9HgqaeeYmpqitnZWarV6rV3chNxp/DL/sQdUH17xIEC1ZVK5aY11b5/fQk11xONRoOFhQWWlpYYGhrqgcUXXnjhpu3mxtx7d/kl+4htGdJKFY7QRrAaljnTHkfFfMXSiVNABiBAHnPVYcR7/YJgI7T5fxb/B//orp/OPdNucuby8jLj4+M89thjPVeX642bYarzkhRbYVIeEzHXyQGcTEsXEGxxhXc9ep6haosoGUkl7pUVa1giTW38mSQ7+ba2M6A48btyEUJSC4q5LhVbYYlx69ozOXla+j05gFhBxJB24JaLor8/GpwkXgWItNRKYBoS4xlsW+5inicQgaGnfDGdwi3xSFnkqVZOLoAQ2A2R8f0F8PwwQxWKkMSn49iRnCUexphMclkEoNNa6exBm4GTKbhUSP3thRb9bjZJMVM9Mif6HI9a4NLn+Jytj7Ki+xBSEIQ26QqoKmfApLSEOKi2NG1tJaptCmESDjLp6VxLGLb8IncdX+TlV+5ifmODdxyayj3fdGitb4iZ7Ovr4+GHH+bEiRPMz8/z3HPPMTAwwPHjxzNJe+njXQ1U/z+X/zhzq9f8df7D/K8TmPhz0xmfcUvER4UCYxxUyt/f002KMdyZduaxhEu/nSy2dr3RvcbHHnuMer3O/Pw8Tz/9NCMjI8zOzt6wn/+14mZLlN+x04viDqi+PeJAgeq+vr5vOqbaGMPm5iYLCwtsbGwwMTHBu971rsTU5H4cd9S9h7g2txtNtZm7fjumuVzxq1z0RmhpOyM/KFghoZaJKWdHalpKJhwOpNAdELj7h2JZIXOtZZa8VSYKURGg7v05f/48m5ubTE1N8W3f9m3X9Fu9VtwMU53WUwMsNpKDtUhj3cBxfGZnl9jeqtD0dxifUrHNQ/dewS22Eu4ZTkKGYbBj8g5DanCS6kuuZpZvDPidSfrtXUB1K3ShkFyWB6DLORrdYuc8tYF1v8J6WGHF70OIyJpNGk3ZCShZfo/hLFoBxUIQXUiqs5a2QKtINGRCC6+poZQPaoTauRXS20lAhOg5W22DiuXy6jyqHsADk0PK5TnTCZ3kjSdHNjK7VEpiZcq1Z7/BvEifnTaGvhQr3QicDKgOjYy7EyIlbHhlhgrZ5NR1v8JCa4S6KMbAUp5/ds755tw+Y0TPJrO7XRg3dcn164ZCnw9Cc25jM7vTXeJqmuq9RKlU4m1vext33XUXCwsLvPzyy5RKJWZnZ5mYmMjs+1pFw16pfT13eRJQZ11x8kJnZptM5jtM38oh5whS3BzbG2eMq9UqDz74IHfffTcLCwu8+OKLVCqV3v3Zb7vCO0z1zccdUH17xIEC1d9M8g9jDCsrKywsLPRs3+677z4KhUJm3RstVR4PV5YZso+yEc4nltfUFUqigBHZqeumcphrjVLTESKRRG4G8UIu0XSnTTmVyBgl2uzcKykg1EksYxL1pKN9bQWaT136fX5m9icStnhHjhzh/vvv33Ny5rXiZpjqtJ56sFBkvZ0EN5EcxHDffZeolj1GhhoYs0x/aOE1HQYHmp36GTrB8sabEa3BjlnNGZ3q6NOg+iqNUCMs9GzRmrvobPOq6lVtL6OfLVsBnpYJze9mUOLr9cNshmVUp9nQJkpG60UAZdHmwf4rCAFlO8DShr5qk9pWhbiOQ2EiWb4VgWSp5e7CFrUDVEWQk7gXxn4PwexiXy2VRG6CquqeDtsxu+ipUzsYG9rOrJL7duXN2GTWNBlZRyNwGU4lKaocd42869r0Srmgesnvw6QYQjdnpqNghRnxlpOjwY+SMpM+1/FkxbxtLKEJsZk4ss7cdSQr7pcbh+u63H333T07vlOnTvXs+A4fPtwDe1c73tOrLxGaxm6TAonIOnjk35N4RBUyk9v12QWIufgMuzPXPvg1Ig/cFotF7rnnHo4fP96zKzx16hTHjh3jyJEj+wKG71jq7U8YDlZy30GdfzhQoLqvr++WW+oppbhy5QoLCwsYY5iZmWFqauqq019Syn0B82PuvRlQDVC2jtDQZxPLamGJ0/4ExL1uBbQChz43yVTme+zmfRLZ9WyhU2Au5PXaAk985SlcZTM9Pb2rLd7NxE0x1Sn5x6FqlU0vCXhaYcjM0WWq5WTRG8cOKQ0EvQ44UQ3PGOwYqNGpEtsmdbrpRKU8D+lubAU7wuLddLZ5HteuVNSVS1/KYrEeFnGdJvOtEc42x2lTQGkSMxY7vg87z72uilxsDzJd2uwx9ONjW9TqlUh1EOtbRVy3fLW+oouZTbRN7rqdsZv0dk9okgqMJbDqEukbwj6DpQUZnK6zyYyDlVZ2f3lJipkl2fmFZs435uckKaafd9iripncY0tnB1H1oMBK2M+onc4NUARK4sQGErY0eKFFMca6u5ZCGRJyj/RtEgL80KLgRPtypCIwST9rVypCZTE8XmPu7N5BdTrp8WbDsqye9d7i4iLnzp3r2fHNzMxcFVR/ZuXP9wSo8551SRZQJN8dO+e9SUe/Y4irmN4sUN07p5hd4eLiYs+ucGZmhqNHj94U2bEflnrf6oAa7jDVt0scKFBdrVbZuE7rpnjcDKjuOlVcunSJQqHA8ePHGR8f3xPbsl8M+Zh7H6ebn8ssd6xqLydKGcHpxgRbugJGIjMdd7bxy9NVp0snQ3f6N/mhFKRDGCu1VrBCtgPBVwfe4Gfu/fE3zRv2Rpnqmu9zoZZkJUs5gH+TK0xPZN+1eGl4Y8CKAVlLJCukOXbyHhbtpNa1FJNcPLN+gqFCnT4nX/PfUDszIGFujb+IOc6LeljMgOor7QG+VjtK2+zs16TkRUJEA4GES4Q0nKqNM+w0qdg+GM1AR1ddMhatOHMXn9VIFYGJh+joqoXKZ6viEhChyZYa37mA3voiEJRrAl+EkJKElLFpJb4LQ6WQnenJs8lLM46twKY/BaDbyqEvZWkpct7VSupZN8ICuUmkOffkTGOMgq0yAyGAZugwYCWvx9c2xdRcga9tSjGdd8EKCU3yGYTGotB5pkJEyYrxip6WNJgQSsWAc61VfKVw9wCw3izfaCklhw4dYmpqitXVVc6dO8e5c+cQQhCGWVV/I2xxsbWQuYfp2R2Inkx6mcmZf8kksqZsNEtWhZZKzpYNO0evfmF7iL0wxvH7s7a2xtzcHHNzcxw+fJhjx45dl6NK/Lg34yF+J6K4A6pvjzhQoLqvr48LFy5ce8Vd4kbAbbPZ5MKFCz2nigceeOC6Ez72Q/4BMF7ILwLjqUgS0wzLvF6f6jFz277DYDHFhuawmSUrRBmRZKAsTVvLJJMlTEaiEGpJXCZiS4MtLV72zuObgGJa5LtPcaNM9akcPbWf2s+A6zB17ExGYxtqQTEGKKRQiU42zTwWZBzkmpSW2VCxPAIt+bO1+7gSDDIrBGPFfHlTM4wxSVJk7BEhcgBphA6VFLgOYsx2W9k8v3WUpWAwkxS5l7mJCHZLXtme4t1DCzhoykUPMASeSpQrj1u+GUsgNei8UuFEDLUIdv+mRMfdYzfpBzrr5hEGBiuQqKJOMNN+XUEMO5RKzQwQMsZkZB1eYFNyU8mGygGuXWgpnQQZKEGfm3b+cMizR7ZtnXB8WfdKtIWLFFFBoPR+8mRAJqe90lokBihSGrRKFiDK3pe8QU80Who7ss6FrS3uGh7OXkTm2G9uMRYhBGNjY4yNjbGxscFXv/pVXnnlFVZXVxOOGL9z6U+QIjsYDXWS7QeoWAV8k5wZCHSQAOQm596nZ6SGnRHqQQpU7xNTvdd7KoRgdHSU0dFRtre3mZ+f50tf+hLj4+PMzs72KiLv9bg3OxN5h6m+A6pvlzhQdSIrlQrNZlZbuNe4HlC9tbXFq6++yle+8hXCMOSxxx7j0UcfZXh4+LobgP2Sf/RZUxRkf/Zcw0v46igv1ycTU915iW8lO0ClXnYhoB1mG0WV0gBbwmTYYYWfZYyNwtOa/+vSZ691STccN8pU51VSXE7p9I/fcwE3k6BmEuy9MSYBao1JJiNpQwK0hlomOtd2aBNoi8+tP8QGffjaZj3YvbJmK1H0RbDl5yd6bu+yHOBSa4AnNu5lU/flJlzlvdXpZZ2SNtTDEnPNEQoixJKGSqVF2r1PuWBiwnHh7f68RCgyyVvpsK4i/RAh2WRJDVgCd0OSGO+kdlEaaHNqe4yVVrlXbdAP7QwrmadlzztlJz1YyU1SzA421S4e5FLCurczCjjXGuvdh7bKqTaaW55+b44+aZ2/m3IsyZOFdfc9OFJnbo/Jivst/7haDA0NYds2Dz/8MABPP/00X/va19jc3OS5zRf3KP0AX2crU2Z9zNN6apNxgSnJ5LO3RZE+e3xvJ3GVuFYy5m7R39/Pww8/zLd/+7dTKpX46le/yle+8hWWl5f31MbeSVTcn+iC6oP07yDGgQLVb7amupt8+MILL/DSSy9RLBZ5z3vewwMPPHDD1m/d4+4HUy2EyLXWq9qzzLcPIVK9ZNrCC6KOtBVkO2+d+6pc+6OQwmTAdwQuBX+2+jVClW+kdrPRBdXXC6zToLpi2yzFrPOGRzYplDcz2yktE1pJpawEeFGhlQAp6QbFD5OdznpQ5nMbD1A3kVY61JLtcHdA7Kcmneph/gxAO6fmtyMVL27N8LXGMcIOfZyrF851iUgvEz0Qda4xwmorAnvjY1voAklUJhI1hK4KmmUgcsuL75ybQGYVGju/53zWPQJSCJx1GeXgGVBph5SioqVcFprDvLwxyYX6ANv+3gB0moXMT1IsZMBXkCPDyqsc2Y3uIGqx1U8od96FvMSmohVmSpEXrDADmJ2cKqt+kHzPynaAijVdeTNd3cFkwVU8u/rqrtcQj7eqbHj8eNVqlYceeqgHHv/ghT+hptYz6xqTc51GdLRHsUU5x0nbkbZDJ2eQk5zZGHane0nINxM3C25LpRL33Xcf3/md38nY2Bjf+MY3+NKXvsSFCxeu2m/erKb6jqVeFMaIA/fvIMaBA9X74f6RYVuV4vLly3zlK1/h1KlTjI6O8t73vpcTJ07sS1Wq/XQdGXeTEpCyHOPpDYuqM5hZt+iE+GnPX/I79DwmK29ZHs5Or+VaCoEgQPFbl/4su8E+RK988nU2yOkkxcN9O8x/dbDB4FSdTa+IFwPBymRdFawcMBWPIJUdp5WkpWxO1cZ5cvUeXqrN4MfMk7UReDi0wny2UqcGTK1dypWnZyeUEZysH+KSP0z84XUL98RDQgaM5TWLO4y84Iof3b/B/iYISLv1xbfPmRnvhRvI7IuUCqt9FdCd9xrE5d1CUFiTyDZJyYOlsJydFZWxWfb6OFsf5RsbE1xp9BF0Bo1ZZw2T1UUHTgZYeTlsctohQhsSSa7paHdY7IX2EPG7mpcUZ0tNWyW/cSmy74wtDX5qQJwGk0JE2utuuDLbftpyZ3B7Rn3zguru8YrFIvfddx/nDq3ntnGhlhn22stpR9OljKLZq+RAJT0rCNBWyVyNYefmpR+wf4yx4zgcP36c7/iO72B2dpbz58/z5JNPcvbs2dw6D3fkH/sT3TLlB+nfQYwDpamuVCo3XaYcdqbJgiDg0qVLXLx4EcdxOHr0aK7H6c2GlHJfmGpIFoGxRZHTzUPUdJ22yk9Sa4UubippKa8jLtrd0sXJzH4/pbWWmAxwS08jCxGtp4DPrz3Ph2b2Xnp3r9F9RtfTObfCkLmtzcSyaifrvTrYYPjwJkZEVQg936agQvocD0E0Bd+NUImEu4Mxhr5CsrMp2QHawHZQYssvUg9cTnvjkRuLyHEGidKgWPL6OGYn2bNG4CZdXAA/bV/RibgERRnBVzZm2TIljCajEQ21xI0tE4Io8S32PPMcQPzQ7v1pSUOt7XZ01VnGOA6ktU2mkEv0A9DWOJYk2EVzjeowz3nbm3zAntZYawTupsAb27mc6kAzl7WXEpq6QLNd4GJrkIrlMVRoUbTCHrhuBg4DKT1znsY6TzJRSiWObvvFq5ao10IwVxtBpyp/FqyQUAns1H1rhw6llIQpNBbpwjChthIyporrZ0qlxxmnbrKim3qXROcdUe4aoQ6x5dW7nrdS/mGMybQTSivONc+yVwyal7Tqpp6XF9r0parTVlIP1REutXA5sWzYvfkkRdh/GYaUkiNHjnD48GFWV1eZm5vj3LlzHDlyhKNHj1Iul9+U436rxkGTTByka4nHgWKq+/v7aTQaNzxd1P3wG40Gp0+f5umnn2Z9fZ377ruPxx9/nKmpqTeFPdlPpnrEOYGIPCiohQ9xwYsGGUv+SoZlhPzy08UO4IuHFCajzxQi6xZiyaiQRTwKOVPClogYm7Zp8cW1vbFX1xM3wlS/sbTGI+Vxpio7dhDKGKoDDYYPb3VwVrchEHjKYbVdYtMvsu4Vqfkudc/FUxat0O79q7UL1AOX5VaVi40Bzm0Pcq45ylfXj3KyPskVf5CGKSWAcRpPdDvtNT+bfb8dZGdL1C6ApGL7GBMD1DraX6Cy70HenUsPmITIstfxdaSElUYFS2pKlVYW3BbAdI8kBXYO4xex24Ki3v3bk0FU0dLK1ryJ9NSpkZ3Isc0DkKHEXY8xvWU/I83QOqWVFYKtoMTl9iAvbRzilbUp5mtDbPvZ55KXx5CWYYWaTNGXxi5ynm44tuZKMJBZLgQ0wqxUJY8lyntj0h1flF+RZLQlaVY9uU2gJavtcpRMKTX//cqTu13Gzj7eQqa620bEj/f7l5+irbOsa9rRp7t9KZVo6isbKVIVOHfJYYnHiDNG+svbjyRFePPAbTfp8/HHH+fxxx/H8zy++MUv8tJLL7G1tXXTx73jUX0n4vGrv/qrHDt2jGKxyLvf/W6ee+65Xdf9tV/7Nd7//vczNDTE0NAQH/jAB666/n7EgQLVlUrlpuQf3W1feOEFfN/n7W9/O+94xzsYHR19Uz/q/UpUBHBkkSFnloJ8jJfqO4xmW3sM2qOZ9Ys5hS8sYWjmyAzyyhln6z6bTFKjJVVCdwndJL2o8/ivl/dfAhJnqvcap5fWeP3sClvnmryzb5LRUpl1cZnhI1uAyEk6ApAE2qYZFtgKSmyGJbbCEovtgZ1/3gAX28Ms+f1shBW2ggqecTEdEG2MyXTUbqqT7oLqzTCbrFjPSWoTQlIPsmDKkZpNv8Sza8d7gBp2YQ1yluXdgXZKZ5uWKbS0izaC8dGOrjq2F2V1QG93/34OK9zBNl5LZTPlOtFlwGWO42BRZNFzjqEDAFoCGqrNiDa3HZUZ4KRzBGCHrRUikums+H2ca4zy3Oo0r29McbE+QDNwMhprY/I11unZHT+v7GN8m7BAKy0G722bvf48WUNW/91xAElFK7TZ9IqstsosNqtsB8XcRGYAT1nMbQ3TCl2WmxW0gSdXv3LVa4mO+9aB6m4b0T3ehl/j0wtfZbVdZcsrJAaNoZaZZxOk8icACiI7oErf31ALLJFMrK9Y2byJ/WSq3+x7OjAwwKOPPsr73/9+XNflueeew/M8arXaDZNddzTVUdxq/fM3g6b6t3/7t/nIRz7Cxz72MV588UUeeeQRvvd7v5fl5eXc9Z944gl+5Ed+hD//8z/nmWeeYXp6mu/5nu/h0qVLN/s4do0DJf/o7++/bvmHMYb19XUWFhbY2tpCCMFDDz3E6GgWgL5ZsV+Jit0YdN7PZ1afIs09DdhDbKX8T13bz1RRBAiVBampyrTOE7KsDXTZb5VZZsUYLUsabCQhhiV/lYXmCjPlsb1c3p6iOwi6nvt6ammtc67w9TPLlFyJObba00YGSmam0dOhjUmUb4ds0l/GD8CIBHDTGsrOzv0LQtkD9HVdIO2R21BuLs241S5RzfG1fnF9Bt9JAe48mzUlMi2EF9g4heR7YVLP27UUnrJ6z0AKw0arxFB/g/M2iDaY2OGFvnp1rbjzoOWBysnX7EpVhY6SH+MY1EXipd7HvGOKkF6FR7+uqA628sYVuTM+efdfCoMWFlvaYssrcNEbwEZRaQT0uR6DTgtLaIYKyeIgvsoC6GuN6be8Ii3tUCH7vHOTFTsJhnH1gWspAi0Tmu+K46MNtAKXlXaF7bBIM3BIqUxYalWZLNUZLTV6uut2aDNfG+pVhvS1YLlVQZbWWPO2GClkmfVu3GyZ8uuJNKj+J1//v1n2Wti2YNMv42mb0WIjAtN570POPtP+/8YYKqn21GgXIZLPXqbaWFeUqVgj13dBu4RSKrei75sR5XKZ+++/n7vvvps/+7M/48yZMywsLDA7O/umzfge9Lgj/4Bf/uVf5id/8if58R//cQA+/vGP85nPfIZPfOIT/OzP/mxm/d/8zd9M/P3rv/7r/O7v/i5f+MIX+NCHPnRjJ36NOFBvdl9fH77v5yZLpENrzZUrV3juued47bXXGBwc5H3vex+O47zlRvX7yVQDFOQMea1/kC7ZR2d6OIfRzLPTilwDkl1IXmJSHvjO7Xo6FKUQ8OsX/ihnm5uL67XVO7WYTFIcPKqQHYAQsclZ3WQ2ssx9euCR7k/S08JBClS1Y24sGos1LykBaedU1IOoqEs6LtcHWPSztot5mXxWzixGWncNWVcQKZI6W8vSrLYrFDtgPG0qEZeDp3XOIiDh+iFzGOYiVkyUI6jGrecMNHOKeuRNusQZcyEEzkCQO4jKM2LI87FOJ/WFykILm5opcdkb5LX6FF9bP8zz69O8tjXBXG2Y1Valw+Ik95+24UtHU7m5Ep5o23y7vLyk11ZK4rXSqvLK2hSnG2NsqApKWFg590QjWWwP8Mb2KEoLmqHNXAxQR8c0+MphuVXi0xc/f9Xr0Vq/ZVP+3bZXSslvnn+Sk9tLmBgB0ApdrjT68ZXIbdtKqfsb6cGTM6a+sjLEhcyxSPT1VuLvYffovt2HG7XUu5noJii+5z3vYWZmhrNnz/Lkk08yNzdHEOwyXZSKO/KPKG41q3yrmWrf93nhhRf4wAc+0FsmpeQDH/gAzzzzzJ720Ww2CYKA4T145d9oHCimumtrV6/Xdx2Rh2HI5cuXuXDhAlJKZmZmmJyc7DU2+6lv3mvs9zHvKs3mLl/x1zMsJ+RPZ3d11XFwbUlDK3AoxBKcpACjSoiYmLXkdNHJzsYlSxKm2EJX6ogRB16rn6MV+pTsGy+Hm47rKQATKs3ZlWQCYDix1rsCjcDOKXSRraqWdo4ROPbVBx06lIlCKOkp90BZ2LGOe6U1wGisCIy/SwnBds60/5nmGCZnLO06YeZ5O7YmUAInBqJcS2XWy7NRi98Gx9LUVAFlBMVSm7CeBPvG2VnfOJ0iMB0AYqVt8vKs8ZrJ46uW7t1PGYBKgZnd9NRp9lpWwsR97y3PAdDpAZfSEitVMTOXmRE2bWNod3XPfvTOnPPGwBgsDEbDXQNZ//R4+MbaxfYyklr5SmaSByNZSBLYeJ4Ljs9Ko8Ki14eWFm1tJzzVbcvgKxIJyt3/ayuXc7URjAGTei+DwMKyDW1l8bnFM/zdWY21C2P5Vss/hBBcbq3zifkn0JjMcw+NxWKzStUGSwaUbB/Xir6PLANdwHKSso486Zwy6YRVwXawCEDFGkeZYyjz0H5cYnS8W5Aw2K1S6bouMzMzTE9Ps7y8zNzcHGfPnuXIkSM9fWxe3Igt6kENc8CY6i6o3t5OVjAuFAq5+G11dRWlFBMTE4nlExMTnDx5ck/H/Ef/6B9x6NChBDDf7zhQoLpSqSCEoF6vMzKSnDLzPI8LFy5w6dIlKpUK99xzT65W+laB6v2Ufww7QwzaA2yGSdajpuqMuYPU1WZieSmHmLc7ALripqrvGUkhhWzqvqG/FN9W0/AdCjFQIYWP0XJHlmGgHVqAC8IHofnUpT/lp45+//Vf8C5xPUz1udUNgpjwW1R8iDk35DVlQWjhOsl7YaVWTJf2jorEpEBerlZ7J0ItsWPM2Wo7qatWu3jYpsuVv7E5iiecXMmOFOAFFiU3Vao6sHGsnXdAiEhDvTNwioB2dAVJF4hu2FJjDKy1yoyNbHF5uYjVBuUAVvRf0TY9H3XhG+j0sbne0ylUrzyd+DsMNVYTVDnaXqfaZxF0gHwq4rjH6vPQMgugM0mKXAeAzglBViYQMcsCRPRrLXBZb5cZL+9STTNwMFJGFSVzBs0Qaa5dq5X9IRWhkby2Ps5MaZu/OnKaIbtBVXq0jENDOdRUgT/bOs5aUElaD4q464+MZj6yFua92A49/o/Tf8A/vO8HMufQBVJvFTvZBfD/4JX/i9AYtJa5gymBZDuwAIcNr4wlFI4IkQZCWhQshWsprBwNv5PjDlKKAW9HFBl2DiMp8npN8nq9BtT5O8duvuhLN24FqO72pd3jCiGYmJhgYmKCjY0N5ubmeOqpp5icnGR2dvam6j0c9DDsIj27TaN7KdPT04nlH/vYx/hn/+yf7fvxfuEXfoFPf/rTPPHEE/tihbxbHChQLYSgWq0mdNX1ep2FhQWWl5cZHh7mkUceuWqJ1VsBqvdb/iGE4K7yLC9sv5T5bcgeyYBq1/LQRmQARORXnQTVedXY0lPf3W0LCSNgQ6glyki2/SLbXgGDRGAYKAhsy+PJ9Rf3FVRfD1N9eikp/SjfVUuAk7zrTksmjDHIa2mutUSkrMzS1RnTTHZaHrJtdhoET1n5Wh0AG5SOEixDLTnvDYEE21ZonZWhBMqmlAJ5KkdSoJRIMOuWNLRCK8FoW1L3mFMholu1FZQYcVrYLQEhkfbcgGMLfGMIO/1pT46qOvU04hZ+QmB5ZkdXbUxUdyN1jlY7AtW5Vup5Gm6VlJ7Y4x5S58zqKNmTBHUjz9Uh74nkMtypWYzAs3FKyW9OGcGmX9oVVG960c0QUtAKHMpudlo9z3veSSXOVT2f7xr9Og9WlqlaAaERbIUW/TF7v9OtYQacOr928b3E76IldKL8eXIo2VnHMonx0JfWTvKh1ncwWRpMrJfnxvFmhtaaP5bnuNLeIP/MO+ulBkrKWBjjcKGpgWjkJozBFiGWNYIlDH22S1s3cYSi4VewhM22ryhg44uQifIwy57PdujzYP9RTjfmOnuPjnWsPLlv13mrQLVlWbkDpK4jQ71eZ35+nmeeeYbh4WFmZ2cTlYnvyD+i0IiM9/ntHN1cjwsXLtDfvyNJ3E1lMDo6imVZLC0tJZYvLS0xOXn17+SXfumX+IVf+AX+9E//tFc59c2KAweqK5UK29vb/OEf/iFKKQYGBpicnORd73oXlUrWjiwdt4qpzvNKvZm4q3QsF1TnTf0LYWj4TsJbOVqe3W9k/xV5znqhRRD2sd7uJCAJgxQw6NrUfZ+6X0AZiTIimv7UFs2UJKEoXdbbkn7HxrgNPr/yIt8z9o6buPKduB6m+tRibHpdKorDOxSpNiYBGKNlWa1qmpWGLKsZhDIhnwkVlN3kftL62fRz8C2bVuBQcgK2vBL5EC76Hja9MiOlBic3JlAdb2ApIs/ckpvUGuexq3nvQJ4WLlQWTswazpEaLyYrstAoLHxbghBIZTAyQsOhAtsTGAdUccd0xGmY3Epy0t9JVty1NLkBdpF57KqnjuENayBrpQe5hij5ADqdnGpMRp+tlMR1dGpZdiBrELtWyISOZV7nJFphPqjOi6IdEijJXe4G31a6hF+xeFt55zs47w0yU0gONrUwvLtvnj8v3cN8sDMbKCXo0CQkIXmhlER2WP0tv81Hv/E7/Od3/mTyGKnEwTc7LjbXeUFeoQuo8zTjGJNpO40Bkx5sC0GATdh5rE0FWpdxE/t02PAtnIJFredWJbBzbt1BAdVXi2q1yoMPPsiJEydYWFjgpZdeolQqMTs7y/j4+B1A3YmDVoWwey39/f0JUL1buK7LY489xhe+8AV+8Ad/EIjaii984Qt8+MMf3nW7X/zFX+Rf/st/yec+9zne+c537su5Xy0OFKgOwxClFH/7b/9ttra2+NjHPsb3fd/34bp71+neKlAN+6sjvKucr6te87dyl6f9piFe8GVnma8caq1hVn3TkR1EP/qB7BVK2A5Bayej8SxgkRbFtlQE0rcDiav6+L0rT+8bqN4rU62U4pWFyzvneayR6Fijjz/tjiJxU1P+JrQgBrS1NjkFO5KNYqQp37knxpgE6AYyzCgIFhv9zA6uUfN2L10OsO0VKdk+V1R/4tB+aGVAdR46zEtWzGvW0429YynaMQcQyzIoAy1hI6setJPfpJEGpyYwslMExoDVgly5eOz25FnoQSfRsGZQpdTZ7uZPrWOOIbYCx2Db2XYgr3/PMNfGZJLSlM6+Lyq0IAWqdwPoSkgankulkL1gz+wU29nNei9b7RFmnE3eX7rAXaVNAObaSTcOP6XtXwtKTLkbSAF/c+qr/PzC9ySApjA7FxABgKtLOITUnNxe5qmV1/n2sbf1lncHwm8VmPqFuT/unbfWIjPQic7FZKbeDTGP9U7YwiHMOLDktB8kJnsAaKikPGfE7adqZy00bzTeCku9dFxPifJCocCJEyeYnZ3l0qVLnD59mtOnT3PPPfcwM7M/Xt23c2gjEknbt3vciD78Ix/5CD/2Yz/GO9/5Th5//HF+5Vd+hUaj0XMD+dCHPsThw4f5+Z//eQD+1b/6V3z0ox/lt37rtzh27BiLi1HOQrVapVqt7nqcm4kD4f7RaDT4d//u33HPPfewubnJt33bt3Hy5El+6qd+6roANdw6+Qewr8c9UjyEK7LXvh5u4OT42ZbSPnBEbGM7tHt62PntKc7VRrhQd1DCIg4B0h+IlFl/0SCvzrQwyI7jgK/htc0Gv3/pa3u5xGvGtZjqIAiYm5vjS1/+MufWd5IlSlPJJKO9srUiBUCD0M5sm2ahs84fMsFyag1ODrhb9aIGoaGu/n43lcvrm5M9T+xu5CVO5elI037ZkH8+eQ4g8Xeiu2/f2MiRdqbl6UovnC2D0GC32d1HTrDjV32VT0Y2iWrIx6IQkj94iO3HnmxFMpMcpjqtR9e7AOj0qed1IDrMLrNS70eouuchWGtmOwEvtCLGP3bsvHAsTavjJS3RfE/1LD/Yd7oHqDfDAkcLOwPulraYLiQTdy8H1Z5041hxg/f2zSV+T8p08qVD6fck0Ip/9fofJb7Tt5Kp/sylV5j3djxud28tss/KFlmw6OVUri2SbW/T75bAsNhOzgocK0/tejY3ErfC/eNGSpTbts3Ro0d5//vfz4kTJ3Bd9w5bTWdm5ID9u9744Ac/yC/90i/x0Y9+lEcffZSXXnqJz372s73kxYWFBa5cudJb/z/+x/+I7/v88A//MFNTU71/v/RLv7RfjyUT+9Jq3aoKN5ubm/zcz/0c09PTfOpTn+IXfuEXeNe73sV3f/d372k6IS9uFai+Hv3vXsISFrOl/NH9eE5j7VjtTF0NY2C1VeH1jXEutwaphV2NW/ZryJP1pj8a3eF20uHHDmwQ/NrcM3x963JmveuN3e6p53m88cYbPP3002xubjJ05Ch+J0nRGm3hFOLPP2uJB9npfaWz2ug0kNLGZNaRqfuRLk/eDp1cbLmpIgbLT2fhpWJbFVgzWdlTXntWsMM0BsW2DEEK/LkdTXZivTzxcgJUd69bwIBB26lBlxTIMFLZF9cM9pbOf6no6qqJgPVV+lo7hMImSC/2frVyzlMbQiemDx72Qec4eoTZU9I5IHavDExaT22MoZCaPYhXMd3OKfKzmZb/5Gn/O1FvFRmyWvzt4ZeZtrcZjBWduez3Ja7tvDeYqIQaGsGwk8zS/2tjL1OKTRVkkjpz7oMlk4yvbWlWvAb//swXdrbrvFxvNpBSWvPvznw+cd15JekjAJAzCM1LEM45ZU8ns22NMZlZiyFZxTNJQH60tH/SD/jmlX/sFlJKpqamGBoa2uezuj3jVtvf3WpLvW58+MMf5vz583iex1e+8hXe/e5393574okn+OQnP9n7e35+nm7ic/zfm5EI2Y2bBtW3usLNa6+9xu/+7u/y1a9+lQ9+8IP09fVddwGYeNwKUP1mHHd7e5u+er6GXJJlN4XQNGN+yHXf5UJtklWvikqphGw7C0wi4JliX3K+GSfnlUuD1m3V5P/z0u+y5Tcz615PpJnqVqvFqVOneOaZZ2g2mzz66KO8/e1vZ7G9A2SKRxupQiwiA6SUzuqpw5yCHekOOgitzD1Js8MmNeXuB/kdUkO4GAPtPIFwLLb9cu6DSLOrEK3mB1lWyUtVyxMiuywaLKTZ6p2/bWl67LJwNfQFWb/qsLO+JbGbV29wpR8lI14LeAkETg2cWrRvk7ZnIdJld5cbFFZJZwY7kA+gc5MU8yQiOe4PTgpAB76dSXQNY4OstrQzdov1VIl6YQnaXj4z+HB5iZ8c/hqHnDqbKQ/zvpSOxiZ5bnPtIfrtJDjstz3+6sirvb8zbUAOvhcicrPZ2caAEfzm+a+w1IpAe1c28maD6n/xjT+koXeSP3WOtzhEzyDz9Az4KRAsyHeLcZyctiK13lQ1CxyHw8pVZ9quN243UA3Z2c5v5bjVAPibBVR/s8dNg+p4hZv777+fj3/845TLZT7xiU/krv+bv/mb/PRP/zSPPvoo9913H7/+67/eE5tfbwwODvJ7v/d7fNd3fVevAU67f1xv3CpQvR8OIMYY1tbWePHFF/na177GjHMkd73tMN9FINQOSgsubA8wXx+ipsDNioIjfWyYs0wlP5Ic/IKdI5K1bIOMv4pCE2jNTzz/6ZtqVLtMdb1e5xvf+AZf+cpXCMOQd77znTz88MMMDEQa0m6Sori7hltJTd/mXEMegM6ulmWls6Asu07a5zpP6w5gpGStWSXYxU6vG63QTgCzbti2Iu91SxeegW6FzGSk92lJQxAmt027wnS3sGyNHguwvKs827yXJx4qvxDMzu+mJykRQmD5AndFk6eWkbHS6Na4jxD5lUJzExxzkGOey0carAWenUmIU2EO6x17s4wQrDeTGtt2uloO0PSyjPb7K/P85KEXKUqFMoIjhR3WecUvM13c+XszLDBd2Eye2y7CiO8cPMNhN1pXiuQ15MlnogtJ/mlbBoPh7375k6ytrb0l2t+F5jqfW3w1cY55vvOwC+OeI/1wRCHrFpPzTIsi+3wcmd1f+8IWX/7yl7l06dJNz2JqrTHG3BKf6uuVf6TjjvQjim5FxYP07yDGTbVc34wVbm5npvpGG06tNYuLi3z1q1/ltddeY2hoiPe+9738hbvfm2vBs+Sv4OSw1bZwObM1yrYq7fhJowiD7D5UDvhKjzylzBr3+3m6arL6UseCC60N/sHLv5+7/l5Ca83CwgLPP/88tm3z7ne/mwceeCCToHB6aQ0x3cT0KTZbRdZrZbbbLnXPIdR7+/DTjHMQWDm6yWQEYXadjD73Kkz05cYAJs8yIBZ+YOO3s52aEOD5WbPmvTZ0uQ4gqUGDkyrV3C3dLCWIisqwddqJafRdMnroRAiuqqe2QjKUsR0I3M2rD9LssYiNzUvQzFOjpJ9fbiVF387YF4Y5YCsvCSm91kbMozxQMtej3E8Nbr6zepZHSou9v8+3BxiI2eRd8ZPfwyW/LzEwWA9LTBU2MseB6P08VNz5LS5fiu5h3oxI6p23oqqsl8w2//aFP+bll18G3lyW8me+9jvI1FRJnqzNGHBzcKhjssC41s7mH+R9J24OIG+pduJvS0j+6vu+l6NHj3L27Fmeeuop5ufne8VUrjfSftFvVewXO34HWN96/fM3g6b6doibGkJ+M1a4qVQqNBr5TOxe4nZiqpVSXLlyhYWFBQBmZmaYmprqNWIODlOFCS57i4ntDIZRd4or/kJv2WqjzEq7ihFhDttiYTvXdorIdYVIwfrQ6Fw2SKETHLZnPDAWX1o9x38++zR/56735uw953jGsLGxwfnz56nVagwNDfGe97xnV+9LYwyveAuYIz4qkFjCEAJh4GKMoeEVaDsBfcV2zxItDaC1ziYgRgljyWXp7VQOYE9raq8a9hGEyHdz6YaHlSi/HQ/fdyinPJHznk3elHjWkQRM6vV1HUXbTzqAdK3GhGUIDoeIzZ2nroog2wZhCRACy9Oo8i66ahOVO9+FyEeEZFw+hDJgS9xNgz/YtakA7XalHxqrErnRZGQ5JidJUZOxyQu1lXFvCUOZTVXLYz/T75USmWX1WEn6zWY5F2zEi/68tzLPu8sXGLACul9oO3VjRuykzKovVSTmsl/laCm/cMxLjcMMuDuAMM7cSxm5AtnpiqIyWaRGik5lVuDP5CW+b+ABVL3Ol7/8ZY4fP87k5OS+Mtefufwqc/UVSm6cpc4+c+j6vOfkZRgv0+Dl6bHzZFa2bVJjDcOSl0xSPFIcp+gUmJ6e5siRIywtLXHu3DnOnj3LzMwMR48eva4k/Hgp9rcy9gNU3wHUUURA9ODcizug+k2IN6PCTV9f3w3rs+H2YKqDIODixYtcvHiRQqHA8ePHGR8fz20w7yrPZkA1RBW8urHeGGKxVYiqYgQ21h6AXW755m4luFiIjqd1728BtnYJ0xpOSyeq8gkBVdehHgT8xtwzPNg/xXvHZnc9H2MMq6urzM/P02q1mJ6eRgjB6OjoroAa4E8unqZ1qIExEpHq/CMjLEErcGn5Dv2lNgUnyHhW59nr5Z1fxkkj1UCqUFAspNnd3Vse4YxCuDuotrWNkiIjy+hGWp8LYMvsu19ID6iISphnzif9t0hOqTuWxutsZjsabyLEXnGhy1ALgRVodEf6YandyWgriOQf18jTzJyhAAjAaUFQAuGbHkMuh4KIUTZZVlqFAttJPgtlBHaKiU1r4qOj5px/5v4Z3EJygNP2HdLF+UJL0g5sik5IzS/mt+CdZY+XL/D9/aeZ94YYtqP3JNCSmZi044pf5XCxnvh7yt2RgigjGHJqOQeBJb+KsQ1D7IDyzMDARF9RPISIXE3sVLGgUFv4JuDfbDzH3ytENmpnzpzhzJkzzM7Ocvjw4ZsGaOdqq/z8Nz5HxXEwsdGmNgIn50EpLTOg2igLYaWlXQYnVV3VGJOpuGo0NESS9BlzB9hSyZmAozF/aiEEk5OTTExMsL6+zrlz55ifn+fw4cMcO3aMcvnatntKKYQQ39SWenfi6nHQdMgH6VricVNf2H5UuPn85z+/rxVuqtXqbclU7+W47XabM2fO8PTTT7OxscH999/Pu971rqsyOXeV8oFoozPdeGFlmMvtQo82MjmyjiwAiJIV06drWwadshBxcqan83TVQoKtk3KEwHjRFLCAf/z1P2CxtZ3ZTmvNlStXeO655zh16hQTExO8973vZXZ2Ftu2rzpQmaut87GTf4wREqOyFQZ1fIpeCLbbJTYaZdqZZL5rs45BaGWAWprZClNJicbEXTOyoVSZgtwdVY4UxgBBtbDLgDWHRXMdlWHQLWnwU3KFQp4DSM5AK/n7TjKj5Wh00SBT4vz4ka/GZMgAxG6aapOjfzY7zLUQAqtmEIHBjum67fFI+iHTNjhAnvtDrpI+yMtByALobJKildFY+34eGBGsNSK5RnsXTkTYmofcK/zl/tcB6I+Jz882h6nGivSsBUmf87VU4uOcN0i/nZQmQJRz+oY/ihTQb7cRHVmX44Qp2UZ+xxnvULtzWWHnVZ/3VnhGLzMzM9OzVVtYWOCpp55ibm7uhiUQp7eX+d+e/T9phh6+9vB8i2bbwWuWabbd3EGmk9OuFnI00WFOErIKZUbiZKlixtt6rJAtzZ1X9EUIwcjICO9617t4/PHH8X2fL37xi7z88svUavkDn25orW9a23wjcYepvhPfanFToDpe4aYb3aTD97znPbtu94u/+Iv8i3/xL/jsZz+77xVubldN9dXkH41Gg9dff51nn32WdrvNo48+yjve8Q5GRkau2eDsVgRm2V+D+lG2ZIF4x1ewsg2v7WhUjqdunq46nYwnpM5oIz2d3yl6KZRmhKHQSeBp64C/8/xvozrrKKW4ePEizz77LPPz80xPT/Pe976XmZmZXudxNZvCda/JT3z104RXcabNG0gHymatXmVlu0qro1XOkwWkExDz/IPTkpF0px4GMmO7Fo9mKBi2xnf93RYdL2ujcp0Y7NwiF+C3s1rrPLbbS4G+iJVLsZKxQ0gBXUm9JSPfDHUkVdUxdpt0HnXY3W8A0ghEkJMo6GepZhGapPOHFBQ2ds4HwO6LwGd6cANg8txSclC/ZWfZSic1+5AHoFXOMfPcRgC2/CJKC8JdLAcn7W1+ePjrSAFrYYkJd4dJVqmXetyJu1/AWIqVzrm9ALzWmuy941IYBp1IHhJVVtw5791mWoyBRtthq1FkdbtErVkiCBzabRtHF/kfwRzbfgspJYcOHeJ973sfDzzwAIuLizz55JOcOXMG39+l8k9OnNxa5Eef/iTNQON5NrV2kYZfoB06NDQY5bJRLxHGkq2NAZG2qAHCtM6JXVi3HG3ScDHryOTKbJt79BqVFAcGBnj00Ud5//vfj23bPPPMM7zwwgusr6/natFvReGX7nFvBZg/iGEO4L+DGDf9tn+zVbi5nZnqNADc2tri/PnzrK+vMzExsedS6/EYdYbpt/vYDpOd5bg9y2ueD6nqX4H0ETG9YzfC0MLKKQRyrTBd2jC2Py2DRPW1buTpdB0b/A7RtuRv8/ee/x3+6cS3ceHCBVzX5a677mJsbCy3w9it+Es7DPhfn/mv1FTETBpjMlZmUYdKZlk3fGWz3qpiewEDJQ/XVr17FigL29qdgYVouriQngFIrdT2XXLySXtxpdbEamvY5ZXwVQSOPa0YdQdZDTYTv9uuIgxFRvMahBbpOo3Kt6CYpIZDk6wGGWrJZquIkDv6v8C3qFRjXsbG9BwtLKkJxwROrEK8KgqE7khvHIH0TU/z3A2hd5L6LB/C1BjACbLLZJjdD1JgtQ1hFUxfgLAMWgm2mmWavktfsU216iFEviVe2qBEK3DcNIC2KRaT74IKLCikwXeObGQX94ymsCM99S6g+gODZ3rOKzVVZLLjR93WFsfLOwVdLnj9TMdcQM57AxwpbLAeFrni97Hqlyg6WZa6rlxqxk1IXwbtFhtB9CJqLbDo5h/E/Mnj19AqEJpskRyDZNuPZGQ/+MQn+OR7/xYz1UGEEIyPjzM2NpaQQExPT/dqJOwW39i4wk88+1so5dDWWbNxoyEUUUnNjXqZwUoLx9YESmakXsZAKLwMG5VX2rzsWJm07P6Cy1pKnp72sYa9F34pl8s88MAD3H333Zw/f54XX3yRSqXSkwR2SZdbYae3H8e9Y6m3E3fkH7dH3DSo/uAHP8jKygof/ehHWVxc5NFHH81UuIkDnniFm3h87GMf2xdD7tudqe7a4i0sLFCr1Th8+DD33nvvVXXBVwshBHeVZvla7ZXesjFnnD9b2uK4NZAZLhqp0IHEdlPdQU7blpfAk2ejVbEKNM1OxyEk2MYmTHnhWpZBGBsVA2oBAUpZkWOEgJdrF/lP7ef4yP3fdU2mPo+pNsbwwS//3yz72zsduhIIN3neWglyXK5IgwM/dFhrOGw2FX22R7Xq7aJVTslBfIeik+xM7VQXHIYWlpv/LgojuOS1cpmvbqx5O/vrt/sz6brs7QABAABJREFUoBqg7blUU/7DeQ4guVUlA0lNF9jyCmz5RXxlY0KRtMPT4JkWw30RW2rZumfRZ9uKwJUoO8Tq+F4bW2A1DKarc/Y0OmW/YLU0ogNrpE9mUGECHdnHJBbmCWYNQgvshoG72wgB9VoBJITGZqNVZatVps9uUe33iX8EYWDh5gBou5wceOgcl488nJDR7RqwCvnP3kjJYq0fcqS0dxVWeLQcVRTTBkbtHQR3rjXE/ZWdEcx2p7KqNnCmNcz5oMwVbVG0ArB9akGFPifkxeYUh+0aE27Urr7amsp41Q86TegcKpOsGMqEftoPJJ5vR7KyxGOJnmqn9AvL7QY/8Oef4Off/v38T0fui5Z2JBAjIyNsbW1x7tw5nnrqKQ4dOsTs7GyGdPiTS6f5hy/+IYHRgMZoQ5oYNqFAdPTyxkg26iUGKu2OdC3ZRjkUCWVyoKF1Xkl7g5FZJn1bpfsmw7Kf1FNXrCKj7kBm26tFoVDgnnvu4fjx41y4cIHXXnuN06dPMzs7y6FDh24ZqN4PTfUd+UcnDhq9e5CuJRb7Mi/z4Q9/mA9/+MO5vz3xxBOJv+fn5/fjkLtGl6nuFhC43uiC6hvd/kZDSsn29jbPPfccvu8zPT3NQw89hONkp+KvN+4qH+uBalvYLGxXUaaBvwsL4JgChiSdkidDsG2N0iBjzI9laZROFm4IQ01aRi2NTa4thZYgI71uGFoEgYVjbLwY0H5CrdC3+Cp/f/AvULR3vz95TPWHnvltLrY3k/rp3fx006FE5jp6PxmLzaDM5kaJku1hW5pCJ0kpSlhKXqvJ8Y5Ol/82OskEx2NAVFHAuabH8V1IuguNnWcoTD7lnSfryGNI47pgrQUrG30s1SuodHl7nbpHAta3S9iWor/sYUtN0Lkk29GIQKAnAqxLO02RDA2qC6pzBihxrCJUR9oRsxbMsxnMk0TLwESFZhoG+gNCXxIEFjJ2qzSSzVaFraBMyQ7oK7cploKIbXbTzyuvvcg5/5xvyU1prL22nbteNzbbZfrLWUeO9/efZaTDLi+HVaZj0o94CRNtBH2yzXP1SZT0CYxgqLDVGw+t+hWmiluAoM/x2DAuVxqHqAg/t/jToLNznOj32PPQAqwuaIVaowhErFvGlz0QyA7AFQJsKfgHz/8Bz61d4KOPfHdi3YGBAd7+9rdTr9c5d+4cX/7ylxkfH+euu+7CLhX56Wd+j6+uLyQfwZ6adMlmvchExUKJWqKtUJpMGxCGFoXUACjPMcnBYc1P5oUMO33UUsnGR8tTN9z32LbN7OwsR48e5fLly8zNzXHmzBlGRkZuS/nHW1EE6LaJA8ZU5xIdByAOnNhpP5hqiLThb8XIXinF5cuXe8med999N5OTk/t67Hiy4og8wavNaAp4STeiTib1bltCkoa7tqPQigR7K0TUobgxVlsIUCplo2VFNmXxA/mhypU2eKFCqwJeuHNifnfbzubNMOS3z7/K7yx8nb84cRf/5MHvZLiQpe3iTPWfXDnDJ8++wBuN1SSgzpF+RBtnF2kt8teN7w5BIyjS3CrgougreRScgGrK2SEzQ2AMxULyrodm9w+0IquAx3YQMmyPsB4mLbnKssya7/UupB7ka8vzGmknx+2jUAhQClY2+ln2KighMSILioxOLRMRq7683odFcnAhpQFj0EMKYoY9cQCcU9sk0mn3DEMETl3hD0YrRnKRFHhQJmOvByBVJHvV/Qrb0mxtlzoNfXrKP3IwaSmXVs3F3laUHZ9CMUi8D3l9v5VJNDUZAB0GgmIKoPu+g8ywn93zgZZy6E8NfB+tXGQyppFuq50BZ0M5HC9F3/0Vr8rX24OMFDcouJEsbL45TDXmXe0ZOwFmLAFYmldaU8yUNjPnNOQ0e4mrtqUJtNyRp8RuZ6vtEHZnJcIdsN2L1KNr6wCtBZ+ee5nnli/yd+/9Nv7yzNsS61SrVR5++GHuvvtu5ufn+Y9f/GN+y7+ET5j41o0xuZIukftNCxbrIKhQKfqUi0GUb6D97CRIzjdUlAVMqhU9VBpmoZ10Yhov9FNvJUF1XpLi9YaUkiNHjnD48GGWl5c5efIk7Xab06dPc/To0Rue+bzeuFUM+UGMg+btfJCuJR53QHUqug3Am90YpG3xhoeHsSyLw4cP7/uxpkuHcYTNqDPJn11ZY8evNuSQXWVVJ++Xj5+bwRoENgUrDbiuPdrUUqF9K8G8KRlmSF9joFkvRDZisd0aQAqBToG1gmXzp4tneWJpjncOH+aRoSmOVoc4UR3mWN8Qb3hbfHr5FK+f+zyBiZLopEj228YXyFKOnjqt9czpfPPWQ3e12AIfm7WWjdmAatFnoOhRqUYyg4w7iGdTqqTu7VUYdKNdIJJtlOQwkATV/fYwcZZ7qdXKHcTksdJuQWUszzZrZS5u96FtawfQ2gajktrzXICiJNiwuD7AoaEtDAYhI6BqC01oW4T9AfZ2BALjCYrKFZE+oQPQRJgVu8crK1otjS6m5CI+WT11tLfoP8faeG0Hra3c1O1MfoGw2GqX2F4tULYC+ooepaqPnWOp5qQGSoGfZTXDwM6w3kpJ5C6zFEHbxrdENMjrPD+J5rsHTjJb3Iz2aQSTMfZ4rj3ImNPkVHuAamELJVWPla6HLpOFHWC36PUzXki2CZ62ONceI/vVRtFvt7myMUi3bLulNENDjUi21TlHraHe2AFz2kT6+TjwlZbB6OQjtmyDUnCuscY/fPEzfPSlz/GXpk7wDx74dibLfSiteW1ziZfXr/DE2jme9i4AOgOgMSJT4MWEZOQgEFVMDI3BIKm3i7Q8h/GqwLaz+Tp5/tSOEKTFH/1uEVIS9aKVnWm7VpLi9YQQgomJCVqtFouLi2xvb/Pkk09y5MiRPdvx3Uzc0VTvX9zRVN8eceBA9c3KP7pTZG+WrrrdbrOwsMCVK1fo7+/ngQceYGhoiIWFhZsaDFwtbGFzonyCLy01SYPgPlFileRxja3QoUSmp3lztaA5oMxKAWBAKAtiiY6WbRBGYmL2EM2GizaSEgI/BShcYdPWQeL0WypisUKpeXbtAs+uXYhOs7vLjh2fLSUgQairTql3I09PbUKR8QxGkVmmUyAhOg2LuilQbxWQzSp9VsBAoZUA5dqXGW1wpSB29Wmux4BkM8iiZYsysJOcerld51jBwTdJxjwNBLvhew522ScMJQsrQ2zpIlpLJJqi9Ol3Gyy3hyJJTPwdsLuFPXYelIhgNEYIrmz201dqYXUGMrajCQMLPRFCB1SrAlhtE9GjslMEptQBa9maGxghe8BbKrI1O/MeudlhxHWfptmO7mFucmBmmYkkAELQ1C7NpotVD+krBFQrbdwOaA48m2IpzUpnQXWebOQqhTTxPQdhC9oNl3JfNLB6b985lLFwO6BxwRvi3g6jvBUWuBIU8O0mA8Utlrw+pmIJiqt+lenOusaQsYFTRnC6NYllgQ7zZzwcqRlym6z70Uvshzara32MDNd7VouNZhETG7VEkmUBOfkM8XZFdAbC3SVtHfKHF17njy6cpCAdWipIAmhjKDo2vtnDINXsqLjj4QqbkJ1vRRmLtZqDEoa+skehMwjK86cGaAYt7BQZ3FZZjXX6e4T9YarTYYyhWCzy6KOPsr29zdzcHF/84heZnJxkdnaW/v7+fT8m3HyZ8jvyj1gYcbAkEwfpWmJx4EB1X19fVAmv0aCvL+v/ea0QQrwpyYr1ep2FhQWWl5cZGRnh7W9/e6Ihe7MTJAfEfSx5T2eWB7tYzrm6REiSlXFy3ha741ccdyIQUkVsU6wxLNkW7XRionYIrQgUBL7E61i5BYrMm9nWIUaJbIEW2WW2OhpcI0AIVHQCAIQ6WsdgYbSOtLwS0AZZ2BsTos2Oo0FvmZJZD+9QQnpZrDPXQrIZFNjSBUSzn6oV0O94FFIAQGvQ9m5GzLDq7/x2oRFQTRFOXpj10h51h7jsLSeWWo4m8K2Ma0UYWGxtl1ioDXYq9BkeHz3HuyfPMVhos+GX+A+nvisj9xACTCAgRsDFAY9Gsr1ZZsBpIm2D5SgIHExJo4TCMhYIgQx3isDY4Q7nLv2sbYwQAqehCfpE0jav+7vOCmFlW2Fsi9AN8YTsdFgmo5c1GtJVpeOJbb37pRw2A5vNzSIuimrBx7UUlK49s5PnerNbgirslINv+w5lPFwR8v1DryFiWhljJNrAi/VJ1oxksryTDBeXhbSUzXgMYF/yBpko1mL7gdebU3TJRsc2NAKXipMFiKPFWg9UC2kIjcXKeh/Dg42o6EnLzbD+OoeRz7G2R9qGMASMwDYWIRpNNLCOlCkWIaq3bRpQRw4/2f2mBxDddVs6++21wxBh2WzULUo2lIrRTEAhNRshtMQqpJ+74XJ7jXSs+ZuZZUdL+w+q4wmD/f39PPLII5w4cYL5+XmeffZZhoeHmZ2dZXh4eF9B7M0w1XdY6mTckX/cHnEgQTVww6Aa9hfgbm5usrCwwPr6OpOTkzz++OO5U243Uqb8euKe6qHc5SuqSQeHJiKn/gXSDjNMbFQdzcKJAwNhUJ6NXdxZZnL8XtuBwraij6tRi5KXIALBec2whUSnO+DO4N1og9ECLUxmijc6gUhuoJWFF0osC4TSuH05yZI5fcreUtCyTKcxQGogYJRAWAYjIveMmleApmTeG6SIomor3nVolDfCc9gi5ER1GYnhYmuQrbCCheSKvzOPfLZW5/FqIWHNtdrOArWyzHcK8Vp2BlSv1cts4nLfwCLvGp7naN9G4h0ZdFsMug3W2znfmE7pkm3TWda5fiHZXi/TP9KMrN9MRw4yEFJ8I9rWmJ1qifHGV2iRe+OlZ6BsIrlI4lwMKq2xBizPoGxoHQsJdadwhwKRno0PycpmdmG+O2eIj826Z2MCKLcLVIs+1UobyzKdqqPJSFfdC3wLK8dDvHdKncvxOiD6Lw6coq4KnChG4LilbQoontqeZKhUo90c6W27GZQ4Utqx1Vv0B5gpRoBbGUHJSoLJk81JZGqgsuGXc0H1eLHO6Q4+F9KAAm0ka+tVLCfMB2t57YxlMvkbEGnpVWdmKr2LEBW9Mz7Yxb311tGAKbuuFBKVt4veayRohdCql7GFYkCYhBOMFbqdPJKdmCgMZVw++u0SG0HK6rQwRNnen+rC8cjLESqXy9x///3cddddLCws8NJLL1Eul5mdnWViYuKmwbXWUY2CO/KPfYo77h+3RRw4UF0oFHAc55Z6VXdt8c6fP0+9Xt+TLd71lCm/kXiwL1+rXTM+U4V+1oJkVrpnfDJqPwGhZ+EWr+2xS2pKW1kBOpDJjrLTOXZlH/GwtUWYKpltLJ3RW0KnrQnlrtKOiKXewWJRAiMY30a2DHZp5zjG5Mk38jtfkWKkjQFSDCZ5spGcKW9hRyx2E0lTOZzZKHFsJORQ6Txu5z6MFhr42mKrPczFrRJeB3UaBMP2OFf8C739nW82SUeYU6wHwCiHrj7bGMWQ3+Lx429wqLrdKdJiCE0yo9UShm8bO8cf1x7J3WciLAMqpnUR0XR6bb0UAWtjUEIQTio4F12T5WtoaMKKRNtxPXV+Ry+MwG4ZjJN8eHkaa4gAWlBWqOpOGfXof1IDILLJmPknkLNIQts4tFsOK80yZRlQKQY4juo5aKhA9KQE3fDaDpTy24KwbUHnfigb+mny3YOnWPQGgGgw/LXGOFW3zlCpxnZQ5EhphyFdDyq9Qi2ethiNFXu52B7iUGkLbWAzLHO5OYgsZC+sqfOdZEZjDLewwISRBM8IQRjYuQy0kbvlJiSTGENf7tgT7pJrYEy0w7AtsBy90x4Yk/mmIZpxkOnvlcgCdDvlHS2NyJmtFhhdYG3bpmBUJP0ph7R9RTHV1I+4fRlQPVkcZL6VlN69GdIPuDpjXCgUOHHiBLOzs1y8eJHXX3+d06dPc/z4cQ4dOnTDriHdypc3A6rvyD924o6m+vaIAweqhRBUq9Vrlm29WtwoqNZas7S0xMLCAkEQMD09zSOPPLInTdmbzVT3OUVmy6PMNVczv425AxlQLV3VsbdLA0dJ2uatZMmet7RRAuXZBL5NEFpYtsayNdLRWMrCxNwQLEdjqwJeO3t/HGVnQTVglETEzslokKGNArRSuVO8XfeGxDINWCLSpwJWB1jvVU+tA5BOznqpTjpXspI3BrF1D5c5MuDBsS8xWlrJrOeIkJHSCn/z+DLKSFrKZjsoURZDDNs1fO1giX62Ap800tv04+yZoSADKrLN7ETIcPESI24DRxi0iBJDd9YUaCMyZdaP961l3RvIHBbRcQDptaGWASUItU1tvYxthyjAFAx+f4i7baNdidXQaCcq2iJCk6un7oWU2G1FkHomlm/QOcSftgWtowrjmJ197iFJcbf10kDPGJOQjQghaAYuLeOy2ixTUoo+x8e1AwqjKaY6lDg5Ol/oVLvsvYuCvzH2IgY4XtykplxebQ2DFWB3zme5XeXuvmhWo6kcjhR3WOor7UGmSxHQ2whKbOkiW7USRSfkYnOIhnKZKWxmzkHt8hTGisk2N7GWFrlgWMj870bELPiKqoTfLU1uolmpPIBObxZDoAKJ9sEqKoySWIW9ExZejlNOmDOYx+zIzDxh4zUrDHoSaWVzY6ycEy7b2cHJXou+XG8opXDdq1SSIrLjO3bsGDMzMwk7vmPHjjE9PX3d2uhuf3bH/WMf44CyuwcpDhyoBqhUKm9pAZiuLV630M3MzMx12+K92Uw1wIP9h3NBtdmlk7RVkVAmGc+SIzLdvfYttuo2gbFQItKSSCMIfXZQiTH0CZsmQaffi2Qa0rjkJQq1fEWWKgdLdpOpIt2x8ewdkKMlWugkK6V3AUaqawMi8DyHIiBLqnMvUtppLcnURtPZBCejsuAgz6ItA0SDHdnBPYNLPDxykQE3W8nOUxaWMBQ6gw1baKrCo2p7OGKN0d6tvsR9d4ElNAITyV60QAqNIxSW0Eg0jtDYIkAZG8NOdTuTI7EItEUhZQ9XtT3uHlrmjc2xpANIHnhSseQ7CSIwGCkIlI0KJbISVaT0joW4r0TNkjTgbBu8IbACjRUk2fJ0WE0ISynP6jwGOTC0xw1h0VzzvNPPyuxRd03eu9CVxQhBy7ZpGRuxKXC8kJIdUikGFAse5irMXKisXqs9XVznweoV5tsj9FshK9qmZlymnQgot5TDkdIOO3qlPcBdneIvgZYMOQ1W/QpLQT/bushEoYE2cK42hlvQFER+G+jI/OWjxeTsoBAJVUw+I01UIEemJDBCgg4jbX8Q10cLKBgXP+WtoTXRwxY7KxoBYcvKt8HcZfbJaIFHVk9dtQo0TKryoU9KGiTYCAz4FepekYFKm2Il2mYrzM6chjorPXsz9NRwfdrmtB3f3NwcZ8+eZWZm5rrs+LrHvMM070/cYapvjzhwoFoI8ZZVVfR9v2eLVyqVOHHiBGNjYzdVdObNjIf6j/AHiy9nlq94+ax+EJqMxlRbQc9dw/L7WNqC0JIQJCUNWpgIeHbbcSHwTDTtnwhlct9CZWtkntRDGoyKpoYTgLpzDFTkKNIDiKHIf8u12NlWCNqeQ9HS+TKPPI12XuSymjka6zTYUpLx/k3+wqGzDLutznqCpnIQGAqWT1sVqFpeApTojsYuDnaVhoKlsTuuKtoYlJZUOttqY5BorI4zim9crBSGrqsCfalqcJrsDIUtFI+NLvDG2vg1HUCSAhwS918jMTWw+hR6UKHRSCRRzqKgsKkJi8SYyJzojLQKa4agz6DKEgzoQo6euqXZelAjiFmsaZMdxIVZd5dcsJx2QOleX8aMPOe8hSCwLAJjsd0qQKvKAG3can6S6shglSutCKD9vaNfxBKGLVVEWXVcGVKRO8DvQnOIe/qixNRASyZiCYlvNMfwlEulGODjMOY2CLXg3PYYxc6sjWtran6BPjcJJotOQKBlMo8CKFoh/U6L7aDUuTSz03HKzn3Kk2jldK7GQNiyydSCJ0paxoik3EvJ3HfDGIHyJVIaZDzHQ+UMhIASLs0UYDcGGsrLFn7Ke8YhYEd69+V6hWGvn3ccrnLBu0A61oOtzLL9tNOLx40kDHbt+MbHx9nY2GBubo4nn3ySw4cPMzs7e007vjse1fscdzTVt0UcOFANEVP9ZmqqW60WFy5c+P+z9+fBlhz3fS/4ycyqOss9d+17b3ff23sDaHQDIABiB0FStvhEDjXPlt97ek82ZVkaWRrHWLIipPGE7JjwEgwFYzz0i/dC9oSDHr15ETOSrbA0lhXWC2kYsgUuAAEQIEgQO3rf7r6etZbM+aPOUpWVp/eFuO5fxCXReaoqs6qyMr/5y+/v++PSpUuMj4/z8MMPMzk5eVMr8ttN/4AUVLtsobPFrlKF7TifTCIkxuWTaNVHaIRequXRGzMdE4ww+ZKQpIutruE5CaiYgHZB7bW7Yu9I9za8EJhQIkq6S/EoHmIMxXOFoFUPCGpxTo3BGAr0DRjCsXboWBdARJwPhquoDp+57xT7avlAQCFSkNLRHqH2kUKznfTeRqpmMqI6+FITJhIpYxSCQGq0loQYPKmRGJSMaSUeo6pNSWoSo/pZMJtxiVErTXnJ4Yksy2ICH4lhV7mO1EleKk0UFzM2ODUycy0BJpLoZrpb0NmXULkgMSUJHY0QEq+ZoB383n5bQtNXgPHrBq8ZE9ZkMREM0JlO0IH1vlxeVIcKzZWDFK9sUqfigjkrBLHCdlKmZlqF9kz6o3xYrwOCB6oLHK8u8lFrivGupvRCOMZ8l65hg+jz7SmOVFe40J5gIRzHVwkj5Qht6HLmFWfru/qAumfbURFUSyFY64ywu1JcjM+UtwegWpk0g1HvPXcBp21GmoIXO2l7mESB1MX3IoBEYFS6C6MSDy2G7PIl6TgRtT184j6wNlq4PdXW2g9IHQauxK2u8cdaOKxFCadXFVvRLI/uqXI5vkA9blEWPithHlR7QjFfmXbfx01akiQ3zI0WQjA1NcXU1BTb29ucPn2ab33rW8zOznL48GHGx8ed592KFOW9+u8Z4MrU9rG2nXQvA7vzeUvvgI2Ojt4WTnW9Xuftt9/mO9/5DmEY8sQTT/D444/fEhmiO0H/2FseZ1dQc/9Wmiq2qcer7lrY9thYGyOsVwoZF13jtW97mQT4dpfLCtBaJhypvAGUke59/f41BToGIrf3akD9sExLwnpAWPf63ngTO/jYSRFoG+0A37Eo8jC791RWIZ+Z/5C/duQH7KrWSaz7ibSkoyUVFVJWMWUVU1UdFJox1Wa61KTiJanygVFUpKaiYpRIUCKhqiIqMkKRIE1CSUS0tI9B5bjRngOMVFTUDUzMHCc1ic7fjBBQkjFP7j3neJbWQ7OCOoufi0BHCt2RRLvj/iVmx6rd4yXCKcmQmowHvwkhkEZRXil+wwZD/UivTZnrOb7fYbSogrkoJi7AZit6JIAl6Sg6klhJoq0iEXw2mOpX9n88+G3WdYVlXen/HojBV3m2satPIdIm7U/fq++nLqrUdZlqVzN+uVOjpGLe2dhT0M+GlPbjsnrspgDMlAc7hKKwueF+nj1edd9iSdJR6fHDhkTVXYhpiIZoZ+crEURtj3JUHtoUo6Fliot4EhdnheKO05DrTgRVllodvn56nQ8ujrKrM88+b1fhuP2V3SiX+/wW2K3yGo+OjvKJT3yCF154gSAIePXVV3nttddYXV0tKHXcbIrye8of9+zjaPc81Q7LgmpjDJubm5w9e5b19XX27t3LM888c8szUfVA9Y0mrbkWE0Lw8Ng8L668X6zfMZgLATIukfgtOvUa660UpFbtiDVIqR+2l0eZLkdBZIoEUZZOIUBSTBYD0Oxq0GbNJGBaMt1uD4ahcSCW+SC0rCVDKCFdIBlHPsmWIhiJMFoU+NQ6loWMiCZKveP5thaDFCuyw7Pzpzk0uoqXeQ7GQDvxiLRASU1VRRnwa2gnPmUR9ZUbYg3NpMSk32TUC4kNbIYVfBGRkOoPl0WHQCQY4VHzQjbjEljLoYqKaGtF2fJOh4nC8/LHdrRHVeZpCb6IOTF9mdfWDlnPMv9PoYDI9DMjFhZTHmAEuu2BnxCVY/y2x+65CZbfb4EQBK2EsDZkyNIUFkpeBKW1mM7U4Jz2TEKPxp/bGXDyqR31uBZjDt514XMq8G9BhA46RCygZKh4u0iyuduBRKf38ejYBWaDbT6IZhjv7jIshbV+QhdtYKzbT841JznX2sV0rUmFhEYcsLuUOhy2oxLjfoszrV1oX5JoUUjm5MoWCBC68scD0yUrWDEWg1TzVxjWTCLBT/Xtk4bfP9g3fi4JS7EhcugsZmIK9LDNhqZc9RBekc8cCI+Oiy/uanckCu/TGJyBu7EZjAuh1ry+1uGhcBdBqcKBSbgYnqelO7dN+QPckno3Yz05vvvuu4+zZ8/y5ptvUqlUOHLkSF+O7x794xbbPfrHx8J2JKiu1Wo3zamO45jl5WXOnj1Ls9lkfn6e48ePXzWC+kYtm8nxZlb3V7NHhoDqtbDlOBqSULFdn6CRmP7k0pKhgyJrICK3TRoLnQLYzLgaO1xP2rXNDmhlCBJJkgGwuql6FdLLmOhueDei0Qa6LupHz0T2OElnO8ALYpQNhhynOpuSCVKcKDX4xK6LzI9sMuJI6pJ0jxz1Q2QXbMcmVYwoqwgPTWwUW7FKFRCMoKRiWonPViyZ8prMBJtsxxVGZEikQeN39YRToFBTbRJTpKk244BykH//iSOln2ut54mEqh8x7jfZjDILTZf3VotBsKLq9pfeRbu6xojUY10/aBh/X3N5Y7vf1UpKOchAgEmDHgsLME8gI4FqJSQVRUJCZ1YDAmHrRV+jokchSNHFzXXwrkUoMYEd7FqkTPX+dbrR4umpKRY6GbWOZvqO/sbca3wU7cIgUI6dhnPNKTyh+e7WQSp+TMkfAMhm7DNWTj3YQmrOdqZpE6AkbIVlJsv5flD2oq7yy7WB7aynGtI1VB+mekWaR/++uzsbccNHZ3ZJksRgZDG2Ir0BhvO0oateZJ8jEO0S2jcoSxrUMx4dK27AGQMBbj51gnMhttQqzkXaGN5d2eaHK1BWkzw1N8HRyiH3fdwCu10ANwiCnBzfe++9xwcffMDhw4dvWqMauCepl7V7oPpjYTsSVN9MoKLWmmazyfr6OisrKxw4cIC5ubnbCnRhIDt0uykgw3jVF1prjPl+LpOYrnusrHnoEWviFyBDgba3rrXEWKBZGpnzQsfKpF7FzECpxECSz7aSCWiSggDTkuTyN8e4uY6GdLJNBKaXPbFrgVaEDkBgEooTsBHE7QCdJAS1cHAdF6BwjftCc9/4Eg/vusyuoNG/5VCrbqBXghSGSCsqKiTwepDREGoPj4TZLl9WmzQT3pjXIZAJoZZsR2XG/RaRkTRjnzY+vgypJ2V8mbDLzyu3KGFYDytMBvYCqtj4NAlIfuVUdpSp7kj/7Oxp/uziQ4MrOp6RIuMnF6T9oDfnSlKQLUl58SVoHDYsnW4wt6vG4modf6IM7XYBlakMn7p/+UhjfIkAgq2EVknSPphZUWSBmDbFgMSMIkvfhil62N7Jaw1SdJhQvUMFFb0LSEF1TVU4s7nJkxNnCJXqB/xKNAvtMea7acYvtca51BlnaqRDTUVcqI+zr5Zyd9fDCnu6snetxONCZ4qOGawYW4nPJPm+4UnY7BTBdsWPepnhc2aD6pQGc/VgRSMMSUuhLS11LQwiEgWaDAChSDPh+Enh270Sc0AlknbkgRlIaQI0o6g4nlwPn9qhPz/qlbjULFIR16KBuk87MXzz/Dp/69Du4Y2+SbvdXuOsHN/ly5c5ffo0rVaLSqVCFEX4vush3rPrsntpyj8WtiNB9Y1I6sVxzKVLlzh//jxaayqVCk8++eQNB3dcr/VW5Lc7WPG+kVnK0qdtpeE1wFx5mpPNywDEWx5rrQqmBMKxtV6VPnXLb1jyFG0LVJd9RdOWxJKKTmZLtKgrMbC4m9rRJKBDiyOdCLcXKRID4NVRkJk4kzbgSliWVQPJmgAdKzobJYLREKFMkU8NuUQwE6UGx8YXma9tMeEXA84CmWAwdBJFxYuRQtPWPokWeCJBknKYtRE0Yh9DCoilMDQSn62whCcSaqpFKwmY9JsY2WE9GkFKyYzXwBgItSSwFBoSh9enZgUqQhqs2NZeTuHBE4a2lT1TCAhIODC6nr+AQwFEyzwgvyIfwINoxNCcTZguj7C4Wmej3mZ+9xgX1yyKQUeDb6UhDzWmm/RFSIVqxES9eCpj6Ry7ZA9dfct1nIs1EoGxKccuPGNrmmuQmb75ysIGh2ZLNJMOe8rTnNtc5S/vfo+OSYdtgUGKdJG2nYxzvj3NUqjYM5KOfZ1EsSsjcxd0s5q2tMeHzVmMJcg+jEPeiEsOsG3YCKtMlfILtxE/ZMTr0OhxrgPdjSO4crAiAuKmGhL85xghDCmgFiKlgJQtZ8SwuAmgGUbgCZKWhzECrxojtCDJaMXnrlPoByD8QsgpJSELnu79tQneXl/KH4dksVNMzvTgxIy7wbfA7hQVQ0rJ/Pw8c3Nz/OAHP2B1dZUXX3yR/fv3c/DgQcrl68sWec9LPbB7aco/HrYjQfXY2BiLi4vXdGxWFq9arXL//fcThiErKyt3DFBDN7jqDiiAeFJxYnSONzbPFn4rydRrtYtJ3mnFfTeU6kgSK8Oba5EZq2LbE5EUgIcyimwEUiS1kxML0DIRQoNpquK+sRGpwkh2a9qA1HJwdS0w0cDDqIdsW7vAkYihi18wSDpbJfxShFez7jOGyZEGJyYX2V9bp+YNFhuxEYSJhycSfJHQ1j5KpEGFlW4qY20MkfaoqKSfJjrWgo72GQ/aeEITakmoPSa8Jvia5fYoncSjpBLqkUcsfKZLzUHSQgFbUYXpIB9bUHakiw9kQjPxqVopqkOtCrJpofbwLbk9X8R4yme+usbF5lS//oKcoQ2qC//OHNstbs/Cxc3BPcyOjRRBtSkCHFt5ZvNhMdhhsCUSXdn2hAvyX+MOxbUEKWoKXk0/VoSZc9tJwr5gPx+0PkKaEn/z0MuUVdKVNwSFZjWssqErtCMNqkVZDQIXl9uj7BvZAKAR+9RUh9WoysXOJJtxhTFL1SPwYqf32Q5a7dlWVC6AakgzKzbqXVCtgHbW2+tYmEC6+HXRNehuTtnymmFm4ZwIVCxJssGwFu1sUD74piHl8McGRiqSRDi4264pIBQYBwswcuwyVlXRQzvjlbgQ5Rcpu0pVpssjjspujd1pfrMQgkqlwu7du5mbm+PUqVN84xvfYG5ujsOHDzMycm33eg9UZ+we/eNjYTsSVF+Lp7rVanHu3DkuX77MxMQEjzzyCBMTEwghWFhYuO3g1mV3QgEE0iQwLlC9HXc4WtnLq+cbuZlVR0Alf2xTFHnVsdBpQFZmHolE0p3gBge2dVyYrERHYCpu0FLulGgZx3MR4HcUYXkAFEVHoI11UKiQfkISmUJwUfawgtkKFkIQNX0OTq5y38wSY36bET+kolLeaWRU3xvYM09oNAmJTrVyldCpBnXsY4xGSkFATFlGGCPoJJIESUkkeCKmGXsYBF43Yct2XGJMtdlfWWexNQoGtPQZ99qFNUfiQAQ1FdLRHiWrnS0HqHaJ83uy+B58mUACD09f5uK5jIqMRYMQyuQcjrnkIJCC3uwzV+npH45tMV/zCOua9W2LumIMWqkin9oflDRnNfFYph3WToMr7tYJyFxJRArUD1P0UluxBtANUrT6+31T07yzmc+i+c5KG39EMKHe5KGRS2yZAW+9oQMWonFqQbrIWWnX+vSLTqLYW93oNQkBXAonaCUB9aRCHKvCt+Apw3ZYZryUTzzk2/zzrrW1e0t/XObP762Z0xt3ngJtmaY0d820svu8yt3f+l7q3jUFumVgtPvzkAU6kFJJ7OyoHY9WZDC1PHA3QxQ+hCnS3EwCxhE4vd4oUj8qjs51bPz2SOkB/QD4O+kkgoGk3uTkJE888URfju/b3/42MzMzHDlyZKgc3z1z2D36x8fCdiSovhKnent7m3PnzrG0tMTs7CxPPPEEo6OjuWPuRCIWl90JTzXAI+PzUMxFQLsd8oOlhNju60O8R0HiEVpR9D4ekaUw4QtFlJmEdB+YDSoSesjC1YAf+bQoUhQAwkTnwL1xbvsKKmGJRhRiHLuPRlOc7E3Wo5W9kuDAzBqVUsSIFzKq2n1QViZOKRtJSuWQ0lCWcS4wURtDW/t4QlOVYQosu2UKzZjfAQytxEcJwZTfxGBoJGXGVRONYCOsMOqBUlDyEnyp2Ywq7AryXkMbJPesEZcpBfnvwxXwNqLCghpNyalXnU7a+0c2UCLp831VLNBBFlRjKYA4QHSc+b13vBIsPZAw+obh3MIGE5MVNuopcCsngtjCKCLSGC/tBBrD5n1m0Fyb+oFxvvuCood2KHo4eNeiI6GqC2VFOb2ix7bqF1d8lxot/sruSV6Y+jO0yEtJtrVPzU8BdWIEo/5gwdHR6S6GNrAWVWnrgMRIlqNUUlMO0XVuxn4BVFe8iDBRBPZOlGNOfHtzDxsmvwJPE+wMuOx2sKKJBCKR+R0n2zIUkLL2aVvHGiXShXnJ4BuPaMj9DRtn4o6EOECNRYNFl0PhA6DkF2lusi3Q1iLJGLjsoHkkjn3vY7eR+tFz1NxpJY4kSXJc6p4c3/3338+ZM2d49dVXGR8f58iRI+zatavglb4nqZc3YYqbbB9n20n3krUdqVNdq9VyknrGGNbX13nzzTd5/fXX8TyPZ599loceeqgAqOHugeo75al+aHQeac2IwsDahmK+WvQc6LLB5SguOTwugWPgLntWmYRA5xHrEIUuRChot6/wTBTpVjBARwxxO0I9jIue554ljr1+W44LQKdb5CU/oa0DFsJxTrZmOFOfZD2q0NIeBsO432aq1GLCb6OEppl4bIYlmrFHqBWeSBAYOjoNMEyMoCIjfBnTiD0acQlJCj424jItXaIiIyKjwAgOV1ZZjsYYDcI+PSN0rACqKqSZFL2JLm/gqNexPPypVzqyXowShtAKJpMipQj4UvOJ6UuDehyTosi+A8mViXUiXcQARMqwdTxt+4HpQR89fv/ewmmlTB2b95ncQqqvCBgKRF0hVz3YVnnKbuxQqHBoFYu2QyHFNWxc4+TRiFzaJoZnJv4jvkhYi/Iyntl3sx2XKXdBbzvxGPU6bEZlznemaOkSBsFyWKPXqX3f0AyLfcO1uyGEYDOsFMpL1qLtva3dnI5mqAT5RXVuZ6AXrJi1dpf7brrxGw4zqrv41eB8TAhMlLa9VIg67V3EPc4o012IG0myGeBF3fNd44WBjihSqFxBIXsrozQcqcg3dXGxe2z89vKp4e6AaleAf6VS4fjx43z2s59lamqK73//+7z88stcvny5MGbco39kzOzAvx1oO9pTnSQJf/Znf8bs7CzNZpN9+/Zx4sSJq8ri3U1QfSfqHfFKHKrs4lRrpV92rLyPl5Y3eWJmmtOtjfwJMvXEmGr+KwiTpNCDOg5eYmSK9+QlgjC71epToJMA0JJESTKUcw3plq4pmTT6ftgy0YgUfFcdz9fFOklEYQIWMYxO5ukHGsnlxgQN0UFgKMuQqgypyBBPakZUyKTf6m//dxJJbFJgPdrlXsda0Ep8Rr0OJRljjKGRlJgK2lRVhDaGelxhJmiyEtZ4tznHrKWy4DvRXJpy3PZYuwITlTA0koARlUcsoVaFYMcYRWB76rov74HxJb63vD8tdEmdZb2WgrwCSHqhnBnP9EFYXIOt+wxxOLjXVrOIsO5/cA9vf7RAawI6M6TO6EggYzCxhFANJuuo6/xdUYgggbHEGZwmQ+Hc3r8mc/VJO9jVwIXmVuGwnz36MmXV5Gw0DdoQqIEX2ZOaBEWsJSOZ8pb2WY5qxMZDijT4bqVTJbE+1kYYUA3yfSNQDsAItOLiVFHyNfUooOaHfLA9y0fhbMqlta5JYNIdh94zzwYrJkAnfUACAR2DKeL3lALSPc7l6U2PEdCQNILQ6UUXQyTvdELmeEF7SyEDAyVH6GYs0j5pX9sr7jzsrtS4bMnpBUjWdLHPHpu4ffSPJEn6MTt30q7G4w6CgPvuu68vx/f+++/z4YcfcujQIebn5+9gSz8mdo/+8bGwHQmqS6USly9f5pFHHqHdbvMf/sN/4LHHHrtmWbydTP/Y3t7m7NmzTDcUp7pj7KRX5XuX0sG/Fbkn1ZQTkp80OjIu8qqlTjmkmUcdyjjdSs14kTtRnOeZdnmTJiudpYE45VoGwqNTyOOYmlFAB+dE2jMRgUBCSxe529f4bYsERivtYnmPeoKgpUustGqMlKLupQ0lGWFiTS0IqaoIX8Td7IQp/3vMazPutVAioR6X8WXMiApJkKyEI2zEVTaTKi9t38dHm9N8YfadQhtGvXZXpu/qOx0lGdOIA0Y8C0AnXgFUO/Ggo46SjInxmSo1malss9wazSQEytB8sHpRgWpkUUIkOcpIOAGvry4xpjwSYzh/eT13euQbXvOWqX8ypX5gBLLZ1brt4TrX+xYCE3kpuBYJqMQtpWa31TaXXJytT20oBCnOlEdYauYXbCcmLnBwbD0F1AimVJ6f2/Mq15MSE36LjlashjU6xuvyk1PFlo2ozHJ7jLFyfjHlUvvwPUM9DPo87f6xQzyG62GVhcY4H8S7+wuVwE+QJOgegpXdhW/flzHoBaLRzZzY+8VBi+mb7pLwr4ANjSPJTv/akUgX7/Y5hcW8QLd9iDRqPMrVN64qbFpKKEaTH7e65skioDw4NsmHm6u5MiUER2qT7kbfArtbSViuNU25UoqDBw+yf/9+FhYWOHXqFB999BEHDhzggQceuAMt/ZjYTvPu7qR7ydiOAtVbW1t87Wtf45/9s3/G5uYmf//v/33+9t/+29ct49MD1bczu+Gwem8X/WNzc5MzZ870s0L+paOP8erpPwOgFk/RSjYBOLO9gUAU+Y1OdAUl4xW2Q6sioGnJ7Y2KgO1MZrSUa2tRUJJ8oJJoyf7z9xJFx5EFLT0QaEsIhr8r0eVai7bClOMBB3sYn3rIXFBzgOpscg0gDQLrgmqDoJUEREbQjCr0HsF2p8REeXCtzXZeC3i9VaFasgMHIUo8LnfGmKts5n6TAjYdah81r+PcAGgnpQKo9h3KIFUVFqTxUq94/qo11WE9TsHc4zPn+f+dO5H2mZbISRhKDdnM18VgRfK8atLgsf4xApq7DBMlj331Ec6eXaU9CfEEhDXSIMGu1170aAa9S7l0zR3JQYg9zJpCKo0ZSyAwRWAMmLL1jWhT5Oy7ghQ7FAJ/d5dGc6B6prLJXz7wAdsZt202pXyaIEXQ0YqSDLnUHqNtfLSReNKQGEEgYraiEkudMWJHMp+SHzuTsdSjUgFUlxzKPgDn2xOs6VpBJ9zfhnqzDCKF7gKdyutBrjOa0N6acFaTWkIxc5FlKlGYti7wm4ea6+OAbmSlQm0pGAtJugvJKC4utkSHgmY/wGZYHCvG/OJctFuWeP3V1zh69Cizs7O3fM65W6D6ehOZSSmZm5tj7969rKyssLy8fI/+kbV7oPpjYbdsP+hf/st/yaFDhyiXyzzzzDO8+uqrVzz+3/27f8eDDz5IuVzmkUce4X/73/63G657cXGRf/gP/yEHDhzgD//wD/lH/+gf4fs+f/fv/t3rBtRw5xKx2HarPdXGGFZXV3njjTd48803qdVqPP/88xw7downZ44AMKdH+f7SRv+cZhJxoDZRuJYuuXnVqhDVCNIxECqLn2iCLpcxW2Z/ZZkJt9WJhn+EJlX9uJL1qxIC0cwc6+JTD9kmNqroqQ4jRRBYWdis59RJPJT1pfmFdMj5m0scfM5mJ8AIwUJ7vNg4KPCfIdWb3opsOQp3YGLNC4msd6JEmogma54wtKIUWURashiOcrI1w3KUymTtH9lIQRQg7P5hg1P7Nl00VgW55yNgodzih5NrrD4OjaPQmSYFtFkAfTUc4Vo86W6ZEGitMOs+LKoBQO9Zp3h90ZGF9gsbNIKbnx0Pnsto0OJv3P/dXMpwQZILF0gQtBOPpc4oC+EEIQGR9vBkysVXaLbiMgudMSDlu9usCU8Z6p1i33ACcC+hEQ3QZJhIvr82z0eN3QgHrWCk1COmSwwSE3qo9W4/6gYr0kl/z1pPPs9lsiNx0Zn7pumOBY5nrt0LZRU7vn9g1E+fSxhDtOKnY4aBpixSN1RSrE8iOFvfKDbDMac8vvcgc3NzvPPOO3zrW9/i4sWLt3TuuZug+kbqFUIwMzPDsWPHbkOrPsZ2t/nPt+NvB9otAdW///u/z6//+q/zj//xP+aNN97g0Ucf5fOf/zxLS0vO41966SX++l//6/ziL/4i3/ve9/ipn/opfuqnfoof/vCHN1T/v/k3/4bvf//7/PEf/zEvvfQSf+Wv/BU6nQ5xfKUReLj1BoI7TQG5VbQTYwxLS0t897vf5Z133mFqaornn3+eo0eP9vnks6Ux9lemuLSZ334F2BVUixdVKT3DtraDLtIyRV61q0xZgKPPq4Y0kExbwsVD5hk/Vikfc8ijE5EV8BKpwbVctF/HQoEE8EzBU912BHvZH1XHkqfQBsp+/nl4Fsh1pYFuhum7W2yPOeP7bDm/fhsdorqjfrMQmAjQTorHRlqhTcqvbiQBF9vjnO5M8/3GPl6rH+ZUZzdrySgr0SibcZlAJjy8K00iVHi+PqknumfKMboWKCEMUjHqlN8vIpkqvxS7r/savetkLS4eJyKrTAgIPfRWAIs+YrvL/3V8C07A5+izMiqeu91KvdQlGfJzx75DIOMcPSOwOPNbcYVznSkSke4OxFoQdBdqsZFsRWWWOqP9m1bKEDkWV+242H89z/2hbXWDFRcao7yydogNPTKUF1mtWrx9lSZRYksNghXbRcAlhMCBW9Nv2IiURjbEet+5QCCtRbYYEm9hnEGPUG8PfjBSENcDxpoV50KtHBSf4YHaBKEuDkgr7aIayPHJWQ4dOsRnP/tZDh8+zMmTJ/nGN77B2bNnb8l8kCTJHedT9+q9GTB/L0W5ZT1O9U7624F2S760//F//B/5pV/6JX7hF36BEydO8K/+1b+iWq3yv/wv/4vz+P/5f/6f+cIXvsDf//t/n+PHj/PlL3+ZT37yk/yLf/Evbqj+X/u1X+NP/uRP+MxnPoMQgrGxMSDlD9+I9QaguwGqb8ZDobXm0qVLvPLKK3z44Yfs2bOH559/nkOHDjnTxH6ifD9rUfEewyH3LRwTmvZNARMlnsa3vF2RnyAsFBfb9Xj0wZNLWWFEuMmSpUQ5J9J+uy2wIxDIxvV1fRnBSKmT8x4CRInDO2zRNrQ1eHRiL7eLbUya9jlrvmO7vRcsFhqP1bCYPGFUdQh1sT0ur7QShu24uItjukOCMbCdlDjbmeKj9iyv1Q/zvcZBftjcx4VoF6vxGE1dzk16ArjQnmQrKnF8cmFw0YZEbXqIVQ+x5KO2M210JMtz7fDLWOA1Jaoj0wWUBCElrnwdTi+1o8wp6TTUeyIwKHQzgIUg9bLax14LkAen3nXTE0g0P3f8O4x4IXZuP2mtolo6QHQbYAwYRMpc0YLtOOBsfbJQubQ5J+nZhZKSlzgDE9uJz/fX5nmvuQfdVdjw/ITE4XkvVyxOtkwX+6LTVVuJRG4nKmuuRW1vJ0okw0MgsrsJ9vgxJI4Xh1M+TRBToAkJ4rpCrBW/r45jMTtVKn6fgZBcdASj9oIUpZTs27ePT3/60xw7dowLFy7w4osvcurUKaLILY95Laa1vmuc6uuhf2TNGHNPUs+ynqTeTvq7EbubrIhrsZsG1WEY8vrrr/O5z31ucFEp+dznPsfLL7/sPOfll1/OHQ/w+c9/fujxVzN7NVurpVqsWVm9673e3QhWvFH6R5IknD9/npdffplz585x4MABnnvuOfbv33/FwXR/ZZez/Hx969pTiPrgO4BcObJmJQlVy2Pq1IGO0iyJRMWuqcNio0QMzbA7qfWovrY5VsQmlhiXbB64+dQGRqtFjqRdXRgpShYdRFijR2Q9r06i8DJgPUwUgcNbGGVQ4WUHBUQI2HQA5VGvTeJ4BpEuvoBYS852pvh+az/vtedZiidIhId9p6pAXwEpDAjBhc4kVS9kfCsiWS2jV8tEmwFJIyBp+7Dl4S16/UvaFKJEmRQpxiDrArUhkXGqL1LMci4oxK+6RrVr7c8OxFZM5CkxrQAWA+RaZtfDkSjEpRiiR/JlNRWw2N7mZx98hcmg1W2uTY3K/3s7KeF3+0wv82Ur8VgNq6yFNTxlCt9wPS66ZctB7KQabYeDfpRowdntCd7b3s2GHskvpIRw7tZUqyG5BojBJCraHjS84oMd3Gze9GBBL4SgEjkGDp0/TxhBTV9Z5QntHoOkYxcCoBXG6NhDLA/6roggcnwLLkB4oDaRBs9a9oAlpyeEYO/evTz//PM88sgjLC0t8eKLL/LBBx8QhkNc61ewjxv9454NsdtBv7jbf9dpd5sVcS1206B6ZWWFJEnYvXt3rnz37t0sLCw4z1lYWLiu46/XpJTXlFXxSnY3QPX11hlFEWfOnOGll17i8uXL3H///TzzzDPMzc1d03bfJ3cVNX4BNsI289WifrcuFSdqAN0pFiYZjigRyG2J35LIxoCmYUqmsFoVRlCJgr4+cdbaSVLwOsuW6B8rEAXPpYjdu0xCCNR2kQM7lIsr3cofnuV17HSKs7Rv7T7YzzBM8ue0HaBBa0GcASEpV7ZosWNF4AnDZuTSGR70tc24zHvNPZyOplmKx4gyrrrUA5q/biB1gT4i6HqYhORsaxcPH7qIUaJwv4JUaUMt+OnzznZ5DaohUasStZ2CaZEKVrvpFYJU+7r3iIcslIamv7bLXJJrdplJwZgRkiTyMUslxIrE2B7omALQFk0K/WuuOsZ/degdfD9hJa6xFI2yHeepGsrikfSUP2ItkEKzFlZYDatsx2UMEk8Z2pa3OQhiYovuISVst4sLsbBL+Tm3Pskba/u4HE6gKb5LgNAltxdEyCvsug3bVYLuezH5Y7NAPmwWx8gCxQuItrr1DwHPInRTQtwLc+itQbVRsOxBAtVC+szUlttFh85EUPwGJ4Iys0PSk/e4xc8++yyf/OQn2dra4sUXX+Tdd9+l1Wo5z3HZ3QC3vSyO9+gf9+xW2t1mRVyL7Sj1j54JIT6WoFpKeU30jzAMOX/+PBcuXGB0dJQTJ04wNTV13QPQfeNTVKSi5eD+zZZHudSy6DNedxvWUj0oK49GVu0jhk5dEzRLhNqATMPWGh0Nno9opWBaCIPEoEsG7RuMD8YzdOpuUepUx9bSibUyKKbSXYPfZRuM534usqMQ6wnxuOlfQ8RZ6a+udSdll/JH2VJJiC3+dKIFQSlP1FV2NrgM6u/EirObE4yWQmZr9T7dpN4Ocu93WLBieQivOnSgxZpqsRJVWYrHaOkSxRVG5j6Mj2cpusRaEmRSWAsxuEIiFKoWgUgQWuWAZB/MJgq1IDDVGNUSiIaEMFV8EbHB4Uh3m+y+N8+4QZKrO9n62NDlzVtl8ZCyLDYVAtMKMLFBegmMxanGcUdirB0H2RE5T7VEc//sy4z5dcL+QsYwklnwGGOoZpRajBkk+2nEAc2kRGQky40aYxnaRayLD8MkVfA2c2V2Mp8okayHFS53xkhQ/ZcqFYShR6mU72MuT7cQUC2H1DOLOZNZw/aB85AFrwwNupQeY/PXtaDwTguBpECMIdCKKNLOhbJw0TxwA/CSVjmPtEEhVgT+RPEZV5XPhcZmoVw7ViQPTsxc07g9NTXF1NQUW1tbnDp1im9+85vs3buXw4cP93dmh9ndANW9eKZ7nup7dqusx4r4B//gH/TLroUV8eu//uu5ss9//vP80R/90W1r502D6unpaZRSLC4u5soXFxfZs2eP85w9e/Zc1/E3YrVa7WMHqq9WZ6vV4vz581y6dInJyUkeffRRJiYmbrw+IXmgPMb3m+uF34wrio0uaLVAdaubzEB0QG4qYhSx6noPM5IFiQ/orkyhSLe0TTu9pqLr5ZQaLUQxJXTXPKMIu/v9opO/floJuQlXJMI5SaY3CUIrvHVNMqadEyx0PaQejFby3qF2x8Ozt/et5rQ7PuXylRNs9LixnWiU7y+P04l9tuIqC81RZit19o7WaUZ5pN9ISmxFpW5a84HVvA5trShbW9Ilq85W4nOmM81mUu7TCPqmZQGEimvcqxPCDKgKUnJw/zLnPtqTB9WKtB8gAAlb3mBn5Ur4ose/HrKTIFugXU6/hKKUnqNMJkWvtEwogHtXqmthwAiBTjxYU0ipMUECVnskok8BCGTEXz70AUImudvWGlRm4WiMyC3EQqNoxgFbURktFLERrLYrNCMfIQSjXT1qz8HLT4woqgp2qSLr9SqrcYWWDjCAL3UhhiCMVAFUC5deNykFpL5pgereGkOJNGB16DcnoGQIIlmISRBSoNqGpBdP3aN+WH1HIKiEiliHzh0IJ80rdoPqJEwK+tdGSOqLCXJXPkX5wdok72wsF66x5khZfr2ZFMfGxnjssceo1+ucPn2al156iZmZGY4cOcL4uHuhfTdA9d3K4riTTXDjPOQfRet9rltb+TiDUqlEqVTcAboSK+K9995z1nG7WREuu2n6RxAEPPHEE/z5n/95v0xrzZ//+Z/z3HPPOc957rnncscDfP3rXx96/PXax9VTPSxQsdFo8M477/DKK68QhiFPPPHETQPqnj044r7GpYb72Y04It2NgGDBR28FxNLrA92SjUYklC1ElN2CF0IgjUI5vE49SzKIxrWFLIRA9Jx1pgiI+pYF3kjUlkK2hJMSIJKUQ2xnimtHRc6m5+X7TGhROZJEUrKOCWTC+a1x3lieSrPedW8rMYrLzXHeWppjrVXcOl7ouCfR7bh4bBrEKNMt/fYU77T20jSlbhKaq1ugIgq8ascIL62y+T1rRZxsyaYJJQscVJsCkB7I0IAzdPqbLCaLdFJ3XZPTtU5YVz1OiJQisFFCnC+hVlT/XoJK2v9H/DafO/w+njL46FwbA2tBZAeabsUVVsIaCYrECFbbVSId0OiUWGzUOLcxThKNpYBY56kdiWz1PcvtyGO5PsJSY4QfrOzlQjRBy5Sgu+0eRUVAlDg+EOUX5foAyiNFBZCs8ou8Uuxdj7lRxKEAuaBpF/WjZ/VW7KZzJEP41EPURVz3J7Qg8iRiu8Thkal++YjnGBeE5LzDe/3A+I1lUqzVajzyyCN8+tOfplwu8+qrr/Ld736XtbW1wrF3C1QrpW6avnGP/pGxu63UcZvUP/bv38/4+Hj/7ytf+cpdftA3Z7eE/vHrv/7r/K2/9bd48sknefrpp/mf/qf/iUajwS/8wi8A8HM/93PMz8/3H9av/dqv8dnPfpZ//s//OT/5kz/Jv/23/5bvfve7fO1rX7sVzQE+np5qO1Bxa2uLs2fPsrq6yu7du3n66aepVh1ydzdhx0cmoOhUYandYKZaZSXMz2qNJE8BUGuSJPJI2gKsXchOGBeSXOjE5Hqd8YCk57XsHTS8vQaB7IAOUg+ea8xVsSRGI9sMTRYhcqmJU6+WrEso6yIQFymf2q4rdujTlkuW6oHlZWt3fMZGBu84TCSntybZCqvd43uBjYPzIiPodMpMlPOe8svtMR6oFQM0XDrDQsDF5gTbVIjwB1v6zu13TaxlTlvbl5pWnA+o9GXSVanIABwLwZTLEeO7ttnYynP0pclgnR5Yzj53mVJAhu0e2KbapATh0CCUGQAm4+ZOuzziDhaDk4/v9Ho6OdsG7SmSSCEvaqQf4+9VTAbrPL//TL8/2ZrltryizaeuJyV6aZJWW1VC7RPFkk7iIXXKYz3XAMUEo8JghIcxvTeT/n8sBFoMGq0TKFu7GUmowPJKS1X8OKVMpSUrlupNpRKm+pGZTpbz/BvBsGglI1Kw7EpOA9131f1MXNSPnolEoBqKWCa5viRDgTOOcQif2gXAK1rRFAmJgYXzIQ8emuW9rSU6SZGCdaA2wamtIuB9cOL6PNWFNlQqHD9+nKNHj3LmzBneeOMNarUaR48eZXp6GiHEXZHUuxekeBvsBoP7fmStey/nz5/vK7YBTi81/OiyImy7JV/a//A//A989atf5R/9o3/EY489xptvvsmf/umf9t3u586d4/Lly/3jn3/+eX7v936Pr33tazz66KP8wR/8AX/0R3/Eww8/fCuaA8Do6OgNq3/A3aV/rK+v8+abb/LGG29QLpd59tlnOX78+C0H1AAPjEzgDfEGzFWKwXC6DKKVgiBvwSPRHijh9N65nKCxnRlFXsH7OMRELFKt4iHtNiblUg/zOoG7ThUJZFulwZT9i+FM+gLFbe9Ox8O30lRLCyD1ONfGwFZriu8tzPcBda/cvi9hBGFcnKCG8aorDhfgufYUZ8LpFFBnzJdJMZBQpPJptiU6X6aEKfB2paDgdT581LHVZveXId7EgilHwGJGb1oIgWyJwcIs4aaCFAtgygWwXIFwCZhMhk+tJEnbZ//oeZ6aP58DijaI9q7yQWzHZTSCpdYIne47qbdLCCFyVIkEyWrksW1K1AloENDAJ9IjOUANRdlHwEmzUX6Cdqw+OmERdVYrYdEbnX3PV5h9hBTI+vBvXEiBaqV0misBDRkCRqC21GAHy25HttjlvR4SvBy1B++pFcV8dHKbT4zt4YJDNm/SEaQoEdw35lZgul4LgoAHHniAH/uxH2N2dpa33nqrH8B+tzjVN1PnPTk9h91q5Y0fhT9SSlP2bxio/lFkRbjslgUq/sqv/Aq/8iu/4vztL/7iLwplP/3TP81P//RP36rqC/Zxo38YY6jX6zSbTd566y327dvHiRMn+slabpdVPJ8j5VE+aBUnAiXcs57akiTGI84EAGqHR1GXuh7JrBPap+h+ssfPHj1g2KRrRDFJh32JthiaatxZJ2mdAoFsS4ROSEa7AG4IqPYtr12nXQziCgILARpotip8tDpFQ/iUhU9INgit6H1PYoFBEkUK3x/0yfWoSjvxCh7GES+klXhUVExiBB80d1M3lQI/FnrKHgLPWhW5QJYro6ZxeBslGV41golaC98PiTJ0GfvywsHaHurHtNqhOuR2JIQQqCYkNePkRDuDFB3pxJ1ljlTnIqYQ3Oq1Ic6sgUdHGjzx9Gk8P8HLBrwZ+7mbAt3DXiRtxBUWmrX+TSSJoB17aaCoECSJQHWVSJRnSGKR52g7dMtt2g6ACmK0FrlEREIIOh2PSiXfJhctpFwKUYnJaW5nv0ndS/Y05DuWoWCIuEbalkhQjhVtx/30j0nSOgUpsFaT0FGJe2yI3KBaRDjbYdcaa8Oli20Oz0+x1rmY+62QLRY4PDpJSd1arQDP8zhy5AgHDx7kwoULvP/++0RRxPT0NFrrO+axvt4U5S67R/3I281oO/8o2o3cy48iK8K2O59m6Q7Z6OjoxwJUa61ZWFjg1Vdf5fz58wgheP755zly5MhtB9SQ3uexqtvjudwqEhrVloCGV1DU0CWHB1GAsmVVFXi2p8vuhULgkH7N/X41kRRtHFJoPRsykfdwgUAgQkVpW/Q5uqPVPPVC6yLVI7FUFOJE5kB2FCmWGyN8f3WWhkiRWdOSB3M5aOKujnPYsW9IsNB2S+ttx2UaccBbjXnqJvWS+VKTOK6/7UxjXjzQ5osPM1uXG2k4anurrXfupk/gRtVZtB0Vr5UeIig1pTtpl+M2XKIpLqyWdSL7fgcwzuMGdRiOHTnP049+hOcnCHSOcqOEKSyisr9rA1UrxeCF5gTZVUHPS92v2qIl2f+ORUwcWzsMikKZEILQIRHpSnjkes5SQHnESoQUZACmJH1/DhNRUb/cNi0gal1lILBiNvRGqn3u9ki761MucGfAkXyU+ZFxvvfuMk+O7c+Vb3SKi/JjN0n9uJIppTh48CCf+cxnqFarrK+v8+KLL3LmzJkbzjR8PXarvOP3gHXG7rZX+TZ5qq/HfhRZEbbtSEk9SD3VP8r0D601ly9f5ty5cxhjOHjwILVajR/84Ac3vcK/HpNS8kCpqEkNcL6xxVg5YLubNGJfMMaFdntoxL7sgCW5jHE8Qh2bnGdReyB0nlddiiUt3z1h1oxPM4qGg2bACwVGQzJMDcIhsZadaAWCJJRIo9FVQ62cnxRbYUCpZCV5sTzB7Y5PpRISRYqL6xMsR1W0ljllk8JmgGv+7i5CwshjxJK1W+iMc2ikyNVsap+z4a5cBUKkmtgVz1YfKVpFRWkGvMykVlYRoRbITFnqdbXoKpaLWWvJ7ulN3stsP+QVQMjJrfVNCkRiigBIdr3DfnfRNoQ3H3dSH6ntRRbGMZ67uOUUj+uVlSttHjpxDgFsrY9w9tIMnfagotpEk7n7lxkfbTKSCXC1qR3CWmDa1IpYyxzo1kbkA1GNoGVpTys8sisHFy5JtCgqBSaykKLcBuTgngtdXGuAYLwDGwG9B2w8UI3BO5ExTm6z7Iir0sKEEOjIDH3/IsYhpylQ9XQrTNuMjGGTvGPRJkN3EHQgU131N95b5OkH9/Pq1nk8BOfqG4Vjr1f540ZMSkkQBBw4cIAgCDh58iQnT57k4MGDHDx40Jlp91bYzdI/4B6gLtgNAtEfWbvBe/lRY0XYtmNB9ejoaIGgfj2mlLqh7FVXsziOuXTpEufOncP3fQ4fPszs7CxSShqNxl0JjrxvCKgGODAyydubixwZmWTxUoiQItWPjUxxG9xFD3CNq/ZYqVLPVHZLPo50Icix3+ZOqhygizkrBlUk6Z8LVDtwYLrF61vgsEsFGYla+BbYCCOvAKp9i/rRCT2WNkdZSqppFj4tEFaCEGFdVzjc6EkXeoaJKjBnLjs81fU44HxnF2WHZ9kFqrMayD1TUtOIfSpeHpyFsU/ZH5zvC01oZA5oSwxJ5j6kNCQJ7N+/wvnzs72DUi9l750rMLFB2JGTLp1oQEQmBV1q+GabF0pMbIg8kwfWV9iluGqZAqViThw/30/8MzldZ2JXnU7Hp7FdYtdUvQ9Og5wL3ODJ/PsuWc/eVv6wJ561TpVGu0SlK9PYaVUKNxTpJI076FI+pJegE4F0pEfPVRULsDYtnImTvOJ1PM8QRorAz7e/Uu0gFkdz9AmpB5BfDCH5yDD9zTMQD9knlmEaBxENGQdk6B5/hBGohgWsDc6gWNmB2HG/IsTZL7c7Yf++Xn9viace2M8KdU5vrxeO7aUnv93Wo2Ls3r2b2dlZVldXOXXqFKdPn+bAgQMcPHiQcvkKg+lN1HnPbp3do398PGzH9vparcapU6du+Pxb7amOoqifsKVarXLs2LF+dHa2zl4mqju1SpdSUpOKw6MTnN7eKPxekh4HqxMsX45oRgOA4LXBcpC59V0DwKZQ+2BzMCyVtSvyLTutCGmG/w5db2RPQcCeLB3nubSH02QgoqAFDUUOqTYDOshWo8zC1hjLrRFkyfTrMnEeVJskr0csjURb3m5lVMaDL4hCRZAB88ud0ZQT3T2vnXi8U59DKJEr75md6AMgUJpm7FG1wHaUqByodt23EJBolQvIFCLVM86mWt8Oy+ydWxuAaiwFELqLsoI+ttuhYXyBbFIAgblzTdoYfwvCKdO/9g0HJBownubEw+cKiywh0vdfqwz6SsqEz7xvk6d2GGPwLZBdVhYfwrr51c4IW60UVBsDG6HDxS8EcaQIuu9TCEEcSoKMbrVSGq1T5Y7+aZ4pLNpUkBTKPE8Tx0Wvdjv0C6C6Wg6RMSSZ95S9JSdoj0F2PfYjxmdTuJ0bKrxKkLNL09yQ7nQIgWpKhDEkVTOUT60cu2/dVhZKJHBuYzNX9sYHS7zw4D5OUwTVD94BTzXkqRhCCKanp5menmZjY4NTp07xjW98g/n5eQ4fPnzLguFvBf3jnqfasowM3Y6wnXQvGbvHqR5itwpUdzodPvzwQ1566SU2Nzd5+OGHeeKJJ5iZKWbS6g1C15JV8VZZL4vjsJTlrTBiYymmHl55socur9p+ZLIbSJY91aPAmQ6srmg84dSxFd1ofoFwp62m6/UW6THeEJ1b25yc0G4wZG20CKrtwK52M2BxfZw3L87z9sYeVnU1E6zXrcOqxFgc1tihu62t7XdbZUEjWQrTnQZtBN/f3Ifpem+32kXEORKETt52x4EcXJ4E29MKuHngFvj2vYRISsbHt4sH9+pzAJVh464MQV1pUE4G4FkgCDbSY0VIcdRzlWUURfrti+CB4xeplood0xhT6BOeSPJg1Hp2wnpGsYaSLa9n8adWO6k+dbMZ0GiWMEOCiQuBpnaQqhCF7J9SQWzx9qXEyat2qX3EjgVbpRwW3moWvGqfQsSfzDCt4sZw/q9Iutz5YVrrjuJADBYhAoFsCqodxbhyx68M86a5APj+0XHaDr5ya13zdO1ArmzcL7G7cuVMiLfKhgHciYkJPvnJT/Lcc88RxzHf+ta3+MEPfsD29vBv9GbrvGc3YXeb//wjwKn+ONiO9lTfTVDdbDY5d+4cCwsLTE1N8fjjj+e0GF3Wi8y+kwNS7z4fn93LH555t/C71/IJoyKQciZVEWlWO5ty4QzksmSq2qJIdO7pUefak8G3MupmabQsSMRgno7Je6avgU/dv35XOaI22ir85vsxW80yG80Km2GZ7WYZUcmPEsN4poN6LZCdFP1fnSgvVRFFHpAH+QvtcebKW3xvbT8Eg5sLtQ/kueC+0jSigJqVXt0G/ABlrwgQyl7UHQszuwwO5GFreVS8iEY7YGJ+i83NdBFwTY6KXuY96/2odrdfDdm1VmGuiQgt8DdTfnZs9SmZFJUcXCmsDxxdZHLMvUqLtcTPePWNNrldCDD4Np9aXHkXAAwTQb7vrXbSj2urk2pVD3OLGGlylA/lFT3TrqSpSaTwy1a7YgVYGtYOrrWrt1fKIcbPbw0lJRBxdzeux4/PvJOsFGYUu78hEQ0WYaapCxr5InLxqSFpJFDOK8VE25oEDVOFw52qRgzhgU9Xq5xf3yyUb7TanLq4ztMnDvDq9jkAHrjG9OS3wq6mUz06Osqjjz5Ks9nk9OnTvPzyy0xPT3PkyJEbTjB2T1Lv1ts9+sfHw3YsqL5bOtX1ep2zZ8+yvLzM7OwsTz75JLXatXkksqD6TlnPU/24w1P94Ng0b3+0woO7d/Hu+mruN13CyXfN8iV75uKmjpR8tjMTtS4JVMvkJkKn+kLGSSgjt5RxgKLd/SXd5jV9oO9SFXEHNNHHAReboyyer6Z0EpOqirS0h87lUs8TFUwCwk5vXfDy5kcVI4qgWlteuDCRBXB0uT3Oe5sRcZCvUDm8ygBNB6i2ZfkASl5MO/EIMosDTxoaoU+QAZCBKCaBseUGpUjB90itg/QjdOQjxNWpANAFuJlbU80UUBkBJMYZqGafA6mXWsQUUoc7gxSttlVGG0zMuD14sRaUrZTgSlqqHkZYkoaGylWoHp1IUc1I152qT3O6keoax5EHGLzSENApBHGoCCoDCkgSSmSGOiSVLqpbOp6FqwbXNy0dko1KGrzRiKQVDLgvMl306O5GSg5UJ/ndLqNARgZtxTtkVYWMY0dLhu6FsssEEi+BpK6JM0O1iAZtzFolVu4gagcQVEJwvksJef2dRU4cmuKdZI1jN5hJ8UZMa31NALdarfLQQw/1E8m89tprjI+Pc/ToUaampq5rEZAkyU0HQd6jf1i207y7O+leMrZjQXXPU32j/OTrBdWbm5ucPXuWtbU19u7dyzPPPEOlMiTSbogJIYamKr9d1gPV+0fG2FWqsNpJPWMC6KxpBMKZdheRguDEWi+4FDmSEti86kYUgTVRyijPXyxwX62VujA49ayjOP/eZIccqLbb6AJgmK43XhjaFYnIZp9ryQKXV4s8fVMnEpUBlsYUA7zsoEWX11Fbz00IQRh6lMsDEHyxMc5UtVE4fSQICwAc3MCp6kdEWuDbCW0SlQPVAJGWBJnljJKGKFE50JgqhahcAKMvE4yWzO7fYOHUDFqlpOq+x7FP18hbTq3DdOlEIn0uqiNIbBqoNhhHqkghJKppEJEhGYW42yeuJUPizPwW9bhEYiKqXtR/J8YYJPl3lBgI7AWNnQRIiwIv286cGHaJyEvtGt/f3kdDVNjoJgpKYoExEhXkU5xnzeWJzpqUgjgW+BmAKIMEnaRUkH67HLxq6RXLlJ/kNLJ7Vq2ExOtB/j1lPlGR0TpX7TwNSJCOM7bHOBv/KQyUMwtpwD1h6+J1IAXtiUqTyRgFSXfY9hy7bgBeglMBabVR3NHaNzbGudWt/r28f6bBw/dN33Qmxeux6935LJfLPPjggxw5coRz587x5ptvUq1WOXLkCLOzs9c0n95soKIQwxP//BdrO8xTvVNB9Y7mVN9uT7UxhrW1Nd54443+wPPcc89x7Nix6wbUPbNTld9u64F4IQSfnB54qx+f2Mv5tZQ+s912Bwq5PMm6RNG1JaFqIVldBhHaX1X+3zogt+usOsUJ15LwTb3Sjsv2PNzOQcnFp47TdotyUgAtNhcaHAC5QO0QOfk8Y0D4Fui2grx8POfEElp81kajSrNT5EEoaag7NKhdtA5IPdi22ZxuwAni2labpEiVRnL1dr3hE1MNQIOyePMSXELa2UWA18g3wBWoJkPhHtm6uwwCidoWlBZAtBwLKm0wmQXQ+MwWfpCSrFtJwHq7QtJ9v7EuLjpia4FhjCGwqR4FHrBh3LdkGyPJN1eO8tL2fTREWmekFTpJATUIkoJ2eeaKMgXf/efiJYUEPraEn5CC2OJQSwVRmK9HqVQBJ3euELQ6gz7UbvmcuzhFe7NEsK4oLYn0b7kb69B9RNlFjSyGLxTTkGtyY4xAUO5kPy63J10MkV/s6WELIfG2Iei+m2E5ZToOp0dFKc5vFqkfu8r5FZ9A8O5H2zw4Mls49naYMeaaPdW2BUHAfffdx2c/+1n27NnDO++8w7e//W0uXbp0VcfPPU71bbC7zX++x6m+JtuxnurbGahojGF5eZmzZ8/SbrfZt28fjzzyyC3R/LwbnurefT6+ay9fv3iKqvI5e2Gw1X12YwPlCRJre9MplydBtSh4D5OtGCbzE5rXgSyOK3iRhMDrGOJuL3VNuDLOY3jVLnJhRderHktwxFK5Zbe6Osiy7OgDdsChpiuNl9vvzx+TCMh6qmOBDDLAK5II3z5HFa4DoJM8V7rV9tloVaiViw+oFfuMlfLlVT+iEytKtrKHUxmkeP8lByhPHCjWDpYrqQRCg6c0k3u3WL88kSpDZN6XNMXMin2wLYqZNI2koPAiXKoPpDzeHgVBdOkqwbJGBBBNQNJdl6iWyHgoNaMz+XFEC8lGp0zVCxnx89wDYwwjlkxeJ/Go+fky2yvdin0my002wgpLnRpr7RG24xKjlah/v+3YBwQ6GjzrOJYERqMdq8W44dNJAvxSQnUkRngJcSjxs1KQDvDp4lDHUV51BlKFl5KVMTSKFFsbFRa3amzKNCmNKaVBnNkFYho8aggnuztCOgWxInFwoKxbU50iNaCzHfV3j1J5Toc6R+LmSJd8RbNHF5MSf10QTQzhUyeGuFLMSnRgfIIPl1YLh7t8rUoI7pu8NenJr2a9sf1mAK7neRw+fJiDBw9y8eJFPvroIz788EMOHz7M/Py889r3ONX37L9U27Ggular0Wg0bpr+kT1fa83i4iJnz54lSRIOHDjA3NzcLV2R3+n06D36B9D3VJ8YmeXNy8v9Y8JEc3TXBB9urOfOTco4ZatGfZ8NK1XalRK1ZK8nO3mObNbB58p6Z5cJFygjpZbIDsUeH4NxcXK7EnvCBaotioSJJCLIlxVaYf/T8r6ZWBRAtUyK4Aagk9APQtOxoBN7bLSq7JvcKLZ1iNXDEiVLGsVzEM4rfkhiZA6jlFVCK5Z4GUAWODjZwwIYDYJdsymoLhzi3ElIF0VCF8GUIOXPugJWC5eJiwsulaQKKt66xpMQTRhkLPpEgul9G12vs/W+hGQrqlCPSwQyIZAJvkzAGKrl/LOw+4I2hpofsdUp0dQB7cSnGXmcaswQ9z4mmWo/Z60VeRidvvtBcwSdlsKvWuC26ZFoBcYQxR6bmwpPJQRBjBcMnP1KGZJIorIcYUeArXbAQ60FxkCn5dOMfDpNn1bHJxlJuVD9M0q6sBtgFBCCtw3xaAqEVejm0RovXRD14h5cqkDpmlUQC4McIo/nRLgGQpuaYwzBCkSOwEWvCXG12EnHfLe240aruNCdH61R9u/M1HsrQHXPpJTs37+f+fl5FhcXOXnyJB999BGHDh3iwIEDObrHraB/3DPLdpp3dyfdS8Z2LKgeGxsjSRJarRYjI660elc2W97u8uXLnD17FiklBw8eZM+ePVeMqL5Ru9P0jx6oNsZwbHyagyPj/PDUSuG4cd8hsyAE1RCaFvWh2QxhPD8oxlWwoUkhCEikdI5sprOes1Nqihegy7mMTAqqtCHxXMJs6bVVxxQ0Z23lgX693VcrKw4kbwUpmRhE5hopleMqI4YNsk2x3c1OMoSgJQhbPuVaSLuRIqSNpltf1uVVhlStwraRIEQPnLlA+t+N0GPE8kiGsY+XyRQ44od0tCJKPELt0dGKVuwRtXxiLYi1IkFiDEyVW5TLMdWJJtG2lbxkyFwqo27k4BBaR4/gaycRypork2Jv8hZCggF/TSNMyreW5ZjyeMeZsn1QtaSjJZ2uW1Mbw2ZUGSiLizThy1o4gjEpKyhOJCVrZyOMJdXMMzbGFN5dO/ZTL7UFOJJE4CX0M3XGLdX1NnerMIAQxIlH3PRotgxKaUYCSdkTNNsd/HKCkAYhDEJp4k6a+dPotG8mWtBsBCRtRSQlsZZEsWChPjqQ9RNpPcoOHy7pFBCHgzYi0gWNaKYA2AgQofvlCwRe2xDV0ntxBjALwUjsselH7sl6KJ8aYkdSHC8UjNQ9NsbyCF5FwrHMhcgxZksEFza3CuVHJyccV7g9liTJLecnSynZu3cve/bsYXl5mVOnTnHq1Kl+lsYgCG6K/tHzUt8D1nm7p/7x8bAdC6p7ihuNRuOmQPWZM2e4dOkSpVKJ++6775oDNW7U7jT9o3efxhg8KXko2MNFfbpwXCt0g7OkrnMSVQDRCNjozPgCr2FIqoOypAJ0DGQVP0weOeuAlH5bN7lgwazJhiGZSHmahYx8GfMagBwEIqX1OebgTOCiTf8wkUDY9JLIVv4YZLPrH1PQCbbqtEYYYQSRsCklAwtDjzJhn8O63S6TaFthAip+TCf2CgDNTtwBKQd7OwwYtZRB4q7HvJMoNqMy21GJzVapEAzYij08y+uvHd7l1VaV6WqDmfl1LlzOxx4Yh1cYQHUMuux+/0KkPGpdSr3Ww0C1K0DTpv4IIZGRobxkmHx2vVtWbJMrCNAYgxKpF7v3c6IForcDIHrnFukDNnCPYlXIfNkOfSfHHSGI2x7+SIzuKOIw4yYWIm1sBsxiBIlWbLVhCyAqIawbEhFQKqz8UlDcvR2DQdmPxi8qiggFxtPItrSet+nymNNx4QrdvfuNDTItuizeTmAStzJJSCFjKkAFQcuBwkUC7XbCqPLYHhm8h+pIiQ7FGJOLDvC8f3wQpJi1++4wqJZS3pY5SwjB7OwsMzMzrK+vc+rUKV588UX27dtHFEX36B/37L9I27Ggulwuo5SiXq8zO3t9QSFhGHL+/HkA1tbWOHHixHVLCt2o3Q1PNQwG38OjE87jTq+tI2QRmIhSESCgBF7dEFvZz1WYcq1llCZ4UCHQgWDKY1tFIEUx+6EUyI5JwdKQx68SQURv4hxyo11vnWoYVNMQ7uoqTrgm4Ij0y/B0keccSrD0qI3KN83mT7s817aGtZ2u3E/8ofcLqbReEsk0Q6IAg2CzVWFqpKijvB0GBVA9EoTERuDZYM7iVYeJZKNT4WJnjMh49BoVGVU4N3UjW8/GCEu9JAWa660qE9UWYizCNIP+t2UUKb826y0PTQqqShZay1gKAocskqAbfFgsK+itJwbjC/yJDnI0xpU2Pm2oKDRFG1mQMXRhAyHsZ2QKSiCF5C1AsxlgJxTqN1sLRKsHqO3I2vyiz5eKKOtN9kxhF8gYx10nAjJeXSFS7zPlzP3IbpkNyEsa6tbH1k1SJBDIbYMoXaHDdy/non70LNKaUiKJHJ5nmQyhCA3Dbt0FY1hPKCXQGUuPjUqmoOM55nmstorKH1OVCucogur7px28kttkNxqkeD0mhGBqaoqpqSk2Nzc5deoUYRhy+vRpgiC4IafWPXPYPfrHx8J2rPqHlPK6E8C0220++OADXnrpJba3t5FScvz4cXbt2nXHtqLuRqAiDGguj+/d4zyunSTsr40WyqMR4XTb2RK8/qbB2xaUFyBYl3gtiUgkfiiI1xPKy4LKIqimQDZMDo3ICLebsWtadoPQrnCMSACRTuDCSEpLIDoOoMVAy9oVpGi0ow5bs9Z28MV5AGY0kAHZJil6v4mvPBEmQtLYKucA1EbLTQGJHYR2JQz1TpEH2hsQOoniTH2S97Z2s2EqOUANEHhJwZskXaOkY49PSkOoPTZaZWYObuT7ihAISwEk2Ezl31yBqgMz6ft0ACqgn2Uz1w5HWa8tteObgHBmkExruzZzDRv2NWMtKWywWJx7baDZcmf9Sw8QxA3PXaG10ojiJH8DQkBkned4jk7noa3MAeBQx6GkC30hySw8peSKGoDpYssMzaIK6S5VLXavqp1Dg4G2i0uSmP7iXAiB15aolkG2DfWkiOoPTbpBsnSt2IEHdt05UH2nVTjGx8d57LHHgPTZffvb3+bNN99ka6u4uLiS3ZPUK1qP/rGT/nai7VhPNcDIyMg1gepGo8G5c+dYXFxkenqaJ554gtHRUb71rW/dUa8x3HlPdTYIE+CR3bMoUVT6AJip1jjXyCfASDD4dYisZJGmO0mW1qBkfEKj0SrVD87xqnvUz247pE4BuK6DUSkP0ogr0zqEEPj19NhhRxWCHKWgvALtGVdQU+q2cwYp2o8lBmFjUxtUJyIPomOJyigpmJ4XNmOdSF91ydtoBJDBWcN41d6QzI6u1OSeTDi1Pcl2XEnBlkibESd5vWspodNROY1jT+lCEhjX++iVhcbHL8cIk5AdilSYcuOBboBit29YSi+5awqBv6VJRodQhBz65NKIYiZFDXKyjaim76eg2sJw7FcMzDR4Fh0n0VCyAGua4MdKHmNdqx36mGExHBqIUk54Sruyb0pQkR6tXpYUBcT5Plno10pAaHL9y9UfXX58p5e7pDG+yP/Wq0MJ+jEPQ5RIhRAE21efhfVmjKhZ33RinBkQS0YSOb6Nqla0Mz0jAYJ1QXnSZ93BqC5J9zS6uL5RKBtRkt2jdyY9OdwdabveYvvEiRNorTl9+jTf+c53mJqa4ujRo0xOTt7R9uwo26FAdCfZjgXVQoiryuptb29z5swZVldX2b17N0899VRuq+pOK3HcjTqzCWeazSZnz55lvhRwrl10C9pJVXo2USqzbKXOlhGUFgVCScLuBGX8lMphAoszHZsCaBYi5VjKDmkAohXPZptqgald4QBHkhgZQ2kN2jMZWoEZ8GxdQYpG5TfgTVvCiOWxtcGV7SazvHtJJCEWmFikqh5GERkNV5A6N7GA0INg8E42Wu4Tqn7o5FvbjqDLjVEWO6MkyAIYjGNFEFyZoqCkIYplb1c/U0ceeqVl6QuJjEflcJ36pYn+7zIZqG8EW4Mzh+kG9+sfkmFzmBkHJDQCKvdvd6nIpp/m27Yi9cPk1FAgpWSUbFqHlgV1DVsJBqAU5D2iWf1n6yYgTDWrEaRiMUGxza12nEtYZKdhN9JBLNF52ojoidFkEzR5xfOMywVV0qn8ocV590JDXOnxpQ1JZfg3LFtgylf4xoFOJ6EUCzrjg/uTIbkxp98kI4kcyzRdj6GWf5nGk+wOaqyzUTi+3ilyrCWCpXa7UL63XLqjIPdugOo4TsdNpRSlUokTJ05w9OhRzp49y+uvv87o6ChHjhxhenr6njf6euwe/eNjYTuW/gGpp9pOAGOMYX19nTfffJPXX3+dUqnEs88+y/Hjxwvcr7sFqu8k/QNSAPvhhx/y6quvYozhucOHnMed39hyfggj4wNlEJEYptY9jJF4jmh+GVkXEKLAkyzsmkqR0juuYKrDkP3pK5hM7728nNmGbmeku+wgRQPCApY2QDaagrzelXTjgk6F9lqF9kaZTr1E1AqI2h6mdZX1bkemCDLTnHbk046K5ylpqIdFUDYShBgD7Vjx7sYsC+E4RkgSRzCcK0DOtXlg02N6cXLFcweF/q4IUcqkrO9iAK+RB70WNdiq2EAiEHb/6v3sylbpesQTIaXRtEMaXeRNp1UVC6+1zGXKTh4TCwIrEVCzXkrfuXV7I6ZEfmEg3CsLlaeAFGgyShTUG43r5kPrQfoU6/PcoBrAa9vZZxxtHWLeFek/pO9eCjApZah3/LDFWLvj5pL4Ffe3F7c1T2cSZEH6abuSvuwfGyNydPy5UnBbVKOG2d0A1S4Zv1KpxAMPPMBnP/tZpqeneeutt3j55ZdZWFgYGpR4D3Dn7W5TNe7RP67NdjSoHh0dZXs7pSsYY1hZWeGNN97grbfeYnR0lOeff54HHniActkhF8fdAdV3kv6xvb3NW2+9RRzHSCl55plnOHHiBE8f2O88frPTYb5W3LpcDJugUxBUWhI04jS9uXRkx3OhFPvj0n4x+vtKAUoAIhF4xVih7gUpermzQWpCEmyk9Xn9LI+mSP+IBMJStygAj1AWvio7CLEnYhJuBKwuFSfwsvQQiSryXK160kCxPKAaRgFpO6K0ApVwfmuC97Z2087oCrp4475f7JO+Vyxzz4OOxVU2eFHCyNx2f8HV26r36xZclKK4KOuaaqe8a9+VRDUxxQQ/Gd3j/vVjQ/mh7f49SFux5TrN9SyKgYyGkvVs46gIglqdEkSSUqc0ALEdQcOhylPB4dWWFmj2APubsj3mShcXMS6AagNtT6SUpowJz6TXszG1l/3vKwUqpoumKy2cVcZhLAyozTQoeagMo8N7jTa0HTx6oeHyZp133lnk/okBJ3rf2BjNqDg4TVXc3+HecsCbb77J8vLyHVG4uFugWinlBMW+73P06FE++9nPMj8/z3vvvcc3v/lNLly4cMedSR87MzvwbwfajqV/QOqp3tra4nd+53dYWVnh+eef58CBAzz66KPXJEx/tzzVbce24a20zc1Nzpw5w/r6OvPz85TLZfbt29dPrf7Ynt1Dz91drXGxkafUtOKY+9U4Z+ubmMweuMvT5dKKLQAemQLyLC/yalv/AKptiKsOAGdl4YMux7oLkAUpzcRrmD5VQ5Q0toKfCWXBC2eklRYjtkC3BptyKZSmvVIm6gWeWeBN9UBtQ8GEg4ISiYHrNc7zcTdaVfaMX1tQ0OnNKZabI1QtmosLTPq+JowFXnbrXmnaocolKUlB49U9TMaIXGIlNRJTqbTQl8q0pwTBukY40JCMcPJjVWgA4Qxkk44EPzIyBRAng5jyRNhtnyFwgKvElfEP40rgVwhITGUr8882ihS+lSzGtahptdOb7sQJRCoFqMLVFmglcUrdsLXSbTpHIjBZrj/W5WSX85yNGXDRYVzfZuSov6QxQf6dJhWRqr3Qfa+JcacS76SUChVBMixeM0/NT4MMt02a3dU6p6xlIekLgNd2q4RMl8qsNNtgoHm5zfhEic1Oh9lqlYvrxe9NDvkG5soBMzMzvPXWW5TLZY4ePXpbZVp7qk530q4FyCulOHjwIPv37+fSpUucPn26n0hmbm7uphLH7FTbad7dnXQvWduxnupOp8Pi4iJf+cpX+MpXvsLY2BjPP/88Bw8evOYPdifRP3q0l+9973u8+eab1Go1nn/+ee6//348z8vVOVWtcGhi3Hkd7fA+P7FrNxOyjLAG78SRZEwHxS16HRQ908UsHcPvTXZScCZi90HC8QoLmRilwKsPsKosO8CsS/nDpnpYr05YtAkdCdqrlQGgdmDQKOleJFTOrXyR8QwKnd/uH8arrvhR38mnDXy4Ps1mUnG6Uz1Pp+DRsthBLdFWEhlP6sK7dOW4lNKgM89TCjBH28gYqpfBq1/7u0wb0l0MCYFqW/W7nqFjQC+fGHiptRHOxUUYq8IjS7TAxi2JpsBhjxNVoMzEjtTwtqa5MWkq+swRad8I5XASeULxG7KvawNkzxQBsr1IDEyhTifLxfWtlDRxWWAytAjjie6CCHC8u37Te1SOzvCx0dWOKopSU1C11XTqbupHbUjQ4ez4QPlobbPFQcbSkNwhFJ9Nh2NEScHuIOh7aufm5njnnXf49re/zaVLl26L5/pOSOrZdj0pyqWU7Nu3jxdeeIEHH3yQS5cu8c1vfpP19fV79A/b7rZX+Z6n+ppsxy0H6/U6//pf/2u++tWv0mw2eeqpp/j93/99SiV3Gtkr2U6gfxhjWF1d5cyZMzSbTfbv38/DDz+M7w8maVedj+3ZzZmNIlfw8lbeS/2JXbO8/e4iJ/YWtcCNJ5Btg7aCi2RoSLKJGGQ6meYyLNpeYgnEJpcopmeq1fVSdtNZF4KdrvHjFQb87VRLW1Su/g5M6EgEY02MFRPQIp1g47pHuFbKqzg42tbpZkFDCGgqGE1yx6vIJ86eGIm+B3GzVSkk3wAoeQmt2CNQCR9tzNAmbfgwikMYelQq+W3ta+EIC5Gmr87OqUKQ80rnr5fWL2R3bfFYHfHGGDLRJK6VlKNIhvkbVk1DcpWANttzLfyY0swACA072/0IimRvl550HCnwrRTmrnWaRavpdHxMb7VngGTANzVxuotjPJNvdI/u4ZvBBCZESvnoeZA98oGHQgwNdMw1uENOq914xSTmGkcOnpIGKfAaOpcESsSmT8WQsXud0KN/yWEL59hgVDEtTNyMMVWJWYuR46C7WtjD8OuwO7ff+4dnV3j64TmWmkVdeIHgwkbRe314YgJfyX5weC+994ULF/jwww/56KOPOHLkCHNzc7fMu3y36B/X62kWQrBnzx52797N8vJyP3nbPcvYTgOiO+leMnbbPdVra2t86UtfYmxsjImJCX7xF3/xiooca2tr/Oqv/irHjh2jUqlw4MAB/t7f+3tsOoJBsmaM4ctf/jIHDx7k3/ybf8O//Jf/kr/5N/8mR48evSFADR9vT7UxhqWlJV577TXeffddZmZmeP755zl8+HAOUAP9VOVZG6ZXvdxsMltO+YLHJ3dx8v0VQHBubdP5kShXgOG18Ko963JC4Nfdz0Vm6vBaDo+3SwpsSNIXIQWlNe3UqC4EYLnSKluBjK1WhNIKszJCuFZxV5wxhaXP2rYeREcQWwFQfkYaL9GK7bY7RmCrU+G99dk+oIauV9rhVXQFJrqk+ewgOygCSiFAO7SLbX6x52uSqQQ9EQ5Dr2nQqrXTodoW99ri3hboRVCQUSw/sI2UqRe/0fFpdIJCgKU24LvkCV1DhIMPbyd9geIzNcZQtpQ/mj3lDwOeSUHZrnKFw2MTPDQ1y3N79vNXDzzIfDBGEHmotkK0JDQkYsNDbvnI7fRPbHnUOuVBm22Qan8+jmQnBe61J4r3e4VgRWld7wpqmQCpbnnvckOGRtlxL4R6iychBaUN07+Wc9FloGHcMprn14rzz/vvL1JxeLb3j43Sccwb901NFACulJIDBw7w6U9/mqNHj3Lq1Cm+8Y1vcO7cuVsy99xNTvWNmBCC6enpG56zd7Ld7aDCe4GK12a33VP9pS99icuXL/P1r3+dKIr4hV/4BX75l3+Z3/u933Mef+nSJS5dusRXv/pVTpw4wdmzZ/k7f+fvcOnSJf7gD/5gaD1CCOI45vd///f58R//cYQQvP7666yurt5w2z+Oknpaa5aWljh79ixxHHPgwAHm5uauOMhdD6gG2FsbZbQUcOnUJkkXedQ7Ifunxjhvpet1beG5VBcKSeA8gVfX6NIAjBW0pvsHZ71eRa+4fXHRzZpnm0xSnq2IBaKUfwdG0wXMIlOW91CaBEQGzxoDSUvR2gjcSgrpUbl/lYVHK4diBLQkVLvvp118j3Fiuh7I9N8brQpjlfz2szZwsTGGcvBFw7ZHpZoHcnbGR4AgiEl0GhDYL/MSokTkylxJYOJEoqyAPN/ThLHsn6tUmtwjebiFXM4nm8maCiGb46OX2Kf/bynwGoa4NvBgZk3E5IMUVUJpuk2j46d60N2LrdRH2DXS7NM4olgVMh8aYwqceaCQph6KHmhjDIHluY4ij4rFce/xqUlS/Po39+zn5558qsDFNcbwf3v5Jf7tu29jjE5/s5ohhKDZ1AjjpynFrUWgUSad7HqXlQLZAD2auZBrXWhzqD2Tfg/Z7toF1fa6Mrtr5QpWVO3BOCJEKsupreyLQjsWT9rSp1aS6hp0agbtkthLBJHjve2pjbC4UYyAPTAxwcaFFiPjPo1MsOKuygjn2S4cf2RyAhm5o6mllMzPzzM3N8fCwgInT57k5MmTHDp0iP37998wxzhJkjsOUK+H/jHM7lE/HHbPU/2xsNsKqt99913+9E//lNdee40nn3wSgN/+7d/mi1/8Il/96leZm5srnPPwww/zh3/4h/1/Hz16lN/6rd/iZ3/2Z4nj+IqDyz/9p/8092+XpN71mFKKMCxqkN5Ou1H6h9aahYUFzp49izGGgwcPsnfv3mvaRnR5x/eNjTJdrbLi2N4sobh4oUUnyrdzV61SANXVqTJhJ6+FpUtFveo4KFIEZJSnhBiXS0vnE8r0OLU9T5QXCewcJzJiSDrz7sTt0QcA/bpDibhCQjsg5bhWNMaA2fAItwN0onL74AUHrJ252QEkVccjqYZgwCTSiTVFR2K6iVg2WlUOsJ77/fzaFB0dUKXYnxOHF9kP4jSPSBasihT0lTILDiEgSTxkxv3oTALjarNIOdlZCoqSGiqC8IkW/g9H3PeafTUuhRnSwLa41g1stN61DDVJN6DWYOBIM6XNWJVFicfy5gi7xpr4SpNoiW+5SqNYUQ7y30GcQNlW9EhEoSyKFdVSHkC73kWrFRAYxV994Bj/1+dfYOHyZd5//31OnTrFkSNH+uBaCMFvPv8pvvTQw/za1/+MD9bX6N7k4Dl214FCCIgVJhKIDlRHJQ0R5mkj/Ubl22MCnb6DLItJW6+ql6UxszgTvsFIQ2IB2rgMIkq/fV1K5TOzix5pdVmvqQlLVwdtqmMwpfzz1AKCNU17T/H8cqKIHCv3vROjTlA9Vipx6uIaJ/bs5rvRwqC9QwDh0clx1OqV5xMhBHv37mXPnj0sLS1x8uRJTp061aeK2LuMV7OPC/3jnl2D3QPVHwu7rfSPl19+mYmJiT6gBvjc5z6HlJJXXnnlmq+zubnJ2NjYdX+oV0v+cjX7ONA/kiThwoULvPzyy5w7d45Dhw7x7LPPMj8/f828PBeQF0Lw+F63CojfgnrLAc4cAGej02H36Eih3NarNZ4oUjdsj1ZZFECU1ypydXPXiR3yWENead/TVYsLYM5ExWdZlGkTmHVF53yV9nalAKhtk710hRkLHXSZJJbQEdCWbnQKaQKR7qm2rN7GVpV1U0YpjXYEILoSnEgJYefqgYlQ1KFW0hQoJcpz92mbEuF7aaCj2h0RH766Co7XGuLVMqmXWtq6yNlDhEafaGBGjZMDDZAIxfL2CGGskC41EMfzSOLic3PJ5MWOc11Wisf4s5/+Ev/0Mz+G73ns37+fT33qU+zbt4/333+f73znOywuLvYD3faPj/P//e/+e/7G8YeHcCIG/ymFRISS1gaIdR/RUAVKSEGxR4oC9clFsSlQSwBKOo2xiHKNGAQrkgYeZ83+Xm2QLRKDdiiG2DSTnqlQ4G8W32WnPUS3c8jkH3fHlrffW+CxmcHO3lbL3W8Pj41e85gshGD37t0899xzfOITn2BlZYUXX3yRDz/88LocPT+q6h/37J7tVLuty8mFhQVmZ/MBbJ7nMTU1xcLCwpCz8rayssKXv/xlfvmXf/m666/Vajftqf5RDVRMkoSLFy9y7tw5fN/nvvvuu2FpJhf9A1IKyNdPns6VHZua4nvvXWZ8rMSmlXXxwvpW3ivWtT1jIyxuW+/BkRhBxibnFIutLV6kwGtp4kzmROlICJGlgDi92445Jucdq11DenIDlFLegYlBb/nEmz5JZjIRSR5s+EYSZjx3CitNtoFOErvfYVMNY0OkdYmuNnBgqLdLxLHE8zRRLLnQHu/ra4cdj7JF9fBKMVpTVLBIein0BuYKbCym5+5SYzLHep4mjvMBjJBylLNebSHS6xkE4nCbpKFQy3lUZ+TAm5ny6V38ZYG/lTgJu0YJtJegT7RAGZSL/5s9HsnSdpXRUoivwty6xk4n3j2hWOTgrbuUI2wZPoB/8WP/HbutwC2lFPv372dubo5Lly45Pdf/8IUXWG+2+LOzJ9PP7WrcZQR0FLRVGjhMgqkmmHJKy8nNFnGe+oSvC9++s8qShpZKU5JnaB9Z4JwNVpShwQ4/tKlUrjEAhnz7preAB1EThJkFpWMtBMDSlnsOWdxIHTYCwYUP1piZr7LSbBV26wCmR6qMlwJWrhNsCiGYmZlhZmaGtbU1Tp48yZkzZzhw4ACHDh26KrXjbmVUvJk6XUHN92zn8ZB30r1k7YaWsL/5m7/Z324c9vfee+/ddOO2trb4yZ/8SU6cOME/+Sf/5LrP34me6jiOOXPmDC+99BKLi4scO3aMp59+mt27d9/wQDQUVLv0qjdTCLR/Yqzw00azzZ7xolfa5QWsTBWD6Wxvly7LYlDaVbxY3dLU2xWbopctm/QlY7nkMi5QbXuuOwLT9Igul2ldqtGplwvebFsGN7HkwOIk/+9CkGLWQuX0lufq63oP5aZicyt9D2dXpkkyecMTW1qM4V5plxReygE2VllRv811F7GzbkOr7dNsezQaPvWWTxgpOqFKeewPNdAj1i4KmQyaV1AkkZFjYWYM8XiMfqSJCMw16Z8DaK3YaldZ2Byl3gwwBrQ2lIIiXcBzeOU9R0WuIE+bY10WIzwwNVw3vgeuP/WpTzE/P1/wXP/ff+K/4snZOUoy8+wl+ddl/1uA1AqTeLBdQqwE+Jt+uluSPSdrLu+1q7uWEkRiUGGamEX0dp6yp2YXLQ7AbDyJyHi2nWOAttSEes2MuotnKfDXTD+g1U9w8qxHSwGX1ov86IlKmeUM2G62IvZEVfaPjaVa4pYdm951017jqakpnnrqKZ566inq9Tovvvgi77zzDq3WsKxXd0dS756n+jaZ2YF/O9BuyFP9G7/xG/z8z//8FY85cuRInxeWtTiOWVtbY8+e4YFwkGb7+8IXvsDo6Cj//t//++vmkkEKqhuNxg2vfO9moKLd5iiKOH/+PBcuXGBkZIQTJ04wNTV1S1b0w4D8/bumGPEHQTiPTM/w0TvLAATCPWjurtVYsDw7i1vFhc2WiSlJSSdTb1yRBe9WQX6vYA4PIOA1u/rXdtKPTNKX3DnJgGcdxxKx6iN9naYlLxmMMpi6Iul46LYk7iiMsvia1iOx8Z69MrfHlLK0gxSz7RPIUJBUzVCPo0kEoi6QHcXmZpUEQcP+boacm4LtPKDzg7ggz6eUodNR+JkANyVNIQmMdOUmdxRtNcq0Ov7AW9y9fa2ho32EMXiPNvBerSEzfGMZajwjEHaGnqxpQWVF05kUJOX0uKQaYo6HCJl6xNSV5OOyTTeim3Jdsdmpst0pUfVDJmr5rf5EF4GxMYagVCwrW8clCYxYIP3QSDHuxGVKKQ4cOMD8/DwXL17kvffe49SpUxw9epT/53/9v+e//8M/5P311UGftHnWCTmqkojISO1JSjog2gwBjfB1F4WSB9exgFLee13oP0bjrYLXFqhEYBogjEFEBu2ngDcbrOjKpCoAv6EJA9W/lcLzCE0h0Qyk40kvyFEbKK8a2tOCaqLYdqDz/RPjvFtfLpTPT4zx3mb+3Z88u8rTj+/nPEVP9YOz07cM4E5MTPDEE0+wtbXFqVOn+OY3v8nc3BxHjhyhWs1Tv+4Wp/pG5uue9Rxz9yxv9zzVHw+7IVDd2466mj333HNsbGzw+uuv88QTTwDwn/7Tf0JrzTPPPDP0vK2tLT7/+c9TKpX44z/+46FpxK9mH0dPdc+T0RuAO50O58+f5+LFi4yNjfHII48wOTl5y+uMHKl2lZQ8umc3L52/gBSC+tLAI7JWH+IdcXwoi9sNdlXLrDbbucMOz07y3sJAncX4AtXQ6HImuYl1wSSQfUAgIrc2LXTBszAkDlBtg9/0h8F/NkQAzUFUoohNCkYyAE5aIAQNWODf9tQVPHfWqCKv4HUVcUoXkB2DHvI5yEQgmgokrKyPUa+pYiBkkDh1rF0jnPIMUSQJLIWIJM6Daki5xV5mQeCXEqJEIrKqIBZ1pNnyaXWCrrPQ8nQPIk+JUcSPtSi9WUZlvN1eS2P84aDaiwxISWndYGRC/ZDGPBj2X2Oq8mLdtw0Uwfm8NIrNVpVmFFALQkarbaRME+SUvDznNYqKAYlR6OFbOuBJ2wNLTm+uNNxL7TIbXL/77ruUSiV++9Of5pf/819wur4BQCAl4TB9OiCyFtkd02uXTHdMIg+2DVIlmKqGsi7SPWQaBEl58Ix1LVUlSQIGpB8hMIGitJrQnpVpgqjYpN9LYl+0e+lec3R6XCH+N3ZnXix080QwGis6622YKgLBiu+eIitDgGqyljBTrbJsBXgfm0lB9a3kN4+NjfHYY49Rr9c5deoU3/rWt9izZw9Hjhzp6zx/HAMV70T69o+l7TTv7k66l4zd1giG48eP84UvfIFf+qVf4tVXX+Xb3/42v/Irv8LP/MzP9JU/Ll68yIMPPsirr74KpID6J37iJ2g0GvzO7/wOW1tbLCwssLCwcN0A9+PIqe4NgK1Wiw8++ICXX36ZZrPJY489xuOPP37LATUMp38A/WDFx6ZnWVgZLFAurG5SDYoD5+XN4lYpwJyDLlIJipOYCi2wZm3fG1+gusFnXmtYeBmAcFIDhEstIkMJ0Z4pBBeKWFDIWV64rlVgKFynAOatS3aiIZqBhr4+rwiF7VAGUkUW1RTILnd3a7vq5JRKzxA5qB5e16toW+QIsHMB8AJGF5CE+Xo8X9MbSTsdj61GhR60srtfL2FM30rQerxDPJ7evPZlGpx5Beu9EyEE0YRGP9DJSLwZhJ1yfgibxLkIIQ2y1Ci2wgqXNsZZ26o6Nb8TxzN0lbm0vPdeJ6juWQ9cv/DCC8zNzfHB++/zG/v3URPpOwmNxsu+NQuYGo+cJnSEKaiACC3QeJhmgFkro9d99IqPWFcDqkjbeh7lVAEEJZAWtUsmUF5Ly1Tb4LWvsMPYfVGq4w5UHSYHbwc0CiHQyzF6yG5YveUOXmwMCWrc3GpxQIwWyo/N3Dz9Y5jVajU+8YlP8MILLyCl5KWXXuLNN99ka2vrY6dTfc+uYHebqnGP/nFNdtvDgn/3d3+XBx98kB//8R/ni1/8Ii+88AJf+9rX+r9HUcT7779Ps7uyf+ONN3jllVd46623uO+++9i7d2//7/z589dVd61Wo9ls3jAwvhugutOVn3vttdcIw5AnnniCT3ziE4yPj9+2Oq8Eqh/buwdfShbP57c0DXBwYqJw/PJ2k+mRYqps5Zj4NltFwqQdhJSURZpJMXutrrqHDId/lQLwt01BScA12aq27ge0uVKrCweIta9j40yRkP+6NLmEI2WswEMD0RAPjYgGwEEIQSW0EsJoMNvdgK7uYKVjRdxxT2wuJQrla2KXwokrmM53cIZdSWAsgCll6vmOY8lGfZAiPQXQV9/uFb6h/WCHznyE6pjUE30NFo0ntJ7sIDMycSYSBdUTnQgneDaOTmNMfp1lkDTiEkv1Gktr4zRamZ0O1+zhKHIFfM6Vr0yTu5r1ONfHjx9Has0T3ghBIkBAkn1+wpJzlEVdeN+aLgqtFRITesTtgGStjL6YAm0WfMSKgrpM+2ol7Sv2AlcIgUgE/rZGJKk+9TDTnkAkxvltpvrUjgV15NanN9oQbBafvQTOrW4Ur2/g4uqm8/hLq1u8994ix3dN98sDpTg4OXHb+c3VapWHH36YT3/60wRBwHe+8x06nU5/br1TdrOBivfoH24TO/BvJ9ptF5OcmpoamugF4NChQzmP1I/92I/dsu2fsbHUO1qv15lwAMCr2TB+8+2wRqPBmTNnWF5O+XuPPPII09PTVznr1tiVgiMfnp3hk9O7+cEPLxd+qw7Z4psbG2WlkaeHLDeKA/vZtU0CJQkzAXvehJ8P4BMCFSYkXkZVo/ezY6u+f0xikKRZ1BJfE06plLdZLp6gOoa4l1/DpgO4zDhoJ/bjS8h9XTKGJEPbEJGBzPZ0SSiiISQz2wseJRrZFuiKAQOqIfpeZoFIt8QVRE0fr1RcFOohADbqePhBnrrgAtCBnxBFApW5P99L6LQ9VKD7wNQpQZcotptlTIFjIXBRQLLfnhCAgmh/CGXF+LckFJ2C3eulMmvJmGb76U6BO+3Kbng9nhOtKSiZ9IB2XXvUG6OoRsJYKaQWFNGhM5jRL76rG/VU92xjY4MPP/yQRqPBoUOH+OrTT/MT//p3iXRUuN1Cr7Ca6CtJlC20cZMQVKVHs0sVMVKgQ484Jt1daQPr6ft0Sb73aBxeE+JKdzE77PsWAq+eIKQsRCG49Kl75XbSGADV0iRln5EmNDKU5INTE5xZ3CgcPz8xysJycUdufnKMSwtbCCC63MErS2KtuW96Cq+r6nQn5O0qlQonTpzg6NGj/Of//J95++23uXTpEkePHmVqauq2138z9A9jzD36xzDbad7dnXQvGdvRCu09Xlmj0bhhUA23N4J6e3ubM2fOsLq6yp49e3jmmWf47ne/e0ezYF1Jxq/seYgtN+DebLi1rKRjDXpxY5uxcomtjAxfrDUP7pmhFUaUDEStDkkEJjJc3mwQj3T5lTbt1e+jtqH3lN36V7GgshgTlwVJzZWzOnNtx2MvBBzGogAolCfQmQsJkx8zbGBsrEcaRJLIFaSou392GyIQHshQFLjYHoLIGKKGT2WyCOhc2f7SqorvLQgSklgUZOei0CPS0A59wpZPC0nS8cDXSAwKg8Rg6qn33Kj0/+NEYGTxHbg81ULQzdSXLzNGEE5rVv6qwdBKs+lFDKQUZbqoEBKQGuXrnAfaaIPyi8/AxfAZKsTjWASYJH0nPUtQrLUqrLfL1Ooxo36b2lgbMARlmz5gKFsc66qqMOYNWzVc2ba3t/noo49YX1/n4MGDPPbYY/3gsZ998lH+1be/S1Tt9tPus4m0SQM4u9ewVXLaxOSI0z3Oc+Z1thsRZIBpQX1HCEzgvn7qfe4C5qYhKbnjJXqmOhBWHXzqxDjDfWUnyWVo7ZfHJv3M1hNEIPvSmpPVCmfYKBw/UxtxguqpkSqXukGKC4vbfPKTe3l1+TLHpnel93eHlTiCIH3Qzz77LIuLi7zxxhuMjo5y9OhRdu3addscRffoH7fH7gUqfjxsR4Nqz/OoVCo3HKzYGxhuxyCxubnJmTNnWF9fZ25ujmeffbYfkHmjWRVv1K5E/wB4ZP9uvn9usVB+bnWDoJT3NAMs2ZrUXds/Ocbbl1NP/O5Kib2VMViPuHhpI3fcY4f2sLjext8GEScIbTBCk1S7QZwlidp2CCtnLKtgJgCEItiKaTlAdXZL2OWptoGBahuSEYumYgNVa76yrxpZqFo6UkoD+FrgoOmm6Zrr3ZTh1u+JTu8/aroj8L1SQpIIlEV/GJagJex4VLwU8CWJYLNRYaNRQni9iL/u/xlS0ITo076TUKQa2d0CM+S1pdkVi7+Z4u0hPYOORQoGe4GnJXIBccakIBdkumshTB9Yi1gU+dTanQQH3JQQ4dDrTgk41nVjgQigbnzqoY9crlEzIZOjLUZqmQVmx6NczS+A9pauXyaz0Whw8uRJlpeX2bdvHw899FAfXPXsl599gn/3vXdYaTbT3ZPeQlJCxXg0e5wKL1289VRxNBR2YArpwe3mKrpp4QdFvdThvYDEXjCr8QQy1KAEQgpkzJDMp92qoiFbyEMe2bCg1n7sgacoL8a05tPGJo7EUektuSuwy0++vcSuQxWOzaQ7jnc602BvTC+Xy9x///0cOnSIc+fO8f3vf59qtcrRo0eZmZm55eD6Hv3jNtk9T/XHwnY0qBZCMDIycsOgurdVd6sArjGGjY0Nzpw5w9bWFvPz8xw/frww6d1pLvfVQPWjB/bw//n2DwrliTbcNzXF+8urufLLm3UmRkpsWMlhfKV4cGYXeivk7MVtNllmqlrcCN5upxQEAeApjDH4dYPfSFJaQ03iNTXaIZnVM6ENNhpSsaC0mtDZlaGSxKYvt2aE6U/4g9/JpUzuHmg9iGIQop0sz9bgTiwAF2o7z3P3Om3jTGCCJg1K1KRfse3JNhC3vDR9tOMxhW2fyohF9QjcYFtrSZII1utV6lGQ+qBFEUBmvZyDdtgNY2ib7IQxANJPAbSt4Gh0F4R7bgwlROp5FyLNcBhHBiUNUiSooNjXtRYoF1CORc77DAwNXHRaLCBDPdFCsNGusCnKeFuaURkyVmlTVpDyIwZ2PdSPdrvNqVOnuHz5Mnv37uVTn/rUUNUkIQT/p089yZe//k1UwzAifDZVBAp0nOR3BpI8sLV3YGxzacAXQHXvekIgY43J8p8zF1exIb6CnKYXglrRtCfFADBrkyoE2W2IdP87z1liSMqDzmWUx33TU3y0ssblDfe8sT5E+WirkX9/nU7CMTnKsZm746nuzSG9On3f5+jRoxw8eJDz58/z9ttv98v27Nlzy4DsvTTlt9F2KBDdSXZn85feBavVajcMqoUQtwTgGmNYXV3ljTfe4K233mJ8fJznn3+e++67rwCo4fpTld+sXa2+TxzYPXQbtjZEj3TfZD6wcqJSJmgbzry/yrnL2/3rrTVDdk/mE8acXlynVsk8F9HNnCclwsjUg22rClhWGHsMGE8iI4FqDt6n10r6CEkHFBCaSyfX/moKeT0MheVqFlRIk6E0JFBaksgNU1RXiHEC6pKU3W3y9K/kQLMGIBZDvdU6cQAPUUwCYww0Q49za5NsRwMutJSmyCP3dZEPaWPqImtiYMPUPDKueq0haiu0Vhgjh9IzjEWZEUKgjSRqBUQNv0C/GWYuWorWRVBtDAiHp9stGpOeHEvJOmXOtiaI40Oo8CH2eg+xLzhETY2wt3x1UB2GIe+//z7f/va3SZKEZ599lhMnTlxVhvS/efQEe0ZrCCHoNGL8DVBbXZWPzG3YMZqely/wbe+vJ4rBg9az1gGYbiW+/YCy7+xq78iAkJLymsGrpx+P30icOvReI3GuhFQrn3VTCIiXI3bXRlh27Lj5SnJhtahDrQRcXCmWv/fuEsd2paD6TqcM781bdp2e53H48GE+85nPcODAAd5//32++c1vcvHixZued4wx9+gft8l69I+d9He7bG1tjS996UuMjY0xMTHBL/7iL14RB66trfGrv/qrHDt2jEqlwoEDB/h7f+/vsbm5ed1172hQfbOearg5r7ExhuXlZb773e/yzjvvsGvXLp5//nmOHDlyRXH8u0H/uFJ9o+USR3e7A1zq7dBZnp0sH5iexFtN+MH7i0xUive9ZyLPG9XGcHDPRP6gzEQpGAZW+hcoTKAi1hgv3VYONk0/TbrIgGZnkKKL5mwBZtvBKWLy4CDJg+qKSZU/VBPKixK/IzARlNbyKZeFC9BrCNsp+3msFDBVKRNGOqVXZNqRKikMp4AUGt27fAZsh6Hi8toY27pMQbxQUsigJyTd9NXZMof3d9hgKorSegDCS8G6TiBpDdzyQoBJpPN6RrtpG+iU69yql3JqJ67061pToImkFy9e2DiANpCm77bvx9F3K6Uyry5v8R/PbvEfTie8eG6SmjnouGBqURTx0Ucf8a1vfYtms8nTTz/NI488wshIMaPpMPu//KXnu49S9GMP5BZU27IPhI1PXlpP6Fw/C9EFEF3ot/ZzEQNv9X33z+Z+yu7oXHHO1aZP2xBK4jcFwXrMEAZTqivvMOVQEFpc2uaBUfd4d3BqnMTRSecmxwgdmRT3To4yVk0XOLdap/pq1gO3wzzQPdnFz3zmMxw5coSTJ0/yzW9+k3Pnzt0wuO4FGt4sqL5H/3CY2YF/t8m+9KUv8fbbb/P1r3+d//gf/yPf+MY3+OVf/uWhx1+6dIlLly7x1a9+lR/+8If8r//r/8qf/umf8ou/+IvXXfeO36O5GwlgjDEsLS1x5swZoijqJ2O41oHmTnuqr0b/AHjswB4+WlwrlJ9b2UQpQWIhm9VGEwGcGJ/g5Pvr/fIDs1NsnM3zs7fbxYDHxPri5KhP0ogGyUSURIZuCoiMi/O4jAymyx0VSlFZTmjtznd/l5yeo2FoP39931MkGfRt4Y4UdGSwrTKCYE2gmimYKXseTR0jjMDfMCQjENcoBiga8BI4smuCL+yb5ZDS7Nu3j82gwv/rtR/w/UuLNE3+5qOGG1SrIHFymHsgeGu7zHonlb0TAkwItmSD0Q4KiLZc0Z7BxNc4SUogklDK90UhIW6moY8FDXFBmkkyA35NIobQS8iMeIKw5ZNECV4Q55RM+sdHCuEIaHTBIhNKREVbZSDsZ2bAhfxWOrZXVHC4VlT/SZKE8+fPc/r0aUZHR/nkJz95Q0HYAH/pgcPsHa1xebPe7zJCCMqhR9wMiSugK+luTTaA114kygiSLM/aemQuSogOQEWwuJkfm7UvkGGqEJJqZRvnbo1qm1xiISEFKlHQCWG0WKGtT91vu3KD3GgtZH5ijIsbee/zWMm9AzBVHQQpZu2B+cE7vNMe3GutT0rJvn37mJubY2FhgVOnTnHy5EkOHz7M/v37r6vNcZyusO55qm+93QtUvDZ79913+dM//VNee+01nnzySQB++7d/my9+8Yt89atf7edIydrDDz/MH/7hH/b/ffToUX7rt36Ln/3ZnyWO4+uiM+14UH0nPdVaaxYXFzl79ixJknDw4EH27t173QPMj1qgIsCjB/fwB6+9UygP44TDMxN8ZOm5rmw1OETAyVP5clfShNOL64xWArZbA6/3qcV1PCWIu1q2YZxwdH6K05cHAF12ihxooKt/a3lMLaCLUPibCSbDs9QOT7W9/a3CokJIYmxpD6s92aDJBPxNiNuDbBtCMkjuIgReE0TY9bYbKPuKdpTwxRP38Zv/1QuMltMG9BQe6hcv8huffJADP/UT/P733uW3X3o19SAKQbzlBtVSpcFxQSXvZpSeZmmpRksFeW97KCEogt2CuegeWuTB8BXwtYmLoFrHAh2qYvbD3jlGoGOD9FLgPJTzHOaVRECQxB46kpRGo4K32rVoSBU+iu1wVWcSibC5D5HdhjQ9/UI7ryZRVl4ayNs1rTUXL17k1KlTlEolPvGJTzA1NXXTHr1f/fRT/MM/+c85rnRoEgQCvwW6Y4qKOPbtW/8uyHp7FFRCdAA0YHmrSS1QNMPuNyQFshNjyh6INHBRl4vjp4qKmoYiMaAVXj0mrmWmttiQVNyqP8FkmdAxJi0urlEdLQ4u1xu8eP/8rv5/3w1O9fV4xqWUzM3NsXfvXpaWljh58iSnTp3i0KFDHDhw4JqAhc3jvl67J6d3BbvN3t07brfpXl5++WUmJib6gBrgc5/7HFJKXnnlFf7aX/tr13Sdzc1NxsbGrjs+YMeD6pvhVMO1gWqtNZcvX+bs2bMIITh48CB79uy54a2+Ox2oeC2e8UcPDE9CMWbxN6WAPSZgrFThMnnv9unFdUbKfg5cGwMHd0/wwzNL/bJ2GHNsbhcfnh8EQVZr+dl92EpXFDF1EewBfh06mV3egqfaFJU/RMxALaF7TGwH0bkkmLvnlpdEqvyRaU/H8a5VOJC9iKKEZw/P81v/9Y/njhkdHeXxxx9nY2ODjz76iPPnz/Ppw4d56mf+Kn/n9/6Elo4JI0kSSmdwXhTlQbVOBKubNaJYFfnB10pt8ExhrCwkxrlCsGJBvrqnYiIFJjGFgMXe9YglRmroCMR1qlEarehsC0q1MKcA4uJIm0girEQ3BsAl0eeqLBGFY+er45ys54N9j4zsQgqBMYaFhQVOnjyJlJIHH3yQ2dnZW7Y9/r976AH++V98h3orJOz2w1DrdCEo02BY0UyTrMS1tCzwJJ3MYqEgjedDTnpPpLtHOgeqBwfs3z3J++dX+r+NjVbYjNLxQbXdoNo1Iat2gi4rvIZGlzS6y/f2Ggm6WpzqpkZ8NjaKgNpTgo1GTLwVcvBombPNwU7a8qZb2cgOUuxZ1lN9N+gfNxIwKIRg9+7dzM7OsrKywsmTJzl9+jQHDx7k4MGDV6QuXo1ycq3137P/cmxrK7/DUyqVbkpSeGFhgdnZPK3M8zympqZYWFi4pmusrKzw5S9/+YqUkWG2oznVkAKP25WqvLcV+9JLL3HhwgWOHDnCM888w9zc3E0NnneD/mGMuWKd06NV5ieLqcYBWq08r/qh8V1cXm4hHXrE2hgO7CpeJ3GkDy9ZadDPLW/mkIr2BDjOK5QYnHJaKtSUV9N3q5XJbWlDlxtqbxtbF5ehw3HnSE8uIigvCmQsiLPeGE3+3w6bmxjl//E3fnLo7xMTE/3Mm4uLiyx+8C6/89/8JR6anUGFkmRjyCSYubUkESytjxIJ5c5uWHL0DQ+wKPWiS/fIlbl41cO6mpdypyFdbKX0lW57HMGV2baYtixQVPr1WVJwfetxh7Wis1VCR92gVYfs3lCLhnCvXYGLjmc75hcpBYdrUywtLfHyyy/z0UcfceTIEZ577jl2775+mb2r2Zcef4RID1/ECyFQbUGwBkFb0LF41MbP78YgRZFXbQcrZrpkOcj3z/lDA++u0I7nqg3GQdsQXWlPISWllbhP3peRu7NNlN2d5cD0RD8BVbwKQbeumq8KdBVIh4gLjiBFgPvn8vSPOw2qb6Y+IQQzMzM888wzPPbYY6ytrfEXf/EXvP/++/3Mv646b4U3/h6wLtrdDiq8XYGK+/fvZ3x8vP/3la98xXn/v/mbv9mXWxz299577930c97a2uInf/InOXHiBP/kn/yT6z7/vwhP9a0G1XEcc+HCBc6fP0+5XObYsWNMT0/fsoHgbtA/4OqelMcO7uHienHyOLO8nsqpCXhizx7efiddDZ5eWMeTgtiaGF3z5KnFtTRjW0bz+vzqVs7htdloc3jPBGcvbwBdqkRbE49kJPKS4t6/iLVzEpaxwXgeXj2hPevmZif2F2JzkG3PtSZPdehu2ZWXBFILlBDEGZCZYX7kz+newnilxO/+7f/2qn1LCMGuXbuYmprqb93+H45O8+rMBH+08j2YLU6Cssvt1bFkeaNG3HUDi0iAjfM8oGPdKyldQ9i0kERAFmSqHrfgGr4PAYQKKgnJto+deXGoh5suXSPG6TV20S7ylYJB0t4uUx7toGOBdNBNnN7rWCIsr73R7nYMkSMvWLDe4t2Ndzl8+DD79u27rWDs5597jP/3Gz9gI+Nt9ZQoLPYEAuowEflsy2jwbQgQbTCVwbEyycf42m++pwAiEDTC/MpstT7Ivmq84n17bY1wdILcN+55lJcj2rMBDOFND1MXGa8MOv/mRptHD8/x2sJlZqoVzjWKoHp+cpyLl4sqASPlgL1TgyDsO03/uFX19caWXbt2sb6+zqlTp/jGN77Bvn37OHz4cE5p5mY1qnv13TOH7VD6x/nz5/vZr4GhXurf+I3f4Od//ueveMkjR46wZ88elpaWcuVxHLO2tsaePcN33CGlVH7hC19gdHSUf//v//0Vd2WG2X8RoHplZeXqBw6xLKiOoojz589z4cIFRkZGOHHixC3hNbrq7AV83AnLguor2aMH9vAnb35QKA8Tw4HpcabKZX749kJ/Am2HMQ/s28X7l/Jb22eWNpAiD647UcKD89O8d2HwrtbrLQ7tHufc4mDCqtkUEGvtIcN0os6VZYIUbRNAsKVp7HO8Q8fjSKxvzBciF1QpYvoZ4yBV+Ag2Rd9DGXiKOOPKLXkeLW296y6oLnmKf/1zf7XPob4Wy27dXr58GXPyJC8t1Nh0BFGpQBM2PNYbVeLsROgCpeAOIrwWnKxAd8hRN8QwzzEpRzqpeySFFQwpfcKlXBILEAIdCaSXXJX+M7yxgna9hB9E2DOYSXAGLjonukgUOODGgHFQZhY31wtlx6f28sJDz9wRECaE4PP3H+GP3/6AVpT2xQiTp1Flnl+rE+OH6aIzGkt/c8pKZszWbUemwY4ihgvW4vnS2jajJZ9mJ0KXJCI2Oa14GZliwGqii9kShUe1bojHAmdqzI2GS14H4ig/qLz/g8vMPzDKrtoo55aLoHpqpMJFiqD6gfm8o+VueKpvdf+ZnJzkiSeeYHNzsw+u5+fnOXz4MNVq9Z5G9e20HQqqx8bGcqB6mM3MzDAzM3PV45577jk2NjZ4/fXXeeKJJwD4T//pP6G15plnnhl63tbWFp///OcplUr88R//8VVlSYfZPfrHVUwpRRiGfPTRR7z00ktsbm7yyCOP8MlPfvK2pXq9m57qK9nxPZNDf9tfG+XddxYL2KXkFwfYTpSwu1bcevW94gQwPprv2Ctbzdy/y7WArKaacNBBhnmkel4wIRQlF2/Tvo6l4gHgWW3u1SUNBGuC0soAUAMoS8ngSt3ny3/1L3NkZvgzv2JbhWBubo5PfepT/PoTTzvpFkbD2kqNyJ54A4MJr7Ffu4L2roX2oIZTQIyBeBjVw5VeEjCRIEV3IqWBZH+LGe4+cMnjGUHY9Imb+edioiEeT8czMI52ylAUwCDAminuIjx39MQd9Wr+2l9+lppvS5Vk/lvmJwujBKojKK2kMpA2dcpOhmR6POvsMd3qmp0o59EFmJvtTrJCpFrSuROL7ZcZvfmeCeDw9FRe875rY5US6w2HHKgxLFpUDp0YpqKAZsctH9ockkH2/rlduX/fjUDF21Xf+Pg4jz/+OM899xxxHPOtb32Lt956i2azec9TfZvsblM1Pi461cePH+cLX/gCv/RLv8Srr77Kt7/9bX7lV36Fn/mZn+krf1y8eJEHH3yQV199FUgB9U/8xE/QaDT4nd/5Hba2tlhYWGBhYeG6sdiOB9U3Q//odDpsbW1x6dIlGo0Gjz32GI8//jiTk5O39cO/04GKQogrAvlWq8X777/Pufd+yFi5uB3iK0m04SAXA+eXN53lnkMm69xKnjMNRRB9ea3O7FRt0LZOzOzoQJvX+aE6XlXq/Rp0/5Yq7gzYwEA65tTYClqTUiBDGF3x8Rui4DXX1sNoJ/l6Rfd/XjhygL98/Eixwuuwer3OD3/4Q1orK1TCSuH31nKZKHKjTdFxPDSXlzYwRS1v32Bsjk9B4xBwOwoxLTUUPCO6/OisRSInu2aMSMt6Fg8D6Lg9PxqQgqjjE61dOVGMSchlTMw0s1gWFcHGlCzRtm7IR1Ju37mdKoCy7/PJ+fzWqH1XI9mtUAUkdGUgQTVAZp6TrW+NpMCzzir3TI9Vc79VM5lWZ7PJobRxUkKGLZzHghKHq0Uv2P5d487jp8dHWNsqZkw8/eEyQUHWJLVmxz1uZoMUYWd4qm0bHR3l0Ucf5VOf+hQA77//Ps1mk+3t7aucec+u28wO/LtN9ru/+7s8+OCD/PiP/zhf/OIXeeGFF/ja177W/z2Kon5fBXjjjTd45ZVXeOutt7jvvvvYu3dv/+/8+fPXVfeO36e5EfWPVqvF2bNnWVhYoFwuMzU1xaOPPnqbWli0Ox2oCG5ZvVarxZkzZ1hcXGRmZoannnqKp1Y1f/726dxxD+2Z4d23FxkZ8Wl08jPnRr3NoT0TnFnayJWvNqK8QgApZ/rQTP7Yi2vbzE5UWdkYgOs906MsrQ3e6b7pcZa6PMzqSCnfBuMOUrz/4DQnT610DzEUMKcml54ZUp6oto5pZ5GEhsk4oL4aEveQpoWuckof2pHOXEOtFPCV//ZzhTZfqzUaDU6dOsXS0lLfW/3W+RZ/svT6oOqWYpMAoYYwI1ygtmTSJDN2tkhLo7mnxpEFm0KlDNqsiURQoFjEQCQRGIzD453ydyWMDOozicjfhBDoSCK8nkzbkNE7Fs7se1lefCwUyaagVIvcfGqHPjXgXIBoR0DqpFdiLcx7qveVRvnhD95idHSUo0ePMjl5Y7sV12v/55/4FN86fZ5G3P1+JLlvNLRoEUKDUXQTx4C3aOhMgi4DQqSSl5mNJpHk33aSUQAR1iK7nUmkMjkzxqXLy8BwPrUoucFjfbvNqfOrHH98D+9eWu6XB0PA5t6JGhvLRSfMnqlRmheaSCVy71EJwUrdHbR3XyZIsRcIvlM81baNjIzwyCOPUC6XuXTpEi+//DLT09McPXqU8XH3AsZl9yT1hpswBrGDns/tvJepqSl+7/d+b+jvhw4dyvW1H/uxH7tlfW/He6rHxsauGVQ3Gg3eeecdXnnlFZIk4cknn7xpJY8bsTtN/+jV2QPVzWaTd999l1deeQWtNU899RQPPfQQtVrt/8/ef8dJtt7lvej3XatyVedUnXNP6smzJ+/ZQhujwCH4yByCuAaOAmDLNkK22JbBGGywZcxBRhdfjg5XgIxssLHB2NaVkRHImp48syf2TIfqnFNVV3XlWmvdP6qrulaonp4OM3vPnufz6c/es2rl8L7P+3uf3/MzWevZZYnZ8RCKqtFeRKpQ7jFrk2JpldZac2Nb4jFP1TZU6yNNYUMVx5VgthP0uuysGUh9ZakLzYI4eQocBzIeTNPyUhpT0QnjJyelyHICFZzL4JmE2GIaqYDh6dQFmt7pw1SJkWwxlp998yxu57MnSMRiMR4+fMi1a9eQZZnz589z4MABXC4Xh8qadeuGQ56sTZ1TM0d+Aa2Y80XSgtBYcV/jMlkzZ6habKfF5Cwrz1hS/ew6hdKRpLDW0AiBiEvZiHsxXlEsGm48HhKJVTuqhfzDqOmH7MDAUhJiQcrLveYo6v7Kei5evEhFRQV3797l9u3bhEKhLZ3rTlDl83DUX1Aaff3dziGpKbpnaArcKgJHCOzB7HZPKzOuOqDE7eBwcy12Bc52NHK81U9vc212hmf9UHPLkbzES7KogFjmdpCxmZ+lwyYzORNEAOGJMK4CKVq4CBE2lU1fR02Zl4WZMEcb9KXjGytKSVtUUpQEBGdG888t17a+m9w/tgNJkqioqODSpUt4PB5u3LjBrVu3CAaDW97HK/lHEbzoqPK7KFL9IvHSR6q9Xu9T5R9ra2uMjY2xtLREXV0dp0+fxuPJTkeurq4+d4L7vOUfkG0MY7EY09PTLCwsUFtbq7sPORhJda+/hscP1r0frWw9gMWQ9f0vdZsT8JbCMUrcTurKvXgdDiQNlITKax0NhFMpxhdCjM6tUOp1EolmO8bJuVUqaz1U+TyMBvVJqXUVpYRCZg/Z1dDG9GTGorKzlX7aSCKkTJZAyBEQSAjVYMtniMQL9CTbYZdJFFiZeex2mkpL+d6TB8wntAni8TgjIyPMzc3h9/s5d+6c6bkdKGnK/39i2Uk8N4UugYhL4DMwIFeWbJt8oa0esZV3tKRfVQggJaG5CkiZzRAlV8k6f+SOY7h/hceTkhKaS82S7yKtmIpATmimGYc8ilVdtFguVJl0XEJLSsjl6Q0ebzX4SEumqomahqVMJGlMUgU6fFXY7XY6OztpaWlhfHycO3fuUF5e/syRv2fFj505yqPAHKu2TPa5Ft5/SSAlNorBaDKmZEaBwJYEaVFD0b+C5mfpgORSkoHFbIVVh02mp6magUD23xU+F8FEgtBanMpKDytrcV2Rmhxa6it5ODRrupY2fwWBQDY6HVyOcfB4A3dm5rHLEpOGmbMcViPWftO29Y9/cTCIs0wmuU6kqzzWSYptdRVUlpdx8+ZNysvLaWtrA55vpUFFUXA4inhM7hFy7h8ul4v9+/fT0dHB2NgYt2/fzs+8bJaLlLNGewUzXlVUfHfgpSfVuURFTdNMH2s4HGZsbIyVlRXq6+s5c+YMbrdeB/AiCO7zln9Eo1HS6TRPnjzB7/db3occOmor8DkdrCVTuOw2pkY3IhBjMyvIkkAxkOuZlQh1FV7mDYUTjIUU9jdUk0lkqK/w8mBYb9LeWFPG6mocNZmhs6GC6nIP90fmSKQyCKCpsgzZojF22q07sdW1jWh32mf+3SrKlvPWlVJgD4MrLsgUsGRj+WY0dITTLsskCwXIxtNVNL7w0Q9Znq8VEokEIyMjzM7OUldXx9mzZ/F6LUYIQKOrklKbm2RGYT7j0BNHq6iwWCfbXsONsLqdDtVMgPOksuD+GKta2vTEXYQ3WJwQori3NFnyKxIi61VeDEJAel38a4RCkXrjWBP59WvJqDbUoMBelsrqu51GUQuIFOA2LhM6V5gcFk3lyaGzZCPBzW6309XVRUtLC2NjY9y6dYuqqio6OzspKSkxbbtTvNbVhC0tcK6Bs8xGWMpYF1OCvE4658uuFUiJJE0gIiAUjXR5dntjISVVAtkJyjqPTWUUHo7N09vtZ3B0gdW1BLLI2pPXl/uIpdJZFx+jRWeRttJj8Ll/cneG1kNV2CWJkckV0/p2m8TUvJkgA6xGsjrr1WCcwz2N3JrOknhjzkQO+5pq2LdvH+3t7YyPj3P37l0AQqEQ1dXm8vN7gectNwGz5MThcNDT00N7ezsTExPcu3cPj8dDZ2cnNTU1rwj0s+Bli+6+TNdSgJeeVFtpqkOhEGNjY6yurtLQ0MC5c+eKeiO+qKjx8zhmYYRelmU6OztpamradBtZkjjSUseVoUkO1lTTP78RIYqnMnS1VjMwu2zazl9RYiLVc6Eo/gov1SVewsE4w8MbmsfDnX4eBjaI9fTiKi115SwvRxmbWmFsaoUTPQ1k0Hg8tYiSVCxlHomkORLoczlYXS2Y/lXAFgHFtxFJFnJOUJqFlABbLPsnMiCEhEPYdPZ4T2skbLJEMl/ZBBIFz1gWgh89e5SaEmtSrLumRIKxsTGmp6fzxRl8PouRQQGEEBwoaWJhTWVM0kfzNVGER1qRbacFgZZAS+gt5IRMNjJt9KvWnVSWbOZ8rNW0XuAtMqKoDEWzk3Uo2WR2W0qS9S5OqOAy7EcpIgsx+owXnGt+FU0mGXLhsKUQZUWK4hiRFqZItVuyMW8oTw7Q6asyLcuRk9bWVsbGxrhx40Zes/q0Z/+s6G2p4/rQFKnVDA7AUSYTlTJZrbrx2govSQKbKsisLxSSwBYVSCkNrVqQklVECt3gwlnupCQhM1+QM/FwZI6WunLsCIKRBMFwjNGRJRoby5hcMcgINI2puZDldYRChoRDDWzBDCWN1oORlupyxsfNbZdNFszMbZDt8fvzlDQ5icSTrK5ZR7ZzemqHw0F3dze1tbVcvXqVu3fvUlJSQldX157YsRbieWqqC49pFR3Pzby0trYyOTnJw4cPcTqddHZ26goavdJUF8erSPW7Ay+9pjoXqVZVla997WvcvHmTe/fuUVJSwrlz5+ju7t60JObLGKmORCI8ePCAW7duYbfbOXv2LB6PZ8v+okdb/LgdNiZGzB2Qy8IWD2AtZtYw1nodlGnwZGCemQW9jdWj0XkOtOlLjU7Mh6ip8eF0ZI9xZ3AGoYInJfBKMqFVcyc6PW/W8tVXGTpVIeFYlfFOy3gmwD0LZRk7zkWBa0ZQOi3jmRY4IhKSIuUTpdJGMbKhfzT2l2qhQNXweNtKy/jEd5wynWshkskkAwMD9PX1kUwmOXPmDEeOHNkyqTri6+ZKQbJW/lQcGpZ9mVWCnwQkzEQgm3RoWGY0UXBY2G3ktotLaKYbVpxwiKRAKmJxl18n5wCSkM0DHquqkWA9urCUhAjSESfqmjFrE3BZfLsWA5RGj1nGYRcyje5y63MjWxhh3759XLhwAafTyfXr17l///4zJ2Nvhu89uyE/kgB5TcMRykadsQlEukDCY7isTMZwo1WQMgLbvIZrVWRzFQqwnEkQXEtyqK0Wr9NGS7mL1govSwtr2ITMajCGpEAmrjAdWAFFf2+b6soJR81ti8/lsCTbs9OrpMNF5GhFKiw2F1RYBEjEM+wrrUQWgukl68i20flDlmVkWeaNN96gurqau3fvcv36dZaWlvaMSL4oUr3ZMW02G+3t7bzxxhs0NTXx5MkTLl++zMzMzHNPzn/X4UXrn19pqreE9wSpTqfTnD17lk984hNEIhHOnz9PZ2fnlvRmL4pU78UxI5EI9+/f5/bt2zidTs6dO8e+fftwuVyW7h/FcKzVz4HqatZiZo+56YUwVgxtbD6k84s91uYntJIiMLtGS5U5kVHVNAanluhq0kftJuaCHOyoo7mmDJsscW94ltbWKu4/mMGe0PAX2O15nTJRC2syb0ESoCbIR99UAElGpCRiy2lscYGcESiKZh5Vqxppw3UaCYaj0PpLQ6efLlzVFRN89/5u03nmkEqlGBwc5PLly8TjcU6fPs3Ro0efOULZ7KrDkjXayCb8GaC5NGs7OQsCbWlbaFxgR291B2jrN1aLF+mIi7ySUkqyPg/dvtfPQwgweFdbna+mWi+3GjCs75h0zI664NjoIBJFIuAWA5QSm/m9b/NVYNtCcllOs3rhwgXsdnveDmonnvw5vK+3HWcBMUpmVCQFHKH14koFTZMmYxDP6/dVsm7BqWkCsSYoidt0Jc4VF7iddmRNormynKnFBJMLURKpDEOTS7Q1lOd3q2nriaEF7VRViVG4nUVzXZnlQFGgsTISocTCuzqdsm5zyywSrYfvznKwoVZXAbYQRo/qXNJgLmL7xhtvUFNTw71797h27RqLi4u7Tq7fiaQ6B1mWaW1t5dKlS7S1tTE0NMS3v/1tZmZmXklCiuBFe0q/W3yqXzReWlKtKAr/8T/+Rz74wQ8C8P73v59Hjx7x/ve//5lKT75I+cduNbLhcJh79+5x+/Zt3G43586do6enRxehf5br3N9QzdykdYQmGInTWlNuWq5qGu015Xhddg7V1/Dw8SzqujZyYjlBd4M5apdRVGZXIpzoauBYm5/OmgqcqsS9R9NUeF2IhEpTWQlqSuX0kRaEohGei9BUnr2uplrzeQBkUhsdoeLEFFKW05gaduOTMFeQMyfEJQ0dbuE+HDYZCYEjqGGPC37wjSOm80ylUgwNDXH58mWi0SivvfYax44d27aW9nBFXVG5sLBw9UDGkmxb7sRQqpyUQMsIxKqcdeBYv3jJGLG1a2jJLOkyH0YgLCK8IufGKERWv2wBKYnevSUlbRB0BUvim3dz2QrUnJZYkMaGMueEdEF0vACaBprHkuGZ0GEh/dgMLpeLAwcOcP78eWRZ5tq1azx69Cjvv/qsiMfjPHr0iHpfQQR+3QVEILCH0ZFiJMwkuwBrcf0DykRUShZk5PVZDHe5g0xc4eHwHPGk2bg8Eo3rvz15/Zmvt43xhPUL4DBl2GbRXFfOWiRNT6XBqUjTmF00Vx0FUNNm4qwoKqUZ62PUlnsp9+lF9UZ9s81my5Pruro6Hjx4wNWrV1lYWNi1dv9FkOpnLVMuSRLNzc28/vrrdHV1kUxau7K8Ai8+qrwXfy8hnhupXllZ4aMf/SilpaWUl5fzsY99bMtTlpqm8aEPfQghBH/6p3+66bqZTIZ/+2//Lb29vXzmM5/hE5/4BEIIfuqnfory8vJnPu8c2XyeWq9co7TTY66urnL37l3efvttvF4v58+fLyp3eZZItV2W6W2rK/p7hYWrR247n2ZjYGTB9NvQzCqH2jfkHg6bxNG2OpyqxNpakgeDs4xNr+S9cueWIyDB7GKYx4F5bt6fIBVPUOJwUOMq5Wx3Ex6n9UzEUnDjvVMsVhHGKWwwESBjUqRQ0JFzkdH0biGGXTqEhH1JRU4LupuqdJUn0+k0w8PDXL58mUgkwokTJzh+/PiWSrluBp/dSVepNWkr9qpZkURjqfLsDoB5GW3BQXreSWrVRUp1kI7Zyay6UBZcqPNOiEiIFRtySIaYlJVFRGwUZbMW4zyRkPIJYpbnZ7FcUBCt3qwYjNW+LJaLFLrWMyPLpJZdaFaDgCLR63DarMft8D4bqc7B7XZz8OBBzp07h6ZpXL16lf7+fuJxcyETK6RSKZ48ecKVK1cA+IH3nbRcTwiBPQH2sGb90kjZdzsHzYZuPVXWUDIarkWBLyyzqqXyZHpyfpUD7XrJ11IkRWejfsDt8zmQ01mt88Rs0PI8F5et+5aK9cj24NszuiqOtWW+ovroxZUi/VQoQ6XPnNDd3WBORCxmb2ez2ejo6ODSpUvU19fz8OFDrl69yvz8/I7b/xdhqbfdMuWSJNHQ0EB7e/senNXLgxcdWX4VpX46ntsX99GPfpRHjx7xjW98g//23/4b/+t//S8++clPbmnbL3zhC1ueErpy5Qq/9Eu/xN//+3+f4eFhPvWpT+2oqmKO4D5PvVeuIdxuhDwUCvH222/nk2LOnTtHV1fXpnKXZyHVABcOtxb9rbBQSw41ZV4mRldoriwrOkJ9NLrA0S4/h5trsGfg4eAcoUic4cklWhv0kaWlUJR9bfrOq6TcRzCcpH9wnrdvT5CJWkg/XHYWVzbeBcW5hfdK00wROIes7ziMxEsyHLrw9bVpAmUhjbSuGf7wmf1AdkA4MjLC5cuXWV1d5fjx45w4cWJbg8FiOFpRb7ncWGa64MzNi2xALqCUETBvI7XiQkk4SAsZraAjz98HIdCEhKrZ0BQbStoOUQeEnesOHUWObpReKOi11qqwfJ8sJdMpyZKk57exag0zWFryWUXQNUkiteaEoKF0vVW0H5iOmWd7Cp0/tgOPx0Nvby9nz55FURSuXLnC48ePSSSsCWMmkyEQCHD58mUSiQRnzpyht7eX7z17SCdDyco8ctMNAlscHKvZt8N43+yFUWJJ6L4NTbDu4y7QQhrOJVALpDHBcNz0xq0lVV1xmEQmQ4nLTlddJcm0+YGWex3ML1lX9EusS9Y0VaO64MHWlVknCJe4HUUJejgYo7O0zLS8u9FMqp/mxFGoNW5oaKC/v58rV64wNze3bXL9TpZ/FMMrS71NoGkv399LiOdCqh8/fszXv/51fud3foczZ85w8eJFvvjFL/KHf/iHzMzMbLrt3bt3+fVf/3W+/OUvb+lYr7/+Ok+ePOFjH/tYnkT6fL5tl03NNRDPUwKyXSIfDAa5c+cO9+7do6ys7Jm1489yvDMHm5EsSo0DzC5HqC3opEo9ThwpCK8luD80y7Eua2LX01jF0vwaY9NBEgZ9o7AY2k7Mr1BYq2F0Osi+jo1I1+DgPIcMEfX6Sn201ypSbTySQ8jmht54PsaNDLZf9lwCpwaeOTWvVXbYZD50qovR0VEuX77M8vIyR48e5eTJk3tSSe9IZRFS7dDQLMqGaxbeygAkJaRlB6llJynJbiqUk4NxqWazmIHZrAiLJLJSjtw/E/pOVwiBZCCtJulHwbrErUtIahYVNAGkIpFwSyig2QXJhBNtaWNnkkVBEb+rhEQRj+rdQK7C3ZkzZ0in0/T19fHkyZP89LqqqoyPj3P58mVWVlY4ceIEx44dy+v0ZVmiq65yY4dC6CP5AuS0oDRuz5Lqgt9iBkmGrkCOJNAK5BRyWtK59swtRzjUqffCn19Z0y3LKBq+UpnRkSXqK81kuLRIdUVZEkxNh/L/Hnm8QM+69tlWpOhLQ6X17JDdJjEzs8rk/XldURmAnmeIVJvOUZZpa2vj0qVL+US+vr4+Zmdnn5lcvwhLvWeVf7zCK7xseC6k+urVq5SXl3Pq1Ia7wXd+53ciSRLXr18vul0sFuNHfuRH+K3f+i38fn/R9QohhDBNP+0kUr3TqPF2IITYsq2epmmsrKxw584dHjx4QEVFBefPn6ejo+OZtOPPauPnczs40lH8mTSWZ6dWXXYbNQ4XCwXRnvuDsxzt2CB3siQ41uYnMLrE3HKErhZzpzQ6E6KqVM+A1+IKB7v057AaT+pI1+ToEhWlG1O0PkOlQitSbfQ+ltPmziypbu78Yfx3LiGvLCxBQVW4lio3V69eYXFxkcOHD3Pq1CkqKyvZKxwtQqoRmJP5ABwampFYhmRYcZJQZR15tSKlxgg/AnMVwqfw1jxp1rCWbhiixsUkIUBR3XMxPXWxqoCWBDzPJQWptCOrs1bA5jCfc7XTTAZtQqLZU1701LcDn8/HkSNHOH36NMlkkm9/+9vcvn0777hw6NAhTp06ZTkb8sGTxZNnNQnQNFJr6WzEulBXbZj1cLuMVZQM/zSsP7sURjYMiibnQzrP+enlBHW1PlJrSWTD7S31FbHM81eQTG0MZASgLiQQAkJha5mMx249hdNQW4aqqMTWUhys07dX24lUG1GYyNfS0sLAwMAzu2S8qEj1duQfr/B0vGi5xisJyNbwXEj13NwctbV6rZzNZqOyspK5ubkiW8GnP/1pzp8/z/d93/dt+9hCiC1VVdxs+3eiV7WmaSwvL3Pnzh0ePnyYJ9Pt7e3PRKYLj7eVxlpVVTKZDJlMhnOHmouutxZLIkmCjsoyJmZCpt8fDM1ypN1PXbmX5vJSHgxu+F2PTK1YFm1x2M2sZ3YpjFQQ6ZpdDHOgZyM6HY+lqSuoLpgpiJKpNsDgbS0yGhhIdSZheA6qZlIRqIbTLSTmQoOUqlKWsaGGFWyujU7nWLMXTdPw+/1UVFTs+dRnu6+CUnsRC8kiLhciZ6GngDbnIJVyYJWjpTowyStUuzkybWpMDZFOI3JJjPLaJlPDhXbhm9xCoUiIqISImfwOrY9txUnSReQyhoh7RrORnnVhs5ubWadk3kGLtwK7tDckyOfzUV9fj8vlIhQKkUqlqKqqoqysrOg9/b5zB3QdRI5IA9nB1Pr/yhlwRUFav4eaTWTt99YRSxmmQIy33nDJy6sxU7Q6tJagp33ju3Y5bLh8TkLhFI2lBe4cmsacwZ4zh1KP+b2fm1rlWIuf6UXrxOtE3DybYNxXaCSUl3d5nHYaq8zR7e3qmyVJoqWlReeScfnyZaanpzdtrzVNe+6kereO+Ur+UQTaS/j3EmJHpPqtt97Ka6CK/T158mRb+/6zP/szvvnNb/KFL3xhJ6cIZG31tiv/gHeWV7WmaSwtLXH79m36+/upqqrKk+mdRAieRqoLybSqqkiSxKVjnUXXH5sJcrypjqHRpaLrxGMpSu0OJg1+smuxJPsMCUsAMytJ6qv1HdbyaoyDnXqJx/RiGEcBKQ8EFvNR9ZWCkulWUWqjjy6YSZop0qpq+kQ0TdNVjxMpDa+wocxkQ5npdQbntMl86ke+h4MHDzI1NbVjDeVWIAnB4YqtzfrkoQhEVJCZd5JeJ32qEx2Rze/faMYgmfXlJu2yKB4RhnXSpVI0wVAgkFLriYtFpB/5dbXs+iIuIa0VRNmteICCZRXE3LEsTsRiHzKE3bR59LMPxcqT7wWCwSA3b97k8ePHtLS08B3f8R289tprrK2tcfnyZYaHh0mnzS++026nuapsY0EBkTZCUgX2ZS1PpgsdQjS7fjvjvfaUmG/y+GwwP7CuKHVztNNPIpygSnZgj2sooTRjA0scbK0gsqayb916s8xjJ2j0q19HPGrtFKLMJ7Abw90AmsbsgjXZ1gqcfZZmIhysrwGgq6HKUha3UylGoUtGR0cHgUCAb3/720xNTVm227llz5tUa5r2Sv6xRxDqy/f3MmJH8zSf+cxn+PEf//FN1+no6MDv97OwoHd8yGQyrKysFJV1fPOb3yQQCJimJT/ykY/w+uuv81d/9VdbPs+dRKrhneFVnSPTY2NjJBIJWlpaaGxs3LWptmIkXlXV/F8uap/7a6hx0t1UzdCUmTi3+StYmV+jxJ2tPGZEa105c3NhmuvLLc9nZHIJSZikyZSXuZld0keiJuZWkOWsnzRkk52OdNfz8PGGXj8wME9zUxkzE6H8MsUiYCsUDQwRcc0QuXbYZJIFoU2hoNOFSmlQXAX/zmjIs5lscRNVI7MeiTnWVY8sy9TV1VFTU8Ps7CyDg4OMjY3R1dVFVVXVnkRtjlbW07cwblquOjUkFYzyUikuSCScpgi+nATF8PpZTekJRS+XyJIqTV/ieZMGVkgCOSwsK2bm18kIQENKiU2SLsmTO4FAS0pIqChuLeuhbYCUEtmy2EX2YVxmqjYIuDSZYDxFbFTmUGc9j9ayMzILCXPyW4dvd2U/kUiEoaEhQqEQbW1ttLS05NuLsrIyTpw4QSgUyicqtrS00NLSopvp+sCxLr70P29vDBgKybG0sVjRsu+OYwVSFYYbJEBKa6iO7NqqDJKqkQvvRpUMLv2uCUcTnDvYwtJihNHxZfrnsu13V0sF4chGexJLChyKQFYEZV4XLTVl9IfMs582STA1HbS8Tz6bjQMN1dwdn9ctr6vwsTxrnaS4umIg7ktZwt5VX4WmaabvdrecOCRJoqmpiYaGBmZnZwkEAgQCATo6OmhsbDTJFZ8nwc1kMjs65qtqik/ByxbdfZmupQA7YmQ1NTXU1NQ8db1z584RCoW4ffs2J09mrZq++c1voqoqZ86csdzmrbfe4uMf/7hu2eHDh/mN3/gNvud7vueZzrOkpGRHFcdetFf10tISo6OjpFKpPJne7cbSKDfZjEwX4uLRNktSLWVgZiFMQ20pQkJX9aypppSV5SjxZJrBsUVaGsqZMEar42kOddbxKKDv6B6PzlNb5dNptGVJ0F7nBsmhsws81FmL0ASSEAgBdpedGTaOozisMtYM/1Y1FIc+CGmXJJIFAxCh6jfLRutEfnt7WNvoMApW/OH3H83/vyRJNDY24vf782V8fT4f3d3dlJUVRAt3AUeLRaptIK0JtNKNk5RWJBKa3TIKaxVpsHLQMC2TyVrS6aL7WVJcFEkBZveyDUgCeW3zdlqkNUTB5FyeWGdU1FLzlsbnmj9Vq08vg6VtXpnbSTwTI6ko3B0McaanhYH4LAtJc3vU6TNrcbeDWCxGIBBgYWGBpqYment7iyYrl5eXc/LkSYLBIIFAgImJCVpbW/ME/AfeOMLv/fdb2Fw2YlpGR6SRBWQ2yLFAIGngCGqkjUVLC2+klK3KmBv8KEJjf0ctj9etNjsaKlFjGYYHFwiFY7qHsByKUvB1MTETpLOpkvHhJY4eayYYs45SN9aWMj0esr5faykWxsK4qmwkCjTXNaVeS1LtsMvMzekj2BODS7SeqqazvjJPoAudLHY7aTDXXliR66ampnxb/jwt9XaDyL9y/yiOl02H/DJdSyGeS0bBgQMH+OAHP8gnPvEJfvu3f5t0Os2nPvUpfuiHfoiGhgYApqenefPNN/nKV77C6dOn8fv9llHslpaWZ/ay9Pl870pSHQwGGRkZIZ1O09raSkNDw55FHnLyj62S6RxeP9LO7/73W7pl3U3VjA5ly2HPLISpry5B+ASrawn8lT7WwkmiBUUhnEVKm88uRZAkkS8SA1lJZ12lj6pSDzZNMDe7SnA+hqvKy8Liio77Hd5fz8N+vbvMoSMNPBrJEnWrSLVmmLqVU6AabPeUp0VUcj9rGp4FFbsiUNb7tpz+2+OwcXJfk2nTXPZ/Y2Mj4+Pj3L59m6qqKjo7O5+5gmIxbCb/EEmJnGJcCkokU44sYY1rKIbcOityqTpBx3rIRqk1q8h04fab9f1aNmqsbEaqASkmUEo2iWanzX7RApH1vRYaSomhWE8xSYilS8j6tRvg8zphNWcxKbg+uMTFrmZuxUdN71HnDuUfyWSS0dFRpqen8fv9nD9/Hrf7KTdtHRUVFZw6dYqVlRUTufaX+phfjOAA0h6RrQ65/p24HXbi6SwRtcsSKVVF0gSOKCg2QWbdLs+kczcMyCZXwtRV+qjxunkyMJ9/UzpbKglMrOTXC4ZTdLVVExjbGMhLNpmMonL79jgHDhRJxE1bFxWRJcH01AqplMKB3hbeHt+Ichd1BKktYyq0qFsmgCrVQU9jNlKdyWTy7acQIi+Z220IIWhoaKC+vp65ubk8uW5sbHzuBDWnp35FivcIL5sN3ct0LQV4bsPYr371q+zfv58333yTD3/4w1y8eJEvfelL+d/T6TQDAwPbrgS2Gd5NpFrTNObn51lbW2Nubo7GxkbOnTtHc3Pznk7lCSFQFIVMJpPXxdntdhwOx6bH7WiopL5KH5ZSYnq96OxSBK9so72+gnQ8Q9hQZGF4Ypm6CnPnv7Ia41DHhl7a53ZwrLOeqcAy8+MhHvfPEgxm35eF5ShdBt/qkfElnbYaYGEihNNhQwOd7hkATUMxLJOMhWA0SGibO3/kEro88yq2lNARCnnd7utUd6Ppegtht9vp6uriwoULOBwOrl+/zqNHj4r6DT8LSh0uOkuspQa5q5VWNwg16DWyOShOzKFcyayr1mzm7U39rkRRD2kpuR7BesonKKXE5jKSIhmM2cqMErbVgt+LkeeUsIzaW1rvaTATM7c78VVBt9qoS1aUhaBlm84fuWJBfX19ea/pQ4cObZlQF6KyspJTp05x+PBhFhcX+fa3v83xzmo0aT0hMawhxaw796Sq5JcLBWxLSl5jbUxGNMLrc9Dg8TBQQKgBImtm2Z5kkAENjS1SX5+dzZmeCuJymmNFdpv1vWj2l5Nat++cejCHu8AdKBy2/tasSpwDjD2Yp72uEkmS8gQ6k8nk29W9jBoLIaivr+fChQscOHAgn5sxNjb23PquV0mKe4sX7dTxyv1ja3hupLqyspJ/9+/+HZFIhNXVVb785S/rIm9tbW1omsb73ve+ovvQNI3v//7vf+Zj78RSD54PqVZVlbm5Oa5fv87w8DBut5u2tjaampr2lEznEhBtNhtra2vMzMwgy/JTyXQOQgguHtmYOdjfXMOEhXZxbjFMjctNsIh1VUWpdRR2fmUtm6jU4YdImkf3p4msJWltMpNCyaZ/naPxNH6/vjMNhWLsb67OJikaGnApja7IBGAijVJaMytEbMZ/C9wLGrZUVkOtFhwnLVTQNH78Q69ZXq8RTqeTAwcOcO7cOVRVpa+vj4GBAVKpIvW5t4gjRYrAqE4NKSxIxR36+2OV/CeBZME7rMivZFhmJRORixT/k5IiKy14SgVjoQlsm3zmlpxaJStHQEBGxraaPbFi5LmoS4jF9XixEbNIANQ0eDgZxB+rodSWda5o9pSbCgo9DYqiMDY2Rl9fH6FQyOQ1vV0IIaiqquK1117j0KFDnGz3Zf2l13+3p8C2poEGsUxmg2DL+kIvkiJwrmjZxAi7PkHCOAswvbhqaWu3sJKkvlafnDw4ukhNlf4ay8qzDj/hSIL9zXpJos0mMWXhQATgKfC0jkVSHPCv+1bLgpn5IkmKGeuXoNFfliflOVtUIQSzs7PMz89jt9tRVXVPtcNCCPx+P729vdjtdmZmZvjWt77F6OhoXvO8V3jlUb3H0F7Cv5cQz7eG6QvCOzlSraoqs7OzXL9+nZGREVpaWjh37hw+n29PG99CNw9N06isrOTIkSMsLCxw7dq1Zyo2cPFIW/7/4xFr5nOoo463H07RVOWx/H1gdJHm2nLdMiGgvqKERq+P/gczJJMbz2B6LmTiPEOjC1QbOttQJGMiR4P9c3gqLUq1W/Q5RrJkM74Giqa35VM0nEENu9VtUDUyGlR43XQ3P9tUv8fj4fDhw5w+fZpoNEpfXx8jIyPb7iiL+VVrEqRXHSYZjGVUGusIthV5NW6q2UAzZKGKIkVgciR9s0i1SGeJmsl9pPA8Lfr7wn0KBCJHrIsdy9LhAxSXeXF5kcjk6vpsQ2AhjCtYSq3T90zOH6qqMj09TV9fH3Nzc/T29nLy5MldrbwJWYJWU1PDm29coNzrzF+7AGxJKElKIDT9O1D4SCU9sdZ9X4ZkYNUumJpbpbrcHAWuKjd7etfV6GfHngTmqazIti1PBuaoqdjYps1fQaYIEQ4u6Ynz+L05vG4HTdXlZJQi2yxbj9w62/VkfmVlhZs3bzI8PExXVxfNzc35yPVek2tVVXE4HJw7d47e3l7m5ub41re+taM242nYDY/qV5Hq4njRUeVXkeqt4T3h0l5aWvqOi1TnItNjY2MIIWhra6Ouri4/RfisxVie5bhGzbTNZkOSJGpqaqiurmZ2dpahoSHGx8fp6el5ajGS3g4/ZV4XTdWlDDyZN/1ut0nMrEev1bSWjWxZNJ7egmnV2kofJZKN/vvTdLSaE7hWQjF6OmsZDGy4ymga+OtKWSpIYlyNJNnfXcvA4MZ6mbSC3SkDhihiYYJh7n5ZOH+kCsKVkrIRqRYZDfeCilysQuB6I3LxYKv171tASUkJJ06cYGVlheHhYSYnJ02Z/1vB0UprXbUr5CCVFCZ9sGbLyjBUI3m0ItBWVSqNLY3I3jvdoMXi9EWaDS32JtIOOZFdTxOsD3TM+9lqCEFkZGypDGnj+E+1kAytH9uKVNdVljOzqHc9EgimC+w9Z4JRKlJODjdtLgeC7Ezd4uIiw8PDqKpKd3c3fr9/z4mIEILXj3bw377Vnx+EaBJkIhkcCY2MS5B/EQoGmKq07nyTyRLrtKfgNwF2lXyugbr+zlRWlLFk0CsPjS3idtmJJza+16HxJdxOG/FkliCqqkZ9QzkrwRiZjEpNiZfFYLbN97qs5RoSEF7VE8xENEVPdR2qLJiy2MbltDM/b+2D3dmebafW1tYYGhoiGAzS3t5OS0tLPoKbs53LyUGMCY27hUJ9c21tLTU1NSwtLTE8PMzo6GjeDWY7NQ2edsxX2CO80lS/K/CeINXvJEu9XGR6fHwcSZLo6OigtrbWRIietWz4Vo5bjEwXIpf4UldXx8TEBPfu3aO8vJzu7u6i08o2WeL84VYePJq2/L2hzMHUbHZqd34pxv6uWp5MLJrWGxhdoKm+jEqfm8CTeYLrWseR8SX8NaXMLeo7M1Uxf5SB8UUcDjmvkwQIR1PG3DkW4zEwFuUw+VFraAaHEFPft34KXkVGTKeQDOWutYINJJuE0OBvfvCE6byfFZWVlbz22mt5kjU+Pk5nZ+eWSVZnSRU+m4O1zEZo1y+7mZNUbEVeOyllJtWqA3Niog1IAgVcRrMDGU0nr5FS6DTsioN1OcbGMrlAXiLEumuEBQ/IRaKFENhiGhmj+4QqLCUaRSUeioQtrJEpdEJJbpC/QmQtFM3LYxZtRo3DyWJMP40RjCapk8osTmQDuUFUPB7f1iBqp/iRDxznv3378frAc0MNJKezso50aXagrMlk1xEChMAuS6RVFTkj0GIaKSf5j8iBRHx9pKTasq9RYGKZ8lIXoQI9czKVoXdfPQ8HNgpEJZJpDvfU8/DJxrLB0UU8HgexWIrBoXk6O6sJTC0TjVhro5vqy5kOLJuWj749TWNvncUW0FBTysSK9f5aGsvp7+9ndnaWxsZGDh06ZHJdyRHovSbXRoKbm3Worq5meXmZQCCQJ9etra27Qq53Kv+wsiJ8hQ28bNHdl+laCvGeINW7Yam3Uw2rqqrMzMwwPj6OLMt0dHRQV1dXtBHZrUj1Vsm0EbIs097eTmNjIyMjI1y/fp36+no6Ozt1tnU5fN+FQ1y+EjAt97lsLC7rI8Jr4QRi3Q+iEE67THNZKbfeNnso11R5TaR6eGyRmioviwXTsbF4mt6eeh4VdLYzc6t0d9QwPLJB5DNu8303Sh6klIbq0i9LanrGKQBnUEVeVdf/ZWgpCm6z5JCoL/PgrzFXXNsOCqNQs7OzDA8P5z2uq6urN++gNI1udzlvRzYiqSVqGXOE0ORirZ35+jQ7iBQmP2c5YyiuI7LyGl0U28Jqz0jcRcb4TDAlk6Kis3qzkoBYSVJERgOL70AoIIQESQ05rKKsE2s5ISxJtfE9Xl/IVMQc0SyVbSxi1gZ1VljPBoXDYYaHh1ldXc1HF19ENLC+upTqcg8ri9lvTVNBrM84yYqAiEa6NDtTICkbMxM5Ug1gS4EUESRyr3/htyQEqh2UtEpLQyWhsN61Z3HZ3H7PLUXyr2RddQnV5R5K3U5m5leZnAmRiWVwOmSmpkOW11TmdWEVBkgnVdJh6/7CVyRJEWBhbpjGxlrOnj2L12uWrBRir8l1MV9sIQTV1dVUVVXlnV7GxsZobW2ltbW1qPXiVo/5qkT5HuJl0yG/TNdSgPfEF1BSUkI0Gt32SHgnkWpFUZiZmWFiYgKbzUZ3dzc1NTVPPY+dEvntkmkjHA4H+/fvp7m5Oe8wkGuACxvQA+21/Muf/RC/+Fv/g5XwBmnoqK/i0YC+GMPsQphD+/w8HN2QinjdDuq8Hu7enTRFqgCGx5ZMEWgAf02pjlQDLBm8bEFvg6fayFZ5K4Sadf4oXCopBsWBqpEqmN72pSXU5Qy2gjGDjrxp2kbBEk0jIzTeONjGbqNwdmFqaopHjx7h9Xrp7u426WxzsqNAIECDYuPt9eVHy+q5N7wu0XEJSwmFlfQB1iO1RSqf69YzEG3FhclqT0pvkGqRIfsACu6pla7aFtdrMTUpWyY7lwxXTE8tpYRZzkJ2MKU515MjEwJJ1UiXF0l0xDp67fd4mbeYHSsvKYWIfrksBO2G5xSLxRgeHmZxcZHm5uZNvaafF472NPDNxaHs4zDcC1tCQ3JoJF1ifVo3u0IsVZDTIAlcaxoqGqlSiWRGhYJKhopDIKc1xqdXTFaa80sRulqrGR7PWunZbTK1FT7aq8sZeDzD8niI5fEQFRUewstRGmpLqCp101hfxo075kE6QDphrS0uK3MTDqxhr3aQNmixlZR1P1Be5uD8+deeWde+V+T6aVKMXDKqFblua2vb1ru2U/nHK4/qzfEqUv3uwHsiUfFFFH9RFIWJiQmuXr3K7Ows3d3dnD59mtra2i01HNuVfxgTEHNOHg6HY0fTxV6vl6NHj3LixAmWl5fp6+tjcnISVVWJxWI8evSI2fEnfOaHj3GoM1tivKmmjP5Bc3UzgIWFCPJ6ZLii1E2l3cnk+AqKotJSb47axRNpui1Kl49MLGM3uH7MLYTpaq82rdfcVEGDv4yGtgrTfqS0RZKM4aOX04AAW1TFO5VBmk7rCHV2R4btc/vUwG2z8dH/7aTp2LsFWZZpbW3l4sWLVFZWcufOHe7evcva2hqapjE3N8fVq1cZGRmhq6uL7z6SdSBxSjIzcxuDGE2AzWKGW3VikqFnN7BYZDFcNylnbNmqjPqFG2vJ0SLPxPBZCMM5Zclw8d91+7KA0AVQJUhKyBFrH2oy1svrvNZSqbiFG0i13c7s1BSKopBMJnn8+DFXr15FlmUuXLhAT0/PCyfUAD/8Xcf1Mp/C/5dACqvICU1X+dJopadkNBxhsMVUVFOyYva/q5EE+zvM37osS9RU+jja5cebEQzemyYWSRCLbdzTYDBGZ1ctC3Nh+u9MEng4i91uQfQ0jZkiEez6ulLikSQHDS4iAEsL1nrqg/uadpQomnMLkSQpT653ktD4LMVmclKyU6dOEQ6H+da3vsXAwADJ5FPsdgx45f6xx1C1l+/vJcR7IlL9PC31MpkM09PTTExM4HK52Ldv39On4i3wrPKP3YpMPw3l5eW89tprLCwsMDg4yPDwMIqi4Pf789OeJ08c5Qv/9luMBJaK5iIsB6P0HmhgNhhBRBXmVjay8MenVpAlgWL46EKrZg/zaCzFwR6/ibxLsoTDIVNXXUKp14UMOGWZt2+OE62XwacPu0oZDcXgf2vU4LpUCabTyBkJkBCqprcG0zRr6zkADepLvZT5LEKjuwybzUZnZydNTU2MjIxw7dq1fAGfjo4OGhoakCQJTyrLPA/7Grg1r9e4S0WIqC0BGUPE2krjrDrIOmgU3J+M2xyZFmmggJQWknEpY7a1E0Ksy3Kszy+/XgpYn4Evpqe2LGeuaiaSLCQJKayhlqLTiQPYoxppn/mZ24t8d/MWvss91dXMzMwQCARQVZXq6uotSQieNzqbqigtdRFZXR+xCLId43rbJglwhFUSFVJ2uSTWqyeqG0RbaAgh4QpqxKrJysDWv5nCmZBYQv8CVpR5sCtAOEX/xIZoIzCyiNfnJLq2QQALyf5qMMaB4008MLQPDXXlzI+tYAX7+vmsDC0h7Bv5VC6nzNJS1FKGb3T+2C52K3K9nahxrgBQrnT9//pf/4vm5mba29stJX+7ccxCvCpT/hS8kn+8K/CeilRvN/FvK6Q6k8kwNjbG1atXWVxc5MCBA5w6dWpLUo/tHhP2LjK9GRKJBEtLS6RSKTweD7IsE4/H81ZNdpvMZ37sfVSUWdvn5RAOxRFRhZUVPdEIRxLss4hUTc+tWvpTrxWUQPd5nRzu9pNZTVKhycwNLDF4Z4rHd6a4f3uCinI3Ugqcy0pWU7sOyeJTUOxZAudaVvBNKpSuiHVCnYUwJkpu0kjYbRKXCvy89xqaphGJRAiHw9hsNjweD6lUimg0mn9OZQ4XxysbeDhuJhc2W5F3x8LZRHWSLdNdCAF2A3/UbOYIuPHTyJNxtXhyeCHhlxJYDmQEIh+httZTW0iAWI+cW+zPlpawRYRZr13E6WXNQrpV5nCyHDd7MTe43CQSCVwuF06nM+/lv5uJyruFoz0FVoyF90kSWX4NOEOqrmhS4R1Sc8WEELiXNaTUxnpKQVLw2NQKTf5yHA6Zo931pBZjDDyapalRP8uUUVTaWvV2hMMji1RWbQxIpkeXTUWgqkqLF8ZZXcq+uCuzYQ60bpDlqlKXJaGGDeeP3cJOI9c7Ibi50vWnT58mFovxrW99i8ePHz+18NRONdWv5B+v8DLgPRGpLinJWgFEo1FKS589SWwzgpvJZJiammJiYgKPx8PBgweprKzccePwNPnH84pMFyIejzMyMsLc3Bx1dXX5aFpuQHHr1i1qamro6urC4/Hwd37sdT7x1h+SSpvvnUDDrkB9dYmJVANEY9ahUq9FotDUTIjjBxpJhJOMDi4wMJvdX29vIysrG9FtVdVoaqpkZmEBR1TCvqah2VRSPoHdIaEkNaSMRonNTnw1hS0JcmbDLsxEzoydm1GpUEA6PDYb/8cHj1le024jGAwyPDxMNBqlra0tX40zEokwPDzM5cuX87r4/XY/b2fMpFp1CZOrBxSJ7pL1Lc4YfrPSP4sUUBBlVoyPU6zb42mYC/HkT2Ljf+Wk+Ryzu8kWi1GEWRsO1k4m2eUaigXZFhogSTiWVRK1G/u0rBRYJEmxwesjHDPf67JMhiMnTuStK3Oa99HRUTo7OzdNaH7e+NEPn+L2vUniqewoSiuYTNBE9j5JWlYilbJnHUCcro1S5poMZLLRbUkTOFZV4k5AZCPVha9cQ00pyeU4/W9vmNstLZllfKGQfgZL06C+sYKV9VyLcCjO/uNNPCyIVhfTRjudNmYnN55RanbjeG4rGck6aqv3ZgZqu5FrRVF27OhRVlbGiRMnCIfD+ch1U1MTHR0duFzm690JkX8VpX46BC+XDvmd0aLtPt5TpHptbW3XSHU6nWZqaorJyUm8Xi+9vb1UVFTsWudXTP5hJNOSJGG32/ecTI+OjjI7O6sj0znYbDa6urpoamoiEAhw9erVfOP70e8/xe/+x+umfR7uqufRgxlqa0osfasnplZobixncjakWz44ukCJ10kkmkSSBAc66gjNhNEiaQKPDQmRs6sYMTm1grrul5stfS1wrYKcUrCtkziFNM4MpnNKGYommFwfTKR6/X9UjfoSH+4ifrm7hdXVVYaHhwmHw7S2tnL8+HFd5KikpITjx48TDAYZGhpicnKSart1E5BCRYqDaphsUJyYbO8A5IRGxmvQyNqyxFqOZcmvUAQiqWGLZwmU4s7uT6Q1KPADF8p62e9NPiUppaE6RPZcivTj0npBGMv5uGKdUxEin5P5aDYJ55JKsja7A9VpXt/v9VrKPLx26yn0D5x+jaqqjWhrfX09dXV1zMzMMDQ0lCfX25312k10t1TzX//Nx/ntP7rCn/7FAzKqtnEvBfnEUjkD9jWVdIlMTMnknUKQ1hMZ1y9DToJjVSVVLuUdQDzCRndDFY9uT5iOPzcfpqmxgqmCqq3TMyEaGsqZKaiaOD65gmyTUNYTDWdGstHqVDpbSn22SIXFpoZyxgsG4rPDS9QfrWZ2JY7DZv38fF47geFHhIJzdHR0UFZWttXbuWU8K7lWFMWS+G4HpaWlHD9+nEgkkifXjY2NdHR04HZvRPxfyT/2GK98qt8VeE/IP+x2O06nc9u66kJSnU6nGRkZ4cqVKwSDQQ4fPsyJ9SjTbnZ4xki1UeYhSRIOhwOn07lnhDoej9Pf38+VK1dQVZWzZ8/S29tbVOvpcrk4dOhQvurf5cuXee1gBS0N+inb+uoSBteLxCwsRuixkHoAlHrNnUImo9LeUkVvt586h4uhO1MszoUZG1tClvX3YXl5jfYO/bRscC1hJk6qZrLTMyVRaBoZQyNg1OnqItk5TSlgi6u870yX5TXuBiKRCG+//Ta3b9+mtLSUixcv0tHRUXQqtqKiIl+CumKTZCSPYvFeSViWAjeWardFwLYG9iWBnJBBk9EkCWwSmiQhFAnbmoRjCZyL4FgG59q6U4cQm0ppBALbGkhJzVTu2rielC5CkovoqU2RcwBF0zufSBLORYGU0Cz3U+ex/j6SSbMkJOv8YZE4K0k0NTVx4cIFGhsbefz4MTdu3GBpaemFkw8hBD/9Qxf4ky/+n5zpbcTlWH9PpIKBkCSwR1S8yOtuLAU7KDh9TRI4QxpOZT1pucZLld3JwIMZUkmFzg6zVrmszCzdqKjQj/7CkQRd3Rte0+HVOPvWE53rqksJh62lDB6XObpbJbJkemkhYvoNoKfLz6VLl/B6vdy6dYu3336b1VXzgH43sFVZSDFLvZ2gpKSEY8eOce7cOTKZDN/+9rd5+PAhsVh2EJLJZF7JP/YQL7r64auKilvDeyJSLYTA6/Vu2wEkR6qHh4eZnp6mtLSUI0eOUFFh7gx3C7ljviiZRy4yXVu7Nd/VQuSq/i0vLzM4OMh3nKzg92eykSVJgFOVSBdIQtJFpmIHRxbweZysFRTL6GipQllNMmSo3BiLpdi338/AE3202unUv+JGxwHIJikWTTDMrYPQy2c1fXQVsI6sqhquFHzgjQOb7n87iEajBAIBFhcXaWpqsiw2UQy5YhD/+xvv41+NjxKzKF1cVeZlTTUTCTmpkSnRX2zaC6ga9gjIMYFqk9DsAjmuTypU7dlode7eCSEhKRqaIiAGjpgGKiZ/cCMkBexr1s+zELYYpGU9iS6mp5aSmMpnA8gpslHxQggJe0gjaTEetEvWTH8+bJaEtJSV4dgkuidJEi0tLTQ2NjI5OcnDhw/xer10dXXtafvzNIRCIYaGhviuk2WcP9LIF756EzAohiQQ80lEtax3bJEK1lr3F7fPZsg0yQRXo8TnNtqDpIXt3fj4sslyb3x8GVkWKAV5DgmD7GwqkC0MVVPhZWkyZHldy3Nmec7I3Wk6zjYzPrhYNEnR4XDQ09NDa2sr4+Pj3Lp1i8rKSjo7O7c1O/o0PC1y/SzuH8+KkpISjh49ytraGiMjI1y+fJn6+nrS6fQr94+9xKtExXcF3hOkGrIOIJGIdaRhM6RSKSYmstOQkUiEY8eO7cn0nhUURSGTybxryLQRVVVVnD17ltbWWe4OrHBvMMT+lmoGnuhLN4+NL9PSUsnETFC3PJNR2d9cxYOBGUp9LlqqSxm4P4MAWlurGB/XV0NTMmYNeiCwiNMpk0xmO1hLvaxVpNpYmMYmEy+Q4whFQytI5pMzKhmX+dnYIwpV5T7KyzdP2nwWxGIxRkZGmJ+fp6GhgQsXLmx7qtcmyxypq+PatLkMhuYUYM6rs7hXWeLpWBKobhnNVhCwzGiohnspZ0ApaHkKo80CkSVaGWtXkRxUWZgTRU0raQhV4AxrpHwbftLF9NRyMT11kXxhe1ig2TVSFfptohZJijKCFYuBS1eRoi+m7WWZtrY2mpqaGB8f5+7du5SWltLV1fXc2iPIDuSGh4dZXl7WSYzWkhK/8x+vZ4vwrH+GTpeNdCyDa0Uh5dv4NmxOG5nU+kqSADQkReBb0UjYdZJ7RkaXqKz0sBLckGSsRZP0dNUyOLygW7avu46BwY3B9ujYEvX+UubnsoOZSDjBgePNqEUG8UJAcNHsMCSASmyYxShZFDp/OJ1OHbm+efPmCyHXz8PezufzceTIETo7OxkZGWFtbY2JiQm8Xm/R6ruvsH0ITcvKqF4SvEzXUoj3hPxDCPHMtnrJZJKhoSGuXLlCfD1j/9ChQ3vegamqSjqdxmazIYSgv7+fdDq9p24ehTIPRVE4e/Yshw8f3hVLr1xhkn/4d76X9oZShgYXLNfzWky7AszMhejtqkOsphhcJ9QAXq9Z3zgyskhZmZ4tpdMK9Q0bDbxlZNP4bWtmaYdRWiIM8hDN2FGLrK2aI5imoXZ3OtNEIkF/fz9Xr15FCMH58+c5cODAjrWTx2r9lsunIpH1RE090l5098yxArawlLXAM+IpMwCwnqBmaGCLWfrloEkUdd4o3IcA0AT2cEGlxWJteZGp52JFX7AJ5ITAVjjw0GDSIiLdVFKqK0CUQ+czRptzdokXL16ktLSU27dv8/bbb28rYPAsSCaT9Pf3c+3aNRwOBxcuXKCzszM/3f9D/9sJ3nitY10znd0mpahoGshpDTm5MeBNKnprF896roEW0bBZ1GNpqC83L7R4VopFYndVTUl+9fJyD0o0xfKi9YxlQ0M56aQ14ZZjKZODSA5Wzh85cn3x4kW8Xi83b97k7t27hC3ejd1AThaSTqfp7+9ndXUVl8uFoih7Lhfyer0cPnw430dduXKFe/fu7ag2xCtYQH0J/15CvCdINWRH1Vv5yJPJJIODg1y9epV4PM6JEyc4evQowK6UDS+GHJnO2Z05nU7OnTuH1+vlxo0bPH78eMel0o0wkukzZ87sGpk2orLcx/e+eZRihiaDQwtUleuP63E7qPV6UMNp4lH9tY+OLmK3619fVdVoaDSTlHSBDZ5qN7/yxi7Hvj6FWghFMZz45sYfqELgiWtIkqCnc2cetslkkoGBAfr6+shkMpw9e5ZDhw7pkoR2gqN1dUV/q5HNk1maXSBHNVA13LOAKmUr41kRHauy3kZuIgkkA5kST2lwbQmwJzYnC4WWiUKsE+tkET21hnVxFw3rSpKKlk3alCScQZE/VrXTSTRjHhFUOq2fVVfl9iQcdrud7u5uLl68iMfj4caNG9y/f39HfvxWyGQyeceYdDrN2bNnOXDggKVv8S986gO0N1TkByEq5D8Me1RDyhFrCVwFCbKx+Ia8yx6XTN/j3Pyq6XsLjCziMwysR0aXKC/QW3e0VSOSCvWlHuxxhcjUKoE7U9RWWrdvFZvY7CVW4nQ1V5mWu112GvzlRbcrJNdut3vPyLWiKPlcn1wbUVpaiqIo+b+9Jteqquav1WazceXKFe7evftMA75XmuriyEWqX6a/lxHvGVL9NE11IpFgYGCAq1evkkwmOXnyJEeOHKG0tDQvv9gLUm0k04U+0y6Xi/3793P27FkSiQR9fX2Mjo7u+Dzi8TiPHz82kem9nrL7ru84iL/OOmqrapouotvoL6MUmcDjOSSLaGc8nqaz0yxonZleMi2bngrS0FCOJiwIHSA79Au1pDlcljTe82JOH5CPwimzMRw+B2++ech80C0gnU4zNDREX18f8Xic06dPc+TIkV0f9BypLU6qG6vNRAKyyYruOYFql/PFXKxKlWt2gUjpG0/FAZopEdSw4VP6VjmhFa+UmNuFIcQshMC+anEsckmPFtKPlAYWy23xDR2+Kgvc89n/L7cYhADIwrqp3ar8oxgcDgf79u3jwoUL2O12rl27pkse2y5UVWViYoLLly8TDAY5deoUR48efeq79//+xY9QVWmWOgkBzpCykQBc0KEWyonUAmeQHJaWotTV6fepKCqtBn9qVdVoa63i8L56/E4Hk3eneXJnkvIyt04aNjVsXeVVsfjuc5gbW0ILmu9pe1u1ZftkhNPpZN++fbtOrjVNY2Zmhr6+PhYWFjh+/Hj+ORUmNO41uc4dQ5ZlPB4Phw4d4vXXX8fhcHD16lXefvvtTa/1RSffviugvYR/LyHeM6S6WKnyeDzOkydPuHbtGul0mlOnTnH48OG8DV8Ou02qNyPTRpmH1+vNN5bz8/NcuXKF2dnZZ26ICsl0Op1+bmQ6B7td5m/+0Jmivw8Oz+Nx2znUXUdwPMTyerZ9YHgRn0UlwrSF//XqapqmZnP0r7zCk5V+GCIhNoRpWl4zarNVzTRTpRo6UtVR8Mw0cEQyCLL5eA0NzyYZymQyBAIBLl++TCQS4eTJkxw7dsz0Tu4WypxOOiwcKABiaTPRkJIa9jWBahyM5JIQjeunDcskkS35rlum/6cmky0CUwQiA5oQxW2ZNGvtt6QIHKv6KDZk9dRWkIvwLKM8RbNJnCipobzEetBopbO2SRKtuyQnc7lcHDhwgPPnzwNw9epV+vv7n1qwwwhN05idneXKlStMT09z6NAhTp06tWXZm9Np5zd+/vuR8wOOjd8kFRyr2YcqCuRUqiHht6LaTNytXDnC4Q3dTXWVl96uOkLjKzy5Psby/EZ01Dg7Fg2l2NdtHkjOF9j0FcJfX0Y8mmTi7hTlhmj2sxZ9KUautyPfWVlZ4fr16wQCAbq7uzlz5owpedXoFrJX5Dqn6S7Ucbvdbg4ePMilS5dwuVxcu3aNO3fu7JkzykuPnKXey/S3R1hZWeGjH/0opaWllJeX87GPfWzLciRN0/jQhz6EEII//dM/feZjv6cSFQunRuPxOGNjY8zPz1NTU8OpU6c2JZe7RapVVc03aM+agFhZWcmZM2eYnZ1laGiIiYkJenp6nuoCkEgkGB0dZWZmhpqaGs6cOfPCEkneuNDDf/zTO4wakgwBUimFHr+HgTvTumBVNipVyaNHM7r1R0YWcbtl4nH9cykrdTOFvoMcG19Cc5rD1DZF42miGrsskS5sAFRNH71UVN2+haLhWM2yMZ9H5sqVK3R2dlJfX7/p9KaiKExOTjI2NobX6+XYsWPPzeHhaG0dIyEzqRhbDSEJgboeVhAZDeeyKOq6Iac0MgbvZmERdjbaKak2Q4BSgJQpVlxFQ1tP0LLFNDIWwVMpXUQirWXPxxHSSFZq+WizVuS5SCkN5SlOJDn0Dy9x7FC9+QcNpi1IU2tZGfZdTiZzu9309vbS3t5OIBCgr6+PpqYm2tranlpqenl5maGhIVKpFF1dXU99X4uhvrac//MHzvL//OEVkEDLrLskCnBGVUQJREkj5c2qBaTU/LOwu8zd0txCDLtNIl0w4J2cCtLTVYtd1Ri6N83qSNa5o66hlPmZjajoyNA8TpdMMlHgKhLSZ+BWV/kITViXLa+o8LAIaKpGa00poQIy39m2PWlXjly3tbUxNjbGjRs3qKqqorOz86mD52g0ytDQECsrK7S3t9PS0vLUpERjQmPOgi9HuncquygMDhmRG/C1t7czOjrKjRs38smb5eXlpnN8BWu8bDZ0e3ktH/3oR5mdneUb3/gG6XSan/iJn+CTn/wk/+7f/bunbvuFL3xhR+/heyZSndNUP3r0iN/7vd/j+vXraJqW9+t9GsncKal+lsj0Zsgl/l24cIGamhrefvtt7t27Zzndm0gkePz4MX19ffnI9JEjR15oZrYkCX7sh89a/nZ4n5/gfMJSa7WyHDVNF2katLaaI0VjY1l7rULEoikq6szXbbe490aC5bDpOwqhaDrGJqULQmGqhiOcyRPEk6e66OrqIhAIcO3aNRYXF00RosKp9vn5eQ4fPsypU6eeq2VaMV11UlFoK12PUioa7gWBZpdQnSJbtMUASx5rMXQ3Jv9pNgEGNw+jzjoHObGhvZSL6KpF8Zn87O+awBEkHy0p5jRistLLLbesuiiYH4lQa/Cprna7iVhEqrv28Pl6vV6OHDnC6dOnicfj9PX1MTQ0RDpt1syEw2Fu377N/fv38fv9XLhwgYaGhh11LD/wPcdpa6wESSqwghFogHM5k62+WPi8C76JpVDU9P3G42mdZ7XHY6Op2om2usbg21M6OVG1ITFYVTU6DJHpqZElWls2pDc11cXbRFFA5FdH9PKyQueP7cAYub5x4wb37t2zjFynUqn8rGouWbS9vf2ZXD6MketckGenketc37jZueTI9aVLl/D5fNy8eZNbt24RDFrPELyCAS86qvwuiVQ/fvyYr3/96/zO7/wOZ86c4eLFi3zxi1/kD//wD5mZmdl027t37/Lrv/7rfPnLX9728d8zpDqVSvGnf/qnXLp0ievXr3P69GkOHjy4ZX3qdkn1bpFpq/Pp6OjIaymvXr3KwMAA6XT6HUmmC3H6ZBsH9+kdJw71+Ol/e4pgME6HRWLf7OwqtX7zswoGzZ5v0WiSzs5sJypJgv09dbRU+YjEzYVOknED2dE0UzKjkVuYkugKdKLu6Tie9UIWQoLX39hHfX19nqg8evSI27dvs7q6iqqqTE1N0dfXx/T0NAcOHOD06dNUVVU994jNsU101ZVON4KchrrAGi1ubhStyKbixESYVYdpjGS+r0Xa3EIiLRTr+2QZBVG0dY/kLCRV4Ahlo9Ga0XMcEGnrKLVIa9aVFEt8LKxGqYw6sRV823Ue6++uc4d66q0gV7Dj5MmTRCIRLl++TCAQIJPJEI/HefDgATdv3qSkpISLFy/S1ta2a1Zsn//c9yILoRtAuVx2tLSKK5gxvRM5pFSVLot8iXRaxW6XObzPjxRKMR8IE1oxf/8z0+ZZsIhFsRd3wTOSN+ngg3MbcoWFkSUa/dlBps0m0dq8O88wR65z9piF5FpVVcbHx+nr6yMWi3HmzBkOHjz41JmHzVAYod4NWUhOT72Vdit3rW+88QYlJSXcunWL27dv5122XsEaQn35/vYCV69epby8nFOnTuWXfed3fieSJHH9urm6cw6xWIwf+ZEf4bd+67fw+60dsbaCl17+0d/fz6/8yq/wR3/0RzQ0NHD58mUOHHj2QhzPSqp3IvN4FjidTg4ePEhzczNPnjzhW9/6FsALl3lsBiEEP/7Rc3z2H/8JAD0dNQze35B82GzWnbrTYb538/NhmpsrmZw0Tt1q9B6oZ2F0meGb4wBE95Waks6MT1SktayTRQHSJv9rQ6cjAE3DNRvHnlDJSOtRG0ni0KFGIFvEo7W1lYaGBsbGxrh582a+KmZ3dzd1dXUvdOqzo6KCEofDMqKaUVROldfzYFFfcMeqUVRcAjKavjCOEMhJDaUg10yzrVckLCThxpkIeX2Z4bZImY1lmiBLzgzP1WIz5KSm174DUkbgXFRI1llIg2IaGZ91kqLiNi+v8XlYWFljYibEiYN13FidBcBdpMrcs9rp7QRlZWWcOHGCYDDI4OAgY2NjaJpGXV0d58+f3zUnmUJUlHv55I+c5//zlW/D+sxBZr0NtSc0VJuKknseBc9PkwRKxtzW2iRBg9fJkxvj+WWhlQR19aXMz27IPYLLcfyNZcxNb5DhqfEVav1lLBQQ5OGHM9S2V7GwGCFYpFqix+NgfjKoe5eqnQ6mgZamSuxFbPa2C5fLxb59+2htbWV0dJTr168jhMDlcnHkyBFdOfvdwG7JQrZTojyXZNve3s74+PiWC1e9Z7HHOuTnjvVrMSawOp3OHQ0Y5+bmqK3VD8ptNhuVlZXMzVknKQN8+tOf5vz583zf933fto8NzzlSvV3x+NWrV3n/+9+P1+ultLSUS5cuPXVU++DBA37wB3+QEydOUFJSwmc/+1mOHDmyLUINWyfVexWZ3gyJRILp6WnC4TBlZWW4XC4ikQixWGxHU3p7icMHGzl1rIXWpgomhxZ107fDQ/Mmv2mA+bkoNouIYknJxroOh0zvgXqWA4tMPpxhZT77wap2YXZ30DRUm4FkWUTPkgY7PZN0QRY4FxI4omp2n+u7qKkt0XVKmqaxsrLC4uIiTqeTkpISEokEwWBw1+0SnxWSEByusS4Xb9ckHgzOm5ZbRXcBbBbJikZfb8hWRdTtz2S1h87fuGBvG/+3rqvW/ZrOzhKYtiry+coJgW3NfBzj+T1tPw6xcQEP+uc4Upm9n2mjHeM6tmunt10oikIwGCQajeLz+fB4PPn3US3mdblD/PUPHaWztTrPBVIFx3FEMvlZHrXw25QEgdFFKtdLj5eVuTnQWk3gziTlpWZnkVKLtsLtNRO8mjqDVlmD2govXo+DuemQ5fnXN5SbBmdzD6eRhNix9GMzJJNJ1tbWsNlslJWVEY/HmZqa2jM/8p0mNO6kRLnD4aCzsxO7fZNqT6/AC3fq2Is/oLm5mbKysvzfP//n/9zy8t966638ILDY35MnT7Z1a//sz/6Mb37zm3zhC1/Y1vaFeK6R6u2Ix69evcoHP/hB/uE//Id88YtfxGazce/evacS1N/8zd+kurqaoaEhmpub+e3f/m2uXr267XN/Gql+XpHpQiQSCcbGxpienqa6uprTp09TUlKCqqrMzMzw+PFjxsfH6enpea5V17aKH/uRc/zCP/xPpA1WVqqqUVIiY0wST6VUGpu8TE/rvXjHxpdwu+10tlYzPTDHk2ujAOw/3MiTB9lKgYpFkqKUVrOaT93B9R2IHUHaoCXQDJFsWzSNM5x9Nwo7oJ599fllS0tLBAIBUqkUHR0dNDQ0IEkSa2trDA8P09fXR2trK62trdvunHaKY3V+rkxP6ZbZJIn5qQg1Xg+LBt1+JifrMAxWrCLYVnZ1Rqj2bCKkKHDtkGMaSgFnkhKaSY8jJyFTwJeKabGLFXfBLrBFQXHqI+dqscdQZDfRZKpgFcH00Cr+Zi9LUXO+g02SaCl9Pt9krj0IBAK4XC6OHTtGZWUlmqaxuLhIIBBgfHyc9vb2/Hu5m/gX/+j7+Pjf+QPWosn8rA5CIDRwhNKkKh3ZAVp6I1lRlQQN9eXU15Yy2T/L8GQIAUSj5sHn/FzItGx50ezXPTMVNC0LPJih41gjA0UKwrgc5nYjshSl83DDMzt/bAXxeJyhoSEWFxd1FStzbf2NGzeorq6mo6NjT9yAthu53k6kuhDv1ODPOwkvm7dz7lomJyd11UaLRak/85nP8OM//uOb7rOjowO/38/Cgr7IXCaTYWVlpais45vf/CaBQECXOAvwkY98hNdff52/+qu/2vxiCvDceu+cePzmzZt5rcsXv/hFPvzhD/Ov/tW/oqGhwXK7T3/60/zdv/t3eeutt/LL9u3b99TjfelLX9I1AKWlpTuq8FSMVL+TyHQOkiTR1NSE3+9ndHSUW7duUVtbS1dX155M824XXR017N/v59bNMdNvkYiClWOa0+EBNjpMIQRtzZVIyQxPro/q1k0mNpKyFJe5wRcZDc0442jsNJIZKCTkhSRS07AvJ3CGMxvb5dwkNI2z5ztZXl4mEAgQj8dpb2+nsbFR1/n4fD6OHTtGKBRicHCQqakpOjo6aGxs3NN3yApWyYrHK+t40D9Hb3OtiVQjCTwZiBlurbAg0KqDPJnaWNEg0pAEtoSK4ilIAjV8craEWdghGacOVMxzcIpmWYhGKFq2uIsQuFYU4jkZiKKRsXL90ECx0FOjwXRQP40ZT6SpXfMyIsz+vG174PxhOqV10jw8PIymaezfv5/a2tp8uyiEoLa2lpqaGubn5wkEAoyNjdHR0bFt5w8rlJW4+ej/for/+9/2gSShoWSfoCRhDytkfCqqQ0JoGtr6s3V67MjJDP13JnWPe2J0kZIyF5HVDY10OJTC31iuizaHV5M0NJUxM7UxMg8uR2nrrGEssJhfJgnwbnKdybA5DwPAmcjsaqQ6nU4zNjbGxMQEdXV1eW11DrmaBYVuIe8kcr1TUp075iu891BaWqoj1cVQU1NDTc3Tv7lz584RCoW4ffs2J0+eBLKkWVVVzpyxtvR96623+PjHP65bdvjwYX7jN36D7/me79nCVWzgufXa2xGPLywscP36dWprazl//jx1dXW88cYbXL58+anHM36gXq93R9XGjKT6Rck8njx5Ql9fH8lkktOnT3P06NGijarNZqO7uzvvXXvlyhWGhoby5/xOwN/4gVOWy1dDcbq6zHKEkZFFKtcrojU3lVEhawxeHyOdMLsajAcW8a37yipO8zOxkiSoBkKoGsqP5+QhQtVwz0RxBVN6icf6/0tCYHeEuH//PjU1NVy4cGFT66vy8nJee+01Dhw4wOTkJFeuXGF+fv65RnCO1Nbq6KrHbmdsLBvdsxUpXnKg3TzyTzkxRfw1m1mmkfFIWf11AYzyG6OHsVX5clWIopKMHOQUliXT5YLItybLOJeyYXZb3ByBh/UiMRayl7oSD9Gk+eTklOB4qfk93uskxVAoxM2bN3n8+DHNzc2cO3euqG5fCIHf7+fcuXN0dHQQCAS4evXqrr5/3/+9x6mtyOZ36Nx1JHAuZ6PPhUdS0yr9tydpbtXfJ00DX6n5G6qqMueOVFRbtIsFL0pXdy0lwMS9yaKTGHNj5mJSAFNvT9HeunN9s6qqTE5O0tfXx+rqKq+99hq9vb06Ql2IHLm+cOECTqczX0lzr0qCb1UWkslkdi3B9RWK4EU7dbxL3D8OHDjABz/4QT7xiU9w48YN+vr6+NSnPsUP/dAP5YO309PT7N+/nxs3bgDg9/vp7e3V/QG0tLTQ3t7+TMd/bqR6O+LxkZERAP7JP/knfOITn+DrX/86J06c4M0332RoaOiZjp+LVG+3k8iR6ncDmTbC7XbnbdpCoRB9fX1MTk7umY5yK1BVlenpaVaCozS3WF9HsWfV1lJFZ305s4/mCS9nI1bjwwvYLMqWN7dlOz6rSLURQrOQKRg7W01DSiqUzMSxJcz3L0e4PG6ZquoqLl68SHt7+5YkHbnI4dmzZ2lra2NgYIAbN26wsmLtn7vbKHE4dclzvSU1RGLZSN180BxtBUhYFOBBFthiFhpliwIrtrh+PdXwCSkuvdWeZuV5DcjrTiRCwbJVMxZ7yS83nr6W1VdbkXcKjmOEs4g0rMzlpP/hPC2GojB7padeW1vj7t273Llzh6qqKi5cuEBzc/OW2iZJkvJ2nS0tLQwMDHD9+nVLG8jt4B999oNki/IUHlRgS2rY1xTkggTlhJZ9L0osSofbZDPhXLRINJy2kHtMT6ziK7XT1ljCyK0xggthgvMROi0G8LmiL1aobSjD69l+MlVuFuHatWtMTExw8OBBTp48uaWIHejJtcPh4Pr16y+UXCuKsiPZ2iuP6i1AIzsL97L87WG86Ktf/Sr79+/nzTff5MMf/jAXL17kS1/6Uv73dDrNwMDAjivPWmHH8o+33nqLz3/+85uu8/jx423tO0f6fvInf5Kf+ImfAOD48eP8xV/8BV/+8peLCtqtsNNItSRJeTL9vGQeyWSSsbExpqamLGUez4qysjJOnTrF4uIig4ODTE5O0tPT81wt3FRVZW5ujpGREYQQdHV18X9+rIlf+sX/Ylo3MLxAVZWP5eXsc3O77XS2VDE3MMfCnJ7kZTIaTW2lTKU7Eb8AAMDbSURBVI3phdixaBJNYHJ9AEwV95xCkDQqCQqjkpqGHMvgWElutAeF62taXqO9b38DnZ2dxW/EJsjJd+rr65mYmODevXuUlZXR3d29Z1UVczhaW8dwMEiFy8VAYEOXNheJZQtoGMjjZHAVK6uNVn8lgTWDKN7iU5EM3FtxS/rdSQJ7VCVdKpCSZj11DnIqazAhpa0lz8Xeb2NypBBZfbVqtx5wykkFxWe+kMrSMqZWF8wbaNnBnTskIdlEtgw3Oy9PbkQikWBkZITZ2VkaGxvzkcztoPD9m5qaor+/H7fbTWdnJ5WVldtuK3q6/Jw83MTt+xPZgZIQeYLtXElBq494IhusyGnbJ8aWTO/X1PgyZeVuVgsKuCzMreJvKGNuZuOdC61EaemoYmIka7EnyxI93bWkVtcYeTSve0+klHlQlCv6YoWug9Zyxa0gEokwODhIJBKho6ODpqambfcjhbKQnFtITU0NHR0de+L8VEwWkk6nX2mq9xgvq6Z6L1BZWblprl5bW9tT37ntvpM7JtV7KR6vr88meh08eFC3/MCBA0xMTDzTeZaUlGyLVOc0006nk2AwyOTkJO3t7XuaqbzbZLoQuWhodXU1U1NTPHjwgNLSUnp6evaUsGmalifTmqbl3wlJkvD7NTo6axgJLBq2gfr6MpaXo+zrqWNxZIkn6/rrxpYqpif0frRutwfQE7mJkUU8VR5WDURAAKpd0nWsmXgGChOTNA3Nkf1EbKtJfFGVTDxtqPxn9HvLdo5nz3Vt4a5sDlmW8zrsXCWyuro6Ojs790wbf7TOz38aeEKzcDOYDuWXa0BbZTkDi/p7HkmmaCwvMVUMdPucYAiaWXk+G+UdqkNgi6qoBXIdOaWRBuxRFYF1x52LOFtGqlUNxepzVTXr4i6SwLamkbbII9SKVJK0jNgD4Wh2JmVqZpVTR/3cWMna7O2WnV6hFrempoZz587h8ZgdMrYDWZZpbW2lsbGRyclJ7t+/T0lJCV1dXaaEnq3ic5/9ED/447+Dml4vkLR+O4UK2nISPFKWbMsSmgRr4SRNbRVMTWxEnTUNGpsrWQ1N6/ZdVV2iI9UAvpLsd9LVXUtkJsiTy0P0HGkynVfg/hRlrVWshjYiV8JkpbmB7nWrzGdBIpEgEAgwNzdHc3MzR44c2bV+xFi18HmR69yM4+TkJM3NzXkZyKuo8x5AY88kEy8EL9GlFGLHpHovxeNtbW00NDQwMDCgWz44OMiHPvShZzrP0tJSkskk6XR6S36YxgTEmpoaPB4PQ0NDXL16le7ubvx+/642HntJpo2QJImWlhbq6+sZGRnhxo0b+P1+urq6duQRaYSmaSwsLBAIBFAUJZ8EVRiZEULwf/zgaf7Fr/530/aroRg9TRUEbo3rlpdVuJk2jKvGhhdwuuy6BEVNA0+VGzR93WpbRkMxPDvNoAMWKQUpreJcSiKntayntWAjamZIvNNypbyBN75ze9aNVsj5uba0tBAIBLhy5QrNzc27PrhTVZV6oNJmZ2giiDHm67Nbfzc1Po+JVE+vmuUiiktCiquoro1nn/GK/DeWg5TSUC1eQZGieIslBKKIZENKYamDlpMamsUMhpTW0Gw2HCGVVHnB74pG2sKqzSpJEbJyoqnlDZI3+GiBxu4SFmJRWnboxpPT4o6OjuLz+Th16tSeOfzYbDba29tpampiYmKCO3fuUF5eTmdn5zMf0+N28iMfeY0/+Oq17AJJwu6AdEpBhNM4XS6S67dYtUvISZWSEg+gl3JELWQZS4tmCUgsmqC7pZyRGyP5ZeND89jsEhlDJdQSD6yGNhYVFn0xoqt365FqRVEYGxtjfHyc6urqPfMFh+dLrldWVhgcHCSTybBv3z5qamp0ksJnIdev5B9bwEvqU/2y4bm5fxSKx3/7t3+bdDptKR5/8803+cpXvsLp06cRQvAP/sE/4Bd/8Rc5evQox44d4/d///d58uQJf/zHf/xMx881KGtra1RWFp963czNw+Fw8NprrzE3N8fQ0BATExPs27dv21GbHArJdFVVFa+99tqWtXU7hd1uZ9++fTQ3NzM0NJS3dttpZbVCu650Op2PuBab5jx7rpPGxgqmpzc6z57uOmYH5/E2mZ/XzKRZL5lOK+zrqWPgkb4U6dpMBJ+ikSy3kS6zgxCoSUXv6gG4PA5iqopIK9jCaWzhJLZMQUOvqgiDr3WhJV8uAcvnsuPegd6yGNxuN729vbS2tjI0NMTly5dpb2+nubl5x88q5/6gqCptcin9mlnHHbNIxMvuwLwoGE9Q5/Myv6afHZKTGuq6JFZKatjiKnJSI1UqFy0JnisQIhCbBjfkBGiyhjC6g6Q1FAtSLWWwdASRUtkIthwXSO6NqLk9oqB4zU2mv8THwopZy+ov8zG/tLE8nVEpW7Phq6zQVVx8FuRmfIaHh7HZbPT29j43+Zbdbqezs5Pm5mbGx8e5desW1dXVdHZ2PhNh++H/4zTf+MYjFtZ10KlUJv/MnNEUydLsQ8mR6onRJSRJoBYMesdHlkwSkPnZVerqy5ifXcXrc9LWWMHA9QCNhoTCZDxNZ28jgf5Z3fLofHzd8g9cbrup6EsONrtMa3fxCqQ5aJrGzMwMw8PDuN1uTpw4seO+YqvIkeucW8hukutYLMbg4CArKyu0t7frErBzspDCqfOnkWvj+q9QBCpF7TzflXhxKV17iudqiPvVr36VT33qU7z55ptIksRHPvIRfvM3fzP/u5V4/Gd+5mdIJBJ8+tOfZmVlhaNHj/KNb3zjmfWqXq8XIQSRSMSSVBvJtM1mQ5ZlEwkUQlBfX09tbS1jY2PcuXOH6upquru7nzn68CLJtBEej4ejR4/mK65NT0/T1dX1zNZahZ7MyWTS0kbOCrIs8Td+4BT/+gvfwGaT2N9Zy+Nb49nAsAX/CK1Eae2sYdwgGVEsCm3EEwqSJOFezuAMZUiV2VBtAomsy4BDkhAZhfTyGu64ipzT5WZUKKzuaGz3jf9e12g3WDgR7CZKSko4ceIEy8vL+cFdZ2cnDQ0N235Whf7Z/2n6fwBmUj25sppN5jQcYiFiLavyl/h0pNolycjRDPaYgiakdXcNGXtUAU0gKRqaUNFE1uoulzSqOgXymopqkzbtU+SEhmKuZG9dshyKdlCyut7eSwLXfIZYS/YFlJPW+89VUjSi2uvRkWqA8ckQH/a3o6rqM+loNU3LP+9MJkNnZ+eu2t49C3JVQFtaWvLR0NraWjo6OvB6LW6QBT799/4an/tH/zk7oy2JvLe5GlGQnQqKU0ZdTzyOriXp2l/HsKEAUWOLWQJSU1tCdYWHibuTPBnPSpVKK7yA3sXDZhwcA+GlKF2n2xgeWqCszM5SkeJr7T11T62kuLy8zODgIIqisG/fvhdWMdXtdpvIdW1tLe3t7c9MrtPpNKOjo0xOTlJfX2+p2zdqrnN/uQDVq2j09vFKU/3uwHMl1dsVj7/11ls6n+rtQJIky2RFVVXzTh6bkWkjZFmms7OTxsZGhoeHuXLlSj7C+7Qs6HcSmTaioqKC06dP56NhExMT9PT0bBrdh41OPxAIkEgkaGtro6mp6ZkiqG98x37+f197QGJ5jSfrhBpgZHAej9dBzFD4weM1R4NHhxdwex3EC9ctlBYo4FrJINIZPdlSNTNJNrX/T0lssEk4ZInOjt0vCmGFqqqqvHtOroBHd3c31dXVT+28gsEgw8PDRKPR/NR+7lkdaaqjL2DOWYil0jTXlDIR0ksdZsNrlHqchJP6KXlpfZBR4nSwv6yKoeFFyqvLmF/Vf4OatB4gXCfZQtNwLgBCQXVCukTCHlYtpRqFkFMgJ1RSldKGfZ4GipUOWstW2bREQRukOe245jMk6op/04WVFHXLJevlWijK1atX6ezs3BLZCofDDA0NEQ6Hd2VmYrfgdDrZv39/vqT2tWvX8Pv9dHR0PDXAcOhgA03+EibnIllpzrozjAqUxBRCTlmnX7e63mhE/7717KsjsxJl6O6kbvmKhTPI5PACkixQDRaO0ro2vrqyjCWWTdsBdB4qLv1YW1tjaGiIUCiUj+I+b795KxSS68KB0FbIdU43HQgEKCkp2ZIscTOfayty/Ur+sQW8kn+8K/BiSre9AAgh8Pl8+TKvRjIty/KWyLQRLpeL3t5empubdRFeq6jhO5lMF6IwGj8xMcHdu3epqKigp6fHFInKld4OBALEYjHa2tq23enb7TKvn2nn9//NX+mWKxmV1oO1PL6vr/ZnNS2sZFRaD9TkKylq2QsyHUuWDB2qqppD4k9r5At/1zSQJRyKyun3Pb040W4h96zq6uqYmpri0aNHeL1euru7Laeaw+Eww8PDhEIhXcW2QhxtKj61XeXxmEg1QHN5KY/m9bMGoXiCU7X1BIYWeTCVnWpfTCs4ZIlUwYyC4jA4fgiBnFFQnTJyGqRlDZEWZJ6SCiEpGkKTcC1rJCuzJF2kNcvkQill7TeNopE2eJoLRUKOqygu67ahsJJiIeIpa7nMG6eO0lrmYHBwkLGxMTo7Oy0HQrFYjOHhYRYXF2lpadnVxLbdhNvt5uDBg7S1tTEyMsKVK1doaGigvb3d5LdcKF/57u9u5bd/5wHIEmjrBZQEpJcTSO6NSDXAWGARu10mXZAQOj6alYCUlXkQ0SSBKwEAyqt9hApmCOYmV6ioKSFYoLmOrSVpP1DP6IA++j2ynrCYjFhb6YG180cqlSIQCDAzM0NjYyOHDh3aUu7O80buWRVqrjebZVheXmZgYABVVTl48CA1NTXPRH6flVy/wiZ4RarfFXjPkGrISkAikQipVLYT3AmZNiJnVzc/P8/Q0BCTk5Ps27ePiooKkskk4+PjTE5OUllZ+Y4l00YUuk8EAgGuXbtGY2MjHR0dOByOfLRzbW0tT6Z3WmL7O/+3o/zhl/t0yYYAa+G4ad1oJEHnPj+BAf08baqw7LlVsQtNM0WoUNVs556HhX2bsXiIjlNnG7xMOM7Rs9uz0tsJcomnDQ0NeVlSVVUVXV1d+RmaQCDA4uIizc3N9Pb2Fu30DzbUIokN+7dCmO7bOlyy/rk3l5WiLmUYW1sintp4Hoqq0eGvZHh2Iwqo2QVSQkWzW3+D2Y75qbcgP/MgNIFzWSNZsS7ZcFsMqororG1RBdVleIdlCedCmkSDBaEtkqQIsLBqLYvp8lfRVFWWt6zLDYS6urqoqKgglUoxMjLC9PQ0fr/fVF3vnQqPx0Nvby9tbW0EAgH6+vpobm6mra0Nh8PBysoKQ0NDJJPJvLTs6pUV7j2e2RhUCYEmwB1JE612ZqVAWrY6as/BegafbOiga+tKaa0v5fZfPNFNKvmbK3WkGsDfVKEj1QBOl/l5aopGc305Y4YBfCHW0gvMzc1RV1eHqqpMTEwwOjpKZWUlZ8+e3bIE5kXCSK6vXbumI9fRaJTBwUFCoRAdHR1b9jovhqdVaHyFLeAVqX5X4D1DqoUQJBIJ7t27xxtvvLFrZNp4DL/fT01NTT5L3uVykUgk3lVk2giHw8GBAwfyyYyXL1/G4XCQTqdpaWnh2LFjuxZB85W4+I4P9vL1P31bt3xybJkafxmLhox8Y8EXyLqAeH1OomtJyyp6Wlp5qrLDYZNJFVpqGZw+BKAVvjtCIOJpvD4XsvziOgmbzUZXVxfNzc35ynhut5t4PJ4v7PE0guZx2OmurWJg3lxNbn7VurjEanyjbPSR2lrGB5dJphX2N1bzZFq/H5/bTOaljN72zughrsqS6RkUIlvcpfD5CJxBDcWmgYUSIWuXZuH8kdpIpCyELSlwLWZI1OibzGJJiqUuJysWA0Gn3UZDRXbqvNCybnx8nDt37uB0Okkmk1RWVnLmzJk9sUPba/h8Po4ePUo4HCYQCPDtb38bl8uVz7EoTGz7zGc/xI/9xP8XTRSkl8oCsZpCKrFnkxVT2e8w585TVu6hsdbH4I1RyjRzOaB0ylwxNhE3zxpMjy5iZbKuROJFi764vQ6OntrP4OAgg4ODqKqKy+Xi2LFjT5XIvRNhJNe59iKRSOTbi92MuFuR69HRUf79v//3/NN/+k937TgvJV4lKr4r8J4aIh44cIDPf/7zfOpTn2JhYWHPRsiKopBOp/P/r2kaPp9v1/xjXxRy16JpWt6P1Ov17jg6bcSHP3LCcnmN3zwgGRteNCUNqapGc3tW1+wpMTMkYZHMaGqtjKNoTdMRdIdDf0xNEkirUfxNu+M/vBuQJAkhBIqiIITA4XBs+VkdKSIBWYhEqXSb7+lEcBWXTeZUjZ+BRwsk16fpXQ7zYKuoi0gBFKfe6UNIIltSvAiktPk3gcCxpukqMuZgKf3IbmS9/4yGWzgoceoJRo3P+puuL7Umw+015ciGdifnLGSz2fLfWO7ZvZvhdDpxOp35intgdnqorPRy/nQHOvvx9ftjX0noJCDzs6scPthAcnqFgasjaIrGxPACTsPMwqRFddWJ4Xmcbv27GAnFaenSv+c19WVM3h6mocWaIHcdbKCkxIfT6cw/q5yU8N3sYOF0OvH5fPnKwblnluvHdhtCCKLRKL/0S7/E6dOnmZqaIpFIPH3D9zByiYov09/LiPcUqf7GN77Bo0ePSKfTHD9+nH/+z//5rpapTKVSDA4OcvnyZaLRKKdOneLSpUucOXOG1dVVLl++zNTU1Luu8Q2Hw7z99tvcvn2bkpISXn/9dd544w06OzsZGBjg5s2bhEKhXTtec1s1x15rMy2fnTQ7UiQTadq6zSWGbZKgq7mC6KrF87W6/4bIaMogPzFtYyrxriESKQ4cazHv+zkinU4zPDxMX18fiUSC06dPc+nSJU6ePEkwGOTy5ctMTEw8tUT9ZrrqRovZFkkIjnhreNg/p+Ola3FzxG9yedVEXh0+QzRMFkhp/TlKRUqNg0W5cdaj1zYZz7w+cimlVBS3td+06rTOBfCVuUmmVXq8+kFTsSRFbxFP747aDbKWszK8evUqExMT7N+/n0uXLnHx4kUcDgfXrl3j0aNHxOPmiPc7GZlMJi//SKfTnDt3jkuXLnHs2DGWlpa4fPkyY2NjeaL9937mryE55I1vbP1btMcUhKLidNo4dKgebWWNTDhOOrHxPDNphWZDifFUMkOLwfJOyag0d5rbCW+Js+D/XairYWLhOOWl1paYJdU23n77bWpqarh06RKXLl2iqamJx48f72pJ9+eFwnLpU1NTHD58mEuXLnHhwgUkSeLatWs8fPhwR9WIjVAUha985SscPXqUK1eu8Jd/+Zf83u/93rs+6LTnyMk/Xqa/lxDvGflHDh0dHfyH//Af+Na3vsXP/uzP8pWvfIVf/uVf5iMf+ci2I9epVCqvma6oqODkyZO6ogglJSWcPHnSsjz4OxmRSIRAIMDy8jLNzc2m5JvGxkb8fr/OWrCrq2tXGsfv/hunuLtePTGH4HKU9q5aRocN5aALvs3mtiqcisKTv3qMw2WHIhHDQkgCVOOzf0qUMBlNQi5iq2mIZApsMud3sejLs0BRFCYmJhgbG8tb7hUmKpaXl3Pq1CmWlpbyNnxdXV1F3SeONFlXOQWwG20mgf2eSr2n9zomllZN+uxYMk1zZSlTyxta5IRQsxaHhftVNb0qZ5NxgFC1dYu+DcgpFdUhg82GayFNojYbqbTFFDIlFtKPpJJd3wgNNJcNohn6H83TfbiSoaXsAK9YkqKVtSNAR12WlAeDQYaGhojH43k7xFz7k/MYbm1tzSf+NTY20t7evquFmXYbqqoyMzNDIBCw9GXOSeCWl5cZHh5mfHycjo4OGhsb+a7vPMif/9n97IoFA9xK2YaIJnnSN1z0uDa7uRuz0kvLFjZ6s+PLoGnIdplKn8zEw6zWf3ncukB5S3e1yUqupaUlX3Xy0aNHeDyeHZd0fx5YW1tjcHCQcDhsKpdemHya01zX1dXR3t6+bc24pmlcuXKFn/u5n2NpaYlf//Vf54d/+Idfaaq3ClXbxB/0XQj1JbqWAgjt3TSs3mUoisLv/u7v8vM///N0dnby+c9/nuPHj2+5ITSS6Y6OjqdWGCtMbCkvL7d01HjRWFtbY2RkhMXFRZqammhra3tqZ24swbvTan+qqvGpj/4/zE4Fdcv39TYy8FDvTWuzy7S1V6FGEozen8wHQVt7GwmEzJFSkUghChvydAaM9meqqivsIkkGTpfKgMuxse5CEIfPzR/d/sVnvNKdIWd3NTIygsvloqur66mDtVxRikAgkPccNm6jaRof+s0/YGnNHOlvry4nUFB67lSNn0f9c+xvrqF/xkxG2mrKGVsM6ZYdbfNzf1SfYNrjr2JoeiOB0RY1kNyMakmGAWxhFWEg1c5whrTHlr+ejEslXWbDuZQmXWF+N+0raRSfeXl1iYfg0sZ9qKstYdIeJaOolEh2ohZylhZfKVMr5gTGX/2B91GpxggGg7S1tdHa2vpUp5zc4HZlZYWWlhZaW1vfUS4gOb/zoaEhVFWlu7ub2trapxb8WFxcZHh4GEVRaGlp5bN/589IrM8QyYk0mrI+TRzb+IbdXgfJeEqXMFtW6WV1RR9JrawtMVnp+crcrK2ao/5NXTV47IKBK4O65bWH21mc0z/D//u//12q/cXb+Ewmw+TkJOPj43i93jy5fieh0KmkqamJjo6Op75PsViM0dHRfILms5Lr8fFxfuEXfoGvf/3rfOYzn+Gzn/3sO67fe6ciHA5TVlbGd3b+DDb5nTuoflZklCT/M/AFVldX35W5ZsXwnh4iyrLMxz/+cQYGBrhw4QLf9V3fxU//9E8zN1fE9X8dqVQqn7C3trbGyZMnOX78+JZK9kqSRFtbWz5h7Nq1awwMDOyZdu1ZEI1GefDgAdevX8dut3PhwgX27du3peiYy+Xi0KFDnD59mkgkQl9f35ZkBsUgScJSWz02NJ/XUMo2if0H6/F77dhjScYKCDVA0sqpQlX1hBrMI2ZV0xFqMASuNQ0cG9ExLaMgZRQq655fw5Ajxn19fUxOTnLgwAFOnz69pdkPIQSNjY1cuHCBuro67t+/z507d/J2k7l1iumqJ5ZXca4TwZP+LKEGmF5atbTyLveZNdiqRZTCY4guGn2kNZuEsNJOpzUToQZD1FsIbDGBlFItLfYApCKvqt8w2zG/EOF4TR3+Ep8lobZJgtmQ2RsZIDQ1itvt5uLFi3R0dGzJerKkpIRjx45x8uTJvIxsdHQ0L594kVhdXeX27ds8evSIpqYmzp8/vyXvbSEEtbW1nDt3jq6uLqamJjl2dENakyPNmtBr6+PRFK09+lmU1ZUojW36935lIUJdU7lu2dpqnOauGtO51NV4TYQawOHU39/yKh9VT/nGcyXdL168SFVVFffu3ePWrVsEg8FNt3seUFWVsbGxvDTs7Nmz7Nu3b0sDNI/Hw6FDhzh37hxCiLws5GnyybW1NX75l3+ZU6dO4XQ66e/v55d+6ZdeEert4EVLNV7JP7aE9zSpzqGsrIx/+S//Jffv3ycSiXDs2DF+7dd+zaRlTCaTeTIdiUSeiUwbkXPUOHPmDGtrazsmoTtBLBbj4cOHXLt2DVmWOX/+PAcOHNiWjVdOenDo0CGmpqa4evUqCwsL29IZvv9Dh3F79NrUZDJD9/56eg/V48ukGfz2ADOBBUv7twWLog+kt0BELJ6Bjp8rygbpVlXEekSyuevppYt3ikId7sjICJ2dnZw7d+6pkUEr5CwTL168iM/n48aNGzx8+DD/3heTgCiaRkt5GYfraul/uDEAjcRT1Feai0LoXFTWMRcyO2aEDCXNVYcEBTpqQdYizwirJEW09e0LIGQJx6JCxkpPDagWxBysi7gMPJijrdz6u28qL0OxGDS4bDIffN/r7N+/f1uOCmVlZZw8eZIjR46wsLCwZX38XiAej/PgwQNu3bpFWVkZFy5c2Fahk5zP+rlz5/joJy4h5yh0YY6D4b12WbjHlFlUMa2sMz+fkrINaZrH56SjpYy5/knTegCZVX3iXHfv1iuW2mw2Ojo6uHjxIhUVFdy9e5fbt2/vau7JVqFpGgsLC1y5coXZ2VmOHDnC8ePHt0VsjeT66tWrlpprRVH46le/yvHjx/nLv/xL/vzP/5w/+IM/oKXlxeacvLvxDiDBu0qoX05S/Z7TVG+Grq4u/vN//s9885vf5NOf/jS/+7u/y6/8yq9w+vRp/sW/+BdcuXKFL33pSyat4E7g8/k4ceIES0tLDA4OMjU1RU9PD9XVe1+VLx6PMzIywtzcHH6/n/Pnzz9zqXUrCCGoqamhqqqK6elp+vv78fl89PT0PNM0j8fr5P0fPsx//+PbeH1OWlqqSEXiJBdWCTzQ+8hODi8g2ySUAgJnFfu30t6a9NMGgu50yCQzBWQ8o4IDUFTkuQVUYUMDDhzfuw4jV2Qn5/Ob06Luhh7RbrfT09OTt+G7cuUKTU1NHKwrPm1d6/bw4MGMqV2sLfEyG9QPZmYsZBCL4SiVXhfB6AZxmQlGEUJ/+6WMilpQKl6ymH2QMxslzfPrJRU0m5kM29MgLadJ1BqImaKheqybw7WYWUKUUTSccWuCVea2ntnprq/elQhdrpJmTj4xPj7+3MqWF5aqrqur2zUP7azPejPvf/MA3/iLJ+uJDtlnLTtl1ILkxLkpc8JyOGhOpItFzG4Sy/PZd7GuqYLM4gqBm1MISeAq9ZCI6fXxc0MLlO9ryUtLrIq+PA12u53Ozk5aWlrytonl5eV0dnZuKxjzrIhEIgwMDLC2tpYvSrYbbUaOXOes+H74h38Yt9vNL/zCLxCNRvnsZz/LzMwMv/qrv8qP/uiPviMqgL7r8bJFd1+maynAK1JtgBCCN998kzt37vCFL3yBT3ziEySTSQ4ePMjnP/95Tp48uSfHzJHQqakpHjx4QFlZGT09PXviU5tIJBgZGWF2dpa6uro9K1ggSRLNzc35ZMabN29SV1dHV1fXljviD//vJxi4OcrYw2kG1t0/ZJuEp8RJrKDqWSKWom1fHWOPNyKnmkUCk+lD1jST1MMINZXSa65zjdv0PEo0jigtAVnmzJv7t3RNz4pQKMTw8DCRSGRPy1S73W56e3tpbW1laGiI5akpbJIgYxF1laMaaYsItFVDGYomqCvzmTyua0rdOlKdUlRaqsuYXNzwIq+o8LBc4CCiWZFGRdNbsrHuN23x+KW0hibLSAkVtaBCYlN5KTPL5pkNCZhatC7uEl6IcaiuxlRJUiliGZhLUtwN5OQTNTU1+TL1ueqM25m1eBpUVWVycpKRkRFKS0u3VKp6O/jY332Tv/iLJ6iytO4lDp4yF2uJjXcnuLhGQ2sVM+Mb+vupkSVKK9yEgxuzi5OBBdw+B/G1DbI8PxWk90QzA3/1kFQ8u1xTNUprXCTGzUmnDY1lG6R6k/LkT4PdbqerqytPrm/dukVVVRWdnZ17ch+TySSBQIDZ2Vmam5s5evTonujwc+T6V3/1V/nc5z7H2bNnkSSJT37yk3z+85/fk2t7z0J9yaK7L2mi4itSbYHl5WX+r//r/+I3f/M3OXfuHFVVVfzX//pf+ZM/+RMOHz5MXd3eTPPnquLV19cTCAS4fv26roLhTpFIJBgbG2N6epqamprnVv3LbrfT3d1NU1NT3u6ttbWVtra2p/omNzRX4rbJqAUETsmoNPc2MHBnXLduMr1B0DQhDBUS12HkGpblyfX/tNlk0nqBLswvQzSOkCWEpmFz2xkIPCCl7h7pjUQiDA8PEwwGaWlp2bOO0YichGdlZYWWx7OMGCoDHvbX8mRwAYu6GSyGrK23asu8JlKdtPClrShx60i1r8rD8tQGqVZt6xHMnDxA01BtkumxbpYkLySBa1kh1rjx3GvKvZakurGylJlZC1KtacwtRvAkHcgOoZN7BCPW96DQTm+3UFimfnp6midPnjA6Okp3d/euuE8UlhW32WwcPnx4T2fR3G4HZ063c/X6CLmKexkLxVZ5tU9HqgEaWqsJBzekHKqi0dxRy+B6dURfqYv6Wg+pxWCeUOf3V17Kwrj5OcdXNt6Jzm1Eqo3IJQa3tLQwNjbGjRs3qK6uprOzc1cCKDkXoNHRUaqqqjh37tyeW9VFo1H+y3/5L1y7do0PfOADeL1evvzlL5NIJPj5n/95Ojo69vT47xloavbvZcHLdC0FeKWpNuD3f//3aW9v59atW/yP//E/+Iu/+Av+w3/4D9y9e5elpSWOHTvGb/zGb5BMWlfc2g3Y7Xb279/P2bNnicfj9PX1MT4+vm3tZDKZZGBggL6+PpLJJGfOnOHIkSPPPVnE7XZz+PBhTp06RTAYpK+vb0u+3e//6+aExUzafC+iwYIIoV22lnUYo9JWyYyGdUyrRGOwXppaWyfkNY2VHDlyhNnZ2bx2cbvGOrmE0Rs3buDxeLh48SJdXV3P3fGhsrKS8/v1JdcFEJ1PEE2kaaw0S3nmQmuW8gdhVdnSwstZMdyzyaVV7AVWaEIIna5aThfZdxF9dK7oi5Bl9leX55fH49bWeFVea0JSV+EjmkixuLDG4aoCkqnBasr6O+3cxUi1EblZoYsXL+L3+3nw4MGONbwrKyvcuHGDoaEhOjo6OHv27HORpf303/9r6yXLs/+Ox9I4nPrB98qieQBkZWOYawJ6ehtQl5YZ+PZjy6TwyLL1QGjswQTeEif+5kpKynYujcvB6XSyb9++vD3f9evXuX//Pmtr1hVLn4ZcrsWVK1eYn5/n2LFjHD16dE8Jtaqq/NEf/REnTpzg61//Ol/72tf42te+xh//8R/z4MEDVFXl4MGDvPXWW3t2Du8pvGgN9J7oql8+vKct9azw9ttvE4/HOX/+vOk3TdP48z//c372Z3+WRCLBr/7qr/Ld3/3de+6zuby8zMDAAJqm5fXWW4lApVIpxsbGmJyc3NOpxu0glzwzNDSELMt0d3cX7bATsRQf/45f05UOlmUJSVJJJ/VhrKb2GqYCC6heF2qFIfKTUZCMU07JNBREy2VJWCSZFdjrLa/C4spGb+10IDkcnP/+U3zm138QTdOYnZ1leHgYh8NBT0/Pli21CmU59fX1tLe374rGfSf4yyej/IP/9Of5f7d5XMyPZSPMh7v83JswO+Xsb6mhf1oviajxuVhc00emZUlgF5JOr15d6mE5qHcU6KqpZGRmQ0cr0grp0uxMgCOi6MvFAygakoKpoI9IqxTGtL0+B4kamXAsSamQWUuZQ6LHmvw8CJivsbe5hifrful2hyDVYCOaylBb4mWpCEH72lv/L6qKVGDcbaTTacbHx5mYmKCiooKurq4tf/tra2sMDQ0RDAZNZcWfF/7xp/+I+zfHsjMOmsa+rhqG7uvzKHxlTtZCG++U020nk8qgFIyCG9urcapphq9tuHt4K93ELKw2vTWlRC0s9/a/7zC1zZX8zK/89V24MmskEglGR0eZmZmhtraWjo6OLQc9wuEwAwMDxGKxvG56L7X1mqZx+/Ztfu7nfo6xsTH+2T/7Z/z4j/+45TsyNDTEyMgIH/jAB/bsfF525C31Gn8Km/QSWeqpSf7n9G+/stR72XH8+HFLQg3ZKNkHPvAB7t69y6c//Wn+1t/6W3zP93wPDx8+3HZUciuoqqri7NmztLS08OjRI5P9mRGFln/RaJTXXnuNY8eOvWMINWTvZV1dHefPn6ehoYEHDx5w584dy0iNy+Pgwod6dcsURaV1f71p3dKqbEek2S1IQJGCHIVwGm3c0pksodY0mF6A+SVdBDxnz3f0fFf+uhoaGvJ2dffu3ePtt9/eNAKVSqXyMwmZTIazZ89y8ODBF06oAQ4X2OpJQqCtbdzXSNj6mpwWkp7FtQRepz7SrqgazTXlumVL4RgVBgs+n1ffkeikHRYzFnJSMRFqgO52fUW96FqKTk8ZVT63JaEGCIatqxlmEhukLJ3SOFCWtXSrLRLZLvO4qPQ+v+eZ0/BevHgRj8fDjRs3uH///qaV8ZLJJP39/Vy/fj1v+9fe3v5Cksz+9mc/gJT7hoUgZeHaU+XXt2fJeDpfSdFb6uLAoTpmbg0QmdXLRKIrccpqzG1hQ5v1oF6JxXekp94KcgV/zp8/jyzL+Wqam1nWJRIJHj58yM2bN6moqODChQs0NjbuKaGenZ3lJ3/yJ/ngBz/IpUuXGBgY4GMf+1jRd6S7u/sVod4tvOio8qtI9ZbwilRvA3a7nU996lMMDQ1x+PBh3njjDf7e3/t7LC5aV+HaDeSmdy9cuEBJSQk3btygv7+fVGpj2jpXotpo+fdOHgVKkkRraysXLlzA6/Vy/fp1+vv7dfKadDrNvtMWOnbN/PrmsvutkhSFlXzG0AGlo4YIViaDlkpjn5mHUNgsKZEkQOPsXzuoW5yzq7tw4QJut9vyunLlnC9fvkwsFuP06dMvRJazGap9HhrLs+/PEX8tC0sbpGw1ai2ZWF2zJqLNBXKLHHwW9mgNVfr3NZnRlxlXC7XyFgRCKmL57nGY5TMDj+bYX2Pt7W2XBDNL1kmKsbj+IAP352kqL8UpW+cIdNZWvJDqeg6HIy8zsNlsXLt2jf7+fhIFenZjWfGzZ89u2/Zvt1BXX87+gxuD5smx5bw/fQ6SsKik6LZx8EgDmZl5Hv3P+yipDJLLfN/rWszP3GaVgwGM3Run65B5AL8XyFUyPHfuHJqmcfXqVfr7+3X2roqi5CttqqrK+fPn6erqemp+yk4Qj8f5/Oc/z7Fjx4jH49y/f5/Pf/7z7+i+5aXD+qzNy/P3om/o3uBVouIOUFlZyb/+1/+an/qpn+Izn/kMx44d4+d+7uf4qZ/6qT3rkHL2Z01NTQwODnL58mVaW1sBmJiYoLS0lOPHj1NRsXf6zb1ArvMvTGZsaWlBCMHExAQlNT7q2yqZHduQAYwPzuF020kWEJz5yRWq68uYE9blpk0wSAdSiTSisKpeIgkTS6RzkhAjMRKCytpSfKXWUUiHw8H+/ftpbm7OX1cukXFiYgKv1/uOf15HmuqYC0dYntRHpoPRFOXlLkIxvaxjcjGETdZZTAPgsigBHrMqnmIoJz21vKrPiZSzRVxUm0C1m5MUvT4nYc0c2UwkzIMAAUirKnabTNqQEVfnczEbtxggaBqhaNqwSKMiZSPpyJjXBzo2sSd8HnC5XBw8eJDW1tY8gW5sbMTtdjM2NmZZVvxF4+N/700+8xO/D2RnproO+Bm8tyEBmRhawOWxk4ilKa/yUloqMd8fYHkspNuP10JXLFkQ6JXZoOV5NHbW0N3btIMreXZ4PB56e3tpb2/PE+j6+np8Ph9jY2M4nc7n8rxUVeVP/uRP+Pmf/3kqKir4sz/7M973vve9o8uvv7R42aK7L9O1FOBVpHqHEEJw8OBBvva1r/EHf/AH/N7v/R6nT5/ma1/72p5KQnKNbl1dHSMjI4yNjdHS0sKJEyfe0QTtafB6vfT29tLQ0MDY2Bijo6M0NjZy8uRJvutvvKZbN51SaN1njiCV15VZ2+QZOgK7LMwkeZ3QaYkk2vgMzCxkva2tIEkIIXjtOw9a/264rsOHD9PU1MT4+DgjIyP4/f53xfM62lTHkbo6llbM0gGrZEVFg1YLp4uIRTLg5PKqyUEko6h4ChLTIvEU9VX66fpanwdbQrXs3F3lFgMcTWNmwTrqvLoU5YjfXGmvpkhxF3+Fj1jCPBgYHV7Oarkt0PmCSXUOufewu7ubmZkZBgcHKS8v59ixY+8oQg3Q0eOnojQr/ZEdNtOYWENj/5FGujoqCPWPMnZlmOWxEA6D33hw3iyVC86vmpbNjy9TWml24Pibn/s+5CJR7L1G7nkdPHiQhYUFBgYG8Hq9HD16dE+fl6Zp3L17lw996EN85jOf4XOf+xy3bt3iO77jO14R6hcFVX35/l5CvCLVuwQhBN/93d/N/fv3+Vt/62/xyU9+ku///u+nv79/18m1oiiMjY3lNdPHjx+np6eHqakpbt26RThsTR7e6ch54fb19REKhTh69CgHDx5kfn6eGzducORiC7Ihiml1a1fngkjTi5DO6Fc06GxThqp+mqaBELgjqxCYgLXi+lMAZBk0jb/+k+/fdLVc8uKVK1dYWlqit7eX3t5elpaWuH79OouLi3s6ANspjjTWMT9mJiFAtrqkBbSkOcI7ubSKZJTbKCqvtTdyotnPvsoKSjM2Bh7P015SzoGqSo63+DnQVENthV4SU+8vp3d/o+kYJW4nC0Gz1ttfWULUgtRLAmbmVxm9N0elT0/GQ0Hr76jEYT3B53XZYdFaEtNe+84YOIXDYW7fvs3IyAhdXV2cPHmSVCrFlStXGBsbe0eUPi/Emx8+DICqKDhsEvUtFRw40kBnWzn2cJj43AqDfU90Ze/rWvXa6OWZIKWGiotzo4t4LWaX6lv1g59jb+zn2KV9u3U5z4xc5cr+/n6am5t57bXXsNls9PX1MTAwoJP/7Rbm5ub423/7b/Pmm29y+vRpBgcH+cmf/Mk9lZe8whbwwuUarzTVW8Grr2SX4XA4+Jmf+Rl+9Ed/lH/8j/8xr7/+Oj/2Yz/GP/pH/4iqKmvt5lahKApTU1OMjY3hcrno7e2lqqoqHzmor69ndHSUmzdv4vf76erqwul852cLq6rK3NwcIyMjSJLEvn37dAUs6urqmJiYYGR0iK6jdQzcns1vOzY4j8NlI1VQcW1xcgWRTCGtxdBqK9HKfZBRzBGW9Y9aU1VYi6KtrkF4jWKpQZIsoRqSFH1lbmqarKOQmqaxuLhIIBAgk8nQ2dmJ3+/Pu8XU1tYyNTXFo0eP8Pl8dHd3P5cqa8+KztpKkglrWcOihbczgGxzAHpincootNVWMLYQxG6T6W2oYWoyxNDwAg1VJYxMbkh7BiYXqavwEY+lmVkM43U7ON/dzPxalMDsCsHVBGVes8SqsaqUwYg5t6G6zMuiRdn6hpoyZidCAHS7fKwU6MEjCWuCqRYhMv6qUiYGF+k6VcPwor7qX8cLJtXxeJzh4WEWFhZMnucVFRX5ap0TExO0t7fvWrXOneJvfPwS/+nf30RF8PAvH9F9sJ7+b2w4eSzPhEzblFaUAHrHFk+Fg7A+XxF/ezWBe/oS5YUthBCCv/m5793hFWwPmUyGsbExxsfHTZUry8vLCYfD+XyM5uZmWltbdyw5TCQS/Jt/82/4tV/7Nd73vvdx7949enp6duNyXmE38LIR0ZfpWgrwilTvEaqrq/mt3/otfvqnf5qf/dmf5ejRo3zuc5/jE5/4xDP7DauqytTUFKOjozidTg4ePGhpq2ez2fJFVoaGhujr66OtrY3W1tZ3ZJnYnLdqIBBA07Q86TReVy7pr6GhgdCUoiPV6WSG7sONDN2b2NjvusuH0EDMryBHY9iqS9GERCKaIJfwocUSuJIJEvPBbGeqqhi1CIUeyHanjWShB7EsceRCt+W1raysMDw8TDwep729naamJhNJKSz2MzY2xq1bt6itraWrq+sd4fyRgyxJHGqv4+aTKdNvK9E0Lo9MwuDOML8ax6o4TKXXRUWLn+nJEI/6N55jYHqFo11+7g1vkKH54BpOh40DHbU8HlngxsMJjnT6aS8poczlYnnVPJPgKhJFlotMWVf63MwSAmDw/hy1XS4WYmlKXA6Cq9Ze9Da7GyyGXj5nltR4DadVU+KhzLPzUt7bwVbKigsh8qXPFxYWCAQC+dLnVt/j84TTbae9vYqRsRX4/7N33uFR1enb/8xMeu+9J5MEAiQkIYWwKwor1rWtbbGhi2tdBaQqICBIEXvB10XRXdvqqqvsLsoPRZck9JpCJjPpvfc2mTnvH3GGTGYCSciEAOdzXbkgZ76nZWbOec7zvZ/7kUqxtDNMEtSWNWDnbENH8xldf5uJluWOzk5UYfigY2VjHITW9WuBfuXt0wiZYF7Xj4HoZrXy8/OxtbUlMTHR5IO2rnamublZH1wHBQURHBw8ovvLd999x7PPPou9vT1ffvkls2fPFmUe4w2xo+JFgRhUmxGJRMLkyZP5/vvv+e6771i8eDHbt29n48aNQ7poabVaKioqKCgowNLSkgkTJuDp6XnO9WxtbZkyZQqNjY3k5eVRXl6OXC7H29t7XFwo+2dw1Wo1YWFh+Pn5nTMzZm1tzU1/vIqd24/S3N8L2KhLomGAp2nrQl3fjGTg0N5euiWSM8tMBIEG2xnYBUYq5eY/X2mwqLm5GaVSSUtLCyEhIUPy+NV1nNQVM2ZkZBAQEEBYWNiYN3wZjAkB7iaDaq0gEOjuQn6VYRqwrasHfw8nyvtJKFxtLGiobMJSZkVTa6fRdk6oqpgU5s3p4hp6NX3V4U621oCElEmBtLX3UNfcjoVMRl1lC0ggyMuFkpom/XY6O01bf7S0mnYkEfp16pQAzt021KAmwM0ZRbMJNx9BoGKQtuXq7r4MdmFuLSHx7hTV9x1XqBk6KZ6LkbQV19lc6lqfK5VKfevzoVx3zMVtD0xny/M7wVJGfZWxDClA7oficIH+93JVNTJLGZp+D3qdLcbdOxuqjQsT68obcQ1wo72li7ufuW6UzmBo6K7XarWaqKioIV2vnZ2diY+Pp6mpySC4DgoKOue1QxAEsrKyWLp0KVlZWaxZs0aUeYxjBEGLcAl1IbyUzqU/4rdnDJBKpdx0001cc801vPHGG9x///2kpqayYcMGoqKM9XparZbKykoKCgqQyWRERkaOKCB2dXUlOTmZyspKFAoFJSUlREVFXTCJgSAI+gxuV1eXfpp5OFl0mYWMa2+P50S6CrWml9bWThpqG/EJcsHVxZ7u5jZUp0z4J/+ql+5/LEZDOGtMjbq7F4nFGe9cG1srwicHAn0NM5RKJfX19QQFBTFlypRhB8Q6SU9wcLDeZ1zXfONCTcV3d3dTWFgI7YPbReoytAPxcLLVB9UxAZ6UFNRT0dOBVNJBuK8TKhPtv3MKq5kWFUhbexcVta3U17dTX9+OtaUMO0tLmls7sbaU4evphJujHaXVTcSF+nC8sAoETAa8FjIp5SYK0wAqqwyzl5WlTcQm+SEb5O/t4+JAXY1pf+7aX/chAdzUFhT9utycnRQHYqqteH+J2FCQSqX4+fnh4+NDWVkZubm5FBYWEhERcd4StpEw/XcxWK/7Nz0WFtSUNWLnYkNHv6YvFgNmJ3p7NARN8KMkt0K/rKKgBitbS3r6PXTVFNf/Gnwb3ty9A9yYlBaJu4+LeU5oAJ2dnSgUCurr60fcbMfFxYWEhAQaGxtRqVSUlJQQHBxMUFCQySC5pqaGdevW8cknn/Dwww/z1VdfDblJlYiIyOCIQfUYYm1tzTPPPMN9993HypUrmT59Og899BDLly/H1dWVnp4eduzYgVwux8rKioiIiPOeftU1I/H29jaQGMjlcqNpYHPS2NiIUqmkvb2dkJAQva3cSIicHMAna/5psMwz0JGszHqQSpGa8nkeEFQjCMP/u/YfLpMyISGEjo4OCgoKqK6uxt/fnxkzZpy3jt3R0ZH4+Hjq6+tRKBSUlpaOymdhOOg0nSUlJbi5uXHL1b/h4wP/MNFtEjoGafGNtq9hTFyAN6dyK/V/Pq0AqsoWgtxtKanvyyBLgJhgb+obOziUVcqkcB+a+3Vg7FZriAzypLm1k261hqKKRvCDhvp23B3sSIsIpLKtjaIy4+xjoKczJaUNRsstZBKaWo0z27WKBlxCTD94ejrbmwyqLWRSWtrObEt5qhq/Kc5UNLeNmZ2eThfd3d1NeHj4eXfW08mT/P39KSkp4eTJkzg5ORERETGmD+YdHR1ERLuRfagDCRA0IYDTmUr9600mXF0cXAyvAVqNFv9wPwqzyvotE/CTe1CuqDEYa2kp4+ZHZo3uSZigt7eXwsJCSkpK8PHx0bcsPx9cXV1JTEykoaFBH1yfPn2au+++G2dnZ7q7u9m2bRubNm0iLS2No0ePMmHChFE6IxGzIgiXlmRC1FSLjBZeXl5s27aNRx55hIULFzJlyhSuuuoqMjMz0Wq1fPjhh6Smpo5qdlImk+lvtDq/5JCQEEJCQsyqt9Zp/pqbmwkKCmLq1KnnPb04MSUCGztrujrOaF49/byoUdWbtNITtFp958MzC4UBv579Cy4IguG2pTImzwomMzMTHx8fpk+fPuo6aF0nTZ3GsqSkBLlcbtaMkq4YtrCwEHt7ewMv3MgAD3JLjDPWZTXNSIGBk3mNrZ1McHcnq19A3Z+S+k58XW2wRKC7R0aOslr/WmVdi1HL+OyCarzdHaiu7wtqiyoaiYnwJldRDYXg5eGAva2VkcuHk53pQCXI25Xignqj5S2NnQSFme6uZyEx/Z309XCiqqVfK3XArqXvOILczNvJ1NxtxXU1DTo7yCNHjuDm5kZERAQODsYWdKNFfz341XdOIudYn95eGPAeVBbWYu9sR3vzGZ17j4kHPVtH4++ns6sj5ZwJqi1tLLhmfhq2DuYr8BYEgfLyclQqFXZ2dkybNm3Um6i4ubnh6upKeXk5zzzzDGvXrmXWrFkcP34ca2trPvnkE6699tpxIQcUGSLCJaapvkSD6gtf3n2ZIpFIiI2N5ZFHHsHOzo6vv/6a3t5e3nrrLaZPn2626X5bW1smT55MQkIC9fX1pKenU1FRMeqWbq2trRw/fpwjR47g6OjIjBkzCA8PHxW9nqW1JZN/YyibaW/ty2pKTAUTpvwwB57vgMx1n72e4ZD+gbmVrQWhcT4kJycTExNjtsLC/m3Pvby8htT2fCQIgkBFRQUZGRlUVFQwadIkEhMTDbxwJ4X6mFy3s6eXAHfDzKVMKsEBS3o7eo3ajuuwtpTh7uCMo60DtU2GhX/1zR1MDDPsoqkVBFwGZCDL6pqx/dXTuqaujWBX4wxqj4mmLwCONqYDJ083BwqOVeJoIhjv6DC9LRcThYh1xV242lhRpTxNQUHBqNvVjXVbcV3rc12x44EDB8jKyjprK+2RoNVqKSkpIT09ndbWVpKSkvjtrBS8fPve28qiOqN1/MINPysVBTVGY7rajXXVHf1mQyytLZi/9Q/0WLdx8OBB6uvrR/262NDQwP79+ykqKiI6OprExESzdSWUSCT4+/uzY8cOAgIC+Ne//kVdXR3z58/nqquuEgPqi40L7Skt+lQPCTGovgAIgsDXX39NXFwcixYt4tlnn6WhoYGnn36aBx54gLvuugulUnnuDZ0HLi4uTJs2Dblcjkql4uDBgzQ1NZ33dtvb2zl58iQHDx7E1taWtLQ05HL5qBfcTb3KsOFKubK6T1s5SKb6XJi6vxjedAwHhE0OJDY21qyZuv4Mpe35SBAEgZqaGjIzM/XexSkpKSbdZaaEmQ6qASOP50m+nqiK6yiqbASthFAfQ12xj6sDnvb25BRUoyxvwsXROCgtrmzC2tIwQMwtqiHY/8y2mlu7CA8707glX1lD7IDjrKw1rafuVZsOcj1d7OnuVBM5sLnGWYoUTV1IBUEg1sWLpISp1NXVsW/fPkpLS9Ge583kQrcVt7a2Jjo6munTpyORSMjMzCQ3N9eg9flI6P9ZLCsrIyYmhvj4eH2B5ZXXTUKQSmht7MB3QBBtZWN4felo6cQ71HC2oUJVY/Q9r1BWI5FKsLCUsWT7fGbf9htmzJiBt7c3p06d4vDhwzQ2mu60OBza29s5fvw4J06cwNfXl+nTp5u9cLyuro6FCxdyxRVXcMUVV1BZWclHH33Ejh07iIiI4J133jnv64fIGHKhPaVFn+ohIQbVF4Djx4/z+OOP8/DDD6NUKnnkkUdwcnJi2bJlnD59Gi8vL5KTk1m+fDnNzYM03RgFJBKJ/gLv6enJ0aNHOXnyJJ2mWjOfg87OTrKysti/fz+WlpakpaURFRVlNp/sqVfFGPze29NLQJSf6U6KQ/jyWtkODEgGrDMgvp59V+rQDnSU0bU9T0lJQa1Wk56ervfBHi4NDQ0cOnSI3NxcAgMDmT59Or6+voPe6CefJajuX+wVH+xLTt4ZKUdTaydlVc1M/jXTPTHQi9bmLn2Aqu7VEOjtYrTNlvYu5IEmCuOkUoN3J7ugCm/PMxKLvNwqfFz7gnx7KwtaOwbx2K4zne23+PUzpDxWgYfTmRbXPq6OdJpoqw7Q0Wo6OLHq7puKnzZtGhMmTKC0tJSMjAwqKyuHnQXVWWump6dTX19PfHw8sbGx2JuqIRgDbG1tiYmJITk5mZ6eHtLT01EoFCNqSKJrSpOTk0NQUBApKSlGjiO3zJuB06+dNV19XQzWb643fi/dvAzHdLV34xvmZbCsu7OHALkPT7/9AAmzJwF9D7AhISHMmDEDNzc3jh8/ztGjR0d0LVar1eTl5bF//36srKxIS0sjJCTErIXHPT09vPXWW8TGxur7Frz55pt4enpy0003cezYMV577TXeeustPv74Y7Mdh8joImi1l9zPpYhEGM+t3C5henp6Bs0sCYLAkSNHWLhwIadPn2bVqlXcd999Zrc66urqQqVSUVVVRVBQEKGhoefcZ1dXF4WFhVRUVODt7U1YWBh2dnZnXWe0eDxlNRWqM8FbZEII+VmVRuO0XV0GN2epVIJWbRhoWdta0dXeLzAStAZSEgGJ3vnD2t6aj5Vbx4X3d1NTEwqFgs7OTr1m/lw37NbWVvLz82lubj6rQ4Ap7lr3KeV1xtlaNydb6jo7mRzsTW5O1aAuKmmTgsk4WWy0XCaV4OZsR+0Aj2FrCykSqYSuHsOs8oQgT/IKz0zxRwR6oCqo0+/XycmKDhkEezmTX2CsA3eyt6G93vTDY4S3K4XFfVprebw/x6r79jMp0IvT/XTfBtvTSOk00SDnrhvjefCOFP3v/Z19dHKKc7lzCIJAXV0d+fn5aLVa5HK5QXOk8UJLSwtKpXJYn6uuri6USiXV1dVDuuZ88eZuPnv5e8Ji/FEdVumXS6QSrKxkBt/hqGlh5B0qMFh/YkoEOfvPzAJa2Vry9NvzSL1+6qD77Onpobi4mNLSUtzc3AgPDz+nPaFWq9Xrph0dHYmMjDznOueLIAj88MMPLF++HEEQeOmll7jhhhsG/ZxotVq0Wq1ooTfOaWlpwdnZmats78RCMjazUWNBr9DDj52f09zcbDYJ1IVAzFRfIM42VSuRSEhMTGTv3r288cYbvPTSS/zmN7/hl19+GXWNX39sbGyIiYlh2rRpNDU1kZ6eTnl5ucl9dnd3k5eXZzAFPWnSpDELqAHiZxlmq1ubhpZhl1oY32TUPQMykANvRP2awMz4ffy4CKjhjIwnOjqaoqIi9u/fP2jb846ODk6dOsXBgwdxcHAgLS2NsLCwYd1UB8tWN7R0EhviQ35e9aABdWyYD4dOleDhYpxZ1WgFvNyMpTTdvVr8PYzHN3V0YSmT6GchlKV1+HmdkZC0tPQQ7umKjaXpc/MbpHhQgkBlPy9k5fEKfH8dazXIw4qXq4PJgBogdECmXSqV4u/vr58VyMrK4siRI4NKr3QZ3OzsbAICAsZENjBSnJyc9NlzndyluLjYpJa8t7dXXzAtCALTp09HLpef87N40/yZ+AR7UKaqQdZPGiRoBfwjDCUh/Ru56PfbT/LjL/dh866lZw2ooe9aLZfL9dKrgwcPcvLkSdrbjZvMQJ/sYv/+/ZSUlBhJWMyBIAicPn2aW2+9lQcffJD58+dz6tQpbrzxxrN+TqRSqRhQX0xohUvvx0w0NDQwd+5cnJyccHFx4aGHHhpSHVJmZiZXXXUV9vb2ODk58dvf/nbYM/diUD2OkUql3HnnneTk5PCHP/yB22+/nblz51JQUHDulc8DJycnEhMTiY6OpqCggAMHDtDQ0HeDUqvV+m6NnZ2dJCUlMWXKlAsyBT1QAlJbbqx9lEolRjcW6YDfBUEw8qrtr/foH6AGRfnyxGv3jfCIzYOuacf06dMJCAggOzubI0eO6Keru7u7yc3NJTMzE6lUyvTp04mMjByRBncwXbW1pQyLdg12Vqa18zEhXpxSVNKr0eLjalqHnlNQja+HccairLYdJztrLC2k+LvaEOXrgqZVTZSPB5bdYKuW4CRIsRQsCXJzJMzLhUg/N6SdGiwE00HFYMG2j4cTXd1nAmRBK+Al6ZMwtQ1SpOjhPPiDZMggLexlMhnBwcGkpaXh4uLC0aNHOX78uP7C39nZyalTpzh06BDOzs6kpaVdUL/y4aCTu8TExFBRUUF6ejplZWX6zKhOwtLY2EhiYiKTJ08ecqGvlbUl89feQk+XmsAoX4PXbAbo+usrm3DxMvw81ZT0zUD89rYktny/lOAJ/kM+L2tra6KiokhLS8PCwoL9+/eTlZWlv+m2tbVx7NgxTp06hb+/P6mpqWZvmtPQ0MCSJUtIS0sjNDSUvLw8Fi1aNGb6epExRBBA0F5CP+YLqufOnUt2dja7d+9m586d/PLLLzz88MNnXSczM5NrrrmGq6++moMHD3Lo0CGeeOKJYV9zLxn5x/r16/n3v//N8ePHsbKyGlLRnSAIrF69mvfee4+mpibS0tJ45513kMvPtJ5uaGjgySef5LvvvkMqlXLbbbfx2muvjVmBWn/Kysp49tln+eKLL3j00UdZvHix2adNNBoNJSUlFBQUYGtrS1dXFy4uLoSHh1+wJjI6ujt7uC9yET1dv2aZLSyM3T+0GoQBUg+0GgPJtDCgPbkgCEhlUoPfJZaW2Npbsz1rE7b25rPbGg3UajVFRUUUFxdjZ2dHZ2cnHh4ehIeHn/fntqiqkXtf/IfR8rgQH3KyKnBztsPeyZqi6ib9axH+7pSUNdCrax8vAV9vF8prjDWqE0K8yC0ydG4I8XXFz9meYyfL6O3XAdHDxZq6hm6DzPjEcG9yFWdandvZW6F1kNHabqh5jvL1QFloLAuJCfPmdI6hhEgAPOI8aKhtN6mpjgvzJftUudFymUzKt3+dj6XFuWc1dE12ysrK9O+Zt7c34eHh46pl/XARBIHq6mpUKpU+Yy2VSs9bwvLS4x/RXNtC9v9O65cFRflSnGPY9TMqMZS8w4X63+2dbZm37g9cdWfqeQe7Oo/6qqoq7O3t6ejowN/fn7CwMLMHtWq1mvfff58XXniBuLg4tm7dSmxs7LicwYDL4/5sLnTyjyst/oCFZHx02B0NegU1P/V+Oeryj9zcXCZOnMihQ4dITEwEYNeuXVx33XWUlZXh5+dncr2UlBR+97vfsW7duvPa//hPewyRnp4ebr/9dh599NEhr7N582Zef/11tm3bxoEDB7C3t2fOnDkGVewjeeIxFwEBAezYsYOffvqJzMxM4uLi+Oijj0bdqmsgEokEqVSKWq1Gq9Xi4OAwpjKPwbC2tWJSWuSZBSZuKEKv8d9GOOe008Aixb5s9wv/WjjuA2roC1osLS2RyWSo1WoEQcDW1nZUikaDvV1wtjd06rC1sqC4sM/mrKG5g4ryJmJDfUAQCPB0prKqWR9QQ1+CwsHa9M0ht6iGoF+LFgO8nJng50GZqp7snEqjGYa6pm683AzPqbG10+Dd62jvIcTDxXAngkDlIB0WZSbEK7oOiYMVKfYM0ho90NdlSAE19NnV2draGrxnuvfwYkYikeDg4ICNjQ1qtZre3l6kUul5Z9znPfd7ugdIbspV1VjaGM5AyH79+1vZWnLrX+aw7dA6Zt01fVSCTxsbG5ycnJDJZPT09PQ9fEskZpXoCYLAnj17mD59Om+//TZ//etf2b17N3FxceM2oIbL4/5sdi54ZtkMP2YgMzMTFxcXfUANMHv2bKRSKQcOHDC5Tk1NDQcOHMDLy0svsbviiivYt2/fsPd/yWSqdezYsYOnn376nE/CgiDg5+fHokWLeOaZZ4C+RiXe3t7s2LGDu+66a8RPPGOBVqvl008/Zfny5Xh4eLBp0ya9xdVobV/XBMTGxoaIiAjc3Nxoa2sjLy+PtrY2wsPD8ff3v6BT0jv/349sf/bXzKmVldH5a7u7jcIkobfXYJxWo0Ei6Z+Z1iLtH8xIJDy85Y9c++DMUT760UVXBKdSqfQdOd3d3fXNQZqbm0el7fny93axL+tMseHUEB+ysyqMxk2J8qW4qpGmVtNWa6GB7hSUG+teJ4f7IPRoOD1Anx0W4ERBmWGRZFiAC4UlTQbLokM9yVOeyXYLQIDcvc/eD/B2daCustXkMYV4OFNqoitjdIQXjdZaivtl4HV4WtrQ1GTs1Xxlqpzlj/3O5H70x/ZrJlepVCKTyZDL5fr3TKlU0tjYSEhIyLCKSccL3d3dqFQqKisrCQgIICwsDKlUqr+u2NnZ6a8rI+Ff7+3lH1t20tnv8xUy0Y/CU6X63wOjfImZLuf2hdfh5j06M2u6wlGFQoFEIiEyMhIPDw9aW1tRqVQ0NDQQGBhISEjIqFqJ5ufns2LFCvbt28eKFSt4+umnzeauZC4ul/vzaKLLVM+U3HLJZar3Cl9TWlpqkKm2trY+r8/1hg0b+PDDD8nLyzNY7uXlxZo1a0w+2O3fv5/U1FTc3Nx46aWX9AnLt99+m6ysLIPZkXNxyWSqh0thYSFVVVXMnj1bv8zZ2Znk5GQyMzOBkT3xjBVSqZS5c+eSm5vLjTfeyC233ML9999PcbGxs8Jw6K95LC8vZ8KECSQlJekdChwdHUlISGDixIkUFxezf/9+6uuNu9KNFfpiRYmxdhow0m0JWu05HzwGvjr7nrRxHVDrArP9+/dTWFhIZGQkycnJeq9pXdvzKVOmUFlZSXp6+ogs3XRM6qertrexokBlLKMAENQCgQOzxP3Q9hrr6mJCvCjOr6GlsdPofWhuM9Y0F5U34+ZiOGvS2tljkK2WAEJHrz7T7elsWv8vk0oMihT7YymV4tRj/Llxsrem0URADYPrqXU0NDRw8OBBFAoFoaGhBv7gjo6OTJ06lalT+zyu09PTKSkpOW+P67FAo9FQUFCgL2JOTU0lKipKn3kPDg5mxowZeHh4cOLECY4ePUpLi2n/77Nx/QO/QR4farDMztEWNx9nfnfvDJZ9+Aib/ruEP2+6e9QC6tbWVo4ePUp2drbe+s/Do88P29HRkbi4OBISEmhtbWXfvn0jtrvsT1NTE8uWLSMlJQVfX1/y8vJYunTpRRdQD4eL/f5sDnqFbnq1l9CP0CfJCwwMxNnZWf/z4osvmjz/ZcuWIfn1Pj/Yz+nTp02uey5019U///nPzJs3j6lTp/LKK68QFRXF+++/P6xtXVypj1GkqqpPd+ntbVgx7u3trX+tqqoKLy9DX1MLCwvc3Nz0Yy409vb2rFmzhoceeojly5eTmJjIE088waJFi4alKxMEgaqqKlQqFRKJBLlcPqjLgEQiwcvLCw8PD0pLSzl58iQuLi5ERkaOecGib5gX3iEeVJcYZzxNBo0mA8mBrRN1vwtM+l0E1z39WzQazbicim9oaCA/P5+uri7CwsLOOnMwWm3P+xcrRvq4mcxS+3o4kptfjZOjDdaWMrpNNFoprmxkQqgXucW1WFtZEOXrTk5OX0vzsCA7KmsMA636pi7Cg9xRlZx5iNMKAn6+zjT0C2zLq5oJ9HWkrF82uqK8mUmxfpxUVSEb5KHKz9OZimLjzxFAR0s3RQW1+E31pKL+zHa9XR0pqjFdHR4SYMJjG8O24iEhIQQHBw/62XJ1dWXatGnU1taiVCopKSkhPDwcHx+fcTfdLwgClZWVKJVKrK2tmTp1Kq6uribHWlhYEBYWpm99fujQoWHr/i0sZaz+9DF61Rp6utR0d/agUWvw8Hcd9b9NT08PKpWKiooKAgICmDJlyqBZaGdnZ+Lj42lsbESpVFJaWkpISAiBgYHDuob09vby4YcfsnbtWiZOnMi+ffuIj48fd++7ObhU7s+jgZWVFT4+Puyr+s+FPpRRx8fHhxMnTmBjc0ZSONjD4qJFi3jggQfOur2wsDB8fHyoqTGsy+nt7aWhoQEfH9OF9r6+fUXPEycaNpWbMGECJSUl5zoNA8Z1UL1s2TI2bdp01jG5ublER0eP0RGNX4KCgvj73/9ORkYGCxcu5O9//zvPP/88d91111kv5LouZrpCIt0NeyjyAKlUSnBwML6+vqhUKvbv36+f5h3tDoqDIZFIiL8qhv9+aEL7NKD1uG5Zf+21YGoMEiQSeGTrvST+fjIKhYKysjIiIiLGTTDT3xNYJw8Yyg1b1/bc29ubkpISTpw4gYuLC3K5fMjBTFSgJ1YWMqytLFDmm/ZtdrGzpVpopamlk8nRvhwvMPYPh77GMEHezmjaesnNrdQ/3igKqrG2lNI9wJXFwoRGWVVch7WVjO5+XtZqrRYBw8elIkUNzs42tA7SqMXFwRrjx4M+qisbkQBeMmsqOBNUD+Z2AhAaaPiw0l8O4e/vT0xMzJAK2nQPsZ6envqgtaioiIiICJOdLy8EDQ0NKBQK1Go1crl8yN8TnV1dYGAghYWFHDhwAB8fH8LCwoZUoCmRSLC0ssDSygJ7p9Ev6NS1TC8sLMTV1ZWUlJQhJw5cXV1JTEykoaEBpVJJcXExoaGhBAQEnPX6KggCv/zyC0uXLqWtrY23336b2267bdw5v4j357HBxsaGwsLCETVVGu9YWVkZBNRnw9PTE09Pz3OOS01NpampiSNHjpCQkADAjz/+iFarJTk52eQ6ISEh+Pn5GUlGFAoF11577ZCOT8e4DqqH+mQyEnRPLNXV1fqnFN3vcXFx+jHDfeK5kEgkEtLS0sjMzORvf/sbK1as4P/9v//H5s2bSUpKMrjJ6XSBKpWKnp4eQkNDR6yPtrKyYsKECQQGBqJQKEhPT9dnocbiRhA/axL//Sjd+IWhTJULhqGXhaUMqUzK2n8tIjo5AoDk5GSD7G5kZOSgGThz09HRgVKppLa2lsDAQCZNmjQipwFd23N/f3+9baKvry/h4eHnnFa2spARHeSJTAPZNcZhaIivK3kFZ743p5U1uLvYUd9iLJNwsrPBWiMht9ZQx6zuFZgU5UNWnmEwriiswcPVnrp+TWI6utRMjvQl6/SZsVV1HQT5u1Ba3qRf1tnZS1SIB8pfiyqNGOTj4u3lRH1RXwZbdbQcz0lu1Db17V87SKtzOxtLvD36vIk1Go3ejUU3WzCSGZ3+D0RlZWVkZ2djb2+PXC7HZWBL9TGivb2d/Px8Ghoa9Hr9kczo2NjYMGHCBIKDgykoKCAjIwN/f39CQ0MviMxBEARqa2tRKBTIZDKmTJmCu7vpmYezIZFIcHd3x83NjdraWlQqlT64NtWoSaVS8eyzz7J3716WLl3KokWLhhx0jDXi/XnssLGxGbefg/HGhAkTuOaaa5g/fz7btm1DrVbzxBNPcNddd+l19uXl5cyaNYuPPvpIHxstXryY1atXExsbS1xcHB9++CGnT5/myy+/HNb+x3VQPdQnk5EQGhqKj48Pe/bs0X9JW1paOHDggF7IPpInnvGAVCrl/vvv59Zbb2Xjxo3ccMMN3HjjjaxduxZ/f3++/fZbvvrqK+bNm6fPnIyGtMHBwYH4+Hh9EU9ZWRlyudzs2bRJaZFIZbKBnh2mpR4DMtX905mC0NdAYvXXC3HzcdEP6R/MFBcXc+zYMdzd3ZHL5WPmgtLd3U1BQQEVFRX4+vqSlpY2KhdZXdvzwMBAfTOO4OBggoODz1oYNy0ygM/+ddj4BQGkA7yh1b0afFwcjYLqyCAPSpW1fcHnwLQyUF1nXEwoCODr5WQQVANU1bX+Kp7ud242Z7LIDrYWeDhaUqeqx8/HieIK42LEpkbT2mg3Z1t0ghNBKxBga6cPqgdbJyTADUEQ9F31bG1tzyqHGA46XbK/vz/FxcUcPXoUNzc3IiIixsxKrKenh4KCAsrLy/Hz8yMtLW1Ugl87OzsmTZpESEgISqWSffv2ERQUNOpFf2ejpaUFhUJBe3u7vhj7fK9f/WcbdBaDL730EpGRkTz88MN0dHSwefNmtm3bxh133EFubi7+/kP30L4QiPdnkfHKxx9/zBNPPMGsWbP0Vouvv/66/nW1Wk1eXh4dHWeu308//TRdXV0sWLCAhoYGYmNj2b17N+Hh4cPa9yXj/lFSUkJDQwPffvstW7Zs4X//+x+AwY0mOjqaF198kVtuuQWATZs2sXHjRj788ENCQ0NZuXIlJ0+eJCcnRx+wXHvttVRXV+ufeObNm0diYiKffPLJhTnREVBYWMiyZcv49ttvcXV1paWlhT/96U+sXr3abFkgXcFjQUEBTk5OREZGmu2Gr9Vq+b8v/sd7S79G03vm4zzQ+UMQBNBoBjh/9BUu2jpY89CLdzH73t+cc3+mXA3MdcPXeU6XlJTg4eFBRESEWXXrQ217XtfYzpYPfuJwdqnB8uhgTxSDFC4GB7tRUNmX8Y0M8qBEWad/v3y9HaioNe54JQ/1JH+An7S9rRXqXg09A7LEUaFeKFR9mSupRIK7qz1BHk50tHShUtXon7E8fOyoaDecSrWylCG09aI1cTmcHOVL7rEz52lhKQO5Ix3damjuNandvzIllCumOo9JW/H+Aa65va37yyGcnZ3N+r2GPscHpVJJS0uLXpdsLheU7u5ulEolVVVVQ2qZfj5otVreffddtmzZglqtRqPREBMTwyuvvMK0adPGhaRnNBHvzyKXC+M6Uz0cVq1axYcffqj/ferUvtazP/30EzNnzgQgLy9P32UOYMmSJbS3t/Pwww/T1NTEjBkz2LVrl0EG8FxPPBcD9fX1tLS0IJFI0Gg0ODk5ERsba9bMj1QqJSgoCF9fX728wM/Pj/Dw8FFrjNBfD27nL2PTD0/xxqOfUZxnukhFIsHIy9rGzpJrH7qS+9fdMeQbmbW1NRMnTiQwMJD8/Hz27dtHWFgYgYGBoyZ30Wg0lJaWUlhYqO9wORbNdnRtz2tqagyKGQfONni42rNxwfX855dc3vk8g85uNVIYVK8MoO3RggARge4U59eh1ZwJRp0d7U0G1aYe+ds7e4iJ9CG7X5MXTzcHXOysifZ3p6Wpk/q6Nppam/Cxs0GpNJwirqvqwCfYnqqGM8fq5+lEaatpF5v2ZsNCxF61hkgXZxp6eyhvMr2OBZ0EBMSMiQRKN9sQHByMSqUiIyODgIAAQkNDR/27lp+ff15yiOHi7OxMQkKCXpdcUlIyJF3ycNA1uCosLMTd3Z3U1FSzz0BJJBImT56Ml5cXpaWlSKVSOjo6jOQMlwri/VnkcuGSyVSLGJOdnc3KlSv5/vvvefzxx1myZAmurq7s2LGD5557jpCQEDZt2kRCQoLZMyPt7e0oFAqamprOOwAVBIH6+nqUSiXd3d1Grhcfb/yOf/2/n+hpaTc4L2sbC7rbu5FZSAmM8iXtlkSu//NsbO3PT0ahk7uMRlZSq9VSUVFBQUGBvojLzc3tgmSu+s82ODg4IJfLTQb2VXUtbPngJ3p7tOQozl51HyN3Jy+vHu2ABjxSiQRnV1sDFw8dXh4O1NQZBtx+3s40NLUTEehBZ3MXxQX1fYWEHvbU9gvOLSyk2NlZ09JiGBj7+DlT2tquV4tMCvMiN8f42CUSsNNg1GjE2s6S4JRATp0oM1oH4MUl15MwOXiwP4NZaW1t1XtcD0XKcy76z15ERETg5+d3QT6POp2zzqYuLCwMX1/f87qOVFdXk5+fj6WlJVFRUWNSK1FUVMRzzz3HDz/8wOLFi3nmmWeQSqVs27aNF198kbCwMNavX8+sWbPMfiwiIiKjixhUX8Ls2LGDI0eOsGLFCoNiD+jTp61fv5433niDW2+9lTVr1hiNMQf19fUoFAo0Gg2RkZF4enoO6wbd1NREfn4+7e3tZ7WpKjxVSsa3h+lq76aro4fujm5s7K1JuX4qU2dNGvWgQBcMq1Qq7OzsiIyMHFZmWZcJVCqVAISHhw9qaTjW9JegeHl5ERERYSQv0GoF3vjoF3b+lDPodqwtJbjbWFHd2IlgonPh5Gg/TiqMCx8nRfkaFCw62lsT5utKZ2MXhUWGmeJJMX5kZ5UbLcvKNt6uPM6fbFWfe0mAizWVVcbWeD5eTtQVmbbZm5wWyuHTxu3JAb58+0GcHC9sYZHO0q29vX1EhcOdnZ3k5+dTW1urt/4bDw1o+tt/SqVSwsPDh/0g29zcjEKhoKOjA7lcjq+vr9m/a62trWzdupU333yTW2+9lRdffJHAwECDMW1tbbzxxhu0trayYcMGsx6PiIjI6CMG1Zc5KpWKJUuW8MMPP7Bw4UL+8pe/mE2PqUMXgCqVShwcHIiKisLR0fGs6wzMvgUFBY1Z4dJw6O3t1Ts9DBaADkSXde/q6jqrjvlC09XVhVKppLq6msDAQEJDQw3eg47OHv783D/6igZNMCHADYWqjii5N6cLjKe57e2s6NEYa6VtrC3RVTJGBXlQkFtFV1cvE6N9yck1dAdxcrKhvbXLIBPu7GxL64BlAK7u9tRr1fT2avG2t6Wu3rD4EWBipA+K46az0WFBLuS2G2fW3Vzs+OyNB0yuM9boXH6USiW9vb2Eh4efM4Ds/xDl4+NDeHj4uHQeGDiro+sgerZz6/8ZDg4OJiQkxOwPChqNhk8//ZTnn3+e4OBgXn75ZVJSUsbFA7OIiMjoIgbVIgiCwN69e1mwYAGNjY288MIL3HLLLWYP7NRqNYWFhZSWlg5q59be3o5KpaK2tnbUdaLmpP/Ne7Cip4FFWCO1IxtrWltbUSgUtLS0GLU9P55bzuKN3xqtE+rnRsmvVnYBfi6UVjUZ6dsBJkX7ckphGChLJJA6KZjcrHLa+mm2bWws0fZqjQsW5d4oBshQoqN8OG1Cax8dH4CytJ7uJtNa8MmRPuSaCKolErBs68E9yZ+iAV0Y4ycFsHHp701u70Kha8yiUqmwsLAw6XGt1Wr1biWOjo7I5XKD9sHjFV39QVFR0aAWgzpbw6KioiE/7J4vgiBw4MABlixZQlVVFS+++CJz584dlw/MIiIio4MYVIvo6e3tZfv27axcuZKoqCg2bdpEbGys2TMqHR0d5OfnU19frw/S1Go1BQUFVFZW4uvrS1hY2LjMlp0L3TRzf3uuzs5O/YPCWNuFjSY6KU9vb6++MU5raysvvbebzJNnMtEWMgleDvZU9+uQGBbqiarE2C/ax9ORSp09HuDl7oCj1AJNt4byiiaj8ROifMg9bRgsR4R7ohpQnBgU5EaJia6b9o7W+IS6o8g1rQX3cbKirso4G+3paU+jsoHwlGBO1hhu97ZrY/nzH9NMbu9C018nb29vT0REBC4uLvq6AIDIyMhx01RmOPT29lJcXExxcTGurq56Z4mqqiry8/OxsbEhMjJyTDy9S0tLWblyJf/+979ZuHAhS5cuHTO7QxERkQuH+Mg8TBoaGpg7dy5OTk64uLjw0EMP0dZm7Fqgo6ioaNA+9V988YV+nKnXP/vss7E4JT0WFhb8+c9/RqFQkJSUxKxZs3j88cfN3vLVzs5Ob7heWVnJzz//zL59++jt7SUlJYWJEydelAE19LkXJCYmMnHiRIqKivj555/JzMzEwsKCtLQ05HL5RRlQw5m25+Hh4SgUCvbu3cvBgwe545oY/LzOZDgnhXobBNQAkkGe5atqW5GH9nnfTpb70l7ZRklhPeUVTfj5GmvUu7p7jZapCmpxdTF0bygpacDf38VobHtrNy42pm0lJRJobjCdwfZw65MrFR0pw8HOcOYkdJD25OMBnSvPjBkzcHNz4+jRo/z8889kZWURFBREamrqsOscxgsWFhaEh4czY8YM7OzsOHDgAHv37kWhUCCXy5k2bZrZA+r29nZeeOEF4uPjkUqlZGdns27dunEdUF/K9zQRkbFGDKqHydy5c8nOzmb37t3s3LmTX375hYcffnjQ8YGBgVRWVhr8rFmzBgcHB6P2lx988IHBuJtvvtnMZ2MaFxcXtm7dyokTJ2hsbGTq1Km8/PLLdHV1mW2farWahoYGurq6sLW1RSaT0d3djUZjumPdxURvby/Nzc309PToz62zsxO1Wn2hD+28UavVtLa20tvbi62tLRKJBHVPJ0/ck4pEAj7ujkaZZABVUR0B/Rrs9MfKQobc25XTx8ro6dd63NXV2J+7sKgOd3fDgEUQwD/A2MXBaUAba6lUwiS5D3n7i7C3M5YUeXs6ou4x/fnTiXQ0ag3h3ob7ChnQnnw80tvbq/8+29jYoNFoaG5uprt7cEvEiwWNRkN3d3ef/7ytLWq1msbGRrOem1ar5bPPPiM+Pp7du3eza9cuPv30U0JCQsy2z9HicriniYiMFaL8Yxjk5uYyceJEDh06RGJiIgC7du3iuuuuo6ysTN8C81xMnTqV+Ph4tm/frl8mkUj4+uuvx91FRxAE9uzZw4IFC2hvb2f9+vXceOONo+7HXFRUhIODg346un/Bn7e3NxERERddtlrnf1tUVISTkxMRERE4OzsbaMl9fHyIiIi4IK2YzweNRqOfandxcUEul+Pg4GDQiORAbjvFRW0Ulxl3LwSIlnuTO6BgMdDXhY66DixkUuobDAsHHRys6ejoMSo4nDTR2N3DzdWexsY2gw6LFhZSbGwsaWvrxsrKghAfFwpy+vTbUcnBnBygw/b3sqG6yHTGzs/FhpriPi21V5gbhfQ9IEkk8K/35v9aXDn+6C+R8PDwQC6XY2trq5ckVVdXX9D24OfDYNeM9vZ2CgoKqKmpMYt/9+HDh1m6dCklJSWsX7+e++6776KojYDL854mImJOxKB6GLz//vssWrSIxsYzQUJvby82NjZ88cUX+k5QZ+PIkSMkJiaSnp7O9OnT9ct1rbB1vsuPPPII8+bNGzfTsL29vbz77rusXr2aSZMmsWnTJiZNGrk1na4oqqCgAGtr60H9mHW2XnV1dXpbr/F+w+pvr2djY6N3JRhIfy25zongYjo3W1tbIiIicHMzzsy2t7eTnZvHlncO0dpuLNGAvgDU3dOB2l9dN6LCvCjNq6GnR9Nng5djbIMXKfdGkV9tsMzN1Z6GxnYG9qmPCPNANaC746QYP4pLGnC3saKs8Iwdn62DNV2OlnR1nZk9mBDmQX6WaemTbVcv6u4zWWyPtECKK5vw93Hmgy1zTa5zIREEQe+4Y2trO6i2uK2tDaVSSUNDw6h4XI8F/c/tbHaW/R2EgoKCCA4OPi/pVUVFBatWreKbb77hqaeeYvny5RdFYWd/Lud7moiIORjfV8txRlVVFV5eXgbLLCwscHNzG7LuePv27UyYMMHg4gOwdu1arrrqKuzs7Pjhhx947LHHaGtr4y9/+cuoHf/5YGFhweOPP87dd9/N2rVrmTlzJn/84x9ZuXKl0d/kbAz0mI2Ojj6rx6ytrS1TpkyhqamJvLw8ysvL9UVx4+3irGsmoVKpAM55bjotua65hu7cxsIzd7joGm/k5+cD5z43e3t7khLjuecP8M6HmYNsE7zdHKmtb2dKpC85x8v0gbGpokTdcQykobGdsBAPCgoNCx9lFoYPKFKpBASwFyQGATVAZ1s3vgF2FPULqrsGeRjw8nKkId9wX3a/ykTGo566vzf8ud43BwcH4uLi9H7wpaWl+g6G4/GBr7Gxkby8PNRqNVFRUWf1dnd0dGTq1Kk0NTWhVCr15zaY1/1gdHR08Prrr/PKK69wzTXXkJWVRVhY2Gid0phyOd/TRETMgRhUA8uWLWPTpk1nHZObm3ve++ns7OSTTz5h5cqVRq/1XzZ16lTa29vZsmXLuLsAubm58eqrr/LII4+waNEi4uLiWLp0KY888shZp4t1QZlSqUSj0QzJL7c/Li4uJCUl6Sv5S0tLx6yS/1wIgkBDQwP5+fn09PQQFhY2LK9pXWtwXXe3kpISIiMjTWaALwSNjY3k5+fT2dlp1L3yXNwwJ47v9yooKDbdzluhrCFO7kvWMUPbusbGDiLCPVEWGGaaVQW1ODna0NJqqO+3sja+lClVfWNdXexwtLGkVFHL6cwiwqO9qatqMRrfVNaOlb0FPT0apBIJVYME9m6u9jRgGFRXnKrGMsgeD1crBEEYFw9FbW1t5Ofn09TUZGR9eC5cXFxITEzUe1yXlJQM+ztrTkw5Bg01MHZxcTFofV5cXDykz7VWq+Wrr75i5cqVuLu7891333HFFVeMi7/HQMR7mojIhUEMqoFFixbxwAMPnHVMWFgYPj4+1NQYakB7e3tpaGjAx8fnnPv58ssv6ejo4L777jvn2OTkZNatW0d3d/e41DZGR0ezc+dOdu3axaJFi3j//fdZv3491113ndGNqX9zE13WaySabIlEgq+vL15eXhQVFXHkyBG8vLyQy+UXTG/d32t6JFkvHRKJBB8fHzw9PSktLeXEiRO4uLgQGRmJvb1xgd5Y0F8KoPPRHq4UQCaV8tAfp/Psi9+ZfH1CmBeSbq3pdWXGnxGtViAw0I3sAdKQgoJabG0t6ezsyzRbWVkQGeqBtRZOHio2GCsdJAjqbOshOsaXk4oqvL2cqC00/SBgaWL93i4NoV7OyIR2Dh48qJczXQh6enpQqVRUVFTg7+9PTEzMiDTEEokET09PPDw89LNLRUVFREREXDCHkN7eXgoLC/WNadLS0kZ0fZRIJLi7u+Pm5kZNTQ0qlUofXA98cBAEgePHj7NkyRJUKhXr1q3jwQcfHJeZex3iPU1E5MIgBtWAp6cnnp6e5xyXmppKU1MTR44cISEhAYAff/wRrVZLcnLyOdffvn07v//974e0r+PHj+Pq6jquLz4SiYRrr72W2bNn8/bbb/PII48wdepUNm3axIQJE/jxxx956623eOSRR5DL5aPW3EQmk+k9n5VKJenp6WPWHU1He3s7SqWSuro6goKCmDJlyqhY48lkMkJCQvDz80OlUrF//378/f0JCwsbs6Y3XV1dqFQqqqqq8Pf3Z8aMGee174TYIOKnBHL0ZKnBcm93a3KPleLibItUAgPqD1GqanFwsKatzdC1ob7euHiwR61hYrgXxSUNhAW4UZpXRd6hYvxNOHGo8qqxsZXR1WXs7FGpqMXSUoabsy21Rq/20dk6iAtOfQ/XzJqOVt3CiRMncHZ2Ri6Xn7Nb6GihK4wtLCzEzc2NlJSUUXkg0z3Ment7U1ZWRm5uLkVFRcjlclxdjV1WzIEgCJSXl+u7sCYlJY3K31UikeDt7Y2Xl5e+Oc6yZcv43e9+x9y5c6mpqeH555/nyy+/5PHHH+c///mPSb32eEO8p4mIXBjEQsVhcu2111JdXc22bdtQq9XMmzePxMREPvnkEwDKy8uZNWsWH330EUlJSfr1lEolkZGR/Oc//+Gaa64x2OZ3331HdXU1KSkp2NjYsHv3bp555hmeeeYZ1qxZM6bndz7U1dXx/PPP89577+Hh4UF9fT333Xcfa9asMeuNqLm5mby8PDo7O5HL5Wadou4fcPr5+REWFmbWm8TAKfyRZsKHQv/21J6enkRERGBnZ3fuFYdAQXEdjy/7HN3VxtPdge66djrb+zLLgcEuFJcbSzIGK1gMDHCltJ+riL29NRPDPMk5XExPl6EW2tPLidoBco+oSb7kDdLwJTI5GATIPWG6PbmTFjpaje3ZLK0t+OSHBVhYSOnp6aGwsJCysjK8vb0JDw83Wwc/XZ2CUqnE0tLS7NKh3t5eSkpKKC4uHpMHh/6a8MjISLNmyTUaDVu2bOGNN97A0tKStrY25syZw+bNm5HL5WbZ54VGvKeJiIweYqZ6mHz88cc88cQTzJo1C6lUym233cbrr7+uf12tVpOXl0dHh2EXtvfff5+AgACuvvpqo21aWlry1ltvsWDBAgRBICIigpdffpn58+eb/XxGk+bmZpqampBIJEilUr2rh7nbATs7OxtpkqOiokY1i9bfBs/T05PU1NRRCzjPhoODA1OnTqWhoQGFQkFpaSlyufysBVnDRavVUlpaSmFhIY6OjiQmJo76Q1BYsAezfhPN//1yGmsrC2x6oan9TFGguse0Z3dd3a+2eANO1dGxT+5jaSkjOsyL4uxKju9T4ebhQEOXYSbbxc3GKKhuqu/oq5Q08TesVtVh72E6w+vmbk9LgXFnRoCQcE8sLPokK1ZWVkRFRREUFIRKpSIjI4PAwEBCQkJGdcahsbERhUJBd3f3mBW5WlhYEBYWRkBAAIWFhRw8eBAvLy/Cw8NH9TvR3t6OQqEYkSZ8pEgkEqKjo3FycqKrqwsLCwtaWlqor6+/ZINq8Z4mIjJ6iJlqkfOmoqKCtWvXsmPHDv74xz+yevVqgoKC2LlzJ8888wwSiYQXX3yRq6++2uw3fJ1/clFREe7u7kRGRp5XUN/fa9rZ2ZmIiIgLZpslCAKVlZUolcpRabms255KpcLCwgK5XI67u7vZ3qPaulYeWvAxEf5u5GdVGr3u5uVAXYNxS/CgIDdKSg0DWXt7K0L93aguqKOp/oyf9cQpAeScNMwwOzpZ0drUY7zdMA9KTBRQhoZ5YmlvSa6i2ui1SLk3BYdLTJ7f734fy2NLrzH5WmtrK/n5+TQ3N+v16ecz49C/UO9CW012dnZSUFCglwudr8e1Wq2moKBA75McHh5udumTIAicOnWKJUuWkJuby9q1a5k/fz5tbW289NJLvPrqq8yaNYsXXniByZMnm/VYRERELl7Ejooi582pU6doaGjg+PHjvP/++wQHByORSLjxxhs5deoU8+fP58EHH+TWW2/l9OnTZj0WmUxGWFgYaWlpWFhYkJGRQX5+Pr29pu3RBkOXvd23bx81NTXExsYSHx9/QX1odb6vaWlpuLu7c/ToUU6ePGmUQToXgiBQV1fH/v37UalUREREkJKSgoeHh1kfejw9HLn35kSTATWAr5fp7LiDvWGAFuDvgqe1FdrWboOAGqC50fhv0drSQ0CIsRzC3t448LOzs6KpvJGO6laTx2JtonhSR6h8cGtJR0dH4uPjmTJlCtXV1aSnp1NeXm7SIvBs6LKGmZmZWFpakpaWRlhY2AUtmrO1tSUmJobk5GS6urpIT09HqVQOu2OoVqulpKSE9PR02traSE5OZsKECWYPqKurq3niiSe48sorSUhIQKFQ8Oijj2JhYYGLiwsvvPACKpWK0NBQdu/ebdZjERERubgRM9UiY0JNTQ2rVq3iww8/5MEHH2T58uVj4o7Q0tKin7rUFTeeLXDUeU0rlUqkUukFdTo4F/313YGBgYSGhp6zWFLnVtLa2npB/Iebmzt46MEP6O42fsixs7OiRxDoURsWEFpaSpHK+iRFEf5unD5aAgJETvRFkWMcoDs6W9LabBjQTZwcQM4AjbSNrSVaiUBPvyYuUeGe5B/rK6j0TwyiaEAmOzLQnYIsY403wIvb5hI9OeAsZ9/HwM+YXC4/5wON7iGvoKAAZ2dnIiMjcXBwGHT8hUTnA93W1kZISMiQ6gDq6upQKBQIgkBkZKTZH/AAuru7eeedd9i0aRO//e1v2bJlC9HR0Wbdp4iIyKWNGFSLjBm6KdYFCxZw/PhxnnvuOR588MFRcc04135ramrIz89HJpMRFRVlFNALgqC3/uvp6dF78ppbwzkatLa2olAoaG1t1WtdBx53R0cHSqWS2tpagoKCCAkJMfvffTC2b/8f33x91ORrE2L8yM4zLiAMC7SjvqSdjtYzMg4rawskYBSgT5jkS+6AbLijkw1tLV0IA9z7oif7c/rXQsjoCb4oDhTqXwtPCOJ0iWFQ7SaT0WJCogLwyQ9PY2si+z0YWq2WsrIyCgoKsLe3Ry6XG8l5Bn52dQH4eGeo36e2tjYUCgXNzc2Eh4eP2G5zOGi1Wv7zn/+wYsUKrK2tefnll8dEmiYiInLpIwbVImOOVqvlX//6F0uWLMHKyoqNGzdy1VVXmf2mppteLiwsxNXVFblcjr29/Ygya+MNnaQjPz8fQRCQy+V4enrq9anl5eX4+PgQHh5+wTy9dTQ0tPOnhz5ArTa2tPP3d6G0qllfQGhvZ0WQpxM9LV2m9c8R7hQqDZd7+zpTXdlsNDYswosChaEnb3CYB8XF9bi529Nd00Zn+xlXD4lUgoPck4aGPomJs7Mt7SVNJs/JN8CVtz9/+OwnPgi9vb161xV3d3ciIiKwt7enubkZhUKhn2UZTkOh8cLADqq6mZ/+n0t/f3/Cw8PH5OE6JyeHpUuXcuLECZ5//nkeeeSRC/ZwKSIiculxcV2hLxMaGhqYO3cuTk5OuLi48NBDD9HWZuzN25+ZM2cikUgMfh555BGDMSUlJVx//fXY2dnh5eXF4sWLh601Hg2kUim33HILWVlZ3Hfffdxzzz3ccccdKBQKs+83JCSEtLQ0rKysyMzMZN++fRw5cgQXFxfS0tIICQm56AJqONOoIyUlhaCgILKzs9m3bx//+9//6OrqIjk5mZiYmAseUAO4udkzZ84kk6+VlzcR9Ku3dHiIB7bdWpQnyiktqsfF1dhZorPT2DO6urIZH38Xo+Wmui4WF9Th5e2Ms7WFQUANIGgF/D3OWMV5egxuGxdyFj31ubCwsCAiIsLoc3n48GFcXV1JS0sbkwyuOdB5XE+fPp3AwEBycnLYt28f+/bto7Ozk5SUFKKjo80e2NbW1vL000/z29/+lpiYGBQKBU8++eS4D6gv9XuBiMilxsV3lb4MmDt3LtnZ2ezevZudO3fyyy+/8PDD586CzZ8/n8rKSv3P5s2b9a9pNBquv/56enp6yMjI4MMPP2THjh2sWrXKnKdyVqytrVm6dCl5eXn4+fmRmprKsmXLaGpqMut+NRqNvkBMq9Xq7f8uxmB6MKRSKYIgIAgCFhYWY9YUZ6jceluC3n5uII52VkyW+1B8vJzmXwsRBQH8A4w1+DWVHdjYGJ+bu7ux3rhQVYulleF7bGEpI9jfmeLTxk4fAMUny7Gy6tu+rdXgf8PQiJEH1TpkMhkWFhZIJJJhFzCOdyQSCTY2NlhYWKDVavWfTY3GeLZiNOnp6eGNN94gLi6OsrIyDh8+zOuvv467u7tZ9ztaXC73AhGRSwVR/jHOyM3NZeLEiRw6dIjExEQAdu3axXXXXae3mDLFzJkziYuL49VXXzX5+n//+19uuOEGKioq8Pb2BmDbtm0sXbqU2traMevWNxiCIHDs2DEWLFhATk4Oq1at4v777x/VYLB/Qw6dr66tra2+SEoikeiLpC42dNpbpVIJoJd/dHV1oVQqqampGfOuk+fizTf38P2uLINl9vbW+LrYU1XaQGeHYbGhh5c9dXWGbh8AvoH2VJa2DxjrSF2NsYNH1ARf8rL79NbyKG+aSuqhV0t9Y4dJz2qAyBnhZOdVER3sifKk6YYwKzbfxrS0iMFP9ixotVrKy8tRqVQ4ODgQGRmJk5MTTU1N5Ofn097ePqhW/mKgv+ZfVyysk7zofN9Hs9EQ9H0fdu3axYoVK5BIJGzdupXrrrvuotJNX673AhGRi5mL7wp9iZOZmYmLi4v+Igowe/ZspFIpBw4cOOu6H3/8MR4eHkyaNInly5cbWK1lZmYyefJk/UUUYM6cObS0tJCdnT36JzJMJBIJ8fHx/PTTT7z99tu88sorzJgxg59//vm8s3a9vb0UFBSQnp5Oe3s7SUlJTJ48GTs7O71sIjU1FX9/f06dOsWxY8dobzcO3sYrjY2NHDp0iNOnTxMcHExqaipeXl5IJBJsbW2ZPHkyiYmJNDY2kp6eTllZGVqt9twbNjN/+EMiUumZIMfNzR4nmYzCvGpCwo0zv3U17Xh6G0swbG2MG7XU1bQSEGSc2dZotXj7OBEe6ErBgQIaKptpqG0lMGzwNsuNJX0e2fVVxjptHSPJVAuCQG1tLfv376ekpISJEyeSkJCgt23UXQdiYmIoKysjIyODysrKiyaL3dPTQ05ODgcPHsTR0ZG0tDQCAwORSqVYWVkRGRlJWloaMpmMzMxMcnNz6e427lQ5HARBIDc3l1tuuYX58+fzyCOPcPLkSa6//vqLKqCGy/deICJyMTM+UlYieqqqqvDyMrxBW1hY4ObmRlWV6bbKAH/84x8JDg7Gz8+PkydP6mUVX331lX67/S+igP73s213rJFKpdx+++3ceOONbN26lTvvvJOZM2eyfv16wsPDh7UtnbtCYWEhtra2xMbGDmrjJ5VKCQ4OxtfXl4KCAvbv34+/vz9hYWHjNnOja2He2Nh4zgYgzs7OJCYm6p0kdJ0ZL2RW3sfHmSuvimbP/+Xi5+dCZ107Nb86a7S3GmulAby8nakd4CFdpKrF3sGG9jbDdRydDPXjdvbW2Egk1FY0UdfSaTjWcXDXjtqSRibMCEdxsHhgY0cAHJxscPcaXpvuoTi2wBmtvIeHBxUVFeTn51NcXKxv1DMe0RUEFxQU4ObmdtbuozY2NsTExBASEoJSqWTfvn0jdqepr69nw4YN7NixgwceeICPP/4YT8/BH5bGO5f7vUBE5GJEDKrHiGXLlrFp06azjsnNzR3x9vvr7CZPnoyvry+zZs1CpVINOxgdD9jY2PDss8/ywAMP8Nxzz5GcnMwjjzzCkiVLztmAZaDjwIQJE4bsNW1lZUV0dDQBAQEoFArS09PHzOprqPT3pw4ICCAmJmZIgb9EIsHb2xtPT09KS0s5derUBfc8vuP2aRQV1FGlrKWrn9yjpKgeJxcrWgZ0QqypaDZqW67VCgSFupN7qtxgbHFRLQBSqYToaB9KT5aRW1JPVGwgeQNkHBWFdUgQEEyGzWDZqR7kFQiVD71l/EBv8SlTpgwpeJRIJPj7++Pj40NpaSknT5684B0+BzLQ/i8uLm7IXvT29vbExsbS3NxMfn4++/btIzQ0dEhOPGq1mr/+9a+sX7+e+Ph4Dhw4wOTJk8dtZlq8F4iIXLqIQfUYsWjRIh544IGzjgkLC8PHx4eaGkPbr97eXhoaGvDx8Rny/pKTkwFQKpWEh4fj4+PDwYMHDcZUV/cVZw1nu2ONv78/77//Po8++igLFy4kLi6O1atXc8899xjdbHW2ckqlkt7eXr037khurg4ODsTHx+v11qWlpWPWlGIw1Go1hYWFlJaW4uXlxfTp00fUgl2Xlffz86OgoIADBw7g6+tLeHj4ebWXHgl+/q74uTlQ1GHcUCUw2IvsJsPgt7amlYAQN8pKDNuWd3YYtyHvaFMTEupIU0kzef/L1y83JX1pbmgnZIIfhcoao9cAumuacHSyobXFOIMeEnHubKhGo6GoqIji4mI8PDzOmr09GzKZjJCQEPz9/SksLOTQoUN4eXkRERExos/CaNG/yVJERAR+fn4j+p44OzuTkJBAQ0MD+fn5lJSUEBYWZtJOUBAE9uzZw7Jly+jt7eWDDz7gxhtvHDcPv4Mh3gtERC5dxKB6jPD09BzSVGRqaipNTU0cOXKEhIQEAH788Ue0Wq3+4jgUjh8/DoCvr69+u+vXr6empkY/pbh7926cnJyYOHHiMM9mbJFIJCQlJfHLL7/w+eefs2zZMt599102b95MWloaEomE3bt3U1hYSGRk5Kh2CvTw8MDNzY3y8nKys7NxdHQkKipqTDO7Go2G0tJSCgsLcXJyYtq0aaOSnbS0tCQqKorAwEDy8/NJT08/p4zEHFx9QwwZe43tFMtLG02Od3a2owzDoLq4oBYnZ1tamvtkHX7+LtgKAnaCjNIaw2YtJfk1WFhK6VUbBtc2tqYvh8HhnhQcymfCrMnkZBt3cAyVe5tYqw9BEKisrESpVGJjY0N8fLxRg5eRYGlpSWRkJIGBgahUKjIyMggICCA0NHRM5Urd3d0olUqqqqoICgpi6tSp510IK5FIcHd3x83NTd95Mj09nY6ODu6//36kUikKhYIVK1aQkZHBs88+y1/+8pcxfyAcKeK9QETk0kV0/xiHXHvttVRXV7Nt2zbUajXz5s0jMTGRTz75BIDy8nJmzZrFRx99RFJSEiqVik8++YTrrrsOd3d3Tp48yYIFCwgICODnn38G+gKzuLg4/Pz82Lx5M1VVVdx777386U9/YsOGDRfydIdNe3s7L730Elu2bCEpKYnW1lays7NZtGgRixcvNpu7ha5hha7yPjw83KwBjC4gU6lUWFpaml1H29jYiEKhoLu7m4iIiBFn+YdKd3c3BQUFVFRU8M3fCiktajIaEyb3oiDfMFvn7GJHc4txV8OJU/ypKG3E190excFCEMDDx5k6EwWGoRN8KBxgo2fvZEN7d69R18XQACeKTpYQGBNAcb1xpvrlHfMINeFT3dDQgEKhQK1WI5fL8fYeukxkuLS2tqJUKmlqaiIkJISgoCCzPhhpNBqKi4spKirCw8MDuVxutky5Vqvliy++4JlnnsHNzY2oqCj27NnDvffey7p164z0wZcS4r1AROTiQgyqxyENDQ088cQTfPfdd0ilUm677TZef/11fXa0qKiI0NBQfvrpJ2bOnElpaSn33HMPWVlZtLe3ExgYyC233MJzzz1nkNEsLi7m0UcfZe/evdjb23P//fezcePGcWOxNhyKi4tZtGgR33zzDdDny/r888/j6Di8grGR0N7eri8QDA0NJSgoaFSnnAfKWCIiIvDx8RkT2YlOj65UKvXZ0KHqYodKfymEroPgsQOlvLR2p9HYqBg/8rKNpSGhci8KVWeCbRtbS2Kifcnep0DdZdjEwjvAheqyJoNlPiFOVBUbW+6FTfJHlXcm2A4K86DksBIJfVJu10khNNSdab5hYSHlk/9biKXlmQC2vb0dhUJBU1PTkHXBo4VONtHV1WWWLoyCIFBdXU1+fr7ewcPV1XXUtj8Yvb29vPPOO6xZswa1Wk1CQgJvvvmmgTPGpYh4LxARubgQg2qRi4ra2lrWr1/Pu+++y+23387zzz9PdXU1CxcupLi4mOeff5677757TIKY+vp6FAoFGo2GyMjIIRdDng1doVZbW9sF9SbWaDT6lu5ubm76lu7ng1arpaKiApVKha2tLXK5XB+QaXq1/PmP7xl5S1taybCwkBp5Vk+Y7E9udjkyCynRkd6Uniqjo7kTeydb2poNnT0mJgSTc6TYYJm9ozXtbd0woPwwKi6Q0/0kHmFBzhQeP7PuhFmTyM4+45AQKvfi5R3zgD4LOZVKRUVFxQV1julfMNi/NfhofDbz8vLo6uoak5kM6DuXn3/+maVLl9LR0cHmzZuZOXMmW7Zs4fXXX+eGG27ghRdeIDIy0qzHISIiIjIUxKBa5KJi2rRp+Pj4sH79eqZMmaJfrtVq+fjjj1m+fDk+Pj5s3ryZ5OTkMbnp6xp32Nvb6xt3DJf29naUSiV1dXUEBwcTHBw8Llooj0agqMu85+fno9Vqkcvleh/t/nz92UE+3PaL0foTJvsbOXvY2VsTFOJKvaqWhsoz8o7ouEBOHy81GBsY7kmpqtZouyFRPhQpDCUgNnZW9Ah9QX5gqDulR1QGYbdPuDcV7We6AF557SQeX36NXvPu4uJCZGTkeT+AjAa6pjIFBQXY2toSGRk5Ij13V1cX+fn51NTUEBISQkhIyJg8tKpUKlasWMHPP//M8uXLWbBgATY2Z2wSy8vLWbt2LV9++SXFxcUXzMFGRERERIcYVItcVDQ1NZ01MGhra2Pz5s28/PLLXHfddaxdu5agoCCzH1dvby+FhYWUlJTg4+NDRETEkAqn+uuKfX19CQsLMwgcxgs6T2ydpGGokpeWlhYUCsWQMu9trV386fZ36eoyzEoHhXpQUlin/z1C7kVXXQt2tlaoBkhD5JP8yc8yDMAlEnBwtqW1yTCDPSE+iNxjhgE4QMhEHwrz6wgPdqHgWJHR694JEVSWNwHwh3nTCIqyNJtUZjTo7e2luLiY4uJi3NzciIiIGFIAqpPpFBUV4eXlhVwuH5PPZnNzM5s2beL//b//x913380LL7ygL7IzxbmuCSIiIiJjhRhUi1ySFBcXs2zZMr799lueeuopFixYMCbZw46ODvLz86mvr9cHn6ayev0DHZ2ueDxkN89Ff8nLYBlngM7OTn179OE08/h/r+3hP18fM1ru5e2ErZ0l0s4eSnL75BnRU4M4fazEYJy1jSUajcbI2cNUBtvV05HG2laj9uQ+IU709EJ9boVJb+oJV8aQnduX4f7DnyZy5ZyEMZFCnC/d3d0UFhZSXl5+1ge4gY4lUVFRODs7m/34ent7+dvf/sbatWuJiori5ZdfJiEhYdz/XUVERER0iEG1yCWLIAikp6ezYMECqqqqWLNmDXfccceYaJQbGxvJy8szcn7oPyVvZ2eHXC6/6LJsgiBQUVGBUqk0khX099L29vYmPDx8WK4QlWWNPHbvdvpflQKD3PB2t+Poj6cNglxHF+PsM0B4jJ9RBjtikh/KLOOCR/9QD8qL6g2WWVlb4OVlQ1mO6e5yDh4OtFj0BaMf7HwcF9eLS3bQ3t6OSqWitrbW6IGnqamJvLw8enp6xqxAVhAE9u3bx5IlS/RZ6ttvv33c+02LiIiIDES8al3GNDQ0MHfuXJycnHBxceGhhx6ira3trOOffPJJoqKisLW1JSgoiL/85S80NxtalkkkEqOfzz77zNynY4REImHGjBns37+ftWvX8txzzzF79mwOHTqEuZ8lXV1dSU5OJjw8nLy8PA4dOkRBQQEZGRmUlpYyYcIEEhMTL7qAGs5090tLS8Pd3Z0jR45w4sQJvZ9wa2sr06ZNY9KkScO2WfMNcGXa9L6ub0HB7oQHuVJ+qoyyvGqjrHFrUydBEcZWdpZWxg4Gxfk1WFoZzxg4uxnODsgspISGuGI9aP9EaKtrIzDEDU9vp4suoIa+7oVTpkwhMTGR5uZm0tPTUSqVnDhxgqNHj+Lp6cn06dPHJPteWFjIPffcwx/+8Af+8Ic/kJOTw5133jmuA+pL/bopIiIycsbvlUvE7MydO5fs7Gx2797Nzp07+eWXXwxa3A6koqKCiooKXnrpJbKystixYwe7du3ioYceMhr7wQcfUFlZqf+5+eabzXgmZ0cmkzFv3jxOnz7NVVddxXXXXcf8+fOpqDDOXI4mEokEPz8/Jk6cSGdnJyqVCisrK6ZOnTqobOJiwsLCgrCwMCIjI6mvr6ewsBBXV1cmT558Xs1pfv+HBMIDXCg7WUrRqXIkQG1lM74hxh7dDs7G8oXK4nqjZeruXoJMNGmpr27R/9/e0QZ/DxtO/5JjYJFnCkdrGSEmAvqLCWdnZ2JjY3Fzc6OwsJD6+noiIiIIDQ01eyFia2srq1atYtq0aTg6OpKbm8vKlStH1GVyrLlcrpsiIiLDR5R/XKbk5uYyceJEDh06pPd63bVrF9ddd52+uclQ+OKLL7jnnntob2/Xe5xKJBK+/vrrcXtDKCgoYOnSpezatYsFCxbwl7/8xSw389bWVvLz82lubiYkJARPT08KCwupra0lODh4zFwUzEX/ZjHh4eE4ODigVCppbW0lPDwcf3//EWUcBUHgL7e8TcWA4HhifBA5h4sMlnn4OFFX1cJAAkI9KOtX3AgQHRfE6eMlRmM9/VyQAJqGJupK+tbx8HelvtG40YsOW2cbrn/0au6e/5shntX4or+Ex87OjsjISL0sxMLCQt9oaLQf/DQaDR9//DFr1qwhNDSUV155haSkpIvmAfNyvm6KiIicGzFTfZmSmZmJi4uLQfOE2bNnI5VKOXDgwJC309zcjJOTk1HTgMcffxwPDw+SkpJ4//33zS63GA5hYWH84x//4LvvvmPnzp0kJCTw5ZdfotVqz73yEOjs7CQrK4uDBw9ib29PWloaoaGhODg4MHnyZOLj46mvryc9PZ3Kyspx9bcZCu3t7Rw/fpxjx47h6elJWloa/v7+ODs7Ex8fT0xMDCUlJWRmZlJbWzvs85NIJMy6ZarR8trKZqNldVUt+AQaO24MlHUAlBcZ2+oBBIa40VJQrg+oAerKG7F3Gdy9pbO5C63QSENDw6BjxisNDQ0cOHCAwsJCoqOjSUxMxNnZGT8/P73s49SpUxw9epSWFuMHlpEgCAIZGRnMnDmTDRs28NJLL7Fv374xsb0cTS7n66aIiMi5EdsnXaZUVVXh5WU4fW1hYYGbmxtVVaYLtAZSV1fHunXrjKY+165dy1VXXYWdnR0//PADjz32GG1tbfzlL38ZteM/XyQSCTNnzuTQoUO8//77LFmyhHfffZfNmzcTFxc3oht9T08PRUVF+iK96dOnm9QUu7i4MG3aNKqqqsjPz6ekpISoqKhxr6/ub//n5+fHjBkzjDyrJRIJnp6euLu7U15eTnZ2Ng4ODsP2777yxlg+ffNHenvPPOjUVjbjF+xulMF283KkqtQwuK2vMe6W2NrUaeBZbWVtQXi4O3V5pXS2GBc8BgR7ktdUZvL4bB2smfbbCRw/fhxXV1fkcvm490keijONTCYjJCQEf39/ioqKOHToEJ6enkRERIx4NqekpISVK1fy3//+l0WLFrFkyZKLwunGFJf7dVNEROTsiJnqS4xly5aZLHjp/3P69Onz3k9LSwvXX389EydO5Pnnnzd4beXKlaSlpTF16lSWLl3KkiVL2LJly3nv0xzIZDLmz59PXl4eaWlp/O53v+PRRx8d8g0S+qa0CwsLSU9Pp62tjaSkpHMW6UkkEnx9fUlLS8PDw4OjR49y8uRJOjuNg7sLjUajQaVSkZ6eTnd3NykpKUyYMOGsTWCkUimBgYGkpaXh7OzMoUOHyMrKoqtrcElFf5zd7Jk2M8pouYuncRv65nrjIrGq0gbcvYzHOrr0BYaBYR44Cj1k7zlJeX4VUgvjS2FvV8+gxzf9ulgio+XMmDEDW1tbDhw4QE5ODt3d3Wc9rwuBWq1GoVCQmZmJpaWlfubkbNIjS0tL5HI5aWlpyGQyMjMzOX36ND09g/9NBtLW1sbatWtJSEjAysqK7Oxs1qxZMy4DavG6KSIiMhqImupLjNraWurrjQu1+hMWFsbf//53Fi1aRGNjo355b28vNjY2fPHFF9xyyy2Drt/a2sqcOXOws7Nj586d52wI8e9//5sbbriBrq6uITVEuZAolUoWL17Mnj17eOaZZ3jiiScGPT+dLlVXgHg+zT+6urpQKpVUV1fr9dYDp4bHmv7dIge2FR8unZ2d5OfnU1tbS0hICMHBwec8v+OZKtY99rHBMg8fJ+oqmozGuno60FhrGFxPiA8m96hhe3LfIDdcnKzI3XMSrfbMpc8rzJ3aYsPt2thbo5bK0GqML5FrP3mEmORw/e+6jpj19fXjRi+vs29UqVQ4OjoSGRmJo6Pxg8ZQ0DX/aWxs1L9/g52fVqvls88+Y/Xq1QQEBPDyyy8zffr0cS3zEK+bIiIio4Eo/7jE8PT0xNPT85zjUlNTaWpq4siRIyQkJADw448/otVqSU5OHnS9lpYW5syZg7W1Nd9+++2QOqzppsgvhhtDREQEX331FT/++CMLFizggw8+YP369fz+97/XF93pgpXS0lK0Wi2RkZF6H+qRYmNjw6RJkwgMDEShUFBeXk5ERAR+fn5jHowMbCseHR193m4ltra2TJkyhaamJhQKBWVlZec8vynJYXj5uVDTL4iuq2rBL8SdigHe0j6BbkZBdVeHYdZYHuNL3elSygt6DAJqAE8fN6Oguqu9m5DYEIrzDVuZe/i5MGFaqMEye3t7YmNjDc4vPDwcPz+/C2IPV19fT15eHlqtlokTJ+Lp6Xle75+DgwNTp06lsbGR/Px8SktLCQwMJCAgQD9jIQgChw4dYsmSJZSXl7NhwwbuueeeC/5wMRTE66aIiMhoIGaqL2OuvfZaqqur2bZtG2q1mnnz5pGYmMgnn3wCQHl5ObNmzeKjjz4iKSmJlpYWrr76ajo6Ovj6668NpnE9PT2RyWR89913VFdXk5KSgo2NDbt37+aZZ57hmWeeYc2aNRfqVEdEb28v7733HqtWrWLChAls3ryZmpoaVq1aRVBQEJs3bz5r2+2RIggC1dXV5OfnY2lpSVRU1IgzxMNlOG3FR4ogCNTU1JCfn49MJiMyMhJ3d2O7PIAv3/uFT9/ea7DMlAtISJQPRXmGkh2pTIK1rSWu7g7IOjspPtG3jv8EL8pzawzGBk/0pyTPWPIzcXokuQM6Md766FXMfebaIZ2fVCpFLpfj4eExJg9H7e3tKBQKmpqaCAsLIzAw0Gzv31tvvcXnn3/Os88+y8yZM1mzZg3ffvstTz/9NMuWLRtxVny8I143RUREBkMMqi9jGhoaeOKJJ/juu++QSqXcdtttvP766/qCq6KiIkJDQ/npp5+YOXMme/fu5corrzS5rcLCQkJCQti1axfLly9HqVQiCAIRERE8+uijzJ8/f1w3dDgbjY2NLFiwgL/97W9IJBL++Mc/smHDhhFLPYaKRqOhpKSEwsJC3N3dkcvlZvPxHWlb8fNBq9Xqz8/FxcVksV99TQuPXPuaQWbZ3duJ+somg3ESqQQ7Oyva285kpz19nQnwd+TozqMGLgohU/woOmnoUS6zlCGztEDd3Wuw3D/Cm4oKQweM135YTED4uT2qtVotZWVlFBQUjKhYczio1WoKCgr0tm7h4eFn1byPBt3d3WzdupWtW7fS09PDFVdcwfbt2wkNDT33yhcx4nVTRERkMMSgWkTkLFRWVrJ27Vp27NjBzTffTG1tLYcOHWLp0qU8+uijYzI1293djVKppKqqiqCgIEJDQ0dNb32+bcVHg56eHgoKCigvLzcZEL741Gcc/kVhsI5/sBvlA3yoo+ICyTtein+IO7YSDfmZCqKmhXL6YIHBOM9AN2pLja3wwmKDKMwqN1ru6OtGW3NfAWn45AA2f/PUsM5PrVZTVFRESUkJXl5eREREjNrfuH/g7uTkRGRk5Ji4kGi1Wr788ktWrVqFq6sriYmJfPHFF8ycOZONGzcyceJEsx+DiIiIyHhDfAQWETGBIAisWbMGuVxObW0tx48f59NPP2X37t384x//4OOPP2batGns3Llz1PytB8Pa2pqYmBiSkpJobm5m3759lJWVnZeHrVarpbi4+Lzbio8GVlZWREdHk5KSQnd3N/v27aOwsBCNRgPAbBOe1c7uhoGjhaUMWxsLgn3tKc3MQZGR11dIWlRttG5taQNObsaBp6296Qck/+AzMxJX3JwwrHMDQycNiURCRkYGCoUCtVo97G3pEASB2tpa9u/fT1lZGZMmTSI+Pt7sAbUgCBw5coSrr76a5cuXs3r1ao4ePcr27dtRKpWEhoaSkJBwztbdIiIiIpciYqZaRGQQtm7dSlpaGikpKUavqdVqtm3bxvPPP09sbCybNm1i4sSJZtfN6oIphUJxTj3yYOtXV1ejVCqRyWRm65x3PjQ0NOiDzoiICDw9vHj0+tdpqD3jPe3u5UhTXSshci8sNL0UHStEKoGOlk6jhw0nNwdaGgwDvKjEUPIOFxosC4zypUxpqLUGiJoWhiK7EqlMyl8zVuLscX6Ba2trKwqFgpaWlhHpntva2gzWN4fu3RRVVVWsXr2af/7znzz55JM8++yzJuUsKpWKv/71r6xfv16ULoiIiFxWiEG1iMh5UF9fz5o1a3jvvfe45557eO6554bkInC+9Ncj65qPnMv/d2Bb8QvhLDJUBEGgsrISpVKJtbU1qoONnNpXgEatobdHjbpLjVSroTTHUK7h7u9EXWmTwbLIhBAUR4oMlk1IDif3gMpgmVQqwdrBlq52Q9cQRzd7Wjs1JF41kRV/fXDUzlHnsKLRaIiIiDing0xPTw8qlYqKigoCAgIICwszu+4d+vT2b7zxBlu3buXqq69m06ZNREREmH2/IiIiIhcbYhpBROQ8cHd357XXXuPIkSOUlZURFxfHG2+8MawmGSNBKpUSEhJCWloa1tbW7N+/n7y8PJOSgsHaio/XgBr6muP4+fmRlpaGp6cnUvsO8jIVKA+rKDpZQrmiEkdX44cIR3fjZRaWxvrzhirjludarYCfiQLE1oZ2/EM8uOLm+BGejWk8PDxISUkhNDQUhULBwYMHDfyPzxzXGalOV1cXKSkpREVFjUkh6VdffUVCQgLffPMN3377LV9++aUYUIuIiIgMgpipFhEZJQRB4D//+Q+LFi1CEAQ2bNjANddcMybBa1tbG3l5ebS2thIeHo6/v7/eEULXVnwsHCHMRVdXF4/OeIHmmjMyjtAYfwqPFRmMC5sSiOq4YcMX72APqosNixrh1wx0Q7vBspjpcnIOFBiNjbsqhqXb/4S1jXkC2f5OL25ubkRERGBvb39eUp+RIggCJ06cYOnSpeTl5bFu3ToeeuihC96MSERERGS8I2aqRczCW2+9RUhICDY2NiQnJ3Pw4MGzjv/iiy+Ijo7GxsaGyZMn85///MfgdUEQWLVqFb6+vtja2jJ79mzy8/PNeQrDRiKRcP3113Py5EkeeeQR5s+fzy233EJubu55FRUOBQcHB+Lj44mJiaG4uJhffvmFffv2Dbmt+HjHxsaGGTcYZopL8iqRWhpewsqV1UgG6Hiri+twcDW2IvQNNc5KN1a3GC0DmJgUZraAGkAmkxEaGsqMGTOwsbFh//79/PLLL+Tk5BASEkJycvKYBNTV1dU88cQTzJ49m6SkJBQKBX/+85/HZUB9OV5jRERExjdiUC0y6nz++ecsXLhQ7wwQGxvLnDlzqKkxLgIDyMjI4O677+ahhx7i2LFj3Hzzzdx8881kZWXpx2zevJnXX3+dbdu2ceDAAezt7ZkzZw5dXV1jdVpDxsrKigULFqBQKIiIiGDGjBk888wz52yDPBp0d3ej0WiQyWRIJBK0Wq3ZA/qxIuXaWIPfNb1a3ANdDJZ1d/QQEOlttK6fiQBaZmF8+assqMHeydAB5YrbpnHbX64ewREPH0EQ0Gq1SCQSLCws0Gg0dHd3m/097Orq4pVXXiEuLo6GhgaOHz/O1q1bcXFxMet+R8rlfo0REREZn4jyD5FRJzk5mWnTpvHmm28CfdrMwMBAnnzySZYtW2Y0/s4776S9vZ2dO3fql6WkpBAXF8e2bdsQBAE/Pz8WLVrEM888A0BzczPe3t7s2LGDu+66a2xObAQIgkBWVhYLFy7kyJEjPPvss/zpT38aVT3swLbicrkcLy8vent7UalUlJeX4+/vT1hY2EWbre7s7CTvdB5b7vmEztYzevWIWH+Uh4oMxk5MiSA7Q2G0LGe/0mCZT4gHVUXGshB5fCjKEyUAxKRGsOrTx7G0Nq9+ebBGP7q2552dnWZpe67Vatm5cycrVqzA3t6erVu38rvf/W5c6+1BvMaIiIiMT8RMtcio0tPTw5EjR5g9e7Z+mVQqZfbs2WRmZppcJzMz02A8wJw5c/TjCwsLqaqqMhjj7OxMcnLyoNscL0gkEiZPnsz333/PBx98wLvvvktqair/93//NyrZx5aWFo4ePUp2djYBAQFMnz5d7yJhaWmp93/u7OwkPT2d4uJis/tqjyZqtRqFQkFGRgaWVpakXBtn8Hp7i3FBaHtrp9GyxmrjwsSqItOyEEtrGQD+4d4sff9hswbUOovDjIwMqquriYuLIzY2Vt8508XFhWnTphEdHU1RURH79++ntrb2vD87giBw6tQpbrjhBp544gkWLVrEsWPHuPrqq8d9QC1eY0RERMYrYlAtMqrU1dWh0Wjw9jacgvf29qaqqsrkOlVVVWcdr/t3ONscb0ilUm666SZOnTrFvHnzuO+++7j99ttRKBTnXtkEnZ2dnDp1ikOHDuHk5ERaWhpBQUEms5j29vZMnTqVKVOmUF5eTmZm5qgEZuZEZxmoa06TlJRETEwMaTcYNoKpLKzFcUAjl7L8KqQyqdE4e2fjANqULKShsgkndwee/fhRHFzM0xYe+h6IDh8+zOnTpwkLCyM5ORk3NzejcRKJBG9vb6ZPn05AQADZ2dkcOXKElhbT+u9zUVtby1NPPcXMmTOJjY1FoVDw+OOPj0vdtCnEa4yIiMh4RQyqRUTGEGtraxYvXoxCoSAwMJDU1FSWLl1q0krNFP0ztxKJhOnTpyOXy4ckJ3F3dyclJYWgoCCys7M5evQora2t51xvLNE1t8nMzKSsrIyYmBji4+NxdHQEYPJ0OXaONgbr+MkNAyFNjwaPIGejbfuFGfuHW1gZB5JtTR2s+OgRfII9zudUBqWrq4usrCwOHTqEq6vrkC0OpVIpQUFBpKWl4ezszKFDhzh16hSdncaZeVN0d3fz+uuvExcXR2VlJUePHuW1114zGciLiIiIiAwfMagWGVU8PDyQyWRUVxu2h66ursbHx8fkOj4+Pmcdr/t3ONsc73h5ebFt2zYyMjLIysoiNjaW9957j97eXpPjR6utuFQqJTAwkLS0NBwdHTl48CA5OTlm99UeCi0tLRw5coTs7GyCgoJISUnB09PTINi0tLIgcXaM4YoS48uYp69xQGxKxjFQFuIf4c3G/y4hMj5kZCdxFjQaDQUFBWRkZKDVapk+fToRERHDzhAPt+25Vqvl3//+N0lJSXz44Yd8/PHH7Ny5kwkTJozGaY054jVGRERkvCIG1SKjipWVFQkJCezZs0e/TKvVsmfPHlJTU02uk5qaajAeYPfu3frxoaGh+Pj4GIxpaWnhwIEDg27zYkAikTB16lT27NnDu+++y+uvv05aWhp79+7VSzN0hWQZGRlUVFQwadIk4uPjTbaHHg6WlpZERkaSmppKT08P6enpFBUVXRC9df/MrbOzM2lpaWdt3Z08Z4rB71UmPKg7WowdG6pKjZ0h+stCEmZPYtOupfiHG7uHnA+67pAZGRnU1tYSHx/PlClThv1ANBAbGxsmTZpEUlISra2t7Nu3j507d+oz14IgkJOTw80338yf//xnnnjiCU6ePMl111037nXTZ0O8xoiIiIxXRPcPkVHn888/5/777+fdd98lKSmJV199lX/84x+cPn0ab29v7rvvPvz9/XnxxReBPrurK664go0bN3L99dfz2WefsWHDBo4ePcqkSZMA2LRpExs3buTDDz8kNDSUlStXcvLkSXJycrCxsTnb4Vw06GzNNm7cyG9/+1vmzJnDm2++SV1dHd9//z3R0dFmC4YaGhrIy8tDo9Ho3UPMHXj19vZSVFREcXExnp6eyOXyIQWaXR3dPBD7HD3dZzKz3v4uVBfW6n+3sJIhaLX09mj0yyQSsLS1oKfDcDZAHh/CpLRI5q64CZlsdPMMOveOrq4u5HI5Pj4+Zvm76hxgbrzxRmpqanjyyScpLi7mb3/7Gw8++CBr1qzBw8M8cpYLgXiNERERGY9cHJUpIhcVd955J7W1taxatYqqqiri4uLYtWuXvgiopKTEIAs5ffp0PvnkE5577jlWrFiBXC7nm2++0d/sAJYsWUJ7ezsPP/wwTU1NzJgxg127dl1SNzsbGxuWL19OWloa9957Lzt37mTq1KlkZGQQEBBg1n27ubmRkpJCeXk5p0+fpqSkhKioqPPOiJtCEAQqKipQKpXY2tqSmJiIs7OxBnowbOysiZsZzcHvT+mXufu5GgTVvT0agif6UZRV1m+/EBDhS8HJUv0yN18XbntqDskDXEXOl66uLvLz86mpqSEkJISQkBBkMtmo7qM/EokET09PfvzxR+bNm8fKlStxdHTk7bff5oEHHrioM9OmEK8xIiIi4xExUy0iMk6orq7m+eefZ8eOHcybN4+bb76ZF154gby8PFatWsW99947Jg4Nvb29FBYWUlJSgo+PDxEREVhbW4/Ktuvr61EoFOedEd/7z0O8vuBj/e9hkwIoOFpoMGZiagTZ6ab9qi0sZUy7OYb430cyYVI0fn5+oxJ49s++e3t7ExERMSZBmSAI7N69m2XLlqHVatmwYQN5eXls2rSJmTNnsmnTpotWQy0iIiJysSAG1SIi44B///vf3HXXXcyePZuNGzcSFRUF9GlFv/jiC5YuXYqzszObN29mxowZY5J57OzsJD8/n7q6OkJCQggODh5xtrWtrQ2FQkFzczOhoaGD2v8NeXtNHTyYsJJedZ+8w8rGEk1XD5qeM9KOoGhfinPKDdbzj/DGJ9STh9bdjk+oJ9XV1eTn5+s15iN1wtDppvPz87G1tSUqKmpY2ffz4fTp06xYsYIDBw7w3HPP8eSTT+qb/NTU1LB27Vq2b9/OCy+8wKJFi8bkmEREREQuR8SgWkRkHFBZWYlKpWLGjBkmX+/o6GDr1q1s3ryZ2bNn88ILLxAaGjomx9bY2EheXh5qtRq5XK5vLjMUenp6UKlUVFRUjHpXx4rCWv755m5+/uowWo2W0CgfCk+dkXbILKRIZRJ6OtU4utnz21unMfOOFCLigg22o9FoKC0tpbCwEBcXFyIjI7G3tx/ycZzP3+d8aGhoYOPGjWzfvp3777+ftWvX4uVl7LsN6LsyxsbGmnxdREREROT8EYNqEZGLiLKyMlasWMGXX37JY489xuLFi/UezuZEl4lVKpXY2NicMxPbv+22m5sbcrl8WIHqcKgqruOrt/6PquI6sn7OBcDBxQ5Xb2diUsKJvWIC8bMnYWnCk7o/PT09FBQUUF5ejp+fH+Hh4Wd9AOjs7EShUFBfX6/PvptTN61DrVbz/vvv88ILLxAbG8vLL79MbGzsJaebFhEREbnYEINqEZGLDEEQOHjwIAsWLKCwsJDVq1czd+7cMQnoNBoNRUVFFBUVmdQMC4JAVVUVSqXyvCUVw6Whqgl1dy+u3s5Y2Yy8tXh7ezsKhYKmpiZCQ0MJDAw0+NuaU3N+NgRB4KeffmLp0qV0d3ezZcsWbrrppvOS0YiIiIiIjB7i1Vjkouett94iJCQEGxsbkpOTOXjw4KBj33vvPX7zm9/g6uqKq6srs2fPNhqvc0vo/3PNNdeY+zSGjEQiITk5mX379vHSSy+xYcMGZs6cSUZGhtlbj8tkMsLDw0lLS0MQBNLT01GpVGg0GhobGzl48CD5+flEREQM2nbbXLj5uOAd7HFeATWcaeseGxtLVVUVGRkZVFVVodVqKSsrIz09nebmZqZNm0ZMTMyYBNT5+fnceeedzJ07l/vuu4/s7GxuueWWcRdQX27fRREREZH+jK8rsojIMPn8889ZuHAhq1ev5ujRo8TGxjJnzhxqaowbfQDs3buXu+++m59++onMzEwCAwO5+uqrKS83LGi75pprqKys1P98+umnY3E6w0IqlTJ37lxyc3O54YYbuPnmm3nggQcoLi42+75tbGyYPHkyiYmJ1NTUsHfvXo4ePYqnpydpaWn4+vpe9HIENzc3kpOTCQ8P5/Tp0/z0008UFBQQHR1NQkKCWewGB9LU1MTy5ctJSUnBx8eHvLw8li5dOiaB/HC5nL+LIiIiIiAG1SIjJCAggLfffttgWUZGBnZ2dmMS1Ol4+eWXmT9/PvPmzWPixIls27YNOzs73n//fZPjP/74Yx577DHi4uKIjo7mr3/9q74bW3+sra3x8fHR/7i6uo7F6YwIe3t71qxZQ05ODlZWViQmJrJ27Vra2trMul+1Wk1VVRUdHR04OztjaWlJbW0tra2tZt3vWNLR0UFNTQ1arRYXFxf9Oeu6FpqL3t5etm/fTlxcHMePH2ffvn28995747pltvhdFBERudwRg2qREZGcnMyhQ4f0vwuCwNNPP82CBQsIDg4+y5qjR09PD0eOHGH27Nn6ZVKplNmzZ5OZmTmkbXR0dKBWq41kCnv37sXLy4uoqCgeffRR6uvrR/XYzUFQUBB///vf+eGHH/jpp5+YOnUqn3zyyai3HtdqtRQXF7Nv3z7a29tJTk4mMTGRtLQ0PD09OXr0KCdPnjR74GlO1Go1eXl57N+/HysrK2bMmEFCQgIzZszAwsKCzMxMvePHaCIIAr/88gszZszglVde4a233uKnn34iISFhXGf+xe+iiIiIiBhUi4yQlJQUg6D6b3/7G6WlpSxfvnzMjqGurg6NRqPvoqbD29ubqqqqIW1j6dKl+Pn5GQQD11xzDR999BF79uxh06ZN/Pzzz1x77bVoNJqzbGl8IJFISEtLIyMjgw0bNrB69WquuuoqDh48eN56a0EQqK6uJiMjg4qKCqZMmUJ8fDwODg5An946LCyM6dOnI5PJyMjIQKlU0tvbe44tjx+0Wi2lpaWkp6fT1tZGUlISEydO1LuAWFtbExMTQ1JSEm1tbaSnp1NSUjIqDy4FBQX88Y9/5I477uDOO+8kOzub22+/fdzppk1xKX8XP/30U2xtbamsrNQvmzdvHlOmTKG5uXnMjkNERGT8I7YpFxkRKSkpLFu2jLa2NiQSCStWrOCFF17QB1gXAxs3buSzzz5j7969Bg4Wd911l/7/kydPZsqUKYSHh7N3715mzZp1IQ512MhkMu6//35uvfVWNm7cyPXXX8/vf/971qxZM6KW583NzSgUCjo6OggPD8ff33/QzKmNjQ0xMTEEBgaSl5dHeXk5ERERo9a10FzU1dWhUCgQBIGYmBg8PDwGPV5HR0fi4+P1HSJLS0uRy+V4enoO+xxbWlrYsmUL77zzDnfccQe5ubn4+/uPxildNIzn7+Jdd93Fxo0b2bBhA2+88QarV6/m//7v/9i/f/+YNfgRERG5OBj/KRCRcUlCQgJSqZSjR4+yadMmPD09mTdv3pgeg4eHBzKZjOrqaoPl1dXV59SevvTSS2zcuJEffviBKVOmnHVsWFgYHh4eKJXK8z7mscbR0ZH169eTlZWFVqslPj6eDRs20NHRMaT1Ozs7OXXqFIcPH8bV1ZW0tDQCAgKGFDg6OTmRmJhIdHQ0BQUFHDhwgIaGhvM9pVGnvb2dY8eOcerUKfz9/UlNTR1ScCyRSPDw8CAlJYXg4GByc3M5cuQILS0tQ9qvRqPhww8/JC4ujv3797N3714++OCDizKgvpS/ixKJhPXr1/Pee++xfv163njjDXbt2nVRvk8iIiLmRQyqRUaEnZ0dkydP5p///CcvvfQSr7zyyphPU1tZWZGQkGBQ2KQrdEpNTR10vc2bN7Nu3Tp27dpFYmLiOfdTVlZGfX09vr6+o3LcF4LQ0FA+++wz/vOf//Df//6X+Ph4/vGPfwwqW+jt7SU/P5+MjAy9pCQiIgILi+FNbkkkEry9vZk+fTre3t4cP36cEydODDmoNyc9PT2cPn2a/fv3Y2trS1paGsHBwcP+HEulUgICAkhLS8PZ2ZlDhw6RlZVFV1eXyfGCILBv3z5++9vfsnHjRl555RX+97//kZSUNK4z+WfjUv8u3nDDDUycOJG1a9fy9ddfExMTM6b7FxERuTgQm7+IjJjHHnuMbdu2cdNNN/H1119fkGP4/PPPuf/++3n33XdJSkri1Vdf5R//+AenT5/G29ub++67D39/f1588UUANm3axKpVq/jkk09IS0vTb8fBwQEHBwfa2tpYs2YNt912Gz4+PqhUKpYsWUJrayunTp0al1Zmw0Wj0bBjxw6ee+45QkND2bRpE/Hx8UgkEnp6evjvf/+Ls7MzDg4OREZGjqp1XHd3NyqVisrKSgIDAwkNDcXS8vx8pYeLzm9apVLh7OxMZGTkqMqWOjs7USqV1NTU0NHRwYwZM/SOFcXFxTz33HN8//33LF68mGeeecZsnSbHmkv5u7hr1y5uvfVWenp6yMrKIjo6esz2LSIicvEgBtUiI+bdd9/lL3/5C9nZ2URERFyw43jzzTfZsmULVVVVxMXF8frrr5OcnAzAzJkzCQkJYceOHQCEhISYtPxbvXo1zz//PJ2dndx8880cO3aMpqYm/Pz8uPrqq1m3bp1REdbFTktLi346+9ZbbyUhIYFXX30ViUTC7t27zaqBbm1tJS8vj7a2Nr1G29wzHYIg6HXTEomEyMhIPDw8zLa/5uZm7rnnHo4dO8Zjjz1GV1cX77zzDrfccgsvvvgigYGBZtv3heJS/C4ePXqUmTNn8u6777Jjxw6cnJz44osvxmz/IiIiFw9iUC0yYq688kri4+PZunXrhT4UkfPgu+++46GHHqK2tpaZM2fy8ccf4+LiYvb9CoJAbW0tCoUCmUxGZGQk7u7uZtlXW1sbeXl5tLa2jlkQD33WfE899RR/+9vfsLa2Zv369Tz99NMXrczjcqOoqIjU1FSeeuopli1bxoEDB0hNTeXw4cPEx8df6MMTEREZZ4hBtciw0Gq11NbWsn37dt5++21ycnLGpLOcyOhTUVHBypUr+fTTT3nssce44oorWLlyJU1NTbzwwgvcfPPNYxJ46mzsCgoKcHFxITIyctQkET09PahUKioqKggICCAsLGxM5CaCIHDgwAGWLl1KZWUla9eupbm5mXXr1pGUlMRLL73EpEmTzH4cIiOnoaGB6dOnM3PmTLZt26Zffv3116PRaNi1a9cFPDoREZHxiBhUiwyLvXv3ctVVVxEdHc0HH3ygn9oVubj45JNPePjhh7n++ut58cUXCQsLA8508lu5ciVRUVFs2rSJ2NjYMcmsjmYArNVqKSkpobCwEFdXV+Ry+Zhpl0tLS1m1ahU7d+5k4cKFLF26VK/Zbmho4IUXXuCdd97hmWeeYd26dWNyTCIiIiIi5kcMqkVELkNycnJoampi+vTpJl9vampi3bp1vPPOO9x5552sXLlyzFpkt7W1oVAoaGlpISwsjICAgCFnzMdSUjKQ9vZ2Xn31VV577TVuuOEGNm7cSEhIiMmxSqWSsrIyZs6cOSbHJiIiIiJifsSgWkREZFAUCgWLFy9m7969LF68mMcee8ygOYc50RUVAsjl8rM2Y4G+wkuFQkF7e/s5G9SMJlqtln/84x+sXr0ab29vXnnlFWbMmCHqpkVEREQuM8SgWkRE5KwIgsDu3btZtGgR7e3tbNiwgRtuuGHM9NZlZWUUFBTg5ORk0v6uu7sbpVJJVVUVQUFBhIaGDttPeyQIgsDhw4dZunQpxcXFrF+/nvvvvx+ZTGb2fYuIiIiIjD/E5i8iIsPgrbfeIiQkBBsbG5KTkzl48OCgY3fs2IFEIjH4GZjlFQSBVatW4evri62tLbNnzyY/P9/cpzEsJBIJV199NceOHWPRokU88cQT3HDDDZw6dQpzP5NLpVKCgoJIS0vD3t6eAwcOkJubS09PDxqNhsLCQtLT0+nt7SU1NRW5XD4mAXVFRQUPP/ww1157LVdeeSV5eXk8+OCD4zKgvhw/syIiIiIXAjGoFhEZIp9//jkLFy5k9erVHD16lNjYWObMmUNNTc2g6zg5OVFZWan/GejLu3nzZl5//XW2bdvGgQMHsLe3Z86cOYN247uQWFhY8Pjjj6NQKIiNjWXmzJk89dRTZz3/0cLS0pKoqChSUlLo7Ozkf//7H7/88gvV1dVMnTqV2NhY7OzszH4cHR0dbNq0ialTp9Ld3U1WVhYvvvjiuHXAudw/syIiIiJjiRhUi4gMkZdffpn58+czb948Jk6cyLZt27Czs+P9998fdB2JRIKPj4/+p3/TCkEQePXVV3nuuee46aabmDJlCh999BEVFRV88803Y3BGI8PNzY3XXnuNo0ePUllZSVxcHK+99hrd3d1m33dvby8ajQaZTIZMJkOtVqNWq82eMddqtXz55ZckJCTw7bff8t133/HFF1/oXVPGK+JnVkRERGTsEINqEZEh0NPTw5EjR5g9e7Z+mVQqZfbs2WRmZg66XltbG8HBwQQGBnLTTTeRnZ2tf62wsJCqqiqDbTo7O5OcnHzWbY4XJkyYwM6dO/nkk0/46KOPSEpK4t///jdarXbU99XV1UVWVhaHDx/G1dWVGTNmMGPGDEJDQ8nJyeHIkSO0traO+n4FQeDYsWNcc801LF68mGeffZbDhw8zc+bMcV+IKH5mRURERMYWMagWERkCdXV1aDQao/bI3t7eVFVVmVwnKiqK999/n3/961/8/e9/R6vVMn36dMrKygD06w1nm+MNiUTCddddx8mTJ3niiSf485//zM0330xOTs6oZI81Gg0qlYqMjAwEQWD69OlERERgYWGBVColICCAtLQ0nJycOHjwIDk5OaOWMa+qquKxxx7jd7/7HampqSgUCh5++OFxqZs2hfiZFRERERlbxKBaRMRMpKamct999xEXF8cVV1zBV199haenJ+++++6FPrRRx9LSkqeeegqFQkFUVBS/+c1vWLRoEfX19SPaniAIVFZWkp6eTn19PfHx8UyePBlbW1uT+46MjCQ1NRW1Wk16ejqFhYVoNJoR7burq4utW7cSFxdHc3MzJ06cYMuWLTg7O49oexcTl9NnVkRERGS0EYNqEZEh4OHhgUwmo7q62mB5dXX1kJuiWFpaMnXqVJRKJYB+vfPZ5njDw8ODN998k0OHDlFQUMCUKVN466236OnpGfI2mpqaOHjwIPn5+cjlcqZNm4aLi8s517OzsyM2Npa4uDiqq6vJyMigurp6yBlzrVbLN998Q0JCAl988QVff/01X3/9NXK5fMjHPp4QP7MiIiIiY4sYVIuIDAErKysSEhLYs2ePfplWq2XPnj2kpqYOaRsajYZTp07h6+sLQGhoKD4+PgbbbGlp4cCBA0Pe5nhEIpEwadIkvv/+ez766CPee+89UlJS+OGHH84a4HZ2dnLy5EmOHj2Kh4cHaWlp+Pr6Dlu77ObmRnJyMmFhYZw+fZrDhw/T0tIy6HhBEDh58iTXXXcdTz31FIsXL+bo0aPMmjVr3Oumz4b4mRUREREZYwQREZEh8dlnnwnW1tbCjh07hJycHOHhhx8WXFxchKqqKkEQBOHee+8Vli1bph+/Zs0a4fvvvxdUKpVw5MgR4a677hJsbGyE7Oxs/ZiNGzcKLi4uwr/+9S/h5MmTwk033SSEhoYKnZ2dY35+5qK7u1t46aWXBBcXF2HOnDnCkSNHhPb2dv1PeXm5cOzYMeHbb78VDhw4INTX1xu8fj4/zc3NwokTJ/TbLioqMni9sLBQmDdvnmBjYyM8/fTTQkNDw4X+c40q4mdWREREZOwwf5cEEZFLhDvvvJPa2lpWrVpFVVUVcXFx7Nq1S1+0VVJSYtBlsLGxkfnz51NVVYWrqysJCQlkZGQwceJE/ZglS5bQ3t7Oww8/TFNTEzNmzGDXrl1j1gp8LLCysmLRokXce++9rFq1irS0NB566CEWL17Mp59+yubNm1m6dCn33XffqOuWLSwsiIiIwN/fn3379nHllVcyb948lixZwscff8ymTZuYMWMGx44dIzo6elT3PR4QP7MiIiIiY4fYplxERGTMEASBEydOMG/ePE6dOoWdnR1r167lT3/605i0Pf/+++958sknqaqqwtvbm7/+9a9cc801F7XMQ0RERERkfCBqqkVERMaMwsJCXnjhBZRKJXfeeSceHh6899577N2716wNXARBIDs7mzfeeIOOjg7uvPNOJBIJa9eu5cCBA2bbr4iIiIjI5YMYVIuIiJid1tZWli5dSkxMDC4uLuTn5/Pxxx+Tm5vLfffdx9y5c7nzzjvJz88f9X3X1dWxYMECfvvb3xITE6Pfd15eHnPmzGHWrFnMnTtX78UsIiIiIiIyEsSgWkRExOxoNBqUSiWZmZn89a9/1duvWVtbs3TpUvLy8vDx8SElJYXly5fT1NR03vvs6enhzTffJDY2lpKSEg4fPszrr7+Ou7s7APb29jz//PPk5eUhk8lG7KktIiIiIiICoqZaRERknCAIAkePHmXhwoXk5uaycuVK7r//fiwshldPLQgCu3btYsWKFQBs3bqV66+/XtRNi4iIiIiYFTGoFhERGVdotVr++c9/snTpUhwcHNi8eTO/+c1vzhkUC4LA6dOnWb58OYcPH2blypU8/vjjWFlZjdGRi4iIiIhczojyDxGRccxbb71FSEgINjY2JCcnc/DgwUHHzpw5E4lEYvRz/fXX68c88MADRq9fc801Y3EqQ0YqlXL77beTk5PDnXfeyR133MEf//hHCgoKBl2noaGBxYsXM2PGDMLDw8nLy2PBggXjMqC+HN9TERERkcsBMagWERmnfP755yxcuJDVq1dz9OhRYmNjmTNnDjU1NSbHf/XVV1RWVup/srKykMlk3H777QbjrrnmGoNxn3766ViczrCxsbHh2WefJTc3F1dXV5KSkli5cqVBd0S1Ws22bduIjY1FoVBw4MAB3n77bTw9PS/gkQ/O5f6eioiIiFzKiPIPEZFxSnJyMtOmTePNN98E+mQRgYGBPPnkkyxbtuyc67/66qusWrWKyspK7O3tgb6sZlNTE9988405D33UEQSBQ4cOsWDBAlQqFatXr8bX15cVK1agVqvZsmULv//978fE6/p8EN9TERERkUuX8X0HEhG5TOnp6eHIkSPMnj1bv0wqlTJ79mwyMzOHtI3t27dz11136YMvHXv37sXLy4uoqCgeffTRi8L1QiKRkJSUxP/+9z9eeeUVnn32We644w7mzZtHVlYWN99887gPqMX3VEREROTSRmxTLiIyDqmrq0Oj0ejbSevw9vbm9OnT51z/4MGDZGVlsX37doPl11xzDbfeeiuhoaGoVCpWrFjBtddeS2ZmJjKZbFTPwRxIpVLuvvtupk+fTk1NDdOmTbvQhzRkxPdURERE5NJGDKpFRC5Btm/fzuTJk0lKSjJYftddd+n/P3nyZKZMmUJ4eDh79+5l1qxZY32YIyY4OJjg4OALfRhjyqX+noqIiIhc7Izv+VIRkcsUDw8PZDIZ1dXVBsurq6v1jVMGo729nc8++4yHHnronPsJCwvDw8MDpVJ5Xscrcm7E91RERETk0kYMqkVExiFWVlYkJCSwZ88e/TKtVsuePXtITU0967pffPEF3d3d3HPPPefcT1lZGfX19fj6+p73MYucHfE9FREREbm0EYNqEZFxysKFC3nvvff48MMPyc3N5dFHH6W9vZ158+YBcN9997F8+XKj9bZv387NN9+sb8eto62tjcWLF7N//36KiorYs2cPN910ExEREcyZM2dMzulyR3xPRURERC5dRE21iMg45c4776S2tpZVq1ZRVVVFXFwcu3bt0he6lZSUGDle5OXlsW/fPn744Qej7clkMk6ePMmHH35IU1MTfn5+XH311axbtw5ra+sxOafLHfE9FREREbl0EX2qRURERERERERERM4TUf4hIiIiIiIi8v/bu3+X1MIAjOOPeTnV0qoERUS7UpQ4RSA4RNDYlAQNNQjl0I+pP6JsaajGWmoJipCixQiKMwQ1FTRpNEQkQZDvHS4IYpebvp4ucb4fcHl5jpxnezjIEYAlRjUAAABgiVENAAAAWGJUAwAAAJYY1QAAAIAlRjUAAABgiVENQJJ0dnamsbExdXZ2KhAIaH9//5/XnJ6eqr+/X62trerr69PW1lZNJpvNqqenR21tbYrFYrq4uGj+zTfAb30BAN5iVAOQJJVKJUUiEWWz2S/l7+/vNTo6qpGREbmuq7m5OU1PT+vo6KiS2dnZUSaT0crKiq6urhSJRJRMJvX4+OhVjS/zW18AgLf48xcANQKBgPb29jQ+Pv7XzOLiog4ODnR9fV05m5iY0PPzsw4PDyVJsVhMg4ODWltbkySVy2V1dXUpnU5raWnJ0w718FtfAEDz8aQaQEPy+bwSiUTVWTKZVD6flyS9v7/r8vKyKtPS0qJEIlHJ/CR+6wsAqA+jGkBDCoWCQqFQ1VkoFNLLy4ve3t709PSkj4+PTzOFQuE7b7Up/NYXAFAfRjUAAABg6df/vgEAP1M4HFaxWKw6KxaL6ujoUHt7u4LBoILB4KeZcDj8nbfaFH7rCwCoD0+qATQkHo8rl8tVnR0fHysej0uSHMfRwMBAVaZcLiuXy1UyP4nf+gIA6sOoBiBJen19leu6cl1X0p9XyLmuq4eHB0nS8vKyJicnK/mZmRnd3d1pYWFBt7e3Wl9f1+7urubn5yuZTCajjY0NbW9v6+bmRrOzsyqVSpqamvrWbp/xW18AgMcMABhjTk5OjKSaTyqVMsYYk0qlzPDwcM010WjUOI5jent7zebmZs33rq6umu7ubuM4jhkaGjLn5+fel/kCv/UFAHiL91QDAAAAlvj5BwAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAln4DI9rFGNLMh5sAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 213 + "execution_count": 273 } ], "metadata": { From 67c1acb225ff0d07d7221bc546056740764b760e Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Mon, 10 Jun 2024 00:16:30 +0200 Subject: [PATCH 08/21] example: add effbeta --- ToDo.md | 6 + ToDoNotes.txt | 4 - scratch/scratch5.ipynb | 528 +++++++++++++++++++++++++++++++++-------- 3 files changed, 432 insertions(+), 106 deletions(-) create mode 100644 ToDo.md delete mode 100644 ToDoNotes.txt diff --git a/ToDo.md b/ToDo.md new file mode 100644 index 0000000..9eca479 --- /dev/null +++ b/ToDo.md @@ -0,0 +1,6 @@ +- add input checking +- qlayer: remove item() calls for compatibility +- qlayer: handle 2D case where x or y are out of bounds +- qlayer: too much boiler plate code, reuse mps module +- pennylane non-default devices with lightning qubits, adjoint differentation and Hamiltonians +are bugged, the observable weights are not differentiated \ No newline at end of file diff --git a/ToDoNotes.txt b/ToDoNotes.txt deleted file mode 100644 index 36aaf19..0000000 --- a/ToDoNotes.txt +++ /dev/null @@ -1,4 +0,0 @@ -- add input checking -- qlayer: remove item() calls for compatibility -- qlayer: handle 2D case where x or y are out of bounds -- qlayer: too much boiler plate code, reuse mps module \ No newline at end of file diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index b30a7fe..4ebac98 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.819903Z", - "start_time": "2024-06-09T17:54:32.815451Z" + "end_time": "2024-06-09T22:13:59.921189Z", + "start_time": "2024-06-09T22:13:59.917534Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 262 + "execution_count": 303 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.829701Z", - "start_time": "2024-06-09T17:54:32.823254Z" + "end_time": "2024-06-09T22:13:59.929958Z", + "start_time": "2024-06-09T22:13:59.923633Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 263 + "execution_count": 304 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.847083Z", - "start_time": "2024-06-09T17:54:32.840239Z" + "end_time": "2024-06-09T22:13:59.938213Z", + "start_time": "2024-06-09T22:13:59.931257Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[-1.138229 -1.138229 -1.138229 -1.138229 -1.138229 -1.138229\n", - " -1.138229 -1.138229 1.6021234 1.6021234 1.6021234 1.6021234\n", - " 1.6021234 1.6021234 1.6021234 1.6021234 0.7902335 0.7902335\n", - " 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335\n", - " -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875\n", - " -0.8486875 -0.8486875 -4.053289 -4.053289 -4.053289 -4.053289\n", - " -4.053289 -4.053289 -4.053289 -4.053289 5.506906 5.506906\n", - " 5.506906 5.506906 5.506906 5.506906 5.506906 5.506906\n", - " 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893\n", - " 1.9971893 1.9971893 -2.535824 -2.535824 -2.535824 -2.535824\n", - " -2.535824 -2.535824 -2.535824 -2.535824 ]\n", + "[ 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416\n", + " 0.88781416 0.88781416 0.66588145 0.66588145 0.66588145 0.66588145\n", + " 0.66588145 0.66588145 0.66588145 0.66588145 0.4280844 0.4280844\n", + " 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844\n", + " -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015\n", + " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.9254663 -1.9254663\n", + " -1.9254663 -1.9254663 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", + " -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332\n", + " 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514\n", + " 0.72894514 0.72894514 1.845063 1.845063 1.845063 1.845063\n", + " 1.845063 1.845063 1.845063 1.845063 ]\n", "=========\n", - "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", - " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", - " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", - " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", - " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", - " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", - " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n", + "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", + " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", + " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", + " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", + " 0.72894514 0.72894514 1.845063 1.845063 ]\n", "=========\n", - "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", - " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", - " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", - " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", - " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", - " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", - " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n", + "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", + " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", + " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", + " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", + " 0.72894514 0.72894514 1.845063 1.845063 ]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 264 + "execution_count": 305 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.868962Z", - "start_time": "2024-06-09T17:54:32.866826Z" + "end_time": "2024-06-09T22:13:59.941155Z", + "start_time": "2024-06-09T22:13:59.939081Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 265 + "execution_count": 306 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.873572Z", - "start_time": "2024-06-09T17:54:32.870440Z" + "end_time": "2024-06-09T22:13:59.944464Z", + "start_time": "2024-06-09T22:13:59.941621Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[-1.138229 1.6021234 0.7902335 -0.8486875 -4.053289 5.506906\n", - " 1.9971893 -2.535824 ]\n", + "[ 0.88781416 0.66588145 0.4280844 -0.00731015 -1.9254663 -1.0037332\n", + " 0.72894514 1.845063 ]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[-1.138229 -1.138229 -1.138229 -1.138229 -1.138229 -1.138229\n", - " -1.138229 -1.138229 1.6021234 1.6021234 1.6021234 1.6021234\n", - " 1.6021234 1.6021234 1.6021234 1.6021234 0.7902335 0.7902335\n", - " 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335 0.7902335\n", - " -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875 -0.8486875\n", - " -0.8486875 -0.8486875 -4.053289 -4.053289 -4.053289 -4.053289\n", - " -4.053289 -4.053289 -4.053289 -4.053289 5.506906 5.506906\n", - " 5.506906 5.506906 5.506906 5.506906 5.506906 5.506906\n", - " 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893 1.9971893\n", - " 1.9971893 1.9971893 -2.535824 -2.535824 -2.535824 -2.535824\n", - " -2.535824 -2.535824 -2.535824 -2.535824 ]\n", - "[-1.138229 -1.138229 1.6021234 1.6021234 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 0.7902335 0.7902335 -0.8486875 -0.8486875\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 -1.138229 -1.138229\n", - " 1.6021234 1.6021234 -1.138229 -1.138229 1.6021234 1.6021234\n", - " 0.7902335 0.7902335 -0.8486875 -0.8486875 0.7902335 0.7902335\n", - " -0.8486875 -0.8486875 -4.053289 -4.053289 5.506906 5.506906\n", - " -4.053289 -4.053289 5.506906 5.506906 1.9971893 1.9971893\n", - " -2.535824 -2.535824 1.9971893 1.9971893 -2.535824 -2.535824\n", - " -4.053289 -4.053289 5.506906 5.506906 -4.053289 -4.053289\n", - " 5.506906 5.506906 1.9971893 1.9971893 -2.535824 -2.535824\n", - " 1.9971893 1.9971893 -2.535824 -2.535824 ]\n" + "[ 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416\n", + " 0.88781416 0.88781416 0.66588145 0.66588145 0.66588145 0.66588145\n", + " 0.66588145 0.66588145 0.66588145 0.66588145 0.4280844 0.4280844\n", + " 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844\n", + " -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015\n", + " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.9254663 -1.9254663\n", + " -1.9254663 -1.9254663 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", + " -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332\n", + " 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514\n", + " 0.72894514 0.72894514 1.845063 1.845063 1.845063 1.845063\n", + " 1.845063 1.845063 1.845063 1.845063 ]\n", + "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", + " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", + " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", + " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", + " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", + " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", + " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", + " 0.72894514 0.72894514 1.845063 1.845063 ]\n" ] } ], - "execution_count": 266 + "execution_count": 307 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.884267Z", - "start_time": "2024-06-09T17:54:32.881208Z" + "end_time": "2024-06-09T22:13:59.948686Z", + "start_time": "2024-06-09T22:13:59.945394Z" } }, "source": [ @@ -323,15 +323,15 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 267 + "execution_count": 308 }, { "cell_type": "code", "id": "47ef065abf26f244", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.905690Z", - "start_time": "2024-06-09T17:54:32.899106Z" + "end_time": "2024-06-09T22:13:59.957206Z", + "start_time": "2024-06-09T22:13:59.949543Z" } }, "source": [ @@ -474,15 +474,15 @@ " return self.norm" ], "outputs": [], - "execution_count": 268 + "execution_count": 309 }, { "cell_type": "code", "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.912846Z", - "start_time": "2024-06-09T17:54:32.906545Z" + "end_time": "2024-06-09T22:13:59.967118Z", + "start_time": "2024-06-09T22:13:59.957842Z" } }, "source": [ @@ -506,31 +506,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ──────────────────────────────────────────────────╭U(M3)────────────────Rot(0.04,1.41,4.65)─╭●\n", - "1: ─────────────────────────────╭U(M2)───────────────├U(M3)────────────────Rot(3.84,1.40,0.54)─╰X\n", - "2: ────────╭U(M1)───────────────├U(M2)───────────────╰U(M3)────────────────Rot(4.14,3.46,2.86)─╭●\n", - "3: ─╭U(M0)─├U(M1)───────────────╰U(M2)────────────────Rot(5.40,1.00,3.75)──────────────────────╰X\n", - "4: ─├U(M0)─╰U(M1)────────────────Rot(4.10,3.87,2.31)─╭●────────────────────Rot(5.50,0.97,3.80)───\n", - "5: ─╰U(M0)──Rot(5.07,2.43,4.67)──────────────────────╰X────────────────────Rot(0.95,5.19,0.61)───\n", + "0: ──────────────────────────────────────────────────╭U(M3)────────────────Rot(5.04,4.86,2.95)─╭●\n", + "1: ─────────────────────────────╭U(M2)───────────────├U(M3)────────────────Rot(4.66,1.59,3.36)─╰X\n", + "2: ────────╭U(M1)───────────────├U(M2)───────────────╰U(M3)────────────────Rot(2.32,4.27,5.20)─╭●\n", + "3: ─╭U(M0)─├U(M1)───────────────╰U(M2)────────────────Rot(1.45,5.03,4.31)──────────────────────╰X\n", + "4: ─├U(M0)─╰U(M1)────────────────Rot(4.03,0.24,0.55)─╭●────────────────────Rot(3.37,2.28,3.15)───\n", + "5: ─╰U(M0)──Rot(4.08,5.87,0.54)──────────────────────╰X────────────────────Rot(1.43,4.52,3.75)───\n", "\n", - "───Rot(0.77,0.93,1.89)─────────────────────────┤ \n", - "───Rot(3.31,2.89,4.73)─╭●──Rot(2.28,2.13,1.95)─┤ \n", - "───Rot(3.41,4.14,1.48)─╰X──Rot(3.16,1.78,2.16)─┤ \n", - "───Rot(1.43,0.07,4.32)─╭●──Rot(2.49,0.36,5.65)─┤ \n", - "───────────────────────╰X──Rot(2.47,2.66,4.92)─┤ \n", + "───Rot(0.20,5.85,2.00)─────────────────────────┤ \n", + "───Rot(2.14,0.17,1.49)─╭●──Rot(1.43,0.71,0.14)─┤ \n", + "───Rot(1.16,2.66,1.15)─╰X──Rot(2.43,4.73,2.71)─┤ \n", + "───Rot(5.90,4.58,0.26)─╭●──Rot(0.26,1.57,0.52)─┤ \n", + "───────────────────────╰X──Rot(6.25,2.64,1.62)─┤ \n", "───────────────────────────────────────────────┤ \n" ] } ], - "execution_count": 269 + "execution_count": 310 }, { "cell_type": "code", "id": "93646da4c54dfbff", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:32.919258Z", - "start_time": "2024-06-09T17:54:32.913494Z" + "end_time": "2024-06-09T22:13:59.975004Z", + "start_time": "2024-06-09T22:13:59.968157Z" } }, "source": [ @@ -567,13 +567,13 @@ ] } ], - "execution_count": 270 + "execution_count": 311 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:54:35.026543Z", - "start_time": "2024-06-09T17:54:32.920185Z" + "end_time": "2024-06-09T22:14:02.165041Z", + "start_time": "2024-06-09T22:13:59.975661Z" } }, "cell_type": "code", @@ -632,15 +632,15 @@ "output_type": "display_data" } ], - "execution_count": 271 + "execution_count": 312 }, { "cell_type": "code", "id": "66ba7a519125ef4e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T17:55:26.230439Z", - "start_time": "2024-06-09T17:55:11.300584Z" + "end_time": "2024-06-09T22:14:17.944302Z", + "start_time": "2024-06-09T22:14:02.165787Z" } }, "source": [ @@ -696,13 +696,337 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAJOCAYAAAB4EvvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZQk53neif6+iFwrs/Z9zazeG41uAASaAEiRpsYUaUsWpbm8lnwlD3k1HtmmSJsWr85Qsj2m5BlT91pjDq2xaI444hkdz1iSR5YsLhBJCRTQIAGwwSYbe++1ZO37knss3/0jO7IiIrOqa8nK6qr+fufgkBWdmV9EZGTEE2883/MKKaVEoVAoFAqFQqFQ7BrtoFdAoVAoFAqFQqE47ChRrVAoFAqFQqFQ7BElqhUKhUKhUCgUij2iRLVCoVAoFAqFQrFHlKhWKBQKhUKhUCj2iBLVCoVCoVAoFArFHlGiWqFQKBQKhUKh2CNKVCsUCoVCoVAoFHtEiWqFQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhqAu///u/T0NDA9lstryss7MTIcSW//2Df/AP7vnZ/+yf/TOOHTu2n6uvUCgUCsWWCCmlPOiVUCgUR58Pf/jDFItFvvrVrwJgmiZ/+Id/WPW1a2tr/Mqv/AqFQoGvfe1r/M2/+Te3/OyXX36Zp59+mjfeeINz587VfN0VCoVCobgXgYNeAYVCcfQpFAp861vf4nOf+1x5WSAQ4O/+3b9b9bV/42/8DXK5HF/4whfuKagBnnzySbq7u/nqV7+qRLVCoVAoDgRl/1AoFPvOX/3VX5HJZPjJn/zJLV9nWRY/93M/x3PPPcev//qv87GPfWxbny+E4G/9rb9VroIrFAqFQlFvlKhWKBT7zle/+lUuXrxIT0/Plq/72Mc+xp/8yZ/w8Y9/nM985jM7GuNDH/oQL7/8MvPz83tZVYVCoVAodoUS1QqFYt/56le/es8q9T/7Z/+ML33pS/zMz/wMv/3bv73jMd7//vcTDod55plndruaCoVCoVDsGiWqFQrFvvLDH/6QVCrFhz70oU1f89u//dt89rOf5f3vfz//4T/8BzRt56emhoYG/vpf/+vKAqJQKBSKA0GJaoVCsa88//zztLS0cOHChar//gd/8Af8k3/yT3jiiSf40z/9U0KhUMVr5ufn+Ymf+AlisRinT5/m2WefrfpZ73vf+3juuedqufoKhUKhUGwLJaoVCsW+8vjjj7OyssKtW7cq/u2b3/wmH/3oRzl58iTPPPMM8Xi86md8/OMfp6enh/n5eX7rt36Ln/mZn2FpaanidZcvX+aJJ56o+TYoFAqFQnEvlKhWKBT7yrve9S46Ojr4yle+4ln+ve99jw9/+MN0dXXxrW99i87OzqrvT6fT/Jf/8l/4jd/4DRoaGvjQhz7E+fPn+bM/+zPP6wzD4Bvf+MY9vdsKhUKhUOwHSlQrFIp9Rdd1fvzHf9zjdX777bf5iZ/4CUKhEN/85jdJJBKbvv/mzZvE43EGBgbKy86fP8+bb77ped3zzz/P2tqaEtUKhUKhOBBU8xeFQrHvfOhDH+Lv/J2/w/LyMkIIPvjBD7K4uMgv/dIv8cMf/pAf/vCHFe/p6uriAx/4AOl0mqamJs+/NTU1sbi46Fn2la98hUceeYShoaF93RaFQqFQKKqhRLVCodh3PvCBD6BpGn/+539OR0cHqVQKgC984Qt84QtfqPqej3zkI3zgAx8gHo+ztrbm+be1tbUK//VXv/rVqh0aFQqFQqGoB0pUKxSKfaexsZEf/dEf5Stf+Qp/+Id/iJRy2+89efIk6XSayclJ+vv7AXjjjTf4yEc+Un7N66+/zujoqLJ+KBQKheLAUJ5qhUJRFz70oQ/xjW98A8MwdvS+eDzOT/3UT/GZz3yGXC7H1772NV577TV+6qd+qvyar3zlK/T09HDx4sVar7ZCoVAoFNtCyJ2UjBQKhWKX5PN5JiYmSCaTBAI7e0g2Pz/PRz/6UZ577jkGBgb4whe+wPvf//7yv8/OzmJZFn19fbVebYVCoVAotoUS1QqFQqFQKBQKxR5R9g+FQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhUCgUCoVCsUeUqFYoFAqFQqFQKPaIEtUKhUKhUCgUCsUeUaJaoVAoFAqFQqHYI0pUKxQKhUKhUCgUe0SJaoVCoVAoFAqFYo8oUa1QKBQKhUKhUOwRJaoVCoVCoVAoFIo9okS1QqFQKBQKhUKxR5SoVigUCoVCoVAo9ogS1QqFQqFQKBQKxR5RolqhUCgUCoVCodgjSlQrFAqFQqFQKBR7RIlqhUKhUCgUCoVijyhRrVAoFAqFQqFQ7BElqhUKhUKhUCgUij2iRLVCoVAoFAqFQrFHlKhWKBQKhUKhUCj2iBLVCoVCoVAoFArFHlGiWqFQKBQKhUKh2CNKVCsUCoVCoVAoFHtEiWqFQqFQKBQKhWKPKFGtUCgUCoVCoVDsESWqFQqFQqFQKBSKPaJEtUKhUCgUCoVCsUeUqFYoFAqFQqFQKPaIEtUKhUKhUCgUCsUeUaJaoVAoFAqFQqHYI0pUKxQKhUKhUCgUe0SJaoVCoVAoFAqFYo8oUa1QKBQKhUKhUOwRJaoVCoVCoVAoFIo9okS1QqFQKBQKhUKxR5SoVigUCoVCoVAo9ogS1QqFQqFQKBQKxR5RolqhUCgUCoVCodgjSlQrFAqFQqFQKBR7RIlqhUKhUCgUCoVijyhRrVAoFAqFQqFQ7JHAQa+AQqFQ7AQpJZZlIYRA0zSEEAe9SgqFQqFQKFGtUCgOB7ZtYxgGxWIRwzAIhUIEAgECgQC6ritxrVAoFIoDRUgp5UGvhEKhUGyGZVkUi0WKxaKnQh0Oh5FSIqVE0zQ0TSMQCCCEUAJboVAoFHVHiWqFQnHfIaXENM1yVdq27bJwdgRzKBQqv9Z9GnPEtbKGKBQKhaKeKPuHQqG4b5BSYhgGhUIB0zTLVWinAl0NpzLtCGvLsrBtGyGEsoYoFAqFom6oSrVCoThwbNumUChQLBaxbRugXJneDKdSXQ2neq2sIQqFQqGoF0pUKxSKA8FJ8XD80k51ebuV5a1EtXsM9ylO13V0XVfWEIVCoVDUHGX/UCgUdcWxeBSLRcbGxrBtm8HBwS0tHrvFbw2ZmZlhaWmJM2fOKGuIQqFQKGqKEtUKhaIu2LbtSfGQUlIoFLBtG13X93VsRzgbhkE6nS4Le9M0PdVrhUKhUCh2ixLVCoVi33BbPJwUD6BcIT4oj7OmaWVrSDVxrarXCoVCodgpSlQrFIqa40TiFQoFDMMoTxisZrc4qGkdfmuIaZpYllVeT2UNUSgUCsVOUKJaoVDUDKfrYaFQKFs83FXpg6aagHfWS9d1pJTYto1t25imWc67VtYQhUKhUNwLJaoVCsWeqdb1cDuV3oMQ2luN6a5eSykpFovlbVGRfAqFQqHYCiWqFQrFrtis6+F+pHjUG7+4dltDVLdGhUKhUFRDiWqFQrEjHItHsVgsdz10V3KPEu7KtGMNcarXKpJPoVAoFG6UqFYoFNuimsXjoPzGTgW5noK2mjVEdWtUKBQKhYMS1QqFYlPqYfHYSfqHZVnMzMyQSqWwLIvBwUEGBwcJh8M1H2sz/OLasiwsy1KRfAqFQvGAo0S1QqGowMlvLhQKZYvHQfql8/k8k5OTTE5OEolESCQSRKNRxsbGuHPnDr29vSSTSRobG+/5WbVa/80i+ZQ1RKFQKB5MlKhWKBRlbNsml8sxPz9PY2Nj2d6wXxaPe4nO1dVVUqkU8/PztLe3c/78eVpaWhBCEAqF6OrqYn19nbGxMV566SVaWlpIJpN0dnbWTdD6I/kca8jq6irNzc1EIhFlDVEoFIoHACWqFYoHHHfXQ8fm8eqrr/IjP/IjBAL1P0XYts38/DypVIpMJkNfXx9PPfUU0Wi06usbGxt5+OGHOXXqFKlUijfffBNd10kkEvT399d1G9zV69dee43z58/T2tqqrCEKhULxAKBEtULxgOJYPBwh7bZ4QP0ypB37hGEYTE1NMTExgRCCwcFBent7ty2KQ6EQx48fZ3h4mJmZGUZHR7l58yYDAwMMDQ3R0NCwn5vhwdl3jshW3RoVCoXi6KNEtULxgOHEwjkpHv6uh5ZlAfVrH26aJtevX2d6epqmpiZOnTpFR0fHrkWnpmn09fXR29vLysoKY2NjvPDCC3R1dRGJROq2XU46idM8xt+t0V29VigUCsXhR4lqheIBwG3xMAxjy66H9aigSilZWlpidnaWXC5HT08Pjz/++LYmGm4XIQStra20traSy+UYHx9nbGwMTdOYmpqip6dn3wWte1/6U0MMw6gQ16p6rVAoFIcXJaoViiOME4lXKBQqLB73EnD7UdF1IvEmJiYoFos0NDTQ2NjIQw89VPOx3ESjUU6fPk0oFGJycpJbt25x/fp1hoaGGBwcJBQK1XzMzXK0N0sNUdYQhUKhONwoUa1QHEGcroeFQqGqxWMr9kPQFQoFJiYmypF4Q0NDdHV1MT4+Tj6fr/l4m6FpGg0NDTz22GPMz88zNjbG7du36evrI5FI1LRSfi/8qSFua4jTCl1ZQxQKheLwoES1QnGEqNb1cLeVz1pUqtfW1kilUszNzVVE4h0kQgi6uroqIvlaW1tJJBI1ieTbScfHat0ane9OdWtUKBSKw4ES1QrFIafWXQ+d9+xWVNu2zcLCAqlUinQ6TW9vL08++eSm6Rv1mji42VibRfIlk0n6+voOLJLP+V4da4hTvVbiWqFQKO5PlKhWKA4pjsWjWCyWux66K5t7YTfv90fiDQwM8MgjjxxI1vVWbLZt1SL5bty4weDgIENDQ5vmZG/GTirV1dbR7bt2EltUt0aFQqG4f7m/rnYKheKeVLN47If/drsV5Ewmw8TERM0i8Q4afyTf6Ogoly5doru7m0QisW37Si0q8O68a7c1xPm+lTVEoVAo7h+UqFYoDgFOJJ6T4rFXi0ct1md5eZlUKsXy8jJdXV01j8Q7aNyRfNlslvHxca5cuUIsFiORSGwrkq+W343fGmJZFpZlqUg+hUKhuE9QolqhuI9xdz18++23GRwcJBKJ7LuY3uyzLctidnaWVCpFsVikv7+fM2fOEA6HazrO/UZDQwNnzpzhxIkTdYvk24xqkXxvvvkmx44dIxaLKWuIQqFQHBBKVCsU9yGOh7ZQKGDbNgAzMzMMDQ2h63pd1sFtX3Ai8aampgiFQgwODtLd3V23dblfCAQCJBIJhoaGmJ+fZ3R0tBzJl0wmicfj5dfuxVO9HdyRfBMTEwwODpatIe68ayWwFQqFoj4oUa1Q3Ce4ux4Wi0Vs2/ZE4rmrk/uNI8ScSLz5+Xna2to4d+4cra2tNRVqB53+sRv8kXyjo6O8+OKLtLa2kkwm6ejoqPt2OT5rJzVEdWtUKBSK+qJEtUJxwLgtHlt1PayXqLZtGyklb775Jrlcjt7eXt75znduGol32Ki1uGxsbOT8+fPlSL7XX3+dYDBYbuhSD5yquOrWqFAoFAeHEtUKxQHhWDycFI/tdD3cT1FtGAbT09NMTExg2zatra089thjBIPBfRvzKBEOhzlx4gTHjh1jenqa119/ne9973u7juTbLs4x4b8Bg+rdGt3Va4VCoVDUDnVWVSjqiPNoPpvNsr6+TjabLSc4BIPBLR/T71elOpvNcuPGDV588UXm5+c5ceIEuq7T09OjBPUu0DSN/v5+AM6dO0c2m+XSpUtcvXqVlZWVfRt3q+PGOa6cpyKFQsFzM6dQKBSKvaMq1QpFHXDEtBOJt5nFYytqKar9kXidnZ089thjNDU1AXD9+vWajHMvjqoVwfmeWltb6e3tJZvNMjY2xiuvvEI8HieZTNLd3V2TanG1SnU1lDVEoVAo9hclqhWKfcTpelgoFLZt8diMWggefyReX1/fppF4qoJZOxoaGjh79iwnT55kYmKCGzducO3aNRKJBAMDA3uK5NuuqHbYyhritEJX1hCFQqHYOUpUKxT7QLWuh3utBO6lUl0oFJicnGRycnJbkXj1rFgexvSP7Y7j34+BQIBkMkkikaiI5EskEp5Ivr2OtR38DWWcVujudveqeq1QKBTbQ4lqhaJGOBYPJ8Wj1l0PdyOq19fXSaVSzM3N0drauqNIvKNaqb4fRKI7km9tbY2xsTFefPFF2traSCQSO2rzvhdR7V4ft7h2W0Oc6vX9sN8UCoXifkaJaoVij7gnf5mmWbZ41Lrr4XZFtZSShYUFUqkU6+vr9PT0cPHiRWKx2I7GqgdHVajtROg2NTVVjeRLJBL09/ffs8FOLUS1g9937STUCCEIBALKd61QKBRboES1QrFLqlk89tuPupWoNk2TqakpJiYmkFIyODjI+fPnd53gcVQr1fVgN/vOH8k3OjrKzZs3GRgYIJFIEIlEthyr1jdwzv+6rSHO8a2sIQqFQlGJEtUKxQ5wdz2cn59nZmaG06dP17wqXY3NKtXZbJaJiQmmp6eJx+OcOHGCjo6OPYn7enZvrCf13qbdHBNOJF9fXx/Ly8uMjo7y/PPP09PTQyKRoKWlxfP6/d4mvzXk9u3bZV++6taoUCgUGyhRrVBsg2pdDw3DIJ1O3/PxfK1wCxcpJSsrK6RSKRYXF+nq6vJE4ik2px4CsFY+57a2Ntra2jyRfI2NjSQSiXIk335UqjdbHyEE6XSahoaGsu9aWUMUCoWihBLVCsUWOJ7SQqFQbjntfgRez8qnEALLssoWj3w+T39/P6dPn64aibfXseqdlKHYnGqRfNevX2doaIj29nagfv50pyW6E8nn3GC6uzUqa4hCoXgQUaJaofDhtngUi0Vs264aiSeEKAvt/aZQKFAoFLh27RqRSISBgQF6enr2rUquBNHe2K/qsTuSb25ujtHRUW7dugVAOp3eVSTfTnEaF0GlNcQvrpU1RKFQPEgoUa1Q3KWaxWOrSLx6VHPdkXiapjEwMMCxY8fqamHYT5Tg2h1CCLq7u+nu7mZmZoarV6+WI/mSySTt7e37tm+dSrV/fVS3RoVC8aCjRLXigWe3XQ/3S1S7I/HW1tbo7e3l4sWLXLt2jVgsVhdxogTQ3qiXzxkgHo+j6zrvfe97GR8f57XXXiMUCpFIJOjr66v50wznyU01turW6K5eKxQKxVFEiWrFA4nb4mEYxq66HronidUC0zSZnp4mlUohpWRgYMATiVfvRI771etcLBaZnJzEtm2GhoZ2lL99FH3iTuU4HA5z8uTJciTf2NgYN27cYHBwkKGhoU0j+XYz3naEsbKGKBSKBw0lqhUPFE63uEKhsC2Lx1bUSuTmcjkmJiaYmpoiFotx/PhxOjs7K4RLPUX1/dimPJPJkEqlmJmZoaWlhXA4zHe/+106OjpIJpPb7hRZz22rl03HPY6u6wwMDNDf38/S0hJjY2PlSL5kMklzc3NNx7sXyhqiUCgeFJSoVjwQ7NbisRV7majoj8Tr7Ozk0Ucf3VLw1Ft43A+Vaikly8vLpFIplpeX6e7u5oknniAejxMKhcjn84yNjfGDH/yAWCxGMpksR80d9HrXc6zNPP/t7e20t7eTyWQYHx/n8uXLNDY2kkwm6erq2tV+2sr+sRVbWUOcVugH/b0pFArFXlCiWnGkqdb1sFaVsd1Ujm3bZnZ2llQqVY7EO3Xq1LYezR/VhizV8O+ngYEBzpw5UxEdGIlEOH36NMePH2dycrIcNZdIJBgYGNh1N8lacRCV6mrEYjHOnj3LiRMnmJiY4Nq1a1y7dm1X+2mnlepq+K0hTit0XddVt0aFQnFoUaJaceRwLB6OX9q27V1bPLZiJyLX8QFPTk4SCAQYHBzccSTeUbR/+McxDIPJyUkmJiZ2tJ8CgQCJRIKhoSFmZ2fLUXMDAwMkk0mi0ShwtD3V2yEYDDI8PFyO5BsbG+PWrVv09/eTSCS25U/frqd6O/jFtdsa4lSvlbhWKBSHBSWqFUcGZzJUoVDANM2yxWO/WohvR+Sur68zMTHB7OwsLS0tnD17lra2tl2vz1GdqOhutd7Y2MiZM2d2FQsnhKCnp4eenh5WVlYYHR3l0qVLdHd3k0wm92flt1iXerCb70nTtPJ+Wl1dZWxsjO9+97u0t7eTSCS23Pe1qFT78fuunaZLqlujQqE4TChRrTj0OBaPTCbD22+/zblz5+oS3eV8vl9k+CPxenp6uHjx4o5SKqpx1CrVUkpyuRxra2t873vfq3mr9ZaWFh599FFPi+9gMEgsFtsXYejmfq1UV6O5uZkLFy5w6tQpUqkUr776KuFwmGQySW9vb8VTgt16qreD87nu6vVrr73GwMAALS0tyhqiUCjua5SoVhxKqnU9lFKytLRUtwlPzoXdETVOJN7ExAS2bdPf3++JxKvVePViv4ShbdvMz8+TSqVIp9OEQiGefvrpmkW++XFafJ84cYKrV6+ysrLCCy+8QCKRoL+/n0Bgf06D9W4bvlcikYgnkm90dLTcCn1wcLD8/dTS/rEVjnheXFykq6sLy7KwLEtF8ikUivsWJaoVh4rtdD20bXvf2ne7ccbLZDLMzMyUI/GOHTtWNRKvFuPVqy36flTFTdNkamqKiYkJAAYHB+nq6mJ5eXnfBLWbYDBIS0sLkUiE9vZ2j+86kUjUdB32uxK+n2P5I/kcC01PTw+JRKKu2wZ4knpgI5JPWUMUCsX9hhLVikOB47EsFAplYemvSLvtGPuNlJK1tTUAvv/9728rEm+vHFbhkM/nSaVS5ZuOEydO0NHRgaZpZYFdT4QQ9PX10dvby/Lyskc0JpPJmtlP6sV+iVx/JN/Y2BiXL1/Gtm2Wl5f3NDdgJzgTjf2RfNUayihriEKhOEiUqFbct1SzeGwViee2Y+wXTtTbxMQEuVwOgMcff7xuQqyenuq9jrW2tsb4+Djz8/N0dHRUvek4SEuLEIK2tjba2trIZDKMjo7y8ssv09LSwvDwMB0dHXuaUHqUmszEYjEeeughTp48yXPPPcf4+DiTk5MMDQ3te3RhtX2pujUqFIr7ESWqFfcd27F4VMO50O6HRcIfiTcwMEB3dzcvvPBCRXbyfnEYcqqdSZrj4+Ok02l6e3t56qmnypF29yuxWIxz585x8uRJUqkUb7zxBoFAgGQySV9fX13sRLulngI+GAyi6zrveMc7yOfzZQvNTiL5dopTqa6G6taoUCjuJ5SoVtw31KLrYa1FdTqdJpVKVY3Ecy7kh6l6vF9jWZbF9PQ0qVQK27YZGBjgwoULB958pRpbHUuhUIjjx48zPDzM1NQUo6Oj3Lx5k8HBQYaGhrZ9A3WYPdXbGc8fyTc6Osp3vvOdcsv4WlpDthLVDlt1a3RXrxUKhWI/UaJacaC4LR6GYey566GmaXsWnlJKFhcXSaVSrK6u0tPTU26N7WY/K+PVuB8r1YVCgYmJCSYnJ4lEIgwPD++4/fX9tk1QOo6cyXqLi4uMjo7y/PPP09fXRzKZrDgW/BymSL2d4o/Ua25u5pFHHuH06dOMj49z9erVLSP5dspOt09ZQxQKxUGhRLXiQHC6pxUKhR1ZPO7FXkSuaZrMzMyQSqWwLIuBgQHOnTtHKBTacryjlB3tHmur7Uqn04yPjzM3N0drayvnz5+npaXlyIkVIQQdHR10dHSwvr7O6OgoL774Im1tbQwPD29ZkT3qlWo/kUiEU6dOcfz48XKV/8aNGzuu8vvH2m2En+rWqFAo6o0S1Yq6UguLx1bsplKdy+XK3fyi0eiOqq33syVjr2P5cXLAx8fHyxX8WjS1qSd72X+NjY2cP3+eU6dOlSuykUikXJF1Hy+Hyf4hpURaK2iB1pqMp+s6g4ODDAwMsLi4yNjYGM8//3w5km8nCTnupJ/d4j63ONYQd7fGeuXaKxSKo48S1Yq64E7x2KvFYyu2W6mWUrK6ukoqlWJhYYHOzk4eeeQRmpqadvyouZ5Ct15WE9gQoJZlMTs7SyqVolgsbquCv10OolK41zHD4XC5Scrk5CR37tzhxo0b5SYptdgvO2E3olqar0H+j8F8GWlPYkmJgYkghNAaQX8ngcbPV3yuU/XdznjuKr/zZOPy5cs0NTWRTCbp6uq65+c4x2CtRK+/eu2Ia13XVbdGhUKxZ5SoVuwbziNXxy/tTDjaq8VjK+5VqbZtm7m5OVKpFLlcjr6+vj2lU9TCw70T6ingTdNkZGSEiYkJQqEQg4ODdHd339dJGPVE1/WykJ6fn2d0dJQ7d+7Q399Pa2trXSvV235t8S8g8z8h5axnuYbERiIpIO0Ctv0tcis/Rrz5z9G0jcmmuxW58Xi8HMk3MTHB22+/zbVr18pdLTeb0OrcRO7HzbeyhigUilqjRLWi5jiTg5aXl1laWqKnp2ffxbSDpmlVq7nFYrHczc95PN3T07PnFtVH0f6RyWRIp9MsLi7S0tLCQw89tK+NPu7HiYo7QQhBV1cXXV1d5SSM1157DSEEy8vL++41307lWJpvQ/pTSHuk6r8LIcD1NQhpYFi3WV/5URpbvommxcpjlV+/C4LBIMPDwyQSCebm5srpKk5Xy4aGBs/ra2H/2Ap/JJ/zVCYYDNLZ2aki+RQKxY5QolpRM/wWj/X1dSYnJxkYGKjbOviFpzsSr7m5mTNnztDe3l6zC+VRSf+QUrKyssL4+DjLy8sEg0EGBwc5ceLEvox3VHGSMLq7u3njjTe4cuUKsViMZDJJd3f3vojDrUS1lBIyv4os/plnucCjoTfFtCdZX34fja1/iaY171lUO7gj+VZWVhgbG+OFF16gs7OTRCJRvolzkkb2W9i6I/lmZ2eJRqM0NzeX/dbKGqJQKLaDEtWKPVGt66FzEQoGg3WvQmqahmVZLCwslCPxuru7q0bi1YLDXql27DDj4+Pk83n6+/s5c+YMN27cqLs3+CgRDAYJBoO8+93vZmJighs3bnD9+nUSiUTNOxBuJqqlXUCu/T+w7TEqpfzWstpduTblApm1X6Cx5U/2xY7R0tJCS0uLJ5IvEomUJzXWW8jatl2O3nPOb5ZlqUg+hUJxT5SoVuyK7XQ93MyKsV84/u1bt24B0N/fX7MJdZtx0Ikcu8UwDKampkilUmU7jDtT+KiKhnre5DnpEslkkkQiwezsbLkD4eDgIIlEoiadJquJamnPYq/+FFIulf5GINjZdxoAzLv/35LZ8liwP3YMfyTfyMgIxWIRKSWFQqFunUudwsBm3Rqd71VZQxQKhR8lqhU7womjKhQKHr9jtYtsvUR1Pp9nYmKCqakppJR0dXVx+vTpusRkHbaJitlsthwf2NjYyOnTp+no6Ng0Qm+/OYzpH9vBv++EEGW7w/LyMmNjY1y6dInu7m6SySQtLS17Gs+9TdJ8FXvt7yIpbPx75RpWLNEQ2K7lOhompd+vbU+VJ/X5x6s17ki+8fFxrl27xvPPP09vby+JRIKmpqZ9GxsqOzj6uzVu1lBGoVAolKhW3JPddj3cT7+xlJK1tTVSqRTz8/N0dHRw4cIFRkdHaWxsrNtFrp6V6t0KeH98YFdXF4899tiW4kRV4PbOZvuwtbWV1tZWstksY2NjvPLKKzuKmfPjrlTb5jjm2t9Dcwnqu2vjfU+19fVZQjTXe6RcR8p5bDu+5bbVEiEEzc3NhEIhLl68yNjYGC+//DItLS0kEold7avtsFVbdNWtUaFQbIUS1YpN2Y7FYyv2o1LteIAnJibIZDIVkXhONale1Lt1+E7Gsm2bhYUFxsfHyWQy9Pf38/TTTxOJRGo+1l447Okf1djONjU0NHD27FlOnDhRjplzfNf9/f3bTqZxRLVtW+TWfxZNrqJtS9h5RXRFAojv1ZZ5BynP17Uq6wjceDzOuXPnqkbyDQwM7DnFxz/mvWIjN7OGaJpWFthKXCsUDx5KVCsqqFXXw1qKasMwmJycvGckXr1F7v2Y/mGaJtPT06RSKYCyX7qWwuOwUu9jYzu4Y+ZmZmY8vuuhoaF73gQ5orqY/u+w7Nm7FWe/KJRUyuQIkNtYX6JA2vW3F8u6jZQP170lunu8UCjEsWPHSCaTZY/6VpF8u2GrSrUfvzXEtm1s21bWEIXiAUVdZRXARvveQqGwI4vHVjgXk51cpPxkMhlSqRQzMzPbisSr9+TI+2miYj6fJ5VKMTU1RSwW48SJE3R0dOxq39f75uSosZt9p2kafX199Pb2sry8zOjoKJcuXaKnp4dkMrmpXUdKSUvsaxSN5wGwqpg7qknqSktItd/NRjW7JKrr134dNj93aJpGb28vvb29rKysMDo6ygsvvEBXVxeJRGJPzXd2e75S1hCFQqFE9QOO003MEdM7tXhsxW5FtZSSpaUlUqkUKysrO4rEq3cr7/shUs/xls/NzdHR0cGjjz5Kc3NzXdZJsTm7/f0IIWhra6OtrY1MJsPo6Cgvv/wyra2tJJPJiomlAXGb5qbfK/8tqazwyrv5H17yvr+9PmwhBDo9WHIauCuqse8LUe2mpaWFRx99lFwux/j4OD/84Q+JRqMkEgl6e3t3LJD3UgQA1a1RoXiQUaL6AcWxeBSLRUzT3LXFYyucC9N2RadlWczMzJBKpTBNk/7+fh566KEdReLVO42jnuO5RbWUspzFvb6+Tm9vL08++WRNHn/7x9pPjnL6Ry3GicViZS9xKpXi9ddfJxgMkkwm6evrQwDtzf89CO+NZLXKdKWw9r6n2toGtA4syxHVdxCarKudYSf7MRqNcvr06XIk3507d7h+/Xq5lfx2I/n2Kqod3OdS50lgsVgsR/JtlpqkUCgOL0pUP2D4ux7u1eKxFe5K9Va4I/Gcpg+77T53lCvVUNqXExMTpFIpbNtmYGCA8+fP17SZiOL+IxQKcfz4cYaHh5mamip7iY8fv0ZbPF1h+JDoVIrme//G/S1hNLFxk2bbkwiy912l2k8gECgL6YWFBcbGxrhz5862I/lqJard+KvXjrjWdV11a1QojhBKVD8AOI8gc7lceeJhrSweW+FcKDYTuU7MmxOJd/78eVpaWva0Tgfhqa7HeIVCgfn5eVZXVzFNk+HhYbq6uvat0lXPm4Wj6N3eL++xpmkMDAzQ39/P4uIiZv7foiEqfNRSRICsf62oXo/eQCCQ7lg9z8sl0h6770W1gxCCzs5OOjs7SafTZRtNS0sLyWSSzs7OqtuyH6LavU7VrCFSSkKhkEoNUSgOOUpUH2GcyTKFQgHTNLl06VLZIlCvE7df5Nq2zfz8PKlUqmok3l45apXqdDrN+Pg4c3NzNDQ00NDQwMWLF/f9+zuqF/Z6T7TbL4QQtLe3U1wew5aVotreogX5jsaRGc/fkhE0bbAmn70daiVw4/E4Dz/8MKdOnSKVSvHmm2+i63rV+ML9FNUO/ki+b3/721y8eJGmpibVrVGhOMQoUX0EcVs83F0PD6IFtSNynbbYExMTCCH2Leat3p7q/RDVzkTN8fFxVldX6enp4eLFi6TTaVKpVN2+v/u1glwoFMr2l0QiQWNj40GvUgX1EO9G8S8JkqdYpfps2TnYhi60iKGzIZwFQaC48QJ7wfN6KccQYmi3q7xjar0f3TaamZkZxsbGypF8Q0NDRKPRuohqB2fbLMsqx/IVi8Wy31pZQxSKw4US1UcEd9dDR0w7Qto5IWuahmVZdV0vIQQjIyMsLS3R1NTEqVOnNm2LXavxDmul2rIsZmdnSaVSFItFBgYGOHfuXHmiZiaTuccn1I778SLurtq3tbURiUR46aWXaGtrY3h4mLa2tm2t90G0Kd8PzPwfEMDb+bA8vjCR0lvttAmg4f395+wMcZd+NLG8nyYXgCgbedajCPHeGm3BvdkvgeuOL1xZWWFsbIwXXniBzs5OoL7Hv2MFcSYvOn9bllUW2yqST6E4HChRfcjZSdfDevmN3ZF4hmFg2zaPP/54XSqKhzH9o1gslhvbhEIhBgcH6e7urujqdj93b9wt9xIJUkpWVlYYHx9neXmZ7u5uLl68SCwWIxQKcfLkScbGxrh69SrRaJTh4eFdT3KtNfstgHTrDaC6qIZKB7UtjVLV07W0NBFxw3sdElCUQQRGeVlA68O0bwMgGD00nurtIIQot43P5XKMjo4CcOXKFYaHh+np6dn3Y8kpdDjjVOvWaJpm+byurCEKxf2LEtWHFCeeyUnxAO4Z0aTr+r6KancknmEYDAwMkMvlGBwcrNsj+sM0UdHf2Oahhx7astp6PzWaqSXVtsnx3o+Pj5PL5ejv7+fMmTMVsWjhcJhTp05x7NgxJiYmuHHjBjdu3CCZTO6o1Xet2e/vyTReIcgaAIVN/NMWDWiujomagKIVIKxvVKsFlU+uNK0faY+W/w5oLZjlQ3ycet6v1NMDH41GOX78OGNjY/T393Pr1i1PJN9Ooj13gnP+qHYT7SzfqqGMQqG4f1Ci+hDhtnjspuvhfgnOfD7P5OQkk5OTFZF48/Pzh97jXMvx/JXXrq6ubTe2cd5fLw7CU21ZFlNTUztusR4IBEgmkwwNDTE7O8vIyAi3bt1iaGiIoaGhbWcU15L9FING7ss4W5SxBVHNm9oBkLUzNOte0WX58qwDvoYvAEJrQbpeprEhJoXIEwws723ld0A9/c3OeACJRIJEIsHCwgKjo6Pcvn2bvr6+ffHwu+e9bIbq1qhQHA6UqD4E1KrrYa091e5Ofu3t7VUj8Q5T5Xi3421HfNq2zdzcHOPj4+Tz+U0rr7UYqxbU++akWCwyMTHBxMREuWLY2dm5Y0HltK/u6elhaWmJkZERnn/+efr6+kgmk3WNCdzXuErzlfL/X5cQlgIhfAkgVca3sHGbQoICLAm666VCeI9JzWUFAQiFp/ew5jvDtuvbwdEpVDhjOpF86+vrjI2N8dJLL9Ha2koikdg0km+vY25FNWuI063REdhKXCsUB4cS1fcxTmpGoVAoZ5nupethLQSuPxLvXp386i2q7zcR70490TStXHn1P+rd7lj1pB4CtFAokMvlePHFF2lpaeHhhx+mtbV1z9vqRM61t7ezvr7OyMgIL774IuFwmJaWltqs/AFhmTcIki79fynJSsjacWL6mud1uojgbz1eLau6KCHqWiStou8tq54/w6H6iWqngFAvNquMNzY2bjuSbzdj7vR84LeG2LaNbdvKGqJQHDBKVN9nuNvZ1rrr4V4E524j8epdOb5fIvVyuRypVIrp6WkaGxtrknpSz3253wJ+dXWVsbExFhcXCQQCO7LA7JTGxkYuXLjAqVOnuHLlCjMzM+RyuXIDnf3Y1v2sVBdzv1u2fqzLkkxOywwx3+uELFT0eqkms0zf37nMHGF3bLw94/n3YHBqx+u8W2zbrmu30HvZTfyRfE5ny4GBARKJxK7y9p1K825R1hCF4v5Bier7BMfi4filnZN7Lbse7maiYiaTYWJigunp6V1F4u335Eg/9bYt+G9UVldXGR8fZ2Fhga6uLh577LF7tkXeLlvt81VjildWv8XF5r9Fc7CjJuPtR/620zY6k8nQ399Pe3s709PT+yao3UQiEVpaWmhvbyccDvPWW29x/fr18qTG3Tw92Iz9PAaF8R0AVm3J5F03lyErjw0NE0vq6K7jJlDlEAporcCGTzrWkMb0rH4OTXRgy1JmdTA0uddN2Db1btaz3aqxP5JvdHSUS5cu0dXVRTKZ3FFn2N1UqquxWbdG5zqixLVCsf8oUX3AOBaPYrGIaZpli8d+tBDfrqdaSsny8jKpVKo8mW63kXgHUak+CPuH45d2xOLTTz9NJBKp+VjVxNpc4QbfXPwsBXudO7mvoolOEtGnuNj0N2kJdu96rFrhToWxLIuBgQEeffRRAoEAc3NzdZ98qWkaw8PDJBIJpqenKyY11irlYT8EjG1NEZQrLNqCaXtjvxmAlOAeUohSGxd37TQA2NLbfjys94G1IaoFaRDNHttHPhcjFLkrqgP1E9UHMVFxJ+P5I/nGxsa4cuUKDQ0NJJPJbUXy7bVSXW2dnGPP/eRTCFEW18oaolDsD0pUHxDuRi21tHhsxb0EpyN+JiYmKBaLu5pMt9Mxa009K9WmabK6usry8jJra2v71iXSjX/bxnPf59mlf4MlSz7Yklia43r6Gabyf4opg+iimQatl77wKZoCHbSGBukMDhPRt64Ou8cy7Rwrxk0EkvbwI9taV8MwypMPQ6GQJxXmfkDTNPr7++nr62NhYYGRkRFGRkbo7+8nmUxuOk9gO+zXMVjIfomMDDJte33PQghMwG+UMH1KWwjI2WFiYsNrrcksfoTWg7Q2RHU01IrFGACBwBK53CLRaPveN+ge3O+i2k00GuXMmTOcOHGCycnJbUfy1apSXQ1/9doR1+7CjapeKxS1Q4nqOuI8kstms0xNTZUFxn5UpauxmcAtFApMTEwwNTVFOBzetPlILcfcL+oxXj6fZ2JigsnJSQKBAPF4nHe84x37fvH33zBcy/wl313+35BsbK8tJaat0xgoiaaAMLDkAivmMqa8Wn6dYWuEtRClWqaOEEGCRAlqeSQWVhgIS6bmdUx7GUGBoLBAQIP+MI+1/M+EtOpPLhw/+dTU1Lbyt+uNfz2EEOWUh9XVVUZGRnjhhRfo7u5meHiY5ubmmoxTCxYKf8GalaeaO9qQgqAvAcSqYgvJScvrv7ZLEw9N7QTLspuxYo5V2cZSoUhYCxHWQvSEhxgScyBLfuor3/8TmpqfJJlM1szeVI2DsH/s9XccCARIJBIMDQ0xPz/P2NjYlpF8ta5UV6OaNcT5fTY1NSlriEJRI5SorgPO5JFCoVCOxrtx4wZ9fX11rcL4/c3+SLyHH354R17A7XC/pXHsBff+6ujo4NFHH2V1dZWVlZW6fI/ORdGw8/xw/T8zU3ibqNZK1l4EICgayNtZYoGNKmbB1gkJi7heWmZLiSGDxLQCQhjYEixp0aClkSyAbMCWORoCBjGtUGoYInQMdCwpCAibnPUG3138SY7F/hGJhg979s/4+Djz8/N0dnbyjne8456C6367kDc3N/Poo4+SzWYZGxvj8uXLNDc3Mzw8vKO5BPshBpdzf4ltT2JV1KNLGAjwZVVbohnwpoJYrpdIwiyKd/B6LseiOQWsA9Ae6sTEwrRzZOwcUhR42+jk3aFm4sG3OX+hkYkJnZdffpnW1laSyeSeJ+JW4zBVqv0IIejq6qKrq6siks+9v/azUl1tnZzzyJ07dzh+/DiRSKRsDVGRfArF3lCieh9xWzzcAf/OY8B6N9fQNI1iscjc3BypVIp0On3PSLxajHnY2oa7cSbXpVIp1tfXK/ZXOp2ua3b0esMI/2n2D0hb8+Xlcb2LNr0PQ+YYN29hmRqasNAIEdBySEri2rYFugBN2GTtIBqSBl1HkMewBBEdYpqNJYsEhIUAbKlholG0AxRkgKwZJCRCaGRZXfv33Mw8xzn53zM9MV/eP0899dSuUhDuJxoaGjh79izHjx8nlUrx+uuvEwqFSCaTdb8ZdpjL/GsigJSCarqn2mRFu5q1Q4BEkNGe4HvZVZbN27QET3jf54viK9jLZOwC38pL3mm8kxPtU5w793c4efJkef8Eg8Hy/qmVSDzMotqNP5LvjTfeQNd1kslkXSrVfoQQWJZFMBgsi+xisVj2WytriEKxO5SorjHuroeOmHaC+f0nKMuy6lahMAyDtbU1VlZWWFlZYWBggAsXLux7XJWmaZimP7Rr/6hVpdqyLKanp8uT6wYHBzl//nzF/qrXRMy0ucilzJeY6Pk+7s7SUdFMo97KZPEqABEdCraGJgRRvSSoipaGLiRNwQK21DCkIKIVsSU0aDE0cjTp+bufmMGSgnU7wqIZwkBHczfzEYKclEAULFi1xliU/4hH2v4Hzp9/V13jz+qBE6GWTCaZmppiZGSEmzdvkkgkGBwc3HR7a32jtZj/KzTrNibVBTVAQcbwV6VDooCU3kf7Aa2bl4sdTBbHXcu8N0FFl58aIGstoBHBxuKytUY2Z/J0zLt/pqenyxFztZr0eVREtYM7km96epqxsTHS6TSRSIRcLlfXm1Hn+uO3hliWVf43FcmnUOwMJaprhGPxcCLxtup66Pxdy+6Gm5HNZkmlUszMzBAMBuvm/3U4CE/1XgSN4y93Wq47Wcab7a/9nhhZsNNcXf8atzLfJSIaiWR70eJ58vYqPaEzLBq3mCteByCutZGxszQFSo/wC5ZOSAsSFDlsKchYAeJ6CFtm0aQkphUJCZ2CLVgxo9hSUJQhLESpnCnAtjU0l09Xw7+tAl3P84b+67Ta/1+6ObfjbTwMrdd1XWdwcJCBgQHm5+cZGRnh9u3bDA4ObppPXEshMr72r2kTNlm5+U24IStbjgeFJC81one/w0mrg6uFOHl7xhdh7T2+s9YcAnfrc0k80MGaOQvAVH7E83pd1xkYGKC/v5/FxUVGRka4c+dOuZPlbiMTD6Oneju4J8m++eabLCwscOnSJbq7u0kkEjW34VXDbzup1q3RNM3ydUxZQxSKe3N/TMM/xNi2TT6fZ319nUwmg2EY9zwJObOv90tsSilZWlri1Vdf5fLly1iWxWOPPUYikSAYDNa18nMQbcN3M146neatt97ipZdeIp1Oc/78eS5evHjPSKz9EtVFO8eV1f/M/zn1CX6w9iesWbPMmbfIRmaI6520BHrI2Us06t10h84wED5HPNBEQGismyEKlk5MLxAWBkJIonqRMCYxYdIXXKUntEZzIE9UWyptvx1h2Y5jCc2TFiHx3xACePevhUATRV5Y+hVuZ56t+b64n3B8sk8++SQXL14kl8tx6dIlXnvtNdbWNqrEtTwmFvPPodsjCAEZ2bLFytkUZeWxWiSKlPC2McRLuRA5e42w8E2Wk3nP3xKTBt2bd96gb7xn1ZzElpVFASEEHR0dXLx4kaeffhopJS+++CJXrlxhcXFxx/vlqFWq/QghCIVCdHR08J73vIdIJMKVK1d4+eWXmZqa2tdzpyOYq62Tc41yihTOnCCnh4JCcVD8zu/8DslkkkgkwpNPPsnly5e3fP3Kygof//jH6e3tJRwOc+rUKZ555pl9Wz9Vqd4FbouHYRi7isTbbmb0TrAsi9nZWVKpVNVIvEwmU5fquJt6N39xLhLbqXA5Nx/j4+Osrq7S09PDxYsXicX8vek2p9aiOmet8Wb6L5gpXidnrWBJxzoj6QocYz03x6JWqkxHRRPxUC+LxevYGLQGBohrQZAr2FKQtwM0ajq6zBMSBgFdIgSk7TCabVOQAQoyhHa3MB2kmkiq3DbNkzdS8l0jbDRhc2Xt36DRxnDssZrtk1pTq2pbS0sLjz32GJlMhtHR0fKkveHh4ZpWWG+v/v9o14qs20HmjE4GQuubvjZr64R07+8tJ4O8XhhgxrJwWixGAp0UjY3PKVgrFZ8V0ZrJuLz7QbFhdbGkQdqcpynYs+m6NDY2cv78eU6dOsX4+DhXr14lEomQTCbp7e3dlng96qIaNmwYDQ0NVSP5EokEAwMDNctPh9J2Oj0RtkJ1a1TcT/zRH/0Rn/rUp/jiF7/Ik08+yec//3k++MEPcv36dbq6uipeXywW+bEf+zG6urr44z/+Y/r7+xkbG6OlpWXf1lGJ6h3gRBE5d+xbWTzuha7rNRO4hUKByclJJicnCYVCm0bi1duKAQfT/AW2zn7133wMDAxw7ty5XV20ajUxcslI8dr617mRfQFLGuXlugiSCD2CTR7LtgiYMboak+jY2BhI26I//DCmXCZnLxDRYuRsi5CQCCmIahbdwWX0sjjOsGJGWbEbKNpBGnT3WJKirRHSNr6vQFk+u33VElffkXJsmyE1VswGfrD+zW2L6qNwQY7FYpw7d44TJ04wPj7Oq6++iqZpRKPRPYu05fx3sKwJAgHJG4Uky4bOwBaHacFXqbalxivZOAXfzVFAeG8cs9Y8Ah3purEKav7mRd7z1aqR2lJUO4TDYU6ePMmxY8eYnJzk9u3b3LhxY1ti8ajaP/xjurPt/ZF8o6Oj3Lp1i/7+fhKJRE26jzrn5O3O6almDXEmWDoC+yj8lu9X8vk8xWLx3i88ZIRCoR01Sfvc5z7HL/7iL/ILv/ALAHzxi1/k61//Ol/+8pf51V/91YrXf/nLX2ZpaYkXX3yxPP8lmUzWZN03Q4nqbeB0PSwUCliWVb7D38vs6FpUcNfW1piYmGBubo7W1lbOnTtHa2vrput0EKL6ICL1oPrj92KxyOTkZLkZSS3yuPdSqTbsPHdylxnJXSZvpSnY6+VH6iERpTOUYM2cYKr4A0DSqg+gaQbzxR+iodMVPAZajqK9ToPeQIPWDdJi3bTRkYR0gwatUBbUWSvEvNmIpkk0IbCruL8sNNz2Dk1AUQpPe2v/uyw08laANbsBiWDOuLGr/XHYcYvHq1evsrS0xKVLl0gmkwwMDOyqKdCt1c/SHAiSMrtYtzRW7TCWFK6bJC8G3mP5e7leilpfOV/aQQj/MW8T1XvJWtOeZW5Mmfb8vWJMMMjFbW+LruvlRihuX/pWzXYehEr1ZgUAdyTf2toaY2NjvPjii7S1tZFIJPYUYegUdHZ67nPG03W93K3Rtu2K6rWiduTzeYYTcWbm6vuUuR709PQwMjKyLWFdLBa5cuUKv/Zrv1Zepmka73//+3nppZeqvucrX/kKTz/9NB//+Mf5sz/7Mzo7O/m5n/s5Pv3pT+9bSIQS1Zvgbu+6H10Pd2v/kFIyPz/vicR75zvfua1IvHpbMeDgRLV7zEwmU56sWetmJDutxFvSYDL/BjeyLzCSewXTM7lMljodalFsDAQWrYEBAmIQIWxMu4BlG/SGz5GzpzHlLM2BTvLWNEE0QkJD1yVddpqgtnFsZewI08VGgppF6Xon7q779m4G5F17R3mbkZQEl1Zesmw1lFNCbJlmIjfCQHR42/ulXtRjUqSu6zQ3NxMMBunq6qpog77dysx89iUy1hQRLc/N4tDdKYMaeTtETK+clAiAiAKl1JebxQGmrQgx3V9jptyB001Yb/GIakvmPP+esxY8f68YqW1tR8UqusTi6uoqo6OjvPDCC3R1dZFMJj2T9GzbPvKV6u1E6jU1NZWtNO4Iw0QiQV9f345v2Jzr2V62VVlD6kOxWGRmzmLkSoKmxqNzw7K2bjP8+BgLCwuefgbhcLhqF+eFhQUsy6K7u9uzvLu7m2vXrlUd486dO3z729/m53/+53nmmWe4desWv/RLv4RhGHzmM5+p7QbdRYlqH47Fw/FLOyfZWnc93KnAdTpgTUxMIKVkcHBwx5F4++Hj3s6YB2X/WF5eZnx8nOXlZbq6unjiiSdq8ujUjb9SvWbMoQkNXQTRRRCBYMEYZbrwJpOFN5gt3MDGoiXQT1domLyVIW+laQt1k7HmWDFvA9Ac6CGuN7Fq3saQGdr1ktjOB9JIGaEl0IlppwkLsMkSFA1YLJI1Zwi6zrtZK8iy1YYQJsI36TAkTCR4lgbEvb8rIUBIf5sRtz0Efrj+FwxE//629mG989rrcaF3bAs9PT10d3ezvLzMyMgIly5dore3l+Hh4S2PRSklb658Bh3JqNGGjYZ119pRpJUYM1Xfl7NyoMOs2cnrhdKFKWstEhEBpNiItiz4IvMAdLw2jLy16Pm7aKfR7UYsrSToV42JbeyJrWlubuaRRx4p+66vXLlCLBYjmUzS3d1dttjVC8uyaupd3g47af4SDoc5ceIEx44d80QYDgwMkEgktn3DVss412rdGp0bhUAgoMR1jYjFS/8dFZwmVIODg57ln/nMZ/j1X//1moxh2zZdXV387u/+Lrqu8/jjjzM5Oclv/dZvKVG93zgWj2KxiGmaZYvHfrUQ366nOpvNMjExwfT0NPF4nBMnTtDR0bGrC81B2T8OIjLt1VdfpVAoVEzWrDVuUW1Lmy9N/kv6I+2ExDor5ggCjebAACGtkYy1jEUBDR0N0IWNruWx7DmWjBWaAr20BR+mYK9gyTy2zNIdOk7WnCRn36FBP05IN8hYbxLTzxEKRChaGWLBBAVrhqjehyUNTFkSQ3PFRnIyiCYMdAEFO0BE3xBWJQ+1TthV1Q4KG0uC7jrk9SpCW/O4b0HzVK5hsvB6TfbvYcY5bwghaGtro62tjXQ6zcjICC+++CLt7e0MDw9XtWxdW/33wDwFO8ScVUrdsO9611dMQesmeiggiixZDVzObbRWl9hE9S6y9oYFpOSh9lp9/HaPvL2ELmJYrqcpYdlEltLkxZUaiGqHaDTK6dOnOX78OBMTE9y4cYPr169jmmZdz1n3a6XajzuSb3l5mdHRUZ5//nm6u7vL1f57jVnrx99uO6T7Sa/q1lgbbCR2RaTp4cXZllQqVVGprkZHRwe6rjM7O+tZPjs7S09P9bkdvb29BINBz7F+9uxZZmZmKBaL+3ID/cCLanejllpbPLZiq6qxlJKVlRVSqRSLi4t0dXXx2GOP3bPl83bGPKr2D8MwypV8gM7OThKJxL4313HfNCwZs2TtLDezpcfvbYEkfeEewsIEuU5cixAN9qOJALoIoUmIa800hdrQBBh2BtNeIyzCRPRmTJlFSJOmQDdNtFK0M0g7SFOgg2Xzh4CkI/gwq8YPAMjbU5Qqxv2M5QuEddvTuKUoA0TwNuIxpE7YZw4w7AC6W3wjsSSezwpqUSx7w0KgC/uuH7tEwV5kxVigJeiNZXtQ2OxGMh6Pc/78eU6ePMnY2Bg/+MEPiMViDA8P093djRCCnLnCVOb3EVIybTbhPAVwPPCr1uanbSEEr+SGMHzfc1BvAZeoLkXmdZKzNi5QhsxUfF5M72DNnCz/HZAbF6GctUzBShPWa1c+CwQCJJNJhoaGmJub4+rVq3z/+9/fMg+8ltxPnurt4L5hy2azjI2N8corrxCPx8vV/mrbs99dHP3Va0dcuwtVSmDvDBub+l699xdna5qamralbUKhEI8//jjPPvssP/3TP136DNvm2Wef5ROf+ETV97z73e/mP/7H/+j5Xd+4cYPe3t59eyL1QIpqt8VjdHSUeDxOc3PzvlWlq1HN/uGkUkxMTFAoFOjr6+P06dM1q7IeRU91LpcjlUqVK/mnTp3irbfeoqurqy7dKt2V6pnimOfflsxVIMKSOYsudPpDnbQGWgkKsOUCS+ZtSknQgrbgMUKazqoxgkWBNXQ6Q6dJmzcx5Dolv/VZjOgdcrYJCDqCD7FmvuZbIwk0k7HThPVKkbQd/N2uRZUmMDmr6OnsV6pwb5hJgsLkxZVv8eOdP7flWEf5wrrVtkUiEU9l9tq1a9y4cYNkMslk+DcRFEmZ7Zi4Y+xKx/OKtfkFKG9HQBsEy9ucRROV55Cw1uIR1Tmf3aP0Gm+eteY7OFaNCbr0M5uuz27RNI2enh6EEJw/f57p6elyc5Th4WGam5vv/SG74LBUqqvR0NDA2bNnOXnypKfaPzQ0VJGyshchvxP84tqZ33L69GllDdkhlpR3z7FHg91sy6c+9Sk++tGP8sQTT/DOd76Tz3/+82QymXIayEc+8hH6+/v5zd/8TQA+9rGP8e/+3b/jk5/8JP/oH/0jbt68yWc/+1n+8T/+xzXdFjcPlKh2h9g7rbMXFxfRdZ22tra6rou7Uu2PxBsYGKCnp6fmJz2nqlrPC8d+ierV1VXGx8dZWFigs7PTU8mvp+XEI6oL455/09BZNkuPyi1pMV6YQRMnmMyWcqYjWi/9oUHCmoHExJIFInonYdGEKWdYNkqCOSCitAcHWTVfB427Ivw0a2alxSKkdXA7n6n6kDAgKp+MVPNQV3ZNdJrAbCyPaAZZO1i2iWhCYtslP3Vpv8BY/lVga1F9VNluFJy7MjszM8O1qW9h915mrNhJUQY88YYWDYBBTmqYMkhAGBWfZ4sThPRWMj5RbcnK7zngi8wr2qsEiGGycTOma75LhG/MFSNFV6T2ohooC7GWlhZ6enrKldjLly/T1NREMpmkq6urpqLsoCrVtRzTOaYSiQRzc3OMjY1x+/Zt+vr6ypF8+2H/2ApHXDsJTCdOnChPQlXWkO1xVO0fO+Fnf/ZnmZ+f51/8i3/BzMwMjz76KN/4xjfKkxfHx8c9v6XBwUG++c1v8su//MtcuHCB/v5+PvnJT/LpT3+6Ztvh54EQ1W6LhyPwNE0rT6So9+Q9KFWN8/k8b7311rYj8faKexJfvS4ctcyptm2bhYUFxsfHyWQy9PX18fTTT1dMzqmnzcW9ff5KdWugk0XTO6GsYG/EkuXtAkUEI7nR8rKQiCLvTkJr0BI0aFFag61MGysIHiklvjQNkrNeqbo+q2Y/hpwmKDSk9DRHJKxZmFLzCOmQZmFKQcBVhQ4Kq+K9mi8pRAgo2jpR3f3b8R63GXOGgp0jrO3vI/udUO9JkdtF0zR6e3t5m//MaKGDFStOCybcnRRo22CU88sFGbuBZr1ysmGGXvJ25TYW7cqnFnaVfdEQ6GTN3HitlF4bia15P6eWvmo/znflnKucSuyJEydIpVK89dZb5eYo/f39u4os9HPY7B9bIYSgu7ub7u5u1tbWGB0dLUfyxePxA4m+c8S8E8nnWEPc12NlDamOjcR6wEU1wCc+8YlN7R7PPfdcxbKnn36al19+eVdj7YYjK6rdXQ8dMe0E1bt/sLVswrLd9VpYWGBubo5isUhfX9+Ou/jtFreorhe1ELimaTI9PU0qVYrwGhgY2DJGqp4NZ9yPNqd9leoGvbFCVK+Yc1t+XkugnWWzJLyzdo6snSUn0xRlyadNCEJmEZsBBkOLFG3XpI3CQ0xTikQLaDYFqRPxVafzVoB4wBunVrQDBFxNYLS7gjnkem9pamXJduLgb2Hun6wY1Iq8vPIsf63tb225zUc5/WMnvL7ye4zkJSt2yaNsaaJ8grak1/+3Yuk0V9FhN3NZAkKrOLFnzAU0vDdKpi8yDyCoec9Dhu3t3mjqqyA3Bq5FAshmOL9h/34MBoMcO3aMZDLJzMxMuTnK4ODgjiILNxuznhVc2H9/M5R8qxcuXOD06dOMj48zOjoKlCaJ9fX11W2bLcsqn7f91hDLsjyiW1lDFIeRIyeqHYuHE4l3r66H9RLVbmEopSQWi9HU1MTp06f3fWwH58Rdz5uIvYjqfD7PxMQEk5OTxGIxjh8/Tmdn5z0vQAdh/1g1F8lXqQa6aQl0kLG8M5cLvvdEfFXdmNZMUS55luXsVdL2Cjk7zqlQhCJjyGILY3LJUyzO20Eimve7tqo0fKneBMYnmIVJ2gzRENgQ3wFf9do/WTEoLN5IX76nqD6K7PT4e33l23x76duY0uV9FhupG4avqpO2KoWjrvWzYGQJCYMuX9KmITM06k0Ycq28rJqHWhPeS0LOmgd38KKwaKCDrFwGdp9VvR3cTxWroWkafX199Pb2srS0xOjoKJcuXaKnp4dkMrmrid1HqVJdDadBkaZpzM7OMj4+zo0bN2pyQ7IdqtlOqnVrNE2zfN1W1pASyv5xODgyotrfqAUo3+lu9YPcb1HtjsRzC8PJyUlWVlb2bdxqOGH/B5Ubvd2L1draGqlUirm5OTo6OnjkkUdobm7e9on1ICrV04Wxin/zi+xGvalCVK/c9Vxv4F3vxkAbi6ZLVNsaGUpiKGvneC0rOBs8SUYPY0tvFdySlRfqan5prYqvutqezttBGtgQ1VGteFdEO5MTvZMVhYA1YwrLttC1+lb/7ge2c7xKKfkv0/8LP1z7AXG9UPakSynRXd+V4fsuV63KZk8GCSBHURpE9TZylvdmLKJ3YpgborpgrxAkgkW+vMySXs+0KbOERRsFlxiPiMayqF4zprGlWSHGa8G9RLWDEIL29nba29tJp9OMjY3x8ssv09raSjKZ3FHnwcM8UXEnSCnLSTRLS0uMjY3x/PPP09PTQyKRuGck327Zysvt79a4WUOZBxU1UfFwcKhFtZSSkZERWlpayuJ4p5F4uq5TLFZ2F9vrevkj8R599FHPjPWDaMTijHs/imrHFpNKpVhfX6e3t5cnn3xyW50iq41Zr0q1s00zxfGKf1v2CeaArzV0c6CDdcv7mrztbQUd0ryP/UNGE8XwSvlvW5NM0ULOrBy/moAOaya23JhQCKUmMP5lAXTwxbIJ3+cFNZucGSCk3fW++iYrAuhanlfTL/GOph+pWBeof/pHvY6L7dg/1o1Fvjz+GRaMZfxmGh3bY9Wwpfe3k7Yr46DmzBhQsnSEtfYKUR0QlRazBr2LdWvj2Cnaa5WvCbRTMDaWB4UrRQKTNXOGluBAtU3cE853tZNjJB6Pc+7cOU6ePMn4+Divv/46oVCo3HnwXhXheotqZ+L4QVhOnOukc0PijuRrbGwsTwSt5f4wTXNb3nfVrbESG3/J5XBzlLbFzaEW1QB/7a/9NX73d3+Xp59+eleReLWsVNu2zezsLKlUinw+T39/P6dOnar6SK3eXm6HgxLVm4kZy7LKthjLshgYGOD8+fM76hTpp96VaoCZwqhneUugs6IKXfR5WON6s0dUC2DN57m2fcJWtyuj0XStmbjoIu2rggc1qyRyXdfEUsMXbxOYkoc6QMTVcS+gFchZAaKu10U077oAmFIn5FlH7+8vLEyurL64qajeLZZlYRjGno6T/Warc9GVpWf5+vz/gXG3sh/A2nJiaFHqnoY8FgEMGSUoNo6pt9c3Ji5qVQS0FJXCLag3enqY5yz/kxMI+SxJwvdkY9WY2BdRvReBGwqFOHHiBMPDw57Og06r+M0yaustqrdbjd+Pcf1C3j0RdHJykuvXr3Pt2jUSiQQDAwM1+a3tNHWkmjXEsizC4fADJ6qtIzZR8Shti5tDLaqFEMRiMbLZ7K7v9Gshbp2YoImJCYLBIIODg/eMxDuIzGhn3Hp7qqFycmShUCj7pSORyJaNCnYzZj091QAzRa+3NKY3+US1ZM0nsnXfI/PmQCcZyzuxcS0/7577d7cLnhdDBmjQ2sEnqjUBORkihm9iotQrmsDYMoC/Mp02wx5RHQsUKdgaQW1j3/ova/7JigFhM54fp2gbhLS9X5QNw2BiYoKJiYnyTVgymdzRE416TVSsxmTuNn86/b+QNmcxXP7pgOb9ffi7WNpSq1gWCRzDst68O2A/6y5rTs6sHN+0K5/IacIrLi1ZIKK1k7c3/Naa75izXXYRgJXiBImdP1C6J7UQuLquMzAwQH9/PwsLC4yOjnLnzh36+vpIJpMVreIPSlQfRKV6s/4HwWDQE8nnTATt7+9naGioYp/tdNzdbKvzm613h977CUtutPY+ChylbXFzqEU1lB73pdPpe79wE/YiMtfX18ve35aWFh566CHa2tq2ddF+UOwfTqXBGTOdTjM+Pl6OEXz44YdrHiNY70p1Uc+RtlY8y3W8F4641kzeXvYsM6RXnMT1Ro+oFlKQ07yfK7XKbOI1s0AwUL3yVrQDxHS/mKrc11kzTIPuXR9LVoqLVTOKLkATDaQtk6wZpCmYpzlQem9QExiuk6UQYMki31z4Fj/Z9RNV13E7F8l8Ps/4+DjT09M0NTVx7tw5GhoaGBkZ4YUXXqC7u5tjx47tuetoLXEf01lznf88/b8wk38VIcD0nXp138PQUnW49F3bdvU88aJsLR9lRVHyUzssrK0Q82mfvFUZwef3UANE9DaPqLZ8Iroovcfxfk1W3E2CymYIIejs7KSzs5P19fVyvFx7ezvJZLJ83q63qHbP/6kn2xG37ki+1dVVxsbGyvsskUjQ3t6+4++nVvnYD1qVGpT947CgRPUORbXb+7u2tkZvb++uIvEeFPsHlE6AS0tLzM3Nsbq6Sk9Pz77GCNa7Up0JLVUsL/isHs3BNuaKXjGyZnrTF2xfdbEl0EVaTnqWGYHKhJG54io6zQSqXGfsKgI6WKUJTETPuTMeAAjfrVJnrRgzxQgrRoy0HSLguv5LCRPFVmJakb7wCu3BPEWpAwKbKJO5CMvFKK+tv7ypqN4K901Ye3u7p8lPKBTikUce4eTJk4yOjvLyyy/T1tbG8PDwtm9ud8N2hJdz/I1mb/OVmT9mOn8bSQFdNKBjE9Gj4BKrIS2KTdb1CRvJHwUZoNqmpO0wziyNOSOKW1SbVaLBM9Y8YaGD6/sv+iLzoNRsyE3Bd8NYlKsERVP5pnC/YvX2S+A2NjZy/vx5Tp06xfj4OFevXi0/Lav3pEGnAcr9KKrdNDc3c+HCBU6dOkUqleK1117bkVfdwTTNfU8YOarYiIpUpsNMtWvTUUCJ6m2KWycSb2JiAtu29+z9PSj7Rz1FtW3bzMzMYNs2t2/fZnBwkHPnzm3qZ6wV9axUa5pGOrRcsXzFWPD8HRLe46RBayTnmxSWzq2A64lsQ6CRtKuQGBYxCr7W4zG9nZRdZKqwwlDE2/UQqlc4Q5pFwQqURXNpLIOsGSJ2N8PatDWWig3cynZhuWwqwtdZUYiS2SNjR7iZ62GiYBMWWRaLjVh366imLcjaq9zJjnKsIVmxPtVYWVlhfHycpaUlenp6eOc737mpxaOhoYGHHnqI48ePl0VSQ0MDw8PDdHd311RcLxdW+efX/xXtoRZ+uufHeUfLoxWvyZl5rsrv8UbxNdZv5wBBVDMAHVPqgMSm4BLKEkvmPcJZd4tqu/o5ZsGwab77Tzfz3nPgurVGeyCC6XoaIrEJyjYMsWFDylpzFTdTFdtjzSPQkK7vvTHQzpJRuuHbrwYwjuDcL5x4uWPHjjE5Ocnt27eRUjIxMcGxY8fq4tc/iOQPZ9zdVIwjkUh5nzle9Z1E8rlzqnfDg2r9ALBl6b+jwlHaFjdHQlRnMlvnA2/FvUR1LpdjYmKCqakpYrEYx44d21ZW8r04SPvHfo/reMwnJyfLOaPnz5+ntbV1X8d1qLfvzl+pbtRbWbe8QtuUXgtGY6CNvOFLWogWPM/EdOE9xuKBDgqG91iPam3AIgVpENO7KiL7gpqNYQcJ+mwjS8UovVFvlXLdDBPSTOaKPUwVA0ihk7MDhPWNldKFfbfbovAsc9IpcrZGkWhZUAMENMlCvoGvzf8Z/zjxSc+Y7s+RUrK4uMjY2BjpdJr+/n5Onz69qffTjyOShoeHmZiY4Nq1a9y4cYPh4WH6+/trclz87th/Imdnmchn+Xej/zsRLcyTze8gY68zkZ9ixVjFsIuEdPvuvYdAYOOWrQIN4ZqIqBNAiA3xa/u6WeasEEG98uZoqrDO8SAUcj2sV/ilBQ16N2umN+rRNiKeGzdLFohqbRTsJdcyr91DYtGgd5OxNibRRlxNYgr2GnlrlYjeTC1xegzsN7quMzQ0RH9/P3/xF3/B8vIyzz33HP39/Tv26++Ug4jwg72LebdX3Z0R3t3dTTKZ9CRd+cfdq/3jQe24aB2xSvVR2hY3R0JU17pS7UTiTUxMsLCwQGdnZ0Uk3l5xKtW19A3uZNz9IJPJkEqlmJmZobm5mbNnz9LW1sZLL720L+NtRr091dsR1Wnf37m1PLieskdFnJzt9bwaMuv5OyQqn+lLGXX9exsZZiteM5+P0tfgyx+2vRc2W8J8Ic54sQ2EVtaAtvQ3gQHDFp4kCiGkp0Ae0RrI+X5TayZM5scxbZOA5j3t2LbN9PQ04+PjGIbB4OAgjzzyyK4rWoFAgGQyydDQEFNTU4yMjHDr1i2SyeSejou5/BJvrr9NwLXr8naBF5Zf9LxO9yV3BH1PCwS+hjy+VuD+SfGd4W5WzOmK9UnbRTTRxkqho2qpOaA1Vixramxn2TepNkgLBTaOYb/3HyCq9yIJk83kiTY0IoTXu75ipOipsag+iHg7gMcff5xsNsvo6CgvvPACXV1dJJNJWlpaan6uPog4vVqO647ky2QyjI2NcfnyZZqamkgkEhWRfE4snmLnKFF9OFCi+q6odvIw3ZF4fX19PP300/viAXNOLPU+qdba/uHcgIyPj7O8vExXVxePP/44jY0bF/SDiPGrV6U6b2XJB73Hn180hkW0QlQ3xCOkXdqqOdjGouEW1ZJ1y2shqVBbQM61X91pEp51rGIfCLk6LS4VGxjJdZCxIjQEvRVPf7QblDowuifW+WVPvspXrQtYLYb5xsK3+FtdPw6UqlZzc3MUCgVGR0cZGhq6Z2rOTtA0rVxNm5ubY2RkhNXVVWzbpq+vb9sVcIf/deT/Qgj/xD5ZYZ/w77OQ0LBcQtofSVeZ9OEdoSEQZaUyzfDuh/UyZzVAoHLCoU2lzcqu8rvIpk1wFWNz1gKCIA2BBGtWL6+tmcQCfVxL313PNBxvaKMl+C46gtfI20usGJP0RB7eZCV3R70q1Q7ueLvm5mYeeeQRTp06xdjYGFeuXCEWi9U0pQgOn/1jK2KxGA899BAnT54sPynyR/Lt1f4BD+YkRSgVOPxFjsPMUdoWN4deVDc2NjI/X5mtul2cE8udO3eYnp4mEAhsKxJvr7ij5g6jqLZtm7m5OVKpFLlcjv7+fs6cOVNVqNTbjlFPEV+t6YthFzx/R80GMgGv8C4Ir40jJLz7rUFrouCrGPobwwAsuuwgK6ZRdbKiP64NoDmUw7A1bqS7yMgoCEFYN7Gl8IjCYFl8u+0L3u+ydI3biNKzZBEpNZ9FRLJmwYsrV/hAy/vLsXihUIhgMMhTTz21bxdLJ8Wgq6uLy5cvk8/nef7558uP97czYTaVneZWZoRooPI49q61rKi/+M1W/kp2VA+AK/bQ/+9Za/OiQcFuZVLLVv23fJXfQNGufG1zcwvLxt3jWOpI6xGuFdq4lVsAShahU77tzlg53lxfJaYN8IGu46wUa++r3m9PdbXxwJvEEY1GOXPmDCdOnGBiYoIbN25w/fp1kskkAwMDexaIB1Wp3g9R7RAMBhkeHi5H8o2NjZUj+QzDqIn940FEVaoPB4deVO+lUu0kCwCsrq6W7Qr1+NE6J27LsurawGKv9g/DMJiammJiYgJN0xgcHKS3t3fLE+VBxPjVS8TPVGlPvmp67SARLYpbQusiyKrprUJLn/RqDLSxZHpFtb/7YkCEPNXt0mTFynVsChbu+qA3lmWtEG+t9xAKUlaFQkDe0mkIuJvASAqW7smm9os+AN29BaKyeqtrEsOEydw6X/3e1zkWT/Lww6XK5rVr1+rymxNCEAqF6O7upr29nZGREb7zne/Q3d3N8PDwlvau/3Xk/0KrkpoSFkEMVyydLoQvqUPiltVSyorKvpRFz85yN9mRUrDuO57cTBqtFLXqc0pWzSz+W9yMtVgxvn1X0Ef1R7m0GGTWNOg0Lc/VIWd7fdZLd7tAZmyLP53J8iPtGk+1b7qau+Ig4u028+u6LUXOU49bt24xMDBAIpEgGq0St7LNMY9KpdqPpmn09PTQ09NTjuTL5XLcunULIUTdrrVHBQsNq0qfgsNK/WeU1YcjIap3MlHRmQyVSqXK8W4AZ8+e3fWJcTc4MUr1nqy42zFzuRypVIrp6Wni8TinTp2io6Nj25nc9bZ/HFSlOkIDWV9MWTgadCek0RroZMn0RuX5/dQhzSuH4no7aWvRt6wb6ZLrG5MVvV0ZQ7rFSjFKa7gUubZQiHMr30nWDhHCW1W3bJ0geeKiyLIseQJMW3NVrEui2pSgub77qB4mbW2IwaAIYuH3LEgMGeBmzzwfPvlfA7C8XOnfrQeNjY1cuHCBEydOMDo6yuXLl2lpaeHYsWMVF/vr6yOMZ6dKkw99+K0aES2I6druUuqLVyS7JynaUhBwiWhbQtRl5Yjo7Vim9ztys2xW+qYdFotL9Ic0pMuqU7TXieuNmHLjGLWkxu38e3g7vY6TjR2Pxpk3Nr6blaJ3Um3RNmgJtLBilgoat9OVXv69chCNWO41nlsoLi8veybo3evGbLMxj1qluhpOJN/s7CzxeJyrV68SDodJJpP3LMooSsgjZv+QR2hb3Bx6Ud3Y2LitSrU7Es/pxPbwww8TDAaZnZ09kCSOg4jV0zQNw6j0X27G6uoq4+Pj5Qmb7pzg7VLPiYPOePWqVE/7KtUhI0Y+6H3EnrW8giSqxzzNC3V01u5RuY7pLRWiOiAaAe8NZVh0kMErqgHWzQit4RzjmVamzRYQ4q5RQfJkdJbHGubpCmRp1IsEhIVhg41k1YowWmjmjXw7rxe6y59n2xqavrGP06bpqbYGNQ3L95VrQmIjeD0zhmEZBPVg3StV/uPCieM7ceIEY2NjXL16lWg0yrFjx8pxfP9+9A8BSUDzvteWEsvnsS7KPJprkwzbwK0XInoEt9XD31XMMMOI4MZ3GtLagMpJig7r5ubxlDY2DXpnRSJMRO8kbZZEdTTwDv5kFizpPY4CoQCuBo2sW2mCBDFcB25bKF4W1bOFJQzbJKjV7pJS70ncOxXxra2ttLa2ks1mPRP0kskkXV1d21r3g6hUSykPdILksWPHOHv2LFNTU55IvsHBwXvOX6r3MXE/oewfh4NDL6rvVal2IvGmp6eJRqMMDw9XzEg+yEYsB1GpvpfAtW2bhYUFxsfHyWQy9PX18dRTT+26kl/vm4d6VaqX1le4uRSnW+/BiM4hhU1LvJW1woZNIyACrJpbe/6bg52s+yrXeV/lWheV4smUlT/foqwusiypcXO9kwU7XnrEjc3Ptt3k/U0pBJKAL3IvIMBE0hrI0RrI8UjDDP/7EtxyhLXvfBjWTfKWXr7gWVVaYutCYsvS1L6vzH2XD/e+D7g/smdDoVDVOL5st85MYR69ii9dSg18kww1337xT0LM2zlibg3lq9YYvlQWTWzt957OmzRqUcxAruq/h7TWKjGLcQQ6Rd7F16ZXAUF3uJ354saNXc7K46eRGEtsHJcNgY2nKTY2M4UFBqM9W67vTjiISvVuhGZDQwNnz57lxIkTpFIp3nrrrbLvuq+vb0vf9UGI24Pq4uikXem6jq7rDA4OMjAwUI7RvHTpEj09PSQSiZombSkU9eTQi+qmpibS6bTnDlZKyerqKqlUqlxhfeSRR2hqaqp6l3tQovogxt1K4DrV/FQqhZSSwcHBe14UtsNBVKr3czwn7eSNlRFuRfPcIkSrMcwTbTFsn52iNdDJiumdxJW3fQ1ctDhuw4iGxrpPiFdrJ71uVgrXzSYrZqwQaRFBF5KfabnJu2Iz5cYwUlbmivg/QhPwY/GbZVFd+e8S09Y38pQ1E+kS2bDhq0bAs4vfK4vqerNVpcvtnZ2enuafp74EgUpxDJUTNg1L8zTUkVIS9Ilxvx+9QQvhftrQGvJW6my5teAaz2c5H4rDJqKaqjGMYcbzT/Pq+hrONxnXY8yzIaqXjdWK97U2NLOU3VieXvPanKZy84deVO9lvGAwyLFjx0gmk8zMzDAyMsLNmze3bIxyEJVq59y41/P6TjHN0m/DfRMhhKCjo4OOjo6KSL5qFf8HNaMaSoURSx4hT/XB11L2hUMvqt2V6mKxyNLSUjmRYrsV1oMU1Qdh//Bvaz6fLze4aWho4Pjx4zVpcOMe87BH6jnt6cfGxshkMvT39xNv74Sp0r8vmwZ/MbdCR7CR9tA5kjENkyka9JgnDk0AK6bXnqH5LhLNgU7StrdynbUqRc5ssXJZ9cmKGnNGE0PhVf4/PT+kSS/e7Yx4d53u/t977bH2QI5joXnuFDsJCPtuk5KNz3H7/YQATegeP+/GKIJlY5Xb6Sna2b/GGntB0zRe0yfIBdZAigoxLKX0ZHUDFXcaRStAg0tkWxJiutdnrmleMdwS1D1O9EKVmymHmN5KxjKxzM0fmRdt70oFRQPXMn28uj7qXe6zbWSsLA1alKy9sX4BvAJfhHA7WUhlZ3my7fym67JT7nf7x2ZomkZfXx+9vb2exig9PT0MDw974kYPslJdb3HqjLvZ9voj+d5+++1yJF9/fz/BYPC+eKp1UNgI7CM0UdG+5xXncHIkRPX6+jr/9J/+U/7gD/6Az372s7z3ve+lp6dn23fiD6r9Y319nfHxcebm5ujo6ODChQs0NzfX/GR7EOkftRrPsixmZmYYHx/Htm1P9f4bI295XtughVgw1lkw4HoGoIF3tXYTD0YJa6usmCkaAy2s+VI8/DFnDXojadfqawQqMqsbtDZyduUEtmqTFUOc5a83X+fn2t5CCImocmIWCE8b6moEheD9Tdf53YVOhICcEaQhuCEB/cIzJIIUpHcdHV+1EPAH09/iE50/veWYtWa7F2UpJX8w+TUADBsafD8JW2oVlhD3ZM5qFCyduOuUZEtBWPeK6pCexXR9TM7a3NoW0ToAg6wdrEj5cMhYG/tfI0Cq8CiT+co5KLas/L20hprJ5jfWzz/xtKB5n5T8cOx1Hs2Xqvyh0OZe7+1y2CrVftyNUdLpNGNjY7z00ku0traSTCbp6Og4kEq1M0nxIET1dsb1R/KNjo5y8+ZNBgYGGBgYqMmxdRhRnurDwaEW1a+//jr/6l/9K/L5PC+//DL/+l//az784Q/v+M7/QbJ/CCEoFAr84Ac/YG1tjb6+Pp588sl9bcV7GCvVhmF4spSrNX24nfVOIOsOtzKSc/tXBZP5HKmVFQAiWoKnW3toCfQixDKr5hQ2Jms+q4e/PXmT3sWKNeVZFtXbwNUFz01ItJcnK2roPB15kdORmXtscWnSovtPX6NEdAGNeo6h4CLjRjuGpYNLVId001tJ8X8AJQuIcyhcy9zB6qjvk5rt8n+mvknx7uS9ajnfFVnUNjQEvb/lgM8y4p/tLmQYIbKufy81XnH/vWZtHqdnEwNWWLWha5PXLBrLtN89y6ftp7i6toKOhoaGdK1ftoqHOqp7n/BlLe8NwLKxSkAEMe8K8kLcZnl5mZGRkZq0+D7sotpNPB7n3LlznDx5kvHxcV5//XVCoRChUIh4PL4vY25GvZM/djuuO2llZWWFsbEx3nrrLd797nfv41revxw9+4eqVN8X2LbNM888w+c//3m++93v8rf/9t8G4E//9E9paWnZ1Wc+CPYPp+I6MjKCYRj09PRw/vz5umRk17v5y14q1U504NTUFM3NzTz00ENV81QN22Qs57VxNOjeeqEGzBQ2YsnytsV8McBbS2uATkQkebS5jaBeIK6nydlz5OxVDOkVLxG9sUqo5+aWJqezoobN/zM+TUtgzfcKf4p01S7XaAgslyrW7wrvDza9zZcWf6TCUxzWLdKGhn73vG/JQsUn60JiUop5s6TJ15Yvc4LNY+H2g3tVyoq2wTOzfwUCcoZGWPfufCllRddE/8VOSunJ+waI+GYxmra/st/kiUhsCPSyaG6ebJQ2S6fvedvcVFTn7DwhrQmLh7m0sFJaV2zaQ813s6ZLLBmrFVnm/pu7ks9649iRSDpCLcwUSsJ/zlzmiSeeYG1trdzie7dRc3B47R9bEQqFOHHiBMPDw0xPT3Pt2jVWV1cJhUI1q/Dfi83ErbTXMM23EBSQFEEaCO0YgeCZmoy7lxblLS0tNDc3H8h1+n6hZP84OtXdo7QtbnZ1Bvmd3/kdkskkkUiEJ598ksuXL2/5+pWVFT7+8Y/T29tLOBzm1KlTPPPMM7ta4X/zb/4Nf//v/31+9Ed/lPHxcX7v934PoCatyutNPewfhUKBO3fu8OKLLzI5OUl3dzeRSIRkMlm3pjOHoVK9trbGG2+8wcsvv4xhGDz++OM89thjtLe3V72wp/LzmNL73fnvvLtCLRjSK6zyrsfxeWmxUAzyrflVvjpr8Zfz7dxYf4ipXBchnqBZv0CLfhxR5d43t8Vhs2qZgOS/jo/RoFX+Lra7Z4TvpOecLJoCOQaCy0QC/hxqsOyNU4qmWVT7GgKydNwJAS+lX7vvfJJfuPMn2Bis5aMs5RtYyMeZSjei3W37Xeo66X2PX2QXLb1imV9kC58Qbw+2AKCLMAHxNFdXHkUXm/9G5/Ilv3VBSGJ666av08Q7+Pqc13/fFPRWR7NWjpjurSobts/uIYtEbO+NY3Nw4z1ZK8+KsV5u8f2e97yHcDjM5cuX+d73vsfc3NyOvuujVKn2o+s6AwMDdHR00N3dzfLyMs899xxvvPHGnq5l28EtqqW9hpH/Y3Jr/y3ZtZ8ht/5zZNd/gdz6PyCf+XWWVj9EOvM/I7fw9u9kXNWifPfYd5u/HJX/jpI/3M2Oj/A/+qM/4lOf+hRf/OIXefLJJ/n85z/PBz/4Qa5fv05XV2W9pFgs8mM/9mN0dXXxx3/8x/T39zM2NrbrqvI//If/kE9+8pPlO3rbtolGoztqAOPnKFaq0+k0qVSK2dlZWltbOXfuHK2traysrOyprftuuF891U4joPHxcdbX1+nt7d12dOCdTKWdYsVXVWwNxplzVQNBMu+bXBjWvKKpYAkur7jzqAUPxTs4Fj/BinmrvHTJ2PzCO1VY4b9rnaBJz6MhqGykLe9+snAtq6RiHp4QBCnFF3+w6S0mjHeTt/SqTVEcQiKIgfeCnDUNnPu5VWuVSbGy6fvrzZqR4TuLr7JWbKRob+yDoh3kzlqA5pBGLFD0+KellFWq2d4LhmFpRENei4XA+3c8GEa3HufZeY25YpaTDb00BQZYNkaqrKlgLLuRvhHV28lY1Rvp3MrGAa8nP1QlorE11EQ2v2FHyVTxc0ftMHmXlzrsm+A4mZ+jNVTKsXei5o4fP04qleKNN94oW6n6+vruKWBt265rQkW9RTyUjh0n6WJ9fZ3R0VFefPFF2tvbSSaT+9J10LIswqE0hcxvYeR/DyeQXAu80/tC/RjYL5PN/TuKxW/T1Pg5AoHdV61rYTtR6R9HR4gq+8ddPve5z/GLv/iL/MIv/AIAX/ziF/n617/Ol7/8ZX71V3+14vVf/vKXWVpa4sUXXyxXRpPJ5K5X2D1zGko/Mmey4m45Kp5qKWU5/WRlZYWenh4uXrxILLaRdVtvgQv1j9S7V6Xatm1mZmZIpVIYhsHAwMCOrTB+P3UAjbnCimeZ7rtANwfirFteMeyvZHeEmhnPe8VMKrfM22n4QOc7yNg/QBMBFqpEnjl8MPYWfcHSODYSTVZWeKpdlkoV2HtMVqR0CW4JZOkNrPB2oZuQviGy/P5jIXTwVbksW0O3wmh6DiEkL+m3+dktR60f/+rtP2Ehv3Fa1DwNXwSrxQbSRhSBJKQbRHSTkGbSGCrivjXxT1oMiDC4RLSUkoagwXqxhbm8TkRvJ21084PVaddrNEy7DagU1Y2BDgquyYVSVs+zbg70MpOrPK6r/RqjmvdmcrG4UvGaMN7Psn2+pKn8PA83nfAsC4VCHD9+nGQyydTUVDlqLpFIMDg4uOnvTkp5ZCvVDu6Jio2NjZw/f77su7569Wr5qWJvb29N1k3KAgHxHzg1/PtY5jk2OvyEsMy3Xa8MUHDdxJvWWyytfIj21ufQ9b5djX1QXu6jgn3Eqrsq/YNS1fnKlSv82q/9WnmZpmm8//3v56WXXqr6nq985Ss8/fTTfPzjH+fP/uzP6Ozs5Od+7uf49Kc/XbMfWCwW23OluliszPzdb3ba3XAz3CKxWCwyMDDAQw89VNWfdxAxfvUeczMRbxgGU1NTpFIpAoEAQ0NDdHd37+o4vOMT1R16MzO+SmHO8iZfdIaaWM95RfWK4b0ZjPp82TE9yrpVqh5+c36Ns6FzJOPrSKpXqt/TMMGTMW8cX/W6TuVSU+qEhDf/z7a9DU0CQuB4On4kfou30t5c4ohuUpR6+fP9+drZYpD5fEkANgQELdEcC/oaRdskVMNufJux1c3WnfVZLi/fxll3W0oCvmtYAO3uxDyBaYbJmmFAMpvfyKXWhUVcg9m8hZAghCQiNYQWZ82QBLUg64aNHvB6hvt8kwWzlsFcPkC0iuYMiTZwZaJnzeoXW40eMlalTafaxETN56E2pUlrsNmTWe0vEuZ8kxcnc5XdPB3cDT/m5+cZGRnh9u3bDA4OkkgkKp4QHWX7h3tM//knEolw6tQpjh8/zuTkJLdv3+bGjRv3vAm5F2bxOxQy/wORwDi2HcY2N9KLtMA5TPMHrr/PYxtXPO8PBp/ctaCGkqe63tnYRwlLCqwj1Nr7KG2Lmx0d4QsLC1iWRXd3t2d5d3c3165dq/qeO3fu8O1vf5uf//mf55lnnuHWrVv80i/9EoZh8JnPfGb3a34XIQSxWOzQVqoLhcpYtO1SLBaZnJxkcnJy2yLxIGL8DrpSnc/ny5MP4/E4p0+fpqOjY9ePES1pM5L12j9iWsg3mVAy56v0RXTvTU5YBCsqztLn0+4ItpBxCZe3iwXkej+Er1esVyKwzN9svF2xXFa4o6tTTW8K36TGgCskpEEvkDWCpI0wUgriwRBps4iuWbRESse1FEWQGiCw7QBT6TgIgWUK8lqQ2YxOPFjg3916lk+d+uA21nL/+J+u/RdPrGAprcPnlbYlm+kuIQSm1CnaGoYEXFXddSuA0O96oO2SnaTB1eI8IHTmfcfLcjHDUjHP4+2VY1myAbeoni+axKtorVRWY7GYrVi+bPgnr1Y+NQFoCjR6RLXlq0z7Jy9O5jcX1Q5CCLq6uujq6mJlZYWRkREuXbpEb28vyWSSpqaSfeRBENVbRerpus7Q0BCDg4Oem5DdJKsUc1/ELPw50h4HoFAcJhrZuGbb0ltUMuzKYybe8MvbHq8atapUP7D2j7te5KOCpSrVu8O2bbq6uvjd3/1ddF3n8ccfZ3Jykt/6rd+qiaiG0mOzw+ip3q3AzWQy5dbrzc3NnD17dtveO0dw1nNm/UF5qv053I8++mhN2t9O55fI21s/YWgNNrJqem/0TJ9o6Q63MlHwtpB2qtIO/so1wJoZpiESwvBdCP964y3kNiV00RaENO9Jzd/9Dyrr2U4CCECjVmDZiGHZJZ/jigEQwLAEa8UiffE1AprEtHRsJGOrjUjhvahKNNaNCH+18DYf6DnPw027r4Rtl2rH/Xfnb3ArPe0RzP7JiFBKxJAeYSnRhDfjO6QFsD2ZzhIpzC2/lZ5IKzOFDUEaIMBCcQ0JxPVO0r5s81XTux9T2XXO+g7toAjz2uoappR0RXXPxNp1M0OjHvZkna8blefQsO9GMKd5iwBZK0dcj5O+W/meyu9svkZLSwuPPfYYmUyG0dFRXn75ZVpbWxkeHsa27SOX/lFtzHsJTfdNyOrqajlZpauri2QySUtLy6b7ScoChfSvYRkvI+XG8aVpG08qhOjBst7c+FtLYFhvez4nFHwfweA7drOJZZT9Y2/YUsM+Qp5qW3mqoaOjA13XmZ31CoHZ2Vl6eqq3p+3t7SUYDHp+TGfPnmVmZoZisViTCKFYLHYo0z92YouQUrKyskIqlWJpaYmuri4ef/zxCo/5vXAuGvXs5FVPUS2lJJ1OUygUuHLlCr29vTXP4fb7qQHStvdxekeoqUJUL/smF8YDEXexER3BXNFrIbGruF/XLZOBYB+zxdHysi59ndbAGvKu7HVTGaAH1Rq9BEQVr+0WXuywZtEZXGMq3+LpLqgJWC9GubUcoi++RlMwwNhaA6arI5/QpCvCTbBqGHzmrf/Cf3rnP6zwoteDz779NYRwV6llhaiWspTy4dlzdgDp65IYJETBJaqFHURo3psw3XdDE5XeMnNbqIWVYun4CWo94BPVs3mvuM3ZFnG9nbS1Mcm1OZDEuCuk20OtzBa8kxVbgy3kXDd1i8YKyLsB5eWN9ryFrChNfnX7IdtDzaRzpeN/vrBMwTYqJuDei1gsVs5xHhsb49VXXy3ZaYLBuondg2rEspMxnWSVU6dOMTY2xpUrV4jFYlVz9G17jvz6P8Q2X0ULPIk0S9+1aXUSCo6WXyf0ITBdXn6tEyyvjz/W8KldbuEGe4nUg+03bjqqqEr14WBH31AoFOLxxx/n2WefLS+zbZtnn32Wp59+uup73v3ud3Pr1i2PqLpx4wa9vb01y+RsbGw8tKL6XuM6funvf//7vP7668RiMZ5++mkeeuihHQtqZ0znc+tFPUS1s59eeeUVRkZGEELwrne9i9OnT9e8sY3fTy2ABcsroP2pCGERZKHKxC83XaEWLJ/9I2N6PatSwqKVwbS8kWgfaLqOEFXirNlMQNv37KAI1RNApO26QY5PV3yKI04tqZNab2E23UbaV1nVNO7aQpw32cznc/zG21+95zrthWoX5j8ce4kVY81z/yClqPAP27LyJseoclgXfJ0u86Z/TEnAlxZSyHqfUMQDGxMP1wzv8auhk8pVnu9KDYE2WDc3zg8xvbLBSIMvQs+SFm0hb7m7YHufhkghaQu1+NZ142mKRDK9w2q1m1AoxMmTJ3nf+95HOBxmbm6OS5cuMTo6imlW2lNqyf1aqa5GNBrlzJkzvO9976O3t5fr16979pNtz5Nb/bvY5quAwLZS5feaVrfr2NawrFHXJ8comG/iJhR6P8HghR2vo59apX88qNhs+KqPwn/3Z9uvvbPjM8inPvUpvvSlL/H7v//7vP3223zsYx8jk8mU00A+8pGPeCYyfuxjH2NpaYlPfvKT3Lhxg69//et89rOf5eMf/3jNNiIejx85+4dhGOW2tiMjI/T29vLud7+b48ePEw5v1pR4e2MCdd3e/Wz+Ypom4+PjvPTSS9y5c4e+vj4eeeQRNE3bt0YKflHdLuJYvlNE0a60evj3QMY3yas5WJngMO+rXMeIkpMGY5mNymdcy9N9t8FLtROVjazY/0JsNoHRi1blVZar4nw8ulApvD1rIpjNVD/WTNfKCgFhPcCzczf4zvzNbaxZbbBsm39/+3l0fTvHZ+XpMqJ7l0lbgL9due+jTUtUVKojTV6Ba+Y3PuNO2vt5jYEuzCq/J1t6P+Ot1Q1xr1NZOdZEpcBpDHhv1NfMyrkqTQGvQPc3iZnaYrLidtF1nXA4zOnTpzlz5gzT09M899xzXL9+nXy+cpJlLbjfPNXbIRAIkEwmee9731veT88//y1mpn8FaZfmV2j6GZBOR1aBrm2cvzT9IaTceFohAg8hpftaKojt0UvtUIucanhwhbWT/nGU/juK7PgI/9mf/Vnm5+f5F//iXzAzM8Ojjz7KN77xjfLkxfHxcc9JYnBwkG9+85v88i//MhcuXKC/v59PfvKTfPrTn67ZRhzmSrW/gut09JueniYej3Pq1Kk9Tarz4+R8HvZKdaFQYGJigsnJSRoaGjh58iSdnZ0IIchms/u2fVLKiozqmAizIL3H35JvIpjf6iGA2YK3BXXAJ07ag80s+iYyxogD69zJrvFUQ5ysneZvNF4vV4dNKQlXOVaq+6wrlxVtnZBLFGpCYPq8rQHX2/rDK3cF4sZCIUoWEKdhoBbY5Lvw6cKCXUCi8Zm3nuGr7/6HNAR2f/O4Xf7nG3+OJS3PNgEeK4hDWNMxXbctUkqk8No6QiKMhfdmyS+gbVvDf/vjnziYKWxUiK+vpznRGMGQJTEZEK1A5USyjCsBpCnQxUR+Yz0KduX2FKtMTAxr3hvRZWOVADqm6xmI39rh9/ZP7qFS7cap4vb09JQbpLgnNQ4PD9e0xfdBVaprMabT0rurq4vlpb+P4bL1mFa4LF80/SxBNlI/pO9mq2h5z23h0AcIBs7tef1AVaoVDwa7um38xCc+wSc+8Ymq//bcc89VLHv66ad5+eWXdzPUtojFYiwsLNz7hZtwP1SqV1dXGR8fZ2Fhgc7OTh577LHyLPj9GPewiupMJsP4+Hi5qc358+crJuoIIfatMj5fXGXdV2H2R5HFtDBLxtZpNB2h5pKH1YX/UXtLsLFCVG9UHAXNei9F+22SoQ0frbmJpaOar9q0BQGf4DOwuFd9PyTAWdOOYAZdkxgmaC4Tsu4S1UKUJt6Z+DoKenzVpb8DUiNnG/zy1T/hf3vi/3WPNdkdzrFye32OP029ClieE6GGAN9+kRJMn4A2ba3yhsEXEyWlJBjwNYbxfRNRLcSy73jRoqGybpYIAmYHhj4BgCGjVBPVcwWTprtfnk4vuFqerxQrq7vrZuXTvWpHT1uolbnixvnVny+b9n3OdhJAtoNbcAohaGtro62tjXQ6zcjISLlJyvDwMK2trXsWXIfJ/rEZ+dy/QYjvEwvn735+BCnfYuPhUmTjxaIZy3p940/9DJYrZq+WVWrYu6f6QefoNX85Otvi5khsVVNTU00q1fWeCOHkVH//+98vB/0/9dRTPPzww/smqKH+udF7FdVSSpaXl3n11Vd55ZVXALh48SKPPPJI1YupO+Gk1lSbpJj3ZTF3h1sqXpP2pXq0Bir98P7qdkhU3vMWXZuUMcP8WOMtz8QyC4ldpSpZjXwVB3a1irZ/ckzYNV5cKxLEQPpeE/G119bsyouppoHwf/ZdO8Vra5N8e/bGPbZg9xi2xSeu/AGWtAj6hHGwym1FtcM3WKUmUZBeP7Vp6hXebH/2dXfE22JcSpgveEV2trBRkV3MVy8ApLJrOLdOUznvuk3nKyP0FosrFTcBuSr51Y0Bry0p73vNkrHi+RZrYf8ANk0oisfjnD9/nve+973E43F+8IMf8PLLLzMzM7On3/xBRPjVssFNIf+fyeW+QEA/g7h7AxgIPYx+tzmTZUUwjA0RremnwdXt1HYLbiAc+vE9dVD0o9qU7w0bceT+O4ocCVEdi8XIZisrN9ul3pP3TNMst+21LIuuri7e/e53c/LkyW21yN4r9c6q3q3dRErJ3NwcV65c4fXXXycej/P0009z9uxZT5fIauPB/nyffj81wKLtvaFr8MXgacBsweuNDmpekRnXoqyaW3dbBFh3TYK7trzC2Ujl+phVftZmlaB9v+UBqj+6yvsEcUTY5Sq0LiQnY5WP+wvS22Ewv9ncAd/iUrVeIgT8q2vfwLD35zj9+Pf/gMW71WG/PSPnXykgqFfumaDPT40E3TcB0a6y3yO+j4oHvGImFoiWI+oc1gMbN9mja9WfghSkTWOgnYAI8uqK9zV526Ql6L1RN6VFq29i4kqV/OqA7+ZuxfQ+PfFPcJzKz9fkhvZeIjcSiXD69OnyZL1r165x6dIlxsbGdnV+OwhRDdSkemsYb5JO/1MANJdHWsqN4yAYOofuSqHJ553JixpoD1GwJUJ/CKGdQGhDxBr+yZ7Xy42K1NsbTqX6KP23G37nd36HZDJJJBLhySef5PLly9t63x/+4R8ihOCnf/qndzXudjkS7Y1q0aYc9v9Hn8/nmZiYYGpqimg0ytDQEDdv3mRwcLCud+D3u/3Dsiymp6dJpVLYts3g4CB9fX3brnI4F8Z9qVRnvCK2M9jMvM+i4Z+02BlqZd7w+qeLvup2Z7iJlK89uV9k6+gs2huv+WttP0QTVbKlRanjn2c8LII+sR2klBWqefzSlQ1P/HnWmgApdRAl4XKyYZbX1vo9Y2qaxDYEzr2DFNsTOUKThAlSsC1ydpHPvPkMnz3/k9t673aQUvKf5l7n6uooUpYmFtrSnUktEXrlzYzfBS2lxBTeqnSAMLbwiuGKSZxSYPvi9fzRfa2BFubwHi9vrmZ5ulMQECGWMKt8comI1kZItHhamDs0B5oqRHNTIM6yy4a0ZqaJaEHP8elPPFk3M0REhLyrKt8SjLNQLP0O8naRJWOVdl9KyE7Zrsh1JusNDQ0xMzPDyMgIt27dYmhoiEQise0Jy/WMGYWNyeK1EPLZ7G8DRXT9NNilib5CG0BaG02i3F1Yi+YwaSPMcqaRXHiZUKCNNZcVZDD+/6YzcHLP6+Vmr9dXFal31CL1dr4tf/RHf8SnPvUpvvjFL/Lkk0/y+c9/ng9+8INcv36drq6uTd83OjrKr/zKr/Ce97xnL6u8LY6EqG5qatpT+sd+J2K4m5C0t7dz4cIFmpubMQyDmzdv1rURC9y/orpYLJYnH4bDYYaHh+nq6trxRWd/K9XeiTxtocYKUb3iy6NuDcYqRPVi0fsef3U7gF4WKQ5xO8YSG77r97dUt0dU2+pqAloIyFkaMVfyRUBAXpZ80+X3Vpm0J4SGE+CXCC+ha7KyKmtT9nJqm6RraD5fNUBAExTubsRzC9d5dfkdPNLaD5QurEtLS4yNjWGaJslkkr6+vm0fI6PGGn+08gOwg+SKAIJ8MUhTWGBTQNdtwiF/tRlM4RXatq2j+bzShiXxF691X0OdQkEj2uB9n79leFSvfFq1Zlo0BXrQRYCtclssO0rOCgIrFf8W0iJVllVOBm0LeRvRZH1zCADaws1MubzTUV8lfzI3t2dRvdPzoqZp9PX10dvby+LiIiMjI4yMjJQ7EG71dAsOrlK91zGLxjVM468A0LXG8glAaP1Ie2Lj/1vXkdppxlYFhXCMvH4NoiCsLlbNN8q/wVjgBMONH9vTOlWjFm3KH2j7hxRVn3wdVnazLZ/73Of4xV/8xXLa3Be/+EW+/vWv8+Uvf5lf/dVfrfoey7L4+Z//eX7jN36DF154gZWVlb2s9j05EqI6FovtSVQLIWo+WVFKyeLiIuPj46ytrVVtQuKukNfzZF7viZnuhjPVtjObzZYTT5qbmzl37tyeJh7tV6V6IZ+hwe4mFAoyUyyJ5IAvliwo9IoGLgHfNse0CCu+KrQ/M7or3MqUr1lHgx4DsySqhyMLtAQKVOvrmLY1wj4RKwTkpaDB39CkSlXbsDVC+oYYDAnI2BohV1XcHbXXHVovZWQXdPSQOznEO35QhjCEdzKmECBsAa71LfmStfJ6/fM3v8qfvevvs7CwwOjoKIVCgcHBQRoaGrhz5w63bt1ieHiYgYGBLSthq/kcv716lYIVLLvJneYz60WAMLYJjQ0FGqKuPetviAJEtBCmL+XDlO72NmDbkoDveyila7i/NclCYcW7T6i+DRpdaFjA5vNHppbSTNrVU1NMu/L3VO0XEvPlVy/5JtS2B9tppI8evZOMAWtFi3mrieFwmCljlIJdZDI/z4XmU5uu53bYrcgVQtDR0UFHRwdra2uMjo7yne98h66uLoaHh2lpaanpeLvFOe/vVSiuZ/5HwECIRjDevPuz0bCtO3dfoVMUZ5ixm1gqjiNFJ4KN3OpIuJuiUZrsLG2d/OiHmSrO0dvbW9PK/V4r1U5y1YOKfcQq1TuN1CsWi1y5csUT2axpGu9///t56aWXNn3fv/yX/5Kuri7+3t/7e7zwwgu7Xt/tciREtTNRcS8V31oJTcuymJmZIZVKYZomAwMDnD9/nmCwSk6sq0Je7d/3i4OoVEPlRctJPFlcXKSzs3NXHSKrsV+V6utrC7w4XRLMj3Ucp7EhS86X2NEbbmWi4PUY5yzva7rCzYzlvYLMn8QQsip/muFwHO56s3+64y0CAowqqkhiUO2nnbd1GjR/EkVlLki1vZa1A4T0je1wJ4C0BHKAxLLwyEFdtz0XAcOSVc84hi0IusSnENCgB8laperwopHm0y/8IT8dSJBIJMoX+1AoRH9/P7Ozs9y5c4fbt2+TSCQYGhqq+D19Y/Iav/7qN8hYWx8TEo10IUK+GKSzuYiFSVgPVsTG4bfdVEn5MC2dQNC7LKgLz/TQ5kCMtOUVyXmrepOT5WKExqBJUCxjyOrnizW9gYl8lmrV7LRZeQuWswoVy3Sfhzpn5ekKdSHzMW6tSn6YK/J4W5jvL2wc56eborw9uU5TqJt39cWZy6/6P3bH1ELkNjU1ceHChXKnxldeeYWmpiaGh4fLEZy1HG8n1MJuYtmrSPMKAgjoZxHW94FS/rRtvYGlP8qkabGaewP77s2YbUZxus83BE6zamwkfiSb/gFBfoTR0VFu3LjB0NAQQ0NDe878dyZlKk/17jl6bcpL27K25rWkhcPhqr04FhYWsCyrHN/s0N3dzbVr16qO8Z3vfIff+73f4+rVq7VZ6W1wJET1XivVsHdRXSgUmJycLFsXEolERdtYP0KIugtcODhR7SRyLCwsMD4+Tjqdpq+vj6eeeopIpPLR9F7HrHWl+u0153G34IcLK4DkodYWhkL9zMk58hg0BqKePGqQzPs6KTbo3m3VqGzyYhSLFdOI06Yj7CTviM3ebUheuY2aAMuW6D6zrqjia652C+r3+AKY0j9ZUZaTSCLCpCu0RirX7nlNIGBjGgJx9wMN26rSgsS3EhLsYohcMUz+bj1cE/BdscxaS4SPx44x4LowCyHKOcYLCwvcuXOHkZGRsp82EAzyjy7/Kc/N3EHTZPkRd7VDQ8qSp9vZ3umVCI3RHFrYdyMiJYYoeFZbk0HQvaJVyA2LjIPlq9R3hpvJ+LojrhqVdguAm+sGxxpHeG/7NFkrxGyxkVS2FUNunMbDehsa+YrYO4D5QrrimPLnY0Op4u7QFGgkYCW4syi4ue5YmETFBNKFfGkb1oom3xhdYTXTxEcTVTdj29TSFud0IDx+/DipVIo333yz7MXu6+srJyIdRKV6L6ym/yXi7glHkxtPtkzRwYw8z3zuJk3Bx7EpVa0jepJcdHTjdS7vfVPwPMnG/xbRpNPf319+MuQ01Uomk7vOBXe6YSpP9e6xEFhHKDHD2ZbBwUHP8s985jP8+q//+p4/f319nf/mv/lv+NKXvkRHR8eeP2+7HAlRfZCV6nQ6TSqVKucm79S6UO8kDmfMgxDVU1NTTE9PY5omg4ODXLhwYd8q9PvR4ObaqteO0R5u4K27/qwgTTzR00rQ9723BOKs+SqR/olfHaEWlnye62AsjNtdICXMFUrVv6eaxmjSDbYqumYBf80/IGz8qmq7CSD+c3lE2KzYJcErBJxumGE62+J5sRAgba0sVDfrWqjf9VUbBZ18IVh6LChNECA0sCQY0uLV5Vk+8tL/TW+kiZ8dusAvnn2y/DsTQtDZ2UlnZyfLy8vcuXOH/+Mvn+H37RQrVpGGoE7B1+XS/xOVlsDr5hHkCg3kCpJoOE8kZJYa28gg+CYb5i1JxKcXgr6qkrQlUi96dmVU91YAhRTl79m3drSH36Y1WLr5igWKHAsskowuslCMkbHCLBUbKJo6neGWirQZgMVihr5o6G4yS4k1M01M8y7LmDkiWpg2/QTPptbI28s8etfT7uAX/ovFLFE9RO5ulX0k7T2ed8N+iNxgMMixY8dIJpNMTU0xOjrKzZs3SSQSdbfh7bVSLaXELH4NHdD1U2DfAuKsa09wJ/sDwEITDWSMjQ6lAREvH/fx4AWWi6WW5JqIcKb1f0Tc/QG4f0/r6+ueXPBkMklbW9uOrrXONW6v9o8HmaNaqU6lUp4I4c06Rnd0dKDrOrOzs57ls7Oz9PT0VLz+9u3bjI6O8pM/uTHR3dEEgUCA69evc/z48T1vh58jIaobGxsxTZNCobDrSLqdiGpnslQqlWJlZYXu7m4uXrx4z4kwm41b70p1PT3VhmEwOTkJlER1IpGgp6dn3y9e+1Gpvrbmzd/tiTSyWCxFORpIXppZYjjWSkH2c7Y9ypo9T0uwgTVfJXLNZ/XQc1bFL9E/kbFJjzNhlCa0/XhbaYJiRoYpSoOQVmkXSFsBGn1Wj2qXsyBgSYnuumAFhaiYPBik0qPtTgA5Fl3khYCkUNAJBF1WDtd7NF0iEBX+cQC53khWutZXlJqi5F0TM/PSQNqlzOXP3/gOX7z1Pf6rnuP89xfeR1dko4J2JbfAby+/zq3iAoiSmM1bZoWIrlgHKiv3US3EmlHEyEbJFizi0QKNwQBGhZu9SttwzfDcwgRkGIQ/B9r7vtZQM+sVlWqbd3fcoTdSmXBUsAN0hdNoYp3jMbBliqwVZrkYpmAHWTWirBhRVo0oEo2IEaIQ8FbL20KtTLs68IVFEzfmoiwWV2gJrvOerjGON77Bo21rNASKFG2d//PO+yr2WE9DIyPrJTE/k0uTMYvEAruzDThPtfbrPKFpGgMDA/T39zM/P8/IyAiGYTA6OsrJkyc9c1/2i72K+PXs76Df/X3oohlbP8/twhq6buI8IYkHzrJmXAEgqg+TNt8AQBAga240jTrW9EkaAtUfLTQ2NnLhwgVOnTrF+Pg4V69eJRqNkkwmt30ud/zUexXGD7KwtuCIVapLNDU1basvRygU4vHHH+fZZ58tx+LZts2zzz5btRnhmTNneP311z3L/vk//+esr6/zb//tv62okNeKIyOqoVQ13k9Rbdt22S9dLBbp7+/noYce2pPfbLcC15RFXl37Cjk7w6ONP0k80Lbt9+6kUp02xkmbN8nb0+TteYr2CkW7iCZCBLUWIlo7Me0UfQ1Ped7nbrfe2NiIpmmcP3++pm2Ft6LWleo1o8BE1uf98lVdNGAyt0bRtpjO5gGd/6q3g+PhCLPmNGkrh4ZgzldFbIk3M+/yoMb1BtZ9zWJagi1M5BcIYnI2WroY3jKa6NKXqnZAlFWc0QEqBbQQsGKGaAtsiMSAkCxbQZrv2hlMKchJnZwZIS5M4ncj50pVrdKx2xcurb+0NHD5iHXN9oT8CyuA9NkkjEyAfBbw/3SrqNygpmFIuzTx0jZ4Zuoafz51nVONHbyv5zj/99hrLN290Sm9V5aazLg+p9KU4Xq5D8N1v2JaOivpBmRIRw8VCbkmZUYDwiOPLVMQDHq/AyEDFdLb3xSoKdCI+xGFhsGPdN6hK1yZw5+1gsT0gmfbbCQRrcix2MaNm5SSgh0gopnY6BRtQdHWMWydgGYT1aboDhaw0IlpMbLFv+S/O7FOQDMJaJKCrXtSTaSE93S/zg/mL7JQ2Fiv5pDX1jSWXuahFq//cbs4N8T7LaKEEHR1ddHV1cU3v/lNDMPghRdeoLu7m+HhYZqbm+/9Ibtkr5X4fO7L6IAQzazYIcYL1whpXWSN1wDQCJM1b5dfr4mNG4VY8BGWi1fRRZy2yAfpb/jZe44XiUQ4deoUx44dY2pqilu3bnH9+nUSiQSDg4NbPnWsRZzeg27/OKqV6p3wqU99io9+9KM88cQTvPOd7+Tzn/88mUymnAbykY98hP7+fn7zN3+TSCTCww8/7Hm/M0nZv7yWHAlRHY1G0TSNdDpNZ2fnrj5jK3FbLBbLfulAIMDg4CA9PT01mXSxG/vHTOE6zy9/gRWzVAF+I/1VwloLicgTDEbO0R0+RaPetekFqZqotm2LtDXBmnmN5cL3yFjXKcopkHlsBFJqdy/epRObLSErQ2TsMEUZ4kPB/43mYK8nPtDdbv3SpUt1PSnWulJ9fa1KgxOfr7Qv2sREzi28BfM5m9en19BFjHMt3bRoOeYD81iur8byeZ3bg00VYisoSoLlx9uvExKS24UmUmacuJamsUoGSFAz8demhYCsHaTRl8Psf7cpBaPFOFmpkZYa67YOQpC3A6V5AFg0CpN2PU1/sFQp6whUn9MQ0G2KciPJo2hZBNyrJSGXD5Wyon3vzdlG2QJSXjfsiiq6LSXj6VX+/dvfozEYxrZL3RqhJAD1gPc4MA2BFvQuk5KKFZAS8v69I2E1L5H5OC1hQSyawxYGMuDdp1ZR//+z9+dRml13fS/82fsMz1jz3N1V3dVSS7JmW7aM7ZghMXDhJoG8kOuQXMwlvISE5bXeFYc3IQnLTm5WFoRwCUkWiRPA8fW9EHMJvCRgsA0GSbYlWZZkDbbUg7qrunqqeXrGM+y93z/O8zx1puqu7i6p3eX+rdVLqvOcedj7u7/7+/v+MpUaPRWmBkCG5ZTzhyt2pj6nips8PHgZV4bUwgISTdEKsIShoVz67GSSoa8krlQ4sUFLoAWWgP7eugqJZMBq4XZmMkK9xaBtKAkfZSSmkHSkMCntvhBw/+AVVlqa1dgpOCmAeK62fsOger/s5vYaXdD2wAMPYIxhfn6e5557joGBAWZnZxkdHd13gH8z8o+m93ksNkCMsMo7WPGeBaBoHcHX0Yxa1X2Qbb/LUh+nEUZSD6MKtGUN234PG6Hh3QN//7quzbZtZmZmmJ6eZnl5mfn5ec6ePduzLsxj+e+UKL/5uFOmHD74wQ+ysrLCRz/6URYXF3n00Uf57Gc/20teXFhYeEslXHlxIEC1lJJKpbIvpcrj0Wg0uHjxYs/q7b777mNkZGRfG9frYaoD3ear2/+VV+t/RLqT8/Qmc63PMd/+HBABAldWKEoHbTSWsHFFCVdAq7KFMQGnl1yEaGJMC2OaOCLAAmypsUTUlSLAwmBQtI1DTRUIjEWI0+lso4P96covc3zpb7K1tdVLPozPGnyzemPvNU5uZUH1cjv5vo0UyilQHdnwQaQLfmWjzn2lQc56ikdHBxguK64EVzLlyUtWNmnT7wwQvmvwHHVtcdLvBwHbusAEWUArcuQIAA1tZUB1910KjOAb3gDzoUtNuZS64Ewk/oPGYstY1EKbQatBRQZULY+C9AnS7L1l0N5OEZg0Hew3OhpqSQYsI6Jy52njQEsKtImSDrUGlKAhooIotcDHGBktlypjaZd3DpCnpwY0mFThm4JxOuXdBZsebHpFXO0w0N/CLe3cV5NnX5eS6Yy6A2yGm4llyoArAt4xfJGJmNyj2HlmTeXSVg4lK6AeuljC4AiFrwV9tp8oYuNpm4r0ess8JZACHBGijKClLFwRUJIqKjMvLCwBvpFYsffHEarzre9cky0U7x5/iq+tPd5blk5evBld9a0A1d3jFQoF7r//fu6++24WFhZ49dVXcV2X2dlZpqam9u2cbkb+Ua//K5QRXFIjBDqa4nbkKNsdllpQoBnM9da3RNQWO+IYi9tDbJQXcaThL0/9O1x5/bJFiFj+iYkJJiYm2NraYn5+ni9+8YuMj49z7NgxBgcHe33lfpUo/1aWf5gDVtrb3OC1fPjDH86VewA88cQTV932k5/85A0d83riQIBqiCQg+wGqjTFsbm5y4cIF1tfXGR8f3zert7zYC/gzxjDfep7TzSdY8k8RB9SD9iEsodgOL3fX7jSgTWCbtgYLB23aGKFpG4MtClhWi9CECGNwhaJiaSwRq6JmbFpmmM1QIYWLp4Me4gmMTDpECMG6Ose9gx7ve/B9u9oHvpWgWgixr0z1yRRT3WcXWPFS2miR7CALQnKlndTBVkplwvYGz69sAjDgjHCs32W2OkFNr7EabGQSGQE2giZDdoNDbp2vdwA1wJbKlztJAW0NxVSf3dY5nbgwvNzu41xQQnU7rZyCL2k9hkHw9fYh3l0+jyM0d5dX+Lo6TKgEMv6CxHyoZcz/GgPtduddkVA0Dp5IOWjkNLwGE7mEmEhuku5new4fgcRInRhgGA0iB2gbk6+nbpHUH9vChrj2G4EXOCzXLAp1xWh/gCi0s8VujMkUlRl2+1Kg2iDEG3zXxBsUrfRA29BWNq5U9MU00aEWBNqianloIwlN5DPuCE1BhmgkYadqZJ/VRgqDr20c6WFjUNgIkezelBaJpFJbGnwtkgV6hKFg13lo6CKvbhwBYDulBZ+r3TiofqvkH93IA/Gu63L33XczOzvLpUuXOHv2LKdPn+bYsWNMT0/fNEi8UUmEH76Br+ZZ1w6ufQRPfxWAojVDoKNk6j7nwZ6WumzfRUhIWzzOoq+plS4ikHzn2D+h3zm863GuJwYGBnjkkUe45557OH/+PC+88AKVSqVXwOtOifKbjztM9e0RBwZU36ytnpSSWq3G888/T6vV4vDhw9x77727ZqLuV1yLqb7ineTZzd9k0d8pNztgH6JqjeAgaZt1fOPhUkEREpo2ggZCSJRRSASGNo4sYWhGZa1NA2mgzyqgTA1bKmRnWj2gn4YuU1ceUoTUtUtBhkkKMUfraouQ0+X/Hw86SW11N253pvr1FFN9uNzHyVoy6WzH8i6KEVngcqoaXSO1zkSxj1fWV3llHcBhunwUUawkEvokFkveFh+a+AZngwqeseg+gLoppMps70TN2BRJsqOllJ55Vbl8uTGC3lFoACSYym6kDfwMkiVVYTUsM2o3mXXWeWLtXgJfRpINAQVbEqiQcr+PlJEsQxoLLRRBl6XuhhIZCUbLBGCSEhAAS0oC32SW985NA0hCT1JxLXyrHSVXhgLp5lxbzn6MMJn8w1YYZDM+ZXR3PGNzacvGxaa/lCpyoxywksuKsSqEQ06de6orVG0fbaClbAyCggwwHflVHEwbY2jrSFNtiR1JljaSQTu61lALQi0pSR+FoKVsitLHJcQSkSzEUxI3pTDPq3QWaCtREChqR+A7Dp3hGxtTaCwW2zXijUM3afFGovvt3kpQ3Q3LshJyh7m5Oc6ePcv09DRHjx69YTvQG9VUX9j6ZwRGENJHu8NMO3KEWhAx1gKHVrgAQNF+G+vhGBe80wjqlMU4CHjX8E9xqPTYDZ331aJrXXj33Xdz8eJFTp48yalTpxgYGLjl0/K3e9ypqHh7xIEA1UIIqtXqDTHVQRBw+fJlLl+OmN677rqLycnJm2Yh9hq7uX+s+xf4yvZ/Zb71fGK5LVyq1iAbwRsEJtLdluUgI+4R1oJTSKGjl9UoyjIy3EeALTawcLAxFKwWpdhUtDY2q+EQ64FN1QkAv1fOWubJCHK+BUsYLvtzrPnzjLjHMr/fzkx1SwXM15MAoZzjanCxsZn4e6J/iMsbcVBtOsBjJ6pOcj8Xmi2WLvjc3X+cweo6q8EGo+4QG36d6dIam9pFawh76FPgY1HMSb1rapkBgMWOftsYeM3v45RfwYjob5lgIlVGjiGFyRylKAJebh/huyqnOVzYIDQWxojeO9IOwWib2oZNdaCFZRuCECwbWu3kjEY7UIicXCcbGxUbHBgD+DbSGLRQua4e0aAk+qHhazAOdiHMCrfpsNd5emoTJN51oyGUyQlYY0hUgwTwlcNq08FpFukrt6lUPVxcVIr1VkZTsdrc07fMsBNLThRQskJ0J8HQFpHr9LpfQiMQRmFLQ1GGnZLk0ZXaUiEw1FSkvy6IkLL0UMbCFR4GCynAjZVOL8kAZcCKXVRBKtIj5/Qtjv6OyrL/laOv8t/PP0pbhYwWqr3kxfn6BtqYXltyPdEFnG8VqO4SG9eqK9CVO2xsbDA3N8dTTz3F5OQks7Oz1z2beSOa6rX287SD57AE2NZxTBgVvShZxwh0xEz3uQ/h6xbr4THWgj7W/ai4y3jhAZa8V+irP8r9x/7adR33eqPrAT4zM8PS0hKnTp3C8zxOnjzJ0aNHb9hQ4FtZ/nEnbo84EKAauG5QHXenqFarjI2N9SogvpWRTlRc8t7gpdp/52L76ww6U0y697EdLtLW20wVTrAdXmS54y1akgOMOBOsBadYDVbos8awTJGNcAGBg9YVCpZGEuIIF4eQgqxjiwig1FWB1bCKLUAIQ15/4shIP5o45xyqujvF/ucb/54fnvg/cq/zrU5U3C8Qf2Z7LVNMIzRJeNmPzXbKBzltHTfsltkIkgmIOnVPJotVFtt1XtusUdgu8J1HToAIebByEq+rzBDJ+78WlDnsZu3WghwmoCwVdW3zTHOUGlaUCAi0lU0pprWWAvxMaXKNSqF0Ryi2dYUL4RCHipvR+aXfIwE6FNQ2ylQHWlQsB7/tZMrUGouIlU6dtiV2qhAaE5VD192iFYGAFPNsNFhIVPz+C0HQsnAKmjT9XBRuJiHRMhKVqppYFF09dSxCsq2oEiANARbrzQrNdoWSbjM0YWE6yYF9douK/SxvH2ygjIzudQfsdlloV4ZUYq4s3VdlqAPAI9DtULU8HKkJTQToq1aLEEmgomwICwXYlO0o4bEgd7ILhQA/9extqfGN1WPAAQpWmHheQkTvg8biSHUDgcJgMVaq9EC1p0OuNLc5XLl+B439LPyyl9BaX5dmd2hoiKGhIer1OvPz8zzzzDMMDw8zOzu7Zw/nG9FUz2/9HBWh0caiFpwBAY4c7rHURfttXPJdLnmLWKJFSUTvStWeYMV7nWF5PyPbf/m6jnkzIaVkamqKRqPBxsYGrVarNxA5duzYm+quctBCHbAy5QfpWuLxLQequ6WxV1dXE+4Uly5dYmUlm4z2ZodlWYQq4HzrRV6q/Q8uezslY5f9N7CFy4Q7i6cLeHqLijXCsDONBDQeygRMuA8CTZpqGVtKQmNRtRo0whBtNOPOJuXYtP922Mdlv0zV9nFiiVhFGWb9iYWmre1EB2sJQ2hSrIEQWCgW/Qus+GcYc08krvNWMNX7dby0nhpgOeU9PWy5bKfKS2/5SXnIZKmaAdXbQXKdkUKFxU4CpKc1n1vY4i8dGuP7J15lhx9MdtgNCkAWVBdE1hVkWzl8oT6BnXbEyNG3RZZH8Sn/yPM5/tztDvD8evsw31Y6G60vd1h06Hhad7JeG1sljBWgKJDRVggokk1M9EzYk4BoXyISgwURnVP89EOJyktQ1BZB08K1vERSosxp3IvSoWGS7homa6gS6cXT15H6s62h3S5TXy7xXcd8Rspfp9+ux76zCGj7OrK7k0SsszYCZbpgWtBvtzBAoA2NsETZ9nGEoqUc2lpjYXBlgG9sKrKNEBKwqcRkIypnoJXXuSktsWK6bksYAiWwYu2FIzSesbCl4W3DS7y2foiynZxqOFdfvyFQfStKht/I8arVKg8++CAnTpxIeDjPzs5es6Lu9TLVZ7d/HUvPRUm9chRM9M2X7Fl8VWNVDbIZDrHoRQB73L2XZe9lQOCIModKd3Mi+FEWrbe+n9NaUy6XeeCBB2g2mz13ld1KxqfjW91OD+7IP26XOFCgejdNtTGGlZUVFhYWaDQaue4Ub2VBlG401RYXnKdZFK9Q2a4SGh+rM01cEBXG3Gk2gnmWO9N3g/YUrrBY9V/FoBhz7sISPhvBaQbtGcacI0gRUgtW0UYwU1hPaGhbyuFKMIArNSU7ckuIhxSGVoq1giihwErZvpmcFDJXaFrG5s/X/wP/y+S/Sfz2ZlQ4vFrsJzP++lay6IsrBIteElTbKWDS9ayOR8lKAg6Rs05BZjvZt1U+T8XyaZpI3+/r5Gdb1/k+6QUZdKwQoydVUw5/3pykYVwGSIL5vEzsvGUZGUBnsBVicTEcYqayxkJjDB2QdNPoYE+DoBG6USJknoxIW5ly3wDCSJQPpBMtBRBIKHRY3mzRyJ3QES0fNFwKfQFGRJUcW8rPgOXAZNuCttZZh5C8fkGm/1Q8PLPAPcMrFJ0g48zS9ZG2JPQ7OwA4UAKjBWUrcvXQBuphkT67zWSxRqAFvnYYcpqAohaUsIgkIPWwhJDQbyU1/QWZvS4rJzE2r8NTRiS09jp2GfcORKA6re2fq63z/onZzL6uFbcLqO5GoVDgxIkTvaTG06dPc/r0aY4ePcqRI0dy5YRKqT3XOAh0g4XaJ5iyo+fXCLdASIrW3Sz6DgtenaK0CXXkYV+xRlntEDQThQcpWJO8b/TDLF9avSUJg3FLvXK5zP3338+JEyd6JeMty+LYsWMcPnx41/P7Vnf/0MjM7N7tHAfpWuJxYEB1nvtHGIZcuXKFCxcuYIxhenqaQ4cO5TZwbxWoVlpx0XuFk40/Y771PLrTSG77AIYRe4ayVcUQApoh+yg2EltKFB7CwHTxIbSpE+omFdmPYw9g06AoylgiZNzdpK01m6rMWiipWoLNUCClodBJNrIxNEInMb0MEBoLSFuu7S0socDAcnCJpfZJJor37fz2FleO3FemOpWkOOlWWPCTzHCQAiZZz+osUJsq9WXcQfyULdl4cYuHB14lMDsdTZskOG/sAqptYWgai4rQ1JXNk61JAmHh53z2Ms/tI9cBZPeYD0YZKddZaIyRRpu2FPQ+LwG2koR29vl4gcot/VgUDo0wzAexUQpBBHjDrI4cuomL3f+XuF4Zr9iAQGByPKt9kzxWnnY6bxkmchcxwHhlk3dMXuJIZRNbJq81NIK67+LIEEtEvuJ25377WiIMVDuFXbQxbPsFXCukZPm0lU0zjGz1bKFoKZsR20dYkae8EhYDroc2HSAce44lKyDQIjFDVbJCQiN6x4fugCw5G5W+hninOFXeQqBpphJxz92gA8itkH/sB9i0bbtXDGVpaSmT1BhPfL+eY76y/k+oyE0ADBZYh/GZZUOVWeqA5wHnUO//K9YwbbVMyRrGlkd478hPUZClW+bCoZTKuELFS8YvLi4yNzfHmTNnmJ6eZmZm5oYTQA9qKCNyZ5pu1zhI1xKPAwOq4z7VtVqNpaUlLl++TKlU4q677mJsbOyqTMSbCao93eBi+2UW2i9wof0SBVmlJAcZsCfZCC5h4TJZmKVtNtkO59lWUBBVRtwjNNRlmnqNshxi2Jmgps7SNjDmnMAIiWtJHFwcaeOb0/hqCUtAxYKK5bPs97GtShgRJjpXgMDYpEt/5IErR2Tvi8jRVccUlzyx+Z/4YIytvh2ZaqUUC5cucmZ7NbF8tNKXAdUbOuX8keNZve4lpR+jhUoGVHfLnnfjp+/+IrbQbIRVnM4Mgkk1RgqLlrYTyae9Y4Yulh3wVGuSdgdt5iWfujnPON8BREedeicMEgvV0VoLhsutznrpML09AKjA5LY+gdCIVOKgMeDVoeA4eHkDPgGEEiP07iy1EomT2m4r7NCOLP5SoDrSTie/iwI2XgpUokgAeEso7hla5vjwKhPlbVwZ4mknsqA0escvWkeV0fqdNnYH3Bpj8LWDLRQlESVI+sbC6Og7Hi82aIYOvrYYd2toY2ioIo4IiTypJS1tU3VCih3ZjxRQD10G0kVijIOTSpoMjNXLtYDIRs8zFvEakJbQkZ919z7JkLqKZkIcqblvaJHLm0m3pHSC717jdmOq09HVEk9OTrK+vs7c3BxPPvkkhw4d4tixY1Sr1T1rqrf811luP8tR28cYeCM4zoqCAUezGXQAtX2EJe91AEbcu1nzT1K2xqnYj/H+0b9D0YoKstxsafQbjav5VEspOXToEFNTU6yvrzM/P89TTz3F1NQUx44d6yWAfiuz1HBH/nG7xIEB1dVqleeff56//tf/OmfPnuW//Jf/wsMPP8zAwMCePsb9ANX1cIXtcImW3qCpon9t3eBi+xXqegeYtfQWNVYZdWYYlTP4YQMjAkr0M1AYQwiFMQEGzYgzzQhjaFpYQjHqzrAVvI7RGxQsC6GhYFXZCp6HWGJVoC0ueEMU7RAhAhpBEVcmp4LzAHSxx1DtLHOloq2thEOAhUGlmKwIaEfz78v+Is2wTtmOypLfTprqIAi4ePEiFy9eZNkKCVPgMp202Ge5bKuUn3FKxuEKyZVWEkA7qXUKwmIxts77xs5wqLjOhWAYG9Xjp0NjZVBrU7u5oLpmbF5rjdCMfepOjgTAlSrjAuHkOoBkS3wXRECzw6T3FzsATiYHXVqYCNjuUgSmFyICsH4cPHuSUEEYaNitToUkkoHs1qJpkTlmGFjYGmQxeUW2kBlddBCQ2Pc7puaZqW7Q77R3LO2ItMeuDHrfRVd+FWhJLYgkHhKNJaLy7aHWKGNRlAEDdvR9eqqbF+GhhcDXkg2/1KmAaFj3y0y621ScbWqqhC00TV0gwEl4zUN34JwE1XmdWZ7UR2sJMV21LQye3nGJkcKgjOwx3PcOLnFy41AnSTSKs9trmf3uJW53UN0NIQQjIyOMjIxQq9WYm5vj6aefZnR0FN/393TMl9Z+lj4ZSYDm/BkuBRJHqoQAzxIu0RDXRuk6g+47CMwkf3H8/03R2vlo9ouRv97YC0Mev1fxBNChoSGOHj16w9WSD0qYA1am3Byga4nHbQ+qtdZ85jOf4dOf/jTnz5/nh37oh/jUpz513bXd9wNUu7JCTS1ypvEEi/7rid9G7RlKcghlog53JTjDanAaMJQYpSAk2/o8m8E2ZTnEoD1JU12kptcZtU9Qli6BaWKLAmPOcTy9imSEbfUyKLBElao1GyUvasOCv0bRjjt3ZB91SfqZZdauumoroasWImJME12xELhofCRCaJ7d+hx/ceSHgFvjU329THW73WZhYYErV67Q39/PAw88wFr9CqTItg0/OTiZLFapNZLT3Gk/6sOVAeZT67RTiY1T5X7mG9HBbEK+79A3OOuPo5BM2pu99SKNe/La6sZhJOeaLgVlaim5SEEqAhMVCImHr5PPXezRASRu4l+0AypOiwYljEoicqEEXRWLyUsk7IRjdkC1UWDaHYZdysj1Iw+QG8AXYOfsd1dGRKA8G6Mksj/oseMtlZWZKJOEnRPVOsKW1HSRogwpCZ+q5XeAskVL2dgyqkToSk1RKoqd4i/aQFs5WMJQkiFShKiON7UrFQOOBxhaKmKuq7ZPn9WmFhYZtJv4xmY9KDNge0y4NdaDMpY0hCrbSdki+83lzTztVVcdaJeClW03AKbK2xg0hytDXGhsAdHMy9MvPs+Dd99Df39/7nZ5cSvkH282iO/r6+Phhx/uFUhZWVnB8zyKxSLj4+O513u+9jvU1RKTVsCKmmIuqGChGC+8jeUOMz3m3seKH1nrTRQf4nLbo64D/vrUD1Cyqon93Sr5x/WWKe8mgN5zzz0sLCzw9a9/nfe85z3f0pIQhUAdoIqKB+la4nHbgupms8mnPvUp/s2/+TfUajXe+c53cvToUX7jN37jhvYXr6h4o425K8vcW/kA91Y+wHa4yELrq9TUEiv+aVaDM2ypeQD6rQmm3KNIoBmsE4oQi4AJ5ziBqaFMG2MaDDvTNJWhrr+BI09gixq18AID9r1YNNkOL/aOrUydrfBVStZjbGiBbSWT64rpqWvAkZqmsimnAPSeddVZBQi2KOObqNM93Xz2loHq62Gq6/U6CwsLLC8vMzIy0nOEATh15dXEupYQXGwmZR2VHM/qyynpx6CTLSK0kkp2HHB2OowfOPYSm6bDMGmTSACTQpO+8ethmaPOVmJZTRW4EA7TbyeTEgFaysVJLc977moPDiBtbfcAaVGGHOrb4sx6iYKy8ezUQKz7hxVJtvPwbqBMj9E2bbt3rRqTa6EXnagAZUGoMsDaCSR+nj5cRSellYXeEFSHwBM+Kp2Um9FOKwpdBldI2salqR0cXaQgQkrSZ9ht9gY+nraoBQWk0JF1JR3QSOSsY4zARuBYAQZDLXQwWuBaCmUEG34FRwYMOS1KVkjDK3K0FA2+GsqljRP5FucA6IrlZXTVRStMWPhBd6AlcBI2ellddVtLCgnJy8676ErFvYPLOPpwD1QDrBifZ5999ros5w4KU50XxWKRe++9l/X1dcrlMq+//jqnTp3KJOp54Tavbv1q5NJuLL7ejlxUbGGzHSwCEUPdUKs4oky/8xAvbi+ggb808jc4XMomiOZpm9+KuNEy5d2qlseOHbsl5/3NFFFxp4MDRPX1cV63TdwUqP7VX/1V/vW//tcsLi7yyCOP8O///b/n8ccfv+Z2n/70p/mRH/kRfuAHfoDf//3fv6Fjf8/3fA+1Wo1/+k//KX/jb/wNfuu3fov//J//8w3tC+g1ZPs1PdZvT/Jg31/p/d1W26wHc7TUMnV1hYZaphmu0i+mqOklauoNVNhiyDlGWbpshadp6YAh+x5G7CMYfArWNIPOvax4n8s9ZsF6Fydb55gqPJD5zZXNTDISgK+dDKjOk4Xkddh5/aJnWnQRUUtfphHWqdjVW+JTfa3jbW5usrCwwPr6OpOTkzz++OOUy+XEOulKitPlAeabSeo6TIH3kUKJNS8ttUnerIrl5JQ5j9Z5x+h57u5f7THCbswNQ+n8DPiWyQL7k944INBxl7tOxBMfrx7XdgBxpO4Vo3GlYqAU6cIDXydamIidFr2diEBgcgBy24SRkkmJCEQnTjwfVDvKJsDgBDaBlSzaEgQGcvpjEZejIKmvG4YGKmxbjWRJbiMJY/dvslrLvPtKS2zL0DYubeWyHhoEhoIMqVge/U67J99oKxvP2FSsIKpWSgSym8qlYnk9h47QCEJjMeh2B1+GFa+P6WL0/nnaYkOVe0mHJZlNQpQiGkBVrbSu2sZN6apDY3U02p3rFllddSElMXKl6khMorh/+AoLm+9K3pyxAb7jwcd6lnPlcrlnObcbuD7IoLobxhgmJyd56KGHuHLlCnNzc7zxxhvMzMwwMzPDl9b/PoI2ljG80p7uSXSG3aOsB2eAiKX2jeBCe5Mt1SIwPm+rvo/3jXxv7jGVUreE7b1Zhvxb3fkDIovTgyT/OEjXEo8bBtW//du/zUc+8hE+/vGP8+53v5tf+ZVf4Xu/93s5deoU4+Pju243Pz/Pz/zMz/D+97//Rg8NwH/7b/8t0ShfzVJvL9H94N+s6bGi1c8h65HM8o2NDV6fe533vve9KB2AMAhkVBHOgEzpbo1RXLLfxrnGf0KzA9wc+S5Ot+YAQSvM+nULAfWgwIDTTi3PApR0xwngihDfyAQ4lOhOQ7+zrChCGiaqUe3IkC9tfo7vHf0hpJSE4Y25itxI7MZUG2NYW1vj/Pnz1Ov1q5aj18ZwKpWkOFQoZUD1Wsp7eqLQlwHV20ES1Bwq9/NGPak3bYQBo8Ua33P49QQjEU8iDHZpiHxjJQZN26rA5XAAIaBpXKopAKVzwHLeYCrv/UhHUQbUOzZ/QkCf27nWtMTDMVFebId2z3Gt6xwUHGMRtmVW6ytEV7a/EyEEYcSYBqFBtAWm1EkA1OS6geQfV6CbNrYsEpbbPfY9DEiA8snqdnbTzK4EoZFIBJvKARWBbGk0JcvHRney+aGtHUoiYNjZeY+ayqFiRZISiN7bdb/aA9TawCV/KOHeIwRshyVG3OT7mPfO5MOTHBs9bWPHBnUVy+sUhon+LogQT9u9mZTJ0jZzG8nv/FxtncLMjuXcxYsXef311zl9+jTHjx/n0KFDGUB7EOUf6egmDUopOXz4MIcOHWJ1dZX5+Xm+sfGbWJPfIDSwrCYIYs9mw58HIRh23sZc22fJW2WycJRlf54he5oPHvp7Vz3mN6um+k5cPTQit92+XeMgXUs8bhhU//Iv/zI/+ZM/yY//+I8D8PGPf5zPfOYzfOITn+Bnf/Znc7dRSvG3/tbf4p//83/OF7/4RTY3N2/08ExOTib+7u/vp16v33Bj3G1Q32qv6rjVnCVTPsY5lyGExZHyX2e08H5O1/4168FXEeLtvNGe662zGV6kICxEKiEtzEEXJZn1BLaFxtNWwtNWCAi1ldTXiqhqX6K8tdSoQGB1+qc3Wl/le/mhW6KpjoN4rTVLS0ssLCwQBAHT09M88sgjV52SPL+9yX3uBBf1RoZV7kZBWr1iLd0o2Wla1GTkIH12jhykvcmP3vMcFpow9mnGZwm6XtWZEIJtXWS440v8mjfZe4HayumBs27s1eUlzykk7QDiSoVSpse0l50AV/r4BbcjEYqx00rQw3hX+UwLqoCvdnH6CAQUYufly8TOTCChqHbY8DystIufdc3z0BIsr4A7pPFlQMUp0Igl+w2Vmpnt8u5nUvceAWhbCjxTwAMaYYlARwPRLWmwQo2FxmiLPqdBTRVpKE1oBC1VoCBDzjQjjX1TORwuZcG9b3LsQnPOzRXZe5v3/H3lUIiBaimgGbr0dQrKRJZ/onf9rlRU3DeAnZLdczFbvXj56suXL/ds1I4dO8b09HTve/xWYKrTs6JCCMbGxigMeFxZ+hMCY3HRH+61pQC2cBgqzHLZUyz6ZZa8eQRFlrzz2KLM3z36sav2f7fK/SMMwxuSf3TjDlN9x1Lvdokbest93+eFF17gH//jf9xbJqXkAx/4AM8888yu2/3v//v/zvj4OD/xEz/BF7/4xRs59K5xs0y1EOKWFIBJlynfaxStSR4a+CVerX2Kr9V+L/mj0PQ7M9TUXHKbdGUGOs4eyqaYkoD42s4UishzCJDCIW3L16v0AbTUJeph7S231OseTynF5cuXWVhYQErJzMwMk5OTe2JNTq6t8eL5FSwBj8wcZslsZSogHikPcLaeTED0U+XKxwt9rKQs+NIwZ8Ap8r0zT9HneL0Ket0IlOwBwKuVdt1WEajeDIsshX29XYQ5Uo9CDqjaqwNIS7mdJNjY9RjZ87UuWIqp/m3Ob44iWoL4OECYnWs3tsnV5QPI1lV0/aGEQuf4mqyzhxDQklDWEIpc6QdZWTqWEaiOdEIhaK5Lqv1uVFkxto+Kmx2IypQ8yhiTAEOQrVDZ2RKkjC4Di4AOI6V3Esw8Jel3PDxcOpXlqQVFIAuq88B9SfoZXbUjswNnW+iM1rpitxJEhTbgaYe+2MxHGutMVN4AHqV7g+dybPWklBw5coTDhw+zvLzc83OemZnh6NGj3xKgOg/gGmN4euUjtLRkzh+jIiXECjU1leTF7SVGnCOsBfMY07U6dPnJox+jaJe4Wtyotvlm4w5TffNxR/5xe8QNfV2rq6sopZiYmEgsn5iY4OTJk7nbfOlLX+I3fuM3eOmll27kkNeMvOIv1xu3AlTfaFGUroxhY7EEQ9nfbZHNtC/KVoJV6kZbZ0F13rR/nq66rVyKqQp48eSlgvR5Yv3zPGI9/paCamMM29vbfPnLX6ZUKnHixIlrlsJNx8m1SPqhDLx0fhUp4OHpQWbKmoXmJgD9TlafuNJOMpnjpXIGVKfB+XvGz3O4skldFWgrm2qstHT82UQuLPmSjC0VncvX21MJpJM3GHKkxtdWR+e7E3txAImed7pB3DmnsuUzVGpxfrPDTMd+M3GrPSty3tNphUcoaNR9KJMLuBHsMM2+yJ/SCUUkL9ml3U7qqaMoSYd63G9cCBqbBmlbMBjdp6LtZb4DpcFJHUcZmeuokTmP1LM0xmSeSaCzYER32Opy6tsrW35GQ7+brjowFoWUQWKQ0lo3lctSUCXAoa1tAmPjG4vz7RGmCluMOnVsoRL+1ROlTfqdAttBtJ/z9Q1CrbFzQKsQgomJCcbHx9nY2Oj5Off397+lIOybgakGeH7937IYrHMlmAAExniJb8AzoLXFsn8RS4AyBcDif5v+/zJVPLKnY96K6zTG3NTzvFOmvDPYPkDs7h35x01ErVbjR3/0R/m1X/s1RkdH35RjdJnqm0k0vFWg2hiz58ZOa83i4iIXLlwgCAIOHXmQ+Zz1AuNllgmhqYcu/aliEHmYJK8YiCsUoUlPw2WP44oQv0PtCQHnWi/wqPXutwRUt1otLly4wKVLl7BtmwcffJChoaEbmjp8fS2peZ6q9PHSwgpgeODQIfyilwCMACVps5gq6FKQyc9MkHQHOdq/ykT/HKthNBAqiZ17aoxJTNXrFOMYj7ousBGWWNOVREecNxiCSMubBnB7cQApSEVN2QlGM9JyRwctWiHlgrdzsfFwulR1R1ftA6lxSV9YoIFChgadxzILIjBdMJBjIxetIxANibmOnCylsnZ9IoigsVwTMBxyqG87m6RoRA4ZvhfNukm4bQCEJskU5+3KdGYTamExA6otYahrl36ZTkLcm666GbpYQnPFG2BTldDCoqmcneRHATYaz9ic90Y57w3TL9u9aovRHJXhxNA2LywXO8fWXGxucayaM/rvnosQDA8PMzw8TK1W45VXXmFzc5OXXnqJ2dlZBgYGdt12P+Kbgam+2Pw6z24+QV0P95alMVSoLZSJfKp9LUEX+OFDf5u7qyf2fMy3mjHuyvDuJCreXJgDpqnOI3sOQtwQqB4dHcWyLJaWlhLLl5aWMlpngLNnzzI/P89f+Ss7bhhdgGXbNqdOneKuu+66kVPpRbfqUqPRuC4/1HjcKvkHXFvrFgQBly9f5sKFC9i2zczMDBMTE1iWxTeWptkKLyTW3wqvIMkC5jzXh9zExE6jHe/gpTCE2k74G5elj6+tXmU4iGzV2sruJTW29GVaVvNNBdX1ep3z58+zvLzM2NgYR44cod1uMzw8fO2Nc8IYw8n1VCXFUplL9Rog+MblSPLxzukqD1Qn+EY9+hYOVwZ4o5YE415KDjJRrLLUsdObrGzxjskLHcayAzRjOEtgEs/wanxNgODl1qHMQy/IEKUFlkxu7ec6gGQbuu2gRMlKDhQ8ZePGgJsjQoIOtLSFpmAHSBGinR1LPCBihz12WGKzIxXqXmBzOwQhKGDT2k0CoiT4ORqO+JX4HXeR9Ge1i566pcNsUmPn1LSxqNRcRo9kZ8P2muBppQY3oREUZJr1tiA1a5QeFLW0Eylcckcc0NYu/anE1PSxIfvdbwdFFv1+FoKR6B3qSuFTz0j2dNQAkm1dRimRYKsHq0uwfLT393xt/aqgOh59fX1MTExQLpdxXZfnnnuOwcFBjh8/vic7vhuJtxpUG2N67K3Sis+tfJyvb7+Awk2sY5N+Z6o4lkegJe2wj8f8d7P+wgYnp09y9OhRSqVryz/ealDd7VNv9Ljde/WtHncqKt4ecUOg2nVdHnvsMb7whS/wgz/4g0DUKH3hC1/gwx/+cGb9++67j1dfTfr9/tzP/Ry1Wo1/+2//LdPT0zdyGonogup6vX5bgurdAGe73ebChQtcvnyZarXKvffey+joaKJjGXfvzYDqwDQZtqdo6iuJ5U5Oh1SUYUZfCZHdniuTTHTUce6cqxDQCl36YutFhWF2NLZFq82z/jPcr6+vIM+1whjD1tYW58+fZ2Njg6mpKd797ndTLpe5dOkSzWY2oWyvcaVRZ8tLXrud0qRL4OVLKwRaM1woM3NkANvOdszpJMfRQoUlr85Ioc57Ds11ZgViDiox9jFdkjz9dzw0klVVpWAl3yUhoKkL9Mmk5CRfI599D/NAY1rbXZQBgd4B0LYwTFRqXDFD4Buwd44VLwJDCuhXtUurczx5tUZXEFVQvMoqUgtogy4nj5Fj842NIMwrSBO7zIavGHCznt95UCx9z7SBgkwvy9FYZ07B9KoydqOtIjDt58hCIP8dKcogo6u2hWY7KCCFYa49Gs0uSYGvBW58vRyPe5ESw0fVFXd+l1aTdw4O8Uazxabf5lx9ne9k78SJMQbHcbj//vu5++67OX/+PC+99BKlUonjx49f1Y7vRuKtTuDr9jNvtF7kjy9+gs3QwxUBbly2kx5QG/CMRz0s0FYl/trU/8z3TXwfm5ubzM3N8dRTTzE5Ocns7OyufeCtAtWWZX3LM8134lsjblj+8ZGPfIQf+7Ef453vfCePP/44v/Irv0Kj0ei5gXzoQx/i8OHD/PzP/zzFYjFT4XBwcBDguisf7haO41AoFG7aVu9WgGohROa4tVqNhYUFVlZWGBkZ4dFHH911CnTMvY8zzT/NLC9YoxlQXbY8tIF0zmJbOxlQnXu+FIEkW5eujGRMNCVudRCCJQyX9evcp++/5v73EsYYVldXOX/+PM1mk8OHD/O2t70N191heW42MfJkSvoBUA+S4OZwXx8XahGDu+5p1s9u8K5DkzzWd4RTrWXqoU/FclhOuYMULJt+t8W3z7wBQiRcF4wxCS9xGQNdxuQDnN75qQJ1VaRgZQcTbW3H/BiiyJOR2Dmyn7RmPjqvVIEVqdGh6Gl5CzJkuNrkSn0IEcgoKbEbcaBgk0hW9Dd3EG87CKMEwby+2BAVb9m1LHm0jvQEumQS+ygJm1bKz6+ITT2dcKs65xfbaSmTpGhyALQhPbbKY2XyLstOfYOtwGawkATyvraQEozIB4HFXtGWnWV5uupQS95ojaGlRMT2FWobN+YK5EiFp1N2miKJ/yUmoc5WRhLydTbPHueuyQm2t/OrMO4WcebYdd2EHd/Jkyc5ffo0s7OzHDp0aF9Aotb6LU3g2/BWeXXqj/ji0gZ0bEmt1DeVfq9C47DqVdE4fGD0O/i+ie8Dor707W9/O41Gg/n5eZ599lmGhoaYnZ1lZGQkAWZvJai+mbgj/7iTqHi7xA23Ih/84AdZWVnhox/9KIuLizz66KN89rOf7SUvdt0W3qoQQlCtVqnVatdeeZe4FaC6e9xuMsfGxgbnz59na2uLqamp3IIk6Rhz78tdrnKmzKRQNEM3kQgH+eyWkwOyBQ2MMYTGQuDgGUOoJUteH7WwQEMVe9PSo26dUbce2fHJJRrmxgc8sGOLd/78ecIwZGZmhkOHDuV2hjdbbOb1tdXMskupd2u4WO6B6m6sNtrMXd6kaDu8Y3oC7Ya8vHU5sU7IFt8+faaHehKuDClQG5+29/TuSYoAzbBAU7mMkAXVuzmApMFXIUf2U7H8zEAsz35NIXpgu2z59BU8RENCSyB8iZEG25GERu/ABwkiAONG7huhip+PQIQGk6NysAKJCQ16lxZMKBAd2CpbIsFWi5x33QtUpjWUAYljDw/UskBHC9y9MNA5kd6XMWanUmMnmqGbAdUa2WExBQ3lUknZJTpS09LZJMa43Gex3c9CMExdFxmwUjMYOa+YNjJxvpbQue9Ubx8IJkc3ERjOLW4xIJbgsV1Xzx4vR44Rt+OLF0s5evQo09PTN1Vx762Sfyx7l/gfi7/GoneKViE5Yky/D+m3tKYcpCjxP439Jf5fh/5yZt+VSoUHHniAEydOcP78eV5++WWKxSKzs7NMTk72yJtboam+4/xx83FH/nF7xE0NzT/84Q/nyj0Annjiiatu+8lPfvJmDp0blUrlphxAbhWollKyvLzM6uoqnudx+PBhHnjggQTzerUYsA/jigp+CrTWwpXc9T3tZIqB5OmqCzIkMAIbaKphLrQdaqpAXTsJKYQxEeuVZBIMl9pD1MIiM6V1SpbHNwqv8J18556uKR5hGPb05JZl9WzxrtYJ3jRTndJTj5fLLKfkJHlykIu1KAGxHSpemFvhHROTPOgeoeE0mWuuM1beZnLodZyO1CAC/juaVZWywogPbPKqJsajqd2eNCAd+ayojgqPpMBXPSwyHCsgIoVhOyjQ7+ywnGXLzxT+iT+NkhVQsENMSyICC9O5rtADjIVsK3R/5/no6PplTaBTbJQIBcbJYdQDSagUsuOanbne2OssvagYjOm4hrR0mNFsBHnJnKlGf2p4M5OjoLXI0X/sLUkxXd20EbgMpQF0boLhzna1sJAB1QDNHFAdhBahlLzWmKItXIQUuDkVeNLae+gOupOgOoh983lDPY1kZnqFhQsTzG9kbfWuFsaYXb/veLGUlZUV5ubmOHfuHNPT0xw9evSGKgbuBVR/YfnLXPYu8jcP/zCWvD6QON88xR8tfYLNYK7j7Z3eXmfeLZkamAW6xP888X38lcnvueqxusz+8ePHuXTpEm+88QanT5/m6NFI434rmOpbYeN30OJO8ZfbIw7Mm95lqm8nUN0Fi90kxGPHjjE1NXXdjZ4QkjH3Xi55LyaWt/Q6VTlIyGZiea6XrRVkGMqtsMh6MM6SbycKeGhtQ6owjOnxgr2lSDTbYZmTdZdj5VW23PPXdV2+73Px4kUuXrxIuVzmnnvuyejJd4v9ZqrHy5UMqK75STBzqFrlYur9MxpeWVgHDI/f12Zw9DJubABjYRJJbWl5R7w4j6edjPdxPFra2TV5LS9RDWA7LGZAtZej1fWMTdzpxZWKmiom3EMsseNhV5AhRsDQQIONzf5IVBx7h2jJKOGtb+e8dFtk8KiLpJ2yfRM+aGUivrZt0DkYKq6bFgismiDsNwg/LekAB0lg5dyf1L0e6c+2LXkANJukmAXQeUmKnnKIexJDdrbI01biHWip/IGWr+ysP7eA5+szWJbs3eaCpQi0xImdiyuzMxgy9WCylvciU3irEbocP7rEwoUJNtptNlothq6RSNcNrfU1mWchBOPj4z07vnPnzvHUU09x6NAhZmdnqVQqezpW93jXAtV/uPSnbKkVnt74Cj9y6If49tH3XXX9+eY5/mz185ysnUKzRVH6FK1I5qFTXW/2KWatFR/t/wvXBNTx6BIQ09PTLC0tce7cOQDOnTvHsWPH3rJy5fvFjt+Rf9xhqm+HODCgGvanVPlbAao9z+PixYtcunSJcrlMoVDo+SjfaIy592VANUDFPsRWuJlcZgW5NTfaysUWHstBH+vBIHVtUfcLlJ0k6MovXZ3doyUM2kBobN5oTNAHzDUuMlu5up9qq9ViYWGBK1euMDg4yEMPPcTg4OB1Nao3w1SvtZqspAB0wcp+KpfrSenHUKGYAdXdZMdH7p1jcHQTEAmAK1PAKm5lqI2hGAPgobGw2P39bCmHwMhczXzRCvGUlZEXeLt61iUjjzH1VNLn2hUKv4NEpYis18ZGttnY6s/on4UQ0LSwhEAWNFJZBCI9MINA68yrJf3YHzmWfCVjE6TlKaEAbZChyEhGbCMJ0nINBWkysVrKs6nMAui0REcZkQCt0EnkTR1T5PC9VSd5zDSI9nbRv6TP4VJzgAvBUFS4JZP4aOPEnFykgLayKMbeFVuEnbOLJZymjhkoC9feuSbL0kihqVYb1OsV5jY2rwtUX48cY2hoiMcee4xarcbc3Bxf/vKXGRsb4/jx43uy47vW8ZZaq2yGKwgBnvb55MX/yh8sf47/9fD/giUk6/46m+EWW8E2DbXGyfop2jq6z7YIsYQkUEVqqoAjFGVLEreudGQRYrOHSgusVOLsd41//57vRzyEEExOTjIwMMCTTz5Jo9HgqaeeYmpqitnZWarV6rV3chNxp/DL/sQdUH17xIEC1ZVK5aY11b5/fQk11xONRoOFhQWWlpYYGhrqgcUXXnjhpu3mxtx7d/kl+4htGdJKFY7QRrAaljnTHkfFfMXSiVNABiBAHnPVYcR7/YJgI7T5fxb/B//orp/OPdNucuby8jLj4+M89thjPVeX642bYarzkhRbYVIeEzHXyQGcTEsXEGxxhXc9ep6haosoGUkl7pUVa1giTW38mSQ7+ba2M6A48btyEUJSC4q5LhVbYYlx69ozOXla+j05gFhBxJB24JaLor8/GpwkXgWItNRKYBoS4xlsW+5inicQgaGnfDGdwi3xSFnkqVZOLoAQ2A2R8f0F8PwwQxWKkMSn49iRnCUexphMclkEoNNa6exBm4GTKbhUSP3thRb9bjZJMVM9Mif6HI9a4NLn+Jytj7Ki+xBSEIQ26QqoKmfApLSEOKi2NG1tJaptCmESDjLp6VxLGLb8IncdX+TlV+5ifmODdxyayj3fdGitb4iZ7Ovr4+GHH+bEiRPMz8/z3HPPMTAwwPHjxzNJe+njXQ1U/z+X/zhzq9f8df7D/K8TmPhz0xmfcUvER4UCYxxUyt/f002KMdyZduaxhEu/nSy2dr3RvcbHHnuMer3O/Pw8Tz/9NCMjI8zOzt6wn/+14mZLlN+x04viDqi+PeJAgeq+vr5vOqbaGMPm5iYLCwtsbGwwMTHBu971rsTU5H4cd9S9h7g2txtNtZm7fjumuVzxq1z0RmhpOyM/KFghoZaJKWdHalpKJhwOpNAdELj7h2JZIXOtZZa8VSYKURGg7v05f/48m5ubTE1N8W3f9m3X9Fu9VtwMU53WUwMsNpKDtUhj3cBxfGZnl9jeqtD0dxifUrHNQ/dewS22Eu4ZTkKGYbBj8g5DanCS6kuuZpZvDPidSfrtXUB1K3ShkFyWB6DLORrdYuc8tYF1v8J6WGHF70OIyJpNGk3ZCShZfo/hLFoBxUIQXUiqs5a2QKtINGRCC6+poZQPaoTauRXS20lAhOg5W22DiuXy6jyqHsADk0PK5TnTCZ3kjSdHNjK7VEpiZcq1Z7/BvEifnTaGvhQr3QicDKgOjYy7EyIlbHhlhgrZ5NR1v8JCa4S6KMbAUp5/ds755tw+Y0TPJrO7XRg3dcn164ZCnw9Cc25jM7vTXeJqmuq9RKlU4m1vext33XUXCwsLvPzyy5RKJWZnZ5mYmMjs+1pFw16pfT13eRJQZ11x8kJnZptM5jtM38oh5whS3BzbG2eMq9UqDz74IHfffTcLCwu8+OKLVCqV3v3Zb7vCO0z1zccdUH17xIEC1d9M8g9jDCsrKywsLPRs3+677z4KhUJm3RstVR4PV5YZso+yEc4nltfUFUqigBHZqeumcphrjVLTESKRRG4G8UIu0XSnTTmVyBgl2uzcKykg1EksYxL1pKN9bQWaT136fX5m9icStnhHjhzh/vvv33Ny5rXiZpjqtJ56sFBkvZ0EN5EcxHDffZeolj1GhhoYs0x/aOE1HQYHmp36GTrB8sabEa3BjlnNGZ3q6NOg+iqNUCMs9GzRmrvobPOq6lVtL6OfLVsBnpYJze9mUOLr9cNshmVUp9nQJkpG60UAZdHmwf4rCAFlO8DShr5qk9pWhbiOQ2EiWb4VgWSp5e7CFrUDVEWQk7gXxn4PwexiXy2VRG6CquqeDtsxu+ipUzsYG9rOrJL7duXN2GTWNBlZRyNwGU4lKaocd42869r0Srmgesnvw6QYQjdnpqNghRnxlpOjwY+SMpM+1/FkxbxtLKEJsZk4ss7cdSQr7pcbh+u63H333T07vlOnTvXs+A4fPtwDe1c73tOrLxGaxm6TAonIOnjk35N4RBUyk9v12QWIufgMuzPXPvg1Ig/cFotF7rnnHo4fP96zKzx16hTHjh3jyJEj+wKG71jq7U8YDlZy30GdfzhQoLqvr++WW+oppbhy5QoLCwsYY5iZmWFqauqq019Syn0B82PuvRlQDVC2jtDQZxPLamGJ0/4ExL1uBbQChz43yVTme+zmfRLZ9WyhU2Au5PXaAk985SlcZTM9Pb2rLd7NxE0x1Sn5x6FqlU0vCXhaYcjM0WWq5WTRG8cOKQ0EvQ44UQ3PGOwYqNGpEtsmdbrpRKU8D+lubAU7wuLddLZ5HteuVNSVS1/KYrEeFnGdJvOtEc42x2lTQGkSMxY7vg87z72uilxsDzJd2uwx9ONjW9TqlUh1EOtbRVy3fLW+oouZTbRN7rqdsZv0dk9okgqMJbDqEukbwj6DpQUZnK6zyYyDlVZ2f3lJipkl2fmFZs435uckKaafd9iripncY0tnB1H1oMBK2M+onc4NUARK4sQGErY0eKFFMca6u5ZCGRJyj/RtEgL80KLgRPtypCIwST9rVypCZTE8XmPu7N5BdTrp8WbDsqye9d7i4iLnzp3r2fHNzMxcFVR/ZuXP9wSo8551SRZQJN8dO+e9SUe/Y4irmN4sUN07p5hd4eLiYs+ucGZmhqNHj94U2bEflnrf6oAa7jDVt0scKFBdrVbZuE7rpnjcDKjuOlVcunSJQqHA8ePHGR8f3xPbsl8M+Zh7H6ebn8ssd6xqLydKGcHpxgRbugJGIjMdd7bxy9NVp0snQ3f6N/mhFKRDGCu1VrBCtgPBVwfe4Gfu/fE3zRv2Rpnqmu9zoZZkJUs5gH+TK0xPZN+1eGl4Y8CKAVlLJCukOXbyHhbtpNa1FJNcPLN+gqFCnT4nX/PfUDszIGFujb+IOc6LeljMgOor7QG+VjtK2+zs16TkRUJEA4GES4Q0nKqNM+w0qdg+GM1AR1ddMhatOHMXn9VIFYGJh+joqoXKZ6viEhChyZYa37mA3voiEJRrAl+EkJKElLFpJb4LQ6WQnenJs8lLM46twKY/BaDbyqEvZWkpct7VSupZN8ICuUmkOffkTGOMgq0yAyGAZugwYCWvx9c2xdRcga9tSjGdd8EKCU3yGYTGotB5pkJEyYrxip6WNJgQSsWAc61VfKVw9wCw3izfaCklhw4dYmpqitXVVc6dO8e5c+cQQhCGWVV/I2xxsbWQuYfp2R2Inkx6mcmZf8kksqZsNEtWhZZKzpYNO0evfmF7iL0wxvH7s7a2xtzcHHNzcxw+fJhjx45dl6NK/Lg34yF+J6K4A6pvjzhQoLqvr48LFy5ce8Vd4kbAbbPZ5MKFCz2nigceeOC6Ez72Q/4BMF7ILwLjqUgS0wzLvF6f6jFz277DYDHFhuawmSUrRBmRZKAsTVvLJJMlTEaiEGpJXCZiS4MtLV72zuObgGJa5LtPcaNM9akcPbWf2s+A6zB17ExGYxtqQTEGKKRQiU42zTwWZBzkmpSW2VCxPAIt+bO1+7gSDDIrBGPFfHlTM4wxSVJk7BEhcgBphA6VFLgOYsx2W9k8v3WUpWAwkxS5l7mJCHZLXtme4t1DCzhoykUPMASeSpQrj1u+GUsgNei8UuFEDLUIdv+mRMfdYzfpBzrr5hEGBiuQqKJOMNN+XUEMO5RKzQwQMsZkZB1eYFNyU8mGygGuXWgpnQQZKEGfm3b+cMizR7ZtnXB8WfdKtIWLFFFBoPR+8mRAJqe90lokBihSGrRKFiDK3pe8QU80Who7ss6FrS3uGh7OXkTm2G9uMRYhBGNjY4yNjbGxscFXv/pVXnnlFVZXVxOOGL9z6U+QIjsYDXWS7QeoWAV8k5wZCHSQAOQm596nZ6SGnRHqQQpU7xNTvdd7KoRgdHSU0dFRtre3mZ+f50tf+hLj4+PMzs72KiLv9bg3OxN5h6m+A6pvlzhQdSIrlQrNZlZbuNe4HlC9tbXFq6++yle+8hXCMOSxxx7j0UcfZXh4+LobgP2Sf/RZUxRkf/Zcw0v46igv1ycTU915iW8lO0ClXnYhoB1mG0WV0gBbwmTYYYWfZYyNwtOa/+vSZ691STccN8pU51VSXE7p9I/fcwE3k6BmEuy9MSYBao1JJiNpQwK0hlomOtd2aBNoi8+tP8QGffjaZj3YvbJmK1H0RbDl5yd6bu+yHOBSa4AnNu5lU/flJlzlvdXpZZ2SNtTDEnPNEQoixJKGSqVF2r1PuWBiwnHh7f68RCgyyVvpsK4i/RAh2WRJDVgCd0OSGO+kdlEaaHNqe4yVVrlXbdAP7QwrmadlzztlJz1YyU1SzA421S4e5FLCurczCjjXGuvdh7bKqTaaW55+b44+aZ2/m3IsyZOFdfc9OFJnbo/Jivst/7haDA0NYds2Dz/8MABPP/00X/va19jc3OS5zRf3KP0AX2crU2Z9zNN6apNxgSnJ5LO3RZE+e3xvJ3GVuFYy5m7R39/Pww8/zLd/+7dTKpX46le/yle+8hWWl5f31MbeSVTcn+iC6oP07yDGgQLVb7amupt8+MILL/DSSy9RLBZ5z3vewwMPPHDD1m/d4+4HUy2EyLXWq9qzzLcPIVK9ZNrCC6KOtBVkO2+d+6pc+6OQwmTAdwQuBX+2+jVClW+kdrPRBdXXC6zToLpi2yzFrPOGRzYplDcz2yktE1pJpawEeFGhlQAp6QbFD5OdznpQ5nMbD1A3kVY61JLtcHdA7Kcmneph/gxAO6fmtyMVL27N8LXGMcIOfZyrF851iUgvEz0Qda4xwmorAnvjY1voAklUJhI1hK4KmmUgcsuL75ybQGYVGju/53zWPQJSCJx1GeXgGVBph5SioqVcFprDvLwxyYX6ANv+3gB0moXMT1IsZMBXkCPDyqsc2Y3uIGqx1U8od96FvMSmohVmSpEXrDADmJ2cKqt+kHzPynaAijVdeTNd3cFkwVU8u/rqrtcQj7eqbHj8eNVqlYceeqgHHv/ghT+hptYz6xqTc51GdLRHsUU5x0nbkbZDJ2eQk5zZGHane0nINxM3C25LpRL33Xcf3/md38nY2Bjf+MY3+NKXvsSFCxeu2m/erKb6jqVeFMaIA/fvIMaBA9X74f6RYVuV4vLly3zlK1/h1KlTjI6O8t73vpcTJ07sS1Wq/XQdGXeTEpCyHOPpDYuqM5hZt+iE+GnPX/I79DwmK29ZHs5Or+VaCoEgQPFbl/4su8E+RK988nU2yOkkxcN9O8x/dbDB4FSdTa+IFwPBymRdFawcMBWPIJUdp5WkpWxO1cZ5cvUeXqrN4MfMk7UReDi0wny2UqcGTK1dypWnZyeUEZysH+KSP0z84XUL98RDQgaM5TWLO4y84Iof3b/B/iYISLv1xbfPmRnvhRvI7IuUCqt9FdCd9xrE5d1CUFiTyDZJyYOlsJydFZWxWfb6OFsf5RsbE1xp9BF0Bo1ZZw2T1UUHTgZYeTlsctohQhsSSa7paHdY7IX2EPG7mpcUZ0tNWyW/cSmy74wtDX5qQJwGk0JE2utuuDLbftpyZ3B7Rn3zguru8YrFIvfddx/nDq3ntnGhlhn22stpR9OljKLZq+RAJT0rCNBWyVyNYefmpR+wf4yx4zgcP36c7/iO72B2dpbz58/z5JNPcvbs2dw6D3fkH/sT3TLlB+nfQYwDpamuVCo3XaYcdqbJgiDg0qVLXLx4EcdxOHr0aK7H6c2GlHJfmGpIFoGxRZHTzUPUdJ22yk9Sa4UubippKa8jLtrd0sXJzH4/pbWWmAxwS08jCxGtp4DPrz3Ph2b2Xnp3r9F9RtfTObfCkLmtzcSyaifrvTrYYPjwJkZEVQg936agQvocD0E0Bd+NUImEu4Mxhr5CsrMp2QHawHZQYssvUg9cTnvjkRuLyHEGidKgWPL6OGYn2bNG4CZdXAA/bV/RibgERRnBVzZm2TIljCajEQ21xI0tE4Io8S32PPMcQPzQ7v1pSUOt7XZ01VnGOA6ktU2mkEv0A9DWOJYk2EVzjeowz3nbm3zAntZYawTupsAb27mc6kAzl7WXEpq6QLNd4GJrkIrlMVRoUbTCHrhuBg4DKT1znsY6TzJRSiWObvvFq5ao10IwVxtBpyp/FqyQUAns1H1rhw6llIQpNBbpwjChthIyporrZ0qlxxmnbrKim3qXROcdUe4aoQ6x5dW7nrdS/mGMybQTSivONc+yVwyal7Tqpp6XF9r0parTVlIP1REutXA5sWzYvfkkRdh/GYaUkiNHjnD48GFWV1eZm5vj3LlzHDlyhKNHj1Iul9+U436rxkGTTByka4nHgWKq+/v7aTQaNzxd1P3wG40Gp0+f5umnn2Z9fZ377ruPxx9/nKmpqTeFPdlPpnrEOYGIPCiohQ9xwYsGGUv+SoZlhPzy08UO4IuHFCajzxQi6xZiyaiQRTwKOVPClogYm7Zp8cW1vbFX1xM3wlS/sbTGI+Vxpio7dhDKGKoDDYYPb3VwVrchEHjKYbVdYtMvsu4Vqfkudc/FUxat0O79q7UL1AOX5VaVi40Bzm0Pcq45ylfXj3KyPskVf5CGKSWAcRpPdDvtNT+bfb8dZGdL1C6ApGL7GBMD1DraX6Cy70HenUsPmITIstfxdaSElUYFS2pKlVYW3BbAdI8kBXYO4xex24Ki3v3bk0FU0dLK1ryJ9NSpkZ3Isc0DkKHEXY8xvWU/I83QOqWVFYKtoMTl9iAvbRzilbUp5mtDbPvZ55KXx5CWYYWaTNGXxi5ynm44tuZKMJBZLgQ0wqxUJY8lyntj0h1flF+RZLQlaVY9uU2gJavtcpRMKTX//cqTu13Gzj7eQqa620bEj/f7l5+irbOsa9rRp7t9KZVo6isbKVIVOHfJYYnHiDNG+svbjyRFePPAbTfp8/HHH+fxxx/H8zy++MUv8tJLL7G1tXXTx73jUX0n4vGrv/qrHDt2jGKxyLvf/W6ee+65Xdf9tV/7Nd7//vczNDTE0NAQH/jAB666/n7EgQLVlUrlpuQf3W1feOEFfN/n7W9/O+94xzsYHR19Uz/q/UpUBHBkkSFnloJ8jJfqO4xmW3sM2qOZ9Ys5hS8sYWjmyAzyyhln6z6bTFKjJVVCdwndJL2o8/ivl/dfAhJnqvcap5fWeP3sClvnmryzb5LRUpl1cZnhI1uAyEk6ApAE2qYZFtgKSmyGJbbCEovtgZ1/3gAX28Ms+f1shBW2ggqecTEdEG2MyXTUbqqT7oLqzTCbrFjPSWoTQlIPsmDKkZpNv8Sza8d7gBp2YQ1yluXdgXZKZ5uWKbS0izaC8dGOrjq2F2V1QG93/34OK9zBNl5LZTPlOtFlwGWO42BRZNFzjqEDAFoCGqrNiDa3HZUZ4KRzBGCHrRUikums+H2ca4zy3Oo0r29McbE+QDNwMhprY/I11unZHT+v7GN8m7BAKy0G722bvf48WUNW/91xAElFK7TZ9IqstsosNqtsB8XcRGYAT1nMbQ3TCl2WmxW0gSdXv3LVa4mO+9aB6m4b0T3ehl/j0wtfZbVdZcsrJAaNoZaZZxOk8icACiI7oErf31ALLJFMrK9Y2byJ/WSq3+x7OjAwwKOPPsr73/9+XNflueeew/M8arXaDZNddzTVUdxq/fM3g6b6t3/7t/nIRz7Cxz72MV588UUeeeQRvvd7v5fl5eXc9Z944gl+5Ed+hD//8z/nmWeeYXp6mu/5nu/h0qVLN/s4do0DJf/o7++/bvmHMYb19XUWFhbY2tpCCMFDDz3E6GgWgL5ZsV+Jit0YdN7PZ1afIs09DdhDbKX8T13bz1RRBAiVBampyrTOE7KsDXTZb5VZZsUYLUsabCQhhiV/lYXmCjPlsb1c3p6iOwi6nvt6ammtc67w9TPLlFyJObba00YGSmam0dOhjUmUb4ds0l/GD8CIBHDTGsrOzv0LQtkD9HVdIO2R21BuLs241S5RzfG1fnF9Bt9JAe48mzUlMi2EF9g4heR7YVLP27UUnrJ6z0AKw0arxFB/g/M2iDaY2OGFvnp1rbjzoOWBysnX7EpVhY6SH+MY1EXipd7HvGOKkF6FR7+uqA628sYVuTM+efdfCoMWFlvaYssrcNEbwEZRaQT0uR6DTgtLaIYKyeIgvsoC6GuN6be8Ii3tUCH7vHOTFTsJhnH1gWspAi0Tmu+K46MNtAKXlXaF7bBIM3BIqUxYalWZLNUZLTV6uut2aDNfG+pVhvS1YLlVQZbWWPO2GClkmfVu3GyZ8uuJNKj+J1//v1n2Wti2YNMv42mb0WIjAtN570POPtP+/8YYKqn21GgXIZLPXqbaWFeUqVgj13dBu4RSKrei75sR5XKZ+++/n7vvvps/+7M/48yZMywsLDA7O/umzfge9Lgj/4Bf/uVf5id/8if58R//cQA+/vGP85nPfIZPfOIT/OzP/mxm/d/8zd9M/P3rv/7r/O7v/i5f+MIX+NCHPnRjJ36NOFBvdl9fH77v5yZLpENrzZUrV3juued47bXXGBwc5H3vex+O47zlRvX7yVQDFOQMea1/kC7ZR2d6OIfRzLPTilwDkl1IXmJSHvjO7Xo6FKUQ8OsX/ihnm5uL67XVO7WYTFIcPKqQHYAQsclZ3WQ2ssx9euCR7k/S08JBClS1Y24sGos1LykBaedU1IOoqEs6LtcHWPSztot5mXxWzixGWncNWVcQKZI6W8vSrLYrFDtgPG0qEZeDp3XOIiDh+iFzGOYiVkyUI6jGrecMNHOKeuRNusQZcyEEzkCQO4jKM2LI87FOJ/WFykILm5opcdkb5LX6FF9bP8zz69O8tjXBXG2Y1Valw+Ik95+24UtHU7m5Ep5o23y7vLyk11ZK4rXSqvLK2hSnG2NsqApKWFg590QjWWwP8Mb2KEoLmqHNXAxQR8c0+MphuVXi0xc/f9Xr0Vq/ZVP+3bZXSslvnn+Sk9tLmBgB0ApdrjT68ZXIbdtKqfsb6cGTM6a+sjLEhcyxSPT1VuLvYffovt2HG7XUu5noJii+5z3vYWZmhrNnz/Lkk08yNzdHEOwyXZSKO/KPKG41q3yrmWrf93nhhRf4wAc+0FsmpeQDH/gAzzzzzJ720Ww2CYKA4T145d9oHCimumtrV6/Xdx2Rh2HI5cuXuXDhAlJKZmZmmJyc7DU2+6lv3mvs9zHvKs3mLl/x1zMsJ+RPZ3d11XFwbUlDK3AoxBKcpACjSoiYmLXkdNHJzsYlSxKm2EJX6ogRB16rn6MV+pTsGy+Hm47rKQATKs3ZlWQCYDix1rsCjcDOKXSRraqWdo4ROPbVBx06lIlCKOkp90BZ2LGOe6U1wGisCIy/SwnBds60/5nmGCZnLO06YeZ5O7YmUAInBqJcS2XWy7NRi98Gx9LUVAFlBMVSm7CeBPvG2VnfOJ0iMB0AYqVt8vKs8ZrJ46uW7t1PGYBKgZnd9NRp9lpWwsR97y3PAdDpAZfSEitVMTOXmRE2bWNod3XPfvTOnPPGwBgsDEbDXQNZ//R4+MbaxfYyklr5SmaSByNZSBLYeJ4Ljs9Ko8Ki14eWFm1tJzzVbcvgKxIJyt3/ayuXc7URjAGTei+DwMKyDW1l8bnFM/zdWY21C2P5Vss/hBBcbq3zifkn0JjMcw+NxWKzStUGSwaUbB/Xir6PLANdwHKSso486Zwy6YRVwXawCEDFGkeZYyjz0H5cYnS8W5Aw2K1S6bouMzMzTE9Ps7y8zNzcHGfPnuXIkSM9fWxe3Igt6kENc8CY6i6o3t5OVjAuFAq5+G11dRWlFBMTE4nlExMTnDx5ck/H/Ef/6B9x6NChBDDf7zhQoLpSqSCEoF6vMzKSnDLzPI8LFy5w6dIlKpUK99xzT65W+laB6v2Ufww7QwzaA2yGSdajpuqMuYPU1WZieSmHmLc7ALripqrvGUkhhWzqvqG/FN9W0/AdCjFQIYWP0XJHlmGgHVqAC8IHofnUpT/lp45+//Vf8C5xPUz1udUNgpjwW1R8iDk35DVlQWjhOsl7YaVWTJf2jorEpEBerlZ7J0ItsWPM2Wo7qatWu3jYpsuVv7E5iiecXMmOFOAFFiU3Vao6sHGsnXdAiEhDvTNwioB2dAVJF4hu2FJjDKy1yoyNbHF5uYjVBuUAVvRf0TY9H3XhG+j0sbne0ylUrzyd+DsMNVYTVDnaXqfaZxF0gHwq4rjH6vPQMgugM0mKXAeAzglBViYQMcsCRPRrLXBZb5cZL+9STTNwMFJGFSVzBs0Qaa5dq5X9IRWhkby2Ps5MaZu/OnKaIbtBVXq0jENDOdRUgT/bOs5aUElaD4q464+MZj6yFua92A49/o/Tf8A/vO8HMufQBVJvFTvZBfD/4JX/i9AYtJa5gymBZDuwAIcNr4wlFI4IkQZCWhQshWsprBwNv5PjDlKKAW9HFBl2DiMp8npN8nq9BtT5O8duvuhLN24FqO72pd3jCiGYmJhgYmKCjY0N5ubmeOqpp5icnGR2dvam6j0c9DDsIj27TaN7KdPT04nlH/vYx/hn/+yf7fvxfuEXfoFPf/rTPPHEE/tihbxbHChQLYSgWq0mdNX1ep2FhQWWl5cZHh7mkUceuWqJ1VsBqvdb/iGE4K7yLC9sv5T5bcgeyYBq1/LQRmQARORXnQTVedXY0lPf3W0LCSNgQ6glyki2/SLbXgGDRGAYKAhsy+PJ9Rf3FVRfD1N9eikp/SjfVUuAk7zrTksmjDHIa2mutUSkrMzS1RnTTHZaHrJtdhoET1n5Wh0AG5SOEixDLTnvDYEE21ZonZWhBMqmlAJ5KkdSoJRIMOuWNLRCK8FoW1L3mFMholu1FZQYcVrYLQEhkfbcgGMLfGMIO/1pT46qOvU04hZ+QmB5ZkdXbUxUdyN1jlY7AtW5Vup5Gm6VlJ7Y4x5S58zqKNmTBHUjz9Uh74nkMtypWYzAs3FKyW9OGcGmX9oVVG960c0QUtAKHMpudlo9z3veSSXOVT2f7xr9Og9WlqlaAaERbIUW/TF7v9OtYQacOr928b3E76IldKL8eXIo2VnHMonx0JfWTvKh1ncwWRpMrJfnxvFmhtaaP5bnuNLeIP/MO+ulBkrKWBjjcKGpgWjkJozBFiGWNYIlDH22S1s3cYSi4VewhM22ryhg44uQifIwy57PdujzYP9RTjfmOnuPjnWsPLlv13mrQLVlWbkDpK4jQ71eZ35+nmeeeYbh4WFmZ2cTlYnvyD+i0IiM9/ntHN1cjwsXLtDfvyNJ3E1lMDo6imVZLC0tJZYvLS0xOXn17+SXfumX+IVf+AX+9E//tFc59c2KAweqK5UK29vb/OEf/iFKKQYGBpicnORd73oXlUrWjiwdt4qpzvNKvZm4q3QsF1TnTf0LYWj4TsJbOVqe3W9k/xV5znqhRRD2sd7uJCAJgxQw6NrUfZ+6X0AZiTIimv7UFs2UJKEoXdbbkn7HxrgNPr/yIt8z9o6buPKduB6m+tRibHpdKorDOxSpNiYBGKNlWa1qmpWGLKsZhDIhnwkVlN3kftL62fRz8C2bVuBQcgK2vBL5EC76Hja9MiOlBic3JlAdb2ApIs/ckpvUGuexq3nvQJ4WLlQWTswazpEaLyYrstAoLHxbghBIZTAyQsOhAtsTGAdUccd0xGmY3Epy0t9JVty1NLkBdpF57KqnjuENayBrpQe5hij5ADqdnGpMRp+tlMR1dGpZdiBrELtWyISOZV7nJFphPqjOi6IdEijJXe4G31a6hF+xeFt55zs47w0yU0gONrUwvLtvnj8v3cN8sDMbKCXo0CQkIXmhlER2WP0tv81Hv/E7/Od3/mTyGKnEwTc7LjbXeUFeoQuo8zTjGJNpO40Bkx5sC0GATdh5rE0FWpdxE/t02PAtnIJFredWJbBzbt1BAdVXi2q1yoMPPsiJEydYWFjgpZdeolQqMTs7y/j4+B1A3YmDVoWwey39/f0JUL1buK7LY489xhe+8AV+8Ad/EIjaii984Qt8+MMf3nW7X/zFX+Rf/st/yec+9zne+c537su5Xy0OFKgOwxClFH/7b/9ttra2+NjHPsb3fd/34bp71+neKlAN+6sjvKucr6te87dyl6f9piFe8GVnma8caq1hVn3TkR1EP/qB7BVK2A5Bayej8SxgkRbFtlQE0rcDiav6+L0rT+8bqN4rU62U4pWFyzvneayR6Fijjz/tjiJxU1P+JrQgBrS1NjkFO5KNYqQp37knxpgE6AYyzCgIFhv9zA6uUfN2L10OsO0VKdk+V1R/4tB+aGVAdR46zEtWzGvW0429YynaMQcQyzIoAy1hI6setJPfpJEGpyYwslMExoDVgly5eOz25FnoQSfRsGZQpdTZ7uZPrWOOIbYCx2Db2XYgr3/PMNfGZJLSlM6+Lyq0IAWqdwPoSkgankulkL1gz+wU29nNei9b7RFmnE3eX7rAXaVNAObaSTcOP6XtXwtKTLkbSAF/c+qr/PzC9ySApjA7FxABgKtLOITUnNxe5qmV1/n2sbf1lncHwm8VmPqFuT/unbfWIjPQic7FZKbeDTGP9U7YwiHMOLDktB8kJnsAaKikPGfE7adqZy00bzTeCku9dFxPifJCocCJEyeYnZ3l0qVLnD59mtOnT3PPPfcwM7M/Xt23c2gjEknbt3vciD78Ix/5CD/2Yz/GO9/5Th5//HF+5Vd+hUaj0XMD+dCHPsThw4f5+Z//eQD+1b/6V3z0ox/lt37rtzh27BiLi1HOQrVapVqt7nqcm4kD4f7RaDT4d//u33HPPfewubnJt33bt3Hy5El+6qd+6roANdw6+Qewr8c9UjyEK7LXvh5u4OT42ZbSPnBEbGM7tHt62PntKc7VRrhQd1DCIg4B0h+IlFl/0SCvzrQwyI7jgK/htc0Gv3/pa3u5xGvGtZjqIAiYm5vjS1/+MufWd5IlSlPJJKO9srUiBUCD0M5sm2ahs84fMsFyag1ODrhb9aIGoaGu/n43lcvrm5M9T+xu5CVO5elI037ZkH8+eQ4g8Xeiu2/f2MiRdqbl6UovnC2D0GC32d1HTrDjV32VT0Y2iWrIx6IQkj94iO3HnmxFMpMcpjqtR9e7AOj0qed1IDrMLrNS70eouuchWGtmOwEvtCLGP3bsvHAsTavjJS3RfE/1LD/Yd7oHqDfDAkcLOwPulraYLiQTdy8H1Z5041hxg/f2zSV+T8p08qVD6fck0Ip/9fofJb7Tt5Kp/sylV5j3djxud28tss/KFlmw6OVUri2SbW/T75bAsNhOzgocK0/tejY3ErfC/eNGSpTbts3Ro0d5//vfz4kTJ3Bd9w5bTWdm5ID9u9744Ac/yC/90i/x0Y9+lEcffZSXXnqJz372s73kxYWFBa5cudJb/z/+x/+I7/v88A//MFNTU71/v/RLv7RfjyUT+9Jq3aoKN5ubm/zcz/0c09PTfOpTn+IXfuEXeNe73sV3f/d372k6IS9uFai+Hv3vXsISFrOl/NH9eE5j7VjtTF0NY2C1VeH1jXEutwaphV2NW/ZryJP1pj8a3eF20uHHDmwQ/NrcM3x963JmveuN3e6p53m88cYbPP3002xubjJ05Ch+J0nRGm3hFOLPP2uJB9npfaWz2ug0kNLGZNaRqfuRLk/eDp1cbLmpIgbLT2fhpWJbFVgzWdlTXntWsMM0BsW2DEEK/LkdTXZivTzxcgJUd69bwIBB26lBlxTIMFLZF9cM9pbOf6no6qqJgPVV+lo7hMImSC/2frVyzlMbQiemDx72Qec4eoTZU9I5IHavDExaT22MoZCaPYhXMd3OKfKzmZb/5Gn/O1FvFRmyWvzt4ZeZtrcZjBWduez3Ja7tvDeYqIQaGsGwk8zS/2tjL1OKTRVkkjpz7oMlk4yvbWlWvAb//swXdrbrvFxvNpBSWvPvznw+cd15JekjAJAzCM1LEM45ZU8ns22NMZlZiyFZxTNJQH60tH/SD/jmlX/sFlJKpqamGBoa2uezuj3jVtvf3WpLvW58+MMf5vz583iex1e+8hXe/e5393574okn+OQnP9n7e35+nm7ic/zfm5EI2Y2bBtW3usLNa6+9xu/+7u/y1a9+lQ9+8IP09fVddwGYeNwKUP1mHHd7e5u+er6GXJJlN4XQNGN+yHXf5UJtklWvikqphGw7C0wi4JliX3K+GSfnlUuD1m3V5P/z0u+y5Tcz615PpJnqVqvFqVOneOaZZ2g2mzz66KO8/e1vZ7G9A2SKRxupQiwiA6SUzuqpw5yCHekOOgitzD1Js8MmNeXuB/kdUkO4GAPtPIFwLLb9cu6DSLOrEK3mB1lWyUtVyxMiuywaLKTZ6p2/bWl67LJwNfQFWb/qsLO+JbGbV29wpR8lI14LeAkETg2cWrRvk7ZnIdJld5cbFFZJZwY7kA+gc5MU8yQiOe4PTgpAB76dSXQNY4OstrQzdov1VIl6YQnaXj4z+HB5iZ8c/hqHnDqbKQ/zvpSOxiZ5bnPtIfrtJDjstz3+6sirvb8zbUAOvhcicrPZ2caAEfzm+a+w1IpAe1c28maD6n/xjT+koXeSP3WOtzhEzyDz9Az4KRAsyHeLcZyctiK13lQ1CxyHw8pVZ9quN243UA3Z2c5v5bjVAPibBVR/s8dNg+p4hZv777+fj3/845TLZT7xiU/krv+bv/mb/PRP/zSPPvoo9913H7/+67/eE5tfbwwODvJ7v/d7fNd3fVevAU67f1xv3CpQvR8OIMYY1tbWePHFF/na177GjHMkd73tMN9FINQOSgsubA8wXx+ipsDNioIjfWyYs0wlP5Ic/IKdI5K1bIOMv4pCE2jNTzz/6ZtqVLtMdb1e5xvf+AZf+cpXCMOQd77znTz88MMMDEQa0m6Sori7hltJTd/mXEMegM6ulmWls6Asu07a5zpP6w5gpGStWSXYxU6vG63QTgCzbti2Iu91SxeegW6FzGSk92lJQxAmt027wnS3sGyNHguwvKs827yXJx4qvxDMzu+mJykRQmD5AndFk6eWkbHS6Na4jxD5lUJzExxzkGOey0carAWenUmIU2EO6x17s4wQrDeTGtt2uloO0PSyjPb7K/P85KEXKUqFMoIjhR3WecUvM13c+XszLDBd2Eye2y7CiO8cPMNhN1pXiuQ15MlnogtJ/mlbBoPh7375k6ytrb0l2t+F5jqfW3w1cY55vvOwC+OeI/1wRCHrFpPzTIsi+3wcmd1f+8IWX/7yl7l06dJNz2JqrTHG3BKf6uuVf6TjjvQjim5FxYP07yDGTbVc34wVbm5npvpGG06tNYuLi3z1q1/ltddeY2hoiPe+9738hbvfm2vBs+Sv4OSw1bZwObM1yrYq7fhJowiD7D5UDvhKjzylzBr3+3m6arL6UseCC60N/sHLv5+7/l5Ca83CwgLPP/88tm3z7ne/mwceeCCToHB6aQ0x3cT0KTZbRdZrZbbbLnXPIdR7+/DTjHMQWDm6yWQEYXadjD73Kkz05cYAJs8yIBZ+YOO3s52aEOD5WbPmvTZ0uQ4gqUGDkyrV3C3dLCWIisqwddqJafRdMnroRAiuqqe2QjKUsR0I3M2rD9LssYiNzUvQzFOjpJ9fbiVF387YF4Y5YCsvCSm91kbMozxQMtej3E8Nbr6zepZHSou9v8+3BxiI2eRd8ZPfwyW/LzEwWA9LTBU2MseB6P08VNz5LS5fiu5h3oxI6p23oqqsl8w2//aFP+bll18G3lyW8me+9jvI1FRJnqzNGHBzcKhjssC41s7mH+R9J24OIG+pduJvS0j+6vu+l6NHj3L27Fmeeuop5ufne8VUrjfSftFvVewXO34HWN96/fM3g6b6doibGkJ+M1a4qVQqNBr5TOxe4nZiqpVSXLlyhYWFBQBmZmaYmprqNWIODlOFCS57i4ntDIZRd4or/kJv2WqjzEq7ihFhDttiYTvXdorIdYVIwfrQ6Fw2SKETHLZnPDAWX1o9x38++zR/56735uw953jGsLGxwfnz56nVagwNDfGe97xnV+9LYwyveAuYIz4qkFjCEAJh4GKMoeEVaDsBfcV2zxItDaC1ziYgRgljyWXp7VQOYE9raq8a9hGEyHdz6YaHlSi/HQ/fdyinPJHznk3elHjWkQRM6vV1HUXbTzqAdK3GhGUIDoeIzZ2nroog2wZhCRACy9Oo8i66ahOVO9+FyEeEZFw+hDJgS9xNgz/YtakA7XalHxqrErnRZGQ5JidJUZOxyQu1lXFvCUOZTVXLYz/T75USmWX1WEn6zWY5F2zEi/68tzLPu8sXGLACul9oO3VjRuykzKovVSTmsl/laCm/cMxLjcMMuDuAMM7cSxm5AtnpiqIyWaRGik5lVuDP5CW+b+ABVL3Ol7/8ZY4fP87k5OS+Mtefufwqc/UVSm6cpc4+c+j6vOfkZRgv0+Dl6bHzZFa2bVJjDcOSl0xSPFIcp+gUmJ6e5siRIywtLXHu3DnOnj3LzMwMR48eva4k/Hgp9rcy9gNU3wHUUURA9ODcizug+k2IN6PCTV9f3w3rs+H2YKqDIODixYtcvHiRQqHA8ePHGR8fz20w7yrPZkA1RBW8urHeGGKxVYiqYgQ21h6AXW755m4luFiIjqd1728BtnYJ0xpOSyeq8gkBVdehHgT8xtwzPNg/xXvHZnc9H2MMq6urzM/P02q1mJ6eRgjB6OjoroAa4E8unqZ1qIExEpHq/CMjLEErcGn5Dv2lNgUnyHhW59nr5Z1fxkkj1UCqUFAspNnd3Vse4YxCuDuotrWNkiIjy+hGWp8LYMvsu19ID6iISphnzif9t0hOqTuWxutsZjsabyLEXnGhy1ALgRVodEf6YandyWgriOQf18jTzJyhAAjAaUFQAuGbHkMuh4KIUTZZVlqFAttJPgtlBHaKiU1r4qOj5px/5v4Z3EJygNP2HdLF+UJL0g5sik5IzS/mt+CdZY+XL/D9/aeZ94YYtqP3JNCSmZi044pf5XCxnvh7yt2RgigjGHJqOQeBJb+KsQ1D7IDyzMDARF9RPISIXE3sVLGgUFv4JuDfbDzH3ytENmpnzpzhzJkzzM7Ocvjw4ZsGaOdqq/z8Nz5HxXEwsdGmNgIn50EpLTOg2igLYaWlXQYnVV3VGJOpuGo0NESS9BlzB9hSyZmAozF/aiEEk5OTTExMsL6+zrlz55ifn+fw4cMcO3aMcvnatntKKYQQ39SWenfi6nHQdMgH6VricVNf2H5UuPn85z+/rxVuqtXqbclU7+W47XabM2fO8PTTT7OxscH999/Pu971rqsyOXeV8oFoozPdeGFlmMvtQo82MjmyjiwAiJIV06drWwadshBxcqan83TVQoKtk3KEwHjRFLCAf/z1P2CxtZ3ZTmvNlStXeO655zh16hQTExO8973vZXZ2Ftu2rzpQmaut87GTf4wREqOyFQZ1fIpeCLbbJTYaZdqZZL5rs45BaGWAWprZClNJicbEXTOyoVSZgtwdVY4UxgBBtbDLgDWHRXMdlWHQLWnwU3KFQp4DSM5AK/n7TjKj5Wh00SBT4vz4ka/GZMgAxG6aapOjfzY7zLUQAqtmEIHBjum67fFI+iHTNjhAnvtDrpI+yMtByALobJKildFY+34eGBGsNSK5RnsXTkTYmofcK/zl/tcB6I+Jz882h6nGivSsBUmf87VU4uOcN0i/nZQmQJRz+oY/ihTQb7cRHVmX44Qp2UZ+xxnvULtzWWHnVZ/3VnhGLzMzM9OzVVtYWOCpp55ibm7uhiUQp7eX+d+e/T9phh6+9vB8i2bbwWuWabbd3EGmk9OuFnI00WFOErIKZUbiZKlixtt6rJAtzZ1X9EUIwcjICO9617t4/PHH8X2fL37xi7z88svUavkDn25orW9a23wjcYepvhPfanFToDpe4aYb3aTD97znPbtu94u/+Iv8i3/xL/jsZz+77xVubldN9dXkH41Gg9dff51nn32WdrvNo48+yjve8Q5GRkau2eDsVgRm2V+D+lG2ZIF4x1ewsg2v7WhUjqdunq46nYwnpM5oIz2d3yl6KZRmhKHQSeBp64C/8/xvozrrKKW4ePEizz77LPPz80xPT/Pe976XmZmZXudxNZvCda/JT3z104RXcabNG0gHymatXmVlu0qro1XOkwWkExDz/IPTkpF0px4GMmO7Fo9mKBi2xnf93RYdL2ujcp0Y7NwiF+C3s1rrPLbbS4G+iJVLsZKxQ0gBXUm9JSPfDHUkVdUxdpt0HnXY3W8A0ghEkJMo6GepZhGapPOHFBQ2ds4HwO6LwGd6cANg8txSclC/ZWfZSic1+5AHoFXOMfPcRgC2/CJKC8JdLAcn7W1+ePjrSAFrYYkJd4dJVqmXetyJu1/AWIqVzrm9ALzWmuy941IYBp1IHhJVVtw5791mWoyBRtthq1FkdbtErVkiCBzabRtHF/kfwRzbfgspJYcOHeJ973sfDzzwAIuLizz55JOcOXMG39+l8k9OnNxa5Eef/iTNQON5NrV2kYZfoB06NDQY5bJRLxHGkq2NAZG2qAHCtM6JXVi3HG3ScDHryOTKbJt79BqVFAcGBnj00Ud5//vfj23bPPPMM7zwwgusr6/natFvReGX7nFvBZg/iGEO4L+DGDf9tn+zVbi5nZnqNADc2tri/PnzrK+vMzExsedS6/EYdYbpt/vYDpOd5bg9y2ueD6nqX4H0ETG9YzfC0MLKKQRyrTBd2jC2Py2DRPW1buTpdB0b/A7RtuRv8/ee/x3+6cS3ceHCBVzX5a677mJsbCy3w9it+Es7DPhfn/mv1FTETBpjMlZmUYdKZlk3fGWz3qpiewEDJQ/XVr17FigL29qdgYVouriQngFIrdT2XXLySXtxpdbEamvY5ZXwVQSOPa0YdQdZDTYTv9uuIgxFRvMahBbpOo3Kt6CYpIZDk6wGGWrJZquIkDv6v8C3qFRjXsbG9BwtLKkJxwROrEK8KgqE7khvHIH0TU/z3A2hd5L6LB/C1BjACbLLZJjdD1JgtQ1hFUxfgLAMWgm2mmWavktfsU216iFEviVe2qBEK3DcNIC2KRaT74IKLCikwXeObGQX94ymsCM99S6g+gODZ3rOKzVVZLLjR93WFsfLOwVdLnj9TMdcQM57AxwpbLAeFrni97Hqlyg6WZa6rlxqxk1IXwbtFhtB9CJqLbDo5h/E/Mnj19AqEJpskRyDZNuPZGQ/+MQn+OR7/xYz1UGEEIyPjzM2NpaQQExPT/dqJOwW39i4wk88+1so5dDWWbNxoyEUUUnNjXqZwUoLx9YESmakXsZAKLwMG5VX2rzsWJm07P6Cy1pKnp72sYa9F34pl8s88MAD3H333Zw/f54XX3yRSqXSkwR2SZdbYae3H8e9Y6m3E3fkH7dH3DSo/uAHP8jKygof/ehHWVxc5NFHH81UuIkDnniFm3h87GMf2xdD7tudqe7a4i0sLFCr1Th8+DD33nvvVXXBVwshBHeVZvla7ZXesjFnnD9b2uK4NZAZLhqp0IHEdlPdQU7blpfAk2ejVbEKNM1OxyEk2MYmTHnhWpZBGBsVA2oBAUpZkWOEgJdrF/lP7ef4yP3fdU2mPo+pNsbwwS//3yz72zsduhIIN3neWglyXK5IgwM/dFhrOGw2FX22R7Xq7aJVTslBfIeik+xM7VQXHIYWlpv/LgojuOS1cpmvbqx5O/vrt/sz6brs7QABAABJREFUoBqg7blUU/7DeQ4guVUlA0lNF9jyCmz5RXxlY0KRtMPT4JkWw30RW2rZumfRZ9uKwJUoO8Tq+F4bW2A1DKarc/Y0OmW/YLU0ogNrpE9mUGECHdnHJBbmCWYNQgvshoG72wgB9VoBJITGZqNVZatVps9uUe33iX8EYWDh5gBou5wceOgcl488nJDR7RqwCvnP3kjJYq0fcqS0dxVWeLQcVRTTBkbtHQR3rjXE/ZWdEcx2p7KqNnCmNcz5oMwVbVG0ArB9akGFPifkxeYUh+0aE27Urr7amsp41Q86TegcKpOsGMqEftoPJJ5vR7KyxGOJnmqn9AvL7QY/8Oef4Off/v38T0fui5Z2JBAjIyNsbW1x7tw5nnrqKQ4dOsTs7GyGdPiTS6f5hy/+IYHRgMZoQ5oYNqFAdPTyxkg26iUGKu2OdC3ZRjkUCWVyoKF1Xkl7g5FZJn1bpfsmw7Kf1FNXrCKj7kBm26tFoVDgnnvu4fjx41y4cIHXXnuN06dPMzs7y6FDh24ZqN4PTfUd+UcnDhq9e5CuJRb7Mi/z4Q9/mA9/+MO5vz3xxBOJv+fn5/fjkLtGl6nuFhC43uiC6hvd/kZDSsn29jbPPfccvu8zPT3NQw89hONkp+KvN+4qH+uBalvYLGxXUaaBvwsL4JgChiSdkidDsG2N0iBjzI9laZROFm4IQ01aRi2NTa4thZYgI71uGFoEgYVjbLwY0H5CrdC3+Cp/f/AvULR3vz95TPWHnvltLrY3k/rp3fx006FE5jp6PxmLzaDM5kaJku1hW5pCJ0kpSlhKXqvJ8Y5Ol/82OskEx2NAVFHAuabH8V1IuguNnWcoTD7lnSfryGNI47pgrQUrG30s1SuodHl7nbpHAta3S9iWor/sYUtN0Lkk29GIQKAnAqxLO02RDA2qC6pzBihxrCJUR9oRsxbMsxnMk0TLwESFZhoG+gNCXxIEFjJ2qzSSzVaFraBMyQ7oK7cploKIbXbTzyuvvcg5/5xvyU1prL22nbteNzbbZfrLWUeO9/efZaTDLi+HVaZj0o94CRNtBH2yzXP1SZT0CYxgqLDVGw+t+hWmiluAoM/x2DAuVxqHqAg/t/jToLNznOj32PPQAqwuaIVaowhErFvGlz0QyA7AFQJsKfgHz/8Bz61d4KOPfHdi3YGBAd7+9rdTr9c5d+4cX/7ylxkfH+euu+7CLhX56Wd+j6+uLyQfwZ6adMlmvchExUKJWqKtUJpMGxCGFoXUACjPMcnBYc1P5oUMO33UUsnGR8tTN9z32LbN7OwsR48e5fLly8zNzXHmzBlGRkZuS/nHW1EE6LaJA8ZU5xIdByAOnNhpP5hqiLThb8XIXinF5cuXe8med999N5OTk/t67Hiy4og8wavNaAp4STeiTib1bltCkoa7tqPQigR7K0TUobgxVlsIUCplo2VFNmXxA/mhypU2eKFCqwJeuHNifnfbzubNMOS3z7/K7yx8nb84cRf/5MHvZLiQpe3iTPWfXDnDJ8++wBuN1SSgzpF+RBtnF2kt8teN7w5BIyjS3CrgougreRScgGrK2SEzQ2AMxULyrodm9w+0IquAx3YQMmyPsB4mLbnKssya7/UupB7ka8vzGmknx+2jUAhQClY2+ln2KighMSILioxOLRMRq7683odFcnAhpQFj0EMKYoY9cQCcU9sk0mn3DEMETl3hD0YrRnKRFHhQJmOvByBVJHvV/Qrb0mxtlzoNfXrKP3IwaSmXVs3F3laUHZ9CMUi8D3l9v5VJNDUZAB0GgmIKoPu+g8ywn93zgZZy6E8NfB+tXGQyppFuq50BZ0M5HC9F3/0Vr8rX24OMFDcouJEsbL45TDXmXe0ZOwFmLAFYmldaU8yUNjPnNOQ0e4mrtqUJtNyRp8RuZ6vtEHZnJcIdsN2L1KNr6wCtBZ+ee5nnli/yd+/9Nv7yzNsS61SrVR5++GHuvvtu5ufn+Y9f/GN+y7+ET5j41o0xuZIukftNCxbrIKhQKfqUi0GUb6D97CRIzjdUlAVMqhU9VBpmoZ10Yhov9FNvJUF1XpLi9YaUkiNHjnD48GGWl5c5efIk7Xab06dPc/To0Rue+bzeuFUM+UGMg+btfJCuJR53QHUqug3Am90YpG3xhoeHsSyLw4cP7/uxpkuHcYTNqDPJn11ZY8evNuSQXWVVJ++Xj5+bwRoENgUrDbiuPdrUUqF9K8G8KRlmSF9joFkvRDZisd0aQAqBToG1gmXzp4tneWJpjncOH+aRoSmOVoc4UR3mWN8Qb3hbfHr5FK+f+zyBiZLopEj228YXyFKOnjqt9czpfPPWQ3e12AIfm7WWjdmAatFnoOhRqUYyg4w7iGdTqqTu7VUYdKNdIJJtlOQwkATV/fYwcZZ7qdXKHcTksdJuQWUszzZrZS5u96FtawfQ2gajktrzXICiJNiwuD7AoaEtDAYhI6BqC01oW4T9AfZ2BALjCYrKFZE+oQPQRJgVu8crK1otjS6m5CI+WT11tLfoP8faeG0Hra3c1O1MfoGw2GqX2F4tULYC+ooepaqPnWOp5qQGSoGfZTXDwM6w3kpJ5C6zFEHbxrdENMjrPD+J5rsHTjJb3Iz2aQSTMfZ4rj3ImNPkVHuAamELJVWPla6HLpOFHWC36PUzXki2CZ62ONceI/vVRtFvt7myMUi3bLulNENDjUi21TlHraHe2AFz2kT6+TjwlZbB6OQjtmyDUnCuscY/fPEzfPSlz/GXpk7wDx74dibLfSiteW1ziZfXr/DE2jme9i4AOgOgMSJT4MWEZOQgEFVMDI3BIKm3i7Q8h/GqwLaz+Tp5/tSOEKTFH/1uEVIS9aKVnWm7VpLi9YQQgomJCVqtFouLi2xvb/Pkk09y5MiRPdvx3Uzc0VTvX9zRVN8eceBA9c3KP7pTZG+WrrrdbrOwsMCVK1fo7+/ngQceYGhoiIWFhZsaDFwtbGFzonyCLy01SYPgPlFileRxja3QoUSmp3lztaA5oMxKAWBAKAtiiY6WbRBGYmL2EM2GizaSEgI/BShcYdPWQeL0WypisUKpeXbtAs+uXYhOs7vLjh2fLSUgQairTql3I09PbUKR8QxGkVmmUyAhOg2LuilQbxWQzSp9VsBAoZUA5dqXGW1wpSB29Wmux4BkM8iiZYsysJOcerld51jBwTdJxjwNBLvhew522ScMJQsrQ2zpIlpLJJqi9Ol3Gyy3hyJJTPwdsLuFPXYelIhgNEYIrmz201dqYXUGMrajCQMLPRFCB1SrAlhtE9GjslMEptQBa9maGxghe8BbKrI1O/MeudlhxHWfptmO7mFucmBmmYkkAELQ1C7NpotVD+krBFQrbdwOaA48m2IpzUpnQXWebOQqhTTxPQdhC9oNl3JfNLB6b985lLFwO6BxwRvi3g6jvBUWuBIU8O0mA8Utlrw+pmIJiqt+lenOusaQsYFTRnC6NYllgQ7zZzwcqRlym6z70Uvshzara32MDNd7VouNZhETG7VEkmUBOfkM8XZFdAbC3SVtHfKHF17njy6cpCAdWipIAmhjKDo2vtnDINXsqLjj4QqbkJ1vRRmLtZqDEoa+skehMwjK86cGaAYt7BQZ3FZZjXX6e4T9YarTYYyhWCzy6KOPsr29zdzcHF/84heZnJxkdnaW/v7+fT8m3HyZ8jvyj1gYcbAkEwfpWmJx4EB1X19fVAmv0aCvL+v/ea0QQrwpyYr1ep2FhQWWl5cZGRnh7W9/e6Ihe7MTJAfEfSx5T2eWB7tYzrm6REiSlXFy3ha741ccdyIQUkVsU6wxLNkW7XRionYIrQgUBL7E61i5BYrMm9nWIUaJbIEW2WW2OhpcI0AIVHQCAIQ6WsdgYbSOtLwS0AZZ2BsTos2Oo0FvmZJZD+9QQnpZrDPXQrIZFNjSBUSzn6oV0O94FFIAQGvQ9m5GzLDq7/x2oRFQTRFOXpj10h51h7jsLSeWWo4m8K2Ma0UYWGxtl1ioDXYq9BkeHz3HuyfPMVhos+GX+A+nvisj9xACTCAgRsDFAY9Gsr1ZZsBpIm2D5SgIHExJo4TCMhYIgQx3isDY4Q7nLv2sbYwQAqehCfpE0jav+7vOCmFlW2Fsi9AN8YTsdFgmo5c1GtJVpeOJbb37pRw2A5vNzSIuimrBx7UUlK49s5PnerNbgirslINv+w5lPFwR8v1DryFiWhljJNrAi/VJ1oxksryTDBeXhbSUzXgMYF/yBpko1mL7gdebU3TJRsc2NAKXipMFiKPFWg9UC2kIjcXKeh/Dg42o6EnLzbD+OoeRz7G2R9qGMASMwDYWIRpNNLCOlCkWIaq3bRpQRw4/2f2mBxDddVs6++21wxBh2WzULUo2lIrRTEAhNRshtMQqpJ+74XJ7jXSs+ZuZZUdL+w+q4wmD/f39PPLII5w4cYL5+XmeffZZhoeHmZ2dZXh4eF9B7M0w1XdY6mTckX/cHnEgQTVww6Aa9hfgbm5usrCwwPr6OpOTkzz++OO5U243Uqb8euKe6qHc5SuqSQeHJiKn/gXSDjNMbFQdzcKJAwNhUJ6NXdxZZnL8XtuBwraij6tRi5KXIALBec2whUSnO+DO4N1og9ECLUxmijc6gUhuoJWFF0osC4TSuH05yZI5fcreUtCyTKcxQGogYJRAWAYjIveMmleApmTeG6SIomor3nVolDfCc9gi5ER1GYnhYmuQrbCCheSKvzOPfLZW5/FqIWHNtdrOArWyzHcK8Vp2BlSv1cts4nLfwCLvGp7naN9G4h0ZdFsMug3W2znfmE7pkm3TWda5fiHZXi/TP9KMrN9MRw4yEFJ8I9rWmJ1qifHGV2iRe+OlZ6BsIrlI4lwMKq2xBizPoGxoHQsJdadwhwKRno0PycpmdmG+O2eIj826Z2MCKLcLVIs+1UobyzKdqqPJSFfdC3wLK8dDvHdKncvxOiD6Lw6coq4KnChG4LilbQoontqeZKhUo90c6W27GZQ4Utqx1Vv0B5gpRoBbGUHJSoLJk81JZGqgsuGXc0H1eLHO6Q4+F9KAAm0ka+tVLCfMB2t57YxlMvkbEGnpVWdmKr2LEBW9Mz7Yxb311tGAKbuuFBKVt4veayRohdCql7GFYkCYhBOMFbqdPJKdmCgMZVw++u0SG0HK6rQwRNnen+rC8cjLESqXy9x///3cddddLCws8NJLL1Eul5mdnWViYuKmwbXWUY2CO/KPfYo77h+3RRw4UF0oFHAc55Z6VXdt8c6fP0+9Xt+TLd71lCm/kXiwL1+rXTM+U4V+1oJkVrpnfDJqPwGhZ+EWr+2xS2pKW1kBOpDJjrLTOXZlH/GwtUWYKpltLJ3RW0KnrQnlrtKOiKXewWJRAiMY30a2DHZp5zjG5Mk38jtfkWKkjQFSDCZ5spGcKW9hRyx2E0lTOZzZKHFsJORQ6Txu5z6MFhr42mKrPczFrRJeB3UaBMP2OFf8C739nW82SUeYU6wHwCiHrj7bGMWQ3+Lx429wqLrdKdJiCE0yo9UShm8bO8cf1x7J3WciLAMqpnUR0XR6bb0UAWtjUEIQTio4F12T5WtoaMKKRNtxPXV+Ry+MwG4ZjJN8eHkaa4gAWlBWqOpOGfXof1IDILLJmPknkLNIQts4tFsOK80yZRlQKQY4juo5aKhA9KQE3fDaDpTy24KwbUHnfigb+mny3YOnWPQGgGgw/LXGOFW3zlCpxnZQ5EhphyFdDyq9Qi2ethiNFXu52B7iUGkLbWAzLHO5OYgsZC+sqfOdZEZjDLewwISRBM8IQRjYuQy0kbvlJiSTGENf7tgT7pJrYEy0w7AtsBy90x4Yk/mmIZpxkOnvlcgCdDvlHS2NyJmtFhhdYG3bpmBUJP0ph7R9RTHV1I+4fRlQPVkcZL6VlN69GdIPuDpjXCgUOHHiBLOzs1y8eJHXX3+d06dPc/z4cQ4dOnTDriHdypc3A6rvyD924o6m+vaIAweqhRBUq9Vrlm29WtwoqNZas7S0xMLCAkEQMD09zSOPPLInTdmbzVT3OUVmy6PMNVczv425AxlQLV3VsbdLA0dJ2uatZMmet7RRAuXZBL5NEFpYtsayNdLRWMrCxNwQLEdjqwJeO3t/HGVnQTVglETEzslokKGNArRSuVO8XfeGxDINWCLSpwJWB1jvVU+tA5BOznqpTjpXspI3BrF1D5c5MuDBsS8xWlrJrOeIkJHSCn/z+DLKSFrKZjsoURZDDNs1fO1giX62Ap800tv04+yZoSADKrLN7ETIcPESI24DRxi0iBJDd9YUaCMyZdaP961l3RvIHBbRcQDptaGWASUItU1tvYxthyjAFAx+f4i7baNdidXQaCcq2iJCk6un7oWU2G1FkHomlm/QOcSftgWtowrjmJ197iFJcbf10kDPGJOQjQghaAYuLeOy2ixTUoo+x8e1AwqjKaY6lDg5Ol/oVLvsvYuCvzH2IgY4XtykplxebQ2DFWB3zme5XeXuvmhWo6kcjhR3WOor7UGmSxHQ2whKbOkiW7USRSfkYnOIhnKZKWxmzkHt8hTGisk2N7GWFrlgWMj870bELPiKqoTfLU1uolmpPIBObxZDoAKJ9sEqKoySWIW9ExZejlNOmDOYx+zIzDxh4zUrDHoSaWVzY6ycEy7b2cHJXou+XG8opXDdq1SSIrLjO3bsGDMzMwk7vmPHjjE9PX3d2uhuf3bH/WMf44CyuwcpDhyoBqhUKm9pAZiuLV630M3MzMx12+K92Uw1wIP9h3NBtdmlk7RVkVAmGc+SIzLdvfYttuo2gbFQItKSSCMIfXZQiTH0CZsmQaffi2Qa0rjkJQq1fEWWKgdLdpOpIt2x8ewdkKMlWugkK6V3AUaqawMi8DyHIiBLqnMvUtppLcnURtPZBCejsuAgz6ItA0SDHdnBPYNLPDxykQE3W8nOUxaWMBQ6gw1baKrCo2p7OGKN0d6tvsR9d4ElNAITyV60QAqNIxSW0Eg0jtDYIkAZG8NOdTuTI7EItEUhZQ9XtT3uHlrmjc2xpANIHnhSseQ7CSIwGCkIlI0KJbISVaT0joW4r0TNkjTgbBu8IbACjRUk2fJ0WE0ISynP6jwGOTC0xw1h0VzzvNPPyuxRd03eu9CVxQhBy7ZpGRuxKXC8kJIdUikGFAse5irMXKisXqs9XVznweoV5tsj9FshK9qmZlymnQgot5TDkdIOO3qlPcBdneIvgZYMOQ1W/QpLQT/bushEoYE2cK42hlvQFER+G+jI/OWjxeTsoBAJVUw+I01UIEemJDBCgg4jbX8Q10cLKBgXP+WtoTXRwxY7KxoBYcvKt8HcZfbJaIFHVk9dtQo0TKryoU9KGiTYCAz4FepekYFKm2Il2mYrzM6chjorPXsz9NRwfdrmtB3f3NwcZ8+eZWZm5rrs+LrHvMM070/cYapvjzhwoFoI8ZZVVfR9v2eLVyqVOHHiBGNjYzdVdObNjIf6j/AHiy9nlq94+ax+EJqMxlRbQc9dw/L7WNqC0JIQJCUNWpgIeHbbcSHwTDTtnwhlct9CZWtkntRDGoyKpoYTgLpzDFTkKNIDiKHIf8u12NlWCNqeQ9HS+TKPPI12XuSymjka6zTYUpLx/k3+wqGzDLutznqCpnIQGAqWT1sVqFpeApTojsYuDnaVhoKlsTuuKtoYlJZUOttqY5BorI4zim9crBSGrqsCfalqcJrsDIUtFI+NLvDG2vg1HUCSAhwS918jMTWw+hR6UKHRSCRRzqKgsKkJi8SYyJzojLQKa4agz6DKEgzoQo6euqXZelAjiFmsaZMdxIVZd5dcsJx2QOleX8aMPOe8hSCwLAJjsd0qQKvKAG3can6S6shglSutCKD9vaNfxBKGLVVEWXVcGVKRO8DvQnOIe/qixNRASyZiCYlvNMfwlEulGODjMOY2CLXg3PYYxc6sjWtran6BPjcJJotOQKBlMo8CKFoh/U6L7aDUuTSz03HKzn3Kk2jldK7GQNiyydSCJ0paxoik3EvJ3HfDGIHyJVIaZDzHQ+UMhIASLs0UYDcGGsrLFn7Ke8YhYEd69+V6hWGvn3ccrnLBu0A61oOtzLL9tNOLx40kDHbt+MbHx9nY2GBubo4nn3ySw4cPMzs7e007vjse1fscdzTVt0UcOFANEVP9ZmqqW60WFy5c+P+z9+fBlhz3fS/4ycyqOss9d+17b3ff23sDaHQDIABiB0FStvhEDjXPlt97ek82ZVkaWRrHWLIipPGE7JjwEgwFYzz0i/dC9oSDHr15ETOSrbA0lhXWC2kYsgUuAAEQIEgQO3rf7r6etZbM+aPOUpWVp/eFuO5fxCXReaoqs6qyMr/5y+/v++PSpUuMj4/z8MMPMzk5eVMr8ttN/4AUVLtsobPFrlKF7TifTCIkxuWTaNVHaIRequXRGzMdE4ww+ZKQpIutruE5CaiYgHZB7bW7Yu9I9za8EJhQIkq6S/EoHmIMxXOFoFUPCGpxTo3BGAr0DRjCsXboWBdARJwPhquoDp+57xT7avlAQCFSkNLRHqH2kUKznfTeRqpmMqI6+FITJhIpYxSCQGq0loQYPKmRGJSMaSUeo6pNSWoSo/pZMJtxiVErTXnJ4Yksy2ICH4lhV7mO1EleKk0UFzM2ODUycy0BJpLoZrpb0NmXULkgMSUJHY0QEq+ZoB383n5bQtNXgPHrBq8ZE9ZkMREM0JlO0IH1vlxeVIcKzZWDFK9sUqfigjkrBLHCdlKmZlqF9kz6o3xYrwOCB6oLHK8u8lFrivGupvRCOMZ8l65hg+jz7SmOVFe40J5gIRzHVwkj5Qht6HLmFWfru/qAumfbURFUSyFY64ywu1JcjM+UtwegWpk0g1HvPXcBp21GmoIXO2l7mESB1MX3IoBEYFS6C6MSDy2G7PIl6TgRtT184j6wNlq4PdXW2g9IHQauxK2u8cdaOKxFCadXFVvRLI/uqXI5vkA9blEWPithHlR7QjFfmXbfx01akiQ3zI0WQjA1NcXU1BTb29ucPn2ab33rW8zOznL48GHGx8ed592KFOW9+u8Z4MrU9rG2nXQvA7vzeUvvgI2Ojt4WTnW9Xuftt9/mO9/5DmEY8sQTT/D444/fEhmiO0H/2FseZ1dQc/9Wmiq2qcer7lrY9thYGyOsVwoZF13jtW97mQT4dpfLCtBaJhypvAGUke59/f41BToGIrf3akD9sExLwnpAWPf63ngTO/jYSRFoG+0A37Eo8jC791RWIZ+Z/5C/duQH7KrWSaz7ibSkoyUVFVJWMWUVU1UdFJox1Wa61KTiJanygVFUpKaiYpRIUCKhqiIqMkKRIE1CSUS0tI9B5bjRngOMVFTUDUzMHCc1ic7fjBBQkjFP7j3neJbWQ7OCOoufi0BHCt2RRLvj/iVmx6rd4yXCKcmQmowHvwkhkEZRXil+wwZD/UivTZnrOb7fYbSogrkoJi7AZit6JIAl6Sg6klhJoq0iEXw2mOpX9n88+G3WdYVlXen/HojBV3m2satPIdIm7U/fq++nLqrUdZlqVzN+uVOjpGLe2dhT0M+GlPbjsnrspgDMlAc7hKKwueF+nj1edd9iSdJR6fHDhkTVXYhpiIZoZ+crEURtj3JUHtoUo6Fliot4EhdnheKO05DrTgRVllodvn56nQ8ujrKrM88+b1fhuP2V3SiX+/wW2K3yGo+OjvKJT3yCF154gSAIePXVV3nttddYXV0tKHXcbIrye8of9+zjaPc81Q7LgmpjDJubm5w9e5b19XX27t3LM888c8szUfVA9Y0mrbkWE0Lw8Ng8L668X6zfMZgLATIukfgtOvUa660UpFbtiDVIqR+2l0eZLkdBZIoEUZZOIUBSTBYD0Oxq0GbNJGBaMt1uD4ahcSCW+SC0rCVDKCFdIBlHPsmWIhiJMFoU+NQ6loWMiCZKveP5thaDFCuyw7Pzpzk0uoqXeQ7GQDvxiLRASU1VRRnwa2gnPmUR9ZUbYg3NpMSk32TUC4kNbIYVfBGRkOoPl0WHQCQY4VHzQjbjEljLoYqKaGtF2fJOh4nC8/LHdrRHVeZpCb6IOTF9mdfWDlnPMv9PoYDI9DMjFhZTHmAEuu2BnxCVY/y2x+65CZbfb4EQBK2EsDZkyNIUFkpeBKW1mM7U4Jz2TEKPxp/bGXDyqR31uBZjDt514XMq8G9BhA46RCygZKh4u0iyuduBRKf38ejYBWaDbT6IZhjv7jIshbV+QhdtYKzbT841JznX2sV0rUmFhEYcsLuUOhy2oxLjfoszrV1oX5JoUUjm5MoWCBC68scD0yUrWDEWg1TzVxjWTCLBT/Xtk4bfP9g3fi4JS7EhcugsZmIK9LDNhqZc9RBekc8cCI+Oiy/uanckCu/TGJyBu7EZjAuh1ry+1uGhcBdBqcKBSbgYnqelO7dN+QPckno3Yz05vvvuu4+zZ8/y5ptvUqlUOHLkSF+O7x794xbbPfrHx8J2JKiu1Wo3zamO45jl5WXOnj1Ls9lkfn6e48ePXzWC+kYtm8nxZlb3V7NHhoDqtbDlOBqSULFdn6CRmP7k0pKhgyJrICK3TRoLnQLYzLgaO1xP2rXNDmhlCBJJkgGwuql6FdLLmOhueDei0Qa6LupHz0T2OElnO8ALYpQNhhynOpuSCVKcKDX4xK6LzI9sMuJI6pJ0jxz1Q2QXbMcmVYwoqwgPTWwUW7FKFRCMoKRiWonPViyZ8prMBJtsxxVGZEikQeN39YRToFBTbRJTpKk244BykH//iSOln2ut54mEqh8x7jfZjDILTZf3VotBsKLq9pfeRbu6xojUY10/aBh/X3N5Y7vf1UpKOchAgEmDHgsLME8gI4FqJSQVRUJCZ1YDAmHrRV+jokchSNHFzXXwrkUoMYEd7FqkTPX+dbrR4umpKRY6GbWOZvqO/sbca3wU7cIgUI6dhnPNKTyh+e7WQSp+TMkfAMhm7DNWTj3YQmrOdqZpE6AkbIVlJsv5flD2oq7yy7WB7aynGtI1VB+mekWaR/++uzsbccNHZ3ZJksRgZDG2Ir0BhvO0oateZJ8jEO0S2jcoSxrUMx4dK27AGQMBbj51gnMhttQqzkXaGN5d2eaHK1BWkzw1N8HRyiH3fdwCu10ANwiCnBzfe++9xwcffMDhw4dvWqMauCepl7V7oPpjYTsSVN9MoKLWmmazyfr6OisrKxw4cIC5ubnbCnRhIDt0uykgw3jVF1prjPl+LpOYrnusrHnoEWviFyBDgba3rrXEWKBZGpnzQsfKpF7FzECpxECSz7aSCWiSggDTkuTyN8e4uY6GdLJNBKaXPbFrgVaEDkBgEooTsBHE7QCdJAS1cHAdF6BwjftCc9/4Eg/vusyuoNG/5VCrbqBXghSGSCsqKiTwepDREGoPj4TZLl9WmzQT3pjXIZAJoZZsR2XG/RaRkTRjnzY+vgypJ2V8mbDLzyu3KGFYDytMBvYCqtj4NAlIfuVUdpSp7kj/7Oxp/uziQ4MrOp6RIuMnF6T9oDfnSlKQLUl58SVoHDYsnW4wt6vG4modf6IM7XYBlakMn7p/+UhjfIkAgq2EVknSPphZUWSBmDbFgMSMIkvfhil62N7Jaw1SdJhQvUMFFb0LSEF1TVU4s7nJkxNnCJXqB/xKNAvtMea7acYvtca51BlnaqRDTUVcqI+zr5Zyd9fDCnu6snetxONCZ4qOGawYW4nPJPm+4UnY7BTBdsWPepnhc2aD6pQGc/VgRSMMSUuhLS11LQwiEgWaDAChSDPh+Enh270Sc0AlknbkgRlIaQI0o6g4nlwPn9qhPz/qlbjULFIR16KBuk87MXzz/Dp/69Du4Y2+SbvdXuOsHN/ly5c5ffo0rVaLSqVCFEX4vush3rPrsntpyj8WtiNB9Y1I6sVxzKVLlzh//jxaayqVCk8++eQNB3dcr/VW5Lc7WPG+kVnK0qdtpeE1wFx5mpPNywDEWx5rrQqmBMKxtV6VPnXLb1jyFG0LVJd9RdOWxJKKTmZLtKgrMbC4m9rRJKBDiyOdCLcXKRID4NVRkJk4kzbgSliWVQPJmgAdKzobJYLREKFMkU8NuUQwE6UGx8YXma9tMeEXA84CmWAwdBJFxYuRQtPWPokWeCJBknKYtRE0Yh9DCoilMDQSn62whCcSaqpFKwmY9JsY2WE9GkFKyYzXwBgItSSwFBoSh9enZgUqQhqs2NZeTuHBE4a2lT1TCAhIODC6nr+AQwFEyzwgvyIfwINoxNCcTZguj7C4Wmej3mZ+9xgX1yyKQUeDb6UhDzWmm/RFSIVqxES9eCpj6Ry7ZA9dfct1nIs1EoGxKccuPGNrmmuQmb75ysIGh2ZLNJMOe8rTnNtc5S/vfo+OSYdtgUGKdJG2nYxzvj3NUqjYM5KOfZ1EsSsjcxd0s5q2tMeHzVmMJcg+jEPeiEsOsG3YCKtMlfILtxE/ZMTr0OhxrgPdjSO4crAiAuKmGhL85xghDCmgFiKlgJQtZ8SwuAmgGUbgCZKWhzECrxojtCDJaMXnrlPoByD8QsgpJSELnu79tQneXl/KH4dksVNMzvTgxIy7wbfA7hQVQ0rJ/Pw8c3Nz/OAHP2B1dZUXX3yR/fv3c/DgQcrl68sWec9LPbB7aco/HrYjQfXY2BiLi4vXdGxWFq9arXL//fcThiErKyt3DFBDN7jqDiiAeFJxYnSONzbPFn4rydRrtYtJ3mnFfTeU6kgSK8Oba5EZq2LbE5EUgIcyimwEUiS1kxML0DIRQoNpquK+sRGpwkh2a9qA1HJwdS0w0cDDqIdsW7vAkYihi18wSDpbJfxShFez7jOGyZEGJyYX2V9bp+YNFhuxEYSJhycSfJHQ1j5KpEGFlW4qY20MkfaoqKSfJjrWgo72GQ/aeEITakmoPSa8Jvia5fYoncSjpBLqkUcsfKZLzUHSQgFbUYXpIB9bUHakiw9kQjPxqVopqkOtCrJpofbwLbk9X8R4yme+usbF5lS//oKcoQ2qC//OHNstbs/Cxc3BPcyOjRRBtSkCHFt5ZvNhMdhhsCUSXdn2hAvyX+MOxbUEKWoKXk0/VoSZc9tJwr5gPx+0PkKaEn/z0MuUVdKVNwSFZjWssqErtCMNqkVZDQIXl9uj7BvZAKAR+9RUh9WoysXOJJtxhTFL1SPwYqf32Q5a7dlWVC6AakgzKzbqXVCtgHbW2+tYmEC6+HXRNehuTtnymmFm4ZwIVCxJssGwFu1sUD74piHl8McGRiqSRDi4264pIBQYBwswcuwyVlXRQzvjlbgQ5Rcpu0pVpssjjspujd1pfrMQgkqlwu7du5mbm+PUqVN84xvfYG5ujsOHDzMycm33eg9UZ+we/eNjYTsSVF+Lp7rVanHu3DkuX77MxMQEjzzyCBMTEwghWFhYuO3g1mV3QgEE0iQwLlC9HXc4WtnLq+cbuZlVR0Alf2xTFHnVsdBpQFZmHolE0p3gBge2dVyYrERHYCpu0FLulGgZx3MR4HcUYXkAFEVHoI11UKiQfkISmUJwUfawgtkKFkIQNX0OTq5y38wSY36bET+kolLeaWRU3xvYM09oNAmJTrVyldCpBnXsY4xGSkFATFlGGCPoJJIESUkkeCKmGXsYBF43Yct2XGJMtdlfWWexNQoGtPQZ99qFNUfiQAQ1FdLRHiWrnS0HqHaJ83uy+B58mUACD09f5uK5jIqMRYMQyuQcjrnkIJCC3uwzV+npH45tMV/zCOua9W2LumIMWqkin9oflDRnNfFYph3WToMr7tYJyFxJRArUD1P0UluxBtANUrT6+31T07yzmc+i+c5KG39EMKHe5KGRS2yZAW+9oQMWonFqQbrIWWnX+vSLTqLYW93oNQkBXAonaCUB9aRCHKvCt+Apw3ZYZryUTzzk2/zzrrW1e0t/XObP762Z0xt3ngJtmaY0d820svu8yt3f+l7q3jUFumVgtPvzkAU6kFJJ7OyoHY9WZDC1PHA3QxQ+hCnS3EwCxhE4vd4oUj8qjs51bPz2SOkB/QD4O+kkgoGk3uTkJE888URfju/b3/42MzMzHDlyZKgc3z1z2D36x8fCdiSovhKnent7m3PnzrG0tMTs7CxPPPEEo6OjuWPuRCIWl90JTzXAI+PzUMxFQLsd8oOlhNju60O8R0HiEVpR9D4ekaUw4QtFlJmEdB+YDSoSesjC1YAf+bQoUhQAwkTnwL1xbvsKKmGJRhRiHLuPRlOc7E3Wo5W9kuDAzBqVUsSIFzKq2n1QViZOKRtJSuWQ0lCWcS4wURtDW/t4QlOVYQosu2UKzZjfAQytxEcJwZTfxGBoJGXGVRONYCOsMOqBUlDyEnyp2Ywq7AryXkMbJPesEZcpBfnvwxXwNqLCghpNyalXnU7a+0c2UCLp831VLNBBFlRjKYA4QHSc+b13vBIsPZAw+obh3MIGE5MVNuopcCsngtjCKCLSGC/tBBrD5n1m0Fyb+oFxvvuCood2KHo4eNeiI6GqC2VFOb2ix7bqF1d8lxot/sruSV6Y+jO0yEtJtrVPzU8BdWIEo/5gwdHR6S6GNrAWVWnrgMRIlqNUUlMO0XVuxn4BVFe8iDBRBPZOlGNOfHtzDxsmvwJPE+wMuOx2sKKJBCKR+R0n2zIUkLL2aVvHGiXShXnJ4BuPaMj9DRtn4o6EOECNRYNFl0PhA6DkF2lusi3Q1iLJGLjsoHkkjn3vY7eR+tFz1NxpJY4kSXJc6p4c3/3338+ZM2d49dVXGR8f58iRI+zatavglb4nqZc3YYqbbB9n20n3krUdqVNdq9VyknrGGNbX13nzzTd5/fXX8TyPZ599loceeqgAqOHugeo75al+aHQeac2IwsDahmK+WvQc6LLB5SguOTwugWPgLntWmYRA5xHrEIUuRChot6/wTBTpVjBARwxxO0I9jIue554ljr1+W44LQKdb5CU/oa0DFsJxTrZmOFOfZD2q0NIeBsO432aq1GLCb6OEppl4bIYlmrFHqBWeSBAYOjoNMEyMoCIjfBnTiD0acQlJCj424jItXaIiIyKjwAgOV1ZZjsYYDcI+PSN0rACqKqSZFL2JLm/gqNexPPypVzqyXowShtAKJpMipQj4UvOJ6UuDehyTosi+A8mViXUiXcQARMqwdTxt+4HpQR89fv/ewmmlTB2b95ncQqqvCBgKRF0hVz3YVnnKbuxQqHBoFYu2QyHFNWxc4+TRiFzaJoZnJv4jvkhYi/Iyntl3sx2XKXdBbzvxGPU6bEZlznemaOkSBsFyWKPXqX3f0AyLfcO1uyGEYDOsFMpL1qLtva3dnI5mqAT5RXVuZ6AXrJi1dpf7brrxGw4zqrv41eB8TAhMlLa9VIg67V3EPc4o012IG0myGeBF3fNd44WBjihSqFxBIXsrozQcqcg3dXGxe2z89vKp4e6AaleAf6VS4fjx43z2s59lamqK73//+7z88stcvny5MGbco39kzOzAvx1oO9pTnSQJf/Znf8bs7CzNZpN9+/Zx4sSJq8ri3U1QfSfqHfFKHKrs4lRrpV92rLyPl5Y3eWJmmtOtjfwJMvXEmGr+KwiTpNCDOg5eYmSK9+QlgjC71epToJMA0JJESTKUcw3plq4pmTT6ftgy0YgUfFcdz9fFOklEYQIWMYxO5ukHGsnlxgQN0UFgKMuQqgypyBBPakZUyKTf6m//dxJJbFJgPdrlXsda0Ep8Rr0OJRljjKGRlJgK2lRVhDaGelxhJmiyEtZ4tznHrKWy4DvRXJpy3PZYuwITlTA0koARlUcsoVaFYMcYRWB76rov74HxJb63vD8tdEmdZb2WgrwCSHqhnBnP9EFYXIOt+wxxOLjXVrOIsO5/cA9vf7RAawI6M6TO6EggYzCxhFANJuuo6/xdUYgggbHEGZwmQ+Hc3r8mc/VJO9jVwIXmVuGwnz36MmXV5Gw0DdoQqIEX2ZOaBEWsJSOZ8pb2WY5qxMZDijT4bqVTJbE+1kYYUA3yfSNQDsAItOLiVFHyNfUooOaHfLA9y0fhbMqlta5JYNIdh94zzwYrJkAnfUACAR2DKeL3lALSPc7l6U2PEdCQNILQ6UUXQyTvdELmeEF7SyEDAyVH6GYs0j5pX9sr7jzsrtS4bMnpBUjWdLHPHpu4ffSPJEn6MTt30q7G4w6CgPvuu68vx/f+++/z4YcfcujQIebn5+9gSz8mdo/+8bGwHQmqS6USly9f5pFHHqHdbvMf/sN/4LHHHrtmWbydTP/Y3t7m7NmzTDcUp7pj7KRX5XuX0sG/Fbkn1ZQTkp80OjIu8qqlTjmkmUcdyjjdSs14kTtRnOeZdnmTJiudpYE45VoGwqNTyOOYmlFAB+dE2jMRgUBCSxe529f4bYsERivtYnmPeoKgpUustGqMlKLupQ0lGWFiTS0IqaoIX8Td7IQp/3vMazPutVAioR6X8WXMiApJkKyEI2zEVTaTKi9t38dHm9N8YfadQhtGvXZXpu/qOx0lGdOIA0Y8C0AnXgFUO/Ggo46SjInxmSo1malss9wazSQEytB8sHpRgWpkUUIkOcpIOAGvry4xpjwSYzh/eT13euQbXvOWqX8ypX5gBLLZ1brt4TrX+xYCE3kpuBYJqMQtpWa31TaXXJytT20oBCnOlEdYauYXbCcmLnBwbD0F1AimVJ6f2/Mq15MSE36LjlashjU6xuvyk1PFlo2ozHJ7jLFyfjHlUvvwPUM9DPo87f6xQzyG62GVhcY4H8S7+wuVwE+QJOgegpXdhW/flzHoBaLRzZzY+8VBi+mb7pLwr4ANjSPJTv/akUgX7/Y5hcW8QLd9iDRqPMrVN64qbFpKKEaTH7e65skioDw4NsmHm6u5MiUER2qT7kbfArtbSViuNU25UoqDBw+yf/9+FhYWOHXqFB999BEHDhzggQceuAMt/ZjYTvPu7qR7ydiOAtVbW1t87Wtf45/9s3/G5uYmf//v/33+9t/+29ct49MD1bczu+Gwem8X/WNzc5MzZ870s0L+paOP8erpPwOgFk/RSjYBOLO9gUAU+Y1OdAUl4xW2Q6sioGnJ7Y2KgO1MZrSUa2tRUJJ8oJJoyf7z9xJFx5EFLT0QaEsIhr8r0eVai7bClOMBB3sYn3rIXFBzgOpscg0gDQLrgmqDoJUEREbQjCr0HsF2p8REeXCtzXZeC3i9VaFasgMHIUo8LnfGmKts5n6TAjYdah81r+PcAGgnpQKo9h3KIFUVFqTxUq94/qo11WE9TsHc4zPn+f+dO5H2mZbISRhKDdnM18VgRfK8atLgsf4xApq7DBMlj331Ec6eXaU9CfEEhDXSIMGu1170aAa9S7l0zR3JQYg9zJpCKo0ZSyAwRWAMmLL1jWhT5Oy7ghQ7FAJ/d5dGc6B6prLJXz7wAdsZt202pXyaIEXQ0YqSDLnUHqNtfLSReNKQGEEgYraiEkudMWJHMp+SHzuTsdSjUgFUlxzKPgDn2xOs6VpBJ9zfhnqzDCKF7gKdyutBrjOa0N6acFaTWkIxc5FlKlGYti7wm4ea6+OAbmSlQm0pGAtJugvJKC4utkSHgmY/wGZYHCvG/OJctFuWeP3V1zh69Cizs7O3fM65W6D6ehOZSSmZm5tj7969rKyssLy8fI/+kbV7oPpjYbdsP+hf/st/yaFDhyiXyzzzzDO8+uqrVzz+3/27f8eDDz5IuVzmkUce4X/73/63G657cXGRf/gP/yEHDhzgD//wD/lH/+gf4fs+f/fv/t3rBtRw5xKx2HarPdXGGFZXV3njjTd48803qdVqPP/88xw7downZ44AMKdH+f7SRv+cZhJxoDZRuJYuuXnVqhDVCNIxECqLn2iCLpcxW2Z/ZZkJt9WJhn+EJlX9uJL1qxIC0cwc6+JTD9kmNqroqQ4jRRBYWdis59RJPJT1pfmFdMj5m0scfM5mJ8AIwUJ7vNg4KPCfIdWb3opsOQp3YGLNC4msd6JEmogma54wtKIUWURashiOcrI1w3KUymTtH9lIQRQg7P5hg1P7Nl00VgW55yNgodzih5NrrD4OjaPQmSYFtFkAfTUc4Vo86W6ZEGitMOs+LKoBQO9Zp3h90ZGF9gsbNIKbnx0Pnsto0OJv3P/dXMpwQZILF0gQtBOPpc4oC+EEIQGR9vBkysVXaLbiMgudMSDlu9usCU8Z6p1i33ACcC+hEQ3QZJhIvr82z0eN3QgHrWCk1COmSwwSE3qo9W4/6gYr0kl/z1pPPs9lsiNx0Zn7pumOBY5nrt0LZRU7vn9g1E+fSxhDtOKnY4aBpixSN1RSrE8iOFvfKDbDMac8vvcgc3NzvPPOO3zrW9/i4sWLt3TuuZug+kbqFUIwMzPDsWPHbkOrPsZ2t/nPt+NvB9otAdW///u/z6//+q/zj//xP+aNN97g0Ucf5fOf/zxLS0vO41966SX++l//6/ziL/4i3/ve9/ipn/opfuqnfoof/vCHN1T/v/k3/4bvf//7/PEf/zEvvfQSf+Wv/BU6nQ5xfKUReLj1BoI7TQG5VbQTYwxLS0t897vf5Z133mFqaornn3+eo0eP9vnks6Ux9lemuLSZ334F2BVUixdVKT3DtraDLtIyRV61q0xZgKPPq4Y0kExbwsVD5hk/Vikfc8ijE5EV8BKpwbVctF/HQoEE8EzBU912BHvZH1XHkqfQBsp+/nl4Fsh1pYFuhum7W2yPOeP7bDm/fhsdorqjfrMQmAjQTorHRlqhTcqvbiQBF9vjnO5M8/3GPl6rH+ZUZzdrySgr0SibcZlAJjy8K00iVHi+PqknumfKMboWKCEMUjHqlN8vIpkqvxS7r/savetkLS4eJyKrTAgIPfRWAIs+YrvL/3V8C07A5+izMiqeu91KvdQlGfJzx75DIOMcPSOwOPNbcYVznSkSke4OxFoQdBdqsZFsRWWWOqP9m1bKEDkWV+242H89z/2hbXWDFRcao7yydogNPTKUF1mtWrx9lSZRYksNghXbRcAlhMCBW9Nv2IiURjbEet+5QCCtRbYYEm9hnEGPUG8PfjBSENcDxpoV50KtHBSf4YHaBKEuDkgr7aIayPHJWQ4dOsRnP/tZDh8+zMmTJ/nGN77B2bNnb8l8kCTJHedT9+q9GTB/L0W5ZT1O9U7624F2S760//F//B/5pV/6JX7hF36BEydO8K/+1b+iWq3yv/wv/4vz+P/5f/6f+cIXvsDf//t/n+PHj/PlL3+ZT37yk/yLf/Evbqj+X/u1X+NP/uRP+MxnPoMQgrGxMSDlD9+I9QaguwGqb8ZDobXm0qVLvPLKK3z44Yfs2bOH559/nkOHDjnTxH6ifD9rUfEewyH3LRwTmvZNARMlnsa3vF2RnyAsFBfb9Xj0wZNLWWFEuMmSpUQ5J9J+uy2wIxDIxvV1fRnBSKmT8x4CRInDO2zRNrQ1eHRiL7eLbUya9jlrvmO7vRcsFhqP1bCYPGFUdQh1sT0ur7QShu24uItjukOCMbCdlDjbmeKj9iyv1Q/zvcZBftjcx4VoF6vxGE1dzk16ArjQnmQrKnF8cmFw0YZEbXqIVQ+x5KO2M210JMtz7fDLWOA1Jaoj0wWUBCElrnwdTi+1o8wp6TTUeyIwKHQzgIUg9bLax14LkAen3nXTE0g0P3f8O4x4IXZuP2mtolo6QHQbYAwYRMpc0YLtOOBsfbJQubQ5J+nZhZKSlzgDE9uJz/fX5nmvuQfdVdjw/ITE4XkvVyxOtkwX+6LTVVuJRG4nKmuuRW1vJ0okw0MgsrsJ9vgxJI4Xh1M+TRBToAkJ4rpCrBW/r45jMTtVKn6fgZBcdASj9oIUpZTs27ePT3/60xw7dowLFy7w4osvcurUKaLILY95Laa1vmuc6uuhf2TNGHNPUs+ynqTeTvq7EbubrIhrsZsG1WEY8vrrr/O5z31ucFEp+dznPsfLL7/sPOfll1/OHQ/w+c9/fujxVzN7NVurpVqsWVm9673e3QhWvFH6R5IknD9/npdffplz585x4MABnnvuOfbv33/FwXR/ZZez/Hx969pTiPrgO4BcObJmJQlVy2Pq1IGO0iyJRMWuqcNio0QMzbA7qfWovrY5VsQmlhiXbB64+dQGRqtFjqRdXRgpShYdRFijR2Q9r06i8DJgPUwUgcNbGGVQ4WUHBUQI2HQA5VGvTeJ4BpEuvoBYS852pvh+az/vtedZiidIhId9p6pAXwEpDAjBhc4kVS9kfCsiWS2jV8tEmwFJIyBp+7Dl4S16/UvaFKJEmRQpxiDrArUhkXGqL1LMci4oxK+6RrVr7c8OxFZM5CkxrQAWA+RaZtfDkSjEpRiiR/JlNRWw2N7mZx98hcmg1W2uTY3K/3s7KeF3+0wv82Ur8VgNq6yFNTxlCt9wPS66ZctB7KQabYeDfpRowdntCd7b3s2GHskvpIRw7tZUqyG5BojBJCraHjS84oMd3Gze9GBBL4SgEjkGDp0/TxhBTV9Z5QntHoOkYxcCoBXG6NhDLA/6roggcnwLLkB4oDaRBs9a9oAlpyeEYO/evTz//PM88sgjLC0t8eKLL/LBBx8QhkNc61ewjxv9454NsdtBv7jbf9dpd5sVcS1206B6ZWWFJEnYvXt3rnz37t0sLCw4z1lYWLiu46/XpJTXlFXxSnY3QPX11hlFEWfOnOGll17i8uXL3H///TzzzDPMzc1d03bfJ3cVNX4BNsI289WifrcuFSdqAN0pFiYZjigRyG2J35LIxoCmYUqmsFoVRlCJgr4+cdbaSVLwOsuW6B8rEAXPpYjdu0xCCNR2kQM7lIsr3cofnuV17HSKs7Rv7T7YzzBM8ue0HaBBa0GcASEpV7ZosWNF4AnDZuTSGR70tc24zHvNPZyOplmKx4gyrrrUA5q/biB1gT4i6HqYhORsaxcPH7qIUaJwv4JUaUMt+OnzznZ5DaohUasStZ2CaZEKVrvpFYJU+7r3iIcslIamv7bLXJJrdplJwZgRkiTyMUslxIrE2B7omALQFk0K/WuuOsZ/degdfD9hJa6xFI2yHeepGsrikfSUP2ItkEKzFlZYDatsx2UMEk8Z2pa3OQhiYovuISVst4sLsbBL+Tm3Pskba/u4HE6gKb5LgNAltxdEyCvsug3bVYLuezH5Y7NAPmwWx8gCxQuItrr1DwHPInRTQtwLc+itQbVRsOxBAtVC+szUlttFh85EUPwGJ4Iys0PSk/e4xc8++yyf/OQn2dra4sUXX+Tdd9+l1Wo5z3HZ3QC3vSyO9+gf9+xW2t1mRVyL7Sj1j54JIT6WoFpKeU30jzAMOX/+PBcuXGB0dJQTJ04wNTV13QPQfeNTVKSi5eD+zZZHudSy6DNedxvWUj0oK49GVu0jhk5dEzRLhNqATMPWGh0Nno9opWBaCIPEoEsG7RuMD8YzdOpuUepUx9bSibUyKKbSXYPfZRuM534usqMQ6wnxuOlfQ8RZ6a+udSdll/JH2VJJiC3+dKIFQSlP1FV2NrgM6u/EirObE4yWQmZr9T7dpN4Ocu93WLBieQivOnSgxZpqsRJVWYrHaOkSxRVG5j6Mj2cpusRaEmRSWAsxuEIiFKoWgUgQWuWAZB/MJgq1IDDVGNUSiIaEMFV8EbHB4Uh3m+y+N8+4QZKrO9n62NDlzVtl8ZCyLDYVAtMKMLFBegmMxanGcUdirB0H2RE5T7VEc//sy4z5dcL+QsYwklnwGGOoZpRajBkk+2nEAc2kRGQky40aYxnaRayLD8MkVfA2c2V2Mp8okayHFS53xkhQ/ZcqFYShR6mU72MuT7cQUC2H1DOLOZNZw/aB85AFrwwNupQeY/PXtaDwTguBpECMIdCKKNLOhbJw0TxwA/CSVjmPtEEhVgT+RPEZV5XPhcZmoVw7ViQPTsxc07g9NTXF1NQUW1tbnDp1im9+85vs3buXw4cP93dmh9ndANW9eKZ7nup7dqusx4r4B//gH/TLroUV8eu//uu5ss9//vP80R/90W1r502D6unpaZRSLC4u5soXFxfZs2eP85w9e/Zc1/E3YrVa7WMHqq9WZ6vV4vz581y6dInJyUkeffRRJiYmbrw+IXmgPMb3m+uF34wrio0uaLVAdaubzEB0QG4qYhSx6noPM5IFiQ/orkyhSLe0TTu9pqLr5ZQaLUQxJXTXPKMIu/v9opO/floJuQlXJMI5SaY3CUIrvHVNMqadEyx0PaQejFby3qF2x8Ozt/et5rQ7PuXylRNs9LixnWiU7y+P04l9tuIqC81RZit19o7WaUZ5pN9ISmxFpW5a84HVvA5trShbW9Ilq85W4nOmM81mUu7TCPqmZQGEimvcqxPCDKgKUnJw/zLnPtqTB9WKtB8gAAlb3mBn5Ur4ose/HrKTIFugXU6/hKKUnqNMJkWvtEwogHtXqmthwAiBTjxYU0ipMUECVnskok8BCGTEXz70AUImudvWGlRm4WiMyC3EQqNoxgFbURktFLERrLYrNCMfIQSjXT1qz8HLT4woqgp2qSLr9SqrcYWWDjCAL3UhhiCMVAFUC5deNykFpL5pgereGkOJNGB16DcnoGQIIlmISRBSoNqGpBdP3aN+WH1HIKiEiliHzh0IJ80rdoPqJEwK+tdGSOqLCXJXPkX5wdok72wsF66x5khZfr2ZFMfGxnjssceo1+ucPn2al156iZmZGY4cOcL4uHuhfTdA9d3K4riTTXDjPOQfRet9rltb+TiDUqlEqVTcAboSK+K9995z1nG7WREuu2n6RxAEPPHEE/z5n/95v0xrzZ//+Z/z3HPPOc957rnncscDfP3rXx96/PXax9VTPSxQsdFo8M477/DKK68QhiFPPPHETQPqnj044r7GpYb72Y04It2NgGDBR28FxNLrA92SjUYklC1ElN2CF0IgjUI5vE49SzKIxrWFLIRA9Jx1pgiI+pYF3kjUlkK2hJMSIJKUQ2xnimtHRc6m5+X7TGhROZJEUrKOCWTC+a1x3lieSrPedW8rMYrLzXHeWppjrVXcOl7ouCfR7bh4bBrEKNMt/fYU77T20jSlbhKaq1ugIgq8ascIL62y+T1rRZxsyaYJJQscVJsCkB7I0IAzdPqbLCaLdFJ3XZPTtU5YVz1OiJQisFFCnC+hVlT/XoJK2v9H/DafO/w+njL46FwbA2tBZAeabsUVVsIaCYrECFbbVSId0OiUWGzUOLcxThKNpYBY56kdiWz1PcvtyGO5PsJSY4QfrOzlQjRBy5Sgu+0eRUVAlDg+EOUX5foAyiNFBZCs8ou8Uuxdj7lRxKEAuaBpF/WjZ/VW7KZzJEP41EPURVz3J7Qg8iRiu8Thkal++YjnGBeE5LzDe/3A+I1lUqzVajzyyCN8+tOfplwu8+qrr/Ld736XtbW1wrF3C1QrpW6avnGP/pGxu63UcZvUP/bv38/4+Hj/7ytf+cpdftA3Z7eE/vHrv/7r/K2/9bd48sknefrpp/mf/qf/iUajwS/8wi8A8HM/93PMz8/3H9av/dqv8dnPfpZ//s//OT/5kz/Jv/23/5bvfve7fO1rX7sVzQE+np5qO1Bxa2uLs2fPsrq6yu7du3n66aepVh1ydzdhx0cmoOhUYandYKZaZSXMz2qNJE8BUGuSJPJI2gKsXchOGBeSXOjE5Hqd8YCk57XsHTS8vQaB7IAOUg+ea8xVsSRGI9sMTRYhcqmJU6+WrEso6yIQFymf2q4rdujTlkuW6oHlZWt3fMZGBu84TCSntybZCqvd43uBjYPzIiPodMpMlPOe8svtMR6oFQM0XDrDQsDF5gTbVIjwB1v6zu13TaxlTlvbl5pWnA+o9GXSVanIABwLwZTLEeO7ttnYynP0pclgnR5Yzj53mVJAhu0e2KbapATh0CCUGQAm4+ZOuzziDhaDk4/v9Ho6OdsG7SmSSCEvaqQf4+9VTAbrPL//TL8/2ZrltryizaeuJyV6aZJWW1VC7RPFkk7iIXXKYz3XAMUEo8JghIcxvTeT/n8sBFoMGq0TKFu7GUmowPJKS1X8OKVMpSUrlupNpRKm+pGZTpbz/BvBsGglI1Kw7EpOA9131f1MXNSPnolEoBqKWCa5viRDgTOOcQif2gXAK1rRFAmJgYXzIQ8emuW9rSU6SZGCdaA2wamtIuB9cOL6PNWFNlQqHD9+nKNHj3LmzBneeOMNarUaR48eZXp6GiHEXZHUuxekeBvsBoP7fmStey/nz5/vK7YBTi81/OiyImy7JV/a//A//A989atf5R/9o3/EY489xptvvsmf/umf9t3u586d4/Lly/3jn3/+eX7v936Pr33tazz66KP8wR/8AX/0R3/Eww8/fCuaA8Do6OgNq3/A3aV/rK+v8+abb/LGG29QLpd59tlnOX78+C0H1AAPjEzgDfEGzFWKwXC6DKKVgiBvwSPRHijh9N65nKCxnRlFXsH7OMRELFKt4iHtNiblUg/zOoG7ThUJZFulwZT9i+FM+gLFbe9Ox8O30lRLCyD1ONfGwFZriu8tzPcBda/cvi9hBGFcnKCG8aorDhfgufYUZ8LpFFBnzJdJMZBQpPJptiU6X6aEKfB2paDgdT581LHVZveXId7EgilHwGJGb1oIgWyJwcIs4aaCFAtgygWwXIFwCZhMhk+tJEnbZ//oeZ6aP58DijaI9q7yQWzHZTSCpdYIne47qbdLCCFyVIkEyWrksW1K1AloENDAJ9IjOUANRdlHwEmzUX6Cdqw+OmERdVYrYdEbnX3PV5h9hBTI+vBvXEiBaqV0misBDRkCRqC21GAHy25HttjlvR4SvBy1B++pFcV8dHKbT4zt4YJDNm/SEaQoEdw35lZgul4LgoAHHniAH/uxH2N2dpa33nqrH8B+tzjVN1PnPTk9h91q5Y0fhT9SSlP2bxio/lFkRbjslgUq/sqv/Aq/8iu/4vztL/7iLwplP/3TP81P//RP36rqC/Zxo38YY6jX6zSbTd566y327dvHiRMn+slabpdVPJ8j5VE+aBUnAiXcs57akiTGI84EAGqHR1GXuh7JrBPap+h+ssfPHj1g2KRrRDFJh32JthiaatxZJ2mdAoFsS4ROSEa7AG4IqPYtr12nXQziCgILARpotip8tDpFQ/iUhU9INgit6H1PYoFBEkUK3x/0yfWoSjvxCh7GES+klXhUVExiBB80d1M3lQI/FnrKHgLPWhW5QJYro6ZxeBslGV41golaC98PiTJ0GfvywsHaHurHtNqhOuR2JIQQqCYkNePkRDuDFB3pxJ1ljlTnIqYQ3Oq1Ic6sgUdHGjzx9Gk8P8HLBrwZ+7mbAt3DXiRtxBUWmrX+TSSJoB17aaCoECSJQHWVSJRnSGKR52g7dMtt2g6ACmK0FrlEREIIOh2PSiXfJhctpFwKUYnJaW5nv0ndS/Y05DuWoWCIuEbalkhQjhVtx/30j0nSOgUpsFaT0FGJe2yI3KBaRDjbYdcaa8Oli20Oz0+x1rmY+62QLRY4PDpJSd1arQDP8zhy5AgHDx7kwoULvP/++0RRxPT0NFrrO+axvt4U5S67R/3I281oO/8o2o3cy48iK8K2O59m6Q7Z6OjoxwJUa61ZWFjg1Vdf5fz58wgheP755zly5MhtB9SQ3uexqtvjudwqEhrVloCGV1DU0CWHB1GAsmVVFXi2p8vuhULgkH7N/X41kRRtHFJoPRsykfdwgUAgQkVpW/Q5uqPVPPVC6yLVI7FUFOJE5kB2FCmWGyN8f3WWhkiRWdOSB3M5aOKujnPYsW9IsNB2S+ttx2UaccBbjXnqJvWS+VKTOK6/7UxjXjzQ5osPM1uXG2k4anurrXfupk/gRtVZtB0Vr5UeIig1pTtpl+M2XKIpLqyWdSL7fgcwzuMGdRiOHTnP049+hOcnCHSOcqOEKSyisr9rA1UrxeCF5gTZVUHPS92v2qIl2f+ORUwcWzsMikKZEILQIRHpSnjkes5SQHnESoQUZACmJH1/DhNRUb/cNi0gal1lILBiNvRGqn3u9ki761MucGfAkXyU+ZFxvvfuMk+O7c+Vb3SKi/JjN0n9uJIppTh48CCf+cxnqFarrK+v8+KLL3LmzJkbzjR8PXarvOP3gHXG7rZX+TZ5qq/HfhRZEbbtSEk9SD3VP8r0D601ly9f5ty5cxhjOHjwILVajR/84Ac3vcK/HpNS8kCpqEkNcL6xxVg5YLubNGJfMMaFdntoxL7sgCW5jHE8Qh2bnGdReyB0nlddiiUt3z1h1oxPM4qGg2bACwVGQzJMDcIhsZadaAWCJJRIo9FVQ62cnxRbYUCpZCV5sTzB7Y5PpRISRYqL6xMsR1W0ljllk8JmgGv+7i5CwshjxJK1W+iMc2ikyNVsap+z4a5cBUKkmtgVz1YfKVpFRWkGvMykVlYRoRbITFnqdbXoKpaLWWvJ7ulN3stsP+QVQMjJrfVNCkRiigBIdr3DfnfRNoQ3H3dSH6ntRRbGMZ67uOUUj+uVlSttHjpxDgFsrY9w9tIMnfagotpEk7n7lxkfbTKSCXC1qR3CWmDa1IpYyxzo1kbkA1GNoGVpTys8sisHFy5JtCgqBSaykKLcBuTgngtdXGuAYLwDGwG9B2w8UI3BO5ExTm6z7Iir0sKEEOjIDH3/IsYhpylQ9XQrTNuMjGGTvGPRJkN3EHQgU131N95b5OkH9/Pq1nk8BOfqG4Vjr1f540ZMSkkQBBw4cIAgCDh58iQnT57k4MGDHDx40Jlp91bYzdI/4B6gLtgNAtEfWbvBe/lRY0XYtmNB9ejoaIGgfj2mlLqh7FVXsziOuXTpEufOncP3fQ4fPszs7CxSShqNxl0JjrxvCKgGODAyydubixwZmWTxUoiQItWPjUxxG9xFD3CNq/ZYqVLPVHZLPo50Icix3+ZOqhygizkrBlUk6Z8LVDtwYLrF61vgsEsFGYla+BbYCCOvAKp9i/rRCT2WNkdZSqppFj4tEFaCEGFdVzjc6EkXeoaJKjBnLjs81fU44HxnF2WHZ9kFqrMayD1TUtOIfSpeHpyFsU/ZH5zvC01oZA5oSwxJ5j6kNCQJ7N+/wvnzs72DUi9l750rMLFB2JGTLp1oQEQmBV1q+GabF0pMbIg8kwfWV9iluGqZAqViThw/30/8MzldZ2JXnU7Hp7FdYtdUvQ9Og5wL3ODJ/PsuWc/eVv6wJ561TpVGu0SlK9PYaVUKNxTpJI076FI+pJegE4F0pEfPVRULsDYtnImTvOJ1PM8QRorAz7e/Uu0gFkdz9AmpB5BfDCH5yDD9zTMQD9knlmEaBxENGQdk6B5/hBGohgWsDc6gWNmB2HG/IsTZL7c7Yf++Xn9viace2M8KdU5vrxeO7aUnv93Wo2Ls3r2b2dlZVldXOXXqFKdPn+bAgQMcPHiQcvkKg+lN1HnPbp3do398PGzH9vparcapU6du+Pxb7amOoqifsKVarXLs2LF+dHa2zl4mqju1SpdSUpOKw6MTnN7eKPxekh4HqxMsX45oRgOA4LXBcpC59V0DwKZQ+2BzMCyVtSvyLTutCGmG/w5db2RPQcCeLB3nubSH02QgoqAFDUUOqTYDOshWo8zC1hjLrRFkyfTrMnEeVJskr0csjURb3m5lVMaDL4hCRZAB88ud0ZQT3T2vnXi8U59DKJEr75md6AMgUJpm7FG1wHaUqByodt23EJBolQvIFCLVM86mWt8Oy+ydWxuAaiwFELqLsoI+ttuhYXyBbFIAgblzTdoYfwvCKdO/9g0HJBownubEw+cKiywh0vdfqwz6SsqEz7xvk6d2GGPwLZBdVhYfwrr51c4IW60UVBsDG6HDxS8EcaQIuu9TCEEcSoKMbrVSGq1T5Y7+aZ4pLNpUkBTKPE8Tx0Wvdjv0C6C6Wg6RMSSZ95S9JSdoj0F2PfYjxmdTuJ0bKrxKkLNL09yQ7nQIgWpKhDEkVTOUT60cu2/dVhZKJHBuYzNX9sYHS7zw4D5OUwTVD94BTzXkqRhCCKanp5menmZjY4NTp07xjW98g/n5eQ4fPnzLguFvBf3jnqfasowM3Y6wnXQvGbvHqR5itwpUdzodPvzwQ1566SU2Nzd5+OGHeeKJJ5iZKWbS6g1C15JV8VZZL4vjsJTlrTBiYymmHl55socur9p+ZLIbSJY91aPAmQ6srmg84dSxFd1ofoFwp62m6/UW6THeEJ1b25yc0G4wZG20CKrtwK52M2BxfZw3L87z9sYeVnU1E6zXrcOqxFgc1tihu62t7XdbZUEjWQrTnQZtBN/f3Ifpem+32kXEORKETt52x4EcXJ4E29MKuHngFvj2vYRISsbHt4sH9+pzAJVh464MQV1pUE4G4FkgCDbSY0VIcdRzlWUURfrti+CB4xeplood0xhT6BOeSPJg1Hp2wnpGsYaSLa9n8adWO6k+dbMZ0GiWMEOCiQuBpnaQqhCF7J9SQWzx9qXEyat2qX3EjgVbpRwW3moWvGqfQsSfzDCt4sZw/q9Iutz5YVrrjuJADBYhAoFsCqodxbhyx68M86a5APj+0XHaDr5ya13zdO1ArmzcL7G7cuVMiLfKhgHciYkJPvnJT/Lcc88RxzHf+ta3+MEPfsD29vBv9GbrvGc3YXeb//wjwKn+ONiO9lTfTVDdbDY5d+4cCwsLTE1N8fjjj+e0GF3Wi8y+kwNS7z4fn93LH555t/C71/IJoyKQciZVEWlWO5ty4QzksmSq2qJIdO7pUefak8G3MupmabQsSMRgno7Je6avgU/dv35XOaI22ir85vsxW80yG80Km2GZ7WYZUcmPEsN4poN6LZCdFP1fnSgvVRFFHpAH+QvtcebKW3xvbT8Eg5sLtQ/kueC+0jSigJqVXt0G/ABlrwgQyl7UHQszuwwO5GFreVS8iEY7YGJ+i83NdBFwTY6KXuY96/2odrdfDdm1VmGuiQgt8DdTfnZs9SmZFJUcXCmsDxxdZHLMvUqLtcTPePWNNrldCDD4Np9aXHkXAAwTQb7vrXbSj2urk2pVD3OLGGlylA/lFT3TrqSpSaTwy1a7YgVYGtYOrrWrt1fKIcbPbw0lJRBxdzeux4/PvJOsFGYUu78hEQ0WYaapCxr5InLxqSFpJFDOK8VE25oEDVOFw52qRgzhgU9Xq5xf3yyUb7TanLq4ztMnDvDq9jkAHrjG9OS3wq6mUz06Osqjjz5Ks9nk9OnTvPzyy0xPT3PkyJEbTjB2T1Lv1ts9+sfHw3YsqL5bOtX1ep2zZ8+yvLzM7OwsTz75JLXatXkksqD6TlnPU/24w1P94Ng0b3+0woO7d/Hu+mruN13CyXfN8iV75uKmjpR8tjMTtS4JVMvkJkKn+kLGSSgjt5RxgKLd/SXd5jV9oO9SFXEHNNHHAReboyyer6Z0EpOqirS0h87lUs8TFUwCwk5vXfDy5kcVI4qgWlteuDCRBXB0uT3Oe5sRcZCvUDm8ygBNB6i2ZfkASl5MO/EIMosDTxoaoU+QAZCBKCaBseUGpUjB90itg/QjdOQjxNWpANAFuJlbU80UUBkBJMYZqGafA6mXWsQUUoc7gxSttlVGG0zMuD14sRaUrZTgSlqqHkZYkoaGylWoHp1IUc1I152qT3O6keoax5EHGLzSENApBHGoCCoDCkgSSmSGOiSVLqpbOp6FqwbXNy0dko1KGrzRiKQVDLgvMl306O5GSg5UJ/ndLqNARgZtxTtkVYWMY0dLhu6FsssEEi+BpK6JM0O1iAZtzFolVu4gagcQVEJwvksJef2dRU4cmuKdZI1jN5hJ8UZMa31NALdarfLQQw/1E8m89tprjI+Pc/ToUaampq5rEZAkyU0HQd6jf1i207y7O+leMrZjQXXPU32j/OTrBdWbm5ucPXuWtbU19u7dyzPPPEOlMiTSbogJIYamKr9d1gPV+0fG2FWqsNpJPWMC6KxpBMKZdheRguDEWi+4FDmSEti86kYUgTVRyijPXyxwX62VujA49ayjOP/eZIccqLbb6AJgmK43XhjaFYnIZp9ryQKXV4s8fVMnEpUBlsYUA7zsoEWX11Fbz00IQRh6lMsDEHyxMc5UtVE4fSQICwAc3MCp6kdEWuDbCW0SlQPVAJGWBJnljJKGKFE50JgqhahcAKMvE4yWzO7fYOHUDFqlpOq+x7FP18hbTq3DdOlEIn0uqiNIbBqoNhhHqkghJKppEJEhGYW42yeuJUPizPwW9bhEYiKqXtR/J8YYJPl3lBgI7AWNnQRIiwIv286cGHaJyEvtGt/f3kdDVNjoJgpKYoExEhXkU5xnzeWJzpqUgjgW+BmAKIMEnaRUkH67HLxq6RXLlJ/kNLJ7Vq2ExOtB/j1lPlGR0TpX7TwNSJCOM7bHOBv/KQyUMwtpwD1h6+J1IAXtiUqTyRgFSXfY9hy7bgBeglMBabVR3NHaNzbGudWt/r28f6bBw/dN33Qmxeux6935LJfLPPjggxw5coRz587x5ptvUq1WOXLkCLOzs9c0n95soKIQwxP//BdrO8xTvVNB9Y7mVN9uT7UxhrW1Nd54443+wPPcc89x7Nix6wbUPbNTld9u64F4IQSfnB54qx+f2Mv5tZQ+s912Bwq5PMm6RNG1JaFqIVldBhHaX1X+3zogt+usOsUJ15LwTb3Sjsv2PNzOQcnFp47TdotyUgAtNhcaHAC5QO0QOfk8Y0D4Fui2grx8POfEElp81kajSrNT5EEoaag7NKhdtA5IPdi22ZxuwAni2labpEiVRnL1dr3hE1MNQIOyePMSXELa2UWA18g3wBWoJkPhHtm6uwwCidoWlBZAtBwLKm0wmQXQ+MwWfpCSrFtJwHq7QtJ9v7EuLjpia4FhjCGwqR4FHrBh3LdkGyPJN1eO8tL2fTREWmekFTpJATUIkoJ2eeaKMgXf/efiJYUEPraEn5CC2OJQSwVRmK9HqVQBJ3euELQ6gz7UbvmcuzhFe7NEsK4oLYn0b7kb69B9RNlFjSyGLxTTkGtyY4xAUO5kPy63J10MkV/s6WELIfG2Iei+m2E5ZToOp0dFKc5vFqkfu8r5FZ9A8O5H2zw4Mls49naYMeaaPdW2BUHAfffdx2c/+1n27NnDO++8w7e//W0uXbp0VcfPPU71bbC7zX++x6m+JtuxnurbGahojGF5eZmzZ8/SbrfZt28fjzzyyC3R/LwbnurefT6+ay9fv3iKqvI5e2Gw1X12YwPlCRJre9MplydBtSh4D5OtGCbzE5rXgSyOK3iRhMDrGOJuL3VNuDLOY3jVLnJhRderHktwxFK5Zbe6Osiy7OgDdsChpiuNl9vvzx+TCMh6qmOBDDLAK5II3z5HFa4DoJM8V7rV9tloVaiViw+oFfuMlfLlVT+iEytKtrKHUxmkeP8lByhPHCjWDpYrqQRCg6c0k3u3WL88kSpDZN6XNMXMin2wLYqZNI2koPAiXKoPpDzeHgVBdOkqwbJGBBBNQNJdl6iWyHgoNaMz+XFEC8lGp0zVCxnx89wDYwwjlkxeJ/Go+fky2yvdin0my002wgpLnRpr7RG24xKjlah/v+3YBwQ6GjzrOJYERqMdq8W44dNJAvxSQnUkRngJcSjxs1KQDvDp4lDHUV51BlKFl5KVMTSKFFsbFRa3amzKNCmNKaVBnNkFYho8aggnuztCOgWxInFwoKxbU50iNaCzHfV3j1J5Toc6R+LmSJd8RbNHF5MSf10QTQzhUyeGuFLMSnRgfIIPl1YLh7t8rUoI7pu8NenJr2a9sf1mAK7neRw+fJiDBw9y8eJFPvroIz788EMOHz7M/Py889r3ONX37L9U27Ggular0Wg0bpr+kT1fa83i4iJnz54lSRIOHDjA3NzcLV2R3+n06D36B9D3VJ8YmeXNy8v9Y8JEc3TXBB9urOfOTco4ZatGfZ8NK1XalRK1ZK8nO3mObNbB58p6Z5cJFygjpZbIDsUeH4NxcXK7EnvCBaotioSJJCLIlxVaYf/T8r6ZWBRAtUyK4Aagk9APQtOxoBN7bLSq7JvcKLZ1iNXDEiVLGsVzEM4rfkhiZA6jlFVCK5Z4GUAWODjZwwIYDYJdsymoLhzi3ElIF0VCF8GUIOXPugJWC5eJiwsulaQKKt66xpMQTRhkLPpEgul9G12vs/W+hGQrqlCPSwQyIZAJvkzAGKrl/LOw+4I2hpofsdUp0dQB7cSnGXmcaswQ9z4mmWo/Z60VeRidvvtBcwSdlsKvWuC26ZFoBcYQxR6bmwpPJQRBjBcMnP1KGZJIorIcYUeArXbAQ60FxkCn5dOMfDpNn1bHJxlJuVD9M0q6sBtgFBCCtw3xaAqEVejm0RovXRD14h5cqkDpmlUQC4McIo/nRLgGQpuaYwzBCkSOwEWvCXG12EnHfLe240aruNCdH61R9u/M1HsrQHXPpJTs37+f+fl5FhcXOXnyJB999BGHDh3iwIEDObrHraB/3DPLdpp3dyfdS8Z2LKgeGxsjSRJarRYjI660elc2W97u8uXLnD17FiklBw8eZM+ePVeMqL5Ru9P0jx6oNsZwbHyagyPj/PDUSuG4cd8hsyAE1RCaFvWh2QxhPD8oxlWwoUkhCEikdI5sprOes1Nqihegy7mMTAqqtCHxXMJs6bVVxxQ0Z23lgX693VcrKw4kbwUpmRhE5hopleMqI4YNsk2x3c1OMoSgJQhbPuVaSLuRIqSNpltf1uVVhlStwraRIEQPnLlA+t+N0GPE8kiGsY+XyRQ44od0tCJKPELt0dGKVuwRtXxiLYi1IkFiDEyVW5TLMdWJJtG2lbxkyFwqo27k4BBaR4/gaycRypork2Jv8hZCggF/TSNMyreW5ZjyeMeZsn1QtaSjJZ2uW1Mbw2ZUGSiLizThy1o4gjEpKyhOJCVrZyOMJdXMMzbGFN5dO/ZTL7UFOJJE4CX0M3XGLdX1NnerMIAQxIlH3PRotgxKaUYCSdkTNNsd/HKCkAYhDEJp4k6a+dPotG8mWtBsBCRtRSQlsZZEsWChPjqQ9RNpPcoOHy7pFBCHgzYi0gWNaKYA2AgQofvlCwRe2xDV0ntxBjALwUjsselH7sl6KJ8aYkdSHC8UjNQ9NsbyCF5FwrHMhcgxZksEFza3CuVHJyccV7g9liTJLecnSynZu3cve/bsYXl5mVOnTnHq1Kl+lsYgCG6K/tHzUt8D1nm7p/7x8bAdC6p7ihuNRuOmQPWZM2e4dOkSpVKJ++6775oDNW7U7jT9o3efxhg8KXko2MNFfbpwXCt0g7OkrnMSVQDRCNjozPgCr2FIqoOypAJ0DGQVP0weOeuAlH5bN7lgwazJhiGZSHmahYx8GfMagBwEIqX1OebgTOCiTf8wkUDY9JLIVv4YZLPrH1PQCbbqtEYYYQSRsCklAwtDjzJhn8O63S6TaFthAip+TCf2CgDNTtwBKQd7OwwYtZRB4q7HvJMoNqMy21GJzVapEAzYij08y+uvHd7l1VaV6WqDmfl1LlzOxx4Yh1cYQHUMuux+/0KkPGpdSr3Ww0C1K0DTpv4IIZGRobxkmHx2vVtWbJMrCNAYgxKpF7v3c6IForcDIHrnFukDNnCPYlXIfNkOfSfHHSGI2x7+SIzuKOIw4yYWIm1sBsxiBIlWbLVhCyAqIawbEhFQKqz8UlDcvR2DQdmPxi8qiggFxtPItrSet+nymNNx4QrdvfuNDTItuizeTmAStzJJSCFjKkAFQcuBwkUC7XbCqPLYHhm8h+pIiQ7FGJOLDvC8f3wQpJi1++4wqJZS3pY5SwjB7OwsMzMzrK+vc+rUKV588UX27dtHFEX36B/37L9I27Ggulwuo5SiXq8zO3t9QSFhGHL+/HkA1tbWOHHixHVLCt2o3Q1PNQwG38OjE87jTq+tI2QRmIhSESCgBF7dEFvZz1WYcq1llCZ4UCHQgWDKY1tFIEUx+6EUyI5JwdKQx68SQURv4hxyo11vnWoYVNMQ7uoqTrgm4Ij0y/B0keccSrD0qI3KN83mT7s817aGtZ2u3E/8ofcLqbReEsk0Q6IAg2CzVWFqpKijvB0GBVA9EoTERuDZYM7iVYeJZKNT4WJnjMh49BoVGVU4N3UjW8/GCEu9JAWa660qE9UWYizCNIP+t2UUKb826y0PTQqqShZay1gKAocskqAbfFgsK+itJwbjC/yJDnI0xpU2Pm2oKDRFG1mQMXRhAyHsZ2QKSiCF5C1AsxlgJxTqN1sLRKsHqO3I2vyiz5eKKOtN9kxhF8gYx10nAjJeXSFS7zPlzP3IbpkNyEsa6tbH1k1SJBDIbYMoXaHDdy/non70LNKaUiKJHJ5nmQyhCA3Dbt0FY1hPKCXQGUuPjUqmoOM55nmstorKH1OVCucogur7px28kttkNxqkeD0mhGBqaoqpqSk2Nzc5deoUYRhy+vRpgiC4IafWPXPYPfrHx8J2rPqHlPK6E8C0220++OADXnrpJba3t5FScvz4cXbt2nXHtqLuRqAiDGguj+/d4zyunSTsr40WyqMR4XTb2RK8/qbB2xaUFyBYl3gtiUgkfiiI1xPKy4LKIqimQDZMDo3ICLebsWtadoPQrnCMSACRTuDCSEpLIDoOoMVAy9oVpGi0ow5bs9Z28MV5AGY0kAHZJil6v4mvPBEmQtLYKucA1EbLTQGJHYR2JQz1TpEH2hsQOoniTH2S97Z2s2EqOUANEHhJwZskXaOkY49PSkOoPTZaZWYObuT7ihAISwEk2Ezl31yBqgMz6ft0ACqgn2Uz1w5HWa8tteObgHBmkExruzZzDRv2NWMtKWywWJx7baDZcmf9Sw8QxA3PXaG10ojiJH8DQkBkned4jk7noa3MAeBQx6GkC30hySw8peSKGoDpYssMzaIK6S5VLXavqp1Dg4G2i0uSmP7iXAiB15aolkG2DfWkiOoPTbpBsnSt2IEHdt05UH2nVTjGx8d57LHHgPTZffvb3+bNN99ka6u4uLiS3ZPUK1qP/rGT/nai7VhPNcDIyMg1gepGo8G5c+dYXFxkenqaJ554gtHRUb71rW/dUa8x3HlPdTYIE+CR3bMoUVT6AJip1jjXyCfASDD4dYisZJGmO0mW1qBkfEKj0SrVD87xqnvUz247pE4BuK6DUSkP0ogr0zqEEPj19NhhRxWCHKWgvALtGVdQU+q2cwYp2o8lBmFjUxtUJyIPomOJyigpmJ4XNmOdSF91ydtoBJDBWcN41d6QzI6u1OSeTDi1Pcl2XEnBlkibESd5vWspodNROY1jT+lCEhjX++iVhcbHL8cIk5AdilSYcuOBboBit29YSi+5awqBv6VJRodQhBz65NKIYiZFDXKyjaim76eg2sJw7FcMzDR4Fh0n0VCyAGua4MdKHmNdqx36mGExHBqIUk54Sruyb0pQkR6tXpYUBcT5Plno10pAaHL9y9UfXX58p5e7pDG+yP/Wq0MJ+jEPQ5RIhRAE21efhfVmjKhZ33RinBkQS0YSOb6Nqla0Mz0jAYJ1QXnSZ93BqC5J9zS6uL5RKBtRkt2jdyY9OdwdabveYvvEiRNorTl9+jTf+c53mJqa4ujRo0xOTt7R9uwo26FAdCfZjgXVQoiryuptb29z5swZVldX2b17N0899VRuq+pOK3HcjTqzCWeazSZnz55lvhRwrl10C9pJVXo2USqzbKXOlhGUFgVCScLuBGX8lMphAoszHZsCaBYi5VjKDmkAohXPZptqgald4QBHkhgZQ2kN2jMZWoEZ8GxdQYpG5TfgTVvCiOWxtcGV7SazvHtJJCEWmFikqh5GERkNV5A6N7GA0INg8E42Wu4Tqn7o5FvbjqDLjVEWO6MkyAIYjGNFEFyZoqCkIYplb1c/U0ceeqVl6QuJjEflcJ36pYn+7zIZqG8EW4Mzh+kG9+sfkmFzmBkHJDQCKvdvd6nIpp/m27Yi9cPk1FAgpWSUbFqHlgV1DVsJBqAU5D2iWf1n6yYgTDWrEaRiMUGxza12nEtYZKdhN9JBLNF52ojoidFkEzR5xfOMywVV0qn8ocV590JDXOnxpQ1JZfg3LFtgylf4xoFOJ6EUCzrjg/uTIbkxp98kI4kcyzRdj6GWf5nGk+wOaqyzUTi+3ilyrCWCpXa7UL63XLqjIPdugOo4TsdNpRSlUokTJ05w9OhRzp49y+uvv87o6ChHjhxhenr6njf6euwe/eNjYTuW/gGpp9pOAGOMYX19nTfffJPXX3+dUqnEs88+y/Hjxwvcr7sFqu8k/QNSAPvhhx/y6quvYozhucOHnMed39hyfggj4wNlEJEYptY9jJF4jmh+GVkXEKLAkyzsmkqR0juuYKrDkP3pK5hM7728nNmGbmeku+wgRQPCApY2QDaagrzelXTjgk6F9lqF9kaZTr1E1AqI2h6mdZX1bkemCDLTnHbk046K5ylpqIdFUDYShBgD7Vjx7sYsC+E4RkgSRzCcK0DOtXlg02N6cXLFcweF/q4IUcqkrO9iAK+RB70WNdiq2EAiEHb/6v3sylbpesQTIaXRtEMaXeRNp1UVC6+1zGXKTh4TCwIrEVCzXkrfuXV7I6ZEfmEg3CsLlaeAFGgyShTUG43r5kPrQfoU6/PcoBrAa9vZZxxtHWLeFek/pO9eCjApZah3/LDFWLvj5pL4Ffe3F7c1T2cSZEH6abuSvuwfGyNydPy5UnBbVKOG2d0A1S4Zv1KpxAMPPMBnP/tZpqeneeutt3j55ZdZWFgYGpR4D3Dn7W5TNe7RP67NdjSoHh0dZXs7pSsYY1hZWeGNN97grbfeYnR0lOeff54HHniActkhF8fdAdV3kv6xvb3NW2+9RRzHSCl55plnOHHiBE8f2O88frPTYb5W3LpcDJugUxBUWhI04jS9uXRkx3OhFPvj0n4x+vtKAUoAIhF4xVih7gUpermzQWpCEmyk9Xn9LI+mSP+IBMJStygAj1AWvio7CLEnYhJuBKwuFSfwsvQQiSryXK160kCxPKAaRgFpO6K0ApVwfmuC97Z2087oCrp4475f7JO+Vyxzz4OOxVU2eFHCyNx2f8HV26r36xZclKK4KOuaaqe8a9+VRDUxxQQ/Gd3j/vVjQ/mh7f49SFux5TrN9SyKgYyGkvVs46gIglqdEkSSUqc0ALEdQcOhylPB4dWWFmj2APubsj3mShcXMS6AagNtT6SUpowJz6TXszG1l/3vKwUqpoumKy2cVcZhLAyozTQoeagMo8N7jTa0HTx6oeHyZp133lnk/okBJ3rf2BjNqDg4TVXc3+HecsCbb77J8vLyHVG4uFugWinlBMW+73P06FE++9nPMj8/z3vvvcc3v/lNLly4cMedSR87MzvwbwfajqV/QOqp3tra4nd+53dYWVnh+eef58CBAzz66KPXJEx/tzzVbce24a20zc1Nzpw5w/r6OvPz85TLZfbt29dPrf7Ynt1Dz91drXGxkafUtOKY+9U4Z+ubmMweuMvT5dKKLQAemQLyLC/yalv/AKptiKsOAGdl4YMux7oLkAUpzcRrmD5VQ5Q0toKfCWXBC2eklRYjtkC3BptyKZSmvVIm6gWeWeBN9UBtQ8GEg4ISiYHrNc7zcTdaVfaMX1tQ0OnNKZabI1QtmosLTPq+JowFXnbrXmnaocolKUlB49U9TMaIXGIlNRJTqbTQl8q0pwTBukY40JCMcPJjVWgA4Qxkk44EPzIyBRAng5jyRNhtnyFwgKvElfEP40rgVwhITGUr8882ihS+lSzGtahptdOb7sQJRCoFqMLVFmglcUrdsLXSbTpHIjBZrj/W5WSX85yNGXDRYVzfZuSov6QxQf6dJhWRqr3Qfa+JcacS76SUChVBMixeM0/NT4MMt02a3dU6p6xlIekLgNd2q4RMl8qsNNtgoHm5zfhEic1Oh9lqlYvrxe9NDvkG5soBMzMzvPXWW5TLZY4ePXpbZVp7qk530q4FyCulOHjwIPv37+fSpUucPn26n0hmbm7uphLH7FTbad7dnXQvWduxnupOp8Pi4iJf+cpX+MpXvsLY2BjPP/88Bw8evOYPdifRP3q0l+9973u8+eab1Go1nn/+ee6//348z8vVOVWtcGhi3Hkd7fA+P7FrNxOyjLAG78SRZEwHxS16HRQ908UsHcPvTXZScCZi90HC8QoLmRilwKsPsKosO8CsS/nDpnpYr05YtAkdCdqrlQGgdmDQKOleJFTOrXyR8QwKnd/uH8arrvhR38mnDXy4Ps1mUnG6Uz1Pp+DRsthBLdFWEhlP6sK7dOW4lNKgM89TCjBH28gYqpfBq1/7u0wb0l0MCYFqW/W7nqFjQC+fGHiptRHOxUUYq8IjS7TAxi2JpsBhjxNVoMzEjtTwtqa5MWkq+swRad8I5XASeULxG7KvawNkzxQBsr1IDEyhTifLxfWtlDRxWWAytAjjie6CCHC8u37Te1SOzvCx0dWOKopSU1C11XTqbupHbUjQ4ez4QPlobbPFQcbSkNwhFJ9Nh2NEScHuIOh7aufm5njnnXf49re/zaVLl26L5/pOSOrZdj0pyqWU7Nu3jxdeeIEHH3yQS5cu8c1vfpP19fV79A/b7rZX+Z6n+ppsxy0H6/U6//pf/2u++tWv0mw2eeqpp/j93/99SiV3Gtkr2U6gfxhjWF1d5cyZMzSbTfbv38/DDz+M7w8maVedj+3ZzZmNIlfw8lbeS/2JXbO8/e4iJ/YWtcCNJ5Btg7aCi2RoSLKJGGQ6meYyLNpeYgnEJpcopmeq1fVSdtNZF4KdrvHjFQb87VRLW1Su/g5M6EgEY02MFRPQIp1g47pHuFbKqzg42tbpZkFDCGgqGE1yx6vIJ86eGIm+B3GzVSkk3wAoeQmt2CNQCR9tzNAmbfgwikMYelQq+W3ta+EIC5Gmr87OqUKQ80rnr5fWL2R3bfFYHfHGGDLRJK6VlKNIhvkbVk1DcpWANttzLfyY0swACA072/0IimRvl550HCnwrRTmrnWaRavpdHxMb7VngGTANzVxuotjPJNvdI/u4ZvBBCZESvnoeZA98oGHQgwNdMw1uENOq914xSTmGkcOnpIGKfAaOpcESsSmT8WQsXud0KN/yWEL59hgVDEtTNyMMVWJWYuR46C7WtjD8OuwO7ff+4dnV3j64TmWmkVdeIHgwkbRe314YgJfyX5weC+994ULF/jwww/56KOPOHLkCHNzc7fMu3y36B/X62kWQrBnzx52797N8vJyP3nbPcvYTgOiO+leMnbbPdVra2t86UtfYmxsjImJCX7xF3/xiooca2tr/Oqv/irHjh2jUqlw4MAB/t7f+3tsOoJBsmaM4ctf/jIHDx7k3/ybf8O//Jf/kr/5N/8mR48evSFADR9vT7UxhqWlJV577TXeffddZmZmeP755zl8+HAOUAP9VOVZG6ZXvdxsMltO+YLHJ3dx8v0VQHBubdP5kShXgOG18Ko963JC4Nfdz0Vm6vBaDo+3SwpsSNIXIQWlNe3UqC4EYLnSKluBjK1WhNIKszJCuFZxV5wxhaXP2rYeREcQWwFQfkYaL9GK7bY7RmCrU+G99dk+oIauV9rhVXQFJrqk+ewgOygCSiFAO7SLbX6x52uSqQQ9EQ5Dr2nQqrXTodoW99ri3hboRVCQUSw/sI2UqRe/0fFpdIJCgKU24LvkCV1DhIMPbyd9geIzNcZQtpQ/mj3lDwOeSUHZrnKFw2MTPDQ1y3N79vNXDzzIfDBGEHmotkK0JDQkYsNDbvnI7fRPbHnUOuVBm22Qan8+jmQnBe61J4r3e4VgRWld7wpqmQCpbnnvckOGRtlxL4R6iychBaUN07+Wc9FloGHcMprn14rzz/vvL1JxeLb3j43Sccwb901NFACulJIDBw7w6U9/mqNHj3Lq1Cm+8Y1vcO7cuVsy99xNTvWNmBCC6enpG56zd7Ld7aDCe4GK12a33VP9pS99icuXL/P1r3+dKIr4hV/4BX75l3+Z3/u933Mef+nSJS5dusRXv/pVTpw4wdmzZ/k7f+fvcOnSJf7gD/5gaD1CCOI45vd///f58R//cYQQvP7666yurt5w2z+Oknpaa5aWljh79ixxHHPgwAHm5uauOMhdD6gG2FsbZbQUcOnUJkkXedQ7Ifunxjhvpet1beG5VBcKSeA8gVfX6NIAjBW0pvsHZ71eRa+4fXHRzZpnm0xSnq2IBaKUfwdG0wXMIlOW91CaBEQGzxoDSUvR2gjcSgrpUbl/lYVHK4diBLQkVLvvp118j3Fiuh7I9N8brQpjlfz2szZwsTGGcvBFw7ZHpZoHcnbGR4AgiEl0GhDYL/MSokTkylxJYOJEoqyAPN/ThLHsn6tUmtwjebiFXM4nm8maCiGb46OX2Kf/bynwGoa4NvBgZk3E5IMUVUJpuk2j46d60N2LrdRH2DXS7NM4olgVMh8aYwqceaCQph6KHmhjDIHluY4ij4rFce/xqUlS/Po39+zn5558qsDFNcbwf3v5Jf7tu29jjE5/s5ohhKDZ1AjjpynFrUWgUSad7HqXlQLZAD2auZBrXWhzqD2Tfg/Z7toF1fa6Mrtr5QpWVO3BOCJEKsupreyLQjsWT9rSp1aS6hp0agbtkthLBJHjve2pjbC4UYyAPTAxwcaFFiPjPo1MsOKuygjn2S4cf2RyAhm5o6mllMzPzzM3N8fCwgInT57k5MmTHDp0iP37998wxzhJkjsOUK+H/jHM7lE/HHbPU/2xsNsKqt99913+9E//lNdee40nn3wSgN/+7d/mi1/8Il/96leZm5srnPPwww/zh3/4h/1/Hz16lN/6rd/iZ3/2Z4nj+IqDyz/9p/8092+XpN71mFKKMCxqkN5Ou1H6h9aahYUFzp49izGGgwcPsnfv3mvaRnR5x/eNjTJdrbLi2N4sobh4oUUnyrdzV61SANXVqTJhJ6+FpUtFveo4KFIEZJSnhBiXS0vnE8r0OLU9T5QXCewcJzJiSDrz7sTt0QcA/bpDibhCQjsg5bhWNMaA2fAItwN0onL74AUHrJ252QEkVccjqYZgwCTSiTVFR2K6iVg2WlUOsJ77/fzaFB0dUKXYnxOHF9kP4jSPSBasihT0lTILDiEgSTxkxv3oTALjarNIOdlZCoqSGiqC8IkW/g9H3PeafTUuhRnSwLa41g1stN61DDVJN6DWYOBIM6XNWJVFicfy5gi7xpr4SpNoiW+5SqNYUQ7y30GcQNlW9EhEoSyKFdVSHkC73kWrFRAYxV994Bj/1+dfYOHyZd5//31OnTrFkSNH+uBaCMFvPv8pvvTQw/za1/+MD9bX6N7k4Dl214FCCIgVJhKIDlRHJQ0R5mkj/Ubl22MCnb6DLItJW6+ql6UxszgTvsFIQ2IB2rgMIkq/fV1K5TOzix5pdVmvqQlLVwdtqmMwpfzz1AKCNU17T/H8cqKIHCv3vROjTlA9Vipx6uIaJ/bs5rvRwqC9QwDh0clx1OqV5xMhBHv37mXPnj0sLS1x8uRJTp061aeK2LuMV7OPC/3jnl2D3QPVHwu7rfSPl19+mYmJiT6gBvjc5z6HlJJXXnnlmq+zubnJ2NjYdX+oV0v+cjX7ONA/kiThwoULvPzyy5w7d45Dhw7x7LPPMj8/f828PBeQF0Lw+F63CojfgnrLAc4cAGej02H36Eih3NarNZ4oUjdsj1ZZFECU1ypydXPXiR3yWENead/TVYsLYM5ExWdZlGkTmHVF53yV9nalAKhtk710hRkLHXSZJJbQEdCWbnQKaQKR7qm2rN7GVpV1U0YpjXYEILoSnEgJYefqgYlQ1KFW0hQoJcpz92mbEuF7aaCj2h0RH766Co7XGuLVMqmXWtq6yNlDhEafaGBGjZMDDZAIxfL2CGGskC41EMfzSOLic3PJ5MWOc11Wisf4s5/+Ev/0Mz+G73ns37+fT33qU+zbt4/333+f73znOywuLvYD3faPj/P//e/+e/7G8YeHcCIG/ymFRISS1gaIdR/RUAVKSEGxR4oC9clFsSlQSwBKOo2xiHKNGAQrkgYeZ83+Xm2QLRKDdiiG2DSTnqlQ4G8W32WnPUS3c8jkH3fHlrffW+CxmcHO3lbL3W8Pj41e85gshGD37t0899xzfOITn2BlZYUXX3yRDz/88LocPT+q6h/37J7tVLuty8mFhQVmZ/MBbJ7nMTU1xcLCwpCz8rayssKXv/xlfvmXf/m666/Vajftqf5RDVRMkoSLFy9y7tw5fN/nvvvuu2FpJhf9A1IKyNdPns6VHZua4nvvXWZ8rMSmlXXxwvpW3ivWtT1jIyxuW+/BkRhBxibnFIutLV6kwGtp4kzmROlICJGlgDi92445Jucdq11DenIDlFLegYlBb/nEmz5JZjIRSR5s+EYSZjx3CitNtoFOErvfYVMNY0OkdYmuNnBgqLdLxLHE8zRRLLnQHu/ra4cdj7JF9fBKMVpTVLBIein0BuYKbCym5+5SYzLHep4mjvMBjJBylLNebSHS6xkE4nCbpKFQy3lUZ+TAm5ny6V38ZYG/lTgJu0YJtJegT7RAGZSL/5s9HsnSdpXRUoivwty6xk4n3j2hWOTgrbuUI2wZPoB/8WP/HbutwC2lFPv372dubo5Lly45Pdf/8IUXWG+2+LOzJ9PP7WrcZQR0FLRVGjhMgqkmmHJKy8nNFnGe+oSvC9++s8qShpZKU5JnaB9Z4JwNVpShwQ4/tKlUrjEAhnz7preAB1EThJkFpWMtBMDSlnsOWdxIHTYCwYUP1piZr7LSbBV26wCmR6qMlwJWrhNsCiGYmZlhZmaGtbU1Tp48yZkzZzhw4ACHDh26KrXjbmVUvJk6XUHN92zn8ZB30r1k7YaWsL/5m7/Z324c9vfee+/ddOO2trb4yZ/8SU6cOME/+Sf/5LrP34me6jiOOXPmDC+99BKLi4scO3aMp59+mt27d9/wQDQUVLv0qjdTCLR/Yqzw00azzZ7xolfa5QWsTBWD6Wxvly7LYlDaVbxY3dLU2xWbopctm/QlY7nkMi5QbXuuOwLT9Igul2ldqtGplwvebFsGN7HkwOIk/+9CkGLWQuX0lufq63oP5aZicyt9D2dXpkkyecMTW1qM4V5plxReygE2VllRv811F7GzbkOr7dNsezQaPvWWTxgpOqFKeewPNdAj1i4KmQyaV1AkkZFjYWYM8XiMfqSJCMw16Z8DaK3YaldZ2Byl3gwwBrQ2lIIiXcBzeOU9R0WuIE+bY10WIzwwNVw3vgeuP/WpTzE/P1/wXP/ff+K/4snZOUoy8+wl+ddl/1uA1AqTeLBdQqwE+Jt+uluSPSdrLu+1q7uWEkRiUGGamEX0dp6yp2YXLQ7AbDyJyHi2nWOAttSEes2MuotnKfDXTD+g1U9w8qxHSwGX1ov86IlKmeUM2G62IvZEVfaPjaVa4pYdm951017jqakpnnrqKZ566inq9Tovvvgi77zzDq3WsKxXd0dS756n+jaZ2YF/O9BuyFP9G7/xG/z8z//8FY85cuRInxeWtTiOWVtbY8+e4YFwkGb7+8IXvsDo6Cj//t//++vmkkEKqhuNxg2vfO9moKLd5iiKOH/+PBcuXGBkZIQTJ04wNTV1S1b0w4D8/bumGPEHQTiPTM/w0TvLAATCPWjurtVYsDw7i1vFhc2WiSlJSSdTb1yRBe9WQX6vYA4PIOA1u/rXdtKPTNKX3DnJgGcdxxKx6iN9naYlLxmMMpi6Iul46LYk7iiMsvia1iOx8Z69MrfHlLK0gxSz7RPIUJBUzVCPo0kEoi6QHcXmZpUEQcP+boacm4LtPKDzg7ggz6eUodNR+JkANyVNIQmMdOUmdxRtNcq0Ov7AW9y9fa2ho32EMXiPNvBerSEzfGMZajwjEHaGnqxpQWVF05kUJOX0uKQaYo6HCJl6xNSV5OOyTTeim3Jdsdmpst0pUfVDJmr5rf5EF4GxMYagVCwrW8clCYxYIP3QSDHuxGVKKQ4cOMD8/DwXL17kvffe49SpUxw9epT/53/9v+e//8M/5P311UGftHnWCTmqkojISO1JSjog2gwBjfB1F4WSB9exgFLee13oP0bjrYLXFqhEYBogjEFEBu2ngDcbrOjKpCoAv6EJA9W/lcLzCE0h0Qyk40kvyFEbKK8a2tOCaqLYdqDz/RPjvFtfLpTPT4zx3mb+3Z88u8rTj+/nPEVP9YOz07cM4E5MTPDEE0+wtbXFqVOn+OY3v8nc3BxHjhyhWs1Tv+4Wp/pG5uue9Rxz9yxv9zzVHw+7IVDd2466mj333HNsbGzw+uuv88QTTwDwn/7Tf0JrzTPPPDP0vK2tLT7/+c9TKpX44z/+46FpxK9mH0dPdc+T0RuAO50O58+f5+LFi4yNjfHII48wOTl5y+uMHKl2lZQ8umc3L52/gBSC+tLAI7JWH+IdcXwoi9sNdlXLrDbbucMOz07y3sJAncX4AtXQ6HImuYl1wSSQfUAgIrc2LXTBszAkDlBtg9/0h8F/NkQAzUFUoohNCkYyAE5aIAQNWODf9tQVPHfWqCKv4HUVcUoXkB2DHvI5yEQgmgokrKyPUa+pYiBkkDh1rF0jnPIMUSQJLIWIJM6Daki5xV5mQeCXEqJEIrKqIBZ1pNnyaXWCrrPQ8nQPIk+JUcSPtSi9WUZlvN1eS2P84aDaiwxISWndYGRC/ZDGPBj2X2Oq8mLdtw0Uwfm8NIrNVpVmFFALQkarbaRME+SUvDznNYqKAYlR6OFbOuBJ2wNLTm+uNNxL7TIbXL/77ruUSiV++9Of5pf/819wur4BQCAl4TB9OiCyFtkd02uXTHdMIg+2DVIlmKqGsi7SPWQaBEl58Ix1LVUlSQIGpB8hMIGitJrQnpVpgqjYpN9LYl+0e+lec3R6XCH+N3ZnXix080QwGis6622YKgLBiu+eIitDgGqyljBTrbJsBXgfm0lB9a3kN4+NjfHYY49Rr9c5deoU3/rWt9izZw9Hjhzp6zx/HAMV70T69o+l7TTv7k66l4zd1giG48eP84UvfIFf+qVf4tVXX+Xb3/42v/Irv8LP/MzP9JU/Ll68yIMPPsirr74KpID6J37iJ2g0GvzO7/wOW1tbLCwssLCwcN0A9+PIqe4NgK1Wiw8++ICXX36ZZrPJY489xuOPP37LATUMp38A/WDFx6ZnWVgZLFAurG5SDYoD5+XN4lYpwJyDLlIJipOYCi2wZm3fG1+gusFnXmtYeBmAcFIDhEstIkMJ0Z4pBBeKWFDIWV64rlVgKFynAOatS3aiIZqBhr4+rwiF7VAGUkUW1RTILnd3a7vq5JRKzxA5qB5e16toW+QIsHMB8AJGF5CE+Xo8X9MbSTsdj61GhR60srtfL2FM30rQerxDPJ7evPZlGpx5Beu9EyEE0YRGP9DJSLwZhJ1yfgibxLkIIQ2y1Ci2wgqXNsZZ26o6Nb8TxzN0lbm0vPdeJ6juWQ9cv/DCC8zNzfHB++/zG/v3URPpOwmNxsu+NQuYGo+cJnSEKaiACC3QeJhmgFkro9d99IqPWFcDqkjbeh7lVAEEJZAWtUsmUF5Ly1Tb4LWvsMPYfVGq4w5UHSYHbwc0CiHQyzF6yG5YveUOXmwMCWrc3GpxQIwWyo/N3Dz9Y5jVajU+8YlP8MILLyCl5KWXXuLNN99ka2vrY6dTfc+uYHebqnGP/nFNdtvDgn/3d3+XBx98kB//8R/ni1/8Ii+88AJf+9rX+r9HUcT7779Ps7uyf+ONN3jllVd46623uO+++9i7d2//7/z589dVd61Wo9ls3jAwvhugutOVn3vttdcIw5AnnniCT3ziE4yPj9+2Oq8Eqh/buwdfShbP57c0DXBwYqJw/PJ2k+mRYqps5Zj4NltFwqQdhJSURZpJMXutrrqHDId/lQLwt01BScA12aq27ge0uVKrCweIta9j40yRkP+6NLmEI2WswEMD0RAPjYgGwEEIQSW0EsJoMNvdgK7uYKVjRdxxT2wuJQrla2KXwokrmM53cIZdSWAsgCll6vmOY8lGfZAiPQXQV9/uFb6h/WCHznyE6pjUE30NFo0ntJ7sIDMycSYSBdUTnQgneDaOTmNMfp1lkDTiEkv1Gktr4zRamZ0O1+zhKHIFfM6Vr0yTu5r1ONfHjx9Has0T3ghBIkBAkn1+wpJzlEVdeN+aLgqtFRITesTtgGStjL6YAm0WfMSKgrpM+2ol7Sv2AlcIgUgE/rZGJKk+9TDTnkAkxvltpvrUjgV15NanN9oQbBafvQTOrW4Ur2/g4uqm8/hLq1u8994ix3dN98sDpTg4OXHb+c3VapWHH36YT3/60wRBwHe+8x06nU5/br1TdrOBivfoH24TO/BvJ9ptF5OcmpoamugF4NChQzmP1I/92I/dsu2fsbHUO1qv15lwAMCr2TB+8+2wRqPBmTNnWF5O+XuPPPII09PTVznr1tiVgiMfnp3hk9O7+cEPLxd+qw7Z4psbG2WlkaeHLDeKA/vZtU0CJQkzAXvehJ8P4BMCFSYkXkZVo/ezY6u+f0xikKRZ1BJfE06plLdZLp6gOoa4l1/DpgO4zDhoJ/bjS8h9XTKGJEPbEJGBzPZ0SSiiISQz2wseJRrZFuiKAQOqIfpeZoFIt8QVRE0fr1RcFOohADbqePhBnrrgAtCBnxBFApW5P99L6LQ9VKD7wNQpQZcotptlTIFjIXBRQLLfnhCAgmh/CGXF+LckFJ2C3eulMmvJmGb76U6BO+3Kbng9nhOtKSiZ9IB2XXvUG6OoRsJYKaQWFNGhM5jRL76rG/VU92xjY4MPP/yQRqPBoUOH+OrTT/MT//p3iXRUuN1Cr7Ca6CtJlC20cZMQVKVHs0sVMVKgQ484Jt1daQPr6ft0Sb73aBxeE+JKdzE77PsWAq+eIKQsRCG49Kl75XbSGADV0iRln5EmNDKU5INTE5xZ3CgcPz8xysJycUdufnKMSwtbCCC63MErS2KtuW96Cq+r6nQn5O0qlQonTpzg6NGj/Of//J95++23uXTpEkePHmVqauq2138z9A9jzD36xzDbad7dnXQvGdvRCu09Xlmj0bhhUA23N4J6e3ubM2fOsLq6yp49e3jmmWf47ne/e0ezYF1Jxq/seYgtN+DebLi1rKRjDXpxY5uxcomtjAxfrDUP7pmhFUaUDEStDkkEJjJc3mwQj3T5lTbt1e+jtqH3lN36V7GgshgTlwVJzZWzOnNtx2MvBBzGogAolCfQmQsJkx8zbGBsrEcaRJLIFaSou392GyIQHshQFLjYHoLIGKKGT2WyCOhc2f7SqorvLQgSklgUZOei0CPS0A59wpZPC0nS8cDXSAwKg8Rg6qn33Kj0/+NEYGTxHbg81ULQzdSXLzNGEE5rVv6qwdBKs+lFDKQUZbqoEBKQGuXrnAfaaIPyi8/AxfAZKsTjWASYJH0nPUtQrLUqrLfL1Ooxo36b2lgbMARlmz5gKFsc66qqMOYNWzVc2ba3t/noo49YX1/n4MGDPPbYY/3gsZ998lH+1be/S1Tt9tPus4m0SQM4u9ewVXLaxOSI0z3Oc+Z1thsRZIBpQX1HCEzgvn7qfe4C5qYhKbnjJXqmOhBWHXzqxDjDfWUnyWVo7ZfHJv3M1hNEIPvSmpPVCmfYKBw/UxtxguqpkSqXukGKC4vbfPKTe3l1+TLHpnel93eHlTiCIH3Qzz77LIuLi7zxxhuMjo5y9OhRdu3addscRffoH7fH7gUqfjxsR4Nqz/OoVCo3HKzYGxhuxyCxubnJmTNnWF9fZ25ujmeffbYfkHmjWRVv1K5E/wB4ZP9uvn9usVB+bnWDoJT3NAMs2ZrUXds/Ocbbl1NP/O5Kib2VMViPuHhpI3fcY4f2sLjext8GEScIbTBCk1S7QZwlidp2CCtnLKtgJgCEItiKaTlAdXZL2OWptoGBahuSEYumYgNVa76yrxpZqFo6UkoD+FrgoOmm6Zrr3ZTh1u+JTu8/aroj8L1SQpIIlEV/GJagJex4VLwU8CWJYLNRYaNRQni9iL/u/xlS0ITo076TUKQa2d0CM+S1pdkVi7+Z4u0hPYOORQoGe4GnJXIBccakIBdkumshTB9Yi1gU+dTanQQH3JQQ4dDrTgk41nVjgQigbnzqoY9crlEzIZOjLUZqmQVmx6NczS+A9pauXyaz0Whw8uRJlpeX2bdvHw899FAfXPXsl599gn/3vXdYaTbT3ZPeQlJCxXg0e5wKL1289VRxNBR2YArpwe3mKrpp4QdFvdThvYDEXjCr8QQy1KAEQgpkzJDMp92qoiFbyEMe2bCg1n7sgacoL8a05tPGJo7EUektuSuwy0++vcSuQxWOzaQ7jnc602BvTC+Xy9x///0cOnSIc+fO8f3vf59qtcrRo0eZmZm55eD6Hv3jNtk9T/XHwnY0qBZCMDIycsOgurdVd6sArjGGjY0Nzpw5w9bWFvPz8xw/frww6d1pLvfVQPWjB/bw//n2DwrliTbcNzXF+8urufLLm3UmRkpsWMlhfKV4cGYXeivk7MVtNllmqlrcCN5upxQEAeApjDH4dYPfSFJaQ03iNTXaIZnVM6ENNhpSsaC0mtDZlaGSxKYvt2aE6U/4g9/JpUzuHmg9iGIQop0sz9bgTiwAF2o7z3P3Om3jTGCCJg1K1KRfse3JNhC3vDR9tOMxhW2fyohF9QjcYFtrSZII1utV6lGQ+qBFEUBmvZyDdtgNY2ib7IQxANJPAbSt4Gh0F4R7bgwlROp5FyLNcBhHBiUNUiSooNjXtRYoF1CORc77DAwNXHRaLCBDPdFCsNGusCnKeFuaURkyVmlTVpDyIwZ2PdSPdrvNqVOnuHz5Mnv37uVTn/rUUNUkIQT/p089yZe//k1UwzAifDZVBAp0nOR3BpI8sLV3YGxzacAXQHXvekIgY43J8p8zF1exIb6CnKYXglrRtCfFADBrkyoE2W2IdP87z1liSMqDzmWUx33TU3y0ssblDfe8sT5E+WirkX9/nU7CMTnKsZm746nuzSG9On3f5+jRoxw8eJDz58/z9ttv98v27Nlzy4DsvTTlt9F2KBDdSXZn85feBavVajcMqoUQtwTgGmNYXV3ljTfe4K233mJ8fJznn3+e++67rwCo4fpTld+sXa2+TxzYPXQbtjZEj3TfZD6wcqJSJmgbzry/yrnL2/3rrTVDdk/mE8acXlynVsk8F9HNnCclwsjUg22rClhWGHsMGE8iI4FqDt6n10r6CEkHFBCaSyfX/moKeT0MheVqFlRIk6E0JFBaksgNU1RXiHEC6pKU3W3y9K/kQLMGIBZDvdU6cQAPUUwCYww0Q49za5NsRwMutJSmyCP3dZEPaWPqImtiYMPUPDKueq0haiu0Vhgjh9IzjEWZEUKgjSRqBUQNv0C/GWYuWorWRVBtDAiHp9stGpOeHEvJOmXOtiaI40Oo8CH2eg+xLzhETY2wt3x1UB2GIe+//z7f/va3SZKEZ599lhMnTlxVhvS/efQEe0ZrCCHoNGL8DVBbXZWPzG3YMZqely/wbe+vJ4rBg9az1gGYbiW+/YCy7+xq78iAkJLymsGrpx+P30icOvReI3GuhFQrn3VTCIiXI3bXRlh27Lj5SnJhtahDrQRcXCmWv/fuEsd2paD6TqcM781bdp2e53H48GE+85nPcODAAd5//32++c1vcvHixZued4wx9+gft8l69I+d9He7bG1tjS996UuMjY0xMTHBL/7iL14RB66trfGrv/qrHDt2jEqlwoEDB/h7f+/vsbm5ed1172hQfbOearg5r7ExhuXlZb773e/yzjvvsGvXLp5//nmOHDlyRXH8u0H/uFJ9o+USR3e7A1zq7dBZnp0sH5iexFtN+MH7i0xUive9ZyLPG9XGcHDPRP6gzEQpGAZW+hcoTKAi1hgv3VYONk0/TbrIgGZnkKKL5mwBZtvBKWLy4CDJg+qKSZU/VBPKixK/IzARlNbyKZeFC9BrCNsp+3msFDBVKRNGOqVXZNqRKikMp4AUGt27fAZsh6Hi8toY27pMQbxQUsigJyTd9NXZMof3d9hgKorSegDCS8G6TiBpDdzyQoBJpPN6RrtpG+iU69yql3JqJ67061pToImkFy9e2DiANpCm77bvx9F3K6Uyry5v8R/PbvEfTie8eG6SmjnouGBqURTx0Ucf8a1vfYtms8nTTz/NI488wshIMaPpMPu//KXnu49S9GMP5BZU27IPhI1PXlpP6Fw/C9EFEF3ot/ZzEQNv9X33z+Z+yu7oXHHO1aZP2xBK4jcFwXrMEAZTqivvMOVQEFpc2uaBUfd4d3BqnMTRSecmxwgdmRT3To4yVk0XOLdap/pq1gO3wzzQPdnFz3zmMxw5coSTJ0/yzW9+k3Pnzt0wuO4FGt4sqL5H/3CY2YF/t8m+9KUv8fbbb/P1r3+d//gf/yPf+MY3+OVf/uWhx1+6dIlLly7x1a9+lR/+8If8r//r/8qf/umf8ou/+IvXXfeO36O5GwlgjDEsLS1x5swZoijqJ2O41oHmTnuqr0b/AHjswB4+WlwrlJ9b2UQpQWIhm9VGEwGcGJ/g5Pvr/fIDs1NsnM3zs7fbxYDHxPri5KhP0ogGyUSURIZuCoiMi/O4jAymyx0VSlFZTmjtznd/l5yeo2FoP39931MkGfRt4Y4UdGSwrTKCYE2gmimYKXseTR0jjMDfMCQjENcoBiga8BI4smuCL+yb5ZDS7Nu3j82gwv/rtR/w/UuLNE3+5qOGG1SrIHFymHsgeGu7zHonlb0TAkwItmSD0Q4KiLZc0Z7BxNc4SUogklDK90UhIW6moY8FDXFBmkkyA35NIobQS8iMeIKw5ZNECV4Q55RM+sdHCuEIaHTBIhNKREVbZSDsZ2bAhfxWOrZXVHC4VlT/SZKE8+fPc/r0aUZHR/nkJz95Q0HYAH/pgcPsHa1xebPe7zJCCMqhR9wMiSugK+luTTaA114kygiSLM/aemQuSogOQEWwuJkfm7UvkGGqEJJqZRvnbo1qm1xiISEFKlHQCWG0WKGtT91vu3KD3GgtZH5ijIsbee/zWMm9AzBVHQQpZu2B+cE7vNMe3GutT0rJvn37mJubY2FhgVOnTnHy5EkOHz7M/v37r6vNcZyusO55qm+93QtUvDZ79913+dM//VNee+01nnzySQB++7d/my9+8Yt89atf7edIydrDDz/MH/7hH/b/ffToUX7rt36Ln/3ZnyWO4+uiM+14UH0nPdVaaxYXFzl79ixJknDw4EH27t173QPMj1qgIsCjB/fwB6+9UygP44TDMxN8ZOm5rmw1OETAyVP5clfShNOL64xWArZbA6/3qcV1PCWIu1q2YZxwdH6K05cHAF12ihxooKt/a3lMLaCLUPibCSbDs9QOT7W9/a3CokJIYmxpD6s92aDJBPxNiNuDbBtCMkjuIgReE0TY9bYbKPuKdpTwxRP38Zv/1QuMltMG9BQe6hcv8huffJADP/UT/P733uW3X3o19SAKQbzlBtVSpcFxQSXvZpSeZmmpRksFeW97KCEogt2CuegeWuTB8BXwtYmLoFrHAh2qYvbD3jlGoGOD9FLgPJTzHOaVRECQxB46kpRGo4K32rVoSBU+iu1wVWcSibC5D5HdhjQ9/UI7ryZRVl4ayNs1rTUXL17k1KlTlEolPvGJTzA1NXXTHr1f/fRT/MM/+c85rnRoEgQCvwW6Y4qKOPbtW/8uyHp7FFRCdAA0YHmrSS1QNMPuNyQFshNjyh6INHBRl4vjp4qKmoYiMaAVXj0mrmWmttiQVNyqP8FkmdAxJi0urlEdLQ4u1xu8eP/8rv5/3w1O9fV4xqWUzM3NsXfvXpaWljh58iSnTp3i0KFDHDhw4JqAhc3jvl67J6d3BbvN3t07brfpXl5++WUmJib6gBrgc5/7HFJKXnnlFf7aX/tr13Sdzc1NxsbGrjs+YMeD6pvhVMO1gWqtNZcvX+bs2bMIITh48CB79uy54a2+Ox2oeC2e8UcPDE9CMWbxN6WAPSZgrFThMnnv9unFdUbKfg5cGwMHd0/wwzNL/bJ2GHNsbhcfnh8EQVZr+dl92EpXFDF1EewBfh06mV3egqfaFJU/RMxALaF7TGwH0bkkmLvnlpdEqvyRaU/H8a5VOJC9iKKEZw/P81v/9Y/njhkdHeXxxx9nY2ODjz76iPPnz/Ppw4d56mf+Kn/n9/6Elo4JI0kSSmdwXhTlQbVOBKubNaJYFfnB10pt8ExhrCwkxrlCsGJBvrqnYiIFJjGFgMXe9YglRmroCMR1qlEarehsC0q1MKcA4uJIm0girEQ3BsAl0eeqLBGFY+er45ys54N9j4zsQgqBMYaFhQVOnjyJlJIHH3yQ2dnZW7Y9/r976AH++V98h3orJOz2w1DrdCEo02BY0UyTrMS1tCzwJJ3MYqEgjedDTnpPpLtHOgeqBwfs3z3J++dX+r+NjVbYjNLxQbXdoNo1Iat2gi4rvIZGlzS6y/f2Ggm6WpzqpkZ8NjaKgNpTgo1GTLwVcvBombPNwU7a8qZb2cgOUuxZ1lN9N+gfNxIwKIRg9+7dzM7OsrKywsmTJzl9+jQHDx7k4MGDV6QuXo1ycq3137P/cmxrK7/DUyqVbkpSeGFhgdnZPK3M8zympqZYWFi4pmusrKzw5S9/+YqUkWG2oznVkAKP25WqvLcV+9JLL3HhwgWOHDnCM888w9zc3E0NnneD/mGMuWKd06NV5ieLqcYBWq08r/qh8V1cXm4hHXrE2hgO7CpeJ3GkDy9ZadDPLW/mkIr2BDjOK5QYnHJaKtSUV9N3q5XJbWlDlxtqbxtbF5ehw3HnSE8uIigvCmQsiLPeGE3+3w6bmxjl//E3fnLo7xMTE/3Mm4uLiyx+8C6/89/8JR6anUGFkmRjyCSYubUkESytjxIJ5c5uWHL0DQ+wKPWiS/fIlbl41cO6mpdypyFdbKX0lW57HMGV2baYtixQVPr1WVJwfetxh7Wis1VCR92gVYfs3lCLhnCvXYGLjmc75hcpBYdrUywtLfHyyy/z0UcfceTIEZ577jl2775+mb2r2Zcef4RID1/ECyFQbUGwBkFb0LF41MbP78YgRZFXbQcrZrpkOcj3z/lDA++u0I7nqg3GQdsQXWlPISWllbhP3peRu7NNlN2d5cD0RD8BVbwKQbeumq8KdBVIh4gLjiBFgPvn8vSPOw2qb6Y+IQQzMzM888wzPPbYY6ytrfEXf/EXvP/++/3Mv646b4U3/h6wLtrdDiq8XYGK+/fvZ3x8vP/3la98xXn/v/mbv9mXWxz299577930c97a2uInf/InOXHiBP/kn/yT6z7/vwhP9a0G1XEcc+HCBc6fP0+5XObYsWNMT0/fsoHgbtA/4OqelMcO7uHienHyOLO8nsqpCXhizx7efiddDZ5eWMeTgtiaGF3z5KnFtTRjW0bz+vzqVs7htdloc3jPBGcvbwBdqkRbE49kJPKS4t6/iLVzEpaxwXgeXj2hPevmZif2F2JzkG3PtSZPdehu2ZWXBFILlBDEGZCZYX7kz+newnilxO/+7f/2qn1LCMGuXbuYmprqb93+H45O8+rMBH+08j2YLU6Cssvt1bFkeaNG3HUDi0iAjfM8oGPdKyldQ9i0kERAFmSqHrfgGr4PAYQKKgnJto+deXGoh5suXSPG6TV20S7ylYJB0t4uUx7toGOBdNBNnN7rWCIsr73R7nYMkSMvWLDe4t2Ndzl8+DD79u27rWDs5597jP/3Gz9gI+Nt9ZQoLPYEAuowEflsy2jwbQgQbTCVwbEyycf42m++pwAiEDTC/MpstT7Ivmq84n17bY1wdILcN+55lJcj2rMBDOFND1MXGa8MOv/mRptHD8/x2sJlZqoVzjWKoHp+cpyLl4sqASPlgL1TgyDsO03/uFX19caWXbt2sb6+zqlTp/jGN77Bvn37OHz4cE5p5mY1qnv13TOH7VD6x/nz5/vZr4GhXurf+I3f4Od//ueveMkjR46wZ88elpaWcuVxHLO2tsaePcN33CGlVH7hC19gdHSUf//v//0Vd2WG2X8RoHplZeXqBw6xLKiOoojz589z4cIFRkZGOHHixC3hNbrq7AV83AnLguor2aMH9vAnb35QKA8Tw4HpcabKZX749kJ/Am2HMQ/s28X7l/Jb22eWNpAiD647UcKD89O8d2HwrtbrLQ7tHufc4mDCqtkUEGvtIcN0os6VZYIUbRNAsKVp7HO8Q8fjSKxvzBciF1QpYvoZ4yBV+Ag2Rd9DGXiKOOPKLXkeLW296y6oLnmKf/1zf7XPob4Wy27dXr58GXPyJC8t1Nh0BFGpQBM2PNYbVeLsROgCpeAOIrwWnKxAd8hRN8QwzzEpRzqpeySFFQwpfcKlXBILEAIdCaSXXJX+M7yxgna9hB9E2DOYSXAGLjonukgUOODGgHFQZhY31wtlx6f28sJDz9wRECaE4PP3H+GP3/6AVpT2xQiTp1Flnl+rE+OH6aIzGkt/c8pKZszWbUemwY4ihgvW4vnS2jajJZ9mJ0KXJCI2Oa14GZliwGqii9kShUe1bojHAmdqzI2GS14H4ig/qLz/g8vMPzDKrtoo55aLoHpqpMJFiqD6gfm8o+VueKpvdf+ZnJzkiSeeYHNzsw+u5+fnOXz4MNVq9Z5G9e20HQqqx8bGcqB6mM3MzDAzM3PV45577jk2NjZ4/fXXeeKJJwD4T//pP6G15plnnhl63tbWFp///OcplUr88R//8VVlSYfZPfrHVUwpRRiGfPTRR7z00ktsbm7yyCOP8MlPfvK2pXq9m57qK9nxPZNDf9tfG+XddxYL2KXkFwfYTpSwu1bcevW94gQwPprv2Ctbzdy/y7WArKaacNBBhnmkel4wIRQlF2/Tvo6l4gHgWW3u1SUNBGuC0soAUAMoS8ngSt3ny3/1L3NkZvgzv2JbhWBubo5PfepT/PoTTzvpFkbD2kqNyJ54A4MJr7Ffu4L2roX2oIZTQIyBeBjVw5VeEjCRIEV3IqWBZH+LGe4+cMnjGUHY9Imb+edioiEeT8czMI52ylAUwCDAminuIjx39MQd9Wr+2l9+lppvS5Vk/lvmJwujBKojKK2kMpA2dcpOhmR6POvsMd3qmp0o59EFmJvtTrJCpFrSuROL7ZcZvfmeCeDw9FRe875rY5US6w2HHKgxLFpUDp0YpqKAZsctH9ockkH2/rlduX/fjUDF21Xf+Pg4jz/+OM899xxxHPOtb32Lt956i2azec9TfZvsblM1Pi461cePH+cLX/gCv/RLv8Srr77Kt7/9bX7lV36Fn/mZn+krf1y8eJEHH3yQV199FUgB9U/8xE/QaDT4nd/5Hba2tlhYWGBhYeG6sdiOB9U3Q//odDpsbW1x6dIlGo0Gjz32GI8//jiTk5O39cO/04GKQogrAvlWq8X777/Pufd+yFi5uB3iK0m04SAXA+eXN53lnkMm69xKnjMNRRB9ea3O7FRt0LZOzOzoQJvX+aE6XlXq/Rp0/5Yq7gzYwEA65tTYClqTUiBDGF3x8Rui4DXX1sNoJ/l6Rfd/XjhygL98/Eixwuuwer3OD3/4Q1orK1TCSuH31nKZKHKjTdFxPDSXlzYwRS1v32Bsjk9B4xBwOwoxLTUUPCO6/OisRSInu2aMSMt6Fg8D6Lg9PxqQgqjjE61dOVGMSchlTMw0s1gWFcHGlCzRtm7IR1Ju37mdKoCy7/PJ+fzWqH1XI9mtUAUkdGUgQTVAZp6TrW+NpMCzzir3TI9Vc79VM5lWZ7PJobRxUkKGLZzHghKHq0Uv2P5d487jp8dHWNsqZkw8/eEyQUHWJLVmxz1uZoMUYWd4qm0bHR3l0Ucf5VOf+hQA77//Ps1mk+3t7aucec+u28wO/LtN9ru/+7s8+OCD/PiP/zhf/OIXeeGFF/ja177W/z2Kon5fBXjjjTd45ZVXeOutt7jvvvvYu3dv/+/8+fPXVfeO36e5EfWPVqvF2bNnWVhYoFwuMzU1xaOPPnqbWli0Ox2oCG5ZvVarxZkzZ1hcXGRmZoannnqKp1Y1f/726dxxD+2Z4d23FxkZ8Wl08jPnRr3NoT0TnFnayJWvNqK8QgApZ/rQTP7Yi2vbzE5UWdkYgOs906MsrQ3e6b7pcZa6PMzqSCnfBuMOUrz/4DQnT610DzEUMKcml54ZUp6oto5pZ5GEhsk4oL4aEveQpoWuckof2pHOXEOtFPCV//ZzhTZfqzUaDU6dOsXS0lLfW/3W+RZ/svT6oOqWYpMAoYYwI1ygtmTSJDN2tkhLo7mnxpEFm0KlDNqsiURQoFjEQCQRGIzD453ydyWMDOozicjfhBDoSCK8nkzbkNE7Fs7se1lefCwUyaagVIvcfGqHPjXgXIBoR0DqpFdiLcx7qveVRvnhD95idHSUo0ePMjl5Y7sV12v/55/4FN86fZ5G3P1+JLlvNLRoEUKDUXQTx4C3aOhMgi4DQqSSl5mNJpHk33aSUQAR1iK7nUmkMjkzxqXLy8BwPrUoucFjfbvNqfOrHH98D+9eWu6XB0PA5t6JGhvLRSfMnqlRmheaSCVy71EJwUrdHbR3XyZIsRcIvlM81baNjIzwyCOPUC6XuXTpEi+//DLT09McPXqU8XH3AsZl9yT1hpswBrGDns/tvJepqSl+7/d+b+jvhw4dyvW1H/uxH7tlfW/He6rHxsauGVQ3Gg3eeecdXnnlFZIk4cknn7xpJY8bsTtN/+jV2QPVzWaTd999l1deeQWtNU899RQPPfQQtVrt/8/ef8dJtt7lvej3XatyVedUnXNP6smzJ+/ZQhujwCH4yByCuAaOAmDLNkK22JbBGGywZcxBRhdfjg5XgIxssLHB2NaVkRHImp48syf2TIfqnFNVV3XlWmvdP6qrulaonp4OM3vPnufz6c/es2rl8L7P+3uf3/MzWevZZYnZ8RCKqtFeRKpQ7jFrk2JpldZac2Nb4jFP1TZU6yNNYUMVx5VgthP0uuysGUh9ZakLzYI4eQocBzIeTNPyUhpT0QnjJyelyHICFZzL4JmE2GIaqYDh6dQFmt7pw1SJkWwxlp998yxu57MnSMRiMR4+fMi1a9eQZZnz589z4MABXC4Xh8qadeuGQ56sTZ1TM0d+Aa2Y80XSgtBYcV/jMlkzZ6habKfF5Cwrz1hS/ew6hdKRpLDW0AiBiEvZiHsxXlEsGm48HhKJVTuqhfzDqOmH7MDAUhJiQcrLveYo6v7Kei5evEhFRQV3797l9u3bhEKhLZ3rTlDl83DUX1Aaff3dziGpKbpnaArcKgJHCOzB7HZPKzOuOqDE7eBwcy12Bc52NHK81U9vc212hmf9UHPLkbzES7KogFjmdpCxmZ+lwyYzORNEAOGJMK4CKVq4CBE2lU1fR02Zl4WZMEcb9KXjGytKSVtUUpQEBGdG888t17a+m9w/tgNJkqioqODSpUt4PB5u3LjBrVu3CAaDW97HK/lHEbzoqPK7KFL9IvHSR6q9Xu9T5R9ra2uMjY2xtLREXV0dp0+fxuPJTkeurq4+d4L7vOUfkG0MY7EY09PTLCwsUFtbq7sPORhJda+/hscP1r0frWw9gMWQ9f0vdZsT8JbCMUrcTurKvXgdDiQNlITKax0NhFMpxhdCjM6tUOp1EolmO8bJuVUqaz1U+TyMBvVJqXUVpYRCZg/Z1dDG9GTGorKzlX7aSCKkTJZAyBEQSAjVYMtniMQL9CTbYZdJFFiZeex2mkpL+d6TB8wntAni8TgjIyPMzc3h9/s5d+6c6bkdKGnK/39i2Uk8N4UugYhL4DMwIFeWbJt8oa0esZV3tKRfVQggJaG5CkiZzRAlV8k6f+SOY7h/hceTkhKaS82S7yKtmIpATmimGYc8ilVdtFguVJl0XEJLSsjl6Q0ebzX4SEumqomahqVMJGlMUgU6fFXY7XY6OztpaWlhfHycO3fuUF5e/syRv2fFj505yqPAHKu2TPa5Ft5/SSAlNorBaDKmZEaBwJYEaVFD0b+C5mfpgORSkoHFbIVVh02mp6magUD23xU+F8FEgtBanMpKDytrcV2Rmhxa6it5ODRrupY2fwWBQDY6HVyOcfB4A3dm5rHLEpOGmbMcViPWftO29Y9/cTCIs0wmuU6kqzzWSYptdRVUlpdx8+ZNysvLaWtrA55vpUFFUXA4inhM7hFy7h8ul4v9+/fT0dHB2NgYt2/fzs+8bJaLlLNGewUzXlVUfHfgpSfVuURFTdNMH2s4HGZsbIyVlRXq6+s5c+YMbrdeB/AiCO7zln9Eo1HS6TRPnjzB7/db3occOmor8DkdrCVTuOw2pkY3IhBjMyvIkkAxkOuZlQh1FV7mDYUTjIUU9jdUk0lkqK/w8mBYb9LeWFPG6mocNZmhs6GC6nIP90fmSKQyCKCpsgzZojF22q07sdW1jWh32mf+3SrKlvPWlVJgD4MrLsgUsGRj+WY0dITTLsskCwXIxtNVNL7w0Q9Znq8VEokEIyMjzM7OUldXx9mzZ/F6LUYIQKOrklKbm2RGYT7j0BNHq6iwWCfbXsONsLqdDtVMgPOksuD+GKta2vTEXYQ3WJwQori3NFnyKxIi61VeDEJAel38a4RCkXrjWBP59WvJqDbUoMBelsrqu51GUQuIFOA2LhM6V5gcFk3lyaGzZCPBzW6309XVRUtLC2NjY9y6dYuqqio6OzspKSkxbbtTvNbVhC0tcK6Bs8xGWMpYF1OCvE4658uuFUiJJE0gIiAUjXR5dntjISVVAtkJyjqPTWUUHo7N09vtZ3B0gdW1BLLI2pPXl/uIpdJZFx+jRWeRttJj8Ll/cneG1kNV2CWJkckV0/p2m8TUvJkgA6xGsjrr1WCcwz2N3JrOknhjzkQO+5pq2LdvH+3t7YyPj3P37l0AQqEQ1dXm8vN7gectNwGz5MThcNDT00N7ezsTExPcu3cPj8dDZ2cnNTU1rwj0s+Bli+6+TNdSgJeeVFtpqkOhEGNjY6yurtLQ0MC5c+eKeiO+qKjx8zhmYYRelmU6OztpamradBtZkjjSUseVoUkO1lTTP78RIYqnMnS1VjMwu2zazl9RYiLVc6Eo/gov1SVewsE4w8MbmsfDnX4eBjaI9fTiKi115SwvRxmbWmFsaoUTPQ1k0Hg8tYiSVCxlHomkORLoczlYXS2Y/lXAFgHFtxFJFnJOUJqFlABbLPsnMiCEhEPYdPZ4T2skbLJEMl/ZBBIFz1gWgh89e5SaEmtSrLumRIKxsTGmp6fzxRl8PouRQQGEEBwoaWJhTWVM0kfzNVGER1qRbacFgZZAS+gt5IRMNjJt9KvWnVSWbOZ8rNW0XuAtMqKoDEWzk3Uo2WR2W0qS9S5OqOAy7EcpIgsx+owXnGt+FU0mGXLhsKUQZUWK4hiRFqZItVuyMW8oTw7Q6asyLcuRk9bWVsbGxrhx40Zes/q0Z/+s6G2p4/rQFKnVDA7AUSYTlTJZrbrx2govSQKbKsisLxSSwBYVSCkNrVqQklVECt3gwlnupCQhM1+QM/FwZI6WunLsCIKRBMFwjNGRJRoby5hcMcgINI2puZDldYRChoRDDWzBDCWN1oORlupyxsfNbZdNFszMbZDt8fvzlDQ5icSTrK5ZR7ZzemqHw0F3dze1tbVcvXqVu3fvUlJSQldX157YsRbieWqqC49pFR3Pzby0trYyOTnJw4cPcTqddHZ26goavdJUF8erSPW7Ay+9pjoXqVZVla997WvcvHmTe/fuUVJSwrlz5+ju7t60JObLGKmORCI8ePCAW7duYbfbOXv2LB6PZ8v+okdb/LgdNiZGzB2Qy8IWD2AtZtYw1nodlGnwZGCemQW9jdWj0XkOtOlLjU7Mh6ip8eF0ZI9xZ3AGoYInJfBKMqFVcyc6PW/W8tVXGTpVIeFYlfFOy3gmwD0LZRk7zkWBa0ZQOi3jmRY4IhKSIuUTpdJGMbKhfzT2l2qhQNXweNtKy/jEd5wynWshkskkAwMD9PX1kUwmOXPmDEeOHNkyqTri6+ZKQbJW/lQcGpZ9mVWCnwQkzEQgm3RoWGY0UXBY2G3ktotLaKYbVpxwiKRAKmJxl18n5wCSkM0DHquqkWA9urCUhAjSESfqmjFrE3BZfLsWA5RGj1nGYRcyje5y63MjWxhh3759XLhwAafTyfXr17l///4zJ2Nvhu89uyE/kgB5TcMRykadsQlEukDCY7isTMZwo1WQMgLbvIZrVWRzFQqwnEkQXEtyqK0Wr9NGS7mL1govSwtr2ITMajCGpEAmrjAdWAFFf2+b6soJR81ti8/lsCTbs9OrpMNF5GhFKiw2F1RYBEjEM+wrrUQWgukl68i20flDlmVkWeaNN96gurqau3fvcv36dZaWlvaMSL4oUr3ZMW02G+3t7bzxxhs0NTXx5MkTLl++zMzMzHNPzn/X4UXrn19pqreE9wSpTqfTnD17lk984hNEIhHOnz9PZ2fnlvRmL4pU78UxI5EI9+/f5/bt2zidTs6dO8e+fftwuVyW7h/FcKzVz4HqatZiZo+56YUwVgxtbD6k84s91uYntJIiMLtGS5U5kVHVNAanluhq0kftJuaCHOyoo7mmDJsscW94ltbWKu4/mMGe0PAX2O15nTJRC2syb0ESoCbIR99UAElGpCRiy2lscYGcESiKZh5Vqxppw3UaCYaj0PpLQ6efLlzVFRN89/5u03nmkEqlGBwc5PLly8TjcU6fPs3Ro0efOULZ7KrDkjXayCb8GaC5NGs7OQsCbWlbaFxgR291B2jrN1aLF+mIi7ySUkqyPg/dvtfPQwgweFdbna+mWi+3GjCs75h0zI664NjoIBJFIuAWA5QSm/m9b/NVYNtCcllOs3rhwgXsdnveDmonnvw5vK+3HWcBMUpmVCQFHKH14koFTZMmYxDP6/dVsm7BqWkCsSYoidt0Jc4VF7iddmRNormynKnFBJMLURKpDEOTS7Q1lOd3q2nriaEF7VRViVG4nUVzXZnlQFGgsTISocTCuzqdsm5zyywSrYfvznKwoVZXAbYQRo/qXNJgLmL7xhtvUFNTw71797h27RqLi4u7Tq7fiaQ6B1mWaW1t5dKlS7S1tTE0NMS3v/1tZmZmXklCiuBFe0q/W3yqXzReWlKtKAr/8T/+Rz74wQ8C8P73v59Hjx7x/ve//5lKT75I+cduNbLhcJh79+5x+/Zt3G43586do6enRxehf5br3N9QzdykdYQmGInTWlNuWq5qGu015Xhddg7V1/Dw8SzqujZyYjlBd4M5apdRVGZXIpzoauBYm5/OmgqcqsS9R9NUeF2IhEpTWQlqSuX0kRaEohGei9BUnr2uplrzeQBkUhsdoeLEFFKW05gaduOTMFeQMyfEJQ0dbuE+HDYZCYEjqGGPC37wjSOm80ylUgwNDXH58mWi0SivvfYax44d27aW9nBFXVG5sLBw9UDGkmxb7sRQqpyUQMsIxKqcdeBYv3jJGLG1a2jJLOkyH0YgLCK8IufGKERWv2wBKYnevSUlbRB0BUvim3dz2QrUnJZYkMaGMueEdEF0vACaBprHkuGZ0GEh/dgMLpeLAwcOcP78eWRZ5tq1azx69Cjvv/qsiMfjPHr0iHpfQQR+3QVEILCH0ZFiJMwkuwBrcf0DykRUShZk5PVZDHe5g0xc4eHwHPGk2bg8Eo3rvz15/Zmvt43xhPUL4DBl2GbRXFfOWiRNT6XBqUjTmF00Vx0FUNNm4qwoKqUZ62PUlnsp9+lF9UZ9s81my5Pruro6Hjx4wNWrV1lYWNi1dv9FkOpnLVMuSRLNzc28/vrrdHV1kUxau7K8Ai8+qrwXfy8hnhupXllZ4aMf/SilpaWUl5fzsY99bMtTlpqm8aEPfQghBH/6p3+66bqZTIZ/+2//Lb29vXzmM5/hE5/4BEIIfuqnfory8vJnPu8c2XyeWq9co7TTY66urnL37l3efvttvF4v58+fLyp3eZZItV2W6W2rK/p7hYWrR247n2ZjYGTB9NvQzCqH2jfkHg6bxNG2OpyqxNpakgeDs4xNr+S9cueWIyDB7GKYx4F5bt6fIBVPUOJwUOMq5Wx3Ex6n9UzEUnDjvVMsVhHGKWwwESBjUqRQ0JFzkdH0biGGXTqEhH1JRU4LupuqdJUn0+k0w8PDXL58mUgkwokTJzh+/PiWSrluBp/dSVepNWkr9qpZkURjqfLsDoB5GW3BQXreSWrVRUp1kI7Zyay6UBZcqPNOiEiIFRtySIaYlJVFRGwUZbMW4zyRkPIJYpbnZ7FcUBCt3qwYjNW+LJaLFLrWMyPLpJZdaFaDgCLR63DarMft8D4bqc7B7XZz8OBBzp07h6ZpXL16lf7+fuJxcyETK6RSKZ48ecKVK1cA+IH3nbRcTwiBPQH2sGb90kjZdzsHzYZuPVXWUDIarkWBLyyzqqXyZHpyfpUD7XrJ11IkRWejfsDt8zmQ01mt88Rs0PI8F5et+5aK9cj24NszuiqOtWW+ovroxZUi/VQoQ6XPnNDd3WBORCxmb2ez2ejo6ODSpUvU19fz8OFDrl69yvz8/I7b/xdhqbfdMuWSJNHQ0EB7e/senNXLgxcdWX4VpX46ntsX99GPfpRHjx7xjW98g//23/4b/+t//S8++clPbmnbL3zhC1ueErpy5Qq/9Eu/xN//+3+f4eFhPvWpT+2oqmKO4D5PvVeuIdxuhDwUCvH222/nk2LOnTtHV1fXpnKXZyHVABcOtxb9rbBQSw41ZV4mRldoriwrOkJ9NLrA0S4/h5trsGfg4eAcoUic4cklWhv0kaWlUJR9bfrOq6TcRzCcpH9wnrdvT5CJWkg/XHYWVzbeBcW5hfdK00wROIes7ziMxEsyHLrw9bVpAmUhjbSuGf7wmf1AdkA4MjLC5cuXWV1d5fjx45w4cWJbg8FiOFpRb7ncWGa64MzNi2xALqCUETBvI7XiQkk4SAsZraAjz98HIdCEhKrZ0BQbStoOUQeEnesOHUWObpReKOi11qqwfJ8sJdMpyZKk57exag0zWFryWUXQNUkiteaEoKF0vVW0H5iOmWd7Cp0/tgOPx0Nvby9nz55FURSuXLnC48ePSSSsCWMmkyEQCHD58mUSiQRnzpyht7eX7z17SCdDyco8ctMNAlscHKvZt8N43+yFUWJJ6L4NTbDu4y7QQhrOJVALpDHBcNz0xq0lVV1xmEQmQ4nLTlddJcm0+YGWex3ML1lX9EusS9Y0VaO64MHWlVknCJe4HUUJejgYo7O0zLS8u9FMqp/mxFGoNW5oaKC/v58rV64wNze3bXL9TpZ/FMMrS71NoGkv399LiOdCqh8/fszXv/51fud3foczZ85w8eJFvvjFL/KHf/iHzMzMbLrt3bt3+fVf/3W+/OUvb+lYr7/+Ok+ePOFjH/tYnkT6fL5tl03NNRDPUwKyXSIfDAa5c+cO9+7do6ys7Jm1489yvDMHm5EsSo0DzC5HqC3opEo9ThwpCK8luD80y7Eua2LX01jF0vwaY9NBEgZ9o7AY2k7Mr1BYq2F0Osi+jo1I1+DgPIcMEfX6Sn201ypSbTySQ8jmht54PsaNDLZf9lwCpwaeOTWvVXbYZD50qovR0VEuX77M8vIyR48e5eTJk3tSSe9IZRFS7dDQLMqGaxbeygAkJaRlB6llJynJbiqUk4NxqWazmIHZrAiLJLJSjtw/E/pOVwiBZCCtJulHwbrErUtIahYVNAGkIpFwSyig2QXJhBNtaWNnkkVBEb+rhEQRj+rdQK7C3ZkzZ0in0/T19fHkyZP89LqqqoyPj3P58mVWVlY4ceIEx44dy+v0ZVmiq65yY4dC6CP5AuS0oDRuz5Lqgt9iBkmGrkCOJNAK5BRyWtK59swtRzjUqffCn19Z0y3LKBq+UpnRkSXqK81kuLRIdUVZEkxNh/L/Hnm8QM+69tlWpOhLQ6X17JDdJjEzs8rk/XldURmAnmeIVJvOUZZpa2vj0qVL+US+vr4+Zmdnn5lcvwhLvWeVf7zCK7xseC6k+urVq5SXl3Pq1Ia7wXd+53ciSRLXr18vul0sFuNHfuRH+K3f+i38fn/R9QohhDBNP+0kUr3TqPF2IITYsq2epmmsrKxw584dHjx4QEVFBefPn6ejo+OZtOPPauPnczs40lH8mTSWZ6dWXXYbNQ4XCwXRnvuDsxzt2CB3siQ41uYnMLrE3HKErhZzpzQ6E6KqVM+A1+IKB7v057AaT+pI1+ToEhWlG1O0PkOlQitSbfQ+ltPmziypbu78Yfx3LiGvLCxBQVW4lio3V69eYXFxkcOHD3Pq1CkqKyvZKxwtQqoRmJP5ABwampFYhmRYcZJQZR15tSKlxgg/AnMVwqfw1jxp1rCWbhiixsUkIUBR3XMxPXWxqoCWBDzPJQWptCOrs1bA5jCfc7XTTAZtQqLZU1701LcDn8/HkSNHOH36NMlkkm9/+9vcvn0777hw6NAhTp06ZTkb8sGTxZNnNQnQNFJr6WzEulBXbZj1cLuMVZQM/zSsP7sURjYMiibnQzrP+enlBHW1PlJrSWTD7S31FbHM81eQTG0MZASgLiQQAkJha5mMx249hdNQW4aqqMTWUhys07dX24lUG1GYyNfS0sLAwMAzu2S8qEj1duQfr/B0vGi5xisJyNbwXEj13NwctbV6rZzNZqOyspK5ubkiW8GnP/1pzp8/z/d93/dt+9hCiC1VVdxs+3eiV7WmaSwvL3Pnzh0ePnyYJ9Pt7e3PRKYLj7eVxlpVVTKZDJlMhnOHmouutxZLIkmCjsoyJmZCpt8fDM1ypN1PXbmX5vJSHgxu+F2PTK1YFm1x2M2sZ3YpjFQQ6ZpdDHOgZyM6HY+lqSuoLpgpiJKpNsDgbS0yGhhIdSZheA6qZlIRqIbTLSTmQoOUqlKWsaGGFWyujU7nWLMXTdPw+/1UVFTs+dRnu6+CUnsRC8kiLhciZ6GngDbnIJVyYJWjpTowyStUuzkybWpMDZFOI3JJjPLaJlPDhXbhm9xCoUiIqISImfwOrY9txUnSReQyhoh7RrORnnVhs5ubWadk3kGLtwK7tDckyOfzUV9fj8vlIhQKkUqlqKqqoqysrOg9/b5zB3QdRI5IA9nB1Pr/yhlwRUFav4eaTWTt99YRSxmmQIy33nDJy6sxU7Q6tJagp33ju3Y5bLh8TkLhFI2lBe4cmsacwZ4zh1KP+b2fm1rlWIuf6UXrxOtE3DybYNxXaCSUl3d5nHYaq8zR7e3qmyVJoqWlReeScfnyZaanpzdtrzVNe+6kereO+Ur+UQTaS/j3EmJHpPqtt97Ka6CK/T158mRb+/6zP/szvvnNb/KFL3xhJ6cIZG31tiv/gHeWV7WmaSwtLXH79m36+/upqqrKk+mdRAieRqoLybSqqkiSxKVjnUXXH5sJcrypjqHRpaLrxGMpSu0OJg1+smuxJPsMCUsAMytJ6qv1HdbyaoyDnXqJx/RiGEcBKQ8EFvNR9ZWCkulWUWqjjy6YSZop0qpq+kQ0TdNVjxMpDa+wocxkQ5npdQbntMl86ke+h4MHDzI1NbVjDeVWIAnB4YqtzfrkoQhEVJCZd5JeJ32qEx2Rze/faMYgmfXlJu2yKB4RhnXSpVI0wVAgkFLriYtFpB/5dbXs+iIuIa0VRNmteICCZRXE3LEsTsRiHzKE3bR59LMPxcqT7wWCwSA3b97k8ePHtLS08B3f8R289tprrK2tcfnyZYaHh0mnzS++026nuapsY0EBkTZCUgX2ZS1PpgsdQjS7fjvjvfaUmG/y+GwwP7CuKHVztNNPIpygSnZgj2sooTRjA0scbK0gsqayb916s8xjJ2j0q19HPGrtFKLMJ7Abw90AmsbsgjXZ1gqcfZZmIhysrwGgq6HKUha3UylGoUtGR0cHgUCAb3/720xNTVm227llz5tUa5r2Sv6xRxDqy/f3MmJH8zSf+cxn+PEf//FN1+no6MDv97OwoHd8yGQyrKysFJV1fPOb3yQQCJimJT/ykY/w+uuv81d/9VdbPs+dRKrhneFVnSPTY2NjJBIJWlpaaGxs3LWptmIkXlXV/F8uap/7a6hx0t1UzdCUmTi3+StYmV+jxJ2tPGZEa105c3NhmuvLLc9nZHIJSZikyZSXuZld0keiJuZWkOWsnzRkk52OdNfz8PGGXj8wME9zUxkzE6H8MsUiYCsUDQwRcc0QuXbYZJIFoU2hoNOFSmlQXAX/zmjIs5lscRNVI7MeiTnWVY8sy9TV1VFTU8Ps7CyDg4OMjY3R1dVFVVXVnkRtjlbW07cwblquOjUkFYzyUikuSCScpgi+nATF8PpZTekJRS+XyJIqTV/ieZMGVkgCOSwsK2bm18kIQENKiU2SLsmTO4FAS0pIqChuLeuhbYCUEtmy2EX2YVxmqjYIuDSZYDxFbFTmUGc9j9ayMzILCXPyW4dvd2U/kUiEoaEhQqEQbW1ttLS05NuLsrIyTpw4QSgUyicqtrS00NLSopvp+sCxLr70P29vDBgKybG0sVjRsu+OYwVSFYYbJEBKa6iO7NqqDJKqkQvvRpUMLv2uCUcTnDvYwtJihNHxZfrnsu13V0sF4chGexJLChyKQFYEZV4XLTVl9IfMs582STA1HbS8Tz6bjQMN1dwdn9ctr6vwsTxrnaS4umIg7ktZwt5VX4WmaabvdrecOCRJoqmpiYaGBmZnZwkEAgQCATo6OmhsbDTJFZ8nwc1kMjs65qtqik/ByxbdfZmupQA7YmQ1NTXU1NQ8db1z584RCoW4ffs2J09mrZq++c1voqoqZ86csdzmrbfe4uMf/7hu2eHDh/mN3/gNvud7vueZzrOkpGRHFcdetFf10tISo6OjpFKpPJne7cbSKDfZjEwX4uLRNktSLWVgZiFMQ20pQkJX9aypppSV5SjxZJrBsUVaGsqZMEar42kOddbxKKDv6B6PzlNb5dNptGVJ0F7nBsmhsws81FmL0ASSEAgBdpedGTaOozisMtYM/1Y1FIc+CGmXJJIFAxCh6jfLRutEfnt7WNvoMApW/OH3H83/vyRJNDY24vf782V8fT4f3d3dlJUVRAt3AUeLRaptIK0JtNKNk5RWJBKa3TIKaxVpsHLQMC2TyVrS6aL7WVJcFEkBZveyDUgCeW3zdlqkNUTB5FyeWGdU1FLzlsbnmj9Vq08vg6VtXpnbSTwTI6ko3B0McaanhYH4LAtJc3vU6TNrcbeDWCxGIBBgYWGBpqYment7iyYrl5eXc/LkSYLBIIFAgImJCVpbW/ME/AfeOMLv/fdb2Fw2YlpGR6SRBWQ2yLFAIGngCGqkjUVLC2+klK3KmBv8KEJjf0ctj9etNjsaKlFjGYYHFwiFY7qHsByKUvB1MTETpLOpkvHhJY4eayYYs45SN9aWMj0esr5faykWxsK4qmwkCjTXNaVeS1LtsMvMzekj2BODS7SeqqazvjJPoAudLHY7aTDXXliR66ampnxb/jwt9XaDyL9y/yiOl02H/DJdSyGeS0bBgQMH+OAHP8gnPvEJfvu3f5t0Os2nPvUpfuiHfoiGhgYApqenefPNN/nKV77C6dOn8fv9llHslpaWZ/ay9Pl870pSHQwGGRkZIZ1O09raSkNDw55FHnLyj62S6RxeP9LO7/73W7pl3U3VjA5ly2HPLISpry5B+ASrawn8lT7WwkmiBUUhnEVKm88uRZAkkS8SA1lJZ12lj6pSDzZNMDe7SnA+hqvKy8Liio77Hd5fz8N+vbvMoSMNPBrJEnWrSLVmmLqVU6AabPeUp0VUcj9rGp4FFbsiUNb7tpz+2+OwcXJfk2nTXPZ/Y2Mj4+Pj3L59m6qqKjo7O5+5gmIxbCb/EEmJnGJcCkokU44sYY1rKIbcOityqTpBx3rIRqk1q8h04fab9f1aNmqsbEaqASkmUEo2iWanzX7RApH1vRYaSomhWE8xSYilS8j6tRvg8zphNWcxKbg+uMTFrmZuxUdN71HnDuUfyWSS0dFRpqen8fv9nD9/Hrf7KTdtHRUVFZw6dYqVlRUTufaX+phfjOAA0h6RrQ65/p24HXbi6SwRtcsSKVVF0gSOKCg2QWbdLs+kczcMyCZXwtRV+qjxunkyMJ9/UzpbKglMrOTXC4ZTdLVVExjbGMhLNpmMonL79jgHDhRJxE1bFxWRJcH01AqplMKB3hbeHt+Ichd1BKktYyq0qFsmgCrVQU9jNlKdyWTy7acQIi+Z220IIWhoaKC+vp65ubk8uW5sbHzuBDWnp35FivcIL5sN3ct0LQV4bsPYr371q+zfv58333yTD3/4w1y8eJEvfelL+d/T6TQDAwPbrgS2Gd5NpFrTNObn51lbW2Nubo7GxkbOnTtHc3Pznk7lCSFQFIVMJpPXxdntdhwOx6bH7WiopL5KH5ZSYnq96OxSBK9so72+gnQ8Q9hQZGF4Ypm6CnPnv7Ia41DHhl7a53ZwrLOeqcAy8+MhHvfPEgxm35eF5ShdBt/qkfElnbYaYGEihNNhQwOd7hkATUMxLJOMhWA0SGibO3/kEro88yq2lNARCnnd7utUd6Ppegtht9vp6uriwoULOBwOrl+/zqNHj4r6DT8LSh0uOkuspQa5q5VWNwg16DWyOShOzKFcyayr1mzm7U39rkRRD2kpuR7BesonKKXE5jKSIhmM2cqMErbVgt+LkeeUsIzaW1rvaTATM7c78VVBt9qoS1aUhaBlm84fuWJBfX19ea/pQ4cObZlQF6KyspJTp05x+PBhFhcX+fa3v83xzmo0aT0hMawhxaw796Sq5JcLBWxLSl5jbUxGNMLrc9Dg8TBQQKgBImtm2Z5kkAENjS1SX5+dzZmeCuJymmNFdpv1vWj2l5Nat++cejCHu8AdKBy2/tasSpwDjD2Yp72uEkmS8gQ6k8nk29W9jBoLIaivr+fChQscOHAgn5sxNjb23PquV0mKe4sX7dTxyv1ja3hupLqyspJ/9+/+HZFIhNXVVb785S/rIm9tbW1omsb73ve+ovvQNI3v//7vf+Zj78RSD54PqVZVlbm5Oa5fv87w8DBut5u2tjaampr2lEznEhBtNhtra2vMzMwgy/JTyXQOQgguHtmYOdjfXMOEhXZxbjFMjctNsIh1VUWpdRR2fmUtm6jU4YdImkf3p4msJWltMpNCyaZ/naPxNH6/vjMNhWLsb67OJikaGnApja7IBGAijVJaMytEbMZ/C9wLGrZUVkOtFhwnLVTQNH78Q69ZXq8RTqeTAwcOcO7cOVRVpa+vj4GBAVKpIvW5t4gjRYrAqE4NKSxIxR36+2OV/CeBZME7rMivZFhmJRORixT/k5IiKy14SgVjoQlsm3zmlpxaJStHQEBGxraaPbFi5LmoS4jF9XixEbNIANQ0eDgZxB+rodSWda5o9pSbCgo9DYqiMDY2Rl9fH6FQyOQ1vV0IIaiqquK1117j0KFDnGz3Zf2l13+3p8C2poEGsUxmg2DL+kIvkiJwrmjZxAi7PkHCOAswvbhqaWu3sJKkvlafnDw4ukhNlf4ay8qzDj/hSIL9zXpJos0mMWXhQATgKfC0jkVSHPCv+1bLgpn5IkmKGeuXoNFfliflOVtUIQSzs7PMz89jt9tRVXVPtcNCCPx+P729vdjtdmZmZvjWt77F6OhoXvO8V3jlUb3H0F7Cv5cQz7eG6QvCOzlSraoqs7OzXL9+nZGREVpaWjh37hw+n29PG99CNw9N06isrOTIkSMsLCxw7dq1Zyo2cPFIW/7/4xFr5nOoo463H07RVOWx/H1gdJHm2nLdMiGgvqKERq+P/gczJJMbz2B6LmTiPEOjC1QbOttQJGMiR4P9c3gqLUq1W/Q5RrJkM74Giqa35VM0nEENu9VtUDUyGlR43XQ3P9tUv8fj4fDhw5w+fZpoNEpfXx8jIyPb7iiL+VVrEqRXHSYZjGVUGusIthV5NW6q2UAzZKGKIkVgciR9s0i1SGeJmsl9pPA8Lfr7wn0KBCJHrIsdy9LhAxSXeXF5kcjk6vpsQ2AhjCtYSq3T90zOH6qqMj09TV9fH3Nzc/T29nLy5MldrbwJWYJWU1PDm29coNzrzF+7AGxJKElKIDT9O1D4SCU9sdZ9X4ZkYNUumJpbpbrcHAWuKjd7etfV6GfHngTmqazIti1PBuaoqdjYps1fQaYIEQ4u6Ynz+L05vG4HTdXlZJQi2yxbj9w62/VkfmVlhZs3bzI8PExXVxfNzc35yPVek2tVVXE4HJw7d47e3l7m5ub41re+taM242nYDY/qV5Hq4njRUeVXkeqt4T3h0l5aWvqOi1TnItNjY2MIIWhra6Ouri4/RfisxVie5bhGzbTNZkOSJGpqaqiurmZ2dpahoSHGx8fp6el5ajGS3g4/ZV4XTdWlDDyZN/1ut0nMrEev1bSWjWxZNJ7egmnV2kofJZKN/vvTdLSaE7hWQjF6OmsZDGy4ymga+OtKWSpIYlyNJNnfXcvA4MZ6mbSC3SkDhihiYYJh7n5ZOH+kCsKVkrIRqRYZDfeCilysQuB6I3LxYKv171tASUkJJ06cYGVlheHhYSYnJ02Z/1vB0UprXbUr5CCVFCZ9sGbLyjBUI3m0ItBWVSqNLY3I3jvdoMXi9EWaDS32JtIOOZFdTxOsD3TM+9lqCEFkZGypDGnj+E+1kAytH9uKVNdVljOzqHc9EgimC+w9Z4JRKlJODjdtLgeC7Ezd4uIiw8PDqKpKd3c3fr9/z4mIEILXj3bw377Vnx+EaBJkIhkcCY2MS5B/EQoGmKq07nyTyRLrtKfgNwF2lXyugbr+zlRWlLFk0CsPjS3idtmJJza+16HxJdxOG/FkliCqqkZ9QzkrwRiZjEpNiZfFYLbN97qs5RoSEF7VE8xENEVPdR2qLJiy2MbltDM/b+2D3dmebafW1tYYGhoiGAzS3t5OS0tLPoKbs53LyUGMCY27hUJ9c21tLTU1NSwtLTE8PMzo6GjeDWY7NQ2edsxX2CO80lS/K/CeINXvJEu9XGR6fHwcSZLo6OigtrbWRIietWz4Vo5bjEwXIpf4UldXx8TEBPfu3aO8vJzu7u6i08o2WeL84VYePJq2/L2hzMHUbHZqd34pxv6uWp5MLJrWGxhdoKm+jEqfm8CTeYLrWseR8SX8NaXMLeo7M1Uxf5SB8UUcDjmvkwQIR1PG3DkW4zEwFuUw+VFraAaHEFPft34KXkVGTKeQDOWutYINJJuE0OBvfvCE6byfFZWVlbz22mt5kjU+Pk5nZ+eWSVZnSRU+m4O1zEZo1y+7mZNUbEVeOyllJtWqA3Niog1IAgVcRrMDGU0nr5FS6DTsioN1OcbGMrlAXiLEumuEBQ/IRaKFENhiGhmj+4QqLCUaRSUeioQtrJEpdEJJbpC/QmQtFM3LYxZtRo3DyWJMP40RjCapk8osTmQDuUFUPB7f1iBqp/iRDxznv3378frAc0MNJKezso50aXagrMlk1xEChMAuS6RVFTkj0GIaKSf5j8iBRHx9pKTasq9RYGKZ8lIXoQI9czKVoXdfPQ8HNgpEJZJpDvfU8/DJxrLB0UU8HgexWIrBoXk6O6sJTC0TjVhro5vqy5kOLJuWj749TWNvncUW0FBTysSK9f5aGsvp7+9ndnaWxsZGDh06ZHJdyRHovSbXRoKbm3Worq5meXmZQCCQJ9etra27Qq53Kv+wsiJ8hQ28bNHdl+laCvGeINW7Yam3Uw2rqqrMzMwwPj6OLMt0dHRQV1dXtBHZrUj1Vsm0EbIs097eTmNjIyMjI1y/fp36+no6Ozt1tnU5fN+FQ1y+EjAt97lsLC7rI8Jr4QRi3Q+iEE67THNZKbfeNnso11R5TaR6eGyRmioviwXTsbF4mt6eeh4VdLYzc6t0d9QwPLJB5DNu8303Sh6klIbq0i9LanrGKQBnUEVeVdf/ZWgpCm6z5JCoL/PgrzFXXNsOCqNQs7OzDA8P5z2uq6urN++gNI1udzlvRzYiqSVqGXOE0ORirZ35+jQ7iBQmP2c5YyiuI7LyGl0U28Jqz0jcRcb4TDAlk6Kis3qzkoBYSVJERgOL70AoIIQESQ05rKKsE2s5ISxJtfE9Xl/IVMQc0SyVbSxi1gZ1VljPBoXDYYaHh1ldXc1HF19ENLC+upTqcg8ri9lvTVNBrM84yYqAiEa6NDtTICkbMxM5Ug1gS4EUESRyr3/htyQEqh2UtEpLQyWhsN61Z3HZ3H7PLUXyr2RddQnV5R5K3U5m5leZnAmRiWVwOmSmpkOW11TmdWEVBkgnVdJh6/7CVyRJEWBhbpjGxlrOnj2L12uWrBRir8l1MV9sIQTV1dVUVVXlnV7GxsZobW2ltbW1qPXiVo/5qkT5HuJl0yG/TNdSgPfEF1BSUkI0Gt32SHgnkWpFUZiZmWFiYgKbzUZ3dzc1NTVPPY+dEvntkmkjHA4H+/fvp7m5Oe8wkGuACxvQA+21/Muf/RC/+Fv/g5XwBmnoqK/i0YC+GMPsQphD+/w8HN2QinjdDuq8Hu7enTRFqgCGx5ZMEWgAf02pjlQDLBm8bEFvg6fayFZ5K4Sadf4oXCopBsWBqpEqmN72pSXU5Qy2gjGDjrxp2kbBEk0jIzTeONjGbqNwdmFqaopHjx7h9Xrp7u426WxzsqNAIECDYuPt9eVHy+q5N7wu0XEJSwmFlfQB1iO1RSqf69YzEG3FhclqT0pvkGqRIfsACu6pla7aFtdrMTUpWyY7lwxXTE8tpYRZzkJ2MKU515MjEwJJ1UiXF0l0xDp67fd4mbeYHSsvKYWIfrksBO2G5xSLxRgeHmZxcZHm5uZNvaafF472NPDNxaHs4zDcC1tCQ3JoJF1ifVo3u0IsVZDTIAlcaxoqGqlSiWRGhYJKhopDIKc1xqdXTFaa80sRulqrGR7PWunZbTK1FT7aq8sZeDzD8niI5fEQFRUewstRGmpLqCp101hfxo075kE6QDphrS0uK3MTDqxhr3aQNmixlZR1P1Be5uD8+deeWde+V+T6aVKMXDKqFblua2vb1ru2U/nHK4/qzfEqUv3uwHsiUfFFFH9RFIWJiQmuXr3K7Ows3d3dnD59mtra2i01HNuVfxgTEHNOHg6HY0fTxV6vl6NHj3LixAmWl5fp6+tjcnISVVWJxWI8evSI2fEnfOaHj3GoM1tivKmmjP5Bc3UzgIWFCPJ6ZLii1E2l3cnk+AqKotJSb47axRNpui1Kl49MLGM3uH7MLYTpaq82rdfcVEGDv4yGtgrTfqS0RZKM4aOX04AAW1TFO5VBmk7rCHV2R4btc/vUwG2z8dH/7aTp2LsFWZZpbW3l4sWLVFZWcufOHe7evcva2hqapjE3N8fVq1cZGRmhq6uL7z6SdSBxSjIzcxuDGE2AzWKGW3VikqFnN7BYZDFcNylnbNmqjPqFG2vJ0SLPxPBZCMM5Zclw8d91+7KA0AVQJUhKyBFrH2oy1svrvNZSqbiFG0i13c7s1BSKopBMJnn8+DFXr15FlmUuXLhAT0/PCyfUAD/8Xcf1Mp/C/5dACqvICU1X+dJopadkNBxhsMVUVFOyYva/q5EE+zvM37osS9RU+jja5cebEQzemyYWSRCLbdzTYDBGZ1ctC3Nh+u9MEng4i91uQfQ0jZkiEez6ulLikSQHDS4iAEsL1nrqg/uadpQomnMLkSQpT653ktD4LMVmclKyU6dOEQ6H+da3vsXAwADJ5FPsdgx45f6xx1C1l+/vJcR7IlL9PC31MpkM09PTTExM4HK52Ldv39On4i3wrPKP3YpMPw3l5eW89tprLCwsMDg4yPDwMIqi4Pf789OeJ08c5Qv/9luMBJaK5iIsB6P0HmhgNhhBRBXmVjay8MenVpAlgWL46EKrZg/zaCzFwR6/ibxLsoTDIVNXXUKp14UMOGWZt2+OE62XwacPu0oZDcXgf2vU4LpUCabTyBkJkBCqprcG0zRr6zkADepLvZT5LEKjuwybzUZnZydNTU2MjIxw7dq1fAGfjo4OGhoakCQJTyrLPA/7Grg1r9e4S0WIqC0BGUPE2krjrDrIOmgU3J+M2xyZFmmggJQWknEpY7a1E0Ksy3Kszy+/XgpYn4Evpqe2LGeuaiaSLCQJKayhlqLTiQPYoxppn/mZ24t8d/MWvss91dXMzMwQCARQVZXq6uotSQieNzqbqigtdRFZXR+xCLId43rbJglwhFUSFVJ2uSTWqyeqG0RbaAgh4QpqxKrJysDWv5nCmZBYQv8CVpR5sCtAOEX/xIZoIzCyiNfnJLq2QQALyf5qMMaB4008MLQPDXXlzI+tYAX7+vmsDC0h7Bv5VC6nzNJS1FKGb3T+2C52K3K9nahxrgBQrnT9//pf/4vm5mba29stJX+7ccxCvCpT/hS8kn+8K/CeilRvN/FvK6Q6k8kwNjbG1atXWVxc5MCBA5w6dWpLUo/tHhP2LjK9GRKJBEtLS6RSKTweD7IsE4/H81ZNdpvMZ37sfVSUWdvn5RAOxRFRhZUVPdEIRxLss4hUTc+tWvpTrxWUQPd5nRzu9pNZTVKhycwNLDF4Z4rHd6a4f3uCinI3Ugqcy0pWU7sOyeJTUOxZAudaVvBNKpSuiHVCnYUwJkpu0kjYbRKXCvy89xqaphGJRAiHw9hsNjweD6lUimg0mn9OZQ4XxysbeDhuJhc2W5F3x8LZRHWSLdNdCAF2A3/UbOYIuPHTyJNxtXhyeCHhlxJYDmQEIh+httZTW0iAWI+cW+zPlpawRYRZr13E6WXNQrpV5nCyHDd7MTe43CQSCVwuF06nM+/lv5uJyruFoz0FVoyF90kSWX4NOEOqrmhS4R1Sc8WEELiXNaTUxnpKQVLw2NQKTf5yHA6Zo931pBZjDDyapalRP8uUUVTaWvV2hMMji1RWbQxIpkeXTUWgqkqLF8ZZXcq+uCuzYQ60bpDlqlKXJaGGDeeP3cJOI9c7Ibi50vWnT58mFovxrW99i8ePHz+18NRONdWv5B+v8DLgPRGpLinJWgFEo1FKS589SWwzgpvJZJiammJiYgKPx8PBgweprKzccePwNPnH84pMFyIejzMyMsLc3Bx1dXX5aFpuQHHr1i1qamro6urC4/Hwd37sdT7x1h+SSpvvnUDDrkB9dYmJVANEY9ahUq9FotDUTIjjBxpJhJOMDi4wMJvdX29vIysrG9FtVdVoaqpkZmEBR1TCvqah2VRSPoHdIaEkNaSMRonNTnw1hS0JcmbDLsxEzoydm1GpUEA6PDYb/8cHj1le024jGAwyPDxMNBqlra0tX40zEokwPDzM5cuX87r4/XY/b2fMpFp1CZOrBxSJ7pL1Lc4YfrPSP4sUUBBlVoyPU6zb42mYC/HkT2Ljf+Wk+Ryzu8kWi1GEWRsO1k4m2eUaigXZFhogSTiWVRK1G/u0rBRYJEmxwesjHDPf67JMhiMnTuStK3Oa99HRUTo7OzdNaH7e+NEPn+L2vUniqewoSiuYTNBE9j5JWlYilbJnHUCcro1S5poMZLLRbUkTOFZV4k5AZCPVha9cQ00pyeU4/W9vmNstLZllfKGQfgZL06C+sYKV9VyLcCjO/uNNPCyIVhfTRjudNmYnN55RanbjeG4rGck6aqv3ZgZqu5FrRVF27OhRVlbGiRMnCIfD+ch1U1MTHR0duFzm690JkX8VpX46BC+XDvmd0aLtPt5TpHptbW3XSHU6nWZqaorJyUm8Xi+9vb1UVFTsWudXTP5hJNOSJGG32/ecTI+OjjI7O6sj0znYbDa6urpoamoiEAhw9erVfOP70e8/xe/+x+umfR7uqufRgxlqa0osfasnplZobixncjakWz44ukCJ10kkmkSSBAc66gjNhNEiaQKPDQmRs6sYMTm1grrul5stfS1wrYKcUrCtkziFNM4MpnNKGYommFwfTKR6/X9UjfoSH+4ifrm7hdXVVYaHhwmHw7S2tnL8+HFd5KikpITjx48TDAYZGhpicnKSart1E5BCRYqDaphsUJyYbO8A5IRGxmvQyNqyxFqOZcmvUAQiqWGLZwmU4s7uT6Q1KPADF8p62e9NPiUppaE6RPZcivTj0npBGMv5uGKdUxEin5P5aDYJ55JKsja7A9VpXt/v9VrKPLx26yn0D5x+jaqqjWhrfX09dXV1zMzMMDQ0lCfX25312k10t1TzX//Nx/ntP7rCn/7FAzKqtnEvBfnEUjkD9jWVdIlMTMnknUKQ1hMZ1y9DToJjVSVVLuUdQDzCRndDFY9uT5iOPzcfpqmxgqmCqq3TMyEaGsqZKaiaOD65gmyTUNYTDWdGstHqVDpbSn22SIXFpoZyxgsG4rPDS9QfrWZ2JY7DZv38fF47geFHhIJzdHR0UFZWttXbuWU8K7lWFMWS+G4HpaWlHD9+nEgkkifXjY2NdHR04HZvRPxfyT/2GK98qt8VeE/IP+x2O06nc9u66kJSnU6nGRkZ4cqVKwSDQQ4fPsyJ9SjTbnZ4xki1UeYhSRIOhwOn07lnhDoej9Pf38+VK1dQVZWzZ8/S29tbVOvpcrk4dOhQvurf5cuXee1gBS0N+inb+uoSBteLxCwsRuixkHoAlHrNnUImo9LeUkVvt586h4uhO1MszoUZG1tClvX3YXl5jfYO/bRscC1hJk6qZrLTMyVRaBoZQyNg1OnqItk5TSlgi6u870yX5TXuBiKRCG+//Ta3b9+mtLSUixcv0tHRUXQqtqKiIl+CumKTZCSPYvFeSViWAjeWardFwLYG9iWBnJBBk9EkCWwSmiQhFAnbmoRjCZyL4FgG59q6U4cQm0ppBALbGkhJzVTu2rielC5CkovoqU2RcwBF0zufSBLORYGU0Cz3U+ex/j6SSbMkJOv8YZE4K0k0NTVx4cIFGhsbefz4MTdu3GBpaemFkw8hBD/9Qxf4ky/+n5zpbcTlWH9PpIKBkCSwR1S8yOtuLAU7KDh9TRI4QxpOZT1pucZLld3JwIMZUkmFzg6zVrmszCzdqKjQj/7CkQRd3Rte0+HVOPvWE53rqksJh62lDB6XObpbJbJkemkhYvoNoKfLz6VLl/B6vdy6dYu3336b1VXzgH43sFVZSDFLvZ2gpKSEY8eOce7cOTKZDN/+9rd5+PAhsVh2EJLJZF7JP/YQL7r64auKilvDeyJSLYTA6/Vu2wEkR6qHh4eZnp6mtLSUI0eOUFFh7gx3C7ljviiZRy4yXVu7Nd/VQuSq/i0vLzM4OMh3nKzg92eykSVJgFOVSBdIQtJFpmIHRxbweZysFRTL6GipQllNMmSo3BiLpdi338/AE3202unUv+JGxwHIJikWTTDMrYPQy2c1fXQVsI6sqhquFHzgjQOb7n87iEajBAIBFhcXaWpqsiw2UQy5YhD/+xvv41+NjxKzKF1cVeZlTTUTCTmpkSnRX2zaC6ga9gjIMYFqk9DsAjmuTypU7dlode7eCSEhKRqaIiAGjpgGKiZ/cCMkBexr1s+zELYYpGU9iS6mp5aSmMpnA8gpslHxQggJe0gjaTEetEvWTH8+bJaEtJSV4dgkuidJEi0tLTQ2NjI5OcnDhw/xer10dXXtafvzNIRCIYaGhviuk2WcP9LIF756EzAohiQQ80lEtax3bJEK1lr3F7fPZsg0yQRXo8TnNtqDpIXt3fj4sslyb3x8GVkWKAV5DgmD7GwqkC0MVVPhZWkyZHldy3Nmec7I3Wk6zjYzPrhYNEnR4XDQ09NDa2sr4+Pj3Lp1i8rKSjo7O7c1O/o0PC1y/SzuH8+KkpISjh49ytraGiMjI1y+fJn6+nrS6fQr94+9xKtExXcF3hOkGrIOIJGIdaRhM6RSKSYmstOQkUiEY8eO7cn0nhUURSGTybxryLQRVVVVnD17ltbWWe4OrHBvMMT+lmoGnuhLN4+NL9PSUsnETFC3PJNR2d9cxYOBGUp9LlqqSxm4P4MAWlurGB/XV0NTMmYNeiCwiNMpk0xmO1hLvaxVpNpYmMYmEy+Q4whFQytI5pMzKhmX+dnYIwpV5T7KyzdP2nwWxGIxRkZGmJ+fp6GhgQsXLmx7qtcmyxypq+PatLkMhuYUYM6rs7hXWeLpWBKobhnNVhCwzGiohnspZ0ApaHkKo80CkSVaGWtXkRxUWZgTRU0raQhV4AxrpHwbftLF9NRyMT11kXxhe1ig2TVSFfptohZJijKCFYuBS1eRoi+m7WWZtrY2mpqaGB8f5+7du5SWltLV1fXc2iPIDuSGh4dZXl7WSYzWkhK/8x+vZ4vwrH+GTpeNdCyDa0Uh5dv4NmxOG5nU+kqSADQkReBb0UjYdZJ7RkaXqKz0sBLckGSsRZP0dNUyOLygW7avu46BwY3B9ujYEvX+UubnsoOZSDjBgePNqEUG8UJAcNHsMCSASmyYxShZFDp/OJ1OHbm+efPmCyHXz8PezufzceTIETo7OxkZGWFtbY2JiQm8Xm/R6ruvsH0ITcvKqF4SvEzXUoj3hPxDCPHMtnrJZJKhoSGuXLlCfD1j/9ChQ3vegamqSjqdxmazIYSgv7+fdDq9p24ehTIPRVE4e/Yshw8f3hVLr1xhkn/4d76X9oZShgYXLNfzWky7AszMhejtqkOsphhcJ9QAXq9Z3zgyskhZmZ4tpdMK9Q0bDbxlZNP4bWtmaYdRWiIM8hDN2FGLrK2aI5imoXZ3OtNEIkF/fz9Xr15FCMH58+c5cODAjrWTx2r9lsunIpH1RE090l5098yxArawlLXAM+IpMwCwnqBmaGCLWfrloEkUdd4o3IcA0AT2cEGlxWJteZGp52JFX7AJ5ITAVjjw0GDSIiLdVFKqK0CUQ+czRptzdokXL16ktLSU27dv8/bbb28rYPAsSCaT9Pf3c+3aNRwOBxcuXKCzszM/3f9D/9sJ3nitY10znd0mpahoGshpDTm5MeBNKnprF896roEW0bBZ1GNpqC83L7R4VopFYndVTUl+9fJyD0o0xfKi9YxlQ0M56aQ14ZZjKZODSA5Wzh85cn3x4kW8Xi83b97k7t27hC3ejd1AThaSTqfp7+9ndXUVl8uFoih7Lhfyer0cPnw430dduXKFe/fu7ag2xCtYQH0J/15CvCdINWRH1Vv5yJPJJIODg1y9epV4PM6JEyc4evQowK6UDS+GHJnO2Z05nU7OnTuH1+vlxo0bPH78eMel0o0wkukzZ87sGpk2orLcx/e+eZRihiaDQwtUleuP63E7qPV6UMNp4lH9tY+OLmK3619fVdVoaDSTlHSBDZ5qN7/yxi7Hvj6FWghFMZz45sYfqELgiWtIkqCnc2cetslkkoGBAfr6+shkMpw9e5ZDhw7pkoR2gqN1dUV/q5HNk1maXSBHNVA13LOAKmUr41kRHauy3kZuIgkkA5kST2lwbQmwJzYnC4WWiUKsE+tkET21hnVxFw3rSpKKlk3alCScQZE/VrXTSTRjHhFUOq2fVVfl9iQcdrud7u5uLl68iMfj4caNG9y/f39HfvxWyGQyeceYdDrN2bNnOXDggKVv8S986gO0N1TkByEq5D8Me1RDyhFrCVwFCbKx+Ia8yx6XTN/j3Pyq6XsLjCziMwysR0aXKC/QW3e0VSOSCvWlHuxxhcjUKoE7U9RWWrdvFZvY7CVW4nQ1V5mWu112GvzlRbcrJNdut3vPyLWiKPlcn1wbUVpaiqIo+b+9Jteqquav1WazceXKFe7evftMA75XmuriyEWqX6a/lxHvGVL9NE11IpFgYGCAq1evkkwmOXnyJEeOHKG0tDQvv9gLUm0k04U+0y6Xi/3793P27FkSiQR9fX2Mjo7u+Dzi8TiPHz82kem9nrL7ru84iL/OOmqrapouotvoL6MUmcDjOSSLaGc8nqaz0yxonZleMi2bngrS0FCOJiwIHSA79Au1pDlcljTe82JOH5CPwimzMRw+B2++ech80C0gnU4zNDREX18f8Xic06dPc+TIkV0f9BypLU6qG6vNRAKyyYruOYFql/PFXKxKlWt2gUjpG0/FAZopEdSw4VP6VjmhFa+UmNuFIcQshMC+anEsckmPFtKPlAYWy23xDR2+Kgvc89n/L7cYhADIwrqp3ar8oxgcDgf79u3jwoUL2O12rl27pkse2y5UVWViYoLLly8TDAY5deoUR48efeq79//+xY9QVWmWOgkBzpCykQBc0KEWyonUAmeQHJaWotTV6fepKCqtBn9qVdVoa63i8L56/E4Hk3eneXJnkvIyt04aNjVsXeVVsfjuc5gbW0ILmu9pe1u1ZftkhNPpZN++fbtOrjVNY2Zmhr6+PhYWFjh+/Hj+ORUmNO41uc4dQ5ZlPB4Phw4d4vXXX8fhcHD16lXefvvtTa/1RSffviugvYR/LyHeM6S6WKnyeDzOkydPuHbtGul0mlOnTnH48OG8DV8Ou02qNyPTRpmH1+vNN5bz8/NcuXKF2dnZZ26ICsl0Op1+bmQ6B7td5m/+0Jmivw8Oz+Nx2znUXUdwPMTyerZ9YHgRn0UlwrSF//XqapqmZnP0r7zCk5V+GCIhNoRpWl4zarNVzTRTpRo6UtVR8Mw0cEQyCLL5eA0NzyYZymQyBAIBLl++TCQS4eTJkxw7dsz0Tu4WypxOOiwcKABiaTPRkJIa9jWBahyM5JIQjeunDcskkS35rlum/6cmky0CUwQiA5oQxW2ZNGvtt6QIHKv6KDZk9dRWkIvwLKM8RbNJnCipobzEetBopbO2SRKtuyQnc7lcHDhwgPPnzwNw9epV+vv7n1qwwwhN05idneXKlStMT09z6NAhTp06tWXZm9Np5zd+/vuR8wOOjd8kFRyr2YcqCuRUqiHht6LaTNytXDnC4Q3dTXWVl96uOkLjKzy5Psby/EZ01Dg7Fg2l2NdtHkjOF9j0FcJfX0Y8mmTi7hTlhmj2sxZ9KUautyPfWVlZ4fr16wQCAbq7uzlz5owpedXoFrJX5Dqn6S7Ucbvdbg4ePMilS5dwuVxcu3aNO3fu7JkzykuPnKXey/S3R1hZWeGjH/0opaWllJeX87GPfWzLciRN0/jQhz6EEII//dM/feZjv6cSFQunRuPxOGNjY8zPz1NTU8OpU6c2JZe7RapVVc03aM+agFhZWcmZM2eYnZ1laGiIiYkJenp6nuoCkEgkGB0dZWZmhpqaGs6cOfPCEkneuNDDf/zTO4wakgwBUimFHr+HgTvTumBVNipVyaNHM7r1R0YWcbtl4nH9cykrdTOFvoMcG19Cc5rD1DZF42miGrsskS5sAFRNH71UVN2+haLhWM2yMZ9H5sqVK3R2dlJfX7/p9KaiKExOTjI2NobX6+XYsWPPzeHhaG0dIyEzqRhbDSEJgboeVhAZDeeyKOq6Iac0MgbvZmERdjbaKak2Q4BSgJQpVlxFQ1tP0LLFNDIWwVMpXUQirWXPxxHSSFZq+WizVuS5SCkN5SlOJDn0Dy9x7FC9+QcNpi1IU2tZGfZdTiZzu9309vbS3t5OIBCgr6+PpqYm2tranlpqenl5maGhIVKpFF1dXU99X4uhvrac//MHzvL//OEVkEDLrLskCnBGVUQJREkj5c2qBaTU/LOwu8zd0txCDLtNIl0w4J2cCtLTVYtd1Ri6N83qSNa5o66hlPmZjajoyNA8TpdMMlHgKhLSZ+BWV/kITViXLa+o8LAIaKpGa00poQIy39m2PWlXjly3tbUxNjbGjRs3qKqqorOz86mD52g0ytDQECsrK7S3t9PS0vLUpERjQmPOgi9HuncquygMDhmRG/C1t7czOjrKjRs38smb5eXlpnN8BWu8bDZ0e3ktH/3oR5mdneUb3/gG6XSan/iJn+CTn/wk/+7f/bunbvuFL3xhR+/heyZSndNUP3r0iN/7vd/j+vXraJqW9+t9GsncKal+lsj0Zsgl/l24cIGamhrefvtt7t27Zzndm0gkePz4MX19ffnI9JEjR15oZrYkCX7sh89a/nZ4n5/gfMJSa7WyHDVNF2katLaaI0VjY1l7rULEoikq6szXbbe490aC5bDpOwqhaDrGJqULQmGqhiOcyRPEk6e66OrqIhAIcO3aNRYXF00RosKp9vn5eQ4fPsypU6eeq2VaMV11UlFoK12PUioa7gWBZpdQnSJbtMUASx5rMXQ3Jv9pNgEGNw+jzjoHObGhvZSL6KpF8Zn87O+awBEkHy0p5jRistLLLbesuiiYH4lQa/Cprna7iVhEqrv28Pl6vV6OHDnC6dOnicfj9PX1MTQ0RDpt1syEw2Fu377N/fv38fv9XLhwgYaGhh11LD/wPcdpa6wESSqwghFogHM5k62+WPi8C76JpVDU9P3G42mdZ7XHY6Op2om2usbg21M6OVG1ITFYVTU6DJHpqZElWls2pDc11cXbRFFA5FdH9PKyQueP7cAYub5x4wb37t2zjFynUqn8rGouWbS9vf2ZXD6MketckGenketc37jZueTI9aVLl/D5fNy8eZNbt24RDFrPELyCAS86qvwuiVQ/fvyYr3/96/zO7/wOZ86c4eLFi3zxi1/kD//wD5mZmdl027t37/Lrv/7rfPnLX9728d8zpDqVSvGnf/qnXLp0ievXr3P69GkOHjy4ZX3qdkn1bpFpq/Pp6OjIaymvXr3KwMAA6XT6HUmmC3H6ZBsH9+kdJw71+Ol/e4pgME6HRWLf7OwqtX7zswoGzZ5v0WiSzs5sJypJgv09dbRU+YjEzYVOknED2dE0UzKjkVuYkugKdKLu6Tie9UIWQoLX39hHfX19nqg8evSI27dvs7q6iqqqTE1N0dfXx/T0NAcOHOD06dNUVVU994jNsU101ZVON4KchrrAGi1ubhStyKbixESYVYdpjGS+r0Xa3EIiLRTr+2QZBVG0dY/kLCRV4Ahlo9Ga0XMcEGnrKLVIa9aVFEt8LKxGqYw6sRV823Ue6++uc4d66q0gV7Dj5MmTRCIRLl++TCAQIJPJEI/HefDgATdv3qSkpISLFy/S1ta2a1Zsn//c9yILoRtAuVx2tLSKK5gxvRM5pFSVLot8iXRaxW6XObzPjxRKMR8IE1oxf/8z0+ZZsIhFsRd3wTOSN+ngg3MbcoWFkSUa/dlBps0m0dq8O88wR65z9piF5FpVVcbHx+nr6yMWi3HmzBkOHjz41JmHzVAYod4NWUhOT72Vdit3rW+88QYlJSXcunWL27dv5122XsEaQn35/vYCV69epby8nFOnTuWXfed3fieSJHH9urm6cw6xWIwf+ZEf4bd+67fw+60dsbaCl17+0d/fz6/8yq/wR3/0RzQ0NHD58mUOHHj2QhzPSqp3IvN4FjidTg4ePEhzczNPnjzhW9/6FsALl3lsBiEEP/7Rc3z2H/8JAD0dNQze35B82GzWnbrTYb538/NhmpsrmZw0Tt1q9B6oZ2F0meGb4wBE95Waks6MT1SktayTRQHSJv9rQ6cjAE3DNRvHnlDJSOtRG0ni0KFGIFvEo7W1lYaGBsbGxrh582a+KmZ3dzd1dXUvdOqzo6KCEofDMqKaUVROldfzYFFfcMeqUVRcAjKavjCOEMhJDaUg10yzrVckLCThxpkIeX2Z4bZImY1lmiBLzgzP1WIz5KSm174DUkbgXFRI1llIg2IaGZ91kqLiNi+v8XlYWFljYibEiYN13FidBcBdpMrcs9rp7QRlZWWcOHGCYDDI4OAgY2NjaJpGXV0d58+f3zUnmUJUlHv55I+c5//zlW/D+sxBZr0NtSc0VJuKknseBc9PkwRKxtzW2iRBg9fJkxvj+WWhlQR19aXMz27IPYLLcfyNZcxNb5DhqfEVav1lLBQQ5OGHM9S2V7GwGCFYpFqix+NgfjKoe5eqnQ6mgZamSuxFbPa2C5fLxb59+2htbWV0dJTr168jhMDlcnHkyBFdOfvdwG7JQrZTojyXZNve3s74+PiWC1e9Z7HHOuTnjvVrMSawOp3OHQ0Y5+bmqK3VD8ptNhuVlZXMzVknKQN8+tOf5vz583zf933fto8NzzlSvV3x+NWrV3n/+9+P1+ultLSUS5cuPXVU++DBA37wB3+QEydOUFJSwmc/+1mOHDmyLUINWyfVexWZ3gyJRILp6WnC4TBlZWW4XC4ikQixWGxHU3p7icMHGzl1rIXWpgomhxZ107fDQ/Mmv2mA+bkoNouIYknJxroOh0zvgXqWA4tMPpxhZT77wap2YXZ30DRUm4FkWUTPkgY7PZN0QRY4FxI4omp2n+u7qKkt0XVKmqaxsrLC4uIiTqeTkpISEokEwWBw1+0SnxWSEByusS4Xb9ckHgzOm5ZbRXcBbBbJikZfb8hWRdTtz2S1h87fuGBvG/+3rqvW/ZrOzhKYtiry+coJgW3NfBzj+T1tPw6xcQEP+uc4Upm9n2mjHeM6tmunt10oikIwGCQajeLz+fB4PPn3US3mdblD/PUPHaWztTrPBVIFx3FEMvlZHrXw25QEgdFFKtdLj5eVuTnQWk3gziTlpWZnkVKLtsLtNRO8mjqDVlmD2govXo+DuemQ5fnXN5SbBmdzD6eRhNix9GMzJJNJ1tbWsNlslJWVEY/HmZqa2jM/8p0mNO6kRLnD4aCzsxO7fZNqT6/AC3fq2Is/oLm5mbKysvzfP//n/9zy8t966638ILDY35MnT7Z1a//sz/6Mb37zm3zhC1/Y1vaFeK6R6u2Ix69evcoHP/hB/uE//Id88YtfxGazce/evacS1N/8zd+kurqaoaEhmpub+e3f/m2uXr267XN/Gql+XpHpQiQSCcbGxpienqa6uprTp09TUlKCqqrMzMzw+PFjxsfH6enpea5V17aKH/uRc/zCP/xPpA1WVqqqUVIiY0wST6VUGpu8TE/rvXjHxpdwu+10tlYzPTDHk2ujAOw/3MiTB9lKgYpFkqKUVrOaT93B9R2IHUHaoCXQDJFsWzSNM5x9Nwo7oJ599fllS0tLBAIBUqkUHR0dNDQ0IEkSa2trDA8P09fXR2trK62trdvunHaKY3V+rkxP6ZbZJIn5qQg1Xg+LBt1+JifrMAxWrCLYVnZ1Rqj2bCKkKHDtkGMaSgFnkhKaSY8jJyFTwJeKabGLFXfBLrBFQXHqI+dqscdQZDfRZKpgFcH00Cr+Zi9LUXO+g02SaCl9Pt9krj0IBAK4XC6OHTtGZWUlmqaxuLhIIBBgfHyc9vb2/Hu5m/gX/+j7+Pjf+QPWosn8rA5CIDRwhNKkKh3ZAVp6I1lRlQQN9eXU15Yy2T/L8GQIAUSj5sHn/FzItGx50ezXPTMVNC0LPJih41gjA0UKwrgc5nYjshSl83DDMzt/bAXxeJyhoSEWFxd1FStzbf2NGzeorq6mo6NjT9yAthu53k6kuhDv1ODPOwkvm7dz7lomJyd11UaLRak/85nP8OM//uOb7rOjowO/38/Cgr7IXCaTYWVlpais45vf/CaBQECXOAvwkY98hNdff52/+qu/2vxiCvDceu+cePzmzZt5rcsXv/hFPvzhD/Ov/tW/oqGhwXK7T3/60/zdv/t3eeutt/LL9u3b99TjfelLX9I1AKWlpTuq8FSMVL+TyHQOkiTR1NSE3+9ndHSUW7duUVtbS1dX155M824XXR017N/v59bNMdNvkYiClWOa0+EBNjpMIQRtzZVIyQxPro/q1k0mNpKyFJe5wRcZDc0442jsNJIZKCTkhSRS07AvJ3CGMxvb5dwkNI2z5ztZXl4mEAgQj8dpb2+nsbFR1/n4fD6OHTtGKBRicHCQqakpOjo6aGxs3NN3yApWyYrHK+t40D9Hb3OtiVQjCTwZiBlurbAg0KqDPJnaWNEg0pAEtoSK4ilIAjV8craEWdghGacOVMxzcIpmWYhGKFq2uIsQuFYU4jkZiKKRsXL90ECx0FOjwXRQP40ZT6SpXfMyIsz+vG174PxhOqV10jw8PIymaezfv5/a2tp8uyiEoLa2lpqaGubn5wkEAoyNjdHR0bFt5w8rlJW4+ej/for/+9/2gSShoWSfoCRhDytkfCqqQ0JoGtr6s3V67MjJDP13JnWPe2J0kZIyF5HVDY10OJTC31iuizaHV5M0NJUxM7UxMg8uR2nrrGEssJhfJgnwbnKdybA5DwPAmcjsaqQ6nU4zNjbGxMQEdXV1eW11DrmaBYVuIe8kcr1TUp075iu891BaWqoj1cVQU1NDTc3Tv7lz584RCoW4ffs2J0+eBLKkWVVVzpyxtvR96623+PjHP65bdvjwYX7jN36D7/me79nCVWzgufXa2xGPLywscP36dWprazl//jx1dXW88cYbXL58+anHM36gXq93R9XGjKT6Rck8njx5Ql9fH8lkktOnT3P06NGijarNZqO7uzvvXXvlyhWGhoby5/xOwN/4gVOWy1dDcbq6zHKEkZFFKtcrojU3lVEhawxeHyOdMLsajAcW8a37yipO8zOxkiSoBkKoGsqP5+QhQtVwz0RxBVN6icf6/0tCYHeEuH//PjU1NVy4cGFT66vy8nJee+01Dhw4wOTkJFeuXGF+fv65RnCO1Nbq6KrHbmdsLBvdsxUpXnKg3TzyTzkxRfw1m1mmkfFIWf11AYzyG6OHsVX5clWIopKMHOQUliXT5YLItybLOJeyYXZb3ByBh/UiMRayl7oSD9Gk+eTklOB4qfk93uskxVAoxM2bN3n8+DHNzc2cO3euqG5fCIHf7+fcuXN0dHQQCAS4evXqrr5/3/+9x6mtyOZ36Nx1JHAuZ6PPhUdS0yr9tydpbtXfJ00DX6n5G6qqMueOVFRbtIsFL0pXdy0lwMS9yaKTGHNj5mJSAFNvT9HeunN9s6qqTE5O0tfXx+rqKq+99hq9vb06Ql2IHLm+cOECTqczX0lzr0qCb1UWkslkdi3B9RWK4EU7dbxL3D8OHDjABz/4QT7xiU9w48YN+vr6+NSnPsUP/dAP5YO309PT7N+/nxs3bgDg9/vp7e3V/QG0tLTQ3t7+TMd/bqR6O+LxkZERAP7JP/knfOITn+DrX/86J06c4M0332RoaOiZjp+LVG+3k8iR6ncDmTbC7XbnbdpCoRB9fX1MTk7umY5yK1BVlenpaVaCozS3WF9HsWfV1lJFZ305s4/mCS9nI1bjwwvYLMqWN7dlOz6rSLURQrOQKRg7W01DSiqUzMSxJcz3L0e4PG6ZquoqLl68SHt7+5YkHbnI4dmzZ2lra2NgYIAbN26wsmLtn7vbKHE4dclzvSU1RGLZSN180BxtBUhYFOBBFthiFhpliwIrtrh+PdXwCSkuvdWeZuV5DcjrTiRCwbJVMxZ7yS83nr6W1VdbkXcKjmOEs4g0rMzlpP/hPC2GojB7padeW1vj7t273Llzh6qqKi5cuEBzc/OW2iZJkvJ2nS0tLQwMDHD9+nVLG8jt4B999oNki/IUHlRgS2rY1xTkggTlhJZ9L0osSofbZDPhXLRINJy2kHtMT6ziK7XT1ljCyK0xggthgvMROi0G8LmiL1aobSjD69l+MlVuFuHatWtMTExw8OBBTp48uaWIHejJtcPh4Pr16y+UXCuKsiPZ2iuP6i1AIzsL97L87WG86Ktf/Sr79+/nzTff5MMf/jAXL17kS1/6Uv73dDrNwMDAjivPWmHH8o+33nqLz3/+85uu8/jx423tO0f6fvInf5Kf+ImfAOD48eP8xV/8BV/+8peLCtqtsNNItSRJeTL9vGQeyWSSsbExpqamLGUez4qysjJOnTrF4uIig4ODTE5O0tPT81wt3FRVZW5ujpGREYQQdHV18X9+rIlf+sX/Ylo3MLxAVZWP5eXsc3O77XS2VDE3MMfCnJ7kZTIaTW2lTKU7Eb8AAMDbSURBVI3phdixaBJNYHJ9AEwV95xCkDQqCQqjkpqGHMvgWElutAeF62taXqO9b38DnZ2dxW/EJsjJd+rr65mYmODevXuUlZXR3d29Z1UVczhaW8dwMEiFy8VAYEOXNheJZQtoGMjjZHAVK6uNVn8lgTWDKN7iU5EM3FtxS/rdSQJ7VCVdKpCSZj11DnIqazAhpa0lz8Xeb2NypBBZfbVqtx5wykkFxWe+kMrSMqZWF8wbaNnBnTskIdlEtgw3Oy9PbkQikWBkZITZ2VkaGxvzkcztoPD9m5qaor+/H7fbTWdnJ5WVldtuK3q6/Jw83MTt+xPZgZIQeYLtXElBq494IhusyGnbJ8aWTO/X1PgyZeVuVgsKuCzMreJvKGNuZuOdC61EaemoYmIka7EnyxI93bWkVtcYeTSve0+klHlQlCv6YoWug9Zyxa0gEokwODhIJBKho6ODpqambfcjhbKQnFtITU0NHR0de+L8VEwWkk6nX2mq9xgvq6Z6L1BZWblprl5bW9tT37ntvpM7JtV7KR6vr88meh08eFC3/MCBA0xMTDzTeZaUlGyLVOc0006nk2AwyOTkJO3t7XuaqbzbZLoQuWhodXU1U1NTPHjwgNLSUnp6evaUsGmalifTmqbl3wlJkvD7NTo6axgJLBq2gfr6MpaXo+zrqWNxZIkn6/rrxpYqpif0frRutwfQE7mJkUU8VR5WDURAAKpd0nWsmXgGChOTNA3Nkf1EbKtJfFGVTDxtqPxn9HvLdo5nz3Vt4a5sDlmW8zrsXCWyuro6Ojs790wbf7TOz38aeEKzcDOYDuWXa0BbZTkDi/p7HkmmaCwvMVUMdPucYAiaWXk+G+UdqkNgi6qoBXIdOaWRBuxRFYF1x52LOFtGqlUNxepzVTXr4i6SwLamkbbII9SKVJK0jNgD4Wh2JmVqZpVTR/3cWMna7O2WnV6hFrempoZz587h8ZgdMrYDWZZpbW2lsbGRyclJ7t+/T0lJCV1dXaaEnq3ic5/9ED/447+Dml4vkLR+O4UK2nISPFKWbMsSmgRr4SRNbRVMTWxEnTUNGpsrWQ1N6/ZdVV2iI9UAvpLsd9LVXUtkJsiTy0P0HGkynVfg/hRlrVWshjYiV8JkpbmB7nWrzGdBIpEgEAgwNzdHc3MzR44c2bV+xFi18HmR69yM4+TkJM3NzXkZyKuo8x5AY88kEy8EL9GlFGLHpHovxeNtbW00NDQwMDCgWz44OMiHPvShZzrP0tJSkskk6XR6S36YxgTEmpoaPB4PQ0NDXL16le7ubvx+/642HntJpo2QJImWlhbq6+sZGRnhxo0b+P1+urq6duQRaYSmaSwsLBAIBFAUJZ8EVRiZEULwf/zgaf7Fr/530/aroRg9TRUEbo3rlpdVuJk2jKvGhhdwuuy6BEVNA0+VGzR93WpbRkMxPDvNoAMWKQUpreJcSiKntayntWAjamZIvNNypbyBN75ze9aNVsj5uba0tBAIBLhy5QrNzc27PrhTVZV6oNJmZ2giiDHm67Nbfzc1Po+JVE+vmuUiiktCiquoro1nn/GK/DeWg5TSUC1eQZGieIslBKKIZENKYamDlpMamsUMhpTW0Gw2HCGVVHnB74pG2sKqzSpJEbJyoqnlDZI3+GiBxu4SFmJRWnboxpPT4o6OjuLz+Th16tSeOfzYbDba29tpampiYmKCO3fuUF5eTmdn5zMf0+N28iMfeY0/+Oq17AJJwu6AdEpBhNM4XS6S67dYtUvISZWSEg+gl3JELWQZS4tmCUgsmqC7pZyRGyP5ZeND89jsEhlDJdQSD6yGNhYVFn0xoqt365FqRVEYGxtjfHyc6urqPfMFh+dLrldWVhgcHCSTybBv3z5qamp0ksJnIdev5B9bwEvqU/2y4bm5fxSKx3/7t3+bdDptKR5/8803+cpXvsLp06cRQvAP/sE/4Bd/8Rc5evQox44d4/d///d58uQJf/zHf/xMx881KGtra1RWFp963czNw+Fw8NprrzE3N8fQ0BATExPs27dv21GbHArJdFVVFa+99tqWtXU7hd1uZ9++fTQ3NzM0NJS3dttpZbVCu650Op2PuBab5jx7rpPGxgqmpzc6z57uOmYH5/E2mZ/XzKRZL5lOK+zrqWPgkb4U6dpMBJ+ikSy3kS6zgxCoSUXv6gG4PA5iqopIK9jCaWzhJLZMQUOvqgiDr3WhJV8uAcvnsuPegd6yGNxuN729vbS2tjI0NMTly5dpb2+nubl5x88q5/6gqCptcin9mlnHHbNIxMvuwLwoGE9Q5/Myv6afHZKTGuq6JFZKatjiKnJSI1UqFy0JnisQIhCbBjfkBGiyhjC6g6Q1FAtSLWWwdASRUtkIthwXSO6NqLk9oqB4zU2mv8THwopZy+ov8zG/tLE8nVEpW7Phq6zQVVx8FuRmfIaHh7HZbPT29j43+Zbdbqezs5Pm5mbGx8e5desW1dXVdHZ2PhNh++H/4zTf+MYjFtZ10KlUJv/MnNEUydLsQ8mR6onRJSRJoBYMesdHlkwSkPnZVerqy5ifXcXrc9LWWMHA9QCNhoTCZDxNZ28jgf5Z3fLofHzd8g9cbrup6EsONrtMa3fxCqQ5aJrGzMwMw8PDuN1uTpw4seO+YqvIkeucW8hukutYLMbg4CArKyu0t7frErBzspDCqfOnkWvj+q9QBCpF7TzflXhxKV17iudqiPvVr36VT33qU7z55ptIksRHPvIRfvM3fzP/u5V4/Gd+5mdIJBJ8+tOfZmVlhaNHj/KNb3zjmfWqXq8XIQSRSMSSVBvJtM1mQ5ZlEwkUQlBfX09tbS1jY2PcuXOH6upquru7nzn68CLJtBEej4ejR4/mK65NT0/T1dX1zNZahZ7MyWTS0kbOCrIs8Td+4BT/+gvfwGaT2N9Zy+Nb49nAsAX/CK1Eae2sYdwgGVEsCm3EEwqSJOFezuAMZUiV2VBtAomsy4BDkhAZhfTyGu64ipzT5WZUKKzuaGz3jf9e12g3WDgR7CZKSko4ceIEy8vL+cFdZ2cnDQ0N235Whf7Z/2n6fwBmUj25sppN5jQcYiFiLavyl/h0pNolycjRDPaYgiakdXcNGXtUAU0gKRqaUNFE1uoulzSqOgXymopqkzbtU+SEhmKuZG9dshyKdlCyut7eSwLXfIZYS/YFlJPW+89VUjSi2uvRkWqA8ckQH/a3o6rqM+loNU3LP+9MJkNnZ+eu2t49C3JVQFtaWvLR0NraWjo6OvB6LW6QBT799/4an/tH/zk7oy2JvLe5GlGQnQqKU0ZdTzyOriXp2l/HsKEAUWOLWQJSU1tCdYWHibuTPBnPSpVKK7yA3sXDZhwcA+GlKF2n2xgeWqCszM5SkeJr7T11T62kuLy8zODgIIqisG/fvhdWMdXtdpvIdW1tLe3t7c9MrtPpNKOjo0xOTlJfX2+p2zdqrnN/uQDVq2j09vFKU/3uwHMl1dsVj7/11ls6n+rtQJIky2RFVVXzTh6bkWkjZFmms7OTxsZGhoeHuXLlSj7C+7Qs6HcSmTaioqKC06dP56NhExMT9PT0bBrdh41OPxAIkEgkaGtro6mp6ZkiqG98x37+f197QGJ5jSfrhBpgZHAej9dBzFD4weM1R4NHhxdwex3EC9ctlBYo4FrJINIZPdlSNTNJNrX/T0lssEk4ZInOjt0vCmGFqqqqvHtOroBHd3c31dXVT+28gsEgw8PDRKPR/NR+7lkdaaqjL2DOWYil0jTXlDIR0ksdZsNrlHqchJP6KXlpfZBR4nSwv6yKoeFFyqvLmF/Vf4OatB4gXCfZQtNwLgBCQXVCukTCHlYtpRqFkFMgJ1RSldKGfZ4GipUOWstW2bREQRukOe245jMk6op/04WVFHXLJevlWijK1atX6ezs3BLZCofDDA0NEQ6Hd2VmYrfgdDrZv39/vqT2tWvX8Pv9dHR0PDXAcOhgA03+EibnIllpzrozjAqUxBRCTlmnX7e63mhE/7717KsjsxJl6O6kbvmKhTPI5PACkixQDRaO0ro2vrqyjCWWTdsBdB4qLv1YW1tjaGiIUCiUj+I+b795KxSS68KB0FbIdU43HQgEKCkp2ZIscTOfayty/Ur+sQW8kn+8K/BiSre9AAgh8Pl8+TKvRjIty/KWyLQRLpeL3t5empubdRFeq6jhO5lMF6IwGj8xMcHdu3epqKigp6fHFInKld4OBALEYjHa2tq23enb7TKvn2nn9//NX+mWKxmV1oO1PL6vr/ZnNS2sZFRaD9TkKylq2QsyHUuWDB2qqppD4k9r5At/1zSQJRyKyun3Pb040W4h96zq6uqYmpri0aNHeL1euru7Laeaw+Eww8PDhEIhXcW2QhxtKj61XeXxmEg1QHN5KY/m9bMGoXiCU7X1BIYWeTCVnWpfTCs4ZIlUwYyC4jA4fgiBnFFQnTJyGqRlDZEWZJ6SCiEpGkKTcC1rJCuzJF2kNcvkQill7TeNopE2eJoLRUKOqygu67ahsJJiIeIpa7nMG6eO0lrmYHBwkLGxMTo7Oy0HQrFYjOHhYRYXF2lpadnVxLbdhNvt5uDBg7S1tTEyMsKVK1doaGigvb3d5LdcKF/57u9u5bd/5wHIEmjrBZQEpJcTSO6NSDXAWGARu10mXZAQOj6alYCUlXkQ0SSBKwEAyqt9hApmCOYmV6ioKSFYoLmOrSVpP1DP6IA++j2ynrCYjFhb6YG180cqlSIQCDAzM0NjYyOHDh3aUu7O80buWRVqrjebZVheXmZgYABVVTl48CA1NTXPRH6flVy/wiZ4RarfFXjPkGrISkAikQipVLYT3AmZNiJnVzc/P8/Q0BCTk5Ps27ePiooKkskk4+PjTE5OUllZ+Y4l00YUuk8EAgGuXbtGY2MjHR0dOByOfLRzbW0tT6Z3WmL7O/+3o/zhl/t0yYYAa+G4ad1oJEHnPj+BAf08baqw7LlVsQtNM0WoUNVs556HhX2bsXiIjlNnG7xMOM7Rs9uz0tsJcomnDQ0NeVlSVVUVXV1d+RmaQCDA4uIizc3N9Pb2Fu30DzbUIokN+7dCmO7bOlyy/rk3l5WiLmUYW1sintp4Hoqq0eGvZHh2Iwqo2QVSQkWzW3+D2Y75qbcgP/MgNIFzWSNZsS7ZcFsMqororG1RBdVleIdlCedCmkSDBaEtkqQIsLBqLYvp8lfRVFWWt6zLDYS6urqoqKgglUoxMjLC9PQ0fr/fVF3vnQqPx0Nvby9tbW0EAgH6+vpobm6mra0Nh8PBysoKQ0NDJJPJvLTs6pUV7j2e2RhUCYEmwB1JE612ZqVAWrY6as/BegafbOiga+tKaa0v5fZfPNFNKvmbK3WkGsDfVKEj1QBOl/l5aopGc305Y4YBfCHW0gvMzc1RV1eHqqpMTEwwOjpKZWUlZ8+e3bIE5kXCSK6vXbumI9fRaJTBwUFCoRAdHR1b9jovhqdVaHyFLeAVqX5X4D1DqoUQJBIJ7t27xxtvvLFrZNp4DL/fT01NTT5L3uVykUgk3lVk2giHw8GBAwfyyYyXL1/G4XCQTqdpaWnh2LFjuxZB85W4+I4P9vL1P31bt3xybJkafxmLhox8Y8EXyLqAeH1OomtJyyp6Wlp5qrLDYZNJFVpqGZw+BKAVvjtCIOJpvD4XsvziOgmbzUZXVxfNzc35ynhut5t4PJ4v7PE0guZx2OmurWJg3lxNbn7VurjEanyjbPSR2lrGB5dJphX2N1bzZFq/H5/bTOaljN72zughrsqS6RkUIlvcpfD5CJxBDcWmgYUSIWuXZuH8kdpIpCyELSlwLWZI1OibzGJJiqUuJysWA0Gn3UZDRXbqvNCybnx8nDt37uB0Okkmk1RWVnLmzJk9sUPba/h8Po4ePUo4HCYQCPDtb38bl8uVz7EoTGz7zGc/xI/9xP8XTRSkl8oCsZpCKrFnkxVT2e8w585TVu6hsdbH4I1RyjRzOaB0ylwxNhE3zxpMjy5iZbKuROJFi764vQ6OntrP4OAgg4ODqKqKy+Xi2LFjT5XIvRNhJNe59iKRSOTbi92MuFuR69HRUf79v//3/NN/+k937TgvJV4lKr4r8J4aIh44cIDPf/7zfOpTn2JhYWHPRsiKopBOp/P/r2kaPp9v1/xjXxRy16JpWt6P1Ov17jg6bcSHP3LCcnmN3zwgGRteNCUNqapGc3tW1+wpMTMkYZHMaGqtjKNoTdMRdIdDf0xNEkirUfxNu+M/vBuQJAkhBIqiIITA4XBs+VkdKSIBWYhEqXSb7+lEcBWXTeZUjZ+BRwsk16fpXQ7zYKuoi0gBFKfe6UNIIltSvAiktPk3gcCxpukqMuZgKf3IbmS9/4yGWzgoceoJRo3P+puuL7Umw+015ciGdifnLGSz2fLfWO7ZvZvhdDpxOp35intgdnqorPRy/nQHOvvx9ftjX0noJCDzs6scPthAcnqFgasjaIrGxPACTsPMwqRFddWJ4Xmcbv27GAnFaenSv+c19WVM3h6mocWaIHcdbKCkxIfT6cw/q5yU8N3sYOF0OvH5fPnKwblnluvHdhtCCKLRKL/0S7/E6dOnmZqaIpFIPH3D9zByiYov09/LiPcUqf7GN77Bo0ePSKfTHD9+nH/+z//5rpapTKVSDA4OcvnyZaLRKKdOneLSpUucOXOG1dVVLl++zNTU1Luu8Q2Hw7z99tvcvn2bkpISXn/9dd544w06OzsZGBjg5s2bhEKhXTtec1s1x15rMy2fnTQ7UiQTadq6zSWGbZKgq7mC6KrF87W6/4bIaMogPzFtYyrxriESKQ4cazHv+zkinU4zPDxMX18fiUSC06dPc+nSJU6ePEkwGOTy5ctMTEw8tUT9ZrrqRovZFkkIjnhreNg/p+Ola3FzxG9yedVEXh0+QzRMFkhp/TlKRUqNg0W5cdaj1zYZz7w+cimlVBS3td+06rTOBfCVuUmmVXq8+kFTsSRFbxFP747aDbKWszK8evUqExMT7N+/n0uXLnHx4kUcDgfXrl3j0aNHxOPmiPc7GZlMJi//SKfTnDt3jkuXLnHs2DGWlpa4fPkyY2NjeaL9937mryE55I1vbP1btMcUhKLidNo4dKgebWWNTDhOOrHxPDNphWZDifFUMkOLwfJOyag0d5rbCW+Js+D/XairYWLhOOWl1paYJdU23n77bWpqarh06RKXLl2iqamJx48f72pJ9+eFwnLpU1NTHD58mEuXLnHhwgUkSeLatWs8fPhwR9WIjVAUha985SscPXqUK1eu8Jd/+Zf83u/93rs+6LTnyMk/Xqa/lxDvGflHDh0dHfyH//Af+Na3vsXP/uzP8pWvfIVf/uVf5iMf+ci2I9epVCqvma6oqODkyZO6ogglJSWcPHnSsjz4OxmRSIRAIMDy8jLNzc2m5JvGxkb8fr/OWrCrq2tXGsfv/hunuLtePTGH4HKU9q5aRocN5aALvs3mtiqcisKTv3qMw2WHIhHDQkgCVOOzf0qUMBlNQi5iq2mIZApsMud3sejLs0BRFCYmJhgbG8tb7hUmKpaXl3Pq1CmWlpbyNnxdXV1F3SeONFlXOQWwG20mgf2eSr2n9zomllZN+uxYMk1zZSlTyxta5IRQsxaHhftVNb0qZ5NxgFC1dYu+DcgpFdUhg82GayFNojYbqbTFFDIlFtKPpJJd3wgNNJcNohn6H83TfbiSoaXsAK9YkqKVtSNAR12WlAeDQYaGhojH43k7xFz7k/MYbm1tzSf+NTY20t7evquFmXYbqqoyMzNDIBCw9GXOSeCWl5cZHh5mfHycjo4OGhsb+a7vPMif/9n97IoFA9xK2YaIJnnSN1z0uDa7uRuz0kvLFjZ6s+PLoGnIdplKn8zEw6zWf3ncukB5S3e1yUqupaUlX3Xy0aNHeDyeHZd0fx5YW1tjcHCQcDhsKpdemHya01zX1dXR3t6+bc24pmlcuXKFn/u5n2NpaYlf//Vf54d/+Idfaaq3ClXbxB/0XQj1JbqWAgjt3TSs3mUoisLv/u7v8vM///N0dnby+c9/nuPHj2+5ITSS6Y6OjqdWGCtMbCkvL7d01HjRWFtbY2RkhMXFRZqammhra3tqZ24swbvTan+qqvGpj/4/zE4Fdcv39TYy8FDvTWuzy7S1V6FGEozen8wHQVt7GwmEzJFSkUghChvydAaM9meqqivsIkkGTpfKgMuxse5CEIfPzR/d/sVnvNKdIWd3NTIygsvloqur66mDtVxRikAgkPccNm6jaRof+s0/YGnNHOlvry4nUFB67lSNn0f9c+xvrqF/xkxG2mrKGVsM6ZYdbfNzf1SfYNrjr2JoeiOB0RY1kNyMakmGAWxhFWEg1c5whrTHlr+ejEslXWbDuZQmXWF+N+0raRSfeXl1iYfg0sZ9qKstYdIeJaOolEh2ohZylhZfKVMr5gTGX/2B91GpxggGg7S1tdHa2vpUp5zc4HZlZYWWlhZaW1vfUS4gOb/zoaEhVFWlu7ub2trapxb8WFxcZHh4GEVRaGlp5bN/589IrM8QyYk0mrI+TRzb+IbdXgfJeEqXMFtW6WV1RR9JrawtMVnp+crcrK2ao/5NXTV47IKBK4O65bWH21mc0z/D//u//12q/cXb+Ewmw+TkJOPj43i93jy5fieh0KmkqamJjo6Op75PsViM0dHRfILms5Lr8fFxfuEXfoGvf/3rfOYzn+Gzn/3sO67fe6ciHA5TVlbGd3b+DDb5nTuoflZklCT/M/AFVldX35W5ZsXwnh4iyrLMxz/+cQYGBrhw4QLf9V3fxU//9E8zN1fE9X8dqVQqn7C3trbGyZMnOX78+JZK9kqSRFtbWz5h7Nq1awwMDOyZdu1ZEI1GefDgAdevX8dut3PhwgX27du3peiYy+Xi0KFDnD59mkgkQl9f35ZkBsUgScJSWz02NJ/XUMo2if0H6/F77dhjScYKCDVA0sqpQlX1hBrMI2ZV0xFqMASuNQ0cG9ExLaMgZRQq655fw5Ajxn19fUxOTnLgwAFOnz69pdkPIQSNjY1cuHCBuro67t+/z507d/J2k7l1iumqJ5ZXca4TwZP+LKEGmF5atbTyLveZNdiqRZTCY4guGn2kNZuEsNJOpzUToQZD1FsIbDGBlFItLfYApCKvqt8w2zG/EOF4TR3+Ep8lobZJgtmQ2RsZIDQ1itvt5uLFi3R0dGzJerKkpIRjx45x8uTJvIxsdHQ0L594kVhdXeX27ds8evSIpqYmzp8/vyXvbSEEtbW1nDt3jq6uLqamJjl2dENakyPNmtBr6+PRFK09+lmU1ZUojW36935lIUJdU7lu2dpqnOauGtO51NV4TYQawOHU39/yKh9VT/nGcyXdL168SFVVFffu3ePWrVsEg8FNt3seUFWVsbGxvDTs7Nmz7Nu3b0sDNI/Hw6FDhzh37hxCiLws5GnyybW1NX75l3+ZU6dO4XQ66e/v55d+6ZdeEert4EVLNV7JP7aE9zSpzqGsrIx/+S//Jffv3ycSiXDs2DF+7dd+zaRlTCaTeTIdiUSeiUwbkXPUOHPmDGtrazsmoTtBLBbj4cOHXLt2DVmWOX/+PAcOHNiWjVdOenDo0CGmpqa4evUqCwsL29IZvv9Dh3F79NrUZDJD9/56eg/V48ukGfz2ADOBBUv7twWLog+kt0BELJ6Bjp8rygbpVlXEekSyuevppYt3ikId7sjICJ2dnZw7d+6pkUEr5CwTL168iM/n48aNGzx8+DD/3heTgCiaRkt5GYfraul/uDEAjcRT1Feai0LoXFTWMRcyO2aEDCXNVYcEBTpqQdYizwirJEW09e0LIGQJx6JCxkpPDagWxBysi7gMPJijrdz6u28qL0OxGDS4bDIffN/r7N+/f1uOCmVlZZw8eZIjR46wsLCwZX38XiAej/PgwQNu3bpFWVkZFy5c2Fahk5zP+rlz5/joJy4h5yh0YY6D4b12WbjHlFlUMa2sMz+fkrINaZrH56SjpYy5/knTegCZVX3iXHfv1iuW2mw2Ojo6uHjxIhUVFdy9e5fbt2/vau7JVqFpGgsLC1y5coXZ2VmOHDnC8ePHt0VsjeT66tWrlpprRVH46le/yvHjx/nLv/xL/vzP/5w/+IM/oKXlxeacvLvxDiDBu0qoX05S/Z7TVG+Grq4u/vN//s9885vf5NOf/jS/+7u/y6/8yq9w+vRp/sW/+BdcuXKFL33pSyat4E7g8/k4ceIES0tLDA4OMjU1RU9PD9XVe1+VLx6PMzIywtzcHH6/n/Pnzz9zqXUrCCGoqamhqqqK6elp+vv78fl89PT0PNM0j8fr5P0fPsx//+PbeH1OWlqqSEXiJBdWCTzQ+8hODi8g2ySUAgJnFfu30t6a9NMGgu50yCQzBWQ8o4IDUFTkuQVUYUMDDhzfuw4jV2Qn5/Ob06Luhh7RbrfT09OTt+G7cuUKTU1NHKwrPm1d6/bw4MGMqV2sLfEyG9QPZmYsZBCL4SiVXhfB6AZxmQlGEUJ/+6WMilpQKl6ymH2QMxslzfPrJRU0m5kM29MgLadJ1BqImaKheqybw7WYWUKUUTSccWuCVea2ntnprq/elQhdrpJmTj4xPj7+3MqWF5aqrqur2zUP7azPejPvf/MA3/iLJ+uJDtlnLTtl1ILkxLkpc8JyOGhOpItFzG4Sy/PZd7GuqYLM4gqBm1MISeAq9ZCI6fXxc0MLlO9ryUtLrIq+PA12u53Ozk5aWlrytonl5eV0dnZuKxjzrIhEIgwMDLC2tpYvSrYbbUaOXOes+H74h38Yt9vNL/zCLxCNRvnsZz/LzMwMv/qrv8qP/uiPviMqgL7r8bJFd1+maynAK1JtgBCCN998kzt37vCFL3yBT3ziEySTSQ4ePMjnP/95Tp48uSfHzJHQqakpHjx4QFlZGT09PXviU5tIJBgZGWF2dpa6uro9K1ggSRLNzc35ZMabN29SV1dHV1fXljviD//vJxi4OcrYw2kG1t0/ZJuEp8RJrKDqWSKWom1fHWOPNyKnmkUCk+lD1jST1MMINZXSa65zjdv0PEo0jigtAVnmzJv7t3RNz4pQKMTw8DCRSGRPy1S73W56e3tpbW1laGiI5akpbJIgYxF1laMaaYsItFVDGYomqCvzmTyua0rdOlKdUlRaqsuYXNzwIq+o8LBc4CCiWZFGRdNbsrHuN23x+KW0hibLSAkVtaBCYlN5KTPL5pkNCZhatC7uEl6IcaiuxlRJUiliGZhLUtwN5OQTNTU1+TL1ueqM25m1eBpUVWVycpKRkRFKS0u3VKp6O/jY332Tv/iLJ6iytO4lDp4yF2uJjXcnuLhGQ2sVM+Mb+vupkSVKK9yEgxuzi5OBBdw+B/G1DbI8PxWk90QzA3/1kFQ8u1xTNUprXCTGzUmnDY1lG6R6k/LkT4PdbqerqytPrm/dukVVVRWdnZ17ch+TySSBQIDZ2Vmam5s5evTonujwc+T6V3/1V/nc5z7H2bNnkSSJT37yk3z+85/fk2t7z0J9yaK7L2mi4itSbYHl5WX+r//r/+I3f/M3OXfuHFVVVfzX//pf+ZM/+RMOHz5MXd3eTPPnquLV19cTCAS4fv26roLhTpFIJBgbG2N6epqamprnVv3LbrfT3d1NU1NT3u6ttbWVtra2p/omNzRX4rbJqAUETsmoNPc2MHBnXLduMr1B0DQhDBUS12HkGpblyfX/tNlk0nqBLswvQzSOkCWEpmFz2xkIPCCl7h7pjUQiDA8PEwwGaWlp2bOO0YichGdlZYWWx7OMGCoDHvbX8mRwAYu6GSyGrK23asu8JlKdtPClrShx60i1r8rD8tQGqVZt6xHMnDxA01BtkumxbpYkLySBa1kh1rjx3GvKvZakurGylJlZC1KtacwtRvAkHcgOoZN7BCPW96DQTm+3UFimfnp6midPnjA6Okp3d/euuE8UlhW32WwcPnx4T2fR3G4HZ063c/X6CLmKexkLxVZ5tU9HqgEaWqsJBzekHKqi0dxRy+B6dURfqYv6Wg+pxWCeUOf3V17Kwrj5OcdXNt6Jzm1Eqo3IJQa3tLQwNjbGjRs3qK6uprOzc1cCKDkXoNHRUaqqqjh37tyeW9VFo1H+y3/5L1y7do0PfOADeL1evvzlL5NIJPj5n/95Ojo69vT47xloavbvZcHLdC0FeKWpNuD3f//3aW9v59atW/yP//E/+Iu/+Av+w3/4D9y9e5elpSWOHTvGb/zGb5BMWlfc2g3Y7Xb279/P2bNnicfj9PX1MT4+vm3tZDKZZGBggL6+PpLJJGfOnOHIkSPPPVnE7XZz+PBhTp06RTAYpK+vb0u+3e//6+aExUzafC+iwYIIoV22lnUYo9JWyYyGdUyrRGOwXppaWyfkNY2VHDlyhNnZ2bx2cbvGOrmE0Rs3buDxeLh48SJdXV3P3fGhsrKS8/v1JdcFEJ1PEE2kaaw0S3nmQmuW8gdhVdnSwstZMdyzyaVV7AVWaEIIna5aThfZdxF9dK7oi5Bl9leX55fH49bWeFVea0JSV+EjmkixuLDG4aoCkqnBasr6O+3cxUi1EblZoYsXL+L3+3nw4MGONbwrKyvcuHGDoaEhOjo6OHv27HORpf303/9r6yXLs/+Ox9I4nPrB98qieQBkZWOYawJ6ehtQl5YZ+PZjy6TwyLL1QGjswQTeEif+5kpKynYujcvB6XSyb9++vD3f9evXuX//Pmtr1hVLn4ZcrsWVK1eYn5/n2LFjHD16dE8Jtaqq/NEf/REnTpzg61//Ol/72tf42te+xh//8R/z4MEDVFXl4MGDvPXWW3t2Du8pvGgN9J7oql8+vKct9azw9ttvE4/HOX/+vOk3TdP48z//c372Z3+WRCLBr/7qr/Ld3/3de+6zuby8zMDAAJqm5fXWW4lApVIpxsbGmJyc3NOpxu0glzwzNDSELMt0d3cX7bATsRQf/45f05UOlmUJSVJJJ/VhrKb2GqYCC6heF2qFIfKTUZCMU07JNBREy2VJWCSZFdjrLa/C4spGb+10IDkcnP/+U3zm138QTdOYnZ1leHgYh8NBT0/Pli21CmU59fX1tLe374rGfSf4yyej/IP/9Of5f7d5XMyPZSPMh7v83JswO+Xsb6mhf1oviajxuVhc00emZUlgF5JOr15d6mE5qHcU6KqpZGRmQ0cr0grp0uxMgCOi6MvFAygakoKpoI9IqxTGtL0+B4kamXAsSamQWUuZQ6LHmvw8CJivsbe5hifrful2hyDVYCOaylBb4mWpCEH72lv/L6qKVGDcbaTTacbHx5mYmKCiooKurq4tf/tra2sMDQ0RDAZNZcWfF/7xp/+I+zfHsjMOmsa+rhqG7uvzKHxlTtZCG++U020nk8qgFIyCG9urcapphq9tuHt4K93ELKw2vTWlRC0s9/a/7zC1zZX8zK/89V24MmskEglGR0eZmZmhtraWjo6OLQc9wuEwAwMDxGKxvG56L7X1mqZx+/Ztfu7nfo6xsTH+2T/7Z/z4j/+45TsyNDTEyMgIH/jAB/bsfF525C31Gn8Km/QSWeqpSf7n9G+/stR72XH8+HFLQg3ZKNkHPvAB7t69y6c//Wn+1t/6W3zP93wPDx8+3HZUciuoqqri7NmztLS08OjRI5P9mRGFln/RaJTXXnuNY8eOvWMINWTvZV1dHefPn6ehoYEHDx5w584dy0iNy+Pgwod6dcsURaV1f71p3dKqbEek2S1IQJGCHIVwGm3c0pksodY0mF6A+SVdBDxnz3f0fFf+uhoaGvJ2dffu3ePtt9/eNAKVSqXyMwmZTIazZ89y8ODBF06oAQ4X2OpJQqCtbdzXSNj6mpwWkp7FtQRepz7SrqgazTXlumVL4RgVBgs+n1ffkeikHRYzFnJSMRFqgO52fUW96FqKTk8ZVT63JaEGCIatqxlmEhukLJ3SOFCWtXSrLRLZLvO4qPQ+v+eZ0/BevHgRj8fDjRs3uH///qaV8ZLJJP39/Vy/fj1v+9fe3v5Cksz+9mc/gJT7hoUgZeHaU+XXt2fJeDpfSdFb6uLAoTpmbg0QmdXLRKIrccpqzG1hQ5v1oF6JxXekp94KcgV/zp8/jyzL+Wqam1nWJRIJHj58yM2bN6moqODChQs0NjbuKaGenZ3lJ3/yJ/ngBz/IpUuXGBgY4GMf+1jRd6S7u/sVod4tvOio8qtI9ZbwilRvA3a7nU996lMMDQ1x+PBh3njjDf7e3/t7LC5aV+HaDeSmdy9cuEBJSQk3btygv7+fVGpj2jpXotpo+fdOHgVKkkRraysXLlzA6/Vy/fp1+vv7dfKadDrNvtMWOnbN/PrmsvutkhSFlXzG0AGlo4YIViaDlkpjn5mHUNgsKZEkQOPsXzuoW5yzq7tw4QJut9vyunLlnC9fvkwsFuP06dMvRJazGap9HhrLs+/PEX8tC0sbpGw1ai2ZWF2zJqLNBXKLHHwW9mgNVfr3NZnRlxlXC7XyFgRCKmL57nGY5TMDj+bYX2Pt7W2XBDNL1kmKsbj+IAP352kqL8UpW+cIdNZWvJDqeg6HIy8zsNlsXLt2jf7+fhIFenZjWfGzZ89u2/Zvt1BXX87+gxuD5smx5bw/fQ6SsKik6LZx8EgDmZl5Hv3P+yipDJLLfN/rWszP3GaVgwGM3Run65B5AL8XyFUyPHfuHJqmcfXqVfr7+3X2roqi5CttqqrK+fPn6erqemp+yk4Qj8f5/Oc/z7Fjx4jH49y/f5/Pf/7z7+i+5aXD+qzNy/P3om/o3uBVouIOUFlZyb/+1/+an/qpn+Izn/kMx44d4+d+7uf4qZ/6qT3rkHL2Z01NTQwODnL58mVaW1sBmJiYoLS0lOPHj1NRsXf6zb1ArvMvTGZsaWlBCMHExAQlNT7q2yqZHduQAYwPzuF020kWEJz5yRWq68uYE9blpk0wSAdSiTSisKpeIgkTS6RzkhAjMRKCytpSfKXWUUiHw8H+/ftpbm7OX1cukXFiYgKv1/uOf15HmuqYC0dYntRHpoPRFOXlLkIxvaxjcjGETdZZTAPgsigBHrMqnmIoJz21vKrPiZSzRVxUm0C1m5MUvT4nYc0c2UwkzIMAAUirKnabTNqQEVfnczEbtxggaBqhaNqwSKMiZSPpyJjXBzo2sSd8HnC5XBw8eJDW1tY8gW5sbMTtdjM2NmZZVvxF4+N/700+8xO/D2RnproO+Bm8tyEBmRhawOWxk4ilKa/yUloqMd8fYHkspNuP10JXLFkQ6JXZoOV5NHbW0N3btIMreXZ4PB56e3tpb2/PE+j6+np8Ph9jY2M4nc7n8rxUVeVP/uRP+Pmf/3kqKir4sz/7M973vve9o8uvv7R42aK7L9O1FOBVpHqHEEJw8OBBvva1r/EHf/AH/N7v/R6nT5/ma1/72p5KQnKNbl1dHSMjI4yNjdHS0sKJEyfe0QTtafB6vfT29tLQ0MDY2Bijo6M0NjZy8uRJvutvvKZbN51SaN1njiCV15VZ2+QZOgK7LMwkeZ3QaYkk2vgMzCxkva2tIEkIIXjtOw9a/264rsOHD9PU1MT4+DgjIyP4/f53xfM62lTHkbo6llbM0gGrZEVFg1YLp4uIRTLg5PKqyUEko6h4ChLTIvEU9VX66fpanwdbQrXs3F3lFgMcTWNmwTrqvLoU5YjfXGmvpkhxF3+Fj1jCPBgYHV7Oarkt0PmCSXUOufewu7ubmZkZBgcHKS8v59ixY+8oQg3Q0eOnojQr/ZEdNtOYWENj/5FGujoqCPWPMnZlmOWxEA6D33hw3iyVC86vmpbNjy9TWml24Pibn/s+5CJR7L1G7nkdPHiQhYUFBgYG8Hq9HD16dE+fl6Zp3L17lw996EN85jOf4XOf+xy3bt3iO77jO14R6hcFVX35/l5CvCLVuwQhBN/93d/N/fv3+Vt/62/xyU9+ku///u+nv79/18m1oiiMjY3lNdPHjx+np6eHqakpbt26RThsTR7e6ch54fb19REKhTh69CgHDx5kfn6eGzducORiC7Ihiml1a1fngkjTi5DO6Fc06GxThqp+mqaBELgjqxCYgLXi+lMAZBk0jb/+k+/fdLVc8uKVK1dYWlqit7eX3t5elpaWuH79OouLi3s6ANspjjTWMT9mJiFAtrqkBbSkOcI7ubSKZJTbKCqvtTdyotnPvsoKSjM2Bh7P015SzoGqSo63+DnQVENthV4SU+8vp3d/o+kYJW4nC0Gz1ttfWULUgtRLAmbmVxm9N0elT0/GQ0Hr76jEYT3B53XZYdFaEtNe+84YOIXDYW7fvs3IyAhdXV2cPHmSVCrFlStXGBsbe0eUPi/Emx8+DICqKDhsEvUtFRw40kBnWzn2cJj43AqDfU90Ze/rWvXa6OWZIKWGiotzo4t4LWaX6lv1g59jb+zn2KV9u3U5z4xc5cr+/n6am5t57bXXsNls9PX1MTAwoJP/7Rbm5ub423/7b/Pmm29y+vRpBgcH+cmf/Mk9lZe8whbwwuUarzTVW8Grr2SX4XA4+Jmf+Rl+9Ed/lH/8j/8xr7/+Oj/2Yz/GP/pH/4iqKmvt5lahKApTU1OMjY3hcrno7e2lqqoqHzmor69ndHSUmzdv4vf76erqwul852cLq6rK3NwcIyMjSJLEvn37dAUs6urqmJiYYGR0iK6jdQzcns1vOzY4j8NlI1VQcW1xcgWRTCGtxdBqK9HKfZBRzBGW9Y9aU1VYi6KtrkF4jWKpQZIsoRqSFH1lbmqarKOQmqaxuLhIIBAgk8nQ2dmJ3+/Pu8XU1tYyNTXFo0eP8Pl8dHd3P5cqa8+KztpKkglrWcOihbczgGxzAHpincootNVWMLYQxG6T6W2oYWoyxNDwAg1VJYxMbkh7BiYXqavwEY+lmVkM43U7ON/dzPxalMDsCsHVBGVes8SqsaqUwYg5t6G6zMuiRdn6hpoyZidCAHS7fKwU6MEjCWuCqRYhMv6qUiYGF+k6VcPwor7qX8cLJtXxeJzh4WEWFhZMnucVFRX5ap0TExO0t7fvWrXOneJvfPwS/+nf30RF8PAvH9F9sJ7+b2w4eSzPhEzblFaUAHrHFk+Fg7A+XxF/ezWBe/oS5YUthBCCv/m5793hFWwPmUyGsbExxsfHTZUry8vLCYfD+XyM5uZmWltbdyw5TCQS/Jt/82/4tV/7Nd73vvdx7949enp6duNyXmE38LIR0ZfpWgrwilTvEaqrq/mt3/otfvqnf5qf/dmf5ejRo3zuc5/jE5/4xDP7DauqytTUFKOjozidTg4ePGhpq2ez2fJFVoaGhujr66OtrY3W1tZ3ZJnYnLdqIBBA07Q86TReVy7pr6GhgdCUoiPV6WSG7sONDN2b2NjvusuH0EDMryBHY9iqS9GERCKaIJfwocUSuJIJEvPBbGeqqhi1CIUeyHanjWShB7EsceRCt+W1raysMDw8TDwep729naamJhNJKSz2MzY2xq1bt6itraWrq+sd4fyRgyxJHGqv4+aTKdNvK9E0Lo9MwuDOML8ax6o4TKXXRUWLn+nJEI/6N55jYHqFo11+7g1vkKH54BpOh40DHbU8HlngxsMJjnT6aS8poczlYnnVPJPgKhJFlotMWVf63MwSAmDw/hy1XS4WYmlKXA6Cq9Ze9Da7GyyGXj5nltR4DadVU+KhzLPzUt7bwVbKigsh8qXPFxYWCAQC+dLnVt/j84TTbae9vYqRsRX4/7N33uFR1enb/8xMeu+9J5MEAiQkIYWwKwor1rWtbbGhi2tdBaQqICBIEXvB10XRXdvqqqvsLsoPRZck9JpCJjPpvfc2mTnvH3GGTGYCSciEAOdzXbkgZ76nZWbOec7zvZ/7kUqxtDNMEtSWNWDnbENH8xldf5uJluWOzk5UYfigY2VjHITW9WuBfuXt0wiZYF7Xj4HoZrXy8/OxtbUlMTHR5IO2rnamublZH1wHBQURHBw8ovvLd999x7PPPou9vT1ffvkls2fPFmUe4w2xo+JFgRhUmxGJRMLkyZP5/vvv+e6771i8eDHbt29n48aNQ7poabVaKioqKCgowNLSkgkTJuDp6XnO9WxtbZkyZQqNjY3k5eVRXl6OXC7H29t7XFwo+2dw1Wo1YWFh+Pn5nTMzZm1tzU1/vIqd24/S3N8L2KhLomGAp2nrQl3fjGTg0N5euiWSM8tMBIEG2xnYBUYq5eY/X2mwqLm5GaVSSUtLCyEhIUPy+NV1nNQVM2ZkZBAQEEBYWNiYN3wZjAkB7iaDaq0gEOjuQn6VYRqwrasHfw8nyvtJKFxtLGiobMJSZkVTa6fRdk6oqpgU5s3p4hp6NX3V4U621oCElEmBtLX3UNfcjoVMRl1lC0ggyMuFkpom/XY6O01bf7S0mnYkEfp16pQAzt021KAmwM0ZRbMJNx9BoGKQtuXq7r4MdmFuLSHx7hTV9x1XqBk6KZ6LkbQV19lc6lqfK5VKfevzoVx3zMVtD0xny/M7wVJGfZWxDClA7oficIH+93JVNTJLGZp+D3qdLcbdOxuqjQsT68obcQ1wo72li7ufuW6UzmBo6K7XarWaqKioIV2vnZ2diY+Pp6mpySC4DgoKOue1QxAEsrKyWLp0KVlZWaxZs0aUeYxjBEGLcAl1IbyUzqU/4rdnDJBKpdx0001cc801vPHGG9x///2kpqayYcMGoqKM9XparZbKykoKCgqQyWRERkaOKCB2dXUlOTmZyspKFAoFJSUlREVFXTCJgSAI+gxuV1eXfpp5OFl0mYWMa2+P50S6CrWml9bWThpqG/EJcsHVxZ7u5jZUp0z4J/+ql+5/LEZDOGtMjbq7F4nFGe9cG1srwicHAn0NM5RKJfX19QQFBTFlypRhB8Q6SU9wcLDeZ1zXfONCTcV3d3dTWFgI7YPbReoytAPxcLLVB9UxAZ6UFNRT0dOBVNJBuK8TKhPtv3MKq5kWFUhbexcVta3U17dTX9+OtaUMO0tLmls7sbaU4evphJujHaXVTcSF+nC8sAoETAa8FjIp5SYK0wAqqwyzl5WlTcQm+SEb5O/t4+JAXY1pf+7aX/chAdzUFhT9utycnRQHYqqteH+J2FCQSqX4+fnh4+NDWVkZubm5FBYWEhERcd4StpEw/XcxWK/7Nz0WFtSUNWLnYkNHv6YvFgNmJ3p7NARN8KMkt0K/rKKgBitbS3r6PXTVFNf/Gnwb3ty9A9yYlBaJu4+LeU5oAJ2dnSgUCurr60fcbMfFxYWEhAQaGxtRqVSUlJQQHBxMUFCQySC5pqaGdevW8cknn/Dwww/z1VdfDblJlYiIyOCIQfUYYm1tzTPPPMN9993HypUrmT59Og899BDLly/H1dWVnp4eduzYgVwux8rKioiIiPOeftU1I/H29jaQGMjlcqNpYHPS2NiIUqmkvb2dkJAQva3cSIicHMAna/5psMwz0JGszHqQSpGa8nkeEFQjCMP/u/YfLpMyISGEjo4OCgoKqK6uxt/fnxkzZpy3jt3R0ZH4+Hjq6+tRKBSUlpaOymdhOOg0nSUlJbi5uXHL1b/h4wP/MNFtEjoGafGNtq9hTFyAN6dyK/V/Pq0AqsoWgtxtKanvyyBLgJhgb+obOziUVcqkcB+a+3Vg7FZriAzypLm1k261hqKKRvCDhvp23B3sSIsIpLKtjaIy4+xjoKczJaUNRsstZBKaWo0z27WKBlxCTD94ejrbmwyqLWRSWtrObEt5qhq/Kc5UNLeNmZ2eThfd3d1NeHj4eXfW08mT/P39KSkp4eTJkzg5ORERETGmD+YdHR1ERLuRfagDCRA0IYDTmUr9600mXF0cXAyvAVqNFv9wPwqzyvotE/CTe1CuqDEYa2kp4+ZHZo3uSZigt7eXwsJCSkpK8PHx0bcsPx9cXV1JTEykoaFBH1yfPn2au+++G2dnZ7q7u9m2bRubNm0iLS2No0ePMmHChFE6IxGzIgiXlmRC1FSLjBZeXl5s27aNRx55hIULFzJlyhSuuuoqMjMz0Wq1fPjhh6Smpo5qdlImk+lvtDq/5JCQEEJCQsyqt9Zp/pqbmwkKCmLq1KnnPb04MSUCGztrujrOaF49/byoUdWbtNITtFp958MzC4UBv579Cy4IguG2pTImzwomMzMTHx8fpk+fPuo6aF0nTZ3GsqSkBLlcbtaMkq4YtrCwEHt7ewMv3MgAD3JLjDPWZTXNSIGBk3mNrZ1McHcnq19A3Z+S+k58XW2wRKC7R0aOslr/WmVdi1HL+OyCarzdHaiu7wtqiyoaiYnwJldRDYXg5eGAva2VkcuHk53pQCXI25Xignqj5S2NnQSFme6uZyEx/Z309XCiqqVfK3XArqXvOILczNvJ1NxtxXU1DTo7yCNHjuDm5kZERAQODsYWdKNFfz341XdOIudYn95eGPAeVBbWYu9sR3vzGZ17j4kHPVtH4++ns6sj5ZwJqi1tLLhmfhq2DuYr8BYEgfLyclQqFXZ2dkybNm3Um6i4ubnh6upKeXk5zzzzDGvXrmXWrFkcP34ca2trPvnkE6699tpxIQcUGSLCJaapvkSD6gtf3n2ZIpFIiI2N5ZFHHsHOzo6vv/6a3t5e3nrrLaZPn2626X5bW1smT55MQkIC9fX1pKenU1FRMeqWbq2trRw/fpwjR47g6OjIjBkzCA8PHxW9nqW1JZN/YyibaW/ty2pKTAUTpvwwB57vgMx1n72e4ZD+gbmVrQWhcT4kJycTExNjtsLC/m3Pvby8htT2fCQIgkBFRQUZGRlUVFQwadIkEhMTDbxwJ4X6mFy3s6eXAHfDzKVMKsEBS3o7eo3ajuuwtpTh7uCMo60DtU2GhX/1zR1MDDPsoqkVBFwGZCDL6pqx/dXTuqaujWBX4wxqj4mmLwCONqYDJ083BwqOVeJoIhjv6DC9LRcThYh1xV242lhRpTxNQUHBqNvVjXVbcV3rc12x44EDB8jKyjprK+2RoNVqKSkpIT09ndbWVpKSkvjtrBS8fPve28qiOqN1/MINPysVBTVGY7rajXXVHf1mQyytLZi/9Q/0WLdx8OBB6uvrR/262NDQwP79+ykqKiI6OprExESzdSWUSCT4+/uzY8cOAgIC+Ne//kVdXR3z58/nqquuEgPqi40L7Skt+lQPCTGovgAIgsDXX39NXFwcixYt4tlnn6WhoYGnn36aBx54gLvuugulUnnuDZ0HLi4uTJs2Dblcjkql4uDBgzQ1NZ33dtvb2zl58iQHDx7E1taWtLQ05HL5qBfcTb3KsOFKubK6T1s5SKb6XJi6vxjedAwHhE0OJDY21qyZuv4Mpe35SBAEgZqaGjIzM/XexSkpKSbdZaaEmQ6qASOP50m+nqiK6yiqbASthFAfQ12xj6sDnvb25BRUoyxvwsXROCgtrmzC2tIwQMwtqiHY/8y2mlu7CA8707glX1lD7IDjrKw1rafuVZsOcj1d7OnuVBM5sLnGWYoUTV1IBUEg1sWLpISp1NXVsW/fPkpLS9Ge583kQrcVt7a2Jjo6munTpyORSMjMzCQ3N9eg9flI6P9ZLCsrIyYmhvj4eH2B5ZXXTUKQSmht7MB3QBBtZWN4felo6cQ71HC2oUJVY/Q9r1BWI5FKsLCUsWT7fGbf9htmzJiBt7c3p06d4vDhwzQ2mu60OBza29s5fvw4J06cwNfXl+nTp5u9cLyuro6FCxdyxRVXcMUVV1BZWclHH33Ejh07iIiI4J133jnv64fIGHKhPaVFn+ohIQbVF4Djx4/z+OOP8/DDD6NUKnnkkUdwcnJi2bJlnD59Gi8vL5KTk1m+fDnNzYM03RgFJBKJ/gLv6enJ0aNHOXnyJJ2mWjOfg87OTrKysti/fz+WlpakpaURFRVlNp/sqVfFGPze29NLQJSf6U6KQ/jyWtkODEgGrDMgvp59V+rQDnSU0bU9T0lJQa1Wk56ervfBHi4NDQ0cOnSI3NxcAgMDmT59Or6+voPe6CefJajuX+wVH+xLTt4ZKUdTaydlVc1M/jXTPTHQi9bmLn2Aqu7VEOjtYrTNlvYu5IEmCuOkUoN3J7ugCm/PMxKLvNwqfFz7gnx7KwtaOwbx2K4zne23+PUzpDxWgYfTmRbXPq6OdJpoqw7Q0Wo6OLHq7puKnzZtGhMmTKC0tJSMjAwqKyuHnQXVWWump6dTX19PfHw8sbGx2JuqIRgDbG1tiYmJITk5mZ6eHtLT01EoFCNqSKJrSpOTk0NQUBApKSlGjiO3zJuB06+dNV19XQzWb643fi/dvAzHdLV34xvmZbCsu7OHALkPT7/9AAmzJwF9D7AhISHMmDEDNzc3jh8/ztGjR0d0LVar1eTl5bF//36srKxIS0sjJCTErIXHPT09vPXWW8TGxur7Frz55pt4enpy0003cezYMV577TXeeustPv74Y7Mdh8joImi1l9zPpYhEGM+t3C5henp6Bs0sCYLAkSNHWLhwIadPn2bVqlXcd999Zrc66urqQqVSUVVVRVBQEKGhoefcZ1dXF4WFhVRUVODt7U1YWBh2dnZnXWe0eDxlNRWqM8FbZEII+VmVRuO0XV0GN2epVIJWbRhoWdta0dXeLzAStAZSEgGJ3vnD2t6aj5Vbx4X3d1NTEwqFgs7OTr1m/lw37NbWVvLz82lubj6rQ4Ap7lr3KeV1xtlaNydb6jo7mRzsTW5O1aAuKmmTgsk4WWy0XCaV4OZsR+0Aj2FrCykSqYSuHsOs8oQgT/IKz0zxRwR6oCqo0+/XycmKDhkEezmTX2CsA3eyt6G93vTDY4S3K4XFfVprebw/x6r79jMp0IvT/XTfBtvTSOk00SDnrhvjefCOFP3v/Z19dHKKc7lzCIJAXV0d+fn5aLVa5HK5QXOk8UJLSwtKpXJYn6uuri6USiXV1dVDuuZ88eZuPnv5e8Ji/FEdVumXS6QSrKxkBt/hqGlh5B0qMFh/YkoEOfvPzAJa2Vry9NvzSL1+6qD77Onpobi4mNLSUtzc3AgPDz+nPaFWq9Xrph0dHYmMjDznOueLIAj88MMPLF++HEEQeOmll7jhhhsG/ZxotVq0Wq1ooTfOaWlpwdnZmats78RCMjazUWNBr9DDj52f09zcbDYJ1IVAzFRfIM42VSuRSEhMTGTv3r288cYbvPTSS/zmN7/hl19+GXWNX39sbGyIiYlh2rRpNDU1kZ6eTnl5ucl9dnd3k5eXZzAFPWnSpDELqAHiZxlmq1ubhpZhl1oY32TUPQMykANvRP2awMz4ffy4CKjhjIwnOjqaoqIi9u/fP2jb846ODk6dOsXBgwdxcHAgLS2NsLCwYd1UB8tWN7R0EhviQ35e9aABdWyYD4dOleDhYpxZ1WgFvNyMpTTdvVr8PYzHN3V0YSmT6GchlKV1+HmdkZC0tPQQ7umKjaXpc/MbpHhQgkBlPy9k5fEKfH8dazXIw4qXq4PJgBogdECmXSqV4u/vr58VyMrK4siRI4NKr3QZ3OzsbAICAsZENjBSnJyc9NlzndyluLjYpJa8t7dXXzAtCALTp09HLpef87N40/yZ+AR7UKaqQdZPGiRoBfwjDCUh/Ru56PfbT/LjL/dh866lZw2ooe9aLZfL9dKrgwcPcvLkSdrbjZvMQJ/sYv/+/ZSUlBhJWMyBIAicPn2aW2+9lQcffJD58+dz6tQpbrzxxrN+TqRSqRhQX0xohUvvx0w0NDQwd+5cnJyccHFx4aGHHhpSHVJmZiZXXXUV9vb2ODk58dvf/nbYM/diUD2OkUql3HnnneTk5PCHP/yB22+/nblz51JQUHDulc8DJycnEhMTiY6OpqCggAMHDtDQ0HeDUqvV+m6NnZ2dJCUlMWXKlAsyBT1QAlJbbqx9lEolRjcW6YDfBUEw8qrtr/foH6AGRfnyxGv3jfCIzYOuacf06dMJCAggOzubI0eO6Keru7u7yc3NJTMzE6lUyvTp04mMjByRBncwXbW1pQyLdg12Vqa18zEhXpxSVNKr0eLjalqHnlNQja+HccairLYdJztrLC2k+LvaEOXrgqZVTZSPB5bdYKuW4CRIsRQsCXJzJMzLhUg/N6SdGiwE00HFYMG2j4cTXd1nAmRBK+Al6ZMwtQ1SpOjhPPiDZMggLexlMhnBwcGkpaXh4uLC0aNHOX78uP7C39nZyalTpzh06BDOzs6kpaVdUL/y4aCTu8TExFBRUUF6ejplZWX6zKhOwtLY2EhiYiKTJ08ecqGvlbUl89feQk+XmsAoX4PXbAbo+usrm3DxMvw81ZT0zUD89rYktny/lOAJ/kM+L2tra6KiokhLS8PCwoL9+/eTlZWlv+m2tbVx7NgxTp06hb+/P6mpqWZvmtPQ0MCSJUtIS0sjNDSUvLw8Fi1aNGb6epExRBBA0F5CP+YLqufOnUt2dja7d+9m586d/PLLLzz88MNnXSczM5NrrrmGq6++moMHD3Lo0CGeeOKJYV9zLxn5x/r16/n3v//N8ePHsbKyGlLRnSAIrF69mvfee4+mpibS0tJ45513kMvPtJ5uaGjgySef5LvvvkMqlXLbbbfx2muvjVmBWn/Kysp49tln+eKLL3j00UdZvHix2adNNBoNJSUlFBQUYGtrS1dXFy4uLoSHh1+wJjI6ujt7uC9yET1dv2aZLSyM3T+0GoQBUg+0GgPJtDCgPbkgCEhlUoPfJZaW2Npbsz1rE7b25rPbGg3UajVFRUUUFxdjZ2dHZ2cnHh4ehIeHn/fntqiqkXtf/IfR8rgQH3KyKnBztsPeyZqi6ib9axH+7pSUNdCrax8vAV9vF8prjDWqE0K8yC0ydG4I8XXFz9meYyfL6O3XAdHDxZq6hm6DzPjEcG9yFWdandvZW6F1kNHabqh5jvL1QFloLAuJCfPmdI6hhEgAPOI8aKhtN6mpjgvzJftUudFymUzKt3+dj6XFuWc1dE12ysrK9O+Zt7c34eHh46pl/XARBIHq6mpUKpU+Yy2VSs9bwvLS4x/RXNtC9v9O65cFRflSnGPY9TMqMZS8w4X63+2dbZm37g9cdWfqeQe7Oo/6qqoq7O3t6ejowN/fn7CwMLMHtWq1mvfff58XXniBuLg4tm7dSmxs7LicwYDL4/5sLnTyjyst/oCFZHx02B0NegU1P/V+Oeryj9zcXCZOnMihQ4dITEwEYNeuXVx33XWUlZXh5+dncr2UlBR+97vfsW7duvPa//hPewyRnp4ebr/9dh599NEhr7N582Zef/11tm3bxoEDB7C3t2fOnDkGVewjeeIxFwEBAezYsYOffvqJzMxM4uLi+Oijj0bdqmsgEokEqVSKWq1Gq9Xi4OAwpjKPwbC2tWJSWuSZBSZuKEKv8d9GOOe008Aixb5s9wv/WjjuA2roC1osLS2RyWSo1WoEQcDW1nZUikaDvV1wtjd06rC1sqC4sM/mrKG5g4ryJmJDfUAQCPB0prKqWR9QQ1+CwsHa9M0ht6iGoF+LFgO8nJng50GZqp7snEqjGYa6pm683AzPqbG10+Dd62jvIcTDxXAngkDlIB0WZSbEK7oOiYMVKfYM0ho90NdlSAE19NnV2draGrxnuvfwYkYikeDg4ICNjQ1qtZre3l6kUul5Z9znPfd7ugdIbspV1VjaGM5AyH79+1vZWnLrX+aw7dA6Zt01fVSCTxsbG5ycnJDJZPT09PQ9fEskZpXoCYLAnj17mD59Om+//TZ//etf2b17N3FxceM2oIbL4/5sdi54ZtkMP2YgMzMTFxcXfUANMHv2bKRSKQcOHDC5Tk1NDQcOHMDLy0svsbviiivYt2/fsPd/yWSqdezYsYOnn376nE/CgiDg5+fHokWLeOaZZ4C+RiXe3t7s2LGDu+66a8RPPGOBVqvl008/Zfny5Xh4eLBp0ya9xdVobV/XBMTGxoaIiAjc3Nxoa2sjLy+PtrY2wsPD8ff3v6BT0jv/349sf/bXzKmVldH5a7u7jcIkobfXYJxWo0Ei6Z+Z1iLtH8xIJDy85Y9c++DMUT760UVXBKdSqfQdOd3d3fXNQZqbm0el7fny93axL+tMseHUEB+ysyqMxk2J8qW4qpGmVtNWa6GB7hSUG+teJ4f7IPRoOD1Anx0W4ERBmWGRZFiAC4UlTQbLokM9yVOeyXYLQIDcvc/eD/B2daCustXkMYV4OFNqoitjdIQXjdZaivtl4HV4WtrQ1GTs1Xxlqpzlj/3O5H70x/ZrJlepVCKTyZDL5fr3TKlU0tjYSEhIyLCKSccL3d3dqFQqKisrCQgIICwsDKlUqr+u2NnZ6a8rI+Ff7+3lH1t20tnv8xUy0Y/CU6X63wOjfImZLuf2hdfh5j06M2u6wlGFQoFEIiEyMhIPDw9aW1tRqVQ0NDQQGBhISEjIqFqJ5ufns2LFCvbt28eKFSt4+umnzeauZC4ul/vzaKLLVM+U3HLJZar3Cl9TWlpqkKm2trY+r8/1hg0b+PDDD8nLyzNY7uXlxZo1a0w+2O3fv5/U1FTc3Nx46aWX9AnLt99+m6ysLIPZkXNxyWSqh0thYSFVVVXMnj1bv8zZ2Znk5GQyMzOBkT3xjBVSqZS5c+eSm5vLjTfeyC233ML9999PcbGxs8Jw6K95LC8vZ8KECSQlJekdChwdHUlISGDixIkUFxezf/9+6uuNu9KNFfpiRYmxdhow0m0JWu05HzwGvjr7nrRxHVDrArP9+/dTWFhIZGQkycnJeq9pXdvzKVOmUFlZSXp6+ogs3XRM6qertrexokBlLKMAENQCgQOzxP3Q9hrr6mJCvCjOr6GlsdPofWhuM9Y0F5U34+ZiOGvS2tljkK2WAEJHrz7T7elsWv8vk0oMihT7YymV4tRj/Llxsrem0URADYPrqXU0NDRw8OBBFAoFoaGhBv7gjo6OTJ06lalT+zyu09PTKSkpOW+P67FAo9FQUFCgL2JOTU0lKipKn3kPDg5mxowZeHh4cOLECY4ePUpLi2n/77Nx/QO/QR4farDMztEWNx9nfnfvDJZ9+Aib/ruEP2+6e9QC6tbWVo4ePUp2drbe+s/Do88P29HRkbi4OBISEmhtbWXfvn0jtrvsT1NTE8uWLSMlJQVfX1/y8vJYunTpRRdQD4eL/f5sDnqFbnq1l9CP0CfJCwwMxNnZWf/z4osvmjz/ZcuWIfn1Pj/Yz+nTp02uey5019U///nPzJs3j6lTp/LKK68QFRXF+++/P6xtXVypj1GkqqpPd+ntbVgx7u3trX+tqqoKLy9DX1MLCwvc3Nz0Yy409vb2rFmzhoceeojly5eTmJjIE088waJFi4alKxMEgaqqKlQqFRKJBLlcPqjLgEQiwcvLCw8PD0pLSzl58iQuLi5ERkaOecGib5gX3iEeVJcYZzxNBo0mA8mBrRN1vwtM+l0E1z39WzQazbicim9oaCA/P5+uri7CwsLOOnMwWm3P+xcrRvq4mcxS+3o4kptfjZOjDdaWMrpNNFoprmxkQqgXucW1WFtZEOXrTk5OX0vzsCA7KmsMA636pi7Cg9xRlZx5iNMKAn6+zjT0C2zLq5oJ9HWkrF82uqK8mUmxfpxUVSEb5KHKz9OZimLjzxFAR0s3RQW1+E31pKL+zHa9XR0pqjFdHR4SYMJjG8O24iEhIQQHBw/62XJ1dWXatGnU1taiVCopKSkhPDwcHx+fcTfdLwgClZWVKJVKrK2tmTp1Kq6uribHWlhYEBYWpm99fujQoWHr/i0sZaz+9DF61Rp6utR0d/agUWvw8Hcd9b9NT08PKpWKiooKAgICmDJlyqBZaGdnZ+Lj42lsbESpVFJaWkpISAiBgYHDuob09vby4YcfsnbtWiZOnMi+ffuIj48fd++7ObhU7s+jgZWVFT4+Puyr+s+FPpRRx8fHhxMnTmBjc0ZSONjD4qJFi3jggQfOur2wsDB8fHyoqTGsy+nt7aWhoQEfH9OF9r6+fUXPEycaNpWbMGECJSUl5zoNA8Z1UL1s2TI2bdp01jG5ublER0eP0RGNX4KCgvj73/9ORkYGCxcu5O9//zvPP/88d91111kv5LouZrpCIt0NeyjyAKlUSnBwML6+vqhUKvbv36+f5h3tDoqDIZFIiL8qhv9+aEL7NKD1uG5Zf+21YGoMEiQSeGTrvST+fjIKhYKysjIiIiLGTTDT3xNYJw8Yyg1b1/bc29ubkpISTpw4gYuLC3K5fMjBTFSgJ1YWMqytLFDmm/ZtdrGzpVpopamlk8nRvhwvMPYPh77GMEHezmjaesnNrdQ/3igKqrG2lNI9wJXFwoRGWVVch7WVjO5+XtZqrRYBw8elIkUNzs42tA7SqMXFwRrjx4M+qisbkQBeMmsqOBNUD+Z2AhAaaPiw0l8O4e/vT0xMzJAK2nQPsZ6envqgtaioiIiICJOdLy8EDQ0NKBQK1Go1crl8yN8TnV1dYGAghYWFHDhwAB8fH8LCwoZUoCmRSLC0ssDSygJ7p9Ev6NS1TC8sLMTV1ZWUlJQhJw5cXV1JTEykoaEBpVJJcXExoaGhBAQEnPX6KggCv/zyC0uXLqWtrY23336b2267bdw5v4j357HBxsaGwsLCETVVGu9YWVkZBNRnw9PTE09Pz3OOS01NpampiSNHjpCQkADAjz/+iFarJTk52eQ6ISEh+Pn5GUlGFAoF11577ZCOT8e4DqqH+mQyEnRPLNXV1fqnFN3vcXFx+jHDfeK5kEgkEtLS0sjMzORvf/sbK1as4P/9v//H5s2bSUpKMrjJ6XSBKpWKnp4eQkNDR6yPtrKyYsKECQQGBqJQKEhPT9dnocbiRhA/axL//Sjd+IWhTJULhqGXhaUMqUzK2n8tIjo5AoDk5GSD7G5kZOSgGThz09HRgVKppLa2lsDAQCZNmjQipwFd23N/f3+9baKvry/h4eHnnFa2spARHeSJTAPZNcZhaIivK3kFZ743p5U1uLvYUd9iLJNwsrPBWiMht9ZQx6zuFZgU5UNWnmEwriiswcPVnrp+TWI6utRMjvQl6/SZsVV1HQT5u1Ba3qRf1tnZS1SIB8pfiyqNGOTj4u3lRH1RXwZbdbQcz0lu1Db17V87SKtzOxtLvD36vIk1Go3ejUU3WzCSGZ3+D0RlZWVkZ2djb2+PXC7HZWBL9TGivb2d/Px8Ghoa9Hr9kczo2NjYMGHCBIKDgykoKCAjIwN/f39CQ0MviMxBEARqa2tRKBTIZDKmTJmCu7vpmYezIZFIcHd3x83NjdraWlQqlT64NtWoSaVS8eyzz7J3716WLl3KokWLhhx0jDXi/XnssLGxGbefg/HGhAkTuOaaa5g/fz7btm1DrVbzxBNPcNddd+l19uXl5cyaNYuPPvpIHxstXryY1atXExsbS1xcHB9++CGnT5/myy+/HNb+x3VQPdQnk5EQGhqKj48Pe/bs0X9JW1paOHDggF7IPpInnvGAVCrl/vvv59Zbb2Xjxo3ccMMN3HjjjaxduxZ/f3++/fZbvvrqK+bNm6fPnIyGtMHBwYH4+Hh9EU9ZWRlyudzs2bRJaZFIZbKBnh2mpR4DMtX905mC0NdAYvXXC3HzcdEP6R/MFBcXc+zYMdzd3ZHL5WPmgtLd3U1BQQEVFRX4+vqSlpY2KhdZXdvzwMBAfTOO4OBggoODz1oYNy0ygM/+ddj4BQGkA7yh1b0afFwcjYLqyCAPSpW1fcHnwLQyUF1nXEwoCODr5WQQVANU1bX+Kp7ud242Z7LIDrYWeDhaUqeqx8/HieIK42LEpkbT2mg3Z1t0ghNBKxBga6cPqgdbJyTADUEQ9F31bG1tzyqHGA46XbK/vz/FxcUcPXoUNzc3IiIixsxKrKenh4KCAsrLy/Hz8yMtLW1Ugl87OzsmTZpESEgISqWSffv2ERQUNOpFf2ejpaUFhUJBe3u7vhj7fK9f/WcbdBaDL730EpGRkTz88MN0dHSwefNmtm3bxh133EFubi7+/kP30L4QiPdnkfHKxx9/zBNPPMGsWbP0Vouvv/66/nW1Wk1eXh4dHWeu308//TRdXV0sWLCAhoYGYmNj2b17N+Hh4cPa9yXj/lFSUkJDQwPffvstW7Zs4X//+x+AwY0mOjqaF198kVtuuQWATZs2sXHjRj788ENCQ0NZuXIlJ0+eJCcnRx+wXHvttVRXV+ufeObNm0diYiKffPLJhTnREVBYWMiyZcv49ttvcXV1paWlhT/96U+sXr3abFkgXcFjQUEBTk5OREZGmu2Gr9Vq+b8v/sd7S79G03vm4zzQ+UMQBNBoBjh/9BUu2jpY89CLdzH73t+cc3+mXA3MdcPXeU6XlJTg4eFBRESEWXXrQ217XtfYzpYPfuJwdqnB8uhgTxSDFC4GB7tRUNmX8Y0M8qBEWad/v3y9HaioNe54JQ/1JH+An7S9rRXqXg09A7LEUaFeKFR9mSupRIK7qz1BHk50tHShUtXon7E8fOyoaDecSrWylCG09aI1cTmcHOVL7rEz52lhKQO5Ix3damjuNandvzIllCumOo9JW/H+Aa65va37yyGcnZ3N+r2GPscHpVJJS0uLXpdsLheU7u5ulEolVVVVQ2qZfj5otVreffddtmzZglqtRqPREBMTwyuvvMK0adPGhaRnNBHvzyKXC+M6Uz0cVq1axYcffqj/ferUvtazP/30EzNnzgQgLy9P32UOYMmSJbS3t/Pwww/T1NTEjBkz2LVrl0EG8FxPPBcD9fX1tLS0IJFI0Gg0ODk5ERsba9bMj1QqJSgoCF9fX728wM/Pj/Dw8FFrjNBfD27nL2PTD0/xxqOfUZxnukhFIsHIy9rGzpJrH7qS+9fdMeQbmbW1NRMnTiQwMJD8/Hz27dtHWFgYgYGBoyZ30Wg0lJaWUlhYqO9wORbNdnRtz2tqagyKGQfONni42rNxwfX855dc3vk8g85uNVIYVK8MoO3RggARge4U59eh1ZwJRp0d7U0G1aYe+ds7e4iJ9CG7X5MXTzcHXOysifZ3p6Wpk/q6Nppam/Cxs0GpNJwirqvqwCfYnqqGM8fq5+lEaatpF5v2ZsNCxF61hkgXZxp6eyhvMr2OBZ0EBMSMiQRKN9sQHByMSqUiIyODgIAAQkNDR/27lp+ff15yiOHi7OxMQkKCXpdcUlIyJF3ycNA1uCosLMTd3Z3U1FSzz0BJJBImT56Ml5cXpaWlSKVSOjo6jOQMlwri/VnkcuGSyVSLGJOdnc3KlSv5/vvvefzxx1myZAmurq7s2LGD5557jpCQEDZt2kRCQoLZMyPt7e0oFAqamprOOwAVBIH6+nqUSiXd3d1Grhcfb/yOf/2/n+hpaTc4L2sbC7rbu5FZSAmM8iXtlkSu//NsbO3PT0ahk7uMRlZSq9VSUVFBQUGBvojLzc3tgmSu+s82ODg4IJfLTQb2VXUtbPngJ3p7tOQozl51HyN3Jy+vHu2ABjxSiQRnV1sDFw8dXh4O1NQZBtx+3s40NLUTEehBZ3MXxQX1fYWEHvbU9gvOLSyk2NlZ09JiGBj7+DlT2tquV4tMCvMiN8f42CUSsNNg1GjE2s6S4JRATp0oM1oH4MUl15MwOXiwP4NZaW1t1XtcD0XKcy76z15ERETg5+d3QT6POp2zzqYuLCwMX1/f87qOVFdXk5+fj6WlJVFRUWNSK1FUVMRzzz3HDz/8wOLFi3nmmWeQSqVs27aNF198kbCwMNavX8+sWbPMfiwiIiKjixhUX8Ls2LGDI0eOsGLFCoNiD+jTp61fv5433niDW2+9lTVr1hiNMQf19fUoFAo0Gg2RkZF4enoO6wbd1NREfn4+7e3tZ7WpKjxVSsa3h+lq76aro4fujm5s7K1JuX4qU2dNGvWgQBcMq1Qq7OzsiIyMHFZmWZcJVCqVAISHhw9qaTjW9JegeHl5ERERYSQv0GoF3vjoF3b+lDPodqwtJbjbWFHd2IlgonPh5Gg/TiqMCx8nRfkaFCw62lsT5utKZ2MXhUWGmeJJMX5kZ5UbLcvKNt6uPM6fbFWfe0mAizWVVcbWeD5eTtQVmbbZm5wWyuHTxu3JAb58+0GcHC9sYZHO0q29vX1EhcOdnZ3k5+dTW1urt/4bDw1o+tt/SqVSwsPDh/0g29zcjEKhoKOjA7lcjq+vr9m/a62trWzdupU333yTW2+9lRdffJHAwECDMW1tbbzxxhu0trayYcMGsx6PiIjI6CMG1Zc5KpWKJUuW8MMPP7Bw4UL+8pe/mE2PqUMXgCqVShwcHIiKisLR0fGs6wzMvgUFBY1Z4dJw6O3t1Ts9DBaADkSXde/q6jqrjvlC09XVhVKppLq6msDAQEJDQw3eg47OHv783D/6igZNMCHADYWqjii5N6cLjKe57e2s6NEYa6VtrC3RVTJGBXlQkFtFV1cvE6N9yck1dAdxcrKhvbXLIBPu7GxL64BlAK7u9tRr1fT2avG2t6Wu3rD4EWBipA+K46az0WFBLuS2G2fW3Vzs+OyNB0yuM9boXH6USiW9vb2Eh4efM4Ds/xDl4+NDeHj4uHQeGDiro+sgerZz6/8ZDg4OJiQkxOwPChqNhk8//ZTnn3+e4OBgXn75ZVJSUsbFA7OIiMjoIgbVIgiCwN69e1mwYAGNjY288MIL3HLLLWYP7NRqNYWFhZSWlg5q59be3o5KpaK2tnbUdaLmpP/Ne7Cip4FFWCO1IxtrWltbUSgUtLS0GLU9P55bzuKN3xqtE+rnRsmvVnYBfi6UVjUZ6dsBJkX7ckphGChLJJA6KZjcrHLa+mm2bWws0fZqjQsW5d4oBshQoqN8OG1Cax8dH4CytJ7uJtNa8MmRPuSaCKolErBs68E9yZ+iAV0Y4ycFsHHp701u70Kha8yiUqmwsLAw6XGt1Wr1biWOjo7I5XKD9sHjFV39QVFR0aAWgzpbw6KioiE/7J4vgiBw4MABlixZQlVVFS+++CJz584dlw/MIiIio4MYVIvo6e3tZfv27axcuZKoqCg2bdpEbGys2TMqHR0d5OfnU19frw/S1Go1BQUFVFZW4uvrS1hY2LjMlp0L3TRzf3uuzs5O/YPCWNuFjSY6KU9vb6++MU5raysvvbebzJNnMtEWMgleDvZU9+uQGBbqiarE2C/ax9ORSp09HuDl7oCj1AJNt4byiiaj8ROifMg9bRgsR4R7ohpQnBgU5EaJia6b9o7W+IS6o8g1rQX3cbKirso4G+3paU+jsoHwlGBO1hhu97ZrY/nzH9NMbu9C018nb29vT0REBC4uLvq6AIDIyMhx01RmOPT29lJcXExxcTGurq56Z4mqqiry8/OxsbEhMjJyTDy9S0tLWblyJf/+979ZuHAhS5cuHTO7QxERkQuH+Mg8TBoaGpg7dy5OTk64uLjw0EMP0dZm7Fqgo6ioaNA+9V988YV+nKnXP/vss7E4JT0WFhb8+c9/RqFQkJSUxKxZs3j88cfN3vLVzs5Ob7heWVnJzz//zL59++jt7SUlJYWJEydelAE19LkXJCYmMnHiRIqKivj555/JzMzEwsKCtLQ05HL5RRlQw5m25+Hh4SgUCvbu3cvBgwe545oY/LzOZDgnhXobBNQAkkGe5atqW5GH9nnfTpb70l7ZRklhPeUVTfj5GmvUu7p7jZapCmpxdTF0bygpacDf38VobHtrNy42pm0lJRJobjCdwfZw65MrFR0pw8HOcOYkdJD25OMBnSvPjBkzcHNz4+jRo/z8889kZWURFBREamrqsOscxgsWFhaEh4czY8YM7OzsOHDgAHv37kWhUCCXy5k2bZrZA+r29nZeeOEF4uPjkUqlZGdns27dunEdUF/K9zQRkbFGDKqHydy5c8nOzmb37t3s3LmTX375hYcffnjQ8YGBgVRWVhr8rFmzBgcHB6P2lx988IHBuJtvvtnMZ2MaFxcXtm7dyokTJ2hsbGTq1Km8/PLLdHV1mW2farWahoYGurq6sLW1RSaT0d3djUZjumPdxURvby/Nzc309PToz62zsxO1Wn2hD+28UavVtLa20tvbi62tLRKJBHVPJ0/ck4pEAj7ujkaZZABVUR0B/Rrs9MfKQobc25XTx8ro6dd63NXV2J+7sKgOd3fDgEUQwD/A2MXBaUAba6lUwiS5D3n7i7C3M5YUeXs6ou4x/fnTiXQ0ag3h3ob7ChnQnnw80tvbq/8+29jYoNFoaG5uprt7cEvEiwWNRkN3d3ef/7ytLWq1msbGRrOem1ar5bPPPiM+Pp7du3eza9cuPv30U0JCQsy2z9HicriniYiMFaL8Yxjk5uYyceJEDh06RGJiIgC7du3iuuuuo6ysTN8C81xMnTqV+Ph4tm/frl8mkUj4+uuvx91FRxAE9uzZw4IFC2hvb2f9+vXceOONo+7HXFRUhIODg346un/Bn7e3NxERERddtlrnf1tUVISTkxMRERE4OzsbaMl9fHyIiIi4IK2YzweNRqOfandxcUEul+Pg4GDQiORAbjvFRW0Ulxl3LwSIlnuTO6BgMdDXhY66DixkUuobDAsHHRys6ejoMSo4nDTR2N3DzdWexsY2gw6LFhZSbGwsaWvrxsrKghAfFwpy+vTbUcnBnBygw/b3sqG6yHTGzs/FhpriPi21V5gbhfQ9IEkk8K/35v9aXDn+6C+R8PDwQC6XY2trq5ckVVdXX9D24OfDYNeM9vZ2CgoKqKmpMYt/9+HDh1m6dCklJSWsX7+e++6776KojYDL854mImJOxKB6GLz//vssWrSIxsYzQUJvby82NjZ88cUX+k5QZ+PIkSMkJiaSnp7O9OnT9ct1rbB1vsuPPPII8+bNGzfTsL29vbz77rusXr2aSZMmsWnTJiZNGrk1na4oqqCgAGtr60H9mHW2XnV1dXpbr/F+w+pvr2djY6N3JRhIfy25zongYjo3W1tbIiIicHMzzsy2t7eTnZvHlncO0dpuLNGAvgDU3dOB2l9dN6LCvCjNq6GnR9Nng5djbIMXKfdGkV9tsMzN1Z6GxnYG9qmPCPNANaC746QYP4pLGnC3saKs8Iwdn62DNV2OlnR1nZk9mBDmQX6WaemTbVcv6u4zWWyPtECKK5vw93Hmgy1zTa5zIREEQe+4Y2trO6i2uK2tDaVSSUNDw6h4XI8F/c/tbHaW/R2EgoKCCA4OPi/pVUVFBatWreKbb77hqaeeYvny5RdFYWd/Lud7moiIORjfV8txRlVVFV5eXgbLLCwscHNzG7LuePv27UyYMMHg4gOwdu1arrrqKuzs7Pjhhx947LHHaGtr4y9/+cuoHf/5YGFhweOPP87dd9/N2rVrmTlzJn/84x9ZuXKl0d/kbAz0mI2Ojj6rx6ytrS1TpkyhqamJvLw8ysvL9UVx4+3irGsmoVKpAM55bjotua65hu7cxsIzd7joGm/k5+cD5z43e3t7khLjuecP8M6HmYNsE7zdHKmtb2dKpC85x8v0gbGpokTdcQykobGdsBAPCgoNCx9lFoYPKFKpBASwFyQGATVAZ1s3vgF2FPULqrsGeRjw8nKkId9wX3a/ykTGo566vzf8ud43BwcH4uLi9H7wpaWl+g6G4/GBr7Gxkby8PNRqNVFRUWf1dnd0dGTq1Kk0NTWhVCr15zaY1/1gdHR08Prrr/PKK69wzTXXkJWVRVhY2Gid0phyOd/TRETMgRhUA8uWLWPTpk1nHZObm3ve++ns7OSTTz5h5cqVRq/1XzZ16lTa29vZsmXLuLsAubm58eqrr/LII4+waNEi4uLiWLp0KY888shZp4t1QZlSqUSj0QzJL7c/Li4uJCUl6Sv5S0tLx6yS/1wIgkBDQwP5+fn09PQQFhY2LK9pXWtwXXe3kpISIiMjTWaALwSNjY3k5+fT2dlp1L3yXNwwJ47v9yooKDbdzluhrCFO7kvWMUPbusbGDiLCPVEWGGaaVQW1ODna0NJqqO+3sja+lClVfWNdXexwtLGkVFHL6cwiwqO9qatqMRrfVNaOlb0FPT0apBIJVYME9m6u9jRgGFRXnKrGMsgeD1crBEEYFw9FbW1t5Ofn09TUZGR9eC5cXFxITEzUe1yXlJQM+ztrTkw5Bg01MHZxcTFofV5cXDykz7VWq+Wrr75i5cqVuLu7891333HFFVeMi7/HQMR7mojIhUEMqoFFixbxwAMPnHVMWFgYPj4+1NQYakB7e3tpaGjAx8fnnPv58ssv6ejo4L777jvn2OTkZNatW0d3d/e41DZGR0ezc+dOdu3axaJFi3j//fdZv3491113ndGNqX9zE13WaySabIlEgq+vL15eXhQVFXHkyBG8vLyQy+UXTG/d32t6JFkvHRKJBB8fHzw9PSktLeXEiRO4uLgQGRmJvb1xgd5Y0F8KoPPRHq4UQCaV8tAfp/Psi9+ZfH1CmBeSbq3pdWXGnxGtViAw0I3sAdKQgoJabG0t6ezsyzRbWVkQGeqBtRZOHio2GCsdJAjqbOshOsaXk4oqvL2cqC00/SBgaWL93i4NoV7OyIR2Dh48qJczXQh6enpQqVRUVFTg7+9PTEzMiDTEEokET09PPDw89LNLRUVFREREXDCHkN7eXgoLC/WNadLS0kZ0fZRIJLi7u+Pm5kZNTQ0qlUofXA98cBAEgePHj7NkyRJUKhXr1q3jwQcfHJeZex3iPU1E5MIgBtWAp6cnnp6e5xyXmppKU1MTR44cISEhAYAff/wRrVZLcnLyOdffvn07v//974e0r+PHj+Pq6jquLz4SiYRrr72W2bNn8/bbb/PII48wdepUNm3axIQJE/jxxx956623eOSRR5DL5aPW3EQmk+k9n5VKJenp6WPWHU1He3s7SqWSuro6goKCmDJlyqhY48lkMkJCQvDz80OlUrF//378/f0JCwsbs6Y3XV1dqFQqqqqq8Pf3Z8aMGee174TYIOKnBHL0ZKnBcm93a3KPleLibItUAgPqD1GqanFwsKatzdC1ob7euHiwR61hYrgXxSUNhAW4UZpXRd6hYvxNOHGo8qqxsZXR1WXs7FGpqMXSUoabsy21Rq/20dk6iAtOfQ/XzJqOVt3CiRMncHZ2Ri6Xn7Nb6GihK4wtLCzEzc2NlJSUUXkg0z3Ment7U1ZWRm5uLkVFRcjlclxdjV1WzIEgCJSXl+u7sCYlJY3K31UikeDt7Y2Xl5e+Oc6yZcv43e9+x9y5c6mpqeH555/nyy+/5PHHH+c///mPSb32eEO8p4mIXBjEQsVhcu2111JdXc22bdtQq9XMmzePxMREPvnkEwDKy8uZNWsWH330EUlJSfr1lEolkZGR/Oc//+Gaa64x2OZ3331HdXU1KSkp2NjYsHv3bp555hmeeeYZ1qxZM6bndz7U1dXx/PPP89577+Hh4UF9fT333Xcfa9asMeuNqLm5mby8PDo7O5HL5Wadou4fcPr5+REWFmbWm8TAKfyRZsKHQv/21J6enkRERGBnZ3fuFYdAQXEdjy/7HN3VxtPdge66djrb+zLLgcEuFJcbSzIGK1gMDHCltJ+riL29NRPDPMk5XExPl6EW2tPLidoBco+oSb7kDdLwJTI5GATIPWG6PbmTFjpaje3ZLK0t+OSHBVhYSOnp6aGwsJCysjK8vb0JDw83Wwc/XZ2CUqnE0tLS7NKh3t5eSkpKKC4uHpMHh/6a8MjISLNmyTUaDVu2bOGNN97A0tKStrY25syZw+bNm5HL5WbZ54VGvKeJiIweYqZ6mHz88cc88cQTzJo1C6lUym233cbrr7+uf12tVpOXl0dHh2EXtvfff5+AgACuvvpqo21aWlry1ltvsWDBAgRBICIigpdffpn58+eb/XxGk+bmZpqampBIJEilUr2rh7nbATs7OxtpkqOiokY1i9bfBs/T05PU1NRRCzjPhoODA1OnTqWhoQGFQkFpaSlyufysBVnDRavVUlpaSmFhIY6OjiQmJo76Q1BYsAezfhPN//1yGmsrC2x6oan9TFGguse0Z3dd3a+2eANO1dGxT+5jaSkjOsyL4uxKju9T4ebhQEOXYSbbxc3GKKhuqu/oq5Q08TesVtVh72E6w+vmbk9LgXFnRoCQcE8sLPokK1ZWVkRFRREUFIRKpSIjI4PAwEBCQkJGdcahsbERhUJBd3f3mBW5WlhYEBYWRkBAAIWFhRw8eBAvLy/Cw8NH9TvR3t6OQqEYkSZ8pEgkEqKjo3FycqKrqwsLCwtaWlqor6+/ZINq8Z4mIjJ6iJlqkfOmoqKCtWvXsmPHDv74xz+yevVqgoKC2LlzJ8888wwSiYQXX3yRq6++2uw3fJ1/clFREe7u7kRGRp5XUN/fa9rZ2ZmIiIgLZpslCAKVlZUolcpRabms255KpcLCwgK5XI67u7vZ3qPaulYeWvAxEf5u5GdVGr3u5uVAXYNxS/CgIDdKSg0DWXt7K0L93aguqKOp/oyf9cQpAeScNMwwOzpZ0drUY7zdMA9KTBRQhoZ5YmlvSa6i2ui1SLk3BYdLTJ7f734fy2NLrzH5WmtrK/n5+TQ3N+v16ecz49C/UO9CW012dnZSUFCglwudr8e1Wq2moKBA75McHh5udumTIAicOnWKJUuWkJuby9q1a5k/fz5tbW289NJLvPrqq8yaNYsXXniByZMnm/VYRERELl7Ejooi582pU6doaGjg+PHjvP/++wQHByORSLjxxhs5deoU8+fP58EHH+TWW2/l9OnTZj0WmUxGWFgYaWlpWFhYkJGRQX5+Pr29pu3RBkOXvd23bx81NTXExsYSHx9/QX1odb6vaWlpuLu7c/ToUU6ePGmUQToXgiBQV1fH/v37UalUREREkJKSgoeHh1kfejw9HLn35kSTATWAr5fp7LiDvWGAFuDvgqe1FdrWboOAGqC50fhv0drSQ0CIsRzC3t448LOzs6KpvJGO6laTx2JtonhSR6h8cGtJR0dH4uPjmTJlCtXV1aSnp1NeXm7SIvBs6LKGmZmZWFpakpaWRlhY2AUtmrO1tSUmJobk5GS6urpIT09HqVQOu2OoVqulpKSE9PR02traSE5OZsKECWYPqKurq3niiSe48sorSUhIQKFQ8Oijj2JhYYGLiwsvvPACKpWK0NBQdu/ebdZjERERubgRM9UiY0JNTQ2rVq3iww8/5MEHH2T58uVj4o7Q0tKin7rUFTeeLXDUeU0rlUqkUukFdTo4F/313YGBgYSGhp6zWFLnVtLa2npB/Iebmzt46MEP6O42fsixs7OiRxDoURsWEFpaSpHK+iRFEf5unD5aAgJETvRFkWMcoDs6W9LabBjQTZwcQM4AjbSNrSVaiUBPvyYuUeGe5B/rK6j0TwyiaEAmOzLQnYIsY403wIvb5hI9OeAsZ9/HwM+YXC4/5wON7iGvoKAAZ2dnIiMjcXBwGHT8hUTnA93W1kZISMiQ6gDq6upQKBQIgkBkZKTZH/AAuru7eeedd9i0aRO//e1v2bJlC9HR0Wbdp4iIyKWNGFSLjBm6KdYFCxZw/PhxnnvuOR588MFRcc04135ramrIz89HJpMRFRVlFNALgqC3/uvp6dF78ppbwzkatLa2olAoaG1t1WtdBx53R0cHSqWS2tpagoKCCAkJMfvffTC2b/8f33x91ORrE2L8yM4zLiAMC7SjvqSdjtYzMg4rawskYBSgT5jkS+6AbLijkw1tLV0IA9z7oif7c/rXQsjoCb4oDhTqXwtPCOJ0iWFQ7SaT0WJCogLwyQ9PY2si+z0YWq2WsrIyCgoKsLe3Ry6XG8l5Bn52dQH4eGeo36e2tjYUCgXNzc2Eh4eP2G5zOGi1Wv7zn/+wYsUKrK2tefnll8dEmiYiInLpIwbVImOOVqvlX//6F0uWLMHKyoqNGzdy1VVXmf2mppteLiwsxNXVFblcjr29/Ygya+MNnaQjPz8fQRCQy+V4enrq9anl5eX4+PgQHh5+wTy9dTQ0tPOnhz5ArTa2tPP3d6G0qllfQGhvZ0WQpxM9LV2m9c8R7hQqDZd7+zpTXdlsNDYswosChaEnb3CYB8XF9bi529Nd00Zn+xlXD4lUgoPck4aGPomJs7Mt7SVNJs/JN8CVtz9/+OwnPgi9vb161xV3d3ciIiKwt7enubkZhUKhn2UZTkOh8cLADqq6mZ/+n0t/f3/Cw8PH5OE6JyeHpUuXcuLECZ5//nkeeeSRC/ZwKSIiculxcV2hLxMaGhqYO3cuTk5OuLi48NBDD9HWZuzN25+ZM2cikUgMfh555BGDMSUlJVx//fXY2dnh5eXF4sWLh601Hg2kUim33HILWVlZ3Hfffdxzzz3ccccdKBQKs+83JCSEtLQ0rKysyMzMZN++fRw5cgQXFxfS0tIICQm56AJqONOoIyUlhaCgILKzs9m3bx//+9//6OrqIjk5mZiYmAseUAO4udkzZ84kk6+VlzcR9Ku3dHiIB7bdWpQnyiktqsfF1dhZorPT2DO6urIZH38Xo+Wmui4WF9Th5e2Ms7WFQUANIGgF/D3OWMV5egxuGxdyFj31ubCwsCAiIsLoc3n48GFcXV1JS0sbkwyuOdB5XE+fPp3AwEBycnLYt28f+/bto7Ozk5SUFKKjo80e2NbW1vL000/z29/+lpiYGBQKBU8++eS4D6gv9XuBiMilxsV3lb4MmDt3LtnZ2ezevZudO3fyyy+/8PDD586CzZ8/n8rKSv3P5s2b9a9pNBquv/56enp6yMjI4MMPP2THjh2sWrXKnKdyVqytrVm6dCl5eXn4+fmRmprKsmXLaGpqMut+NRqNvkBMq9Xq7f8uxmB6MKRSKYIgIAgCFhYWY9YUZ6jceluC3n5uII52VkyW+1B8vJzmXwsRBQH8A4w1+DWVHdjYGJ+bu7ux3rhQVYulleF7bGEpI9jfmeLTxk4fAMUny7Gy6tu+rdXgf8PQiJEH1TpkMhkWFhZIJJJhFzCOdyQSCTY2NlhYWKDVavWfTY3GeLZiNOnp6eGNN94gLi6OsrIyDh8+zOuvv467u7tZ9ztaXC73AhGRSwVR/jHOyM3NZeLEiRw6dIjExEQAdu3axXXXXae3mDLFzJkziYuL49VXXzX5+n//+19uuOEGKioq8Pb2BmDbtm0sXbqU2traMevWNxiCIHDs2DEWLFhATk4Oq1at4v777x/VYLB/Qw6dr66tra2+SEoikeiLpC42dNpbpVIJoJd/dHV1oVQqqampGfOuk+fizTf38P2uLINl9vbW+LrYU1XaQGeHYbGhh5c9dXWGbh8AvoH2VJa2DxjrSF2NsYNH1ARf8rL79NbyKG+aSuqhV0t9Y4dJz2qAyBnhZOdVER3sifKk6YYwKzbfxrS0iMFP9ixotVrKy8tRqVQ4ODgQGRmJk5MTTU1N5Ofn097ePqhW/mKgv+ZfVyysk7zofN9Hs9EQ9H0fdu3axYoVK5BIJGzdupXrrrvuotJNX673AhGRi5mL7wp9iZOZmYmLi4v+Igowe/ZspFIpBw4cOOu6H3/8MR4eHkyaNInly5cbWK1lZmYyefJk/UUUYM6cObS0tJCdnT36JzJMJBIJ8fHx/PTTT7z99tu88sorzJgxg59//vm8s3a9vb0UFBSQnp5Oe3s7SUlJTJ48GTs7O71sIjU1FX9/f06dOsWxY8dobzcO3sYrjY2NHDp0iNOnTxMcHExqaipeXl5IJBJsbW2ZPHkyiYmJNDY2kp6eTllZGVqt9twbNjN/+EMiUumZIMfNzR4nmYzCvGpCwo0zv3U17Xh6G0swbG2MG7XU1bQSEGSc2dZotXj7OBEe6ErBgQIaKptpqG0lMGzwNsuNJX0e2fVVxjptHSPJVAuCQG1tLfv376ekpISJEyeSkJCgt23UXQdiYmIoKysjIyODysrKiyaL3dPTQ05ODgcPHsTR0ZG0tDQCAwORSqVYWVkRGRlJWloaMpmMzMxMcnNz6e427lQ5HARBIDc3l1tuuYX58+fzyCOPcPLkSa6//vqLKqCGy/deICJyMTM+UlYieqqqqvDyMrxBW1hY4ObmRlWV6bbKAH/84x8JDg7Gz8+PkydP6mUVX331lX67/S+igP73s213rJFKpdx+++3ceOONbN26lTvvvJOZM2eyfv16wsPDh7UtnbtCYWEhtra2xMbGDmrjJ5VKCQ4OxtfXl4KCAvbv34+/vz9hYWHjNnOja2He2Nh4zgYgzs7OJCYm6p0kdJ0ZL2RW3sfHmSuvimbP/+Xi5+dCZ107Nb86a7S3GmulAby8nakd4CFdpKrF3sGG9jbDdRydDPXjdvbW2Egk1FY0UdfSaTjWcXDXjtqSRibMCEdxsHhgY0cAHJxscPcaXpvuoTi2wBmtvIeHBxUVFeTn51NcXKxv1DMe0RUEFxQU4ObmdtbuozY2NsTExBASEoJSqWTfvn0jdqepr69nw4YN7NixgwceeICPP/4YT8/BH5bGO5f7vUBE5GJEDKrHiGXLlrFp06azjsnNzR3x9vvr7CZPnoyvry+zZs1CpVINOxgdD9jY2PDss8/ywAMP8Nxzz5GcnMwjjzzCkiVLztmAZaDjwIQJE4bsNW1lZUV0dDQBAQEoFArS09PHzOprqPT3pw4ICCAmJmZIgb9EIsHb2xtPT09KS0s5derUBfc8vuP2aRQV1FGlrKWrn9yjpKgeJxcrWgZ0QqypaDZqW67VCgSFupN7qtxgbHFRLQBSqYToaB9KT5aRW1JPVGwgeQNkHBWFdUgQEEyGzWDZqR7kFQiVD71l/EBv8SlTpgwpeJRIJPj7++Pj40NpaSknT5684B0+BzLQ/i8uLm7IXvT29vbExsbS3NxMfn4++/btIzQ0dEhOPGq1mr/+9a+sX7+e+Ph4Dhw4wOTJk8dtZlq8F4iIXLqIQfUYsWjRIh544IGzjgkLC8PHx4eaGkPbr97eXhoaGvDx8Rny/pKTkwFQKpWEh4fj4+PDwYMHDcZUV/cVZw1nu2ONv78/77//Po8++igLFy4kLi6O1atXc8899xjdbHW2ckqlkt7eXr037khurg4ODsTHx+v11qWlpWPWlGIw1Go1hYWFlJaW4uXlxfTp00fUgl2Xlffz86OgoIADBw7g6+tLeHj4ebWXHgl+/q74uTlQ1GHcUCUw2IvsJsPgt7amlYAQN8pKDNuWd3YYtyHvaFMTEupIU0kzef/L1y83JX1pbmgnZIIfhcoao9cAumuacHSyobXFOIMeEnHubKhGo6GoqIji4mI8PDzOmr09GzKZjJCQEPz9/SksLOTQoUN4eXkRERExos/CaNG/yVJERAR+fn4j+p44OzuTkJBAQ0MD+fn5lJSUEBYWZtJOUBAE9uzZw7Jly+jt7eWDDz7gxhtvHDcPv4Mh3gtERC5dxKB6jPD09BzSVGRqaipNTU0cOXKEhIQEAH788Ue0Wq3+4jgUjh8/DoCvr69+u+vXr6empkY/pbh7926cnJyYOHHiMM9mbJFIJCQlJfHLL7/w+eefs2zZMt599102b95MWloaEomE3bt3U1hYSGRk5Kh2CvTw8MDNzY3y8nKys7NxdHQkKipqTDO7Go2G0tJSCgsLcXJyYtq0aaOSnbS0tCQqKorAwEDy8/NJT08/p4zEHFx9QwwZe43tFMtLG02Od3a2owzDoLq4oBYnZ1tamvtkHX7+LtgKAnaCjNIaw2YtJfk1WFhK6VUbBtc2tqYvh8HhnhQcymfCrMnkZBt3cAyVe5tYqw9BEKisrESpVGJjY0N8fLxRg5eRYGlpSWRkJIGBgahUKjIyMggICCA0NHRM5Urd3d0olUqqqqoICgpi6tSp510IK5FIcHd3x83NTd95Mj09nY6ODu6//36kUikKhYIVK1aQkZHBs88+y1/+8pcxfyAcKeK9QETk0kV0/xiHXHvttVRXV7Nt2zbUajXz5s0jMTGRTz75BIDy8nJmzZrFRx99RFJSEiqVik8++YTrrrsOd3d3Tp48yYIFCwgICODnn38G+gKzuLg4/Pz82Lx5M1VVVdx777386U9/YsOGDRfydIdNe3s7L730Elu2bCEpKYnW1lays7NZtGgRixcvNpu7ha5hha7yPjw83KwBjC4gU6lUWFpaml1H29jYiEKhoLu7m4iIiBFn+YdKd3c3BQUFVFRU8M3fCiktajIaEyb3oiDfMFvn7GJHc4txV8OJU/ypKG3E190excFCEMDDx5k6EwWGoRN8KBxgo2fvZEN7d69R18XQACeKTpYQGBNAcb1xpvrlHfMINeFT3dDQgEKhQK1WI5fL8fYeukxkuLS2tqJUKmlqaiIkJISgoCCzPhhpNBqKi4spKirCw8MDuVxutky5Vqvliy++4JlnnsHNzY2oqCj27NnDvffey7p164z0wZcS4r1AROTiQgyqxyENDQ088cQTfPfdd0ilUm677TZef/11fXa0qKiI0NBQfvrpJ2bOnElpaSn33HMPWVlZtLe3ExgYyC233MJzzz1nkNEsLi7m0UcfZe/evdjb23P//fezcePGcWOxNhyKi4tZtGgR33zzDdDny/r888/j6Di8grGR0N7eri8QDA0NJSgoaFSnnAfKWCIiIvDx8RkT2YlOj65UKvXZ0KHqYodKfymEroPgsQOlvLR2p9HYqBg/8rKNpSGhci8KVWeCbRtbS2Kifcnep0DdZdjEwjvAheqyJoNlPiFOVBUbW+6FTfJHlXcm2A4K86DksBIJfVJu10khNNSdab5hYSHlk/9biKXlmQC2vb0dhUJBU1PTkHXBo4VONtHV1WWWLoyCIFBdXU1+fr7ewcPV1XXUtj8Yvb29vPPOO6xZswa1Wk1CQgJvvvmmgTPGpYh4LxARubgQg2qRi4ra2lrWr1/Pu+++y+23387zzz9PdXU1CxcupLi4mOeff5677757TIKY+vp6FAoFGo2GyMjIIRdDng1doVZbW9sF9SbWaDT6lu5ubm76lu7ng1arpaKiApVKha2tLXK5XB+QaXq1/PmP7xl5S1taybCwkBp5Vk+Y7E9udjkyCynRkd6Uniqjo7kTeydb2poNnT0mJgSTc6TYYJm9ozXtbd0woPwwKi6Q0/0kHmFBzhQeP7PuhFmTyM4+45AQKvfi5R3zgD4LOZVKRUVFxQV1julfMNi/NfhofDbz8vLo6uoak5kM6DuXn3/+maVLl9LR0cHmzZuZOXMmW7Zs4fXXX+eGG27ghRdeIDIy0qzHISIiIjIUxKBa5KJi2rRp+Pj4sH79eqZMmaJfrtVq+fjjj1m+fDk+Pj5s3ryZ5OTkMbnp6xp32Nvb6xt3DJf29naUSiV1dXUEBwcTHBw8Llooj0agqMu85+fno9Vqkcvleh/t/nz92UE+3PaL0foTJvsbOXvY2VsTFOJKvaqWhsoz8o7ouEBOHy81GBsY7kmpqtZouyFRPhQpDCUgNnZW9Ah9QX5gqDulR1QGYbdPuDcV7We6AF557SQeX36NXvPu4uJCZGTkeT+AjAa6pjIFBQXY2toSGRk5Ij13V1cX+fn51NTUEBISQkhIyJg8tKpUKlasWMHPP//M8uXLWbBgATY2Z2wSy8vLWbt2LV9++SXFxcUXzMFGRERERIcYVItcVDQ1NZ01MGhra2Pz5s28/PLLXHfddaxdu5agoCCzH1dvby+FhYWUlJTg4+NDRETEkAqn+uuKfX19CQsLMwgcxgs6T2ydpGGokpeWlhYUCsWQMu9trV386fZ36eoyzEoHhXpQUlin/z1C7kVXXQt2tlaoBkhD5JP8yc8yDMAlEnBwtqW1yTCDPSE+iNxjhgE4QMhEHwrz6wgPdqHgWJHR694JEVSWNwHwh3nTCIqyNJtUZjTo7e2luLiY4uJi3NzciIiIGFIAqpPpFBUV4eXlhVwuH5PPZnNzM5s2beL//b//x913380LL7ygL7IzxbmuCSIiIiJjhRhUi1ySFBcXs2zZMr799lueeuopFixYMCbZw46ODvLz86mvr9cHn6ayev0DHZ2ueDxkN89Ff8nLYBlngM7OTn179OE08/h/r+3hP18fM1ru5e2ErZ0l0s4eSnL75BnRU4M4fazEYJy1jSUajcbI2cNUBtvV05HG2laj9uQ+IU709EJ9boVJb+oJV8aQnduX4f7DnyZy5ZyEMZFCnC/d3d0UFhZSXl5+1ge4gY4lUVFRODs7m/34ent7+dvf/sbatWuJiori5ZdfJiEhYdz/XUVERER0iEG1yCWLIAikp6ezYMECqqqqWLNmDXfccceYaJQbGxvJy8szcn7oPyVvZ2eHXC6/6LJsgiBQUVGBUqk0khX099L29vYmPDx8WK4QlWWNPHbvdvpflQKD3PB2t+Poj6cNglxHF+PsM0B4jJ9RBjtikh/KLOOCR/9QD8qL6g2WWVlb4OVlQ1mO6e5yDh4OtFj0BaMf7HwcF9eLS3bQ3t6OSqWitrbW6IGnqamJvLw8enp6xqxAVhAE9u3bx5IlS/RZ6ttvv33c+02LiIiIDES8al3GNDQ0MHfuXJycnHBxceGhhx6ira3trOOffPJJoqKisLW1JSgoiL/85S80NxtalkkkEqOfzz77zNynY4REImHGjBns37+ftWvX8txzzzF79mwOHTqEuZ8lXV1dSU5OJjw8nLy8PA4dOkRBQQEZGRmUlpYyYcIEEhMTL7qAGs5090tLS8Pd3Z0jR45w4sQJvZ9wa2sr06ZNY9KkScO2WfMNcGXa9L6ub0HB7oQHuVJ+qoyyvGqjrHFrUydBEcZWdpZWxg4Gxfk1WFoZzxg4uxnODsgspISGuGI9aP9EaKtrIzDEDU9vp4suoIa+7oVTpkwhMTGR5uZm0tPTUSqVnDhxgqNHj+Lp6cn06dPHJPteWFjIPffcwx/+8Af+8Ic/kJOTw5133jmuA+pL/bopIiIycsbvlUvE7MydO5fs7Gx2797Nzp07+eWXXwxa3A6koqKCiooKXnrpJbKystixYwe7du3ioYceMhr7wQcfUFlZqf+5+eabzXgmZ0cmkzFv3jxOnz7NVVddxXXXXcf8+fOpqDDOXI4mEokEPz8/Jk6cSGdnJyqVCisrK6ZOnTqobOJiwsLCgrCwMCIjI6mvr6ewsBBXV1cmT558Xs1pfv+HBMIDXCg7WUrRqXIkQG1lM74hxh7dDs7G8oXK4nqjZeruXoJMNGmpr27R/9/e0QZ/DxtO/5JjYJFnCkdrGSEmAvqLCWdnZ2JjY3Fzc6OwsJD6+noiIiIIDQ01eyFia2srq1atYtq0aTg6OpKbm8vKlStH1GVyrLlcrpsiIiLDR5R/XKbk5uYyceJEDh06pPd63bVrF9ddd52+uclQ+OKLL7jnnntob2/Xe5xKJBK+/vrrcXtDKCgoYOnSpezatYsFCxbwl7/8xSw389bWVvLz82lubiYkJARPT08KCwupra0lODh4zFwUzEX/ZjHh4eE4ODigVCppbW0lPDwcf3//EWUcBUHgL7e8TcWA4HhifBA5h4sMlnn4OFFX1cJAAkI9KOtX3AgQHRfE6eMlRmM9/VyQAJqGJupK+tbx8HelvtG40YsOW2cbrn/0au6e/5shntX4or+Ex87OjsjISL0sxMLCQt9oaLQf/DQaDR9//DFr1qwhNDSUV155haSkpIvmAfNyvm6KiIicGzFTfZmSmZmJi4uLQfOE2bNnI5VKOXDgwJC309zcjJOTk1HTgMcffxwPDw+SkpJ4//33zS63GA5hYWH84x//4LvvvmPnzp0kJCTw5ZdfotVqz73yEOjs7CQrK4uDBw9ib29PWloaoaGhODg4MHnyZOLj46mvryc9PZ3Kyspx9bcZCu3t7Rw/fpxjx47h6elJWloa/v7+ODs7Ex8fT0xMDCUlJWRmZlJbWzvs85NIJMy6ZarR8trKZqNldVUt+AQaO24MlHUAlBcZ2+oBBIa40VJQrg+oAerKG7F3Gdy9pbO5C63QSENDw6BjxisNDQ0cOHCAwsJCoqOjSUxMxNnZGT8/P73s49SpUxw9epSWFuMHlpEgCAIZGRnMnDmTDRs28NJLL7Fv374xsb0cTS7n66aIiMi5EdsnXaZUVVXh5WU4fW1hYYGbmxtVVaYLtAZSV1fHunXrjKY+165dy1VXXYWdnR0//PADjz32GG1tbfzlL38ZteM/XyQSCTNnzuTQoUO8//77LFmyhHfffZfNmzcTFxc3oht9T08PRUVF+iK96dOnm9QUu7i4MG3aNKqqqsjPz6ekpISoqKhxr6/ub//n5+fHjBkzjDyrJRIJnp6euLu7U15eTnZ2Ng4ODsP2777yxlg+ffNHenvPPOjUVjbjF+xulMF283KkqtQwuK2vMe6W2NrUaeBZbWVtQXi4O3V5pXS2GBc8BgR7ktdUZvL4bB2smfbbCRw/fhxXV1fkcvm490keijONTCYjJCQEf39/ioqKOHToEJ6enkRERIx4NqekpISVK1fy3//+l0WLFrFkyZKLwunGFJf7dVNEROTsiJnqS4xly5aZLHjp/3P69Onz3k9LSwvXX389EydO5Pnnnzd4beXKlaSlpTF16lSWLl3KkiVL2LJly3nv0xzIZDLmz59PXl4eaWlp/O53v+PRRx8d8g0S+qa0CwsLSU9Pp62tjaSkpHMW6UkkEnx9fUlLS8PDw4OjR49y8uRJOjuNg7sLjUajQaVSkZ6eTnd3NykpKUyYMOGsTWCkUimBgYGkpaXh7OzMoUOHyMrKoqtrcElFf5zd7Jk2M8pouYuncRv65nrjIrGq0gbcvYzHOrr0BYaBYR44Cj1k7zlJeX4VUgvjS2FvV8+gxzf9ulgio+XMmDEDW1tbDhw4QE5ODt3d3Wc9rwuBWq1GoVCQmZmJpaWlfubkbNIjS0tL5HI5aWlpyGQyMjMzOX36ND09g/9NBtLW1sbatWtJSEjAysqK7Oxs1qxZMy4DavG6KSIiMhqImupLjNraWurrjQu1+hMWFsbf//53Fi1aRGNjo355b28vNjY2fPHFF9xyyy2Drt/a2sqcOXOws7Nj586d52wI8e9//5sbbriBrq6uITVEuZAolUoWL17Mnj17eOaZZ3jiiScGPT+dLlVXgHg+zT+6urpQKpVUV1fr9dYDp4bHmv7dIge2FR8unZ2d5OfnU1tbS0hICMHBwec8v+OZKtY99rHBMg8fJ+oqmozGuno60FhrGFxPiA8m96hhe3LfIDdcnKzI3XMSrfbMpc8rzJ3aYsPt2thbo5bK0GqML5FrP3mEmORw/e+6jpj19fXjRi+vs29UqVQ4OjoSGRmJo6Pxg8ZQ0DX/aWxs1L9/g52fVqvls88+Y/Xq1QQEBPDyyy8zffr0cS3zEK+bIiIio4Eo/7jE8PT0xNPT85zjUlNTaWpq4siRIyQkJADw448/otVqSU5OHnS9lpYW5syZg7W1Nd9+++2QOqzppsgvhhtDREQEX331FT/++CMLFizggw8+YP369fz+97/XF93pgpXS0lK0Wi2RkZF6H+qRYmNjw6RJkwgMDEShUFBeXk5ERAR+fn5jHowMbCseHR193m4ltra2TJkyhaamJhQKBWVlZec8vynJYXj5uVDTL4iuq2rBL8SdigHe0j6BbkZBdVeHYdZYHuNL3elSygt6DAJqAE8fN6Oguqu9m5DYEIrzDVuZe/i5MGFaqMEye3t7YmNjDc4vPDwcPz+/C2IPV19fT15eHlqtlokTJ+Lp6Xle75+DgwNTp06lsbGR/Px8SktLCQwMJCAgQD9jIQgChw4dYsmSJZSXl7NhwwbuueeeC/5wMRTE66aIiMhoIGaqL2OuvfZaqqur2bZtG2q1mnnz5pGYmMgnn3wCQHl5ObNmzeKjjz4iKSmJlpYWrr76ajo6Ovj6668NpnE9PT2RyWR89913VFdXk5KSgo2NDbt37+aZZ57hmWeeYc2aNRfqVEdEb28v7733HqtWrWLChAls3ryZmpoaVq1aRVBQEJs3bz5r2+2RIggC1dXV5OfnY2lpSVRU1IgzxMNlOG3FR4ogCNTU1JCfn49MJiMyMhJ3d2O7PIAv3/uFT9/ea7DMlAtISJQPRXmGkh2pTIK1rSWu7g7IOjspPtG3jv8EL8pzawzGBk/0pyTPWPIzcXokuQM6Md766FXMfebaIZ2fVCpFLpfj4eExJg9H7e3tKBQKmpqaCAsLIzAw0Gzv31tvvcXnn3/Os88+y8yZM1mzZg3ffvstTz/9NMuWLRtxVny8I143RUREBkMMqi9jGhoaeOKJJ/juu++QSqXcdtttvP766/qCq6KiIkJDQ/npp5+YOXMme/fu5corrzS5rcLCQkJCQti1axfLly9HqVQiCAIRERE8+uijzJ8/f1w3dDgbjY2NLFiwgL/97W9IJBL++Mc/smHDhhFLPYaKRqOhpKSEwsJC3N3dkcvlZvPxHWlb8fNBq9Xqz8/FxcVksV99TQuPXPuaQWbZ3duJ+somg3ESqQQ7Oyva285kpz19nQnwd+TozqMGLgohU/woOmnoUS6zlCGztEDd3Wuw3D/Cm4oKQweM135YTED4uT2qtVotZWVlFBQUjKhYczio1WoKCgr0tm7h4eFn1byPBt3d3WzdupWtW7fS09PDFVdcwfbt2wkNDT33yhcx4nVTRERkMMSgWkTkLFRWVrJ27Vp27NjBzTffTG1tLYcOHWLp0qU8+uijYzI1293djVKppKqqiqCgIEJDQ0dNb32+bcVHg56eHgoKCigvLzcZEL741Gcc/kVhsI5/sBvlA3yoo+ICyTtein+IO7YSDfmZCqKmhXL6YIHBOM9AN2pLja3wwmKDKMwqN1ru6OtGW3NfAWn45AA2f/PUsM5PrVZTVFRESUkJXl5eREREjNrfuH/g7uTkRGRk5Ji4kGi1Wr788ktWrVqFq6sriYmJfPHFF8ycOZONGzcyceJEsx+DiIiIyHhDfAQWETGBIAisWbMGuVxObW0tx48f59NPP2X37t384x//4OOPP2batGns3Llz1PytB8Pa2pqYmBiSkpJobm5m3759lJWVnZeHrVarpbi4+Lzbio8GVlZWREdHk5KSQnd3N/v27aOwsBCNRgPAbBOe1c7uhoGjhaUMWxsLgn3tKc3MQZGR11dIWlRttG5taQNObsaBp6296Qck/+AzMxJX3JwwrHMDQycNiURCRkYGCoUCtVo97G3pEASB2tpa9u/fT1lZGZMmTSI+Pt7sAbUgCBw5coSrr76a5cuXs3r1ao4ePcr27dtRKpWEhoaSkJBwztbdIiIiIpciYqZaRGQQtm7dSlpaGikpKUavqdVqtm3bxvPPP09sbCybNm1i4sSJZtfN6oIphUJxTj3yYOtXV1ejVCqRyWRm65x3PjQ0NOiDzoiICDw9vHj0+tdpqD3jPe3u5UhTXSshci8sNL0UHStEKoGOlk6jhw0nNwdaGgwDvKjEUPIOFxosC4zypUxpqLUGiJoWhiK7EqlMyl8zVuLscX6Ba2trKwqFgpaWlhHpntva2gzWN4fu3RRVVVWsXr2af/7znzz55JM8++yzJuUsKpWKv/71r6xfv16ULoiIiFxWiEG1iMh5UF9fz5o1a3jvvfe45557eO6554bkInC+9Ncj65qPnMv/d2Bb8QvhLDJUBEGgsrISpVKJtbU1qoONnNpXgEatobdHjbpLjVSroTTHUK7h7u9EXWmTwbLIhBAUR4oMlk1IDif3gMpgmVQqwdrBlq52Q9cQRzd7Wjs1JF41kRV/fXDUzlHnsKLRaIiIiDing0xPTw8qlYqKigoCAgIICwszu+4d+vT2b7zxBlu3buXqq69m06ZNREREmH2/IiIiIhcbYhpBROQ8cHd357XXXuPIkSOUlZURFxfHG2+8MawmGSNBKpUSEhJCWloa1tbW7N+/n7y8PJOSgsHaio/XgBr6muP4+fmRlpaGp6cnUvsO8jIVKA+rKDpZQrmiEkdX44cIR3fjZRaWxvrzhirjludarYCfiQLE1oZ2/EM8uOLm+BGejWk8PDxISUkhNDQUhULBwYMHDfyPzxzXGalOV1cXKSkpREVFjUkh6VdffUVCQgLffPMN3377LV9++aUYUIuIiIgMgpipFhEZJQRB4D//+Q+LFi1CEAQ2bNjANddcMybBa1tbG3l5ebS2thIeHo6/v7/eEULXVnwsHCHMRVdXF4/OeIHmmjMyjtAYfwqPFRmMC5sSiOq4YcMX72APqosNixrh1wx0Q7vBspjpcnIOFBiNjbsqhqXb/4S1jXkC2f5OL25ubkRERGBvb39eUp+RIggCJ06cYOnSpeTl5bFu3ToeeuihC96MSERERGS8I2aqRczCW2+9RUhICDY2NiQnJ3Pw4MGzjv/iiy+Ijo7GxsaGyZMn85///MfgdUEQWLVqFb6+vtja2jJ79mzy8/PNeQrDRiKRcP3113Py5EkeeeQR5s+fzy233EJubu55FRUOBQcHB+Lj44mJiaG4uJhffvmFffv2Dbmt+HjHxsaGGTcYZopL8iqRWhpewsqV1UgG6Hiri+twcDW2IvQNNc5KN1a3GC0DmJgUZraAGkAmkxEaGsqMGTOwsbFh//79/PLLL+Tk5BASEkJycvKYBNTV1dU88cQTzJ49m6SkJBQKBX/+85/HZUB9OV5jRERExjdiUC0y6nz++ecsXLhQ7wwQGxvLnDlzqKkxLgIDyMjI4O677+ahhx7i2LFj3Hzzzdx8881kZWXpx2zevJnXX3+dbdu2ceDAAezt7ZkzZw5dXV1jdVpDxsrKigULFqBQKIiIiGDGjBk888wz52yDPBp0d3ej0WiQyWRIJBK0Wq3ZA/qxIuXaWIPfNb1a3ANdDJZ1d/QQEOlttK6fiQBaZmF8+assqMHeydAB5YrbpnHbX64ewREPH0EQ0Gq1SCQSLCws0Gg0dHd3m/097Orq4pVXXiEuLo6GhgaOHz/O1q1bcXFxMet+R8rlfo0REREZn4jyD5FRJzk5mWnTpvHmm28CfdrMwMBAnnzySZYtW2Y0/s4776S9vZ2dO3fql6WkpBAXF8e2bdsQBAE/Pz8WLVrEM888A0BzczPe3t7s2LGDu+66a2xObAQIgkBWVhYLFy7kyJEjPPvss/zpT38aVT3swLbicrkcLy8vent7UalUlJeX4+/vT1hY2EWbre7s7CTvdB5b7vmEztYzevWIWH+Uh4oMxk5MiSA7Q2G0LGe/0mCZT4gHVUXGshB5fCjKEyUAxKRGsOrTx7G0Nq9+ebBGP7q2552dnWZpe67Vatm5cycrVqzA3t6erVu38rvf/W5c6+1BvMaIiIiMT8RMtcio0tPTw5EjR5g9e7Z+mVQqZfbs2WRmZppcJzMz02A8wJw5c/TjCwsLqaqqMhjj7OxMcnLyoNscL0gkEiZPnsz333/PBx98wLvvvktqair/93//NyrZx5aWFo4ePUp2djYBAQFMnz5d7yJhaWmp93/u7OwkPT2d4uJis/tqjyZqtRqFQkFGRgaWVpakXBtn8Hp7i3FBaHtrp9GyxmrjwsSqItOyEEtrGQD+4d4sff9hswbUOovDjIwMqquriYuLIzY2Vt8508XFhWnTphEdHU1RURH79++ntrb2vD87giBw6tQpbrjhBp544gkWLVrEsWPHuPrqq8d9QC1eY0RERMYrYlAtMqrU1dWh0Wjw9jacgvf29qaqqsrkOlVVVWcdr/t3ONscb0ilUm666SZOnTrFvHnzuO+++7j99ttRKBTnXtkEnZ2dnDp1ikOHDuHk5ERaWhpBQUEms5j29vZMnTqVKVOmUF5eTmZm5qgEZuZEZxmoa06TlJRETEwMaTcYNoKpLKzFcUAjl7L8KqQyqdE4e2fjANqULKShsgkndwee/fhRHFzM0xYe+h6IDh8+zOnTpwkLCyM5ORk3NzejcRKJBG9vb6ZPn05AQADZ2dkcOXKElhbT+u9zUVtby1NPPcXMmTOJjY1FoVDw+OOPj0vdtCnEa4yIiMh4RQyqRUTGEGtraxYvXoxCoSAwMJDU1FSWLl1q0krNFP0ztxKJhOnTpyOXy4ckJ3F3dyclJYWgoCCys7M5evQora2t51xvLNE1t8nMzKSsrIyYmBji4+NxdHQEYPJ0OXaONgbr+MkNAyFNjwaPIGejbfuFGfuHW1gZB5JtTR2s+OgRfII9zudUBqWrq4usrCwOHTqEq6vrkC0OpVIpQUFBpKWl4ezszKFDhzh16hSdncaZeVN0d3fz+uuvExcXR2VlJUePHuW1114zGciLiIiIiAwfMagWGVU8PDyQyWRUVxu2h66ursbHx8fkOj4+Pmcdr/t3ONsc73h5ebFt2zYyMjLIysoiNjaW9957j97eXpPjR6utuFQqJTAwkLS0NBwdHTl48CA5OTlm99UeCi0tLRw5coTs7GyCgoJISUnB09PTINi0tLIgcXaM4YoS48uYp69xQGxKxjFQFuIf4c3G/y4hMj5kZCdxFjQaDQUFBWRkZKDVapk+fToRERHDzhAPt+25Vqvl3//+N0lJSXz44Yd8/PHH7Ny5kwkTJozGaY054jVGRERkvCIG1SKjipWVFQkJCezZs0e/TKvVsmfPHlJTU02uk5qaajAeYPfu3frxoaGh+Pj4GIxpaWnhwIEDg27zYkAikTB16lT27NnDu+++y+uvv05aWhp79+7VSzN0hWQZGRlUVFQwadIk4uPjTbaHHg6WlpZERkaSmppKT08P6enpFBUVXRC9df/MrbOzM2lpaWdt3Z08Z4rB71UmPKg7WowdG6pKjZ0h+stCEmZPYtOupfiHG7uHnA+67pAZGRnU1tYSHx/PlClThv1ANBAbGxsmTZpEUlISra2t7Nu3j507d+oz14IgkJOTw80338yf//xnnnjiCU6ePMl111037nXTZ0O8xoiIiIxXRPcPkVHn888/5/777+fdd98lKSmJV199lX/84x+cPn0ab29v7rvvPvz9/XnxxReBPrurK664go0bN3L99dfz2WefsWHDBo4ePcqkSZMA2LRpExs3buTDDz8kNDSUlStXcvLkSXJycrCxsTnb4Vw06GzNNm7cyG9/+1vmzJnDm2++SV1dHd9//z3R0dFmC4YaGhrIy8tDo9Ho3UPMHXj19vZSVFREcXExnp6eyOXyIQWaXR3dPBD7HD3dZzKz3v4uVBfW6n+3sJIhaLX09mj0yyQSsLS1oKfDcDZAHh/CpLRI5q64CZlsdPMMOveOrq4u5HI5Pj4+Zvm76hxgbrzxRmpqanjyyScpLi7mb3/7Gw8++CBr1qzBw8M8cpYLgXiNERERGY9cHJUpIhcVd955J7W1taxatYqqqiri4uLYtWuXvgiopKTEIAs5ffp0PvnkE5577jlWrFiBXC7nm2++0d/sAJYsWUJ7ezsPP/wwTU1NzJgxg127dl1SNzsbGxuWL19OWloa9957Lzt37mTq1KlkZGQQEBBg1n27ubmRkpJCeXk5p0+fpqSkhKioqPPOiJtCEAQqKipQKpXY2tqSmJiIs7OxBnowbOysiZsZzcHvT+mXufu5GgTVvT0agif6UZRV1m+/EBDhS8HJUv0yN18XbntqDskDXEXOl66uLvLz86mpqSEkJISQkBBkMtmo7qM/EokET09PfvzxR+bNm8fKlStxdHTk7bff5oEHHrioM9OmEK8xIiIi4xExUy0iMk6orq7m+eefZ8eOHcybN4+bb76ZF154gby8PFatWsW99947Jg4Nvb29FBYWUlJSgo+PDxEREVhbW4/Ktuvr61EoFOedEd/7z0O8vuBj/e9hkwIoOFpoMGZiagTZ6ab9qi0sZUy7OYb430cyYVI0fn5+oxJ49s++e3t7ExERMSZBmSAI7N69m2XLlqHVatmwYQN5eXls2rSJmTNnsmnTpotWQy0iIiJysSAG1SIi44B///vf3HXXXcyePZuNGzcSFRUF9GlFv/jiC5YuXYqzszObN29mxowZY5J57OzsJD8/n7q6OkJCQggODh5xtrWtrQ2FQkFzczOhoaGD2v8NeXtNHTyYsJJedZ+8w8rGEk1XD5qeM9KOoGhfinPKDdbzj/DGJ9STh9bdjk+oJ9XV1eTn5+s15iN1wtDppvPz87G1tSUqKmpY2ffz4fTp06xYsYIDBw7w3HPP8eSTT+qb/NTU1LB27Vq2b9/OCy+8wKJFi8bkmEREREQuR8SgWkRkHFBZWYlKpWLGjBkmX+/o6GDr1q1s3ryZ2bNn88ILLxAaGjomx9bY2EheXh5qtRq5XK5vLjMUenp6UKlUVFRUjHpXx4rCWv755m5+/uowWo2W0CgfCk+dkXbILKRIZRJ6OtU4utnz21unMfOOFCLigg22o9FoKC0tpbCwEBcXFyIjI7G3tx/ycZzP3+d8aGhoYOPGjWzfvp3777+ftWvX4uVl7LsN6LsyxsbGmnxdREREROT8EYNqEZGLiLKyMlasWMGXX37JY489xuLFi/UezuZEl4lVKpXY2NicMxPbv+22m5sbcrl8WIHqcKgqruOrt/6PquI6sn7OBcDBxQ5Xb2diUsKJvWIC8bMnYWnCk7o/PT09FBQUUF5ejp+fH+Hh4Wd9AOjs7EShUFBfX6/PvptTN61DrVbz/vvv88ILLxAbG8vLL79MbGzsJaebFhEREbnYEINqEZGLDEEQOHjwIAsWLKCwsJDVq1czd+7cMQnoNBoNRUVFFBUVmdQMC4JAVVUVSqXyvCUVw6Whqgl1dy+u3s5Y2Yy8tXh7ezsKhYKmpiZCQ0MJDAw0+NuaU3N+NgRB4KeffmLp0qV0d3ezZcsWbrrppvOS0YiIiIiIjB7i1Vjkouett94iJCQEGxsbkpOTOXjw4KBj33vvPX7zm9/g6uqKq6srs2fPNhqvc0vo/3PNNdeY+zSGjEQiITk5mX379vHSSy+xYcMGZs6cSUZGhtlbj8tkMsLDw0lLS0MQBNLT01GpVGg0GhobGzl48CD5+flEREQM2nbbXLj5uOAd7HFeATWcaeseGxtLVVUVGRkZVFVVodVqKSsrIz09nebmZqZNm0ZMTMyYBNT5+fnceeedzJ07l/vuu4/s7GxuueWWcRdQX27fRREREZH+jK8rsojIMPn8889ZuHAhq1ev5ujRo8TGxjJnzhxqaowbfQDs3buXu+++m59++onMzEwCAwO5+uqrKS83LGi75pprqKys1P98+umnY3E6w0IqlTJ37lxyc3O54YYbuPnmm3nggQcoLi42+75tbGyYPHkyiYmJ1NTUsHfvXo4ePYqnpydpaWn4+vpe9HIENzc3kpOTCQ8P5/Tp0/z0008UFBQQHR1NQkKCWewGB9LU1MTy5ctJSUnBx8eHvLw8li5dOiaB/HC5nL+LIiIiIiAG1SIjJCAggLfffttgWUZGBnZ2dmMS1Ol4+eWXmT9/PvPmzWPixIls27YNOzs73n//fZPjP/74Yx577DHi4uKIjo7mr3/9q74bW3+sra3x8fHR/7i6uo7F6YwIe3t71qxZQ05ODlZWViQmJrJ27Vra2trMul+1Wk1VVRUdHR04OztjaWlJbW0tra2tZt3vWNLR0UFNTQ1arRYXFxf9Oeu6FpqL3t5etm/fTlxcHMePH2ffvn28995747pltvhdFBERudwRg2qREZGcnMyhQ4f0vwuCwNNPP82CBQsIDg4+y5qjR09PD0eOHGH27Nn6ZVKplNmzZ5OZmTmkbXR0dKBWq41kCnv37sXLy4uoqCgeffRR6uvrR/XYzUFQUBB///vf+eGHH/jpp5+YOnUqn3zyyai3HtdqtRQXF7Nv3z7a29tJTk4mMTGRtLQ0PD09OXr0KCdPnjR74GlO1Go1eXl57N+/HysrK2bMmEFCQgIzZszAwsKCzMxMvePHaCIIAr/88gszZszglVde4a233uKnn34iISFhXGf+xe+iiIiIiBhUi4yQlJQUg6D6b3/7G6WlpSxfvnzMjqGurg6NRqPvoqbD29ubqqqqIW1j6dKl+Pn5GQQD11xzDR999BF79uxh06ZN/Pzzz1x77bVoNJqzbGl8IJFISEtLIyMjgw0bNrB69WquuuoqDh48eN56a0EQqK6uJiMjg4qKCqZMmUJ8fDwODg5An946LCyM6dOnI5PJyMjIQKlU0tvbe44tjx+0Wi2lpaWkp6fT1tZGUlISEydO1LuAWFtbExMTQ1JSEm1tbaSnp1NSUjIqDy4FBQX88Y9/5I477uDOO+8kOzub22+/fdzppk1xKX8XP/30U2xtbamsrNQvmzdvHlOmTKG5uXnMjkNERGT8I7YpFxkRKSkpLFu2jLa2NiQSCStWrOCFF17QB1gXAxs3buSzzz5j7969Bg4Wd911l/7/kydPZsqUKYSHh7N3715mzZp1IQ512MhkMu6//35uvfVWNm7cyPXXX8/vf/971qxZM6KW583NzSgUCjo6OggPD8ff33/QzKmNjQ0xMTEEBgaSl5dHeXk5ERERo9a10FzU1dWhUCgQBIGYmBg8PDwGPV5HR0fi4+P1HSJLS0uRy+V4enoO+xxbWlrYsmUL77zzDnfccQe5ubn4+/uPxildNIzn7+Jdd93Fxo0b2bBhA2+88QarV6/m//7v/9i/f/+YNfgRERG5OBj/KRCRcUlCQgJSqZSjR4+yadMmPD09mTdv3pgeg4eHBzKZjOrqaoPl1dXV59SevvTSS2zcuJEffviBKVOmnHVsWFgYHh4eKJXK8z7mscbR0ZH169eTlZWFVqslPj6eDRs20NHRMaT1Ozs7OXXqFIcPH8bV1ZW0tDQCAgKGFDg6OTmRmJhIdHQ0BQUFHDhwgIaGhvM9pVGnvb2dY8eOcerUKfz9/UlNTR1ScCyRSPDw8CAlJYXg4GByc3M5cuQILS0tQ9qvRqPhww8/JC4ujv3797N3714++OCDizKgvpS/ixKJhPXr1/Pee++xfv163njjDXbt2nVRvk8iIiLmRQyqRUaEnZ0dkydP5p///CcvvfQSr7zyyphPU1tZWZGQkGBQ2KQrdEpNTR10vc2bN7Nu3Tp27dpFYmLiOfdTVlZGfX09vr6+o3LcF4LQ0FA+++wz/vOf//Df//6X+Ph4/vGPfwwqW+jt7SU/P5+MjAy9pCQiIgILi+FNbkkkEry9vZk+fTre3t4cP36cEydODDmoNyc9PT2cPn2a/fv3Y2trS1paGsHBwcP+HEulUgICAkhLS8PZ2ZlDhw6RlZVFV1eXyfGCILBv3z5++9vfsnHjRl555RX+97//kZSUNK4z+WfjUv8u3nDDDUycOJG1a9fy9ddfExMTM6b7FxERuTgQm7+IjJjHHnuMbdu2cdNNN/H1119fkGP4/PPPuf/++3n33XdJSkri1Vdf5R//+AenT5/G29ub++67D39/f1588UUANm3axKpVq/jkk09IS0vTb8fBwQEHBwfa2tpYs2YNt912Gz4+PqhUKpYsWUJrayunTp0al1Zmw0Wj0bBjxw6ee+45QkND2bRpE/Hx8UgkEnp6evjvf/+Ls7MzDg4OREZGjqp1XHd3NyqVisrKSgIDAwkNDcXS8vx8pYeLzm9apVLh7OxMZGTkqMqWOjs7USqV1NTU0NHRwYwZM/SOFcXFxTz33HN8//33LF68mGeeecZsnSbHmkv5u7hr1y5uvfVWenp6yMrKIjo6esz2LSIicvEgBtUiI+bdd9/lL3/5C9nZ2URERFyw43jzzTfZsmULVVVVxMXF8frrr5OcnAzAzJkzCQkJYceOHQCEhISYtPxbvXo1zz//PJ2dndx8880cO3aMpqYm/Pz8uPrqq1m3bp1REdbFTktLi346+9ZbbyUhIYFXX30ViUTC7t27zaqBbm1tJS8vj7a2Nr1G29wzHYIg6HXTEomEyMhIPDw8zLa/5uZm7rnnHo4dO8Zjjz1GV1cX77zzDrfccgsvvvgigYGBZtv3heJS/C4ePXqUmTNn8u6777Jjxw6cnJz44osvxmz/IiIiFw9iUC0yYq688kri4+PZunXrhT4UkfPgu+++46GHHqK2tpaZM2fy8ccf4+LiYvb9CoJAbW0tCoUCmUxGZGQk7u7uZtlXW1sbeXl5tLa2jlkQD33WfE899RR/+9vfsLa2Zv369Tz99NMXrczjcqOoqIjU1FSeeuopli1bxoEDB0hNTeXw4cPEx8df6MMTEREZZ4hBtciw0Gq11NbWsn37dt5++21ycnLGpLOcyOhTUVHBypUr+fTTT3nssce44oorWLlyJU1NTbzwwgvcfPPNYxJ46mzsCgoKcHFxITIyctQkET09PahUKioqKggICCAsLGxM5CaCIHDgwAGWLl1KZWUla9eupbm5mXXr1pGUlMRLL73EpEmTzH4cIiOnoaGB6dOnM3PmTLZt26Zffv3116PRaNi1a9cFPDoREZHxiBhUiwyLvXv3ctVVVxEdHc0HH3ygn9oVubj45JNPePjhh7n++ut58cUXCQsLA8508lu5ciVRUVFs2rSJ2NjYMcmsjmYArNVqKSkpobCwEFdXV+Ry+Zhpl0tLS1m1ahU7d+5k4cKFLF26VK/Zbmho4IUXXuCdd97hmWeeYd26dWNyTCIiIiIi5kcMqkVELkNycnJoampi+vTpJl9vampi3bp1vPPOO9x5552sXLlyzFpkt7W1oVAoaGlpISwsjICAgCFnzMdSUjKQ9vZ2Xn31VV577TVuuOEGNm7cSEhIiMmxSqWSsrIyZs6cOSbHJiIiIiJifsSgWkREZFAUCgWLFy9m7969LF68mMcee8ygOYc50RUVAsjl8rM2Y4G+wkuFQkF7e/s5G9SMJlqtln/84x+sXr0ab29vXnnlFWbMmCHqpkVEREQuM8SgWkRE5KwIgsDu3btZtGgR7e3tbNiwgRtuuGHM9NZlZWUUFBTg5ORk0v6uu7sbpVJJVVUVQUFBhIaGDttPeyQIgsDhw4dZunQpxcXFrF+/nvvvvx+ZTGb2fYuIiIiIjD/E5i8iIsPgrbfeIiQkBBsbG5KTkzl48OCgY3fs2IFEIjH4GZjlFQSBVatW4evri62tLbNnzyY/P9/cpzEsJBIJV199NceOHWPRokU88cQT3HDDDZw6dQpzP5NLpVKCgoJIS0vD3t6eAwcOkJubS09PDxqNhsLCQtLT0+nt7SU1NRW5XD4mAXVFRQUPP/ww1157LVdeeSV5eXk8+OCD4zKgvhw/syIiIiIXAjGoFhEZIp9//jkLFy5k9erVHD16lNjYWObMmUNNTc2g6zg5OVFZWan/GejLu3nzZl5//XW2bdvGgQMHsLe3Z86cOYN247uQWFhY8Pjjj6NQKIiNjWXmzJk89dRTZz3/0cLS0pKoqChSUlLo7Ozkf//7H7/88gvV1dVMnTqV2NhY7OzszH4cHR0dbNq0ialTp9Ld3U1WVhYvvvjiuHXAudw/syIiIiJjiRhUi4gMkZdffpn58+czb948Jk6cyLZt27Czs+P9998fdB2JRIKPj4/+p3/TCkEQePXVV3nuuee46aabmDJlCh999BEVFRV88803Y3BGI8PNzY3XXnuNo0ePUllZSVxcHK+99hrd3d1m33dvby8ajQaZTIZMJkOtVqNWq82eMddqtXz55ZckJCTw7bff8t133/HFF1/oXVPGK+JnVkRERGTsEINqEZEh0NPTw5EjR5g9e7Z+mVQqZfbs2WRmZg66XltbG8HBwQQGBnLTTTeRnZ2tf62wsJCqqiqDbTo7O5OcnHzWbY4XJkyYwM6dO/nkk0/46KOPSEpK4t///jdarXbU99XV1UVWVhaHDx/G1dWVGTNmMGPGDEJDQ8nJyeHIkSO0traO+n4FQeDYsWNcc801LF68mGeffZbDhw8zc+bMcV+IKH5mRURERMYWMagWERkCdXV1aDQao/bI3t7eVFVVmVwnKiqK999/n3/961/8/e9/R6vVMn36dMrKygD06w1nm+MNiUTCddddx8mTJ3niiSf485//zM0330xOTs6oZI81Gg0qlYqMjAwEQWD69OlERERgYWGBVColICCAtLQ0nJycOHjwIDk5OaOWMa+qquKxxx7jd7/7HampqSgUCh5++OFxqZs2hfiZFRERERlbxKBaRMRMpKamct999xEXF8cVV1zBV199haenJ+++++6FPrRRx9LSkqeeegqFQkFUVBS/+c1vWLRoEfX19SPaniAIVFZWkp6eTn19PfHx8UyePBlbW1uT+46MjCQ1NRW1Wk16ejqFhYVoNJoR7burq4utW7cSFxdHc3MzJ06cYMuWLTg7O49oexcTl9NnVkRERGS0EYNqEZEh4OHhgUwmo7q62mB5dXX1kJuiWFpaMnXqVJRKJYB+vfPZ5njDw8ODN998k0OHDlFQUMCUKVN466236OnpGfI2mpqaOHjwIPn5+cjlcqZNm4aLi8s517OzsyM2Npa4uDiqq6vJyMigurp6yBlzrVbLN998Q0JCAl988QVff/01X3/9NXK5fMjHPp4QP7MiIiIiY4sYVIuIDAErKysSEhLYs2ePfplWq2XPnj2kpqYOaRsajYZTp07h6+sLQGhoKD4+PgbbbGlp4cCBA0Pe5nhEIpEwadIkvv/+ez766CPee+89UlJS+OGHH84a4HZ2dnLy5EmOHj2Kh4cHaWlp+Pr6Dlu77ObmRnJyMmFhYZw+fZrDhw/T0tIy6HhBEDh58iTXXXcdTz31FIsXL+bo0aPMmjVr3Oumz4b4mRUREREZYwQREZEh8dlnnwnW1tbCjh07hJycHOHhhx8WXFxchKqqKkEQBOHee+8Vli1bph+/Zs0a4fvvvxdUKpVw5MgR4a677hJsbGyE7Oxs/ZiNGzcKLi4uwr/+9S/h5MmTwk033SSEhoYKnZ2dY35+5qK7u1t46aWXBBcXF2HOnDnCkSNHhPb2dv1PeXm5cOzYMeHbb78VDhw4INTX1xu8fj4/zc3NwokTJ/TbLioqMni9sLBQmDdvnmBjYyM8/fTTQkNDw4X+c40q4mdWREREZOwwf5cEEZFLhDvvvJPa2lpWrVpFVVUVcXFx7Nq1S1+0VVJSYtBlsLGxkfnz51NVVYWrqysJCQlkZGQwceJE/ZglS5bQ3t7Oww8/TFNTEzNmzGDXrl1j1gp8LLCysmLRokXce++9rFq1irS0NB566CEWL17Mp59+yubNm1m6dCn33XffqOuWLSwsiIiIwN/fn3379nHllVcyb948lixZwscff8ymTZuYMWMGx44dIzo6elT3PR4QP7MiIiIiY4fYplxERGTMEASBEydOMG/ePE6dOoWdnR1r167lT3/605i0Pf/+++958sknqaqqwtvbm7/+9a9cc801F7XMQ0RERERkfCBqqkVERMaMwsJCXnjhBZRKJXfeeSceHh6899577N2716wNXARBIDs7mzfeeIOOjg7uvPNOJBIJa9eu5cCBA2bbr4iIiIjI5YMYVIuIiJid1tZWli5dSkxMDC4uLuTn5/Pxxx+Tm5vLfffdx9y5c7nzzjvJz88f9X3X1dWxYMECfvvb3xITE6Pfd15eHnPmzGHWrFnMnTtX78UsIiIiIiIyEsSgWkRExOxoNBqUSiWZmZn89a9/1duvWVtbs3TpUvLy8vDx8SElJYXly5fT1NR03vvs6enhzTffJDY2lpKSEg4fPszrr7+Ou7s7APb29jz//PPk5eUhk8lG7KktIiIiIiICoqZaRERknCAIAkePHmXhwoXk5uaycuVK7r//fiwshldPLQgCu3btYsWKFQBs3bqV66+/XtRNi4iIiIiYFTGoFhERGVdotVr++c9/snTpUhwcHNi8eTO/+c1vzhkUC4LA6dOnWb58OYcPH2blypU8/vjjWFlZjdGRi4iIiIhczojyDxGRccxbb71FSEgINjY2JCcnc/DgwUHHzpw5E4lEYvRz/fXX68c88MADRq9fc801Y3EqQ0YqlXL77beTk5PDnXfeyR133MEf//hHCgoKBl2noaGBxYsXM2PGDMLDw8nLy2PBggXjMqC+HN9TERERkcsBMagWERmnfP755yxcuJDVq1dz9OhRYmNjmTNnDjU1NSbHf/XVV1RWVup/srKykMlk3H777QbjrrnmGoNxn3766ViczrCxsbHh2WefJTc3F1dXV5KSkli5cqVBd0S1Ws22bduIjY1FoVBw4MAB3n77bTw9PS/gkQ/O5f6eioiIiFzKiPIPEZFxSnJyMtOmTePNN98E+mQRgYGBPPnkkyxbtuyc67/66qusWrWKyspK7O3tgb6sZlNTE9988405D33UEQSBQ4cOsWDBAlQqFatXr8bX15cVK1agVqvZsmULv//978fE6/p8EN9TERERkUuX8X0HEhG5TOnp6eHIkSPMnj1bv0wqlTJ79mwyMzOHtI3t27dz11136YMvHXv37sXLy4uoqCgeffTRi8L1QiKRkJSUxP/+9z9eeeUVnn32We644w7mzZtHVlYWN99887gPqMX3VEREROTSRmxTLiIyDqmrq0Oj0ejbSevw9vbm9OnT51z/4MGDZGVlsX37doPl11xzDbfeeiuhoaGoVCpWrFjBtddeS2ZmJjKZbFTPwRxIpVLuvvtupk+fTk1NDdOmTbvQhzRkxPdURERE5NJGDKpFRC5Btm/fzuTJk0lKSjJYftddd+n/P3nyZKZMmUJ4eDh79+5l1qxZY32YIyY4OJjg4OALfRhjyqX+noqIiIhc7Izv+VIRkcsUDw8PZDIZ1dXVBsurq6v1jVMGo729nc8++4yHHnronPsJCwvDw8MDpVJ5Xscrcm7E91RERETk0kYMqkVExiFWVlYkJCSwZ88e/TKtVsuePXtITU0967pffPEF3d3d3HPPPefcT1lZGfX19fj6+p73MYucHfE9FREREbm0EYNqEZFxysKFC3nvvff48MMPyc3N5dFHH6W9vZ158+YBcN9997F8+XKj9bZv387NN9+sb8eto62tjcWLF7N//36KiorYs2cPN910ExEREcyZM2dMzulyR3xPRURERC5dRE21iMg45c4776S2tpZVq1ZRVVVFXFwcu3bt0he6lZSUGDle5OXlsW/fPn744Qej7clkMk6ePMmHH35IU1MTfn5+XH311axbtw5ra+sxOafLHfE9FREREbl0EX2qRURERERERERERM4TUf4hIiIiIiIi8v/bu3+X1MIAjOOPeTnV0qoERUS7UpQ4RSA4RNDYlAQNNQjl0I+pP6JsaajGWmoJipCixQiKMwQ1FTRpNEQkQZDvHS4IYpebvp4ucb4fcHl5jpxnezjIEYAlRjUAAABgiVENAAAAWGJUAwAAAJYY1QAAAIAlRjUAAABgiVENQJJ0dnamsbExdXZ2KhAIaH9//5/XnJ6eqr+/X62trerr69PW1lZNJpvNqqenR21tbYrFYrq4uGj+zTfAb30BAN5iVAOQJJVKJUUiEWWz2S/l7+/vNTo6qpGREbmuq7m5OU1PT+vo6KiS2dnZUSaT0crKiq6urhSJRJRMJvX4+OhVjS/zW18AgLf48xcANQKBgPb29jQ+Pv7XzOLiog4ODnR9fV05m5iY0PPzsw4PDyVJsVhMg4ODWltbkySVy2V1dXUpnU5raWnJ0w718FtfAEDz8aQaQEPy+bwSiUTVWTKZVD6flyS9v7/r8vKyKtPS0qJEIlHJ/CR+6wsAqA+jGkBDCoWCQqFQ1VkoFNLLy4ve3t709PSkj4+PTzOFQuE7b7Up/NYXAFAfRjUAAABg6df/vgEAP1M4HFaxWKw6KxaL6ujoUHt7u4LBoILB4KeZcDj8nbfaFH7rCwCoD0+qATQkHo8rl8tVnR0fHysej0uSHMfRwMBAVaZcLiuXy1UyP4nf+gIA6sOoBiBJen19leu6cl1X0p9XyLmuq4eHB0nS8vKyJicnK/mZmRnd3d1pYWFBt7e3Wl9f1+7urubn5yuZTCajjY0NbW9v6+bmRrOzsyqVSpqamvrWbp/xW18AgMcMABhjTk5OjKSaTyqVMsYYk0qlzPDwcM010WjUOI5jent7zebmZs33rq6umu7ubuM4jhkaGjLn5+fel/kCv/UFAHiL91QDAAAAlvj5BwAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAlhjVAAAAgCVGNQAAAGCJUQ0AAABYYlQDAAAAln4DI9rFGNLMh5sAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAJOCAYAAAB4EvvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZAk6V3mi/58CY8t933PyFqyqqu6uqvV3epuwRngjIQGmBFjxlw0Z2wAk13DZgDZYUzMBzDZADOXiy7GMUzGHISuzRyOccW9A3OvMSAJIZgR9Cb1ppZ679orMyL3NSIyNl/f+yHTI8MjIrNyiYxc6v2ZNSK9Ivx1j/Bwf/zvz/v8FSGEQCKRSCQSiUQikRwY9bg3QCKRSCQSiUQiOe1IUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEImkKf/zHf0wsFqNQKJSX9fb2oijKrv/9q3/1rx647s9//vOcO3fuKDdfIpFIJJJdUYQQ4rg3QiKRnH1+6qd+Csuy+NrXvgaA4zj86Z/+ad3XZrNZ/u2//beYpsnXv/51fuzHfmzXdb/66qs899xzvPfee1y9erXh2y6RSCQSyYPQj3sDJBLJ2cc0Tf72b/+W3/u93ysv03Wdf/kv/2Xd1/6jf/SPKBaLfOlLX3qgoAZ45pln6O/v52tf+5oU1RKJRCI5FqT9QyKRHDl///d/Tz6f55/8k3+y6+tc1+Vf/It/wfPPP89v/uZv8gu/8At7Wr+iKPzjf/yPy1VwiUQikUiajRTVEonkyPna177G008/zcDAwK6v+4Vf+AX+/M//nF/6pV/iN37jN/Y1xqc+9SleffVVlpeXD7OpEolEIpEcCCmqJRLJkfO1r33tgVXqz3/+8/yn//Sf+Omf/ml+//d/f99jfPzjHyccDvONb3zjoJspkUgkEsmBkaJaIpEcKd///vdJpVJ86lOf2vE1v//7v89v//Zv8/GPf5yvfOUrqOr+T02xWIx/+A//obSASCQSieRYkKJaIpEcKS+88AIdHR089thjdf/9v/yX/8K/+Tf/hqeeeor/9t/+G4Zh1LxmeXmZn/iJnyAej3Pp0iW+9a1v1V3XD//wD/P88883cvMlEolEItkTUlRLJJIj5cknnySdTnPnzp2af/ubv/kbfu7nfo6LFy/yjW98g5aWlrrr+KVf+iUGBgZYXl7md3/3d/npn/5p1tbWal73+uuv89RTTzV8HyQSiUQieRBSVEskkiPlYx/7GD09PXz1q18NLH/ttdf4qZ/6Kfr6+vjbv/1bent7674/l8vxF3/xF/z7f//vicVifOpTn+LatWv85V/+ZeB1tm3zzW9+84HebYlEIpFIjgIpqiUSyZGiaRo//uM/HvA6f/jhh/zET/wEhmHwN3/zN4yPj+/4/tu3b9PS0sLIyEh52bVr13j//fcDr3vhhRfIZrNSVEskEonkWJDNXyQSyZHzqU99in/+z/856+vrKIrCJz/5SVZXV/nFX/xFvv/97/P973+/5j19fX386I/+KLlcjra2tsC/tbW1sbq6Glj21a9+lccff5yxsbEj3ReJRCKRSOohRbVEIjlyfvRHfxRVVfnrv/5renp6SKVSAHzpS1/iS1/6Ut33/OzP/iw/+qM/SktLC9lsNvBv2Wy2xn/9ta99rW6HRolEIpFImoEU1RKJ5MhpbW3lR37kR/jqV7/Kn/7pnyKE2PN7L168SC6XY3Z2luHhYQDee+89fvZnf7b8mnfffZepqSlp/ZBIJBLJsSE91RKJpCl86lOf4pvf/Ca2be/rfS0tLfzkT/4kv/Ebv0GxWOTrX/8677zzDj/5kz9Zfs1Xv/pVBgYGePrppxu92RKJRCKR7AlF7KdkJJFIJAekVCoxMzNDIpFA1/f3kGx5eZmf+7mf4/nnn2dkZIQvfelLfPzjHy//++LiIq7rMjQ01OjNlkgkEolkT0hRLZFIJBKJRCKRHBJp/5BIJBKJRCKRSA6JFNUSiUQikUgkEskhkaJaIpFIJBKJRCI5JFJUSyQSiUQikUgkh0SKaolEIpFIJBKJ5JBIUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEIpFIJBKJRHJIpKiWSCQSiUQikUgOiRTVEolEIpFIJBLJIZGiWiKRSCQSiUQiOSRSVEskEolEIpFIJIdEimqJRCKRSCQSieSQSFEtkUgkEolEIpEcEimqJRKJRCKRSCSSQyJFtUQikUgkEolEckikqJZIJBKJRCKRSA6JFNUSiUQikUgkEskhkaJaIpFIJBKJRCI5JFJUSyQSiUQikUgkh0SKaolEIpFIJBKJ5JBIUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEIpFIJBKJRHJIpKiWSCQSiUQikUgOiRTVEolEIpFIJBLJIZGiWiKRnCqEENi2jeu6CCGOe3MkEolEIgFAP+4NkEgkkr3geR6WZWGaJq7rEolE0DSt/J+iKMe9iRKJRCJ5iFGELPVIJJITihAC13WxLAvLsvA8D0VR0HWdUChUrlQrilIW16oqH8BJJBKJpPlIUS2RSE4cvsXDsixs20YIgaqqqKqKoigoikIoFCq/1v+vWlzL6rVEIpFImoW0f0gkkhOD53nYtl22eAghytaOnQSy/2++sHYcB9d1UVUVXdeluJZIJBJJU5CVaolEcqxUWjz8CYh+xXk3Ie1XqndaZ6U1xBfX0hoikUgkkqNCimqJRHIs+FVl0zTrWjx240GiunKMamuIruu7Vr4lEolEIjkI0v4hkUiaSqXF49atW3R0dNDb23skQrfaGnLv3j00TWNsbExaQyQSiUTSUKSolkgkTaEyxcO3eOTzeVpbW4/cluGL60KhgK7ruK4bSBKRkXwSiUQiOSxSVEskkiPDt3j4fmnP88oTCI/DguGPp2lauXptWVbZdiKtIRKJRCI5KFJUSySShuNH4pmmieM4AAHRepzb5VNtDXFdF9d1ZSSfRCKRSA6EFNUSiaRh1LN4nLTUjWqhXCmuARzHwXGc8k2AtIZIJBKJZC9IUS2RSA5Fva6HJ6EqvV/qWUNs28ZxHNmtUSKRSCQPRIpqiURyIHbqenjaxHQ9qq0h9cT1ad9HiUQikTQWKaolEsm+8DwPy7IwTRPP8wAObPGotF00g/2OVc8a4ndr9AW2FNcSiUQiASmqJRLJHjhI18OTykG2t9oa4nkenudJa4hEIpFIykhRLZFIduQsWzwOirSGSCQSiaQeUlRLJJIaKrseuq6LEKJclZaCcZNqcV1pDZHdGiUSieThQ4pqiUQCULY15HI5MpkMLS0tR27xOMh6i8Ui8/PzhMNhRkZGCIVCR7Ble6fyRsP/DEulEul0mr6+PmkNkUgkkocEeaaXSB5yfAtDPp8nm82ytrbGhx9+iK7rJ8bmIYQgk8nw7rvv8uqrr5LP51laWuL555/ngw8+IJ/PH/cmApRzuV3X5bvf/S6lUgnTNMtRg82clCmRSCSS5iIr1RLJQ4pv8bAsC8dxyhYPTdOAg1WRD8JuQtPzPJaWlkilUhQKBYaGhnj22WeJxWKEQiEymQzT09N8+9vfpru7m0QiQVdX147b3ixR64/vV6ilNUQikUjOPlJUSyQPGfW6HlZaPFRVPfaKqm3bzM7OMjMzg6ZpjI6OMjAwgK4HT1nt7e089thjTE5OkkwmeeuttwiHwyQSCQYHB8s3CJU0Q8z6n58fNej/7bounuehKIrs1iiRSCRnDCmqJZKHAH8inZ/icVK7HubzeVKpFAsLC7S3t3P58mW6u7sfuI2RSITJyUnOnz/P3NwcU1NT3Lp1i9HRUcbGxgiHw03ag02qb0rqdWu0LKssuv3v4SR9FxKJRCLZH1JUSyRnGN8vbZomjuMAPFBMH0dDltXVVVKpFOl0mv7+fp588klaW1v3vS6/qj0yMsLq6irT09O88MILDAwMkEgkGr/xD6DeZ1ydGuK6Lq7rykg+iUQiOeVIUS2RnEEqLR6H7Xp4VLiuS6lUYnp6GoDh4WGuXLmCYRiHXreiKPT09NDT00Mul2N6eprXXnsNTdPo6upCCHGkwnUvNyX1ujU6jlO+6ZHWEIlEIjldSFEtkZwRKrse+mLab6e9H3F21JVq0zSZmZlhdnYWIQQ9PT088sgjRyb4W1pauHr1KhcvXuSNN95gZWWFF198kfHxcUZGRmp82o1kL597PWtIvYYyEolEIjnZSFEtkZxyTkvXw2w2SyqVYmlpie7ubq5du0YymaStra0potEwDFpbW+nv7ycejzM1NcXt27cZGRlhfHycWCzWsLEOWgmX3RolEonk9CJFtURySvE8L5DiAY2xeDSyUu15HisrK6RSKXK5HIODgzzzzDNlAZtKpRoyzn5QFIXBwUEGBwdJp9NMTU3x0ksv0dfXx/j4OJ2dnccuXOtZQ/xIPl9gH/c2SiQSiSSIFNUSySmi0uJh23bdSLyTgG3bzM3NMTMzg6IojIyM8Pjjjx+p1eIgdHR0cP36dYrFIslkku9///tEo1HGx8cZHBw88A1Kozzb1dYQz/PwPE9aQyQSieQEcrKucBKJpC5+JJ5pmk2xeBy0Ul0oFMqReC0tLVy8eJHe3t4TJfjrEY1GuXTpUjmS7969e4FIvkZMnjws0hoikUgkJxspqiWSE4zf9TCbzTI9Pc25c+fKVemjElD7Xa8QgvX1dVKpFOvr6/T29vLEE0/Q1tbW8LEOy4NuFnRdZ2xsjNHRUVZWVpiamuLevXsMDQ0xPj6+55i/o0wXqRbXhUKB+/fvc+XKFdmtUSKRSI4RKaolkhOG/5i/0i9tWRYLCwtcunSpadvwIFzXZXFxkVQqhWVZDA8Pc/ny5aY3WjkKFEWht7eX3t5eNjY2mJ6e5pVXXqGzs5Px8fETUX33xbXruszOznL58mUsy5LdGiUSieSYkKJaIjkh7Nb1UNf1pjVkeZAQM02T2dlZZmdnMQyD0dFR+vv767YE3wvNbom+X6HZ2trKo48+yuTkJKlUivfffx9N0xgfH2d4eLiuT/yoc7DrjeW3Q/e7Nfpee9mtUSKRSJqDFNUSyTHjWzwsy8JxHIQQATHk0+wuh9VsbGyUI/E6Ozu5evXqiUjKaBaGYXD+/HkmJiZYWFgoR/L5vutoNHos21Up4KutIZWpIdIaIpFIJEeLFNUSyTFR2ajlQSkezWwdXi3k/Ui8bDbL4OAgTz/9NPF4vCnbchJRVZWhoaFAJN+LL75If38/4+PjdHR0NL1SXU11JJ/runieJ60hEolEcoRIUS2RNJHdLB67iRz/35ol1oQQpFIpUqkUQghGRka4du0aoVDoyMc+Shp5Y6IoCp2dnXR2dlIoFEgmk7z55pvE43H6+vqa+mRhp1i9et0aLcsq55lLa4hEIpE0DimqJZIm4EegmaaJ4zgA+4rEa5aoLhaLTE1NAbC4uMj58+fp7e09sizk4xBzRzFmLBbj8uXLXLhwgdnZWe7du4fjONy7d4+RkZEjjeTzPG9Pr6u2hriui+u6MpJPIpFIGoQU1RLJEVJp8fDFz0G6HlaK6kYjhCCdTpNKpVhdXaW7uxuAJ598UoqsfaLrOuPj47S1tfHmm2+ysrLC3bt3y5F8LS0tRzLufr6net0aHccp3+RJa4hEIpEcDCmqJZIGU9n10BfTfnvpg4qVoxA5nueVI/FKpRJDQ0NMTk6iKAorKysNH28nmp3+0Qx8f/xHP/rRcsb4d77zHbq6uhgfH6enp6dh3+lBn17Us4bUaygjkUgkkr0hRbVE0iB8UeL7pRvZ9bCRlWrLssqReLquMzo6ysDAQDkSz7Ks8liyYnkwKj+7trY2rl27xuTkJMlkknfffZdQKEQikWBoaOjAUYT1xjooslujRCKRHB4pqiWSQ1LdqAUoi5BGC5HDiOpcLkcqlWJxcZGOjg4eeeQRurq6pFhqEuFwmIsXL3Lu3Dnm5+eZnp4OtEKPRCIHWm8jb37qWUP8SD5fYMvjRSKRSOojRbVEcgAqLR62bT8wEu+wHLRSLYRgdXWVVCpFJpNhYGCAp556aldv71H6t4+bZu3TbkJX0zRGRkYYHh5mbW2N6elpXnjhBQYGBkgkErS3tzdsrINSbQ3xPA/P86Q1RCKRSHZBimqJZB/4kXimaZJKpbBtm7GxsYZYPHZjv0LXcRwWFhZIpVK4rsvIyAhXr1490hSKg9DM/O3KMY+aveyToih0d3fT3d1NPp9nenqa119/ndbWVhKJBH19fXsSrkdt06m2hrz99tsMDw/T3d0trSESiURSgRTVEske8LsemqaJ67rlvF/TNA/tid0LexUtpVKJmZkZ5ubmiEajTExM7FmcVY91FivVzWQ/QjMej3PlyhUuXrzIzMwMN27c4MaNG4yPjzMyMrJrPnizvO++uM5kMvT19clujRKJRFKFFNUSyQ74j7136nqoqmrTuxzWyyQWQpDNZkmlUiwvL9PT08Njjz1Ge3u7FDnHxEGPi1AoxMTEBOPj4ywtLTE9Pc2dO3cYHh5mfHy8bifLZk8o9SfgVlpDLMuS3RolEslDjxTVEkkVe+16qCjKnhtvNIJqoeJ5HktLS6RSKQqFAkNDQzz77LNEo9GGjCMr1YfjMMJSVVUGBgYYGBggk8kwNTXFyy+/TE9PD4lEIjDBtNnfky+qodYa4otrTdNkt0aJRPLQIUW1RLKFb/GwLAvHcRBCBMRBNcfhB/bjzvxIPFVVGRkZYXBwEF2XP+eTQiOrx+3t7Tz++ONcunSJZDLJW2+9RSQSYXx8nMHBwaZXqj3Pqxlvp26N0hoikUgeJuRVWPLQU9moZT8pHschqu/du8fKygptbW1MTk42tIlINWexUn2a9ykSiTA5Ocn58+eZm5tjamqKW7du0dHR0dT92k3EV0fyua5bFuHSGiKRSM46UlRLHkr2avHYjWZ4qoUQrK2tkUqlyv7VJ598ktbW1iMbs5mi5yynfxzVOJqmMTo6ysjICKurq9y4cYNcLsc777xDIpGgra3tSMb1qbR/7ES9bo2WZaGqauB3JgW2RCI5S0hRLXmo8O0TpmniOA7AgbseHqUgdF23HIln2zYjIyNkMhkmJiaOVFBXcpqrug8DiqKUPdYzMzNomsZrr71GW1tbOZLvKETrfm8YdrKGyG6NEonkrCFFteShoNLi4U8u9KtmB+UoJiqapsnMzAyzs7Nl32x/fz+qqjIzM9PQsXbiJAscx3GYm5tjZmYGwzBIJBIMDAycuEYkzfQ5CyHQdZ2rV6+WI/k+/PDDQCRfI/329TzVe6Fet0bHcco3tdIaIpFITjtSVEvOLJVdD30x7UeBNeLi3chKtR+Jt7S0RHd3N9euXaOjo6MmbaTZ3tmTQrFYLOdvt7S0cPHiRVzX5c6dO9y8eZPx8XFGR0d3zXOGk7VPjaJSwBuGwblz50gkEiwuLjI1NRWI5IvFYg0d7yDUs4bYti27NUokklOPFNWSM4d/kfb90r4HtNFdDw8rcj3PY2VlhVQqRS6XY3BwkGeeeWZX4dMMUXiSqoXZbJZkMsny8jK9vb1cv369nL8dCoUYHR1leXmZ+/fvc/fuXUZGRh4oHk+7p3ovY6mqyuDgIIODg6TTaaampnjppZfo6+tjfHyczs7OA2/fXjzVe6XaGlJPXJ+k41EikUh2Q4pqyZmhulELUL4oH8WF+aATFW3bZn5+nlQqhaIojIyM8Pjjjz/wEX0zK9XHMYHQRwjBysoKyWSSXC63a/62oij09fXR19dXznP2xWMikaCzs/MY9qC5PEjAd3R0cP36dYrFIslkku9973vEYrFyJN9+BLIvfhv9e6pnDfEj+XyBLcW1RCI56UhRLTnVVFo81tbWmJub4+LFi025CO9XeBYKBWZmZpifny9bGHp6evYsao5T6B4V1fFr/s2G53mMjo7u6WbDx89znpycZHp6mjfffJN4PM7ExAT9/f1N7zp4nJXqekSjUS5dulSO5Lt79y63bt1ibGyM0dFRDMPY01hwdNX+amuI4zi8+eabXLt2jUgkIq0hEonkRCNFteRU4l9wTdMsWzwsyyKTyTStCcpeRK4QgvX1dVKpFOvr6/T29vLEE08cKPbsrFaqHcfh7t27zM7OEo1GmZiYoK+vb0fxVHLzrDozTISu1f33aDTK5cuXuXDhAjMzM9y4caPsu25WB8yTkhtdD13Xy0J6ZWWFqakp7t69y9DQEOPj47umy/j71Qxh6+/T8vJyjTVERvJJJJKTiBTVklOF3/XQNE1c1y13PfSbSzS7bfhO4sl1XRYXF0mlUliWxdDQEJcvXyYcDh/JeKeRjY0N0uk0xWKRnp6emsmZnvDIOkus2rNknRVmzJssWlNknCUA/tfofyKut++4fl3XSSQSjI2NlSftZbNZAPr6+ohEIke6fyetUl2Noij09vbS29vLxsYG09PTvPLKK3R2djI+Pk5vb2/Neo+6Ul2N/3v2K9T+zbTs1iiRSE4iUlRLTjx+05MHdT1sRjOWSupF6pmmWW4hbhgGo6Oj9Pf3o2laQ8ZrFkcl4P1mNslkkkwmQzgSpne4g95ElEXnHW5m50nb84DGrfz3cLEBiKnt5LwMsP0ZzJZuMdny9APH9CftDQwM8Oqrr2JZFi+++CL9/f1MTEwcSbOU05bS0trayqOPPsrk5CSpVIr3338fTdNIJBIMDQ2Vn/74x3szbxigdm5E5TlBdmuUSCQnBSmqJSeW/XY9bHYlt3K8jY2NciReZ2cnV69ePVTCwk6cxkq15RXIWkvMrN5ibv0eJdahy8YZ2CBtL+AqJj3pCyxad8vv6Q2dKwtqgIKXIa52kvfS5WWzpZt7EtU+fmJIf38/XV1dTE9P89prr9He3k4ikahbmT0MJ71SXQ/DMDh//jwTExMsLCyUW6GPjo4yNjZWtn00y9e8k4ivTg2R3RolEslJQIpqyYnDt3hYloXjOGWLx4Mi8VRVbbr9w3Vdvve975HNZhkcHOTpp58mHo8f2XinwVP9dvb/y4L1DkV3jby7iuF2klE2LRt0bP5PRO1nw1kpF55DBPOlM848IKisTLfp3eStdPnv2eLtA20fQDwe58qVK1y4cKFcmdV1nfHxcYaHhw/9ZKGZExWh8QJeVVWGhoYYHBxkfX2d6elpXnzxRXp6eo5kvJ3wP8edxtupW6O0hkgkkuNAimrJiaGyUctOFo/daJbodByH+fl5kskkjuOUm7U8qPHIYTkNnupk6ftMl95m3X63vMxVbBQUBNvb3qp1suGulP8uebnAeixRpF0fIONsv0ZXgqerefMOrnDQlIOfxiors/Pz80xNTXH79m3GxsYYGxs7lAe+WRy0w+FeUBSFrq4uurq6KBQK3L27+TTh1VdfJZFIlLt9HhX+06m9bGd1koz/uUhriEQiaRZSVEuOlf1aPHbjqCvVlV394vE4IyMjTE1NMT4+fmRjVnLSK9Wu5/Dt1f8TyykFzixCcWjXxkg7c4H1V5Jx5lFR8dj+/lr1zoCoLrrZwHscYbNoTjEUubCv7ayHqqoMDw8zNDTE6uoqU1NTvPDCCwwNDZFIJGhpadnX+k57pboesViMc+fOMTs7y+DgILdu3Qq0Qt9LJN9+2auo9qnXrVFaQyQSSbOQolpyLPgRWaZp4jgOwKG7HlY+Bm7URVMIQTqdJpVKsbq6Gujql8/nmZqaasg4e+GkVqo9z2NpaYnvrXyVbMccqApxYeAqVvk1MbWVdMV7Su56cB04dOgjrDmz5WUKwX1NO4to6Lg45WWzxVv7EtUP+vwURaGnp4eenp5yIsZ3vvMdurq6SCQSdHd37+nYOsmReocdy5/AOD4+ztLSEtPT04FIvv3egDxovINWwneyhshujRKJ5KiQolrSVCotHn5V2a8iHRZ/HY0QGZ7nlSPxSqUSQ0NDTE5OBmLY6qV/HCUnrVJt2zZzc3PMzMwgNIfFke9svVnQEhoh49wvv1bgBt6bdRcJKTFsUSovi6ptwLaoLrhrgfd4uHSHhli2Z8rLZku3eJof3/e+7QU/EePixYskk0nefvttIpEIiURiT50IT+NExf2MpSgK/f399Pf3k81mmZqaOtANyG40wtqyU7dGaQ2RSCSNRopqyZFT2fXQF9P79UvvhXK+8T4fGVdiWVY5Ek/XdUZGRhgcHKw7ce2kVo6PmmKxSCqVYn5+ntbWViYnJ7lv/HesjW1ftK5sVisHtCKPGEUy3tuEdFh1DfJi87TTofezbE+X3+NhBcbJuksYaiuWVywvC6vBSaCzpZsN379qwuEwFy9e5Ny5c8zNzXHv3r0HdiJsdqW6mWkc9X6zbW1tPPbYY1y6dIlkMsk777yDYRiMj48zNDR04Imfh/ktV1PPGlLZUEZ2a5RIJIdFimrJkeFftHy/tH/xP4zFYzcqK9X7JZfLkUqlWFxcpL29ncuXLz+w0tbIyvheOO5KdSaTIZlMsrKyEugMmXNWeGfh64HXWsLiQmiDK0aBkZANFMr/dseK8t/zPYTVaOA9G84y1YkfXXofC9a28HaFHXhP1lkla6/SFuo+3A7vAU3TGB0dZWRkhOXlZaamprh37x7Dw8OMj4/XpL6c1Ur1bsKz8gZkfn6e6enpQCTffhvuNFJUV1JtDaknrmX1WiKR7BcpqiUNx2/KsLS0hG3bdHV11TRvOAoqK9V7QQjB6uoqqVSKTCbDwMAATz311J49oZWNKM6aqPYRQrC8vEwymSSfzzM0NMRzzz0XEEevZ/8/uIEqs+C89l0uG2k61ODnsuiEuGAUaVUX+fti0Fdd9DLE1E4KFVnUhhpM38g4i1QL79nSLdpCzx12V/eMoij09fXR19dHJpNhamqKl19+md7eXiYmJujo6Dg2S8ZJGUvTNEZGRhgeHmZtba088XNgYIBEIkF7+86dMA8y3kGpZw1JJpN0dXXR1tYmrSESiWRfSFEtaQiVFg/btnFdl7W1NUzTpK+vrynbUClyd8NxHBYWFkilUriuy8jICFevXt13esFex2sUzRTVQggWFxd5//33EUIwOjoa6Kzn4wqXRXO7aYuKx4/EFrlsbLDqxlCVYGXZUDa3v1+3+IfR7/JfnQGKYjuKsE3rDYhqWxQD7y95OVq1LjYqJjrOlm7xSGvzRHUl7e3tPP7441y6dInp6WnefPNN4vE48Xi8qd9VM9uG72csRVHo7u6mu7ubfD7P9PQ0r7/+Oq2trSQSCfr6+natRB9VpbredsLmzcD09DSGYRCNRnEcp5x3La0hEonkQUhRLTkUfiSeaZo1Fg/fu9gsFEXZNVavVCqVI/Gi0SgTExMPvKg/aDzYvPA3og35XsY76s/T/4wsy2JtbY3z58/T29u742e0Zq+hKV34Ewz/QXSBy0aOnKszoAUF9ZKj06dvJ3f06hafbp3nv24MUdjyWWtK8HPcbAITpFXvrhHVe+WoPr9IJMKlS5c4f/48MzMz3L17F9d1mZqaYmRkpOZmpJGcxEp1PfyGOxcvXmRmZoYbN24EIvnq5bw3S1RXj+lb1PxIPn8OiIzkk0gkuyFFteRA+F0PTdPEdd1y1FblBUfTtKamY0Ct8BRCkM1mSaVSLC8v09PTw2OPPUZ7e3tDUgX8MZrBUV7INzY2SCaTLC0t0d3djWEYTE5O0tXVtev7lq0lcu7maWRcz3DF2JysaGHUVKm1Opvfo9v8z7FF/io/iEDF9IJZ1LYo0akPse4slZepBEXWQukejmehq3t70nCUn6Ou6yQSiXLM4MLCAnfu3GFkZITx8XGi0eiDV7JPTtukyFAoxMTERDmSb2pqijt37tT1pjc77xu2hXy179pPDZHdGiUSyU5IUS3ZM0KIsl96L10Pmx05VzmmL2pmZmbKXuBnn322oaKm2aK60WP5nvJkMllus/7MM88Qi8V45ZVX9rSOZXuZmVKWgfCm7UNRYMMNMagHBfWKq9OjOTXvF0LQpua5bKT50Ooi7SzUZFHHtfaAqK5uAuPhsmDeYyR6eT+7f+REo1Eef/xx1tfXmZqa4sUXX6S/v5+JiYk9e4r3wmmpVFejqioDAwMMDAwEvOk9PT0kEgm6urqOrVJdOWZloaDyHCgj+SQSSTVSVEseyEG7Hh51h8N6KIrC3NwcKysrqKpajsQ7isfvp9VT7bpu2VPuOA4jIyM1bdb3KhJWrCXWnQL/S+cq8S0d4hACgqJaUH99s45Oh5bn6cgSt612HKBDH2bVSW2/SAkeQ2lnAR0Dp2Jy5Gzp1okT1T6dnZ10dnZSKBTKnuK2trayp/iwguwke6r3SqU3PZlM8tZbbxGJRBraSGav7Cbkq6vXslujRCKpRIpqyY74Fg/LsnAcp2zx2GskXjNFdT6fJ5VKYds2mUyGyclJenp6mpoccNQcdizLspiZmWF2dpZwOMz4+Dj9/f2HqgQuWcsM6BtcCq0BCmtOiP6qKvWqo9FbtQy2xOCW+I6pLtcjK3y31E+kKou64K4G34egOzTAkp0sL5sp3uKZzgdv73FOHozFYjzyyCNcuHCBVCrFBx98wM2bN0kkEgwPDx/Kl39SIvUOSyQSYXJykvPnzzM3N8ft27exbZvbt28zNjZGOBx+8EoOyV6q4zt1a5TWEInk4UaKakkNlY1afIvHQWa/H7WoFkKwtrZGKpUinU7T19dXzsnt7NyDwmoAzbS4HFRU5/N5kskki4uLdHZ2cvXqVTo7O3e96O91rBV7iX/d9S6uEEw5GgouuDamiBJRNHo0BwcVqjoqAsw5Ou1avvz34+FVPjA78aqyqDfcFcJqG6a3nXUdVmOB18yWbu25YnvcYicUCnHu3DkSiQQLCwvcv3+f27dvMzo6yvj4+L6F42m1f+yGnwluWRarq6tkMplAJF9bW9uRjOvbO/Z6rqu+sXZdt1zNl9YQieThQ4pqCXBwi8duqKp6JJXBSvuCbdsMDw9z5coVDMPgtddee6hbh/sIIVhfXyeVSrG+vk5/f/++Mrj3gu3ZPBp6E0PNsS4EhuLRpnqoChhsTlhMOSFCdU4zQgi8KotISBE8HVnmNXOJ6izqTr2PBWuq/Lez1d5cRaM9NIRGJyvWGr3ho28Csxf2Ij5VVWVoaIjBwcFAlvPg4CCJRILW1taGjdUojsr+sRuRSITHHnuMXC7H9PQ0r776Kh0dHYyPjzfEPlOJ//vabwGhXrdGaQ2RSB4+pKh+yPG7iZmmieNsTg7zqyyHvQA0ulJtmmbZvhCJRMoX1crH5s1ukHLSRLXneSwuLpJKpTBNk+HhYR555JEDZXA/aKwVM8UPtN5GKAIVML0wqhLMlS4KjZiaJmV3MBranny44Oh0VlSpfS4Zad4xF0EdIe+tlZcbqoGGTovej650kHMi5O1W7hcy2EIA61xrmzlRonqvVGY553I5pqameOWVV+js7CSRSDzQxnQWK9U+lVXjlpYWrl69Wo7k++CDDwKRfI2YN+Gfrw5jcdnJGiK7NUokZx8pqh9SPM/DNE0sywpcSBrpl2yUqPYj8fy4t2vXrtHR0VH3wtTsyZFHVY2vx24XYtu2mZ2dZWZmBl3XGR0dZWBg4Ejzsy3r/067urnvtlDp1kqBf3cEtKslFAXCSpqk3cHYlrC2qU0CAVAVeC66yJv2MxheL64XY8NVSRYjvJ0dwkMAWSBLh96+Jag3uZef4dmux49kXw/CQYRTS0sLjz76KJOTkySTSd59910MwyCRSDA0NFT393mS2pQ3mnpWDMMwyvaZxcXFmki+WCy2w9r2Nh4cTlT71OvW6PuufYEtxbVEcraQovohorLroS+md4vEOyyHEbie57GyskIqlSKXywXi3naj2TF+za6MV49VKBRIpVLMz8/T1tbG5cuX6e7ubkgG92775XqLtPCd8t85N0JrKCiq19wI3dp25Tqippm224kqgi6twE70a0XSGxlezKqACUBUDePhUWkJ6TLaWbO34/XuFWb2untHzmGPCcMwuHDhAhMTE8zNzXH//n1u3brF+Pg4o6OjgScPZ9n+sdt4qqoyODjI4OAg6+vrTE9P89JLL9HX18f4+PgD5w3sNJ6/7kZRbQ3xIz8dxwlUryUSyelHiuqHAN/fVyqV8Dwv0PXwKC+QBxHVtm0zPz9PKpVCURRGRkZ47LHH6nZb22nMZts/mj1RUQhBJpMhlUqxsrJCX18fTz755J49uI0gU/gcmrI5+VAI6KjqniiEIKzUVqOjaoYVp5WxXTTEnGswZrwPXCsvK3om3aEOVu1MeZmhBk9fd/OpBwrMZh8bh8WfsDcyMsLKygpTU1PcvXuX4eFhEolEuR36WbV/+IlDD8KPLSwWiySTSb73ve8Ri8VIJBIMDAzsWbT6Iv6o9rHaGmLbNrZtoygKhmFIa4hEcsqRovoMU9moJZPJ8M477/CDP/iDTZswsx/BWSgUmJmZYX5+npaWFi5evEhPT8+BJgyd5Up1Pp/nzTffpFAoMDQ0xHPPPUckEmn4OLvtl+W8j+K9Wf4754VrIvPSbpg2zax5b87T0dQ8Bc8gptaK7oKnEVHzjIdngKtQ0T2xM9QWENUlL7j+vFtk2Vqj7wG+6mYc+40Wn4qi0NvbS29vL9lslqmpKb797W/T3d2NbdfGFR4Vx2H/2OsNNWw23PHbxc/NzXHnzh1u3rzJ2NhYTYW/Hr4946ipFNeFQoGXX36ZT3ziE9IaIpGccqSoPmNUWjz8FA/YjPFqdneyB1WqKxMq1tbW6Ovr44knnjhUXNZxVKqPejzHcZibm2N+fh6Ac+fOHVlDm72wUfwVNLa/13Cda7+zQ7OXtBeiXSuy6IaYqCOqF90QMc2kVTO5Hs/zVn67+q4rwYrlsrlGdUrI3fzMA0X1aaetrY3HHnus7LteWVnh9u3bAPuqyh6E45youB90XS8L6eXlZaanp7l79y5DQ0OMj4/v+FSn2edIvwjgV6grrSF+3rW0hkgkpwcpqs8IfiSeaZrYtl2uKPkVD8dxytaPZl0U/YtB9YXKdd1yQoVlWQwNDXH58uWGNHZodqX6KEV8qVQilUoxNzdHPB6ns7MTwzAYHR09kvEq2elmoWj/D1TvXlnH2p5KW5X1o+BpdKilmvfaAmLqZnU5pm2w7Mbo1ba7ImZdnYiaK/99LTbFW/ltC0i9ynSn3sa6s1Fedi+f4rkTMFmxGb8zv1HK8vIybW1t3Llzp+y7HhkZ2VeFd68021N92M9RURT6+vro6+tjY2OD6enpXZNVjqstun+eru7W6M95kZF8EsnpQIrqU47f9dA0TVzXLXsQq0/AlQL3KBMhKqkW1aZpMjs7y+zsLIZhMDIy0vCEirNQqa5MO+np6eH69eu0t7dz9+7dpj/qryZf/Heoio4nHFwBGTdCXC2hVlzrs26IXr22Cr3sRmmtmLhYEjauAG3rvSueRrziUBg3ZoBH8RX8srlKdWU6VFICZ7EHTVZsZkfFZuELx0cffZSlpaVyGsbIyMih0zCqOS2V6nq0traWk1VSqRTvvfcemqaVk1V0XW/q+dGn2nJSLa4rU0Nkt0aJ5GQjRfUppV7Xw918eMcpqjc2Npifn2dpaYnOzk6uXLlCV1fXkVwYTqunWghRTjvZ2NhgcHCQZ599lmg02vCx9kK972a18P9k3c2wKWpDmJ5GTLWYsUPoik6/XgI8WlWr5r1CgFY1cdFQbWadFsZCJVadMPGq3OoWzeR8eJm7Zh8ARWHSprSQFduv62zrZKmwnQByN5c6lmpjPZqdyKEoCv39/fT395NOp5mamuKll16iv7+fRCJBR0fHocc6Dk91oz9HwzA4f/48ExMTzM/PMz09za1btxgdHaWlpeXYKtXVVEfy+XNkZLdGieTkIkX1KeIwXQ/9k3azBKcQgtXVVQDefvttBgcHefrpp4nH40c67mlL/3Bdt5x24nkeIyMjXLt2re6j++OM77PdNGvml6msEhe3Jhvqqgu4zDkalhcjYeRq1rXqRolpxZrlupon54VJC0G9Xo8faUmWRTVAX7SLbGFbVNtKtfWkxN+8+j+4PnGN/v7+ugLpNE5UfBDVY3V0dHD9+nUKhQLT09O88cYbtLa2kkgk6O/vP/C2HYf946hErqqqDA8PMzQ0VI7km5qaQtM00ul0Q25C9sKDbgL9z7vaGiK7NUokJw8pqk8BvsXDsiwcxylbPPYTieefdF3XPdJtdRynLBJ9UfaRj3zkUJMP98NpqVRXd4ecmJigr6/vgRfX46pUz+V/BdiuQDtCob2q2YumeJSApB1nLBSsOueFQj3HvKYIUo5Kl14/t/pSZJlKy8deJitaXQo3b97k1q1bJBIJhoeHj2VS50mIuYvFYjzyyCNcuHCBmZkZbty4UfZdH+RzOQnNXxqNoih0dXXR1dXF1NQU9+/f54033qClpaV8E3KU2+B3W9zrtspujRLJyUWK6hNMPYvHYWaDH2W3wWKxyMzMTHlS3fnz5+nt7eWll15qqkfxpHuqc7kcyWSybIXZrTvkYcc6LP5YGfPvMJ1XqdzEnBuhu0oIFz2d+NbEw/t2Cwk9h6JAwVPp2KXZS15ohN0Qca3WL15tATHrTVYMtbNe0QRmI27yT/7BP2RhYaHsLx4bG2NsbGx/H8ApYS9V8VAoxMTEBOPj44HPxfdd7zWW8SzYP3YjFAoRj8f5yEc+wszMDLdu3SpH8o2MjDwwku8gHCTGb6dujdIaIpEcL1JUnzAOY/F4EI0W1UII0uk0MzMzrKys0NvbW55U53McleOjrsZXshcRL4RgbW2NVCpFOp1mYGDgQFaYZotqAM9zWSz8B4KHniCm1grggjBo3eqAqKsWSSfOqJ5nzQvTXsf6AZB1w8RVi1U3WldUQ9ACsmyvU12Z7jE6AqL6Xj6FqqoMDQ0xODjI2toa9+/f54UXXkDXdUyzNj+70ZzUhiyVn8v6+jpTU1O8+OKLDAwMkEgkHvhE6TiavxxHZVzXdRKJBOPj4+XJn5WRfC0t9cxKBx/zoIWH6m6NldaQyrxrKbAlkuYgRfUJwe+uZZpm2eLR6K6HmqY1ROB6nsfi4iIzMzMUi8Vdm5AcZXW8Hqqq4ji1yRNHxW5C1/M8FhYWytGBIyMjXLly5cDVrmZ7dIUQzOT/A57YKCd0AGTdKJ1VItkVEK0S2qpqM+VEaaszcdEn4xnEVYuQ4iAE1NvFS5ElfCFdcIt06G2kK2L0QmpQkNwrzJTFn6IodHd3093dzcbGBq+//jo3btxgbW2NRCJBZ2fnnj+T/XBSRbVPpeUhn88zNTXFq6++umPUnM9xtCk/TrtJ5eRPv+nOd77zHbq6ukgkEnR3dx/682jUPtZLDaluhS7FtURytEhRfcx4nodpmliWVRafRxX4r6rqoaq4lmWVI/F0XWdkZITBwcFdqyzNFtUnwVNt23bZL+03oejv72+IDaaZnmpTzLFmvUh7Vea0Su02bHgRYnUqzQUvhCs0BtTayYt5VyembArusOqy4kbp1Wsr2i2axYXIMndKm9Xq7lB7QFRX51cX3BKL5ioDkZ7A8tbWVqLRKCMjIxQKBb773e/S2tpa9rOfVsFxWAEfj8e5evUqFy9eJJVK8e677xIKhcpRc5XH7XFUqk+KiPeb7ly6dIlkMsk777yDYRiMj4/XfE77YT+e6r2wkzVEdmuUSI4eKaqPgcquh76YflAkXiM4qMDN5XKkUikWFxdpb2/n8uXLe67QHEel+rjSPwqFAqlUivn5edrb23nkkUcaGh3YTPuHpc2zaPxvtLAWWF709JoJigBihw6KHgoCl7QboaPqfWtelHhFFbvghYD6NpGJClEdUoOnrXqTFe/lUzWi2iccDjM2Nsb58+dJpVJ88MEH5UmNhxFHlZz0SnU9KqPm5ubmmJqa4vbt22U/umEYZ3Ki4n7HC4fDXLx4kXPnzjE/P8/U1FQ5km9sbGzP/vT9jHkQqq0hld0aK6vXEomkcUhR3UR8i0cmkyGdTtPd3d1wi8du7Efg+pF4qVSKTCZDf38/Tz311L69hMchqps5HmyK6Xfeeafcav3JJ5/csQ3yYWiWqF4x38Ls+7/hiBY0ESIkXDRlc1xLhIBgRXrDDZcnKFZS8vQtS4hCztVoURV0fz2eSqQqDi+uWlieiqEGv78VJ0ap4lRlesGx6k1WvFeY4WPdT+y6n6FQiHPnzpFIJAIicnx8nNHR0SOZlHYUNFrAq6rKyMgIw8PDrK6ucv/+fe7du8fQ0BC2bZ+YyvFxj6dpWvlzWltbY2pqihdeeKHsT6+cW7IbB5mouF+qrSG2bTM1NcXw8DDhcFhaQySSBiFFdRPwQ/v9FI90Ok0ymTxUXuxB2Iun2nGcsg/YdV2Gh4e5evXqgQXGSU/jOCie57G0tMTa2hqe5zE6OsqlS5ca0mp9J5qxbzOFb/Hhxm8jUDHUIiYhltwQnlCIKiHa1LWa96TdKP3aRs3yghcqT2jUVY8lJ85QaNMGsuzGaj3YimDZjTOsbq/LEQr37G4i6rZPfmUPkxXv5nfvrBgYt0JErqyslEXkYToSnsZKdTWKotDT00NPTw8bGxtMTU2xurqKaZq0trYeWQOnSk5DZbzSt5/P55menub1118v54I/KCqzmQ25KqNVP/jgg/ITR2kNkUgagxTVR0SlxcNP8YBNYWsYRtMn/MDunupSqVSOxItGo3vKTd7rmGepUu04DnNzc6RSKRRFIR6P097ezvnz549sTJ+jFtW3c3/O3fz/TkQ1KXghooq5Ne5mnnTaDZP32ujQSnRsTVR0hEJ7HR+06ykYSvBYUxWXNTdKm1IipOzk7Q/u322zFwcNQ3XwhXTeLdSZrBg8ld0vzOAJD1XZ+/GrKAq9vb309vaSyWS4f/9+uSPhxMTEniuPzaYZN5Gtra1cu3aNYrGIqqq89dZb5Xz1gYGBIxO+p21iZDwe58qVK1y8eLGcC37jxg3Gx8cZGRmp29TJdd26y48S/5gxDKNsYfOtIX4rdGkNkUj2jxTVDcafdW2aJrZtlystlRUATdOaGvvmUy04hRBks1lSqRTLy8v09PTw2GOP0d7e3rAL2VmZqFiZw93S0sLk5CQ9PT3cunXrTFR23s3+H6yU/k8iqsCrk+QhBCiYqCpkRZicHaZP22DFjdNT1egFYN2N0lJjCVEoeVAkXrN+n6hqk3bDdGgmS3YL62KzTbumCCKKTUlsPjHpqpmsGPRr+5MVByO9Vfuxt6pue3t7uSPh1NQUr7/+Ou3t7UxMTOyYjHGQcRpFs8ZSFIWBgQGeeOIJZmdnuXPnDjdv3ixbZhotDo/D/tGIfajMBfcj+e7cucPw8DDj4+OBOM1mVqp9/OtPZeReZSSfP8dHdmuUSPaHFNUNwu96aJomruuWux7WOyEdh++3clzfujAzM0M+n2doaIhnn32WaDR6ZGM2i0bbTTKZTPmm47hzuI+qUv1m+n8ja/23cpxdUYRoU4OJGiURxigLYQVPgRmnHSHqX2x3vAQLSHvRHUU1bGZXt6gW9+yuQMZee6hIydoU1WGt/mRFBZWhcD8h2rmRWa4R1fslFotx5coVLly4QDKZ5N1338UwDCYmJhgcHNxR8DXT8tTMam7lpOqxsTFGR0dZXl7m/v373L17l+HhYRKJxIEsMzuN10xR7bpuQy1cqqoyMDDAwMAAmUyGqakpXn75ZXp6ekgkEnR1dTV9H4FAMzGfepF8vt/br15LcS2R7I4U1YekXtfDB/nSjqtSrSgKa2trzM7OoigKo6OjDA4OHmkL5+OIuDvseEIIVlZWSCaT5HK5XW86mt06vNFjvbL27zDdvytrV1dQt7ELGFRPULSFjq66LNhtDIS2/cyVnRWr2RARVEVgehphtf5vIKLa3LZ68KqsGy1aiUU2b2hMb3NbFBT6w71ElQ5aRZg3V9e4advAGkPGIj/Sf+XBH8IeMAyDCxcuMDExwezsLHfv3i0nhoyOjtb9DZ3FSnV1BV5RFPr6+ujr6yuLxpdeeom+vr5D54D74u402T92o729nccff7wcyedbaIQQdHV1HcmYO7FbjF91JJ8/J0h2a5RIHowU1QfgsF0P/eptsy4Y+XyemZkZFhcXMQyjbF04aYkjjRrvoMLTdV3m5+dJpVLlyYePP/74rjcdp7VSLYTgpbX/Fc/7XmC5KUK0VlWpbaESotbikffCdGkFXKGwYLcyENq0YxS2GrrUw0InpHiseXEG1Wzd1xS9EItOC4Ya3Ne4ZhJSQvSFesFtpcWb5FY2xw3bBta52j7Ehr0t/G9kFx/4OeyXygrt0tJSuUI7OjoaaPfd7HbyzRTVO4lOXzROTk4yPT3Nm2++STweP/D8DP8zbGYVtxkTIyORCJOTk5w/f565uTk+/PBDbt++jWVZjI2NHelkZ5+9ZGP7x1S1NcT3W0triERSixTV+8C3eFiWVe56WOk72yv+yewovXTVrbH7+vrKDUh6ew/3SHw/nAZPtWma5WYt+52k2cwOjo0S1Z7n8t9X/w055xZhxSh7nze7ItaK4aJr1FSePUF5maIoeKisOnE61EJNVJ5PzjUIKZvfjYKoG58nBMzYnbjoVFfG4yp8sNzFu8IBVukMRQMiOlzVWfFmdvFIkzH8Tnvr6+vcv3+/3O57YmKi/Jqjxj8eTlLSSDQa5fLly1y4cKE8Wc/3XY+MjOz5yZj/O26maGtGvJ2PpmmMjo6SSqXo6ekhk8kEIvke1DL+MOx3P6utIa7rloW57NZ4tJRKJSxr5660pxnDMPad637SkaJ6D9SzeBxmdrT/vkZ30vLXubCwwMzMDJZlMTw8zCOPPEI4HObevXuYpvnglTSQk1yp3tjYIJVKsbS0RFdXF9euXaOjo2NfF4fTZv9wPJNvrvxrhEhhqCDQWHVaiKs6HvmaKrUn2EreCFLwosS0ytcqmOjMO2306LVVbYCciBBRNtelKrDktDFipAOvWXJbMTGot5uGWsCt+If+SDtr1nbyiOkFt3PdKrJU2qA/ui1OjuK76uzspLOzk1wux9TUFK+88gq6rpebpRyl2Gi2qN6Pf1vXdRKJBGNjYywuLpYn61VX9XfiOCrVx+FvFkLQ0dHB5OQkuVyO6elpXn31VTo6OhgfHz+Sbp8HLejs1K1RWkOOhlKpxMR4CwtLzbeLNoOBgQHu379/poS1FNU7cFiLx25UiupG4Vdb5+bmCIfDjI6O1rTG3ktOdaM5zg6H9fAr+Mlkkkwmw+DgIB/96EcPPLGq2faPw2B5Bb65/PMoBG0RhupiegJLGERUu1xNhk0rR7SOqHZFvQuyQkGEyLge7VowZs/0VMJKcD2qKnA9BU31G8JoLNptoNTv0FjdBj2mB1MaFku1dpIb2cWAqIajE6AtLS08+uijXLx4kddee43Z2VkymQwTExP09/cfiVg7jkr1fvdDVVUGBwcZGBggnU4zNTXFiy++SH9//65NUvzf1VkX1ZXFlZaWlnLL+JmZGT744ANu3rzJ2NjYvqr8+xnzIFR3a/QbylR2a5TWkMNjWRYLSy733xynrfVsRRxmNzwmnpzGsiwpqs8y/snBNM2yxaPRXQ/9yYyNEGN+JN7S0hLd3d1cvXqVzs7Outu6W071UdFMe4Q/Xj0R77oui4uLJJNJHMc5dFMbn2ZWquHgldaim+FvV34etartuE/Ji6GqJqt2Ky1aiZZyFbr2OHKESlwr1FmHhq5AzgsTUpzAhMcNEUNXgse7rniseC30bzV7SVpdeIq2NWrtfoZUl7heIu9snoBtL3gsr5h5WvUIG852Bf1GdpEf6r9Yd5+PinA4TDweZ2xsDICbN2+WJzUODw83dGLwSbR/7ISiKOWqfmWTlPb2dhKJBL29vYF1H4f94zji7eoJecMwyt0+FxYWmJ6eDkTyHTZdpZFPSet1a6xuhS7F9eGIt2z+d5Zwm3fZbCpSVG/heR6maWJZVqBCclRVi8MIXM/zWFlZIZVKkcvlGBwc5JlnnnngifY4ovyO21NtWRazs7PMzMxgGAZjY2MNbVZxGuwfeWeVbyz/GmFlrW7WnesBiuUPQs6LYHohYlqpbvRdydOJaXUsIW6YmLbZxnrdjaOxQVh1cT0FtY5IBnBR8TwoYrAhIuUUElUBx1PQqyYrDkSz3N3YFNUrVq3NZCjWzs3sUvnvo5isuFdUVWVsbKxsf7h//z537twpL2vEhLSTbP/YDb9JyoULF0ilUrz//vvous74+DjDw8PlCmizq53HVaneaUxVVRkaGmJwcJB0Os309HQ5XWV8fHzHAspexmz0zcNO1hDZrfHweAi8Hc6hp5Wztj8+D7Worux66IvpvUTiNYKDxOrZts38/DwzMzMIIRgdHeWxxx7bc7OC4xDVzY7U8yvV+XyeVCrFwsICHR0dXLly5UjaKp90UZ11FvnLpV8GCpgiQrtWqnlNSUTRAtYMBRudFbuF3lAuYAcRgK7UeRLgEeiSqCgKy04bQ6F1MiKKWuc9sFmtXvXirLktNd+Ng4ZOULz3RnLc3egDYKGYIaLqlCq81C168MnDcYnqyopupf1hbW2N+/fv88ILLzA0NMTExESgEchBxoHTUamuh2EYnD9/nomJCebn55mamuL27duMjY3R3d3ddIF7HKJ6L9Xxyip/sVgkmUzyve99j1gsRiKR2Heh4ChEdeW2wrY1pLJbY2X1WrJ3PDya39niaDl7e7TJQymq/UdUlmVx69YthoaGiEQiDbV4PIj92D8KhQIzMzPMz8/T0tLChQsX6Onp2feJ6Tg81c0c0+8Q6boub7zxBn19fTz11FO0tBzdc7Nmesb3K6rT9jxfW/5lYFNIu0LF9hRCFdVf16Ou4PUEeGis2G10h0wMZdMjbXo6Rp186bQbI17leVZVWHZa0FRQdzmBZr0oRVFbtfXqNJbpMrar0wIYjnVwN7dSXuaI4DjzxSxpq0iH0fjGRrtR73tSFIXu7m66u7vZ2Njg/v37fPvb36anp4eJiYkDZTqfBk/1XlBVleHhYYaGhso3Hvfv30cIwcbGBq2trQ0fsx7NFtV+YWc/Y0ajUS5dusT58+cDXS39qMe9WNqalXJSbQ1ZWVkhm80yMTEhrSH7wBUiMEn7LHDW9sfnoRLVfoi9n+IhhGBhYaFmQl8zeJD9QwjB+vo6MzMzrK6u0tfXxxNPPHGomKXj8FQ3o1Ltd4hMJpOUSpsC8tlnn23K5IeTWqles1N8fflzKGz7i1UFsm6MbnVbmBa9MHodkWwJHU0RCBRWnQgtqkerZuKgYdQRyB71L9B5ESUirBo/dfl9YlOQK1vb9yA6jOAEyPZQUCyvmrWWkJvZRZ7pSQDNzY/eTSy0trby2GOPMTk5ydTUFN/97ndpbW0txznuVWg0c3/88Y5SBFXeeMzPz/Puu+/yyiuv0NXVRSKRoLu7+0jHPw5RDRzo+uPbZcbGxlheXmZ6epq7d+8yNDTE+Pj4rjciR1mprocvrnO5HCsrK4yOjkpryD6Q9o/Tw5kX1ZUWD9u2a7oeHld3w50quP6EupmZGUqlEsPDw1y6dKkh/suz5qm2bZu5uTlmZmZQVZXR0VG6u7t55ZVXDj0Bca+cxPSPjL3EVxf/LZpaG5+oqQLTayOsZnE9UHawZVQigA0viuVptOm16yx5Oi11xgJwhEbBDRNR7LqiOePF8NC2KtnBbamXANIWMqteE3zPfDGDoWhYYvs3faNCVENzJ749iEgkwuXLlzl//nwg7WFiYoKhoaE9C5/T5qneC5FIBMMweO6550gmk7z99ttEIhESicSuLeIPQ7NFdSMSTiq7Wm5sbDA9Pc0rr7xCZ2cniUSibqOv45iQCZvXNz96r9oa4rdCl9aQWjwE7hkToVJUnzL8SDzTNLFte8cUj+MU1ZXjmqbJ7Owss7OzhEIhRkdHGRgYaOiJ77gi9Ro9ZrFYJJVKMT8/T2tra6BDpL3VDOQkVo+bMVYuv8F/Wfk8nuqxU52qJBR0DwrCIFRHVAsRrvJYAyhkvRi2o9Or56i8RmedKG16rVfb9FQUBQQqG16tn9sRKll3s9LsoaBVnWTrJYBUN6fJ2MHKtYdgPNbBvfxqedlx+Kr3W9ENhUJMTEwwPj7O/Pw89+/f5/bt24yPj+/6SP+oEjKEELyffYvX039P1pmlPdRKWI2S6cyjbCyimxoRLU5EjRFW4sT1Fgw1QliNE1ZjhLU4mrK3uR474QvccDjMxYsXOXfuHHNzc9y7d49bt27ty+6w3zGbhX8NaNR5vrW1lUcffZTJyUmSySTvvfcemqaRSCQYGhoqJ8+4rtuUzo3VVFbIq60hfiv0yoZqJ+kGWHIy+IM/+AN+93d/l4WFBR5//HH+43/8j3z0ox+t+9o///M/57d/+7e5c+cOtm1z8eJFfuVXfoWf+ZmfObLtO3Oi2u96aJpm2eKxW2bmcYlq34pR2YDkKCfU+WOeZlGdyWRIJpOsrKzsaIfxL4jNqsSclEi9bDZLMpnkO6H/jBPLIoSKEFDvMBLYpN0okTq2DwAHHaiTTY1KQUSYNg1Gw+ub9pAdmsMAlDyjnN5heiFMxSZcMWbajeHHkdSrSqsK2J5KqKLrYkh1Cas2prcp2GaLaVRl00bi025EqeyqfvMUiGqfSm/xysoK9+/f5969ewwPD5NIJOom/DTqXLFmLvPK+t8zXXifBWsGx7MAQV+4h7CioWBTjMzzYXERryjoNnrQFMG6PUvJ20BBoTs0QkxroeRlyDnLGGqMNr2PjtAgQpgoioqhxjGUGK2hXjRUDC2+uUxtIazEMbQWDDVe8xn6HQhHRkZYXl5mamqq/NmMj48fasInUK6cHoeobvT53jAMLly4wLlz55ifn2d6eppbt24xOjrK2NhY0+0fPvXGrRbXlakhfvX6YRfX0v6xyZ/92Z/xuc99ji9/+cs888wzfPGLX+STn/wkN2/epK+vr+b1XV1dfP7zn+fy5csYhsHXv/51PvOZz9DX18cnP/nJRuxGDWdGVNfrergXn9ZxiGp/ouTMzAz37t1jcHCQp59++tAXhQdxXKL6MKJTCMHy8jLJZJJ8Ps/Q0BDPPffcjn5p//tultA9zomKQghWV1dJJpNsbGywPvIuljG/9drNSYWROtF3ACVhoAqbaFVLcU+wJX6Cr3eFsm3fUFVSVifDRpqcEyZaZwzXA62iCq5sRfWFt/zcpqeR94KVsno3AbYIESJo+RiIZpjO9wBgeS4j0Q5ShXTlmgKvn8qtUXRtolqo6R7kg6IoCr29vfT29pLJZLh//z4vvfQS/f39TExMlBumHMbjnHc2eCP9Anfz7zJvJjHdDcDDUHU84aApYCgurlhiyVqhxxgiJnTCmiDrLrJqLdETGmMonMARBWyvgKYoaHh06j20622oqLjCImfPIPDQlRCOmmHZXaaUz+B6Jq2hQaJaDNNLs2GnEHgYahchb5hst0tbJsvj7T8R+Gx8u0Mmk2F6ejow4XO/XVF9jquD41H6iStv0tbX15menubFF1/EMIxjqVT7No96VEfy+XOgZLdGOVHR5/d+7/f4+Z//eT7zmc8A8OUvf5m/+qu/4o/+6I/41V/91ZrX//AP/3Dg71/+5V/mj//4j3n55ZelqK6H4zjcvXuX4eFhHMc5UNfDZopqx3GYn58nlUphWRZtbW08/fTTe47EOyx+dfyoJxtVj3kQIV/5WQGMjIwEHl/uhL9fzfQ5N1tUe57HwsICqVQK27YZGRkhdsHinfRLgXqvKXQidSrOngeWCGG5IUJKAb1CWNsihFpnUqEttGDGtaIya3USUSyidcYwCdUIZA+NnBumRTNZd+NUrlBhUwpXH5X1Ojf2RXNlUQ3QZcQDojpbxxJyO7vEY53Dm2M14dhv5G+svb2d69evUygUmJqaKjdMmZiYIBKJ7HmcvLPB99Mvcjv/DktWipKbBjxURcH1NqMSw5pNSClgqCq2p6MpCr1GG1lngYIzg6bE6Qr10RaKIXBQFR1NcTCUKELVUdFwhYnrmQhcdDWKruqU3FVK7jpFIWjT+2nR4oQVlw07TdG+h8Y4IbWfeKgXx4M58wZwH8JwJ/dKQFRXfzb+hM/p6WnefPNN4vE4iURi310sz3IHR0VR6Orqoquri0KhwOuvv04ymWR9ff1An9VBcV33gRPI/eO52hri+60fRmuIt/XfWcLfn2w22Ak3HA7XveGzLIs333yTX/u1XysvU1WVj3/847zyyisPHE8Iwd/93d9x8+ZNfud3fudQ274bp1pUr6yscPnyZWZnZ4nH4weKxGuGqC4Wi+UW4vF4nPPnz5PJZFAUpWmCGrZ9eydZVJdKpfJnFYvFOH/+PL29vXVP+J7nURI5Cm6WvJsl72Zo13uaPnmwWaLadV08z+M73/kOuq4zNjZGf38/WWeZry/9xxoRK1DwPAW1qoFKSYTw5euaE6dbz5SryoqiUX36FmJzXdVHjINK1osS9YK2DiE24/vqTUwseAYCMEWtD9ajtklMvVi9gUjQm61XHRszxUxZpPvcyC6WRfVpJRaLBRqmvPvuu+i6vqNtYd1a4a3MS9wvvMeKlcIWGVQUXOHgCQ1dEURUF02xsRUdR6gYGCgUiakONh6G2kZXqJsWLQRCkFXyhBRBWIkgcFAUFU+YKIAiXEJalBAaJTeD7RWxXZ2Y3klMjYBQKXpLmJ6Dpo6jKX2E9RayzgbT5gKwAMBg5GpgP+ZKN7C9EiF1ZzEWiUTKMXMzMzPcunWLmzdvlj3pe+lieRyi+jhsGLFYjEgkwvnz53Fdt/xZ+a3Qj3KS9373t9oa4p8Dj6PKfpy4Z3Cior8/o6OjgeW/8Ru/wW/+5m/WvH5lZQXXdenv7w8s7+/v58aNGzuOk8lkGB4exjRNNE3jS1/6Ep/4xCcOvwM7cKpFtZ8/XCqVDpxjelSiWghBJpMhlUqxsrJCb28v169fp62tDUVRyOfzWJb14BU1kEq/cbMuHHsV1RsbGySTSZaXl+nu7uaxxx6jvb29LP5NL8+qNcuynWTFSrJsJ1mz5yh5Lo7YrrSej16nR33yRE0ePCylUolUKsXc3BwAly5dCszo/9byn1PPA60o4NKKynYlQAgwxfaNnIsvrHO4qCjUdlB0UOt6s0tuiLDmsui00a9ny8LaFPqO8XhCKKw4rXX/XdRIYahXn+kMBSvReSf4O7I8h+FYBzOFTHlZsycrHuWNq98wJZFIcPfuXe7du8fzLzxPZAzS0SQz1i3S9jyOyGGoOpZnIYSKqnjENAVPmNhCRwgFQzVQsAjpJqYbIqIamJ5AwcNQXDp0jYgChmYghIelCDRK6Mqm715TDIQisL0CQnHRhIOuRtDVMAWxjuWa2MJAUVpQ1EEMpYcl6z44d8r702NcZsPdzhovuZnA/no4zBbfJxF/8oGfja7rJBIJxsfHWVxcZGpqirt37zIyMsL4+DjR6M555We5Ul1v3HA4XO7MuLS0VP6s/Ei+o8j39xvA7BdfXB9H6/qTgCvOXltvf39SqVRgblSjb5haW1t56623yOVyfOtb3+Jzn/sc586dq7GGNIpTLaqj0SiaprGxsUFvb++B1tFoUe15XjkSr1gs7ugBPo7M6EpR3cwxdxqv0hOczWYZGBzg0acmMfV1Fpy3eHt9mjVnhjV7lry7zqDxCDPmzcA6ukMJFq1U+e9Z8zbdykeaWqk+qrFyuRzT09MsLS3R09PDI488wnvvvVdzrN/Iz9AWqp/zbKNR+SzEFa1UC1UHnbQbI6Lage6J5X8XWl1R7S9TFIUlp42+LWFtC21HUZ11IwhVxRBO3cp6Nbrq1nito3owizqVW6WabiN+rKK6GWiaxlvh/869kbfwQgWEa6NnNZyt5BYND0PxQHHxtj5dQ9FQFIeQ8HCFSkQJ4eCiKw5seagdvK1ccUG7HsJQbRQBrrCJ4BJRrC2LkIOuAmLTP+8KgSNcHM/F8iDvhYjqQ8yUbge2u0XrJ+cub++HEhRZ6/YsYaUFU2x/z8ni23sS1T6KojAwMMDAwADr6+tMTU3x4osv1njSK/HjApsp2JrVhGW3cRVFob+/f/OpVzbL1NQU3/nOd44kG/y4Jkieds6y/aOtrW1P/Td6enrQNI3FxeC5fHFxkYGBgR3fp6oqFy5cAOD69et8+OGHfOELX5Ciuh6qqhKPx8nnaxs+7BVN0zDN+hm7+8GyrHIknj9LfWBgYMfHjscRb+efGJsp5qtFpxCCvL3O1NIHJNduUlLX0HsstGGFl+2b2OubVUhDiZL3ghVIR9TGtkWUYOWp5OUpGuundqKi3/QnmUySTqcZHBzkmWeeIRaLlY/Tyiqo6zms2zkiWv1JibYoBbooFr1aewdAyQvhCoWOqmg8Ucd+AZsTDQOdFbeEdataDHRsrMT1wFW0Hf3TsDlRslKQb4o1JdAaPaoFj4uCcGhFZ6OiWl9tCbm9sYztNe+4b4bF6nvpl5m2/g694n5dEKKlorOlKxQiqoe61UJeYJNzonSEioCHEBtbdh2dsOagsEFEE5Q8jZjqoKsOJTe9mdqhRBGqC6qHUGxAJ+d4lESWDWcRV5j0hR9jvvReeXzbK6KgBPLE2/TegKjecBYIHhGCLmOYefNW+TXJ4tsH/pz89t6FQoHp6Wlef/112traSCQSgUY7xyFwjzMvut64bW1tPPbYY1y6dIlkMsk777yDYRiMj4/vKzd9t3H3YsXZjYetSg2b1ji37hnz9OLtc38Mw+DJJ5/kW9/6Fv/0n/7TzXV4Ht/61rf47Gc/u/dxPa8hmm8nTrWohk0LyMbGxoHff9hKdS6XI5VKsbi4SHt7O5cvX97Tnf1xdTc8ajG/YS9SFGuYboaSlyVvrbPc8z5/u/ISG84SG84SoVIPucgidG2/r59HsMX2Y31LFOnQh0g723elaWe+ZjxbFGqWZSMLp85TXdkV0jRNhoeHuXLlSl1/Y6Vgey//PUxPoeAauyZ9hDApuTpOHXsHbHqgi16ckBIlrq1X7GA80JXRx6qXLKIopMxOxsLr5Si9SgoiXK44e6g1rcsVwPI0Ilrwd+Ggo1dsd0hx0BUXp2IS40hbNx9WVKPTxeCNtu253M+tnpr0jwchhODvVv6PQAXfcjXiVVV8x4OwLir+VmmtuHFSFIHlhegO+b+jzYnMuqIT0ywy9n0A2vVxsu4HEIcVawaAmP4UrrBI28ntbfCC52JbFOgMnWPNni4vc0XVTZG7Sps+SNZZKi9TlaC4XbWmyTvrxPX9t3L3icViPPLII2VPut9oJ5FIMDw8fCxWjOOsVO8mkCuzwefn55mamgpE8h20W20jKtUPpagWwdjQs8BB9udzn/scP/dzP8dTTz3FRz/6Ub74xS+Sz+fLaSA/+7M/y/DwMF/4whcA+MIXvsBTTz3F+fPnMU2Tb3zjG3zlK1/hD//wDxu5KwFOtahWFIWWlpZDV6r3K25920IqlSKTydDf389TTz21Lw/aceZjH6XgfDn9+6zY7waWua0xNvw7QwXUaKnWOlvHdtCitQdEtS1KdOpDrDsL5WXrznxNJSwXXjw1nmo/5SSZTKIoCmNjYwwODta98NSLC3x/47t4qGTtKF1G7Q0GbApmIaAkdvaqOWLzwr7qqDgiQvuW8LLr7JonqNva3BVgaB4LdhvDRiYg+GxPwWZ7n1xUNOHVie5T2XR6V25b8EWKAmOxPPfy248MY3rw5mO+lKG6Hn4ju0g7py/9ox5fX/x/AZWz5gXhKs+N4xnE9aD/3BYKUaVSZCvl79on60TpMSrPqSIQjwgQUYeYN2/QH74cWJ6xp9GVGE7FzW5Ua6HyXi5tJ7duqbZ/8216d0BUZ2uq15Aqvs3l1h/msIRCIc6dO0cikWBhYYGpqSlu375Nb29v0wXbSatUV6NpGiMjIwwPD7O2tsbU1BQvvPACAwMDJBKJujaaRowrCeKewUr1Qfbn05/+NMvLy/z6r/86CwsLXL9+nW9+85vlyYvJZDJwk5rP5/nFX/xFZmZmiEajXL58mT/5kz/h05/+dMP2o5pTLaoB4vE4uVzuwO/fj7h1HIeFhQVmZmZwHIfh4WGuXr16oNnSx2H/gCNuG+6ZFL3aNBPDbqekb18wi6wRVTopim1RsFFxQfURdSbfxbW2gKh2hEW3PsqKM1deljUWsJ36FdlGc1BRbZomMzMzzM7OEo1GuXjx4gMv6vVE9Zy56ScveAZCqCh1bk4UBfJbqRv18ITAqxC8GTeOAsQ0E69OlbrkhQINWXwKTpiI7mytI0q7ViyL5qIIUymQxFa/xJq9rTeBsY4FZaLV4l6F7rOqrB1FXLr0GBmnxKCIEREt3Jhb45na1R8JR3lTl3OyfLDxDbSKj8V0dVoCLeQFRpXIdt0IbXrwXGkLnRZlu3JsewrtVUK817hKuvpGWelBkCbrLAY87wKPrtAoy9b23AfTSwfe64gSnaFzrNpT5WWeCB5neXeNKN0U2X5qkiw0RlT7qKrK0NAQg4ODrK2tcevWLSzL4t133yWRSBx48vt+OI5KtZ8Ws98Uju7ubrq7u8nn8wEbzfj4OH19fXvaj91yqve67Q8jUlRv89nPfnZHu8fzzz8f+Pu3fuu3+K3f+q0DjXNQTr2obm1tPXJRXRnzFolEGB8fP3Su53HYP4563LSzyqpdIlL1saii9nNqD/VRtLZFdcFbJ6Z2Uai4AG8K7aD08uoJbb2FlYrFtlZg2Z2lj9oOS41mvxMV8/k8yWSSxcVFOjs7uXbt2p6bVVS/xvUc0k4aiAAKQsRQlPq/hYJr7Ox1rpMFnXbjuG6cqJGt+TfL02pEtRBBj5xJiILnEtcsLE/DoXaMehYQv0tj5a7W+2g6jQ1gO6t62dy2HUS1EOdifbR4LbyeXOS25QA5zMwdnugbO1I/XSVHVfX8s9kvBtrIe0IQqepqWXRDtOmVTy4Euhb8/m3XoKPKLlJ0w8QqqtSaYlB0ZwOvieuXmTU30zsK7iqd+iB5d77iPcHvOmMnCSvtmGL72Ixo8UD1et1OoqLhVTyliIp2ikqFqC6+dSRPAHzBeOHCBT788ENUVeWVV16hs7OTRCIRSNppNMdRqT5sa/R4PM6VK1e4ePEiMzMz3Lhxgxs3bjA+Ps7IyMiOMbF+JJ60f+wfTyh140VPM2dtf3xOvahuxETFnUSmH4m3vLxMT0/PvgTQXsY9S5Vq27a5Mfs+c94K58MhhLp9xRRVlS+ovfDC5gSmgpUu/130MrSoveS8tfKyjLNItdB2Ra1IWnTuc5UnDrYz+2AvlWo/XjGZTLK2tnYgu5A/lr8+2PRTWxVfZcEN06LWimohYMVuYTjs4FGs+jcR8CZXvmfBjaA6GqPR9fLkQdPViGq1TwFMTyOmB5fnRATbVmCHm896FhBNEXgQkOAqXo3QjulV3l3P5YnWMTby8OH8Om94GZ7uj5O3tsXmgucghOCdd95haWmJc+fOHVk18qgqalOFm6xa7wQmc9qeTljfrjZ7AqJq8LsouAbtetDSoarBz77k6nSGgufSXuMSq9Zb2+/yFDbc4Lqjen9AVG84s1T/RjuNERbM7SzZolvh2wccYdJtnGfZmtrejyr/f95dZ81O0W2McRR4noeu61y9epWLFy+STCZ59913MQyDRCLB0NBQw6vKxzU5Eg4uqn1CoRATExOBSL47d+7s2Da+UeM+jMhK9enh1IvqRleqPc9jeXmZVCpVbov97LPP7ppv2ohxm0WjxXyhUCCVSjE/P89KzyzEoM0YJ1ORQ+sY62hEcNm+8G92cwtSPTkJoC3URc7cFtUlb4M2rY9sRa5t2q71Xy57U4far72ym6iubLFeKBQYGhri0qVLh87h9Md7f+ONzU6HW6zZGi11ikS20PDQWLU0OkLFgJDyUOpG2RXcEMaWeE4VuxiKpAmpHmtWjJ5IrXe75BrE1drc9aIwMOp4p2HTAuIIhVCVX9fbqln6qAo1rwtrOcaiXXSpbSxmLO4sZIh2wK317WPFrPp9ZW2LnArPXrnG+vo6r7zyCt3d3UxMTNDZ2XkkFdBG8xfzv49a5YmOVaWhmJ5OW4UVxBMQq/puTDdKeyh4Y1LdsCeidpK2Pwy+ppggFwlOGDbd4PFQ8tZp00fJOtsV7upfdsae2apeb29DRI0FXpNXFlGEgqjY32ThrSMV1b7ANQyDCxcuMDExEZio5zeTaVSDlOOoVDvO5o1mo45PVVXL8YXpdJrp6Wlefvllent7GR8fp6urC0VRyuMexv7xsHVS9HFRcWt+Raeb5quf5nDqRXWjJiratl2OxFMUhdHRUQYHBw8d/7MTp9n+UVl5XV1dpa+vjyeffJJvmwuQBUFV9U8RtKsDrLnbKQFZd56QEg8kfhTcNapR6wi+Vr0zIKpNUaBDHyDtbMd0rXjTuMKtWxFvJP5FOBBz57rlFuue5zE6OrqnFusPorpSPW/dwfa29y/najWRdAAbzqaILwiICY2wsv39F512VLX2SYLp6hhbYk3XBHNmB/1GNhijt4UjFKJ6bfV6c3a3ii1UDOy6Pg5XaISqLD2eUGq81Q46oUACiM3N+yYe/nGg0GYEb1aWi7Xif8YsEY1GGRoa4sKFC0xPT/O9732PeDzOuXPnAhFrh+EobAqpwgwf5FwUeggpGgIbBYGhuhiqjitsEB4h1cMWLdiehYrAEQpdIYWsY6IqAlVxiathss7mv6uKQCNOTEvjCqU8KTFGNxti+3emiBiFUKZmu9btJGElgsv2hMeY1hkQ1Vlnhtrq9XCgel2q8l67ikWLGGSD7cnKyeI7PNHxqYN+hLtSL/2jcqLeyspKuUGKX409bIOU40gc8YX8UYjTjo4OOjo6ypF8b731Vtky6T/lPcy4D6unWpxB+8dOca2nnTMhqg8TqWdZFo7j8O1vf5u2tjYmJyeP1EPn41eMm9kyHA5n//Cr+MlkstzYZnJyshyvlM5vXoDTjlNzTx2iOoJJ0KkPsLQV2QWQdRcxlBasiuSAglvb2KM2OgRatY6AqM6zzryZYiSS2M8u7ptKoevfmM3MzBAOh5mYmNjzBJ79juV6DkU3g0fl7HulJurOE1DwtsXmmt1Cv1FEVSxsVwOlVlB7AsJ6UDzrqmCq0ElPnYSR4g5xflkrQpthIdhsIKPh1h7rCjXWjnq4nkpBhMg4URbMdgrC4CMTq3z3/ravuvqomM9vENV0iu72tqWsbeEXDoeZnJzk3Llz5Yi1W7duMTExcSSP+g/LG+nv44jNU/ZmKksYXXGxXGOr7BNCQaALj4y7+e8ACh4bngA2n7YJAYbqAduV4ZAaRuA/rheE0DGEhc55wrpBRA/Ro3biaW/UbJeHQ1voAuv2tkC2RZ4W1SamCAzFI6QUiehR7lmC3NY+VH/laXuGsNIaaPpiEKxezxbfwxU2mlLft3sYdhO4iqLQ29tLb29voEHKYZ90uK7b9JbbzUjgiEQiTE5Ocv78eWZnZ7l//365g7BlWQ9dm/HDIu0fp4czIapXV+sJr50RQrC2tkYqlWJ9fdPb98QTT+w7HugwVHY3bObjv4OIasdxmJubI5VK7VrFX98StbPmKmNhDVHxgMepkycdUmtPrB36AEv2vfLfG+4yEaWdUsUkp1xdoV1bQZ037zRNVN+8ebOcVX7lypXyI8+jGEsIwXv579VEzQE1edWmaxCc6KkwW4oyGrVYs6O0hmotGznHIKrXfp6WZ7DhCQpFg8Ho5gRGT7CV4xHEFUpgMqOLhlov7l9R8FDQKtahbK3XERpFL8SK1YIlNApe0II10D1DZLaVkrV5HGWsWm/9SGsbt9PbT0BmrNqbCF3Xy97Qubk57t+/z507d8qP+g/yhOEobpZv5e5ULan93Ot9F9XL6hX7HM9CK+tJhY5QD2lnDguXgmeDBQW3na6ojlBrb6AUJWiHiLof8JMt6UBCyZxT4Kmwzd8VuphyomTt6up1bdMXW6nKGxclFkq3GI5erd2JQ7LXqrHfIGVycpJkMsn3v/99otEoiUSCgYGBfd2MHVc2drOuOZqmMTY2xujoaNlC88ILLzA4OMj4+PieOulV8rDaPySnh1MvqvfjqXZdtxyJZ1kWw8PDTE5O8uqrrxKLxR68ggbin9SaLar346kulUqkUinm5uaIx+O7xr4JIVi3NyvVtnBo0YbZqLB75MQcCiqiwitre7Xfm67WehU7Q/3MW0FRHVM7KHgVkXzuMtWPl+fNu8DH97SvB8GvWMHmjceTTz555DFcvoe72k/tk6nIq/YnKFYrWVWFnNOGptS3AW1OXAz+mxAQ0Tdbi3uKxlS+i5HoOgXHIBqqFVmrpXiN99oWOgZ2bYoJKqpwcYRKyQuRdqKUPB2zIld7Uxh6VLpzPeDZybs8/94VAGY2apNK2qoqYjNWbVdOH1VVy4/6l5aWuHfvHvfu3WNsbIyxsbFjr67Nm9Wt1uuEElb9KYSomSeq1vx+BUrVsRDXW0hXfa0516Sr1Aux2iZMGWeh/MShXTG5Fs4HBLUjoFN1iKiCH29Z5e1SC6+UBO36KJmKOEytattyLBJSYhU2MYVU8caximofvxp77tw5ZmdnuXPnTtl3vVsKRiXHMVHxOLKiFUWhtbWVWCzGE088wfT0NK+++iodHR0kEok9ZYQLIR5a+4cr1K0M/7ODe0a/ylMvqvfiqfYzgefm5jAMg9HRUfr7+9E0rfwjdV13TyfBRuGfSI9j3Ad5qrPZLMlkspx6cv369QdW8QteDrsihUNVOoFtUe1h066Pk3ZmyssyzmxNjFbJqxVGeh1fdLveS6Eiki/vpmlRu8lV+DIXrXsN91X7jX+SySQbGxsMDAwAcOnSpYZNXtoN/8JT7af2KXoG1tYkw7Qdrd8LHIW0FaU1lK75F1dQN91jww4HxHNIF8yUOtGFSzRUlX3sqbSF6sXWKdhCJ4SDwuaFouSFyLsGOW8zFtAnrFiBQqxAQVe8cpMatt7fFcsz2rtCarmHkusw3NLKbG5nO9iybVFwbHbry6coCv39/fT19bG2tsb9+/d54YUXGBkZIZFI7OkGvNGVattzyLnB81y9tderVFdjqHrgKZKCjqoEn1hU/+aEgJJepOi1EqFWVBfdNTr1YTx3mqciaYaqrixLrsFQRULJ45EcA7rJd+1xMhXiPevMUXmzoCkhesOPUHAFqzbcy6dxmOfZLhrOQavGuq4zPj7O2NhYIAVjZGSE8fHxXY+X44rUO86GMy0tLeWElVQqxfvvv1+uaI+MjBzZPKbTjIeCd8YmKnp7OFedRk790dvS0rJjpTqbzZJKpVhaWqK7u5urV6/WeN8URTm2luHHMe5O9g8hBCsrKySTSXK5HIODg/tKPVm3lwN/59zaS35Uaw1UvzwcOvUEq06qvCzjzKMpoc1JV1uUvNrJUfWEckeom5yZ3t4mZ545M8VoAywgnuexsLBAKpXCtm1GRka4du0auq4zOzvb1A6OjmtjeuvYot4kKYV1O0K/ZpNzwrWxC1uYXpR8yWMkmg74mTfsCPFQrai2PY1o9YRCFISmMJNvpz+6UbZ7pK0Y3eHtarkANMXD8TRML4wtohS9oMdex8WpOB3Vm+muKR5OldAWKDyRSDK72oHn6fREYwFRna2yhAjgbibNcO+DM8wrG15ks1nu37/PSy+9xMDAABMTE/t+dH0Yvp/+YOspT8W5q+ZVtTkuOwnvyqNVU3QgKKqdqpjKmNbGsl1iEYPxHbYxqrbyEWMJXQmjVuRouwI66lhG+nWbS973SIlubEVDVyIYaie9xiWyDkxn0yyLIhe8Vm7k7pbfN12YORJ7zWGtGP7NWH9/P+l0mqmpKV566SX6+/tJJBJ0dHTUvOe4KtUnoTW6YRicP3+eiYkJFhYWmJ6eLt+MjI2N1b0ZeVjtH9JTfXo49aK6tbU1UKn2PI+VlRVSqVRZHD7zzDO7VgvOSrzdXqgW1dVJFSMjIzz22GP7rp6vO0FRPWuuMVBVuBV18qQjWpxKrSZw6dTHWLWny8syzjwhJRqohBeqkgKg3mPtTQvIYUR15eRDXdcZGxsL+CZ9Md3Mx5Iflt7G8RRsLwzUHj8FJ4ztFRCKsuNpyxYOKCrzpTaGotsV/3rxeq6AWB3vdckJEQ57GCHBitWCIjzieomw5rBsxrE9DV0TNQIoVMf/bqgujrd9OnKEjoob6PRYb9scoRLWXJ6+eJ/Xbl7EqKrAzeRqn3zcyab5BzVLd6etrY3HH3+cixcvMjU1xauvvkpXVxcTExN1/fONFn3vZt+nWiIrSq39o3bIaj+1wKuqSnvCq0mMyTnBG9kWvYtle54NxaJVH2Gj4okTbAr1y+rLqIrKgB4U0ItOiKE6N2pFT2FQz/FMNMb/L/NRFqws4DARi3I3f7+8ZtMNWnZybo51O02Xsdvzhv3TSH9zR0cH169fp1AoMD09zRtvvEFrayuJRIL+/v7ysfEwVaodx6k7bmVnSz+S76WXXqKvr698M/IwCulKzqb9Q1aqTyS+qF5ZWeGP/uiPeO6551BVldHR0T2Lw+MS1cdRqdY0DcuyAm2yI5HIoZMq0vYKBjY/FL/Pqhvj7dIAcW2AvLvdUnzDmae2cUutxzWsBqvjAkFnaJClisYQGWcRQ4lhVUTy5Z3aSL5F837Nsr1Q6SdvaWnh8uXLdHd315zc/cpJs26OFEXhtext5s32ui3JAWwRYs2K7XghMh0NlE2R46CxYsbpCeexPZWYXm/iYphYlVASAqK6g99H0VA3JW/BjaJrbP23eWynS2HixraoslFR8BCV1eg6ky4N1aFUYXFxRO37HKERxmWkI83NeI5S1e+p6DgMxluYz28/zbqVqT1O9kosFuPKlSucP3++PEltpzi+RgqBZHG6ZtmeqtK1M0OpFtqOsKm8/9UVnWzVbymkbBclFKUfCIrqJ40VhkJ5SqKFyrtkV0C7Vv8ct+RqDOgWV8KL9Kp3WdjqgKpV5dWv2qtUnzemi6kTLap9YrEYjzzyCBcuXCh3H/R918PDw8caqddsXNfd1dqhKAqdnZ10dnZSLBaZnp7mzTffJBaL1dyMPGxs2j/O1r6ftf3xOfWiOpPJMDc3x9WrVzl//jw/9mM/xtWrV/d1ojrOSnWzx3Uch7W1NRYWFvbdJns3wu7f8AvdbxBVQFfgH7Uk2fAiTDsG71k9gIolcrRpg2TdpfL7shWTlHzsOkkhYaV6kpigKzTAglUZybdMRGmjVBHJtWTf35evemNjg2QyydLS0p795HvpqtgoFEUhac1iexqGVl9UOyhsOGHCev1/t7wolB/PK+RdA8N2cIRaNw2kXp5ozjaI6yYaIlDlVJXaKq1XU2FRiKg2xYqoP0toVAun2jq7QkhxsQK+aqVsMenpybK0XGsF643FAqL6dma95jX7JRwOc/HiRSYmJurG8TX6eFixV6qW1H639fzUatUyVdFq3itEiMqJqZ16N+mq32XlBXDedIhXfKVjeobL4SxpN8JI1aTVJddgsM6NmimgS9u+of5fOm9zc74LC52iG0xoKbgF2vV2Ms62rSdZnOGJ9sdq1nsYPM87svktld0HFxcXywkzQNOvAcftqd4L0WiUy5cvc+HChfIk0Js3b3L58mXGx3cyIJ1dvDPY/EV6qk8QQgief/55vvjFL/LXf/3XeJ7HX/zFX/BDP/RDB1rfWbd/+BGCyWSSdDpNOBzm6aefrmkjexBcb4V84f/KNeMmjgB9q8qkKtCulbioFOnTivxdcRRQN5tCVIhqWxTp0EdIO9uTnzLOPEqV89MSdZJClNqJgV1GH3Nb1WlDieAJmCpMcz5+bsd9EEKwvr7O9PQ0mUxmT5ahSpopql1FUBLpYJW3DmtWjEG9/lyDzQC7bfGjKArrdoy4VmvPsT21bmMXUHCEiipAraiY66rHhh0O+LLjhkWNYK7qoihQCSsOptgWNXY9oa2IqkLr5nY4QqWzLc+d6Q1iukHB2d6/sBY8zd3JrON6HloDKoT14vhu376N4zgNO6ek7SxFL/hER6n4v+VldZI/qpuUGkqoqv23QFOD33u95I9CxfhTxRU+0tqG6WUJ4fDRyGbEZVwNpsZ4AlrqNAsCWHR0+iuOqw7N5v/SeYv/9/oVVq0Vqr/3LqMjKKoLwUp5I2hGZrSqqgwODjIwMMD6+jrf/e53effdd1lZWSGRSDTFp38aRLVP9STQ407gOS6k/eP0cKBv6Q/+4A9IJBJEIhGeeeYZXn/99R1f++d//uc89dRTdHR0EI/HuX79Ol/5ylcOvMFf+9rXuH79Ov/sn/0zrl69yosvvojruvzgD/7ggdd5Vu0fnucxNzfH66+/zgcffEBHRwcTExPE4/GGCGrPsynmfwJD3ATAqLqqe0KgKYJe3eJ/jqbwH2JVE1ODlWBHmHToQ4FlGXsetepwNb3Ni6yGToc+Spd+DcsZJFOY5G5mnNfXu/n7FcG9wgL18CcfvvHGG7z//vu0t7fzsY99jEuXLu0rYlFV1aaJ6nvaPOxg+ygjDNJmDMerrTDbroJQasWzK1TW7Tg5J3ijknOMGr+t5aq0hExcNEyv9r7crapshzWXvBVcr1PnAqFV7ZeHSkgJqrvNC0u1fUGl5IYwNI+ujhwjLcHjqeQ6VX+7JDdqJ78eBj+O7wd/8Ae5cuUKQgjefPNNbt26hWnWS0LZO99Z/T7V+3zQ5A+3KjHGcUPoavB99dJ20vZ2dV8AUS0BwA9EFwjjMWVGSHuCpK0x7+isuRozdpjWOqLaEtCu1n4mz8WWOB9eo+SV6AgFrR3hqqjNZDFFo2mmFUNRFLq6utB1nccffxxN03j11Vd54403WF5ePtLzyUnzVO8Fv/lOMycHnyQ81DP531lk35XqP/uzP+Nzn/scX/7yl3nmmWf44he/yCc/+Ulu3rxJX1/tjPquri4+//nPc/nyZQzD4Otf/zqf+cxn6Ovr45Of/OS+N1gIwS/+4i/yMz/zM8RisXLjl1wud+DmLWfN/mFZVrnluj+5zo8QnJ+fb1h1vFD69+hsihNHQKxKfVlAaEto9+oWPxJN8apZLwurNhkgqrWyXrHYxaZTHyPrrtGi9QNtbDg6WauH+8X01qOkNCPhMFOWbx/ZHPtGPsUneitGq2pmMzY2xuDg4KFO+M0S1VOhzcfy1Y/1K7E9FRSFdTNGbzQYw5Z3whVNPraxPA1dhVWzBU1Y5Zg8Takdp+AYdIRLW5F4GnHNClRJQ3VEv+XqxCsqpI7Q0RWn3CEQ6tlEQFe8re6BW69BRVM83IqMbsfTyt7r3u4srRvBatZSoTZy88baChPtjfXkwnYChKqqPPLIIywuLvLCCy8wPDzMxMTEgfLwP9i4wYMnKdZr+lKLI0wqDQ4lVyFS5XiwqyYUR9QWVuzgZ5hxDSb0DANqiTkXIppDXN2uZjtAQURZdML0V/nxF6qq1D6qAj/TeYv/sPA0nXo7aTu9vT4v+PpVe52ck6NFP1yb8Eo2M72b72+Ox+MMDAyUI+beffddQqEQiUSCoaGhhgvg4+ji6I/rd989KA+rp9oVSk2x4rRz1vbHZ9+i+vd+7/f4+Z//eT7zmc8A8OUvf5m/+qu/4o/+6I/41V/91ZrX//AP/3Dg71/+5V/mj//4j3n55ZcPJKo/9alPBf72m22cVlHdSPtHoVAglUoxPz9Pe3s7jzzySE0yQaOq4663gup+tfy3XvdkF7zw9+kWz/I2L5euVzVuWah5rSssWrVBNKUD24uStmHVbeN7GyqbntA0AINGf8CbtWitlqfB+SyUVrmfn2NI7y5PzoxGo7s2s9kPzRTVmdAaQoCm7nzcFLZy59bMGN2RfKDS7IrNZPBqhNj6XBWFJcsg5sVp1UtbkxGDRHUbIQSOpyFQ8YQSEN8x3dpM/qiogIbqTFYzqkS1LXQ0XNyKxI961QxdcQOiWqDguJtJIx3xAvZGVfpEIU9cD5F3toXZjdUVfmziYs26G4WiKLS3tzMyMsLGxgb37t3j5Zdfpq+vj3Pnzu2r4rZo1eZC72lSoogCFclIAsJa0N9c78KWr07+0LpZsYNPe+YLM/x41yqrwkOg06YF7Slp16BLLyJEkSm7nURo8/u3haBNrfVY+3SpJT4aT7EqHgmur6JS7jNdnOFq6+Ud17VfjrsRS2XE3NzcHFNTU9y+fbvckbBRQvikROodlIdRWLtn0FPtSk/1ZgX0zTff5Nd+7dfKy1RV5eMf/zivvPLKA98vhODv/u7vuHnzJr/zO7+z/62tg67rRCKRBzaA2Y3TbP8QQpBOp0mlUqytrdHX17drZ7+DtCmvR6HwbwhtZdvaIkxMCVaSLCHKVepKejSTx8IpXi1u3gBpGOhKC936eUyhseEoLFsWd/Iuq5YLFLf+g4lonGo50arHoKKwZguHHrWTpYps6xV7jb+89SLXMwMNnZzp06z0D8uzcfQ8rlBqLBmV+E1hPFRyVpy28OZvw/WCrcN9PK9KpCsKBTdCwQ7RG80H3rNhGbQaFpa7/fgua0foDBcr307BDtFmbIunNsPE9pSqKnmdxA/FoVghmG2h1SR+1DsVe2Iz1UJXBdnwNBBMkBlubeXW+naixY316ol/jaVysmZrayuPP/44hUKhHMfX2dnJuXPnHtjOXghB1kk/cLx61g9HOMETvBcFNXieVJVq60dt8oeh1VrFPtH6Ni4WIYWtG5zg798XAIoCMSXDfTvOkK4yb4cYDNVORPaZdkNcj83y17lgtTztZIipcQre9nGWbLCobnYSh98hsHrMys6eq6ur3L9/n3v37jE0NEQikaCl5XDV+eNK/ziM/cPnYRTUsPkUr96TvNOMd0Y91fsS1SsrK7iuS39/f2B5f38/N27c2PF9mUyG4eFhTNNE0zS+9KUv8YlPfOJgW1yFoijE4/E9tyqvx2msVHuex9LSEqlUimKxyPDwMJcuXXpgNaMRotp23kX3vluhiWp/7JZQiNaxDpSAAW0W1XuCO6UIK3YBUJiItnO3EIwN69Q7WK+YnLRW8TjYxxW131uLFg2I6g23wKxY5+ef/icN8ZJX06xK9avr76KoHo6zc/IHbNk/tliz4rQaeRRlMxqvnhi3hLbD8hALxTYMxaE7kkdXRTkrulLk5h0jIKqhVi5rqmC9FKE9si2WTOEnUWyvS6lJfFMIqzYlb9tT6witNvu6Qvhr0WVgLDB+mxH8XdxYO1pRXQ8/ju/ChQtMT0/z1ltvEY1GOXfu3I5xYXfy09jCJviJetTYQUSMyqo0CMI1nTFrBU2o6jiqm/xRVc2+FkkxamxWjm1PpaOqSl3yNDrV4LK4mmfR0dGUne0vtgcRpUB7yEX1bgNBq0BPuItkcbb8d7LQWF91s0W1f83ZaUxFUejp6aGnp4eNjQ2mpqb4zne+Q3d3N4lE4oE3ZLuNexIj9SQ7IyvVp4emHOGtra289dZb5HI5vvWtb/G5z32Oc+fO1VhDDspuXRX3gqZph55MdNBx9yvmK/3Afh73wMDAnk9WjbCcFIu/grF1LreEQrxq4psrBOEdzvWu8NAU+Gj073l144cptyOuc8LoMoKiOuNs0Kq1sFHRrnm96lE1gOvVWhacsCCrFYnTeFHdrImKr2feBmpFTpDNNAz/Wlt0FTbsMG2GieOpdcX45vLg9rtC2bJvKNiEmC+2E1IcIppD1goHKpwh3aPk6EQqrCKbrc6Dlp7qSst24se2YLY9veZ9tVVYpfolRHWboqujKAqt0SLDrWFmN7aPy+o1LORzrJeKdEb21jF0v+zW/MUwjHIcX2V28cTEBMPDwwGR9eraWzXvr7fWomvTUqGTLEcjVtVwxfZcgrcWoqYlfb3kj6K3/TnqOPyDlu0YS6X2LogNz6BXD95kbS7XULHoEdS9iZt2QnTom2L80egtkoUnsdXt7Yupwa1PFhubANLsCq5/Ht7LmK2trVy7do3JyUmSySRvvfUWkUiERCLB4ODgvm4GTlP6RzUPbaWas+dBbm7bu+axL1Hd09ODpmksLi4Gli8uLjIwMLDj+1RV5cKFCwBcv36dDz/8kC984QsNEdWnuVKtqiqOUysA61EsFpmZmSk3I5mcnKSnp2ffJ5nDWk5K1l8REsnyld0TKlRVpE0B4XqT4YRA23rfkJHj8WiKt4ujAOS92kfCRp0Ugl6jk43itqheszO0qHFyFe/POBs1yiOu6/zlwuv868SP72U390WzKtWp0vTmdEwzysAOcXmIUM0xsVqK0aKb6Dv4sOsJHMdTCFV4ohVFoeAaqJqC8ASxgBhTyFgRIhXbZGgueTtENLR9rMXrZGBXC2YPlRAOdsV0OqdOtF7gPQLytkHOCdEetlAV6O5dY3Zj+wYqbdY2GbqxtsJzQ6N113lY9nI86LpOIpFgbGyM+fn5cnaxHyGm6zo3c3dq3qeIGCjB30u1Z73yaYWPVzUhuOTotBjB7+RByR+faLtBfEvoOkKhpeqY2mz2Ur9A4SFo1UqknFbGqwS/5UFU3d6nq5FFXnAN0hWi2qu6DC+YS5Rck4jWGK/xSatU18PPRz937hyzs7PcvXu33ExmdHR0Tznbp1lUP6ycxbSMs7Y/PvvaK8MwePLJJ/nWt75VXuZ5Ht/61rd47rnn9rwez/MaWhlubW09laJ6L+NmMhnee+89Xn31VUzT5Pr16zz55JMHnmB3GPuHEALb/PcIIO/prLoqjhB4lekMFcK5GrNKaHyq4/1yxN6ytYJaJZoKdYV27X1gG8FHyjmtiCGCr7O8Iu9vND6GC5ojqi3PxibDhh1mrRhlp+Esr/aiVfIM1qxYXfEsPL0mUg3AqyPKtK3X6YpXk5lab9y8FRQ7ccOmaAe/l4xVWymu9n27aNX3bVvb4ZDKtXE3281iqZW0GWW1uLm+cHQ18NqZXLZmIt/NI7aA7PX3qaoqw8PD/MAP/ABXr15laWmJ559/nps3b7JuL1N9M5F3qmMGN2MLK9HVWnEV1oLvs0Xtd1ad/BFW4uTdzXNrj7bB1XBlQaX2/etuBKNO+kvW08ti21A2WHOD25d0QoQr4vdiqs3leDLwmqWNpcDfAsFMaZZG0WxR7Y93kPO4pmmMjY3xP/1P/xNXr15leXmZ559/ng8++IBCYWfPOpxeUd2syeASyWHYt/3jc5/7HD/3cz/HU089xUc/+lG++MUvks/ny2kgP/uzP8vw8DBf+MIXAPjCF77AU089xfnz5zFNk2984xt85Stf4Q//8A8bthOnuVJdb1whBMvLy6RSKXK5HENDQzz77LNEo4d/VH0YUZ0ufomck8VVAFw8T0FRXZZc0AjRpbnYAkJ1rkuuEDUxcHHN4R93vM/X0tdwhEOv0ceitVz+92VrpaapcsmrvRlTXWqKmJ3EWWTbGrJgrZKzIqStHB1G42K4oDmi+jvr76AgWMrHsT0d0w3aLXyKTv3vdrUUYzCWqxGWlqehVGUJe4KaqrbrUR5PV7xAQgeApgmECCZQ6ErtsV1yQkQruu5FDQfLUdErVlevg6PngaIK8o7Bmhmj5BmMxNY3vdZbL9/0jUew8xq90TzhsIlpbgp703UZjrcym9u0E3WGI6xkdxcfh+Egx4OiKPT19dHX18f6+jo3796ipOVrjm29SrTarkakSlRHqsShEGqNqK5nI6pO/mgN9bDqbCZ//ET7++UbM0coxOt8v+Edmr3kPR1j6+mGqkDeK9Gq6oQUgekpxLTaieZXW+/y6mr39jq0PJqn4Vbs/3QhxYVdGjvth+MS1Yeh8pjJZDJMTU3x0ksv0dfXRyKRoLOzNjbyOHOqD+upfljtH2ez+cvZ2h+ffR/hn/70p1leXubXf/3XWVhY4Pr163zzm98sT15MJpOBE0U+n+cXf/EXmZmZKbce/ZM/+RM+/elPN2wnTnOlulLgOo7DwsICqVQKz/MYHR3l8ccfb+jkDk3TyrPO93OC8jyXjPWfy6pJCFHOI1YU8LBZdsFQVOoFG5aEqI38Ap6JJ3k+e4ENL0qb3hIQ1Zaw6TP6WLS2q46LZm23tVDM8ANCyhhVos8RDu2hGP9t/lU+M/7xPe/3XmhG+sd30+/guK2Yrg4o5O1QXVFt16kYA+TtCDlb0GoExYsjBNU1zYJpEAsHH887TghlSwzrqlfTRERTIWNG6Ihs2yzaIyUcT0GvOHdWN3gB2DCjdMa2v0Bb6Khi82F/3jFYNePgKRRFsAHIciF4c6QpAtsTmF6I+Xwr3d1Z5ua2A8p7o3HUkk2X1sad1BpvlGbhYzWb0zAOIwA6OztxJnRI1eZRG1r1TVCdcZSgrcN0dAwjeLxU3+TWTf5QN58CPRaZoV/fPnYEGkqVqF53DDrrtCS3hEJr1cRFQ7WZccJMhBymHZ2uOh7s8fAKrWqJDS+yNaagP9LLnLldLX9n/j2eiz99oPzvao7D/tFIcdve3s7jjz/O5OQk09PTvPnmm8TjcSYmJujr6yvv23FE6gkhDr2/iqI8tKJ6s23a2dr3s7Y/PgdSa5/97Gf57Gc/W/ffnn/++cDfv/Vbv8Vv/dZvHWSYPdPS0nKqI/VM0wzkJ1efBBs9Jux/JvZq8f/BZnbHJp5Q0aqqUjYqNqC40FZx7vSEx3ZuRBBdEXy6+3v85+UfoF5YWkeoJSCqTWHRQRtpticwLlmrVAttp05DmaFIC99ev3kkovqoK9Upc5r5fLS8hxtWmO5orRCp56WFzervQj5GWCuVRZmo8k37uHU6MVZOK9npVFh0InRUHCOaKlgvxOiqEMztEXPzqUXFxdETCiv5OEU7hB5yKHgGhuqQd7fTH1Q8qr/jvGtQ+RPZnDOngLJpGdmclSfojsS4EOsiUtC4MWOzzObxdG9lHcfz0Bv8O/OPhcMKgLcy76MRw6m4Y7Rdlage/N3VxFMLgVo1ediuc89nVFWuO/Ue0k7QTuEJFQ2XH2q5i+0prHkRhOIRwd3KFVdp38q+durYQQDW3DAdWu2xGlNzpOxWWutUqWGzov1MS5L/kZ0sL2vR44EIzQVviZdeeon+/n4mJiYO3KsAjkdUH8V4fvHqwoUL5YmwN2/eZHx8nJGRkWOJ1NvPpExJLbJSfXo4E/k2jUj/OA5RbVkWuVyOV155ha6urobnJ9fDP4nvp7LqeQXy9n8NLKt+BA2bEWlhxSUHCBfat86fJvUnw/n06BtElRLZiqQPH8uqtXv0xrpIF7ZfW/RKdIc6Wa2I3MuqeTaNxxWNbxSXRStNybWIaMGq52E4alFteTZrpkXOCZdvO7JmpMZuUZ384eN5mw1SBDCXb2O8dX3z6YLbAlViRwgwqkSb40J8KwpPEd6Owt2tI7e9KoGuKoLFfAu2q2N6Og4qjlBRNQGaAt5m3VxUJbh4qIRVG7MiWq/uz6Si06CqCia7dFIfWLwtFrg62Bt4qeW6JNfSnOup1+Xz+LmRXSbvWIQrztKOpwHB76e6EZDrGYT0YGW4+rMSQtQ86Yjr8Zrkj5Jn8rGW22SEjoqGqnpbVhywEdi4ZOwwjggxUid/WgiBoew8GXvJ9RhRvB3v1B6LzvE/shfxX1A9sXVNSfPcDz7HbHKW119/nfb2diYmJg40ifs47B9HKTIrJ8IuLi4yNTXFnTt3cF13zxPkG4U/3mGeuj7MnuqzGal3tvbH50yI6tbW1nK78oPQTFEthGB1dZVUKkU6nUbTND760Y825PHlXjiIqF4u/Adg+7GuJxQiVaLaE0EPbR5gS1hvVibrr9sTYAt4puU+L2xEMZQQlti2HmSsTM0Ft95PsSvUFhDVpmLTrXeyam97RNedNI7w+OrCG/z08A88YK/3zlFH6r20+hYrpU0/vf+oX6DieRG0yoxgYdQVEpX2ANMNsbDRzmBbBtvTUKuu6aatEQ4FfwuWHSJm+NYPF3uHXGtddzAdjXCFKFcUwWy2DUto2ELHRSFvhYmG7fI8Nx2BaWmEQtvHVNqMYxjB7TDtUGBunKpsTpINdAxVKp6JKJANLyFEHwDLuVrRd2tpteGiuhGVaiEE9/Nr9MXcquW1r632U+uEqXyqBLU3waar01LVXVFTan9ZjpviXHy1HKG4afsKbkRYddhww8w5YXo1m7i6LdhW3QgtWm3yCvgJMw7zbgsjav2iSJdeIBFeZcrsAaDgBqvarnBJK1keeeQRzp8/X27zbRhGuc33XoSyEOJUeqr3gqqqDA4OMjAwwNraGm+88QavvfYaAwMDJBKJQ1X394rruoe2bzys1g/YPIfvHqV6+jhr++NzJm4VToP9w3Vd5ubmeO2117hx4wYdHR08+uij6LreNEENmyem/UxWdLw1is5fBZap1EZYWag1qR95YNaqL8B8CkIFReFidBGBoINgJ8gNLU+oKvFjw639rtU6J9xuI7iuNTtDTAvxrZV3d96gA3CUlepSqcQ3p9/e8lIHT0RZO6iIrbq2DdCUoGs64xhkiwaeUit2TKc2NUKtEGQqOz91UBSF1UILCxtt3Fnv4Ua6jzWvhTUnRgkDV9n8rtU6TzkcN7gvhuHUdNzyP4Pt8WqzrzVFBL+LkIfasikelzby5Xx1n9tLB78ZP0peWPoAcGoqzNUdEDe7VFbd4NbYqGqr0vWeNjgiKLINJcqTsbcCY1a3pIfN9JGYYmKoNuuewqq7fX6obj9TyZIXI6R42A/46Xy0IgVkxVqtKWpPFzdTffw23z/0Qz/E+Pg49+7d44UXXuDevXvY9m5bsn0jdJo91Q9CUZRyp92PfexjhEIhXn/9dV5//XWWlpaOtDDg7+tBhXGjLFWnFW+rUn2W/jurkXpnolLdCFF9VJUKy7KYnZ1lZmYGwzAYGxtjYGAAVVXJZrMnKnWkHkuFfwcV/mRbGESrZwWyOemgeuITwIZQaREQqhfnJqDkqaBAm2YyFFpHmAOByrRAMBjuIVVa2N4mcxUdDafiMXiujtCul7k7Hu3gRm4Zx3XRG3RBO4qJirlcjmQyydLSEjdCmznBQoiAqE6bBp2R7f0u7PBEd6OoooWCmdML+XYGWjdqTgC1VgJoiWyLrYJlEDZ2Pnbmi220xCzQt79G29HQK/y7Yd194ERZVQHT0gNjhfQHf8bVq1Q0iCWy5N7brHR2hg0WS9v7c3s5ODGvETRCAPzN0ps14hVq4wadOuLY8kwqzU22qxKrsvTEtBjV1ezq5I9EpERfqLKCXFulBsh4Udq3qtGqIigJhzknSrtq0aHWr1JvfkSb+9Kimay6Ebp3qGiLCj+/LWx6jd6teRSbpIpBH7imaYyOjjIyMsLS0hL379/n7t27jI6OkkgkiESCnRph+8ndWaxUV+Kf91taWsrdPWdmZnj//ffRdZ3x8XGGh4cbLvYb0aL8YbZ/nM025Wdrf3zOjKg+rKcaGjtxJJ/Pk0qlWFhYoKOjgytXrtS0lW1Ed8ODsNdKtekksZwXAstKXpx41cXPFgp6nYutJyCkCtJeiB7VrhE8JaEgKhY+03qPt7TrNUkecS14EfTwGAr3MVORArBkrqIrGo7YXWi3hEII4G+W3+YnBj5Sb7f3TSMr1el0munpadbX1xkYGODaR66Tf+eVytHK/9+GGQ74qnecpFgTTAiKEmFmQ2EgliuLZsdViBrBip5phYjGNwWx6wlKDxDVVp3s42r/jqoKirYesJlUNy8BPyt7e7mueVvxe5U3CLt/7pomcCIeqB54KjE9+Bmd1Er1zVySbCmM42l0hVVsUcDQnBqrR734Qb16ArGnU+3D3jBNwhUPJWqTPwSTxjuB95iuTuv/n70/D9LsOs87wd85d/vW3JfKWjMLKBALCRACSIq0KdI2Lbpb4R7J0gTDDgcVihl5pqfZYw/d3ZIiZkh1hGWRNq2h7VFLM1Srx4s0kltqr7RJWRAhkESRgACCC9ZasiozKyv39Vvvveec+eN+y92+qqzKAopI1KuAWHm/u5y7nfuc5zzv81p5BXxSfwsBBCyFJc44e7nnt6GKFGIykT3l5ILqzbCILf1OQaDoczXsVJHCxTajXGsovrFa52+czB5DCMH09DTT09Nsb29z5coVnnnmGY4dO8bc3FyPtYW7A6rvhgtHmjF2XZezZ88yOzvL9evXuXLlChcuXOD06dOcPn0az7szhXXulSg/XChEbs7K2zmO2vl040g85UNDQ3cMVB+kItWgMMawvb3N4uIi29vbTE9P8+STT1Kp5PsidxnjW7W3O2wcFFRfq/2PyNjHWBuoiOxHMkBi57DUGoEQUUJC3UgqsWl/YzrSj1icdLb5kzALclSOk0fZKqbW0cy4k1xr9wtErPqb2EISmv5xfR0h9q+svfRDA6q7OvurV69Sq9U4ceIEDz74IJ7n8e+vf2fwdkhayqbYndo3+c+utLJtk1gYIbneqDKuGoyVmzR8h0ohCaq7oDVQkvW9KmPFwd7O9baD7WiCUCZYZTsXMCefd9dVBKEgTmbJnAqQoZKJ/Vl5umqSQwglBYUz+7Tms9rR5d199lttqoU7Ax7g8Ez1UmOTpm5QC0rUwwLrDYASYLClpmgrHCvAs0JKEupSU7BCLGkwRmT8qE3OYMuzb+z88XBhmaJMJgnn2SE2tMNQDhhWBoRQXA8qzDjZvrmFpBz7uyxb1JRNJdZ2bWBFFRHCcLoAvnmQbd9itV7h25sL0HFxqdjNm/aho6OjjI6OUq/XuXLlSi85fG5ujrGxsbvGVL/VbhiDgHy3ANHx48fZ2triypUr/Omf/ikzMzPMzs4mBiC3e9w7UaL8HSv/uMdUv23iSIDqcrl8KPlHV2d8u1IMrTVra2ssLCzQarUSoOhG0e1k3mpQfRCG/KWdX6Udfh9lqoDAEhph4GSKedIm63fbjXh2b83YeMbvyUB8IzKaKlcqzrgv46uHE2XLt2Nlknv7Ntl7VbFLCbstZRTHvGmWWn3v61V/A4Fkvrl6x6777YJqrTWrq6ssLCwQBEGuL/k3N9+IHymzj0bgUbRDjJGdipXJdcJQIPMqJhoTrSoEm34JmwImVfpaa6gU2uw0imy2ingoil6WqexG3fdAQNN3cOz+jSg4IYESyJgYO++qB6GNFQNVrnPzAacQEUCP6/ml7FZ8jBY6UuOPBjBvaKnsc39xfYvHT80MPMbtxu0+W/9m+ds0/MiPPB3KSGqBhCAaQLlCEjAEGGyhGHMlyBoFK6DiaMq2xqjkfrQxlFPlyePOHzYhDxRWEr8rIyjJ7OC2oV28nOX7ukhBBigMe8pjKFa6fEe5lGXy+ELAuipSsfquPgvBcG9Q1wp2+eraDgAPVJKDx1rYZrW9x7HCzRPuyuUyjzzyCPfffz8LCwu89NJLFItFjh8/3mnHW9cP3w2m+mZAXgjB+Pg44+Pj1Gq1xABkdnaW8fHx27pG90qUHy4UR4/ZvV3h66//+q/zD//hP2RlZYXHHnuMf/pP/ynvf//7c9f90pe+xD//5/+cH/zgBwA88cQT/P2///cHrn8n4kiA6i5TfRiQdDvJikEQsLy8zNLSElJKTp06xczMzIE7jzdDdnKQuBFTbYzh29v/N/aDFxixdSIpraELXPFHOe7s4XacPrbDElUnn6lKOlMLdrXDeEcGUh8wSn1vaYkd9WHqrT7A2wn3qFpV9lUMaKf0nwA6B2hX7WQSaFv7HC8cY6m5yx+tvszHj707tx23Erfq/hGGIdevX+8VSurq7POemzfqfXCTly290ygzXqwThh55IMxXdi6CDUwQWy5Y9S2EKrPnFyjIkJIbEGpBM3RoY4MU2DrslSrPi7a2wAI/lXQoBPihQyFWfCSy7UsOAkyKvbakoeXbuE5SApKNpLxFCggCgez0brataYYW1kSL7e3sNb6wtnlHQfVhpUAv7LxBw3fzLQNTEfT0xoLQ2Ky3DVImZ8Z0AIX9EYYdgTFNXKGYLLWZqUDDRCA2nn/wZPlKr7BTL7LjNZQRA509uldACsGukRSM1esz9rRLxcpaZRakT9DxTm9qm7oRvWswU+i/72vt7GzZxdrqgUB1NzzP49y5c8zNzXHt2jUuX74MwJUrVzh58uRbIlW4W0z1QY9ZqVR497vfzblz51hYWOC73/0uhUKB2dlZZmZmbumbdSc01e/kuMdUR/H7v//7fPrTn+Y3f/M3+cAHPsAXv/hFPv7xj/P6668zNTWVWf/pp5/mr//1v86HPvQhCoUCn//85/nxH/9xXn75ZU6cOHEnTiMTRwJUH5aphlsD1c1mk8XFRa5fv061WuWBBx64LV/UeCGWw8hObjUGsfJaB3xj628RmjcSzBJAQzl4HXbpWlClJEOm7RpqwDkv+WNMu8mPX9iRgQgtB466x+0aFZllQyfdUfabcfZ6l4osUdN9AfZWcDCgPeWVuNba5avr37kjoPqgiYq+77O0tNSrLnru3DkmJycHPjeN0Gcn6J9zHqiuhRZKCxpB/gdLKdkDl739aNAiWc9Ka5CWpGUkLeWw0yyiQ0PBiyeJDe4EjYnqrgC5nkJpuYdtadpB0kYvDzArJYiXfHRtTaAEVqLoSxbEGiXA7sowooqP5lib1kaRqmOxH/Sfiwvrd1ZXfRj5R6AV6+09Qm0ntOMHjbLl0TR9oGuMwbIhFBabIUCZwJesa8UrNfCY4ETRY0SMMmI9TkVeY9j6Hk1tY6FxROQl4uV4Te+oIiM5lRAb2qYo+zIiSxhWVYGTVp2msSnJLKCGyPbvuipzWta4Ggwl7utETEKyEzQYtkvshv1jX9xf5c9PPMCtRjc5b3h4mOeff57l5eVeUuOZM2fumKY4L+6mpvpWojsAOXv2LMvLy1y+fJk33niD06dPc+rUKVz35p7/d0pT/U6Vf9wr/hLFr/3ar/HzP//z/NzP/RwAv/mbv8mXv/xlfvu3f5tf/MVfzKz/O7/zO4m/f+u3fos//MM/5KmnnuKTn/zk7TX8JnEkQPVhy5TDwUD17u4uCwsLbGxsMDU1xeOPP87Q0NBtH/NW7e3uVOQd09c1vrn1c9gsoY1Fuq8PjI3XmbCxpKGNxRvtMU64WdbI15JRO3+QUzMWSkncXMYxYhnvK3ybHzRmE8s9mR10THpj1GKZ/9thFmjnMdpdbeiFxvIdkYDcTP7RHYQtLy/3rBRHR0dvetw/Xnu59++otHxOJyQEzXaRZijIK2injexUI+yHhYNOlZjWOisTiQNXow0tZbPXKDBUyrKT9ZbX89pzbIXSye3znCxCJROg2nVDlCYpE8m5RGFoYbk31lWnwxYaVdAYL2BmaIz9mOvHd68u0W6331QAddD4j8vfYaeZtc7LqzbqSQs/NWjc933s2KuilMTKuKbEfMuBy802681NasLnb51+gTYO7a4+3xgsFGWCTJJiXgEogKZ2KWc8sDXLqoIGygNAddQyxXpYRAudaOeQ3UCgMZ0R21RhiN1aDFTX1tK7uqUwxmDbNh/84AcTmuLjx48zOzs7MC/mMKG1fkvJFDicDCPuqrK+vs6VK1e4fPkyJ06c4MyZM5TL5YHb3pN/HC7MESxTnl9jeXD4vs8LL7zAL/3SL/WWSSn52Mc+xvnz52+wZT8ajQZBEDA29uYV/DoSoHpoaIggCPB9/7Y/jINAtdaajY0NFhYWqNfrHD9+nA9+8IO5tky3E4fRct9upDXV9XCNb23/HK7YwteCasoGKzQyl11q4XI9GGLariV0lWvhUIJZSu7LoomDS/60McAJ9zJwhsTH32SP74ksQ5IG2lvBLpPOOCVZxegC603NhU2Jazv42udra6/xF6cfGtiWg8QgUF2r1bh69Spra2tMTk7yxBNP3FLCz7NbMT21yUsFjcIPS4QM0DrngFkLmyClaIukF/F1DVZs4GMZQyAlO61iPqhuu73eRAhottzIWq8TBTfo7D0pCUo0VYAf2hRigDlXJpKzXVpXbTs6sZ5jaXxtsE62KDaT3d7Cbo2nn36akydPMjc3d2jf+MMw1V/f/AF7bQc3xz4wvTtH2vjxvsMYrDS7neNd7qSwTdnyqOkWD1euMe2l31uBwmYPm7ayGZYtHKHZV/kSDmUEBZnvCa2MQg8oZd4NT4Qs+iMZX21bGE4Ud1hqRh/Dsp3s5y/WVjlMdO3t4pri/f19rly5wrPPPsvExARzc3N3tOKtUuotH8jdqYTBqakppqam2Nvb48qVK3zzm99kYmKC2dnZXMLgsMd9J9vpwdFmqvf2ksSc53m578XGxgZKKaanpxPLp6enee211w50zF/4hV/g+PHjfOxjH7vNVt88jgSo7rIItVrtjoHqru51cTEqLHDy5EmOHz9+x7V2d8NWL85U7wSXeWHnb+GKLrMsM8U96srLfEC1gYIIsKVmwR/hlLtDQYYYA84NyhJf88epWvWedjIvytLnoWLAq80+aF73N0iDq7bOAdrSoSSLuM0CXmGCxXrINmWe3V+n69UnEfzo5EneaM/zn9ZeuiOguns9jTHs7OywsLDA9vY2MzMzfOADH7gtoHah3gcKfpDPRAPsBw7SDjLjfmPITVLMZQhSi7QSyNiYRRiDZWtaRHKTtLba16lCNIFNvAqnZRkabRs3xkzn2uiplI2erWkHEsfuHy/tpd0/AZPYrunb2J3tpGXAN1jDAWEjedxmqDj77kdpbKzxjW98I9dy7a2K+dp2rk1eXvhhsry3UgLLTd6XPCziOSLhp3OsMMLlxnU+NvHqDY/XxmFN25Tw8Y1FKae0y54uJKQfyd9KWEIzxGCmelOVaeJSyHH8mS1t9kC1Sc2+LDa2aKmAgnV7zG+evrlarfKe97yHc+fOcfXqVV544QXK5TJzc3NMT08fGlz/sGuqDxJDQ0M8+uijPPDAA1y9epUXX3yRcrnM7Ows09PTPXlLGIaH/na+s90/jm5FxVOnTiWWf/azn+WXf/mX7/jxPve5z/F7v/d7PP3003eMFM2LIwGqy+UyQgj29/cZHx+/rX10QXWr1WJpaYnl5WVKpRL33Xcfk5OTb5r27a0skd6NLju+2nqRl/c/jSuij1ygZYalNgbcHJBc115virds+1wLhjju7FFXHsN2Pgu9pzzKViNynFAVjsn93PUA7isu8WrzbO/vpm4x4YyzEStFHhWAMFStCqP2JH5YYL3u8uJaHRCwG0k/Hh8ZSexbY9hqSqSwuNhIFo64nZBSEgQB6+vrXL16lUajwYkTJ3jooYcOpDfMi3rYZifoS2iUEVgDuOq9UFC1RcbWMFQyI+MB8HWY0T2ndclpYKeUJCrMKNiul5io9tumNehUPmTeVKUJbXD6QNuxFaFO6qPzEiHD0MKxk0mOyiSraObpqnVMVw1gW4ZQwDUnq6G+1mjz0cceo9FocPnyZc6fP8/ExARnz55lJPX83Cxul6l+dfca1+ttpMiXvSSPAb5IDaRyPrrpAbLWEKZAb9n2+PDYGwznJBxnQ1AzHr62cZXK5F4ManbXmEaKKLl51M5aM2ojqOnBpMiJwk7v37tBUsutMczX13lo6PgBziEbNyrEUigUeNe73tUrg/7aa6/xxhtvMDs7e6hCKXer+MubAeTj12hpaYk33niD119/nTNnznDq1CmUUm8qkLkXb99YXFxMyGgHEaMTExNYlsXqanJWanV1lWPHjt3wGF/4whf43Oc+xx//8R/z6KOPHr7RN4gjAaqFEIeuqqi15vr161y8eJGJiQkeffRRhoeH3/SR8d2Qf0gpWefb1Pf/Xzgxba1BZD7mde1SzLHMSoOmohWyElYRRlAZwERd94eZdGu97X0tcHNA1J4qoHOqNo46Q2wEO4w7Y5TlKA3fod0WPLe7CTSABlU7+0K2VLb9BcuhGI7RtnZ4duMSH5q4L7fNNwutNbVajZ2dHTY3Nzl9+vQdmdH46urLA+Ue6TDaZq9WZGw4CVSC0MpNGlSEicXGkJENpJ96jcTqsIP7vscE/Xet3iogUsexHJUoTBO1M12ABoK2jVWI2+iFpGckRI7cIwgsvBjr3dcgR+uGocQPbEIVSSIsS2MJTYhFbWgXyXCC67y4tslHz81SKpV497vfzf3338+VK1d4/vnnGRkZ4ezZs5niTXc6/s3Sd9j3Ra6vd8FyaOtY8p+xMKkiL3nPi0zlLmglIVVdUeLzwdH5A7ezrR1sadjRJXxjM9HJn9hX3kDpx74u9BxF2sbOPBsAG2EFhMBG5/4+5fYH4cvN7UxJo4u1tUOB6pvdW9u2mZub48yZM1y/fp35+XkuXrzYK5RyqwPou6EzfrOBvG3bzM7OcubMGVZXV7ly5QoXL17E8zyKxeLNd3CDeKey1ECvtPdRiu75DA0NHSg3zXVdnnjiCZ566il+8id/Eoie56eeeopPfepTA7f7B//gH/Arv/IrfPWrX+XJJ5+8I22/URwpUL2/P5j5zItu0Y2FhQV2d3epVCq3PVV/u3E3mOp17xvsFn8PrQooIxAYytJl2Mom+6S9pCGqoJiXbCSFoaa9yLs61f+1lcVwzCnAkZrL7SkeLCZHncbAFX8cITSTzi474QQTzhSWqdL2y1zf1bziB0AEzt89NEOiymDYZsqrstbua0Ovt/ZIA7XQKBb2A8aGFP96+YVbBtVhGLK8vMzi4iJaa0qlEj/yIz9yxz5Y396+mPj7Rt8TPzC0fY/hajPB9IbayjK/Osteaw3pb3siUc6YhGTEl7JTQjwCw422k3DoALBsQ7ttU4gDZi9ncJa20bNybPTs7PsRFTSJg2poh5JAWTSaRdpaRhKWeLKlMbhOiFVQjE0UWNvoM7NvpCorFgoFHnzwQc6ePdvzMy6VSpw9e5apqakbfuBvl6l+YXMZENkkRWNoqyAx0nGFSzs18ExvpxUZB5Gy7RGSHHw9Uv3jXK/pQaE7cFYIQROX5cDmuLNL0zg4A9xnfWPhiW6is2ZblRiLsdWhkdSNgxDReTS1SymV7Djq9AdygVHMFEZYbvUTkQ+jq74VKUa8UMrGxgZXrlxhfn6eEydOMDs7e+Dvx91gqt8qazshBMeOHePYsWNsb2/zne98h8uXL1Ov15mbm2N4+OD2h/F9vlPjKMs/biU+/elP87M/+7M8+eSTvP/97+eLX/wi9Xq95wbyyU9+khMnTvCrv/qrAHz+85/nM5/5DL/7u7/L7OwsKyuRRW2lUnlTko/hiIBquDVbPaUUKysrLC4uEoYhJ0+epFQqIaV8SwE1HLy64Z2K7+79C3aLv4sUEYlpd57rBh6tcIgxq47bYcDa2qIksglwDV2gmuNPux2WGbLbLPhjzHpbid8W/DHG3eT9KVpBRp+7rUuEwgYM57w9/uflB1FGA7ucLTts+0kmzE5TpMCUV0mA6p2gybhbZtPvf8TX2vsEWrPf8FiQG7nXKi/itnilUokHHniAer1OrVa7ox/IizE9tdYgbuAPrbQAJPu1AiNDfaCVp6e1OwWf46G1TCQlAom/hSah5xZCsFUrMTPWTTCJ7lc6Wm03CapdRattYTsxSUaOPlopCTFQ7Tp51RYNxkA7sAlCi0ZoE2qJ1v0uTUgSjKcQAt93KBZ92lN7sNFnFgeVK3ddl/vvv5/Z2VkWFxd55ZVXuHDhAmfPnuXYsWO59/x2kqr2/SaX9nc77Uz+ppTEdpLXSZn0dYus8+KhlYQU6z3suWyG/fdgyK4zW7xy4HYaY3AT90yghMVVf5SxAY4/LW3jpUunI9GmP4BYDysJ0NTKAdUFGTLs1NkNIpeJMbeSANWXDuEAcjsAVwjB5OQkk5OT7O7ucuXKFb7+9a8zPT19IOB4t4q/vNWOI6Ojo5RKJY4dO0az2eS5555jaGiI2dnZmw5Q70UUGplLcL2d43bO5xOf+ATr6+t85jOfYWVlhfe+97185Stf6SUvdms/dOM3fuM38H2fn/mZn0ns583SbcMRAdVdpvpmtnpdQHTt2jU8z+PMmTO9ZIrLly/Tbg9OoHmz4q1kqp/b/qest/91hkX2tUSKfRCSTVXB0yGjVp1WTpEGw+BExO4H0rUU1/0hZjp2e1pDwcpOC5csnyv+BPcVooqHoRFcCbqaeMG0u46K4ZNrzR2S/CTUwizod2WWiTlWrKZAdY1hu8ieb9hqN3hh6ypPjJ3JPS+IbPEWFha4fv06IyMjvOc97+k5ATSbzTuanV4LW+wE/WdZaXlDprrL9u41C4xUW33Hj9xtsh2ZJZJX1YRgef3zMT5YxSSIq+sIkAoj0a7IRfAPTxxjObicWBb4NrbTfxZcN+wA37jcI7uvbrVFpSQN36HhR24U8fORKYs3ISK2VsQfByVotRxEsY7BRnS2v7q1QzsM8QbIduJT/9euXePChQtcuHCBubm5XF3trQKFL772dUJjAIMUKR+WHEanrYPEIEMrkbAnjLbLHic5c2H4azM/yLU7HBRbYZkhO/vO1U0BFUqOO1kLy5r2MqBaCthSJSbsOi1t0zJ24hkPB3xw50qbvLQbgWon9Z5f2L/9KqmHZY2Hh4d57LHHekmNXeA4Nzc30Iv+biUq3g1ts1KKUqnE7Ows999/P0tLS7zyyiu8/vrrzM7OvikmAEcplBGoI8ZU3+75fOpTnxoo93j66acTf1+5cuW2jnGYODJP8Y1Ada1WY3FxkdXVVUZHR3nkkUcytj93Q4bRPe5bwVR/Y+vvsRf8SS44C7ApdICyEAIfh/VwkqLMelA3lUPByikEERap9JglQYhgX3lUrTZLwSgVO3/AoumziS83jxOfr3eskLnSGvONqFJSW4ecKI6y2NzprbPU3MloK2sqzxUk+6ifrAzx8k6b/Rb87pWXckH1/v4+CwsLrK2tMTU1lWuLd6sVFW8W//F6Uk+ttczVRid+B4yRKL+K5e3l6qQBAq2zSYohiZ7ABBK8/rugAxurlLzn2haMyCmKtsvVev57txNmk9HSSF9KaPo2XsxGz4mx1MZAs+1Sazps1ksdHV60D6NJaLlz74BJPR3SoJSNH2rEtA+rEcBQxnB5Y5uHjk3mnku/vVHl1BMnTrCyssLly5e5dOkSZ86c4fTp09i2fcvPgjGGr16PLKEskx1S5H16RGpmIV2NEnIkQ8awFXQlcpqfPv4iRbvJdlhk2GpmBtvpCIyglPPuR200GCFZDYaZjgHrQMtsdcZOKAShEayF1QzotER+X3yquM1Lu6cBEhpzgL2wyXp7n6nCrdcOuFNSjFKpxEMPPdRLavzBD36A67o94Bg/xtul+MudPq7jOL0B6srKCleuXOHChQucOnWK06dP54L+O1FP4O0c9+Qfb584MqC6XC4nQLUxhu3tbRYWFtjZ2WF6eponn3xyoI7mboHqNztR0RjDU5t/j0bwNHauE4TMrZbmU6StFNo0E2x1gJ1rd1VTBQpWf/rXkrAWVClJfyDrBDDiNLnmD9PUHioFfANj8aGJy8wv9MuPjrqlBKhu6YCZwnBiGvhac4e0hroeZoF2qWO/1QptvrN1rddxd23xrl69ys7ODjMzM/zoj/7owESbmxV/udV4LqWn1ppcFw8AkeqY1vZsjk1AEOaz274OE24bAEam6lum9qkHuPk5YryTvJgPqlfa20wVPFox60MnRx+tUjZ6Wgv26gVayiZQNkYItBKI1CDBmCTgjIrjpOppp66BsMD4Br/t4I4EmNX+B/zi+uZNQXU3pJQcP36cmZkZ1tfXuXz5MpcvX+bMmTM3rJKZF7/x2nnqnRkXrbPPkWdLVOz6WMZCp5MU85w/UpKhslWiZRpINJ84+WeMuA2iAbDDlrKoyCYFqdgLiwzlVErcCcuM5Dj7tLTVk4yFQrCtSoxa0YBqW5UoDgDiUkSyD5VJRY2kHnm2m8e8/kB/vZ3NoblUW7uroLobruty3333MTs7y/LyMvPz81y4cKHnhuE4zpGw1DvMcePvULfgzjPPPMPMzAyzs7N3xdLyhzXMESxTnlvM7AjEkQHV1WqVer1Oq9Xie9/7HgDtdpsTJ07w8MMP3zQz+ygy1cYY/sP6f0dDvUqgi4zQyFZKjLHUiW3RIAS7ukiAxajVQBmRWwQmNIKhnI9t0Q55tXmM4152Sjgeu7pE07hZWYqxOVdJ6iStHLAy4ZUToLqhAsZFgc1YwZhrzV3SgKvZYbqEEGy1fP7g6vf5aHmmZ4t38uTJAz07By1TftBYauzSbtlRNTwcQhN2iqBkI/J1jiURKkG96UUWc6lvZ8Rep5YpkClv43jCmzFmIEv+3Z1d5io3zuifdCZZbC/1/va8gCCVLGkM7NYLNAMbP7TRQqJCgbT6pyY6GuqbYVWhId5XC2vAdkIQCAtRCLFaUTeYTlY8SHQLYUxOTrK9vc2lS5eYn5/HGEOr1TrQVPsfLn6XsKORzmrnDTr1fhotIS2nkOkBh8kkKU44FVaCPT5x6s86M0f9i2KQ7Osy676VC6ghvyomRO9pvw8R1LWLhaYqWzeVluzqUu6gHqBpPJxUkajxWFGpDX+fkvRo6L4c5UJtlQ9O3H/DY+bFm5U0mK5COD8/3yuDHobhO4apvpFPdbzgTrdg1vnz5xkdHWV2dpaJiYl3tEc1RLM6Kl/P97aNo3Y+3TgyoNq2bb785S/zT/7JP+Hhhx/mS1/6EseOHTtwB3I3QXUYHjzz/qChdMC/X/87tHVkleVIza4uMir7H8xBLHVgJN1CKUIImsYDVUaYWi543giqjAzwuK0bl92wMNC7GmAnLOHlsFmBsZi025wpbXC1MQHAXpD94OcB7WHpsBmTgdSVz0xhiOutPrt1vRUD2kLw269+i+NDj3Dq1Klb0vjdSab6+1vXeWUlwNBPmLUxuIX8ZzPIWbxbL1AttTPyD9s4qNS0ugqsjIWbjFfzCwTSzR8whAa0vjFotEXydyGhtecSWpKWsmmFFqGWHdQrBhod5+mjc3JUMxqQ3O1EdM8NAjMdYl2N7vP2fj6YPEgIIRgbG2NsbIyVlRVeeuklnnnmGY4fP87c3NzAEs7/duFl6rHk27RbiwoFwkku85XCST2aaes8FVpYTvK+jhUlH55+gbId0NIOpZw8h7Zx2AmjCxt/Z/fDSMqVDmVI2HJCdC32dIG2tnOlYr3z0BZ+p1JoMbcfyvbdFauFIwKCThn1meIwl+rrvd9v1wHkzXbiiFch3NnZYX5+HqUUFy9e5Ny5c28ZK3s3JCfGmAOD+UqlwiOPPMK5c+dYWFjg+9//Pq7rcvr0aWZnZ9/8xv6QhjZHTy6RMyl3JOJtz79fvHiRT33qU/zBH/wBV65c4fOf/zz//t//+1s25T9K8o9QB/ybtf9LD1B3w5aGfdX3cQ6wB0gEsmCyaUJ2dDE3uSC3Qh/QUA5Vq82uGuyoshMWQUbFZNKhsNAG/vxEXw6x1NzJMNp7YRawWzmIa8JLSn92gxbjdsS0CglbKsQ+d6qnjT1o3ElQ/T9feDGJCw2olp2bdAZZSzqAUNn4YfbZF2HOOank9kYbrJieWvkSawCoPlmYuCmo3gt9BILj3jFOuw8QNE+ztjfMZrtEPXRRWAgpSBP9uaRU6tkTefmRB9hOWqZ3v4xnmDjp8qAc4fvPLeVsfOtRLpexbZsPfehDGGP45je/yUsvvZQpxwuR9KNlInBrjEkOaCBJu3cifW2MzpYnr0gPMEx5e/zo+GV+6uR3eGL0X1N1fJoqH1BDlJEvJeyoEqt+X0bR1PmzNU3t5rLRQgh2dOmGyUh7uhjlcOiDu1FIAWdKfWehqpN8/m7XAeSttLcbGRnhve99LxB9d86fP8/zzz/PxsbGm16O+25ITrqzeLdy3K7rzkc+8hFmZ2fZ3d19RzPVuiP/OGr/HcU41Fn9+q//OrOzsxQKBT7wgQ/w3HPPDVz3S1/6Eh/+8IcZHR1ldHSUj33sYzdc/0ZhjOEb3/gGP/VTP8UjjzzCzs4Of/Nv/k3+yl/5K3ziE5+4rU7jqMg/fN3iX6/+LUKTXylQIwi0R2DyWWptwM5JLDLGRQjJSjBMGPtQ1pTLqJPP8G0GZaSAghWyHuQzMStB5KDRUvkf1rQEJDCKE4WRxDp5QLtusudm52RijcQozKYK+Y03bv2ZvFOJim0V8r2tLCgwxoqqA+bEoOW1/SKWSYLoMLx5G02Q1GLngfZuOMLjwt6NpT0tFbK1f5xnlkP+5PoWVxsNToxkNa9pTXAk9zhAe3MwaGa7tK66K70mYrCX5R4L1zbZ2K2z1zhIVcGDRaVS4T3veQ8f/vCHcV2Xb33rW7zwwgtsb28D8Pz6Atf29/uzBzkylaKdfS9kCkB3E1VBc6y4ywfG5/nxU9/mZ059h584/gMeH1nimLePI6PCOtaAxMGmcih2wLbsJCwvtMcItMy4AHVj0IA61AKDZGfAgLqtbcKOPmkQ7naEygy2IAmq03G1sRFVDL3FeKs9o7t9/kMPPcRHPvIRRkZG+O53v8v58+dZXl5+0ySBd0P+0Z2JvR13D8uyOHnyJI888sg7G1QjjuR/RzFuuxf5/d//fT796U/z2c9+lhdffJHHHnuMj3/846yt5TMFTz/9NH/9r/91vva1r3H+/HlOnTrFj//4j3Pt2q2XiTbG8Hf/7t/lgQce4NKlS/zLf/kvOXfu3E0t9W4UR4Gp9nWL3135O+yowUBHikir2Db5LHVb29niE4AmYnS1sLgejBB2Rpk7Yf60ttKi94EGaBsrM92z1BrpTXcP+jgv++NUrEgC0o0xN/mh9rXiRGE0sWxDNzN73PNzqjTGKjkJCRd2t7hWzzKKN4o7xVT/zxdeoBakGMTObkM//0OYN9o3JtLd7m4UE0xuW2efs7SLBCq9v8Ed33qrxZbf5mRhauA6ZTFCyUo+I40BFTcTRxVZR4u0bvig2+V5fCfWsKH2cHRt5pcHA7aDRtqpoFgs8vDDD/ORj3yEarXKCy+8wLe//W3+/ot/QhgDT3mnlym/rpOgWqB5YHiVvzzzKn9z9nl+YuZl3j18nclCjarTxiDYDou9gXBduYn3Mh41lZ0tEkJwqTWZ+37WQndg0Zi2caPKl9jUVZbl3tcFundBEoHwdFjC0ExXFQJmCv3+bT9MvtPKROXKbzXeallEFzRLKfE8j3PnzvGRj3yEEydOcOHCBZ555hmuXLlyx6WBdwNUK6UOpYk25mAD7KMcXUu9o/bfUYzb1lT/2q/9Gj//8z/fq2Tzm7/5m3z5y1/mt3/7t/nFX/zFzPq/8zu/k/j7t37rt/jDP/xDnnrqKT75yU/e0rGllHzrW99KvKTdRMXbjbvJVN+J4/q6xb9c/m8J2EYbecOkLmUUDe1REGF2KlmkDeoikKbjQEhIrgfDTFg1ylbWsxZgS5UTH1xXapb9EU56O502CGqm2Js6dgd8nHeVR127fGjiElcXIl113nmNuUUWm9u9vwM0x5wq12N+z4uN7cj6K+4KEtNdC8uw1/L5hz/4Ol/8wE/kticv7hSo/ndXXqeVsgnr2kcr34aUrV1E8eVcjDDSJje0RGwXKI9F7GvaPQNApryNk4ZuBmEnAdyQ02LEbTLs+tgscGpY4IoCjgzxkYTawlc2Le3QUjav79Q5XhxlsdkHq9tBA0fbBLF7nmvnlrLDE7JbCCfW3tztkn8KGXlvp3XV3edAOAZ/ROMPK+avb/HY/bdX6vpm4XkeDzzwAHNzc5x/42VeubKF68XPL5ukGJB8v0IlcSzNhLfHo2PXmfL2ewV02trJ+EELAUUrpG0c9kLJ8ABry1ALigPe5WggPcSY1aAa235PFZiwsn1ukmQV7OsCBRn03vWacnssdbeNTeNRJTtL4GuHcqr0+aQ7IC+iExdra7yrOpN7LoPirWaqu31+HODatt2zZlxdXeXy5cu9MuhnzpzB87KDnts57t1yHHknM82HjaMolzhq59ON2wLVvu/zwgsv8Eu/9Eu9ZVJKPvaxj3H+/PkD7aPRaBAEAWNjY7fThMwLepDiLzcKy7Iwxrzlneth5R/GGDa2VvnXtV/CWNHHRgpoaIfyAEaqrl1Mx/oqXirYN1aup2xgLIRI7UtILrUmOBVjjfptyk+qkMLgd+y3FtrjiaSsghXS1lYGFLhScT0Y4b5yn33aC7If37wOuyptrsfPA8PJlM/1YqNfUKabK/fs6hKtMKCQM/WeF3cCVH9/a4XVRj0roe1cx7BlZQZKYTjgIxXK3ptd912ceohTDBEpbbT2Rdb5IwaiwxZMD+0yXdln1G3iyBBjBJqoQ1QaPEsjaDFta4TQYARGgERgoRHiEhjJqZGoWEuoJCEW0lRZaWlqvse+77FvCmgjk/cxZ8bEaJEEn4LsADLnsohQQJzhtQ067DDKnTzJ/QcVl5Zv3QEk08abeOo6jsNvrVyIsGBspiCdpGiUxGQ01tF+Hx1b5ngxOaMihBlov2gJg29cagrGZNY/PLLEzA5s29qiIENAsBGWCY1k1GmiDAmAndgGJ3U/JNuqzIQd9c97qohMjaLykhKBji95MkrSpwukm8pnyhtiLWavdzu6amPMW85UD2JvuyW+p6en2d7eZn5+nj/90z/l+PHjzM7O3nZ55VtJGLyTcSdKo7/T3T80R9Cn+ojKP24LVG9sbKCU6pWG7Mb09DSvvfbagfbxC7/wCxw/fpyPfexjt9OETFQqlUMz1fDWTwPervzDGMP6+jqXrl7gexNfAic5oGgbhzJZUB1qie74wraMy3ZoGO1YaAUxv9l4KCNzddYBDsv+MCfdbZxY6eI9VcidYral4XowzJS9T4CVeaVqgYfnJT/4RRngY9EwHqdKWyw2xqLKikKgY0B2N8cVJPCzbRjziimf65ATpVEWG9HgQFiGZhjyj18+zy889mOZ7fPiTljq/dOXn0OmKhtC7E8j0UpgxUCv0QOe0zg2E4K9/SITso3wUgVcQol0VWLDoXKD4+U9RtwGBStAChOx+52BksBQkiG21GgTPTOISIfvyWjmQ5tIRiQMCKOxpKYqQyo2SAwGkGxxumKwhUIKhTYWgbYIjcQYgTKSpnKoBy61wIv+Nyyw1ShR0x6mA7aE6LDXsYcpkomkEzCTS3oTMqL/t3YF/2n/In+Xj+Rf11uIGwGAN7bX+fb6UiTj6KwWWRcmQbUnXYIUe9uVg+R5v1vC0DAuFbKMs9ICIaIchZryEhrpaFCSPyhsxgbntoySCwPfBnSu448xUX+RnnkIiY5rCT0A9OvcAYGVeh/qyuX7zZNUrDY1FSUpTngV1tr7nC5OUGWIK+ttOJd7OgPjre73D3K8uKPM/v4+V65c4dlnn2ViYoK5ubleRdeDxu0kDN6JUErdq5Z4yDBHUIM8SPL5do+78qR/7nOf4/d+7/d4+umn71jJ1C6ovt3KS3FQ7TgHz0Y/bNyq/EMpxfXr11lYWMAYw/ypfwMyy9AL6LHC8WibIYTof3SbxsPVNkWxj51TxUwbchOblBaULB8pYMkf5bS31ZverSuXSk4pY4hkHvPtcZycfj3MKTHiSEU9dNijxH3VNRYbYwRGcbIwykKqsqKFQMUQpe9AGl/kPRmThVIPVEupUVj84ZXX+B8e/fCBnqXDMtVtFfL8+jKOLZKY2pD4O/QtLLsPjK3AIa+OYHqJFpL93SLeWC3BRKMFnuVzvLjLWKHBkNPCkyFSRIBZI5GAJ0PsTuKgr200glBLHKEQQmFEBLh9JTEILKkjm7UOIMcIPBlStCLQHerOvTYCRypcEaJRBEKgjIUUGmMEYy7IkkEjaIcWSIFGRtXFEPyrC49H1mo5cg+tDCKG7ETO85YgxR0DbcNiaZ/F2g6nKiMD7tbN42bPwn/3ra+C6M8K6FAQ1hx8I5GWxnZDbE/h2VmPcNcSuFYb39hok5XNqAFTqrthGdeKGOea8rDRFDpgua7czAwRRO++m+oTpICWsQmUlQuqG9oZWJlxX3kIdK7WRwpo4VBKEQGuVPha4krNriryg+YJlLEZK9Sp1QucKo4zxAjlJry0Wgc2mCzkVfK8cdyNRMVbAbfVapX3vOc9vTLoL7zwAuVymbm5Oaanpw/UT3W/M+8Ub+yjFPcqKr594rberomJCSzLYnU16Qm6urrKsWPHbrjtF77wBT73uc/xR3/0Rzz66KO3c/jcGBoaYn8/W2HroCGEeNOrG+bFQeUfvu9z+fJlnn32WZaXlzl79iwf/OAHacp85w0hoJGywVJaEORUQ9xVkt2wmPsx9AckNDZjH09bGhbaYxgT2eiVBmgzAeqqwL7OLxgyqFBE0LH4O1bep4ugRlPJiqHRjIuk5nA1qGc8rHdyGO3EKhLA0FQh/8vr3xl4HvE4rPvHb732IqHStHJdC2JljdvJMXArHPDc5LzVzbZgZ6OMbGlOlzd4Yvwqf+XcD/j48Vd5bGyZmcIeBRlgC01Rhow4PiN2E1eGKCMJVNSpW0JjoVEKWsqKAI8IKVttSnYLTwY4KIoyYMxuMua0qNptLEwvWVUgcIRGolBaRJUTtcQWhoIV4AhFaCzaxqap3ejfuBgROZNY0uBIzf0jG9kT7USmbLdrMpMAiYRc0WFrJfyfvvbvBu73IHGjgf1XFy7w+t46dOzzVFsS7DmdWQeBVhZ+06OxU2Jr02V/q0hQ9/BUAROCthTjhQYgc60vHalpppaHWmDFQLPoSL+6iUK+yedWGspNzEB1IzA2SMG19kjmtxvZ4/k41Mxge81gQDuaxmM7LPG9+ilUZ51TBRuvNsNL8yHXthSLe/1ZyvVWg63WrXmO3w1N9e0cr1Ao8K53vYuPfvSjHDt2jNdee42vf/3rLCws3PTbdTeZ6jtxzHey/ONevH3itphq13V54okneOqpp/jJn/xJIHphn3rqKT71qU8N3O4f/IN/wK/8yq/w1a9+lSeffPK2GjwoDiv/gLuTrHgzIN9oNFhcXOT69euMjIzwyCOPMDo62vF3bbMT7lG18hO2DAKtRc81oWY8MsgCgMhTVigyiYeDoGI0FdX/tQuspdA3LPSyFxaxBvSNBcvPnQLu4tWK7XPf0DqX9qZyDIrh+NA4a7t9NxmF4XRxjKuNfpLcUnMXW8heBTuAnaDPbAkBQmqMtvit17/Dz73r8Zt25odlqv/VpVeAnGudNn5oOxjT6t3rPLc7o0mA6oLd5L7xLU4NbTJRrlOyfYQw+MrqsZoWCscKCY0k1JKWsnqAS2IQQiGMxhiJFIqSFWLZCmUELeVhYfCEiiQ/lk8jdAiNRUvZ2EIRaomUEfusiAZ3rlQUpUIIQ2gkDVWgLQQSkEKDNNiifxHcjq43Hqcq27y6PZNfBCYdAvAlFPr3XdgGE/QBsLAMRhku1bf43de/y99412MH2PHBwxjD33vx6U5zDF67xH6j8yZlBpQmGv4GNvUA6jXAt3CKmmo1IjPaxqaQM0hua4diLAl0XxUy5b6lgI2gwojdoCjzcy8iPXO2b6opj6rtY5AstcY4WYjer7BzX/PPHVrG6fRJ+brvQdPBO2GRq/5EIkO1rXZZrkXv7VY7C6Av7G7ygcLJ3P3lxQ87U50O27aZm5vjzJkzrKysMD8/30tqPH36dG4V2C6Qf6vB6Y2qKd6Lg8W9RMW3T9z2k/7pT3+an/3Zn+XJJ5/k/e9/P1/84hep1+s9N5BPfvKTnDhxgl/91V8F4POf/zyf+cxn+N3f/V1mZ2dZWVkBIjB8u4kX8ei6f9yu/APuDqgexFTv7u6ysLDAxsYGU1NTPPHEE5mqW2v+VQwQGpmbYCgE1E2BKk2UppMIlm1DdHjJtioBpqehDI3AyoHV3enYdBgRFYMYzsniB9gOShRshTEqV5piC0NdeVRTpdDjeu5HRq5zaW+Klf0c67McpnvULXA1NhusjGa2NM58PQm0HSkJOvfBcQR+G/bCNv/vV17g//zIjQeAhwHVz61dY6vdxLMt2mmAlJZXG9AtC6uoMKHInUYfc2rMHtvi+NAu44U6JTtAd2UbHdBsC40tDBiNMfTKhkthcGWI1hEjrY3EkYqCDJBC0dYeykR6fEdohuyQplC0tI0y0FZ9nbNDBIJFR8PiiY4OG0Mbl5Zx8HFwUDSUS8FSxEcRTeUkEuccqWkpO5HMN16o945HAHH3tVygHbueRoPet6PzcaIqksKGTrP5h9/7Bv/V3ENUblKiPi8G9UH/5PvnWWvXQIMJLPb9+A1Oru9KC9+knDywCLSk4ETvZ1O5uQNYRygCLXGkJtBycKlwIVn3q0y4WTIi0JJCDtg2hlhfEyV5XqhPcq68TkN72ANsD31j9XTwde1SldnZLEuYTN+yEVRY9MdIT7+U3f721+t72EIQxt7BCzubfGD61kD1W8ng3ikNt5SS48ePMzMzw+bmJvPz81y+fJmTJ08yOztLqdSfGbhbMozDHvedbqcH9+Qfb6e4bVD9iU98gvX1dT7zmc+wsrLCe9/7Xr7yla/0khcXFhYSncZv/MZv4Ps+P/MzP5PYz2c/+1l++Zd/+Xab0YtqtYoxhnq9ftslX+8WqO66jggh2NjYYGFhgVqtxvHjx/ngBz84UHe+6l8BIDQWTi4DHQFjYyJwPWis0dcyR1n6tgjwZJ1AW7kfycDYuR/qWlikaPnsBEVGUgVhtImSJ21hECLyuHVzpCsN7VJN+RjHWcpJr8aw22A7kJGGOtbhbuf4UJucQcGIW4AYjlBGc6Y0xqXaVm8riIDRP7/wXf7WQz9yww/gYRIVP/+db0TSA4sMiPaETTvVftWysYoK7UuKdou5kS2OV3cZL9YYclpYQtHuAGiJoR1KLGl6jLPRUYEUgelbHhqIALCmaIU4tk9obAIdSX8khooMKQhFXUXAuq1sVCfpVaKxhUYS6Z8dNI4MkEDbSAJh09AejlQoI3GlohQbQORp9mXOfQu0hRVjYD1LMV6osdmqYIJkOe+oeExqytjqeHjX7Mj3u5ut2BboducGSMCGhgr4O9/8Mr/1F37qQPfxZtEIff7ZGy9Gdoe+ID5dY1KWcACOsfDTLHFnFdeJrkFDObnWmV3p17BsUVOFXAkHRIPphvHYDGDcSQLrhnZzqy7WlZtxCSk6mqvNEcbc/MF0l6XuRoBNJtmhE23j4nYG5etBlQV/PHc9N9aG0BiOuUVWYu//G7uDpUF58XZjqtMhhGBiYoKJiQn29vaYn5/n61//OlNTU72kxtsBt/P1ZZ5af57/YvqDnCgO9qO/UdwJMP9Ol34cxWIpR+18unGoOZlPfepTA+UeTz/9dOLvK1euHOZQN40ukK7Vam8rUN3tyK9du8a1a9cIw5BTp07x6KOP3jRhcrV9BYjsqIo5Th/QYau1gxrAUhuTnnaVrIcuY1Y7V2OtddrLOH6wqPNraYdA+zgxJnozqKQAev4LlTd6LVoBTe10bJXgsbElnll5gNPFca7EpB3Xmjs4QhLEpB3bfjZpqesaYgvJ/eVJ7MClRIFGIeB6ax8tNTY2IYY91eb/+d1v83cf/2D+OXP7TPW12i5v7G0BJldP3W5lk7pC38IFtJL86NkrVFw/GkyqAvuhh2trZKe7ksLgh5KiHemUpTARK03HrUNECYUqSh+LBjzG4AiN1fEw1wgsBKHurEOIwOrMCggkkYOHLQyhEeieX4ONJxWt0KMYS6500LSVlQB6BRlJT+Ifzjy3mTzwfd/wOputCsIkpQpCRNUmuwmKRoFpS8KaHdHYXdcPJejnx8qIqQ4N2PCttSWeuXaFHzsxm3P3BkceU/1Lz/4x7ZaBwGKwqKoffqgyvbOxDGWv1XskNFY0oM5JMJbC0FJW7nXsRtM4nWJQLluh6dlrmgHJyRDpr70cQLwbVvBsw5CVBdZ17fZY6qhtg2e7uhZ619tDLIdj9PuJ5MDDkoay26TuR/kZVctmJbafN3ZuzRrx7aKpPkgMDQ3x2GOP8cADD3DlyhWef/55hoaGGB8fP9Ax94I639z6Lv957TkuN5YZtiv8H878V7fdnnua6sPHPab67RNHRujkui6u676tCsAEQcDS0hIAS0tLnDlzhmPHjh24s131rwJgkCgjBk7zNrU3kK2SogQmDcgFm2GFIauVYat87FywHSUo9q23toIyU+5e5PZgJBqZ8PYoWgGhEZEMIRZ5FdqiaWEbz4ruzWxli2+gGHGSDL7CMFsaY77e/6Bea+7iiv5UuidtHGPzsHOK19d2eWklSm597+Q0a5uaY2MjrJgdtFYgo4HI/3rlFf6vj74fZ8CH4XZB9a90WOpcjJXSRncj1BJMBBi9DlgVQmA6wNch7Hv7mkgfHuIQdlwyWsqiakUcaLuXyBol/nUIelq+RaXjQSwwaC1RlCjKyGJP6+hYnqVwpaJgqQichYWMd3Fex+kbGycGzLr+5V4MyDlS09Ip8G0FGfB9rNTxas4pbIMRKF9g6hY67DDTyiR7ve4MQfdaSyAQgCAIDZ89/zV+5+M/w/HbHKgD/M4r3+OpK/OE3a4ldV+rlse+TgLVICX9QEdtnRpKelO3tZ0YvHbDEob9sEDRGtyf9WecBA3tIUPDiN2M3EBytguNyGWvo31ZNLWHwFBN2fW1tZPx4G7FGOl4SAwrfpXlMMlQp4s2AUxVa8xvRqB6pDoEzX6i+mtba2xubjI2NnYgMPZ2Z6rzolgs8tBDD3H//fezsLDA/Pw8WmuWlpY4fvx44nx9HfD89iv86caLXKovsh3UehNnT4w8eChAeyc01e9kQA33QPXbKY4MqBZCUC6XD+UA8laB6maz2Us+7LLqjz76KOVyfsnvvAi1z2aw3Ps7MBaWyK9KuKeKVGnlJhENShZQxmI9HGKcfSqx5EVfWbjp0tZEH04nppO0LNgMK0w4NTaDauajanX002lNaMkOclms0Ei8DhPpSsUjo9dBnc60YzgFtDWGByoT2Mam3ZS8trrDN69v4kmLVuxebzabtJViaV0hpIOIJbQ1jc/nX/gm//f35/tWd90/bkXP3wgCvrm6CIDn5OipwwjYZUMg2zaqI7m4URhjMoOWdPO0MZlrLUT8IyaQlsHGIEQkyhAWbIclZt2tBMgqW37mGhRyBkl50o68c+3qgnvbCVAdl5BujLiR5EV1c3Al6ECg2jaqLRHaSuxeaJGVBCmSQFf0/7G8X+On/u3/j7/x0KP87Sd+NKfd2eheg3YY8n/86r/jubVr8V8j/X5sNqXeDkhW4zbZnlkBFoxVkqRBZF+ZLcKijGAvLOLJWr6rj0prrQX7qoDAoDoDpnTUwgJlOwuqG6HNqBtJLxrag1hhGN9YmXcf6NgyRgPweOyoEptBNscmb+w5Xq4xvzkJQEsln7OmVjz1Z9/m9PAYZ8+eZXJy8obv5t0A1W/V8RzH4b777sPzPC5dusT8/DwXLlzg1OnT7I74fLf2Bn+y/mc0VNQXv6syy2asEu2Tow8d6vhKqTtmnftOjXug+u0TRwZUw52pqvhmgur9/X0WFhZYW1tjYmKCxx9/nKGhIZ555plbZjrXg0V0bLpbaxdyAEyoJYFx2A4l024DEttAQPaDbIxBYRMx1lUC5TLqXqel8z+QgRG5xV4Qgo2gPLCwxCBP3boq4KaqvqVfv3eNrPHcSlba0b2Oo1aBMVVGmwLsFXhuLWn/eKo6zIWdWLJibY+CtGhphdEWpi4j9rNo0Bj+49IF/vsf+RBeDuNyOyzKF793Ht2BCVKKjJ5a6MEigXZTMlyp52hpU/prLXFTFfms9GBFW3hWGlSb1DqSYkpHq4zNVlCiZO32ltlCsx96lGMe5UUroJ6yZitYUfKkjJ2AK7LuHk7Oc6O0xI4NDqUw3De8wevXZ9B1C4WF6T1Xt5ngJEmUaayFAf/Td57nq5cv8et/+b9kbmT0hpsbY5hvNfjvf+//Sy3wk4BQkwDUAJYtes8CgINNkBogCxMNBqpe8n1tqPxEyrpy0cKipjyGckB307gZsC2EYDcs4qWrp/Z+z13MXlhkvFe0SdAwHq4OcYVKaKlTe6OVKlSzHZZYCUZwRXCgWzcc86PeaGZnKCcefoDp0OLll1/GcRzm5uaYmZnJBbN3Q/5xN5IGS6USYw/N8J8Wv8H/svEn1DZanLGme4AakomBtrB4fPgWK+mk4p6m+vBxD1S/feLIgGohxB2pqninQbUxhq2tLRYWFtjd3WVmZoYPfOADiazs2znuSvtq4u+yPYU2VzIfvrqKvJsNFk1VpWjt9H7LK7YCIEUR05t+FuyZgO3GBK4ImPByShyHBSo5DBYI9lQpKhKT85UsyDA30crX2XalC9OMOE1CcRVbjPbs8c4Ux3BVkWP+DJe39rhGG2jz3oksSzKUcnUwwOmhYd7oAm0RJZQVhU3TadMi5Ff/7Jv88o9+JHuWnRM46JSu1pp/c/X1znmJiGVL9y9aDJKd47dsTk5nkzLtFGBWOZ1Wmt3O69jSji9hzuBHCBOTj9x4XT8l44hmKZwEUHeloqGchPWbK8PI1zr2gORJHU4Wd/h+fRbRFphYk0RPNBBLCszDTellkshNxOqeU9T2S7vb/Jd/8Lv85P3v4v/x536MkpM9/3YY8oXv/Bn/buFSZ5xkGPCaRb9qCFKDGhUoSO+6M8DwnNTgJkf6ZUz/va8rj7LlJ36/UU6tbxwCbEQgGHX673pL2bnSD2XIYcoFO6pEWbQxN/A7DLF69nqrrSpbptppf/aZzLPbSziANGp40qKt+8/Hpf0d/uLDT3LmzBmuXbvGpUuXuHDhArOzs5w8ebInSegmih9VphpgsbHCl3e/wQvmNY4tTPHy/nzvtyDG8ksEi81+mfdHqmcpWodjme9EmfJ3ekQeSkcLhB5VT5cjA6rhh4up1lqztrbGwsIC7XabkydP8sgjj+T6h95O0ZlVfz7xd8kaYidIWutpI2nGUMauipLzHKlzEhRj+27ZDLnJ9lgW7PglRt1m5gM+SK/d0jaupdjxi7lg3JE6t/piHrNdkCE6hX7eM7bEMes9NNuCy+s1XllpI8UaDlEhjW5s5hSCUDkzA1XXyyxr+QraFkFB8+8uvs5/NfsAP3JsJtXe6FgHnW34V5depqlDSji0djTSA1VJXm+TNYTohQ4kI14rtb7JOLWkNzedJMR4yMy1Npn7mQdyLGEQ0kQWfYmkwyzwykt6S99LiACiQ5yFhkboJBIdPUvR1laCZZ0sd955cYOL1tspWb26RU9e0Ys0i2uBCQ1awP928TX+4/xF/srcffzyn/8oRdthv93mf/zmn/Kfr17uSxFMjowjddpCg0nhjbynyFhQdls9z/l4Q9s6CXib2kF3T0YI9sICozE3nkYOS92Nrj3nvi6gAsFExxWkMcAGb9svM5zr+iHZ10VcGQz0pQdB29i0Q6cHqCEqwZ4WPxnIDMALqYH8icoQl/e2e393kxWllJw6dYqTJ0+yurrK/Pw8ly5d4vTp05w5c6YHro9KomI3rrfWeXbrJa42Vnh267u95SN6pPdvS0i2Ra03UzaiymzErJHed0jpBxy+TPk9S717TPXbKe6B6lhYlkW7nZ0qvZUIw5Dl5WUWFxeRUnL69GmOHTt2w5H6QasqxqObpNjbh7BRJK31GtohjQ52wjITzn6Hxcw+1FpLSjklxhuhTcHRLDTHOO7t9DSXtZ7HcDZ8beFaiqKTr5OGbjW35PGKMsh8QItWwJ7yEh/o48Udriz4/Nlq/55rYzg5NMSl3f7H9Vp9P8NibbSyID9MTctHMoAOaG5bBNrw33ztP/GPfuwv86ETp3qr3Sqo/hdvfA+nbdMIFAVj4TeAQtbtYWAoSdlJXjNtRIbxTwPmQFsZOUiaSAy0pGTla/N7x9IRiyyEYDMoM+318xiKVkgj5TFdtnwCI5Nyj7yE1BxbyDxAr3Wk8+4d0w4YL++zqaqkXSIyIYj06mlw2kkEjDWGDk0etaO7bSdaKuTfXHydL1+6wGOT07y0vpLwSQaTZcCVyTDQlpCEqfM2A9o2NZKfL9LUTgJUd1nq+O8V3e4NlkJj5SY1Kx2fyRA0dIFrLZsZbze3jHnnLPOjIyFra4EnfKwB+HFPFdhSQ6l9SizChGMI3UTc2H13LI1n+7TD6KKOeElG9cJu0gFECMGxY8eYnp5ma2uL+fl5nn76aY4fPw68taD6zUpUXGlt8OLOqzy9+RxXGlHOzQmvX+XYxmKh0ZfCnSxMc7V5vff39PAkG7U+qD7tjx+aVb8n/zh83APVb5+4B6pjcRimut1us7i4yPLyMqVSiXPnzt00OaYbt8pUKxOy4S8llmnjExoZA6My83EFUFi09Bh+GFJwcnyiVRXbygLOpnJxrDaObVhujzLp7lGxfXztUsix0doJPAp2dE7RdL+LK/MKVWSBVMRgOxlJia9tilZIqCVbQYntoIQ3ehlWk/6pwynGORdo1/Z7GupurDdT5y0jdrJXcU8Imq2Qv/0nX+VzP/aX+Etn5nrL4eaguhmG/O2v/EcWNmqIzv9JKRHGIPdt9GgHaA5w/uifUFYGkNdBpeUgueukAF3eFGMagHWt2KAL4JJgL13pzxKGfZX0PfakoqXsRPJsQQYExkqA77yEOZOTtvbAseucr1cjS7zY9zs31dMcYOpRkA+0w84L1nFK0cLwwkoflBCXcx8AR7i2lQTVJkcu0mHRR8v5fVtTOb1Ex7ayMmXHhRDsqQLjshEV0BmQ4+CbrLOPEjZXW2PMeFlAXwsdRgZ4U3efI01ULbMiWplBX1vZbIYVup7wiTbnOMxHA6zk0unqPgvbkVOIlXppLu1uEWqNnQKEQgjGx8cZHx9nb2+PixcvAvDyyy9z33333bYl662EUuqmlqkHjeXmGue3v8u3tr7H1eYyY84QW0HkElO2ilxr9eUck3KEa6qfS1Kxi4l9bQX9+zxtjbI9v8Yzl1czkplbicOC6nc6oIZ7oPrtFEcOVL/Vmuparcbi4iKrq6uMjY3x6KOPMjw8fEsdwa0ed8NfQqXcIppqDzoG8RYGbSoppqcfW4HGaEkhp0/3jc48FMaAF69uZ2s2gyr7gc+Yl1NwxUR2XQXigCmkpe2MG0TBCmmENiU7nb3vUkl5bzeVw7pfZT8s9ChWt7AJTBBHoXmQIQ20DXBqKJmsuFzfp2jZNNUAplaAVuCHmv/ha0/x9z78Ef6L+871WJxBoNoYw1Ovv8Znv3WeAN3X+Gpod+67CCWiKTBFcwPnj04ztMG5gVVa95jpAUvWXzwrGSEXnCeP1VYOTkcHnFcqPQ3UO4fKRGAs3JTcww/t3mAMIq11S8uE1tqTYVQJMfaOnRyJBkxCpeQU3c1u9jrmffMH6a/Djk5b9D3Pe4dQnZLjeT1rjsyjnS7wokg5gQxOUuxGS/eLwNS1R97J+samrW1a2s0kq94sWsZluT3MlFtLWF7WwgJezgC8raxEGXIhs1VfG6HDtopcPlwREqYumLjpDYtivNIH1Y0wPQhXXN3f4b7hsYHbDw0N8fDDD7O2tobjOJw/f56xscgxZHR09E0DdHeKqb5QW+CXX/t1AhPdlwl3hA1/p/f78cIUr9cWen97IjlVsh0D0aNOlevtPrv/walH+bFTP9aTzMTLoN+Km8dh5R9wD1jfA9VvnzhSoLparb4llnrGGHZ2dlhYWGB7e5vp6Wne97733ZIlXvq4tyL/SEs/JBZ74QaIaGpXErITDqY690MPS2jaYQnP7n8UfW3lss610E0AnajNhvVWFd84HC8mvXO3/BJVNwkAhIiSnfIs1urKy4BqbSR15bITlNjxS7SwaWs3Yl9j76ItQ05ObbO01ve13Wpngb7OAbzpZEWAU0NDvLEdK4Gefu8jm2hCo/mlZ77G5e0d/psn3xcdI3UPjTGsr6/zK9/8Bn+6tYkRhrjqxjJJmCvqNhSCCJhlWhZrd6Vxm84fWVcPx76J1MMY3BQ492MVPC0p2A6KCc1u2fIJtUgA9mLPlrHf8DytdZ6e3lcpu0ZpCJRMSIGGC00sodAiBVSEiNjrWE9nuvVX4tewWzvGSi8z/QI8Boo4NHUwmIUW0X6K0qIpVf8Y2mTAMgpUWo5jcjjazqucnp2Ir9A2No5RNJU7YAAh2PY9inZ+/xZomauzDrXAFhojJKt+hRG7yZDdRhmR8STvRltbFNMDMeNgGb/jSS57gDpqWb7lXuYsc56NkWL/uVttZpn8C7ubNwTVQK+a7SOPPML999/P1atXefHFFymXy5w9e5apqak7DuruhKY60CH/2/JTPUANMOGOJkC1TD2oe7rf3w/bFZZb672/jxUmElZ67xt5KCGZ2d7eZn5+nmeeeYbjx48zOztLpZK1P0zHYRMV72mqo1maPCnc2zmO2vl040iB6kqlwu7u7s1XHBA3A9Vaa9bX11lYWKDZbHLixAkefPBBPC8rs7iVuFX5x0oqSbFqj1FTqwgEZXmaptrEv0E/FGgL2zasBwUmRLuniW6pKq6VZfrbOsk6Q8RGl5wQy4LFxjAniruRj7ABkWO7BxErXVcO5ZSLQHc6uq5caqHHflCgJSx0O4lCpNAZrbUQcGpyJwGqr9X2sIVIaFy32tnBwoGSFSUYHXOQ6ICmLrj+/3zvO/zJ1Sv8jcpQr/PXWrOyssKXf/Ay/2J5kV0dgauy41JTcbs5h4buXwthBKJmoS0zmFlVMDGRBQ9pwJzr6pECsXnuIGlpQKgtPDs9WEhutxcmQbUUhs1Wheliv52eVOwGRYoxSU9BBmgjEmAukoMk95/nHJPGOJYw3De1yoWl49l103IPCUIJjH0TXXX8GAGIQNAWCkdYhFrnMtkSERU88aNnxrgdOUfOK+EJK8tU54QlwXNbuXaW3Wgrm4Z2B/veEVlVGhFkEoMBmqGDlwO4d9pFhgsd8Cwk22GJZlhAiJDRHOnHnu9RzAX/gqZ2sIzqaN/7oXIuZEhHFhU7nbzzr8QG7xutBlXbZT/sn9+FnU3+yukbW8LFAa7neTzwwAOcPXuWxcVFXnnlFd544w3m5uYyBVMOE3eCqf5fr/1nGipJIKhUXsi635e8lSmwofsEyExhgt2YXNKPVXWtWEUerM72/hZCMDY2xtjYGLVajfn5eZ599lnGx8eZm5sbyOobY+6afeBRintlyt8+ceRA9bVr126+4oAYBKqVUly/fp2FhQWMMZw+fZqZmZlDT2nFj3tLTHXaTk9OE6qTfGe7zarf4uHhPUoDWK1AiV4SmRGG1XaVk8VdLGFymSplooIs6djzPYY709GuY1j1q4w5DXb8Qm95XoTGwpgAQ+Sx29QOjdBlxa+C7HS8suNqpkmwkVJ0mbPkx9VzWoxU6uzUyp1jGM6Uqlyt92ctrtX2MiXMc5MVder+d7W1ucVBon9f3N3m7+/ssPq97/FXT5zg66+/xr+8fp1rfru3rsFQC/3EtirnnpumxBQHJy0KDcPVdLvNTQvB5K2Th7/S1oV5xYEyCZA5tG2es8x+4CVAtRSwF3gMOf3nxZWKWuAmgHzRDjJFZYwWtJEExqKtHfb8ApVqC2OTtYnICUtBeMDXV7QEwojevVPGRKDczQH7AZiuBh8R5eBKME52XdfKgupMkmIIoWM4NSBJsRsN5USOKjc47UA77ISRjj2uZdd68OXKzogI2lg0fI+CFWb8y1vaoZguZNQ9FW113IiSOw2NFbl9JBZ3qpSmBtDpCYa0A8hMucp+LEHxjd2N/BOLRV4inm3bzM3NcebMGZaXl3sFU2ZnZzl16tSh+/7DMtWX69f4tytf42Shn08iEAnmecIdYa290/t7hAr7sboEOtYX2iKZwPj4yLuwBtghVioV3vOe93Du3LkEqz83N8f09HTiPe1+1w6rqb4n/7gn/3i7xJED1XdSU+37PktLS1y7dg3P83pTgXc6S/xWNNXaaNaDRYbt44Rqmh/shmw7k/xgvwu0BWutKrPOdu72e2EhkfwlpWC5Ocy4W8eW2Wu3HxQoO1lQnQZNUgo2gxKNwMXXNkNuK3GcQEt8beNrmy2/FOm9ux2liPS1TtoFIaf9eUlqttScmlln50JffjPkehAD1coYZodGuBSz3MpLVlxrZIF2BqiIFG4TEGL4rR98j3/16qvsGRWx4LHtyrZDPcZKx/XUiV0LgfQlOs2i9k5EUC4lBy1KC9Lf+DTwDbXs6aAHnVae1COvFWmvaEuaRJl6gFG3ka2umONz3FYOOMnz8bWNFy9jjmEv9AixaCg3msnQNkbIxHNYKHT8vvPkHpnIPkfpsYHwwWpKtBRZVro7YxHfJszU8ImAdQgikDBk0LH7knb9yEtSlAFoZ3CSYjfq2qUgB3M/Wnfl8oKNdpkJt47beT93gmLuO94OrYyMK1ouKbkhW2EZGWiOefsIAbXAZcTNSq8gchap6QJObtVXgcxJTOz7Hw4ORyocGRLo6IanZ5q6tno3ihu5W0gpOXnyJCdOnGBtbY3Lly8n7Phud5byMEx1qBX/0/zvYwuLa60+EJ4pTKRA9Rhr7f7MbVwCJ5Fci/lRny4e42KjX6H3yZGbW+kVCgXe9a53cd9997G4uMhrr73GG2+8wezsLCdOnMCyLMIwut+3OwjpVqq9F/fi7RL3QHUsuuC20Wj0yoiPjIzwyCOPvKlJK7ci/1hpb3B5711cbTaAaCpvKAXAmuE4bbV3A+eEdAME11tVTpSybFhe1cOWshjKmfr1lcdkqU6oBZvtMvXQQ2sYLTY7vsTRsUNkxrs278rKHN/hPF2lFFAptLHtkLBDP+bdq2Hv5smK1xs1KrZDLZ70lAOqMwhARBhruxWAJxLbGAzNMEgAMweJyoOsBmRboEsDPiQail7WTi8dmUIwWmQBW0aHbSHSUo/UyQdK5viSC9bbFc6U+gOWohWy0S4lElnH3Dp15SYqOFadFnH+UZuIdd1rFGlpG99YBNgoJTGJ7DewUQSxLkxYBtfxCdpeRu6Rnm3QeQ4Ykp57iGwKRBAJ4MvSpp5mX0VHQhKzeBM6B3wTHVtqidk1MKQi5tpAk2TRH6klOq2x1tHDVrnB7A9AoG2EUZnch97vps9iayG53qpyqrTTmf2xgJzZqKDASCH7nre1g0c7mtkSksXWCKN2k6Zy8OwsqA617CRQRgnMFgqVehhN7uxCjpwgtVQImKzus7w7mrvFQm2XVhhSuAGoO4hlnBCC6elppqam2N7e5vLly/zpn/4pJ06cYG5uLlHM6yBxGJu6f339T7jSWOZs6QRXmn0XqGG7yjJ9UB2fdRMINs1+7wKdLE6x0Fzp/e5Z/b5RInli5F0Hbk+c1V9ZWemx+mfOnOk5YL3TmebDxj1N9dsnjhSoHhoaOpSlXqPRIAxDvv3tbzM1NcUTTzzxltgrWZZFEOSXBk7HtdZOB1D3o62TIGvMqXK9McRsNclWt0Mrkb2f+M04bLRGGfe2e982ZSwqTvZj3ghcCoXo46k7mEJrgdKG5eYQRTvAtmHYbrPb9vqFKDqRB5YjaUJyuSM0oZaJDtkSBh3LHeuGaynmjq9xYSHS1O4FOeXXc847L1nxZHWI17ZjDJcEo1K2X+lBgd8BQAKMT6KyX9GyaZrkdS9Im7rKuecaZCtnnru7nbBwUsDJZCw4TEY/ndd9Zaor5vqWJ5c1tEseFmiqrJVMSzlAXGsdzXx0HSMCLWkol2utYQJt42OjkJ0BWOcCdA7f0jaeTMtX0mJpwcz4Dgv1qewZd3TwvfOyybUuFApkU3bAbOfc2iHkEZISRAjGjv53kA1i9zILLbB2LdSQwrUs/JTUxgkF7fSMgxU1vTAwSTGKVuiwbwqcsPdyf99ulxP7sCxYbgwzVdxP6JIT7ckblBsSEp5oPcNmUAIE9bpL1Wkz5EQWekpHLHo8bKFQqemDZN3LTuQ8tHnP8USlD6prQXrAabi0t8UjY1M5W3bWuQXWOK4t3tvbY35+nq9//etMT09z9uxZhoaGbr4Tbt9mbqmxyh8u/zEABSt5XVux74BAJJjoE4UpFmJ/V+3kIGC93f9WPFg9Q8W+tUECROTQ8ePHmZmZYXNzk/n5eS5fvgxAs9m85YFHN+6B8nvyj7dTHClQXS6Xb5mpNsawsbHBwsJCD5Cny4i/2XErTPVqTCPXjd0wCbLLdoGlWpmZUpKt3s9x8YDIAsu1NC1guTXETGEPKSBQVSwry16X7KAHpqMQSAm2ZTouDf2Xpeq2OyA4CYx9JbBjIMQShraWCccIISKf23TZbGVEhmW1pWZ0uEEXKV1r1DKE8tYBKyuW00Bb5HzMBdAGbHBCmZB7CKLfuvJRkcNshyp/WlsYkEZgKYFKS0AM2E7tpkVeoiIZqXUyiYwkGONoWfojbzKFgBqhQ8XNDgYcx0TFfmLSkHJnW2UEe0GR/dBjOyiy4o8Q9uQ/gv3A7ckPBFGZ9GaQLFTTT6Lrn3wt8DIOJ+PVGldlFkDl4G9kS6CLsectBKshsyM2i4ykpBdaRIkHA1hqmTquMAJrz6I4ZuOn9NRB3jPhCUpu84ZJigCN0KWhXWbMXqb5oRL5FowWrDSqTJdyZF++mysJqQcuFTeb6BgaK+ZZLVhrV9lpFZgq17Le13kafCGQRiXLmguTKTOfF6PFfv93vZHtry7sbN4UVN8Oazw0NMRjjz3GuXPnuHLlCt/61rcYGxtjbm6OsbGxGwLB2z3m05t/Rmiie7kf9u+bLSyuNftSkDSIHnIqEPt7J+byMemOsBpzDDmI9ONGIYRgYmKCiYkJlpaWeOWVV/j617/O1NQUc3NzjIyMHGr/78S4x1S/feKtKyH1FkSXqT6IBkspxfLyMt/+9rd5/fXXmZiY4AMf+ADAHTPlP2jcSqLiaoxRgKgi25af/JDYwsIgWGkmWZNBfXxb9dGCEZLl1jBKCwKd/aju+h6Fng2bIA5yXEvR8JOAVAqo+1k2WOm8Ry+vgTnJYDlrSQxSaI5P7QAQaM2ElbyPXVeQeOQlK/o5A5yc6tvR8pbIBeZCgPTBQdBI+15rEtUdE9FZXNTZZ1AEMDme4/yRBsc51zYj9cjp0NopG8a2sjMSovizktw/zNfGuVIb47W9KV7eP8Zie5Tnd07xUu0U8/4kG3qIuikQCpvIZzxqQ979DFPnYEtNmGLN84qYlIp+BH6Toz5yVEwkiHoN9o6FDETulMaAgoIdtnqA7ANwtZUBhcIIzDZUGx5uO+avnk5mDCGQmvGhm9mEGpqd6qmbrayt505QHADKBXuqyGYrSyA0w+w7C/nvbaBFItkUoBXaTJSb7LezFH9orNxrnGuxmF6QHhwBlZhEZddvM+YlC5q8sXPjZMWupd7tRqlU4uGHH+ajH/0ow8PDvPTSS3zrW99iZWVl4LfodhMVX9p5HYCi9FhOMNHT+KbfSQ05Sau7/bBPKFTtUqIgzISXtBx83yFBdTwKhQLFYpEf+7Efo1Ao8Pzzz/Ptb3+btbW1e1rpWwjTYaqP0n+3C6p//dd/ndnZWQqFAh/4wAd47rnnBq778ssv89M//dPMzs4ihOCLX/zibd6Bg8eRAtUH0VQHQcCVK1c4f/48i4uLnDlzhg996EOJpJPbrap4u3EriYpppnrUqaAzTG70cdpolfFVxAo1wixA6kbGG1gIFpvDiBypyM1ehHaYZaHSU71Aru1ennVapA1OLreEId0fCwGOUMxM7PSWVWTyuKExnKoOJ5Z1kxXjsdbMPkM6VVBENsFqC25ouiFA5ORtFdJeyvFNOrfIamevswxgeCjdNnOgYh5pqYfS2TZ4aSeHHAA96O4/5i3z5yqLvKeyzrnyNlNuAykNbeMmAItnKVTq3uU5l+RhnFAl2+xYOo2dEQIqxQYZp7ocW7veo2zA2ZYR+JWC3Fy6QWGiwdOg8P3Bgye/phC7kvKmi7WdnQ7p5nUWC0HmeU80wYheoad1v5wZMAU59xoiBtuzFHXtst7sg3FtoJTDRvtKUvVyNNbKTgzadtsFym6AFCaXle40OrvoABZbec9F2p1ouhgBytPlYd5fOcnytRtLAu9UIRbXdTl37hwf+chHmJmZ4bXXXuPrX/86i4uLGdLkdo652FjrlRQ/XpyKigx1omwni7HUYiC6KD0WY/rpE4XJxLqtmM3ntDfGqdL0LbXrRtGVuRSLRR566CE++tGPMjExwcsvv8w3vvENlpaWDkQovdPlH4bolTlS/93Gdfj93/99Pv3pT/PZz36WF198kccee4yPf/zjrK2t5a7faDQ4e/Ysn/vc5zh27Nih7sFB40jJP6rV6kBNdbPZ7CUfVqtVHnzwQcbHxxMvqxDilj2j70QcRv4xbJfY8JM6yqaKWCOD4HqzypnKDo3QjTHM/fC1xLWynZo2Hpu+wBGKCa+OENBWkiG3dcMPfN4xyo5PWiTsSoVJVcVzpCZI+RZbwtBWEis+KyyiD3y63Y5U2LaiUmxQa5ZyP8CjXoH52N8GODk0xMWd/gzAaqNOSUoasc7euIBvkAiKvk0QdorQ6DzXgiikEejQYNcEYaUvDylKB598HWsXVPt1BRUSQEsoQaWUBDU6x/kjzeAqHele49FUDtVEG0wGnKRBLJBxEAH4aPkC73Z38WL3yBjDnnb4X9bfwxr9GZPo3lmJIiSuFWYlQjmDrrzrHKaeX2Ukx8Z3ubRTzsg90hIO7UY7dXYkIkZlCwUmPVEwQAJSFQ5NEyKDyPouESkddzek6Ti/dE43VBq7ZWF8Salos2+1UWVD0XGoEVAptJHCDASdu34cUEm2WiUmi/XOvgXegAI/DeV2rp2ghcNas8xUsc6eH4HidNTbBUZLyZkdZaAakwjt+1E/071/I4UWe22PoXSiZd6gqXMP4u9tnvgj2ZNE771EobGwpWTGqyCE4MLFLVZoMFO9cYGSwyQN5oVt28zOznL69GmuX7/O5cuXuXjxYs+Or0ui3Ooxv7n5vZ5HiieTD2gtJgEsSJfFuBSkOMUbtX5CY/wp9aTL1cYKAsFc8TTvqbz7ltp0s0hrxx3H4b777mNubi5hVXjmzBlOnTr1ls8Sv10iqsN7tAYWt+NT/Wu/9mv8/M//PD/3cz8HwG/+5m/y5S9/md/+7d/mF3/xFzPrv+997+N974uKs+X9/mbEkQPV7XabIAhwO7rY/f19FhYWWFtbY3Jykscff/yGySS3U6r8sHEY+Ycns9O02zG93EarwslSYyCb2RpQ9MGWkeY1xGa5OcSw08JXFmOFZgdURy9EOml/yGtTD5yMHrYZ2InjSBEB+rTntDYSmWYu80TJAwuXGMYn9qktlhKguLdZzjVIlzAHmCmVuVRLTrtbLYFUgiDePkHWWq0TMgAtBMKAXYOwbEBCsx0MVLp0L4fRERuu4zPzGgpeEuyonDrh6XuttBUZM8fXSV3jZuhkpvDT1ypKUvMTa3y88jpnnD28FEDwDQxbIf/t9Hf4T/uzPNs40z+N1L2TIpILxPX+XgdoxwddaUeTqE0paYWAsUqdSzINvXJ01RZYuwJUdr28kKqT4Ng7EWi2AkBgfBP1prFdyZBcarUgbFopOjzK3RU0WwobG6tu8Ko2DVoRSBU6kk3kRDuVJLoTFHugeicoYlv5JxR5kHevqaCNw2qz0pkxyoJqL8evvhk4jHbY67rvYEuTGXgFee0WAptkeXKDxCZMJDZrBLIDKXqb9tovqCuH1dYQ75ldw9t6kvnFHRooLi5v97a5vl+j7vvZXInufu4wqO6GlJITJ05w/Phx1tfXe3Z8p06dAm7du/nV2uXev3eCPpFSkB5LCT31NBfqfRBti5hDDoJrzb5DyKniNEo7XNqB/7y+z9/80H231KabRRiGuXZ6cavC9fV15ufnuXTpEidPnmR2dpZiMZLw3JOIRHGUNdV7e0lS0PO8XKtK3/d54YUX+KVf+qXeMiklH/vYxzh//vyb29hbiCMFqrslU/f29njmmWcYHx/HGMPMzAw/+qM/2ntRbxR3A1QflKmuhU3qKgl80klAnnQSiYsGgR/M4lhXcveZO82uJVL0jyOliHyClSRoWgw5kQe1NrDdLjJeSGoc6oGLaycZ1WaQD94z7cnTs4qITYtHWkfcPRdpDONDdRbQbKogKhgR2+d2TgnzZjvLGo+WK9AB1RKBtQuiJSK7vNRBZWjIzLCbji9stxCIEVg1MCXwB3jvFqVNGNMtWK2stZ6bcoHIYy/T+ulGaHdmC/qRlnq0lZUpo522zquHbiyR1PBXq69w0qlh54woupaJloCfqM5z2t3l93beA4jMMwtd68bkoKsVJgdirqU655sFWIl2OyHG6lp75KxhwKoLZEsgA5FwaoGO/jqLybPn2O63IPIXN+j4tyBdobETKsipxpiTCVvfDxmbbiGFIa+UdzfaykpsHxiLeuBQdoKoeqqVZaq1zvqNg6CpbXQoKTt+Ahzvt12qGStHQ7kDtHfaBRq+y7FqdqZwtNBir1VgKGXPZwlDmDotKUzq7RCdc48G1m3l0FQW6+0qddVn6IcKNfaKz7PbOMNeMfs+X97c5j0z+bKGNwtUd0MIwdTUFJOTk2xvb3Pp0iUA3njjDc6ePUu5nNXBp0NpxXxjEYCKVWKltdG75yeKU1yqL/bWdVNEy1qMiDlRmGSptYYtLM4U5titV3h2PSqYNumVee/oiUOda6bdN3E56V6bqakpdnZ2emXQjx07xtzcHJVK5R0v/YBoACmOGKjukivdQWY3PvvZz/LLv/zLmfU3NjZQSjE9nXyPp6enee211960dt5qHClQ3R3dfPSjH2VnZ4d//I//MX/1r/7VHmt9kLhbTPVBjrmS4/wRpNjYcXeI5Vay4EFTDRMYp/cB7EYk/cge19dWr3R5f5ndKT/cd96Y3x8l0E4GVOclkNk5ILjPlsbZSJVlKIUm0DLjIKI0CVlItKeIKRsf32djc5iTpSpLsSIwS7V9LJFMLlxv5JRm79yPM5Vh6qs++0FUDdEMAlspe7Y8llIiKPkW+wPs0fxaiIwDxiDG0BvwSq0MIE3r0POkHul2GGMytmh5lRPTxVrqoUvJDQHDXxv6PtN2E2UEpdSmvjG4KVnVo4Vtpia+xa9vvB83B+TlXtLUR8SSkStI/PzsnAxCX9mMjdbZXqtmALNVF8gGiO7NysOqUiBCc0MJiFBE9zwuzwmBbsHAHLu+buSVOE+TuZYBJWFkvEFTOby+PcnZkeQsVTdU5upFPvGe3B0o/WiGDlYOg91WLq6tud4comgFPcZbaxtIO8G4jDgt1polMJLJSp3NRonxUjb5N9DZT00egx2fEo4MdQxN5bAblNjwKz27xTRr52ubmakd1LslKxey/f2luwiqu9G14yuXy3zta19Da803vvENpqenmZubY3h4eOC2z2x8r1eSfKYwwaXG1d5vrkg+qBv+bu/fk+5oQjI44lTxxAjfWW/y+toeQ7HB9l889kCij70TcSvWgSMjIzz++OPU6/Wem8ro6CgPPfQQhULh5js4wtHVIR+l6J7P4uJiQj1wuwWVfljiSCQq7u3t8Y/+0T/igQceQAjBT/zET/Daa6/x0z/907cEqOGHW/6Rln4A1FQS0FasbOez2apxrT6SkQq0cryF4WYAx/RA7vz+BButrF5xyG0lqndBZK0Xpk7RkoYwRwqQTmwUIt/TMu1EYEwkZ9EGJseiKaWxVGccas2xlDvARuhnkhVXGjWeHJthY7HOfrPz4UmSqYlGi/TyAY+QFeSs24mM6kWJ3uy8CGDiAM4fzSB7T9OJgK3QyR34xEObrJ1e1/njfcUFpjtFPtwBpYzzYki2+GvD34+SFVPnmmVNyX0Q0/fcliazL4RganQX6XdYZB/sXYm9I7Easg+oBxwDGHiPus0U7WzyVMRWd9YLyJ8GMjlOJDna66Id3cfKUJONZoUdv5RJyoTI6zvvOHXlsuWXcmcFAHyTz6d0r6+UgrZxWaiNsOe7VLz0DI/BEYrVVhVtLEaL0e9Vr8VeO9vnjpYa7KeWayROqqiONhKtI5ehi7UJXt2fYbU9zJo/1AHUAAIvZcfTDBwagc3xmS3Gz15hLDUreWlzi0HxVoHqbnS/L48++igf/vCHcV2X5557jueff57Nzc1cycPXN7/b+7eT6qu2gj6IHnGqrLb7pMqEOwpASRYYaU7xg3Wbryxss9pscX91gp2gf1//8swDd+YEY3E7ftzlcplHHnmk56Zy2JLwRyG68o+j9h9Erm3x/waB6omJCSzLYnV1NbF8dXX1LUtCPEgcuie5m/Ymq6ur/MIv/AKnT5/mD/7gD/jiF7/I5OQkP/3TP92Tgtxq/DDLP/I8qrdTdnquTHZAlpHsqBqhsVhuDmZCuhFqkfAahojZLHTYRUcohIBr9WFA0ggc9lK2WY6lqaWWCQHNIPuxzdWJ5UpAbtzuQEuuNYbYDktsNEpUC20KhVYu81JOAcFusiJAyXZ4cnSG0o7NwtVdwpRVxSC3j/hyV+d4HXei3QyRWQOFKNKgGoHVWVcGMDKUZQDTR8lz9XBTLi5+DmuYBrXN0M2cgkZSEU0eK0SdmjJZNUxoTFpFEtve8KC3xbvc1YwjhStVZiCW1tsPinTVT8dSFFwf2QJnTeDsWkg/P9HHWORWwr7RocUASTx02Goz+DlxENmCM3nrGgCN64aRC4uQNMPslY2W5ZwXktoAWzxj8h1XjMnq1qUUrDarXK8PsbQ/wkqtym6rwEa9xH5QRArDWKH/XFrSYElDK8x+Wlq57YkouHrgcLU+yuu1Yyw1R1hujRJ2gL+fw2in2ykkrLUqLNZHcMZaDB9P9osXf4hAddf5QwjRs+P7yEc+wsjICC+99BLnz5/P2PEttfolxLdintJDdjkBoqfd8eTBjOSM9yAXN0Z4rWZxYb9/HYacfh896hZ5cjw5DX8nIgzD23ZWcV2X+++//x3PUsPRBtUHDdd1eeKJJ3jqqad6y7TWPPXUU3zwgx+805f8tuNQPcndtjdZXV3ltdde4z/8h//As88+y1/7a3/tjpUqfyvDsiyMMTdlq9NMdcUq0EhVU1Qp/+Mxp4LpAMv9oMB2O2JwAi0z4BkiwJXGofW228vmd6Qi1IJLexMAhIHFSj2b+JlX3jzP4zav7HieX22etZ5jaZSB9VaJK7VRmir6aDeVQzu0mZ7cZT9HL5034JoqlHlfdQZ3VfCDV9dY3a5zfCinmuYgsNVNWCTyJs4LSaRlvZEFWzq8oFN2XQkq5SQaD5TIymoyiZ95Uo9sZ1ZMST38HDs9KTR/qXIJp3MMJ6f7aJv86mdto7FFNLj63w2/ijTp6ojZY7pWmGHt8hJu85IVjRBYBsTNmPTYfUvss6urTofssNQDYLUQAtnOYaM7of2DDRTafkhlvEkr7Gc/1nMGpe1wMIu32SpnvL0hskrMc3FpKyt3uS0EtmOwHQ22oImLbxxsqSjbfqa/KNghLeVkZsZGik1WamUW90a4tj/MtcYwC81xLtSnWW6P4nf0No5IS88crNSy3GpsJtLbB8ZGpaQylzfzpTNwd5jq9PHidnzHjx9P2PGtNDbZDqL2D9sV1vw+MD7mTST20717E+4YJ52H+aOFOn+8tEldKaZkEpwu1Hd6//4L0/dj3cKs00FDKXVopvmeprpfUfGo/Xer8elPf5ovfelL/LN/9s949dVX+a//6/+aer3ecwP55Cc/mUhk9H2fl156iZdeegnf97l27RovvfQSFy9evGP3Jh2Hetrvtr3Jo48+yr/9t/82saxSqRyqVPndAtVw8849z6O6ppJAa3NvO5EcNeJVWQ37rM1Ks0rFCWjlWNIBFIWDyaCM/sPvCsX1xlDPFzdUkpXaEA+MrSe2SNuzAVQ9H2NMRi8dVUiM66oNvhG9ZDeIwHc7tLClITARa1cPPHwDQaoMshSGrXaRiWqdl5d2SDN52+3omrnS4pHhCfxdRbga8v3ryXMoOjmvx6AkNiEoYdEMQho6yJ2Sj6z0gkgakNbcqvyPh606K2mwU/pYP+zq3GPrp0BnK3TwUmWo077koRYUU/vOKw7zWPkax51owNrSFmOpsYM2UBgoNzA4nd8KUvNzU8/zO9tPJo+pb56s6NkKpZPAXeRMl4dIRk/ssrk0mi/DiIXQOfh5gK5aBiC0GAiaIZKbmEEXIg9Tp1Y1BgJLMzm2T1312cRG6AJJwsBXdi5trk0ko1qpD3Gyupv4rR3aFJxsHxdqK6NRVxq8VJJroAQjXpMwtHJzMgCqrs9ms4hE0FQ2ylhIadhreVSLnf1FZj3YIuyx0kBM5tGPogyoxSweo9mW5IsYPdfR38ZpgdTQGcgv7+3T8ANKbpbt11q/pVZuN/KoTtvxzc/P89T8y5hC9OAcK4yzH8sRkTEgLBD4WjMhH+T80hYPD9s0Yt+yeIL02coYl2t9cP6xmXfdsfOLx+2WY78XyTjKmupbiU984hOsr6/zmc98hpWVFd773vfyla98pZe8uLCwkMBQy8vLPP74472/v/CFL/CFL3yBj3zkIzz99NOHPYXcuG1Q/cNqb/J2BNXdh+Bmo/o0qC7l6Kd9lwTzlpaDFGSBxfowE4XsNQqVhRCtxDc6CEWsYlnkQnBht188QGnBZrOc8Y2uuD57vksx9vF2LMVOo8BQLDtfiAhMpRlrrSWWpSOAoS2ayma3XaCh3B6gj84vm4hlS40yknrgMjy2i9M8yXK9f77CwPsqx7i8uMOr16Jqa6dGsmy7H+brfIWCPEmqrxTCB9xByFJ3zllgtQ0qJvscVLHRb6lOQpziamOUUuhTkCGeHWJCqBTaCX102tUjr/BHGgg1Q4diartMBUal+Qsj872/BTak9LBtA8UcsBkaneloHvC2eaSwzMut4/195sxaaNJA29BSdsKyMWJXkwDLsQzeWBtxRSSBcdoDEnJBKZD1qzbgtiWObVEnPwEQwAoFKMipg5Q9lskmKXpa0LahMtRiI+h7KjZy5BOBlvkOIzpyPqmFHvXATbi/DCIk8xRLvrIyrj0qtFgPKtHgN/Rw7TZVr40tdUcOViBAYlu64z4SlZ6PjpG9xx46cTVb2iF9P9M2mxpJEFo4sefAEqaXtCmloTRTo3Gt/15f3tri3ceyyYpKqbc0OeogzHjcju9fvPDNHgXdbiZJlNV2BIxPFU6igwm+cuU6dPznnRiYLVsO11RfpjPmlrlMtG3V8fjRib7l5Z2Mw8g/gAwJ806NCFQfretwu4OET33qU3zqU5/K/S0NlGdnZzOznW923PZ8z43sTVZWVgZs9ebH2xVUCyFuKP8wxrCWAtV+I5k8ZAuLXZVkstLP04Q7REs5bLbKmcSn/ZabwRsNv6+tdYRiaXeUVqPU27c2AoNgrZ6VSjRzypMHOQVFEsUeTDQN3QgdlvaHuLg3znxtnJXmMM0wCaghfxrYkgatBfXQZWS4zmSxRMm2eWL0GA/oMa69scfuRpt6q49kl3f3cVIfuvX9rIYZGJiEqG+gpQVot2LgMCUBGZQYBwKrCXI4pGVcttoVlpsjzO9PcKk2wfPrp/mz9ZP8YOsYb2yOs9assNYsUwtclM7TrZmM1CMXeKcYyyeKy5RklGC4EkbpZe3U9L49oM+va5HFsR0ZiBfzplDlfwABAABJREFUQ05b+HXbmw6dLlcuTaasuSNDZCnI3g8hMvdv0Lcqjf+sJmhlaLXCXB12t7kihEKOphidBdAoMkBb+R0K10oWfGmGSUmFNqAHaPf7UivBSqPa6wd8JXMrqwYDnIDSuzfGUHHbtJSL7RiUDU08VltVXtmaYk8VwBY4dgSG0vKUgtMRncdivZG0lAuNhSeCzLJ0hKnpAkuaxAe0NJ58fy9u5EtAfhjkHzeKXb3T+/eW6s86jDvDDFujWP45/uhqwE4r7kcNV2NM9JnCcOKRvd7qewN/dOr+TPLjnYo7If+4F/fi7RRH7mm/E6C6naPDfbPjZmB+O6jhmxQ7ZskEWTjuVjNsdlMnz6ViFxixK4xzjO8vXOfBE0s4HSZK5lSxc+MslYHvLJwm0BYVqRGW6rEIK/UhTg4lp5nzkqEKTjrbP5If1JTHvu/RMnYHOBtCJZK0mug0IgY0wgGmwsYAUqCwGBIK57rk5cX1zm4EI8UCC9v9D4syhlOjQ1zZ6p/DWq1OpehQ8wfQyKmwWiBCQZiTV2OlCtikmekbgXGrIXGOZdsgOgVOQmNTC220KrCb0CobLBOy1ByhYAUUCPHsgFGviSV0btXCbsSdP4Zlg3PeFmvKATQagabNjomsA10psQxUrCzA00aTsxiIZCD/+7Hv8C+33g9EQD6SAvXXyQXaeXIHLaJShZ1wLY20DVbBR6d89UQa3FpEWZephibAdkwLL0T0b513n41AYvCbOvL9TtssprBLWdo5rLehUG3TTiWUCiFohg6VTgnxVugMZPHi8p1A22w0y0yW6jRDB8/OXtN2qvgO5Ovx24FNy2S1/EIIQm2RfQ+Tfzu2puVbuE6MYc65xwUrpB1j5tvaQaATg+q0nWSnJb1/ecUQ7BA6wH6QA4gx5q4kKh4kntt+jbAz8Bx3h9kOdrCFxbiaYmulwDfCBhCRK1vt/iDibGWcS7V+AmM8CfhkaZilRr+f+9ib4PrRjcPKP4TIz9F4p8VRLv5y1OK2QfUPq73J25GphoitHsRUa615ZTkrrBdOElQPWSVW2Umssx30mespdwQ7GObVpRaB3gYKXF97mMmJ17CkopIq7tD0LcqxZcs7Iz2/2fqeh1Pwe6BhNYepHik2CXSyxLhtKZZ3hjBSoCxBS9t0hcpJr2RBEoYCQmChU5Z7AkeGGR9c2QGcbSTXrQXaYVLeIXPmwEeKBSA5MDgxNMTrG0nfb7qF6OK76DCUEP1vWh5SwMKP3SxhOsVCurghW9+mv24L7EL6mTTZ6frM9oIQh5qyqXUKZagWuM1ILmGjKFghngjYDzxKtk/F9nGkSlRXfMi7xp4RWEIRGiiL/jOhBbRMVF4eDZVUo1rmxi4ew1aNimxS00WEgJZvd7ywo3BldMy45t7JYVRNTkKeLQ3FUw2ChZvbasqAbAEfq6OrtsFqJJMTpconq8tYNAkRRMVh4hKfDJgH2q0ASsm2awuGp/ap5Vhe1kO3B6rz7BN7+0h9sDZbZYbcVgeU5hROShXfgQhou6k+wcKwqx2GU2XM/VDiOYpQiUQFxzzA7CsbNyZHKbohyiRzCvZbxcTXySBQgSBenTvP+17EBtiW1BRmGrQWo3d/EKj+YWaq/2j1+d6/p9wxRqxpXlxr8f1mi4eqFejMpg1Jh8v1fj816paA6G9XWlxp7vR+O1YY6oHqkuXw5ybnDnlGg+OepvrORGfu6kjFUTufbtx2T/LDam/ydnT/GHRcpRSLi4ucP3+eV1fmM9vEKycCeFbKPUHYbAf7nPAmOG7u58V5i8UdQxDTfZTEMC9ePc1GrZKZovdjU7c79SJvrPSlPgaB26rSJUbbymGrmfSG1UawujfE4vYIl7YmeX17ksXmWFQNTXi0tEv3EZQ5H/q8me28Bzav2lxkERd9YBuFBmnAUDvgbEQ5J7EJkWWWZZterT+Zs+uglTO1fsAJEekq7BS7qHVO/l3OVH1Gw2r6K4dEYHszrLDUHuON+jFe3D3NN9bneHrtfs6vzmEFAaN2v+hMYOzMfVEmOvSeMWwrk5AcmRt0nb6OZjP+XKU/YPRTQFGIrDzFsVRGJ5fvIqMojjfJ6JxyniuRLu3XWx79l55ZML3/l1zYavYHBAe5v9JLnpsxoF1wikGiXHc34rrqPIeW3j7SLJAQXNuv5hbeCZXAyUksTt/nUAl8bWG0lZnlqPuRdKyRcigp2FkHl7QkTUpD20/e93bOuTdTgwzH0tFsVqLN/Z0LAaWRvkTu0gAHkFuVYxw2boWpfr0W9fsjzhDLe0P8x6s7rDRbFCw7wUSf8JKkwWqrn8x4rjpJy/T7n812//v44amzme/GnYzDyj/ulSmP4m5b3/0wWOq9XeJQb9OnP/1pfvZnf5Ynn3yS97///Xzxi1/M2JucOHGCX/3VXwWi5MZXXnml9++uvUmlUuH+++8/5KlEUalUMuz5rcTdZKq7x/V9n6WlJZaWligWi5w7d47FIIRr/fVtIdkKkl6s6f5nrnictT2H89d2geiDki7TbSHwlc3rK8dY3mnzrgkfx9vAtUOKTsDK7hCLq2PUgtRct4GaH+CqAqLqo9Bc3RujFtRpa5tAWwgbau0CpU62v+hvmomUOqKzzGSW5W2bVw1QSlCBwJIgLBi5r83OpX7S17Xd/cw2u60sCgozlUU6oUi8PXGNtOjj+X4bg2xBcSuIJhrEAOeP3r6PtTPV76IOKQUsU39rI7ISjxzgbafWCQMH5RgCYfjzI5di+zOURBaU6Vjp8SaGZmhxzFYEmIHSD4Aakdb6rLfRm9rPS1b0fQcvltwauYIkJQQR0E5eR1dq3GKAUAYTQ4jGIqsYGqBNFgZkM3t/ehKQWH6b9JPvoKTjBNLBmdIWqPg9UgY/xeRavkEVBMbOBxNx0BoYmTtAUCZ/yrypPNYbgulyciav3vIoF9O2i4ZCCmgHgUXLOLkvYagkjqM7QL9/ryxpaPhOwm3EtbP9a9pu03MUfihTrHeOy4uW2LGZi6jSaj+5zS0GSDdE+/ZAB5AfVqZ6P2jQ1PsMOxXW9yZYb/aZ9vsrE/xgt5+7ZLluVwXCiHBZbOz0fvNieumpQoX5en8/f/lNcv3oxmETFe/JPzpxj6p+28ShQPUPo71JtVrl0qVLN19xQNxNprrVavHGG2+wvLzM8PAw7373uxkdHUUIwdrlpKPKmFNlLVaOFqClAwRwtnCK6zs21xslvrfdH2DYQnK9mQSTbd0FSYL9VgHdnONbi1WGSw0avosfOhCQdRhQgBD4ylCse4SlJiuNIQpFFXn5dm67nTNV7+bYeek8bbSAiArvP0O6JwpJ6qqNHuxqAGBN1uFSsbddMwiZrpZZ3e+zNtd29jKT4+u1/GRFIfp9gqckKraVEBFL2dXc2lkhSxSqz4TeKMRQ2NFP32S99Do5m2SAtxaInHLVAD899SKlGEWrjEUh5bai8jaVIRsaihicgaW6+0YcnlT8SOkqLzTmcstq5x0i8kHvX3MpoyS8LggzJjo3KcEbb9LaiyXDCXrlxruR49DW+WFwEqkIgTiozpHeWz6ELthGoFIDBumDTk7uIBTYXoA/YBKxrW2UjgZL2fLkUeT5wUenItj1i4S+5MRoP58gb1DaarsMleJOE4a2thEWuDnjzO6gL+9ehSmrxIITEmqRkIXlVfj0Axs7llTr9ZIc4+edHexgRG+xY2kKMzUaV0eAfAeQu1X85Wbx5ZXzWMJia38KSYH9sD8YcmPssictLu737UDvG5nihe0lILoMF3f7v50qjbDWivZTkDYfnjp72NMZGMaYQ8k/7rHUsTiKzO5RO59OHHre54fN3qRarb7t5B+1Wo1ms8mFCxeYnJzkR37kRxgaSk3npRIQh+xSAlTbQlKkCjWXp65F5//keFLnPF2scK25l1i21U6V9zORtGOnm5GvySRwAaD6H65moCm2CjQxaJMk/Tw3JFSCeL/qOop2KHFibJxBIIVJTVuLHAWowBY65QYgUEpmPJqtmG8t0mDPNAmv99nqyUopAap9pTk5MsTSTv8arezVKBVsGkES7EUS1Ci5TddUhk2RQR9UO74gzIEbUcVEc8O+RQiFdHXWPSOFAYwxCZDS2ZgkzDGZZNQwtPCc5HWT0jDp7PF4eTGxfzcnm7JhHEo5toa+AR/JuMm2HWBb21gxh5HHSku80Jij5AYJcAxkLN0AVGraXxtoBA5+26YeuNSDyClmyGtSnkmBaiIGOnFlbIEIDCZlh2jViHrJQbig+4gZckG5FUTPNnUNxeSPBdumkZIlGQGViRptYw1g+SNXG0+G0UgiJ/I8xgFC38ZyNXU8ljaHOTm+i9ZQ9LKjgVRtHpq+jRISARmpSDuwegNlu2ODGb/n6dmHSDvvUC7EAXNA+gKmQYQlDU3fxosNytPvfHSA/j+lAHfYpzs0vrixnQuq30rd70GZ6m9tvUq9Nc7Cfo0nx0YTvy3W+1KW+6uTvBxjreuqP202Wxxlvtlfd9fvz1R+aHKOkn3zfIPbjW6O0GEt9e7FPZ/qt1Pcc/9IxVsFqo0x7O7ucvXqVba3t3EchzNnznD2bD5zsJIC1W4nY8eTDqedU7y6GvKflrYT08th6ss45hUToNoRkjU/ycTWgpTXWzohr3cCJD5ezbahIAs02y7lQswTV0Q62YyNm29nPs4SnSn8kJdWlScLUR3n5HjYliJQUTlgOklLtRiodnI6+7FSIQGqIUpWvJCT5GS1QTsml+CEfsJi2FT5AxM6bOUN3kIx2s4FpWkduclhw9PraEMOc5zduWMr/sbUcwn2MDQW5RzwPAgaNLWNJQ01Y6hmPMjJiNKHrDYn3U2W/HGavks1JvcoOgFBitl0bMV+02M/8GgEDi1jIzToFFhpBg7l4YOJ12UIKoYx7JrB0gITmGwSI50ZiSDSQEs/R+MOIMCpGfJURJadTQ40Nsiy6szI5Ec9cAda6UHk8Z4bsU0a0mVpe5jhQpOil2qDMYl3GKDW9rDcCGwXCsnnoN52cTv7sKShFdgU48mmObNVaXbcsTWNto0bo8HzEhGVkpDyvledGYluSJJWhK4XIgoBpuVwOec9/mFkqo0x/GB7m81mNKKL66BPl0dZiIHquCa6antc2Osz0+PFcg9UV4TNxZgO+810/YBI+gEcSlN9T/4RxVHUIB+18+nGW9eTvEVRrVZ/qEG1MYb19XVeeOEFvvvd71KpVPjgBz/I8PDwwM5HGc1GSuphC4v73ftZW5vgP1/ewxg7qdcEdvwkC+2lOvIJy83wp9cbKa1xjqvCIBTZakKjVsyunvPy5OKPvIW5o9nsinkuA1Ikjy0sgzXWB1jNHKs8K+fjWnXz2RyhwW7k66EHJSxm1gsZ7HkMiPEwoyWNCiKkVsy5Tul1VJD9kGeKvGj4keGrnPJ2EsvzHDxaOisHidrXn9nbN5J2atMG+dP9HyxfBsh4TgsReZ7vNz2Wd4e4sDnBpb1xrtZH2A5KtIms5VQO8g2UhWUrZDoRL6/ni98HbbA6pN5gD/G+dGdQ8R4A45tcpruRssg0yqBdAa4eREJH24Uu7RxnkG7kebdrDTKV7NrAZW2/SrOVfL6bLTeRGOsHotd+neO/rVIAud5KFlLxbEWQmlnIe1/THvaeGySs4CD7TAuR3c6SOsFw2kLjTEU38421jcxxfxg11V9deRnfKEIlGXWLCR30lFdJrBsH2Ger44nvwLWYdd7p4ggAFelw1h9mbKXOzs7OIc7kxqGUugeK71QYcTT/O4Jx5JjqcrlMrVa77UpMbxao1lqzurrKwsICQRBw6tQp3vve9/aAdDxRMR3r/i6601GO2hVGmOHqmsN3t9Z664x6Ba41+gyrAFZSADlIWfZVLAfCPvAe94pstpKJjLnR0VPnLd/f9ZicSC7O01U7A5OVUohdktFVq16SXn892zIRcLhR+WhhcE/WaW5FH/2V/axMaL/tZ5aFg6wOZWStNugpEwocLTDWDdYRAitIJrwlfi8rrBRjZ7RA2mmwkQXeaTIzj8FM71uFgp+aeCmxLDCCcg6yDLBwckYEIXEQLtjSkkmpsUUEuP0BV2PG2aUo21iiiDZQaxbYD1zqocte28VyYtuJCOBZsesgbR0V4Ek9m83QoTJdZ+/aSG9ZnoQ/rihy9hgwyktFt5jjoOmKTlgNkJ4g6FwXS4FKadkrwqEm2yhrsNoEomRFT4b5SYpa5LY7DC1Ezk5bxmG5VcFuGIacNsPlBsYI/MBir16krhwCbTE21JnRyhm8pRnlPE23ryycmPNIwQ0yfXS61VJAs+VQjDHjef1GOgW4O5ju7tq2NO6QTxvNq9dX+N73vsfZs2epVCJwejeY6puVRf+Dxec6hX4Es+Uxtv1+lvpe0O+z58pjCcAdH0ycKo0kEhaVMfzI0Gm+v7DDsakZxspVnn/+eYaHh5mbm2NiYuKOAuCunvoeqD583JN/vH3iyIHqoaGhQ2uqjTF3rKMNw5Dl5WUWFxexLIvTp09z7NixzL5vBOZX2ztMuSMUwknOL+4Q6G1OlpKa60KqHPlEocR6Kynt2E0x13ZKmDtdqBwQVIt8AKEEzUYho6n03Gxikut2svvj4FAIhBbJAazo1+aIL8zqqiOG000xYFF54+jAjqtpK4OsBOiaw06zxWixwHas9O/yTtYVZKuef02sdtS+gf7SAsSOAvcGz5GOZAe5oLoSICTItPPHgGMldqtFAnBG62SBt5NiL398/GU0sKdclJF4MsRFZ85RGYE3IMNSpWhgg2RHw7jUNG7QkUoBj3tX+c7aSdr1EUyi8E8XBcf2q0VimRCgU/p9YwT7zQLD4y32Yu45ucmKDqANQoMI6J1zNIYzuWBVyKjS4o1wgwwi/bzYNAjLEAxBSbrsk/J6rvk459p0fdsHRWAs2sbKNSxpt+1cFj5UMgN+jQFpRQbpoRRsqSLbOwVsFCYs0X35rJglYbrSZiuwcFKJx2mnmuhYycba0tBo2RRi0pM8wJweCLq2wg+S/Ua8hLnWgmZo0wwidxhXaqQ0WJbGnmyxtS7xteHZZ59lcnKSs2fP3hVQfaPjKa251LhGO4geTh17FoacQiIpcdwr9UC1Iy0u7feZ+OlClcXGDgK4Tw5zfV2x0Yy2/av3P8hDZx/gvvvuY3Fxke9///t4nsfZs2eZnp6+Y9++ex7VdyjuuX+8beLIgeo74VMNh/cuzbPFm5ycHDhqtyxrYPGXhd0mfzZvozu2eBLBSsrFIz1NOuElQbWAzDZ+SnNdTMtPDGDlUHADXBIwYLSk2fAolfvaByHA9+0E4wSd7P500lPTxi0l15NCZ6aY83TVufpgS+Or/hSkEGCdbKBfGwZgeqicANWNIOBYtZxgsZd393FdiR8XxhqD1Yo0sINYZoi0tuoGuUBCQyW02MmpfS4n25H7RHrKO/NYZv2owyCrWU9PuYehheP1r3VRtnlydAG/2y2IyCNaYPAJqAq/J9uIEhSzmoe0JXQ3fCRbWiJupKUAHq1cIxBWpJONT1jkuZ/kLDNadJ7ZzinIiH2noEknCGQeISmQgcGuJ9luIaLlesB9lO3/P3t/HqzZkZ53Yr/Ms3z7d/d7q27ttwAUClth6Q3oVWRTbDY1GipmONJM2xJpmvJozLBo0rIpWkG1R39QGokKMaQJky1bY1kjhkRNjBQSh26bItUAW0Cj0UADjR213lpu3X371rOm/zjfck6e/G7dWoBqFOuNuEB9Z808J0/mk28+7/OSZE8cYbLHrVeAjATupkKWFRRVhmuvpKAw7nGj0UYpQcsvUCsaVlUiywiqTV6hOBLo2akjJbA04v0QjKtcUGM7xafum+OGBKHMTNhMAYVBZFHUVEH8SGYmRSb98SDM9huWVOx2XVp+AS+yAYEUEQ0v0U60RIxEUZjq0l4rUzxwgC88fIqLFy/y3e9+lyiK2N3dpVqtfiRe1RuNLf/zldcI44hu4GJLwYXGkAe9UJ3k9a2lwe/NlETqA9Vp3t1dSe1r82B1Bn/Xxm8ErHeTPq1k2/zIkRNAkm/i5MmTHD9+nKtXr/LBBx/wwQcfcOLECQ4dOnRboPhOpSi/7+m+z6n+ONk9y6m+1ajhNKi+Fet0Orz//vu8+OKL7O7u8vjjj/OJT3yC2dnZvbWI96B/nNvZySyyz5YqhFr9mmF2gC3b2VF+tlihG2evvx1lz4l0RBSTR3SjlrnDIXBtNfP5m5VBtsuEHUx8UJOZPkhpUKcQAuJgeG9HxsRlheplhCsZlmGnq+XMbwUcGcuuDLieQCqBgVKcMau79/6qsvDbIUYRg2qENLbjfABivmnp5ylDApnsST85/WYuLXgMIAQt5XI9qrAVFYkVWCPyql/1xxnlut+J5UjQ3beijPjRyXeJcjxZlfumTZrWwsTfj6EbO7hTN3gZgOxijCMYKXuoeisWe5lWTCEEfiOgvC2obgtEbxlGlcAph3uxSIAEDG81y+Z9I842yU1GUX5jbNjm9r6VyLdybchE9RAiz6suOoHh/eXP05PAFNy+jN7QlIIgkmx3iizt1ri6M8ZGu9LjmScXHVJCBJGy8CIb4ShEOeD8xhbFYpHTp0/zhS98AYB3332X73znO6yurn7oihM3ClT8veXX6PhJXRaqUzTCdAMbPrQpt5zJoliyhs/uaHmCkl/i7QtNzq5vZ4LWv3j4OGWt37Msi2PHjvH5z38+yYtw5QrPP/8858+fJwj2CBjYw243m+J95Q/N1D32d4/aPeeprtVqxHFMp9OhUqnc+ATNhBB7AtxR1mw2WVxcZHV1lZmZGZ555hlqtXzq7lG2p6e6tZ35PVkosdzJBmOudvb2zk8Xy6ykIsgL0mYzzKKBXV9DB7EYqU+dMY1T2moVmNFOsw0gzLTc6xbyWrTJAKnzqmWOQ21bicqCLi0XRwKr9xU7TgSBgzjiwXkHPzSUwTAQ1IvZiUIltOkS7h1kGClELAbSeybzmgFSSGRbEVdTdbYjhK1yutJgoHqEFmiZ8nRHWNhLI61dafCvWXeHk6W1zF6lsrNuIQRtHHYjh2nZzWHnWEHJyntP+9aOC1hAzRo9SCsFD1VX+F9yQDQBfGlqgWWpXMIXk553LAQt36Ey3sHfGILRNHtIRAqnkVA5TCsPozKty6CnGjKyRj3+tm62IFYQh4rCBigRE54MiFXP276HLnkYSvzQodV2qZS1522qf5znzicFy2/S6xlHCqeUnKtCw0qQbf4A/DD7DUkBrcCmlGqDie60XiaNJmLHdP2EytH2HFq+S8uzibsW/QZoShyllMwwdqSEjmdTmG+zvj3sB/vc5meffZbV1VXeeustXNdlYWHBSNO7E7aXp7od+lzprNL1HIQFdWcY+C3Jeq2PVibYSKk3XW1vU7MLPFg4QNxx+O5ywneqOi5Xup3B9/rVEw+OLJuUkvn5eQ4ePMj6+joXL17kwoULHDlyhOPHj1Ms5h0me9XzPv3jzth9T/XHx+5JTzXwkSiAKKXY2trijTfe4Hvf+x62bfPpT3+axx577KYA9Y3uebm5k/ld1NLK1hyX7SDrhWtq3oWilfVMzJermXFIAEupQEfAPJuMDB9CmAU27VYxt9xcKAboc4aCGxFqA7XtxASePtcTRH62cxYCgiA/J0x7zpSCnXaRrU6Jxu6Q621bMbIWEYuI9VY+uUvLoAqiUi7WExNjdNrhsCDGDCgJLUCSaBWPMtHzilqaRIaYS6T0LA20qNgUgJh/J5YWHBob3lsasP/Z6TdyS+0xwuABh1DZrEVlmnG2TV0P6tRGuG2jOFnKb+Hu6a1uKJe6a5YR1LWT+xzqtCXgMXuDhDoi8/QNCYQKd0tR2AQrMNcXzCI4kLzbvd6xCPITqoLSpkpS4HiCYr1L17OJDAobafP9pN3vtrMAJ4pEjn+fbJfmxEiGOukTUpmquJ55UwUFbEMip+Ta+YubsiYG2vefpihFsWCnXWCjWeHS5jgr7RrNsEAsrVz/Yno9+jGxkkg75gfvD8n1fUeG67qcOHGCL37xixw9epSzZ8/yx3/8x1y5cmWks+NWbS9P9T+/9B2ankD1nt+GP5wAnKxNsZsKLA9SK4/HK5McLkwSbhb5zsVVtlP5Bx6amBp022Xb4YuHj9+wjEIIZmZm+NSnPsUnP/lJOp0OL7zwAm+++ea+x9YwDG+b/nFfPaRnd9urfN9bvW+75zzVhUIB27Y/1AQwSinW19dZXFyk3W5z6NAhTp8+jTtCem0/tpd3/EorC6r1LmauWKURZPVX17rZ+sdaCx5zswPyXKnKcvsWJiKKBHGI4W8ntsEvQyHF6Rbgdx2KZT31cZ5XHfoWjsbTDEIby80epwxIp7/s6wUWW+0SUWyDlegmhztl6rUOjowIpYU47LFypUXZySZ3Wd7NP4et9pC7OK4K9FMtCHpaxYYxUgaJx136EN3AwSN9DVyMJ3XNBSka0pPrNIg4JhsAOjgva33v5enyEjNuvs66zjUk8wdJMjvZjEr4sc2knTybwOiSTeyCP82Mm7TJVuwYvdWhEqxFVYRQHCmvcz2Y1MqTr3usJFY6m6WEMMwGK1pSEUfgCYlwA5TvQE8O0WqDTA3aSaJGlUtbLoRAhAplp7bHCqv33oSvwDFMXEJyrouwE0I5u7FccOiOBzRaJUpOyF6+7yhO0pM3A5cwlANKhh/YZjAbSqSbf5emgEJdds9KPe8kQcvQTtQP89buFUzmuGFuJcnEj/Z8B8dO69orNholOqGLpyRCCEJN5UWIpI1nE8wYxmjtWxFS0Y0s3nAuDrb1AXPfc9wPJj98+DDLy8tcuHCBc+fOcfz4cY4cOXJHOMJ7eaq/tfYObS/JwTrhlrjUHPbrYymvdZJFMQlKfLR2kGpQ5Y8vJlkUp4olzm4NPdp+POzbfuToCYo3WYfx8XGeeuopms0mFy9e5MUXX2R6epqFhQXGx8f3rOd9T/WdMsGe8kIfS7vX6pPYPQeqpZRUq1UajbyKw35tFKiO45jl5WUuX75MGIYcPXqU+fn5O9LRjqJ/rHZadKLsMmk7zA5uNSe7Xl21XTb9rGLF7g2UP6YLZQOoztIwMqNWf6YZQlnY+GHEQrnK//bJp/iJ06f5H6/9Pr+/9u3sPZUNmuKBUcPaMPiadG1NySEEiu1WiZbvDsqe8KoFoSPZapSpl7qgFHIyIL4SMz9W49z61uAaO12PqXKRjfbwmV3bbuDYknqxwAfnVjP3lJGZBdKP4xOh9hz7ZQ1UDygmvN8+aFNOiHATDrF+VgIwsm0zJ2kWypyMYY6xoxSOk3h1f2zqnVzZvEhSMDzfMKU6IYSghcO2V2bWbjDrmL+5MBZUU8CphUtFBTmP+1ZYJu7xjZ6ZuMy/W5nIeKlMwYrGbjnKBitKS6FCRSwsxJiP+74FkUywrv5qhEBGClP+FBlAlPrUrVRM4SjOtYgM9A9Dobslj0gI4kgSSEle7T0xpSDstRohBLuNMpMTyXcbRtLYo8dKIsmvXOgTtjhKVorS1s9mGcdQLGa/3VGZGyEB7J1ulp6SpKDPPvA4Fmy3i7R9l05sEwtJGCTKNWLQzgwuLe3eCdDWJPq04kmpiJRkt9bGDyNc28qB6uGxQxrE6uoqFy5c4MKFCxw9epRjx47dlgNllKd6y2txvd1EKYmQKielt+YN++cHajM0Ax+3W+L75zc5Vk+tpI1NDFScaq7Le5tDRZC9qB83smq1yuOPP86DDz7IpUuXeOWVV6jX6ywsLBjl+O4EqL7vpb5vHze750A1DLWqb9V0UL1fWbzbsVGe6kWNTw3ZiG8AS0Mnc6UqzUbWc72icbC7GlAvWjZThTJHimO8t7SB31aJs0xCwbbwVIgSCV3BEZIgjJEILAFfODjLL332OQ5OTQ2ud7p6Igeqj02UuaaBfSOvupgffAvFkEjjzzpuSBQLwtDG8xw6ShIMUI+OIhOvlRKC7U4RKWNsG+K5gJohVe9cvZoB1ZFSHB8bY8ou8nasSeyZggwjNQiakyOcjmlnrRACq6MIayDmgkSOLzYkedHqpZTKSeclMmSazNkI5Y8vjL9PxcCD1pf6k3v1VwKyxCHHCjnvTXGqtJo7B+BqMMm4086csxMXmUhFccYKdhi684+VN5PU86m6WVacawMmDrVxWbHfnCoxMh2MZ+IVj1jt17enH5uIwSS7Z9uSQPeu23rbhPBYG89zUJHEVw5gDqqMApmp/65fYEI1E1CppHF1wUQIjyKZU+RQkYQMqFbYvdUh6duI1GqLUrDc3WIv6/hZUO1YMV3Pxlc2Lc+lE9l0fAfZZxGJ/rWzbUwauPP7MSFV5pUIkZQ7kJLfee8VfuaxzxDH8Z4UAyEEc3NzzM7Osrm5yYULF7h06dItcYz7NspT/U8u/EfWWxH0aFdxiu80U6iw2EvyMumWGYurvLF4jVh1OFStsbg7XM1s+sNn/uD4FK+tXQcSmuDnDx276fLqViwWefjhhzl58iSXL18eyPGdOHEiMy7eB9V30O5FusS9Vp+e3XOgWghxx1KV+77PlStXuHbtGuVymYceeuiOC+Sn72nyVF/R+NSutFjVqB2+BsbrThYkThXKmYAWgA1v+PuJ+gHsXZudyxE7bNJfaBcIiCHwFRILJRJIFaGQCKSCLx07xt/9iT+dK/epyjEEApX6ctaCLaTK8lMLbiKjZae8ZrYT43k2jjusl5SKbtvBLUbEMXQ9l65v0/IcsPUByvC1psCXEII4tIhlhJz1CDfyz71gWH2YLBW5+N5GbvuAV53izjqBGAIclSg8KI1bq3s3LU8R1gRyLBkUTeBO5rzSFnYheyETKSan/BEJHOHxqbFLuaODWOZUQABCpDETYqwSb/mF7hQLxezzUQojqPOw8GKLQm/GsR2XUCmexLjTMXOoNSrAMAAvBbRHpBQHoKgIxgKcHUc/7YaWqUWskveX8trrsntSkQPUhAql0UTKwsKbCOl6LgqBigVRmNcZB1BRtl2GStJqF6hWPGJULq5YKXKJgsBMnbL0hxFKrFJy7olCkS2GfWopKrGu9l4N7Cv5RLGg4RVo+AUa3WwSH8tWxoQ9aRMimQRYGanE/OqPfoVRNBEQ/L8vvzYA1ftxjgghmJqaYmpqip2dHS5cuMALL7zA/Pw8J06cuKmg+FGe6pfXLifSoUJhCcGFFPXjSGWC3aDLY5XD/GBxix/Ym4PYhEPVGteaybuYKBT5YGvomU6PDT9y5LgxCPtWzXGcgRzftWvXOHv2LGfPnuX48eMcPnz4jnCq71vP7oPqj43dc4GKcPta1QDXr1/nxRdfpNFo8Pjjj/PMM8/sqTN9uzaKcrKogerZYiXXFrc0z7XUqB0zxaz8VkHaLHeaHC/WOdqq8c77W1zfzoLuqpP33trpJVcF1UKBv/PjXzbWp2qXOVKcy2wLiZiI8oNP4Oc73lBLqR34Fu1OgdXNGkvbY2x2y7Rjl1jtb5AQtsoGLknwuxbCVlwWeaCsq4IUbZtyIGl381zgPq86beXUfFWQ6FXnztMCHGUgUMVoyH/V2ppSN5bFA5C6VzqQ+UyTSvBjU+/Rigv4GiE8GPFMda3wvm1HZYoypGCHXPPHMvtWghrjtil5juCSN9m7rmAjLuu7OVW9njtLpwslgCu7TZqCFXvAXlgQHQrSO3Li2qNYDSp1rNXNA8GyyLZj2conzbECg9e46xHZWW+p3v77ZoihZadTHAmeo0iaaTOGOiptycVJP4jeDLBqVThaOEWRk8bypU1KuLw2wfmtKVa7NTqxm5k4QcKB12X8jJrk2iYp2ZfkWr69JOeshU3e3Fy6pXwEY2NjPPXUUzz77LPEccy3v/1t3njjjX1TDk33XGxucn53OykjsFCdHkjpCaBKkXJjnJfOrTJfrbGZStK13hn+e2F8cvAW626B97aGij5fPfHQTdVzv9Zfvf385z/PQw89xNWrV/nWt77F9vb2bY2X9yX1Una304nfT1O+b7tnQfWteKobjQZvvfUWW1tbRFHEM888w5NPPsnExMSHvgw1iv6hBymOF7LLjZYQXNeSunhx1nNZ0egNC9VxzrjzXL3osbTrU7Asru9mr9Fua6O3UkTpoB8Ff+tPfRFrjwHpdPVEbptrWBwx9Z0CRavlsr5Z5draOEuNOg2/gC+sDCIwLv8bTAhQKfAlRPIf37fYGdvB0eqx0kjajyUEZ6ZnqK/D1bNZybm06RSPsK1J3BnAlNAAsVACpofKF7ryRxTKvLZv7qoqf56BIPz42FXmCk26qsBGVKUduYNUuMURSV1M8n4A0QCECyIh2QyHAHk3Hr08Pua2WQuqLPoT5LsiwZmxa7lzTF+h7nWVEuKcqsSw7HElJk5NPHL5aCRGRZf05MmkHOg3ss/NNUxCTPTg4GiXTmBDcGNQHRq67Hbg0O64xj4qHKEksp8gxacPzPb+lUxIZ6xTvL1R4Q+XN2jjcEibNOt2sHyANk4m6NP0verAt0/3yJhpEqAdk1RfC+LVzpF9vXMBv/7mH91WNsVarcYTTzzB5z//eRzH4aWXXuLVV19la2tvWozJU/1/f+9Fuv02J2DMSb6bByrTnOQQ3/5gmZVm4vhIjwFz5QoXdob366RUnx6YmBzkM6hIyWcPH72leu7XpJQcPHiQ5557jjNnzuB5HhcvXuTdd9+l09lHpl6D3ad/JNbvm++1v3vR/sSD6r4s3uuvv86rr76K4zjMzs4yNTV107J4t2Oj6B+Lze3M74KWjny2mE8Eo3uu+xSMmlPgE5XDVHfLvLU49M4erFVztGB9EimSbMb9C/KpQ/N84cSxPev0cPV4bltgiOjqa916ns3WTpnr63VWmlXWuxVayiWUEhB5bzMgrHxSEAwqEaZKCaESGoiA8bnsc11vdXhiZpoDLYdzP1ij1Q7Z6egJuNPXHv5T+opQ90KbAtn0ugDWWDDYaWt8cz1lM4CQeeCdA0zaz5L0eG72wmByIoRgV5VZi2p0YtuY/nozqBi9m15sU7OG7c0Sip2oSDtyaEQFpp29vkPBZb9ONALUHK1u7ivhi6lvVrr32h62E2krgiN76RwKI2iGnsM2Vnkg3jsvXRjbydcrNuiVR7MxUWRl3m8QjgDVpsQ0QrDdMoc2mtpMHAuEnrI8ytNNuioBcfPuQV5pW7y4voGvYpSCq50tiiK7KqFbK5IUtUmVZfhejbQN/f0Z6Eim5DHpRE+QB/FJrELy77d2rnOhsXHbsTHlcplHHnmEL37xi1SrVb73ve/x8ssvs76+nqurUkn90/fshAH/YeVC/wgA/Cjk8cJR3rnQwo4cuimHy1Jz6AA5Uh++g7FCgfdTQYleOOx0nizVcfT0mR+SCSGYnp6mVqtx4sQJut0uf/zHf8wPfvCD26Jl/ok2dY/+3YN2z4LqG9E/lFKsrq7yve99jzfffJN6vc5zzz3HqVOnKBQKt5xR8VatD6r1Tlj3VMca0XSykB1MbSFzKh6dMOQT9UPYqy6vn1tDasPYuB5so8glfUmXqmzb/MZXfmzvCgEPV/Ke6h2rPZAwq1plGs0iW60Si2t1rjfr7IRFPGEjHHLJJoQ0bNM80HuaBsiSsxRhKNmtNwfbHp2a5Fi3QOviLtvbQ3TlhzEHJkZNtAR9nGJ38qod+lxC+irnhQkmw4GesCnRhslyGe4MGfF08PETM2/jGFBhpCQbUZ3VoJZTdhjlMNqJSjkQ7loxS8EYy0HdCNDT1qZIaJLaAOpOFzQPfxJwqU1Y9uvM6p0mHIU/kXpuhvPlKDFtBXbH7EETQlDsP38FbZ0UrhSqoD3XKCYo9belPNVRHgDFocAsOA3NVpEwMOwzceC7hjbiaRQMYNlLJt5VOZsp28HiGJt+iyut0RkqK3GBs41tjtTGs/fZJ2DOea9lou5xQ4sM/YM+ee01fSUUf/f9l+6Y7FuhUODUqVN86UtfYnp6mjfeeIOXXnqJ5eXlQb/eH1fSoPq//f6/p9mjekgh+MzYCX5wfpdXLycrY05KPPxofYxrrSGobnhDXfiT45OD1cS6W+D9FLf6k9XxO1LHm7EoiqjVajz11FN89rOfRUrJiy++yGuvvXZDbz5wX6M6bXebpnGf/rFvuydBdT9VucniOGZpaYmXX36Zs2fPMjc3x3PPPcfCwsJAJmm/yV/upKUjpvtmktNraXJ6elKXA6VqhqbxRH2OzmrM6++v0+gmAFGX5Ms17diwsd9SFPwfn/00lcKNJaXGnCrzhWFuxZIsUA9qLDinkMEx3lwrsO6X6SiHSEskAqBMYMuUhWOfH6fQlpWFRS8YTtJUIcdnKhxqOSz+YIONjS4zk3lP3FTZ7BEUQKEHhI38aURPWi8xA8OC4ISH6HkLOw2XldU66+sVGo1Cwv826FHrXmnTklpa5eETY5eYcltGlNyMiiAEHi5X/ClaUfKOd4IidTsPoJQCd4SWnCMj2rlsK1m77o9RtgI2wuqIIwRP1JcyW6QFka8BQAOHeq9gRSEBWxH0tMD3kNfOmZIgRieNJG4mz6MQ5q9biPLaHKrq4StJ3FPaGVwnFsQ6pWgEJSQ5QbK9UzGu5OTMQAnRF8kOl8fx44AZd4JdL/uOZwrJd3Ghuc2EUzcWZ6Z4CBC0Wvl+WP+upcl7bfrMtfMSwLw30DaC6tRjPN/ZYDPe44XegvUD+L74xS8yPz/Pe++9x7e//W2uXr1K2PMe94H8jtflm9ffG5xbCSu0dyV+1JP6E4Lz20MAeqA8/FYmiyU+SOlRpz3TD4wPqR8TbpHTFfN7+jAtrf5RqVR47LHH+MIXvkClUhl48/dKC3+fUz00oe7Nv3vR7snQXJOkXhiGXLt2jStXrmDbNseOHWNubs649Hc3QHW/80lTQC5rXmqA9W42oFBpw/REocTV9i4L1QncpsvSYjeTXQsYcPP6tqp5DURMJoUzsRp4rhfGx/nPH3tkX3UCeKr2OFZ8lWttn3cauygETwiL840GaeRu7D8NG02D7b551RLiANLxZJLeSpQQnHU3GN92B9rRJg1te4+l4qgVgSvJaR/3rBBLur33pWNRhSIuK2wBXsshjC2EBWFkE7ZtWr2jXDek4IQUigGofJpokx5135s9Ybd4rLY00u0cpwptScV6VKUVB0SxoEx+FrAZlqnZZkCyEVapWB6bQZlJJ5+1UinoxA4FK6IT5SdUSXkkj41f5c3lw9lzQwkZZRiIQkF6dTsB2tl6Wiii3jZpKbyDEc62MwxWTLm8TTQNABn33t0IfNv3grqRJNTkW+wI9GSh3gEFSMNkURD6Fm4pJe1pWIWA3mcikgRJrWaBai3xXkaRMHOnDXXTNatniyUaHSipWTai7PuLBh54wZQzw1agZWIFVryk3G2HGy7zmlRdjMGKhvP0LsIUrJlLAuPGqEAipMBXIf90+wJ/lh+54f1u1mzb5vjx4xw9epSlpSUuXLjA2bNnkyL1Cv5//u7vp54nbO0G+BPDzuHB8UneTwHn9ZTy08LYBN9L6VFnqB+9uJpHJ2b4VGUG+y4kYTFJ6hWLRU6dOsXCwgJXrlwZpIU/ceIEBw8e/FDSwt8Tdi/SJe61+vTsngTV9Xqd1dVEM7fT6bC0tDSQxTt16tQNZfHuBqjuL3Wl73tF41OXbSeX1KWlpSOvWg5PFw/xg7NrQJtT01MZUD1WKLCpBY3s3GhZNQasZGb53/3Yj+67TgCT9jzPr7zR+5U8cz2QEszAWBgGSJ0LmmwbpWNrQLexJC0sLeUQaKmyonkypHY+AXnbzXxwTceg/jG4mxBIX40ErQUsuiR1l1G2bN3ZEFxF6Ev8rp0rtlIkICBw8AOHRrsEKqRcjCjYIYVygG3HOTASexbFcpdjpU2eqF/FVxaOQVi7HTmUtSyHUghayiVWEsjTqTqROxJUC5GcvxuWmLDbuUey5I9T6CWocUYJeQPzpe38tQ3NNfYsZDkLtMMQDWgreg5ALDvGK1tEVoQVWbkkLcoxyyDabZUk+xkBulUP6XndEEpZgBBp7zwmJqz3tsUin3kxsnBTeuPhCJe6ihmc22iVKJaSthAGEmGYr4icNrxCutlttlRU7TKvrm7jFIb9h1JwtT2chG92821p0hnjjfVtQLARtJkqltkNU9lVRwYrpkC1pYiibEZGYxIYXVbPjhMZvTQnSHtVQpDQRCTEMuai12S922S6OGrF5PZMSsnhw4c5dOgQi4uLvPfee7zwwguUD8zw0sYlot7kS8VQEE4GHNcLw8ReSVDi9uB3O9X3Pzg+xWuriVpO3S2w2mrxiepB3vxglV/4icexmvmJz4dtURSNlNRzHIeFhQWOHTvGtWvXOH/+fEaOz7bt+/SPtN2LdIl7rT49uyenhZVKhevXr/MzP/MzPPvsszQaDZ544ol9y+LdLVCtK4Asap7quWJejm7NS8BOybL5ZO0wwbrgBxfX6Y8kFSc7qo5rnVzNsmgGewRtkVxKAJ89eJiT05N7H6vZmbFDuW1Xu3kPvLRUzu0kbYXSAv6EBTomFwKD7u6Id6wHLrkK1Z9USAhmY8JKMsgtbzZyiXVWtpojZ9ixLXCa8ag7J6ms+5bqUBSK7okIy1Z0moWkQqb5Qc4sOr7LdrvMynqd5dU6jUYBb8fmgLPNZybO8dPHX+W/OvQKn586jy1iKob04ACegX4DsBuWEFKw6E1lXo8fW0y6eQ80wHZYotqL9KvYAdf8icz+WIGfcvXWbI9mZKaKVB2fovQy20zUDpPpvPRMsKKjUAK8QyMyvZDw3vWCO22zksugbFJgdfNgHMDXJon+wQjVD2Y0DDA63SMyUZ/Q275gZytRX1Hd/INSkQBXk2X0BdLJlq0ZNZizDzNfrhGoYZ80XxpnKxi+97d3NinJbEbXSSfLwT5QHM/st+x87IgJMOtBlok3PUeg0a7TW8lIn3eDTJxdEfJ/+95/yB1zp00IweTkJJZl8fjjj/O3z72MnXp3KpCcGp/GT61WLqVk+o6mghLrbiGjRx30uEICeHrqANGq4s2Lqxwer/PQxNhdSRcehuEN75uW43v44YdZWlri+eef5+zZs3iet+e5f6JM3aN/96Ddc6D6tdde43d/93d5/vnnabfb/ON//I958sknGR8f3/es926A6v59M/QPTaO67mYHr7LtsO11eXrsIPWtCq+/v8Z2O9sRxVrLLdnZTm7MNgy86U0qoX6UhcPXf+yLN1MdAA4W60y72clAK/I5VBrLbEsGQxMIMDRR0zYT4DBlOjTIdYn0EGsrdk9HKBRRrDg4mQ1M3G15TFTMMnECsPZQjvI7vdmAUhkQ1T4WgRvTbTvJVYyZFPeymBNj6/zY0Xf5rx5+hb/0yEv86NwHnKxsYsuI3ajEZlAeaDXrFihJaYTcRb8YUsKiPzUIYFwNatgjUg+242w7tUREJwXar3oTuFpw2nag6VT3TCF4sno1ez0n/20avZimYM/UYZaMCSZHf+eW5oV1G0kAqlH5I31eWxG7mgfVj4ndYbtVKMKJ1IUMRQ1T34OK90gLrtXTjxw6WwWjI8gUpIgW4OhKyYa/y6srDSa1IOYZN8vNjZRivngws+1aS4v7kNkJU5KU5ea1qU2a5MYZrC5VKfKc8XQ/IJ2Yf3/tHB+kPMQflsVxjG3bNAqSs8EufmqVRgUywyo6UqtngxJTmRLTnOmK4/LuxhrHamM84kyztdKl5SXH/sTpB0cmm/kwTSl1UxkVhRAcOHCAZ599ljNnzrC9vc277777IZfyY2R3G/zeB9X7tnuC/qGU4o/+6I/423/7b/Piiy/y2c9+ljNnzvC7v/u7t3S9uwWqdU/1ZS1FuaO56E5Vp2isRbz5bpJ5SwrB9ZTcEsDaThaYF0sl2BkuBbo6hy21lNz/XbQtfuTIMaYqZuCzlwkheGLsEH+09kFm+4xb5VonWzZTRjidD5lc1HQf0xeaP9DMq1ZDPrEDcQSthYjqBZvxapGr69ml07l6ha22WfnA8hXhiPg8pYbezz5ojmWMdzgkDq29J32pXY4MWJhYY2F8g7nKLiUroGp3sQ3PwJExDjFbQRJgWYxDXI1u0QwLVA00Di+2MtstCZf9aQ45m7lrpM+pWdlnY0tY8escL24QKUGExNJmPNEI/36gLE7XlvjO7jDZiLQVQSBIq0tKx0ALSgf+hYkmeeBL3HLcq48itgXdyZDSWn7wF9rsy2lFsA+QYHVi4qJEpdKRW162XfizEfR4zLH+zfUsjOQgzXYY7NE+Ypk7f6dbZKySn+GJKEt/AtDR99HyOJNukXf9LZRG/k97rfvWDYYvIqF+bJFusHpgNPSDbIe/LUsRRiDTmtam6ur8aJL+P5O63tQX9M6LPUng2UShBUpRrsWEMkKJmF/4j/+O/99/8rOGm9456yd++euv/H9RgYD06kUg+WBjqIV/sFLjSiPpe8a1TIlBKor11MQUbmTxg7PL+MUiW+3he//JRx4k2t35yEF13zl0s/fty/FNTU0RhuF9+kff7kUQeq/Vp2d3zFP93//3/z3Hjx+nWCzy6U9/mu9+97t7Hv+v/tW/4uGHH6ZYLPL444/z+7//+7d875//+Z/nv/gv/gs++9nPsri4yH/9X//XgyjrW7EfFk/1lVYWzIW9gJYDxSpPuvPYmy6La8Nj5qoVvCg7YG54WbC0qy2pRfoyrO7RUVBRNv/XP/35m6tMyp4Yn89t0z3oMCIIcQSH2rwtD76NAZC6J8vNLkcLGdOdg6AU5egfACXHTJUQgcLSKQOaOaGgmkL0zYejngxYahl4j3Gk6nb4b55+ga8uvMPDkytMFDoU7ZCW5h1OW6QSr6yUsBmVM9xcpUZzmk3qHbaM+aAza0wQA7AV1oypzCu2z1pQ5Zo/gWt4p1XLIzI4vqWACTcPDpVGjZCOytGCEOBtueyultnZqNBplAjbLn4nef6Jx1vhH4wTuoZGNYoKw+fkbvoDFChEVslFNzsQFDZiio1UghktbsGfDKHfjEZJQgoxkMkbFaTYr6duKpbs7JaJ2tnnJAztWQ9mnHCLvLeZ9BOr/nDiqxRcSfGp+/bOzjZWbwYzaWepHwDX2tt7rw71LJdZ0dBOdBMi8fBmtjnZvkCpJJC1u1Wk2y4SRTYIgYolraZF2LGQtmKxvc3f/f4f3/Cet2NxHLMYdHhjbQWVqp+K4WR9ilYqaHEpFUB+cnxiMBUq20Pe9emJaaxdwfffv04UK05Mjg9q/vDsNAtTkzflMb5T1h9/bydN+d2grPzQ2t2WvrsvqbdvuyOg+l/+y3/JL/3SL/E3/+bf5LXXXuPMmTP8+I//+CBYULcXX3yR//K//C/5uZ/7Ob7//e/zUz/1U/zUT/0Ub7311i3d/1d+5Ve4fPkyX//615menqZer9NsNm9ZkueHwVO91m3lPDzdMOST1cPsLka8fWkjB/hqWgc2Uy7TTYF0ASxpmRObWjpuHZdKH/7zJx6hcBud4xMGXvWKl0/pK604h4KFneI8D45T6A4zYciih8Cs96wfJrPBb8JRIBS7pxXNTp7XF+rPrGd2J0buAbYAXE/hbyfXDEsx4XhMHIrshEIrX1/dAaBW8PFU/l24IsqlG+9bMyoO6BaWgI2gQtzr0JpRkYIBVMcquabJPAos+eO5+8UxuCPANghasTvSI+3ImM0wHzMAsBOXqFkaf9vQIceBJPYk3e0CO6sVdnfLtLuFXsZHMTgvbLsE3URdBaGIi4qwGOW40nHRQvjJc3M0XO8YAvRSVUVIiegKSksBlhfjVIcTFG8iJJZi2PuO4ErDkFc9UvljlBJJKFAikdkLGsP2EhuCFEuV7P0dUeJys81kocRa6js9XJpgJ8hPcBphwOEeBWRJz8QK7IZdZgpZGpU09s3ZckgJejdsDHLMpalXxKEg6kq6LYf2VpGgWSDWU6T3/hsFNmHHRkWK/9fZ17jayK6g3UmLooj/x8ZFVDxcXVERxE2biVTOgaliiavesM23/WE/9NDEFEXb4VNj86xdbvHO0nCc3e4OV4m++siDg3t+1AA1iqL7gYZ30O629N0Pk6Te3XTg7sfuCKj++3//7/PzP//z/OzP/iyPPPIIv/Vbv0W5XOaf/JN/Yjz+N3/zN/nKV77CX/trf43Tp0/zt/7W3+Lpp5/mH/2jf3RL93/ggQeoVIYD8n6Sv+xld9NT3b9vmk8tgKfr8+xeDXj9gzWCnkuvq3nj4yDrlZ7R6Bpz1WomM5drWWzu4dG3OlCTDv+75565pfr07aHqDEUtE+Sq12DCyWo+J8DYoEVr0NU1JnwxzXwN20yqIpk7CEAqVAnerm7mgP7Gjpk4bXd7mfb2mMyFnQjHSp5F86EQ5ckE6er3z9Rh6MWvFDy6hqBCIaCj8ttDJTI61ZCAlRW/lnjwRoDcVlQwUjwiJahYHo6luOJPEKS4sdtRmaIxdWRim2GV3cis8w15LvbQBKfHVrJbUj1y5Ek62wVa20W2tyu0vSGQzs0LLEApgpZL6FlYMkYI6B6JjBMiuxlgN0OUPqn0zP2DBcSpZB04Nu6mItroDias/kycUbXYy2PT51WbUs0n5TBvH6w4CcFus4y/7aKiZFUmY4HET8klWkJycTsBZkcrWSA8pQHjtElVYcKp8/5u3pMNMOOOZY9349xk2Zgt08C9zgU56jSfhkOn75X2HECiZ7tMTtR+RBYFHP433/rXxjrcCfvtD95gJfaSyYGA2JNEDRcVWKykNL2Pj00M/l2UFme3Nwe/J+wCpR2LN86v8MD0JGHvOR6oVTm/njx/KQQ/cfrugmrLugGlbR92H5T3zMRHvhf+btLutgN3P3bboNr3fV599VW+/OUvDy8qJV/+8pd56aWXjOe89NJLmeMBfvzHf3zk8TdreyV/2Y9ZloVSypg2/MO0NP3jck9O78HqJA+EM1y71GKtmeWqrjaydSxVspJQJScLBKa1xCXztWquXffHd9tLMsf9+MMnb7tjs6XFo/WDue2HSuO5bcKY3MVwURNYNhXTMFALCfQdPzEQgkBlMrb1veat6QjrcHZAWtlqUnTyg5TjqR41wFCOfrEtiRQCbyIickXCb0iXURmCFFO/q65Hd0RSlYLMBgRCAo5NdAzbUlz365RNmWqAUQnZt4MSTg+ku5bisj9F2HsX4SjxZiCIJY6MCQxe9kGZRnjGa3aXx+vXcFIPVsXQ3iyyvVJhe7uaAOnYxsiFSJugRylOwBdBcnxUU5Qm8qDeChXuVpC7qmuZn4/cDXLfi+XHWDiUrweIckxsgUhzwPco8gBUjwxSHNGFp1+5EDS6Rfz1Uo5qMt/7BgvS5tHKCYrted7dSQBc2c2+T1/PRpOyc7tNI/Wjb7bIvnchINbUSSyjukfWTEGOWDF+y6a9WaS1U8LzXXKZdwbvPWV9kfrUMa1uwLXGLt94+5U9y3Er9ub6Cv/iWpLoRVgKu1Mk7iTByVPFMpcbQypfOpHLw1MzhMCkW+DBqMz33rrGdivpwNKOlcPjwyDSZw4fZK6WjAd9HvdHaftR/rhv9+1m7W47cPdjt/2lra+vE0URc3Nzme1zc3MsLy8bz1leXr6p42/WqtUqnU7nlr3N/c7gbmRVHNA/Om2eKsxz6f0ml1Z2malkl8ZtIVjvZEH2jpbkJdQmBQVN6WNUevJyaGHvQrXo8rPPPXUbNRraE+N5CogjDZ2uKdOyaZuRV23IrGfn1T5iTxJsuvgbBfztAv5ukaBdgKZL3LZRvkwGYZF4k9aPeISF7LOc19KVz9TLAzC9FwVEAFEY0jyWJCdRqAwOMZ1ppSgs1YJHqORIzeJAWYP6BkruqQHdiousBnnvY6AkpRFgW0/A7loxi940jbBAZcQ5AMvBGI6MqVg+ncgMrGu2R9uQCKZi+aAUT41dobFRYn25xnarQsd3idJA3qQgYWL/9CduQhL6dkIlkrB1KF/+QydnwM5PYvzQPOEWniEGoE8Wt20a01GCDHvFHhWk2LcwtIhCMWLGuIflrinodAtsrlXZXa7gbRQRnsOhWp1HyidpbE3wHy5uUnKGdW1HwxUZpeBya1O/6MCud1usdUZXpBHmaVRClzyUypDC3PBOVVKewJd0tgoJkG67WZqP6XGZPNVx9rci0Tf/R6+/zKohG+StWhBF/JXn/20SSxKA6th0PTUo1/FUOvey7WRSjEsp+OT0PGoNxgpj+H3VD9vi/ZXhcaspR9JPPPLQ4N93y1N9O3zq+9kU75tuP4wOXJPdc5J6kCR/AWg08rzd/djdAtVp+sfZS9u8dWGD/uhQ1ADxXKWSGSMsIbiuea63u9mBTAcCUhuoRQTSg2grKcNYocDc2J1JiPDEWD5YMa13OyiDERjndW2lrVAafhEyTwsRYrhNxRA2bMJmaklYH30jifJs4qYDvoQwEVfYfTQiTo3A6aQMAAdTk549QbWv2HhYgTMc/G+El9LVrLoeIHIe6b65MmK7p/TRilwMcWkARHHiJA9wWPWzwLoVFYzn+bFFzc6DI9eKudSdGlkPP5IDKokQjOROg3nf2c4sZ1uzPDFxlVhB3J9l6Z+nJE+9MfZwqWOEhI5ExdAaD5iqDVdzzhyao9K2jMF9yrURgUmz0fAQel5CrxoRVUCk3+ioIMVBSQV+2/yuIe+QBSAG04JAkntGEGDRDFzWt0pcXpd869I6272A5nohuZcErnaGIHqaEo3QrHgDMO1WsZRZahJ6CWP2pF/0iq6tVMmU9J1SEAYSz7NobJXoNEoEsd1zX2sX0r3QIyxXhN4GL4r5z/6Xf0njDmkl/zff+nds+O2ErhPJbLZWBZ1oSMF5aGKKoOcQOVKt420E/ODdFdp+Vg3j+MTYoNoHq2UubyWebseS/OlTC4Pj7oak3p0A8vepH0Mb+Hjupb9e3XZ3dzN/o/TJfxgduCa7bVA9PT2NZVmsrGQ5jysrKxw4cMB4zoEDB27q+Ju1ajUBgrfKqzYlYvkoLE3/WNzKBss0drNKIFPVLF96tlrJJA1IQHZ2UrHRzoLYlj/syIVKghLtRtLYC7bFjz92kjtlj4/N5wawK+2tHNdaWCoXXCjkCF61aZtRnFcQB4Jg2yX2E4qAkYWgLZmDTDSAuwIlofFwNlo/bVYnFRC6B6jefVQRpqV+dU+cgU/dl90SKMpuAn5GUUAALCumG1vGAMS+NaLSQLfax2GpOzY8f4T+dDMqGzFjFINtkQPnfVsKxjO8bkfGI2nnkYYS32sfYCuq0lUFNoMKP3LiveFO/V3vZ4kfAxCNBaItURLiOcUDs5M8ZI9x/pXrXLq0SdHNNxYBWG2N5xMpYv1YpYiLCbjYeRgQIptKe48gxb55LTOoVjEYaPRJmzWxqHJeX8VSK9tHBL2Mn8dq43TjYf9QFab2ppA9ys58cYpdbzTvqRMFHCxOZLaJgqmd5SfFoW/Rabk0tku0dsuE3gh6h/7b1Bb2vh2OZSWrR8Bqp8Wf+Tf/nHYwegVmP/Y/n3ub19auE3d6rnDtnq60+GBzmIpcCLCl5DNThzjgVTi3vAVA0bZ5f23omQ5TF6ql6EjPHTtCPbUKeTc51bdr94F1z+62SseHqP5x5MgRxsbGBn+//uu/fpcf9u3ZbYNq13V55pln+MM//MPBtjiO+cM//EOeffZZ4znPPvts5niAP/iDPxh5/M2aZVmUSqXb5lXfLfpHrBSXd7Ig2tKoGo7GkZvS+NIHqtUMyC5YFte157HWbnG8WOLRwjjuKtjNYYOI4pi/+Nknb69CKavaBRYq05ltMYpj5XyGRhNYNiVyMXmihLYxDhIVgHBHG4gt9ufp7HuzY0lYhNaB5KRGKzub3rg8fF+jYvUaR2O8CYaDqoE/naMVhwxeSsX1Bh5kL3ZGAlNXxjSi4p4ecJ3GEUuLFb9GO3KMwYZKgTWCLL4dlnFkTCgstsLsZC+IJUUre17JCtkOzZrnFcsj7onAvN06yG6cHGfJmI2wwkMTKxQN3vJhRQxAW3+mNtn3LJP/iLbFWqnN9dfXWbq8NditJwAanOZryWE6Uc6rXUKipKAzGRNVABS4yb1VBPg3Bg2RN2IZ3TeDZxM1XSlyWQlmS1V2/OyzvN7LdjpbyvYn/UQjUsSUHZ+JUpsDtQYlO3m3622f97c3KVqjveqTbnbVSxZilCYW0p/oxYGk03LZ3SzTbpbwuy5qoDYj8u90P3QPk/daU/4JVDS8toB1r82f/lf/jI5Ba3s/9vb6Kv/tS8/T7IQMgiW1sh6vTQyery0kfhhxIh7n9feWsVL9/KnZKbye8tBUucQHa0Mgvptqisdij/fee49uTwnkbknq3Q79A+4D6oype/QPuHLlCjs7O4O/v/7X/7rxEfwwOnBNdkfoH7/0S7/EP/7H/5h/+k//Ke+++y5/5a/8FVqtFj/7sz8LwF/8i38x86D+6l/9q3zzm9/kN37jN3jvvff4+te/zve+9z1+4Rd+4U4UByEE1Wr1YweqLcui2+3yH777PXzt3lvakoivifoWtE5zspwF4fP12mA8saXk2dl5nFXFyqUOFxa3cw7TB+YmKTq31ynqZuJVVwx8VRP1wKhhbUo/LBUqEoiWjb9ZINwpojxzAFsOfNyoD5eC7kHYOhVxubE9+HjmxirsbAxXAWSUL1dnNsabVtl7xBooilUO+KQDN6uFYRtQCLpGN2UCZJtRcSTvuhPZg2DDzHk4bIygZrQjl9KIFOdDzWFBO3bZDYfUmJWgbrxXZ4Sn3ZURG2GFNxqHaakhsHOtECEkq0GdP3W8563eL4fatCFdJJsevUjQDmK649nyVktmVRJba5QlA3CJGwmw2X0oeff9SZ8KBWrHQZoyHOrX6Fp5EAkJPclkhsdiheQexAEtsHmyWGTdS1b3RGqVwxWChr3FVKnFgVqT8VKXkpP4SZWASbfCBzubhEpxojwzsh7CMNwob/jMYk/id212t0rs7pbwui7xiDacm99JMFZcN70pChipAgmExLRCn5/61/8iEzx4I1NK8SvP/3t++t/9Lp20BKdhJarcA59Fy+bzs0e5+MEmV9Z2sKXk3PqQgpPW9j+e0qM+OT3Jco/6V3Ed/tc/8kXa7TYvvPACb731FkEQfGw91fetZ3cb/H6IoLper2f+CgVzf/vD6MA12R1BTX/+z/951tbW+LVf+zWWl5d58skn+eY3vzngsly+fDkTffzcc8/xO7/zO/yNv/E3+NVf/VUefPBB/s2/+Tc89thjd6I4AFQqlY+NrJ5Siq2tLZaXl/E8j81i1otXcmzW21kZt61O9negBSW6Woc21muoD05MEG9EeOs+u600SEsXCP7cJx65xdqMtifG5vnX197IbGtFhgAmS2XLAwh7oBGW2qYGGedUDJFnEXtWLxlEajAWAuOAa8JkIdkldQEEDL8UAXEZ1h+MGOs4qMWQg5UKF9lOnZIkB1G2IJYxrUPgzfSulcYIuipHJLIZ1jRL+NRD68YOJQMiaERFEJKdoMSUm/8GWmGBYk6vOMH0gXJY8WvMuVlagK9sHPLL4K3QoZLKuiiEYCcqU5AhEoVjmb+hsu0PFEHSFinBhe4MQluJcWVCaUFYTFbalB2PtirkPX9C32A2EQtUyvHZv45CsHMKnFcVdo+GJEdcL9Ik4UI/n3ExihXN+Zi4N8eVMkYFArWbTPTEjRygPaUSmjaMaaBulCKIYXPCVc6WV4/TOFyr8V4v4dSGv4srQypukKw0CEU3zB4fxImSzYRd5DJJO7MZ7ane8fOc7NgXBOsFvMgmtPqrQtzY3aO0+vRXJDLfl+k8wyYdaNug4mGWxnYccGlni8//zj/hZx57kr/y1Cf39KK+cv0a//t///tJ4Hj6kSmVq5cALmxvcXpims5agLcd0m9WD81O8fZKkmGx7Dh8sJryTKfiZdIB5z/60AJz01PMTU/RaDS4ePEirVaLS5cuUSqVqNVGyyLeSbvPqb6zdju6zj+sdiv1+aVf+iX+0l/6S3ziE5/gU5/6FP/gH/yDnAP30KFDAwrJX/2rf5UvfvGL/MZv/AY/+ZM/yb/4F/+C733ve3zjG9+4k1XJ2B1zRf7CL/zCSE/zt771rdy2n/7pn+anf/qn79TtM9b3VN9qoCJ8NKBaKcXa2hqLi4t0u11qtRrlcpkl7bUcqFa5uL09LJvMByVudbMDlqeV3bUsPjF+gLffWwYFc8fzyx/9Pqzo2PwnTz6U23+7dsaQBOZye5vccO/EiaZuOmWxBZEvkOkxW5FkjPOtno6vGGw3cpP1bYY+X/V0jDOucX2A73k6d8oh4gG42NmhOw6F7eEtYlux+4AiqDGklWReq8oBaKEMY37q3mlPNUAncpmwszx5L7Loxg5CgI9NJ7IppegXUQzOiEx1fmxhycRjfbUzzqHiNkIkQLc4wkvdjgvUZbZcloTVICGOl23zeZZQbIRVDrhD2kykBOc6c7RVkYoBwEexxLJiAmHz9KFFvn3poYQek36upvdnBFfZBpHu4KMSrD8Fs68qZCxot82c2th1kpmIFBArPD1PoIKwZNM8oYb3DAWqZfW8tslvY9vslysQCASqYyE0UG104iqM8QIyVjlnd0ujNJQdi6IdMFkOiK11agVhzH7Zt35Cmi2/Qb+hLu7R517tbIEQxCH4TRfPs4l8iSqJzLcouqB0dlBu8mS4gT7JkOQBuuk8vR+QJO3KSv0WsBN4/Ob3X+YbP3iVv/Tok/ziJz4zAH5KKd5eX+X/+YPv8/+5eA4EWLbIZqwV+fvPFCuccCZ444PrSCHxu8O3lFZrenBmkjeuJ8vYs9UKZ3sebCkEFze2ADhzYI7/9OGHB+fUajWeeOIJ1tfXsW2bl156iampKRYWFpiYmDA8iDtn9z3Vd9hSnt17xm6hPj+MDlzd7uz6/g+R/TAngInjmJWVFRYXF4miiKNHjzI/P8/Kygqrq6sspgA0QL2YXSqfq1YzmRFNyh+bKU/2melZ/GWP968NPR1+kK1bpeAMBtkzR+Y+FC/BwWKdcavIdjScAHTjgFlZYiXOet5VIBEF7auLBSpWqK5N6EviQCYDqe790b3NI0zZ5Addi6xnmt6/A7KDrw1ECuUIFp0OPGeBUkgPLF8RVMl6plOYH0i8avspY0o6UPdUN/wCgZP19u4EpdRkRLATlinK3QHGbMVFo241QIzE6q+PW5Lr/hgH3B2aUdFI/QhjQXnE2rkSglbkUmYvV+zwgYSx5Hx3llDYODIy4sxYDes1V99FiggVWFkQ2fdYpt+VaWzXAamV3RcXYO0pmHlVsbrRNAJfIQVWwycaK2DveAgnu2wpugE7j1oopzdb8gRK2UPoHQkkkigARsWd9oN2lYSWhEovC98I8Jzz1vYs/8YVV1sJf9q1A+rlDg17jSOT/uD6rnadgpW9Tp9e1FYtIPGAXm+3ODk5xnKPm50pmlLMxfO8t7XDQFbQ8A0I1ZOaHGwA4YFKPV5lXNHRXpIA4WfPMwZwOtzYO24DQTJZ64Yhv/X97/E7b7/JWKHISrtJoNLkjOR96yywom3TjbMTo/moyhuXlgHByelJzvZ40pZO/UiB8yPjdVabydj20MwU13cbPDUxx/q1Js8cz6ssKaV44IEHePTRR7l06RLf+973GBsbY2FhgampqQ+lr79dTvV9ST3N7oPqgf0wOXBNdk9K6kEyS/9h81RHUcTVq1d56aWXuHTpEkePHuXZZ5/lyJEjWJY1CFS8pCl/2NpS+GQpy5c+UKtm6B+uZbHcaDJbLnOmNM3Zt1a5vqkFKTayHs5uP72wgq8998TtVtVoQghOFady2yfdfNCalQrgUjGEbYug7eBtFPHbDnFomYnWe9kIukdu235y/vQBc7/zjxP1FOVAWJUJBUSJRIs3IN8pmgZ3XXtbS0FdKWQ9pt3QyXCTQyUJRRZBKiHZDYftZRRHNVICW6t4LCyW/fGRfd9OWM5la+xbM0wyMrYMutN9q9g+jbBAqCQfdA4Q9hKEWELhG9Jyp+cCloRjk5vmZEH7CFZMAGkKBjnaQC4grMDGGWi0PcZrZrk4q5s0oIplUAgJQ9rzKkku1BHIMDuzsnpzSxns0Y7TSjjt1D38/GQyuWf+WkqBTmGfcCROaZ2T8yucOrJCvdJNGnC/bBQzD9wPLFSqfcSKgdKObSmsFAd7zh03VuXR6hFcytnvtjc5zZipXrr0oM2+ghVz5/W919p5ORqOrbWHmEQlJhTJ/xE0fJ+rjV1sIbPXjMlP5CJFN9I6mxg2tob9cNp58tDsFLs9mcOy62RUPzZTVMC5UoXCruCd8yv8xFMPIQ0BKX2vcaFQ4NSpU3zpS19iamqKN954g5deeonl5eU7DmJvV6ca7tM/0nbX5e8+pL970e5ZT/UPE6c6DEOuXr3KlStXKBQKPPDAA8zOzuYzr/Uk9Ra3s6DaC7Pl0IMSJ0pFrqYmEAdrVWacEhc+WOOs32aqWmK9OeyIqwWX1d3ss4ll4uWpFBw+eTJP07gTppTihKzxsrbdLrig0S2FBVHDIogtYr8HoJN8KdqB5BxUiedJZSMeb4JXPXKJWPdW9paJRZRsV455EJCIZNk/UIieDJpytRvn6CH0wKHqFUlR0TzVYSzpxC713sNrhEXjQNSOC1Rin0DJkSDYiy0cQ+Cfryz8oIxFk4LGjzallYYEI9kyQghoxQXKMhg5/9mJSlzzJ1DaxDFQNgWNAqLzsw+Nb7F4ZdZ8Yc1y1BoJ+GSeeZqOrRwggGBMsPGY4siWw3Yzzwk+fHyGC502vh9CMftd7jzpIAKBjHvhiTnXe1IOEUrMkYhkJggqkIhAgKMgkOaVDsPrlV7ieZcyZqzaZrzWpupIhDPsExzRX6JJbLcbU00JgASRxE5lgfSjbArqghPS7gUdtoJ8XWwhObvW5khlPLdPBCl+OxDr3waYAXNI5rzBJPdG1B+DV3pU+xAKLCXp+yyU3gcAnV4AowhJPOyGVQehBEr7Xqq4rKX65SspZ0qG+jE9xRvXE13dg/UaFze3qbouj9SneOud6zR74PvPPD2kfvStnxk4TcVwHIeTJ09y7Ngxrl69yrvvvsvZs2dZWFjg4MGDdyT74u3SP4QQ90F12lISdPeM3Wv16dk9C6rvRKry2wXVvu9z5coVrl27RqVS4fTp03sut1mWRcv3WWtlvcg6XzrQlT9SHoFjY3UWZI2X37o62DZTr2RA9cGJKmeXU9nRlBrwMz9z4vBN1XE/lqa7zHj5DnupkwwmJcuh4BdZ3fAJsVBKJNkU+4+r72XSuZX6GCx6A5w+uJk4BaalcpcEGaZBuSRHARF+qjyjxqHUPUVvyVsEgG+BG6NKcXLNUIBGd0kP9GXXN6qidHvSehGSTo9LnTMh2A5L2CLGNilmYMYeAH6cKIWs+nWm3CblHg2kGbpURvGsI3fA2y7IiM2wzJSTT/QTKslWWGW/Y3jBivB6wXEA0+UWysnPtGSkiEdMcNIm4nyAbmZ/7935k4L3Ci2Ka/nn5JQKiE6bMPUNhgXF7gkIqwmgBhLMnO5tY4bty+BdHpQn3WaFgKYFEyFqH/rWkEjg1Updxuba1ModpOzhTv2ZaUs2lj750m4XaqnCC25I20t4Fu9vb1IsWok8Xc8eqR7h2xvr1Oy8xz/3HiySCU/q+82t4sDoYMXUN2qmiRgsjf9CkF6S+ElYIj9PMfUj/SLEJO/TVinMoLLgv2czdpnrJGPUwtQEF3rcaEvKwb8BolQk5aGxGmOFAs3lNrETDwD1o0dmOT6b50n3xzATwLVtm+PHj3P06FGWlpY4f/48Z8+e5cSJExw+fPi2QPH9NOV32O7TPz42ds+C6rvJqe52u1y+fJmlpSXGx8d54oknGB8fv+F5UkquayoflhQDuaS+7eTk9SJcy+LM+AzvvbfCoSNZOoUujVcpaGgzBmyBFIL/1Wcfv2E592txHHP9+nUWFxcRQnDs2DHmwoP89rn38HtDVc0uMF+Y5CAzvLa8kdBYeglhrA4D1YSBmQa0Udv2Yco2ny9CkQfl/WNiEH7PkyJIJiUmTqYaMfaqHsAOLPAlwo6JXVN2vuE/a4W8l9QSMQpBN3boxvaenh0vtlEywibPd/FjaQTbSg11g6WEzaBCqLrU7S6dyMWReeWWMBa51NJCJJ5NN+VpDuKEsy1lco5+/xyo61kUW8geYHetiAPTO1xfH8/0ZEausenR6IsFPf3qPuBUDhAmKhC7lZjOIzD+TvY1L6/scvTQOEvNLSJb0TgOQT1ZvRBieKQOHEU0BLYmykayndw7VV0bERs4S32TyQpCvdJhvNqmVunQaTmUq8MJkOfbFAvDa4SRRDrD37FKPM+Deypwnew9Y00O0rUjEia0oBtFnK7M8EEz8a660uK91aQPu9Lcya8sGb3QIrOao1zyHmbjZEx7Xg55jv0IXrXoQim26Yb9NqBy9xQCHCXxTRwx1XvnEaiQRJ2of3/DqkLYGl5jolyCHpB+aGaSd1YTukfFdXi/9++CZeEGgkvvr4OCmdpQEvGrT58yPYw9QXXfpJQcPnyYQ4cOsby8zIULFzh//jzHjx/nyJEjOM4+gj8M973Pqb5zdi/SJe61+vTtngXVlUqF9fX1Gx84wizLGpkuc5S1Wi0uX77MysoK09PTPPPMMzclYWRZFsud7D0PVKtcS1E7pBAsa1zxorQ45JV4++1kEGv7WQ+irmkdafJ7fY/ouFvg4cP7W07fy6IoYmlpicXFRRzHYWFhgbm5JPhxaWmJR+1pokKRrVbI+8s7XFdbnJmaI9AkyowJX/Zr+11ZEiQeaG3ckMKwIG8BnQQMZcCOEIhY5ZO8Ga6rF04IAZGFbEjwY1QxRhWT55D2zlXcvAKF25PFa0QFQmXtSTH3lEMrLCBp5WgcoZI4hh4uUFYmqFEIwW5YxIssyrZZEWPFqzFVzHqlLaFYD6rMWzu9+wmudceRVlLgMLawtYQzjoiJYoGlgW09ac3xyQ1Wro8Tp0G1QxJUZt+ABqCDMhvwUttFlhIS1GHrMZh4a3hIpxMwW7HYXlAEYyQNR6kkOJHR9884hiPMgXJGrrVANKzcxEGKmHqhw/hsh4IbUHTD9CkZCzW+uhfYlApB9nfqfC+wcd1hmxHKAZG9hhAJ8PaCpMEX5XA2/HDlMN/u9cVeHFGXBXZVqp+z87PaHB2jx3u+6WBFkhWllOT5MAlMeiGqLaAt8dyUF38EZSwgzr+vONtWku+6L62ZlwiVSrC63Rrca2l7qIJTTIHYB2emeH1pmeMT48zGRV57+xoAY+UC7y8lcnuOJfnxMw8ankXSF++XSiGE4ODBgxw4cID19XUuXLjAhQsXOHr0KMeOHRupHzzqvvfpH3fQ7nuqPzZ2z4Lqer3OpUuXbvn8m/FUNxoNLl26xMbGBnNzc3zyk5+kUjEn0djLpJQsd7IeyfFSMQOqZyplVnqR3xXH4dHqFO+8cZ00bl7Zznq2NxpZj/1WSycwJ2PBEwdHJ27Yj6W548VikVOnTjE9PZ3pHKWUjHfr/Lvr1zPn6sGYycGGQc2MM3KmHAz8StFf+86eri8/k0jiJQNvf4ke7I5AKWFWFhECEajhvhjz1zVioiBIPNcisFBNRVyIoDw8WJfTi2JByfEBQTsu4JrS6KUsVBYKwUZQ4YDcHTAPlMZySdu2V2RC85ALIdgMK3gqYMbNtrNQCSqOGWxXHJ+dsEjF8rjuDQF1r/I5EwK6gZObTOg87plKI8M975sMRAZom1RdkneVRVf63EJZQEqzOKzC5hmonYPOHAR1waqzDm7qGjGoVP1UTG5y1efhJ3USCfDTVmVGebDjpgXTSdsouR7zUztUS12kgDASvWc0PNfWVkEKVvZb052CkQa6w1jipqaYTU8a31kaVC/1+qiCtHlnJdtO5srVrEa+Q0K3SreJEcGKGXhqUuoxtSWTmkjA4FuVLQEd2TtOsxExFyJkOIlWJAGzxtUQgexKSgWbZipGYEIWafU47Mcmx1nc3E6qJATnN4fUjzCO+eTBed595zoHjw1nBifmJvn+paQP/ezDxxgrmwNpoyhCSnlTAFUIwczMDDMzM2xubnLhwgWef/55Dh8+zIkTJyhp2TZH3fdWQfV9L7XB7kFP9X1Q/TGzSqVCu53nce7XbgSqlVJsb2+zuLjI9vY28/PzfOYzn6FYNHdu+73nipcFEXpQ4lS5xEqzxaPT0+xcabHdamcA9USlyFZ7CIRKrs3KzhBUu7bF0lY2BboSULEc/rPPPHpL5Q6CgCtXrnD16lUqlQqPPPIIk5OTxo5cSsnJQn7CsdHt5LYpV+X9Tn38pPOqda9wPxBNB8CmyHwTKE+dL7uAL1D9+oyU3xK9AMkeaBoFqvX7aduEElhtG9VRCBmjCjHV45pGdeBQcvveRUGMwBrRS4WxGHh4lZBspTjOncgx6lbH8WiNaSkgFpLrXo1ppzWQ9Fvt1pgsjv7mOpHDTljKeTkdaf7OAsND1hVKinbIeK3JZqy1KcOjkAFZoG3gyefMYjgRikmW9oHdk73AVL2IscpNukREnlOrO7JDDfhBXsVkcKyFbCjimmKi2qZeHn7vXuBkvM5BKHGd4fNVChxt4lPU2qlOvdHpPEEskIZnVnBC+tP/xeYOR8crHCrM8O31tcxxY8UiaMy8Ww5WjDS6jzFYMX8tGQoiRyUe6s5o0ClEIuNplGDs0UrEHm2oT/Pp7IRIWxCXk0m9EwwvOFMpD0D1AzNTvNdT+jhQqxLvRLx5ZRUpBJfXtwfnbKccI6YAxb7pQYo3a5OTk0xOTrK7u8uFCxf44z/+Yw4ePMiJEyeoVqsjz7tP/7jDdt9T/bGxexZUf1iSekopNjY2WFxcpNVqcfjwYR555BFcd5TQ7M3dc83LAplY61yqjsvTtVnee2sVgPkjNa6kQPJsvZIB1QfHa5xfHXo+5idqXFrbTlcIZUEZi088dHNBir7vc/nyZa5du0a9Xufxxx9nfHx8T6+IlJITTt7TcaW5Q1FadOPhM48tEB7ZaHqRgFyday0DiHUKRzwiyEjfNIpXHYNoJtJ4w2AxRoNq2fMuWmo0UFMjPFoGTriQApSF6FpUrSyo9iKbUkqtIVISa4S32ouzn3k3dmmEETXboxvZOFbeu7wVlKk7efqTF8sBfURKwYpXZ8zuULZ9SiNAOCQe1GaUvDQ9oYgllDG7ojSAIUdEBCoLgo7Pr7F59cYrQ8Lg0dYBb185ZkABUEnbEjEJUBMM3q3oAexhW1DJYsiNCpIOUuyXw6AAomJhpPTIANSuhXJDKsXsu4s1CTm/a1OqDN+LH9gUXI1PbSUrHpBwpdP74zjRse7v1/Fq2vrSelFsAYIjpWneuLaTO64R5NubKVhR+NlgYyPdYx/Binq/AKBQyE5C+Ri0JUOyGEWedtK/j4h6B4xa6mFICUmyrApEQ6Gqis2t7iBTZzpmplJICvvUgQOUu5JXLy0B8MDBKT64noDt+ckaF9eSPn28UuSzDx8def87lYSlXq/z5JNP0mq1uHDhAi+++CIzMzMsLCwwNjaWO/5+oOJ9+5Nq9zSovpOBikqpJDHL4iKe53H06FHOnDlz21qcaRNCsK7xoXdTvO4z07OIzYj3Lq4OttnaUm6pkB1BasXsaDCmaVz3uYAnDk7su5zpQMyJiQmefPJJY8dqMiklFWlxrDrGYnM44EZKcbI+xgc7m9njw7zGrgk7mlde9wjTz9yEnKdb+OC2LULD6zVmPuybRaIvbZpjRWSJl/3rmSS+MnJhikpJA0++hNTcJFbCGPDXVwbRbScs0gltaiPoGtEIL2kQ2xn+s2PHNOICq80Kh6q7xnOiGDaCGq4V4UVp1+/QQiVxtO1FK8wvSogECDopvvmBsV24TBYMGXi6pqYgQ4jS76r3/kQEwhPJxErIxIusP0aZAoM9TKx7qZXCSP3Q1TdyCiARIyenMoLYktgbktLDGj1Gm5goLQowCCXpOOU8n9qiVMjyqQuFKPNbGFdpEktL6ym/yI6fj2u50toxrzbpFgpIByuakrQYymJHkjCtFmKTzbwZk+h8B5qHugeU81LuZm71QKVkVByfqZ9SgmLLIgyT93R4vM7VHp86iZdp8vTkAd55a5kH56cH55XcYUc0N17l2lbiMPrxMw9i7wFe73Rmw0qlwuOPP84DDzzApUuX+O53v8vExMQgS6MQAqXUfU71nbb7nuqPjd2zoLpard4RSb04jlleXmZxcRGlFEePHuXgwYMfyix8tdUm0DzTK80mk6USR0WVD95c5ehMFrx2/GyAlx6EGOueOf23AjcU/KefOX3D8nU6HRYXF1leXmZqauqmAzEhAdVxHHNmei4DqgHqbj4QxtitmmTwTCnHBwk+NK7mCK90/8nILlgti1gM6Rw50zmg/euEyVJ27Bi42wEjtaxzlk76UvJyS/A6NaAb2pRsha2N5EE6fXu6LEKw1q0gBYy53dw5dTfvpY6UMFI1pFA4tmKpPUbd6VBNAfUohq2wOlD+sGVs9HaaHrElFX4sKehAUQM5FcenhEeHYftJ1CKyhHGjp7O/OwarDcKTCE8NNaf7vGddEzl1ftJ28u8beiBNB9UGh77OnxZ7JITp4+RiNcwEcipFxssMYNl7a4vrscGRJpUXqawH3Q+tPekyVm8Vomw7nFvfNX5r7TCghEMntdJimgSZghWtQBClpCfN3msD3SPoFaUtEN0kOZMS+bKZ4itUfx6oT3x9gYjMnvD+tYzcc2ET9ep+oFYdgOonDs6xdmWXd7aXmaqVONfzTLu2xdnrSaZFIeDq+nDy+pMjVD/69mGlCy+VSpw+fZqTJ0+yuLjIa6+9RrVaZWFhgcnJSWBvxZH7dnN2X/3j42P3dEbFVqt1W9wsz/N48cUXuXz5MsePH+czn/nMbet37mWLO1lP32SpxEPjU8jrIR+cX0s8GdtZSsvaDYIQdzU1kR3tNzFYMXzpiRMjy9VqtXjnnXd4+eWXiaKIT37ykzz++OM3DaghBaqn5nL7+kkU0mYCobrnerBNd4D2vcZpEyK/DQaDn+yAbA2zNRqzK4okoUa+sAoR9JZ6fcNoul+x+zjLE62UDHJ6GljyOi4xIgeSuqNGfCDCZisoseNnVy+2vJIxlfmWVzJK7+36Rcp2QN31iLC41h4jihNAvRlUM9eyhCIwZHV0ZGjCQoRxft6vA3IhYGFO84iKZLUhbcrURiKBsyFwNiysjo2MJdLULZod7MN7eZg94SYcb7qO0q4/Srs61TYq9WwcgufbpBeuoljgFrKNvehm243Op7c1ZRidXx3fYOXHCxMu1SPVAyw1myzUJo3HTRWyFLBBwqbMzfPnKX1OZ/jGY13SsQuiJZGbNtKzE9k7IYyDutE5Kg0Toag3gUZQik2z/NGgod0eNsz1VhtLSj55YJ5CA9a3k5iEozPjA3D/0Pz0QNHpgQNTrPb6/IW5SU7fQK3pwwLVfXNdlwcffJAvfelLzM7O8tZbb/HSSy8B90H1ffuTafesp7pSqdySpzoIAq5evcrly5eJoohHHnkkp2DxYdmlre3Bv6fLJR4tTfHKD4ZJXGbHKizvDOtULbpspJK6OJbMBCFaQuR+X9OCFGUAhybMmfgajQaLi4usr68zNzfHpz71KcrlfErxm7G9QPXVVp4+EDkqoahklvYTEKNMXGuNri0ikZMfE3E+KExZIFsgu9lMcTKEyPCVKEvkneBdMdQeDnrgpz+uaEB5YAZvlp64plLOg+qimx3lwyjhsYZK4vZQWxgJIqQxgDGIBEU7SNQ8glJPUjG5jwlQky9mzxRuynttCcWY67EVVAiVpGAIgky8nzp/GtqBTVnTQzaVxDKg0vnJbd5ey2YCTdQishXoqz7YDYns9DyWmgSK0TMpBCLKyyZCcqyMBaqjkvZnDcsemXCFkZmSTMT6coro6bV7Jn0GyK9Uy87sgsjKqHR4nk2xOHyefmBlghbDSODY4aAwcSwopPZHsejpUw/3CzmaUhWEkii2KAjJmz3P6mShzIXmZu7YqXKZq372e0/qP/wdO/sMVgyz31bcUxORHZmsPCjRW2nQTjYFLctRq1Op1REF0hvSE4JunFCx0pePGPWYBk1/rlbFCyMecMZ4991liinq3laqX0/H1ZRTx9zISw0fPqjum23bLCwscOzYMS5evMi5c+f49re/zcLCAocOHbqlLI336R8pu0//+NjYPeuprtfrN+Wp9jyPc+fO8eKLL7K9vc1DDz0EwMzMzEf2cV/qpSd/fGIKcS0kaGQBxlQ1ixjnxrLR1wcnahlnz9x4FT8cApADqd8T5SJ2K0b4ijNH6pnr7O7u8oMf/IBXX30V13X5zGc+w+nTp28bUEPSUcZxzANjk5Q0PvqO7zFf1iLKRQ9IaCZNS+jG/Cn7e/9WRyCbeRUAPQ5qeILmvYrJ4EQhRMabLQLMMmGhgSai1aNa1sBTKCkU8u72OBZc3ZgcZLvb8CsjAXIzLAxwpJSCrbDMlleiHdpG6kc7sBkzJKBp+IUM3QMSZkwrLBCP4AnYIjZ6pSMDYjUlgXFElPuux0rdfKCm/lx9sHcl7oqN1bGGEyD9UcpEdzxnIwY22e2dI2QS/Na/XkgetBmCFAflS1E+RsnppeW8y7X8+8jcKtRSv4fZwniBk2nv3cDOeGq9wDbsH90XdvwE8NXsAq3eqtN2y6wGE6j8e819v1b+2zdrU6fKFIG1K7HWrWSC3FsdSprWjfuCGGWk56jUSoUbDttOcm2RW7kakbsIK9WGHpqYpHutw+K1LR48OEWjt4p4aLI+CCavl4Z61AXH4oPeZOXhg9N89cmHblifvqTeR2WWZTE3N4dlWTzwwAMsLi7y/PPPc/HiRULDSuR925/16R/32t+9aPesp7pWqxGGIZ7n7amrmeYJT05ODoLu+olf4jj+yDqlzVaHB+MiF95OOk6dD+3Y2UGxWszyIMbLRS5vDHnKk9XSIKCl/xtgzi5x9t1V3BhUQfLU0QRUb21tcenSJXZ3dzl06BCnTp26KcH//VjfU20JweOTs3x3dSmzf7ZUYamdXWEYqCxkNuavbfIijuRa9x1ucW8QDqSZH2n1PFeG66TLJT0StY70fiWRnZi41PeO501Gmp6yoW5Vjf7R8VwqKaDd9RxWW1Xea04TWRaiFXOitplLlJI2PYBNCtgOS1i+y8FKfoWnGRaNqcalVqtYwaZfpe56SZCkEjlg36eAuBqKsg1IxJVx7hpSJNrJTmab4vj0OufXUisglgIlsFoi0SKOJTLI64ybeLS697NX8CTJT7otaEoTQghkF1RBIWKDIk2PMmCyAZCO9hCJ6ZXVdgPcUhakuFoCHd1BmeMKa21AT30ea/v90OonO81ZHCcgHAFbUQd6/PaLjR0sWxBpbeBqy8y31s0KRUZezxysqJKg0o7oZTqVPa3w9DHkJzkj7i1DiPRuT/YmXwLCIM6/w5hhfaKew9twbRUlsSMPVSZYvbpLx0veWbpvTwIREy/+woFJXu/pUT90cJp3ltb4xKGDTIgC02M3Vry5XUm9W7EwDLFtm0OHDjE/P8/q6uogkcyxY8c4evTonmpZ9+X0Rtj9x/KxsHsaVAM0m00jqG42mywuLrK6usrs7Cyf+MQnMrqb/Y7oo5zpX353g6WNIYBqdbNuGj0zok5hkBqoSydUmagUmVAOF95fZlslwFtJODxTA6V49dVXBxKBjz322C2lpt2P9Z+lUoozU3M5UC1NnjDDmGCg2ia8am2gHiSWSD+b3gArFNgNqye1NnrmbPmKqJQvl7IZxnCNAgihgEgR38S4pk8EdE51ECSp/zZ2K1xrjLNFkTgWA8BzuTnBtNui7Jgl7oJIUrTzXiMpoRUVuNa2OFjaGTyyWEHZoBLSDBzGUl5tpWDdrw62CZEEPZqk/kwUkKIV6rGFAPixRcnSaCHaEoJSMFVtcb4niSx8EC2Js5n1Ku5LznAPk7EgSilLWN08718IkahCKAW69OMezjorEEQkNKJRunV9nFvW+NSBZ+EUhs9TKXAL2Xfmau+8qHVrls6vljFxLNjtFNjtFpHKpl4zU+q8wBmWWfb01WNJiOKB8hjnO9uZ43cDD1dL921UbNGRqQDLF0RFldAwepkQZX9Gvce7NAU+GuUxR4GXWPTSz+dvIqRAeoq4mHjXTf0TwJi0GWs5bLZaAypf4oEexgSkKXuNVAxMwbE56dZ5+40l/s7/4SdH1jNtHxX9Q79nXxVLCMHc3Byzs7Nsbm5y/vx5Ll68yJEjRzh+/PjIvA731T80u0//+NjYPQuqS6USUkqazSYzM8NMgTs7OywuLrK5ucnBgwf5zGc+YwTdaVD9YQHMtLW6Pksb2SDENH8aYKuZ9RTudrKDZkvTuG71glsen59l9YNNtvxWpiErCQ9MFlBKMTk5ecclAk3WB9WJAsiB3P71bt4b2pc8S3exqkDe82TQtgXyOrMxyI7A6mbpHka+LCBG8FsRmoax6RApkG2IRzBncp70HPdaUS4NB9YwlKy3Kry/M03XdkBAHApkalncixyuNevMj5l12ptBgaKTR3fd0KJoxygkV9t9YO6z7ZUYK+YpIXEqQEspWPOqjGmZHy2hjEDZEnkVECES/e2iBqBNkoDZ+risejV8aVONfbpr5SSITMicJ9mo4GGgYygbI+CKe57IPv1nlJqLiMCKJLQUUXlI8VHxyKaC6nmqpT8iJlINy1+uZ5+z33UopSY4fsfGKQ0nM0kSmOFVo1AinGF0pYolhVSb6Po2W50STd8FJCpO3rfr2RQN1KMoKpLuXKQTE3nJw5soVUED1QB1u8R6PAy0HgQrpt6HiZMuA4HyRMKX7j9YXV/amJFR+7ZEb+VBO3aUbr0MGf3yYAB8RjHGAPzrIethi8ePzQ769wfnp3nz8gqQBB9eWE046HNjVc6vJP9+6uhBzr5xHc+LmJmo8qnHRmtTp+1ugWr9nkIIpqammJqaYnt7mwsXLvDCCy9w6NAhTpw4cUeohfey3Yt0iXutPn27Z0G1lHIgqxfHMZubm1y+fJlGo7EvaoMQAinlvlOV365dWt3O/J6slthoD71Rrm2xkgLZQsB1TQlkRQPhjY7HU1MzfPD9ZaQQLAXZwCDLEvzkc6fY3rjO0aNHP5LON+upzkeuX2nuUrZs2lFq4LboLalr1/INgYmhAVTTGyODJHhJer2ELvpgmsqSlrbYNW9Pdo5eqh+UMwBlohPoS9SG8peLHpalaLSKXNmZYDUq43VdnPLw+ahAgqYGcq01xmytaVTrGDngRzaulUzEpAXrQQU3KBh5zU3PZaKQtM9OaLHpl5k2qJRIAUFsUdC81bZQeKFF0clu1ykHYH62/YQxK90ajbA4OOrI4Q3OL1eHJ+nBaClQ3DdlgQnhJ4GJuYjChFogk/ZnTFkPWB5gg93Tug6rau9G0r+nTxKkaKIbBQwAZ6maBdU56obvQApUu3EZxbB/8DoOxepwUt4NLEqFGBUWWd4pEqkyHTWcpMe96zfaRQpuM8u99i06obZq5sREvSJuGrKlAhQ0+c9ERUULVuxTP3peadGRCE8gbe1h6o3aJJ1pev6Gj0HZve8wrVsfJhQv5YwIOKY3ZrRVrv/pmxUMKT7X1obBm2m6Q70y7OQOTdXZ7XY5PTGF2wTPS97nT37uYax9rp5GUXTHKXz7uedeY8n4+DhPP/00jUaDCxcu8O1vf5u5uTkWFhYGK8z3vdSa3fdUf2zsng1UBCiXy/zrf/2v+fSnP81v/uZvMjExwXPPPccDDzywr47mRqnK76RdTGU9BJjR+HIHxquZIMSZWoVuMARWk9VSRj7vkYMziOWAD95JPCBzU1W6mqb1WLXIE48+CCSe44/C0p7qiUKJo9VskKQCjtbGcucZE74YAxM1U0AocDYl9raFlfZuGU7OBa0BSGEMjIQEWIkRiVIGx8QCy4ArxDBR3XCb1tEIJ+aVy0d5ZfsIy6pKLCXS3huIxqEgkjaLjbycmT+C+gHkMxpK6OLQDAtcb9XopgLdvNCmFThca4+xEVQZK/i0AzPakMLcfwYGt7GJV+3IaHB+GEu2gyKrXpVzzWkaYVZ2oVT2KI8PvZ+jeMnZDeb3PiJBZU+pQ+2pOZ6+hxUI7EYvgPEGYEF2RY7rPNg3aINxDlRb2uTEdbJde6ujZWrVdc4Di6Wtcc5t1WjGDh1fk9brPclISTrd7Eyi4+VnFsLuk4zhws4WNSePNMvl/NJ/7pkrkBsCa81GtGyIJfEeGQyHFyKXfGWoW39jywRIqp6GuRDGhC6Z84LRt5C9OeehqTqbnaTBFWzJu1eTZF6WFFxaGY4DYRQxF5d49+1lrm8ME8T85Oce2Vcd4O54qvuc6htZrVbjzJkzfO5zn8O2bV566SVee+01tre374Nqze52QOH9QMX92z0JqoMg4J/9s3/GxsYGv/3bv82f/bN/ll/+5V/mxIkTN0Xl+ChB9SUNVBfdbKc0pg1A0/XsctlsPQHhBdvimdk5ilsxOztDJGdrqEFYglPz0xmQ+1FYnyvXv9+ZqTwFpGoYgE1mWsofBIaFSQCis25ht6wkRbDOrTV81KOi9g05T7A6CiseDbiBRM+W3mCrXWPUvdIW2JKGlUpqEoPUpMb0EMg4SN7pWqfKjpdtN82gYMR13cCiYOcr2Q5cHFuBJdkMKlxujrO0U6MTOQTYxLFgstBBCkWoZE5qGBKvcmjQ8nVklFMBcWVEmAJ8SiWc6uVOjXPNad5pHOBye4rtoGIEzDGSQw+tGvbsbUbt6BGmhMIO9+g6Y5XzYFuhwN1m9ISuXw5fjASNfcBZGusiU7zuOBK4WsZN6WZ/25o+dR+EN1sF1rdnWGvVaIVJoZUCleJXJ1k5h/drdgqD9xZFAt8QMCBE4q2G5DNbqOYneGtB1xAh2it/RyQKHhs2dsce7iBZJdDbjWVod/qgrSxA/1ZHza9T51rdZGIM4N5oUhQJnBGJe6weqJ5NqTY9dGiGqHevg/Ui2+3koE+dmOfSm6usLO9y8sgUK5vJKsMnHz3C3NT+8wN81Oof/XveDJAvl8s8+uijfOELX6BSqfDaa6/RbptVY/7EmrpH/+5Bu6foH51Oh//hf/gf+Lt/9+9iWRYHDhzg137t1/jzf/7P39L1PlpQvZ35HWmjhqUNtK6mBFJybY5PjSHWQ9574zqPP5gFqwlnbQiyiwWHn3j2FFImvOKPqp4wVAABODM9x79b/CCzvx3mUaoxMLFAbolXBODuCOIoxZfuByTpY53KbxuVnyW3XYH0xYAOMMr6gWlCCKyOIqqOPhbyXFBL46/GgcQqZG8odEQxAKWCC7tTPDG1NMy8N6J+Xujg2vlgxLTnWAiBYyu6ocNspcVOp8hEeegVrjgB216JyWLeLW9SInGt2KgC0okcolDSDAs0gwJKJGv5sfZwTPOiWAkqZZ/KVJPWRhXjSzaY6b2P4lVbbZLg1xGeasvDmG1T+oK4qPb0VsuuIK6MANUktdGl9Ly2Q6E6/Gb8ro2dajdhIDNKIVEo8Tyb1dYYXSWxsRCpWaMKRWbiJmOZ4XjHSFrtAtWKR6frjPQqSjsmDpJ+yhZ5kLXtd7EjQdiPB+hlI7VXLFQ/+ZKJWtVfWUhrU+/TsWmFEKUnPCOCFfvzBBcL1Y0GhQhjldDODPP+JPETOKEkcHU3+RBUpxN4pYPPK8UibrPLUbdIsNYlCJJ9af3q/+QLj+6voj37YeFU78eKxSKnTp1iYWFhT3WQP5F2L4LQe60+PfvQp7Cbm5t87Wtfo16vMz4+zs/93M/dMCnLN77xDb70pS9Rr9cRQrC9vX3D+6ysrHDixAl++7d/m1//9V/nvffe4/jx4/i+QeR4n3Y3QXVDy3zYCbJAM90ZW0JQwWbz3R1Wl5MOe30ze72ury3tK/jsUyeSf6dA7kdh6fs9aUgCc7mZTwIzCEzMXKi3TBuCvSNw1izslg2elR/o9/kBJ/xaw3ZXZCgCVmfI+xMwclk4vZxt+WQi0MxBitpkSlvWV1H2k1Vq6BEc3nR4DS9yWNya7P3bygUB9s0xeKm9UOYURKIYJkodGl2X8VI7F+NXc7vsdvMDoi0VfpTvbsLYIlKCRlBgpVvlfGOKpe4Y17vjNMJSD1Dv31TPb3/4wcRbnQDj7DM1BrEZs4qIPC0kVj1ptdFUgFG0EctXI/WnBxaM4MowLLdO/Yg0/emgm52BBp2eBzqG7a0yi9enWAlqdFU/vkG/UbaMluG9NT2XOBZ44eiVv3S7XBrR51eFi2wJ3OXEK41n5ydgJrUN/Z0avNDGwOOcZ1wYJ8XKSYB7sZPXrjfpWMNwAh2E8YDqMdjXo4nN1opc78mcjleKfJDSoI4RHFRl1pa7XLiWcK7LRYf3F5O2PDlW5rkzx803H2F3Q1LvdoF839Fz34Z2t2ka9+kf+7cPHVR/7Wtf4+233+YP/uAP+L3f+z1eeOEF/vJf/st7ntNut/nKV77Cr/7qr+77PnNzc/xP/9P/xOuvv85f+At/Adu2qVartFqtG588wj4qUN32AlbTQYjA8nZ2EFrfzS6HbfaUQGbrFU4Vxlj6YIMoBbSb3rDF2pZkaW0nc/7MRGXQcX3UoDpN/zAlgWkGPkcq9dx5Os1CtsHaSWTTpJ+STjP0x/uhWiQHYuZVp+8fG8pi4uRqnOnEWz28Ri7To4FzK4t5j1fa4kCi486Ezzq0pe1xmr5LK3DN1I/QomgE1XnA5Ps2fmhRcf2h9ztdXpEA28jQYfaTu8QK2pHDhldmzatyrjnDUnec7aBCSHapP2vZi8YjODyxEpRLAbWZBgiRTx4k86cZVUEgSc6TMrsFQiYtTfqm2dde17oBVQiwfIltwp8hKNscpCi1xm1ry/1xJPAaE5xfnWYlqOJrkhqO7kVOy9wpCIxLMYLNnTLxHuBHWIm0HsBSq8FcMRsnMl0sM6PqiLaT6KtLCSJPtYoM7cwEunLf4D7f86iVJrsJXW+fCUtiMpMsvc31vdT10vCbOj43MZjvPX10npUPNlldbfDQsVn8XrubqTsEvYRdX3n2FLZ1c0P23eJU309RfoftblAzPoq/e9A+VPrHu+++yze/+U1eeeUVPvGJTwDwD//hP+SrX/0qf+/v/T3m5+eN5/3iL/4iAN/61rdu6n6f+9znMr8/LqB6cW074y0aK7lsecNeWU9HXugpgZyZn+XaW+usxG26wXCJcqJeYjN1/IHpGldXhqDasSSfTkky3U1PtS0lj03O8oqmVz1dLHNFT1veG7jshkD4ScChCMhH25uW8oUasSO/WY/8H2zvNQW7nR/URQy6goTlk6cO+BCVeoD7BklIhB0h9C9UAxgqFJCqv5FzLRXnd6c5UtvKVwrww6HqR9p0XWNQ1FyP15cOo4AzB68xXspTPaoFn/VWlblqs3d9Cz+2CJGstyv4yqb/YMyJHvpg+UbSDQKR5MDLbI2UxCbi0ANrvLdWMwYmotEHkCSUDp22kXp/IoK01IuMRQKKUqfIwHANSDzciCSxiKEmg3vECZgLNdpsvy05BZ9CisqhFDil7LtzehOxKJRsbVXY6haIC3JYl5QHWSjoKn+wT0UgU+1ShWIkJcrr2pQrEO5Ro7S03qHyGCvdpD9+sDbF5opHqZJf1bDirKSgMW28abVBb0qG95zEXGRfmjHgOUxoPiYpTGWRSw4kg7xDPU0T6YPqteZwQtToeBQdm0cmp2gvtwZ0j04qP0EonEFVZtwGly5d4siRI/sGrXeL/jFKf3o/dl+j2mD3Igi91+rTsw/VU/3SSy8xPj4+ANQAX/7yl5FS8vLLL3+YtwaS6OIbUU32so8KVOtBimlvBsCspgQyP1HjibEpzn9vmW43ZLLuZgb22ckscXe8ltWdi8KYn/pTjw1+f5Q0F8iD+DMGCoiOoaxOIqnlbGS90saMiQYKh7IFaF7Hm0n6AcmALELz8r6AXKpiE14UCOy22XMug+wJViF/I135Q0c8cWDlBnfhxnRCl+VW3Vgmk+JGO8h7r7u+zWa7zGanwlanwrcuPMjrS4fxNfpBy3eIlODC1iQXdydZ8WtshRUaYSkDqKE3gOaLZNwmDeuFxmDF3jNx3ZDSdMO4zCgMrnRpIOYOeNWA1VLZZyvyVABrRJCa9JOyjloFGZYrAXm6p7N/XnlMSwTUtrFSk6jQlyAUq6t1zq9PshGUiN2UnnggEKnupYib1XfWAjClIcAUkskbyqLbvkHgZWrVpP/JPz0xz+XLDbY7HhsGub39KLFElmFCZmLw6K/Zyr8zE03EaTAyqDRZpdC2hfoxYkgBUQnP/vBklZ1eboGZeoWOFzCvSqxd3eXs5ST5y4HpGud71I9jBye4upo4Q54+fZjPffpJlpaWeP7557lw4cK+0n5/nDjVfbufUfG+fZztQ/VULy8vMzub1SK2bZvJyUmWl5c/zFsDUKlUPiagejvz29U8XbXiUP1hYXqceiPm7MWhzun05DhLmylNa3fv1zpRKzE9MQTqd9NTDWZe9VqnRcmyeaQ2w856lyu7jR5K1SKXTNrSvSVkXZTACiHSH43JgT1qqmkJ7JYaHZgVDj1sQk9Mkz6u563WLZfSWgt2iiOR80LnPNeRDrKH5+z6JRZ3JzlW3xyAQ5NWNCRcZ92naouYN9bSAbCCS1tTXNsd49TMCkUnQFgqSY9tQ9d3qBV8Ml5BlZsHIITKyciZtpnMNPwqBNsdFx+b4lwH/0o+OtSYitroNBcpCogp+FARucPt8YgVkUHA6l44KOrfRWA3FP7UcJetBAFQ0oIUA9/GLicn+h2btY0qTbuQBO5JoCuhnPq2QwGpNqQikR0FNBRqWZLI4Inug+84ErnkQ4NjFERef4YrWNzd4RO1Q7x2bmUAWJebTaTKBhoacbzBCy09Mtr1+vczyqQWrKhs0Us6k/y2Oj0QPyKIMblZqiijhggFjpJEXoxQgkph+KAfnJvkndeuseWFnHl4nvXdxIN/YKrO8kYyZtWrQ2/vn/n8I4PMhOvr64PMhDdK+32f/nFv2L3IQb7X6tO3W/JU/8qv/MpgiWbU33vvvXeny3rT9nH1VOvKH6CwpOD0WI2VNzeJvGyZwjj7u6NlVtxpZL1BpxeyE527AarT3ognNFB9sjbBAVFlYqfEW++vcaWfaVKIfLAi5uVbo7Njnx9xJv14utxdlefnps8TYjDYSm+0I1wIgdVMJPkGFvXUTFJm60GKQf5z1T3Xer1jzfO41SlzuTExOM43yKooBSWN+uGHktVG1cizDiKb5UYd2+0B6n7Z9ulZvjnTJhEjeNWJR1xQqATEJcPLvIkx3/IUVleYRTvkMGBRBAr0pCQ96wMvkzTj4FLB8PlYXTLALe6Rb0vVbANUAjpNl6vXJzi/M8muX9pbCUPb11XD6ykFws4Cbt/wIQglhihYiB5wzlvYtlE9hFx1XObtGhtbXs4DPOFqK2kmZQ1TVUw61Fr/sK9gRVKe5xisVs9LLcAdMUSq1Jwz/d4y5RMCWnEiyScE17db2FLwifmDrJzbwvPCJInXekJzsyzJpeuJs6RYsDl7JQlifOT4LF94emFwzZmZGT796U/z5JNPsrm5yfPPP8/777+P5+Wznt4tSb3bycx7n/5hsLvNfb7Pqd633VLL/+Vf/mV+5md+Zs9jFhYWOHDgAKurWc3YMAzZ3NzkwIG8PvGdtjvBqTZ1VHfadE91UwuOabfbHPQsLl9NlgIj7bVt72a9V31NUwDXsVhaG3KTBfCnnzuVOf5ugOr0ZGWyWOLh8SmquGxtdLl6vsFVGjw8PcVGKzshsCPI4br9guVRQMrgXJRB3tPt9LB9zsPZMyGTZd6odINZeARWJJCN5JpBNSlEVN47SDHnhTZ4rnV5vVymvUCy7ZURKA7XtrENM5Jmu0CtoqXBDm3Or0+PRMW7u2XQPumi08+EkfJUCzC7/0wc6v3xqk0NwBKKCIElFYXDbboXaxkJvMjg1RyVpt5CskemeqSviEsCOxBG6cfkhmJwvAjVIOgwbelAO4HA2YkJJgREiqiQuE2LqffS2i6y1izTtlMUDld7Fin+tIoBd/jbURZBauKmAoFMnS8ji9hADYo8keGxKyWJfYlMXzso0O/GKo7LeFji3c0NPnHgIJd3djLXmx+rsrE+/M6VlUxK07J1RgqPCRwHmvymJJf6fK9gRacBMlW3Eha+IWm8EL34iGKeA542FYHdgZMHJ1nfaXCYIq219qBPXjg8xblrGwA8dHSGdy8l4+WDR6d5+8Iqzxw7wKRwcDQJ1XTa762tLS5cuMDzzz/PkSNHOHHiBMViEaUUcRzfFsC9Fbsd77hS6j79w2D3PdUfH7ulr21mZoaZmZkbHvfss8+yvb3Nq6++yjPPPAPAH/3RHxHHMZ/+9Kdv5dY3ZR8HT7UXhCxvDcsoBWy2hwPnsUqB7XMN2u24t19wPQWSC6498HQATI2VWW8MlUIOTtdZvD70hBcdm8+cOZYpg2VZd9VTDXCaaX7/g/OZbSowuIVDAwI2xR+OSgyjDbAIkgC1G6Q9tloqGUmVMlNG+peLkj8lR3tlZZBcq++xs5sKGYAv0rQQlQfVen0CibRSoEjlJfiEMIPsLa+CiBwO1DfRTc/QGMWClUZ9pLydisHrOviBhZu6v2PHdHyHQmqbED0KSLaURmhs2iaFypVPonpKIENzrIgoEoCgNNXBP1vL0gOsXlbEFHUD2X+3GhWlBaKktZv0/WNBrFTP+z86SHFwfGCgIZH3vDpNQTCRBMYqR1CZaCOlYmerzHq3jBfa2YDaIEvtwBdZkB1IRErjXPoC0hNElX3irmURqmy/oBQIJXMUnsiXCCdOlAY9iZea57eDgG4j6eO8ON+fOk7+Ydgh+ClQHbnkAkmN0ogjaCJxOvW5IVgRkXirZZatRNCNwBCsCAkQt7o5xUbt9gLLh9lqhY33N1ntdnn81BiQ9MnF4vAFqlThlVI8WKnx3suX+YX/5kdG3wCYmJjgmWeeYWdnhwsXLvDCCy9w6NAhjh5NgtF/2JO/3Ld92L3o2b3X6tOzD/VrO336NF/5ylf4+Z//eb773e/yH//jf+QXfuEX+At/4S8MlD+uXbvGww8/zHe/+93BecvLy7z++uucO3cOgDfffJPXX3+dzc08ANjLPg7qH4tr28QpgDlZKRIqcKTgdKUGqwwANcDcdBU/GJbp4Ewt0zanJ7NBjfXKcNS0LcnhiXpuaU33HH/YZvKMP3pgNnecbxitTLxJZWNAX+QpHMIsaWYKWtOxkd3ueRmFGM2hJBnoZTeHy7JF08rQV4WwG1BYS2gmwonJKZ1Z2sRHc5+qQObOMWlYR76kuVbm7OVpvvPWSa6uTwzSVkcxVEtZL/VWp8TqTo2R0wRfgpDstvJEcd+QeVDX2oY8+B+1zWSmo2ypBhOIQiFE1vIrTjkJNiFywaZ2QyEZHYCYnAeOJ4zeZwA7yBIeRmlV6/J9SIGzo+gLs8ROxNnr01zza3jSAk+7jl5G/T5auxWaPFu6fakYOnF+Uqt8aaSXKBJvdRwIwk4WJCupUD3u/yVDzoFtr5vblruF6CXVSVlUMLx7Q9mEXmALhFY1ZSXfn943+oZJQN9iST5Do2YyhE8dnefs96/R7UY4tuT81SQosVx0OHs5oXiM10p8sJhsf+T4LKtvrnLlbLLvmaeP732Tno2NjfHUU0/x7LPPEoYhL730EgDdbv75fph2n/7xIdjdpmncp3/s2z70Kew//+f/nIcffpgf/dEf5atf/Sqf+9zn+MY3vjHYHwQB77//fiYt6W/91m/x1FNP8fM///MAfOELX+Cpp57i3/7bf3tT965Wqz/0nmqd+lG0FNMlh8N+iSsfbDM9kQ2ymhjLuk1qlSwXoaB5ffqA/dSRaSZ9iycX8rSbu6lT3bcTtUruuHVD4p64IMwqHgautbMPFQHocUQ1SycNcRrZ4MQc+ElfS+SVAfZjsZ14roUSODuCQjdfUMvOA+TMNXR6iJYZLw4F3abD9loVL3AAQRDZnFua4+X3F7i+OUarU0YIaHddtnYrXF8fY21jjmhUWm7FANybQLVRF9u/s8vRSgmz0krv+VhS4R4xADcTfSD92GOF3TtNBDf4Ptrx6KUJrb2YNM1HDTJOcziJ84sQpjyA6kbAQ9+dDiZU0E01VBWKjHyjjKzc9ZUCuQcZPfQsgrZjfOn9pEYN3+fY+Hhm39VdQ7InEzjWPwkrP0keSb/RLP2enRY4OwJp4PgoO1nRMJmI9+bIAxxyKsRbAc12UtBjB8do9RRATh6dxus5SI7PT4KCp48foNZSNHeTGcSh+XEOHBjbX6V6VqvVOHPmzEB16zvf+Q6vv/46jUbjBmfeGbsfqHjnTdyjf/eifehkq8nJSX7nd35n5P7jx4/nqABf//rX+frXv37b967X67RaLZQardiwl33YoFopxdsXr2W2HRqb4J1XlliLk9HcLWQ7J0tbytODGttakKKKFY9OTnDxlevEjuDHf+R0rhx3U/1jd3eXS5cu0VjfwBaCMFWfhuczV62w0syuNtgehHrilBylAFSgoKC9dwM2NHKtB8vGCtnJnrengkOccC3DUTKtyjDwxwqV4vsKIbA06kdaxWNguvKH5pFTgQQ7ShQammV2GlZCYci4TZP/eYHD+1cPUlCQJN/Uv5cQUVG5zcqXAxDVaOdBdSGndQ1FN8TModnPNpHfJgRekFcx6fOqAQrjXdoal9sI3FKPNCOrdoM82JYHqjSCr6t5jE3tR/rmPiphGwlEMUgkHdM7Xe2bTf+OgRTVQ4UCkaKCCE+iiqn9kcgEKRalS1NpruFAGIKoh/cTnoVlC0IDD1vZCnoYfqZcZjHlsfajiNlSmdXO0LGSpC6/cZ8twuy3oxxyakDG71uBsxNjdcWQ1qPMlBLLg9AQPGl1E2BtCqzs2/alBocPDb+LIJWga7c9nOjttrqcnpjgvZcvc/TI5GD70/v0UpvMdV0sy+Jzn/scFy9e5KWXXmJ6epqFhQXGtYnNnTKl1H36x4dh96Jn916rT88+WrLVR2w/rPQPpRQrKyt897vf5b3L1wGoFBzOTEwTrHiDSH+Arp+9f7ubdYPqyh7LPaUMIeDpEwe4/Mp1Lr6TBL/Ux0ocOzqFbneDU93pdHjjjTd47bXXKJVKfP6zz3Fqdjp37JzBg22OCsp/oXrGQhhFHxHGa8pQ4eyA0Lm0fVxnMMvrea9G7Je+ynFzTZn5ZEVrd518enJLA1VCA9lxJOhuF9heqbHTsvMo0hAvmASXaeVTAkIH1bSzUmKKDMWg3XUJNWpHwYlyFBDbjvG6+ssxqQKblYJNqiKRgVLiWMMXUXAi7Jmst9rUPvqgSkQqSzeQYJaU6e2OBbIzYr9OuzB0KXZ7hDcUgdsAOe4h0lKbnsgmD/JF1kXiy+y71aghRUvPPJTcP/YlwZZLcxPiho1KnWebMiIBxOCEiYc6igyz2+RkVG9HO8hzJg6OZbPdxG5+Rcr0vkzKP/pKUeySKZPVShLsWL7MfosjXt+ojIuWv/cEW4SKSbfAB4sJjaNecVhc3gFgfqbOpaUtAE4fn8W/0uTiu8tMTFS4fGVIc3zm6WOjb3AD64PbUqnEI488whe+8AXK5TKvvPIKr7zyyk3TKfdj/XHkdkH1ffpH1u52OvGPW5ryzc1Nvva1r1Gv1xkfH+fnfu7nbsha+MY3vsGXvvQl6vWEIrttoKrtx+5pUP3DFqgYxzHXr1/n5Zdf5ty5cxw6dIjdUHJseozpps35t1fYbmQH/o2t7KRgeX24hKcre0yNl2m0PcZrRU7Xx4lWusS9FLcKmD9oXkb8KDnVOzs7bG5usry8TKVS4bnnnuPBBx+kUCjw2Fw++NUyee9M3kDDBxoVyEURKUsk0mf6+UZupMCQaBAhhDlFNT2PI3ne9OBcEyXFRF2oaAcaVDz0uEHZo4coBd6OS2O7SKtdHCo16PcxZ5/OWdwHN5FE7ToDqo3wLbJL/YJGK++i94P8Cwv0pQZAGFDNfnnVpjHYlmqAgy2pcKey39YgcFXfpkgmU2nKj0gCzkwmu8lEyTJRV2M932PvfetMnhHtJQlqBaF7pW/Ep77BHDlOB7j2jg22XMKdAiK0iRSowCJuuEQ7DnFbEijDRWPAlwSDSbnIc7l7m/v0k0s727n35RhAmO1nD4oK5CY2xmBFQwZN4ScZEgtr4LSEeUAf1dQM1elLZgoYSQdz2nD80NTASTI1VhjcYmYqofWdWThApQWba8k4dWh+fHC+bVuceeLIiELd2HSPcbFY5OGHH+aLX/wi4+PjvPbaa7z88susr6/fMcWNfkKaj1px5J43dY/+fUj2ta99jbfffps/+IM/4Pd+7/d44YUX+Mt/+S/veU673eYrX/kKv/qrv3pb976nW37fUx3H8S3NnO8UqO6D6cXFRYQQHDt2jAMHDhDGirlSmfOvLROGEQXXZnVjOAmolgts7AyXRKcnKqxvD0H2wZk6l5a3Br9nJipM1svsvL/J4s4ujz6WSgMv4PHT5rTwUkoCg/foTtr29jYXL15kd3eXcrnM5OQkDzzwQOaYx+Zm+Jf6ed18gJmu55xsExCojGwaUmC1VS7Rip78AQzO5yjhUivHPO+0PJXcM32NUCGihF6RTlGcOSbO9yUqpyqhoLI3f1p0RCY9edxbvpedEhvbFrFx5mGsysBcYREYRb/T5wpUw8GuxIRh/pq7rRIT9XZ2o+HGljT0qHusANzIChqBXinY9Qo0ui5jZQ8hoFAKaLsh9DndQiA9lVGGULbA6qiE96wvUJjoRDAA20IIhA8q9V5MGsYCkvuWUqBdmasuAwjnfeJcmkz9QP338GpKkaWGBAKv97zs2KazI1CpSU5BCDppkBVJnNjBj6JEos9RPc894A3pP8MbYlwFUbZChNAKAhbGxri4vTPY1zLET1ixFiohBbKbfV+xayANafe12mDvaitO0tBfjPg+4n58Rer8/iqG6P3bMEfEbik2GX4Lm43kJMuSXFvb5qkjB7j4+nKmuOkU5Y8+Mp9RB7lZG0XDcF2XBx98kOPHj3P58mXeeOMNyuUyJ0+eZGZm5ra8xFEU3Vag4X05vT3s/qPZl7377rt885vf5JVXXhnEFfzDf/gP+epXv8rf+3t/byCSodsv/uIvAvCtb33rtu5/T4Pqer0OQLPZZGzM7KXdy24XVEdRxNLSEouLiziOw8LCArOzswOJo6tXN3j/u0NO9dx0LSN/NztdpXF1uEQ3NZ4F1TVN2WPCKfDGdy4MPr7dlNdbWIKv/NgjxnJ+WJxqpdQATDcaDY4cOcJjjz3G5cuXjSl2H53LK4Bc2dnNca2V1QNDGsCxvbyG9V5KHZmypsdbD9xdEFJCZNYUNo3AdmeIL0YtC5t4vPqytihEORUP9Ix1muc6aNl02gWivri2Ig+0bjDO2UoSaC5OG0moA2AhCBsy4a06KnPdXQOv2jVEcxXdvIb1sOAaNzwXEyFQscqAJEsqvMBK6CaBxUanjBclbufdLtSLHq4T4hzoEFweUg1klHXqikjh7JKlWvT3jcjwKCIGz9puxwSptOByhNKH01F4KVA9KuhQxBAfCnISjaoQM9iig+YIKKTeWZDlU+MLsCBs2AS+hQwlUap9hTqwUX0VDAGBBb4CWyGFMFLNhRCokJxmtnIU9LqkyVI5A6qvG4LoTF7odNZSoBdISIYK049ZsFoKqy2QSiAilbueFWmTa4FZQl0KLC81OY9733f/Wx/Rxxyt1Lm6vA3AwpEpzvf0qE8dm8Ff7/Lea1d55PRB3n1nCYBKxeXSpfXB+U/fBvUDbpz4xXEcTp48ybFjx7hy5Qpvv/02rusOckzcCjDuA/nbAeb3qR95u5d1qne1QOVCoUChMCIZxD7spZdeYnx8fACoAb785S8jpeTll1/mz/25P3fL196P3dOgulZLBs9Wq3XLoLovoH8zWp9hGHL16lWuXLlCsVjk1KlTTE9P5zqLC1c2suWtZhtSuZR1dRbcLNLqf2PT42UmfMn24vZgY6Fgc21pe3Ds7Fyd2Zm6sbx3mlOtlGJra4uLFy/SarU4cuQIjz/+OI6TjGCjQPzR8Tq1gkvDG3prwjhmYWKcC5vbmWOtIO+xNnIf9xmYqHrZlO1WTz6v96pGaQrHtsgl8RABw4FWJYNt5l6xyvNCDYlAZEHTp45BFLXK9ZK8xE2L9lYRFThExVSvG5PNGqiDBaXtB/wwymHcMEyBt54lDmWReN09EgDXO6TVKRLFIuOJLhYD/MDCTgE3x4loeQ6FTCp2k161mVdt2hZGkpbvsusVM97TbuAiUNRLPk7NI6Cav0KscHeSFNUyMqeRT2ScVebaIlQoOSyjCEVmXjBqciVTFCTpq4z+cvbAmLgWZyYQytf41J6EdPvwDKnJ+wA3BidyaW2QFFJBlHpXMhYE2uhdUBIv9VakkElSlDAmVlHSjvpciLRpAYNIUFIhYkFHm1Rvex5Vy6KZcmKYvjuTt06GijjlcZYByG2w0ija9Hj1a4k9Vgz8YZuwdMlME6/bU8yNVVlZTgBDvy8/MT+O2PK5ejHp+73ucIXw6NEp3n33+uD37fCpgX2v0Nq2zYkTJzh69CjXrl3j/fff59y5cywsLHDw4MGbHvvuRJDifWCt2YdMl7gr1qvPkSNZitPf/Jt/87aEKpaXl5mdzTrobNtmcnKS5eXlW77ufu2eBtW2bVMsFm+ZV93vHPab6jUIAq5cucLVq1epVCo88sgjTE5OjuwgLmqgWrdI43t2DenHHz46zfrb66z6YSbAcf7QOBcuDa//wMLoZD13ilOtlGJzc5OLFy/Sbrc5evQoZ86cyfHrRoFqIQSPzs3wnctZRZSxYp6nux+PL5gj801JYESU8GitnkNusH1ER6Yv++pa14LsQAz9xBIagA4UsQ6qNT618iSylE/C0Vks07FskAKha3rnOCbabx10A6GK823V4ExWUcojj0B5INwEMKlY0GwVGatlA2i7vkPVzi7xh76tgeoejUXX2pb5hC9xLOh/kl5g0fQKND0HJS2tvAlM7wQFpADHimHCg62kTcUWOLsKq9XLpCf6lc5bn0ufnszZnezthEgCFuN+dsxRn1Vqe5Ku3txHBMeCnBdbtgTxeJqeMeIegxskx1b9EltbMaEQQ9AfZb+bsmXTjFP9TAweWa/4ZKHE//hnfoqjY2MsNRp8d/ka72ys8fr6Cu9urhEphZSCOBreu2/KVghfcHF7CymylPbZcolmY9hXRy43lQ3RaidBiFL1E/uQPU+bEBkfueG70E0PhBSy1y5SiYTcjmBxY5hy/NyVNY5NFbG3Qs5f3QZgarLCxYtDz3Sc6kMmxsssnLhxgrW97GZVOCzL4ujRoxw+fJilpSXOnz/PuXPnOHHiBIcPH97XGHi7GtVwH1Cb7F72VF+5cmXAKgBGeql/5Vd+hb/zd/7Ontd8991371j5btXuaVAthKBSqdwRUN33sprM930uX77MtWvXqNfrPP7444yPj9+wc7iYivIGaLaz/OHt3Sw3dXVzSP1wHYupYoEPXr4CwPET01xKgehyeTiiKODUw6PTwt8u/UMpxcbGBhcvXqTb7XL06FEOHTo0snPd636Pzc3mQHVkCJAyAeiwH8iUeu7KEQhPy5yX4tLarRi7DSCTj1znge7xCkUqu2Pi3dY8ugGQBtVhXn1Epx8AUNVQki+hB6qVJ/DWi7SVk8kCqT+Pqu3SJDX63wBkSwSx1mtbCCLtQIkgNvmSfRgvFWh7EY2dcg5U6ynWAWMQYtdzKJVvzO/v+C6djk0ncoiUhF6Yo9GrLRRKCVp+ATuOcGa6BJsFnF2F3U60wU0ygyazI5F+qoknWmszdkfhl0VCExhxHZE6yQ6FOWY0VITzYUIsTrWb3GPTgKuemlwgsDZKbEYKEcos11871de+tZJ06MTh4NhjdoGvP/wY4722Pl+r8VO1h/mpBx8GYKvb4e+89CJ/cOk8YRwThDFYCmH1Jl09ab12GHK4VOZaKj/BRLUGKVCNSCau6YmpKU5BBgprLaF5DB5JqAi1bz7JyJi6ltETbm5FfTBvBTkly6QMWlr1Y9Uaq6sJveWBYzNIL+L9N5Z44OQQKM/Pj7PZi6FxXYvFyynqx1PHbhtc3qq0nZSSw4cPMz8/z/LyMhcuXOD8+fOcOHGCI0eO7HnN+3J6H5Ldw57qer2eAdWj7Jd/+Zf5mZ/5mT2P6VOXVldXM9vDMGRzc5MDB0bjoDtl9zSoBm4LVAsh9vTidrtdLl++zNLSEhMTEzz55JM3RTNJe6qFyCp7OLYcyOMBjNeKbPfk86bGy5ys1Xjz5cuD/RUtCUyrPRz6LVvypz7/4Mhy3Cr9QynF+vo6Fy9exPf9AZi+UadqSv7St0cNCiDLmk41QOSKfMpxKwky05furSCvMysDcBoxIvFPjjRlCFIa7EvTAFLUj8E9QrIg39ApGtUL6ppXOgYVgL9RpBW6SE9A2nkfga521gz8LEXgBuOzowS+fkxMzrMeRyqzqWw7fOrAIf4vn3mOI/U6/6c//Pd8Z6MBZFdhHCf/DRXcPHguFoMch1qphEPd9V12O0W6sUUsJXGUDT4TEuIYdIdaP7s8QCgtUApX+NitQv8G2YmYZPQ7T7+aWKHj8cRkkq4+zKYnz1yH4T1UqDITpEG5VURcjrOZMxVE1aHnWCiBSvOnU6nJrcjCahZoeqkRWV/QSDMkYvDTBOEYOvQatoI/d/IUv/aZz3Lp0iVeeeUVpqamWFhYyAyIE8USf/tP/Si/rn6Eb3z/Nb7x+mt4XnLNhD0zLEDVzvYTekp0yNNnlN2bJBcEdlNhtwQylCOzWWaupVE7lN0H2mLkMZn7+opCKHMTTdCoZ0oxxv+fvf+OsiS/q3zRzy8ijsmTedJ7b8tkue6u7q52yJuWxIVhNIBEwyCGQRJ3SYBwahADEkKANAKExOjq3ssdrYXRe/MuerpX8GZgxEUjqaututWuuqrSnDSV3ufxJiJ+7484JlxmZVZlVndV116revWJjBMn4pww+/f97e/eQVawmsvzqxlmptaoqw0wMblaXm1lpaIl7e9rZmx8ufz6evXUcP0EV1EUOjs76ejoYGVlhcnJSWKxGP39/fT29voWTQ6CVN+uVN+GH1paWmhpufrszf3338/W1hbPPvssZ8+eBeBf/uVfME2Tc+fOHfZu3tqkWghxKKmKmUyGmZkZlpaWaGpq4uzZs2X99l6xuZ1mK16p5rU01rC8kbS9rmZ+rfK6tamGrWSWo73NrF9cQ/Y5maO9a1zTFObmt8qvBwaaqat1JjHasd9KtZSS1dVVpqenyefz9PX10dnZueeb6W6fd6rde9GsJFPUhkLEc7ZKvgAtK9Ddzh4FiVHluinbnoFqRqKli5Z36h60gkJYmk2/gAfNmvb1DZew3mqR/KIUwK/qbZ8ytlYyIeK0O9OTKulUFVIolWYq++forkq1gZNQS1BU19tcHyt8ct0Nw0k2NSHQi19mXTDEB8/cxc+cPO0IJPqTt72d/8/FNv4x/58d5LsqnEc3FcdXHgoaZHIaAVuTnapK0pkA4bCOYQiS6TCpfIBUPoBSGjcWt2EaisdFxJKFeKU4dhR0jdBAFhasDQrDNbgR/o1tgOW1LK11rMZUHzIMhNIlK0J/giCEQM1KjMjOTYpGb8Fq+rP9tiKtICO240sIqLW91gVSlch4gEJBtbyz7deIbVuaVNBt0eTVapCkLZo8ogZIGzpI+K17H+RnTp4G4OjRo/T39zvI9dDQkOMeKITgQ3ed5YWlZZ6Ynyvb8QkhytejCIWASuFgPe12jfH/9gJpSzNdqvZLDc/AyPTTqPtVmAuWBKi8isqOAyotW7wmfFHR0ofyClNza4z0NNOoBnj+eWs2sTqisb1tDST7+5qYsTUlaoHKTgjx2iDVlf0RtLW10draytraGpOTk0xNTdHX10dvby/BYOXmqOv6bTu9Q8CtLP84aBw/fpyHH36YX/iFX+ArX/kKhUKBj3zkI7zvfe8rO3/Mz8/z1re+lb/6q7/i3nvvBSwt9tLSEhMTEwC89NJLRKNRent7aWxs3PHz3Ljlz/6DDIBJpVLMzMywsrJCS0sLd999NzU1NVfZgj/c0o/G+oiDVFdXOUuP4VCAO/raGHt6FiRkc5USjqII5m0kuqurgWnb9k+e6Nh1X/aqqZZSsrKywvT0NLqu09fXR0dHx75v3LuR6oaqKrpqo8zHnW4AXXVR4itOeYwqfdLJ/XytA6AlJWqWyhSxrzk0vhri3RxElHzxhrcDMVIKRarqSn4DirpP5zJVMxCKxRH0jSCpVAhTV2CXZmj3/rmJgig4p6YVCaaLMOZ1w5kaiZeDhISGUAx+dOgov/dDb/Cke5bwE8dP89KlLhbyFRmPEJa0o7rKWZ3OFwIEgpXfNZ9XSSTDrCVV8krRrk0BUyoo7tHEDj+hL2ykS6hW0qJoKqCuB/y341P9t46jIh0SBel7vgHITLGiv8uloRb12W5njxKMdt2rRsgDtvGxMGy7L4FtBV0ELZtG6XK30J3HZBRMhy2jLm0nkoSMqaNIwR8+9GZ+5MhRx76FQiEHuX766afLaX12cv1nb387b/nrv2K7UNHCVAcDpPIFpra2UEUlpXEhmSSoKOTt9wbbNRNISNSUQM0Lj/MPBo6nmeU3fnUNtdWL4JSJiIJE+lxvuzWUCoE1SKoStIciDA7UEF9I8HJxGrqxIcLiUmXQUGObWVQUwRXb/XposJX6up2LIHvFXnuB9gohBC0tLTQ3N7OxsVEm1729vfT39xMKha6byN+21NsBt7D84zDwt3/7t3zkIx/hrW99K4qi8N73vpcvfvGL5b8XCgUuX75M2jaQ/8pXvsKnPvWp8us3vOENAHz1q1+9quzEjtcFqU742DXtFaqqkkwmmZ+fZ21tjba2Nu69914ikeu76bmbFAMB143Idi+sj4YJJAwu/sCqeAgBS8VkLrCaEueKzS8ANVHnE+HOM7277svVKtWmaZbJtGEY9Pf377srfD+fd6KtxUOqqwLeUzUQVMm5q6uuinIgIVHSxa/T/oBVhC+p9SXVu1z8wpSW48MObE6YJc21iemKnFcK0pKx2JdV6ehbAVKJEIZQrf1xPeDdWlBPBdyvkm37XtSCwHTZnZk4pQphoZGxsfWgUOmoquY/vfPd9OxB4nSydoSFNac23vTRVYMkmQ6SyobISA1DEei6hupyQHEH3VjLfKbh/QSvCEtCUbJaU01yuooYzqCuB9AQuIUou/3mSl5ihn202HaoRZnCLvxCKexc7TbCuiXrMIWDmLu/B7Mo/RDbKoWUhikqSYqi4Pzd3R7pbulHlor7S0QJUNBNPv+mt/P2wcEdj2Encj0wMEAmk2FiYoIPdfXwJ9Ox8pWayhU4UduMCAmyus7k5qZ1LFLSXV9HbHOrvH09INESWNp3SqMP74+jSJcuvdw86H+8lQP3Ee8YlXj7yputQbnhE/Bafl/B0n836wEuPz9HT1dD0T0HOtrr2NiwHuDBoMrUVEUG0tfbxJStan29rh8lGIbhqCIfFIQQNDU10dTUxObmJrFYjO985zv09PRYMzC35R8Hj9ukel9obGzka1/72o5/7+/v9wzgPvnJT16X60gJrwtSfa2V6ng8Ti6XK6cf3nfffYR9nCiuBW5Snc07a66ptPWYH+xqJDO5xdxK5Sbc3lHHwmKFVNfVRRykOmOrYr/pTUc5edLf7LyEnTTVpmmyvLzM9PQ0Ukr6+/tpb2+/7urH1Uj1ybYW/vt4zLEsmfOGQ8iQ8DgflEJgAmmJmhMWURRWVdFdefR9ePrA92Fc+tuOqtkSrMqm4mcB6HNTyZoa2WSgTG4U3UWiTZzSDnwcEa5ySIYuHRXKkFDJK87fI5vVy1W5KjT+/Yk7+MV77tl9wzaMVA/y39f+h2OZVpQaFHSFRDpMqhAkowes30VU9ruUDGmHGjCKhcfKwSma9C5TvAVKAEs9XySgwmq41AMCta6Auqyyn3BZRZflFMUdYUpU3WcmxQahS8tj2ecHM3vylvTDeRCY1Xb9NCAlgdUIKdM6x+xSD/dgyn4eawh0W4OjQ/ohrUHVn77lLbyhf28Er0Su+/r6uHz5Mk899RSKotDX18f99w9y5bHz/L8uXrAOVYHLS2sIU3BfbycNLWFe2VojXShUnH4khNdMRF5Yo0Z7U65voqp3NCx0CfZBq+LVUPtGn/vFyGfYMa68BFUKDBPmfrDC6dEuXrpgDSqjNWHGJyqNU0MDrVy6tFB+7e6Hueuu/t0/aI+41tCz/aChoYGzZ8+yvb1NLBZjZWWF6upq0un0NRWeric45lbGbfnHzYNbnlRfS1T55uYmMzMzbG9vo2lauTHjIOGWf9jjyAWwtpXmzEAbsSev0NRczYpNX93QUO0g1fm8UwqysLBFKKTxwQ++gbe99fhV98VNck3TZGlpienpaYQQ9Pf309bWdmBTiYqi7DrN59es6K5cA6QMHbVgm+KWRa/hpISgc1/9kgx94fNw9mtoKiGQMpGa4vtwprglLS19ia702Z5e7WGDDnjIuekkTuB1GPEMClwfETBU8q4PkliVTjUr6IhW74tQg0WqS9CERiIZIpHVWEyrGErR2FgBEZSehkNFkxh5UOyOFwoYBQXV5nUtBBiGwM0bTFOguhwx3DprRTUxTJX8UB51M+LfrLgDTE2xbPB2IdVqrpjKuBtMHMExlcUmNBSZnb1KnVYqpDoPrATIayr54tPJTfoclWjpJJCqqaDbQnnKDjsSmmSYP3nLO7i3u+sqB+DE9vY2ExMTxONx+vv7KRQKzMzMkEql+OgdZ3h8bo6ZpHXfMjUriXI7m2d8Zo1wQOXEQAchVeOe5g4uv7JMoVilV9MmhsPpRnit9nz2x++hrehOaZRfWqLf+ErNWM2z1uB8Bw28gOCGQX00wCuXKrM0A/1NvPhS5bWhO1n70nLlXl5VFWT0+O5yvb3iRjpx1NXVceedd/L888+TSCR47LHHaG9vZ3Bw8Jolkrdhw+1K9U2DW55U77VRseSxPD09TTKZpKenh9HRUS5dunTgI2fDMJm1JSdWR4Ksb1W0PY11YRqFysT5GQCammscpNqwEWAhYNFGsDs66xGq4Dd/45309jbtaX9KmmrDMFhaWmJmZgZFUTwJkAeF3SrVpmky3Fjv0FqCFW3cVRdlfttJrqNCY8ssEIxboQwoAtWUV7XuBX9Sa/0BD/F065RL0HJWsdw3qKIEXWJUub36pNdD2/A6l3huPK4DEwWQtskTT9OivDrpNnWzQt5MqJEBshkDxbCq8J96x5t8Dmp3RLUaTlbfzUQyzuWtbXLSBAX0vE9zYUFFDblIva6CyzFEGsKbLCl91N9+ZEqVGGalqm2RagW92nLT0LaENfNRfsPOAymhCut332VmXc0XK8e7Qvgm+JltujdRE6xkRFMi1zTyhobqCoGxz2gIA6cuuIBDRpQzbBp6CRlpNSSG0xoff8uD+yLUqVSKiYkJ1tbW6O3t5fTp02UL0sHBwXJD468MDvLrLz6PQTEEKQ8zm9a9K1sweGlsiaGWRmKLzoKDonuvZ3dzqenTrCh9Bj1+Gmq397jbWUjNSpSijEspSIwdSLUAwluS+voo23HrGIIBhYnJSpW6oT7ieN3VWc/8whbV1SEa6qs4NdqFph0MEX417O1KjiHt7e1MTU3x+OOP09ra6mlk3Qm3NdX+EFIWZ2NuHdxqx1PCLU+qo9Eo6+s7h6yUbOGmp6fJZrP09PQ4AkuuN6rcD1cWt8paO4DWpijJOWsfO1tqaTJMJl+x7bOL1C8vV6yY2tpqWVquEM277+7jpx45Ryi0s6/2TnjyySdRVZXBwUHa2toObRrOj1Sbpln+F1JVhpsauLzmfLi2VEccpDqoqvTV1JEbX7WcPIoPWT83Bb8pY99mJkX46gcU0+snrWQtRmQFv+z8XQlToGUkBXvqW15ihpxsSskZHonKbhVT8E5Vi4KTVIu8k1wFTYW8S16RyxuoukApCNChoJgoxeO/p6eLs127y4d2Qk6v58WtGccyaXpJsN+9dQdltAd+Emq/01YIkKaCKFawFYWyi0dmOEf9EyHL59y+bcN/ICUKEpExIbgzYVEKeAKB/PZJzUtHFRbAbC+gYDm/2Am3zAn05TCGYkmaDNv+ioLzdxZ5kD6pkFBsQrWdI9WK1TgYSql0VNfww8eP+r/RhWw2SywWY3FxkY6ODh588EGPPC4cDnPs2LGy5vqHonX8j8QWUrWcVNKFAgPNdVxZs8j1UjzhGdP6ueYouovc+mio3YPHytG7lriJdmlbxUPRUpW/+xF8O+7q6UBmDE4c7QAkmmKyuZFA1AaQpklXRzOpujR6waCQLdAYCZHaypKZ22YVOPGuO3bZ+v7wapDq0mdWV1dz8uRJhoaGmJqa4oknnig3stbX1+/4/tvSjx1wu1J90+CWJ9U1NTXMzs56lpecLGZmZsoey52dnR47oMMg1bFZJ8mvLga1jPa3svjcIma3c0S/tlohkk1N1azZQmAam2pYWk4QDgf40C++kTe/+die98MwDBYWFpiZsYhPyTj9sG9sdlJtJ9OlJhdN0zjd0e4h1aX9CmsaJxtbmJ/ZtFInXdZ4fqEOflPGVgiM6XESELq3gdHvwR5MmAjUHaOoS1AL1r6rqwb5WoEZUoqf69xvd0UZiceFwD04cO+Xe8rb4Q4BVlNlAJSMQM0IgoaKbtjkKaKigAkoCn/8rrfufnC74GRtN/+/pRccywKqgnQNT/wmQhR3RRp/rbUoL6t8EUKRvrpqz/aKSY1mLRQiBsJl1aHkpNfyEEvyo+pyV720osuranCVvCSQMElHKl+AHtERrvRMkVQobAcs2YxSeq9TBqQUdq6cC5yuHxERIGVrzVR1QTBhKc5/5aF7d99prM756elpZmdnaWlp4b777qO6epcOPirk+rO9vbz5b/+WNAZSs2ZWGqNVZVKdyhVorqliPVmxG/WTW/hWrwtODbXUBLg8wH1lWn4zGwWrGVXJyXKzMUAkGGDbN6oHlJzJ5e9Pl8/E0ROdXPzBbHn7oSqVzcub5Is9L4oqiFeHyCRz5df3vPGI77avBa8GqXbHlFdVVTE6OuqYsaivr2doaGhHm7LbxNqL25rqmwe3PKkuNU2UUGq+m5mZwTCMq9rCHQapnppzkmqJ5I6+VsYet8h/PF6xGKutq2LVJv1oaa11kGrTlPT2NfKbH38X3d0Ne/p8wzCYn59ndnaWYDDIyMgIFy5coKmp6Ybc0ErhL7que8h0SWpyor2F//Ml5/vi2Rz3tHYwE9vgwvwiAJlMwSvXUL0PU6i4Njj2xef56G7wgiKZdRe0ChK04s1hFxanmBKpCoRQCG5LpKp7oskBDFdfj7v6iMRbyb4aybbvhw7mtiSkq+X2yqCqottGBZoQ6MW73U+cHqUxskO5cw84UeuVEKiaLHpdV/ZMDRiY7obDgGmlAdoIt6JJDF2guNwwPMsEGAYerbVbDaCoJqauIASkTxpUv+L6u+5/11dzOIiWB6ZFxATFAdoOwSRa1kRI4RhgGV2FiuLEBHM5SAEVJS88TYh2OYf9dxfSaaEYlhoZm8BbNywpDjoE04plp4igs6aGtx8d3vGwDMNgdnaW6elp6urquOeee/aUhGZHdSTCr9xzH3/89ONWuqIOW2mnPK+lttpBqo2Qj4baR5aj+Mi+VN05E+CnofbbVmmWIZBwtiKnczqE/aePQtuVtudjxzu4/MIVB2FvaY0wP16R/fUMNjH7SiXwZfTOPmobdh+c7AcHbam318/086kuDaoGBweZmZnhueeeIxqNMjQ0VH7uSClvyz92wu1K9U2DW55UR6NREokEmUyGf/zHfyzLGvr6+vbkZKGqKrlcbtd19gu7h3RtTQixnmPsJYskVteEWF9LUSIdbR21bI9ny+u7LbWOHG3nkZ++j1Do6j+lrutlMl26yTU1WbrrCxcuHPjgwQ+maSKlxDRN4vE4dXV1DjJdwqn2tvL/14aCHK1tYmZyndXcNgWjwoRzBYOupijzG06ttaJLD3G1qk972ElfnUGR/BQfqFpch+LDQwjhG0FegnRUUQVCqqhxHRkQ6PYqpet56qkyuyzS9tKkaGlNQYsLAhkFqQtn85trIFD6vIii8L6hXkzTvOYHc1+kmRo1RNKoXD+G0DF0Z3OhUMDMK6gBVxNiQfForU1DQVFd+mufz5Y+WmtFMYs1xqJWVpUUClYDmlEvKUR1AonKdeRrh2cWK9BC7EiY1VzlF1cKO+vtRXEGI7RlkmlTMDER9RXym98KIkXxHHPLxu0/iemsWocMlaxWuZYLJRINICEnDdSUQEkLaoJBkhRASn7zTQ/47qdpmszPzxOLxQiHw5w5c2ZfYQhu/NQdp/irl15kQSYhCyvZnGOYFXZL14RAzZqOUCe3FSX4S6U8Th4+Gmo/GZiQEjVtWIMn14Ddb5YJILhtfdiRo21MvjyPtMl/GpoiLMa2HOvnUhnH6/vesvdZxr3g1ZR/7IRSEae/v5/Z2VleeOEFIpEIQ0NDNDc338A9vblwu1J98+CWJ9XBYJDx8XFGR0epr6/nm9/8Jl1dXXsmCodSqS7a6XW31RFYyxKbWCz/rb2zjsmJin1ewOXPvF6sUodCGh/+n9/Mm/dwI9Z1nbm5Oa5cuVKejmtsbHRZke0vVXG/sMs8gsEgvb29vPjii7S0tDA8POyxXxporKerNkpnsJqJsVVenrG+o8G2BmLLm451G2siHlLtO/Xup6v2IUWmT2UMoK22msW89SAMJA2wNRSJAh6rO2tj0hvuYUoIqQSSEEjpZBqt7bgr1R6/aT+SvVuTogkYENxUy41W7qa4rK47dq7UHPrRe84wOzvL7OwsQ0ND16SxV4TgeG0Xz2w67RFNQ0F1E2ND8TQmCisv3LnM53N8l/npqhUwC86qtiKkZYuoQLZfJ/BS5Qs0g4pndiKQMsvfg5o10Wu8J5War/xKlkxhpxkMQAFFt843vbvSoCj1YrNmaV9ciZn2waGSB9NWxdYLpuPOrtsuhqgZILtllM8Hs/h7d9XW8qbhAcf+SSlZXl5mYmICIQTHjh2jtbX1QGazHn3gQX7j2/9MQdFJ5At01VazHLfubfGk1+nHLfewx5WXYAb8WLV3kWJKTJeGWk3pGNWVL02vUghu6IiA96Kukgpuk1YhIZQyGRpuZfrSEobuPG8bG6rYWqz0wtQ3VbMy5zzO/tGG6xrEunEjLPXc2CuRDwQCDA0N0dfXx5UrV7hw4QKBQICRkRG6u7tvwJ7eZLhdqb5pcMuS6kQiwZe//GX+6I/+iEwmwxe+8AXe//737/smc9CkejuRYX0rzWh/KwvPztPV0+ho1AqHnTfxbVuUeU1NiJWlOF1d9Xz8t95Nb9/u7h6FQqFMpqurq33JdAmHRap30kyXPG0nJyd54okn6OrqYnBwsBxWoAjBoBHl+y8vOLZXG/GWmhWf4xE+V6wR9D6sZEB4XR6EQE0bGNXOc6WttY7FuUxRdOzS3+7gea3mpOf7VrMGZpVWqpcSWTXRVUnKPfPu3pyPXtrx2takqEkBG6DmlYoWXdHImE4lsGHbaEBRKGDSV1fH+++/F9M0WVhYYGxsjKmpKYaHh2lubt4XqTrpQ6oVv2Yx37KFd5lv4IvwNooqO+mqXRVsRbFcQQBkjUm+wSC4af22UhUoeWdVUs1WPkst+PtQ210/dpKQQIWvCyGo2jbJ3Vmw+mRNyCeC5c9xz1CoOecAzD2ANGx2giGpktMMAlJBbkFQUSuJhRLSxUHVb7/lwcp+FZ2QxsfHyefzDA4O0tnZeaBSgjcN9XPs2SZeSC2jmtDaWFMm1anC3u63asFEtwUqmUHvtew3aJa+16lZCXYxJaF13Yod9RkoKz7x88G4zrk7+3jx+zPoeef+d/U2Eru47FzW08j2UoVk9440sxFf5nvfW2JoaOhAvu9Xq1K9n5hyTdMYGBigt7eXubk58nlvHsFt3K5U30y4IYKrjY0NHnnkEWpra6mvr+fnf/7nd7W529jY4KMf/ShHjx6lqqqK3t5efumXfont7e2rftbm5iaf+tSn6Ovr4//+v/9vHn30UVpbW3nkkUeu6QZz0KR6em6DO/pbmX58hnxOpyrivGsnk5Wp8lBYY2Fhq/y6o7OeB39ohM//2U/uSqgLhQKxWIwnnniCzc1NTp48yV133bWrZnqnAJhrRUkzres6UkpUVSUYDBIMBssPi3A4zIkTJzh37hyZTIbHHnuMWCyGrltU5WiX16/aMLz7uOmaRgXQQ4rHVsKqbnnfrxR8iJrPV7GdsmQ4R9uaES7bq52a0tS0l3Z5pqRVBcU+RQ8gvWExe21S1BKC0IqKllGdv7frMIOKs4ReWvePHn4LYA20uru7efDBB+ns7OTChQs888wzbGw4G0h3g6+u2udu6teEqAS9152imUjTJetQrd4CO4QAmfcj7659Uc3yeSIUyPY6ffCUnGu7um12Zwd3DzuR3smrWhSko0OzujuMCFgDAT0ZtCr3pW24rflcH2uvYmuGcBDwkFCpK4RQ1wWqLsjZPJKrNA0U6K6r5cGBPsDymn722Wd58cUXaW9v58EHH6S7u/tQtLm/9caHqNGsnbVLN9YzOY/+3dcez+f7V13XtxnAmhmyb8vnMaAU1wlv6lQvGqgigJb3v6jzWe+PGt02ePafLjA81OI5x6qCmuM3EwJW5pyzbT/0ztM89NBDjIyMMDU1xXe/+11mZ2ev+Z4spXxNNCruFaqq0tvbS1fX/rzRXzeQt+i/WxA3pFL9yCOPsLi4yLe+9S0KhQI/93M/xwc/+MEdYyQXFhZYWFjg85//PKOjo8zMzPDhD3+YhYUF/u7v/m7Xz/qLv/gLvvvd7/L1r3+dN73pTXz/+9/nc5/73DXv+0GT6plXlhh7fKb8OpOpPDE1TWFhvnKz7exqIFaMr9U0hbe/8wRvf+eJHbddKBSYnZ1lbm6O2tpaTp06RUPD3poXS17V14udKtO7PZRramq488472dzcZHx8nCtXrjA4OMjRTu/AYT2Z9iybX4+jCNezUxWoGQOjynmDVwvSY53mS4h9xh5z69sEAgoRP3sRfCreO23IZ5HuykfwNEtKnyZF926YEFxRUAzF1/Yrp+uOAntAVcnZpqnzhsG5nk5GO1od71NVlb6+Prq6uso6yLq6OoaHh6/aqDYa9drxCZ/GRFWT6AWBYrcDVEHPC6/W2vB6XUtZ8sizLTMU3MbeQpGYhkAoEiEsIi10UUl1DEhyLTqhVWtH7MRZzZjOWREpPFrcUpNiCUrexE93pOVMRwPcQlMcoUoKyQCmVKx48h1g1827m1mr0EgUnT1EDoy8RM9Z34GCoGAnacWv53fe+kMOr+m+vj7OnDlT9po+LIy2tXC8sYnn5pZYTFSKLAXDpKs+ysJmRR7h58LiF76jGK5fXBTvAxGXlMb1uzW0RNmeSSBCwfJTUdH9Ca0S9n4vYs7a/4tPTzF67wAXLlgzbIMjbUxemHes2z/cxvQrzhm4+95yvOzx3NHRwdLSEpOTk8RiMQYHB+nq6toXWS2R8RtJqg+KyN92//DHrVrZvdVw6KT64sWL/OM//iPPPPMMd999NwBf+tKXePe7383nP/95Oju9D92TJ0/y9a9/vfx6aGiIz3zmM/z0T/80uq7vOr3027/92/yH//Afyq+j0eg1x5TDwZPqSzY5g1AEC/Nb5dcdXQ1csTUxVhWt9pqaqvn1R9/FsR2StvL5PLOzs8zPz1NXV8eZM2d29QL1w/XKP66FTLvR0NDAPffcw8rKChMTE2RS3qnAxc0EVQGNTKFSLTJMSVdDhPktJ+EWBelwTNgJfg1Oho+e1jAlR1oamb606llfYBF2w0WqPTpPCaaPRZhe71xPzYBuI9VCd5Fq0/bahMC2gkjj/L7doSKuj7WHCAUUBSkkf/Cut3j2rQRN0xgcHKS7u7tsj9Xc3MzQ0JBvapppmmwurtJCFavYZhMEGHkVLejSVedV0JzXmp/W2s/rei9lD0NXyJSrwBKhSFTTkltI1bSagIOSbLtBcLXokGJ7wGtp5wkhhEDNSkcDnb1J0dotH+INqLZipx4y0aMg0hqmqVqHUvpqpNMqT+Sdgy23lZ4uLUN1LSFQcgLdFj9frQVI6JUo8rSu01MXJZrc5smJy3R2dvLQQw8RCrlGnYeInzl7hssraywnU7RUh9kszgY11FQ5SXVAeBx9/K4jvxGroruIts3TuiqgcaKxmfnJDUTQbfnjv886stisaJFHJWugJSufcPHpKU6eG+CVVxbJZ7xN7qGg8/nVPdBMz2BlVk4IQUdHB+3t7WVN++TkJAMDA/T09OyJtJaeWTeSVL8aRP51Ayk9M683PW614yni0OUfTzzxBPX19WVCDfC2t70NRVF46qmn9ryd7e1tamtrr6rXcl/Q0WiUfD5/zVqtgybVly9WmhI7OuvJ2irV0TqnXjiTyXPydDef//P3+RLqfD7P+Pg4jz/+OKlUijvuuIM77rhj34Qarp1Uu2UeiqJ4ZB77gRCCtrY27r//fu48PkyVi5RKCe31Xtup5jpvxdSv4OFnn+VXBZOlh7gLTcEqcnn/88EtFVBTBdBccek5HekODcmbFFy7766eu72wRQEQEM6rBFdU1LTi/L5dwSGaUDxXe9Z2XgdVlYeHh2mpubqlVzAY5MiRIzz44IMEg0GeeuopLly4QCZjEWfTNJmbm+P8+fPMz89zqq7Hsw25x1PNlzb56qq96ykBWxU+rZGOh5Bm6UtQkKaKjoohVYykhsxZDYuEIN1lfeGm7XzxkwnZmxL9XgshUHPe9/X3WE4HEsnmWRMpFYySTYgJpSNX8jhKH24piEMCZEI+bxDcUFALCmHFea/M65WTKKypIOB/ao5iGAb3338/x48fv6GEGuCNI3301NYB0NlUuQiCPqmCYcP5I5et9mzwnUTyeXYrOZMGPUDdlsLFFxaJJ3M01Lr6NXYJ91HTlWsntJ73nKevPDXFPff0szC15lheHQ0Te8VZuT63Q7aAEKIswRkdHWV+fp7vfOc7TE1NlSVyO6H0zLqRlnqlfdqPptqO23Z6t3Er4NAr1UtLS7S2OqeTNU2jsbGRpaWlPW1jbW2NT3/603zwgx/c9+eXolGTyeQ1PTAOklQvLW6ztVGpptY1RJi3VaoLNrImBNx1Tz/ve+QcqivcJJfLlSvTjY2N3HXXXfv2i3Vjv8fprkwrikIgEDiwm7iiKPT09HCit53vTzqnSqXuHSCZPjdkU/PuixHyqRwqwkq2C7qric7Utju62jBWdh6cqekChTrV9lrHrHZeYmrWwHDZH2o5w2GtBxQDUirLPE2JOgTWFCgIFCwSbq+4u1+HVZWkbTpbQWDY5hMjwQD/4Z1v2PHY/BAOhzl+/Dh9fX3EYjHOnz9PQ0MD6XQaRVEYGRmhra2N1aXn+ZftMef++6li/HTVPstUn8CXSmOirZIckBhZhXw6gO7wEcRJtFSgIDAKKsKQiIBJoR1ySZOQtGQ9iiERPjUIN9FWs97ccSVvYri8jUu63O1REyMADosYu/7W7Udt/41lxQVE6BBNB8jZdMCqKsolWgXI2ZxUTGnSWRXmfW9+43XfO64HQghaqyLEa3OotgF0zvCSxq62Oia3tu1v9kg7/K5vt+2hljKp2pLkU3nsV3NzfQ2biYp9qRFUd4yqt//unUqIDJWqeqgqwOBQC8/8/Q84dt8wl8eXMYsyor6hFi4+M+3Y1n1vOe7Zvh2lQkNrayurq6tMTEwwNTVFf38/vb29viS25FF9I6UUhmEghLiuz7ze99+quN2oePPgmhnQo48+Wr4Advp36dKl697BeDzOe97zHkZHR/nkJz+57/dXV1cjhNi1MXI3HCSpvnzBSQ7dTXeLxabEcFWAh3+0l5/6mfschDqbzTI2NsYTTzxBNpvl7NmznD59+kAeinutVO/UgBgKhQ6lKnK8p9WzTFG8FaT1uFdrbYS9lSwUUXRwcEL4NCWVqsVVQY07G1uZeHqRzU3v55QgQ0HnlJZfsIwf+VelpynRHVJTJloS1IRA21JRC3v/vt0fG7ZVAlUh+FejRwldY4WpqqqKlpYWwuEwW1tb5HI5Wlpayo2xJ32aFbWAibuEqAZNT7VKCUhM94BCsaQcjmWiJAuxYOYUclsh0lshJ6HeAdYNXiBNBTOrIguCzKCOHpKoOUkgafpXzV3don7pmoprHBZQFZZXEmSaTHLNRUmJfTO2iqyjqc7lR63mBSiW1COwoRCwWfAhIWMjptVa0PG3vJR87N47rpqEeCPwzhPDRAmylq5IhNZ8eidqar1aLs/3rQjPjJFRvJaUgqRqWSeYEHR1entNqtz+2IpATbu7RIsoX4+SyEaeQHGg3NXXRF0kwMWnJgG49OQEQ/1NaMUBw7YtHRegqa2W4RNeCaQfhBC0trZy//33c+rUKZaXl/nOd77D5OSkp3L9atrp3SbFh4BXu6HwdqPinnHNlepf+7Vf4wMf+MCu65Rir1dWVhzLdV1nY2OD9vb2Xd+fSCR4+OGHiUajfOMb37imxhkhBDU1NddFqkthJddLGi+5mlNWbTfY1vZaVlYSdHU38KuPvoOpmQtIadmxZTIZZmdnWVxcpLm5mbvvvttXw3o9uBqpPgjN9H6xublJMBv3Ls94q8ULmwmqQhqZvO3hIgRaxkCPOB8uvq4BivDYo9XUhamtq0JZ1hmfsmZVllcTaNWKlUrn2YhAS+vo1dZ5Kn2msP2W5etcxKwAZpVzmREGNSXRthTwGVS4nUDcr7Ouyp+9Sa6zuob/+aF7vMdzFUgpWVtbY3Jyknw+z8DAAF1dXSQSCSYmJnjsscfo7++np6eHajVEyhYCI1SJmVcQriZEM6d6A190n8AXQ4ArytyUAiOnoKcD6KYCiOKN2+/u7RLM278vIawBUU6QPKLT8LTiIcb2dUXBRAYUq8rtTmcCVNf51lEfZXl9nfio5ZHt4fylQzVcUeQ5px+1zEuCSaVM7LM2u0RhOBtZC3qFHIY1lY66ampyac6fP1/+3W50+l4J7zo5wp/94+PUN0eIhAKkcwWW4ynCmupwK0lmvfpkP/qmZishTWBV98MrOoqhIIpG4PaejBLcDjIASs7AiHo/oyThCmwVWJ/eYPTeAZAw9kwMPe/c9sSz07QNN6PVVDE/7pSDnHvzsX2TUCEELS0tNDc3s76+zsTEBNPT0/T19dHX10cgELipnD/suE3I/SHMnR2mblbcasdTwjWT6paWFlpavJZnbtx///1sbW3x7LPPcvbsWQD+5V/+BdM0OXfu3I7vi8fjvPOd7yQUCvHNb36TcHgvUXheCCGorq6+LlINBxP5evmVip66vjHCxlqlgbKxqYb+oRZ++dffQSCoMDVjSVbm5+dZXl6mpaXlUMh0CTuRatM0MQyjTPBvFJmOxWLE43FO9XfAk06f4810nupQgFTOWUXqbqxjfMkZAb+bT7Ad7qKvkDDS2sjk80vkC/Zpc0lXUy0zK1u+2xnub+PS6gYib2BWBTyhL0bEdclJSd7VpKjknM1nSg4CWwKpK5YNmzuYRuKx43O/NpAOBlIKfRHAj58c3ffDbGNjg4mJCdLpNAMDA3R3d5evlbq6Os6ePcv6+jqTk5PMzs4yEG7kZWPRsQ2jINACrt/H8NkP9wiByuy+lKDnVPScSkFX8fil7XSaGjjJrIZFZksfpVi6b2EqxE9IWp5xJ/gU9wPQMiaFgIKWNhyDlRK6OxsZMyoD6IaqMBdPy8phudIRSx+k6QI9ZBt02JoX63JBMikdUZQ2CAN0H615aWtZ28BC01Q+8663caytmZWVFSYnJ5menmZgYODA/aj3AiEEd/R2MLcep6e5jsvzFvHsaIwybbvOFre8oTDSZw7ZPhsUiBsEk6DmKxVrgLWtNOGgRtZGgBOpLG6IHRxAzICKpkt61BDdR1uYe2GK5t4WD6EuYX12k76jKm1d9SzbJH/Xk6IohKC5uZmmpqby9Vgi19Fo9DXvUe2H26R6B9yKld1b7XiKOHRN9fHjx3n44Yf5hV/4Bb7yla9QKBT4yEc+wvve976y88f8/Dxvfetb+au/+ivuvfde4vE473jHO0in0/zN3/wN8XiceNyqWLa0tOz7ZnG9lWqwbhjXYzGVSee5Ml0hfK1tdWxuWtOdiiJ48I1HePePnEYIUXYrefbZZ2lra+Oee+459Glat8zl1SbTvb29nD59Gk3TqP/7Z9lyPfC6muoYW3BWfQI+pKK9u4HZuPNh7OcaYE9RrNdVqvMqF5+ep7OtloUV5/vrIjtr86uK50ggkcescg4E1VQes8b5XiVdwIgWs8RLywqVIBktDsENBSOklCPqlYIzUQ+3a5vrdUhRyNk7AyXoRTLSYAT5yXtP7ng8bmxtbTExMUEikShXoXd6kDY1NdHY2Mjq6iptl+d42bOGH1n2qRaq3mVSQjYepFDQkA4xsqsCrXoXAd7vTLiquwKL7EqBEYH4kKQu5v/AV3OSAqVGVe86yUQObGEtU8Ft9DDWyMB9vLafqVpobFMZOJoBULKgJRRLgm3TCgtpO4MkCLXyuloNkDQq2xlqqud4u1UQKWl1l5eXicViTE1NMTg4SEdHxw0l1w+M9PLHL32Xe0craXq1Vc5rJZ3XqQ8F2LINpg2fuHCpCJSsSXjdRCiqNQCTXglfe1OU6cXN8uuldS9pD9aE8JukEADbOeLPrjCxYd2bTMOkvrmGrTXns0YLqDS3VTHx1BShSJBj9x3j0kvzROurOHG232fr+4MQgqampjK5npycZGpqCk3TyOfz5UCtw8arUR1/veC2pvrmwQ3xqf7bv/1bPvKRj/DWt74VRVF473vfyxe/+MXy3wuFApcvXyadtnR0zz33XNkZZHjYGTNXatDYK0qV6mu11Ss14V2vrnrs4qJjerGksauuCfGxRx/mrnv6SaVSzMzMlOUyZ86cobGx8bo+d68oVapfK2TaPoA52tXMU2NzjvdUu/WPQNInBCbnM8dkhhTfFMXavEJrOMLS8jaldqj6aMRDqhWfymnlWKxzuKOrgfkN5/6oBemRWStZ3SNPAYkoCEJrAqTqkau4D6lGDZC0kS93BcDtRx1WVTLSQM1DX23dnrTU8XicyclJNjc36e3t3bOPcUkH+k71HP/Py9OOv9ndOUpQgybSxYKVgGk5ShmCfCZAIa9hojgry9an+ewAoAtwV8T3UhBTJNKwjiHdLVFykui8z0CgqOVWfdxBALY3M4TrQmQLOtk6g+1wslhql95Kuk0XbifCogBaWiAKVr+KhsAuhlADArP4w4cMQc4mjbH3boRVld9+6w8597/oMtHW1sbS0pKHXN+I6uEPnznCl//7U2yspVCFwJASxceHuqOpji3bYFoGFUTORJbItSnR0ibBlIKwyaRUVXi822tcg+NcwaC1sYaVzQoprmqJksx47ysANUIlsFkZ7Cc30/R1NBDfTGMWv3NFVRg40sLYM9ZsWy6d5+K/vMixh47Rd7LX04R+vWhsbKSxsZHx8XFmZmb4zne+Q29vL/39/Yfu7HKbVB8iblvq3TS4IaS6sbFxx6AXgP7+fkeD0pve9KYDtdeJRqMkEt4qxF5xEM2KdukHwPZWhp7eRh795P9EbX2ACxcuWBW9tjbOnTvHM888c+jhC3YIIcoNiDeKTG9tbTE5Ocn29rYvmS7heFeLh1TnfDSRaR/pwPJ2ippwkGTWWW8a6W5mfNGaOagOBOgNVFNfHeClMacjjerT+Z/y8c8uYXEpTqBR8VcxuDvuKMoXIs5lShZCGYVSadrto+3m9Jl0HiI7Ex+3M4qmqigFEy0u+eE3H93xfWBJkCYnJ1lbW7PcWE6cuKbKl1+zohIwLdJq+46FJjHyAqV4Gpi6oJDVyGVVTFQcbNivMOyWdYBvw6i1jk9V2w6Xzjo5BFKV1M66PlQUZzlMsSOvb6ut5rK+Qa7TKcPxkurirmTBKOqno3oAfd2wIreL783ag3wMKNhItJ4zy37OCoKMjU6ebm/lSGuzdyeh7I/sJtdDQ0O0tbUdKrkOqCp3D3by+CuznOlu5bnFZVY2tzzrhQPeR1a1UEkiCW4WCKQEQg1Yv4ft92zprGN+zTU49iHtjbVVDlK9Ec8QqdFI57z3G2UrTygUIJ+tDH5mXpln9MEjvPL9GYQQDI+2c/mpCc97p5+L8dHPvNf3uzgIhMNh6urqGBkZYXJyku9+97v09PQwMDBwaOT6ahkSV0OpkHMbXtyuVN88uCGk+tXG9VSq4WBItb1JMRTW6Olr4gMfvp/l5Tkuj6/R0dHBuXPnqKqqKn/mQcaG74RSZToQCJTDYzo6Og614rBXMl3CsW6vdn952yvnWUukqYuE2HYFLnTU1zC+5IzWrgkHCWgqp1tbmH5hiSv5dWpHvI2zKZ+myKXVONYcu/8DoLexlsUF7yDOiHjJaKFBLRMrJQeBdQWB6ti26fpq3F687teK5uSR7iZFaUq0bUlQU/hX9/jbeaVSKWKxGCsrK3R1dV13KEg0UEVfpImZdEUCJQSYWRVR7W1M1PMK+VwA3VCsFXX2dLdyyCDKC31WVLC2aT/NVaDgWqbISvVYQKoXpOaUgghFEEgavk2KJaRrdHJhV2XavV823aSasX7X2m2NrKETMtRy9VlIsKWYW/aJts2YttMsompWxVtCsCD44L1nd9zH8iEXk/3a29tZWFhgfHycWCzG0NAQra2th0Z8HjzSx7dfnGJ7YZugKogXvPfcgk+D8ImjnWTXc0wsrlLsQyQS0EjbBrFrW2mPk+LGlrcJOuhD2tsbaom57h8AXF5l6GQXF78/7Vh88YlxBs/0EQqqvPL4mPd9wC/+8fvoHt69Uf96UNI319fXc/bsWba3t5mcnOQ73/lOmVxfa5/Sbp95u1J9SLitqb5p8Log1dejqYbrJ9WmKRm/WKmAvudfnebU3fVcuPAinZ2d3HfffZ4b3EGHznj3ySnz6OnpIRwOE4vFmJ+fZ2Rk5MClJ/sl0yUc9yHV64kM9ZEwW2mn1rqjsZbteWfiYSHrtecKC5WOVIDLz1SCGLYS3mne5dUEbt/bTLZAa0cNK1v+A7W2mhpmCluOZSJbQFa5jtUwyTcHQEqCGwKRFagFYem7S+/TpUMDLgxpBdPYX9v8tRUDTLcNm4vr5ZIFNB2O97WgumYiMpkMsViMpaUlOjo6eOCBB8oDvevFaLTLQaqh6OKB9RUXshr5bIB8ToHStPhu/G1vPY276Kq9zhseUi5AGrJSTVch3WlVrOvHKxuM6ip535I4pNphPhR3fpaU3ruvUTkoJQehrCXjEFKQ0ypal6gaJG5WBnvhgFquRis56Th/cjkdVRWIhKQhGOLsoHfGYCcoikJ3dzednZ3Mz89z+fLlMrluaWk5UHKdTCZp1ZMENUFVdYhT0TqeXV6mPhJiO10ZJG/aeiuCmsrplhbEis7kxKrj5x0caOHlyco9N18waG6sZnWzcs1uJ70DZj9Xn2iVdzCspPIEVlNcXJ+g90QPs5etmchQVZD+Y+3o2TRLc/73h7e97z7e8GNnD7Uy626sr6ur46677irLuL773e/S3d3NwMDAgV3f10uqb3tU74zbleqbB68LUh2NRl9VUj07vUY6nScQVPmRnzhGZ69JVVUV999//47Vv4PQcfthN810d3c3HR0dzMzM8Pzzz9PQ0MDIyMh1O45sbW0Ri8XY2tqit7eXU6dO7UtC0FJbTWNNFRtJJ+ntaKjxkOoqn0pTsCoCW9Z6HbURGnIBFl9aY8NFipdWE6iKwLBp31OZPM2NNaxtOtetDWk4jSIrMFMG7Q01LNmmkYcH2phYcFa71EQOsyNEaEGxqpwCRMGAUOXBJHTAxsVFwWmVphTAsOea5CXY7PiqAxqpUqVaSiK6ipEykQLee9+J8nrZbJbp6Wnm5+dpbW3lvvvuO/Dm2JO1Xfy35Rcr+4rAMBRyy0FyiooUlYqwB35F4FLp0b6+hqWXt0/tK1iEdS93O/dn+yk6BGSaQA9LAklBaAPOtLby0oUKiTMBvQayjZAYkFbjoHBuw4/kKwUIrYJUlLKEQ82CXl1Z2cgWoHj5CF2S0fTyxhS9YsOnAKoBxCUKcNeRvfkhu1EKYiqR64sXL5bJdXNz83URoWw2y+TkJEtLS3R1dfHg0T42tzNMXVqloStMS3W1g1QvbSXQFMHR1mYSM0kuzS7Q19Hgs88+0o5oxEGqE5kCkXCAtE2+sbntHYD7WX+1x/P0nuwkWBVCCagMnepGlSZTz09x8X9Ymu9oazU19VUktyr3rf7RTv7dJ3+sHJRSCmg5aDK5k091bW0td955J4lEgsnJSb73ve/R1dXF4ODgdZPr25XqQ8RtTfVNg9cFqX615R/PPxujJhrkXe/t4+w9VgrW1abSD1r+sdcGRFVVGRwcpLu7m1gsxlNPPUVHRwdDQ0P7nv53k+mTJ09ekx5XCMGxrhYevzzrWB4Oeqvcmbw3rGF5O0U0HGQoEmXyxRVKVDdS5XygGoZJd3s9c0tbjvc311d7SLVZ2CEUAsjF8+SupDhxvJULVyzqXe3jGCLyBkhX6pnbK9fdX+e+D7lPEdfflQIgJVrKImeRoEpSmAQ0hXecHiafzzM9Pc2VK1dobm7m3Llzh2bbeKK2m4BQGYi0IQshXl7ZIpkvaYNdJNhNlhU80esIfJoVsWz53CTcx9ca1ad87bbWw5J7YNrsvhRrvUIUCrWQbod/ksuI+4SVcqgVBz7lfZAeXbwwQLpOX20TtJRAKQgMm0ZemLb9lJKM7a6tZkGP2qRCxb8JHRrMIMlUvrwbP/PGM1wPVFWlt7eXrq4u5ubmuHDhApFIhKGhIRobG/dFDAuFAtPT08zOztLS0sL9999PJBLhbXqA/+W/P002bzBaXY/hUih01EfpUqu48FylR2VlI+mZTcr6WNuFQ97HXVtjlCnbYHdpI4EinJdh0iUBU4TgztZ6nv3e98kVCf/xB45w6Rmn9WdiJUXnkVoM3SSTzFFVE+LX/5efIxwJIaVESnlo5PpqBDcajXLHHXeQSCSIxWJ873vfo7Ozk8HBQSKRyI7v2w0Hoam+DX/crlTfPHhdkOpoNMr8/PzVV9wB10qqt7a2mJ6eZnpqlo8++kOcPnN0z6TyoCrV1+rmEQwGOXbsGD09PUxMTHD+/PlyuMDVbpwHRabtONbd7CHVGZ8H58JGwkHIVEUwVN9AfCbO5ISzthyNqA5SDVAXDTPn7FUkEPB+V+FQBPBWtVRFMDezTi5nEPvBInfd2cUL88skM97gCimc+lfAIe0Ar+2yJ+TF3cRo19rqkkBeEI5XCGHJIeJUd2vZQ7qhoYF77rnn0OOq+yJNGPEmnlhJQCnWuaRjthNMwc4NhwfZN6vg9fwWVgKiI+FStWYIyndLs/jPKJ5mpZyZUGVMIwB0S79O0LXvpkS6xljCBDWrgioQhpPV6zY5h5oBw8557LtesKQfUUMjv62TIV/+e104xPFubzrptUBVVfr6+uju7ubKlSu89NJLVFdXl8n1bjBNkytXrjA1NUU0GuXuu++mrq6u/PcHj/bxmW98h3BQ5dIrS5y827LYa6utpkurZuzCEp0Dzi8vkytQX1vFli1ifNMvYdVH2lHj6nOQEprrwqxuV7a1sp503FPuPd7Dr/67t/OfwyH+219+GyklFx8fo+tUO4uXnDafC2OLDNzRx/yswS/+8U/SOWBJ2UoE+rDI9V4tYKPRKGfOnCGZTBKLxXjsscfo6OhgcHBw3zNVhmFcl077tvxjF9zWVN80eF2Q6pqamhtaqd7c3GR6epp4PE53dzf/86/86L5J5fVWqg/KGq+6upozZ86wubnJ+Pg4c3NzDA0N+YZE2Ml0T0/PgZDpEo51eXXVC5veRqN4JkdzbYS1RJpj7c3k59KMPzXPkcEWlnE2D9ZFIyxvOOUjftPG6xtbPsv8z6e+9gbmL1qabgFc+sE8I4NNbGe8le1wbwNbqm1gYEpHEhxSepsUXV+n4++y8nctKdGSkBEFx4Mqo+tIASfrFba3t7nrrruor6/3PZaDhqaoDEQbWc06B7hCF56q7XXdcPcjH/GravtcdlKRKDkrNVGqoiLf2G0/RfF8MgRSl5X1FZAh5xtFVpSDY+waeiUnHaElAaFYQT4ApkS3zdirOVASkoLUy4qXEu4b6dllR68NqqrS399Pd3c3s7OzvPDCC0SjUYaGhmhocEoypJQsLi4yOTmJpmmcPHmyHGNvRzigcWd/B+vhJFMz6+S2ctzd0sbYy8vlAB1N8/6YTfXVDlK9tpUiqKnkbYmM8aR3YOuHlsY6B6lOZfM0NoTZSFrL3nP/MQKhAP/2D36cjY1Nnvz6DwBYfGWFgTN9TL10xbG91elV/t3v/Rse+pG7PJ91WOR6vwS3pqaG06dPMzQ0RCwW4/z587S3tzM4OLjnmavrkX+Ujv82/HG7Un3z4HVBqmtraw9dUy2lLJPpZDJJd3c3J0+evGZbvGutjh+Wz3SpmrmyssL4+Dizs7OMjIzQ3Nxcbn45DDJdgp8DSDydo6U2wqqrKjXQ3EAXVUw+s1zmV+Ggj9baZx8TSW+qWirjZVnrW2mqG4Kk3JXuUBD3nIiSlxhbGY4MNjNWTIurrw6zZmRx+DHruJoUcTQhioL0vrYRMM0QGEISXJcoukCY0lHpVrA4ZFAR/OTbHrxhHuh2nGpo5+lVF6neq2PHXpep0vtHlR0q3T4SEPsla4CSUyyvawHSFrjiyJzxcfIQts8rkyMB5BXYlqCZyLBl/abkrL+LgsS0kWilgEMCYR9UaTattZayBlEUz4fqYIBESaIk4QNvvtN94AcGTdMYHBykp6eH2dlZnn/+eWpraxkaGqKuro719XXGx8fRdZ3h4WHa29t3JYv3j/Tw7eQkALMzG+TiBcfXq/ukHEZcvvVSQmtTlLnlrfKy5Y2EZxzknqkC0Hy8o8PFYKn6mjD3jfZw5coVYrEYb/7QvUTrorzwzxdYmV1nZWqFps4G1hc2aWiv40d+8e288+feSFXN7gT3oMn1tRLc6upqTp06VSbXjz/+OG1tbQwODhKN+uS123AQMeW3sQNM6ZUG3uy41Y6niNcFqT5MTbWUko2NDaanp0mlUvT09HDq1Knr9pjer/zjRoS2CCFoa2ujpaWFubk5XnrpJYQQmKZ5YDKPndBSW21VoF0EuqW2pkyqwwGNk83NBFd1Ll1ccTyI8z4P4njCS6AXVrY9y7aTOWqqwyTTLqu+xlomFpxuFskt7zajNWGmr2yQfHGZO+/q4vnZJdqboiy71g1rGmlbfVG4fn7FcFYfFR0M+2mWNgllKFc8VaGg2yhEQFUwMLl7sOtVIdQApxrbPMvcEhfAv7K8k9babY2nYElK7Hc3AeQFuCrEvg4iQRBJUPIKUikSGoEl2/DzsvbRdYudpCpFWYtAgK5CQiKERGSKv1kedNslZHdyUXKSvF35YEqEAcG4S56CsweoIRJmoO3wf+9AIMDQ0BC9vb3MzMzw7LPPoigKUkqGhoYcUfa74f4jvfzjD8YByOR0mmqr2IpXmv3iPnHifqirCTG3XHnt5wCyuukttvh54Dc11LEQX+F4e5jHzz9GIBDg+PHjtLS0cN/99wGwsbTFpacmmB9bJNoc5a0/9SABn5Cq3XBQ5Nrt/rFfRCIRTp48WSbXTzzxBK2trQwNDe1Irq83pvy2/GMX3JZ/3DR4XZDqg3D/yOWchKpEpqempshkMvT09HDmzJnruqm4P3Mv8o9XIwExkUiwvr6OlJLq6moSiQTZbPZQLQDBkoA8Fp9xLAsFrIf0ma421i9vMhabZ2TAW9Xe8unqX1pNIISTgOQLJtHqAImUs4LV3hxlYtZ5DtS4GiWrQhpXZr1+tql0sdFJwqVn5zl+pIVQKOCRcmg+QTMOuG9CpdeGpD4TIB8vOCrXiuo8OFksCf/0dTasXQ98SXWgWKq2P1BL+gV3Y6KP1lrJg+k2LjC936XdGaMMFWeTmwlqXIG8QIaEiysXv0/3phXLdaU8i+BXubbvl92tRQiQlutH+RhLuyYFelXl91PtWm9pfWeRbYFhgqJXrPQEkCoUytt66FjfDjtzOCgUCuV03OrqauLxOBsbGzQ0NOxJt9/VWOtIGmysjzhI9cqG916eznrt8dx2keB1AImnctRWh4inKtf2hs+9wihY9+KzA/VEIhESiQRra2tEo9Gya0Zjez0P/OjdVz2+veB6yfVBOXFUVVVx4sQJBgcHmZqa4oknnqClpYWhoSHPb3nb/eM2buN1QqpLmupr9QW1V6qllKyvrzM1NUU2my13wx8UmS7hapXqV4NMb29vE4vF2NzcdKTrZTIZJicnefzxx8vBAoeRBnmsq4XHLjpJNaZkNFDH1JOVcJ2NTe+sxMpakoCmULBVrAu6QWtTNcsufXRXWwOXYs6mRj/nAOmKD+9ra2BqxdnlqGkKs/NOoj01tsrosQ5EVan0aiHvImy7NSGWXqsZSSAOeak7q6hSenyTC0iqAgrJ+RjzYSs97zDPFz+0V9XQHI6wZvcOV4CcABfhVbMCI7K7G4q1zEfcvFepiL2qrYMat1IbfSUpJQcSH94gNVGuWCsFr7MH4O9UgiXzEViWE7pNJaBmJbrNBaRctTYloQ2LuZeSO+3nRkQLVCLOJfzsm+/w2ZmDRz6fL/vct7e38+CDDxIOh8nlckxPT/PMM8/Q3Ny8JynB0a5mFqc22U5kqXL5u+cLhuXIY7PEdLvzAA49dQl+13FLQ42DVK9upgiFVHL5yvtX1rcZ7qjjX7/7bWiaRiqVYmpqiscff5yOjo4D9Xu241rJ9U6WeteKqqoqRkdHy+T6ySefpKmpieHh4XKj6W1SfXgQ3Hoa5Ft1TuLGPlFfJRxETLmu66yurvLMM89w6dIl2traeOCBB/bkhnGtn+lHqk3TpFAooOt6eb1gMEgwGDw0grS9vc0PfvADnn32WWpqanjooYcYGRkpSz2qqqo4efIk99xzD4lEgscee4yZmZkDT4S0h8BEq4Lc3dLK6vOrzE06JRjrW2kirgexKSUdLd4qWUD17mPQR3+9ubXlWbYdd/pmh30S9fq6GjwaUE1TuDSxRMF+lzQlWbu4w92kKKWzsm1K1DQEt0CRAlUIh4uF21tXWK5wPHznUY4cOVJ+MC4vL9/QBiEhBKcavNVqxW/86Hf6+C3zlYp4j8kMsiMpF1mBsl208aAoSfFZV/hUwEv7IIyij/hO40l35b301qLaQM0BttkKu1uF0CVGlUDNSsLr1rplQmVKh3e5fXaiubqK7qb6HXboYKDrOpOTkzz22GNks1nOnTvHiRMnyo1yoVCIo0ePllM5n376aV588cVdZw8fPNJLW6tFvIXPfa2h1klgt5NZImHnF78V94Y5+TmAVIe9krX2Bifpj6d1fvwtd5bv9dXV1Zw8eZL77rsP0zR5/PHHeeWVV8hkvJ95ELAT6RK5NgwD0zR9r9/DIrjhcJjjx4/zxje+kerqap5++mm+//3vs7W1dd3yD+C2/GMnlHyqb7V/h4SNjQ0eeeQRamtrqa+v5+d//ud3vd9sbGzw0Y9+lKNHj1JVVUVvby+/9Eu/xPa2Vw56NbwuKtXRaPSaNdVSSlKpFFtbWySTSfr6+ujs7Dz0Eblb/vFqVqY3NjYclemdUFtby1133VVuTLpy5QrDw8O0tbUdyM3yWFczihDc0dnKwkurjCWt6nRttIq4q8GwrSnK1JyzQhz1aRZqaKhjbtX5IMz5WPXlCt79X1pNoIYERvHmsLHqvWgjVV5/6t7OBi6tOwcCAak4SLa7SVEpVJoYtQIE1ovVzVL/mymdhM11vwoHNTJS50PvuJe66jCtra3Mz89z6dIlpqenDyVBcyecamzn24tTzoV+2mafU9uvgmwGS/IR20K/EBgVRF44nTdMEBmBoqserbbQfQhySUPts2+y+J6dIBC+nL70HmHYDkKCYQvxUbNQJQT5tCVVsUfTWymaNumHoZc388bRgZ136Dphmibz8/PEYjGqqqq48847Pa4fdoRCIY4dO0Z/fz9TU1M89dRTtLa2+tq33dHfQaTGunb8vOerfLTKrY01TC9sll+vbCQ9YU72inQJ0udXMXXneu956DhvvmvIs16JXA8MDJQb+14LlevDrhqXfsuBgYHyLIRhGKRSKYdF4m0cDG67f+wPjzzyCIuLi3zrW9+iUCjwcz/3c3zwgx/ka1/7mu/6CwsLLCws8PnPf57R0VFmZmb48Ic/zMLCAn/3d3+3r89+XZDqa5F/SClZXl5mZmaGXC5HIBDgvvvuu2HTWyX5x81Apu0QQtDc3ExTUxMLCwuMjY0xMzNzIKStMRrhbHUTl59wuke0NNV4SHVNtZfM+g2ssjlviXTNR7O5vpUmGNDIFyrr64ZJR1M9c2vbNESrWJqLe7ihn5tITSSInnGuGUFlmwojU3Sn04MwACmJpBRk3ERxhYcYLgIphJPAKapgsKGBumprYGFPySvZodXV1TE8PHzoftWnfZsVvUJkM+wlyzKE1Zhov3OpQI5yymBlA167PKUARvHUEHkQSQ3hZ6sHvgEtiOJy9/qy4uAh3QMcANN/kICsNKSatkFUtVRJasXo8bxES0gKAese4HaBsXuXe6Qfbzl41w8pJSsrK0xMTACUG/b2em8tVTtL5PrJJ58sO0yUgkdCAY3u5lqeBzYT3uqvX3W2xhUnbkpJV3Mt86sV682V9YTnnHKHuwDU1FTDeobWhhp+42feyN2ju1sSllwzUqnUa4Jc3ygpRmkWor+/n29/+9tcuHCBubk5hoeH93W/v22ndxXcblTcMy5evMg//uM/8swzz3D33VaPw5e+9CXe/e538/nPf57OTm+y7MmTJ/n6179efj00NMRnPvMZfvqnf3rfoUavC1JdW1tbrjhfTctnmiYrKytMT09jmiZ9fX0Eg0EmJydvqF5MURR0XUfXdYQQaJqGqqqHSqZL1njXQqbdEELQ1dVFe3v7gcaeRwPe/akKe6tWfvfogu5duLrulQWtb6WpiQRJpisPWymhs7WW6flNx7rBomSju6mWsTknGQ8FVWZd6wMkkzkK1S4CchXpsDAhvAoYFrGSrmG+OxTGrfvNGQY/9UNnPPuiqioDAwN0d3czNTXFM888U25EOuiY8hJONHhDSGQQq7KsuirLGZCuCQYlh6NSC6DowqpYOza68z6ocQE5peyUIv2qzztwRD+yrdjlGHksqzw7/MJsitsSCJS8dNgpqsUfNBA30TLC8sYufZYpMUo755J+FMoJldBaE6G17mDTMUt+9ZlMZke/+r2ipNMtkesnnnii7I1cVVXFSFczEljdThEOKBQKlZk7Pys8xYfU10WrHKQ6VzBocTmALPvcAwqG5N0PHuMX/8391PjMNu2EErlOJpOvqub6et0/9osS6XjggQdYWFjgueeeIxqNlsn1bVnH9UFIibjFBh6HdTxPPPEE9fX1ZUIN8La3vQ1FUXjqqaf4sR/7sT1tZ3t7m9ra2n1Lml4XpLpE4nYj1aZpsry8zPT0NFJK+vv7aW9vR1GUsl7sRsA0TXRdJxQKkUgkmJycZGho6FAa/0pwk+nR0dF9R5LvhIOMPQfo727k+y84kxWlj3Y77pOotpXIe6pU24kstdGwVz7SXEty1pmO5lf91oo66mzcWwXv7WpkPLbqXF9TmFvYQj/mfMjkcJ1fNj9kLWk1Iwq7lMGenIjTeg1TYtrXlVbS47vOHvHsYwmBQIAjR47Q29tLLBbjySefpLOzk4GBgetKSfNDXTBMf00908ktx3KRF0gX71B0UQk7KcFXQ7G3ZaYG2rqCNCuEGixra/cVLnfwtpaBYrW4eEkKHasqbvs8r7ban1SUpB+WvKeyPGvqhNdMhFRQdIlhI9ymjWALgzLhFkC+pCU34V2nR3w/81qQTCYZHx9nc3OT/v5++vr6DqzIEIlEOHHiRJlcP/7443R2dnK6p4X2lhqWV5O0NkWZX6roG+1NiiX4RZP7eU431TodQNLZAtFIkERxEN1QW8W/+5F7uP90/zUfU01NzatCrhOJBOPj4+VCjGmaN8SqrtTjU1VVxcjICP39/WXP8urqaoaHh33DfvyO4TZ8UEpxvZVQPJ543BniFgqFrot/LC0t0drqLNxomkZjYyNLS0s7vMuJtbU1Pv3pT/PBD35w35//umhUDIVCBINBX6G6aZosLCzw5JNPMj09TX9/P/fdd5+jAnOtQSz7gWma5PP5cmW6oaGBc+fOoes6TzzxBFNTUwe+D/F4nOeff55nnnmG6upqHnroIY4cOXJghNqOUuz5fffdR6FQ4Pz580xOTu77mPp7mjzLEj46yaXVuId8pdJ5Guq9D7S2Jm81L1LlU6H3HVlb49K1VS+JD/k4DfR0NJAzjLIEAbCaFO0Nk6bVpKhKQWhdEoo73ebc0dohVXWs4G5SDGkq50Z69vTACofDjI6Oct9995HP5zl//jzj4+MUCt7K4PVgtLbZs2zPGjuf1Eup+bxZrTTDiAJomwrKtgq6iscsz++BJXbWSIuSxl5KRMFJBiwPalF5CLp9tO2HUty+faYhkAGxJRFFvYh9alzozsAf+2GEFQUpIKoFCGbg377Nm+C3X2SzWS5cuMBTTz1FJBLhoYceYnBw8FBm7Ur65HPnzlEoFJh65UUao9Z1WOvqh9hOZql2NSP7RZPrPveXgE8iY3uTJXl66I5+/vPv/sR1EWo7SuS6dC9//PHHuXjx4oE3NObzeS5evMjTTz9NJBLhgQceQNO0qzY0HhRKFfLSdVDyLH/jG99IS0sLL7zwAk8++SSrq6s77sdtQr0zSpXqW+0fQE9PD3V1deV/f/RHf+T7HTz66KPlc2ynf5cuXbru7zoej/Oe97yH0dFRPvnJT+77/a+LSrUQgurqagepNk2TxcVFZmZmUBSFwcFBWltbfafMDpNUlyrTpf1UVbUs8wgEAtxxxx1sbGwwNjZW1qpdLZHsaojH48RiMdbX1+nu7i535d8I7Cf23A/93V6d3tJqHHcJuqBLmptqPPro5oYaNredDzQ/+Yifc8m2T1jMylqCjqYoG7Etz9+2tr0Pzmh10LJJs/1+VaZKJlD5PDVnTfEHEyBL3sh2vbSrWU9eJZkqGFD58Dvu2XUdN0q/0/b2NhMTEzz22GMMDAzQ09NzXYQqm80Si8WI+IRueCQsYHlYu+CReVCUj/iFwGSFFS+es75zoVhaaumOe9/hKxTmDoYhGpandVo4JSul9wmBSEvMGstf2vAr9stSlVtiVAFSEtyU1Bga6RLLl04SbZeeKDhlMHrepFoKcvE8/e0Nvq4We0WhUGBqaoorV67Q2trKAw88cCgVVj+UIrMTiQRPzv4PLgL5gnfg3NJQQypTkVetbaXQVBXd5vCx5XPNbm56O/rrasL85r99Ew8/cPRQyF3pmJLJZFlzfRAzQYZhMDs7y9TUFI2Njdx3330O2VZJFlIq1qiqeigV4ZKG271dTdMYGhqir6+PK1eu8NJLLxEOhxkeHt6XDv91j1tYU33lyhVHH89OXOTXfu3X+MAHPrDrJgcHB2lvb2dlxWmJq+s6GxsbtLe37/r+RCLBww8/TDQa5Rvf+MY1KQReF6QarJtaIpEglUoxPz/P6upq+YJvbW3d9eJWVRUpJaZpHphObTcy7UZjYyPnzp1jcXGxHBF+5MiRXTvt/fBqkmk3dos93+236Olq8Aa25A0rsCXtLCs21Vd5SHXYxzXAL/bYz45rcTXu+exkOs/IUCsbbDnWDQUtmYcbqVS+HC1dXlcoZEplTVMS3DZBqmWSWRMMkDB2tpXI6YZDLuJuiGuvj9Lffm1NonV1dZw9e7bs6DI7O8vg4OC+tbT5fJ6pqSnm5uZoaWnhh++4l7974puOdSoE2iZ1COHVI2sgcsWmRRvKITASlLRAFOPFy4mIpa37OIhIv7RG2HkuTwU1IyzHjx1WkaqAvMTU/Nco6anVrCUlCWyDQLEGUMUdtBord/htCxKKDYsBoSC2dQwEMgxnOq0+kP1afhqGwZUrV5iamqK2tpZ77rnn0BtXd0I0GuWdD9zBf392nrxPUaMm4jwBpLRcf+ZtqagrG0nPNYsSACpk+8RQG7/yUz9EV+vhu1a4yfX58+eviVxLKVlaWmJiYqJcfPFrDHRrrnVdR1GUa44/3wlXiyjXNK08KJ+bm+PChQsEg0GGhoZoa2sr7+tt7IBDtqB7VVA8ntra2j3dY1paWmhp8Qa7uXH//feztbXFs88+y9mzZwH4l3/5F0zT5Ny5czu+Lx6P8853vpNQKMQ3v/nNax7svi5ItRCCqqoqvvrVr/IzP/MzPPLII/zyL//ynkfKpZvFQTR/7IdMu4+hs7OTtrY2ZmZm+MEPflA2379aQ1lJm/1aINN2uGPPL1y4QE1NDUeOHNnxIguHAnS21Tn0lQDtrfUkpp0a6JDPKFP3CYTwI9BLawk0VaDbAl503aSzrY6FlYoGrCYSQs17SXlfTzNjE87RsqYKrsxvUuh2nnMlyy81KwmuS7S8sCqXRaRTeQhXzg93RddBtFzSEKTkzaeu31atqamJxsbGsuvDzMwMw8PDVx2Q6rrOzMwMMzMzNDQ0cO+99xKNRskbOppQ0KXtu9MsWYVDiyyKjYkR53aVgsBwR44bAnVbQF7xyDvs8KuIl3ympeuOKFX8mwxlkcSHr6IRzYK5w+VZkpaoWYlIFQmOKa2o+tJmZYXpC93l+lHa9ZykzlBIIpACAqrKz/3oG5mcnOTKlSv09/dfdYZBSsni4iKTk5MEAgFOnz5NU5NXanWjcXKgg1BAwxTeR5XfN19XHcLuDaQbJvXVAbZsCalrW2nr91MFP/vDd/PIw3c6EhxvBK6HXG9ubjI2NkYul2N4eJiOjo6rPscOm1zv1aNa07Ty+Tg3N8fFixeZmJgoD9Rvwx+3LfX2juPHj/Pwww/zC7/wC3zlK1+hUCjwkY98hPe9733lc2x+fp63vvWt/NVf/RX33nsv8Xicd7zjHaTTaf7mb/6GeDxe1nq3tLTsa3b2lifVqVSKr3zlK8RiMeLxOH/4h3/IT/7kT+7rS7KT6mttGLxWMu23L4ODg3R1dTE5OcmTTz5Jd3c3g4ODnn1LJBLEYjHW1tZeU2TaDUVR6O3tpaOjo+x52trayvDwsGfKOZPJ0FgXYN7VbxD2kXAUfAi0W/oBsLyWQNMUR8XaMEy62+uZW9pyrNtQW1Um1SeH2lgcW+Wlp2c4daabl8YWy+sFNe/51dwQZnk5jR5xXnYZQye0IVEyAiEUTNV5t7FXOgVOEh1SVbJm5TiFy7otqKi8/01e149rgX0QtLCwUPa4LjUh2VGqeE5PT1NdXc1dd91FfX19Zb9UjeP1Lby0uex4n2IIDJfkwwpc2fkOLLICJaUgsgICVycHbuJcxlG2c+wAALTvSURBVA6NQH6kXk0DiB09q8vr6QKRkRgR79+0PNQsmUhVKScjOqLUpbPKrRhgFE9zFYGhSQIJEy0nKKjFxFcF7hjsoLGxkYaGBjY2NsqDoJLLi/2eI6VkbW2NiYkJdF0/EHnZQSIc1LjrSCfPjS14JhLWN7Y862s+111DXYStVGUQnisYnBpp58P/5n5GB7z2jjcSfuS6q6uL/v5+D7lOp9OMj4+zvr5+zc2ih0Wu92vhp6oqfX19dHd3Mz8/z+TkJC0tLa/J59NrArdwpfow8Ld/+7d85CMf4a1vfSuKovDe976XL37xi+W/FwoFLl++TDpt9WE899xzPPXUUwAMDw87tjU1NUV/f/+eP/uWJdWJRIIvf/nLfP7zn2dgYIDjx4/z7//9v+enfuqn9r2tkv/nteiqD4pMuxEKhRgdHaW3t5exsTEee+wxBgcH6enpKXulvtbJtBuBQICRkRG6u7s9seeGYTA1NcXCwgJtzRFeuux8b6HgU4He9jYurfgQaNOUdLfXcWVxy7FuXTTMnIu8K4qgrSlKnVAZf3auvPyV5+c4fUc3LxaJ9cam97NrIiGWRNoZRW2AtilRKOoIXBZpQpeYdk1tTiJt1VFNUcD0Py9FXnKms5lQ4GAvc0VR6O7upqOjg9nZWV588UVqa2sZHh4mGo0yPz/P1NQUwWCQkydP7tj1f6qxzUOqfasXvi4eEjUuEBkFKYRVmd7pme5mYwper2v8ZSGAFaxj24AoFKUbwuva4flcrIq2EcYVziOpXVMw86aTcNtlKrrTu9q0R5ErKvl1A8W00jRzhrVDUoWff4+lnxdClGcYVldXmZycLJPrzs7OslNEMpksO/Tc6Nj6veDcaC9PXJilpa6KDduguOBj/J3LeT2na6sjQIVUv/uhY/zijz9AtV8z8quE3ci1qqrEYjHm5ubo6OjgwQcfvO77+UGT62v1xVZVld7eXjo7O6/ZvvX1AGHu0Ex9E+Mwj6exsXHHoBeA/v5+R8Psm970pgNr5L2hpLoUBfn3f//35dHDn//5n+/qW/yhD32If/7nf2ZhYYGamhoeeOABPvvZz3Ls2LEd35PNZjl69Ch9fX389V//Ne985zv5kR/5kfKo5Fqw32bFwyLTbtTU1JRTDEtTaVLKm4pMu1GKPe/t7eXy5ct85zvfAaxpmHPnzqFVL/LP5522epu+BDpJQFMo2Am0lHS11nHFpXeurfZOuSoulwkhLP2zXMsw46p4CyxiffJkJ3PrcRaWvc1QUqpWk2Jxu1pKUpcUZGxsS9Elpk3qIXTpqL66CV7BFbssBYSFilzPo+Xh1LnDq8T5eVwrikIwGOTo0aNXlYacamyDSecy0y9e3CbzEHlQkwpSV6yDtculFbxSjRLxdU1k+Eo9drg0ZUBUiLm00g0rEeE7Hh5KvtSPKtDSEt12m1OzgoIBWsF2vNI1gLL91sKoWPhpaRPyOkoxMj0oBXox7KeuOswJV/VVCEFraystLS0sLy8zPj7O5cuXkVLS19fHmTNnDtWy83px7kQv/J/QUB9xkOr17YwnMXFl3Xvd6cWm42gkxK/9zBt5w9nBw9/pa4S9STMWi/HYY48hhKCurq4snTpIHBS53m9Aht9+3MYuuF2pvmlwQ8sSjzzyCBcuXOBb3/oW//AP/8B3v/vdq/oAnj17lq9+9atcvHiRf/qnf0JKyTve8Y5dCW44HObb3/42jz/+OA8//DBCCKLR6K7Z71fDXkm12xpP0zSCwSCBQODQqkCJRIK5uTlyuRx1dXVomkYikSCb9Xa+3yzI5XIsLi4Sj8epq6sjHA6TSCSsqPgub0PO6loSzWWVZUpJW4tXm70XAg2WBV8JzQ3VDDfU8dITM4SDAerr/J0QLr88z7HuFoJBZ9VGVQRz85sUIlbXVHjNJLgFuJzqPKN3t0WzazcNmyZZGJJA3ERdtAg1Et7zlhO++3lQkFKyubnJ+vo6wWCQaDRKNptlfX2dXM7r2GDHqQYv4TcD3oeHDIASB21VRWypSMOyEFR8ejd9qx8+y3wf4Yr/ulKzyDyAmsKp1y4ReR8I23KhO9dTi9zQTqJrhObYMYcftQ5ICG6bBFLO5tryegJ+6PTO+vl8Ps/m5ib5fJ66ujqCwSCrq6tsbGy8phPtOptr6Wmto8qdmGhKWhudBZl4uvhF2Zclc9x5rIu//L0ff00T6hKklKTTaRKJBOFwmGg0yvb2NvPz84d2Ty/NxiqKUibX+7Hiu94Ex9se1VeBvEX/3YK4YZXqa4mOBByku7+/nz/4gz/gzJkzTE9PMzQ0tOPnHT161PG6pqbmUEn1japM22HXTHd1dfHggw8SDofRdZ3p6Wm+//3v76hNfq0in88zPT3NlStXaGpqKldnpJTl2HNNC6CqCobhrEB3NkeZczUw1tWEmXN9ht/NO+0TVbxYTGI7MdjG3CvLzGas33d5OU5TUzUtzTWsrlXOqbbWWkIBlWefjNHd38hqJkey6KHd0VrD/HwcI6gQWSp6EAswXJVVd7XUXU21ywFUCXpRL6FkJaFtE3uhtyYcoKPt8BwNSnrdTCbj0OumUikmJyc5f/48vb299Pf3+1ZC+6MN1GhBkrrtu1dAyQrMMGCAti2goCLyAjPk9uve2376WvX5XZYC/whyLFs8kyJpF463WDpoF58QrluFEAItJdGLYzwtA0rexKiqfFg2kYNa6wf3yH5MSWhTokhBOKiRLfYLCN0kW+LUmihLP+ywN4s2NTWVbddM02R+fp7Lly8zNTXF0NDQVd13Xi3cd6KXsZlVz3IF58jKMCXNDdVWMyLWYPbhB47wk++803fg/FrD9vY2Y2NjpNNph9Vo6V6/m+b6IHCtlevrJdWv5UHdawG3ExVvHtwwUn0Q0ZGpVIqvfvWrZWue/aA02r9W7ESqX0tkugRN0xgeHqa7u5uJiQkef/zxXcnNawGFQoGZmRlmZ2dpaGjg7rvvpq6uQgjdseeNtQFWN52V0NpoGFyk2u9Bms54g0yWVhMe7a0iBPeOdPHC0zOe9dfXU9TVVdHRUcfS0jYnjnVy+dJiuYI4N71BS3stgbowm9tZ1GIJVckLZLBybhRcH2onUlYIjF3L63R/qBIaCbNAeMNAKwikJqyo7yKG+65uP3QtKHlXx+Nx+vv76e3tdTxQq6urOX36tMPj2m89RQhONrbx5MoVx/a1nMBMCUzd0ksj9q619lsmfZ71UsPXQm9HX2pRrC77eFL7kfuK9MO5bSVv/aZaFpSsiVEKCJIS3Uawo1qA7SJhjBQUjJRRjuG2n9KWPMj6/97WeprqKgLtEmmOxWJEIhFPs6iiKPT09NDZ2Vl234lEIgwNDb0mnD/sODfay/PjC57l0eoIrDmlWE11Fqlub6rhxx7ooK06yfz8HF1dXa9JzThYDdgTExOsrKzQ19fHnXfe6ZBTRKNRzpw585ol19dLqm/jNm4V3DBSfT3RkV/+8pf5zd/8TVKpFEePHuVb3/rWvpsaampqWFxcvPqKO8BNqktJVXDjyHQymWRycnJHMu1GOBwua5PHxsY4f/48Q0NDr6mHS6FQYHZ2ltnZWWpraz0PfjdK7ifHj46x+qRTkKv6HFPGh0CvrMU9hCqdydPUEGG9WOEa7G4iPZ8gdmGR7u4G5uY2PdvZ3s5QXxfh1PFOXnpp3vP31aU4VdUabS3VBAJhJElHkIeKQLclAbot05SCxAg79daG7e+aKYmsGijFUqwmcdTtfujenWdyrgXJZJKJiQk2Njbo7e3l9OnTuw7S7B7XExMTzM7OeoJ+TjVYpFoTCidr21hZSbO2nUaGhZOU+pyuvmRZxUuW/WzxBD5R4vgTdSySzE5+04pla2eG7AMi7z4LIVDTIMKWo4m0EXQtbaLXVHYwmckiQir1eZVAQZAofhmiYJIulcGlxCwO0CTw8P1Hiosly8vLTExMoCgKx48f39U+tOTE0NXVxZUrV3jxxReJRqMMDw/vei3eSJwe7iCR9sqJVB8dbyio8q4Hj/GRn3yQcEhjZWWFWCzG9PR0uUnztXL/03WdqakpZmdnaWtru+o9fSdyPTAwcCj9M3sl1wehqX4tzpC8ZnBbU33T4LpJ9aOPPspnP/vZXde5ePHidX3GI488wtvf/nYWFxf5/Oc/z0/8xE9w/vz5fY3QS+Ev14oSqX61yHQsFmN1dXVPZNqN2tpazp49y+rqKuPj41y5cmVPQSuHCV3XmZ2dZWZmhmg0yh133LGvMJvB3ma+6yLVW9teec/KurcCnSzGlbvt9ZobatiMZzg90Mal718plywNw6S/v4np6fXKylJy4kQn42PLLC8KBgdbiMW809OZlE53VxhdCKvqbPu+Q0JBt9VFFUNi2F0mdpE3BOKGo3qJlJandol8SXjnG3du5t0P0uk0sViM5eXl8vm3nwe42+O6ZMPX1tbGHY3t3BPtZnJhi5eWre9X8akGmz53KqkBhkVqyxD4O3voXhLuV5X2k36IgtXsKCWeJMYS7KRaFFz75NiYFfKiSNAjtoZU2wyDkrM0JlVrOjlVks8ZELZ2XilIjGBpvyRmyNpGSFP4N28+zcbGBuPj4+RyOYaGhujo6NjzvakU0NHd3c3s7CzPPfcc9fX1DA8Pv2oBMFBJ4YwGTLY0QUGvfFeJtFO2VV0V5MfefJI33l2xxWpra6O1tZXl5WVisRhTU1MMDg7u67s5aJRmESYnJ6murvbMzF0NbnL92GOP0d3dTX9//6tCrg3DuOaKeWmbt7ELJHuWu900uEV/8usm1TciOrKUCT8yMsJ9991HQ0MD3/jGN3j/+9+/5/2sqakhlUrteX03FEUhn89jGMZNQ6btKDkANDc3l6d6o9EoR44cOfCO8t2g6zpXrlxhZmamHIXtlwR2NfT3eKenN3wcQBLJHHW1YU/EuF9ceU1VgIGaKJeeccoRMpkCC/ObDA+1MDG5SjQapr01yisvV6ajZ6bX6eysYWGhQuxVVeHY0XYuvDyPqqm0HK1ntlDZR71glKfu/eAmeKYGGJLQpkGgIDDtowUTRyW1qS5CyCc9cj/IZrNlG8P29vbriqp2e1yPjY0xPT1Ne1cXz0067wumhjfERsFq6nQdkqJ7ie5O1nieffJb6OMgEogXSYVOmdC6ITWrARUhUAo7bdxqctSyEMpD2maNaIQqP3ZgW0cIFVSVIIJcuLIzpk06JGyuFyOt9bz04gtsb2/7Sm32g0AgwNDQED09PWXf+ObmZoaGhnZ1ajpolHpDZmdnaWpq4u33n+T/993LzNmsL1dtiamjg238zi+8jfZm7wBACEF7ezttbW0sLS15yPWNKi6UfMHHx8eRUjI6Onpdcd2vFXJ9tUTF27g+3NZU3zy4blJ92NGRbpQu5qs5C7hxraS6VJkOh8MsLCwQDofp6uo61BvIQZJpN+xBK1NTUzz99NO0t7czNDR0KNq8EuxhIJFIhFOnTtHY2HjND5P+bi8RT6V1IlUB0lln81JzY42HVIdDzlP/xFAbsy8t0dLkP8Ao5A2mp9a4684eJsdXmBh3EkHDMFlcSHLsWDuXLi3R2VmHaUguvGzJQgzdYHE9Xm5EAyvtjUCFJLmb3Rzx1oZEmBDesOQeoYBablYD6wYlbUzu1NFrTyezN4s2Nzdz7ty5AyNTdo/rK1euEBsfpzagES/YfjNh2dYZLv6uGF5rvD1XO3zGvu7vu/zxRqWqrdndPnb7LNWKGzdCRUa/03ktraq3ntchbJ0LasbAiKgoEoKredRCJakxJBRyRdsQJWdilgi2lBhBBVUIqlIGzUGT6upqTp48eWB+v8FgkCNHjtDX18fU1BRPPfUUra2tDA4OXjXF9Xpg14JXVVWVJWEta3G++9y0Y91MrkBjXRXvevA4P/s/3e0b/mKHEIKOjg4PuS7FZR8muU4kEoyNjZFIJA7cF7xEruPx+A0l17qulyWJnZ2dmKZ5TVKO2/KPq0By68klbrHDKeGGaaqvJToyFovxX/7Lf+Ed73hHOcr6j//4j6mqquLd7373vj5/v5Z6bpnHwMAAtbW1TExMsLCwwJEjR66pwrob7GS6s7PzQMm0G4FAgCNHjjiaGfv6+sphAwcFwzDKYSAljfdOYSD7QVtLLaGQRi6nu5bXMXVl3bEsFPA+uEoNheFQgJHWesaesTxCMsk8IyNtjI87Q0lUVXDsaDsvPDfL0WMdxONefb6UcPnSEvfe089zz844bM/AWY0EV1OilEibJaDb/SGQNAmkZfl7cx+RdH2f73jD/qUfdklOXV0d99xzz6FN+6uqSn9/P11dXYysbfDsmjNiHnOP54ef1non/bVLBiQ1fKvf5Uq3AUqm8h4pvNtwvE8HzcRZYfdZR5hQsDUlKgUJGYPqrIJuKA6f8oxplI/RIRHJS6QCwc0cuhD83CNvoa/X2bNyUAiFQhw7dqxMrp988kna29sZHBw8UFchKWVZogZ4tOCdzbU01TnJfEdLLR//wJs5fWR/g0hFUejs7KS9vZ2FhQXGx8eJxWIMDQ1d1V99v8hms0xOTrK0tERPT89VexGuB7W1tdxxxx2HTq6llCwtLTE+Pk44HObs2bPU1tYeePz5bRRxW1N90+CGhr/sNzoyHA7zve99jy984Qtsbm7S1tbGG97wBh5//HFP0+PVEI1GSaVSSCl3vdB300x3dHTQ2trK7Owszz//PE1NTYyMjBCJ+GQQ7wM3kky7EYlEOH36NFtbW4yNjTE/P19uJrueG2Kp2jQ1NUUgELhqs9R+oSiCvq5GxmLOinF1xPuwim/HPcu24hl6O+rR17KMvVCRcei6yeTECkePtXP5ktVA29pWi6aIctX54isLdHZVs7DglJvU10doqKvimSenOHGqi5dfmncQMrsdXlAo5NQK6VYKWDZyRZRDX0xJ1aaJmjaRtsFBzh7BLqVDL6wJwdnTe3fHMQyDubk5pqamiEQi1yzJuRYEAgHu7e/zkOodpRkulKrNwr2euzFxB/mIlgd9h2bFkuyjvFgUf6cdCsGmZv1919jyPFRLhaTtM5W8RM0JCopELZgYRYmHkjcplAZiUjoGZUreIJCRCAlV9aFDI9R2VFVVMTo6Sn9/P7FYjMcff/zAHChKVnKpVGrXZurhnmYe+34MRRH85Dvv4Gfec5bwdcicSjMnnZ2dZXvBErm+3vuVYRhMT08zMzNDc3Mz999//3U/K/aKwyTXW1tbXL58mXw+z8jIiCPW/qDjz2+jCJeV5y2BW00jXsQNJdX7jY7s7Ozkv/7X/3ogn321SvVeGxBLKXKdnZ1MTk7yxBNPlKO091t9cJPp69GsXi/q6+u55557yolrs7OzHDlyZN/WWqZpsrCwwNTUFKqq7ilZ71rR3+Ml1X6DXymCgFP+0VIbwdzOMb7sbV41TcnYpSVGj3cggcnxFfJ5Z0V8YT7FiZNdFtEWgiMjbSzMbTI9ZZHDCy/N2/6O5eJh+w6MdAEiFdbnTkoEi1TVxMHMu/TFUlqCAHuqn00q0tlat6fvu/RbxWIxAoEAJ06ceFWaV0dbvfIxv4ZAM4Cvs4co4LyTCVByYLr4i6/W2u98UUFkJcIQXss9HdipWdEoelbvchtQCqCUTlJTEl7VEZpakcbbfseQqlAatik5E7NKAykJxHW0jFmp4HbW7/yBh4BIJMLJkyfp7+8v+5H39PTQ39+/b+lJOp1mYmKC1dVVXys5N04OtHF8oJVf/bdvYqj74Gz/7PaC8/PzXLx4sUyu93tNlDz1JycnCYfDV3U0OkwcJLnOZDKMj4+ztrZGf38/fX19nlnN60lovE28d8ZtTfXNgxtKql9N7KSpvlY3j1AoxOjoKD09PVy+fJnz588zPDy8J7umZDLJ1NQUKysrrzqZtqPUzNPS0lK21qqvr2dkZOSqmlrTNFlcXCQWi6GqKiMjI4euURzwaVZMpbxa+5X1ZClhmkhYo0HA5adnURTBkaPtjF32WjqGwwEM3URR8BDqEi68PM+p010YBZOLr3jlIK+8PM/x0Q4uXVp0hHwAHjLnDihRcibBtMTEaoCzyzuCmkretCUpuvTU95zu9d3f8mcVLdcmJy33lCNHjhz6b7UbRn16MowAlue23QlkBxs8PxcPxfQphOxAoL0LIbgt/C30dqmuqBlrX8ydLuWinjotTZSc1XCq5iVG8S4s8gYyVNFMF+yJitKavQhuF1Btgywp4PSJrp136hBRU1NT1vFOTk7y2GOP0dvbS19f31ULDPl8nqmpKebm5mhvb9/z7NzpkQ6++OiP+dpnHgRUVaW3t5euri6Pd/deekA2NjYYGxujUCi86teVHX7kuqenh76+vquS61LD6MzMDG1tbTzwwANX/a12Itel5MbXwndyU+G2/OOmweuGVJfik3VdJxAIHJg1XjQaLdvVjY2NceXKlR0rvKlUilgs9poj026U9K6dnZ3EYjGeeuopOjs7GRoa8lSipJRlMi2EYHh42DEdeJjo8yHVy2uJsgtDCbpu0t5aS3VVgO2ZLdY2LdcP05SMX17i2PEOLl2skOKengbSyRxjRfnHwGA9U7EtT9Wys6Oe1aUEjU3V7CS2vfTKIqdPd/NCeouMLafarfsVpal9UxLaMtGytmOQOMhlUFPJ5yvsTrqq2CO9AdLptGequeQ8MDExQaFQYHBw8DXh2dtaXU1rdYSVlFNOo+SFh6AKw8db2ge+iYk+BNoI4fjp1CyoiWLF2c/GT8H/p5bSSlEsNRT5nP9KAdSsiaJLAkkQioqpVc4JRZfW/mANqgpVxR02JVJCZEtHuvKnpCJ451tGfQ72xqG2tpY777yTra2tMrnu6+ujt7fXU3UuNSxPTU1RV1dXTkzdK67WiHhQKHl3d3d3c+XKFV566SWqq6vL5NqNVCrF2NgYW1tb5XCy16Ibhp1cl36rnWYZShX3iYkJIpHIvm3/wEuuS7HndnJ9205vD7hNqm8avK5INUA8Hi///0FZ49nt6mZnZ8sV3iNHjlBdXe0g0x0dHa9ZMu1GMBjk2LFj9PT0lMNjSnZdiqKUq51SyrJt4o0kaH4OIJlsgaaG6nKIC1jJfQNtdTz7vUlvhVhKLr2ywJGjrYxdXmF0tJPLFxcxbXZl07EtTp7s4uWilMPyqO5i/PIShYLB8tI2R4+1Mz6+4ngfUnLseAfjF5dIDwQdy+36WFEMddFMCKwaqAXpCAZx73PBFs+OlA4CGQ5otDfX8MQTT9DV1cXg4CDBYLAcKZ5Op8texK+lh/5oSysrqWnHMk0K8ntoEfeLIfeTYEgVbyiLAkrW0rMH4tb/CyF2lC8KYQXBmK7inpItuoSIome1TyFPyUuqcwqFrIFQBKJgc/MADHtDbek8Ksk9ctLTjAoQiQTp7ty7v/thor6+nrNnz5bPtdnZWUd8/dLSEhMTEwQCAU6fPv2aS230Q6nAUPLufuGFF4hGowwNDdHQ0EA+n2dycpKFhYVyP8xBua8cJkoDoRK5/t73vucg1/aK+7Fjx65bwrcbub6tud4DbpPqmwZCvk6GiYVCgWAwyH/9r/+Vc+fOHarPdOlGOz8/T1VVFZlMhs7OTgYGBm4KMr0TNjY2uHz5MrlcrlxleDUTyqSU/PiH/g8SSafkY2SwlfEpK4iloS5Ck6KxMLXO0Egrl8eW/TZFOKzQ1VVDbMLb1FjC6IlOpmfW6OqsZ/yydzvDI23MzKxRKJiEwxr9fc1cfmURU4Wto5WqsZI3HaS62lTIZQuE48VuFNNLqsuvS1XQ0p916UhpPDHYxhc++V6SySTj4+NsbGwQCoXI5/PlAdH1JJ8dFr7y/Wf5T08/41hWawaIK85ETDUjMapcD2ATwNuALPI+HtY+y7SkpcEWps0+z3AlJDo+T2JUO/8W2JIIWZJkSPRa73trpgyiGYVc8ZarZHWMauu30HQTPVBpSiz5dAc2dbScCZrtb1CuhA8fbeMLn/tJ//18FSGlLCdpZjKZ8gBueHj4hvpCHzRKCbAzMzMEg0Hy+TwNDQ17ksi9lrG9vU0sFmNjY4NwOEwul2NgYOC6/M53g51cP/vss7z44ov88i//8oF/zs2OeDxOXV0dbz36a2jqwVsjvprQjRz/z+U/YXt7+1UNlzpovDayWm8ACoUCR48e5V//63/NH/3RH5HNZg+NCBYKBXTd0uEahoGqqtTU1ByKX+iNQkkXV/p/wzAIBALU1NS8avIBIQT9Ps1K4aBFVI70NSNW01yZWMUwTCbGljl2zBs01NVVi4IgNr5NZ1fVjiPoZDLL0EALEzsQ84nxZbq6GhjobyIaCXO5qLPWw87vJ4BTrmGsZwltV9q7g3YPbSkdlVjVTqgBYavkCkPyI289WX5d+l0Mw0BRFILB4Ksu9dgJoy3NnmVKyLuvRhhLa+1YEbSsZ1VUb0I9wvVWLQVaHBRT4KhPK+ysn3Z/viGd6/q9z5SE4rJMqAFMW2Va2uQ8StZEQxBc11ENvLMWJacF4MSJa/cjP0wIIQiHwwSDQUzTxCz2ANzs6XmaplFdXY2maRiGUT6ekpTwZkUkEil7j5eOq1AoHNpxCSFYWFjgQx/6ED/8wz/M1tbWoXzOrYJSo+Kt9u9WxGuvZHVIiEQiXLx4kaeeeoqPfexj/M3f/A2/93u/xyOPPHJgI/FUKsXU1BTLy8t0dHSUm2/W1tYYGxtjbm6OI0eO0NzsJRCvVZR0uJOTk+XqRVeX1Rg1MzPDc889d2DWgteC/p5GXrq04FhmGCZnBtu4+MysYxrfNCVjFxcZHe3klYuLCCRdXTXMz22XJRYLc2n6BuqYmdq2aZolJ091c/Glea6YkpGjbUzGVjDc5EpKaiIhEtsZMrb4ZHeTYom8CUNStaaj5qlUm6UkV9B31FOHghppW1CKVESxAc6kWlW5/+5eLly4wNLSUnk6OhQKlSPCZ2ZmGBkZOVB7w4OAX7PiViHntcYTxZAVV/aIUvCGxfg2JhYPWUuBWgx2EUjvqkJYYTN+nteacDRRahm39Z5AyUuHhaKWsWQ+stSUWDArftRSlm30AETOQEsVhduGifCJbbcOGt7+5ldXT+2HXC7H5OQki4uLdHV1cfLkSQKBAEtLS0xOTjI9PV2Wi72WzsGroWQ7ms1myxX3QqHAzMwMzz77LA0NDQwNDd1UVbeSA9DExAQ1NTVljXupcm1vaDwoWUs6neYLX/gCX/jCF3j3u9/Nyy+/zMDAwIFs+5bFbfnHTYPXjfzDDtM0+drXvsZv/dZv0draymc/+1nuv//+a77Bu8m0n8zDNE3m5uaYnJykrq6OI0eOvKanC6WUbGxsMDk5uasON5fLMTExwdLSEt3d3QwODh5asIEf/v5bL/MXX/1O+XVDXRWtWgjFlMQmV3d8X09fDbmsycqyN9oc4MixNsYuLVNVpdHcVMPc7Jbj74PDrczOrVPIW5WcmpoQ7a11TBZDY9o76shkCmxvZ0j0BClEK+PXkBQYukl40wTdtIhesdlQ6KajgokhHf7UYXuSopRgSMJZyynih+7p5tzdUdra2hgcHPQMctxJdSMjIzQ0vDb0uABv/6u/YcllexnRFdKas/Qb3Jbk65zXajAuKUSdy9SMTypjxiLUij1cpnQLdIe26LKcbOiGMCV6UQIS2JS4VdhSkei2/alaNoksVrzG7dKPKgQZYT00A1sFVF2UB1WiYFSkH6V9Lf4tVBXg6//vX/Tdv1cDuq4zMzPDzMzMjgNtu0uQpmkH4gd92Ein04yPj7O+vr5jQJbdzaS5uZnBwcF9NWC+GlhfX2dsbAzDMDhy5Ijv71Ai15ubm9dNrk3T5O/+7u/43d/9XVpaWvjTP/1T3vCGN7ymf/tXGyX5x9uGfuWWlH/88+QXbjn5x+uSVJeQTCb53Oc+x5/+6Z/yrne9i09/+tP09u5uR2bHXsi0G4VCoay33slR49VGiUynUin6+/v31Ml+mBG8u+GlSwv8+u9/A4Dh3ma2JjdIbmfRNIW+wWYmJlY872lri5CK6/QNNnPhwoLn7yWcvbuP8UtLJOJemz6AvoFmlla2aW+rZWs9zfaWk6A3t9QgpWCiUS+TKWGCmtQJJS0NcEBxNuOJvIkZspNojYxhI9El+YeUqGmDQMbECCjIoMLv/eZ9nBg9dtXBWik5cXp6+jWlB/2V//ZP/D9TU45lzWis4bQ0DMQlBZdmWU1LTLfW2sCScYgikU6DIoXXqo9iFTngXKbkJXrE/4Gv5E0KdQpKRqJlfdaRkkJ9ZXndhIGas61nVgh2jVBI6TqBbR01L5GBiq0epkSUyL7LVWRwsIUv/tn7fffvRsI9WDty5MhVfZnt7wmFQgwPDx9I0upBolAoEIvFyrZ/w8PDV5Xw5XI5pqammJ+fp6WlhcHBwdfEtWWH26mk1Hi+G7a3t5mcnGRra2vf5FpKyXPPPcfHP/5xpqam+IM/+AM+8IEPvKYapV+ruE2qbz68rkl1CTMzMzz66KN885vf5Jd+6Zf41V/91bK+zA92Mt3e3s7AwMC+pQ/2G9vg4CA9PT2vut51c3OTyclJEonEjpZYu6HUnDQ2NoZpmjtWPw4S8WSWn/jQ/8HpoXYuPzXrmPLXNIX+4RbGixpogWRkpJWJyyvl4uSJ0928/PKcg6wIJCdOdPPKi3OMHOtgYnzZ6ephW+/Os32MXV4mmfAR9QI1TRFm2yukKLRaIGDYkvEMiWEjc1WaStpGoqUQlSq2IS3pgSkJbhUQhkXM9ZDC6PF2Pv9HP7Gv7y6fzxOLxZifn6e9vZ2hoaEbluTph//t+8/yJVez4vGmJi6uO2Pn1azEcFeQTSvZRbiqzYFty61D2ITpbmlGeZmrMVEUfJoiS3/LS/Q6QWjDRAr/69YIFSUepqTnsiBV1BUreQOjqkKcw4ZAbhes66Rga0rUXdIP0xkC9KM/cge/8PNv8P3sG4FSrPjExARSymuSFZUs9qanp3e1rLuRKM0qxmIxotEoR44c2XfVOZvNMjU1xcLCAq2trQwODu76TLkRsA8SrrWgs19yvbi4yCc/+Um+/vWv89GPfpRPfOITtxSBOmyUSfXgL9+apDr257dJ9a0KKSXnz5/nYx/7WPlG8L73vc9BdA+CTLuxvr7O5cuXbxgJ9UPJXzYej9Pb20tvb+91SThKOr3JyUkikQhHjhzZt7/pfvCZP/wHnv4f475/EwLaOqtJJHRammqYjq151hk93c2FIrGurQ3T3FDDlE06Mny0jampNQy9IkOIVAdobY4yE1ujvbOeVCZHfNtLrLW2KlaaFVQTgst5tLxEBm0VGt1wvJZSOqUgtr9VBTSymTzBzYJVrBbWAeoRlS//yfsY6PfqkvcCe6pdb28v/f39N1TCA9YD/xvff5ZP/+B5x/LmSIS1tI9ER5eecBYtJTGKlWU1XdRNZ/GQZSXnJdB+pBrAFN6qNhQb7oIWaffIRiprUagTBJKS+vECRrGB1i79CCR0lHzRuUQ3QbVpq93SDxuplsDPf2CUhx48/arcM/YaK75XlGZPZmZmqK2tZWho6IanEJYGCePj4wghGBkZue6E0Uwmw9TUFIuLizvKsg4b9kFCbW3tgUgPt7a2iMViZXLd29vrqOJnMhm+9KUv8Sd/8ie8/e1v53Of+xzDw8PXeyivO1RI9S+hKbcYqTZz/HPsi7dJ9a0OwzD467/+az7xiU/Q1dXF5z73Oaqqqvj0pz9NLpfjD//wDw+ETNtRmgqdnJy85srItcBeddhrEtp+oOs6U1NTzM7O0tbWxvDw8KFUQtfXk/zub36duSsbvn/vH2ymJhLi5ZfmdtzG6Kku0pk8GytJ4tsZz98Hh1u5MrdBIW/Q19/E2tIW6VTFXqKlNUrBlGxuVFI7B4daGM8lSQYl4U3DqpYaJtim9+166qCikJO2pMS8zcdYSmqlQn4ti8BqoBNCIAU099Tz1f/1A3v7snbB9vY2ExMTJBKJG+ZlbRhGWYoiqqr46HPPe9YJo5LF6UKgJSV6jUtXvW15dmtJq4FT4G0YBKsC7ZZ6lGcB3Cj4yEqKUFNOEuw9OEmhURCZ0wlv2yzxpGWZGNguEJRK+chE3thd+gHlGZVAQOWLf/YjxGIxwuEww8PDe0r8u164Y8X7+/sP1KKx1Pg3OztLQ0MDw8PDN+ReGI/HGRsbI5lMHsggwY10Os3U1BRLS0u0t7czODh4Q+xVS03yUspyk/xBniNbW1tMTEzwwQ9+kIceeohHH32UJ598kt/5nd+hrq6OP/uzP+PNb37za0rWczOhTKoHPnprkuqpL90m1a8XJBIJfvM3f5P//X//35FS8pa3vIU//MM/5MSJE4f2mYVCgampKa5cuUJHRwdDQ0OHYsNXMvw/iOaTvSCTyTAxMcHKysqhPIgBNjdS/Pav/xcW5rYrC6XkxKkuLr68gJSSo6OdXHrFq6EWSEZPdiNNySsvz/um4QH0DTYTjYZ45YU538blhsZq1IDK2lqCEye6eOWlOVLNARSjaNcmJUIVlUhxw3Q0IYq8gRmykdiCiQypCCmpSunIlFHetxKpNlXBL/3K23jH2w7mvCxJeMbHx9F1naGhoUPxFS7NZrg1tQ//9d8yn0g41h2pb2R8yzlgcjcraklJcBPMoNMaz49Au2UUjuWuqrSaMSlE/clVYNPEdMfP2yABIyKpv5hFFKdugxLy0iSYMFAKZoVEm07SfDXpR293A1/+Tz/jGJREo1GGh4cPpcLr1hcftlTI3vh3mNrkbDbLxMQEy8vL9Pb2MjAwcKg+7vbZzlJ2wWF8j8lkkrGxMba3txkaGjr0HpdvfetbfOITn+DixYuEw2F+//d/n1/+5V9+TXri30wok+q+j9yapHrmL245Un37jPfB5OQkn/nMZ/ja177Gv/pX/4pEIsH58+f55je/eeBVajsCgQBHjhyhu7ub8fFxzp8/f6AG/IlEglgsxtraGt3d3Zw4ceKGNElWVVVx6tSp8pTx/Pw8Q0NDBxYas7W1RWxqkh/+1938/dcli/NxwlUBenoaufDifHm9SxcWGD3VySsvV4h1TU2ItrZaXnnRqmIfP9HJpYuLHtIcrQ2jStheT1EVCZJO5XFjcyNFW0eUkye6ePnFOcsNr1DRRFuhLq4mRJupsSMZUFquH6opCWzkkYVKVVSIioVbtC58YITa2ragubmZpqamcgJeyYbvIBrJpJRlez+Ao0ePOtLaRltbPKS6LhKCLdd2il+jlpAEUgIpRLGH0+XCoeGNDVeEr3xEKYDpucx2alSUqAVvjLr7nYE0iIJStgVUtjOElACYOM4FodsINhQ9XHf+rk+dtGwtVVUtzyqULC4PssJ7vbHi14pgMMjRo0fp6+tjamqKp5566kDlE7quMz09zczMDK2trTcs5ba6upqTJ0/S399PLBbj/PnzdHV10d/ffyDk2p7w2N3dzalTpw5dyrW0tMQ3vvENJicnee9738v6+jqf+tSn2Nzc5Fd/9VdfdY38LQFpWv9uJdxqx1PE7Uq1Cx//+Mf58z//c97//vfziU98guHhYaSUfPe73+VjH/sY6+vr/P7v/z7vfe97D72xsBQVq+s6IyMj1xwVm0wmicVirK6u0tXVxcDAwKsWRFPSLY6NjaEoynX5dtsr7iX5Siat82ef/W/MzWywsuyfjjh6qotXXp6nt6+RxHaWLZtkA+DIaAdjl5bKxLp/oImt9VTZ3aOjq55kMkci7tRQ9/TWs7qUQEpJY0uU+eU4hbrKoEUUK89lFAzHa2mrlAaEZdsm1vIWwRIVmzWJLBPsd//oHXz4w2/a/5e3R5imWSZVNTU1jIyMXLM+vlQBz+fzDA4O+g6q/vK5H/DnTz7lWDba0sIrq057xOCWRM0IpGIj0tJqVnRXoX3lHnmJdMlC1LSJUe3yFNd9miKB4KaJUhAUouw4swGgJQyqtq2/aytJRCCEoliR9Hrpo4rWiA4piWE6mi5DmkquaKUogT/57I9z7FiH5/NyuRzT09PMzc3R2trK0NDQNZFQKaUjVrw0qHq1kMlkiMViLC0t0dHRweDg4DWR0Bvd73E1uAsd/f3913RvLl2nsViM+vp6jhw5cuiNkdlsli9/+cv8x//4H3njG9/I5z//eY4cOQLA+fPn+dSnPsWTTz7Jl770JX72Z3/2UPflVkW5Ut3zi7dmpfrK/3LLVapvk2oX/umf/omhoSHfpgrDMPjqV7/K7/zO7zA4OMhnP/tZ7rrrrkPVi0kpy+b8kUiEo0eP7vkETKVSxGIxVlZWDnWq8Vrg9u0eGRnZcwUsmUwyOTnJ2toaPT099Pf3OyruiXiG3/v415kc99rpASAl994/yLNPTfm6egCMHGtncmKF46OdXHxpzrNea3st+ZzB1lYakJw41e2QhQSCCoHGMJuGTSOtm46mRFUV6KU36DYpiJRETUF+I2fRRdNGuKS0Al8UQVNDhP/0lz9LJHL4N9tCocD09DSzs7O0tLQwPDy8Z7JW0mrH43EGBgZ2tWh84socH/z7f3Asqw+H2cpaAxgtKQmlBAYgDDxyDd8mxJ0aE92kOmNiRLwDZSldpFxKwqtWVV8P7hJnDlQt5tDyKg15SSpjIFQFcgUIag4vaqnZvg8XoVYUgWmY5fUVIfjm//XRHT8Tro+Elgbz+Xz+NRcrbr+n7bdAUNIXm6Z5XUWKw0AikWBycpL19XXfe9pOsDdXlooUhz34MU2Tf/iHf+C3f/u3iUQi/Omf/ilvf/vbfb/L8+fPE4lEuPPOOw91n25VlEl114dvTVI9/5XbpPo2LJLwmc98hr/4i7/gve99L5/61Kdob/fGXx8k7E1/V9M0ptNpYrHYvvyzXy3YtZpX05Gn02kmJyf39EBNJrJ88tGvM37ZGSkeDKkM9DczdnGRE6e7ufDSvO/7q6tDHDnWzkvPz6Lr/tNUTS01VEWCBFSVqQlv0IxRF0C3k2hFVNrtdtBTCymJpE2MZMFZcbWlO0pNYXiohf/45+9H3a1R7hCQzWaJxWLltLzBwcEdH/6pVIqJiQnW1tb27Cqync3x0H/+qmf5na3txF5cJicqQStK1hvOomZMT4KlH6n2rV7rxWZFFzdQcia6rYKtJSWBTEnbXgmB8UNNLEtoI49SFSpr6UUig4zarse8UWlexev6oekGuqaCYVId0Girj/DFr/67HT/TjlQqxeTkJKurq1cla8lkkvHxcba2tujv7z8w2dlhwE5CS7NUOx1XIpFgfHyc7e3t14x96U6wh61crXncng1wGM2Vbkgpefnll/n4xz/Oyy+/zKc+9Sk+9KEP3dZNHyLKpLrzQ7cmqV74X2+T6tuoYGJigt/4jd/gn//5n/n1X/91PvKRjxw6ec1kMoyPj7O2tkZ/fz99fX3lB5+9OnVQln83CvbUMr/jKtlS7adzPpXM8anf+v9y+eIiAK2tUVRFsLSwVV7nxJluLrzg9Knu7m0gncizsZZkYLiVOVtyoh19A82YBYNc3mBlySs1yTUGKzpo0yLDJYi8UXH2KL5WwxrKWg5RMCsVWI/0A37ojUf4jU+856rHf5hIJpNMTEywsbFBX18ffX195YernXhfywzJu//ma1yJW9/nscYm1ARUSZUL886Bi5Y20V2VZT8Pa99mRVn8j/Ah1q511ZQV9FJCeE2Wfa+l9AbR2LfV8GIKoaqIYiVapHNI+8xCQQdVdeyHBhhFlxANMLYzqHkDJaMja8L86E/czQd+6a2+n7kT4vE4ExMTbG1teX4vd6z4bgOl1xrsDkYlb/0SCbUf16uR9no9KFnWbW9ve2xO7cfV09PDwMDAoR/XysoKn/70p/na177GBz/4QX7v937vtlb6BqBMqjs+hKbcHNfkXqGbef558Tapvg0XpJR8+9vf5mMf+1i5gv2jP/qjh14J2dzcLE/R9vb2kkqlyl6oAwMDr3rQwLWidFy5XI6+vj7S6fR1BSikUzl+/7e/gV4wmJtZI5speNY5cbqbC8VGxdGT3Vx+ZcHhSd032MzS0ha5bDHZT0pOnO7m0ovzmKaktq6Kqpqwg6xLAfnmCpGsUhUytkvNTarrggEy8wmrCmvarNps0g9VEfz4T93L+//tA/v6Dg4Tm5ubjI+Pk8lk6OvrI5fLlR0bhoaGruk8/PV/+u/MbsYRCZOpuU0A7urr4LmZRcd6asYbzqIUJKYfgbb5f5fh53Wd8SHqaZNCbfE3yJgEkkq5mL0bqQ5u6tROZhCKWrTIMyGng6YgTEmkJkxqPYmiiHJoUXV1mMxWqugWU2xIzemWfSIgo2H+1//yIVo7rk0HvLm5ycTEBKlUit7e3nIj4k6x4jcL7MFVvb29SCmZnZ29pY6rp6cHIcSuMfAHjVwux1e+8hU++9nP8sADD/Anf/InHD9+/FA/8zYqKJPq9g/emqR66X+7Tapvwx+6rvOXf/mX/O7v/i7Hjh3jj//4jzlz5syhavay2SwXLlxgY2ODQCDA0aNH6ejwNi/dbMjlcrzyyiusra2haRpHjhyhq6vrmreXTuf4w0/8X7z8wpUd1zlxpptC3mDswqLv33v6mljfSCAldHc1MHFpyfH36poQdY01zBe9soP1YRK24pHIG8iwbZrUJv+oLkBhM2udK1Ja8oOy3ANQBJoq+NVH38WDbzy67+M/bOi6zsWLF1laWkJRFAYHB+nv77/mc/9rT77IF/7bE45lxztbuLjgrFSX5Rp27NCsqGbN/3975x3eVNn+8e9J0jbdew/aZhQKpQVKS6m+oiDTgQPlFRVxICD6Shktq+xRZCigorKd6Ps6EVHkx2xZZcgqzejee6VNM875/QEJSdOWjiRN4flcVy/x5MyMc+7nfu77+4Wae++yEE6jfqkHcMdZkXu7LMS2VAWw9Ke7lbata1w75ipgW6kGh6ahbpCDsrICpTPYtgYDxZ2AWXueCiVonfoTGys2FHeUZhg2C7bu9vj6zzkGx+oMarUaYrEYBQW3B5JBQUHg8/kWWxLRUWiahkQiQV5eHgAgICAAAoHAYktYOgrDMMjKykJOTg5omoafnx/CwsJMWnZB0zT++OMPLFq0CBwOB5s2bcK4ceMspgb9QUEbVHu9eX8G1WU777ugunffRS0IDoeDGTNmQCQSITo6GiNHjsTs2bNRWlp67407SXNzMzIzM5GamgoOh4OYmBgEBgbi5s2buHbtGuTy1i2zLR2lUgmJRILU1FQAQHR0NIKDg5GZmYkrV65AJpPdYw+tY2dngyVrn0HEoKBWX3f3dEB1aT04mqC2FfJzK9En2BOebg4GATVwu9SkqrwOQSHu6BPqAXXLWK+F5jDDpkAxDKxrFVBVNGofVra2VncD6jvaxF6eDtj51ZsWF1BrFAdSU1PR2NiIQYMGISwsDHl5eTh//jyqqlo347kXPE/DaeWS2nqDZQyHuq2aoQtFgWU4GQFK1cqyVppUmVb0qxkrCqxG9R0rdMNbJqep9Zp7myIZWA3NYJQMWDY2egE11Goo5Qq9IIWiaYPLUSt1yo7YLAj7dX3QrJEzPHfuHCorKxEREYEBAwagvLwcaWlpKC4uRm/NsVRVVeH8+fMoLS1FeHg4Bg4ciOrqaqSmpqKgoAA03Tvlu+rq6pCeno6CggKEhYVh0KBBkMlkOH36NHJycqBWG5aldQeGYXDz5k1MnDgRb7/9NmbPno2rV69i/PjxJKDuSe6Ug913f/chJFNtIjIzMzFv3jycPHkSCxYswKxZs7otY6dQKJCTk6OdruXxeHqKGXK5HGKxGGVlZQgODkZwcHCvyNKoVCrk5+e3aWChq73anZrPZrkSa5f+jH8u5mqXhfK9UJpfjUZZMwCgb4Q/bt0oumvQcod+/X0hzSiGu6cjGuUK1NW0MnBhGAyICkSjrBkZFbV3lT40xh13AjY7DhsKhgZV3gSWigZDUYAm4NK1KQfwyGN98X6SZWWIGIZBaWkpJBIJWCwWeDyenpKCriGJi4tLpzWTa2RNGL1hv8FyVztbVDfqu112tFmR00BD5dAiUy2nQbfIXt/+rGBQa21VrQDFABRl+L1jNSkg99Jfzm5Uw+tsHQAGsG2xDcOAo1BCTekfm0sxaG5W660HhVr7vtK21piz/An8a/QAg3O4F+3ZitM0jeLiYmRlZYHD4YDP5xvdec9UyGQyiMViVFVVGWj6awYRUqkUNE0jNDTUopRM2kMul0MqlaKkpMTAMEtj0CSVSiGXyxESEgJ/f/9u3+srKyuxevVq7N+/H6+//jpWrFjRZblTgnHQZqo9Xr8/M9UVu02Sqa6qqsK7776L3377DSwWC8899xw++uijdg2k3n77bfz9998oKiqCg4MDhg8fjpSUFPTt27dTxyZBtQlhGAZ//fUX5s6di6amJqxduxYTJkzo9DRrS+ve0NDQdrVVa2trkZmZCblcbnGSWLqo1WoUFBQgOzsbdnZ2WqvlttBVJ9A8QDv7XioUKqxP/hmXzmWj/8AAZFzJNxgwhw3wR+YdAxg2hwVhmDduXb1rce7p4wSlikZNVaN2GdfWCoFBbhBnFINjxYbMnaspk70tmWZzd6rWHhToajloFX07a83RCb7vZLRtrDn4z/wxiB9hOdlpzcNcIpFAoVBo3Rbb+gx0XfE6a838xKavUFanPzPR188Dt4oq9JZZ1amhdNIPJloLqtnNDNQtpe/oFqU2d2ApDMtCrCsVYCkpMDaGDWFUswrNHvpT8XaFzXAR3R4AcLksNOlOCjY0gbJusR81DRZN630XrdkUlE13U+yUky0O/N/cTim+dMZWXCNzmZ2dDVtb23v+HnsShUKBrKwsFBYWws/PDzwer82BNsMw2kGDpjzJ29vbYu+Jubm5yMnJgYeHBwQCQZu/GY2cnlQqhVKp1AbXnb8nKvDFF19g7dq1GDp0KDZv3oz+/ftb5PvzoKENqt2m3Z9BddUekwTV48aNQ3FxMT777DMolUpMmzYNQ4cOxTfffNPmNp9//jn69u2LoKAgVFVVYfny5bhy5Qqys7M7NWAlQbUZUCqV+Oyzz7B8+XJEREQgJSWlQzctpVKJvLw85OXlwdnZGaGhoR22INZkE8ViMaytrSEUCuHq6mqEq+k+NE2jsLAQ2dnZsLa2Bo/H61RmrLKyUs8Up7MPSKVChV3bj+HPny+3uY6wvx8qKupha2OFwtxKg9fdPR0BikJlRQN8/FygVqpQfsdshrZiQeF+90GoW09t1awGVdOs1SFmgLtZ6jsNig72bMxPfhwDo/paTJ1rbW0txGIxGhoaEBwc3K7WdEt0beo7qlYw75vDOJmZq7dsUB9fXG7RrNhqUN1K/XRbtdYdrau2Lm8GODatehwyDAOVHfTqql2vyWBbcbcOhVEqAUdbQK4AKMrw+9ooB9Ui2LWzZqOp4U49NQV487zw6Q8zWjkDQ7pjK647c+Tk5AQ+n9+jBim60DSNvLw8ZGdnw8XFBQKBoMP25Rrjl6ysLFhZWVlURl7XbKez92tNRj4rKwsqlQohISEdcqtlGAZHjhxBUlISaJrGpk2b8MQTT1jE+0G4jSaoHuk69b4Mqo9W7zN6UJ2RkYHw8HBcuHAB0dHRAIDDhw9j/PjxKCgogJ+fX4f2c/XqVURGRkIikYDH43X4+CSoNiOa0c8XX3yBKVOmYOnSpfD09DRYT6VSIS8vD7m5uXB0dASPx+tyQNyZzIepoWkaJSUlkEqlYLPZBmUDnUHXFMfW1hZCobDDAw4AUCrV2LT8V5w7JW719RCeJ2xtrXHrRmGbBjEubvYIDPFA5vVCKJrvZhRVdlZQOek4KarUYKw54NQrwG5Q3VWc0M1S32lQjIkNxfT3H4JEIoFarQafz+/RrJrGaEdXD7ir8l0aWbfa2tp7msB8fiwdO49f1FvW398LNwr1DX3YzTTUNq0E0DQMjGE6WhbSMqj2UnEgK2m+rQrSxufA0Eoona20x/c5XQeWSv97wzQ3A1Zsg+AZDAPIFaB03wuGAZvGbdMXAAyHhXGTY/DW3NGtHl9DS1vxzpgqtUTX8MfDwwM8Hq/DAayx0S05YrPZ3TI5UavV2kE9l8vVZuR76jdmrJlFzXuUlZUFtVqtLXdpLbi+desWFi1ahHPnzmHJkiV49913e42M4oPEgxBU5+fn6wXVNjY23SqV3b17N+bOnYvq6uq7x1KpwOVy8cMPP+CZZ5655z5kMhmWLFmCX375Bbdu3erUb4OotpsRNzc3bN26FTNmzMDcuXMRFRWFxMREzJgxA9bW1qipqcG3336Lfv36wd7eHpGRkd2efmWz2VpLaKlUirS0NAQFBSEkJMRsov2am71UKgXDMODz+fDx8enWQ4yiKPj7+8Pb2xu5ubm4dOlSpwYNVlZszFvxFDavPIgzxzN1TxbhkYG49c9tF0V+Xx9kZ5XpSewBt13u/PxckJtZAjsHjl5QTVuz9PbHtuEAlc1gK2k9YxHdkMvaio1pM0dg/NNRAAAPDw8UFRVBJBIhNzfX7DMNujWdfn5+iI+P73ZPgJOTEwYPHqy1K8/Pz9eWkLT8LoT5GtZytiwHAXA7oG4pjUdRYMvVUNvrB+xUB3u66DvBOJuiMMjLGzf/KQbFYd3ep23rvxmW4u6/repUYMmVgOb3pVLdDppBAUo14MDWz5jLm0GxW+xXpQbN6KzDZmHCC9FtnrNuppPD4WDgwIHddtbT2JMHBQUhOzsb586dg7e3N3g8nlkH5jU1NRCJRGhqagKfz4efn1+37h1sNhtBQUHw9/dHfn4+rl27Bnt7e/D5fLP/xozZA0NRFHx8fODt7Y2SkhJkZWVBJBJBLBbj9ddfB4fDQVVVFdatW4fdu3dj6tSp2L9/P7y8vIx4VQSTwDC3y9XuJ+7kcwMDA/UWL1u2DMuXL+/ybktKSgy+0xwOB25ubigpMRQZ0OWTTz7BggULIJPJEBYWhiNHjnR6sEky1T0EwzA4dOgQ5s2bB6VSicjISPz9998ICAjAzz//3O0HR1vU1dUhMzMTjY2N2oYlU2VodGv+OjMt2RV0g8DOGCKoVTQ+XHMQp4/eAseKBZ7AB5ktXBZDw7yRn1MB5R0lBmcXOzg62qAw57a6ha29FZzdHVBcWHP7XDzttFlSKxpAtRwsGnfl8li3VUY0DYr2dtZY8+ELCAk1fLjpzjS4ublBIBCYVINctxnWy8sLPB7PJFq4LYPAllPxJTX1eGqLYf2bA9caDXKF3jJOgxoqB/1gxLpWDYWz/jKOzLCso7XsNWgGViwWhHYuyMm+q2DCVanRYN9GUC1XQu55+/vmkNUIJ1EDwGKBy6EglynA0lX5oAC17V1joNZKP1hKFRidoNrBywn7/ny/1WOby1a8qakJUqkUpaWl8PPzQ2hoaLcHWvc6nlgsRnl5udYQyhSJgJZldjwez6TlLmq1Gjk5OcjJyYGXlxcEAkGnzJE6Ck3TSEtLw9SpU8HhcBAXF4e///4bUVFR2Lx5s8klXwndR5updn4FnFaapHszKkaBo7VfdjhTnZSUhJSUlHb3mZGRgR9//BH79u1DZmam3mteXl5YsWIFZs6c2eb2tbW1KCsrQ3FxMTZu3IjCwkKkpqZ26vdJguoeRC6X45NPPsHy5cvR2NiIfv36Yffu3QgPDzfpzU5TgycWi8FmsxEWFmbUhqTWutMDAgLMUh+sa90bGhraoeOqVTQ+3/IXblzOR2Fu6zJwIQIvFORXwsfXGVVl9Whs0A/s7Bxs4OrliLyCKig8bwehLKUanKpmrZSanZ0VGuV36mzvlH4I+F5Y+9FkWNu0HyzoKqCYIqDRBO+5ubndLhvoDJrmuKysLDg4OEAgEMDZ2RkMw+DxlH2oa2rWW1/o4w5RiX6Nu3WtCgpn/fevtVrr1uqnW6u15shohNg7oahUX8ZvAN8HV/LbkMhU0VC43Ha+9DhVCpuyO7rjbWQ5aFoN2NsAKlpfau/OObHVjLbsiAEw8CEBlm/7t95qPWUrrikJ6oz9fGdQKpXIzs5Gfn5+p+vBu4NCoUBubi7y8/Ph5uZmoK7UXTQNkxKJBFwuF2FhYSavVWcYBn/++SdmzpyJyspK+Pn5YePGjXj++ectpl+D0DbaoNpxyv0ZVNd/3eGa6vLyclRWGvY36RIaGoqvvvqq2+UfwO37gaurK3bu3Il///vf997gDqT8owdobm7Gzp07sXbtWnh6euKrr75CXFwcli1bhn/961+YOnUqFi9e3O3p27agKAre3t7w8PBAfn4+rly5Ajc3NwiFwm5nJXUd2zrb0GYMHB0dMXjwYFRUVGhLDAQCATw9PdscqLA5LExPGI1P1v/RZlCdLSqFMMILuaIKKJoNNW8bG5pB0wzc/V1QrFCA1aSEVa1Cx8SFQWOj4m7wxmZh4nODMG3mox26Lmtra/Tr1w9BQUFaLW+NmkN33l9N02hWVhZsbW2NUnLUGVgsFoKCguDr64vc3Fykp6fDw8MDfD4fYb4euJClP2tgb2P4YKHYhp8rbd3aMtyVN9RuTIHdeLtUhNXMwKaWBotmwc3b3iCoVqraqR/hsGAlU0HFZcGmsln7XeOAhqoVOwAWiw1apgAoBuC2GBy1LP2gKDw0+q6LXUtb8f79+5u1HtbBwQGRkZFai/DTp09rLcK7k0nWHWA5Ojpi6NChZjWFsLa21pa75OTk4Pz5891yBtVF1wFXKBSapU9CLBZj8eLFOHXqFBYtWoSZM2fi66+/RkJCAtasWYMVK1bg6aefJtnq3gDDQL9g8D6gk/lcT0/PVnvQWhIXF4eamhpcvHgRQ4YMAQD83//9H2iaRmxsbCdOjwHDMGhubr73yjqQTHUPsHPnTnz00UdYsWIFJk6cqM0YMAyD69evIyEhARcvXsSiRYvw1ltvGTUL1Bq6D+nOlE7oUltbC4lEgrq6OqM8YI2BJmCUSqVwcHCAUChs9yFN0ww+3XAYf/92VW85iwV4+9mhJK8B/n3cUFUhQ1OjwmB7BycuVK5cKJpVUJXLQDHQkcujAc4dB0V7GyQsmYAhsaFdvjZde/CulPFoyi+kUilYLBb4fH67Aw9zIZfLkZWVheLiYpwsk+OPWwV6rw8I8ML1ghbNim2pfXSwWdGqVg2WCmAr7qpyRAh8cU2irzTi5myHMrm+TrYu1B0Nbc9UHedHhgHDYoFq8XtiaBqQy28/J7nWgJ1OJrZJv2mRZcPBN6cSQVGMdjbBkuy3q6qqIJFI0NjYiNDQ0E5rJmvKxMTi203DQqHQIlQ5dL+LnZWE1KApYamoqNCWsJg6yVBTU4P169drG+JXr14NHx8f7etyuRxffPEF1q1bh0OHDiEqKsqk50PoOppM9WN2k+/LTPX/NX5nMkm90tJS7NixQyupFx0drZXUKywsxMiRI7F//37ExMQgKysLBw4cwOjRo+Hp6YmCggKsX78eqampyMjI6FTfAQmqewCVSgUWi9Xm9BtN0zh48CDmzZsHNpuN9evXY9SoUSZ/yOiWTrQ0iGhvG4lEgurqagQGBhp9KtgY6KoYeHt7g8/ntzmdTNMMPt/0F/78+QoAwNaODUdHG5QXN2jX8e/jjuqqBr0SkIA+7mioa0RFkwJs1d1p+7umLrfl8tzd7LFxx8tw9ej+tLJuGQ+LxYJAILhnMKIpzRGLxVCpVG02CvY0MpkMXx87i50XJHrLfV0cUVxj6K5o0KwIgCNTQ9WiWdGqgYZSR+3DpkoFdgNAWeuvF+znipziarTE1tkG9XLDARUAsOrlsK1qgn1mnZ5KCMMwAIejDZRZYKCWNem954wVG7C/E7A1q/RKQnyD3ZG07WlIpdIuKd2YA4ZhUFFRAYlEApVK1a7yhC51dXUQiURoaGjo8D3H3DQ2NiIrK0tbSx4SEnLPchSVSoXs7Gzk5eWZrYRFpVJh3759WLVqFfr164fNmzdj8ODBbf62FQoFUfywcLRBte2L92dQ3XTAZOYvs2fP1jN/2bp1q1a9KCcnByEhITh27BhGjBiBoqIivPnmm7h48SKqq6vh7e2Nf/3rX0hOTkZYWOe8IkhQbcEoFAps3boVa9aswbBhw7B27dpOf8CdRTdrRFEUwsLCWi1DkclkkEqlKC8vR0BAAEJCQiz+Bq2rl9yWEYZGkmzvtuMoyKqDqplGXbVhdtI30BV1tXLI6uXoG+EPyc2i2+UBVnf2xzBg2PpyeUNiQrAk5TmjB7At65LbysjX1NRALBZDJpNp69wt2XEzp7waL2z/3mC5rRUHTUp933F7JSBrMZZrrVnRSkZDac8Cp4GGdR0NisUGpaLBcPQDORtrDpqVht7mIcHuEBe3Yb/erITLpTJY1yqAFu8rQ9OAjQ0otRpoVrQqzcewKIBrDYrS3zbyXwEY+UIY+Hx+lyUozYXuDAhFUeDxeK2WOsjlckgkEpSWlpqkLtsUNDQ0ICsrq917HsMw2tkxOzs7hIWFmbyEhWEYnDp1CgsWLEBDQwNSUlLw3HPPWdzghNB5tEG1zQv3Z1Dd/L1JguqehATVvYCysjIsXboU+/fvxxtvvIGFCxeaXPqJpmnk5+cjKysLLi4uEAqFsLe371LWxtLQ6MLqlk5odK+zsrK0hjS/f3sVv357vs39+AW5wd3TAdfSb5uUMGyWVtGBoRngTukHh0VhypsP4ZmXOl7P1RV0M/JeXl7g8/mwtbVFQ0MDJBIJqqqqtAFMT5fmdAQ1TePRtXsgbxHc9nFzRG6Vfraa52oPabW+5F5rzYpWTTQ4dTQohn1X3ZBhQFGUQcWij4cDSiob9JZFhPnick4bskxyFTyO5d+uoGbdtZ5nGAZQ04Bara9F3QKGYYDmZlg7O0AJFsBigaEoJG1/BtHDB/SqIEnXaEXX4EmjfJGbmwtPT88e1c3vKrqzc7ra7VVVVcjMzIRarYZAIDDLACgrKwuLFy/GsWPHkJiYiISEhF73fhLaRhtUW08Ch7LsQWdnUTFK/J/ih/suqO49d+l7sGbNGgwfPhx2dnadch1MTk6Gr68vbG1tMWrUKG1dn4aqqipMmTIFTk5OcHFxwRtvvIGGhoY29mgavLy8sGPHDpw5cwY3b95EZGQkPv/8cyiVyntv3EVYLBb69OmD+Ph42Nra4syZM0hLS8OZM2dAURSGDx+Ofv369bqAGgCcnZ0xdOhQ9O3bF9nZ2Th16hROnz6t1YOOjY2Fp6cnpr77GCZOaT0QdnDiworFQmleNZxd7e6UetxtStT828aajVUfvmjygBq4qys8fPhwUBSF1NRUpKWl4dy5c+ByuYiPjwefz+8VATUAsFksCHwMZ0lYasMMsp2DYSMZo2sKwzDgliphXQWwaJa+MyJFwd/LUIXBzcmwXplWGTaparAprAXq6mHNosE0K2DNAhhZE1AvAxqbgGYFbLntzAwolQDNQCGTA2o1oFTC19MOMQ8N7FUBNXD7/hEQEID4+Hj4+vri+vXrSE1NxenTp1FVVYXo6GgMHDiwVwaAjo6OGDRoEIYMGYLa2lqcOnUKaWlpuHLlCnx9fREXF2fyRsS6ujosWbIEMTExcHV1RUZGBhYvXmyx7+f9/Hw2BwzN3Jd/9yO9607dDgqFApMmTWpXg7AlGzZswNatW7Fjxw6cO3cO9vb2GDNmDORyuXadKVOm4MaNGzhy5AgOHjyIkydPYvr06aa4hHahKApRUVH4+++/8fnnn2P79u2Ij4/HsWPHYMrJBuZOFg+4nQmlKAqOjo4m1ac1FywWCxwOB2q1GkqlElwuFw4ODtrrpSgKr7zzKJ6bOlxvO98AV1izWciVlKGsuBZWbDbsHLk6Sh8AWCx4eTli5w8z0G9ggFmvi81ma6fSlUolWCwWbG1tLX56vTXCWgmqWyudqGwwLNFR2VCg1Ay49Wo4FNHg0BxQLAoc2nB7F0fDwSGnlaxyTX3bjYp25Q2gwKC5RgY0ydFcXXfb+EWHxqoGMK2UlTBKJaBRF9HUXrOAlV+91ebxegNsNhsODg6wsbGBUqmEWq0Gm8226BKWjmJnZwdHR0fQNK29N5oatVqNffv2ISoqCufOncOxY8ewZ88e+Pv7m/zY3eF+fz6bHIa+P//uQ+678o+9e/fi/fffR01NTbvrMQwDPz8/zJ07F/PmzQNwuyzA29sbe/fuxeTJk43mIW8K5HI5PvzwQ6xbtw7/+te/sHr1aggEAqPtX1NK0FKztaKiAiKRCAzDWEyXfmdpTa1ArVYjOzsbBQUF8PX1BY/H0w4cGIbBgZ2n8P3uVAj6+SBPXI5muf4sAWVnDZq526A4NI6HReufNet7o1KptOoQrq6u4PP5cHBw0DYmWoLteWf5+WIG1v56Um+Zj5MdSuoa9ZZRAKw5bDTryN55ONghzN4FV64U6mWmB/B9cE2qX8IxUOCLq2J9tQ9BoAfEBRV6y1gsCrQNBVWLLIsVm4V5g4TYm/Q99JT3WKy7zaoamNsyetpSELUaTLNO86ODHSiKwthpA9E3zr/DTX+WRkNDA0QikdaWPigoCCqVSntfMZZcnbnRVRVydHSEUCjU/s5Mpc3PMAxSU1ORmJiIqqoqrF+/Hi+++GKv+048KM9nY6Ep/xhBPXNfln8cZ36678o/esc8sAnIzs5GSUkJRo0apV3m7OyM2NhYnDlzBpMnT8aZM2fg4uKi/cECwKhRo8BisXDu3LkOi4ibAi6Xi6SkJLz22mtYvHgxhg0bhunTpyMpKalbhgKawEzjLjZkyBC9/Xl4eMDNzQ0FBQW4ceMGHB0dERYWpu2qtWQ0urq1tbUGsn8aE5yAgACtDrQmEGCz2Zj81r/g4GSL3Rv/Mtgvw6K0swXWVmxMfv0hPNNG2Ygp0DQqZmdnw9bWFoMGDdKruffw8IC7u3uP2p53lT6uht+r8vomWLFZUKrvZjoYAC7WbJSq1LBisxDl7Q3J1RLQwU5oOXxobTghazJU9Citqr+9Y50NaJqBv7szcstr9dYdJPDD+FcegX+gJ9a9+ikUClqzwe3Muu4ghqIAeTMYWy44HBZUuvKMFAWKxUJkbAjenP+itukvNzfXYmQP70VLHe0BAwZoG/qsra0hFAq11udnz57tslxdT1BZWYnMzEwwDIPw8HC9z0PzO9O4yObm5hrFRTYnJwdLly7Fn3/+ifnz52PevHm9biDSWXr789nYqJjm+y6zq4Lpyld7kgc2qNZ4wHt7e+st9/b21r7WHQ95c+Hj44OdO3di5syZmDt3LiIjI5GcnIxXX321U7WzGtWLnJwc2NvbIyoqqs2gS9ewIysrC+fOnYOfnx94PJ5FKoC0dICLiIhosxTC3t4ekZGRqK6uRmZmJgoKCsDn8+Hj44MnXhwKRZMSX318TH+jO8oRVhwWlmx4DhFDgk18RbfRtfpms9kIDw9vc+aAoij4+/vDx8cHubm5uHz5sllsz7uKQqFAVlYWyvILwKYoqHUm1NQMgyA3Z2SX1+ht4+XqDDtOI5oK5cgoKAKAVkuj6lvRGC+uqDNYVidrhqsTF9X1cr3lLrZc5EI/qI4f0AcAEDkiHBsOJ2HhEx+gqfHOQ0Otvl3SoSuhBwCNTWA7cKFXDMJmwc7OCgs/fw0URcHX1xfe3t4oLCxERkYGcnJywOfzzWrQ01HUajXy8vKQnZ0NNzc3DBs2rM3vFpfLRb9+/dCnTx9IpVKkpaXB398fISEhFllaJpPJIBKJUFNTg9DQUAQGBrYaKFMUBS8vL3h6eqK0tBRSqRQ5OTng8Xjw8fHp1ICooaEBGzduxPbt2/Hss88iIyMDgYGBxrwsi+V+eT53F2tra/j4+OB0yaGePhWT4OPjY5ExQ3ew6KC6o17vffv2NdMZWSYURSE6OhrHjh3Df//7XyQmJuLzzz/Hhg0b8PDDD7d7I1er1SgsLER2dja4XC4iIiLg5ubWoZu/lZWVNrsrEon0sruWMC3Z1NQEqVSqVSp56KGHOvzAdnV1RWxsrDZozcvLg1AoxLOvDQebw8K+j44CgLZB0dmJi027p8Hdy/TW3i01gTujNc1ms7X27VKpFGfPnjWJ7XlX0S1hcXNzQ3zcMISIqyEp1Zexc7bVr4H2dXaAO2OD7Ex9Y5iqWsOmpZKKOoMMdKNcCQ8Xe1TU6CuIeLk5GATVrFbe5+H9+2j/HRTuj4/PrcSmNz7DzbNScGxtoGhWgbLi3G7QUamBOy5dcoa5bQxD385Csa04WPrFNFhZ3b01s1gsBAYGws/PD3l5efjnn3/g7OwMPp9vEdOmuoM7KysrREVFdTjot7OzQ0REBOrr6yGVSpGamqqnqNHTKJVKSKVSFBYWdsq9kqIo+Pj4wMvLS/veZGdng8fj3VMVRK1W49tvv8Xy5csRFBSEv//+G3FxcRY3Q0Gez6aHy+UiOzsbCkXr2vi9HWtr614pdtAeFh1Uz507F6+99lq764SGds2VTuMwVVpaCl9fX+3y0tJSrcOUj48Pysr0H9IqlQpVVVV6DlWWAovFwgsvvIAnn3wSmzZtwqRJkzBy5EisXr3a4H3SlbyysrJCv379ujy1bG9vj0GDBqGyshIikQgFBQUQCoU9NlXd3NyM7OxsFBYWwtvbG3FxcV1yntNkCr28vJCXl6fN7o56JgJsNgu7Nx8BOCzwhd5Yu+MVWFmZXvNZV2taExx3ZQCja3suFouRmppqNse31mhplz548GCtSkCYr4dBUK2Ba8VBhLsHRP+UoMzT8H0oq5IZLJMrVPBys0dZCwk+Dxc7g6Caa20Y2DXI9G1rQ33d4OOmP5hy8XTCql/nQ3I5G5tf34GirDJwrO2hbGzWs+elNE17bDbYLArPvzMSwkF90BpsNhshISHw9/dHTk4OLly4AE9PT/D5/B5zVtTYbzc3N4PP53fZSMjR0RFRUVGoqamBRCJBfn4+goODteVX5kZTUiWVSrVlB10pcWOxWPDz84OPjw8KCwuRmZmpDa5bzioxDINz584hMTERxcXFWL9+PV5++WWLSFC0Bnk+mwcul3vfBZ73MxYdVHfU670rhISEwMfHB0ePHtX+SOvq6nDu3Dlth7KxPOTNja2tLZYsWaKtt46JicHMmTMxf/582NnZ4fPPP4dYLMbzzz8PoVBotMY1d3d3DBs2DIWFhbh58yYcHBwQFhYGR0fTZ28BfZ1mDw+PLj8IW6IJZvz8/LTZXcHgALw+93GUl9Vj2nsjjXD27aOrjdunTx8MGjTIKNJ4mlIfje15fn5+l2zPu0pLV8jWBnd9fT3w+xWR3nY1jXIM9PVCVVYtMnJvl3oUV9SDAvT0plVqBh7Otqio1VftcHcxDKptrAzfz2aF2mDZ7Uw3oy3nGN4/qNVrU6lUoJxoPL9pDMozanH6239QlFMJWqECo7hTGsJigcUCho2NwIyUF2HfioxfS3TrkqVSKc6cOWP22QaZTAaJRILKykqjDsY0NbKVlZXaGSJjN/21h2YWSCQSgaIoREREwMPDo9v71Z1tKCgowPXr17Fnzx5MmjQJTz75JPLz85GcnIyDBw8iISEBiYmJFt+nQp7PBIIh9436R15eHqqqqvDrr7/igw8+wKlTpwBAq4AAAH379sW6deu0DQwpKSlYv3499u3bh5CQECxduhRXr17FzZs3tSPDe3nIWzoMw+D8+fOYM2cObt68qZVbW7BgAaZPn26yB5VugNtSTcPYqFQq5OXlITc3F05OTuDz+d1q1rwXuqoG7dVXGgPdEhZTO1d2xfa8O1RVVUEsFqO5uRmhoaFtNnRdzi3G27t/1f6/v4sj3JVWyBZXGBi2+Ho4obhS3ximX4gXMrL1M1r9eV64nqW/rG+wJ27llOst83CxR0WtYbbb3dsBpXey2p+8/zQiQu5mxjSzQK3ZijMMg6snb+H4f89BejkX/YaH4fUVz8LGtuufqW7PQJ8+fUxaOqFUKpGVldWqSo6x0bi7SiQSqNXqTpU5dQXN77qurs7klunNzc1Yvnw5du3aBScnJ1RVVWHixIlYv349goODTXLMnoQ8nwkPChadqe4MycnJ2Ldvn/b/Bw0aBABab3cAyMzMRG3t3QajBQsWQCaTYfr06aipqcFDDz2Ew4cP6021fP3115g9ezZGjhyp5yHfmygrK0NjYyNYLBZomoaPjw8iIiJMmonUGJH4+/trywt01TSMQUvVi8jISLM0cDk4OGDw4MHacpf8/HyjO6gpFAqtxJ+3tzeGDx9ucnUEiqLg7e0NT09PPXUXgUBg1NpdTda9pqamQ1P8Au/bWtVcKw4G3Cn1qFXT8PFwREmFfgDt4mRrEFRbcQz3XVVVa7CsZemHZpm9nRVkTfqd6h6OdiitkcHZnovwPrebpTRZTrFYDIZh0LdvX4PvBEVRiHykHyIf6dfm9XYWBwcHREZGora2VjvbEBISgsDAQKP+1jQOq90ph+gMuk1/xcXFyMrK0jb9Gfu3JpVKUVRUhICAgHYbmY2FlZUVIiMj4eTkBJqmwWKxUFdXp83832+Q5zPhQeG+yVQTDDl69CgWL16MrKwsLFq0CDNmzIBarcYHH3yAjRs3YuzYsVi1ahX69Gm9htOYVFVVQSQSQalUQigUduuhSNO09iHL4XDA5/N7TC+bYRitZq2dnR2EQqFRJA11tabNVT7TkrZsz7tKd7LuC748DPHVEtTW3C3jaC0DPVDoZ6A3HRbsicwWGWg3J1tUtmLkYm9rGEDzAt0hLajUP06YHy7lFGPsUCEWv/yoNqBtaGgweZazPRiG0c4AKBSKdmcAOro/zewFm83Wzl70BLp19zY2NhAIBB1uqm5rfxq1EhcXFwiFQpMr4TAMg/T0dCQmJiI3Nxdr1qzB1KlTUV1djZSUFHz88ccYN24cVq1ahfDwcJOeC4FAMD4kqL6PWbhwIZydnTF79myDrFJeXh4WLlyIn3/+GbNnz8bcuXNNnnliGAZFRUWQSCRdCkA1D3iJRAKGYbokU2UqNKYWubm5XQpANVn3rKws2NvbQyAQdNjO19ToBsOBgYEICQnpVCZPqVQiOzsb+fn5XQ7Ol316GKcuZestGyj0xVVRywDaC5m5+gG0u7MdKmv1zWIAwK6VDDQvwA3SAv2myIECH1yV6Et0hfXxxI2SCiyZ8gh8uQqUl5ejT58+CA4OtggbeIZhUFpaColEAoqiwOfzOz2Qra2thUgkQmNjI3g8Xrf1lo2FRv4zOzsbjo6O4PP5nfqtaMpKRCIR2Gw2hEIh3N1bce40MkVFRVi2bBl++ukn/Oc//8HChQsNZoCKi4uxdu1aREdHY+rUqSY/JwKBYFxIUP0AwzAMzpw5g4SEBOTn52P58uWYPHmyybvtdQNQb29v8Pn8drubGYbRNi4ZI/tmSuRyOSQSCUpLSxEUFITg4OB2A1CGYVBcXAypVNrjWfd7UVdXB7FYjPr6em15QXufgW7w010JuL2/nMf+gxf1lvUN9sKtHP1M9e0a6FYCaK4VGlu4YIYGGgbQfbzskFumv31/njduZJXqLXN1skWVshnzx4QgOPC2Rrsldujr1ndzuVxtdrc9mpqaIJFIUFZWZlEDhZYolUqtUVVHZ3Xq6+uRmZmJhoYG8Pl8szTkNjY2YuvWrdiyZQvGjBmDDRs2dFkVg0AgWDYkqCaApml89dVXWLRoEXx9fbFhwwbExMSY/GHT1NQEsVisbbAKDg42COirq6shkUggk8kQHBxs1DpRU1JXVweRSNRmOUBLrWmNwYwlBtO6aAY47dmea2YkpFIprK2tIRAIup0JPJ4uxcrP9N0svdwcUFZlqENty7VCU7OepQpC/N2QXdgyA+2LfyT6mW5hoCtE+dV6y/w8nVDUijlMOM8V62eM77HynM6gMWbJycmBk5NTq3XyuuU+HRnsWgq6/QdeXl4IDQ01KOPQdXnsyGDXGNA0jR9//BFLly6Fm5sbtmzZgkceecTif+MEAqHrkKCaoKW+vh4pKSnYsmULnnzySaxcuRIBAQEmP25NTQ0yMzPR3NwMgUAAHx8fvWY2jaKBJWbL2kMzzSwWi0FRlLYeVaPF212t6Z5EN3C2sbHRKlxoBgoatQZjDRTyiqvxWvJ3BsttrNhoVurL3gX7uyGnSD8wjhD44lqLWuv+PG9cb5GB9vdyRmGZfhMji0WBxaKgUuvbBM979RFMGG68hkNzoBs4e3p6gsfjwdbWVtsX4ODgAKFQaBGmMp1FLpcjKysLxcXF8PX1RWhoKKysrLR10+7u7hAIBCbX9GYYBleuXEFiYiLEYjFWrVqFN954o1ckAwgEQvfoXU9yC6CqqgpTpkyBk5MTXFxc8MYbb6ChwTBbpiEnJwcURbX698MPP2jXa+31774zDCJMiaOjI1avXo0bN26AYRgMHjwYa9asgUxmqIpgTFxcXBATEwOBQIDMzEycOHECFy5cgIODAx566CHweLxeF1ADd9UL4uLiEBAQgOvXr+PEiRO4fPky3N3d8dBDD1mM+2Rn0diex8fHw9PTE5cuXcKJEydw/fp1+Pv7Y/jw4UaVP/P3coYVx/B98vYwDP4c7Qwl3lrLHdQ1yA2WlVTUgcPWP2eaZuBid/f7x2axMOPZYRg3rPc5xWlUeeLj48Fms3HmzBmcOHECubm5CA8Px5AhQ3plQA3cNskIDw/HsGHDoFQqcfr0aZw4cQIlJSWIiopCZGSkyQPqkpISzJo1C48//jji4uIgEokwffp0iw6o7+dnGoFgbnrf07yHmTJlCm7cuIEjR47g4MGDOHnyJKZPn97m+oGBgSguLtb7W7FiBRwcHDBu3Di9dffs2aO33sSJE018Na0THByM7777DocOHcKff/6JwYMH48CBA6Bp+t4bdxG5XI6qqiqo1WrtlHNzczPUakPzjd5Gc3Mz6urqQNM0uFwuaJpGU1MTVCrVvTe2cORyOerrb0vYcblcqNVqyGQyKJXKe2zZOdhsFoJ8XA2WO7USQLdGfQsXRAAoqaw3sBxX0wx8PQybZ+1tb5cKuDlxsek/4/Hi6CiwWL13Gl+pVEIul4PNZsPW1hZyuRy1tbX3xXdSpVJBoVCAw+HA1tYWjY2NqK6uNum1yeVybNy4EVFRUaitrcU///yDDz74wKR6+cbiQXimEQjmgpR/dIKMjAyEh4fjwoULiI6OBgAcPnwY48ePR0FBAfz8/Dq0n0GDBmHw4MHYtWuXdhlFUfjpp58s7qajVquxb98+LF68GMHBwUhJScGQIUNMosfs5eUFHo8HOzs7vYY/S26Wag9du3QfHx+EhobC1ta2Q7Xklk5zczOysrJQVFSkZwIik8kgFotRVVVldNvztTv/xt/nxHrLWivrCPF3Q3aL8o/WykQAwM/LCYXl+vXS/UO8cKOFVF8E3wcOtlaYEO0FRVNDj1podwe5XA6pVIqSkhI9JZfa2lpIJBLU1dX16mtr7Z5RU1MDsVhskr4Mmqbx66+/YvHixXB0dMTmzZsxcuTIXlM3/SA+0wgEU0KC6k6we/duzJ07F9XVdx/YKpUKXC4XP/zwg9YJqj0uXryI6OhopKamYvjw4drlFEXBz89P6y43Y8YMTJs2zWJuznV1dVi7di22bt2KZ599FitWrICvr2+X96fbue/m5gYej9dqw1dtbS0yMzPR1NQEgUBgUkc1Y6FRN9Fcm65rmC41NTUQiURoamoCn8+Hn59fr7o2d3d38Pn8VrV9NbbnTU1NRrM9/+aPS9j54zm9ZbxAd0jz9TWkbW2s0NSs1NqIa/B2d0Bppf60dnioN25k69dVB3naIq/8roY115qDd14YjgkP9QNFUVodaLlcblFSc+2hVqu1ijseHh7g8/mtlkJomlAtXWVHl5bXJhAIDCQbja0gxDAMrl27hgULFiAjIwMrVqzA9OnTe93A/0F+phEIpqB33QF6mJKSEnh5eekt43A4cHNzQ0lJSRtb6bNr1y7069dP7+YDACtXrsRjjz0GOzs7/PXXX5g1axYaGhrw3nvvGe38u4OTkxPWr1+Pt956C4mJiYiKikJCQgLee++9TmkO66oQODo6YvDgwe1qzDo7O2Po0KEoLS2FWCxGXl4ewsLC4OpqWArQ06jVaq3Do729/T2vzcXFRXttEokEeXl5ZtPM7SwtdbTvdW2urq4YOnSo1jgkLy+v27bnIX6GUnDlrah/NDUr4eFqj4oafWk8Nyc7g6CawzYMqii2NYDbQXX/UG8snPYY/L3uTuO7ubkhJiZGq5mel5cHPp8PT09PiwsYdBtKuVzuPT83d3d3uLm5aa8tNze3SxrX5oBhGJSUlEAsFsPGxqbda6MoCh4eHnB3d0dZWRmkUqnWnbGzzbRlZWVYuXIlvv32W8yYMQO//PKLRd6POsKD/EwjEEwBCaoBJCUlISUlpd11MjIyun2cpqYmfPPNN1i6dKnBa7rLBg0aBJlMhg8++MDibkA8Hg8//PADTpw4gTlz5mDv3r1YvXo1nnnmmXazPrpuaFwuFwMHDuywGxpFUfDx8YGnpyfy8vK0jX5CodDk1t0doaXW9IABA+Du7t6pa/Py8kJeXh6uXr0KFxcXCAQCk5vxdARdExEWi4X+/ft3ODA2tu15SIDhYKNO1gxney5qZfpNh+7OhkF1a3bldQ2GmtZl1Y3gsClMeyoGL46OBLuV77XutRUWFiIjIwM5OTlaFRRLoLKyEiKRCCqVCkKh0ED6sC10r62oqAiZmZnIzs42ijSisdDM8sjlcq1iUGevraSkBBKJRBtc32tQ1NzcjE8//RQbNmzAQw89hMuXL6NvX8tsViXPNAKhZyDlHwDKy8tRWVnZ7jqhoaH46quvujVV9uWXX+KNN95AYWEhPD092133999/xxNPPAG5XA4bm441Y5kblUqF3bt3Y+nSpRAIBEhJSUFUVJSBZrEm4GSz2UbJ6DU3N0MikaCkpARBQUEICQnpkWlXjWSeRCIBTdNGkZBTKBTIyspCYWEh/Pxum4p01Mrb2Gis5RUKBXg8Hnx9fbtVCtBSB1kj59ZRGIbBE+/uul3aoQM/0B2SFiUgHbUrt7VmoVFBAzofWbCfKxa/PhL8wI7bcevay7dX8mMOGhoaIBaLUVNTozXp6U4Nsa6Jj5OTE/h8fo814GmMaXQdLLtzbZoZmOzsbNja2oLP5xuY49A0jUOHDmHRokWwtrbGpk2bMHbsWIvL3OtCnmkEQs9AgupOoGnqSE9Px5AhQwAAf/31F8aOHduhpo4RI0bAw8MD//3vf+95rDVr1mDTpk2oqqq657o9TU1NDVavXo1PPvkEL7zwApKTk+Hl5YWvv/4aR44cwVtvvaUNyoz5INIYrMhkMqPV7XaUqqoqSCQSNDU1ITQ01MDcpbtoGv6qq6vN3jhWX18PsViM2tpakxy7O7bns9f9iJsttKVba1bsF+qNjBbNhm3ZlTs7clFzR15v0qiBeHNiDKytujZI021O1Wglm8tARaFQQCqVoqioCP7+/ggNDTXqgEx3UKSpy26tnt4UdNaFtbNoytLEYjF27NiBd999FyNGjMDNmzeRmJiIf/75B8uWLcPMmTNNbhpjTsgzjUAwLiSo7iTjxo1DaWkpduzYAaVSiWnTpiE6OhrffPMNAKCwsBAjR47E/v37ERMTo91OIpFAKBTi0KFDGDt2rN4+f/vtN5SWlmLYsGHgcrk4cuQI5s2bh3nz5mHFihVmvb7uIBKJMH/+fBw5cgQODg5QqVR49913MW/ePJMFhJpssUgkApvNRlhY2D1tmLuDbsDZp08fBAUFmTRLrskWK5VKk7sutgx2g4ODTZol76ztOQBs3H8ch07pT1sP4PngulS//tPXwwnFlfUG21tzKChU+rc8QR8PVNc3Iem1xzC4r38Xr0afxsZGbUbV1A5+un0KLi4uEAqFJg125XI5srOztcovphw4aGa6xGIxbG1tERYWZtIseU1NDZKTk/HVV1/B3d0dFRUVmD59OpYvX24xpS/GhjzTCATjQWqqO8nXX3+N2bNnY+TIkWCxWHjuueewdetW7etKpRKZmZlobNTPiO3evRsBAQEYPXq0wT6trKzw8ccfY86cOWAYBnw+H5s3b8Zbb71l8usxJpWVlairqwOHwwFFUXByckLfvn1Nmj3WGKx4eHggLy8P//zzD1xdXSEQCIwaWDQ2NkIqlaKsrAyBgYEYMGCAWcoy3NzcEBsbqw0sNI2axqzb1ZU19Pb2xvDhw81Sq+7k5ITBgwdrFSfy8/NbtT3XpbVmxTqZoYlLaWU9OGyWgQuir6cTcov1HRMjhX54ZfwQONobb0razs4OAwcORG1tLcRiMVJTUzs8cOgomkY9iUQCKysrREZGmnRAqYHL5aJfv34ICgqCVCpFampqp2ccOkJ1dTUyMzOhVCoRFhbW4Zrw7mBnZweBQABra2uwWCxQFIWamhrU1NTct0E1eaYRCMaDZKoJ3ebq1atYsmQJ/u///g9z5szB3Llz4eDggM8//xzLli1DeHg4NmzYgAEDBpj8oahQKCCRSFBcXIyAgACtVXFX0dVj9vHxAY/HM9t0fkvUajVyc3ORk5NjFMtl3Qyns7MzBAJBq7KG5qA12/PWFBUuZRRg3ubf9JZZW7GhaEWD2tfDAcWV+m6guqUi9lxrvD/lYYyMFRjxSgzRyLmJxWKoVCqjzDjU1NQgMzMTzc3N4PP5PSo1WVdXB4lEYrRyoaamJohEIlRWViIkJMQspU8Mw+Dw4cNYtGgRAGDTpk2YMGECcnNzsWLFCnz77beYNm0ali5d2mHtZgKB8OBBgmpCt9m0aRMKCgqwcOFCA3mm6upqrFixAp999hleeuklLF261GAdU1BfXw+RSIT6+nptvXVnMoS6Otru7u7g8XgWocYB3A70pVJplwcONE1rm0dtbGwgEAjMkuHsCLoDBzc3N4MZh+q6Rjw3d5/Bdl5uDihrIa8X6GmL/Ar9LPYAvg+uS0owUOCLpNcfg4+7+QYRLVViNGoanQmGGxsbIRaLUVlZaXRzne6iq9/dlT4DlUqF7Oxs5OXlwcfHB3w+3+QNbQzD4NatW1i4cCHS09OxZMkSzJ4922AWKiMjA8nJyZg+fToef/xxk54TgUDovZCgmmAWbt26hXnz5uH06dNITEzEjBkzzPLArKiogEgkAkVREAqF8PBoX9FBo3SQk5MDBwcHCAQCi7Ua1q3vDg0NvWdpQUu1knuVWvQkujMEfn5+CA0N1X5fnk3Yg5p6/WC5b4gXbrXignhNqt/U2MfXFaPjhHihDak8c9BSTaMjEoNKpRJZWVkoKCgwW8DZFRiG0Wpca6b97/UdYxgGhYWFkEqlsLe3h1Ao7JLkYmepqqrC2rVrsWfPHrz22mtYuXLlPRUsCAQCoT1IUE0wG5op1rlz50KpVGLNmjUYP368yR3bNLJZUqkUzs7OEAqFBlln3eyttbU1+Hx+p7OIPYVm4EDTNIRCYauShbpWzV3J3PcUrdmez99yEFcyi/TW4/s7Q1KoXyvND/SApOCurFigtwsWvzkSwj6WETjpqml4enq26nKoa7rj6OgIoVDYYyU6naGjv6eqqipkZmZCrVa3+d01NkqlEjt37sSaNWswePBgbN68GREREb3it04gECwbElQTzI5SqcSnn36KFStWICoqCikpKejXr59Z6q01GtAayTErKyutw5qlZ2/bg6ZpbU2ynZ0dhEIhnJ2d9YLSPn36oE+fPr3OShnQtz1PEzXhyPlsvdeDvB2QV6pf/uFkb4M6WTNAUXjyX+GYMSkOtjaWJ4cml8shlUpRUlKi973UqNqwWCyt02Zv+17qZuU1xj+638vq6mpt3bSpB3kMw+Do0aNISkqCUqnEBx98gKeeeqpXDC4JBELvgNxNLJCqqipMmTIFTk5OcHFxwRtvvIGGBkM7Zl1GjBgBiqL0/mbMmKG3Tl5eHiZMmAA7Ozt4eXlh/vz5UKlUpryUVrGyssJ7770HkUiEfv364eGHH0ZCQgIqKipMelxra2v07dsXsbGxaGpqwqlTp3D69GncunULgYGBGD58uEkl60wJi8VCQEAA4uPj4erqigsXLuD06dM4e/YsbGxsEB8fDx6P1ysDauCu7Xnfvn3BZTUbvN6sMvzM6mTNCPBxwapZYzDn5X9ZZEAN3FbT6N+/v8H38ubNmwgODsawYcO6Ze/ek7DZbAQHB+Ohhx6Ci4uL9nt55swZ7fcyODjY5IGtSCTCpEmT8Oqrr+K1117D9evXMXHiRIsOqO/35wCBcD9iuXeUB5gpU6bgxo0bOHLkCA4ePIiTJ09i+vTp99zurbfeQnFxsfZvw4YN2tfUajUmTJgAhUKBtLQ07Nu3D3v37kVycrIpL6Vd3N3dsW3bNqSnpyM3NxeRkZHYvn07FAqFSY9L0zQYhgFFUVCr1WCz2eByub0yaGmJZuKJoigwDAOGYWBlZWUxzWzdhcViwcfNUO6vrKoeVhz929mQ8ABsTngS8VEh5jq9bsHhcLQNp5rP8X6ZSGSz2bCxsQGbzQZN35Y5pGla+29TUV1djcTERMTFxcHf3x+ZmZlYsGCBRdajt+RBeQ4QCPcTpPzDwtA4XF24cAHR0dEAgMOHD2P8+PHtOlyNGDECUVFR+PDDD1t9/Y8//sATTzyBoqIieHt7AwB27NiBxMRElJeX95gVtgaGYfD7779j7ty5oCgK69atw+jRo40a6Ooacmh0ddlstrZJqjfVrLZEt/ZWt8GytrYWIpEIjY2N4PF48PPzs+jsXFto9J4bGhrg6x+ImRv+MljH38sZhWW14LBZePPZWDw/KhIsluUPlHTdAr28vLRugZqGPwDg8/nw8vLqlQM/Tc0/wzDaZmGN0ZBG993YRkMqlQp79uzB6tWr0b9/f2zevBmDBg3qNe/fg/ocIBB6OySotjB2796NuXPnorq6WrtMpVKBy+Xihx9+wDPPPNPqdiNGjMCNGzfAMAx8fHzw5JNPYunSpdrGp+TkZPz666+4cuWKdpvs7GyEhobi0qVLGDRokEmvq6MoFAps374dq1atQkxMDNatW4ewsLBuPQx1lSTacoDTVVfw9fUFn8/vFQ8YjQGIVCoFm80Gn883KBXQdZ3sbfW5TU1NkEgkKCsr09aEW1lZYXLilwYSegHuXChpFpa+PRrhPN8eOuOO01YdfFvr2NraQiAQtKrfbYk0NDRAJBKhtrYWPB4PAQEBBgM6XY1rzefbnVkVhmFw4sQJJCYmorGxESkpKXj22Wd73UDyQX8OEAi9ld5ZYHkfU1JSYqDjzOFw4ObmhpKSkja2Al566SX06dMHfn5+uHr1KhITE5GZmYkff/xRu19NZkKD5v/b26+5sba2RkJCAl555RUsXboU8fHxeP3117Fw4cJOaynrqit4eHhg2LBhbbosWllZISwsDAEBAXoOeOZooOoqGkMRhULRrgGIrutkQUEBrl+/bvFZ+ZYScvHx8XoDoRB/N4OgeujAUAwJtUVZfibsOQqjuhcaG13Fln79+rWpeqGplff19UVubi4uX76sdQy1FN30lrRsCG7PfVTjqllVVQWJRIL8/PwuaVwDgFQqxaJFi3DixAkkJSUhISGhx4yausuD/hwgEHorJKg2E0lJSUhJSWl3nYyMjC7vX7fWLiIiAr6+vhg5ciSkUil4PF6X99tTeHp64tNPP8WsWbMwZ84cREZGYvHixXjjjTfuaXTSUgc4Ojq6w1rT9vb2iIqK0kp9FRQUQCAQWNTUe11dHcRiMerq6rTW1x3J7rFYLAQFBcHX1xdZWVk4f/68xWke0zSNvLw8ZGdnw9nZGTExMa0G/iF+bjh3LQ8AYMe1wpyXH8HIWIGee2FHbM/NTWe1xTWw2WyEhoYiICAAWVlZOHfuXI87fLaEpmnk5+cjKysLLi4uiI2N7XDg7+bmhqFDh2p11HNzc8Hj8TrUOFxbW4sNGzbgs88+w4svvojMzEz4+lrmTAV5DhAI9zckqDYTc+fOxWuvvdbuOqGhofDx8UFZmb6JhUqlQlVVFXx8fDp8vNjYWACARCLRPpzOnz+vt05p6W1jjM7s15xQFIWBAwfiyJEj+PXXXzF//nzs2rUL69evx2OPPWbwsNVMlWdlZcHa2hoDBw6Eu7t7l47t5uaGYcOGobCwELdu3UJ+fr7ZTCnaQrcUIjAwEAMHDuySBbsmKx8YGKjNyvfp0wfBwcE91tCoKWORSCTgcDj3/OyC/W/PWoT18cSS6Y/D3+v2oImiKHh4eMDd3R1FRUUQiUTIzc1t0/bcXLR0wYyIiOjSZ6dRsAkKCoJUKkVqaiqCgoIQHBzcpf0Zg5YmSxEREfc0WWoNzYyKp6cnioqKIJFIkJOT06bzpEqlwpdffomVK1dCKBTixIkTiI6OtpgBVGuQ5wCBcH9Dgmoz4enp2SG3rri4ONTU1ODixYsYMmQIAOD//u//QNO09gbZETQ1c5qMTVxcHNasWYOysjLttOKRI0fg5OSE8PDwTl6NeWGxWJg4cSLGjRuHjz76CK+88gri4+OxZs0aCIVC0DSNffv2wc7ODgEBAQgLCzNKZpmiKAQEBMDHxwfZ2dm4cOFCj2R2FQoFsrOz2yyF6Cp2dnaIjIxETU0NMjMzUVhY2G4ZianQ2Fs3Nzd3+Pi8AHdMejwSbz4bCyuO4UCAoij4+/vDx8dHWzbRmu25qdG1XXd3d0dcXJyBwUtXsLOzQ0REhHbW4vTp052atTAW9fX1EIlEqK+vN5qpkO5npylXyszMRGhoKB5//HEwDIPTp09jwYIFqK2txUcffYQXXnjBYkt9dCHPAQLh/oY0Klog48aNQ2lpKXbs2AGlUolp06YhOjoa33zzDQCgsLAQI0eOxP79+xETEwOpVIpvvvkG48ePh7u7O65evYo5c+YgICAAJ06cAHD74R4VFQU/Pz9s2LABJSUleOWVV/Dmm29i7dq1PXm5naa0tBRLlizBV199hZEjRyIzMxPV1dXYuHEjnn/+eZM9XBsbGyEWi1FZWamttzZlAKMJyHJzc+Hi4gI+n2+yGmjdTLGVlRWEQmGna9g7S0NDA8RiMWpqahAcHGzS97M923NTwDAMiouLIZFIYGNjY/JMuabkRalUgsfjmXxgpFAoIJFItJl3jWGNKdAYtWzevBn9+/eHg4MD0tPTMX/+fMybN88ogxRLhDwHCITeBwmqLZCqqirMnj0bv/32G1gsFp577jls3bpVW5+Yk5ODkJAQHDt2DCNGjEB+fj5efvllXL9+HTKZDIGBgXjmmWewZMkSvXKF3NxczJw5E8ePH4e9vT2mTp2K9evX90pDkAsXLuDdd99Feno6rK2tsXz5csyYMcMs11JdXY3MzEwolUoIBAKj1+zqKj5wuVwIBAKTB7ga1Go18vLykJOTAxcXFwiFQqNndnVLITQOguZSWmnN9tzYgXxVVRVEIhGUSiX4fL7ZDIValtC0VTbRHXRr3jUNk+bI/NfX1yM5ORm7du0CADzzzDPYuHEj+vTpY/Jj9xTkOUAg9D5IUE3oVWRmZmLJkiU4dOgQ3nvvPcybNw/Hjh3DggUL4ODggJSUFPzrX/8yeRCjyUSKxWLY2toiLCysw82Q7e2zvLwcYrEYQM9qEysUCkilUhQVFRkt8FWpVNrMu7u7O/h8vllLMXTR2J7L5XKtfnd332fdgN0cMxltoWkYzM7O1tMs7w4Mw6CsrAxisRhsNhthYWFmGeip1Wp8/fXXWLFiBUJCQrB582Z4eXlh2bJl+O9//4sZM2Zg8eLFXarhJhAIBGNDgmpCr6G+vh59+vTBCy+8gOTkZD0DBLlcjs2bN2P9+vUYMWIE1qxZY5Zud13jDm9vb61xR2fRBHlNTU1dlhQzBbolGl2t2W2ptSwUCuHi4mKaE+4EDMOgtLQUEokELBYLAoGgS3bguhJyfn5+4PF4FqFxrlQqtYMYT09P8Pn8LpVK1NXVQSQSQSaTaeumzTFoPXPmDBITE1FWVoZ169bhpZde0vtNXL16FYsWLUJZWZlB8x2BQCD0BCSoJvQqampq2g3IioqKsHjxYhw4cAAzZszAggULzKLYoavMERwc3GEljYaGBkgkElRVVWnNLyxxGrayshIikQgqlarDJS8aVQixWAyapi1OmlCDrhulo6MjBAJBh74zuqUQLi4uFqsdLZfLkZWVheLi4k7Vkzc3N0MikaCkpARBQUEICQkxy3czLy8PS5cuxR9//IGEhATtLFRb3OueQCAQCOaCBNWE+w6GYZCeno6EhASIRCIsW7YMr7zyilmm4mtqaiASiSCXyyEQCNqsp5XL5ZBKpSgpKTF7XXFXYRhGK3V2r4yzrq24Rl/ZEjLv7aFrFuTt7Q0ejwdbW1uD9TQZbrFYDA6Ho3WotHQ6OoDT1NVnZ2fDw8MDAoGg1ffB2MhkMmzevBlbt27FU089hfXr19/XNdMEAuH+gwTVhPsWmqbx/fffIykpCS4uLkhJScFDDz1klqnrkpISiMVi2NjYICwsTBt86gZu3ZmS70nUarW25KVl0KWbse9p/eSu0tTUBKlUitLSUgQGBiIkJER7DZpBU1NTE/h8vlFqsc2N7jXolhrpDhY0Wubm0PamaRrfffcdli9fDj8/P2zevBnx8fG97n0lEAgEElQ/wFRVVeHdd9/V6y7/6KOP2pxqraqqwrJly/DXX39pg8KJEydi1apVeo1QrT0Mv/32W0yePNlk19IejY2N2LhxIz744AM8/vjjWL16NYKDg01+3JYaxfb29igoKDBa81hPo5tt19S3FxUVWZzTX1fRaEDX19cjICAAMpkMlZWVFl2m01E0TbESiQQ0TcPf3x/l5eVoamqCQCAwi1Y5wzC4cOECFixYgMLCQqxZs8ZsM0rd4UG5bxIIhM5DguoHmHHjxqG4uBifffaZVgd16NChWh3Ully/fh3Lli3Da6+9hvDwcOTm5mLGjBkYOHAg/vvf/2rXoygKe/bswdixY7XLXFxcejzIys/Px6JFi/Djjz/inXfewdy5c02m+6yBYRjk5eVBKpVCrVbD29sb/fr163XZ27agaVprCQ4AQUFB4PP5Fl/q0VEUCgUyMjJQVlYGNpsNgUCAgICA+yaL2tjYiGvXrqGurg7W1tYIDw/vkDlJdykoKMCyZcvw66+/4j//+Q8WLlxo8t+isXjQ7psEAqHjkKD6ASUjIwPh4eG4cOECoqOjAQCHDx/G+PHjUVBQoKes0R4//PADXn75ZchkMm3mjqIo/PTTT5g4caKpTr/LMAyDc+fOYc6cOcjNzcWyZcvw0ksvGT07xjCM1pBDpVKBx+PBzs4OYrEYjY2NvbZ0QENrmsgMw0AsFoNhGAgEAnh6evba62utebG+vl5bTy4QCHrU9ry7aEp4cnJy4OXlhdDQUJSVlSEnJwfOzs4QCAQmCXIbGxvx0UcfYcuWLRg3bhxSUlIQGhpq9OOYigf1vkkgEDoGCaofUHbv3o25c+eiurpau0ylUoHL5eKHH37AM88806H97Ny5EwsXLkR5ebl2GUVR8PPzQ3NzM0JDQzFjxgxMmzbNogIsmqbxzTffYOHChfD29kZKSgqGDRtmlHOsra2FRCJBfX09QkJCEBAQoA3aNXq/IpHIbM6FxqY9W3GaplFYWAipVAoHBwcIhUKzqK8YC12tcIqiDGT2dEt6esL2vLvo1vtzuVyDZlOFQoHs7GwUFBS026zZWWiaxv/+9z8kJyfD3d0dW7ZsMYuevLF50O+bBAKhfXpvUSChW5SUlMDLy0tvGYfDgZubG0pKSjq0j4qKCqxatQrTp0/XW75y5Uo89thjsLOzw19//YVZs2ahoaEB7733ntHOv7uwWCy8/PLLmDhxIjZs2ICnn34a48ePx8qVKxEUFNSlfTY2NkIikaC8vBxBQUEYOHCgQZkHRVHw9vaGh4cH8vLycOXKFbi7u0MgEFh8w2JHbMVZLBYCAwPh4+ODnJwcXLhwoVv63eZEo8fc0NCg1WNuWcbCZrO1zX1ZWVk4e/asWWzPjUFNTQ0yMzOhUCjaVKaxtrZGWFgYgoKCIJVKkZaWZtCs2RkYhsGlS5eQmJiIrKwsrF69GtOmTbP4uum2eNDvmwQCoX1Ipvo+IykpCSkpKe2uk5GRgR9//BH79u1DZmam3mteXl5YsWIFZs6c2e4+6urq8Pjjj8PNzQ2//vpruw/c5ORk7NmzR1t3a4nk5uYiKSlJW+M5Z86cDmcgdc0/Otukp2vZ3Z3gxZR0x1ZcVw2kT58+CA4OtrgGP7lcDolEgtLS0k4rlpjD9ry7NDU1QSwWo6KiotPnWF9fD7FYjNra2k6b/5SUlGDZsmX43//+h9mzZ2Px4sUW25xL7psEAsEYkKD6PqO8vByVlZXtrhMaGoqvvvqqy9OY9fX1GDNmDOzs7HDw4MF7BpC///47nnjiCcjlcovO5jEMg9TUVMyZMwfFxcVYsWIFXnzxxTab7nRtt93c3MDn87ts/lFfX4/MzEw0NDRo6617utnPmLbitbW1EIlEaGxsNJsr373QdcP08vICn8/vcqmDKWzPu4ux3D4BaPsDFArFPa+vqakJ27dvx8aNGzFq1Ch88MEH4PP53bkUk0PumwQCwRiQoPoBRdNwk56ejiFDhgAA/vrrL4wdO7bdhpu6ujqMGTMGNjY2OHToUIdKFtasWYNNmzahqqrKqNdgKtRqNb788kssWrQIgYGB2LBhA6Kjo7VBRHNzM4qKipCXl2fUpjVNPa9IJAKbze4xUxFT2Ypr6snFYnGPXh/DMNq6b1tbW4SFhRklg6pre65RCnF3dzd7cK1r0mNnZwehUGj069OU+eiWyNA0jV9++UWbkd6yZQseffTRHh9cGBNy3yQQCO1BguoHmHHjxqG0tBQ7duzQSkNFR0drpaEKCwsxcuRI7N+/HzExMairq8Po0aPR2NiIn376SS9r6enpCTabjd9++w2lpaUYNmwYuFwujhw5gnnz5mHevHlYsWJFT11ql6ivr8e6devw0Ucf4emnn8by5cvx999/Y926dZg8eTLeeecdkyhctLS/FgqFZmmGM5etOE3TyM/PR1ZWFpydnSEUCs1m762xW1er1Sa9vq7YnhuDqqoqiEQiKJVKCIVCk17f/PnzkZ+fj9WrV8PNzQ1JSUm4desWVq5ciTfffNPiynyMBblvEgiEtiBB9QNMVVUVZs+erWdisHXrVm2Ak5OTg5CQEBw7dgwjRozA8ePH8eijj7a6r+zsbAQHB+Pw4cNYuHAhJBIJGIYBn8/HzJkz8dZbb/V4OUNXycrKwuuvv45Tp07BxsYGc+fORUJCgsmnZBUKBaRSKYqKihAQEIDQ0FCT1Vv3hK24rtKEr68veDyeyd7ThoYGiEQi1NbWIjQ0FIGBgSa/vo7anhuDxsZGiMViVFZWIiQkpNUmUmNTVVWFhQsX4ttvvwXDMHj11VexZcsWo8xqWDLkvkkgENqCBNUEQjvcuHEDSUlJOHHiBCZNmoT09HTU1NRg5cqVeO6558zywNMEhHV1dUYPeC3BVlwmk0EikaCystLozX66TZYBAQEICQnpcJOlsdC1PTf2e6xUKpGdnY38/HyTD0x0aW5uxieffIINGzZg6NCh8PDwwC+//ILXXnsNy5Ytg4+Pj8nPgUAgECwNElQTCK2gkbL69ttvMX36dCxZsgSenp5Qq9XYs2cPlixZAh6Ph5SUFAwaNMgsls4VFRUQiUSgKApCoRAeHh5d3p9uMGYpknfV1dUQiUSt6l93FrVarS2h6W6TpbHQtT3XKGl0dXCkqXuXSCRwcHBAWFiYWRwJaZrG77//jkWLFsHW1habNm3C6NGjQVEUbt26hcWLF+PPP//E/PnzkZycfF/VUxMIBMK9IEE1gdAKNE1j8eLFeOutt1p1fKutrcWaNWuwfft2PP/881i+fLlZsnOaelapVNqlemTdem1TOud1FV2nxq6Y47TcPiwszKKcD3WdNtVqNfh8Pry9vTsVfOrWhQuFQrM4VzIMgxs3biAxMRHXrl3D8uXL8fbbb7eacT979izS0tKQkJBg0nMiEAgES4ME1QRCN5BIJJg/fz6OHj2KefPm4Z133jFZ3awuSqUSWVlZKCgo6JB2dEtb8Z5S3ugoupnmjjoXajLdCoUCfD6/VXMTS0FXoaOjCjIymQwikQg1NTVmqwsHbsvNrVq1Cl9//TXeeustLF++vNe5gBIIBII5IEE1gdBNGIbBsWPH8P7776Ourg5r1qzB008/bZaApyOBVnu24pZOc3MzsrKyUFRU1ObgQbcm21xNesaiI7bnugMoPz8/8Hg8s9SFKxQK7NixAykpKRg2bBg2bdqE8PBwkx+XQCAQeiskqCYQjIRKpcLOnTuRnJyMvn37IiUlBQMHDjRLAKspCdBI4Xl6emrd/tqzFe8ttKbeoVartcGmOZv0TIHu4EFje25lZaWV5nNycjKb9CDDMPjjjz+waNEisNlsbNy4EePHj+81AzECgUDoKYhWD8EkfPzxxwgODgaXy0VsbCzOnz/f7vo//PAD+vbtCy6Xi4iICBw6dEjvdYZhkJycDF9fX9ja2mLUqFEQi8WmvIROw+FwMGPGDGRmZiI6OhqPPfYYZs+ejdLSUpMf293dHbGxsQgKCsKNGzdw6tQpnD17Fra2toiPj0dISEivDagBwMHBAYMHD8bAgQNRWFiIEydO4NSpU5DJZIiNjUV4eHivDagBwMbGBv369cOwYcPQ3NyM06dP4+TJk8jPz0f//v0xaNAgkwfUDMPg5s2bmDhxIqZPn45Zs2bh6tWrmDBhgkUG1A/iPYZAIFg2JKgmGJ0DBw4gISEBy5Ytw6VLlxAZGYkxY8agrKys1fXT0tLw73//G2+88QYuX76MiRMnYuLEibh+/bp2nQ0bNmDr1q3YsWMHzp07B3t7e4wZMwZyudxcl9VhXF1dsXnzZly5cgUVFRWIiorChx9+iObmZpMel6ZpKBQKMAyjDaBpmsb9MhnFMAxUKhVomgabzQZFUVCr1VCr1T19akaDYRjQNA2KosBms6FSqaBQKEx+3MrKSsydOxcPP/wwBAIBRCIR3n//fbPLK3aUB/0eQyAQLBNS/kEwOrGxsRg6dCi2b98O4HZgFxgYiHfffRdJSUkG67/44ouQyWQ4ePCgdtmwYcMQFRWFHTt2gGEY+Pn5Ye7cuZg3bx6A2+ob3t7e2Lt3LyZPnmyeC+sCDMPgr7/+QkJCAuRyOdauXYsJEyYYtd66LVtxXUOQ0NBQBAUF9VojidraWohEIjQ2NoLH48Hf3x9qtRo5OTnIzc2Fp6cnBAKBWZpETUFrRj8cDsfktudKpRJffPEF1q5diyFDhmDz5s0YMGCARWamdSH3GAKBYIn0zicswWJRKBS4ePEiRo0apV3GYrEwatQonDlzptVtzpw5o7c+AIwZM0a7fnZ2NkpKSvTWcXZ2RmxsbJv7tBQoisKYMWNw5coVzJkzB7NmzcKTTz6J69evdzuDzDAMysvLcfbsWeTk5KBv374YOnSo1tHOzs4OkZGRiIqKQklJCdLS0lBaWtqrMtdNTU24du0a0tPT4erqivj4eAQEBICiKHA4HPD5fMTHx4PFYiEtLQ1isRhKpbKnT7vD0DSN3NxcpKamQi6XY9iwYQgLC4OVlRUoioKPjw+GDx8Of39/XL9+HZcuXUJdXV23j8swDI4cOYJhw4bh888/x969e/Hnn38iIiLC4gNqco8hEAiWCgmqCUaloqICarUa3t7eesu9vb1RUlLS6jYlJSXtrq/5b2f2aWlYWVlh9uzZEIvFiIiIwCOPPIL3338f5eXlXdpfbW0tLl68iBs3biAgIADDhw9vU+/Yzc0NsbGxCAkJwa1bt5Cenm6UwMyUKJVKiMVipKWlgaIoxMfHg8/ng8PhGKzL5XIxYMAADB06FLW1tUhNTUV+fj5omu6BM+8YDMOgrKwMZ86cQVFREQYOHIhBgwa1KhvIYrEQFBSE+Ph4ODk54cKFC7h+/Tqampq6dOzMzEw8//zzeO211/DGG2/g+vXreOqpp3rNLAa5xxAIBEuld9xFCYT7BDc3N2zduhUXL15EQUEBoqKisG3btg7Xzepmbp2dnREfH9+hsg6KouDv74/4+Hi4uLjgwoULuHHjhsXVi9I0jfz8fKSmpqK2thZDhw7FgAEDOuT26OTkhCFDhqB///7Iy8vD2bNnUV5ebnGZ+fr6ely6dAk3b95EUFAQYmNjO6QZbmVlBYFAgOHDhwNApzPz1dXVWLBgAYYPH46goCBkZmZi3rx5ZrdtJxAIhPsVElQTjIqHhwfYbLaB4kVpaWmbjoM+Pj7trq/5b2f2aemEh4fj0KFD+Oqrr7Bnzx7ExMTg0KFDbQaASqUSIpFIL3MrEAg63UjG4XC0gZlarUZaWhqysrJ6vNlPt5QlLy8P4eHhGDJkCJycnDq1H4qi4Onpibi4OAQGBuLGjRu4dOkS6uvrTXTmHae5uRk3b97E+fPn4ejoiPj4+C4ZuNja2moz83V1dUhNTUVeXl6bmXmlUonPP/8ckZGRuHHjBtLS0rBjxw54eXkZ47LMDrnHEAgES4UE1QSjYm1tjSFDhuDo0aPaZTRN4+jRo4iLi2t1m7i4OL31AeDIkSPa9UNCQuDj46O3Tl1dHc6dO9fmPnsDFEVhwoQJuHr1KmbNmoXp06dj4sSJuHnzpja4bmpqwsGDB3H69GnU19cjJiamw5nb9rC1tdWWHJSXlyMtLQ3FxcU9ktXVZG41pSxxcXHw8vLqVm0vi8VCYGAg4uPj4ejoiPPnz/dYZl6tViM7OxupqalQKpWIi4uDUCjstrKGk5MTBg8ejAEDBqCwsBBpaWk4ePCgNrjWmBLFx8dj+/bt+Pzzz3H06FEMGjTI4uum24PcYwgEgqVC1D8IRufAgQOYOnUqPvvsM8TExODDDz/E999/j1u3bsHb2xuvvvoq/P39sW7dOgC3p7EfeeQRrF+/HhMmTMB3332HtWvX4tKlSxgwYAAAICUlBevXr8e+ffsQEhKCpUuX4urVq7h582a3A0xLoaKiAsnJydizZw9effVVBAUFYdu2bfD29sZvv/0GDw8PkxyXYRgUFxdDIpGAy+UiLCwMzs7OJjmWLnK5HFKpFCUlJQgMDERISIjJJNyampogFotRUVGBPn36IDg42OS63Zq6abFYrLWGN5W9N8MwyMjIwNixY+Hl5YV33nkHhw8fxsmTJ7Fw4UK8//77983vBCD3GAKBYJkYdv0QCN3kxRdfRHl5OZKTk1FSUoKoqCgcPnxY2wSUl5enN+U9fPhwfPPNN1iyZAkWLVoEgUCAn3/+WfuwA4AFCxZAJpNh+vTpqKmpwUMPPYTDhw/fVw87Dw8PfPzxx4iOjsacOXNQX1+Pp556Crt27TKpVBxFUfDz84O3tzdycnKQnp4OLy8vCAQCk7y/ulJ4Hh4eGD58uMml8DSZ+ZqaGohEIhQUFIDP58PPz88kWdu6ujpkZmaisbHRpMfRQFEUwsPDkZaWhsmTJ2P27NkICgrC77//joceeshkx+0pyD2GQCBYIiRTTSBYCDdv3kRiYiJOnjyJxMRE8Pl8LFmyBGw2G+vXr8eoUaPMMm0vl8shFotRVlaG4OBgo2V1GYZBUVERJBKJnp62udHNILPZbAiFwg41CnYE3ey7JiPemmKJsVGpVNi/fz9WrlyJvn37YvHixfj555+xd+9eTJs2DcuXL++1NdQEAoHQWyBBNYFgAWzcuBFLly7FW2+9haVLl8LT0xPA7ea2bdu2YfXq1YiLi8PatWsRFhZmlnOqra1FZmYm5HI5+Hw+fH19uxzUV1ZWQiQSQa1Wg8/ntyn/Z05omkZeXh6ys7Ph4uICgUDQZStwtVqN3Nxc5OTkwMPDw2xGNAzD4NSpU1iwYAHq6+uRkpKC559/XpulvXXrFpKSkvB///d/+O677zB+/HiTnxOBQCA8qJCgmkCwAK5cuQJ7e3sIBIJWXy8rK8PSpUuxf/9+vPnmm0hKSoKrq6vJz4thGJSWlkIsFsPa2hphYWGdyi43NDRALBajpqYGISEhFunqqFAokJWVhcLCQvj5+YHH43VYZo5hGJSUlEAikcDa2hpCodAsnwsAZGVlYcmSJTh69CgSExMxd+7cNgP5U6dOQSAQECULAoFAMCEkqCYQegkMw+DKlStISEjAtWvXsGTJErz++utmKS/obCZW13bb398foaGhFq+HLJPJIBaLUV1djeDgYAQFBbVb9mLMTH5nqKurwwcffIBPP/0UkyZNwpo1axAQEGDy4xIIBAKhfUhQTSD0Mmiaxk8//YQFCxbA1tYWKSkpGDFihNnqrTU1w0FBQQgJCdEL6tVqNfLy8pCTkwNXV1cIBIJWXQItmaqqKohEIiiVSvD5fPj4+Oi9t6aqOb8XarUaX3/9NZYvX47Q0FBs2bIFMTExPV5GQyAQCITbWNY8LIHQBT7++GMEBweDy+UiNjYW58+fb3PdL774Ag8//DBcXV3h6uqKUaNGGaz/2muvgaIovb+xY8ea+jI6DIvFwnPPPYcbN27g5ZdfxksvvYTJkydDIpGY/NhcLhf9+/fH0KFDUVNTg9TUVBQWFoKmaRQXFyMtLQ2lpaWIjIxEVFRUrwuogbu27jweD2KxGOfPn0d1dTXUajWkUilSU1O1Bjw8Hs8s0nypqal45JFHsHbtWmzevBmnT59GbGysxQXUD9pvkUAgEHQhQTWhV3PgwAEkJCRg2bJluHTpEiIjIzFmzBiUlZW1uv7x48fx73//G8eOHcOZM2cQGBiI0aNHo7CwUG+9sWPHori4WPv37bffmuNyOgWXy0VSUhJu3boFLy8vDBs2DIsWLUJtba3Jj+3k5ITo6Gj07dsXEokEx44dQ2ZmJng8HmJjY02mx2wuNDKD8fHx8PDwwMWLF3H8+HGUl5cjOjraKAY8HSE3NxdTp07FM888g6eeegoZGRl46aWXLK4uHXiwf4sEAoEAkKCa0EUCAgLwySef6C1LS0uDnZ0dcnNzzXYemzdvxltvvYVp06YhPDwcO3bsgJ2dHXbv3t3q+l9//TVmzZqFqKgo9O3bFzt37tS6seliY2MDHx8f7Z+5ms+6gq+vL3bu3ImTJ09qg5ndu3dDpVKZ9LhNTU0oKSmBWq2Gi4sL1Go1ysrK0NTUZNLjmpO6ujpUVFTA2toazs7OaGhoQElJCZRKpUmP29DQgBUrViA6Oho2Nja4efMmli9fbtGZf/JbJBAIDzokqCZ0idjYWFy4cEH7/wzD4P3338ecOXPQp08fs5yDQqHAxYsXMWrUKO0yFouFUaNG4cyZMx3aR2NjI5RKpUFm9fjx4/Dy8kJYWBhmzpyJyspKo567saEoCtHR0Th+/Di2bduGjRs34uGHH8bJkyeNbj2uVCqRmZmJM2fOwMrKCvHx8RgyZAgeeughWFtb48yZM9qa5N5KU1MTrl69isuXL8PT0xPx8fGIjo5GbGwsZDIZTp8+jdzcXK0luLHQ1E0PGjQIx48fx19//YWvvvoKQUFBRj2OsSG/RQKBQCBBNaGLDBs2TC+o/vLLL5Gfn4+FCxea7RwqKiqgVqu1LmoavL29UVJS0qF9JCYmws/PTy8YGDt2LPbv34+jR48iJSUFJ06cwLhx46BWq416/qaAxWLhxRdfxM2bNzFp0iRMmjQJU6ZMQXZ2drf3TdM0cnNzcfr0achkMsTExCA8PBw2NjYAbmcUw8PDERMTg/r6eqSmpiI/P9/ogacpUalUEIvFSEtLA5vNxvDhwxEaGqqtm3Z0dMTgwYMRERGBwsJCbQ15dwcuDMPg3LlzeOyxx7BixQqsW7cOZ86cQXx8vMXVTbfG/fxb/Pbbb2Fra4vi4mLtsmnTpmHgwIFmKbUiEAi9BxJUE7rEsGHDkJGRgYaGBshkMixatAirV6/usnlGT7B+/Xp89913+Omnn/TqYydPnoynnnoKERERmDhxIg4ePIgLFy7g+PHjPXeyncTOzg5LlixBRkYGnJ2dMXToUCQnJ6O+vr7T+9I4EKalpaGwsBAREREYPHgwHB0dW11fE3iGh4cjLy8PZ8+etfjsIsMwKCgoQGpqKmpqajB06FD079+/zbppDw8PDBs2DMHBwbh16xbS09O7HGDl5+fjjTfewBNPPIExY8YgIyMDr776qkXWTZsKS/4tTp48GUKhEGvXrgUALFu2DH///Tf++OMPODs7m+08CASC5WN6gVvCfcmQIUPAYrFw6dIl/P333/D09MS0adPMeg4eHh5gs9koLS3VW15aWnpPk4uNGzdi/fr1+PvvvzFw4MB21w0NDYWHhwckEglGjhzZ7fM2JwEBAdi7dy9mzZqFOXPmIDIyEsuXL8eUKVM6pFpRW1sLkUiExsZG8Hg8+Pn5dSjYoygKXl5e8PDwQH5+Pq5evQoXFxcIhUKLqwuuqqpCZmYm1Go1+vbtCy8vrw5lh1ksFgICAuDj44OcnBykp6fDy8sLfD6/Q26KMpkMH374IT766CNMmDABN27cQHBwsBGuyPzcz79FiqKwZs0aPP/88/Dx8cG2bdtw6tQp+Pv7m+X4BAKh9/DgpEIIRsXOzg4RERH43//+h40bN2LLli1mz6xZW1tjyJAheo1NmkanuLi4NrfbsGEDVq1ahcOHDyM6OvqexykoKEBlZSV8fX2Nct7mhqIoxMbG4vTp09i0aRPWrl2LRx55BKmpqW2WLTQ1NeHatWtIT0+Hq6sr4uPjERAQ0OnPmMVioU+fPoiPj4etrS3Onj2LW7duWUS9dWNjI65cuYJ//vkHvr6+iIuL65J9OofDAZ/P15ZqpKWlQSwWt9koStM0Dhw4gMGDB+Pw4cM4dOgQvvvuu14bUAP3/2/xiSeeQHh4OFauXImffvoJ/fv3N+vxCQRC74CYvxC6zKxZs7Bjxw48/fTT+Omnn3rkHA4cOICpU6fis88+Q0xMDD788EN8//33uHXrFry9vfHqq6/C398f69atAwCkpKQgOTkZ33zzDeLj47X7cXBwgIODg1Z14bnnnoOPjw+kUikWLFiA+vp6XLt2TVs/3JuRyWT44IMPsHHjRowdOxarVq3SNpdWV1fj9OnTsLOzg7e3N/h8vlGl4xoaGiASiVBbWwsej9elQL27KJVKZGdnIz8/H76+vuDxeEb9XOvq6iASiSCTyVBTU4Nx48bB2toaDMPg4sWLSExMRE5ODtasWYOpU6eaxTjGHNzPv8XDhw/j2WefhUKhwPXr19G3b1+zHZtAIPQeSFBN6DKfffYZ3nvvPdy4cQN8Pr/HzmP79u344IMPUFJSgqioKGzduhWxsbEAgBEjRiA4OBh79+4FAAQHB7cq+bds2TIsX74cTU1NmDhxIi5fvoyamhr4+flh9OjRWLVqlUETVm8nLy8PCxcuxM8//4xZs2bB2toan3zyCYYMGYIvv/zSpPWiFRUVEIlEYBgGQqEQHh4eJm/Io2kahYWFkEqlcHR0hFAobLMuvLswDIPCwkKMHj0aAPCf//wH6enp+Omnn/Dee+9h0aJFcHJyMsmxe5L78bd46dIljBgxAp999hn27t0LJycn/PDDD2Y7PoFA6D2QoJrQZR599FEMHjwYmzZt6ulTIXQRhmGwefNmLF26FAqFAq+88go+/PBDWFlZmfzYNE2joKAAWVlZcHJyglAoNFmja2VlJTIzM8EwDAQCATw9Pc2iqlFdXY0pU6bgxIkT8PLywu7duzFhwgSTH5dgHHJychAXF4f//Oc/SEpKwrlz5xAXF4f09HQMHjy4p0+PQCBYGCSoJnQKmqZRXl6OXbt24ZNPPsHNmzfvy4zbg8C1a9cwb948pKenY+nSpXB0dERycjL8/PywYcMGxMTEmCXwVCqVyMrKQkFBAfz8/MDj8WBtbW2UfctkMohEItTU1CA0NBSBgYFmKTehaRo//fQTlixZAldXV6xcuRInTpzAJ598gilTpmDVqlW9tkb/QaGqqgrDhw/HiBEjsGPHDu3yCRMmQK1W4/Dhwz14dgQCwRIhQTWhUxw/fhyPPfYY+vbtiz179mindgm9iyVLlmDTpk2YNWuWNvADgPr6eqSkpGDLli148sknsXLlSgQEBJjlnHQD4JCQEAQFBXU5AFYqlZBKpSgsLIS/vz9CQ0ONFqi3B8MwuHLlChITEyEWi7Fq1Sq8/vrr4HBuCy1lZWUhKSkJf/zxBz7//HP8+9//Nvk5EQgEAsE8kKCaQHgAOXbsGIKCgsDj8Vp9PScnB4mJifj999/x/vvv4/3334ednZ1Zzq2yshIikQhqtRpCobBTpRqakhKpVApnZ2eTlpS0pKSkBCtXrsT333+vHay4uLi0um5aWhpcXV3Rr18/s5wbgUAgEEwPCaoJBEKrMAyDU6dOYc6cOSgrK8PKlSsxadIks5RPaBr9JBIJHBwcEBYW1m5TIcMw2uZHiqK0zY/mQC6X4+OPP8YHH3yARx99FB988AGEQqFZjk0gEAgEy4EE1QQCoV3UajX27t2LJUuWIDg4GCkpKRgyZIjZ6q1zcnKQl5fXpvydRqavrq4OPB4P/v7+Zqub/u2337B48WLY29tjy5YtGDlyZK+wFScQCASC8SHmLwRCJ/j4448RHBwMLpeL2NhYnD9/vs119+7dC4qi9P5aaj4zDIPk5GT4+vrC1tYWo0aNglgsNvVldAo2m4033ngDmZmZeOSRRzB27Fi8/fbbKC4uNvmxraysIBAIEBcXB6VSidTUVGRnZ0OtVkOhUCAjIwPnzp2Dvb094uPjzdKIyDAMrl27hgkTJuC9997DvHnzcPnyZYwaNcoiA+oH8TtLIBAIPQEJqgmEDnLgwAEkJCRg2bJluHTpEiIjIzFmzBiUlZW1uY2TkxOKi4u1fy11eTds2ICtW7dix44d2uBwzJgxkMvlpr6cTuPk5IT169fj2rVraGpqQlRUFDZs2ICmpiaTH9vOzg6RkZGIiopCSUkJTp48iVOnTkEul2PYsGEICwsziwxgWVkZ3nvvPYwYMQKDBg2CSCTCrFmztI2IlsaD/p0lEAgEc0KCagKhg2zevBlvvfUWpk2bhvDwcOzYsQN2dnbYvXt3m9tQFAUfHx/tn65pBcMw+PDDD7FkyRI8/fTTGDhwIPbv34+ioiL8/PPPZriirsHj8fDf//4Xv/76K37++WcMHjwY//vf/0DTtEmPyzAMVCoV1Go12Gw2WCwWVCpVm3bgxqS5uRkfffSRNqi/fPkyPvzwQ61qiqVCvrMEAoFgPkhQTSB0AIVCgYsXL2LUqFHaZSwWC6NGjcKZM2fa3K6hoQF9+vRBYGAgnn76ady4cUP7WnZ2NkpKSvT26ezsjNjY2Hb3aQlQFIVHH30U6enpWLRoEebOnYtx48bhypUrMEWbRn19PS5evIibN28iODgYDz/8MB5++GG4uroiPT0d169fN0mmlKZpHDx4EDExMfjyyy/x7bff4uDBg73Cppp8ZwkEAsG8kKCaQOgAFRUVUKvVBvbI3t7eKCkpaXWbsLAw7N69G7/88gu++uor0DSN4cOHo6CgAAC023Vmn5YGh8PB22+/DZFIhNjYWIwaNQrvvPOO0c6/ubkZN2/exPnz5+Hs7Iz4+HgEBASAoihwOBzw+XwMHz4cNE0jLS0NWVlZUKvV3T4uwzC4efMmnn76acycORPvvvsu/vnnH4wbN84i66Zbg3xnCQQCwbyQoJpAMBFxcXF49dVXERUVhUceeQQ//vgjPD098dlnn/X0qRkdFxcXbNy4EVeuXEF1dTUGDRqEzZs3dzl7rFarkZ2djdTUVCiVSsTFxUEgELRaN21ra4uBAwdi8ODBKC8vR2pqKoqLi7ucMa+oqEBCQgIefvhh9OvXDyKRCO+9955ZarZ7mgfpO0sgEAjGhgTVBEIH8PDwAJvNRmlpqd7y0tJS+Pj4dGgfVlZWGDRoECQSCQBot+vOPi0NoVCIn3/+Gf/73/9w4MABREdH45dffulwvTXDMCgtLUVaWhpKS0sRFRWFyMjIDhnPuLi4ICYmBgKBAGKxGBcuXEBNTU2Hz12hUGD79u2IjIxETk4O0tPTsW3bNri7u3d4H5YE+c4SCASCeSFBNYHQAaytrTFkyBAcPXpUu4ymaRw9ehRxcXEd2odarca1a9fg6+sLAAgJCYGPj4/ePuvq6nDu3LkO79MSoSgKo0aNwuXLlzF37ly8++67eOKJJ3Dt2rV2s8e1tbVIT0/HrVu3EBoaitjYWLi5uXX62L6+voiPj4e7uzsuXbqkVStpC4ZhcPjwYQwbNgy7du3C/v37cfjwYfTv37/XlHq0BvnOEggEgplhCARCh/juu+8YGxsbZu/evczNmzeZ6dOnMy4uLkxJSQnDMAzzyiuvMElJSdr1V6xYwfz555+MVCplLl68yEyePJnhcrnMjRs3tOusX7+ecXFxYX755Rfm6tWrzNNPP82EhIQwTU1NZr8+U1FZWcn85z//YbhcLvP6668z2dnZjEwm0/7l5OQw586dY3799Vfmn3/+YWpra/Ve785fZWWldt+XL19mCgsLta81NDQwFy9eZEaPHs24uLgwmzZtYpqbm3v67TIq5DtLIBAI5oME1QRCJ9i2bRsTFBTEWFtbMzExMczZs2e1rz3yyCPM1KlTtf///vvva9f19vZmxo8fz1y6dElvfzRNM0uXLmW8vb0ZGxsbZuTIkUxmZqa5LsesZGRkMOPHj2ecnZ2ZtWvXMrm5ucysWbMYe3t75pdffmEqKiqMFky3/CsqKmLWrl3LuLm5MevXr2dycnKYWbNmMVwul3n77beZsrKynn57TAb5zhIIBIJ5IDblBALBbDAMg0OHDmH69OkoLS2Fr68vtm3bhtGjR5v82DRNY+fOnUhOTkZjYyMGDhyIvXv3IiIioleXeRAIBALBMiA11QQCwWycPXsWq1atAkVRePHFFyGTybBt2zbcvHnTJPrWGhiGwbFjx/DFF1/Aw8MDL774IsRiMVatWoWcnByTHZdAIBAIDw4kqCYQCCanoKAAL730Eh5//HGMGzcOmZmZ+PrrryEWi9GvXz88/PDDSEhIQGVlpdGPLRKJ8MILL+CVV17B1KlTkZGRoT22s7Mz+vfvj6SkJDQ0NBj92AQCgUB4cCBBNYFAMDnl5eXgcDi4desWli1bBnt7ewCAu7s7tm3bhvT0dOTk5GDgwIH4+OOPoVAoun3MmpoaJCUlIS4uDn5+fsjMzMSCBQtgY2MD4LY83M6dO5GamgqxWGwU0xgCgUAgPLiQmmoCgWARMAyDgwcPYt68eaAoCuvWrcPo0aM7Xe+sUqmwd+9erFq1CuHh4diyZQsGDRpE6qYJBAKBYFJIUE0gECwKjQnLqlWrEBMTg3Xr1qFv37733I5hGJw8eRKJiYloaGhASkoKnnvuObBYZEKOQCAQCKaHPG0IBAvm448/RnBwMLhcLmJjY3H+/Pk21x0xYgQoijL4mzBhgnad1157zeD1sWPHmuNSOoy1tTUSEhIgEokQEhKC+Ph4zJ8/H1VVVW1uI5VK8e9//xsvvvgiJk+ejJs3b2LSpEkWGVA/iJ8pgUAgPAhY3hOHQCAAAA4cOICEhAQsW7YMly5dQmRkJMaMGYOysrJW1//xxx9RXFys/bt+/TrYbDYmTZqkt97YsWP11vv222/NcTmdxtPTE59++inOnTuHW7duITIyEp999hmUSqV2nbq6OixZsgSxsbFwd3fHrVu3sGjRInC53B4887Z50D9TAoFAuJ8h5R8EgoUSGxuLoUOHYvv27QBu6ywHBgbi3XffRVJS0j23//DDD5GcnIzi4mJtY+Brr72Gmpoa/Pzzz6Y8daND0zR++eUXLFiwANbW1li7di0KCwuxYsUKCAQCbN68GUOHDrX4umnymRIIBML9C8lUEwgWiEKhwMWLFzFq1CjtMhaLhVGjRuHMmTMd2seuXbswefJkbfCl4fjx4/Dy8kJYWBhmzpxpEhk7Y8NisfDMM8/g+vXrmDp1KiZNmoQlS5bgww8/xMmTJxETE2PxATX5TAkEAuH+htPTJ0AgEAypqKiAWq2Gt7e33nJvb2/cunXrntufP38e169fx65du/SWjx07Fs8++yxCQkIglUqxaNEijBs3DmfOnAGbzTbqNZgCGxsbLFiwAI8++ii8vb0RFBTU06fUYchnSiAQCPc3JKgmEO5Ddu3ahYiICMTExOgtnzx5svbfERERGDhwIHg8Ho4fP46RI0ea+zS7zNChQ3v6FMzO/f6ZEggEQm+HlH8QCBaIh4cH2Gw2SktL9ZaXlpbCx8en3W1lMhm+++47vPHGG/c8TmhoKDw8PCCRSLp1voR7Qz5TAoFAuL8hQTWBYIFYW1tjyJAhOHr0qHYZTdM4evQo4uLi2t32hx9+QHNzM15++eV7HqegoACVlZXw9fXt9jkT2od8pgQCgXB/Q4JqAsFCSUhIwBdffIF9+/YhIyMDM2fOhEwmw7Rp0wAAr776KhYuXGiw3a5duzBx4kS4u7vrLW9oaMD8+fNx9uxZ5OTk4OjRo3j66afB5/MxZswYs1zTgw75TAkEAuH+hdRUEwgWyosvvojy8nIkJyejpKQEUVFROHz4sLbRLS8vz8DcJDMzE6dPn8Zff/1lsD82m42rV69i3759qKmpgZ+fH0aPHo1Vq1bBxsbGLNf0oEM+UwKBQLh/ITrVBAKBQCAQCARCNyHlHwQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAAACdPnsSTTz4JPz8/UBSFn3/++Z7bHD9+HIMHD4aNjQ34fD727t1rsM7HH3+M4OBgcLlcxMbG4vz588Y/+S7woF0vgUAgEEwLCaoJBAIAQCaTITIyEh9//HGH1s/OzsaECRPw6KOP4sqVK3j//ffx5ptv4s8//9Suc+DAASQkJGDZsmW4dOkSIiMjMWbMGJSVlZnqMjrMg3a9BAKBQDAtxPyFQCAYQFEUfvrpJ0ycOLHNdRITE/H777/j+vXr2mWTJ09GTU0NDh8+DACIjY3F0KFDsX37dgAATdMIDAzEu+++i6SkJJNeQ2d40K6XQCAQCMaHZKoJBEKXOHPmDEaNGqW3bMyYMThz5gwAQKFQ4OLFi3rrsFgsjBo1SrtOb+JBu14CgUAgdA4SVBMIhC5RUlICb29vvWXe3t6oq6tDU1MTKioqoFarW12npKTEnKdqFB606yUQCARC5yBBNYFAIBAIBAKB0E04PX0CBAKhd+Lj44PS0lK9ZaWlpXBycoKtrS3YbDbYbHar6/j4+JjzVI3Cg3a9BAKBQOgcJFNNIBC6RFxcHI4ePaq37MiRI4iLiwMAWFtbY8iQIXrr0DSNo0ePatfpTTxo10sgEAiEzkGCagKBAABoaGjAlStXcOXKFQC3JeSuXLmCvLw8AMDChQvx6quvatefMWMGsrKysGDBAty6dQuffPIJvv/+e8yZM0e7TkJCAr744gvs27cPGRkZmDlzJmQyGaZNm2bWa2uNB+16CQQCgWBiGAKBQGAY5tixYwwAg7+pU6cyDMMwU6dOZR555BGDbaKiohhra2smNDSU2bNnj8F+t23bxgQFBTHW1tZMTEwMc/bsWdNfTAd40K6XQCAQCKaF6FQTCAQCgUAgEAjdhJR/EAgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBN/h9H+4Envx0OpQAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 273 + "execution_count": 313 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T22:14:17.947505Z", + "start_time": "2024-06-09T22:14:17.944912Z" + } + }, + "cell_type": "code", + "source": [ + "a = 0.3\n", + "b = 0.5\n", + "\n", + "def lambda1(beta1, beta2):\n", + " nom = (b-a)*(beta1-beta2)\n", + " denom = (b-a-1)*beta2-(b-a)*beta1\n", + " \n", + " return nom/denom\n", + "\n", + "def lambda2(beta1, beta2):\n", + " nom = (b-a-1)*(beta1-beta2)\n", + " denom = (b-a-1)*beta2-(b-a)*beta1\n", + " \n", + " return nom/denom\n", + "\n", + "def effbeta(beta1, beta2):\n", + " lam1 = lambda1(beta1, beta2)\n", + " lam2 = lambda2(beta1, beta2)\n", + " \n", + " beta = beta1*(lam1+1)*(1+a-b)+beta2*(b-a)*(lam2+1)\n", + " return beta" + ], + "id": "3d14fb660b4bb878", + "outputs": [], + "execution_count": 314 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T22:14:18.230373Z", + "start_time": "2024-06-09T22:14:17.949180Z" + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Create a meshgrid for the range of beta1 and beta2 values\n", + "n1 = 50\n", + "n2 = 50\n", + "beta1_range = np.linspace(0.05, 400, n1)\n", + "beta2_range = np.linspace(0.05, 400, n2)\n", + "beta1, beta2 = np.meshgrid(beta1_range, beta2_range)\n", + "\n", + "# Compute effbeta for each combination of beta1 and beta2\n", + "eff_beta_values = effbeta(beta1, beta2)\n", + "\n", + "# Create a heat plot\n", + "plt.figure(figsize=(10, 8))\n", + "plt.imshow(eff_beta_values, extent=(0.05, 400, 0.05, 400), origin='lower', aspect='auto')\n", + "plt.colorbar(label='effbeta')\n", + "plt.xlabel('beta1')\n", + "plt.ylabel('beta2')\n", + "plt.title('Heat Plot of effbeta')\n", + "plt.show()\n", + "\n", + "# Create a surface plot\n", + "fig = plt.figure(figsize=(12, 8))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "surf = ax.plot_surface(beta1, beta2, eff_beta_values, cmap='viridis')\n", + "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", + "ax.set_xlabel('beta1')\n", + "ax.set_ylabel('beta2')\n", + "ax.set_zlabel('effbeta')\n", + "ax.set_title('Surface Plot of effbeta')\n", + "plt.show()" + ], + "id": "3bb2b8e7616244d9", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAK9CAYAAADyuinTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsV0lEQVR4nO3deZgU1b3/8U91z8I6gwjDQARERBEBFzQwapQEwiIxGkmiBhWU6A2/QQWiV0mMolHxmjxxjeCSC2o0JiSikbihCF7jiIqiaBSFoEOEAdTLDIvM0nV+fxD60iwy32q6umvm/Xqefh6m+5w6S1U3dep76pTnnHMCAAAAgAiKZbsCAAAAABAUAxoAAAAAkcWABgAAAEBkMaABAAAAEFkMaAAAAABEFgMaAAAAAJHFgAYAAABAZDGgAQAAABBZDGgAAAAARBYDGgDIgnHjxunggw/OdjVSbN68WT/+8Y9VWloqz/M0adKk/bLdhx56SL1791Z+fr7atWuXfP9Xv/qVDjnkEMXjcR199NGSJM/zNHHixP1SLgCgeWBAAyBnzZ49W57n6Y033tjj54MHD1bfvn0zWoennnpK06ZNa3T6wYMHy/O85Kt9+/Y6/vjj9d///d/yfX+/1Ommm27S448/vl+2tet2Z8+erQkTJuihhx7Seeedl/Y2P/jgA40bN049e/bUfffdp3vvvVeS9Nxzz+k///M/deKJJ2rWrFm66aab0i5rT9asWaNp06Zp6dKlGdk+ACD78rJdAQDIZU899ZR++9vfmgY1Bx10kKZPny5J2rBhgx588EGNHz9eH374oW6++ea063TTTTfp+9//vs4444y0t7WzBQsWaNCgQbr22mv32zYXLlwo3/d1++2369BDD00pKxaL6Xe/+50KCgr2W3m7WrNmja677jodfPDBySgQAKBpIUIDAPtZcXGxzj33XJ177rmaPHmy/v73v+uggw7SXXfdpfr6+mxXb6/Wr1+fMiVsf21T0m7bXb9+vVq2bJnRwQwAoHlgQAOgyfn973+vAQMGqGXLlmrfvr3OPvtsrV69OiXN//zP/+gHP/iBunXrpsLCQnXt2lWTJ0/Wl19+mUwzbtw4/fa3v5WklGlkVq1atdKgQYO0ZcsWbdiwYa/ptmzZop/+9Kfq2rWrCgsLdfjhh+vXv/61nHPJNJ7nacuWLXrggQeS9Rk3btxXlr9+/XqNHz9enTp1UosWLXTUUUfpgQceSH6+cOFCeZ6nVatW6W9/+1tyux9//PFXbndf/XzwwQcnoz0dO3aU53maNm2aPM/TrFmztGXLlmRZs2fPTtn2ww8/rMMPP1wtWrTQgAED9NJLL+1W/qeffqoLL7xQnTp1UmFhoY488kj993//d0q7jj/+eEnSBRdcsFtZjTkGAAC5jylnAHJedXW1Pvvss93e31O048Ybb9QvfvEL/fCHP9SPf/xjbdiwQXfeeadOPvlkvfXWW8lIwZw5c7R161ZNmDBBBx54oF577TXdeeed+te//qU5c+ZIkv7jP/5Da9as0fz58/XQQw+l1YZ//vOfisfje42AOOf03e9+Vy+++KLGjx+vo48+Ws8++6yuuOIKffrpp7r11lslbb/B/sc//rG+/vWv6+KLL5Yk9ezZc6/lfvnllxo8eLBWrFihiRMnqkePHpozZ47GjRunjRs36rLLLtMRRxyhhx56SJMnT9ZBBx2kn/70p5K2D0L2pjH9fNttt+nBBx/U3LlzNWPGDLVp00b9+/fXoYceqnvvvVevvfaa7r//fknSCSeckNz2okWL9Mc//lGXXnqpCgsLdffdd2vEiBF67bXXkvdMrVu3ToMGDUouItCxY0c9/fTTGj9+vGpqajRp0iQdccQRuv7663XNNdfo4osv1je+8Y2UshpzDAAAIsABQI6aNWuWk/SVryOPPDKZ/uOPP3bxeNzdeOONKdtZtmyZy8vLS3l/69atu5U3ffp053me++STT5LvlZeXO8tP5SmnnOJ69+7tNmzY4DZs2ODef/99d+mllzpJ7rTTTkumGzt2rOvevXvy78cff9xJcjfccEPK9r7//e87z/PcihUrku+1bt3ajR07tlH1ue2225wk9/vf/z75Xl1dnSsrK3Nt2rRxNTU1yfe7d+/uRo0atc9tWvr52muvdZLchg0bUtKOHTvWtW7derdt79ivb7zxRvK9Tz75xLVo0cJ973vfS743fvx417lzZ/fZZ5+l5D/77LNdcXFxcv++/vrrTpKbNWvWbmU19hgAAOQ2ppwByHm//e1vNX/+/N1e/fv3T0n32GOPyfd9/fCHP9Rnn32WfJWWlqpXr1568cUXk2lbtmyZ/PeWLVv02Wef6YQTTpBzTm+99VZa9f3ggw/UsWNHdezYUUcccYTuvPNOjRo1KmU61K6eeuopxeNxXXrppSnv//SnP5VzTk8//XSgujz11FMqLS3VOeeck3wvPz9fl156qTZv3qxFixaZt2np5yDKyso0YMCA5N/dunXT6aefrmeffVaJRELOOf3lL3/RaaedJudcSh2GDx+u6upqvfnmm/ssJ5PHAAAgPEw5A5Dzvv71r+u4447b7f0DDjggZSraRx99JOecevXqtcft5OfnJ/9dWVmpa665Rn/961/1v//7vynpqqur06rvwQcfrPvuu0+e56lFixbq1auXSkpKvjLPJ598oi5duqht27Yp7x9xxBHJz4P45JNP1KtXL8Viqdev0tmupZ+D2NN2DzvsMG3dulUbNmxQLBbTxo0bde+99yaXgd7VjsUIvkomjwEAQHgY0ABoMnzfl+d5evrppxWPx3f7vE2bNpKkRCKhb3/72/riiy905ZVXqnfv3mrdurU+/fRTjRs3Lu3nxbRu3VpDhw5Naxu5rLH9nMnyJencc8/V2LFj95hm1+jdrjJ9DAAAwsOABkCT0bNnTznn1KNHDx122GF7Tbds2TJ9+OGHeuCBB3T++ecn358/f/5uaYOsahZE9+7d9fzzz2vTpk0pUZoPPvgg+XmQOnXv3l3vvPOOfN9PidLsabuN1dh+Duqjjz7a7b0PP/xQrVq1Si5U0LZtWyUSiX0OHPfWV5ZjAACQ27iHBkCTceaZZyoej+u6665LWepY2r6K2Oeffy5JyajCzmmcc7r99tt322br1q0lSRs3bsxQrbc79dRTlUgkdNddd6W8f+utt8rzPI0cOTKlTo2tz6mnnqqqqir98Y9/TL7X0NCgO++8U23atNEpp5xirmtj+zmoioqKlHtgVq9erSeeeELDhg1TPB5XPB7X6NGj9Ze//EXvvvvubvl3Xhp7b/vPcgwAAHIbERoATUbPnj11ww03aOrUqfr44491xhlnqG3btlq1apXmzp2riy++WJdffrl69+6tnj176vLLL9enn36qoqIi/eUvf9ntPgpJyZvTL730Ug0fPlzxeFxnn332fq/7aaedpm9+85v6+c9/ro8//lhHHXWUnnvuOT3xxBOaNGlSytLMAwYM0PPPP6/f/OY36tKli3r06KGBAwfucbsXX3yx7rnnHo0bN05LlizRwQcfrD//+c/6+9//rttuu223e3Yao7H9HFTfvn01fPjwlGWbJem6665Lprn55pv14osvauDAgbrooovUp08fffHFF3rzzTf1/PPP64svvkjWtV27dpo5c6batm2r1q1ba+DAgaZjAACQ40JfVw0AGmnHss2vv/76Hj8/5ZRTUpZt3uEvf/mLO+mkk1zr1q1d69atXe/evV15eblbvnx5Ms0//vEPN3ToUNemTRvXoUMHd9FFF7m33357tyV+Gxoa3CWXXOI6duzoPM/b5xLOe6vTrnZdttk55zZt2uQmT57sunTp4vLz812vXr3cr371K+f7fkq6Dz74wJ188smuZcuWTtI+l3Bet26du+CCC1yHDh1cQUGB69ev3x6XMW7sss07NKafgyzbXF5e7n7/+9+7Xr16ucLCQnfMMce4F198cY/tKi8vd127dnX5+fmutLTUDRkyxN17770p6Z544gnXp08fl5eXl7J/G3sMAABym+fcLvMFAAAAACAiuIcGAAAAQGQxoAEAAAAQWQxoAAAAAERWzgxobr75Znmep0mTJiXf27Ztm8rLy3XggQeqTZs2Gj16tNatW5eSr7KyUqNGjVKrVq1UUlKiK664Qg0NDSHXHgAAAIiWpnL+nRMDmtdff1333HPPbk92njx5sp588knNmTNHixYt0po1a3TmmWcmP08kEho1apTq6ur0yiuv6IEHHtDs2bN1zTXXhN0EAAAAIDKa1Pl3tpdZ27Rpk+vVq5ebP3++O+WUU9xll13mnHNu48aNLj8/382ZMyeZ9v3333eSXEVFhXPOuaeeesrFYjFXVVWVTDNjxgxXVFTkamtrQ20HAAAAEAVN7fw76w/WLC8v16hRozR06FDdcMMNyfeXLFmi+vp6DR06NPle79691a1bN1VUVGjQoEGqqKhQv3791KlTp2Sa4cOHa8KECXrvvfd0zDHH7LHM2tpa1dbWJv/2fV9ffPGFDjzwQHmel4FWAgAAIB3OOW3atEldunRRLJYTk4yStm3bprq6uqyU7Zzb7fy1sLBQhYWFe82TjfPvTMrqgObRRx/Vm2++qddff323z6qqqlRQUKB27dqlvN+pUydVVVUl0+zcmTs+3/HZ3kyfPj3lidMAAACIhtWrV+uggw7KdjWStm3bph7d26hqfSIr5bdp00abN29Oee/aa6/VtGnT9pg+W+ffmZS1Ac3q1at12WWXaf78+WrRokWoZU+dOlVTpkxJ/l1dXa1u3brpJJ2qPOU3ahuxFnsf9e6N17KlMX2AfiksMCV3xvR+y8b1T0qegrgtfaEtvSQljGUkCm2RuESBPXLn8o1lGNNLUsK2++Qby/Dtu9tepwC/QtZ6uXzb84ODxK79AmsZ9mcauzzflsHY7lie/T/juLFOeQX2MvLitjIK8203phbG7TeytsyrN6VvkWcvo1We7Wpvi5itTq2N25ek1vHafSfaScu4vYw21jJitjLaxraZ0ktSK89Wp0BlGNvRxrPt71Yx4++HpFbGWSstPft/Gq1ijf9Po2azr+7Hfqy2bduay8mkuro6Va1P6JMlB6uobbiRo5pNvroP+FirV69WUVFR8v29RWeyef6dSVkb0CxZskTr16/Xsccem3wvkUjopZde0l133aVnn31WdXV12rhxY8oocd26dSotLZUklZaW6rXXXkvZ7o5VGHak2ZO9heHylK+8Rn4ZY57xrE2SZ8zjxeyDJhl+GCTJxY0DmniAAU2e7TDz8+wDGi/flscznthb00v2wYMCDJpkPAzN7bYf5vY6BfgVstbLD2FAI+uAxlgnKYQBTb59sBEz1ileYD+xjxsHNHHj70FegN+cvDzbSUu+Mf32PLb0BXHb97sgwKC60LgvWsTtZbSI247DlsYT9VYx+/625mkdqAzbMdLGs6VvHeA82zqgaWWsk2Rvt6ScvT2gTVtPbdqGWzdf28srKipKGdDsTTbPvzMpaxMQhwwZomXLlmnp0qXJ13HHHacxY8Yk/52fn68XXnghmWf58uWqrKxUWVmZJKmsrEzLli3T+vXrk2nmz5+voqIi9enTJ/Q2AQAAALmqqZ5/Zy1C07ZtW/Xt2zflvdatW+vAAw9Mvj9+/HhNmTJF7du3V1FRkS655BKVlZVp0KBBkqRhw4apT58+Ou+883TLLbeoqqpKV199tcrLy7/yRigAAACguWmq599ZX+Xsq9x6662KxWIaPXq0amtrNXz4cN19993Jz+PxuObNm6cJEyaorKxMrVu31tixY3X99ddnsdYAAABobhLOV8I+yzLtMve3KJ5/e865kLs+99TU1Ki4uFiDdXrj76EJcCOVeVGAVrb0kuyLArQIYVGAQuM9NEEWBTDmCWNRAOs9NEHKyPiiAAHuoQllUYAcvIfGvChAE7mHxrooQH6Ae2gyvShAkBv2rYsCWNNL9kUBWsatiwLYbnSX7Dfstwq0KIDthnrrzfRFsS9N6beXYWt3UaBFAYwLDxgXBWgdwqIArTK9KMAmXwcc9k9VV1c36n6RsOw4j1y/vHtWFgUoOfyTnOuTsOV0hAYAAACIAl9OvsKNE4RdXq7KracSAQAAAIABERoAAAAgTb587f87WvZdJojQAAAAAIgwBjQAAAAAIospZ0AjeNxz12hh9FVO7o9crFMOci43n/CdaTue5p3pPKbtO/s1zUQI10GD1MsijDYkguxvY7t94wpkQZYT9o3NCDL9ybLscCaWKN6fEs4pEfLiwWGXl6uI0AAAAACILCI0AAAAQJpYtjl7iNAAAAAAiCwGNAAAAAAiiylnAAAAQJp8OSWYcpYVRGgAAAAARBYRGgAAACBNLAqQPURoAAAAAEQWERoAAAAgTTxYM3uI0AAAAACILAY0AAAAACKLKWcAAABAmvx/v8IuEwxoYMU3B9g/gkx7dl4IhUSfM/aTb+5XyZc9T6aFUSdrXyWcfSJIwtgOe52C7G9bOwK12zO2w9pPptT/LsN4f0bCs//mWFbpYkUv7A0DGgAAACBNiSw8WDPs8nIV99AAAAAAiCwGNAAAAAAiiylnAAAAQJoSbvsr7DJBhAYAAABAhBGhAQAAANLEss3ZQ4QGAAAAQGQRoQEAAADS5MszPx9of5QJIjQAAAAAIowBDQAAAIDIYsoZAAAAkCbfbX+FXSYY0KCZ8prIsiAeP2SNYu2nJtOt1nY7+1xsa55AZZhz5B4/QLuD5DFtP4S592GUkTBONvEDTE5JOGMZXoAyrO0wHh8Jz74vEsZvn+/s31bf8B+yz5pe2AsGNAAAAECaEllYFCDs8nIV99AAAAAAiCwGNAAAAAAiiylnAAAAQJqYcpY9RGgAAAAARBYRGgAAACBNvvMyvjrhnsoEERoAAAAAEUaEBgAAAEgT99BkDxEaAAAAAJHFgAYAAABAZDHlDAAAAEhTQjElQo4VJEItLXcxoEHT4JwxA3NOG8XarQF4AcrIeLVCaDcyxzfuvyC7O4yVhaxlJDKcXgpSJ/vJnW/MY00fhPU+hSD3NVjbkfBC2N/GH+hEgG9TwvD/tyUtmhcGNAAAAECaXBaWbXYs2yyJe2gAAAAARBgDGgAAAACRxZQzAAAAIE08hyZ7iNAAAAAAiCwiNAAAAECaEi4WaGW/9MoMtbicRYQGAAAAQGQRoQEAAADS5MuTH3KswOfBaZKI0AAAAACIMAY0AAAAACKLKWcAAABAmli2OXuI0AAAAACILCI0yDzr/Wrc34Z9ycVjJBeP8xDqZC4iSBku965A+sY6WdMH4YewXGwihOug1mVvrVeogyyra+3bIGUkPGM7jO32A1zJty4J7Ac4zH35GUmbDdlZtjkX/0MMHxEaAAAAAJHFgAYAAABAZDHlDAAAAEjT9ufQhDtFNuzychURGgAAAACRRYQGAAAASJOvWCgLZ6SWyaIAEhEaAAAAABHGgAYAAABAZDHlDAAAAEgTz6HJHiI0AAAAACKLCA0AAACQJl8x+SwKkBVZjdDMmDFD/fv3V1FRkYqKilRWVqann346+fngwYPleV7K6yc/+UnKNiorKzVq1Ci1atVKJSUluuKKK9TQ0BB2UwAAAICc1lTPvbMaoTnooIN08803q1evXnLO6YEHHtDpp5+ut956S0ceeaQk6aKLLtL111+fzNOqVavkvxOJhEaNGqXS0lK98sorWrt2rc4//3zl5+frpptuCr09QFq4yALsF87ZHjTnG9MHEaQMax57evs1zUzXSbI/KNDajiDL6lrzBLlKb733ot7Fbdv3Eqb0kuQb0we5nyPhNT5PIsf/o0w4T4kQfk92LdOiqZ57Z3VAc9ppp6X8feONN2rGjBl69dVXk53aqlUrlZaW7jH/c889p3/84x96/vnn1alTJx199NH65S9/qSuvvFLTpk1TQUFBxtsAAAAAREFTPffOmUUBEomEHn30UW3ZskVlZWXJ9x9++GF16NBBffv21dSpU7V169bkZxUVFerXr586deqUfG/48OGqqanRe++9t9eyamtrVVNTk/ICAAAAomjX89ra2tp95gnz3DvTsr4owLJly1RWVqZt27apTZs2mjt3rvr06SNJ+tGPfqTu3burS5cueuedd3TllVdq+fLleuyxxyRJVVVVKR0qKfl3VVXVXsucPn26rrvuugy1CAAAAM1NQrFAUxrTK3P7NLyuXbumvH/ttddq2rRpe8yTjXPvTMv6gObwww/X0qVLVV1drT//+c8aO3asFi1apD59+ujiiy9OpuvXr586d+6sIUOGaOXKlerZs2fgMqdOnaopU6Yk/66pqdntQAAAAACiYPXq1SoqKkr+XVhYuNe02Tj3zrSsD2gKCgp06KGHSpIGDBig119/Xbfffrvuueee3dIOHDhQkrRixQr17NlTpaWleu2111LSrFu3TpL2OvdP2r6Tv2pHAwAAABa+iwVabCO9MrdHaHasWtYY2Tj3zrScuYdmB9/39zrvb+nSpZKkzp07S5LKysq0bNkyrV+/Pplm/vz5KioqSobOAAAAAOxZUzj3zmqEZurUqRo5cqS6deumTZs26ZFHHtHChQv17LPPauXKlXrkkUd06qmn6sADD9Q777yjyZMn6+STT1b//v0lScOGDVOfPn103nnn6ZZbblFVVZWuvvpqlZeXE4EBAAAAdtJUz72zOqBZv369zj//fK1du1bFxcXq37+/nn32WX3729/W6tWr9fzzz+u2227Tli1b1LVrV40ePVpXX311Mn88Hte8efM0YcIElZWVqXXr1ho7dmzK2tkAAABApmVzUYDGaqrn3p5zAZ6C1MTU1NSouLhYg3W68rz8RuWJtWhhLsdr2dKWvpUtvSSp0Lb+t2thS+8XNq5/UvK0sI2b/ULbw8IkKVFofOhZgfFBbIX2B2UlCmx5EvkBHkBnXO7dWiffvrvNdfIDXFax1ssvsP3MBauTrQxnTB8oT57tsXhevvUxelLMmCcvz/5wv/x8W578uC19Yb79Cdct8mx5CuP2Mlrl1ZnStzCW0dq4fUlqGbflaRPf99Kxu2plLKNVzFqnbab0ktQ6ZmuHNb0ktfIyW0ZbYz9JUmvPdky1CvBMyVaxxv+fX7PJ18G916q6urrR94uEYcd55H1vDlCrtvZzmHRs3ZTQRccuybk+CVvWFwUAAAAAos6XlHABRnVplokcXBQAAAAAABqLCA3QnIQxwTQXJ7Fa65SLbchVxquRLsDVyyB5Mr39TNdJUsaXf/VDaEOQ+wkSxnYnZJxKG6Dd1qvu1jZIku9Z221LXx+gTnXGMvI9e7yg3jU+T4MhbTb4iskPOVYQdnm5il4AAAAAEFkMaAAAAABEFlPOAAAAgDQlXCzQdMN0ywQRGgAAAAARRoQGAAAASJMvT75xkYr9USaI0AAAAACIMAY0AAAAACKLKWcAAABAmlgUIHvoBQAAAACRRYQGAAAASFNCMSVCjhWEXV6uohcAAAAARBYRGgAAACBNvvPku5CXbQ65vFzFgAZAdrlsV2D/8IztcEHabc1j/Y8u0H+Mmd+B1r5yIfwHbz2JCFIn6/MlMp1eknzjDchBTrYy/VyNIFN0fGOeRIA2WPNY90XCy/y+SAT4OfANRfj2zaOZYMoZAAAAgMgiQgMAAACkyc/CogDW6GFTRS8AAAAAiCwiNAAAAECafBcz39u0P8oEERoAAAAAEcaABgAAAEBkMeUMAAAASFNCXqAlu9MtE0RoAAAAAEQYERoAAAAgTSwKkD30AgAAAIDIIkIDAAAApCmh8O9pSYRaWu5iQANkist2BfaDXG1DrtarGXLGfWFNH4TvbCcU1vRB+CGc5FjbkQjQbms7gvRtwjiFpt63ncr4XoMpvWSvU5BpQNYyEp51XwSok7UMcwlSneFHwZIWzQtTzgAAAABEFhEaAAAAIE0sCpA99AIAAACAyCJCAwAAAKQp4WLme6H2R5kgQgMAAAAgwhjQAAAAAIgsppwBAAAAaXLyQlmifdcyQYQGAAAAQIQRoQEAAADSxKIA2UMvAAAAAIgsIjQAAABAmnznyXfh3tMSdnm5igENEGUu2xWICGM/BfnvwVn3RZD/hKyFWJMHOJ7C+K/UZfg/7CDbt55EBDnpCKMMq4SxjESAiSDmdhuPwkSAo9bajkDttpZhnGpU58VN6SUp3yVsZQRod77nNzpt41OiuWHKGQAAAIDIIkIDAAAApCmhWKDoXLplgggNAAAAgAgjQgMAAACkiUUBsocIDQAAAIDIYkADAAAAILKYcgYAAACkyVfMvPz2/igTRGgAAAAARBgRGgAAACBNCeeZHz67P8oEERoAAAAAEUaEBgAAAEgTyzZnDxEaAAAAAJFFhAZoDJftCkQIfRVdQa70Wfd3CFcTwzgEwyjDeuXVnt5+TdOaJ8jV44TxWmvCWKd6FzelD5InSBl1xjz5ni19gUuY0ktSwjMeU7Lv73rDl6mB/1+wFwxoAAAAgDQ5Fwt0oSDdMsGUMwAAAAARRoQGAAAASFNCnhIBpt2lWyaI0AAAAACIMAY0AAAAACKLKWcAAABAmnwX/nNhfFZ+k0SEBgAAAECEEaEBAAAA0uRnYdnmsMvLVfQCAAAAgMhiQAMAAAAgsphyBgAAAKTJlyc/5OfChF1ermJAAzQjnrMuh5KbP5ReM13VxTOunuPM+zvzXIAVgKx5rOmDrBJkXckoyMpH9jJsky5ysU6ByjD+TgWrky1PIgfLSHj2/V3v4rb08s1l5HuNz8NDJLE3DGgAAACANCWcp0TIyzaHXV6uyuo9NDNmzFD//v1VVFSkoqIilZWV6emnn05+vm3bNpWXl+vAAw9UmzZtNHr0aK1bty5lG5WVlRo1apRatWqlkpISXXHFFWpoaAi7KQAAAEBOa6rn3lkd0Bx00EG6+eabtWTJEr3xxhv61re+pdNPP13vvfeeJGny5Ml68sknNWfOHC1atEhr1qzRmWeemcyfSCQ0atQo1dXV6ZVXXtEDDzyg2bNn65prrslWkwAAANAM7Vi2OeyXRVM99/Zcjk2ybt++vX71q1/p+9//vjp27KhHHnlE3//+9yVJH3zwgY444ghVVFRo0KBBevrpp/Wd73xHa9asUadOnSRJM2fO1JVXXqkNGzaooKCgUWXW1NSouLhYg3W68rz8RuWJtWhhbpvXsqUtfStbeklSYePavINrYUvvFzauf1LytLDNbPQLbXN2JSlRaJw7XmCce1xgD+la8wQpwzfuDmv6XKyTJDnjZNlEge1nzgWok59nKyNIu2Usw+UZ57Pn2/87iOUnbOnj9jLyjGXk5dnSF+TZrywWGMtoEaCMwrgtTwtj+lZ5dab0ktQyXp/R9Nvz2OrVypo+Zm+3NU+rWK25jNbGPNYyrNuXpBaebf+1NqaXpFaxxh+3mzf5Ov7IdaqurlZRUZG5rEzZcR559gvnqqCN7bwqXXWb6/TokN+n1SfZOPfe33Jm2eZEIqFHH31UW7ZsUVlZmZYsWaL6+noNHTo0maZ3797q1q2bKioqJEkVFRXq169fskMlafjw4aqpqUmONPektrZWNTU1KS8AAAAginY9r62t3fcANsxz70zL+oBm2bJlatOmjQoLC/WTn/xEc+fOVZ8+fVRVVaWCggK1a9cuJX2nTp1UVVUlSaqqqkrp0B2f7/hsb6ZPn67i4uLkq2vXrvu3UQAAAGhWfHnyXcivf6/81rVr15Rz2+nTp++1ntk49860rK9ydvjhh2vp0qWqrq7Wn//8Z40dO1aLFi3KaJlTp07VlClTkn/X1NQwqAEAAEAkrV69OmXKWWFh4V7TZuPcO9OyPqApKCjQoYceKkkaMGCAXn/9dd1+++0666yzVFdXp40bN6aMFNetW6fS0lJJUmlpqV577bWU7e1YiWFHmj0pLCz8yh0NAAAAWLgsPFjT/bu8HauWNUY2zr0zLetTznbl+75qa2s1YMAA5efn64UXXkh+tnz5clVWVqqsrEySVFZWpmXLlmn9+vXJNPPnz1dRUZH69OkTet0BAACAKGkK595ZjdBMnTpVI0eOVLdu3bRp0yY98sgjWrhwoZ599lkVFxdr/PjxmjJlitq3b6+ioiJdcsklKisr06BBgyRJw4YNU58+fXTeeefplltuUVVVla6++mqVl5cTgQEAAAB20lTPvbM6oFm/fr3OP/98rV27VsXFxerfv7+effZZffvb35Yk3XrrrYrFYho9erRqa2s1fPhw3X333cn88Xhc8+bN04QJE1RWVqbWrVtr7Nixuv7667PVJAAAADRDO27UD7tMi6Z67p1zz6HJBp5D03g8hyZzefz8IGXY0jfX59D4xuerBKmTb6yTC/DMF2se83NojM+5kSQv31ZG3FonSXHjM1/yjc+tyY/b0ku5+RyaQmMZOfscGuMzX6xlBHoOTdz6jBh7GdbnxJifERPgOTTmZ9149na38Br/Xdq8ydcJfdfm7HNoRj8/Vvmtw30OS/2WOv1l6AM51ydhy/qiAAAAAEDU+S4m34V7e3rY5eUqegEAAABAZBGhAQAAANIUhXtomioiNAAAAAAiiwENAAAAgMhiyhkAAACQJl+efIU85Szk8nIVERoAAAAAkUWEBgAAAEgTiwJkDxEaAAAAAJHFgAYAAABAZDHlDAAAAEgTU86yhwgNAAAAgMgiQoPmyWW7AtHg0U+5xbo/zFfuAuxwY5Ygh5QztiPT6YMIchXVuhyrtYwgdUoY81jTS1LCeK3V3O4Ay9zWu3hG0wfJk+81mNInwmi37O3O9/xGpw3ShjARockeIjQAAAAAIosIDQAAAJAmIjTZQ4QGAAAAQGQxoAEAAAAQWUw5AwAAANLkFGzRiXTLBBEaAAAAABFGhAYAAABIE4sCZA8RGgAAAACRxYAGAAAAQGQx5QwAAABIE1POsocIDQAAAIDIIkIDRFkOrtfoGetkTS9JzprHegXLXIC9HQGKyLww6hTC1URr3wa5wmnNk4tlNPj2a5oNXtyY3g9Qhi1PvbFO9c6WXpLyXcKU3nf2vk0Y89Q72ylcvbENkpQvW546476QbH1bn4u/mzshQpM9RGgAAAAARBYRGgAAACBNRGiyhwgNAAAAgMhiQAMAAAAgsphyBgAAAKTJOU8u5ClgYZeXq4jQAAAAAIgsIjQAAABAmnx58hXyogAhl5eriNAAAAAAiCwGNAAAAAAiiylnAAAAQJp4Dk32EKEBAAAAEFlEaIAM8Vy2a7AHuVin5irIvsj0/gtypc+Yxzl7I6xZrMuYBtoVIZRhvfJqT2+/pmm9ATnIDcvmMoztTgRotzVPvYuby7DmyXcNpvR1AeqU79nyxJ1vLqNejS+jIcejESzbnD1EaAAAAABEFhEaAAAAIE3cQ5M9RGgAAAAARBYDGgAAAACRxZQzAAAAIE0sCpA9RGgAAAAARBYRGgAAACBNLguLAhCh2Y4IDQAAAIDIYkADAAAAILKYcgYAAACkyUlyLvwyQYQGAAAAQIQRoUGT4HGJIjOaSL9aj48gx1MoV+WsZYRQJ2u7A92+arzp1XqTbJCban1ju4PcKJzpdvgB9oa1HYkA7bbmSRivzda7uCl9kDz5aghQhu2UrN4lTOnjAX6kzGUE+NGp8xpfRl2wX5DQ+PLkhVzHIN/jpogIDQAAAIDIIkIDAAAApIkHa2YPERoAAAAAkcWABgAAAEBkMeUMAAAASJPvPHkhTwELsuBIU0SEBgAAAEBkEaEBAAAA0uRcFh6s2UQer5AuIjQAAAAAIosBDQAAAIDIYsoZAAAAkCaeQ5M9RGgAAAAARBYRGgAAACBNRGiyhwEN0AheGKuINJWVSqztCNLuJtBXQY4pc5ZQ9oXxP9Mg7TaWYV31J8gJgb1O9jKsz5fwZUwfQp0a/Li5jAbPz2j6fC9hSi9J9c7WjnrffnqVH7fVy1qnfNdgSi9JdcYyYrLtC0nKN5RR3wR++5EZTDkDAAAAEFlEaAAAAIA0+c6TF/IUsCCR1qaICA0AAACAyCJCAwAAAKTJOfs9fPujTGQ5QjN9+nQdf/zxatu2rUpKSnTGGWdo+fLlKWkGDx4sz/NSXj/5yU9S0lRWVmrUqFFq1aqVSkpKdMUVV6ihwX7zGwAAANBUNdVz76xGaBYtWqTy8nIdf/zxamho0M9+9jMNGzZM//jHP9S6detkuosuukjXX3998u9WrVol/51IJDRq1CiVlpbqlVde0dq1a3X++ecrPz9fN910U6jtAQAAQPO0PUIT9rLNtvRN9dw7qwOaZ555JuXv2bNnq6SkREuWLNHJJ5+cfL9Vq1YqLS3d4zaee+45/eMf/9Dzzz+vTp066eijj9Yvf/lLXXnllZo2bZoKCgoy2gYAAAAgCprquXdOLQpQXV0tSWrfvn3K+w8//LA6dOigvn37aurUqdq6dWvys4qKCvXr10+dOnVKvjd8+HDV1NTovffe22M5tbW1qqmpSXkBAAAAUbTreW1tbW2j8oV17p1pObMogO/7mjRpkk488UT17ds3+f6PfvQjde/eXV26dNE777yjK6+8UsuXL9djjz0mSaqqqkrpUEnJv6uqqvZY1vTp03XddddlqCUAAABobpzzsjDlbHt5Xbt2TXn/2muv1bRp074yb5jn3pmWMwOa8vJyvfvuu3r55ZdT3r/44ouT/+7Xr586d+6sIUOGaOXKlerZs2egsqZOnaopU6Yk/66pqdntQAAAAACiYPXq1SoqKkr+XVhYuM88YZ57Z1pOTDmbOHGi5s2bpxdffFEHHXTQV6YdOHCgJGnFihWSpNLSUq1bty4lzY6/9zb3r7CwUEVFRSkvAAAAICiXpZek3c5r9zWgCfvcO9OyGqFxzumSSy7R3LlztXDhQvXo0WOfeZYuXSpJ6ty5sySprKxMN954o9avX6+SkhJJ0vz581VUVKQ+ffpkrO7IHI9F1RvNo6sax9pPQfo1jH1hnspgrFQI7Q4yHcMZC7GWEeQnJ+Hbrgf6zjeXYX0CeIOxTnHPfk2zwYub0ufFArRbtnbXO1s78pytDZKU7xKm9PUByrDmiRu/F/XGNkhS3PjlsNZJstWrIeTpXE1RUz33zuqApry8XI888oieeOIJtW3bNjnvrri4WC1bttTKlSv1yCOP6NRTT9WBBx6od955R5MnT9bJJ5+s/v37S5KGDRumPn366LzzztMtt9yiqqoqXX311SovL29UuA0AAABoDprquXdWBzQzZsyQtP0BPjubNWuWxo0bp4KCAj3//PO67bbbtGXLFnXt2lWjR4/W1VdfnUwbj8c1b948TZgwQWVlZWrdurXGjh2bsnY2AAAAkEnZXBSgsZrquXfWp5x9la5du2rRokX73E737t311FNP7a9qAQAAAE1OUz33zplVzgAAAIDI2vku/TDLRG6scgYAAAAAQRChAQAAANKVhXto7KtfNk1EaAAAAABEFgMaAAAAAJHFlDMAAAAgTc4Fe1BvumWCCA0AAACACCNCAwAAAKQpCg/WbKoY0ADNiGcMTVvT52oZYUTkrf+lBJkmYO4r4390waYuhLAzMtyOICcE1mYkfHsZiZgtT565n+x18o1HeoNvnwhS78VN6fM835S+wbdtX7LXKRbgy1Tv207J4jFbGfXO3u64s/VtXLb0krTN5RvSMrEIe8aRAQAAACCyiNAAAAAA6XJe+M+FYcqZJCI0AAAAACKMCA0AAACQJpZtzh4iNAAAAAAiiwgNAAAAkC6ncJbV3LVMEKEBAAAAEF0MaAAAAABEFlPOAAAAgDQ55wV6YG26ZYIIDQAAAIAII0IDAAAA7A/cpJ8VRGgAAAAARBYRGjRLnvlJVAHmqHKVJndY90UY+y7QvGdjxUJphzW9vd3O+n01lhFkDro1Txhl+Mb0Dc5+TTPu2/LkefZ2W+tlTZ8f4Pe83sVN6WMBnnZoLSPufFP6bS7flF6ytyMmW522l9H4PHX8v4q9YEADAAAApIlFAbKHKWcAAAAAIosIDQAAAJAup/CnmzMNTxIRGgAAAAARRoQGAAAASJunQIsIpV0miNAAAAAAiCwGNAAAAAAiiylnAAAAQLpYFCBriNAAAAAAiCwiNAAAAEC6iNBkDREaAAAAAJFFhAYZ5znb5YPmerHB2k+SJJeDyzVamxFkh2f4IPGC7ApjnjDKCGdf2I5BF+A4t/aVM9fJtv1gZdi/qwnfds0xEfNN6eMh1KkhFjeXkeds7aj3bWXkebbtS1LM+OWIy15GvWdrR9zYTzFjekmq9fNN6ePGY1CS4oYvYIN562guGNAAAAAA6XJe+Bcac/HCZhYw5QwAAABAZBGhAQAAANLkXLAprOmWCSI0AAAAACKMCA0AAACQLpZtzhoiNAAAAAAiiwENAAAAgMhiyhkAAACQLpZtzhoiNAAAAAAiiwgNAAAAkCbPbX+FXSaI0AAAAACIMCI0QGM0lSsg1nY0kXZbr2AFanYYfZXp/RekDb61DPt8b2fM44wN8X17nax5EjF7GTHj/vCN/ZTw7dc0/ZhthzcEKKPBs+WJGb/gDc5ep5gxT8zF7WX4tnbEPdu+sG5fkuLGg3CbyzeXYfkN2Rbgu4rmgQENAAAAkC6eQ5M1TDkDAAAAEFlEaAAAAIB0sWyzyRtvvKE//elPqqysVF1dXcpnjz32mGlbRGgAAAAAhObRRx/VCSecoPfff19z585VfX293nvvPS1YsEDFxcXm7TGgAQAAANLlsvSKoJtuukm33nqrnnzySRUUFOj222/XBx98oB/+8Ifq1q2beXsMaAAAAACEZuXKlRo1apQkqaCgQFu2bJHneZo8ebLuvfde8/YY0AAAAAAIzQEHHKBNmzZJkr72ta/p3XfflSRt3LhRW7duNW+PRQEAAACAdLFsc6OdfPLJmj9/vvr166cf/OAHuuyyy7RgwQLNnz9fQ4YMMW/PPKC5++679dhjj6l9+/b6j//4j5RCP/vsM33961/XP//5T3NFAAAAADR9d911l7Zt2yZJ+vnPf678/Hy98sorGj16tK6++mrz9kwDmjvuuENTp07VBRdcoOrqap166qmaNm2apk6dKklKJBL65JNPzJUAAAAAIo0ITaO1b98++e9YLKarrroqre2ZBjT33HOP7rvvPv3oRz+SJE2YMEFnnHGGvvzyS11//fVpVQQAAABA0xePx7V27VqVlJSkvP/555+rpKREiUTCtD3TgGbVqlU64YQTkn+fcMIJWrBggYYOHar6+npNmjTJVDgAAACA5sW5PYeWamtrVVBQYN6eaUDToUMHrV69WgcffHDyvb59+2rBggX61re+pTVr1pgrgGjx9nIAfpVQoqG+tZTMP1nXi2gYOG3WdofRT+Y62Y8P63cjwFfJfEw5YzuCHLPmdpi/q5J8WzucMb08+/629q01vST5vm0h0oSxb2MBdniDsU6xAF/whljcVoax3bUB1kOytiMeoG9jxi/TNj/fWIAtuSTJD5DHylCvbQG+R6FyXqD/P9IuM0LuuOMOSZLnebr//vvVpk2b5GeJREIvvfSSevfubd6u6Vt90kkn6bHHHtM3vvGNlPf79OmjF154Qd/85jfNFQAAAADQ9N16662StkdoZs6cqXj8/y5gFBQU6OCDD9bMmTPN2zUNaK666iotWbJkj58deeSRWrBggf7yl7+YKwEAAABEmefCn50Rtdkgq1atkiR985vf1GOPPaYDDjhgv2zXNKDp37+/+vfvv9fP+/btq759+6ZdKQAAAABN04svvihJqqur06pVq9SzZ0/l5QV/PGZaD9bcunWrKisrVVdXl/L+Vw16AAAAADRfX375pSZOnKgHHnhAkvThhx/qkEMO0SWXXKKvfe1r5mWcg9wipg0bNug73/mO2rZtqyOPPFLHHHNMygsAAABoVlyWXhF01VVX6e2339bChQvVokWL5PtDhw7VH//4R/P2Ag1oJk2apI0bN2rx4sVq2bKlnnnmGT3wwAPq1auX/vrXvwbZJAAAAIBm4PHHH9ddd92lk046Sd5OK00eeeSRWrlypXl7gaacLViwQE888YSOO+44xWIxde/eXd/+9rdVVFSk6dOna9SoUUE2CwAAAKCJ27Bhw24P1ZSkLVu2pAxwGitQhGbLli3JShxwwAHasGGDJKlfv3568803G72d6dOn6/jjj1fbtm1VUlKiM844Q8uXL09Js23bNpWXl+vAAw9UmzZtNHr0aK1bty4lTWVlpUaNGqVWrVqppKREV1xxhRoaGoI0DQAAAGiScuXc+7jjjtPf/va35N87BjH333+/ysrKzO0KNKA5/PDDk40/6qijdM899+jTTz/VzJkz1blz50ZvZ9GiRSovL9err76q+fPnq76+XsOGDdOWLVuSaSZPnqwnn3xSc+bM0aJFi7RmzRqdeeaZyc8TiYRGjRqluro6vfLKK3rggQc0e/ZsXXPNNUGaBgAAAJh5+r+lm0N7GeuYK+feN910k372s59pwoQJamho0O23365hw4Zp1qxZuvHGG42tkjzn7M+r/v3vf6+GhgaNGzdOS5Ys0YgRI/TFF1+ooKBAs2fP1llnnWWuiPR/4adFixbp5JNPVnV1tTp27KhHHnlE3//+9yVJH3zwgY444ghVVFRo0KBBevrpp/Wd73xHa9asUadOnSRJM2fO1JVXXqkNGzaooKBgn+XW1NSouLhYg3W68rzGPXk3ttMNTI3ltWxpS9/Kll6SVLjv9u7MtTCmL7DPUvRb2PL4hbanREtSIt82NvcLjU/gLrCP/f18289MwrYrtucxlmF9sLS1DZLkGw8Ra52C5HHGQypInVye7afU2k+hlGHcviS5uDFPnv3R456xXp6xjHjcXqe4sYy8vIS5jLyYrYx8Yxn5cXudCox5CmL2MgrzbDMsCmLW9PY6tYzXm9IXxu2zRKztKDSmbxGztUGSCr0QyjDk+XJzg648/n9UXV2toqIic1mZsuM8svt/3RDo/DAd/rZt+uTKqwP3SbbOvSVp5cqVuvnmm/X2229r8+bNOvbYY3XllVeqX79+5nYEuofm3HPPTf57wIAB+uSTT/TBBx+oW7du6tChQ5BNSpKqq6slSe3bt5ckLVmyRPX19Ro6dGgyTe/evdWtW7dkp1ZUVKhfv37JDpWk4cOHa8KECXrvvff2uOpabW2tamtrk3/X1NQErjMAAACQTbueyxYWFqqwsHCf+cI6996Tnj176r777mtU2n0JNKC5/vrrdfnll6tVq1aSpFatWunYY4/Vl19+qeuvvz7QdC/f9zVp0iSdeOKJyYdzVlVVqaCgQO3atUtJ26lTJ1VVVSXT7NyhOz7f8dmeTJ8+Xdddd525jkBGBVh60fqEYPMThUNYDjLIU46teaxFBKmTOdYdpG8zvL/t8foAnD3qZ51IYG93gEikb4yOGtNLUsJ4Y2zMWEbMs0eeE8bObQjwZYr7tnrFZAvBxgLUqTZISNUoZvyCx2WL4NUb+0mSYjFjX9mDnSZ1Ab5HoXJeoN+4tMuU1LVr15S3r732Wk2bNu0rs4Z57r0niURCc+fO1fvvvy9J6tOnj04//fRAD9gMdA/Nddddp82bN+/2/tatWwMPFMrLy/Xuu+/q0UcfDZTfYurUqaqurk6+Vq9enfEyAQAAgExYvXp1yrnt1KlT95knzHPvXb333ns67LDDNHbsWM2dO1dz587V2LFj1atXL7377rvm7QUa0Djn9rik2ttvv50MWVlMnDhR8+bN04svvqiDDjoo+X5paanq6uq0cePGlPTr1q1TaWlpMs2uKy/s+HtHml0VFhaqqKgo5QUAAAAElsUHa+56Xruv6WZhn3vv6sc//rGOPPJI/etf/9Kbb76pN998U6tXr1b//v118cUXN2obOzMNaA444AC1b99enufpsMMOU/v27ZOv4uJiffvb39YPf/jDRm/POaeJEydq7ty5WrBggXr06JHy+YABA5Sfn68XXngh+d7y5ctVWVmZXNKtrKxMy5Yt0/r165Np5s+fr6KiIvXp08fSPAAAAKDJypVz76VLl2r69Ok64IADku8dcMABuvHGG/XWW2+Z22WapHbbbbfJOacLL7xQ1113nYqLi5OfFRQU6OCDDzatHV1eXq5HHnlETzzxhNq2bZucd1dcXKyWLVuquLhY48eP15QpU9S+fXsVFRXpkksuUVlZmQYNGiRJGjZsmPr06aPzzjtPt9xyi6qqqnT11VervLy8UTdDAQAAAM1Brpx7H3bYYVq3bp2OPPLIlPfXr1+vQw891Nwu04Bm7NixkqQePXroxBNPDHTTzs5mzJghSRo8eHDK+7NmzdK4ceMkSbfeeqtisZhGjx6t2tpaDR8+XHfffXcybTwe17x58zRhwgSVlZWpdevWGjt2rK6//vq06gYAAAA02k5TwEIt0yCb5947r8Q2ffp0XXrppZo2bVpyoPTqq6/q+uuv13/913/ZGqWAz6GRtq8dPWvWLK1cuVK33367SkpK9PTTT6tbt267jbZyHc+hMaTnOTSNL8P6HJpAz2PJ7HNorM+5CVKGC3BdxPw8HWMZgeqUg8+hsbbDuv1AeazPrZHMz66JWdMHqFPM+OyaIM+hsT4fx/pcmfwAz9+xPocmyLNurM9wsT5XpiDQM2JsZVifESMFeNaN8ZkvQepkzZPv2fe35dk12zY36BcDF+Tuc2huujE7z6H52c9zrk/2JBaLpdyDv2MIsuO9nf9OJGzHUqAQy6JFizRy5EideOKJeumll3TjjTeqpKREb7/9tn73u9/pz3/+c5DNAgAAAJHkuWDL/qdbZlS8+OKLGdt2oAHNVVddpRtuuEFTpkxR27Ztk+9/61vf0l133bXfKgcAAAAg+m6//XbNnj1bRUVFevDBB3XWWWftt/vdAy3bvGzZMn3ve9/b7f2SkhJ99tlnaVcKAAAAiJQsLtscBfPmzdOWLVskSRdccIGqq6v327YDRWjatWuntWvX7rbU21tvvaWvfe1r+6ViAAAAAJqG3r17a+rUqfrmN78p55z+9Kc/7fW+n/PPP9+07UADmrPPPltXXnml5syZI8/z5Pu+/v73v+vyyy83VwAAAABA0zZjxgz99Kc/1d/+9jd5nqerr746ZZGAHTzPC2dAc9NNN6m8vFxdu3ZVIpFQnz591NDQoDFjxujqq68OsknsiW9fgcYs2CJ30ddMmx0G6w2KgXaFNVOm0wfIY18/TnLOmMv6/Q6h3YHK8G3tdtb0ASZfW7vW9+2FxGLGlfOMZSQCHISJmHEFuQDtrvdsK13GjD86QepkLiPAQRULsvRhjvFjAQ4qwyG1LYTTorREYNnmbDrxxBP16quvStq+4tmHH36okpKS/bLtQPfQFBQU6L777tM///lPzZs3Tw8//LA+/PBDPfTQQ4rH7UvuAgAAAGi6zjzzzOSzaGbNmpWysFi6Ag1oJOl3v/udRo4cqe9973s699xzdcYZZ+j+++/fbxUDAAAAomLHss1hv6Ji50UBLrzwQm3atGm/bTtQfPOaa67Rb37zG11yySUqKyuTJFVUVGjy5MmqrKzc55NCAQAAADQfObcowIwZM3TffffpnHPOSb733e9+V/3799cll1zCgAYAAABA0syZMzVlypTcWRSgvr5exx133G7vDxgwQA0NDUE2CQAAAESX87a/wi4zIk444YTcWhTgvPPO04wZM3Z7/95779WYMWPSrhQAAACApmnVqlVavny5zj33XJ1wwgn69NNPJUkPPfSQXn75ZfP2Gh2hmTJlSvLfnufp/vvv13PPPadBgwZJkhYvXqzKykqeQwMAAIDmh2WbG+2NN97QeeedpzFjxujNN99UbW2tJKm6ulo33XSTnnrqKdP2Gj2geeutt1L+HjBggCRp5cqVkqQOHTqoQ4cOeu+990wVAAAAANB83HDDDZo5c6bOP/98Pfroo8n3TzzxRN1www3m7TV6QPPiiy+aNw4AAAA0B9lYRjlKyzbvbPny5Tr55JN3e7+4uFgbN240by/wc2gAAAAAwKq0tFQrVqzY7f2XX35ZhxxyiHl7DGgAAAAAhOaiiy7SZZddpsWLF8vzPK1Zs0YPP/ywLr/8ck2YMMG8vUDLNgMAAADYCYsCNNpVV10l3/c1ZMgQbd26VSeffLIKCwt1+eWX65JLLjFvjwFNU+MiemTvzM92BXbnBelXYxYvyFry1mqZ62Rvt5OxHSEcstY5xkF2d5MoI0idfNv+DvTIhJi14cY6+QGOc882wcH37D9svrFvE3t4QN1Xse47SUr4tnYH2d2e8UCPKR6gFGRCIsjEH0OWuqZwjgNJ21dM/vnPf64rrrhCK1as0ObNm9WnTx+1adMm0PYY0AAAAADpysKiAFGN0OxQUFCgPn36pL0d7qEBAAAAEFkMaAAAAABEFlPOAAAAgHSxKEDWEKEBAAAAEFlEaAAAAIB0EaHJGiI0AAAAACKLCA0AAACQJi8LyzaHvkx0jiJCAwAAACCyGNAAAAAAiCwGNAAAAAAii3toAOxdkLm5xjxB5v9a87gQ6uScZyvDtxdiLEKebyzANxYgycVCmMBtrJezttsL0m5j+gB96/u2QqzNSNiSS5LqE0zYb0582Q6qAjVkqCbb1Vq/22g2GNAAAAAA6WLZ5qxhyhkAAACAyGJAAwAAACCymHIGAAAApInn0GQPERoAAAAAkUWEBgAAANgfiJhkBREaAAAAAJFFhAYAAABIF8s2Zw0RGgAAAACRxYAGAAAAQGQx5QwAAABIE8s2Zw8DGjQJzfULbW53CP1krZMLUqdMtyPA9sNot2dM75wxR5BK+RlOL9kbbizDedYCJOfb+soPUIYStjyesQxreknyfdvEDmMTJEme8csUM9apIch/GAl7llzjO/ukHN/4G5Kw/uYYy6hrAvsBmcGABgAAAEgXiwJkDffQAAAAAIgsBjQAAAAAIospZwAAAECaWBQge4jQAAAAAIgsIjQAAABAulgUIGuI0AAAAACILCI0AAAAQLqI0GQNERoAAAAAkcWABgAAAEBkMeUMAAAASBPLNmcPERoAAAAAkUWEBpnn5+DlA2uVAjTBfNUkhG6y1inIlR8Xxu7OcDsCtSGM/W1tt2/cvjW9JBfzTOnNdZLkrJferGXYmiBJcr4xU5AyjNccEwl7Gc2R7+w7w49nvnOt9fKNX4yCeIMp/fYybHUqDHCgW9pRl+vHOIsCZA0RGgAAAACRxYAGAAAAQGQx5QwAAABIF1POsoYIDQAAAIDIIkIDAAAApIllm7OHCA0AAACAyGJAAwAAACCymHIGAAAApItFAbKGCA0AAACAyCJCAwAAAKSJRQGyJ6sRmpdeekmnnXaaunTpIs/z9Pjjj6d8Pm7cOHmel/IaMWJESpovvvhCY8aMUVFRkdq1a6fx48dr8+bNIbYCAAAAyH1N9dw7qxGaLVu26KijjtKFF16oM888c49pRowYoVmzZiX/LiwsTPl8zJgxWrt2rebPn6/6+npdcMEFuvjii/XII49ktO7A/hboKkumr8yEUacAZVj7yhnTB9kX5jJ8z16IbyvEWYsIUCcv03WSJN+awVhIgDq5hPV6oLkRAXI0z1nkxkNQ+XF7z1q5AAd6vhKm9L6xDD/AgZ7nGesUqIzG7496684OWwTuoWmq595ZHdCMHDlSI0eO/Mo0hYWFKi0t3eNn77//vp555hm9/vrrOu644yRJd955p0499VT9+te/VpcuXfZ7nQEAAIAoaqrn3jl/OWfhwoUqKSnR4YcfrgkTJujzzz9PflZRUaF27dolO1SShg4dqlgspsWLF+91m7W1taqpqUl5AQAAAFG063ltbW1t4G1l4tw703J6QDNixAg9+OCDeuGFF/Rf//VfWrRokUaOHKlEYnsItKqqSiUlJSl58vLy1L59e1VVVe11u9OnT1dxcXHy1bVr14y2AwAAAE2cy9JLUteuXVPObadPnx6oCZk69860nF7l7Oyzz07+u1+/furfv7969uyphQsXasiQIYG3O3XqVE2ZMiX5d01NDYMaAAAARNLq1atVVFSU/HvX+14aK1Pn3pmW0xGaXR1yyCHq0KGDVqxYIUkqLS3V+vXrU9I0NDToiy++2OvcP2n7Ti4qKkp5AQAAAEF5WXpJ2u28NuiAZlf769w70yI1oPnXv/6lzz//XJ07d5YklZWVaePGjVqyZEkyzYIFC+T7vgYOHJitagIAAACRF5Vz76xOOdu8eXNyxCdJq1at0tKlS9W+fXu1b99e1113nUaPHq3S0lKtXLlS//mf/6lDDz1Uw4cPlyQdccQRGjFihC666CLNnDlT9fX1mjhxos4++2xWOAMAAAB20lTPvbMaoXnjjTd0zDHH6JhjjpEkTZkyRcccc4yuueYaxeNxvfPOO/rud7+rww47TOPHj9eAAQP0P//zPylhtIcffli9e/fWkCFDdOqpp+qkk07Svffem60mAQAAoDnK4qIAjdVUz72zGqEZPHiw3Fc8je7ZZ5/d5zbat2/PQzQBAACAfWiq5945vcoZAAAAEAWe2/4Ku0xEbFEAAAAAANgZERrknq8Ihe49jy259YqG59vSSzLXKQjP2lfO23ealO3bNr89jy2T59vqJEky7g/r/nMBLvWYj5EAZThru61lBDnOrXm8APs7YUvuzD8ItuRB8rgg7TZmse++3Lym6Yy/U3Fj+iB8YxlBfv6tZcRjtj1u7VdJaojZjpEGFzeXkec1/gte35Dj4YgA97TslzKRo79mAAAAANAIDGgAAAAARBZTzgAAAID9gSlgWUGEBgAAAEBkEaEBAAAA0sSyzdlDhAYAAABAZDGgAQAAABBZTDkDAAAA0sVzaLKGCA0AAACAyCJCAwAAAKSJRQGyhwgNAAAAgMgiQgMAAACki3tosoYBDWwc35zGMoeBQ+haa50C7W5jniDhcnO9QqiTfFtyZ0wvSZ7n2TL41obbkkuS842ZgnSusd3WbnIB2h0Gc08ZMwQ4BGWd2BHkNyQet2WylhHo6238LiWs3wtJ+XHbHokbD9yEb5+UE4/Z6lQQS5jLaIg1vl4NiWBHLZo+ppwBAAAAiCwiNAAAAECaWBQge4jQAAAAAIgsIjQAAABAulgUIGuI0AAAAACILAY0AAAAACKLKWcAAABAuphyljVEaAAAAABEFhEaAAAAIE0s25w9RGgAAAAARBYRGgAAACBd3EOTNQxokHE5GQ51xko5LzP12EmgfrLmyXR62dth3RXbM9mSe75x+9b0sh8i5jpJkrEMZy0jwGFuzxLku2Tb4c5YRuZrFJDxoHLxzH/5/LjtoPJc3FyG9cD1Y8Z+CvB77sdsfRULUoZvmzQTi9n6Kd+47yQpbmxHwtgGSYob2tHQEOSHE80BU84AAAAARBYRGgAAACBNnnPyAk07SK9MEKEBAAAAEGFEaAAAAIB0sShA1hChAQAAABBZDGgAAAAARBZTzgAAAIA0eS78R1Xk5KMxsoAIDQAAAIDIIkIDAAAApItFAbKGCA0AAACAyCJCAwAAAKSJe2iyhwFNc+fn3jchyJfT/qRcz16IlbVKAZ726zlbO6x9G2RfWJvhBTgGPd+4/4yxaOfb0kuSZ413ByjDetjGErYMfs7OXbB+X23tcAF+D6zfDRc3FxHgN8SYPECdnLMd6F7Mfky5uLEM44+Os/5+yN6OWMw+ASYRs/0oWMtoSNj3RdxYp3iA/W0pI1Ef5IcTzQFTzgAAAABEFhEaAAAAIF0sCpA1RGgAAAAARBYRGgAAACBNLAqQPURoAAAAAEQWAxoAAAAAkcWUMwAAACBdLAqQNURoAAAAAEQWERoAAABgP+Am/ewgQgMAAAAgsojQAAAAAOlybvsr7DJBhAYAAABAdBGhQbNknePqBbgCYi/DM5dhXt3EWiffuP0AeVyAyyrmMozpvQC7Qglb8iC7W9b9YSzDC9LwnJwwbmtHkO+3ixv7Kkg3xY1FWMvwA+zvuK0QFwvQt74tj2csI0idPOPvlB/ge+HFbPsjZmyHNb0kJWK2hsdi9v80PMOBnqgP8J8SmgUGNAAAAECaPBf+NZ6cvKaUBUw5AwAAABBZRGgAAACAdPFgzawhQgMAAAAgshjQAAAAAIgsppwBAAAAafL8YKuDplsmiNAAAAAAiDAiNAAAAEC6WBQga4jQAAAAAIgsBjQAAAAAIospZwAAAECaPLf9FXaZYEADKxfgm2PNE6gMe5aMb9+aJ0AZ1tVNPN9WiIt5tgIUpE7mIsy/4J5vbIe92eY8sYS9iFxczMZztob78cz/72vdfc7Yhn9nsqUP8F0y7/C4MX2AORrmn2cvQLtj1t8pa3pTckmSZyzD2gZJ8ox95Rvb4QU48/VitoPQ86wHoRQz9FWivsG8fTQPDGgAAACAdDkX7KJsumUiu/fQvPTSSzrttNPUpUsXeZ6nxx9/POVz55yuueYade7cWS1bttTQoUP10UcfpaT54osvNGbMGBUVFaldu3YaP368Nm/eHGIrAAAAgNzXVM+9szqg2bJli4466ij99re/3ePnt9xyi+644w7NnDlTixcvVuvWrTV8+HBt27YtmWbMmDF67733NH/+fM2bN08vvfSSLr744rCaAAAAACTvoQn7ZdFUz72zOuVs5MiRGjly5B4/c87ptttu09VXX63TTz9dkvTggw+qU6dOevzxx3X22Wfr/fff1zPPPKPXX39dxx13nCTpzjvv1Kmnnqpf//rX6tKlS2htAQAAAHJZUz33ztllm1etWqWqqioNHTo0+V5xcbEGDhyoiooKSVJFRYXatWuX7FBJGjp0qGKxmBYvXrzXbdfW1qqmpiblBQAAAETRrue1tbW15m1k8tw703J2QFNVVSVJ6tSpU8r7nTp1Sn5WVVWlkpKSlM/z8vLUvn37ZJo9mT59uoqLi5Ovrl277ufaAwAAoFlxWXpJ6tq1a8q57fTp083Vz+S5d6Y1y1XOpk6dqilTpiT/rqmpYVADAACASFq9erWKioqSfxcWFmaxNuHL2QFNaWmpJGndunXq3Llz8v1169bp6KOPTqZZv359Sr6GhgZ98cUXyfx7UlhY2Ox2NAAAADInmw/WLCoqShnQBJHJc+9My9kpZz169FBpaaleeOGF5Hs1NTVavHixysrKJEllZWXauHGjlixZkkyzYMEC+b6vgQMHhl5nAAAAIIqifO6d1QjN5s2btWLFiuTfq1at0tKlS9W+fXt169ZNkyZN0g033KBevXqpR48e+sUvfqEuXbrojDPOkCQdccQRGjFihC666CLNnDlT9fX1mjhxos4++2xWOAMAAAB20lTPvbM6oHnjjTf0zW9+M/n3jvtaxo4dq9mzZ+s///M/tWXLFl188cXauHGjTjrpJD3zzDNq0aJFMs/DDz+siRMnasiQIYrFYho9erTuuOOO0NsCAACAZsy57a+wyzRoqufennNh93zuqampUXFxsQbrdOV5+Y3KE9tpxzaW17KlLX2LAPf5FBaYkjtzevsY2BXY8vgFcXsZ+bbZkwljet+YXpJcnmcsw5ZeknxrGcbd58eD1MmW3tl3tzmPtR1h1CmcdhsLsO9ue7sDTHR2cdt/U9YygtTJOmE7ULtjmW13kEnn1jqFUob1uA1wnMvc7gCnVtZ6GcvwQmi3F+AGEs9wjPhbt+mTH/9S1dXVad8vsj/tOI8cdOr1ysu3nx+mo6F+m1596pqc65Ow5eyiAAAAAEBUZHNRgOYuZxcFAAAAAIB9IUIDAAAApGunB12GWiaI0AAAAACILgY0AAAAACKLKWcAAABAmlgUIHuI0AAAAACILCI0AAAAQLp8t/0VdpkgQgMAAAAguhjQAAAAAIgsppwBAAAA6eI5NFlDhAYAAABAZBGhQeY54+WDIFcbfFty6zKHQZZFtDY7SLs9482Anu/Z0gdoeCxhK8NYpe2MeeztCFKpEBibEbN+9YJc4rJ2bYAyrMettR0ubj/OzX0VpN0xY7utBQSok7lvg7Tby+z+Nn8xJMlcpyBlZDa9C/IfmXV/BynD0A6/Nm7ffog8ZWHZ5nCLy1lEaAAAAABEFhEaAAAAIF3OBZiesR/KBBEaAAAAANHFgAYAAABAZDHlDAAAAEiT57KwKAAzziQRoQEAAAAQYURoAAAAgHTxYM2sIUIDAAAAILIY0AAAAACILKacAQAAAGnynJMX8nNhwi4vVxGhAQAAABBZRGiaO+vI3s9MNXYW5GqDOYc1Q4A6eca+sqbfnsnLaBnGzf87k62vvESQQmxixt3n4vb97cu4LwJcVPPjtvTWMlyAS1zWPGGUYT1uXYBj0NyOQO227UBnbUagOhkLCfD1NrfDur+DXMq1lhHkx9P6XTL3U4AfHWtfBdrfhnrV5vh1eF+hnCftViaI0AAAAACILiI0AAAAQJq4hyZ7iNAAAAAAiCwGNAAAAAAiiylnAAAAQLqcAqxStB/KBBEaAAAAANFFhAYAAABIl3OBHvOQdpkgQgMAAAAguhjQAAAAAIgsppwBAAAAafLc9lfYZYIIDQAAAIAII0KTy3LwRq8gT6R1vjGDby/DM+Yxp0+Ykv87kxdCGZltR0y2NkiSdXfHAqw56ZytXn7cWoAxvaSY8bvhAlxOivnG/WEsI0idrHnCKMPcbvthbq9TkDKMvyFhtDuUMoy/a/Z9Ya+UuR2B9neGywil3QF+PA318rbl+HV4FgXImhw/MgAAAABg74jQAAAAAGny/O2vsMsEERoAAAAAEcaABgAAAEBkMeUMAAAASBeLAmQNERoAAAAAkUWEBgAAAEiXU6Bl/9MuE0RoAAAAAEQXAxoAAAAAkcWUMwAAACBNnnPyQr5JP+zychURGgAAAACRRYSmqbGO1EMY2ZuvHgSokjOWYa2T53um9JIk31hGwl6EZKtXzNi5QR5AHDPWKcgh6GLWY8pYpwCXepyxs4KUIWO7rWUEardn/G4EKcPaDuvXNVC7jRkC/ISY94exDHMbFPC4tTIeU2HsizD61lyvUOpk/M2x/h5IpnZ424I0IkQs25w1RGgAAAAARBYRGgAAACBdTsGmNqRbJojQAAAAAIguBjQAAAAAIospZwAAAECaWLY5e4jQAAAAAIgsIjQAAABAupyysGxzuMXlKiI0AAAAACKLAQ0AAACAyGLKGQAAAJAu57Iw5Yw5ZxIRGgAAAAARRoQGAAAASJcvyctCmWBAA6MgoU1rngBleL4tj0vY0ntegHYnbMm9UH4EbYXEAuwLZ/xxdXFzEXIxWzvMx0eA2LUz7j9rG7bnMWYw18m4fUnO+t0IpW+NBQT47jnrFzbI9zvD7bb2qyR7OwL1rT2PSRh1CmN/h1EnY6ZM77tEbdijBUQFU84AAAAARBYRGgAAACBNnnPyQr5JP+zychURGgAAAACRRYQGAAAASBfLNmdNTkdopk2bJs/zUl69e/dOfr5t2zaVl5frwAMPVJs2bTR69GitW7cuizUGAAAAclNTPbfO6QGNJB155JFau3Zt8vXyyy8nP5s8ebKefPJJzZkzR4sWLdKaNWt05plnZrG2AAAAaJZ2RGjCfhk1xXPrnJ9ylpeXp9LS0t3er66u1u9+9zs98sgj+ta3viVJmjVrlo444gi9+uqrGjRoUNhVBQAAAHJaUzy3zvkIzUcffaQuXbrokEMO0ZgxY1RZWSlJWrJkierr6zV06NBk2t69e6tbt26qqKj4ym3W1taqpqYm5QUAAABE0a7ntbW1tXtNm4lz62zL6QHNwIEDNXv2bD3zzDOaMWOGVq1apW984xvatGmTqqqqVFBQoHbt2qXk6dSpk6qqqr5yu9OnT1dxcXHy1bVr1wy2AgAAAE1eFqecde3aNeXcdvr06XusYqbOrbMtp6ecjRw5Mvnv/v37a+DAgerevbv+9Kc/qWXLloG3O3XqVE2ZMiX5d01NDYMaAAAARNLq1atVVFSU/LuwsHCP6TJ1bp1tOR2h2VW7du102GGHacWKFSotLVVdXZ02btyYkmbdunV7nBe4s8LCQhUVFaW8AAAAgMD8LL2k3c5r9zag2dX+OrfOtpyO0Oxq8+bNWrlypc477zwNGDBA+fn5euGFFzR69GhJ0vLly1VZWamysrIs13QvnJ/5MnzjahfW1TGCrHeeMOaJ2cvwPFsea/rkL4alDOfZMjj79QVn7Cvn2+pkTS8FaEaDuQi5uLHdMWO77c22tzuEMsztCKVOAQqxfpXCaLf1NyRQGcYMIbTbKsh3KeP7OwhznUKoVFPZ3waxvd8WgoAif279bzk9oLn88st12mmnqXv37lqzZo2uvfZaxeNxnXPOOSouLtb48eM1ZcoUtW/fXkVFRbrkkktUVlaW06swAAAAANnQVM+tc3pA869//UvnnHOOPv/8c3Xs2FEnnXSSXn31VXXs2FGSdOuttyoWi2n06NGqra3V8OHDdffdd2e51gAAAGhuPOfkBZnJkmaZFk313NpzLuSez0E1NTUqLi7WYJ2uPC+/UXliLVqYy/FaNG4+4/+lt5eh/MbVfwdXaEuvfPsY2MXjtvT5tvSSpDzbvBffmN7FA8TRjXn8eJApZ8b0xjoFabd1elegqTjGQyQ3p5xlfjofU84ys/0mU0auTkFiylnjNJX9bZCo3aZ/3PMzVVdX59T9zzvOI4ceNkV5cdu5XroaErV6/sPf5FyfhC2nIzQAAABAJOy0jHKoZSJaq5wBAAAAwM6I0AAAAADp8p1kXkV1P5QJIjQAAAAAoosBDQAAAIDIYsoZAAAAkC4WBcgaIjQAAAAAIosIDQAAAJC2LERoRIRGYkCT04I889T6xFgv4ZvSu5gtvSR51geMJcxFmL/O1tCkC/C0MOfb8sQSAX6UrA/KTBjTWx+SKfuD1QI9tNR4TLmYsW8DPQTR+kBR+/62P7zTuP1QHnoZ4DjPyQctZv5hrZl+EGIuPpBSCqFeTeABk5KaTjsMEnWcvGPPmHIGAAAAILKI0AAAAADpYlGArCFCAwAAACCyiNAAAAAA6fKdQr9J3ydCIxGhAQAAABBhRGgAAACAdDl/+yvsMkGEBgAAAEB0MaABAAAAEFlMOQMAAADSxbLNWUOEBgAAAEBkEaEBAAAA0sWyzVlDhAYAAABAZBGhyWVBRt3WuZTW9H6A5QEbbMk9ewmStVrWdsTsY38vbmyJZ2+5M5bhrGUE2RnGMlwsQCHG3WFudxDGIgLVKcPNcEG2H2T/GZnrFcL+DtRXmRZGnXKw3bn4/c5FLlcvYRv6tqE+kbl6INIY0AAAAADpYlGArMnV8ToAAAAA7BMRGgAAACBdTlmI0IRbXK4iQgMAAAAgsojQAAAAAOniHpqsIUIDAAAAILIY0AAAAACILKacAQAAAOnyfdkfjLc/ygQRGgAAAACRRYQGAAAASBeLAmQNERoAAAAAkUWEJiAXYETs+cY8LsC8yETClt7zbMmDXAmI2cbNLsB8UM/YDmudvJhx+5K5b83pJTlzu81F2IXQbitzPwWRi32ba9sPyOVmtWyC/IbkoFC+S00B3ZQRDQ212a4CchQDGgAAACBdTDnLGqacAQAAAIgsIjQAAABAunwnKeSIifV2hiaKCA0AAACAyCJCAwAAAKTJOV8uyIJOaZYJIjQAAAAAIowBDQAAAIDIYsoZAAAAkC7nwr9Jn2WbJRGhAQAAABBhRGgAAACAdLksLNtMhEYSERoAAAAAEUaEJkQukTCl9xo8exnWkXpDgy29F2AMHLO1w/Ps7VaQPBaxEMb+AdqQ4VYHk+l9EQbjMYsMawrHFJoXjtmM8PzabFcBOYoBDQAAAJAu35e8kJ8Lw3NoJDHlDAAAAECEEaEBAAAA0sWiAFlDhAYAAABAZBGhAQAAANLkfF8u5HtoHPfQSCJCAwAAACDCGNAAAAAAiCymnAEAAADpYlGArCFCAwAAACCyiNAAAAAA6fKd5BGhyQYiNAAAAAAiiwENAAAAgMhiyllArrY2lDwAAACQGlx9tqvw1ZyTFPJzYZhyJokIDQAAAIAII0IDAAAApMn5Ti7kRQEcERpJRGgAAAAARBgDGgAAAACRxZQzAAAAIF3OV/iLAoRcXo4iQgMAAAAgsojQAAAAAGliUYDsIUIDAAAAILKI0AAAAADp4h6arCFCAwAAACCyiNDo/+YfNqheYioiAABAzmlQvaTcvW8kG+eRO/qkuWNAI2nTpk2SpJf1VJZrAgAAgK/y+eefq7i4ONvVSCooKFBpaalersrOeWRpaakKCgqyUnau8FyuDnND5Pu+1qxZo7Zt28rzvGxXJxJqamrUtWtXrV69WkVFRdmuTmTQb3b0WTD0mx19Fgz9ZkefBVNdXa1u3brpf//3f9WuXbtsVyfFtm3bVFdXl5WyCwoK1KJFi6yUnSuI0EiKxWI66KCDsl2NSCoqKuLHOAD6zY4+C4Z+s6PPgqHf7OizYGKx3LsFvEWLFs1+UJFNuXdEAAAAAEAjMaABAAAAEFkMaBBIYWGhrr32WhUWFma7KpFCv9nRZ8HQb3b0WTD0mx19Fgz9hr1hUQAAAAAAkUWEBgAAAEBkMaABAAAAEFkMaAAAAABEFgMaAAAAAJHFgAZ7NW3aNHmel/Lq3bt38vNt27apvLxcBx54oNq0aaPRo0dr3bp1Waxxdrz00ks67bTT1KVLF3mep8cffzzlc+ecrrnmGnXu3FktW7bU0KFD9dFHH6Wk+eKLLzRmzBgVFRWpXbt2Gj9+vDZv3hxiK8K1rz4bN27cbsfeiBEjUtI0tz6bPn26jj/+eLVt21YlJSU644wztHz58pQ0jflOVlZWatSoUWrVqpVKSkp0xRVXqKGhIcymhKox/TZ48ODdjref/OQnKWmaW7/NmDFD/fv3Tz74saysTE8//XTyc4613e2rzzjO9u3mm2+W53maNGlS8j2ONTQGAxp8pSOPPFJr165Nvl5++eXkZ5MnT9aTTz6pOXPmaNGiRVqzZo3OPPPMLNY2O7Zs2aKjjjpKv/3tb/f4+S233KI77rhDM2fO1OLFi9W6dWsNHz5c27ZtS6YZM2aM3nvvPc2fP1/z5s3TSy+9pIsvvjisJoRuX30mSSNGjEg59v7whz+kfN7c+mzRokUqLy/Xq6++qvnz56u+vl7Dhg3Tli1bkmn29Z1MJBIaNWqU6urq9Morr+iBBx7Q7Nmzdc0112SjSaFoTL9J0kUXXZRyvN1yyy3Jz5pjvx100EG6+eabtWTJEr3xxhv61re+pdNPP13vvfeeJI61PdlXn0kcZ1/l9ddf1z333KP+/funvM+xhkZxwF5ce+217qijjtrjZxs3bnT5+fluzpw5yffef/99J8lVVFSEVMPcI8nNnTs3+bfv+660tNT96le/Sr63ceNGV1hY6P7whz8455z7xz/+4SS5119/PZnm6aefdp7nuU8//TS0umfLrn3mnHNjx451p59++l7zNPc+c8659evXO0lu0aJFzrnGfSefeuopF4vFXFVVVTLNjBkzXFFRkautrQ23AVmya78559wpp5ziLrvssr3mod+2O+CAA9z999/PsWawo8+c4zj7Kps2bXK9evVy8+fPT+knjjU0FhEafKWPPvpIXbp00SGHHKIxY8aosrJSkrRkyRLV19dr6NChybS9e/dWt27dVFFRka3q5pxVq1apqqoqpZ+Ki4s1cODAZD9VVFSoXbt2Ou6445Jphg4dqlgspsWLF4de51yxcOFClZSU6PDDD9eECRP0+eefJz+jz6Tq6mpJUvv27SU17jtZUVGhfv36qVOnTsk0w4cPV01NTcpV5KZs137b4eGHH1aHDh3Ut29fTZ06VVu3bk1+1tz7LZFI6NFHH9WWLVtUVlbGsdYIu/bZDhxne1ZeXq5Ro0alHFMSv2tovLxsVwC5a+DAgZo9e7YOP/xwrV27Vtddd52+8Y1v6N1331VVVZUKCgrUrl27lDydOnVSVVVVdiqcg3b0xc4/tDv+3vFZVVWVSkpKUj7Py8tT+/btm21fjhgxQmeeeaZ69OihlStX6mc/+5lGjhypiooKxePxZt9nvu9r0qRJOvHEE9W3b19JatR3sqqqao/H4o7Pmro99Zsk/ehHP1L37t3VpUsXvfPOO7ryyiu1fPlyPfbYY5Kab78tW7ZMZWVl2rZtm9q0aaO5c+eqT58+Wrp0KcfaXuytzySOs7159NFH9eabb+r111/f7TN+19BYDGiwVyNHjkz+u3///ho4cKC6d++uP/3pT2rZsmUWa4am7uyzz07+u1+/furfv7969uyphQsXasiQIVmsWW4oLy/Xu+++m3JPG/Ztb/22871X/fr1U+fOnTVkyBCtXLlSPXv2DLuaOePwww/X0qVLVV1drT//+c8aO3asFi1alO1q5bS99VmfPn04zvZg9erVuuyyyzR//ny1aNEi29VBhDHlDI3Wrl07HXbYYVqxYoVKS0tVV1enjRs3pqRZt26dSktLs1PBHLSjL3ZdkWXnfiotLdX69etTPm9oaNAXX3xBX/7bIYccog4dOmjFihWSmnefTZw4UfPmzdOLL76ogw46KPl+Y76TpaWlezwWd3zWlO2t3/Zk4MCBkpRyvDXHfisoKNChhx6qAQMGaPr06TrqqKN0++23c6x9hb312Z5wnG2fUrZ+/Xode+yxysvLU15enhYtWqQ77rhDeXl56tSpE8caGoUBDRpt8+bNWrlypTp37qwBAwYoPz9fL7zwQvLz5cuXq7KyMmW+cHPXo0cPlZaWpvRTTU2NFi9enOynsrIybdy4UUuWLEmmWbBggXzfT/6H19z961//0ueff67OnTtLap595pzTxIkTNXfuXC1YsEA9evRI+bwx38mysjItW7YsZTA4f/58FRUVJafFNDX76rc9Wbp0qSSlHG/Nrd/2xPd91dbWcqwZ7OizPeE4k4YMGaJly5Zp6dKlyddxxx2nMWPGJP/NsYZGyfaqBMhdP/3pT93ChQvdqlWr3N///nc3dOhQ16FDB7d+/XrnnHM/+clPXLdu3dyCBQvcG2+84crKylxZWVmWax2+TZs2ubfeesu99dZbTpL7zW9+49566y33ySefOOecu/nmm127du3cE0884d555x13+umnux49ergvv/wyuY0RI0a4Y445xi1evNi9/PLLrlevXu6cc87JVpMy7qv6bNOmTe7yyy93FRUVbtWqVe755593xx57rOvVq5fbtm1bchvNrc8mTJjgiouL3cKFC93atWuTr61btybT7Os72dDQ4Pr27euGDRvmli5d6p555hnXsWNHN3Xq1Gw0KRT76rcVK1a466+/3r3xxhtu1apV7oknnnCHHHKIO/nkk5PbaI79dtVVV7lFixa5VatWuXfeecddddVVzvM899xzzznnONb25Kv6jOOs8XZdDY5jDY3BgAZ7ddZZZ7nOnTu7goIC97Wvfc2dddZZbsWKFcnPv/zyS/f//t//cwcccIBr1aqV+973vufWrl2bxRpnx4svvugk7fYaO3asc2770s2/+MUvXKdOnVxhYaEbMmSIW758eco2Pv/8c3fOOee4Nm3auKKiInfBBRe4TZs2ZaE14fiqPtu6dasbNmyY69ixo8vPz3fdu3d3F110UcqSnM41vz7bU39JcrNmzUqmacx38uOPP3YjR450LVu2dB06dHA//elPXX19fcitCc+++q2ystKdfPLJrn379q6wsNAdeuih7oorrnDV1dUp22lu/XbhhRe67t27u4KCAtexY0c3ZMiQ5GDGOY61PfmqPuM4a7xdBzQca2gMzznnwosHAQAAAMD+wz00AAAAACKLAQ0AAACAyGJAAwAAACCyGNAAAAAAiCwGNAAAAAAiiwENAAAAgMhiQAMAAAAgshjQAAAAAIgsBjQAkEMGDx6sSZMmZbsaAABEBgMaAGhCZs+erXbt2gXKe+mll2rAgAEqLCzU0UcfvV/rBQBApjCgAQAkXXjhhTrrrLOyXQ0AABqNAQ0A5JiGhgZNnDhRxcXF6tChg37xi1/IOSdJqq2t1eWXX66vfe1rat26tQYOHKiFCxdKkhYuXKgLLrhA1dXV8jxPnudp2rRpkqSHHnpIxx13nNq2bavS0lL96Ec/0vr161PKveOOO1ReXq5DDjkkzOYCAJAWBjQAkGMeeOAB5eXl6bXXXtPtt9+u3/zmN7r//vslSRMnTlRFRYUeffRRvfPOO/rBD36gESNG6KOPPtIJJ5yg2267TUVFRVq7dq3Wrl2ryy+/XJJUX1+vX/7yl3r77bf1+OOP6+OPP9a4ceOy2EoAAPaPvGxXAACQqmvXrrr11lvleZ4OP/xwLVu2TLfeequGDx+uWbNmqbKyUl26dJEkXX755XrmmWc0a9Ys3XTTTSouLpbneSotLU3Z5oUXXpj89yGHHKI77rhDxx9/vDZv3qw2bdqE2j4AAPYnIjQAkGMGDRokz/OSf5eVlemjjz7SsmXLlEgkdNhhh6lNmzbJ16JFi7Ry5cqv3OaSJUt02mmnqVu3bmrbtq1OOeUUSVJlZWVG2wIAQKYRoQGAiNi8ebPi8biWLFmieDye8tlXRVm2bNmi4cOHa/jw4Xr44YfVsWNHVVZWavjw4aqrq8t0tQEAyCgGNACQYxYvXpzy96uvvqpevXrpmGOOUSKR0Pr16/WNb3xjj3kLCgqUSCRS3vvggw/0+eef6+abb1bXrl0lSW+88UZmKg8AQMiYcgYAOaayslJTpkzR8uXL9Yc//EF33nmnLrvsMh122GEaM2aMzj//fD322GNatWqVXnvtNU2fPl1/+9vfJEkHH3ywNm/erBdeeEGfffaZtm7dqm7duqmgoEB33nmn/vnPf+qvf/2rfvnLX+5W7ooVK7R06VJVVVXpyy+/1NKlS7V06VKiOACAnOa5HWuBAgCybvDgwTryyCPl+74eeeQRxeNxTZgwQTfccIM8z1N9fb1uuOEGPfjgg/r000/VoUMHDRo0SNddd5369esnSZowYYLmzJmjzz//XNdee62mTZumP/zhD/rZz36mtWvX6thjj9XUqVP13e9+V2+99VbyIZqDBw/WokWLdqvTqlWrdPDBB4fYCwAANB4DGgAAAACRxZQzAAAAAJHFgAYAAABAZDGgAQAAABBZDGgAAAAARBYDGgAAAACRxYAGAAAAQGQxoAEAAAAQWQxoAAAAAEQWAxoAAAAAkcWABgAAAEBkMaABAAAAEFn/H8sgbZVlG33VAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAKSCAYAAAB/ZFz8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXhkZ33n+znn1Koq7VJr6VZLve/tbrftdqtZzD6ESzaWZyZ3wCEEGD8EEpI8MJkLgcCwTDIzmGQYD2QI4RK4ScySm0tIAAezecHGbu27uqXW1tqqtJVUy1nuH+1zXFXapSrpdPfv8zx67K469dZ7zltV5/d9f5tiWZaFIAiCIAiCIAjCCqi7PQFBEARBEARBENyLCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkG4Q/mXf/kXzp07RyAQQFEUZmZmdntKW+KBBx7ggQce2O1pZDA+Ps6b3/xmysvLURSFhx9+OCfj/tmf/RkHDx5E0zTOnTsHgK7rfPCDH6Surg5VVfnVX/1VBgYGUBSF//pf/2tO3lcQBEG4sxHBIAguobW1lTe/+c3U19cTCATYu3cvr3nNa/iLv/iLnL/X9PQ0b33rWwkGg3z+85/nq1/9KqFQKOfvsx0aGhpQFMX527NnDy996Uv59re/nZPxFxcX+djHPsaPfvSjnIyXzgc+8AG+973v8Ud/9Ed89atf5d/8m3+z7TG///3v88EPfpDLly/z5S9/mU996lMA/NVf/RV/9md/xpvf/Ga+8pWv8IEPfGDb77USHR0dfOxjH2NgYCAv4wuCIAjuxbPbExAEAZ588kle8YpXsH//ft71rndRXV3N0NAQTz/9NJ/73Od43/vel9P3e/bZZ5mfn+cTn/gEr371q3M6di45d+4cf/AHfwDA6OgoX/jCF/j1X/91HnnkEf7Df/gP2xp7cXGRP/mTPwHIuYfihz/8Ib/yK7/CH/7hH+Z0TFVV+dKXvoTP58t4fO/evXz2s591HsuHUd/R0cGf/Mmf8MADD9DQ0JDz8QVBEAT3IoJBEFzAJz/5SYqLi3n22WcpKSnJeG5iYiJn7xOLxQiFQs6Y2e/lNvbu3cu///f/3vn329/+dg4fPsxnP/vZbQuGfDIxMZHzazsxMUEwGMwQC/l6L0EQBEFIR0KSBMEF9Pf3c+rUqRUNvz179jj/b8em//Vf//Wy4xRF4WMf+5jz74997GMoikJHRwe/8Ru/QWlpKS95yUt44IEHePDBBwG49957URSF3/zN3wTgpz/9KW95y1vYv38/fr+furo6PvCBD7C0tLTs/bq6unjrW99KZWUlwWCQY8eO8X/9X/9XxjEjIyP81m/9FlVVVfj9fk6dOsVf/dVfbf4CvUB1dTUnTpzg2rVrax43MTHBO9/5TqqqqggEAtx111185StfcZ4fGBigsrISgD/5kz9xwp7Sr99KXL16lbe85S2UlZVRUFDA/fffzz/90z85z//1X/81iqJgWRaf//znnXHXwjRNHn74YU6dOkUgEKCqqor3vOc9RKNR5xhFUfjyl79MLBZzxrTf6/HHH6e9vd15PDvE6rOf/Sz19fUEg0Fe/vKX09bWtmwOXV1dvPnNb6asrIxAIMA999zDP/7jP2ac11ve8hYAXvGKVyx7r//3//1/ecMb3kBtbS1+v59Dhw7xiU98AsMw1jx3QRAE4dZAPAyC4ALq6+t56qmnaGtr4/Tp0zkd+y1veQtHjhzhU5/6FJZlceTIEY4dO8YXv/hFPv7xj3PgwAEOHToEwKOPPsri4iIPPfQQ5eXlPPPMM/zFX/wFw8PDPProo86YLS0tvPSlL8Xr9fLud7+bhoYG+vv7+f/+v/+PT37yk8DNxN/7778fRVH4nd/5HSorK/nnf/5n3vnOdzI3N8fv/d7vbfpcUqkUQ0NDlJeXr3rM0tISDzzwAH19ffzO7/wOBw4c4NFHH+U3f/M3mZmZ4Xd/93eprKzkkUce4aGHHuLXfu3X+PVf/3UAzp49u+q44+PjNDY2sri4yPvf/37Ky8v5yle+wi//8i/zjW98g1/7tV/jZS97GV/96ld529vexmte8xre/va3r3tO73nPe/jrv/5r3vGOd/D+97+fa9eu8T/+x//gypUrPPHEE3i9Xr761a/yxS9+kWeeeYb//b//NwDnz5/nq1/9Kp/85CdZWFjg05/+NAAnTpxwBN7//X//38zPz/Pe976XeDzO5z73OV75ylfS2tpKVVUVAO3t7Vy+fJm9e/fyH//jfyQUCvH3f//3/Oqv/irf/OY3nfN6//vfz5//+Z/zn/7Tf+LEiRPOe8FNQREOh/n93/99wuEwP/zhD/njP/5j5ubm+LM/+7N1r4EgCILgcixBEHad73//+5amaZamadalS5esD37wg9b3vvc9K5lMZhx37do1C7C+/OUvLxsDsD760Y86//7oRz9qAda/+3f/btmxX/7yly3AevbZZzMeX1xcXHbspz/9aUtRFGtwcNB57GUve5lVWFiY8ZhlWZZpms7/v/Od77RqamqsqampjGP+7b/9t1ZxcfGK75VOfX299drXvtaanJy0JicnrebmZuvf/tt/awHW+973Pue4l7/85dbLX/5y598PP/ywBVh/8zd/4zyWTCatS5cuWeFw2Jqbm7Msy7ImJyeXXbO1+L3f+z0LsH760586j83Pz1sHDhywGhoaLMMwnMcB673vfe+6Y/70pz+1AOtrX/taxuP/8i//suzxBx980AqFQsvGePnLX26dOnUq4zH7cxIMBq3h4WHn8Z///OcWYH3gAx9wHnvVq15lnTlzxorH485jpmlajY2N1pEjR5zHHn30UQuwHn/88WVzWGkt3/Oe91gFBQUZ4wqCIAi3JhKSJAgu4DWveQ1PPfUUv/zLv0xzczN/+qd/yute9zr27t2bERqyFTYT6x8MBp3/j8ViTE1N0djYiGVZXLlyBYDJyUl+8pOf8Fu/9Vvs378/4/V2+I1lWXzzm9/kjW98I5ZlMTU15fy97nWvY3Z2lueff37d+Xz/+9+nsrKSyspK7rrrLh599FHe9ra38V/+y39Z9TXf/e53qa6u5t/9u3/nPOb1enn/+9/PwsICP/7xjzd8PbLHve+++3jJS17iPBYOh3n3u9/NwMAAHR0dmx7z0Ucfpbi4mNe85jUZ1+jChQuEw2Eef/zxLc3V5ld/9VfZu3ev8+/77ruPixcv8t3vfheASCTCD3/4Q9761rcyPz/vvP/09DSve93r6O3tZWRkZN33Sf/c2OO89KUvZXFxka6urm2dgyAIgrD7SEiSILiEe++9l29961skk0mam5v59re/zWc/+1ne/OY309TUxMmTJ7c07oEDBzZ87PXr1/njP/5j/vEf/zEjhh5gdnYWuBnHD6wZOjU5OcnMzAxf/OIX+eIXv7jiMRtJ5r548SL/+T//ZxRFoaCggBMnTqyb4Ds4OMiRI0dQ1cz9EDt8ZnBwcN33XW3cixcvLns8fdzNhpP19vYyOzubkaeSznYT3o8cObLssaNHj/L3f//3APT19WFZFh/5yEf4yEc+suoc0kXHSrS3t/PhD3+YH/7wh8zNzWU8Z39uBEEQhFsXEQyC4DJ8Ph/33nsv9957L0ePHuUd73gHjz76KB/96EdXTaBdK7k0ffd3LQzD4DWveQ2RSIQPfehDHD9+nFAoxMjICL/5m7+JaZobPgf72H//7/+9k2CdzVr5AjYVFRWuLvu6XUzTZM+ePXzta19b8Xk7MTuf7w/wh3/4h7zuda9b8ZjDhw+vOcbMzAwvf/nLKSoq4uMf/ziHDh0iEAjw/PPP86EPfWhTnxtBEATBnYhgEAQXc8899wAwNjYGQGlpKcCyrsxb3TVPp7W1lZ6eHr7yla9kJOv+4Ac/yDju4MGDACtW27GprKyksLAQwzB23OCvr6+npaUF0zQzvAx2aEx9fT3AutWLVhq3u7t72ePZ426GQ4cO8dhjj3H58uUNC7vN0Nvbu+yxnp4ep4+CvZZer3fddVrtev3oRz9ienqab33rW7zsZS9zHl+vkpUgCIJw6yA5DILgAh5//HEsy1r2uB1rfuzYMQCKioqoqKjgJz/5ScZx//N//s9tz0HTNICMeViWxec+97mM4yorK3nZy17GX/3VX3H9+vWM5+zXaprGm970Jr75zW+uKCwmJye3Pd/V+KVf+iVu3LjB3/3d3zmP6brOX/zFXxAOh3n5y18OQEFBAbBcfK017jPPPMNTTz3lPBaLxfjiF79IQ0PDlkLG3vrWt2IYBp/4xCeWPafr+obnthr/8A//kJGD8Mwzz/Dzn/+c17/+9cDNkr0PPPAAX/jCFxxRmk76OtmdwLPntNLnJplM5uQzKQiCILgD8TAIggt43/vex+LiIr/2a7/G8ePHSSaTPPnkk/zd3/0dDQ0NvOMd73CO/e3f/m0+85nP8Nu//dvcc889/OQnP6Gnp2fbczh+/DiHDh3iD//wDxkZGaGoqIhvfvOby3IZAP78z/+cl7zkJdx99928+93v5sCBAwwMDPBP//RPNDU1AfCZz3yGxx9/nIsXL/Kud72LkydPEolEeP7553nssceIRCLbnvNKvPvd7+YLX/gCv/mbv8lzzz1HQ0MD3/jGN3jiiSd4+OGHKSwsBG6Gap08eZK/+7u/4+jRo5SVlXH69OlV8xD+43/8j/w//8//w+tf/3re//73U1ZWxle+8hWuXbvGN7/5zWU5Exvh5S9/Oe95z3v49Kc/TVNTE6997Wvxer309vby6KOP8rnPfY43v/nNW74Whw8f5iUveQkPPfQQiUSChx9+mPLycj74wQ86x3z+85/nJS95CWfOnOFd73oXBw8eZHx8nKeeeorh4WGam5uBm123NU3jv/yX/8Ls7Cx+v59XvvKVNDY2UlpayoMPPsj73/9+FEXhq1/96ooCWBAEQbhF2a3yTIIgvMg///M/W7/1W79lHT9+3AqHw5bP57MOHz5sve9977PGx8czjl1cXLTe+c53WsXFxVZhYaH11re+1ZqYmFi1rOrk5OSy91utrGpHR4f16le/2gqHw1ZFRYX1rne9y2publ6xlGtbW5v1a7/2a1ZJSYkVCASsY8eOWR/5yEcyjhkfH7fe+973WnV1dZbX67Wqq6utV73qVdYXv/jFda9JfX299YY3vGHd47LLqtrv+453vMOqqKiwfD6fdebMmRVL0T755JPWhQsXLJ/Pt6ESq/39/dab3/xm55zvu+8+6zvf+c6y49hgWVWbL37xi9aFCxesYDBoFRYWWmfOnLE++MEPWqOjo84xWymr+md/9mfWf/tv/82qq6uz/H6/9dKXvtRqbm5e8bze/va3W9XV1ZbX67X27t1r/R//x/9hfeMb38g47i//8i+tgwcPWpqmZZRYfeKJJ6z777/fCgaDVm1trVMWmFXKsAqCIAi3FoplyTaQIAiCIAiCIAgrIzkMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVRDAIgiAIgiAIgrAqIhgEQRAEQRAEQVgVEQyCIAiCIAiCIKyKCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkEQBEEQBEEQVkUEgyAIgiAIgiAIqyKCQRAEQRAEQRCEVRHBIAiCIAiCIAjCqohgEARBEARBEARhVUQwCIIgCIIgCIKwKiIYBEEQBEEQBEFYFREMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVRDAIgiAIgiAIgrAqIhgEQRAEQRAEQVgVEQyCIAiCIAiCIKyKCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkEQBEEQBEEQVkUEgyAIgiAIgiAIqyKCQRAEQRAEQRCEVRHBIAiCIAiCIAjCqohgEARBEARBEARhVUQwCIIgCIIgCIKwKiIYBEEQBEEQBEFYFREMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVPLs9AUEQdgfLskilUsTjcTweDx6PB03TUFUVRVF2e3qCIAiCILgExbIsa7cnIQjCzmKaJslkEsMwSCQSjkBQFAVVVfF6vWiahsfjQVEUERCCIAiCcAcjgkEQ7iAsy8IwDFKpFJZloSgKyWQSVVWxLAvLsjBN03lOURRHONgeCBEQgiAIgnBnIYJBEO4Q7BAkwzCAm94Ey7IcwbDS8RsRECu9VhAEQRCE2wfJYRCEOwDbq2CaZkaOwlr7BbZAsAWBLSB0XSeVSmUICDuESQSEIAiCINx+iIdBEG5jbANf13WAjHAiy7IYHh5mYmKCkpISSktLCYVCGw43yvZAAE5ok9/vd0SECAhBEARBuLURwSAItymmaTpeBcgUC6lUivb2diKRCDU1NczNzTE7O4umaZSWljoCoqCgYNMC4rnnnmPfvn1UVlaiKEpG+JIICEEQBEG49ZCQJEG4zbB3/VcKQQKYmZmhubmZUCjEpUuXnLAj0zSZm5sjGo0yMTFBX18fHo+H0tJSR0QEg8FVBYQtSOwwJU3TnHmkUinnmHQBYVdhEgRBEATBvYiHQRBuI1ZKbE4PQbp27Rp9fX0cOXKEhoaGNZOeDcNwBEQ0GmVubg6fz7dMQGTzi1/8grq6OqqqqpbNzQ5fSk+itgVEehUmQRAEQRDcg3gYBOE2wTRNpqenCQQCeL3eDMM7kUjQ0tLC4uIi9913HyUlJcDaSc92eFJpaSlwU0DMzs4SjUYZGRmhq6sLv9/vHFNaWorf73eqL2Vjex5s0j0hyWTS8XRkJ1GLgBAEQRCE3UU8DIJwi2P3VtB1nR/+8Ifcc889FBcXO89PTU3R0tJCWVkZp06dwuv1Os/ZDdy2kleg67ojIKLRKPPz8xQUFKDrOpWVlRw4cACfz7ep88j2QKiquiwHQgSEIAiCIOws4mEQhFuY1XorwE0x0Nvby/Xr1zlx4gR79+7NqbHt8XgoLy+nvLwcuJlIPTMzQ09PD1NTU4yMjBAKhZwE6tLS0gyxkk26ByL9HJLJpNONWgSEIAiCIOw8IhgE4RZlpd4KtmBYXFykubkZ0zS5dOkS4XA47/Pxer1UVlYyNDRETU0NFRUVRKNRZmZmuHbtGm1tbYTDYUdAlJSUrCogbBEgAkIQBEEQdh8RDIJwi5HeW8GyrIwqSIqiMDU1xeDgILW1tRw7diwjb2AnsEWL1+tlz5497NmzB4BkMukIiP7+fhYXFyksLHTEQ0lJCR7Pyj9JKwkI+y+RSJBMJgFEQAiCIAhCHhDBIAi3EKZpouu6E4KULhbsDswDAwOcPXt2WZWi3cbn81FVVeXMK5FIOPkPPT09JBKJZQJiNbGTXv1J07RlAsL2QCiK4iRQe73eZSVmBUEQBEFYHxEMgnALkF5RKL0kqc38/DxNTU1YlsWpU6d2VSysViUpG7/fT3V1NdXV1QDE43FHQHR1dZFMJikqKnIERHFx8aYFhGmaPPbYY1y8eBG/34+qqni9XscDIQJCEARBENZHBIMguJz1eisMDQ3R3d1NQ0MDY2Njm6pMlA+2aoAHAgFqamqoqanBsqwMATE6Ooqu646AKC0tpaioaNXqTulN5ABHHNjj2sfYzeNEQAiCIAjC6ohgEAQXY3sVDMNYZswmk0na29uZmZnh7rvvpry8nPHx8Q3t7qeTDwN5u9WaFUUhGAwSDAapra11ErlnZmaIRqMMDw9jGAbFxcWOgCgsLFxTQNjPZXsgREAIgiAIwtqIYBAEF5LeWyG9CpJNNBqlubmZwsJCLl++7HgVtmLc2sZ9rgzjfBjYiqIQCoUIhULs3bsXy7KIxWKOgLh+/TqWZTm5D7aAWGu81UKYEokE8XgcVVWXJVGLgBAEQRDuREQwCILLyA5BSjdSLcvi6tWrXL16lSNHjlBfX59hwCqKgmmauzLvdPLdD1JRFMLhMOFwmH379mFZFgsLC46AGBwcBHAa2C0sLODz+VY19rNzQmwBYRgGhmGsWsZVBIQgCIJwJyCCQRBchN1nYCWvQjwep6WlhXg8zn333ZfRzdnGDcbrbsxBURQKCwspLCykrq4Oy7KYn58nGo0yPT1Na2srqqo6CdSlpaWEQqF1BYQdxpQuIHRdd57PDmHKFh6CIAiCcDsggkEQXIBtjNpVkLLFwsTEBK2trVRWVnL33Xev2a8g37v7G2G356AoCkVFRRQVFdHf3899991HKpUiGo0yNTVFf38/mqY5+Q8lJSUUFBRsWkDYpWxFQAiCIAi3MyIYBGGXWau3gmmadHd3Mzw8zMmTJ9m7d++aY7lBMLjRQFZVleLiYoqLi2loaMA0Tebm5ohGo4yPj9Pb24vH48kQEMFgMCcCwu4DYYcwCYIgCMKthggGQdgl1uutEIvFaG5uBqCxsZFQKLTumJsVDPky7ndbtKyHqqpOgvSBAwcwDMMREGNjY3R3d+Pz+ZYJiNVYT0DY75ndhVoEhCAIgnArIIJBEHYB25jUdR1YnnQ7OjpKe3s7+/bt49ixYxs2LLfiYci1aHCDl2OzpIcnARiGwezsLNFolJGREbq6uvD7/c4xpaWl+P3+VcdbTUCkUimef/559u/fT0lJiQgIQRAE4ZZABIMg7DCmaTIxMeHE2acbibqu09HRweTkJHfddRd79uzZ1Ni3orG+E2z2mmiaRllZGWVlZcDNdbEFxNDQEB0dHRQUFDgJ1KWlpWs2zEsXEHbfB4BUKuV4IBRFEQEhCIIguBIRDIKwQ6RX2bl+/bpjcNrMzc3R1NREIBDg8uXLBAKBTb+HGwSDG+aQazweD+Xl5ZSXlwM3Df2ZmRlmZmYYHBykvb2dUCiUISC8Xu+q49n5DTbp4WmrCQiPx+PK/BBBEATh9kcEgyDsACv1Vkh/bnBwkN7eXg4ePMjBgwe3bBjejsa6G/F6vVRWVlJZWQngVGCamZnh2rVrtLW1EQ6HnfyHkpKSDAGRvb5rCYhkMul4J7KTqEVACIIgCDuBCAZByDMr9VZQVRXLskgmk7S2tjI/P88999zjxNBvFTcIBjfMIZ2dMKq9Xi979uxxQsiSyaQjIPr7+1lcXKSwsJDS0tKMilhrzXkjAiI7hEkEhCAIgpAPRDAIQp5Yq7eCoijEYjGeeOIJiouLaWxsXDMGfqO4zVi/U/H5fFRVVVFVVQVAIpEgGo0SjUbRdZ2WlhaKiooyPBDpAiGbdAFhr68tRFfrQi0CQhAEQcgVIhgEIQ+sFIKU3lthdnaWubk5Tpw4QV1dXc4MOzcIBjfMwW34/X6qq6uprq4mGo1y6NAhTNMkGo3S1dVFMpl0BERpaSlFRUWrCgj7syICQhAEQdgpRDAIQo6xvQrpIUg2S0tLtLS0sLi4SFVVFfv378/pe7vBWBejdH38fj8lJSXU1NRgWRbxeNzxQIyOjqLr+jIBsVrFpLUERCKRIJlMAiv3gZC1EgRBEDaCCAZByBHZvRWyxcL4+DhtbW1UVVVRXFy8bhz7VnCDYAD3N27bTbKvjaIoBINBgsEgtbW1WJbF4uIiMzMzRKNRhoeHMQyD4uJiR0AUFhZuSEBomub0gLAsa5mAsBOoPR7Pss+rIAiCINiIYBCEHGAnpJqmCWQ2YjMMg+7ubkZHRzl16hQ1NTX09vY6wiKXuEEwuNHo3O1rshkURSEUChEKhdi7dy+WZRGLxRwBcf36dSzLcnIfbAGx2nVP/yxmC4h4PE4sFiMSidDQ0IDX63U8ECIgBEEQBBsRDIKwDdKr16wUgrSwsEBzczOqqtLY2EhBQQFw04izxUUucYNggFvLQN8NNmOIK4pCOBwmHA6zb98+LMtiYWHBERCDg4MAGQIiHA5vWECkUikmJyepr693msrZORAiIARBEAQQwSAIW2atxGbLshgZGaGzs5P9+/dz5MiRjBASu6xqrtmKYEgmk3i93pwmXgv5Q1EUCgsLKSwspK6uDsuymJ+fd3Igrl27hqIoTvhSSUkJoVBozXWxqzCt5IFIfz49B0IEhCAIwp2DCAZB2AK2V8EwjGWGk67rtLe3Mz09zblz55zmXunkyxOwmXFN06Srq4vr16/j8XgyuhSvZ2Cuh5s8DG4zanN9bRRFoaioiKKiIurr6zFN0xEQk5OT9PX1oWlahoAoKCjIuC7Z/79SCJOdRB2Px1FVdVkStQgIQRCE2xcRDIKwCezeCrqurxiCNDs7S1NTEwUFBVy+fBm/37/iOLstGBYXF2lqagLg4sWL6LrOzMwM09PT9Pf3ZxiYpaWlBIPBDRuDbgmLulNRVZXi4mKKi4tpaGjANE3m5uaIRqOMj4/T29uLx+Nx1tYwjDXXK11AAI6AMAwDwzBWLeMqAkIQBOH2QQSDIGyQ9UKQBgYG6Ovr49ChQxw4cGDdEJB85TCsN+6NGzdoa2ujtraWY8eOOQZjcXGxs0NtG5g3btygp6cHn89HWVmZY2SuJoRsRDCszU4a0qqqOvkNBw4cwDAMZ33HxsaYm5sDoKOjw/FABIPBVcezBYQdYreagLBDmOz/ZgsPQRAE4dZBBIMgbIC1eiskEglaW1uJxWLce++9lJSUrDvebngY0qs1nT59murqasfQS2clA9NOsB0aGqKjo4OCgoIMD4TX682Yg+Be0r1HAGNjYwwODuL3+xkZGaGrqwu/35+xvmsJxNUEhK7rpFIp5/nsHAgREIIgCLcOIhgEYQ3SeytYlrVMLExNTdHa2kppaSmNjY0ZhvNa7HTScywWo7m5GUVRMqo1bQRN0ygvL6e8vByAVCrlCIhr167R1tZGOBx2jEvTNF3nYXDTfNw0F7j5mfF6vRw6dAi4mYMzOzu7TCCm57j4fL41x9uogLD7QNghTIIgCII7EcEgCKtgmibRaBSPx4PP58sQC6Zp0tfXx+DgIMePH2ffvn2bLpW5U2VVx8bGaGtrY9++fRw7dmzbhpnX66WystJJ5k4kEszMzBCJROjp6SEej+P1evH5fE6XYrsLseA+LMvK+Ox6PJ4VBeLMzAyDg4O0t7cTCoWc8KVsD1M2GxUQ2V2oRUAIgiC4BxEMgpBFem+F9vZ29u7dy759+5znFxcXaW5uxjAMLl26RDgc3vR77ERIkmEYdHZ2Mj4+zl133cWePXty/n4Afr+fqqoqqqqqAOju7mZhYYGlpSVGR0fRdX3DXYrvFG6lUJxsgZhKpYhGo8zMzCzzMNmhbFsREKlUyulCbRgGpmlSXFwsAkIQBMEFiGAQhDRWSmxOx04Yrqmp4fjx41veOc93SNLCwgJNTU14PB4aGxvXTGLNNT6fj2AwyMmTJ7Esi8XFRadHQHqX4tLSUsrKyrZdwnU9biXjfDfI9jCsh9frZc+ePY4ATSaTjoDo7+9ncXGRwsLCDAHh8ax+q1lJQExPTzM0NMS5c+fEAyEIguACRDAIwgus1FtBVVVM08QwDLq6uhgbG3MShrdDPj0Mi4uLPPXUUys2jNtpFEUhFAoRCoUyuhSnNxlTVXXLJVxvRdyWw7BZwZCNz+fL8DAlEglnfXt6ekgkEo6AKC0tdbwGq5EuILxeb4bHL5VKOcekCwi7CpMgCIKQH0QwCHc8a/VWUBSFpaUlnnrqKTweD5cvX87Jbn0+BIOu64yNjTE/P8/dd9+9YsO41diu0ZjOWueW3qV4//79TpOxSCTC+Pi4U8I1XUAEAoGczEtYnVwa236/n+rqakdUx+NxR0B0dnaSTCYpKipy1nelHJf0z6OdIJ3+nC0gksmkIy5WqsIkCIIg5AYRDMIdzXq9FeLxOJOTkxw4cIDDhw/nbLc+10nP8/PzTl5FWVnZpsTCbpLeZMwu4WpX6LFLfAYCgQwBsVaFnlsFNxmz+fZ4BAIBampqqKmpcb5TtoCwc1yyBcRaAnYzAiK9CpObrrkgCMKthggG4Y7FNE2SyeSKvRVSqRRtbW0sLCxQW1vL0aNHc/reucphsCyLkZEROjs7qa+vx+fzMT09nYMZbp3teE80TaOsrIyysjIApwN1NBp1KvSkl3BdLz7exm1hQG4il96l9VAUhWAwSDAYpLa21slxsdd4eHgYwzAIBAJYlsXs7Oy6SfLpAsJe55UERHYOhAgIQRCEjSOCQbjjsEOQUqnUir0VotEozc3NhMNh9uzZk5eE4VyEJOm6TkdHB1NTU5w/f56KigonqXg3yaUh5vF4qKiooKKiAngxwTYajdLb20s8Ht9UfLwb2O31WYndMp7Tc1z27t2LZVnEYjEGBgaYmZmhubnZSZK3E+ULCwvX9D4AKwqIZDLpdKEWASEIgrA5RDAIdxSmaaLr+qohSFevXuXq1ascPnyYhoYG2tvbd7wj80aYn5+nqakJv99PY2OjE+efr2TqzZKvOWQn2K4UH2+XcC0rK6OwsDAv87idcMPnxUZRFMLhMCUlJZimyZkzZ1hYWMjwMgEZAiIcDm9JQCQSCaeMqwgIQRCEtRHBINwRpMc52yEY6QZBPB6ntbWVpaUl7rvvPoqLiwGcKkm5Zqs5DJZlMTw8TFdXFw0NDRw+fDjjPNwgGHbS0MqOj19aWnIExPDwsFPhamxsjOrq6jWNy53EDXOw2cmQpI1imqbzHbWT5Ovq6rAsi/n5+WVVtmzxUFJSsmaZ3nQBoWma0wPCsiwREIIgCGsggkG47bG7yuq6DrBMLExOTtLa2kp5eTnnz5/PiInfyY7M66HrOm1tbUSjUe6++26nE+92x80HuzEHRVEoKCigoKDACW9ZWFjgueeeY35+ntHRURRFyUigLigoEEMQdwkYWF3EKIpCUVERRUVF1NfXO1W2otEok5OT9PX1oWlaRo7LWmuc/luwkoBID2Hyer2OgMgOYxQEQbjdEcEg3Nak91ZIbw5lP9fT08PQ0BAnTpxg7969y4wAVVWd8KVcstmk57m5OZqamggGgzQ2NuL3+1c8brOCIVs85QK3GFL27rSqqhw9epSCgoJlxqXH41nWAyLfuEHQpeO2+cDGvR7pVbYaGhowTZO5uTmi0Sjj4+P09vZmrHFJScmafT7WEhDxeJz29nYOHz5MQUGBCAhBEO4oRDAItyVr9VYAWFxcpLm5GdM0uXTpEuFweMVxdtvDYFkW169fp6enh4MHD3Lw4ME1DZM72cOwHtnGpWEYjnE5NjZGd3c3fr/fyX+4XUq4rocbQ5K2Oic7PKmkpMQp05u9xpvp85EtIGZmZpz5xeNx55jsHhAiIARBuN0QwSDcdqzVWwFgdHSUjo4OamtrOXbs2JpVdXJV/jSbjQgRu7TrzMwMFy5ccEqNrjfubhvrt4qhlB66AiuXcA2FQhm7016vNyfvfatco90iVyIme41X6vNhi0T7bzXvHdz0Sto5DekeCNM0HQGhquqyHAgREIIg3OqIYBBuK9bqraDrOp2dnUxMTHDmzBmn0s5a7JaHYXZ2lqamJkKhEJcvX97wTrcbBAO4z8Owkflkl3BNpVJOcm1/fz+Li4sZJVxLSkpcX8J1I7jVw5CrJonprNTnwxYQQ0NDdHR0UFBQ4KxvupfJ/gylz2u1ECbDMDAMg3g8LgJCEITbAhEMwm3Ber0V5ubmaG5uxufzcfny5TXDENLJl4fBNjqyjTXLshgcHKS3t5dDhw5x4MCBTRkWbhAMbphDLvB6vezZs4c9e/YAkEgkHAHR1dWVUcLV7lC8ESPXbdfGrYJhJ+bk8XgoLy93CgikUilmZmaYmZlZ5mUqKioCWHONbQGR/v1OFxDZSdR2KFM+cokEQRByiQgG4ZZnrRCk9ByAAwcOcOjQIVcY4Onzs/8/mUzS1tbG3Nwc99xzjxNGsdlxNztfMVQ2ht/vp7q6murq6hVLuBqG4exKr9dgzG24bZ67JWK8Xi+VlZVUVlYCL3qZZmZmGBgYAOD555+nrKzMyZVYK0xtLQGh67rzfHYOhAgIQRDchggG4ZbGMAwmJiYYHh7mzJkzGTdZ2wCfnZ3dcA5ANvnswwA4oVMzMzM0NTVRWFhIY2PjlpNttyIYci2I3OZhyIfhtVIJ11gs5giI9AZjtoBI7w/gJmPQTWtlk6+QpM2S7mVKJpP87Gc/Y//+/czNza0YplZcXJxRljmb1QSEruukUqkMAWF7IOwQJkEQhN1EBINwS5LeW8GOQ043wiKRCC0tLRQWFm4qByCbfOUw2AaAaZpcu3aNvr4+p7v0doxJtxnrdwp2h+JwOExdXR2mabKwsEA0GmV6epr+/n6nvKddYWcnSrhuhDs5JGkz2N+r6upqampqgMwwte7ubhKJxDIBsVaeiwgIQRBuFUQwCLccdm8F25BPzzOwLIv+/n6uXbvG0aNH2b9//7YMj3xWSQJobm4mFotx7733UlJSkpNxd1swuGEOu42qqssajNnJtQBNTU2bqs6Tb9xonLttTundp23Sw9TgZsd4W0B0dnaSTCYpKirKyHPZjoCAlbtQi4AQBCHfiGAQbhns8oW2WLBzFTRNc8oaNjc3k0gkuHjxopOkuB3y5WGw67krisLly5dzWq7zTjfW3Yiqqo7RODAwwL333uvsTmdX57H/cvWZWA83Gue36pwCgQA1NTXU1NQ4niRbQIyOjqLr+jIBsZUk6lQqRTKZdL7v9rgiIARByBciGIRbgrUSm1VVRdd1nnjiCfbs2cOFCxfWjCPeDLn2MFiWxdWrV7l69SoAJ0+ezKlh6AYjy42ixW3z8Xg8hMPhZdV5otEo165do62tbVOx8dvFDZ+bdNwoGGwPw0ZRFIVgMEgwGKS2thbLslhcXHTW2U6UT6+0ZXcmX2vMbAExPz/PlStXuHz5snNMugfCrsIkCIKwHUQwCK7H9ioYhrGsXKppmgwMDKDrOmfPnqW2tjan753LpOdEIkFrayuxWIz77ruPp556KifjppMvj8hm5yBsjuzqPCvFxm8mtGUzuE1MweaN851gu4nYiqIQCoUIhUIZifK2gLh+/TqWZTnVlzZSaSt908Tj8WR4YW0PRLqASK/CJAiCsBlEMAiuJb384EqN2GKxGM3Nzc5zuRYLkLvd8kgkQnNzM6WlpTQ2NuL1evOSH+EWQ8CNRqgb2Oh1yY6NTy/haoe2bGZner05ueVzY+PGOeVaxKQnyu/btw/LslhYWMjoNg4vVtoqKSkhHA4vm0O6kLFDNNOfyxYQqqouS6J227UWBMF9iGAQXMlaIUgAIyMjdHR0UFdXx759+3jiiSfyMo/tehjSk7CPHTtGXV1dRmnNfAiGzc4318aC24wPt80HNj+nlUJbbAFh70yn5z+kl3BdDzca526dUz5zAxRFobCwkMLCQurq6pxwo2g0SiQS4erVq6iqmiEgQqGQ43ldbcyNCIjsJGq3XXtBEHYfEQyC67A7Nq/kVdB1nY6ODiYnJzl37hyVlZXE43EnGTAfxu9WjfpEIkFLSwtLS0srJmHnSzBshqWlJVpbW0mlUpSVlW2oFORGEA9D/kgPbUnfmY5EIk4JV03TMgREMBi8pYxANwqGnQ6TUhRlWaUtW0BMTk7S19eHpmkUFBRgGAaxWIyCgoJ1Q5js77b9HTVNk2QymdGFWgSEIAjZiGAQXEN6bwV7Ny/9RjU7O0tzczOBQIDLly8TCASAzJ4GuYrrttlqTsD09DTNzc2Ul5dz/vz5FRNW85FvsBkRMjk5SUtLi9OYamZmho6ODifcxRYQm+1YLMbF6uSrRK+9M20blnNzc0SjUcbHx+np6cHn82UICPu7Y8/JbWvm1jntZvUhVVUpLi6muLiYhoYGZ52Hh4dZWFjg2WefdXp9pK/zatfRflwEhCAIG0EEg+AKTNNE1/UVQ5Asy2JwcJDe3l4OHjzIwYMHM25Y6cflms3mGViWRV9fHwMDAxw/fpx9+/atenPNVw7DemOapklfXx+Dg4OcOnWKqqoqUqlURrhLJBLJiKO2DZCysrIN7VaLh2H3sMNWSkpKOHDgAIZhOD0gRkZG6OzszCjhahiG6wxANwoGtyVi2+ucSCSIx+OcP3/eEYpjY2N0d3evKRSzWUlA2H+JRIJkMum8rwgIQbjzEMEg7CrpMbW2kZB+80kmk7S2tjI/P88999xDaWnpsjHSPQy5ZjM5DHYfiGQyyf33309hYeGax+crJGmt8Kz0OV66dIlwOOyINPv1driL3bHYDoOYmJigt7fXMUJsD0R2wzE3Gg9uEzA7eY00TaOsrIyysjLgZlifnf9w7do1YrEYs7OzpFIpJzY+nyVcN4IbBcNuexhWww7dTA9DA5YJxa6urk01C0z/LdY0bZmASPdA2AnUHo9nmWdYEITbAxEMwq6RndicLRamp6dpaWmhpKRkzeZm+RQMGzXqJycnaW1tpaKiYsN9IPIVkrQadpjUZuaYHQZhGyGRSMRpOBYKhTKMEHCfgS68iMfjySjh2tLSgqZpGIZBb28v8Xh8WQ+IXIf6rYcbBYPbPAw2tmDIZiWhaAuI7GaBdiK1z+db9X3WEhDxeNw5xhYQtgdCBIQg3B6IYBB2hfV6K/T39zMwMLCsstBK2Dey3fAwmKZJb28v169f58SJE+zbt2/DY+cz6Tnd4EpvFrdSmJR9098I2UZIKpVydqv7+/tZWloiGAySTCaJRqMUFxe7cld2t3CjkFJVlcLCQvbv3w+Q0Z3Yzmmxe0CUlZVtq4TrRnHjbr4b5wSrC4ZsPB4P5eXly5oFzszMMDg4SHt7uyP+bQGxVlPJjQiIkZERampqKCgoEAEhCLc4IhiEHWW93gpLS0s0Nzej6/qGwnpsctlgLZ21QnzS52qH92yGfPZhsMdNJpO0tLSwuLi4YqWm7eL1ep2kabhpbA4NDTE6Okp7ezu6rjvGR1lZ2Yp15IXdJfszGAgEqKmpoaamBsuyWFpacnJahoeHMU3TWdPS0tK8rKl4GDbORgVDNtnNAm3xPzMz43QbD4fDzjqvF6q2koC4du0aFRUVjoBQVXVZDoQICEG4NRDBIOwY6/VWGB8fp62tjaqqKk6cOLGpMIh87Nbbc4TlBszExAStra1bmqtNvj0M0WiUpqYmSkpKuHTp0pq7hbkiEAhQUVHB5OQkly5dykigHhgYQFGUjPyHnSj36UZjxE1zWss4VxSFgoICCgoKMkq4pudA2Gtq/61X2nO7c9otbnUPw3pki3/bSzgzM0NfXx+Li4vLQtXWC2u0LAuv14vX63U2XkzTdBK1RUAIwq2DCAZhR7BL9a3kVTAMg+7ubkZHRzl16hQ1NTWbHj+fHgbILDnY09PD0NAQp06d2lZ36XwKhoGBAa5du8aRI0eor6/flRvwagnUkUgko9ynLR7WS8IU8sdGPx/pJVz379+/Ym8Au7Snva5rVeZZDTcKhtvNw7AePp+PqqoqqqqqgJt9ZWyh2N3dTSKRWDPXxf49Tu9CvVIopGEYGIaxahJ19usEQdgdRDAIecW+IYyNjdHT08Ply5czfvwXFhZoampC0zQaGxspKCjY0vvkSzCkJ1Qnk0mampowTZPGxkZCodC2xs5H3oWu6wAMDQ1x7733UlJSktPxN8JqQig9gdou9zkzM5ORhGnHUJeVlbmiWk+ucWMOw3bmtFpSfHplnkAgkOGBWCuxNn1ObjMSb3cPw3r4/X6qq6uprq4GMnNdOjs7SSaTTq6L7T0EVp2bLQTSvbjpIav287ZwsD0QIiAEYXe4ve7GgqtI761gG8fpO/Z2Tfj9+/dz5MiRbd308u1hmJiYoLOzk5qaGo4fP56TqjG5zmGYnZ2lqakJgHvvvXfTORW5YqM3c03TliVh2gZIerWe9A7UbjTYbnVyaZyvVJnHFoXZibV2XPxKoXJu3M1345xg94RMdq5LuoAYHR0llUoBcP36dUpLSykqKlpznqsJCF3XSaVSqwoI+U0QhJ1BBIOQc1bqreDxeByDPpVK0d7eTiQS4fz581RUVGz7PfMlGGw6Ojo4ffr0lsKlViNXIUmWZTE0NER3dzcHDx6kt7d313fmt3Je2THUS0tLGQaInUBtC4jNJNu6bWffTYZnPnfzPR4PFRUVznc8mUw6AqK/v9+Ji08XhXbCrJuuEbjXw2AYxq5/3xVFIRgMEgwGnQaQkUiElpYWYrEYw8PDGIZBcXGxIxbXq7a1GQFhhzCJgBCE/CGCQcgp9g+6HRqT/qNvmiYzMzM0NzdTUFDA5cuXcxazno98gMXFRWfH/sKFC86uaa7IxZx1XaetrY1oNOrMsbe3d1Pj5towy9V42QZILBYjGo0SiUS4du0aqqpmhLrsRAK1sD18Pt+yqlrZYS3FxcXouk4sFlt3V3oncbOHwW3zUhQFn8+HpmmcPn3a+f7aYvH69etYluVU2yopKaGwsHBD5bNXExCwchdqt3x+BOFWRwSDkDPSeyuk/7DDzR97Xdd59tlnOXz4MA0NDTm9yeXaw3Djxg3a2tqora1lfn4+L8m4281hmJ+f58qVKwSDQRobG5055qti1GbIRzJ3OBwmHA6vmkCd3sW2rKxsQ7HyO81ur8tK7KbBuVIJ12g0yuzsLP39/fT29maUcF3PqMwnbvUwmKa54431NkJ6bkX69ze92pYtIAYGBgAyBMR6HsTVBEQqlSKZTAIiIAQhl4hgELbNer0VEokEHR0dmKbJ/fffn5dE3FwJhvSKTadPn6a6upqRkZG8lWzd6rjDw8N0dnbS0NDA4cOHM673bguGnTDo1kqgvn79upNAXVZWhmmaTilfYWXcsEOdXsK1v7+fc+fOoaqq44Gwy/Kmh6XlooTrRnGzYHDD+mWzlpBJr7ZVV1eHZVlOta1IJMLVq1dRVTVDQIRCoU0LCHsTy/ZA2OGxtoCwqzAJgrA+IhiEbbFeb4WpqSlaWlooLi4GcP6ba3IhGGKxGM3NzSiKklGxKd9N4TaDYRh0dHQwOTm5av7HZsfNxw1zpwVLdgK1HSsfiUTQdZ3m5mYnfrqsrGzXQ13cZKS41euhquoyr9LCwgKRSGRZCdfsyjz5wDTNXc8VWImdqpK0WQzD2PC8FEWhqKiIoqIi6uvrVyzXq2napkIQ7fwGm3QBMT09zdTUFIcOHXIERHoVJkEQluO+Xz/hlmGt3gqmadLb28v169c5ceIEFRUV/OhHP8pb+MN2jfqxsTHa29vZu3cvx44dWxZOlQ+jarPj2iVovV4vjY2Nq9a3vxM8DOuRHisfiUQ4ePAgpmkSjUZpbW3FNE2Ki4u3lEB9u+HGGPiV5qSqqmNUNjQ0YJqmU8J1bGyM7u7ujLC0XPf1cPNOvhsFw3bmlV2u1zRN5ubmiEajjI+PO4Ud0tc6EAhsWECkUinm5uac/08mk453IjuJ2o1rLgi7gQgGYdPYIUh2FaRssbC4uEhzczOmaXLp0iXC4bCTBJ2vm9tWjWTDMOjs7GR8fJyzZ886yZjp5NPDsNFxx8bGaGtr21AJ2q1ci1zfFN22a20bkukJ1HYH6uwE6rKysrztVLvtuti4zSjaiIhJXzO4WQDAFhDZfT3WKuGayzntBm4WDLnKrbDDk0pKSpwQRFtA2GLR5/MtExCrYRiGIwhs0j0Q6QIiOwfCjZ8BQdgJRDAIm2K9ECR7p762tpZjx445P8j2DS1fJQC3YtTbO/Yej4fGxsZVjcR8NFizx13PgDRNk87OTm7cuMFdd921oqDZyrj5xO031PQETLtbsW183LhxIyOB2vZAuDGBOle4UcRsxTj3eDzL+nqsVMI1vTPxZn6L3JzD4MZ5bSYkabOkhyfZ77VSw8D0hPl0b5MtGNJJ90DY3wnbi57ehVoEhHCnIoJB2DC2V2GlEKT0nfozZ85QVVWV8Vr72Hz1StisYBgZGaGjo2NDO/a5brC20XHtsq6KonDp0qUNd8HebcEA7jRCVyN799LeqY5EIk6zsXA4nLFTvV3R6yYjw2075/ZnZ7vGptfrpbKyksrKSuBm8QU7gbq7u5tEIpHRmXi9xoBuNcxlXis3DMz2NhUUFDjf32Qyuab3w/4+iIAQhBcRwSCsS3ZvhWyxMD8/T3Nz85o79em9GPLBRse2k4YnJiY4d+6cY0ysxW7kMIyPj9Pa2kptbS3Hjx/f1I13twXDrX7DzN6pTiaTjqHZ09PjGJq292G3E6hzgZvWzP7s5npOfr+f6upqqqurgZUbA6YnxofD4Yx1dZuwsnGrYFhpF3+nWM3bNDMzw+DgIAsLC3g8Hnp6ehwvxFrhaisJCPsvkUhklHF94okn8Hg8vPa1r83zWQrCziKCQVgTO6bTNsbt0nWQ2WG4oaGBQ4cOrbtTny/BsJGwIVvYeL1eLl++vGaMazo7mcNgmiY9PT0MDw87ZV23Mu5u7/Dv9vuns10jz+fzUVVV5XjNbEMzEokwPDyMaZqO0VFWVrZm+Uc3XRcbt80pX4Ihm+zGgIuLi05ey/Xr1wEyQlrs/jJuw62CwU3zyvY2dXV1kUgkALh27RptbW2b8iKm3wftzuT23z/8wz8QCoVEMAi3HSIYhBVJTwBbKQQplUrR1tbGzMwMd999t7OTsxb59jCsZvhYlsXIyAidnZ3U19dz+PBhV+zYZ4+7tLREc3MzhmFw6dIlQqFQTsbdadxoVOWSlTpQr5RAbXsg8lnqMxe4bed8pwRDOoqiEAqFCIVCy/oCTE9P09/f7/wmWpblqs7ikluxNcLhMIcOHQJe9CLOzMzQ19e36XyXdAERi8U2lGsmCLcaIhiEZayX2ByNRmlubqawsJDLly9vOCE034JhpeZcuq7T0dHB1NTUqn0LNjJ2PuadPufJyUlaWlqoqqrixIkT23Ll77ZgAPftWueL1RKoI5FIRqlPWzzYItANhmY6bprPbgiGbFbqC/DMM88QCASczuLpVXnKysry0g1+I7jVMHdrB2q4GS6V7mHO9iKulO+SLSBWO7dYLEY4HN6R8xCEnUQEg5CB7VWwK1yk37Qty+Lq1atcvXqVI0eOUF9fv6mber4Fg93N02Z+fp6mpib8fv+afQvWI59VkuwQpMHBQU6ePMnevXtzMq4bPAxu2rneqeuRnkANNwWrXanHjp0G6Ovro6ysjJKSkl03qtwm7twgGLKx6/NXVVVRWVmZ0Vnc7rpuJ9Xaf9sp4boZ3NofIl8V8XLBemImO98lHo87AqKzs5NkMpmRMF9UVOSMt7i4mDPB8JnPfIY/+qM/4nd/93d5+OGHnbn8wR/8AX/7t39LIpHgda97Hf/zf/7PjEIj169f56GHHuLxxx8nHA7z4IMP8ulPf9q16yHcGsinRwBe7K2g6/qKIUjxeJyWlhbi8Tj33Xffljo271TSs2VZDA8P09XVRUNDA4cPH97WDTVfVZIMw2BiYgKv18v9999PYWFhTsZ1i2AQbiZfVlRUOJ6tubk5fvGLX6DrurNzmZ5oW1hYuOO7xW4SduBOwQCZhnl2Z/H0Eq5biYnfKnbcvFs9DG6cF2y+5GsgEKCmpoaamhosy8oQEKOjo3zuc59jfHycS5cuMTw8nBNv07PPPssXvvAFzp49m/H4Bz7wAf7pn/6JRx99lOLiYn7nd36HX//1X+eJJ55wzu0Nb3gD1dXVPPnkk4yNjfH2t78dr9fLpz71qW3PS7hzEcEgOCFITU1NVFRUUFtbm3GztsNlKisrufvuu7d849uJpGdd12lrayMajW44t2KjY+eS6elphoeH8fl8XLp0KafGxG4LBhu3GaJuwA7fO3HiBHAzb8XOf0hPoE4PYdqJa+imdUovsOAm1jLMs5Nq0ytr9fb2Eo/HNxzSshnsa+VGw9ztIUlbnZuiKMvymEpKSvje977Hz372M3p6enjf+97Ho48+yite8Qpe8YpXcM8992zqN35hYYH/8//8P/nLv/xL/vN//s/O47Ozs3zpS1/i61//Oq985SsB+PKXv8yJEyd4+umnuf/++/n+979PR0cHjz32GFVVVZw7d45PfOITfOhDH+JjH/vYbd1TRsgvIhjucNJ7K9ilU9N7JvT09DA0NJSTcJl8exiSySRPPvkkwWCQxsbGnMUU59LDkB7WVV5e7tTxziW7LRjcZui5bT7pBINB9u7dy969e7Esi4WFhYxEW4/HkxHmko8EajeIy3TcKjQ3E/qzWmWtaDRKR0dHRgnX0tLSLXuW3CwY8tm4bbvksuSroiicPn2a06dP8/u///vcfffd/OEf/iGpVIrHH3+c//pf/yvJZJKXvvSlfP3rX3fCFdfive99L294wxt49atfnSEYnnvuOVKpFK9+9audx44fP87+/ft56qmnuP/++3nqqaeW9UJ63etex0MPPUR7ezvnz5/PyXkLdx4iGO5Q0nsr2DtnmqY5N6BYLEZzczMAjY2NW67Yk85qicnbxbIsZmZmiEQiHDlyhIMHD+bU4MiVAZ5MJmlpaWFxcZGLFy8yPT3N7OxsDma4HDcYgW6Yg9tY65ooikJhYSGFhYVOArXdfMpOoA4EAhkVmHIRJ+82A91t87HZTujPSiVcbQFx/fp1Z5faFhDhcHhD18DNgsHNIUn59H4sLi5y6tQpXvrSl/K+970P0zRpaWnhZz/72YZCef/2b/+W559/nmeffXbZczdu3MDn8y0THVVVVdy4ccM5Jrtxqv1v+xhB2AoiGO5AbG9CdhUk2wMwOjpKe3s7+/bt49ixYzn70c+Hh8Eu7zo9PU1RUZFTJi+X5GLedmWp4uJiLl26hNfrJRKJ7HhDuJ3AjcberYhdnrW0tBTITKBOj5O3xcN2EqjdtGZuFQy5Si5OL+G6b9++DM9Semne9NC01Uq4ujV8C27fkKT1iMViGRtsqqpy7tw5zp07t+5rh4aG+N3f/V1+8IMfbLlIhyDkCxEMdxDpvRXsm3L6jUZRFMbGxkgkEtx11105ryWda8EwOztLU1MToVCIo0ePMjY2lrOx09lODoNlWQwMDNDX17esslQ+qy9tVDCYpklnZyfj4+PLDJTtIh6GldmqcZedQJ1MJp38h66uLpLJ5JYSqN22Tm4VDPlKLl7JszQ/P08kEmF8fJze3l68Xm9GaJptTK5UoMIt7HRIkmJOYqmVGzo2X3Oz+7JstYDFc889x8TEBHfffbfzmGEY/OQnP+F//I//wfe+9z2SySQzMzMZXobx8XGnolN1dTXPPPNMxrjj4+POc4KwVUQw3CFk91bIFgtzc3OMj4+jadqmuiBvhlwJBsuyGBwcpLe3l0OHDnHgwAFu3LiRN8NnqzkMqVSK1tZW5ubmuPfee5e5kfNVfWmjgmFpaYmmpiYsy+LYsWMsLCxkhL6UlZU5pT83E/riRuPFbUZxLvD5fE7pR8uyMuLkh4aGnAZj9t9qCdRuM9DdNh+bnSpfqqoqxcXFFBcXc+DAAQzDcELTRkZG6OrqckLT3NI8biV2JCTJiuLRv4NH/yEJ/0eBjQuGfHgYEokEhmFsWTC86lWvorW1NeOxd7zjHRw/fpwPfehD1NXV4fV6+dd//Vfe9KY3AdDd3c3169e5dOkSAJcuXeKTn/wkExMTzqbfD37wA4qKijh58uQ2zk640xHBcAewXm+F69ev09PT4+xy5csVmgvBkG6E33PPPU64xk5UYNoMtvcjHA7T2Ni4YmWKneogvRJTU1M0NzdTXV3N0aNHMQyDyspKDhw44IS+RCIR+vv7WVpaorCw0PE+FBcX35I7124gX9dEURQKCgooKCjISKCORCIrJlCXlZVlfM/dZHS6tUzobs1L0zRHvENmaNro6CiGYfDzn//cWdd8lXDdLHkLSbIsNONpPPo/oBk/BkwS/oex1IYNz8uyrLzMLRaLAWw556+wsJDTp09nPBYKhSgvL3cef+c738nv//7vU1ZWRlFREe973/u4dOkS999/PwCvfe1rOXnyJG9729v40z/9U27cuMGHP/xh3vve9+5ac0Hh9mD3f1WEvLFeb4VkMklbWxtzc3NcuHCBSCTC0tJS3uazXaN+ZmaGpqYmCgsLlxnh+a7AtFFDz7IshoaG6O7udrwfqxljuxGSZFkW/f39XLt2zal8ZZpmRjJ6duiLXXM8Eok4BoqdoFlWVrZs59pNxuedSnqYi92p2N6lHh0dzfAi2TlNbsGNHga734Eb5pX+/aysrKStrY0DBw44JVyXlpYymorlqoTrZsl52I85Dvq/ENT/AdW67jyc8P0Bhqdx48O88Jubj2uysLDgiPd88dnPfhZVVXnTm96U0bjNRtM0vvOd7/DQQw9x6dIlQqEQDz74IB//+MfzNifhzkAEw21KdghStliIRCJOEq5tfM/MzOTN6AYyqjBthvQ8gMOHD9PQ0LDsxp1vD8NGqjvpuk57ezuRSIQLFy44O4JrjbuTHob0Kk2baRSX3bQoFos5sfNXr151dq7tXVB7d9MtHgY3GHnp7MZ80hOoDx48mOFFMk2T559/PqNPwG52oHaLYZ6O/Vl2m+fDNE08Hg979uxxwk9W6kqcXsK1qKhoR84jJyFJlgHGT1FS3wDjafzqQUcsmBSie34Z3fsbmxoy/Z6Ya2Kx2IYrXG2UH/3oRxn/DgQCfP7zn+fzn//8qq+pr6/nu9/9bs7mIAggguG2xDRNksnkil4Fy7Lo6+tjYGCAo0ePsn//fuf5fJU9tdnK+MlkktbWVubn51fMA7DJ1249bMzDMD8/T1NTE36/f8M9IHYyh2F2dpYrV65QVFTkVGna6tjhcJhwOJxR+jMSiTAyMkJnZ6ezuxaJRKioqHBFeISQSfou9ejoKOfOnXMMzfQEajsMbSc7ULtRMLi1GtFKeRXZAj89t8VuDpi+trk2cOHFAhtbFZ2WeQM19Q3Qv41i3UzY9Wr3opitGMoxTMUL+En53rfpsQ3DcKoC5ppYLEZBQYHrPieCkAvkTn4bYYcg2VWQssVCPB6nubmZZDLJxYsXKSoqynj9Vj0AG0VVVVKp1IaPt0uRFhUVcfny5TWN3HwZ37C+GBkeHqazs5OGhgYOHz684ZvFTngY0kOkVvPObIfs0p+pVIpIJEJ7eztXr16ls7OToqIix/uwk4anG3GL1yUdy7Kc2u7ZCdSRSMTpE5Ce/5BPo8iNgsHNHoa15rRSbkssFsso4aooSkZyfC7Wdiv9ISzLwNR/hJH6Nn7rOop11XlOVS8DJpZSjmJ1olBNIvg1UDa/8ZHPcq/ZJVUF4XZCBMNtwmq9FWwmJiZobW1lz549XLhwYcVd33yG9WxmfMuyuHbtGv39/ctKkW537K2wmhgxDIOOjg4mJiY4f/68E/O/UfKdw2AYBu3t7UxNTW0oRCoXeL1e9uzZQ3t7OxcuXMA0TcfwtHc30xuPyW6cO8jOQck2Mufn51fsQG2vYy4LJbhRMLjZw7AZozzdQ1hXV+eUcI1Go0xOTtLX15eT7uKbEQyWOYqe+gZG6ptgTRDQzqFYVzEtD2gnUZVSPObTKNbNMS0CJP0Pg7K137N89mBYWFhYtRqZINzqiGC4xVmvt4JhGHR3dzM6OsrJkyepra1ddSxN0/IekrSegZxIJGhtbSUWi3HfffdtqDPmRsfeKisZ9gsLCzQ1NeHxeLZchjafHoZEIsFTTz2F1+ulsbFx3fnl4wZnWdayDrd25R7bOPF6vY7RWVZWtmI1qVzNxS24zZhY79ooikJRURFFRUUZCdR2GFpXVxfBYDDDyNxOB2o3Cgb7GrltXtvNE0gv4drQ0IBhGMzNzWV0F/f7/Rlru5Fwy/USiy3LJKn/BCX1DUzjh8DN4/3aRbAmMNQLYPShWHP4rAGUF543lAZ07+9gace2fM75FAyLi4uEw+G8jC0Iu40IhlsYy7LQdd2pcJItFhYWFmhubkZVVRobG9et3LDbHgY7Ebu0tJTGxsZNGR076WEYGxujra2N/fv3c+TIkS3fsPMVRhWPxxkfH2f//v0cPXp0UyVQc9XJNn3M9MfTK/fY9eXtsJeOjg7C4XBGeUi3doq9XdjKuq/UgTo9xKWtrW1ZGd7NrKMbBYOdK+DGeeUyTErTtGVra1fXsr+joVAoIzl+pd9pO08g+3qZ5gTx5KMkko8S1KqwzGYALCuIR7sA1iSWeR24DkopfiWJZfow1ONgTWJqr8L0vmpb55jPhnILCwt5rZAkCLuJCIZblPTeCtkJXJZlOQmomzFqdyLpeSWjPr3U57Fjx6irq9v0jdnerc+HsWF7GEzTpKuri9HR0Zx0ws61h8E0TXp6epiZmWHPnj0cP348Z2Nvlo2sQXZ9+WQy6YQvZSfe2vkPbjPYNoubPB2QG6Ho8XiorKyksvJm06xEIuGsY2dnJ6lUalkH6rXeb6capG0Gt/aGyHdzNI/HQ3l5OeXl5cDNHCVbHPb397O4uLhida30eVmWRcp4kkTib0nq/wroFHjuA/MXoBzEUkpRrCQe8xeAnePmxaPdhWHNotCJYj6HqT2A4Xvvts8pnx4Gu0qSsHHi8TjJZHK3p7Gj+Hy+vPW7yiciGG4x1uutYJf2nJ6e5ty5c85NfCPsRNJz9viJRIKWlhaWlpZWTMTezNiQn91JVVXRdZ2nn34aYEPemo2QS8FgJ7SnUin27NnjisS7zZ6bz+ejqqqKqqoqJ/HWLt96/frNUorp5Vu3ElstrEwuvzN+v39ZB+rsdSwpKVk1j8XNHga3sSPdlNOwc5TszRJbHKZX1yoqKqKgoADVs8jM0pdRzKfR9cedMQLaPSiAqRzAMvtRlWr8pIAUlrIXS6nBpyhoxs9ePE/1IHrgU5CDNch30rMIho0Tj8c5UB/mxkT+NirdSHV1NdeuXbvlRIMIhluI9XorzM7O0tzcTDAY3FDcejY7EZKU7sGYnp6mubmZ8vJyzp8/v63ym/ZNMx830Pn5eWZnZ6mrq+P48eM5Gz9XSc+RSISmpiYqKiq4cOEC3d3du76TvV3jKj3xdt++fU5yZiQSYXx8nJ6eHvx+vyMe1oqbd5uh56b55Ptzkr2O6QnU6Um26XksbhQMd6qHYT2yxWE8Hmd69iliqS+yt+oppqf3U1LY88LRB/B59oPxLAZ2g9AQPqUESy3CsubA7MWj1qKZVwAw0UA9g+7/BCi52QTJZ0iSVEnaHMlkkhsTBteeq6eo0H3fr3wwN29y4MIgyWRSBIOQH0zTZHR0FFVVKSsrW7YjZzc2W6+78FrsREiSHTZk94I4fvw4+/bt27aBkC4YcoUd4jM0NEQwGOTkyZM5Gxu2n8OQvu7poVz5SqbeyvxyRXpy5oEDB5zGY6vFzZeUlLjSwHMbO53Mm51AbeexRKNRJ4zS5/OhKAqTk5OrxsjvNG4UMeAeIWNacWLJf2Fe/xv0QDv+AJiLByguHEHXz2Ba01jWHB7jF6iem2LB5BBBrRrMFiyjFwBVPY3HbMFUGrCUMrCuYfreBdr+nM013yFJGy3UIbxIKHzz707A2P1b85YRweBy0nsr3LhxA7/f78STwotVhRYWFrjnnnucZLWtsBMhSbqu88wzz5BMJjfVbXgjY0PuBEM8HqepqQld1zl69Cijo6M5GTed7Rj2qVSK1tZW5ubmllWT2uy4+TCE8m1cpTceg8y4+Y6ODnRdd8JeDMNwhYAC9+Uw2OyWMZydx5JKpejv7ycSiTgx8kVFRU6M/GYTqHPFbu/kr8ZuzytpDBFJ/B260Y1uPAG80K/CPIKqWFiYqJ5WNKWIAqUIwzJIps5gMYGR8FBQ+LQzlsFevEoRJntRrGso1jUM3+9ieV6S0znnu0rS3r178zK2IOw2IhhcTHYIUrZBPz09TUtLC6Wlpes2NtsI6R6AfBgQ8/PzLC4uUlJSsmoviK2yWmWerTA1NUVzczNVVVWcOHGC6enpHevIvBHm5+e5cuUKBQUFNDY2LitFupVQp3yVVd0pskMjFhcXiUQiRCIRlpaW6OjooKKiwgl7udVcwfnCbQLG6/USCoVIpVKcOXOGRCLh5D9sJYE6V7g5h2GnBZRlmSykfkok8bfEUk9SoB0GqxesAD7PSbAMPPShFMy+8AqNoHYOy5oHawKPtxWfdg8e3xVMSyOpHySZUghpM6iBZ5z30ZVXg++dOZ9/Pq+Z3YdB2BwmFibu+i3KF7fyeYpgcCm2VyE9sdnuk2CaJn19fQwODuYspAde3KU3DCOnxrxpmvT29jI4OIjH4+Hs2bM5Gzud7eZgpIdKnTx50tkpymeDtc2OOzIyQkdHBwcOHODQoUMrrrsbDJvdnIOiKIRCIUKhEHV1dfz85z+nqqoK0zSd2vJ23wA7hCmXn/eNzM9tuGlO6RsWfr+fmpoaampqHCGY3oEayHmX4tXm5FYPw06FbOnmLDPJHxCNf4mUOQKAT92LV7FQ1LtI6F0kjR4K1UJMZRZdL8XvP4JPUTCNnzrjeNTjaNYspnYPltGL19tHYeAMqhkBwDD9zMSOc6X7tQQCT+esv4eNYRh5u2aLi4siGLaAiUn+Yhvcxa18piIYXEZ2b4X0xGZN01hcXOSZZ55B1/WchvTY40Nu8wDSq/ecPXuW9vb2nI2dzXYEQyKRoLm5mUQisey65qtfwmY8DIZh0NnZyfj4+LrVr27HHIbtYAsI+5ql9w3o7+9naWnJyX8oKyujqKjIlcZhPnBjQ7LVPJzpQjA9gTq7EaBtXJaVlW2oydh25rTb7ERIUkzv4cbS3xFLNeFXJjGsGcBLUDuNhzkSRtcLR2oUqUdQFBVdD4HWiwewjJteA4tCNPUkGhFMqx+MfgB82v1gPo+pnsDCC8oYxVWf4nJF9bI8JbtPi52ntBWhbxhG3jyMUiVpaxiWheGS+0W+uZXPUwSDi7B7K9hGb3bjm8XFRSYmJti3bx/Hjx/PuVs113kAExMTtLa2OqE9S0tLu9oYbjXshnFlZWXcfffdy25C+aoetdFSsIuLizQ1NaEoCo2NjeuWE3WDYHCjcWWT3TcgHo87YS+tra2YpplR9jMUCuXsfHZ7XbJx23xg48Z5egK13aXYTqAeHh6ms7OTgoICZx2340na7VyB1cjXvExLJ5L8ITeW/p4FvQWPUkSR5sGyAgQ895AwhvAQJWX2AaApVYQ8RzDMdkxzCkUDK3EI1OdR1JNYig/LvIqXSbAGnPdRlXtRsG72YjDbARUr8AiodXhVVuzvEY1G6enpIZFIZOS3FBUVbeieKH0Y3IeEJN0aiGBwAZZlZYiF7HKphmHQ1dXFjRs3KCws5NSpU3mZh90AbruVktKrC506dYra2log/2VbNxviY1kWV69e5erVq2s2jMuXAZ6ed7GagTQ5OUlLSws1NTUbLunqBsEA7jFG1zM+A4EAtbW11NbWYlkWCwsLRKNRpqen6e/vX1b2M1e71m7CTQJvq7v56QnUhw4dIpVKMTMz4yRQ254kex03amCCu3MYcikYkmaE0aV/Yi75PRaNm+VQVbyUe49iWFGWzC6S+gSlnuMkjHZ82lksDPxKEN34sTOOpe9DpQBLKUc32wGFAu3czYpIFKOoR1BQ8VptKGbixdf53g+eyyvOLT1PCWBpackREKOjo+i67uS3lJaWUlhYuOK1yZdgsEPmcun1v1MwsTBuYUN6M4hgELbMer0V5ufnaW5uxuPxcPjwYaanp/M6n+0a9UtLSzQ1NWGaJpcuXcrYbcl3UvVmQoeSySQtLS3EYrFlVYZWGjdfOQyw8k0/PZ8iXXRtdNzdNtbdaFxtBEVRKCwspLCwkP3792MYBnNzc0QiEWfXOhQKZZRv3eyutZuuzW5/TlYiV78PXq93mSfJNjDb29sdA9Ney7USqG/3kKS5VCdDS99gMvFjyjz7WDR60CgiqB3Gry6yoD/hHFviuQ9IoiilxI1WQp7TWOazWJYXr3YaUFHUATTvEPbHK6BdBOJY6hksswPL6iWoFKBwUyyYVgF4Xw++397wnIPBIMFg0BH6dn6L3SDQsixKSkocgWh7CvPpLZKkZ+F2RgTDLmJ7FexGMtm9FYaHh+nq6qK+vp7Dhw9z48aNvPZJgO0Zx+Pj47S2tjq74dm7OOkhT/nY4dno3GdmZmhqaqK4uJjGxsZ1E+DyZYCnhySlk0wmaW5uZmlpaUt5Km4QDOBOY3SzaJrm7Fjau9Z20q0dFpFdtceNoSurcSvlMGyXQCCwLIHaDkUbHBwEyMh/CAaDa4p6N7CdeZmWzkTiRwwvPcqc3gFApfcEpjVH2HOWmN6FX00RN5qxLJWg5yR+tYS4/hN4IXEzoDbgIYaq3k3K7CFptBL2HMTUpgBQlAN41f1gtmIy88I7ewgqe7HMPiz1FBYaKCnwf5CtrvpK+S22p9DOgVBVldLSUuLxOLqu5+VzJiFJW0NCkm4NRDDsAnZvBV3XVwxBSqVStLe3E41Gufvuu52+C/nuk2C/x2ZFiWmadHd3MzIywqlTp6ipqVnxuN0WDJZlMTg4SG9vL0eOHKG+vn7DsdL59DCkG9bZYmYrMdduEAxuMkBzidfrZc+ePezZswe46VGzy7cODQ0BOPkP2UYnuE9EuXHnfCfmlF1Jy+4kHo1GmZiYoLe3F5/P54iHVCp12wiGhDnLwOJ3iOltzKR+BoBiean03YVujRA3BgAo854lZVwlqN1D3LiOgklC/yk3xUKQoHYaL1PoLzRdAwh77sY0+4jHT6FqM/h9oJrPAnHnGJ/2EkxrEQiD2Xbzv6G/Q8lRJ2dY7ik0TZO5uTmi0ShTU1NO1b70CkzbTYS2LEsEwxaRpOdbAxEMO8x6IUgzMzM0NzcTCoVobGzMiJfeijG/WTbrYbATcgEuXbq0pjs2H92Ys8dfbexUKkVbWxuzs7ObbnCXzypJgBOmdf36dXp6ejYlZlYb1w2GqRvmYJOvuQSDQfbu3cvevXuXVe2xjU5bPGynqWI+uRMFQzbpncTTE6htITg/P4+mafT09FBWVrblCj25ZjPlXmdTV+lf/DbDSz+k0neQJaMZn1JJQNuLV8EJO7JQKPacBStO0pojqT9PQK0Dsx+P2oCqlJA0B/AyjmFefeE1GgXaJSzmMKwYXn87llmIXwmBFQeqQa1DUwIoaSVWQYHgp1HUhtxemCxUVaWkpISSkhJnY8uyLKfDeFdXF4FAIENAZPe3WY+lpSUsyxLBsAVMuIWLjW6OW/k8d/8X7w5ipd4KNpZlce3aNfr7+zl8+DANDQ3Lbpo7IRg248W4ceMGbW1t1NbWbighN929nw9W8wTMzs7S1NTkiLDN3gjylXthj5VKpejq6iISiWy7W7c97m4b626Yw06zUtUeuyzk4OAg7e3tBINBDMMgEonsWtfidNy4Rm7oeZDdgbq/v5+ZmRkntyi9FK/dgXo35ryeh8GyTG4knqN/8e+ZSjYBUO49hEackHacOb2HgFpK3OhAo5Cg5wgqJimjheQL+QUepZQCTzW6aZIwrwFQ5jmBbjSjKvtQ1FpUwDSfcGrMW5aG19oHSgiLEkyzB80M4WH0xbnhA++7UD2vzM/FWQW7d0U4HHbWV9d157s6MDBAe3v7pku4xmIxABEMW8C4g5Keb+XzFMGwA6T3VrBvhumGZyKRoKWlhaWlpTUTcPNdZch+j/VEiWEYdHd3Mzo6yunTp52qFethV2HKp4ch3QCyLIuhoSG6u7s5ePAgBw8e3JLBv5FqRlvBHuv5558nEAgs8yhtZ1w3GoJ3GpqmUV5e7oQUJpNJRkZGGBwczOhavJGk23zhxpCk3ehevB6KolBQUMCxY8eAFxOoI5GIU6EnPcE2HA7vagfqlLnE1cUfMBz/GQnjKklrFo0A5b5jmOYws8ZNw71Qq8OnpFA8p1nQu0gYI/iUBSwS+LXDaBTjUSZZ1J9yxi7R7sEiiaUeJW724TNVPExzMzpbQ1NPkoipBIJdGEbyhQtYik+JYVk6lnoCEz+oZXj8/yHv1ygbO2cwHY/HQ0VFBRUVFcDN76qd/9Db20s8HncqbNkCMfszurCwgKZp0kV+CxjWzb87gVv5PEUw5BnTNNF1fdUQpMnJSVpbWykvL+f8+fNr7mK4ISQpFovR3Nzs9AQoKCjI6fjbIX1sXddpb28nEolk5IFsdVzIfeLj2NgYAGVlZZw8eTJnY29FMORaZLhJtLjFILZj4kdHR2lsbMzIfxgYGHCSMtOTbncCt1wfGzeKmGyvx1oJ1AMDAyiKktFJPDuXJVdki6uYPkF37B/pX/wBmqISUlU0xU+55wxJM0rS6CZlzaLgp8RzHE2ZYMG42UvBo4QpUP1o6h5SZoQl4yql3uMkjJthRz71KH51DwnjaawXchJUpZCAkkKhHEU9gW7241H9+AqeS5ulh4B2CpMkppkCsx2UWryBz6MoO+uVMU0Ty7LWFaQ+n4+qqiqqqqqAzApbnZ2dJJNJiouLKSkpYXBwkMbGRqfL81Z/xx955BEeeeQRBgYGADh16hR//Md/zOtf/3oAHnjgAX784x9nvOY973kP/+t//S/n39evX+ehhx7i8ccfJxwO8+CDD/LpT3/aFeFzwq2PfIryRHpvBfsGmH7DME2T3t5erl+/zokTJ9i7d++6NxR79z+fN9S1RMnY2Bjt7e3s3buXY8eObemHcScEw/z8PE1NTfj9/pzs2q+UnLwd0pPEVVWloaEhp0LEDca62ww+t2HvWBcUFLBv3z7ncxuJRLhx4wY9PT0EAoGMpmPrVfPaCrv9OVkJtwqG1ea0WgJ1JBJhfHycnp4eJ5fFFhGbDYtcDdvDcCPexbWlf2Zg6XEsTDyKnyrvEVLWPDN6HwZxClUNCFLgOciSMYrCCEvGCAAB9SAhrYhFvRXrhbCjUu9dpIxeAtq9pMwxFExSxpPATa+BQjFF2hlM6zq6eQ2MQbzqUVSjBQDDrEL17MerejGMJ9Nm7cMT/HMUpSQn12Az2Pe2zXqwsgWi3QOir6+Pt73tbaRSKQ4dOoRpmly5coVz585t+jd93759fOYzn+HIkSNYlsVXvvIVfuVXfoUrV644vZfe9a538fGPf9x5TfqGnWEYvOENb6C6uponn3ySsbEx3v72t+P1evnUpz61qbnsNJLDcGsggiEPZCc2r9Sxubm5ecVeBWth/8jl84a6kkFvGAadnZ2Mj49z9uxZp0LMVsfPl5dEVVWnC2hDQwOHDx/OyXXKZbJ2PB6nqakJwzBobGzkySefzLnR5gbBAO40Rt3ASp/J9KTbAwcOODHVkUiEa9eu0dbW5nS1LSsry2nM/K1knO8Wm2nclr2W6bksQ0NDdHR0EAqFnLXcagK1aRnMBnv4/sJ3CXsUplOtaPgp9R7Bq8wzmbq5y68pPvZ4D5G0ZpjTe1kyI1R6q0kYw4Q950laUQqUAmL6LwA76fkCWAvoVgxd/wVetRKNWQzLxO85i2VBQPWSSmvWpioVeEmBehcLS6P4/SN4lL0oxnMZ89b8H0bV8tN8dD3s3/DthLyli/29e/cyODjIL37xC/7yL/+Sq1ev8sADD+D1ennFK17BK1/5Sl75yldy7NixdT8/b3zjGzP+/clPfpJHHnmEp59+2hEMBQUFq4YAf//736ejo4PHHnuMqqoqzp07xyc+8Qk+9KEP8bGPfSxnIjUfmCgYWy6qe2th3sLnKYIhx6zVWwFe3KWvra3l2LFjm/rhso9dKQYzV2QLhoWFBZqbm1FVlcbGxm2HSeTLw2BXNUkkEpw/f95p1pQLcuVhmJ6eprm5mcrKSk6ePImmaXkp2bpZwWBXCwkGgzmLv3WbwecWNrou2THViUTCCXmxm46ll2+1m1Llaz47iRuSnrPZSBjLamTnsti9PNLj420xuJEE6qS5RFfsX2lb+CfmayapUw8TM0ao8J0hmhrAp8aZSfXgIUyR9xAeJcZU6hnn9TW+M5gsYqAyqzdT4TnLovELPEolPm0/qmWQNJ4FdAAUAoS0vWBZmEo/cb2VQs95TOOZF66NH492Eq+ikDJbwLqG3w+KVY/H7Lr5psoBUMpRtFNovrds6TrmgtXuy9tB0zQuXrzI+Pg43d3d/OIXv+C5557jX//1X/nWt77FH/zBH/DQQw/x3//7f9/UPB999FFisRiXLl1yHv/a177G3/zN31BdXc0b3/hGPvKRjzhehqeeeoozZ844YVQAr3vd63jooYdob2/n/PnzOTvnXGNaN//uBG7l8xTBkCPW662g6zqdnZ1MTEws+1JvFPsmYhhGXsITIDMkaXR0lPb2dvbv38+RI0dychPPh2CIxWLOrn1dXV1OxQK86CHa6rwty+Lq1atcvXqVEydOsG/fPue5fJRs3Yxg0HWd1tZWpqamMAzD6WJs73xuZyfOTcaom+ayFfx+f0ZIRCwWc5Jur1275jSYs8NeNir83Lib78Y5bcbDsB4r9fKwBUR6ArW9lnYC9bw+TXfsp7QtfJuEdbMiT2GsGkpSLJpzxJIz1PmPkjIjlHrPMJPqxaskmdU7USwvRd7jBFWNGf1pZy6l2mlQEvi1kywa3WB48CkzgI5KET7tCD4lRfwF7wNAQD2MZTSjqSewlBC60UVAUTHMFz0Jul5AyBMGrRrLvIFlXUVR/Hj9H8jJNdwq+dxsi8VihEIhPB4PFy9e5OLFi/yn//SfiMfjzM/Pb2iM1tZWLl26RDweJxwO8+1vf5uTJ08C8Bu/8RvU19dTW1tLS0sLH/rQh+ju7uZb3/oWcLNqYbZdYf/7xo0bOTzT3GPcQR6GW/k8RTDkAMuySCaTNDU1cfz4cfx+f8bNxY6p9/l829qlt0VIPislqarqGJETExOcO3cupwZ4rpvP2aVd9+3bh67reauustXrnkqlaGlpYWFhYcUKWPkIH9romAsLC1y5cgW/3+/sYtlhMN3d3SQSiYxd7M1UfnGbwXc7oSgK4XCYcDjsxMzPzs5m1JQPBoMZwm+tkBe3rZUbBUM+vR7BYJBgMEhtbe2KYjDujxCp6GTRewPVM0vKXGKP/xhB/EwqzzFtWCiWxv7AWVLWJPPGCBgj1PhOkjBHKPGcY16/hk8xmX/B8PcpVYS0BlJmO0t6FABNCRNQDDRlH6helowuQopF0njematX2Y9fKyNlzKC/4D0o8FzANG1BUYGqHMBMzKB4OzGd6NMivME/R1G2XwVuOxiGkbd7xGpN2wKBwIYF/LFjx2hqamJ2dpZvfOMbPPjgg/z4xz/m5MmTvPvd73aOO3PmDDU1NbzqVa+iv7+fQ4cO5ew8dgMRDLcGIhi2iWmaJJNJTNNkfHycI0eOZISw2GU9GxoaOHTo0LZvOvmulKTrOpOTk4TDYS5fvpzzEnG58jCYpklXVxejo6OOx6azs3PHSrZuhLm5Oa5cuUI4HKaxsXFFr9BuhSSNj4/T2tpKXV0dhw8fdpLp7Z1PO7Evu4qPbYSWlZWtm0x+q+/q54tcG8Pp1ZUOHjxIKpVyhJ/dMyA9/6GoqMj5HXLjGrlRMOTSw7AW6WLQqIjQO/sEQ4l2glaYgGWixEpQfApLi7PEvKMoRoDy4EECqsp06tmbg1gqVf7TGNYci8Y0i8YUZd7DLOlthD2nMawUhjVH0mzBsOYA8CpVFHn2kzB6SZidABR6zpAynkGhCK/nKKY5j09JkEgrsepTj4LZj6pewLRiGGYPfu0gvnB/+lnhDX4GVa3L+/Vbj3yW7F1YWFizcelG8Pl8HD58GIALFy7w7LPP8rnPfY4vfOELy469ePEiAH19fRw6dIjq6mqeeeaZjGPGx8cBNlz6XBDWQgTDFrFDkOwqSKqq4vF4HGM+mUzS3t7OzMwMFy5ccBrEbJd8CQbLshgZGWFsbIxwOMy9996blx21XAgGO2ncsqyM0q759L5sduzh4WE6OzvX7f+w0x4Gy7Lo7e1lcHCQM2fOUF1d7XyWs8fIruIzNzdHJBJhZGSEzs7ONcOX3GbwuYWdMNC9Xi+VlZWOZzAejzvCb2RkBNM0HYHhxnKLbhQMO5VXYVg67QvPcG3paa4u3QzxKVYrKfeXMpHsRddmKVar8JspjEQNS94xYrEplvzDeCik0NuAR4G5VBMWN7/TYXU/AdVPzAwzq3fgUcIUan6SRpwCz10YVoKg6iOmv1jJKKAcwIOFpd1F3OhE15+j2HMW3eh44Qg/XvUkXtVENxYwXkhs9mlnUF4ITTKtMKp2FNXzSrQdbs62GrvhYdgOpmmSSCRWfK6pqQmAmpoaAC5dusQnP/lJJiYmnHC3H/zgBxQVFTlhTW7FtBRMy13f+XxxK5+n++4WtwCr9VawKwBFo1Gam5spLCzk8uXLOa1OkI8cAF3X6ejoYGpqyvnx2amk6s0yMTFBa2srNTU1y7pL57sC00aMPcMw6OjoYHJyckP9H3YyhyGZTNLc3Ew8Ht9UdS64Oc+SkhJKSkqcXWw7bGKl8CW7M7YbcJvxudMEAgFqa2udkJeFhQUikQhTU1NO9+KOjg5n7Xa7moobBUO+PQwJc4nn537MM7M/oMpXxliygwpvPV7Fj8UMo4l2FFRqfEdRmGNGHwM/+BIlhIMaht7AojaEsTBCwD+DqViE1aP4tACm1c9MqhcABY1yz2FMJUXSjDGvt1LmPUvcuOmd8KoNeJVqFKuXJaPXmV+h525SxrN41JMoSpCU2Y9HmUdPO0ZTa/BYU6CeY3ZumnBoFAsNr+8debtumyWfOQx2H4at8kd/9Ee8/vWvZ//+/czPz/P1r3+dH/3oR3zve9+jv7+fr3/96/zSL/0S5eXltLS08IEPfICXvexlnD17FoDXvva1nDx5kre97W386Z/+KTdu3ODDH/4w733ve3PSEDSfSEjSrYEIhk2wXm8FVVUZGhpyQpPq6+tzfpPJtYchu2fB2NgYMzMzORs/m60KhvS+FadPn3aETS7G3ggb8QQsLi5y5coVNE2jsbFxQ+FcO+VhmJ2d5cqVKxQXF3Pp0qVt7yynJ26uFL5kmiZDQ0MYhrGh8KU7id00hhVFobCwkMLCQurr65mamqK7uxu/359R8jNXie9bwY2CIV8ehvnUDD+f+z7Pz/+YhLnE4eBhLJKUeGqZTo1S69/DvD5Dje8ECXOOlDXGojGFipdy7RBxdYR5BsEDQbWUcEEAzDIWrVHm9EHCSR+KPwJWgJB6hKCmMKs/67x/oecoutFPULtAyoyQMEYJeCBljTvHBNUzqIChlJN8IVwp7Lkb07DLsAbxqMfxKSqm2QbGDcIhgHL8wf+Oorina3c+PQwLCwvbahA6MTHB29/+dsbGxiguLubs2bN873vf4zWveQ1DQ0M89thjPPzww8RiMerq6njTm97Ehz/8Yef1mqbxne98h4ceeohLly4RCoV48MEHM/o2uBUDFQN3VUbLF/ltvZtfRDBsEMuy0HUdXX+h1FyWWIjH4ySTSaanp7l48SJFRUV5mUeudtEty2J4eJiurq6MngW5TkrOZitGfTwep7m5mVQqtebO+E51kV6JiYkJWlpaNt3UbidyGOzwqEOHDnHgwIFVjbGtGmorhS8988wz+Hw+Jwm3oKBg141QYTn2d/7QoUMcOnRoRc9RcXGxs3aFhYV5N+bdKBhy7WGYSN7g2dmf0LP4NAvGDH4lyNGCE0RTg8TMGRQUDgWPYVpJTFJMp65R5g2TMi32+M6woE9iMIbhn8ZCocxzBL9qMqt3YykmiqJS7a3DMOOYegVxZYD4whxG+GZXZ8tSCanH8GKxZC2Q1K8AUOY9TcJ4Ho1KPJ4GLCsBVj8JY86Ze4HnbgyjGU09C4qKbnTjUzWstH4LlqXiD/43VDW3Feu2Sz5zGGKxGPX19Vt+/Ze+9KVVn6urq1vW5Xkl6uvr+e53v7vlOewW1h0UkmTdwucpgmEDpPdWsEOP0rHDZFRV5fDhw3kTC5CbKkO6rtPW1kY0Gl0WNpNPo3sr409NTdHc3MyePXuc3gW5GnszrGbYm6ZJX18fg4ODq3o+1hs3Xx4G0zTp6OhgfHx8Q+FRuUJVVSeOvrq6etXwpdLSUsrLyzdVfelWx43CJf3aZ5f8XFxcdNbu+vXrABnlW4PBYM7Xzo2CIVcehsGlq/wo+n2G4v0UvXD3rQscw4PBSKIF04Iq3wEKNR+jiZsdkzU87AscJWktMGOOE0/F2OMtZUlfwrO4H084iVdNMKPfFAMewlT5jpIwr7NkjYAGpZ7jJLQWPNSCXkLSmiTFEKYv6sytSD0HGHi0EySMHlJ6jEKt3EmMtlAJ2N4G/OjmzfkFtAuZYoF9DA7dz8lT92/7euWafHoYthuSdCcjIUm3BiIY1mC93gqmadLd3c3w8DCnTp1iZGQk7ze67YYkzc3N0dTURDAYpLGxcVmoSD7zAOzxN2LUW5ZFX18fAwMDy3oXrEY+k55XyjVIJBI0NzeTSCQ2nROw1rjbxb4OP//5z53E8O023NsOa4UvDQ4OOtWXbEM015W5hNVZ77OX3tHWsizm5+eJRCKMj4/T09OD3+/PWLtc9IfZqYpEm2G7c+qKtfGj6Pe5ttRLgRqkIViFbhmMJAYo9hQT0Yeo8R1l3pglpHkYS7ai4aPCexCfqjOSvOkBUFDY7z+GYcWYZxSzYIgKz1Fm9DbC2iE0JUBAVZlJq2QUUvfhVTygHWDJuIbiGafM00DcGMVCRU01YCYLiIeaUUk5ryvSDqGbTWjqERSlGMOcQGMU3XgxXMmrHEQ127CUelD3YJo3sKx9TE2/xnVrCDvTh0EQbldEMKyCZVmOVwFYJhZisRjNzc0ANDY2EgqFuHHjhhOylC+2atCnl3hdq3LPToQkrTf/RCJBS0sL8Xic+++/n8LCwg2Pna8d3GwxEo1GaWpqorS0lLvvvnvLOQH58DDMzc2RSCSorKzkxIkTOx7+A6uf11rVl0ZHR+nu7nbCl+xKPrsx/3ziJkNqM7v5iqJQVFREUVERDQ0NGIbhlG8dHBykvb2dwsJCRzwUFxdvae1uFw+DaZk8N/c8XbFW2mPPYmFR56vHp+kMxG8mC9f4ainQfCwYXoYSvRwMHmZeH6PKd5Kp1CBezWQi2YmGnwrfIQKqxXjyxSZqoaX9KH4Vv1rLrH6VCu8RFvT2m89ph/EqxRhmD3P6Vec1Zd5TGOYkBZ57iBsDaP4lvIExTOtFsWAuHGOWGN5gOZqnD1Ao1I5hmgPOMapSj0erwTBTmNYAGAMoSjXwcVR1cNPXeCe41aok3SkYloph3SE5DO5zMm8YEQwrkB6CtFIb+ZGRETo6Oqirq+Po0aPOjSTfxvZW3yOVStHW1rahEq87EZK0lmCIRCI0NzdTWlrK+fPnN2WI5zuHwa78Mzg4SG9vL0ePHmX//v3bMm5yKRgsy2JgYIDe3l40TeP06dM5GTefrFZ9KRqN0tPTkxFDf6eFL+0UW72emqZRXl7uhLolk0nHc9TZ2UkqlcrIf9jo2rlRMGzGw5AyUzw183P+NfI4pd4CJpMD7A8cYMlYxKMlGEsOUebZQ7m3golkNzP6EgAN/qNY1hILZpT5ZIR6/zEWjXGqfSeZTg3gU0ymkjc3qYq0A/jMMPPBFqaS+guP7UOxJinynGXJuMGCPkSpd4mUNQ2ARjHF3uPo5jAJcxjMYVSChDQfKXMejUq8Wj0aGkbh06SnZ5qxQ5jhdlLJPaDUoHqm8WtF6MYTaWfuIRT8LAsLRXnbxd8uhmHkrQCDCIatY6Jg3iFJzya3rmIQwZDGSr0V0m8SdvnRycnJFTsg57up2lbeY3Z2lqamJkKh0IZKvO5ESFIqlVr2uGVZXLt2jf7+fo4dO0ZdXd2mjYZ85zCkUimam5uJRqPcc889lJaW5mTcXMzZ7s49OzvLqVOn6Orq2vaY22GrQmilGPpIJEI0GnXCl+wd7I2GL7nJ+HRbDkMu5+Pz+aiurnZ6e6TnP9iN/7LzH1abk5vWDDbmYVg0lvhZ9Akej/yYeWOeA8G9BDWFoFbAUPwaBwK1gEW1bz9xc4HpVD+GlWKv7yg+1cNkqgUTAyyF/YETmMwTMyaJGRPU+o4wl+ql3HuaRSOKisICzaAYgEqp5xgBNcG8PsmieTNkaI/vKDG9g5DnFBagoLOk/xyLF73gxZ4jKIoJapCE0QumiqrESBcLAfUc3iKNlFEH3mFgkkTsCIHC1ozz9/t+H4/nAqYZca1XMF9Jz/bnXQTD1pAchlsDEQwvsF4I0uzsLM3NzQQCgVU7IGua5pqQpPSd8PWq46SzGyFJyWSS1tZWFhYWuO+++yguLt7y2Pmau53cnOveGrkIo1pYWODKlSsEAgEaGxtJJBK7bpjmyuDLDl+an59nenraCV8KBoOOeLgdw5fyTb6Mc0VRCIVChEKhjLWLRCKMjY3R3d1NIBDIqJxl5z+4UTCs5WGY1xd4bOpnDMR76V/qJ6yGORM+ykiyl4lUHA2VU6HjRPQxoqlJwmohZd4C/OpeJpIjJKwF5vVRPEqAcm89mmIxnWpzGq/t8RxCU0DHYiLZQaFWRcoaxmOVoCSLUYOLeJQIc/p1Z057fBdQiKMohczpnfiVSvzKwgtiwUPQc4KAEiKuP431Qt6Cgo+gGkA3R1CVKjR1P5alY5ndJFhwxvapxygo7MWyQNcbSKaCLC0WMXHjBGVlXWia5rr1s8l3DoMIhq1xZ4UkuWvTaDOIYADHq7BSYnO64b1e115N01bcPc8lG/EwpFIpWltbmZub2/RO+E5XSZqZmaGpqYmioiIaGxu3lTSZj3wAgNHRUebm5igvL+fChQs5vRlud843btygra2Nuro6jhw5gqqqJJPJTY2ZXSI4V+R6LVRVpbi4mOLiYid8yY6hzw5fyi4ButsCKh03GVM7ZZynr92BAwfQdd1Zu/7+fpaWligsLKSsrCzvXtqtsJKHIZKc4V+mfsQTM89wMFjNjBHlUPAgKXOJ4UQPGhoHAjfLnfbHb1YUqvBUU+wpYDTRh4lBqaecAlWhSDnIROoacWMGgxsoqFR6j6ECMaOXOWMRgIBaSKmngqTlZ8a8Cr4otZ4DzOsdeCgi5D2ADz9z+pPwQuiDSoACRUNRK/ErB1k0+lEsgyXjZ84xAEXeu4AUiqKSMPtRzDkKtT0YaWJBVUrxqWEszmOa11A9AxR4q6gs/9+UFClEo1EmJiZIJBI888wzjpDfjVLKKyE5DO7kZkiSe34X88lmz/ORRx7hkUceYWBgAIBTp07xx3/8x7z+9a8H4IEHHlhWcvc973kP/+t//S/n39evX+ehhx7i8ccfJxwO8+CDD/LpT39607mXd7RgyO6tkC0W7J3v+fn5DRnemqYRj8fzOmdN00gmk6s+bxvghYWFNDY2bnonPN9hVbZgSBdihw8fpqGhYduGS67FjmmadHV1MTY2RlFREZWVlTk3rrYqGNIb2Z05c4bq6uqM53fbQN4JI9Qu3WqHBqaHwKSHLyUSibwLeWFzeDweKioqqKioAG72WrHXzg79s5Pey8rKCIVCuyq00j0ME4kpvjv5Q56afR7DMjhXeJi4uchMaga/ohLQTGq9+xmKX8ermlyPd1MbOIhhGniUOMOJbhRU9voPoyoLTKQGACjUyijQFHzqYaaTg8zpowRVk5S1SIFaRUirBqaYSDXdnJQCRck68JsUek4xq/fhM2dIWUPYQsCvVFPkqSNu9pEyhgAIKNVg9nOzUGoRXu0IXiXIov5T4MXfzyLPcXTjOSw8eNVjQBCfskjKeDHpGjTCBf8dr6eSigqoqKggHA4zOjrKvn37lvXzsNezsLBwV/Ic8iUYTNOUkCQhL+zbt4/PfOYzHDlyBMuy+MpXvsKv/MqvcOXKFU6dOgXAu971rowGfQUFBc7/G4bBG97wBqqrq3nyyScZGxvj7W9/O16vl0996lObmssdKxjsxGbbwMzeZZ2enqalpYWSkhIuX768oZ3vnchhWC0kyU547evr25YBnm7Q5+MGbYdtNTU1MTs7m7NcAMitYFhaWqKpqQnLsrh06RLd3d158bxsJYchmUzS1NS0ajnXfFaL2gw7PYf0EqDpITDT09P09fUxOjqaEQKz3W7XW8EN65KOW8J/AoEANTU11NTUMD09zbFjx0gkEkSjUa5evYrH48nIXdnpzuGWZTGWmuLvhx6jd7GLqVSEOn8tpd4AXYs3ux/v9VVT6PVwPX4Ni3GOFxxCwSCklTISH6Q+UMNsKkqd/zgLegSTCNHUDbBUqnyH8KlLTKduVjPyKn6KtEK8agFetZgZfZAiTyEz+gAAQbWKgF5OytvHjD4PgF8tQSOKiY9CzwmS5jwhLcy8/qRzHqpSQEDxoqpHMCydJaMH1ZrDNK+QLhZC2nmwlvBoF0gafSTMDkKeezCM9ozrEvS/H6/n3ozHDMPA4/FQVVVFVVUVgFNKORqNMjw8jGmalJSUOB6InRKE+cphWFxcxLIsEQxbxLyDOj1vNun5jW98Y8a/P/nJT/LII4/w9NNPO4KhoKBg2aahzfe//306Ojp47LHHqKqq4ty5c3ziE5/gQx/6EB/72Mc2tal8xwkGu6HVaiFIpmnS39/PwMDAppNvdyrpOdvATPeE3HvvvZSUlGx5fHvXJ1+GRCKRYHZ2lrKysi15QNYiV4LBbhZXVVXllCXNlxG+WQ/D7OwsV65cobi4eM1yrrttmO62EZoeAhONRtmzZw9+v59IJEJvby/xeHzHOxi7FTeedygUoqqqiv3792OaJrOzs0QiEUZGRujs7CQUCjkCIt/i7+riMP8SfJ7pkR9T7vNR6AnjUbwUen30LPZQF6jDp3qZN8YYjM9SpJWwL1DDaKKHhBVHAY4XHEe3ltBJMprso9ZfSUyfpcZ3kjl9Ck2ZZzp1MwchpFZS4asikuol+YJXYJ//OLOpTko9p0hZcTyKRUJreSHpGVS8lHkOYljzzOu9zKRaKPEcY1F/oaGapRHQjhFQgyzqLVgvlEf1KMV4mMYgBXjwacfxKCWYxvMkmHeugV87ifWCZ8FCQVUP4tUuEPT/h2XXy76vphMMBtm7d6/Tz2NhYYFoNMr09DT9/f2OILT/8tU3Jl85DLFYDEAEwxa5E3MY5ubmMh73+/3rboQYhsGjjz5KLBbj0qVLzuNf+9rX+Ju/+Ruqq6t54xvfyEc+8hHHy/DUU09x5swZR7wDvO51r+Ohhx6ivb2d8+fPb3jud5RgWC+xeWlpiZaWFpLJ5Kbq/9vsRpWkaDRKc3MzRUVFG/aErDc+5P6H1bIshoeH6e/vx+v15jwXALZfcciyLPr7+7l27dqyZnH5agq3GSEyNDREV1fXuh6kfIu+jbLboiUdTdMywpfSm8ddv34dRVE2XX1pq7jJQHfTGtlkf27t0DLbE5leetcWf0VFRRniLxe/XT0Lg3xr/Ie0zPfi96icCu5n0ojQvzjE6XA9Fjrl3goiepQiDwTVICWecjyqxUC8Dcuy2Bs4QKHqZfCFHAYFOFpwkoS1xJKZYDHRRUNgP9Opfiq8RzHQKVC93HihURtArfc0kMTCx1Sqk5BWgcYMKAaaXk0oUINfSRBN/dx5TYFag2H241cPoyqFxIyr+NQAMf2ZtDNUCWt7UABNrSNh9JMwB/EqE5hpYkFVytDMGyjqMVDCGOYgpjVHceD3Vvwsrxf2oygKhYWFFBYWZgjCaDSakRCfXlErFw0BNzK3rRKLxfB6vTvu+bpdMFHvuLKqdXV1GY9/9KMf5WMf+9iKr2ltbeXSpUvE43HC4TDf/va3OXnyJAC/8Ru/QX19PbW1tbS0tPChD32I7u5uvvWtbwE38xzTxQLg/PvGjRubmvsdIxjW660wPj5OW1sbVVVV3HPPPVv6UdmpkCQ7ZMguQ3rkyBHq6+tzYojYN9pcGsd2OdqpqSkOHTrEjRs38mI0bccLkEwmaWlpYXFxkYsXL1JUVJSzsddiI0LEMAw6OzuZmJjg7rvvdurer8dmm3LlEjcZxSuRvuO5UgWf9OpLuxW+tBPstqhcifXmlF16d2lpycl/sMNd0o3NgoKCTZ1j69w1Hp9+jub5dnTT4ERBA9OxG3Qs9eFTvJwtPMx4coRZfY4Czc+Rgn3MG/OMJUbYH6hlNjVBnf8wUX2KoKJxPdGGhpdq/wECqsrAC+IB4HDwOBYpPGqY8VQvdf5jTKVa8RKixNuAR9GIppqdUqheJUiR5kdVDqHHJ4hrE5Qoe5jXm50xA8o+Qp49LBlxFoybIU5F2jGWXvA2WGgEtaMEtFKSxhVM60VxUKydQDdemJ/lw6Mex6cVoBvtWKZdqlmhtOBLaGrFitdvJQ/DWmQLQjshPhqNcu3aNdra2pyGgNtNoM6nYNjs50x4EcNSMKw749rZ5zk0NJRhZ6wlNo8dO+aEcX/jG9/gwQcf5Mc//jEnT57k3e9+t3PcmTNnqKmp4VWvehX9/f0cOnQop3O/Pe+Cadi9Ffr7+6moqFgWK2kYBt3d3YyOjnLq1Clqamq2/F475WFIpVI899xzxGKxbZUhXQlbTOXqPOySn36/n8uXLzM/P8/o6GhOxs5mqyFJdphPUVERly5dWnE3K18ehvVCkpaWlrhy5QqKonDp0qUNuerTPQwbJR9iyC271+vdxFeq4GMboLkOX3LLNUnHbUbOZkVMMBgkGAxSW1vrhLtEIhEmJyfp6+vD6/U64qGsrGzVMMgrs338/diPWdBjmCxSH6xlPB4lwQIJNcGR4AG8GvQudqGhcTh4EIN5ehZvGtI13irCHh+zusFAvJdDwQPMGTfY6z/ORGoYrwLDiTZAocp3kEKtgLHkc1gv7DjW+g5jWDHKvSeIJPtZNCZRmXlBLGiUaocJahpR/YWSqxqEjH3E9Ct4lHKC2n4SRpSA5mU29aInwa/swTQHCahHUNUwS8ZVNEUlrv+UjCpJnrvR9VY82nlMIGn0EFD9pIynMq5TyP/b+L2XV12PzQqGbLIT4u2GgNFolK6uLpLJ5JYSqO1w5HwIhoWFBUKhUM7HFW5fioqKlm1MrobP5+Pw4cMAXLhwgWeffZbPfe5zfOELX1h27MWLFwHo6+vj0KFDVFdX88wzz2QcMz5+s1fLankPq3FbC4b0EKTr168TDoczYgwXFhZobm5GVVUaGxszMsu3wk4IhsXFRad823bLkK5GrnIB7I7Y9fX1HD58GFVVicViee3GvJmEbcuyGBoaoru7e91eFbuRw2DnUlRXV3PixIlN34R30zh1oxG6UTwez5rhS4AjHvIdvpRv3CZg7G7qW/38pIe71NfXYxiGk/8wNDRER0cH4XA4o9xn00I/fzv6I3pjI+z1l1ETCHN1cZa+2DAnC2swLJOkYmIpOuOJcQ4XHGQ8MYmlxLiRGKXGt5dCT5ip1FWuLd2MZT8QOAQkmDNmmTVmaAgcJKoPs9d/gqg+jkexGE0+B1j4lUL2eBtYNIeJGRMA+NUQfjWFQglF2kFmU9fxe1QiqRc9CV6jFB9ePNpR5vV+lswW9vhOE3M8CQpB9SBhrZi40cei2Qsm+NUqrBeqJAEoFBFQj2FZC+iYpIyb7xHQjmOY6RWRwKOeJ+z/vTXXwDTNnHrkshsC2h6laDTK0NAQlmVl5D+slkBtf7by5WGQ/IWtY9xBSc9GDjo9m6ZJIpFY8bmmpiYAZ/P70qVLfPKTn2RiYsLxyv7gBz+gqKjICWvaKLetYMjureDxeBxj3rIsJ3lu//79Tv367ZJPwWDH11+9ehVN07jrrrvyZpRtVzDYITTj4+PLOmLns8/DZmL3DcOgvb2dqampDYX55DOHIfszkx5ulp1LsRHc0ntgt98/V+Q6fMlNYsptIUn2ZyZXc9I0zVkbuLlbbXuP/rH7Z7Rbo1z1j1Og+DlbUM+oPkrbwgTV3nL2BEP0LA5gYrJHDxNQIWkl6V+8ypGCvSiKQoWvipixgEGElJlkv/8IHlVlMtWNbt0s5VvnO4iKSdxcZCjRRZVvL7OpXsq9DaiKj7gxw5zRS8K8GRrkpYAa3xEWzRvM6UPMG6NU+04wk2oGS6HIexiNApLmVZa0buzGzWXe48T05/Cr+/GqlSyZIxSoQRbS8hYUfARUDcP0ENDuxrTi6OY4WH0kzKkXr5tSisYNLExUZT+qWo1lJSgp+G8oytqfb8MwclrMIh1FUTKqoaV7lFZKoE4X9Om5i7kmFovteunfWxnTUjHvkKRnc5P3xT/6oz/i9a9/Pfv372d+fp6vf/3r/OhHP+J73/se/f39fP3rX+eXfumXKC8vp6WlhQ984AO87GUv4+zZswC89rWv5eTJk7ztbW/jT//0T7lx4wYf/vCHee9737vpnJvbTjCk91awm+0oiuIY87qu097ezvT0NOfPn3fcnrkgX4IhkUjQ0tLC0tISp0+fpqurK68/TNs5j1gsRlNTE5qm0djYuCyEJp+Cwb4m67nEY7EYV65cwev10tjYuKEd4o122N4s2R4GXddpbW1ldnZ2y+FmbhAM+Wqit9vsZPjSTuGm+eVaMGTj9Xq56p3ha/oT+IpgVl+kQaliNrXA9aUhCkwftZ4ygqpCz+JVav17qPAUcXWpi76lCEE1wIlwA6OJYeaNeUJaAbW+IrxqKWPmCAvGDKY5g2Kp7PMfRQWieh8p/eZuYLFaTpEWwrLKmEwN4lOClHj8zBsLlHkPouInoJrcSD7rzLnM24BhRSn1nGXeGCaa6qfa18CSNu0cE1L341N9mFYdi+YwmMOUe8+8WCUJ0CilxHsC3bqBbi2g6zcTq4s8x0imlUu1UAh5TgBxDMOPbl4H8zqlBZ/Fo+1d9xpvNyRpM2R7lNITqO1u8HZHcdsDkC8Pg4QkbR3xMKzOxMQEb3/72xkbG6O4uJizZ8/yve99j9e85jUMDQ3x2GOP8fDDDxOLxairq+NNb3oTH/7wh53Xa5rGd77zHR566CEuXbpEKBTiwQcfzOjbsFFuK8Fgmia6rq9YBUnTNObn5+nt7aWgoIDLly/nvKKBXfI0l7t209PTNDc3U15ezvnz54nH4zuWWL1Z7K7D+/bt4+jRoyveNHbKw7Aa4+PjtLa2rjnHlchnDoM9rp3vEQgEtlVy1g2C4U5hM+FLpaWlrlsTt84n14LBsiyeivbwteGf0L84zslwLT4NovEYqldhf1EJMcPPcHycg74KkqkEpWYhSXORAc8NAoafqnA1AQ90O30Xagl7PAzHr2FiUuQpotjjw6PWcSNxndnUJF41TspKUOGpJ6CFSJhDjCTaAFBRqfHvRUFFt0ymUgPU+Y8znbr5vE8posR7AMMcZ84YAm6WWL1ZivUKihHGTx2az8SjTDGT6nfON6w1kNCb0SjF72lAtxbxK0FiemZH2CLP3SSNZwA/Xu0o4MWneEnqP804Luj7dYK+X9rQtc5XnsBGSE+gPnjwYEZHcfv7+Itf/MLxPhQXF+dkriIYtocJd0zS82atiC996UurPldXV7esy/NK1NfX893vfneT77yc20IwpPdWsI319BuOZVnE43Gmp6c5cuTImrHq2yG9JOl2Yzgty6Kvr4+BgQGOHz/Ovn37UBQl743VYPNGvWmadHd3MzIysqze73bH3gxrVXiyOyMPDQ1x+vTpTSf75CuHwR73xo0btLa2Ul9fz5EjR7a1tm4QDLerh2E9suvNz83NZYQveb1eLMtiamrKFdWXbveQJMuy+Nl0Dz+NdPKTSBvVvhIulhyidaEXwzI5EdpHkgU6YwOowIWSw0wkp5gwo9QGygkpCkndw7g2SeH8DGP+KaqVGnRVx6+aXI/3o6Cwz9+AT00ymhwAbpZYLfL48KtlqEaQaf0GtWoJMWMaBZUK3yEKVA/jyTasF0yIat8hZpIdlPqOY1oWC/ooujlGzBhxzmeP9wRgEPIcY87qR6ebPeohYsaL5RF9SgUFahkpRWHJ6COpNxFU69DN3oxrE1CPAAZe7SwJo5e40UZAPYxh9mUc51EPUBz8yIaveb56HWyF9ATq+fl5rly5Ql1dHdFolM7OTieB2hb0Wy3Ju7CwIDkM2+DOKqt6657nLS8YsnsrZIuFRCJBa2srS0tL7N27l4MHD+ZtLrkSDPF4nJaWFhKJxLJ+EJqmbTsxcD02E5KU3hF5I4njtoGcD7d1ekhSOvF4nObmZlKplOOS2yz5FDqzs7NMTExw9uzZNcXWRnGDYBBurkN2+NK1a9cYHx9f1j+gvLx818KXblfB8LPpHv76+s8o8nqZSc1xLLQPFIOOhX6OhPaSMnXmzGkW9EWOhxrwaxatC11gKRwu2I9BjKHkGAC1eiklxWGSyRjj5hhVyRImjUnKrVqWPItgxRhL3jTsKz21FHsLGE32Y1ijKMCBQB1xc5Zq30mm9WH8isaN5IvlVcu1enyKh0UlyFSy5+Z7+g4wo3cBGsWew/jVQmL6FQziN1+kQAlHiBltaBRR4DmIbsYJqEnm9Bd7MmhKAT5lCd1KoFKOVzuAaZnANZaMF/MWVCWMlyjmC0kRFl486nFKCv4EVdl4QZCdDEnaDHZJ1ZUSqG0PRHoCdVlZ2YZLpS4uLopgEG57bmnBsF5vhampKVpaWigrK6OmpiYvFYXSscXKdkKGJicnaW1tpaKiYsVOvvlqrJbORo3jiYkJWltbqa6u5vjx4xty7aZ7AfIhGLLnHolEnJCuCxcubFnI5WPHPJFIMDIy4jQKzNUNZyuCIR99GNwiWNxiEHs8HgoLC5mbm+PChQsZ4UtDQzfDTdKbx+Wr2206blkjm1wIhien+/jr6z+lJzbOPSV1pKwUI/EZjoT8FHk8hD1BbsQjVPh97PGVEzd1vKrJ1cXrHC04QNxMMG9OMqvPUemtYI9WzIDa8/+z9+dBcqXneS/4O1ue3PeqzNo3FPZGA41mE0DTsoLiErTEUIzoESNkkfSMrixRpK5N6UbIsiVZV7rUwnBo8QzZHMvU4oXmmBrRCpOSKJIiKTV770YVgAJQQO17ZVbu+1nnj0JmVRa22hKoYuP5C8g6+Z3vLHnO+3zv874Pmdp6B6PT3mNodpV8NUeSZTrtEGl9Bb8ew1AMFAvma+utViVkjriPUbbWyJpJsmaSTscQSf0aquAjqPShWxUsO0lC26hJ6FJPYFhZwsoZcsbsnQzC6gZZANRaF6Jq4ZJOUDImyOpXaHOcpmxcbTofQfkEtm1giR6q5jRV4zIhZRhtE1kA8En9mOYcknQeCxPdvI3X8cM45FM7Ov+PU5L0IGz1YLhXAXWhULinA3U9A3G/ere6D8MT7A5vL6fnw3uch5Iw1L0VDMNoBJ6bXzB1+cnc3BwnTpygq6uLW7dutVz7v7m4eqewLIuJiQlmZ2cf2BmnHmSbptkyAvSwAt/N5/fUqVN0dnbuaOz6GK1APVC1bZuZmRkmJiY4duwYPT09e5b57Oecs9ksIyMjKIpCKBTa99Wpxx2wH5Qg/SBjq3ypUCiQSqVYWVnh1q1buFyupmClFfKl7ydJ0supKb6ZHONba2P0OENcDA/wVm4ChyBzPtDHfG2ZuVqJiOxhyBvhdnme+VqSc/5+bExk0cFSLYlfBr/sxyv5cYgwo93CwqZX7ccrq9yqbBQIn/Ycw6RGqZYnKybpEjpJMYOq+XDYPjyKxHztrcb2YakDhwAReZg1fZpE7Rbtjig5c50suMV2QnIXZXOaipUEEwQE2pUeCuZtRJz45CNIgoOyPUpZqDa6JAXlY5SN9X05xG5kMY6CQl5/sek8BZWzd+oW1iGJfTjFPnR7AZ0cmOvF0E75En71n+/4OhwkSdJmbMeBut4bf3MBdTqdZnFxkZs3bzb9JgOBQKPOrFQqNXUD3AleeOEFXnjhBWZmZgA4deoUv/Zrv8YHPvABYD1D/ou/+It86Utfolar8f73v5/Pfe5zTdnoubk5Pv7xj/Ptb38br9fLxz72MX77t3/7sUsetwsLAYuD8xxqJQ7zcR6Ou2kTtkqQtpKFcrnM6Ogopmly8eLFRiAmy/J9+9buJ3ZDGLZKZh4UPNaPt1UBN2wUb98LO5nrvdBqwiCKIpqmcfv2bXK5HO94xzsIBoP7Mu5+BOC2bbOwsMDNmzc5cuQIgiCQSqUe/sUd4nETBjhYq9cHaS73wuZgpS5fqhdrTk5OUqlUGvKlcDiM3+/ft0D/oBGGrbLSh+H19Cx/NP09nDJk9CLHvR24JJEbhTme8vdi2Qa3yjMEFS9P+QYomGmuFaeIKkFOeyPcKk+i2wYuSeW4u4NVLclsZZFeZ5yimaVL7mW1tooiCkxUxhAQ6HH245NUpqobq/mDziMIgkHE7CFpL+CX/BRYd1pWND9uK4zhTLBizTe+06kOkdfniCqnqdpFBAyyxigmG++quOMkNlX80inyxhR5fZKAHABxI9vgFNuRBA1FeoaqlaBkLuHBgWFNN50rjzSIboyiSCcRBA81cwHbBt18BXtT9kIUQkTdv72re+OgSpJ2mvm4lwN13f9hamqKP/3TP+WNN97g0qVLjI+P77j9dR3d3d38zu/8DsPDw9i2zZ/92Z/xoz/6o1y+fJlTp07xqU99iq997Wt8+ctfJhAI8MlPfpIf+7Ef43vf+x6wToR++Id/mHg8zksvvcTy8jIf/ehHURSF3/qt39rVnB41nmQYDgcOFWGwLAtN0+6ZVYCNLj2dnZ0cO3as6eHwKEzVdrOfZDLJlStXiMVinDhxYlsPtFYfy/0kSXWJVzQa5dlnn91V2vlREJ4rV640jO32qx/4fszZNE2uX79OMplseD/UjYf2GzshDJVKhdHRUTRNIxKJNPwE9iIrOEhB6EHDds7NVrfbzVrr/ZQvHTQitZOMx+XsPH809T1GcgtcjPRSsirMV9M8E+xGFNbHKRllFNGk393BYmWNkpJFEkSOuHpwSgJjpXG8kocjzj5qdpax0jgAXY4YfllltlolZ8/SboXI6KsMuIZZ01ZRBJi+QxZCUjtRpY1VbZyaXQEgqsSwSBFTjlKzyuRIIAt5SuTvHKhASO+jIlTQBI1V/Tqq6MMrgk4NbJGAMoRbDFIwRjDscuO4Y45jFIz1+geH3YMqtyMKSQrGRlGzLHiRyaPfST8IeHBKw8iCRU1wopvjdz534JaiGNYGWQCIuv8vZLF9p5cPODySpJ1ia0e0jo4O/vqv/5pvf/vbvPnmm7z++uu89NJLvOc97+GHfuiHOH/+/Lb298EPfrDp/5/+9Kd54YUXeOWVV+ju7uYLX/gCX/ziF3n3u98NwJ/8yZ9w4sQJXnnlFS5cuMDf/u3fcv36db75zW8Si8U4e/Ysv/mbv8kv/dIv8eu//ust88TYT7y92qoe3uM8VIQBaPJWqGOzUdj9uvQ8KsKw3X79e5X1tDLg3noMddO46enpXRmJ3Wv8Vsx/cXERXddpb2/n9OnT+xq07jXDUC6XGRkZQRCEJu+HVmUCtnvs9ba9bW1tdHV1kclkGB8fb3QPqROI3ZgSHbRg9CBgt+fE5XLhcrno7OxsyJfS6TSrq6vcunWr0Wt+p/KlgyhJeth8ruWW+culUb62co1eV4hL0V7eyE3hk5y8M9jPzdI8FUvjqCeGItlMlFZwiQpnAl1kjSIzlRVOebvJGVmG3QPMVZYxKLJUXaXP1YNTcJAyF5ioFAHoljqwrQo5q8R05TY9zm7WtFm61CFqVg3BtljSrmPYGgBtSg8BRSGhJViqrRcw96p9rOm3CUjdqJIf29LJizdAuHM/2AJuQwUJgvJpCuYCplUhZ05ibco2tDtOYVgZvPIzZMsz6MoSHjFIyZhqOkcBqRPNWsEln8ewq1TMSbyCTsW80rSdXzmBbq67OYu0I0m9OOXncCvv3vU1PMiSpP2cV29vLz/zMz/Dz/zMz/AjP/IjvPvd76atrY1vfvObfOYznwHgB3/wB/n85z+/7WYWpmny5S9/mVKpxMWLF3nzzTfRdZ33vOc9jW2OHz9Ob28vL7/8MhcuXODll1++K+55//vfz8c//nHGxsY4d+7cvh1zq2DZAtbbpa3qIT7OQ0UYRFG86wdfKBQYHR1FluV7GoXVIUkShmG0fI7bISb1zkKWZe1K1tNq8rNZkrTZNG5rx6bdYr8Jg2ma3Lx5k5WVFVRVpaOjY9+DoL3MeW1tjdHRUeLxOCdOnGi6h1vp7/Cg4NS2bWZnZ7l9+zbHjx+ns7MTXdeJxWLYtk25XG4U5E5NTaEoSiMgDYfDD62fOUhB6EGay35gs3ypv7//ofKlh7WKPEjn50GEYbyQ4PMTL1GzaqT0Iqf8HbhkgdulZc74e1EEm5HCJEPuOAHFyWR5nqpV47inG0SNkcJ6u9CTnm5sDBJalqSW5aSvExGBkBImpWfxyTZVs8qAcwgRSOkz1JT1FfiYHMcjqRQMhbnqFEEphCSUkHEQVwcpmQUUscJSbcMTYcB5EtDxSHHS5iIBdGxSDbLgEWP4aaNoTqOTpWQsI5oqtmRgietkwS324ZbaKZsT1KwkmHOgQFA8RumOARuAQ+zCK/Wi2QtU7QxVIwNASD5D7Q4xqMMjncK2CyjSc+hWgpo1h2J56XD+b3u6hgdVkrTXDMODUC6XGR4e5id+4if4uZ/7OUzT5PLly3zrW99quIw/CFevXuXixYtUq1W8Xi9f+cpXOHnyJCMjIzgcjrtktbFYjJWV9Va6KysrdxGS+v/r2zzBE+wHDhVh2Azbtpmfn2d8fJz+/n6GhoYe+JCSZflASJJWV1e5du3ajjoL7XQfe0U9w1DvMBQKhTh37ty+FVDtJ2HYunL/5ptvPnaJTx22bTM1NcXU1BQnT56kq+tul9RWZhjuN65pmg2382effZZQKNRwRq9/1+Px4PF46OnpwbKsRkA6OzvL2NjYXXr6e/32nmQYHg32Il86aNfoXoRhupji85Mv83eJ21yK9qJjsFDJ8Jy7BxODimkABrpt0u2MUrM05itpBtwx0loBRI2ZyjJH3T14JIXblUkM2yQg+Rh0tzFTnaNiVXGJKv2uMLKoUDE1UvoaTkmnZtcImW0EvUFy5iLTlQUAnKKTmCOCjp+V2ixztVsMOrtJ6EuItkybOoBHdLOkvdXwWlBFN4pYw7RUQsoQFSuLV/SSMS6zoVQQCCtRNKME1UF0OU1eTGNJa5hirnFexFoQwzWOUxpEFkJUrRVEQaVovILNxuKYS+xBN9flUyJ+HNIgAg5M+xaatbl+Sibu+V1EYffdueoNJw6iJKmVUqlyudzUrluSJJ599lmeffbZbX3/2LFjjIyMkMvl+PM//3M+9rGPbcuQ6/sF1ttIkvTEh+ERQhAENE3j2rVrZLPZhhb8YXjcNQybzc1OnTpFR0fHrvfRakmSIAhkMhkWFhb2pcPQVuzX/Ov1H5tX7lt1bnY6rq7rXL16lUKhwDvf+U78fv99x32UhKFSqXD58mVEUeTixYv3bRO4dY71YBPWs0717MPVq1exLKsp++ByuQ7UqvVBQ6vPzU7kS6ZpHqhrtZkwLJZzfHl+lC/OvUXc5editIc3stMEFTfvjPRytTCPbhmcD/awpudYqmbodgbpcnmZqZQYL81zyteBJAqEFT+aXWOlskDMEcEtOXFKAjfKdclQB15FZqYyg4WFW3TSprpxCCqGaZEXc6iWQcnM4xF9RJUObIrM3GmfCjDsGqRqZYk7TrCmL6DbVVa02w2yIKPS5ThC1cqQsWaoaGOE5G7yxsYYHqmLgBSnaM5QkdbAtYaAQJA4NXHmzjkSUfROREMADErmDDCDLHhwCA7MTWRBRMUt+YCnMK0cVWsa3RzFLx/dQhYg4vw4Tvn0nq7f5mYkBw2tyjDYtk2pVNpTpzuHw8GRI0cAOH/+PK+//jp/+Id/yIc//GE0TSObzTZlGVZXVxvmo/F4nNdee61pvNXV1cbfDgMsW8Q6xMXAO8FhPs5DRxgymQwjIyP4fD6ef/75bRf0PE7CUF8FB3ZtHPawfewXNE0jkUhQq9V47rnnCAQC+76PvQb1m12wt9Z/tIow7CQTUHcUdbvdXLx48YH36KPMMKRSKUZGRu4pjdoJ6rKvjo6OewakLpcLURRRVRXDMA5Na79HgUe9ov8w+VK5XMbhcDQkZ7t1ut0v2LZN3jb49LVvM1dJsVjJcjrQgSrBZCnBmUA3igSXczOc8nXilmVG89N4JSfPBvuZry4yWkjilZycD/YxWV6kaFbocoQJyA5kMcxCdZXTvj5myrMMu/vJ60VcssBUZb0OoMvRiV+RmatOYWEhIRLBi1N00+kYYLk2j6jqLNXmAHAJXnqcPRTNVbLGCrCCTwpi2muYtklUGUIQFJwiLNXebByrS/QjkEEVw7ikGCUzhUP0ktRfAzbuk7jjBHnjKj75OOCgaMzglB0YznE2i2xdVhydm2DLuOQjiLhxCBYl4/Wmc+yXz6GZzZ85pXOEnD+95+tXf/YeVMLQqmfRXgnDVliWRa1W4/z58yiKwre+9S0+9KEPATA+Ps7c3BwXL14E1mOKT3/60yQSCdrb1wvVv/GNb+D3+zl58uS+zamVMBEwD3G70Z3gMB/noXqTW5bFtWvX6O/vp6+vb0crY7IsP5Yahs2dm44fP74vD9LtFlbvFHVvAEmSiEQiLSELsLegXtM0RkdH71tT0UrCsJ1xl5eXG/dovW3qfoy7U2wmDJvrFfajaH3rfrYGpJlMhunpabLZLP/wD//QVDzt9Xofy4r2QZPePC5slS9dv36dWq1GqVR6bOZxdeS0Kp+bfp2/KNzkWWcnhm2RrJUZ8AXQbZOCoaGINhYWUdWHIFjMV5Oc8nWTNYosVJeQRZkT3l4cksVoYQJVUHjKN0BaTzJerhuv9SNh4ZAUbpdnOOntZbE6z6BriJyexyMLzFTX6x08ope4ECVlLrNYSwMw7B5ioTpOXO1HQEJAZ6l2DYv1Z7IiqEQdUQQgYy+S0KfpVodJatcax+oUwrQ7eimaq+SNBfLmGl6xjao5TZ0siDiIKsfX250KTrLGejakTTlF2dzwdgBw6kepmRVMsw/RlaBo3MLDUSpis4mbU+xDM0cAkIVeRDGGjUW757cQhL2vvh90wtAqSdJeCMMv//Iv84EPfIDe3l4KhQJf/OIX+c53vsPXv/51AoEAP/VTP8Uv/MIvNOSfP//zP8/Fixe5cOECAO973/s4efIkH/nIR/jMZz7DysoKv/Irv8InPvEJVFXdz8NsGZ5kGA4HDhVhEEWRd73rXbv6bj2Qb3VXkPp+TNNkfHycpaUlTp8+va+pwf3OMNi2zdzcHLdu3WqkRTOZzL6NvxW7DerrhCYQCHDp0qV7rha1KgB/mHTIsixu3brFwsICTz/9dGOl52FodYbBNE2uXbtGOp3eN0+KB6HeejCXy2GaJj09PQ350szMDJIkNcmXDkPLv+9nSJKEz+fjyJEj+9p9aScoGzpfmbvGCxOvoiAyrHi4nF3AK6s8F+lkNLeAbdu8I9LFbCXJmlbkaX8nkmiT1UsI2HS43AhCmPHiIt2uAMu1JCc8/eSMIklthaxRoFuN0a4GuFm6iXVHJnTGewQDDQuRifIUJ729zFYm6FJ7EQQJlygyVxtv1BcMOIcQALcUYKk2S0gOI5LDwsQp+gnLnSiiznLtRuP4okoXWX0ch+DDr/RRNcv4JGdTtkEWVJySRdU0CSknsQHNzFG2bmLYpcZ2XqmLqrlOPKxaEJ97EFGQqPEWtqI11NGiGcQWJ5rWMgXbjSrGsQihmfNUrEWwFulw/ztUaX8WEeqdiA6SzK2OVtUwmKZJpVLZtXIgkUjw0Y9+lOXlZQKBAGfOnOHrX/86733vewH4/d//fURR5EMf+lCTcVsdkiTx1a9+lY9//OMNBcPHPvYxfuM3fmNfju9RwORwr7zvBK3XubQOh4owwO6DzfqDotU9oiVJolqt8uqrrzYKcffbMv5Bxmo7hWEYXLt2jUwm0yiAnZ+fb3nb1p2Mv7nA/ciRI/T399/3hdSqmoAHzblWqzEyMtIws9vJi6OVNQzVapVXXnml0UHsUa421a+P2+3G7XbT3d3d5Jw6Pz/P9evX8fl8jYA0EAgcyJXJ/cZBC6bq89nv7ksPg26ZfHnmGi8lZxnLr3LM14Zt60wUkzwV7ECWbEZzC5wMdOCS4c3cNF3OEBdDA4wUpjBtiyPudhyyzc3SEgDPBfvRbI2CUWPBThJUREJKCLfkRhFFbpXHsWybAVcPfsXNjdKGa/Mp7wACJn45zHxtgWF3P3O1cURbJGjFiHhDLNauN2oEXKILt2jjkrowMUlosyiixaq2UZPgEtYdoxVhgJQ+S6l2k07HMGv6xsq/hJNOxwl0clTMNCn9JiIyESVKydwgC5LgxCMGQAhRMZPojiXyxi0CkhcbbdOZFQk6A9TMVWR6MY0gmplH0CWK3learoFX+UFCzg/t+hpuxUHtkAStyzCUSuvXaLcdBL/whS888O9Op5PPfvazfPazn73vNn19ffzVX/3Vrvb/BE+wXRw6wrBb1FfGDMNoKWEol8skEgl6e3s5duxYSx6e+5VhyOfzjIyM4HK5mupBWiV5qmMnhMEwDMbGxkin05w/f/6hLeoedQ1DNpvl8uXLhEIhzp8/v+MV2FZlGOomcV1dXfsmhdspth7XZufUoaEhNE1rZB/GxsYwTbNJDrPfRPsg4KBJox40n63ypWq12rheCwvrq/67kS9Zts3XFsb53M3X6HB7EEWBmmmiyAJV3ULHQpZswMarqCiixZpW4pi3A0mwGc1PccQbRwCKVo65co4BV4w21cNoYV2245GcHPPGmKuscLs0T4+zjbKZY8DVR6KWRhTgZuk6AJ1qJ1GHn6nKdUx7/bnX5+ymaubpcx5lqbJAVSiR0FMNshCVu4g43CS0aTLmeoFpjzrIqjaGYEtEHAMIKECexdqGFCksd1IwbiGhElAGsAGnKJHQm4tWY44j5IxRsGW8yhAiLhyCTsZo9lGIKAOUjJHG/wVchJWnsSlhE6NiL4G0hNdxHENtlidZupeliR+mEhhv/C4f1i75odf2gJq2Qev8IeqEYT9rGN5ueCJJOhw4dIRht6tzgiAgCELLAuG6eVwymSQQCHDixImW7Af2p2h4YWGBmzdvMjg4yODgYNN53c8Mxr2wXUJSLBYZGRlBUZRtr5A/qi5Jm7Mew8PDO66pqWO/CYNt28zMzFCtVunr69v2fbjfq97bOS6Hw0E8Hicej2PbNsVikXQ6TTKZ5Pbt26iq2qh92Isc5qCt6B8k7ESi6XQ66ezs3Fb3pWAweM/g83urs/ze9ZeYK2Z5JtrBjUIC07I4F4lxJb+EbhocV7zMlFNk9DIXIz0UzAoz5TQnfe04JYmIGmCxkibqdBBSfCiCA5/sYLRwizYlSLsjhEaBK4V15+NutY2Q4mS6skamNE2fK05KX2XANUDeKCALAlPl65iYOHDQ5+qlaudI6AnQE6ioqKKBgEyv8xg5I0NAUZmvbWQnIkocG412xynW9HmWtWn6nUdIaHONbVTBg18OoNsqGX2GpH6LsNxDVp9pOkftynFsTLzyUxSMWTL6JO2OE+S3kAWp1EnJO4JD6ECROjDsCiIWBeMVNgsfZCGAbS9sue4S3f7/E2PwXKPm6Nq1a/j9/gYJ3E3G76CatkFrMwyqqu6ZbL2dYdoi5iEOpHeCw3ych44w7BaCILSsu1CxWGR0dBRRFBkcHCSXyz38S3vAXo7DMAyuX7/O2trafVvSPgon6YeNv7KywtWrV+nt7WV4eHjbL6FHkWGo+xisra1tK+vxsHH3W16WzWbxeDx7mtejhiAI+Hw+fD4ffX19mKbZ8BLYLIepEwifz3doicBhnfdmbFe+FAqFiEQiTGkl/nzmOt9JTDHsj/JMtJOruSVO+NsRZZu3svOcDsSxLI2x8irDjjZOBKK8np3GIUg8G+hlSUsyUS7ilhw8HexgrpJkobjIGV8XVavCkLub2fIKEVVlvrzKkLsbWZTIGUlulZcB6HK045NV0rrJRGWauCNC3lwhokRxy17yRo60sUTRzAMgIdIpxqnYRbJWkkL1Nkdcgyxr69kJnxQlIMWpWMusaouN89OrDpPQxhCRCSsDgIQslFjWNoJ+VfQhkMbGQMGHV+lFxkHeHMO0K43tvFIHFWOjJgJbwiUOYlBFFLspWctgJJAENz5RxdyikvZKHVTNq8hCJ5LYiWlruOQTBF3vBReNDFK9XXImk2FsbAzDMAgGgw0SuB2397erJMntdn9f/K4fF2wErLdJDYN9iI/zbUMYoDVuz0tLS4yNjTUC2+XlZdLp9L7uYytEUUTTtIdvuAVbV+zv14P/cUqSNvtVnDlz5i4Hy4ehlUXElmU1WuSKovjAc7hd7FcNQ7lc5vLly8iyzMWLF3nrrbceq/xlr9dBkqS7zMjqcpi5uTkEQWgqnj4s3UAOGvarCcT95EtXlxf41bGXyJo13E4HKjKiYGNg4hAlRPmO9EhWEUSLiq7TIXgIqA7G8gs87e/BxmS8PI8iyJwL9FG08ryZm0RE4Ky/l4KZZ6G6hgg8HehGAIKKn6VaiqjqIG8UGXT1IgoSWWOFW+X1eoeA5COmBsgaNivaKqqZo01xk9LzROQYXsWPIpjM125Rf8f3qD1k9QU6HCcom0Uy+ioeSSVvJhrnok3uATTaHMdJ6XOs6hP0qsdY06ca2wgItCudgI0ihMkZM+jaJEEl2EQWJFRUQcOwVdzyMSzbpmTOI1HG8M5S2/QYDUl9VMzRxv9F/Hjlk1iUsYlTtlbBWkUR4wy5//e7ruHWdsmlUqlB2qenp5EkqUmCdq/f3EGWJLVqbsVicc+t0t/ueJJhOBx42xGG/QqE6xrxRCLB2bNnaWtr2/d93A+72Ued2PT19XHkyJEHrgK1WpJ0v/Gr1SojIyOYprlrv4pWSpIAXn75ZTo6OvatLmA/CM7a2hqjo6N0dnY26mZ2Om4rJEn7CZfLRVdXF11dXViWRT6fJ51Os7i4yI0bN/B4PI3sQyAQuCswOCi1AwdlHnW0qmtc3jL4/yyN85ez4zwdacOqWUxUCpxw+biVW6WCwdPeMNPFNbJGhX/U1sdyLc90Nc1JxY+AjYBI0ahgUOWYt4PpcpKyVWS1muUpXx+SYHO7PIthm7Q7QvS6gtwuz1CzdFRRZtjTjixIVCyNJS1JWHGQNwvEHO0EZD8Va41b5XEARAT6nDEERGwkEvoKQYdvnSwAgi3SrQ4go1EyqxTM9c8HXYOsaDfBFogovbgkPyVzmlV9o8tch2OwUeTsEiN4pThOUSGpvcFmv4U2dZDspmJol9hBUO6iaq1StpOU9XUJVMxxmqKx0WEJICSfpGxcxSkdQRSCaHYO2ypTNi5jUdm0pUCv99eRxAcX6AqCgNfrxev1NtzeN//mbt68icvlapKgybJ84CVJrapheFztor9fYNkClv32OH+H+TgPHWHYy4+y/kDbKzav1D///PNNq8yPijBsNyiu11asrq42EZsH4XFIklKpFKOjo0SjUU6dOrXrlaBWzL3uYwBw9OhRenp69m3svRAG27aZnp5mcnKSkydP0tXVtS/j7hdatX9RFAkGgwSDQQYHB9F1vZF9uHHjBrquN62EPu7z8HZCUdf477eu8uWZ6/gcKpfi3byyNs/pUIwev4+3Mos8FYxhoTNaStAruolKbl5KT+MXVc65otzSk2i5DEPuCAGHwo1ikjWtwFOBDgTBRhRFSmaZNX2NXmcboiDilWWuFddrFnrUGGFVZaI8g4mFIkj0uyIoogNJUEhoSXyywJqeBFug09lJUHIzU5vAsHUABpy9LNbGaVM6sWoiRfJU7TXy+lrjWAecR6hZeTocJ0nry6T0JeJijbK1QRb8Uhu2XaRNOU3VypEzFvCIQZLaKJvJQrvjOFntGj55EEnwUjYTuMQga3pzV6OgPEjRuNz4vyxEcIm9QA1L8FEwp+/8RSAo91E1K03fj6o/jk95546v671+c3UJ2sTEREOCVn/HHjRpUr3FdCsyDOVy+UmG4QneFjh0hGEv2Gswb9t2Y0Xzfiv1BynDUCqVmuQz2+1i0upj2Kzb3xz0Hj9+nO7u7j2RQlEU0XV9v6aKrutcuXKFQqEAQEdHx76NDbuvYdhcr3AvR+7dEIb9XCF7lKttiqIQi8WIxWINKUU6nSaVSjE5OQmsX0dVVfelE8xecZBWIvcrw6CbJv/fiTH+18wtRBnCThcOSaRg1mhzepAlG922iKoekC1sW6DfFSLiUlmsZDgptYGlc01fpc120q54WNQzLGg6nWqQDreXG8U5DNuiVw0TUlQsfExVVnja38tEaZajnj7yRhm/Q2G8vC7/icohOl0hZitzVKwqACe9PaS0VQadR1jT03gkJxPVjRqBuBzDKSp4pQgr2jICAh1imKyxXgfhl6NE5Th5c4GCuQasS5z6XUMk7tQ2eKU2fGIMyJIxpoH1+ga3GKJmLVInCxJOAvIAAhai4CVrrAf8LrGNsjXZdI4VwYtgp3BJR7AMJyUtge5I4RbzFO+YutURUs5QMd5o+kwVh+j0/Mu9Xej6XBSFtra2xgJUXYK2sLBAqVTiH/7hHxqdl+odzx7nfV9/xj6RJB1MmIiYHByC2Uoc5uN82xGG3dYwbC4WPnfuXEOre699tJowbLdo+Nq1a3R1de24vWurMwySJKHrOrquc/XqVQqFwj2D3t1gP4uIC4UCly9fxu12c+HCBb7zne/s+3nZTWBfLpd56623cDgcXLp06Z7mZ9/PGYYHYbOUore3F9M0uXz5MqIoMj09zdjYGD6fryFf8vv9ByqAf9TYK2GwbZu/mZvkP1x5DUUUCLldjKRWeEd7nNVaiblShn/U0ctkMU2iVuD5WA+LlRyzpTSX2nqoWgZZvUqfJ0jNtunTgpSNGstCliBOAqaCqutcLczgFZwc9cVZ0Ja5Vqy7NvcgYOOQVG6W5nja38tkeZohVy81y8AvK9ws3ZEVIXDGd4SqVaJgVshVJhl09TJXvYWMTKfaiyiIFMwlpqobBcyddoySkKJbPU7JKlAzK6SMCapWsbFNr/MIZTNB3HGKspklaywTVAOs6dONbUQk/LKTilklpJzGsHUKxhIWGdL6RhcjAQm35KBklgFwCGHcUjcOUaRg3MA07tRCOCCqPEV5CzFwiT1UjVEEPKjSAAhONGuNbu+vIAqtce6ud9DSNI1isUhfX18TaVcUpSnr96gNG1tJGEql0hPCsEc8kSQdDhw6wvA4JEmFQoGRkRFUVX1ooevjzjBsLhrercN0vRC3VWllURSpVqu89NJLeL1eLl68uG8vkP0qIl5eXubatWv09/c3XHCBfScM9fO73cAtmUxy5cqVpnqFe+FxE4aDEoRLkoSqqgSDQXp6epq8BObn5wGaiqf3WsT+MDxuEncv7PZavbm6zH+8/iZj6SRPRdoZza2gGBKXOrp4MTHHmVA759s7eXFtltOBdjo8br63NkOn08c7o928kZ3DsuAdkS7SRpHZcop2yU277EBzqMxWUpwLd5Cq5Rmw20gbRWaKc5REjQ4xRLvTz63KuuwI4KyvHzBxi25ul+c55e1jojJBQA4Qc0RwiALj5euN+XeoMQQ0ep1DLNUWWazNE1eDjQ5JDlT6XQNkywmqVJmt3UIWFGJKgIyxTha8UoSIHKdqrZI3UuSNFAA96tEmcza32E5U6aZsJahYZcraekajSz1KRm/2R2h3HMe08wTls1StNGVzAa/cSVa/3LSdpEeoCKObPlFwioM4pQCaJVG1ZtHM9f3EnD+BTzm7q+u8E9QLi7d2PMvlcmQymYZho9frbRCIYDDY8kLp+vuylTUMT7B7WIhYh3jlfSc4zMd56AjDXrDTYH6zX0E9cHzYy7W+j1YVE8L9uxhVKhVGRkawbXtPDtObXbFb8YAtFAqsra1x5MiRuzwg9oq9Zkc2E66nn36a9vb2pr/vd8BXP/aH3S+bpVunTp2is7PzoeM+7uD0ce//XtjqJVAv5FxeXmZ8fBy3291UyHlQO77sF3ZzjaZyWT478gbL1TwOWaLPHyChFen1BnA7ZLJalUFvEFkRqFo6Q54wkmST0sqcCcRxyMJ6G1V/B15F4Y3cFLIg8Uygh5VKkttmGipwMdxP3iyxoucJyC7CbgWfHCRTK2BbFrerM5iCRYwgbQ4vt8qTWHekPsfcPVi2Rp+zm7nqIkHZzWJtPWvglbx0qZ0UzCQLtSSw3gTpiLuXxeo0HWo/EhIWOgu1m5jSRla6V+2iaCTpVE9QNvNUrDwFc7apbiGidJLRb+CVunCJEYpWGpfoZll7vek8xhzDDbIg48Ur96OKHgrGFQx7I3vhFmOUjfGm7wq2jEPQcYgdyGIbhl2hbM7gkNzkjea6B6fYS7f753Z8nXeDe3UikiSp8ZsaGhpC1/VG96Xx8XFqtRqBQKDJQXy/3531gudWvJOfZBj2DtMWMA/xyvtOcJiP8wlhuA/qGvF0On1fv4L77QNa217uXkXPiUSCq1evEo/HOX78+J72XScJ+72aXi/AXltbIxAIMDQ0tK/jw94IQ61WY2RkBF3X7+rSVDf+axVheBA5MwyDq1evksvleOc734nf79/WuE8yDA+GIAgEAgECgQADAwN3BTKaphEIBBrype30od/ufg8StjufdLXC50be5Oszk5yOR1kqF+jweJEVgdupNM93dLNSKTJdzPCujm6WKgVmSxkutHdRMmssV3N0uD3Y2EQdPgQRbhYXedrfQ0Yvs6KlSJtl+qUwsYCfN/PrGv6g5OaYr43J8jKLtQydzhBQ5YjaQ6qWQ7EFpow5LMHGbTnplEKsaSuU7HVJT7sjTMFco0vtwcImqSUomSlSerJxbMfdx7DQUEUPi7VZ/JIfRdQazs6q7aHP00/JXCNv5cjXsggIdKudpO7IjmxbICL34JW8mHaZjLFKhlU8YpiKvdZ0Lj1iBOwyIeUsNatI3pjDMhdxW0YTWRCQcEoyZXO9/kIWwjjFbgQNauItilYarHUi5JGaXZ/XIdLv/XeIQmszZ3Vsp7BYURTa29sbizHlcrnxu5ubWze6q2cfQqEQLpdrz7+ZVhU8wxPCsB94Ikk6HDh0hGEvD47t1jDk83lGRkZwuVw8//zzO+rxXn8otfIBtZn4WJbF7du3mZub29bK83bQCsJQ9y8QBIHBwUGy2ey+jb0ZuyUMmUyGkZERwuEw58+fv6ercCtqOzZLku6FUqnE5cuXH1ivcC88bsIABzPD8CBsDmRs26ZcLjfkS1NTUyiK0iRfetzF0/uB7WRCa4bB/7h1g8+NvsFAIEjIq3I9vcapaJRX1hbo9QR4Z2xdhnTcH+VMtI1/SM7S5w5wLhrj1fQsqihzIdrL7WKClFbmXCiOIoJh28yUU0SdDqJKiJph4BBtLucn6VIjBBU3OmUu3yEPnY4QcdXLVCXHzdIsnWqYkpWj19GJjU1ZL5NgBc1e96nxWW78psoaJWaqc3cyCZ0s1GbwSX6iShyHKDJdHcO+k51QBBm/4qBkVOhWj5ItZVBliYXqVaxNpmj9ziOs1m4QVvqRRTcZfQWHJLJU25AYiUj4ZIW8UUKwJQJKPxIeBCFL2tiobwAIy1Hyxs2mz9ocpzHtAl75HFUrRdlcxCFG0KWbINib9uNAoniXaVtM/Ql8ytPbvBv2Dsuydvy7cLvduN1uurq67ukgrqpqgzzs9nfXasKw380wnuAJDiIOHWHYC2RZplar3ffvtm0zPz/P+Pg4g4ODu5LL1APAVhufmaZJtVpldHS0sSK+XzpKQRD21bwtkUg0dPfHjx9naWmpZUXVOy16tm2bubk5bt26xfDwMH19ffe95q3MMNxr3GQyyejoKN3d3Rw9enRH8rDHTRgO2ir6bjpGeTwePB5Pow99vY3k7OzsPYunt3N9DhqJetB8bNvma5MTfGN2irlinqOhMFmzSsTpIuJ2MV/OccwfQVUk0lqZE4E2ZAWyepUzwTiCZDKeT3Au1I0k2rySniGu+nhXtI+3crPotklEdjPsD3OjuMxMJc1xRxgLnX5njNlKkoBDZraUYNjThSyIFO0M10vrgXZE8hNXAyxWa0xVFgnKHlyyCabNoHOAmlHDtivMWRsFxd20YWgGMbmbFX0Zp5ijoic3yAIOjrqHKVs5qlaSueptnIILUdQbZEGwJbqdR7AxkUQ/q/p6LUy/8ygJ7VrTOexRj2FSI6icIKvPk9Rn6FaPk9abyUKH4wT5O9kBp9iFKrUhoZDWL2OxYdIpC24E1prIAkBIOUbJeAtJiKKKXdhIgEi35+M7uBv2jr3KWLc6iJumec/fXZ083Mtz5X7zahVhKJfLT2oY9gjbFrEOsaHZTmAf4uN8WxGGB0mSdF1vtKk8f/484XB4V/sQBKHlhc/18V966SWi0eh9V8T3gv1YTbdtm9u3bzM7O8vp06cbqzCt7MK0k6Jn0zQZGxsjlUrx7LPPEgqFHjp2K7okQXPgZts2U1NTTE1N7Tpr9LgJAxy84HgvEEWxkVmAdflaPftw9epVLMtqyj5st4Xx48b9MgxvrSzz7197FZ9ToWjoVAyNNp+LVKZMxOVEw2SumOdSRxdprcJMMcM72jsomhpLlTxtLieiKCMJEoJgkawVOe3vRBAs3szNEHf6aVO95MwCb+ZmcYoK7wj2MV9aIW2VEco2zwR7AIuww898JUmX20tSy9Lv7MAlqeTNDNeKEwA4RYV+VwQTi3lzmcnyLEc9XcxW19a9FtQOAoKbeX0S3dLBAtVyoBtZDAw61D4kQcEpikxUNgqJJUHCK0hU7CLtjkFEwUHVLJLWp9E2OTLHlB6Sd1qqusUoPrkdh+BgWXsLm41nRpsyQHpLkbNX6ABMfPIZSuYyeXMF2crhkdQmsgAQUXopGhvzk4UwHmkAy9YRhS6q1gpVKwOInA58HlF4tA7o+72SL0kSkUikIQnWNO0uz5XN9Q/3M1BrpaHcE0nS3mEiYHKwFplahcN8nIeOMLRCkpTL5RgZGcHj8fD888/vuWNPKwlDfUUc4MiRI/T09LRkNXevx1Cr1RgdHaVWq92V/Wg1YdjO2OVymcuXLyNJEhcvXtxWd5z9bNm6eUzYkH/V6xXy+fy26xXuN+6TDEProKoqHR0ddHR03FNG4XQ6G9mHugtuHQf53Mzn8vzeG6/y+tIiJ2JtvL66zJn2NkzZZjyX4lS0jVeTi3S5vZxrj/FiYo4eT4Cnom28kprHJzt4rq2Tq9kVSqbGu9p7yOlV5so5TvkdiKLFEW87s+UUbkWkaNR42t+DhclYcQbDtogKHoaCbdwozlKzdGRB4JQ/jiiItFlhFqpJet0hkloal6DS6+xAlDRu3vFeADjp7SOtJxlyHWFNSyEKMKvfbkh2JAT6nB1UjSqatcZibZ6wGWZNWaX+PhdsiWH3cVL5BIgai7VZZEGh3eGnZGyQBZfoQxVF3NIJilaavLGCZVhIlJrIglP0YdgrgI1H6kYVw2hWFVnIsaZvdG8CiCh95IxmYhGWj1IxpvBIp6lWTXQhgyYXUaw5NGu1adsO5z/F/wilSHW02rDN4XAQj8eJx+MN2WC9/mFmZgZRFJvat9af662UJBWLxScZhj3Csg+3tn8nsHb4Wn7hhRd44YUXmJmZAeDUqVP82q/9Gh/4wAeAdQ+UX/zFX+RLX/oStVqN97///Xzuc58jFos1xpibm+PjH/843/72t/F6vXzsYx/jt3/7t3e80HzoCMNesLWtat3B9/bt2wwNDTEwMLAvL/NWEQZN0xgdHaVSWX9ZdXR0tLQT026D43o9QCgU4plnnrnrptxPudNWbGfe9dakHR0dHD9+fNsvuP1q2boZm4upS6USb731Fk6nc8+tZh83YYDvrwzDg7BVRmEYRiOIuX37NtVqtVE8rWnagTov9QxDoVbjS9eu8+Xb1+nx+RmMhsjVqpxrjzFXydLtDSBIMFPM8FS4HUs0SVSKPBOJU0VnqpjmfLgLHZ1XUnMc97URdjp5OTWLAJwLxinbVaaLayiixPlQJzVLZ76SomhWSNRSDLljlKsVPKLESH49c9Cphul0+bhVnqNm6YjAcW8HmqVxxN3PTHkJWbKYrKwvoijIHPP0UzYLZPQCaT1PWA5QMtcwMQkpEUJyGEUwmaneMTsTISAFMKUcti3grkUQbBmXLDNZuQKbJPO9zh5WtJsItkjE0YuMC1EosqpPNLYREfFJLrJGovGZjJO44wiaXcawl+6YwC3TpR4no294PgBElGMNsiDaKm6lHwUfFqtU7RpV42bjzR2VTzU5PwOoYhe9nk/s/ebYBVop/dmKzbLB7u5uLMtqEPd61zOn09lwe2/Vu7JUKuHz+Voy9tsF1ttIkrTT4+zu7uZ3fud3GB4exrZt/uzP/owf/dEf5fLly5w6dYpPfepTfO1rX+PLX/4ygUCAT37yk/zYj/0Y3/ve94B1svzDP/zDxONxXnrpJZaXl/noRz+Koij81m/91o7mcigJw26Doc2BfN00LJ/Pb0uOstv97Bc2B+FPP/00f/d3f9dSc7XdEIbNBOxB9QCPK8Ng2zaTk5NMT0/vSurTigxDfdy1tTVu3bpFT08Pw8PDe16le9yE4XHvfzMe9Yq+LMtNLribi6dTqRSCIDA2NtbIQDxqE6vNMC2Lr03P8uJrryMpIoooISsixZqOhY0gQ9kwURSRqqWzVqvQG/BTMS1SWpk2jxOP6MC0bTR0bGyGvGG8DoU30/OcDXYiiwK3SotULYPj3hguReTN3AwAvc4QEYeTmuVmvLTMUSXCrJXgmKebiqUTcji4WlwveHaLKid9PSRqa6xo634HT/l6maxM0umI4ZLc2JhMVjYyCU5RJeRwoYpBimaRVW2ViBzYIAuAIih0qO3ohEloy+QcGdqkdgr2QtO5arc70fQq7fJR0uYSq9ocA85hVvWppu261KMktat4pRguqQ3NruASnSzWmg3WosogGf1K02cOIYAkWATkc2h2iaIxR0afJO4YpmDMNG2rmt0UhZEtV1TgiPffID2irkhb0Urpz8MgimJT1zPDMBr1D4lEAl3XeeONNxoF1IFAYF/mWi6Xd93C/AnWYSFgHWKpzk6w0+P84Ac/2PT/T3/607zwwgu88sordHd384UvfIEvfvGLvPvd7wbgT/7kTzhx4gSvvPIKFy5c4G//9m+5fv063/zmN4nFYpw9e5bf/M3f5Jd+6Zf49V//9R29fw4lYdgt6oF8NptlZGQEn8+3o84zO93PfsC2bWZmZpiYmODo0aP09vY2VqUfRZ3EdlFvQ5vJZB5KwFpJGO4XqOq6zpUrVygWi7uW+rQiw2DbNrZtMz4+3lTnsVccpID97Y56F5ju7m5mZmZIp9M4nc4mE6s6edivIGY7eGl+nk+P3cDjdGAqErlSje6Qj9dWljjbHmOmnCWRLXEyEuH1tUUiDhdnom28vraIX3ZwNhpjJLOMbhu8q72X+UqW2XKW56JdWLZF0OGiYFTJGXmGPTEyWhlVFrhWWKBN8THgiTJdWWIkv95y9LSvE7NWxSmo3Cgtctbfzc3SNN1qO27ZhVMUuFLY8CM47u1GxCaqRFmoJWhzhDDsPCYmMjI9zm6cEsxUp7DuSIN61E4WaxOAQMzRiSq6kQSDiepGdyK36EYQi1imiUNw4agF8Dq85MUpTEujrjIKE2NVH2t8T7Al4uowYOOUYuTMJDkzSVDuIKM1kwpV9GLYy+vbijFcUgzDNlEEg5Te3CkpqhynsKluYX1fDiQxh4WNhA9V6gXBSUB+moDj2T3eGbtHqyVJO4Esy0SjUaLRKIqiUCwWiUajpNNplpaWME2TYDDYIBC7aZtczww/yTA8wU6Rz+eb/q+q6kM7cpqmyZe//GVKpRIXL17kzTffRNd13vOe9zS2OX78OL29vbz88stcuHCBl19+maeeeqpJovT+97+fj3/844yNjXHu3Lltz/ltRxhqtRqvv/46R44cob+//0Dq/+uoB7mFQoHnnnuOQCDQ+FsrZT318bcb1BeLRS5fvtxwwn7YTX8vH4n9wr3mXSgUuHz5Mh6Ph0uXLu26HeZ+B+GGYXDlyhVs2+app57alSv3/fC4CcPj3v9BhSAIqKrK0NAQQ0NDTUWcY2NjmKbZpMHejx70WzGTyfIf33yLt5ZXaFMdzNQqnPBHsUQbzTJ5rrOT69kkRwJhbNliopDmbCRGydKYKKQ5H+kkb1Z4bW2eM8E4yBYvpmbwyyqXoj1cL6xQMGr0uQO0u1wUSyWu5hc5F+6gZNY44e1krVZgvrpKzigz4Gqn3enjamES3V5/pp32dSEIFnFHG3PVJCe8XYyX5sAW6Hd1ElTcTFYm0G0dAI/kRBZ0fHKYuOhksbaEKglMVW83jjskB1FEmx7XEGvaGkvaEsOuIeZqm+VEAp1qOwLglsKsavPocgaHVMK0NwqQnXgwhDVEU0WphREUCVMuUTDmqdkbgYAsOJDQsNionVPw0q4cxbBLWLZKwUxRMFPEHCfIbWmrqooBdKuZbMgEkWtdoGhIso+KuUjFGMchRjnt/8zeb5A9oJW1AnuBaZo4HI6muqNSqdT47U1OTiLLclP71u22U39S9Lx3vB2N23p6epo+/3f/7t/x67/+6/f8ztWrV7l48SLVahWv18tXvvIVTp48ycjICA6Hg2Aw2LR9LBZjZWUFgJWVlSayUP97/W87waEkDLsJRjRNY3x8HNM0uXDhwl0neD+xH4ShXojt9XrvmQVpZdAN2yckS0tLjI2N0dfXx/Dw8LaCm0cpSarPb2BggKGhoT0FX/s57zrJcjqdyLK87111HnfAftAKew8Kedk6j61FnKVSiVQqRTKZ5Pbt26iq2sg+hEKhPXVDK9Rq/PHrI1xdS4Ag0BX0kS8V8DoUTMFGFAUUWUTHxAZEGQxAswx0DDyygohAwazglhU63X5syWSpkueZYBeyBK9mZok43FyM9HK7tMIbmTQiApei/SS0HDPlFH5Zpd3pxC/7cIkODNvkRnEG3TaJCl5ispf56jJVaz1AH3C1UzTzHPP0s1RNkTeKFK1kgyyE5SC9rijL2jILtWUAjnn6mL5DFkJShJASRbfTLNTmG+ejW+1ivra+jVv0EVU6cEkSs9WxpmLlsOmnJG8UFfuldtoc7RTNFBljgZprFWyImFEq4oYZHEC73EdaH8ev9KMIfqpWHrfoZmWL67NbjFI0b7MVQTlC1VzBK58GZCrmGrLoQlOvrbdW3fSIPur9P5DFx1t8e5AyDJuxlcgIgoDX68Xr9dLb24tlWeRyOdLpNIuLi9y8eRO3290gD1sbF2zGkwzD3vF2rGGYn59vUjo8iKAeO3aMkZERcrkcf/7nf87HPvYxvvvd77Z8rltxKAnDTpHJZBgdHW2sAmxeqW8F9kIYNvsCPCgL8ihatz4oOLYsi5s3b7K0tMTTTz/dcO3cDlpVCwAbQb1lWYyPj7O0tMTZs2cbevK9YL/mXfel6Onp4ejRo3znO99pSUC73THrtR3Ly8uEQiEikcgDX5D7vf8nWMfmIKavrw/TNBvF05OTk1QqFfx+f4NA+Hy+bREzy7b5i2s3+ZM3RhhsDzGZzXKsLcxssYBW04gGPLy1usz5zg4mChk00+BUexuXUyuogsiptjZG0isg2LyjrYPbhRQTxRTPtXWi2SYFXUMQbVZqBc4EOknrJabKq+iWwdlAN05Z4LXs+ip5RPEw7Itwu7TMXCVNTPUjoNHnaqds6pRrJeatVWroSIgMe7qxqbFUybFay+KWVPyKg4JhMOQeoGzWCCgy18sbK/Pdaoysvka/c5i8USKhJQg5PKxqy41tAlIAy67S4zxC1aywqi0SlmvMVKeAjft20HmEFeEmIbEHVfaSNVIElBBztZGmc9zrPMqavuHBoFh+1GqYjJDFVFVSd7waPGKEot1c5AwCHtlFwVifnyIEcUtdOAUvFXOCipWnbK1nLUQcOAT/XT4Mbeq7iar/6KH3QqtxUAmDZVkPlB7XuyvVpbR11/dMJtNoXOD3+5vat9a7LtZqtV1lGH77t3+bv/iLv+DmzZu4XC4uXbrE7/7u73Ls2LHGNj/4gz94V2D4Mz/zM3z+859v/H+/OuA8Tli8jZye79Qw1BtlbAcOh4MjR44AcP78eV5//XX+8A//kA9/+MNomkY2m21aBF9dXW0oFuLxOK+99lrTeKurq42/7QSH547aBWzbZnp6msnJSYaHh+no6ODb3/52yzs57FYutJM6gFYThgetplcqFUZGRrBtm0uXLu244KtORlrRuaJ+7l9//XUMw+DixYv7VpC21xoG27aZmJhgZmamSYLUimzAdu/BzW1c+/r6KBaLjRdkMBhsBKc71fcetAzDYYQkSQ0NNqz/7uoSirm5OQRBaBC8+0koLi+u8Jm/fwlREHC5FZYKBY61RxjPpDgejXBtbQVBEHiuu4uRtRVORdqoCQbX0gmeDsdIG2VeX1vkbCROwazwYnKWLpefZ6MdvJFZwLRt3hntomLpLFZy1CyDNqeKRw4zXkggijZv5mYZcLfhllQsqryVWzcta1N89LqDTJZXuF5cJKp4QazgFlQG3V1k9Dw5I01Kz62fD0HgpLeLilUjrZcYL81y2tvLVGVdUqQKKj3ObkwqrFaLpPQCACc8/czV1msfvHcyCQgVlmqzJPX1TkYBKUjeXIKGgZtKp9qHhY5lqSRYAhPijm5WtRtN5zgsd5LVJwjJQ8iCi6KZRqeC6Umg2cWNDW0QqwaGs9r0/bjjNDZVAvIZKlaKkrmCxQqaUMSwS03bRh1HyevNXZFkwc+w9xe2d1O1GI+yS9JOsFOp1GbXd1j/7dXJ+/z8PB//+Mfp6+vjne98J8Cu2qp+97vf5ROf+ATveMc7MAyDf/Nv/g3ve9/7uH79ehMB+emf/ml+4zd+o/H/ze+z/eyA8zhhv42Knu19OE7LsqjVapw/fx5FUfjWt77Fhz70IQDGx8eZm5vj4sWLAFy8eJFPf/rTJBKJxv38jW98A7/fz8mTJ3e030NJGLYTjGiaxpUrVyiVSg39/+Ze9618qG1t37od5PN5RkZGGisND9NPtlLWUx//XsewtrbG6OgosViMEydO7Oo81legWkEY8vk8tm3jcrk4derUvl7nvWQY6vUopVKJCxcuNKWwW5VxeRgJKZfLvPXWW6iq2njx1a9NvbNPKpViamoKRVEIh8NEIhFCodC26kCeZBjujd3e8y6Xi66uLrq6uhotJFOpFIuLi9y4cQOPx9MgDxVB4ktXrvPK/CJht4uCpeGVFGRFQrNNoh43JVPDLUooikDNMvHICrpgoogSblkhY5TxO1Q63T7yZgXDsjgTiCPKNq9nFjjpbyfidPFyehobGPCECKlOxvJLmLbNM8EOLEx6XFFmSmucDrZzu7DKkCeOKiqU7QKX8+vkwS05GPJGWC3AipWlUK7R6/KzUM0RUvzE1AiKYHGluCHbOeLuZK46Ta/aC0isaAkqVp5VbUM+NODsIq0v06cOU7aqrNSWaVcN5qszjW1kQcaryFRMmS7HMXRLJ2ekyZvLFM0s3Fkwd4kedHutIVdyi2H8UhxZrJGyRBL6xpidjl7S+mTT9etyHicjXUG0nUh6FEMXEQWbNcawhWZ/oKAcIm80eyv4pD7ym7oqiXYYt9JFj+uf4hD3r8vfbmHb9oHNMOy1e5PL5cLlctHZ2YllWfzRH/0Rf/M3f8M3vvENAJ5++mne+9738p73vIf3vOc928q4/83f/E3T///0T/+U9vZ23nzzTX7gB36g8bnb7b7vSvB+dsB5nLDst1GGYYfH+cu//Mt84AMfoLe3l0KhwBe/+EW+853v8PWvf51AIMBP/dRP8Qu/8AuEw2H8fj8///M/z8WLF7lw4QIA73vf+zh58iQf+chH+MxnPsPKygq/8iu/wic+8Ylt1+nUcSgJw8OQTqcZHR0lGAw2Fbk+iu5CsLMMg23bjRf+TnT2j1qStNl9+MSJE3R3d+967PqDez9fLnUp1/j4+kri6dOn9/3FtdsMQ7FY5K233sLtdnPx4sW7gu1WZRgeNGad+HV2djZS4Jq2UdS5ubOPZVmN9oTT09OMjY010vORSOSe0piDlGE4SHPZr+u8uYXk4OAguq6TTqdZSSb502/8PbfyRWSHTNU0sbwOZjIZznV3cn0tSdTtQlJEriYTHPN4mC8XKRoaz3Z0ciW9io3F2fY44/k1lioFzkTbKOg1pgppno60Yws2fZ4gqizySnqa4/4YiiCQN8tcyS3il52c9LczVVklo5cBeC7UjYVJuxpkppxkyBdmoZKi3REgrgap2kVG8usBtgAc88TW9+PqZKayQqczxPgmY7Z+ZwcuUUESXExV1iU+xz3dzFTvEBDRQ7fagU6BnFEma6x/94i7n/lNLVUDcphORwd5M03RrFAwJ+6M383qls5GMSWCgY5f6qZgZsgZCUJKlFXtVtN23eox1rQNeZJgy0SUQQRE3FI/eWMRW1lGUARCYhtlmsmC3+ojv6X4WUTCKfpwimcwbZN8dR5bzuFhiJjzPRwE1N8XB5Uw7NfikSiKXLp0iUuXLvGTP/mTvOtd7+ILX/gC3/rWt/j3//7f85GPfITTp0/z0z/903zyk5/c9ri53Homre4mX8d/+2//jf/6X/8r8XicD37wg/zqr/5qI8uwnx1wtmJtba1x3pxOJ6qqIsvygXqevh2QSCT46Ec/yvLyMoFAgDNnzvD1r3+d9773vQD8/u//PqIo8qEPfajJuK0OSZL46le/ysc//nEuXryIx+PhYx/7WFPWarv4viIMm/vsHzt27C4XZEEQWh5ow/oF0nX9odsZhsH169dZW1vjmWeeIRKJbHsfj7JLkqZpXL16dU8tSbeODezbqrppmly7do10Os3Zs2d56623WrK6vZtMwOrqKleuXHlgUXgr2rXCvYPTzV4ZJ0+epKurC3jwtRBFsaHdPXLkCNVqtZF9mJ+fRxCEBnnY7CvwJMPw6KAoCldzJf5fr1yjI+hjzbLodijkShWEdIaoqnB9dZUjoSCjuTWGg2Ge6ezgrcQSp0NRypLJK4l5zkXjpIwyLybmOOqPEPe4eSW5gCwIPB/rYbKUYqVa4EwwhiRCpyvAbClNp9uDZducDXRhYjJamMWwLTqdAfrcQcYK81QtHQGbM4EOLCyG3HGmyyvEnG5my+ur6RF8dKg+5qsJyta6dOeYp4uJ8jRhJUCbEqZolqlYBZbKucbxn/T0sVRbYMA5gGYbrGlrFK0UKX2jCDnuaGdFmyIst+OTguTNPH7Zw0S12VF5yDXEUm1dduQUvEhlN7FAOyv6OLq9ISfqVgdJbJEnBaQYae0WPqkbpxiiZlcpGCuY5FjVlpq27VBPkNab26UqeDHFeWxLRqhFkQQ/gmLiUbykN0uRZBBwcML3f+z0VmkZ6s+QgyhJapVUqlgs4vF4eO9738v73vc+fvd3f5dkMsnf/d3f7Wh137Is/tW/+lc8//zznD59uvH5T/zET9DX10dnZydXrlzhl37plxgfH+cv/uIvgP3tgFNHtVrlP//n/8yLL77I9PQ0oigiCAJut5tqtcqXvvSlHdUsbgdvx6Ln7eILX/jCA//udDr57Gc/y2c/+9n7btPX18df/dVf7Wi/98KhJAz3CrpqtRpXrlyhUqk8MKitFyq1EtshJcVikZGRERRF4dKlSw0L+53s41FIkurdmuqeFbttSbp1bNgfwlAul7l8+TKyLHPp0qXGS6EVL4idBPb3q1e4Fx5VhsE0TcbGxkilUrzjHe/Ydacwp9NJZ2dnIz2fz+cb2t7r16/j8/lwOp0YhnFgJArfz+RlKpnhj159i7l0jp5IgHSlyrFYlLRWYSAcxpBsJNtG1TVWS3kCgki1WsKwFEKyQt6uEVDc9HoDJPUSLlnmqWA7VTQm8nnOhzsQZZvvpWbwSAoXoz1MlpOkimVUUeId4S6yRoXZchqPLLNSSzPsacewbXyKzJu5esGzl6O+CJPlFbLGujb/XKCbmfIyJzx95IwyqmZxy9jcySiCU5LoVOMsVFfJ6EUGXFGStXWy4BAUjrh70O0qNdtgsjIDwDFPN3N3sg0AMSVOWPFi6zXW9DXW9DUiSpSkPtt0LmNKBzUzR7d6nLJZYE1fxiWKLOpjTa1RvVKQornxXZcYxifFUATIWEXSxgqwHrD1OI+R0poN2vxSB9lNHg4yHjxyNx7RS9VKUDIXsJxr6KwhG2GKxlRDGlVHh/B/xy3vPtO736i/8w7C730rWtXutU4YNqOtrY0Pf/jDOxrnE5/4BNeuXePFF19s+vxf/It/0fj3U089RUdHBz/0Qz/E5OQkQ0NDu5/4A/C5z32OT3/603zkIx/hy1/+Mj/6oz9KIpHg5Zdf5h//43/cEpO6J5Kkw4FDSRi2IpVKMTo6SiQS4dy5cw/sDrCb+oKd4mGEod7qs7e3d9euvo+i6DmbzbK4uMjQ0BADAwP7loqsS8P2Shjq3Ya6uro4duxYU1akVY7M2xn3QfUKexl3p9gcJFerVS5fXl+hvHjx4o4J6v0giiLBYJBgMMjg4GDDV2BpaYlqtcqLL77YVJi7X/s9zNiv31GxpvHHL11mPJmiYuiEfC7ymoZDkajZJslimeMdUUaTCYYjIURRZi6T5WJXN7eyKQrlPH0OB8uVEqvVEkcDQQq2wVwxx2AgSFB2kqiWQLKZKaV5JtSFaZuM5BewLJunA51YgsErmRkA+txBIqqLkuXiemGFp4OdjOXnGPbGEBFxyxJv5jd0/ef9fei2jmZZjBXnOObpYE5cAFtgwN2BR3Syqi9zo5hofOeEp5upyix9zh4kQaJkllmozVG1qpu2GWCmepu4oxOX5GFNS+KWJSYrGzIfh+BAEU2KhoaIRLujG6fgomKtkNSToNc7FjmQJB19E1kQgLDsA8GPIDgoGCnyZpKgHGdF2yABABGlm/QmedL690XckhObYQRBoWpmKZrL+BBJ6s3dTEAg4HRR2vqsr7aTXzrNZH7ykRv+3Q+WZTWe7QcNrXKgLpVKeL3ePR3zJz/5Sb761a/y93//9w+V+tZrzSYmJhgaGtrXDjh1/MEf/AEvvPACP/7jP84Xv/hFfvVXf5VTp07xr//1v8Y0zR3r3reDJ07PhwOHmjBsXsU9fvw43d3dD/3hPipJ0r32YZomN2/eZGVlZcetSLeilZIk0zRJJpOUSiXOnz+/I6nUdrGXou3N1/3UqVN0dnY2/la//q1YUd5OhmGzSdy96hXuhVZnGDKZDCMjI7S1tXHy5Mn7vjj340Vf9xWQZZnJyUlOnDhBOp1meXmZ8fFx3G53Q74UDAYfe5DzqLEf19m2bb569TZ/+vJlOqN+bq+lGIpHuLaa4ERHG6OJVY61RXF5FKZzWc7G2/ne8gInI1FOx9p5aXWBs20xMmaFG4Usw54AhmByOZ/Eg0C/y8NkIUXVMnm+vYuabVLQdYpGjaxZ5LS/g9lSBlswuVFYocMZoNcVZLKyzBvZFACnfDFUUaBN9XOruMqZQCfXSzN4JRf9rnYcosi14iTWna5E3c4wBlW67ChZscxCNUmn00fOuNNlyBY44xvAQschOpmuLOAUVSIOdRNZEBhy9yIIFh7Jx9KdNqrH3YPMVsebzmG/qxcTA6foY1VbZLE2x5Czh6zR7KPQ6ehmRbiFbQuElA5cYhCnJLNUG8XaZILQJveQ1K43fVcWVAQK2Fg4hAAeqRNBkHAICkn9zaZtVdFLzZq761q3KScoGCNNnwm2A2X1/0asvYNqtdow/Ku7FofDYdxu9yMP3A9qhyRoXYahXC7vesXdtm1+/ud/nq985St85zvfYWBg4KHfGRkZAaCjowPY3w44dWSzWZ577jlg/Z1QLK7/Bj/xiU9w/vz5lnRfepJhOBw4lIRBEASq1SpXrlyhVqttaxW3jsdFGMrlMiMjIwiCwKVLl/Zs1NUqSVKpVGJkZATDMBqBXSuwW8LzsNX7/cpe3AsPG3dlZYWrV6/S39/PkSNHtv3CbmUNw8LCAjdu3ODo0aP09vY+cE71OexnoFHvNd3f39/obZ5Kpbhx4wa6rjdlH1qR6v5+w/jKGp/5xnqbVBSBqmESD/uomQYnOtrIajWORqPkjBrtbg+CBMlqheFgGEu0EAWJ4WCENaOMR3YwILspCwY12+S5tk4yepkbxTSdipuALPBKeh4b6FW9eGWJxZrOW5kFzoXi6LbJMW+MZK3AXDVJVq/Q6wrT5QpwvTBLpbxex3XU24aJzjFPN7dLKxTMMmuVNSxsXKKDIXcnVbvIXHV9ZVSwbE56u5iszNHuiBBSAgjY3C5PYt7pUCQAfa4ws9V5OtVOXJKLklkira9QtjZakfap3czdKXIOyhH8cgSnKDNdvYa9yW9hyDXIcq250LhHPYJlm6iVOKa7QlJfJaoIpI2FJrKgCE4s8k3jqYKfDnUQwy5h2hJFM0HJuoVfilOwl9mKiNxB1mjOTjiFEGXzFg4xjkNsB2SqVo6o4xkylR7a2trw+XxNrsWpVIrJyclGV7O64d+j6JbTqlX8/UAraxh201IV1gPwL37xi/zlX/4lPp+vUXMQCARwuVxMTk7yxS9+kX/yT/4JkUiEK1eu8KlPfYof+IEf4MyZM8D+dsCB9fPU0dHB7du36evrY3BwkJdffpkzZ85w8+ZNNE3bF1nyXft9QhgOBQ4lYUin07z++utEo1GeeeaZHRmUyLL8yGsYVldXuXr1apN0Zr/3sR/YPE+3283a2tq+jr8Zu8kw5PN5Ll++jNfrfeDqfatazt4vsLdtm9u3bzM7O8uZM2fuKkJ7GFrlylyvLdhpQf1+4F6kY3Nv881BTt3V2Ol0NrVuPairlY8DuUqV//7qNV6ZWcCtKhiihcuWcTgk0sUKcbeXrFajbOj4PA6WEgXafW7StQoz+SzPdnYwV8xTKBcZjoQxaiYr5SJ+2aZN9TJdzpMzKkiCyEl/Gx5V5s3MIn3uIFFRZbyWYDGfR7EFzrrCJKp5VrQiPlkl5nLiV1x4ZRXN0rhVWqBi6fgkJ0d9cRLaGjPV9ZqDdoePopGjyxlFFRUWqilKVp7F2sbK/km1C1mQaXdEWamlMCwDS6g0yAIInPEdwaCGR/KyUFtGFiS6nUEyxgZZCIg+FBF6nMNkjAxJPQVIJOy1puC+TWkjUZsAWyDi6MQp+jExSepzaHYFnIAFsqAgC5UmsgDQ4eghq88TUY4iCgpFI4NTdLJYe5PNJnACAqoImtn8/mlTjjTIgoiKW+pBEnwogkDOmEC30mCmAVDFMMe9/w9est9svEe2uhbXa8/S6TSzs7OMjY3h8/kaBKJV8qWDUq+0FbZttyzDUCqVdmXaBvDCCy8A6+Zsm/Enf/In/PN//s9xOBx885vf5A/+4A8olUr09PTwoQ99iF/5lV9pbLufHXBg/Rp+9KMfZXV1FUEQ+Gf/7J/xG7/xG7z00ku8+OKLfPCDH9zVuE/w/YFDSRjcbjfHjh1rdHjZCR5VhmGz2/Di4iKnT5/etabwXhBFcVudmLYDy7K4ffs28/PzjXkuLCy0vKh6J+PX6z6203q2VYThXhkGXdcZHR2lXC5z8eLFXa027Tdh0DSN+fl5NE3j+eeff2wr9w86pnsFOXVjpP0wjtu6r4OEnczHtm3+18g4Xx+bxBKhZpqIiCTzJSIBDzeTaxxpD/PG8jJnOmIsVgvoeZMz8XZeWl7gZCRCXzjIPyzPczIUxeEQeSWxSIfLw1AoyOXUMivFGu9o72K1UmCikOId7Z2UTY1jvjZKhsa0mcGlODjhDiNYOqOl9RVyry3RJ6gs1YrMVtKEFTdOGaKKn25XlDUtz0JthYy+HsSHJQ/97jDz1TWmyquIwAl/nInyAqqg0OfqwCpVmdAXsPX1e8cpKrhlgYRWoVON4ZE8yCLcLN9sCvqH3V3MVCcRbYm42olDcGGQZ6a6UZi8XregUzQ2npsuwU1ECaNJHtb0FVa0FQRW6VTj62RhE3qdvazckR3JqASVHjyCj6K5TMmqUtLW6zMUwYlDKLGZLAB0qsdJ6c3Fz04hikN0IQpnqZo5iuYyZWuWNsexJufoOk55fxZF9D4wOJckqUEOgEZdUTqdZmxsDMMwCIVC+y5fOqiSpFa2ey2Xy7vOMDzsmd/T03OXy/O9sF8dcGB9QfXf/tt/S7W6LvP75Cc/iSzLvPjii3zqU5/iX/7Lf7kv+9mKJxmGw4FDSRicTueuyAI8OsJgGAavvvoqlmU1mP9+72M/jqNWqzEyMoKu61y4cKHx8HucTtKbYVkWN2/eZHl5mbNnz9LW1ratsVtVw7D5nOymXuFe2E8JVT6f56233sLhcOByuR4bWdhpALLV1Xg/jOMOInZyX95cXuPf//X3cCgS87k8g7Ew6XyFow43a4qIQ5LojQYpmwZPdcRYKOfpDwQQJEhVyzwVbaNk6yi2yLlojBWtiGDBhVgnC9Ucb6WW6JPcOLwOvpeYRULg+Vg3i5U8c+UcHS4vbS4n7aKT67lVRK/NSGGZQU8Ur+TAFDTGS6tgg2oLxAyJjK0zqSXxSA7anSqJWpljni5sG2yhxuX8hrfBGX83VVvjqLuX6coKZbNCSkw0iIAAnPT2YqBTs00WagnalCD6FvnPMXcfpm3Qow6xXFthtrrECU8fC9XFpvPZ5+pgoTZBRI7jkYKUzCJ+WWWy0lx7MOA6wmKtuV1qp6MPzSoTV05TsYqk9WUyeoKquErFyjdvq3aT3FL87JPayejjeKUeHGII0zYpmgl8cozlWjOJUAQ3Nat57gBRx3m6XO/Gtm1s2952AFyvK4rH4y2VLx1USVL9mX3QMgwHEblcjhdffJEf/uEfbhir/uzP/iw/+7M/C7Su29wTwnA4cCgJw15WQx5FW9V8Po+mabS3t+/aDflh2I+Avm5wFw6HOX/+fJO0q9VO0tupwahWq4yMjGCaJhcvXtx28Psoahjq9Qo7Mdu7H/aL4NTnNDg4iKIojW4Zjwt7Oaa9Gsft51weNQqVGv/9lat8d3yW9pCHgqbR1xakYhm0+zzogoWNjeIQyZSrOGQRJJtMtcpAKEBGq5EolznWFqammaRrFdoUN+0uD4ulPMu1PDGnFwkRw6iyUs5xPtKJKou8nFpvaXo62I4lGIzl1++hZ8Lr3gl9rghTxTXOhuPcKKzS6woTUjxU7Qq3ywmwQQI6TQWhaqMKDm4Ulzjjj6+TCyCuhuh2hpmtLpG9U9QclL1U7SKmYBGW/LQ7IzhFkWulDVM0p6igShYFvYYqqHSqnThFlbnqBDV7w3Rw0NXDTHXDEVrBwaB7EIsaTiHEqpYEkvQ7+1ioNZuutSudLN/5LCjFUfGRLxYoSSnKVq55W0eMxBbTtpjS1yALEg58cg+y4EESdDJGjrSxDKxnaEJyL6l7ZBGiSh8Zo5lEiDg44/vfgb2tmLdSvnRQJUmtbPe6lxqGg4iJiQk++MEPNjpebcbXv/51PvKRj5BIJO7z7d3D5nB3D9oJDs+b6G4cSsKwF7SSMFiWxcTEBLOz62nwU6dOtUwOsZcuSbZtMzMzw8TExD0N7urjt5IwPCyor5OZSCTCqVOndkS6WlnDUJeZzc/P77nTVR17lSTVayjm5uYac1pYWNjRmPt9n+6nzGq3xnEHFQ861389cptv35ymUKvRFnSTLJXxe5yslEs4HTI12ySTyxMNeHhjaZmzXTHG0mv4NAcn2iN8b3mBwUCIrqCPV1eX6PH66Ar4GEmtElRUTrZFuJ1Lc7W8ylORKIW8hiJKINi8lV7kbKiDqqmTM0osVfOEHS6O+9u4WVwhp6/LFJ6LdGFg0ueKMldOEQw6mCwlcAgSw54YTlngauFOxx8bhgQ/M8VleoUwVclCFSSulSYw7fXfqEOQ6Xb6kUUJQRNYswuEbR83yvNN52bI3YGNjVP0slBdZqGaIKjITWQhLAfIGIt4JT8RJYZm62hWlfnqBPqm7QJSgKyx0DS+W/ATkAM4JRdpfZWksU4solLoLrLQpQ6S0Jo7L6mCF5foQhWfomoVyRlLJPVZutTjJPXmLIaIhEiZreFDUO4jY2wYyTnFdlSxjU7nD+CRm00W9+M3u5/ypYNKGOpSqVa8i0ul0l3OzIcRlUqFUqnE9PQ03d3dlMvlRoFz3ek5mUy2rBbuSYbhcOBtRxhkWaZWq+37uNVqldHRUXRd5/z587z22muNlF4rsNsuSYZhcPXqVXK53APNu1otSbrf/Dc7Ed+PzDwMrSIMlmWxtraGoihN8q29Yi/B9dauUfU57WbM/bxXW1k3sB3juDqB2Ksr+aPCVCLD7/2v7+FwykyupemOBphKZ+lrCzKVyTLcHub62hpD4RAr1RKCIHCuK85ELs2xcJiKbbBWqXA+3sFSpUClpnMh3sVkOcP1TJLn2jpYqOb53uo8bU4X59vijGZXqJoG50IxJFHAo6hMFlJE3SoOSeJMsAPLtngrO49um7SrPoZ9YW4Wl8gb6+ThmVAXab3AGV8PE6UkqixytbC+YCIicDbQg2Zr6OU8M3aGkOWkrOUwBQunrdDpiOJ1yIyXZ9dlRgK0ywES+io2Nh7RTYcawyMp3CjdwtrUJWnQHWOuXqNgC7Q72ompftK6TEJPkDWmUASZmMNHfhNZEBEIKCppPUPM0Y8iOMmZOUKyl8lqc2DfJfeSESeaPnOJformIqrgwy93IAgyxTvfX9wiRfKIYbJGcxYCoMNx9K56BkUI4JaCOMWnMewqRXOFgpnCQmXAvVFs2kpN/sPkS7IsN8jDVnLeqsLivaKVUqlyufx9IUkaGxvj537u5xAEgXQ6zSc+8YkGUfD5fFSrVf7+7/+ed73rXS3Z/xPCcDhwKAnDXiVJ+x0I143jotEo58+fb3zeygfVbo6jrrl3uVxcunTpgSuxrc4w3Gt8wzAYGxsjnU7z7LPPEgqF9m3svaJQKDA/P48oily8eHFHnbkeht1KqIrFYuN6bq2haFXnpZ3gUez/fsZxqVSKq1evYtt2I6tYrVYfu3Hc1nNS0XT+5NuXeXViAcUpYhoQC/mwsOmO+tEsk66gj7Kh43E4sGQby7aRZREdE90wEWQB0RSomDoVS6fN7SZZKTFfzdPn9ZOoyCxU84DN+UgHmmDwamqBuNNLWITxUpKqZeKUJN4R7SRRKzBRTHHEF2a5mmXQG0FExCWLvJZdr0FwCBLnQz2s6XkWKlkWKlnOBbq4VpglrgZpc/ixbJMbpTkMe/055ZZUgqqKRwqgGyaztSSmVuWmudGNTbUl3JJIu9pJ1dSZr6xQU2rMVacbZAHghLef2cokPWoPiqiQ0NYIKm5ulptbow66upnbJE8KylE61HZKVh4DmYXaehaj19l/lzzJK/opbqolcIkB/HIMt+ggayyTt5IU7xQ6x5QeElpz3QOAT/aSMZqlgT4pRk6fwC8NIIs+TNugZCYJKnFWtct3jXHW/wkkYeNZ3UrCsBkPki/Nzc1x/fp1vF5vgzwc5BqGVhGZUqm07ZbuBxkej4cLFy5w69Yt3G43+XyefD5PrVajWq0iCALvec97+NSnPvW4p/oEjxGHkjDsBfspSbJtm6mpKaamppqM4+pBgWmaLSvO3G2Xoe16BLTK56GOrfMvlUpcvnwZRVG4dOnSntwk9ztYXl5e5tq1a4RCIQRB2FeyALubbzKZZHR0lJ6eHo4ePXrX9XzchOFxdSbaukJaKBS4efMmhUKBl19++UAZx714fZb/3+tjmLZNwO+kUKvhdclMJzMMxsOMJZIMtYWZzeVwyzJOl8zocoKzXe1cS63hlmUG20K8ubpM3OOhO+BnZG2FuNtDb9DPtXSSiq7RHwpg2BbXswkibiclXeNMMA4iXM8v4xRkzoe7qNgVXkrNANDrChBxuKmYOjfzSZ4KtnO9sECnM0ibw4skwhu5qYag5pQvhijY9DnbmKmsYdk2OuV1smBDv6udsOpksrzEQnW9RegxTwdz1XVZkBuVsODHNjQWtTS2vm4AF5S8FMx0gyy4BCf9rk5Mu4YoOJi98/0hVw/T1eZMwICzl5XaHF1qP4KgkNZTOESVicoY9iby4RV95Iy7vRFiagRN91Epa9hug7y5RlCOMbelSFkWHFjk2Cov6nAcJX2nXapHjOGUwti2hCxopM0EFWPDqM0thsnpzWQHoFN9FzH12abPHpf050HypevXr6PrOg6Hg7m5uT13NttPtJowfD9kGE6cOMF/+A//gdu3b/P666/zEz/xE490/08yDIcDh5Yw7DYgkmV5XzIMmqZx5coVyuUy73znO5ukD4IgtNSJGbafYbAsixs3brCysrLtLkPQWifp+vh1wpBIJLhy5Qrd3d0cPXp0zy/D/cowbG43+/TTT1OtVkkmkw//4g6xk6Jn27aZnp5mcnLyLpfrzXjchAEef6GxIAj4/X68Xi8ul4vu7u4DYRyXKtX4P7/0d+R1jZV8iZDfRapYRnFIJIslfD4nS4UCR2MRJtIZjrSFuJFK0ac4OdPVzq1MmhPRCEmtzHyxwHOdndzOp7mVTfFcvJNb+RQvry5yNBBGcQi8lVpGFOBdHb0kqiWmillOh9rI6WX6RQ+rgoaGxnghSZcrQLcrwFQ5yeuZ9dX3Y94ITkmk393GRCmJV3YwV05gAwPuNmKql5ulOcrmuuzHKztxSBYOXPS7YixVM/gdKlcL041zEFeD5I0cw55eNMtgtrJCwOtpFEYDSLaAahjULJMuMY4lQckukdCXKZiFxnYhOcDapoA/IkcJyWE0ClQti5nqemDuFJ04Rb2JLABEHAFWtBmcgoeQEkcQFFyCxFz1DjFQARPcoo/cpiC/jm61j8QmKZKME5/UiSQqBOSj5I0VsuYamGt0Oo6Rugcx8MtBslsyEbLg4oz/Z+/a9qDUCmwl5zdv3qRcLpPJZJiamnqgfOlRopXtXr9fMgywLqseHh5meHiYf/iHf2BhYYGBgQEuXLiApq3/tlt1DZ8QhsOBQ0sYdov9kCRlMhlGRkYIBoP3baf5KGoAHjZ+pVJhZGQE27Z37C5dD7pbVYdRJyS3b99mZmaG06dPN+zu92PsvRIGTdMYHR2lWq022uK2yptiu5Ik0zS5evUq2WyW5557jkAg8MAxHyce9/43oz6Xx20cZ5gWXxud5dWpBLLLQdDrxBAsHIqE7BDxuVRqtokggNfhQLNMIh4XFcvArSjIiohpW8iSSMnSCapODNtioZynzxsgW6synk8Rc3no9vpImWWWsgWeDsWQFZG/X13X+58ORVFkgZViEcu2OBNqw8LmmK+d1UqBeSFNSivTrno54o1wu7zMVG7dk6DXFaRklTnp62K1ViCnVShbhQZZ8Ekqp/wdrNayzFfXWK5lOePv5kZxBgBVUOh3x5FFk+lKllRpPfAfdndxq7RBKKJykD53Oyk9RbaWYN5eRdBt2m0POTbIgiyIBBUnouBBFhTW9BRrehqXJLOiNbcm7XG2s1CbbPxfwUG/6wgmGgG5k5SeoFibISiFyZC+6/pFHSES2mTTZ21KNyUzSUQ5AUiUrBw5Y4WwJLFUu9q0rVPwUTCm2Yo2xzBZ4/pdnx/3/jPc0t0LPAeFMGyGIAhIkoTf72d4eBjLshrypXpt0Wb5UiAQeGT1Dq2USpVKpe8bh3qn00mxWOT3f//3+S//5b8wMTHBhz/8YS5cuMB3v/td/viP/5hPfvKTPP/88/u+b9sWsA9xIL0THObjfEIYdoDN3YWOHj1Kb2/vfQOjR+Fj8KDxk8kkV65cIR6Pc+LEiR0/MOsP81auziwuLiIIAhcuXNjXVZq9Eoa6o7Tf72+qV2jVqv12xq1UKly+fBlJkrh48eJDJVtPMgzN2DqXR2kcBzA2m+D//VevgKUjqyIhnwtTsPG7nRiCTUU3CPlFppaTnOmJc3U1SXfQR02wmEgkOd/TwZVkAlUUGWwLcTmxSrvHTZffx9VUAtOy6PB7sWs2y+UCYY9Ku9ODaVpIssCba0ucDrXjUxxcyS9RMQ3ckky/4GJNK7NSK+KRFOJuNy7ZQdjhZq1WZKqySlavINgCx31tKLLIeDHLcrWAS1LodLlYqeY55u1c92OQBd7IbUiDhtztzJQXOeLuQhREZsqrCILO7fJGMN/uCLKqrdLuCCOUbAwXhFUvV4vNNQEnff1MVtbHdttuXLobFYElVjGFjWfhMfcgM9XmeoRBVz9L1SnaHN24RA9ls4Ju15ir3cKwN4zcBMAnK6zpWtP3e9QhEtpNBFsioHSsu0HbJiZZskYaNhGMuGOANb25gxJARImR0puPSRZUdGsV2xZwSW2oYhRwoIhejrh/7J730kEkDLAemNefS6IoEgqFCIVCDA0NoWla4/dVz+4Fg8EGgWilfKlVkqT6osP3Q4ahfk99+ctf5s///M/5whe+wFe+8hXS6fX7+tlnn+WFF17gjTfeaAlhsBDeNm1VD/NxHlrCsBdJ0m5qGHRd5+rVq+Tz+Qd2F6rjcXYZmpiYYGZmhpMnT+7a4K7+QmoFYcjn86yurqKq6p4Mz+6HvRCGeq3H4OAgg4ODTS+xVvo7POheTqfTjIyMEIvFtk3+HjdhOEgZhu2gVcZxhXKN//btUcaX11BkkULNQhAhUSrj9zhYKRXpcfqpYFDUNHragkxns5zpaufVpSVOtUdxxyJcTSY43d7GTDHLWCrJO+JxxrJrvLKyyNPRGDmrwhvJZfyywlOxGDeya0wVcrwj1oFpW3S5fZSMGnPVNAHFyUm/H1kWeCMzDzXwSypnIjGmimvMlDP4ZAcRp0rFMjgb6GatVqJs11goZNbPlyBwNhhHt0xyepUbhWXOBbsZu5NJEGyBQXcMvyyzpkvcKi0BcDbQw81NmYROtY121cdK1WK5lgYZ2gmyvMV0rd/ZQcWqMOg6QkbPkdRTRP0RlrXZJhO3kBlgdlORc1huIyRHsOwSoLJcW5cuiQh0Otso6nrTfgZdQyxtMm2TbQdOPYjsVAjKA2SMFZL6updCn3OYlNZc+6AIDgxrja1oUwYaZMG2BTxyDFUM4xa9lMwEJjpZIwOsn993R/4vROHez92DShgeNC+Hw0EsFiMWi2HbduP3lU6nWy5felLD8HDUr913vvMdfuAHfoB/9I/+EX/0R3/U6LoXCoUol8uUy+XW7P+JJOlQ4NASht1iN4F8LpdjZGQEr9f70O5Ce9nPTiBJErZtNz2kN9dV7HXVfjNh2E8sLi42Wl/6/f6WFIXvJli2LItbt26xsLBw31qPR+UgXYdt28zPzzM+Ps7x48fp6enZ9piPmzDAwcow7BSbjePq3WFSqVSTcVw9+3A/47hvvjXBV1+9SdkwUF0KK8USYbdMsqzR3xEgUS7T3xYir9eI+b0IkoBDFGnzuclpNWLedZM2RZYIu10sVQp0en34dZVrmSR9/gC9/gDzlRyWbfHO9i4SWpHvrc7jUxxcindxPZckq1Xp9vgJOlV8toPr2QQ9Xh9vZBZoRyXuCyLINi/fKXhWRIGnQ3FyepWlYp6stsRRf4TbpVV8spNBdxSHBG9mZxrHesIX40Zxlm41QkDxkajm0Klwrbix8n7C28nN4gzdznY8koeVWga/rHKtsJGRUGwRRTTJGxqq4KDTGUcVHST1ZXLahqNyQPKSNRJNZMEpOnFKIm4zjm6YFMUiSSuNYkHabq4PGHQPMl9rzgKE5Sg5fZm44wiCoFAyC6T1VbyiwFytWTIUkmN3+TAAdKp9d7k8u4U2nKIPWXmamlWmYK6SNlL4JYmcfguL5gWsHucl4urZu8auYycuz48S2yUygiDg8XjweDz09PS0XL7USsJQLpe/LzIM9edXtVpt1GNWKpXGgqOmaWSz2YculD7B9zfetoRhO9r8zQHb0NAQAwMD2145fRSSJNh4SGezWUZGRggEAvuyai+KIoIg7NsxWJbFzZs3WV5e5uzZs2QymUYh1X5jpxkGTdMYGRlB07RGvcJ+jLtd3Cu4tyyL69evk0gkdtVi9nEThsOWYXgQtnaH2WwcNzs72zCWqxOItXyV//A/X8awLXK1GuGQm6pp0RX1ky0WCXlV8rqGLItomCQKJYY7IowsrXK6s41EtcxKsci57jhjySQuh0Jv0M9YKokARL1u8qaDVK2CwyEy4Asyk8+S1EuUDJ3z0Q4kUeCl5DwSAs9E4uTMCqOZFQCeiXRgYDHgDjNVStMlwZX8CmGHiz53GEsweTk90zj+Z0JxdNvkpLeD8eIqkmAzmt8o/u1zhfFIDqJKiNlKBqGS5rQ/zu3yHWM0G4bccVRRxif7mamsAWuc8fVyqzzVdK47TB9eyYtL8rBQW2WivMCQu42csUEWBCCqelisZRBtiZgaxyW6kUWbqcoEtmDDncdfn9RJwp5t2kdYDLNYWycpHjFAUGkDW0QQKqxoq2Q3FVTHhC5yykzT9wVAFaFsNT8bw3InRWOZsHwUUXCiWVVyRgKvEmN+S2clALeokrWayYIkqDzj/9/u2nYzDnKGYTeBeavlS62S1WqahqZp3xdOz/X76Ud+5Ef4j//xP3LlyhWy2Wzj889//vNYlsWZM2dasv8nNQyHA4eWMOw2IKk/OEzTfGB7TMMwuHbtGplMhvPnz+/YzfFRZBhgfZ5LS0uMj49z5MgR+vv79y1Y268AuVqtMjIygmVZXLx4EbfbTS6Xa1nb1p3MO5fLcfnyZQKBAM8888wD74lW1jBsnm+tVuPy5cuN87WTYvXNYz7uFf7Hvf9W4V7GcalUipnZOf7z117meqKC16tiiiKRkIeFbJ7OqJ/xlTXiASfTuQKnAjFGlxOciEdRnDJLhSJP98R4dXGRp+NxREXgjeVlzsZj3M6leW15kXPxOIuVAq/dcXCOeT2MplZZlUqcjEbRbJO5Yo5ev48buSTPRjvJ1Cqs1PKsVIuEVRcn/FFuFFfJ3nFtPiK5qNo6pwJxbuQTDIg2V3Lr8qG46mfQG+R2aZWMvi5FOOWPc704j0dU6fe0Y9oWaT3L5fyGDOdcoJvrpRm6nVH8spe0VqRkl5gtLjW2GXC1M1meWd+PI0JQ8eMUZa6VxqGaaWx3ytvLZKW50PiU9wimrdPl6GdFW2W+usIRd99d27U7oqSMZmmT0/bgqKlgR6gpVbJigaxRYMg1yJI207yt6KbC3V3RepzDrGrXkXHilztwCG50y0CkTNookN1UlO2TIqTuUc8QdwyT1e8udD7p/ad45Ae7x1uWdSAJ+X4VF++3fKlVGYZSqQTwfUEY6vfTT/7kT/Ld736XX/zFX+TKlStUKhU++MEP8o1vfIPf+73fa0n9AjyRJB0WHFrCsFvUA8IHEYatBme78QR4VBmG69evk8vldkVqtrOPvR5DXX/f1tbGyZMnGw/uVhrDbXfser3CdrNHrZrzZqlTncCEw2FOnTq16xfd4yYMBzGgaQXqxnErOZ1vjs+xUhLxB9wsZQqoTpHVYgGnSyFdKNAZ9VGp1eiP+MlpGsOxMFm9RrvXgygLFHSdoVCIrFEh4HQyFApxK5uiNxCgNxDgRi5FSHVyqaObm/k13kgum0xirAABAABJREFUczQYxumQeX1tPRh/Z3sXBgaGbXE7lyLocuCRHJwJdmDYBm/mFtAsE7+scjrYxnh2mWxxPfB5NtzF9fwST/k7KZs6XkXmtexGvUGfK4gqCQx7O7ldXOVGYYkBb4iUvhEgP+XrAgFCSpDZShqBFCd8cSbLicY2AcmNV1bwy30ktAxLtfR6QbTRrP3vd8aZqkwhI9Hh7MAhqAjArdJEk4lbSA6Q0JuJgSxIOAQTS3ITktsAkYyRpt0RZrbaHMC7DA8r1QnYEut2OGIsa3eKp22BgBzDI4WwbROP2EXOSFDR6sZvwyS0u1uu+mQvKX1ly9xUqubdvg8eKcZJ74fu+nwrDnKGYb/ntR/yJdM0W9IOtFgsAnxf1DDUIQgC/+k//Sf+x//4H/z93/89MzMzhEIhvv3tb3PhwoWW7fdJhuFw4G1HGB4mtVlYWODGjRsMDAwwNDS0p0xGKwlD/WFVrVb3bHR2P+zFvM22bWZnZ7l9+zbHjh2jp6en6Vy2kjA8rDjZsizGx8dZWlrakTdFq4ue6wRmPzJFuyEM+00yDkqGoZXkpVLT+eOvvsHUSpp0pYrbrYAsE20LICsiPtskX64iiBarmSx+l0y2poMp0ebyMZda4x29XSwWCuSqVY7GI9xOp7Fsm6jPharLFHUNJBj0h0jXKtzMJ+n0+Im7PRiixZXMKkf8YTo8Hr6XmMPCxi3JnIm0s1QtMFHIMOQLsqrn6XYF8CpOJNHm9ew81p0agPPBDmzbQhYkruSWOOZrY/xORqDPHaHd4WO+luBKfqMm4Vygk7HiPHE1SLsjgGEbzFRXqFobUsOn/b3cKE0jI9HriuEQFAzKjJc2mZZJKgbVhiM0QEQKEFDcyGIvS9VVpsvLOEWVoCI3kQURgYCisqytG725RQ8RpR2/7CShLZE1imSN9WdlhyPO/KaCaLgjb/J6WNOzTZ/7tQglSgSsPnQ0KlKeNT2JS3KxUmuWUXlEPxm9+bP1/Q3d03MhrgyQ0W/jlfpwiD5sRKpWiXP+f9bk6Hw/HGTC0OpWqbuRL7Uqw1Aul3G73QfyWuwVP/7jP86P//iPP7L92W+jDMMTwvAYsJcg4F7BvGmaXL9+nWQyyblz5xrdUvZzH/uFlZUVrl27hiiKnDx5siVkAXYf1G+Wc92vo1SrMwz3O/e1Wo3R0dFGvcJOemi3qugZ1jMLa2trOyIwD8KTDEPr8dr1Of7zX1/G5XFgSwLhoJuSpqGqIquZIm1hL0vpEvGIj9lUlsF4hNGlVQYDbmYqZSpalT6fm+/NzfNUe5SaIPPywgJnO2IsV4q8trLMsUgYSZa4tpak0+OhJ+hnqWxzO5diIBTAIUoc8YXxOhReTMziV1SOBaLkzSovJteD8i63jza3G6o2k8UMx/wR5sspVFEiZqm0BUNcLSyi3wnYu10BqlaVU/4uktUiy5U8kmixphUbx/6OQC+WYNGpRlispikYVQIOuYksHPd0YNoGR929zFYSTJSXOevvYarUvOLe64owU16g2xlHK9QwXQJBh5OxYrNzc787ykxlpumzY54BanaNfucwWT3Pmp7CJ2ncKk82FUTLgoxNtYlsAAy5hliojROU2/FIISygZBSx1RwpO7+RdbChXegiod1NDMJKmOQdZ+o6FEGlYq0XWjuFIG6pDVFwIqGQNecp2RYlY0Oi1aGeodf13F1j3wsHlTC00u/gfniQfGl6erpBFCRJolar7eu7slgsHhg36/3Eq6++yl/8xV+wuLiIJEkcOXKEj370o/T19bVsnzZwQNaXWo7DfJiHljDsBVtbqxaLRUZGRlAUhUuXLuF0Ove8j1Y4JW/u5PPUU09x8+bNlgXdsLtjKJVKXL58GYfD8cDMR6sJg76lXSJsyH2CweBD6xXuhVYE4bqus7i4SK1W49KlS/uW3j4IhOGgZBhgf7Md2UKF//GNK4wvruHzO1krlHB7VQrlKmXLQHHJaIKFKAq43AqiKNDTHqBmWRyJ+ElrNY61RanZBrphMOD1MJ1PEXaonAgGuJFZo9Pn41JXD2+tLWNYFs/FO5ir5Hg1sYgiClzo7GYyn2GxXODpaDsZrczZSAfj2TXKlsZ4fo2408uAN8R0ZY3XUusFyH2eAIoMJxxxbuYT5G2ddGkF3TZRBJETvji2aHCrsMpiNYeAzVPBODeKS/hlF/3uKE5RZjQ/1chOiECP289keRmX6KDPFUMVZWaq85TNWuO8Hfd0NrVU9Ugujnq6qFhVHKKTueoqKHBS7WOi0hyYH/X0MFOZQrRF4s71ImdJEJmoTGBuykw4BAWTYhNZABhw9TJ3x5tBRiasxPFKfmp2CVHwkdDToK9nT4ZdgyzW5pu+70ClbCfZ2kI9rvSR1NezFrYt4JXbcIkhPKKHspWhikDOLJAz12VfHWovRbO5LkJA5ELg//nwG+8ODipheNzzup986fr162SzWb73ve/ta/el75eWqpvxP//n/+Rnf/ZniUQiHDt2DMuy+OM//mN+93d/l7/8y7/kh37ohx73FJ/gMeJtSRg2r/4vLy9z7do1ent7GR4e3rcHnizL1Gq1h2+4TVSrVUZHRzEMo9HJ59atW4/F6+F+SCQSXLlyhe7ubo4ePfrAc7kXudPDcC8yUm/nutNuVw8bdy+o18rUdfD7+fLZTcBuGP9/9v48OrL8rO/HX3ere2vfF+3d6n2fXmameww22OCxTfI7xIYcfmwmAUMcG4LhgHMcOEBYHBzW5LDkl4DhJHb4fgETEpt4A9uM7ZnxzHSr901q7VJJqn2vu/7+qK6Sqks9rW5JPd2eeZ+j062rW597a7v3eT/P837eZqdl7w2sjy88f4OvXZhisVDG5VYwDYeGYxNSJURHIqGpmI5DyOvGlkC3bFyqRK7UIOBxYeNQbOrscLsoVQ3qjk1fxE+zKiKIUMckJinUqlUu1MqM+vw0cLhVzdMwDU7F+2lg8I/pGXDgRDxBw7GYrpaYqZY4Fk1gOBaHQgnmqkXmmwWWm1U8ksyhYIqcWeZqqRWwRhQ3ttAk5vKxx5Vgupqn7jSYLK9qCU5FhjAci73ePsaryyw3SzTsWocsABwPDWFistvTz63aMhO1NH2ap4ssxF2B2+ZsYcJKiIrZwMHmSnWiK+APWx4m691TjfpdcVyixKA6wqK+xEwjjSLIxFzerscCjHr6u3wYAPpcrUrHkLaPqlUlo6+woC8yrEFa7yYGKaWPheY641K1IRb1Ne1FtojL8lOv6WjyCLZiURcKZI08IVkmZ4xj031uKdcouXUE0Pu8byesbDx7+1oH5nfDw2hJuh+025dcLhcjIyOEw+FO9aHdvhQMBh/YnLFNGL6Zrpc//dM/zfd///fzO7/zO13b3//+9/NTP/VTvPzyyw80hONesBEQHmNDs/vBG8ZtrwE225JkGAaXL18mnU5z7NgxEolXn0zxIMfYqmA+m81y/vx5YrFYlxB2O4Nu2HiA7DgON2/eZHp6miNHjpBKpbZs7QfB2rXXjnPdbKvZVmbNl5aWuHDhAjt27EBVVZaXl+/9oPvA/Zxr28H8+vXruFwuotFo5yZ6v1WYBzn+44B0pswf/79fp6TrIAkobgVNUzAEm7CiUTYMBBEKjSa242DLUMiXCAXcjM0tcWQwyYX0EhFVoS/o5euzcxxOxjAli5cWFzkYj2GLDlezJfZGwvhUF8V8loVaBVVyCEsK87ZDxawzUSlwIppClkQuFNI0bQuvpHA8nmSykmehXkaVJIb9ASzH5nion7laiSWjyHy9CEBQUtkfiDKRTzNVKzBdy3MsnOJyeQHREdjjTxBzeThfnqFht6p1HklBER2yRhOvqDLiiRNQVMbK45jO6nf5oL+/o1EQERnRkoRdKgu6w0KzyEKziFtSiShyV8Cvii4cx0AVXaTUBCCyoueRJbhW7Z6AtMszyK07piLt0AaYbtzEJwWIKC2hc9WsojsNlhoL3Y93jzLX7HaDlhARhUZPdSLoRKlaBZKufYBE3aqRd5aJ+QZYaPZOOhJ1G1vuvvZLgozuZHv2VQUfJwPf37P91fCoEobXoiVpI2hrGBRFuWf7Ujgc7lQg7tW+9M1SYWjfK0VRJJ1O81M/9VMAnfhFkiQ+/OEP86d/+qfb4psEb4ieHxc8toRhs7h+/XrHafh++tg3iq1oSXIch8nJSSYmJti/fz+Dg4NdROlhTGK61/q6rnP+/Hnq9TpnzpzZ8Ii57RY9O45Ds9lkbGysU5XZ7Pu8FefsOA4TExNMTk52yNXc3NyWB9cbDdht2+by5ctkMhlOnDiBZVmdG+jly5cJBoMdjwGfz3ffRH0jfiePMmzb4f9+9Sr/8I1xZE1GkAUcSUR0YKlcIRzyMJsrs7MvzM3lLHv7Y1xfybIzFCJdtZElkSODCWZKRQ6kYiyUi5iOzZOD/VzNr5DwenlmaJCXlxfRZJk3DQ5wNrtEtWS0RqcGvJzPLJE2dQ4GQxhNHcURWCoVyAs6YZfGgKfl2vy125oFlyhyOj7AfL3EVKXAglhiNBhkvJzhQCCBIojYgsWL+VXh8cnIAHmjwrHAENO1HLptcq48jX7bJ0AE9vljOA74JTcTtWUKRpWZ5kIXWTgWGGSyNs8ezyACErP1FbyKwoVKd4vRqCfKRO02qXBE+rQEMdnHTGmBklWjVGtl/tcbq7pD62dyTctSSA4RkSO4JBufHaVgFiiYrRagvZ5Rpu5wjfZLflbWmWg06t7JfPMqPimCT4oiCArFWhFLbLBiZMBYrbwEpSjpOwgHQEoeoWCP92yPi8Pkrd7qwvHA96GK92f89Sgat91pIvooYb3Kx6tNX2oPPvH5fB0CEQqFetZoaxged6x9z/7Vv/pX/N3f/R0/9mM/1pksZVkW58+f59ixYw+cQLoXbEdAeIwD6fvB4yzuft0RhqWlJcrlMuFwmFOnTm3bBU6W5U0F84ZhcPHiRUqlEk899RTBYLBnn+0MuuHeFYy1HgbPPPPMfV1MtrvC0Gw2ef755wmHwxw6dGhLLnTtIPxBg2DTNDvv6Von7u2YvrQRwrDW7+H06dMd9/BoNAq0nD7XGpRJkrTh6sOjRBIe9FxmF/L89RcuMJctIbtlarpBSddJRH2UagbRqBfdshlOhmhYJgOxAHXLxKMq2CIYto2iSDRtG8OyQGoF8xYOZavJgN8PosB4McfhWJyaZfJyJk2/x0c06mamVuTl5UX6PV6GQwHOZlrVhEGPj5BLRjMkJusV/JbNuF0lqXjo9wYQZYHnVlptPSJwIprCwiamerlaWuZkpI+xYkuQ63Nkjsb6WWgWmKsXmKZAzOWlbFfRbRNNVNjlTeCXFc6XpjvCaI/kAtGgYbaqDwHJw05PAt1uYNhw7faEpUP+Aa5Vp7pe18P+IZb1FXZ7dmDZNnONFdySysXaza470pCWYLI+2fVYj+gGbHa4d2I7kDFyZIwSMVeQiTt0D32uVE97EkBMCbKgt7weNMFLWInjFr007DKiECJrlsmarVGxKfrJC72VgYDsYdnodo9WBBc661QRbC8FbiGZAWQngCJ7EGUBVfax3/OOnv3vBdu2ty1we1C0rzWPUktSGxuZknTn9CXDMMjn82SzWa5du9ZpX5JlmWq1ylNPPUW1Wn1gD4aPfvSjfOpTn+LatWud8e2/+Zu/yb59+zr7NBoNfvZnf5a/+Iu/oNls8uyzz/KHf/iHJJPJzj4zMzO8//3v50tf+hI+n4/3vve9fPSjH93w56PRaPDjP/7jpFKpjsPzv/k3/4aZmRlOnz6N2+3m7Nmz/Lf/9t/4L//lvzzQc90IHOd1JHp+jJ/no3XVuQ/cbxCwVjAcDAaJx+Pbmg3ZTIWhVCoxNjaGx+PhmWeeuesM6YdRYbhbINvOwjyoJmA7CUOxWKRQKLBv374tN7KDB8ua12o1zp49i8vl4syZM13v6Xa079xrzVKpxNmzZwmHwxw+fHhdobjb7WZgYICBgQFs26ZQKJDNZu+r+vA4Vhgsy+av/u95Lt1aolRv0HAswl4PoiOS8PuoGQbhkJu5XIn+eIDxlTyD0QALpTIel4ysSlxaXObwYIKxxSWSPi+JsI+XF9Ls8HuRZZErKxkOJ+K4VIlCqUlA03EpIjv9QZbrNeoY+BUXiagXRRF5fnkeTZR4Kt5PWi9zudIKeI9HkzQtnVFDYrJRwu843HJqiE6rIhByq7ycXx2feirSz5XSIkeC/TQMg2q1zLnibIcIqKJERFPRRC99aojx6grg8HJxNRgXcNjpDZEzKhzyjVA2m+T0EovNFXJrPBmSapC5ZstvQHREBt0JwoqPrJElp9fI3c7yR5UAC81uXwJNVLCoYWO3KghKBNsBRXCYaNxRrXAPMn3HNkmQcIRmV3uRiMRObRRBsOl37aFkFiiYOSrWLMPufpbuqDr4xSAluluZAAbVnSwbvURkQN1BWr+MJobxSlEkQcNybFRRYql5DUuuA/XbHzIYWfgnXF251vkObdQr4FHM5LfvQ4/aecGDtUopikIikSCRSHTal/L5PJ/73Of4yEc+gqZpxGIxwuEwi4uL9PX13df6X/nKV/jABz7Ak08+iWmafOQjH+Htb387V65c6VQtPvShD/GZz3yGv/zLvyQYDPLBD36Qd7/73Xzta1/rPK/v+q7vIpVK8fWvf53FxUV++Id/GEVR+I3f+I0NnYeu6ywtLTExMdEZ1X706FH++3//7/zRH/0RhmF0Jkz94A/+IOl0+h4rPhjeaEl6PPDYEob7Qb1e5/z581iWxZkzZ7h161bXlKTtwINWGNqB+OjoKKOjo68abG3HJKZ7rW/bNlevXiWdTm9KE7AdhKGtV0in0/h8Pnbu3Lml67ffi/u9YWezWcbGxujv72ffvn09j92Oca3tc10vYE+n01y8eLGL7N3r+KIodnp74d7Vh8eNJLQxMZ3h43/5Ig1aYmXFo+BWNTKlKuGwl+lMgVjEy1yuRCDgZr5YZkcyxK1sgV2JMFdXMuzwh9jTF2U6X+JYf5KJUgGnKfDMyCDfWJzHa8t8y8gQL6YX0C2Lo8kEFUvnUiZLWFXZm4iSrde5WcxxMpViqpLnVLyPTL3GdL3AcqNKyKVxMBRjvJplpXHbeC3ex0KtxGElznS1gNmo8Y3Gahb8iWAKGwdRkLhQWCSpeqlLTQzHQkRgjy9B0OXiamWRmtUajzrkDjFdX12jTw0x4omw2Myx3Kyw3KwgAvv9cSZqq0G/S5SIKCqy6MNyHGYbK8w3cphOg2V91cuh5aPgYq656u4ckLzs9gxSt2sYtkBGL5LRy+z2DjHR6K44uEWNitVt+Aawyz1CxlhiUB1FQqZq1aiYZZb1BWp2pWvfne6dLOi9BCDqCrLY7F5bEVzU7JZoXMaFX06gin5kwUXVyuMQ7PJ+iCsDZI2pnrUH1SM8s/v/Qzab7WqBaZOHYDB412vMo+j0vLYP/lFCu1VqM5WPte1LP/qjP8oP/MAP8JWvfIVf+7VfY3JyksHBQQ4dOsTb3/523v72t/Ot3/qt9xQGf/azn+36/c/+7M9IJBK88sorvPnNb6ZYLPInf/InfPKTn+Stb30rAB//+Mc5cOAAL7zwAqdPn+bzn/88V65c4Ytf/CLJZJInnniCX/3VX+XDH/4wv/zLv7xhAvq+972Pd73rXTQaDbLZLD6fD8dxME0TXdfRdZ1arfZIVo9eD9hINerbvu3b+MpXvtL1uJ/4iZ/gj//4jzu/b7YaBa8DwrCyssKFCxdIJpMcOHAASZK2PTMP9x/MW5bF1atXWVpa2nAgvt3P486WpEajwblz53Ach2eeeWZT0xK2mjCs1Svs3buXhYXezOBmsbbCsBGsNa87ePAgAwMD6+63XRWG9jms/f/4+DhTU1ObFvrfq/rQbrcql8sEAoHXPMC51+trmBb/63MXOXdlDlGTkGzI1ur4/BrZcg3BJWLYFoGAhiyJhAJuHBxiAQ9NyyLqd1O3TTRFBqk178OlSBQMnZTXi4XDrVKenT4fSPBiep4D0RiqLHExt4xuWZxMpsiadV5It3ruz/QPULN0Cs0m43YOv+bCJ7no9/hpWiZn8/M0bQsJgVOxfkpmk3SjwmKjwrFIgivlRSKKm5TkxTB1rpTTmLcz7h5JRpVBNhX2BPqYquXwKgqvFFcnFPklFQeDmMtPWPGx1Czjk1VeLo53yYKPBQe5UpkCYECLEVJ8KCJcKt/q2u9oYJAbd7QnHfIPM1OfZ6d7CNEWSVdXiLsjXKhc7drPL3nI3tECBLDDHWeqcQvBEYm7EngkPy5BYbk5S8mqUDBWycEezw5mGt36Ak10kzd7XZcH1REWm6v7esUQXjlCQA5Qs0qYjkrJzFHV00CaYW2YFaNXFyELvYkpAYFnQu8l5AoRCoU6BmRtAe7ly5exLItQKNQh4G63+4ETFg8DbRLzKJ4XbG2rlKZpPPvss3z+85/H6/Xyi7/4i/z93/89X/jCF3jf+97H0tISzz33HE8++eSG1ywWW8MI2gmZV155BcMw+I7v+I7OPvv372d4eJjnn3+e06dP8/zzz3PkyJGuFqVnn32W97///Vy+fJnjx4/f87jj4+P8+3//7/me7/kestksf/AHf8Dv/d7vbfi8twpvVBjujo1Uo6BF/P79v//3nd/Xaja3ohoF38SEwbZtxsfHmZ6e7gnWZFled07/VuJ+gvlarcbY2BiCINxXIP4wpiS1n0N7UlMikegQr61ae7MoFAqcO3eOSCTC4cOHyWaz2zKhZ23gfS9YlsXly5fJZrN3Na9bu+52aBhg9Vzvpp+4Ew/SQrRe9WFlZYVSqcS5c+eQZXlLJi9tF27eWuZ/f/Ey6WwJUwLFgZpponlVHBF8AY1qU0d0iZTKTQJ+lWtzWQ7tSHBpcYXhWJCKaTBdLHJwIMH5xSUSfg8hn5sL6WUOJmO4FImVQg2Pz4MiSsTcHqqGwUytxIFonJV6lRWjxky5yOFogpDq4rnlVgDqlWSOxBIs1itMlHLs8AXJmlWCLo0hTwgbm3PFBYzbn6G9gQiKJLLPn+R6aQVZkzAlE9NufRbikkYchXSjRhGDdHGeA/44F0qrAe+IO0Kf2890Pct0Pc90PU/c5WNZr3aRgL3eBIZjcMA3zEIzx2wji1/WuFbuDp4P+AY6ZEFEZEBLEpZ9lMw8ddtkotbyiVAFhazRWzHo00JMNVbXdAsaI+5BwCKhDLGirzDfXEEkw4AWpWSVuh4/qA70kAWAQS3FbHNNdcERCUsxNMFNn3qQfDVPXaqQs6o4gkpWn8GimwT0qcMsrWPoNqjuIrOO0/N+77cTdQ13bXO5XKRSKVKpFI7jUK1WyWazrKyscPPmTVRV7VQf2uOPHyU8yhOSYHu0FdVqlUQiQSQS4Xu/93v53u/93s7EwOHh4XsvcBu2bfPTP/3TvOlNb+Lw4cNAqwrscrl67hvJZLLTFpROp7vIQvvv7b9tBOVymampKaanp3n++ef5r//1v/Kxj32MZrOJLMtIkoQoip2f7cIboue7417VqDY8Hs9dJ1RuVTXq0bpz3wdeLahpu/k2m811gyNJkmg0Gtt6fhsN5peXl7l48SJ9fX3s37//vr6UD6PCoOs6k5OTjI+Ps3//foaGhrZk7XYbzmZ73Nvl/D179jAyMoIgCNsSgMNqheFea7crMQBnzpy5pxHgdlcY6vU6Z8+eRVGUHv3EdsDtdtPX18f4+DjPPPMMlUqlq/oQCAQ6BOJBJi9tFXTd5JN//TI3ZzNYooMuOnh9GnVDx+vXWClV0TwKDd2gbtsIuoAlORQbTQZSQWYLJQ4PJXhlboFDfQlkl8hENseJoRRjS8tULIMzOwZ4YWEex3E40d/HzXyGXE1ndzhE2KuxmK1wPZehL+jDp7gwLRuXJPLc8gxhVWNvIELRavDVpVawnHR7iXs9eE2Fq4UMbkkhY1QwbJsRb4gBt5/r1SUmaq3rm1dS0GSRignHQwPk9Boxzc1Yca7zOsRFjZnaMnHBTUjxkLHrhF1uXiqstv8ogkhAkZltFAnJHga0KJIgMq+nKTVqnf2SriBzje5gJar4MZxGy5XZNphrZFhs5mk6FXJGsXtfNDJWoWvbXu8wOSPDDm0HIjJFs0zJqrCkL1K2yl377vHsYOoOobMsyBhOdxsSQJ/ST82qMuDahwNUrRp5I4NPCTPeuB3or4kz/ZKHmtVd5RARsdZZWxZc1KzeoE0RNJ4Kfl/P9rUQBAGfz4fP52NkZATLsjoVvImJCWq1Go1GA8MwiEaj+P3+17yC9yhWPWCVMGzH61Or1XqmJAmCwN69e+9rnQ984ANcunSJr371q1t5ehvCzp07eetb38r3fM/3oCgKqqryr//1v0ZRFDweD16vt3ONPnToEO9617u25Txej6LnUqk7qaGq6oacyO+sRrXxiU98gv/xP/4HqVSKf/pP/ym/+Iu/2KkybEU1Ch5jwgDrB1rtTHg0Gr2rm+/DaEmSJOlVdRJrvQsOHTpEf3//fR/jbo7GW4lsNksmk7lnlvx+sRkBMXRrKU6cONGZ7NNeezsIw9qWgLshn88zNjbW8czYyE10OzUM+XyeixcvdlryHtZNvX38+9U+PKzqw7WbS/zPv3kZ3XFQNImGYeD1q6yUq9gihDWZum0S83ipVgwSAS8lvUnU78GRQBIEYgEPFUMn6fdRtQz8mooki0wWCuyNRbAFh5fTixxJJJBlkZeXFgkoCieiEa7XStws5wm5VA4k41zOrnBDz/FEIkHBqHM8muJqPkPVNrhezBJyaewLxVioF3kp02q3S2pebNFmfyBOXq+Tb9YxBYOC0SILLlHkRLSPnF5noVHibGGeE+H+brLgqOwKx5ip5VjSyyzpdUYEHxfL3YZmJ0PDGI6JgMhMPUPRmGOPP0rJXCULsiDilkVyDR2vqDGgxRERMYUGU/Xutp8j/kFu1qa6tu1W+5kxWseNyC2DN0WQyRjL5IwqOaPa2feAb5jJO8atRuQQ883uNQFG3cPMNm4RU1JoYqBFDswaTZrkmivAqgdKSA6z0JzoWWNQHWFJ761QDGu7WNSv9mwfUHewpF/GJfjwSFEUwQNI7PY8hUcK9ez/alj7HQF46aWX8Pl8VCoVZmdnEQShM/4zGo1uKOjYamxkEtFrgfZ5bQdhqFard63UbhQf/OAH+fSnP80//uM/Mjg42NmeSqXQdZ1CodB1311aWupkkVOpFN/4xje61ltaWur8bSMYHh7m937v9/jEJz7B//7f/5tKpUI6nSafz1Ov16nX6xiGwfz8PP/8n//zbSYMr48KQ/tWf2fy9Zd+6Zf45V/+5Vd97HrVKIDv//7vZ2RkhP7+fi5cuMCHP/xhrl+/zqc+9Slga6pR8JgThrVwHIdbt25x69atdT0L1kKW5W0XPbdHVK6XeWl7FzQajVdtD9nIMbaL+FQqFebmWoHFt3zLt2x5Vrr9mjxIKbvRaDA2NoZt2+u2cG33yNa7BfftasfevXsZHh7e8E1qOysM586d6/S+vha483mtp31Y6/uwHdWHtWvousnf/t8LXLq2gCWLCAJkqw0cGRTRhcutoGkyBg6xkJea1Wr/MLBZKdfY1R/h/NwSR0eSzBVL1HSD3X1Rzi8uMRwJ4lFdTBQKxPweREnErSiY2KxUaxyJJ8hWylytFAlpGgciUQpWk68vziECTyZTFMwmE6UCAg5PJJLUTINjkSRT5QLLzQqztVZWal8gil9VuFxYZq5aRBUlhgN+blVy7PHH8MgKsgRfy051nvs+f4wr5QUGtRBx1cdCrYBqmbxcWNUtDGhBclYFwRIYcAVRLRHBNHml2N1y80RokMuV1bUFR+BEcAdN2wBVYq6e4WplnmPBIcar3WRhn3egmyw4Av1qDFmQiBoR6qrBslFk2Siyx9NPzih0PX6H1tdDFgBCipv5ZgbBEYkoMbxyAJfoomhm0R2J+WYGaLU77fGMMtOYW2cNL4v6Stc2CYmmle/ZVxO9ZI1pHEfAJ4XxSCEkQUMUZGpWHghRsqqUrBbB80phDvm+vWedB0E0GiWRSGDbNuVymWw2y8LCAtevX8fj8XSJpx9GIP+oVhi20316M8ZtjuPwkz/5k/zN3/wNX/7yl3sGdJw8eRJFUfj7v/973vOe9wAt76iZmRnOnDkDtKrXv/7rv87y8nJHj/aFL3yBQCDAwYMHN3QeN27coFQq8e/+3b/jzJkzfOYzn+G3f/u3H+g5vYH7w+zsbGeULbAhon+3atSP//iPd/5/5MgR+vr6eNvb3sbExAS7du3asnP+piAMuq5z4cIFarUaTz/9dNebsB4eVoUBei+k7Qx0OBzm+PHjm8qobteUpKWlJS5evNiZ1LEdLSxrX5/7Qfv1i0ajXa7Xa7EdGfs21mt3WusmfWe1Y6NrbuX52rbN9estk6ijR49uONu0ldhIoL+2+rB79+7OlI7tqj7cuLnEpz9/iXSuhOmAosiIsoTH78IWoKobuFwSC4UyiYiPqUyB0b4I8ysldntiSKrIcrnKoeEEZ+cWOTqYYrpU5PLSCk8MpDibTmM7Dk8MJLmez5JvNHgilcQUbOYqZURJQJZg0OVhul4l4FGZr5Q5Ge9DEOBcPo1h22iSxFPJPmZqRaYrRWRRYE8ownytzMlIH9lGHUSbs7lWICoCJ2Itr4WE5uNGOcPJaD/nCqsB8bA7RNil0bADzNYLzNYLHA8muVRdHQ7gERUGPAESto+Zeo5ZvciQO0RerMCaj3y/4+ZKZQovKv1aFEGUkAWBl4vdQfyIO8bN6nTXtpDsJaMvk3BFCcgBDNtmsZnFJcncaMy07ki3L2n7PENMNqa6Hq+KCg2nu5QflEMMuFIY6MSUYVb0DAt6DvQcO9xJlvTuNqKA5GdxnUrEsDbM4jpahH5pkGVrHMcR8MthvFIYSVDRRIWiuUzDzpEzS+TM1nnt0EZZMWZ71nkm+D0o4uaz/2vvKaIoEgwGCQaDjI6OdvkHXL16FcMwusTTHo9nW7Ltjyph2M7Kx2Z8GD7wgQ/wyU9+kr/927/F7/d3srzBYBC3200wGORHf/RH+Zmf+RkikQiBQICf/Mmf5MyZM5w+fRqAt7/97Rw8eJAf+qEf4mMf+xjpdJpf+IVf4AMf+MCGq0x//dd/zaVLl/jEJz6BruscO3bsgZ7PZvF6FD0HAoF7xqprcbdq1Hp4+umngZaofdeuXVtSjYLHnDAIgkAul+P8+fMEg0HOnDmzIevyh0kYTNNEluWuiTlr++03e4ytzKSvbZM6cuQIhmF0PlRbjY2099yJ2dlZrl27ds/X72FWGHRdZ2xsDMMwHthNeis1F4ZhMDY21tHobGUb2YPgfoiQpmnbUn0wTZsvfGmClYKJKAtIqozqVqg0dfSmjkuTWS7VSMZ95KsN+uIBys0mu/ujFBsNdqUilMwmCb8XQRbQLYvRWJiFapmBoB8bh7GlJQ4mYkiyyIuL8+wKhzmUjPP1hTksx+FQLIaBxfVyFUmAk/19mI6D40DJaDJTLxLTPAx4/MgyHcEzOJxJDlEymjRMk3PZRY7GElwopPFIMvsCCdwukReyq4LgQ6EEF4rzRFxuRjxRqkYTnSYvrXF2PhpKcakyj+yI7PWnAAFRtHmlsLqPR1JAMDtuz4IjMOKJElE0xIZM2ixyrZbG6yjIUvfnVxMVTOpYt5lGQgkTVoKoksBUfZG5RgEoAHDYN8z4HaZrQcnbE+gD7PEMULfqhLU4Tccgq+eomxZT9jQ1u961727PCLON3kpE3BXqGuMKLZ1D3S50fveKQfxSiEbZxPKCXx6iaOY6pm4ROcaitYRD9/OOKikW1xvRqgxy0Pfmnu0Pgldzel7PP6BNwicmJlAUpVN9CIfDG7pfbgSPckvSdhCZ9mv7oBWGP/qjPwJa4zDX4uMf/zg/8iM/AsDv/u7vIooi73nPe7qM29qQJIlPf/rTvP/97+fMmTN4vV7e+973dk3KuRcqlQrXr1/HcRw++clPMjc3xw//8A9TqVR6RM/bqZNxbv+8HnC/z/Ne1aj1MDY2BtDxB9mKahQ8xoSh3YL0IAH4vfQFW4H2F8y2bUzT5NKlS+TzeU6dOkU4HN6SY2wl8VnbJnXmzBl8Ph8LCwvbRqzuR5xs2zZXrlxheXmZkydP9oh91lt7uwjD2rXbU4CCweBd9TIbwVZVRCqVCmfPnsXr9XL69Gn+/u//ftsqLffCZm8uW1V9GJ9Y5r9/8gKGAL6Qn2K9gaiK2LZF1TAIhj0YlkUy7qNpmERCHvK1On6vSrHZRLctNNnF3EqR4zv7mcoXEAWBZNjH7HKZiNeNpIi4ZAlbcCjrDfZForgUiRcW5zkcjyMgMFnJU2g2GdTcBD0qLy0vYjsOO/xBvKrMbiXM1XyGAZ+PFzML+BUX+4IxJFHguaXVIP5UPEXF0nki3M+14gqC6HSRhWFPAK8is9sX52Y5Q645x5FwgolSYXUfdwhFFNnjTnKrmuVSKc2JcD8Xy92jiHf7okzXVtjvG0BAYLaWQ5EEzldWjycCfR4/083uNp5ROYwjCITcQdLNAgvNIlFXgEuVbh+FmBJgttnbGpRUg0zV54i5IgTlIA4CkiBwrTqBfUeQvs873OMI7RbdZPXe3txhbYi55uq+LkElJMeIKREaVFEELwUzR8EsUzDLxMQYC9Z8p+rRhk9SqVq91xi3KFGxer9z3xL6PkRhawLXjQbBa/0DhoeHsSyLYrHYM/64TSD8fv8DB9evxwpDpVJ54HbijVyXNU3jD/7gD/iDP/iDu+4zMjLC3/3d3z3QOQC8853v5LnnnuMtb3kLS0tLOI7D+973PiRJwufzdUTPpmnyrne9a9sqEK/HCsNGca9q1MTEBJ/85Cd517veRTQa5cKFC3zoQx/izW9+M0ePHgW2phoFjzFhEAQB0zQfSIz7oKZq9wtJkiiXy9y4cQNVVXnmmWe2VJC2VS1JxWKxE/ieOXOmE3xtZ6YeNlYhWev9cObMmQ2NnH0YFYa2+dlGDPbuha1oSVpZWeH8+fMMDQ2xd+/eDiHb6Lrt/bcK9zOCdiO43+qDZdl85u8uMnZxjoZj4UgidcvEUQQ0j0rdNIhGfSzkSyRifiYWswz1h7i6sMKegSgX55c4MpziYrqIIIvsSIV5cXqOJ4b6GM/nWJxPc2wwxc18jly9wZNDfeSadcZzeY6kWiLniOZmpVaj7hgM+QPE3SaCbXCplMctyRyNJ5ivlxjLtDLpx+IJSmaDJyItwTPAi5lWMB3TPOwPRpmo5kjXW1N5DoZiXCwtIiOyP5BAFWXm9Twv5+Y7r9uTkQHOFWfxSS5GvXEAVowiY4XVffb6YlwurwbtSTXATk+UvFGmYVlcLrWIxInQIJcq3S1GRwNDXK5MtUTO7igiIoJlc12fZe300YjkZao+3/VYAQi7VGYbLSM3BZmA5WMwmKRsl3GJbtJ6gbReQBJE+tRAD1kY0fp7yALAsJZgam11wREIyWG8kpthbS+6Y1AyixTNApJVo2ClMZ3uARJJpY+cMM+dGHANs6T3Vi76XSOsGL3bh9SDjHo2NoVkI3i1CsOrQZKkrgEEzWaTbDZLLpfr6NXWiqfvNd1tLV6PhGEzGoZHBd/yLd/CL/7iL/LCCy/wu7/7u3g8HnK5HOVymXw+T7lc7oyoT6VS29ey9EaJ4a64VzXK5XLxxS9+kd/7vd+jWq0yNDTEe97zHn7hF36hs+9WVKPgMSYMAHv37n2gwPBhtCS1cf78eXbs2MGePXu2vKS3FS1JbaHuWtffNrabMNxr/Y3oFe627laMbL0bZmZmWFlZ2bT5WRubIQyO4zA1NcX4+HjPtK3tEFM/CrhX9SGX1bl4qUSpYSEoCigSgixiS+BWVRZyZXxBjWqlBrJAwzQJht1Yjs1IKkTDMjk8nCRdrbA7EaFi6aiSxOGBJNeyGXZFwyiKxDcWFjkQj7I/GeNrc7N4FZnTQ/1czefINxqkfF6GQgGmS0UuZlY40ZdkqlDhUCBM2ba4Vcmz0qh1yEO6UWG60hqZ90QsyVh+gaPhJJbjIIsCz2dmsW/fbYY8fmQJjgT6GC/nuFpaYXcwxHJzdcTn0WAKy7HZ7+vjZnmFC4VFDoZiLDdXR5H6UcibJUY8MfyyRrpRRhUkxopTGM7qNXKPL86VNZUFGZG9vhQIMKDFmW9kuVZdICx7QdC73i8BcDtQoTsgP+LdgSkY7PGMUjSqpJsZitTRGzNUrVrXvvs8w4zXu6cUKYJE0+4daTrgSlG1q4xou3AQqNl1cnqOiCvC9VqvL0LcFWSume05Z0l0Wv/p2i5gOt2jXKE1XtWke7tL8OKVwnxL6P/bs/9msFXBuaqq9Pf309/fj+M4HfF0Op3mxo0buN3uDnkIhUKvev3dTnHxZrBd59VuSXpQDcOjhO/8zu/kO7/zO9E0jcOHD/POd76TTCazIfPYLcPrqMLAfT7Pe93Dh4aGelye18Nmq1HwmBOGBw0G24RhuwLKtujUNE327NmzpSr1tdgM8Wm3+SwtLd1VqLvdxOpuhMFxHGZnZ7l+/fp9Txxqr9teZyvfX8MwMAyDXC7H6dOnt+xm8aAtVLZtc/ny5buOvX0tCcNWVxheDe3qQyrVx99+6iyvnM9gYNG0dGyaGECzaeNXRVy2gDugorgkBJcAlojsEmk2LMKqh3SpQsjnpmlblOpNkhE/mUIdSTbxKAqaLIMoUDF0dgSDqIrExZVlTvb1YQsOL6YX8blcnB4Y4FY5xwuLrQz1mwYHKegNcrqO4Tj4vSoqMidifdQtgwv5JepWKyV/MBRDkUR8isaF/DK7AiHmqyVsHPrdPoa9IRYaRS4VVtuATsZSjBXn8UgKe3xxNEnhUmmeurUapJ+K9HO+1BLjaqLMsBrGbtbJ2DrjlVZFwyu5EF1yF1kIyBolq0JCDRJVAjQsk6VmkbxZZrm26qMg4JDQvNyqdYuSjwSGuVaZIq6E8eFBNwyaZpPr1SksoftzHxe8LFndwXvcFWbqDvEzwG7PMHONGfpc/bglN5bjUDarmBis3NEiFZQC645cHVD7mWv2Cp2HtVEW1hmjOqKNsthcJR2q4MUnhwnJEUyngaKEadg1KlaBslVnQBsmpY32rLMZtF2VtxKCIHREmDt37sQ0zY54+vr16+i6TjAY7LQAer3ernN4lI3btuO8ms0mpmlueqzqowDbtrEsi5/7uZ/jT//0T3nPe97DZz/7WX7nd36Hn/iJn+Dv/u7vWFlZ4bu/+7sJBoOv9em+gdcQjzVheFC0W24sy9ryue9rR356vd5tvaA8aEBfr9c7ophXc5Z+LSoMlmVx9erVDesV1sNaQfVW3Syq1Spnz54FYN++fVuaWXoQDUOz2eTcuXPYtn1Xc7hHocLwsI6/OJ/nk//jRaqmierTaDYMJJeMz6dQKFdQRYdKtYJsydQtB1PQKDcMvAGN6WyRWNjLhdk0B4cTnJ9vjUgNBdy8ODXHsaEkC5UqVzNZnhrpY6lWYypf5NRwCgsHw7Jo2iYZvcGxZJLFSoXJSp5svc4T8SRul8xXF28H6pLA7mCAGg7XCi1H8gpNLNvmiUgKlyRyqbRMrdwK9FNuL03b4FAoTklvMlsr4nUpzNVXg/InY30YWBzyp7hRznCrnMOnyl1k4UgwyVQtw5HAALptMVHNoEoilyl1tQ7t8oW5VmmPAVUZcsfwKwpTtWXmmyXmbx/3WLCfq9VuN+fD/mGu3XZzFhyRfi1KVPajWw3coofFZhEoIgC7/TEKje7vfsoOsKT0Zvr9kkLRNFEFlZgSRZPcuESZjLFEzbaoNle1Cvu8O5is9wb6CTXIzO3WpzZEBByaPfsqgkLJWiUckiMTUGK4RS+SoJB07adu1yhbRUp2jbqRp26VqNndRElE4s3h9/SsvxncbVT3VkOWZeLxOPF4vGP+2G5fmpyc7GpvikQir7uWpGq15QnyzVBhEAQBRVH4xCc+wa//+q/zIz/yI3zjG9/oXLu9Xi+/+Zu/yeHDhzl58uS2nMPr0bjtccTrkjC0LyBbTRgymQznz5/vmGS99NJLr0mG/tWQzWYZGxvrnOOrXUy3a2zr2vXXnv9ah+Rnnnnmvnpo71wX7n9k692wVh+QyWS2/Aa0Nhu/kcxhqVTi7NmzhMNhDh8+fNfzea0Jw8Nwn3Uchy9/8Spfe2EC3XawRJAUCcUt4vFo5Ks1BFVGN0xMl0rAp7GcLeKxDEp6HbcOouQgODb7h+IsliocHkgwUy4R83p4aucAL80vsi8eYWcsxNdn50j4PJzeMcBLiwsYts2RRBwkgaVKhYZhEPFpBFQVw7KRZIGvp+cIuVT2hKMsVwucLbSy+VHNTcSrkZS83Chkma+VsEWbmmkgAgdC8VZQX1xmvtZqd3kiluRCIY0sCOwLxImobl7Jz9K4PclIEmDIF+ZauWVGllB9jHjDlMwqRaPJ+WKLDBwOprhc6e7PPx7sp2zVORIYpmg0mK5lcUkiZ4vdGoFD/r4espB0BWlYDQ56d1C3DebrWeYbOUS3fdv/YBWH/cPcrHVn9TXRRVNqdH6XbIkAfuJKAMu2CEkxskaB6dtOy6OeBFmje9KRX/KyuI6AekgdYKbRq3MYde9ktnmj87tHDOCTWoZxDbuOKkTI1jLUpAa1ZobdniAT9d6WpiF1mPlmr3nbUf+3ElG2dqRx+/v8MINzQRDweDx4PB6Ghoawbbsjnp6ZmeHKlSsoioLb7aZQKBAIBB4Z8rCdhKH9ujzuaLdt/f7v/z4f+MAH+Jmf+Rn+9m//tpNIPHXqFAsLCzSbveR6q/CG6PnxwGNNGB40IGlPMNqqYHitadyBAwc6M3K3u6XnftZ3HIfJyUkmJia6zvFe6z+sCkMul2NsbIx4PM7Bgwc3dZHfKsKw9jVr6wNyudyWvyb3QxjuR2x9v4RhOwL87SQs2UyFv/qfL7GwVMAQBVxeBUSBcr2B4lVoNHRqlo3XLSIgkor4ado2Q6kwkiISliQUTUYvlKk1qhh10G2HuinjlmUkWaRk6AyFAqgumclCnif6koiywNfn59gXjRDzengh3SIOfT4vg6EAF1aWaRTyHE8lyTfrHI+nuJpfoe7oTDeqKILAkUiSGgYXcq3A3i8raC4J2xE5Fe1ntlLEwuJcfnW06Kl4H1VT54lQS7eQa9aZbeQ6ZAHgeKSf5WaJ46FBsnqVpWaZZb3IXL3Q2Sel+ZmttzLomiOxK5DEr6jcqCxSNOtAKxM/7A5z4w5SEbltbCY4AoPuGAHZQ8M0MWkyUVvu2vdoYIirtysObcQUPzONbo8C0RE54Buh1Cjj1Q1MFyxbOSqCTsNcoGl1ax/2uIeYbvYSgD41ylSjm4iICFisOkTjCASUEH4xgIhCn2sfNatBwcyTNRoYdoWssYTh3NZh3L4MBaTAuh4NbsHLit57LrLg4k2h7+7Zvlm0rz2vZUAuiiLhcLgz7a/ZbHL58mUMw+DixYvYtt0lnt7IoIrtgm3b2+Ie3xY8P4ykyMNCJpNhdLTVPpfP5zvVE1mWyefz2/s+OsJ99/Y/tniMn+djTRg2g61yezYMgwsXLlCpVHpM4x6GBmAjJWrTNLl48SLFYpGnnnpqw32ID6MlybIspqenuXHjBvv27WNoaGjTF+H7Gdl6N1iW1RmFu/Y12w5TuI20UDmOw/j4OFNTUxsWW98vYdiu57UdeO4frvHcP17HEiVsl4QkC+iOjW5YoEnIqtwKXLwesqUymiqRLlUJ+jUy1TouWURUJKayJfYMxTg/t8RgyIdLsLm0lGM0oLFUarJYa3BqKEnTsVmu1EgFfTQsk12hCKIo8uLSIjuCQfwuFzmjzjfSC0iCwJN9ralJE8UC4HA8lWK5VuGAJ8iiXqeCzvViq/3GI8kcT6RYrFcYL+WYr5Y5EUtyLt9ySN7pDTPo83O1tExWb3kNeGUFWXao1FuB7Yg3xJAnyFQ9y0K91GlZOh5OcbG0Oi7VJUoMuH0I+Mk1qsw280xUM0RU9TZZaEEVZQTB7GgZBEdgQAsz6AlSNGvMWlmmalkgyxOBIS5XujP7A2qEG7XuKgRAVHVTMEwG1BSSoFCxGiiCyFhpHKc9PuR2rL7DG2eiPtX1eJcjs9iYb81zXYNBLdVNFhyBgBJkUE1hOgaaGKJq1ckZOVb0MmFPnGu1Xr+EpBphptHr6hxXo8w1cz3b+9Qk883rPdtPBb4Tv7w147PX4lEgDHdCVVU0TSMcDrNjxw4qlQrZbJbl5WVu3ryJpmld4untCODvBsuytsV4tFKpfNMQhvZn6dSpU3zuc5/ju7/7uzukD+Bv/uZvOu1p24U3WpIeD7xuCcNWBPPFYpGxsTF8Ph/PPPNMjwnOw6gwwKsHmpVKhXPnzqFpGs8888x9XTw3SkgeFIIgMDMzQ61W21J/Ctgc2anX65w7dw5Jkjhz5kzXKNzt8HhYK9JeD23CVyqVOH369IZ1Ma91SxJsPQkpl+v8xZ99nUyuhimJ1E0TExvNo+LgIMsKODbpQoVwxMNspkDY7yJdrrN7OM74co5dqQhX0xl2BsLIqkS6XOXkjn7Op5cYCPo5s2uQr83MkfK6ORgN8PLiEjhwMBZksVxmoVpjbyyCS5EY9gdYKJdJhnzkGg1OJVuuzWczaUzbRkLgmYEhVpo15qtV5nHYFwpyrZhlbyCKV5ZB4g6vhT5mawVORgdI1yogCLyUm6d5u5IgAqOBEHVT50R4gPlaCcdxOFuY7ao2nIj0c6E4h0uQGPXGUEUFRYJzxe5Afq8/xuVydyXhYCBBVi9xyD+EYdvM1XOEVQ8v3eHmPOSOcP2O9iRZEFAkB8u0kZHo06L4JA9e2cWt2jwFs8aKXru9r0hK9a+ShdvY6U71kAWAXf5+Ju4weVMsGakB/fIIkixTcxrkjAJ10+KWPU3jDkO3iBxmZp1RrAlXnNlGbxUhJseYb/bqIoJSmHSzd4yqKno4Hfyunu1bgUeRMMBqW4sgCPj9fvx+Pzt27MA0TQqFAtlslps3b9JoNAgGgx0CcT8GjA+C7WxJetxHqrbRfv1/7ud+jve///38yq/8CvPz87z00ktcuHCB3/iN3+Bnf/Zn78sR+L7xxljVxwKPNWHYzIVmM8G84zjMzc1x7dq1dceRbsUxNoJ7aTHa7SvDw8Od2fwPsv52EIZ6vU65XEZRlE3pFe6GBw2W261RbY3Hnc97OysM661br9c5e/YsiqJw5syZ+86WfTNpGC6eneazn75I3TCwJAlREhElEY+mUqw3qFsmobCXStUgGGqNSe1LBqnVasRCGnXTJB7yUrNMvJoLU7CRJQGvqpBt1BkMBfC4FaaLJY70JVAUkQvpZY71JZEEh5eWl5GB3R6NlWqZXEHHJYkc7Utg2g7zZomy3mSyWiCoqOwMhlBkiefSqy04hwJBBEFkwOPnRjHLk8k+Xs62KgB+2cWRSIIVvcpyvcZSvUZUddMU9A5ZaFcbbpYzrRGq1Tw+2YUsK11kYZc30tJB+PqYqGS4UlrmWCjFuWI3Mdgl+TtkISR7GHCHCcoqN6uL5IxqR+Tc7w4xXu02dlOEVsOP6awS6KDsZZ+3j7qj04/EQiPHZC1DSPaAoFOzu/ugD/iGuF69gwAIEoZT5U70u+KUzQo7tJ2ISNRtg5xeIKWFmDamW+LtNUXjIXWQGWOqZ52Q4qN8xyQmAI8oU1znbu6RXZSN3u0RJcBys0BASqCKPiRBxREEDnufRJO2J5hsT0h61DLbd5tGJMsysVisM6JzrXh6enq6a0RyNBrd8mrAdhOGR+192AyefPJJfvu3f5tf+IVfYN++fXzsYx9DURQ+9KEP8eEPf/i1Pr038AjgsSYMm8GDuj1blsWVK1dYWVm56zjStcfYTsLQvnHceQzbtrl58yazs7McPXqUZDL5QOtvtXi4jXZQLssyQ0NDW04W4MEqDDMzM1y/fp39+/czNDS07j7bUWG4G2HI5/OcO3furuTlXtgOcnO/2Irj602T//XJF7l+YwlTEFB8LmwcSg0dSwa/KCMqIuGgl4ZhEgx7SOdKJJMBrs+tMBDzMJmrsMOjUmrqFPN1dg3EOD+XZk8qiiCLXE+v8NToAFXTYKFUJhn0YuMQUFUESeB6Ls/JvhS6bXGzmKNumOz0enCweCndah0a8vmQJIF94RhXMivYODy/NIcAHAjHiLg1vr48i3U7KD2ZSHEuu8ihUBxJEGlaJq/kFmjare+zKkmE3Sq2Y7PDG2auWiTgcvG1zFTntRFw2OkPcqW8xKAWJKH5aVgGGb3MZG01KO7T/EzVu0eNJmUvtuNwNDBEVq8yV8/jAPOCSdlcFSDLgoAmQcbovl4e8veTM8oc8I1gOQ4regmXIHGuPNFFIgD63UHGa91tS0lXiFvrtC3t9w0y15hnUO1HE92Y2JSMKo4gMNdYoa2xAPBKbpatpZ41Qo6fWX26x0dhUB1gtjHds/+INsTiOlqEgB6kppRJKMMoggaImI6FIsgsNOeo2VCyC0Dh9vn4OZZ6U886W4VHdRrRRs/L7XYzODjI4OAgtm1TKpXIZrMdPyCfz9chD8FgcNPP9Y0Kw8bhOA5vectbeO6552g0GlSr1VeNb7b22G+Inh8HvK4Jw/0G89VqlbGxMSRJ2lBWXJIkDMN41X02A0EQegJjXdcZGxtD1/VNewW0L9ZbKQ6fmZnhxo0b7N+/n2y2N8u3VbgfwtD2pFheXr5na9R2axjaaN9A9+3bx/Dw8AOv/bhXGCZvLPG//p+XqDUNbFnCkaFhWwiyiMvnQnJJFGp1fEE3c5kigaCbYqGMoEqslKqkEgHSxQo7Yj5uLOU4PJRAF20WiiWeHO3n+Zl5UgEfT4328+LsPG5F5qmRfq6uZCg0mpwa7sNyHAzbJtdokNdr7I/GyNSqeL0aFzPLqKLIbl+AJb3GdK5lJLYnEGCmUuBUvI+ZchGXLPLV5ZlO/vpoJIEoCAQUlcv5FRJub8s74jZZGPIG2OELMlnNsVAvM1UpMOILMl5dDfoFR+BNiWEatknSFWC2VmKuVuRgKEFGX83QK6KIRxHJ1HUGtBAxl5+GZVK1qkzrRaaLrQlMAg59mo+b1dUxpQBHQwNcKk8jIzGgRfHJHlRR5kZthqrVZLZRAFqtUiOeCKbR/b3b7+tnvNYtdBZoVVTypklA9hFVQti6DZbNYjNH0TQomqtEYL93mFvrOTq74z0tSgBhj5da8w4tguNQrRc7QuY2JERkQaRP3YksKDiOQNPWqZhlTKFJySiD0W3KNqwNUlvHNO5bQ+/CJao927cKD+ryvN14ECIjiiKhUIhQKMSuXbvQdZ1cLkcul+Py5ctYlkUoFOoST9/vNWW7jNvaGoZvJqx9bTVN25ZE3qviMW7Veb3gsSYMmwlIZFm+r0B4aWmJixcvMjAwwL59+zZ0cZQkiUajcc/9NoO1xKdYLHLu3DlCoRAnTpzYtLhsPULyoLAsi8uXL5PNZjtBeT6f3zZR9UbP+04/g3tNgtiuCkO7hapt+rewsHDPCta98DhXGGzb4XN/c46L52fRbQcdMAUH1e3Csi1qhoHqdZEt17Bk0Bwb1aOgaQqG6OBySZiigygIhH0u6pZFfyRArtkg7veACLfyBQ71xRFlkYtLK5wY6AMJnp+dpz/g40AqzosLC5i2zUgoQMznJpetcS69yLH+JOlahZOJPlbqNdK2zoqhIwD7g0F0yyTXaJBpLLLD4+ViYQm/otIvayiyxEQ1R81sJRM8koymSAgWnIr2s1yvknR7+FpmNRMekFV0DEzb5mAgiUuQEQSH57PTXffZk9FBzhVWg3Of5OJ4eICK1SAkG8zUSszUSpyM9HOzXmQtnggOcqm8mvFXBZk9vhSOIzCs9jHXyDFezeISCyTdbqpWd3vRkcAQVypTXds8kkrWWK0IhGU/ESVIUPFQMst4JD85o0rOaGkahsQgOaPbz8AjaizpvVWEPjW2LokYdQ8yd4dJm+hIjLp3UjequE0/umFiYKLLBjE5xES9t+qwQx1i0cn0bE+5+lnQe/cPSGGeCr6lZ/tW4lGtMGxFJt/lcpFKpUilUjiOQ7VaJZfLkclkGB8fR1XVDnkIh8Mbur9tl3FbtVr9pvBgeFTwRoXh8cBjTRg2g41WGNrtPTMzMxw+fJi+vr4tP8Zm0J40NDs7y7Vr19i9ezc7duzYst7KrSAMbRGxKIpdJmPbOYVpI2u3Cda9/AzuXHc7gnBBENB1ncuXL9NsNjlz5syWzPh+HCsMmXSR//WJF1nOVrEkAVwSjuMgKQIN06Rmmrg8Co4EnoCKads4EiCALUG2UmNHf5gbs8sc2ZFkvlBEEGEw6eXC3DJHhhLo2CyVq/SHA1jYCA7YgkOu1uBwMo6iSHxtbo4Bv4+RcIhL2WWmFlqmY98yMkSu2WC5WqduWHjcCqZh82Syj4ZpMlUtUDZao34GPV40RWJY8DDdrDFvWsgK1G6PCg0pKoejCRbrFWbqRZbqFQ5H4pzLr+oFNFHiiWiKotmk1DS4XFghoXkxaHaRhX2BGOcLc4x4wkRcXopGE48k8bVcdwb+QCDBxVJ3xn9QCzFdW2a3N4VbUikZddKNEhmjzFKlm1gcCqS4XOkOmJNqgPFqd8tRUPay/7aeISwbLOsFVvQqDctixchQsbrFyCNyjEW7lxjs9CS4WeslBpok4Jjdn2+v4MUlKoyouwGRpmNSNitUrRqL+gpl63al4PZ8ChmJgrXSM3VJRKBmdz/vNiRx/e/UW8LvQhaUdf+2VdgOl+etwFYTGUEQ8Pl8+Hw+hoeHsSyrI56emJigXq8TCAQ6BMLv96/7umxXS1KtVvumqzC8pnhD9PxY4HVNGO6lYWg2m5w/fx5d1zlz5sx9ZxQeFmG4desWpVJp0xnp9bDZ59A2ikulUj19+Nvp83Av0fPCwgKXL1++b4K1HRWGNs6fP4/P5+P06dNbMnrwfsnNo+DD8MIXr/Dc31+n6ThIHhe2bbfm/AvgVVVMy8bn1SjWmoiChOXY5Ot1YoqP5VodzecCRWC5VGX3QJSxmTS74n4mCmUmMwWe2Jni5dlFNFni5I4+LqVXqOoGZ0YHydbrTOULPDGQpGQ0OZyIk2/UuZJboWEYHE+lcCkSz823AmOPLLM/HqFmmlypVpkuFXAkKBs6A14/Q/4At6p5rlZbgacmSfgViazZZKfsxnLAp7j46vJqVn/Q62e6lscjyezyxzAdG48i89zKaoCuiCIBVWay2srEe0SF3f4oiiQSUDxMVgtMVgvEVC/Z28SljZCskTVa0l4FkQReYoEwhqOzpBcpVFa9FI4HB7hY7iYWO71Rrla6dQcCDlHFQ1BWcUsaum2xrBcJKh5eLt3suT/u8Ma4Xu0mHC5RoeyUuRN9rigTtTuy+Y7Afu8OTHRGtd3YQNWskzeKpLQUVyq9k4sOeHcysY4D9G7PMJON3vGqUT1MUVzu2T6gDrGkT/VsD8sxTgS+pWf7VmO7Wmw2i+2ufEiSRDQa7dzfGo1GRzw9OzuLIAhd3g/tyXbbRRgqlcobFYYthUCP4OibFo/v83zdEoZ7tSTl83nGxsaIRCIP3N6z3YShXq93Wp62Y9IQPHgVwHEcpqenuXnz5l1FxNvpJH2383Ych+vXrzM3N8cTTzxx37Olt6PCsLKygm3bRCIRDh8+vKWB++NSYahVmvzVnzzH/HwBSxGxRLElnHVJyIKAyyWzUqrgKCI+l0axqTMYDrJUqjKYCpGp1tmZClNoNkmEfFjYOMDuvghzxSKDAS/egIfL6RWO9iewRIcXZxbYn4jidbv42kxLnHxqqI9cs8F4Lk/S58WrySQ1LzdzOURR4IXFebyyzP5YjJpl8MLi7QlHigu/phJwuQi7NOarZSRFYKne0hKIwFOpftKFHDnLZNJocCQU5WJ5VZPgFUQSsgu/ojBRzTOWT3M0nODlXPdko6ORBOlGieOhAWqWwa1KFh2Ti4XVtSQBYqrKeHU1CJcRORxK0rAMwrKPqVqWWadCXAhyrbzYdYzd3jiX7iALLlHCoonjQL8WJST7sB0HjyxzvjzRRQxkQcQri71kwZ3gRrVX6LzX28eNancVQXBEooofv6whCwqGY1M2q5TMKmk9S8Hsbl3yim7mmt2vFbQcoOcavcf0iG4W9dme7YogY3lqcOflw3HQzd7pTQDfFv4nSML2304f1QrDdgXmd4OmaQwMDDAwMIBt25TLZbLZLAsLC1y/fh2Px0MkEsGyrG15varV6ob9jN7AG/hmwWNNGDY7VnU9QfLaQHfv3r0MDw8/8HG2kzBkMhnOnz+PLMuMjo5um0DpQYL6tXqFJ598klAodNe1t0sUvh5hMAyDsbExGo0GZ86ceaCS8lZWGBzHYWpqivHxcSRJ2tRnbT3cz2jZtiBd13VisdhdS/zbcfybl+b4zP/zMrWmiSkK2IKA4laomxa1RgMUEbdLRNJkfH6NhmWRSvqp6DoBv0pFb32GHAmWCmUO7Uxya6VA2Kfh1hQqTZOE//akf9vBwMayHXaEg6iqwrmFNE/0JdFcMs/Pz+MAO8NBAh6Vi8vLWIUCJ/pTLDWqnEimuJ7NoDsWV3Kt/vadgRAxn5vLuRUmigaSKLAnGuFqIcNOX4io5kaSBJ5Lrwate4NhrlWz+GQXuwNRmqaBZRucq6z2zCdkjYlKazCACOz2R0m5fdyqZVmsV1ist0S3p6L9nC10twOdCA9wrjDLkCdMVPFSswwCiovnc91Beb/k5VKp+7GaqFC1ap1gPyC76dNCRBQPGb2ERIOZWoEZCkQUL5ZQ7yEGh/wDPXoGWRCxBb3HcyHhCpFt5kkJcSRkXJpKyawRlr1cqva2Ih3y7eBmrbeKMOROMl7v3T6gxbm1zvYhLclUo7fqsNM9zHTjRvdGRyBBPw29gteKI4suZNmFIIv4XH6O+c/0rLMdeFQ1DK/leYmiSDAYJBgMMjo6imEY5PN5stksjuPw8ssvd4mnPR7Ppq9ttVqNgYGBLXoGb+CNlqTHA481YYAHn7e/niB5rSPyqwW6G8V2ZNAdx2FycpKJiQkOHDjA4uLivR+0Cdxv21CtVmNsbAxRFHnmmWe6TM/uxMPUMFQqFc6ePYvP5+PMmTMP3PKzVRUG27a5fPkymUyGJ598knPnzm3L9KWNrGlZFhcvXqRQKOD3+5mdnUWSJCKRCLFYjHA43GNKuBWwLZvP/9UrnH95GksScFwyNg62LNJwbBxZQFVbQVnDtvD4VGZWCvSngowvZNk5GOXK3DL7R+LcyhfoUwTiUR9npxY5MpLk6lIGK2ezJxFgPF+ikS9xZtcQ04Uis4USJ4f7sHAIahq2AC8szHMoEUcSBJb1GreWlpCAU/19lMwms6USs6USx/uSXM9lOBFPkW/U8WkK31ha1Ryc6uvDdGxGvEGmygUibo1vZFb/HpVVwpobRZa4XswylktzKt7HK7nVCoFbktBkEb+tYgsKy45OqVFntpHveDIA7PVHOb/GWyHm8jLqjdC0Dfyym+lqgWkKDLgDzDW7x6q6BAlDMLDXfEYER+CJ4AB12yDmCrKil1lqlggoOhPVxdt1m1X0e3zcqHb3+iddQW7eoWcAOOgfZKo2z6CaxCO5sR2BqtVAkwQm62s8HqrgEmUsp96zRlDyMVPvrQrElBCT6xi9xZUIU+sIo0NyoEsYraDgk4N4BC8gMajup2nqFOsl0KBqVWgoJlmjsqp3cAADjmdOc614reMnsB3Owm08yoThUWmVUhSFRCJBJBJhcXGR48ePd8a33rp1C0VRusTTD3Jtq1arW6IxewO38QZheCzw2BOGB8WdGoZyucy5c+dwu9337Yh8N9zvJKZ7YS2heeqppwgGgywvL29r29P9BPVtvUJfXx/79++/541tOwnD2kpAe8LVyMgIu3fv3lR2aT3fi/vFnZOZNE3bFlfmjazZaDQ4e/YskiTx9NNPd16bYrFINptlcnKSy5cvEwwGOz3EGzUserXjZxYLfOpPv0ouX0d0K5iWjek4WBKoHoW6YWLSGiG5nC8TjnnJV+uEI16qusHwQISqbnBgZ5J0qcLuVISVWo2Iz83hkSSXF1fYm4qAJHBuLs3usA/N7+GrU7P4VRdP7xzg0tIK5abO0YEEkiSQ8vqYyRcJ+lWqus7JVApBFDi7ksa6/TyeGRygZhrYDpxdTnOiL8UrK4u4RJED4Rh+zcXXl+c6Qfj+SJQL+SU0UWJfKEatWqUm2byYWQ3yj0UTvHK77SjicrPDG0aWYKywiHH7M6yKIo5g0rRWr1l+yUXVarDXl0CTFNKNMmW9wVQt2zVWVRYE3IrI8h0+CnvcYSYaK+zyxvFKGjXLwCWKvFjoDrAlQUDE7iELB/193Kj2Bu8hRSVnmkTkAGFXAJegICCwUM9SMi1K5moVZZ+3n8l1CMA+zwDXa73jUgfcYcZrvWLkkOKlsI4ZW1BxU7RsFBQCShCP6EUWFLySStmqULcalKwKJatGySqy3xvhWm2NpkEGTNipjTDbXMcFWknwjt3/hHwuz+zsLFeuXMHv93e+K36/f0sD/EeRMNi2/UiOe21fp/1+P8FgkKGhISzL6rm2+f3+LvH0Rp7HG1OSthiO0Pp5PeAxfp6vW8KwNphvC2B37Nix6YByLbaywlCpVDh37hyapnURmu0Mutvr3+s5rG2tOXDgAIODgxtee7srDOPj40xOTnLkyJEtsbbfbIWhVCpx9uzZnslM2zWu9dXOtVgscvbsWWKxGIcOHcJxHAzDQBRFwuEw4XCY3bt3dwSG7ZusoihEo9FO9eHVMovrHf+FL1zha5+7jCkJmIoEooCgyK1JSC6JatOg3NQJRjwYjk0k3uqV9wdaYudQ0EOuUsPnV2mYJk3DRFJEDNNGkARMx0aRRCwBHMcm4dUwJYG5YpnjAykQ4fmZeUKaypmRAS5lVig1dTyKzIFUDMOxWapUKRs6U5UiLlFifzSKx6Xw1YXV4PZkX4p8s8HJeIob+RyI8NWl1b/3e3y4FYVD4TjXC1nOZ9Ps8viZb64G88O+ACWjwclwP0WjyXgpx6gfXrpDt3AwHOdCsVVNHFAD+B0Zy9GZbFRYaKz6ARwLJblU6q46PhHu4/ztqUheSWXQHSasuFmoZTEdgRu326A0SSbs6q0IHg0MdI1bBfBILjK3x6WKiCRdIYKKD5+kkjWKKIKHJb3K0m3icsjfT8boDvRdgkTR6g3+I7JvXRLRr8Z6BdDAkJZiqj6LX/bjl/2oooaIiCq4KFhZXEKAilWl2swDeRJKlFv1TE9rlFfyMN/s1TqICFTXOU+A74i+k0ggQiQc6XgJtMW4Fy5cwHGcLifjV6u4bgSPKmEAHsnzao8Gb6NdOY1EIkAredN+v+bn53Ecp0s8fbdW3zcIw9bCcVo/rwc8zs/zsScMm2lJMk2Ty5cvk06nH0gAu5FjbAVhSKfTnQz5nj17ugjNdgur79WSZFkWly5dIpfL3Xcb13aTnbm5OSzL4vTp0/j9/i1ZczPn3H4fR0dHGR0d7XofH3aFoX0ua6dEmaa57tzytQLDteMNb968SaPRIBwOdzKqa8v0dxLvRk3nU//1K8xO5TFFASQRSVWoWxZN3cKWBLyKgiA6RAI+sqUqwYiXqcU8fakAk+k8A30hLs0ssX9HnAszS+xIhnFpMmenFjk+2sd4Jk++XufM7kFuZQusVKvsjYfQbYtyQ8cRYbFc5nhfEgubbywuYts2RxJxLMnhpdstfjvDIWwRDkXjXM9lsbD5+mKrzSakahyMRZmplJittIS3eyMRrhYz4MDeUJSwS2O2UeRsZjV4fzLZz8vZVuvNiDdISvOTMSpMlPNM0gpI9wYjjBW6A/5T0X5MTI4F+5mpFpmtlzkV7eNcsTujPip6esjCXl9r0tIR/xCZZpW5eoEpu0DWVSKrdwt4D/iTPVOR+tQA1yur5EVCoF+LMOgOUbUbuEUf6UaBmXoRj17HIwsUzVrXGrs8yXUrEfv9A1xbR6OQ0oLrVhE0USQoBfDJ/pY5mgNN20QUbBxUskadrLHaxrTTHWeh2Tum1S+7yZm934shLcHkOpqGHe4RZhq9GoiYkuC4/8mubS6Xi76+Pvr6+nAcpyPGXVxc7Ihxo9EokUiEUCh030H2o0wYHpWWpDY2IsRWVZX+/n76+/u73q90Os2NGzdwu90dghEKhTqtrJsZq/qP//iP/Mf/+B955ZVXWFxc5G/+5m/47u/+7s7ff+RHfoQ///M/73rMs88+y2c/+9nO77lcjp/8yZ/k//yf/4MoirznPe/h93//9x9fEvNGS9JjgceeMDwoLMuiXC7jOM6Wzby/E7Isd8q1D1K1sG2bGzduMDc3x9GjR0kmkz37bDdheLUAuVarce7cOWRZvqde4W5rb8e512o1crkciqJw5syZLe0pfpBKgOM4jI+PMzU1xbFjx0gkEj37bJeD9J1rOo7DrVu3uHXrVte5OI6DZVk4joOu64ii2PlZizvHG9ZqtU71YXx8HE3TOn93HKdz/Jkbi/zvP3+ecs0ARcaRwRQEBAEEVcQlygiyQDpfxhtyU67UqNoWXttCVEVEUcDrV7Edhz3DUZZKVY7uTHE1vcKOWJj4Li8vTy1waDBBf8zP1ybnGAz5OTyYZGwhje3AmdFBSs0my+UaQbfGYq3C0WSCdLmCIdpcWckgCwKHkwkqls7NXCuDvi8a4Vouy4FIDFEQMB2LbywvdNqF+rxeBAmORJLMlotMFPLsiYWZr61OKDoSTZBv1tnvCpCzDabLBfwuFxPlVTfisEsjb1SxHJthT5C46kMUBS4WF7t0Czt9oR5i0Kf5WbZqBNGIS25s06Js6WRqJfJOt8HavkCEi6XuCsYeX+9UJBGBAXeQhO1DQKRo1FhoFBAQebEw3nPf2+NLcOUOfwZZEGjavVqEqOLjVq2XRPSJIZaaOQbVFJrkBgR028QjqtyoTWI6FqwhOnu9g0zWe/USo+4B5pq91Yh+NcH0OhOTApJ/3f0FB0pmvmc7wNui70AU7h68C4JAIBAgEAiwc+fOLjHulStXsCyrK5t9L9NIeDQJQ/sa/qhNb7pf07Y73y/TNDvv140bN/jYxz5GsVjkLW95C9ls9oEJQ7Va5dixY/zLf/kvefe7373uPu94xzv4+Mc/3vn9znvrD/zAD7C4uMgXvvAFDMPgX/yLf8GP//iP88lPfvKBzukNvIGN4HVJGFZWVrh27RqCIPD0009vW2akfbGyLOu+RbZ3ekDc7eK0naNJX2399pSmjeoV7rb2VlcY2joKTdNIJBJbLkC830pAW3dSKpVetdLxMCoM7WpQPp/vOhfHcTp6HkmSOoF+e1u7rH9neR/A4/Hg8XgYGhrqusFeu3aNZrPJrVu3+NJfv8LNC0uIqooliZgCCJKE4nFRberUdRPZrSCYArJHwaXKGGJLHGwJ4PO4sKVWYkZRJeqmicsl0bBMAm4NQRGoGyaDkQCmYFOpGxzpT2AINmfn04yGfLgVia9PtwLLvfEIHs2FXrIZW0xzsD/OQrnMqb4UuXqD+VqZ5VorS74zGCCoqfibLi5nVxjyB8gbdQzbJqK52RMMkzXqXM+tuhmfSCV5JbsIDuwORki5Pdws51hurAa6pxKr1QZoaRQOR+LULAMBielKiaV6jbhH6yILbknGwMRwWt8bv6wy4g7jdcnM1wXm60XyZosgPBFMcvGOcamjrkAPWVBFmZpdJ+YKEHf5kQSJktkgrGicLXQH0ZIgYAtmD1kYdke4VukNxA/5BrlSnerZ3qcFyZsSfsmLLMhYjkO2WsAWhZ5KgYRAQg20yMLac0GgvE6rkADozvrjT1Vx/Wt9vxZlstFLDOJ2nJyZ7tkeUxKc8D+17lp3Q1uMm0gkOk7G2WyWlZUVbt682SHbkUjkrq1+j6JWoE1iHkXCsJl7uyzLxONx4vE4juPw67/+63z605/mS1/6EvPz8/zQD/0Q3/Vd38Wzzz7Ld37nd264Q+Gd73wn73znO191H1VV79pCe/XqVT772c/y0ksvcerUKQD+83/+z7zrXe/it37rt+jv77+/J/oo4A0Nw2OBx54w3M9FynEcJiYmmJycZOfOnczMzGxrGbVNEu6XMBQKBcbGxgiFQvf0gNiIAd1mcGdL0lq9wsGDBzc1Wm4rs+prx+EeOHCAYnH9nuPN4n7OuV6vc/bs2Q1VOrZbw9BoNDh37hyCIHDmzBlUVe0Qg3YVTJKkzmfNtu1OxaH9/zbuVn248wb7D1/4Cl/5i8vksnUaloXk0ZA9Go6kIAkStm1hieD2q9gCoIhIhkNVNzAcm7ph0qyZaF4XN+cz7B6JMzadZk9/S2dwc3aJp/cOMp0vslKu8sSOFOWmTrpUxutRkESR4XAQVRa4lCuwKxom4fdydilNPW8iAM/sHKTQbFCoN7hhWgR8Gtl6naPxBIokMlkucCvd+ixFNA1btBkNhjEsm/FijqLZZLy4GmgeTyQo6k1ORvuZKRdZqlSo23oXWdjrC/JKdoGo6mbEG0a3TDwuucvADeBgONrTnnQ4HKdumaRUP1m9xky1gOqX+EauO1t/MJDoIQteSaFEiwhptkREcONCJuYLcKO+RNlskr6thwgrbnJ6oeczdSQwwKV1jNtcEj2i6LDsZbaxRJ8ril/2IgkSTdtEkxSulqewsIHV7+kOMcKC3T3JCWCfb7jHo6G1fYjxdSYg7fEMMdXo3T6s9TPb6K1GhOQAM83e/V2OCxuLpDKELLoQkQEBy7H5tvCbX7W6cC+sdTIeGRnBNM1Oq9+NGzfQdb1r0EB7FOijWGF4lCYkrcVWnpcgCBw6dIhDhw7x8z//8wwMDPAf/sN/YGJigt/6rd/ih37ohzh+/Djf8z3fw7/9t/9208f78pe/TCKRIBwO89a3vpVf+7Vf61R1n3/+eUKhUIcsAHzHd3wHoijy4osv8s/+2T/b9PEfNgSn9fN6wOP8PB97wrBR6LrOhQsXqNVqnD59GkEQmJzsvUlsJdpkZqMVAMdxmJ2d5fr16+zZs4eRkZF7EqKH2ZJkmiaXLl2iUCh0pjRtdu2tOPf1fB/K5fK26CM2Gtjn83nOnTtHMpnscbi+27rbUWGAVaF1JBLh0KFDnSqCbdtdgsW1n7W1hKBNKCzL6jzmzsfdWX249soUX/mfl1HcPgKxGD6XSKXRpG6Y6FYNyWliNUU0n5taw6RmWUQjPtKFCqPDEa7PZ9kzHOPqwgqjES/RmI+VUo2Te/r5xq0F9qQiHN2Z4uu35hiNh9nTH+XFqQVkCZ4cHWIimyddrnBiKEWxVmPQ58G0bc4vL2PbDsf7UiiKwFdnW4G2JkvsSkQQgIquM1koEPC4yDbqCE5Lo+DTVK5kM8yVW0H1iVSSs5lW9nlnIMiAz8/1Upbleu326w+HolEurzFUG5A1PLLCDm+YqUqBbGORQ+EYL2e7s/7Ho0nGCotICOz0RQgqGm5Z5sXcDJaz+vkb9UW6xqpCa3rSir5qaiY4AoOeIDu9EUpmA7VZYbFRouLUSQkas6WZFmFbgyF3kKuV7nWjLh/jtd4xzkcCg9yoztPnihC4TQwatolXkrhcmSFnFIBC6/MCDHvCt8nCKlyiTEnodXrWBBeLjV4dgioqLOm9TsyyIFK8SwuRQ+ta40LBK/txi25coouA7KFmxzAdi6atU7MaVKwKcSnBgjMHje7kQ1SJcjRwbN1jPChkWSYWixGLxXAch3q93hHjtkeBRqNRms3mhlqXHibut/XnYWG7zOQcx6FWq/Ft3/Zt/NiP/Rgf/ehHWVpa4gtf+AK5NZXGB8U73vEO3v3ud7Nz504mJib4yEc+wjvf+U6ef/55JEkinU73tLXKskwkEiGd7q2GPRZ4Q8PwWOB1QRiKxSLnzp0jGAxy5swZFEWh0Wh0MqjbVUoVBGHDAb1lWVy5coWVlRVOnjzZmeJwL2y3cLh9/rVarStbvtlpH7A1597OnAOdEaXttbeDSG2kwjA3N8fVq1fZt28fw8PDW7bu/UIQBEqlEjdv3uwSWq/VK7SPfa9zg1VRY7vi0CYS7few/T364v98kYsvTaE7IoqqoIsCgiSh+r0Ijo1PlSlW69T0JoLdpFjX8XpdlOs1+pM+6obJQCJAzTSI+D00HAu3S0GURbLVOiOxIIJLpFhvcqQ/Th2L8eUcJ4b7qNkGX5uaRZUkTu8cYDJfJF2ukPBoeGTY649wM5tDkODFhQUkQeBgPI4gC5xLp3EAl9SqTBT1JqeSfSyUS8iyxMtLq8HyqVTLyO1UvI+Fapm6YXE+t0zJWNULnEykGMsusj8Ywyu7SNcqWJbOWGl1rGhMczNfL3bdQ0Z9IVyixKFAislKjpulHEnNS4NmF1nQJJmmo3dGvraxLxijZuoMu6PUTIPZegGvpPFctnssqARICtz5FRx03D1kASCl+bheLRGRfURdflSxVTHL6WUMW2SmXqRdMdjpiXFrHW3BQf8g16u9WoH93n6u1XoTOLu9fesKo/d4+7mxztjVvZ5h8maBQXUQRVABERsHj+hi2VhBwkfFblDRS0CJsBxkujGLRfe1QkSgYpd61gf4zuhbkYTty6gLgtDV6tceNJDL5TojQcvlcqf64PP5XtN2oEex6gHbR2Tq9Tq2bXe1lyaTSX7wB39wS9b/vu/7vs7/jxw5wtGjR9m1axdf/vKXedvb3rYlx3jk8EZL0mOBb2rCsDZjv3YaDKwGPw+iL7gfbMT4rG12JggCzzzzzH25Nj+MCkO5XOb555+nv7+fffv2bdlFeLOEIZ/PMzY2RiwW4+DBg13ZpO1ykX61c7Ztm+vXr7OwsMCJEyc6JeSNYKsrDO0e6UqlwrFjxzr9sGsrCw/ad3y36kM2XeB//Zcvk8tUsWUFU5IxJRHV46KmmzRNG1ER0SQBt1/Dp3mpNHT6I0HmlvMENYeppRwBr0ITgabtMJgKcnF2hWOjKQr1BlOZAid29ZOv1VkqlhlOhvApLryqi6ptMF8sc2IghSSLPD/TCnqH/V4UReRWocStfJETAymmiwVO9vUxmSsgyAJjy60stksSeXqgn+V6jUy1ykq1yvG+Pl5ZbpGFpMfL7lC4Na2oUmK2XMIty8R8HkqVFlnQRIlj8SS6Y+KRXVwrtKYZnYinOJtbDUIlQSCiaSzUShwJJlFEiXStgiM4fGNNxUEEIm6VG+XuDPzBYJyx4jxhxcOAO4AiyKiSxMv5mS4S4ZEUskZv9n6/J8qNO7L0mihjKoABsiMSdDTcgkJAVik3mrjQWG7WWG62qihPhAaYa3RnVQUcBKH3mqSJCulmpmd7UPIw1eglKCHZx61aN+nwSR7Csh/LgV3uXTgO6LZF1apTt5pM1zOUrSprW50AhrUoK3qvT0NCDTFR780Kj7pHmGr0EpKQHOTp4NM927cTawcNGIaBLMt4vV5yuRzT09OIotjRPmy3cdx6eFRbkrarwlCtttoLH9ZEotHRUWKxGOPj47ztbW8jlUqxvNz9vTVNk1wutyWjw18TvFFheCzw2BOGuwU8pmly5coVMpnMuhn7h0kYXk1jsFnx8HYSBsdxOpmtw4cPb0qvsB42QxjaWfy9e/cyPDzc8znYrsrL3VqSDMNgbGyMZrP5QFO3tpIw2LbNpUuXqFarDA4OdpGFdmVgq0SK7c/rxa/e4It/+RK67WArLppYmLKDTsv0S3CJuBUZE4dMpUYw4mV2qUA07mMhUyIa85MuVNmzM8XYVJpdyQBThTIzS1l2xb28NLnAUMTPvoEYL0zMEdRcHBpJcmlhGd2yODqcxLAdmoaJI8LZhUWO9SewHIe5UpFcSUdw4ORgioZtka83ydTSnBhM8fLSIqPBICHNjSQLPDe/qgc4nkoxXshxMpGi3GxiODZns4vUO99ph12RMJOlPE9Ek9iOQ8VocqmwTM1cJazHYynO5hbbD2GHL8SIP8BivULDtLmQbwUAT8b7eCXfHTyfjPVxtrC6rU/zM+IN07B1kq4A6UaZXLNOQFZRJKGn4rA/GOtpW+rTAkzqq8G7X9JIqUESmpei2UAUVNKNImmaKBiEHZ283j3taEANcqXcW0U4HBjkWrVXAL3Pl+JKZapn+4g3yrXbwmgVhbArhEdyE5I91Ow6TdukYtYpmBVyRpN+Ncnlcu86h/0j61YddnkGmF1nMlJYDjBVX2cyElC2Cj3bAd4W/XYU8bW7bdq2jaqqnTHHtm1TLBbJ5XLMzMxsu3Hceni9tSRVq1UkSbqvxN5mMDc3Rzabpa+vD2hV0guFAq+88gonT54E4B/+4R+wbZunn364ZPYNvL7w2BOG9VCtVjl37hyKotw1Y98OmEzT3JL2mrvhbhWGteMtNyMe3q7Wm7Wu0uFweMvJAmys+nInbNvm2rVrLC4uvmoWfzs0AbB+61ClUuHs2bN4vV5Onz79QAR0qwhO20XacRwSiUTns71We7CVE01M0+T//P/+gRsXF7AlGUGTqdUalPUG/kgILeihVG1iOA6qrFBu6MhuGd2yCIQ8SJJIMOxBkET6En7qhsloX4SKabAjEQEZlksVdkV9VM0mt5arHIgHKOPw4tQ8w+EAkYCHs3MtN+YTwykcEQKaxky+hKrJNEyL/UE/Qb+fl5YWsezW+3dqqA8Lmx2BIJOFIif6NV5Kt4J6VRQ5mkhSs0xqus7ZpTQhVUNxCR2yEHSpHI0nyDbrNC2L85kl3LJM1OvuIgsjviBT1TxHw0nq1SortoFHUfjHpemuZNOhcIyzd5CFUV+YjF7leKgfw3aYq5Uo6wY3nRVyerffwU5/mIvFO3wY/DEu3EEWQrKbUV+YQlWmYZmUBYuMXiEgGzyfm+wRLx8J9HGx3BtwO7qOLXbv65YUFpu9mfyo4uNmdQ4cgZDiJSD70CQNDZmG1SQmp8g0ihQxKJp5+lSHW7V57Du0DhHZz0Stl6Rooov5Zq++QgD0dca6AiTUMBP1Xr3DqHuE6XVE0z7Jx5tCz6y71sPCne0/a00Wd+3aRbPZJJfLbZtx3EbO6VHBdlU+qtUqHo/ngZ9zpVJhfHzV72NycpKxsbHO+/Qrv/IrvOc97yGVSjExMcHP//zPs3v3bp599lkADhw4wDve8Q7e97738cd//McYhsEHP/hBvu/7vu/xnJAEb1QYHhN80xGGdDrNpUuXGBwcZO/eva/6pV7r9rxdWK8CYBgGFy9epFwu8/TTTxMIBDa1/lZn0tuEy+VyMTo6Sj6/vohws7jfIFnXdcbGxjAM455Z/IdVYVhZWeH8+fMMDQ2xd+/eBw7Et4LglMtlXnnlFUKhEEeOHOHq1asdktD+DG4lWcgu5Pmr//x5CoU6gsuF6UC1UaeOiT8aRlAVdMvBEsEbcGPYFv6Ih2K1juZyUVip0O8PMDNXYP/OODOZEh63gsfrYm45y/Hd/VSaOuWGQTQVxif5qGfy5C0TbIshjwswOTufJuXzMpoI8fJCmqZp4XO52J0M4yCQq9aoWRa3lpewbIe90QgJn4cX0wvot1+XI8k455aX2BuO4FVcVA2dS7kVarfJgSwKxPxulmtVTsRT1E0TRRL5anqm6/q/JxLhQq7V3jTg8dPv8VOzdeaLJS7cNhELyyoL9VLX4yIujXSztW3AHSCp+XAch6xZZbZSZGpNi83xSLLj+tzGkWCyhyy4RAkHm72+JG7JRdMyWWyUGPYGeT471bWvgIMqiT1kIan6uV5d4E4cDvRzrdobuA/gZdrMEpA8hBU/bklDQMAtySw0cmTsMkvNBkvNBgAHfSlu1nrbkcIuN1mzl3iktBA3qr0T0HZ7++5SXRhkptFbRXi16kLV6m3fAvj2yFtwiQ+33edO3Cs4V1V1XeO4hYWFLTGOu9s5PaotSdtBZCqVyqbakV5++WW+/du/vfP7z/zMzwDw3ve+lz/6oz/iwoUL/Pmf/zmFQoH+/n7e/va386u/+qtdZO8Tn/gEH/zgB3nb297WMW77T//pPz34k3qt8QZheCzw2BOGdvCz1uTs8OHDG+rl2+7+//Yx1rYklctlzp07h8fj2RJTsa1+Du0AeGBggH379rGwsLBtr1E7W78R4XmpVOLcuXMEAoF7jpptr71dhKF9zu0xrocOHdp0ZmezhGF5eZnz58+zc+dOdu3a1ZlcdCdZ2CqMffky//CX30B3BExRQZQkyvUKDcvG7Q8gaAouTaHa1PGFPKSzZTxBjVqljuE4lOs6qCJLhQr9qSDnp5Y4tCPBhbll/A0Xh3YkeOnWPCGvyr6hGBfmlnHJEgcGY2SrDSazeXb3Rag2m4z6vdiOxddvaxb2x8IIssS5hVaAnvK5qdomhxNxFisVRBGeX5zHvP352BuNoMoyMbeHG7k8EU1DlIUOWQi6VI4m46w0alR0nbPLaQb9fnK1ete1/1Syj4rZ5GS0j/lqmblKmajb3TUlCRwimsrEGifjpOplXzhK2WgiOEXmqmXmqmVOxVPMlrqD46PhRA9ZCMgqC40iqiAx5AnjVzR028Iry7yU764MBGWNmVpvIH4sNMDFddqL4qqbXKXQtU0VZZb0PKogE1cD+CQPsiAhOJBp5hFMF1mrSVZvaTr6lSDLVr7nPrnTHV+XLIy4Y4yvU0WIu4JMrOMY7ZE0ZtfRQAhA017fj+Fu1YWd7mFmGlMIjoiKCxkVn+pDEzXeHP7Wddd6mLifbP56xnHt6sODGseth0e5JUlRlC1ft1qtPrBpG8C3fdu3veq1/nOf+9w914hEIt9cJm1viJ4fCzz2hAFak3LOnz/fyTxv9Mu83R4G7WO0A9fFxUUuXbrEjh072L1795b1kG9FYLy2RWptALwdFYw21gpnXy1DlU6nuXjxYtekn42svR3n3V730qVLZDKZzhjXzeJBCcNaX4wjR4506RUEQWBxsRVcxuNxgsHgpj9zlmnxt3/wBW5emsOWFXC5sAWHlWIRxaMSigZwJAFkgZVCFdslIDgKpuTg9SqUDZ14xMdyuUos5KVumSiKxP6ROLcyefYORNEdi6mVAk+MJFiu1XllapFDA3GqtsmLUwsIIpzZPchiqcpsocLhgThTpRKH41HSpQrlRp25eiuDvTPoQ5ZFJkoNMotpRkJBpislVEniaDyOg8BEOc/1Qkv4qkoiQY/Gcq3C8XiShmXhccn848JqoOqVFRzRoWYa+BUXuwIRfC6Fs9lFqmtakU4l+ngl152d368FWGjWORZOIgkiC7Uyg14/zy13Z7sPhmKcy3c/NqRozNcLt994GHAHialefIrCbL1IwWhyo9IiAzs8Ia5X1mm38Yd7jNsCssZ0vVeMfNCf5HplAb+kEVUDeCUNEPBJMuO1JWqmzZRZoD0y9XCwj0VznclCprnuPVIS1/9+qtL6wWdM8ZM3ep/TLk+S6+tUF3Z7hphuTAEgOiIe2YtbdOMRNWxHZFTbg4OA7dgYjoXumDQtEBw/DbtJHQuokanXeFf8rbilh9Oz/mrYTPuPoigkk0mSyWSXcdzy8vKGjeO2+py2E5ZlbYvOoFardXwx3sDW4A0fhrvjox/9KJ/61Ke4du0abrebZ555ht/8zd9k3759nX0ajQY/+7M/y1/8xV/QbDZ59tln+cM//EOSyWRnn5mZGd7//vfzpS99CZ/Px3vf+14++tGP3lcL9WNPGIrFIi+88AKxWIxTp07dV2n0YVYYrl27xtzcHMeOHeuZobzZ9Tf7HNbqFe5skdrOsa33IgyO43Dz5k1mZmbu+3XbDiM0aN2EGo0G5XK5a4zrZvEg52vbNpcvXyaTyXT5YrTFzTt27CAQCHTcrwGi0Whn3vv9Zt+yi3n+6nf+jkKhieNSsUWJumFQMep4Ql6QXJQbTRSPC0WU0AIqsiph4RAOeWhYNpIiYgkO5XqTRNzPwlKFlNuPLUDTsBBkARcykiyyVKsT1FRGYyHyepN0qcKxgQS2BF+71cpAH+qLIckSumFxOZNlf1+cqVyBY8k4xXqdvKGTq+oAhF0KAU0m4A5zPZvlZi6Pz+Oi2GxlwlVR5KmBfnKNBk3T4tzyEgdiUc5l1s42dzgcj2E5Dn5ZZbyQY6ZUxJGdLrKwMxDiYuH25CVBZFcgQlR1czO/TNnUOX+7bWnIF+BSsdtnwC+7WNErXRl5n+TiSDhB3TKpmTqztSKztRIBReNr2W5iIQkgi/SOW/XHesgCwKg/wsXSHH5JI6EG8EgqAgKGo+MWveSMBjmjRUTiLi81u4ZudydaRj0xrq0zinWfL8V4rbelacDxMV3v9VHY4YoxVe/VIvSrEcZrvdWFsBSgbNYYUgeQxZYhoOOAadtYtoNfTFKx6lStBhWrATQ45B/m6jqjWndqA0w3eo+hCDLfEX3tqwuwdU7P6xnH5fN5crncqxrHrYdHlTBsV6vUZluS3sA6eKMl6a74yle+wgc+8AGefPJJTNPkIx/5CG9/+9u5cuVKJzn+oQ99iM985jP85V/+JcFgkA9+8IO8+93v5mtf+xrQilu+67u+i1Qqxde//nUWFxf54R/+YRRF4Td+4zc2fC6PPWHwer3s27eP/v7++2b8D0PDAC1mJ8vyfVU/NorNEoa2XkFVVZ555pmeFqntElW31wbuOnXowoULVKtVTp8+fd8X6O3wNSiVSly6dAlBEHj66ae39GZ0v+er6zrnzp3Dsqwu4rJW3Oxyubr6mYvFIplMhunpaS5fvkwwGOyQh3vNcr91YZq//eO/p2mC41KwJZmGbVBsVtH8fjS/H9228akSDd2kYds4ksBitkw84WNqscBQf4iVcg1bcvD5NcZuLXJ4NMWluSVkUWDfSJwLs0u4XTJ7BmJMZQpMZ4skoj5iqkalqWMJDhcXVtiXiBD2ary8kEa3Wp+fMzsHqZkGlu1wM5snFvKSq+lEXC4Smou8ZXBhpZVJlwWI+j3MVCscisaQRRGXIvGPc6sBY5/Xy2y1hOU4DPuCJNweXLLE15dW22VEAWI+N9eLq20+PlkhoLqIupPUDINbpTyz5RJZvcay2ejsp4gikijQtLu/X7tCIZYbVY4F+xARyDRrRFQ3X13prkJ4JIWMUel5r54I9TNW7G7pkQWRut0iRi5BIqUFcZkCGhI1w8QveinodQq3JyedCA9ytdxrAtWn+bla6a0iCGLvZ1cEqlav4FgEHBW4s7jrOJi0zlFBJqD48IgaqugiqLgJygFMx6Jh6ZStBmWzSkKLrRv87/EMMLEOwQhKXqbqvdsBnJ4TauFN4ScJyI9GgLhdwfmdLu13M45rC3PXZiW3axrRZrFdrVLVavUNwvAGHho++9nPdv3+Z3/2ZyQSCV555RXe/OY3UywW+ZM/+RM++clP8ta3vhWAj3/84xw4cIAXXniB06dP8/nPf54rV67wxS9+kWQyyRNPPMGv/uqv8uEPf5hf/uVf3nBr/GNPGBRFeeAJPttdYSgUCqysrKBp2gNPz7kX2oHmg9xIlpeXuXDhwqsKxLezJWmt/mQtqtUqZ8+exe12d4z27hdbXRlpt0UNDAywsLCw5TfI+2lJqlQqvPLKKwQCAY4ePdpxbm5XFqBX3CwIAqFQiFAoxO7du2k0GmQyGTKZDJOTk52AIB6PE4lEup7fS587z5f+329giSKC240jSZRqVaq6QTAeQfW5KVYaCKqIYDmsVOqk+gJkCjVSfUFylTp7dsaZzRQZHYgwkyvSFwkQDrm5Mr/EgaE4uUaDs1MLHB1JsViu8MLEHBGvxv7hOBfnl6kbBk+MpLAch4GQH9O2Obu4hOM4HEnFUV0SX59pBcmyKLA7FUUWRfZHo0zkcnhViXSjFawLwNF4lFKjgYrA5UyGvcEAY9lVvYBbkugP+sGBhUqFmVIJn8vF2Vx3EH08meLlzAJ+xcWoP4wkiCA4nMt277cvEuVCvnvbsWiSV3ILiAgMe0NEVDc+WeFScYm8Xmex2iIDIUWjvM6knwOhOOcK3Vn9hOrlenm1YhFzeUmofmKqh5xRw1QE0o0ytyoFBBwGVS+LlW7SEVE83Kj0Zvl3eWPrGrrdTQB9KDDIlUrvdKVD/kGWm3lG3ClUQUFARNd1nLpOwa4jCBoVwaRiVoAKQ+4YN9YJ/n2im8l67/kANOzGutuHPLF1xdFDaoq5Zm8lREDg2dhb1l3rtcDDyOa/mnHcrVu3OsmGtvZhu0eTPyi2c6zqVif+3sDrD6VSd+JFVdUNTTErFlv3qbZVwCuvvIJhGHzHd3xHZ5/9+/czPDzM888/z+nTp3n++ec5cuRIV4vSs88+y/vf/34uX77M8ePHN3TOj963/CFiuwjDWsO4YDCI1+vdtgvqWvfdjd5I1uoVDh8+3JnvvB62syVJEISeCsZWTR3aSm3H+Pg4U1NTHDt2DLfbzfz8+kHKZrDRlqT26zMyMtLRwdzp3NwWPL8aNE1jcHCQwcFBbNsmn8+zsrLC9evXaTabhMNhYrEY5z5zhWuvzICqIigKBlCuV2hi44+FEFQXdcNEF2yCPg8NwyCRCtDQTSIxD9Wmjt+vUjdMZFnEFm9XZJVWy4xHU8k16vg1lZF4mLlia0LNqZ39LNWqvDg5T0Bz8fSuQa4uZSjUG+yMhmhgczAV51a2gCxLvDTfCsYH/D76w36uZLKUdR1w2BsNcr1YZMDnI+XzI8siLyyuvodDPh+T1dZxB1wu/IoKLpmX06sBftLjZbZaxG6TOgeeSCQRgL3+KLdKeS5kljmRSPWSiliSc/nVAFxG4EgkhYDAgUCCqUqByXKBQrMBokVxjVs0wEggwMVi95p7/FHGCmvN3QQG3EF2eENULZ2KqbNYL7PUqAMiE9UMzTvaiPZpEcaNXgH0kDfIpXL3Z1zAobck0KpcZIxuYbaCRFTxISBw0Dtyu73Jpm7pVM0m840COaPKkr4qSBaBqKSSF3qJkdBstljeHdjpTaxbXdjt6WdqHZdpr6Qx3ejdDq2JUuvhgLSLuGvjBozbjdei/WetcdyePXuo1+sd8fT09DSO4+B2u/H5fK+Jcdzd8AZheHwg8DrSMNz+d2hoqGv7L/3SL/HLv/zLr/pY27b56Z/+ad70pjdx+PBhoJXMdLlcPVrKZDJJ+vY9LJ1Od5GF9t/bf9soHnvCsBnhkSzLWy56tiyr01d+8uRJcrkc9fr6c8C3AvdrQGeaJhcuXNjwSNeH4STdzo5PTk4yMTGxJVOHtoIwtLUdpVKJ06dP4/f7qVQq2+LvcK8Kw92mMm2FGVvbKTYajeI4DrVajaXFJf7ytz7NwlQeyeNGUm3UgEhFb6A7AprPj6gqSC4R07IJRbykcyXiySA3p5fZsTPOlakl9u5KcGVmmeFUCEsUOD+5yIl9g1yZX0YA9o0kGE9nKdV1YmEvcbfCTLbIUq2KblmcGEqBLPD8VCvQ25+MIrskptIrzBZKHB9KcXlphSf6kpSbOn6PixcXVoPzUwMpqo06A2438+UKUa+HlxdX/x7RNKJ+D7GAl6ligflGg0MeD5eKq+JaRRRQFZFyw+ZoNIEsiJSMJhOlHGVD7+w35Pdzudjdlz/g8TFRzrIvEMWvqCwXi5Qck7lakZVmt4/CkN/PpUK3nuFoeJ1xqYKI36VyTOkHR6BgNJivFQnIGs9lpnre34TqJaN3jwr1Sy7S6wiUR71RLpd7CfHRwABXKrez/A6EXF7CipeUGqBmN4koYWqmTt6oUjBq7POFOF/srS48ERzkUqV3nOl+3wA31pmANKRGWTR7tQ4e0XXX6oLp6Otu3+lJrltdSLli62oXAN6knlx3+2sF27Zfc7Gt2+3uMo5r66PaxnGBQKBTfXgYxnF3w3b6MLzRkrTFeB1OSZqdne2KvzZSXfjABz7ApUuX+OpXv7ptp/dqeOwJw2aw1cFwrVZjbGwMURQ7hnHFYnFbA+72zWMjx6hUKpw7dw5N0zY80nU7Kwzt9dt6hXw+3yXe3Qw2O6a0Xq9z9uzZjvak/Vpt97jW9WDbNleuXGF5eblrKtN2ODcLgoDVdPjif30Bs64S7uvHEgWquk6mXEbSZCRVQVAFLMFhJVdpeSsUawgumWpdJxj3UWvqjO6IsVyocGRXy715z0AMf0Dl5Yk5juy43Xp0c5YdiTAej8LluWW8mot9gzHqhsnVhRX6wn4uLizxxECK/z97fx4kWX6X98Kfs+e+r7V2VfW+T/dsLeCySEYSF1+D5D+EMcEWQBBIERj75Q+bGyzGEEbcAMQrww1fB8sbyCB8jQUyGoyFAQnNaKa7qrqr1+qqrn3Jyn1fzznvH9mZVVl5qqe7umrUM9NPRMdMncw852RW5Tnf5/f9Ps9jmCbLpQKZdJuAXxxsr5AoksT0eoJLI3GubmwgCQKnwiF8Nq3HPnXC7+NOJoUAHPUH8KoamWaVqa3tIv1MKMytzLYNalizMWjTSNWrNFo6N1JbSAIc8fl6yIImSSBCXdeREBj3+PEpGg1BJ5WrcC+f2T6GJ8CtUu/K/sVglBu5frvUzXqeUbsfv+YAEzL1KmG7g2vp3pVyuySzWe8nAGc8EW5baBGOe0Nc36VzEDARxHYSg2AKhFQXPsWBQ1JRRIGjzkEKzRqpRolkvUa1ZbJZL1DWezsibsnGfKX/mDZRYbnWX/yLQK5p4a4EOFXZqrFBWHeyRn93ZNweY7nWP1pkE1VWLbYDeGQ7qWb/9hEzTlw+OIOKg8CzJjAWRRFZlvH7/QwPD39DguP2wmF1GEql0p6Boc+xT7wPRc8dy+PHxSc/+Um++MUv8vd///cMDQ11t8diMRqNBrlcrqfLkEgkuq6JsViMN998s2d/iUSi+9jj4j1BGPZbHEqSRLNpcafYB5LJJDdu3CAej3Py5MnuRf2wV+gFQXgsnUFHr/Ckoz6dAvlxshL2A0EQuHnzJpqmceXKlQO7oTxNYZ/NZpmamiIajXLq1Km+ZFXgwD+PvcTlu8PqOl7ph5XcvDa3yf/7m39JuWYi2jQEQaDeatEUTdw+L/WWSaXZpFFrpxujyjSbdWSbhCJJCDYRoQqKXabZ0nE7bRTrTUIeJw10ZEHiSDTAar6I06ZweSLOQibPwmqW04NhmhhcXWwXdi9NDNI0DByKykouj6iIFGt1LsSjODWFr6+ud8nAhaEoqWqFFwfizKezmJj8w/pqd4Qo4nRg1xTO2sMs5Qvcz2Q4Hwszv6OTMOBysVjMMe7149dsJMolwi4Hk6ne4nfC7mS2sP06wWxnMNR1HZessVDIMpvL8FI0zvV0b8dgXHX2kYWgZmOx3CYUcbubiOZCEkQUSWA6u8GWUWOh1B77GXK4uZHrL3zP+CJM7tIzqKJIttmfQzDi8HHzYfqzS1CJ2L04ZQ2PrJJtVYgpfrbqJTZrZTZrZS75B7ma6+8WHHOHuFHoX5k/6gpx0yIZ+qQ7atldOO0e4q6F1mHUHmbewmHJKdrIiCWw+HrXapX+jWwHuwmmiF3SsIk2VFHFLtowgTH7OEJ7MAITMEyTS+WJZ6o4h2ePMEBvYf52wXFOp7NLHrxe76G+l8MSPVcqFUZGRg58v+9rvA8Jw2M/3TT51Kc+xZ/92Z/xt3/7t4yNjfU8fvnyZRRF4ctf/jIf//jHAbh37x7Ly8tcuXIFgCtXrvDv/t2/Y2trq+s2+dd//dd4PB5Onz792OfyniAM+4UkSU89LrRXfsHOY3wj0qR3nt/8/DwLCwtvq1fYa99wOO3dTCZDvV4nHA7zwgsvHOjFfb+EYXV1lTt37nDixAnLm0KnMD9owmBFekulEpOTk7hcrm5Y3duJm58Gt742y5d+7+9oiTKGKmOIIuVmnUK1ht3rQXM5Qddx2T1U6k08DoWtTIG6oZNKFXF5VBIbNY6Nhbj1IMHpiSipUpVEtsiFEwM8SLTDu6IhF8iQr9YpNBsM+Nz4bBplvcVCKsuRoI9YwMWbS21C4LFpxP1ubJJMvdmi1GhwL5OmZRi4VZXTsRCb1QpL2TxL2Tyjfi/zuQyGaTLgcDDk85GsV5hJbncOLsWjXEu2iYAqihz1BbArMtV8iwe5NhkY9Xi5lU32fEZnQ2FuZreI2ByEVRv1RgPT0PnqZm/hfNTrZyrT2zHwqTa2dohxXbLKiNNLyGYn3ahgGgXWyyXWyyVO+0JM5nqPLWDiVBXW671/16NOH9fz/YX1eV+MqdwqIgJRmxuf4kCTFDRRQBYkNit5cmaLXDGNJkr4NJV0o5dgeGUb98uJvn0HVSd3LYTRQcXJbKn/XFySxoNqf9dBFgRSjVzfdgDbHnkM484od0qLOCU7dqntoqQKCqopU2/WiDSV9vdDFkESQRRI1CoYhpOa0aCst4C20Pusa4Q7pX4dxKgtzqAZ/oaP/+xE57v/rBGGvUjMo4Ljbt26dWDBcXvhuYbhOd4L+Kmf+ik+97nP8YUvfAG3293VHHi9Xux2O16vlx/90R/lZ37mZwgEAng8Hj71qU9x5coVXn31VQC+8zu/k9OnT/MDP/AD/Nqv/Rqbm5v83M/9HD/1Uz/1RIu072vC8LS2qp1RmlKptKce4J0gDHsVx81mk5mZGYrFYncGfz/7hoMnDMvLy9y7dw9N0xgeHj7wm+CTEgbDMLh37x7r6+tcunRpz5bzzs/jIM95t+g5lUoxPT3NyMgIx44d6xKKTleh85qDKmj+7k/f4Ot/NUNLlBA1FUSRXKlMTdfxRQOodhv5Sh2bWyOdL1M1DUIOmUK9xXgsRKLSwO12UkNgI11gMKRx7cEGR+MeImEXr99b4fhgEF2E60ubRH0uRiJeFrayzG9miARdOFSZY5EALofG1xZWEUw4HQ8hKiK3NpNtAuB1s1UpM+rzoskypXqDmVSScqPdKQw57Zhmi0FVpSaKrJfL+D1OHuRy3fd6KhxiLp/lhXAMwzCZy2aQJZFrW9sFrUOWqdNqd1FoW6VOePwoskjM7mKzUmKrWiFos9MQemdmVEEgVyv15iCYcMofIpXLoTk0ckaTtXIBRZT6Qts0SSLT7F/IeCEQZ3oXMRAwUSUR3TQREYjbPPhVB05Zoao3GLAF2KwWWK2UWKXEOV+MaYsOxTlftM+KFdoZDTcK/duH7F5uFot924cdPm5ZbD/qClt2F065hrjzcLtmyLhVJ07FjluyYwo6xx3jGCZtO1WjhWEaLFVyNHSZmt4EtjvEx10xHrS22qrCzp1Nh6GGhw0l13dsl2i3FEcDfDT8zZhLz1Zx3vneP0vnBI9/LXy74Di73d4lDz6f76nuN52u+HMNw7sDz4Pb9sbv/M7vAO2E8J34vd/7PX7oh34IgN/4jd9AFEU+/vGP9wS3dSBJEl/84hf5yZ/8ya69/w/+4A/yS7/0S090Lu8JwvA0I0n7LeaLxSJTU1M4nU4+8IEP7Gn9+Y3qMHT0Ch1r0v06V3RuBLqu78vedDcMw+DOnTskEgkuX77M3bt3DzWR+XHQbDaZnp6mXq9z5coVHA7Hns/dywr2abEzh2FpaYnZ2VlOnz7dtQzeqVfouEsdBAzD4L/99l9x7/oKok1DlBUaQKlapimYuIJeTEUmX6lRM00cioigycQ8NkqNFiNDAcrNJrGwh4ZgEvK7EVWJcr3BWFQhV6sjCSbjIQfrhQItw+SliQEepHK8Ob+GJotcOjrIg2SOB8ksF47EmE2muTQUI1mq0BRMZjfac+9Rt5PhgJeFTJZ7W2nCLge6BOVGE4+mciwQIF0pslDctgm9NBTn6mZ7Jdxns3HM76esN6k0Wkw/nOG8HI9xdat3tXzc76PUanApFKNQr7NUzFExm9zf2tYiCAKEnA7u5npTkk8HQ9zJJxlWHGg6NATwaBqvbz0sThvbdqlL5f7k4nP+CNcsUp7nyw9HmUyI2lwENRdB1Ua+VWNQ87FZLbJSLrBSLnDeH+VmoXdFXxFF0vX+Yj6g2Llb7O8ixG0ebhX7ycWQzcdtC2F0XPNwp9hbgEuIhFUPFb3BMccQsiAhILRJgGFQbDZxij4KrSoFU6dQL0O9zAlXlLlKfwfjgmeY26X+cx20BXlgMb4kArqDnbxi+3wlD0t6/2v8iodX/Re4vjD9THUYnmXC8KSF+aOC4+7du0ej0cDn83UJxJMmK3c+q+eE4V2C5yNJez/9MWpbm83GZz/7WT772c/u+ZzR0VH+8i//8skOvgvvCcKwX3RSmJ8UGxsb3Lx5kyNHjnStLR91jHeaMCQSCWZmZnpWp/eLzsjLQRTI9Xqd6enpbtiY3W4/tJyHDol8u9GhztiP0+l8rKyMnRqGgz7fjrh5c3OTF198Eb/f3z3WQYubAarlGn/y7/+cxEYewW6jiYCoiOQLRZqmgOpyIdk1BFlAUyVUUaBcb+J0aaRLVewOlWKjQbnWIBJ2MbOwyQsnh9jKl8mWqowO+BCqMrVmizI6cY+DbLnK7bUEpgBnB4JUTIN/mGuP81w8EsMUQNcNrq8lODEY4s5mktOxEKokk6pWeGOpXZA6VQWHXcGlacRdLmZTKdLlAgvl7ZGaiwNRFvM5XozGKTYarBUKJKoVlgvbNqDHAwGmk+0C1KNqjHt9eG0a06lNcvU6C7Sfezka5dqubIVL4RhX0+2i1q2ojLq8BDU7a9Uiui6y3Gp3CXyKZlmoj7hczOxyVRp3+5neIX52SDIDdi8DThelZoNCs856pchGpUK5obMqZynssmE96Qn3kQWA896YZRfhiMvHDYsE6KBmZ6uZ69vuUVU2GiY2UcGnOHFJGpqo4FVshFoemoZOWW+Qb1YptKoENQ8zFlqH854h7lkU/yP2gCVZUEWJVQvRNLRHpxIW5kjHnIPMWwS1KYhs6f2iaYDvDH0AWZCeufGfzjXnWTonOBitwOMGxwWDQfx+/9tep3eObB40KpXK85Gkg8ZzwvCuwPuaMDzpSFJnbGVtbY0LFy50xSOPwjs1ktTx4e9kBpw7d+6J1O9vt/+nLerz+TxTU1P4/X7Onj3bXfk5LNehxxEn7yfz4bA6DIZhkMlkUFW1R9x8WGQhvZ7hjz/9RYrlJoasIigqjWaTXCaH3e3A6XIi2mQq9SblUhO3187KZo6BYT/zaxkmxkNcn9/g7NE46/ki5ODEeJTX765wdDCI3+/g2oMNRsI+IgEXt1a2AAGPz0VElphPZMhWK6wUq4y47fg9Dq6vJboi5ZcmBmgaJkGng7mtDCMhHyu5tpPORNBHwO3kzlaSxUy7oD/qczD7kCyEHHaO+gOk6lUy5SrpcrtwPz8Q5foORyS/ZkNRRC5GYuTqVR7kchQadW5mt2ju+P2eCASZyuwSL7u9tAydS4EY6VqVlVKBVbPIWrVItt4bGjbs9XAz11vojqmOPrIQUO3E7C4Cmp26rpOqVdisFhHtAn+f6B/nOe4LMJntLfQlQegmOu+EX7Exa1GcDyhObhb6V9mPOoNs1YuM2SPYJQVZkNq5GaLCeiODho1Ss0HpobvRsN3PreJa373QJ9stQ+AkQSDR6O+uADhlFfrfAiddA9wpLfZtD6se5irWo0V102JHwDHXIHOV/n3JpkRgRWWxsnhghhgHhc595FnqesDhjGfuFRw3Pz9PtVrtCY6zSqnXdf1AO7EddEap9jPe+xx74/lI0rsD7wnCsN8L6JMU853V8VarxQc+8IFHjq3s9xj7RcftaXJyknK5vG+9wl7Yy8HncbG+vs6tW7c4evQoR44c6fl9HTZhsLqZ7ZVp8Djo6AYOssNQLpdZXm67xHS6HJ3uSGcW9yDJwoPrS3zhd79MrWWApqGbItVajWqrjivgoa5Ds97EYZMp1Rq4/Q6ahkls0ItuGoyMBCg3Wpwci7CeK3Ak7qduGuQrdS4dG2AhnUMQ4MqJYW6sJVjK5jgS8eFyatxc3UIU4eRQGEkSaQgiiipzM5nBMEyGXBoep423ljcwTBNBgDMDEdYKBS4PxdkslnDZbby5sl0oj7vtbDYaXI7FKdQb5GpV7uUyZHYYGlwejHM1sYFNkjgWCKKKIiW9yc0dQmiXolAxmj1kwa2qZJoVvKrGiMuLIkqkq1Uaps71dK8oedjjZmaXSPpiKMr1XO9qv0OUUe02zooOBN2kWK+TbFQJ6CJf2+pdDW8TgP7C9YjTy3ULLcLFQLwv/RlgzOXnen7HdhM8okpEcRJWPciCRMswqOgtco0quimyWa2ySa+W4qQnyGo117d/j6KxblGbjzkDzBT7V/hPuwe2cx12YED1cr/c/75kQSBRt+4IRDUv2Vb/OR2xR1it9XdaBCC3K2yug//Nf5kxZZR0Ok21WuXu3bukUimCwSCBQOBAxjL3i4O+DhwUDivvoIO3C46TJKlr3doJjjsswTM8H0k6FLwPcxjejXhPEIb94nGL+Ww2y/T0NIFAoGd1/EmOcVi2pLDthOTxeLhy5cqB39T2OzZkmib37t1jdXWVixcvEg6H+57zThCGnTAMoxustzPT4ElwUCNaAOl0munpaTweD4IgdMnCYYmb3/qraf7X59/CUGQMRQVJplKvUazVcPg8yHYbektHdak0mgb+iJtsvoo/5GR5M8vQkJ/1dBGXS8MQBfKlGuGwG7Nm0NR1MtUqQ0EP5XqD66ubDAQ8uO0qC5k8DzI5wm4HozE/t9a2KDeaTEQD5Os1zg/GWM8VCXjtTG+2i24JOBnwUK7VyFXrXFvd4NJwnGsPg9lcqkJMlWlKEqVqjWvrm6iSyFDAw3x2e/X6dDjYHoEKhbmfyTCztcXlgTh3k73ag/GAn+up9iq8W1EZ8/jw2DWWi3mWywWy1XZH4HIszrVkb1F7IRRlOttbnAZUGwvlDCHVTtzhRhNlkrkcPpeT6/leYhG2OVjTezsTAKecPm5VMn3bVVlEr/WSVo9sY660/Z4UQSSsuYhoLgTggneYmt4k36yRrJfxiDamyknY5bx6xhPlbrm/K3DKHeZ+ub8AH3UELB2T/IqDe3t0F5IN64Ldp9pJtPo7Dyddg9wr93dZvLKD+T26C3ulNx91DLJU67dxFRD47ti3EtECDAwM8LWvfY3BwUGazSaLi4vdULJO8Wq1sn2YeBYtVeHw7Ev3wu7guHw+TyaT6QmOczqd3YWdg/4dVSqV54ThOd6XeN8ThkdpGEzTZHl5mdnZWY4fP87IyMgTX3wO05YU2rHe2WyWQCDA5cuXD+UGtp+ivtlscv36darValeVf1D7fhxYjQ7V63WmpqYwDIMrV65gs9n2te+dAuWnQccp6tSpU5imSSKR6I4gHca88pf+0/9i5vU5WoqMqGmAQKZUotbS8ceCyJpKpdHE5raxsp4hGPOSSORweO0srmcIhN1M39/gzLEYN5cS+Fw2RoYCTM6tMxT2EPI7uLm0xVDYg9ttIyK4KFTrpKtVPHaNAZ8LUxJ4c6G90n08FsRuU1jO5UkWN7gwGmNqfZMRv4eQ04komry1tl2gjrnt3NpMcDoUoNFqkS1XWGs1Ke/oJJyOhZlKbDLs9hB1OWkaOgvFPPnM9vL3mUiIa4negv9yLE6l1eClyACZWpXFfB5Flvjqeu8q+KlgiMldZCFgs/Gg1C5yXbLCiMuLQ1KRJYH7+TSpRo1UtU0GBhUbNwq9ZAEg7nAykyv1bPMrGnO1/sL6gj/CzEONgoRI1ObEpzgI2x0UW3UqrSaZeoVUvcJqq4hHsXF31/iTgElT7F8sEYGSYW013bRSDgNO2XqB4ojDb9ldOOUe4I5Fd8FrqNy30C6IQHaPjsCoI8TtnWNKpoAmykTVAIVWhZgaQhZkJEFCEiRERFySyoR9ov10HmqdMBl3DBDRAr3n5PXi8/k4evQotVqNTCZDOp3uWdl+p7oPz0LK8258o61eRVHE7/fj9/uZmJjoBsdtbGzQbDb5yle+cqDBcYZhPLdVPQw81zC8K/CeIAz7vYjKsrxnKJmu69y6dYt0Ot0jQH1SdEjCQbdITdPk/v37LC0tdS+Yh3UzedKRpJ1C4itXrjxSoPZOaBgACoUCk5OTfRqK/eBpOww7LVwvX75MIBBgdXUVwzAORa/QbLT401//7yzNbSHaNRAkmibkqyV0SSAQDmGKAslcGckuI7R0FKeKokqIdhmHXaUpmgiiwOljMRYSGU6ORkiUymxmirxycpiZ1QSr2SJnxyIky1UeLG4S9jgYjvrIlWvMbWU4dyTGnfUtLgzFEERYyOTIJduF9NmhMIIIYwEfC+kcPoedG2vt1X5JEDgbj9DQmxjVOreTGWyigMOuUK63la4C8OrIIHVDZ8DlZqVQYLNcYtjvJV/fJgsRh4PlYgFMGPV6CdsdKKLIdCpBdcfiwaDL1ZP4DO2uQ7JW7l7vRQRG3F5GPF6KzTpb1QprpQK3M2kuhLZzHjqQBYE6rb77xVl/mJmchfjX4+PGw3Eml6QQkGxoOlTyJUYlN2UMMq06q+UyOCTulbZ6rVyB094wd4v9QuFz3jg3C/3F+TlfjJsWzkhnPVHuWowKjTtC3Cv1dx0Ce3QXRCCzR6qzBwVdMNrBalI7W0ERJbyynbrZIKAEMM12qFrLbH//MvU6XilM3WhRNxrU9CZV3WTYbudBqZ+YjdhD3C33dxcAvm/gQz0/7y7QbTYbAwMDDAwMdFe20+n0O9Z9eBY7DIfpRrQfdILjZFmm2Wxy8uRJMpkM6+vr3L17F5fL9VTBcZVKBdM0n2sYDhjPNQzvDrwnCMN+sbOY31nUVioVpqamkGX5qVaiodeW9KDQWb2vVCpcuXKF5eXlQ9VJPMlIUidRenR09G0dpODp9RFvt2/DMNjc3GRmZobx8XHGx8ef+kb+NB2Gzu+uVqv1WLgKgkC9XqdYLB5osVHMlPjPv/rnZHJlBJtKU5BAEckUC+hIyDY7qDKmYOLy29vjlYqAapPRBZOWbiIoIpVCE7fXRtPQESWRYqNBwGWnqsrcWk0wEQuAIHA3kaSlG1wai7NRLHP1wcPU5mMPU5tVlbVsAWTIVWtMhPxEfS6urW1QbbYL9uPRILeTScaDfrw2G/lajQfZHIWHhb8ADAW9zGVzjDrsSKaJKIm8sb7WFU0DnItFuZbYLlq9msbxUIBSs8lSPsdyPk+iWCLsdvaQBUkU0DSZWq23+3gyFKLSbDLm9lNsNFgu5vFrNv5uvXdUxqOorFb6V8SPKDbm9N4kYk2USNa2OwsB1U7E5iKo2akaTY47QyRqZXKNGkVKvBiKty1Xd30dbabRRxZEoGL0WwfJgkjSwrVJEgS2Gv3bRaCkW3cdtD3C1Y44gqxUU4QkDzZJQREUJEHEI6uUjTpeuS0arxktanoDRZBYqWXRmyb5ZhV2aCfGnAGWq6m+Y1zwDDNrQQq8soO5cr+OA8Ata5aC6iP2GGfcvQmqj1o537my/U51H55FwnCYbkRPg8493ev14vV6e4Lj0un0voPjyg+NFZ6PJB0wnncY3hV4ThiAVqvVJQzJZJIbN24wMDDAiRMnnvpCKAjCgQqfd+Y/dPQKh7VK38Hj7H9novSTODQd5rkLgsDi4iLr6+uP7Wr1uPvdzzlXKhWuXbuG3W7vEze73W5sNhtvvfUWmqYRCoUIh8P4/f59/w2uz23yX37zS1TqBoakYMoKtWaTQrmK3eNEcziQ7Ar5Ug3FoVBttKjrBqopU6g1KLdaaE6FmfkNzp6IcXNxC5dDYTDmZ2YhwWjMh8uloVarlOoNsrUaJwfCZEpVVvJFEvkS4xE/Qa+Tq0tr6IaJ167hcqn47DbsqkLD0Jle3+yShSMBL16HRrjhZD6Vxa2puBxalyxIwCtHhqjoLTyqxnK5StjpoKo3e8jCMa+bycQGR30+/DY76UqVgNPOV1d7R2FOR8JMbvWukL8Qi/HW1joxh4u4w4WAgF2R+drmSs+1PmCzMVfo1xccCwSYTPWurgckmeUdjj1uRWPA7iJud1Fo1fAoNhLVEulajWy9xqDTzWqldyU+Yncyk+/vRBx3+Zmr9guCz/mizBQt7FV9MaYthNEX/HGuW9iunvXGuF1awyGpeGU7joc2qk5JpYnOaecwTdOgpjcptxoIgsD1/AYNQwe2dRkCJiNOH2u1fo3CBfcg6/X+z3LCEWax2v+eJUFgfQ8R9JgjyK1SP/HxyU7mKtZE4rsir/Rte5IRoHei+/AsEoZ3UzbE7uC4UqlEJpN5ouC4SqWCLMtPPdr0HLvwPuowPCcM71J0xj46M+OdgvdJnXMe5zgHQRg6K+W78x8kSaJet7YPPAi8HeFptVrMzMxQKBSe2KHpsDoMrVYLwzDY2to6FNeoJ+0wZDIZpqamGBgY4OTJk33JzXa7nRdeeKFrr5pMJrl16xatVotgMEgoFCIUCj32jerWP9zjS3/wFVqmgKEq6EiUa3VqRgOX30O1+XBJp94kW64yFLCzmSsxPBxgfi3N6GCA+5tphv0OJsZC3F1JcXY8yuxmhluLCc5PRJnbyjKbSHN0MIDLaWM1V2AxmcNmlwm7HThVBY/LxtcX2kXoWMiH32Pn1kaShVSOkMuBIYFumlwciIIAq8UiC8vtroQkCsT9buZSGYYdNmyyjNfr5h9WtotaVRJx2BUSufbKn1fTGPd4qbTqOASJ+UwOyHHU6+bqLt3C+UhkmyyYMOrxMOB2U9FbhFQHm8Uym8Uyfs2GKRl91/lBj4cb6d5i9pQ/2EMWRBNCksrRYJgGBtVWi0S1RKpWoSSrfLW43B2v6eCFQIzJbP84T8zuJJnv1TmIQEPo//4oCCwW+1flHaLCQrm30HbLGj7ZjmDCOc8goiBiGCZNU6fWalFsNhEMlXxLJ18vAe1zOOUJM1vqH3e65B9kK5/r237KE2fWYqzJLWnMVfpJAYCyRwfjpGuAu2WLfAVBYtmCYACMOILctiASbsnB/xY437d9v7P5h9V9eFYJw7Po3PR2I8CCIOB2u3G73U8UHFcqlbqC6ifF3//93/PpT3+aa9eusbGxwZ/92Z/xPd/zPd3HTdPk53/+5/mP//E/ksvl+KZv+iZ+53d+h2PHjnWfk8lk+NSnPsVf/MVfdJN9f+u3fuvd3/F43mF4V+A9QRie5mIlyzL1ep27d+8eiiUpPL21qmmazM7OsrKywvnz54lGoz2PH+ZYT2f/e62oVyoVJicnu/kBT5ooLYoijYZF4tJToFqtMjk5CcDZs2cP/Pf5pB2G1dVV7ty5w8mTJxkeHgbYU9wsSVJPgFGpVCKZTLK2ttZdqex0H9xut+Xf/t/96Ru88doMpiyhywqmLFGqVKm0Gjh9PlAUBFHH5lCoNnXig35qLZ1IzEO10cLnd1AzdRyaSlM0kCWRiN/FfCLLSMSHKZhMLycIuR1cOTXMtcUNaokMPofGscEgc4kMN1e2uDgR5+baFheGY1TqDZAFri0/dDjSFEYjPpotndmtNPcSKSIBN8lye2RHEgReHRsmX66gCgIr5fb40vTmrgI9HiZbrfJifIBctUaiVCLRqLJe3C4M/ZrGeq13FCigajQMnRejcRq6zlIhT7JSoWYabJZ7i/JhXz8xOB+OcH3XNpck41JVLofaq8ybhTxbjRoxr4+vJftX7r2axlq1t4vgU23MFvtXzo+5A5bdhYuBGNP5/iL8QnCAydwqbknFJSgoLZBMAY+kUZcgIDvJVsuUzCb5RoOjrhBXs/2r7xd9cWYsQt0mnEFLsuCWNO5ZdDUAGqb19/yoK8KNQr+uYNDm576FWxNAeY8RqZOuOHct3JQUQWJlDyLxj8KXUcX+ov2gRMZ7dR+WlpaeqPvwLBKGd9oh6XHxpOe1OziuUql0Sd6dO3f46Z/+aV5++WXGx8cfa3TJCuVymQsXLvAjP/IjfOxjH+t7/Nd+7df4zGc+wx/8wR8wNjbG//l//p98+MMf5vbt292x6O///u9nY2ODv/7rv6bZbPLDP/zD/PiP/zif+9zn9nVOz/EcT4L3BGF4GgiCwPXr1w/NkhSePCBuJxqNBjdu3KBarfLqq69ariQcVlpyB3sRho4l6NOMbx30SFI2m2VqaopoNEqz2TwUMd7jdhg6trJra2tcunSJYDDY3f444uadq2Dj4+M0Gg1SqRTJZLK7UtkhD4FAAFEU+bP/719xf3qlTQpsGoYBmUKRhmESjIcQZJmWYOJQZDbTRcJxH3NLSY4cCTG/miYWcVNv6Swv5jhzMs7tpS2CPid+n51kuUJDb1FptTgeD1LXda4tbuB12DgT8rBZLPHGXLswvjQRxwBsssTNlU1OjkS4ub5FyGnnSMhPvlHn6lK70BUFODEQ5vZmkmORAG5VbTsULWwXkUGnnUy9RtMwkAWBY8EgIZedO+k0yXKFpWy78D4/EOkJZxMFCHmczGbSDHu8+BWVar1OVW9yJ91bmL8Qi/WNJ12MRpjeRQy8qka6XuW0L4RTVmkaBslKmQGPm7e2eotrl6ywWu0X+Z4PRLhhIXSe8PqZTPcSAAHQxf7viF2UKDSrHHOGesLVTNNko1JGNhRyrRY52uNeHlljo5Wn1mjt2o/cY8fagSRAykLTAO3fqxWOuUNMW6Q6H3OGWbDoImiCzGKlX4cA7aTpTQuOMeGIsGiZr2CSa1kLqo87B7hX6ScSEiIfCb/ct/2wUpV3dh+AJ+o+PIuE4Vk8J3g6kxFBEHA6nTidToaHh6nVavy7f/fv+B//43/wh3/4hySTSb7t276Nj3zkI3zkIx/hwoULj/UZfPSjH+WjH/2o5WOmafKbv/mb/NzP/Rz/5J/8EwD+8A//kGg0yn/7b/+NT3ziE9y5c4fXXnuNt956ixdffBGA3/7t3+a7vuu7+PVf//UDnYp4x/G8w/CuwPuaMKyvr9NoNIjH45w/f/6ZcRnqoFgsMjk5idvt5tVXX92TzBx2ONzu/e8MPjt16hRDQ0P73vdBEobOSv6JEycYGRnhK1/5yqFZtr7dflutVleY/uqrr3Zt+HZ2Fp60la+qas9KZS6XI5lMMjs7SzFX4safz1EuGtg8LkxFoWWYFKplUGRCIR+1lk4+W8IXcpFOlXD57SQzRQaH/axu5Tk2EeHavVVOjUdoSSaT99c4d2yAuc00D5JZzoxFaJoGC5tZxgcCSIrIRCzAcirHVqnCSrrAqYEwfreN1x+sdjUFF8diNAyDU7Ews4kUUb3F7NZ2sf7KxDD1Vouwq53qfCoWYmpjuyBUJZGIx4kiSQx73MylsjR0nddX13pC1i4NRrmW2H5dzOniWChAvl7Hr9lZyRdYAS4PxJhN9K5cj6haH1kI2Gw8KOZwyDIjLi9uRaOh66iyyFtbG+ykBsNuD1Npi+yCYIirqV4CoIkSiXqp77ljbh/Tu/bhllXO+qNUjAYvBobQDZNqq0m2UWXY4eZqtr+7cDkUZ7XQL7o+7g1YhroNChrzrf7zOeuNWaZAH3EEuFvsL/7tosJcpb/rAKBI1n/np9wxS+vVgOLkXqn/2ND+e7DCMWechaq1RqGgWxOfl32nCKnevu07M1AOE0/SfXgWV/OfVcJwkDbmNpuNj33sY3zsYx/jC1/4Ar/yK7/CP/tn/4zXXnuNX/mVX8HpdPLhD3+YT33qU91C/kmxsLDA5uYmH/rQtlOX1+vllVde4fXXX+cTn/gEr7/+Oj6fr+cYH/rQhxBFka9//et87/d+71O/128UnrskvTvwniAMT3pR32lr6XA4iEajh3pj2E9Bv7Gxwc2bNxkbG2NiYuKR53fYhGFnUb/Tbna/wWd77Xu/2Pn73LmSf5iWrY/qMHTGtDRN6yF6Hb3CQcz9iqLY9RcPuSP84b/9r5TKJnVMirkCstNGwzTRkVFsNlAkTMPAE3SCKOAJOkAQcHrtGEAk6qZQrXFkwE+qXMXvceDz2JlZ2mQ44uPESJg351bRDZMzRyJU9Bb31lPYVZnhqA+bKlNvuUCENxbaZCHuc3Ek4uPWZopcpS1+feFInMnVDcIuByN+L6oi8bWF7YJx0OvmQSaLQbtgPxL0IUsi19Y30I32Z+61aeRb9R6yMB7wsVDIcz4SQRZE1otFPJrKV1dXesTQR7xerid7i12PqlGUBWi1NQERWcUlitgVlZTeJNFocPdhN+JMMNTTwWjDxKZKtKq9f2tjHp8liTgfjPJWeruw9SgaUZuLAaeLkOakaRoUG3W2ahUarRb3C2lS9d6RKr9q47ZFnkNIs3PTYnQpqNq5XbAq8mW2pCbsiqMRMUlUcn3PB3Aryk4tcxenPBHL7sKoI8CsReCbJAhs1q2PMeLwM1PsL/JjmnUSNICAgYKMLIpIgowsSEiCSET1UNTLDKgRBEFAROz+97sjr1ru67A6DI/C23UfoN2tTiQS3/DU6Q4OM1H5aaDr+hOPxz4OSqUSwWCQn/iJn+AnfuInaDQavP7667z22mtPpSPc3Gx/P3aPG0ej0e5jm5ubfcYdsiwTCAS6z3mO5zhMvCcIw5OgVqtx/fp1Wq0WV65c4ebNm4dabMOTFfQ79QqP6+zzTrgk6bpOrVZjamoK4KntZnfu+2nOfXdAXMem9CD2vRce1WHIZrNMTk4Sj8c5efJkl1zsTG4+SJHg/PVF/vx3v0y9ZWL3erHJMuVanWKjhmxTaRk6LbHGVrqJO+AknSsTHfCyupRh/GiEW3MJTh+PkciVqNQbDA/6SW9mqbdaIIkMBr1oqsS1B2ucHokgySJ3N1JUGk1iPhcDIQ+31raoNlociwdZyuQ4HQ9Tb+k4HSr/8GB7dv/y2AAt0+B4OMD9rQwht7Onk+DSVCR0hhwahqyykMkB8ObqdoEoCBDzubmTSiEJAhMBPz6bjVyjRi5fI1Nuz7a7VZWWaPaQBVUSaQlGD9EI2eycCYUpt5qEtDrLhTyJRoNQKMRMtrcgV0WB5C4tBMClaJxrfWNEJrIkdK1OZUEg7vAQ0hwICLzgH6DUbJColCnU6oy5VP5us3+O/+XwAG+l+/UP454Ak5n+1fQRt48pi67DqMvLdQutw1GHn5sWXYGTjhD3av2EZNju446FRkEVJRYsrE+hbTO7VgdVkLFLCqqooAoycZuXYqtKQPFgGiblUhmf14f00BDgpHMUwwTDNNAx0Q2DoOpAMBWahk7L1GkaOg1TJ6S4uF1IY9Ip8Ft0WJBb8vKg3D+qNOaIcMo9annO71SH4VHY3X2YnZ0ll8v1dB8640t76ZkOG89qh+GwujG7Q9tUVeVbv/Vb+dZv/dYDP9b7Cs9Hkt4VeF8Rhmw2y/T0NMFgkDNnziBJ0qGvzsPjE4ZGo9H16N9Lr/A0+98vJEmiVCrx+uuvEwqFOH369IGtKj2N/uLtAuI6TkQHjb06DB1hcmckCvYWNx8E3nptmr/7L2/SlCRMRaOFQLlSpU4Ld8BHvWUS8NnZShdoYtLKl8nXGggpA9kusbKR5ehEmLfurHD2WJyK0eStu6ucOxYjX22wuNp2RpIUEbfdRrHaIFEuMxT0oMgSTdPg6kK7CB2L+nA7NeSSxMzqFmdHIkytbiICJ2IhAm4Hby6t0Xj4dzoc8LCYzaGbJnGPi5jLSaZUYLHYKcgrHA35uZHoLWZfHh2k3tI5H47wIJvlfjLDucEI93bpEY4EfdxI9r72XDRCulrlxWiclm6yUSoSc7v4u9XeQt2jaqxV+le3J5we7uzKV/CqGvfy24W1Q5IZcHoYdLqp6E3OeKNkalUS1RLLhQL+kJ2prd7CXRFFtmr9I0F+1cZti25B3O7ihoWL0qDDw41c//aw5uB2ob/ItwsiDywsTkWgyC7xgAl2QcJWbREWHdgVDZusosoKgiDilhWKrRoDajtUrW7oNPQWDlllvphD11VKpkGJJnQSo02RpeouK9VciRd8Q9zI93cqXJLGWi1F3Wj1PRZ0OVhv9IvFg4qLuT2E098dvWy5Hb4xHYZHQRRFNE3D4/Fw+vRp6vU66XSadDrN8vLyO5463cGzOCYFh9f5OKyU544NeSKRIB6Pd7cnEgkuXrzYfc7WVu81rdVqkclkHtvG/FnF85GkdwfeE4Th7VZWTNNkeXmZ2dlZjh8/zsjISI8laavVfwM6SDxOUVwoFJiamsLtdr9tOvJuHLZLUsep58SJE4yOjh7oStZ+uwDJZJLr168zPDzM8ePHLc/pneow7OwKvfDCC4RCoe72gxpB2o3X/p//xfTX7mMqCoYkgyJRLFWomzpOr4eGAS1JQJRFFIdGyOcgV6kxHHSTLVdxqCZ1s8VWOsvEsJf5RJqBkIeRuJ8376/htKm8dGqQW2tJStUGo1Effq+dpmAwt5nhxHCIe+spTg+GcdgUZhNpHqRyAByPB8nX61wcirGUztHUdd5c3iYLfocdh03hlMdJqlRhKZvHjs5iadv5JuCwk67XME2T46EAbk1DlkS+vrzWs0BzcTDKZGJXjsJAW7xskyTGvH5cqoJNlrma2KDaarGYaxf9Pk1jyWLWfzzgY2pXSvOY18dsefu5iiAQklX8gkjdUECzUzBapGpVtswyqVqFXKN3bueUL8SNTD8BuBCKcTVt4UTk9XPNYnvU4WLTIngtbHewXu9/P6NuL1PZbUIimAJuRWXA0KjLAg7VhiyIiEK78HPLCslGhRFNpaI3KbXqlPUGbruH+/UChmFCa3v8QgSCqo10y6L74h+gVO4f1TjmCjFv0dkQgU2L99B+TdjSTckhqsxZjDwBDDv8zBT7uwsOSeU7QucsXwPPRodhN3bO5Wua9rbah3ei+3CQWoGDxGEShsOwMB0bGyMWi/HlL3+5SxAKhQJf//rX+cmf/Emg3dXP5XJcu3aNy5fbZPdv/uZvMAyDV17pzxF5juc4aLwnCMOjoOs6N2/eJJPJ8OKLL3bnQzt4Ggejx8XbkZKOXmG/ScSH5ZJkGAZ3794llUrh8/k4cuTIgR/jSYv6nYLrt8vLOEwNQ2e/rVaLGzduUCqVerpCj+uE9KRoNlp8/te/yMr9JKamIWgKLd0km83TMAVCg0GQJGRJQDEMarqBoslUWzqNpo7DayOfyHPieIRktkzL0Gli4FCgUi2zmstzYsCPbFN4a34dp03h5eNDzG6lWXiQQxDghYcOSGGPk2ShjFGGfLWOU1M4ORAmXa2ynM6znM4T9brYqlZotHQibgcjfh+lVoM7ie3xlSMuG/M7yIJHUzkVC5Gv12k0dWaTGYJOO016sxCGvB5upbZX912KwoTfjyyKHPX6WcrnuZtK4VQU7DalJ80ZYMTXr2c4Ewr3kAXBhKjTyaDbTcjhoNHSSVYrbFZKKKLE7Ub54S9mx3nZ7NzeNf8vCFAz+68BHkXjnoUWYdDh5nqmf2V8zO237C4ccfpYKecZdfhxSAqq2J7lVwWJqt7gmDNGudWg2KxTaNSpGgYLYoVqRYcdAXHtcDUvK9X+oj1qc1oW80c1H3PN/tA1j2yzFEfD3sLlk+449yw0ChKwbtENATjmjnDTQjgtCyJLVWsR9neEzmGX9p5x328Gw2FiL5vX3dqHd7L78KyOJB3WeT1Nh6FUKjE3N9f9eWFhgenpaQKBACMjI/z0T/80v/zLv8yxY8e6tqoDAwPdrIZTp07xkY98hB/7sR/jd3/3d2k2m3zyk5/kE5/4xLvbIamDd/HK+/sF7xnCYDV+UqlUmJqaQpZlPvCBD1iGXr1TI0lWhWtnLnV1dfWpkogP4z00Gg2mp6dpNBqMjY1RtBAgHgSepKg3DINbt26RSqUeS3B9mB0G0zS7eQ+KovDqq692RXYHKW7eiWKmxH/+1T8nnSkjODQMU6SpGxSqZSS7RjTso1hu0KSFzamylsgzNBpkcS3F0fEwmWqNRtpkYNDHm7dWOTkexmgJLKxnuHBigIbRYn0lTaVRI5PPcyTooG7ArY0titUGYxE/QZ+D6aUNmrqB267hcmo4VJlBn5tUscKDTHZbR2DTcDs04pqbQq3Gg2S2rT/YQRaidoXVeoNBj5uY20W+Vsfj0Pjq4nYBKAoQcNqZTW8XpZosoWkSxxxBbJJMplpltVCgpDeZX+8tEo+Fg0zt6kKcj0T6yIJDkpBkkUvhOCIChUad9VKRIbeXr671FqQC7Q7Nbgw6XNyr9BfVFwNRprP9xfMxf6BP/wAQsttZr7X345QU/JoDt6IRsTkIqg4MTBq6QaXVINeo4ZRtLJTypKq9XY3LoTjT2f7V96MOH7cs0qFPeSLctchXaIum98hXUMwewtRBxFRYMPvzEuKah7t7ZDW0rHYEnHDHuVfq77YImCQb1laqJ9xx7pb6iQTAd0cf7WZzUBkMB4nHXc1/J7sPz7Lo+bA6DOFweF+vvXr1Kt/+7d/e/flnfuZnAPjBH/xBfv/3f5+f/dmfpVwu8+M//uPkcjm++Zu/mddee61HK/hHf/RHfPKTn+SDH/xgN7jtM5/5zNO9qWcBzzUM7wq8ZwjDbmxtbXHjxg0GBwcfmREgSdKBB4dZHWO3g0JHr1Cv17ly5cpTzUUeNGHo2Ll6PB4uXbrExsYGuVzuwPa/E49b1NfrdaampjAM47EF108asPa4EEWRSqXC66+/TjQa5dSpU11dQ6ez0HneQRUd6/MJ/vT/+kvquokuqyBI6BJkiwV0FGyaDR2BSrNFMOKhUKkxMhaiUKlx8niM5a0840NBEsUytUaTl88Nc+3+On6PnZfODfPW7Bq6YXLhaIyWabKcq6KpBlWjiV+TcYgqsqTz1oN20eZzaJwYCrOUyjO3mcFlU/F4bGSyVRyKzNFoEFOEW+tbXeHvC6Nxrq21V8cFE2J2hVjAj1iuspYvspYvcn4g0n1OBy8Mxbm6voEmSYz5/ThVBVkWeWttvbtvgMtDMa5u9r72bCTcRxY8qsZmpcRRnx+fZsMwTbK1KkGHg6u77FYDNht3sv0dgBMuD3ct8hU8Dhuru8aFbKLI/Vy/IHjQ6eZmNkHc7sKr2HDICpIgYhMl0o0qQzYfmXqVUqNJqVHkhE/jbzf7swQm3H5uWmQ6xO0uZnL9hblNlFixsFEFaGJ9HRlx+LhuYbF60h1mttx/bEUUSYl1rHYX1hwkmrm+7RHBxnzZOpOhZVgTieOuOHMVa41CVbewcgLOuoc54nh00fesdhietDtw2N2HZ7XDcJiEYWxsbF+v/bZv+7ZHauoEQeCXfumX+KVf+qU9nxMIBN6TIW3PNQzvDrznCINpmszNzbG4uPi2IyvwznUYdo4kFQoFJicn8Xq9vPDCC0+kV7DCzmL1aQvUzc1NZmZmesajDjMY7nEIQ+fz8vv9nD179rFvBI8bsPakqFar5PN5Tp482dXD7BY3C4JwYGTh5lfv8tr/7ys0DBFTVkCSKDcalOpVnF43gqqhuVRqDZ1AxE2hUsPls1MoVdHsKg1dRwDqGDjtCpIssZTMcWI0jCiLvHF3leODQQI+B1+fbVuiRnxOhmM+5jczrOSqnB0Nc2MtyaDHhogJstQNaVNkkXjIjSiInB+IMptIgwg31rYLydMDYWY2E5yOhGjV62wWK9hdTiY3tlezB7xu7me2x05E2kFsACdCQRYyOe4mU5yNhbm62VtYjgf8TO8iBm5VZa1cQhIERjxeApoN0wRZEbm2uc5Wubz9ep+vL4cBYNjrYTrVWxC7JZnVVn8xei4U4cauLoKIwOXIIOlaBcUUMFotqo0GNcPAZQhsNA02mmU22D6Xk/4gd/NWjkPWf8s2xfr6MeB0k8j2dwbPBqJcy/Q7L530hK3Tm2WV2T0K+b3ufmc8cWYK/cdwCFI7Cdriq+ESFNL0dySG7X5LvQO0u09WGLEHWKpan/PbdReAA7mWHjQOojg/6O7D+40wVCqVQxE9v+/xvMPwrsB7hjAIgkC9XmdmZoZyucyrr76K2+1+29e9UxqGTlG8vr7OrVu39q1X2Gv/0L5I7pd8dIjW0tJS33jUYdq2vt2+rQjMQe37SWGaJvfv3yefzxOLxRgdHe1uPyxx8999/nXeeG0GU1UwZKnthFSt0BRM3AE/piSiOlWWV7PEhv3MLyYZHg8xc3eNU6cGmF1M4nFr+ENObs1vcO74ADomiUyJcNBNQ9c5EvGhajJfn11lIOgmFnDzIJXlrbl2N+HSsTg6EPO5WMuXOD0U5tZ6uxgL2ST8bhvrmQLFensV+NJ4nGsr7VVfTZY4GQthiqAIEnc224XwheEoUxvbxbVNlhAlAZemcDIcpKkb5Co1FnIFcrXt4jxgt7O8S8SqyRI1s0nrIVmLO11EnU5cmsZGqUi51mAxk2MROB0OMZnqLSRFAQyBHgtWgFPBYB9ZADgaCjKV2hEsJ4rEHC6cisJLoUFME6rNFtl6FQF4M7HeY+UKMOH2cs8i5+CEx29JFk77w9zO9xfNRz0Bbuf6t0f36C5oosSDUv8oEoCwR913whthMmuVr+CzJBgCJqk9xoROemOWWQ0uQWEV67HHgGJn3aJZENHce4qdfYqdNQtbfL/i5JsCJy1fsxPP6kjSQRbnB9F9eFZFz4d1XqVS6VBEz+93PO8wvDvwniEMhUKBa9eudV2GHre1+k52GO7cucPa2hoXL17c9xzkXvuH/ROGTipxh2jtviAepgvTXkX9zk7R+fPn+wJtnmbf+0Gr1WJmZoZCoUAsFuuORB2WuNk0Tf7rb36J+zOr6LIMkgwP7W1bAthcLorVBja3nWa1iebR0A0Df9RNo9Hi5MkBFtcznDwa5e5qknq2xEvnRnjz3ioCcOnUICupPBvpIqfH2wnORweCJAtlljJ5UoUKE7EAEb+LNx+s0tTbn+PF8TgLySwvjMZJFcoEPHamVreL6hGvjZvrCU6E/CiyzGahzGapzGZhewTm3NA2WdAkiYlgAJ/TxmImS7JQIVmoIAhwLBZkOdlbeEa9Tm4ntwtqmyzx0lCcaquFX7WxViiyWSgRsjv46kqvo45dlknW+518XojF+0aRZFGgsMMJSDAhZLNxxOvHFOByaIBKs0m6ViVVrRC1u3hjvX9k50IkylqtvxBWLLsCJvlq2WI7llai0CZLVhh2ekhadRf8USaz/Sv/E64A9wr9xb8mSsyXrFfqfaqNFasAN3eUe+UEoimgiCKKKKMIMrIgUG41GbT5kQQRCREREdM0cOoC2UYZTAFZklBkGVlR0KT2dfyMa0degrDt9FTSAw83mrSpCsgImKbBKeeRvnN7NXAURXz7QvJZXDk/7HPaT/fhaRapDhOHZfdaqVQeayHyOZ7jvYhn75u+T8zOzjI0NPTEq9DvhK2qaZoUCgUajcZT6xWs0Hm/+ymOy+Uyk5OT2O32PYnWOz2StLM4f9xO0ePuez+o1WpMTk4iSRJXrlxhfn6+R9h80GShVq7zuV/9AomNHKgakqZQaxqk0zl0USI0GMQA3A4NA0ARkWsGpixi1E1ku4JuGvj9TtYyBUZiPgRF5Nr9Nc6Ox1BUiTfvraJIIi+cGGAjX2I9XcTj1PB57HicNjRJQlUk3phfQTdMZFHg8sQg+VqdYrXO1OIGF8ZiTK20V3g1WeLkQJh6q4lZbXBvK4sADPnsLO8gCyMBL9lalUuDcWrNJvPJLJos8bXF3lXnF4bbuoWduDQUYzGX50I0giJKZCpV7IrMV5dWerq8LlVhvdxfLJ+OhvqIQdju4HZ6m4Aoosigy82o10u51cSNTLpcJm/qpCo1PLYa8/letx6/ZuN2tr8rMO71cT3dvwJ+NhjmlkVX4Hwwxg0LgfK45mS+2O9CdNwb3KO74LTMY1BEkeVK77lLiLgUlZDmRDcNVElCEaRuSrJX1Sg9JE4m7S6MYZpokkSpVeeIPdp22jJ0Gg//NQ0RvSXTwKSmQydE7bw3xs18/3lJgoBHVskbD9lHJ3OtBhOCi0Whv1uhiBIOWaZoMRr2gneIGxZdDAH4/xz77r7tVnhWNQzv1Dk9bvehWq0eSqLy08AwDEzTPDQNw85w0Oc4IDwfSXpX4D1DGF588cV9FYeHPZKUz+e5f/8+AK+++uqhrMZ0dAZP+j4eJ8sADn8kqTPSI4pi13lIlmWuXLnyVDejgwhuy+VyTE1NEQqFOHPmTJcY6Lp+KOLm1FqGP/n0FymWGog2O01ToNnUyVdLqG4b3pCfXKGGw2sjlyujuTWyyRL+iIvbcxucPzvM7fkE8ZgHu1PhwXyGYNCJIYDLriFIcHs5wcWjcRAFphc30Q2TqN/JYMTHndUtFrdyHB0IcD+ZIeZzE3E7ESWBrz9YpfNxnhwMcXsjyZmBMJIgkiqVWc7luw5JAOdHokyvJxBMiDsUnKpCqdVgvVRlJdMuAof9Hm4ne1ewJ0J+pjbbhfOA20XM5cImy8zn2g5MnWM4ZBmnQ+m7/h4N9bsiTQT8PRoFWRAYdHsY9XqptJrUWzrpapVEuUSl3uTr6+vU9N6FhIvRWM8oUgfjfj/XtvoLYVWW+s5NEOgW4DshCpBp9Hc/wKSxR40oPxzgd0gKbkXDKatokkxEs7OZywACTqcLBGgZJj5NY7WSR1ZUqq0m5VaDuqHjUO18PbnWf65A3Olko9pPvl4MDnLHoiMx6vBxt2itNyhbvG+AM54YN4v93RkBk7KqWzowHXeEuFOxHkdKN61Hmy75jjBg81k+thvPoobhG0li9uo+JJNJ8vk8uVzuG5463UHnunzQhME0Tcrl8vMOw2HgOWF4V+A9Qxj2e4E6zJGkTvJvPB4nnU4fauv2ScaGTNNkYWGB+fn5xxKGH/ZIEtC9CU1NTfU4Dz3tvptNa3eVx0EnH+Po0aMcOXKkS0AEQSCTybC+vk44HLa0690P5qcX+cLvfJm6YWKIMqYg0JIgWyhiCioOt4tipU6+UscZsJOr1hmPeVhN5QkKAoPDQe4ubHHqeJSpuXVEQeDCqQFmV9PkyzUunx6koRsYJtRaOvc300zEg6iySKnZ4upDzcJIxIfbZWNYMHmQyOJUFR6ks5hmu4g8NRhGUSVUUeL2WhJVloiH3KyltjsJ54ejVGs1Rp02Ug2d9UqT424X66ntFW5VEmjoLeqth39bJgz73YTdTuyawmquwEa+xFaxzJDfQ6LUO65zIhZicqO3UD8VCfWRhZDdTsTpxGe30dQNstUq66USblnj73eNLQHE3C62Ur1Fr02SWCn126UOuzxMJ/sL1zPBMDctVv8vhmJMW+QrXAjGmMpsIJgCPk3DLWs4FYWQzUlVbxJ3etFNk1qjQblRR9NNlrM5RFOirOuUGxWgQkC1MZtN0erclR6OQwnAgMvNeqV/tT5qd3YtXHfirC/KzUL/udpFmdk9SEHA5mDZIi9hzBlgoWKtnaga1i51J91RZvfQKKTLeUvh9LgztGf2wv8evWC53QrvBw3DfrGz+1AqlfD5fKiq2u0+iKJIMBh8x1OnO+gsbr2bgtve73iuYXh34D1DGPaLwxhJMgyDe/fusb6+zsWLF1EUhWRyD5eRA8Ljjg11guyy2Swvv/wyXq/3wPa9H3RugKurq9y/f58TJ04wMjJyYPvez3nv1E/sFIB39AoDAwMIgsDa2hp3797F4/EQDocJhUK4XK59FRpv/uUUf/dfr9JExFRVTFGiVK9RrjewOV2YqoxmV2nVW0QHvdQMg4FBH8V6g2jES7nZxOXQcLoD3Fzc5NRYBEEWeeveGgNBD0ePhJiaW6elGxwfCaNpMmGvi4XNDKMDfh4kMoyEfcQCLu5tpFh6kANgOORhNV8g7nMTdDnIlaskSmVSpe3V8OODQW6sbRF2ORj2e5Elgam1TRo7PvtLI/E+u9SxgJdkucyYQwNRIlVv4rFpvL7UO2N/YTDGtfV+YrCbLNglCUkUuRiNIQkC5UaD9WKJUZ+Pr6327lOVRFIWeobj/gA3Uv0F59lIhLe2+lfBPTaNlV1FuChAcddquiqKBFQ7kiBwwR9DESUEoGUYtAyDSqOFX3KQb9TIVOpkqLdD1LxNli2IyplAmFKuX+8QMEQyFktY5wNRbliIoAOqjVt563C1umlNtk/7o0xZ6CC8io07e2Q1+FQbSxYNlGG7l/mylSMU7JHtxrDdz1q9f0QLQNWtv+9e2c63BI9b79ACz0pxvhPP6jlpmkY8Hu/pPmQymXc8dbqDjn7hMI7z3CXpkPC8w/CuwHuGMDwrHYZ6vc709DTNZpMrV67gcDgoFovviLD67Y5RrVaZmprqzuI/7sr4YY4kdTA3N8elS5cIBoMHts/9nLeu68zMzJDP53v0EzvFzXa7nYmJCSYmJqjX6ySTSVKpFA8ePEBV1S55CAQCj3WD/9L/8zdc/4c5TE1BR6SlCxRLJQxVwBP0IdlUdCBbrOH02Ejmyri9tvYYTa7MkSMhZheT2F0aiEL7fYsCuUKFU6MRVJvMW/dWCbjtHB0KcXN1i9J6A1EUOH0kAqLAkYiffKVGNdUkV2nPhce8TqJ+NzqwnMqTyJWIhdykstuV38sTgzRNgyMBL0vpPLVGE1kResjCsUiA6Y12IRlw2Bjx+XDZVG5vJUnXmnTWnSd8Lm5u9RaP40Ff97UduBSFTK3CEa8Xv92OgEC+Vsfn0Li6i0REnA5upvrJ+vlolKuJXgIgCpCr9BfhEYeTG+n+ovp0IMStTBKbJBGyOfCoGjZJwaOqFJp13F6NUqNBtl6j0Kgz5PdwLdG/Yn8pEuOGhRvTuWCUGYt8hTGPj1u5/vdkEwRWjX5bUoCybr2Kf9Qb4GqmPxBtwu3nfrG/kBcw2axZOyAd9QQtBdWPIhJhu4u1eq5ve0h1cm+PlOiQ5rAkDA5RYaFhTSQ+HDn7WGLnDp7FkaRnteuxcyV/Z/ehc33cqX14J7oPhyV41nWdSqXyvMNwGHhOGN4VeM8Qhv1CluWuSOppL8adkRqfz8fly5e7I0jvlBPTo46RyWSYnp7e17jPbp3BQaHZbHL9+nUAXnjhhQMlC/DkhKFWqzE1NYUgCLz66qtdQvUocbOmaQwNDTE0NISu62QyGVKpFLdv36bVahEMBrsEYrceo9lo8vlf/yIr8yl0WWo7IYkSxWIBwSYjyxq5cgOfXWV1PcfAaID5lTRHj4WZvLXK6RNxBFVi5t4Gp0/FmF1NUyjXePn8COlClaXNHOdPxkkXypwdi1Jr6kwvblJrtoj7XQxGvdxa3aJca+LUFAJ+B4lciXMjUQzDIFer8+b8w2JSgKODQW6ubXEk6MPvsiNLIm8ubs++CwL47DLLpe2i1WfXcNk1LthjbBXLrOYKqHKJXLpGtbnd2Qs7HWzWe4taRYRMuYRhmEQddqJuF4okIcsSkxubNPQKi9l28Toe8DO52V+URtwuEsnejkHM6WTGokAfs9mZq/cX3CNeD/aqjEdRUSUZTGi0WpgCeCSNQqPOaqMIFJFFgYDdwdYutyNVElmy6BRIosBq2boAL+nWM/8e1ZroH3MFmClZBMSJmqVo2ibJ3LMgBQAuxVo7dMYXs0x8lgShT1DdPS93yNKW1Smp3MlbE4l2UFy/FsEmytwvW48cHXdHmClaJztP5DRWVlYIBoOPJVp9v4ueHxdvV5xbaR8Ou/twmKFtwHMNw3O8b/G+JwwHkWEA7ZGaO3fu9My77zzGYRTcO/Go4nh5eZl79+7te9yn8xkd5PmXSiUmJydxOp2IonhgOoCdeBLRcz6fZ3JykmAwyNmzZ/eV3CxJEuFwmHA4zMmTJymVSiSTSVZWVro3xw55MBvwn//9X5BJl0FVkTWVar1FMpPBlBUiAT+lagOvt91diAz5MEyTI2NB8qU6Z07EWUrmGYp6GRrycfXuGsdGQowNB3nj1goC8NLZYTKlCstbeY7IIlvFMuNxP62Wgc2h8uZDzYIsCZwZi1JttEjlK9xe3WI8HuwKkwFePTZEraUTdTtZTOVoGjqZWq1nseSIz858scqwz0PE5aRcb2DKApMr26vqkihgV2U2SttkQRDA77azlWz3Grw2jWGvh4DTzkahSD1fYKtcZatcZdBhY6Xe64wjiQI6el+OwtlohJlkf3EZcjnY3KG3EBAIiCKKqnHZ40UURBq6TrHewKHIfW5NABejUUsB9IVIzFIAfT4c5WrSwnY1FOVaqv/554IRy/TmIZeHG5n+7ZogstKwTm/2etysF/rdhE66/NywyFGI2Jzc2qOQ103rRYkzvigzFg5IogDLFetV/1HVw916f6dEEgSWqtZ6h+OuMDdL/Z8jQKZp/f5PO+OcDo2SSqWYm5vDZrMRDAYJhUL4fD7La9qzupr/rBGGJzmnd6r7cJihbcDzDsMh4LmGYW/8/d//PZ/+9Ke5du0aGxsb/Nmf/Rnf8z3f0338h37oh/iDP/iDntd8+MMf5rXXXuv+nMlk+NSnPsVf/MVfIIoiH//4x/mt3/qtJ/5bfs8QhqcZSYK2led+CINhGNy9e5eNjQ1eeOEFQqHQnsc4rFZp5xi7OwyGYXDnzh0SiQSXL18mEAjs8epHY6cw+SCw253pb/7mbw5l5OlxOwydcLiJiQnGxsa6RKPTVYAnT24WBAG3243b7WZ8fJx6vU4qlSKZTHLtK9Nc+8JdRNmO5nEhCCKNeoNipYzd68IT9FCpNHD5HWwmikSGPCwupRkZC5HJVzAxMWUFSRBAESlWG4zF/ag2hRvzG5wdj6LZFb5+t73aOhz14vc6KNQa3F5KcuF4nKmFDQJOO6MRLy1Mvn5/e5Tk3FiM68ubjIS8hFwOZEXk9fntx52agiFApdGecbcrEgMOBVnVCNlhNVNgNVPghSNxrq32FpEXhmM920Tg5dFB6rrOxViURLHMZrFE06nzlYXlHkKiSiJ1qf93cDrk50a6t8C0SVLPKr9gQtBhZ9zvRzcNXowMUGu1SJXLJCsVBvx+ZjJpoLcLcCzY/52RRYGNSn9xapMkFvL9q+w2SWK+0F80S6LAyh7dhaphrR8I252sWgiXzwajXEv3F9JHXD7uFPqLchFYLlt3BEZcXpKZ/tX9I04f94rWWqyqbn2+ZzwxblkIpwVMturW7/20J8btYv+YFEBBtwh+AMYcQZZr1uf2fwxcYjg6zPDwMK1Wi2w2Szqd5s6dO7RaLfx+f7dQ3Zmv8m4uzt8pPE1A2tt1H9xud/f38iTdh8MKbSuXy6iq+o6LuN8XeD6StCfK5TIXLlzgR37kR/jYxz5m+ZyPfOQj/N7v/V73590LsN///d/PxsYGf/3Xf02z2eSHf/iH+fEf/3E+97nPPdG5vGcIw34hiuK+XYA6eoVWq9XVK1hhJ2E4rIvN7vfQOTdd17ly5Qp2u/2p9g089ViVaZosLS1x//79Hnemw9JIvN1+TdPkwYMHPHjwoCccbqdeQRCEA7lJa5rG4OAgmYUSD/5uC7vLS7mlUymWEbQ6LRNMUcHjdbG+nscZcJDbKiDZZRYWU0SHfFy7scypU3G2cmXm7mZ48eIoG+kCq1t5zpyIAQJ+lx1JkXjr3irDER/xoIvbaymW7reLswtHY9RbOqeHwsyupTBFHzcWt1eTXzo2SNMwGPS7WUnlUSSR5fXtwk4Q2i5K2UqVF4Zj5IoVsuUKm3WdUjHXfd7RaIDptd5V6pOxELc2tzgRDuJSVSqNJi3D4NrqRjcYDtphboVmo++6enYg2rfaH7Sp3M1sF+OSIBB3upgI+ik1mww4XORqdRKlErlKjTW5yFqxtxiOOhzcyfUXz+fCYW6k+1fgL0SjXLXoIpwNR7lqIYw+F47wlmV3Ica1VP/2s4EwtyxSneN2FzMW3QVJEFgp9487AfhtNpbK7c9UFWU0UUIRJUbcXlK1EgEETN3AaLUwdB1ZEKmWq5x1RpFlGVEQ6NgReRSVoOp6+LPZtdi1yzJVvcUF93DP78w0wSnKnHUNgSBgYoLZXqnVDAPJYWdgp66gvVucotINattZIzokhZrR4Jzroa7o4UFMTNyyilO0tc9JaD9qYiKLEt8W2k52lmW52wXs2GSm02kSiQSzs7M4HA6CweChZ/PsB88iYTioRbCD7D4c1sJcqVTC6XQ+c52n9wKedxj2xkc/+lE++tGPPvI5mqYRi8UsH7tz5w6vvfYab731Fi+++CIAv/3bv813fdd38eu//utv65K5E+97wgD70xh0/PkDgQBnz5595IpGp+g8TB3DTiejjpbC7/e/7bk9Djrn/zRFvWEY3Lp1i1QqxUsvvYTP5+s+9o0gDDvdol555RU8Hg9weMnNAH/3J1/jjf9xk5YgITntuASJUr1KuV5HR8EUIJ3N0hDAKem0BBO/x4agidTqLV64OMLU3TXGR4JEYm7evLWM26Fy6cwQdxa3KFUbnD8Zp95qMTEYpFipM7uZoVCpE/Y6GR8MMLueIvNQY3BhIsbU4gZ+l43RkB+bJvH63HYnIeiyk67WaOg6ogATkQBhr5MHySwb+RIb2RKiAEMhD0vZbVLhtmlkajV008SpKIwGfLg1pb2tZTKbaHcDJFFgKODtIQsAZwYifa5IYwEfUzvEz5IgMOhxM+r3Um22qDabpEplUtUalUqNfyiv0No1onR5MM7Vzf5Cv61z6LXwkQSBjIWewS7LfcFtAG5F5Z5FeJtDlpnN94/XyOLeRb4hmPhVOw5ZRhPb/xRRImi3M9CoU6lUaLVauJwuEEU8qkqyVsEvO2jqBg1Dp663cMoKd9NpTF2kppvUaNIJNXBIKnPF/uOf94aYsegieGSVhqlbJk5fCg4wle0nPoMOD+u5nOV7POeLcMPCnSlu87CZt/5cLvsHmcr1dx4cooIpGNQszu0fx84gm4JlsS0IAi6XC5fLxejoKM1mk0wm080XMAyDmzdvdgvVb3RA2fup6/E03YfDGknqEIbnOAS8DzsMhUJvh1XTtH2PZv/t3/4tkUgEv9/Pd3zHd/DLv/zLXU3o66+/js/n65IFgA996EOIosjXv/51vvd7v/exj/OcMPDkhOFReoWDOsaTorP/9fV1bt269UTn9jh4mqK+Xq8zNTWFYRhcuXKl2/Y/iH0/CoIgWO63Xq8zOTkJ0OMWdVhkwTAM/uwzrzE7vYJo0zBNgXrToFApI9kkfKEAoqq0C3NVwiiUaRo65UoVqWjQMgScbhv5co2hmBfJJrO8mePC8TgNTN66s4pdk7l8ZoiFrSzJXJmAx46kSkQ9LiJeJ4Io8NbcKrrRvlqdG4uiY3I8HmRuI0PBWePWxvYFTJMlfB47miwxEvCwmMyhyBJfm+tNVT47HOH6+vZquF2ROT8codJo4VFVljN57mwkOTsU4X6ydyznwlCsz2r1aMjfQwwAgnY7UbeTgMNOSzfIVmusF4r4VI2vLPaLXGMBL5lUb/HulCTuWLglnQgGLHUOF6JRSy3CmUiYtxL9xfGJYKivu+CSFS5EomxWSww5PahiOz1ZQMCtKmTqNSKqi7quU2s1qTSbxF0ubj20YM6yLXr2azbuZlPUjR3XkFp75GrM42OxlOs7pyORARYr/dsnPH7mLETQAiaZPYTWEVNi3uh/zC2rlgFuAHGHi/Va//G9io3ZPcTWg04Pm41+wqAJErMWeguA454w1/PWI0zfFT3dM1rY+V5bdQ4VRSEajRKNRpmfn+8WiGtra9y5c6dbpIZCoXc8nKxjzPEsEYbD1uV18KTdh8PUMDzvMDzHQWF4eLjn55//+Z/nF37hF554Px/5yEf42Mc+xtjYGPPz8/zrf/2v+ehHP8rrr7+OJElsbm52reE7kGWZQCDApoVRyKPwniEMT/MllmX5sVrQHU3A5ubmE1uAHjZhEEWRZDJJuVzm4sWLhMPhA93/fs+/UCgwOTmJz+fj3Llzlhfyw+ww7BY9d85nZ/elI27eywnpaVAt1/jjX/0CW5tFdEVBFyUMUaBSKiG7FUxTo2kK6PUm+XIDt89O3RColnViw0Hu3E9wbMJPKl8ila8zMeql1WpSqTaomyabmQLnj8URFYE3Z9vdgaDHzthQiAcbGe4uJRmL+1nLFzEMkxODIfxuO5OLG9QeuhSFPA7SlSqNlo7bpjIWCaAoIjdWEjQehqpFvS4WM7lesjAU5vZmihORIC5NJV+p4XHZ+Op8bxF/fijK9Y3e1eQxC7tUVRSxayrnohFkQaTSaLJZKHHE7+ONpd6CUJMkNi0sUM9EQ5Y2qiNeN7fzub7tTYu/O5sksVDof65XUdkoFxlz+3AoCpokIyEgiyJ1XeeMN0yl2aTUbJCv1zFbcCO5RbHR6/4kChB1uix1ELE9RGjjHh9X0/0E5rQ/zJ28hcWqJHM3b12Uu/dwWTrtj3DbYhRKAMqqCBbygTGHl5lS//FVUeT+HnqHY3vYr0qCwIM9MhlOeaPc2IMUlPcgOSMOPy9FxzAMo7sQ0Pmew3bndK+xQ5vNxtjYGGNjYzQajW6ROj09jSAI72g4Wec69iwRhsMMSHsU3q770NEZFAqFAyV25XL5eYfhsPA+7DCsrKx0JxugX3fwuPjEJz7R/f9z585x/vx5JiYm+Nu//Vs++MEPPtWp7sZ7hjA8DR6nGN65Sv6BD3zgiTUBh0kYms0myWSyq6U4jIvafor6jph4fHyc8fHxPS/c79RIUiKR4MaNGz3ns1vcfJBkIbWW4fOf/iLZQhVBtSFrKpV6k1Q6h2TX8Dk9bKXKDMTcrG3kGRzxM7uQYmI8xIP1NJVqkxdeGObqzVWiIRenTvi4vZDENE1G4w7K5RL5Yo1oqMWtuSQTgwFcNo1MpcZb99oF2UDIAzKcHAqzksxTrNZZyRW6ZMGhKvg9duyaQrTRYj6RQZIEri5sr5ZrsoSiSpRLTQQToi4bI+EAhUYDCYHZzfbIzXDAw8x6b8EZdjuYS/euZiuSSBODAbeboNOOhEi+VsPvsPHWLpF02Ong9lZ/4XlmINKnZ5BFgUzN2hb1XqF/1XrMZuPBQxLhlhUCDjsuRSPstFNqNhlz+6jrOuVGmwCMB3xctchReDEe70uXhnaXwirs7XwoyrRFrsMRj4/bWYviX5S4nbFeXd+rfjwbCHPVQgQd0OzczFrnG4h7/N2f8UX2DHfbsBBgt18TZdpifAjYM8fhlDdqKZAGqO0hAh+we5mzsJIF+O6Bs8C2Tg22V+o7BGLnNXn383ZeB1RVJR6PE4/HMQyDQqFAOp3usQftEIj9hjc+CjuvT88KnoVzsuo+3L17l3K5zNTU1IHmPpRKpecOSYeEbaXUex+d9+nxeHoIw0FhfHycUCjE3NwcH/zgB4nFYmxt9d4/Wq0WmUxmT93DXnhOGHj7Yv5J9Ar7PcZ+0bEnFUWRSCRyaCsgT3L+O5OSd4qJ98JhEwbTNFlYWGB+fp5z5851vySdwuEwVu/mphf5wn/4axqGgKjZ0REpVWsUKxVsbhfekJemrhMZ8lFt6ASiHqpNnUDQSbZcJRRwIdtkVjbznD0ep2bq3Jzf4uhwEJtT5cZcu0AdG3BTKBUJOlSWN7MMRDwsbxWwqzLHR0IUag3mN9oFu89lo4FAqdbA49AYj/gwRYGZlUR3VOnkYIjp5d7i9+xolHKtzhG3jWxdJ12tYytXWEznus9RZRFDhMaOvxFBAJ/TxlayQsTlJOZ2oYgimiozubpBrdVi9aH2YdjnYXLdIkfB62Qr0asvGPC4uL7ZX8BeiEctNQp2RcIrSvhsNnxOV9tdyoSa0SJeFsnUapTqTUr1Jg5RZCErUtF7O44Bm40ZiwRor6Zxy6KjYZMk7uet7USzDWunH59NAwtn0CFF5X6zPyZ5xOXhlgXBAJONar/LEcCE189bqf5CPm53cTtnTUr2upOf9Ib2zHFI70EkTnpCzFp0JABMrK8BcZub+8U9xp5sbjYsxp5EBP73h4ShZ/vD7/hOq+id3YdOp7kjnLUauRFFEZ/Ph8/nY2Jiglqt1u0+LC0tIctyt0j1+/1PZdfdwc6uyLOCZ4Ew7IamadjtdhwOBxMTEwfmvATPOwyHivdhh+GwsLq6SjqdJh6PA+2x61wux7Vr17h8+TJA15nylVdeeaJ9v2cIw9NcSCVJ2nMkaWVlhbt373Ls2DFGR0efmURpgK2tLW7cuNE9r06wzGHgcYv6VqvFzMwMhUKhJyn57fZ9GGSqs9+ZmRnS6TQvv/wyXq8XOFxx81tfmuZv/sub6IJISxAwDWhJLUrVKg6vB7vbwcZmntiIn9n5JBPHIyyuZvD67KhOhbtzCS6cH6JSa1EoVnF6NRRF4kjcj2xTuDG3ScjrYGw4yM2lBOVqA0kUGIi4qFZrjPhtZKstNrIFNvPtQlOTJSJBF5osE3DamdtII4giU0vbBXbM62I1V8A0TcbDfnwOG5oq8/p8r27h4pEYUyu9xf3poSiTD7sDdkVmxO8l4naSrlTxazaShTLJQpkjQR/LG3n0HaNiggCyInVJSwdn4mFuJiwEuA4bq+UdOQomDHrd1HSdF6IxJEFENwzKjSZ2UWAmmcIEcvUS5NuvuzwY52ayf99jfh83s/2F/pGAzzKl+Zg/YNl1OBOJWDsmhSLMWHQL4g4XMxZdBwGTrGD9vQs7nKxYWawGIty0KP4VUWSuYJ1vMOTysFnvJxlxu4s7exAJbY9CeFBzsdKwJgw22XqFN6Q5uLuHFmLQ4SVhYcEqCrC0R8bDS8FRorbHu/bs7CoYhkGxWCSZTDI6Otq9L3Set9fo0uDgIIODg+3Aw1yOdDrN/Pw81WoVn8/XLVIdDse+rjUH6dh2UNB1/Zk7J2ifl6ZpB5770NEwPMfB47lL0t4olUrMzc11f15YWGB6eppAIEAgEOAXf/EX+fjHP04sFmN+fp6f/dmf5ejRo3z4wx8G4NSpU3zkIx/hx37sx/jd3/1dms0mn/zkJ/nEJz7xRA5J8B4iDPBkQV078agMg/3oFaxwkEWxaZrMz8+zsLDQXTFfXFw8lFX6Dh6HMFSrVSYnJ5FlmStXrjy2q8hhdRharRbNZpNyudwjtt65knjQZOG//8cvM/O1OXRRAkUFQaTarFMs1TAEte0glKngCDpIpUsMjwe5v5Dk2PEo03fX8HntnD49wOTtNRRZ5PzZIZY2siQyJU4ejVKpNzl1JAICXJ1ti5jddpVTEzGWt/IkCg1kWSAWcrKcLiGLMORzYHNo3F/P0Hr4OZ8bizG5gyy4NYXRqI9KvcliMseDRJbRsI+1fKGHLJweDPeRhTODEXTD4NJgjEy5ymqmQKnaYCGb62ogoO2KZAhmD1kAuDgUZ3KX+NkmS2ztIsBBh52JoJ+mafBiPE6j2SJfq7NVKhN2OJnaJeASMAlqSt+CjlNRuG9BCgJ2O3PF/sLULUnc2OrvfnhUjdvp/hV2RRJZKFhnHFR164WJAbebjVp/wX7SG+C2hUA5oNm5uceYkr7HEtbZQISpTD+5sYkS9yx0EABDTg+bFucV1Ox7diRCNjvrzf7P0YHI7Zz1yNERl590tn/BQxRgqWxNCk66o9wpWov2/rFFd+HtIIoixWKxmxEzPDzcHVncec14lPZBFMXujfzYsWNUKpVukfrgwQNUVSUUChEMBvH5fI/drX4eJPf42CuH4WlzH56PJB0inncY9sTVq1f59m//9u7PP/MzPwPAD/7gD/I7v/M73Lhxgz/4gz8gl8sxMDDAd37nd/Jv/+2/7dFE/NEf/RGf/OQn+eAHP9gNbvvMZz7zxKf+niIM+4Usyz3FfK1WY3p6et96hcc5xn6xcwV/px3oO+XCtBey2SxTU1NEo1FOnTr1RDeSwyAMxWKRmZkZAF5++eU+cXPHceSgbsLNRovPf/ovWJ7bQtA0DEOg3jDIl0vIThlvwA+qDJKAzWdDAESvBgiMjgVZXM9w4miUhmFwe26Tc8fj5Gt1vj6zjCgKvHR+hI10kaWNLMdGQzzYyjIa9eOwKYiKxBt32kJjQYDjo2GausH5USdz62nsThu317eLrgG/g9vrW0S9LgZ8Lsq1Jqom88aO8DaHKlOsVXtEwUGnnZVcnkGfh4jbQUs3KdZqrOYK5CrbYzaiADabTKPU+/eyO7QN2hqFOzs0CoooEve4OBLwUW42ibvcFGp1EsUSpUqdJTFPotRbWI76vVxPWGgCnHYWqv2ahpORkOXo0hG/j2sW249Fw5bdhVGnk5lcfzF7PhzharL/+ScDIe7m+gmGX7Nx0yJfAaC2x3LUUV+At5L9o0WjLi93ctbFf26PUagzgSiTmf59aaLEbMF65GjcHeRqpl+4rIkis3uInU8FYpa2qAKwYuHmBHDKE+VOwZoUyHtcY1yyxrdFjlk+9ihkMhmuX7/OxMQEIyMjPY91ug+df1baB6trnsPhwOFwMDw8jK7r3dC4e/fu0Wg0ekLjHnWfeRaL88MKSHtaPI5L0qO6DysrK11Ru6IoeDweotHogY4k/cIv/AK/+Iu/2LPtxIkT3L17F2jXIP/yX/5L/viP/5h6vc6HP/xh/sN/+A9vO977HO89fNu3fdsjF8L/6q/+6m33EQgEnjikzQrPCQO9I0nZbJbp6WmCwSBnzpw5sAviQXQYKpUKk5OTqKrat4J/2DkPjyrqOzazJ06c6LvRPu2+94OtrS2uX7/O4OAgKysrXbJwWOLmQrrI5371zynkquiyAoKILguUa0VsXg1TUNHcNjY3C4QGvKwvbDF+Ks79B0lGRoMYmJQrdRqmjqJIBH1OcrU6m6m2A5IhCbxxcxmA8aEADqdK1OfiwXqG88cHmJ5vF6cjYS+xiJt7qyly5XZxeG68ndoM7cJsKOjCqclUm022siW2siVODQaYWektWCMejYVcGcGEoaCHsNMBksD9rQxrmQJrmfYK8pnhCAvZXkHxxdH+hOdBn5uZje0VaVkUGPR4GA54qTSb1JstMpUqW8Uyum7ytcXVbjekg0vD8b58BgBNlTF2XVBlAayGYvw2m6XmIOJwcGOrv2gPOxyWtqsuWea+hZOSJAos75HeLAptbYNdajssKaKEKooMud0kaxUkQaBZq9NsNnG5XHhtGlVdJxh0tDPN2rlniAKYOlz0tWdUDdPABAzTJGC3YxdVTEzaE17t/4ZsdrbqZY7YAt2AtM4n1mwajGoBTLaD0gTa3YXVapGg4kZAaAsTBQERqDV0Tjii7Z8FEBBoNhvI9QY4bGiq8vAV2/vUBIkXvG0rQdM0aekt6s0GcsugWK0zJLkRZQlEAUOAlqnjEBXcskZd12mY290Zt2zjbsGaZP2j6Als0pOJW5PJJDMzM5w4cYLBwcH+390ewunOIsTjdB8kSSIUChEKhTBNs9t92Nra4v79+93QuGAwiNfr7Xn9s0gYDisg7Wmxn/Pa3X3oiNr/+I//mE9/+tOcPNkO/3vxxRcP7Hdx5swZ/uf//J/dn3dqXf7Fv/gX/Pf//t/50z/9U7xeL5/85Cf52Mc+xj/8wz889XGfWbxfOgzvYjwnDLQv5I1Gg+XlZe7du8fx48cZGRk50Bbw03YAOnZ+AwMDnDhxwvJm9E6PJBmGwb1791hfX3+qsa2DIgymabK4uMjc3Bxnz57F5/OxvLx8qOLm1fub/L+/+SXK1RYoCpKmUa03SGZzOH0uWrpIVW8i11uUmy1slRrOoJM7s5scOx7l5v1NRMHk9Okh7i0k0HWD4ZEgiiySREAXYWZug4Gwh6Gol5mlBHOb7VXtc8fiLCayXByPkS5U8HvtfP3e9qrv0cEgt9e2OBoL4LZpbGaKSIrCnc3tcZmhgJO7id7xmaNBBwgCZ+NhVjMFVlMFQm5nzwgTwPmRKNfXeou2QX8vMQAIOe2MBr1EPS6auk62XGOjUMSlqnz1wXLfZ+qxa31pzH6HnTsWmoPTsbClFuF8PMqkhcf0WNBv2UUY9HpIJPqFxcM+D8nNMi5VwSmrOBQFmyQTdbko1OuIbI++1RsNbIJAuQUuuwdDEKjrBnW9Rdju4M5WWz9Qpw4PMxZskkSyUqHQ2GUNWq1yLhxhxiJp+lIkxmSq/z24FZW5QpaaxdiTW43ywGJM6qjXz409uhuKJLFQ7H/NGV+Y63u8ZsLt5YFFV+KoJ8B82lo/cTEQZzFb7GTKdeEUZRLlBE3zoeAXGVWUsUkyJ5xhVqt5VFFCEURkUUISBCRB4P8YPG95nL2QSCS4efMmZ8+efawV3L2E051FicfpPgiCgNPpxOl0MjIy0nUtSafT3Lp1C13XCQQCXQLxLBKGZ/Gc4OmD23aK2v/Nv/k3/PN//s/58z//cz7zmc/w+c9/ni996Ut85CMf4aMf/Sjf+Z3fue/7nizLli41+Xye//Sf/hOf+9zn+I7v+A4Afu/3fo9Tp07xxhtv8Oqrr+77vT2reK5heHfgPUUY9qthEEWxu9Jz+fJlAoHAgZ/bfgmDaZosLS1x//59Tp06xdDQ0IHu/3Gxe//NZpPr169TrVa5cuUKDofjqfb9tITBMAxu375NMpnsipvr9XYR1mq1DnwECeDmV+/ypd//Ck1TAE1FFyQqlSq5QgnN5cQT8JIr1Ij67WTyFYZG/GzlygQDLnxhF7fnNjl1LEq2XOPqzDLxsIdg2MXtBwlaLYOzp+M0WgZHh4JUak1ur2x1Bc7njsapNpuUKjWuz29waizCjaV2EScKAscHg2g2BaeiMv9wHOncRIzrS9tFtNdpo6ybuO0aQ343zUaDSq3GQq6CbkLHsmc05OPGam+BGHTZmUvtGscR2nkNQbcDWRAp1xus50uM+Lx8bb53fEWVJFKV/gJ9L6HzaMDbF+gmiQK5ev+YjUdTmc30jwpFXU5ubCVwKQpuVcOlKNhkBYeiYGDyYiSObpo0dZ16q4Usiiykcsi6SKXSokK7EHcqCquFIqVmY9cRTAbcLtbK/VZHQ3vMPp8Jh7lqERAXd7q4lbEe7ck2+sesAE4EQryV7Bdae1VtDzel9mNWGHZ5md1DIC3tUSTGbU4elHNPdBynpFjmSACM2FzcrW0TFhOoGy3qRotkvcxqpd8qd9Du5Zzv8YV8a2tr3Lt3jwsXLhAKhR77dTvxKNvWxw2Nk2WZSCRCJBLBNE1KpRKpVIr19XXu3buHzWaj1WqRz+fxeDzPhJ7hWR1JOujzGh0d5VOf+hRf/epX+Y7v+A5eeeUVvvSlL/Hv//2/5wd+4Ad4+eWX+fKXv/zEo8v3799nYGAAm83GlStX+NVf/VVGRka4du0azWaTD33oQ93nnjx5kpGREV5//fX3JGF4rmF4d+A9RRj2g1qtxurqKq1Wi2/6pm86EL2CFTpdjCeBruvcvn2bVCrFSy+9hM/n2/O5hyUcttp/uVzm2rVrOJ1Orly58tS2gXslMj8uGo0GU1NT6LreI27u3FQXFxeJRqMH6nDxv/7ka7z5pRl0WaIpiOhNE11qUK5VCUSDCLJEramjOmRqLZ2mboAiUqs1MWTAMPG5HaSLVcDk7Ik4uWqdG7MbuBwqJ87EWFjPkMqVCfmdNEUTp01lLBZAN01uLiVoPhQUj8b9PNjKMhEPYFcVNjNF8rU66+vbK73nx2NMPyQLiiQyFvHjc9tZzxZZzeS5Va6hSOBz2R+ShTZkEfKVUt94UMjjoFhvcDQUQBIECtU6Ppedq0u9BavfYWc22V94nh2K9I0tqZJIqtJfDB+xCHkDOD8Q5drD7aIJHlUh6HIx5HFTbNaRENENk4auU202CTjtZMo1yo1WuyP0EBcGokxbdCMuD8TJZfrP/WQ4ZOmMdHaPjoBPUbhlIY4Gkw0LcgEw6PawUe1/7JgvwP09Cvm1irWV6nF/0FLv4JZVbu+hd4janaxYFOQ+1cbtrLXYecjtZTPdf86P0kKc8IWZzPSTHICmbE1MgqLKfMn6M/iuwZOW262wtLTEgwcPuHjx4oEtEr2dbevjhMYJgoDb7cbtdndD45aWltjY2OD69esA3c5DZ87+G4FneSTpMIhMqVTC6/XyLd/yLXzLt3wLv/Irv8L6+jpf+9rXnrhueOWVV/j93/99Tpw4wcbGBr/4i7/It3zLt3Dz5k02NzdRVbXvfh+NRp84mffdgucdhncH3teEoSPU7VjdHRZZgCfvANRqNaampgB6iuCD2v+ToqORSKVSTE9PMzw8zPHjxw9kpUsUxcdK2rZCqVTi2rVreDwezp071yUvHVeREydOkEqlePDgAQ6Hg3A4TDgcxuv17tve8L995jVmb6ygSzLICqIkUW1UKeRryJodQVVYXskwejTM3P0EI0eC1E2DW3fWOXdhhNmFLRBgbCxEsVJnI1HAkETqjSbnjscRFZG3brdFzF6XjZEhP9lChfm1DKIokK3UumTh6EAAp9tOtlzj/mq6K3q+u7pdCE4MBEgUy1w4EqPR1FnYyuKwqXx9rnfVfyIW4M5m78r8mZG2hapXU/FrMoJp4LApzCdz1Fo665l2kRrxOFkt9hesQ0EPN9Z7uxMxr6tvbAng7ECUa2v9hbgiiQQddnw2G05FQZEkRARqrRZHnG4y5QoVXadQbaIKNd7IFXryIADiHheTG5t9Dk0xt5ObFtoFn83GTQvtQtsBKde3HaBuWH//job2EFnbHSyU+z8zuyRzN2tdYDtV6+LwdCDELQtBNZis7qGpOBEIci3VX6wrorgnKTnq8XPV4jWiAAsla2eoU74w1/dwRyq1rBdRBu2ePUnBkMtLtmRNWr5r4O0JQyeXZXl5mUuXLnWtlg8DTxoaZ1WAq6qK1+sln89z+fLl7nz9ysoKd+7c6br7hEKhQwmN2wvP8kjSYZxXpVLpc0kaGBjgn/7Tf/rE+/roRz/a/f/z58/zyiuvMDo6yuc///lDrUOeWTzvMLwr8J4iDI97oTRNk5WVFe7du8eJEydQFIXFxcVDPbcnGbvpBMU9ifD6nSAMuVyOlZUVzpw588T+vY/Cfrov0BYqXr9+ndHRUY4ePdodSevclAGGh4e7M8LpdJpkMsn09DRAlzwEg8HH+oyr5Rr/+Vf/nMRaDsFmwzCgUmtRrBbRXAqKzYEv6qFSaTJ6LEImW+bU2UFm7q1zdDyKJ+jk6o1ljo+HaWAydXsNp13l+LEopWqDlc0skYiHqdl14iE3sZCbrUKZq3fahX3Q66DSauF32zg2GCSVr1DWdWbntgu480fjTC9sIAoC47EAfpeN9XyRjUz7H8DxwWBXCN3BqcEgtx8mNkuiwGjQR8TrpFRvEHY4SJUqFKoNQm47G7kKtVbv35rbrpDYZYN6IhbqIwsAfqeNjVJvjsKQ30O12eRiPNa2XzVMKo0mXofGtbUNdMN82I1p4/JwnBsWpGM44CVpFQDndrJusZofd7ssV/kngn6ubVh0ESIRJi0sVo/6/cxm+wtchyxzd4/Z/dYeBON0KMS1ZP8xAjbbnlaqexVIZwIRbu1hf5qsWee2nAlEmM5Yr2QmqtavOf2INOiGaf0+43bXnp2HAaeb9Xp/hwMg1bIeyRoUbCRvz2GGcoTDYUtrTNM0uX//PhsbG7z44ovvqE3m44bGWXUfOkWwIAh4vV68Xi/j4+N92QKSJPVkCxxEaNxeeFZHkg6rw3CYwW0+n4/jx48zNzfHP/pH/4hGo0Eul+vpMiQSiSdO5n2O5zhIvKcIw+OgM+aTTCa7eoVkMnmoxTY8OhxuJzqOQ08aFHeYLkmGYZBOpymXy7z88suPHI3aD550nGqnrmMneXmUuFmWZaLRKNFotOvBnUwmuX//PjMzMwQCAcLhMKFQyLKbk1zL8Ce/9heUqy10WcYwoWlCpVXF4behqHYUp41isYrTZ6dSa+LwaJTrTYIBF+VmE0kWOXk8SrpYZStd5MyxGJVWi2u324Tg/OkBGrrBxHCQ1c0cmkNhZatdNAU8dsaGg6yl8qxuFVhPFZkYCXFvdcfY0USUlqFzbjTKQiLLg80MRwb8rKS3V5j9LjuJQrnHVSjicaAoCi+MxilV6yyn8mzly2SrNTLl3uIs6HGS3OzddjTk5n4q17NNkcQefYEAhJwOxkJ+mobO5YE49VaLfLWdoxBw2Lm+i1xIokCk6eoLdPPYNG4l+ovgmNvFjc3+7QMeFzMWz484HdzYsnBAUhXupvoLWVGAzYr1CJFdtb6Ung6FLceXQrLCSrNu8QpYtBiDApjw+XnLIgwuYnfuqVEQRevrx3FvgPtF6+NYiaYBjrn3fo20x4Ju2ObYM+Nh0Ollo9b/eQqYe9qsHnUHeVC2Jhn/9Oglhl3DJJPJbjBXx5Wosyhw584d0uk0L7300lPprg4CVqFxe9m2dkLSdsMqWyCdTrOwsMCtW7fwer3d97/f0Li98CyOJHXGvg6aMJimSblcfqwg0v2gVCoxPz/PD/zAD3D58mUUReHLX/4yH//4xwG4d+8ey8vLXLly5VCO/43G85GkdwfeV4Rh55jPBz7wgW5h+LjF/NPg7ToMT+s4tDNn4CBvCvV6nampKRqNBqFQ6MDJAjwZYegE6iUSiR5dx07b1LcTN+/04D5+/DjlcplkMsnGxgZ3797F7XYTCoWIRCK4XC7mp5f4i//7y1TqBqYiI9s1yo0GmXwBd9BLJl0jNqpyf3aTsZMxbt5a5+TZAbYyJfKFKidODZBIFakUKygOlUjQhSyJFBsNFtey+L12xkdD3F9NkytWEUWBo2MhFtYznB2P0mwZNDF482HWAsCZiRjXFzbxu+yMRLyossT15U3qze1C48LROFOL28WqIEDI52AjV2TU60CRRJqISIrcI4YGOD4U4sYuq9ULozGmV3uf57FrbNW2u0OqJOLXFHyKhI6Jx++l2jLYKlXIl2ssiTkSxd5V6iNBn2Un4vxAlEmLbkHcYeNurn/1OeZxWnYLwm6npRB50OchsdG/Yn4yHObqRn9hfjYa5Xqy/zwH3S5uWli1SoLAskUQHEDU7SKZ7xdmnwmGLYt/SYA5i+cDjHi8JJL97yNsd+ypN3DtEaoYd7i4l99jHGqP1WqfattTC3HE7SeVtu5KrJStOwjHPGHul6z351M1sNidiMB3j5wlYnN1i+dcLkcqlWJ+fp6ZmRkURcE0Tc6fP//MjX1YjS51rmemaVKtVhEEgWaz+cjQuM517ejRo1Sr1b7QuE73we/3P3VR/SyOJHXugYfRYTjIpOd/9a/+Ff/4H/9jRkdHWV9f5+d//ueRJInv+77vw+v18qM/+qP8zM/8DIFAAI/Hw6c+9SmuXLny3hQ8w/ORpHcJ3lOE4VFFYiaTYXp6mkgkwunTp3sudIc9zvN2x2g0GkxPT9NoNPbtONS5QOq6fmBt6EKhwOTkJD6fj0gkQj5vfYN/WjwuYeh8Ts1mkytXrnRv+jvngvfjhNSxNzxy5AiNRoNUKkUymWRpaYmlyQ3mX99ActhRnU6QFTLFMtlcCZffgyipKC4T3TDxxzzkchVOXxhi8sYKJ45FkR0KV28sEwq6GB4Jcn8xSSZbJjrgxQROj0cRFZGrd1cxzXZR/+LZIcq1JqIgcnM+weljUe4sbBdQL5wYQDdhPOpnMZFl0TCQNamHLJwejXTJgsumMhry4XPZWNjKUC43KJXbRf7F8XifXeqZ4UgfWQg4bcwltwtWmywx4PUwGHBTajSpNpqkSxVSxQqCXeFBqdIWeu/AyYiXO+n+vyFFkfquoTZZYtGCFHhVhbl8fxE+4HHv0V1wW3YXQg47MxZhbzZJ4v4eK/x91qcPEXW5WLXQIpwNRywJhkdWWCgXUUWxnW8gtJ2tRARUScQlb+sUTMA0DYY0O0u1Mioi5sM/b4N23sRcwZpIHPH4SFoQCY+i7kkkBp0ey1V/uyjtGQh3zBvgarpfVA2wbiGcBjjhCXGvaE1M9iIzkiAwV7J+zYvBISK27fGinYnLExMTTE1NdQu+qakpNE0jFAoRDofx+/3PVOG7e3RpeXmZ9fV1zp5tp1c/rvbBbrczNDTE0NAQuq6Ty+VIp9PMzs7SaDTw+XxdArGfe86zOJLU+WwO4/dZLpcPbIRtdXWV7/u+7yOdThMOh/nmb/5m3njjDcLhMAC/8Ru/0U3k3Rnc9p7Fc8LwrsB7ijBYwTRNlpeXmZ2d5cSJEwwPD/cVlAeVwvwo7EUYisUik5OTeDweLl26tO9if+fq1EFgc3OTmZkZxsfHGR8fZ2Vl5dBcmB6HMJRKJSYnJ3G5XD2f0842/kHYpqqq2m3xf/H//p8sT6bRZYViqYZebqC5NJqGSTAWRNY0TFnEhkkDA02Tke0KhVKNkydiZMs1qvUml84Ps7CRZfLmKqoicv7cEBvJIisbOU4cjXB7MYHHaeNI3I+oiLxxa7uTcOHEAFPz60T9LuIBN7Iicm1+A8PojF0JhIMu7q9vF7kxvwtBFLh0JE6mVGUlmafebPH67ErPKNJIuN8u1evQWMltF+QCbZHyeDRAtdGk3tJJFysk8iVkUeQr9/tzFIJuO5ul3qLTa9dYyPcXoqfiIW5v9ReBp+MRSwF02K6SKzb7tgdddtZK/UV72O1gbVcxL5gwFvAxn81ikyQ0SUGRBBRRJuS0ka83EAWhGzwG4FBkis0G3mAUwzQxTBPdMFAliUK5zpjDh24atAyTlmGgGwbNho5TUDFMk5auo5smJnCix2Vp+/cRd7m4vrFleT8RHTYajf7if8Tp4n6xiCSISIKAKAjIgogsiiQLFcKSC1kQEAURWWz/d8TjJlEtIz7MLRAfPi4JIBkiL/oGH36PTECg2WrSqpRpajKqqtIyDXTToGEYNE2dmt7CJatUWy10tr/Hx71B7u9BCpyKNSlQRZH7hT2Sor0Rbu+R+vxdg6cst7daLaanpzEMgytXrqAoCrquk8lkSCaT3Lp1i1arRSAQ6I4vvZ3BxDuJjpPTpUuX8Pl8faFxj2vbulPbcOzYsW5oXCqVYm5uDrvd3n3c5/M9VsH9LI4kde6xB01kWq0WtVrtwAjDH//xHz/ycZvNxmc/+1k++9nPHsjxnnU8H0l6d+A9TRh0XefWrVuk02lefPFF/H6/5fM640IHPc6z+xi7CUOnKB8bG2NiYuKpjr1THPc0ME2T+fl5FhYWOH/+fDfI6DA1Em9HGKycmXaLmw8yY6HZaPEnv/bnrMwlkewOHJKMXZIo1asUizVUt41UpoDq1KjWTSKDPu7//9l78yhHFrS68xcRCim071vuS2VmZa2vlve6Cjc22D3gXhhsGE6DGcPBx9inh/bYxjNzvM3YAwzgZZi2PSweDHYbuxuMDQ24mR6gwca4t/cqM6ty3/dFKSml1L5GzB8qqVKpiHq1ZNZ7VV33nHe6S5kKhZYMfff7vnvvyiFXbvSRPMqRyZXwBBz4vXaSqTzre0dUairXx7vIVap87UGDEAwPBEASGO0LsLyZQBU0JhcfdWqvjUTRBI2+kIftWBqAXLXaIgsAV4YjTK3vN9KYXXZK1Rq5SoWZzUdEwG6RSRUKbWRBlkSqmkrtxBRAFAQudgcpVqpIfi/ZUpn9VBa/3cZ/XWonBpIkUKh1Fu4XuwLM7ncWfANBL1O77cWeIMBBOt3xux6rwtxh5zECipm1XCO7QQScFgtOixm/zYqqwo1IuNWp1zQNi8nEcbnMmNtHqVajVK1RqFYxmySmdw4pn/o8S6LAod1KXCcfYjwcYE4nIO52d5QHOm5KQ14P8zpiZ1HAcE2py+nUFWb3OF0s6giqAeoP67UmiQEoU+eKP8iMga5BEDVdp6cr/pCu2BpgwOFkPdM5LRhwenjQInwCJlHGKslYTSb8Jgd1RUCWRGRBQhIbBEUSRQQNbnp6UNGoqXWqWp1KvU7QamM5G29Y4tJ+TTAZ6DEsosR/ExnpuL1arTI5OYkkSdy6datVREqS1DI8OJl50FxJdDgcLfLwrG5qZ4H19XU2NjbanJzeLTTuSSNilx8AAQAASURBVG1bT4fGpVIpkskk8/Pz1Go1vF5vi0AYEShVVd8zS1cjnBSHnyVyDxsg56Vh+LrH6wnDS4FXijCcvEgUi0UmJycRBOFdbUnPY51H7zGaxa2maaysrLCxsdFWlD8PBEF47tWqWq3G9PQ0mUyGO3futF0czzNJ+nFkpJm+fenSJbq7u4FOcXOzq3YWyCSzfOYnfoNUqoigWNAQKBSrFGp5NEGkhplI0M/h0QH+bjuJ7RT7+wkCUSvvTG4SCtqJdHmYX47h89pwemz4LCbWNhPkqzWWNxN4XVaG+v2s7R+R3G0Up+PDYR6sHeB2KAxEvMiyxOTqXqugt1lkJFkil2l0me0WmfH+IOW6SsBuYzeeYTee4dqFCFt77YVd1GtlOd5epF7qD3GYyXO9N/IwR6GEw2rhq8vtVqs2s8x+prNzf60vwsRW+wRAEgWOy51rO/0GGoU3eiNMnCARZgEcskyf00ZJA6vZjKrWyWZzCJIJv8eFnD4mV66QK1fIFMpkCmV8ViszOo5Jb/REmNUJgbvYG+AdnenFlUiIKZ01pR6XUzdlWhIF1nUID4BLUUBnG+dSMMhMQseuVRRZSemvFoXtdnZynSQjYrfr2rIC5AzyHfpdbkNbWMngbyhoUdgo6JOcgNXGRu7R8WqqSlYtU6pXmT6qkO0It4Pr/rBhUrRNtJDMVwEBi2TBYZKxmmTcZguVssAVew+S2JiKgIaKxqg7gENuD4Yrl8tMTExgtVq5evWqYcdZL/Og2Xlvuqk1LUsDgcALKZA1TWNtbY3t7W1u37792CL1aWxbHxcad5pAJZNJDg4OWFpawm63t8iDy+Vqe7z324ThvNakCg+bCC/SVes1XuP9hleKMDSRTCa5f/++rl5BD80LTK1WO3fCUKvVuH//Pvl8vqMof148zxSgWCwyMTGByWTi7t27mE/tEZ9nMJzesVVVZWFhgYODg7bp0PPqFR6HneU9fu3/+v8oVlVUyURNFShVamRKRRweO6JswWe3UChXGRwNkUwXGBoKka1UyWSLjF7wsn2YI7awTzRsx2I3s7oZRxAFLlwIUa2pjA+FyBXKLGzFyRYaxfWFPj+SLDHaE2BlJ0nsKEu2UmmRBUEQ6O3yks6XeGMoQr5YoVStM711SKnySKx/aSDE1EZ7h3g45GQ5nsFpNdPjc6HIMhbZxIOtAwqVKvvJRsHpUMwkdULTRrsDTJ4iBn6HlXmdKcK1vjAT250darMs4rEqeBQLNrOMWTJhEgUqqsqY30+uVCFVKFKs1pBkiZnDFLVTzkhdbgdvb++1TUkAut1OZg90phE2K9M6mgbFJLGY0O/Wp3XIDkDQYWNbp2C/EgpxXy/DwWJhVmfqAHScfxOXAkGmdPQOsiiybEAkelz64W4ei4UdAwcmv6KwqcMlnLKZOYOJRL/Hy2G887MhCrCWMche8AaYTumTAtWgw+Y0mVk44ahUrtco12tQLhJUokwe6Wc5/LnBG23/bl7L3G73E13/T8JsNhONRolGo2ia1nJT29jYaHMdOq/Mg+exfT3r0LiBgQGq1SpHR0ckk0mmp6fRNA2fz4ff76darb7vCujzWpPK5/MoivK+02y8KhA0DcHg2viq4WV+nq8UYdA0jY2NDZaXl7l48SK9vb1PdL9ml+Y8dQzNDv2Xv/zlVhT8WXernnUK0AywC4fDjI+P615wX+RKUrVaZWpqinK5zJ07d1qCvPMkC9N/NM//9+k/olwDVZIwKWaqxTKFWgmH10GtJuLyKCSOcticCqogkMuVcQXs2BQz1Vqd/aMyPV1+BEFjN5FhN1lANgkM9LtJHGVJpIr4fXZqokauUGakL4DHaWVu85DcbqModNjMaJJArlhBFGAw6iPgdbAeOyJ2lOMgkUGRJTw+RxtZCHrsrCcaxZsAdPmcWKXGnn3YaefwOM9CPoEiSzidCoVK+zrRYMTXkc0wGPJwX4cARH1OpncfFcQiEPU6qdTqvNEdRhJE6qpKoVLDbbMwuX1ATVVJZR4VnTf6ox2OSwA9fg/x3c7bTWpVt9gOOGzs6kxA+vwe4jpThEuRIPd0nJfGgn4WdMTOLouFWZ3pAkBep3sOMOj1MKFDJLqcDuaT+sfSW+8CuGxAJCRBYO1Yv1i/4PXzjo79qijAgk4SNcCY1887cf2C/LQGpImLngBzumFxjXUzPTjldlJwEhc8PiaT+udQNcissEoyfyIy0Pp3Pp9nYmKCQCDAxYsXn+saIQgCHo8Hj8fDyMgIpVKJRCLRCoI0m80t8uDz+Z67mNQ0jcXFReLx+JnYvp5FaJwsyy07ak3TyGazJBIJdnZ2yGaz5PN56vU6fr9fN/fiReM8U57tdvt7/vxeWbxeSXop8EoRhlQqxfr6+mP1CkY4b6ek9MPVhbP4IjPCszyHZu7D6OgofX19hud13itJzWM3v/BtNht37tw5N3HzSfynX/kyX/5/76NKJjDLSLKJRDJDOlsg1BvkMJYj0h9gbn6PsSvdzC3u43Ip9Az6mVvYJ9rlxhd0UktkOTouUEfDarXQ1+2jjsbsaqNIUywiZquGRzGDppE4ynOUL5ErNgpPSRLoCrtBEAi47WzFUpjNJr4y364fGOoLtmkUJBF6wx7qqkq5UmM7fsxeIkuX38puur0zPNYbZOqUhepIV2eQmyhCXXjUETeJAmG3gy6Pk5qmcaMnSqlaJZ0vkcgWCDjsHeRCFCDidVI79blxKhYWdITOEZeDB/s6tqUeJ9u5zra4XzHrriK5LBZdDYQkCmzrOCwBiAZBAiMBL+/oBLgNe72spDoLdlGAVQOXpajDwZ5O8d3ncrFkMEUoGNg9jwcCTBsU/4cG4WpXAiEeJPW7/nGDFaYLj8lrsEj6DQ+7SWbRgEiMuP1MGJCCskH+g1O2sGBg9fonogNYH7pKNQ0kurq6WkGOZwlFUdpch1KpFIlEgsXFRcrlMl6vt5Xl8rS2rZqmMT8/z9HREbdv3z5z29eT04fmtfZJQ+OaEAQBl8uFy+ViaGiId955B7vdTj6fZ3t7G0EQ2kLj3gt9w3kThtc4H7wWPb8ceKUIg9/v5xu/8Rufaa3ovLIYmlOPlZUVAIaGhs6tS/G0eQZPk/vwIlaSkskkU1NTdHd3MzY2du7iZlVV+bV/8gWW72+hmmTKFY1qrYZaLVOsVQj2hDCZzfi6TI1d6StdrG8lGB/vYufwmMXlA65c6WY7dsz27C5+n52ubg+FUpWVjTjBoJPZpX0Ui4mRgQD5apWV7SRQwGQScLnMJNIlLLLEcI8fq83M9NpBa3IQ9TvZiLUXpVcvRJjePGQw7MVjVyiUqtjtZu4tt9tajna5WYy1L9Ff6OqcIlhMEunio/UVt1Uh5LYTdtvIl2vYIiZSuSKJbIGDoxwgsJtqL7p7/S6mdzoL0au9nbkNABfCPiZ2OovGkMvelgDdhN9pYyfbWWgHbArJcmeX/0LIp+uwdDkS4v6BjkbB7dLVKJgeo1FwKGZdjUKvRWGjUuq43SJKuknQAEGbnU0dIXSPw2l4H6PvnAsen6HNqmpwr4jFymZBf4rgsphB50dWycSCgc3qRW+AiWTnhAOMJyles2KY/zDi8jFhsI70p3saYud0Os3k5CQDAwMMDg7q/u5ZQpKk1nRB0zQKhQLxeJxYLMbi4iI2m63183dzHVJVlbm5OY6Pj7l9+/a5uzQ1z+VJQ+OMpg8APp+vLQwzmUyysbHB3Nwcbre7RSBeVHf+vAhD05L39YThnPB6wvBS4JUiDMAzaxDOw1q1Xq8zMzNDKpXirbfe4itf+cq5rz09yfGr1Sr379+nWCw+ce7DeU5gmmRtYmKC8fFxenp6AHSdP87qgl3MlfjMT/wGsd00qmhC1QRExUS9WqRUrhPujXCULKB4bGT38wSibmp1DZvdwm78mFDQiddvZ2kzTrVa5+p4F/FMgfvzjULpyuUu0pkSV0YibOwkKdRqD8kCCKLAyFCIarWGw1plJ54jk8sws/Wo0LRaTCBBodwosHqCbsI+B7lSFUWS2NhvEInhbh+Ta+3FVNhtZS3ZXnhbTBKZUoXmVo9LsRDxOAh57GRKFVwWM/HjPJl8CRMCe6kM+XJ7cffGYITJrU4CYFPMqOn2q6BZkthOdVbUfruVGb28BLeDaZ3pQpfbybTOFCFot7GW6SQXZhHmdY4PkC51FvLQWGvS0yhcDoeYinU+X5/VarimJFpk0CEMl0JBJg87i15Fkpg/0i+UjfIdAlYr80f6j++yWHRv9ymK4X163B4OdDQKErBgoGu46A0wmdR3VCrW9UmBX7GydGyQYu3y8o4BySiq+o0cm0nmj0cGWhk7IyMjT7yGepY46Tp0cu8/kUgwPT2NqqptwumT+jBVVZmenqZQKHD79m0sBu/feeLdQuOMpg8nRc+nQ+NKpVIrNG59fR1ZlttC485LK3heoud8Pv96wnCOeD1heDnwyhGGZ8VZF8RNlyZRFLl79y4Wi+Xc156e5PgnV37u3r37xBfu85owqKrK+vo6qqry1ltv4fP5gHa9gt54/HkQ30nyy//gP5LNlRGtFup1KJaqlKslMsdVvGEvBwcZrG4rs9M7jL/Rx8LCAR6vlVC3h9W1OLlCmUy5wvBAkFS6wN5Rlngyh1WRuTQWZj+RZefgGAQYvxhldvUA2SQy3BvAZrfwYGWfysOgteFeP2uxR11hDYj6FERJYrwvyH4yS/I4T1VVOUg9KpLtikyqWGrb7ZdEsFgtVHONAlAUBLp9TvpDHnLlKh6rQvw4TypXxGW18OWlbeqnVKg9QRf3t9qLd6diZuWwcwVnrCvAwkFnwXu5N9ThogTQG3AzqTN1sAiqrhg24LLp5iv0et3EdzvtTy9Hwzw4OEQRRSQaUwLZZCLqdJCp1xj2ehGbQWmCgEkSUesaV4NBWskLAggI2E0yN0ORjsdwWxXSpRINnx6NSqVCoVjE7XCgmiSuma0PG2Yaqtb4X4soMuLxUX9of6pqjayGXpebpfQRkiBQqdep1lXqaA3XpLRBIJvHQzzW+dwVSTJcBRr2eHlbR9cgCLBsQFhG3T7mDNaRygaaAr9iNTyHQaeXZFmfFGQMRNpes8KSweThm6ODZI9STE9Pc/HiRbq6unR/70Xj9N5/JpMhkUiwvb3N3NxcK0ne5/Oxvr5OpVLh1q1bHUYT7wXezbb15PdLvV43bOAoikJ3dzfd3d1tqdsrKyuUSiU8Hg+BQOCZQ+OMcF6i51wu974TeL/Ga7xovFKE4Xm6z2e5kmSUKn3ehOFZ8gye9thnmVXRnHQ0LetehBPS8sQ6v/mzv0cVAWSZUkUjkytRqJVx+5yY7TIOj5VEpojXKtN7IcTc3B4XL3exuplg9/42Q0MBrA4LOysZqpU6ZocZsyxxZTSCaBJ5e+aRNenVS10UylUuD0dY30likiXemX/084DXTiyTQ9NguMuH02pBkgXeWWovrIa73KzE2rvgA90+pk9oGUyiwO3RbgqVGp7+CMe5EvtHWUyCxJcWtjtEw4rF1EEWBsPejpRngOGov8MtSRAgX+3sJjsVM4sxHY2C28H0Xnv3XwSCikymUmPQ68FskjBLIpIgYjGZqKFyOxpFA+qqiqpqmESBXKHMgMtNta5SqTU8/Gv1OjtHWdSqRqVt7lvHhsB2obPzf7Mnqru+NOz36lrBSqKA26boOkrddHt1BdUDXjdf1dFsAFgFM6lM+3nJgsi1cJiV4xRB2Y4sio0sA1FCEgTUKlz3NuxwRbFBcgRBwC7LZKsVVLSHIXIqVbVORa1TrtXwyAr5WoWq9uga0Sfb2Kx2kg8ASdb/enAIouHkYcjl5Z2E/vGOyp2vGUBQsbGc0ScmQy4f9wwmD2/ZAjx48IArV66ciTX1eUAQBNxuN263m+HhYcrlMslkksPDQ9bX1wEIh8OkUin8fv+5dd6fFUbC6VQqRblcRpIkKpXKY21bT6ZuA63QuGQyycrKCoqitIXGPc+E4LxXkl7jnPB6JemlwPvr6nQGaO69Py3Oqphv5gaMjY3R19d3Lo9hBKPja5rG5uYmy8vLXL58+Zk6cSc7TmdxQS4UCkxMTKAoCrdu3eK//Jf/0nrfzossfPXzE/ynX3ubak2gLoDJLlOtl6hJNVwuFxaHHU2uUqqqOJwKhUodxWZmYDjIwmoMn9fO6GiYBwt7lLZqOB0WhoaDJNMFNraTOBwWFpcbRWZPxEM04mJxK0E62yiURgaCzKw/KkJdNjODPT5yhQqbBynWdo4Y7PaxEW/v5F/s8zO/295tHu3xkjjOM+R3gKZSw4RJknh7abeNBIiiQB21gyxcHQh3EgOhsed++s+ny+fkgc5U4GpfmPsntAsiDUHzpe4QyVwBiyxhEkWEh0FqVkXGk1MoPwxQyxXLFKs1PFYbS8ljjnLteoQ3+iK604ibfVGW453d9+vdYe4biaZ1nJQEAVYNLFYdin63dzwUYFpHUG0WRZaO9CcCPpuV9eN0x+29LherOsLpuqZRUutkdGxeR30+JnXWpADGA37mk53EZNDjYXr/0e1m0YTVZEJSVdyihYt2G7LUeK8kQUQQGsSohsob3ggVtZHmXKrXyNbKjLn9vGMgXE6W9AXXXTYna1l9V6d+p4d4Wf9++Zq+E5VNNOGKpbl+/Q0CgYDu77wfYbFYCIVC7O3t4XK5GBwcJJVKsbq6yvT0NF6vt7W69H4rUJtE4Pj4mNnZWUZHR3G73U9l2wpgs9mw2Wz09va2yEcymWRhYYFqtdqybX1caJwRzoswvF5JOl+8Xkl6OfDKEYZnxfNqGFRVZX5+nlgsxq1bt1rdlJN4LwiDqqrMzs6SSCR488038Xg8z3Tsk12m570gHx0dMTk5SVdXF2NjY61zrtVqLYJw1mTht/+fLzL1R0uoooSgmDFbZOLxY0r1Gg63k1yhBuYa5bpKcjvJhUtdrK7F8YogmCS6u7zU6yoPFvawmGXGRiLEM3nuTT9MbR4McJjKcWUkSipdwO4w8/bcTqtQ7wq52E4cE/LaCfucZHMlFJuZr81ut87RabeQKpbaCv6wz8FGPINdkenxu5GlxmRmK56hUDkpToTukKdjYnB1MNyRzeBQZLaSnfqCa/0RpnQ0Cm67hWKthttqwWY2Y5ZETKJIXdC4FApQqFTJFhshaiZNZGJ9j0qt/XMYcTs4zOepn2IjAbvC6lGnfsBrs+omRpsliZWEfmGuV2ADhJx2dnQIw6jPw8JRuuN2l2Jh3mAiUDNoRoyHg7qhb2ZRZEkn8Rkg7LCzrSN29tsUFnUKfwCHRZ/I+K0KiwbuTD7FytoJwlJVVaqVCmZBYKWQp6gzWb0ZjnDPwGY1bargVBUcshmbbMKEgKDWkeoqlVyVi7Ib0SShSSIVVPK1Cr12F3tFfWH1UVl/IuG3GGseLpscvHXz1lO74b3X0EufDgaDjI6OUigUWratKysrWCwWAoEAwWAQr9f7vghJa07Px8bGWkGa8GS2rc3/fxInxeOjo6Pk83mSySSxWIylpSVsNluLPLjd7nd9Dc5Tw/B6Jekc8XrC8FLgNWF4iOcp5svlMlNTU9Trde7evWtoifciVpJOHr9cLjM5OYmqqu+adv0kx4ZGB+d57PKaNq4nJzDNzlSpVMJqtZ6puLlaqfLL/+A32V6No8kylapGvVynlC+QOi7RNxplZyfNwEiYyaktLo5HyVfr3Lu3ycXxCMVanfXVQwYHA9RFGBoIsr1zxFGuyM5+GlEUuHghTE3TOM6UOErt0dfjY3XvqEUW+ru8+Lx21DjsxzPE4lmujnVxf/VRQSYIEAm5WNxuFMlBt42Iz4lsNiEdZdlPZlh6+LPhXl8bWQDo8SpsxtNttwXddhZ2OwvPoS4/909Yq8qSSNhtR6DR1RcFgXpdpVCp4rJauL99QF3VSJ/MURiMMrnRWVD2hzxMbuo4IHkcug5I3QEPcZ2sh4Ggh4ltnRyFriCTOjkNF4I+VpKdRMJhlg2Lf9Wg+AiYRNYqnX+nEaeDhbj+sYzcf8bDAV0iIQmC7nQBYMDjJXHQ+dwfN8UY9HhJHuhrFIySnceDIe7rZDwA5Aw6+1G7g9WH+Q+5UzkUb4a7mDvcAx1tuVQTMVdlXGYzDrMFq8mERTJhl2UqWh2Px0ZVq1OqV8nVK2QqJQadPpLJ3c6DAd81fvOlIwuVSoWJiQksFgvXrl3rKGxtNht9fX309fVRr9dbidOzs7PUajV8Pl+ruD5vJyU9NANR9fQi7xYa96S2rQ6HA4fDQX9/P9VqtWVdOzs7S71eb5s+6AnE6/X6uax1vdYwnD9e5s771wteOcLwPCtJz6JhOD4+ZnJyEq/Xy5UrVx7b3XgRE4Zm8Z3JZJiYmMDj8XD16tXn7ro0L/LPKnxuhhLt7u622bg2bVPdbjdf/vKX8Xg8BINBgsHgc4vhMskcn/nJz5FKFqhpErU61EWRslamDvRciFBXoavfz3G2yMhYhN14Fq/PRndvP1Ozu9RqKhfHIpTqdTY2EpjNEl19XrL5MtcudpErltmKpcnmGt3toN/BUaFANOjCZVOIxTNIJpGJE7qFoV4/M+vtRe/N8W7K1TpXB8IcJLMkUgW6g24mltoLpot9AeZ227uuEZ+D/VznfrjVInCYa3ymHYqZoMuOz2FFReNaT5hCucpRrkg6XyTocnQSAKFBAE5PLaxmEyuHnYWrz64wu6vjaOSyM6OjB/DZFWb3On/fZpZZ0inyBQFiWf3VFcWsfykbDQd0NQp9XjdLOpMKQYC8AVkN2RT2dfIKul1OlnTICkDJKEchGGTGIA06VtB/jheDQR4YFPhxg/uM+QKGLkxGqdN+q5VlA8F1j9PJfkE/s8Eo/yFkUdh9eJ9EqUii9OizejvcpRsyB5BXagRFF06zGavJhFquUKtV8bpcfMvgRd37vF9RqVS4d+8eNpuNq1evvmunXJIkQqEQoVAITdPI5XIkEgn29/dZWFjA4XC0yIPb7T53u89EIsGDBw8YHx8nGo2+6++f1j48i22rLMttr0E2myWZTLK3t8fCwgJOp7NFHlwuF4IgnKuG4WUjqC8VNI2OXdhXFS/x83zlCMOzwmQyUTZYaTDC3t4es7OzDA8PMzg4+K4X7RdBGMrlMgcHB0xPTzM0NHSmuQ/P6pRUq9W4f/8++XyeO3futHZBmyNsTdN48803KZfLxONx4vE4y8vL2O32FnlofiE8KXaW9/nVn/ptCsUaosWCaAK1rlKsFMlmqvSNdrO2HGPwYoTkUYFqTcUVkHHYzUiyxMzCPmMjYQSTyNLaIaVyDdEkcP16D8l0gWQyR7VSx6SYWmRhoMeL22tncy/F5najC3tlPMqDlUcFq8dlJZEt4LZb6Ap6EDTQBI2JpT3UE4X5UJePB2vtpMLrUFg5OFXICWC3mdk/ziEKEHI78Dqs2C0S6VyBiN1Cplgln6+Qz1cQumDtVLZDwG1jdqezeL3cG2JG5/aL3UEmdKYIfSGv7nSh2+fkcLuzmOwPeHWnCGPRgP50IRpk5qBzTSnstDOnc7sgwI5BUJvPZmUz3bmWNR4KMKczRRAFWDHo7oddDnZ0nJwiTjuLButIGHyUh7weVnX0DgB1Tf9vr8/tYjOjEwoBWA2Ey07ZzIIBkRhwu0kc6q8JJYr6wuUeh4vNrP459Hu9HB7q3y+ms5IF4LNYWUgnUTWtg4h8NNyNWXp5vrpKpRITExM4nU4uX7781KtFgiDgdDpxOp0MDg5SqVRa04epqSmAFnnw+/1nHpj2tGThNJ7VtvUkTobGNV+Do6Oj1tRDEAR8Ph+FQgGn0/n8T/oUXq8kvcZrvCYMLTxNMa9pGktLS2xvb/PGG28QDAaf6H6nV4bOGoIgcHx8zP7+PteuXTtz55BnITxNcbPFYuHu3butLzM9JyRFUejt7aW3t5dqtUoymSQejzMxMYEoii3y4PP5HttFevCH8/y//+q/oIoiomIhX6xxfFxAs0CtJuIMeNjeTBAdDHLvnS1GxiPUxDqzM3uMX+lGNEtYFJlsoUwsmcNmMzMyHKKGxtemGqnLVkXG7lKoqyrXxrqIJTKIsonJuUcTgctjkRZZsMgSA10+7A4L+/Ese4kMqeMD7FYZi01uIwtWi4lsudzRAbaYIVnUEGis+PhcVrxOK8f5Er0+F7F0nthRjnS2iMNuIZFpL/r6A7YOsgAQ8TmJb7X/rigKJPOdRZ5TMbOoY6Pqd1h1SYffYWVGZ4rgVCzM6xT5JlFgU0dXAFCq6X/2ur0uYvlOQnI5EmQ61vkYTovZcE1JEPUr+V6bwkaxc9dGEmApoX+sbpdTdyLhURQWEvouQx6rohsI51WMdQ0hm40tHcJgFkVDXcOIz8fEob54Oq2TIwHQ7XAarjdFHQ528vrFv9HkIWBR2C7qTysGXB6SCX0NxYd6h3Rvfz+iWCxy7949vF4vly5dOpPmjdlsJhqNEo1GUVWVTCZDPB5nfX2dmZkZ3G53i0A4HI7nesx4PM6DBw+4fPkykUinxfDTQm916VmmD2azmUgkQiQSab0GTRK1urpKIpFoTR+e9zWABmE4DyLyGg28Fj2/HHhNGB7iSVeSToeePY1zwnmEwzVRq9WIxWLk83nu3r17Lhe3p50wpFIpJicniUQiXLx4EVEUWytIzS8II3GzLMttXwipVIp4PN5y0vD7/QSDwY4gpN//7Jd4+3enqdYFKhUV2SFQrteomzXcHjflKtgdCoJFJpcr88ZbA8zO72FRZG68OcDs4gGlUpXePi9Wu4U+m5mVtTjRLphbahRYPo+VwcEge4cZ9mON/y6PdzG9/KjAGej1clwocn0kSrFUZWMvhcUic2++fcWor9vH7Eb7mslwb4DphytLFlnCZ7fgtIqYFBsWS43YUZbDoxzlco3t+DG5Uvsu+cX+EFOnwtxkSaSgdr7OQYeZmS2dlOa+sK4A+kLUrztd6A14OmxXoTFdSOx2Eo8LYZ/uFOFyd5gpHY3CUMCrK3a2yzILOhauAGWDz+pI0K+7phR02IyJhCyDDmG44HGzcNxZrIsChinRF3xe3tnvfHz5MRqFIa+Xe7HO+wgCbOo8PsCYP8CDhP7aU8HgWhe22VlJ62sruhxOdnWC5ABiBmtK3Q6n4eRhwO0lYSCsPtIJ0gOwSBLfGO3T/dn7DYVCgXv37hEIBLh48eK5rA2JoojH48Hj8TAyMkKpVCKRSBCPx1lbW8NsNrfIw7s1Wk7j8PCQ6enpc7WtNbJtbX5PPMn04eRrkEqliEajCIJAMplkc3MTSZJawXnPGhr32iXpnPFa9PxS4JUjDM96UX6S7nkul2NiYgK73c6dO3eeevR7XitJxWKRiYkJ6vU6Ho/n3DohTzMh2d3dZW5ujtHRUfr7+4HO5OYndUISRbHVLRobGyOXy3F4eMjW1hZzc3N4PB78fj9f/dX7rM7sUxNEBNmE4jSTSByjmgVMJgXFYSOxmcTut6FV68iKiZ39FBdGQiBJTE7vIMsS1651c5DMsfmQIFy52s3iWoxLoxEqlRqyIvP2g0fuRlfGu3iwvI9JEhjs8eO0K+wkj4kls2zvN4ql0YEgD1bbi6PLI5EWMQBQZInxgRCq0LA9TR4XODjKkhMqHJdF8qcsK3sjHqZPOSCFPA5mt3TWiwbDTK53Fmd2h5XDYjvhkCVR10XJY1eY2+vsjAecNmZ2Y4iAYpZRZAnFJGOVJZKpYwbdDmw2K5IgIgpCIz8AgVvdUR6mnzW+L1QNWZR4IxJu/FvTHq62arhsChZBenitfWT9GnLbiGXyD7VLjQIaGhOMbKXMJV8AQXiYEv7wfEUV3giF224XEHBazWQrD18LDcqVCvlCHpfDhibLXLUo1DWNuqpS1VRqdRWH1Ya3XKZUq1Ku1mlysh6rwqbB+o7eNATgYjDAAwNdQ7Kkf6wxn99wtahokGzts1pZSulPHnrdLg5K+sW/ESnodbjYMlgtijoc7Bb0f3Zc0V8BdZpktg2ck74h0otdfu8Dzt4N+Xyee/fuEQ6Hnzrz5nmgKAo9PT309PS0LEsTiQSLi4uUy2W8Xm+r0WJkzgGPyMLVq1cJhUIv5NyfJjTOaPpQr9db7lJdXV2t0LhkMsnq6irFYrH1fdEMjXuS96ZQKLxeSTpHCGrjv68HvMzP85UjDM+Kd+v+Hx4e8uDBA/r6+hgZGXmmLwBRFM8sHK6JZhc/HA7jcrnY1+lcnhVOiqqNcHJd68aNGy2P9JOdI+i013tSnNznHR4eplQqsb2xwy//2G9yuJ9FVCyIohnFbWJv65AaAj67l3SxxO72Eb4uD9NTO1y80o1mEjjazOMPudiPHXN5PEo2X2Z164hsrlFs3bjRS7lSRxJE5hYPuHK5iweLj17j0eEQKhrjgyE2d1OsbSfp6/MRSz7qxPrcVnaT2TatU9hvJ1cqc20ogqBBKlMkky+xcZAmdUrA3BP1MbfVXqgPd/s6yAKA320llmkv7LwOK4t7nUXleG+wgwCYRIEBr5WjQpkepxWrxYLVImMymbArZjLFMjW1USxXanVKlSpdfhfTWzFqNSjWqhSpAiUGvVb2jstAGXh0Tm8MRHlnrVPoOhYNMKWTu+CzKywcJjrE1wD5aoXddGfX+0ZflMVYZ1E8GvIzozMJEQXwOWwk8p2F6k2Pl3s7+hOJqeR+q2EkADaThMVkwq84qFZB1DREwGI2YZHNeBxWKqpGRLGjAbVWwJqKXZYJWW3ka1UKlSraw0tMn9vFhoGuwUijYBMl1g2mAUNuD+/oTCvAeH2o12lMCiIOB9sG60jJkn7hH7BaWTk2mKa4fUwd6Yu7e/NV5ubmWh3z91vQGUA2m2ViYoLu7m6Gh4dfGFk4jZOWpZqmUSgUiMfjxGIxFhcXsdlsrZ97PJ7WNTkWizEzM/NCyYIejKYPJ1eYmr/XdNY7LXo+GRo3MjJCsVhshcY1JzBN8uD1eg0nMLlc7vWE4TzxesLwUuD9d7V9j/C40LO1tTXW1ta4evXqc+1xPouw+nFoWpSOjo7S19dHLBZ7T5Oka7UaDx48IJfLcefOnVZH5jyTm7OJPF/42T8CzYbTZ6FQqlKq1akV81SBYNTFQSzHwHCI7b00iXiOG3eGmJjcRFU1rrzRS7VeJ5MuYJIESg+f39VLXcgWiXvTj9yNLo1HebC4j8dlpTfqQZJEFjbjFEuPLDWvXIry4MRqkigJuNw2duPHXOjx47CaKZYqlOsqGzvtqx+XRiId7kkXB4IdZEGSBF3v/LHeAHPbnROAvrCbnUSGsNuBVTZhNkmIgGgSuRQNUqrUKJQrZAqNz+ZBtka2WANqQIO82GSRqgCVevv777ZZmN6KUT6lL5BFiBU7rUYFAfaP9QtZI/1Af9BLUqfIHw37WYp3kgKzJLGsczuAxaDAHgsHdNeRBAFdcTRAn8dNPNdeEJdrdcySxHwiReXk32KxDOQZKhZZ00mcdisW1hKpFikyCSI2WcZulum3eXBgxixJSFJjSoMAGhqaqjHm8VOsVclVqxxXStQ1jS5FYdmg+E+V9ScPPU5j8XTE7mDbYE3oQEenAQ0LViPNQ7/T0+aWdBLHOgJyaFjRfvzmB6geZ1heXqZYLLasRoPB4GM75i8KTXe6vr4+hobeP1oLQRCw2+3Y7XYGBgaoVqscHR2RSCSYnp5GVVX8fj9ms5mdnR2uX7/+xNq8F4F3s21tfi81v/+a3zWnYbVaOyYwyWSSpaUlKpUKXq+3RSCanydN085dw/DTP/3T/KN/9I84ODjg+vXr/LN/9s946623zu3x3m94rWEwxh/+4R/yj/7RP+LevXvs7+/z67/+6/yZP/NnWj/XNI2/9/f+Hj//8z9POp3mj/2xP8bP/uzPMjIy0vqdo6Mj/spf+Sv81m/9FqIo8p3f+Z38k3/yT556avbKEYbnWUk63f2v1WpMT09zfHzMBz7wAVwu13Od21mJnlVVZXFxkb29vTaL0hed83ASzbUoWZa5c+dOS1dwcrJw1mRhZXKDz/3s71Is1ZEUC2bZjGaxUM3nEGUzgaibSr2GbIbN3ThOp4Jss3BvYoPh4RAen513pjbRNPD5bQQjLmo1jZW1Q8qVGjMrj4r3C0MBJElkqMfHxs4Ra5Uadre1jSxcHAm1yILdKtMb9uJ2KezFM9QrKqtbjYL02lgXiyvtBfBof6CDLFgtJmLHnR3aK4MRpk6sF7ltCl6Hgstq4cZgFDSo1OrkSxUUWWJ2LUZd1ThKF04cI8yDlc4u/43hKBM6q0uDES8ze51F+GDIy+Rm51RgrCvAjN5Uozuka6UacTtY0Alqk0SB9US643Zo6Dv0MN4V1NVBOC1mQ72DSdKfeI2FAswbZC/sZ/QL5eGAj8n9zscXBUgZfFn0up1Mn3gcVdPIVSrkKhU0AWK5zuL/ajjItM4Kk02UcFqcjIgWFJMJWRKRWsFZAvl6lWGXl2y1wnG5RFlt/E1HHHa28/qEYd9gWtHrcBkSiR6Hk32DsLbTGQ5NmAWBnao+obkV7GIoEoVIlLGxMfL5fGtfvxny1Vy3eZKQr7NGOp1mcnKSwcFBBgYGXuhjPy1kWSYcDhMOh9E0jUwmw8bGBtvbjVXL9fV1MpkMwWAQp9P5nk1JjKA3fVhdXQUagujmd/njhNN6E5im0cby8jKf/exnMZlMfOQjHyGfzz+3zbcRfuVXfoUf/uEf5ud+7uf4wAc+wKc+9Sm+9Vu/lcXFxfd0wvMa7w/k83muX7/OX/gLf4Hv+I7v6Pj5P/yH/5B/+k//KZ/+9KcZHBzkf/1f/1e+9Vu/lbm5uVZey/d+7/eyv7/P7/7u71KtVvmBH/gB/tJf+kt85jOfeapzeeUIw7Pi9EpS093HbDbzDd/wDW3C2mfFWRT0p0XXJy9iz2p7+qQwWklKp9NMTEwQCoW4dOmSrv/2WZOFr35+gt//la+iyTKyzUq+WCWTy6OZVVJHVYYvB9laT+L0WAn1hliY3cMTcFIolvC4zZRrJd6ZSmC1ylwYDnOYzjMz1yiU+/t9rO+lcNgt9Hf7EESB5a0EhWKjYBYEga4eL0vrjwrcUNCBKIpcvxAllSmye3BMtVrjazPbbW5HvREPs+vt6xZWi6mjUw1woS/I/bUDREEg5LHjsVuxKyZU4FJXgGyhTDJTIJspMhjy8PZiZ8jVeH+wY5VHFCGe7Xw8q2zqtG0FHBaZ9WRnUWgWBRZ0chcEAWI6uRBAe9f9BCJeB/vZzgJ8vCvItA7B8NqtzOu4NQHkyvrF6IWQnwmd1SKXYmHegEjIJn1SMuz3sprUFwcbFcOjwYBh8NtR1mB9yOc1DHgTDSYyitnM9OFhR6o2wK2uKHOniJndJONWLNTLGtfdEWRJRBAFNDQqah2TJLKfz2IRpRa5aCJstxuvI5X1PwNei8KywTpSv83JkoHm4UO9g+3n/bBj3gz5Ojo6Ih6Pc//+fTRNaxWDgUDgzK1GT6O5GjoyMkJvb++5PtZZQxCEVrF848YNnE5nK3G6KRo+adv6flsDE0WRtbU19vb2uH37Njab7ZlC45qfp76+Pmq1GolEgt/4jd/gk5/8JOl0mr/zd/4OH//4x/nwhz/cEVz3PPipn/opfvAHf5Af+IEfAODnfu7n+PznP88v/uIv8jf/5t88s8d5X+N1DoMhPvzhD/PhD3/Y4FAan/rUp/i7f/fv8u3f/u0A/Ot//a8Jh8N87nOf47u/+7uZn5/nC1/4Am+//Ta3b98G4J/9s3/GRz7yEf7xP/7HT/VZfn/95b+HOFnMJ5NJpqamiEajLXefs36MZ0E+n2diYgKbzcbdu3c7LtzvxYShmUUxMjJCf39/KzjvWcTNT4rP/z9fZPpLK9QRqVZVRFEjeZRFsptAkxkcD7KyFGP0Sjczs/vUDzJcvtHHzm6KRDzH2OUoyXSevh4XiXierf0kR+nGOk4o5MLtsWEym1jbTLCxncRiN1M4IQy+PB5lemmf/m4vbodCsVghX60xu/yoq2xTZNKFdmtUkySgClA7tdYz3B/gwdoBiiwQ8blx2hRsisxxvkSX20E8neMwkeUwkeXycJiZU4TDZpF17VKHol7mdVaULg9E2pKemxjrC+oKoy/0BHRTnS/1R3RvHw66WUl0dqr7Ax6WdXQFNtnE4oH+CpFR8NlgQD8Jusfj0nVTAnT1CQDDAQ+TOsFydrPMooFrkkvpTJmFhq7B6PEVA/IRtNvYK+qfm2Iwv7ZIEksGGQ9DPi/3DLRMKZ01oGKthl+06SZSA9zuihJ7OJ1yyQpuxYLTbEYxmbAi86a/i6qmUqzXyFTLpMoFPBYraxl9ojPk9nLPwB3JZrWCAWH4Uz3GKz6nO+bHx8ckEgk2NjaYnZ3F7Xa3pg92u/1Mr0fNLICxsTG6u7vP7LgvCs0gtOvXr7em1d3d3XR3d7dEw0270unpabxeb4tAvB/2+tfX19na2uLWrVutFYvnDY0zmUx813d9F9/1Xd9FsVgkHA5z48YNfvEXf5G//Jf/MlevXuUjH/kI3/Ed38GtW7ee+dybgX5/62/9rbbz+tCHPsSXv/zlZz7uy4avx5WkTKb9OmexWHTTyx+H9fV1Dg4O+NCHPtS6ze1284EPfIAvf/nLfPd3f3crELdJFgA+9KEPIYoiX/3qV/mzf/bPPvHjvXKE4XlWklRVZX19nZWVFcbHx+np6TnTc3uegr4Z0tPb22vouvEiCEOTBGiaxsrKCpubm21ZFGclbtZDtVLj3/3D32R94YCaJqCZTMg2hdRxFpNLxqrYkSxmVFWjbzjE3Pw+F0ZCmBQTU1NbCAJcfaOH41yFw1gOi8VEsNvD1s4RXREHkqSRyhW5P9vo9kqSQCDkZG2rUZh5XApD/QEK5SoORWZru1EYXh6PsrTTXrz19/mYXWsvwC5diHJ/ZR+LLBHxu3DZLVgtJrYPkzhMEvlSnc29NAgw0O1lfb+94OqPeDosWKExiThtowog6qzZSJLAvo5IWJElVmOdha7R7ZIosK3jpASQN+jwu+wW0KmlR7uCTOoU/31+N8s6idKiANsp/ccOuuxsZzoLzkG/l7Uj/QJ2x+D2kZCfyb1OYmUSBVYT+vfp9bo5LHQW/2ZRZNkgDbrX6+ZQhzAIwI5BsvVY0M+DQ/0Cv1Dt1I4AhOw21lJp3Z+FHXbD1aLDE65OuWqlNUHpcjjYO9Rfyxp0ezDXJZyWBrGQRAFV0CirNcyChEdWOK6UWsJuAFkQDScPl31BuuxPtkMuCELLZvPChQttVqOrq6stF51gMIjX632ua1Q8Hmd6evqZQ83ea+iRhZM4KRoeHR2lUCi0pg/Ly8soitIiYs/7Wj4LNjY22Nzc5NatW7oag7MIjSs+dDv723/7b+N2u0kmk/zO7/wOv/3bv81v/uZvPhdhSCQS1Ov1DtvacDjMwsLCMx/3pcPXoej59CTy7/29v8ff//t//6kOdXDQ+H7S+/w0f3ZwcNCx2mYymfD5fK3feVK8coThWdG8SKyvr3P79u1ziYF/Epeh09A0jc3NTZaXl7l06dJjO1gvaiWpqe3IZDJ84AMfaF2onyRf4VmRSWT5Nz/+OVJHBUSzGQEBk2Jma/0AZ9DJ8UGR0PUwq8uHRPp8iCYRxWwCk8DCwgGXr3RjMkvcn9lFVTVMssjo5Sh1VcPrtpE8KhGMuMieCCsLhRSyuTxjg34KxRq1Wp251Vi7buFCmOnl9j+6SyNhZh6SBbddIex34nYq5EoVIh4H8VSerb0UkiTgdMocZdsL7CtDYaZ1iIEoiR3TTJ/Tyvx258rOaE+AJR0NweWBMFM67koXe4NM6t4e0k1vvtwb4r5OfsNI1K87RbDLom6wG8CBgRbA67CyqUMMxruCzOroHR4ndnZZ9Ts3IauZw5I+wckYGBRcDAV0E6dBX2sAcDEc4MGB/vM/MrBfHfH7WDTIZcgX9B/HrVgMJw99bn0yA5A0OIeow8GWDgED6HI62TMQPKcrJXayGTjFTe0mmZJWp6aqyKIJhyDitVlx2Wy4FQvZWoWyWiNbLXNUKZJ5SE4+9JjpwrvhtNVoU+w7OztLrVZrefQHAoGn6vA13YTOM6fgPLG7u8vi4iJvvPEGPp/vie5js9no6+ujr6+Per3eCktrvpZNEXogEGjtT58XNjc32djYMCQLp/Gstq35h4S5OU3x+/18z/d8D9/zPd9z1k/p6xZfjxOG7e3tNl3s004X3gu8JgxAqVRicnISgFu3buF2u8/lcZ40HK4JVVWZm5sjHo/z5ptv4vF43vX4zc7JeYUElctlvva1ryFJEnfv3u0QN58HWdhZ3OPf/5P/j1K5RqWuUcgWwWKmmM5SRUKUzLjCJh5MbDH+Ri8bG0mO0wWuvTVAra4iigKVWp255Rgmk8iF4RCaSeD+QwckQRS4MBpmafUQSRQY7A/g8VpZXjsknSmRSBSRTAIut6WNLPi9djZj6da/7VaZ3ogHs9nE+ECIw2SOo+MC+UKZcMjN7mF78dsdsLKRaC/gbBaZ7URngXZpMMzsZmeB3hXy8OB0oS9AWedzJksi2zpaBItJYj2e1v39zWTjdlEQkCWxJaAtlCq4zRImScJsNjfyFUQBr02hz+duZR4gNHbhw04b20dpavU69YefEVGUCHucHOTy+O1WVK2xrqVqKiZJ1CUeQEcCdhNGYmerbDJcLfI7bBzqTES63E5DjQLof7YHfB7DsDajc446HawbdP0dir5uSpEktg0K/yGvlwmDrtGxAQEK2+2sG9i2djv106ofdzyX2cJKSp/oDPt83I83PsdVVSWFSiqbhWyWW5EoE7H2c7ebzPitNv6bnmHd4z0tJElqJcZfvHiRXC5HIpFgd3eX+fl5nE5na/rwOLHv/v4+8/PzXLt27X3lJvSk2NnZYWlp6anIwmlIkkQoFCIUCqFpWuu1bE4tHA5Hizy43e4z/U7Y3NxkbW3ticmCHh4XGndypTaTyWC1Ws9lehIIBJAkidipdcBYLHYmydovDb4ONQwul+u5jXSan5FYLNY24YzFYrzxxhut3zk8bG9W1Wo1jo6Onvoz9soRhqe9KDWdLfx+P5lM5lwFXU+zMlQul5mcnERVVe7evftE3ZrmBa1er5/L86hWq8TjcSKRCJcvX34h4ubpP1zgC5/+Q4rlOqLFjCCLCIpARa0gyDI9ETeHyRz+gBNfxM39iS2iXW76RwaYmdmlVlO5MBqmUKpycSzMxnoCTAKzC4+65leudFOq1Lg0EmFzO4mmqdx7sI16Qix8YTjE/OqJPzpRwOu1EJDsSKJEMl3gMJGlpmlMnkpzvjwS5f5ye5feYZXYP+4suC70B7h/KuBNNokcHncWbV1BNzM6JOLqQJj9VJYevwuLbMIsSZgkEZdDIV+u0O9zo2mgair1uobHoRBL5/CZlVa+QrVWZ6DLx/TmAZLaIIRV6lSpMxz2sLrbLKbrQKPgDnsc3Fve7bjum0SBbK5MWsdO1KKqJLKdr8ONwQiTmwfITaJikjCJIgGnjexxmQGHG5MkYhJFJElEEgXsoombkchDT/bmlFvDbjGTKhapqSqVukq+XCZfKoMI2wYrPxGXg10dIbJLsbBgQD58doX1dOftTrOZRYPJR5dbv0svCrB6pHMwYNDjZN5ACB03ICx+q8KKwbSix+3iwMCC1YgUeBWFVYNE6GGvh8lDfdLyuEuDnqVrsVYDTWPYc/YT35OZLoODg1Qqlda6zdbWFqIottZtTmY+NDvzRms873dsb2+zvLzMjRs3zmySrvdaNqcPU1NTAG3C6ecRoW9tbbG2tsbNmzefu+Bq4nHTh09/+tOUy2Wq1eqZd4HNZjO3bt3ii1/8YssqU1VVvvjFL/LJT37yTB/rNV49DA4OEolE+OIXv9giCJlMhq9+9at84hOfAODu3buk02nu3bvXWp/7/d//fVRV5QMf+MBTPd4rRxieBs0cg6ZgNx6Pn3mw2kk86UpS08vb4/Fw9epVwzAZveMD57KWtL+/TywWw+VyceXKlZa4udmVgbMXN//+Z/8rX/78fTCZMDmslEo1qppKtlDA6XVRyFUQzBKaqiHIEkeJPCMXI8hWman725hMIpev9ZDJFtl5qDe4dL2H6fk9TCaR4cEgLpfCg/k9SuXG++732Ykd5dvIwuXxKHOrMQa6vbgcVkqlKiYzzK62F46jQ34WttpvCwUczG90rqIEA05W99Jtt0UDTl2NwuWhMHuJLEMRL4pZRpYaOQpmRcZjs1Cu1imVqxRKVbLFMqnjIsmj9g60KAp43VYSx523+9024sedBePhcY5qvfOzVDTwz4/4nLrrRRd7Q0xvdz4vn8PKfk7fQrNJkFRNo1yrt3IeBkNeXV1D2O1gWsexCYzXpK70hJjZPcRplrFZZBRZxmKSMJskpDrcDkdbxKOOSrWu4rFZ2EhlyFcqZMrllhORKMCaQYF/wcBmFeAgp9+9Hw0EmE/oE5OCwfqQy2Jmz6DA73e7SRokP2cMEpd9VqvhpGDQ4+mYBjSh584EjRyF5SN94jTo9hhmNvzx3n7d288aZrOZrq6utoTgpsVmM/PBZDIRj8e5cePGM3fm30tsb2+zsrLCzZs333Vi/Twwm81Eo1Gi0SiqqpLJZIjH46yvrzMzM4Pb7W5Ncp5GhL69vc3q6io3b948t00AePRd9rM/+7N85jOf4Ytf/OK5rYz88A//MN///d/P7du3eeutt/jUpz5FPp9vuSZ9PeDrcSXpSZHL5VhZWWn9e319nampKXw+H319ffy1v/bX+LEf+zFGRkZatqpdXV0tAjo+Ps6f/tN/mh/8wR/k537u56hWq3zyk5/ku7/7u5/a7evrkjC8VzkGzeM/bmXo4OCA6elphoaGGBoaeqoC/OSE4azQ9LdeX18n0ureCh3i5ubtZwFVVfkP/9fnWbm/Q12UQJQoZsscxjI4/BaO01VcPglVkpie2OLGN1wgnSqwvZXk0o1edvfSXLnaTaVSY3k1RrnUIAPjV7solqtcvhhlYzOJqmq8c2KSYJYlFIeZxF4aQYC+bi8+r53jfBlZlNjcTgEp+nt8LO+m287Z5TB3iJQBHHaFWKq9GB/u9bG81yjEzCYJv9uGy2rB57UR8jpQ6xrlao18oUK1Vmd5I0GhVOXk1nx/1Mu6jtB5fCDUEfQGDe1Cx+oSMN4XZHZLXwOxsN9ZsHqtJvYznQWm2SSxYuR0VNUn4f1BD0kdl6Woy8puWqeQFmBPR7AN0OV1cqBjyxp02lh5zGqTBuQrVfKVR6tmIyFfh/VoE8NhH3snVsacZhmHYqbf5yFbaUw+pIdic1XTqKp1LJJE1OEgUy6TPyFI7ve62TjWF28rBgFzZhEODETNwz6f4TrSgcFEwmu1smwweRjwuDk60CcnZYNrjFkUWU4ZaCjsDtYM8hwCNpshYfgTL4gwnMRJsW8z82F5ebk12l9YWHhPMx+eBVtbW6yurnLjxo1zJQunIYpiS4Q+MjLSJkJvpi03pw8+n8+wQbazs8PKygo3btw4V7IAje+9X/iFX+BHf/RH+fznP88HP/jBc3usj3/848Tjcf63/+1/4+DggDfeeIMvfOELL6Uu5pnxdSh6flK88847fPM3f3Pr3z/8wz8MwPd///fzr/7Vv+J/+V/+F/L5PH/pL/0l0uk0H/zgB/nCF77QtpXyb//tv+WTn/wkf+pP/alWcNs//af/9KlP/ZUjDO9WtFYqFaampqhUKh05BqezGM4aJycApy+KJwvza9euPdPFQhCEMyU99Xqd6elp0uk0d+7cIZFIcHx8fK7i5mKuxGd/4nPsbhxRqUNNq2O3W8ke5XBHbVTKIuM3wsw82KGr18fl2wNMvL0BwI07g+QKFTLHRaxWmXSuTLlUo6fHSzjqZnHtkEym0WWNRNzsxNJtk4QrV7opV2rYh8xs76XZj2Uo1VQODh8ViGazRKFWa7sfQCjsZmmzvcjsDllZ3UnitMo4FAmzScTtdKKJAoMhD+lMkeNciVgpg7M/wFcebHW8HtdGG85Kp2Gx6P/p5ko6xaQASZ3chcbv6wt+MfD47wn5SOkQjLGeIA+2OovVqM/Jsg6REATYOdIX04b9bvZ1chyiDoU9ndUsBNg1IBK9fjdxHTtVp2I2tHI10g4EHDZW4+3FdZNsRN1O5vUIlk0hXX5kr6tIEi7FglMx0+Ny4TdbER9mHlQ1jVKtSq5SYc8gDXs04GfGYPJQqusTM4+icGAwReix2zkyyEswsrS1mkwsG0weRv1+ZhL6kx7R4PzAWHRtM8m8FX3vrUpjsRjpdJq33noLq9X6nmY+PAuaO//n3Zl/EpwWoadSKRKJBIuLi5TLZbxeb4uMNdOWm5qL856MQOO7+Jd+6Zf4O3/n7/Bbv/Vb50oWmvjkJz/5db2C9HrCYIxv+qZvajVmdY8nCPzIj/wIP/IjP2L4Oz6f76lD2vTwyhGGxyGbzTIxMYHL5eLmzZsvPMegSRLq9XobYTjpOnTnzp3niqA/K6ekphBcEATu3r2LxWLh6OiIer1+buLm+E6Sz/7Eb5DNVRAsMrLQ2L0/OEhicSnIZgWLTSJ1XKS7z4fFrjD7YIex8Shmh5l79zYBCIWdaJLIwICfVKoAosCD+T3KD9eOHA4LVRr7+6NDIcyyhKyYuPdgu+18Lo93MbPUXqyPXAgzfeq2S2MRFjZidAVceBwK5ocJxMlsAUWqkMtVaG6ejJhllnbS7U9cgFK183PndVpZ0JkWDHR5WdDJVxjrC7Kwo5Ou3BdkTuf3R7r9LO93Fs1Rv5PFvc7ft5pNrOrkPQBkivrrLiGPQ3cqMBYN6BbYZknUtXEF8Dhs7OmsMA0HvawY2JzGDByYhoI+pnb00pgF1gyO1ed3E9cRGz/uPv1+D0cnhNiVep1EvkAiX6Bcq7OX6XxtxsMB5g4T2EwSHquCGQ0JDbfLiVtRuBGUKNbqZKtlUqUihVoNp9lsnMvg9RhOHlIF/dfHKcssGUweRnw+HugkTEPDqcoIWYMuvN9qZf1Y//W729Xz2GOeN5qNnN3d3TaB7XuV+fAs2NjYYH19/X1BFk7jdNpyM707FouxuLiIzWZDURRSqRRvvPHGCyELn/3sZ/mf/qf/ic997nN80zd907k+3ms8hKo1/vt6wEv8PF9JwtBcmTmJ5qrP4OAgw8PDhjkG56lh0FsZKhaLTE5OdrgOPSvOgvQ0NRQ+n4/Lly+3yE0zEfT4+BiXy3WmX4Qrk+v85s/8HhVNoKaJ5NIlrF47q7O7dI0E2FpNc/ENN9l8mc21BGPXe0AU8PsdSIqJ+1PbCAKMjkXRJIGVlUP29tL4Aw7KZbVFFvw+OwNDAdLpIsepIssrh/T2eNndaO92j42EO8jChaEgM8v7+D02Ah47itmEIAgcpnMINYGDgwwHNI5zeTzK9kH7uonDZmbzsLNAvDQUZlZH59AT9fBAZ7pgMusXUM09/9MoGqwESTo5DQABj123Yz/WE2RKJ9htMOxlLd5Z8MmSyKpBF9/osce6g0zvdOodFFli3WAiUTPokPf6XGyn9e9TqOiv9YyG/SwYpD4f6Yi23+0+RpkIvV7jc7M8XEcq1+rEToiyLYUKgih0dP4dssxVX5BUsYwiNzMPoFyvkatWDB2anGYz+waah267jQWDdSnR4O9eEDAs/LsdTnYM1pEGXB6SBrqYP9H34teRmtA0jaWlJWKxGLdv39YNKXuRmQ/PgiZZuHXr1pkJhM8LgiDgcDhwOBwMDAxQrVZZWVlhd3cXSZJ48OBBmwXu835X6uE//If/wF/9q3+VX/3VX20Lw3qNc8brlaSXAq8kYTiJkwFj77bqc94rSadXhlKpFJOTk4TDYcbHx8/ky0Qvjflp0CRWw8PDDA4OtombPR4PiUSCiYkJZFkmGAwSCoXweDzPde5f/Y+T/Od//1VKddAkiXyhQk0UOUod4+3yUMipXH5zgMm3N3A4LVx7a4DlxQNy2TKXbvaxu5fm6tUejhI5jvMl9vcbhY7dbkZSTDhFgf4eH6mjPG6/nXcmHq3+2G1mCrUatdqjqYzfZ2P7II2ARijgxOexYzGbyBUr2M0yR8k8R8lGITc+FmEv1l749UQ9zKx0dnQHevxMnyIAoiiwrdNRD3jszK93Fs4DXV6WtjuL05HeAEu7ncX5cLePlf3O43cHXCzsdE4RHFYzC7s6+/sCxPR0BQ/vo4eLPUEe6Iid3TZFVx8B+nawAKPRAPd1jmWWROJlg316Tf9YfoeV5UN9ImOR9clY2GVn3cBm1Uhv4FIsrMT1u/RBh12XMAgCbBiJp4M+ZmOd702xWiNfrrGo85zsZpn9ZA6baMJvs+FUzFhlGVESsFtkYoU8x5USiVKxTZdQNSCfkiAYuyN5vKyk9Z9v1OEwJAxlVf99EoA/3vPeEAZN01hYWCCRSHD79u221dXH4bwyH54F6+vrrVCz9ztZ0EM8Hmd/f5+bN2/i9XrJZDIkEgm2t7eZm5vD5XK1XsvHWeA+KX7jN36DT3ziE3zmM5/hIx/5yBk9i9d4jVcHrzRhqNVqPHjwgFwu1xYwZoTzXkk6+RhNh6bR0VH6+vrOrFv/LOFw0PiCXFtbY21trY1YnRQ3W61Wrl27hqZpHB0dcXh4yPT0NKqqtrzN/X7/U1m6fv6f/x4T/3kRTZKQrBaqNQ0UE+VsHsXpRLFZEM0ya8sxLr/RS7mmMvnOJoIAb3xgkFyuTOaowGKmRKTfx85mo2jq7fHiDzvZ2U0Ti2fZ201z8VIXM/PtBXtXn4/F1UYh6nQodIWcOFxW0scFDg41Dg+zHB5muTTexfJGe7E2PBBgbqWziNVEtWPC1R1yMbvWSSIuj0R4oEMuPE6ZeKbTuchoumDURTbq5PtcVnZ1OvYXuv1M6EwRxroDLO52Fvkum4UFnYA4gJxB4vNQ2MuEjtg56LIbZi8UDKYko10BXXckAYgV9LvnfX43iXxnR1sWRVZ0HJgAur0uDnRC2R63jjQU9DKpkwsBkNDRVQAM+32GidCywXtplkSWEwa5BwEfD/Zj1FQa608n3vKr0RBLJyZAAcWK16bgUiyYTCIeq4NCuUy6XOKoWqKsafRarWzopFJDQythhLSBhsIiSoZ6iMuBEMEnLNTPEpqmMTc3RyqV4vbt2609+qfFWWU+PAvW1tbY2tp6rpyC9xL7+/utBOqmG5Xb7cbtdjM8PEy5XG5Z4G5sbLStNj3tdxDA5z//ef7iX/yLfPrTn+bbv/3bz+MpvcZjIPB1pGF4r0/gOfBKEgZBEMjlckxMTKAoCnfu3Hmi8eV5ryRBYwKwtrbG0dFRm0PTWeFZSE+9XmdmZoZUKsUHPvCBVjfKKIxNEIS2vdPj4+PWCH5mZgafz9f6ojTqolUrNX75Jz7H9loCzDImi0wynkMzCaSSObpHoizPHjB+q59qVaVarlOq1tnZPuLStR7MiszkvcakQJRE+kZC5PMlrlzuInaQweGxMjn1SJPQ3eNlZeNRYSugce16L5VancsjEZLJHLF4FnOPl3v328XHg/1+Zk/lKJgkQVcwPNjnZnWvc5XDZrOgngpksykyGzrOSkGPlc3YMTaziCxJKBYTVosZj9NGuV7n6kAYEQFBFBAAxWyiVK1xYyDy8H1rvHdWi4l8ucrVnlDr/dRodNHLlTqXugIIJy5fggDlfJl+uwWrzYbF0kjUFgSwKWbsfVE0Ghc8TWj8r91qJlMsNz4rmoaqatRUFbNZIl0oEXLZKVdrFKs1Kg+71vsGk4pev4u4TlEectkNHZhqBvug/T4nGwZC6JiecBoYi/iZMXBHSuoQDICRkN8wFM5INBxxOtjSSbCGxkRAD6IA6waTh5GgnxmdyQMYfzmZRKEjmC5dKpEulRgPBZja15kMmc0ETDZMJgFBUxFNEqokUkQlUS5yYBDw5rEYZzaM+H3MJPTP/b1wR1JVldnZWbLZLLdv3z6ztOJnzXx4FqyurrK9vf3SkoWDgwPm5+cfm3NhsVjo7u6mu7u7zQJ3ZWWF6elpvF5v6ztKb5XsJH73d3+XH/iBH+Bf/It/wX/33/135/GUXuPd8HUY3PYy4pUkDPF4nMnJSXp6ehgdHX3idZnznjBUq1Wq1SrHx8cdDk1nhad9Ds2AOE3TWuJmePLk5pM7vCMjI+TzeQ4PD1tpny6Xi1Ao1PLbBjhOZPnsT/wm8dgxxVKdGgIKIgcHGUIDLmqCzO7mEWM3+pib2gEBxm70Ule1RrEKTD5cK/IHHPQNB9jbS7O/f8zeTprL13qYmd9rnaPDYaFYreN1Wwn4Hah1lVpdZWZ+r20VKRJ2sbjW3q2WTSK5UrXjb3x8LMqDxXYSYTaJHBy1F00iMDYUIpMvcaEngEVuBJAJgoDNZuY4V6TqUalUa5TKNYqlChGvi8RRkRoaJVSy2SpQpBYos3vUuUc/PhRiTkcDcfVChFmdtabrI1HmNzt/fzDiZq3pCJV61BH2u6yk8iXqOsV5NOBk/6izML8+HO1Y1ZIFgZFuP4eZPL0OJ2bZhNnUELZLooCMyK3eKKqmoWraw6C1OkGXnZqqkitX2nQaXruVpQP9Yt3lsIEOYQjZFXYNCINg4AwVdTsM14SsZv1LqNNiZtlgHanL4zTMX9gwEC4PB3yGUwTZQBQsCQJrR/qF+oWAn4W4/mtntGKVq1TZL5Q5yHVOGLyyiVylTLdkxW424XI5UdHI1yq4bQpf29/VZS9myfgr6JteMGFQVZXp6WkKhQK3b98+lx35Jp4k86E5fXjSCcdJgfbt27dxOBzndv7nhYODA+bm5rh27doTN9NOW+AWCoUWGVteXkZRlBYZO60j+U//6T/xvd/7vfzMz/wM3/3d331eT+s13gWvXZJeDryShGF3d5dLly49fSiFyUTZQAT4vMjn80xMTCAIAiMjI+dCFuDpXJKy2Sz37t3D6/Vy5cqVNtvXZ7VNtdvtDA4OMjg4SLlcJh6Pc3h4yMrKSuM5FyT+8JfeoaoKqKIJUTFhU0zEE2kig16Oj6sMXAhTrqlM39uibziAzWNj9sEOqqoxdrmbtfUEFy9FKZeq2FxKyx0JYHg0xNzDQt7tthKNuDFbZTY3kySPixzGMphlCW/I0UYWBFHAbJWpJNvJ1thopIMYBP0OFtYOkUQBn9uO026mXqugWEQkWaFe1yiUquTyJTLZErlMuaN4tltlVAkKp2xQg147c+udxXzE72Av1Vlk+lwKC5v6WoRFHcckQYCdhH53u1zRXyHqDXlIrOqInSNe1g87C1JRFNjQuV3VNCyyiaNsZ7d+OOLjwVYnuQEo+KqkU437WE0SDsWMzSLTF3KTKpQxSSLVaoVCsYBitYIkUS7X8NutZIplqif+HnoCXmJbnc/FLAosGpCPqMfJnk7Gw7utI03t6T+ftIGjVMBiIl7Rn0o4H7PvvpnWfz+HA16WDEiGzYDoAOzqODcBdLmc7OmkXwN0uV3MJI/IVIFSGU6s012LhLBWZYIOO27FgiJLaAIUalUK1QomUaR26poVstm5FAganuNZo16v8+DBA8rlMrdu3TpXsnAaepkPTeH00tISNpvtXTMfTrs5vYxkIRaLMTs7y/Xr1wkEAs98HJvNRl9fH319fdTr9Vbi9OzsLP/n//l/UqlU+JZv+RZ6e3v5oR/6IT71qU/x5//8n3/P3ay+rvFa9PxS4JUkDDdu3HimScF5rSQlEgmmpqbo7e0lnU6f+fFP4kknDIeHh9y/f78tIO6sk5stFktLAFir1fij3/oqv/tL/4lSXaWuiZjMCibFTHw/g91lxeZ0kozHyZeqSCaRodEwmEXmZ3YBGLvShSiJCJrGwuweF692M/3wZwDhiBPJJHHpYpRUqsDeXpqeXh/3H+y0ndfIWITphb222y6PR5k+RQy6o24291L0d3mx28zIkki9pmIym6jvqRwfF0nGsyTj4LDLlOoqlWp78XbxQpj5tU4CMDwQ4P5yZ+EaCbo4PO7s4Ab8DvZ1CIPLLpHMdV6Bhnv9TOk4LI32BXUtWV1WE/vHOmRZgN2kvpuP065fxI52B5jXEU6bRIHVA/0C1m7TL9D6gh62EunWvyu1Oke5Ike5ImazpGPzWuJyb4jFnUevudMi47Yq2BUZsQY3oxFEQaCORqVep1Ct4DKbmDHQTxzqrEnB49eRqgakPWi3GYqnw24XcYOphJ79KsCQ38uqwRThcSRjz8ButsftYjuj/35HnQ5DwpDRsZuFxlBhOZGgXFfZOc6wc+LPY8DjZuM4jShAl8OB12ZtTGxEeCMUMTz3s0a9Xmdqaop6vc6tW7fe8xwFu92O3W6nv7+farX6rpkPTWOPvb09Qzen9zsODw+ZmZnh2rVrz0UWTkOSJEKhEKFQCE3TUBSFX//1X+cXf/EXWVtbo6enh42NDb761a/y5ptvGobGvcb5QtA0hJd4Vedp8DI/z1eSMDwrznolSdM0Njc3WV5e5tKlS3R3d3Pv3r1zXXt6N5ckTdNYX19ndXWVq1evEolEWrc3pwpwtsnNAH/477/G177wAJvLi1ipN3QGAYG1hUMiQ14O9vKoOzkuvTnA/k6a+GGWgYthdndSXLrajSiJLC7FqDy0Rx0cCbG0EsNmk+nr82MySRwe5VlcfNTV7R8MMLdwyhr1QqiDLETCLg6TOUYGgigWE2pdI18oI5hEsvvHZNOPOuJD/QFWdYTOfb1+ZpbbBa6CIHCskxtgVWRWdRyN3A79aYHbobCwoZOLYDERO9aZCgiwaVCYG12qBrqC3F/vFOiOdPt13ZfMJomVPf0CW5T0Pzej3QFmdZyZRFHQnVQA+J3WNsLQRMBpY83gPqc/toVylUK5Sq/fxfKagcC2N4RQBp/VgsMiI4sCglZHFDS0msqI101F08iUK6QLJTTBeB3JZpYN15F6vfpZDgBZA2eiPo+LrWP9It5jNd6xNyIZPW4XOwakIOywGxKGvMEEyiTAgYHA/YLfy7IBofHbrGwcp1E1iGXzbRay33fpuu59zhq1Wq2VN6OXzfNeQ5Zl3cyHzc3NVuYDNCbYLzNZmJ6e5urVqwSD5zdVEgSBt956C0mS+PSnP82P/uiPMjAwwG//9m/zkY98BEmS+PCHP8z3fM/38OEPf/jczuM1XuNlxfvr6vge4yxtVVVVZW5ujng8zptvvtkKnHkR4XBGK0lNQV8ikeCtt95qfdmc1CsIgnCmXuGqqvLvf+q3Wbi3TqUuoDjNqIKG3WejXK4yeqOPhel9+kf8HOcrTH51A9EkMHotiqqKqFWVVDJPOldukYVotxuHS6G/P8DWRoLFhQNGxqPETqz9OBwWMrliWyKz06lwlC3Q1+3F6bAgIJDLlUAU2Ng+4vCEhcz4eIS55XZiIAhCS7h7EqGAQ3eKMH4hzOxqJ7kYGdSfLvR3+wxu9+rePtIf1E2BHu7ysLKf7rg96LGzpFOwC6LAtsGaktmggBrrDTC92fnc7IrMkgGRMEqPHu3yM2/gtLRjMN3oDriIb3YW3o8Lfgs47WzpHM9sklg5SKJpcFwoc3zCXelaX4j7O+3vrVkU8NoUaoUa14MhZJOEBlTUGvlKFa/Dyr2dfd2d/ZxB0R122tk0EEIHHXZDwhAzmH50u52Gq0Vhp92QMGQM3IxssslwktHvcrJi8Fiux4iG94/0PycmUeQDPeef7lytVpmcnMRkMnH9+vX3fXf5dOZDsVhkdnaW44d5GVNTU+9p5sOzIB6Pt8hCKBQ698e7f/8+3/7t387f/tt/m//5f/6fEQSB//6//++p1Wp85Stf4fOf/zzT09OvCcOLhvrwv68HvMTP8zVhOIGzKuabQmJVVbl7926b08aLIAx6x69UKkxOTlKv19vO6UnFzc+CYq7EL/3IrxHfP0Ywm7GazWSOi6gmjVyuSLA7iIpIV5+fck0kFS8ycilCVVOZn24Uow63mWyhjCgKXLrSTa2ukkzleXD/0ZrR5Ws9TM+1Tw2iPR5W1+P0dHtxuxQ0VUMwicwt7JNUH61jXL7UxcypVSRFMXVoDgDGRyPMLnd24b0+Owen1oUEUSCps1qkWEys7XUWtDZFZlknX8EiS6ztdv6+IMB+Ur9IEwyKfKtJ1TVoGOsNMq+zpuSwmnWtVMHYAWi4y8/9jc7XyG4xJhImk36hNhT2Gk4RYkZZBVE/c3o5EkA8a7BaFPExa3CfTLkzeK2maohq3ZDkOHvNKDUJn92Ky2bBapYRRQFEyFcrhO12Evk8J/9Kuz36tq0ASYOJRMTpYMeASEScDkPCkCnpkwKn2WxICob9XqYNnJhcDgcYPJbRudtMJg4NrHIvBfzYz3ktqFKpMDExgcVi4dq1a+97snAazel1sVhsmVU0Mx/m5uaoVqsvNPPhWRCPx3nw4AFXrlx5IWRhZmaGb/u2b+Ov//W/3iILTZhMJj74wQ/ywQ9+8NzP4zU68Xol6eXAK0kYnrXoPcuUZI/Hw9WrVzu+iM6bMIiiSOVUFzObzTIxMYHb7W47p/MkC/GdJL/yD36L9HGJXL6K4rKxs3aI2WlmfzXL9W8YZmv9iEq5hq/LjcthoZgvIZpl1mcbxb/TbaF7qBG4FtvLMT+3R6TXRSLxqDgfuhBk9uHakdOp0BV14/ZYOTjMYEJgd/uIXWB0LMzCXHsh63IqrO90FuONtaVTDkhmib3DzuKst9vDvM4U4dKFiG542+hQUHdacKFf//bRwZBu2vNYf5D5rc4CLup36hIP2SSSLOp/7mqq/u1DXX7ur3U+dsBtY1WH9ABkdaxmm8d6oEMkLA+7+3pw2fS70y7FxH5WXzhslDsR9TrYNphWmAyKRa9dYUMnwRqgK+gjttX5fCQBVg9TVGp1Do5zHJxwZLreG2Zpp/FcBSBoV/DabdgVGYcoczMSoVitkiqVSBQK1DSNoN3GhsHkocvtZN/AbSljYN7gtJgNnZMG/R7uH3ROygBMonFBvW+ga/DZrGwYCLKHfF5m4vqP1aOp/NEf/VFbt/wsC/pyuczExAQ2m42rV6++FJ34k9A0jcXFReLxeFtORNPKWtO0F5r58CxIJBItsvC4MNWzwvz8PN/2bd/GJz7xCf7u3/277/nzf41TeC16finwShKGZ4XJZHou0XMzJfmkkPg0XvRKUlMs19/fz4ULF9rEzc/qhPRuWJ5Y5zd++ncplGqUKnUqdTADxUodRZIYutzD5Fc2CEScDFyMsDS7R7lU5eLNfuZndxkeDWMxS2SL1dakAeDCWJDl5UfFsNerIFskxkfDJJN5YrEMx1aZ9c0Eleqj19huN3MQ7yxqunu9zC22F32hoJP55U4CMDoc7hBFA8iWzj8hSRSIPbRXFdAa9qFmExZZJJMvEfU7EUUBSRAQJRFRgFpN5UKX/2GCDQ8vKhoicKHL38pQ0DQNTdWwKma6/E40VaOmNohfTdUIB5zEjnMdFqhj/SGmdTQKLqvMis4EA+Aoq98d7g26Sej8LOxxsGagnSjodOoBLnQHmNFJcBYEdLULAGGXjeNEZ/FvEgXWDNaRwm6nrsuUKAisGYS19QU9HOmQAoCYTqgeQNSpsG1AZuonOksacJQvcZQv4bSYKVSrbT+XRIGQw86Iz0/WXkEUBaqaSqZSJlkokKlUyBqsD7kVC2sGwuohn5f7B/ruTY+7Bmwd6xf+DSG0Pmnpc7s4KurnV5gNpkoAf+4bv5Eu2UQ8Hmd+fv5Mu+WlUol79+7hcrm4fPnyS0kWTiZQ61muvsjMh2dBMpnkwYMHXL58+YWQheXlZT72sY/x/d///fzv//v//posvB/xOofhpcBrwnACz1rMNy3t1tfX21KSjR7j9ATgLNF8DicF11euXCEajbbO9aS4+azJwpd/6x5/8O++CiYTgixjls3UpAqJZBpP0IlotpDLlrj6Zj+Hh1mmH1qiXv+GYaqVGh6PjfXlGMOXu9jafNR5vnS9h9W1OCMjYcyySDyWQVQkFuYfFT+CJCArJiqJ9vewd6BT/Dw0GOggCwAur5XYicLSqpjwuOwkk2m6QzbcDgcmk4QAWKwyuUKZ8YEQtVqdarVOpVInEnaxtBHHgki1Vqdaq1Et1hi8GGV6qZN0XB6NMqNzLqODQaZn9zpuj4Zc3J/Z6bjdIkusrMahpCGLAhbZhCxLmE0ilWyRsMWM3W5FsZiRJBFRFHA5LWTyFaq1KuVKhUqlQl0Dq1UmU67itlnIlyqPAtIE2NPJXYDGdONAx30n4LKxajBFUDX9hc7hsI8Vg+K/atDtHokGmN/TX5tJ5/WL+JGIj0WDcysZrMxEPQ72DELhAl4v29nO91gUYMXAtnUg6OlIq66rGoeZPH6HjTmdMLkulx21oPKGv6GhqKORr1ZIFAr0+ty6wWsAmoEJuPCYYLh+r9vQurXL5WDPYMrxuK/FXQMNhUdRuBIJIz4Mh2x2y+PxeKtb7nK5Wt1yh8PxxNevYrHYspG+dOnSS1c4aprG/Pw8R0dHT5VAfR6ZD8+KZDLJ/fv3GR8fbxlunCfW1tb42Mc+xsc//nF+8id/8qUjiF8veJ3D8HLglSQML3IlqVarMTMzw/HxMXfu3HnXZM0XsZJUr9eZnZ3tEFw3V5C0hwz3rC+ev/Uzv8v0V1bAbCaXLVOrQ406xXKF3HGVocsRyqUKmaM8h4dZEodZxq52Y3UqTL690TrO+I0+Zh/apXZ1ewhHXRylitRKNVYWGoX15Rs9TM+0F9O9fU42t9s7q8PDwQ6yIEkC5VqdgN+By25BsciYTCKKInOcLTEQ8VIoVMjkSpSyVWR3le39Rkd9n0ed5cGhAKubOlkHJoF84RQpFCCR0u9K6zkpPbyLLoJ+O3s66zXDfcFWUJuqahTLVYrlKl6nmdXdAhqQyLSfVyjgaE1DTmKkx0LyxFTGLkvYrWZ6I15ypTKhrlCLdGg0Up5FoD/gJleqNPIP6g0y0BNwE9eZSDgUM8v7+sW63apvsxpw2QwdlWST/uc54LSxbrBaZLXo78pbzSZWDSYPEY+TfYPwNyMiEbZb2M/rTwREg+uVWRJZNXBbCjntTO/pr/QMOT0MWF247ApmWWoEqFWrJAsFQ1Iw7DN2MwrabIaEIW9AqkQB1lIG61xOJ3s5fcJwp7en7fU42S0fGhqiXC63uuUbGxvIsvxEq0uFQoF79+4RDAYZGxt7KcnC3NwcqVTquRKozyLz4VlxdHTUIgvNBtZ5YnNzk49+9KN827d9Gz/1Uz/1miy8xms8J15JwvCsaK7zNNd03g3FYpHJyUkkSeLu3btPFPZz3oRB0zTS6TQ2m+2FiZur5Sq/8g9+k9XZPUpVDatbJrZ3THDAw9bsEdF+P9FBLzPvbODy2gn2eTErMsVCBdEktZOFN3oplapcvtpNbC9NIVdmbS3B8Qlr0/6hALNzpzITerzs7rcXIWYzlCpFBvs82BQLIFAsVnB7bUxN76BpkORhgSdAd7eXnb102zGsVon9eGdB39fj0yULI0NBljY6b78wEGRZxzJ1oMfH+l5nYeX32FjWOb5JElg3WCHSc3ACcNtljnKdU63+Li8bB52PLQidxKJcrVOuFnHbJNYOO4vl/oiHjVi67TanIuO0WRAqKlcjQWSTBKKAqjUSnJ12haWDBMeFEvUTXRdRMLZZ7fG7iOskDUuPsWbt8bt0CQsChrqG4bCvo+vfRNZANNztdbGT1j+ewyKDAWFYMyAFgyEfCwZTCcng+iQIsBJPNc7xqP1cLoR87OQyDLrcuGwWZJNETVPJVir4bFYwIAyHWf3nZJEkQ5H0kM/LisHPoi67IWH4Y709ure3HtNiobu7m+7ubur1OqlU6l1Xl3K5HPfu3SMajTIyMvLSkoV0Ov1cZEEPT5v58Kw4OjpiamqKixcvvhCysLe3x0c/+lG+5Vu+hf/7//6/X5OF9zteryS9FHhNGE6guctZr9ff9QKTSqWYnJwkHA4zPj7+xBekd8tJeB7kcjlWV1cBeOutt1rPR9O0ljbjrMlCJpnll37k10kcZlBFCZvXQrlUw9PlIBHLMX6jj8PDHHtz+wxejCApMqsLB6iqxui1bhbm9jDJIgPDIdxeG7OzexQfducFUaB/OMj62qOiyWY3kymU2+xSHQ4z/qADt8eKABQKVY6SObr7vMzOn3ZAkjhIZjv+ZsdGIyzoaBd6e7wsrXV2wS1W/T+dutG1wOAltxoElnVHPLouSxcGQ8yvd55nwGNnRSfZGSBf0X9wl0O/8LjQE2DZICU6oUM8ANwOK5wiDIVSFafNwoNVfR3AaF+QTLLUSMy2Kw1HIYuM12UlX6mStxXJFguooonjUoVitUa6oF90j0T8LOzrP/9sUf+cB4New8mDYGAB67RaDIlJyGU3JAw5gz/5HredHQM9hM1sXKBtGQihB/1eQ/2CS7FQjNfY0rPQDWj4sBB02XEoZgRJoFSvkc7n2NMhaADDfh+zcf0VMM9jitqiwVQC4G5fr+HPTkOSpFYxa7S65HK52N/fp6enp6XhepmgaVrLOvXWrVtnShZO40kyH5rTB7vd/sSvZSqVYmpqirGxMbq6us7t/Js4ODjgIx/5CN/4jd/Iz/3cz70mCy8BBLXx39cDXubn+UoShudZSYIGYXhcN2VnZ4f5+XlGR0fp6+t7qsc7y6yHk2h2hfx+P7lcDpPJ1CZu1jTtzMnC9sIe//5Tv02+UKOOiMWhsLOewOq3UKtpmEwysViWQNiFy2ujUK6z/7D4H7wYRgVGL0XZWotznM6zu3/cIgsA49d6mJ3ebXvMC+MRCsUqXRE35XKNRDxLV6+XB5Pbbb8XDDlZWunsEEe6nKxtthdMgiiQPu4UZzodFja20x23d0VcLK13Hruny6s7dYiGXCzrBK+5HApLOreLosD2vn7RVzP47HRF3MQznYXdQJeXdZ1jiaLApsFjKDpCboChbh8rBu5IGwbagYjP2aYJacJmkVnbbxxLVTVS2SKpbOM9uDYc4f7aSZLR+Ez0B1xohTqXA0EsZglBFKhpKoVKFafVgiQIbcJhALdNMbRm9dgV0DltSRQM7zMY9PBAR6QNxnalEbfDcIUp5HEZEoathIEY2+diK2WgAbApYBCDcVTQFyC7FAubyTQakCm2P4d+pxWxBL0uJ16Hglk2UacxlbA/htAYip1FkdWU/vMa8fsIPWPwmN7q0vb2NhsbG0CjiKzVaufiunReaObmZLNZbt++/UKtUU9nPpRKpdbq0urqKhaL5YkyH9LpNJOTk4yOjtLdff7ZGoeHh3zsYx/j1q1b/MIv/MJL8T6/Bq8nDC8JXknC8KxohpYZOSWpqsri4iJ7e3vcvHkTv9//1I9xHmnSW1tbLC0tcfnyZSwWC7Ozs+cubp7+w3m+8Ok/JJ+vkT4qYPM62JrZxRWxs72YItDlJToYZHs9zvZaAk/Uzf5Oip4BP8GIi+WlGNlMY9XHapMRZBOFxKPC6cLFCCtLMQaHAtjtFsrlGharzP2JrbbzCIWdbenOTXj8dg5P7eb7Aw62djt3zKNhK7s6uQv9/X5mFjoFrC6PjZ145+87HPpf6D6fnT0dV5/+Xh8PdJyXRgeCLOgQkoDXzoqOZSoC7OmcD4DDrn9OF3r9LOocSxIFNgyIhM1AV9Ab8rAVT+v+7DinXzgOdvmY2dRf+dkw0DX4XTbdNGqERvFvKkHQacNtV7BZZESTiM0qE8vkSRdKJHKFNkIRMyjiL0R8LBiJtFX9i71TsRhOK6IefTE4GBfxIaeNmEFnP+CwGxKG45K+HsapWNg80p9KDPjdPDDQQ7hdTjZyRfbS2Q59RsldJShYCbga1rCaKFCoVshXqqyn0rrHG/Z7mU/oT4K+offJpwvvhmKxyPb2NiMjI/T09DzR6tL7CaqqMjMzQy6X49atW+/5OSqKQk9PDz09PdTr9SfKfDhJFnp6Hr9qdhZIJpP8t//tf8v4+Dj/+l//6/ddavdrPAavbVVfCrz+izoFo4K+Wq1y//59isUid+7cwf6MnbCzXElSVZX5+XlisRi3b9/G6/WSTqep1+vnKm7+/X/7X/ij35pCkGU0SUS0mtGoY/FYODoocvXuMOvLcR58bR2LVabvYhSTLFGvqeSyRbKFSossCKJA11CQlcUYVpuZnh4vNodC8ihHrVJnfaXRAna6rKg6zSKH20Ys0d6hHboQYklnvSgQdBI/JTw2mUSK5U4i5XCYWVzVKdoDDhZ0chcCXjtL6zrhZ3YzyxudxxFEgZ2YfgFXq+vPLLsiLuI63eihHj+rOroGkyTqhr4BmGQDp6HeAAs6+Q6CCJunVo6a8LmsuoTBaTV16BqaMLpmht0KBxn9otfItWgg5GXj4UQgcVwgcWKV62JfkNXtRvFvEgVCTjseh4LXYaWi1glYrWTLFZL5YmtCYDXonMuPESEPBj3c39GfPBQMXNG8NiubBtax3V63IWE4NCjGnRYzGwbH6/e7DUXSj7s+7BkQnZDTzv7Dn6VOkZ5rXWGO60XCbgcOqxlREinUqyQKBWyPmdz+sadYR3ocmvvyIyMj9D4kIe+2uvQsrkvnhSZZyOfz3L59+4m0cS8SkiS9a+aD0+nk4OCACxcuvBCykEql+PZv/3YGBgb47Gc/+1x6i9d48Xgd3PZy4JUkDM9zwddbGcrn862gnzt37jzXxeisVpIqlQpTU1NUq1Xu3r3bssNrTkiy2eyZB/Soqsqv/uP/yMqDbUw2hXy2jMVpJX9wTLEq4Qt4cDhVVhdj5DJFhsa7kG0yy7P71OsqilXGG3Gzt9Mo7mRZ4srtfsrlOr09Pna3j1heOGBwLMz2ZnthFu3zsLjQ3l2+eKmL+VN2pKIkkNdZDenp9bGgk9I8NhZlZr7TujTgV9jY6ZxGhEJODnVWbCIRN/HFzgJvsM+vO0UYGwwxrzNFCPsdrOp0/gURtg0IhlXRLyhG+gLM6ZAVi1lidUe/gy4ZOA0Nd/tZ3tW/z+mU6yaGuoPcX+187pIotNaRTsOumECnea6YTazpCLQBvA4FnaeJLImsxx7dp65qxI/zxI/zvDEcZepUKJ1bkQm47JhqAre7otRQyVerHOULHBVKDId9hjqJ06tQTdhkE6sG6019fhepHf0JQ9FgymmVTRwU9AlVf8DDjAEpMBJJA+wYTCuiLuOMhS63k0ODZGpREMiXq7prXV4sjNi9OG0WREmgWK8RL+TJlivc7Hp+MWzTtnNsbEx3BeasXJfOC6qqMj09TaFQ4NatW+87snAaepkP29vbrK+vIwgC6+vr5HK5c818OD4+5s/+2T9LOBzm3/27f/e+f81e4zVeVryShOF5cHrCkEgkmJqaore3l9HR0ecuwM9iwpDP57l37x4Oh4ObN2+2iZstFgs+n4+3334bRVEIhUKEQiFcLtdznXsxV+Lf/h+/zs5qAmQTuUSOak1jZzuJr8/D4VYO2VyhVK3TNxwkcZBBlCUWHjQ0CKIk0jUUJJnIMX61m2q5hiSbmPzaRttK36UbvR26hdFLkQ6yYLOZ2TvoLKDHL3cxM9cgALIs4rAr2KwywYADm1VuWIEKQmP9TIBqtUZvyIrJZMJiVqjXVSSTSKlco8fvpFqrUavWqdXrmGWR/c0kfkVpSxQ2m02kYlm63HZEsWE12vyvXqxzsTvQ+PeJx7baZN640PAhV7VGoVBXNdxuKxaziXKlRrFcJV+sUFc1RgaCLOq4LFktJpYMVnuMitgLvQFmdITTFtmYSFgVfZLcG3KzFTew3DRIfe7229lM6hebFU2/QBuK+pjb0n+eSYNO/GDEx+KefoGvFySXL1Vx2+pM6pAcu2zCb1K4Fg5hMkuomkauUiGRK5Atllk91H/dBkM+Zg2KeNXg/TFLkqFz0lDQy6xOLgNA3sDNCGDbgBR0e5zsHutbwUbcxoTBKD8DYPdY/7G8NoXVhD55+uPDfZifsziPx+NMT08/lW3nu7ku+Xy+ltD3vNeCVFXlwYMHlEqll4Is6KFUKrG1tdVaQzrvzIdsNst3fud34nK5+LVf+7VzFYW/xjnitYbhpcArSxiaicZPC0mSqNVqbcFnly5dOjPB1slgtWcp4JPJJFNTU/T09LQRmKZeQRAErl+/Tr1eJ5lMcnh4yMTEBJIkEQqF3lWkpof4dpJ/+398jqN4lnyphi9qI7Z0SLDPBRYzWwtH9I6GcHodJOb2ScYyjN3sZ+Fh4d/V5yPc62V/J006niMdz+ELOCiratvfTrTHw9IpYmB3mDk4bC9AFMXE2KUox5kS3V0eJFFoFF+aRu64SNBtI5srUS7USBdy+IaCTL2z2fG8LowGWV49WVA2Ct8rV7p1BdNjY0EWljsL0EsXI8wudU4vLgwFWdRZjfJ7bSQzhY7rhiAIuD1WUqcE2FazhE2Q6HW7sFgaqdEmSUQQoV4vky2UsVitVOoa+VKFXLGCLEv6egdo5SOcxnBPgLmNzvMVRUHXfhXA57bpEgaX3WI4RXC7nKBDGNw2M9sG5MMk6X9evQ6FrUOjyYs+yVFkqW3ycBJBj53dVGcBXarW2DxMc5DuLKCHgk4ypRLDQQ8Wi5mqVue4VCaWyRuetygIrBloHoZDXuYM7FQfl5B8bNCH6HY72ckY5EM47YaEoWLwOQEMNRQRp4MDA5LR63WTKupPR97ofr7pQiwWY2ZmhitXrjxzevCTuC6d1+rSabLwMq7UZDIZ7t27x9DQEH19fQDnmvmQz+f5ru/6LmRZ5nOf+9y5h869xjlCA15i96CnwsvLF15dwvCsMJlMVKtV3eCzs0BzxP0shGFra4vFxUXGx8dbe6FNJ6Tm1KIpbjaZTC2LPFVVSaVSHB4eMjMzg6qqBINBQqEQfr//sWP35Xtr/MbP/C6lSh3JquC0CeSyJZwBhUSsSCDsZuhSNytzB2yvNwrES28OcHSU59L1HuL7x7i9Nia+vN46piiJ2H12kuuPiiKTSQSTRLXaeB5Wq0wg6CTc7aZYqNIVrlPIV0inCtjsFu5PbHUIUC9f62FzQ6fTq2eRKUBMpzgVRYHd/c7bBVEgmdIvdg4MusGyWf917erytO3ZNzHU72dlq/P8RUFgcS1OudK5phINWdmPF4H2AvzieBc7sWPsNguKIiPLEqIogATlWp2BkIdMsUw6V6T5MmoGV7ILPX4WDSxb9RyQAAYiXh6sdZIoQRDYPEzr3ifstZHWsUAVBAzv0xvykNITQgP7BonUgxEf8zv6XfqizmsMEHLbdckCAGqNRK5KInfqvRMgZy0x7vdjVWQ0AQrVKolcAb/TxlJMfyqhPMZ9aNcgGK7nMRkQsto5TWmiUNH/mSjAhoE9a5/PbWjrGnUZEwajgDqAt/qfvSGzv7/P/Pw8165dIxgMPvNxTuJFri6pqsr9+/epVCovLVnIZrNMTEwwODhIf3+/7u+cZeZDsVjk4x//OPV6nS984Qs4HI7zeFqv8YLwWsPwcuA1YTiF5t6lLMttwWdnheYXS61We+KRs6qqLCwssL+/3xI3w5MnN4uiiN/vx+/3c/HiRY6Pj1tj4unpafx+f2v6cPJC/ZX/OMEf/oe3KZZqHKeLeKNe9jYTVNUa7pAHixUq1TprCzEKuTKBsIvekRA7m0kO94/Z30zSdyHE0kJ71/riG73MPthpvB4mkWjUTaTXRyFfxmqWSCXypI7yiEEn976y3tGJD3W72T/VVbbbzayudhaBvX0+1tY6b49EbOwfdu6Pj4yGWVjq7LIPDwVZ1jlOd5eHnYN0x+2KYmJlXb/Ijif1CyqLQUd8sC/A3EpnUWy1SBwe6ZOYfLFKMl0gmW4nJpdHI21TD5Mg4HYq+Dx2pIrGG30RBEmgptYpVGqN6YVZ/zLRHXCxYxB8Vq7qt7sHo15WDaYVqqBfdIWcFmJZ/edZNQirC3sdhgW+WdZ/PmaT8eShy+fk0MD+tCbKQOdnqcfnMiQ6F9xeLri8OOzmxgpcrcZRochhJm+YFt3lcbJnMA0IOY0zICx2O+ikiUuCwJqBdetgwMuKwfpQwG4zJAy1x6wq7RtMOZwWMxfDAcP7PQ47OzssLS1x/fr1Z3Kte1LorS4lEonnXl2q1+vcv3+farXKzZs3X1qycO/ePfr7+xkYGHii+zxP5kOpVOLP/bk/Rz6f53d+53dwOp3n9Mxe44VB46Ve1XkqvMRP85UlDM+ykpTJZEilUlitVj7wgQ+ci+Ctecym3em7oVqtMjU1Rblc5u7du9hsNoA229SnsUw97a+dz+c5PDxka2uLubk5vF4vwWCQe78xw/0/XEaQZQ73j/F3+5n60gqRC15MNYWN+UPCfT5qdY2egQClQgWzzczkV9daf/duv4P0cYnaw+JREGHsajeapnLpSheZdIHYXhpNVZn4ylr7xEAAVei8hvQPBljWKegHhkPMzOx23G4UjCZbFPSKvFJZv8Ns9Pp6vDZdwhAOWtnc7SxYe7u9bOnYlppMIhs7+sVb3eCzMtQfZFZHyO2wmw3ToE8X2KqmkcoUCQedLOi4QgkC1Ao1grKC22lt6EBMIhpgc5jRNEhk820Ewa7IrO3pd88dNn0CbldkwxUmv8dBLNspZJclkXUD8hHxOQ0Jw/6RfmE9GPGysKtP8ozWc5xWMztJ/UI44LKzY/BYiWyBTR1nqW6vE+oC18MhZFmiVK+TKhY5yOQIuxyGhMFoUmCWRNaTnY8DEFJM7Jf07+e2Pi54zXhiYWTdGnbaiWX1Cdet3q7HTh+MsL29zcrKCjdu3Gg1UV4ETq4ujY2NPfPqUpMs1Gq1l5YsNFO0+/v7GRwcfKZjvFvmw/3795mZmeHbvu3b+JN/8k/ygz/4g8TjcX7v934Pt9t9xs/oNd4TvNYwvBR4ZQnD0+Lg4IDp6Wnsdvu7ruk8D94t6+EkTrsznRQ31+v1pyYLeuficDhwOBwMDQ1RLBbZ293nMz/6OXbXkphtVqRaHavXwfFxlt5LAQ62C1TLNfouhHD4HKzN75M8yNA3EmJt5bD1t2CSJTxBFwIaPf0+Svky6aMCe9spMie63oIoIMqmjvWii1e7mZ/rFJ8idT5Xu9PCio7moKvLw7KOhqCvz8fmdmeh2dPjZWOzs9D1++ys6EwXzLLEuk5QG4CKgTWnbKAfGAiysNb5HGxWmdUtgyLWoIvf3+1nRmcioVhMrBuQEiMXnf4TwW+pTDvB6o16OHwoPA84FTxOK3abGZfLSqZQplCpclQoksoUWuup24cGHe2oj2kd/QTAcVG/QA06ZPYy+mFpeqJmgKjXyb5BB99oFUgUhJZt62n0BT3MbOuLmssGNrAOxcy2XtoyEHTbmdo8YPdUbocsCcg1gevhMCaTSFmtkywUGjoJUTRMdx4M+liI6X9+vA4H+yX9+522Sm3CJAqGBGTA62HDwPI16nISM3BVerPv6dN/NzY2WF9f5+bNm+9p0fisq0v1ep2pqSnq9XqbccXLhCZZ6Ovre2ayoIfTmQ+iKDI1NcVf+2t/jaOjIxwOBz/yIz9CxcCu+Czxkz/5k/ytv/W3+Kt/9a/yqU99CmhMOP7G3/gb/PIv/zLlcplv/dZv5Wd+5mfatDNbW1t84hOf4A/+4A9wOBx8//d/Pz/xEz/xUr7Pr/EaTXzdf3o1TWN1dZX19XWuXbvG0dHRE3f/nxVPEt7WFDd3d3czNjbWIW5+XrKgh2q+xu/8zB9RyYqEe7rYWTvEGVFIHx4jW2VSsQp9F4KYJBPxwxxb6w0hsT/q5ihdoFat0TPgx+2xY7KYmJncol579FqOXe9hYbbdwvTi1R7mZtpvsygm9nV0BBcuRlhe0ZkuDAZ1pwsuj1XXSUmx608dHE79rmq0y0Mi3ak5GB4OMqcjdu6KuNne1U9XPojrO/pg8DYO9Pr1pwg2M+vb+l38isFna6DHx7wOKREEdKceAC6nAjq8zeO0snMiY+E4W+L44drQpQsRZlcfnbPFJOH32HDaRMrVGj3dQSqqRqpQJJFphKkZNV1CHkdH8dyEz+NiL9NJ5BRZYv1An5iEfQ5DwhAzmEgMhr2sxgyIloGoWRIFwyC3/qCH2R0DZyuDa4+mwdzWYUcWhWISuToQoqyqSLJIsVojns8Tf+gcZXuMHqJo8KJbRIENA1Iw5PeyZLDG5HNYDQmD+pg5/Jt9T65f0DSN9fV1tra2uHXrFi6X64nv+yLwJKtLfr+fg4PG38fLShaaTn09PT0MDQ2d2+NIksQ3f/M3843f+I38xb/4F3n77bf5nu/5Hn7lV36Fv/E3/gY3btzgYx/7GB/72Me4efPmmX4fvv322/zzf/7PuXbtWtvtf/2v/3U+//nP86u/+qu43W4++clP8h3f8R381//6X4EGGfzoRz9KJBLhS1/6Evv7+3zf930fsizz4z/+42d2fq8UVAy/A185vMTi7rNN9Hof4UkuHLVajfv377O7u8udO3cIh8NnlpPwOEiS9FhSsr29zcTEBKOjo1y8eLG1XqWqakuzcNZkYXtxj5//m59lYzFGJlvmcDeNzetk7UEMm8uK2+/BYjaxsxbn4CDFUbxRdLm8VnqGg3T1+nA4rOysJalUa9x/e6ONLFy43NVBFlweGxvrnUXv8HiUdKq9sBZEgWy+cw/b6bLqkohgyMmSzupSMOhkWWca4XJZWdZZyZEkgc1t/QKpYLDO4fPph/oNDwXJ63TLZZPAyoa+CNdoijDQ49MNeLNaTKwbnK+RxmWwx0c2r9+p1yNKAD1ht26RLwiwfWpNqFqrc5DIUq3U2DooML98yOpqnKP9HOYS9NkcCFWVG/0Rrg9EGO32E3DZEATo8huLGWM6wnEAn00ydIIymjyE3Hb2ddyRoOH4ZIRdo/WmsJeSgYDayDkJAbYMNCEDQa9ucF2lpqLWYWY9xv2lfZbW46QOC7hVmVG3D0WQuNEdYSTow3ZCu/G45OfhUMDwO82sZyDwEEWDtSiAbQPNg89m5ULQZ3i/k9A0jZWVFba3t7l9+/b7jiycRnN16eLFi3zwgx/kzTffxOl0sry8TDqdRlVVtra2yGazz+To914hn8/zzjvv0N3dfa5koYl6vc7/8D/8D9y/f58vfelL/PiP/3irEP8rf+WvMDc3x5/5M3/mTCcOuVyO7/3e7+Xnf/7n29bdjo+P+YVf+AV+6qd+ij/5J/8kt27d4l/+y3/Jl770Jb7yla8A8Du/8zvMzc3xb/7Nv+GNN97gwx/+MD/6oz/KT//0T7+QqcjLiKbo+evlv6fB3//7fx/hoR1787+LFy+2fl4qlfihH/oh/H4/DoeD7/zO7yQW05/WPy9evtbGGaFYLDI5OYkkSdy9e7clQG7aqp4njB5D0zQWFhbY29vj5s2bLRHfaXFz80NzVrj/B7P89i/+ZypVjXJFw9flZGPlkHq2yOibPazPJaiuZ1BsZoI9AdJHOfrH/OSzRQTZxNRXHjkgeQJ29nfTbce3Oy3EYp2FUKTPx+Jse/vaH3aytHCALIvYbBYUq4zFbCIYdpHNlfBetD7MMgAQsDsV8vkKoLWJiWwOCx6nmWKxgN1mb72/dpdCON8QyWmApja8gRwuK0epPLW6SqVao1qtU67U6On2MrPY2eGPhN1s6DgaSaLAls50ARoTBj0MDwSZ11l5stvMxutIBmLf/l6/7hRBFAU2DHQNDpt+QRzw2Nk1sCytG4hb+6JeNgymFSazFWgv8mt1FcUis6BD4uxmCbkmcrU7hEmWqGkqx4USh+k8AZfNUB/g93nZzejkTJhEQ1FzxOckZiBqThrcHvU6DQXKTqsxyYgdG9iO+lxsGTwn12OOl9Yh0vlSlXg6z9rBURuxCzkshHwuAi4rR+UyyWKRg+NsW2aHxUAUDpDM6Z/741aVej0utg2yGW4/4TqSpmksLS21Uu3tdn1S/n6FIAhYrVaOjo5wuVxcvnyZo6Oj901g3JOiSRa6uroYHh4+91RsVVX5H//H/5GvfOUr/MEf/EFbvkYwGOT7vu/7+L7v+77WxP2s8EM/9EN89KMf5UMf+hA/9mM/1rr93r17VKtVPvShD7Vuu3jxIn19fXz5y1/mzp07fPnLX+bq1attK0rf+q3fyic+8QlmZ2e5cePGmZ3nK4PXGobH4vLly/ze7/1e698np5LvNvE6S3xdEoZUKsXk5CThcJjx8fG2C82TrAs9L/QmDM1pR6FQ4M6dO60vxLPSKxjhi//mv/C135mhXNX+f/b+PE7Sujz3x99P7fu+9t6zTw8zwzDDMhrRiIDIMigxGBMgaDQSNMcth5hg4nLAqL8YjVE8OfEbNRFzFHADjogRcGOdfbpn632vql6quqq6u9bn90dPF708d8FA9zADdb1evF5MVdezVdVT9/W57+u6QKfDYDYSj6WwuQxYbC46D8cpl1QcbgsbdjQzkciQnZolk5yh7cIW2g8MPr8xBcwOA8klCckNa4KV7oLDacHjs+H3OymUymw5r55yqUwhV2RmOo835CA9nqVQKJGeLpBmrruQm8kTX0I6TGY9BrOJbGbx6rjFaqSslsnn5t/HuYLPaNRhsBqZzi5Z5VHAH3QyNra8GMq77ZgKKlarEavVNGdRatbjDzgJuqwoOgUVlWJZpVAs4XCY6R2eRK9TKC3QZdhtJroEvUOhpH0D8Th1ZGaWP2e3mujWICtz56L9+VjT6OekQD5igmtTJOwkoVEs63UKfcPahbdbGGEyG/X0jSQ1X+MUVvBLJZWjXaPLHZcUqK934DQY595rBTKzeRJTWaamcwwJIuSgw8Rg6vTclhwWIwPCSFTI6xAJQ0qjiAcIumyiGNvvsouEISOE4NlMRvqFQr3J7+bIktGniUyOiUyC81sidPTNkSqzQUfE58btMKMzzN1jXBYzU0sS0+0mI3EN21uAeqedPoEIBZ12kTC8GP3C/ELK2NgYu3btqhg/nEsoFovs378fnU7H+eefj16vXxXXpdXE9PQ0e/fupa6ujnXr1p0RsvCxj32Mxx57jMcff5zGxkbxb1eSLPzXf/0X+/bt49lnn1323OjoKCaTaZnVejgcroyZjY6OLssCmf/3/N/UsAQ1wlAVBoOBSCSy7PH5jte9997Lm9/8ZgD+/d//nc2bN/PUU09xySWXvOzDXXQcK7q1swjSzWxwcJCjR4+yYcMGmpqalv3dmRpJWriP6elp9u3bh8Vi4ZJLLqm4ZawmWSiVyjzwjw9xdF8f+XyJxOgUzoAD1QijnRO0bKljoHuc1k0RdHodeqORfb/prLx+7dZ6Og4OLtrmpu0NHDsyjNGkw+k2YbObcXrt5GeK1EXdTI5nyU5Ok52chrLC4BKBcSDs4ujhoWUC6LWbIpzUWOVfuzG6TP8AEIna6e1JLnt8zfowxzS209wc0OwWuNxWenrGKJdVMpkcmQXEJJWcYVyj0N7YFmUqlkFRwG0343BYsNlM+INOsjN5UOZW1adzBbLTOUqodAtahJKq/SNYH3Fxond58W+s4rRkESxbIwEno0KBncvL41BdwjGnNOw7AZrrfJwQCIv0mpY6L51aydMqpDM5TmoE022s96EaFJo8TlS9QjZXIDGVJZmdxe/zMJha/v7rFOgRRM1ei46M9rSWLGo2G+kbS2o+F/W6SKS1R6m0Ro5gzu5V2l5z0MPRYe1xNmOVkLeFFrH5Ypn+eBLi4LFZSE7PvR8Rp5Wg14HZYiBfLmE2Gdg7qMEGAas0ZgXkqnRsX0i/oKoqHR0dTE5OsmvXrnMynKtYLFbCM+fJwkKslOvSamJ6eprnnnuOSCRyxsjCJz7xCR5++GEee+yxF23X+nIxMDDA//gf/4NHH320lhpdw1mDkydPUldXh8ViYffu3Xzuc5+jqanpRXW8VhKvWsKwFKqqcvz4cYaGhhaN+yzFmeowzO9jYmKC/fv3U1dXx8aNGysrJaspbp7JzPKdT91Hd8cwDp+Lkc4Ea7Y1cvCpbkrFMmu3N2CxW3G4snQdGWLLxWtp39dfeX0g6mZ4MImqgsdnIxhx4XBZmUrN4vPamUikmZgukjTM4pzKkVqSFbBuSx0njy4v3IJRN2MaRXhemAWfnNQuvKY0LDhBTji2O7VX8BobfbS3LyckjU0+BjR0AgaDjr5TxENVWUQydHqdpnbivC11qJkibp8Vq82EzqCQyWZQDHpUnRGXvcTUEn1BJqs9IrOmOcCxHo3iUUEcLQr5HZqEwWzSi9asdosgGreb6Re6CBazNmFxWE30LxBPL9qPVXs/Br1Cn/Qam4lDGg5RPrsZJaeyozGCqoN0Ls9oMk12tkDUbWUwpe0KZLfbIbX882TQKSLJaAp56BCC4STxr05RNG1WAVqCHk6MSCFv8i18WOg8eOwWhgW9RoPPVSEM4+kZxtPPX5fzW6I4cnoifidOm5myHlKzOYampijotMmJokCP4OAUcTlo8soOR+VymSNHjpDJZLjwwgvPmpX200GhUGD//v0YDAa2b9/+gqNGZzIw7sViZmaGvXv3Eg6HWb9+/RkhC3//93/P/fffz2OPPca6detWdX8LsXfvXuLxOBdccEHlsVKpxK9+9Sv+5V/+hUceeYR8Pk8ymVzUZYjFYpUV4EgkwjPPPLNou/Mz5VqrxDXwmuwwTE0t7rqazWbNe9zFF1/Mt771LTZu3MjIyAif/vSnecMb3sCRI0deVMdrJfGaIAyFQoGDBw8yMzOzaNxHC2dKw1AqlSrdjo0bN9LU1ATIyc0rhcTAON+964ckJ7JY3Q7y+RLRtSEOPNlFoN5JXUuEw8/2UTo1orHxgpYKWdDpFRpagvgiLrLpWRIjKZLxNFNjGerWhhhcElS2aXsjHQcHFh+AAgmNMCtvwM6JY8tXLxtb/fRpBKC1rAvR07388WDYTiK+vKD2+e30aOgEDAYdvVrp0LCoo7AQbreVgYHlj7e0BjTD3cxmA30adq0AuVyRqfQsU0uCyTZvjtJx6nrYzQa8XlulW1FWwGG2kcxMM5mZpVCcuwEVS9qf28aoRyzk09Pa59hS7+dYn7aTTyKpTViaIh7au7XFVvEJYW4/4qGjV3s/k2ntIr4p4qVrWJvM5AvapNBk0Gu6TYVcVloDAYLuArOFPJPZGRKZ2co4WSylfa4tYS8nBScmk7Syr8CgYKfaEvLQJRAQu1kOeBzPaJNmu8lAXLh+C0nBUhiqFKCT2Wlm8sWKze48bGYDJWOJ80Nh9AYdmUKe4ak06VyeBqedASF/4cJGeRypXC5z+PBhpqen2bVr14sOuTybUCgU2LdvHyaTiW3btr2k4n61AuNeLGZmZnjuuecIBoNs2LBh1cmCqqrcfffd/Od//ie//OUv2bhx46rubykuu+wyDh8+vOixW2+9lU2bNnHHHXfQ2NiI0Wjkv//7v7nhhhsAOH78OP39/ezevRuA3bt3c9dddxGPxwmFQgA8+uijuFwu2trazuj5nDN4DbokLR2x+/u//3s+9alPLfvzq666qvL/27Zt4+KLL6a5uZnvf//7Z7zj+qolDPM3tqVZBi8UjnMmRpJ0Oh2xWIxMJrNM3DzvhLRQEb9SOLmvhx/9yyPEh5K4I166Dg8RXRcinc7gDTuw2mx07OuvkIXmTRGy6VnadjSRzxUY7E7g8Fg58LuuRdvdtKNp2XiS3WWhT8N1aMN59cuEzgCBqIvJo8uLTYsw324UVlYDIbcmYYg2eBk/sry4WrMuxHENNyW/306/oBPQsnwFMJq1j6mlJaCZHm0y6SsdiaUoLeiG5HJFRkengCk2rg9zfEmnwusw43SaULM5mr1m0OsolBWS2QLTuQIel1WTMDgdZvoEgbbBqD1iEvDaGUloz6PnC9rz7QGPXRx70hu09+OwmRmMaV9nSfOgKDAgdB6ififjGq5Kk1MzjCbSi4TaOgXCHit+j4XpQh6b00y2WCa5wOHKUUWELGkUGnwuUajtFgLtAFJCce+0mBgY175GfquRzOm6NDEXwqcFh9nIgODg1Ohzc2x0nMElWo+Iy8Zar5+w08V0scDwVJrkAl1EvVFhbGwMn8+3aAa9VCpx6NAh8vk8u3btOicDzRaShe3bt6/IjP2ZHl2a7ywEg8FF1t6rBVVV+eIXv8i//uu/8stf/pItW7as6v604HQ6Oe+88xY9Np/NNP/4e9/7Xj760Y/i8/lwuVx86EMfYvfu3ZXxjyuuuIK2tjZuuukmvvCFLzA6Osqdd97J7bfffk52yc4EXop70LmK+fMcGBhY5PT2Yj8bHo+HDRs20NnZyeWXX/6CHa+VxKuWMACMjY1x4MABGhsbX/TqyGqPJBWLRSYnJymVSqK4eT7cbSXx5E/28ovv/pbkeJayTk/7U92s29lE7/FRpqfy1K0NkoilKRXLrGmrw+m2MtA7zkQ8DcytmrdsjHB0f/+i7Xr8dno0Rm2aN4TpOLB4GV6v1zGeWF5M2Z0muk8u34Y/5KRTQ3Pg9dvp1CjArVYj3Z3aIzmjGi5NAKrwkYjWeRmfWF5gSuNIik5hYFC7+FYEd6SWZj8nNK6dXi9vy6Cxep3O5PB67fT1Lz8up0XPbDLL5kY/JouRfLFMKjNLfDJDU9RLu8b4TrURpmjQyZjQYRiKa1/jaNDFmGCBKhGJpoibjh7tzoOkeWgKe8RRJUkMbjEZlpMMFRKTM9T53Rzrff59cBh1OB0G7DYT5As0B9yMpjKLRNlBl10kDMEqyc/pKqJmSb/QFHDTPqQ9+uRxO+kTxqwSU9rvhctqZmhSIAUBN0eHtTUoNqEDMjY1zXhyZpHGIuCwEPLaMeoVtvi9lZVyv99fGbPp6OioBJqdi2Qhn89XNGnbtm1b8Xs5rP7o0uzsLHv37sXv958xsvDP//zP/PM//zOPPvrosuyDswn/9E//hE6n44YbblgU3DYPvV7Pgw8+yG233cbu3bux2+3ccsstfOYzn3kFj/osx2twJMnlcr0ka+hMJkNXVxc33XQTO3fufMGO10riVUsYEokE+/fvp62tjfr6Fx8MtJojSTMzM+zbtw+YmzE7U05IP/rqzzj4mxOAQq6o4g3ZaPFa6Xh2rvgPNvrwhN04/U4GOuP0HR+lfl34FFmYg9lqJJ3OLftOBxv9nFgSmhaq93D88PIgtQ3b6uk4uPzx5vUROg4NLnvc7tIzNr78JlLX6Gdicvnft64P0aGx35Y1QXo0RMIOh5nuLu2Ca3JSuygWx5FaAnRruCDpqhAJg1H7R7ypyU+3xvECjApFuculvUJtMBjo7Z5cNjmv0ylYVYXNDUHMFgNFVSU7myc+kcHvtdE3mtTcnpQL4XebGJvSLnoLRe0xobDPweikdnEtJU/bzEaRFHhcVvG5UcHpqCni4biGeBqWa15yhTK5yTyZbIn+kQxldY6HRN0WfB4HZqsRq8VIoVzStDqdeUmiZjdHh7SPz1gl8GssrU2q3DaLTAr8bjFQzlKlcE/Pao+1KbDMwSmZmSWZmaXO6+T1F2xHVdXKSnl/fz/t7e0YDAaam5vJ5/PnHGHI5/Ps3bsXm83G1q1bV4UsaGElR5dmZ2d57rnn8Pl8lRyg1YSqqtxzzz18/vOf55FHHmHnzp2rur/TxeOPP77o3xaLha997Wt87WtfE1/T3NzMww8/vMpH9ipCWQXlNUIYyqd3nh//+Me59tpraW5uZnh4mL//+79Hr9fzR3/0R7jd7hfseK0kXrWEwefzcfHFF582g9Pr9ZXRoJW82S+0cjUajZUAl9UkC4Vcge997kcMnIyTSc3g8LnITeeZyefpaY8RbfUTiHgYHpik49neyuvaLlpDx77FnYQ1bfUcXdIxWLOlbhlZUFDxhpzMzhYwmQwYTDoMBv2cY0sZ1qwPzo1anfprRa9QKhRZsy5IuayilsuUSiqgMpMtYbMZyBdKlAplVBQMRp2mpgFYFvY2D4tNewW0qTWgKWqORNwMLcmSmIc0jmQT0qObm/10a2kkFOgXXIPswvFGwi5G49or8mlBb9FQ5+Woxuy+WlY52RljemZ5ERuuD2CJ6LHYjKg6yMzkiU9myBdKYpZDNORlTCP7QKdT6B/VJkwhv0wYRie0z7Mx6uFYnzbJk4L0Ql4HcWE/5iqiYSlhuinirZAMVYWx5CxjybkCfU3YSTY2Q8BpIeR3YLWZyJVLTGSm6RdIQWvIy7ER7c+CuUrBLI0PeaqSAhepQW0yYawyqiRpHox6HX3CWFSj302/8Nz5TXN++vMr5RaLhUQigcfjIRwOMz4+Tk9PDxaLhWAwSDAYxO12n7EC/KXglSILS6E1ujQ2NlYZXXI6nZVrunR0KZfLsXfvXrxeL5s3bz4jZOGb3/wmn/3sZ3n44Ye5+OKLV3V/NdRwrmFwcJA/+qM/Ynx8nGAwyO/93u/x1FNPEQwGgRfueK0kXrWEwWAwvKR2z3wgRqlUWrEb/vDwMO3t7WzYsIHm5ma6u7uZnp6u6BVg5cXNqbE03/rk/2WgM4HRYiI9laf76Elazq8jXygQafYzNpTCaLUwvmBcZ/32xmVkYe159ZxsHyIQceN0WzBbjOj1Copez/qNYfK5ArmZAtn0LN6ggxN7+5Ydz8btjRzVeLztgqZlo0sAbTsWP64wl6MQipiZSuUIOA04XHas1jnveIvNRC5XwLUxTC5fYnY2TyaTo1gq062hpQBZ1BwIOjVHmKRxJBQYEkTFNmHePuC3MDauXYSNTWgXgoGAU5Mw2KxGBqSwOL32ZyoacTEikI+p9Kxmh2Pzxgi5UhGLzUxRLZGYnGIyk6dQLJPRSLAGaKnz0S2QDKlbEfJVKfCFUDGDXiYm4Srbi0n2pwEXI8LMvlVwfAIYP/WZSqVnSS1Y5W+NeslkZtgQ9GJ3mCkrKhPTswxPTmGrtj3BgtVts4jjTfV+F5OiqFm+p01ktEeYrEaDnPUQ8NAZ135/fQ6bTBian5+v1RrhaWpqolQqMT4+TiKR4ODBgwCVMRu/378ovOiVxjxZsNvtnHfeeWcNsVk4utTa2lp1dMlut7Nv3z48Hg9tbW1nhCx85zvf4W//9m/56U9/yutf//pV3V8NZzFegyNJLxb/9V//VfX5F9PxWimcPXfcswTzs56lUullt8NVVeXkyZP09/ezY8cOAoEAMEcOSqVShSystLh54Ngw3/uHHzM6MIGvzs/hJ7vwRly07IgyeGKc4iknmY0XtnJ8QVHuj7gZi6VpbA3gcFtRgHyuQGZqhlKuwNjQBGOnGgqbLmji2N7+Zfuuaw1oHlM2q12cJ4XRn8zU8oKnWChTVnWkk3PdmYn48wXOxm1Rjh9ZLqbetLWe0eEUkaALq92EwWRAp1PQGXSkp/MEAw4mk9MUF4zNxIWxH2kcqanJR58wdiRpJxx2kyZh8PsdjIxqF1kzQmhWQ4OP453a7kTDwrYCfocmYdDpoE/IWDDodBw9voRIKNBS58GGnvPXRsmXSoynZ0hMZCirqpgirdcp4thT2C8X+JJDU3PUS5dATMrCDdpkUEhofM4Agh6bSBhSwmc54LaJWg2lXGAmV6RnSU6G2ahDl4cL6iOUdZCcnWVoYopCqYzLamZwQli9D7hIDQikoEqxKukXnBYTA8K+moIejgsdkGoJ1MUqWrAdzXMdhvkVbYfDsazQ1uv1hEIhQqEQqqqSSqVIJBJ0dXVx+PDhRWM2r2Q+w/w5OJ1OtmzZctaQBS0sHF0ql8uVtOmOjg5yuRxmsxm3200+n19Vga6qqnzve9/jr/7qr/jxj3/Mm970plXbVw3nAl5DhEGw1j4XUCMMSzAvOH65OoZiscjhw4dJp9NccsklOBwOYO5GaTKZmJiYoKOjg3A4jM/nWzE/7YOPd/D//v1xsukcdq+TxOgUjRvD5NUCve3P/+hv2b2O9ud6Cdd78YacqKUyxbJKd/swkwsKubaL1jC6JDNB0ekYiy0vNr1BB10dy4v2umY/AxoWqHXNPoY1hLr+sIt+LQtUo47EiHbBM6wV8MXcPSg5kSW5ZNW+bXsjvafcmhQFfG4rbo8Nb9hJoVAm6LEzm5+zPJ1IZimVVHEcyemyAssJQ13UzdCodtFZKGoXFZGwizENC1KTSU+/QEqMghYiEnIxKjgazea0P9/NDT66tboowJSWTacKNouJk8cXExabWU8o7Mam6Nm2JkIml2d0PF0ZG2qq84qdh6KQl+F1WhkWxoSquRYNCdcg4rXTp5HuDZwai1sOs1HPgIYtMEDEJ4u7EXIKdCgc6RxdlAqu1ys0BD00hl2k83mSszmGJqfIL0ijrra8ENdI54YX0i946BjS7sTZq3RApvPanSWAIaED4rNbaQ54KsJat9tNW1tb1UJbURQ8Hg8ej4f169czPT1NIpEgFotx/Phx7HZ7ZczG5XKdsXCzc4ksLIVOpyMQCOByuRgfH8fv9+PxeBgeHubYsWNVR5deLu6//34+/OEP84Mf/IDLLrtsxbZbwzmKWofhnMCrljC8nJvby7VWnRc3GwwGLrnkkoqH+Lxewe/3s2PHDuLxOMeOHaNQKBAIBAiFQgQCgZfcav/v7/6G3/10P70dwzRvbSQ1Mc3A8WHqNgcZ6Z778faH3TRuCJNNz+JwmIn1jRHrG2PTrha6lgiPHW4rvRpuRBu2NXBcQ6QcbQkwuW9518HldzA0sLzY9fgdDGsUwZF6D+Maq991LT76upYXmeF6DzGNkSCdTqFPg3gAzC6Yd1dVmErOMJWcweWxLbOI1ekU1m8KUyqVia4Po+h05ApFUplZxsazxBPaoz0+v1OTMHi8VoaGlx8vQE6wwmxu8nNSEGjHhI5IIODQJAx6nSKOMDkc2uJpo0F+jUXDTjafKzEWSzM0lHw+uVuBOr8Dr9+Bz2vDpNeTSGUX2Z0qCgwInYe6oEscm5HyJKJ+JyOCE5PH4xQJw5CQl9AU9nBiSJucirccBeKCY5HXZmBkiVi8VFIZHE3it1s50jVH1vV6hdagB4/bQokyU1NpDDqF4hIBndduFUPZqukXzALpBEjNaF9bnaLQJ4wqRT0ORgS3qO1NkYplp8/ne0mz8jabjebmZpqbmykUCoyNjZFIJNi3bx86na5S6K7kYsxSLCQ8W7ZseUUSmF8u5kep5u1EdTrdqgfG/fjHP+a2227je9/73iKP+RpewyjP6RZfEzhN0fPZhFctYYA50qC+BDb3cqxVk8kk+/fvJxgMLlo1Wyhu1uv1eL1evF4vGzZsIJ1OE4/H6e7upr29HZ/PRygUIhgMvqjAolKpzPfu+iEn9vcxNpKkoa2eA78+AUB0UwC1qKdtVwuT8Slmp3OcODjA9IL5aofHptkBaNoYXaZnUHQKkxpFlsVmpPe4htWp3US3hjWqwaijr1t7RVOrewFgMgl6gLBTkzBEG90M9S8v/MwWA/2CcFpL11Auq5hMBto1SFI46qY0U2RjUwCTzUgZyM7kGZ/IkhRWm+ujXpLJ5QWk0aijT1jdl8S5oYCDmEY6NkBecOVpbPTRK3URBMvS+qiHXg3SB8jnWeehc6EWQoXEWIbEWIY1zQG6T2VQ+B1mgmEXVrsRg9HA4HiK6dnCslEiyZ7WYjKIadFBj10kDEmBfET9TkYE0bWtSidDGpeqD7hEAbXf62ZkSpsILjy+eRIxOAo2k47pQhmjXqE55MblslLWweT0DG67hYms9nlV1y9ov4cmg14UazcF3PQIz4VcMmFoi/p49tlnCYVCK2LZaTQaiUajRKNRyuVyxSHo2LFj5PP5imXrSoabzZOFMzXvvxqopruQRpdebmDcQw89xJ/92Z/xne98h+uuu241TquGcxFqee6/1wLO4fN8VROGl4qXaq06MjLCkSNHWL9+Pc3NzRXCMu+6pOWEpChKxY933bp1ZLNZ4vF4JQXa6/VWyIPFsnz1dzo9w3f+7gcM9Y1TKpbx1vk5/LtO3EE7njoHU4k8yXiS0Z4xFJ1CU1s9fccWF/D168IcP7CYGPijHk5oWJSu39qg+fiazXWa4uWWjVHNx9dsinKiY7lDUX2znyGNMSWL1UivZIE6LoxgeJ2ahMEXsjEysLwgtFiNDAqJzJJ+wB900nF4iLElnQSny0J6eopGvx1VV8LuclAowfhEVizkm5sCnBRIVEzoYgRDLk3CUM3O1Sl0EcwmPYNC56NUEFxyDIos+LZok12DXmFwwWvSmRzpzNx7u3VTlPHeFA6LgXDEjd1poaSoTGZmiQlFfFPEwwnBGrVY1r4528xGBoSsiaDHLhKGjLDa7nFYRWengMsmEoa8MPpk1FFl9MlJdyxFsaTSP5KCBaNy4fV2Nni8OB1mCqgkMtOMptKoqqxfqBbK1hLwcCKm/Z3w2K0gEIZqi4X6qTGim9aybt26FS+0dTodfr8fv9/Phg0byGazy8LN5rsPdrv9Je1/oe3omXASWg3MB8vZbLYXFGnPjy69FNelhXj00Uf50z/9U/7t3/6t4hlfQw01nDuoEQYNnG6HQVVVOjs76evr4/zzz6/YXS0kCvDinJDsdjutra20trYyMzOzaE7X5XJVRIA2m43EwBjf+dR9ZDN5eg4P0HheI8VCkUiLl9mZAoneDDMLBJptF6+lfYF9KkBLW90ysgBzhGFpyJqiU5jSsC5V9AqxYe3ia0KaERcKObfPrkkYmtaFNBOi/SEnw8JquXRMVqsZWF7cNbT4OXlseZfEaNQzIBCJYlH7cxKp93Li2OgC8fbc/nQ6halCmbVRLzanmbKikJnJEY+nMVuELkLQSVy4jhL5aGrw0SuIlzOCaLexwcfJHm1SVlaMwPKV6+amAJ3Ca5KCw09jnW+Z+Hce885Js7NF+nqf/5uAz8F0doa1EQ9Ot4WyAhPZGUbGpqq6Fg0KpKAx4uFYv/Zxl4SupNGgE3Me6gNOsWOxdGxoHjpFEUlBU8RH17D2NXI6bCCkYI8lswwmFj/nthppqfOiN+vxWC2MTqUZX3CsTQEPHUIAnF0gfQC5KosqoymhS6hXuHjTOtatW7vqhbaiKDgcDhwOxyKHoEQiQXd3N2azuVLoejyeF6U/eLmjVGcDCoUCe/fuxWq1nrb964t1XTIYDNTV1VWyhh5//HH++I//mHvuuYd3vetdq3VqNZyrqGkYzgnUCIMGTkfDUCqVOHz4MKlUiosvvhin0wk8P4I0PxL1UsRwVquVpqYmmpqayOfzJBIJ4vE4nZ2dpAazPPv9I4yPZJjN5ll/4Tp62oeYGs9gcZhwBtykFswX168Lc2z/kuRlg56Z6cUr50aTnrrWICN94zjcFlR1TmCpqiqN68J0anQF1m+p54RGnkHLhjA9GsnLHr+dHg1thKIoDAmFeVkousL1bsbHlhcnkQYPo0PaRVVSsDOdmREK3Ba/tjWrAsODSc3X5PLaxWNDk4/+3vHlidcKFH0zbG4OYLTOJTJPJLMkxjMiYaiWCO10ao8JmE0GWYtg0S68LWYDo3FtwmIVXqPXKwwJDk1OhzzCMCwUwiG/g8RkhoElZNJq0mPIqexojlBUVMYzM4yOpymrKg0ht0gYquUvSMLqprCHTqGIrzbTLbktNYTc9AnH56wy+jQS1/6O2M1GzWOfnimgFlQOdT9PuEMuC+GAE6PZgM1ixG42ks0tFzBnc9qdNRQYECxT/Q4rMUF4vSnsY/36ddrbXGUsDTebmJggkUhw+PBhyuXyIstWLYe8mZkZnnvuOQKBwBkJNFsNzHcWLBbLimRFSKNLn//85/nhD3/IRRddxMaNG/nud7/LV77yFW666aZVuW733HMP99xzD729vQBs2bKFv/u7v6toJN70pjfxxBNPLHrNn//5n/ONb3yj8u/+/n5uu+02HnvsMRwOB7fccguf+9znzir73lctahqGcwKv6m/Cy9EwvJiRpNnZWfbt24der2f37t3LxM0rGcZmMpkqN+Zf3fckB36yn5G+JI6gBaPbzMFfHQdA0euoWxelZ0Fh7w7Y8QRd2N02DEYdalmlmC/i9DkY7Erg8VjJz+TJzRYoZItYTHrSGiupuZCTYnoGnV6H2WLEZDFiMhsw6VRaW30YTQb0Rj06nQ4VsLksqKrKdDbPVGqG2VNe/fWtAZL7l3c1mtYG6OtaPlpitZno1SAeANm09mq5P+jSJAzRBi8jQijbdFa762EVQtnqGrwiYUgltY9rzlFJ43Gnla4Ty0mJ3WrEqipsXR9B1UEqk2M0PkWhUKKxwUdPv3bxKAW5NTXKXYTklDbJaaz3clIQj6cFzUNTvY9uocORFmbsw0GnOHqlCHkSAB3HRiktcFaaG2fy4LToUbwWZsq6Ze5Fk1qOT0CkSvq0w6Y9ygUwIYz7hLwO4sIsv9dpFQmDVKibDDomprXvTXUBJycF5ynTkvyKyalZJk91v9ZEvRQmCzQFnPg9NtArTMzMEEtmxATqRp+LfsEFqc7rWtTBWIjdG1s1Hz/T0Ov1le6CqqpMTU2RSCTo6enhyJEjeL3eyoy+zWZjenqavXv3EgwGV0R38UpgniyYTKZK3sVKYuHo0r/+67/y/ve/n69//et885vfBOD//J//w+joKNdeey3btm1b0WvY0NDAP/zDP7B+/XpUVeXb3/42e/bsYf/+/WzZsgWA973vfXzmM5+pvMZms1X+v1QqcfXVVxOJRPjd737HyMgIN998M0ajkbvvvnvFjrMGAbUOwzmBVzVheKl4MSNJqVSKffv2EQgEFtnpLewsrHQYG8BPv/4o+37ZDqqBUqGE0+XlxL75QDSVpq0hiqU867fXU8yVGBuepL41RPuTJxdvSFEINfmJL1mhtjktdGt0EVw+O32nugLlUpmZbI6ZbA6b08zRfX2UiouLbZ1ewWw1LxqJstpMOD02mM2zeWMYnUFHqawyO1skmcySLwrF57oQx44sPyan28qARsAYwFRSu4DzBhyahCEYdhIXVtGHhXENr8+hSRhsdiPJCe1zyQlpxNF6N+ljy4us3GyBrmMx0gtE6jq9jsY6N1GvA4fVRGYmz0gsVbFKtVYJcpO6CDarUdQiWISRH1MVzYNdCKxDgWEhmyLgtYuEYUJ4PxvCnmXEZG6caZz6sJXYqawOn8NMOOLGYjOSV0sMCXqDoFcmDNlZ7SLeYTWJrkphr10kDPmiNkHVKYo8ShXy0DUijHMJHTKAtKC9MOp1DIxNoaowkkgzsuD6r436KOvB4TCTV0vEpjIkTo2Z+R02kTDoq9zzzj+Vv3A2QVEU3G43brebdevWVUZBE4kEJ06cwGq1ksvlCAQCbNiw4ZwkC8Vikf3792Mymdi+ffuq27/qdDp0Oh0///nP+dKXvsS73vUuHn74YR588EH+4R/+AZ/PxzXXXMM///M/r8gK/rXXXrvo33fddRf33HMPTz31VIUw2Gw2IpGI1sv5+c9/TkdHB7/4xS8Ih8Ocf/75fPazn+WOO+7gU5/61IsyH6nhZUDlnC6kTwvn8GnWCIMGXogwjI6OcvjwYdatW0dLS0vlB2Rer7CSnYV55HN5vnXn9xnsStDbMURmcppNu9fT0zFEZK0Hh8OO0Wzi6HO9i15ntBjoO7F89n/NefV0a2QmNG+KLtsGQMPaEB0aSc2N68IcP7hc1Ny0PkLvEnek2ek8FpuJjiU6CgAUUKdthD1WXF4bJqsJVYGZ2SJ6gw5FWX4/aWjxc/Twcucil8cmipezUrpzxK1JGBxOi1j8S0LoxuYgx44uv7aKAkOnmaUQDruJLSmwy6UyowOTWE0Gek4JwRWdQkPEhSfowO62Ep/MMBKfWmQfCzApFN71dV5OCILrlNR5qPPS1adN2GaE4ro+ImdTzOa03xu71cSIUEA7JGICLHRazWRyZDrnzm99a5DscJao304g6EBvNpCezTE4NiWGvOl1Cv2C3qAh6Bb1ELLXKqIQujHkok8YzXIKQXgARosNWP5Z1SsKAwmBgATddMeEsTarmQPdiz/HQYeVSNCB22RmQ9jPwESKmSU6mjHBccmo17GlISQe/9mChaOg8wtDZrOZ8fFxfv3rXy8aXVoty9aVRLFYrNh8r0ZnQQsHDhxgz549/O3f/i1/+Zd/iaIo3Hrrrdx6663kcjkef/xxnnnmmVUZ9ymVSvzgBz8gm82ye/fuyuPf/e53+c///E8ikQjXXnstn/zkJytdhieffJKtW7cSDocrf3/llVdy22230d7ezo4dO1b8OGtYgFqH4ZzAq5owvNSCXdIwqKpKd3c33d3dbN++nVAoVHn8dMXNp4NUYoqvf+TbzE4XOfybEzh8NnZctoXhvhiF6RyjJ2YxmlN4ot5lr23cFKbniEYKsPCjkRYKSqnQlj76Nqf2+Eak0UdyfPk+QvVu4sNTTE3OEF+wOq7TKxhNBiwoBOo92L12DCYDuUIJvV5Bp1OW6Rvqm7wcPby8yLXZTQz2ahOJfF6bINY3eTmuVfzrFLG7oRPsK+sbfQxqCLoBUho2qwC+gGMZYYC5OnRhp0Qtq8SHU8SHU2zZ3sBg++gciYi68AQcKEY9s/kCA4KuwGDQ/rxaLcZFjkYLYbNqr7rpdIr4Gp/bLhKGcSH1uy7i5kSvkKehMXcP4HVbmRSyD+Z1F+PjWcYXOGzp9DoUT4nzm8KUdDCenmFkYm71vSnsoXtUu7CupoeQrFbDPgejwvlaqoxfzQo5HTpFJiA+h5F4RpvAuezymFVe4x6YzMyQzMzMpVpPTaPTQWvAhddjo6xTmZrN0StoGzbVBbEYz52fnGw2y8GDB6mvr6+MuiSTyUrnIZfLVexFg8HgqiYjv1TMdxb0ej3bt28/IwTnyJEjXHfddXzsYx/j4x//+LLfQrPZzJVXXsmVV165ovs9fPgwu3fvZnZ2FofDwQ9/+EPa2toAePe7301zczN1dXUcOnSIO+64g+PHj/PAAw8Ac4uAC8kCUPn36OhyW/Aaangt4ty5e59B6PV6cktWO0ulEkeOHGFycpJLLrlkRcXN1dB/dIjv/q8HSE3OkElOs+nCNegMOvY/dnTR3224cC3tT3ctesxiN5HQsA91BCx0ty+3Rg03+hjsXL7K7PE76D+5nHQYjHr6OzXICDAhhImpQkZtIOIlPrz8NfXNAQZOzc8PLTi2OSJhxIhKsN6L029HZzQwM1tAUbTfg4aWACc0uip6g44BgUhIxX9js59+4TUJIVnY7bFpEgaL1ciwMEIkoa7eK3YrMqd0BWpZJTaUInZKy7F+Qxh1fJamBg9unw1Vr2MyPcNIfIoRYZW5oc4j6hcyQlhaQ9RD37D29qQUZ4/LKmooSiVBeIssko4EXUwK25sWOkNuh5kTS8TtbpuRSNRN0OvEZDAwPDHF1JLzTgk6Do/dIlqthjxOkTBMz2pvDwUGhdGnhqBH7IBEQz7iGe2iJ1eQk5qlY/c5rYyd0myUyzAUn2Lo1Pd9U2MQV0GPy6bH43WQVxQGJlNkcwXOb9IeBzkbkc1mee6556irq6vYvyqKgs/nw+fzsWHDhkra9MjIyKonI78UlEol9u/fj06n4/zzzz8jZOHo0aNcc801/MVf/AV/+7d/e0avwcaNGzlw4ACpVIr77ruPW265hSeeeIK2tjbe//73V/5u69atRKNRLrvsMrq6uli7du0ZO8YaBJTLwLmbT3BaEBwizwXUCIMGloqeZ2dn2b9/P4qisHv37spKUrV8hZXAoSc6+M6n7scd8TCbzTF0cpTouhCJJTP4wUYfJ/YvHxdau72Zjmd6lj1e3xLh+P7lY0TesIuYRhFatzZEUmNMqWljRFPv4Ak6GRVW0qXHC8LKqdNr03w82uxnqGeuYB/uSsB8RoMCNocFj0mPv96LxWGhqKokk9PopeK/JVAZ7VmKuOT0I4iX7Q4jCSF4Lp/TPsf6Bi9dGkQNYEyY6fd4bZqEQa9XGBZE3WazkXKpzEjfBCN9z78PTrsBl2Klab2ffLlMfCLN+Cn7XK0UZ5izGJW6CC6XFQTCMCIQyUjIJRKGWaH7Ew26GBHImcGo/V4rCgwJJCMccC7rSkxPF+juGsOEnp5TI1uNQQe+gANMClMzOXFlvy7oItmnXfyrVQZZ0wI/qve7GBIcl7wOC/3aHyEKAkkD6BeIYsBtWyYUn0fE5xQTt3VqienZItOzRUYn5oiVokBzwMWFzfXicZxNyGQy7N27l/r6etau1bZ/VRQFu92O3W6npaWFfD5fsWydtxedJw9er/eMjAEtxDxZUBTljJGFEydOcM0113DrrbfyqU996owTJpPJxLp1cw5cO3fu5Nlnn+UrX/kK//t//+9lf3vxxRcD0NnZydq1a4lEIjzzzDOL/iYWm1sMk3QPNawgaiNJ5wRe1YRhJUaSpqam2LdvHz6fjy1btlRuvKvhhLQQ/+/ffsl/f/e3FIpl9v2iHQCr00JmaoZSYXEB4Ay4SCwZ87A6zPRpJCxb7Wb6NNx4FJ1C34nlxT9ARhjtMAsC2kiTj6SGDWik2c9o//ICRdEpDAnjPZJI2O21VwjDQoTrPZUV9amJxQWP0jBLc8SJw2enrOhIJqeJjaSwCzafoYiLuFDgjgtjFw3NQY5pdDEAhoTsAYtNe7TH5baSiGsThqIgmI3WexkQ9pMV8hcCASf9fUlG+p4/p6DXRrDOjc1gYE2Tn+EFomqAxnof3f3CeyaQv6DfQWJCe1XdYNAuqPQ6hcSk9ufPZJQL4am0dqEeDbkqq+HLtycXVaMLrHvjiQzxU7a4a5v8WLIqa+p82JxmZkpFhsbnuhBGg7y9uDCqFHTbSaS0n/O7bSJhKFWx6pOSroNuOwnB/jTgsIqEwVTlvCY0tjcnqJ5iY31AfN3Zgnmy0NDQwJo1a170fd1kMlFXV0ddXR2lUonJyUkSiQTt7e0Ui8WK7iEQCGhatq4kSqUSBw4cAGDHjh1nhCx0d3dzzTXXcOONN/K5z33ujBMkLZTL5WWTAvOYvz7R6JwIf/fu3dx1113E4/HKqPGjjz6Ky+WqjDXVsIqoEYZzAq9qwvBSMS96jsViHDp0iDVr1iz68VhNcXOpVOY/P3M/J5/rJp8vM3BKsKwo4Io4iPckF/39hgvXcEIjeG3NtibN7kLLeQ2aouY1W+rpOrJ8TMnlszGgNXakKAwLwuKlhGYebp9NkzDUtfgZ0hjvURQYEQPTtPfhC7oqhGEhXD4bcQ1HI6PFgDJb4LzNUUoKTExOEx9NoaoQCGsTBr1BITGq7Xwj/VAGQjbG4pI+RLu4jUTdTE1pP5cQil6XxwrLdeBz11JwNHK57cDi51KT02RPFd3FYhlFp9Dc4MHtt1PSKVhtRro1tqUoMDSqvZ9QwCkSBklYXV9lvEmvl7sfUgaE12MXCYNkRRvw2hkTtD12q4lcrkTPEvLaGHRgU/Vsb4kwnplhePx5QbXHbiEmODFFfA6RMFT7namWMp0QAvTCXodIGGZnZcelpSNZC5Ga1e4G1fldeB3aXbmzBel0mr1799LY2PiyxlT0en3FXnTTpk2k02kSiQR9fX20t7fjdrsXpU2vJObJQrlcPmNkoa+vj6uvvprrrruOL33pS68IWfjEJz7BVVddRVNTE+l0mnvvvZfHH3+cRx55hK6uLu69917e9ra34ff7OXToEB/5yEe49NJL2bZtGwBXXHEFbW1t3HTTTXzhC19gdHSUO++8k9tvv/2s1Ka86lDLYTgnUCMMGtDpdGSzWQ4dOsTWrVsrLUlVVSudhfm/W0myMJOZ5dt/932ee+QwVo+dwROjmCxGfPUurG4jRsx4tjnIz+bJTeeZSc+ST2VwGEFv1KM3zP+nIzcxxdr1AYxmIzq9njJzZARVxem1kV6S2CzN6nujTqaSy4vWhnVBBjXGePQGHQOC286EsCrv9jk0CUOkybdodGYhYsLMvyq8H6GoZ1nHAaBcLHNifz/FwvOFjt1hJtzsx2HRs2FjhHh8iuSC6xUM2xkd1i60pBGiUNirSRh0ekUUQhsFMa3Ha2NiXHv/JWH8JBr1MCwQhtlZ7Y5AtM5TCUpTyyoj/ZOMnCJ8a9eH8Kg6IvVeTA4T2dkCQ7EkPq9dHPmRYDEbxALfXWW8SRJJe11G4pOCSL+KC9Kw4MQU8jtFwpAvaBfIyeQM4xPTlffDZTUSrXNjcZgwmw0c7IsxrSHYrnY/iU1qf7b8LltFU7AUYZ9TJAwG4Ts/96QZrWRvvU4RdRR1PgfDE9pEaEvT2e2ONE8WmpqaWLNmzYptV1EUXC4XLpeLtWvXMjs7W7Fs7ezsxGazVToPHo/nZf2elEolDh48WCELZyJwbGhoiKuvvporrriCf/mXf3nFOgvxeJybb76ZkZER3G4327Zt45FHHuHyyy9nYGCAX/ziF3z5y18mm83S2NjIDTfcwJ133ll5vV6v58EHH+S2225j9+7d2O12brnllkW5DTWsHlS1jKqeu7P9p4Nz+Txf1YThpdx8y+UyAwMD5PN5du/ejcvlAlZf3BzvH+Mf3/u/6T86xKZL1pOfLdCwJsBQ5ygjR7PUrY/Q3bl46djqtJDqSFNeUiT6Ih5GenqX7cMbcTN5anXV4rDgq/Pi8Dkx202oKDSuC5EYSTKbfX6IWtKbGsza17ZpfZieY8tHoXR6Ham4kE0gON14Ag5NwuCPuBgXdAJJoWA3CeNT0SYfg0tWh2cyOXrbh0nFp5g8NXriC9qxeEyYHRZ8IS8T47llmgSP10ZcyBhYmlMxj0jEybCG2BtgShgFC0dciwjMQiQkzYPPJhKGmFCsuwSdBsDoaIpsJkfX1PPvtaJTaGwJE7BbKSgq8YkMYwuK+jGhu1Af9dAljKTlC9pkxmLWkcpof258XqdIGCaEMZu6sJsBQZOhF8alAGIaKeMAdSE3vQtC1GZm5rQQAFs3Rikn8kS9RhwuCxanjdFUlkQqy5jQXfA4rOIYU8TnYFwgDPoqjkuSDsGo1zEo6DICDhMxISwx4K5CGJrDmo+fDZgfO21ubqa1dXWD5SwWC42NjTQ2NlIsFhkfHyeRSHDw4EGARZatp1Pwl8tlDh06RLFY5IILLjgjZGF0dJSrr76aN7zhDXzjG994RceQ5sPhtNDY2Lgs5VkLzc3NPPzwwyt5WDXU8KrCq5ownC5yuRz79++nUChgMpkWkYXVFDcff6aLL/7pPYSa/Kzf0cr+Rw8vet4b8TCsIYqtXx+h68BysXOw0c+ERuEaqPdVCMNsZpbhEyPACM1t9fR1zI0jKYqCN+rBV+/D4XOSK5QJNXhJDCdRF7TSpjSsUQGsgk1j/ZoAA53Li0KdXmGoR7tYlEabghGPJmGwOcxi52FaGDdxeuzA8u6G02OrkAWAVCJLKjFXsOk2qzCeoak1gNPvpIRKYixDMOxiUrBHlcaBfAGXJmEwGBTRBckgzJC7PVbGNbQjAOWS9sp6IOhkTHiN1K0IBB0kNF6jllVmMnmOLhDCh3x2gvVuzDYTY5kZ9Hrdsu3aLXIokiSSrgu56R4QukxoFy5mo8KosD2PyyoSBinN2ue2iQTEJehiAKays6iqysREnomJPDB3TK1hFw6jhVCLneTMLAOJVEWbUBdwkhQSsg1Vxk6kRGuLUS+GzTVVCYeLBrzE0tqOSwWB3AFsaT47OwxTU1Ps3buX1tZWWlpazui+DQYD4XCYcDiMqqqkUikSiQRdXV0cPnx4kWWrxSLb35bLZQ4ePEg+nz9jZCEej3PNNdewa9cuvvnNb54TeRQ1nMVQ1XN6VOe0UNMwnPuYb0l7PB42btzIvn37gNUXN//m/qd55P97nMJsjs79PRhMy1fCo2vDTGoQAIsQ4qQXvM6lVXa7+3knIlVVmRieZGJ4kvU7Wzh5KkXabDMTWRPGEXCitxgZi2dQdMoiEgEwMqjtNjRXmC8nBvWtwYpt6lKMDmgXLYpO+z2INPnoPrq8mFEUeVvSiEqozq2dSaFAfDBJqVhm6GQcTj5P5BoDDja1BjBYjaQyOYaHkpRKZcJRN7ER7eJsabBa5Vzq3AwOaL8mJXUeom7RaWhUKACrEYbxce3H/QFtwgCQXDImlJzIkpzIsn5DmNGTcWwWI9EmL1aXhelCgaF4iqxgcxr0O4gLK9Z2uxXQJgyjgnNSfdRLl/A5KAmEyqBXGBK6RqGAQyQMkjNRNZcmu8XMiePP64XsZj119V5sTgtWqxGb2ag5xiSSApNBFEk3hDx0Dmvrg6qFwxWrWAKOTmifl8mgZ329X3zdK4X5ULY1a9bQ3Nz8ih6Loih4PB48Hg/r168nm80yNjZGLBbj+PHjOByOCnlwOp2L9HSHDh2qkIXVFlQDjI+Pc91119HW1sa3v/3tM0JQaniVQ30NaRhqhOHsxIst7uPxOAcPHqS1tZW1a9cyPT1NsVhcVXEzwI/++f/x068/ytjg3A/3ljdsouN3J5f93Yzg+JKUxJuCoHJWKMxUoQgwLVj5zU3n6DsyJ67euKuV4X09WBwWousj2H0u8sUy09M5hnu1C7IpYYRGsk0N1XmIC6vyk0KxahUKnXCjT7RznRRGeMxCKFkg4mZMKCCT8fQi8mOxGomsCRKs9+CwmxgeTjEz/fx7oCgwLHQR3B6HJmHQGxTxNQbB5cds1pFKaXdYJKtZh8MsOjRJHQ6LxaAZMjd3DHOFTG62QO+JxXkaOquN7WsiFFAZGZ+qWJtWIwyS49OcE5P2axxVQsqGRrWL57qIh37hc1jNLUgav/I4jUyktUmi1bL4dpzLlejpnjuu1kYf5bE8rVE3Hq+NglJmeDLNdK5QJZvBzUmBFDiEzzfIugyAUeHe4rCYSAr3l5agi1KxWLUTcqZxNpEFLcxbtjY3N5PP5yujS319fRgMhsrY0vDwMLOzs+zcufOMkIXJyUn27NlDa2sr99577xnZZw2vAZTLoJy7s/2nhZqG4dyEqqr09vbS2dm5SNys1+tRVZVCoYBOp1txslDIFfjn277Jr77/ZOUxnV7P4Mnlq+MOt43+o8vdi+xuKyPdGmFqJj0jwop9YkC7eEgL4tGCkBtgOCXGnc3M0rO/t/L4xgvX4DGD1W/FaLMwM11ibGQKo0XPkHBMs9PaRYY/7NIkDHanhZhgGzojbMvrt2sSBqvdJJKSqaQQWhV0ahIGRbdciJ2bKdDXPozNZKBvfz+KXqGx2Y877KagqhTLqpi/MDujXVTW1XkY0HCagucD25YiEHQwNCjoJISORDjiJiMcm7SfSNRDrzBeJiUyh4Iu+roXvyYacuCPunFZzUQCzkWWpnBKeCs4MVUjDFJgm9NuJiWMrLkcMslIC583l90sHoPPY2cindR8TrKj1ekUhmMp1LLK8FByUc7Glo0RSnrAqCMxlWV4gVtSNVIgJUYDjAiOS16HVRRX1wVcnBjUfu+jTgO//vWvcblci9yBXqlgs2Qyyf79+1m7di1NTU2vyDGcDkwmE9FolGg0SrlcZnJykng8zuHDhymXywQCARKJBIFAAJNJfs9fLlKpFNdffz3hcJjvf//7q7qvGl5jqHUYzgm8ZglDuVymvb2dsbExLrroItxuNzBHInQ6HWazmSeffJJgMEg4HH7ZDhbzSCWmuPuPvsKxpzoXPd6wJcJA+3LC0LC5nmNLEpwB6tZF6FxQrM8juibMgEb+gifsJqkxqqHTK8QE69KUIOgsCMUfisrk8CSTC1xtLA4LG7avZTpXJJ3JMT6arQiAq+kXysKXKtrsp7N9eV6EoiiM9Gufh5QuHWn00XNcSqoWVtdN2qukoTqvZugdQPrU2IpaUhnpHmPkVIG8eUcTEasJf72HslFPYizNWCKDoihi8rPLbUNrFEfRwaBApLxepyZhMBh0orbCatVeOdTpFEaE8Sq7XR5liQsidY/XxugS0fV4PMN4PENDo5fJwUncNgN1LX5MdhMT6Vn0Rh29wmiRTviOVhsFqgu7OS44eyUntV8zV8QnNZ+LhFxM9WgT5Gqz6DFhBKwu6GJQcHDSo9C+IPcj4DATrfdgsOjR63TodYpmRsOwMKpULQfCbdUjrC1g0xilnMdll2zn9ZsaKu5A3d3dWCyWCnlYqXvri8E8WVi3bh2NjY1nZJ8rCZ1Oh9frZWhoCKvVyqZNm0gmkwwMDNDR0VGxbA0EAitKytLpNDfccANut5sHHnigZjVaw4pCLZdRXyMdhppL0jmGfD7P/v37KZVK7N69u/IjvtAy9fWvfz0TExOVcSVFUQiFQoRCoZec3DlwbJjP/sGXiPUuLyaywly65K5jEgo6p8+h+XiwwatJGEJNAUY1ihuDSc/YkHZRlhLGeFLJ5dufzcxSnM7R+eQcQdKb9ETXhjC6LJQViA0Jbj9CISuFxYUbvIwKBXtKKMSsQoFrc5mYntJePZ7Jaj/u8ds1CYNOpxDTyH+Yx9hwkrEF5+oPOmjZFGG2DOPJaUaXFOfV0qIHhPOfEboV0Xq5WyFZrUaiboaE90YSSXt9diaFkTTJ2lOvVxg5JUKenS7S3fE8sTtvWwOWiA+zw8TUbJ6B0WQll0PScFQLbDMLmh+A2YJ2wVUXcjEouEtZzHLxLB2fz21lQrgHeFxWkTAUltwf0pkc6VMk2OE0Yy9Cfb0fq91EupCnP5HE67AymtT+ToS9cg6ErsoK4ExeWEQAtjSFMZvNNDQ00NDQQKlUWuYONE8e/H7/qgloJycn2b9/Pxs2bKChoWFV9rHaKJfLHDlyhGw2y65duzCZTPh8PtasWcPs7Gwlbbqrqwuz2byIlL1UF6NsNss73/lOTCYTP/7xj7Faz+48jRpqqGF18KomDFqrK+l0mn379uFyudi2bVvV5Ob5m+3CNvCRI0dQVZVgMEgoFMLv97/oG3FuJsfrrr+QZx7az9DJ51cFoxvDjGo4CBktRvo7lo8jASSFWfGiMH9sEsYT3AGnJmEINQYY1lh1NZj0JKQMhLx2cVVeUNSU8iWGj86d+6aL11IYSRBo8WN0WyipeiYTM9icFnGFPyMEmXmDDk3CYLEZRSJRyGtfq2hjgC6NLgbI+Q+SFiBU5xH3n9HQpqQSGXJ1sxw/OGeh6/XZCbcE0NuMTKZmxNV9l8cGwn4GhVE0l0u7WwGy1arbYxMJgySSDgadImGQHIi8XjNj49rPlQoleo49TyAsZgN1TT7sHjOZQhGTSU9+yXtbLbBNEl27HBYxf4GyHF42IwjZzUY9w4IgO+R3ioSBKqvEY8LoU8BnJ3HKhrV7wTigwaBjbb2HOpeT6VKRgfEk2QXHa6h2LzOYAG0yMSTYsAbddsLexYsYer2+sviiqirJZJJEIsHJkyeXuQOt1Er2xMQEBw4cOKfJgqqqtLe3k8lkKmRhISwWiyYpWzi6NE/KXqz2YGZmhhtvvJFyucxDDz204kFzNdQA1EaSzhG8qgkDzJGGeSec+RWt5uZm1q1b96KTm3U6HX6/H7/fX2kBx+Nxjh07RrFYJBAIEA6HX3B1bN2OVtbtaOVP/9eNHHnmKD/7j18wdDCOTmdAy0Go5bxGTu7tXfa4w2tnRBihSAhjKTlh3loSyroCDk3CEGrwaz6u6HRMCEVmVlhV1ekU1GKZROfzBY2i1+HcHsHeZEPFyNhoplLY6w06hqWxI+E7GGn00SuMHY1JK8QW7a9FIOpiTBityQoz8G6/XZMwKIoi6icWhuilJ7KkTwlo/WEn+tkim9YE0dtNTCZnGBlJoqpQLGqTn1DYJWdDlLRf4w84RHtWYbqrqkjaJATQKQrLxpHmYXfIhCG5pIgv5Ir0nYzT3OKnv3ccg0FPU4sXh9dGtlBgYDSF9GOkKDAsjCpFq4wWOZ0uEHJFRoRuQF3ETbfw/TRV6XKkBBckp91MQpgRCngdFcKwEMVimdxMgfaT8wnyCmuibtw+G3lKTOe07xNzgW2Cxa3fyfC49nvf9gKBbYqi4PV68Xq9FXegRCLB8PAwx44dWxHdwzxZ2LhxI/X19af9+rMB82QhnU6zc+fOF9QPLCVl85atPT09HDlyBK/XW7muUsdgdnaWd7/73WSzWX7+85/jdDpX49RqqGHOUlU5dwvp00KNMJzdUFWVvr4+Tp48yZYtW6irq6s8frrJzQt/4DZs2MDU1BTxeJwTJ06Qy+Uq5CEQCIh2cwMDA8TSw/zx3/wB0WiU1NgUzzx0gCd/8hyHfnWM4ilBol5wYalbF+bk3p5lj3tCLiaFAiwurDLPCCu8EvFx+u3QvfzxYIOXhLDCPS4k9c5qON2opTJOk42OUxoPnVFPoNmLPejB7LDR1S5oDoQxKZsgWnX7baLb0sy0EAgWkglD/DQ7D8Goi/iIdgE2IzgA+YJOTh4ZpnN/f+Uxt8dGuNVPKZ/D4zGRTC4u+Px+h0gYhoa0PxOBKoQhJay4hyMuMp3axfWMsIIfjriXjVzNY24lc/lzRpNedGJynBoxKxVLizI/dHodhnCZ89dGmS4WGYglK12AupBb1DaYBaIDkBScy9x2AylhbM1RReORndF+z01VuhLRoIt0VvuaG41ypyCdff7YVVVlaDjJ0HASg16HokCz347Xbyc1k2F8usDUbIHGoJveeFJze36nXSQMp5O/oCgKDocDh8NBa2sruVxuke7BbDYTCoVOS/cwPj7OwYMH2bRpU+W+f65BVVU6OjqYmppi586dp911WWrZOj09XRldOnHiBHa7nWAwSDKZZMeOHej1evL5PDfffDNjY2M8+uijFY1fDTWsClQVOHdn+08LNcJw9mJe3ByPx7nwwgvxeDzA4jA2mLupnu7qlaIouN1u3G4369atI5PJEI/H6e7upr29HZ/PRzgcJhgMYjQaUVWVEydOMDIyws6dOyvH4g64uPyWS7n8lkvJpqZ59mcHeeqn+zihQQoAjEIhE2wMkEwsL/Q8IRdJQcA8JhS6s9PaBYxBWAl1B5yahMHldzAljKpIqcwLZ+HLhRKJzjESnWPUbwqiTE4SXRfG5nOTTheIDyWxuyyi5kFyegpGvaQmtFdupZV/o9CNCUTcYrdiWij+PX6nSBgSQhGt9b5nktMUjuWZnZ0jvT6fjXBrEJ3VwNhEFkWoG51OC+kp4T0WSI7JpGd0VPuYrVa5iJEKfK/XJhIGyb0pGnHTL1jkloXgH71e4fiRkcrzik5hTZMXV8CGxW5iMjXNtMYY0bSg/bBZjWLWg99nJ5UV9AbCuKBClYC6sIte4TtqNcu3b2nMSqdTRAJSF3bTPzzJaCzN6AJiXO+30+R24bKYGU1liC/ROFS7bb6chOcX0j0EAoHKWKjWAsc8Wdi8eTPRaPQlH8criXmykEwm2bVr14qMaNlsNpqammhqaqJQKDA+Ps7g4CDXXnster2eN7zhDYyMjDAzM8Njjz2Gz+dbgTNZjnvuuYd77rmH3t5eALZs2cLf/d3fcdVVVwFzHY6Pfexj/Nd//Re5XI4rr7ySr3/964TDz3+m+vv7ue2223jsscdwOBzccsstfO5zn6tlQ5xjUMsq6mukwyBlP50LeFV/q1RV5bnnniOfz7N79+5K63WhXkFRlBWJtFcUBafTidPpZO3atWSzWeLxOP39/XR0dODxeMjn86iqykUXXYTNpp0/YHfbeNONu3nTjbuZzebY94vDPPmTfTz380OVPIYJwVLSKIgtAw0+TcLg9jtEQfCEkHo7k9VeWZVyC3wRjyZhMFoMYjckK6xiuz1uho4lGD48BMxpO+x+O81NQYr4GB1OLct7kIr/MtpEwh9yMi6M1kwLK8e+oEMkDIlh7celUTBPwE5yTLC5FawwXX4rs0Nz13hqYpqpiefTv31b62lbE0Q16Ykl0kyMz207EnWTPqk91jYa0+48ROs89AqOWnnBOcsfcDA+Lohohe+dXq8TR5UcTtllSAq0i0bc9C1IhVbLKkO9Ewz1TrClrY5ybJY1TV6cfhszpRIDsSSzuSLD0mhRyE1nn7a7V7GK+HdwVJvoRIIuRoQi3lUlO0K0RlUQt1cXdDEodFTcwr7GxrOEvU6Od825r0W9NkIRNxgVYlMZJoSRKb1Ox6bGoHj8p4PT1T2MjY1x6NChc54sHD16lMnJyRUjC0thNBqJRCJEIhF6e3v52c9+xic+8QmGh4cxGAy8973v5brrruPqq6+u2I6vFBoaGviHf/gH1q9fj6qqfPvb32bPnj3s37+fLVu28JGPfISHHnqIH/zgB7jdbj74wQ/yjne8g9/+9rfA3Ejl/HH97ne/Y2RkhJtvvhmj0cjdd9+9osdawypDLfPa6TCcu+f5qiYMiqLQ0tKC1+utrDisdnLzPOx2O62trbS2tjI5OcmhQ4col8sUi0Xa29sJh8OEQqGqNosWu5nX7dnF6/bsopArcOCxDp792SGeenCf5t9nBY90s00IIWvwaRIGu9vKpLDimRCCoIoF7S+B1aH9Ixeo84k6jHGBrOQ1VoGz41mmYuMMtMdBgWBLkEBLiHxJIZOZJT6kXRylhYRef9glEgaJfEjFfzXyISU8B0IukTBManSPAPxBD/Gh5c8pOug9HltENMJRN4EmLw6PDZfLumwlX6dTSE9pF6JWmyyUTAjdokAVwqAl+gaIRt0MCqvqki7OaNTJo0pVSMZUerZCIDgVOqjT69jWFkYxG5guFekfnSMQ87BVyTdQFe1r5HJYSAlk2+00M6I9WaRpiToPyYY14nfKWQouq0gYSmU5sG0y/fz3ZWJymolTxNxs0mO3mdkeDYFJRyL9fBbE2jpfVQeql4qluofp6Wni8XhF92C1WpmZmWHdunUrXuSeKaiqyrFjx5iYmGDXrl1VfydWCgaDgYceegiz2Uxvby/JZJKf/OQnfPOb3+TP//zP2bVrFx/96Ef5wz/8wxXZ37XXXrvo33fddRf33HMPTz31FA0NDXzzm9/k3nvv5c1vfjMA//7v/87mzZt56qmnuOSSS/j5z39OR0cHv/jFLwiHw5x//vl89rOf5Y477uBTn/pULSeihhpWGK9qwgAQDocrY0dniiwsRCqV4tChQwSDQTZt2kQ+nycej1d0Dy6Xq7JyJnUdYK57cOFbt3PhW7fz5/+/d3PkN8d58qf7ePqh/STjU+gNOka6tAtwSfBsFpKRA/U+slPLXYJ0BoXMuPZqYlawYpSusdNrZ0TjcZffzpRQYE4JjjBOhxOIgwqJngSJU0LVxrYwzXV27AE3E5MzjM6vMiuQTWoX7AZh3MsfkYmEFBjnq0IYxoUVdJNgG2uxGRkXSJxURAcjy9Oyx0dSjI+kWNcWZbpnjIaWAJ6om1y5zODQJD6/nSHBBjaZ1D5mj8cquiBJY1yKAsMCAXO5rSAQhpRA9CIRDwNCNoNUcut0CjGN4rlcKkMBjh4eAObE9uubfdh9VjKFIoWCEGioVxgRRv8iQadIGDIZ7dcAjGsIl6G6DavfaxcJQ7Vm+Ggiqfm42aRfFp43j7qgm56hCSYWdAVDbiuRiItdG1c/50BRlEWLM8PDw3R0dOBwOOjq6mJwcPC0dQ+vNObJwvj4+BkjC+Vymb/8y7/kqaee4rHHHqOuro66ujra2tr467/+a+LxOA899BAul2tV9l8qlfjBD35ANptl9+7d7N27l0KhwFve8pbK32zatImmpiaefPJJLrnkEp588km2bt26aETpyiuv5LbbbqO9vZ0dO3asyrHWsPKojSSdG3jVEwZ4XtxczQlpNRCLxWhvb68kiiqKgsViqcyPLiQPnZ2dOByOCnlwOLTzFGBODL39TW1sf1Mb7//iuzn2dCcHHuvg8f/7tKZLkiR4LgnOOna3NnEJNfoZ1QhaUxRFtFqVtBBGIQDNG/ZoEgZFp4idh1lhXlvRK/QuCLez+Wz4Wvx4w0F6urRHSmYEtyN/SCYMkn7CJMyYu7w2UkKBLdnihqIe+ru0l6HTgtWsx28XuyKTYxlQYbRnrPKe6vQ6oq0BfJusZGbzDAxOVvINAApF7ffM57OTTApEUhjj8gfsjCWEFDDhq2kwyF0EZ5UugnR9IhEXw9LImOH5calSsUx/1xicyk/0B+1sCLixui3Ek1PEJ2cplVXqIx76hO+BuUo2g05vAZYfo81iICaIiavZsOp08r0tJXR19DpIprXfq7qgm55hbTLm1BByp1IzpFIzXLe7TTyO1UA8Hufo0aNs27aNUCj0knQPrzRUVeX48eOMjY2dUbLwsY99jMcff5zHHntMM9AuFApx6623rvi+Dx8+zO7du5mdncXhcPDDH/6QtrY2Dhw4gMlkquj85hEOhxkdnRuNGx0dXUQW5p+ff66GcwdFNXdOj+qcDorIY6tnO14ThGGhuPlMkAVVVent7aWnp4etW7cSDGrP8ZpMpoqor1AokEgkiMfj9PT0YLVaCYVChMNhHA6HeMw6nY623Rto272Bd//N9Zzc18uTP93HUw/uZ6Q7XlXwnJRWrAW4Ay5NwuCNuJkUCrlJYfyhKATS2YTCzx/1iAJtKZHablvsGT49Mc30xDRsypHtTNCwuQFXnY90tsBQ3zjlkirmLIgEJ+hkUhjHyc1or0QHIm6mhAI7KYyZ2F3a1oeKoogiaWlUymIzarpKlUtl8uk8R0+5MJmtRlrXhzC75whEnyA2zhek/ABEkbTJJK+yTAmFcCTqZnBAGFUSoNcrjAqfTbfbJhKGaaFr5HJZGR/PLhqzspkN1Df78PudKCr0jyaXCbClbAaDXhYhu+wGpgXRfjUb1rRkWKDXMSpYo4Z8NkbGtEmsFimYR6kkv4/rm1dGv/BiEIvFOHLkCFu3biUUmnNmeiXyHl4O5k0xEokEu3btOiMBaeVymU984hM8/PDDPP7447S0tKz6Phdi48aNHDhwgFQqxX333cctt9zCE088cUaPoYZXDiaTiUgkwm9GH36lD+WMIhKJnJMjc69qwqCqKl/+8pe57LLLWL9+/RlZUSqXy3R0dDAxMcGFF174or2rjUZjpQ1cLBYZGxsjHo/z7LPPYjKZKuTB5XJVJTzrL2hh/QUt3Pz376CvY4iDT3Tw3997kv6ji0eMjBaDmNmQFcY+pALUG3JpEgazzURSWJWXhM3Subn9Dk3CoDfqRfG0lm0rzKVNq2WVgfYBaJ8bO7F7bKzZuZaiTs/IUIrUxOLVb6mADIRkwjAmFKoWYQbebDGQEArsXE77XAIRF3HhNZJDVCjipr9bu8Oy0NUpN1Og59CcuLxlYwh3sUx0TRAsBmKJdKVoNpvtaAV6+X12xie032eXy8WwRsp3NcGzy2lFCpqTXJXCETdDAinQ6+XvUVwg06GQg6nM4n3lc0V6TsSx6PWMHI3jshmJNvsw2U2Mp2cYjk/JIuSwh37BdjgU8DI6oTW4B1mBFCg6qoi1XfQLXbqA1y0ShlJZXvmbFHRTJqOeljqv+LqVxDxZ2LZtm7g4s9QOe96UYiXzHl4OVFXl5MmTxONxdu7cecbIwt/93d9x//338/jjj7N27dpV3+dSmEwm1q1bB8DOnTt59tln+cpXvsKNN95IPp8nmUwu6jLEYrGKLiUSifDMM88s2l4sFqs8V8PZD4vFQk9PD/m89u/rqxUmk+mMdA9XGq9qwjA1NcWvfvUrPvnJT7J27Vr27NnD29/+djZv3rwizkhLkc/nOXjwIKVSiYsvvvglr1oZDIaKc8V8Wz0ej7Nv375Fq2Zer7fqD1tzWz3NbfVcd9vlDHXFeOrB/Tz14H46D/QRbgoweEK7bRsXZsHzgs2kRViBDNb5GOzU3seYUCRJbjui3qLOS0wIc5sQuht26/KRq2xymrH+EUZOjqEoCtENUbyNAbKzJQZ7x2WrVWHsyOG2it0CMWSt3suAMHaUFGbSPX6HSBgmhCwFqVsBMC6QHJvdTOZknJN7n3dgitZ7CDT6UI16bDbTMlJlscqfTclxqqrgWdicXq+Io0put1UkDNK4lM9rq4h6l0IaM4PnScvMdIHuo8/nhbQ2erG4LeiiXmLJ7KIxI7eQEwKQFz4nAIOj2teoLuRmUCAMbocVSGo+V64yVzshkLFq2oa1jX4xg2QlMTo6Snt7e1WyoIWFuodcLldZoJnPewgGg4RCIdxu96r8VizEPFkYHR1l165dVbVsK7nPu+66i+9+97s89thjbNiwYdX3+WJQLpfJ5XLs3LkTo9HIf//3f3PDDTcAcPz4cfr7+9m9ezcAu3fv5q677iIej1e6So8++igul4u2tjM7DlfDS4fFYjkni+fXIl7VhMHtdvPTn/6UZDLJT3/6Ux544AG+/OUv09DQUCEP27ZtW5EfhGw2y/79+3E6nZx33nkr1s1YSBDK5TITExPE43EOHTqEoigEg0HC4TBer7fqedSvDXPD/3grN/yPt5IYnODAY+089n+f5vizXYvGJ9xhFymhK5AUVkkl/3u7V7sw9YRc4jjUlFDkSkIhp8+uSRgMJr04qiQFo1lOuUmpqsrw8WGGj891ZULNQTw+C/omH6MjKZILxlFywqhJKOomI4zWJAVRdzU3n2xKez9Gs/bnzGw1MiFcY4ljurxWpia1j1nr8o8NJSnM5ElNTKPoFVrXhnAEHaRnCgwMTuL1uhka0tCjKDAijFFVEzxLo0rhsFsUUFf7TkgkIxB0iIQhldJ+TTXSYreaOH7k+U5BxGcn1OimbNBhqKI3iAuEM+xzEJMMAKo4WVUT200KXUWLyUDsBQTPWjgT40gjIyMcPXqU7du3EwgEXvJ2zGYz9fX11NfXn3Hdg6qqdHZ2Mjo6ys6dO88YWfjCF77A//k//4df/vKXr1hx/YlPfIKrrrqKpqYm0uk09957L48//jiPPPIIbreb9773vXz0ox/F5/Phcrn40Ic+xO7du7nkkksAuOKKK2hra+Omm27iC1/4AqOjo9x5553cfvvtZ8WIWQ01vNrwqiYM8/B4PNx0003cdNNNpNNpHn74Ye6//36uvPJKAoEAe/bs4frrr2fXrl0viTxMTExw8OBBGhoaWLdu3aq1s3U6HYFAgEAgwKZNm0gmk8TjcY4cOUK5XK6QB5/PV/WHLdjg4/Kb3sDlN72ByViKpx8+wFMP7efwb09gsmu/zmgxiInN04Ko1CAkVXsFwqDTK4wLGROi05NFe7zH7rWQimkX5lL2hFWj8wCg6Iqc+N3xyr/rNtbhbQqSnS2JVqcWwcrWZDaQEEZupEreF3YyISRM53OSSNrNgDR2JAq73SJhyApiWV/QRWpiGrWkMngiBifmVtZtNhOWskrbhjDDsUmSqeffP6/XwsSE9vZeahdBIgwZ4VyDQQcJ4b0zmeSie3pG+3pXIy3GJXqD5ESW5KmRt7qohyaLDV/ESV5R6Y8lyUzn8bqsTEjWv167SBiy04KQHJh8CZ2CupCbbiERvJq2YcMqE4aFZMHv96/YdpfqHlKpFPF4fFV0D6qq0tXVxfDwMLt27TqVbr66UFWVr3zlK3z1q1/l0UcfZdu2bau+TwnxeJybb76ZkZER3G4327Zt45FHHuHyyy8H4J/+6Z/Q6XTccMMNi4Lb5qHX63nwwQe57bbb2L17N3a7nVtuuYXPfOYzr9Qp1VDDqxqvCcKwEE6nkxtvvJEbb7yR6elpfvazn3H//fdz/fXX43K5uO6669izZw+XXHLJi1pNGhoa4tixY2zatIn6+vozcAZz0Ol0+Hw+fD4fGzduJJVKEYvFOHbsGIVCgUAgQDgcJhAIVD0Pb9jNlX96KeveUM+Jjk6UlJm9P+vg4BPHKC7w7w81+BnqjGluY3xEm0hIQWPSCJM/6hV1FXJ3Q3u+2h/xaRIGg0lPUhhVygluSzaXjYWz8/PdB5vLAorC+q3N6GwWRgZTTJ3SZpQEUXeo3sughnAcICsUdP6gSyQM0tiRo8rYkaSTsNplEVZCuGZWgRjNTufp3D9QIRqhkJNga4CSTofJamRiYlDzdclJ7YI3EnEzNJTUfE5yBVIUWfDs88mEIS98bo1GHamUNgFxu2TSkhO2ZzDoiMWnKJXKxE91XBSdwtpGL5FGL/H0NP2jk+SWOGctdHBaBp0ZWP45Mhp0jAiC57qQmx7he+cQ3l+oLnheTcIwrztYabKwFIqi4PF48Hg8Fd1DIpFYMd1Dd3c3Q0NDZ5QsfP3rX+eLX/wiP/vZz9i5c+eq77MavvnNb1Z93mKx8LWvfY2vfe1r4t80Nzfz8MOvLcFsDTW8UnjNEYaFsNlsvOMd7+Ad73gHs7OzPProo9x///3ceOONmM1mrr32Wt7+9rfz+te/flnUfLFY5KmnnqJQKLBjxw58Pt8rdBbLf9jS6TSxWIzOzk6OHDlSaakHAgGMxsWrp/Mi7cnJSS598+/hcDi46qbfZzo9w95Hj/Dkg/vZ98t2nD7tHzR3wMGUIGzVSniGuaJI2pYWYTCaDaILkzReZBU0D/6ol5iQ0isdr9WmXXxbXCYmBqc48ZtjwNz7UN/WgLveR0lVUZTlozxOt1zISzoJk+DQZLGd/tiRx2cjKbxf5ZI2yfEGHUwK10YibE6PlfQCJ6jJeJrJU6NubTuaaPHacIZcpGcLDA7N2bfqdPKYkNttEwmD2EUIOYkJ43UmQcAPMC6QsLo6D32CvqeagHpcClgLuxhcck5qWWWobwKv00p/+ygGo57mFh82t4XkzCz9o0nSgvZiLgdC+/p5HUbiSe3r5BS+K1A9OK664Hl17odDQ0McP36c888//4zfc+12O3a7nZaWloruIZFIvCTdw3xGxM6dO88YWfi3f/s3/tf/+l88/PDDXHzxxau+zxpqqOHVhdc0YVgIi8XCtddey7XXXks+n+exxx6r2LwBXH311bz97W/n0ksvZXZ2lj/8wz8km83ys5/97Izc8F8sFEXB5XLhcrlYt24d2WyWWCxGb28v7e3t+P3+SpCRoigcOHCAcrnMRRddtKjFbnNaecM7LuQN77iQ3Eyew78+zq9/+BzP/fwQ0wvGU7xRjyZhUHSKKGzOCQWPSXAP8ke9jPYKYmDBoUjSVTh9dk3CoOgUUSQtuQ25vE4mBp8v0FRVZbB9gOFjgyiKgsNrp66tEdVoYrBvYpED0VIEIi7GhJV/acU7GPXIbkdCEe0LuUTCkBFGy3xVCENWeI3FpiOd1HyKmekcQyfjcHIuaNBqM1G/IYw9YGdgOEVc4z0tFISsDQXRVcnntYuEQbI5dTjMjE8IGpMqAmVJQO1wmJkQtudy2UAgQflTXYVioUTfyec/+y67EbuqY9vaCIlUdlFQXF3ITV9Me3tmo1zA5vOyL/i4EMhYbYxpTcPqCJ4HBwc5ceLEK0IWluLF6B6CwSB+v3/ZYlN3dzcDAwPs2rWrat7OSkFVVb7zne9w55138tOf/pTXv/71q77PGmqo4dWHGmHQgMlk4sorr+TKK6/knnvu4Ve/+hX33XcfH/jAB5ienkZVVQKBAA899NBZRRaWQlEUHA4HDoeDtWvXVqwEBwcHOXr0KIqiYLPZ2L59e9V5XLPVxK4rtrLriq0U8kUO/eoYTz64n2d+dhCbQ3vFPFDvJSGsxk4K40VqlSJfizCYrUZSAmGYyWgXsiYhQMsX8YgajYyQtmsXzt3msZIZn2YqkWbqiQ4AdAYdLVubsZoUwvUeYksKRZfHKhKGCWF0pvrY0emNECkKYp6DWSBy1fbjdNtJDGtft6UBeLPTeboODLBpWwOTHSNE6twEmv3kgf7BSWZnC0wKo0rhsFskDJINMEBC+NyEQk6xY6FWmTgRbViD8vaUKjW1JLp22i2cXCCgDvtshBs9lA0KJotBJAxWmw2tUSWQE56tZjk4rprgeTXGkebJwo4dO/B6z4xd64uFpHuY7/Au1D0MDw/T39/Pzp07zxhZuPfee/mrv/orfvzjH/OmN71p1fdZQw01vDpRIwwvAIPBwJvf/Gbe/OY3c+utt/K2t72NQCBAJpPh4osv5qqrruL666/nLW95yxlxuHg5mLcS9Hq97N+/v/KD9bvf/Q6321350avmAW40Gdj5lvPY+ZbzKJX+mKNPd/G7n+zj6f93cFFIm9vv1CQMRotBzE2Qi3ztj6kn7CLWJ2ketAsdTbsfwO23i4RhQjjekjDC4wu5yYwvLvjKxTI9+3sY642TnswSaAoQ2lBHrgT9PePM5rWLOavNJI4dSfD47aITk3TM/rDc4RBfE3QyLlxns0mbgDqcFqaEYlh/ajZ/fDjF+CkrVL1Bx7oNYWwBB2aTieGR1KK30GqVq+6sIJR3u62kBMclWxVylJY0Jn77oiC3hZAIGsjZHhaLgTFh9d7rsRNfQLiSE9OVjtGWtjparHY8YSczaonekQly+blORTqr3UWwmg2kpoUOls9Ov/DZd1QZY1pph6SBgQE6Ozu54IILliX/nm2opnuYX6RpaGhAURRUVV31vIf77ruPj3zkI/zgBz/gsssuW9V91VBDDa9u1AjDi8SPf/xj/uRP/oQ777yT//k//yeqqvLMM89w33338bd/+7f82Z/9GVdeeSV79uzhrW996xlZPXopiMVitLe3s27dOpqamoC5ULB4PF5xA3E6nRXyUK2DotfrOO916znvdet53+f+kGPPdvPUQwd46qEDmK3aK/mBOh8j3XHN5ySdglSwYtAu/k2WKp0HyVLVrj1u4vI7RG3DjOAcZHdpE0ej1UD61Er5WP8YY/1z40R6sx7Puk24zosyMjy1KDQuWOemv1N7HCsrECx/yCkShrSQMO31O0TCkBZC9jwBh0gYxGOLuMgI103LorZULDM9kaWvY25V3eO1EV0XomzQMTiapFyWswqkVf9g0CkShpkZ7WPT6WSXJr/PIRKGchVhcFzYXiTspkdI1TZW6Zqk07OMDqYYHUxVjnltsxt30ElyNodOpywb1asLueka0HZBUlR5VKlabsNKdhj6+/vp6upix44dZz1Z0MK87kFRFDKZDE1NTWQyGZ5++umK7iEYDOLxeFY87+FHP/oRf/EXf8H3vvc9rrrqqhXddg011PDaQ40wvAh85Stf4c477+Tb3/4273jHO4C5laRLLrmESy65hC984Qvs37+f++67j7vuuosPfOADvOUtb2HPnj287W1ve8F05jMBVVXp6+uju7ub8847rxJ0A3PzuI2NjTQ2NpLP50kkEsTjcbq6urDb7ZWU6WpOIIqisPmitWy+aC23fvoGuo8M8ORP9/PUQwcWuSs5vTa0smstdrOYmyDZtrq9LmIayb/+Oq9ISiRLVQnekEskDJJzk064Rv6Ih1ENh6RSrsREzxgjPQkURaFuUxRvQ5BUJi+PHSlUnHWWQrKaVXTya6QAOkUnuyqZLbL9qDSqZKtixTkpFN0en6NyDJnJaU4+23vq4MAbXoNzvZXU9CzDo1MV5x6n28zUlCCIr3LckkA5FHaKjkuSKB0g9RK6EnaHfI2kYENFgdgSgqSWVYZ6khhKeob7x3HbjNS1+jHYjMRSWUbH09irdFTsDifEtMnihDCmZzSsXMLz/P3qggsuwO12r8g2XwnMn8euXbtwuVwAi3QPhw4dAqrrHk4XDz74IO973/v4zne+w3XXXfeyz6GGGmqooUYYXgTq6up47LHH2LVrl+bzOp2OnTt3snPnTu6++26OHDnCD37wA7785S/zF3/xF7z5zW9mz549XHPNNS+YzrwaKJfLHD9+nHg8vuhHSwsmk6ki5isUCpUE1N7eXiwWS4U8OJ3Oquex5rxG1pzXyB9/4jr6jw3PdR4ePoBR8Lj3Rz2ibaskRtbptAs1h0d7hb+apWpesFS1CkJXs9VISnDTyc1qb8vlc2gSBoCx4bkVZVVVGTo6zNDRudC4bZduYtOGACW9gYHecWZPpW37g07GBG2D1JEJRjyiE1OxoL1SH4x4iAvZGCUhidgbcDApXBvpE2O2GMTRK5NFuE2pMHA8VrGytdlM1K0PoZp1lCgzNaX9PuSFc9XrYSqtXZB7PDaRMMjbU8QuR7WuRJXFe8YEAXUoKDtCORxzpGBmukBX+/PfsWjAjktnZEtriP54ivSS7tu40Fky6hVGBW3Dmga/mL9yOujt7aWnp+ecJwv9/f0V0rPwvqule0gkEpq6h9PNe3jkkUd4z3vewze/+c1KSnINNdRQw8tFjTC8CLzzne980X+rKApbt25l69atfPrTn+bYsWPcd999/Ou//it/+Zd/yaWXXsr111/PNddcU3EqWk0Ui0UOHz7MzMwMF110UVV9wlIYjUai0SjRaJRSqcTY2BixWIznnnsOo9FYIQ9ut7vqeTRtqqNpUx1/+LG3Mdqb4MkH58hD5/6+Svqsw6td5NtdVjKC4HVaWL2VNA/+iJdYv2CpKuxDL3je+6JyFyMtzOgbTdrH5fI7xLn+bDJL16EBAAxmA61bm7D4nOjNJpEwSOfi8dtFwpASClG3zyYShrGE4E5UhTBITlGBiJuhXu3RmGJBmwA5nJYKWYA58XT3wbl8hy0XNFFvNuKKOsnkC4zEMxSLc5+1hHDcc1kPgoC6ShEs2bBGwm6GRKtc+dabFkTSdrtJdFzyem0iYZBo2uRYlkHDGKOjU5X8B1fQRqZQIJ7MEp/Q3l5DxCsKnpsiTsrl8ssar5knCzt37qy6uHG2Y2BggK6urhckPQt1D+vXr1+W9zA/Ivpi8h4ee+wxbrrpJr7+9a9z4403rsZp1VBDDa9R1AjDKkJRFDZv3swnP/lJ7rzzTrq6urj//vv5j//4Dz7ykY/wute9jj179nDdddcRjUZXnDzMzs5y4MABjEYjF1544bIMhtOBXq8nHA4TDocplUpMTEwQi8XYv3//otWyF5rFjbQEefsHL+ftH7ycseFJnn74AE8+eACdYMPoi7jFQLNJYfVWmht3+u2ahEHRKUwIRbEUPuf0WDVHq6CKSFpakQ+7RcKQGHm+iC7minQ/1w3Alt3rCNsUAq0h0jMlBnvHKZfVuVVtaexImH/XG3SifkEaVUKB5JhguVllzGWpQ9I8quVTpAW/f3/YRSajre8o5kskBidJDM6NrJlNBlrWBdDZDcSFlXO32y4SBkmgbLebRBtWt8sqEoZ8QftzVS1sLhR00ZPVJryS7SxARtCTGI26ioB6Pv9h6JSJwJpWP3UBG2anmUQ6y9CC8btqgmcz0zzxxBOV1fHTHa/p6emhr6/vnCcLg4ODdHZ2smPHjtPukCzMe5gfEV2a96Cle/j1r3/Nu971Lr7yla9w0003veJjsDXUUMOrCytvll2DJhRFYd26ddxxxx089dRTdHZ2smfPHh544AE2b97MFVdcwVe/+lX6+/srq+4vB+l0mmeeeQan08mOHTteFllYCr1eTzAY5LzzzuONb3wjW7ZsoVwuc/jwYX71q1/R0dHB2NiYGOo1j0Cdl6v/7Pf5Xz/6CB/9xq184It/xPlv2rzIDtMizHPbXBbSQqE2fbqWqmE3xbx2MZ8VxLFGYVuesIuCMGc+IdlXCueo6BSyk9rnUi6ViXWO0v7oIfp/045tOs2mdX62nN8gdjLyQp5EuM4tjjFJhMnttVAqan9OxTA3t420cD31Asmcs3vVLqBtVWb9p1KLSUEhX6S/Y5Ty+CzTJycI6RSagxYiQTNG41xhlctpX2uAuKBXCQXlolapEuYmdQpCIaeYu2Gv5riUlY9d6jyEQy4xr8RmM9NzLM6xZwcYPzZBuGxiW0OI81rD6IXgRYCrL389O3bswGw209XVxRNPPMH+/fsZGhoin5dJDczlE7xayMK8BezLFWrPj4ief/75vOlNb2LDhg0Ui0UOHTrE7//+7/POd76Tb3/72zz66KO8853v5POf/zzvec97VoUsfO5zn+PCCy+sdDyuv/56jh8/vuhv3vSmN6EoyqL/PvCBDyz6m/7+fq6++mpsNhuhUIi/+qu/oljU/szXUEMNZw9qHYZXAIqi0NzczEc/+lE+8pGPMDw8zAMPPMADDzzAnXfeyY4dO9izZw979uyhtbX1tG/+4+PjHDp0iObm5pf0+tOBTqfD7/fj9/tRVZXJyUni8TgdHR2USqVK+qnf70evl8c6PEEXV9z0e1xx0++RSU7z7M8P85sfP8tYTHtMxRfxMJ3W1jwkJRtSyVI14GR8JKn53KSgeZBSkT0BJ0lhhXg6pV3U6YVxF3/EzZiwQj0WXzwSkpnIcuxXHazf0Uyhf5g125qx+FzE4pnKqn5SEPQ6PXbo17aUTQmdj2DES2pCu8cikQJ/yEE6pb29WSFILRB2iwJqUYBfRahtd851MpKxNMnY3HUxGPXUtXrRl4p43EaSqcXH4vPamBCOu3oRL+hirEZRXO3x2BgVCvxqzkSzee1rEQw4SAgjUy6XVQyOW7qv1OR05bNQF3XTanPgDjnIlor0jU6SL5QwGvSsqfdhMOgXjdfE43GGhoY4evQobre7ck9YaEPd1dXFwMAAO3fuxOl0iud5tmNoaGjFyMJSLNU93HnnnfzoRz/i05/+NLFYjLa2NvR6PaOjo0Sj0RXdN8ATTzzB7bffzoUXXkixWORv/uZvuOKKK+jo6Fjkpve+972Pz3zmM5V/L3yfS6USV199NZFIhN/97neMjIxw8803YzQaufvuu1f8mGuooYaVQ40wvMJQFIX6+no+9KEP8cEPfpBYLMaPfvQjHnjgAT796U+zZcuWCnnYsGHDCxb/g4ODHD9+nLa2tlX50agGRVHw+Xz4fD42btzI1NQUsViMEydOkM/nCQQChEIhAoFA1TEFh8fG1jevRQ1kqY80kDgxxVMPH2Tff7cze2oG3u7W1jxUc1uSLFXNQtHn8NjF0LZZqRgU7Fn1Rh3ZpDZhkATHTp9DJAyFae3XGM0GSvlSZXQJILIuQmBNmPRMUdNa0yDoNIwmPWMCYTILHRZAHG+q1hGQNA8en10kDDPCmFAw4iY+rP0alOVFd6lQYuTEGBabidnpPIGAHWfUzmy5zPhkHrvDwISwuVKVIn6pa9E8QiEXfX3aRLha2NyUMJpnt5mYFIidz2cXCYPk5gVzFq1amBNypymWyowMJAGwmAysW+Ojvsm3TOsxn/3S2tpKLperOLB1dnZis9kIBoOVsZszlXy8WhgeHub48eOcf/75qx4upygKl19+OcFgkB/96Ed8/OMfJxAI8J3vfIfbb7+dXbt2cd1113H99dfT1ta2Ivv82c9+tujf3/rWtwiFQuzdu5dLL7208rjNZiMSiWhu4+c//zkdHR384he/IBwOc/755/PZz36WO+64g0996lOYTDIBr6GGGl5Z1EaSziIoikIkEuEDH/gAjzzyCCMjI3zwgx/k2Wef5ZJLLuHiiy/mrrvuoqOjY9nYUqlU4rvf/S4nT55kx44dZ5wsLIWiKLjdbjZs2MDrX/96LrzwQmw2G93d3TzxxBMcOHCA4eFhCoXlK8tDQ0McPHiQzZs3s7FtA793/S4+/q/v5Vvtn+evv/V+3vgHF2ET3It8EXleWLJUleomb1he6UwKpEQnjKEE6rziqJmk0bDatX889UYdU0IRODmRXPbYaOco4yeH6ft1O7aZDJvW+9mwOYLlVFbGvPPSUgSjblEPUhBIjj/s1MxTANn9x2w1MilcT9EhCZgQMiDcgksWwMSYduXv8duZPUVApsayDB2OM94+hi6ewamoNIYseN3L3w8pzyHgd4i6B0cV4pQTxsZ0OkUcLQqFqrmeyddvWnAGUxSIC9c2HHZRXNJdy+eLdB+LYylV/zkxm800NDRwwQUX8KY3vYk1a9ZUxL2KojAwMMD4+PgLjjKejZgXKJ9//vn4fL4zss8jR45w7bXX8vGPf5wvfOEL3HHHHfz2t79leHiY97///Tz99NPccccdq7b/VGruu7T0fL/73e8SCAQ477zz+MQnPsH09PNk9sknn2Tr1q2Ew+HKY1deeSVTU1O0t7ev2rHWUEMNLx+1DsNZCkVR8Pv9vPe97+U973kPqVSKn/zkJzzwwAP80z/9E42NjezZs4frr7+etWvX8id/8ie0t7fz29/+9oz9YL1YKIqC0+nE6XSybt06MpkM8Xic/v5+Ojo68Pl8FReQwcFB+vv72bFjx7LzMFmMXPTW7Vz01u0UCyUO/+Y4Tz10gKd/dqiSleDwaAfNVbVUFQrc+fGVpTCaDeLYk6QTcPocxIRVZSmwDmGu3x/2EB8Ugr302iTDfkpUnBnPcOyJDmDOdWnt9mYcVoOmFarLY2V4QPvQJFclr9/BeEzI0xDcf4IRF4M9gkNSUbt4tDst4riU5JIFkE1rF8m+gEMz7K5cLKPP64gdnhMb+3xWHBEbBZ1CMl0gJnymfD47YwJBVQXdAMCYQATDIRcjQqel2liUREBAJgXBoFN8zu2yMix0b1qb/eK+lkKv15NOpykUClxyySWVLkN7ezulUqmSSfBC3cizASMjIxw7dozt27efsXvv0aNHueaaa7j99tv5m7/5m0Wd51AoxHve8x7e8573rIgeTgvlcpkPf/jDvP71r+e8886rPP7ud7+b5uZm6urqOHToEHfccQfHjx/ngQceAGB0dHQRWQAq/x4dHV2VY62hhhpWBmf3nbgG4HnbvZtvvpmbb76ZdDrNQw89xP3338/ll19OsVjE6XRyzz33EAyuXMrqasHhcOBwOFizZg3T09OLZpzn9R0L5161YDDq2fH7bez4/Tbe//l3cezpLp58+AAJoZCuZqkq2aDqhfEQX9gjbisrzLqbhLAwu9sqdhgKApFx+u0iYcgIDkDTM8uL4WKuSO/+HtRSN+WySt3GOrxNQVLZAkN945RV7WLdYNQxJoWYVRtVEoprh0DMQE6ZDoRdZCWHJIFkmMx6Mikh6btK0T21IB07MzFDZmLu34GIAyw6dE4T0wWYmHx+29XC3KRxH6fTwqSUqu2xiYShmrZhQrLY9VhJSqnfXrtIGPSCmxlAS0tAfG4hVFXl5MmTjI6OsmvXrsr8u9/vr4wyJhIJenp6KpkE8wsKp5tJsNoYHR3l6NGjbN++Hb//xROml4MTJ05wzTXX8J73vIdPfepTVcdUV0u/dvvtt3PkyBF+85vfLHr8/e9/f+X/t27dSjQa5bLLLqOrq4u1a9euyrHUUEMNZwY1wnAOwul08q53vYtdu3Zx4MAB/H4/jY2N/Nmf/Rlut7syu3rxxRdXFRqfDbDZbDQ0NDAxMVGZfZ2YmKCvrw+Xy1XJeqiWH6HX69jyuvVsed16VFXlxL7euaC4hw4Q659buRYtVRWYEATPsrbARqxf+1jGR7TFw9KqsjfsJpvWznOQin+TkOSsN+pEwbXT5QKWr+L7wu6K9ejw8WGGj88FxjmDLnLpJE2tXkaG0ovckoIRDyMD2oRFclvy+GwkJ7TPR7LUnRMvC4nR1RyShEI4XOdlQAjOk94fRYdIjvwBN8ePDFX+7fVasIetqCYj2az2uSoKxITtBYNOpoQuTLVYgymBgFQTVwf8TpEwmKroKGaE8TV4cR0GVVU5ceIEsViMnTt3LhLLwvOjjG63m3Xr1lUWFOZX8V0uV0U0vfS1ZxqxWIyOjg62bdt2xshCd3c311xzDe9617u4++67X1bexUvFBz/4QR588EF+9atf0dDQUPVvL774YgA6OztZu3YtkUiEZ555ZtHfxGJz5hWS7qGGGmo4O1AjDOcofve733Hddddx66238vnPfx6dTsfMzAyPPvooDzzwAH/4h3+IxWLh2muv5e1vfzuve93rzsrWfi6XY//+/RiNRi666CKMRiNr166tCCRjsRidnZ04HA7C4fALFgqKorBxZysbd7Zyy9+9nZ4jgzz50AGGu2J07u9b9veekEscCRKD4YSC3eayMD2lXbzlhHlxu0smQlLCtbRoWG1USepWYNQu8NOJKcwmHWNDSUxWE+vPb0HvsjE8lMTlsTIijCpJeRK+oEskDJLmIRB6aQ5JUifD7tTWvQBkhUI9EHSRED4fSztQ2cnZig2uJ2gjatNj9FjJ5lXGT3UlwmEXo5IovEqXY0JQXet0ikhAwiEXvcIYnNUqd4JmBVtgkEem/D77nOtSFcyThfnE+RfqIsLcgkJLS8uiTIJ4PE53d3cleT4YDL5geORKIxaLceTIEbZt20Yg8OI6Ky8XfX19XH311ezZs4d//Md/PONkQVVVPvShD/HDH/6Qxx9/nNbW1hd8zYEDBwAqmrrdu3dz1113EY/HCYVCADz66KO4XK4VE2fXUEMNq4Ozr4Ks4QXxyCOPcMMNN/DFL36R2267rfK41Wrluuuu47rrriOfz/PLX/6S+++/vxLic8011/D2t7+dN7zhDWeFG0U2m2X//v243W62bNmy6AdwXiDZ0NBAoVCokIeuri5sNluFPDgcjqqFQut5DbSeN7cKNnhilKcePsCTDx2g58hcIrAnKBOGCUlbIIyA2DxmkTBMCSu9BpN24ebyO8TX5IVVXqdPHlWa0pjPBwgE/SR6NIpRBVKnkqTzM3lOPnli7mGdwrpGN1u2RBmbnCG2wMWpWrFebeRHdEjyn75DUjWSIQnSAcYFTYrbbxcJg5RRYTTpmRqfoZxQoW9utMfjNeOKOnA4DUxM6Mlr5H4sFRMvxNSU9nseDjkZkSxk7XIXRhKtgzzG5HJaSAkkuvUFxpFUVeX48eMVN6TTSZyfx3wmQX19PaVSifHxceLxOPv370en01UCzXw+36p2VuPxeIUsnKkR0KGhIa6++mquvPJKvvrVr74inYXbb7+de++9lx//+Mc4nc6K5sDtdmO1Wunq6uLee+/lbW97G36/n0OHDvGRj3yESy+9lG3btgFwxRVX0NbWxk033cQXvvAFRkdHufPOO7n99tvPunGzGmqoYTFqhOEcxPnnn88DDzzAFVdcIf6NyWTirW99K29961u55557eOKJJ7jvvvt4//vfTy6X45prrmHPnj28+c1vfkVu1MlkkgMHDlBfX8+6deuqFv1Go5G6ujrq6uooFouMjY0Ri8Xo7e3FbDZXyIPL5aq6nYYNEf5gw1v5gw+/lVj/GE89fJD+o8P0tg8tEwfaXVZRjzArFKu+oJex/uXFqk6viHkO0giPN+QSCUNasHqV7GH1Bp3crRBCuGxuM9PJ5avualklG09xfG8vAMHmIMH1EaYLKrOzBUYlX3/B+cZiNYpuR9XEy9Jrqtmw5gSi5fJamZrULoSr2cdOSfqKiIuRJbkW05M5pidztGxU0I1miDbYsfocJLNFJk51ZSTHJZvNQHZa+9jntA0Csa2CpPDZtlmNjAvkMhh0iuNPLVXGkVRV5dixY4yNjb1ksrAUCzMJyuUyyWSSRCLBsWPHKBQKi0TTKxlaGY/HOXz4MFu3bj1jZGF0dJS3ve1tXHrppdxzzz2vCFkAuOeee4C5cLaF+Pd//3f+9E//FJPJxC9+8Qu+/OUvk81maWxs5IYbbuDOO++s/K1er+fBBx/ktttuY/fu3djtdm655ZZFuQ011FDD2YkaYTgHEQ6Hq5KFpTAYDFx22WVcdtll/Mu//Au//e1vue+++/jwhz9MOp3mqquuYs+ePbzlLW95UWMCLxfzK3Tr16+nsbHxtF5rMBiIRCJEIpHKKmMsFmPfvn0YDIZKEeHxeKqSh3BTgD0fuAyAP/7EtTz9/w7y5EMH6Xiqk3KpjCfsEsXIUxPahbxR6Bb4Ih7GhrS1DTNCKrWY/qzAxIgQCiDAF/aQGNLuPEjdilCdn97ksOZzC69Loi9Bom9OfLzxwjW41/hQzSb6+yYWEatsWnJIcou6gmJBckgyiw5J6ORV+kmhEPYHnSJhKJa0V+L1ekXUNrjcNkbQfr+NBhPlYpnx3jT0zpG7A6BGAABxZElEQVQeX8CCt8FN0aBgMOiWibbrIl46u7UF3tVEyGnhs2U06ohXsWjt7RfGmAThPsgdBlVVOXr0KBMTEytGFpZCp9NV8l82bNhQcWHr6+ujvb0dr9dbGV2yWOSxtBdCIpGokIX5cZrVRjwe5+qrr+aiiy7i3/7t315RTdoLOS41NjbyxBNPvOB2mpubefjhh1fqsGqooYYzhBpheI1Br9dz6aWXcumll/LlL3+Zp59+mvvuu4+/+Zu/4X3vex9XXHEF119/PVdeeeWqhCj19/fT2dnJeeed97J/dJeuMs6PKBw8eBBFUSrPeb3eqqtyvoiHq259I1fd+kZSY2meeeQwXQf7iPWOLRM+6w06JoQV7GJBe0TF5XeIhCEpudEI6c+ekFvsVoijSn6bSBjSwviJVci5AEgMa29Lr9fR8aujc/9v0rNmewsWn5ORWFp2SHLJ+5FW8P0hF9mM4Hg1pU3mzBaDmPVgsckdtoyQzh0Iu4gJ9qLSeweQ0jinzNgsZr2e8VgWs0lHXYsH1aIjmS2RzhQqeRlakBKyFQXiVbQNg0InqFpGRKmKHWxL83LCoKoqHR0dTE5OsmvXrpdVrL9YLLRwXrt2LTMzM5VxxuPHj+NwOCr3Bbvd/qJ1D4lEgkOHDq3IfevFYmxsjGuvvZYtW7bwrW9966zUoNVQQw2vHdTuQK9h6HQ6du/eze7du/niF7/Ivn37uO+++/jsZz/Ln//5n/OWt7yF66+/nquuuuoFx31eCPNWisPDw1xwwQV4PJ6VOxFYNMNcLpeZnJysdDJUVa04q/j9/qrkwR1wcvkfv47L//h13HTn9Tz388M8+dABDjx+lPxsAV/keVehpZBE0mar9qiQyWIUU6klhya33y4SBqn4t1iFIlCBMcHVSRxVqiLsLi9YjS/lS3Q/2wWAJ+jE63fR2hYhlckz1P884ZDei5cqXlZL2sV6IOJmqFd75ZwqC6diF8FrFwmDpG3QG3RiRoU/4GY8lqWYLxM78fz1CUUd6PM5mho8DA6nlqV0SynOwaBT7CK4XFaQRseqrCJPpbU/3waDjsaGxcnG82QhmUyeMbKgBavVSlNTE01NTeTzecbGxiqWrWazudJ5qNaRHBsb4/Dhw2zZsmVZhsBqYXJykj179rBmzRruvffeFR2rqqGGGmp4KagRhhqAucJt165d7Nq1i7vvvpsjR45w33338aUvfYm/+Iu/4M1vfjN79uzh6quvxuv1nhZ5KJfLtLe3k0qluPDCC1fdDlGn0+H3+/H7/WzatIlkMkk8HufYsWMUi0UCgQChUIhAIFC1xW93WXnjH1zEG//gImanc+z773b2PX6EXz+wj8Ls8qJwUhDOStfKX+dhRChis8I8u7TyryiInQ/prbJ7LBVXn6UoaohyAXwht0gYxuLanQd3wEnf0SGGj81ZkHrrvEQ21ZNTFdEhKRh2ExdGr8TPngITCW3S5Kzi4DOT1R6X8gedjEv6iio5C5JTVCDiIjakfU5GYXupkQyGssp4LIvdZiC0xo/BaWE4np0TpgufE6/HLhIGXZXvbka0dZXdmBobfItGo1RVrXzfd+7c+YqRhaUwmUwVLVSpVGJiYqLSkQQqCw5+v79yXxgfH+fQoUO0tbWdMdvPVCrF9ddfTzQa5fvf//5ZYVBRQw011FAjDDUsg06nY9u2bWzbto1Pf/rTHDt2jPvuu49vfOMbfOhDH+KNb3wj119/Pddccw2BQKAqeSgUChw8eJBSqcRFF110xn/8FEXB6/Xi9XrZsGEDU1NTxONxTp48yZEjRyrkIRgMVm35W2xmmi8IM2tPcv2HL2Pk6ARPPXSAZ39+mExyGpvLIuYmiEnSbjta2QgAk/HTEylXG1WSinKH1yYSBkm/YatSeKt57WMz2xavjk4OTzI5PNfZiK4Ns6HFi2IzM9A/WUmDdvvsImGYFSxqA2EXY4IAWMp6ABgTCmuP3y4SBikcrpq2we21i4RBeo8UBdKnxOf56SKDR2KnnoDWrSF0QT9TsyUGF7hVQfUshWnh+ikKxAXSGw46GRHOq7XlecHz/OJAOp1m165dZ63zjV6vrxAEVVUroukTJ06Qy+UIBAJYrVYGBgbOKFlIp9O84x3vwOPxcP/995+116+GGmp47aFGGGqoCkVR2Lx5M5/85Ce588476ezs5P777+fb3/42H/7wh3n961/Pnj17uO6664hEIovIQ1dXF7/+9a/Zvn07O3bseMVD5JaGQs2LI3t6emhvb8fv9xMOhwkGg4tGAFRVpaenh76+Pnbs2IHX66WhsZ4Lr9hKqVji8G9PcOjXx3n8+09rahKkUSGzMJtuc1nEDoO08l9tVEkiMr6Ah1i3dldA2pbRpH3L0OkVkgntgjKT0R6b0Rt0xHoTjHTNFcE6g47WbS1YQy5MVWxYxxOCDavPLhIGibQ5XBYy4ihZNYck7ddU0zYYqxTxY/Gk5uP+oFOb0KigzhTpOjSXLeL1WAiv8aNaTPQNJZnNy1kKUopzMOAgLow4uT02kTDM6xfK5TJHjhwhk8mwc+fOc6bYXbiosH79erLZLH19ffT1zV3boaEhCoUCwWBwVUTb88hms7zzne/EbDbzox/9aFX3VUMNNdRwuqgRhhpeNBRFYf369fz1X/81d9xxB319fdx///3cd999/M//+T+5+OKLue6669izZw/Dw8O8853v5Oqrr+bmm29+xawAJSwVR2azWeLxOP39/XR0dOD1egmHwwQCAXp7eythU06nc9F29AY9579xM+e/cTN/8jfXceyZbp586ABPP3yQsVOr6NKokJj+XGXsR1r5t1QRKUv7l1bdHW4bGcF2U7JHreYE5bA70OqkeEIuxhesjJeLZXr2dQOw6cI1RG06fC0hUtk8g31zxMbmMJOaEAhYFQvUpPCaQMhFRtRknH76c1Vtg5R9oEBmSnvV3+2zix0Qm90OzF2X6eQsPfvmRr50Bh0Gr4Xz1oeJJ6cXEQSPxyomPHu9dpEwGKoIuVtbAhWykM1m2bVr1zk7RqMoCvl8nlgsxpYtW/D5fJWwuBMnTuBwOCp6qBfKgDkdzMzMcOONN1Iul3nooYde8RTrGmqooYalqBEG4Gtf+xpf/OIXGR0dZfv27Xz1q1/loosueqUP66yGoii0tLTwsY99jI9+9KMMDQ3xwAMP8MADD/CJT3wCmEv1/PjHP35GE1hfKux2O62trbS2tjIzM0M8Hmd4eJijR4+i0+loaWl5QeGhTqej7ZJ1tF2yjvd85gY6D/Tx7M+P8JsfPcdo73JXHyl8zO6WVxallX/JXtMTdIpOTIWctjjXG3aJhGFGmHF3+ewiYZgWLFV1VWrK6fQMIydGGDkxAoAn4iba1ojRZaX94CCl4vJiXrJANZkNYm6DtUq4WVbIHKiW/lxN25CW9AZ+O5NjkmBdvkjTgvZCp4PugyMVMXc44iDYGmSmrGIw6UXCIHWPAGZntT+rAM1NPg4fPsz09DQ7d+48Z8kCzImNDxw4wMaNG6mrqwPm7EIbGxspFAoV0fSzzz6L0WhcJJp+qYsis7OzvPvd72Z6eppHHnlk2aJEDTXUUMPZgNc8Yfi///f/8tGPfpRvfOMbXHzxxXz5y1/myiuv5Pjx42fMPu9ch6IoNDQ08Jd/+Zf4/X6eeeYZbrjhBkZHR9m5cydbtmzh+uuvZ8+ePaxfv/6sJxBWq5W6ujoSiQROp5NwOMz4+Dg9PT24XK6KLWO1zApFUVi/o4X1O1p49x3X0NsxxFMPzaVMDxyfK4LFPAej9tfS7raJYXJS8e8OyIThpegUJFenatakkh4jGPaT6E1qPrf0mJOjKZKjKRo2h9DFJlmzoxWdw7ZI91DNAnW4X3v0qtpHUSIF1dKfJW2DopO1Df6QSyQMUrAfyOF1oYhn0fkmRzMkR+c+a2u3BNkUdaN3WhiMTS0STecFdyeAMSHDwuO2MjjQxczMzDlPFpLJJPv372fDhg3U19cve95oNBKNRolGo5RKpYoT2+HDh1FVtaKHWiiafiHk83luvvlmxsbG+MUvfoHb7V7p06qhhhpqWBG85gnDl770Jd73vvdx6623AvCNb3yDhx56iP/v//v/+Ou//utX+OjOHaiqyhe+8AXuuusufvSjH3HFFVegqirj4+P8+Mc/5v777+fuu+9mw4YN7Nmzh+uvv57NmzefleQhl8uxb98+LBZLRXvR2tpKPp8nHo8Tj8fp7Oxc5On+QpkVLW31tLTV866/uprhrhhPPXyQp39+eNFIzjxKwkq5L+wSCYNU/OtN8vWVuhUGYdbeaDaI5EN6G6vpMRBeYzDrxZRrRQeF6QInf3sCOKV72N6CNeRmfEJ7P84qHRupy+Px20kKRXL19GdB2xCq0pWokmidFcLXHE6LuK9q55ufKTDQfioEToHmVj/uOg/JmTyTgtbG4TCTlDIx/OYKWTiXrT8XkoWGhoYX/Hu9Xk8gECAQCKCqKqlUikQiwcmTJzl8+DA+n6/SfZBIVKFQ4E//9E8ZGBjgl7/8JV6vV/PvaqihhhrOBrymCUM+n2fv3r2VERqYGyt5y1vewpNPPvkKHtm5hzvuuIP/+I//4IknnmDHjh3A3Cp7IBDgve99L+95z3tIpVL85Cc/4f777+cf//EfaW5urpCHrVu3nhU6h2w2y759+/B6vbS1tS06JpPJRENDAw0NDRQKhcpsc09PD1artUIenE5nVSJUtzbMOz50Be/40BXEByd4+uGDPPnwQU7s7aFcVpkVRk2qrfyLDkk5oeD02EQxdElYJfdHPIz2aQem5YUORzUbVkmIHKr3M9wd13zOYlqs1SgXy/Ts7cYTcpGMT1G3sQ5vS4jkgrwHvUH+XI0L+gBfwCESBmnVv5q2wVOlKyFdb0DObQg5yQgjU4Yq54u64Javwmj3OKPd4xhNOsx2M+dtCFE06OkbmmTm1PsTCjhFu9Wg33LOk4VUKsX/v707j4uq3B84/hn2dViHTQUFd0VRAUXNfUcE1FIzl7K6uWVlZnVNKy3NbouW5S27ab+yTEFNc18pRVRUFFBEXBBkGBbZdzi/P7hMInNG7SqgPu/Xy9dL55yZec6w+HzP83y/39OnT9OyZcu7ChZup1AosLW1xdbWVps0rdFoSE1N5fz589jY2KBSqSgvL6dVq1YAVFRU8MILL5CYmMjBgwdxcHC4w7sIgiA0rIafoTWgzMxMKisr6zTjcXZ2Rq1WN9CoHk7Dhw/n2LFj2mDhdjX/qU6ePJmtW7eSnp7OokWLSEpKYvDgwXTu3Jl//vOfnDx5Ujax9kHLzc3lxIkTuLi40KFDB70BjLGxMW5ubvj4+NC3b188PT0pKiri5MmTHDlyhIsXL5KTk4OkpxEWgFNTe4Je7M+HW17hm5Pv8+KHT+Lk7qBzkit359/SxoIimcmjuZnubVN2TkrZMRXL3dW2k9+CJRd86Aty5KpHWdnKPyczXffWIlvH6hWeGwk3iNt9htQj8dhVldK+jQpTY0Odn6eltZlsN2kzPVWa8mVWcxxVStmmbSZ68gPkciVs7Sxk8xQs9HRkLpOppAXyAY2NvQUFN4tJjLrGlSOXUaTk0tpBiXcrF+xs5L/u/n7tHvpg4dSpU3h5edGsWbP78po1+VD+/v488cQTuLq6cvXqVfz8/OjQoQNz5sxh7NixxMTEsH///ge69XXp0qX4+flhbW2Nk5MTISEhJCQk1DqnpKSEmTNn4uDggJWVFWPGjCE9Pb3WOcnJyQQGBmJhYYGTkxPz5s2jokJ+C5sgCI+ex3qFQbh/+vfvf0/nK5VKJkyYwIQJEygsLGTnzp2EhYURFBSEra0to0aNIiQkBH9//3opx5qZmcnZs2dp2bIl7u7u9/RcIyMjXFxccHFxobKykqysLDQaDadPn8bQ0FC78nCnhnf2zjYMm/IEw6Y8QX52Icf3nCXy9xjO/plARVkllTJVdvRtVSop0n0XX99EXq48qomZ/MQwW52j83F9ibRy1ZuMTeTfp7RAZkKuowTqzdSb3Ey9iYuHI6Y5hTTr3BzMTEm+lk1xURkOTtayk3W5ClaAbOlWfbkNRcW63wfkJ/F2KmtyZJrA6fs+kmscZ2tvKV8tSmVDpvqvbWCVFVVci7sBgFdbJ5oYGuHQ3J6CikquXs/Wdpxu6VU/nY8fhLy8PG2wcK8/83fL1NRUuyp5+fJlwsPDWb58OTdu3MDFxYUlS5YQHBxM3759H0j+x+HDh5k5cyZ+fn5UVFTw9ttvM2TIEOLj47WVmF599VV+//13Nm7ciI2NDbNmzWL06NEcOXIEqN4iGRgYiIuLC0ePHiUtLY3JkydjbGzMhx9+eN/HLAhC4/RYBww1nX5vv5uSnp5eb416hOo7cmPHjmXs2LEUFxezZ88ewsPDefLJJzE3NycoKIiQkBB69uypt7na31VTDalDhw7/89f91gChqqpK20327NmzKBQKVCoVzs7O2NnZ6V3BsLa3ZOD4AAaOD6Aov5iT++KIi7zElbhUSm9rvPV3tirJrVaYmhuTK1NaU46+Skxyq0U1W4ju5TmWSnPZXI18mV4PAFnqHMpLK0iIOA+AoYkhnp2b46CyIi+nSOfWo0KZLTj2jtZkyyR+m+gt66r7OXYqK27K9JUw17PKUVKsOxDU1zjOXmUlGzDo27aVl1tIZlohmak5AFiYGeLe3g0Da1Pcm9nLPq8xy8vLIzo6Gk9PzwcWLNzO1taW2NhYjI2NuXDhAlevXmXr1q1MnTqVwsJCAgMDefbZZxk0aNB9e89du3bV+vfatWtxcnIiOjqaPn36kJuby3fffcf69esZMGAAAN9//z3t2rXj2LFj9OjRgz179hAfH8++fftwdnbGx8eHxYsXM3/+fN59992HOtFdEIS791hvSTIxMaFbt27s379f+1hVVRX79+8nICCgAUf2+DI3Nyc4OJh169ahVqv59ttvqaioYNKkSbRs2ZLZs2ezf/9+ysvlG1Pdi6tXr5KQkICPj899DxINDAxwdHSkffv29OnTR5unERcXx+HDh4mNjSUjI0M2ybmGhbU5fUJ9mb58PGvPfci8b57jidBuWFhX7+eXm/zrSziW2zdv72IrO45SmQRhG0f5MpByZVhrthDpUpSve8y2zvLbqKp7Pegam1WdClKVZZVcPpFE4XUNOTGXaaI0okN7F1yb2mrPyZIJZuwc5evjy1Y0UkBRvkwJW3s99fb17Ga7KZMU7uislB2HvhKtZaXy34NFBbWPlZdUknTqOjkX0yktlUlob8Ty8/M5deoULVq0wMPDo17es6qqijfffJNdu3axb98+WrduzZAhQ1i1ahXXr19n7969NG/enMuXLz/QceTmVt9AsLevDvSio6MpLy+vFaS0bdsWd3d3bR5fZGQk3t7etbbuDh06lLy8POLi4u55DHfapikIQuP0WK8wALz22mtMmTIFX19f/P39+fzzzyksLNRWTRIajomJCSNGjGDEiBF8/fXXREREsHHjRl588UXKysoYOXIkwcHB9O/f/567ykqSxMWLF7WlX5VK+cno/WBgYIC9vT329va0adOG3NxcNBoNFy5coLy8HEdHR22jOH1bsEzNTQgI9CEg0Ify0nJi/rhIbORFLsdep/i2fgf6GsAVy0zKrWzl96vnydydNtfTNE6uDKu+52Sl6+7nYKlnJaVIJjAytpD/LCvKKkGSSI1LITUuBQBHD0fcOjQlr6iS4qLMOs3bTPVMugtlPuvqikv3nishl79gZm7MTZlVIH2N4/RN1HJl8kmUthayeR72ThZERUVhZmamXVVTKpWNsvJZjfz8fKKjo/Hw8KB58+b18p5VVVUsXLiQ8PBwDh06hJeXV63jBgYG+Pn54efn98DH8corr9CrVy86duwIgFqtxsTEBFtb21rn3prHp1ardeb51Ry71zHcurJaWVmp/X0nSVKj/t4RhMfdYx8wjBs3joyMDBYuXIharcbHx4ddu3bV+QUpNCxjY2MGDhzIwIEDWbVqFX/++SebNm1izpw55OfnM2LECIKDgxk0aBDm5vITS6j+TysuLo7c3Fz8/Pz09lN4EG6vqpKfn68t1RobG6ut5+7o6Kg3odTY1JiOvb0os8ilc+DTKArMidp5lqhdZ8nR5OltAJcjM5E3ltlWozBQkC3XNE5mO4u+MqxyXaYVhgqKcnVPlPXmQ8iMzdHZnsxk3cd0JV1nXsvE0sKEa+dvYGVvRdNOHlQaGZF8LYvSkgq9CfmZMmOwd7SWDRj05UpkyXx2js5KUq7W7ZwNYKyncVxxoe4VIkMjAzJlVlTsHS1lA4aOPl707dtLm7Nz6tQpDA0NtZ2Q77Ttrr4VFBQQHR2Nu7s7LVq0qJf3lCSJDz74gJ9++omDBw/SunXrenlfXWbOnElsbCx//vlng7y/JEna74f33nuPmJgYFAoF/fr1Y/bs2SJYEIRG7rEPGABmzZrFrFmzGnoYwl0yNDSkb9++9O3blxUrVnDs2DE2bdrEW2+9xfPPP8/QoUMJCQlh6NCh2sS+Gjk5Oezfv58mTZrg5+d3zysT95tCoUCpVKJUKvHy8qKwsJD09HSuXr1KXFwcDg4OsvXca0rAOjg4aHta+PRpywsfjCUh+ipxRxO5mZ5HRkrtykL68hQkmQmxvbOSrDTdE+IKmcpA+sqwylUTsnNSki3zPnLbqPSViDU0kp9AZ97QXXHJ/L8ViAqyC7hwqHrLhbGZMS27NMfc2ABrG/M6XZv15SLo2wpUKNMF20ppJtsZ2kopvzqjr0RrpkwJWZWLEnVKjs5jFZL81r+mzR0wMjLC2dkZZ2dnqqqqtM3MYmNjqaqq0gYP99LM7EGoCRaaNWuGp6dnvbxnTW+aNWvWcODAAdq3b18v76vLrFmz2L59OxEREbVKx7q4uFBWVkZOTk6tVYZb8/hcXFw4fvx4rderyfu7l22cNQFBUFAQKSkpDBs2jMuXL/P9999jZ2fHM88883cvTxCEetB4bv8Iwt9gYGBAz549+fTTT7l06RIHDhzAy8uL999/n+bNmzNhwgQ2bNhAXl4eqampDBgwgB9++AFfX98GDxZup1AosLKywsvLi4CAAHr27ImtrS0pKSlEREQQHR3N9evXKS0trVUC9vYGeAYGBrTz82TsnKH8O+pdPt75OqNnDcbNs7p8o948hWLdd6GVDvJ5CnKVhvSVYZXLrdBb7rVQZsuPnufIdcBWOlhSLrNvX2FQ905neUk5lyITSTwUS0H8VTwcTGnfwRXVf/Mq7OzlczL0bQWSy5Vw0HNNhjKrM4DeIKNAJmFcqadsqr6bvk1bONb6t4GBgTZ47dOnD126dMHU1JTExEQOHTrEmTNnuHHjxn3LP7pbhYWFREdH07Rp0zrbgR4USZJYsWIFX3zxBbt378bb27te3lfXOGbNmsXmzZs5cOBAnZWVmh4at+bxJSQkkJycrM3jCwgI4Ny5c2g0f/VG2bt3L0ql8p6DoAULFpCamsqOHTtYunQp33zzDc2aNePQoUN//yIFQagXImBoYO+++y4KhaLWn7Zt22qP302NbKFazV7gjz76iAsXLnDkyBE6derEv/71Lzw8POjUqRNGRkasXr26Qe923i0LCwtatGhB9+7d6dWrF46OjqjVaiIiIjh+/Dg2NjY0bdr0jkv5Xp3ceeatIL78YwGf7X+TYVN649HOTee5eTLNyvTttZerxKSvDKvcc0zN5N8nV2aLjr7cBrmqSrYqG9nnZGfpzqEwtzaj4GYRUpXEtTPXiN91moyTF3ExA0dbU1Quljq7V8utIihtzWWrMVlYyn8OpTJBkEIhX6JVXwCibxuTkYHuoFqhgKYe8s3GarbdtWrVip49e9K9e3eUSiXJyckcPnyY6OhokpOTKSmRLzd7PxQWFnLy5EmaNGlSrysLX331FR9//DG7du2ia9eu9fK+usycOZMff/yR9evXY21tjVqtRq1WU1xc/XNhY2PDtGnTeO211zh48CDR0dE8++yzBAQE0KNHDwCGDBlC+/btmTRpEjExMezevZsFCxYwc+bMe7rpotFouHbtGpMnT8bV1ZXKykpsbGwYPXo0cXFxlJWVNVgPHkEQ7kxsSWoEOnTowL59+7T/vrV06J1qZAu6GRgY4OPjg4+PD6GhoQwZMoSWLVtSXFxMu3bt6NevH8HBwYwcORJHR8dGv3/W3NwcDw8PzM3NycvLw9nZmdLSUo4cOaJtyuTk5FRnC9btPNq64dHWjaAX+pN2JYPIHWeI2nmWxNPXMDBUcFOjeyIvl3OgrxKTHCsbCwpk+kbIMTGT30ZlpGfbkVxgYmEtP9ExQnegY6uyoljHaoo6UY2JKWTEqrF1scG1gzulkoJrVzKprKiSzw9wUpKXo/uz0/f9mCuTfG7vZC3bGVpfAFJRLj9Jkysh6+hsg6megPBWNStnVlZWeHp6UlxcrO2SfvHiRe33r0qlwtLS8r79LNasLLi5ueHl5VUvP+OSJLFmzRqWLFnCzp078ff3f+Dvqc/XX38NQL9+/Wo9/v333zN16lQAPvvsMwwMDBgzZgylpaUMHTqUr776SnuuoaEh27dvZ/r06QQEBGBpacmUKVN4//3372ksFhYW9O3bV9uzp+amjampKTdv3sTQ0LBOzotIhBaExkMEDI1ATeOv291NjWxBvwMHDhAaGso///lP5s2bB8ClS5fYtGkTa9eu5ZVXXqF3794EBwczatQonJ2dG+1/UKmpqSQkJODt7a3tDltWVqadfCUlJWFpaYmTkxPOzs53nHy5tlAxeuZgRs8cTGbqTU7ui+XP305x4fhlbWOuGnJbe+z1VGKSK8Nq56SUDRjKSnRvV7F3tUF9RXc+hFxZWn25DQZ6VphyZPb6VynkS4+W/LeiUY46lxz1OQDMleZ4+nlRbmhMcnI2Jbd9HuZ6chtKZLaGGRkbyCZD29pZygYMehu9yQR85pYm5Gbr/vyatZBfXbgTc3Nz3N3dcXd3p6ysjMzMTDQaDZcvX75vFZeKioqIjo7GxcWFli1b1luwsG7dOt555x22bdtGz549H/h73s2Y7sTMzIxVq1axatUq2XM8PDzYsWPH/zQWKysrJk+eXCcXy9HRESMjIyoqKjA0NOTo0aOsXbuWb775ptH+LhaEx5HYktQIJCYm4ubmhqenJxMnTiQ5ORm4uxrZgryNGzcSFBTEypUreeONN7Rbvlq1asVbb73F8ePHuXjxIoGBgWzcuJE2bdowbNgwVq1aRUpKSqOqF3716lUuXryIj4+PNliA6tKzTZo0oUuXLvTt25fmzZtTUFBAVFQUR48eJTExkby8vDtei2MTO4ZNeYIlYXNYc2ox/1g2js592mgrIMlNvPU1jZMrw4qx/Fjyc3Q/x9pWfuWkSCaHQl8+RGWF7sm/vuZw9o7yTcoqS+repS/OK6bgRhYX95ym/HIKXq6WtGvvgs1/czv0zYVuZur+HFTONnVKvdYw09HtuoZcozd925gc9fS9aNLcUfbYvTAxMcHNzQ0fHx/69u1Ly5YtKSkp4dSpU/zxxx+cP3+erKyse9qqUhMsODs706pVq3oLFtavX8/8+fPZsmULffv2feDv+TC4/etmYmJSJ8C3saneHmhqasqxY8cYOnQoKpWq3sYoCMLdESsMDax79+6sXbuWNm3akJaWxnvvvccTTzxBbGzsXdXIFuRZWlqyceNGRowYofO4QqGgRYsWvP7668ydO5eUlBTCw8MJDw/n7bffpmvXroSEhBAcHIyHh0eD3O2SJIlLly6Rmpp6x34RxsbGuLq6avcH19y5PXnyJMbGxtqVBxsbG73XYqtSMnRSL4ZO6kVBThEn9pzj5L44MlKz66w0yJU61VeGVUL35E+hQLZCkrGp/K8quY7RFnqqCckmXTsrZQMGZIIuhQFky0y6za2qA6rKskqSoi799wkKmnVoirmRAmdXG9Jvu2Yzc2PZxmzWthakpejOsaiUCSQA2b4NDk7WZMqsSljq6ZXRtPnfX2GQczcVl1Qqld5eJcXFxURHR+Pk5ETr1q3r7Wd206ZNvPrqq2zatEm7Gvy4u7XHwtmzZ6moqMDLy0sbINTIzs7G0NCQI0eOMGrUKGbOnMkHH3zQEEMWBEEPETA0sOHDh2v/3qlTJ7p3746Hhwe//vrrHfsJCPrJBQq6KBQKmjVrxpw5c3j55ZdRq9Vs3ryZ8PBwFi5ciLe3tzZ4qK8tDlVVVZw/f57s7Gz8/PzumJ9wK0NDQ+3kq7KykuzsbDQaDadPn8bQ0FC77cPW1lZvrXwrWwv6P9Wd/k91p7ighOj9cRzbEcOpA/GUFMknKeorw2phbglk1Hnc1slGNudAruuxqYWJ7EqGkbH8rze5XA1LPRWDigt0r2Q4uNqRmap7Em9gqOP7RJK4Hnudgoxcbqbn4eTphKqlK/kllVy/loXKRcn1KzJ9Fozlv1aFMuPTF4DY2FnIBgxyeSsAze7TCoOcmopLDg4OtG3bltzcXDIyMrS9SmrKDTs6Omq3uBQXF3Py5ElUKlW9BgtbtmxhxowZ/PLLLwwbNqxe3rOxq6qq0gYLEyZM4NSpU1RUVFBaWkp4eHit3A5zc3MuXLhAnz59mDNnDsuWLWuoYQuCoIcIGBoZW1tbWrduzaVLlxg8ePAda2QL959CocDV1ZUZM2Ywffp0srKy2Lp1K5s2beKDDz6gTZs2BAcHExwcXKek6f1SWVlJbGwshYWF+Pn5YWYmf7f3TmqaaalUKtq1a8fNmzdJT0/n3LlzSJKkDR7s7e31Bg/mVmb0Du5G7+BulBaXcebwBWKPJpKckFbnjr3SwVo2YJDLbbBxsJQNGG7f/1/D3sWGtMt1gw+AinI9245kVhj09W2Qa0KndLCSDRiyMnT3ejA2NdLmSmgua9Bcri5ZqXSywdmuKSbGTiRfyaL8tmu4/d+3ylTLby2Sa/RWViZfpUgunwQezAqDnFsbHbZs2ZLCwkI0Gg3JycnEx8dja2uLnZ0dqampqFQq2rRpU2/Bwvbt23nhhRf4v//7P4KCgurlPR8GNb9HnnrqKZKSkvjll1/w8PCge/fuhISE8PXXXxMcHAxU5zCYmZnx8ssvs3jx4oYctiAIeogchkamoKCApKQkXF1d76pGtvBgKRQKHB0dmTZtGjt27ECtVjN37lxiYmJ44okn8PX15b333uPs2bP3rSRgRUUFZ86cobS0FF9f3/8pWLhdzZ3b9u3b06dPHzp37oyBgQHx8fEcPnyY2NhYNBqNbCJxDVNzE7oP68S098fwfcyHLPjxJQY9HYDSvnoVRF8Z1pwM3RNbMz1bYPJk7pBb/Y0VAVs9e/OrKnV/DY1NjWSrNJnqSV42kHTfk7FzVurMK8nT5FKsvknSvhgM1Bm0drehTTsXLP7bTE6uqpKtnQXFMkGVlZ48ExTy/wXIrUrYOljqf80HqKbikqenJz169KB3797Y2dlx9epVbX+SK1euUFBQ8MBzkHbv3s2zzz7Lf/7zH0aPHv1A3+thtG3bNjIyMti4cSNdunThiy++oKioCF9fXyZMmMDWrVsBaNq0KeHh4SJYEIRGTqwwNLDXX3+doKAgPDw8uHHjBosWLcLQ0JAJEybUqpFtb2+PUqlk9uzZtWpkC/VHoVBgZ2fHlClTmDJlCnl5eWzfvp2wsDAGDhyIq6sro0aNIjQ0lC5duui9Wy+nrKyM06dPY2RkRNeuXWuV2L3faq7Hzs6ONm3akJeXR3p6OhcvXqSsrAxHR0fttg994zAyNqRr//Z07d+efywbx/moJOKjklBfy+TmbXv79XWZlmtIpq/cq75eD3K5Dfr6NhTnyyQ8u9iQfk33XXp997LlekdgKB+QVZRX54mUFpZy8c8L1acbG+LVpTlmtmaUFFmSc9s2LDuVNTk3Zbpd69oW9V9Sle7P3NjEUDbvoekD3o50r9RqNa6urnh5eZGVlYVGo+HKlSvaiksqleqOeTv36uDBg0yaNInVq1fz1FNP3bfXfVTU5Cs8/fTTeHp6snr1atasWcOPP/5IQEAAXbp0YerUqXzyySc899xzDBw4sKGHLAjCHYiAoYGlpKQwYcIEsrKyUKlU9O7dm2PHjmmrRNypRrbQcJRKJU8//TRPP/00BQUF7Ny5k/DwcAIDA7G3tycoKIjQ0FD8/PzuqlFcSUkJ0dHRWFtb07Fjx78VcPxdCoUCGxsbbGxsaNWqFQUFBaSnp3P58mXi4uK0e8ZVKhXGxvKTdENDAzr2bEXLrs1w87MiN7WYjIQConaeJT05C3sXW9Ku6N5CJFu61cVWdsuP3IqAvtwGY325DTITfIWR/N1qua07ljYWFMqUj7VX2aO5ojsIKtCxXaqyvJKc65lkHU8ChYIm7Ztg28yRrJxS1DdyMNezolNaovtzBWTzF1QuNtxI1r2dSl/DtvpUWlpKdHQ0tra22q2Bbm5uuLm5aZP+MzIyOH36NAYGBtqtd3Z2dv/Tz9Yff/zB+PHjWbFiBc8884wo/Qns3LlTm483Z84c/P39mThxIk2bNqW8vJzw8HBefvll+vfvT1FREW3btsXR0ZHY2NgGHrkgCHdLITWm2pGC8AgoLi5m9+7dhIeHs23bNiwsLBg1ahQhISEEBATovFuvVqtJTEzEwcHhgeVF/F0FBQVoNBo0Gg0FBQXY29trJ1+311SHv8pa3n4tl2OvczYigQO/RpGSWLdbeZOWzqReqvu4Z6emXD6bonNsLTo25Ups3WOunirZ3Ia2fp5cOHG5zuOmFiay+RXNO7ly9WyazmNO7g5okuuuPjRt7ULKRd3VzNr5e3H+eJLOY6YWxpQW1Q1C5K5V1VxFi26eqDMLSbmWXaeHhspFSYaO/AZbB0tyZDp7t+nYhITYVJ3HXpg7hOFju+k8Vl9qggWlUkmHDh30/rzcWnEpIyODysrKWqtn99L1PTIyktDQUD766CNeeumlRvVz2lCuXLlCr1698Pb2RqVSsWfPHk6dOkXTpk2B6t9t3bp1Y+nSpUyePJnU1FQmTpzIt99+S6tWrRp49IIg3C2xwiAI95m5uTkhISGEhIRQUlLC/v37CQ8PZ+LEiRgaGhIUFERISAhPPPEExsbGREREMGHCBL799lt69+7d6CYht3bpLSoqQqPRcOPGDS5cuICtra02eDAzM6OgoEDbMOv2SjWeHZvh2bEZITMGkZKoJvL3GI7tOMOVuOqJqVzCs5m5fFfmXJlOxH8nt8He2UZ29cPcTPc2JoUCstU5Oo/p2/pUWlyq+zl6ViXk8kIyrmZgZWVKcmwKSpWSJt7ulBkYknwlCwlJttGbvaOVbMBgZCw/ia7PhGddysrK7jpYgLoVl/Ly8tBoNNqKSzUBsEql0hkA1zh58iRjxoxhyZIlIli4RbNmzVi/fj2BgYEYGBhw7tw57cqCsbExLi4uDBo0iBkzZnD48GF2795Nz549RbAgCA8ZkfT8mIuIiCAoKAg3NzcUCgVbtmypdVySJBYuXIirqyvm5uYMGjSIxMTEWudkZ2czceJElEoltra2TJs2jYIC3fufHzdmZmYEBgby3XffkZaWxk8//YSRkRHPP/88np6eBAUFERwczLRp0xgxYkSjn4RYWFjQvHlz/P396d27N05OTmg0Gv78808iIyOJiorC2dn5jmUtm7Zy4clXhvLJnvl8dXQhz74bStNWLvd0/YbGBrJ5Cnr7NshMoK3t5IMMuSpNds42VJTpzkeoaXqnS65MQrGdnoTsvDzd1wp/JYXnZeRx/kCsNmm6vZcDXi1VmJrVDQDM9CRrl5fJb2O6X03b/o6ysjJOnjyJtbX1XQULt6vZeteqVSt69epF9+7dsbW1JSUlhYiICE6ePElycjK5ubWD1zNnzhAcHMyCBQuYPXt2o/85rS+SJGFkZISRkREqlQonJyeeffZZysrKMDY2prS0OjD+8ssvmT17NsXFxUydOpVff/21gUcuCMK9EgHDY66wsJDOnTuzatUqnceXL1/OypUrWb16NVFRUVhaWjJ06FBKSv66Sztx4kTi4uLYu3cv27dvJyIighdffLG+LuGhYWxszKBBg1i9ejUpKSnMmTOHiIgIzM3NWbNmDc8//zzbt2+nuFimcVgjY2Zmhru7O76+vnTq1ImioiLMzMxISUkhKiqKK1euUFgo0+35Fi4ejgS90J9l217j38ffZdriMXQMaKntA1Amk9vg4GJbZ/tNDUnmcRMzY9lVCWMT+dyMvGyZPgaO1rLPqazQnV9haGRQJxm8hr5VCWMj3RN8Q2MDnaszpYWlFKbfJHFvDOWXb9DCyZz27V2w/W8lK32bUXNlOntbWpth72gl/8QHqGZlwcrK6m8FC7pYWVnRokULunfvrg2AMzIyCA4OxsfHh/nz57NhwwZGjhzJvHnzmDt37gMNFu50A2fq1KnajvU1f27v/VAfN3BqKsLVfBY9e/YkOjqadevWodFo6NevH8XFxZiaVq8OWlpa8u6777J+/XqWLFlyX8ciCEL9EAHDY2748OEsWbKE0NDQOsckSeLzzz9nwYIFBAcH06lTJ3744Qdu3Lih/Y/s/Pnz7Nq1izVr1mj/0/3iiy/45ZdfuHHjRj1fzcNj3bp1LF++nLCwMLKysvj9999xcXFh/vz5tGjRgilTprB58+a7mnA3tIyMDGJjY2nbti29evWib9++uLu7k5OTw7Fjxzh69ChJSUnk5+ffsdSlo5sdgc/15f1NL/Pd6cVMXz4e1+aOOrfIWNvJN7IrKdS95cfB1Vb2OXJlcfVN8PWVjy2S6Rht72Ijm6ytb1WiOF/3NVnYmskGTiVl1WOoqqjiysnLxO86TU5MEk2sDbEwBhc32zrPMTBQkClzvQ2V8FwTLFhaWj6wggA1AXC3bt3YsGEDL7zwAseOHeO5555DoVCQk5NDVFTUfSufrMudbuAADBs2jLS0NO2fn3/+udbxB30Dp6qqSvv579u3j//7v/8jPDycwsJCevfuzVdffUVxcTH9+/cnLy+PiooKRo0axYYNG+7bGARBqH8iYBBkXblyBbVazaBBg7SP2djY0L17dyIjI4HqJEBbW1t8fX215wwaNAgDAwOioqLqfcwPg+XLlzN37lx+//13Ro0ahaGhIb169eLTTz8lKSmJffv24enpyXvvvUfz5s15+umn+fXXX/VuSWko6enpnD17lvbt29OkSROgeiXFzc2NLl260LdvXzw9PSkoKOD48eMcOXKExMREcnNz7xg82DhYM3hiT15dNYXvYz7g5RXP4D/UW1tK1VTPZF1uy4+lrfy2o8K/McFX6Jm43pTZLqW0l79DL7cqoVBAtkwjPEdnO9nXMzLUsWoiSaTGpXAp4jzqY+dxMqykQ1sn3Js7oFCAo4uN7Diatqj/7Ujl5eWcOnUKCwuLeqse5uzszODBg0lJSeHVV1/l22+/Ra1WM2LECJo2bcr06dPZs2cPFRXyW7f+Dn03cGqYmpri4uKi/WNn99fXvz5u4NR8/u+++y5Tp05l7dq1LFy4kHHjxrF582b69u3Lp59+SmVlJc2bN8fPz4+0tDQmT558X95fEISGIZKeBVlqdXWFF2dn51qPOzs7a4+p1WqcnJxqHTcyMsLe3l57jvCX3NxcNm3axMGDB+nSpUud4wYGBvj7++Pv78/SpUs5e/YsmzZtYvny5bz00ksMGjSI4OBgAgMD73tt+XuVmppKQkICnTp10pYBvp2RkZF2YlNZWUlWVhbp6emcOnUKIyMjbcK0ra2t3muxtLGg31h/+o31p7iwlFP747h46iqXz6XUWU0wMjGUzW0wNZXfdpSVrrt0q9LeiowU3cfKS3WXVDW3NqNAZluPvkZvcqsStiob2V4U5noa3hUX6k7wru6H8d9O01c0aK781Wm6mXMTrC1NuHY1q0637PpOeC4vLyc6OhozMzO8vb3rrdTw5cuXGTlyJBMmTOBf//oXBgYGjB49mvLyciIiIti8eTNz5szR9kypT4cOHdKWhx0wYABLlizBwaH663KnGzj6ApF78euvv7J69Wo2bNhA3759+fLLL3n99de1n0W/fv0IDw/Xriq8/vrr9+V9BUFoOCJgEIR6ZGNjQ1RU1F1N9A0MDPDx8cHHx4fFixcTHx/Ppk2b+PLLL5k5cyb9+/cnODiYkSNH4uDgUK/BQ3JyMklJSfj4+GBvb39XzzE0NNQGCFVVVdomWzExMSgUiruuk29uaUqvUV3pNaorE98M4kzEBY79HsPJfbEU5BRh72Krs8wpyG87UhgqKMrVveVH30pGgUyzNHtnJan5uifr+sitStiorGQDBvQs1JTk6U7WluuHkafJpUSTQ9KxJMysTPH0aYHCwozka9kUF5XVa8BQs7JgZmZGp06d6i1YuHbtGoGBgYSEhGiDhRrGxsYMHDiwwRqNDRs2jNGjR9OiRQuSkpJ4++23GT58OJGRkRgaGtbbDZyzZ88yYsQI+vbty/bt21mwYAGffvopQUFB5Ofno9Fo8PLyEoGCIDxCRMAgyHJxcQGqt524urpqH09PT8fHx0d7jkajqfW8iooKsrOztc8Xavs7E3uFQkGHDh3o0KEDCxcuJDExkU2bNvGf//yHOXPm8MQTTxAcHExQUBDOzs4PLHiQJIkrV66QnJxM165dsbGx+VuvY2BggEqlQqVS1aqTHxsbiyRJ2oorDg4OeieKJmbG+A/xxn+INxXllcQevUhcZBL7fo7UmdwsV+3I3llJ1o17n5Bnp+fofNxSKb/1qbRY9xgslPKrEuaW8qVl5a7J2NSI/GzdrycZyXearqqsvuCSgls6TZsY4tm5Oc3qKYehoqKC06dPY2JiUq/BQmpqKiNGjGDYsGGsXLmyXpsn3o3x48dr/+7t7U2nTp3w8vLi0KFD9RrEFBcX06pVK2JjY3n66adZvHgxM2bMoKqqil9//ZWioiKmTZuGhYX8z4EgCA+XxvXbUGhUWrRogYuLC/v379c+lpeXR1RUFAEBAQAEBASQk5NDdHS09pwDBw5QVVVF9+7d633MjwOFQkHr1q15++23OXHiBAkJCQwfPpwNGzbQpk0bhg0bxldffUVqauod8wTuhSRJJCYmcv36dXx9ff92sHC7mjr57dq1o0+fPnTu3BkjIyMuXLjA4cOHOXfuHOnp6VRWyk9yobp3gE/fdkx8cyTfnV7M4rCXCZzWt1aic55MboOtSv5aSmU6Ods4WlFarPuYsYn8vRi5DtR2TvJj0JcrIXdNDm62sl9/a2v5PIriororLZVllSTHXMXR9f58zfWpqKjQblnr3LlzvU3aa3IU+vXrx1dffdXoggVdPD09cXR05NKlS8D9v4Fza45Gdna2tkxqv379+Oc//0mnTp347LPPmDNnDlDdrf7XX3/l2rVrIlgQhEdM4/+NKDxQBQUFnDlzhjNnzgDVic5nzpwhOTkZhULBK6+8wpIlS/jtt984d+4ckydPxs3NjZCQEADatWvHsGHDeOGFF7RJrbNmzWL8+PG4ubk13IU9JhQKBZ6ensybN48jR45w+fJlxo4dy7Zt22jXrh0DBw5kxYoVXLt27X8KHiRJ4vz586Snp+Pn54eV1YMpralQKLCzs6NNmzb07t2brl27YmZmxqVLlzh06BAxMTGkpaXdMdnUwMCADj1aMu39MXxz4j0+2j6XkBkDZbcXmZrJ5zbk39Q9wbdVyfdMqJRNklaQLdOgztJGvqSqXK6EoZGB7OtZ2cpXkdK37z4zLVvn487ujg98El2zslDfwYJGoyEwMBB/f3++/fbbe+r+3JBSUlLIysrSrgDfrxs4Bw4cIC0tTft9sm7dOoKCgujcuTNPPvkkVVVVfPbZZxgbG9OkSRMyMjJITEzk6aefJi0tjaVLl97fCxUEocEppPt5C1J46Bw6dIj+/fvXeXzKlCmsXbsWSZJYtGgR33zzDTk5Odqyea1bt9aem52dzaxZs9i2bRsGBgaMGTOGlStXPrBJpXBnkiShVqvZvHkzYWFhRERE0KlTJ0JCQggODsbLy+uuty1VVVURFxdHXl4e3bp1w8xMPsn2QZEkiYKCAjQaDRqNhsLCQhwcHHB2dkalUmFsLD/hv13UwVMc2BRJ6rlsbiRV7+Nv392L+KikOucqFGBobKizOVtbvxZcOHFF53t4tHPj2vm6VWkcXG3Ikql21CGgJXGRl3Qec22uIu1q3ZwDBzdbsm7k6H69Hi2JO6b79Zq3d+NqfN3xGZsZUVFWqbNHg+/gjrz9/Qs6X+9+qAkWanJ36mvSnpmZSWBgIG3btmX9+vX39L10vxUUFGhXC7p06cKnn35K//79sbe3x97envfee48xY8bg4uJCUlISb7zxBvn5+Zw7d07b82D48OGkp6ezevVqysvLefbZZ/H19WX9+vV3NYbY2FiCgoIYN24cb7/9NvHx8fTv35/33nuPgoICkpOTWb9+Pa+88grW1ta89957uLm54eDggLm5Ofv27ROrC4LwCBIBgyA84iRJIjMzky1bthAWFsbBgwdp06aNNnho27atbPBQWVnJ2bNnKS0tpWvXrpiYyCcA16fCwkI0Gg3p6ekUFBRgZ2enDR5qJk66XL9+nUuXLuHj44OdnR2pl9KJ3BHD5XPXObYjps759i42ZKvvfYJv42hFbmbdrUItOjblSmyKzue09W3BhZO6AxBTc2Od25+cWtiiuZKj8znt/D05f/yyzmO2KmudHa9dW6hIu5qp8zndgzsw6Z8j7zlAuxuVlZWcPn0ahUJRr8HCzZs3GTlyJB4eHvz6668N/v2t7wbO119/TUhICKdPnyYnJwc3NzeGDBnC4sWLa1Wyux83cH7++Wc++eQThg0bRllZGdbW1rzzzjtAdYC1Zs0aFi9eTFhYGE2aNOHKlSs4OjrSrVs3vT9/giA8vETAIAiPEUmSuHnzJr/99hthYWHs3bsXT09PRo0aRWhoKB06dNBuA7l58ybTp0/nueeeo3///g1651Wf4uJibfCQl5eHjY0Nzs7OODk51VoNuXr1KleuXKFLly7Y2trWeR3N9SyO7YghckcMF6OvIkmS3gl+667NuXjqap3H5Sb3oH8S797WleQLaXUel5vcA3h2bsLlmFSdx1p0aMKVuLrHTMyMKZPJy2jdtTkXT1/TeWz0a/1p2dNFG6DVVLX6XyeINcECVN9Vr69gITc3V1skIDw8XEx0bxMeHs7HH39Meno6U6ZMYdGiRdpjGRkZTJ8+HZVKxddff92AoxQEob6IHAah0YmIiCAoKAg3NzcUCoW2q3SNqVOnolAoav0ZNmxYrXOys7OZOHEiSqUSW1tbpk2bRkGB7uTQx4lCocDe3p6pU6eybds20tPT+ec//0liYiIDBgzAx8eHd955h3379jF48GDS0tLw9/dvtMECgLm5OR4eHvj7+9O7d29t4ueff/5JVFQUV65cISEhgatXr9KtWzedwQKAUzMHRv1jAEu3vsq30e/zwgdP4tWpGQaGun9Nyjd60/36UJ3DIEeud4S+XAkzc/ntYTk6VjhAf7drI1P53AZvv3b06NGDXr164ejoiFqt5o8//uDEiRNcu3aN4mLdn4c+lZWVnDlzBkmS6jVYyM/PZ/To0djb2xMWFiaCBR1Gjx7NokWLKCgo4Pfff9dulQJQqVQ4OzsTFxfXgCMUBKE+iYBBaHQKCwvp3Lkzq1atkj1n2LBhpKWlaf/8/PPPtY5PnDiRuLg49u7dy/bt24mIiODFF1980EN/6NjY2DBx4kTCwsJIT0/nww8/5NKlS4SGhnL58mV8fX25cOHCHSsUNRZmZmY0a9YMX19f+vTpQ5MmTUhNTSU5ORljY2MyMzPvKnC0d7Zh+NQnmPHxBP5zZgkz/jWBrgPaY2Ty14T2pmyysfz+bbk7+2aWJrLVk8ys5CezpXpKqsoFIPrGJ1XJLzi7tqhuzlcToPn5+fHEE0/g6upKVlYWR44c4dixY1y+fJmCgoI7JtlXVlYSExNDVVVVvQYLhYWFPPnkk5iZmbF58+YGycl5WAwbNoxffvmFwsJCPvvsMxITE7XHMjMzcXR0pLxc9/e0IAiPFtGHQWh0hg8fzvDhw/WeY2pqKlsm8Pz58+zatYsTJ05oO55+8cUXjBgxgn/961+iepMMKysrevTowYIFC3jyyScZO3YsW7duZcyYMVhaWjJq1ChCQkIICAh4KKrIGBsbU1hYSFVVFf7+/tq8hytXrmBubq7dUmNtba03AVxpb8WgCQEMmhBAYV4xJ/fFcmp/PFG7zuo830RPN2n5Rm823LhcN6kZwFBfSdVs+VUEtUwugomeilDFBbqbzRmbGuHoZlvncVNTU5o2bUrTpk0pLy8nMzNT+xmbmZlpP2OlUlnrM64JFioqKujatWu9dUsuLi7mqaeeoqqqit9//x1LS/lKUkK1AQMG8MUXXzBr1iz2799Pr169UCgUREREcPTo0Ua9+igIwv0jAgbhoXTo0CFtV+ABAwawZMkSHByqm0pFRkZia2urDRYABg0ahIGBAVFRUYSGhjbUsBu1ixcvMmjQIAIDA1m1ahUGBgaMHTuWkpIS9u/fT1hYGE8//TRGRkYEBQUREhJC7969G+WEQZIkLly4QGZmJr6+vlhYWGBjY4ObmxsVFRXaie3JkycxMTHRTmxtbGz0Bg+WSnP6jvaj72g/SovLOHUgnmM7qrtMFxdU16iX6yYNkKXO0fl4dQlU3QFDWZnuO7gGhgqy03WvIljbWiDX11eu5CvIb2NydtffQA+qAzRXV1dcXV2prKzUfsanTp2q1eVbqVRy7ty5eg8WSkpKmDBhAsXFxezevRtra+t6ed9HwYABA/jPf/7DhAkTOHDgADNmzGDx4sW1GnoKgvBoEwGD8NAZNmwYo0ePpkWLFiQlJfH2228zfPhwIiMjMTQ0RK1W4+TkVOs5RkZG2Nvbo1bLTaMeb9nZ2fTp04epU6eydOnSWpNmMzMzAgMDCQwMpLy8nEOHDrFp0yaee+45KisrCQoKIjg4mH79+jV4lRmoDhbi4+O5efMmvr6+mJvX7m9gZGSEi4sLLi4uVFZWkpWVhUaj4fTp07UmtnZ2dnqDB1NzEwICfQgI9KG8tJyYiASO7YwhNUmj83xbJ6XsNiFjE/kVG7lVBHsXWzJTb+p+PTP5r0NJQd3GbFC98pArk1xdsx3pbhkaGuLs7IyzszNVVVVkZ2ej0Wg4e/YsFRUVGBkZ0bZt23rrs1BaWsqkSZPIzs5m7969963p4OOkR48e/PTTT7z33ntMmzYNe3v7hh6SIAj1SAQMwkNn/Pjx2r97e3vTqVMnvLy8OHToEAMHDmzAkT287O3t2bx5s7aDtxxjY2MGDx7M4MGDWbVqFX/++ScbN25k5syZFBUVMWLECIKDgxk0aFCD7A2vqqoiNjaWgoICfH197ziGWwOE2ye2CoVCm9xpZ2end3JrbGqM7+CO+A7uSGVFJbFHL3Fsxxmidp/TBgm2jlayAUOlntyB7LQcnY8r7S1lAwZ9+QM5GbrH4OBqK1tS1aW5o+zr3YmBgQGOjo7Y29tTWlpKUVER9vb2JCYmEh8fj0qlwsnJCQcHhwey2lBeXs7UqVNJSUnhwIED2NnZ3ff3eFz07NmTrVu3irwPQXgMiYBBeOh5enri6OjIpUuXGDhwoLZKzq0qKirIzs6WzXsQuGOwcDsjIyP69etHv379WLlyJZGRkYSFhfHGG2+QnZ3NsGHDCAkJYfDgwfWyV7yqqopz585RVFSEr6/vPa921ExsHR0dadu2LTk5OWg0GuLi4qisrNQGD/b29npzOAyNDOncpw2d+7ThhQ+fJOHkFY7tiEGdnKmzWRpAiUzugLm1CcX5uhObzSzkk6HlXs/EzFhnfwgAaztL2YDB7R5XGG5X87UpLS3VVt2SJIn8/Hw0Gg1JSUnExsbi4OCAk5PTfev1UFFRwfPPP09SUhIHDhzQblsU/j4RLAjC40kEDMJDLyUlhaysLO1+2oCAAHJycoiOjqZbt24AHDhwgKqqKrp3796QQ31kGRoa0rt3b3r37s0nn3zCiRMnCAsLY9GiRbzwwgsMGTKE4OBghg8f/kD2jtc0mCsrK8PX1/d/nmwaGBhou+u2adOG3NxcNBoNFy5coLy8HEdHR5ydnXF0dNQbPBgYGNDO34t2/l4AXIpJ5tiOM0T+HkPalb9yFuT6LNg52VCcrzu3AT2NunOz5JOhb33fW+krqXqvW5JuVRMsFBcX061bN+3XRqFQoFQqUSqVtGzZkoKCAjIyMkhOTiY+Pv5/7vVQWVnJ9OnTiY2N5eDBg3W2KQqCIAh3TzRuExqdgoICbc3vLl268Omnn9K/f3/tBO69995jzJgxuLi4kJSUxBtvvEF+fj7nzp3TTiyGDx9Oeno6q1evpry8nGeffRZfX1/Wr1/fkJf22KmqqiImJoZNmzYRHh7O1atXGTRoEKNGjSIwMPCOScZ3o6aWf2VlJV26dHmgSdi33hVPT0+npKQEBwcHbfBwL+997cINbcL05bMpOrcRtfXz5MIJ3Y3evDq7kxSTXOdxY1MjKsoqdb5e664eXDyluzFbu+5esk3l/h21CFWTe9+zXrNFrLCwkG7dut31qk9NMz6NRkNubi5KpVIbPFhYyJeFrVFZWcnLL7/Mn3/+yaFDh2jSpMk9j10QBEH4iwgYhEbn0KFD9O/fv87jU6ZM4euvvyYkJITTp0+Tk5ODm5sbQ4YMYfHixTg7O2vPzc7OZtasWWzbtg0DAwPGjBnDypUrsbKyqs9LEW4hSRJxcXFs2rSJzZs3c+HCBfr3709wcDAjR47E3t7+noOHiooKTp8+jUKhwMfHp94q7kD19RQWFpKeno5Go6GwsBB7e3ucnZ1RqVT3tCXqxmUNx3bG8Odv0VyN/WvbUoceXsQdS9L5HKdm9miuZ9d53NndgfTkLJ3Pad/Di3iZ12veoYnOLVMmpsb8fOnje/7a/N1g4XalpaVkZGSg0WjIzs7G0tISJycnnJ2dsbS0rDOuqqoqXnvtNfbt28fBgwfx8PD4W+8rCIIg/EUEDIIg1DtJkrh48SJhYWGEh4cTExPDE088QUhICEFBQTg5Od1xglpeXs6pU6cwNjamc+fODd4boqioSBs85Ofn3/OWmszMTM6ePYuznRuXT6ZxbEcMVZVVJERfrXOuwkCBoZEBFWV1G+q19HHn0pm6Kw8A7fw9ZVcRbJ2UOrdGNWvtwooDb91x/LeSJInY2Fjy8/P/Vj6JnFt7PWRmZmJqasr58+dp2bIlffr0QaFQ8Oabb/Lbb79x6NAhPD0978v7yomIiODjjz8mOjqatLQ0Nm/eTEhIiPa4JEksWrSIb7/9lpycHHr16sXXX39Nq1attOdkZ2cze/bsWjc3VqxYIW5uCILQqIiAQRCEBiVJEpcvXyYsLIzNmzdz8uRJAgICCA4OZtSoUbi5udUJHtLS0khISMDW1pZOnTrVW3nOu1VcXExGRgbp6enk5uZiY2OjDR5uL/MKkJGRwdmzZ+nQoUOtxPybmjyO7zpL5I4Y4iITqayo7qHg6GZL5o0cne+tdxWhfROuxqfWedzEzJhymW1M/kO9efO75+/msoG/VpLy8vLo1q3b38o/uBs1JXHfeecdbcdmJycnNBoNERERtG/f/oG876127tzJkSNH6NatG6NHj64TMHz00UcsXbqUdevW0aJFC9555x3OnTtHfHy8Nnl4+PDhpKWl8e9//1u7fdLPz09snxQEoVERAYMgCI2GJElcv36d8PBwwsPDOXr0KH5+fgQHBxMcHIy7uzvXr19n2LBhjBgxguXLlze6YOF2paWl2v34N2/exNraWhs8WFpaaoOFjh071tpWd7v8m4Wc2BPLsR1nyM0uIFEmF6F9dy/io3QHDHK9IFxbqGQrJAX/YwBT3gm+iyv9qwdGTk4Ovr6+DyxYuF1xcTHTpk1j9+7d2opco0aNYvTo0fVW4lehUNQKGCRJws3Njblz5/L6668DkJubi7OzM2vXrmX8+PGcP3+e9u3b1+pKv2vXLkaMGEFKSoroSi8IQqPRuP+nFYRGYunSpfj5+WkneyEhISQkJNQ6p6SkhJkzZ+Lg4ICVlRVjxowhPT291jnJyckEBgZiYWGBk5MT8+bNo6Kioj4vpVFTKBS4u7vzyiuvcPjwYZKTk3nmmWfYs2cPnTp1IiAggB49euDh4cEHH3zQ6IMFAFNTU5o1a0a3bt3o06cPTZs2JScnh8jISP744w9iYmJo2bLlHav4WNtZMmBcd95e9w8W/TyDV1dNISDQBzOL2tt9igvvvTGblZ182VuXFnfXg+HWYOFBrizoet8VK1Zw5MgRjh8/Tnp6Olu3bsXOzo7Zs2ejUqkYP348BQW6K0c9KFeuXEGtVjNo0CDtYzY2NnTv3p3IyEjgzl3pBUEQGovG/7+tIDQChw8fZubMmRw7doy9e/dSXl7OkCFDKCws1J7z6quvsm3bNjZu3Mjhw4e5ceMGo0eP1h6vrKwkMDCQsrIyjh49yrp161i7di0LFy5siEtq9BQKBW5ubsycOZP9+/cTGRlJWloaFhYWHD16lH79+rFs2TIuXLigt1FZY2JiYkKTJk3o0qUL7du3p7S0FKVSyaVLlzh69CiJiYnk5ube8XosrMx5IqQb8755ju/Pfsgba6bRd7QvFkpzcrN0BwUOrrayr2uip6Tq3fRgkCSJ8+fPc/PmTbp161ZvtfolSeLzzz/nyy+/ZM+ePXh7e2NoaEivXr345JNPuHz5MhEREXTt2rVeeoHcqqar/O2rRs7Oztpjoiu9IAgPC9GHQRDuwq5du2r9e+3atTg5OREdHU2fPn3Izc3lu+++Y/369QwYMACA77//nnbt2nHs2DF69OjBnj17iI+PZ9++fTg7O+Pj48PixYuZP38+77777n1LDH0UJSYmEhoayvjx4/n888/Jzc1l69athIeHs3z5cry8vBg1ahShoaG0b9++0a88pKenc+HCBTp37oxKpaKyslKbzBsdHY2xsbG2EtCdSs+ampvQY3hnegzvTHlZBeeOXOTYjhiO7zpLXvZfAa2VrXw50srKKtljd+rBIEkSFy5cIDs7+666a98vkiSxatUq/vWvf7F79266dOlS5xyFQkGXLl10HhMEQRDuXuP+X1UQGqnc3FwA7O2ra9NHR0dTXl5ea/tB27ZtcXd3r7X9wNvbu9Ydx6FDh5KXl0dcXFw9jv7hEh8fT9++fZkwYQIrV67E0NAQe3t7nn32WbZt20Z6ejpvvfUWCQkJ9OvXjy5durBo0SJOnz5NVZX8RLihqNVq4uLi8Pb2RqWqnowbGhri7OyMt7c3ffv2pW3bttqSsREREZw/f57s7Ow7Xo+xiRFd+7dnxscT+O7MB7z36yyGT30CexcbTMzke0SUyG1jMjXGwdVW9nk1wUJWVla9ryx8++23fPDBB/z+++/4+/vXy/vei5rk9du3Jaanp2uPia70giA8LMQKgyDco6qqKl555RV69epFx44dgepJoImJCba2trXOvX37ga7tCTXHBN1++OEH/vGPf7Bo0SKdd9ptbGx45plneOaZZ8jPz2fHjh2Eh4czbNgwHB0dGTVqFCEhIfj5+TX4ykNaWhrnz5+nU6dOODrqzg0wNDREpVKhUqlo164dN2/eJD09nXPnziFJEiqVCmdnZ+zt7fVej6GhAd69WuPdqzXPLxlL4ulrHN1+hmM7ztTp3yDXadq5uYPs6oYkSSQkJJCZmYmvr6/O6k8PgiRJrFu3joULF7J9+3Z69uxZL+97r1q0aIGLiwv79+/Hx8cHgLy8PKKiopg+fTogutILgvDwEAGDINyjmTNnEhsby59//tnQQ3ksLF269K6bhllbWzNu3DjGjRtHUVERu3fvJiwsjNDQUKytrRk1ahTBwcEEBATUe9+GmmChc+fOODg43NVzDAwMcHBwwMHBAUmSyMnJIT09nfj4eCorK1GpVDg5OeHg4KD3ehQKBa27Nqd11+ZMXRhC0rnrHPs9hmM7Y8hIyZYNGFyb696OVNNHIyMjo96DhfXr1zN//ny2bt1Knz596uV95dzalR6qE53PnDmDvb29Nnl/yZIltGrVSltW1c3NTVtJqV27dgwbNowXXnhB25V+1qxZjB8/XlRIEgShUREBgyDcg1mzZrF9+3YiIiJo2rSp9nEXFxfKysrIycmptcpw+/aD48eP13q9mu0KYvuBvHvtMFzDwsKC0NBQQkNDKSkpYd++fYSFhTFhwgRMTEwYOXIkoaGh9OrVC2Nj+e0698ONGze0OQt3GyzcTqFQYGdnh52dHW3atCEvLw+NRsPFixcpKyvD0dERJycnHB0d79jx2su7GV7ezZj45khSEtUc/T2GYzti6vRo0JXwLEkSiYmJpKen13uwsHHjRl599VU2bdqkzRVqSCdPnqzVlf61114DqrvSr127ljfeeIPCwkJefPFFcnJy6N27N7t27aq1deunn35i1qxZDBw4sFZXekEQhMZE9GEQhLsgSRKzZ89m8+bNHDp0qFanVqjOaVCpVPz888+MGTMGgISEBNq2bUtkZCQ9evRg586djBw5krS0NG1llG+++YZ58+ah0WjqrQzl4668vJyDBw+yadMmtm7dSlVVFYGBgYSGhtK3b9/7nnyemppKQkICPj4+2pyX+0mSJAoKCrRdpouLi3FwcMDJyQmVSnVPwZD6aibHdsYQuSOGS2eS+cfSpxjyzF9bfiRJ4tKlS6SlpeHr64uFhXwi9f22ZcsWXnzxRX755RdGjhxZb+8rCIIgiIBBEO7KjBkzWL9+PVu3bqVNmzbax21sbLR3WKdPn86OHTtYu3YtSqWS2bNnA3D06FGguqyqj48Pbm5uLF++HLVazaRJk3j++ef58MMP6/+iBCoqKvjjjz/YtGkTW7ZsoaioiMDAQIKDgxk4cOD/nMSbkpLCxYsXH1iwoEthYaE2eCgoKMDe3l7bKO5egqHMGzkYGhlg56QE/goWbty4ga+vb72WKd2+fTvPPvssP/74I6GhofX2voIgCEI1ETAIwl2Q2xbz/fffM3XqVKC6cdvcuXP5+eefKS0tZejQoXz11Ve1thtdu3aN6dOnc+jQISwtLZkyZQrLli274xYS4cGrrKzk6NGjhIWFsXnzZnJychg2bBghISEMHjz4nu+m1wQLXbp0wc7O7gGNWr+ioiJtl+m8vDxsbW21wcO9BEOSJJGUlERqamq9Bwu7d+9m0qRJfPfdd4wbN67e3lcQBEH4iwgYBEEQblNVVcXx48e1wYNarWbIkCEEBwczbNgwrK2t9T7/+vXrXLp0iS5dutSpnNVQSkpKtMFDTk4OSqVS2+vhTnkISUlJpKSk0K1bN6ysrOppxNUVg8aPH8/q1auZOHHi385nEQRBEP43ImAQBEHQo6qqijNnzrBp0ybCw8O5du0agwYNIjg4mBEjRtRprPbFF1/QpEkTBgwY0GiChduVlZVpg4fs7GysrKxwdnbGycmpzurB5cuXSU5OxtfXt16DhYiICJ588klWrFjBs88+K4IFQRCEBiQatwmPhfLyclJSUhp6GPfd0qVL8fPzw9raGicnJ0JCQkhISKh1Tr9+/VAoFLX+vPTSS7XOSU5OJjAwEAsLC5ycnJg3bx4VFRX1eSmNloGBAV27duXDDz/k/PnzHD9+nK5du7Jy5UpatGjBmDFj+OGHH8jKymLx4sUsXrwYlUrVaIMFABMTE5o2bUrXrl3p27cv7u7u5OTkcOzYMY4ePcqlS5fIz89vsGAhMjKSp556iuXLl4tgQRAEoREQKwzCY2H37t3MmzePb775hh49ejT0cO6bYcOGMX78ePz8/KioqODtt98mNjaW+Ph47Z3ifv360bp1a95//33t8ywsLFAqq5NZa5KxXVxc+Pjjj0lLS2Py5Mm88MILIhlbj5rGZWFhYYSHh3PmzBkUCgXTp09n7ty5qFSqh26iW1FRQWZmpnb1QZIkXF1dadasGUqlsl6u58SJEwQHB/P+++8ze/bsh+4zFARBeBSJTEvhsRAeHo63tzfNmzcHqreZNHTX3/th165dtf69du1anJyciI6OrtXUysLCQrbXw549e4iPj2ffvn04Ozvj4+PD4sWLmT9/Pu++++59LzP6qFAoFLRt25Z//vOfGBkZkZSUxKRJkzhx4gStWrUiICCAkJAQRo0ahaur60Mx8TUyMsLFxYWSkhKysrLw9PQkPz+fU6dOYWRkpE2YtrW1fSDXc/r0aUJCQliwYIEIFgRBEBqRh3/GJAh3UFxczOnTp+nYsaN20mxgYMCjuLiWm5sLUKeE508//YSjoyMdO3bkrbfeoqioSHssMjISb29vnJ2dtY8NHTqUvLw84uLi6mfgD7GlS5eyfPlyDh48yBdffEFkZCSXLl0iNDSUzZs307ZtWwYPHswXX3xBcnJyo/++u3btGleuXKFbt254eHjQsWNH+vbtS7t27aioqCAmJoaIiAjOnz9PVlYWVVVV9+V9z507x6hRo5g3bx5z584VwYIgCEIjIrYkCY+8o0eP8uqrrzJixAgqKytp1qwZU6ZMqXPnXJKkh3qSUlVVxahRo8jJyeHPP//UPv7NN9/g4eGBm5sbZ8+eZf78+fj7+xMeHg7Aiy++yLVr19i9e7f2OUVFRVhaWrJjxw6GDx9e79fysPjggw/47LPP2L9/P507d65zXJIkbty4webNmwkLC+PPP//Ex8eH4OBggoOD8fT0bFTfc8nJySQlJdGtWzftlrXbVVVVkZOTo+31IEkSKpUKJycnHBwc/tbKXXx8PCNGjGDGjBksWrSoUX0mgiAIgtiSJDwGNmzYwIkTJ3B2dqZt27Z88MEH/Pbbb6xbt67WnfiaSUrNHdOHbcvSzJkziY2NrRUsQHVAUMPb2xtXV1cGDhxIUlISXl5e9T3MR4qtrS0HDhygU6dOOo8rFAqaNGnCrFmzmDlzJhqNhi1bthAWFsb7779P+/btCQ4OJiQkhNatWzfoRLkmWOjatatssADVPxf29vbY29vTtm1bcnNzSU9P58KFC1RUVODo6IiTkxOOjo4YGhre8X0vXrxIUFAQ06ZNE8GCIAhCIyVWGIRHWmlpKb6+vjRv3pwtW7ZgaGjI2bNn6d27Nz/99BNBQUEAHDlyhLS0NAYOHKhtslWz4lBYWEhmZiYeHh6NdhVi1qxZbN26lYiICFq0aKH33MLCQqysrNi1axdDhw5l4cKF/Pbbb5w5c0Z7zpUrV/D09OTUqVN06dLlAY/+8SNJEtnZ2WzdupXw8HD27duHl5cXwcHBhIaG0q5du3oNWGv6RnTt2hUbG5u/9RqSJJGXl6dNmC4pKdEGDyqVSmdzwqSkJIYPH864ceP4+OOPH7ogXRAE4XEhfjsLj7QzZ85gbm7OtGnTtHc7mzdvTq9evYiMjCQnJ4cpU6bw0ksv8eGHH9K0aVPGjx/PzZs3tYGBWq2mS5cu/PDDDygUivu2Z/t+kCSJWbNmsXnzZg4cOHDHYAHQBgaurq4ABAQEcO7cOTQajfacvXv3olQqad++/QMZ9+NOoVDg4ODAc889x/bt21Gr1bz55pucP3+evn370rVrVxYtWsSZM2ce+PdbSkoKiYmJdOnS5W8HC1B9TTY2NrRq1YqePXvi7++PlZUVV69e5dChQxw+fJiVK1eSnp4OwNWrVxk5ciQhISENEiy8++67dcoNt23bVnu8pKSEmTNn4uDggJWVFWPGjNGOXRAE4XEjAgbhkfbrr78C0K1bN+1jxcXFZGRkUFFRwaeffsq1a9c4cuQIp06d4tixY2RmZrJmzRqgunnUG2+8QVVVFZMnTwYa11almTNn8uOPP7J+/Xqsra1Rq9Wo1WqKi4uB6ju4ixcvJjo6mqtXr/Lbb78xefJk+vTpo91GM2TIENq3b8+kSZOIiYlh9+7dLFiwgJkzZ2JqatqQl/fYsLW1ZdKkSWzevJn09HQWL17MtWvXGDp0KN7e3rz99tscP378vgcPKSkpXLx48b53pFYoFFhbW+Pl5UVAQAABAQGUlpaydu1abQWpJ554gj59+rBy5coG+5nq0KEDaWlp2j+3bud79dVX2bZtGxs3buTw4cPcuHGD0aNHN8g4BUEQGprYkiQ8ssrLy+natSslJSUkJiZqHz906BDDhw/nk08+4dtvvyUuLo4ZM2YQFBTEwIEDWbZsGQcOHGDPnj3s27ePkSNHAuDi4sLUqVN57bXXau3xliRJW6ZV13alB7mNSe51v//+e6ZOncr169d55plniI2NpbCwkGbNmhEaGsqCBQtqXcO1a9eYPn06hw4dwtLSkilTprBs2TKd20iE+lNUVMSuXbsICwvj999/R6lUMmrUKIKDg+nRo8dd5QjISU1NJSEhgS5dumi34dWHP//8k/Hjx2NkZER2djY9e/ZkzJgxjB49mmbNmtXbON599122bNlSaytejdzcXFQqFevXr2fs2LEAXLhwgXbt2hEZGflI9XIRBEG4G2I2IDyyTp8+TVZWFs7Ozvz0009MnDiRqKgoPv/8czp06ECTJk04f/48mzdv5qeffuKZZ57BwMAAAwMDWrduTXZ2Ni1btqRZs2Y8//zzNG/enF27dpGQkIC3tzdRUVG4u7vTokULvRO3W5Op7/ed1DvF+82aNePw4cN3fB0PDw927Nhxv4Yl3CcWFhaMHj2a0aNHU1JSwt69ewkLC2PcuHGYmpoSFBREaGgovXr1uqfg7saNGyQkJODj41OvwYJGo2HOnDkMHz6cH374AY1Go60g9frrr9OlSxfmzJnDxIkT62U8iYmJuLm5YWZmRkBAAEuXLsXd3Z3o6GjKy8sZNGiQ9ty2bdvi7u4uAgZBEB5LYoVBeGTl5+dz+vRpEhMT+fTTT1EoFJSUlODm5saqVas4efIkH374oXb1IT8/nz/++IPdu3djbW3NkiVL+PHHH5kxYwaXLl3CyclJ+9q///47P/74IwcOHECpVPLKK68wbdo0zMzMtCsKaWlpbN26lTZt2tC/f/+G+hiER1BZWRkHDx5k06ZNbN26FYDAwEBCQ0Pp06eP3mZ7aWlpnD9/Hh8fnzr9Oh6kzMxMAgMDadeuHevXr68T4GRmZrJ161ZsbW0ZM2bMAx/Pzp07KSgooE2bNqSlpfHee++RmppKbGws27Zt49lnn6W0tLTWc/z9/enfvz8fffTRAx+fIAhCYyICBuGxoNFo2LBhA+bm5owdOxZbW1sOHjzIxIkTWbZsmTY/4VaFhYXMmjWL+Ph4oqKiqKio0E5y1Go1pqamlJeXs3nzZj755BNWrVrF4MGDtSsJP/30E+vWrePChQtkZmbyn//8h/Hjx9f3pQuPuIqKCiIiIti0aRNbtmyhpKSEwMBAQkJC6N+/P2ZmZtpz//3vf3P16lVef/11HBwc6m2MN2/eZOTIkXh4ePDrr782yu7hOTk5eHh48Omnn2Jubi4CBkEQhFs0nuxNQXiAnJycmD17Ns8//7w2ubN///5MmzaNTz75hHfffZfjx4/z+++/c/78eaC6Ln1kZKR2kl9ZWQlUT9BKSko4f/48Tk5O/OMf/2DEiBF8+umnwF9J0YGBgXz11Ve8/PLLqFQqHB0dARpVlaUH6euvv6ZTp04olUqUSiUBAQHs3LlTe/xuqtAkJycTGBiIhYUFTk5OzJs3j4qKivq+lEbNyMiIAQMG8NVXX3H9+nW2bNmCvb09r776Ki1atOC5557jt99+Y9WqVbz11lv4+/vXa7CQm5tLcHAwbm5ubNiwoVEGC1CdeN66dWsuXbqEi4sLZWVl5OTk1DonPT1d2y1eEAThcSICBuGx9s477/DKK6+wZ88exo0bx3fffUdqaipQvUXi4sWL2u0RNXkKL774IqGhoTz//PM4OTkREhJCTEwMJSUlwF+Bha2tLS1btkSj0eDk5MSAAQOAxlVl6UFq2rQpy5YtIzo6mpMnTzJgwACCg4OJi4sD7lyFprKyksDAQMrKyjh69Cjr1q1j7dq1LFy4sKEuqdEzNDSkT58+rFixgqtXr7J7926aNm3KnDlzeOONN+jcuTOVlZUUFBTUy3jy8/MJDQ3F3t6esLCwRl11q6CggKSkJFxdXenWrRvGxsbs379fezwhIYHk5GQCAgIacJSCIAgNRBIEQZIkSSopKZEuXrwoFRUVSZIkSZGRkZKzs7MUERGhPefYsWOSQqGQfvzxR+nixYvSkSNHpLlz50oKhUL68ssvJUmSpKqqKqmqqkqSJEmKjY2VBg8eLM2YMUOSJEmqrKys56tqXOzs7KQ1a9ZIOTk5krGxsbRx40btsfPnz0uAFBkZKUmSJO3YsUMyMDCQ1Gq19pyvv/5aUiqVUmlpab2P/WG1adMmycLCQvr888+lN998U2rdurVkbm4uBQUFSWvWrJFu3LghFRQUSIWFhff1j0ajkXr37i3169dPKiwsbOiPoY65c+dKhw4dkq5cuSIdOXJEGjRokOTo6ChpNBpJkiTppZdektzd3aUDBw5IJ0+elAICAqSAgIAGHrUgCELDeDxudQrCXTA1NaVVq1aYm5sD1VVRnnnmGfr27cugQYNQq9VcvnwZExMTRowYoW1QFRgYiEKhoFevXkDtUqexsbGkpKRoO0o/riorK/nll18oLCwkICDgjlVoACIjI/H29sbZ2Vl7ztChQ8nLy9OuUgj6bdmyhcmTJ/PLL78wZ84cli5dyoULF4iKisLHx4fPP/+c5s2bM3bsWH744Qeys7PvWHnrbhQXF/PUU08BsG3bNiwsLP7n17zfUlJSmDBhAm3atOGpp57CwcGBY8eOoVKpAPjss88YOXIkY8aMoU+fPri4uBAeHt7AoxYEQWgYIulZEO5AkiSOHj1Kx44dycnJYfTo0Xh4ePDKK69w5MgRVqxYQYsWLThw4IA22AAoLS1l0aJF7Nmzh2PHjjXavdsP0rlz5wgICKCkpAQrKyvWr1/PiBEjWL9+/R2TSl988UWuXbvG7t27tceLioqwtLRkx44dDB8+vL4v56Gya9cuxowZw/r16wkODtZ5jiRJXLhwgU2bNrF582ZiY2Pp06cPISEhjBw5EpVKdc89REpKShg/fjz5+fns2rXrf+oeLQiCIDQOYoVBEO6gZvXAxsYGDw8PVq5cSUVFBTNnzsTc3ByNRsOoUaO0wUJNDH716lXOnDmDv78/JiYm2tyGx0mbNm04c+YMUVFRTJ8+nSlTphAfH9/Qw3ostG/fng0bNsgGC1D9vd2uXTveeecdoqOjiY+PZ/Dgwfzf//0frVq1YsSIEaxevZobN27c1cpDaWkpkyZNIjs7mx07dohgQRAE4REhGrcJwj3q1asXv/32G1B9xzs+Pr7W3e7jx4/Trl074uLiSE1NZfbs2YB8V+ZHmYmJCS1btgSgW7dunDhxghUrVjBu3DhtFZqaqlVQuwqNi4sLx48fr/V6NVWURKWaO3N3d8fd3f2uz1coFLRs2ZL58+fzxhtvkJycTFhYGOHh4cyfPx9/f39tl+lmzZrV+X4uLy9n6tSppKamsn///nptCCcIgiA8WGKFQRD+BxYWFnzzzTf4+PgA1bXcX375ZVxdXZk1axYZGRm0a9cOeHyqI+lTVVVFaWnpXVWhCQgI4Ny5c2g0Gu05e/fuRalU0r59+3of++NEoVDg4eHBa6+9xh9//MHVq1cZP348u3btwtvbm/79+/PZZ59x+fJlJEmioqKC559/nqSkJPbu3VuvZVsFQRCEB0/kMAjCAxAREcGGDRvYvHkzarWaKVOmsGbNGm1p1sfBW2+9xfDhw3F3dyc/P5/169fz0UcfsXv3bgYPHsz06dPZsWMHa9euRalUaldijh49ClQnSvv4+ODm5sby5ctRq9VMmjSJ559/ng8//LAhL+2xJUkS6enpbNmyhfDwcA4dOkS7du1QKBQUFRUREREhVn8EQRAeQSJgEIQH7PDhw6SlpT12XZ6nTZvG/v37SUtLw8bGhk6dOjF//nwGDx4MVCfHzp07l59//pnS0lKGDh3KV199VWvCee3aNaZPn86hQ4ewtLRkypQpLFu2TNtxW2g4kiSRnZ3N+vXrWbZsGYcPH9ZuPxMEQRAeLSJgEARBEARBEARBlthULQiCIAiCIAiCLBEwCIIgCIIgCIIgSwQMgiA8dr7++ms6deqEUqlEqVQSEBDAzp07tcf79euHQqGo9eell16q9RrJyckEBgZiYWGBk5MT8+bNo6Kior4vRRAEQRAeOJE5KAjCY6dp06YsW7aMVq1aIUkS69atIzg4mNOnT9OhQwcAXnjhBd5//33tcywsLLR/r6ysJDAwEBcXF44ePUpaWhqTJ0/G2NhYVHASBEEQHjki6VkQBAGwt7fn448/Ztq0afTr1w8fHx8+//xznefu3LmTkSNHcuPGDZydnQFYvXo18+fPJyMjAxMTk3ocuSAIgiA8WGJLkiAIj7XKykp++eUXCgsLtU3jAH766SccHR3p2LEjb731FkVFRdpjkZGReHt7a4MFgKFDh5KXl0dcXFy9jv9xtmrVKpo3b46ZmRndu3ev0xlcEARBuD/EliRBEB5L586dIyAggJKSEqysrNi8ebO2g/TTTz+Nh4cHbm5unD17lvnz55OQkEB4eDgAarW6VrAAaP+tVqvr90IeUxs2bOC1115j9erVdO/enc8//5yhQ4eSkJCAk5NTQw9PEAThkSK2JAmC8FgqKysjOTmZ3NxcNm3axJo1azh8+LA2aLjVgQMHGDhwIJcuXcLLy4sXX3yRa9eusXv3bu05RUVFWFpasmPHDoYPH16fl/JY6t69O35+fnz55ZcAVFVV0axZM2bPns2bb77ZwKMTBEF4tIgtSYIgPJZMTExo2bIl3bp1Y+nSpXTu3JkVK1boPLd79+4AXLp0CQAXFxfS09NrnVPz71s7VQsPRllZGdHR0QwaNEj7mIGBAYMGDSIyMrIBRyYIgvBoEgGDIAgC1XeoS0tLdR47c+YMAK6urgAEBARw7tw5NBqN9py9e/eiVCp1rlAI91dmZiaVlZU6t4WJLWGCIAj3n8hhEAThsfPWW28xfPhw3N3dyc/PZ/369Rw6dIjdu3eTlJTE+vXrGTFiBA4ODpw9e5ZXX32VPn360KlTJwCGDBlC+/btmTRpEsuXL0etVrNgwQJmzpyJqalpA1+dIAiCINxfImAQBOGxo9FomDx5MmlpadjY2NCpUyd2797N4MGDuX79Ovv27ePzzz+nsLCQZs2aMWbMGBYsWKB9vqGhIdu3b2f69OkEBARgaWnJlClTavVtEB4cR0dHDA0NdW4LE1vCBEEQ7j+R9CwIgiA8dLp3746/vz9ffPEFUL2lzN3dnVmzZomkZ0EQhPtMrDAIgiAID53XXnuNKVOm4Ovri7+/v3ZF6Nlnn23ooQmCIDxyRMAgCIIgPHTGjRtHRkYGCxcuRK1W4+Pjw65du+okQguCIAj/O1ElSRAEoRFbtmwZCoWCV155RftYSUkJM2fOxMHBASsrK8aMGVNnP39ycjKBgYFYWFjg5OTEvHnzqKioqOfRP1izZs3i2rVrlJaWEhUVpS1/KwiCINxfImAQBEFopE6cOMG///1vbXWmGq+++irbtm1j48aNHD58mBs3bjB69Gjt8crKSgIDAykrK+Po0aOsW7eOtWvXsnDhwvq+BEEQBOERIJKeBUEQGqGCggK6du3KV199xZIlS/Dx8eHzzz8nNzcXlUrF+vXrGTt2LAAXLlygXbt2REZG0qNHD3bu3MnIkSO5ceOGdovO6tWrmT9/PhkZGZiYmDTkpQmCIAgPGbHCIAiC0AjNnDmTwMDAWt2MAaKjoykvL6/1eNu2bXF3d9d2OY6MjMTb27vWfv6hQ4eSl5dHXFxc/VyAIAiC8MgQSc+CIAiNzC+//MKpU6c4ceJEnWNqtRoTExNsbW1rPX5rl2O1Wq2zC3LNMUEQBEG4FyJgEARBaESuX7/OnDlz2Lt3L2ZmZg09HEEQBEEQW5IEQRAak+joaDQaDV27dsXIyAgjIyMOHz7MypUrMTIywtnZmbKyMnJycmo979Yuxy4uLjq7INccEwRBEIR7IQIGQRCERmTgwIGcO3eOM2fOaP/4+voyceJE7d+NjY3Zv3+/9jkJCQkkJycTEBAAQEBAAOfOnUOj0WjP2bt3L0qlkvbt29f7NQmCIAgPN7ElSRAEoRGxtramY8eOtR6ztLTEwcFB+/i0adN47bXXsLe3R6lUMnv2bAICAujRowcAQ4YMoX379kyaNInly5ejVqtZsGABM2fOxNTUtN6vSRAEQXi4iYBBEAThIfPZZ59hYGDAmDFjKC0tZejQoXz11Vfa44aGhmzfvp3p06cTEBCApaUlU6ZM4f3332/AUQuCIAgPK9GHQRAEQRAEQRAEWSKHQRAEQRAEQRAEWSJgEARBEARBEARBlggYBEEQBEEQBEGQJQIGQRAEQRAEQRBkiYBBEARBEARBEARZImAQBEEQBEEQBEGWCBgEQRAEQRAEQZAlAgZBEARBEARBEGSJgEEQBEEQBEEQBFkiYBAEQRAEQRAEQZYIGARBEARBEARBkCUCBkEQBEEQBEEQZImAQRAEQRAEQRAEWSJgEARBEARBEARBlggYBEEQBEEQBEGQJQIGQRAEQRAEQRBkiYBBEARBEARBEARZImAQBEEQBEEQBEGWCBgEQRAEQRAEQZAlAgZBEARBEARBEGSJgEEQBEEQBEEQBFn/D7wxG5kX4HLMAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 315 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T22:15:24.998641Z", + "start_time": "2024-06-09T22:15:24.512492Z" + } + }, + "cell_type": "code", + "source": [ + "from torch.utils.data import DataLoader, TensorDataset, random_split\n", + "# Normalize the data to [-1, 1]\n", + "beta1_min, beta1_max = beta1.min(), beta1.max()\n", + "beta2_min, beta2_max = beta2.min(), beta2.max()\n", + "eff_beta_min, eff_beta_max = eff_beta_values.min(), eff_beta_values.max()\n", + "\n", + "beta1_normalized = 2 * (beta1 - beta1_min) / (beta1_max - beta1_min) - 1\n", + "beta2_normalized = 2 * (beta2 - beta2_min) / (beta2_max - beta2_min) - 1\n", + "eff_beta_normalized = 2 * (eff_beta_values - eff_beta_min) / (eff_beta_max - eff_beta_min) - 1\n", + "\n", + "# Flatten the arrays and combine them\n", + "beta1_flat = beta1_normalized.flatten()\n", + "beta2_flat = beta2_normalized.flatten()\n", + "eff_beta_flat = eff_beta_normalized.flatten()\n", + "\n", + "# Convert to PyTorch tensors\n", + "inputs = torch.tensor(np.vstack((beta1_flat, beta2_flat)).T, dtype=torch.float32)\n", + "outputs = torch.tensor(eff_beta_flat, dtype=torch.float32).unsqueeze(1)\n", + "\n", + "# Create a dataset and split into training and validation sets\n", + "dataset = TensorDataset(inputs, outputs)\n", + "train_size = int(0.8 * len(dataset))\n", + "val_size = len(dataset) - train_size\n", + "train_dataset, val_dataset = random_split(dataset, [train_size, val_size])\n", + "\n", + "# Create dataloaders\n", + "train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n", + "val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)\n", + "\n", + "# Plot the normalized eff_beta values as a heat plot\n", + "plt.figure(figsize=(10, 8))\n", + "plt.imshow(eff_beta_normalized.reshape(beta1.shape), extent=(-1., 1., -1., 1.), origin='lower', aspect='auto')\n", + "plt.colorbar(label='Normalized effbeta')\n", + "plt.xlabel('beta1')\n", + "plt.ylabel('beta2')\n", + "plt.title('Heat Plot of Normalized effbeta')\n", + "plt.show()\n", + "\n", + "# Plot the normalized eff_beta values as a surface plot\n", + "fig = plt.figure(figsize=(12, 8))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "surf = ax.plot_surface(beta1_normalized, beta2_normalized, eff_beta_normalized, cmap='viridis')\n", + "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", + "ax.set_xlabel('beta1')\n", + "ax.set_ylabel('beta2')\n", + "ax.set_zlabel('Normalized effbeta')\n", + "ax.set_title('Surface Plot of Normalized effbeta')\n", + "plt.show()" + ], + "id": "b74ce22a367906f2", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[-1.0000, -1.0000],\n", + " [-0.9592, -1.0000],\n", + " [-0.9184, -1.0000],\n", + " [-0.8776, -1.0000],\n", + " [-0.8367, -1.0000]])\n", + "tensor([[-1.0000],\n", + " [-0.9990],\n", + " [-0.9990],\n", + " [-0.9990],\n", + " [-0.9990]])\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAK9CAYAAAAjXS2jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACClklEQVR4nO3deXwU5eHH8e/s5gaSgAECFUGOciiIQkEoKkpqEKrSWpWKchShHqiIF7TKISpeVao/qpbK4VWtikerogii1SIogloFipZLJJyFGI6Q7Dy/Pyhb1gTI8yS7m00+79drX5rZ557ZYZ55nnnGM8YYAQAAAACsBeJdAAAAAABIVHSoAAAAAMARHSoAAAAAcESHCgAAAAAc0aECAAAAAEd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhAgAAAABHdKgA1CpDhw5VixYt4l2MCEVFRbr88suVm5srz/M0evToeBcpLhYuXCjP87Rw4cLwtnjsr7Vr18rzPM2aNavK0jzcPt68ebN+8Ytf6JhjjpHneZo6dapmzZolz/P08ccfV1n+AIDooUMFoIyjXdD17t1bJ554YlTL8Prrr2vixIkVDt+7d295nhf+NGjQQD/60Y80Y8YM+b5fJWW666679PLLL1dJWt9Pd9asWbryyiv15JNP6rLLLjts2BYtWsjzPF1zzTVlvjvYIXnhhReqvIyonMPt4+uvv15vvvmmxo0bpyeffFJ9+/aNSv62vycAQMUlxbsAAFCe119/XdOmTbO6CDz22GM1ZcoUSdLWrVv1xBNPaPjw4frXv/6lu+++u9Jluuuuu/SLX/xCAwYMqHRah1qwYIFOPfVUTZgwocJxpk+frnHjxqlp06ZVWpbqZvr06VXWIY6nw+3jBQsW6Pzzz9eNN94Y3vbhhx9Wef4uvycAQMUwQgWgxsjKytKll16qSy+9VNdff70++OADHXvssfq///s/lZSUxLt4h7VlyxZlZ2dXOPwJJ5ygUChUJZ3EI9m9e3dU06+I5ORkpaamxrsYlXa4fWy77wEA1Q8dKgBV5qmnnlKXLl2Unp6uBg0aaODAgdqwYUNEmL///e+68MILddxxxyk1NVXNmjXT9ddfr71794bDDB06VNOmTZOkiGl8tjIyMnTqqadq9+7d2rp162HD7d69WzfccIOaNWum1NRUtW3bVvfff7+MMeEwnudp9+7dmj17drg8Q4cOPWL+W7Zs0fDhw9W4cWOlpaXppJNO0uzZs8PfH5yit2bNGr322mvhdNeuXXvEdFu0aKHBgwdr+vTp+vbbb4/aDsuWLdM555yjzMxM1a1bV3369CkzCnJwmue7776rq666So0aNdKxxx4r6X9TPD/77DOdccYZysjIUOvWrcNTC9999111795d6enpatu2rd5+++2ItNetW6errrpKbdu2VXp6uo455hhdeOGFR62nVPYZqu9P7Tz0c+gzTzt37tTo0aPD+7R169a65557yox27dy5U0OHDlVWVpays7M1ZMgQ7dy586jlqmg+h9vHB9vbGKNp06aVe4zv2bNHv/71r3XMMccoMzNTgwcP1n/+858yZXjjjTd02mmnqU6dOqpXr5769++vL774IqINj/R7uv/++9WzZ08dc8wxSk9PV5cuXZg2CgAWmPIH4LB27dqlbdu2ldle3mjPnXfeqdtuu00XXXSRLr/8cm3dulUPP/ywTj/9dC1btix8F/7555/Xnj17dOWVV+qYY47RkiVL9PDDD+ubb77R888/L0n69a9/rW+//Vbz5s3Tk08+Wak6/Pvf/1YwGDzsKIAxRuedd57eeecdDR8+XJ07d9abb76pm266SRs3btSDDz4oSXryySd1+eWXq1u3bho5cqQkqVWrVofNd+/everdu7e++uorjRo1Sscff7yef/55DR06VDt37tR1112n9u3b68knn9T111+vY489VjfccIMkqWHDhket129/+1s98cQTuvvuu/XQQw8dNtwXX3yh0047TZmZmbr55puVnJysxx57TL179w53hA511VVXqWHDhho/fnzECNV//vMf/fSnP9XAgQN14YUX6pFHHtHAgQP19NNPa/To0briiit0ySWX6L777tMvfvELbdiwQfXq1ZMkffTRR/rHP/6hgQMH6thjj9XatWv1yCOPqHfv3vryyy+VkZFx1PoeWu/LL788YttTTz2lN998U40aNZJ0oCNyxhlnaOPGjfr1r3+t4447Tv/4xz80btw4bdq0SVOnTpV0YN+ff/75ev/993XFFVeoffv2eumllzRkyJAKlaUi+RxuH5988snhZ6l+8pOfaPDgwWXSHzVqlLKzszVx4kStWrVKjzzyiNatWxfupEkHjsshQ4YoPz9f99xzj/bs2aNHHnlEvXr10rJly9SiRYuj/p5+//vf67zzztOgQYO0f/9+Pfvss7rwwgv1t7/9Tf3796/wvgGAWssAwPfMnDnTSDri54QTTgiHX7t2rQkGg+bOO++MSOfzzz83SUlJEdv37NlTJr8pU6YYz/PMunXrwtuuvvpqY3OKOuOMM0y7du3M1q1bzdatW82KFSvMtddeaySZc889NxxuyJAhpnnz5uG/X375ZSPJ3HHHHRHp/eIXvzCe55mvvvoqvK1OnTpmyJAhFSrP1KlTjSTz1FNPhbft37/f9OjRw9StW9cUFhaGtzdv3tz079+/QukeGnbYsGEmLS3NfPvtt8YYY9555x0jyTz//PPh8AMGDDApKSnm66+/Dm/79ttvTb169czpp58e3nZwn/fq1cuUlpZG5HnGGWcYSeaZZ54Jb1u5cqWRZAKBgPnwww/D2998800jycycOTO8rbx9vmjRIiPJPPHEE+FtB8v/zjvvhLd9f3993wcffGCSk5PNr371q/C2yZMnmzp16ph//etfEWHHjh1rgsGgWb9+vTHmf/v+3nvvDYcpLS01p512Wpk6lKei+Rhz+H0syVx99dUR2w7uiy5dupj9+/eHt997771GknnllVeMMcZ89913Jjs724wYMSIifkFBgcnKyorYfqTf0/f3z/79+82JJ55ozjrrrCNVHwDwX0z5A3BY06ZN07x588p8OnXqFBFuzpw58n1fF110kbZt2xb+5Obmqk2bNnrnnXfCYdPT08P/v3v3bm3btk09e/aUMUbLli2rVHlXrlyphg0bqmHDhmrfvr0efvhh9e/fXzNmzDhsnNdff13BYFDXXnttxPYbbrhBxhi98cYbTmV5/fXXlZubq1/+8pfhbcnJybr22mtVVFSkd9991yndQ916660qLS097LNUoVBIb731lgYMGKCWLVuGtzdp0kSXXHKJ3n//fRUWFkbEGTFihILBYJm06tatq4EDB4b/btu2rbKzs9W+ffuIUa6D///vf/87vO3QfV5SUqLt27erdevWys7O1ieffGJZ6/8pKCjQL37xC3Xu3Fl/+MMfwtuff/55nXbaaapfv37E8ZiXl6dQKKT33ntP0oF9lJSUpCuvvDIcNxgMlruCYnkqmo+rkSNHKjk5Ofz3lVdeqaSkJL3++uuSpHnz5mnnzp365S9/GZF/MBhU9+7dI353R3Lo/vnPf/6jXbt26bTTTqvUvgGA2oQpfwAOq1u3buratWuZ7QcvIA9avXq1jDFq06ZNuekcelG4fv16jR8/Xq+++mqZ50F27dpVqfK2aNFC06dPl+d5SktLU5s2bcLTwA5n3bp1atq0aXh62kHt27cPf+9i3bp1atOmjQKByPtWlU33UC1bttRll12mP/7xjxo7dmyZ77du3ao9e/aobdu2Zb5r3769fN/Xhg0bdMIJJ4S3H3/88eXmdeyxx5Z5xicrK0vNmjUrs01SxL7du3evpkyZopkzZ2rjxo0Rz6a57vPS0lJddNFFCoVCmjNnTsTCFatXr9Znn3122KmTW7ZskXRgHzRp0kR169aN+L689ipPRfNx9f3fU926ddWkSZPws2erV6+WJJ111lnlxs/MzKxQPn/72990xx13aPny5SouLg5vd3luEQBqIzpUACrN9315nqc33njjsKMb0oERk5/85CfasWOHbrnlFrVr10516tTRxo0bNXTo0Eovj12nTh3l5eVVKo1E89vf/lZPPvmk7rnnnipZzv3Q0YpDlbdfj7T90E7TNddco5kzZ2r06NHq0aOHsrKy5HmeBg4c6LzPb7rpJi1atEhvv/12ePGMg3zf109+8hPdfPPN5cb94Q9/6JTn98UqnyPlLx14jio3N7fM90lJR/8n/u9//7vOO+88nX766frDH/6gJk2aKDk5WTNnztQzzzxT5WUGgJqIDhWASmvVqpWMMTr++OOPeBH5+eef61//+pdmz54d8RD+vHnzyoSN1d3x5s2b6+2339Z3330XMUq1cuXK8PcuZWrevLk+++wz+b4fMUpVXrqV0apVK1166aV67LHHyiww0bBhQ2VkZGjVqlVl4q1cuVKBQKDMCFM0vPDCCxoyZIh+97vfhbft27fPajW9Qz377LOaOnWqpk6dqjPOOKPM961atVJRUdFRO9fNmzfX/PnzVVRUFDFKVV57laei+bhavXq1zjzzzPDfRUVF2rRpk/r16xfOX5IaNWp01DIc7th98cUXlZaWpjfffDNilG/mzJmVLT4A1Bo8QwWg0n7+858rGAxq0qRJESMT0oGRiu3bt0v632jGoWGMMfr9739fJs06depIkvNFd0X169dPoVBI//d//xex/cEHH5TneTrnnHMiylTR8vTr108FBQV67rnnwttKS0v18MMPq27duuV2BFzdeuutKikp0b333huxPRgM6uyzz9Yrr7wSsUT55s2b9cwzz6hXr14VnhZWGcFgsMxx8fDDDysUClmn9c9//lOXX365Lr30Ul133XXlhrnooou0aNEivfnmm2W+27lzp0pLSyUd2EelpaV65JFHwt+HQiE9/PDDFSpLRfNx9cc//jFiRc1HHnlEpaWl4WMyPz9fmZmZuuuuu8pdefPQVwUc7vcUDAbleV7Evli7dq1efvnlSpUdAGoTRqgAVFqrVq10xx13aNy4cVq7dq0GDBigevXqac2aNXrppZc0cuRI3XjjjWrXrp1atWqlG2+8URs3blRmZqZefPHFct+t06VLF0nStddeq/z8fAWDwYhFEarKueeeqzPPPFO//e1vtXbtWp100kl666239Morr2j06NERS6N36dJFb7/9th544AE1bdpUxx9/fJlRoYNGjhypxx57TEOHDtXSpUvVokULvfDCC/rggw80derUMs9sVcbBUapD33F10B133KF58+apV69euuqqq5SUlKTHHntMxcXFZTpg0fLTn/5UTz75pLKystShQ4fwVL1jjjnGOq1hw4ZJkk4//XQ99dRTEd/17NlTLVu21E033aRXX31VP/3pTzV06FB16dJFu3fv1ueff64XXnhBa9euVU5Ojs4991z9+Mc/1tixY7V27Vp16NBBc+bMqfBzXRXNx9X+/fvVp08fXXTRRVq1apX+8Ic/qFevXjrvvPMkHXhG6pFHHtFll12mU045RQMHDlTDhg21fv16vfbaa/rxj38cvlFwuN9T//799cADD6hv37665JJLtGXLFk2bNk2tW7fWZ5995lx2AKhV4rS6IIBq7OCyzR999FG5359xxhkRy6Yf9OKLL5pevXqZOnXqmDp16ph27dqZq6++2qxatSoc5ssvvzR5eXmmbt26Jicnx4wYMcJ8+umnZZapLi0tNddcc41p2LCh8TzvqEuoH65M31feMtzfffeduf76603Tpk1NcnKyadOmjbnvvvuM7/sR4VauXGlOP/10k56ebiQddQn1zZs3m2HDhpmcnByTkpJiOnbsWO5S3K7Lph9q9erVJhgMllk23RhjPvnkE5Ofn2/q1q1rMjIyzJlnnmn+8Y9/RIQ50j4/XNtWdCnw//znP+F2qFu3rsnPzzcrV640zZs3j2jDiiyb3rx588Mu5X9o23733Xdm3LhxpnXr1iYlJcXk5OSYnj17mvvvvz9iKfLt27ebyy67zGRmZpqsrCxz2WWXmWXLllVo2XSbfFyWTX/33XfNyJEjTf369U3dunXNoEGDzPbt28uk8c4775j8/HyTlZVl0tLSTKtWrczQoUPNxx9/HA5zpN/T448/btq0aWNSU1NNu3btzMyZM82ECROsXlsAALWZZ8z35mEAAAAAACqEZ6gAAAAAwBEdKgAAAABwRIcKAAAAABwlVIfqvffe07nnnqumTZvK87wKLeu6cOFCnXLKKUpNTVXr1q01a9asMmGmTZumFi1aKC0tTd27d9eSJUuqvvAAAABAAuNavHwJ1aHavXu3TjrpJE2bNq1C4desWaP+/fvrzDPP1PLlyzV69GhdfvnlEe8Mee655zRmzBhNmDBBn3zyiU466STl5+dry5Yt0aoGAAAAkHC4Fi9fwq7y53meXnrpJQ0YMOCwYW655Ra99tpr+uc//xneNnDgQO3cuVNz586VJHXv3l0/+tGPwu/q8H1fzZo10zXXXKOxY8dGtQ4AAABAIuJa/H9q9It9Fy1apLy8vIht+fn5Gj16tKQDL01cunSpxo0bF/4+EAgoLy9PixYtOmy6xcXFKi4uDv/t+7527NihY445Rp7nVW0lAAAAUGnGGH333Xdq2rSpAoHqNUlr37592r9/f1zyNsaUuX5NTU1VampqpdOO1rV4dVOjO1QFBQVq3LhxxLbGjRursLBQe/fu1X/+8x+FQqFyw6xcufKw6U6ZMkWTJk2KSpkBAAAQPRs2bNCxxx4b72KE7du3T8c3r6uCLaG45F+3bl0VFRVFbJswYYImTpxY6bSjdS1e3dToDlW0jBs3TmPGjAn/vWvXLh133HHqpX5KUnKF0gik2ff6vfR0y/Bp1nkoNcUquLEM76dXrH0i4qQE7cKn2oWXpJBlHqFUu5HIUIr9yKVJtszDMrwkhex2n3zLPHz73W1fJoezmG25TLLdzGjjUqYU2zzsZ2ubJN8ugmW9A0n2FwNByzIlpdjnkRS0yyM1udQufNAuvCSlJ5VYhU9Lss8jI8nubndawK5MdSzTl6Q6weKjBzpEetA+j7q2eQTs8qgX2GcVXpIyPLsyOeVhWY+6nt3+zghYnj8kZVjO2kn37P/RyAhU/B+NwiJfzU9Zq3r16lnnE0379+9XwZaQ1i1tocx6sR05K/zOV/Mua7VhwwZlZmaGt1fF6FRtUqM7VLm5udq8eXPEts2bNyszM1Pp6ekKBoMKBoPlhsnNzT1suocbBk1SspIqeDIIeJZXjZI8yzhewOHHYHFikiQTtOxQBR06VEl2h6mfZN+h8pLt4niWHQvb8JJ950UOnTZZHobW9bY/zO3L5HAWsy2XH4MOlWw7VJZlkmLQoUq27+wELMsUTLHvWAQtO1RBy/NBksM5JynJ7qIp2TL8gTh24VOCdr/vFIdOfarlvkgL2ueRFrQ7DtMtOwoZAfv9bRunjlMedsdIXc8ufB2H63zbDlWGZZkk+3pLqraPZ9St56luvdiWzdeB/DIzMyM6VFUlWtfi1U31mkBaxXr06KH58+dHbJs3b5569OghSUpJSVGXLl0iwvi+r/nz54fDAAAAALBXW67FE6pDVVRUpOXLl2v58uWSDizFuHz5cq1fv17Sgal4gwcPDoe/4oor9O9//1s333yzVq5cqT/84Q/6y1/+ouuvvz4cZsyYMZo+fbpmz56tFStW6Morr9Tu3bs1bNiwmNYNAAAAqM64Fi9fQk35+/jjj3XmmWeG/z74HNOQIUM0a9Ysbdq0KbxDJen444/Xa6+9puuvv16///3vdeyxx+pPf/qT8vPzw2Euvvhibd26VePHj1dBQYE6d+6suXPnlnk4DgAAAIiWkPEVivHLjELGbsor1+LlS9j3UFUnhYWFysrKUm+dX/FnqNLsF4ywXpQiwy68JPtFKdJisChFquUzVC6LUljGicWiFLbPULnkEfVFKRyeoYrJohTV8Bkq60UpasgzVLaLUiQ7PEMV7UUpXBaMsF2Uwja8ZL8oRXrQdlEKu4UWJPsFIzKcFqWwW9DBdjGHzMBeq/AH8rCrd6bTohSWC19YLkpRJwaLUmREe1GK73zV/+G/tWvXrqg8L+Tq4HXkllXN47IoRaO266pdmySahBqhAgAAAGoiX0a+YjvOEev8aqqEeoYKAAAAAKoTRqgAAACAOPPly35iZeXzROUxQgUAAAAAjuhQAQAAAIAjpvwBMeDxzGeFxaKtquX+qI5lqoaMsV/Nsibw5bBSqEMcq/SN/T3ZUAzu47qUy0Ys6hBy2d+W9fYtV+BzWc7bt6yGy/Qzm2W/bZcIj7WQMQrFePHtWOdXUzFCBQAAAACOGKECAAAA4oxl0xMXI1QAAAAA4IgOFQAAAAA4YsofAAAAEGe+jEJM+UtIjFABAAAAgCNGqAAAAIA4Y1GKxMUIFQAAAAA4YoQKAAAAiDNe7Ju4GKECAAAAAEd0qAAAAADAEVP+AAAAgDjz//uJdZ6oPDpUiC1+uUDVcJn2brwYZJL4jGU7+dbtKvmyjxNtsSiTbVuFjP1EmpBlPezL5LK/7erhVG/Psh627WQV+r95WD6fE/Lszzk2q9Sxoh2ihQ4VAAAAEGehOLzYN9b51VQ8QwUAAAAAjuhQAQAAAIAjpvwBAAAAcRYyBz6xzhOVxwgVAAAAADhihAoAAACIM5ZNT1yMUAEAAACAI0aoAAAAgDjz5Vm/H6wq8kTlMUIFAAAAAI7oUAEAAACAI6b8AQAAAHHmmwOfWOeJyqNDBTjwasiyOB4n0gqxbaca06y29Tb2c/Ft4zjlYR2j+vEd6u0Sxyr9GDx7EYs8QpaTdXyHyT0hY5mH55CHbT0sj4+QZ78vQpa/Pt/Y/1p9i3+Qfda0Q5TQoQIAAADiLBSHRSlinV9NxTNUAAAAAOCIDhUAAAAAOGLKHwAAABBnTPlLXIxQAQAAAIAjRqgAAACAOPONF/XVOcvLE5XHCBUAAAAAOGKECgAAAIgznqFKXIxQAQAAAIAjOlQAAAAA4IgpfwAAAECchRRQKMZjHaGY5lZz0aECJMkYywjMOa4Q22Z14DnkEfVixaDeiB7fcv+57O5YrKxlm0coyuEllzLZX1z6lnFsw7uwfU7F5bkW23qEvBjsb8sTdMjh1xSy+PfbJixggw4VAAAAEGcmDsumG5ZNrxI8QwUAAAAAjuhQAQAAAIAjpvwBAAAAccZ7qBIXI1QAAAAA4IgRKgAAACDOQibgtLJl5fKMaXY1FiNUAAAAAOCIESoAAAAgznx58mM81uHz4sQqwQgVAAAAADiiQwUAAAAAjpjyBwAAAMQZy6YnLkaoAAAAAMARI1So/myfl+T5ShxNdTxGquNxHoMyWWfhkoepfndgfcsy2YZ34cdgueZQDO7j2i47bXuH3mVZa9u2dckj5FnWw7LevsNIhu2S3L7DYe7Lj0rYeIjPsunV8R/ExMMIFQAAAAA4okMFAAAAAI6Y8gcAAADE2YH3UMV2inKs86upGKECAAAAAEeMUAEAAABx5isQk4VbIvNkUYqqwAgVAAAAADiiQwUAAAAAjpjyBwAAAMQZ76FKXIxQAQAAAIAjRqgAAACAOPMVkM+iFAkp4Uaopk2bphYtWigtLU3du3fXkiVLDhu2d+/e8jyvzKd///7hMEOHDi3zfd++fWNRFQAAACDhcD0eKaFGqJ577jmNGTNGjz76qLp3766pU6cqPz9fq1atUqNGjcqEnzNnjvbv3x/+e/v27TrppJN04YUXRoTr27evZs6cGf47NTU1epUAooWbTECVMMbuRZe+ZXgXLnnYxrEPb39PNtplkuxfVGpbD5dlrW3juIxS2D57U2KCdul7IavwkuRbhnd5nifkVTxOqJr/QxkynkIxOJ98P09bXI+XlVAjVA888IBGjBihYcOGqUOHDnr00UeVkZGhGTNmlBu+QYMGys3NDX/mzZunjIyMMjswNTU1Ilz9+vVjUR0AAAAgoXA9XlbCdKj279+vpUuXKi8vL7wtEAgoLy9PixYtqlAajz/+uAYOHKg6depEbF+4cKEaNWqktm3b6sorr9T27duPmE5xcbEKCwsjPgAAAEAi+v51bXFxcbnhqtP1eHWSMB2qbdu2KRQKqXHjxhHbGzdurIKCgqPGX7Jkif75z3/q8ssvj9jet29fPfHEE5o/f77uuecevfvuuzrnnHMUCh1+aHvKlCnKysoKf5o1a+ZWKQAAAEAHpobG4yNJzZo1i7i2nTJlSrllrE7X49VJQj1DVRmPP/64OnbsqG7dukVsHzhwYPj/O3bsqE6dOqlVq1ZauHCh+vTpU25a48aN05gxY8J/FxYW0qkCAABAQtqwYYMyMzPDf0fr+aWqvB6vThJmhConJ0fBYFCbN2+O2L5582bl5uYeMe7u3bv17LPPavjw4UfNp2XLlsrJydFXX3112DCpqanKzMyM+AAAAACufBOIy0dSmevaw3WoqtP1eHWSMB2qlJQUdenSRfPnzw9v831f8+fPV48ePY4Y9/nnn1dxcbEuvfTSo+bzzTffaPv27WrSpEmlywwAAADUFFyPly9hOlSSNGbMGE2fPl2zZ8/WihUrdOWVV2r37t0aNmyYJGnw4MEaN25cmXiPP/64BgwYoGOOOSZie1FRkW666SZ9+OGHWrt2rebPn6/zzz9frVu3Vn5+fkzqBAAAACQKrsfLSqhnqC6++GJt3bpV48ePV0FBgTp37qy5c+eGH4xbv369AoHIPuKqVav0/vvv66233iqTXjAY1GeffabZs2dr586datq0qc4++2xNnjw5oda+BwAAQGI7dJGI2OVp/24ursfL8oxxeIsaIhQWFiorK0u9db6SvOQKxQmkpVnn46Wn24XPsAsvSUpNsQpu0uzC+6kVa5+IOGl2/X4/1e5lhZIUSrV86WKK5YsgU+1fnBdKsYsTSnZ4Aabd7rMuk2+/u63L5DvcFrItl59id5p0K5NdHsYyvFOcJLvXcnrJtq/xlAKWcZKS7Fd8Sk62i5MctAufmlxqFV6S0pLs4qQG7fPISNp/9ECHSLPMo45l+pKUHrSLUzdY/tLNR5JhmUdGwLZM+6zCS1KdgF09bMNLUoYX3TzqWbaTJNXx7I6pDId32mYEKv5vfuF3vlq026Rdu3ZVq+ffD15HTv+kizLq2V/DVMae70IaccrSatcmiSahRqgAAACAmsiXFDIOvcpK5onKS6hnqAAAAACgOmGECkDFxWKCcHWchGxbpupYh+rK8m6scbh76xIn2ulHu0ySwsshRy/96NfB5XmSkGW9Q7KcyuxQb9tRB9s6SJLv2dbbLnyJQ5n2W+aR7NmPl5SYiscptQgbD74C8mM81hHr/GoqWhEAAAAAHNGhAgAAAABHTPkDAAAA4ixkAk7TPSubJyqPVgQAAAAAR4xQAQAAAHHmy5NvuUhKVeSJymOECgAAAAAc0aECAAAAAEdM+QMAAADijEUpEhetCAAAAACOGKECAAAA4iykgEIxHuuIdX41Fa0IAAAAAI4YoQIAAADizDeefBPjZdNjnF9NRYcKQGIz8S5A1fAs62Fc6m0bx/YfWqd/mKO/A23bysTgAsP2IsalTLbvl4l2eEnyLR+Ad7nYi/Z7dVymSPmWcUIOdbCNY7svQl7090XI4XTgW2Th2ycPVAhT/gAAAADAESNUAAAAQJz5cViUwnb0FOWjFQEAAADAESNUAAAAQJz5JmD9bFtV5InKoxUBAAAAwBEdKgAAAABwxJQ/AAAAIM5C8pyWzK9snqg8RqgAAAAAwBEjVAAAAECcsShF4qIVAQAAAMARI1QAAABAnIUU+2eaQjHNreaiQwVUVybeBagC1bUO1bVctZCx3Be24V34xu6Cxja8Cz8GF1m29Qg51Nu2Hi5tG7KcwlTi210K+V6pVXjJvkwu07Bs8wh5tvvCoUy2eVjnIO23OCnYhAVsMOUPAAAAABwxQgUAAADEGYtSJC5aEQAAAAAcMUIFAAAAxFnIBKyfhauKPFF5tCIAAAAAOKJDBQAAAACOmPIHAAAAxJmRF5NXJHw/T1QeI1QAAAAA4IgRKgAAACDOWJQicdGKAAAAAOCIESoAAAAgznzjyTexfaYp1vnVVHSogNrMxLsACcKynVz+eTK2+8LlH0HbTGyDOxxPsfin3ET5gsElfduLGJeLnljkYStkmUfIYSKNdb0tj8KQw1FrWw+netvmYTnVa78XtAovSckmZJeHQ72TPb/CYSseErDDlD8AAAAAcMQIFQAAABBnIQWcRicrmycqj1YEAAAAAEeMUAEAAABxxqIUiYsRKgAAAABwRIcKAAAAABwx5Q8AAACIM18B6+XvqyJPVB6tCAAAAACOGKECAAAA4ixkPOuXX1dFnqg8RqgAAAAAwBEjVAAAAECcsWx64mKECgAAAAAcMUIFxIKJdwESCG2VuFzudNru7xjcTY3FIRiLPGzvPNuHt78naxvH5e55yPJecciyTCUmaBXeJY5LHvst4yR7duFTTMgqvCSFPMtjSvb7u8Tix1TKvy+IEjpUAAAAQJwZE3C6UVHZPFF5tCIAAAAAOGKECgAAAIizkDyFHKY9VjZPVB4jVAAAAADgiA4VAAAAADhiyh8AAAAQZ76J/XuhfFY+rBKMUAEAAACAI0aoAAAAgDjz47Bseqzzq6loRQAAAABwRIcKAAAAABwx5Q8AAACIM1+e/Bi/FyrW+dVUdKgAVJhnbJcDqp4naq+WrmrkWa4eZaz3d/QZhxWwbOPYhndZJct2JS+Xlb/s87CbtFIdy+SUh+V5yq1MdnFC1TCPkGe/v0tM0C68fOs8kr2Kx+EltogWOlQAAABAnIWMp1CMl02PdX41VcI9QzVt2jS1aNFCaWlp6t69u5YsWXLYsLNmzZLneRGftLS0iDDGGI0fP15NmjRRenq68vLytHr16mhXAwAAAEhIXI9HSqgO1XPPPacxY8ZowoQJ+uSTT3TSSScpPz9fW7ZsOWyczMxMbdq0KfxZt25dxPf33nuvHnroIT366KNavHix6tSpo/z8fO3bty/a1QEAAAAk/W/Z9Fh/bHE9XlZCdageeOABjRgxQsOGDVOHDh306KOPKiMjQzNmzDhsHM/zlJubG/40btw4/J0xRlOnTtWtt96q888/X506ddITTzyhb7/9Vi+//HIMagQAAAAkDq7Hy0qYDtX+/fu1dOlS5eXlhbcFAgHl5eVp0aJFh41XVFSk5s2bq1mzZjr//PP1xRdfhL9bs2aNCgoKItLMyspS9+7dj5hmcXGxCgsLIz4AAABAIvr+dW1xcXG54arT9Xh1kjAdqm3btikUCkX0aCWpcePGKigoKDdO27ZtNWPGDL3yyit66qmn5Pu+evbsqW+++UaSwvFs0pSkKVOmKCsrK/xp1qxZZaoGAACAWs6XJ9/E+PPflQ+bNWsWcW07ZcqUcstYna7Hq5Mavcpfjx491KNHj/DfPXv2VPv27fXYY49p8uTJzumOGzdOY8aMCf9dWFhIpwoAAAAJacOGDcrMzAz/nZqaWmVpR+t6vDpJmA5VTk6OgsGgNm/eHLF98+bNys3NrVAaycnJOvnkk/XVV19JUjje5s2b1aRJk4g0O3fufNh0UlNTq/RAAwAAQO1m4vBiX/Pf/DIzMyM6VIdTna7Hq5OEmfKXkpKiLl26aP78+eFtvu9r/vz5Eb3eIwmFQvr888/DO+v4449Xbm5uRJqFhYVavHhxhdMEAAAAagOux8uXMCNUkjRmzBgNGTJEXbt2Vbdu3TR16lTt3r1bw4YNkyQNHjxYP/jBD8LzPm+//Xadeuqpat26tXbu3Kn77rtP69at0+WXXy7pwIojo0eP1h133KE2bdro+OOP12233aamTZtqwIAB8aomAAAAUC1xPV5WQnWoLr74Ym3dulXjx49XQUGBOnfurLlz54YfYlu/fr0Cgf8Nuv3nP//RiBEjVFBQoPr166tLly76xz/+oQ4dOoTD3Hzzzdq9e7dGjhypnTt3qlevXpo7d26ZF44BAAAA0XJwoYhY52mL6/GyPGOMiXchEl1hYaGysrLUW+cryUuuUJyAwwHipafbhc+wCy9JSk2xCm7S7ML7qRVrn4g4aXb9fj81aJ1HKNVu9qufYhc+lGJ/wrKN4ye75GEX3rfcfS71ts3DNrwkGctbSX6y3WnSpUy+ZZmMZZlc4pgk3y6DJPsyecl2eQRtyyQpmBSyCp+cbBk+aBdeklIsy5SWVGqdR2rQLk6qZR4ZSfutwktSerAkquElKT1gVy7bPDIs05ekjGD5S1BXZR51AnZ5pHl29bZNX5IyLOPU8ezrneZV/LdU9J2vnidu0q5duyr0vFCsHLyOvODtIUquY/kPcyWV7N6vF/NmV7s2STQJNUIFAAAA1ES+Ccg3sV3eINb51VS0IgAAAAA4YoQKAAAAiLNEeYYKZTFCBQAAAACO6FABAAAAgCOm/AEAAABx5suTrxhP+YtxfjUVI1QAAAAA4IgRKgAAACDOWJQicTFCBQAAAACO6FABAAAAgCOm/AEAAABxxpS/xMUIFQAAAAA4YoQKcGHiXYDE4NFO1Yvt/rC+c+mwwy2juBxSxrIe0Q7vwuUusu1yyLZ5uJQpZBnHNrwkhSzvFVvX22GZ6RITjGp4lzjJXqlV+FAs6i37eid7foXDutQhlhihSlyMUAEAAACAI0aoAAAAgDhjhCpxMUIFAAAAAI7oUAEAAACAI6b8AQAAAHFm5LboSWXzROUxQgUAAAAAjhihAgAAAOKMRSkSFyNUAAAAAOCIDhUAAAAAOGLKHwAAABBnTPlLXIxQAQAAAIAjRqiA2qwarpfqWZbJNrwkGds4tnfwrDOwr4dDFtEXizLF4G6qbdu63OG1jVMd8yj17e/JlnpBy/C+Qx52cUosy1Ri7MJLUrIJWYX3jX3bhizjlBi7S8ASyzpIUrLs4uy33BeSXduWVMfz5iEYoUpcjFABAAAAgCNGqAAAAIA4Y4QqcTFCBQAAAACO6FABAAAAgCOm/AEAAABxZownE+MpeLHOr6ZihAoAAAAAHDFCBQAAAMSZL0++YrwoRYzzq6kYoQIAAAAAR3SoAAAAAMARU/4AAACAOOM9VImLESoAAAAAcMQIFVBNeSbeJShHdSxTbeWyL6K9/1zudFrGMca+ErZRbJcRdtoVMcjD9s6zfXj7e7K2D8C7PDBvnYdlvUMO9baNU2KC1nnYxkk2pVbh9zuUKdmzixM0vnUeJap4HqXVfDSGZdMTFyNUAAAAAOCIESoAAAAgzniGKnExQgUAAAAAjuhQAQAAAIAjpvwBAAAAccaiFImLESoAAAAAcMQIFQAAABBnJg6LUjBCVTUYoQIAAAAAR3SoAAAAAMARU/4AAACAODOSjIl9nqg8RqgAAAAAwBEjVIAkj1s00VFD2tX2+HA5nmJyV9I2jxiUybbeTo9PWz50bfuQtstD3b5lvV0eVI92PXyHvWFbj5BDvW3jhCzvLZeYoFV4lzjJKnXIw+6SrsSErMIHHU5S1nk4nHT2exXPY7/bGSRmfHnyYlxGl98xymKECgAAAAAcMUIFAAAAxBkv9k1cjFABAAAAgCM6VAAAAADgiCl/AAAAQJz5xpMX4yl4LgveoCxGqAAAAADAESNUAAAAQJwZE4cX+9aQ15vEGyNUAAAAAOCIDhUAAAAAOGLKHwAAABBnvIcqcTFCBQAAAACOGKECAAAA4owRqsRFhwqIAS8Wq+jUlJV6bOvhUu8a0FYux5R1lJjsC8t/zF3qbZmH7apXLhck9mWyz8P2/TK+LMPHoEylftA6j1LPj2r4ZC9kFV6SSoxdPUp8+8uz5KBduWzLlGxKrcJL0n7LPAKy2xeSlGyRR0kNOPejemLKHwAAAAA4YoQKAAAAiDPfePJiPAXPZaQZZTFCBQAAAACOGKECAAAA4swY+2c4qyJPVF7CjVBNmzZNLVq0UFpamrp3764lS5YcNuz06dN12mmnqX79+qpfv77y8vLKhB86dKg8z4v49O3bN9rVAAAAABIS1+OREqpD9dxzz2nMmDGaMGGCPvnkE5100knKz8/Xli1byg2/cOFC/fKXv9Q777yjRYsWqVmzZjr77LO1cePGiHB9+/bVpk2bwp8///nPsagOAAAAIOngCJUX4499ObkeLyuhOlQPPPCARowYoWHDhqlDhw569NFHlZGRoRkzZpQb/umnn9ZVV12lzp07q127dvrTn/4k3/c1f/78iHCpqanKzc0Nf+rXrx+L6gAAAAAJhevxshKmQ7V//34tXbpUeXl54W2BQEB5eXlatGhRhdLYs2ePSkpK1KBBg4jtCxcuVKNGjdS2bVtdeeWV2r59+xHTKS4uVmFhYcQHAAAASETfv64tLi4uN1x1uh6vThKmQ7Vt2zaFQiE1btw4Ynvjxo1VUFBQoTRuueUWNW3aNOIg6Nu3r5544gnNnz9f99xzj959912dc845CoUO/4K8KVOmKCsrK/xp1qyZW6UAAAAAxWO6nxd+aXizZs0irm2nTJlSbhmr0/V4dVJrVvm7++679eyzz2rhwoVKS0sLbx84cGD4/zt27KhOnTqpVatWWrhwofr06VNuWuPGjdOYMWPCfxcWFtKpAgAAQELasGGDMjMzw3+npqZGJZ+qvB6vThJmhConJ0fBYFCbN2+O2L5582bl5uYeMe7999+vu+++W2+99ZY6dep0xLAtW7ZUTk6Ovvrqq8OGSU1NVWZmZsQHAAAAcGXi9JFU5rr2cB2q6nQ9Xp0kzAhVSkqKunTpovnz52vAgAGSFH6gbdSoUYeNd++99+rOO+/Um2++qa5dux41n2+++Ubbt29XkyZNqqroiDGPlypUmEdTVYxtO7m0ayz2xX+ndlhEiGpwpyys6yAZy0xs83A55YR8u/uZvvGt8/At61FqWaagZ39PttQLWoVPCjjUW3b1LjF29UgydnWQpGRjN22pxCEP2zhBy99FiWUdJClo+eOwLZNkV65Sh/MHInE9Xr6EGaGSpDFjxmj69OmaPXu2VqxYoSuvvFK7d+/WsGHDJEmDBw/WuHHjwuHvuece3XbbbZoxY4ZatGihgoICFRQUqKioSJJUVFSkm266SR9++KHWrl2r+fPn6/zzz1fr1q2Vn58flzoCAAAA1RXX42UlzAiVJF188cXaunWrxo8fr4KCAnXu3Flz584NPxi3fv16BQL/6yM+8sgj2r9/v37xi19EpDNhwgRNnDhRwWBQn332mWbPnq2dO3eqadOmOvvsszV58uSozR0FAAAAvu/QRSJimactrsfL8oxhflRlFRYWKisrS711vpK85ArFCRzyIF5FeenpduEz7MJLklJTrIKbNLvwfmrF2iciTppdv9+k2A+8hlLtpkqELPPwU+xPWCHLOKFk+zx8y90Rstvd8mNQJtvwkuRb3koyluH9ZPvTqnWZYpKH5XSroMM/J0l2cTzbMkkKJNnFCQbtwicl2U+FSrLMIzW51DqPlKBduZItw6cG7cuUZhknLanEOo/0oF2clIBdmWzTl6SMwH6r8KmWZZKkjGD5y1wfTppnl0dGwC59SUoL2LVVmmfftnUsyrXnu5Au7LxSu3btqlbPvx+8jmz5xG8UzLC/PqyM0J59+vfgu6pdmySahBqhAgAAAGqkQ1eJiGWeqLSEeoYKAAAAAKoTRqgAAACAeIvDM1T2q7+iPIxQAQAAAIAjOlQAAAAA4IgpfwAAAECcGeP2ovDK5lmb7du3T/v3R67C6bLaISNUAAAAAGqFPXv2aNSoUWrUqJHq1Kmj+vXrR3xc0KECAAAA4uzgi31j/altbrrpJi1YsECPPPKIUlNT9ac//UmTJk1S06ZN9cQTTzilyZQ/ABXmWU4NsA1fXfOIxYwI23/SXKZpWLeV5T+0blNHYrAzolwPlwsS22qEfIeXgwfs4iRZt5PDi7stj/RS3/6+b4ln96L2JM/uJculvl36kn2ZAg4/phLLN3cHA3Z5lBj7egeN5Uu1Zf/i7n2m4m9332cYR4D017/+VU888YR69+6tYcOG6bTTTlPr1q3VvHlzPf300xo0aJB1mhxZAAAAAGqFHTt2qGXLlpIOPC+1Y8cOSVKvXr303nvvOaVJhwoAAACIN+PF51PLtGzZUmvWrJEktWvXTn/5y18kHRi5ys7OdkqTDhUAAACAWmHYsGH69NNPJUljx47VtGnTlJaWpuuvv1433XSTU5o8QwUAAADEGcumx8b1118f/v+8vDytXLlSS5cuVevWrdWpUyenNBmhAgAAAFArPPHEEyouLg7/3bx5c/385z9Xu3btnFf5o0MFAAAAxJuJ06eWGTZsmHbt2lVm+3fffadhw4Y5pUmHCgAAAECtYIyR55VdjOObb75RVlaWU5o8QwUAAACgRjv55JPleZ48z1OfPn2UlPS/blAoFNKaNWvUt29fp7TpUAEAAABxZozn9MLsyuZZWwwYMECStHz5cuXn56tu3brh71JSUtSiRQtdcMEFTmnToQIAAABQo02YMEGS1KJFC1188cVKS0ursrR5hgoAAACoDliQIuqGDBmiffv26U9/+pPGjRunHTt2SJI++eQTbdy40SlNRqgAAAAA1AqfffaZ8vLylJWVpbVr12rEiBFq0KCB5syZo/Xr1zstnU6HCnDgWb8Jz2GOci29c1Qt2e6LWOw7p3nvlgWLST1sw9vX29j+Xi3zcHkGwTZOLPLwLcOXGvtJLkHfLk5SOStxHY1tuWzDJzucz0tM0Cp8wOFtq7Z5BI1vFX6fSbYKL9nXIyC7Mh3Io+Jx9vPvKnTgxb5Dhw7Vvffeq3r16oW39+vXT5dccolTmnSoAAAAgDhjUYrY+Pjjj/XHP/6xzPYf/OAHKigocEqTZ6gAAAAA1AqpqakqLCwss/1f//qXGjZs6JQmHSoAAAAg3mK9IEUtXZjivPPO0+23366SkhJJkud5Wr9+vW655RbnZdPpUAEAAACoFX73u9+pqKhIjRo10t69e3XGGWeodevWqlevnu68806nNHmGCgAAAIg7T06LWFU6z9olKytL8+bN0/vvv6/PPvtMRUVFOuWUU5SXl+ecJh0qAAAAALVKr1691KtXrypJiyl/AAAAAGqN+fPn66c//alatWqlVq1a6ac//anefvtt5/ToUAEAAADxxqIUMfGHP/xBffv2Vb169XTdddfpuuuuU2Zmpvr166dp06Y5pcmUPwAAAAC1wl133aUHH3xQo0aNCm+79tpr9eMf/1h33XWXrr76aus0GaECAAAA4o0RqpjYuXOn+vbtW2b72WefrV27djmlSYcKAAAAQK1w3nnn6aWXXiqz/ZVXXtFPf/pTpzSZ8odqzzN2t09q4c0WSfbtJEky1XC5VNtquOzwKB8knsuusIwTizxisy/sjkHjcJzbtpWxLpNd+m552P9WQ77dPdNQwLcKH4xBmUoDQes8koxdPUp8uzySPLv0JSlg+eMIyj6PEs+uHkHLdgpYhpekYj/ZKnzQ8hiUpKDFD7DUOnXUFA899FD4/zt06KA777xTCxcuVI8ePSRJH374oT744APdcMMNTunToQIAAADizXixv9FZHW+sRsGDDz4Y8Xf9+vX15Zdf6ssvvwxvy87O1owZM3Trrbdap0+HCgAAAECNtXz5cmVlZUUtfZ6hAgAAAOLMmPh8aoMGDRpo69atkqSzzjpLO3furNL06VABAAAAqLHq1q2rbdu2SZIWLlyokpKSKk2fKX8AAABAvMVjGfNaMkKVl5enM888U+3bt5ck/exnP1NKSkq5YRcsWGCdPh0qAAAAADXWU089pdmzZ+vrr7/Wu+++qxNOOEEZGRlVlj4dKgAAAAA1VklJia644gpJ0scff6x77rlH2dnZVZY+z1ABAAAA8XZw2fRYf2qB+vXra8uWLZIkz6v6OtOhAgAAAFBj1a1bV9u3b5ckvfvuuyxKAQAAANQ0njnwiXWetcGhi1IYY1iUAgAAAAAqikUpgJqgptwBsq1HDam37R08p2rHoq2ivf9c6uDb5mE/991YxjGWFfF9+zLZxgkF7PMIWO4P37KdQr79UwN+wG6HlzrkUerZxQlY/sBLjX2ZApZxAiZon4dvV4+gZ7cvbNOXpKDlQbjPJFvnYXMO2efwW0XNkJ6ezqIUAAAAQI1m4vSpZd555x1lZ2dr//79WrVqlUpLSyudJh0qAAAAALXC3r17NXz4cGVkZOiEE07Q+vXrJUnXXHON7r77bqc06VABAAAA8cay6TExduxYffrpp1q4cKHS0tLC2/Py8vTcc885pckzVAAAAABqhZdfflnPPfecTj311Ih3Up1wwgn6+uuvndKkQwUAAADEWzyeaaqFz1Bt3bpVjRo1KrN99+7dzi/9ZcofAAAAgFqha9eueu2118J/H+xE/elPf1KPHj2c0mSECgAAAECtcNddd+mcc87Rl19+qdLSUv3+97/Xl19+qX/84x969913ndJkhAoAAACIN5ZNj4levXpp+fLlKi0tVceOHfXWW2+pUaNGWrRokbp06eKUpvUI1R/+8AfNmTNHDRo00K9//Wv16dMn/N22bdvUrVs3/fvf/3YqDAAAAABEU6tWrTR9+vQqS89qhOqhhx7STTfdpHbt2ik1NVX9+vXTlClTwt+HQiGtW7euygoHAAAA1AqMUCUsqxGqxx57TNOnT9cll1wiSbryyis1YMAA7d27V7fffntUCggAAAAA1ZVVh2rNmjXq2bNn+O+ePXtqwYIFysvLU0lJiUaPHl3V5QMAAACAasuqQ5WTk6MNGzaoRYsW4W0nnniiFixYoLPOOkvffvttVZcPNYxn7MeWYzIa7dvmEv03i3u1dRjett6xaCfrMtkfH7a/DYefkvUxZSzr4XLMWtfD+rcqyberh7EML4f3lti2rW14SfJ9u3WnQpZtG3DY4aWWZQo4/MBLA0G7PCzrXeywQLJtPYIObRuw/DHt85MtM7ALLknyHeLYsijXPoffUUwZz+nfj0rniUqz+nn06tVLc+bMKbO9Q4cOmj9/vt54440qKxgAAAAAVHdWt1nGjh2rpUuXlvvdCSecoAULFujFF1+skoIBAAAAtYVnYj87pbbMhvn5z39e4bDlDR4djVWHqlOnTurUqdNhvz/xxBN14oknWhcCAAAAAKIhKysr/P/GGL300kvKyspS165dJUlLly7Vzp07rTpeh7KfCHyIPXv2aP369dq/f3/E9iN1ugAAAAAgVmbOnBn+/1tuuUUXXXSRHn30UQWDB565DIVCuuqqq5SZmemUvlOHauvWrRo2bNhhn5kKhUJOhQEAAABqpXi8F6qWTPk71IwZM/T++++HO1OSFAwGNWbMGPXs2VP33XefdZoua7Zo9OjR2rlzpxYvXqz09HTNnTtXs2fPVps2bfTqq6+6JAkAAAAAUVVaWqqVK1eW2b5y5Ur5vtvSlE4jVAsWLNArr7yirl27KhAIqHnz5vrJT36izMxMTZkyRf3793cqDAAAAABEy7BhwzR8+HB9/fXX6tatmyRp8eLFuvvuuzVs2DCnNJ1GqHbv3q1GjRpJkurXr6+tW7dKkjp27KhPPvnEqSAVNW3aNLVo0UJpaWnq3r27lixZcsTwzz//vNq1a6e0tDR17NhRr7/+esT3xhiNHz9eTZo0UXp6uvLy8rR69epoVgEAAABIWIl8PX7//ffr5ptv1u9+9zudfvrpOv300/XAAw/opptucpruJzl2qNq2batVq1ZJkk466SQ99thj2rhxox599FE1adLEqSAV8dxzz2nMmDGaMGGCPvnkE5100knKz8/Xli1byg3/j3/8Q7/85S81fPhwLVu2TAMGDNCAAQP0z3/+Mxzm3nvv1UMPPaRHH31UixcvVp06dZSfn699+/ZFrR4AAADAoTz9b+n0mH0cypno1+OBQEA333yzNm7cqJ07d2rnzp3auHGjbr755ojnqmx4xli/p15PPfWUSktLNXToUC1dulR9+/bVjh07lJKSolmzZuniiy92KszRdO/eXT/60Y/0f//3f5Ik3/fVrFkzXXPNNRo7dmyZ8BdffLF2796tv/3tb+Ftp556qjp37qxHH31Uxhg1bdpUN9xwg2688UZJ0q5du9S4cWPNmjVLAwcOrFC5CgsLlZWVpd46X0lexd48HkhLq1C4Q3np6XbhM+zCS5JSU6yCmzTL8Cn2s0z9NLs4fqr9jyGUbHdvwU+1Cx9Ksb934SfbneZCdrviQBzLPPyKHd6HhLc/VfuWh4htmVziGMtDyqVMJsnuVGzbTjHJwzJ9STJByzhJ9vPbPctyeZZ5BIP2ZQpa5pGUZL/YU1LALo9kyzySg/ZlSrGMkxKwzyM1qdQyD9vw9mVKD5ZYhU8N2pVJsq9HqmX4tIBdHSQp1YtBHhZx9haV6pYf/V27du1yXs0tGg5eRza/5w6n68PK8Pft07pbbrVqk+p6PW6jtLRUCxcu1Ndff61LLrlE9erV07fffqvMzEzVrVvXOj2nEapLL71UQ4cOlSR16dJF69at00cffaQNGzZErTO1f/9+LV26VHl5eeFtgUBAeXl5WrRoUblxFi1aFBFekvLz88Ph16xZo4KCgogwWVlZ6t69+2HTlKTi4mIVFhZGfAAAAIBE9P3r2uLi4nLDVafrcVfr1q1Tx44ddf755+vqq68OP7p0zz33hDt0tpwWpbj99tt14403KiMjQ5KUkZGhU045RXv37tXtt9+u8ePHOxXmSLZt26ZQKKTGjRtHbG/cuHG5K3VIUkFBQbnhCwoKwt8f3Ha4MOWZMmWKJk2aZF0HIKoclj61fUO69RvVY7Acq8tb3m3j2GbhUibruQIubRvl/W0/38GBsR/1tJ2IYV9vh5FY33J02DK8JIU8uzgByzwCnv092ZBl45Y6/JiCvl25ArIbgg44lKnYZUjZUsDyBx6U3QhmiWU7SVIgYNlWbgusVdh+h99RTBnP6RxX6TwlNWvWLGLzhAkTNHHixDLBq9P1uKvrrrtOXbt21aeffqpjjjkmvP1nP/uZRowY4ZSm0wjVpEmTVFRUVGb7nj17akVHY9y4cdq1a1f4s2HDhngXCQAAAHCyYcOGiGvbcePGxbtIUfP3v/9dt956q1JSIp+VaNGihTZu3OiUplOHyhgjr5w7X59++qkaNGjgVJCjycnJUTAY1ObNmyO2b968Wbm5ueXGyc3NPWL4g/+1SVOSUlNTlZmZGfEBAAAAnJk4faQy17WpqanlFrE6XY+78n1foVDZZyG/+eYb1atXzylNqw5V/fr11aBBA3mepx/+8Idq0KBB+JOVlaWf/OQnuuiii5wKcjQpKSnq0qWL5s+fH97m+77mz5+vHj16lBunR48eEeElad68eeHwxx9/vHJzcyPCFBYWavHixYdNEwAAAKiNasL1+Nlnn62pU6eG//Y8T0VFRZowYYL69evnlKbVpN6pU6fKGKNf/epXmjRpkrKyssLfpaSkqEWLFlHtiIwZM0ZDhgxR165d1a1bN02dOlW7d+8Ov4Rr8ODB+sEPfqApU6ZIOjBH8owzztDvfvc79e/fX88++6w+/vhj/fGPf5R0oAFHjx6tO+64Q23atNHxxx+v2267TU2bNtWAAQOiVg8AAAAgESX69fjvfvc75efnq0OHDtq3b58uueQSrV69Wjk5Ofrzn//slKZVh2rIkCGSDvQkf/zjHyspKfoPWR7q4osv1tatWzV+/HgVFBSoc+fOmjt3bvghtvXr1ysQ+N+gW8+ePfXMM8/o1ltv1W9+8xu1adNGL7/8sk488cRwmJtvvlm7d+/WyJEjtXPnTvXq1Utz585VWoyXrQQAAEAtdsgUvJjmaSnRr8ePPfZYffrpp3ruuef06aefqqioSMOHD9egQYOUbvmKooOc3kMlSV9//bVmzpypr7/+Wr///e/VqFEjvfHGGzruuON0wgknOBUmUfEeKovwvIeq4nnYvofK6X1M0X0Ple17rlzyMA73dazfp2WZh1OZquF7qGzrYZu+Uxzb91ZJ1u+uCtiGdyhTwPLdVS7vobJ9P5bte6WSHd6/ZfseKpd3Xdm+w8n2vVIpTu+IssvD9h1RksO7rizf+eRSJts4yZ79/rZ5d9W+olLd1n1B9X0P1V13xuc9VL/5bbVrk0TjtCjFu+++q44dO2rx4sWaM2dOeMW/Tz/9VBMmTKjSAgIAAAA1nWfi86ltgsGgzjzzTO3YsSNi++bNmxUM2t+Ulxw7VGPHjtUdd9yhefPmRSw5eNZZZ+nDDz90KggAAAAARJMxRsXFxeratau++OKLMt+5cOpQff755/rZz35WZnujRo20bds2p4IAAAAAtVYcl02vTTzP04svvqhzzz1XPXr00CuvvBLxnQunDlV2drY2bdpUZvuyZcv0gx/8wKkgAAAAABBNxhgFg0H9/ve/1/3336+LL75Yd9xxh/PolGS5yt9BAwcO1C233KLnn39enufJ93198MEHuvHGGzV48GDnwgAAAABALIwcOVJt2rTRhRdeqPfee885HacO1V133aWrr75azZo1UygUUocOHVRaWqpBgwbp1ltvdS4MqphvvwKTtUr05hNaLa12LNg+IOu0K2wjRTu8QxyXSQnGWMay/X3HoN5Oefh29Ta24R3metg2re/bZxIIWK4caZlHyOEgDAUsV1B0qHeJZ/dQecDypONSJus8HA6qgMvSn9WMH3A4qCwOqX0xuCyqlARZNj3RNW/ePGLxiTPPPFMffvihzj33XOc0nX59KSkpmj59usaPH6/PP/9cu3fv1sknn6zWrVs7FwQAAAAAomnNmjVltrVu3VrLli3T5s2bndJ0vp3x+OOP68EHH9Tq1aslSW3atNHo0aN1+eWXuyYJAAAA1ErxWMa8Ni6bfjhpaWlq3ry5U1ynDtX48eP1wAMP6JprrlGPHj0kSYsWLdL111+v9evX6/bbb3cqDAAAAABUpQYNGuhf//qXcnJyVL9+/SOu5vf991NVhFOH6pFHHtH06dP1y1/+MrztvPPOU6dOnXTNNdfQoQIAAABQLTz44IOqV6+eJGnq1KlVnr5Th6qkpERdu3Yts71Lly4qLS2tdKEAAACAWsV4Bz6xzrMWGDJkSLn/X1WcOlSXXXaZHnnkET3wwAMR2//4xz9q0KBBVVIwAAAAAKiswsLCCofNzMy0Tr/CHaoxY8aE/9/zPP3pT3/SW2+9pVNPPVWStHjxYq1fv573UAEAAAC2WDY9arKzs4/43JR04IW/nucpFApZp1/hDtWyZcsi/u7SpYsk6euvv5Yk5eTkKCcnR1988YV1IQAAAAAgGt55552opl/hDlW0CwIAAADUViybHj1nnHFGVNNP/NdqAwAAAICFPXv2aP369dq/f3/E9k6dOlmnRYcKAAAAQK2wdetWDRs2TG+88Ua537s8QxWobKEAAAAAVJKJ06eWGT16tHbu3KnFixcrPT1dc+fO1ezZs9WmTRu9+uqrTmkyQoVIpgb8svx4F6Asz6VdLaN4Lu+SsC2WdZns621kWY8YHLK2c8xddneNyMOlTL7d/nZ6ZUrAtuKWZfIdjnPP7n6m79mf2HzLtg0dZQWs77Pdd5IU8u3q7bK7PcsDPaCgQy6IhpDLfX6LKPtrwjUOKm3BggV65ZVX1LVrVwUCATVv3lw/+clPlJmZqSlTpqh///7WaTJCBQAAAMSb+d/CFLH61MYRqt27d6tRo0aSpPr162vr1q2SpI4dO+qTTz5xSpMOFQAAAIBaoW3btlq1apUk6aSTTtJjjz2mjRs36tFHH1WTJk2c0mTKHwAAAIBa4brrrtOmTZskSRMmTFDfvn319NNPKyUlRbNmzXJKkw4VAAAAEG/xmIJXC6f8XXrppeH/79Kli9atW6eVK1fquOOOU05OjlOadKgAAAAA1EoZGRk65ZRTKpUGHSoAAAAg3hihigljjF544QW988472rJli3w/chXVOXPmWKdJhwoAAABArTB69Gg99thjOvPMM9W4cWN5lq+MKA8dKgAAACDOwkuZxzjP2ubJJ5/UnDlz1K9fvypLk2XTAQAAANQKWVlZatmyZZWmSYcKAAAAQK0wceJETZo0SXv37q2yNJnyBwAAAKBWuOiii/TnP/9ZjRo1UosWLZScnBzx/SeffGKdJh0qANHjMjfbMo7L/G/bOCYGZTLG7qFYz7fPxDILef7Rw0Tw7R/sNYEYTOC3LJexrbfDA83Gcn6IcWhb37fLxLYaIbvgkqSSUC18YKMW82V3UKWoNEolOaDY9reNGmnIkCFaunSpLr30UhalAAAAAGoMlk2Piddee01vvvmmevXqVWVp8gwVAAAAgFqhWbNmyszMrNI06VABAAAAqBV+97vf6eabb9batWurLE2m/AEAAABxxnuoYuPSSy/Vnj171KpVK2VkZJRZlGLHjh3WadKhAgAAAFArTJ06tcrTpEMFAAAAVAe1cMQolkpKSvTuu+/qtttu0/HHH19l6fIMFQAAAIAaLzk5WS+++GKVp0uHCgAAAIg3E6dPLTNgwAC9/PLLVZomU/4AAAAA1Apt2rTR7bffrg8++EBdunRRnTp1Ir6/9tprrdOkQwUAAACgVnj88ceVnZ2tpUuXaunSpRHfeZ5HhwoAAABIRCybHhtr1qyp8jTpUAGqnScUyaHeMWgn2zIZlzJFux4O6cei3p5leGMsY7gUyo9yeMm+4pZ5GM82A8n4dm3lO+ShkF0czzIP2/CS5Pt2j25bVkGS5Fn+mAKWZSp1+QcjZB+luvGN/WP3vuU5JGR7zrHMY38N2A+oWua//265nM8OxaIUAAAAQLyxKEXMPPHEE+rYsaPS09OVnp6uTp066cknn3ROjxEqAAAAALXCAw88oNtuu02jRo3Sj3/8Y0nS+++/ryuuuELbtm3T9ddfb50mHSoAAAAAtcLDDz+sRx55RIMHDw5vO++883TCCSdo4sSJdKgAAACARMSiFLGxadMm9ezZs8z2nj17atOmTU5p8gwVAAAAgFqhdevW+stf/lJm+3PPPac2bdo4pckIFQAAABBv8VgkohaOUE2aNEkXX3yx3nvvvfAzVB988IHmz59fbkerIhihAgAAAFArXHDBBVq8eLFycnL08ssv6+WXX1ZOTo6WLFmin/3sZ05pMkIFAAAAxBsjVDHTpUsXPfXUU1WWHiNUAAAAAOCIESoAAAAANVogEJDneUcM43meSktLrdOmQwUAAADEGcumR9dLL7102O8WLVqkhx56SL7vO6VNhwoAAABAjXb++eeX2bZq1SqNHTtWf/3rXzVo0CDdfvvtTmnToUL151fD2ye2RXKogvVdoxg0k22ZXO58mVjs7ijXw6kOsdjftvW2vVHncGPPBI48/eL7rMskydg+LWybh10VJEnGt4zkkoflY9KhkH0etZFv7HeGH4x+49qWy7f8YaQE7adB2ZYp1eFAt6nH/up+jLMoRcx8++23mjBhgmbPnq38/HwtX75cJ554onN6LEoBAAAAoMbbtWuXbrnlFrVu3VpffPGF5s+fr7/+9a+V6kxJjFABAAAAqOHuvfde3XPPPcrNzdWf//zncqcAuqJDBQAAAMQbU/6iauzYsUpPT1fr1q01e/ZszZ49u9xwc+bMsU6bDhUAAACAGm3w4MFHXTbdFR0qAAAAIM5YNj26Zs2aFbW0WZQCAAAAABzRoQIAAAAAR0z5AwAAAOKNRSkSFiNUAAAAAOCIESoAAAAgzliUInElzAjVjh07NGjQIGVmZio7O1vDhw9XUVHREcNfc801atu2rdLT03Xcccfp2muv1a5duyLCeZ5X5vPss89GuzoAAABAjVWbrt0TZoRq0KBB2rRpk+bNm6eSkhINGzZMI0eO1DPPPFNu+G+//Vbffvut7r//fnXo0EHr1q3TFVdcoW+//VYvvPBCRNiZM2eqb9++4b+zs7OjWRUgKpzuMkX7zlQsyuSQh21bGcvwLvvCOg/f4V0avl0mxjYLhzJ50S6TJPm2ESwzcSiTCdnez7SuhEOMhLnHWqUsD0ElB+1b1pZxONCTFbIK71vm4Tsc6EmeZZmc8qj4/iix3dmxVsOeoapN1+4J0aFasWKF5s6dq48++khdu3aVJD388MPq16+f7r//fjVt2rRMnBNPPFEvvvhi+O9WrVrpzjvv1KWXXqrS0lIlJf2v6tnZ2crNzY1+RQAAAIAarrZduyfE7ahFixYpOzs7vEMkKS8vT4FAQIsXL65wOrt27VJmZmbEDpGkq6++Wjk5OerWrZtmzJghc5RbxcXFxSosLIz4AAAAAIno+9e1xcXFlUqvul27R1tCjFAVFBSoUaNGEduSkpLUoEEDFRQUVCiNbdu2afLkyRo5cmTE9ttvv11nnXWWMjIy9NZbb+mqq65SUVGRrr322sOmNWXKFE2aNMm+IgAAAEB54jjlr1mzZhGbJ0yYoIkTJzonW92u3aMtrh2qsWPH6p577jlimBUrVlQ6n8LCQvXv318dOnQoc3Dcdttt4f8/+eSTtXv3bt13331H3Cnjxo3TmDFjItL//oEIAAAAJIINGzYoMzMz/Hdqamq54RL12j3a4tqhuuGGGzR06NAjhmnZsqVyc3O1ZcuWiO2lpaXasWPHUedPfvfdd+rbt6/q1aunl156ScnJyUcM3717d02ePFnFxcWHPZhSU1MP+x0AAABgy5PTGjeVzlOSMjMzIzpUh5Oo1+7RFtcOVcOGDdWwYcOjhuvRo4d27typpUuXqkuXLpKkBQsWyPd9de/e/bDxCgsLlZ+fr9TUVL366qtKS0s7al7Lly9X/fr16TABAAAAh+DavXwJ8QxV+/bt1bdvX40YMUKPPvqoSkpKNGrUKA0cODC8SsjGjRvVp08fPfHEE+rWrZsKCwt19tlna8+ePXrqqaciFo9o2LChgsGg/vrXv2rz5s069dRTlZaWpnnz5umuu+7SjTfeGM/qAgAAAAmrtl27J0SHSpKefvppjRo1Sn369FEgENAFF1yghx56KPx9SUmJVq1apT179kiSPvnkk/AqIq1bt45Ia82aNWrRooWSk5M1bdo0XX/99TLGqHXr1nrggQc0YsSI2FUMAAAAqGHvoapN1+6eifc6gzVAYWGhsrKy1FvnK8k78jzPgwIVGML8Pi893S58msPQp2Uck5ZiFz61Yu1zKD8laBc+1f4+gZ9i9waBkGV4P8V+VrSfbPnSxST7PEK2eVjuPt/hlo1tPWzLJEnGsly29TB2h2zM8jBJdqd73zKPWJTJBO3/ybLNw/qFIg5lso3jObxM1rPMIxCwDO9QpqBlHNvwkpQUsIsTsAzv8mJf2zLZhpek5KDdS3SDFi/ElaQUy/Ql+xf7uuVh8WLf3fv1Qt4T4aW4q4uD15EdrrxLwVT768PKCBXv05eP/KbatUmiSZgRKgAAAKCm8syBT6zzROUlxIt9AQAAAKA6YoQKNY/LLFbLKLZ3dCxnVhwQg7tGnm1bGbvpeC53vmzL5PkOi8xa7g/b/WccblVZHyMOeRjbetvm4XKc28bxHPa35SwiY31CsAvuEse41Nsyiv3uq573ZI3leSpoGd6Fb5mHy+nfNo+g5bRC23aVpNKA3TFS6jBv2GZaYUlpNR+OqWHPUNUm1fNsCAAAAAAJgA4VAAAAADhiyh8AAABQHTAFLyExQgUAAAAAjhihAgAAAOKMZdMTFyNUAAAAAOCIDhUAAAAAOGLKHwAAABBvvIcqYTFCBQAAAACOGKECAAAA4oxFKRIXI1QAAAAA4IgRKgAAACDeeIYqYdGhQmwZfrkVZT0MH4OmtS2T0+62jOMyXcG6XDEok3y74MYyvCR5nmcXwbetuF1wSTK+ZSSXxrWst20zGYd6x4J1S1lGcDgEZTsxxuUcEgzaRbLNw+nnbflbCtn+LiQlB+32SNDywA359pOaggG7MqUEQtZ5lAYqXq7SkNtRCxwNU/4AAAAAwBEjVAAAAECcsShF4mKECgAAAAAcMUIFAAAAxBuLUiQsRqgAAAAAwBEdKgAAAABwxJQ/AAAAIN6Y8pewGKECAAAAAEeMUAEAAABxxrLpiYsRKgAAAABwxAgVAAAAEG88Q5Ww6FCh2quWw9HGslDGi045DuHUTrZxoh1e9vWw3RUHItkF93zL9G3Dy/4QsS6TJFnmYWzzcDjM7aO4/JbsdrixzCP6JXJkeVCZYPR/fH7Q7qDyTNA6D9sD1w9YtpPD+dwP2LVVwCUP327SUSBg107JlvtOkoKW9QhZ1kGSghb1KC11OXECR8eUPwAAAABwxAgVAAAAEGeeMfKcpl1ULk9UHiNUAAAAAOCIESoAAAAg3liUImExQgUAAAAAjuhQAQAAAIAjpvwBAAAAceaZ2L8qplq+miYBMUIFAAAAAI4YoQIAAADijUUpEhYjVAAAAADgiBEqAAAAIM54hipx0aFC5fjV75focnKwf1O4Z5+JLdsiObzt3DN29bBtW5d9YVsNz+EY9HzL/Wc5lm98u/CS5NnOF3DIw/awDYTsIvjVdu6I7e/Vrh7G4Xxg+9swQessHM4hlsEdymSM3YHuBeyPKRO0zMPypGNszx+yr0cgYD+BKBSwOynY5lEast8XQcsyBR32t00eoRKXEydwdEz5AwAAAABHjFABAAAA8caiFAmLESoAAAAAcMQIFQAAABBnLEqRuBihAgAAAABHdKgAAAAAwBFT/gAAAIB4Y1GKhMUIFQAAAAA4YoQKAAAAqAZYJCIxMUIFAAAAAI4YoQIAAADizZgDn1jniUpjhAoAAAAAHDFCBTiwnePsOdwBss/Ds87DenUf2zL5luk7xDEOt4Ws87AM7znsCoXsgrvsbtnuD8s8PJeKV8sHBuzq4fL7NkHLtnJppqBlFrZ5+A77O2iXiQk4tK1vF8ezzMOlTJ7lecp3+F14Abv9EbCsh214SQoF7CoeCNj/o+FZHOihEod/lIAKoEMFAAAAxJlnYn+PqVre00pATPkDAAAAAEeMUAEAAADxxot9ExYjVAAAAADgiA4VAAAAADhiyh8AAAAQZ57vtjpuZfNE5TFCBQAAAACOGKECAAAA4o1FKRIWI1QAAAAA4IgOFQAAAAA4YsofAAAAEGeeOfCJdZ6oPDpUiC3j8Mu1jeOUh32UqKdvG8chD9vVfTzfLhMT8OwykEuZrLOw/hfE8y3rYV9t6ziBkH0W1XExJ8/YVdwPRv9ff9vdZyzr8N9IduEdfkvWOzxoGd5hjov16dlzqHfA9jxlG94quCTJs8zDtg6S5Fm2lW9ZD8/hytsL2B2Enmd7EEoBi7YKlZRapw9UBB0qAAAAIN6McbspXNk8UWkJ8wzVjh07NGjQIGVmZio7O1vDhw9XUVHREeP07t1bnudFfK644oqIMOvXr1f//v2VkZGhRo0a6aabblJpKXcwAAAAAFe16do9YUaoBg0apE2bNmnevHkqKSnRsGHDNHLkSD3zzDNHjDdixAjdfvvt4b8zMjLC/x8KhdS/f3/l5ubqH//4hzZt2qTBgwcrOTlZd911V9TqAgAAAByqpj1DVZuu3ROiQ7VixQrNnTtXH330kbp27SpJevjhh9WvXz/df//9atq06WHjZmRkKDc3t9zv3nrrLX355Zd6++231bhxY3Xu3FmTJ0/WLbfcookTJyolJSUq9QEAAABqqtp27Z4QU/4WLVqk7Ozs8A6RpLy8PAUCAS1evPiIcZ9++mnl5OToxBNP1Lhx47Rnz56IdDt27KjGjRuHt+Xn56uwsFBffPHFYdMsLi5WYWFhxAcAAABIRN+/ri0uLq5UetXt2j3aEmKEqqCgQI0aNYrYlpSUpAYNGqigoOCw8S655BI1b95cTZs21WeffaZbbrlFq1at0pw5c8LpHrpDJIX/PlK6U6ZM0aRJk1yrAwAAAEQyiv6qw+XlKalZs2YRmydMmKCJEyc6J1vdrt2jLa4dqrFjx+qee+45YpgVK1Y4pz9y5Mjw/3fs2FFNmjRRnz599PXXX6tVq1bO6Y4bN05jxowJ/11YWFjmQAQAAAASwYYNG5SZmRn+OzU1tdxwiXrtHm1x7VDdcMMNGjp06BHDtGzZUrm5udqyZUvE9tLSUu3YseOwcyzL0717d0nSV199pVatWik3N1dLliyJCLN582ZJOmK6qamphz3QAAAAAFvxXJQiMzMzokN1OIl67R5tce1QNWzYUA0bNjxquB49emjnzp1aunSpunTpIklasGCBfN8PN3RFLF++XJLUpEmTcLp33nmntmzZEh6WnDdvnjIzM9WhQwfL2gAAAAA1F9fu5UuIRSnat2+vvn37asSIEVqyZIk++OADjRo1SgMHDgyvErJx40a1a9cu3Gv9+uuvNXnyZC1dulRr167Vq6++qsGDB+v0009Xp06dJElnn322OnTooMsuu0yffvqp3nzzTd166626+uqrGYECAAAAHNS2a/eE6FBJB1b8aNeunfr06aN+/fqpV69e+uMf/xj+vqSkRKtWrQqvBJKSkqK3335bZ599ttq1a6cbbrhBF1xwgf7617+G4wSDQf3tb39TMBhUjx49dOmll2rw4MERa98DAAAAUWdMfD5RUpuu3T1jotiStURhYaGysrLUW+cryUuuUJxAWpp1Pl56ul34NIeeeqrd+v3GOrz9LFOTYhfHTwna55Fsd28hZBnetwwvSSbJs8zDLrwk+bZ5WO4+P+hSJrvwxn53W8exrUcsyhSbeltmYL+77evtcBvQBO3+mbPNw6VMtrczneodiG69XW7J2pYpJnnYHrcOx7ms6+1waWZbLss8vBjU23N4gMizOEb8Pfu07vLJ2rVrV4WeF4qVg9eRp/a7XUnJ9teHlVFask8fvj6+2rVJokmIZdMBAACAmiyei1KgchJmyh8AAAAAVDeMUAEAAADxFscX+6JyGKECAAAAAEd0qAAAAADAEVP+AAAAgDhjUYrExQgVAAAAADhihAoAAACIN98c+MQ6T1QaI1QAAAAA4IgOFQAAAAA4YsofAAAAEG+8hyphMUIFAAAAAI4YoUL1Zyxvn7jcbfHtgtsuM+qyLKlttV3q7Vk+jOr5nl14h4oHQnZ5WBbpAMs49vVwKVQMWFYjYPvTc7lFZ9u0DnnYHre29TBB++Pcuq1c6h2wrLdtBg5lsm5bl3p70d3f1j8MSbIuk0se0Q1vXP4hs93fLnlY1MMvDtqnH0Oe4rBsemyzq7EYoQIAAAAAR4xQAQAAAPFmjMP0lCrIE5XGCBUAAAAAOKJDBQAAAACOmPIHAAAAxJln4rAoBTP+qgQjVAAAAADgiBEqAAAAIN54sW/CYoQKAAAAABzRoQIAAAAAR0z5AwAAAOLMM0ZejN8LFev8aipGqAAAAADAESNUqBzbOxt+dIpxKJe7LdYxbCM4lMmzbCvb8AcieVHNwzL5/0ayaysv5JKJnYDl7jNB+/3ty3JfONxU9IN24W3zMA636GzjxCIP2+PWOByD1vVwqrfdDjS21XAqk2UmDj9v63rY7m+XW9G2ebicPG1/S9bt5HDSsW0rp/1tUa7iaj6O4Csm10ll8kSlVfMjCwAAAACqL0aoAAAAgDjjGarExQgVAAAAADiiQwUAAAAAjpjyBwAAAMSbkcMqWVWQJyqNESoAAAAAcMQIFQAAABBvxji9ZqXSeaLSGKECAAAAAEd0qAAAAADAEVP+AAAAgDjzzIFPrPNE5TFCBQAAAACOGKGqyarhg4Yub+Q2vmUE3z4PzzKOdfiQVfD/RvJikEd06xGQXR0kyXZ3BxzWfDXGrlx+0DYDy/CSApa/DeNwOyzgW+4PyzxcymQbJxZ5WNfb/jC3L5NLHpbnkFjUOyZ5WJ7X7PeFfaGs6+G0v6OcR0zq7XDytCiXt6+ajyOwKEXCquZHFgAAAABUX4xQAQAAAHHm+Qc+sc4TlccIFQAAAAA4okMFAAAAAI6Y8gcAAADEG4tSJCxGqAAAAADAESNUAAAAQLwZOb12o9J5otIYoQIAAAAAR3SoAAAAAMARU/4AAACAOPOMkRfjRSJinV9NxQgVAAAAADhihAqRbO9UxODOhvXdE4ciGcs8bMvk+Z5VeEmSb5lHyD4Lya5cAcvGdXkBe8CyTC6HoAnYHlOWZXK4VWUsG8slD1nW2zYPp3p7lr8Nlzxs62H7c3Wqt2UEh1OI9f6wzMO6DnI8bm1ZHlOx2BexaFvrcsWkTJbnHNvzgWRVD2+fSyViiGXTExYjVAAAAADgiBEqAAAAIN6M3KZ2VDZPVBojVAAAAADgiA4VAAAAADhiyh8AAAAQZyybnrgYoQIAAAAAR4xQAQAAAPFmFIdl02ObXU3FCBUAAAAAOKJDBQAAAACOmPIHAAAAxJsxcZjyx5y/qsAIFQAAAAA4YoQKAAAAiDdfkheHPFFpdKgQWy5Dy7ZxHPLwfLs4JmQX3vMc6h2yC+7F5CRsl0nAYV8Yy5O7CVpnIROwq4f18eEw9m8s959tHQ7EsYxgXSbL9CUZ299GTNrWMgOH356x/cG6/L6jXG/bdpVkXw+ntrWPYyUWZYrF/o5FmSwjRXvfhYpj3VtBbcGUPwAAAABwxAgVAAAAEGeeMfJivEhErPOrqRihAgAAAABHjFABAAAA8cay6QkrYUaoduzYoUGDBikzM1PZ2dkaPny4ioqKDht+7dq18jyv3M/zzz8fDlfe988++2wsqgQAAADUSLXp2j1hRqgGDRqkTZs2ad68eSopKdGwYcM0cuRIPfPMM+WGb9asmTZt2hSx7Y9//KPuu+8+nXPOORHbZ86cqb59+4b/zs7OrvLyAwAAAIdVw0aoatO1e0J0qFasWKG5c+fqo48+UteuXSVJDz/8sPr166f7779fTZs2LRMnGAwqNzc3YttLL72kiy66SHXr1o3Ynp2dXSYsAAAAAHu17do9Iab8LVq0SNnZ2eEdIkl5eXkKBAJavHhxhdJYunSpli9fruHDh5f57uqrr1ZOTo66deumGTNmyBylt15cXKzCwsKIDwAAAJCIvn9dW1xcXKn0qtu1e7QlxAhVQUGBGjVqFLEtKSlJDRo0UEFBQYXSePzxx9W+fXv17NkzYvvtt9+us846SxkZGXrrrbd01VVXqaioSNdee+1h05oyZYomTZpkXxEAAACgPHGc8tesWbOIzRMmTNDEiROdk61u1+7RFtcO1dixY3XPPfccMcyKFSsqnc/evXv1zDPP6Lbbbivz3aHbTj75ZO3evVv33XffEXfKuHHjNGbMmPDfhYWFZQ5EAAAAIBFs2LBBmZmZ4b9TU1PLDZeo1+7RFtcO1Q033KChQ4ceMUzLli2Vm5urLVu2RGwvLS3Vjh07KjR/8oUXXtCePXs0ePDgo4bt3r27Jk+erOLi4sMeTKmpqYf9DgAAALDmS/LikKekzMzMiA7V4STqtXu0xbVD1bBhQzVs2PCo4Xr06KGdO3dq6dKl6tKliyRpwYIF8n1f3bt3P2r8xx9/XOedd16F8lq+fLnq169fPTtMxo9+Hr7lULPt0LTLUHbIMk7APg/Ps4tjGz58xrLJw1ieVY39I5HGsq2Mb1cm2/CSQzVKrbOQCVrWO2BZb4d/EK3rHYM8rOsRkzI5ZGL7U4pFvW3PIU55WEaIQb1tufyWor6/XViXKQaFqin720Kgco8FQVy7H05CPEPVvn179e3bVyNGjNCjjz6qkpISjRo1SgMHDgyvErJx40b16dNHTzzxhLp16xaO+9VXX+m9997T66+/Xibdv/71r9q8ebNOPfVUpaWlad68ebrrrrt04403xqxuAAAAQE1S267dE6JDJUlPP/20Ro0apT59+igQCOiCCy7QQw89FP6+pKREq1at0p49eyLizZgxQ8cee6zOPvvsMmkmJydr2rRpuv7662WMUevWrfXAAw9oxIgRUa8PAAAAcJBnjLwYL0oRzfxq07W7Z+K9zmANUFhYqKysLPXW+UrykisUJ5CWZp2Pl2Y3lOk55KHkipX/IJNqF17J9n14EwzahU+2Cy9JSrKbd+RbhjdBh3kMlnH8oMuUP8vwlmVyqbft9DqnqVCWh0j1nPIX/emUTPmLTvo1Jo/qOgWMKX8VU1P2t4VQ8T59+dhvtGvXrgo9LxQrB68j8344RknB2E5bKw0V6+1/PVDt2iTRJMwIFQAAAFBjxXHZdFROQrzYFwAAAACqI0aoAAAAgHjzjWS9inAV5IlKY4QKAAAAABzRoQIAAAAAR0z5AwAAAOKNRSkSFiNUAAAAAOCIESoAAAAg7uIwQiVGqKoCHaoazOWdzbZvzPZCvlV4E7ALL0me7QsOQ9ZZWJ9ObId2jcPbCo1vFycQcjgp2r6oN2QZ3vYlvbJ/saPTS5MtjykTsGxbp5ew2r7Q2H5/27882DL9mLx01+E4r5Yveo3+y6Kj/SLW6vhCXCkG5aoBL7iVVHPqYSG0n84DooMpfwAAAADgiBEqAAAAIN5YlCJhMUIFAAAAAI4YoQIAAADizTeK+SIRPiNUVYERKgAAAABwxAgVAAAAEG/GP/CJdZ6oNEaoAAAAAMARHSoAAAAAcMSUPwAAACDeWDY9YTFCBQAAAACOGKECAAAA4o1l0xMWI1QAAAAA4IgRqprM5a6D7Vxa2/C+w/KcpXbBPfscJNti2dYjYH/vwgta1sSzr7mxzMPY5uGyMyzzMAGHTCx3h3W9XVhm4VSmKFfDuKTvsv8sWZcrBvvbqa2iLRZlqob1ro6/7+rIVNdb8BZtW1oSil45UKvRoQIAAADijUUpElZ1vd8AAAAAANUeI1QAAABAvBnFYYQqttnVVIxQAQAAAIAjRqgAAACAeOMZqoTFCBUAAAAAOKJDBQAAAACOmPIHAAAAxJvvy/7FmFWRJyqLESoAAAAAcMQIFQAAABBvLEqRsBihAgAAAABHjFDFiXG4I+D5lnGMw7zYUMguvOfZBXe5ExKw6/cbh/nAnmU9bMvkBSzTl6zb1jq8JGNdb+ss7MWg3ras28lFdWzb6pa+I1M9i2XH5RxSDcXkt1QT0ExRUVpaHO8ioIaiQwUAAADEG1P+EhZT/gAAAADAESNUAAAAQLz5RlKMR4xsHydBuRihAgAAAABHjFABAAAAcWaML+OyoFgl80TlMUIFAAAAAI7oUAEAAACAI6b8AQAAAPFmTOwXiWDZ9CrBCBUAAAAAOGKECgAAAIg3E4dl0xmhqhKMUAEAAACAI0aoEogJhazCe6WefR62dypKS+3Cew59+IBdPTzPvt5yiWMjEIN7Fw51iHKt3UR7X8SC5TGLKKsJxxRqF47ZqPD84ngXATUUHSoAAAAg3nxf8mL8XijeQ1UlmPIHAAAAAI4YoQIAAADijUUpEhYjVAAAAADgiBEqAAAAIM6M78vE+BkqwzNUVYIRKgAAAABwRIcKAAAAABwx5Q8AAACINxalSFiMUAEAAACAI0aoAAAAgHjzjeQxQpWIGKECAAAAAEd0qAAAAADAEVP+4sQUF8ckDgAAAKRSUxLvIhyZMZJi/F4opvxVCUaoAAAAAMARI1QAAABAnBnfyMR4UQrDCFWVYIQKAAAAABzRoQIAAAAAR0z5AwAAAOLN+Ir9ohQxzq+GYoQKAAAAABwxQgUAAADEGYtSJK6EGaG688471bNnT2VkZCg7O7tCcYwxGj9+vJo0aaL09HTl5eVp9erVEWF27NihQYMGKTMzU9nZ2Ro+fLiKioqiUAMAAACgdqhN1+4J06Hav3+/LrzwQl155ZUVjnPvvffqoYce0qOPPqrFixerTp06ys/P1759+8JhBg0apC+++ELz5s3T3/72N7333nsaOXJkNKoAAAAAlM/48flESW26dvdMgo31zZo1S6NHj9bOnTuPGM4Yo6ZNm+qGG27QjTfeKEnatWuXGjdurFmzZmngwIFasWKFOnTooI8++khdu3aVJM2dO1f9+vXTN998o6ZNm1aoTIWFhcrKylJvna8kL7lS9QMAAEDVKzUlWqhXtGvXLmVmZsa7OGHxvI6MRZtUx2v3qlZjn6Fas2aNCgoKlJeXF96WlZWl7t27a9GiRRo4cKAWLVqk7Ozs8A6RpLy8PAUCAS1evFg/+9nPyk27uLhYxcXF4b937dolSSpViZRQ3VMAAIDaoVQlkqrvc0PxuI482CaFhYUR21NTU5WamhrTskTz2j3aamyHqqCgQJLUuHHjiO2NGzcOf1dQUKBGjRpFfJ+UlKQGDRqEw5RnypQpmjRpUpnt7+v1yhYbAAAAUbR9+3ZlZWXFuxhhKSkpys3N1fsF8bmOrFu3rpo1axaxbcKECZo4cWJMyxHNa/doi2uHauzYsbrnnnuOGGbFihVq165djEpUMePGjdOYMWPCf+/cuVPNmzfX+vXrq9UPtDorLCxUs2bNtGHDhmo17F7d0W72aDM3tJs92swN7WaPNnOza9cuHXfccWrQoEG8ixIhLS1Na9as0f79++OSvzFGnudFbDvc6FSiXrtHW1w7VDfccIOGDh16xDAtW7Z0Sjs3N1eStHnzZjVp0iS8ffPmzercuXM4zJYtWyLilZaWaseOHeH45TncMGhWVhYnNkuZmZm0mQPazR5t5oZ2s0ebuaHd7NFmbgKB6rcmW1pamtLS0uJdjKNK1Gv3aItrh6phw4Zq2LBhVNI+/vjjlZubq/nz54d3QmFhoRYvXhxebaRHjx7auXOnli5dqi5dukiSFixYIN/31b1796iUCwAAAEhEXLuXr/p10Q9j/fr1Wr58udavX69QKKTly5dr+fLlEevOt2vXTi+99JIkyfM8jR49WnfccYdeffVVff755xo8eLCaNm2qAQMGSJLat2+vvn37asSIEVqyZIk++OADjRo1SgMHDozbKiEAAABAoqtN1+4JsyjF+PHjNXv27PDfJ598siTpnXfeUe/evSVJq1atCq+4J0k333yzdu/erZEjR2rnzp3q1auX5s6dGzGk+vTTT2vUqFHq06ePAoGALrjgAj300ENWZUtNTdWECRNivhpKIqPN3NBu9mgzN7SbPdrMDe1mjzZzQ7vFVnW+dq9qCfceKgAAAACoLhJmyh8AAAAAVDd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhqoA777xTPXv2VEZGhrKzsysUxxij8ePHq0mTJkpPT1deXp5Wr14dEWbHjh0aNGiQMjMzlZ2dreHDh0csJZnIbOu2du1aeZ5X7uf5558Phyvv+2effTYWVYoJl2Oid+/eZdrkiiuuiAizfv169e/fXxkZGWrUqJFuuukmlZaWRrMqMWPbZjt27NA111yjtm3bKj09Xccdd5yuvfbaiFWGpJp3rE2bNk0tWrRQWlqaunfvriVLlhwx/PPPP6927dopLS1NHTt21Ouvvx7xfUXOcTWBTbtNnz5dp512murXr6/69esrLy+vTPihQ4eWOa769u0b7WrElE2bzZo1q0x7fP/lphxrZZV33vc8T/379w+HqenH2nvvvadzzz1XTZs2led5evnll48aZ+HChTrllFOUmpqq1q1ba9asWWXC2J4rAUmSwVGNHz/ePPDAA2bMmDEmKyurQnHuvvtuk5WVZV5++WXz6aefmvPOO88cf/zxZu/eveEwffv2NSeddJL58MMPzd///nfTunVr88tf/jJKtYgt27qVlpaaTZs2RXwmTZpk6tata7777rtwOElm5syZEeEObdNE53JMnHHGGWbEiBERbbJr167w96WlpebEE080eXl5ZtmyZeb11183OTk5Zty4cdGuTkzYttnnn39ufv7zn5tXX33VfPXVV2b+/PmmTZs25oILLogIV5OOtWeffdakpKSYGTNmmC+++MKMGDHCZGdnm82bN5cb/oMPPjDBYNDce++95ssvvzS33nqrSU5ONp9//nk4TEXOcYnOtt0uueQSM23aNLNs2TKzYsUKM3ToUJOVlWW++eabcJghQ4aYvn37RhxXO3bsiFWVos62zWbOnGkyMzMj2qOgoCAiDMdaWdu3b49os3/+858mGAyamTNnhsPU9GPt9ddfN7/97W/NnDlzjCTz0ksvHTH8v//9b5ORkWHGjBljvvzyS/Pwww+bYDBo5s6dGw5jux+Ag+hQWZg5c2aFOlS+75vc3Fxz3333hbft3LnTpKammj//+c/GGGO+/PJLI8l89NFH4TBvvPGG8TzPbNy4scrLHktVVbfOnTubX/3qVxHbKnLSTFSu7XbGGWeY66677rDfv/766yYQCERcpDzyyCMmMzPTFBcXV0nZ46WqjrW//OUvJiUlxZSUlIS31aRjrVu3bubqq68O/x0KhUzTpk3NlClTyg1/0UUXmf79+0ds6969u/n1r39tjKnYOa4msG237ystLTX16tUzs2fPDm8bMmSIOf/886u6qNWGbZsd7d9VjrWKHWsPPvigqVevnikqKgpvq+nH2qEqcr6++eabzQknnBCx7eKLLzb5+fnhvyu7H1B7MeUvCtasWaOCggLl5eWFt2VlZal79+5atGiRJGnRokXKzs5W165dw2Hy8vIUCAS0ePHimJe5KlVF3ZYuXarly5dr+PDhZb67+uqrlZOTo27dumnGjBkyNeRVapVpt6efflo5OTk68cQTNW7cOO3Zsyci3Y4dO6px48bhbfn5+SosLNQXX3xR9RWJoar6He3atUuZmZlKSop813lNONb279+vpUuXRpyPAoGA8vLywuej71u0aFFEeOnAMXMwfEXOcYnOpd2+b8+ePSopKVGDBg0iti9cuFCNGjVS27ZtdeWVV2r79u1VWvZ4cW2zoqIiNW/eXM2aNdP5558fcV7iWKtYHR9//HENHDhQderUidheU481F0c7r1XFfkDtlXT0ILBVUFAgSREXsAf/PvhdQUGBGjVqFPF9UlKSGjRoEA6TqKqibo8//rjat2+vnj17Rmy//fbbddZZZykjI0NvvfWWrrrqKhUVFenaa6+tsvLHi2u7XXLJJWrevLmaNm2qzz77TLfccotWrVqlOXPmhNMt71g8+F0iq4pjbdu2bZo8ebJGjhwZsb2mHGvbtm1TKBQq9xhYuXJluXEOd8wcev46uO1wYRKdS7t93y233KKmTZtGXKD17dtXP//5z3X88cfr66+/1m9+8xudc845WrRokYLBYJXWIdZc2qxt27aaMWOGOnXqpF27dun+++9Xz5499cUXX+jYY4/lWKvAsbZkyRL985//1OOPPx6xvSYfay4Od14rLCzU3r179Z///KfSv3nUXrW2QzV27Fjdc889RwyzYsUKtWvXLkYlqv4q2maVtXfvXj3zzDO67bbbynx36LaTTz5Zu3fv1n333VetL3Kj3W6HdgQ6duyoJk2aqE+fPvr666/VqlUr53TjKVbHWmFhofr3768OHTpo4sSJEd8l4rGG6uPuu+/Ws88+q4ULF0YssjBw4MDw/3fs2FGdOnVSq1attHDhQvXp0yceRY2rHj16qEePHuG/e/bsqfbt2+uxxx7T5MmT41iyxPH444+rY8eO6tatW8R2jjUgdmpth+qGG27Q0KFDjximZcuWTmnn5uZKkjZv3qwmTZqEt2/evFmdO3cOh9myZUtEvNLSUu3YsSMcv7qpaJtVtm4vvPCC9uzZo8GDBx81bPfu3TV58mQVFxcrNTX1qOHjIVbtdlD37t0lSV999ZVatWql3NzcMqsUbd68WZJq9bH23XffqW/fvqpXr55eeuklJScnHzF8Ihxr5cnJyVEwGAzv84M2b9582DbKzc09YviKnOMSnUu7HXT//ffr7rvv1ttvv61OnTodMWzLli2Vk5Ojr776KuEvcivTZgclJyfr5JNP1ldffSWJY+1o7bZ79249++yzuv3224+aT0061lwc7ryWmZmp9PR0BYPBSh+/qL1q7TNUDRs2VLt27Y74SUlJcUr7+OOPV25urubPnx/eVlhYqMWLF4fvxPXo0UM7d+7U0qVLw2EWLFgg3/fDF8TVTUXbrLJ1e/zxx3XeeeepYcOGRw27fPly1a9fv1pf4Maq3Q5avny5JIUvPnr06KHPP/88ouMxb948ZWZmqkOHDlVTySoW7TYrLCzU2WefrZSUFL366qtllmkuTyIca+VJSUlRly5dIs5Hvu9r/vz5ESMDh+rRo0dEeOnAMXMwfEXOcYnOpd0k6d5779XkyZM1d+7ciGf7Duebb77R9u3bIzoLicq1zQ4VCoX0+eefh9uDY+3IdXz++edVXFysSy+99Kj51KRjzcXRzmtVcfyiFov3qhiJYN26dWbZsmXhZbyXLVtmli1bFrGcd9u2bc2cOXPCf999990mOzvbvPLKK+azzz4z559/frnLpp988slm8eLF5v333zdt2rSpUcumH6lu33zzjWnbtq1ZvHhxRLzVq1cbz/PMG2+8USbNV1991UyfPt18/vnnZvXq1eYPf/iDycjIMOPHj496fWLFtt2++uorc/vtt5uPP/7YrFmzxrzyyiumZcuW5vTTTw/HObhs+tlnn22WL19u5s6daxo2bFijlk23abNdu3aZ7t27m44dO5qvvvoqYknh0tJSY0zNO9aeffZZk5qaambNmmW+/PJLM3LkSJOdnR1e+fGyyy4zY8eODYf/4IMPTFJSkrn//vvNihUrzIQJE8pdNv1o57hEZ9tud999t0lJSTEvvPBCxHF18N+K7777ztx4441m0aJFZs2aNebtt982p5xyimnTpo3Zt29fXOpY1WzbbNKkSebNN980X3/9tVm6dKkZOHCgSUtLM1988UU4DMda2XY7qFevXubiiy8us702HGvfffdd+HpMknnggQfMsmXLzLp164wxxowdO9Zcdtll4fAHl02/6aabzIoVK8y0adPKXTb9SPsBOBw6VBUwZMgQI6nM55133gmH0X/fWXOQ7/vmtttuM40bNzapqammT58+ZtWqVRHpbt++3fzyl780devWNZmZmWbYsGERnbREdrS6rVmzpkwbGmPMuHHjTLNmzUwoFCqT5htvvGE6d+5s6tata+rUqWNOOukk8+ijj5YbNlHZttv69evN6aefbho0aGBSU1NN69atzU033RTxHipjjFm7dq0555xzTHp6usnJyTE33HBDxBLhicy2zd55551yf8+SzJo1a4wxNfNYe/jhh81xxx1nUlJSTLdu3cyHH34Y/u6MM84wQ4YMiQj/l7/8xfzwhz80KSkp5oQTTjCvvfZaxPcVOcfVBDbt1rx583KPqwkTJhhjjNmzZ485++yzTcOGDU1ycrJp3ry5GTFiRI27WLNps9GjR4fDNm7c2PTr18988sknEelxrJX/G125cqWRZN56660yadWGY+1w5/KD7TRkyBBzxhlnlInTuXNnk5KSYlq2bBlx3XbQkfYDcDieMQm4DjAAAAAAVAO19hkqAAAAAKgsOlQAAAAA4IgOFQAAAAA4okMFAAAAAI7oUAEAAACAIzpUAAAAAOCIDhUAAAAAOKJDBQAAAACO6FABQA3Su3dvjR49Ot7FAACg1qBDBQAImzVrlrKzs53iXnvtterSpYtSU1PVuXPnKi0XAADVFR0qAECV+dWvfqWLL7443sUAACBm6FABQA1TWlqqUaNGKSsrSzk5ObrttttkjJEkFRcX68Ybb9QPfvAD1alTR927d9fChQslSQsXLtSwYcO0a9cueZ4nz/M0ceJESdKTTz6prl27ql69esrNzdUll1yiLVu2ROT70EMP6eqrr1bLli1jWV0AAOKKDhUA1DCzZ89WUlKSlixZot///vd64IEH9Kc//UmSNGrUKC1atEjPPvusPvvsM1144YXq27evVq9erZ49e2rq1KnKzMzUpk2btGnTJt14442SpJKSEk2ePFmffvqpXn75Za1du1ZDhw6NYy0BAKgekuJdAABA1WrWrJkefPBBeZ6ntm3b6vPPP9eDDz6o/Px8zZw5U+vXr1fTpk0lSTfeeKPmzp2rmTNn6q677lJWVpY8z1Nubm5Emr/61a/C/9+yZUs99NBD+tGPfqSioiLVrVs3pvUDAKA6YYQKAGqYU089VZ7nhf/u0aOHVq9erc8//1yhUEg//OEPVbdu3fDn3Xff1ddff33ENJcuXapzzz1Xxx13nOrVq6czzjhDkrR+/fqo1gUAgOqOESoAqCWKiooUDAa1dOlSBYPBiO+ONMq0e/du5efnKz8/X08//bQaNmyo9evXKz8/X/v37492sQEAqNboUAFADbN48eKIvz/88EO1adNGJ598skKhkLZs2aLTTjut3LgpKSkKhUIR21auXKnt27fr7rvvVrNmzSRJH3/8cXQKDwBAgmHKHwDUMOvXr9eYMWO0atUq/fnPf9bDDz+s6667Tj/84Q81aNAgDR48WHPmzNGaNWu0ZMkSTZkyRa+99pokqUWLFioqKtL8+fO1bds27dmzR8cdd5xSUlL08MMP69///rdeffVVTZ48uUy+X331lZYvX66CggLt3btXy5cv1/LlyxnFAgDUaJ45uJYuACDh9e7dWyeccIJ839czzzyjYDCoK6+8UnfccYc8z1NJSYnuuOMOPfHEE9q4caNycnJ06qmnatKkSerYsaMk6corr9Tzzz+v7du3a8KECZo4caL+/Oc/6ze/+Y02bdqkU045RePGjdN5552nZcuWhV/i27t3b7377rtlyrRmzRq1aNEihq0AAEDs0KECAAAAAEdM+QMAAAAAR3SoAAAAAMARHSoAAAAAcESHCgAAAAAc0aECAAAAAEd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhAgAAAABHdKgAAAAAwBEdKgAAAABw9P+lBXp9ix1GdQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAKSCAYAAABYyt0UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZQjV33vv7VoV6vV+za9T0/PPuPZ7OkxYMxiDIEYBxzgELyAeSQYAg7hsSRgCMQJBDBx/GJ8YsCBJBiD4eXFYBuMDRiPsbGn933fV0ndrV1Vdd8fPVWW1OpuqVvVXTP9+5zTxx6pdOuqrqT6fe9v4xhjDARBEARBEARBEDrA7/QECIIgCIIgCIK4fCHBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEBny+OOP4/jx47BareA4Dj6fb6entCmuueYaXHPNNTs9jQRmZmbwjne8AwUFBeA4Dvfcc89OT2lH+O53vwuO4zA8PKw9thPr9cwzz4DjODzzzDNZG3OtNe7r68Mb3/hG5ObmguM4/PSnP8Vdd90FjuMwPz+ftfMTBEEQ2w8JDuKSp62tDe94xztQXV0Nq9WKiooKvOENb8C9996b9XMtLCzgpptugs1mw3333Yfvfe97cDgcWT/PVqipqQHHcdpfcXExXvWqV+EnP/lJVsYPBoO46667smqEqnz84x/HE088gU9/+tP43ve+hze96U1rHqu+v6997WurnlMN9j/84Q9ZnyOxNdZa45tvvhltbW348pe/jO9973s4deqULuf/z//8z10rZAmCIHYKcacnQBBb4bnnnsNrX/taVFVV4fbbb0dpaSnGxsbw/PPP45vf/CY+8pGPZPV8L774IpaXl/F3f/d3eP3rX5/VsbPJ8ePH8Vd/9VcAgMnJSXzrW9/CjTfeiH/913/Fhz70oS2NHQwG8YUvfAEAsr7j/qtf/Qp//Md/jE984hNpv+arX/0q/vzP/xx2uz2rczEaTz755E5PISukWuNQKITz58/js5/9LO644w5dz/+f//mfaG9vx8c+9jFdz0MQBEG8AgkO4pLmy1/+MnJzc/Hiiy/C7XYnPDc7O5u18wQCATgcDm3M5HMZjYqKCrz3ve/V/v2+970Pe/fuxTe+8Y0tCw49mZ2dzejaHj9+HM3Nzbj//vtx55136jYvdf13ErPZvKPnzxap1nhubg6A8b9XBEEQxOagkCrikmZgYACHDh1KaagUFxdr/z88PAyO4/Dd73531XEcx+Guu+7S/q3GjXd2duI973kP8vLycPXVV+Oaa67BzTffDAA4ffo0OI7DLbfcAgD47W9/i3e+852oqqqCxWJBZWUlPv7xjyMUCq06X3d3N2666SYUFRXBZrOhsbERn/3sZxOOmZiYwG233YaSkhJYLBYcOnQI3/72tzO/QBcpLS3FgQMHMDQ0tO5xs7OzeP/734+SkhJYrVYcO3YMDz30kPb88PAwioqKAABf+MIXtLCm+OuXisHBQbzzne9Efn4+7HY7rrrqKjz22GPa82oIFGMM9913nzbuRpw7dw7XXnstvvKVr6S81sn86le/wqte9So4HA643W788R//Mbq6uhKOWWv9gZVwtT/6oz/CM888g1OnTsFms+HIkSNaeNmjjz6KI0eOwGq14uTJk7hw4ULC2K2trbjllltQV1cHq9WK0tJS3HbbbVhYWNhw7sk5HMmhc/F/8eFu6X6WxsfHccMNN8DhcKC4uBgf//jHEYlENpxXuudZa43vuusuVFdXAwD++q//GhzHoaamJmHs+fl53HTTTXC5XCgoKMBf/uVfIhwOr5rD97//fZw8eRI2mw35+fl417vehbGxsYRr+Nhjj2FkZEQ7v3quaDSKz33uczh58iRyc3PhcDjwqle9Ck8//XTa14AgCIJIDXk4iEua6upqnD9/Hu3t7Th8+HBWx37nO9+JhoYG/P3f/z0YY2hoaEBjYyMeeOABfPGLX0RtbS3q6+sBAI888giCwSD+/M//HAUFBXjhhRdw7733Ynx8HI888og2ZmtrK171qlfBZDLhgx/8IGpqajAwMID/9//+H7785S8DWEmqveqqq8BxHO644w4UFRXh5z//Od7//vdjaWlpU6EgsVgMY2NjKCgoWPOYUCiEa665Bv39/bjjjjtQW1uLRx55BLfccgt8Ph/+8i//EkVFRfjXf/1X/Pmf/zne/va348YbbwQAHD16dM1xZ2Zm0NTUhGAwiI9+9KMoKCjAQw89hLe97W340Y9+hLe//e149atfje9973v4sz/7M7zhDW/A+973vrTf21133YVXv/rV+Nd//dd1vRy//OUvcf3116Ourg533XUXQqEQ7r33Xpw7dw4vv/zyKiM3ef1V+vv78Z73vAf/63/9L7z3ve/FP/3TP+Gtb30r7r//fnzmM5/BX/zFXwAA7r77btx0003o6ekBz6/s7fziF7/A4OAgbr31VpSWlqKjowMPPPAAOjo68Pzzz6clslTuuece+P3+hMe+8Y1voLm5WVvndD9LoVAIr3vd6zA6OoqPfvSjKC8vx/e+9z386le/Smsu6ZxnrTU+evQo3G43Pv7xj+Pd73433vzmN8PpdCaMf9NNN6GmpgZ33303nn/+efzzP/8zvF4v/v3f/1075stf/jL+9m//FjfddBM+8IEPYG5uDvfeey9e/epX48KFC3C73fjsZz+LxcVFjI+P4xvf+AYAaOdaWlrCv/3bv+Hd7343br/9diwvL+PBBx/EddddhxdeeAHHjx9Pe20IgiCIJBhBXMI8+eSTTBAEJggCO3v2LPvkJz/JnnjiCRaNRhOOGxoaYgDYd77znVVjAGCf//zntX9//vOfZwDYu9/97lXHfuc732EA2IsvvpjweDAYXHXs3XffzTiOYyMjI9pjr371q1lOTk7CY4wxpiiK9v/vf//7WVlZGZufn0845l3vehfLzc1Nea54qqur2Rvf+EY2NzfH5ubmWEtLC3vXu97FALCPfOQj2nGvec1r2Gte8xrt3/fccw8DwL7//e9rj0WjUXb27FnmdDrZ0tISY4yxubm5VddsPT72sY8xAOy3v/2t9tjy8jKrra1lNTU1TJZl7XEA7MMf/nBa48Yf+9rXvpaVlpZq1ybVOh0/fpwVFxezhYUF7bGWlhbG8zx73/vepz223vpXV1czAOy5557THnviiScYAGaz2RLW9Vvf+hYDwJ5++mntsVRr91//9V8MAPvNb36jPabOf2hoSHsseb2S+eEPf8gAsC9+8YvaY+l+ltS1/+EPf6gdEwgE2N69e1e9h1Rk8plNtcbq9/OrX/1qwuPqWrztbW9LePwv/uIvGADW0tLCGGNseHiYCYLAvvzlLycc19bWxkRRTHj8LW95C6uurl71HiRJYpFIJOExr9fLSkpK2G233bbu+ycIgiDWh0KqiEuaN7zhDTh//jze9ra3oaWlBV/5yldw3XXXoaKiAv/93/+9pbEzyXWw2Wza/wcCAczPz6OpqQmMMS2sZm5uDr/5zW9w2223oaqqKuH16s42Yww//vGP8da3vhWMMczPz2t/1113HRYXF/Hyyy9vOJ8nn3wSRUVFKCoqwrFjx/DII4/gz/7sz/CP//iPa77mZz/7GUpLS/Hud79be8xkMuGjH/0o/H4/fv3rX6d9PZLHPXPmjBaWBKzsKn/wgx/E8PAwOjs7NzVuPHfddRemp6dx//33p3x+amoKzc3NuOWWW5Cfn689fvToUbzhDW/Az372s1WvWWv9Dx48iLNnz2r/vvLKKwEA1157bcK6qo8PDg5qj8V/TsLhMObn53HVVVcBQFrruhadnZ247bbb8Md//Mf4m7/5GwCZfZZ+9rOfoaysDO94xzu0Me12Oz74wQ9ueO5sfWbX48Mf/nDCv9ViEOq6Pfroo1AUBTfddFPC+UtLS9HQ0JBWWJQgCFqejKIo8Hg8kCQJp06d2vL8CYIgdjsUUkVc8pw+fRqPPvoootEoWlpa8JOf/ATf+MY38I53vAPNzc04ePDgpsatra1N+9jR0VF87nOfw3//93/D6/UmPLe4uAjgFcNzvdCvubk5+Hw+PPDAA3jggQdSHpNOMvyVV16JL33pS+A4Dna7HQcOHNgwIXdkZAQNDQ1a+I/KgQMHtOc3w8jIiGZ8rzXuVsPhXv3qV+O1r30tvvKVr6QUCurcGxsbU87jiSeeWJUYvtb6J4vF3NxcAEBlZWXKx+M/Dx6PB1/4whfwgx/8YNU6qp+TTFlaWsKNN96IiooK/Pu//7smXjP5LI2MjGDv3r2rQrpSXa9ksvWZXY+GhoaEf9fX14Pnea1PSV9fnxb2mAqTyZTWeR566CF87WtfQ3d3N2KxmPZ4Jr8FBEEQxGpIcBCXDWazGadPn8bp06exb98+3HrrrXjkkUfw+c9/fs3YeFmW1xwvfjd6PWRZxhve8AZ4PB787//9v7F//344HA5MTEzglltugaIoab8H9dj3vve9WoJ6MuvlS6gUFhYaumyvHnz+85/HNddcg29961tZqXa01voLgpDR4ywu/+Omm27Cc889h7/+67/G8ePH4XQ6oSgK3vSmN2X0OYnnlltuweTkJF544QW4XC7t8Wx9ljZiu84TT/L3WVEUcByHn//85ynXITknJBXf//73ccstt+CGG27AX//1X6O4uBiCIODuu+/GwMBA1uZOEASxGyHBQVyWqE3DpqamAAB5eXkAsKor+GZ37eNpa2tDb28vHnrooYRk51/84hcJx9XV1QEA2tvb1xyrqKgIOTk5kGV52wVDdXU1WltboShKgpeju7tbex5YbeylM25PT8+qx5PH3Sqvec1rcM011+Af//Ef8bnPfW7VHACsOY/CwkLdy956vV489dRT+MIXvpAwv76+vk2P+Q//8A/46U9/ikcffRT79+9PeC6Tz1J1dTXa29vBGEtY31TXK5nt+Mz29fUleBn6+/uhKIqW6F9fXw/GGGpra7Fv3751x1rr8/ujH/0IdXV1ePTRRxOO+fznP7/1N0AQBLHLoRwO4pLm6aefTthBVlFju9WQEJfLhcLCQvzmN79JOO7//J//s+U5qDuq8fNgjOGb3/xmwnFFRUV49atfjW9/+9sYHR1NeE59rSAI+JM/+RP8+Mc/TilM1H4FevDmN78Z09PTePjhh7XHJEnCvffeC6fTide85jUAoDXYSxZv6437wgsv4Pz589pjgUAADzzwAGpqajYd8pYKNZcjObSnrKwMx48fx0MPPZQw7/b2djz55JN485vfnLU5rEWqzwmATXe9/uUvf4m/+Zu/wWc/+1nccMMNKc+X7mfpzW9+MyYnJ/GjH/1IeywYDK4ZIrXZ82yW++67L+Hf9957LwDg+uuvBwDceOONEAQBX/jCF1ZdX8ZYQtlhh8ORMnwt1fr8/ve/T/jcEgRBEJuDPBzEJc1HPvIRBINBvP3tb8f+/fsRjUbx3HPP4eGHH0ZNTQ1uvfVW7dgPfOAD+Id/+Ad84AMfwKlTp/Cb3/wGvb29W57D/v37UV9fj0984hOYmJiAy+XCj3/841W5HADwz//8z7j66qtx4sQJfPCDH0RtbS2Gh4fx2GOPobm5GcDKrvXTTz+NK6+8ErfffjsOHjwIj8eDl19+Gb/85S/h8Xi2POdUfPCDH8S3vvUt3HLLLXjppZdQU1ODH/3oR/jd736He+65Bzk5OQBWQo0OHjyIhx9+GPv27UN+fj4OHz68Zh7Gpz71KfzXf/0Xrr/+enz0ox9Ffn4+HnroIQwNDeHHP/7xqpyRrfCa17wGr3nNa1ImuH/1q1/F9ddfj7Nnz+L973+/VhY3Nzd3wz4i2cDlcuHVr341vvKVryAWi6GiogJPPvnkhr1R1uLd7343ioqK0NDQgO9///sJz73hDW9ASUlJ2p+l22+/Hf/yL/+C973vfXjppZdQVlaG733ve2l3b9f7Mzs0NIS3ve1teNOb3oTz58/j+9//Pt7znvfg2LFjAFY8HF/60pfw6U9/GsPDw7jhhhuQk5ODoaEh/OQnP8EHP/hBrbP5yZMn8fDDD+POO+/E6dOn4XQ68da3vhV/9Ed/hEcffRRvf/vb8Za3vAVDQ0O4//77cfDgwVXlhwmCIIgM2eaqWASRVX7+85+z2267je3fv585nU5mNpvZ3r172Uc+8hE2MzOTcGwwGGTvf//7WW5uLsvJyWE33XQTm52dXbMs7tzc3KrzrVUWt7Ozk73+9a9nTqeTFRYWsttvv521tLSkLMXb3t7O3v72tzO3282sVitrbGxkf/u3f5twzMzMDPvwhz/MKisrmclkYqWlpex1r3sde+CBBza8JtXV1ewtb3nLhselKrM6MzPDbr31VlZYWMjMZjM7cuRIylLCzz33HDt58iQzm81plcgdGBhg73jHO7T3fObMGfY///M/q47DJsvixvP0008zACnX6Ze//CU7d+4cs9lszOVysbe+9a2ss7Mz4Zj11n+ta5tqLqlKvY6Pj2trn5uby975zneyycnJVdcwnbK46ntM9Rdfxjbdz9LIyAh729vexux2OyssLGR/+Zd/yR5//PG0yuJmcp50rxVjr6xFZ2cne8c73sFycnJYXl4eu+OOO1goFFo1hx//+Mfs6quvZg6HgzkcDrZ//3724Q9/mPX09GjH+P1+9p73vIe53W4GQCuRqygK+/u//3tWXV3NLBYLu+KKK9j//M//sJtvvjllGV2CIAgifTjGUsSjEARBEARBEARBZAHK4SAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQukGCgyAIgiAIgiAI3SDBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEARBEARBEIRukOAgCIIgCIIgCEI3SHAQBEEQBEEQBKEbJDgIgiAIgiAIgtANEhwEQRAEQRAEQegGCQ6CIAiCIAiCIHSDBAdBEARBEARBELpBgoMgCIIgCIIgCN0gwUEQBEEQBEEQhG6Q4CAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQukGCgyAIgiAIgiAI3SDBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEARBEARBEIRukOAgCIIgCIIgCEI3SHAQBEEQBEEQBKEbJDgIgiAIgiAIgtANEhwEQRAEQRAEQegGCQ6CIAiCIAiCIHSDBAdBEARBEARBELpBgoMgCIIgCIIgCN0gwUEQBEEQBEEQhG6Q4CAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQuiHu9AQIgtgZGGOIxWIIh8MQRRGiKEIQBPA8D47jdnp6BEEQBEFcJnCMMbbTkyAIYntRFAXRaBSyLCMSiWgCg+M48DwPk8kEQRAgiiI4jiMBQhAEQRDEpiHBQRC7CMYYZFlGLBYDYwwcxyEajYLneTDGwBiDoijacxzHacJD9YCQACEIgiAIIhNIcBDELkENoZJlGcCKN4MxpgmOVMenI0BSvZYgCIIgCEKFcjgIYhegejUURUnI0Vhvv0EVGKqgUAWIJEmIxWIJAkQNwSIBQhAEQRBEMuThIIjLGFUgSJIEAAnhUIwxjI+PY3Z2Fm63G3l5eXA4HGmHSyV7QABoYsNsNmsihAQIQRAEQexuSHAQxGWKoiiaVwNIFBuxWAwdHR3weDwoKyvD0tISFhcXIQgC8vLyNAFit9szFiAXLlxAaWkpSkpKwHFcQvgVCRCCIAiC2H1QSBVBXGaoXodUIVQA4PP50NLSAofDgbNnz2phU4qiYGlpCV6vF7Ozs+jv74coisjLy9NEiM1mW1OAqIJGHU8QBG0esVhMOyZegKhVsAiCIAiCuHwhDwdBXEakSgyPD6EaGhpCf38/GhoaUFNTs27SuCzLmgDxer1YWlqC2WxeJUCSUT0cZWVlq+amhl/FJ6GrAiS+ChZBEARBEJcP5OEgiMsERVGwsLAAq9UKk8mUYLhHIhG0trYiGAzizJkzcLvdANZPGlfDq/Ly8gCsCJDFxUV4vV5MTEygu7sbFotFOyYvLw8Wi2XNcdUEc5V4T0w0Gk3wjMQnoZMAIQiCIIhLG/JwEMQljtpbQ5Ik/OpXv8KpU6eQm5urPT8/P4/W1lbk5+fj0KFDMJlM2nNqA8DN5FVIkqQJEK/Xi+XlZdjtdsiyjIKCAtTV1cFsNmf0PpI9IDzPr8oBIQFCEARBEJcW5OEgiEuYtXprACtioq+vD6Ojozhw4AAqKiqyaqyLooiCggIUFBQAWElE9/l86O3txcLCAiYnJ+FwOLQE9Ly8vASxk0y8ByT+PUSjUa0bOgkQgiAIgrj0IMFBEJcoqXprqIIjGAyipaUFiqLg7NmzcDqdus/HZDKhqKgIk5OTKCwsRHFxMbxeL3w+H4aGhtDe3g6n06kJELfbvaYAUUUECRCCIAiCuPQhwUEQlxjxvTUYYwlVqDiOw/z8PEZGRlBeXo7GxsaEvIntnKPJZEJxcTGKi4sBANFoVBMgAwMDCAaDyMnJ0cSH2+2GKKb+SUolQNS/SCSCaDQKACRACIIgCMKAkOAgiEsIRVEgSZIWQhUvNtQO4MPDwzh69ChKSkp2ZI5rGfhmsxklJSXavCKRiJb/0dvbi0gkskqArCWW4qtvCYKwSoDEe0DUBHRRFFeVCCYIgiAIQn9IcBDEJUB8Raf4krIqy8vLaG5uBmMMhw4d2jGxoZJOLQqLxYLS0lKUlpYCAMLhsCZAuru7EY1G4XK5NAGSm5u7KQHyy1/+EqdOnYLNZtMEiOoBIQFCEARBEPpDgoMgDM5GvTXGxsbQ09ODmpoaTE1NZVQZSg82a8BbrVaUlZWhrKwMjLEEATI5OQlJkjQBkpeXB5fLtWZ1rWRBpooLdVz1GNXzQQKEIAiCIPSDBAdBGBjVqyHL8ipjOBqNoqOjAz6fDydOnEBBQQFmZmbS8i7Eo4eBvdVq2xzHwWazwWazoby8XEuE9/l88Hq9GB8fhyzLyM3N1QRITk7OugJEfS7eA6IoCgkQgiAIgtAZEhwEYUDie2vEV6FS8Xq9aGlpQU5ODs6dO6d5NTZjHKviIFuGtR4GOsdxcDgccDgcqKioAGMMgUBAEyCjo6NgjGm5H6oAifcEJY+XKgRLURREIhGEw2HwPL8qCZ0ECEEQBEFkDgkOgjAYySFU8UYuYwyDg4MYHBxEQ0MDqqurEwxgjuOgKMqOzDt+Dnr3E+U4Dk6nE06nE3v27AFjDH6/XxMgIyMjAAC3262JE5vNtqZYSA7BUgWILMuQZXnNMrwkQAiCIAhiY0hwEISBUPtMpPJqhMNhtLa2IhwO48yZMwndxFWMYvzqLTiS4TgOOTk5yMnJQWVlJRhjWF5ehtfrxfz8PDo6OsDzvJaAnpeXB4fDsaEAUcOw4gWIJEna88khWMnChSAIgiAIEhwEYQhUY1atQpUsNmZnZ9HW1oaioiKcOHFi3X4V223sp5rDTsNxHFwuF1wuF4aGhnDq1CnIsqwJkIGBAQiCoOV/uN1u2O32jAWIWoqYBAhBEARBrA0JDoLYYdbrraEoCnp6ejA+Po6DBw+ioqJi3bGMIDiA7fdwbATP83A6ncjNzUVNTQ0URcHS0hK8Xi9mZmbQ19cHURQTBEg6IVjpCBC1D4gagkUQBEEQuw0SHASxQ2zUWyMQCKClpQUA0NTUBIfDseGYmQoOvRK8jQ7P81qCeW1tLWRZ1gTI1NQUenp6YDabVwmQtdhIgKjnTO6CTgKEIAiC2A2Q4CCIHUA1RiVJArA6aXlychIdHR3Ys2cPGhsb0zZMN+PhMGJZ3O0mPrwKAGRZxuLiIrxeLyYmJtDd3Q2LxaIdk5eXB4vFsuZ4awmQWCyG5uZmVFRUIC8vjwQIQRAEsSsgwUEQ24yiKJidndXyDOKNTEmS0NnZibm5ORw7dgzFxcUZjW2EkCojejgyvSaCICA/Px/5+fkAVtZFFSBjY2Po7OyE3W7XEtDz8vLWbbgYL0DUvh8AEIvFNA8Ix3EkQAiCIIjLEhIcBLFNxFc5Ghsbg81mg9vt1p5fWlpCc3MzrFYrzp07B6vVmvE5jCA4gEvPw7ERoiiioKAABQUFAFaEgs/ng8/nw8jICDo6OuBwOBIEiMlkWnM8Nb9DJT68bi0BIoqiIcUcQRAEQWwECQ6C2AaSe2sk93wYGRlBX18f6urqUFdXt2nD0giCYzcYxSaTCUVFRSgqKgKwIkC8Xi98Ph+GhobQ3t4Op9Op5X+43e5NC5BoNKp5R5KT0HfDtSYIgiAufUhwEITOpOqtwfM8GGOIRqNoa2vD8vIyTp06peUQbBYjCA7AWB6O7TDKTSYTiouLtRC4aDSqCZCBgQEEg0Hk5OQgLy8voSLZenNOR4Akh2CRACEIgiCMCAkOgtCJ9XprcByHQCCA3/3ud8jNzUVTU9O6OQDpYgTBQUYvYDabUVJSgpKSEgBAJBKB1+uF1+tFNBpFe3s7XC5XggckXmAkEy9A1PVVhexaXdBJgBAEQRBGgQQHQehAcghVcm+NxcVFLC0t4cCBA6isrMyaYWgEwQEYy8NhBCwWC0pLS1FaWorFxUXU1NSAMQav14vu7m5Eo1FNgOTl5cHlcq0pQNTPCgkQgiAI4lKBBAdBZBnVqxEfQqUSCoXQ2tqKYDCIkpISVFVVZfXcRhAcZNRujNlsRn5+PsrKysAYQzgc1jwgk5OTkCRplQBZq2LVegIkEokgGo0CSN0HhNaKIAiC2A5IcBBElkjurZEsNmZmZtDe3o6SkhLk5uZuGMe/GYwgOADycKxH8rXhOA42mw02mw3l5eVgjCEYDMLn88Hr9WJ8fByyLCM3N1cTIDk5OWkJEEEQtB4gjLFVAkRNQBdFcdXnlSAIgiCyBQkOgsgCakKvoigAEhv5ybKMnp4eTE5O4tChQygrK0NfX59W/jSbGEFwGGEOyRhtPuvBcRwcDgccDgcqKirAGEMgENAEyOjoKBhjWu6HKkDWEgvxn8VkARIOhxEMBrGwsICamhqYTCbNA0IChCAIgsgWJDgIYgvEVw9KFULl9/vR0tICnufR1NQEu90OAFqVqmxjBGPfCHMwOpkY8hzHwel0wul0Ys+ePWCMwe/3awJkZGQEABIEiNPpTFuASJKE2dlZVFdXa00J1RwQEiAEQRBENiDBQRCbZL3EcMYYJiYm0NXVhaqqKjQ0NCSEwOhllG9m3Gg0qhmV2YIEx9ps9dpwHIecnBzk5OSgsrISjDEsLy9rOSBDQ0PgOE4Lv3K73XA4HOuKBbUKVioPSPzz8TkgJEAIgiCIdCHBQRCbQPVqyLK8yvCSJAkdHR1YWFjA8ePHteZw8RhBcCiKgu7uboyOjkIQBM1AzcvL29BA3WgORsJo88k2HMfB5XLB5XKhuroaiqJoAmRubg79/f0J6+t2u2G32xPEcfJ4qUKw1CT0cDgMnudXJaGTACEIgiDWggQHQWSA2ltDkqSUIVSLi4tobm6G3W7HuXPnYLFYUo6z04IjGAyiubkZAHDVVVdBkiR4vV4sLCxgYGBglQCx2WwZGZPk4dg5eJ5Hbm4ucnNzUVNTA0VRsLS0BK/Xi5mZGfT19UEURW1tN1qreAECQBMgsixDluU1y/CSACEIgiBUSHAQRJpsFEI1PDyM/v5+1NfXo7a2dl1ji+d5LcE8m3Act+G409PTaG9vR3l5ORobGyHLMhhjCTvk8QZqb28vzGazZqDm5+evKaTUORDrs53XiOd5Lb+jtrYWsixr6zs1NYWlpSUAQGdnp+YBsdlsa46nChA1RHAtAaKGYKn/TRYuBEEQxO6BBAdBpMF6vTUikQja2toQCARw+vRpuN3uDcfbCQ+HLMvo7u7G1NQUjhw5gpKSEs1QjCeVgbq4uKiVaO3q6oLdbk/wgJhMpoQxyMOxNjt9beK9V8CKAB0aGoLFYsHExAS6u7thsVgS1ncjgZlKgEiShFgspj2fnANCAoQgCGL3QIKDINYhvrcGY2yV2Jifn0dbWxvy8vLQ1NS0yvBei+0WHIFAAM3NzauqZaWDIAjIz89Hfn4+6uvrEYvFtApJQ0NDaG9vh9PpTDtEZycw4pyMglqNqr6+HsBKDpIqMMfGxtDZ2Qm73a5VwMrLy4PZbF5zvEwEiNoHRA3BIgiCIC5PSHAQxBooigKv1wtRFGE2mxPEhqIo6O/vx8jICPbv3489e/ZkXOpUr5CqZON6cnISHR0dqKysxL59+7Zs2JlMJhQVFWnJ8NFoVKuQ1NfXh1AoBJPJhIGBAeTl5SE3NzerFbAuB4y0s88YS5iPKIooKChAQUEBAGgC0+fzYWRkBB0dHXA4HFr4VSoPVzzpCpDkLugkQAiCIC4fSHAQRBLxvTU6OjpQUVGBPXv2aM8Hg0G0tLRAlmWcPXsWTqcz43NsRx8OWZbR1dWFmZkZHDt2DMXFxVk/HwCYzWaUlJSgpKQEANDf3w+fz4dwOIzOzk5IkpR2l2xi+9noc5gsMGOxGLxeL3w+3yoPlxqKtxkBEovFtC7oiqJo3dVJgBAEQVz6kOAgiDhSJYbHG2RqwnVZWRn279+/6Z17vUOq/H4/mpubIYoimpqa1k0CzjYmkwlWqxWHDh0CYwzBYFDzgMR3yVYFyHpN6rKBkbwJgPHCu5I9HBthMplQXFysCVjVw+Xz+TAwMIBgMIicnJwEASKKa99qUgmQubk5DA8P44orriAPCEEQxGUACQ6CuEiq3hqq4IhPuD58+DBKS0u3dC49BUcwGMT58+dTNhzcDuKNV47j4HA44HA4ErpkxzepU5PU1QpYmZbgJbbOVq53socrEolo69vb24tIJKIJkHRC7NS5cBwHk8mU4HGMxWLac/ECRK2CRRAEQRgTEhzErme93ho8zyMUCuH8+fMQRRHnzp3LirdAjxwOSZIwNTWF5eVlnDhxImXDwbXIdJc7nfFSEd8lu6qqSmtS5/F4MDs7i/7+fphMpoQKSVarNWvzMgpGMo6zLXwtFgtKS0s1UR4OhzUB0tXVhWg0CpfLpa2vy+VaJUDUAg3AK13O459TBUg0GtU2BlJVwSIIgiCMAQkOYlezUW+NUCiE2dlZ1NbWYu/evVnzFmTbw7G8vKzlleTn52ckNrJNJoZefJO65BK8aolWq9WaIEDWq5BEbA49jXOr1YqysjKUlZWBMZYgQCYnJyFJ0ioBsp4AzkSAxFfBIgFCEASxc5DgIHYtiqIgGo2m7K0Ri8XQ3t4Ov9+P8vJy7Nu3L6vnzlbSOGMMExMT6OrqQk1NDUwmExYWFrIww63PazPEl+AFVrw2agne5ApJ6t96+QFbnY8eGGkuQPa9W+vBcRxsNhtsNhvKy8u1HB91jcfHxyHLMmw2myY+NyoyEC9A1GubSoAk54CQACEIgtg+SHAQuw41hCoWi6XsreH1etHS0gKn04ni4mJdEq6z4eGQJAkdHR1YWFjAFVdcgcLCQi0peyfJpiEniiIKCwtRWFgIYCVBWTVO1QTl+N1xKsGbOTv5eYnP8amoqABjDIFAACMjI/B4PGhpadGKDKh5Pjk5Oet6PwCkFCDRaFTrgk4ChCAIYnshwUHsKhRFgSRJa4ZQDQ4OYnBwEHv37kVNTQ06Ozu3rV9GJiwtLaG5uRlWqxVNTU1anoNeyeiZoOcczGZzQoWkVPkB8SV4XS6XLvPYKkYzbo0yH47j4HQ64Xa7IUkSjh49Cr/fn+DlApAgQNarcraeAIlEIloZXhIgBEEQ+kKCg9gVxMd5qyEk8QZFOBxGW1sbQqEQzpw5g9zcXAD6Gc88z29KyDDGMDY2hp6eHtTW1qK+vn5VVaidFhzA9u2aJ+cHhEIhTYCMj49DURQoioLp6WnNmCVDMpHtDKlKF0VRtO+oWmSgsrISjDEsLy+vWeXM7XbD4XCkJUAEQdB6gDDGSIAQBEHoCAkO4rJH7WosSRIArBIbc3NzaGtrQ0FBAa644oqEnIDt7Ai+EZIkob29HV6vFydOnNA6QW913GyzU4YZx3Gw2+2w2+0J4TkvvfQSlpeXMTU1BY7jEvI/7Hb7ts93p9cnGaPNB1hbBHEcB5fLBZfLherqaq3KmdfrxdzcHPr7+yEIgra+brd73TWO/y1IJUDiQ7BMJpMmQJLDMAmCIIj1IcFBXNbE99aIby6mPtfb24uxsTEcOHAAFRUVq4wInue18KtskqkwWFxcREtLC2w2G5qammCxWLIybrL4yhZGMGJVj4YgCGhoaIDT6VxlnIqimCBAtrNBopEwmvGcrtclvspZTU0NFEXB0tISvF4vZmZm0NfXl7DGbrd73T4v6wmQcDiMzs5O1NXVweFwkAAhCILIABIcxGXJer01ACAYDKKlpQWKouDs2bNwOp0px+F5Xms2lk3SFQaMMYyOjqK3txd1dXWoq6tb17DZzR6OjUg2TmVZ1ozTqakp9PT0wGKxJAiQtYTdVjHSNTJiSNVm56SGV7ndbq3McvIam83mtPu8JAsQr9erzS8cDmvHJPcAIQFCEASRCAkO4rJjvd4aADA5OYnOzk6Ul5ejsbFxw67HO5XDoZbm9fl8OHnypFYqdj2MIDgAY3g4NiI+9AZYCVlTe4CMjY2hs7MzoQSv2+2GyWTa4VlnHyOuVbZEUPIap+rzkonIZIxpOR3xHhBFUTQBwvP8qhwQEiAEQex2SHAQlxXr9daQJAldXV2YnZ3FkSNHUFJSsuF4m03u3oiNhMHi4iKam5vhcDhw7ty5tJvdGUFwGNGwSueaiKKIgoICLTcmFotpyclqCd6cnJwEAbKZErw7vT6pMNqa6eV1SdXnJVlk2u12bX3jG02q4iI+LHOtECxZliHLMsLhMAkQgiAIkOAgLhM26q2xtLSElpYWmM1mnDt3bt0winj0MuDjS/HGz5MxhpGREfT19WmleTMxTIwgOABjGtWZYjKZEkrwRiIRTYD09PQgEoms6gGSrU7024kR12q7wrxSiUyfzwefz7eq0aRauW6jJoTxuWLJAiQ5CV0NxdIrl4ogCMIokOAgLnnWC6GKz4FIVUZ2I/T0cKjzU/8/Go2ivb0dS0tLOHXqlBYGkum4mRqQ2TZ0LlfDyWKxoLS0FKWlpVoMvypAJicnIUmStiueboM6I3A55XBsFZPJhKKiIhQVFQF4xcvl8/kwNDQEALhw4QLy8/O1XJH1wuzWEyCSJGnPJ+eAkAAhCOJygwQHcUkjyzLm5uYwOjqKo0ePJtykVQN+cXEx7RyIZPT2cKihX2p3c5fLhaamprRDqFKNm+l89Xh/Rto118Nw4zgONpsNNpsN5eXlWgleVYDEN6hTBch6/SF2GqPNKzl0aaeI93LFYjH89re/RVVVFZaWllKG2eXm5iaU1U5mLQEiSRJisViCAFE9IGoIFkEQxKUMCQ7ikiS+t0YsFsPS0lKC0eTxeNDa2oqcnJyMciCS0cvDoRoQiqJgaGgI/f39aGhoQHV19ZaMPyOEVBnNeN0O1BK8TqdzVYO6hYUFDAwMaAnMaoLxTvQASYVRPRxGM7LV71VJSQnKysoApA6zSxYgGxWlIAFCEMRugAQHccmh9tZQhYAgCNr/M8YwMDCAoaEh7Nu3D1VVVVs24PUMqWppaUEwGMTp06fhdruzMu5OCw7AWB6OnSBVgzq1POvs7CxaW1thNpuRn5+vewnejTDiWhlRBKm/A/Hzig+zA5AQZtfV1YVoNJqQ5+NyubYkQIDUXdBJgBAEYXRIcBCXDGr5SVVsqLkaqhciHA6jpaUFkUgEV155JVwu15bPyfO8LgaZz+fTxm9qaspauVUjCA6jGYpGIL4/xMjICE6ePIloNJqyOpL6t50leI22ZkYVHBvlVlitVpSVlaGsrGzNPJ9kAbKZJPRYLIZoNKp939VxSYAQBGFUSHAQlwTrJYar3cB/97vfobi4GCdPnlw3jjoTsm3AM8YwODiIwcFBAMCBAweyalgaxUjbadGTjNHmIwhCyupIXq8XQ0NDaG9vh9PpTCjBm63PdDJGNO4vhzmlyvMJBoPaOo+Pj0OWZeTm5iYUGshUgCwvL+Pll1/G1VdfrR0T7wFRq2ARBEHsJCQ4CMOjejVkWV5V7lZRFAwPD0OSJBw9ehTl5eVZPXc2czgikQhaW1sRCoVw5swZPP/881kZNx69QsAynQOxNqnET3J1pEgkAp/PB4/Hg97e3lUleDcKzcl0PkZbM9WbYCS2mlfCcRwcDgccDgcqKiq0QgOqABkdHQVjTPOEbVTpTB1TFSCiKCZ4gVUPSLwAia+CRRAEsZ2Q4CAMS3z5yFSN/AKBAFpaWjTjJNtiA8ieh2NhYQGtra3Iy8vDFVdcoe06Znvn3QiGhBHCui51LBYLSkpKtOaUoVBoVWhOJjvjG2GEz008u0EExRca2LNnDxhj8Pv9mgBJrnTmdrvhdDpXzUH9bVTHjBeiqQQIz/OrktCNdq0Jgrj8IMFBGJL1QqgAYGJiAp2dnaisrMSePXvw7LPP6jKPrXo44pPYGxsbUVlZqb0PvQRHpvPVw9gwkuAwojGV6ZxSheaoAiR+ZzwvLw/5+fkZleA10lqpGFFw6F05i+M45OTkICcnZ1WlM4/Hg8HBQS0XSBUgDocjQXCkGjMdAZKchG60a08QxKUPCQ7CcKgdw1N5NSRJQmdnJ+bm5nD8+HEUFRUhHA4D0MdI2UqIUiQSQUtLC8LhcMokdj0S0jN9/6FQCK2trZAkSauYtFEpz2zPgciM+NCc+J1xVYAMDQ2B5/mEBHSbzbbmuhjVuDfanLY7zCtVpTNVgMzNzaG/vx+CIMBut0OWZQQCgQ1LLccLEPW3R1EURKPRhC7oJEAIgsg2JDgIwxDfW0PdTYy/0S0uLqKlpQVWqxXnzp2D1WoFkNjTIltx7SqbFQXz8/NobW1FQUEBTpw4kTLhV498i0y8JrOzs2hra0NxcTFycnLg8/nQ1dWFWCymhevk5+dvGEeeCiPumhsFPUSmujNeVVWlGaYejwczMzPo7e2F2WxOECDqdyd+DCNhRMGx071BeJ5Hbm4ucnNzUVNTo5VaHh8fh9/vx4svvghRFFet80bd7kmAEASxHZDgIAyBoiiQJCllCBVjDCMjI+jr60NdXR3q6uoSbnh6Co5MRYGiKBgYGMDw8DAOHDiAioqKdW/4ehifG42pKAr6+vowOjqKQ4cOoaSkBLFYbM1wHWAljlz1gKSzi2o0dpMAijdMa2trIcsyFhcX4fV6MTExge7ublitVs0olSRp040x9cKIgsNoiexqeFU0GkU4HMYVV1yh9XqZmppCT0/PhkIznlQCRP2LRCKIRqPaeUmAEASRKSQ4iB0lPqZYNTLib17RaBRtbW1YXl7GqVOnkJeXt2qMeMGRbTLxcKh9QKLRKK666irk5OSse7yegmMtg02dYywWw9mzZ+F0OjWRp74+OVxH3S1XwzhEUdTER35+fsqGdbvJwN8M22mgCYKA/Px85OfnA1gJS4xPTPb7/TCbzZBlWfcSvOliRMGx0x6OtVBDT9VO9upvZCqhabFYEgTIes0m43+LBUFYJUDiPSBqArooiqs80wRBEAAJDmIHSU4MTxYbamUnt9uNc+fOrdmvQn2NXh3B0zGe5+bm0NraiqKiorT7gOgVUrUWaphXYWFhRnNU48hrampWGTFdXV2w2+2aAHG73WRsGBxRFFFYWIjCwkIAQHt7O4AVA7Wvrw/hcBg5OTmaUbrVnJ7NYETBYTQPh8paSeOphKb63U1uNqkmoq/n6VpPgKh5dPECRPWAkAAhCAIgwUHsEBv11lDDkpIrO6VCvRHqsau+UZWq+PCkgwcPoqKiIqOx9UoajzfY4itlpQrzUo2GdEg2YtSGdR6PBwMDAwgGg7Db7YjFYvB4PDtirBoZI3p+VK9WTU0NACR0x+7q6kI0Gl2V06P3Tr8RBYfRPRwbIYpiymaTPp8PIyMj6OjogMPhSBAg6zUlTUeATExMoKysDHa7nQQIQexySHAQ28pGvTVCoRBaWlogSVJaYUkq2WzQF896IUrxc1XDkzYzdjaJFxlAYrPBVJWytkqqhnUTExMYHR1FZ2dnQr+IzSagX44Y6Rokf7atVivKyspQVlYGxlhCD5Dx8XEoiqIZpHl5eSl7Q2RjTkYz7i81D8dGJH93Y7EYvF4vfD7fprrdpxIgQ0NDKCgo0ObH8/yqHBASIASxOyDBQWwbG/XWmJmZQXt7O0pKSnDgwIGMdsb1EhzqjTLZKFMrPG1mrip6Cw6v14vm5uaEZoN6Y7FYUFBQgMnJSZw7d05LQPd4PFoCenwM+UYJ6NmAjJmNWa+wgd1uh91u17pjJ5fg5Tgu62tKHo70yZYQMplMKC4uRnFxMYCV/DlVgPT39yMYDK4KtdvoN4UxBpPJBJPJpG3cKIqCSCSCcDhMAoQgdhEkOIhtQb3JpCp3K8syenp6MDk5iUOHDqGsrCzj8fX0cACv7CIqioLe3l6MjY3h0KFDW+purmcOx/DwMIaGhrBv3z5UVVVte/8A9b/xCeiKosDv9yckoJtMJs37sVES6+WAEUOqMjHu1yrBG98bIrk0q81m03VO28Xl5uHYCLPZnNDtPhKJaEKzp6cHkUhk3Vwf9bdNfSw5R08VILIsQ5blNZPQk19HEMSlCQkOQlfUG8r09DS6u7tx9dVXJ9w8/H4/mpubIQgCmpqaYLfbN3UePYx3INHDEQwG0dLSAkVR0NTUBIfDsaWx9fBwSJIEABgfH8eZM2eQm5ub1fHTJdX74nl+zQR0NYlVjSFX/7LllTGioW8UtnJtkntDyLK8qjSrWhlJFZXplOA1ouAwsodjO+ZlsVhQWlqK0tJSAKlzfVwuV4KnC8Cac1OFRPxvbHzIrfq8KjxUDwgJEIK4NCHBQehGfG8NVRDEh/yoVY6qqqrQ0NCwpZumHgnY6rjASrhXd3c3ysrKsH///qwkQmd7zouLi7hw4QIA4NSpUxnnlGSLdI2B+AT0+vp6LYbc6/ViYGAAoVBI20HNz89Hbm6uIQ2+zWA0gylb80kuzZpcgjc+MVnNC0iVmGxEwbHbPBwbkZzrEy9AJicnEYvFAACjo6PIy8uDy+Vad55rCRBJkhCLxdYUIJfLbwJBXO6Q4CCyTqreGqIoah6IWCyGjo4OeDweXHHFFVp5zq2gV0iVKgi6urpw+PDhTYV7rUW2PByMMYyOjqK3txf19fXo7e01RB+FTEmOIVcNGI/Hg46ODi0BXd0ppwT07KCn9ye5BG+yqEzOC3C73RAEwZDGvZE9HOtVk9oOOI6DzWaDzWbTGoh6PB60trYiEAhgfHwcsixrBSTU72+2BIgagkUChCCMCwkOIquoNwQ1tCf+pqEoCnw+H1paWmC323Hu3LmsxezrITiCwSCam5sBACdOnNDKSWaLbAgOSZLQ3t4Or9erNUbs7e3NaNxsG3bZGi95BzUYDMLj8cDr9WJ4eDghWTk/Px82my3luY1kuBo1tGu7rlGyqIzPC+ju7tbCcmKxGAKBgKG8WkYUQcDOeTjWg+M4WCwWCIKAw4cPgzGGQCCgebtGR0fBGNOqnbnd7g03EDYSIEDqLuhGuzYEsVshwUFkjfjeGvE3BmDlZiFJEl588UXs3bsXNTU1Wb15ZzuHY3p6Gu3t7SgvL8fy8jKsVmvWxlbZqkhaWlpCc3MzbDYbmpqaNPGmV0+SdNGr+paagF5ZWZmQrDw7O4u+vj6YzWbN+7EbEtCzxU6GL8XnBcSX4O3r68Pg4CD6+/sTSvDupFfLqB4Oo85L7bEErHx/nU4nnE4n9uzZo1U7UwXI8PAwACQIkI3KLa8lQGKxGKLRKAASIARhJEhwEFtmo94akUgEnZ2dYIzh9OnTcLvdWZ9DtvIh4itmHT58GKWlpZiYmNjRLubJxOe/1NbWor6+PuF677TgAPTfyU+VrLy4uAiPx7MqAV3NIzISRtop3+nPikp8Cd7BwUEcPXoUgiBoHpCRkREASBAgDodj264leTgyY715xVc7q6ysBGNM20DweDwYHBwEz/MJAmSjtU4lQNRNMNUDoob3qgJErYJFEIT+kOAgtsRGvTXm5+fR2tqqVUvSq2pSNkKqAoEAmpubwfN8QsUsvRLSNyMMJElCZ2cn5ufn1wzzynRco4ZUZUKqDuiqoRqLxdDW1gaXy6V5QIwUqrPTGDFBW921V3fFVa+W2gNkYWEBAwMDWSnBm8mcslEsItsYWXCke704jtMq2FVXV6cstxxfkEBd640ESPz54wXIwsIC5ufnUV9frwmQ+CpYBEFkHxIcxKZRFAXRaDSlV0NRFPT19WF0dBQHDhxAUVERnn766YxuQpmwVcExOTmJjo4OVFZWYt++fQk3cL27mKeLWkLYZDKhqalpzTCv3eDh2Ij4XAGv14vq6mqtGeLk5CQkSdJ2T/Pz83Xplp2Knb4ua2E0IyuVCIovq6wapWpZ5eQSvHqE1ZGHIzPiQ6oyJdmDqSiKVm55ZmYGfX19q8Sm1WpNW4DEYjEsLS1p/x+NRjXvSHISuhHXnCAuRUhwEBmjhlCpVaiSxUZ8v4qzZ8/C6XRqSeSyLBtKcMiyjK6uLszMzODYsWNaMms8ehnwmcxZFUTplBDezHyznU9jNMxmMwoKCrQKOoFAQPOADA8Pa+Ebqgdko93TywkjiqB0vC48zyeU4JVlWcsJUMPq7HZ7glG6lWpORvQEAbtDCKnfT7fbjdra2pT9Xsxm8yoBshbqfWgtD0i8AEnOATHitSaISwESHERGbBRCNTU1hY6ODpSXl6OxsVH7QVdvPHp4CoDNJY2rHgNRFNHU1LRmOMZOejhkWUZ3dzemp6fXFESbGVdvdvr86xGfwBqfgO7xeDAzM4Pe3t6EnfL8/Py0mtVlOgejYERDejNzEgQBBQUFWphhLBbTBMjQ0BDa29tXdcbOpHy0UT0JenmNt4qe80ru9xLfRHRiYgLd3d2wWq0J+T7x3q5UG1/xHhD190v14sd3QScBQhCbgwQHkTaqVyNVCFW8p+DIkSMoKSlJeK3egiPTPIuJiQl0dnbq5jFIh43GVcvychy3riDKdFy9udRuwPHhG+ruafJOucPh0Lwfbrd7x/ucZBujrVk2RJDJZEJRURGKiooAJJbg7enpQSQSSeiM7XK51jWQjVoNyqgejq2EVGVKcg6XJEmaAEn2drndbkSj0XXXWr2eJEAIIntcXndNQheSe2ski43l5WW0tLRs6ClQG3rpQbpeCEmS0NXVhdnZWRw/flwzRrIxdqas55VRy/JWVFSgsbExoxv3TgsOFaPsnGdjp1ytntPX14dwOJxgqGaSgG6EdUnGaHNS55NtYzW+BC8ArQRvfF7Peo3pjGrYG9nzslPzEkUxpbfL5/NhZGQEfr8foiiit7dX84KsF26XSoCof5FIJKEM7+9+9zuIoog3vvGNOr9Lgri0IMFBrIsa06oaxmrpQWDlR3dsbAw9PT2oqalBfX39ujcYvQz3dMdWhZHJZMK5c+fS7q2xnR4ORVHQ09ODiYkJrSxvNsbdToxolG2F5GZ18YbqxMQEZFlOyP/YrgT0bGKk+aqfXb3nlNwZOxgMauuqNqaLzwkgwZEZeuXrbYZkb1d3dzcikQgAaOF2TqczoeP9el7M+PugIAgJAuSnP/0pHA4HCQ6CSIIEB5GS+AS6VCFUsVgM7e3t8Pl8aXfh3inBEd+3Ih1hlEy2mwqqJIeBhUIhNDc3a8n2DodjU+PutOBQMYqHI9skG6pqArrH48HQ0FBCMrPaAT0ZI10Xo63TdgmOeOIbS8Y3pvN4PFoJXtXTC8BQhQWMKjiMOi8Vp9OJ+vp6AEA0GoXX64XP50N/fz+CwWBG+T7xAiQQCKSVa0cQuw0SHMQqNkoM93q9aGlpQU5ODs6dO5d2Qq2egoPjuJTN3SRJQkdHBxYWFnDFFVegsLAw47H17MOhXo+5uTm0traipKQEBw4c2NLO4E4LDiMYYdtFJgnoavldo2EEcRrPTgiOZOIb06kleF988UVYrVZtXTOpiqQnRs4tMeK8gBXvS/x6mc1mlJSUaLmHqfJ9kgXIWr/RgUDAkN9zgthpSHAQCaheDTXhL/6mzxjD4OAgBgcH0dDQgOrq6oyMAr09HMmG0/LyMi5cuACr1bpu34p0xtYzh6O3txcjIyM4dOgQysvLszKuEYxII8xBZbvmsl4Cuho7DgD9/f0oKCgwTAK6kUSiEQRHMjzPg+d5lJSUoLi4eFVVpK6uroQSvG63O+uVzdbCqIa9LMtZ7YOSTTaqoJWc7xMOhzUB0tXVhWg0umbBgWAwmLHg+M1vfoOvfvWreOmllzA1NYWf/OQnuOGGG9Z9zTPPPIM777xT6x/1N3/zN7jlllsSjrnvvvvw1a9+VatyeO+99+LMmTMZzY0gssXO3+kIQ6D21pAkKWUIVTgcRmtrK8LhMM6cObOpjuHbFVIVn1tSW1uL+vr6LRkvehnwsixjdnYWZrNZ61eSDXZacBjJUNxpkhPQA4EAfv/732tCM75SUn5+Plwu17YbjxRSlR7x1ylVVSTVIB0aGtJ2udPNCdjKnIwqOIw6LyDzClpWqxVlZWUoKysDYyxBgExOTuKb3/wmZmZmcPbsWYyPj2cstAKBAI4dO4bbbrsNN95444bHDw0N4S1veQs+9KEP4T/+4z/w1FNP4QMf+ADKyspw3XXXAQAefvhh3Hnnnbj//vtx5ZVX4p577sF1112Hnp4eCvkidgQSHIQWQtXc3IyCggJUVFQk3OzVcJ+ioiKcOHFi0zfO7RAckiShvb0dXq837dySdMfOJgsLCxgfH4fZbMZVV12VVWNkpwWHihHmYDTUSjhq5TE1Ad3j8WBiYgKKoiT0DtiOBHSjrZORBcdaRqooiglJyWpOgNfr1SqbpRuSk+mcgOxX9MoGRhccm73+HMetyuNyu9144okn8Oyzz6K3txcf+chH8Mgjj+C1r30tXvva1+LUqVPr/sZff/31uP7669Oew/3334/a2lp87WtfAwAcOHAAzz77LL7xjW9oguPrX/86br/9dtx6663aax577DF8+9vfxqc+9alNvXeC2AokOHY58b01VA+HeqNXd2HHxsZw8OBBVFRUbOlceguOSCSC5557DjabDU1NTVlz52fTgGeMYWBgAENDQygsLATHcVnf+dxpwWE0Q9Fo84knVQK6x+PRdsrVBPT4DujZxmgejviKeEYikypVyTkB8TvinZ2dkCQpwbOVXII3kzkBxhUcRqlSlUw2K2hxHIfDhw/j8OHDuPPOO3HixAl84hOfQCwWw9NPP41/+qd/QjQaxate9Sr853/+J9xu95bPef78ebz+9a9PeOy6667Dxz72MQArgvell17Cpz/9ae15nufx+te/HufPn9/y+QliM5Dg2KXE99ZQd+7i+2QEAgG0tLQAAJqamjZdMSkevQQHY0y7mTc0NKCuri6rxkq25h2NRtHa2opgMIgrr7wSCwsLWFxczMIMV2MEwWG0nXMjsN41iU9Ar6qqgqIoWFpagtfrxdTUFHp6emCxWDTxkZeXl7U8ASMZ90YTQCpb2bFPDskJhUKasBwfH9+0Z8uo4gzY3sZ/maKnGAoGgzh06BBe9apX4SMf+QgURUFrayueffbZTYUip2J6enpVc92SkhIsLS1pXlNZllMe093dnZU5EESmkODYhaihR8lVqARBgCzLmJycREdHB/bs2ZNx07n10ENwqOV5FxYW4HK5tDKH2SQbHgOv14vm5ma43W6cPXsWJpMJHo9Ht2R0Ixj7RpjDpQzP83C73XC73aitrYUkSQkJ6B0dHVqeQH5+/oalO9fCaOtkVMGRrXlxHAe73Q673Z5Qgjc+B4TjuIQKWHa7PeW5ycOxOfTsERIIBBI26Hiex/Hjx3H8+HFdzkcQlwokOHYR8b011Jtn8k1sZmYGkUgEx44dy3piWbYFx+LiIpqbm+FwOLBv3z5MTU1lbex4tjJvxhiGh4fR39+Pffv2oaqqSrvmepbbTXdcWZbR1dWFmZkZrXndWr0jMjk/sT6buUaiKKKwsFAr7azmCXg8Hq10p8vl0jwgmSSgG2nNjCw49DDs40vwqp6t5eVleL1ezM3Nob+/H6IoJoTWqRX31DAvI16v7c7h4JQ5ML4orWP18r6oYZE5OTlZHzue0tJSzMzMJDw2MzMDl8sFm80GQRAgCELKYzbTTJYgsgEJjl1Ccm+N5JvU0tISpqenIQhCRl24M4Hn+ZS9MjKFMYaRkRH09fWhvr4etbW1mJmZ0bXHx2aEQSwWQ1tbG5aWlnD69OlVsbvb2cE8FcFgEM3NzQBWkg6Xl5cTekeo4iMvL09Lds4EI+2cG2ku2SI5T2C9MJ38/Hw4HI6UhqnRDHyjzUdluzqNx5dWrqmpWVWCt7u7G1ar1VDNB1OxLSFVzAtR+h+I0q8QsXweQPqCQw8PRyQSgSzLuguOs2fP4mc/+1nCY7/4xS9w9uxZACu/DSdPnsRTTz2llddVFAVPPfUU7rjjDl3nRhBrQYJjF7BRb43R0VH09vbC5XLBbrfr1sAqGx6OaDSK9vZ2LC0t4dSpU8jLy8va2GuxmbFV74vT6URTU1PKWPudFBxq5bGysjLs27cPkiShsLBwVejO0NAQ2tvbkZOTo4kPt9u9riFhVAPICOgpfGw2GyoqKlBRUbEqTGdwcFAr5aqG6aheLKOJMaMKjp1qsJeqBK/6/ZycnISiKPj973+fUIJ3MxsE2Ua3kCrGIMjPQ5R+CkH+NQAFEcs9YHxN2vNijOkyt0AgAAAZ5zz6/X709/dr/x4aGkJzczPy8/NRVVWFT3/605iYmMC///u/AwA+9KEP4V/+5V/wyU9+Erfddht+9atf4Yc//CEee+wxbYw777wTN998M06dOoUzZ87gnnvuQSAQ0KpWEcR2Q4LjMmaj3hrxxvvJkyfh9Xq1H0w92KooiO9wnmzE65m3kMnY8QJO9b6sZTzFdxrPJuvNlzGG/v5+DA8Pa40Gk+eQHLqjdt31eDxahR01/Gq9BFejGbJGQm+DOlWYztLSEjwej5aAru6SqzldRsGIgkMNRzXCvOK/n8XFxWhra0NtbS28Xi8GBgYQDAYTNgiyVYI3U7IeUqXMANLjsEk/Bc9GtYcj5r+CLDZlNC8AulwTv9+v5ehkwh/+8Ae89rWv1f595513AgBuvvlmfPe738XU1BRGR195z7W1tXjsscfw8Y9/HN/85jexZ88e/Nu//ZtWEhcA/vRP/xRzc3P43Oc+h+npaRw/fhyPP/74qkRygtguSHBcpiSHUCWLDY/Hg5aWFuTm5mrG++Liom5eAnUOmxk/Pg9irQ7nens4YrHYhsfF9wA5efKktiO53rjb6eGIRqNoaWlBKBTCVVddlbbbP77rLmMMwWAQHo8HHo9HK92qGjf5+fm6ecg2ixGMxJ0mPgEdSNwll2VZ88bFe7F2KuHXqIIDMF5ythoaVFxcrOXcpeqKnZubm9AVezveR1ZCqpgMyL8FF/sRID8PC1+niQ0FOZDEt0EyvSfjeQH6rKXa8DHTz+8111yz7r3gu9/9bsrXXLhwYd1x77jjDgqhIgwDCY7LEEVREI1GU3o14ne4k5OY1SpVesHzfMY7qdFoFG1tbfD7/SnzIOLH3skcjuXlZVy4cCGjHiDbGVLl8/nQ3NysCczN9v7gOA4OhwMOhwOVlZUJO+eTk5Po6enRQnUWFhZQUlKiS4flSxWjeH3id8knJydx9OhRzZOlJqCrRupW+kRsBiMLDiPOK3ldUpXgVQXI+Pg4ZFlOKMGbk5OT9fe11Q7oTJkGH/sRIP0EHFtJfDYJp8EpbZC5RiicCYAFMfNHMh5blmVwHKeb4FirohhB7HbIEriMUEOo1CpUyWIjHA6jpaUF0WgUV155JVwuV8Lr9TTagRVBE41G0z4+vpRsU1PTunHJO5nDMT4+jq6uLtTW1qK+vj7tm812CA7GGMbGxtDT07Omd2grxO+c19XVQZIkeL1etLW1YWRkBL29vVp4R35+/rbtrhKZYTabkZeXp3mxko1UNQFd9YCslYCeDXYqV2I9jOrh2Miojy/Bq+b2BAIBbW2Hh4fBcVzC2mbDYFavVyZeMsZkKNIzkGM/gYWNgmOD2nM8fw6AAsYVgGNd4FCKiO0/AC7zXBU9y/Uml8QlCOIVSHBcJqzVW0NldnYWbW1tKC4uxsmTJ1PuOmeritRapCsKGGMYHBzE4ODgKi/MVsfeDGvlWsiyjM7OTszNzeGKK67Qch62Ou5WUQWHJEno6OiAx+NJK8QrG4iiiKKiInAch+PHj4Pnea1yUltbW4Lhmp+fvyt3A432fpM9CqmMVDUBfWFhAQMDA1qZVj3C6Izo4TBqg71MvQjxzSVVD6Xf74fH41lVgje5uEAmZBK2xJRJSLEfQY79GGCzsArHwbFBKEwEhIPguTyIyvPg2MoaMFgRtdwDcJv7PdOzB4ff79dVjBPEpQwJjkucjXpryLKMnp4eTE5O4uDBgygvL19zrPhO43qQjiiIRCJobW1FKBTCmTNn0u7MqmfSeKpcC7/fj+bmZphMJjQ1NW3K4NIzhyMSieD555+H2WxOK8Qr2zdIdTyr1Yry8nKUl5evabjGl99NJxRtMxgllMmIbHRtUiWgq2Va4xPQ4ytgbaVKkhEFh5E9HFu5VjzPw+VyweVyoaamJuXaWiyWBAGSznd0o4aEjCmISr8BF/sRFPlXAFaOtwhXAmwWMn8SkPvBsSWY2TC4i8/LXA0k0x1gQuOm37OegiMYDMLpdOoyNkFc6pDguIRRd7HVvIhkseH3+9HS0gKe59HU1LRh5Qy9Q6o2Gn9hYQGtra3Iy8vD8ePHMzJatjOHQ+3EXlVVhYaGhk0bIXqJpHA4jOnpadTU1KQ9Pz1i1JPfW7LhKsuylv8xNjaGzs5OOByOhMTlyy3/w6jCJ5N153leMz6BVxLQ1SICahnl+DKtmYXWGE9wGNnDkU3jOdXaqgJE/Y7a7faE72iq3+m18iQUZRbh6COIRB+BTSgBU1oAAIzZIAonATYHpowCGAW4PFi4KJhihszvB9gcFOF1UEyv29J71LM/iN/vz7hCFUHsFi6vu/kuIr63RvIPO2MMExMT6Orqysgo3qmQKsYYBgYGMDQ0hMbGRlRWVmZ8Y1e9BXoYK+q8ZVlGd3c3pqens9KJPduCQ1EU9PT0wOfzoaSkBI2Nm98F3CrprIEgCJpxU19fj1gsppXf7e3t3dHE5d3EVr8za5VR9nq96O7uTqiSlM46GlFwGDGvBNC/GaEoiigoKEBBQQGAlWamanWz+BK86vc4NzcXoigmhHoxxhCTn0Mk8gNEpacASLCLZwDlDwBXB8blgWNRiMofAKjVAE0QhWOQ2SI4dIFTXoIiXAPZ/OEtvyc9PRxqlSoifcLhcEa5nZcDZrPZcNUctwMSHJcYG/XWUOP2FxYWcPz4cRQVpdd5FdiZkKpIJIKWlhaEw+GUieyZjA3okxDIcRwkScLvf/97cByHs2fPZmUXK5s5HOFwGM3NzZBlGSUlJYbYZctUTJlMpoTynmrnbNUDAiAh/8PIXZbXw0hz1sPjklxGWU1AV9eRMZaQ/5Gcx2OUfhfxGHFOgA69LjbAZDKhqKhIu6/Ei0u1upnaQJYXAvCFvgNOeR6S9LQ2hlU4BQ6AwtWCKQPguVJYEAMQA+MqwLgymDkOgvzsK++Tr4Nk/XsgC2ugd9I4CY70CYfDqK12YnpWv41OI1JaWoqhoaFdJzpIcFxCbNRbY3FxES0tLVpp1kw/zNsdUjU/P4/W1lYUFBTgxIkTWwqf0VNwLC8vY3FxEVVVVWhsbMzaDT5bORwLCwtoaWlBUVERDh48iO7u7h0P3cmGcZbcOXt5eVlLbu3r64PZbE7I/0jVzT1bc7nc0esarZWA7vF4ViWgq+tIHo702W7BkUy8uARWNgkWFs8jEHsAFSXnsbBQBXdO78Wja2ESqwD5RcgIXXzMATPnBuNdYGwJUPog8uUQlJX+EgoEgD8CyfJ3AJed6k96hlRRlarMiEajmJ6VMfRSNVw5xvt+6cHSsoLakyOIRqMkOAhjoigKJicnwXEcCgoKVvXWUBvjbdTdej22K6RKURQMDAxgeHgYBw4cQEVFxZYNDPX12Q5R6u3txdjYGGw2Gw4cOJC1sYGth1QxxjA0NISBgQHs378fe/bs0fJ4jCA4sjkHjuMSkltlWdZCO0ZGRtDR0aE1rsvPz9+x7sobsdPrksx295eIz+Oprq5OSFKemJhAd3c3TCYTOI7D7OzslhPQswV5ODaYBwsjEH0cy9L3IVk7YLECSrAWuTkTkKQjUNgCGFuCKP8BEFfEhoJ62IRSQGkFk/sAADx/GKLSCoWrAePyATYExXw7IFRlba56h1SlW+iEeAWHc+VvNyAb6xawrZDgMDjxvTVmZmZgMpkSyq9GIhGtMd6pU6e0ZL/NoIZU6bXDqDb+e/HFFxGNRjPqdp3O2ACy5qEJhUJoaWmBLMtobGzExMREVsaNZytGeSwWQ1tbG5aXl1dV88p0XD37KeiFIAgJseXRaFQrv9vV1YVYLIbc3Fzk5+dDlmXDGfpGYaevS3ySstrHZWBgAPPz86sS0HdSSJKHIzVReQyeyMOQ5B5I8u8AXKzmpTSA5xgYFPBiGwTOBTvngsxkRGNHwDALOSLCnvO8NpaMCpg4FxRUgGND4NgQZPNfgolXZ3XOelepqqio0GVsgrjUIcFhYJJDqJJzLOKrOp07d27LO4HxSX56GKFLS0sIhULIy8tbsxfIZlF39rMhOObm5tDa2oqSkhIcOHAACwsLuvbLyJSlpSVcuHABTqcTZ8+eXRVKtJnroFdZ3O3CbDYn5A0Eg0EtbyAQCKC7uxtzc3Oa4bqZ3gLZwog75UaZkyiKcDgcCIfDOHbsmJYj4PF4NCHpcrm08KvtKiRgVA/HTgghxhT4Y7+FJ/IDBGLPwS7sBVgfwKwwiwcBJkNEPzj74sVXCLAJx8HYMsBmIZraYBZOQTRfgMIERKV6RGOAQ/CBt76gnUfiXg+Y35/1+euZw6H24SAyQwGDgt2xKbRb3mcqSHAYFNWrEZ8YLooiIpEIFEVBf38/RkZGEkJptor6I5ztGFdFUdDX14eRkRGIooijR49mbex4tpqDEn9dDx48qO1U6dUvYzPzVbua19XVoa6uLuW6G8Uw2qndc47j4HA44HA4sGfPHrz44ouaV3B6ehq9vb1Z7RtxKbPdIVXpEL/hkSoBXfVkjY6OAlgpJLBWAno252RED4csy9tWOlpSFuGL/gLe8IOIKSseXzNfARPHwPHHEJG6EZV7kcPnQOEWIUl5sFgaYOY4KPJvtXFEfj8EtghFOAUm98Fk6kOO9Qh4xbPynhQLfIH9uNDzRlitzyf0AMnG91SWZd2+78FgkATHJlCgQL/sUWOxe97pakhwGIzk3hrxieE8zyMajeKFF16AJElZDUlSxweyF5YEvBKaJEkSjh07hra2tqyNncxWhEE4HEZraysikciq66p3R/B0kGUZXV1dmJmZ2bCruVFyOIyCmrhcUlKC2tralH0jXC5XQtiOXsblTq9LMkabD7C2hzU+AX3Pnj1aIQGv14v5+fmERpKqgZqtpMzd7OEISL2YDj2MQKwZFm4OMvMBMMEmHIaIJUTk7otHCnDxDeA4HpLkAIQ+iACYvOK1YMiBwB+EAA8UNgDIAwAAs3AVoLwMhT8ABhPATSG35O9xrrBUy9NSv6dOpzOhv8tmxJYsy7ol61KVqs0hMwbZgL9FerBb3mcqSHAYCLW3RnyTqfibXCAQwNzcHPbs2YP9+/frUv4VQNYSx2dnZ9HW1qaFJoVCIV2rYG1WGKhVntaqlqVnR3Bg4xC2YDCI5uZmcByHc+fObXizNILgAIxpzAKp+0ao5Xc7OjogSVJC+V2Hw2FIYzObGOn9pRvSGV9IoLq6OqGRpJqAbrPZNCG5VpO6dOdkRA+HXjkcCpPgif4K06Efwi+1QuRccAkiGLPCKp5CRB6DCC9iSj8AQOBK4BAbICsdUJR5cALAIvUA/zI4/iAYZwZTBmHCHMCGtfPw3GlwYCu9OJQOADyY9V8BvhImHgkleKPRqFaCt6+vD+FweFUPkHTuidSHw3hQSNXugASHAWCMJYiN5HK38Q3nnE4nDh06pMs8OI7LSi+O+OpOhw4dQnl5OYBXQoj0TErPZO6MMQwODmJwcHDd0DS9DPh0BMfs7CxaW1tRXl6O/fv3p2VcGEFwGMmA3WguFosFZWVlKCsrA2MMgUBAyxsYGhrSGhSqAsRiseg6n+3E6CFVmRDfSBJYu0md6gHJJAHdqB6ObAuOqOLBZOgxLEWfQFBeKWfLw4QC0z7IzIuQ0o2oNIs8cT8icgfMwlEwyLBwNkjyr7VxmLQHPOxgXAEkpQMAB7twfKUiFXLB8Q3gwMPE2sEpkVdeZ/4oIJ5LOTez2YySkhKUlJQAgNbfxev1orOzE5IkaQ0m18vv0UtwqLlj2Yw62C0oYJB3iSFOgoPYMTbqrbG8vIyWlhaIooiGhgbMzs7qOp+t5kEEg0G0tLRAURQ0NTUlxLOqP/JGEBzRaBStra0IBoMbNhzUqz9JfAhb8o2RMablvRw+fBhlZWVpj2sEwQEY18OxHhzHwel0wul0orKyMmXZVpvNpomPzYZ1GAUjrlG2vAmpmtSlqmQW3wF9rd8lI3s4svFbuhTrwljoR5iL/Br54h4E5V4IcMEm7IWFD8Iv/U471i2eARAFx+UhLLfBIR4GU14EYyaYhMMAeHD8MATTGNSPl1W4EkAYjD8CpnSCsT7YODs4rIgNhdkB0/WA+QNpz9lms8Fms6G8vDyhUISa38MY0/J78vLy4HQ6NS+4XmtJSeMEsTaX7p3yMkD1aqhJ2sm9NcbHx9Hd3Y3q6mrs3bsXs7OzuoYkAVvrxTEzM4O2tjaUlZWlDPlaz8DOBukKA6/Xi5aWFuTm5uLs2bMbhlnomcMBrDb61O7rkUgEZ8+ezdhFbwTBYbTd4M1ej+Syrequucfj0cI64qsmuVyudT/bO70ua2Gk9dJrQyLZk5VsoAKvdLLPy8tLSEC/HD0cCpMwG3kG46FHsCR1AgCKTAegsCU4xaMISN2w8DGE5RYwxsMmHoSFdyMs/Qa4mPhq5WsgIgCeP4GY0ouo3AanWAdFmAcAcFwtTHwVoLRBge/imUXYuAowpR+MPwQGAeBigOWT2OwVTi4UoTaYVNd3aGgIPM/D7XYjHA5DkiRdPmcUUrU5KKRqd0CCYwdQe2tIkpQyhCoWi6GjowNerxcnTpzQeg0IgqBrYz71HJka14qioKenBxMTEzh06NCau/F6JKXHs5GhHd8gsaGhAdXV1WndcLYjh0PF6/WiubkZeXl5m+6+bgTBARjXuN4KybvmaliHx+PB+Pg4FEXRBIqeVZOyhRHXaDs6jacyUOM72ff398NkMmlrGYvFDOvhyHReEWURw8H/QUBqhy/2LACAYyYUmY9BYhMIy8MAgHzTUcTkQdiEUwjLo+CgICL9FitiwwabcBgmzEO62LQPAJziCShKP8LhQ+AFHyxmgFdeBBDWjjELV0NhQQBOQGlf+a/jYXBZ6iQOJDaYrKqqgqIo2vouLCxo3uP4ClhbTSRXwzFJcGQOJY3vDkhwbDMbhVD5fD60tLTA4XCgqakpIV5cr9CeeDI9h5rQDABNTU2w2+3rjg3oJzjWm7vaKG9paQmnT5+G2+1Oe1y9PRxqXsvIyAj6+vqwb98+VFVVbdroMoLgMLKRnU2Swzr8fj88Ho9WNUk1WtUQLMBY1+ZyyuHYCqk62ceH0i0tLUEQBPT29moVkoxQSjkTwbEYG8RA8CcYD/0KReY6hOQWmLkiWIUKmDhoYVMMHHLFowALI8qWEJVehpWvBJQBiHwNeM6NqDIME2YgK4MXXyPALpwFwxJkFoDJ0gGm5MDCOQAWBlAK8JUQOCu4uBK5AAfY7gbH12T3wiTB8zxyc3ORm5urbYwxxhJCJa1Wa4IASe5vtBGhUAiMMRIcm0ABdk2x2N3yPlNBgmMbSdVbQ4UxhqGhIQwMDGDv3r2oqalZddPdLg9HuueYnp5Ge3t72gnN2WzOl4q1BMfi4iKam5vhdDrR1NSU8Y1Er4aI6lixWAzd3d3wer1b7havjrvTggMw5u65nsTvqqpVkxYXF+HxeDA2NobOzk7YbDbIsoyFhQW43e4d6Zqdat5GYicERzKCICSIxMHBQXi9XjDGMDAwgFAotKkKSdlmI8HBmILpyEsYCP4Q89FmAECBqR4CwnAI+7Ek9cLK5yEsd0JADmxiA3goiMmtiF7MrxC5PNjFUkiKgogyBADIFw9AklvAc3vA8eXgASjK77QeA4wJMLE9AOcAgxuK0gtBcUDE5Ctzgxkw3Q5evFafi7MGiqLAZDLB6XRq66uWyvZ6vRgZGUFHRwccDkdChbONvM2BQAAASHBsAnkXJY3vlveZChIc20B8bw01+TD+hhqJRNDa2opQKIQzZ84gNzc35TjbITjS8XDIsoyenh5MTk7i8OHDKC0tzer4myV5bMYYxsbG0NPTg/r6etTW1m7KkIn3zGTTqFDn8vLLL8Nut6/yaG1l3J029nfaYDQCyUZrNBrF5OQkhoaG0NPTg0gkgtzcXO2Y9ZKW9cIIxn0yRkzQ5jgONpsNjY2NABIT0JMrJG3nWq4lOGJKCIPBX2A8/Cwi8iCibBECrCgwN0JRxrEorxj+OUIlzFwMnHgYfqkbEXkCZs4Phggswl4IyIXIzSEondfGdgunwBAF4/chrPTDrPAQsYCV6HQBAn8QkQAPq60bshy9eAHzYOYCYEwC4w9AgQXg8yFaPqT7NUomVWPb5FLZ0WhUEyB9fX0IhUJar561BKbf74cgCLr1+LickdnK325gt7zPVJDg0BlFUSBJ0pohVHNzc2hra0NBQQGuuOKKdXdRjBBSFQgE0NzcDJ7nNwyh2sz4WyF+bEmS0N7eDq/Xi5MnT2pG32ZYK7l7q0xOrtz0CwsLcfDgwawZKJsRHHqIlJ0WPSpGMajNZjPy8/MxNjaGs2fPJuR/qEnLqsGal5cHm82m+9yNskbxGFUExc9prQT05LVU11OvtUwWHAFpFj2B/8ZA8BcQOB4OnofAWVAgHkFU8SIq9yDGFsHBAre4HwI3C7+80ktD5Jyw8xYIfDFiigcheRB5pv2IyCthU2Z+Hyx8MSLy82AXczJ4LgdWLgYOBeD4A5CUAYi8BWb7S3GzFGEVDkFBFIoSA5QOgCuHyXofOG57haUavrrRxpHZbEZxcTGKi4sBrDSGVRPQu7q6EI1GkZubC7fbjaGhIVx99dVal/HNiOX77rsPX/3qVzE9PY1jx47h3nvvxZkzZ1Iee8011+DXv/71qsff/OY347HHHgMA3HLLLXjooYcSnr/uuuvw+OOPZzw3gsgWJDh0Ir63hnqzir/hKIqCvr4+jI6O4sCBA6ioqNjwhqQmdOt5Q17PizI5OYmOjg5UVlZi3759m/ph1VNwqOFay8vLaG5uhtVqzYrXID7XIhsoioLu7m5MTU2B5/m0k9fThTwcxkb9LVC7ZldUVCQkLc/MzKC3txcWi0UTH/n5+brlDBhtrYxYEWq90KXkBHRFUbRcnuQEdHU9s+HJBF7xBk2HuzEU+jmGQ0+DQYHIWVBiakCMLcMn9UNGGDm8AMAGu1iHkDwJDhMIyRMAACtfB4fgQlBqA7sYNpVnOoaY3AercBoxZQocFMTk5wCseC045MIlHIHCRiEpQ4A8AhO/D7zcCgCQlRLwYhVMvAmy/FzcrM0Qbf8MjnNn5Rpkgnpvy9RTbbVaEwSmulnQ39+Pm2++GdFoFPX19VAUBS+//DKOHz+e9jkefvhh3Hnnnbj//vtx5ZVX4p577sF1112Hnp4eTfDE8+ijjyIajWr/XlhYwLFjx/DOd74z4bg3velN+M53vqP9O1ufOT2gHI7dAQkOHUhODE8WG/G9KjIpe6re8GRZ1q32fypBIMsyurq6MDMzg2PHjqX8EcxkfL3Cwnieh8/nQ19fH2pqarB3796sGC7xORxbJRQKobm5GYwxnD17FufPn8+6ADOK4NjpOcRjpLmkIlXSslp+V40pV3MG8vPzs5YzcCl4E4xAJmFePM+vmYCu5vKo+QHq32Z+zxUmw2frwZP+x+AUOSzE2iDAgjxTA0zcMuZiK14GgTOj2FSPKPNhSepDSPGgyFSKiDwOp3gFoswLO2dHQPrDynsFh1zxJMD8kFgAkvQHmPgiCFiEzBRYxKNgDLDyJsTimv3xXCFMiAH8MfhDk7BYJiByFeDklxLmLVj+BrygT/PajVB/a7fy3UneLBgZGcHLL7+MBx54AENDQ7j22mshCAJe+9rX4tprr8W1116L/fv3r/mZ/vrXv47bb78dt956KwDg/vvvx2OPPYZvf/vb+NSnPrXq+GRv/Q9+8APY7fZVgsNisWQU7ryTKOAgb7oo8qWFskveZypIcGSZ9XprAMDU1BQ6OjpQXl6OxsbGjH741GP1DKtKFhx+vx/Nzc0QRRFNTU2w2WxZHT9bqDf1aDSKK664QovFzQbZ8nDMz8+jpaUFJSUlOHDgAARB0MUwz3RMtVqL1Wrd8voS65PuugiCgIKCAq0kdjQahcfjgcfjSWhap+Z/qE3N9JrPdmJEwbGV/K34XJ76+nrEYjEtPCc5AV0Vk+uJm6gSQnfgKbT7f4bl0llU8nsRkCdQaD4Cb2wYZj4MX6wXIpxwmeohcgHMx17QXl9mPgIFQcjgsSi1oFA8iqD8B4hcEcxCFXgmIyq/CEACAHCwwiFUAIxB4QYQltqQI14BRV4ZkzELROEgTByHmNIKsCFYLADHqiAq3Ssn5WoBrgCccAiC+Z3Jb2nbWOu+vBUEQcDp06cxNTWF7u5u/OEPf8DLL7+Mp556Cj/96U/xiU98Ah/60IfwjW98Y9Vro9EoXnrpJXz605/WHuN5Hq9//etx/vz5Vcen4sEHH8S73vWuVQ0Hn3nmGRQXFyMvLw/XXnstvvSlL2m/J0ZDYSt/u4Hd8j5TQYIjS2zUW0OSJHR1dWF2dhZHjhxBSUlJxueI93DoRXxI1cTEBDo7O1FVVYWGhoasJHLq0dNCFUWyLGPPnj1ZFRvAKx6qzc6bMYbBwUEMDg7iwIED2LNnT8LYOyk4JElCW1sbFhYWIMty1rpoG83DcaljNptRWlqK0tJSLWdATVoeHh7WGhSqa5dJ4qrRjHsjCo5szslkMqXMD/B4POjo6IAkSQkdstUE9GVpAT2B36Ld/xNE2EpFpJxAKeCOIagsIRD1odKyDzHFgzzTEfhifTBxUSxKXeCYCS7Tfth4AT7peW0uecJhgIvAIhxEUO4BZBFmzgdAAg8XzEIDzFwM4YveDwCw8nvB5BYI/AEwzgFJ7oaV4yErr3gyJMkOh5gDCGVgyjQYGwTHWWCyfDwr13CzpEoYzxaBQAAOhwOiKOLMmTM4c+YMPv3pTyMSiWB5eTnla+bn5yHL8ip7oKSkBN3d3Rue84UXXkB7ezsefPDBhMff9KY34cYbb0RtbS0GBgbwmc98Btdffz3Onz9viMp4yci7yMOxW95nKkhwZAE1hOrChQtobGyE1WpNuDmpOQVms3lLXgKO43SvVMXzvGaEzs7O4vjx41qTs2yNn835T01Nob29HVVVVZAkSbebyWY9M9FoFG1tbQgEArjyyivhcrkSnt9JweH3+3HhwgVYrVZcddVVAKCVce3t7d1yFSUSHKnZquEanzNQWVkJRVGwtLQEr9eLqakp9PT0wGq1JgjHtfI/jLhGRhQcW+novRHJ+QHJYjJkXoC3sBtB8zR4cRExJYRiSyNsnAVz3EtYkBk4JqDKehQxNodleQKQJ1BmPoiIMgG3eBzL0hDMnILli8LBzJXAIdQgpnQgJHkBAALnhJWTIXB7AN6EkNwNB8cQlV/W5mriqmAR8hGTfZAuei/s4kkoiipICsFztVAiPnCmLijaT70LJts/g+N2No9AlmXdDO61mv5ZLBbd8icefPBBHDlyZFWC+bve9S7t/48cOYKjR4+ivr4ezzzzDF73utfpMpetQIJjd0CCY4soioJoNApFUTA3N5eQNxBflrWmpgb19fVbvmnpXalKkiTMzs7C6XTi3LlzWS/xl635q4nXk5OTWl5JV1fXjnUxT4Xa/yMnJwdnz55NafTpsZ7pzHV6ehptbW2a90ot2RzfRTu58g7HcWnvohvNYLyc4XkebrcbbrcbtbW1Wk8Bj8eTELKjJiwnh+wYba2MKDi2a07xYlIu9KB38XcYi3TAxnJgZTK4gBucmUMouIiAaRKcbEWBtQ5WgcdC7MWLk+VRYjkMmS0hKC8gKM8j37QXIakdTvEwZBaDzJYQVVohsyUAgIkrgUusQkTuQ0TpAgDkiEcQk18ABxdM4j4oyjLMXASRuBK5Zn4foAyA509CYQHISi8sQh3MzoH4dwWT7R/A85W6X7+NyHZp83j8fv+qsKaNKCwshCAImJmZSXh8ZmZmw/yLQCCAH/zgB/jiF7+44Xnq6upQWFiI/v5+QwoOYndAgmOTqCFUahUqnucTvA/RaBQdHR3w+XxbLssaj14eDsYYJiYmMDk5CafTidOnT+uyo5cNA3ut7uZ6J6SnO2/GGMbHx9Hd3b1h/4/t9nCo1dHGxsZw9OhRlJSUrHlsfGKkWv3L4/Fou+gbhV8Zcfd8p9mOa5LcUyA+ZGdychKyLMPtduta+WorGLEPh54ejnhkJqHD/wKGQs9jMLQSopTLF6HAkofZaB8kYRG5fAksSgxypAwh0xT8gTmErBMQkYMcUw1EDliKNYNh5bfQyVfBylsQUJxYlDohck7kCBZE5TDs4jHILAIbb0ZAeqWSlJWrhQgGJhxDWO6CJL2EXPEoJLnz4hEWmPiDMPEKJNkP+WJiuFk4Au5iaJXCnOCFfeDFayFsc3O/tdgJD8d6mM1mnDx5Ek899RRuuOEGACuftaeeegp33HHHuq995JFHEIlE8N73vnfD84yPj2NhYQFlZWUZzW+7UBgHhRlrk0Evdsv7TAUJjk2wVm8NVQx4vV60tLQgJycH586dy7iz9XroYVRLkoTOzk7Mz8+jvLxc15urWtp3s8zMzKCtrS1ld3Oe5xGLxbIxzVWkKwxkWUZHRwfm5+dx4sSJDZP0tlNwRKNRNDc3IxKJ4Kqrrsro5sjzPHJzc5Gbm6vtoqtGbF9fH8LhcEL4lZEw2m75dpMcshMIBLQEdK/XC0VR0NnZqXmvdrp85m70cESUEF5e+jVeWPwFSsz5mIp2otBUDRNnAYMPk5EOcOBRZt4HDkvwSVOABTBH3MixCZClGgSFMcj+CVgtPigcg5NrgFm0QWED8MX6AAAcBBSIe6FwMUSVAJalNuSbjiIsr3hHTHwNTFwpONaHkNynzS9HPIGY/CJE/iA4zoaYMgCRW4YUd4zAl0Fk8wB/HItLC3A6JsEgwGS+Vbfrlil65nCofTgy5c4778TNN9+MU6dO4cyZM7jnnnsQCAS0qlXve9/7UFFRgbvvvjvhdQ8++CBuuOGGVfcYv9+PL3zhC/iTP/kTlJaWYmBgAJ/85Cexd+9eXHfddZt/gzpCIVW7AxIcGbBRbw2e5zE+Po6ZmRk0NDRkvb8CsHWDPZnl5WUtjr+pqQnT09PweDxZGz+ZzXo4FEVBb28vxsbGcPjw4ZQ7NdvR42M91KaIgiCgqakprXC07RIcPp8Pzc3NcLvdOHHixJbLKouimBB+FQqFNCN2dHQUsixDURQoipJxEvPlzk4a0xzHwel0wul0oqqqCgsLC+js7ITFYsHExAS6urq0kq1bLRywWYwqOPQwVJdjPvx+6Um8vPxrRJQQ9tr2giEKt1iOhdgkyi3FWJZ8KDMfQERZQoxNISjPg4cJBUI9wvwEljEKiICNz4PTbgWUfATZJJaUUThjZnAWD8CscPANsAkcFqUXtfPniPsgyQOwCScRUzyIyJOwikCMvRLiY+OPgAcgcwWIXgy3coonoMhqGV0bRH4/zBwPRWkH5Gk4HQBQAIvt6+A44yQp6+nh8Pv9m6oC9ad/+qeYm5vD5z73OUxPT+P48eN4/PHHtUTy0dHRVZ+9np4ePPvss3jyySdXjScIAlpbW/HQQw/B5/OhvLwcb3zjG/F3f/d3O76ZsBYyeMgwlldTL/TLwDU+JDjShDEGSZIgSRdLBSaJjXA4jHA4DEmSUiYHZ4tshVTFh/3U1taivr5e89JsZ9nddAiHw1oVqqampjV3kfTuYr6eMFA9L3v27MmoKWI6QiZTkgXH2NgYuru7sXfvXtTU1KxpzG3F0LPZbKioqNDCr1566SVYLJa0w6/0xijhXUaZhwrP8xBFEfX19QCQULJV9Vy5XK6EwgF6hxYZUXBkuxnhbHQaLy7+Br3B5+GXfbBwNuyzH4A3NoKA4gMHDvW2RigsCgUxLMSGkG9yIqYwFJuPwC/NQcYUZMsCGDjkiw2w8AoWpR4wTgHH8Sg1VUJWwlDkQoQxjLB/CbJzpas4YzwcfCNEKAgzP6LSBQBAvukwIvLLEFAEUawBYxGADSAiL2lzt4snIMstEPijAMdDkntg5gWwuH4bjPGw2L4Gns9ewZFsoGcORyAQQHV19aZee8cdd6wZQvXMM8+seqyxsXHN3xKbzYYnnnhiU/PYKdguCqliu+R9poIERxrE99bgOG7VDXd2dhZtbW0QBAH19fW6iQ0gO4JDkiS0t7fD6/WuCvvROyk90/Hn5ubQ2tqa0LtiLfQsxbrWvONzIg4fPpxxoyU9ygSr10Ft2Dg7O5tWeFe2UI3YwsJClJeXbxh+lWn1KyJ7JBv3ySVb1Y7KHo8H4+PjUBQloWO23W7P+toZVXBkQ2iNhAbxjPdJjIUH4Lp49620NkKEjIlIKxQGlJhrkSOYMRlZ6dgtQMQe6z5EmR8+ZQbhWADFpjyEpRDEYBVEZxQmPgKftCImRDhRYt6HiDKKEJsAeCBP3I+I0AoR5YDkRozNIYYxKGavNjcXfxyADFE4gIjci5gUQI5QoCWWM/Cwqt4OWCApK/OzCicTxQb2YGTsKhw8dNWWr1e20dPDsdmQKoJCqnYLJDjWYaPeGoqioKenB+Pj4zh06BCmpqZ0n9NWBcHS0hKam5ths9nQ1NS0ysW6HWV305k/Ywz9/f0YHh7GwYMHUVFRkbWxN0MqMROJRNDc3IxYLJZxTsR6424V1Wvy+9//HhzHpR3ele05qGwUfgVAEx95eXnUfHAb2eizZ7PZYLPZUF5eDsYY/H4/PB4P5ubm0N/fD5PJpK1bfn5+VvLVjCg4tjqn7kA7nvE+iaFQH+y8DTW2EkhMxkRkGLliLjzSGMrM+7AsL8IhiJiKtkGAGYWmOph5CRPRFQ8EBw5VlkbILIBlTEGxj6FQ3Aef1A6nUA+Bs8LK8/DFVZJy8Htg4kRAqEVIHgInziBPrEFYngQDD16qgRKxI+xoAY9XcuBcQj0kpRkC3wCOy4WszELAJCT5lXArE1cHXmkH46oBvhiKMg3G9mBu/vWGW0Nge/pwEASRGhIca6D21khODFcJBAJoaWkBAC3MZ3Z2VldjHdi8IGCMYXR0FL29vairq0NdXV3KG4IRPByRSAQtLS1acnNOTk7Wxt4syWN7PB60tLQgPz8fJ0+eNFSDvKWlJUQiERQXF+PAgQM7VvFnPZd/fPhVptWvLnWMZoilOx+O45CTk4OcnBxUV1dDlmWtb8vo6Cg6OzvhdDo1AeJ2uze1m2xUwZHp90hhCl5aehndgTZ0BF4EA0OluRpmQcJweCXZusxcDrtghl82YSzShzrbXixLUygxH8R8bAQmQcFstAsCLCg018PKM8xEX2nC5whVgbPwsPDlWJQGUWhqgF/qWHlO2AsTlwtZ6cWSNKi9Jt90CLIyB7t4CmF5GII5BJNlCgp7RWwo/kYsIgCTrQCC2A8wDjliIxRlWDuG56ohCmWQlRgUNgzIw+C4UnD4IgRhZBNXWX+MVqWKWEFmPGS2S3I4jBVVu61cXnfyLBEfQpUsNIBXOnBXVlYmxOvr7R0ANlelKhaLob29Pa0SvXqWllXHX6+S1MLCAlpbW5Gfn59xcvN2eDgYYxgeHkZ/fz8aGxtRWVm5JeMomzkcjDEMDQ2hv78fgiDg0KFDWRl3M6R7TdKpfqXmEBQUFFzy4VdGy+HYinEvCEJCVbJoNKqtXXd3N6LRqNYxO5PQOSMKjkxyOGJKDOd9v8dTnqeRZ7JjLjqMKmstQnIQohDBVHQM+WIxCkyFmI32wCeFAAA1ln1gLAS/4sVy1INqSyOC8gxKzQexEBuGmVMwH13Z5HIJtTArTizbWjEflS4+tgccm4NLPIqQPA2/NIY8UwgxtgAAEJCLXNN+SMo4Iso4oIyDhw0OwYyYsgwBRTAJ1RAgQM55HvHprUqwHoqzA7FoMcCVgRMX4BBckOTfxb1zEQ7bN+D3uwxX1lhFlmXdEqdJcGweBRyUXZI0rsBY94DthARHHKl6a8TfZNTysXNzcyk7cG+H4Mg0qVttPudwONIq0btTSeOMMQwODmJwcHDThrweCdgqqlBqbm7G4uIiTp8+DbfbnZVxs2GEqt3hFxcXcfjwYXR1dW15zK2ymfe1XvjV2NgYACQ0H0wn/MpoxquRyKYAMpvNKCkp0Xq7qGvn9Xq10Ll01i7bCdrZIB0PR1AO4Vnv7/C059dYlpdRa6uATeBgE+wYCw+h1loOgKHUXIWw4sdCbAAyi6HCvA9mXsRcrBUKZIBxqLIegIJlBOQ5BORZlJsbsBTrQ4HpMIKyFzw4+NECcDIAHnliI6x8BMvSHILKSshTsXkfAlInHOIhMAAcJISk34NB0uacKzaA4xSAtyEi9wEKD54LIF5sWPnjMLkExORKwDQOYA7RQANsOW0J799ivhOieBKK4tHNi7BV9EoaVzvEk+DYHJTDsTsgwXGRjUKoFhcX0dLSAqvVumYH7u0SHOmcgzGGkZER9PX1bdh8Lp7tCKlKnn80GkVraysCgQDOnDmD3NzcTY+t1w6yLMvo7+9HTk4OmpqastZbJRshVX6/P6G0cSQS2fGd9GwZjPHhV4wxLC0twePxYHp6Gr29vbBarQn5H5dC+JXRjGk95sNxnNY4cs+ePQmhczMzM+jt7YXFYklYO7UJ4aXm4ViW/Pjl/LMYDvdhIDQAJ+/EEec+TET7MBsLQwCPQ4798EhT8Mbm4ORzkG+yw8JXYDY6gQjzY1mahMhZUWCqhsAxLMTatcZ9xWI9BA6QwDAb7USOUIIYG4cIN7hwLnh7ECLnwZI0qs2p2HwSHMLguBwsSV2wcEWwcP6LYkOETTwAK+dAWHoe7GLeBgczbLwVkjIBniuBwFeBMQlM6UEEfm1sM98Ie04fGANkqRaRmBWhoAuz0weQl9dlyGaSKnrncJDg2By7K6SKPBy7GtWrkSoxPN5wXy/3AVgxeKPRqK5zTecc0WgU7e3tWFpawqlTp5CXl5fR+HqHVMUbw2qTxNzcXDQ1NW3pZqWXWJqYmMDi4iIKCwtx8uTJrBpDWxUc09PTaGtrQ3V1NRoaGsBxHKLRaEZjJpd4zgZ6JcOvFX41MDCAUCiUUMLV5XJp72unBZhR2a7rkip0zufzwev1YmhoCO3t7cjJyUF+fj4kSTLceqXycHiiPjw+/wx+53sBdbZS+GQv6m11iCkhjEd6IUBArXWlXO1AeKWiU6FYilzRjslIPxTIyBMLYOc5uLg6zMaGEJZ9kDENDjyKTI3gAQTkPizJQQCAlc9BnliIKLPAFxsELF6Ui7VYljohwgWHqRZmWLAkPQdcDN3gYYWdE8DxRbBwdQjKA+CYjJD8rHYMALhMxwDEwHE8IsoAOGUJOUIx5DixwXN5MPNOMFwBRRkCJw7BbipBceGDyMvl4PV6MTs7i3A4jBdeeAF5eXlaPo8RNgMoh8OYrIRUGWuTQS82+z7vu+8+fPWrX8X09DSOHTuGe++9F2fOnEl57DXXXINf//rXqx5/85vfjMceewwAcMstt+Chhx5KeP66667D448/vqn5pcPO/wLsIMm9NZLFRjQaRVtbG5aXl9My3EVR3PGQKrXB22Z34rcjpEqW5QQhl60midkWHIqioKurC9PT08jNzUVhYaFhDHO1EeL4+DiOHj2qNYlSMZrBpgfphl+Fw2HdOtBnihHXZSe8CWrZ5MLCQgArhSJU8RiLxdDa2ppQftfpdO6o1yPewzEbmcfP5n6F84svQ2YyjufsRVgJwhfzwcLxsAoKyk1VGAuPwsQrGA33oNxaB1mRIXJhjEd6wIFHhWUveM6P2dgwACBHyIdd4GDm92IhOoIlaRI2XkGMBWHnS+AQSgHMYzbWvDIpDnBFKwGLghzxEBalfpgVH2JsDKqQsHClcImVCCv9iMkr3wkrVwooA1gpdOuCSWiAibMhKP0WwCu/ny5xPyT5JTCIMPGNAGwwc0HE5FeS1gEBTvvXYRILUVAAFBQUwOFwYGJiApWVlfB6vejt7UUkEoHL5dLW1OXamTwPvQSHoigUUkXoxsMPP4w777wT999/P6688krcc889uO6669DT06OVMI/n0UcfTdiYXlhYwLFjx/DOd74z4bg3velN+M53vqP9W+/GkLtWcKiJ4aqBmrzLqyYvu91unDt3Lq2dd729A8DaIVXxycxbMeBVD4ReYQ08z0OSpKznQqhjZ0twhEIhNDc3gzGGpqYm9PT06GIsbmbOahWvaDSKs2fPrirFqGdoWbro2RNlLZLDr5aXl7GwsACv14vBwUFMTU1dcuFXemOU8CWLxYLS0lKUlpZiYWEBDQ0NiMVi8Hg8GBoaAs/zCeV3t7vMM2MMU7F5PDL2FPqC3ZiPeVBpKUeeyYru4Eq+VIW5FDkmEaPhITDMYL+9HhxkOIQ8TIRHUG0tw2LMi0rLfvglDxR44I1NA4xHibkeZj6EhdhKNSkTZ4FLyIGJt8PE58InjcAl5sAnDQMAbHwJrFIBYqZ++KTllWvIuyHACwVm5IgHEFWW4RCcWJae094Hz9lh5Uzg+QbITEJI7gXPlqAoFxAvNhzCFQALQRROIir3I6J0wiGegix3JFwXm+WjMImnEx5TFAUmk0nL5wES+7lMTExAUZSEggIOh2NbPod65XAEg0EwxkhwbBJlF3Ua30zS+Ne//nXcfvvtuPXWWwEA999/Px577DF8+9vfxqc+9alVxycXBvrBD34Au92+SnCov7vbxa674zLGEsRGqt4aAwMDGB4ezjh5eaeqVKmeGL/fv2UDXt11kmVZF4MsHA5jaWkJ+fn5Wc2FALJn5KrNBktLS7WysnoZ0JmO6/P5cOHCBeTl5a1bxWunBcdOz4HjOLhcLrhcLiwuLqKgoAA2m23N8Kvt6KAdPzejYITPSSocDgdycnJQWVkJRVG03J3k0slqyI6e4nEwOI6f217CwuQzKDCbkSM6IXIm5JjM6A32otJaCTNvwrI8hZHwIlyCG3usZZiM9CLCwuAA7Lfvh8RCkBDFZLQf5ZYiBKRFlJkPYkmah8AtYyG2koPh4ItQaC6BJ9aH6EWvxB7LfizGupAnHkKMhSFyDBGh9WLSOMDDhHyxDjJbxrLUB1+sFW6xEUHpYkM+JsAqNMLK2xCUWsEulrcVuVyIWICMGAARZmE/RM4NRX4ZESxr18AiHAS76Nlg4MDzdTAJJ2GzfGjV9UqVJ5HczyUQCGgFBVRBGe/R0qsXj145HIFAAABIcGyS3ZjDsbS0lPC4xWJJ6WGIRqN46aWX8OlPf1p7jOd5vP71r8f58+dXHZ+KBx98EO9617tWbU4+88wzKC4uRl5eHq699lp86Utf0rVB8K4SHBslhodCIbS2tiIajWbU/0FlJ6pUeb1eNDc3w+12bzkHQh0fQNbDqhhjGBsbw+DgIEwmU9ZzIYCtezjWazaoV35IuoJDvX49PT0berDUG+pO7l4byajmOA48zyeE8MTvuG62+tXlgFE8HPEkz4nnebjdbm0jRc3d8Xq9mnhU8z+yGa7T6x/BozO/QutyHywCj0O2KszJHgwEx3DYWQ0GCQWmQngkL1wiYONtcIsFEHmG4XA7GGOosNYihzdh5GIOBwdgn/0gIiyEkBJBMNKNGmsVFmIDKDTtgwwJdt6E6YuN/gCg3HQYQBQMZszHuuAQCiHAB3AyBKkUDmsZLFwE3tjvtdfY+TLIygAs/F7wXA4C8iDMvBUB6YW4d8jDKRSDAyDwlYjIA4goIzBxs1DixAbP5UNQpsHxjQDnhKyMQGFLyLV+LOVnZ6Ou7BzHwel0wul0oqqqShOUXq9XE5RqQQFVUGZrY0qvkKpAIACTyaR7SMrligJ+15XFraysTHj885//PO66665Vx8/Pz0OW5VVh0yUlJeju7t7wfC+88ALa29vx4IMPJjz+pje9CTfeeCNqa2sxMDCAz3zmM7j++utx/vx53fKcdo3g2Ki3xszMDNrb21FSUoJTp05t6oJvZ5Wq+DKy+/btQ1VVVVYMB/VGkU3jWpIkdHR0wOPxYO/evZicnNQtXGuz845Go2hpaUEoFEopNvX0cGw0Z1mWtXLMG/VRiScTY1KP9TDq7jmwesc1uYKSXtWvjHhNjC44kknO3QmHw9pueVtbmxauo66f3W7P6D22LQ3h6YWX0LLcAUmRccBRiwX/FDpD/TBzJhzN2YuZ6AQWpSXYBQsa7HuwLC9jKjKBKms5FmOzqLTshVeah40TMBpphwATSi21sPI8hi+KDwDYa9sPhhhE3omZWB8qLY2Yj7XBBAfcphqInABvrEUrZWvibHAJFvBcPaTILMLCLNxcMZalFm1MK7cHDrEYITkMv7wSouUSGhG66O1gEGAT9sEq5CEqX4DCXhEXucIBSPLF+TEzRH4/zIIdktwBpqjGDYc8+4MQ+MKU1y9Toz5eUCYXFBgZGUFHRwecTqe2IbDZhpKbmVu6BAKBjD9nxCvIjIPMdse1U9/n2NgYXC6X9rheYvXBBx/EkSNHViWYv+td79L+/8iRIzh69Cjq6+vxzDPP4HWve50uc7nsBYfaW6O/vx+FhYWrkg9lWUZPTw8mJydx6NAhlJWVbfpc2xVSFYvF8Ic//AGhUGhLZWRToeayZOt9LC8vo7m5GRaLBU1NTfD7/RgfH8/K2MlsVnCoifa5ubk4e/ZsSi+RXh6OjfItgsEgmpubwXEcmpqa0opdj/dwpIseFaUuFeLDr2pqajSDxwjhV3pjRAGUqdfFarWivLxcE49+vx9erxcLCwsYGBiAKIoJ4nGtG/uFxX78cOrX8EsBKAii2laOmbAXUbaMCB/BXlstzALQF+yGAAF7bXWQsYze4IohXmYqgVM0Y1GSMRzuQ72tFkvyNCos+zEbG4eJA8Yj7QA4lJjrkCPYMRV9Cezijme5eS9kFkCB6QA80QEE5Tnw8F0UGwLyhL2wCQK80sWSuTzgkPcgIF2AyBXAJlQhInthFUxYjL3iybBwxVCUEVj5BvC8EyF5EALHIyz9FglVqsQTkKQ2iMIVUABE5V5YeQticmLYhsPyAVhM59Zcj408HBuRXFAgvqFkT0+PloCurme6Hi01nFoPweH3+1eFq1zqeDweLC8vaxu0drsdVqsVFosl69dQ3kU5HPLF75x6z9mIwsJCCIKAmZmZhMdnZmY2zL8IBAL4wQ9+gC9+8Ysbnqeurg6FhYXo7+8nwbEZ4kOoJiYmtLhgFb/fj5aWFvA8j6amJtjt9i2dT+8KT8DKB0g1gI4fP65LzfNsvQ+1I3tNTQ327t0LjuMQDAZ1bc6XScJ7fJjS3r17UVNTs+br9GoquJ7nZH5+Hi0tLSgrK8P+/fszvonvtDG50+ePJ5O5JBs86g56tsKvjCTGLoWQqkzgOA45OTnIyclBVVUVZFnW8j/GxsbQ2dkJh8OREK7T7B/ADyafQV9gAhWWfJRZnRgMLqI/MI6DOWVQGEOUUwDEMBOZxV57HWYic2BcANORSZSZK5AjOjEfG8RQaCWWv9ZaDyCCJXkRi7IPNdY6eKVxVFgOwCvNQOQYJqMvAWCwcDkoNtUgqIwjIM8CACy8AxY+Bg5uuIQ6LMZGYRF5eGKveDLMch7MMEEU9mFZGkBIaUWx+TACmieDg42vg1PIRVjuR1DpAxTAwpeAXaxSBQAcXLDyjWDMDwkKYvLKOazCfshKfEUqQOSvgNPysXXXINtGfXxDSQAJDSXHx8cTPFp5eXlrJqCr9wa9PByXU/5GX18f/uqv/grnz5/HwsKC9rjJZIKiKIhGo4b73bhcMZvNOHnyJJ566inccMMNAFa+Y0899RTuuOOOdV/7yCOPIBKJ4L3vfe+G5xkfH8fCwsKWNt034rIVHMm9NeJL1jLGMDExga6uLlRVVaGhoSErO5aCIGgldrMNYwwDAwMYHByEIAg4duyYbl/4re7my7KMrq4uzMzMrOrIrmdjwfieCxtdm/gwr3TClPSqQJZKyMSHyyXnkqQ7pjrOTnE53YySd9C3K/xquzDSWmW7Qp4gCJqwqK+vRywW03bL/1/v79DBJjFomYEdFhy1VWNSnkS7fxalpgIU2xzoDQ5DgYJiyQmLwCEai2IgOIgGewU4jkOhuQQB2Q8ZHsSUKKosDRB5HnOxHkhspRRzpbkOPBSElSDGIt0oMVdgMdaHAlMNeM6MsOzDktyHiLIS2mSCHWXmBgSVaSxJY1iWJ1FqPgBfrAVgHFymvRBgR1QZREjogdo4PN+0HwHpJVj4Kpj4IoSUCdh5G/xxeRsczLDyAmRFhFU4AYWFISkzAOtHRJl/5bpxeRAwDQYFPFcFni8FYxG47V8Dx63/+ZZlOavFQJJJrkanerRUj6QgCAmCUt0QiM/dzDaBQGDbKm3pjSzL+NjHPoZwOIyf/OQnuP766/HQQw+hq6sL9913H+6+++6sv0+F8VB2SdK4son78p133ombb74Zp06dwpkzZ3DPPfcgEAhoVave9773oaKiAnfffXfC6x588EHccMMNqxLB/X4/vvCFL+BP/uRPUFpaioGBAXzyk5/E3r17cd11123+zW3ApXVnTIP43hpqsyaO47RwJ9XQXFhYwBVXXKHtYmYD1TOQ7V1DtQxqOBzGkSNH0NnZqesP21ZCwwKBAJqbmyEIQsqO7HoKjvj8k/VuKn6/H83NzTCZTGhqakordlJPD0f8uLFYTOv9cuWVV6blck01JrDzHoadPr8ebDX8ymjXxGjzUdHr900URQyIXvxH7FmYczksxoKo4UqwGPNjNDwGu2JGuZgPGw/0BgdRbilGoejCYKgbAyEPbLwVB5w1mIyMY1lehkOwo9zsgonPw5QyAb/sg6L4wDEeeyz7wAPwSv2ISREAQC5fAJfgAGP5mIuNwMzZ4BYtWJb9yDfVgYcFVl7BdPRFbc75phrIzIs88SiW5XF4YwMoNdcgJLyy8+zgq2DmzVBYJYLKOKCMo8B05JUqVQAE5MFtOgCJTUNifkjSSmK6S2xENK7cLQMHh3gAQBiybIGkjALKKPLs34AobLz5sdWQqkxI9milqmhmtVq1Xi4AdPNwXC4hVX6/Hy+88AJaWlq0cLWrr74ab3/72+F2u/Hkk0/i5ptvzuo5d2NIVSb86Z/+Kebm5vC5z30O09PTOH78OB5//HHN6zc6OrrqO9fT04Nnn30WTz755KrxBEFAa2srHnroIfh8PpSXl+ONb3wj/u7v/k7XwgeXleBQFAWSJKWsQiUIApaXlzEwMAC73Y5z585l/cIKgpD1HbqFhQW0tLSgoKAAJ06cQCQS2ZY8kc0Y11NTU+jo6MCePXuwb9++lDed7RIca6F25s7Us6VXb4v4kKrl5WVcuHABdrsdZ8+e3fQuoREEx+Ww05cOmYZfGREjrZX6mc32nBhjOO/txX+M/wYDwRkcdJbDzANeKQDexKHK5UZAtmI8PI06cyGisQjylBxElSCGxWlYZQtKnKWwikCP1nejHE5RxHh4CAoUuEQXckUzRL4S05FRLMbmYOLDiLEICsVqWAUHIsoYJiLtAAAePMosFeDAQ2IK5mPDqLTsx0Js5Xkz54LbVAtZmcGSPAZg5fO0Ukr3AjjZCQv2QDAziNw8fLEB7f06hRpEpBYIyINFrIHEgrBwNgSkxO7DLvEEovILACwwCfsAmGDmTIhKv004zma+ETbzm9O61tspOJJJVdFMTUBXv48vvvii5gHZSgJ6PJeb4FAUBQUFBVhYWEBubi68Xi+Ki4tx9OjRtPIBMkUBdk3S+GatnzvuuGPNEKpnnnlm1WONjY1r2gA2mw1PPPHEJmeyeS4LwRHfW0M19uNvWIwxhMNhzM3NoaGhAbW1tbrcZNUfrmzU+o7vB3LgwAFUVKy48CVJ0sWLEk+mokBRFHR3d2NychJHjhxZVb4t1dh6zH89wbFRZ+6N0KtKlSpkpqam0N7enpDvslmMIDiMcH6V7TSoNwq/MplMYIxhbm4ObrdblxysTDBaDkd8I9ZswBjDswu9+K2nC7/xtKPU7MaV7nq0+fsgMwUHHHsQhR9dgWHwAE6692I2Oo9ZxYtyWwEc4BCVRMwIc8hZ9mHKMo9SrgwSL8HMKxgND4ADhz2WGpj5KCajwwBWSuS6RDMsfD542YYFaRrlvBsBeQEceBSa62HnRcxE28EumiCl5nr4op3IM++Hwhj80iQkZQoBeUJ7P8WmAwBkOMRGLLEBSOhFMV+PgDytHWPmCmHn8xHjOITkfkSlZtj4SkhKX8K1sfINAGSYhKOIyH0Iy+2w8nshK/0Jx4l8LXJtf5v2NderEtRmiN8QKC0txYULF1BVVQWv16sloOfm5mqbApstCOH3+y+bHA7GGA4cOICOjg7U1NSguroaP/zhD/GZz3wG//f//t+EEOlssbvK4u6O95mKS15wJPfWSBYbkUgEbW1tCAQCKCsrQ11dnW5ziRccWzEkwuGw1kk6uUSr3o35gMxCqtQqSgDSSrzXs0eEOl6y4FCvpyRJKTtzp4OenpnFxUXMzs7i2LFjKC4u3vJ4RhAcRjJid4pU4VcjIyOYnJxc1T+ioKBgR6pfGUUUqmTTw/HsQi++O/osXCYTfLElNDr2AJyMTv8AGhwViCkSlpQF/H/2/jS6svQs74d/ez7zrOloLkk1V3UNPVW1YTl2YxMSLxxCYhOybCC0gxPDS7z+/8YGg8GGBmwv2+CXYHCWJ0KA8CaBRZyYxA0Nxj24u6ukGqUqqTTPOvO8x/eD6hzpqCZJpVOlctW1Vn3QqX2e/ezh7H1fz31f95U3i+z39qBJDufzw+AI9Hu6sCgwrc8DEDfChMN+9EqBRXueFj3EirVM1GmjJJfAKTCvrxKDJjlOUPEwp49hOXMIQK+rk7KdoVU9SMKcQRMkFvS19rhRqRtVkCkKblb0K6v7VHtJm8OARFDuRxP9FMyzWJRXvyRAyBmgYF1AIoBH3oNpl3GJOllzzZNDEjyoQgnTqSASRZF6sR0bGKdkrek2RMGHQgr7uijEQUEW9xPy/BqisPmGKvczw3E7VIlQ1dHecZyaH896AXpV+3E7AfpGFIvF7xnCEYlE+OAHP8js7CwnTpzgueee4yd+4if4tV/7NUKhEF/4whfu9xQf4QHFA0047uStsbKywrlz54hEIrUMQSNRNRi7m5Knqst1U1MTJ0+evIFUNMqYbz02G1wvLS1x7tw54vH4prsobVZnsV1sLH2qlqTFYjEOHTq07ZW3RmQ4KpUKMzMzGIaxbSJ0M2yHcDxsPhz3A7Is4/f7cblcPPHEE3XlV7Ozs7VgZ71/xL3AbiKHO0E4Xk6M8tWpb3OlsMjjoU4Mx2C2nGbAqxGQZXyym4Vykpim0qxGKdsmimhzrTjFXk8vZbtCzl4mY2ZpUmI0S0EmxCukyqsdpA779qE7ZbKVDMvOAnEnQtJYIGC0YCoGig3TldVWuRIy/Z59FO0V0tYyaWuZuNrHsnEBTfATUrox7BK2s8ySvqbJaNcOYNppIspRMubk9QzG4hrZALRKO6Jm45YOUDBHSRvnaFIPUzTP152PkHwAxzGxRS9la5yyeZawMoC+jmwA+KUeLGsKSTqJjYVhXcWn/hNU+dCWzv9uJxxVVFu9ejyeGwTo61sqV8lHJBK5ZVvyqg/H9wLcbjc//uM/Xvv7fe97H6dOneLy5cscOnSIvr6+Hd/nw+U0/nAc583wQBKOqrdGtbxoI9mwbZurV68yNTVVK0caHR2lUqk0fG7bFVyvn/PtOhOtz3A0Cnc6hvVzPXz48JbaqDXCWHDj+NWSrfHxccbGxti/fz8dHR13FcTsdIYjnU5z9uxZNE3D5/PteP1vo0rAtrL/R7g9blV+tbS0xNWrV2tuy9V680aUX+22kqq7IRyvJK7xreWLvLhykU5XmFORXs5kRlEFmZPBbqYr80xVCkRlL32+KFeL00xXljke6MHBQhZV5irLBGQIyAF8UgBVhAn9CjYOXVoPPlnjSmlNYH3Yuw+LCoVKhrS4TIcQJ8EEmu5HtX14VZnpypna9hGpDVWAqDzAijHOUuUKzWqMjLVKNjxiM2G5naI1TsleBgsEBJqVTnLWVURc+OV+JEGl6AxRFMq1LlUheR9Fc3VfqtiBLLaioJA1/qHuPIWUY9d1G6uQxG5cYjeGM4NBBqxVMblLPk1A+4ktX4dGeV3cLe5U6nUzAXomk6lzQK92pKvqP6o6u0KhsO1So9/7vd/j05/+NAsLCzz22GN84QtfuMGkrYqvfvWrtc5EVWiaRrm8RkQdx+HjH/84X/rSl0in0zzzzDP8/u//PgMDA7edRzWWOnPmDC+++CLPP/987fc4MDDAwMAAY2Nj/M3f/A1ve9vbtnWst9w3Aja75znUSDwsx3kzPHCEY2MJ1UayUSwWGRoawrIsTp06VUtzyrJMoVBo+Py2QzhKpVJdyc/tUrM7kUW5E24XXJfLZQYHBzc111uNDY0jTKIoous6Z8+eJZvN7pgx4k51qVrv/TEwMIAgCKysrNz5i1vEbiAcuynDsZvmcrNg+nbdr8bHx7l48WKt/CoSiWza7OxO2E3nBbZHOF5PTvKl8e/gkiFl5Nnva8MtiVzOTXEk0IXtmFwpThBSfBzx95KzklzIXyOmhDjsi3KlOIbhmLgljf2eNhb1ZSZLs3S5WslbaTrkbuYrCyiiwGjpIgICna4e/JLGtfJaNmGPqx9BMIlanSw7MwSlADlWnb7lih+vE8V0LbFgT9e+E9f6yBpTxJTDlJ08AiZpcwiLtcWxVvUgDmUC0iGy5jWyxhhBOQjiWpDpEpuRBB1FOkHZXqJgzeFFxbTH686VV9qDYQ6hSAcRBC8VawbHAcN6FWdd9kQUwsQ822t/uhMaxkZgq0RIFMVadgO44Tf51a9+lddff51Tp04xMjKy5fblAH/2Z3/Ghz/8Yb74xS/y1FNP8fnPf553vvOdjIyM3LK8NhAIMDIyUvt74zX61Kc+xe/+7u/yta99jd7eXn75l3+Zd77znVy6dOm2xrHVazY0NMRXv/pVnn/++RvG/ou/+Au+8Y1v7DjheJTheDjwQBGOquHMzbIasNqB6MKFC8Tjcfbt21f3cLkXLuDb2c/S0hLnz5+npaWFAwcObOqB2GiDwVsRjqoRXXNzMwcPHtzWKlZVY9PI+Z87dw6/38/p06d3rB/8TnSpsiyLixcvsrKyUvP+mJ6ebnj3qzuhStJ1XScajRKJRAiFQg+cn8T3Em7X/epm5Vdut3tbweFuzHBs1OHdCmfT03zp2ncYzMxwKtpFwS4xXU5yItSBKKyOUzCLKKJFj6eN2dIKBSWNJIj0uztxSQIXCyP4JC/9rm4qTpqLhdVArl1tISBrTJbLZJwJmuwQKWORXvcAK/oiigDj18lGWGompjSxqI9QcUoAxJQWLBK0KHup2EUyLCELOQpkrx+nQMTopiSU0AWdReMSmujHJ4JBBRyRoNKHRwyRMwcxnWLtuFvUfeTMVf2H6nSiyc2IwjI5c00ULgs+ZLIY19MfAl5c0gCyYFMRXBjWyPXPVTxSDNNeIxsAMc+vI4vb05M9KCVVW8XG32Q8Hueb3/wmf/u3f8vZs2d5/fXX+c53vsOzzz7L29/+dh5//PE7PkM/+9nP8txzz9WyFl/84hf5xje+wZe//GU+8pGP3PQ7giDc0mHacRw+//nP87GPfYwf/uEfBuDrX/86LS0t/MVf/AXvfe97bzmXiYkJlpeXuXDhAn6/n5WVFXRdr5WdqarK7OzsDZ4OO4GHqy3uw3GcN8MDF1Gs99aoYr3R3K26JO02wlHtmjQ9Pc2hQ4eIx+M7vo/tYuP4juMwOjpa65jV0dFxV+M3SoA9MzODruu0t7dz+PDhHQ2k7pYkFYtFzp49iyRJnD59urbS1KhMwGaPvUoiW1tba+0Pr169SrlcJhgM1giIz+fb0vlsNKl8ULHda72x/Cqfz5NIJHak/Go3Eo7b4UJmnr+cG+IbCxfococ5Hevijcw1/JKLp0I9DBemKdk6e70tKJLDaGEBt6hwNNhO2swzUVrgkK+DjJlmwNPLVGkekzxz5UW63Z24BJWENcNoKQ9Ah9SGY5fI2AXGS1fpdHWwok/SrvVRsSsIjs2cfgnT0QFoUjoJKgpL+hJzlVUBeJfWzYpxlaDUgSYFcGyDrHgZhOv3gyPgMTWQICQfJmfNYNklMtYY9rpsR7N6CNNO4ZNPkC5OYChzeMUQBfNa3TkKSnF0ewG3fBLTKVOyxvAJBiXrXN12AeUAhrXqJi7SjCR14ZKfxKNsfwV7N5dU7SQR6uzs5LnnnuO5557jn/7Tf8rb3/52mpub+da3vsVnP/tZTNPkrW99K3/4h39405hE13XefPNNPvrRj9Y+E0WRZ599lldeeeWW+83n83R3d2PbNidOnOCFF17g0KFVnc34+DgLCws8++yzte2DwSBPPfUUr7zyyk0JR/U39/d///d85CMfwTAMcrkc3//93187Z5qmsbKygmma/NZv/dbdnLabwnYE7IelLe5Dcpw3wwNFOERRvOGBkcvlGBoaQpZlTp8+XXMV3YhGuoBv3M+dyEB1Rdm2bU6fPr3l+v17WVJVqVQ4d+4c5XL5ho5Z28VOZ2jWE06Xy0VbW1tDWu5uN1isNgJoa2u7QVzfKPJ1JyLjOA4TExOMjo5y4MAB2traMAyjlsYvlUokEgmSySQTExM1x+YqAdlM5mi3lOvspoB6J7C+1rynpwfLsrZdfrVbrlEVtyMcI7klvjj6MhW7QsLIcyjQhlsWuFqY52igC0VwGMyN0edpJai4GCtOU7Yr7Pd2gKgzmFtt93rQ24GDyZKeZllPc9AfR0QgrERIGGn8skPZKtPr6kMEEsYEFWU1A9Ait+KVNHKmwlT5GiEpjCQUkFFp1fZQsHIoYom5yponRq/rIGDglVpJWrMEMXBI1MiGV2whQBN5awKDFAVzHtHScCQTW1wlGx6xG4/UTNEapWIvgzUFCoTEfRSuG/gBqGI7PqkL3Zmh7KQomykAwvJRKteJRRVe6RCOk0ORnsSwl6jYUyi2jzbXT9/VNdytJVWNbNdbLBbp7+/nX/2rf8XP/MzPYNs2g4ODvPjii7f031lZWcGyrBvISEtLC8PDwzf9zr59+/jyl7/M0aNHyWQyfOYzn+H06dM1/6uFhYXaGBvHrP7fRlR/b6dPn+aP/uiP+PrXv87Kygrve9/7yGazlEolKpUKqqryzDPP8Pjjj2/p3DzCI1TxQBGO9VhfC9/T00NfX99tH3KyLO+KDMfi4iLnz5+vBZ/beQDeq5KqZDLJ0NAQ4XCY48eP71iJzU4G2dW2vIIgcPr0ac6cOdOQc7MdwuE4DmNjY4yPj98yi9XIDMetxjVNkwsXLpBOp2saF9M067Z3u910dHTQ0dFRE09WzewuXbqEz+erkY9gMHjDb+97LcjfSez0uZEkiWg0Wit1KJfLpFIpkskk58+fv2P51W66VjcjHOP5BF8ce4W/WbrK6VgXBiYzpRRPejqxMClZJmBiOBYdrhgVW2e6lKTX00JSz4GoM1GaZ6+nE6+kcLU0hulYBCU/ezxNTJSnKNll3KJGjzuCLCqULJ2EsYJLMqg4FcJmEyF/iIw1y3hpBgCX6KJFjWIQYKEyyVTlCntcHSwZc4iOTJPWi1f0MKefqXltaKIHRaxg2RphpY+SncYn+kiZZ1mrtBCIKDF0swCVPgwpQVZMYksrWGKmdl7EShjTPYJL2oMshCnbC4iCRt58FYe1xTW32IlhrZZ/iQRQpT0IqFjOFXR7rTMWyLR6fxtRuPmi3Wavn+M4uzLD0cjMS7FYrFs4FEWREydOcOLEiR3dz6lTpzh16lTt79OnT3PgwAH+4A/+gE9+8pN3NXZ/f3/tn6qqtLW13TNPFfshKql65MPxAEEQBHRdrwVMJ06c2FRN4f0uqbJtm5GREWZnZzl06NCWOjttxL3IcKysrDAzM8O+ffvo7Ozc0aBkpwhHVf+yPnPQyIzBVsY1DINz586Rz+d56qmnCAQCtxz3XhKOammXLMucOnUKTdPuONZ68WRfXx+6rtf0BBcvXsSyLEKhUI2AVLOMu231fDfgXpyTapavra2tVn6VTCZZXl6+ofzKNM1dSzhmixn+fHqI/zJ1hlZ3gFOxTt5IjxNSPDwV7eJ8bhrDNjkZ6mTFyDBXTtHhCtHu9jFRKjBSmOaQvw1JFIgoAXSnwkJphhY1ikdy4ZIELherJU9t+BSZidIENjYe0UWT5kEVNEzLJitl0GyTgpXFK/qJKW045JmorK1ED7j3ULbTtKoHWDFmMJwyC/rVGtmQ0WhX+ynbKVL2BCX9ImG5g6y5NoZXaicotZK3JihJKyCtICAQopWKOHH9HIkoRhzRFHAwKFgTwASy4EUVVKx1ZENEwyP5gSNYdoayPY5hDRGQ924gGxB1fRCXfPiurl/1GfkwZTgcx6FQKGy5gUosFkOSJBYXF+s+X1xcvKVGYyMUReH48eOMjq5m76rfW1xcrIsxFhcXOXbs2B3HM02T7u5upqam+OIXv8jf/d3f8Z73vId3v/vdTExMUC6X6evr2/GOebYjYj8kYuqH5ThvhgeOcKRSKQYHB/H7/TzzzDObFgXfT8KxVXO87exjp6DrOgsLC1QqlR3r8LQRd0sKHMfh6tWrTE5O3pA52A2EI5fLcfbsWbxeL6dPn77tw/leEo6qXqPaVGG7QYGqqnXmWYVCgUQiURfQKoqCLMuYpvlIfH4fsb78qru7+4byq0KhgKIoKIqyo92vtgvHccg6Jr9x4W+ZKiWYLaU5HGxDk2CssMTRYAeKBGczExzyx/HIMkPZcXySi8dDPUyXZxnKLeOTXJwMdTNWnCVvlWhXIwRlFVmMMFNe5LC/m4niJAOeHrJGHrcscK20qoNoV+MEFJmp8jVsbCREovhwiR7iai/zlWlEzWCuMgWAW/DR6eokby2SNheABfxSCMtZwXIsYkofgqDgEmGu8mbtWN1iAIEUmhjBLbVQsBKooo9l47vA2m+3VT1A1jyPX94PqOTNCdyKiuEaYf1bwG23YjAMjoxb7kfEgyrYFMzX685xQD6ObtV/5pKOE3Y9d9fXb333yN2GRprlbodwqKrKyZMnefHFF3n3u98NrBK2F198kQ996EObGsOyLM6fP88P/dAPAdDb20traysvvvhijWBks1lee+01PvjBD952LMdxkGWZq1ev8v73v598Ps+FCxc4fPgw7373uxkaGuIrX/kKH/vYx3a8rMpCwHpI2sU+LMd5MzxQkYBt21y4cIGenh66u7u3tDJXDX4ajY1kYH3nrM2a421mH40IqtPpNIODg8iyXCuVaQTuhhTous7Q0BDlcvmmbXkbJVbebEnV3NwcFy9epKenh/7+/jveo42a73rCsd6T5HYeL9vdj8/nw+fz1QLaVCrF+Pg42WyWb3/72wQCgTo37fuxov4o27KKjeVXw8PDlEolSqXSpsqvGomMXub3x1/nv+Uv8bi7HdOxWa4U6fUHMRyLnKmjiA42NjHNjyDYTJeXOeTvIG3mmSnPIYsyB3xdqJLNUG4UTVA44u8laSwzUqwa9/UgYaNKCleLExz0dTFbnmaPu4+MkcUrC0yUV1eMvaKPNjHGijnPbCUJwICnj5nyCK1aDwISAgZzlQvY18N/RdCIqTEEIOXMsmSM06ENsKxfqB2rS4jQrHaRtxbJmjNkrRV8YhNla5wq2RBRiSn7V9vVCi7S5mo2pkk5RNFa8/YAcBn7qFglLKsb0b1E3ryCl72UxHoTQJfYjW4NAiALXYhiCw42zd4XEIS7X/1/GDMcsD3CAfDhD3+Y97///Tz++OM8+eSTfP7zn6dQKNS6Vr3vfe+jvb2d3/zN3wTgE5/4BE8//TT9/f2k02k+/elPMzk5yU//9KruRhAEfv7nf55f//VfZ2BgoNYWNx6P10jNrVAtOXvhhRdob2/nz//8z3n3u99du5bf//3fz2/8xm8wPz+/5eO8Ex5lOB4OPFCEQxRF3vKWt2zru5Ik4ThOw1v2VQmHZVmMjIwwNzfH4cOHN50i3co+dgqO4zA5OcnVq1fp7++vlVQ1CtslHNXs1u00JTvRvvZmuBMxWF8y99hjj92yh/pGNHK+juPcVK/RSEiSRCwWI5fLUS6X6enpqZVfTU9PIwhCnfh8MyVd32vYTSVMkiTh8/kYGBi4Y/lVo8wHi6bB/5i6wO+PvoaCyIDi5Wx6Bp+s8WQ0zlBmBsdxeCLazmRpmRU9z2OBOJLokDYKCDi0uT0IQoSR/Cwd7iDzlWUOeHvImHmW9QXSZo4OrYVmLchwYRj7epnTUV8/Jjo2IqPFaxz0dTFZGqVd60IQJNyiyFRlpKav6HX1IQAeKchcZZKwHEEkg42FSwwQkeMoosF85XLt+GJKO2ljBFXwE1C6KVtF/JKrLtshCxouyaZsWYSVgziAbmUo2sOYzpp/lE9qp2ytEhe7EsLv7kUUZSqcwVH0WnW4aIVwxNG6tVTB8aCJrdiE0a1pSvYs2LO0eT6OJt1d58EqbtWyfjegURoOy7IolUrbMm99z3vew/LyMr/yK7/CwsICx44d45vf/GZN9D01NVUXr6RSKZ577jkWFhYIh8OcPHmSl19+mYMHD9a2ef755ykUCnzgAx8gnU7zlre8hW9+85u39eBYj6GhIf7dv/t3AExPT/OOd7wDgHA4TCKRaMw55OFZ+W98nc3uxQNFOGD7wWr1R9LoDhqSJJHP53n11VcRRXFHSqg2YifLhgzD4MKFC2QyGR5//HHC4TAzMzP3xefjVlhPiAYGBm6b3WpUSdXtiEGlUqmZIW71ejeypKpUKnH58mVUVd1RT5LNwnEc3G437e3ttLe3Y9s2uVyORCLB7Owsly9fxuv11onPd6PYdCex2zIt6zUTdyq/unDhQi1btRPlV4Zt8ecTF3h5eZKL2UX2+ZtwHIPR/DJHQm3IksNQZoaDwTbcMryZGafdFeZUuJfB3DUsx6bf04wqOwwX5gB4MtSD7ujkzAozzjIhRSSshPFIHhRR5EpxBNtx6HV3ElA8XC6suYYf8vUiYBGQI0xXZhjw9DBVGUF0REJ2M1FfhNnKpZpGwi268YgObqkdC4slfRJFtFnU1zQZbmHVsVwRekkYkxQqw8TVAVaMtcyDhIu4egCDDCUrScIYRkQmqsQoWGtkQxJceMUgCGFK1jKGOkfWukIQPw76ujMrEnIFqViLyHRhmSEMOwu6RN73at018ClvJez659u+hhuxWztUQeMyHFVD4e12cPzQhz50yxKql156qe7vz33uc3zuc5+77XiCIPCJT3yCT3ziE1uaR/U5UPWHgtX4IBQKATA6OorjODUfkkd4hK3igSMc20X1QWOaZkNW6aooFAosLS3R3d3N3r17G/Lw3akMRzabZXBwEI/HUxeQ3k8n842ortCnUqkaIdqpsbeCW41bzbpEIhEOHz685RdaowhHtVVwR0fHXek1toubEUJRFAkGgwSDQfbs2YNhGKRSKRKJBJcvX6693KoExOPx7MqV0u813Oocbyy/qlQqtWzV3ZRf2Y7DN2ZG+I/D36XN40UUBSqWhSILlA0bAxtZcgAHn6KhiDYreoF9vjYkwWEoe41+XysCkLczTBUz9LpbaNK8DOVWy468kot9vhamSgtcLUzT6WqiaGXodXezVEkiCjBcuARAXIsTUwNcK13Cclafe92uDspWlm7XXuZKM5QpsGQka2QjJrcTVT0s6eOkrFXRb6e2h0X9IoIjEVV7EVCALLOVtVKqiBwnZ15BQiOo9OIALlFiyfhu3TlqUfvJmEPgyPiUPkTcqIJByqz30YgqeyiYg2vXEjcR5TEcCji0UHLmQJrDp+7HVOvLq2zDx+zVH6IYHN6xDNZuNf2DxpGhKuHYTknVbkL13Dz33HP89m//Nu9617vIZrO1LoU/+7M/y+HDh+nt7d3xfT8qqXo48MARju0GIIIgNFRsXQ3wlpaWCAQC7N+/vyH7gbsnBI7jMDMzw/DwMHv27GHPnj115/VetN3dzPzz+Txnz55F0zROnz69qfKbe6GJgNVzODU1xZUrV9i7dy9dXV3bujd3er5VvUa1nGmz92EjAvs7ESlFUWhubqa5uRnHcSgWiyQSCRKJBGNjYzUhczQavatg6BFpuTW24jSuadotu1+Njo6iqmqtXO5W1+s7i5N89tLLTOXTnIi1cTm3hGXbHI+2cC47h2GZ7Fd8TBQTpIwip6Kd5KwSE8UkB/3NuCSJqBZktpQk5lIJK34UQcUvqwzlrtCkhGhWw+jkOJdbdd7u0JoIKy7GSyukCuN0u1tJGIv0unvJmjlkQeBa8RIWFioq3e4uyk6GJWMJjCU0NDTJQkCmy7WPjJkiqGhMV9ayI1GlFQedZvUQK8Y08/o4Pa5+lvSptfMneAnIQQxHI2VMsGxcISJ3kjYm6s5Rs7IfBwuffIScOUnKGKNZPUB2A9mQCnEKvkFUoQ1FasN0SojY5MxXWV+4IQtBHGdmw3WX6Ah+Aqv/eM1rp+owXSUf28k43qs2qttBIzMc1UYZ3wt4z3vew/DwMO9617soFAo8//zz/NRP/RQDAwP85V/+JU1NTTu+T8sRsR6SQPxhOc6b4YEjHHeDRhGOfD5fE1v39/eTSCTu/KW7gCRJ6Lp+5w1vAtM0uXjxIolE4pYthRuVJVg//p2C0fn5eS5cuEB3dzcDAwObDoruRYbDsqzaOdxM1uVO4+5UhsM0Tc6fP08mk8Hr9d7VvO4WWw3yBUHA6/Xi9Xrp6uq6rZldNBolEAg8sERiN817u/feZsuvqhmQCbPE/2/iEi8tXWMgEONELM75zBwHAs2IssOZ9DSHg604ts6F4iIDahMHgjFeT4+jChKPB7uY05cZLebxSCqPhdqYKi0zk5/lqL+dsl2iz9PBZHGBqKYxXVykz9OBLEpkzGWuFFeFru1qM35ZI2lYjJbGaVWjZK0FokoMj+wja2ZImnPkrSwAEiJxsZWSkydtL5MrX6XfvYd5fTU74pdiBKVWSvY8i/ps7fx0aQMs6RcRkYkovYCELBSY19dIgyb6EUjiYKLgx6d0IaOStS5iOaXadj6pjZK5pgnBkXCLezApI4odFOx5MJeQBA9+UcPaUCXuk9ooW+eRhTiSGMdydNzyAUKuZ8FF7R2wvt11NeMYDAZrGSyfz3fHe3e3ZzgaRTi+l7Kxtm3z8Y9/nH//7/89r732GvPz8/T19fF93/d9Devy5SBgPyQaDuchOc6b4aEjHDvdqWp2dpZLly7R1dXFwMAAi4uLDW+/u90MxPqMwTPPPHPLjMG9KKm61fjbFV+vH7uRIuxCoVAjl6dOndq0EO9O494tCoVCXTbozTffvK96gbs9rpuV81Sdz2dmVldr14vP7/Y63CvsNg0H7AwBulX51fn5GX7l0iukrQoel4KKhIiNiYMqSojy9dIpWUMQbYqmQZvgIaipXMzO8FigEweLkeI0iiBzPNhN3s7yZmYMEYFjgS5yVpaZ8goi8FiwAwEIKQHmKglimkrWzLPH3YUoSKTNBa4UV/UeQclPixYkbTos6ItoVoYmxUPCyBKVW/ApARTBYrpyhWqM0Kl1kjZmaFMPULTypIxFvJJG1lqqnYsmuRPQaVL3kzCmWDRG6dL2sWJcWzvnCDQrccBBESJkzAkMfYyQEqojGxIamqBjOhoeeR+241CwppGEIqZvksq610BY6qZkDdX+Fgngkw9iU8ShlaK9CPYiithKn+fnbriGG9tdF4tFkskkqVSKiYmJmh9PlYDc7De3mwlHo0Tj+Xx+W4Lx3QpRFDFNE9u2efrpp3G73Wia1tDM1aMMx8OBh45w7FQgbZpmrYTq2LFjtTTjvfD72M4+qsRoM67s98rJfCPK5TKDg4PYtr1tsX0jfTgAXnnlFdrb23dMF7EThGN5eZmhoSE6OjpquqGtjrvbV+c0TSMejxOPx3EcpyY+n5+fZ2RkBLfbXSMfoVDohpfjbgz0dwO2UlK1FWQsgy/ODvOXkyM8Fm3CrtiMlvIc9Pi5kl2ihMlRb4Tx/Apps8T3NXUzX8kyXkpyQAkg4CAgkjdLmJTZ52tjvLhM0c6zWE5zxN+NJDhcLU5iOhbNapgud4irxQkqtoEmygx4m5EFiZKtM6cvE1FUslaOFrWZoBygZK9wpTgCgIhAt6sFAREHiSVjgZDqXyUbgOCIdGi9yOgUrDI5a/XzPe49LOjD4AhElS7cUoCCNc6ikaqdizZ1T00k7haj+KRWXKLCsv4G6/02mrQ9pNeJyd1iGyG5nbK9SNFZpmislnC1qIfJm2sdrgDC8kGK5nlcUj+iEEJ3Mjh2kaJ5FpvSui0Funy/iiTeXuC8PuPY2dmJbdtks1lSqVTdb65KQEKhEIqi7PqSqkZpODaT/XlQkEql+MpXvsJ//a//tdZZ8MCBA/y//+//W+tYtdOwHQHb+d44f3fCw3KcN8MDRzju5kcty/KOkIFcLsfQ0BCKovDMM8/UrfTcC8KxlaC6qi2pOo1upv7yXpRUbRy/akrX0tLCgQMHtv3SakR2ptolC2D//v10dOxMC0m4Ow2H4zhcu3aNa9eucfjw4Tpn2UaJ0TeLRu5fEAQCgQCBQIDe3l5M06yJz0dGRtB1nWAwWCMgj8jGrbHT5yZv6PzJlfP8+cQl/KrG6dYOXl2Z5nC4hc6AnzOpWY6EWrAxOFdYokv0EBM9vJwcJyBqHHfHuGIso2dS9HmiBFWFy/llVvQcR4JtCIKDKIoUrCIrxgpdriZEQcQny1zIr2o2OrUWIprGaHECCxtFkOhxR1FEFUlQWNKX8csCK8YyOAJxV5yQ5GGiMorpGAD0urqYrYzQpMSxKyJ5MpSdFbLGWrvwXlc/FTtLm3qQpDFPwpijVaxQtNfIRkBqwnHyNCmHKdsZMuYMXjHEsj7EerLRrO4nrV/AL+9BEnwUrSXcYogVo76rVEjeQ948W/tbFqK4xS6ggi34yVnj1/9HICR3U7ZKdd+Paf8Sv/LUlq+rKIqEQiFCoVDtN1ctoRsbG6NUKuH3+2ukY7dlOhzHaRgZKhaL3zMZDtu2+aVf+iX+83/+z3zoQx/iscceo1Qq8a1vfYt3vetd/OEf/iHvf//77/c0H+EBxQNHOO4Gd0sGHMeptfPs7u6ueVasR6PLkWDzx1Et/5EkidOnT+N2uzc1/r3sUrU+aD5w4MBdB/M7LcI2DINz586Rz+cBav3RdwrbLQGr6jWy2SxPPfUUgUCg7v+3E/A/qCt0sizT1NREU1MTjuNQKpVq5VfXrq2WsZTLZVwuF5FI5L6LO3fbed6J+RiWxZ+NXuSvJq4gyhBxuVElkZxVocnlRZYcDMcmpnlBtnEcgR53mKhbY7aU5qDcBJbBBWORJsdFk+JhzkgxoxvEtRBtHh+X81OYjk2XFiGsaNj4uVZa4LFAF6OFSfZ6u8maRQKqwkhx9brH5DBxd5jJ0hQluwzAQV8nCX2RPa5+VowkXsnFaHlNI9Eqt+ASFXxSlAV9HgGBVjFCxlzVgQTkGDG5law1Q85aAVZLtHrcfSxd13b4pCb8YguQJmWOA6v6Do8YpmLPUiUbEi6Cci8CNqLgI22uEga32ETRHqs7x4rgQ3ASuKV+bNNFQV/CUBN4xCz566aAVYSVo5TMN+o+08Q+4t7/z91d6OuQZZlYLFZrkVoul0mlUszMzJDP5/n2t79NKBSqCdC9Xu99ve+r74RHJVU3RzXTWc1ufOtb3+KZZ56p/f9P/MRPcODAAX7zN3+zIYTDQsRi9xDURuJhOc6b4aEjHNvVcJimyaVLl1hZWeH48eO37EW9U1mU22EzhKPqcL6+zGYr49u23bByi+p1WB/M3yxo3g52UsORy+U4c+YMPp+Pp556ipdeemnHV4S3QwwKhQJnzpzB5XJx6tSpm/prfC9nOO60X4/Hg8fjqZWCDA4OAjA5OXlT8fm9XIndbdmWu52P4zh8c2qM3z33XRRRIOxxM5hY4InmVhYrBaYKKb6vrYuxfJKlSo5nWjqZLWWYLCQ53dRJ2TZJGyW6vUEqjkO3HqZolFgQM4QcF0FbQTMMzucm8Aku9vpbmdHnuZCvuoZ3IuCgShrDhSkeC3QxVhynz91FxTYJyArDhetlUQgc9fdTtgvkrBKZ0hh73F1Mla8gIxPXuhAFkZw1x7XymgA8TgsFEnRo+ynYOSpWiYQ5StnO17bpcvVTtJZoVQ9RtNKkzXlCWpAVY7y2jYhEQHZRssqElcOYjkHOnMMmRdJY6yIlIOGRVApWEQBViOCROlBFkZx5Gcu8rgVRIaYcobiBWLjFTsrmEAJeNKkXBBe6vUKH72OIwuYWnbYKl8tFW1sblUoFt9tdZ/g5NjaGLMs18nE/DD8bSTgKhcIDTziq73nLsmhqamLv3r03bHPq1Cl+53d+pyH7f1RS9XDggSMc96OkKpfLMTg4WBPk3k6gei8yHHcSXQ8PDzM3N8eRI0e2tSJfDcAaRThEUaRcLvPyyy/j8/k4ffr0jq0671Q52NzcHBcvXqS3t5e+vr7a5ztdalY9v5s910tLS5w7d47Ozk4GBgZuGSzfb8IBuyO4FkURTdPw+Xx0d3ff0kuiWn612Szg9wru5jf+5uI8f3jpTS4mlzkSbWYos4BiSpxua+cflqY4Gm7mZHOcf1iZ5HCwmTavh++sTBB3+Xkq1sEb6SlsG56ItpM080wWEzRLHpoUDUN1MVlKcDzcRqKSZY/TRNLMM5GfoiDqtIlhmrUAV0qrZVMAx/w9gIVH9HC1OM0hXzejpVGCcpAWNYoqCowUL9Xm36a1IKDT5epjrjLLbGWaVi1U61ClotHj7iVTWqIslJmsXEEWFFqUIClzlWz4pChRuZWyvUjWTJA1VzsUdmp768z9PGIzMaWDor1EyS5S1FczKu3aXlJGvT9Gs7ofy8kSko9RtpMUrRl8cpy0cbZuO8mIUhKG1n2i4BL34JKC6LZE2Z5Et1b30+L6V/iVY9u6zltBVZjt8/nw+Xx0dXXVfBySyWSd4ed6/Uejuh9VUX1fNlLD8aDCNE1mZmbw+Xzkcjne8Y538IUvfIGPfOQjCIKAy+UinU7zzW9+kx/5kR9pyBxsROyHZOX/YTnOm+GBIxx3g62WVK33q+jp6aG/v/+OL2dJknAcp6E1rLcSdReLRYaGhnAc564czhvpyu44DtlslkQiwcDAAL29vTtKau6WcFQJ2/z8/E01L43IcFTHvd15cByHsbExxsfHb9Br3Grc+53h2I24mZdEIpFgcXGRK1eu1MquotFowwKh3XZutjqfa5k0vzf4BvPlLKos0R0IsqTn6fIF8agyab3MHl8IWREo2wZ93giS5JDQixwNtqLKwmob3EAbPkXhjcw1ZEHiRLCThdIyo1YSSnAq0kPWKrBgZAnKbiIeBb8cIlXJ49g2VysTWIJNCyGaVB9XimPY10uV9nk6sR2dblcHU+VZQrKH2cpq1sIn+WjX4uSsZWYqy6vnAOj3dDFbHqdN60FCwsZgpjKMJa5lxbu0dvLmMnHtAEUrS8nOkrMm63QbUSVOyriMT2rHLUbJ20ncood5/fW689iiDtTIhowPn9yDJnrJmecwnbXsiUdsoWiO1F8zR0YVDFSxDVlswnRKFK0JVMlD1qzXfbjELjo8/25L13i7uNl7r9rdqtqmu2r4mUqluHr1KuVyuc7B3u/37/h7p/oua8Rv70HPcIyPj/NjP/ZjdHV14fV6SafTfPnLX+bv/u7vOHnyJIZh8J3vfIfl5WU+85nPNGQOliNgPSQr/w/Lcd4MjwjHLbDe4fpWfhW32gc0tj3gzTIcS0tLnD9/nra2Nvbt23dXqePqvHd6Nd+yrFpZWtVteqdxN4Sj2iXLsixOnTp1A2FrhJh+/bm+1f1imibnzp0jl8vx9NNP4/ffvsMM3H/CAbsjw1HFzeay3kuip6enJoRNJBK1QKjqQxCNRr+nOtFUsZUMR7Jc4j8OvslfT4xxuDXGXDFHm9eHrAhcTSR5pq2DhVKe8XyKt7R1MFfKMVlI8XRzOwWrwnw5Q5vHi4NDTPUjiDCcn+WxQCcpo8iCniBpFemRwrQEg7yZXdUwhCQP+/xNjBXnma2kiLvCgEG/1klCz6DYIuPmFLbg4LFdtElhVvQFCs5qSVKzGiFnrdCudWLjsKwvUbASJIzl2rHt9+zDRkcTvcxWJglIARRRrzmLa46Xbm8PBWuFrJ0hW0kjINChxUlcL5tyHIGo3IlP8mE5RVLmIikW8YoRSs5K3bn0ilFwioSVY1TsPFlzCtuaxWObdWRDQMIlyRStVf2JLERwiR0IOlTEK+TtJNirRMor9da5jq9CpMf3cUTh3rSN3kzr2fWGnwClUolUKlVreb1dB/vboZHdsx50wuHxeHj66acpl8s1Afy73vUuUqkUL730ErquY9s2xWKRP//zP+c973nPjs/hUUnVw4EHjnDczYNHkiTK5fIdt8tmswwODuJ2uzftcL1+H7AaJDYqTbw+w2HbNlevXmVqaopDhw4Rj8fvevz19Zw7hfUC9r6+PpLJ5I6NvR7bFY2nUikGBweJRqMcOnTopi+nRgTx6zMcN0PVO8Xtdt9Sr3GrcR9lOLaGjULY9eLzyclJRFGskY9IJLLpa7Eeu4mEwebmUzFN/uuVy/zHoTfoDYYI+zQuJVc4FIvx6soMXd4gT7WsllHtD8Q4Gmvi28uTdHuCHI+18FpyEk2UeTrWxdX8Egm9yPFwK4oIpuMwUUwQc6nElDAV00QV4Wx2jHYtSkjxYFDk7HXyEVfDtGo+rpUyDBcmiWsRCmToVOM4OBSNIsssoDurxqh+20PA0lihwER56nomI85MZQK/FCCmtKKKIuPlizjXsyOKIBNQVApmiQ5tL+lCGk0WmSmfx15nqtfj6mexcpmI0oMsekgZC6iSyFxlrURKRMIvK2TNAoIjEVR6kPAiCGmS5pq+AyAix8iaw3WfNamHsZwcPvk4ZTtB0ZpFFaMY0jAIzrr9qEjkbzD9a9H+FX7lsU3cCTsDy7K2/N5zu9243e5ay+uNDvaKotTIRzgc3tbvrtGE404Z592MSqXCv/yX/5Lv//7vB1YrJW5VHbFdw+FHeAR4AAnH3eBOGg7HcZiamuLKlSvs2bOHPXv2bDlwqqZtG6njqGZqyuUyQ0NDGIbBqVOndqyOVBCEHfXiWFxc5Pz58zX/ivn5+Ya13d2qaLza8vbq1avs3buXrq6uW17zRmQ4bkc4qnqNqqnkVu7F+004YPcF11uF2+2mo6ODjo6Omg9BIpFgenqaS5cu4fP5agQkGAzuqjagW8Gt7ivHcfjG2Cj/d/IaU/kse8MR0laZqMtN1ONmuphhXyCKpkgk9SIHgk3ICqSNMkdDrQiSxUh2iePhDiTR4dXkBK2an7fEujmTmcRwLKKyh4FAhMv5eSZKSfarESzHoMfdwmRpmaAqM1lYYsDbjiyI5J0UlwqrgXpUCtCqBZktV7hWmiUke3HLFlgOe1y9VEwdxykyZa8JsjucGKZu0iJ3sGDM4xIzlIzlNbKByl7PAEU7Q9leZqp8FZfgRhSNGtkQHIkOVz8OFpIYYNGYBqDHtZcl/ULdOezU9mFRIaQcIG1Ms2xM0KHtJ2nUk4029QDZ69kJl9iOJjUhoZA0zmKzFuTJggeBlTqyARBW9lEwzyAJMTSxHQcJEOnwfnCLd8Pd4W4z+zdzsK/qP6pNH6q/u3A4fFPPnVvNq1GEo1gsPtAajv/xP/4Hn//855menuaP//iP+eM//mP+1//6XzfddjtkbzNwHBH7ITHEcx6S47wZHirCcbuSKsMwuHDhAul0mpMnTxKJRO5qP430saiO//LLL9PU1MTBgwd3/GG6E8H1+uzLkSNHaG1t3bGxb4WtjG2aJhcvXiSZTPL444/XaoxvhUZmONbP2XEcRkdHmZiYqDtvWx33UYZj57Deh6Cvrw9d12vi84sXL2JZFqFQqE58fqtzsJvOza1Kqs4szPOZ776G36WQNw1Kpk6T300iVSTqdqFjMZXPcrqtnaReYiKf4onmNvKWzlwpS5PbhSjKSIKEINgsV/IcDsQRBJs3MxO0ugI0aT4yVo43M5O4RIUnQt1MFxZI2kWEosOJUCdgE1EDTJeWaff4WNbT9LjacEsaWSvFhfwoAC5RoccdxcJm2ppnrDjJXm87k+WVVa8NrY2Q6GFKH8OwDbBBs1UMM42JSZvahSSquESR0dKaEFsSJHyCTMnJ06zuQRRUylaepDGOvs4RvEXpZPl6S1yPGMMvN6MKKvP6GRzWfttNSi/JDSJxn9AGWPjloxSsebLWArKdwStpdWQDIKp0kTfX5icLEbxSL7ZjIArtlO0FynYKEDkc/CKicO+7Qe3ku0iSpFp2A1ZX2KvlV8PDwxiGQTAYrJVg+f3+m97PjTL9gwe/pKq5uRm/38/LL7/Ma6+9xuLiIsvLy+i6jtvtxuVyNd5pHAGL3fNcbCQeluO8GR44wnG3JVU3a4ubyWQYHBzE6/XyzDPP3DWLv5v2u3eC4zhMTEwA0N/fT1dXV0P2c7eeJZVKhaGhIXRdvyH7shsIR6FQ4OzZsyiKsumyuXuR4ai2Ci4UCpvWa9xq3PudYbjf+28kVFWltbWV1tZWHMehUCiQSCRYXl7m6tWraJpWIx/hcLjhXXi2i43XaDqT5bNvvMbrc7McaGni9cV5jjY3YckOI5kEh2JNvLY8S7vHx/HmFv5haYpOb5AjsSZeTUzjl1WebIpzPr1AwdJ5S3MnGaPMVDHDoYCKKNr0+5qZLCbwKCJ5s8JjgU5sLC7mJzAdm5jgpS/UxOX8JBXbQBYEDgVaEQWRJjvCTHmZLk+YZT2JW9DocrUhSjrD1703AA76ukkay/S5+1nRE4gCTOhXayVHEgLd7jbKRhndXmFWnyFihVlRlqjGA4IjMeDZTyK7DGKZ2coksqDQrAYomGtkwy360UQRj3SAvJ0kay5gmzYShTqy4RL9mM4C4OCVOtDECLpdRhYyrBhr3bMAoko3GbOemETkvZTMa3ilw5TLFoaQQpfzKPYUur1Yt22b60cJ3MNSqioaGdjD6u+upaWFlpaWmudOMpkklUoxNTUFUNd+t9p1rpElVfl8/oHOcDzzzDMcPXqUf/Nv/g3ZbJZcLsc/+Sf/pEYeJUmqdar6mZ/5GT7wgQ/s+Bxs5+HRNtjbfC3+3u/9Hp/+9KdZWFjgscce4wtf+AJPPvnkTbf96le/yk/+5E/WfaZpWp2kwHEcPv7xj/OlL32JdDrNM888w+///u8zMDCwvQluArvzLdggbCypWl9O09fXt2MdkxqV4ahUKpw7d45SafVlt52V783iboLrqh4iEolw4sSJG4KtRhKOzWg4qqVK1RKvzb4gG5XhqI6bz+c5c+YMHo+HU6dO3VWr4PtNOHbTKn6jIQhCrQ1otQykKj6vujBXu/CYprnriJggCOQqFf70wiX+/OolOv0B9sTCZCpljje3MFVK0+ELIkgwkU9xJNKMLVoslfKciLZSxuBaPsnJSDsGBq8mptjvbyLicvFKYhIBOB5qpeiUGc+voIgSJ8NxKrbBdClB3iqxVEnQ52mhWCnhEUQGs6uZi7gWIe72c6U4RcU2EIH9vjZ0W6ff08NEcQ5ZshkrrQabCjL7vD0UrRwpI0fSyBKRgxSsFSwswkqUsBxBESwmytfN8kQISkEsKYvjCHgrUXBk3LLMWOkcrPsZdrk6WdCHERyRqNqFjBtRyLNojNa2ERHxS27S5lLtMxkXrWo/ulPEdOZIm/PAPO3aflLGmucHQFTZVyMboqPhUXpQ8GOzSNmpUDaHa2/umHyoznkcQBPb6fL++7u/MbaBe+kwvt5zp1r2mMvlSCaTta5zmqYRiUQa1uIdVhevtrswdL/hOA579uzhq1/9KmfPnuWFF14gn8/z4z/+4ySTSXRdp1KpYJomCwsLO6IRvRnsh6ikajvH+Wd/9md8+MMf5otf/CJPPfUUn//853nnO9/JyMhIrfnCRgQCAUZG1rrbbbz/P/WpT/G7v/u7fO1rX6O3t5df/uVf5p3vfCeXLl26rfXD3eCBJBzbDabWr9rrus6FCxfIZrObKqfZ7n52CslkkqGhIcLhMMeOHePFF1+8Z27gm8Vm9RD3K8OxvlRpM61ltzL23UAQhNrK+Hb0Grca834Htvd7/1Xca/IjSRLRaLTW2a5cLtfE54lEAsdxuHDhQi0Dcq9N0NbDsm3+5/gEL7/+BpIioogSsiKSrxjYOAgyFE0LRREp2wYrlRJdwQAlyyahF2nyuvCKKpbjoGPg4NDni+BTFd5MTnMsFEcWBa4UZinbJvt9LbgVkTczEwB0ucJEVRcV28NIYZ59SpQpe4l93g5KtkFYVTmfXxWMe0SNg/5OliorLOirfhdH/F2MlcaIqy24JQ8OFmOltUyGS9QIq240MUTeyrOoLxKVg2tkA1AEhTatGYMIS/o8aTVFk9RMzpmpO1fNdpyKXqJZ3kvSmmNRn6LXNcCica1uu3ZtL8v6eXxSC26pCd0p4RZdzFbqDfpiyh5Sxrm6z1QhiCTYBOXj6E6BvDlFyhijVR0gZ07UbauZHeSFwQ1XVKDf94tI96gr1UY0UitxJ4iiSDAYJBgM0tvbW+s6l0qlWFxcRNd1Xn/99VqJ1k7prm4nst7tEASBv/zLvyQYDPLWt76Vt73tbbjdbn76p3/6pts36pluI2A/JKVG2znOz372szz33HO1rMUXv/hFvvGNb/DlL3+Zj3zkIzf9jiAIt1yUdhyHz3/+83zsYx/jh3/4hwH4+te/TktLC3/xF3/Be9/73i3PcTN4IAnHdlElAul0msHBQfx+P6dPn95xIdROEg7HcRgfH2dsbIx9+/bR2dmJIAgNNxjc6jGYpsn58+fJZDI88cQThEKhW27byLnfSjSu6zrnzp2jWCxuu1SpEUG84zg4jsOVK1e2rde4Ge434dhtGY77eS5cLhft7e20t7czNTXFysoKHo+H2dlZhoeH8Xg8deLzexWwvTw9zW+cv4hXU7FUiUyhQkfYz3cX5jjW3MJEMc1SusDBaJTXV2aJqm6Oxpp4fWWWgKxyLNbCYGoewzF5S3MX06U0k8U0T8basR2bkOomZ5bJmFkGvC2k9CKaLHAhN0OT4qfXG2O8NMdgdrVl7GF/HKtSxiVoXC7McizQwXBhnA6tGY/sxiUKnMutrdjt93Ug4hBTYsxUlmhSw5hOFgsLGZlOVwcuCSbK17CvlzZ1anFmK6OAQIsaRxM9SILJaHmtO5RH9CCIeWzLQhXcqJUgPtVHVrqG5ehgrG4XdlpYNC7Wvic4Eq3aAODgklrIWMtkrGVCchspvZ6UaKIP05lf3VZswS21YDoWimCSMOo7VcWU/eTW6TZW96UiSRlsHCT8aFIXCC6C8mME1cfv8s7YPhpdUrUVrO86J8sy+Xyepqammu7KNE1CoVCtBGs7ba+r5ZQPaoYD4NOf/jSPPfYYb33rW5mYmLhtSc1ue64/yMhms3V/a5p208UnXdd58803+ehHP1r7TBRFnn32WV555ZVbjp/P5+nu7sa2bU6cOMELL7zAoUOHgFXvlYWFBZ599tna9sFgkKeeeopXXnnlEeHYCUiSVFvlGBgYoLu7uyE/oJ0iHLquc/78efL5PE8++STBYLBuH40Upm9lNT+Xy9Vat26GwN3rDEc2m+Xs2bP4/f67KlXa6XlX9RqO4+wo2YDdQTh2S4ZjN0EQBBRFqXXBq5qgJRIJLl++jGEYdeJzj8ez48+oiVSaP3zzDGfmF2h2qYxXShwIxrBFB922eDIe51J6mf5gBEe2Gc0lORZtoWDrjOaSnIzGyVolvrsyzdFQK8g2/5CYICBrnI51cim3QM6s0O0J0ux2ky8UOJ+d5XikjYJV4YAvzkolx3R5kYxZpNfdTLPLz/ncGIaz+tw87G9HEGxa1Samyssc8LUzUpgCR6DHHSekeBgrjWI4q9G/V3IhCwZ+OUKr6GK2MocmCVwrX60dd1gOoYgOne4+VvQV5vQ5Btx9TFXWl0MJxLVmBMAjRVjUpzHkFKpUWCUb1+HGiyWuIFoaciWCqEhYcoGcOU3FWQskZEFFQsdmTdOn4KNZ2YvpFLAdjZyVIGclaFEPkNnQFlcTgxh2PVmRCSFX2kGpIMl+StYsJXMEVYxxOPCpu79B7gL3sqRqK7As6wbdVbFYrDV+GB8fr7W9ruo/NltW8qCLxg8ePMj4+DgXL17k7//+77Esi+XlZQzDwOPx1ALhRl7Xh9H4r7Ozs+7zj3/84/zqr/7qDduvrKxgWRYtLS11n7e0tDA8PHzD9gD79u3jy1/+MkePHiWTyfCZz3yG06dPc/HiRTo6OlhYWKiNsXHM6v81Ag8k4dhOMKPrOsPDw9i2zdNPP33bFfi7xU4QjmoWJhAIcPr06RuC5EZnODYbXM/NzXHx4sVNO7FvZeztYOPYs7OzXLp0adttjtdjJ4Poql7D6/WiKEpN3LhTeBTw705svCbrTdCqQVAikajpP6oeBNFolHA4fFe6nlylwpdfH+T8yhIIAu0hP9lCDp+qYAkOoiigyCIGFg4gymACum1iYOKVFUQEclYJj6wQ9wRwJIu5UpYToXZkCV5LTRJVPZyKdnG1sMAbqSQiAqdjPSzpGSaKCQKyRrPLRUD24xZVTMficn4Cw7GICT5aZB/T5XnK9mqA3+tuJm9l2eftYa6cIGvmydvLNbIRkUN0uWPM6/PMVOYB2OftZvw62QhLUcJKDMNJMlOZrp2PDq2d6crqNh7RT0xpwy1JTJYv1om9I1aAgrwmyg5IzTSpzeStBClzhop7ERyIWjFK4pqZIECz3E3SGCGg9KAIAcp2Fo/oYWGD67hHjJG3rrIRITlK2VrAJx8GZErWCrLoRtcurLbGXfcK2Ov7f5DF+ytebqQ4+26wcV6CIOD1evF6vXR2dtbaXieTSebn5xkZGcHtdtcIyO0aPzzoGY6f/Mmf5Bd/8Rf58R//ca5du8bKygqvvfYajuPURONut5tEIsGXvvQlnnjiiR2fw8Oo4ZieniYQCNQ+38nS2lOnTnHq1Kna36dPn+bAgQP8wR/8AZ/85Cd3bD9bxQNJOLaKVCrF0NBQrZPE+ovcCNwN4Vivg+jv76enp+emQfK9aL17u2OwbZvLly+zsLDAsWPHaGpq2vTY90I0bts2w8PDzM/Pb3l+t8JOzXthYYHz58/XSNpLL73UEHKw2TGr2pb5+fk6h9+76az0iPBsHeuDoK6urpoHQSKRqK1A+v3+GgHx+/2bWnW0HYf/fmGYr7wxyJ7mMGPpNPuaIkzmc+gVnVjQy5nFeU7G2xjNpdAtk0PNTZxNLKAJIoeamhhMLoDg8ERTG1dzCUbzCZ5siqM7FjlDRxAdFio5jgbjJI0C14qLGLbJsWAHLlngu+nVVfqo4mXAH+VqYZ6pUpIWLYCATre7maJlUKwUmLYXqWAgITLg7cChwlwpw2IljUfSCCgqOdOkz9NL0aoQVGQuFddW+jq0FtLGCj2uAbJmgSV9ibDqZVGfr20TlILYTplOVz9lq8SiPktErjBRvgas3bd7XP0sCMOExU402UfaTBBUwkxVBuvOcZdrLyvGmgeHYgfQyhFSQhpL00hc9+rwilHyTr1IHAS8spucuTo/RQjhkdpxCT5K1iglO0vRXs2aiKioQuAGH44m7W3EtO+7473QaOzWDIdt27fNvK9vew2rJcKpVIpUKlXX+GF9+91qN8pKpbKtDMdWug596Utf4utf/zoXLqzeYydPnuSFF16o2/4nfuIn+NrXvlb3vXe+851885vfvO08Tp06xZe//GWmp6f51//6X/Pss8/y+OOPk8vl6kTj1fdDI2DzEDmNX9dwBAKBTcWisVgMSZJYXKzvRLe4uLjpqghFUTh+/Dijo6vZ3Or3FhcX67Ssi4uLHDt2bFNjbgff04TDcRyuXbvGtWvX2Lt3L/F4nBdffBHTNBtmYAPbJxzrvUDuJGRvhDB9PW4XXJdKJQYHB3Ech1OnTm1ZMCdJUk27sNPlItV5f/e738W27W3N71bYrot5FY7j1HxJjh49WktnNiI432wGbH0b3t7eXnK5HNeuXePixYsEAoGa+Hk79c2PcHNs9jxu9CCoVCo18fnMzKqguRoARaPRm5aAnJ1d4FN//zKiIOD2KMzlcuxrjjKSSrA/FuXiygII8GRHO4MrCxyKNlERTC4kl3gs0kLSLPL6yizHoq3krBL/sDxJuzvA47E23kjNYDkOT8XaKdkGs6UMFdukyaXhlSOM5JYQRYc3M5P0eprwSBo2Zc5kVk3vmhQ/XZ4QY8UFLuVniSk+BLGMW9DY42knZWTJmEkSRmb1fAgCB33tlOwKSaPASGGSw74urpVWX6KaoNHp6sCixGI5T8LIAXDA28NUZVX74bueyUAoMVeZZNlY7SQVlEJkrTmoGQBqxLVubAxsW2OJObCgVe1gUb9cd44jcpy0MUpY7kMW3OStJAYlLO8SupNf29ABsWxiusp1329VD+NQJigfpWQnKFgL2CygC3lMp1C3bUzdS9ao70olCwEGfB/exB3VeOxWwrHVzIssyzQ1NdUWqsrlcq397rlz5/i3//bf0t3dzVNPPQWw5ba4W+069NJLL/FjP/ZjnD59GpfLxW//9m/zjne8g4sXL9Le3l7b7gd/8Af5yle+Uvt7M6vmjuPQ29tLb28vH/rQh3jve99703b7jez05TxEonFni8epqionT57kxRdf5N3vfjew+jt78cUX+dCHPrSpMSzL4vz58/zQD/0QAL29vbS2tvLiiy/WCEY2m+W1117jgx9snFnoA0k4NnPTVyoVzp8/T6FQqOkfqkFdIwN12B4ZyGazDA4O4vF4NuUFci9Kqm42/vLyMufOnaO1tZX9+/dvK31efSE1oqNJNpvFcRw8Hg+HDh3a0fG36mK+HoZhMDQ0RKlU4umnn74nviR3mmuhUODMmTO43W6eeuopHMehtbWVgYGBWn/7qsOvKIo1XUEkErnj/fkow7Hz0DSNeDxOPB7HcRxyuRyJRIKFhQWuXLlSKwGJRqOURZk/PXeJV6dniXjc5Gwdn6QgKxK6YxHzeihYOh5RQpVFKraFV1YwBAtFlPDICimzSEDViHv8ZK0Spm1zNNiKKDu8nprhYKCZqMvNK8lxHKDXGyasubiYncNyHE6E2rCx6HTHmCiscDjUzNXcIn3eVjRRoejkOJtdJR8eSaXPF2Uxl2DBTpMvVuhyB5gpZwgrAVq0KIpgcy6/VnbU74kzVR6nS+sCJBb0JUp2lkV9bSWw19VO0pinWxugaJdZqMzTrJlMlydq28iCjE+RKVky7eo+DNsgYybJWvPkrTRcj5/dohfDWamVW3nECAGpFVmskLBFloy1MeNqF0ljrO76tbv2k5LOITouZKMJwxAQBYcVLuII9b5NITlM1qxf0fRL3WTXdbUSnQgepZ1O94+iio1Zed4KHMe5r12qboe7FbO7XK7ab8+2bb7yla/w13/917z44osAHDlyhGeffZYf+IEf4O1vf/sdOyButevQH//xH9f9/Z/+03/iv/23/8aLL77I+973vtrnmqZtWQtYjacMw+D5558nmUzy+uuvs7y8zFNPPUU0Gm0o2YBVD46HJsOxjeP88Ic/zPvf/34ef/xxnnzyST7/+c9TKBRq98/73vc+2tvb+c3f/E0APvGJT/D000/T399POp3m05/+NJOTk7XuY4Ig8PM///P8+q//OgMDA7W2uPF4vEZqGoEHknDcCetbyK7XPwiC0PDMAKwSDsMwNrWt4zjMzMwwPDy8JZ3BvXIzXz/PsbExxsfHOXjwYN2qylbRCMJRLUW7cmW13eVOkw3YfhBdFdX7fD6efvrpG+rwG5XhuN2Yy8vLDA0N0dnZyd69e3EcB11fJ4p1u2udlWzbJpPJkEwmmZqa4tKlS/j9/lr241alPbuFcOymzMxOnRNBEGop+WoL0FQqxfzSEp//1rcZyeaRVZmSZWH7VCZSKY53xLm0skzM40ZSRM4vL7HP52O6lCef03m8Lc655CIONseaWxnJrjBXynE01kTOqHAtl+SxaDOO4NDtDaHJIq8mx9kfaEERBLJWkXOZWQKyi4OBZq6VFkkZRQCeDHdgY9GshZgoLtPnjzBTStCsBmnVQpSdPIPZ1QBdAPZ5W1b3444zUVog7gozss7Yr8fVhltUkAQ310qrJUr7vR1MlK8TGNFLh9aGQY6MWSRtrn6339PD9LqWuEE5QlxtI2slyVslctbo9fE7WNzQWapFiWJiEJA6yFkpMuYSYSXGon6lbrsObR8r+lp5leDIRJU9CIh4pB6y5iwVZQ5BEQiLTRSpJxt+q5vsBvG4iIRL9OMSj2I5FtnyNI6cwUsfLa5n2Q2ovi++FzIct4Moijz99NM8/fTT/NiP/Rhvectb+PrXv86LL77I7/zO7/D+97+fAwcO8IEPfICf+7mfu+H72+06tB7FYhHDMGrZzypeeuklmpubCYfDvO1tb+PXf/3Xa+257wRFUZicnOQ//If/wLe//W0SiQQvvvgi/+gf/SN++Zd/Gcdx+NjHPrbjesNHuDPe8573sLy8zK/8yq/Uyti/+c1v1qokpqam6n53qVSK5557joWFBcLhMCdPnuTll1/m4MGDtW2ef/55CoUCH/jAB0in07zlLW/hm9/8ZsM8OOB7jHCsD4rXt5Bdj3tFONY7Ot4Kpmly6dIlVlZWOHHixKYfDNV93KuSqp1oKbtxbGDHCJNpmly4cIFUKsWJEyd44403GhLsbicTUdVr9Pb20tfXd9Pgt1HZgJuNub7N8qFDh2pGTrfbvyiKNeFkX18flUqllv2odtmqZj6i0Siapu2qIP9hgCzLDKVyfOGV87SF/KzYNh2qQq5QQkyliWkKlxYX6Q8HGUonGAhHOBFv48zSHIfDUYqSm1eXpjkeayVhFvmHpSn2BqK0ej28ujyDLAg809LJWCHBQjnH0VALkghxd5DJQpK4x4vtOBwLtmNhMZSbxHRs4q4g3Z4QF3PTlG0DAYejwTZsbPo8rYwXF2hxeZgsrq7mR/HTqvmZLi9RtFefofu87YwWx4koQZqUCHmrSMnOMVfM1I7/oLebucoMva5edMdkRV8hbydIGGsi7la1mQX9GhG5Gb8UImtlCcheRsv1jt597j7mKqtlUy7Bh1T00BJsZsEYwXDWnusd2h6WNpRXBaUWkvoV/FIHLjFMxSmTMxewyLCoz9Vt26YdIGnUt7tV8GFL0zi2jFCJIQl+BMXCK/tIGoPrLjgIqBzw/z9bvFMah91MOBqVecnn83i9Xt72trfx9re/nRdeeIFkMsnf/M3f3LLBw3a6Dm3EL/zCLxCPx+vamv7gD/4gP/IjP0Jvby9jY2P84i/+Iv/4H/9jXnnllU0f+0c/+lGy2Sznzp3j2LFjNW3KD/zAD/BzP/dz/MIv/EJDCMfDKBrfKj70oQ/dsoTqpZdeqvv7c5/7HJ/73OduO54gCHziE5/gE5/4xLbmsx08kITjZsHMehfup5566pZinKrQq5HYDBnI5/MMDg6iKEqtLnMruBclVaZpkslkOHv2LMFg8K7dr6uoXr+dIByFQoGzZ8/WzmP1wdoog76tCLGvXLnC9PQ0jz322C3dQLc67mZxswyHZVk1YraxzfJWoGkabW1ttLW11ZX2zM3NMTIyUnP/NU1z19R075ZsC+x8xuXacoovvXaGqWSGzmiQZKnMvpYYSb1ETySCJTmIjoPL0Fks5AiKAuVyAcNWCMsKWadCUPHS5QuybBRwyzJHQs2U0RnNZjkZaUOUHb6TmMArKZyKdTJWXCaRL6KJEk9E2kmbJSaLSbyyzEIlyYC3GdNx8Csyb2aqgnEfe/1RxooLpM1VbcLxYAcTxXkOeLvJmEU0w+aqub6TVBSXJBHXWpkpL5Iy8vS6YyxXVsmGKij0ezoxnDIVx2SsNAHAPm8HU9ezHQAtSisRxYdjVFgxVlgxVogqMZaNybpz2aK0UbEydGj7KVo5Vox53KLIrHGxrrWtTwqRt9a+6xYj+KUWFAFSdp6kuQCstpfsdO0jodcb/AWkNtLrPDxkvHjlDryij7K9RMGawXatYLCCYkbIW+O10q4q2oR/gUfu2Mqt0lBUn7m7taSqkYRjPSKRCD/6oz+64/uq4rd+67f40z/9U1566aW6uGG9d8KRI0c4evQofX19vPTSS7z97W/f1Nj/5//8H/7u7/6OtrY2KpVKTf/Y39/P+Pj4jrz/b4ZHJVUPBx5IwrERiUSCoaEhotEox48fv213HVmW77uGo9pKtru7m/7+/m0FZPfChyOXy/Hd7373tt2ytoOqceHdzn9paYlz587R0dHB3r1768a8nxkOXdcZGhqiXC7foNe4Ge5WjH4rrD8HpVKJs2fPIkkSp06d2rEWfBtLewzDqLWW1HWdb3/723XC5oc9Hb+T92W+ovPll88yspygZBqE/W6yuo6qSFQci+V8kf1tMYaWlxiIhhFEmalUmlPtHVxJJ8gVs3SrKvOlIovlInsDQXLAVD7DnmCIkOxiqVwAyWGikOREuB3LsRjMzmDbDo8F49iCyaupCQC6PSGimpuC7eZSboHHQnEuZqcY8LUgIuKRJd7MrukaTga6MRwD3ba5mJ9in7eNKXMGHIFeTxte0cWiMc/l/FLtOwe8HVwrTdLt6kQSJApWkZnKFGW7vG6bXibKV2lV47glLyv6Mh5ZYqy0tnqsCiqKaJE3dUQkmtUOXIKbkr3AsrEMRrVjlIokGRjryIYARGQ/CAEEQSVnJshay4TkVhb0NRIBEFU6SK4rr1r9vohHcuEwgCAolK00eWsePyLLxnc3XGWBgMtNYeP7pNxMZvYQo5nRmmv2/Q70LctCEIRdmd1slCFhoVDYckONu+k69JnPfIbf+q3f4lvf+hZHjx697bZ79uwhFosxOjq6acJhmmbdgmD13bWysmrO2ajn9yOn8YcDDzThqLbznJiY4MCBA7S3t9/xh3+vSqputg/Lsrh8+XKt9djdtGpt5HGYpsnS0hKFQoHHH3/8hjrRncDdEI711/3w4cN1Ar2dzJ5sxGaIQS6X48yZMzWTwc20lr0bMfpmxkwmkwwODtLS0sKBAwdu+eLdiUBBURRaWlpQFIViscjRo0dJJBIsLS1x9epVXC5XTXweDofve5D0IMJxHP7n+at89ZWzxGMBrq4k6GuNcmFxiQNtTQwtLbKvKYbbqzCeSXOstZnvzM9wMBrjcEszLy/OcKyphZRV4nIuzYA3iClYnM2t4EWgx+1hLJegbFucbm6/3vrWIG9WSFt5DgfamCykcASLy7kF2lxButwhxkrzvJFOAHDI34ImCjRpAa7kFzkajHOpMIFPctPjbkYVRS7kx7Cvd4XqcEUwKdPhxEiJRWbKy8RdfjLm9S5PjsBRfy82BqroYrw0g0vUiKraOrIh0OfpQhBsvJKfuettcPd79jBZHqk7hz3uLixMXKKfRX2W2coUfa5O0ma9j0Zc7WBBuILjCISVNtxiCJckM1cZwl5ngtEkd7KsX6r7rixoCORwsFGFIF4pjiBIqILCsvFm3baa6KNiT91wrZuUA+TMwbrPBEdFXfoR2lrbKZfLdYaR1dJGr9d7zwP/3ZLNvBkaleEoFotb7oK43a5Dn/rUp/iN3/gN/vqv/5rHH7+zm/zMzAyJROKOAvYqLMviXe96F7/3e7/HRz/60dq7rlAo8IUvfIG3vOUtmxpnO3iU4Xg48EASDkEQKJfLDA0Noev6lnQF94twFAoFBgcHEUWR06dP3/VKQaNKqqolSpZl1VamG4HtEo476Ul2KntyM9yJGMzPz3PhwoUtmww2UsMxNTXFyMgI+/btu2mrw43bV+dzt6iudPp8Pnw+H93d3TVhczKZ5MqVK+i6TjAYrInPG+Gq/b2GkYUVPvV/V9vcogiUTYvWiJ+KZXKgrYm0XmFvLEbGrNDs8SJIsFwuMRCKYIs2oiAxEIqyYhbxyiq9ioeiYFJxLJ5sipM2i1zOJYkrHkKKyGvJaRygS/XikyVmKwZnUjMcD7diOBb7fC0sV3JMlZdJGyW63BHa3UEu5SYpFVcbZ+z1NWFhsM/bwdXCAjmryEppBRsHt6jS54lTdvJMlVdXfAXb4aCvnbHSFM1qlLASRMDhanEM63qHKAHodkeYLE8T1+K4JTcFq0DSWKBor7WS7dY6mLouEg/JUQJyFJcoM16+gLPOb6PPvYf5Sn39fKfWj+1YaKVWLE+JZWORmCKQNGfqyIYiuLDJ1o2nCQHatD2YTgHLkchbSxTsKwSkVnLOPBsRldtIm/XZEZcQpmhdQRVbUcVmQKZsZ4ipJ0iXOolGowQCgRtcs69du4YsyzXysZmucjuB3dqhChqr4dhqS1zYeteh3/7t3+ZXfuVX+C//5b/Q09NTc4OuPl/z+Ty/9mu/xj//5/+c1tZWxsbGeP755+nv7+ed73znpuYkSRLPP/88/+Jf/Avm5+exLItPfvKTnDt3jqmpqRt0AjuJR4Tj4cADSTiSySTf/e53aWpq4uTJk1syKJNl+Z5rOBYWFrhw4QLt7e3s27dvR1aBttIJa7OozrOjowOPx8PS0tKdv7RNbIcUZDIZBgcHa9mDW9WTNqpE6Vbj2rbN1atXN6XX2Mq4d4tMJkMqleLkyZMNI463w0YStb63veM4lEqlmq/EtWvXUBSlrvXu3RgP7mZsh1RlSmX+5LULvDoxg0dTMEUbtyOjqhLJfIlWj4+0XqFoGvi9KnNLOZr9HpKVEhPZNI/H25jKZ8kV8wxEI5gVi4VinoDk0KT5GC9myZglREQOBprwajJvpmbp8YSIihojlSVmszkUR+Axd4SlUpYFI49f1mhxuwgobnyyhm7rXCnMULIN/JKLvf5WlvQVJsqrmotm1U/ezNDuiqGJCjPlBAU7y2xlLbNwUGtHFmSa1RgLlQSmbWILpRrZAIGj/n5MKnglHzOVeWRBosMVImWukY2g6EcRodM1QMpMsWwkAIklZ6WOHDQpTSxVRsERiKpxXGIAC4tlYwrdKYELsEEWFGShVEc2ANrUTtLGNFFlL6KgkDdTuEQXs5U3WW8iKCCgiaBb9e+fJqW/RjZENDxSJ5LgRxEEMuYohp0EKwmAJkbY7/tJXrbfrL1HbuaaXe0qNz09zaVLl/D5fLXfVaPKrxpVtnS3cBynYRmOQqGwLdO/rXYd+v3f/310Xb9BG/Lxj3+cX/3VX0WSJM6dO8fXvvY10uk08Xicd7zjHXzyk5/cUvnskSNHePXVV3nhhRf4gR/4AYaHh3nrW9/Kz/7sz95xweoRHuFOeCDf6B6Ph/3792+rNeu9zHDYts3IyAizs7McOXLkhq4Ud7uPzXTC2gxs2+bKlSvMzMxw+PBhWltbmZ2dvW/GgjfDzMwMly9f3lT24F5mOKp6jUqlwqlTp7b18tnpDEelUmFqagrTNHnmmWfui27iTkG1IAg1cXlnZyeWZZFOp2vkYyeNB3dT1mSr19lxHP5qcIS/vjiGLULFshARWc4WiAa9DC+v0N8c4Y35eY62tTBbzmFkLY62NvPy/AwHo1G6IyG+PT/NwXAMVRV5dWmWNreXvnCIs4l5FvIVnmhuZ7GUYzSX4InmOEVLZ5+/iYKpM26lcCsqBzwRBNtkqLDabcnnSHQJGvOVPJOlJBHFg0uGmBKgwx1jRc8yU1kgZaySgIjkpccTYbq8wrXiIiJwINDKaHEGTVDodrfhFMuMGjM4xup5cokKHllgSS8R11rwSl5kEYaLw3WkYcDTzkR5DNGRaNXiqIIbkywT5TVh96puwyBvri3UuAUPUSWCLnlZMRZY0BcQWCSuta6SjXXocnWxcL1sSkYjpHTiFfzkrXkKdpmCvqpPUQQXqlBgPdkAiGv7SRj14nGXEEMV3YjCMcpWhrw1T9GepEndV+dcXsUh38+giL7bli9t7Cqn63ots9jI8qvdWlLVyO5ZxWJxWxkO2FrXoYmJiduO5Xa7+eu//uttzWMjQqEQn/rUp3ZkrM3iUYbj4cADSThcLte2fSDuFeEwTZPXXnsNx3E4ffr0jrldV7FTJVXV0jTDMOoC5nshSt/M/G3b5vLlyywsLHD8+HFisdimxm5EidLGTEQ2m+Xs2bMEAoE7Niu4HXZyvtWuYqqq4vF47qtIeyvHJElSjVzshPHg9wKG51f4zP/+DqoiMZ3JsqclQjJbYq/qYUURUSWJrliIomVypK2FmWKWnmAQQYJEuciRWBMFx0BxRI7HWljQ8wg2PN0SZ6ac4Uxijh7Zg+JV+c7SJBICz7R0MFvKMlXM0Ob20eR20Sy6uJRZRPQ5DObm2OON4ZNULEHnSmERHNAcgRZTIuUYjOnLeCWVZpfGUqXIPm87jgOOUOFsds3b4migg7Kjs9fTxXhpgaJVIiEs1YiEABz0dWFiUHEsZipLNCkhjA3lS/s83ViOSafWx3xlgcnyHAe83cyUZ+vOZ7e7jZnKKFG5Fa8UomDlCcgaY6V67UWvu5/ZSn2727jajW4XaVUOU7LzJI15UsYSZXGRkp2t31brYHmDeNwvNZMyRvBJnahiGMuxyFtL+OUW5iv1JEQRPFTs+rkDxNSTtLvfhuM4OI6z6QBaVVVaWlpoaWm5ofxqfHy8ztE+HA5vu6HEbi2pqr5ndlOGY7dj/bP7XizYPCIcDwceSMJxNz+Ae9EWN51OY5omgUBg227cd8JOEIKqmDgWi/H444/XzbNRWYKtjF8ulzl79myNtG02eG5khqNaxlbtNLZVvcbNsFMZjuqc+vv7b9oF5V7ibl9SO2E8uB67qS3unZArVfiTV8/zdyOTNIe95HSd7qYQJduk2e/FEGwcHBRVJFUso8oiSA6pcpnecJCUXmGpWGRfU4SKbpGslGhSPDS7vcwWssxXsrS4fEiImGaZ+UKGk9E4mizySmK1Je3hUDO2YHIxu3oPnYisemd0u6Ncy69wLNLK5dwiXe4IYcVL2SlxtbgEDkhAu6XglBxUUeVyfo6jgVZGCqtjtWphOlwRJstzpK+LwkOyj7KTxxJsIlKAZlcUlyhyobBmqucSFTTJJmdU0ASNuBbHJWpMlUepOGumlXvcnUyU1xzJFVT2ePZgU8ElhFnUl4FlelzdzFTqTfualTjz1z8LSa1oBMjmsxSkBEU7U7+t2sLSBtO/FqW7RjYkVPxyJ7LgRRIMUmaGpDkPrGo4wnIXiZtkMWJKNymznoSIqBz1r5rI3c2KfSPLr3ZrSVWVcDRibtvVcOx23OussMPD073pwXkT7TweSMJxN5BlmVKpdOcNt4FqLf/U1Gq3kYMHDzbsh3s3mZr15m/79++no6PjhnneC5+P25GCaqvjpqYmDh48uCXS1ijCIQgClmUxPDzMzMzMXXcaWz/u3QTEjuMwMjJSN6eZmZktjbnT9+lOloltx3hwN+N25/p/D17lb4fHyVUqNIU8LBeKBLwuFooFXKpMxbFIZbLEgl7emJvnWHsLF5Mr+HWVA81RvjM/w55gmPaQn9cW5+j0+WkP+hlMLBJSNA42RbmaSXK+uMiRaIx8TkeRJBAcziRnORZuo2wZZMwCc+UsEdXN/kATw/kFMsZqCeeT0XZMLLrdMaaKCUIhlbHCEqogMeBtwSULnM9d77jkQJ8QYCI/T6cQoSLZaILEhcIolrP6G1UFmQ5XAFmUEHSBFSdHxPFzuThdd276PG04OLhEHzPleWbKS4QUuY5sROQgKXMWnxQgqrSgOwa6XWa6PIqxbrugFCRtztSN7xECBOUgLslN0lhk2VwlJjEpfAPZaNf2sKTXd77SBB9u0Y0mHqFs58mYcywbk7Rr+1k26rMoIhIiRTaGHyG5m5S5ZkToEpvRxCbiru/HK69m9au/q50IoDf+tqptrdeXX1UbO9yp/Go3l1RJktSQd3GhULgv+ridhG3bdefmfpSgPspwPBx46AhHo0qq1pcmPfHEE7z66qtYltUw4et2CYFhGJw/f55sNntb87dGl1TdanzHcZiYmGB0dPSWZOhOaKSvRSKRQFXVbes1boa7ma9hGAwNDVEqlermtJ2AfzdpHW6HzRgPVgOkUCh0v6dbh1tdk2tLKT77V99BdcmMrSTpiAW5lkzT3RTiWirNQHOESysr9EXCLJQLCILA8fZWRjNJ9kUilByTlVKJk61tzJVylCoGT7e2M1ZMcSm1zJNNbcyUs3xncZoml5uTTa0MpRcoWybHQy1IooBX0RjLJYh5NFRJ4mioDduxOZOexnAsmjU/A/4Iw/k5suYq+TgRbidp5Djq72S0sIwmi5zPreomRASOBTvRHR2jmGXSSRG2XRT1DJZg43IU4moMrypzpTi5WiYlQJMcYMlYxMHBK3po01rwSgqXC1ew13Wp2uNpYaqq0XAEmtVmWrQASUNmyVgibV5DEWRaVD/ZdWRDRCCoaCSNFC1qD4rgImNlCMs+xsr1xKBd7iIljtZ95hYD5K1ZNMFPQG5DEGTy178/u6GUyitGSJv1WRCANnXvDXoORQjikUK4xMcwnTJ5a4GclcBGo9fzrtp2jdQkVNta3678qtq9MBKJ1JH73VxS1SgiVCwWH/iSqt1AEh8RjocDDyThuNuSqp0mHCsrK5w7d45YLMbJkydrP+BGEo7tEIJsNsvg4CAej4fTp0/ftg7+fpRUmabJhQsXSKfTPPHEE9sOFhuh4chkMkxOTiJJEk8//fSOXtftzjefz3PmzBm8Xu8Nnh+NarW7Wdyr/d/KeDCZTHLp0qXab9Dr9VIqlXad8WBJN/jK357ltdEZFJeIZUJL2I+NQ0csgG5btIf8FE0Dr6piyw624yDLIgYWhmkhyAKiJVCyDEq2QZPHw3KpwHQ5S7cvwFJJZqacBRxORtvQBZPXEjO0unzERIGR4jLlvIVLkngiFmepkmM0n6DfH2G+nGaPL4qIiFsW+W56VYOhChInw52sGFlmSmlmSmmOB9u5kJukVQvRpAawHYvLhSlMZ/V565E0QpqGVwpimDaTlSVso8KItZZp0BwJjyTi1+KULYPp0gIVpcJUebxGNgAO+HqYLI3RqXWiiApL+gohxcNwsb617R53B1PryqtCcow2rZmCncVEZqaymkXpcvXcUF7lEwPk12kp3GKQgNyCR1RJm/Nk7WXy14XiLUonS3q97gPAL/tImfWljX6phYwxSkDqRRb9WI5JwVompLSyqJ+9YYxjgX+PJKw9q6vPzUYvENyu/KraxMPr9dbIh2EYuyJ43YhGdaiC1QzHZlvy70ZMTk5y/vz5mi7O4/Hg9/tRVRVFUdA0DU3Tvmc7Bj7CvcVDdxftZFtcx3EYGxtjfHy8znjQcZxa+U2jsFXiNDs7y6VLl+jt7aWvr++OL6t7XVKVz+cZHBysZQ/upixmp8lSVRtRTZ3v9MN3O8H54uIi58+fr7nVb7ye95tw3C9sXKEtFAoMDw9TKBR49dVXd5Xx4D9cmuS/vX4Ry3EIBlzkKhV8bpnx5RR7WiNcXFqmrynCZCaDR5ZxuWWG5pc41t7MhcQKHllmT1OYNxfnafV66QgGGFxZoNXjpSsU4EJymZKh0xMOYjo2l9JLRD0uCobO0VAriHApO49LkDkZaafklHg5MQFAlztIVPVQsgyGs8scCTVzKTdD3BWiSfUhifBG5lqtIOiQvwVRcOh2NTFRWsF2HAyKq2TDgR53MxHNxVhxjpnyaovXfd42psqrZMMjaEQI4Fg6c3oKx1jdJiR5yVnJGtlwCy563HEsp4IoqExe/36fu5Pxcn0motfVxUJlinatB0FQSBoJVFFjtHQRZx158Yl+MuaN3hgtWhTd8FMq6jgek6y1QkhuYWqDyFsWVGwybCyPalP3krze7tYrtuCSIjiOhCzoJK0lSuaa0Z9HjJAx6skSQFx7Cy1avclbtXTpXmckb1Z+lUqlSCQSDA8Po+s6iqIwOTlJJBK5q85yO4lGE44HOcPx7W9/m49//OO0trYiyzK6rpPNZvF6vbXr53K5KBQK/NRP/RTve9/7GjKPRxmOhwMPLOHYbkC1UxmOSqXCuXPnKJVKNxjQVc3nGh2wb2b89e7mm+3yBPemS1V1/Grw3NnZycDAwF2vku0U4ai2NZ6bm+PYsWOUSqWGeJNs5V5eT3KPHDlCa2vrXY/ZCNzv/Vfn4PP58Pv9hMNhuru7d4XxYLJQ4df+9G/IGjoL2QLhgJtEvoiiSiznC/j9LuZyOfa2RBlNpuhvCnM5kaBbcXG0vZkrqSQHYlGW9SLT+RxPxuNczSa5kk7wZGucK9kEryzOsjcYQVEFziTmEQV4S1sXS+UC1/JpDoebyBhFekQvi4KOjs5Ibpl2d5AOd5BrxWVeT62u/u/zRXFJIj2eJkYLy/hklaniEg7Q62miRfMxXJiiaK2WLflkF6pko+Kmx93CXDlFQNU4nxuvnYNWLUTWzDDg7UK3TSZLCwT93pqwHEByBDTTomJbxMUWbAkKTpElY56clattF5aDrKwjDFE5RliOoJOjbNtMlFcDe5fowiUadWQDIKoGWdAncAlewkorgqDgFiSmyteJhQZY4BH9ZNaRhCo6tG6W1pVSybjwS3EkUSEo7yVrLpC2VsBaIa7uI3ETYhGQQ6Q3ZEJkwc3RwM/csO1u0UooikJzczPNzc01HVmhUCCTyTAxMXHb8qt7iUaWej3oGY7HH3+cX/qlX0JVVZaXl/nv//2/o+s6J0+eJBqNcvXqVV5++eXadW4UHhGOhwMPLOHYLnaCcKRSKQYHBwmHw7dshyrLcsMzHHcKqovFIoODgwiCsGV382qZT6NeblXCdOXKFSYnJ28bPG9n7LslHLquMzg4iK7rnDp1Co/Hs2Uh9maxWQ2HaZo1/c3NXNY3jnm/cb8Jx0bcb+NB07L5q8EJXh1dQPFohHwuTMFGVSRkVcTv1qg4FoIAPlVFty2iXjcl28SjKMiKiOXYyJJIwTYIaS5Mx2ammKXbFyRdKTOSTdDi9tLh85OwisylczwWbkFWRP5+cVXvcDgcQ5EFFvJ5bMfmaDiGjcM+fzOLpRzTQpKEXqRZ89Hvi3K1OM+1zGqjjS53iIJd5KC/ncVKjoxeomjnamTDL2kcCrSxWEkzXV5hvpLmaKCDy/kJADRBocfTiixajJfSJAqrxGHA086Vwhohickhuj3NJIwE6coSM84SguHQ7HjJsEY2ZEEkpLgQBS+yoLBiJFgxkrglmQW9vrVsp6uZmcpY7W8FlR53PxY6QTlOwlgiX5kgJEVIkbzh+sXUMEv6WN1nTUoHBWuZqHIAkCjYGTLmAhFJYq5yvm5bl+AnZ46zEU3qAGnz0g2f7/f9OB7pxqYUG0W+uwHVRbZAIMDAwAC2bZPNZkkmk8zOzt5QfhUKhe5ZdrGRGo5CobDjLe/vJfbv38/+/fsB+LM/+zO6u7v5yle+Qn9/f22bv/qrv+KrX/1qQ/VwjiPgPCSB+MNynDfDI8KxBawXNO/du5eurq5bPvgbneG403EsLy9z7tw52tra2L9//5YfuNXtG0U4HMdhbm4OURQ5derUjrYWvFvReNXLIhQKceLEiVrgeS8NBTeiWCxy5syZWsnZnXwo7neGYbcFRBvPxb00HgS4OLnE//d/vQq2iaxJhP1uLMEh4HFhCg4lwyQcELk2v8zRzlbOLy7TEfJTEWxGl5Y52dnGueUlNFFkT1OYs0uLNHs9tAf8nE8sYdk2bQEfTsVhvpgj4tVodnmxLBtJFnhzZY7D4Wb8isq57Bwly8QjyfQIblb0EguVPF5JodXjwS2rRFQPK5U810qLpI0SgiOw39+EIouM5NPMl3O4JYW4281COcs+X3zVj0MWeCOzVtrU52lmojhLv6cdURCZKC4iCAZXi2tkoFkNsagv0qxGEIoOhgYRzcf5fL0m4qC/h7HS6thex4vLcKMhMMcilrD2LNzn2cNEuV6Pscfdw1z5Gk1qB27RS9EqYTgVpipXMJ01I0AB8MsKK4Ze9/1OrY8lfRjBkQgqbatu5I6FRZq0mYR1BKVV7WXFqO9gBRBVWkgY9cckCxqGvYjjCLilJjQxBqgooo9+z4/c9F7aLRmOjbBtG0VRgNVnWigUIhQKsWfPnlr5VTKZZHh4uNb9qkpAGll+1aiSqmrJ5oOc4XAcB13X0TSNP/qjP+LgwYM1slG9z971rnfxuc99jjNnzvD00083ZB42wkPTFvdhOc6b4YElHNsNqLar4dB1nfPnz5PP52/b3amKRhsMVoPfql6kCsdxGB0dZWJigkOHDhGPx7c1fvUB3YgAO5PJsLi4iKZpN4iddwJ3Ixqval36+/vp6em5oV1gozIctxs3kUgwODhIPB5n3759mwo27jfhgN2X4bgdGmU8mCtW+OO/HWJkfgVFFslXLEQJlgpFAl6VhUKeTleAEiZ5XaezKcR4Os3R9mZem5vjUHMMT0uU88tLHG5uYiKf5mJimSdaW7mYXuHVhVkei7WQsUu8sTxPQFY40tLC5fQK13IZnmhpw3Js2j1+CmaFqXKSoOLiYCCALAu8kZqGCgQkjaPRFq7lV5gopvDLKlGXRsk2ORbsYKVSoOhUmMmlVs+XIHAs1IphW2SMMpdz8xwPdXDxZFSh4wABAABJREFUeiZDcAT2eFoIyDIrhsSV6+7kx4KdDK/LZMS1Jpo1Pwtlm/lKEiRoJsT8BtO+HlcbJbvEHnc/KSPDspEgGogwr0/WmQCGrSCTpatU3+kRuYmwHMV2CoDGfGW19EpEIO5qIm8YdfvZ4+5jbp3pn+youIwgskshJPeSMhdYNla9NLpdAyT0eu2HIqiY9soN90GT0lsjG44j4JVb0MQIHtFHwVrCwiBtpoDV8/u26K8jCjcPkncr4bAsC5fLddP/21h+tf73NTExgSiKtd/WTpdfPdJw3BqCINTev52dnZw5c4bLly9z4MCB2rvv6tWrzM7ONpRYPSqpejjwwBKO7WI7RKC64u33+zl9+nRtFedO+2l0W1mor0/VdZ2hoSHK5fIdS27uhPUZjp1EtbtJIBDA5/M1pPvFdjIRtm0zPDzM/Pz8LbUujWq3e6txHcdhcnKSq1evcuDAATo6OrY05qMMx/axE8aD3zozyv98bZiiaaK5FRbyBaJehaVChZ62IEvFIj1NYbJGhZaAD0ESUEWRJr+HjF6hxbdq8qfIEhGPm7lSjrjPT8DQuJBapjsQpCsQZLqUwXZsnmpuZ0nP853FafyKyunWdi5llknrZTq8AUIuDb+jcim9RKfPzxupGZrRaPGHEGWHV64LxhVR4LFwKxmjzFw+S1qfY28gytXCIn7ZxR5PDFWCN9MTtWM94G/hcn6SDi1KUPGzVM5gUOJCfm3l/4AvznB+gg5XM17Jy0IlRUDWuJBby4gojogimWRNHU1Qibta0USVZWOejL7m6B2UfKTNpTqy4RJduCQRr92GoVvkxBzLdhLFckhSr73a49nDdKU+CxGRY2SMeVrVfgRBoWDlSBqL+ESRqUp9yVNYbrnBhwMgrnXf4DLuEZpwiX5k5TEqdpGctUjSTBCQJDLGFWzqF8A6Xadp1Y7dMHYVu5VwbHZe67OLHR0dDS+/aiThKBaLD3SGA9ZiiQ984AM899xzfPCDH+Sf/bN/RmtrK4lEgt/93d8lHo/zzDPP3OeZPsKDjoeScGxWm+A4DlNTU1y5cuWmK9532k8jHc2rD4nqwzSdTjM4OEgoFLqlrmQr2Gnhu23bXLp0icXFRU6cOEEymaRSqezI2BuxVcJRqVQYHBzENM2aXuNW494rDYdlWVy8eJFEIrGtFsH3m3DAg5XhuB1uZzw4NDQEUGc8mMhV+N2/eAXTsclUKkTCHsqWTXssQDqfJ+TTyBo6siyiY7GUKzDQFmVwbpHD8SaWykUW8nmOd7RycXkZt6rQFQpwMbGMAMR8HrKWSqJSQlVFev0hJrJplo0CBdPgZKwNSRR4eXkaCYET0VYyVomh1AIAJ6JtmNjs8UYYyydpl+BcdoGI6qbbE8EWLF5JTtSO/0S4FcOxOOhrYyS/iCQ4DGXXxNPd7gheSSWmhJkspRBKSQ4HWrlavN7u1oE+TyuaKOOXA0yUVoAVjvq7uFK8Vneu47Yfj+TDLfmYqSwyWpyhz9NExlwjGwIQ07zMVlKIjkSL1opb9CCLDtdKo6sk5PqaUI/UzqIzUbePsBhhtnK9NEsMElKawBERhBIL+iLpdYL0VrGdtFj/fQHQRCja9c/GiBwnb84TkfciCi50u0zGXMKntDC9obMVgEfUSNv17whJ0DgR+Okbtl2PB51wbMTtyq9GRkaoVCqEQqFtl181SjSu6zq6rn9POI07jsPx48f5yle+wgsvvMBnPvMZcrkcmqbx3ve+l49+9KM7prG8+f4faTgeBjywhGO7K6jVB49pmrcti6h6QqRSKR5//HHC4fCW99PoLk+wOs/5+XmuXLnCwMAA3d3dO7a6vFOahVKpxODgII7j1MTr6XS6YednK5mIavYqHA5z6NCh2xK1RmY41gfn5XKZs2dX+/GfOnXqlmUKWxnzXmM3ZTh2ei63Mh6cnpnlP//v17i4WMLn17AFkWjYy0w6SzwWYGRhhdaQi/F0jkNBL0PzSxxojaG4ZOZyeR7rbOG12Vkea21FVATemJ/nWGsLVzNJvjs/y/HWVmZLOb573UG8xedlKLHIolTgYCyG7lhM5TN0BfxczizzeCxOqlJioZJloZwnork5EIhxOb9I+rpreL/kpuwYHAq2cjm7RK/ocC6zWv7UqgXY4wtxtbBIyigCcCjQyqX8NF5Ro8fbjOXYJI00Z7NrZUTHgx1cKkzQ4YoRkH0k9TwFp8Bkfq62Ta+7mbHixOp+1CghJYBLlLlQGIFyqrbdIV8XY6V6ofYhXz+WY9Cu9rCgLzJdXqDf033Dds1qjJUNbuIux4tW0RCcKBW5TFrKkTZz9Ln3MKdP1G8reiiyfMP173QNsKhfQsZFQG5DFTwYtolIkaSZI71O1O6XoiRuoudoVQdIGzcKxQ/6fhSvfPtuQLuVcOxUJmGny68aleEoFAoA3xOEo9rG/8iRI/zJn/zJPd//o5KqhwMPLOHYLtZnBm6FqkGe2+3mmWee2XS99sb9NFLDIQgCgiBw+fJlstnstkjRnbAThCORSDA0NERzczMHDhyonf9Giuo3O+9qeddms1eNynCsHzedTnP27FlisRgHDx7c9ovyfhMO+N7JcNwOVePBuVSF/zs8wUJBJBj2MpfM4nKLLC5k0dwqiWyOeMxPqVKhJ+Ino+sMtERIGxWafV5EWSBnGPSFw6TNEkGXi75wmCvpBF3BIF3BIJczCcKai9NtHQxnV3hjeZ69oQguVeb1ldVg/qnmdkxMTMfmaiZByK3ilVSOhtowHZM3MzPotkVA1jgcbmYkNUc6vxo4PR5p51J2jiOBOEXLwKfIfDe9prfodofQJIEBX5yr+UUu5+bo9YVJGGsB9hF/OwgQVkJMlpIIJDjgb2WsuFbSFJQ8+GSFgNzNkp5irpJcFZSb9dqHHlcr10rXkJFoc7WhChoCcKUwWmcCGJaDLBn1mg9ZkFAFC1vyEJabAJGUmaRZjTBZricAHsvLfHkUNsTwbWoL8/p18bkjEJRb8EphHMfCK7aTMZco6VXjwAGW9Btb5vplHwljYcPcNMrWjb4fXqmFg75/fsPnG7FbCUcj5nWn8qvh4WE8Hs9ty68sy9rWO/xOyOfzAA+0hmM9JEni/PnzfOtb32JiYoIPfehDDAwMMD09jc/n2/H4Yj0eZTgeDjx0hEMQhFuSAcdxajWkmzXIuxUaXVKVz+dxHIdKpcLp06cb0uN8pzp67d+/n87Ozrr/b6ST+Z2IwXq9xokTJ4hGo5set5EZjioB2olM1XYIx06SlN2U4WgkShWDL//PN7i2kCRZKuPxKCBJxJqCyIqID4tcsYwo2Sym0gTcMmkdHNuk2eVnKrHCE13tzOZyZMpl9rZGuZpMYjsOMb8bzZDJGzpIsCcQJlkpMZxdJu4N0OrxYoo251KL9AcitHm9fGdpChsHjyRzNNrMXDnHaC5Fnz/EopGlwx3Ep7iQRIfXU6vbApwMteE4NrIgcS4zxz5/EyPXMxLdnijNqp/pyhLnsmuajOPBOBfz07RqIZrVIKZjMlFeoGyvdXh6LNDF5cI4MhJd7hZUQcGkyEhhnemdpGFSrjmSA0SlIEHFgyx2MVdeZLw4j0vUCClyHdkQEQgqGvN6YnUs0cv/n703j5IrP8v7P3etfV+6ele39l0jaRbJBifYP89gSLANHNshAYaDDQkmwBATFhsnGPCGiW3sMAQCmIPHgIE4rMYLOF5mLI9G+y611HtXd9e+111/f5SqukvVklqtLo1kzXOOzkzfvvW933v71r3v833f530iShy/7GRBmyVnlMgZjcCwV00wtcx1HBrlURGPh5Sea9vu1yKU7TIBaxgNjZpcIKUv4pJcJOvtZWAe0U9Wb9/WON7GFT03EsoIWf0yXmkYVfRhI1Kzyjzi/6E2R/Gbwbbth4Zw3Ii1lF91K8NRqVRwu9335d9iLThy5Aj/4T/8BxRF4fz587z5zW9m8+bN/O///b+5fPkyzz77bNf0KvZDlOF4hXA8gLibgGalQNowDM6dO0cqlbqjIPRWx+hWQD03N8eZM2eQJIlt27Z1zVBprQF20y8in8/ftKNXtwmHfkP3mSZWq9dYCd3MGuRyuXW79+D+yHAAHV3Uvp3wrXOT/Mk/HsflUbElgXDQTVnTcDhE5rMlYmEvs5kyiYiPiXSO0USEk7PzjAbcjFcr1LQawz4335icYlc8Sl2QeWF6mn29PcxVS3wrOcfWSBhJljiTWqTP42Ew6Ge2YnM5n2YkFEAVJTb5wnhVha8vTOBXHGwNRCmYNb6+2Ajq+90+Ym431GzGSlm2+iNMVdI4RIkey0EsGOJ0cQb9esA/4ApQs2rs9PezWCsxVy0giRYprdQ690cDQ1iCRZ8jwkwtQ9GoEVDlNrKxzdOLaRtscQ8xUV3gSmWOff5BrpbbV/yHXBHGK9MMOBNoxTqmC4Kqi7OldufwDe4o49Xxtm1bPSPU7TobnJvJ6QVSehqfpHGpMtYmKJcFGZtaG1kB2OjayHT9IkE5jkcKYQFlo4TtyJO2C9CMU22I0ceC1kkswkqYRT3dtk0RHFSthpGfUwjilmKIghMJhZw5Rdm2KBtLJWa9jj0MuR7rGHsl3M8ZjnvlrdHEasqvmouM9Xp9Xd+VpVIJj8fzbfN8e+aZZ/g3/+bf8JGPfITe3t7Wu/HNb34zb3rTm7r6PrGB++B1dU/wkJzminhgCcfd4MbWuKVSiRMnTqAoCocPH15TzfyN6EZJVdP5emZmhr1793LhwoWuPgTWcg6lUonjx4/jdDo5fPjwTVPZ3SYcK43dLFcKh8Ps2rXrjl+O3ZizpmlMT0+jaRqvetWr1s1E6uUmHPfbS3g9r0WuWOUvvniKizMpfH4nqWIZt9dBsVKjYhkoLhlNsBBFAZdbQRQFBuMB6pbF5kiAlFZjayxKHRPd0Bn1eRgvZAirKtuDAc5nU/T5fBzuH+RYag7Dsngs0ctkNc+RhRkUUeCJvgHGCllmKkX2RuNktQr7Ir1czKWoWBoXCykSTi8j3hDXqim+lW5oGYY9ARQZtqsJLhYWKNg6mXIS3TZRBJHtvgS2aHCpOM9MLY+Aze5ggvOlWfyyiw3uKE5R5mThais7IgKDbj9jlTlcosqwqweHKDNem6JiLjWG2Obpa2uJ65FcbPH0U7VqqKKTydo8KLBdHWKs1m6Qt8UzyHj1KqItknA2ROKSIHKlegVzWWZEFRRMSm1kA2DENcTkdW8OGZmwksAr+anbZUTBx4KeAb2RvdnsGmWmPtX2eRUHVTrb3fYowyzqjayJbQt45RguMYRH9FCxstQQyJtF8majbK3XMUTJbNeFCIg8Efix29x1S7hfCUc3DfZWg5uVX509e5Z8Ps/zzz9/2/KrO8GD3hL3Rpw+fZrnnnsOWMreAMTjcWZnZ182p/hX8O2Dh5JwLA+kZ2dnOXv2LMPDw2zatGndHpiSJKFp2u13XCVqtRonTpzANE0OHz6M2+3m8uXL98TrY7VIJpOcOXOGwcFBNm/efMtr2c0M0Eri7vUoV1rvIL5YLHLs2DFkWSYUCq2rY+1a5qppGrIsrwtZaI7x7Zbh+OILl/jGqXHmckVUl4Kh29Rsi6BDQrQl4k4Hhm0T9LiwJNBMC9UhkSnU8LtVNMGmUNcYcakUymWqlkVvyEetLCKKUMUkJitUymVOVQqMev3UsLlazlIzdA7G+qih89XkJNiwPxanZptMlAtMlgvsjcTRbZOdwTjT5Twz9RwL9TJuSWZnIEHGKHK+0Ah4I4oLS6gTUb1sVuNMlLNU7RrXikuB9cHwILptssXTy5XyAgv1AjWr0iIbAI8EBzEw2OTu42plgbFKkl6nu41sxFT/dXO/ECElSMmoYWNxrjzWRhhCppvxWrsWok+NoYoSA45h5rR5JmtJFEEmqnraPgsw6u5j4oayqV61kWkZdG6lbJZJaYvManMMOSGptROLhNLLbH2FdrfOQea0ZeVRlohq+ahVNBzyELZiUhHypPUsQVkmo1/Bon1uCXWUzAoC8q2e1xNShju23wz3o9M43H9EqFl+paoqw8PDhEKhjvKrpvngWsw9m4Tjfvxb3Cls2yYQCHD16lWGh4dbPwOtNvbdJBwWAsJDYoj3ivHfA4i7LanSdZ2zZ8+STCbZu3cv8fitO4Os5RjrRQaawutYLNYmJO5mluBOxrcsi8uXLzM5Ocnu3btX1T7vXmU4LMvi/PnzJJPJuy5XWs8uVclkktOnTzM6OoqiKCwsLNz+Q3eAOyEctm1z9epVLl++jKIorRdwJBJZlefMw4Bkqsizf/E8BU0DSUBxKTidCrpgEVKcFHUdQYRcrY5l21gy5LIFgn4XJ6bn2T3Qw6nkPGGHSiLg5vmpaXb1RDEkkxfn5tgRi2KJNufTabaEQ0SdKvlMmtlKCYdkE5IUZiybkl5hrJxnfySBLImcyiWpWyYeSeGRWA/XSllmq0UcksSQz49pWzwS7GO6UmBezzNTzQMQkBxs9UcYyyaZqOSYrGTZG0pwtjiLaAts9sWJqm5OFiepWY3yRLekoIg2ab2OR3Qw7I7hVxycKF7BsJe+Fzt8fS2NhojIsLOHkOpgVrOZreeZredxSQ7CitxGGByiim3rOESVhCMOiCxqWWQJLpTbO1BtdA9w9YauVBuc/UzULuOV/ISVhlC8bJTR7Brztdn2z7tGma63u5FLiIhCrSM7ErAjlM0cPepWQKJqVsjaC0Q9/czKnZ2mRM3Cktuf/ZIgo9npjn0dgpcD/n/Xsf1WuN8C+yZejpKq1aCp4bhV+VXT3DMcDhMKhQiHw7etdPh2ynDYts2P/MiP8IEPfIBAIICmaRQKBa5cucIv/dIv8aY3vanLx39FNP4w4IElHHeLy5cv43A4Wm1a1xvrQTiageDVq1dXNH7rdies1Yy/3Gzw0KFDq24R2K0Ws7AkGm9mhSzLWpe/83p0qbJtu0XOmkR3enp63cufVks4TNNsa/9smmbL4O78+fMdBnerJfrLMxwPMizL5h+/fp5//tYVZKeMIAvYkohow3yxRCjoZipTZKQ3xOWFNFv6olxcTDMSDJIsW8iSyO6BOJOFPNsTUeaKeUzb5tGBPs5nF4l7PBweHODowhxOWeZVA/0cS89TLuiN1rd+DydT8yQNnR2BALquo9gC84UcWUEjpDrpc/tRZIFvXNdsqKLIE7F+ZqoFxks5ZsUCo4EAV4optvvjKIKIJZgcyS5lEg6E+8nqJfb6B5moZNAsg+PFCbTrPhEisNUXxbbBJ7kYqyyQ08tM1mfbyMZe/wDXKjNsdg8gIDFVXcSjKJwqtWsfRt0RxirXSYkt0uuME5W9TBZmKZgVCpVG5mGltrgbnH1cqy6NF5SDhOUwqmThtSLkjBw5o1HCtMU9yvgNruU+ycfiCh2lRl0jzNTP45XCeKUIgqCQr+QxxWpDo6EvZX4CUoTkDYQFICEPk7OudGyPCkPkzM7sxiP+t+IQ70yIez8SDtu2X/aSqpthJSK0UvlVs7317OwsFy9ebJVfNT14bhyjqeH4doAoivzMz/wMTz/9NG9961txu9287W1v4+rVq+zbt4+PfOQjXT2+ZQsID0kg/rCI41fCQ0c4kskk+XyeYDDIo48+2rUH5N2SAV3XOXXqFKVS6abC624TjttlIZoeFoFAgEOHDt2R2WA3S6pEUaRer/PCCy8QiUTYuXPnuqy8NQnHWsuEDMPg5MmTlMtlnnjiiRY560a2ZzWEo+n3IQgCTzzxROv8lhvcpdPphsfE1BSCIDyQ2Y+1ZkOnZrP81RdPMZ0uILtkKppOQdOIR7wUKjqRiAfNtBjqCVIzDfqjfqqmgduhYImgWxaKIlG3LHTTBAkUScTApmjW6ff5QBS4ks+wKxqjYhocTSXpc3uJRFxMVvIcXZijz+1hKOjnWKqRzRjweAkqCk5d4lq1hM+0uGKV6VHc9Ln9iIrA1xYngAZR2B9JYGIRdXg4X1jgQLiXE/mGoNlry+yO9jFXzzFdzTFBjqjqoWiV0SwDp6iw0RPHJyucLEy0hOVuSQVRp2Y0sh9+yc2IO45m1dAtuHC9w9VOXz8XyuNt13WXb5AFbZFN7g2YlsV0bRGX5OB05XLbG2nQGedatV3L4RZdgMUG1wiWDSk9Q0ovEFUDjFXbSU2vmugorwKIKgFmtYbXh1PwEFJiuEQPNauIKARJG0XSRqPVb4I+skKmYwy/7GZBn2/bpggqGitkMWwveesqkuFHtv0osgtRFnHIXra5n+rY/3a4HzMJzWfN/Ug4VtOlShRFAoEAgUCg1f0ql8uRyWS4dOlSq/xKkiSKxSKHDh2iXC6v2YPjk5/8JB/+8IdbFRa/8zu/w2OP3bxpwGc/+1ne8573MD4+zubNm/ngBz/IG97whtbvbdvmve99L7//+79PLpfjVa96Fb/7u7/L5s2bVz2nWCzG3/3d3/GFL3yBM2fOtGKPp56683v0TmHbD5Fo/CE5z5XwwBKOOw0ilguug8Eg0Wi0qw/HuyEDhUKB48eP4/V6OXz48E0Du256WTTHv1kgPDU1xYULF+7YgX01Y98tcrkc+Xyebdu2rasR4t3oEsrlMseOHcPlcnHo0KG2v2k3BN63GzOfz3Ps2DGi0Sg7d+5EEISOzl4Oh4O+vj76+vpaAsx0Os3k5CTnzp3D7/ffNPvxIGc4TNPiL//xJGeuzlOo1qjZJiGPG9EWifu8VHSdUNDFdKZAX8zPlcUsAxE/s4UiblVGdkicmVtg10CcE3Pz9Hg9xENejs4m2eDzoMgi5xZT7IrHUB0SuUIdv1NDVURGfAEWqhWq6PgUlXjEg6KIvLAwg1OUeCzWR1IrcrbUCIIfifRQNzVGdYlrtQI+2+aqXUG0Yas3QtDt5Gh2qqW5OBju41xhjt2BPmqGTrlU5ER+qkUkHKJE2OnAKXrodQS5Ul4EbI7ml4J5AZsRT5CMXmKnd5iiUSejFZirL5JZ5snR4wgwXW/4TYi2yIArTkjxktbTZLQKmetZhojiZ7be7kvhFBVMKlhYjQyGEsayQRFsxmo3ZEtcA0zcsE0SJGyh3lYeJSIx4hxFECz61M0UjBw5I0PJnGLI1cf8DVkPnxigQHspFsCAY4QFvZPI9Ds2kNTO4hRDeKQIkuDEtC0cosR8/QKmXAWq128yGJr5Xs4tnG+R+NXWyFuWdd+R/eaz/H4jQrA2MbuiKMRiMWKxGNAQUWezWb7whS/wS7/0S8iyTCwWIxwOMzU11dH2/Vb48z//c5555hmeffZZHn/8cT760Y/y5JNPcvHixRVLu59//nne9ra38f73v5/v/d7v5bnnnuONb3wjx44dY9euXQB86EMf4uMf/zif+tSnGBkZ4T3veQ9PPvkk586dW1UTnFKpxD//8z+ze/duXv/61/P617++9bt7ocN7paTq4cD9txzRBVSrVY4cOUImk2mV/XTTIwPWTjimp6c5cuQIAwMD7N+//5Yvlm67ma90Ds0SnMuXL7N//35GRkbW9DDqBuGwLIszZ86QTCbxer1rIkK3QvOldafzXlxc5IUXXiAej3PgwIGOv2m3CAesHPDPzs7yrW99i5GREXbt2rWql3FTgLlx40Yee+wxXvWqV9HX19fq8Pb1r3+9pYlaTlweNMIxNpHivf/jH3nxwjSmYKG4FUJhD6liBdWlMJHOY8sC05kCfr+LmXyRDT1BJvMFRmMhslodn0Nlc2+EiWyBvX09lDEo1jUODw8wU6+Qqdd59fAgF/MZXppLsjUSwRQszqQWSZZLbIqG8Cgql/NZFEVkvJTlYKyXhNvLRDXHVLlAUHVyOD7ATK3A+WKaq7UCB2K9VFSR3d4YHlHB0Kp8a5nXxr5AAgsbUZA4lZsjr1cpSnV020REYKu3h73BPuZqBc4Wk5wtzhF3eJmoLq3k9zqCPB7aSMnQWKiXOFWYYqKyQL/L10Y2VFEirDgYcvay0TWELDqYqWVY1FIk60tZgIaPhkrNWhKY+yUPOzyjBKQQPilMSityqTwBgtVBNlyik5LZ2T1qo2sYzdIYcIwy7NhCVB5AxcuCNsu16hUma1fJGQ3SNuIa6SAbABE1gCm0k3BFUKlYDdG9jEpIHiChbmfAsZeyWcMmQM4oMVOfYLJ2Ec2qMFs/jUn7OAOO3bx6y/fhdruZnZ3l+eef58iRI1y+fJl0On3Ld8f9WFLVnO/9Ni/bttclI+R2u+nv7+fpp59mcnKST33qU/h8PiYmJhgZGWHHjh387M/+LP/wD//QciC/GX77t3+bt7/97Tz99NPs2LGDZ599FrfbzR/+4R+uuP/HPvYxnnrqKd71rnexfft23ve+97F//34+8YlPtM7xox/9KO9+97v5vu/7Pvbs2cOf/MmfMDs7y+c+97lbzqX5fD516hRvfOMb+cmf/EmuXGmUBDbfc5/97GcZHR29k8v1CrqAT37yk2zYsAGn08njjz/Ot771rZvu+/u///t8x3d8R6sc8HWve13H/j/6oz/aMpBu/ut2NuuBzXCsFouLi5w6dYpEIsG2bduQJAlZlruaGYA7JxymaXLu3DkWFxdXLW6+1xmOarXaKsE5dOjQXWki1ptwNMuDbNtm69atzMzM3P5Dd4g7XbW3bZtr164xNjbGzp076evru+m43SQcy///0qVLTE1NsW/fvtbq3Vpwu+xH0yCqWCwSCoVe9k4ut7u+umHyuX86zfFz04hOCcmCdKWK1+ckXawgqCK6ZeL3O5ElkaDfhY1N1O+mbppEfC6qloFTkUFq9FtRFYmcrpHweDCxuVrIMuL1YolwJDnD9kgUhyxxOrOAZpoc6EmQNqp8M9m4dw/19VMxNXL1OlesDD6nildS6XP7qJsGx7Iz1C0TCYGD0T4KRp1krcRcrcTecJxzxTnCiouE7EHXNc4VkxjXyYdbknHKIBsKm/29jFcyeBSFl/ITrWvikxzY6ERVHyHFy3y9iFd2cDR/pU1WvTcwwLnSOAD9zihBxYsiwpni1bb99vgHuHRDedVO3xCT1RlGXINItshcaZGYK8yp0vm2/XySm/QNJUwAG1wxxmtXEWyRmBrHLflQBYWF+hQFs0ROX/IO2ezewGStXV/hFF1kjU7X7wHHMHP1pX09YhCPHMYv+6mYBQzbQcHIUNaSQJIh5xCLeidpkYXOhS0BgcPBHyGgtpfwZLNZ0uk0Fy5cQNf1loFdJBLB7Xa3vkP3I+FoPstf7u/5jehG5kVVVV772tfyD//wD3g8Ht773vfyL//yL3zhC1/gp3/6p5mamuIb3/gGjz76aMdnNU3jpZde4pd+6Zda20RR5HWvex0vvPDCisd74YUXeOaZZ9q2Pfnkky0yce3aNZLJJK973etavw8EAjz++OO88MILvPWtb73puTTfD8ViEZ/PRzgc5s1vfjPPPfdcK3tSLBa7onNtn8crGY5b4U6zYl/5yld429ve1rJ5+OAHP8jrX/96zp49S39/f2u/p556ij/6oz9q/dzt1sfftoTDsiyuXLnCxMRER7C33i1rV8KdEI5KpcLx48eRJOmOfEDuhYajOX46nebEiRMkEgm2b99+1y+89SQc2WyWEydOEI1G2bFjB+l0uiuZnzvJcCwXY99Mg9NENwT0N5Kjm+lHbsRa0ufL3X+b2o9UKsXFixc5ffp0q/tLJBIhHA7f1Jvl5cLlqwv8zZfOkkwXMCRQbKgYBk6PA1sEr99Jua4hqiKFYh2/z8GF6TQ7N8Q5M7fIUDRAydCZyOfZ0R/n5Nw8cZ+boNfFqeQCO3qiqIrEYq6C2+dGFiWiLjdlXWeyUmB7JMZitcyiXmGymGdXJE7QofK1hUYA65FkdkfjzFVLjBUybPAGSBtlAqqTQXcQC4vj+Vn06/fQFn8YRRLZ6uvhYmERWZQwJAPDatwLMclFTJBJ1irk0UnmZ9jujXGqsBQwD7vC9Lp8TFTTTFSzTFSzxFQvC1q5jURs8cTRbZ3t3iFm6xmmaml8spMLxfbge7u3v0U2RET6nT2EZC8FI0vVMhirNHxCHIJCWu/MWPQ6g23tcl2Ck2HXAGASVwZZ1BaZqS8ikqLfGaFgFto+P+Do7yAbAAPOBFP1ZeVRtkhIiuIUXPQ6dpAtZ6lKJTJmGVtwkNYmMWknEb2OIeZXMAQccGwktYLT+DbPvyaiDrVtu7GDUqVSIZPJkE6nuXr1aqt7XDgcvi/F2c0swv1GOJrvr26UepXLZeLxOMFgkDe96U2tTk5jY2MdDV6aSKVSmKZJT09P2/aenh4uXOi8V6ChO11p/2Qy2fp9c9vN9rkdkskk27Zt4zOf+Qxvectb+Lf/9t/yx3/8x3znd34nhUJhzVqV1eIV0fitsTwrBvDss8/y93//9/zhH/4hv/iLv9ix/6c//em2n//gD/6Av/qrv+LLX/4yP/zDP9za7nA4VtVVdL3wwBKOWz3YarUaJ0+eRNf1FTsndTtQv5NjLCwscOrUKfr7+9m6desdvUia7X27heb4V69eZWxsbMVOWWvF3QqwoREcT01NcfHiRbZs2cLQ0BCCIHRNH7LaDEczEyRJEocOHbrtqsF6dL+6EcvnWqlUOHbsGA6Ho0M/0g04HA56e3u5ePEiTzzxBNVqddXaj3sJTTN47q+OcnkqhSnaaKKNx+ukqmt4fE4WC2WcboWaplO1LARNwJRs8rU6/YkAU7kCuwbjvDQ9y87eOLIqMpbOsH8wwYn5BUqmzqEN/Xxzdgbbttnf18vlbIpMWWNTKEjI42QuXeJiJkVvwItXUTFMC1US+drCJCGHky3+MHmzxtfnG8F2j8tDzOPGYyicz6VwSQopvYRuWQx7gvS7fFwszzNWqQHgkRScskjJgEeC/WS0ClGnixP56dZ1iEtOJqsLRHERUtyk7CohxcmLuSXBtiKI+BWZqVqeoOym3xlBEkRmtCSFWqW1X48aYLrWHuREFB+6XWu4gls607UUc/UsdbtERs+372s7SZm5tm1bPENk9BQbnBsQkckbRQpmiXltjqJZbNt3s3sD4zcIxWVBRrdL3IhepY+KWaZf3YoNlM0KWT2FVwlxpXY9+FsWp/okNxWzPcsiImKuMLYsqFTMzmBPEZw8Frj5ijM0vrsejwePx8Pg4CCmaZLP51vu2eVymUqlgqZpre/Qy01A7kcSBEuEoxvPmEqlsmKXqo0bN677sbqF5nunVCq13pmf+cxneOaZZ3jzm9/MX/zFX6Dr+rp6RK08j4dHTN08z0KhfVHE4XCsGCusJSt2IyqVCrquEw6H27Z/5StfIR6PEwqF+K7v+i5+/dd//a6sA26HB5ZwwMqlKE3Pimg0yoEDB1bsnHQvCcfNAurl3hW7du2it7d3Tceo1WrrMd0VYdt2q0vR7Vbp7xTLswVrWX2yLItz586xsLDAgQMH2r5I3SQct8tGZDIZTpw4QU9Pz6ozQd0sqcpkMpw+fZq+vr47JrTrhRuzH+l0mkwm09H56l5mPy5cnucz/+comm2jOCVquo7H52CxWMYSIeSUqVoGUbeHckkn7vdQ0OpEfG5sCSRBIOp3U9I1enxeyqaOz+lAkkWu5XJsiYaxBJujyTl2x+PIssjR+TkCisL+cJiL1QKXi1mCqoPtPTHOphe5pGXYF4+T06s8EklwPpuibOlczKcJqk62BqPMVvO8mGoImXucHizRYps/Rlarkq1XMQSdnN54JqiiyP5ILxmtymytwLHcDPtDfW1kI2Y7GA1GmaxkWNCKLOhVNoheTpem267XgeAQum0gIDJZTZHXp9nsi1AwlsiGLIi4ZJFMTcMjOul3xhARMYQa49X2sqXdvgEuV8bbtm129jFx3YgvLDcMAhVBJqUvkNHLZPSl2vjt3iGu3dAuNywHmam3jwkw6hpiqnaVqJLAKfob5MKoUKdOpr4ILHngBOUQs/WxjjEGHMPMa50ZkiHnRua08x3b+x0bmNfOogpe3FIERXADEpvcj+GWgh373wqSJLWyG5s2beLo0aN4vV4qlQozMzOtznLNfbpd/rIS7scyL1jqUNUNwlEul1ulo6tFNBpFkiTm59uJ6/z8/E1XmhOJxC33b/53fn6+LY6Yn59n3759q5pXKpVq65r40Y9+lEgkwo/92I9Rr9e7XtvfIBwPR4aj+aq/sdHAe9/7Xv7bf/tvHfuvJSt2I/7rf/2v9PX1tZXdPfXUU7z5zW9mZGSEsbExfvmXf5nv/u7v5oUXXuha84cHmnAsh23bjI2Nce3aNbZt28bAwMBNHzKyLN8T0TisHFDX63VOnjxJvV6/I++KG9FNDUepVGJ6uhF0vPrVr173QLD5clpNy8Ib0dRrACuWoHXT4+NWY09OTnLx4kW2bt3K0NDQivvc6ZhrRfPeP3HiBDt27Fi3zNSdHv9G3E3nq7uZS5PQaZrB//3HU5y5MIspiwgCpMs1bBkUUUV1KTidMjo20aCHimkgiiI6FovFChv7wpycnmfPcA/T+QIVTWdTb4STc/MMhQO4HSpjuRxRnxtREnEpCgYWi+UKu2Nx0uUi58s5gk4X28MRcmad5+emEYFHexLkjDpjhRwCNvviPVQMnb3hHsaLORbqJaYqjVWxrf4IPofC2dwC0+U8DlFiyO/jainDZl8Ut6wgS/CN9HjrOmz1RTlXnGXAGSTm8DJbyaGaBkdzS7qNfmeAtFlCMAX61QAOU0QwDF7Kt5cM7QsOcLa0NLZgC+wPbKBu6eCQmK6mOF+aYW9gkCvldrKx1dPfTjZsgT5HFFmQCethag6dBT3Pgp5ns7uPjJ5r+/wGZ28H2QAIKi5m6ikEWySsRPHIflRRJW+k0WyJmXoKaJRrbXaPMlmbXmEMD3PaYts2CYm6me3Y1yl6SOsT2LaAVwrhloJIghNRkKmYWSBIwSxTMBsE0SOF2On91x3jrAXhcLhVftX0j0gmk1y6dAmXy9UiHyv5R3QDa3mO3wt0s4XwWoz/VFXlwIEDfPnLX+aNb3wj0Jjjl7/8Zd75zneu+JlDhw7x5S9/mZ/92Z9tbfviF7/IoUOHABgZGSGRSPDlL3+5RTAKhQJHjhzhP/7H/3jTuTQrDAB2795NMBgEGuW3oijynve8h97eXt7xjncQjUbv6DzvFA+jhmNqagq/39/a3i39xAc+8AH+7M/+jK985SttsdJybc/u3bvZs2cPGzdu5Ctf+Qqvfe1ruzKXbwvCoWkap06dolKp8Pjjj7f9EVfCvcpwQOeDuKk3CIfD7N+//468K1Y6RjcC66YLdigUAujKqvNaOz41Mwg3uq7fOHa3uiOtNHbTzXx+fr4j27IarHeGozkfgL1793asjNxL3Oq8VtJ+dDP7cenyPH/3hTMkMwUMGxRFRpQl3D4VS4CypqOqErO5IvGwl/FUjtHeMDOLBTa5o0gOkYVimZ1DcY5Nz7FnIMFEIc/Z+UX29Sc4lkxi2Tb7+nu4mE2TrdXYl+jBECymS0VESUCWBAYUDxPVMn63g5lSkQOxXgQBjmeT6JaFU5J4rKeXyUqeiVIeWRTYHAwzUylyINxLulYF0eJYphHIisD+aMNrI+70cqmY4kCkj+O5pYB6yBUkpDqpWX6mqjmmqjkeCfRwprzU9tUtKvS7/cQtL5PVDFNankFXkKxYgmVf017LxdnSOB4c9DkjCKKELAgczbeTgGFXlMvlibZtQdlDSlsgrkbwy350y2KunkaVZC7WJhpvpOuP5q3uQa7Vxts+7xAVanZ7KUJADtKvJtDRiCpDLGopZrUMaBk2uHqY19pXh/2Sj7kVMiFDziHmVtBi9EkDLJhXsG0BnxzCI4WQBAdOUSFvLFCzMmSMAhmjMa8NzlEW9amOcQ4HfgBFvPugwrKsFhEXBAG/34/f72dkZATDMMhms23+EcvF5x6Ppyur/fd7hqMbWKsPxzPPPMOP/MiPcPDgQR577DE++tGPUi6XW/X5P/zDP0x/fz/vf//7AfiZn/kZXvOa1/CRj3yE7/me7+HP/uzPOHr0KP/rf/0voHEP/OzP/iy//uu/zubNm1ttcfv6+lqk5kY0Ky9kWUbXdd785je3frc8JvnxH/9xvv/7v/+B6zb4IKD5vb0d1pIVa+K3fuu3+MAHPsCXvvQl9uzZc8t9R0dHiUajXLly5RXCsRIEQWgFoMFgkMOHD68qgL8XhGP5Cj40vuATExNcvny5TW9wt8dYz/NolnlNTU2xZ88edF1nbq6zg8t64E4Jx3K9xtatWxkcHLzp9eumx8eN5KBer3PixAlM01xz5671JEiapnHixImWtmc9y+DuBGu5t7uV/TAMi89/6QqpvIkoC0gOGYdLoVTX0OoaqlNmoVChJ+YlW67RG/NTrNfZ1BchX6uxMRGmYNSJ+zwIsoBmmoxGQ8yWi/QHfFjYnJifZ0c8iiSLHJmbYWMoxM6eGM/PTmPaNjujUXRMLmZLSAIc6OvFsG1sGwp6nclqnqjTTb/bhyzTEoyDzaGeQQp6nZphcDw9x55onFO5JG5JZqs/jksV+WZ6SVC9MxjnVH6GsOpi2B2hrNfRqPPiMmfxPcEEZ0ozyLbIFl8CEBBFi5dyS/u4JQUEo+U2LtgCw+4IYcWJXFeY03NcqCTx2Aqy1P59c4oKBlXM60wlroQIKQEcksB4dY7pWg7IAbDLO8SVG0z7ApKngygAbHb3UzWrhJwx6rZOWstQNUzGrQkqVrVt303uYaZqnZmQmBpkut6esZAFmaqVa/3sEQP4pCC1ooHhBp88SN7ItEwBw3KUOXMem/bzjigJ5rROj46IMsAO73d2bF8LbhXcN/0hYrEYtm1TrVbJZDIt/cfy8qz1LGG8nwlHN+bV1MatxWn8LW95C4uLi/zqr/4qyWSSffv28fnPf761MDQ5Odk258OHD/Pcc8/x7ne/m1/+5V9m8+bNfO5zn2t1kQL4hV/4BcrlMu94xzvI5XK8+tWv5vOf//xNG9AIgsBnP/tZwuEwr33ta3nxxReZmpoikUjg9XpbGiK3243P57urhdHVwL7+72HAnZ7nWrJi0PBm+Y3f+A3+6Z/+iYMHD972ONPT06TT6TWV968WDyzhsG2bq1evrimAlySp6yVVgiC0iI1hGJw+fZp8Ps+jjz7aSl3eLdaTODXLvDRNa3Uxmp2dfVmdzJtY3jL44MGDrczL3Y67Fiwfu+m0HgqF2LVr15pX0tYrw1EsFjl27Bh+v59HHnmEL3/5yy/7ytRaj79e2Y8rYwt86k9Pogs23qCPfLWG6BCxLJOyrhMIudFNk56Yl7puEA66yVaq+DwO8vU6mmXilFWmF/M8MtLHeDaHKAj0hLxMLRQJe1xIiogqS1iCTVGrsTUcQVUkvjk3w65YDAGBa6UsuXqdAaeLgMvBiwtzWLbNBl8Aj0NmkxLifDZFv9fLkdQsPkVlayCKJAp8bX6JBByMJSiZGvtCfVzILyKIdhvZGHL78Sgym7wxLhdTZOrT7A7FGSvklvZxBVFEkS2uBGPlFGcKSfaH+jhdbDe52+SNMFFZZJu3HwGBqUoGRRI4WVo6ngj0un1M1NvLkEbkEAgCQVeAZD3HbD1PRPVzptTuHB5V/EzVO0ubehwBxqvTRNUwATmAjYAkCFwoj2HdEORv9Qx1OJK7RBdprVO0PeQcZLq+tK8qOAjKUaJKmBplFMFDzsiQM4rkjCJRMcacNcMNh8QrOSibnc8YlyhRMjvv+VcH34oorE/gu9rgXhAE3G43brebgYEBLMtqic+Xt69uko9AILDm4Px+Lanq5rxKpdIdaziaeOc733nTYPErX/lKx7Yf/MEf5Ad/8AdvOp4gCPzar/0av/Zrv7bqOXz1q19ldHSU1772tXzmM5/hE5/4BJFIhFqthmVZ2LaNoihks1k+/elP87a3vW3VY98pHsaSqjvBnWbFPvjBD/Krv/qrPPfcc2zYsKHVrczr9eL1eimVSvz3//7f+f7v/34SiQRjY2P8wi/8Aps2beLJJ59cv5O9AQ8s4RAEAdM01xTA3wsfDmgQgmKxyPHjx3E6nRw+fHhdy5PWq6Qql8u1skTLy7zuhbHg7cavVqucOHECWFmvsRK6reGwbZvZ2VnOnj27Zqf1lca8GywsLHDy5Ek2bNjApk2bWgL31Y7b3H89sZ7j3Wn2wzQt/v4fTnPi9DR128SUBKqmga0ION0OqoZOJOJlNlsgHvUxNpdmsC/I+dlFNvdHOD0zz+6hBKeTeQRZZEMixJGJafYN9nIlm2FuJsnegQSXsxky1RqPDvaSqVe5ksmyO9EQiYedLhYrFaq2zqDPT8xlIFgGZ4pZXJLMnlicmWqBE6nGSv7eWJyCUWNfuCEYBziSagTjUaebbYEIY+UMyWqjK9KOYJTThTlkRLb54zhEmRkty9HMkgfNo+F+juen8Eoqo56G78qinudEbmmfLd4oZ4tLQX+Pw8+IO0JWL1IzTc4WGkRkf3CAM6X2Eqk9/sFGeZXopN8VQUREMC0uaVMs7x4bljyMV9u9cQQgpDqYqjUM+BRkfKaXwUAPRauIKrpIajmSWg5JEOl1+DvIxrCzr4NsAAw544wvz27YAkE5hEdyMeTcgmbrFIw8eSOHZFbImUkMu73jX4/SS0bo9PPpV4eY1zozJ33qMIt65/ZBxw5G3Y90bF8r1ppNEEWxZQS2ceNGNE1rtd49c+YMlmW1ic/vpDPR/ZzhuJ80HPcTfuVXfqXVsfBnfuZneMtb3gI0Fh/r9TqapqHrOul0msOHD3d3Mq+kOG6JO82K/e7v/i6apvEDP/ADbeM0hemSJHHq1Ck+9alPkcvl6Ovr4/Wvfz3ve9/7uurF8cASDoDNmzevKbC8XQep9YJt25w+fZqRkZFWELieuNsMh23bTE9Pc+HChRUD525mClYzfrNcLh6Ps2PHjlW/0JaXa633S1AQBCYmJkilUndtnrd8zLVe5+Xmgrt3726r6exG96s7QbeOf7vsRypV4/SZAsWaBYqMrYqIkoAlgcvhYDZTxBtwUi5VQBaoGQaBkAvTthhOBKmZBruGehqu3/EwJVPDIUns6u/hQjrFxkgIRZH41uwc22MRtvVE+cb0FB5F5onBPs5nM2RrNRJeD4NBPxOFPKdTi+zv7WE8V2KnL0jRtrhayrJYq7TIR7JWYqLUaBO7L9rDiewse0I9mLaNLAq8kJpquYYPun3IEuz293KlmOF8YZFNgSAL9aUWrXsCCUzbYpu3l8vFRU7l5tgRjLJQX2ol60MhaxQYdkfxyU6StSIOQeJEfhzdXnq2bPbGOLcssyEjssWbAAH6nTFmamkulGcJyR4Q2j2OBMBlQ+kGt+3dng0Ygs5m9yh5vUyynsKmytXaJGWz0rbvVvcQV6rtXaIUQaJudbak7VcTlK0yw86N2AhUrCoZLUNYDXOx0tnVJaYGmF7mft6csyTajf9p2y5g2O2teKHRHtegfbsqePBIIV4dXN+V4fV6rqmqSiKRIJFIYNs2pVKJTCbDwsICly9fxul0tonPb1VWc78Sjm6JxpslVd32p+gWbNtue1cMDw8zPDz8Mk7o4clwsMbzvJOs2Pj4+C3Hcrlc/NM//dOa5nE3eKAJx1oDeEmS7toD4lawLKvlFrtp0yY2bdq07seAuyMEq3E2v9dO5k3Yts3k5CSXLl1i27ZtHe3jVjNuc5z1hK7raJpGLpfj0KFD67a6tVYNx+3MBV9uwnGv0Mx+9PQk+L9/fYyXTi2iY1G3NEy9jgHULAu/KqFaAi6/A0WVEFQBTBFZFanXTEION8lCiaDXRd0yKVTr9IR9pHJVJNnArSg4ZRlEgZKusSEQwKFInF5c4EBvL5ZgcyQ5h1dVeaK/n6vFDN+ca6yQv2pggJxWI6NpaLaN3+PAgcz+aC9VU+dUdp6q2UgJ7AhGUSQRr+LkVHaBjf4gM+UCFjZ9Li9DniCztTxncktlTAeiCU7kZ3BLCpu9MZySwpnCDFVzKcg/GO7jZKEhZnaKMsOOEGa9SsrSuFJqZFQ8koqoym1kwy87KZgl4o4AEcVPzTSYr+fJGkUWKks+GgI2caeHq5V2Ufdu/xAXSuPElBBe3Gi6Tt2oc7E8jim0f/9jgod5sz34j6khxm8QjwNscg8xXZukV+3DJbkwbZuiUcZAZ/GGEq+A5F+xZW6/o4/peqdQfMg5yuwKbXCHnaPM1ZdIi0Pw4JVDBOUwhl1DUULUrAolM0fRrNLvHCLhHO0Y527QrYUUn8+Hz+djeHgYwzDI5XJkMhmuXLlCrVYjEAi0yhi9Xm/bu/N+LqnqBhGq1+sYhrHmkqqXG4Ig8KEPfYhkMkkikcDtdrdEzH6/v1V64/V6cblcRKPR+87U8RU8eHigCcda0VypMQxj3TswNUuAbNtufWG7hbVmOJrGdIIg3LJMqdslVSsRDtM0OXv2LOl0elV6jZuNC+u7ulUqlTh27BgAW7duXddUepMY3AkBbrYGFgThpuaCLzfhuJfHn5vJ8tyfHqFsGDg8Tuo1HUmR8XlVsqUiTsGmVCkhWTJVw8aDk1JNxxNwMpHOEw15ODWVZMdQnJMzjRa3Qb+LI+PT7B3sYbZU5nwqzWPDvcxXKoxn8xwcSmBio5smdcsgpdXY29PDXKnEtVKWdLXKvlgPLlXm63PXA31JYJPfR1WAC7l0Y2WZOqZlsS+cQJVEzhQWqBQbRCHh8lC3dHYGYxS0OlOVPB5VYbq6FNQ/Gu1Fx2SnL8GlYoqrxQxeh9xGNnYHehivpNjt70ezTMbKKVRZ5Gy90Fb6tNEb4kKp2cbVwaArik9RGK8sMFMvMHP9uHsDfZwvt7uJ7/INceG6m7hgi/Q5I0RkH5pZwyW6mavngTwCsMkXJVdr/+73WH7mlc5Mg09SyBsGDsFBVInglFyookxKn6dimZTrS1qNrZ4NXKt2EoW4I8Dk9dKtJkQEbOod+yqCQsFcIiySLeNXorhED5Kg0KNuo2pVKJp5ClaFqp6lahaoWO1ES0TiO0Pf3zH+3cK27a5nE2RZJhqNttqhNsXn6XSaiYkJRFFsE5/frxmObhGhcrnhCfOgZjgAzp07x9GjRxEEgXK5TLVabSulal47Xdc5efIku3fv7tpcHkbjv4cRDyXhuLGD1HohlUpx8uTJlunb0aNHu54huNPxm3NMJBK3Naa71yVVTSIkiiKHDh1alV7jZuPCnbfcvRmabvDDw8MsLCy87FqHfD7PsWPHiEaj7Ny586Z/w5ebcNwL2LbNV750nm98cwzNsjFFkBQJxSXidjvJlisIqoym6xiqg4DXxWI6h8fSKehVXBqIko1gW2wbjDFXKLGrP85ksUDU4+axkX5enJljayzMSDTI81PTxL1untjQz4tzs+iWxe54DCSB+VKJmq4T9jrxOxzopoUkCzyfnCaoOtgcirBQznE83wiqI04XYY+THsnDpVyamUoBS7SoGDoisD0YwyGJnM0vMFNplOvsi/ZwKpdEFgS2+mOEHS5eyk5Ru95JShJg0BviQrFhZhd3eBn2hCgYZfJ6nZP5BpnYFUhwttSuT3gk0EfRrLLbP0RerzFRSaNKIsfy7RqJnb7eDrLRowaomTV2eDZQtXRmqmlmahlEl3Xd/2IJu3xDXK60ZxWcooouLZmYSpaE3/YRVXxYlkVQipLWc0xcd/oedcdJ6+2dpnySh7kVBOiDjn4ma506j1HXCFP1S62f3aIfr9QwHKxZVRxCmHQlRUWqUamn2OQOMFbtLMkadAwxU+80/9vj+w7Cyq3bVt4pmmLeex3cu1wu+vv76e/vb2moMpkM09PTnD9/HkVRcDgcZDIZgsHgfUM+ukk4mqL8BxW/93u/h2EYmKaJaZotomEYRiubX6/XKRaLbN68uatzeUU0/nDggSYcaw38lneQWg8sNx3csWMH/f39QPfF6c0MxGpWxptdva5evdo2x9uNf69KqtLpNCdOnFgVEbodmtfibgnH8r9rUx+RTqe75gq+mozMnYjV75RwdINIdZPwpFMl/vIzLzI7n0MXBVSPAqJAsVpD8SjUahoV08LrkhBsi0TER92yGEyEkBSRkCShuGS0bJFKrYJWtahbUDVkXLKMJIsUdI3BoB+HKnMtl2Vfbw+iLPD8zDRbI2GiHjffTDaIR6/Xw0DQz6nFBWq5LI8kesjWqzwSS3A+u0jV1piolVEQ2B3poYLOqUyDGPhkBacqYdkiByN9TJXymJgczy61hj0Y66VsaOwLNnQbmXqVqVqmRTYAHgn3sVAv8EhwgLRWZr5eZEHLM13NtfZJOH1MVRsr+E5bYqO/B5/i4FJpjrxRBRqZgCFXiEs3kJLwdWM8wRYYcEXxy25qhoFBnbHKQtu+e/yDnL+e8WgiqviYrLV7VIi2yHbvMMVaCXddw3DCQj1DSdComUnqVrsmZLNrgIkVyqN6HRHGa+1ERkTAZMmhHFvArwTxiX5EFHrVrVTMGjkjS1qvoVsl0vo8un39mNe/jn7Jv6JHh0vwsKh1khlZUHlV8I0d2+8Wze/TyxnQL9dQjY6OomkaZ8+eRdM0zp07h2EYHeLzl6scx7KsrrR0bQrGH+QyI4fD0VWB8B3BFtasbXjg8LCc5wp4oAnH3WC93MZvZTrYbQ3ErdzMl8MwDE6dOkWxWFyVMWITTULQLa1L8/qMj49z+fLlNek1VsKddmhaCc1WxoVCgSeeeKJVq9uNIHo1mhPbtrl06RJTU1OrFqvf6VwfpGzI1/75Al/76kVMUcJSJSRZQLMtNN0Ep4TskBtddzxuMsUSDqdEslAm4HOSKldRZRFRkRhPFdg8GOXk9DwDQS8OweLMfIYRv5P5Qo25Sp0DAz1otsVCqUIi4KVmGmwMhhFFkSPzc2wIBPCpKhm9yreSs0iCwKO9ja5VY/kcYPNIIsFCpcR2d4BZrUoJjYvXMx1uSeaReIK5aokrhQwz5SL7oz0czzY8cEY8IQa8Ps4XFkhrDa8Jj6wgyzalaiMwHvYEGXQHGK+mma0WWiVXj4QSnC4stbtVRYl+lxcBH9l6mclalrFyirDDcZ1sNOAQZQTBaGk5BFug3xliwB0gb1SYMtOMV9JAmn3+Qc6W2jML/Y4wlyrtWRCAiMNFTjfodySQBIWSWUMRRE4UrmBzXaR9vcppgyfGWHW87fOqLTNXnW0RgSYGnIl2smEL+JUAA44Ehq3jFIOUzSoZPcOiViTkjnGh0umX0eMIM1nrdBWPOSJM1zMd23sdPczUL3ZsP+j///DJd14Oejs0F1HulwwCNMTnDoeDYDDIhg0bKJfLZDIZUqkUY2NjqKraVn7VbU+H5TBNsyvGtaVS6YEnHDfi/PnzjI+PU6/XsSwLj8eDz+dDURQOHjzY5QY7D0+p0cNynivhoSUc67F63/Rh8Pv9HDp0qNVibj2PcSssLw27GeFotuV1u90cOnTojh6+ywPhbjxsBEFgcnKSWq22rv4kcHflYJVKhWPHjqGqasc160aZWfPa3izgNwyDkydPUi6XWx4pqx33203DUSxW+bM/fp5UpoIhiVQNAwMLp9uBjY0sK2BbJHMlQmE3U6kcYb9KslBh81CcKwsZNibCnE+mGPGHkB0SyWKZAxv6OJmcpz/g49DGAb4xOU3C62JH1M9LyXmwYUfUz1yxyGy5wpZoGFWRGPL5mS0W6Ql6ydRqHOxpuIYfSyUxLAsJgcP9gyzWK8yUy8xgsyUY4GI+zRZ/BI8sg8QNXhu9TFVyHIj0k6yUQBB4MTND/XomQwRG/UGqhsb+UD8zlQK2bXMsN9WW7dgf7uNUfhpVkBj1RHGICooEx/PtRGCLL8rZYnsmY4c/TlorsNM3iG5ZTFczhBxuXrzBTXzQFebiDeVVsiCgSDamYSEj0euM4JXceGSVq5UZckaFRa1yfV+RhMPXIBvLMOJKdJANgI2+PsZuMAlUTBmxZtMnDyPJMhW7RkbPUTVMrloT1G4wBAzLISZXaKUbV2NM1TqzGFE5yky9UxcSkEIk651tcB2imycC39OxfT3QfPbcb4FuU8MhCEJLuzg0NIRpmi3x+dWrVzl79ix+v79FPvx+f1fPpZslVQ9yS9wb8fWvf52f+qmfYnZ2lnQ6jcPhQNO01vO7Xq93xDfrilfa4j4UeKAJx908qO6GDCx3vb5VaUu3CcfyDMdKmJub48yZM23eDGsZvxudPqrVKoVCAUVROHz48LqndtdKDJqlXX19fWzdurXjvLvh8XErwtEkPw6HY0VSezu83FmL9Tz+6WMTfP7vTlPVdUxJQpREREnE7XSQr9aomgbBkIdSWScQbLS57e0JUKlWiQVdVA2DWNBDxTTwOFUMwUKWBDwOhXStykDQj9ulMJEvsLs3jqKInEousLe3B0mEF+fnkYGNbieL5QKZnI4qiezpjWNYNjNGgaJW51o5R0BxMBIIosgSX0sulRDt9AdAEOh3+7iUT/NoTy9H040MhE9W2R2Os6iVWahWmK9WiDhc1AWtRTaa2Y7LxVSjBW45i1dWkWWljWxs9IQbOhBvL2OlFOcKC+wNJjiebycWo5KvRTaCspt+V4iA7OByeY6MXm6JxPtcQa6U240BFaFRsGTYS9+HgOxhq6eXqq3Rh8RsLcO1Soqg7AZBo2K1i7S3ewe5WL6BQAgSul3mRvSpMYpGiQ3OEUQkqpZORsuRcIaY0Mcb4vdlSetBtZ9JY6JjnKDipXhDJywAtyiTXyEacMsqRb1ze1jxs1DP4ZfiOEQvkuDAFgR2eR7FKXUnGLUsC0EQ7qsMB9w8yy5JUssfZ/PmzdRqtZbz+dRU43vRJB+RSGTd3wPdJhz3G/FbC2zb5ud//ud57LHH+NCHPsTo6Cj/7//9P6anp/mVX/kVfvM3f7O7ZOMVPDR4oAnH3WCtbuPNLkqpVOqm7WSXH6ObhKP54rnxGJZlcenSJaanp9m7dy/xeHxN46+3+LqJZlCvKAqDg4NdqSO9U8Jh2zYTExNcvnyZ7du3MzAwcNNxu6nhWI7bkZ/boRtzvROs18tYqxt87rkjXLw0jyEIKF4VC5tCTcOUwSfKiIpIKOChphsEQm6SmQI9PX4uTi/SH/VwLVNkg9tBoa6Rz1bZ2B/l5HSSzYkIgixyMbnIY6P9lA2d2UKRnoAHCxu/w4EgCVzMZDjQm0CzTC7nM1R1gxGPG1sweTHZKH0a9HqQJIGtoSjnUotY2LwwP40AbA9FCbucPL8whXk9qD0QT3A8PcfOYAxJEKmbBi9lZqlbje+zQ5IIuRxYtsUGT4jpch6/qvKN1PjSNcZmxBfgXHGeAWeAuNNHzdRJaUWuVZaC6l6nj/Fqe6vYHsWLbVns8Q+S1spMV7PYwIxgUDSWBNyyIOCUIKW3Py93+vrI6EW2e4cxbZtFrYAqSBwvjrWREIA+V4Arlfayqx41yNUVyq62eQeYrs0w4OjDKbowsCjoZWxBYLq2SFNjAuCRXCyYnY7iQXxM6ZMdPhoDjn6map0kZNg5yNwKWgy/FqCiFIkrQyiCExAxbBNFkJmtT1OxoGDlgNz1+fjYm3hVxzjrhSbhuN+w2kUpp9PZMvC0bbslPp+dneXixYu43e4WAQkGg3dNFl7JcNwe5XKZS5cu8Y//+I+oqopt24TDYfbs2YOmabz//e/nu7/7u7s6h1dE4w8HHlrCsRZBd7lc5vjx461V+dt1UVorqbkT3Ehq6vU6J06cQNf1u/aKaKbI11NcPz4+zpUrV9i+fXtXBNhN3EkmYnkr3tuVdt2rDMfk5CQXL168JflZDR70DMe1S/N87s9fpFLXsWQJW4aaZSLIIqpXRVIlcpUq3oCL6VQef8BFPldEcEgsFsok4n7m8yWGo14uzWfYNRhHEy1m8wUeHe3jhckZEn4vj432cWRqBpci89hwH+cXU+RqdQ4O9WLaNrplkanVyGoVtkWipCplPB4np1MLOEWJTT4fyXqFiUxjZX6zz89kKcfBWC+TxTyqLPL1hcnW+vmecBxREPArDs5mF4m7POiYLbIx6PGzwRvgWjnDbLXIeCnHsDfAlfISaRBsgVfFh6hZBj2qn6lKgelKnh3BOCltKUOgiCJuRSRV1eh3BomqPmqmQcUsM2Hmmcg3zPMEbHqdXi6X2wP4PcF+zhQnkJHod0bwym4cosylyiRls85ULQc0Sr2G3WEMvf37sc3bx5VKu1BcoJHRyRoGftlLRAliaRaYFnP1DHlDJ28sCea3eYa4upKjuCvWUWIFEHJ5qNRv0GLYNuVqvkP/ISEiCyK9jhFkQcG2BeqWRskoYQg1CnoR9HZTvyHnAJUVTAe/I/gGVLF7Qtz7tf3sWuYlCAKBQIBAIMDIyAi6rpPNZkmn0y0fq2Aw2CIga8kodMv4r6nh+HZAuVxu6WoqlQqhUIjZ2VkGBgaIRqOcPn363kzkIS41eljwQBOOe1lSlUwmOXPmDAMDA2zZsmVVD9d7QTiWr+TncjmOHz9OKBTiwIED6yLOWy/NQtOkLpPJtIL6bDbbtba7q13db/pZAKtqxdutDEdT72BZFufPn2d+fn7NPiRNPMgZDsuy+af/c5zTJ6fQLBsNMAQbh0vFtEwquo7Do5IuVjBlcNoWDreC06mgizaqKmGINqIgEPI5qJomfWE/mXqNmM8NIlzN5tjZG0OURU7PL7K/vxckeGFqhj6/l+2JGEdmZzEsi+Ggn6jXRSZd4Xhyjr19PSQrJQ7Ee1msVpgzNRZ1rZHNCASpWzqZWo1UbY4Nbjenc/P4FAd9shNZEhkrZ6gYDZ8MtyTjVCQEEw5G+liolulxuflGamkl3i870NAxLIsd/h5UQUYQbF5IT7S9pw9EBjieWwruvZLKI6F+SmaNoKwzWSkwWSlwINzH5Wqe5dgXGOBMcSnj4BBkNnsT2LbAkKOX6VqGK+U0qpijx+WibLaXR+32D3KuNN62zS05SOtLGYmQ7COsBAgobgpGEbfkI6OXyegNTcegGCCjt/tZuEUn89o8N6LXEV2RhIy6Bpi+oYuVaEuMukao6mVcph9NM9DQ0WSdmBxkrNqZ9djgGGTOXuzYnlD7mNU69/dLIR4LvKZj+3rifiYcdxvYK4pCPB4nHo+3nLyb5VdXr15FUZQ28flqyny6ZfxXLpcfaA+O5RBFkcOHD3Pq1Ckee+wx9u7dy2//9m/zrne9i49+9KNs376963N4JcPxcOCBJhx3g9USjuXlSbt27SKRWH1f9W4b5zWPYRhGa0V88+bNDA8Pr1vafT0IR6VS4fjx48iy3KbX6KbPx2rGbhK0aDTKjh07VvXC7EaGozluvV7nzJkzreyUy+W663EfxAxHKpnnc58+wkK6jCkJoErYto2kCNQMg4phoLoVbAncfgeGZWFLgACWBOlShQ19IS5NLbB7Qw8z+TwIMNjj4dT0ArsH42hYzBfL9IX8mFgINliCTaZSY1dPDEWR+Mb0NP0+L8OhIGfSC4zPNkzrXj08SKZeY6FcpaqbuF0Khm7xaE8vNcNgvJyjqDe6Rw24PTgViSHBzUS9woxhIitQuW7KF1Qc7IrEmauWmKzmma+W2BWOcTy7pJdwihL7IgnyRp1CXedsbpG404NOvY1sbPVHOZmbZtgdIqx6yOt13JLENzLtGYDt/jinC+0ZhwFnkInKAps8CVySg4JeJVkrkNKLzJfaiclOf4KzpfaAu8fh50q5vWQqIHvYdl3PEZJ1FrQci1qZmmmyqKcome1i7g1ylFmrk1iMuONcrnQSC6ckYBvt95dH8KCKCsOOTYBI3TYoGiXKZoU5bZGieT1TcT1WlZHIWYsdpVciAhWr/bybkMSV7+nXhN6ALHS31v1+JRzrHdgLgoDH48Hj8TA4OIhpmuTzeTKZDOPj4yuKz1c6frdKqiqVyrdNhiMYDPLMM8+0fEV+7ud+jre85S38xV/8BZs3b+aP/uiPuj+JV0TjDwUeWsKxmra4tVqNkydPrrk8qdsaDmg8mK9evUqpVOLAgQOEw+F1Hf9uz6FpNNjb28u2bdvaXgovJ+FoGlbdKUHrZtbg5MmTBAIB9u/fv27ZqZfbh+NO8c0vneNrX75I3baR3CqWZTV8HgTwOBwYpoXX4yRfqSMKEqZtka1WiSpeFipVnF4VFIGFQplN/RFOTCbZFPdxOVvgWirHvpEER6fmcMoSBzb0cia5SFnTOTQ6QLpaZTybY19/DwW9zq54jGytyrnMIjVd55FEAlWR+NpMI7B2yzLbYmEqhsG5cpmJQg5bgqKu0e/xMejzc7Wc5Xy5Ebg6JQmfIpE26ozILgwbvIrK1xeWsgoDHh8TlSxuSWajL4phW7gVma8tLgX4iijid8hcKzcyAW5RYZMvgiKJ+BU318o5rpVzRB0e0nq7h0VQdpLWG9JoBZE4bqL+MLqtMa/lyZWWvDQeCfRzuthOTEY8Ec6X2nUXAjYRxU1AduCSnGiWyYKWJ6C4OVq43PF+3eCJcrHcTlhUUaFgF7kRvWqEscoN2QRbYJtnAwYao85NWEDZqJLV8yScCc6VOjtHbfeMMLaCA/km9xDXap3tccNakLzYmd3odwwyr413bA/JUfb7X92xfb1xvxKObs9LkqQWudi0aRP1er2V/Th9+jS2bbd5fzQXa7pFOEql0rdNhkNRFF7zmqXM3Gte8xqSySQzMzP09vbeo/tNoIP1f9viYTnPTjy0hON2gXQmk+HEiRNEo9E1lyd1u6SqUqlQrVaxbXtVmpK1YK2kYLle42ZGg6Iodu363CwTYVkWFy9eZHZ29rai/zsZ926wsLCAZVkt5/D1DPwflAxHpVTnL//315iZyWEqIqYoNoTHqoQsCKiqzGKhhK2IeFUn+brGQCjAfKHMQCJIqlxlJBEiV68TD3oxsbCBTb1hpvN5Bv0ePH4PZ5OL7OmLY4o2RyZn2RaP4HGpfGOyIe4+ONhLpl7jSiZLj9eDxynT4/RwOZNBFAW+OTeDR5bZFo1SMXW+OXe9w5Si4nM68KsqIdXJTLmIpAjMVxtaChF4LNFHMp8lYxpc02vsCUU5VVgK8D2CSExS8CkyY+UcJ7JJ9oTiHM20d5baE46TrBV4JNhPxdS5WkqjYXA6txQgSwJEHQ6ulJeCeBmRXcEeaqZOSPYyXkkzZZeJCUEuFOfajrHJE+PMDWRDFSVM6tg29DkjBGUvlm3jlmVOFsfaiIUsiHhksZNsuOJcKncKxbd4erlUbs9iCLZIRPHhk53IgoJuWxSNMgWjTFJLkzPaS688oovpevu1goYD+XSt85hu0cWcNtWxXRFkLHcNbvya2zZ1o7N7FsC/Cn0vktD91+nL4TK+GnQrsL8ZHA4Hvb299Pb2Yts2xWKRTCZDMpnk0qVLuFwuwuFw1xb8yuUygUCgK2O/XMhkMi0HdafTSTAYxDCMrviYvIKHEw804bhbDYemaR3blwfKW7duZXBwcM3H6WZJ1eLiIqdOnUJRFEZGRrpCNmBthMMwDM6cOUMul+Oxxx676YP5Xmc4NE3jxIkTaJrGoUOHcLvdaxp3vYJ427a5du0aY2NjyLJ8V/faSrgTH4zmfa9pGtFolEAgcNdzWe3nL5+Z5u///CiVuoEhCliCgOJSqBomlVoNFBGXKiI5Zbw+JzXTJNHjo6Rp+H0OSlqjPMmWYD5XZOdID1cXc4S8TlxOhVLdIO5zNIJfy0bHwrRsNoQCOBwKx2eT7OvtwanKvDAzgw2MhAL43Q5OLyxg5nLs70swXyuzvyfBxXQKzTY5l0kBMOIPEvW6OJtZZCyvI4kCmyNhzudSjHiDRJwuJEnga8mloHdLIMT5UgqvrLLJH0EzdAxb50R5qbNUXHYyVmr8LAKbfBESLi9XK2nmqiXmqg3R8sFIH8dy7eVM+0P9HM9NMegOEVE8VEwdv6LyQqY9qO8V3ZwptH/WKSqUzUqLLPhlF73OIGHFTUorIFFjspJjkhxhxYMpVDuIxU5ff4eeQxZELEHr8NyIq0HS9SwJIYZkS6guJwWjQkj2cKbcWUq107uBy5XOLMagq4cr1c7t/c4YV1fYPujsYbzWmfUYcQ0xUbvUvtEWiNNPTSvhNmIokoIkqwiyiE/1s9d3qGOcbuBhzXDcCoIg4Pf78fv9bNiwAcMwWuJz27Y5evRom/jc6/Xe9bOtUqmsuIj2IELXdT7/+c/z6U9/mnQ6jaZpSJKEw+GgXC7z1FNP8cu//MvdncQrJVUPBR5owgFrNxdbKcOh6zpnzpwhn8/fMlC+m2PcLWzb5urVq1y9epUdO3YwNzfX1VXsOz2Hpm+EoigcOnToli1vu0nIbiQGxWKRY8eO4ff776pkab0yHE0RfTab5bHHHuPYsWNdEaOvZszlTvQ+n69VotDsnx8Oh9e0ynW741umxRf+8iVOHp3AlARsVcbCxpJFaraFLQs4HI2grmaZuL0OJhdz9CUCXJlNMzIQ4dz0AtuGY1zN5uhVBGIRL8fG59g93MP5+RRmxmJzj58rmQK1bIFDGweZyOWZyhU4MNSLiU3A6cQS4JuzM+yMx5AEgQWtwtX5eSTgYF8vBaPOVKHAVKHAI709XMyk2B9LkK1V8ToVvjW/pLk42NuLYVsMewKMF3OEXU6+lVr6fVhWCTldKLLExXyaE5kkB2O9vJRZylC4JBmnLOGzJSzbZMHWyNcqTNUyrU5WAFt8EU4u89aIqh5GPWHqlo5PdjFRzjFBjn6Xn+l6e4mQQ5AwRANr2d9IsAX2BfqpWjpRNcCiVmS+XsCvaIyV567njZbQ5/ZyqdyudehRA1y+Qc8BsMM3wHhlhgFHD27JhWULlM0aTkngWnWZx0cZVFHGtKsdYwQkL5PVzqxEVAlybQWjwJgSZnwFYXlQ9rcJyxUUvHIAt+ABJAYc26gbGvlqAZxQNkvUFJ20XoTmV8EGdNi3+Djnsuda35VutPlu4hXCcXvIskwsFmt1Wzpw4ECr/e74+HhbedZan23lcnlNC1b3E5p/s69+9av89E//NMPDw3zXd31Xo4y1VsMwDBYWFtbcVv+O8ArheCjwwBOOteLGcqfljtyHDx9elzTiehMOXdc5ffo0xWKRxx9/HL/f3yrH6RbuJAvR1Gus1jfiXmU4kskkp0+fZmRkhI0bN97V6tZKvid3imZnLEEQWqSsW+12b0c4qtVqiyA+/vjjrc8VCgXS6TRTU1OcP38en8/XIiA+n++uVwhTczn++g+/TiZbRXQpGKaFYduYEjjcClXdwKBRPrKQLRKKesiWq4TCHsqazlB/mLKms32kh2ShxKZEmMVKhbDXxa7hHs7OLbIlEQZJ4Ph0ko1BLy6/m6+PT+FzqDw+0s+Z+UWKdY09/XEkSSDh8TKZzRPwOShrGgcSCQRR4NhiEvP6dTw80E/F0LFsOLaQZH9vgpcW51BFke2hKD6nyvML060gfls4wqnsPE5RYmswSqVcoSKZHEktkYS9kTgvXS+bCqsuNnhCyBKcyM2hX78nHKKIIFjUl917PkmlZNbY4o3jlBSStSJFrcZ4Jd3WFlcWBFyKyMINPhqbXCHGaots9MTwSE4qpo4qihzJtQfokiAgYnWQjR2+Xi6VO4P/oOIgYxiEZT8h1Y8qKAgIzFbTFAyTgpFq7bvV08e1FQjEVnc/Fyud7W77XSGuVDrF3EHFQ24FM7+A4iJvWigo+JUAbtGDLCh4JAdFs0TVrFEwSxTMCgUzzzZPmAuVZZoOGTBgxDnMVH0FF3Ilzhu2/FuymSwzMzOcP38er9fbMrILBALrGojfjz4clmU1mjrcw5Kq1aD5nPZ6vfj9fgYGBrAsqyU+n5yc5Ny5c/h8vhb5WO3f69uhS1Xz3XDkyBE2bdrEl770pZdxMkLj38OAh+U8V8BDSziW+3DMzMxw7ty5dQlIl2M9CcdyQnTo0KEWIeq2MH01Afby0qCb6TVuNnY3CYdpmly+fJmJiYm7MkBcjrslBvl8nmPHjrX0Gs2XW7fa7d5qzFwux7Fjx4jH4+zYsQPbttF1va0//ujoaEugmUqlmJycbK0QRqNRwuHwTbNFNzv+N794jm/801kMScBQJBAFBEVuBC2qRLmuU6xrBMJudNsiHGtoBXz+hlg8GHCTKVXw+hzUDIO6biApIrphIUgChm2hSCKmALZtEfc4MWWYzhd5pD8BIrwwOUPQ6eDQcD9nUosU6hpuRWZ7IopuW8yXyhR1jfFSHlWU2BaJ4FYVvj67FBwf6E2Qrdc4EEtwKZsBEb4+v/T7PrcXl6KwMxTjYi7NyXSSTR4fM/UlMjDk9VPQaxwI9ZHX61wpZBj1wYs36DZ2hGKcyjd0Fv0OPz5kTEvjWq3EXG3JD2JvsIczhXY9xr5QLyevd6XySA4GXCFCiovZShrDFrhUahAApyQTUjtX5/f4+9va5QK4JZXU9Xa3IiI9apCA4sUrOUjreRTBzbxWZv468dnp6yOltxMFVZDIm53kISx7VyQhfY5op4AcGHQmGK9O4ZN9+GQfDtGJiIhDUMmZaVTBT8ksU65ngSxxJcLVaqqjtMsjuZmpd2o9RATKK8wT4HWR7ybkDxEKhhgdHUXXdTKZDOl0mrNnz2KaJqFQqJX9uNvOc93ylbgbNJ+H90uGo4mVXNlFUSQUChEKhdi4cSOaprXE58v/Xk0CcrMsxrcD4WjGOQMDAyQSCbLZ7F21Yb8b2Hbj38OAh+U8V8IDTzjupqTKMAzOnj1LMplk3759xGKxdZ3bepGBubk5zpw5w4YNG9i0aVMbIVqPFfdb4XZlT6vVa6yEbhIO27aZnp7Gtm2eeOKJdXs53A0xmJ2d5ezZs2zatIkNGza0/R3Xeh/fCrcaszmX5V26DMNYsb3lcoFmc4UwnU5z7do1zp49SyAQaGU/bmXOVato/PXv/z+mxrMYogCSiORQqJomdc3EkgQ8ioIg2oT9XtKFMoGwh/G5LL0JP9eSWfp7g5yZnGfbhhinJufZ0BNCdcocG5/jkdFerqSyZKtVDm0a4Go6x2K5zJZ4EM0wKNY0bBHmikUe6e3BxOJbc3NYlsXueAxTsnlxrhGsj4SCWCLsjMS4mEljYvH8XKNMKOhwsiMaYbJUYKrUEC5vCYc5n0+BDVuCEUKqk6lanmOppeD/0Z4+jqYbpUPDngAJp4+UXmKsmOUajYB2SyDMiVw7YTgY6cPAYG+gj8lynqlqkYORXo7n21f0R0VPB9nY4m10utrtGyRVLzNdzTFu5UirBdJauwB6u6+noytVr8PPxdIS+ZEQ6HOGGXAFKVs1XKKXZC3HZDWPW6vilgXyRqVtjI3unhUzIdt8/VxYQaORcAZWzGI4RZGA5Mcr+xrmejbULQNRsLBxkNarpPWlMqwRV4zZemebXZ/sImN0fi8GnXGuraDp2OAaZrLWqQGJKnEe8T3atk1RFHp6eujp6cG2bUqlEul0mvn5+TYxcyQSWZOT9v2a4YD7j3CsRsiuqiqJRIJEItH6e2UyGRYWFrh8+TJOp7PN+bzp/bFebXEzmQw//dM/zd/+7d8iiiLf//3fz8c+9rGbvq8ymQzvfe97+cIXvsDk5CSxWIw3vvGNvO9972t79650j3zmM5/hrW99a+vn5t/r3/27f8eVK1f4wAc+wI/92I8hyzIejwe3243D4ehqiWALr5RUPRR44AnHWmEYBuVyuWV6sx6eBzdCkqSWmdtaHsbNjkozMzM3XaG/FxmOm5GCpvO6qqprKkPrFuEol8tkMhlUVeXQoUOrMohaLdYyZ9u2uXz5MpOTkzcltveKcNxsLrZtY5omtm2jaRqiKLb+LcfyFcJNmzZRrVZbK7rXrl1DURSi0Wir+1fz+JOX5vibT71AsaKDImPLYAgCggCCQ0QVZQRZIJkt4gm6KJYqlC0Tj2UiOkREUcDjc2DZNpuHIswXyuwZSXA+uciGaIjYRg9Hx2fZORCnL+rjG9emGQj62DXQw4nZeSzb5tDoAIV6nYVihYDLyVylxJ6eOMliCV20OLeYQhYEdvXEKZkalzONFfytkTAXMmm2h6OIgoBhm3xrYbZV7tTr8SBIsDvcw1Qxz1guy+ZoiJnKUoeo3ZE42XqVbQ4/GVNnopjDp6qMFZfcsEOqk6xexrQthtwBYg4voihwOj9H3VoqhxrxBjuIRa/Tx4JZIYCTmOTCMiwKZp1UpUDWbjfo2+oPc7rQnkHZ7O3sSiUi0O8KELe8CIjk9QqztRwCIkdyVzrem5u9cc7d4M8hCwJ1q1OLEVG8XK10kpBeMch8PcOAI4FTcgECmmXgFh1cqlzDsE1YRpS2eAa4Vu3Ui4y6+pmud2ZD+hxxJlboWOWXfCvuL9hQMLId2wFeG3kKUbj5c10QBHw+Hz6fr0PMfPHiRTRNIxgMtrIfbrf7tmTiftJKNNF8/9yP87qTOS3/ew0PD2MYBrlcjkwmw9jYGL/5m79JNpvlNa95DalUal00HD/0Qz/E3NwcX/ziF9F1naeffpp3vOMdPPfccyvuPzs7y+zsLL/1W7/Fjh07mJiY4Cd/8ieZnZ3lL//yL9v2/aM/+iOeeuqp1s/BYHDFMSuVCpVKhY9//OP8wR/8AT09PViWhcPhIJlM8rGPfayNqLyCV7BWPJSEY3FxkXPnzgHw+OOPd+1B2VxdWYspUr1e58SJE7f1AJEkCV3X73quN8PNMiiLi4ucPHnyjpzXVxp7vQlHc15Op5N4PL6uZAPunBgYhsHJkycpl8u3zLTcC8JhGAanT5+mUCi0zcW27ZaeqUmSl29rliXcWJ4A4HK56O/vp7+/H9M0yeVypNNpLl++TLVa5erVq3zlr17iyulFRKcDUxIxBBAkCcWtUq5rVDUD2aUgGAKyW0F1yOgiRGQHpgBet4olNRaGFIdE1TBQVYmaaeB3OREUgapuMBD2YwgWparO7r44umBxbCbJaNCHUxF5fqIRmG6JhXE7VbSCxYm5JDv6YswWixzsTZCp1pipFFmoNFbpRwJ+Ak4HvrrK2fQigz4/Wb2KblmEnS42B0Kk9SoXM0tu2vsTPbyUngMbNgXCJFxuLhczLNSWAuWD8aVsBzQ0GrvCMSqmjoDERKnAfLVCzO1sIxsuSUbHQLcb3xuf7GDYFcKjysxUBWaqebJGg2A8EkhwqrhMjA2Mqv4OsuEQZSpWlajqJ6b6kASJglEjpDg5lmsPwiVBwBKMDrIx5ApzodQZyO/0DnCuPN6xvdcZIGtI+CQPsiBj2jbpcg5LFDoyFRICcYe/QTaWzwWB4gqlTgKg2Su3r3WIK6949zkjXKt1EouYGSVjdGZJokqc/b7HVhzrZmiKmWOxWJuTdjqdZmxsDFVVW9mPUCi0Yqni/Ug4mnO63zIvd9uqV5ZlotEo0WgUgA9/+MP83d/9Hf/yL//C3NwcP/RDP8Qb3vAGnnzySV7/+tffkSkwwPnz5/n85z/Piy++yMGDBwH4nd/5Hd7whjfwW7/1W/T19XV8ZteuXfzVX/1V6+eNGzfyG7/xG/z7f//vMQyj7Z4JBoO3nFPz+vz6r/86n/3sZ3nXu97F7t27qVar1Ot1dF1nYWGBHTt23NF5rQmvaDgeCjzwhONOHnK2bXPlyhXGx8cZHR3l2rVrXTcrgsYX+04C32w2y4kTJwiHw7f1ALnXJVXLu2Tt3LlzxYfiarGehGN5O+OdO3eSy+W60r3rTjQczY5dDofjtpmWbovGa7Uax44dQ5KklgaoSSyWiz6b95plWa2MR/P/m7hZ9kOSpFZpFcBXvvRVvvYX58mka9RMA1F3oLic2JKKJEhYlokpgsvnwBIARUTSbcqajm5bVHWDesXA6VG5PJNi03CMExNJNvc1dBaXp+Z5fMsAE9k8i8Uy+zYkKNY1koUiHreCJIoMhQI4ZIGzmRwbIyHiPg/H5pNUswYCcHhkgFy9Rq5a45Jh4vc6SVer7InFUSSRa8UcV5ONoDbsdGKJFqOBELppcSWfIW/UuZJfClQficfJa3UORPqYLOaZL5WoWlob2djiDfBSepaIw8WwJ4RmGrhVuc0AEGBHKNJRXrUrFKNqGiQcPtJahclyDodP4luZ9mzBDn+8g2x4JIUCDSLltCTCggsVmajHx6XaAkWjTvK6HiSkuMhouY57are/nzMrGP+pEh2i8pDsYao2T68awSd7kASJumXglBTOF8cxsYAlwrBBCjNrdZrtbfUOdXh0NLYPcmWFDlSb3YOM1zq3Dzn7mKp1ZkOCsp/Jeuf+qq1iCRY9yiCyqCIiAwKmbfGvQt95y+zG7bCSk3aTrI+NjVGtVgkEAi0C0mzlej8TjvsN66132bp1K1u3buWZZ56hv7+f//E//gdjY2N84hOf4Omnn2b37t38wA/8AO9+97tXNd4LL7xAMBhskQ2A173udYiiyJEjR3jTm960qnHy+Tx+v78jTvipn/opfvzHf5zR0VF+8id/kqeffrotXmq+G55//nl+4id+ovutb28BwW78exjwsJznSnjgCcdqoWkaJ0+epFqt8sQTTyBJEleuXMG27a6tzDRXhFdLCGzbZnJykkuXLq3aAbubrWWhndA0V8jz+XyrS9Z6jX03uLHFbCAQoFAodOW6rFbDkU6nOXHixB117OpGhgNWFqo3icTy+usbtUHNOTcJiWmarc/c+Lkbsx/nj17jXz5zFlF1449G8DkkitUaVcNEr1cR7DpWTcTpc1KpGVRMk0jYSzJXYnQozMWZNJuHopyfXWQ07CES9bJYqHBgcx/fujrL5kSYPSMJnr86zWgsxOa+CEfGZ5EleHR0kLF0lmSxxP7BBIVKhQGvG8OyOLmwgGXZPNKbQFEEvj7VCNSdssTGeBgBKGka13I5/G6VdK2KYDc0Gl6ng3PpFNPFRlC+P9HDsVQSgBF/gH6vj4uFNAvVyvXrDzsjEc4uM+QbUJy4ZYUNnhDjpRzp2hw7Q1GOptuzDo9EejiRm0NCYMQbJqA4cckyRzKTmPbSfT3qDbe1xYVG96pFbckUT7AFBtwBRjxhCkYNR73EXK1Aya6SEJxMFacahG8ZBl0Bzpfax42oXq5U2gkQwG7/AJfKM/SqYfzXiUXNMvBIEmdLk2T0HJBr3C/AkDt0nWwsQRVlCpRuHBqnoDJX68wwOESFeW2hY7ssiORvUgJl03jWqCh4ZB8u0YUqqvhlNxUrimGb1C2NilmjZJaISXFm7WmotWdRIkqEPf69Kx5jrbiRrC8vVZyYmGg1atA0rWueS2vF/Shkh+6ZETazU69+9av50R/9Ud73vveRSqX40pe+RCqVuv0A15FMJjvKpGVZJhwOk0wmVzVGKpXife97H+94xzvatv/ar/0a3/Vd34Xb7eYLX/gC/+k//SdKpRL/+T//59Y+zWvzAz/wA1SrVSqVysvX6vcVDcdDgYeCcORyOU6cOEEgEODw4cPIsoymaa2gq5sPy9VqLEzT5OzZs6TTaQ4ePLjqbhH3QsPR1LscP34ch8Oxbm2D1yPDUa1WOX78eGvlvilwEwShK9dlNZmIyclJLl68yPbt2xkYGFj1uN0gHPl8nsuXL7cJ1ZfrNeD2tdfN3ze/J82MR5OINK9Hk7B86TNHOP3iOJol4HLKaKKAIIo4fB4E20J0yBTKVcpaHdHSyVfreDwKhUqZ3riXim7QH/dTMXTCPjc128SlKoiySLpcZTgaQFBF8tU6u/tiVDG5spBh/1AvFUvnG+NTOCSJJ0b6uZbNkyyWiLscuF0KW3xhLqczCBIcmZ1FEgR2xGIIssDxZBIbUKVGZiSv1TnY08tssYAsSxydXwq2DyYaRoAHY73MlotUdZOTmQUK+pJe4kA8wYn0HNsCUTyySrJSwrR0ThSWgpKo08VMNd/2Dhr1BlFFiZ3+BNdKGS4XMvQ4PdSot5ENpyRTt7VWy94mtgaiVAyNIVeEiqEzVc3hkZx8Ld3e1lUCJMXmxtt5wHZ1kA2AhNPLxXKBsOwlovpwiI1nQEYrolsik9U8zYzFiDvK1RW0FTt8A1wsd2oltnn6uFDpzDJs8vSuKCzf7Onj0gptc7e4h8gaOQYcAyiCAxCxsHGLKgv6IhJeSlaNklYACoTkABO1KUzanxUiAiWr0DE+wP8X+S4kobsB9vJSxeWNGtLpNJlMhlKp1Mp++P3+l7WcaS0lw/cC3ZpXtVrFsix8Pl9rWzQabekcfvEXf5EPfvCDtxzj/Pnzdz2PQqHA93zP97Bjxw7+23/7b22/e8973tP6/0ceeYRyucyHP/zhNsLRRE9PD+9+97splUq86U1vwufztbJvLpfr3hDcV0qqHgp8WxOOW2UMlpc7vdyEo1KptAXNd/IFvxclVYVCgRdeeIHBwUE2b968bg/xu13Vz2QynDhxgp6eHrZv397R/rAbJVW3GteyLM6fP8/8/PwdkUZY/5KqZseVSqXCvn37WitpyzMba627vln2I53M8bnf+wqZVBlLVjBECUMUcbpVKppB3bAQFRGnJOD0OfE4PZRqGn1hP9MLOYJ+gYmFLH6PTA0BzbQY6A1yemqRvaMJctUa46kc+zf2ka1Umc8XGeoJ4lVUPA6VsqUzky+yvz+BJIu8MNkImof9HiRZ4FquwNVsnv39CSbyOQ709nItk0OQBU4sNFbRVUnk8f4+FqoVUuUyi+Uyj/T28tJCg2z0uD1sCoYa3aJKBaaKBVyyTNTrplBqkA2nKLE31oNmG7hllQu5Rjep/bEExzJLpEUSBMJOJ7OVArsDPSiiRLJSwhZsvrUs4yECYZeDS8UlETrAjkCME/kZQoqbfpcfRZBxSBJHs5NtJMQtKQ3Duhuw3R3h4g1ZAqcoYyiADrItErCduFDwKw6KtToqThbqFRbqjSzOvmA/07VM2xgCNoLQ+UxyigrJeucKcEByM17rJDhB2cvVSjtp8UpuQrIP04aNro3YNmiWSdmsUjXrTFRTFM0yy0u1AIacERa1Tp+OuCPIWDXTsX3UNcx4rZPQBOUAjwce79jeTSxv1KBpGoqi4PV6SafTTE83rk+TfHTbeHAl3K8lVd16t5fLjfLIm+nxfv7nf54f/dEfveUYo6OjJBIJFhbav3+GYZDJZG6rBykWizz11FP4fD7+z//5P7ct2X788cd53/veR71eb90fzeqOv/7rv0YURX7v936Pj33sY8iyjGVZyLJMLpfj7NmzbN++/Zbj3zVeyXA8FHjgCcfNAqZmy9tMJrNi8Nd8QHYzWIfbE47FxUVOnTq16tKblcbvZmvZbDZLJpNhz5499Pb2ruv4d0OWmlmErVu3MjQ0tOLY3SqpWmlcTdPaRP532vVsPTMcpmly+vRpqtUqAwMDbWSjmZlYL5Fn8349/fVLfOmzL6JZNpaiogkWhgyaICBhIagiLkXGwCZVqhAIe5iazxGJeZlNFYhEvSRzZTaP9HByPMloIsB4tsDkfJrRqJsXr80yGPaxtT/KN8emCThVdg73cGZ2Ac002TPUg27Z1HUDW4Rjs3Ps7Ytj2jbThQKZSh3BhgMDCWqWSbZaJ1VJsn8gwdH5OUYDAYJOF5Is8LWZJT3EI4kEV3IZDsQTFOt1dNviWHqOass01GZjOMS1QpZ9kR4s26ak1zmTW6BiLDVzeCS6jGzYsMEbZNjnZ65aomZYnMo2Ao9HY728lG0Pvg9EezmWW9rW6/Qx7AlRszR6VD/JWpFMvYpfdqBIQkfGY1sg2lF21ev0c1VfCv59kpOEI0Dc6SFv1BAFB8laniR1FEEnZOtktfZ2t32OAOeKnVmMXf4BLpQ7BeRbvQnOlcY7tg97Ily4Lix3oBBSg7glF0HZTcWqUrcMSkaVnFEio9fpc/Rwttg5zi7f8IpZj43ufqZW6EwVkv2MV1foTAUUzVzHdoDXRv41ivjyvTZt20ZV1Vabatu2Wyad98J4cCU8bCVV5XIZSZJuujDYbAxwOxw6dIhcLsdLL73EgQMHAPjnf/5nLMtqmbCuhEKhwJNPPonD4eBv/uZvVrVAeeLECUKhUBsZXd4W9yd+4icIBoNomka9Xqder6NpGvl8fsX36yt4BWvBA084VkKpVOLEiROtdq0rrfgIgtDhNt4N3Ixw2LbN2NgY165duyvxdbdKqpZ3NAoGg+tONmBtpGB5FuHAgQOEw+F1G3s1WIkYFItFjh07ht/vZ//+/bcU+d8M65WRWe5iHovFWqVvy7UX69lRxjAM/vZ//TOXTs9iSTKCS6FSqVKs1/CGAriCbgrlOrpt45AVijUN2SWjmSb+oBtJEgmE3AiSSG/cR1U3GOkNUzJ0NsTDCLLAQqHEpoiXsqExNl9me8xPwbY4Mj7DUMhP2O/m2HTDDXz/UAJbBL/TyWS2gMMpUzMNtgV8BHw+Xpyfw7Qa1/ngYC8mFhv8Aa7l8uzvc/JiskEKHKLInngPFdOgomkcm08SdDhRVKFFNgKqgz2xOOl6lbppcjI1j0uWiXhcbWRj2BtgvJxlT6iHWqXCgqHhVhS+Oj/Rtti1MxTl2A1kY9QbIqWVeSTYh27ZTFcKFDWdy/YimRsIwIgvxOn8DT4cviinbiAbQdnFqDdErqJQ03WKoklKK+GXdV7IXOsQf+/293K62Bmwo2lYYvu+Lklhrt6ZSYgoXi6Xp8EWCCoe/LIXp+TEiUzNrBOVE6RqefLo5I0svQ6bq5UZrBu0HmHZx1ilk+Q4RZWZeqe+RAC0FdryAsQdIcaqnXqPUdcwEyuIzr2Sl1cFD6841r3CjdmEG006u208uBLu15KqbhGhcrmM2+2+63Pevn07Tz31FG9/+9t59tln0XWdd77znbz1rW9txQMzMzO89rWv5U/+5E947LHHKBQKvP71r6dSqfCnf/qnFAoFCoVG6V8sFkOSJP72b/+W+fl5nnjiCZxOJ1/84hf5zd/8Tf7Lf/kvbcdvZjg+8pGP8D//5/9kz549d3U+d4VXMhwPBb7tCEcymeT06dMMDQ3dtvxnudt4t7ASIdB1nVOnTrVapS6vBb1TdKOkqlQqcfz4cZxOJ6Ojo6TTnQHEeqBJClYr3G+2CjZN87ZZhG50fYJOIrOwsMCpU6cYHh7uMGW8E6xHhqMpDo9EIuzatYtz5861SMbyXvnrRTbSs1n+8ne+QC5XRVBVDBvK1SoVS8MbDiI6VTTTxhTB43ehWya+sJt8uYpTVcktlujz+ZmczrFtJMZkqoDbpeD2qEwvpHlkUx+lukahphFOhPBIItVUlqxpgGUy6FYBg2MzSXq8HjbGgxydTVI3TLyqyqaeEDYCmXKVimFwdWEe07LZEgkT97o5kpxFu35ddvfEOL4wz5ZQGI+iUtY1zmQWqVwnF7IoEPW5WKiU2R9LUDUMFEnk68nJtvfH5nCYU5lGeVa/20ef20fF0pjJFzh13YQuJDuYrRbaPhdWnSTrjW39Lj89Ti+2bZM2ykyV8owvKxF6JNzTch1vYnegp4NsqKKEjcUWbw8uSaVuGszVCgx5AryQHm/bV8DGIYkdZKPH4eNiub3bFcAufx8Xyp2Bf5/tZtLI4JfchBQfLsmJgIBLkpmtZUhZRebrNebrNQB2eBNcrnSWU4VUF2mj87mTcAa5VO5shbvJ03uT7MYAk7XOLMatshtls7P8DOBfh1+DKt69du1ucLvypW4bD65lTi8XukWESqXSuhnJfvrTn+ad73wnr33ta1vGfx//+Mdbv9d1nYsXL1K53qb72LFjHDlyBIBNmza1jXXt2jU2bNiAoih88pOf5Od+7uewbZtNmzbx27/927z97W9v27/5HpibmyOXy63L+awZrxCOhwIPPOFofmmWm+Tt2bOHnp6e236224LrlY5RLBY5fvw4Ho9nXUzp1rukqhlADw4OsmXLFmZnZ7t2jZovg9UQjnw+z/HjxwmFQuzateu2L8puZzhs2+batWuMjY2xe/fuO+7BvtK4dzPfJtHeuHEjIyMjrc5RN5KN9cKJr5zlnz/7LTRbwBAVRFmiVC1R0S3c/gCiS0F1KpTrGt6gm2S6iDvgpFKqots2xaoGDpH5XIm+RICT4/Ps3BDn1PQCvprKzg1xXrw6Q9DjYOtglFPTC6iyxPaBKOlyjWvpLJt7w5TrGqN+D5Zt8vx1zcbWSAhRkTg+2wjwe70uyrbJrniMuVIJUYQX5mYwrl/vLZEwDlkm6nJzKZMl7HQiykKLbARUB3t6YizWKpQ0jWMLSQZ8PjKVatu742BPLyWjzoFILzPlItOlIhGXq61LFdiEnQ7Gljlp9zg8bA1FKOp1BDvPdLnIdLnIwViCqUJ7cL0nFO8gG37ZwWwtj0OQGHSH8ClONMvEI8u8mG3PTARkJ5OVzkB+b7Cf0yuUR8UcLjKlXNs2hygzr2VxCDIxhx+v5EYWJERbYFHLIugqabNOWmtoWvqUAAtmtuM9O+KKrUg2hl1RrqyQxYipAcZWcCx3S06mVtCACEDdWtmP42bZjRHXEJO1cQRbxIGKjIrX4cMpOvnO0HesONa9xJ04jd/KePDChQvoun7HxoM3m9P9WlK13j5M0MhwrIfLODS0Nzcz+QPYsGFD20LUv/pX/+q2C1NPPfVUm+Hf7fD000/zx3/8x/T19bWy4pIktf7dE7wiGn8o8MATDmiUkTRXvg8fPrzq1m73mnDMzs5y9uxZRkZG2Lhx47qsNK/XOSwv8dq1a1erhKqbGpHlXY9uFQw3r9vyTku3QzdF46ZpcurUqbY2vHeLtWY4lvuiLCfaTRI3N9cITmOxGIFA4K7vOdMw+b+f/CKXz0xjyQqoKpYAqXwe2aUSCoewJRFkgcVcGUsVEGwFQ7LxeBSKukYs7GWhWCYa9FA1DRRFYttwjKupLFv6I2i2yfhijn3DcRYqVV4an2Nnf4yyZXBkfBZBhEObBpgrlJnMFdnVH2OiUGBXPEqyUKRUrzKda6ygb/B7URSR+UKN1FyS4WCAiVIBhySxJxbDRmCsmOViriEcdkgiAbeThUqJR2I91EwTtyrz1dmlQNcjK9iiTcXQ8SkqG/1hvKrCsfQc5WWlVAfjvbyUac8ObHP5malX2BvqQRJEZitFBjw+vrbQvtq+IxjleLb9s0HFyUw1d/0PD/2uAFGHB6+iMFXNk9PrXCo1yMQGd5CLpRXKhXyhDuM/v+xkotop5t7h6+FiaRaf5CTi8OORnICAV5K5UpmnYliMGzmaLW93BXqZ01cw4jM7jQIBJHHl54pDWvlZEFV8ZPXOc9ro7uHiCtmNTe5BJmrjAIi2iFv24BJduEUnli0y6tyMjYBlW+i2iWYb1E0QbB81q04VE6iSqlZ5Q+y7cEkvfzvau8kmrIfx4Eq4X0uqTNPsSoelZvvY+83ocC2wbZujR4/yN3/zNxw5cqSld212p3K73bzrXe/q+jxe8eG4PT75yU/y4Q9/mGQyyd69e/md3/kdHnvs5uajn/3sZ3nPe97D+Pg4mzdv5oMf/CBveMMbWr+3bZv3vve9/P7v/z65XI5XvepV/O7v/i6bN29e2wRXgQeecOTzeb75zW8Si8XYsWPHHTHye6XhMAyD8+fPMzs7y759+1YlKFst1qOkyjAMTp06RbFY7Cjx6lamoDk2cNPxbdvm4sWLTE9P3/F169a8dV2nXq9TrVbb2vDeLdZCkJb7jyz3RWmKwzds2IDf7295ggBEIpGWe+6drv6l57L85W//A7lcHVt1YIkSNd2gqFdx+N0IskqxpqG4VRRRwul3IDskTGxCQTc100JSREzBplitE4/5mJ0vkXD5sASo6yaCLKAiI8ki85UqAaeD0WiQrFYnWSixtz+OJcE3rjZWwHf2RpFkibpucnYxxbbeGOOZHHt7YhSqNXJGnXRFAyCkKvgcEn5XiIvpNJczWbxulXy9sRLvEEUe6+8jU6tRN0yOL8yzPRrheGp5T3ybXbEopm3jkx1cyWWYLOSxZbuNbIz4g5zOXe98JYhs9IeJOFxcyS5QMnROXi+7GvT6OZNv95nwySqLWqktSPdKKrtDcaqmQcXQmKrkmaoU8CtOvpFuJyaSALJIZ7tcX7SDbACM+sKcLkzjk5zEHX7ckgMBAd3WcIkeMnqNjN4gMjHVQ8WqoFntz81Rd5QLK7TS3epNcKXSWZLVb3uZqHb6aGxQI4xXO7UYfY4wVyqd2Y2Q5KdoVBh09COLCpIgYdtgWBamZeMTeyiZVcpmjZJZA2rs9A1xfoVWuyPOfiZqncdQBJnXRV7+7AasX/nSWo0Huzmn9Ua3Mi/rWVL1ckPTNLxeL29/+9tZXFxkamqKS5cuUa/XqVQqOJ3Oe0I4XimpujX+/M//nGeeeYZnn32Wxx9/nI9+9KM8+eSTXLx4scPLBRpmjm9729t4//vfz/d+7/fy3HPP8cY3vpFjx46xa9cuAD70oQ/x8Y9/nE996lOMjIzwnve8hyeffJJz5851rRXyA084PB4P27Zto7e3945XHO6FhsO2baanp1EUhUOHDq27sU4zA7FWA8OmXsPlcrUcqJejm213b0U4dF1vGTUeOnTojlPY3SAc+XyeM2fOIAgCjz322Lq+ZO80w1Gv1zl27BhAG/FZLg6/sZtNPp8nlUoxMTHB2bNnCQQCLfJxq4AC4OqpCf7vs1+mboCtKliSTM3SydXLOH0+XH4vumXjdUjUNIOaZWFLAnPpIrG4l/G5HIN9QRaLFSzJxutzcuLqHLtGE5yZnkcWBbYOxzg1NY9LldncH2U8lWMinSce8RJ1OCnVNUzB5vTsIlvjYUIeJ0dnk2hm4+98aGSAiqFjWjaX01miQQ/pikbEoRJzqOQsg9OpRuAsCxDxuZksl9gZiSKLIqoi8dXppYCz1+NhqlzAtG2GvAHiLjeqLPH8/FK5jyhA1OviYn6pTMkrK/gdKhFXDxVd52ohy1SxQFqrsGDUWvspoogkCtSt9u/XxmCQhVqZvYFeRARS9Qphh4uvL7ZnQdySQkrvNMvbF+zjRL69JEkWRKpWg1ipgkTCGUA1BJy2SEU38IkeclqVnNbIdOwPDXC+2Gk+1uv0cb7U6U8hiJ33rgiUzU7BtgjgBPQbfmHbGHaDHCrI+BUvbtGJQ1QJKC4Csh/DNqmZGkWzRtEoE3dGVyQPm939jK1AUAKSh/Fq53YAm5UXn14VehS/fH8EmN0K7ldrPNgsv1q+WHE/l1R141qVy+VvG8LhcDj40z/905d7Gq/gNmhqcJ5++mkAnn32Wf7+7/+eP/zDP+QXf/EXO/b/2Mc+xlNPPdUii+973/v44he/yCc+8QmeffZZbNvmox/9KO9+97v5vu/7PgD+5E/+hJ6eHj73uc+1PGXWGw884VAU5b7r8NRENptlYWEBp9PZcjdfbywvS7rT8efn59sE9isFnN0sqVquM1iO/5+9Pw+SbL+re9HPnnOex5qnnsfTfaY+j4cJS1ccJOOAUGDzjC1Q2JKREbYEfoAJsAh0QdgIhxCXB8G1McZI2AIjQAIdIySsK1ln6O6q6ql6quqa55znae/9/sjOqsrKXd3V3VV9mtO9IhRHvSvzlzuzsvb+rt/6ru8qFAqMjo5u+FwedurTXp53q62rt7eXhYWFPb+RPQjhyOVyjI6OtvlZWr6SnczhgiDg8/nw+XyMjIxQqVRIJBIkEgmmp6dRFIVgMEg4HCYQCLR9l87/z0v8zRfeQhdFBLsdU5LIl0rka1W8YT82l4NsoYKgiQi6yXqhTCzuIZEpEYt7SRXKHBgMM5/IMtQdYC6VJR7w4PfZmVhc5UhvmFSlwujMEif7YyznC7wxtUDAaeNwX5gri2uU63VO98fQTZNun5uGYTC6vIppmpyIhdFUiW/PNYtsWRQYiQWRRZHDwSBTqRQOVWK53Cx+BeBUOEiuUkVD4FoiwUGPh/HkZjuQXZLo8rrBhKVCgblcDpeqMppqL8Kfi8a4kFjCragMuf1IggiCyViy/XGHAkEup9uPnQpGuZhaQkSgz+kjoNlxyQpXs6uka2WWi00y4VNs5C0mLR3xhRnLtKsKEc3JzfymYhJSnUQ0NyHNQapeoqEIrFTy3ClkEDDp0ZwsF9pJS0BxcKvQqTIMO0OWgYA7GciPeXqYKHROtzrm7mGtmqbfHkMTFEREqvU6ZrlKplJGEGwUhAaFRgEo0GsPccuCPLhEO9PlzvMBqBgVy+O9jpClubxXi7FQ7VRiBAS+O/R3LNd6O/C41ISdggdnZ2eZmJjA7XZvEJBGo/FQ1+j9xn6Oxd0rD8eTgqWlJe7caf5deL1eYrEYwWDwiVSu3iloTRdrQdM0y46JWq3GxYsX+Tf/5t9sHBNFkXe/+928/vrrlmu//vrr/MRP/ETbse/+7u/mT//0T4HmgIGVlRXe/e53b/zc6/Xy0ksv8frrrz8jHPuB/SIcWwMHfT4fNptt33aAtuaJ7PY1TNNkcnKSmZmZ+xqe97Olymr9vZz6tBfnbZomt2/fZm5ujtOnT2O325mft94hfRTs9nxXV1e5fPkyQ0NDDA0NWSaHt4jcvWCz2ejp6aGnpwfDMEin06yvr3Pz5k2q1Sp+v59QKMTYX0xw4+IcaBqColAHCpUCFXQ8IR+iplGuN6gJBl6Xg0q9TiTmoVJrEAg5KFZruN3Nx8iyiCHeVZSVZsuPw6aRqpRx2zT6w34Wss0JQc8PdrFaKvLm9CIem8pLwz1cX02QKVcYDPqoYHA0FuZOMoMsS5xfbBbz3W4XXX43E4kk+VoNMDkU9HIjm6Xb5SLmciPLIm8sbxaqfW4X0+Xm63arKi5FRVBkLqxsEoSow8l8MYvRIoUmnI5EEYCD7iB3cmkuJ9Y4E4l1kpJQlLH0ZgEvI3AiEENA4Ignwkwhw3Q+Q6ZaAVEnuyWtHKDf4+FKtn3NA+4g41vIhohAt93LgNNHUa9RaNRYLudZrZQBkaliguq2NqhDtgCT9U4Dea/Ty9V8eyEvYIKFAiALIoltvg0FiaDiQkDgqLP/bnuWQVmvUWxUWaxkSNWLrNY2Dd0iEBRtpAWLEbbVapMlbsOgM2Kpbow4upixSDl3SjZmK53HoTnRywpHpGHCatDyZ28H3o72pa3Bg9BUV1vqx8LCArquY7fbcTqdb0vw4E54Rjh2h/Pnz/PJT36SCxcukM/nMQyDw4cP87M/+7O8//3vfyznIPAUeTju/re3t7ft+Cc+8YmOxHiARCKBrusdg5Ci0Sg3btywfI2VlRXLx6/cvae1/nuvx+wH/tYTjkcxbsmyvOcejlZffStwMJVKUSh0tj3sFbYqHLvBg47k3W8VaOto3JZpfS+mPu2FabzRaHDp0qWNz8rlclEsFh97gjmw41SsvQjzE0Vxo52iZSZdXV7ljz79ZZZm0kgOO5JmoHlEivUqVQNsLg+ipiKpIg3dwBdwspLKEY56uT27xsBgmImZVQ4OR5iYW6Mv5kMXBS5NL3PmUA8Ti2sIwKH+CJMrSXLlGiG/k7BdYS6ZZbVUpKbrnOmNgSzw+kyzUDwcDSKrEjMr68xncjzXG+Pa6jqn41Hy1Rpuh8qbS5vF/fPdMYqVCt02O4v5AkGngwvLmz8P2GwEXA6Cbicz2QyLlQrHHA6u5jIbj1FEAU0RyFcMTgYjyIJIrl5lKpciX69tPK7X7eZatt2X0O1wMZVPcsgTxK1orOWy5IwGC6Us69X2HI1et5urmXY/x0m/xbhbQcStapxSusAUyNQrLJayeGQb30zMdPx+I5qTRK191KtbUlnRO1ujhpxBruU7VYOTnm4mCneJtgk+1YlfcRLTPJSMKgHFT6lRI10vkqmXOOTycSnbqW6c9vZwtdA5jvawq5tbFhOo+mxBluudXg+HoO6obrTasrZj0BG1VDdiasjSuwHwinrG8vjbhSfBL6FpWlurZssf9nYFD+6E/czheKe0VM3MzPCTP/mT6LrOf/2v/5Wenh4ymQy/+7u/y0c+8hEkSeL7vu/79v9EnsIpVfPz8xu+S+CJIer7ib/1hONRsNfFdKlUYmxsDFmWNwIHs9nsvhbsgiDs2mfRalVyOBy7Hsn7OBSOVkp3LpdrMz8/6rqPct6lUonR0VE0TWv7rB5noGALhmFw9epVkslk21Ss/UgOFwQBvWry1//3GzTKGv54F7ooUKzVSOTzSDYZSVMRNAFdMFlPFZrZGtkSgipTLNfwhl2UqjWGBkKsZQqcGI4xPrPCge4Qbo/GhakFTgzcbZ26Pc9AxI/DoXBtYQ2nTeVQT4hyvcH1pXXifjdXllY53R3DME3mCjlSyeYu+Onu5u6MIkmML61ypi/OheVlJEHgSDiEz6a1jb8d9vu4nkogACP+AF5VI1UvM7a2WeQfC4W5ltocYxvRbHTZNRKVMtWGzuXEGpIAA15vG9nQJAlEqOo6EgJDHj8+RaMm6CQyJW5mUxuPPeoJMFFoVxZOB6NcznSOu12pZum3+/FrDjAhVS0Ttju4mGzfqbdLMivVTgJxzBNhwsKLcdAb4tI2n4eAiSA2kzgEUyCkuvApDhySiiIKjDi7ydUrJGoF1qsVyg2TlWqOot6uyLglG1Olzte0iQpzlU7yIAKZeue5AzgUudPrAURMJwtGpzozZI8xV+lsjbKJKgsWxwE8sp2ExWv00UWXcv/x6o8Tpmm+7YRjK1oBun6/n97eXmq12sbo3ccVPLgT9kvhKBQKG16Xv61o3TOuXLnCysoKFy9ebNt8fPHFF7Hb7fzu7/7uYyIcPHWmcY/Hs6taJxQKIUkSq6vtm1Grq6s7bszGYrF7Pr7139XV1bZQ59XVVU6fPr3bd/LAeEcQjocdKSpJErWa9W7Yg6LVCtTd3c2hQ4c2bgqPY/TuborgVivOwMDAA7UqtXbe93Nn7dq1azua1h8Wj0IMWlOdurq62n6XsKmoPaxJfyfs1FJVrVYZGxvDMAzOnTu3MT1iv5LDFydX+B+f+UuKFRPRpiEIArVGg7oELq+Hmg6lep1apZmujSpTr1eRbRKKJCHYRIQyKHaZekPH7bSRr9YJeZzU0JEFiYFogIVsHqdN4exwnOlUlumFNEe7w9QxuDDTLAxfGO6mbhg4FJX5TBZREclXqpyKR3FqCm8uLG2QiVM9URLlEs93xZlKpjEx+fbSwsakpojTgV1TOG4PM5vNcTuV4mQszFR2c8xql8vFTD7DkNePX7OxWiwQdjkYTbQXz8MOJ7fymc3fndnM4KjqOi5ZYzqX5lYmxQvROJeS7Rf9Ic3ZQTaCmo2ZYpOQxO1uIpoLSRBRJIHx9DJrRoXpQrNtqcfh5nKms3A+5oswus3PoYoi6XpnDkWfw8fVu+njLkElYvfilDU8skq6USKm+FmrFlipFFmpFDnj7+ZCplOtOOAOcTnXqQyMuEJctUgmP+yOWqobR9093LDwevTbw0xZTLhyijaSYgEs/rwrlVLnQTaDAQVTxC5p2EQbqqhiF22YwKB9CKHZ2IEJGKbJmeLejC7fSzwJCsd2bD0nVVXvGzzYIh97FTy4E/bLNF4qlejr69vzdd8O5HI5VFXtaBETBAG/308+bx2Cued4CgnHbqGqKmfPnuVrX/vaBvkzDIOvfe1rfPSjH7V8zrlz5/ja177Gxz72sY1jX/3qVzl37hwAg4ODxGIxvva1r20QjFwux5tvvslHPvKRB31Hu8Y7gnA8LPZiLO5WP8SxY8c6DOxvR7jgTue320DE7WvD/tzokskk1WqVSCTC6dOn93T9hyUcc3Nz3Lx5kyNHjtDT02O5Luy9XG9FOPL5PBcvXsTn83HixIldmcMfBde+fYuv/Odv0BBlDFXGEEVKjRrZchmbx43N7ULQdVx2D6VqHY9DYS2Vo2roJBJ5XB6V1eUKBwZDXLuzytHhKIlCmdV0nlOHuriz2gx/i4ZcIEO2XCVXr9Hlc+OzaRT1BtOJNANBH7GAi7dmm4TCY9OI+93YJJlqvUGhVuNmKknDMHCrKkdjIVbKJWbTWWbTWfr9XqayKXTTpMthp8fnZ71a4sr6pnJxJh7l4nqTSKiiyIgvgF2RKWcb3Mk0SUi/x8u19HrbZ3Q8FOZqeo2ozUFYtVGp1TANnW+ttBfeI14/Y6l2xcKn2ljTN83MLlmlz+klZLOTrJUwjRxLxQJLxQJHfSFGM+2vLWDiVBWWqu3fk36nj0vZzsL8pC/GWGYBEYGozY1PcaBJCpooIAsSK6UsGbNBJp9EEyV8mkqy1k5QvLKN28XVjrWDqpMbFsbyoOLkVqHzXFySxp1yp+ohCwKJWqbjOIBthzyOIWeU64UZnJIdu9ScYqUKChoKlVqZaEOh0dBBEjFlAUEUWa2UMAwnFaNGUW8AzTbX464+rhc6fSD9tjg9RJ6o4n6/N34eFjspCY8rePBBz+tR8U7wcLQ+5+HhYRRF4ROf+AQf+9jHEAQBl8vFhQsX+PrXv87LL7/8Np/pMwD8xE/8BD/8wz/M888/z4svvshnPvMZisXixtSqD3zgA3R3d/OpT30KgH/1r/4Vf+fv/B1+7dd+jfe97338t//237hw4QK/8zu/AzR//x/72Mf4P//P/5MDBw5sjMXt6uraV0XrqSYcjzoWdzd+iP2c8rT1Nazex9bzO3fu3EP1nd4vK+NhYJoms7Oz3L59G5vNRnd399s69Qma7+/GjRusrKxw9uxZAoHAjusCe+7j2O7hWFtb49KlS20hka2Co/W72I05fLf4xh+9wZv/8woNUULUVARJJF0oUWk08EYCaA4b2VIVm1sjmS1SNg1CDplctcFQLMRqqYbb7aSCwHIyR3dI4+KdZUbiHiJhF6/fnOdgdxBdhEuzK0R9LvoiXqbX0kytpIgEXThUmQORAC6HxrenFxBMOBoPISoi11bWMUyTLq+btVKRfp8XTZYpVGtcSaxTrDV7YkJOO5g63YpKWRVZLhXxe1zcyWQ23uuRcIjJbJrnwjEMw2QynUKWRC6ubRbEDlmmSqOp4tAcdTvs8aPIIjG7i5VSgdVyiaDNTk1o/9tTBYF0pdCeg2HCEX+IRDaDpmpkjDqLxRyKKHWE/mmSRKreaZ5+LhBnfBuxEDBRJRHdNBERiNs8+FUHTlmhrNfosgVYKedYKBVYoMAJX4xxC4XkhC/aMUoXmhkdl3Odx3vsXq5a7H72Onxcszg+4gpbqhtHXD1cv3tcM2TcqhOnYsct2TEFnYOOIQyT5jhco4FhGsyWMtR0mYpeZ2u/1UFXjDuNuy1brTubDj01L8tKZ2CgS7RbmssBvif8HRizu0/1fhxoXR+eNMKxWxK0m+DBFvl4kODBnc7JNM1nHo4d0Ppev/TSS3zgAx/g05/+NG+++SZDQ0NkMhn++q//mueff75th3xfz+dZ8N898Q//4T9kfX2df/tv/y0rKyucPn2a1157bWMDeW5uru1v8JVXXuHzn/88P/dzP8fP/uzPcuDAAf70T/90I4MD4Kd+6qcoFot8+MMfJpPJ8B3f8R289tpr+5bBAe8QwvEoLVUPSzhyuRxjY2O4XK57+iEeR7iglYcjn88zNja2MVr2QUPetq4Ne0c4dF1nYmKCRCLBCy+8wPXr1/eFkD2IwtHykNTrdc6dO3fPPuP9IGCw+R02TZOZmRkmJyfbEt+3+jVavp29gGEY/Olv/E9uXppHtGmIskINKJSK1DFwBb2gymRLFSqmiUMRETSZmMdGodagrydAsV4nFvZQE0xCfjeiKlGs1hiMKmQqVSTBZCjkYCmXo2GYvDDcxZ1EhremFtFkkTMj3dxZz3BnPc2pgRi31pOc6YmxXihRF0xuLTeLyKjbSW/Ay3Qqzc21JGGXA12CYq2OR1M5EAyQKuW5s6XgPdMT58JKcyfeZ7NxwO+nqNcp1RqM3+1xPRuPcWGtfbd+yO+j0KhxJhQjV60ym89QMuvcXtv0YggChJwObmTaU7qPBkNczyboVRxoOtQAt6bx+trd4ra6Oe52tthZCJ/wR7hokTI+VbzbimVC1OYiqLkIqjayjQrdmo+Vcp75Yo75Yo6T/ihXc+2KgiKKJKudZCCg2LmR71Qx4jYP1/Kd5KTH5mPCwlge1zxcz7cX8BIiYdVDSa9xwNGDLEgICE0SYRjk63Wcoo9co0zO1MlVi1AtcsgVZbLUqaCc8vQyUeg8125bkDsW7VcioDvN5i9hG2Kihzmj8zl+xcPL/lNcnrn0RBGOrRsNTxIeRnXZbfBgi4DcLyfI6pyAZ4RjB7TuJ7Is8/GPf5yzZ8/yuc99jsXFRWw2G5/97Gd5//vf//iMzM9aqu6Lj370ozu2UP2v//W/Oo79wA/8AD/wAz+w43qCIPCLv/iL/OIv/uLDndBD4B1BOB4WD0s4WpkMW0eT3us1HofCsfU1VlZWuHLlygP7NazwIKb0+6FSqTA2Ngaw4UfYLxN2SzG4n9cin88zOjqKx+PhzJkz991Va621H4RD13WuXbvG+vr6vpvDAcrFCv/93/05q8tZBLuNOgKiIpLN56kboLrcSHYNQRbQVAlVFChW6zhdGslCGbtDJV+rUazUiIRdXJle4bnDPaxli6QLZfq7fAhlmUq9QRGduMdBulhmYnEVU4DjXUFKpsH/nmy2I50eiGEKoOsGlxZXOdQd4vrKOkdjIVRJJlEu8cZss6B1qgoOu4JL04i7XNxKJEgVctwpbrYEne6KMpPN8Hw0Tr5WYzGXY7VcYi63Ocb1YCDA+HqzgPWoGkNeH16bxnhihUy1yjTNx56NRrm4LVvjTDjGhWSzKHYrKv0uL0HNzmI5j64LzDWaKoVP0UjWLNQAl4ur26ZaDbn9jG8xjzskmS67ly6ni0K9Rq5eZamUZ7lUoljTWZDT5LaN0T3sCXeQDYCT3pilijHg8nHZIoE8qNlZq2c6jntUleWaiU1U8ClOXJKGJip4FRuhhoe6oVPUa2TrZXKNMkHNwxULr8dJTw83LchDnz1gSTZUUWLBwnQOzdavVQtSccDZzZRF0J+CyLqF6RzgPaFXkAXpiWtfal1znqRzgr1pXbpX8ODMzMw9gwd3OifYn8+qVCr9rW6pan2vt97rvvM7v5Pv/M7vfPtO6hnheCrwVBOOBx2L22q7WV5e5vTp04TD4fs+53GZxls5DK3MiIfxa9xr/UctsDOZDGNjYwSDQY4dO7Zxg9pPwgH39lo8TObHfrVU6bpOKpXaMM+3ZM39IhvJpRT/7Ve/TL5Yx5BVBEWl3qiTTmWwuR04XU5Em0ypWqdYqOP22plfydDV62dqMcXwUIhLU8scH4mzlM1DBg4NRXn9xjwj3UH8fgcX7yzTF/YRCbi4Nr8GCHh8LiKyxNRqinS5xHy+TJ/bjt/j4NLi6kbOxQvDXdQNk6DTweRair6Qj/lMc5LRcNBHwO3k+to6M6kmIRjxObl1Nygv5LAz4g+QqJZJFcski83C/2RXlEtbJlL5NRuKInI6EiNTLXMnkyFXq3I1vUZ9y3fyUCDIWGqb+dvtpWHonAnESFbKzBdyLJh5Fst50tX20Ller4ermW3EQnV2kI2AaidmdxHQ7FR1nUSlxEo5j2gX+H9WO9uRDvoCjKbbiYIkCBuJ4lvhV2zcsiju44qTq7nOXf4RZ5C1ap5BewS7pCALUjM3RVRYqqXQsFGo1yjcnS7Va/dzLb/YcS/1yXbLEEFJEFitdao7AE5Zhc63wGFXF9cLMx3Hw6qHyZJ1a1TVtFgIOODqZrLUuZZsSvhnZe4U7tBoNJ4oNeFJJRz7QczuFTx47do1PB7PBvnweDwdvydd1/dUCW7BNE2KxeJ9x8k/qWhNOfviF7/I+fPn6enpwe1243K5Nvw2rVBHp9P5wMrSw+JZS9XTgXcE4XjYP4gHIQOVSoXx8XF0XefcuXM4HI49f42HRWva1sWLFymXyxuZEXu5/qO8h4WFBa5fv86BAwfo7+9v+33tlwJ0L8KxU6bFbtDyTewl4SgUChs9mC+++CKyLG+oM61e5L0kG3cuzfJnv/01Kg0DNA3dFKlUq5TqFZw+NzVToFCt47DJFCo13H4HdcMk1u1FNw36+gIUaw0OD0ZYyuQYiPupmgbZUpUzB7qYTmYQBDh3qJfLi6vMpjMMRHy4nBpXF9YQRTjcE0aSRGqCiKLKXF1PYRgmPS4Nj9PG+bllDNNEEOBYV4TFXI6zPXFW8gVcdhtvzW8W2kMeOyu1CmdicfLVGplKmZuZFKnypg/ibHecC6vL2CSJA4EgqihS0Otc3WIkdykKJaPeRjbcqkqqXsKravS5vCiiRLJcpmbqXEq2m7p7PW6ubDOZnw5FuZRpVxscooxi1zguOhANk3y1wlq1jF8X+fZa+258k0B0zmwdcHq5ZOHFOB2Id6SPAwy6/FzKbjlugkdUicoOIpoHWZBoGAYlvUGmVkY3RVbKZVZo95Ic9gRZKGc61vcoGksWtf2gM8CVfKfCcNTdtZnrsQVx1cvtYuf7kgWB1aq1IhHVvKQbnec0YI+wUOlUegQgsy2ssIW/E3ieYWWIZDJJqVTi+vXrrK+vb+yu79UUvYdBq53ySSJBsP+Ts6yCB5PJJKlUaiOEdav6oWnavhnG4Z3RUjU6Osrv/d7v4XK5KBQKlMtlqtXqRgt4tdr8Y/693/s9PvCBD+z/CT2FORxPI94RhONhsdtCOpVKcenSpY7d+d2+Rqto3K8bhWEY3LlzB7/fz7lz5x7JbGeFh1UhDMPg5s2bLC0tcebMGcvZ5fuZawGdSkQrmDGdTre1LT0I9vKc19fXuXTpEj6fD2CDbOyXOfz8/xznb75wHkORMRQVJJlSrUKuXMbp86I47RgNHdWlUqsb+CNu0tky/pCTuZU0PT1+lpJ5XC4NQxTIFiqEw27MikFd10mVy/QEPRSrNS4trNAV8OC2q0ynstxJZQi7HfTH/FxbXKNYqzMcDZCtVjjZHWMpkyfgtTO+0izaJeBwwEOxUiFTrnJxYZkzvXEu3g32c6kKMVWmJkoUagajSyuokkhPwMNUenP3/Gg42GzhCoW5nUpxZW2Ns11xbqy3ey+GAn4uJZoqgFtRGfT48Ng15vJZ5oo50uWmInE2FufientRfCoUZTzdXtwGVBvTxRQh1U7c4UYTZdazWXxOB5ey7cQkbHOwpLcrIwCHnT4mSqmO46osolfav9se2cZkYfM9KYJIWHMR0VwIwClvLxW9TrZeYb1axCvaGSslYNsk2WOeKDeKnarEEXeY28XOAr7fEbCcWOVXHNzcQd1Yr1kX/D7VzlqjU/k47OrmZrFT5fHKDqZ2UDd2Sg8fcXQzW+kcwysg8L7odxLRAsTjcV5//XW6u7tpNBobmyZut3uj9cdqZ30/8aS1eLWwXwF7O0HTNLq6uujq6sIwDPL5PMlksi14sLUzvx+fWalU+ltLOFrf15/+6Z/mx3/8x2k0GtRqtY0BOouLi7zxxhv8l//yX7hy5cquujie4Rl2i2eE424rktWNY+s0pUOHDtHb2/vAN5jWhbhl0NprLC8vk06n8fv9PPfcc/tyA3yYArtlxK7VavdUhB5HS1ULLQ+JIAicO3fuoQ1xe6FwbP1uHTt2DF3XWV1d3Wih2o+JNF/5T3/DldcnaSgyoqYBAqlCkUqjgT8aQraplGp1bG4b80spgjEvq6sZHF47M0spAmE347eXOXYgxtXZVXwuG309AUYnl+gJewj5HVydXaMn7MHtthERXOTKVZLlMh67RpfPhSkJvDXd3Gk/GAtitynMZbKs55c51R9jbGmFPr+HkNOJKJqcX9wscAfddq6trHI0FKDe0EkViyzW6xS3KBlHY2HGVlfodXuIupzUDZ3pfJZsanP7/VgkxMXVdsJwNhan1KjxQqSLVKXMTDaLIkt8a6l9F/5IMMToNrIRsNm4U2gWyS5Zoc/lxSGpyJLA7WySRK1CotwkE92qjcu5drIBEHc4uZIptK+raNypdBbmp/wRrtz1aEiIRG1OfIqDsN1BvlGl1KiTqpZIVEssNPJ4FBs3trVvCZjUxM52UhEoGJ0TsgDqVgl8gFO27qcfcPgt1Y0j7i6uW6gbXkO19G6IQHoHRaLfEWJia5uVKaCJMlE1QK5RIqaGkAUZSZCQBAkREZekMmwfbj6cu8MaMBlydBHRNqfTmaaJ2+3G7/czNDRErVYjmUySTCZZWGiSnNbO+uNQP55EwvF2j+oVRRGv14vX6934HaVSKZaXl6nX63zzm9/c0+BBwzDeEWNxW6SshVwuxxtvvMHv//7v8xd/8RecO3eO3/u93+O55557PCf0zMPxVOAdQTgetsjeupu8fYem0Whw7do1UqkUzz///Iac+6DYL8Jhmia3bt1ifn6eQCCA1+vdt922B22pehAj9n4qHFuzLbLZLKOjowSDQY4fP/5IN8hHPWfDMLh+/Tqrq6u88MIL+Hw+FhYWMAxjX/wa9VqDP/r0XzA7uYZo10CQqJuQrRRpiCaBeBBTFFnPFJHsMkJDR3GqKKqEaJdx2FXqookgChw9EGN6NcXh/girhSIrqTwvHe7lysIqC+k8xwcjrBfL3JlZIexx0Bv1kSlWmFxLcWIgxvWlNU71xBBEmE5lyKw3C/HjPWEEEQYDPqaTGXwOO5cXm2qDJAgcj0eo6XWMcpWJ9RQ2UcBhVyhWm05hAXi5r5uqodPlcjOfy7FSLNDr95KtbpKNiMPBXD4HJvR7vYTtDhRRZDyxSnmLn6vb5WpLHIem6rFeKW7cL0QE+txe+jxe8vUqa+USi4UcE6kkp0KbOR8tyIJA1dQ77jfH/WGuZDr9Fb0eH5fvtmO5JJWApKHpUMoW6JfcFDFINaosFIvgkLhZWGsfxQsc9Ya5ke80Wp/wxrma6yzuT/hiXLWYTHXcE+WGRavTkCPEzUKn6hHYQd0QgdQOqeIeFHRBxy7ZsEnNbA1FlPDKdqpmjYASwDSboXwNs/n3l6pW8UphqkaDqlGjotcp6ya9djt3Cp3Ers8e4kaxU90A+P90vbvt39tTvVVVJR6PE4/HMU2TXC63QT4eh/rxpKWMw5PnK1FVlVgsttFmfPTo0T0NHiyVShtE9J2AxcVFvv71r/NHf/RHfOtb3+LcuXP8zd/8zb6mTVvhmYfj6cA7gnA8LLaSga0XnmKxyNjYGIqi8MorrzzSaLhW4biXPo5arcalS5eoVCq8/PLLzM/P7+skrAcpsFsTsrbmR+zV2g+K1tqtqWIjIyMMDAw8ciGwUyr4brDTCF5BEKhUKuTz+T016uVTBf7wU39OKlNEsKnUBQkUkXQ+TwMR2W4HVcEUTFx+e7O9VBFQbTK6YNLQTQRFpJSr4/baqBs6oiSSr9UIuOyUVZlrC6sMxwIgCNxYXaehG5wZjLOcL3Lhzt3U8AN3U8NVlcV0DmTIlCsMh/xEfS4uLi5TrjcL/oPRIBPr6wwF/XhtNrKVCnfSGXJ3iYMAdAe9TKUz9DvsSKaJKIm8sbS4YToHOBGLcnF1s+j1ahoHQwEK9Tqz2Qxz2Syr+QJht7ONbEiigKbJVCrtCsDhUIhSvc6g20++VmMun8Wv2fjGUnurj0dRWSh17sgPKjZu6+39S5oosV7ZVDYCqp2IzUVQs1M26hx0hlitFMnUKuSp83wo3hyZu+3rp5lGB9kQgZLRObpJFkTWLcbjSoLAmsU0LREo6Naqh7ZDON+AI8h8OUFI8mCTFBRBQRJEPLJK0ajilZum+4rRoKLXUASJ+UoavW6SrZdhi3dk0BlgrpzoeI1Tnl5uWZAKr+xgstjpYwFwy5qlIX3AHuOYe7Dt2L3aYAVB6NhZ32/140lUOPZz/OyjoLXBt9fBg8W7U/D+trZUtTA/P883vvENvvzlL3P16lVefPFF3nzzTQ4cOPD2nNAzheOpwFNNOFoX761koDW5qKenh4MHD+7JBX4vjeOt/A+3273h1xBFcV+zPnYzFvdhE833k3AIgsD09DSrq6u7niq2G2wP6dstCoUCo6OjuFyuDeWnZQ53u93Y7XbOnz+PpmmEQiHC4TB+v/+hv4NLkyv88We+QqlqYEgKpqxQaTTIZfLY3Q5cTieSXSFbqKA4FMq1BlXdQDVlcpUaxUYDzalwZWqZ44diXJ1Zw+VQ6I75uTK9Sn/Mh8uloZbLFKo10pUKh7vCpApl5rN5VrMFhiJ+gl4nF2YX0Q0Tr13D5VLx2W3YVYWaoTO+tLJBNgYCXrwOjXDNyVQijVtTcTm0DbIhAS/2d1M2dDyqxlyxTNjpoKzX28jGAa+b0dVlRnw+/DY7yVKZgNPOtxbaW3mORsKMrrXv0D8Xi3F+bYmYw0Xc4UJAwK7IfHtlvu1eEbDZmMx1+isOBAKMJtp39/2SzKy56dFwKxpddhdxu4tco4JHsbFaLpCsVEhXK3Q73SyU2pWAiN3JlWynEnLI5ed2udNQfdwb4arFZKqTvhjjFsbyU/44lyzG5h73xpgoLOKQVLyyHcfdMbhOSaWOzlFnL3XToKLXKTZqCILApewyNUMHNt+zgEmf08dipdOjccrTzVK187McdoSZKXe+B0kQWNrBRD7oCHKt0EmcfLKTyZI1EXlv5KWOYy2T9m7wONSPJ5Fw7Of42UeBVdeCVfBgiyTuNniwVCohy/Ljy6fYY7RI9Mc+9jG++MUvMjQ0xE/91E/xvd/7vdTrdWZmZnA6ndhsNlRVfaw5HE/Nzv/T8j4t8FQTDkEQNqYybC2Ytwau7QX2inAsLy9z9erVjvwPSZI2pkrsB+43SarRaHDp0qV7Jq7vBFEUqdete8MfBY1GA13XSSaTez6162EUjkQiwfj4OL29vRw8eLAjOdxut/Pcc89hGAapVIpEIsHExAT1ep1AIEA4HCYUCu36BnDtf9/kK//lmzRMAUNV0JEoVWuU9SpOv5tKHcCEap10sUxPwM5KpkBvb4CpxST93QFuryTp9TsYHgxxYz7B8aEot1ZSXJtZ5eRwlMm1NLdWk4x0B3A5bSxkcsysZ7DZZcJuB05VweOy8eZ0s4gdDPnwe+xcW15nOpEh5HJgSKCbJqe7oiDAQj7P9FxTFZFEgbjfzWQiRZ/DhibJeL1uvr2wWTSqkojDrrCaae48ejWNIY+XUqOKQ5CYSmWADCNeNxe2+TZORiKbZMOEfo+HLrebkt4gpDpYyRdZyRfxazZMyei4T3R7PFxOthfDR/zBNrIhmhCUFEYCYeqCSbnRYLVcIFEpUZBVvpWf22gPauG5QIzRdGc7UszuZD3b7vMQgarQeW1RBIHZQmdB7hAVpovtx92yhk+2I5hwwtONKIgYhknd1Kk0GuTrdQRDJdvQyVYLQPMcjnjC3Cp0tmud8Xezls10HD/iiXPLoi3LLWlMFjtJBYCyg4Jy2NXFjaJFvoYgMWdBUAD6HEEmLIiIW3LwnYGTHccftoVpJ/WjNXwEHk79eBIJx5M6Oet+U6q2Bg/29fXdN3jQ6XQiiiKFQgGn0/nI7zeVSvHjP/7jfOlLX0IURd7//vfz67/+6/e8T33Xd30X3/jGN9qO/fN//s/57d/+7Y1/z83N8ZGPfIS/+Zu/weVy8cM//MN86lOf6iBPly9fpquriyNHjvD5z3+e//gf/yOyLCPLMpIkoaoq1WqVL33pS4+nfeyZwvFU4B1BOB7lj1+WZarVKjdv3qRUKj1wwbwbPCrhMAyDW7dusbCwwKlTp4hEIh3rv10tVcVikdHRUWw220Mlmu9VqOBWlEolRkdHEQSBY8eO7bn8/aAKx9zcHDdv3uTo0aN0d3cD7GgOlySpbReuUCiQSCQ2JrC43W5CoRChUGjHndJv/NEbvPHaFUxZQpcVTFmiUC5TrNVw+X0IioIg6tgcCuW6TrzbT6WhE4l5KNca+PwOKqaOQ1OpiwayJBLxu5haTdMX8WEKJuNzq4TcDs4d6eXizDKV1RQ+h8aB7iCTqymuzq9xejjO1cU1TvXGKFVrIAtcnLs7YUpT6I/4qDd0bq0lubmaIBJws15sthxJgsDLg71kSyVUQWCu2Gy/aqWDt3AkHiZdLvN8vItMucJqocBqrczSlrRxv6axVGlvZQqoGjVD5/lonJquM5vLsl4qUTENVortRX2vr5NYnAxHuLTtmEuScakqZ0PN6TkruSxrtQpxr5/XE507615NY7HcrmL4VBu38p1E4YA7YKlunA7EGM92FvGnAl2MZhbwSBpOQUbRBSSjOQq3KkLA7iRdLpI362RrNUZcIS6kO8/xtC/OFYtQwGFn0JJsuCWNm/lOTwdAzbRI5gNGXBEu5zp9Fd02P7ctpmUBFHdo8TrsinPDYpqVIkjM70BE/o/wWVSx87r1IArHvbBX6sdenc9e4nFPqNotdF1/IHJmFTzYIok3btzgox/9KM8//zzDw8OPbDwH+KEf+iGWl5f56le/Sr1e54Mf/CAf/vCH+fznP3/P533oQx9qS4beOoxF13Xe9773EYvF+Pa3v83y8jIf+MAHUBSFX/7lXwY2a6Xf+q3fIpfLkclkqFar1Go1KpUKlUqFarVKtVoln8//rVVynuHJxDuCcDwKBEHgypUreL3ehyqYd4NHIRwtv0a1WuXcuXOW0zH2o2jfzfqtka5bd+0fZu29JEvJZJLx8XG6uroe+KazW+x2SlUrKHJlZaVt8MBuw/wEQdjoQR4cHKRWq5FIJEgkEhu5Ha3Wq0Ag0Ax0+r/+J7fH50FREGwahgHpXIGqoROIhxBlmYZg4lBkVpJ5wnEfk7PrDAyEmFpIEou4qTZ05mYyHDscZ2J2jaDPid9nZ71YoqY3KDUaHIwHqeo6F2eW8TpsHAt5WMkXeGOyqWacGY5jADZZ4ur8Cof7IlxdWiPktDMQ8pOtVbkw2yyURQEOdYWZWFnnQCSAW1WbE6KmN4vQoNNOqlqhbhjIgsCBYJCQy871ZJL1YonZdLNwP9kVaQv3EwUIeZzcSiXp9XjxKyrlapWyXud6sr2wfy4W62ivOh2NML6NWHhVjWS1zFFfCKesUjcM1ktFujxuzq+1F+cuWWGh3GmSPhmIcNnCKD7s9TOabCcQAqCLnX8jdlEiVy9zwBlqC+czTZPlUhHZUEg36qTvTpfyyBorem6jfW1zHbltnG4LkgAJC08HNH+vVjjgDjFukSp+wBlmutT5fjVBZqbU6cOAZtL5igVHGXZEmLHM1zDJNKwN6QedXdwsdRIRCZFXwy92HG+1Ou719eNR1I8nUeHYr2vso+JRczjsdjs9PT309PRw+PBhPvOZz/Daa6/xhS98gZWVFV555RVeffVVXn31VZ5//vkHeq3r16/z2muvcf78eZ5//nkAfuM3foP3vve9fPrTn6arq2vH5zocjh1zo/7qr/6KiYkJ/vqv/5poNMrp06f55Cc/yU//9E/zC7/wC23fpXe/+92Wa7xteKZwPBV4qgnH4uIilUqFrq4uTpw48cRMeWqh5dfweDw899xzO0572m+FY/v6pmkyMzPD5OQkx44du+cF8n54WD+EFVpKwuHDh+nt7SWZTO7byN37rVuv1xkfH6darfLyyy9v7ERtVTYedBKVqqpt8+czmQzr6+vcvn2bXDrP5T+fpJg3sHlcmIqCbkCuUsSQRULhIJWGTjZdwBdykUwUcPntrKfydPf6WVjLcmA4wsWbCxwZitCQTEZvL3LiQBeTK0nurKc5NhihbhpMr6QZ6gogKSLDsQBziQxrhRLzyRxHusL43TZev7Ow4ak4PRijZhgciYW5tZogqje4tbZZ7L803Eu10SDsaqaKH4mFGFveLChVSSTicaJIEr0eN5OJNDVd5/WFxbaQvjPdUS6ubj4v5nRxIBQgW63i1+zMZ3PMA2e7Ytxabd8571O1DrIRsNm4k8/gkGX6XF7cikZN11FlkfNry2ylFr1uD2NJi+yKYIgLiXYCoYkSq9VCx2MH3T7Gt63hllWO+6OUjBrPB3rQDZNyo066VqbX4eZCulPdOBuKs5DrNK0f9AYsQwG7BRtTjU5icdwbs0whH3AEuJHvJA92UWGy1Kl6ACiS9ff8iDtmOTo3oDi5Weh8bWh+H6xwwBlnumzt0cjp1sTpRd8RQmpnFk/rmrTfisKDqB9PYnH/JJIg2FvlRVVV3ve+9/G+972PP/uzP+NXfuVX+PCHP8xrr73Gr//6ryMIAu95z3v4+Mc/zosvdpLX7Xj99dfx+XwbZAOaBEAURd58802+//u/f8fnfu5zn+MP/uAPiMVifO/3fi8///M/v3Fvef311zlx4kSbf/K7v/u7+chHPsK1a9ce34jbh8CzKVVPB94RhONBbwqtnefl5WVcLhehUGhfbywPQzhak5W2+zX2av0HwdYCey+C87av/ajnvlVJOHv2LIFAc5b+XieCt3A/D0erzczhcPDyyy9vEMWWX2Mvxt6KokggECAQCBByR/j9P/gTCkWTKpDP5JCdNmqY6KaM4rSDImEaBp6gE0QBT9ABgoDTa8cAIlE3uXKFgS4/iWIZv8eBz2PnyuwKvREfh/rCvDW5gG6YHBuIUNIb3FxKYFdleqM+bKpMteECEd6YbpKNuM/FQMTHtZUEmVLTPPzcQJzRhWXCLgd9fi+qIvHt6c2Cs9vr5k46jUGz4B8I+pAlkYtLy+hG83fptWlkG9U2sjEU8DGdy3IyEkEWRJbyeTyayrcW5tvM5ANeL5fW24tlj6qRlwVoND0REVnFJYrYFZWEXme1VuPGXTXkWDDUpqA0YWJTJRrl9u/EoMdnSUJOBqOcT24Wxh5FI2pz0eV0EdKc1E2DfK3KWqVErdHgdi5JotreEuZXbUxY5HmENDtXLVqvgqqdiZwVSZBZk2qwbeaEiMlqMdPxeAC3omz1gm/giCdiqW70OwLcsggMlASBlar1a/Q5/FzJd5KEmGadRA4gYKAgI4sikiAjCxKSIBJRPeT1Il1qBEEQEBE3/vv3Ii9brrUfOTj3w/3UD8MwkGWZ5eXltz31vIX9TPR+FOi6vi+fT6FQwO/388EPfpAPfvCDNBoNzp8/z2uvvbbr+9jKykpHW7QsywQCAVZWrNsRAf7RP/pH9Pf309XVxeXLl/npn/5pbt68yZ/8yZ9srLt9WEvr3/da9xme4XHhHUE4HgSVSoXx8XEMw+DcuXNMTEzsa7EOD0YIWunci4uLu56s9DgIh67rlMtlxsbGEEXxkYLztq/9KCrETmNm92LtnXAvVabV0tXd3c2hQ4c6zOGt5+8VwZ26NMOf//bXqDZM7F4vNlmmWK2Sr1aQbSoNQ6chVlhL1nEHnCQzRaJdXhZmUwyNRLg2ucrRgzFWMwVK1Rq93X6SK2mqjQZIIt1BL5oqcfHOIkf7IkiyyI3lBKVanZjPRVfIw7XFNcq1BgfiQWZTGY7Gw1QbOk6Hyv++szn16OxgFw3T4GA4wO21FCG3s03JcGsqEjo9dg1dUphJN3fp31rYLDAFAWI+N9cTCSRBYDjgx2ezkalVyGQrpIrN3n63qtIQzTayoUoiDcFoIyohm51joTDFRp2QVmUul2W1ViMUCnEl3V7Qq6LA+jYvCMCZaJyLHW1QJrIkbIyqlQWBuMNDSHMgIPCcv4tCvcZqqUiuUmXQpfKNlU4fw4vhLs4nOydHDXkCjKY6d/P73D7GLFSPfpeXSxZejxGHn6sWqsRhR4iblU5C02vzct3Co6GKEtMWo2uhOSZ4sQqqIGOXFFRRQRVk4jYv+UaZgOIBw6SQL+Dz+ZHu/s0cdvZjmGCYBjomumEQVB0IpkLd0GmYOnVDp2bqhBQXE7kkJi2C0KDFotySlzvFzlarQUeEI+5+y3Nu/a2+nZ6J7erHrVu3SKfTT0TqeQtPqsKxX2rQ9tA/WZY5d+4c586d42d+5md45ZVX7vn869evP/Rrf/jDH974/ydOnCAej/Oud72LqakphoeHH3rdJwLPWqqeCjxVhCOVSjE+Pk44HObo0aNIkrTvxTrsnhBsT+febZrpfns4JEmiWCzy+uuvE41GOXLkyJ5dzB+FFNwvYHA/QwWt1p2fn+fGjRscOXKEnp4eYGdz+F7g/GvjfOOP36IuSZiKRgOBUrlCxazj9nup6hDw2VlL5qhj0sgWyVZqCAkD2S4xv5xmZDjM+evzHD8Qp2TUOX9jgRMHYmTLNWYWmpOpJEXEbbeRL9dYLRbpCXpQZIm6aXBhulnEDkZ9uJ0ackHiysIax/sijC2sIAKHYiECbgdvzS5Su/s97Q14mEln0E2TuMdF3OUkVcgznd8s6EdCfi6vthfDL/Z3U23onAxHuJNOc3s9xYnuCDe3+TEGgj4ur7c/90Q0QrJc5vlonIZuslzIE3O7+MZCe6HvUTUWS52768NOD9e35Wt4VY2b2c3C3CHJdDk9dDvdlPQ6x7xRUpUyq+UCc7kc/pCdsbX2wl8RRdYqnS1WftXGhIVaEbe7uGwxxarb4eFypvN4WHMwkeskCXZB4o7FiFoRyLPNPGE2H2+r6IRFB3ZZxaZoqLKCIIi4ZYV8o0KX2gzlqxo6Nb2BQ1aZymfQdZWCaVCgDq3EclNktrxtFG6myHO+Hi5nO5USl6SxWElQNTpHgAddDpZqnWb7oOJicgfj+d+LnrU8Dm+PwnEvCIKAqqp4PB6OHj26Z5OvHhVPMuHYD+XlXinjP/mTP8mP/MiP3PP5Q0NDxGIx1tbar02NRoNUKrWjP8MKL73UHOU8OTnJ8PAwsViMt956q+0xq3eHbDzIum8HnrVUPR14RxCO++3smKbJ7Owst2/f5tChQ/T29raNlN3PDIvWa9yPEGSzWcbGxvD5fPdN57Zafz89HLlcjkQiwZEjR+jr69vTtR+WFLTyUvr7+xkZGbH8DjwuhaOlSi0tLbW1dG1VNvZS1QB47T/+DePfvo2pKBiSDIpEoVimrNdx+rzUTGhIIMoiikMj5HOQKVXoC7pJFcs4VJOq2WAtmWa418vUapKukIe+uJ+3bi/itKm8cKSba4vrFMo1+qM+/F47dcFgciXFod4QN5cSHO0O47Ap3FpNcieRAeBgPEi2WuV0T4zZZIa6rvPW3CbZ8DvsOGwKRzxOEoUSs+ksdnSmC5uThwIOO8lqBdM0ORgK4NY0ZEnkzbnFtg2i091RRle35Wh0Nc3fNkli0OvHpSrYZJkLq8uUGw1mMk3S4NM0Zi28DkMBH2PbUsIHvT5uFTcfqwgCIVnFL4hUDQVTs5E3dBKVMmtmkUSlRKbW3nd0xBficqqTQJwKxbiQtJgE5fVz0eJ41OFixSK4L2x3sFTtfD/9bi9j6U1CI5gCbkWly9CoygIO1YYsiIhCs3B0ywrrtRJ9mkpJr1NoVCnqNdx2D7erOQzDhEYVKs1zEIGgqpFsdE6OOuPvolDsHNl9wBViykJZEYEVi/fQfE7YcpqVQ1SZtGjZAuh1+LmS71Q3HJLK3w2dsHwOPBkKx3ZsLe7f7tTzFp7klqr9Ihw7TT1sTRe8H86dO0cmk+HixYucPdskvV//+tcxDGODROwG4+PjABsj/M+dO8cv/dIvsba2ttGy9dWvfnWDpD7DM7zdeEcQjnuh0WhseA5eeOEFfD5f289lWX7bFY7FxUUmJiYYHh5mcHDwgW8O+6VwGIbB9evXSaVS+Hy+PScb8OBkyTRNpqenmZqa4sSJE/fcudlPwtFat16vc+nSJcrlMufOneswh+812ajXGnzh019m/vY6pqYhaAq6YZLK5KgZJqHuEEgSiiSgGAYV3UDRZMoNnVpdx+G1kV3NcuhghPV0sdlyhYlDESiViyxkshzq8iPbFM5PLeG0Kbx4sIdba0mm72QQBHju7gSqsMfJeq6IUYRsuYpTUzjcFSZZLjOXzDKXzBL1ulgrl6g1dCJuB31+H4VGjeurm+03A24bU1vIhkdTORILka1WqdV1bq2nCDrt1GnPwujxeriW2FQXXIrCsN+PLIqMeP3MZrPcSCRwKgp2m9KWJg7Q5+v0cxwLhdvIhmBC1Omk2+0m5HBQa+isl0uslAooosxE7W4hvyVKpsdmZ6KUaVtXEKBidm5seBSNmxZejG6Hm0upzp35QbffUt0YcPqYL2bpd/hxSAqq2PQyqIJEWa9xwBmj2KiRr1fJ1aqUDYNpsUS5pMOWgMFmOJ+X+XJn0R+1OS3JwIjmY7LeGdrnkW2W5nLY2fh92B3npoVHQwKWLNQYgAPuCFctjOeyIDJbtjax/93QCezSzipAKyDtSSIcO03N2q/cj93gSVU49uu87qVw7BZHjhzh1Vdf5UMf+hC//du/Tb1e56Mf/Sg/+IM/uDGAZXFxkXe96138/u//Pi+++CJTU1N8/vOf573vfS/BYJDLly/z8Y9/nO/8zu/k5Mlmhsx73vMejh49yj/5J/+Ef//v/z0rKyv83M/9HD/2Yz/2t2O87VO88/+04B1DOKwMwsVikbGxMVRV5ZVXXrH8o3tcLVVW4XZbd8afe+45QqHQQ6+/14V1tVplfHwcXdcZGhoik8ns6fotPAgp0HWda9eukUqldmVYf5iAvt2g9V1r5X3YbDZefvnljZHKe2kO34p8qsAffurPSaaKCA4NwxRp6CbZcgFRU4iG/eRLNeo0sDlVFlez9PQHmVlMMDIUJlWuUEuadHX7eOvaAoeHwhgNgTtLKU4d6qJmNFiaT1KqVUhlswwEHVQNuLa8Rr5cYzDiJ+hzMD67TF03cNs1XE4NhyrT7XOTyJe4k0pv+ihsGm6HRlxzk6tUuLOebvovtpCNqF1hoVKj2+Mm5naRrVTxODS+NbNZQIoCBJx2biU3i1pNltA0iQOOIDZJJlUus5DLUdDrTC21F5kHwkHGtqkgJyORDrLhkCQkWeRMOI6IQK5WZamQp8ft5VuL7QWtgEnV6Pyb7na4uFnqLMpPB6KMpzuL7wP+QIf/AyBkt7NUaa7jlBT8mgO3ohGxOQiqDgxMarpBqVEjU6vglG1MF7Ikyu2qytlQnPF05+7/sMPHhEU6+RFPhBsW+RpN0/kO+RqK2Ua4WogYCtN0qh5xzcONHbI6GlYLAYfccW4WOtUeAZP1mvUo3EPuODcKnUQE4O9Fn7c83sKTmnmxmyL6caofTyrh2E+FYzcqxv3wuc99jo9+9KO8613v2gj+++xnP7vx83q9vpENBs3f6V//9V/zmc98hmKxSG9vL+9///v5uZ/7uY3nSJLEl7/8ZT7ykY9stGT/8A//cFtuxxOLZx6OpwLvGMKxHa2Wm56eHg4ePLjjRXG/U7pbr1GptBcCrYK+ZXbeGuDzMOu3fAJ7cZNstXf5/X6OHz/O8vLyvrVs7ZZwVCoVxsbGEARh14b1vRy5uxWCIGx4Wrq6ujh06NDGa7WUjdbr71XRsjS1yh/92l9S1U10WQVBwpAhnctTNyVsTju6IFCqNwhGPORKFfoGQ+RKFQ4fjDG3lmWoJ8hqvkilVufFE71cvL2E32PnhRO9nL+1iG6YnBqJ0TBN5jJlNNWgbNTxazIOUUWWdM7faRZ9PofGoZ4ws4kskyspXDYVj8dGKl3GociMRIOYIlxbWtswTj/XH+fiYnN3XjAhZleIBnyIxQqL2TyL2TwnuyIbj2nhuZ44F5aW0SSJQb8fp6ogyyLnF5c21gY42xPjwkr7c49Hwh1kw6NqrJQKjPj8+DQbhmmSrpQJOhxc2DYuN2CzcT3dqUAcdLq5Welsa/I4bCxsa3eyiSK3M52G6m6nm6vpVeJ2F17FhkNWkAQRmyiRrJXpsflIVcsUanUKtTyHfBr/a6UzS2LY7eeqRaZH3O7iSqazsLeJEguNTs8IQB3rzZc+h49LFiNyD7vD3LJICVdEkaRUxWq5sOpgtZ7pPI6NqaJ1JkfDgtwBHHTFmSxZezTKusUoLeC4u5cBx72Lxv3I4HhUtKZUPQj2W/14GluqBgcHH3mdQCBwz5C/gYGBtntXb29vR8q4Ffr7+/nLv/zLRz6/x41nHo6nA+84wmGaJrdv32Z2dva+LTfw9rRUbfVrnD179oFvIlbrw97MHm+N493a3rWfpvTdEI5sNsvo6CjBYJDjx4/vuhDYr5aqcrlMNptt87RsN4fvZTvG1W/d4LX/+k1qhogpKyBJlOp18vkSDo8bu6ahuVQqNZ1AxE2uVMHls5MrlNHsKjVdRwCqGDjtCpIsMbue4VB/GFEWeePGAge7gwR8Dt681RxpG/E56Y35mFpJMZ8pc7w/zOXFdbo9NkRMkKWNkD9FFomH3IiCyMmuKLdWkyDC5cXNQvRoV5grK6scjYTQa1WWcyXsLidjy5sFZpfXze3UZtuMSDPID+BQKMh0KsON9QTHY2EurLQXpkMBP+PbiIVbVVksFpAEgT6Pl4BmwzRBVkQuriyxVixuPt/n68jhAOj1ehhPtBfUbklmUe/cpDgRinB5m4ohInA20k2yUkIxBYxGg3KtRsUwcBkCy3WD5XqRZTbP5bA/yI2s1cQn6zuVTbG+fnQ53aymLfI1AlEupjonXx32hK3Tw2WVWzsQgZ3unsc8ca7kOl/DIcjcLKw00wy3v46okLJQRHrtfku/BzTVLyv02QPMlq3P+X7qBjy5CsejntNeqx9Pm8JRKpUeuaXqGSzwTOF4KvCOIRyCIFCtVrl06RKVSoVz587taO7aisfRUrW1YG/5NUZGRhgYGNiTm1rrgv8ohKM1dnF+fr5jHO9+mtLvRwpaBOhhPq+9JhymaXLz5k2y2SyxWKyNbOyXOfwbX3idN167gqkqGLJEA4FiuUxdMHD7/ZiyiOpUmVtIE+v1MzWzTu9QiCs3FjlypItbM+t43Br+kJNrU8ucONiFjslqqkA46Kam6wxEfKiazJu3FugKuokF3NxJpDk/2VQzzhyIowMxn4vFbIGjPWGuLTWLuZBNwu+2sZTKka82d6HPDMW5ON/cddZkicOxEKYIiiBxfaVZSJ/sjTK+vFmc22QJURJwaQqHw0HqukGmVGE6kyOzRR0M2O3MbTMBa7JExazTuEv24k4XUacTl6axXMhTrNSYSWWYAY6GQ4wm2gtRUQBDoG2ELsCRYLCDbACMhIKMJbYEE4oiMYcLp6LwQqgb04RyvUG6WkYA3lpdahvFCzDs9nJzm88D4JDHb0k2jvrDTGQ7i+4RT4CJTOfx6A7qhiZK3Cl0tlIBCDvUjYe8EUbTVvkaPkuCImCS2KHN6bA3apnV4UJhwcxbEpGAYmfJQqyIaO4dzeI+xc6ihXDtV5z8vwKHLZ+zFU+qwrGXRbSV+pFKpUgmk7tWP55UwrHXn1ULhUJhV3XFMzwYnikcTwfeMYQjm81y8eJFvF4v586d27Vq8DgIhyzLNBoNJiYmWF5efiS/hhVaF1Zd1zd8BA+C7cbn7Ts4+6UU3GvtllI1Nze36zyS3a79MGg0Gly6dIlisUgsFsNms22c536Yw03T5E8+8xVuX1lAl2WQZLg7nriOic3pIl+pYXPbqZfraB4N3TDwR93Uag0OH+5iZinF4ZEoNxbWqaYLvHCij7duLiAAZ450M5/IspzMc3SomSA+0hVkPVdkNpUlkSsxHAsQ8bt4684Cdb35OZ4eijO9nua5/jiJXJGAx87YwmZR3ue1cXVplUMhP4oss5IrslIospLbbOE50bNJNjRJYjgYwOe0MZNKs54rsZ4rIQhwIBZkbr29cI16nUysbxbkNlnihZ445UYDv2pjMZdnJVcgZHfwrfn2iUZ2WWa92pmj8Vws3tFKJYsCucZmxSqYENJsDPj8mAKcDXVRqtdJVsokyiWidhdvLHW2HJ2KRFm0aL1SLFUJk2y5aHEcy1Gw0CRbVuh1eli3Ujf8UUbTncrDsCvAzVwnedBEiamCtVLgU23MWwUAuqPcLK4imgKKKKKIMoogIwsCxUadbpsfSRCREBFptiI6dYF0rQCmgCSKKIqCIitocvN6dsy1JS9D2Jy0VdADdw+aNKkOyAiYpsER50DHub0cGEER71+IvlMVjntBVVVisRixWGzX6oeu60+kIXm/cjhKpRJut3vP132GZ3ga8I4hHJOTk/T19T3wlKfH0VKl6zr5fB5d1x/Zr2GFVvvOw7yPQqHA6OgoTqdzR6K2n6SsRQq2+k+2Fvcvv/zyQ+8o7ZVpvGUO1zSNc+fOMTk52WYM32uyUSlW+fyn/ozV5QyoGpKmUK0bJFJZdARC3SEMAdxODQNAEZErBqYsYlRNZLuCbhr4/U4WUzn6Yj4EReTi7UWOD8VQVIm3bi6gSCLPHepiOVtgKZnH49Tweex4nDY0SUJVJN6Ymkc3TGRR4OxwN9lKlXy5ytjMMqcGY4zNN3eYNVnicFeYaqOOWa5xcy2NAPT47MxtIRt9AS/pSpkz3XEq9TpT62k0WeLbM+273s/1Nn0bW3GmJ8ZMJsupaARFlEiVytgVmW/Nzrep1C5VYanYWWwfjYY6iEXY7mAiuUlgFFGk2+Wm3+ul2KjjRiZZLJI1dRLlCh57hals+7Qkv2ZjIt2pSgx5fVxKdu7AHw+GuWahSpwMxrhsYfAe0pxM5TunQB30BndQN5yWeRyKKDJXaj93CRGXohLSnOimgSpJKIK0kdLtVTUKd4mXSVMFMkwTTZIoNKoM2KM0jLsBfHf/VzdE9IZMDZOKDq0QvpPeGFezneclCQIeWSVr3GUvOhvej2HByYxgQdhECYcsk290Mp7nvD1ctlBRBOD/e+DvdRy3wpOqcDyuc9qt+lGpVB5qk2s/0bqf7JeHY6/v38/As5aqpwTvGMJx9uzZhyou9zuHI5vNcuvWLQBefvnlfTPYPUzbU8tY39fXx4EDB3YsmPdb4YDNMZTbi/tHuZnthfcknU4zNjZGLBbj8OHDG8RC1/V9MYcnFlP891/9MvlCDdFmp24K1BsGuXIe1anhDfvJ5Co4vDYymSKaWyO9XsAfcTExuczJ471MTK0Sj3mwOxXuTKUIBp0YArjsGoIEE3OrnB6JgygwPrOCbphE/U66Iz6uL6wxs5ZhpCvA7fUUMZ+biNuJKAm8eWeBVtfR4e4QE8vrHOsKIwkiiUKRuUx2Y0IVwMm+KONLqwgmxB0KTlWh0KixVCgzn2oqF71+DxPr7TvowyE/YyvNwrvL7SLmcmGTZaYyzQlYrddwyDJOh9Jx/R4JdU6lGg742zwasiDQ7fbQ7/VSatSpNnSS5TKrxQKlap03l5ao6O3XhdPRWFsrVQtDfj8X1zoLaVWWOs5NENgo4LdCFCBV61RfwKS2Q40p3zUwOCQFt6LhlFU0SSai2VnJpsAAp8sFgkDDMPFpGgulLLKiUm7UKTZqVA0dh2rnzfXFznMF4k4ny+XOgv/5YDfXLRSRfoePG3lrv0XR4n0DHPPEuJrvVIcETIqq9QSsA/YgN8rWI3eT9c7zBTjjG6DL5rP82XY8qQrH20WCdlI/UqkUuVyOdDr9tqeet9C6Lu/1vdY0TYrF4jOFYz/wjHA8FXjHEI6HvcDt5+59S4ru6upibW1tX6d5PMj7ME2TO3fucOfOnV0Z6x8H4TAMg3Q6zfj4eNvkp0dd22oc8W7R8tscPHiQ/v5mS0eLGCWTSZaWlgiFQhvtVY+KqfEZ/uy3vkbVMDFEGVMQ0CWBTC6HjoLH4yJfqpItVXEG7GTKVYZiHhYSWYKCQHdvkBvTaxw5GGVscglREDh1pItbC0myxQpnj3ZT0w0MEyoNndsrSYbjQVRZpFBvcOGuZ6Mv4sPtstErmNxZTeNUFe4k05hmswg90h1GUSVUUWJicR1VloiH3CwmNpWMk71RytUq/U4biVqDpVKdg24XS4nNHXZVEqjpDaqNu99bE3r9bsJuJ3ZNYSGTYzlbYC1fpMfvYbXQ3m50KBZidLm90D8SCXWQjZDdTsTpxGe3UdcN0uUyS4UCblnj/9nWdgUQ97hY25ZSbpMk5gud4257XR7G1ztJyLFgmKsW6sPpUIxxi3yNU8EYY6llBFPAp2m4ZQ2nohCyOSnrdeJOL7ppUqnVKNaqaLrJXDqDaEoUdZ1irQSUCKg2bqUTNFp3tWrzdyIAXS43S6VOb0XU7twYwbsVx31RruY6z9UuytzagVQEbA7mLPIyBp0BpkvW3pGyUbM8ftgd5dYOHo102dojMuQM7Zi98b7oKcvjVnjaFY57Yav6kc/n8fl8aJpGMpnk8uXLmKb5tqSet9C6Vz3u4L9neHg883A8HXjHEI6HxX4QDsMwuHHjBsvLyxup4Ssr1jfOvcJud/MbjQZXrlwhl8vx0ksv4fF47vuc/W6pApibm2NqaorDhw/T29u7Z2s/DFHaaqDf6rdp+TW6uroQBIHFxUVu3LiBx+MhFAoRDodxuVwPRX7f+ssxvvEnF6gjYqoqpihRrFXJVyrYHE4UTUGzqzSqDaLdXiqGQVe3j3y1RjTipViv43JoON0Brs6scGQwgiCLnL+5SFfQw8hAiLHJJRq6wcG+MJomE/a6mF5J0d/l585qir6wj1jAxc3lBLN3MgD0hjwsZHPEfW6CLgeZYpnVQpFEYXM3/mB3kMuLa4RdDnr9XmRJYGxxhdqWz/5MX7xj3O1gwMt6scigwwaiSKJax6OpvD7b7jE41R3j4lInsdhONuyShCSKnI7GkASBYq3GUr5Av8/Htxfa11QlkYSFn+OgP8Cl9c6C9Xgkwvm1zl14j01jflsRLwqQ37abr4oiAdWOJAic8sdQRAkBaBgGDcOgVGvglxxkaxVSpSopqs0QPm+dOQuicywQppDp9HsETJGUxRbayUCUyxYm8oBq41rWWimomtZk/ag/ypiFD8Sr2Li+Q1aHT7UxayHg9Nq9TBWtJnLBDtmA9Nr9LFY7W8wAlIb137tXtvP/Dh60XtACzxSO3UHX9Yfyfuz3Oe318I4Wnk2p2ic8UzieCrxjCMejKByNRmPPMiyq1SpjY2MYhsErr7yC3W6nUCjsm0LQwm5aqlrtSqqqcu7cuV3vPFn5LPYa09PTnD17lkAgcP8H7xIP4+FoNBpcvnyZQqHQ5h/Zag632+0MDw8zPDxMtVolkUiwvr7O9PQ0qqpukA+/37+rXbav/Mevc+l/T2JqCjoiuiGQLxXRZfAE/Mh2FR1I5ys4PTbWM0XcXluzDShTZGAgxK2ZdewuDcTmGGNDFMjkShzpj6DaZM7fXCDgtjPSE+LqwhqFpRqiKHB0IAKiwEDET7ZUoZyokyk1++JjXidRvxsdmEtkWc0UiIXcJNKbleOLw93UTYOBgJfZZJZKrY6sCG1k40AkwPhysxANOGz0+Xy4bCoTa+skK3WSd3tmhn0urq6374IPBX0bz23BpSikKiUGvF78djsCAtlKFZ9D48I2EhJxOria6DQ9n4xGubDaTiBEATIWpu2Iw8nlZGdRfjQQ4lpqHZskEbI58KgaNknBo6rk6lXcXo1CrUa6WiFXq9Lj93BxtVMxOBOJcdliGtaJYJQrFvkagx4f1zKd78kmCCzonWNlAYq6tYow4g1wIdUZqDfs9nM730kEBExWKtbqwognaGlIvxcRCdtdLFYzHcdDqpObO6SUhzSHJeFwiAozFonnAN8dOb4rs3gLT6LC8SSe03YSdC/vx+NSP/bLMK7rOqVS6ZnCsR94RjieCrxjCMfDomWS3osxeplMhrGxMQKBAMePH99Yb6+D+axwPxUimUwyPj5OPB7f8CI8yNqw96MGa7Ua4+PjAJw+fXpPyQY8ePBfuVxmdHQURVF4+eWXN26G9zKHa5pGd3c33d3d6LpOOp1mfX2d69evU6/XCQaDhEIhQqFQxzSXeq3OFz79ZeanEuiyBJKMIEnk83lMVUSWbWRLNXwOlYWlDF39Aabmk4wcCDN6bYGjh+IIqsSVm8scPRLj1kKSXLHCiyf7SObKzK5kOHk4TjJX5PhglEpdZ3xmhUq9Qdzvojvq5drCGsVKHaemEPA7WM0UONEXxTAMMpUqb03dLUYFGOkOcnVxjYGgD7/LjiyJvDWz2fsvCOCzy8wVNoten13DZdc4ZY+xli+ykMmhygUyyQrl+qZHIux0sFJtL4oVEVLFAoZhEnXYibpdKJKELEuMLq9Q00vMpJvF71DAz6iFihhxu1jdpljEnE6uWBT4gzY7k9XOgr3P68FelvEoKqokgwm1RgNTAI+kkatVWajlgTyyKBCwO1jbRlxUSWTWQqmQRIGFonUBX7DI+oBmcKEVDrj8XLEYedstapamc5skc9OCVAC4FOtC8JgvZpk4LglChyF947zcIcuxuk5J5XrWmog0gwY7vRg2UeZ20bpl6qA7wpW8dbL4YEplVpolGAzidDp3lS/xpCkc+1VIPwrud094O9SP/Qz9A555OJ7hGR4STz3h2DpS9lEuUq0L6IEDB+jv72+7cG59jUcN+dsJO7VUmabJ7Owst2/f5siRI/T09DzU2rC3hCOfzzM6OorH40EUxX3Z6XqQlqpMJsPo6CiRSISjR48+VHK4JEkb5MI0TQqFAuvr6ywuLnL9+vW21iuzBn/4775EKlkEVUXWVMo1nfVECkOSiUb9FMp1vN6muhHp8WGYJgODQbKFKscOxZldz9IT9dLT4+PCjUUO9IUY7A3yxrV5BOCF472kCiXm1rIMyCJr+SJDcT+NhoHNofLWXc+GLAkcG4xSrjVIZEtMLKwxFA9uGLsBXj7QQ6WhE3U7mUlkqBs6qUqlbbNm0OdgMl+i1+ch4nJSrNYwZYHR+c1dfUkUsKsyy4VNsiEI4HfbWburbnhtGr1eDwGnneVcnmo2x1qxzFqxTLfDxny1fTKRJAro6B05GsejEa5YtEeFXA5WtvhNRAT8ooiiapz1eBEFkZquk6/WcChyx7QsgNPRqKWB/FQkZmkgPxmOcmHdYmxuKMrFROfjTwQjlunhPS4Pl1OdxzVBZL5mPVLX63GzlOuc5nTY5eeyRY5GxObk2g5EQDetNzWO+aJcsZhAJQowV7JWHQY0D9crnUqNJAjMlq39HgddYa4WOj9HgFTdOj39qDPOycgQyWSS6elpFEUhFAoRDAZ3VCGfRDXhSTynByFBj0v92M/QP+CZwrEPeObh2BukUil+/Md/nC996UuIosj73/9+fv3Xf33H72wqleITn/gEf/VXf8Xc3BzhcJjv+77v45Of/CRer3fznC3qnj/8wz/kB3/wBx/o/N4xhONhd0ZaF8tGo/FQFzjDMLh+/TorKyucOXOGYDDY8ZitCsF+wUrh0HWdiYkJEokEL7zwAj6f76HW3ko49gKt6Vj9/f2MjIzw9a9/fV8+m90Sjla44FayuDXMDx48OVwQBNxuN263m6GhobbWq9FvXeLin91AlG1oHjeCIFKv1smVimhuJ96gl3K5hsvvYGU1T6THw8xskr7BEKlsCRMTU1aQBAEUkXy5xmDcj2pTuDy1zPGhKJpd4c0bzd3e3qgXv9dBrlJjYnadUwfjjE0vE3Da6Y94aWDy5u3NVpgTgzEuza3QF/IScjmQFZHXpzZ/7tQUDAFKtWYrlF2R6HIoyKpKyG6ykMqxkMrx3ECciwvtReip3ljbMRF4sb+bqq5zOhZlNV9kJV+g7tT55vRcG6FRJZGq1Pk7OBrycznZXqDaJKlNZRBMCDrsDPn96KbB85EuKo0GiWKR9VKJLp+PK+kU0K5CHAh2qm6yKLBc6ixubZLEdLZzl98mSUzlOotuSRSY30HdKBvW/omw3cmChfH7eDDKxWRnIT7g8nE911nUi8Bc0VqR6HN5WU91qgsDTh8389aZHGXd+nyPeWJcszCeC5is7tCaddQTYyLf2eYFkNMtgj+AQUeQOQvyAvD3u87QHd1UITOZDMlkktu3b1OpVPD7/RtFbmvk6ZOocDyJHo5HOaed1I/WBo3b7d4gIK2Nqd2e034pHKqqPnFjgN8ReNZStSf4oR/6IZaXl/nqV79KvV7ngx/8IB/+8If5/Oc/b/n4paUllpaW+PSnP83Ro0eZnZ3lR3/0R1laWuKP//iP2x77n//zf+bVV1/d+PfD1JPvGMLxsBAE4aGzOCqVCuPj421+DSs8KqnZDbZ7OCqVCmNjYwCcO3fukSYpbR0F+ygwTZPp6WmmpqY4fvw48Xjc8tz3CvcjHKZpMjk5yezsbFu44Fa/hiAIe3KTb7VepaYL3PnGGnaXj2KjQSlfQtCqNEwwRIWA18XychZnwEFmLYdkl5meSRDt8XHx8hxHjsRZyxSZvJHi+dP9LCdzLKxlOXYoBgj4XXYkReL8zQV6Iz7iQRcTiwlmbzeLu1MjMaoNnaM9YW4tJjBFH5dnNnezXzjQTd0w6Pa7mU9kUSSRuaXNwlAQmlOs0qUyz/XGyBRKpAslVqo6hXxm43Ej0QDji+275IdjIa6trHEoHMSlqpRqdRqGwcWF5Y1gQWiGAebqtY7r8vGuaIfaELSp3EhvFvOSIBB3uhgO+inU63Q5XGQqVVYLBTKlCotynsV8ezEddTi4ns2wHSfCYS4nOxWAU9EoFyxUjOPhKBcsjOUnwhHOW6obMS4mOo8fD4S5ZpEqHre7uGKhbkiCwHyxs10LwG+zMVtsfqaqKKOJEooo0ef2kqgUCCBg6gZGo4Gh68iCSLlY5rgziizLiIJAK/7bo6gEVdfdf5sbI5LtskxZb3DK3dv2OzNNcIoyx109IAiYmGBCuVxC1Q0kh52urb6K5rI4RWUj6G9rze+QFCpGjROuZkuLefdFTEzcsopTtDXPSWj+1MREFiW+K7SZLC5J0ga5gOaudTKZJJFIMDk5ic1mIxgMPiMcu8ReFff3Uj+uXLnyQOrHfrWeFQqFXbXjPcOD45nC8ei4fv06r732GufPn+f5558H4Dd+4zd473vfy6c//Wm6uro6nnP8+HH+x//4Hxv/Hh4e5pd+6Zf4x//4H9NoNNo6cnw+330nmt4PTz3hgIebwtQa4RoMBjl27Ng9L7qCIOxbUd3C1paqlpdkN+f2IOs/yvnrus61a9dIpVK8+OKLbXLdfo3dvZdpfPu0rlZf7n4lhwN8479/mzf+6ioNQUJy2nEJEsVqhUK1go4MAiQzGWoCOCWdhmDi99gQNJFKtcFzp/sYu7HIUF+QSMzNW9fmcDtUzhzr4frMGoVyjZOH41QbDYa7g+RLVW6tpMiVqoS9Toa6A9xaSpC667E4NRxjbGYZv8tGf8iPTZN4fXJTyQi67CTLFWq6jijAcCRA2Ovkznqa5WyB5XQBUYDukIe59CYpcds0UpUKumniVBT6Az7cmtI81jC5tdpUIyRRoCfgbSMbAMe6Ih1TqQYDPsa2mMclQaDb46bf76Vcb1Cu10kUiiTKFUqlCv+7OE9jW4vV2e44F1Y6iULT59E+QkkSBFIWfg67LHcE/wG4FZWbFuF/DlnmVrazPUgWdyYJhmDiV+04ZBlNbP5PESWCdjtdtSqlUolGo4HL6QJRxKOqrFdK+GUHdd2gZuhU9QZOWeFGMompi1R0kwp1WqEWDkllMt/5+ie9Ia5YqBgeWaVm6paJ52eCXYylO4lTt8PDUiZj+R5P+CJctpiOFbd5WMlafy5n/d2MZTqVD4eoYAoGFYtz+97YMWRT2LFYdzgcOBwOent7aTQapNNpkskkq6urGIbB5cuXN4rcvRp//bB4EknQfhX3j6J+7FdLVYtwPMM+4ClUOHK5doVX07QOn+eD4PXXX8fn822QDYB3v/vdiKLIm2++yfd///fvap1sNovH4+lo//+xH/sx/tk/+2cMDQ3xoz/6o3zwgx984OvRM8LBgxOO+fl5bty4wcGDB+nr69vVh76fo2Vb6xuGcU8vyaPgUUL0WmqLIAicO3eu449qvwjHTqbxSqXC6OgokiS1TevaL7JhGAZf/Oxr3BqfR7RpmKZAtW6SL+cQNAlvKICkKs3CXpUwckXqhk6xVEbKGzQMAafbRqZYoSfmRbLJzK1kOHUwTg2T89cXsGsyZ4/1ML2WZj1TJOCxI6kSUY+LiNeJIAqcn1xAN5qfx4nBKDomB+NBJpdT5JwVri1vXgA1WcLnsaPJEn0BDzPrGRRZ4tuT7anex3sjXFra3I23KzIneyOUag08qspcKsv15XWO90S4vd7eVnSqJ9YxKnck5G8jFgBBu52o20nAYaehG6TLFZZyeXyqxjdnOk3CsYCXVKK9+HdKEtctplUdCgYsfR6nolFLL8axSJjzq53F9aFgqEPdcMkKpyJRVsoFepweVLGZ3i0g4FYVUtUKEdVFVdepNOqU6nXiLhfX7gYhptk0jfs1GzfSCarGlr/BSrNlbNDjY6aQ6TingUgXM6XO48MeP5MWJnIBk9QORvWIKTFldP7MLauWAYAAcYeLpUrn63tlG7d2MKt3Oz2s1DoJhyZI3LLwmwAc9IS5lLVuwXpv9Ghba2Tr79pKuZRlmXA4TDgcRlVV8vk8Xq+X1dVVbt26hcPh2CAfXq/3saoNLT/Zk6RwtNpO9/ucHlT92E8PxzOF4xn2CtvH/3/iE5/gF37hFx56vZWVFSKRSNsxWZYJBAK7jmVIJBJ88pOf5MMf/nDb8V/8xV/k7/7dv4vD4eCv/uqv+Bf/4l9QKBT4l//yXz7QOb5jCMejXARkWd5V2rhhGExMTLC2tvbAI1z3m3CIosja2hqVSmVHL8mj4GEVmmw2y+joKMFgkOPHj1venPaTcGxft3U+oVCIY8eOtZnDd5pE9SgoFyv8t0/9GWsreXRFQRclDFGgVCwgORVMVBqmQLVaJ1us4fbZqRoC5aJOrDfI9durHBj2k8wWWM9WGe73Uq/XKJVrVE2TlVSOkwfiiIrAW7ea6kTQY2ewJ8Sd5RQ3ZtcZjPtZzOYxDJND3SH8bjujM8tU7k6JCnkcJEtlag0dt01lMBJAUUQuz69SuxvKF/W6mEll2sjGsZ4wEysJDkWCuDSVbKmCx2XjW1PtJOBkT5RLy+272YMW425VUcSuqZyIRpAFkVKtzkquwIDfxxuz7QWlJkmslDpN0seiIcsxuH1eNxMWbVN1i++dTZKYznU+1quoLBfzDLp9OBQFTZKREJBFkaquc8wbplSvU6jXyFarmA24vL5GvtY+fUsUIOp0WfpAYjuY+4Y8Pi4kOwnQUX+Y61mLEbmSzI2sdVHv3mHK1VF/hAmLVi4BKKoiWNgnBh1erhQ6X18VRW7v4Pc44LUenysJAnd2yOQ44o1yeQdSUdyBJPU5/LwQHcQwjI2NhNbfObBBOqzIh2maaJpGf38//f391Ov1jSL36tWrjz3cbithelKwnwF798L91I+WzyKTyTyQ9+N+KBaLzxSO/cJTqHDMz8+35aDtpG78zM/8DP/u3/27ey55/fr1Rz6tXC7H+973Po4ePdpBfH7+539+4/8/99xzFItFfvVXf/XpJRyPgt2Qge2eiJ38Go/yGg+LWq3G2toauq5z7ty5DePjXuJhSEHLjD0yMsLAwMCORfzjIhzLy8tcvXq17Xy2m8P3kmwkFlN84Ve/TDpXRlBtdydR1VlfzyDaNPwuD2uJIl0xG4vLWbr7/NyaTjA8FOLOUpJSuc5zz/Vy4eoC0ZCLI4d8TEyvY5om/XEHxWKBbL5CNNTg2uQ6w90BXDaNVKnC+ZvNgq4r5AEZDveEmV/Pki9Xmc/kNsiGQ1Xwe+zYNYVorcHUagpJErgwvblbr8kSiipRLNQRTIi4bPSHA+RqNSQEbq00W4Z6Ax6uLLUXrGG3g8lk+266IonUMehyuwk67UiIZCsV/A4b57eZzMNOBxNrnYXrsa5Ih59DFgVSFeuxtjdznbvmgzYbd+6SELesEHDYcSkaYaedQr3OoNtHVdcp1poEYijg44JFjsbz8XhHujk0VRKrsMCToSjjFrkeAx4fE2kL8iBKTKStd/d3qqWOB8JcsDCRBzQ7V9PW+RbiDt/7Y77IjuGAyxYG9uZzooxbtD8BO+Z4HPFGLQ3mAJUdTPRddi+TBWuS8ve6jgPNv+mtgy+2Kplbr8lbH7ddTVAUhWg0SjQaxTRN8vl8R4tPawS22+3e813wJ5lwvJ3nZKV+XL9+nVKp9MDej/uhUCg8m1C1T9h0ir3z0XqfHo9nV8HLP/mTP8mP/MiP3PMxQ0NDxGIx1tba7xONRoNUKnVf70U+n+fVV1/F7XbzxS9+8b6DEV566SU++clPUq1WH6gN7Bnh4P5koOXXCIVCHD169KF2dPaLcLTGy0qShN/v3xeyAQ/WUmWaJrdv32Zubq7NjH2vtfeTcJimydTUFNPT05w6dWpDdmwVHq22q728cU6Oz/Bn/7+vUjMERM2OjkixUiVXbE6i8oV81HWdSI+Pck0nEPVQrusEgk7SxTKhgAvZJjO/kuX4wTgVU+fq1BojvUFsTpXLk80Cd7DLTa6QJ+hQmVtJ0xXxMLeWw67KHOwLkavUmFpuFvw+l40aAoVKDY9DYyjiwxQFrsyvbrRaHe4OMT7XXjwf749SrFYZcNtIVXVS5Sr2YomZZGbjMaosYohQ2/IdEQTwOW2srZeIuJzE3C4UUURTZUYXlqk0Gizc9X70+jyMLlnkaHidrK22+yu6PC4urXQWwKfiUUuPhl2R8YoSXk3D73I3p3uZUDEaxIsiqUqFQrVOoVrHIYpMp0VKerviGbDZuJLoLPq9msY1C0XFJknczlqPg03XrCct+WwaWEx27VE0btc71Zw+l4drFgQFTJbLnVOmAIa9fs4nOolA3O5iImNNanaqBA57QzvmeCR3ICKHPSFuWSgiACbW14C4zc3t/A5tWzY3yxZtWyIC77tLONqO3/0b3zo5cKv60VK6G43GxvVj+3VBEISNYmFwcJBarUYymdzIOhIEYaPADQQCezLV6Eko7rfjSTwnVVWx2+04HA5GRkb2bPIVPFM49hVPocKxW7TaPO+Hc+fOkclkuHjxImfPngXYmAD60ksv7fi8XC7Hd3/3d6NpGn/+53++K6/a+Pg4fr//gT0n7xjC8Sg7Sq208e0wTZP5+Xlu3rzJoUOH6O3tfaRE870mHCsrK1y5coXBwUFEUewwIe0ldttStVNS973wKP6Qe6FlGr906RKZTIaXX375sZjDz39lnK//8VvogkhDEDAN0CWDfKmI3ePG4XGyvJIl1ufn1tQ6wwcjzCyk8PrsqE6FG5OrnDrZQ6nSIJcv4/RqKIrEQNyPbFO4PLlCyOtgsDfI1dlViuUakijQFXFRrlTo89tIlxssp3OsZJvFuiZLRIIuNFkm4LQzuZxEEEXGZjcL9JjXxUImh2maDIX9+Bw2NFXm9al238bpgRhj8+3k4GhPlNG76oRdkenze4m4nSRLZfyajfVckfVckYGgj7nlLPoWb40ggKxIG6SnhWPxMFdXLQzMDhsLxc3KXDCh2+umous8F40hCSK6YVCs1XFIIpfX1zGBTLXBbK5ZuJ/tjnN1vXPtQb+Pq+lOojAQ8FmmhB/wByxVj2ORiPXEqlCEKymLCVQOF1csVA8Bk7Rg/bcRdjiZtxqRG4hw1YI8KKLIZM4636LH5WGl2klS4nYX13cgItoOmULdmov5mvW1yCZbF98hzcGNHbwg3Q4vq9XO9UQBZnfI+Hgh2E/Udv+Atu3qh2EY5PN5EonEhpF86+OsClRVVYnH48TjcQzD2ChyZ2dnmZiYwOPxbBAQl8v1UNearW1gTwp0Xd+zKX57CV3X0TRtTydfwaaH4xn2Hs+mVD06jhw5wquvvsqHPvQhfvu3f5t6vc5HP/pRfvAHf3BjQtXi4iLvete7+P3f/31efPFFcrkc73nPeyiVSvzBH/wBuVxuo44Mh8NIksSXvvQlVldXefnll7HZbHz1q1/ll3/5l/nX//pfP/A5vmMIB7DRIvOgsBqLq+s6169ffyi/hhX2knC0xrnOzMxw8uRJotEos7Oz++4RuR/hKJVKjI6Oomka586d2/XO3n4pHI1Gg3q9TqVSaTOrb93J3Guy8Rf/99e48u1JdFECRUUQRMqNGrlsGUNQcdttpFIlHEEHiWSB3qEgt6fXOXAwyviNRXxeO0ePdjE6sYgii5w83sPscprVVIHDI1FK1TpHBiIgwIVbTRO4265yZDjG3FqW1WwNWRaIhZzMJQvIIvT4HNgcGreXUjTufs4nBmOMbiEbbk2hP+qjVK0zs57hzmqa/rCPxWyujWwc7Q53kI1j3RF0w+BMd4xUscxCKkehXGM6ndnwgEBzKpUhmG1kA+B0T5zRbeZxmyyxVmzf1Q867AwH/dRNg+fjcWr1BtlKlbVCkbDDydg2Y5yASVBTOjaUnIrCbQtSEbDbmcx3FrZuSeLyWqf64lE1JpKdO/yKJDKds864KOvWXrEut5vlSmfBf8gT4HrB4lw1O1ctiAuAvsMW2vFAhLFUJzmyiRI3LXwgAD1ODysW5xXU7DsqIiGbnaV65+foQGQiY90yNeDyk0x3qjiiALNFa1Jx2B3let7aDPm9FurG/SCKIoVCgUuXLtHd3U1fX99Gy+XWa8a9vB+iKOLz+fD5fAwPD1OpVDbUj9nZWWRZ3ihw/X7/roNg92Nj5FHxJI7phZ1H9T5q7sezlqp9xDOFY0/wuc99jo9+9KO8613v2gj+++xnP7vx83q9zs2bNzdCLEdHR3nzzTcBGBkZaVtrenqagYEBFEXhN3/zN/n4xz+OaZqMjIzwH/7Df+BDH/rQA5/fO4pwPCy2k4Gtfo1XXnllT8Yh7hXhaDQaXLp0iWKx2LZj/zjH7lqh1U7Q1dXFoUOHHuhGtNM0qUdBLpfj8uXLALzwwgtIktRmDm/1aO/VDbxea/CFX/0Sc5NrCJqGYQhUawbZUgHZIeEJ+BBUBSQBm8+GAIheDRDoHwwys5Ti0EiUmmEwMbnCiYNxspUqb16ZQxQFXjjZx3Iyz+xymgP9Ie6spemP+nHYFERF4o3rTaO2IMDB/jB13eBkv5PJpSR2p42Jpc2ircvvYGJpjajXRZfPRbFSR9Vk3tgS/udQZfLVcpupOui0M5/J0u3zEHE7aOgm+UqFhUyOTGmzTUgUwGaTqRXavy/bQ/+g6dG4vsWjoYgicY+LgYCPYr1O3OUmV6mymi9QKFWZFbOsFtoL036/l0urFp4Ih51pC0/H4UjIsvVqwO/josXxA9GwpbrR73RyJdNZDJ8MR7iw3vn4w4EQNzKdBMWv2bhqka8BUBWt/y5GfAHOr3e2RvW7vFzPWJOHzA6tXMcCUUZTnWtposStnHXL1JA7yIVUp/FbE0Vu7WAWPxKIWY61FYB5i2laAEc8Ua7nrEmFvMM1xiVrfFfkgOXP7oVW6+zg4CADAwNtP2upH63/WXk/rK55NpuN7u5m6KBhGBuhg1NTU5TLZXw+X1vo4E7XoydtQhU8uYRjN1Oqdqt+SJKE0+mkr69vz1qqHjQNemZmhsHBQcuffeELX+AHfuAHNt7TdjxMGvQz/O1FIBDYMeQPYGBgoK3W+q7v+q771l6vvvpqW+Dfo+AZ4aCdDKRSKcbHx4lEIhw9enTPLqh7QTiKxSKjo6PYbLYOBeFxjd21wtzcHDdv3uTw4cMdo952g71uqWq1mvX19TE9Pb1BNvbLHJ5L5vn8p/6cXKaMLisgiOiyQLFaQPOogIrNbWdlJUeoy8vS9BpDR+LcvrNOX38QA5NiqUrN1FEUiaDPSaZSZSXRnEBlSAJvXJ0DYKgngMOpEvW5uLOU4uTBLsanmsVtX9hLLOLm5kKCTLFZXJ4YaqaGQ7Ow6w26cGgylXqdtXSBtXSBw90Brsy3F7wRj8Z0pohgQk/QQ9jpAEng9lqKxVSOxVRzB/tYb4TpdLsh+3R/Z8J4t8/NleXNHXFZFOj2eOgNeCnV61TrDVKlMmv5Irpu8u2ZhQ01poUzvfGOfA4ATZUxtl00ZQFyFtq132az9FxEHA4ur3UW/WGHw3JsrkuWuW0xyUoSBeZ2SA8Xhaa3wy41J1wpooQqivS43axXSkiCQL1ao1at4Xa58No1yrpOMOhoZuI1c/MQBTB1OO1rBmcapoEJGKZJwG7HLqqYmDQ71Jr/DdnsrFWLDNgCGwF7rU+nXjfo1wKYbAbtCTTVjYVynqDiRkBoGjsFARGo1HQOOaLNfwsgIFCv15GrVXBoaKp69xmba2qCxHPe5vXBNE0aeoNqvYbcMMiXq/RIbkRZAlHAEKBh6jhEBbesUdV1auamOuSWbdzIWZO0/yN6CJv0YL6JRCLB5cuXOXjwID09PZ2/ux2M561NjN2qH4FAgEAgwIEDByiVSqRSKRKJBHfu3EFVVUKhEMFgEJ/P11Y0P4nF/X6Nn31UPEw2yE7qxxe+8AV+5Vd+heHhYURR5OzZsx2BaA+KB02D7u3tZXm5/br3O7/zO/zqr/4q3/M939N2fC/SoN82PC0Kx1OMZ4SDZktVpVJhdnaWW7duPbJfwwqPSgjW19e5dOkSvb29HDx4sOPc9ssHsXX97YTDMAxu3LjBysrKI7Wd7VVLlWma3Llzhzt37nDy5Ek8Hg/T09MbRGM/zOELt1f4H5/5CsVyAxQFSdOo1OqsJdM4vE50XaKsN5CrDYr1BrZSBWfQyfVbKxw4GOXq7RVEweTo0R5uTq+i6wa9fUEUWWQdAV2EK5PLdIU99ES9XJldZXKluat+4kCcmdU0p4diJHMl/F47b97c3HUe6Q4ysbjGSCyA26axksojKgrXVzbbfXoCTm6utrf/jAQdIAgci4dZTOVYSOQIuZ1tLVgAJ/uiXFpsL/q6/e3EAiDktNMf9BL1uKjrOuliheVcHpeq8q07cx2fqceudaSB+x12rlt4Lo7GwpZejJOxCKMWqsdg0G+pYnR7PaxuM6dD08y+vlLEpSo4ZRWHomCTZKIuF7lqFZHN1r1qrYZNECg2wGX3YAgCVd2gqjcI2x1cX2v6J6pU4W7Ghk2SWC+VyNW2jXatlDkRjnDFIun8TCTGaKLzPbgVlclcmopF25ZbjXLHos1rxOvn8g7qiiJJTOc7n3PMF+bSDs8Zdnu5Y+ETGfEEmEpa+0dOB+LMpPOtTMINOEWZ1eIqdfOufwEZVZSxSTKHnGEWyllUUUIRRGRRQhIEJEHg73eftHydnbC6usrVq1c5evQo8Xj8vo/fyXje2tTYrfrRCh3s6elB1/WN0MGbN29Sq9Xw+/0b6seTGPr3JJIgeHQitFX9+Jmf+Rk+8IEP8OUvf5lf+7Vf40//9E8Jh8O85z3v4Xu+53t49dVXHyh9+WHSoCVJ6niNL37xi/yDf/APOlSRvUiDfjvwzMPxdOAdRTge1sMhCALpdJpUKsXzzz+P3+/f83N7WMJhmiYzMzNMTk5y7NgxywtSa/3H2VJVq9UYHx+nXq8/1Jjg7Ws/6rnrus7Vq1dJp9O89NJLeDweqtXqxs/2uoUK4Oq3bvCV3/smdVMATUUXJMrlCulsHtXpwBv0kclViPrtpLIlevr8rGWKBAMufGEXE5MrHDkQJV2scOHKHPGwh2DYxcSdVRoNg+NH49QaBiM9QUqVOhPzaxsG8RMjccr1OoVShUtTyxwZjHB5tlkEioLAwe4gmk3BqahM3W2nOjEc49LsZnuK12mjqJu47Ro9fjf1Wo1SpcJ0poRuQmtkUn/Ix+WF9gIz6LIzmdjWTiQ08zqCbgeyIFKs1ljKFujzefn2VHv7jSpJJEqdBf5ORvH+gLcjEFASBTLVzjYhj6ZyK91ZKEddTi6vreJSFNyqhktRsMkKDkXBwOT5SBzdNKnrOtVGA1kUmU5kkHWRUqlBiWYh71QUFnJ5CvXatlcw6XK7WCx2jprqcVq3SxwLh7lgETAYd7q4lrJuTUrXOtvEAA4FQpxf7zSqe1Vth2lWzZ9Zodfl5dYOBnNphyIzbnNyp5h5oNdxSopljghAn83Fjcrm79EEqkaDqtFgvVpkodQ56rjb7uWEz/oaaYWlpSVu3LjByZMndzUJxgr3Gru729BBSZIIhUKEQiFM06RUKpFMJllbW+P27dtomrZBSh536OBOeFIJx04ejodFV1cXH/7wh/na177Gu971Lr7jO76Dr3zlK/zWb/0W//Sf/lOee+45vvnNb+7qHrgXadAXL15kfHyc3/zN3+z42V6kQb8teObheCrwjiIcD4Nyuczc3ByNRoPv+I7v2BO/hhUkSaJW216g3Btbi+gXX3wRr9d7z/UfV0tVoVDg4sWLeDwezpw580jyMjw64ahWq4yNjWGaZps5vHWhnZ6eJhqN7qnh72/++7d56ytX0GWJuiCi100MuU6hXMIfDSDKMpW6juqQqTR06roBikilUseQAcPE53aQzJcBk+OH4mTKVS7fWsblUDl0LMb0UopEpkjI76QumjhtKoOxALppcnV2lfpdQ3Z/3M+dtTTD8QB2VWEllSdbqbK0tNl/f3IoxvhdsqFIIoMRPz63naV0noVUlmvFCooEXpftLtloQhYhWyp0tDeFPA7y1RojoQCSIJArV/G57FyYbS94/Q47t9Y7C9fjPZGOtitVEkmUOovpAYuQQICTXVEu3j0umuBRFYIuFz0eN/l6FQkR3TCp6Trlep2A006qWKFYazQVqbs41RVl3CKJ9WxXnEyq89wPh0OWk6mO76BI+BSFaykrL4TJsgU5Aeh2e1gud/7sgC/A7R2IwGLJehTuQX/Q0u/hllUmdvB7RO1O5i0Kep9q2zETpMftZSXZec738oIc8oUZTXWSJIC6bF3MBkWVqYL1Z/De7sOWx60wNzfH5OQkp0+ffuShIC3cb+zubkIHBUHA6XRueAcajQazs7MsLi5y7do1dF1vm670oKMp9wpPckvVfpxXoVDA4/Hw0ksv8dJLL/ELv/ALrK+v8/rrr+96w20v0qD/03/6Txw5coRXXnml7fhepUG/HXimcDwdeKoJR8uv4XK5MAxj38gGPDghKJfLjI2NIYpiWxG9Ex5HS5Wu66ytrXH58mX6+/sZGRnZk92TncYS7wa5XI7R0VH8fj/Hjx9vu9GLosjhw4dZX19nenoau92+MdPa5/M99HjKP/3sa9y6PI8uySAriJJEpV4hky6j2OyIqsrcfIr+kTCTt1fpGwhSNQ2uXV/ixKk+bk2vgQCDgyHypSrLqzkMSaRaq3PiYBxRETk/0TSBe102+nr8pHMlphZTiKJAulTZIBsjXQGcbjvpYoXbC8kN0/iNhc1CcrgrwGq+yKmBGLW6zvRaGodN5c3JdtVhOBbg+kq7anGsrzkC16up+DUZwTRw2BSm1jNUGjpLqWaRG/E4Wch3Frw9QQ+Xl9rVkZjX1dF2BXC8K8rFxc5CXpFEgg47PpsNp6KgSBIiApVGg0Gnh1SxSEHXyZXrqEKFNzK5tjwQgLjHxejySseErJjbyVUL74bPZuOqhXejOYEq03EcoGpY//2NhHYwqdsdTBc7PzO7JHMjbV2gO1Vrb8LRQIhrFoZ0MFnYwVNyKBDkYqKz2FdEcUdSM+Lxc8HiOaIA0wXryVxHfGEu7TCdqtCw3oTptnt2JBU9Li/pgjXpeW/X7gjH9PQ0MzMznDlzZl/73B80dNBKMZBlGbfbjd1u5/nnn6dQKJBIJFhaWuLmzZs4nc6N0EGPx/PYdrSfVIXjYTwcu0GpVOrYtAqHw/z9v//3H1sadLlc5vOf/3xb8nMLe5UG/bbgmcLxVOAdRTh2e6E1TZPZ2Vlu377N4cOH0TSN27dv7+u5PQjheBjj+n63VLXazhYWFjh+/Piuep13i4dVONbW1rh06RJDQ0MMDQ1ttNS1buoAPT09G/P0U6nUhhcGIBQKEQ6HCQaDu1JpysUKf/ipP2d1MYNgs2EYUKo0KFTyKE4Z1W7HF/VSKtXpPxAhlS5y5Hg3V24uMTIUxRN0cuHyHAeHwtQwGZtYxGlXOXggSqFcY6s4NJ4AAQAASURBVH4lTSTiYezWEvGQm1jIzVquyIXrTWIQ9DooNRr43TYOdAdJZEsUdZ1bk5sF4MmROOPTy4iCwFAsgN9lYymbZznV/B/Awe7ghpG8hSPdQSbuJoZLokB/0EfE66RQrRF2OEgUSuTKNUJuO8uZEpVG+3fZbVdY3TbG9lAs1EE2APxOG8uF9hyNHr+Hcr3O6XisOT7XMCnV6ngdGhcXl9EN864a1MTZ3jiXLUhLb8DLulWAoNvJkoWaEHe7LFWG4aCfi8sWKkYkwqjFiNwRv59b6c4C2SHL3NjBu7BdNWrhaCjExfXO1wjYbDuOwt3pGnEsEOHaDuNr1yudY2hbzxlPWe+2rpatn3P0HmnkNdP6uhe3u3ZUPrqcbv7/7P15kGR7XteNv86W+75n1r5X9Xa7b/eduT2OyBPwDDgDjoAIgoJEKMaEGkrgFoobPIAQ6oPoD/BRDAcFRBEGhplnZAbQwYfZbld1V3V1VXXt+5JL5b7nOb8/sjO7svKcXqqr7tb9jrgx06cyT56Tyzmf9/fzeb/fe5XuDgtAoq4/UtYjWIg/WEELpAkGg7qJ3y1L8b29PW7dutV2+Xs78Kyhg3rdj5O2uE6nE6fT2Q4dbLkrta5rJ0MHXyRZ+2l4NxOOi+hwPMml6u1Igwb49V//dYrFIt/3fd/31MeeNQ36FV7hovC+IhzPgkajwfz8PMlksq3XSCaTF9odgGcnHC3Hp4mJCfr7+595/60OhKZp577C1Wg0SCaTFIvFp452nQXPSzg0TWN9fZ3V1VWuXr3avlA/KTlclmVCoRChUAhN08hkMsTjcVZXV5mbm8Pn87W7H3qdrvhuil/76U9TKNVpyDKqBnWgWC9jcZsxmW0odgu5XAm7x0qxXMPmMlOo1PD7HBRqNSRZZHI8TDJX4iiZ4/JYhGK9zp0HTUJx7VKMakNlpM/PzkEas01h+6hZdPlcVob6/OwmMuwcZdlL5BjpD7C0c2JsaiRMXW1wdSDM+uExawcpBmNetpOPV7i9DiuH2UKHq1PQZUNRFG4MRMmXKmwlMhxlChyXyqQKncWd32UnftC5bTTgZDmR7timSGKHvkIAAnYbQwEvNbXBzViUSr1OptTM0fDZrNw7RU4kUSBUc3QFArosZuYPu4voiNPB7EH39pjLwZzO40N2G7NHOg5UJoXFRHchLApwUNQfgbKa9C+llwJB3fGroKywXdO3qd3QGeMCGPF4+ZpOmGDIajfUaIii/rVg3O1jOaf/Onqic4Axp/FzJIO6M2ixGWZ89Njd7Je7308BzdAmd9TpZ62gT1L+zOjr9Dn6iMfjbG1tIYpiWxfh9/uRJInFxUUSiQS3bt16x0Pc9EIHjWx3jVbtjdyVtre329kSre7HWUMHjXDeWonzQGts7byPS9M0CoWCIUG96DToFn7xF3+RP/Wn/tQzvdZZ06DfCbwaqXo58FIRjtNjSq3C8qL1D8/yGqqqsrCwwOHh4Zkcn1oX2PMmHK1Mklqths/nO3eyAc9HOFRVZX5+nkQi0UF+TtrePk0cLghCO5xrbGyMQqFAIpHg8PCQpaUlHA5H+wbidDpZvbvJp//t71GsqGiKjGw1U6xWSWayOHwujpMVIgMmlh8eMDQZ4f78HpNXYhyl8mSyJSamYhwmchRzRRSbiZDfgSyJ5KpVNnaP8bqtDA8EWN5Jks6VEEWB0aEA63sprgyHqdVVaqh89VHWBsDlkQj31g/wOqz0h9yYZIl7WwdUao+/Y6+NRpnZ2D9x3hDw2NhP5xj02JAFgRoSkknuEJMDjPcGmD1llfvaQIS7O52Pc1nNHJUfj8WYJBGvWcGjSDTQcHnclBoqR/kimUKZTTHNYa5zlXzQ79HthFyLhZnW6VbE7BYWjrtXvyMuu263Iui06wq5ezwuDve7V+wng0He2u8u7K+Ew9yLdx9nj9PBfR2rXUkQ2NIJEoRmx+Uo0z1OdNkf1CUPkgArGf0AvH6Xm8N493kErTZDvYXDYOU7anOwlDEY5zJICfeYLIZakEGnl0RSvyuyXdDvYIy5gizn9ffnMZlBZ3ciAt/Sf4WQxUEsFmtnXiQSifaigqIoqKrKtWvXsNlsuvt/p6A3enXSXa8V1FWr1Z6o/TiZLVGpVNqhg1tbW0iS1NH9eFHt3UWNLr0IWh3uiyBC55E0fpY06BZWVlb44he/yGc/+9mu/Z5nGvQ7glcjVS8F3leE40lFZiuYLhKJMDU11XGhfBENwbPiSYSjUqlw9+5dGo3GmR2fWhfY87wJZDIZpqen8fv9RCIRjnWcf84Dz0o4qtUqMzMz7fepRRhPzkWfxYmqJdAcGBigVquRSCTaq6Trd3ZZ/dI+stWGyWEHWeE4VySVzmH3upAkM4oDGqqGN+IinS5y6bVepme3mRgLI9sU3prdIuB30NfvZ3kjTuq4QDjmRgMuDYcRFZG3FnfQtCYpuHWll0K5hiiI3F895NJYmIX1xwXYjYkYDQ2Gw142Do/ZUFVks9RBNi4NhNpkw2ExMRDw4HFYWD86plCoki80i93rw9Euu9vLfaEusuGzW1iJPy54LbJEzO2ix+ckX61RqtZI5oskckUEq8JavtgUyp/ARNDNYqq7yFQUqesabJElNtLdj3WbFZbT3UV8zOU06G44dbsbAZuVOR3bXIsksWzQYeiyrn2EsMPBjo4W40owpEtQXLLMeiGPSRSb+RZC01lMRMAkiThOFPYaoGkqvWYrm+UCJkS0R19vlWbeyEpWn4gMujzEdYiISzEZEpEeu0u362AVJRYMRrPG3D7eSnaL0gH2dITnABOuAEs5fWJjRIYkQWAlr/+cW/5eQpbH8/UnMy9GRka4e/cu+Xwep9PJ3bt3MZvN7ZFKr9f7riqcT49ebW9vs7e3x5UrzfT0Z9V+mM1mYrFYm4BlMhmSySTr6+vMz8/jdrvb3Y8nhQ4a4d04UtV6by7iuAqFwrkYjzxvGnQL/+E//Ad6e3v5yEc+0rXP80yDfkfwinC8FHhfEQ49nNRrTE1N6YY6ybJ8YeNILRiJujOZDDMzM3g8Hq5evXrmlZnWBbbRaHQEAp4Ve3t7zM/PMzo6yuDgIDs7OxemEXkWwpHL5Ziensbtdne8TyfHEM7D9lZRFKLRKNFolN/5t19gZ/oYVTaRLpRpFKuYnWZqDQ1fxIditqDJIhY0qqiYzTKyVSGbLzM5EeG4UKZUqfH6tT7W94+Zvr+DSRG5drWX/XiO7f00E6MhHmwc4rJbGIx6ERWRL88/7mS8NhFjZnWPsNdB1OdEVkTurO6jqq2xMYGg38Hy3uMiOeJ1IIgCrw9GSeVLbMczVGp1vvRwu2OUqj/YbXfrtpnZPlHQCzRF3sNhH6VqjUq9QTJX5DCTRxZF/nC5O0fD77RykO8sWt1WMxvZ7kJ2KhLgQby7iLwUDekKyAMWE+lcrWu732FlN99d9AedNnZPkQFBgyGfh9XjYyyShFlSUCQBRZQJ2C1kKlVEQWgH1wHYFJlcrYrbH0bVNFRNo6GqmCSJbKHCkM1DQ1Opqxp1VaWhqtSqDeyCCVXTqDcaNDQNDZgInhyzevx5RB0O7u0f6d6PRJuFarWbPPTbHSznckiCiCQIiIKALIjIokg8WyQoOZAFAVEQkcXm//a7nByWCoiPcivER3+XBJBUkVuenke/Iw0QqNVr1ItFaiYRk9lMXVNpaCpVVaWmNSg36jhkE6V6nQaPf8fjbj/LBqTCruiTCpMospw1SCp3h3hgkDr+0Z4p3e2NRqO9mPOhD30IRVFoNBptPdf8/Dz1eh2fz9cev7pI85DnxdbWFqurq9y4cQOv19sVOvistruiKOL1evF6vYyOjlIqldrdj/X1dUwmU7v74fV6n+k+9G4cqWrdY8/7uOr1OuVy+VwIx/OmQbfwEz/xE/zET/yE7nPOMw36ncCrkaqXA+9rwtGylU2lUrzxxhuGbiQni9eLuoC2SM1JtIr6kZERhoaGXqhYbt1sXnQ0TNM0lpeX2dra4vr16+1Z0Yt0wXoa4dBzxjotDj/PjI1atc6v/fRvs70SR7RasUkyNlkmVymSzZYxOy0kUzkUe5VyRSPU42Z5Jc6VG/0kU3my+TKegAO/107yuMD6XopqXeW1qRj5ao2vzjYJxchgACSB8f4Ay5sJVEFjZunxSvG1sSiaoNEf8rB9mAYgX6u1yQbAlZEId9f3m2ngLjvlWp18tcr9zcdEwm5WOC4WO8iGIonUNJX6iS6EKAhM9gQpVWtIfi+5coX94xx+u43/72EnsZAkgWK9u/CfjAWY3+8uGAeDXu7udhaLggAHmXTXYz1WCw+OuvcRsJhYzzdX/UTAaTbjNJvw26yoKtyIhNudAk3TMMsymUqFCbePcr1OuVanWKthkiXmdo6onPo+S6LAkd1KXCcfZCoc4IFOwOCtniizOm5Ww14PCzpicVHAcMwq5nTqCtt7nS6WdATpAA2p+Z1vkSCACg2u+IPcN9B1CKKm67R1xR/SFasDDDocrOeycIrTDTo9zB61SIWALCpYJQWrLOOXHTQsAookoggSktgkOJIoImjwuqcXFY262qCmNag2GgStNpZz8aalMZ3XBNlAj2IWJf7PyFjX9lqt1h6hPWnfLUlSe2RS07S269P+/j6Li4s4HI42+XC73e9YjsFJJ63W6OjTQgefxXYXwGq10tvb2w4dTKfTJJNJHj58SLVaxePxtAmI0fjZeS1unSdaHf7z/szyjxZQ3k6TgZcKrzocLwXeV4Tj5EWmWCwyMzODLMt86EMfeqJw6uQ40kURjpMjVZqm8fDhQ7a3tzuK+vN4jRfpQtTrdWZnZ8nn87z55psdqzkX6YJlRDhOhh6edMY6LQ5vreqdB7LJHL/yk7/F8XEJwWJGQ6BYqlEsFFGBBiZ8QT9Hxwf099hJbh+zv58kELXy1swmoaCdSMzDwvIhPq8Np8eGzyyztpmgUKuzvJnA67IyPOBnbT9FcrdZ3E6NhJldO8DtsDAY8aIoEjOre21CYDMrSIpEPttc5babFaYGglQaKgG7jd14lt14lmujEbb2OsdYoj4by0ed2y4NhDjKFnitL/IoR6OMw2rmK8udVrk2k8J+trtzcK0/wvRWZwdCEgUyle6xowEDjcb1vgjTJ0iISQCHotDvtFLWBCwmE6gq2VwOQZLxe5wo6Sz5SpV8pUq2WCFbrOCzWrmv41h1vTfCvE6I4GRfgLd0uidXIiHu6oxZ9bqcuinnkiiwnk53bQdwWSygM010KRjkfkLHblcUWTnWH40K2+3s5LtJSsRuZ11nO0DeIN9jwOU2tPWVDH5DAbOFDYOMj4DVxkb+8f7qqkpOrVBu1JhLVcl1hSPCa/6wYVK5TTSTLNQAAbNkxiErWGUFt8lMtSJwxd6LJDa7MqChojHuDuBQOq/v1WqV6elpzGYz165dM7yu67k+JZNJEokEd+/eBWiPHQUCgbelwNY0jbW1Nba3t7l58yYul8vwsc9ju/uk0MEWuRgbG2uHDiYSCVZWVrBare2/ezyeLuesdxMuatGwNd50nllOr/AKLxveV4SjhZZeIxqNMjk5+dSLYutiXK/XL8xGsNUhqFarzM7OUiqVuH379rk6pbyI+L1YLLZv0Ldv3+66sZ5HGrgR9PatqioPHjwgHo93dKdeVK/xJOws7/Eb//f/oFRTUSWZuipQqdbJlUvYPTZE2YLfYaZYqTE0FiKZLjI8HCJXrZHNlZgY9bF1lONwcZ9oyI7ZYWJ1M44gCoyOhqjVVaaGQ+SLFRa34uSKzeJ8tN+PpEiM9wZY2UlymMqRq1bbZEMQBPpiXtKFMteHIxRKVcq1BnNbR5Srj7VHlwZD3N3oXKEeCTtZPsrgtJjo9buwKApmRWZ264BitcZ+sllIOiwmkjqhe+M9AWZOEQu/w8qCThfjWn+Y6e3uFXKTIuKxWvBYzNhMCiZJRhYFqqrKhN9PvlzluFiiVKsjKRL3j9LUTzlTxdwOvra939GlAehxO5k/0OmG2KzM6Wg6LLLEUkK/W5DWIUsAQYeNbZ3C/kooxD29DA+zmXkdggJ0HX8LlwJB7uroPRRRZNmAiPS69MMBPWYzOzX9c/FbLGzqcBGnYuKBQUdk0OMlHu/+bogCrGUNsje8AeaO9UmFarDC55RNLJ5wtKo06lQadaiUCFqizKT0szy+Z+hGx7/L5TJ37tzB6XRy5cqV5yqKTSZTe6TypJvdxsZGW/fQIh/n7foE3ba9z1PgXlTo4PHxMclkkoWFBer1Ol6vF7/fT7VafdcV4BclZC8UClgslnfdCNn7BYKmIRhcG99veFnOUw/vK8LRsktdWVkx1GvoQRCEC3eqarXzv/SlL+FwOHjzzTfPfbXsrGNPLYIWi8WYmJjQvWBf5Ptz+rgvShz+JMz97wX+xyf/N5U6qJKEbDFRK1cp1MvYPQ7qDRGXx0IilcfmtKAKAvl8BVfAjs1iolZvsJcq0xvzI4oaO/Esu1tFFFlgcMBNIpUjcVzC77NTFzXyxQpj/QE8TisPNo/I7zaLSofNhCYJ5EtVRAGGoj4CXgfrhykOU3kOElksioTH5+ggG0GPnfVEs/gTgJjPhU3SqNUbhJ12jjIFFosJLIqE02mhWO0chxqK+LqyOYZCHu7pEIioz8nc7uNiXgSiXifVeoPrPWEkQaShqhSrddw2MzPbB9RVlePs46L1xkC0y/EKoNfvIb7bvV1Wa7rFesBhY1enA9Pv9xDX6WJcigS5o+N8NRH0s6gjFnc9gTwUdFbvAYa9Xu7oZHXEnA4Wkvr70htPA7hsQEQkQWAto1/sj3r9vKVjnysKsKiThA4w4fXzVly/oD+tgWlh0hPggW7YYHNcTg9OpZNUnMSox8dMUv8YagahilZJ4U9EBtv/LhaL3LlzB7/fz9TU1AtdI0672ZXLZRKJBIlEgrW1NUwmU5t8+Hy+Fy5GNU1jaWmJo6Ojc7HtPa/QwZPjZy1Hv4ODAzKZDPl8nlqtht/vx+VyveMdj4tMGbfb7e/YeN37Hq9Gql4KvK8Ix/HxMZubm2fKirhowpF8NM8dCoWYnJy8kAvXWcaeWrkfk5OT9PX1GT7u7epw5PN5pqencTqdXL16tU3UzlscfhL/89e+xJf+33uokgwmBckkk0xmOc4VCfUGOTrKExkI8GBhj4krPTxY2sflstA75OfB4j7RmBtf0Ek9kSOVKdJAw2o109/joyFozK80izyLWcRk0fBYTKBpJFIFUoUy+VKzcJUkgVjYDYJAwG1n6/AYk0nmywud+onh/mCHRkMSoS/soaGqVKp1tuMZ9hJZoj4re5nOlemJviB3T1ngjsW6gwBFERrC4xV5WRQIux3EPE7qmsaN3ijlWo10oUwiVyTgsHeRE1GAiNfZFXDntJhZPOouVCMuB7P7OrazHifb+e5leb/FpDtK5TKbdTUgkiiwndEfQRINgiTGAl7e0gkAHPF6WdFxbRMFWEnpF+FRh4M9neK93+XioUEXo2jgnjcVCDBnQB6ODML5rgRCzCb1uw5xgxGs0SfkdZgl/QUTu6ywZEBExtx+pg1IRcUg/8OpmFk0sOr9E9FBrI9cvfL5PHfu3CEajTI2Nnbu11iLxdKhezg+PiaRSLC0tESlUsHr9RIMBgkEAs/tNKhpGgsLC+18qPO27T3Z/Whda581dLAFQRBwOBw4HA4GBwe5c+cOdrudSqXC3Nwcmqbh8/na41cXGTpohIsmHK9wMXglGn858L4iHH6/nw9/+MNn8he/KGvc1jzu2toa0HSguKhVkuchTaqqsri4yP7+/jPlfrwdhKOVAt7f398uGC5SHK6qKr/xrz7H8r0tVFmhUtWo1eto9SrFepVATxDZbMYXk5uz4ldirG8lmJqKsXOUYWn5gCtXetg+zLA9v4vfZyfW46FYrrGyEScYdDL/cB+LWWZsMEChVmNlOwkUkWUBl8tEIl3GrEiM9Pqx2kzMrR20OxdRv5ONw86i9upohLnNI4bCXjx2C8VyDbvdxJ3lTlvSsaiLh0edxfVorLuLYZYl0qXH4zduq4WQ207YbaNQqWOLyBznSyRyRQ5SeUBg97hzv31+F3M73YXs1b7u3A6A0bCP6Z3uojPksnckkLfgd9rYyXUX6gGbhWSlu8swGvLpOlxdjoS4d6Cj0XC7dDUa8hM0Gg6LSVej0We2sFHtDvQzi5JuEjlA0GZnU0dI3utwGj7H6J416vEZ2uSqBs+KmK1sGmg0XGZTl1AcwCrJLBpkb0x6A0wnuzssYNzJ8ZoshvkfYy4f0wbjVN/c2xSLt9z++vv7X9iA41kgSVK7u9HKyYjH4+0sH5vN1v77Sd2DHlrjo+l0mjfeeOPCXbJax/KsoYNG3Q9N0/B4PO3QwVwuRyKRYGdnh8XFxXbooN/v1019vwhcFOFoZXC86nBcEF51OF4KvK8IB3DmMCM9F6kXRb1eZ25ujkwmwwc/+EG+/OUvX2gX5VlHqqrVKnfv3qVWq3H79u1nWk27yA5QSz9z9+5dLl++3A5A0nNeOa8Lfilf5ld+8rc43E2jijKqJiBaFRrVEqVSnVBvhONUEatXJrdfIBB1U29o2OxmduMZQkEnXr+dh5txarUGV6dixLNF7i00C60rl2Oks2WujEXY2ElSrNcfkQ0QRIGx4RC1Wh2Htc5OPEc2n+X+1uNC1WqWQYJipVmg9QbdhH0O8uUaFkliY79JREZ6fMysdRZjYbeV9VTnKrdZlsiWq7SmklwWMxGPg5DHTrZcxWU2Ec8UyBbKyAjsHWcpVDqLw+tDEWa2ugmEzWJCTXdeRU2SxLZOOJ/fbuW+Xl6G28GcTncj5nYyp9PFCNptrOnY7JpEeKCzf4B0WT/ZO2Cg0bgcDnH3sPt8fVar4ZiVYFJAh3BcCgWZOeoumi2SxIJBR8Qo3yNgtbKQ0n99l4E5hs9iMXxOr9vDgY5GQwIWDXQdk94AM0l9R6tSQ59U+C1WHmYMUtRdXt4yICklVX8hyCYrfF1kkFQqxb179xgeHmZgYED3sReJk7qHwcFBarUaqVSKRCLB3Nwcqqp2CM9Prvyrqsr9+/fJ5/O88cYb70gq9NNCB426HycF2oIg4HK5cLlcDA8Pt8X3rdRzQRA6QgcvSnx/UaLxQqHwqsNxgXjV4Xg58L4jHGfFeRfULRG2yWTiQx/6ECaT6cLHtp5lpOrkyNJJq8in4aI6HKqqsra2hqZp3Lp1C6/XC3TqNYysHc+K+E6S//JTv0MuX0G0mmk0oFSpUalVyKYreCM+Dg+zWN1W5ud2mLrez+LiAR6vlVCPh9W1OPlihWylyshgkON0kb1Ujngyj9WicGkizH4ix85BBgSYmowyv3qAIouM9AWw2c3MruxTfRTUN9LnZ+3w8aq0BkR9FkRJZKovwH4qTzJToKaqHBw/LrLtFoXjUrlD2yCJYLaaqeWbBaQoCPT4nAyEPOQrNTxWC/FMgeN8CZfVzJcebtM4peLtDbq4t9VZ/DstJlaOukeIJmIBFg+6C+bLfaEuFyuAvoCbGZ2uh1lQdcXEAZdNN1+jz+smvtttX3s5Gmb24AiL2MyVkAUBRZaIOp1kG3VGvF7EVtCeICBLImpD42owSDt5QwABAbus8Hoo0vUabquFdLlM0ydJo1qtUSwVcdvtqIrMNbP10YKdhqo1/9csiox5fDQe2deqWjOro8/l5mE6hSQIVBsNag2VBlrTtSptEOjn8RA/7D53iyQZjjKNeLx8TUfXIQiwbEB4xt0+HhiMU1UMNBV+i9XwGIacXpIVfVKRNRC5e00WHhp0Pv6P6BC51DFzc3NMTEzQ09Oj+7i3G4qiEA6HCYfDaJpGNpslkUiwvb3NgwcPcDqdBAIB/H4/6+vrlMtlbt269Y6MIJ3G02x3T96/Go2G4QLQSfG9qqrt92BjY4MHDx7gcrna78F5dg4uSjSez+ffdQL5V3iF9xreV4TjRS5a50kGjFyyLtJatrX/J52DXp7Fs0IUxfZN57wu6K1OS+WRO9Db4US1PL3Ob//8F6ghgKJQrmrk8mUK9Sounx2TQ8bhsZLIlvBaFfpGQzx4sMfk5Rirmwl2720zPBzA6jCzs5KlVm1gcpgwKRJXxiOIssjX7j+2lr16KUaxUuPySIT1nSSyIvHWwuO/B7x2DrN5NA1GYj6cVjOyIvK1h50jUsMxN6uHnavwgz0+5k5oOWRR4NZ4D8VqHc9AhEy+zH4qhyxI/NHidpfo2mKWu8jGUNjblTIOMBL1d7lVCQIUat2r2U6LiaVDHY2G28HcXmf3QQSCFoVstc6Q14NJljBJIpIgYpZl6qjcikbRgIaqoqoasiiQL1YYdLmpNVSq9WaGQ73RYCeVQ61pVDv61g1sFNgudnceXu+N6o5fjfi9ula+kijgtll0Hb1ed3t1BemDXjdf0dGsAFgFE8fZzuNSBJFr4TArmWOCih1FFJtZFqKEJAioNXjN27QzFsUmSRIEAbuikKtVUdEehRCq1NQGVbVBpV7Ho1go1KvUtMfXoH6Tjc1qN3kBkBT924NDEA07H8MuL28l9PeXqnS/ZwBBi43lrD6xGXb5uGPQ+figPcjs7CyXL18mEukmhu8GCIKA2+3G7XYzMjJCpVIhmUxydHTE+vo6AOFwmOPjY/x+/5k79BcFI+H58fExlUoFSZKoVqtPDR1sie9HR0cpl8vt7sfGxgayLHeEDr7Ie3DRI1WvcEF4NVL1UuDddXU7B7Tm/p8Xsiy/sIbjaanmF6UTacFopKrl3rW6utqRZ/E8OLnidR6Eo1AocOfOHRwOB1euXOGLX/xie98XRTa+8plp/udvfI1aXaAhgGxXqDUq1OQGTpcTi90OSo1yTcXhtFCsNrDYTAyOBFlcPcTntTM+HmZ2cY/yVh2nw8zwSJBkusjGdhKHw8zScrNI7Y14iEZcLG0lSOeahdbYYJD764+LWJfNxFCvj3yxyubBMWs7KYZ6fGzEOzsJk/1+FnY7V7vHejwksgVGAk60RoO6ICNLEl97uNtBIkRRoIHaRTauDoa7iYXQnPM//fOJ+ZzM6nQlrvaHuXdCuyHSFIRf6gmRzBcxKxKyKCI8CuKzWhQ8eQuVRwF8+XKFUrWO22JlOZUlle/UY1zvj+h2Q17vj7Ic7179f60nzD0j0bmOk5UgwKqBRa7Dor/aPBUKMKcjSDeJIg9T+h0Jn83Kuk7AYZ/LxaqO8LyhaZTVBlkdm95xn48ZnTEvgKmAn4VkN7EZ8niY23+83STKWGUZSdVwC2Ym7TYUqflZSYKIIDSJVR2V694IVbWZJl5u1MnVK0y4/bxlIPxOlvUF6zGbk7WcvqvWgNNDvKL/vEJd3wnMJsk4D465du21c8sxejtgNpsJhULs7e21sz/S6TSrq6vMzc3h9Xrbo1fvtgK3dd3PZDLMz88zPj6O2+1+LttdaIrve3p66OnpQVXVdujgysoK5XIZj8fT7n48r3j+ogjHq5Gqi8WrkaqXA+87wnFWvGiHQ1VV5ufnSSQSHaNB5/kaT4NeB6XRaDA/P08qlTqTe1cLJ1e5XhStDlBvby/j4+Pt96Rer3cIGs+TbHz2//k97v7vh6iihGAxYTIrJOIZSo06DpeTfLGOYKpTaagkt5OMXoqxuhbHK4IgS/TEvDQaKrOLe5hNChNjEeLZAnfmHqWGDwU4Os5zZSzKcbqI3WHiaw922oV+LORiO5Eh5LUT9jnJ5ctYbCa+Or/dPkan3cxxqdxBGMI+BxvxLHaLQq/fjUkWqFZrbCVyFKsnxZ3QE/J0dSyuDoW7sjkcFoWtZLe+4tpAhLs6Gg233UypXsdtNWMzmTBJIrIo0hA0LoUCFKs1cqVmCJ+siUyv71Gtd37PI24HR4UCjVNsJmC3sHbcTQa8NqtuYrlJklhJ6Bf2egU6QMhpZ0eHcIz7PCym0l3bXRYzCwYdibrBYsZUOKgbGmgSRR7qJI4DhB12tnXE4n6bhSUd4gDgMOsTIb/VwpKOrS+Az2Jl7QThqakqtWoVkyCwUixQ0lkEeT0c4Y6BTW5aruJULTgUEzZFRkZAUBtIDZVqvsak4kaUJTRJpIpKoV6lz+5ir6QvTE9V9DsifrOx5uOy5OCNG68/1ezi3YZarcbdu3cRBIGbN28iyzKhUIjx8XGKxWLbdndlZQWz2UwgECAYDOL1et9xy1mAVCrF3bt3u0bYnsV2t/X/T0IURXw+Hz6fryN0MJlMsrq6itls7ggdfBqZuEgNx6uRqgvEqw7HS4FXhOMRXoQMlMtlZmZmADpyI/Re4yJHqk53OFrHJQgCt2/ffiFBYutG8aKEqWXDe7ID1CIWpVKpPc97XmSjVq3xX37qt9lejaMpCtWaRqPSoFIsk8qU6RuPsLuTYXAszMzdLSanohRqDe7c2WRyKkKp3mB99YihoQANEYYHg2zvpEjlS+zspxFFgcnRMHVNI5Mtkzreo7/Xx+peqk02BmJefF47ahz241kO4zmuTsS4t/q4oBMEiIRcLG03i+yg20bE50QxyUipHPvJLA8f/W2kz99BNgB6vRY24+mObUG3ncXd7sJ1OObn3glrXEUSCbvtCDS7CqIg0GioFKs1XFYz97YPaKga6ZM5GkNRZja6C9KBkIeZTR0HKo9D14GqJ+AhrpP1MRj0ML2tk6MRCzKjk9MxGvSxkuwmIg6TYkgeVIMCLiCLrFW7v+cRp4PFuP6+jNyXpsIBXSIiCYJudwOaQXuJg+5zf1IXZcjjJXmgr9EwShafCoa4p5PxAZA36CxE7Q5WH+V/5E/lkLwRjvHgaA90tPlSXcRUU3CZTDhMZqyyjFmSsSsKVa2Bx2OjpjUoN2rkG1Wy1TJDTh/J5G73zoDvnLrxniQb09PTKIrCa6+91lUY22w2+vv76e/vp9FotNO+5+fnqdfr+Hy+dvfjop2s9JBMJrl37x6Tk5NtY48WnhY6+Cy2u9B8D2w2G319fe3RrWQyyeLiIrVard0B8vl8utbDjUbjQsbSXmk4Lh4v88r/y4L3HeE460jVWQlHOp1mZmYGv9/P5cuXn7i6ctEjVSfPIZPJMD09jd/vf+60XT2cdCY5C07a8J4Wh6uqisfj4Stf+Qput7sdNPWiLexsMs+v/LNPcZwsUtck6g1oiCJVqtQ0jd7RCKoqEBvwk8mVGJuIsBvP4fXZ6Okb4O78LvW6yuREhHKjwcZGApNJItbvJVeocG0yRr5UYeswTS7fXF0P+h2kikWiQRcum4XDeBZJFpk+odsY7vNzf72zaH59qodKrcHVwTAHyRyJ4yI9QTfTp7QckwMBHux0rvpGfA72893z8VazwFG++X1zWEwEXXZ8DisqGtd6wxQrNVL5EulCiaDL0U0ghCaBON01sZpkVo66C1+f3cL8ro6jlMvOfR09hM9uYX6v+/E2k8JDHZIgCHCY0x+9sZj0L2Xj4YCuRqPf6+ahTqdEEKBgQHZDdiv7OnkVPS4nD3XIDkDZKEcjGOR+XN9N67Cof46TwSCzBgQhbvCcCV/A0AXLKPXcb7WybCBY73U62S/qZ3YY5X+EzBZ2Hz0nUS6RKD/+rt4Kx3RDCgEKljpB0YXTZMIqy6jVKrVaDZ/LxUeGpnSf825FtVrlzp07WK1Wrl279tTrsSRJhEIhQqEQmqaRz+dJJBLs7++zuLiIw+Fokw+3233hdq1PIht6OK39OIvt7knr4fHxcQqFAslkksPDQx4+fIjNZmt3P9xud3vB7aI0HHpTC69wTtA0umZ53694Wc5TB+87wnFWyLLcFi8/K3Z2dlhYWGBsbIyBgYGnXvTfDtF4tVplb2+P+fl5RkdHzzX346yEozVGUKlUOmx4Wy34lkNVpVIhHo8Tj8dZWVnBZrO1ycfz3lR3lvf5b//ysxRLdUSzGVEGraFSqpXIZWr0j8dYWz5iaDJCMlWkVldxBRQcdhOSInF/cZ+JsTCCLPJw7YhypY4oC7z2Wi/JdJFkMk+t2kC2yG2yMdjrxe21s7l3zOZ2cxX4ylSU2ZXHBa/HZSWRK+K2m4kFPQgaaILG9MM91BOF/XDMx+xaJynxOiys7J8qBAWw20zsZ/KIAoTcDrwOK3azRDpfJGI3ky3VKBSqFApVhBisncr2CLhtzO90F7+X+0Lc19k+2RNkWqeL0R/y6nY3enxOjra7i9GBgFe3izERDeh3N6JB7h90j1mFnXYe6GwXBNgxCPrz2axsprvHyqZCAR7odDFEAVaMRqNcDnZ0nLQiTjtLBs/B4Ks87PWwqqP3AGho+r+9freLzaxOKAhgNRB+OxUTiwZEZNDtJnGkP+aUKOkLv3sdLjZz+scw4PVydKT/vEOdkTIAn9nKYjqJqmldROZj4R5M0nvn1lWpVDr0as+7+CMIAk6ns635aFnOJhIJ7t69C9AuzP1+/7lbziYSCe7du8elS5fOpP87q+3uSZwMHRwYGKBWq7W7H/Pz8zQaDXw+H8Vi8UI6Ea9Gql7hFV4c752r9gXjeUPzlpaW2Nvb4/XXX8fv95/7a5wFoiiSTqc5PDzk+vXr5y6mPMvxFwoFpqensdlsvPnmm+12t54TlcVioa+vj76+Pur1Oslkkng8zszMDKIotsmHz+d74irW7BcX+H//4x+iiiKixUyhVCeTKaKZoV4XcQY8bG8miQ4FufPWFmNTEepig/n7e0xd6UE0SZgtCrlihcNkHpvNxNhIiDoaX73bTP22WhTsLgsNVeXaRIzDRBZRkZl58LgjcXki0iYbZkViMObD7jCzH8+xl8hynDnAblUw25QOsmE1y+Qqla4VaJMJqiUNgeaIks9lxeu0kimU6fO5OEwXOEzlSedKOOxmEtnOonEgYOsiGwARn5P4VudjRVEgWeguEp0WE0s6Nrh+h1WXtPgdVu7rdDGcFjMLOiRBFgU2dXQVAOW6/nevx+visNBNaC5Hgswddr+G02wyHLMSRH0m0GezsFHqnhWSBHiY0N9Xj8up2xHxWCwsJvRdnjxWi26goNdirOsI2Wxs6RAOkyga6jrGfD6mj/TF52mdHBGAHofTcDwr6nCwU9AnD0adj4DZwnZJv1sy6PKQTOhrSL6xb1h3+7sR5XKZt956C4/Hw6VLl85Fh6FnORuPx1lfX+f+/fu43e42AXE4HC+04BSPx8/VCUxv9Oos3Q9FUTo6QLlcjmQySSqVYm1tjXg83u5+uFyuF150KxQKOJ3OF9rHKxjjlWj85cArwvEIz1pMt6xcq9XqM4fmPe9rnAX1ep29vT3K5TK3b9++kNWY5+1wtMThPT09TExMdCSHt24wRuJwWZbbXvYtJ5N4PM7S0hKVSgW/308oFOoK0vr9X/0jvvb5OWoNgWpVxeQQqaoN6oqGx+2mUge7w4JgVsjnK1z/wCDzC3uYLQo33hhkfumAcrlGX78Xq91Mv83EylqcaAwePGwWaD6PlaGhIHtHWfYPm/9dnooxt/y4QBrs85IplnhtLEqpXGNj7xizWeHOQueIVH+Pj/mNzjGZkb4Ac49GrsyKhM9hxmkRkMx2LOY6h6kcR6k8lUqd7XiGfLlzln5yIMTdU2GAiiRSVLvf56DDxP0tnZTw/rCugHw06tftbvQFPF22uQA9fieJnW7iMhr26XYxLveEuauj0RgOeHXF4nZFYVHHghegYvBdHQv6dcesgg6bMRFRFNAhHKMeN4uZ7mJfFDBMKR/1eXlrv/v1lSdoNIa9Xu4cdj9HEGBT5/UBJgMB7hmMbRUNRr3CNjsraX1tSczhZFcniBDg0GDMqsfhNOx8DLq9JAyE6UmdIEYAsyTxx6P9un97t6FYLHLnzh38fj9TU1MXMvZ00nJ2bGyMcrlMIpEgHo+ztraGyWRqk4+nLdScRotsXLlyhXA4fO7H3jp+Pdvd1n3iWbsfrdDBZDJJLBZDFMX2GJggCPh8vjYBOUsH6JVL1QXjlWj8pcD7jnCc9aL+LPqKXC7H9PQ0LpfruULzTr7GRRCOVsigpmm4XK4La/0+a5I5wPb2NouLi0xOTtLX1wd0J4c/qxPVSSeT8fFx8vk88Xi8HaTldrvx+wN85dfvsXZ/n7ogIigyFqeZRCKNqoCiWLA4bSQ2k9j9NrRaA8Uis7N/zOhYCCSJmbkdFEXi2rUeDpJ5Nh8RjCtXe1haO+TSeIRqtY5iUfja7GN3qStTMWaX95ElgaFeP067hZ1khsNkju39ZrE1PhhkdrWzuLo8FmkTCwCLIjE1GEIVmra1yUyRg1SOfKFKuiRSrHSuivdFPMydcqAKeRzMb+mMRw2FmVnvLu4cDitHpU7CokiCrouVx27hwV73ynzAaeP+7iEiYDEpWBQJi6xgVSSSqSyDLjt2mw1JFBEFoZkfgcDNniiP0vOa9xtVQxElrkfCzX9r2qPRXg2XzYJZkB5dqx9b94bcNg6zhUdktlmAQ7ODkqtWuOQLIAiPUuofHa+owvVQuGO7gIDTaiJXffReaFCtVckXCjjtNjApXDVbaGgaDVWlpqnUGyoOqw1vpUK5XqNSa9DidL1WC5sG40d63RiAyWCAWQOCkCzr72vC5zccjSrqECRoJqU/PNbvfPS5XRyU9cmDEanoc7jYMhiNijoc7Bb1/5ap6o+wOmWFHQPnqg9F+rAr73xA3tPQsv0OhULtxZa3AxaLhd7eXnp7e9ui60Qi0V6o8Xq9BINBAoGArui6haOjI+bm5i6UbJzG84QOGnU/Go1Gm2RFIhFUVSWXy5FIJNja2mJhYQGXy9UmH8/aAbqoUa1XaEJQm/+9DHhZzlMP7zvCcVbIsvzEYvrg4IC5uTmGhoYYGRk50w1EkqTn1ok8Da0uQiwWw+Vysb29/fQnnRHPokHRNI3FxcWucbOTK1fQbY/4rDg5zzw8PEy5XGZ7Y4df+/Hf5mg/h2gxI4omLG6Z/a0jqhr4Q17S2TK72yl8MQ9zd3eYvNKDJgukNgv4Qy72DzNcnoqSK1RY3UqRyzeLtRs3+qhUG0iCyIOlA65cjjG79LhwHx8JoaIxNRRic/eYte0k/f0+DpOPV4J9biu7yVyHVizst5MvV7g2HEHQ4DhbIlsos3GQ5viUALw36uPBVmehP9Lj6yIbAH63lcNsZ2HodVhZ2usuSqf6gl0EQhYFhrw2ksUKvU4rVrMJi9mEIsvYLSaypQp1tVlsV+sNytUaMb+Lua1D6nUo1WuUqAFlhrxW9jKPit7k4yL7+mCUt9a6hcIT0QB3dXI3fHYLi0eJLvE6QKFWZTfdvep+oz/K0mF3UT0e8nNfpxMjCuBz2EgUugvd1z1e7uzod0TuJvfbC1YCYJMlzLKM3+KgVgNR0xDRMCsKZpMJj91KVdOIWOxoQL0d0KdiVxRCVhuFeo1itYb26BLT73axYaDrMNJo2ESJdYNuxLDbw1s63RIwHn/qcxqTiojDwbbBOFWyrE8cAlYrKxn9bs6I28dMSl8c31eoMT8/3x6tfLcF5UHT0ejOnTvEYrHnDlg9T5wUXWuaRrFYJB6Pc3h4yNLSEjabrf13j8fTviYfHh5y//59rl69SigUekeOHYy7HydHsFqPazkbnhaNi6KoG7yYTCbZ3NxEkqQ2+XjS9ymfz7/qcFwkXnU4Xgq8+67W7xCMug+aprGyssLm5ibXrl17odWe8+5wtCxmW12Ew8PDC7fdfdL+6/U69+7do1gs8uabb7Yv0BeZHJ5LFPjcz/9v0Gy4fGYK5RrlRoN6qUAVDX/MzdFhnsGRENt7aRLxPDfeHGZ6ZhNV1bhyvY9ao0E2XUSWBMqPzu/qpRiKWeLO3GN3qUtTUWaX9vG4rPRFPUiSyOJmnFL5sSXqlUtRZk+MVomSgMttYzeeYbTXj8NqolSuUmmobOx0jq5cGot0uVdNDAS7yIYkCbrZCRN9AR5sd3cg+sNudhJZwm4HVkXGJEuIgCiLXIoGKVfrFCtVssUmGd7P1cmV6kAdaJIfmyJSE6Da6Pz83TYzc1uHVE7pKxQRDkvdVrGCAPsZ/ULYSD8xEPSS1CEJ42E/D+PdpMIkSSzrbAcwGxToE+GA7jiVIKArLgfo97iJ5zsL6kq9gUmSWEgcUz35Wy9VgQLDpRJrOonnbouZtcRxm1TJgohNUbCbFAZsHhyYMEkSktTsEiGAhoamakx4/JTqNfK1GplqmYamEbOYWS7pF/vHFf3OR6/TWHwesTvYNhhzOtDRqUDTQtdI8zHg9HS4VZ1EWkeAD00r4e96/YPUMlmWl5cplUptq9hgMPjEFfu3C9lslunpafr6+hgeHn7HyMZpCIKA3W7HbrczODhIrVYjlUqRSCSYm5tDVVX8fj8mk4mdnR2uXbv2jpKN03ia7W7rvtS6vxoF1JrNZmKxGLFYrCN0cG1tjfn5eTweT5uA2Gy29hjweWg4fvzHf5zPfOYz3L17F5PJRNpg5PIkNE3jH//jf8y/+3f/jnQ6zR/7Y3+Mn//5n2dsbKz9mFQqxV//63+dT3/604iiyHd8x3fwr/7Vv3pPdWReaTjOB2f5Lnz91389/+t//a+ObX/lr/wVfuEXfqH9762tLT7xiU/wB3/wBzgcDr7/+7+fn/zJn3zuBZ/3HeF4kZGq02SgXq8zOztLPp/ngx/84AtfcM6LcJy0mL1582bbj/7tEKUb7b811mWxWHjzzTfbc7InOxvnTTZWZjb41M9/nlK5gWQxoygmrBYz9UIeQVYIRN3UG3UUE2zuxnE4LZisZu5MbzAyEsLjs/PW3U00DXx+G8GIi3pdY2XtiEq1zv2Vx8X/6HAASRIZ7vWxsZNirVrH7rZ2kI3JsVCbbNitCn1hL26Xhb14lkZVZXWrWdBem4ixtNJZQI8PBLrIhtUsc5TtLhqvDEW4e2I8ym2z4HVYcFnN3BiKNseB6g0K5SoWRWJ+7ZCGqpFKF0/sI8zsSneX4cZIlGmd0auhqJf7u91F/FDIy8xmd1diIhrg/r5OV6UnpGuFG3E7WNQJ+pNEgfVEums7NPUtepiKBXV1IE6zyVDvIUv6HbeJUIAFg+yN/ax+oT0S8DGz3/36ogDHBjebPreTuROvo2oa+WqVfLWKJsBhvrvzcDUcZE5nBMsmSjjNLsZECxZZRpFEpHbwmkChUWPE5SVXq5KplKmozd90xGFnu6BPOPYNuiV9DpchEel1ONk3CPs7neHRgkkQ2KnpE6KbwRjDkShEokxMTFAoFNp6hZZNamtcqGWT+naiZUU+ODjI0NDQ2/razwtFUdoaOU3TyGazbGxstDvkGxsb5HI5gsEgTqfzXUOcWtDrfqyurgJNUX1rPPpJwvPToYOlUqnd/VhbW+OTn/wkoijyzd/8zRQKhedOPT+NarXKd37nd3L79m1+8Rd/8Zme89M//dP87M/+LJ/85CcZGhriH/7Df8g3fdM38eDBg3YWy/d+7/eyv7/P5z//eWq1Gj/wAz/AD/7gD/Irv/IrL3S8r/Dew1m/C3/5L/9lfvRHf7T975Pf9Uajwcc+9jEikQh/9Ed/xP7+Pt/3fd+Hoij8xE/8xHMd3/uOcJwVsix3aDha7kqtAvqkMPmsOA9C0BKt12q1LtH682gszgKjkapUKsXMzAyxWIyJiQld//XzJhtf+cw0v/9rX0FTFBSblUKpRq5QQFU0jhMVRq4E2FpP4fRYCfWFWJzfwxNwUiyX8bhNVOpl3rqbwGpRGB0Nc5QucP9Bs9AeGPCxvneMw25moMeHIAosbyUolpoFtyAIxHq9PFx/XCCHgg5EUeS10SjH2RK7BxlqtTpfvb/d4TbVF/Ewv945LmI1y10r5QCj/UHurR0gCgIhjx2P3YrdIqMCl2IBcsUKyWyRXLbEUMjD15a6Q9KmBoJdo0iiCPFc9+tZFZmVA53wPLPCeqK7qDSJAos6uRuCAIc6DldA56r/CUS8DvZz3QX8VCzInA5B8dqtLOi4ZQHkK/rF7GjIz7TOaJTLYmbBgIgosj6pGfF7WU3qi6uNiunxYMAwODCVMxh/8nkNAwJFg46QxWRi7uioK9Ud4GYsyoNTxM4uK7gtZhoVjdfcERRJRBAFNDSqagNZEtkv5DCLUpuctBC2243HqSr63wGv2cKywTjVgM3JQwPNxzf2dRbxrRX7lk1qKpUiHo9z7949NE1rjwsFAoFzt4o9jePjY+7evcvIyAj9/e8NUXsLgiC0U86vX7+Oy+VqJ563xo5O2u6+28bYRFFkbW2Nvb09bt26hc1mO1PooNVq7dC/ZDIZfvu3f5u///f/Pul0mh/+4R/mz/7ZP8vHPvaxMxHKf/pP/ykA//E//sdnerymafzMz/wMP/IjP8LHP/5xAH7pl36JcDjMpz71Kb77u7+bhYUFPve5z/G1r32NW7duAfCv//W/5qMf/Sj//J//82fKTHlX4FUOxwvjRb4LNpvN0IXud3/3d3nw4AFf+MIXCIfDXL9+nR/7sR/j7/7dv8s/+Sf/5Llq43fXleMdRIsMaJrW9h3v7e1lfHz83FbKXpRw5PN5pqencTqduqL1tyPJ/PT+W1kkExMT7RvtWcXhz4rP/D+/x9wfrdBApFZTEUWNZCqHZJfRVJmhSwFWHh4xfqWH+/P7NA6yXL7Rz87uMYl4nonLUZKZAv29LhLxAlv7SVLp5jhRKOTC7bEhm2TWNhNsbCcx200UTwirL09FmXu4z0CPF7fDQqlUpVCrM7/8eFXbZlFIFzutbWVJQBWgfmosaWQgwOzaARZZIOx34bJZsVkUMoUyMbeDeDrPUSLHUSLH5ZEw908RFptZ0bW7HY56WdAZsbo8GOlIGm9hoj+oKywf7Q3opopfGojobh8JuFhJdheNAwEPyzq6Cpsis3SgPwJlFJw3FNBPIu/1uHTdrABdfUbzeD3M6AQT2k0KSwauVS6LWXd70GEzfH2LAXkJ2m3sGYw/WQz672ZJ4qFBxsewz8sdHRcsgGOdMaZSvY5ftOkmogPcikU5fNQdcykW3BYzTpMJiyxjReENf4yaplJq1MnWKhxXinjMVtay+kRp2O3ljoE7lc1qBQPC8Q29xna4p1fsM5lMu2Cen59vB4oGAgHsdvu5Xo9abkjj4+P09vae237fLuzv77OwsMBrr71GIBAAoKenh56envbYUSKRYHV1lbm5uXbad+u9fKexvr7O1tYWN2/ebI+OnEfo4Mc//nE+/vGPUyqVCIfDfP3Xfz2/+Zu/yQ/90A8xOjrKRz/6Ub7zO7+TN99888LO6+DggG/8xm9sb3O73Xzwgx/kS1/6Et/93d/Nl770JTweT7vABPjGb/xGRFHkK1/5Ct/2bd92Icd23ngZR6qy2c7rnNlsxmzWv688C17ku/DLv/zL/Of//J+JRCJ867d+K//wH/7D9mL2l770Ja5evdohJ/imb/omPvGJTzA/P8+NGzee+Rjfd4TjRUaqANbW1lhbW+Py5cvnvjrwIoTj6OiI2dlZBgYGDIWIb+dIlaZpPHz4kJ2dnQsRh+uhVq3zX3/6t1lfPKCuCWiyjGK3kM7kkJ0yFosd2WJGVTX6R0I8WNhndCyEbJG5e3cLQYCr13vJ5KscHeQxm2WCPR62dlL0RByIksZxvsS9+eZqsyQJBEJO1raahZ3HZWF4IECxUsNhUdjabhaWl6eiPDyV/j3Q72N+rbOAuzQa5d7KPmZFIuJ34bKbsZpldo5SOGSJQqXB1l4GhAyDPV7W9zsLtoGIp8tCF5qdkNM2uACizpiQJAns64isLYrE6mF3oWy0XRIFtnWcrAAK1W7tBoDLbgadWnw8FmRGhzz0+90s6ySaiwJsH+u/dtBlZzvbXbAO+b2spfQL4B2D7WMhPzN73cRMFgVWE/rP6fO6OSp2kweTKLJskEbe53VzpEM4BGDHIFl9Iuhn9kifIBRr+u9/yG5j7Tit+7eww244GnV0wlUrX6u2Ozgxh4O9I/2xsiG3B1NDwmluEhNJFFAFjYpaxyRIeBQLmWq5LYwHUATRsPNx2RckZn+2kVZBENpWsaOjox1Wsaurq5jN5nbB7PV6XyiZumUdOzU19d5ZTT6Bvb09FhcXee2113TzpE47BLY6IYlEguXlZSwWS5vIeb3et32MbWNjg83NTW7evKk78nweoYOlR25zP/zDP8yP/uiPks1m+cIXvsBnP/tZvvCFL1wY4Tg4aF57TutGw+Fw+28HBwddWhtZlvH5fO3HvCfwEorGW+6dLfzjf/yP+Sf/5J+cebdn/S58z/d8DwMDA8RiMWZnZ/m7f/fvsrS0xG/8xm+096v3HWz97XnwviMcZ0WrgN/a2uIDH/gAbrf73F/jLIRA0zTW19dZXV3lypUrT0x6bRECTdMuZOa21UE5qW05LQ6/qBGqbCLHf/6JT3GcKiKaTAgIyBYTW+uHOIJ20gdVxl+LsLp8RKTfhyiLWEwyyAKLiwdcvtKDbJK4d38XVdWQFZHxy1EaqobXbSORKhOMuMidGAUKhczk8gUmhvwUS3Xq9QYPVg87dRujYeaWO390l8bC3H9ENtx2C2G/E7fTQr5cJeJxED8usLV3jCQJOJ0KqVznCM6V4TBzOsRClMSubqzPaWVhu3vkaLw3wEMdZ6rLg2Hu6rhbTfYFmdHdHtJND7/cF+KeTn7HWNSv28WwK6JuMCDAgYEWwuuwsqlDLKZiQeZ19B5PEou7rPorRyGriaOy/ghU1sBRbjIU0E08B32tBcBkOMDsgf75pwzsc8f8PpYMcjkKRf3XcVvMhp2Pfrc+GQJIGhxD1OFgS4fAAcScTvYMBOPpapmdXBZOcVu7rFDWGtRVFUWUcQgiHpsVt82G22ImV69SUevkahVS1RLZR+TmG5/Q3XgaTlvFtsTSCwsL1Go1fD5fu2h+nhXGlnXseYXivd3Y3d1laWmJ69evt3WAT4PNZqO/v5/+/n4ajUY78Xx+fp56vd4W8QcCgbbG4KKwubnJxsaGIdk4jbPa7hYeEe7Wfc7lcvHt3/7tfPu3fzt/7+/9vafe5xYWFpicnDzTOb4seBk7HNvb27hcrvZ2o2vP3/t7f4+f+qmfeuI+FxYWznw8P/iDP9j+/1evXiUajfIN3/ANrK6uMjIycub96uEV4aC5gjEzMwPAjRs3LoRswPMTjkajwfz8PKlU6plIUOtCelGEQxRFKpUKX/7ylzGbzdy+fbtLHH4RZGNnaY9f/1f/g3KlTrWhUcyVEMwmSukcNQQkyYw7rDA7vcXU9T42NpJk0kWufWCQekNFFAWq9QYPlg+RZZHRkRCaLHDvkQOVIAqMjod5uHqEJAoMDQTweK0srx2RzpZIJEpIsoDLbe4gG36vnc3DdPvfdqtCX8SDySQzNRjiKJknlSlSKFYIh9zsHnUWzz1BKxvxzgLQZlbY1tFLXBoKM7/ZXeDHQh5mTxMFASo6o0iKJLKtM+pkliXW42ndx28mm9tFQUCRxLYAuVSp4jZJSJKE2WRq5muIAl6bhX6fu515gdDUAoRdNraTGeqNOo1H3xFRFAl7nBzki/jtVlStOW6maiqyJOoSF6Argb0FI7G4VZENR6N8DhtHOpqPmNtpqNEA/e/2oM9jGPZndMxRp4N1g66Dw6I/G2uRJLYNiMOw18u0wapTxoBAhe121g1sd3uc+mnpT9qfy2Rm5djA8tbn4168+T2uqSrHqBzncpDLcTMSZfqw89jtsgm/1cb/2Xs+Nz5JkggGgwSDQTRNI5/Pk0gk2N3dZWFhAYfD0SYfT0qoPjg4YH5+/h23jj0rdnZ2ePjw4XORjdOQJKkj7bv1Xra6Jg6Ho00+3G73ud4TNjc3WVtbe2ayoYcnhQ6eHAnOZrNYrVbd7s0P//AP8xf/4l984usMD5+NLLdI7OHhYcdC4+HhIdevX28/5uiocyGjXq+TSqXeWyT4JdRwtMIqn4Zn/Y6d13fhgx/8IAArKyuMjIwQiUT46le/2vGYw0fjt8/7HXvfEY7nvagdHx8zMzNDKBSiUCi8UHv9aXgewlEul9sk6Pbt28+08tY69kajcSGt7Wq1ytHRET09PUxNTb0t4vC5Ly7yuU9+kVKlgWg2ISgiolWg0qiiyQq9QwGOknn8ASe+iJt701tEY24Gxga5f3+Xel1ldDxMsVxjciLMxnoCZIH5xcer9leu9FCu1rk0FmFzO4mmqdyZ3UY9IbYeHQmxsHrixywKeL1mAqIdSZJIposcJXLUNY2ZU2nil8ei3Fvu7BI4rRL76e6CbXQgwL1TAYGKLHKU6S76YkE393VIyNXBMPvHOXr9LsyKjEmSkCURl8NCoVJlwOdG00DVVBoNDY/DwmE6j89kaedr1OoNBmM+5jYPkNQmoazRoEaD0YiHlbalbwNoFuxhj4M7y7td9w1ZFMjlK6R17GDNqkYi1/0+3BiKMLN5gNIiOrKELIoEnDZymQqDDjeyJCKLIpIkIokCdlHm9UjkkSd/q0uvYTebOC6VqKsq1YZKsVohX6qgicYjSxGXg10dIbfLYmbRiLzYLaynu7c7TSaWDDovMbd+l0AUYDWlszNgyONiwaCgjxsQHr/VwopBt6TX7eLAIH/DiFR4LRZWDRLJR7weZo70Sc+TLg16lryleh00jRGP1/iJZ8TJTJ+hoSGq1Wp7XGhrawtRFNuWuyczGk6OIbU0D+8ltMjGjRs38HrP533Vey9b3Y+7d+8CdAjPX0TEv7W1xdraGq+//vozFWzPgid1Pz75yU9SqVSo1Wpd9+EWeb0IDA0NEYlE+L3f+702wchms3zlK1/hE5/4BNCsDdLpNHfu3OHmzZsA/P7v/z6qqrYLx1d4b+NZv2Pn9V1o/V5bJPf27dv8+I//OEdHR+3Flc9//vO4XC4uXbr0XOfyviMcz4NWjkVL8ByPxy/c5elZ9t+yV/T7/Vy+fPmZSVDrotloNM7dlWV3d5fDw0PcbjeXL18GWknQWvuczpts/P6v/n986TP3QJaRHVbK5Tp1NLKFIk6Pk3qhhmCS0FQNQZFIJQqMTUZQrAp3720jyyKXr/WSzZXYeaS3uPRaL3MLe8iyyMhQEJfLwuzCHuVKsyPg99k5TBU6yMblqSgPVg8Z7PHiclgpl2vIJoH51c6xmvFhP4tbncVoKOBgYaN7lCYQcLK6l+7YFg04dTUal4fD7CVyDEe8WEwKitTM0TBZFDw2M5Vag3KlRrFcI1eqcJwpkUx1roCLooDXbSWR6d7ud9uIZ7oLzqNMnlqj24SgWNQfv4n4nLrjUZN9Iea2u8/L57Cyn9e3QG0RLFXTqNQb7ZyPoZBXV9cRdjuY03HMAuMxryu9Ie7vHuE0KdjMChZFwSxLmGQJqQG3wtE2cWmgUmuoeGxmNo6zFKpVspVK2wlKFGDNgCCMGtjkAhzk9bsH44EACwmjBHH97obLbGLPgCD0u90ky/rvddYg8dtntRp2KoY8nq5uRAt67ljQzNFYSekTryG3xzCz4+v6BnS3nzdMJlNXRkM8Hu/I/JAkiUQiwY0bN87cGXgnsb29zfLy8rmSDT2YTCai0SjRaBRVVclms8TjcdbX17l//z5ut7tN5p5HxL+9vc3q6iqvv/76hU0iwON72c///M/zK7/yK/ze7/3eCwl6oVlvpFIptra2aDQa7cJudHS0LXafnJzkJ3/yJ/m2b/s2BEHgb/7Nv8n/9X/9X4yNjbVtcWOxGH/6T/9pAKampvjmb/5m/vJf/sv8wi/8ArVajb/21/4a3/3d3/2e0hS9jCNV541n+S7s7u7yDd/wDfzSL/0SH/jAB1hdXeVXfuVX+OhHP4rf72d2dpYf+qEf4uu+7uu4du0aAB/5yEe4dOkSf+Ev/AV++qd/moODA37kR36Ev/pX/+pz/yZeSsKhqioLCwscHh525VjUDVxxzgOSJLXbtUYdiL29Pebn5xkdHWVwcPC5CvjWRfI8nao0TWN5eZmtra2Otu5pcXgr6fU8oKoq//3//gwr93ZoiBKIEqVchaOjLHafmcxxDZdPRpVU5qa3uPGhUdLHRba3kly60cfuXporV3uoVussrx5SKTc/06mrMUqVGpcno2xsJlFVjbdOdDJMioTFYSKxl0YQoL/Hi89rJ1OooIgSm9vHwDEDvT6Wd9Mdx+xymLpE3gAOu4XD485ifqTXy/Je87EmWcLvtuGymvF5bYS8DtSGRqVWp1CsUqs3WN5IUCzXOElvBqJe1nWE4lODoa6gQGhqN7pGr4Cp/iDzW/oakEWdHA2vVWZfpyNhkiVWjJymavq/qYGgh6SOy1XUZWM3rVOIC7CnI3gHiHmdHOjY6gadNlaeMJql0RS5nxS6j4V8XdaxLYyEfeydGHlzmhQcFhMDPg+5arPzIj0S66uaRk1tYJYkog4H2UqFwglB94DXzUZGX/xuMQgoNIlwYCAKH/H5DMepDg2sdb1WK8sGnY9Bj5vUgT65rBgsnJhEkeVjAw2J3cGaQZ5HwGYzJBx/4m0iHCdxUizdyvxYXl4mHm9+LxYXF9/RzI+zYGtrq12sezyet+11RVFsi/jHxsY6RPxra2uYTKZ296NF6vSws7PDysrKhY49t6BpGr/4i7/Ij/3Yj/GZz3yGD3/4wy+8z3/0j/4Rn/zkJ9v/brn7/MEf/AFf//VfD8DS0hKZE9eEv/N3/g6FQoEf/MEfJJ1O8+EPf5jPfe5zHfqYX/7lX+av/bW/xjd8wze0w95+9md/9oWP923FSygavwg87btQq9VYWlqi+Ggk12Qy8YUvfIGf+ZmfoVAo0NfXx3d8x3fwIz/yI+3nSJLE7/zO7/CJT3yC27dvY7fb+f7v//6O3I5nxfuOcDyt6K1UKty9e5dGo8Ht27c70mllWb7wDgfojzydLOyvX79+5jbteTpV1et15ubmyOVyvPnmm8TjcdLp9IWKw0v5Mr/6k59idyNFtQF1rYHdbiV/nMcVtlGriky9Hub+7A6xPh+Xbw0y/bUNAG68OUS+WCWbKWG1KqTzFSrlOr29XsJRN0trR2SzzVXeSMTNzmG6o5Nx5UoPlWod+7CJ7b00+4dZynWVg6PHBabJJFGs1zueBxAKu3m42Vmk9oSsrO4kcVoVHBYZRQK3ywmiyFDIQzpbIpMvc1jO4hwI8OXZra7349p409nqNMxm/Z9uvqxTjAqQ1MndaD5eXzCNQcZDb8jLsQ6hmegNMrvVXexGfU6WdYiIIMBOSl+MHPa72NfJJYk6LOzpjJYhwK4BEenzu4nr2OE6LSZDK14j7UTAYWM13lmct8hK1O1kQY+g2SykK4/tkS2ShMtixmkx0ety4TdZER9lXtQ0jXK9Rr5aZc8gjX084Oe+Qeej3NAndh6LhQODLkaP3UbKIC/DyJLYKsssG3Q+xv1+7if0O02iwfGBsWjdJit8INpj+Ly3C0dHRxwfH/PGG29gs9ne0cyPs6BFNm7cuPG2kg09nBbxHx8fk0gkWFpaolKp4PV622SudX9ujYG9HWRJ0zT+03/6T/yDf/AP+PSnP30uZAOa+RtPy+DQTnUHBUHgR3/0R59Y3Pl8vvd8yN+rDsf54GnfhcHBwY7vWF9fX1fKuB4GBgb47Gc/+8LH974jHE9CJpNhZmYGj8fD1atXu1ZS3g5bWegeeTrt+vSkGPqn4bzOoVQqMT09jaIo7eDDVCrVnm29CLIR30nyqz/5W+TyVQSzgiJIKLLIwUEKk8OMyWTBYpc4zpTo6fdhtluYn91hYiqKyWHizp1NAEJhJ5okMjjo5/i4CKLA7MIelUdjUw6HmRpN/cL4cAiTIqFYZO7Mbnccz+WpGPcfdhb7Y6Nh5k5tuzQRYXHjkFjAhcdhwfQoATuZK2KRquTzzf8ALGYTD3fSnScuQLnW/Zl5nVYWdYr7wZiXRZ18jYn+IIs7Oune/UEe6Dx+rMfP8n530R31O1na63681SSzekIkfxLZkv64Tsjj0O1KTEQDugW6SRJ1bXgBPA4bezojWCNBLysGNrWHBhqN4aCPuzt6aeACawb76ve7ieuItZ/0nAG/h9QJIXu10SBRKJIoFKnUG+xlu9+bqXCAB0cJbLKEx2rBhIaEhtvpxG2xcCMoUao3yNUqHJdLFOt1nCaTcS6H12PY+UgbuF05FYWHBp2PMZ+PWZ2Ec2g6hRkhZ0Bi/VYr6xn99+92rPeJ+7xotBKsd3Z2uHXrVlug/E5lfpwFLYH1RY8hnQUnQwU1TWunxx8eHrK0tITNZsNisXB8fMz169ffFrLxq7/6q/ytv/W3+NSnPtXuPLzCBUPVmv+9DHhZzlMH70vCIQhC10pBa1RpZGSEoaEhwxyLixypahXoJwlBsVhkenq6y/XpRV7jRQlHOp1mZmaGYDDIpUuX2kRJEAQKhQLpdPrcXUdWZtb57Z/7AlVNoK6J5NNlbF4HK/d3iY4F2F5NM3ndTa5QYXMtwcRrvSAK+P0OJIvMvbvbCAKMT0TRJIGVlSP29tL4Aw4qFbVNNvw+O4PDAdLpEpnjEssrR/T1etnd6FxtnxgLd5GN0eEg95f38XtsBDx2LCYZQRA4SucR6gIHB1kOaO7n8lSU7YPOcRmHzcTWUXeBeWk4zLyOzqM36mFWp7shm/QLsJbO4TRKBiNNkk5OB0DAY9ftGEz0BrmrEww4FPayFu8uGBVJZNWgi2D02hM9QeZ2uvUeFkVi3aAjUjdYoe/zudg+1n9O0SArZDzsZ9EgdTylI3p/2nOMMjH6vC620/rHZn40TlWpNzoIk7lYRRCFrs6DQ1G46gtyXKpgUVqZF1Bp1MnXqoYOWU6TiX0DzUeP3caiwbiXaPC7FwQMiUOPw8mOwTjVoMtDUieQEOBP9L/941QttLrO+/v73Lp1S3ch6O3M/DgLNjY2WF9ff1eSjdMQBAGHw4HD4WBwcJBarcbKygq7u7tIksTs7Cx+v7/9fj5PwvGz4r//9//O3/gbf4P/9t/+W0fg3itcMF6NVL0UeF8SjpNoBdRtb28/dVTpokeqTr9GKpViZmaGWCzGxMTEucwBv2jaeIuYjY2NMTAw0CZvmqbh8XhwOp3cvXu3bS8ZCoVeOPDpK78zw//69a9QboAmSRSKVeqSSPI4jSfmppRXufzGIDNf28DhNHPtA4MsLx2Qz1W49Ho/u3tprl7tJZXIkymU2d9vFkp2uwnJIuMUBQZ6fRynCrj9dt6afjy6ZLeZKNbr1OuP3zO/z8b2QRoBjVDAic9jx2ySyZeq2E0KqWSBVLJZCE5NRNg77Cwce6Me7q90rygP9vqZO0UgRFFgW2dFP+Cxs7DeXXgPxrw83O4ubsf6Ajzc7S7uR3p8rOx3778n4GJxp7uL4bCaWNzV0S8IcKinq3j0HD1M9gaZ1RGLu20WXX0I6Nv5AoxHA9zT2ZdJEolXDPQEmv6+/A4ry0f6RMis6BeEYZeddQObXCO9hctiZiWu3yUIOuy6hEMQYMNIfB70MX/Y/dmUanUKlTpLOudkNynsJ/PYRBm/zYbTYsKqKIiSgN2scFgskKmWSZRLHbqMugF5lQTB2J3K42UlrX++UYfDkHBUVP3PSQC+rvedIRyaprG0tMTR0RG3bt165kTti8r8OAvW19fboXjn5eb0diIej7O/v8/rr7+O1+slm82SSCTY3t7mwYMHuFyuNvlwOp0vvAD2W7/1W3ziE59oi2hf4RVe4XzxviYctVqNe/fuUSqV2mKXJ+GiR6rgcQei5ZA1OTnZlTh5Hvt/XmiaxsrKCpubmx3E7KQ43GKxcPXqVTRN4/j4mKOjI+bn52k0Gvj9fkKhEIFAoG0f+Sz4zL/9AtP/awlNkpCsZmp1DcEiU8kVMDscWO0WRJPC2vIhl6/3UamrzLy1iSDA9Q8Okc9XyKaKLGXLRAZ87Gw2i66+Xi/+sJOd3TSH8Rx7u2kmL8W4v9BZ8Mf6fSytNgtZp8NCLOTE4bKSzhQ5ONI4OspxdJTj0lSM5Y3OYm9kMMCDle4iWBPVrg5bT8jF/Fo3Cbk8FmFWh5x4nArxbPe4i1F3w2gV26iT4HNZ2dXpGIz2+JnW6WJM9ARY2u0mCS6bmUWdgEGAvE6+BcBw2Mu0jlg86LIbZm8UDbo047GArjuVABwWDRyb/G4She4VdUUUWdFxwALo8bo40An1e9I41XDQy4xOLghAQkdXAjDi9xkmkisGn6VJEllOGOReBHzM7h9SV2mOb534yK9GQzw80YEKWKx4bRZcFjOyLOKxOihUKqSrZVLVMhVNo89qZcPAJcvzhKC3tIGGxCxKhnqQy4EQQZvNcJ8XBU3TWFhYIJVK8cYbb3To/J4H55X5cRasra2xtbX1QjkV7yT29/fb1sMtUxe3243b7WZkZIRKpdK2MN7Y2OgYzfL7/c91DwL4zGc+w1/6S3+JT37yk3z84x+/iFN6hSdA4CXScLzTB/AO4n1JOARBIJfLMT09jd1u580333ymUaW3i3Csra2RTqc7HLLOC2fpcDQaDebm5shkMnzwgx9s36CMwvwEQcDv9+P3+5mcnOyyPGyt4gWDQcO02Vq1zn/5yU+xvZYAk4JsVkjG82iKwHEiT89olOUHB0zdHKBWU6lVGpRrDXa2U1y61ovJojBzp9mpECWR/rEQhUKZK5djHB5kcXiszNx9rMno6fWysvG4MBbQuPZaH9V6g8tjEZLJPIfxHKZeL3fudYq3hwb8zJ/K0ZAlQVdwPdzvYeWU3S2AzWZGPRXoZ7MobOg4WwU9NjYPM9hMIookYTHLWM0mPE4blUaDq4NhRAQEUUAALCaZcq3OjcHIo8+t+dlZzTKFSo2rvaH256nRXMWvVBtcigUQTlz+BAEqxQoDdgtWqwWzxYxAM9PCZjFh74+i0bxgakLzf+1WE9lSpfld0TRUVaOuqphMEulimZDLTqVWp1SrU320ar5v0Cnp87uI6xT1IZfd0AGrbjAPO+B1sKEnMAcODbZPRPzcN3CnSuoQFICxkN8wVNBIdB1xOtjSSVAHcJj1r1OiAOsGnY+xoJ/7Op0PML65yaLQFWyYLpdJl8tMhQLc3dfpTJlMBGQbsiwgaCqiLKJKEiVUEpUSBwYBgR6zcWbHmN/H/YT+sb8T7lSqqvLgwQMymQy3bt06t7Tss2Z+nAWrq6tsb2+/Z8nGwcEBCwsLvPbaa/j9ft3HmM1menp66Onp6bAwXllZYW5uDq/X2yYgT1to/PznP88P/MAP8O///b/nz/yZP3MRp/QKT8NLGPz3MuJ9STgODw+5d+8e/f39jI2NPfPK0UVrOKrVKtVqlVwux+3bt7FdwOrd85KmcrnM9PQ0kiRx+/bt9lzssyaHC4LQXnkaHR2lWCxydHTEwcEBS0tLuFyuNvloCSgziRy/+pO/TfwwQ6ncoI6AVZA4PMwS7HdRFxR2t1JM3Ojnwd0dEGDiRh8NVWsWu8DMo7Eof8BB/0iAvb00+/sZ9nbSXL7Wy/2FvfYxOhxmSrUGXreVgN+B2lCpN1TuL+x1jFJFwi6W1jpXyxVZJF+udV0jpiaizC51khCTIrKf6hwbEYGJ4RDZQpnR3gBmpRlgJwgCNpuJTL5EzaNSrdUpV+qUylUiXieJVJE6GmVUcrkaUKIeqLCb6tYRTA2HeKCjAbk6GmFeZyzrtbEoC5vdjx+OuFltOXIdP34dv8vKcaFMQ6e4jwacXecM8NpItGvUTBEExnr8HGUL9DmcmBQZk9wMJZREAQWRm31RVE1D1bRHQX0Ngi47dVUlX6l26FS8disPD/SLfZfTDjrEImS3smtAOAQDUXPU7TAcc7Ka9C+hTrOJZYNxqpjHaZi/sZHQJ1YjAZ9hF0Mx0AVIgsBaSr/QHw34WYzrv3dGI2L5ao39YoUDHQcxryKTr1bokazYTDJulxMVjUK9ittm4av7u7rsxyQZ34K+/m0mHKqqMjc3R6FQ4NatWxc68vQsmR+tgvlZ7xOaprG2tsb29rah5uTdjoODAx48eMC1a9cMycZpnLYwLhaLbTK3vLyMxWJpd5JOj//+z//5P/ne7/1efu7nfo7v/u7vvqjTeoWn4JVL1cuB9yXhODg44PLlyx25Ec8CWZapGIgoXxT5fJ7p6WlEUWRkZORCyAY830hVK2AwEAhw+fLlc0kOt9lsDA4OMjg4SLVaJR6Pc3R0xNraWnO1sCjxxf98h7oqoIoyokXGbpWJxzOEBzxksnUGR8NU6ipzd7boHwlg89iYn91BVTUmLvewtp5g8lKUSrmGzWVpu1MBjIyHePCICLjdVqIRNyarwuZmkmSmxNFhFpMi4Q05OsiGIAqYrArVZOd7NzEe6SIWQb+DxbUjJFHA57bjspto1KuYzQKSYqXR0CiWa+QLZbK5Mvlspav4tlsVVAmKp2xsg147D9a7yUDE72DvuLtI9bksLG7qazGWdByrBAF2Evqr62WDsZe+kIfEqo5YPOJl/ai7oBVFgQ2d7aqmYVZkUrnubsFIxMfsVjc5Aij6aqSPm8+xyhIOiwmbWaE/5Oa4WEGWROr1GoVCAbPViiBLVCp1/HYr2VKF2omOX2/Aw+FW9+ubRIElA/IS9TjZ08n4eNo41d09/fNJGzh6BcwKcQMxu/MJxe9mWv/zHAl4eWhAUmwGRAlgV8c5CyDmcrKnk74O0ONxMZdIka0B5QqcGAe8FglhrSkEHXbcFjMWRUIToFivUaxVkUWR+qmubMhm51LgYhKc9dBoNJidnaVSqXDr1q0LESQbQS/zoyU8f/jwITab7amZHy03rd3d3fcs2Tg8PGR+fv6FE9xtNhv9/f309/fTaDTaiefz8/P8i3/xL6hWq3zkIx+hr6+Pv/pX/yo/8zM/w1/4C3/hHXcTe6nxSjT+UuB9STiuX79+ptGoixqpOjo6YnZ2loGBAY4NArjOC886UnVwcMDc3FxHwOB5J4ebTKZ227ter/O/P/0VPv+fv0i53qChicgmM7LFTGIvi9VpxeZykUzEKZRrSLLI8HgYTCIL93cBmLgSQ5REBE1jcX6Pyas9zD36G0A44kSSJS5NRjk+LrK3l6a3z8e92Z2O4xqbiDC3uNex7fJUlLlTxKIn6mZz75iBmBe7zYQiiTTqKrJJprGnksmUSMZzJOPgsMuUGxrVWiexmBwNs7DWTSBGBgPcW+4u4iNBF0eZ7hXkgN/Bvg7hcNslkvnuK9hIn5+7Og5X4/1BXUtdl1VmP6OjuRBgN6nvpuS06xfB4z0BFnSE57IosHqgXwDbbfoFXn/Qw1Yi3f53td4glS+RypcwmSRWD0/9no7LXO4LsbTz+D13mhXcVgt2i4JYh9ejEURBoIFGtdGgWKviMsncN9CPHOmMecGTx6lqBr/BoN1mKD4Pu53EDboieva5AMN+L6sGXYwnkZQ9nUR4gF63i+2s/ucddToMCUfGQJMiAMuJBJWGyk4my84JbjTocbORSSMKEHM48NqszY6RCNdDEcNjP280Gg3u3btHrVbj5s2b73iOht1ux263MzAwQK1We2rmR0t/t7e3x82bN9+TZOPo6Ij79+9z7dq1FyIbpyFJEqFQiFAo1NYh/uZv/ib/4T/8B9bW1ujt7WVjY4OvfOUrvPHGG2+7i9grNCFoGsJLMmr0spynHt6XhOOsOO+RKk3TWF9fZ3V1lStXrhCNRpmenr7wcMEn7b+1Era+vs5rr71GKPR4vr/V1YDzTQ4H+OKvf5Wvfm4Wm9ODWG1wdJDFEZBYWzwiMuzhcL/A/m6eS7cG2d9NEz/KMTgZZnfnmEtXexAlkaWHh1Qf2dsOjYV4uHKIzabQ3+9HliWOUgWWlh6vKg8MBXiweMradjTURTYiYRdHyTxjg0EsZhm1oVEoVhBkkdx+hlz68Yr48ECAVR2heH9fgPvLnQJhQRDI6ORGWC0KqzqOUm6HfrfC7bCwuKGTi2GWOTAgCZsGhb3RpW4wFuCezvjVWI9f1/3KJEus7OkX6KKk/70Z7wkwr+OMJYqCbqcEwO+0dhCOFgJOG2sGzzn9tS1WahQrNfr8LpbXDATKfSGECvisZhxmBUUUELQGIipaXWXM46aKRrZSJV0sownG41Q2k2I4TtXn1c/yAMgZOEP1e1xsZfRJgMdqrDEwIim9bhc7BqQi7LAbEo5CVd8EQBbgwMAgYNTvZdmAEPltVjYyaVStmZdy0gL4+y69pvuc80a9Xufu3btomsbNmzdfSDtxEVAU5amZH9DsoL/xxhvvWbIxNzfH1atXzxx4+ywQBIEPfOADSJLEJz/5SX7sx36MwcFBPvvZz/LRj34USZL4k3/yT/Ln/tyf40/+yT95YcfxCq/wsuLddXV9h3GetriNRoP5+XlSqRQf+MAH2jeGtyNc0Gj/LXF4Op3mzTff1BWHC4JwLva8Laiqyq//y8+yeGedakPA4jShCho2v41ypcbYjX6W5vYZGPeTyVeZ+eoGoiQw/loUVRVRayrHyQLpfKVNNqI9bhwuCwMDAbY2EiwtHjA2FeXwxNiSw2Emmy91JII7nRZSuSL9PV6cjqYgOp8vgyiwsZ3i6ISFz9RUhAfLnQW4IAht4fNJhAIO3S7G1GiY+VWdIn5Iv7sx0OMz2O7V3T42ENRNIR+JeVjZT3dtD3rsPNQp+AVRYDuhX2SaDAqwib4Ac5vd52a3KDw0ICJG6eXjMT8LBk5XOwbdlZ6Ai/hmd+H+pODAgNPOls7+TLLEykESTYNMsULmhLvVtf4Q93Y6P1uTKOC1WagX67wWDKHIEhpQVesUqjW8Dit3dvZ1NQt5g6I97LSzaSAkDzrshoTj0KD70uN2Go5GhZ12Q8KRNRirsymyYSel3+Vk1eC1XE8QXe+n9L8nsijywd6LTxev1WrMzMwgSRI3btx4169un878KJVKzM/Pk3mUl9LKTnqnMj/Ogng83iYbrcWvi8S9e/f4+Mc/zt//+3+fv/23/zaCIPDn//yfp16v8+Uvf5nPfOYzzM3NvSIcbzfUR/+9DHhZzlMHrwjHCZwXGSiXy8zMzABw+/btDvHhi+ZkPA1G59A6JkEQOo7pWcXhZ0EpX+Y//ehvEN/PIJhMWE0mspkSmgL5bIlgbxANkVi/n0pN5DheYvxShKqmsjDXLGYdbhO5YgVRFLh0pYd6QyV5XGD23uMxqcvXepl70Nm1iPZ6WF2P09vjxe2yoKkagizyYHGfpPp4nOTypRj3T41SWSxyl+YCYGo8wvxyt82p12fn4NS4kyAKJHVGoyxmmbW97oLYZlFY1snXMCsSa7vdjxcE2E/qF3mCAUmwyqquQcZEX5AFnTErh9Wka4ULxg5MIzE/9za63yO72ZiIyLJ+YTQc9hp2MQ6Nsiqifh7o5YgAcYPU8bGIj3mD52Qr3ZqKuqohqg1DkuTsM2GpS/jsVlw2M1aTgigKIEKhViVst5MoFDj5K+3x6NvuAiQNOiIRp4MdAyIScToMCUe2rE8qnCaTIakY8XuZM3DCcjscYPBaRsduk2WODKyOLwX82C94rKlarbYDV69du/aeKM5PQtM0tra2KBaL7eu5XuZHy/nqojM/zoJ4PM7s7CxXrlx5W8jG/fv3+dZv/VZ+6Id+qE02WpBlmQ9/+MN8+MMfvvDjeIVuvBqpejnwviQcZy2az4NwtITYfr+fy5cvd93ILtoJS5IkqqdWUbPZLNPT0/h8vo5jukiyEd9J8ms/9WnSmTL5Qg2Ly8bu2hGKy8T+ao5rHxphez1FtVLHF3PjcpgpFcoIJoX1+SZ5cLrN9A43A/sO9vIszO8R6XORSDwu7odHg8w/GptyOi3Eom7cHisHR1lkBHa3U+wC4xNhFh90FsIup4X1ne5ivjl2dcqByiSxd9Rd3PX1eFjQ6WJcGo3ohv+NDwd1uxWjA/rbx4dCumnjEwNBFra6C8Co36lLXBRZJFXS/27XVf3twzE/99a6XzvgtrGqQ5oAcjpWwa19zeoQEfOj7oIeXDb91XGXRWY/py+8NsodiXodbBt0S2SDYtNrt7Chk6AOEAv6ONzqPh9JgNWjY6r1BgeZPAcnHLFe6wvzcKd5rgIQtFvw2m3YLQoOUeH1SIRSrcZxuUyiWKSuaQTtNjYMOh8xt5N9A7errIH5hdNsMnSuGvJ7uHfQ3akDkEXjgnzfQNfhs1nZMBC0D/u83I/rv1avpvKHf/iH7dV6n893roSgWq1y584drFYr165dO9eO7tuBVihhPB7n1q1bbQMSvcyPvb09FhYWcDqdF5b5cRYkEok22QiHwxf+egsLC3zrt34rn/jEJ/iRH/mRd/z8X+EUXonGXwq8LwnHWfGiI1WtlO6TQuzTkCSJWk3fieY8cHqk6vDwkNnZWYaHhxkeHu4Qh5/VieppWJ5e57f+f5+nWK5TrjaoNsAsQLHawCNIDF/u4e6XNwhEnAxORng4v0elXGPy9QEW5ncZGQ9jNknkSjUezD0u5kcvhVh++LjI9notKGaRqfEwyWSBw8MsGavC+maCau3xe2C3mziIdxdFPX1eHix1Fo2hoJOF5W4CMT4S7hKVAyjm7p+QJAocppqFoIDWtH81yZgVkWyhTNTvRBQFJEFAlEREAep1ldGY/1ECEo8uShoiMBrztzM0NE1DUzWsFhMxvxNN1airTeJYVzXCASeHmXyXhe3EQIi59e4C2WVVWNHpoACkcvqr031BNwmdv4U9DtYMtCNFnU4BwGhPgPs6CeKCgK52AyDkspJJdH+esiiwZjBOFXY7dV2+REFgzSDsrz/oIaVDKgAOdUIZAaJOC9sGZKhxYmVLA1KFMqlCGafZRLFW6/i7JAqEHHbGfH5y9iqiKFDTVLLVCslikWy1Ss5g/MltMbNmIEwf9nm5d6DvnvWka8BWRp84NIXk+qSn3+0iVdLPLzEZdLUAvufr/jgxWSaRSLC4uEi1WsXv95/Lan3LBtzhcHDlypX3JNlYXFwkkUhw69Yt3VDCtzPz4yxIJpPMzs5y+fLlt4VsLC8v8y3f8i18//d/P//0n/7TV2Tj3YhXORwvBV4RjhM4a/dB0zSWl5fZ2trqSOk2eo1yWb8gOQ+0RrZanuxra2tcu3atfWE/LQ4/b7LxpU/f4Q/+61dAlhEUBZNioiFViSczeAIOJLOFfK7C1TcGODrKMffI0va1D41Qq9bxeGysLx8ycjnG1ubjle9Lr/WyuhZnbCyMSZGIH2YQLRKLC49XSQVJQLHIVBOdpLFvsFs8PjwU6CIbAC6vlcMThanVIuNx2Ukm0/QEbbicDhRZQgDMVoV8scLUYIh6vUGt1qBabRAJu3i4EceMSK3eoFavUyvVGZqMMvewm7RcHo9yX+dYxoeCzM3vdW2Phlzcu7/Ttd2sSKysxqGsoYgCZkVGUSRMskg1XyZsNmG3W7GYTUiSiCgKuJxmsoUqtXqNSrVKtVajrqrYLCaylSpum5lCufo4YE+APZ3cDWh2Vw503I8CLhurBl0MVdMfLxwJ+1gxIA91Uf+yNRYNsLCnP/aTLuj/5sYiPpYMjq1sMPIT9TjYS+u/BwGvl+1c92csCrBiYLs7GPR0paU3VI2jbAG/w8YDnTDCmMuOWlS57m9qSBpoFGpVEsUifT63bnAfgGZgAi88IVhwwOs2tN6NuRzsGXRZnnRb3TXQkHgsFq6Ew4iCQCAQYGJiomO1fnFxsb1aHwwGcTgcz3z9KpVK3LlzB6/Xy6VLl95zhefJBHQjsqGHi8j8OCuSyST37t1jamqKSOTincjW1tb4lm/5Fr7ru76Lf/bP/tl7jmC+LHiVw/Fy4H1JOF50pErTtGfeR71eZ3Z2lnw+z5tvvvlUl5CLFo23SNPc3BypVIoPfvCDuFwu4PEIlfaIYZ/3xffTP/d55r68AiYT+VyFugoNGhTKVQqZGsOXw1TKVbKpAkdHORJHOSau9mB1Wpj52kZ7P1M3+pl/ZHcb6/EQjrpIHZeol+usLDYL88s3epm731mM9/U72dzuXNkdGQl2kQ1JEqjUGwT8Dlx2MxazgiyLWCwKmVyZwYiXYrFKNl+mnKthctfZ2m+u6O/vP17ZHhoOsLqpk3UhCxSKp0aLBEgc66+K6zlZPXqKLoJ+O3s640Ej/cF20J+qapQqNUqVGl6niZWd5vEnsp3HFQo42t2YkxjrtZA80RWyKxJ2q4m+iJd8uUIoFmqTFo1myrgIDATc5MvVZv5Fo0kmegNu4jodEYfFxPK+frFvt+rb5AZcNkNHK0XW/z4HnDbWDUajrAbJ3laTzKpB5yPicbJvEB5oRETCdjP7Bf2OhGhwrTFJIqsGblchp525Pf2RpGGnh0GrC5fdgkmRmgF8tRrJYtGQVIz4jN2kgjabIeEoGJAyUYA1AwvwmNPJXl6fcLzZ19vxfhit1sfjcTY2NpBl+ZlGr4rFInfu3CEQCDA5OfmeJhs3b958ZrJxGueR+XFWpFKpNtl43oyss2Bzc5OPfexjfOu3fiv/8l/+y1dk4xVe4R3G+5JwnBWtm5Wqqs80M1wsFtvCwzfffPOZwqIumnA0Gg0ymQyNRoM333yzGbbHxeo1apUav/ZTv83q/B7lmobVrXC4lyE05GXtfpxov5/okJf7b23g8toJ9nsxWRRKxSqiLHWSjet9lMs1Ll/t4XAvTTFfYW0tQeaENe3AcID5B6cyM3q97O53FjEmE5SrJYb63VgtFgQESqUqbq+Nu3M7aBokeVQgCtDT42VnL92xD5tVYi/ePRbS3+vTJRtjw0EebnRvHx0MsqxjeTvY62N9r7sw83tsLOvsX5YE1g1GoPQctADcdoVUvltbMRDzsnHQ/dqC0E1MKrUGlVoJt01i7ai72B6IeNg4THdsc1oUnDYzQlXlaiSIIksgCqhaM0Hcabfw8CBBplimcWLVRxSMbXJ7/S7iOknX0hOsdXv9Ll3Cg4ChrmMk7OvqOrSQMxBd93hd7KT19+cwK2BAONYMSMVQyMeiQVdEMiieBAFW4sfNY0x1HstoyMdOPsuQy43LZkaRJeqaSq5axWezggHhODLQaJglyVBkPuzzsmLwt6jLbkg4/lhfr+72Fk6v1h8fHxOPx584elUoFLhz5w7hcJjx8fH3JNl48OABx8fH3Lp1q31NPw88b+bHWZFKpbh79y6Tk5NvC9nY29vjYx/7GB/5yEf4N//m37wiG+92vBqpeinwinCcQGuWtV6vP5VwpFIpZmZmiEajTE5OPvMF7SIJRy6XY2VlpcNvHJo3rNao2HmTjWwyx3/60d8kcZRFFSVsXjOVch1Pj5P4QY6pG/0cHeXZe7DP0GQEyaKwuniAqmqMX+th8cEesiIyOBLC7bUxP79H6VF3QBAFBkaCrK89LrpsdhPZYqXD7tbhMOEPOnB7rAhAsVgjlczT0+9lfuG0A5XEQTLX9ZufGI+wqKPd6OnxsLzeXRCarfo/nYbRtcTgLbcaBN71RDy6LlejQyEWdPIyAh47KzrJ4gAFfR03Lod+4TLaG2DZIKU8oUNcANwOK5wiHMVyDafNzOyqvg5ivD9INlluJrbbLU1HJ7OC12WlUK1RtJfIFouookymXKVUq5Mu6hftYxE/i/v6558r6R/zUNBr2PkQDCx8nVazIbEJueyGhCNv8JPvc9vZNtCD2EzGBd6WgZB8yO811G+4LGZK8TpbeknzAQ0fZoIuOw6LCUESKDfqpAt59gzcs0b8Pubj+iNsnicUxSWDrgjA7f4+w7+dhiiK+P1+/H6/4eiVy+Xi4OCAnp4exsbG3pNko2V9e95k4zSeJfOj1f2w2+3P/F4eHx9z9+5dJiYmiMViF3b8LRwcHPDRj36UP/7H/zi/8Au/8IpsvAcgqM3/Xga8LOeph/cl4TjrTaUVdvc0QrC1tcXS0hKTk5P09T37DRIuNs383r17hMNh0uk0kiR1iMM1TTt3srG9uMev/8xnKRTrNBAxOyzsriew+M3UqxqypHB4mCMQduHy2ihWGuw/Ig9Dk2FUYPxSlK21OJl0gd39TJtsAExd62V+brfjNUenIhRLNWIRN5VKnUQ8R6zPy+zMdsfjgiEnD1e6V6gjMRdrm+mObYIokM50dzGcDjObO93FWSzi4uF69757Y17drkc05GJZJ7jP5bDwUGe7KAps7+sXjXWD704s4iae7SYogzEv6zr7EkWBTYPXsOgI4QGGe3ysGLhTbRhoJyI+Z4cmpgWbWWFtv7kvVdU4zpU4zjU/g2sjEe6tnSQpze/EQMCFVmxwORDEbJIQRIG6plKs1nBazUiC0CG8BnDbLIbWuh67BXQOWxIFw+cMBT3M6ojcwdhuNuJ2GI5gBT0uQ8KxlTAQs/tcbB0baCBsFjCIQUkV9QXcLouZzWQaDciWOs9hwGFFLEOfy4nXYcGkyDRodkXsTyBEhmJxUWT1WP+8xvw+Qna74T6fBL3Rq+3tbdbX14FmEdpoNC7E9eqi0CIb2WyWW7duva3WtqczP8rlcnv0anV1FZPJ9EyZH+l0mpmZGcbHx+npufhslaOjI77lW76Fmzdv8ou/+Ivvic/5FXjV4XhJ8L4kHGeFIAhPJASqqrK4uMj+/j43b97E5/M992ucN+HQNI2NjQ1WVla4evUqJpOJVCp14eLwuS8u8LlPfpFCoU46VcTmdbB1fxdXxM720jGBmJfocJDt9Tjbawk8UTf7O8f0DvoJRlwsPzwkl21qF6w2BUGRKSYeF16jkxFWHh4yNBzAbjdTqdQxWxXuTW91HEco7OxIF2/B47dzdEqb4A842NrtLtSiYSu7OrkbAwN+7i92C4BdHhs78e7HOxz6BYHPZ2dPJ1hvoM/HrI7z1fhgkEUdQhPw2lnRsbxFgD2d4wFw2PWPabTPz5LOviRRYMOAiNgMdBV9IQ9b8bTu39J5/cJzKObj/qb+yNKGga7D77JxT8dpC6FJHuQyBJ023HYLNrOCKIvYrAqH2QLpYplEvthBSA4NSMBoxMeikchd1b9ZOC1mw25J1KMvpgdjEhBy2jjUGR0DCDjshoQjY2BI4bSY2Uzpd0UG/W5mDfQgbpeTjUKJvXSuS59SdtcIClYCrqa1ryYKFGtVCtUa68dp3f2N+L0sJPQ7UR96zsWbJ6FYLLK1tcXo6Cj9/f3PNHr1boKqqszPz5PL5bh58+Y7fowWi4Xe3l56e3tpNBrPlPlxkmz09j55VO48kEwm+VN/6k8xNTXFL/3SL73rUuNf4Ql4ZYv7UuDVL/IUjJyqqtUqd+/epVarcfv27TO7eZwn4WjdlBKJRDvNPJPJoKrqhYrDf/+X/5D//em7CIqCJomIVhOaoGLxWEgeFLn65gjrK3Fmv7qO2arQPxlFViQadZV8rkSuWG2TDUEUiA0HWVk6xGoz0dvrxeawkEzlqVcbrK80l6CdLiuqzmKVw23jMNG5Qjw8GuKhznhUIOgkfkq4LcsipWo3EXM4TCyt6hT9AQeLOrkbAa+dh+s64Xl2E8sb3fsRRIGdQ/0CsN7Q77nGIi7iOqvhw71+VnV0HbIk6oYGAsiK/srfWF+ARZ18D0GEzVMjUy34XFZdwuG0yobPMbrmht0WDrL6RbORa9RgyMvGo45EIlMkcWIUbbI/yOp2kzzIokDIacfjsOB1WKmqDQJWK7lKlWSh1O5QWA1W7pUniLiHgh7u7eh3PooG6eJem5VNA+vfHq/bkHAcGRTzTrOJDYP9DfjdhiLzJ10fjCxvQ047+49I1PEp0nQtFibTKBF2O3BYTYiSSLFRI1EsYnuCDuCPPcc41ZNwfHzMzMxMm2wATx29aq3WO53Od3zsSlVV7t+/Tz6f59atW8+kDXw7IUnSUzM/nE4nh4eHjI6Ovi1k4/j4mI9//OMMDg7yq7/6qy+kN3mFtx+vgv9eDrwvCceL3DD0sjjy+TzT09M4nU5ef/31F1o5OS/CUa1WmZmZodFocPv27fZsryiK1Ot1stksTqfzXMmGqqr8t3/+O6zMbiPbLBRyFcxOK8WDDMWahMfvwu7UWH14SD5bYngqhmJTWJ7fp9FQsVgVvBE3ezvN4lBRJK7cGqBSadDX62N3O8Xy4gFDE2G2NzsLu2i/h6XFztXtyUsxFk7ZyYqSQEFntKW3z8eiTkr4xESU+wvd1rMBv4WNnW6xbCjk5EhnRCgScRNf6i4Qh/r9ul2MiaEQCzpdjLDfwapO50EQYduAoFgt+gXJWH+ABzpkx2ySWN3RX8GXDJyeRnr8LO/qP+d0ynoLwz1B7q12n7skCu1xqtOwW2TQWby3mGTWdATuAF6HBZ3TRJFE1g8fP6ehasQzBeKZAtdHotw9FWrotigEXHbkusCtWJQ6KoVajVShSKpYZiTsM9SJnB7lasGmyKwajGf1+10c7+h3OEoG9txWReagqE/IBgIe7huQCiOROcCOQbck6jLO2Ii5nRwZaDtEQaBQqemOpXkxM2b34rSZESWBUqNOvFggV6nyeuzFxcQt21WjVfXzcr26KKiqytzcHMVi8V1JNk7jSaNsgiCwvr5OLpe70MyPTCbDt33btxEOh/mv//W/vuvfs1d4hZcV70vC8SI4TQiOjo6YnZ1lYGCA0dHRF179Og/CkcvlmJ6exuVyce3atQ5xuNlsJhgM8tZbb2E2mwmFQoRCIdxu9wsdeylf5pd//DfZWU2AIpNP5KnVYWc7ia/PzdF2HpOpRrnWoH8kSOIgi6hILM42NRiiJBIbDpJM5Jm62kOtUkdSZGa+utEx0njpRl+XbmP8UqSLbNhsJvYOugvwqcsx7j9oEghFEXHYLdisCsGAA5tVaVq5PtLqNAP36vSHrEiSjNlsptHQkGSRcqVOr99JvV6nVm9QrzdQFJH9zSR+i6Uj0dpkkjk+zBFz2xHFplVs679GqcFkT6D57xOvbbUpXB9t+tCrWrPQaKgabrcVs0mmUq1TqtQolKo0VI2xwSBLOi5XVrPMQ4PRJKMieLQvwH0d4blZMSYiVov+imFfyM1W3MAy1SB1vMdvZzOpX6xWNf0Cbzjq48GW/nkmDToBQxEfS3v6BEEviLBQruG2NZjRIUl2RcYvW7gWDiGbJFRNI1+tksgXyZUqhha6QyEf8wYkQDX4fEySZOhcNRz0Mq+TywFQyOkTB4BtA1LR43Gym9F3oYq4jQmHUX4KwG5G/7W8NgurCX3y9XUj/ZhesLiPx+PMzs5y6dKlZ3ZCOovr1UXhJNm4efPme7JwLpfLbG1ttQnfRWd+5HI5vuM7vgOXy8Vv/MZvXKio/hUuEK80HC8F3reEo5Wo/bw4mcWxvr7O6uoqV65cOTcrv5PBfGchAC3LwtME6KRe4+rVq6iqSjKZJB6Pc/fuXQRBIBgMEgqF8Pl8z9X5iG8n+eUf/xSpeI5CuY4vauPw4RGhfheYFLaWjukbD+H0Okg82Cd5mGXi9QEWHxGHWL+PcJ+X/Z006XiedDyPL+Cgoqodv71or4eHp4iF3WHi4KizgLFYZCYuRclky/TEPEii0CzeNI18pkTQbSOXL1Mp1kkX8/iGg9x9a7PrvMYmgjxc6S5Ir1zp0RWcT0yEWFzuLvYuTUaYf9jdPRkdDrKkM9rl99pIZotd1x1BEHB7rByfErBbTRI2QaLP7cJsbqaWy5KIIIKqVsgWKpisVmoNjUK5Sr5URVEkfb0HtPMxTmOkN8CDje7jFUVB1z4XwOe26RIOl91s2MVwu5ygQzjcNoVtA/IiS/rfV6/DwtaRUedHnyRZFKmj83ESQY+d3ePuArxcq7N5lOYg3V2ADwedZMtlRoJ+zGYTNa1BplzhMFswPG5REFgz0HyMhLw8MLDDfVJCd8ZgHaPH7WDHQEMSdtoNCUfV4HsCGGpIIk4HBwYkpc/r5rik35253vNi19fDw0Pu37/PlStXzpxe/SyuVxc1eqWqKrOzs5TL5fcs2chms9y5c4fh4eH2KNtFZn4UCgW+8zu/E0VR+NSnPnXmbJJXeBdAA14W96aXl2+8fwnHWSHLMtVqtR2c19JGnBda3YhGo/Fc7WVN09jc3GR5eZnLly+37QVbTlStrklLHC5JUru70UqXPTo6aov8AoEAoVCIQCDwxONYvrPGb/3c5ylXG0hWC06bQD5fwRmwED8sEQi7Gb7sZOXBAduP7GMvvTFIKlXg0mu9xPczuL02pr+03t6nKInYfXaS64+LKlkWQZao1ZrnYbUqBIJOwj1uSsUasXCDYqFK+riIzW7m3vRWl4D38rVeNjd0Vuj1LE4FONApVEVRYHe/e7sgCiSP9cdfDgxWoxWTfnEYi3k6dAYtDA/4WdnqPn5REFhai1Opdo/ZRENW9uMloLOAn5yKsXOYwW4zY7EoKIqEKAogQaXeYDDkIVuqkM6XaL2NmsGVcLTXz5KB5a6eAxXAYMTL7Fo3CRMEgc2jtO5zIl4H6ZJ+LojRc/pCHo71hOTAvkEi+lDEx8KOfpegpPMeA4Tcdl2yAUCjTiJfI5E/9dkJkLeWmfL7sVoUNAGKtRqJfBG/08bDQ/1ukuUJ7k+7BsGCvU/IAFFUYxvaYrW70wPNn8yGgb1uv89taMsbdRkTDqOAQ4APDJzdwWh/f58HDx5w7do1gsHgmfdzEm/n6JWqqty7d49KpcLNmzffk/qDVtd9aGiIgYEB3cecZ+ZHqVTiu77ru2g0Gnzuc597auDuK7y78UrD8XLgFeHQwcbGBmazmdu3b597G/0shENVVR48eEA8HueNN97A4/EAz54cfjpdNpfLcXR0xNraGvfv38fv97e7HydX1r78O9N88b9/jVK5TiZdwhv1sreZoKbWcYfcmK0C1VqDtcVDivkKgbCLvrEQO5tJjvYz7G8m6R8N8XCxc9V88nof87M7zfdDFolG3UT6fBQLFawmieNEgeNUATHo5M6X17s6AaEeN/unyILdbmJ1tbuI7Ov3sbbWvT0SsbJ/1L3aOjYeZvFh9yr/yHCQZZ399MQ87Byku7ZbLBIr6/pFejypX5CZDVbkh/oDPFjpLqqtZomjlP6KcaFUI5kukkx3EpvL45GOrossCLidFnweO1JV43p/BEESqKsNitU6uWIFs0n/e9oTcLFjEJxXqekvtw9FvawadEsagv73N+Q0cZjTP8+aQdhh2OswJAgmRf98TLJx5yPmc3JkYF9blxSgm4z2+lyGRGnU7WXU5cVhNzVH+Op1UsUSR9mCYVp5zONkz6AbEXIaZ4CY7XbQSbOXBIE1A+vdoYCXFYPxp4DdZkg46k8YtdrP6h+702xiMhwwfN6TsLu7y9LSEq+99hqBwNn28Sy4qNGrRqPB7Ows1Wr1PU027ty5w8DAAIODg8/0nBfJ/CiXy3zP93wPhUKB3/3d38XpdF7Qmb3C2wbt/8/ee4fJWZ7X/593eu9tZ7tWXaghAQKXH8YYgZER4DiQAhjHJI5DnBiXuHfj2Dg2NrEhiXFi8nWl2A6GgAlGrgKMulbalbS9TdmdmZ3e5/fHake7O+8zqOwKgfZcF9eF3pl528zO3Oe573MO58+o0XlymXJ4zRKO0xmpmpycZGJiAqPROCs4b77P62SyPqYx0x1ry5Yt1bbxTNvbU7G8lSQJi8WCxWJh6dKlpFIpwuFwdWzAarXi8XjY/fNO9v32KJJaTWhsEmejk71/OIZvqQ1lUUf/4TDeFgfFUoWmNhfZdB6NQcOeF3qr3xtWp4nYZJbi8eJTUsCKtY1UKmVWX+AnHksTHI1RKZfZ/Xzv7I6FBGWp9juotd3FURlC0Nbh4eDBkZrtomA9lUYP1BZh2Zz8arDo/trsBlnC4fMYZUXnzY12BmVsZ1UqBf3D8sVfqSxfxC1pddMpI4Q3GTXCNPK5BXq5UiEaz+B1m+mSceWSJCimi7jVOqxm/ZQORqWgAhhMGioVGE+kZhEMo05N76j86r3JID9jbdSphSNYLpuZYKJ2f2qlgj4BefE5zELCMRaRL8zbfXa6RuRJomi8yKzXMDwhX0i7LEaGBccaT6QZkHH2arSboSSx3utBrVaSLZWIZjIE4km8FpOQcIg6FRqlgr6J2uMAeHQqxrLyr7Pq6wX3yb8GEFrves1Gggl5wrap2V+3+yHC0NAQR48eZcOGDadlUX66OJnRq2nyUW/0qlQqsW/fPorFIhdeeOGrkmwkk8kq2Whvbz+tfbxc5se+ffs4ePAg1157LVdccQV/8zd/Qzgc5v/+7//mdfpgEa8gFjUc5wVes4TjVDE6OkpnZycWiwWr1bpg7iQvl/UxEyJ3rOnOxqmSDTlMt7nb2trIZrOMjozxoy/+D8M946j1elSFEnq7kcl4kqbVToJDGQq5NC1LPZgcJnoPjzERiNOyzEPvsVD1b0mlVmJzW5Co0NTqIJvKEYukGR2KEp+x6i4pJBRqVc141Mq1jRw+VCveRVl7rUazlmMymgu/38ZRGQ1FS4uDgeHaQrWpyU7/QG1h63QYOSbT3dColfTJBP0BlCryf1oqtUA/0eamq7f2Ggx6NT2DgiJY0EVobXRyUKYjotOq6BOQGpGLUeuM4MBofPYqfnODjdBx4b7LrMNm1mM0aLBY9MTTOdL5ApF0hmg8XR3PHRIF6jU4OCCjHwGIZeQLXLdJzWhcPmxPThQO0GA3MyboIIhGmRSSVLXdnYsWt42DQ/Ki8JzAxtek0zAkl/YNuK1G9g4EGJmT26JWSqiLEuu9XlQqBblyiYl0ekonolAI08Xb3Q66gvKfH5vJyFg2JvvYXKvbaagUkpDAtNlt9AssexssZoICV6uLWk49fXpgYIDe3l4uvPDCasf3lUC90auBgQHh6FWpVGLv3r2USqUzdj58pTBNNlpaWk6bbMhhbuaHQqFg3759fOADH2BiYgKTycRnP/tZcjn5v/3TwW9+8xvuuecedu3axdjYGD/96U+5/vrr675mx44d3HXXXXR2dtLc3MwnPvEJ3vnOd856zre+9S3uueceAoEA69ev57777uPiiy+et/NexCJeTXj1fcvNMyqVCkePHmVwcJANGzYQjUYp1FnBmw+cDOEYHx9n7969tLS0sGzZshpx+HyQjbnIJws8/a3fkotLeJv8jPSGMfl0xEJx1Ho10UCe5g43apWKcCjJYN+UENvZYCUSS1MsFGlqc2K1GVFpVRzcM0ipeKLAXrG+ia7O2Ra0K9c2cejg7G1anYoxGR3F0pU+jh6T6W60u2W7GxabXtbJSmeU73qYzPKrug1+G+OxWs1FR4ebQzJicb/PytCIfLp3MCzvqITgbWxrdsp3MQwa+obkuwh5wWerrcnBYRlSI0nIdl0ALGYdyPA+m1nP8IyMjclElsnjY0+rl/ro7DlxzlqVEqfNgMWoJJsv0NToJl+uEE1nGI9PhfGJFn08NlNN8T0Nh83CaLyWCOrUSvoC8sTK6zAJCUdQ0BFp99rpCQqImkAUrlRIwiDAVreNzmGBs5igm1WpwKHBUE0WiU6lYG2bh1y5jFKtIFMoEk6lCB937jLU0YNkBfdcq1DQH4nJPrbEaeeIYAzLYdILCUe5zhzBRS2npt/o7e1lcHCQCy+88Jxb4T6Z0Sun00kgMPX38WolG6lUil27dtHU1MSSJUsW7DhKpZI3velNvOENb+Dd7343f/zjH/nzP/9zHn74YT74wQ+yYcMGtm3bxrZt27jwwgtP2wY+lUqxfv163vWud3HjjTe+7PP7+vq49tprec973sP3v/99nn32Wd797nfT0NDA1q1bAfjxj3/MXXfdxQMPPMAll1zCvffey9atW+nu7sbj8ZzWeb5mUUb4G/iaw/kijpfB/CbCnUM4mUK8WCyyZ88eAoEAW7Zswe12z3sSuBxe7hgDAwPs2bOHVatWsXz58up42MxAv/kmG0Pdo/zHR35If3eQeCJHaCSG3m6id38QvUWP1WlDq1Ex0hcmEIgSCU8VbRa7nqYON/5mByaTnuHeCfKFIvv+2D+LbCxd468hGxabgf6+2qK5Y1UDsejswlxSSCRStSNQZoteloS4PWaOyIxeud1mjsp0QywWPUdlRoqUSomBIfkCKy0YR3E4jLLbO5a4Scms1qtVEsf65UXMoi5GW5NDNiBQr1XRJzhf0Y9xe5ODREp+tVCOaAE0ea2yJEGSYGjOmFOhWCIwniCfLTAYSHP4aIienjCRsSSaLLQYTEiFMhtbfaxv87G80YnLYkCSwO8Ui0GDMsJ7AKdRJXTiEnU+PFYjYzLuVDDluCXCiGg8y2snKxCgi5yrkGBQoIlpc9tlgw/zxTLlEhzsC7LvyBhH+sJEQ2msZTXLrQ50kpKNjT6WuR0YZmhX6iWPd3icCALV0dT5xcgIxroAhgSaD4dBz1L3yY1DVSoVjh07xuDgIJs2bTrnyMZcTI9erVy5kte//vVcfPHFmM1mjh49SiwWo1QqMTAwQDwePy1HxVcKqVSKl156icbGxgUlG9MolUq8973vZd++ffzhD3/gi1/8Ir///e8ZGxvjH/7hHzh8+DA33HDDGS0UXnPNNXzhC1/ghhtuOKnnP/DAA7S3t/Mv//IvrFq1ijvvvJM/+ZM/4etf/3r1OV/72te44447uP3221m9ejUPPPAABoOB7373u6d9nq9VTIvGz5f/FgqRSIS/+Iu/wGKxYLPZ+Ku/+iuSSYHZCVN65ekx/7n/PfzwwyfeH5nHf/SjH53y+b36llbmCel0mt27d6PVatmyZUtVLP1KEo5yuUxXVxeBQIDNmzdjt9uBWnH49Bs+X9j3XCdPfvfX5AsVcvkKDr+Z/mNhSokMyzY10t81wWhfHJ1Bg7vJRSySonWFi3QyQ0WlZO/zJxyobC4jYyOxWfs3mrUEg7WFlK/FQXfn7OVzp9fMka4AarUCg0GLTq9Gq1Hh9lpIJLPYV+qPZ1kASBjNOlKpPFCZJcYymLTYzVrSmRQGvaEq5DRadHhTUyLDClApT3kzmSx6ItEUxVKZfKFIoVAily/S1GjnYHdth8HntdIv4yilVEgMynQ3YKrDIYeOdg+HZciO0aARj1MJxNKtzU7ZLoZCIdEv0HWYDPIFtctmZERgOVsSiINbGuz0C7olKq0emE0SiqUyOq2aLhkSaNQoURcVrG30oFIrKVbKTKazhGIpXBaDUB/hsNsYnpTJGVEphKJwn8NMUCAKn4jLE5sGu1ko8DbrxSQlOCmwjXVYGBRck6XO/mIyRDyVLRCOpegNRGYRQ49Ji8dhwWXRE8nlmMhkCEwmZmW2aAWieoAJwVhUvVGrZpuFIUE2x+aTHKeqVCocOXKk+t34anMlkiQJvV5PJBLBYrGwevXqakZFvdGrcw3TZMPv99PR0bHgqezlcpn3ve99PP/88zz33HOz7Ondbje33HILt9xyS7Xjf7awc+dOrrzyylnbtm7dyj/+4z8CU9rLXbt28dGPfrT6uEKh4Morr2Tnzp1n7TxfNVjUcMwL/uIv/oKxsTGeeeYZCoUCt99+O3/913/ND37wA9nnNzc3MzY2uwb793//d+655x6uueaaWdv/8z//k6uvvrr679MZZT0vCUckEmHPnj00NDSwcuXKWV9UKpWKoiDld76gUChqCEehUGDv3r3kcjkuvfTSWeLw+dJryOHZ//dbXvzlQXKFCigUqLRqQsE4BosSrcFET2eYcqmCyapj+cZWIuEkqXiGZCzN6ova6Nw7fGJnEmiNKmIjs4uwpiXuanfDZNZhcxhwOs0USmXWXNBIuVSmkCuSSeexe0wkJlIUCiUS6QIJprobuUye0BzSotEqUWk1pJKzV+d1ejXlSpl8bvoeTxVJarUClV5NOjUnkE4Cp9vM+HhtIZi3GtEUKuj1avR6zZTFrFaJ02XGbdEjKSQqVCiWKxSKJUwmLf2jUZQKidKMZWKjQUOPQO9RKMoX7zazgmSm9svJqNfQK0N2pq5F/vOxpNnJUQF5CQpcs3xeM2GZIlypkBgYlS/crYIRLK1aycBYTPY1ZkEHoVSqcLgnUOt4JUFjowmzSj31XkuQzOYJx1PE0zlGBCJut1nLcExemyByuzLp1EK9hcduEhKOSRkSAOC2GIRidqfFKCQcSUGIokGjZlBQ6Lc4rRycM7oVSeaIJMNsaPNxaGCKlGlVCnwOK1aTFoVq6jvGotMSz87+uzJq1IQy8ufhNxkZFGR9uM1GIeE4Gf1GpVKhq6uL8fFxLrroonkJjDvbmO6mS5LExo0bUSqVGAyGcyJw8GSRTqfZtWsXfr9/XkJwXw7lcpkPfOADPPfcc+zYsYPm5mbhc88m2QAIBAI1eS9er5d4PE4mkyEajVIqlWSf09XVdTZP9dWBRcJxxjh8+DBPPfUUf/zjH9m8eTMA9913H29961v56le/Wo1SmAmlUonP55u17ac//Sl/+qd/WrOoY7PZap57qnjNEg7Rl+Hg4CDd3d2sXLlS9gvsbHQ4VCrVrGNMz8MajUa2bNmyIOLwuSiVyjz2L09wePcA+XyJcCCO2WWiopYIHJugdXUDw70R2lf6UCgVKNVqdv/uWPX1HWsbObRveNY+V25oouvAKGqNArNVg8GoxWwzkMsW8DdYiU6kSEXTpKJpKEsMzxFou7wWDh8YqRGQd6z0cVSmy9CxoqFG/wHg85vo760tiJcs89Ils5/WVpdst8Ji1dPXN065XCGZzJGcQWwmYxkmZAr1FasbiAeTSBJYjVpMJh0Ggwan20wqkwdpalU/nSuQSucoUaFXoMUoleXf70afmSMyeSPqOk5XOoHlrs9lJiAo0HN58ThXj+CcJ2XsVwFa/Q6OCAiP6DVtfjvH5JLPK5BI5jgqE2y4otFBRSXRYjNTUUqkcgXC8RSxVBan3SpLOBQS9ApE4XadgqRAmyoUhWvVDIzHZB9rsFsIJ+Q7JnIjUzBl1yvaX6vbxuFR+XE8dZ2QwJkWv/limcFQDEJgM+iIpafeD59Zj9tuQqtTkS+X0GpU7BqWYZOAQSUu+HJ1FnBeTr9RqVQ4dOgQ0WiUzZs3vyrD3YrFIrt370apVLJhw4aa7sVc16u5zoEn63q1kEin07z00kv4fL6zRjY++tGP8uSTT/Lcc8+dtN3uIhZxvmLnzp3YbLYq2QC48sorUSgUvPDCCyc1Lrhr1y727t3Lt771rZrH/u7v/o53v/vdLFmyhPe85z3cfvvtp/w98JolHHMxPa40NjbGpk2bhDaKZ4NwzOxwTExMsHfvXpqamqp6jenzXShxeCaZ5aHPPELvoVFMDgtjx8IsWdfMvud7KRXLdKxvQmfUY7Kk6Tk4wppLOujcPVh9vavByuhwjEoFbA4Dbp8Fk0VPfDKLw24kEk4QSReJqbKYHTkm52RFLF3j5+jh2sLf3WBlXKaIzwtm4aNR+cItHhesYgvm+o1m+RXE5mYHnZ21hKa5xcGQjE5CpVIwcJy4VCrMIikKpUJWO3LBGj+VZBGrQ4/eoEGpkkikUkgqBRWFGouxTHyOviKZkr/uJa0uuvpkik8J4WiUx2mSJRxajVJorWvUCUT3Ri2Dgi6GTitPeEx6DYMzxOezjqMXWBorJQZErzFo2C/j0OUwapFyFTY2+6goIJHLE4glSGULNFj1DE/Kf2aMRiNM1jIOlUKiT+Rc5bFxSBAsKBJPKyRJ1iYXoM1t48iYKCRQ/BU+Kuh82Iw6RgV6lSaHpUo4JhIZJhIn7suGtgZMOSU+pxmzQUtZCZPZHCPxOAWFPLmRJOgTOGj5LCZa7GIdRrlcprOzk3g8zubNm9HpxFa95yoKhQJ79uxBpVKxfv36lx2VkiQJk8mEyWQ6JderhUQmk2HXrl14vd5ZBiYLhXK5zKc//WkeffRRnnvuOZYuXbqgxzsd+Hw+gsHZY5vBYBCLxYJer0epVKJUKmWfc6arxK9JnIcdjnh8dtdXq9WeUTczEAjUmBGoVCocDkfVpOLl8OCDD7Jq1Souu+yyWds/97nPccUVV2AwGPjlL3/Je9/7XpLJJO973/tO6RzPC8IxM8vi0ksvrduSP5sajuluy6pVq2hqagLEyeHzhfDQBN//4k+JRVLorSby+RINHR727uzB2WjG3+bj4B8HKB0fMVlxYVuVbCiUEk1tbhw+C6lElvDYJLFQgvh4En+Hh+E5QXcr1zdzaN/Q7BOQICwThmZ3GTnSVbt62tzuZEAmQK9tqYe+3trtLq+B8VBtQe5wGumTsbZVqRT0y6WTw6yOxkxYrXqGhmq3t7W7ZMMBtVoVAzJ2uwC5XJF4Ikt8TrDdqlUNHDp+P4xaFXa7odotKUtg0hqIJTNEkxkKxakvMNEoYHODTUgEEmn5a2xrdNI1IO+kFI7Jz/G3+Gx09spb24YiAt2Cz8ahfvnjRBPyJKDFZ6dnVJ4M5QvypFKjUsq6fXksetpdLtzWAtlCnmgqQziZrY7DBSflr7XNa+eowAlLI+osSDAsGM9q89joERAYo1aeeAFMJOXJp1GrIiS4fzNJxVyo6hSw0VSaTL5YtUmehkGroqQuscHjRalSkCzkGY0nSOTyNJmNDAnyNy5qFo9TlctlDhw4QDqdZvPmzefMWNGpoFAosHv3btRq9UmRDTksVODgySKTyfDSSy/hdrtnLYgtFCqVCnfffTf/7//9P371q1+xYsWKBT3e6eLSSy/lySefnLXtmWee4dJLLwWm3rdNmzbx7LPPVu11y+Uyzz77LHfeeefZPt1zH+ehS9XcCZtPf/rTfOYzn6l5+kc+8hG+/OUv193l4cOHz/i0MpkMP/jBD/jkJz9Z89jMbRs3biSVSnHPPfcsEo5pTH8xTmdZmEymk7IgPFsajmAwSDqdntVtmelENdMNYL5wdHcfP/vXpwmNxLD67PQcGMG/zEM8kcLuMaLXGzi8e7BKNlpX+kglsqze2EI+V2C4N4zJpmfvH3pm7Xflxpaa8SqjRceAjBB6+QWNNUJxAJfPTLSrtkDSCeb71YKVXbfbJks4GprsTBys3b5kqYduGTcrp9PIoEAnIWfZC6DWyp9TW5tLNr1co1FWOyJzUZrRjcnligQCcSDOimVeuud0SuwmLWazBtI5Wu1aUCrIlyUmUwXSuQI2i16WcJhNWgYEAneVWn5ExmU3MhaWn8cXucS4bEbh2JZSMIpjMmgZDsrfZ5HmQ5JgSND5aHCamZBxtYrGMwTCiVlCd4UEXqsep11HupDHYNaSKpZn5YGY6oi4RRqNJodFKHS3CgIRASYF5MCs0zA0IX+PnDoVSUGIpdAli6kQRzmYtGqGBA5azQ4rXYEJhufYF/ssBjrsTrxmC+ligbF4gugMXYhfBeFwuGalfjp9O5fLsWnTpqqhx6sJ02RDo9Gwfv36edEYnO3Rq+nOhtvtZsWKFWeFbNxzzz38+7//O7/61a9Ys2bNgh5vJpLJJMeOnRgZ7uvrY+/evTgcDlpaWvjoRz/KyMgIDz30EADvec97+Nd//Vc+/OEP8653vYtf/epX/OQnP+GJJ56o7uOuu+7itttuY/PmzVx88cXce++9pFIpbr/99rN2Xa8WLLR707mE6escGhrCYrFUt4sWDD7wgQ/U5LvMxZIlS/D5fIRCs2uDYrFIJBI5qa7aI488Qjqd5tZbb33Z515yySV8/vOfJ5fLndJCx2uWcACEQiH2799Pa2vrSc+dLnSHo1AoEIlEKJVKs7otM/UakiTNuwhu5//s4v++/3tiEynKCiWdz/eydHMr/d0B0pM5/B1uxkMJSsUyS1b7MVv1DPVPEAklgKlV+7YVPg7vGZy1X5vTSJ/MqFDrci+H9s5uAyiVCibCtcWY0ayh91htZ8DpMXNMRnNhdxo5JlPA6/VqenvkR4oCMi5ZABXBR6LBb2ciUlugisapJIXEkEyY4PRjcmhrdXJE5t4pleJ9qWRWzxPJHHa7kf7B2vMy65RkoylWNTnR6NTkS2Umk1lC0SQtDXY6ZcaP6o1gNbjNjAs6HMPC11gYF1jYiohIi8/KoT75zodI89HitQlHrURiep1GVUtSKhCOZfC7rHT1n3gfTGoFZpMKo0FDJZ+n1WUlMJmcJWp3W4xCwuGukzyeqCMKF+k3WlxWOkfkR7dsVgsDk/L3KSxw3bLotYxEBaTCZeXwqLwGxyDowIzH00zEMrM0Ji6TDo/diFopcYHLQVdXF4VCobpS73A4OHToEKVSiU2bNr0q07cLhQK7du1Cq9XOG9mYi5MZvZomH6czepXNZtm1a1eV3JwNsvHNb36Tb37zmzzzzDOsW7duQY83Fy+99BJvetObqv++6667ALjtttv4r//6L8bGxhgcPPHb197ezhNPPMH73/9+vvGNb9DU1MR3vvOdagYHwE033UQ4HOZTn/oUgUCADRs28NRTT9UIyRfBeTlSZbFYZhEOEdxuN263+2Wfd+mllxKLxdi1axebNm0C4Fe/+hXlcplLLrnkZV//4IMPct11153Usfbu3Yvdbj/lruprlnCEQiH27dvHBRdcMMtK7+UwTTgqlcq8f8lOu3xIkoTH45ElGwvhRPWz+55i3++OABK5YgW7x0C73cChF6eC+9zNDmxeK2anmaFjIQa6AzQu9R4nG1PQ6tUkErma7wR3s5Mjc0L3PI02ug/UBvEtX9fIoX2121uX+Ti0f7hmu8GiZHyi9kvI3+wkEq19fvsyD4dkjtu2xE1ff22xZDJp5QkKEI3KF9XCcao2F70yLlSKOkREpZYvAlpanPTKnC9AICSwTbXIr5CrVCr6+6I1ygGFQkJfkVjV5EarU1GsVEhl84QiSZx2AwOBmOz+RLkgTouG8YR80Sxy4fI6TASi8sW5KPncoFULSYXNohc+FhCEB7b4bHTLiM+hVvOTK5TJRfMkUyVyY0nKlSke47PqcNiM6PQa9Do1hXJJ1qo2c1qicCuHR+TPT12nWzuekCcbVoNOTCqcVmEgoa5O4Z/Iyo/lSVDjoBVLZokls/jtZl534XoqlQrJZJJwOMzQ0BCHDh1CqVTS2tpKLpdDpVK9IiLp00U+n2f37t3odDrWrVt31tyT5nP0KpvN8tJLL+FwOFi5cuVZIRv3338/X/7yl3n66aerxdLZxOWXX143C+W//uu/ZF+zZ8+euvu98847F0eoTgblCkjnCeEQhRydIVatWsXVV1/NHXfcwQMPPEChUODOO+/k5ptvrjpUjYyM8OY3v5mHHnpoVuL9sWPH+M1vflMzJgjw+OOPEwwG2bJlCzqdjmeeeYa7776bD37wg6d8jq9ZwuFyudiyZQtms/mUXje9ElQqleY1AXbaitfv96NSqchkpsaHFpJsFHIFfvilnzF0NERyMoPJYSGXzpMt5Ok9GKSh3YHLZ2d0KMqhP/ZXX7f64iUc2j27k7FkdSOH53Qslqzx15ANiQp2j5lstoBGo0KlUaBSKaccc8qwZJl7alTs+LMlpUSpUGTJUjflcoVKuUypVAEqZFMlDAYV+UKJUqFMBQmVWsGAoBifGxY4DZ1BfgW2pd0lKwr3+ayMzMkSmYZonMogSC9vbXXSK6cRkWBQ4PRkFJyvz2shEJLvCCQEepMmv53DMtqFSrnC0aNB0tnaItjb6ELnU6IzqKkoIJnJE4omyRdKwiyPBq+d8URt10mhkBgMyBMuj1NMOAIR+etsbrDRNSBPEkVBjB67iZDgONo6omtRwnmLz14lKZUKTMSyTMSmCvwlXjOpYAaXWYfHaUJv0JArl4gk0wwKSEW7x07XmPxnWlun0BeNP9nqkgoLk8PyZERdZ9RKpPlQKxUMCMa6mp1WBgWPbWiZWgSSJAmz2YxOp2N8fLxqvTg+Pk5/fz9arba6wmez2c66/empYDp7wWAwsHbt2lfsXM9k9CqXy7Fr1y7sdjurVq06K2TjwQcf5POf/zxPPvnkSa3ELmIRi5DH97//fe68807e/OY3o1AoePvb3843v/nN6uOFQoHu7m7S6dm10ne/+12ampq46qqravapVqv51re+xfvf/34qlQpLly6thlqeKl6zhEOpVJ4y2QCqJGM+Ccfw8DCHDx+uWvH29fVVScZCicMnxxP81yd/zNCxMGqdhkQ8T+/ho7RtbCSXL+BtcTA+Eket1zMxY9xo2frmGrLRcUEjRztHcPmsmK06tDo1SqWEpFSybIWXfK5ALlMglchid5s4smug5nxWrG/msMz21Re21IxeAazeOHu7xFSOhsenJT6Zw2VWYTIb0Bt0KFQKdAYNuVwBywovuXyJbDZPMpmjWCrTK6MlAbEo3OU2y45gicapkGBEIMo2CPQGbqee8IS8qHc8Il9IulxmWcJh0KsZEoUNKuU/Uw0+C2MC8hJPZGU7LKtW+MiViugMWoqVMuPRSSLJPIVimaRMgjpAm99Br4CkiLolHkcdgiAIpVMpxcTGW2d/QYGTU4PLwphAs6AXOG7BVM4FwGQiy+SMLkN7g51kMsNytx2jSUtZqhBJZxmNxjHU2d+EwELXatAJx7ManRaiQlG4uAiOJOU/j3q1Spz14bJxLCT//jpMBjHhaD0xUzzdFdBqtaxbtw6lUklzczOlUolIJEI4HObAgQOUy+Vqoex0Os+pcatpsmE0GrngggvOGWJ0KqNXRqORPXv2YLPZWL169VkhGw899BAf//jHefzxx3nd6163oMdbxDmM83CkaiHgcDiEIX8AbW1tsp28u+++m7vvvlv2NVdfffWswL8zwWuWcJwupgv/+dBxVCoVuru7GRkZ4cILL8TpdAInxramjzHf4vChrlF++M8/JzAUweF3cmBnDw6flbYL/Qx3j1M87uSz4qJ2umcU9U6flfFgguZ2FyarHgnI5wok4xlKuQLjIxHGjzc0Vl7YQteuwZpj+9tdsueUSskX9zHB6FIyXlswFQtlyhUlidhUERYJnSiQVqxtkBWjr1zbSGB0Ep/bgt6oQaVRoVBIKFQKEuk8bpeJaCxNccbYT0gwtiQap2ppcTAgGJsSaUeMRhVhmQaH02liLCBfpGUEoWtNTQ66j8m7Q40K9uVymmQJh0IBA4LOi0qh4HD3HCIiQZvfhgElGzoayJdKTCQyhCNJypWKMMVcqZCEY1tep5ggiByyWhvs9AiITVnwBa9RSYQFOge3zSAkHJOCz7LLahBqVaRygUyuSN+cnBStWoEiDxc2+igrIJbNMhKJUyiVsei1DEcE3QOXhckhAamoU+yK9BtmnYYhwbFa3Da6BR2YegnoxTrfoRtbpzocuVyO3bt3y3YFlEpltbtRqVSIx+OEw2H6+vo4ePAgdru9+vgrmc8x3RUwmUznFNmQg2j06vDhw1UBqNVqJZ/PL6gzWKVS4Yc//CEf+tCH+PnPf87ll1++YMdaxKsB5xHhEFijnw9YJBwymA/heLFYZN++faTTabZs2TLl58/UF61GoyESidDZ2YnH48Hlcs2bn/q+HYf43//cQSqRw2g3Ew7EaVnpJVcu0H/wxCjKmkuX0vlSP95GO3aPmUqpTLFcobdzlOiMQnD1xUsIzMnMkBQKxoO1xardbaLnUG3R7291MiRjYetvdTAqI3R2ei0MylnYqhWEx+QLztER+SK5UoFYJEVsTtdg9fpm+o8TFEkCh1WP1WbA7jVTKJRx24xk81OWtZFYilKpIhynMlv0QC3h8DdYGQkIHJ2K8u+3z2thXMZCVqNRMiggNWqBFsTnsRAQOEplBQ5GrU0OeuW6OEBczma1AgadhqPdswmPQavE47VikJSsW+IjmcsTmEhUx55a/HZh56MoyEuxm/WMCsac6rlGjQjugdduZFAmXR44PtZXC61ayZCMrTOAzyEWx0sK+a9aBRIHjwVmpdIrlRJNbhvNXguJfJ5YNsdINE5+Rhp6veWJkEw6PLycfsPGoRH5TqCxTgcmnZfvbAGMCDowDqOeVpetKky2WCysWbOmbqEuSRJWqxWr1crSpUvJZDKEw2HC4TBHjhzBaDRWyYfFYjlruo9psmE2m1/2Gs41TI9emc1mJiYmcDqd2Gy2sxI4+Oijj/KP//iPPPzww7z5zW+et/0u4lWKxQ7HeYHXLOE4ky/HM7XGTafT1RGBLVu2VFv/03oNu93Opk2bCIfDHDt2jIMHD+Jyuark43RHBZ79/u/4w+N76D80SuvaZiYjaYa6R/GvdjPWM/Xj7/RaaV7uJZXIYjJpCQ6MExwYZ+XmNnrmCLdNVj39Mm5Qy9c10S0j8m5ocxHdXdv1sDhNjAzVFss2p4lRmSLa12hjQmb13d9mZ6Cn9vneRhtBmZEmhUJiQIa4AGRnzPtXKhCPZYjHMlhshhqLX4VCYtlKL6VSmYZlXiSFglyhyGQyy/hEilBYfjTJ4TTLEg6bXc/IaO35AuQEIYetLU6OCgTuQUFHxuUyyRIOpUISjmCZTPLic7VK/BqdjB1wPldiPJhgZCR2IjleAr/ThN1pwmE3oFEqCU+mZtnVShIMCToffrdFOPYjyhNpcJoZEzhh2W1mIeEYEeRltHhtHBGQW+FXjgRBARGxG1SMxWd3rkqlCsOBGE6jnoM9U2RfqZRod9uwWXWUKBOPJ1ApJIpzBIh2o14Y6ldPv6EVkFaAyYz8vVVIEgOikTSbiTGBW9f6Fl/VctVut5/W+I5er6elpYWWlhYKhQITExOEw2F2796NQqGoko+FDMebJkxWq5U1a9a8qsTt05geBTObzdXuzJIlS+bd9Womfv7zn/O3f/u3/PCHP+Saa66Zx6tZxKsW5Snd5nmBBRKNvxrwmiUcMEU66jlPiHAmHY5oNMru3btpaGhg5cqV1RWvmeJwpVKJzWbDZrOxdOlSUqkUoVCIgYEBOjs7cTgceDyekw5zKpXK/PCLP+XIngHGx2I0rW5k72+PANCwwkW5oGT15jaioTjZdI4j+4ZIz5gvN9kMsh2IlhUNNXoOSSERlSnSdAY1/d0yVrVGDb0y1rYqtYKBXvkVVbnuCYBGI18Mu7xmWcLR0GxlZLC2cNTqVAzKhAmCvK6jXK6g0ajolCFZ3gYrpUyRFS0uNAY1ZSCVyTMRSRETFJmNDXZisdrCWa1WMCDoLojEzR6XiaBMOjtAXuCK1NzsoF/UxRBYzjY22OiXIY2A+Dr9No7N1IJUIDyeJDyeZEmri97jGSROkxa314LeqEalVjE8MUk6W6gZhRLZC+s0KmFaudtmFBKOmIC8NDjNjAlE64Y6nRTRuFejyyIUoDvtVsbi8kRy5vlNk5DhABg0CtKFMmqlRKvHisWip6yAaDqD1agjkpK/rvr6Dfn3UKNSCsXuLS4rfYLHPBYx4Vjd4OSll17C5XLNiwuSWq3G5/Ph8/kol8vEYjHC4TDd3d3kcjkcDkeVgMzXmNA02ThbeoeFQD3dyUIFDj7xxBO8+93v5qGHHuK6665biMtaxKsRlfLUf+cDzpfrlMFrmnCcLk6XcEyLw1esWEFLSwtwIjm8XC7LOlHNFPUtWbKETCZDKBRibGyMrq4urFYrHo8Hj8cjO6ecTmR46FMPMzIwQalYxu53cuAPx7B6jNh8RuLhArFwjGDfOJJComV1IwNdswlA41Iv3XtnEwtng40jMhazy9Y2yW5fssovK/5uW9Egu33JygaOHKp1iGpsdTIiM2al06vpF1nYTghGSOxmWcLh8OgZG5IhTXo1w4JEcJF+wuk2c+jACONzOhlmi45kJk6Ly0hZKmG0mCiUYCKSEhKB1hYXRwUkLCjoorg9FlnCUc+O1yzoYmg1SoYFnZdSQeBSpJLEgnmdvNuWSikxPOM1iWSORHLqvV27soGJ/klMOhVenxWjWUdJqhBNZgkKSECLz8YRgbVtsSz/5W7QqhkS5Ia4bUYh4UgKVvttJr3QWctlMQgJR14wuqVWUGd0y0xvcJJiqcLg2CTMGPXzLjOy3GbHbNJSoEI4mSYwmaBSEes36oX6tblsHAnK/03YjHoQEI56i5XKeBjP8vYFSa5WKBQ4HA4cDgfLly+XdWiaJh8mk+m0jj9tG3u63ZlzAdPBhAaD4WV1J/MVOPjMM8/wzne+k+985zu8/e1vX6hLW8QiFnGOYpFwyOBUCUelUuHIkSMMDQ2xceNGXC5Xdfs00YCTc6LS6/W0trZWfejD4TChUIijR49iMpmq5MNoNDI+PMFDn3mEVDJP34Ehmi9oplgo4Wu3k03lCQ2kyM4QuK6+pIPOGfa3AG2r/TVkA6YIx9yQPkkhEZexnpWUEsFR+eItIpqRFxSCVodRlnC0LPXIisKdHjOjgtV60TnpDTqg9rya2pwc7art0qjVSoYERKRYlP+c+BrtHOkKkKiKkqeKUYVCIl4o09Fgx2DWUpYkkpkcoVACrU7QxXCbCQnuo4i8tDQ56BeIv5MC0XNzk4OjffKkrowaqF05b21xcUzwmpjAYanZ76gRT09j2rkqmy0y0H/iOS6HiXQqQ4fPhtmqoyxBJJVhbDxe1zVKFEbY7LPRNSh/3iVBV1StUghzPhpdZmHHZO7Y0zQUkiQkFS0+Bz2j8vfIbNQD8tc1HksxHJ79mFWvps1vR6lVYtPrCMQTTMw41xaXjUOCAEGjgDQC5OqMnQYmBV1KpcTFKzpYtuzkgljPBHIOTeFwmPHxcfr6+tBoNFXyYbfbT0p/MT0K5nA4zopt7EJgOphQr9efsn3vybpeqVQq/H4/JpMJgB07dvAXf/EX3H///dx8880LdWmLeLViUcNxXmCRcMjgVDQcxWKR/fv3k0wm2bJlS/ULdnqEanqk63TEhFqtlqamJpqamigUClWRZF9fH5GBBC890snEWJJcKs+yi5bS1zlCfCKJzqTB7LIyGYlV99W41EvXnjnJ3yolmfTslXu1Rom/3c3YwAQmq45KZUqgWqlUaF7q5ZhMV2LZmkaOyORZtC330ieTIG5zGumT0YZIksSIoLAvC4o2b6OVifHa4sbXZCMwIl+UxcblV+vTGflOSXObU95aV4LR4Zjsa/J5+WM0tTgY7J+oTVyXoOjIsKrVhVqvJl8sE4mlCE8khYSjXiK52Sw/5qDVqMRaDJ184a7TqgjIJMQD6AWvUSolRgQOWWaTeARjNCj/Go/TRDiaZGgOGdVrlKhyFTa2+ihKFSaSGQITCcqVCk0eq5Bw1MvfEAnTW7w2jglIQL2ZdpHbVZPHyoDg/Mx1RrfGwvLnYNSqZc89nSlQKVTY33uCsHssOrwuM2qtCoNOjVGrJpWrFYCncvKdPSQYEljeOk16ggLh+gqPneXLl8nvc4Gh0WhobGyksbGxark7Pj5OZ2cnpVIJp9OJ2+0W6ugymcy8joK9EpjubOh0unnJChGNXn31q1/l4Ycf5qKLLmLlypX88Ic/5Bvf+Aa33HLLvN+3b33rW9xzzz0EAgHWr1/PfffdNyvUbCYuv/xyfv3rX9dsf+tb38oTTzwBwDvf+U6+973vzXp869atPPXUU/N63ouYgUUNx3mB1zThWGgNRyaTYffu3ajVarZs2YJGM7UauBBhfmq1uvrF/ttHX+DAL/YQGIhhduvQWLXs+003AJJSQcPSBvpnEAOry4jNbcFoNaBSK6iUKxTzRcwOE8M9YWw2PflMnly2QCFVRKdRkpBZyc15zBQTGRRKBVqdGo1OjUarQqOo0N7uQK1RoVQrUSgUVACDRUelUiGdyhOfzJA9ntXQ2O4itqe2q9K61E2/DEHRGzSy2wFSCfnVeqfbIks4GprsjAlC/TIp+c+K3iBfVPub7ELCEYvKE44pRyuZ7WY9PUdqSY1Rr0ZfkVi7zEdFAZPJHIFQnEKhRHOTg75BeYImCgJsaRZ3MWJx+RX65kY7RwXi+4RA89HS6KBX0GFJCDoBXrdZODomCfJEAA51BSjNcLaaGseyYdEpkew6MmVFjXtUVM5xC/DVST83GeRH0QAignElj91ESKBlsJv1QsIhKvQ1KgWRtPxiiN9l5qjA+UszJ78kGs8SPW49vaTBTiFaoMVlxmkzgFIikskQjCWFCejNDguDAhcqv90yq4MyE5etXCK7/WxjpuXuypUrSSQS1VX6zs5ObDZb9XGDwfCaIhsajWZBUtBnjl498MAD3HHHHXz729/mP//zPwH4t3/7N0ZHR9m2bRsbN26cl3v44x//mLvuuosHHniASy65hHvvvZetW7fS3d2Nx+Opef5jjz1GPn/ib2tiYoL169fzjne8Y9bzrr766up5AwtqEbwIFjsc5wle04TjdHEyhCMajbJnzx68Xi+rVq2qEYdXKpV5D/MDePzbz7D7V51UKkpKhRImi50ju6cD9Sq0rPVQLOVZtr6RYq7E+GiUxnYPnTuPzt6RJOFpcRKas0JuMOvoleliWBxGBo53JcqlMplUjkwqh8Gs5fDuAUrF2SNSCqWEVq8lM2N8R2/QYLYZIJtn1QovCpWCUrlCNlskFkuRLwqK16Ueug7WnpPZqmdIkDoejwlcgVwmWcLh9poJheQLw9FR+WPYHSZZwqE3qoWEIydIw25otJLoqi3SctkCPV1BEjNE/gqlgma/lQa7CZNeQzKTZyw4WbW61dcJAhR1MQx6tVCLoROMLGnqaD6MgsBDJBgVuWrZjULCERG8n01eWw2xmRrHmqDRqyd4PKvFYdLi9VnRGdTkKyVGBHoLt11MOFJZeRJg0muErlZeu1FIOPJF+bFChSSJR8E8NnrGBONoGfl7BJAQaE/USgVD43EqFRgLJxibcf87GhyUlWAyaclXSgTjScLHx+ScJoOQcCjrfOdtOJ6/cS5BkiQsFgsWi4WOjg4ymUx1TOjo0aPodLqqUHrFihWvSrJRLBbZs2cPGo2G9evXL7h97/Rv39NPP83XvvY1/uzP/oz//d//5fHHH+eee+7BarWybds27rvvvjMKcJxOPL799tsBeOCBB3jiiSf47ne/y0c+8pGa5zscjln//tGPfoTBYKghHFqtFp/PxyLOEiqcP4X4eXKZclgkHDJ4uZGq0dFROjs7Wb58OS0tLdUfoGm9xnx2NqaRz+X5r0/8hOGeMP2HRkhG06y8dBl9h0fwddgwGg1odToOvdQ363VqnYqB7lrtw5ILGumVycxoXdnA4Zf6a7Y3dXg4JJMU3rzUS/e+WlF4yzIf/XPcqbLpPDqDhkNzdCQASFBOG/DadFjsRjR6DRUJMtkiSpUCSar9Pmpqc3L4QK1zlMVmEIq/U6J0cZ9VlnCYzDpiEXnykBFYsTa3uug+XOvMJUkwcopZGl6vleCc8MByqUxgKIpeo6LvuJBeUkg0+SzY3CaMVj2haJKxUHyW/S9AVFC4N/rtHBEI1idFnQ+/nZ4BeTKWERTnjT5xNkk2K3+fjXoNY4IC3CQiNsDMtyeZzJE8NnV9y9rdpEZTNDiNuNwmlFoViWyO4fG4MCRQqZAYFOgtmtxWoR5E7JWLUEje7LEwIBgtMwuCFAHUOgNQew+VksRQWEBg3FZ6g4KxPL2Wvb2zvyPcJj0+twmrRstyr5OhyCSZOTqicYHjlVqpYE1T7arzuQa9Xk9zczPNzc3E43F27dqFTqcjGo3ym9/8Zpblrkp17v+EFotFdu/ejUqlWpDOhhz27t3L9u3b+fjHP8773vc+JEnitttu47bbbiOXy/Gb3/yGF1988YzIxrTL1kc/+tHqNoVCwZVXXsnOnTtPah8PPvggN998czUnaxo7duzA4/Fgt9u54oor+MIXvlAN7l3EAmCxw3Fe4Nz/tjwDnG7Br1QqKRRqV6IrlQpHjx5lcHCQDRs24Ha7q9tPVRx+KpgMx/n2+79HNl3kwO+OYHIY2PjmCxgbDFJI5QgcyaLWTmJrsNe8tnmVj74DtcUvgh+dhKAgFRXqoj8dg1l+/MTX7CA2UXsMT6OV0GicRDRDaEYHQqGUUGtU6JBwNdow2o2oNCpyhRJKpYRCIdXoOxpb7Bw+UFskG4wahvvliUg+L9/Ramyx0324lphJCkkoJBfN8zc2OxiWEcQDTMrY5AI4XKYawgFTdezMTk2lXCE0OklodJI165sY7gxMkZAGCzaXCUmtJJsvMCTQVahU8p8HvU49y1FqJgx6eUGxQiEJX+OwGoWEY0JwD/w+K0f6BXkqMroDALtVT3RSfn/TupOJiRQTMxzOFEoFkq3EhhYvJQVMJDKMRaZW/1u8NnoD8oV5PT2IyCrX6zARiMo/plOJvzuygpwWhSQmMA6TmlBSngBajOIxsbxMlzeWzBBLZqZS1eNpFApod1mw2wyUFRXi2Rz9Am3HSr8bnfrV85OTSqXYu3cvjY2NLFs2pTuZttw9evQo2Wx2Vtq5Tie+l68UpjsbSqWS9evXL1gmyUwcPHiQ6667jg984AN88IMfrPkt1Gq1vOUtb+Etb3nLGR1nfHycUqmE1+udtd3r9dLV1fWyr3/xxRc5ePAgDz744KztV199NTfeeCPt7e309PTwsY99jGuuuYadO3eelfu3iEW8VvHq+fY/i1AqlTWrrcVikQMHDhCPx+ddHF4Pg4dH+P4XHmMymiEZS7PyoiUoVAr2PHdo1vOWX9RB5ws9s7bpjBrCg7VFiMmlo7ez1trW2+xg+FjtKrfNaWLwaK3IW6VWMnisdjtARDA2UxFkJLt8dkKjta9pbHUxdFw/MDLj3KaIiBo1FdyNdsxOIwq1iky2gCTJvwdNbS6OyHR1lCoFQwIiohBkFzS3OhkUvCYsuHarzSBLOHR6NaOCESgR/I12YbckeVxXUSlXCI5MEjyuZVm23EtlIktLkw2rw0BFqSCayDAWijMWlCdCTX6bUL+RFHR4mhpsDIzKn5soRdxm0Qs1JKWSQLiMWGTuc1uICvaXFlgcW01ajswxB7Aa1PgarLjtZjQqFaOROPE51z0p0LHYjDqhVa7HZhYSjnRafn9IMCwY3Wpy24QdGL/HQSgps+gA5GQWVqYhOneHWc/4cc1KuQwjoTgjxz/zK5vdWApKLAYlNruJvCQxFJ0klSuwoeXVM6KSSqV46aWX8Pv9LF16wlHLbrdjt9tnWe4GAgG6u7sxmUxV8jHfydyng1KpxJ49e1AoFGzYsOGsFMuHDx9m27ZtvPe97+XjH//4K34P6uHBBx9k7dq1NQLzmS5aa9euZd26dXR0dLBjx47FVPSFQrkMnCf5FAKHzvMBi4RDBnM1HNlslt27d6NUKrn00ktnicMXaoQKYP+vD/HQZx7F6rORTeUYORqgYamX8Jzi1N3s4Mie2nGnjvWtHHqxr2Z7Y3sD3TKJ4HavmaBMEevv8BCTGbNqWeGT1XvY3GYCgpV80faCYOXWbDfIbm9odTLSN1Xwj/aEYTqjQwKDSYdNo8TZaEdn0lGsVIjF0ihF5KHNVR1NmouQyGlJIP42mtSEZVLSAfI5+WtsbLLTI0P0AMYFmgab3SBLOJRKiVGBKF6rVVMulRkbiDA2cOJ9MBtVmNHRvMxHoVwhFEkwcdz+WC5FHKYsYkVdDItFDwLCMSYgYz6PRUg4soLuU4PbwphMkjpMBUvKQZJgREBSvC5zTVcknS7Q2zOOBiV9x0fOmt0mHC4TaCTimZyws+B3W4gNyJOHSp1B3oSAAzQ6LYwIHK/sJh2D8h8h8gKSBzAoGKdyWQ01Qvtp+BxmYeK7olImnS2SzhYJRKaImSRBq8vCRa2NwvM4l5BMJtm1axeNjY10dHQIv9eNRiNGo5G2tjZZe9iZo1dnY4xpJqbJhiRJZ41sHDlyhG3btnH77bfzmc98ZsHJhsvlQqlUEgzOXvQKBoMvq79IpVL86Ec/4nOf+9zLHmfJkiW4XC6OHTu2SDgWCosjVecFXtOE43S/8GZqOGKxGHv27MHtdrN69WrZ5PCFIBv/+51f8ez3f0+hWGb3/3UCoLfoSCbSlAqzCwizy0J4zpiK3qRlQCbhW2/UMiCTCC4pJAaO1K7+AyQFoylagQDZ1+IgJmPj6mt1EhisLXAkhcSIQPwtEllb7cYq4ZgJb6OtuqIfj8wumKSmLK0+MyaHkbKkIBZLExybxCiwafX4LIQEBXJEMDbS1OqmS6aLAjAiyJ7QGeRHkyxWvZC8FAWC44ZGO0OC46QE+RtOl4mhwUkCM7phbrsBt9+KQaViSYuT0RmidIDmRge9g4L3TEAe3U4T4Yj8qr5opEupkAhH5T9/GrW4kI4n5Av9Bo+luhpfuz9xURaYYb0cCicJHbcJ7mhxoktVWOJ3YDBryZSKjExMdUHUKvH+QoJRK7fVQFhQ6DutBiHhKNWxWhQlrbutRsIC+1qXSS8kHJo61xWJ1/7dTwnS46xodAlfd67gZMnGXIjsYQ8fPkyhUJhluTu9YLVQKJVK7N27F4CNGzeeFbLR29vLtm3buOmmm/jSl750VgiWRqNh06ZNPPvss1x//fXAlI7y2Wef5c4776z72ocffphcLsdf/uVfvuxxhoeHmZiYoKHh3DM8eM1gkXCcF3hNE47TxXSHY2xsjIMHD7Js2TJaW1vPiji8VCrz/z73KEdf6iWfLzN0nARIEpi9JsJ9sVnPX37REo7IBPctWdci291ou6BJVhS+ZE0jPQdrx6wsDj1DcmNTksSoQMMwlxBNw+o0yhIOf5uTEZnxJEmCMWHgnvwxHG5LlXDMhMVhICTjKKXWqZCyBS5Y1UBJgkg0TSgwSaUCLq884VCqJEIBeech0Q+ty2NgPCTSx8gXx74GK/G4/GOisS2LTQ+1OvqpeylwlLJaTQzNCZKbjKZJHS/ai8UykkKitcmG1WmkpJDQG9T0yuxLkmAkIH8cj8ssJBwiYXpjnfEslVLcfRFlgNhtRiHhEFkJu+xGxgXaJqNeQy5Xom8O+W12mzBUlKxv8zGRzDA6cUKQbjPqCAqcsHwOs5Bw1PudqpdyHhYEMHrtJiHhyGbFjldzR8pmYjIr343yOy3YTfJdwXMFiUSCXbt20dzcTEdHx2nvZ24ydzKZJBwOMzQ0xKFDh7BardXux1yx8plimmyUy+WzRjYGBga49tprue666/ja1752Vrs5d911F7fddhubN2/m4osv5t577yWVSlVdq2699VYaGxv50pe+NOt1Dz74INdff32NEDyZTPLZz36Wt7/97fh8Pnp6evjwhz/M0qVL2bp161m7rvMOizkc5wUWCYcMFAoF6XSazs5O1q9fX/XzrlQq1c7G9PPmk2xkklm+96mf8NLTB9DbjAwfCaDRq3E2WtBa1KjRYF9nIp/Nk0vnySSy5CeTmNSgVCtRqqb/U5CLxOlY5kKtVaNQKikzRWaoVDDbDSTmJIaLtAp2v4V4rHbcqGmpm2GZMSSlSsGQwO0oIpg/tzpMsoTD1+KYNfozE0GB5qEieD88DbaajgdAuVjmyJ5BioUThZLRpMXb6sSkU7J8hY9QKE5sxv1yewwExuQLMtEIlMdrlyUcCiVCIblaIEa22Q1EJuQLxZJgfKahwcaogHBks/IdiQa/rRq0VylXGBuMMnacMHYs82CrKPA12tGYNKSyBUaCMRx2o3BkSQSdViUkCNY641njAg2E3aImFBWYHNRxoRoVOGF5nGYh4cgX5AvsWCzDRCRdfT8sejUNfis6kwatVsW+gSBpGcF7ve+TYFT+s+W0GKqairnwOsxCwqES/M1PPahFLlleqZCEOhK/w8RoRJ5IrWk5t92ppslGS0sLS5bMX1aIJEmYzWbMZjNLliwhm81WR696enrQ6XRV8mG1Ws+oWC+VSuzbt69KNs6Gg9bIyAjXXnstV111Ff/6r/961kfHbrrpJsLhMJ/61KcIBAJs2LCBp556qiokHxwcrDmn7u5ufve73/HLX/6yZn9KpZL9+/fzve99j1gsht/v56qrruLzn//8YhbHAqJSKVOpnB/ahvPlOuXwmiYcp0MGSqUS/f39FAoFLrvsMsxmM7Dw4vDQ4Dj/8lf/xuDhEVZuWUY+W6BpiYuRYwFGD6VoWOqjr2f20rXerGPyUILynCLT4bMx1tdfcwy7z0r0+OquzqTD4bdjcpjRGjVUkGhe6iE8FiObOiGqLQkWM1Ua+XvbssxLX1ftKJdCqWAyJL+KnRM4DdlcJlnC4fRZmAjKF18xQcGvEYx/NbQ4GJ6zOp1J5ujvHGUyFCd6fHTG4Tahs2vQGLQ4PXYikZEaTYbNbiAk4ygF1OSUTMPXYGF0RP41ccEom9dnmUWAZiIs0nw4DELCERQU+xaBTgUgEJgklczREz/xXksKieY2Ly6jnoJUIRRJziIF44LuRmODjR7BSF2+IE+GdFoFk0n5z43DbhYSjoige+D3WhkSaFKUgnEvgKBMyj2A32Olf0YIXyYzpQUBWLuigXI4T4Ndg8miQWc2EphMEZ5MMT4pf49sJr1wDMvnMDEhIBzKOoGJIh2GWqlgWKBLcZk1BOOCTpC1DuFo9cpuPxcQj8fZvXs3ra2ttLe3L+ixdDodTU1NNDU1USqVmJiYIBwOs2/fPmBKl+B2u3E6nadEGMrlMvv376dYLHLhhReeFbIRCAS49tprecMb3sADDzxw1snGNO68807hCNWOHTtqtq1YsUK48KDX63n66afn8/QWsYhFHMdrmnCcKqbF4ZVKBZVKNYtsLKQ4vPvFHu555/14Wpws29jOnmcOzHrc7rMx1lPbNWhc5qNnb61Y3N3sJCJT+LoaHVXCkU1mGT0yBozRurqRgUNT41SSJGFvsOFodGBymMkVynia7IRHY1RmtALlugUAeoHNZuMSF0PHaotKhVJipE++2BSNZrl9NlnCYTBphZ2PtGBcxmwzArXdFbPNUCUbAJPhJJPHGzrKVRWYSNLS7sLsNFOiQng8idtrISqwdhWNMzmc8oRDpZKELlQqwQy91aZnQkY7A1Auyf/AutxmxgWvEXVLXG4TYZnXVMoVMsk8h2cYCXgcRtyNVrQGDePJDEqloma/Rp14pl0kMm/wWOgbisk+VkG+8NGqJQKC/dkseiHhEKWpO6wGIYGxCHRBAIlUlkqlQiSSIxLJAVOf5XavBZNah6fNSCyTZSg8WdVm+F1mYin5z5aqztiMKFFdp1YKwwpb6oQLNjjtBOPyjldyVuLTWNN6bnY4pnM22tvbaWtrO6vHViqVeDwePB4PlUqFycnJaufjwIEDOByOKgHR68Xkv1wus2/fPvL5/FkjG6FQiG3btrF582YefPDBRbvYRZwZKpXzZ9RoUcOxiMnJSXbv3o3T6aStrY0XXngBWHhx+O8efYGnv7uDQjbHsT19qDS1K/ENHV6iMgRCJwgBUwq87kWr/EbrCSeoSqVCZDRKZDTKsk1tHD2eYq41aPEt8WJymVHq1IyHkkgKaRYJARgbknd7mirsa4lFY7u7ans7F4Eh+aJHUsi/B74WB72CwD3RvkQrXR6/VT6TRILQcIxSsczI0RAcPUEEm10mVra7UOnVTCZzjI7EKJXKeBusBMfki7u5wXzVa/HbGBYU1JOizkeDVej0FAjIX389wjExIb/d6ZInHACxOWNOsUiKWCTFsuVeAkdDGHRqGlrs6C060oUCI6FJUgKbWrfTREiwYm4yGoCY7GMBgXNVY4OdHsHnoCQgZCqlxIiga+VxmYSEoyAga5IEw4KRM6NOy5EZhg5GrRJ/ox2DWYder8agVcuOYQlJhUYlFJk3eWwcG5XXR9ULFyzWsXQMCJLHNSolyxrPvdC06e/8V4JszIUkSdhsNmw2G8uWLSOdThMOhwmFQhw5cgSj0VgdvbJYLLP0hPv376+SjTMJ0jtZTExMcN1117F69Wq+973vvSrCDxdxjqNyHmk4FgnHaxMnSw4CgQAHDhygo6OD9vZ2stkspVKpOkK1UGTjZ9/8Xx7/9jOMD0/98K95w0oO/eFozfMyAsedmEj8KhCkZgWFXUVQRGhmrDzn0jkGDk6J01dsbmd0dx86k46GZT6MDgv5Ypl0Osdov3xBFxeMAIlsbz1+GyFBVyAqKHb1gkLJ2+wQ2vFGBSNIWkGonctnZVxQgMZCiVnkSadX41vixt1ow2TUMDo6SSZ94j2QJBgVdDGsNqMs4VCqJOFrVAKXJa1WQSwm3+ERWQWbTFqhQ5aow6LTqWRDCqfOYaoQymUL9B+Znaei0BtYv8RHgQpjE/GqNW09wiFy3JpywhKRFHEw20hAvvj2+2wMCj6H9dyaRONjNrOaiMD3Vq+b/XWcy5Xo6506r/ZmB+XxPO0NVmx2AwWpzGg0QTpXqJPNYeWogFSYBJ9vEOtSAAKC7xaTTkNM8P3S5rZQKhbrdmLONqbJxpIlS2htbX2lT6cGBoOB1tZWWltbKRQKVd3H7t27USgUVcer0dFRstksmzZtOitkIxqNsn37dtrb2/nBD35wVo65iPMA5TJI54m2YVHDcX6iUqnQ29tLb2/vLHH4dHs4n8+jUqnmnWwUcgW++bcP8puf7KxuUyiVjByrXZ03WQ0MHq51jzJa9Yz1yoTxaZSMCToG4SH54iMhEN8WBLkRquNi5mwyS9+e/ur2FRctwaYFvUuPSqclmykzPhZHrVMyIjinbFq+SHF6LbKEw2jWERTYvmYE+7I7jbKEQ2/UCElNPCYIPXObZQmHpKgVsucyBQY6RzFoVAzsGURSSjS3OrF6rRQqFYrlijB/I5uRL0r9jTaGBuoH/s2F021kdFj+euKCjojXZyUpODfRcXwNNvoF43GiRHCP28JA7+zXNHhMOBusWPRafC7zLEtaOC5cFjhh1SMcosA/s1HLpGDkzmISk5SE4PNmMWqF5+CwGogk5AmCyE5YoZAYDU5SKVcYHYnNyllZs8JHSQmoFYTjKUZnuFXVIxWixHKAMYHjld2kF4rT/S4LR4bl33u/Rc1vf/tbzGYzHo+n6s70SoXCTVudd3R00NLS8oqcw6lArVbT0NBAQ0MD5XKZWCxGKBTiwIEDlMtlnE4noVAIl8u1oMLmyclJrr/+erxeLz/5yU8W3N53EecRFjsc5wXOW8JRKpU4ePAg0WiULVu2zNJrwJR4bOfOndUZW7vdPi+iuMlwnLv/7Bt0PX9s1vbmCxoYPFib39C0qpGuOQniAP6lPo7NKPan0bDEy5BM/obNayUmM2qiUEoEBdazkwJBbEFQPKKA6GiU6AxXIZ1Jx4oNS0llCyRSOSbGUlUBdT39RlnwR9nQ6uRYZ23YoCRJjA3KX4co3dzX7KBPJpMEICJa3dfIr9J6/HbZ0ESAxPGxm0qpwljvOGPHC+xVG1vw6TU4G22U1UrC4wnGw0kkSRImj1ssBkAuywSGBUTMYbfIEg6VSiHUluj18iuXCoXEmGA8zGgUFzshgcjfZjcQmCNanwglmQglaWq2Ex2OYjWo8Lc60Zg0RBJZlGoF/YLRKIWgiK0X+Of3WukWOKvFojH54ygkRoPyj/k8FuJ98gRbp9cD8ucRFIyw+d0WhgUOWkokOmfkvrhMWhoabah0SpQKBUqFJJvRMSoYtXJbjYQFwnWrXolgbQKDzCjoNK64ZB2vX9VMOBwmHA7T29uLVqutjgjZbLazJjieJhtLly6lubn5rBxzPqFQKLDZbAwPD6PX61m1ahWxWIyRkREOHz6MxWKZZbk7X6QukUjw9re/HavVymOPPbbo2LSIeUWlXKZynnQ4Fl2qzjPkcjl2796NJElceuml1S/PmZa3l156aXUl6eDBg1QqFdxuNx6PB6fTeVo/kENdo3z+T75GsL+2GEkKbDdF7kYaQUFodphkt7ub7LKEw9PiIiBTHKk0SsZH5Iu6ScEY0mS0dv/ZZJZCKsuxnVMES6lR0tDhQWPRU5IqBEcEbkuCQlgUNuhtshMQFPyTgkJOLyiQDRYN6bj86nUmJb/d5jTKEg6FQiIok/8xjfHRGOMzrtXpNtG20ke2DBOxNIE5xX29tPIhwfVnBN2ShkYbQzK5KCC2yvU1WBkRvDcikbndYSQqGKkTWbMqlRJjx0Xc2XSR3sMniOEF65rQ+RxoTRri2TxDgVg1l0WkYakX+KcVaJ4AskX58/O7LUIthk4rLr5F5+ew6okItDk2i15IOApzvh8SyRyJ4yTaZNZiLEJjoxO9UUOikGcwHMNu0hOIyf9NeO0mIeFQ1FmBzOTrCMZbvGg0GhobG2lsbKRUKhGJRKqr9JVK5bTdmU4F0WiUPXv2sGzZslcl2YApzcbBgwdJpVJs3rwZjUaD3W6nvb2dXC5XHb2aT1KXSqV4xzvegUaj4ec//3ldAfsiFrGIRYjwmiYccqs70xaIdrudCy64oDo+JScOnw5vWrlyZZV8dHV1USwWcblceL1enE7nSTt05DI5Lrv+Il58Yg8jR0+sSjas8BA4Vrs6r9apGTxUO04FEBPMyhcF89cawXiF1WWWJRyeZhejMqu+Ko2SsGD1vSxfi1OeURSV8iVGD09d+6pLOhgeC+Nuc6Ky6ilVJKLhLAazTthhSAqC8Oxukyzh0BnUQiJSyMvfq4ZmFz0yXRQQ53+ItBAev014/KSMNmcynCTnz9K9b8oC2e4w4m1zoTSoiU5mhN0Fi80AguMMC0bpRN0SEFvlWm0GIeEQiczdbrOQcIgcoOx2LeMT8o+VCiX6uk4QEJ1Whb/FgdGmJVkootEoyc95b+sF/olE6xaTjnHBeVMRh99lBEYAWrWSUYGg3eM0CwkHdVapxwWjWy6HkfBxG93eGeOMKpWCjkYbfouZdKnI0ESM1IzzVdUpSisqDSBPRkYENrpuqxGvffYiiFKprBbCIncmj8eDy+VCpxOPtJ0KIpEIe/fuZfny5TQ1Nc3LPs82KpUKnZ2dJJPJKtmYCa1WW0PqwuFwdfRqJqk7We1FJpPhpptuolwu88QTT8x7UOEiFgEsjlSdJ3hNEw6YIh3TY1LBYJD9+/ezZMkSlixZctLJ4ZIkYbfbsdvtLF++nHg8XnUPyeVyVfLhcrnqrs4t3djO0o3tvPMLN3F4VzdPfO+XDO8JolSqkbNmbbugmaO7+mu2m+xGxgQjIGHBWE1OMG8uEhpbXCZZwuFpcspulxQKooIiNSVY1ZUUEpVimdCxEwWRpFRgXu/D2GKgjJqJQLJKDJQqBaOisSnB37Cv2UG/YGxqXHC+Op38e+hqsDAuGA1KCTQAVqdRlnBIkiTUj8wMYUxEUiSOC5CdXjPKbJGVS9wojRqisQxjYzEqFSgW5cmTx2sRZoMUS/KvcbpMQntdwXRaXZG5RhBgKEnUjFNNw2jUCAlHbE43sJArMnA0RGubk8H+CVQqJS1tdkx2A6lCgaHAJKIfM0mCUUGnoqHOaJTFYoWQ/PmNCboRfp+VXsHfp6ZOl2VS4EJlNmoJC2acXHZTlXDMRLFYJpcp0Hl8wUOSJJY0WLE6DOQpkc7Jf08oFZKQVPidZkYn5N/71S8T+DfXnSmVShEOhxkbG6Orqwuz2VztLJ/uiNA02VixYgWNjY2n/PpzAdNkI5FIsGnTppfVT8wldfF4nHA4TF9fHwcPHsRut1eF5waDvHFHNpvlz//8z0mlUvzyl7+sjh0vYhHzjnIFpPOkEF8kHK9tVCoV+vr66OnpYe3atfh8vur2U00OlyQJq9WK1Wpl6dKlJJNJQqEQvb29dHZ24nA48Hq9uN1u4SrS6Ogoo7Fhbv7wDTQ1NTE5HufFJ/ay839eYv9vuigeF3QqBS44/qVeju7qq9lu81iERX9IsMqdEawwi7o2ZqcRemu3u5vshAUr7BOCpOisjNNQpVTGrDVw6PgIlkKtxNlqx+i2ojMZ6OkUpJgLxrwMAtGv1WkQul1l0oJAOY+YcIROsfPhbrAQGpMv4DICByaH28zRg6Mc2zNY3Wa1GfC2OykXcthsGmKx2QWj02kSEo7REfnPhKsO4ZgUjP55fRaSx+SL84ygg+D1WWtGxqZhNJmA2vNWa5RCJyzT8RG5UrE0K/NFoVSg8pbZ0NFAulhkKBirdiH8HqtQ26EVECWAqIBEW41qJgVjd6Y6GpdURv4919TpijS4LSRS8vdcrRZ3KhKpE3/zlUqFkdEYI6MxVEoFkgStTiN2l5HJdJKJdJ54tkiz20p/KCa7P6fZKCQcp5q/YTQaMRqNtLW1kc/nq7qPvr6+0xoRmpiYYN++faxcuRK/339K53KuoFKpcOjQIeLxOJs2bTpl/cTc36xMJlO9r0eOHMFgMOB2u4lEImzatAmVSkU+n+fWW29lfHycZ555BqvVukBXt4hFcLwIP0+0DYuE47WLaXF4JBLhkksuwWKxALPD/GDqS/lUV88kScJsNmM2m+no6CCVShEKhRgcHOTQoUPY7fYq+dBqtVQqFY4dO8bw8DAbNmzA6Zzypre6LLzltjfyltveSGoyzR+f2sfzj+/miAypAFALCiF3s4tYuLZQtHksxAQC8HFBoZxNyxdAKsFKrNVlliUcFqeJuGDURpQKPlO3Ui6UGD82zvixcRpXuZGiURqWejHYLSQSRUKjMYwWnVDzIXLacjfYmYzIF42izoNa0A1y+azCbklaQB5sTrOQcIQFRbjc+56MpSl058lmpkizw2HA2+5GoVcxHkkhCWoys1lHQpAYLSJJGo2SQED+nPV6cREkIgh2u0FIOETuWQ0+K4MCi+OyIDhKqZToPjhWfVxSSCxpsWNxGdAZNUQn06RlxqDSAu2LQa8WZn04HQYmUwK9hWDcUUIccOj3WugX/I3qteKvb9GYmEIhCQmM32tlcDRKIJggMINYNzqNtFgtWHRaApNJQnM0HvW+Ns8kYfxMdR+vJbIRi8XYvHnzvIi19Xo9LS0ttLS0UCgUmJiYYHR0lBtvvBGA17/+9QQCAbLZLM899xwOh+OMjzkX3/rWt7jnnnsIBAKsX7+e++67j4svvlj2uf/1X//F7bffPmubVqslm51NnD/96U/zH//xH8RiMV73utdx//33s2zZsnk/90XMPyrlCpXzpMMhyv46H/CaJhyVSoWXXnqJUqnEli1bqvPAM/UakiTNm0OK0Wikvb2d9vZ2MpkMwWCQ0dFRurq6sFqtFItFisUiF198sXAW1mg1cPlNl3L5TZeSTeXY/X8H2Pk/u3npl/ureRwRgSWoWiBWdTU5ZAmH1WkSCqojgtTlbEq+IyLKrXD4bLKEQ61TiUewBKvoVquVkUyY0QMjwJS2xeA00tLipoSdwGi8Ju9DRB4qCMaJPGYmBKNBacHKtcNtEhKO8Kj8dtEom81lJDYusCkWWJlaHHqyI1P3OB5JE4+cSJ93rG1k9RI3FY2SYDhBZGJq374GK4mj8t2iYFC+89Hgt9EvcDTLC5zLnC4TExMCEbLg706pVAhHrUxm8Uy/KBCxwWdlYOhE0V4pVxjpjzDSH2HNaj/lYJYlLXbMTgOZUomhYIxsrsioaDTKY+XYgLy7WiEvEDIBw2Py987ntjAmIAGWOtkhQmtbCeH+6ondrYJjjU+k8NrNdPdMud812A14fFZQSwTjSSKCkS+lQsHKZrfw/E8Fp6r7GB8fZ//+/axatYqGhoZ5OYezjUqlwuHDh4lGo/NGNuZCrVbj8/nw+Xz09fXxy1/+kn/6p39iZGQEpVLJO9/5Tq677jq2bds2b6Ttxz/+MXfddRcPPPAAl1xyCffeey9bt26lu7u7ak0/FxaLhe7u7uq/5y4OfuUrX+Gb3/wm3/ve92hvb+eTn/wkW7du5dChQ/OmA1rEAqJS5vzpcJwn1ymD1zThkCSJjo4ObDZbXXH4QkCv19PW1kZbWxvxeJx9+/ZVCUdnZ2fVblc0PwugM2q5bPtmLtu+mUKuwN7nDvHHp/bz/C92yz4/JfDI1xoEIXZNDlnCYbTqiQpWXEOCILFiQf6PSG+S/5F0+R1CHcqEgOzk5VahJ1IkghMMdYZAAlebG1ebh0JJIpnMEhoRrKBPClK0vRYh4RCRFxF5qEdeRAnjLo9FSDiiMt0rAKfLRmik9jFJAf3dwVlExdtgxdVix2QzYLHoazoJCoVEIi5fyOoNYqFpWNCtctUhHHKieYCGBivDglV9ka5QrVaIR63qkJR4IlslIBwPrVQoFaxb7UXSqkiXigwGpgjINAx18i2QNEBtAW4x6ZgUkHWrScuY/GSUrKXtNEQ2uj6nWZylYdELCUepLA78iyZOfLdEomkix4m9VqPEaNCyvsEDGgXhxIkskA6/o64D2Oni5XQfer2eTCbD0qVLq+OzrzZUKhW6urqIRCJs3rz5rBTNSqWS//mf/0Gj0dDf3088Hufxxx/nv//7v3nve9/Lxo0b+cAHPsDNN998Rsf52te+xh133FHtWjzwwAM88cQTfPe73+UjH/mI7GskSRK+l5VKhXvvvZdPfOITbN++HYCHHnoIr9fLz372szM+30UsYhHzg9c04QBwu93VsamzRTZmIpFIsG/fPux2O6tXr6ZYLBIKhQiFQhw7dgyTyVQlHyaTvKUtTHUvLrp6PRddvZ6/+eqfc/B33ex8fDcvPLGHWCiOUqVgrEe+gBcJxrWCZG5Xo4NUvNalSaGSSE7Ir2amBFaaontsthupTR0Bi9NIXFCgxgWOPGaTGQhBBcb7wowfF/o2r/bS6jdidFmJRDMEple5JUjF6ocazoXTJyYiosBBRx3CMSFYwdcIbH91BjUTAhIogttXm9Y+MTbJxNgkS1c3kO4bp6nNha3BSq5cZngkisNpZERg4xuLyR/fZtMLXahEY2iSBKMCAmex6kFAOCYn5Y/j89kYEmRziEp2hUIiKFN8l0tlKMDhA0PAlFnBslYHRoeeZKFIoSD47CglxgSjiz63WUg4UimBQB+YkBF+Q30bXafdKCQc9Zr5gXBMdrtWo6wJX5yG322lbyRCZEZX0mPV4/NZ2Lzi7FjPztR9jI2N0dnZidlspqenh+Hh4Vck7+NMME02JiYmzhrZKJfLvO997+P555/nueeew+/34/f7WblyJR/60IcIh8M8+eST2Gy2MzpOPp9n165dfPSjH61uUygUXHnllezcuVP4umQySWtrK+VymQsvvJC7776bNWvWANDX10cgEODKK6+sPt9qtXLJJZewc+fORcLxKsDiSNX5gdc84YAT4vB6TlQLgWlLwra2Ntrb25EkCY1GQ1NTE01NTRQKBcLhMKFQiL6+PvR6PR6PB6/Xi8lkEp6jUqVk/eWrWX/5av76nj+n64Vj7H3uEDt+/IKsS5VIMF4SOBsZrfJdF0+zk4BMUJ8kSUKrXJEWRC0I0LN7bbKEQ1JIws5HVjSvrlTQPyMc0eAw4GhzYvO46e+VH4nJCNymnB4x4RDpRzSCGXuL3cCkoEAX2Rp7GmwM9sgvgycEVsE2p1HYlYmOJ6ECgb7x6nuqUCpoaHfhWKknmc0zNByt5lsAFAWZFA6HgVhMQEQFY2gul5FwWJAiJ/jTVKnEXQxznS6G6P74fBZGRSNvqhPXWiqWGewZh+P5m063keUuK3qrnlAsTiiaoVSu0OizMSD4O9DWyeaQVFrkuiIGnYqgQIxdz0ZXoRB/t00KukoqBcQS8u+V322lb1SezJllhPCTkxkmJzNcd+lq4XksBEKhEIcOHWLt2rV4vV5Za9hp8rGQeR9ngkqlQnd3N+Pj42eVbHzgAx9gx44dPPfcc7IZJW63m9tuu+2MjzU+Pk6pVMLrna3t8Xq9dHV1yb5mxYoVfPe732XdunVMTk7y1a9+lcsuu4zOzk6ampoIBALVfczd5/Rjizi3UazkzptRoyLizKLXOs69b9wFwExx+NkgG5VKhaGhIY4dO8bq1auFrWC1Wl1dSSoWi4yPjxMKhfjjH/+IRqOpkg+LxSI8Z4VCwepLl7P60uX8+ceu5+jufnY+vpvnf7GHsd5QXcF47BRXzK0uiyzhsPusRAWFYFQwvlEUBBoaBIWjs8EmFLiLEtHnjqulI2nSkTSVlTlSx8I0rmrC6neQSBUYGZigXKoIczaEBMltJioYJ8pl5FfCXT4rcUGBHhOMyRgt8mFbkiQJReaiUS+dQS3r6lUulckn8hw+7oKl1atpX+ZBa50iIAMCsXa+IMikkBCKzNVq8SpPXFBI+xqsDA8JRq0EUColAoLPptVqEBKOtKBrZbHomZhIzRoTM2hVNLY6cDrNSBUYDMRqBOyibA6VUmJU8HdoMapIC0wP6tnoJkSGD0oFAVFehsPA2Lg8CZYjFdMolcTv47LW+dFvnAyCwSAHDx5k7dq1VR3Ayeg+ph8/F+b8K5UKR44cIRwOs3nz5rMSsFcul/noRz/Kk08+yY4dO2hra1vwY54qLr30Ui699NLqvy+77DJWrVrFv/3bv/H5z3/+FTyzRZwpNBoNPp+P3wWefKVP5azC5/O9rLX1axGvacIxPdv55je/mWXLlp10QN+ZoFwu093dTSgUYtOmTSdtJ6hSqarivVKpxMTEBKFQiN27d6NUKqtjV3a7vS5hWnZhG8subOPWT9/IwKER9v36EM/+cCeDh2ePSKl1KmFmR0owtiIqYO0eiyzh0Bo0xARdAZEwXHRtVqdJlnAo1Uqh+FzOdhemyEOlXGG4c4jhzqmxGYPVQMfmDooKJWMjk0xGZq++iwpQl0dMOMYFha5OoAHQ6lSEBQV6Pid/LS6fhZDgNSKHLo/PyqCgwzPTVSuXKdC3f0qc37bCg7VYpmGJG3QqguFEtejWag1ALVFyOoxMROTfZ4vVzOho7WP1BOMWsx5RUKHI1crrszIiIBVKpfjvKCQgAR6PiXhy9rHyuSJ9R0LolErGDoewGNQ0tDrQGDVMJDKMhuJiEbfXxqDANtrjshOIyA0eQkpAKiQFdcTuFgYFXUKX3SokHKWyeOUxKtCNadRK2vx24evmE3JkYy5Euo9AIEB3d3c178PtdtftLi8UKpUKR48erf5unC2y8alPfYpHH32UHTt20NHRseDHdLlcKJVKgsHZ2UjBYPCk9TZqtZqNGzdy7NiUdfr064LB4CyDgGAwyIYNG+bnxBexINDpdPT19ZGvY7bxWoRGozknFjnONl7ThCMej/Ob3/yGT37yk3R0dLB9+3ZuuOEGVq1atSCzvIVCgQMHDpDL5bj44otP+0djJsEol8tVO8j9+/cjSRJutxuv14vdbq97Ha2rG2ld3ch1f/sWRnqCPP+LPTz/iz0c2zuAt8XF8BH5dnNIQETyAptQnWAF1O13MHxM/hjjgiJL5HYk1Jv47QQFYYARQXfFoK8dGUtPphkfHGPs6DiSJNGwvAF7s4tUtsRw/4TYKlcwNmWy6oXdCmFIX6OdIcHYVFQwk29zmoSEIyLI0hB1SwAmBCTJYNSSPBri6K4TDlgNjTZczQ4qaiUGg6aGlOn04qItnZJ/n+sKxgW7Uyol4aiV1aoXEg7RuJfDbqiKoudCNCYHJ0hPJl2g9/CJgqq92Y7OqkPRYCcYS80ak7IKcmIA8oLPCcBwQP4e+T1WhgWEw2rSAzHZx8p15oojAjJXT9vR0ewU2ivPJwKBAJ2dnaxbtw63++Q7KnPzPqa7y6eb93EmmCYbgUCAzZs31zUSmc9jfvGLX+T73/8+zz33HMuXL1/wY8JUobVp0yaeffZZrr/+emCK+Dz77LPceeedJ7WPUqnEgQMHeOtb3wpAe3s7Pp+PZ599tkow4vE4L7zwAn/7t3+7EJexiHmETqc7L4vv8xGvacJhtVp5/PHHicViPP744zz22GPce++9NDU1VcnHunXr5uUHJZPJsGfPHnQ6HRdddNG8zQcrFApcLhcul4uVK1cSi8UIhUIcPHiwOpPs9XpxOBx1OziNHV7e/g9X8/Z/uJrwcIS9z3Xy3I9foPuPPbPGP2xei7ArEROs0oryD4x2+cLW5rEIx7nigiJZJLQyO4yyhEOlUQpHrUTBerrjpKZSqTDaPcpo91RXyNPqxubQoWxxEBibJDZjnCYnGJXxNFhJCkaDYgJRfD03pdSk/HHUWvn3XKtXExHcY9HircWuJx6VP2e52z8+EqOQyTMZSSMpJdo7PJjcJhKZAkPDUex2KyMjMnocCcYEY2D1BOOiUSuv1yoUoNf72xaRFJfbJCQck5Pyr6lHeox6Dd0HT3QqfA4jnmYrZZUCVR29RUhAWL0OE0GBgYJJL9aK1BMrRgVdTZ1GRfBlBONyOBvjVGNjYxw+fJj169fjcrlOez8ajaY62nq2dR/T2UyBQIBNmzadNbLxla98hf/4j//gV7/6FatXn12tzV133cVtt93G5s2bufjii7n33ntJpVJV16pbb72VxsZGvvSlLwHwuc99ji1btrB06VJisRj33HMPAwMDvPvd7wamulf/+I//yBe+8AWWLVtWtcX1+/1VUrOIRSzilcdrmnBMw2azccstt3DLLbeQSCR48sknefTRR9m6dSsul4vt27dz/fXXs3nz5tMiH7FYjL179+Lz+Vi+fPmCrYgpFAocDgcOh4MVK1YwOTlJMBikq6uLQqGAy+XC6/VW29YiuJscvOWWN/CWW95ANDjJC0/u5fkn9nDg90dQG+Vfp9aphInhaYEoVyVISrcLCIdCKTEhyBgROm3p5MeTjHYdk0H5wl6UPSLsSCmKHPnDCQ94/wo/9hY3qWxJaFWrE1gRa7QqwoKRIRETcHhNRILyx8nnRCJzK0OisSmhMN4qJBwpgdjY4bYwGUlTKVUYPhKEI1Mr+waDBl25wuoVXkYDMWKTJ45pd+iITMjv73S7GCLCkRRcq9ttIix47zQacdGezsjf73qkRz1HbxGLpIgdH9nzN9ho0Rlw+MzkpQqDwRjJdB67RU9EQAKcdqOQcKQzAiE+4nT0ui5UHiu9gkT6etqO5QtMOKbJxrp1686IbMzF2dR9VCoVenp6GB0dZfPmzcJspvlEpVLhG9/4Bvfddx/PPPMM69atW/BjzsVNN91EOBzmU5/6FIFAgA0bNvDUU09VRd+Dg4OzfkOj0Sh33HEHgUAAu93Opk2b+MMf/jCLKH34wx8mlUrx13/918RiMV7/+tfz1FNPLa6cL2IR5xDOC8IxE2azmZtuuombbrqJdDrNU089xaOPPsr111+PxWLhuuuuY/v27WzZsuWkNB9jY2McOnSIZcuW0dLSchauYAozZ5KXL19OIpEgGAxy7NgxDh48iMvlqgZhqdXiAsrutbL1nW9kxeUtHNrfhRTTsvuXh9n36y6KM/IbPE1ORo4FZfcxMSZPRERBdaIRLGeDXagrEXdX5OfLnV67LOFQaZTEBKNWOYHbldFiYKZ2YLr7YbDoQJJYtrYVhUHH2PAk8ePalJJAFO9ptDMsI7wHSAkKQqfbKiQcorEpU52xKZFORG8Ui9jCgnumFxCrbDrPsT1DVaLi8Zhxt7soKRRo9GoiE8Oyr4tF5Qtmn8/KyEhM9jGRK5MkiQXjDoeYcOQFn1u1WsHkpDyBsVrEpCcn2J9KpSAYilMqlQkd7/hIComOZju+ZjuhRJrBQJTcHOeymQ5aNVDIO16pVQrGBIJxv8dKn+DvziR4f6G+YHwhCcd0mOr69etxOp0LdpyF1n309vYyMjJyVsnGt7/9be655x6eeuopNm3atODHFOHOO+8UjlDt2LFj1r+//vWv8/Wvf73u/iRJ4nOf+xyf+9zn5usUF7GIRcwzzjvCMRMGg4Ebb7yRG2+8kWw2yzPPPMOjjz7KTTfdhFar5W1vexs33HADr3vd62pa6eVymRdeeIFsNnvGLf0zhSRJWCwWLBYLS5cuJZVKEQwG6e/vp7OzE6fTicfjwe121zgjlMtlurq6GB8f5w1veh0Wi4W33nYF6USGXc8cZOcv9rD7V52YHfI/iFaXibhAGCyXMA5TRZVoX3KEQ61VCV2wRONRekFqsrPBTlCQEi06X71BvnjXWTREhuMc+d2UnaMkSTSubsLa6KBUqSBJtaNIZquYCIh0IhqBQ5bOcOpjUzaHgZjg/SqX5EmS3W0iKrg3IsJntulJzHDiioYSRI+P6q3e2EKb3YDZYyGRLTA8MmW/q1CIx5ysVoOQcAi7GB4zQcF4oEZggAAwISBxfr+NAUHWRz0B+oQooM9rYXjONVXKFUYGItjNegY7A6jUSlrbHBisOmKZLIOBGAmB9mQqB0T+/tnNakJR+ftkFuijoH7wYH3BuEP4ujPByMgI3d3dbNiwAYdjYY4hgpzuIxwOn5buYzojZNOmTWeNbHznO9/hC1/4Ak8++SSXXHLJgh9zEYtYxCJm4rwmHDOh0+l429vextve9jby+TzPPfccjzzySNV7/Nprr+WGG27gjW98I4VCgb/8y79keHiYX/3qV5jN5lf47E9AkiRMJhMmk4mOjg5SqRShUIjh4WEOHz6M3W6vCtKVSiX79++vitxntp8NZj1vuPEi3nDjReQyeQ78tpvf/vQlXvrlftIzxmvsDTZZwiEpJKEwPCcomDQC9yZng51Av7yYOiZwiBLpSswOoyzhkBSSUGQucnuyOMxEhk8UeJXKlPPVaNfw1PtgN+Jf3UxFrWF4IDLLAWouXD4L4yKHKsEKubvBJnabEhThDo9FSDiSgtE4Rx3CkRK8RmdQkIjJPkQmnWPkaAiOTgVV6g0aGpd7MbqMDI1OEpJ5T/MF+c+MJCF0tXLYjULCIbKpNZm0TEQEGps6Am+RAN1k0hIR7M9iMYCAROWPdzWKhRIDR0989i1GNcaKgnUdPsKTqVlBg36PlYGg/P60dboiubzYF35CEOhZbwxrSdPCCMZfSbIxF2ei++jt7WVoaIjNmzfXDXudL1QqFR566CE+8YlP8Pjjj/O6171uwY+5iEUsYhFzsUg4ZKDRaNi6dStbt27l/vvv5ze/+Q2PPPII73nPe0in0ygUCkwmE7/4xS/OKbIhB6PRSHt7O+3t7WQyGUKhEIFAgK6uLhQKBTqdjvXr19edddXqNWy+ai2br1pLIV9k/2+62PmLPbz41D4MJvkVe1ejnbBgNTgqGI+q1CEJcoRDq1czKSAcmaR8IawRBLA5fDahRiUpSHs2GuWv3WDTkZzIEA8niP/6EAAKlYK2ta3oNRLeRhvBOYWmxW4QEo6IYPSn/tjUqY1ASRLCPA+tgAjWO47ZYiA8Kn/f5gYoZtN5evYOsXJdE9FDY/j8VlytTvLA4HCUbLZATPAeeL1WIeEQ2TgDhAWfG4/HLOyYVOpMzAhtdN3i/Ul1anKRaN1s1HF0hgDd6zDgbbZRVklodCoh4dAbDMiNWgEEw4LPilYcPFhPML4Q41TDw8McOXKEjRs3YrefHbvdk8Wp6D7GxsYYHBxk06ZNZ41s/OAHP+BDH/oQP//5z7n88ssX/JiLWMQiFiGHRcLxMlCpVFxxxRVcccUV/O3f/i1bt27FaDSSyWR4wxvewDXXXMP111/PlVdeeVYcRs4Eer2e1tZW7HY7e/bsQa/Xo1AoeP755zGbzdXOR70Wv1qjYtOVF7Dpygsolf6Cwy/08If/2c0L/7tvVsif1WmWJRxqnUqYmyEmCfIfU5vXQnBApPmQL5Rk7ZYAq9MoJBwRwfmWBCNITo+N5MTs4q5cLNO3p4/x/hCJaApXiwvPcj+5Egz2TZDNyReYeoNGODYlgs1pFDphCc/ZK+6wCF/jNjMhuM9arTyBNZl1xAXFtPL4KvzE6CQTx61slSoFS5d7MbhMaNUaRscmZ72Fer24ak8JjAasVj2TAscrQx1ylRBpbJzGWUGAMyEieCDOdtHpVIwLugd2m5HQDMIWi6SrHas1q/206Y3YvGYylRL9YxFy+alOSUJgQ6zXqphMyz/mthsZFHT9THXGsObboWpoaIijR4+ek2RjLurpPrq6uqbGLhsbgSkysNB5H4888gjvf//7efjhh3nzm9+8oMdaxCIWsYh6WCQcJ4lnnnmGd7zjHfz93/89n/3sZwF48cUXeeSRR/j4xz/Ou9/9brZu3cr27du5+uqrz8rq1elguu3f3t5OW1sbkiSRz+cJh8OEQiF6enowGo3VlHOj0Sj8UVQqFVxw2TIuuGwZd3zpT+n6Yy/PP7GX55/Yi1Zgz+nyOxjrDck+JtJpiApeVPLkQaOr0/kQWeIKNB8Wp0mo7cgInJsMFnniqdarSBwXRY8PjjM+ODUOpdIqsS1dgeWCBsZG47NCB91+K4PH5MfJUgKC5vSYhYQjIUg4tztNQsKREIQ02lwmIeEQnpvPQlJw3+QshkvFMulIioFDU6v6NruBhqUeymoFw2OTlCviUDpR18HtNgsJRyYr//lQKMQuWU6HSUg4ynWE1SHB/nxeK32CVHd1na5NIpElMDxJYHiyes4dLVasHjOxbA6FQqoZNfR7rPQMybtQSciP8kH93I757HAMDg7S09PDhRdeiM1mm7f9ni1M6z4kSSKRSNDa2koymeTFF19c8LyPn/3sZ7z3ve/lhz/8Iddcc8287nsRi1jEIk4Vi4TjJPCd73yHf/iHf+CBBx7glltuqW7fsmULW7Zs4Stf+Qp79uzhkUce4Ytf/CLvec97uPLKK9m+fTtvfetbsVgsZz25Vg5DQ0McOXKENWvWzEp11Wg0NDY20tjYSKFQqIZg9ff3o9PpquTDbDYLr0OSJFZd3MGqizu4/bNvp/fgEDsf38PzT+yd5W5lthuQy07WGbXC3AyR7a7FZiYokzzt9NuFpEZkiSuC3WMREg6Rc5ZCcI+cDTYCMpqLYq5EpG+Csb4wkiThX9mAvcnNZDIvHpuSqDobzYXIKlhSiF8jCjCUFGJXK61O7H4mGrUy1LFSjQqKdpvDVD2HZDTN0T/2Hz85sHuXYF7uZTKVZTQQrzonmS1a4gmBoUCd8xZ1Fjxes9DxSiTqB5g8ja6I0SS+R6JgTEmC4ByCVSlXGOmPoSorGR2cwGpQ4293ojKoCU6mCEwkMNbp6JhMJhBYS08IRtzUqvlLGJ8mGxs3bnxVko1pDAwM0Nvby+bNm7FYLACyuo9pZ8H5yPv4xS9+wR133MFDDz3EddddNx+XsYhFLGIRZ4RFwnEScDgcPP3007z+9a+XfVyhULBp0yY2bdrE3XffzcGDB3n44Ye59957ee9738sVV1zB9u3b2bZtG3a7/ayTj+kk29HRUTZt2lT3x1utVtPQ0EBDQwOlUonx8XGCwSAvvfQSarW6Sj6sVmvd61hyQTNLLmjmLz56HYNdo1Odjyf3ohZkHDgbbELbXZGYW6kUpHzb5DsM9Sxx8wJLXL1AKKzVq5kUuBnlsvL7sthNBJAXeY+PTq1oVyoVRg6PMnJ4KnRw3RtXsnK5i5JSxVD/BNnjae9Ot5lxgbZD1BFy+2xCJ6xiQT5fwu2zERJko5QESdh2l4mo4N6IPjFanUo4OqbRCb6mKjDUHaxaERsMGvzLPKBTUqREPCH/PuQF16pUQiIhX9DbbAYh4RDvTxJ2Wep1Reo0DxgXCNA9brEjl8k0RSoy6QI9nSf+xhpcRiwKNWvaPQyGJknM6f6NCzpbaqUk1HYsaXIK83dOBdNF+oUXXojVaj3j/b1SGBwcrF7HNNmAhc37ePrpp3nXu97Fgw8+yNvf/vb5vqRFLGIRizgtLBKOk8CNN9540s+VJIm1a9eydu1aPvvZz9LV1cUjjzzCv//7v/O+972PN77xjVx//fVs27YNt9u94OSjVCpx8OBBEokEF1100SlZMCqVSrxeL16vt7oiFwwG2bNnD0qlsqr5eLlxgJaVflpW+vnTD7yVQH+Ynb+YIh/H9gxU049NdnmSYLToSQqyGdKC1WOR5sPpsxMcFFjiCo6hFLj7OBrEXZSEQKOg1sifl8VpEuoaUrEUPfuHAFBpVbSvbUHnMKPUaoSEQ3QtNqdRSDgmBYWs1WEQEo4JgdjYUYdwiJy6XD4rI/3yoz3FgjyBMpl1VbIBU+Lz3n1T+R5rLmyhUavG4reQzOcZCyYpFqc+a+GQ/HlPZX0IBOh1imiRja7Pa2VEaHUs/upNCETmRqNG6HhltxuEhENE86LjKYZV4wQC8Wr+h8VtIFkoEIqlCEXk99fkswsF4y0+M+Vy+YzGg/r7++nr63vVk42hoaHqOFi965jPvI/nnnuOW265hW9/+9vcdNNNC3FZi1jEIhZxWlgkHAsISZJYtWoVn/zkJ/nEJz5BT08Pjz76KP/93//N+9//fi677DK2b9/OddddR0NDw7yTj3w+z969e5EkiYsvvrgmg+NUMHNFrlwuE41GCQaDHDhwgEqlUiUfDoejbrHha3Nzw51v4YY738L4aJQXntzLzl/sRSGw0XT4rMJAvKhg9Vg0N292GmUJh6SQiAiKalF4odmmlx0Ngzoic1FHwGsVEo7w2IkivJgr0vtSLwBrLl2K1yDhaveQyJQY7p+gXK5MraqLxqYE8/9KlUKo3xCOWklTBasc6rlazXWomka9fJKEIO/B6bWQTMrrW4r5EuHhKOHhqZE7rUZF21IXSpOakOBeW61GIeEQCbyNRo3QRtdq0QsJR74g/7mqF1bocVvoS8kT5oLANhggKdDTqNWKqgB9Ov9j5LgJw5J2J36XAa1ZSziRYmTG+GA9wbhOyvDrX/8al8uF2+3G5XKd0nhQX18fAwMDbNq0aVZH4NWG4eFhjh07xsaNG0+ZNNXL+9BoNNVMpbkLPb/97W+5+eab+cY3vsEtt9xyTozxLmIRi1jENObfLH0RspAkiaVLl/JP//RPPP/88xw7dozt27fz2GOPsWrVKq666iruu+8+BgcHq6v+Z4JUKsWLL76ITqfjwgsvPCOyMRcKhQKn08nq1at54xvfyLp161AoFBw6dIhf//rXHDx4kFAoRKkkX2BPw+W3c+2738QXfvZ+7nrgdt5zz5+x4fJVs+xM9Wb5cQKDRUdCUOilT9US12ulmJc/15RAXKwW7MvmtVAQzNlHxmOy2/WCmX1JIZGKyl9LuVQmeCxA5zP7GfxdJ4Z0gpVLnazZ0CTspOQFeSJev1U4hiUiXBa7jlJR/nMqDAO0GkgI7qdSQFKn7HrlC3BDHa1DfHI2qSjkiwweClAaz5A6OoFXIdHm1uFza1GrpwqzXFb+XgOEBHodj1tcFEt1wgBFnQqPxyzMXTHWcbxKpcTnLup8eD0WYV6NwaClrytE1x+HmOiK4C1rWNfk4YJ2L0pBcCfAW6+8jAsvvBC9Xk9fXx87duxg9+7dDA8Pk8uJc2hgKp/itUI2pi18z1R7Mp33sX79ei6//HJWrlxJqVTiwIEDXH755dxwww1897vf5emnn+Yd73gHX/7yl3nXu961IGTjW9/6Fm1tbeh0Oi655BJefPFF4XP/4z/+gze84Q3Y7XbsdjtXXnllzfPf+c53IknSrP+uvvrqeT/vRSxiEecGFjscrwAkSaK1tZW77rqL97///YyOjvLYY4/x2GOP8YlPfIKNGzeyfft2tm/fTnt7+yn/eESjUfbu3UtTUxNLly5d0JUuSZJwOBw4HA5WrFhBPB4nGAxy5MgR8vl8VQj5ciudNreFq255PVfd8nqSsTR//OUBfvfzlxgPyY/ZOHw20gl5zUdMZCMrssR1mZkYi8k+FhVoPkSp3DaXmZhghTodky8KlYJxHafPyrhghXw8NHukJRlJ0fWbQyzb2EphcJQl61rROSwEQ8lqVyEmEL+bbUYYlLcEnhR0A9w+O5MR+R6PiFQ4PSYSk/L7ywqC+Fxeq1CALjQwqCN0N5qnOinRYIJocOq+qNRKGtvtqCtFbFY1scnZ5+KwG4gIzrseCUgLwgD1erUwfdxmMxAQEIR6zlC5vPy9cLtMhAUjXxaLXhg8OPdYk9F09bPgb7DSbjBh9ZhIlYoMBKLkCyXUKiVLGh2oVEqsVitLly4lnU4TCoUYGxujq6sLi8WC2+2usd/u6elhaGiITZs2nfPZRvUwMjIyb2RjLubqPj772c/y2GOPcffddzM2NsaKFSumNGAjIzQ1Nc3rsX/84x+SrKOyAACIXklEQVRz11138cADD3DJJZdw7733snXrVrq7u/F4PDXP37FjB3/2Z3/GZZddhk6n48tf/jJXXXUVnZ2dVVtggKuvvpr//M//rP5bqxUvIixiEYt4dWORcLzCmPZl//u//3vuvPNOgsEgP/vZz3jsscf47Gc/y5o1a6rkY/ny5S9LHsbGxjh06BArVqyY9x+dl4MkSVitVqxWK8uWLSOZTBIMBunt7aWzsxOn01kdB1CrxU5BJpuB9VcuA3car8tHpCfF80/uY/eznWSPawCMVnnNRz23K5ElrlZQNJpsRmHoX1ZUTArsdZVqBSkB4RAJts0Ok5BwFNLyr1FrVJTyperoFYBvqQ/XEi+JTFHWGlUl0KmoNUrGBYRLK+jwAMLxrHodCZHmw+YwCglHRjDm5PZZCY3KvwaptmgvFUqMHhlHZ9CQTedxuYxYGkxkyiUmonmMJhURwe5KdUjAXNeoaXg8FgYG5Il0vbDCuGC00GjQEBUQQ4fDKCQcIjc1mLLYlcOUED5BsVRmbCgGgE6jYukSB40tjhqti8FgoK2trToeNG2/3dvbi06nw+12UygUCIVCXHTRReesnfjJYHR0tJqEvtB5IZIk8aY3vQm73c5jjz3Ghz70IbxeLz/5yU/4h3/4BzZs2MB1113H9ddfz7p16874eF/72te44447uP322wF44IEHeOKJJ/jud7/LRz7ykZrnf//735/17+985zs8+uijPPvss9x6663V7VqtdpZj4iIWsYjXLhYJxzkESZLw+Xy85z3v4W/+5m+IRCJV8vGlL32JZcuWsX37dm644QZWrVo1i3yUy2UefvhhPB4P69evx+VyvYJXMnUtZrMZs9nM0qVLSSaThEIhBgcHOXToEA6Ho6r7mDvuNU2aVq5cObUathZef/1m8tkCe3ccYucv9gqtah0+K6M9p2aJK6q77F6zkHDEBKRGIRijcfntBAVFpkijojfKEyGlWkFcUERGo7WdisCxAFKpxFhfGJPTRNMFLZRVagaPu15NO1/NhbvByqggLb4gIElOr5mJoPy9EdXmWr2aqOB+Ch2qgIggA8RqMwgJR2RCfvvMsMT4eIr4cX2KQqXA3GCkxasnkS0RnZxNckR5Hi6niXHB581Uh3jlBGNvCoUkHI3yeCz09ctrO+qJ09MCZzZJgpDg3nq9Fkbn3Nt8vkhvV4iOxvrfOTPtt6cd8Hp7e0kmk6jVagYHB3G73TgcDpTKM3e6OpsYHR2lq6uLDRs24HA4zsoxDx48yNve9jY++MEP8rGPfQxJkvjABz7A+Pg4Tz75JD//+c/54x//yOOPP35Gx8nn8+zatYuPfvSj1W0KhYIrr7ySnTt3ntQ+0uk0hUKh5t7s2LEDj8eD3W7niiuu4Atf+AJOp/OMzncRi1jEuYlFwnGOQpIknE4nf/VXf8W73vUuJicn+Z//+R8ee+wxvv71r9Pc3Mz27du5/vrrWbFiBbfffjs7d+7k97///StONuRgMpkwmUwsWbKkOmYx/SNts9mqnY/pjogcadLo1Fx89Xouvno9xUKJA7/r5vkn9vLCU/urBMRkk3fhqmuJKxjnmR6/mQu1ViUc2xLpJMwOk5BwiAIPEeganF4boWF5IqBRyhezxuOi7OREkq5fHwKmXK861rdi0qtkrWwtNj2jQ/KnJnK1sjtNQsKRFrgvuX0WhvsEDlVF+dE1o1knHPcSuZQBpOLyRbbDZZINSywXyyjzCgIHpsTpDoces89ATgGTiSJBwWfK4TAKCUdFoJsAGBcQSa/Hwpig01NvrEtEYEBMKtxus/Axq0VfQzim0d568oWiQqEgHo+Tz+e59NJLq92Prq4uCoXCLNF5vW7ouYDpcbH169efNbJx+PBhtm3bxt/93d9VycY0XC4Xt956K7feeuu86AHHx8cplUp4vd5Z271eL11dXSe1j3/6p3/C7/dz5ZVXVrddffXV3HjjjbS3t9PT08PHPvYxrrnmGnbu3PmqI5yLWMQiXh6LhONVgGnbxOkfkUQiwRNPPMGjjz7KW97yFkqlEnq9nvvvvx+/3/9Kn+7LYuaYRTabJRQKEQwG6e7uRpIkmpubX9a+V6VWsvFNq9n4ptX89ZdvpuuFHnY+uZewoBCvZ4krsrFVCsZbHF6bcF8pway/RhA2Z7TqhR2OgoAImZ1GIeEQpYKnM7XFdDFXpH9PH5VSL+VyBf8KP/YWN5OpAiMDE0LNgEqtYFwUgldv1EpQnJsExA7E1+PyWkiJHKoEJEWtVZKcFCTN1yna4zPS2ZORDMnI1L9dPhPoFCjMGtJ5iMRO7LteGKBoXMls1hEVpbrbDELCUU/bERFZJNv0xESp83ajkHAoBW5yAG1tJ7fQMZ0LNDY2xubNm6t/6w6Hg+XLl1e7oQMDA3R2dmK326sLEqeaSbHQCAQCHD58mPXr15+1lfkjR46wbds23vWud/GZz3ym7pjtueBU9c///M/86Ec/YseOHbPev5tvvrn6/2vXrmXdunV0dHSwY8cO3vzmN78Sp7qIRSxiAbFIOF6FMJvN3HzzzVx66aV0dnai0+lob2/nb/7mb7BardXZ3UsuueScXynS6XQ0NjYSjUbR6/X4/X6i0Si///3vMZlMeL3eGoHpXCiVCtZctow1ly2jUqlwZHf/VNDgE3sJDk6tnAstcSWICATjYm2FgeCg/LlMjMmLr0Wr2navlVRCfgQsKSg+NYIkcaVaIRSsWywWRqntIjg8VsIjU+c82j3KaPdU4KDFbSGXiNLcbicwkpjlVuX22RgTjFqJ3K5sDgOxiPz1iCyRp8TfgsTyeg5VgkLa57cz1CdPFEXvj6RASK6cLivdB0eq/7bbdRi9eioaNcmk/LVKEgQF+3O7zcQFXaB6sRZxAYGpJ053Oc1CwqGpoyPJCMbv4OQ6HJVKhSNHjhAMBmeRjWnMHMXs6Oggk8kQDoerCxImk6k6imk0Gl/RgjoYDHLo0CHWrVt31shGb28v27Zt4+abb+buu+8+o7yTk4XL5UKpVBIMzjbpCAaDL6u/+OpXv8o///M/83//938vqyVZsmQJLpeLY8eOLRKORSziNYhFwvEqxUsvvcTb3vY2brjhBr75zW+iUqnIZDI888wzPPbYY/zpn/4pOp2u+pzLLrvslPzwzxZEWSGFQqFaaPT09GAwGKrko174lSRJrNjUzopN7dz2qRvoOzjMzif2MtoT5NiegZrn2zwW4UiTMFhQUPAbrDrSk/LFX04wL2+0iFf3RQnrohqr3qiVaGwMjXyhHQ/HUWsUTIzE0Og1LNvQhtJiYHQkhsWmZ0wwaiXKE3G4LULCkRM5VHlOz6FK1EkxCiyWAVKCQt/lthAWfD7mdsBS0WzVxtjuNtBgUKK26UjlYCI69Vnyei0ERKL6Ol2WSET+NQqFJCQwXo+FfsEYn14v7kRlBbbOIB75cjqMU65XdTCXbBgM8sYPs89TT0tLCy0tLTWZFFqttup4ZbPZzir5CAaDHDx4kHXr1p21EdaBgQGuvfZatm/fzr/8y7+cFbIBU9qbTZs28eyzz3L99dcDU5rBZ599ljvvvFP4uq985St88Ytf5Omnn2bz5s0ve5zh4WEmJiZoaGiYr1NfxCIWcQ7h3KtAF/Gy2LFjB29729v4zGc+w1133VX9odXr9Vx33XVcd9115PN5fvWrX/Hoo49WQ6C2bdvGDTfcwBve8IZ5zeU4XaTTafbs2YPJZOKCCy6Y1Y1Rq9X4/X78fj/FYpHx8XGCwSD9/f1otdoq+bBYLHULjfYLmmi/YMqta/hIgOef3MvOJ/bSd3AqkdrmFhOOiEhbIRhh0Vu0QsIhErmrNPKFn8VpEr4mL1hlNjvEo1ZxGX0CgMvjINwXq31AgvjxJPN8Js/RnUemNiskljZbWbOmgfFohuAMF616xX69kSWhQ5Xz1B2q6pEUkaAfYEKgybE6jULCIcooUWuUTE5kKIcrMDA1mmS3azE1mDCZVUQiSvIyuS9FQXcIIB6XJ0Rej5kxkQWwUdwFEon+QTyGZTHrmBSQ8PaXGaeqVCp0d3cTDodPmmzMxXQmhd/vp1QqEYlECIVC7Nu3D6BqGet0Ohe0sxsKhapkw+12L9hxZmJkZIRrr72WrVu3ct999501sjGNu+66i9tuu43Nmzdz8cUXc++995JKpaquVbfeeiuNjY186UtfAuDLX/4yn/rUp/jBD35AW1sbgUAAOKHlSyaTfPazn+Xtb387Pp+Pnp4ePvzhD7N06VK2bt16Vq9tEYtYxNnBIuF4FeKCCy7ghz/8Idu2bRM+R6PRcPXVV3P11Vdz//338+tf/5pHHnmEv/7rvyaXy7Ft2za2b9/OFVdc8Yp4n09OTrJ37168Xi8rVqyoSxpUKhU+nw+fz0epVGJiYoJgMMju3btRqVTVEYuXW+VsWu7jT5ZfzZ/849UEB8d5/sl9DB4epb9zpEZcabTohXqMrKDYdXrsTAzVFrsKpSTM8xCNINk9FiHhSAics0T2vkqVok63RP5+Gaxa0rHaIrdSrpAKTdK9qx8Ad6sb9zIf6UKFbLZAQJTrIAgD1OnVQrepeuJv0Wvq2ejmBETNYtcTj8oX0vXsf+MifYnPwticXJNUNEcqmsOwUkIRSNLQZETnMDKZKhI5fmyR45VBryKVlic3U9oOATGug5jgs23Qq5kQkFO32ywc32qrM05VqVTo6upifHyczZs3o9fX74ScDOZmUsRiMcLhMEeOHCGXy80Snc/n4kooFOLAgQOsXbv2rJGNQCDAW9/6Vt74xjdy//33n3WyAXDTTTcRDof51Kc+RSAQYMOGDTz11FNVIfng4OCs87r//vvJ5/P8yZ/8yaz9fPrTn+Yzn/kMSqWS/fv3873vfY9YLIbf7+eqq67i85///GIWxyIW8RqFVJkPG4tFvGpQKpX4/e9/zyOPPMJPf/pTEokE11xzDdu3b+fKK688rZXHU0U4HObAgQN0dHTQ0tJy2qMQ5XKZiYkJQqEQ4XAYSZKq5MNut5/0D3MkEOOF/93Hzif2cej5Y5RLZRqXeRk5Kh8s6Gq0Mz5Sq9VYc+kyOncePennA7SuaWLg8GjN9pUXtdP1x76a7ZIEKrVKdnV99ZYODj3fU7Pd3eggPCLf+Vi6voVj+2oFKW2r/fQfqj0vgKZlXoZl7s2Ki5aAXktFq2FwIDKLmDUvcTPUWyvybm53CXUVK9Y20X1guGa70awllZQnfcsvaODIQflAQofbLEtU2pd76Dsir6NZsa6R7v0jNduVSgkkiZKMQH3F2ka6D9S+BmDZGj9HD80+P5NLh63RQkmlZjiQqBG9L13i5pjMvQO4YI2fg53y71NLi4PBwdr3Xa1WUCpVZFPG21qd9A/Kj2FdsNrPQcFn4kPvv4rL37iiZnulUuHw4cNEIhE2bdo0L2SjHiqVCqlUqvqdkEgkZrngncnxw+Ew+/fvZ+3atbJhdwuBUCjENddcw4UXXsj3vve9c3IsdhGLWMQiTgaL317nGZRKJW984xt54xvfyL333ssLL7zAI488wsc+9jHuuOMOrrrqKq6//nq2bt26ICFcIyMjdHV1sWbNmjMOfFIoFNVVznK5TDQarY47VCqV6ny30+msSz4cPhvX3P7/cc3t/x+T4wlefPoAPfsGCPaP1wjHlSoFEcEKerEgvwptcZqEhCMmcgMSpI/bPFZht0Q4auU0CAlHQjA+ozeJ9Q7hUfl9KZUKDv3m8NT/a5QsWd+GzmFmLJgQO1RZxMcRdRCcHguppDxJicfl76dWpxJmfegM4hXVpGBEzuW1EBTYw4reO4BJmWtKjmfRKlVMBJNoNQr8bVYqOiXRVIlksoCunt5CoH+RJAjV0XYMCzpR9TJCSnXsfNtaa0eqzjbZgKmO3UwL7mw2Ww0bPHLkCEajsbooUU8L9v+3d+dxUdXrA8c/M+wgMOyLoiyuuKGghFlupLiCbVqaZqal2aqV9nO5ZZta3bLs2p7d8moCmqXhbpbihqKyuYEiAjNsw77P+f3BZa7InBFNEPX7fr14FWfOOgx4nvP9Ps9ztfpgo0ePHi0WbOTm5jJ27Fi6d+/O999/L4INQRBua+Iv2F1MqVQSEhJCSEgIK1as4NixY0RGRrJ06VKeeeYZQkNDiYiIYOTIkdfMlbgWSZJITU0lPT2dPn363PR69UqlEicnJ5ycnOjatStarRaNRkNKSgo1NTU4Ozvj6uqqr7gix97ZlgcmDeCBSQN4YmEER7efInZLPPF7k6mqqMbR3Z6cDMPBg1ySuYWV4Skd5pZmsl3R5Spk2TvZyAYccsGDpZXMTaQCcmWqaimUMlOt7CwpKzJ8E66r/d8511bVknqkbrRF5WKLg5MdPv7uFJZUcfmKp+5ygeCNJn9LtYZ/ts7u9ly+YPjJPUbGeOUqVNk52MgGHHK5HSamStkeJU7OduSpS6ip0qE+87+fiauHDSZVlbRvpyIjs7DRqIRcF3EXF1s0Mo0C7eysQG7qm5EB76Jiw59vU1MlXu0adtaWJImkpCS0Wi1BQUG3rJytpaUlXl5eeHl5UV1drU86P3LkCGZmZg2SzuU+i7m5uZw6dYru3bs36kXRXAoKCggPD8fX15e1a9e2+l4kgiAI1yICDgGou/ELCgoiKCiId999l4SEBCIjI/noo4+YPXs2Q4cOJTw8nNGjR+Pg4HBdwYdOp9M/6ezXr1+zjJxcSaFQ4ODggIODA507d6aoqAiNRsPZs2dJSEjQBx8uLi5Gnxra2Fkx6OH+DHq4PxVllRzblcixfYn8GRlHdUXjm8oCmcRjuffKyVNFlsxNcKnMfH65kQeFAtmRF7kfVRuVJSUFhoOHGgNJzVBXRlcu4MjVGB75sHe25WLyZTJT6qYZOXg64N61LZWSQrZClYubPZqs68s7QQH5OYaDLlsjFZTKSw0nZDu52JInl19ipM+GXKUuZ3c71JcNX5OZzP4Ks0ox1UGeuhQba1NcfRwxtbMiU1MKCvm8DweVjWzAoTTyu1siW5ZXvhqWVzvHBv05JEkiMTGRwsJCAgMDW03vDDMzMzw8PPDw8KC2tlY/Inrq1CkkSWqQ91H/UCIvL4+TJ0/i7+//t0dkm6qwsJCIiAg8PDz4+eefW0WBD0EQhL9LBBxCI0qlkl69etGrVy/efPNNUlJSiIyMZPXq1Tz//PMMGjSIiIgIxowZg7Ozs9Hgo6amhpMnT1JZWUm/fv1a/OZDoVBgb2+Pvb09HTt21DcVS0tLIzExEScnJ9zc3HBxcTH6FNHS2gLvQHfKrQsIf34I2SkFHNwSz5HtpyjRlmFtZynbN0O2k7m9DRjojQFQoJG52ZYZeTA21Urupt7GwVo24JBrRmht5MZdqjZ8bhbWDd/XgswCCjLrnuJ7+LnR2dsBhbUFl9IL9N3I7R1tZAOOCpkSw85uduTKJFDL9foAyJW5MVc52cgGHHLNBU1MFLKjIvYONrIBR6VMKVqFAor/m7xfVVZDRuJ/c00U4NPDFYWzE8WVtWRcUS0MjPfSKJN5/xQK0MgEzW4utmTJXJeP9/8SxuuDjaKiIoKCglptArCJiQnOzs44OzsjSRKFhYXk5ORw7tw5EhIScHR0xNramoyMjBYNNoqLi3nwwQdRqVRERUW12vdPEATheomAQzBKoVDQrVs3Fi1axMKFCzl37hxRUVGsWbOGl156iXvvvZfw8HDGjRuHu7t7g+AjPT2d3bt307NnT/r163fL5yBf3VSsPrk0PT2dpKQkHBwc9MHH1f/QX7hwgbS0NAICAnBycsKrfTv6De9JbU0tp/af4eSfp9n78yGDORlyU50sZObmW9tZyo5wyI08GJtqJRcIOTirUKcaHpWQ25eZueGfodJEgVbmZrWk1PC0HxNTJeoLOWSdr0tAV5oq8enljZWrHeZGyujm5ciU0XW0kQ045IK+NnaWlMhOhTNWocrwNsZyO8yMBAG5aq3B5U4utoYDIgmkylrSTtX1lnFQWeDq6wyW5ly8rKWiSr6XhlwXcRfnNmhkpmjZq6xlA476/A2dTkdiYiLFxcUEBgbeNjfLCoUClUqFSqWiU6dOlJaWcvHiRdLT64opZGRkUFlZiaura7MW1SgtLeWRRx7BwsKCTZs2tUjOiyAIQksRAYfQZAqFgk6dOjF//nxef/11Ll68SFRUFJGRkbz22msEBwczbtw4wsPDyc3N5cEHH2Tw4MFMmTLllpRyvBYbGxt8fHzw8fGhvLwcjUZDZmYmKSkp2Nvb64OP9PR0srOzCQwMxM7OrsE+TExNCBjUjYBB3Zj8xjhSDqcSuyWeQ1tPkPvfp/hyU51ku48bmbYkN/JgaSTJW+74JjJP/dvYW1MiUzZVrryto7tKNjG+jY0thkZyVK625F1xc66r0ZF2LBWArv188bBW4ujtSmFpFRkX6wIj6zYWFObLBHBGSthqZbZxdrWjRDYn5fq7jxvN7ZDrfaGAkiLDow72jjayIzB1N79172uZtpILx+qmrClNFZg4WNKjkysabXmDAEOlspLtMO7gYCMbcJgaSYT38XZGp9ORkJBASUkJQUFBt/U0oMrKSrKzs+nevTtOTk76pPNz585hbW2tn475d/ParlReXs6ECRPQ6XRs2bKlUQd2QRCE213ruwtsJu+88w4DBgzA2toalUrVpG0kSWLx4sV4eHhgZWVFaGgoZ882LHuan5/PpEmTsLOzQ6VSMX36dEpKDP+jfSdRKBR4e3szd+5c/vrrL9LS0nj00UfZunUr3bt3Z9CgQXh7e7Nw4cIW7QB8o6ysrOjQoQP9+/dn4MCBuLu7o9Fo+Ouvv7h06RIeHh7XHKFRKpX439OR6Usf5oujb7Fs6zwefikMJw97g+vLNa+zsZd/sik38iAXPKhcbGWf7ldXGk5udnCzM7gcoFxmjr+do/wNklzwZGIu/7koKy4n60wWidtPkLE/GVVNBd06u9Cxqxsmpoa3q6k1fENvbmEq27fDykhzvFKZnhPOLnayieHGcjuK5fItnGyoqZbrUyJ/414mk3tiolSQdiKLs3+lUpiQhRvQw9cZP29n3Fzlf7Zyo1cAFRWGP6sAHdo7curUKUpLS2/7YKOgoID4+Hi6dOmCp6cnFhYWtGvXjr59+zJ48GB8fX0pLy/n2LFj/PnnnyQnJ5OXlycbiDdFRUUFjz/+OGVlZWzZsgVbW9ubeEWCIAitw10zwlFVVcUjjzxCSEgI33zzTZO2Wb58OStXrmTNmjX4+PiwaNEiRowYQVJSkj4XYdKkSWRlZbFjxw6qq6uZNm0aM2fOZO3atc15Oa2KQqGgXbt2vPDCC3h6enLkyBHGjRtHbm4ugYGBdO/enYiICMLDw+nUqVOrD0AsLS3x8PAgJycHGxsbPD09yc/P58CBA9jY2Oi7nBtLflcoFHTq402nPt48/voYLiRd5uCWui7nl07X9WEoyjccmJqZGf61tLG3lm1GKBc82DvbypbevZE8DbmqWsZKy8rlozi7OaG5oDX42tXnrM0uRJtdiJe/K0p1Ab59fFC2sW6Q92GshG2mgX4UIJ9QD8h2GDfWfVwut0OhlM/tcHK1oyDX8AiMXGNIkG9+6OKuanC9WnUJWnXdZ83P34WuHnaY2FqRoS5qkHReJRNEAeTKNANU2VuRcek8ZWVlBAYG3tbBhlar5fjx43Tu3Jm2bds2ev3KBqRXluFOTEyktra2QdJ5U6ePVlVVMWXKFHJzc9m5cyf29oYfTgiCINzu7pqA48033wTg+++/b9L6kiTx8ccfs3DhQsLDwwH44YcfcHNzY9OmTUycOJHk5GRiYmI4cuQIQUFBAHz66aeMGjWKDz74AE9Pz2a5ltbqk08+YeHChaxbt46xY8ciSRJ5eXn88ssvREVF8e6779K5c2fCw8OJiIigW7durTL4qKqq4vjx45iamtK/f39MTU3x9vamurpaP70iLS0NKysrfU1/W1tbo9fi7d8Wb/+2THx1NJnn1RzceoJD20+Rd1WyL9Q1ZzTE0c1ONuCQCx5MLOQHMeVGS0xlcg3MLExlgxe5SzeWj4LMNqYWJrJd1lFAdVk1Z/efAf6b99HbGytXe/LyDR/H1siIkdwok8rJBq3MTbbx7uMyuR2udrJBirGO6qUlhoOoNraWsscydr1VlTVcSvpvE0EFtPdxQuWpQlteRYFMrlGbNhZo5XqiOFlQXl5+RwUb7dq1u+b6V5fhLioqIicnh9TUVH3Sef3UK7lclurqap588kkuXbrE7t27cXBwMLieIAjCneCuCTiuV1paGtnZ2YSGhuqX2dvbExwcTGxsLBMnTiQ2NhaVSqUPNgBCQ0NRKpUcOnSI8ePH34pTvyWWLFnCv/71L3bt2kX//v2Buqf8zs7OTJ8+naeeeorCwkI2b95MVFQUH374IR06dNAHHz179mwVeR5lZWUcO3YMe3t7unfv3uCczMzM8PT0xNPTk5qaGnJzc9FoNBw9ehRzc3N98GFvb280+PD0c+PB54fz4PPD0WTkc2jrCWK3nuBMXBo6nUSFzFQZYyMPcsFDRYXhm9I2KmvZZHJD3bMBnNxVZF803HCvSmaExVgZXbmpXq5tnchMNdz529K8Ya6KrkZHWlwqKlc7tJoiPLt44uDtivaKfh8mpvKfqzyZ/AhH5zayAYfcqIOx3A6VkVERufcbkO/b4WpLicyUL1Mj14vuimBSAnVqHurUPMzMlVjYWNCjsys1piZcvFxA+X9/Pq7OtrLlcl2cLAgMDLyt+0QUFhZy/PhxOnbs2KRg42pXV8IrLS0lJyeHrKwsUlJSsLOzw8XFhYqKCrp16wbUVe+bMWMGZ8+eZc+ePTg5OV3jKIIgCLe3W3+H10plZ2cDNGr05Obmpn8tOzu7UddZU1NTHB0d9evcLYYOHcqBAwf0wcbV6ivBTJkyhV9++QW1Ws2SJUs4f/48DzzwAL179+b//u//OHr06N+aD/13FBUVceTIEVxcXOjRo4fRAKh+ekWvXr0YNGgQnTt31o+M/Pnnn6SkpJCfn49kpJEagGs7R8bOHMK7m17iy6NvMfPdR3Bt72TwJllu5MHG3poymZtPa0vDVXUcjMzlL5d7qu4gX6FHLngxFiTJVe9qo5LfJldteGqUyrluelvm6UwSt8VzeX8SDrpK/Lu4YGFmYvD9tLG1lO1mbmmkSlaxzGiS8dwOI6MYMj87lYO1bJ6GtZGO4FUylczAWEBkTUlBOWcPXSRtfyqKjEI6O9nSs5M7DvbyP/f+/fxv+2Dj2LFj+Pn54eXldVP2aWNjg7e3N/369eO+++6jbdu2pKenM2DAALp06cLs2bN58MEHOXHiBLt27Wq2zuWrVq3C29sbS0tLgoODOXz4sNH1N2zYQNeuXbG0tKRnz55s3bq1wetNyWkUBEGQc1sHHPPnz0ehUBj9SklJudWneVcYNGgQHTt2bPL6dnZ2PPbYY0RGRqJWq1m2bBnZ2dmMHTuW7t278/rrrxMbGys7vehmy8/PJy4ujg4dOtC5c+frmuplYmKCq6srPXr0YNCgQfj7+6PT6Th58iT79u0jKSmpSYmljm72hE29j/nfzODb4+/w3IeP0XeoP6b/TUSulaly5GgkybuizPAogrFAQJsjM/XHUv7GMj9ba3C5sURkuepZZubyx6kskUkMN1DCtuByAUk7T5F19BwW+QV08XGgSzd3rP4bTDi5yifnylUQA2RL79o7ySfOl5cbDipAPghwcJE/P2OfT7nGgypHG9kpZE7ODXMHamt0XEzM4syf5yi7mIuniSm9/Fzx7eCE8opeMB39WqbzdnMoKirSBxvt27dvlmNYWFjQtm1bBg0aRFpaGgsWLGDXrl3s2bMHrVbLkiVL2Lp1KxUV8p+PG7F+/XpeeeUVlixZwrFjx+jduzcjRoxAozE8cnjgwAEee+wxpk+fzvHjx4mIiCAiIoKEhAT9OvU5jatXr+bQoUPY2NgwYsSIm37ugiDcmW7rKVVz587lySefNLqOr6/vDe27vtGTWq3Gw8NDv1ytVhMQEKBf5+o/4DU1NeTn57dYo6g7gY2NDQ8//DAPP/ww5eXlbN++nejoaB555BGsrKwYO3YsERERDBgwoFl6eWRnZ5OUlETXrl3/dt6NUqnUNxTr2rUrWq22QWKpi4sLbm5uODo66rsZG2LraMOwiSEMmxhCWXE5R3cmkhh7jrTEy1Re1bjtRqZayY2WWFiZUShTGlWOykU+MV0uyKqfAnU929jYWcnmqsj1+gDIy9ZSXVnD6X3JAJiYm+Db2xsnlzYUacsMTp0qlZlC5OhsS75M4ry5kdyOgnzD2zi4tKFApq+IlZFRlopyw4GkscaDji5tZMsDG5t2VlxYSl5WKXmXtQBYW5rQ3t8Tpa0F7b0cZbdrzYqKioiLi8PX17fZgo2r2dnZER8fj6mpKSkpKVy6dIlffvmFWbNmkZ+fz8iRI3nqqacICwv728f66KOPmDFjBtOmTQNg9erVbNmyhW+//Zb58+c3Wv+TTz4hLCyMV199FYClS5eyY8cOPvvsM1avXt2knEZBEARjbusRDhcXF7p27Wr060YTGX18fHB3d2fXrl36ZUVFRRw6dIiQkBAAQkJC0Gq1xMXF6dfZvXs3Op2O4ODgv3dxdykrKyvCw8NZs2YN2dnZfPXVV9TU1PDEE0/QsWNHnn/+eXbt2kV1tXxjs+tR3/SvV69eNz3JX6lU4ujoSNeuXbnvvvvo06cP5ubmpKSk8Mcff3Dy5EnUavU1R3Gsba24f3wQs5ZP5PtT7/Lql09x3/hArG3r8hnkggdjCdtyeQOO7irZ86iUeTpu7yz/JF6ujG79FChDykoMn7PKyEhOG2vD+7N3smlUwau2qpbUI+cpvaRBeyKVtnamdPd3x6OdSr9Onkww5OAsP4ohW1FKAWXFMiWIjZQTxshsvAKZpHpnNzvZ8zBWYreqUv4zWHbVqFJ1RS3nj11Ce0ZNRUXZNacNtjbFxcUcO3YMHx8fOnTo0CLH1Ol0zJ8/n5iYGHbu3EmnTp0YOnQon3zyCRcuXGDfvn1069ZN32zw76iqqiIuLq5B/qFSqSQ0NJTY2FiD28TGxjZYH2DEiBH69a+V03g9brfPiyAIN8dtPcJxPdLT08nPzyc9PZ3a2lri4+MB6Nixo768adeuXXnvvfcYP348CoWCl156ibfffptOnTrpy+J6enoSEREBQLdu3QgLC2PGjBmsXr2a6upq5syZw8SJE++6ClXNwdzcnFGjRjFq1Cj+9a9/sW/fPjZs2MDMmTOpqqpizJgxhIeHM2TIkOvuaixJEufPnycjI4PAwMBmL0d5dTfj4uJifTOxhIQEnJyccHNzw9nZ2eiceAsrc0JGBxAyOoDqympO/HmGhNgzpCZcory44c29sQaC5cXyyeRyimSejlsZaTooV0bX2DZ52YYbCNoYGcmRC6zMbEwN9RwE/tu1XZK4nJjB5cQMAJw7OOPZvR1FZbWUl+U2av5nYeSmvVTmva6reHX9uSJy+RuWVmYUyIxCGWs8aOxGr1Amn8ZOZS2b5+LkZs3hw4exsLBocsGEW624uFg/ddLb27tFjqnT6Vi8eDHR0dHs3bsXPz+/Bq8rFAr69OlDnz59bsrxcnNzqa2tNZh/KDfFODs7+5r5ivXL5NZpCp1O1yA3rra2Vj/SK0lSq/7sCILw99w1AcfixYtZs2aN/vv6P+579uxh8ODBAJw+fZrCwv/9Y/3aa69RWlrKzJkz0Wq1DBw4kJiYGH0PDoCffvqJOXPmMGzYMJRKJQ899BArV65smYu6i5iZmTFs2DCGDRvGqlWr+Ouvv4iMjOTFF1+kuLiYUaNGER4eTmhoKFZW8jemUPePXnJyMvn5+fTr16/Fu/oqFArs7Oyws7PDz8+P0tJS1Go1Fy5cIDExEUdHR32Xc2MjdGYWZvQY6Ee1TRG9Rj2GssSKQzGnOBRzEq2myGgDQa1MIGAmMy1IoVSQL9d0UGY6jrEyukqZRoUKEwVlhYZvtI3mg8icm7ObI7nphl8zlLSeezEXG2tzLiZn0saxDe16daDW1JT0i3lUVtQYzcPJlTkHR2db2YDDWK5Insx75+xmR8YFw1GUmZHGg+WlhkeoTEyV5MqM6Dg628gGHN17+zF48EDy8vLIyckhPj4ehUKBi4sLrq6uODo6torKc/VKSkqIi4ujffv2+Pj4tMgxJUninXfe4aeffmLPnj107ty5RY7bGkmSpP88vPnmm5w4cQKFQsHgwYN5/vnnRbAhCHe4uybg+P7776/Zg+PqJ4AKhYK33nqLt956S3YbR0fHu6rJX2tgYmLCoEGDGDRoEJ988gkHDx4kMjKSBQsW8PTTTzNixAgiIiIYMWJEo2CiuLiY7du34+npSb9+/RoEj7eCQqGgTZs2tGnTBj8/P8rKylCr1WRkZJCcnIyDg4P+6fHVozj1JXwdHBzo1q0bSqWSgEHdmPHOw5yOu0DigbMUqIvIyWhY2clYnoYkc0Pt6GZHXpbhG+oamcpMxsroylVzcnC1I1/mOHLTwIyV+DUxlb8Bz800XPHK6r8VoEryS0jZmwiAmaUZHft4Y2WmxNbeqlHXcGO5GMamMpUWGw6u2thZynYmb2Mn/5k1VmI3V6YEsIu7HdkZWoOv1UjyUxfbeTvpCya4urqi0+n0OUvJyclUV1fj7OyMq6vrdTXDaw71wYaXl9cN5/VdL0mSWL58OV9//TW7d+/G39+/RY7r7OyMiYkJarW6wXK1Wi2bW+ju7m50/abkNF5LfUAxduxYMjIyCAsLIzU1le+++w4HBwcmT57cpP0IgnB7aj2PnwThBiiVSgYMGMBHH33EuXPn2L17N35+frz11lt4e3vz2GOPsX79eoqKisjOzmbo0KF8/fXXBAUF3fJgwxBra2t8fHwIDg7m3nvvxdnZmezsbP7880+OHDnCxYsXKS8vp7i4WF/C19/fv8GTZKVSSbd+vjz84gi+OPQPVvw+jwfnPICnb135TaN5GuWGn4LbOcnnaciVdTVWRlduCpTRcr2lMlOWjGwj14HdzsmGapm8BUNPWqsrqjkXe5azexMoSbpABycL/Lt74PLfvBIHR/mcFGNTmeRyRZyMXJOJzOgQYDRIKZFJuLczUvbW2EPndj7ODb6/Mmdp4MCBBAUFYW1tTWpqKnv37uX48eNkZGRQVWX4M9ZcSktLiYuLo127do2mMzUXSZL45JNP+PTTT9m2bRs9e/ZskeNC3VTUwMDABvmHOp2OXbt26fMPrxYSEtJgfYAdO3bo129KTmNTLFy4kMuXL7N161bee+89vvzyS7y8vNi7d+91XKEgCLcjEXDcQvn5+UyaNAk7OztUKhXTp0+npES+2s6FCxdky/9u2LBBv56h19etW9cSl3RLKZVK+vXrx7Jly0hJSWH//v306tWLDz74gA4dOtCjRw90Oh1fffXVLX3a2lRWVlZ06NBBX8/f3d2d3Nxc9u/fz8GDB7G1taVdu3bXnIrg16s9kxeM5bM/F/LPXfMJmzqQDt0M5xgVyTS7M5ZrIFcJy1gZXbltLCzlj1MoM8XIaG6HzE22ykU+Zyc/33AOiZWtJSUFZUg6iYvxF0mKOU7O0TO4W4KzygIXdxuD3dPlRjHsVFay1bCsbeTfh0qZIEqhkC+xayyAMTYNy1RpODdKoYB2HeSb1dVPG+zYsSMDBgwgJCQEBwcHMjMz2bdvX4PguTmVlpZy9OhR2rZt26IjG59//jkrVqwgJiaGvn37tshxr/TKK6/w1VdfsWbNGpKTk5k1axalpaX6qlVTpkxhwYIF+vVffPFFYmJi+PDDD0lJSeEf//gHR48eZc6cOQANcho3b97MqVOnmDJlSoOcxmvRaDRcvHiRKVOm4OHhQW1tLfb29jz44IMkJiZSVVV1y3owCYLQ/Fr/XdcdbNKkSWRlZbFjxw6qq6uZNm0aM2fOlJ2i5eXlRVZWVoNlX375JStWrGDkyJENln/33XcNyiuqVKqbfv6tmVKpJCAggICAAB599FFCQ0Px8vKiurqaHj16MHjwYMLDwxkzZgzOzs6tfv6whYUFXl5eWFpaotVqcXd3p7q6mtjYWGxsbHB1dcXNzQ0bGxuj19KhqycdunoydsYQstJyiN0az6HfT3L2+EWUJgoKNIYDAbmcC2OVsOS0sbempNDwFCg55pby08BMjUybkgtsrG3liwyYYjhQsnduQ7mB0Zzss9lYWEBOQjYqd3s8urenUlJwMS2X2hqdfH6Eqx1FWsPvnbGfYaFM8r6jq61sZ3JjAUxNtfxNnlwJYGc3eyyMBJRXs7Gx0TfEq6ysRKPRkJOTw9mzZ/WfX1dXV9q0aXPTfhfrRzY8PT3x8/Nrkd9xSZL4+uuvefvtt/n9999lG6E2twkTJpCTk8PixYvJzs4mICCAmJgYfdJ3enp6g1HRAQMGsHbtWhYuXMgbb7xBp06d2LRpEz169NCv05ScRmOsra0ZNGgQQ4YMAdAni1tYWFBQUICJiUmjnB+RSC4Idw6FJGrU3RLJycn4+/tz5MgRgoKCAIiJiWHUqFFkZGQ0ucpVnz596Nu3L998841+mUKhYOPGjU1+8nQn+/PPPxk3bhyvvPIKCxcuBODcuXNERkYSHR1NfHw8AwcOJDw8nHHjxuHm5tZq/4HLysoiKSmJHj166G8cqquryc3NRaPRkJubi6Wlpf7mzc7OrsnXknu5gKM7E/hr8zFSDqeiuyqZuXNfb84cu9Bou3Yd3cg4p260HMCvlxfnT15qtNyrkzuXzhqubNOxd3vOnWhcGtTdx5nsNMP5IF37+ZByJK3RcmO5Hf73dCTp4DmDr8n1+3Dzc0B93vDoh6uPA5q0hq9Z2Vnh28+PahMz0tPzqbiqrHC33l4kn2j8/gD4dnEj9XTj99XUTIlOJzWqngXg19Wd8ymG31f/AC+S4g0fy8PLkaxLjfNZrGzMZRPN+4b4svCjCQZfux5Xfn7z8vIwNzfXJ52rVKob/l0sKyvj6NGjuLu706lTpxYLNtasWcP8+fP59ddfGTRoULMf83ZTVVXVqBDGzp07eemll4iLi8PCwoIDBw7w/fff8+WXX96isxQEoTmIKVW3SGxsLCqVSh9sAISGhqJUKjl06FCT9hEXF0d8fDzTp09v9Npzzz2Hs7Mz/fv359tvv70ra5//8ssvjBw5kmXLlrFo0SL99LJOnTqxYMECDh8+zJkzZxg9ejQbNmygS5cuhIWFsWrVKjIyMlrVe5aenk5ycjIBAQENSlOamZnh4eFB7969GTx4MB07dqSiooK4uDj++usvTp8+jVarvea1OLd1IGzqfbwd9SJfH1vKM+9PoPf9XfQVqORu3I01HZQro4uZ/LkUaw1vY6uSryRWJpNDYiwfpLbGcP6GseaCTs7yTe5qKxqPEpQXlVOSmceZ7cepTs3Az8OGbv7u2P83t8XYPXBBruH3wcXN3mCwAXXlcuXINQo0Ng3L2Ujfk7bezrKvXY8rP7+DBg2iS5cu1NTUcOLECfbt20dSUhI5OTnXNdWmrKyMuLg43NzcWjTYWLt2La+//jqbNm0SwcZ/Xf1zMzc3b9R3qL4kuYWFBQcPHmTEiBG4uLi02DkKgtAyxJSqWyQ7OxtXV9cGy0xNTXF0dGxyXfNvvvmGbt26MWDAgAbL33rrLYYOHYq1tTXbt29n9uzZlJSU8MILL9y0878dWFpa8uOPP8qO9CgUCnx8fJg3bx5z584lIyOD6OhooqOjeeONN+jbty8RERGEh4fToUOHWzLycT39QkxMTHBzc8PNzY3a2lry8/PRaDQcP34cpVKpn3alUqmMlitVudgx4ol7GfHEvZRoyziy/RRHdyaSczm/URK2XKlaY2V0JQzfPCoUyFaoMrOQ/1Ml17Hc2kg1J9mkdTc72YBDLmhTKCFf5qbdqk1dQFZbVcv5Q/8dUVEo8OreDitTBW4e9qivumZLKzPZxn62KmuyMgyPstTKBCKAbN8OJ1dbcmWmYdkY6ZXSzls+f+NGmZiY4OLigouLi77iVU5ODikpKU2ueFVeXk5cXByurq507ty5xX5nIyMjefnll4mMjGTo0KEtcszW7soeGydPnqSmpgY/P79Gf8Py8/MxMTFh//79jBs3jueee4533nnnVpyyIAjNSAQcN9n8+fNZtmyZ0XWSk5P/9nHKy8tZu3YtixYtavTalcv69OlDaWkpK1asuOsCjhEjRjR5XYVCgZeXFy+++CIvvPAC2dnZbNy4kejoaBYvXkzPnj31wUfHjh1b7KlpSkoKOTk5BAUF6RtUNsWVN2/dunWjoKAAtVrNqVOnkCQJFxcX3NzcrtkroY3KmiGPBjPk0WDKSyqI25XIwa0nOLY7iYoy+SRPY2V0ra1sgJxGy1Wu9rI5F3Jdty2szWVHUkzN5P+8yeWq2Bip2FReYngkxcnDgdzLhoMApdLA50SSuJRwiZKcQgrURbj6uuLS0YPiilouXczDxd2OS2kyfTbM5H9WpTLnZyyAsXewlg045PJ2ALxu0giHnPqKV46OjnTu3FnfKDMtLY2EhAQcHR1xdXXFxcVFXy66vLyco0eP4uLi0qLBxqZNm5g9ezbr1q1rkDd3N9PpdPpg47HHHuPYsWPU1NRQWVlJdHR0g9wWKysrUlJSuP/++3nxxRd5//33b9VpC4LQjETAcZPNnTuXJ5980ug6vr6+uLu7o9FoGiyvqakhPz9ftlb6lSIjIykrK2PKlCnXXDc4OJilS5dSWVl53R2570YKhQIPDw9mz57NrFmzyMvL45dffiEyMpJ33nmHLl26EB4eTnh4ON26dWuWGxudTkdCQgLFxcX069fvms0MjVEqlTg5OeHk5IQkSWi1WtRqNUlJSdTW1urnzDs5OelvEgyxamPJwPBABoYHUlleRfwfKSQcOEv66axGIwZ2TrayAUdlmeG8AHsnG9mA4+r8h3qO7vZkpTYOXgBqqo1Mm5IZ4TDWt0OuiaGdUxvZgCMv13CvDzMLU7T/7YuhSdWgSa37W2Dnao+bQzvMzVxJT8uj+qpruPr7K+Vmy0+NkmsUWFVlOEgBqKow3oOjpVzZKLNjx46UlZWh0WjIzMwkJSUFe3t7fQUsFxcXunTp0mLBxm+//caMGTP497//zdixY1vkmLeD+ocYjz76KOfPn2fdunV06NCB4OBgIiIi+Ne//kV4eDhQ1zfE0tKSF154gaVLl97K0xYEoRmJgOMmq3+qfC0hISFotVri4uIIDAwEYPfu3eh0OoKDg6+5/TfffMO4ceOadKz4+HgcHBxEsHEDFAoFzs7OTJ8+naeeegqtVsvmzZuJiorigw8+wNvbm3HjxjF+/Hh69OhxUzor19bWcuLECaqqqujXr5/RbuPXS6FQ4ODggIODA126dKGoqAi1Ws2ZM2eoqqpqcqM2CytzgsN6ERzWi6mLIjj512kObj3B4ZiTFOWXGi2jq80xfGNsaWQKT5HME/o2NzAioTIybUpXa3jExszCVLZKloWRxn5KyfB76OBmhya9cTBSpCmkPLuA8wfPYWFjQec+PihsrLh0qYCykkrZqlYqB2u0BYbzbNoYybNBIf95lRsVUTnZGN9nM7O2tsbb21tf8SozM5PU1FT9NKzU1NSbXvHKkG3btjFt2jS+/fZbHnzwwWY7zu3q119/JScnhw0bNuDr68ubb75JWVkZQUFBPPbYY/znP/8hPDycdu3aER0dzbBhw271KQuC0IxEwHGLdOvWjbCwMGbMmMHq1auprq5mzpw5TJw4UV+h6vLlywwbNowffvihwRD0uXPn2LdvH1u3bm20319//RW1Ws0999yDpaUlO3bs4N1332XevHktdm13qvqb9alTpzJ16lSKior47bffiIqKYtiwYXh4eOiDjz59+txQ8FFdXa3PuQgKCmrWfiEKhQJ7e3vs7e3p1KkTJSUlqNVqUlNTSUxMxMnJST9txcxMPiHZ1MyEvkP86TvEn2fen0DyofMkHTpP9sVcCq7KbTDW5VyuoZ2xcr3Gen3I5XYY69tRXmz4ht7R3R71RcOjBMZuaeV6h2AiP1JRU12XJ1NZWsmZv1LqVjczwa+PN5YqSyrKbNBeNY3MwcVWNuAwMZE/Q0ln+D03MzeRzfto18zTqa6HJElkZmbi4eFBp06dyM3NJScnhyNHjty0ileG7NmzhyeeeILVq1fz6KOP3rT93inq8zUef/xxfH19Wb16NV9//TU//vgjISEh9OnThyeffJIPP/yQp556SgQbgnAXEAHHLfTTTz8xZ84chg0bhlKp5KGHHmLlypX616urqzl9+jRlZQ1vJL799lvatWvH8OHDG+3TzMyMVatW8fLLLyNJEh07duSjjz5ixowZzX49dxs7Ozsef/xxHn/8cUpKSvj999+Jjo5m9OjRODo6MnbsWMaPH0+/fv2MTlWqV1FRwfHjx7GysqJnz55N2uZmUSgU2NraYmtrS8eOHSkpKUGj0ZCenk5SUpJ+zryrq6vRERcTEyU9BnSiY18v2va3peBSKblnSjn0+0nU6Xk4uqvISjM8BUquK7iju0p2ypLciISx3A4zY7kdMgGCwkhlLbmpRzb21pTK9BtxdHFCk2Y4iCoxMN2rtroW7aVc8g6fB4WCtv5tUXk5k6etJDtTi5WREaXKCsPvKyCbv+Hibk+mgREYMN7wryVVVlYSFxeHSqXST2308PDQN5WrL5pw4sQJAH3w4ejo+Ld+t/78808mTpzIJ598wuTJk1ttGe2W9Pvvv+t7Qb344ov079+fSZMm0a5dO6qrq4mOjuaFF15gyJAhlJWV0bVrV5ydnUlISLjFZy4IQksRfTgE4SYrLy9n27ZtREdH8+uvv2Jtbc24ceOIiIggJCTE4KiFRqPh9OnTODo60q1bt5syNetmqZ8zr9FoKCoqQqVS6YMPQ02/6isFOTg4NLiW1IRLnNx3mt0/HyLjbOMeE207unHZQE8P317tSD2ZYfDcfHq0Iy2h8Wsevi6yuR1d+/mSciS10XILa3PZ/JIOPT24eCrL4Guu7Z3QpDce/WjX2Z2MM4YrznXr70fy4fMGX7OwNqOyrHEQI3etLt4u+AT6kp1bSsbF/EY9VFzc7cgxkN+hcrJBK9NZvkuPtpxOuGzwtRlzhzPy4UCDr7WU+mDDzs6O7t27G73pr89bqv8MX1nxysnJyejo3dViY2MZP348y5Yt49lnnxXBBpCWlsa9995Lz549cXFxYfv27Rw7dox27doBdRUZAwMDee+995gyZQqXL19m0qRJfPXVV3Tq1OkWn70gCC1FjHAIwk1mZWVFREQEERERVFRUsGvXLqKjo5k0aRImJiaMHTuWiIgI7rvvPszMzIiNjeWRRx5h1apVDBw4sNXdxFw5Z76iokJ/43bmzBns7Oz05XatrKwoKSnh2LFjuLq6Nkre9e3hhW8PLyJmh5JxNpvYLSc4uDWetMS6G1u5hHFLK/nco0KZTtg3ktvh6GYvO/piLZO0r1BAfrbW4GvGpm5Vllca3sbIqIhcXkzOhRzatLEgPSEDOxc72vZsT5XShPS0PCQk8mRGbRyd28gGHKZm8iMALZkwbkhVVVWTgw1omLdUX/EqJyfHaMUrQ44ePcpDDz3E22+/LYKNK3h5ebF27VpGjx6NUqnk1KlT+pENMzMz3N3dCQ0NZfbs2fzxxx9s27aNAQMGiGBDEO4yrecxqnDL5efnM2nSJOzs7FCpVEyfPp2SEsPzuOsNHjxY31Cv/uvZZ59tsE56ejqjR4/G2toaV1dXXn31VWpq5Kd53EksLS0ZPXo033zzDVlZWfz000+Ympry9NNP4+vrS3h4OGPGjOGJJ54gPDy81d/EWFpa0r59e4KCgrj//vvx9PQkPz+f/fv3s3//fg4dOoSzs/M1KwW16+TOIy+N4MPtr/P5gcVM+8d42nVyv67rNzFTyuZpGO3bIXMDbusgH6TIVclycLOnpspwPkZ900RDCmUSsh2MNNsrLDJ8rfC/pPqinCKSdydwfucJlNk5+Ps54dfRBQvLxgGEpZFk9+oq+d/Pm9X070ZUVVVx9OhRbG1tmxRsXK2+4pWfnx8hISEMGDAAR0dHMjMz+fPPPzl8+DAXLlwgP7/hdLL4+HjCw8NZuHAhzz//fKv/PW0pkiRhamqKqampfsratGnTqKqqwszMjMrKusD6s88+4/nnn6e8vJwnn3ySn3/++RafuSAILU1MqRL0Ro4cSVZWFl988QXV1dVMmzaNfv36sXbtWtltBg8eTOfOnXnrrbf0y6ytrbGzq7txqq2tJSAgAHd3d1asWEFWVhZTpkxhxowZvPvuu81+Ta1VTU0Ny5cvZ8mSJdjY1HXRHjVqFBEREQwbNuxvlcG9FXJycjh58iRWVlaUl5djZWWlH/m4nmpBuZkFHIo5yaGtJ0g6nIquVkfHgA6ci7/YaF1XL0c0lwznGXTr70vy4cbTpswtzWRzLrrf05HEg+cMvubkqSIvU9toudw0J4AuQT6cPprWaLmJqRJJMpx/IrdN3bHakmZgmpOJmRKpVmo0lQrAr7cX509cQmmqpEOAN1bO9mRmF6PNL6Vbby+ST1wyeCy3tirUl7WNltvYWvLv7S8b3Ka51Y9s2NjY3LSKcFeqrKwkJycHjUbDq6++ilqtZvjw4QQGBvL6668zb948FixY0GLBRn5+Ps8//zy//vqrPsfvk08+ke3Hk5+fz5IlS9i+fTvp6em4uLgQERHB0qVLGzTbM3T+//nPf5g4cWKTz02n0zV4/3U6HQUFBSQnJ/PMM89gb2/Prl279H/HdDod1dXVolKiINzFxAiHANQ1I4yJieHrr78mODiYgQMH8umnn7Ju3ToyMzONbmttbY27u7v+qz7YANi+fTtJSUn8+OOPBAQEMHLkSJYuXcqqVauoqjL81Phu8J///Id33nmHdevWkZeXx5YtW3B3d+f111/Hx8eHqVOnsnHjRkpLDU95aU3y8vI4deoUXbp0YcCAAQwaNAhfX19KS0s5fPgw+/fv5+zZsxQWFsp2667n7OnA6KcG8VbkC3xzfCmzlk/Ew9vZ4BQfWwcb2f1UlBqesuTkoZLdRq6JoYmpslG1rXrGyv+WyZTedXS3l012NzYqUlZseCqYtcrSYLABUFFVdw66Gh1pR1NJijmO9sR52tqaYG0G7p6qRtsolQpyZa73ViWMN3ewAWBhYUG7du3o27cv69ev54UXXiA+Pp6ZM2ciSRIajYY///yT2lr5CmM306RJk0hMTGTHjh389ttv7Nu3j5kzZ8qun5mZSWZmJh988AEJCQl8//33xMTEMH369Ebrfvfdd2RlZem/IiIimnxeVwYbO3fu5N///jfR0dGUlpYycOBAPv/8c8rLyxkyZAhFRUXU1NQwbtw41q9ff93vgSAIdw4xwiEAdZWv5s6dS0HB/6oB1dTUYGlpyYYNGxg/frzB7QYPHkxiYiKSJOHu7s7YsWNZtGgR1tZ101MWL17M5s2biY+P12+TlpaGr68vx44do0+fPs16Xa3RJ598wqJFi4iOjiY0NLTBazqdjqNHjxIVFcXGjRu5fPkyDzzwABEREYSFhTUI5loDtVpNQkIC/v7+eHh4NHq9traWvLw81Go1ubm5mJqa6hPOr6dUaWlhGUd2JHBw6wni/0ihqqIa/3v8SDpoOPHa0d2e/OzGOSEd+3Tg3PHGoyUA7bt6kJ7SODHcpZ0DORmGq2T539ORJJlRkTYqa0q0jfMx/Hp5cf6k4ZEFuREOhaKuc7qhqU5yIx8AHXp4cDHBcLK7vbMthbnFuPq44tLpik7nHio0BkZzAIaN7c1zb4wy+Fpzqa6uJi4uTl+9raUKKpw5c4aRI0cyadIkBg0axC+//MIvv/yCQqHQl78ePnz4dSWdN1VycjL+/v4cOXKEoKAgAGJiYhg1ahQZGRn60unXsmHDBiZPnkxpaam+WIVCoWDjxo3XFWQY8o9//IOvv/6aLl26kJWVhb29Pa+99hrjx49nz549vPbaa5w/f54OHTqgVCqJi4v7W8cTBOH2JkY4BKCukoirq2uDZaampjg6OpKdbbjSDsDjjz/Ojz/+yJ49e1iwYAH//ve/mTx5coP9urm5Ndim/ntj+71TFRcX8+OPP7Jz585GwQbUdejt378/y5YtIyUlhf3799OjRw+WL1+Ot7c3jz76KD/99BNarfaaowXNLTMzk4SEBHr27Gkw2AAwMTHB1dWVnj17MmjQILp27UpNTQ0nTpxg3759JCcnk5eXJzu6UM/G3prBD/dn/rcz+O7ku8z915P49fTC0qbxFA1TcxPZ3A4LC/mbwzy14aDCztHwFBaA6krD07OsbC0NBhtgvFGg3KiIysVeNq/CykjDRLkE+bp+KP/tdJ6mIXH7CdL3JWBbXoaXmw1+nVwNjiq1dMJ4fbBhaWnZosFGamoqY8aM4bHHHmP58uWMHTuWr7/+muzsbCIjI7G1teX1119vtly02NhYVCqVPtgACA0NRalUcujQoSbvp7CwEDs7u0aV8Z577jmcnZ3p378/33777XX/Lfn5559ZvXo1P/30E7t27WL27NkcP35cf5zBgwcTHR3NG2+8waRJk0SwIQiCqFJ1p5s/fz7Lli0zuk5ycvIN7//KIf76G89hw4Zx/vx5/Pz8bni/dypbW1sOHz7cpCf7SqWSgIAAAgICWLp0KUlJSURGRvLZZ5/x3HPPMWTIEH3SuZOTU4smsl66dImzZ88SEBCAk1PTbkKVSiUuLi64uLjou0LXj5BIkqRPOnVycjJ6Y2llY8G94/py77i+TJo/lvh9KRzccoKjOxMo0Zbh6K4yWKYW5KdNKUwUlBUanoZlYWTaVIlMsz1HNzsuy0yBMqZAJlCyd2kj2/wQI/eKFcWGpy3K9UMp0hRSodFy/uB5LNtY4Bvgg8LakvSL+ZSXVbVowFFdXc2xY8ewtLSkV69eLRZsXLx4kdGjRxMREcEHH3zQ4LgmJibcf//93H///c16Djf6AOhKubm5LF26tNE0rLfeeouhQ4dibW3N9u3bmT17NiUlJbzwwgtNPr+TJ08yatQoBg0axG+//cbChQv56KOPGDt2LMXFxWg0Gvz8/ETDWUEQ9ETAcYebO3cuTz75pNF1fH19cXd3R6PRNFheU1NDfn4+7u7uTT5ecHAwUNcN3c/PD3d3dw4fPtxgHbW6rtfC9ez3TnIjgYFCoaB79+50796dxYsXc/bsWSIjI/n222958cUXue+++wgPD2fs2LG4ubk1a/CRlpbGhQsX6Nu3LyqV6ob2oVQqcXR0xNHRka5du1JYWIharSYlJYXq6mp98OHs7Gy0SZu5pRn9h/ek//Ce1FTXknDgDImx59n5n1iDJXPlqk05utmRl3n9N/T5aq3B5TZ28hWvKssNn4O1nfyoiJWBkZx6ctdkZmFKcb7h/Umm8nkIutq6C64ouaLTubkJvr298WqhHI6amhqOHz+Oubl5iwYbly9fZtSoUYSFhbFy5cqbftzmfgBUr6ioiNGjR+Pv788//vGPBq8tWrRI//99+vShtLSUFStWXFfAUV5eTqdOnUhISODxxx9n6dKlzJ49G51Ox88//0xZWRnTp0/XT60VBEEQAccdrv6J8rWEhISg1WqJi4sjMLCuqdfu3bvR6XT6IKIp6nM16qfYhISE8M4776DRaPRP7Hbs2IGdnR3+/v7XeTUC1AUfnTt35o033mDBggWkpaURFRXF+vXrmTdvHvfccw/h4eGEh4fj6el504IPSZI4d+4cmZmZBAUFYWtre1P2q1AoUKlUqFQqOnfuTFFRERqNhnPnzpGQkKBv0ubi4mKwaWI9UzMTAgZ1I2BQNx57bRTJh1M5uPUEB7eeIC9LC/yvfOzVVC72sgFHpUxVK3vnNhTmGt6fmbn8ecp1QHdwtaesyPCoiMLIja/cNTl5qshOyzX4mq1dG7IxXOGrvKzxSE9tVS3pJy7g7GFvYIubq6amhmPHjmFqakrv3r1bLNjIzs5m1KhRDB48mM8//7xZjtsSD4CKi4sJCwvD1taWjRs3XjPHJDg4mKVLl1JZWdmoilRNTY3+dy4/Px8bGxssLCwYPHgw4eHh/N///R9fffWVPjG9oqKCn3/+mZ49e4pgQxCEBkTAIQDQrVs3wsLCmDFjBqtXr6a6upo5c+YwceJEfYLi5cuXGTZsGD/88AP9+/fn/PnzrF27llGjRuHk5MTJkyd5+eWXuf/+++nVqxcAw4cPx9/fnyeeeILly5eTnZ3NwoULee6550SJxJtAoVDg6+vLq6++yrx588jIyCA6Opro6Gjmz59PUFAQ4eHhRERE0L59+xsOPiRJIiUlhZycHIKCgvSlfG82hUKBvb099vb2dOzYkZKSEjQaDRcuXCAxMREnJyd98GFuLj/VSalU0v2ejnS/pyNPvfkg5+LTid0az+Ftpwyub2Epf1NWXGA4QFC52MkGHLUyVagUSgX5Mg0ObezlSyHL5YqYmCpl99dGZQMYDjhMTeT/9OdmGg5E3No7N/vNf/3IRksHGxqNhtGjR9O/f3+++uoro6Nqf0dzPwAqKipixIgRWFhYsHnzZiwt5fN76sXHx+Pg4NDg7/Hu3bvp1q2b/sHRmjVr+PLLL8nLy6Nnz55MnjyZf/7zn7z22mu0bduWnJwctFotr776KllZWfz222/XPK4gCHcXUaVK0MvPz2fOnDkN6r6vXLlSX/f9woUL+Pj4sGfPHgYPHsylS5eYPHkyCQkJlJaW4uXlxfjx41m4cGGDakoXL15k1qxZ7N27FxsbG6ZOncr7779v9Gm18PdIkkR2djYbN24kKiqKffv20atXLyIiIggPD8fPz6/JwYdOpyMpKQmtVktgYOAt6xFSWlqKRqNBrVZTUlKCg4ODvuLV9QSvh/ceZ9eGA1w+lU/m+bo8Bv9gP5IONa54pVCAiZmJweZ+Xfv5kHLEcM+MDt08uZjcuJy0k4c9eVmGA4TuIR1JjDVc8crD24WsC41zLuT6g4DxviLe/p5cSGp8fmaWptRU1WLoX4WgB3rwxnczDO7vZqgPNupzl5rrpv9qubm5jB49mq5du7J27dpmqTp1I0aOHIlardY/AJo2bRpBQUH6vkhXPwAqKipi+PDhlJWVsXHjxgYPBVxcXDAxMeHXX39FrVZzzz33YGlpyY4dO5g3bx7z5s3jzTffBCAhIYGxY8cyYcIE3njjDZKSkhgyZAhvvvkmJSUlpKens3btWl566SVsbW1588038fT0xMnJCSsrK3bu3ClGNwRBaEQEHIJwh5MkidzcXDZt2kRUVBR79uyhS5cu+uCja9eussGHTqfj5MmTlJeX07dv31YzKlVeXq4PPoqKirC3t8fNzQ1XV1ejT3WvTHZ3dHTk8jk1sVtPkHrqEge3nmi0vlx5XTAeIMhNtzLWKLBrkA8pMk3/LKzMqCxvPMrh6qNCk6Y1uI1c80MAlYutwY7rHj4uZF0wPCoSHO7PpAWjcXV1NTq6dCNqa2s5fvw4CoWiRYONgoICxowZQ4cOHfj5559v+nX9Hdf7AGjv3r0MGTLE4L7S0tLw9vYmJiaGBQsWcO7cOSRJomPHjsyaNYsZM2Y0GE36z3/+w4cffkhYWBhVVVXY2trqcz9yc3P5+uuvWbp0KVFRUbRt25a0tDScnZ0JDAxsNX8jBEFoXUTAIQh3EUmSKCgoYPPmzURFRbFjxw58fX31fQW6d++uv/EoKirimWeeYerUqQwbNqzVPPm9WkVFBTk5OajVarRaLba2tvrg48onrRcvXiQ1NZU+ffoYTHbXXMrj4NYTxG49wZm4C0iSZDRA6NzXmzPHLjRaLhccgPEgQK4PiFxwAODbuy2pJwz34PDp3pa0xMavGeu23rmvN2dk+pQ8NHcone71oKioCJVKpR9dasq0HWPqgw2oS2JuqWCjsLBQX2QhOjpa3ChfJTo6mhUrVqBWq5k6dSpLlizRv5aTk8OsWbNwcXHhX//61y08S0EQbheiD4fQquXn5zNp0iTs7OxQqVRMnz6dkhLD8+br13/++efp0qULVlZWtG/fnhdeeIHCwoZPqRUKRaOvdevWNffl3HIKhQJHR0eefPJJ/fSK//u//+Ps2bMMHTqUgIAAFi1axO7duwkNDeXSpUsEBwe32mADwNLSEi8vL4KCgrj//vtp164d+fn5HDhwgNjYWFJTU0lJSSE1NdVoZS1XLyfGPTOU9355ma/i3mLGO4/g18sLpYnhP5Olsp3EDe8f6nI45Mj1DlG5yDd7tLSSv9nXyuSXGOu2bmohP82xR1BX+vfvz8CBA3FzcyMnJ4e//vqLQ4cOkZaWRmmp4VwXY2pra4mPj0eSpBYNNoqLi3nwwQdxdHQkKipKBBsGPPjggyxZsoSSkhK2bNnCuXP/G81zcXHBzc2NxMTEW3iGgiDcTsQkeqFVmzRpEllZWezYsUM/j3nmzJn6ecxXy8zMJDMzkw8++AB/f38uXrzIs88+S2ZmJpGRkQ3W/e677wgLC9N/f6MlXm9n9vb2TJo0iUmTJlFSUsLWrVtZu3YtH3/8MWZmZkybNo3Tp0/Tr1+/FrsZ/DvMzc1p27Ytbdu2pbq6mpycHNLS0igrK8PS0pKcnBwUCgW2trZGc1gc3ewZ+eR9AExeMJbD205xcOsJTv51Wp/PUSCbrC0/f11uZMHSxly2epVlG/mb4UojJXHlAhhj5yfp5Ae8PXzqkp3rAzwvLy+qqqrIzc1FrVaTmpqKlZWVfuTjWu9xbW0tJ06cQKfTtWiwUVpayiOPPIKlpSUbN2782yM0d7KwsDDWrVvH888/zz//+U9eeuklOnXqBNRNrXJ2dqa6urpVP5AQBKF1EFOqhFYrOTkZf39/jhw5ou+4GxMTw6hRo8jIyNBXz7qWDRs2MHnyZEpLS/WJ6gqFgo0bNxIREdFcp39bysjIIDQ0lJ49ezJhwgR++eUXfvvtN2xsbBg3bhwRERGEhITcFsGHJEmcPXuWrKwsAgICqKioQK1Wk5ubi7m5uf7G2N7evskJ9KVF5RzdmcCxXUkcijlpMIAwlqzt3sGZ7IuNcyQ8fV3ITG2cFH6t/bm0cyAno3GHdHdvZ7JlcjGM5Z54d29rOJncwpT/nF1htGpUTU0Nubm5aDQacnNzMTMz07/HKpWqwXtcH2zU1NTQt2/fFisgUV5ezsMPP0x1dTW///77TSvtfKfbvXs3c+bMQafTce+996JQKNiyZQsHDhzAx8fnVp+eIAi3ARFwCK3Wt99+y9y5cyko+N8NVU1NDZaWlmzYsIHx48c3aT9ff/01CxYsICfnfzd0CoUCT09PKisr8fX15dlnn2XatGkt2q27tTl//jzDhg3jgQceYPXq1fqgoqKigl27dhEVFcXmzZsxNTVl7NixREREMHDgwFb5dFOSJE6fPk1OTg6BgYENcjlqa2vJy8tDo9GQk5ODiYmJ/sbYwcGhyZ+ByvIqju1O4uDWui7n5SV1/SuM5WmYWZhSXVnTaLlcPghAp74dOHuscV6F0kSBQqmktrpxBa1OAe05G59ucH9d+/uSIpdM7mZvcGSkXSc3Vu55w+A2htTW1pKfn69/jxUKhX4ajr29PadOnaK6urpFg42KigomTpxIUVER27Ztw96++XuK3EkOHjzIY489BsDs2bOZPHmyvmyuIAjCtYgpVUKrlZ2drW8WWM/U1BRHR0eys7ObtI/c3FyWLl3KzJkzGyx/6623GDp0KNbW1mzfvp3Zs2dTUlJyXd127yRarZb77ruPxx57jA8++KDBTbelpSWjR49m9OjRVFdXs3fvXiIjI3nqqaeora1l7NixhIeHM3jw4FZR5UeSJJKSkigoKCAoKKhRGd8rAwydTqe/MT558iSA/jVHR0ejT/QtrMwJGR1AyOgAqiurObHvNAd/P8Hl8xqD66tc7WSnOZmZy48YFeUbzsVwdFeRe7nx6AaAmaX8z6GipHFjP6hLJi+USU6vn07VVCYmJvqeEzqdDq1Wi0ajITExkaqqKkxNTencuXOLBfiVlZU88cQT5Ofns2PHDhFs3IB77rmHn376iTfffJPp06fj6Oh4q09JEITbiBjhEFrc/PnzWbZsmdF1kpOTiY6OZs2aNZw+fbrBa66urrz55pvMmjXL6D6Kiop44IEHcHR0ZPPmzUafxC9evJjvvvuOS5cuNf1C7jAHDhwgJCSkyTeBNTU1/PXXX2zYsIFNmzZRVlbGqFGjCA8PJzQ09JbMjdfpdCQmJlJUVERgYOB1nUN9BS+NRoNGo6G2thYXFxdcXV1xcnJq8jSy2ppaEg6c4+DWeA5tO6UPMuR6X4DxUQczCxOqKxuPYvj2bEfqKcMVtLoF+5FsoK8I3FhJ3LEzBzNtcdNGFOXodDpOnDhBeXk5jo6O5ObmUllZqe8k7+zs3CyjZdXV1UyZMoULFy6we/dunJycbvox7iYVFRUi70UQhOsmAg6hxeXk5JCXl2d0HV9fX3788ccbnlJVXFzMiBEjsLa25rfffrvmP5BbtmxhzJgxVFRUiIo1N6C2tpbY2FiioqLYuHEj+fn5hIWFERERwQMPPNBsncmvpNPpOHXqFGVlZX+7Z4gkSRQWFup7fVRXV+Ps7IybmxtOTk5Nngak0+k4fTSNg1tPkJ2ey5FtCQbXkwtGrGzNKS82nBgu16wQjJfEra6swdCffWMlcZ957xFGPDHQ4GtNUf+zKS8vJzAwEDMzMyRJorS0FLVajUajobS0FEdHR/0I080YLaupqWH69OkkJyeze/fuRiOmgiAIQssQAYfQatUnjR89epTAwEAAtm/fTlhYmNGk8aKiIkaMGIGFhQVbt25tUtfbd955hw8//JD8/Pybeg13I51Ox5EjR/TBR2ZmJsOHDyc8PJyRI0c2S6JubW0tJ0+epLKykr59+97UqV2SJFFcXKwPPioqKnBycsLNze26n8qfO5HOwa3xxG45QVba/3KK5EYdPP1c9N3Qr+Z/jx9JBw0HHHINCz18XBoct8H+QjrK7u8f62bTa2AXg69di6Fgw5CysjL96FJ9M8f64ONGutvX1tby7LPPcuzYMfbs2YO7u/sNnb8gCILw94mAQ2jVRo4ciVqtZvXq1fqyuEFBQfqyuJcvX2bYsGH88MMP9O/fn6KiIoYPH05ZWRkbN25s8GTdxcUFExMTff+Je+65B0tLS3bs2MG8efOYN28eb7755q261DtS/TSayMhIoqOjuXDhAqGhoYwbN47Ro0dfV4UoOfW9HGpra+nTp0+zJ7GXlJTog4/6p/Jubm64uLhcV6BzMSVTn3CeejLD4KhD136+pBwxPNXKr3d7zp9onBhuZmFKTVWtzChGB84YSECH/07DkpnW9cWhJbi0vf45+zqdjoSEBEpLSwkMDGzy+1PfzFGj0VBQUECbNm30zRybMlpWW1vLCy+8wF9//cXevXtp27btdZ+7IAiCcPOIgENo1fLz85kzZw6//vorSqWShx56iJUrV9KmTRsALly4gI+PD3v27GHw4MHs3buXIUOGGNxXWloa3t7exMTEsGDBAs6dO4ckSXTs2JFZs2YxY8YMo0nCwt8jSRKJiYlERkayceNGUlJSGDJkCOHh4YwZMwZHR8frDj5qamoadKluqYpH9eqfyqvVaoqLi1GpVPrg43rmuWemajj4+wn+2hzHhYT/Ta3qfo8fiTKjDq5ejmguNR6Rc2vvhDrd8JRFY6MiciVxzS3M+M+5Fdf9s7nRYONq9f1UNBoNeXl51+z1odPpeOWVV9i5cyd79uyhQ4cON3RcQRAE4eYRAYcgCC1OkiTOnDlDVFQU0dHRnDhxgvvuu4+IiAjGjh2Lq6vrNW9wq6urOX78OCYmJgQEBNzy3iAVFRX64KOwsBA7Ozv9U/mmTAnKzc3l5MmTuDl4kno0i4NbT6Cr1XE67kKjdRVKBSamSn0Twit1DGjPOZmSuMZK9qpc7QxO6/Lq7M4nuxdc8/yvJEkSCQkJFBcXExQUdNOmuNXU1DQoaWxmZkZiYiLe3t6EhoaiVCqZP38+mzdvZu/evfj6+t6U4zZFfn4+zz//fIOHI5988on+4YghgwcP5o8//miw7JlnnmH16tX679PT05k1axZ79uyhTZs2TJ06lffee6/Fg2tBEIS/QwQcgiDcUpIkkZqaqs/5OHr0KCEhIYSHhzNu3Dg8PT0bBR9qtZrk5GTs7e3p1avXLQ82rlZZWanPR2jKlKCcnBxOnTqFv79/g1yDAk0Rh2NOErv1BImxZ6mt0QHg7KkiN1Nr8NhGRzH823IhSSaZXGYaVv8RPZn/zdNNuWzgfyNZ9ZXCmqsIg06nIy8vj7feeovIyEiUSiWurq7k5ubyxx9/0KNHj2Y5rpyRI0eSlZXFF198oZ/+2a9fP/30T0MGDx5M586deeutt/TLrK2tsbOzA+qmhgUEBODu7s6KFSvIyspiypQpzJgxg3fffbfZr0kQBOFmEQGHIAithiRJXLp0iejoaKKjozlw4AD9+vUjPDyc8PBw2rdvT0ZGBiNHjmT48OF88MEHrX4aXFVVVYMpQTY2NvopQW3atNGPbPTo0QM3NzfZ/RQXlHJkewIHt8ZTmF9isBkgGK9eJdcLxFhJ3PBnhjJ1UXgTrvR/PVC0Wi1BQUEtVvGtsrKSp59+mt9//x17e3vKy8sZM2YMDz74ICNGjGj2Kmn1BS6OHDlCUFAQADExMYwaNcpogYvBgwcTEBDAxx9/bPD133//nTFjxpCZman/bKxevZrXX3+dnJycVtH3RhAEoSla97/UgtBKrFq1Cm9vbywtLQkODubw4cNG19+wYQNdu3bF0tKSnj17snXr1gavS5LE4sWL8fDwwMrKitDQUM6ePducl3BbUCgUtG/fnpdeeok//viD9PR0Jk+ezPbt2+nVqxchISHcc889tG3blvfee6/VBxsA5ubmtG3blj59+jB48GC8vb0pKSnh8OHD7Nu3j/j4eHx9fa9ZstXWwYahE4J5Y80zLPnPbF5eNZWQ0QFYWje86Swvvf7Gfm0c5G/I3X2cr3GFda4MNppzZMPQcf/5z3+yb98+Dh06RGZmJjt27MDLy4sFCxbg4uLC+PHjKSxsXLXrZomNjUWlUumDDUA/xevQoUNGt/3pp59wdnamR48eLFiwgLKysgb77dmzZ4NAdMSIERQVFZGYmHjzL0QQBKGZtP5/rQXhFlu/fj2vvPIKS5Ys4dixY/Tu3ZsRI0ag0RjuKH3gwAEee+wxpk+fzvHjx4mIiCAiIoKEhP/1YFi+fDkrV65k9erVHDp0CBsbG0aMGEFFRUVLXVarp1Ao8PT05LnnnmPXrl0cOnSI7OxsrKysOHjwIIMHD+b9998nJSXF4FSg1sjU1BQPDw969+6Nv78/1dXVqFQq0tLS+Ouvvzh9+jRarfaa12Pdxor7IgJ59cun+O7ku7z29XQGPRiEtZ0VhXmGgwonD5Xsfs0t5PMBPJvQZVySJJKTkykoKLjuhot/hyRJfPzxx3z22Wds376dnj17olAo6NevH++99x4pKSkcPXqUgQMH6qcpNYfs7OxGAaOpqSmOjo5kZ2fLbvf444/z448/smfPHhYsWMC///1vJk+e3GC/V4961X9vbL+CIAitjcg6E4Rr+Oijj5gxYwbTpk0D6qY0bNmyhW+//Zb58+c3Wv+TTz4hLCyMV199FYClS5eyY8cOPvvsM1avXq2/SVq4cCHh4XVTVX744Qfc3NzYtGkTEydObLmLu02cP3+e8ePH88gjj7By5UoKCwv55ZdfiI6OZvny5fj5+TFu3DjGjx+Pv79/qx/5UKvVJCUl0bt3b1xcXPT5CBqNhvj4eBQKBa6urri5uaFSqYxej4WVOfeM7M09I3tTXVXDqf1nOLj1BIdjTlKUX6pfr41Kvh9Nba1O9jWPawQckiSRkpJCfn4+QUFBLRpsrFq1ig8++IBt27bRp0+fRusoFAr8/f3x9/e/oWPMnz+fZcuWGV0nOTn5hvYNMHPmTP3/9+zZEw8PD4YNG8b58+fx8/O74f0KgiC0NiLgEAQjqqqqiIuLY8GC/1XpUSqVhIaGEhsba3Cb2NhYXnnllQbLRowYwaZNm4C68rzZ2dmEhobqX7e3tyc4OJjY2FgRcFwlJSWFoUOH8vjjj7NiRV15VkdHR6ZNm8a0adMoLCzk119/JTo6msGDB9O2bVv9qFLv3r1bXfCRnZ1NUlISvXr1wsWl7mZeqVTi4uKiDz4KCgrQaDScOnUKSZJwcXHB1dUVJycno9djZm5K3yH+9B3izzPvTyDp4DkObj3BoZiTmFvK9yepkJuGZWGGk4dKdrv6YCMvL6/FRza++uor3nnnHX7//Xf69+/fLMeZO3cuTz75pNF1fH19cXd3bzTiWVNTQ35+/nU1HAwODgbg3Llz+Pn54e7u3mj6plqtBhCNDAVBuK2IgEMQjMjNzaW2ttbgtIaUlBSD28hNg6ifAlH/X2PrCP/zww8/MH36dN566y2DpXLt7e2ZPHkykydPpri4mK1btxIdHU1YWBjOzs6MGzeOiIgI+vXrd8uDjyuDDWdnw7kRSqUSJycnnJyc6Nq1K1qtFo1GQ0pKCjU1NTg7O+Pm5oaTk5PR6lwmJkp63tuZnvd25um3H+bs8Ysc+C2eg1vjG/XvMFQOF8DN20m2PLEkSZw+fZrc3FyCgoJuqBv4jZAkiTVr1rB48WJ+++03BgwY0GzHqg8CryUkJAStVktcXByBgYEA7N69G51Opw8imiI+Ph4ADw8P/X7feecdNBqNfsrWjh07sLOzu+FRG0EQhFtBBByCILRq77zzTpObztna2jJhwgQmTJhAWVkZ27ZtIyoqivHjx2Nra8u4ceMIDw8nJCSkxUvpZmVlkZycbDTYuJpCocDBwQEHBwc6d+5MUVERGo2GM2fOUFlZqQ8+nJ2djfZlUCgUdO7rTee+3jy5OILzpy5xcMsJDv5+gpyMfNmAw8Pb8M12fR+VnJycFg821q5dy+uvv84vv/zC/fff3yLHvZZu3boRFhbGjBkzWL16NdXV1cyZM4eJEyfqK1RdvnyZYcOG8cMPP9C/f3/Onz/P2rVrGTVqFE5OTpw8eZKXX36Z+++/n169egEwfPhw/P39eeKJJ1i+fDnZ2dksXLiQ5557rsWS8gVBEG4GEXAIghHOzs6YmJjopzHUU6vVslMa3N3dja5f/1+1Wq1/kln/fUBAwE08+zvD9Xa4rmdtbc348eMZP348FRUV7Ny5k6ioKB577DHMzc0ZM2YM48eP595778XMTH660c2QmZlJSkoKvXv3xsnJ6Yb2oVAosLe3x97eno4dO1JSUoJarSY1NZXExEQcHR31Xc6vdT1+Pb3w6+nFpPljyDibzYEtJzi49USjHh2GEsYlSeLs2bOo1eoWDzY2bNjAyy+/TGRkJEOHDm2R4zbVTz/9xJw5cxg2bJi+8d/KlSv1r1dXV3P69Gl9FSpzc3N27tzJxx9/TGlpKV5eXjz00EMsXLhQv42JiQm//fYbs2bNIiQkBBsbG6ZOndqgb4cgCMLtQPThEIRrCA4Opn///nz66adAXcOx9u3bM2fOHINJ4/VP13/99Vf9sgEDBtCrVy990rinpyfz5s1j7ty5ABQVFeHq6sr3338vcjiaWXV1NXv27CEyMpJffvkFnU7H6NGjGT9+PIMGDbrpvQ0uX77M6dOnCQgIwNHR8abuu15paSlqtRqNRkNJSQmOjo76Xh/Xcz3ZF3I5+PsJYree4Fx8Os+89yjDJ/9vypIkSZw7d46srCyCgoKwtpZPRL/ZNm3axMyZM1m3bh1jxoxpseMKgiAIf58IOAThGtavX8/UqVP54osv6N+/Px9//DE///wzKSkpuLm5MWXKFH1fCKgrizto0CDef/99Ro8ezbp163j33Xc5duyYvvvxsmXLeP/991mzZg0+Pj4sWrSIkydPkpSU1GKJt0JdYu+ff/5JZGQkmzZtoqysjNGjRxMeHs6wYcP+9s+iJYKNq5WVlem7nBcVFaFSqfTBx/VcT26mFhNTJQ6udeVk64ONzMxMgoKCmr2Z3pV+++03pk2bxo8//sj48eNb7LiCIAjCzSECDkFogs8++4wVK1aQnZ1NQEAAK1eu1CeD1jdz+/777/Xrb9iwgYULF3LhwgU6derE8uXLGTVqlP51SZJYsmQJX375JVqtloEDB/L555/TuXPnlr404b9qa2s5cOAAUVFRbNy4Ea1WS1hYGBERETzwwAPX/TQ/IyODM2fO0KdPHxwcHJrprI2rqKjQBx9arRY7Ozt9ud3rmQolSRLnz5/n8uXLLR5sbNu2jSeeeIJvvvmGCRMmtNhxBUEQhJtHBByCIAhX0el0HD58WB98ZGdnM3z4cMLDwwkLC8PW1tbo9pcuXeLcuXP06dMHlUrVMid9DVVVVfrgIz8/nzZt2uhHPtq0aWN02/Pnz5ORkUFgYOA1172Zdu/ezcSJE1m9ejWTJk264XweQRAE4dYSAYcgCIIROp2O+Ph4IiMjiY6O5uLFi4SGhhIeHs6oUaOwt7dvcCO8atUqPDw8GDp0aKsJNq5WXV1NTk4OGo2GvLw8rKys9CMfbdq0aXA9qamppKenExQU1KLBxr59+3jkkUf45JNPmDZtmgg2BEEQbmOtqyOWIDST6upqMjIybvVp3HSrVq3C29sbS0tLgoODGzUJu9JXX33Ffffdpy+zGhoa2mj9J598EoVC0eArLCysuS+jVVMqlfTt25d3332X5ORkDh8+TN++fVm5ciU+Pj489NBD/PDDD+Tl5fH222/z5ptv4uTk1GqDDQAzMzM8PT0JCAhg0KBB+Pr6UlZWxpEjR9i/fz9nzpyhsLDwlgUbsbGxPProoyxfvlwEG4IgCHcAMcIh3BW2bdvGq6++ypdffsk999xzq0/npli/fj1Tpkxh9erVBAcH8/HHH7NhwwZOnz6tbxJ2pUmTJnHvvfcyYMAALC0tWbZsGRs3biQxMZG2bdsCdQGHWq3mu+++029nYWFxy3IQWrP6xndRUVFER0cTHx+PQqFg1qxZzJ07FxcXl9vuRrm2tpa8vDw0Gg1qtRqdToe7uzvt2rVDpVK1yPUcOXKE8PBw3nrrLZ5//vnb7j0UBEEQGhMBh3BXeOaZZygpKeHDDz/E3d0dnU53y7tO/13BwcH069ePzz77DKib+uPl5cXzzz9vsFzv1Wpra3FwcOCzzz5jypQpQF3AodVq2bRpU3Oe+h1nxYoVvPPOOzzxxBMcOXKEuLg4QkJCiIiIYNy4cXh4eNxWN84XLlwgLS0NPz8/iouLycnJQaFQ4OLigpubGw4ODs3y+3P8+HHGjBnD//3f/zF37tzb6j0TBEEQ5InGf8Idr7y8nOPHjzN+/Hh90z2lUokkSbftDU1VVRVxcXEsWLBAv0ypVBIaGkpsbGyT9lFWVkZ1dXWjcq179+7F1dUVBwcHhg4dyttvv33DzeruBsuWLWP58uXs3r2bvn37IkkS6enpREdHEx0dzWuvvUb//v0JDw8nPDwcLy+vVv25u3jxImlpaQQGBmJnV1cSV6fTodVqUavVJCQkIEkSLi4uuLq64uTkdFOCj1OnTjFu3DheffVVEWwIgiDcYcQIh3DHO3DgAC+//DKjRo2itrYWLy8vpk6d2qgh2u0UgGRmZtK2bVsOHDhASEiIfvlrr73GH3/8waFDh665j9mzZ7Nt2zYSExP1/RnWrVuHtbU1Pj4+nD9/njfeeIM2bdoQGxuLiYlJs13P7erdd9/lo48+YufOnQa7xEuSRGZmJhs3biQqKoq//vqLgIAAffDh6+vbqj5z6enpnD9/vkGwcTVJkigsLNQ3GqyurtYHH87Ozjf0OUlKSmLUqFHMnj2bJUuWtKr3RBAEQfj7xAiHcMdbv349R44cwc3Nja5du/LOO++wefNm1qxZ0+Dpfv1Njk6nA7jtp1wZ8/7777Nu3Tr27t3boBnclV3Oe/bsSa9evfDz82Pv3r0MGzbsVpxqq2Zvb8/u3bvp1auXwdcVCgVt27Zlzpw5PPfcc2g0GjZt2kRUVBRvvfUW/v7+hIeHExERQefOnW/pjXZ9sNG3b1/ZYAPqrkmlUqFSqejcuTNFRUVoNBrOnTtHQkICzs7OuLq64uLigqnptf+JOXPmDGPHjmX69Oki2BAEQbhDiREO4Y5WWVlJUFAQ3t7ebNq0CRMTE06ePMnAgQP56aefGDt2LAD79+8nKyuLYcOG6ROk60c8SktLyc3NpUOHDq1mFKSqqgpra2siIyOJiIjQL586dSparZZffvlFdtsPPviAt99+m507dxIUFHTNY7m4uPD222/zzDPP3IxTF6j7bOXn5/PLL78QHR3Nzp078fPzIzw8nPHjx9OtW7cWDXjr+4b07dsXe3v7G9qHJEmUlpbqRz5KS0txcnLSBx9XjyhCXX+PkSNHMmHCBFasWHFHB/mCIAh3M/HXXbijxcfHY2VlxfTp0/VTPby9vbn33nuJjY1Fq9UydepUnn32Wd59913atWvHxIkTKSgo0AcW2dnZ9OnThx9++AGFQqEfAbmVzM3NCQwMZNeuXfplOp2OXbt2NZhidbXly5ezdOlSYmJimhRsZGRkkJeXh4eHx005b6GOQqHAycmJp556it9++43s7Gzmz59PcnIygwYNom/fvixZsoT4+Phm/7xlZGRw9uxZ+vTpc8PBBtRdU5s2bfDz8yMkJISQkBBUKhUZGRns27ePP/74g+XLl5Oeng7UJaaPGTOGiIiIFg828vPzmTRpEnZ2dqhUKqZPn05JSYns+hcuXGhULrr+a8OGDfr1DL2+bt26lrgkQRCEVk2McAh3tLlz5/Lnn38SFRWFl5cXAGq1mtGjRzN06FAsLS3Zt28fmzdvxs7OjlOnTvHyyy8zYsQIXn31Vfbt28cnn3zCrl270Gq1t/ZirrJ+/XqmTp3KF198Qf/+/fn444/5+eefSUlJwc3NjSlTptC2bVvee+89oC65efHixaxdu5Z7771Xv582bdrQpk0bSkpKePPNN3nooYdwd3fn/PnzvPbaaxQXF3Pq1CksLCxu1aXeVYqLi9m6dStRUVH8/vvvODs766ddBQUF3dQb84yMDM6cOUOfPn2atfRxeXk5Bw8eZP78+SQlJdG5c2fUajUjR47k3//+d4uPbIwcOZKsrCy++OILqqurmTZtGv369WPt2rUG16+trSUnJ6fBsi+//JIVK1aQlZWl71GiUCj47rvvGvSuUalUDaYtCoIg3JUkQbhDVVVVST169JA6duzYYPmePXskS0tLadWqVVJAQIBkZmYmvfjii9LOnTslSZKk9957T3rggQckSZKkHTt2SBYWFpKFhYXUoUMHacmSJVJhYWGD/el0OqmmpkbS6XQGz0Nu+c3w6aefSu3bt5fMzc2l/v37SwcPHtS/NmjQIGnq1Kn67zt06CABjb6WLFkiSZIklZWVScOHD5dcXFwkMzMzqUOHDtKMGTOk7OzsZjt/wbjS0lIpKipKevzxxyV7e3vJy8tLeu6556Tt27dLRUVFUmlp6Q1/nTlzRvr111+ljIyMv7Wf6/3au3ev5OjoKLm7u0umpqZSv379pPfff186e/Zsi7ynSUlJEiAdOXJEv+z333+XFAqFdPny5SbvJyAgQHrqqacaLAOkjRs33qxTFQRBuGOIEQ7hjnX48GEiIiJwc3Nj3rx5TJo0iUOHDvHee++RkZHBokWLmDBhAlFRUfz000/s2bMHpVKJUqmkc+fObNiwgaKiIh544AGefvppvL29iYmJYfbs2fTs2ZNDhw7Rvn17fHx8mnQ+d0LvD+HWqaioYMeOHURFRbF582YsLCwYO3Ys48eP5957721Sgna9zMxMUlJSCAgIaFQWuTlpNBpGjhxJ3759+eGHHygoKGDz5s1ERUWxc+dOunbtyosvvshTTz3VbOfw7bffMnfuXAoKCvTLampqsLS0ZMOGDYwfP/6a+4iLiyMoKIj9+/czYMAA/XKFQoGnpyeVlZX4+vry7LPPik7pgiAIiCpVwh2sW7durFu3jrNnz/Luu+/y3nvvUVFRgaenJ9999x1Hjx7Fy8uL0aNHM3r0aIqLi/nzzz/Ztm0btra2ODo6snXrVtRqNdOmTcPV1ZUJEyYAsGXLFn788Ud2796NnZ0dL730EtOnT8fS0lKfWJ6VlcUvv/xCly5dGDJkiAg2hL/F0tKSsWPHMnbsWKqqqtizZw+RkZFMnToVgNGjRzN+/Hjuv/9+gwna9bKysm5JsJGbm8vYsWPp2bMna9aswcTEBGdnZ5566imeeuopCgsL+e2335p9+lF2djaurq4NlpmamuLo6Eh2dnaT9vHNN9/QrVu3BsEGwFtvvcXQoUOxtrZm+/btzJ49m5KSEl544YWbdv6CIAi3IzHCIdwVNBoN69evx8rKiocffhiVSsWePXuYNGkS77//vr7T9pVKS0uZM2cOSUlJHDp0iJqaGv1T5OzsbCwsLKiurmbjxo18+OGHrFq1igceeEA/kvHTTz+xZs0aUlJSyM3N5dtvv21QdlYQboaamhr27dtHZGQkmzZtoqKigtGjRxMREcGQIUMa3MB/8cUXXLhwgXnz5rVoM8eCggLGjBlDhw4d+Pnnn40GRDdq/vz5LFu2zOg6ycnJREdHs2bNGk6fPt3gNVdXV958801mzZpldB/l5eV4eHiwaNEi5s6da3TdxYsX891333Hp0qWmXYQgCMIdSjxyFe4Krq6uPP/88zz99NOoVCoAhgwZwvTp0/nwww/5xz/+weHDh9myZQvJyclAXV+C2NhYfZBQW1sL1N3gVVRUkJycjKurK8888wyjRo3io48+Av7Xv2P06NF8/vnnvPDCC7i4uODs7AzQKqpctYRVq1bh7e2NpaUlwcHBHD58WHbd77//vlF1n6ufdEuSxOLFi/Hw8MDKyorQ0FDOnj3b3JfR6pmamjJ06FA+//xzLl26xKZNm3B0dOTll1/Gx8eHp556is2bN7Nq1SoWLFhA//79WzTYKCwsJDw8HE9PT9avX98swQbUFYhITk42+uXr64u7uzsajabBtjU1NeTn5+Pu7n7N40RGRlJWVmbwIcXVgoODycjIoLKy8oavSxAE4U4gplQJd7VFixbh6+vLV199xZo1a+jTpw+zZ8+mW7du5ObmcubMGR566CEAfVndmTNncvz4cSorK8nNzWXAgAEUFhbq91lbW4uJiYm+OZpGo8HV1ZWhQ4cCd3ZDwXrr16/nlVdeYfXq1QQHB/Pxxx8zYsQITp8+3Wg6Sz07O7sGT52vnve+fPlyVq5cyZo1a/Dx8WHRokWMGDGCpKQkUQXov0xMTLj//vu5//77+ec//8nhw4eJjIzkxRdfRKPR0L9/f2praykpKdFXVmpOxcXFjB8/HkdHR6Kiopq10pmLiwsuLi7XXC8kJAStVktcXByBgYEA7N69G51OR3Bw8DW3/+abbxg3blyTjhUfH4+Dg4Oo8CYIgnArM9YFoTWpqKiQzpw5I5WVlUmSJEmxsbGSm5ubtG/fPv06Bw8elBQKhfTjjz9KZ86ckfbv3y/NnTtXUigU0meffSZJUl1VqvrKVAkJCdIDDzwgzZ49W5IkSaqtrW3hq7o1+vfvLz333HP672trayVPT0/pvffeM7j+d999J9nb28vuT6fTSe7u7tKKFSv0y7RarWRhYSH95z//uWnnfSeKjIyUrK2tpY8//liaP3++1LlzZ8nKykoaO3as9PXXX0uZmZlSSUnJTa9GpdFopIEDB0qDBw+WSktLb/Xb0EBYWJjUp08f6dChQ9Jff/0lderUSXrsscf0r2dkZEhdunSRDh061GC7s2fPSgqFQvr9998b7XPz5s3SV199JZ06dUo6e/as9Pnnn0vW1tbS4sWLm/16BEEQWrs7/1GrIDSRhYUFnTp1wsrKCoCuXbsyefJkBg0aRGhoKNnZ2aSmpmJubs6oUaPo1KkTAwYMYPTo0SgUCn1viyufzCckJJCRkaHvaH43qKqqIi4ujtDQUP0ypVJJaGgosbGxstuVlJTQoUMHvLy8CA8PJzExUf9aWloa2dnZDfZpb29PcHCw0X3e7TZt2sSUKVNYt24dL774Iu+99x4pKSkcOnSIgIAAPv74Y7y9vXn44Yf54YcfyM/PR7oJaX3l5eU8+uijAPz6669YW1v/7X3eTD/99BNdu3Zl2LBhjBo1ioEDB/Lll1/qX6+urub06dOUlZU12O7bb7+lXbt2DB8+vNE+zczMWLVqFSEhIQQEBPDFF1/w0UcfsWTJkma/HkEQhNZOJI0LwjVIksSBAwfo0aMHWq2WBx98kA4dOvDSSy+xf/9+PvnkE3x8fNi9e7c+WAGorKxkyZIlbN++nYMHDzbb3PXWJjMzk7Zt23LgwIEGXc9fe+01/vjjDw4dOtRom9jYWM6ePUuvXr0oLCzkgw8+YN++fSQmJtKuXTsOHDjAvffeS2ZmZoOu548++igKhYL169e3yLXdTmJiYnjooYdYu3Yt4eHhBteRJImUlBQiIyPZuHEjCQkJ3H///URERDBmzBhcXFyuu6RrRUUFEydOpLi4mJiYmL/VvVwQBEG4M4gRDkG4hvrRC3t7ezp06MDKlSupqanhueeew8rKCo1Gw7hx4/TBRn0Mf+HCBeLj4+nfvz/m5ub6pHOhsZCQEKZMmUJAQACDBg0iOjoaFxcXvvjii1t9arctf39/1q9fLxtsQN1nu1u3bixatIi4uDiSkpJ44IEH+Pe//02nTp0YNWoUq1evJjMzs0kjH5WVlTzxxBPk5+ezdetWEWwIgiAIgAg4BOG63XvvvWzevJlTp04xc+ZMnn76aUaOHKl//fDhwxQVFZGYmMjly5f106nuluZfzs7OmJiYoFarGyxXq9VNqgIEddNT+vTpw7lz5wD02/2dfd5t2rdvz5gxY5q8vkKhoGPHjrz++uscPHiQc+fOER4eTnR0NN26dWP48OF8+umnpKenGww+qqurefLJJ7l8+TLbtm3DwcHhZl6OIAiCcBsTAYcg/A3W1tZ8+eWXBAQEAKDVannhhRfw8PBgzpw55OTk0K1bN+DuqE4FYG5uTmBgILt27dIv0+l07Nq1q8EUK2Nqa2s5deqUfvqUj48P7u7uDfZZVFTEoUOHmrxPoekUCgUdOnTglVde4c8//+TChQtMnDiRmJgYevbsyZAhQ/jnP/9JamoqkiRRU1PD008/zfnz59mxY0eLlt0VBEEQWj+RwyEIzWDfvn2sX7+ejRs3kp2dzdSpU/n666/1pXXvdOvXr2fq1Kl88cUX9O/fn48//piff/6ZlJQU3NzcmDJlCm3btuW9994D6jo033PPPXTs2BGtVsuKFSvYtGkTcXFx+Pv7A7Bs2TLef//9BmVxT548KcritiBJklCr1WzatIno6Gj27t1Lt27dUCgUlJWVsW/fPjHiJAiCIDQi+nAIQjOo74WwatUq/vjjD7Kysu6aYANgwoQJ5OTksHjxYrKzswkICCAmJgY3NzegrqnilSM+BQUFzJgxg+zsbBwcHAgMDOTAgQP6YAPqks5LS0uZOXMmWq2WgQMHEhMTI4KNFqRQKHB3d+fZZ5/lmWeeIT8/n7Vr1/L+++/zxx9/iGBDEARBMEiMcAiCIAiCIAiC0GzujknlgiAIgiAIgiDcEiLgEARBEARBEASh2YiAQxCEu8qqVavw9vbG0tKS4OBgDh8+LLvu4MGDUSgUjb5Gjx6tX+fJJ59s9HpYWFhLXIogCIIg3BZE0rggCHeN9evX88orr7B69WqCg4P5+OOPGTFiBKdPn8bV1bXR+tHR0VRVVem/z8vLo3fv3jzyyCMN1gsLC+O7777Tf29hYdF8FyEIgiAItxkxwiEIwl3jo48+YsaMGUybNg1/f39Wr16NtbU13377rcH1HR0dcXd313/t2LEDa2vrRgGHhYVFg/VE0ztBEARB+B8RcAiCcFeoqqoiLi6O0NBQ/TKlUkloaCixsbFN2sc333zDxIkTsbGxabB87969uLq60qVLF2bNmkVeXt5NPfe71TvvvMOAAQOwtrZGpVI1aRtJkli8eDEeHh5YWVkRGhrK2bNnG6yTn5/PpEmTsLOzQ6VSMX36dEpKSprhCgRBEAQQAYcgCHeJ3Nxcamtr9b1A6rm5uZGdnX3N7Q8fPkxCQgJPP/10g+VhYWH88MMP7Nq1i2XLlvHHH38wcuRIamtrb+r5342qqqp45JFHmDVrVpO3Wb58OStXrmT16tUcOnQIGxsbRowYQUVFhX6dSZMmkZiYyI4dO/jtt9/Yt28fM2fObI5LEARBEBB9OARBuEtkZmbStm1bDhw4QEhIiH75a6+9xh9//MGhQ4eMbv/MM88QGxvLyZMnja6XmpqKn58fO3fuZNiwYTfl3O9233//PS+99BJardboepIk4enpydy5c5k3bx4AhYWFuLm58f333zNx4kSSk5Px9/fnyJEjBAUFARATE8OoUaPIyMjA09OzuS9HEAThriNGOARBuCs4OztjYmKCWq1usFytVl+zQ3ZpaSnr1q1j+vTp1zyOr68vzs7OnDt37m+dr3D90tLSyM7ObjBtzt7enuDgYP20udjYWFQqlT7YAAgNDUWpVF4z6BQEQRBujAg4BEG4K5ibmxMYGMiuXbv0y3Q6Hbt27Wow4mHIhg0bqKysZPLkydc8TkZGBnl5eXh4ePztcxauT/3UOGPT5rKzsxtVJDM1NcXR0bFJU+sEQRCE6ycCDkEQ7hqvvPIKX331FWvWrCE5OZlZs2ZRWlrKtGnTAJgyZQoLFixotN0333xDREQETk5ODZaXlJTw6quvcvDgQS5cuMCuXbsIDw+nY8eOjBgxokWu6XYzf/58g71NrvxKSUm51acpCIIg3ESiD4cgCHeNCRMmkJOTw+LFi8nOziYgIICYmBj9E/H09HSUyobPYU6fPs1ff/3F9u3bG+3PxMSEkydPsmbNGrRaLZ6engwfPpylS5eKXhwy5s6dy5NPPml0HV9f3xvad/3UOLVa3WCESa1WExAQoF9Ho9E02K6mpob8/PxrTq0TBEEQboxIGhcEQRBatetNGp83bx5z584FoKioCFdX10ZJ40ePHiUwMBCA7du3ExYWJpLGBUEQmomYUiUIgiC0Sunp6cTHx5Oenk5tbS3x8fHEx8c36JnRtWtXNm7cCIBCoeCll17i7bffZvPmzZw6dYopU6bg6elJREQEAN26dSMsLIwZM2Zw+PBh9u/fz5w5c5g4caIINgRBEJqJmFIlCIIgtEqLFy9mzZo1+u/79OkDwJ49exg8eDBQN+WtsLBQv85rr71GaWkpM2fORKvVMnDgQGJiYrC0tNSv89NPPzFnzhyGDRuGUqnkoYceYuXKlS1zUYIgCHchMaVKEAShFdi3bx8rVqwgLi6OrKwsNm7cqH8qL2fv3r288sorJCYm4uXlxcKFCxvlR6xatYoVK1aQnZ1N7969+fTTT+nfv3/zXYggCIIgXEVMqRIEQWgFSktL6d27N6tWrWrS+mlpaYwePZohQ4YQHx/PSy+9xNNPP822bdv066xfv55XXnmFJUuWcOzYMXr37s2IESMaJU0LgiAIQnMSIxyCIAitjEKhuOYIx+uvv86WLVtISEjQL5s4cSJarZaYmBgAgoOD6devH5999hlQ13fEy8uL559/nvnz5zfrNQiCIAhCPTHCIQiCcBuKjY1t0FEbYMSIEfqO2lVVVcTFxTVYR6lUEhoaql9HEARBEFqCCDgEQRBuQ9nZ2QY7ahcVFVFeXk5ubi61tbVGu24LgiAIQksQAYcgCIIgCIIgCM1GlMUVBEG4Dbm7u6NWqxssU6vV2NnZYWVlhYmJCSYmJgbXER21BUEQhJYkRjgEQRBuQyEhIezatavBsh07dhASEgKAubk5gYGBDdbR6XTs2rVLv44gCIIgtAQRcAiCILQCJSUl+k7aUFf2tr7LNsCCBQuYMmWKfv1nn32W1NRUXnvtNVJSUvj888/5+eefefnll/XrvPLKK3z11VesWbOG5ORkZs2aRWlpKdOmTWvRaxMEQRDubmJKlSAIQitw9OhRhgwZov/+lVdeAWDq1Kl8//33ZGVl6YMPAB8fH7Zs2cLLL7/MJ598Qrt27fj6668ZMWKEfp0JEyaQk5PD4sWLyc7OJiAggJiYmEaJ5IIgCILQnEQfDkEQBEEQBEEQmo2YUiUIgiAIgiAIQrMRAYcgCIIgCIIgCM1GBByCIAiCIAiCIDQbEXAIgiAIgiAIgtBsRMAhCIIgCIIgCEKzEQGHIAiCIAiCIAjNRgQcgiAIgiAIgiA0GxFwCIIgCIIgCILQbETAIQiCIAiCIAhCsxEBhyAIgiAIgiAIzUYEHIIgCIIgCIIgNBsRcAiCIAiCIAiC0GxEwCEIgiAIgiAIQrMRAYcgCIIgCIIgCM1GBByCIAiCIAiCIDQbEXAIgiAIgiAIgtBsRMAhCIIgCIIgCEKzEQGHIAiCIAiCIAjNRgQcgiAIgiAIgiA0GxFwCIIgCIIgCILQbETAIQiCIAiCIAhCs/l/Hld48FmVHG0AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 320 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T22:14:18.536764Z", + "start_time": "2024-06-09T22:14:18.526641Z" + } + }, + "cell_type": "code", + "source": [ + "from qulearn.qlayer import ParallelIQPEncoding, AltRotCXLayer, HamiltonianLayer\n", + "num_features = 2\n", + "num_qubits = 6\n", + "base = 3.0\n", + "omega = 1.0\n", + "embed = ParallelIQPEncoding(wires=num_qubits,\n", + " num_features=num_features,\n", + " n_repeat=1,\n", + " base=base,\n", + " omega=omega)\n", + "n_layers = 1\n", + "var = AltRotCXLayer(wires=num_qubits, n_layers=n_layers)\n", + "\n", + "obs = [qml.Identity(0), qml.PauliZ(0)]\n", + "model = HamiltonianLayer(embed, var, observables=obs)\n", + "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", + "x = torch.tensor([1.0, 2.0])\n", + "print(drawer(x))\n", + "nump = sum(p.numel() for p in model.parameters() if p.requires_grad)\n", + "print(\"Number of parameters: \", nump)" + ], + "id": "7453d8e6508e91c0", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0: ──H──RZ(1.00)──╭MultiRZ(2.00)────Rot(6.03,0.47,4.18)─╭●──Rot(0.65,3.98,3.35)───\n", + "1: ──H──RZ(2.00)──╰MultiRZ(2.00)────Rot(2.78,4.74,6.11)─╰X──Rot(3.99,4.64,5.69)─╭●\n", + "2: ──H──RZ(3.00)──╭MultiRZ(18.00)───Rot(3.03,4.07,4.49)─╭●──Rot(2.15,5.80,1.15)─╰X\n", + "3: ──H──RZ(6.00)──╰MultiRZ(18.00)───Rot(4.48,1.69,2.32)─╰X──Rot(0.62,0.48,4.54)─╭●\n", + "4: ──H──RZ(9.00)──╭MultiRZ(162.00)──Rot(2.76,4.93,0.53)─╭●──Rot(4.92,1.76,4.20)─╰X\n", + "5: ──H──RZ(18.00)─╰MultiRZ(162.00)──Rot(2.12,0.28,5.54)─╰X──Rot(1.37,4.20,2.80)───\n", + "\n", + "───────────────────────┤ <𝓗(0.06,-0.00)>\n", + "───Rot(2.61,5.92,1.27)─┤ \n", + "───Rot(3.91,4.16,1.82)─┤ \n", + "───Rot(0.27,0.18,1.47)─┤ \n", + "───Rot(2.46,1.67,4.02)─┤ \n", + "───────────────────────┤ \n", + "Number of parameters: 50\n" + ] + } + ], + "execution_count": 317 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-09T22:14:34.833926Z", + "start_time": "2024-06-09T22:14:18.538243Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Define the number of points in each dimension\n", + "num_pnts = 50\n", + "\n", + "# Generate a grid of x and y values\n", + "x = torch.linspace(-0.99, 0.99, num_pnts)\n", + "y = torch.linspace(-0.99, 0.99, num_pnts)\n", + "X, Y = torch.meshgrid(x, y)\n", + "Z = torch.empty(num_pnts, num_pnts)\n", + "\n", + "# Evaluate the model at each point in the grid\n", + "for i in range(num_pnts):\n", + " for j in range(num_pnts):\n", + " xy = torch.tensor([X[i, j], Y[i, j]])\n", + " Z[i, j] = model(xy).item()\n", + "\n", + "# Convert tensors to numpy arrays for plotting\n", + "X = X.numpy()\n", + "Y = Y.numpy()\n", + "Z = Z.numpy()\n", + "\n", + "# Create a 3D surface plot\n", + "fig = plt.figure(figsize=(10, 6))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "surf = ax.plot_surface(X, Y, Z, cmap='viridis')\n", + "\n", + "# Add labels and title\n", + "ax.set_xlabel('$x$')\n", + "ax.set_ylabel('$y$')\n", + "ax.set_zlabel('$z$')\n", + "ax.set_title(\"$\\langle Z_0\\\\rangle$\")\n", + "\n", + "ax.view_init(elev=30, azim=45)\n", + "# Add a color bar which maps values to colors\n", + "fig.colorbar(surf, ax=ax, shrink=0.5, aspect=5)\n", + "\n", + "# Save the figure\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "id": "bb0c58697d65985e", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAJOCAYAAADyPWKqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z5BcaX7eif6OSV9Z3nsDb9sAbTXdzRWDMpSGH3iXV6tQkLofbjAormKlXW3s7qV2R7qK1dVdXjlqNVpJy5Uo7WqGGlEkZ6ghh27Q6GkADTS8R3mb5U36Y9/7ISuzMitPoQFUIROoen8RiEDlm+e852RVnnzOP5/3+StCCIFEIpFIJBKJRCKpKGq1D0AikUgkEolEIjmISCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAlKISyQSiUQikUgkVUAKcYlEIpFIJBKJpApIIS6RSCQSiUQikVQBKcQlEolEIpFIJJIqIIW4RCKpOr/2a79GOBwmnU4XHmtpaUFRlKf++/mf//mv3Pcv/dIvMTg4+DIPXyKRSCSSF0IRQohqH4REIjnY/PRP/zSmafK9730PANu2+fa3v+353Hg8zt/4G38DwzD4nd/5Hf7Mn/kzT933lStXeP/997l37x4nT57c82OXSCQSieRF0at9ABKJ5GBjGAa///u/zz/4B/+g8Jiu6/ylv/SXPJ/7p//0nyaTyfDNb37zK0U4wLvvvktbWxvf+973pBCXSCQSySuFtKZIJJKq8sMf/pBUKsWf//N//qnPcxyHv/gX/yIXLlzgb/2tv8Uv/MIvPNP+FUXhz/25P1eotkskEolE8qoghbhEIqkq3/ve9zh//jzt7e1Pfd4v/MIv8B//43/kF3/xF/nGN77xXHN8/etf58qVKywtLe3mUCUSiUQi2VOkEJdIJFXle9/73ldWw3/pl36Jf/kv/yU/8zM/w6/8yq889xw//uM/TiAQ4Pvf//6LHqZEIpFIJHuOFOISiaRq3Lx5k+npab7+9a/v+Jxf+ZVf4e/+3b/Lj//4j/Nv/+2/RVWf/7IVDof5k3/yT0p7ikQikUheKaQQl0gkVePTTz+lvr6eM2fOeI5/61vf4q/9tb/GuXPn+M3f/E38fn/Zc5aWlvjJn/xJIpEIR48e5Y/+6I889/XJJ59w4cKFvTx8iUQikUh2hRTiEomkarz99tusr68zMjJSNvaDH/yAn/u5n+Pw4cN8//vfp6amxnMfv/iLv0h7eztLS0v88i//Mj/zMz/D6upq2fOuXr3KuXPn9vwcJBKJRCJ5UaQQl0gkVeODDz6gubmZ7373uyWPf/HFF/z0T/80ra2t/P7v/z4tLS2e2yeTSX7rt36Lv/23/zbhcJivf/3rnD59mt/+7d8ueZ5lWfze7/3eV3rRJRKJRCKpJFKISySSqqFpGn/2z/7ZEu/2w4cP+cmf/En8fj8/+MEP6Ovr23H74eFhampq6O7uLjx2+vRp7t+/X/K8Tz/9lHg8LoW4RCKRSF4pZEMfiURSVb7+9a/zF/7CX2BtbQ1FUfhTf+pPsbKywl/5K3+FmzdvcvPmzbJtWltb+Ymf+AmSySS1tbUlY7W1taysrJQ89t3vfpezZ8/S29v7Us9FIpFIJJLnQQpxiURSVX7iJ34CVVX53d/9XZqbm5mengbgm9/8Jt/85jc9t/nZn/1ZfuInfoKamhri8XjJWDweL/OTf+973/Ps1CmRSCQSSTWRQlwikVSVaDTKj/3Yj/Hd736Xb3/72wghnnnbw4cPk0wmmZ2dpaurC4B79+7xsz/7s4Xn3L17l4mJCWlLkUgkEskrh/SISySSqvP1r3+d3/u938OyrOfarqamhp/6qZ/iG9/4BplMht/5nd/hzp07/NRP/VThOd/97ndpb2/n/Pnze33YEolEIpHsCkU8T/lJIpFIXgLZbJaZmRn6+/vR9ef7om5paYmf+7mf48KFC3R3d/PNb36TH//xHy+MLyws4DgOnZ2de33YEolEIpHsCinEJRKJRCKRSCSSKiCtKRKJRCKRSCQSSRWQQlwikUgkEolEIqkCUohLJBKJRCKRSCRVQApxiUQikUgkEomkCkghLpFIJBKJRCKRVAEpxCUSiUQikUgkkioghbhEIpFIJBKJRFIFpBCXSCQSiUQikUiqgBTiEolEIpFIJBJJFZBCXCKRSCQSiUQiqQJSiEskEolEIpFIJFVACnGJRCKRSCQSiaQKSCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAlKISyQSiUQikUgkVUAKcYlEIpFIJBKJpApIIS6RSCQSiUQikVQBKcQlEolEIpFIJJIqIIW4RCKRSCQSiURSBaQQl0gkEolEIpFIqoAU4hKJRCKRSCQSSRWQQlwikUgkEolEIqkCUohLJBKJRCKRSCRVQApxiUQikUgkEomkCkghLpFIJBKJRCKRVAEpxCUSiUQikUgkkioghbhEIpFIJBKJRFIFpBCXSCQSiUQikUiqgBTiEolEIpFIJBJJFZBCXCKRSCQSiUQiqQJSiEskEolEIpFIJFVACnGJRCKRSCQSiaQKSCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAnq1D0AikUj2CiEEjuOgKAqqqqIoSrUPSSKRSCSSHZFCXCKRvPYIIbAsC9M0sSwLXdfx+Xxomoamaaiq/PJPIpFIJK8eihBCVPsgJBKJ5EVwXRfTNDFNE8dxEEKgaRo+nw9FURBCoChKiSCXVXKJRCKRvCrIirhEInmtyNtP8tXvvBVF07SCyM4L7nydwbZtHMdBVdWCKJeCXCKRSCTVRlbEJRLJa4EQAtu2MQwDy7IQQqCqqmeVO18R3759/nK3vUoukUgkEkk1kEJcIpG80riui2VZGIZRYj9RFGXHqraXEM+TF+TStiKRSCSSaiOtKRKJ5JUkbz/J+7+3209elLyAz4vxYtuKrutSkEskEomkYsjvZCUSyStDPv0klUoxOTnJ/fv3EUKg6zq6ru+pQM5HHObFfSKR4OrVqxiGgW3byC8LJRKJRPKykRVxiURSdfL2E9M0CyI4L8g1TXvp8yuKguM4bGxsIITANM1CBT5/AyCr5BKJRCLZa6QQl0gkVcPLfrLTAsxKoapqwbbiOI60rUgkEonkpSGFuEQiqSh5gZtPP3FdtyB0XxWRW+wjh9wNg+u6KIqCrusy/lAikUgke4IU4hKJpCJs736Zjx98VQS4lyc8f1yaphWq5KZpFqr20rYikUgkkt0ghbhEInmp5LtfGoaB67oABSH7NKohbp825/a0lbxtRcYfSiQSieRFkUJcIpHsOcXdL03TLNg69oOlY7ttxbZtbNsuVMj3wzlKJBKJpDJIIS6RSPaMvbafvMoRgl62FcuysG1bdu2USCQSyTMhhbhEItk1L9L9cj+x3bbiJcgPwusgkUgkkudDCnGJRPJCFNtPLMva0+6XrytetpV8/GFelB/U10YikUgk5UghLpFInot8W/h8/OCrln7youylDWa7bcV1XVzXlbYViUQikZQghbhEInkm8vaTxcVFgsFgSYX3ZQjwVy01ZTf73G5bWVtbIxgMUlNTc2DsOxKJRCIpR5ZkJBLJU3Ech0wmQyKRIJVKcf/+fTKZDD6fT3qfn4PirqHDw8PEYjEMwyh0FX2VF6ZKJBKJ5OUgK+ISiaSMvP0k7/+uVvfL/ShOi20riqIUctZl106JRCI5eEghLpFICuStE4ZhYNt2If3kdfd/PwuVFP35ubbbVmTXTolEIjlYSCEukUhKmu/k00926n5ZnAoieXGKBfZOXTvzglxagCQSiWR/IoW4RHJA8ep++Sz2k0oJwv2yWNOLnW5ktscfOo5T6EoqbSsSiUSy/5BCXCI5YOxF90tZEd89z3KzU9y1U9pWJBKJZP8hhbhEckDILwo0DAPXdQF2tJ88DSn+do8Q4plfx51sK7Jrp0Qikbz+SCEukexjvOwne9H9slIVcVl532Knrp3StiKRSCSvL1KISyT7kL2wn+zEqyr2hFjDtf8Y1/oBjhomGP3HKIrvObavbGrKi76OXrYVy7Jk106JRCJ5DZFCXCLZR+S7XxqGUWgS8zK6X74qlWohXIT9hzj2HyLs7wMOAI4DRvK/JlDzD1GUV+8yt1evn1fXzu2C/FW9cZJIJBKJFOISyWtPsf3EsqyCXeF1tyo87diFMHHt7+GYvwruOCgtQCOwVHiObX4fkj4CNb+Momi7nnOv2cu5drKtqKpaEOWv89+CRCKR7FekEJdIXlPy3S8Nw2B0dJSGhgZqa2tfevOdago6IVxc6zdxjH8OTBcNLIHSBaIO2Cg8bJu/DakAgcj/jKLsf7vGdtuK67qMjo7S3NxMQ0ODtK1IJBLJK4a8Ikskrxmu62IYBolEgmQyiWmarKysYFlWxSqf1bCmuM4D7PR/gWP8TRS1Hth2nmIWlAYgvPWQENjWl2TS/+iVsdPA7jziz0q+KdPCwgLpdLpgWcov2n2VXg+JRCI5qMiKuETymuDV/bLY/10pYVXJinjO+5zEMX4F1/q/gFzsonDvoqhvIdwb2zaYAPUIuHGE1oPtzuM6I5D5J4BDOPLfPnWu/Uh+oa6qqoVvUWTXTolEInk1kEJcInmFyQunvP97p+6XlW47X6m5wsERzPSvgPsAZVOEF47BvQHqeXCvbT1GCw4RUAM49lVg6zgzmW+iKBFC4b+y43yV7KxZ6bmKF+zmbSumacr4Q4lEIqkiUohLJK8g+QQMwzCwbRtgz+IHd0slRL8QAp/2bYb6/zeE66CoJxDu4zIxjnsNRX0L153EVfuwnVvgLACg629j29dLnp5O/zKKUkMw9LMv9fi/ikpX37f/zWxPW5FdOyUSiaQ6SCEukbxCeNlPnqX7ZaUr4i8TITawsv8DQd8fbz3mPihYUZQib7gQOhYKQulAOF+W7Me2r6Pr72DbV0seT6W+AYQJhv5vL/U8vopXofq+U9dOaVuRSCSSyiCFuERSZby6Xz5v9bvSHvGXNZfjjGIZfx+cPy4bE+4NVO08bApuVxnCJIvrXAWCaMoQiNGSbWz7aqkYV9pB62Ut9XepV2sJBX7ipZzHV/GqNQ/avs7AcZxCF1ZpW5FIJJKXhxTiEkmV2Mvul/uhIm7b18mkfwFI4lOPg3hY9hzXuQbKORxFYDlfsuUBz+KKZVTagfmSbSzrCzT/x1juKpZ9F9wYAKvx/5Lmul8j4H//pZ7XTrwKFfHteHXtlLYViUQieXnI+EKJpMK4rks2myUej5NKpbAsC1VV8fl8L1x5fN0r4pb1h2TS/w9yGeAOljuJ43aWPU8o3WTEAo6boHghJoBgHVdRgNqtB9UhXO0YafNzENv85ZisxP+fmNa93PavWJW62nMV26Ly39oYhlFoGvW63/hJJBLJq4CsiEskFeBld798nSuUpvnvMLJ/B0oWYqZwCOPaEXx6CgBHOUPWeQxkEETR1C6EmC3ZlxBzCPUQimjAVRsw7ZuFMdsZR1cHsN3xoucnWdn4OZrrvwPUvNav407sVvTLrp0SiUTy8pAVcYnkJZL/aj+VSpFIJMhmswgh0HV9TxNQXteKeCr7L8ka34HtaSiAoixh2LW4IoilvE3WuQVkABAkcIUD1JVsI4SCQwOW0ohh3yodI40r4qhKW8njrlhhNfk/4rC4J+f0LLwOFfHt5AV5Xni7rltI9slHa0okEonk+ZBCXCJ5CRR3v0ylUgWf7ctc+Pa6NfRJG79G2vhlTHcClG7P52j6CqZ2DsO5VjbminlQWhHCt3lgXTjqEIbzJaZzE5/+jsc2KyiKH4giBKjaWWz1BBvmFVL8dRQ1tSfn9lW87pnvedtK/qasuGuntK1IJBLJsyOFuESyR+Sb76TTaZaWlvjiiy9wHAdN0/D5fC81Cu51a+iTMb5FKvs/5/ZFClPYiGJvN+CKOpJWA1n7M1StXFQDOO4winoSoZwj6y5ju1upKYZ91VOM2840mu9tLHWQhH0Pw3mcm48x6jr/Ia7I7urcnpXXrSLuRbGPXFEUZmdnefjwIaZpYtu2FOQSiUTyFUghLpHsknxFsNh+4rou6+vrFWvA8zq1uM+Y/4Fk9hslj7kihqO0I0Ru2YqgnYwI4gvkElBM5xqq9mb5zkQEAxcbDTDLhrP2dTT9zNaxq4extWPEzc/Q1Pqy5/tCT4ht/DWEsF/8BJ+B/bYwNG9bMQyDVCpVYluxbVvaViQSiWQHpBCXSF6QYvtJMpkssZ/oul6If6sEr0tFPGP+AYn0L3mO2e5jXO00Ln1kMUFZKBk3nPso6uGtB5RuDKUB07lH1rmGorzhsVcXyx5B1U4j9PMknTFMZxiArH2boO982RYp8w9YTPxPL/313A8V8e3ks8eLbSumaRZsK67ryiq5RCKRFCGFuETynDiOQyaTKfi/vewneeGzH4X4i4o6w77Ocvq/zjXl2QHLXcdQOnDFqtcollhGoRXUM2TcdRwxV7T/+5hGT9lWyXQXcWODrDVZNpa1rhHynSt5TAiFtD3MUuqfP/vJPSev42LN551re1dY27alj1wikUi2IYW4RPIMbLefZDKZp6afVFqIV5rnPS/LmWA59YuARca5jqKeKn+S0kfGXSXtXENVT3vux3XXsdVjpO0xBOnSzVUbLZBAoX3zkQhCPYcSHEeoc2SzPoTwl+0zY10noJ9BCJVs5ghC7SNh3WE+9Q9ZSX/nuc7zVaWSQjwvvIvnLvaRu65bqJJLH7lEIjnoSCEukTyF/FfryWSyYD95lrbflRbi+aYrleB5RZ3jrrGc+nlcsb75iCDrTKAovUU77SYjUrjkGvVknHGEKE1SEQJQ3yFpXyKTbccV5cfhig0cxYeinMakjkxRjrgeWMA2ejy2E7j4cMVZCI5hujOFkdnEN4gbnz7X+T4LlapS5+1RlbameJH/pkjaViQSiWQLKcQlEg/y9pN890vbtgv+72dJP8lXBV8H3/bLnEsIk5XUX8V2S20hgjSmsMh1wWwnKyxcsVY2btuRzf0oZK3TZJzrAOjBCXxaqaUk9zwQdJJVdCx3qWxcC4zhV98q/GzbjdjuaTbMO5hM41r127ZwmFz/r0hbd57pfF9VXjUbjOzaKZFIJDmkEJdINimOHyy2n2iaVhDgz4r0iOfOfSXzDzCcLz3HHbGAoxwiix9HLJdvryyRsZpwXD8byUGE/qBkPOtcR1e3klSE0FG08yScm2Ts+wR85UIdwHRvENDOo6rvYCoGJo9y27OBK/woREqPgwzjaz+PYU8903k/C5WsiMOrJ8TzFFfIFUXBtm1pW5FIJAcKKcQlBx6v7pfArprv5LepVGzbq5iasmb8OkvZ30BRB3fYSZC0SCGUDnbaneaPkci8gS884TmecR6gqYeAOhztCCnnVmEsaV3Hr5eLcVXtIOkmscmCUhp5qPqWEHYHQmxdGoUATRtgZP1/xHLXtu/uhajU76oaQvx5bljzbO/aWWxbyXftlKJcIpHsR6QQlxxYXNclm80W7CeWZaGqKj6fb9fdL6tREX+VSNt3mE//LwgM0k4WaCwZF0LB1Y5huhOknVv49PIkFddVSGUGcIO3PcdzWNjCh6V0Y2zGEhaTtO/i044Vftb1t0m5abLOKFlnFp/aWT6vNoqR6scVoCknEOph1s27JKwbPFn9r3CF8VyvxU7sx4r40zziz8p220o+bUXaViQSyX5ECnHJgWK7/SSdTuO67gvZT76KSttFXpW5bHeVmeR/A+Sa4thiGZPWksQSRXuHjHO/8HPSuk02vbV4UwhwOYsWynnLk/YdNPV42Vyq2k/SXcUWNngkooBN1l1EV/tQ9PNsWHdwRS5txREJXBRUomVbBSMGVvY8CWeErLPlb09YNxlZ/yWEeD0a1Lzq1pSnsZNtRXbtlEgk+wkpxCUHAi/7ydPiB/eCSiaZwKsRlSiEw2zyf8B2tzXjcccQ2hmEAEU7T8q5Ubqh4qIE46ibNhVVeweT+0VPcMi486hKe+ERVT1EytnAEesY7gQ+/cQOFpcQhtJBynpcNmK6c/j0HsTmpdAVGgHfu2TEOk7gDiHtZNk2q9kfMJX4R8/4inhTaY94pXhRa8rT2G5bKe7ambetSCQSyeuKFOKSfU1x98vr16+zsbFRSD/Zrf3kq3iVqtSVmmsp87+Rsi97jqXsO6D9ZyRt7wQSoSSxCKAq75Mqih3M44oENkEQITT1OClnEZdkYTxt3yG4zRPu046ScR0S1m38+lFPoZ62HxL2vQWiF9NqZ8O8gcACBIYzSlDrL9smlvpXzMW/5Xkez8J+9YjvhTXlaWyPPxweHmZ6elo2CZJIJK8tUohL9h35OLS8/STf/XJ9fR3gmeIH94JXRRxXirh1jQ3rxs5PEE0sZe+STfXu/BSlgwzmjos3TXcGRX+HuD2FS6ZsPGnfxK/mqth+/W3i1gy22MiNWfeI+N8tn1OAKXxYohl8iyVjLlkckUBXSj3urtHN4+Vf4+aTf0cqldr5nJ/CfvSIV6rSnxfkGxsbZLNZaVuRSCSvLVKIS/YN+e6XeQHuZT+p5NfYlZyv2qLfduOMJb/Bhn0PXT1Wto3r6qSNEIqWhtAamlLeil5XTxK37pJ2HhLQ3/GcW1ePsmLdxq+/scPRCdL2JH79I9bNu5uV7S02zOsEi7ZVqEPVz7Jm3iTDI1yj/LgsdwVdrUMhgE9tw6+/gemfRwkusBH+J3z+5Xe4ceMGq6urz5Gvvj8r4pVsHpSfT1VVT9uKbdvStiKRSF55pBCXvPbk7Sf57peGYXh2v6y0Z7va4vhlzlWMEIKJ1P8Hy11E4JB0l1BoK92Gk6iBnG/cJYMhFBRqCuOa0kvSngFywilu30QVpf5sXR0g4SwgMInbN/Frp8uOTQjQ9FNs2DOo2/LA86SsYfzaAD7tKCYRktajzREXW1/Dp7aVbZO1pwn7PyDhxIlb97YG1Cw1R75NsMbkxo0bXL58mVgs9kwCcL9WxPfaI/40XNctzCe7dkokktcRKcQlry357pd5+4lt22iahs/n87SfVKMivl/jC4vPa8X8PmvmHxR+dkSCeFbBdQMA+LU3MZTSZjymO49Q+hFCRaGerGuXWU0yTGIbrQBoSg9JN45LujCetCfR1e6iYwJdO8+GdRvDiaHrg4iydvbgYuAqPaTsOKa7UjqoZnAIohAqPOTT+hFaH4vG59T6z5btzxQLZBr+CV/7+F06Ozt58uQJFy9eZHx8HMuyyp5faXFcyb+Nl+0R345XBb44/hAoxB9KH7lEInkVkUJc8lqRt5/k00/y3S+fJf2k0hXxSs5XLdFvOHNMJv+XsueogVVU/Ria0kfCfuK5n7TzBE05h6O0YXl11sTAUlw0ZYi0sHBEomTcJYO5WVkXQkXXzhEvWgiatB4Q8Zcu3hRCIeB7h2XzS1StFYFWNm/WmcGvH0IIjaDvHTbsBdLONABr5g1qfGfKtklYDxhO/C36+nr56KOPOHbsGAsLC1y4cIGHDx+STqfLtqkE1bCKVFr471SBLxbk+Ztw2bVTIpG8akghLnktyH/VnLefmKbpaT95Gvu5Ig6VjarL3RAZPFz573DxXqyYtsewlQEEpue4EJBVVFzqd55HNTGVdix33XPcdOdRlEFU9U3i9t2y8XXzBmHfZhVb+PH53mDVvAVA0h6mxv+G534zzjIB/8esmLcQOCVjCesJIW2g5DFVqSNpx3m08U0URaG9vZ333nuP8+fPYxgGn332GTdv3mRtba2iFfFqebYrxdOEeJ58/KG0rUgkklcRvdoHIJE8DcdxCmkIeRFd/LXz81ANj/h+XKzpOA7JZJLPH/0HQq2xHe/mdf00S9Z1mnxvYjnlcYRB/W1W7bso+KjTBrHcsZJxIXQyZisZ9Rb1+ltknS/L9iEEmIRQlZ0vZXFrhIh2HAOXDet+ydi6eYsG/5skza3jC+oniNuLxI0rNPjOlMUtupiYIoFPacR014j432bNHCfh3GXFvEuNr5+eyJ8DoL6+njfeeIN0Os3U1BRffvklNTU5b3wl/jaqUaF+lSvweVEuhCikKzmOg6ZpaJpWsUQliUQiySMr4pJXju3dL/P2k912v9zPFfFKzBWPx7l//z6xWAyDGKL9DxF6C4oIlj03oJ5m3cpVqFetEXRlqGRcVwdYs3OLJAUWKTeFSkNhXIjcAk+CMQDW7dsEtTdK9iEE+PVzbNj3WbNuE/JYvAmgEiFLiKy95Dm+bj4gqA0hBNiZY6xaY9ibNpgNa5Sg1le2jemu4tMH0bTjLBl3scVWnvndtb/HilEa4xgOhzl27Bg/9mM/RltbbjHoF198wcTEBLZtex7XXnCQrSlPY6eundK2IpFIKo0U4pJXBq/ul8CeNd+RqSnPjxCCpaUlrl+/zs2bN/H5fLR3tEHXdxGYpN0ZFO14Se63RgNxZ35rH1gk3DQquSxuhSgZYZZEC1piDUdtBZGrbAf0c6R4WHIsG/YT/Gp/4eegfr4g9nPjE/iLFm8C6GorphJmw3qEX+/zXLwpsDGFgSLewAyOA1sn42Jguia6Ulv0mkDEd54F4zGKGmH7qy6wub7y35Oyp8vm0nWd3t5cjvrQ0BCxWIwLFy7w6NEjMpnyXPTdIq0pT2d7185i20q+a6cU5RKJ5GUihbik6riuSzabLaSfWJb1UrpfqqoqK+LPiOM4zMzMcOXKFZ48eUJzczMffPABR44cwYhcwvRttYvfsB8R0HONcoQAoXZji3jJ/iyxhqW0IIQfRe3HdMur02lnHF0/i189zZpH902BRdbNolJHQDvHqrXdMpLFEBRiC31qO4bwkXVyTXri1mNq/W+X7VdXGjCJkCWDEOWLNw13CV3tBKGhK8349FMsGncQ2KyZ92j0v1W2jeXGubb8N7DceNlYnryP/O233yaTyXDx4kVu3brFxsbGjts8L/u9Ir6X8xUv7swvCs8Lcpm2IpFIXhbSIy6pCnl/pmmahQ+64srUy6DSiycrXYHfCwzDYGZmhtnZWUKhEAMDA7S2thaqjllngfXgvy/bbsW6Q5PvTRQ0Vq3yRZMAKWeSet9HxK2L7PQrzrjr6Ep5jnceU6wQ1D9g1bwGHvsw3AWi+lE0d5WMANMtTWNZNW/R4D9NcvMY/VoXGUchu5mK4jcGIDhStt+EPUKj/yOWzTvYznDJ2LJ5mwbfceJWaQVfIcrVlV/m/eZvlHjYixdrKopCQ0MDDQ0NpNNpJicnuXr1KrW1tfT399Pa2rqr90Ol//4q7RHfbUXci2IfOeTiDx3HKTQOepnXKIlEcvCQFXFJRclXmtbX13n48KFn98uXRTUq4q/LYs1EIsGDBw+4dOkSqVSK06dPc+7cOdrb2wtCRwjB4+TfRyhZz30knTRpx3sMIKAOEjOuE9LPeY6rhMm4sGw9IKAe3mEfh5k3b28loXiQddZAO1SeEb5J3JogoHUR1A6TtLNki6rzZmCcWt8bJc8XQqHGd57p7FUi+hDlCOL2NEGtEwCf0kBQP8uCOcxs5iK31v7XHY+1mHA4zPHjx/nkk09obW3l4cOHfPbZZ0xOTr6wj/x1rlA/Cy9DiOfZbltxXZfl5WWmp6cLthWJRCLZLVKISypCvvtlIpEgmUySyWQYGxvbc/vJ05CLNUsRQrC8vMyNGze4fv06mqbx7rvvcubMGRoaGsp+J/PGH7FiXt5hXwqWCLLhJNCUpvLjE0EyroXAZcl8SEA9vm170NRDZDe7cyacdTTRWPIcn9JO3FlDYLNq3SWily/O1KjHEAEWjBvU6CfLxgEckUFTe4jbcayiRZZ5Vs1HhLVBAFRCBPXTLBh3NseeENkWXZjbZxpHuNTo50i6sGI+KoyNJH+TkcRvF53r0+MLfT4fAwMDfPTRRxw6dIjZ2VkuXLjA48ePC+smnpX97hGv1PnlbStra2vEYrGCbUU2CZJIJLtFWlMkLw0hRKGJRv4DK19h8vv9hedUSijIxZo5HMdhfn6e6elpbNumu7ub06dP4/P5dtzGdJPcTXyLoNKGLRbKxiO+N1kyc9GAfnpQRQKhbOWHB/QTrBaiA13W7SVqtXYskVvUGdbPsVxkabFEHF3pRnE3UFQHlRoMEcAWa4XnrFnjRLVeDHcKyHnDXaWRrDMLwLo1Q0TrwHBjpceqnyKWfUiD/xCmuV5mk3GxyLgJwtoRUq5Bwnq8bSyFrtRhiy0vt0YNitpOVpjYolws31z7x9T6emgNlvvJd0JVVTo7O+no6GBtbY2JiQk+/fRTOjo66Ovro66u7iv3ISvie0v+RqO4a6e0rUgkkt0ghbhkz8nHD+b93/kPy2LrSbHdoVIc9Iq4YRjMzs4yOztLIBCgr6+Ptra2ZxIyD5L/mqQzg9Da0d0QirqV8OFTWlkxt3zTSWeaRt9JTPsmigJh7TTL2/K7bZEiKzrQRYiA3ls2DpARM+iZAfyhcRS9l4w9WjLuYmAIG40aXGGhaN0k7YmiOdLY1KMSwMUAIKKfZskcReCwaj6iJfAW62Zp1CCArjZhECZtz5R50Q13lVrfILaVBMUhoh8mYSdJmDnB3hI4w4pxq2QbgcOl5W/wJ9v+GX7RAjx7Qx9FUWhsbKSxsZFUKlXwkdfV1dHf309LS8uO+9rPOeL5LPBKCvG86M6fo6ZphYKD67rYtl2IWK3kcUkkktcXKcQle4bruliWhWmahSzefPb39g/n/IeU67poWnlSxctgv7e434lkMsn09DQLCws0NDRw8uRJT+vJTqxZw4yl/xMAKWeesNuDjxEU1UUIcNUmXEqb8axaj2j1n8N2Jli3Zz33m3ZiNOin2LAmAO8bJDs0TZ3vI1asS57jWXeJWu0IqlDZsJ+UjafsORr9J0hZt6nxnWHJHEYUzbVk3KXRd5SEvVX1juonWTIncbFoDZxmbbMTZzFxa4wm32lQdBaM+9v2eYdm/0lWzW03H67BjbVf5a2av+p5Ls9CJBLhxIkTHDp0iOnpae7fv4+mafT399PV1eX5Xtqv1pRKdijN41WB394kKN/1t/jaJ6vkEolkJ6QQl+ya4u6Xz5p+kh+rdIXacZyvfuIezletxZpCCFZXV5mammJjY4P29nbOnz9PJBJ5rv0K4XIr/r9SLJTT6gw15jG0wAMi+pssWQ88t10wHtDifwvbubbDvhWSrkNQO4Lt0TUTwE31MxO6RaNviIwzWjYuBFjUoCg7i79V8wFtwU+IZb8oEcybeyBhLxJQmzHcZRTjEIvuWOF5i8ZdWgKnWDfvlWylESQtBDp47BNWzVFq9F6Sds42E9UPkXAyjKc/x3BMBB/uSpz5/X6GhoYYGBggFosxMTHB8PAwPT099Pb2EgwGN1+f/WtNKe60WymeZoXZLsiLbSv5KrkU5BKJZDtSiEteiGexnzyN/IdSJYW4qqovtYvhdiodl5iPhFxYWGB6ehrTNOnu7ubkyZMFT/7zMpH5AWvWo7LHk74JOrT3WLXLx/LU+c4wazyhQe/GcGfKxqO+N1gwcyK+zX+CtFMq6P10sR5YBBwSdoKQ2oBV5BEHqNHfZn5zH62+46Sc0ghBgBrfMSYzd2jwDZG0h8vGLZEgQDd+t4N1X3lVfdUco0brIr3pPQ+orViEWDGHUfFR59sS3HlcTEyRIai04Pf1MJ/dqo7PGdeINCvAn/F41Z4PVVXp6uqis7OT1dVVJiYmuHjxIh0dHfT39+9ra0q1hPjT1lJAefxhfp2MoigVXZwukUheD6QQlzwXxY0u8qL2eQR4MdXwbO9Xj3j+pujSpUv4/X56enpoa2vble3HcOPcT/wfO45vuC4BtZe087hszK80s2SN42CQcqMEiOKQKIwH1T4Wza3tVqwY9frWwkqNCBnhgpr7BsMUGwSVPnAToOT+7sLaCebNLeG9aseIau2Y7lZXz7A+yLI5hyNMEvYaAaUBc5uYFwIUtY2MMDyzyR1hYAkXnQhBvZN1ewVz8zjdzSZDPiWKJRIl26kEUfV25jP3yvabar7KeOoCgzU/tuPr+zwoikJTUxNNTU0kk0kmJye5fPky4XC40B2yEuKvksL/VbGm7ET+uLbbVvL+cWlbkUgkIOMLJc+I4zhkMhni8TipVArbtnf9lWulc733Y2pKKpXi0aNHPHjwANd1OXHiBO+88w6dnZ279t7fj/8rTOHdGVK3elmyhlmylvGrHSVjQoCiNONspodk3GVQu0HkLjeqCJARLoItm5AtsqRdPyphhABd7ccQqyX7jduThcjCoNrLsjlHcTt6W2SwRBBVBDaf0826tY4jcgs1DXcDVW2Gou6ZQkCt/23msvdZFyPoxqDn+aadRaL+N1kyZjHd0sjDjLNCQOsonB/kvg1YthLEsvdpDpbHLAJ8vvL3WTbKK/C7paamhpMnT/LJJ59QU1NDJpPhRz/6EdPT0y/VmpX/W69UhTp/7XhVhXgx27t2Oo4ju3ZKJBJACnHJU8jbT9LpNIlEgkwmU7IAc7cfuPu5wU5+vpfxAZv3f9++fZtr164hhODYsWP4fD6ampr2RJgsm2PMmnN4Hr7rI00uNcUSGVKuH42awnCt7yxrdunizXV7nNBmo5yg7wTpzbbzxaSdRTR1iKj+Fmt2eXdLgCXrATXaORKOjbOZhFJM0onh14/iV1pIuTaWSJUehzVBnf8MUCrC86T0OWq03pJthIB6/1uMZ27QFDzleVxr1iiNgTMowkeN701msk9wRC6+MZa9R5O/PNPcESaXV75JylotG9sL/H4/ra2t1NXVMTAwwOTkJJ9++inDw8MYRvlrt1sqXaHOi+LXQYjnyQvyfCU8/01W/htGKcglkoOHFOKSMvJfoaZSKRKJRKGJyF77G/d7RXyv53Ndl1gsxtWrV7l//z7RaJT333+f48ePEw6H92wuIQRX1v81C+YIEf3tsnG/OIylbVXKU84SQu0FoeFTmlixxj33u2g+IKp/jSXTe3EngOUKMu5T/OxCY82x0ZTojk9Zt2bQtKNk3TXP8QXjHnW+U2UiHEAoDmnXQldyNxZCQH3gLWY3nzeXvU+9z7vr57o1R9T/NrFsuU99yRglqvdszSOg0X+WOWOKHyz+PRxh7XzOuyBvFenu7ubDDz/kzJkzbGxs8Omnn3Lv3j0SicRX7+QZqXSFutL+d9i73PLtXTuLLX/5NTdSlEskBwPpEZcU2N58Byip3uw11bCKvI4VccuymJ2dZWZmBl3X6enpob29vcR6spe/n8nsVeY3o/dmjMf0Bt4g6dwCIKi2s+pMlG2zak3Qqp8GsthirGwcwKfUMm1OUq8NknLKn6NTw4aTIOtO0+k/RsIpXwhao58hZj4kpDbgI4rNNiEpNHSti+nsXVr9gyRs72MxRA1pu7wqD5B2lmnyH8I2h6kNnNom1gXr9hJBtYmsu1J0XH1s2BnixmNq9HaS9nzJPp1NL7lfiSIEGJk6ZkTu/OaNh3y2/M/5uPkX9/x9VixWFUWhubmZ5uZmEolEwUfe2NhIf3//rr9NqYY1pdJZ3S9jzu1pK5ZlYdt2oUGQTFuRSPY3UogfcPJ+xWw2i2VZhQ/uSqzs3+8V8d0K/3Q6zfT0NLFYjLq6Oo4dO/ZUsbQX5+YIi6vr/6bksWljjO7AEZL2E1zqEIp3pdlCR1Vqdzg28Gs9rFsjrCOIbFs0KQT49V7iVs6SsmgtUKe2YbLVxTOqn2LOyFWbM+4aYd8Alj2MoriFfdT6TrKw2V5+w04QVOowizpgAtT732A6e5+o3opGEIfyTpgrxjjtoQ+YzX5RNma6SUK+HhRnA6HY1PtPMm9MFawoLgo6Qext+007q3QE32YhO44RXCoZe5D4Ac2BQU7V/lnP1+9F2alqHI1GOXXqFIcPH2Zqaorbt28TCATo7++ns7PzhcRmtawpleRlzrk9bSUffyiEwOfzvdCCeIlE8uojrSkHlHzlJW8/uXLlCisrK+i6XrELvvSIlyOEYG1tjTt37nD16lUcx+Htt9/mzTffpLm5ecffy15V3+8nf5e4U1rNFbjMm2vU+86zVtS5shidMMv2PDPGMDVauXWj3neCxU2RnXXjOEojitiKgav3n2bZ2vKF2yJD1vWDk7OphNRuFozSiMAVa5z6Tb93bo6zBRGem2cDVWvbtojyFNPZ3HMS9iI1/qFyH7zQiPqPM5a+ScMONpQNa5o6/3Ea/G8ymx0piPDcfheoC/RTvFshoMn/BqPp+0S1bs99/mj5XzCXuec59qJ8lX0jEAhw+PBhPvnkE/r6+hgfH+fChQuMjo5imuaO23khrSl7w3bbytWrV5meni6xrUgkkv2DFOIHDNd1MQyDRCJBMpksidOqdJRWNXLEX9XUFNd1mZ+f59q1a9y9e5dIJML777/PiRMniEZ39kO/yFw7kXE2uBX/jvfxCZdFOxfT50VEH8JwkwgEi9YqAbWtMOZT6li2SsX9uj1L2HccISCkdrBolFtIUmIJK9uBKsKkXHAoF4Yx4wG1+jFq9WPEzHJv9qo5QX3gLAC1vqPMGqX+9QXjCc3Bs4WfhasS9R9nwRgGBGvWMkG1sWy/QoApAhiu9/tl0XhCezB3k6ATpM5/kunsQ0AQsx7jz3SUbePi8IOFv0fC8rbMvAjPKlY1TaOnp4c/8Sf+BKdPn2Z1dZULFy5w//59ksnkV26fnwtkRXwvyb+vNU0r8ZHn7YPSRy6RvP5Ia8oBQAhR5v/ebj/RNK2iXSehOtaUV034W5bF3NwcMzMzqKpKT08PHR0dzx09uBdC/Eb81zFF2nOswX+YGeMRTb5uFCeDULcaI0W1fmJFmeCmyJB2W/ATxhZp/Fo36055Csq8+YQu3xuk3FUcvBcrZgILNPjeIWZc3fG4M46Lw86Nmuay9+kJvsOM8bgkMnFr/BEt/gHi5iSa3ccCW01/DDdJWOtBEXHEZn45QqXOf4qZ7CM0xUeD3kVis9lPMbHsA9r9Z1m1V5g3Ss8/7V+lQesg4cQKjylCJ6z38Vvz/z/+QtffwacGdjynZ+V5q8aKotDS0kJLSwvxeJyJiQkuXbpEU1MT/f39NDY2PtUaVcmb+YMgxCEXHZv3int17cx7yaVtRSJ5PZFCfB/zPN0vKy1SqzFnpTtdPm2+dDrNzMwMsViMaDTKkSNHnmo9eZa5dsOyOcNo+pLnWEhtJGbk2suvWDM0MYQlHqMogFDJuOXiNuEs0eLrp15VmDO9owgBMsKHokR2HNczvYyKO3T6D7Pu0RVTJ0zCNVEVHY2AZ6RhSGtmzlwioNZhe8QmClwSdoqgOMaqPlo2vmZN0xk8yYp5G1X4CPmOMJfN5X87wsIQwtMTXucbZMFaB49EFKHaWAh8hLDIENZacKkp2Gb+YOlf8Gda/8s9EVcvuo/a2lrOnDnDkSNHmJqa4tatWwSDQfr7++no6CgTpJXsqgm569tBEuJAyY1OvsDiui62bRciZSt9fBKJZHfId+w+JG8/SSaTJJNJDMP4yvbKmqbteyFebU+6EIL19XXu3LnDF198gWVZvPnmm7z11lu0tLTsSsTs9ibj4tp/wKETRZTfmwe01pKK9QpT6OYhABp8p4g7C2XbAGzYy2TdnW01tXo/M+YTlq01gmpz2XhIaScZWAIEy9Zy2XOEUAhovSSdFeL2AhH9cJnfWyeELcIk7GUcEUCjPBpRCAjpPaSF5Z2bDsxlH9DkO01AH2LBKBXrCXuJqG+gZNsm/ynmsjHi9hJ+rR5FlH/DkbCXiPp7adSPsWEbrFpbVfUHiQvc3Pi+98E8B3vhow4Ggxw5coRPPvmEnp4eRkdH+fTTT8t85JX2bFda+OfnrIb49/qGrDiTPB85m7etyPhDieT1QVbE9xGO4zzVfvI0VFXd99aUai3WdF2XpaUlpqamyGQydHZ2cuTIEYLB4J7O96IfvLPZYUYyNwDoDhwnZd8l/ydTp/cz71HRXtVn6dffZN4qr1LniWq9TBkP6QmcZM0uzevW8JN0DEBgiDQW7WgkChVtFT+G0BCbiSimSOPQjkocd9Mr3ug/w6yxtThz3hymO3CaVevu5guiEvT1s2jm/Ocb9jydgaMsm/cofku0BM4ytZn93WAPkPGV56DrBEk4AktkPM913hihJ3iGBeMOzYE3mMxsHdeyOU138DgLxraFmELFJYxQwBLlyS0/XP7XNPv76A17NxF6FvZSHGuaRm9vLz09PSwtLTExMcHY2BhdXV309fVVvEJ9UKwpXzXn9vjDYtvKbjofSySSyiAr4q8529NP8t0vnzf95CBYUyq9WNN1XTKZDJcvX2Z0dJT29nY++OADDh06tOcivPjr6udBCMGna79e+HnGGKNuswOmEAqG2Nl7veGoRNTyRYcADfoAc2ZOpM8aE9Rq/SXjtb6jJJ2tHO51e55QUUW71neUpLtcOp89T41+JNdkRz9aIsLzzBqjRPW+XMOcwOmCCM8zZzymNbDVcr7Zf6YgwgHW9Gka/aVJKRp+Ano3C+Y4jtA8q+oAs9kRWgLvlYjwPDPZh7QFjhV+Vh0/Uf8hJjOPmMo+psU/WLaNwOV783+fuLVUNvasvIwqtaIotLa28s477/DOO+9gWRY/+tGPePjwYUEMVoJqVMTzAvdVnDNfIc8L7/y6INm1UyJ5tZFC/DUl/1Vk3n5imuZX2k+eRrWE+OuU6/2sZDIZhoeHC1/dHz58mPfff5+enh50/eV8CfWiQnw0c4sZ40nJYxPZYer007QEjrO+rTFNnqDZzqwxyrKVKUsVUYWPlLNVOXZxWLWTBNUGAOr0QWaNx2wnZo7Q6D9Dg+84c9uOKc+8OUyz722WLG87jMAhbmdoCbzNTLZcEAPMZUeo03to8p9gyuM5K9Yioc1z0vAT1PtYMnPRiRv2Ao2B8shDVejU+g8xa0wRUL3tOPPGFLVaGxG1DdOJsGBMFI56xVoiopWns1iuye8vfQvLfb4owTwv+/1VV1fH2bNn+fjjjwkGg9i2zeXLl5mbm3vp77VKV+DzNxnVmPN5Fm/nK+TStiKRvB5IIf6a4TgOmUyGeDxOKpXCtu09+QpSVsR3z8bGBnfv3uXKlSsYhkFvby81NTW0tra+9MrdiwhxV7hcXPv3nmOzRoysu8NNg1DJbKaPZNwkhluLxlaFv8l/lERRtRsg6yZxRD1+aonbqR2PadlaJuv4dhxXhMaykySste74nIDayJptlOSHF+Nio9DEoukdE2i4KVS1Fl0ECen9LJmTJeNz2Sd0BE8UftbwE/EPMpcdJe1sENFaEKL8920Lg4DWScK2MfXS18Bw02hKBLXILRjVO3CVZu4mvuB3Fv7VC/3tVko4BoNBenp6CAQCdHV1MTw8zMWLFxkfH8eyvBNxdkulbSKV7hwKlHQ4fhGKq+T55m35PHIZfyiRvBpIIf4akPf9pdPpEvuJpmkFAb5bDkJ84ctITXFdl8XFRb788stCqsR7773HqVOnqKmpqdj5vYgQf5D6nGWrPHYPoMk3wEQmRlTrKhur4xAZLV74ed1eJKAOgFCpUduZM7xTUtbsGBH9NEnHuzOnEKApTcTMRcIeizcBGv3HWbHmWLeTBDy6eIbUBlbtdRbMSVqD3t7qqNbBrDFDROvYcXHmqhmjIfgWi+aE5/hcdpQ6vQtdCRHUe4qq27BgTtIZOlm2TVvgBKPpx0S0Vs95V6w5WgM5e06L/wSLZpINO2fPuRW/yLX1P/Q+2KdQSaGVvyb19fXx0Ucfcfz4cRYXF7lw4QIPHz4knfaOxtzNfJW0puSvj88bLbob8teP3c5ZXCFXFKWQpiVtKxJJ9ZFC/BUm/5Vi3v+dzeYWdL2o/eRpVKMiXo2GPnv1taxt20xPT3PlyhVGRkZobW3lww8/5PDhw4RCIaCycYnP+7dguyafrf2G51hIrWPGGMcSJsuWU2I98Ss1LLvldpWYOUmtdhKUEK5HVjdAvd7H4/RdWnynPcdb/SdZMKcwRAZThNFEqRe7UT/M9KZlJeMm0NTmkjQSVfgQ1JJ1c9Xmicwjmv1HSvYRUGpJuwJTZIgZY3QEy49FCGjwH+Nx6jat/qOex+pg46ATULtZMqfLxqcyD2nxDxX21xY4zXh6BIFg3pqgxii/wQGYyYzSHXqPscwY9rbYw99d/LdMpcstPU+jkmK12LOtKAptbW28++67nD9/HsMw+Oyzz7h58yZra943Yi8yX6UXh8LrVRHfzvauncVNgmTXTomkOkgh/griui7ZbJZEIkEqlcKyrIL95GU1bjgI1pQX9VEXk81mGRkZ4fPPP2dhYYGhoSHee+89ent7y/zflc4th2c/t9uJy8TtVc+xWr2jIALTToKsU4tG7uYiqvVjeWR1A1hCA+o8x3K+8ZzPeSI7TKNeuiAyorYyY2xZQNbsRYLqYKFyHFTrWdq2aHHZmqHRfxzIid06/2FW7VjJc+aNeSJarrqu4kPXmkk4W+c9lXlMk2+g8LMQ0Bo4w0x2ZHP7OWq0lrLz8Skh0q4PoQR3rqpbS0TURloCJxnfJqA3fIs0+kpb3fuVCFFfP49T92nyeXfe/PW5XyFhP7uQraQQ32mu+vp63njjDT766CNCoRDXr1/n8uXLzM/P7+r9Xy0hXumIxpeVerLdRy67dkok1UEK8VeEYvvJkydPiMfjhUYOlYigOghCPP+h/SIfMPF4nHv37nH58mUymQxvvPEGb7/9Nm1tbTuKgWpUxJ9lPsPN8nsrv0OLv7waXKe1Mp0tzcles5fwKX3UaT1M72A78RNi0VpgPDNBvT5QNt7kP8KGveUbjxmL1KhtuR+EgiCCs60CPG9PoGd6QCioSiOGR9fPaeMJTb6j1HGIWY9jM0WWtKGjuH7q/UdYMmdKxgWCdTtOUM3ZXGqsQSYzj0u2dwmisuVb1wmiqR0smzFmsmN0edhQAEzXIKIPMp0eKxsTikvKzuLfbGZUq7UhiDJvTOMIG8M1CCrhsu2Szjq/GfuX2E9JsymZp8JC/GnCOBQKcezYMT755BM6Ojp49OgRFy9eZGJiAtt+tvPZPt9+EcVfNefLZHvaim3bzM/Ps7S0JG0rEkkFkEK8ymyPH8xXXPOd0ip10T8oHnHgmecUQrC0tMT169e5efMmfr+f9957j9OnT1NXV/eVv5tXVYhfWb9Aykkwkh6lxVcqInU1iqB8H3PGNArdO+6/0d9Pxk0hcFkw44TVrSpyVGtnOlsqRi1hkHZ0fIRp8Z9i2Zrz3O+6f5lW/zmWrRnPcYDFeII1M7HjeEpdRUn2Mp3xzjxPO3ECagu17iGWtHLP/Ko1X7C46ATxa90smVvHO5EepcHXU7KNhp+oPsBw+j5dIW97S9JZo1bvoNk3xJqdYaPoG4q4vUa9r62s2t7k62IiPcPvzH9rx/Mt5lWoiG9H13X6+/v56KOPOHbsGLFYjB/+8Ic8evSITMY7p92LalTEq9lV82VTbFuZnZ1leXlZ2lYkkgoghXiVyHe/TCQShfjBYvtJpasQsiK+heM4zMzMcOXKFZ48eUJzczMffPABR44cKfi/n3W+V02IZ50MF9d+v/DzcHqcZj0nMpv0XuaMSc/tOgJDPEo/oM1fvgCyTmtnKrtVjc66aTJuAJ0QQig4IujpG487K9RoR5jJljfQyeM36xnNzhBWy6P9IJfHbfrA9QfR8c5mb/EfZjE0T70or9TncfFjuoEdx6eyT2jznyCg97Cwraru4pC0s/g3K9g+AoT1bmKbr+V45jHtgUOe+xUEcYliuOUNfeaMCfrCxws/dwaOETNWSTpxLq39EdfXP9/xeIuphkf8WVBVlfb2dt5//33OnTtHJpPh4sWL3Lp1i/X19Wea7yAI8Wq0rM/fAEjbikTy8pGdNStIvsviV3W/PAjV6WrM+VUVccMwmJmZYXZ2llAoxMDAAK2trbuKDnvVUlM+X/8jMm6pxWM8E6M32I8pvP/mFKGxbudSUkYyI/Tqg6wztjkfoATKqujr9god/h4aNB+T2R26bwqFFTtFk+8Ii9b9smFN+MkqAsNNE9baUEUCV9myrwgBdYEBZo1xsKEr0M+q9aSka2ZUayVm5DLHF1mgVe9kwy6tvtfqHcxml7CEQYvTQVIv9ZnnX4OEo2O4Sc9TSTjrdAYGSFjT+LU2FoxSsb5oxojqTSQ27TlCQGfwFMPpYRQUeoJ9LJjlN0GT6cd0BgZACTGaLn0d/2Ps1+gI9tAZ7PU8ptw8r15F3IuGhgYaGhpIp9NMTk5y7do1amtr6e/v3zH+U3byfHk4jlP4RlZ27ZRIXi6yIl4B8hWF7fGDO3W/PAjt5vNzVrqhj5ddJJFIcP/+fS5fvkwqleL06dOcO3eO9vb2XX0IVnqx5ld9IKadFD/yiMBzcLBEFNP1PtbOwCE2ihYIztgLBMzcAsiOwBEWTe8IxA17g4yzcwfR9uBxlq0FxrIjtPrK7RsNvgEMPXfTsGItoGRKY//aAydyInyTWWOC9sCW1cZHAFP4MDerzY6wSTsCn7J1TLoTYjmdxRK5BajrSpKI1lByHLkunUeZyo5hCQ19h86ay+Y8Tf5TJbaVPIabRVVCqGgIAWGzh+FNYS0QLFsbhD0aAfmUIIYIsmiUd9e0hMm/mf4npJ2dc9lfJY/4sxAOhzl+/DiffPIJra2tPHz4kIsXLzI5OVnmIz8IFXHXdSsal1g8b/G55n3k+aLR9q6d0rYikbw4Uoi/RPL2k3z3S8Mwnqn7paZpFb+wHbQqvBCC5eVlbty4wfXr19F1nXfeeYczZ87Q0NCwJ+KlGkL8afP9aO0PPC0QCIU1O8GqJYiopSLUr4SY2yYsXRzWsajV2lkyd26/HtHaGcmM0Oo7XjZWozUzmZ0o/DxpzFCndxZ+bvENMm2WWlY2Aiu0BXKNdGq1TqYyE2xnIjNCo96PEBD1DbC2LWllw14hujmu4cfnb8fUtnzJlmKgUFuIRRQC2oOnmMzkFrCuWku0BAbZ/jL7lCABtYXHqYe0+Ev94nmWzRjtgSPUq4dY0kubCaWdJEGtCYoaAUW1JlAamMiM49dqUEW5IFu1lvj27D/HFd7vo2rFF+4Wn8/HwMAAH330EUeOHGF2dpYLFy7w+PHjQozrQRDi1bameCG7dkoke4sU4i+BfPfLfPxgvvulz+d7pq/yDlJFvBqVlIWFBb744gsePXpEY2MjH374IUePHiUcLk+p2A2vUnxh0k5waf2HnmPdwUOsWqsknQQZN1LwOgM0+/rIuuUL6CzVQFe6sXews7T4+pnaFNpjmSmaipJUhABVieIUJX84wmbDtggoUXwiRCzjLfDHMxM0+4bIuC4O5UkbAsGKFaczeJaZbHlaCcBMdoyO4ClqfUMsmeU2lCUrRo2TE9MdwVNllpCJzAjdwWOFn334CWntLJoxXFw27DSBzTSUYlR0Eg7YO3T8jBkzdIdyNy1Nvh42HMGqlbOyLBgxusOHPbdbNdf4g6Xf9Rx7XawpO6GqKh0dHbz//vu89dZbpFIpPv30U27fvo1hGPteiFerIv4si0SL01Yg11tB+sglkudHesT3iLx/zjTNwgrzvI/ueT+cDkp1upIe6rz/23EcFhYW6O/vf2r04F5QDevNTvN9tvaHmKI8/1sVGkvWVlrHqrVKR6ADVUwS0WqZ3GEhZcCp4UlqlLZAJ5Y7jlC2/l4VoRG3tyrvLi4xc4MGvZmUu0xH4BhjHiI56cQRVh1BxYfl8xbiAhfLrcN0N7xfBKBGa2LZzKIIreS4isk6fgyxc9LKojpHY7KfEcfb3z6VnaTJ10bSXiWidxEr8oQn7A26g30sGqMFv7qGj6ivn6nsJD78BN0aslq533w0/YSj4Td5lH5SFlE4mh5mIHSokHEO0B08ylh6iqnMd+kO9XIyWhpJ+bpZU3ZCURQaGxtpbGwklUoxOTlJLBYjnU4TiURoaWl56ecpK+LebLf8OY5T+HbkZfa+kOTIZrOYplntw9hz/H4/weDO1sb9hBTiu6R4RXnew/iiAjxPNawp+7UinkwmmZqaYnFxkYaGBnw+H8ePH6e+vv6lzguvjjUlbif4YuMRQbWG7LbFhl3BIUYypaI4ZsToCx7Cr9i4xPFCs6M4+gpzxhyDoaOsWA8KorMjcITRTGkWedbNkHWbiGqtzBjennKAcKABXQ+A5S3E2/1DDGeGafN3oIhUmdAOqbUsm3HSboqh8DHmjPJFoO2BwzxJDxPVaj1fE4A2/wDzYpWwqCWtlL8GtrBwhE69PsC0UX6zMpOdZCh8gpnsA3QCRHzdzGSnALAwCYhaNDScbWky3cFjPElPE9ZqiNvrZfudzc7SoLewZi3THTrOcGpLlP+b6V/lvz30N2n2Nxcee90r4l5EIhFOnDhBKpVC0zTu37+Ppmn09/fT1dX10irIsiL+dPK/+3zqV962kq+aFy/+lOwN2WyWgb4a5hcrW7irBO3t7YyPjx8IMS6F+AviOE4h/aS49fFeXKirYU3JXzwr+WHzsoS4EILV1VWmpqbY2Nigvb2d8+fPE4lEuHTpUkUjBfMfSJX48NlJiP/RyqfMm0u0+ZvxKTaWyFWrdXRi5oLnvtKOBVoEIWD7oTeonczpy4WfxzITHAmfZNG6T0RrYHJTcG5nzV6h0XcK070DHi9HSKlhyVkjY6U5FD7KvFnajTKs1jG3uWhxwYwxGDrCovlw6wlCIaA0sermhP5oepjB8BFixpPCU+r1diYz8wAknDjdvh6yTgoUUfScNuaMZQw3S9TfjmqlcLdX1oWCqtTioHq+RgDj6RF6QgOkHIXZbGmKSlKLMxg6xPRm8yAhoDd0giebwrpW70ARibIbDVOYKEqQVv/hEhEOkHbS/OrkP+OvD/13+FX/5n4rdyO4lx7xZ6WlpYU33niD+fl5xsfHGR4epqenh97e3j3/AJcV8Wdne9qK4ziFfWqaJtNW9gjTNJlfdBi/3kdtdP84jeMJl4G3JzFNUwpxSSn5C0qxAPeKH9wt1aqIQ2U/bPZaiOdtJ9PT05imSXd3NydPnsTv30q5qGTlvzhSsFJCfDtJO8WFtVze9IK5TFegE1dM42DRERxiJD1ato0QIPDxJD3BscgJ5s0HRYMKhsfL9yQ9zuHwkVwCiPDOIm/3D3Av9ZgOt4ekv1ysR/UOVjd95ePpKTr9nay5c4Vj8quNZIsa+4xlxhgKHWHBzAntzsBxRjOl4nQ6M0eTv5UNexG/EiLpKlhi62vcmew0h8PHmTVy5+hzQ6Qct7CoddGcZyh8hJnsluAXAiLZdibd3LEeCh9hOrsl9vNo+Mi6EdYs728AxtIjDIQOMZ0ZoadIhAPMGzEOhQ8xkS29GYloUdKOQlTXPW8AZrLTfGfu3/EXu36uIIT2gzXlafOpqkpnZycdHR2srq4yMTHBxYsXaW9vp7+/n9ra2j2ZrxqiuBoV8XxBZi/m3W5bsW27sGZK2lb2jkhN7t9+wTlgywv2zy3USyT/FVtx90tgx/jB3VItjzg8e9fJvZpzLyp2pmkyNjbGpUuXmJ6epqenhw8++ICBgYESEb6Xcz4Lz9Ptcq/m2z7XH69exHC3vOGzxjwRbYAAIWay3t0sOwM9zBq5sUepCdp8R4rGDrPiLHtul7I10o53q3JN+JhP5xYextRF2nylCw87/EMlKSoODqt2Bt3OVUO6AseYM8q7a05m56jX22nx9TOWKb+psISJ6er4CBDRu1kv8sPnGUmP0OrvRxU6uFE2tllCRtPDdBU15OkJnWDFv/UajKcnqddaSrbR8FHj62IsPU69r70sZSXPXDZGb+h0WXU7f1w9wcHCzw2+Viw3wKK5yGh6jIGId5OgK2uXuLJ2Gdif1pQ8XhF7TU1NvP3223zwwQdomsaVK1e4du0aS0tLu34fVvpGA6oj/vOfPXs5b3HXzvw1WHbt3DtcxL77d5CQFfGnsL35DlD4Su1lfuCoqoplWV/9xD2eE6ojxF+0Cp9KpZiammJhYYH6+npOnDhBY2PjU383lfRtP2snz72keK6Uk+aPVz8re85EdoYzkZOMZG6VVVSFgLRbKqZH0jEGwn1sWDEWTG8RrgiVDSeD4Wap0xpJuqWCN2w2s+grEq+ZOXpCPaxY0wSUMAtmuUBOuSlqrCgNwUbGPaIKIefVNtwAGWGUNRXKs2otcyTyJg+S5ecLuaSVRWOdereXOWXacx+zxjx1WhNRXwvDqdIFnA4O8YyJquu4qo2KTr2/j6lMbl9TmSkOR44ymSmtbitCpcHfx6KRQEP3TIGJZReo1RsIqTXMG+tki+Inx9NTtPrbWNpmL+oJHubfzPwG7cGu3DyvYXzhs/A04V9TU8PJkyc5fPgw09PT3L17F5/PR39/P52dnS9U7a2WR1zXK/sxnf8MeFmV+O22FcuysG1b2lZ2gYvLfrqV2V9n89XIivg28ukn6XSasbExpqenC962SnUSq4Y1JR9FVclK/IsI1bz/+9atW1y7dg2Ac+fO8cYbb9DU1PRM0ZCvWrfLvZyveK4frn5WItzyBJUg95KTdPiPl1Vqe4ODLG7LBndwmMnG6QgcI+l4d5bsDQ2xaq2SctIYbhBdbLWLjyqNLPtKhbaDw6KRIqLWU693k9phv0ktiU9p3zEmUQgQIoiq1JVkcBfTHhjkRvw+faHypkF5mv29xIUNrvc+DDdLVO9iPOXtf8/oKeqUToSrELBaCyI8z2hqnFZ/19YDrkJr4BCj6QkWzEW6QoN4kXWzNOo9xLJrZb9LW9ikXYvgZoOinM/8OI9SkxiuwTfHf5W0mzkwFXEv/H4/Q0NDfPLJJwwMDDA5OcmFCxcYHh7GMMpThJ5GtarTlbamvIyKuBfF8YeKomBZFnfu3ClE/sr4w2fHEWLf/TtISCG+Sf7OvNh+srGxQTwefyn2k6dRjcWa+XkrXRGHZ6vCu65LLBbj6tWr3L9/n9raWj744AOOHz9OTc2zm+Nexbbzezlffq6Mk+WPVy56Pq8z0EPWNXiYmqQrsNVsRxEqK5Z3pJ+u+BlNbxBR68rGQmqEqSKby4q9imo1gcgtZNS0Gs8KR9pNE9Z6mMnunKISNVq5n3xCT/CI53hP8CjTxixT2Rk6g+VCu0ZrYDabs8QMpyZKxfAmXYFBHqdGWHKXaRTdnvO0+Lt4kJykIzi047HOuzH6Qm+yrK6Ujbm4JGyDgBJCERphu4Ox9JaXfjg1Ro+HGO8NHeZOYoTOYJ/nnOvWOk2BDjSh0xk8wsPklj1nxVrlj7TPKvYl76vccl5VVbq7u/nwww85e/YsGxsbfPrpp9y9e5dEYucYyxedb6+o1gLRSnq38xVyRVGYmprCcRxpW3lOqm0jkdaU3XHghXi++2UikSCZTBbilvL+72oI4mp4xKHyQjx/oX/anKZpMj4+zqVLl5icnKS7u5sPPviAwcHBMv/3s1ANj3glhX/+3C6s/oi0RyOeoBJkPLMlfO8nJ+n05wRsT2iQtaJW9sU06G2sWOvYIoqPQMlYvdpG1i2tLi6rq7QGjtAdPEzMo2kOgA8fM9lV6n19nh7qRr2NJd86AMOpaVp83WXjxWL2SXqMNn9/4WcVDUWJktl8HVxc1i2DkLrVbKfR18pUdsvaMcs8nYFSQVyrNbJkZLCFzZPUGN0eYlwI6Aoe435yjEZfS9k4wIa9TpOvm1q6WPIQ69OZBer1xsLPvaFjPExOIhA8To3Rt0PVfN5YpDd8ipH0RNnYlDrLxcwlz+32mkpXxF9kPkVRaG5u5ty5c7z//vsoisLly5f58ssvWV5efuq14aDEF1ajCp+fF3JdVfPXsrwgl02Cno6LwNlH/6QQPyBs736Zv/gUd7+sliCuhjUFqlMR36lCnUqlePz4MZcuXWJ9fZ3jx4/z7rvv7joneL9XxAGyjsHV+A3P53QGejDc0uYPD5IzdPoPEzO8/d+NehMj6ZwlY9FcIUA7uLlLR41Tx4ThbdeYyS5guTtHT7UHBtiw44xnpukOHi8ZU9HJOgpiM1bQxWXZTBPRcgkYuUQSpSyHe9ZYJarlxGx78AgxY75kfMPeoEZv24w6DJF2wNz2esxll4lq9QAElBCWCJJyUoXxqcwidVpjyTZ9oeM8SY1hCQvb1dC9lt+4CusZE0V430AargFKEFXomyK8NN89J9QbSh6LanXoNHAnPkxnoNNzvz9Mf8a9+EPPsb2k0h7x3QrjaDTKqVOn+Pjjj6mvr+fOnTt8/vnnzMzMeF4jqiWKD4IdBnKJKnm7ilfXzuL1WlKQS/YTB0qIb7efZDIZhBA7pp9UszJ9UCrxxcJYCMHa2hq3b9/m2rVrOI7D22+/zZtvvvlM/u9nodLdLitdgRdC8EcrX7KcFUS1UstOSA2VVMPzCASGE6Rmm7jM41drSxZCzlqLBLKtuC6oatAzExyg1de9WXEfKBtr9rUzXFTBfZQap8O/VWnuCgyxYpf6ypNOClXUo6LT7h9gxSqvKmfdLDYhuoJHeJIqT1EBmMpM0xM8Sq2vgzWr/BuAjJtBU6Lo+IloHSybpfPkBHMYdVNs9wRLRfOSuUxncFv1Wii0+fuJuYtM2XNE7ajnsc1nFxmKnCkT4blzM1CVENrmvI2+FgzHz6K5govLhpUmXFTtL0wNfH/xj1k2vb/t2CteZWvK0wgEAhw6dIiPP/6Yvr4+xsfHuXDhAiMjIyUdC2VFvDLzFl/n84I8/3g+QCHfQE/aVnJU20YirSm740Ckpriui2VZmKZZWASSX3z5NHEnK+KVmdO2bebn55mamiKbzdLV1cWxY8cIBAJfvYPnpJIV8fx8lRT+pmvxO4ufsWYlaFfqiWguKScNQIe/m0ep8i6QfsXHZHYBW9j0BDtYtresJO3+TiYy5bGBi74Nzobe4HHmnudxNPvaGE7nbBXj6WU6g+2s2JvVaaFguirbU07GM4t0BNrRUEpEejHz5gLHwyd5lN7q5Fn2Gjg2hhrcsdEOgCV8OO7OyURz2XlORc9yN3HX+ziMRY5EDiOExeNk+bEOp8Y4HBliKjuKENATOszw5msvFIGhuGiuhqNuXV+EgIHwUb7ceMihSD8THkkxuXkHyTgpFowUaWfLfrRhJ+gLdZHOpgsNioSAXt8AtzZG+Mej/5r/6ehfxae+nMt+NawpeymMNU2jp6eH7u5ulpeXmZiYYGxsjM7OTvr7+w9MQ59XtYnQ9rQV0zQL31wf9K6d+22B4346l2dhX1fE5+bmmJ+fL9hP8o0Eiu0nT6OaQvwgeMQty0IIwZ07dxgfH6ezs5MPP/yQoaGhlyLCofIV8UoKcUVRuJp6yNrmgst5Yx2cekJqcMdqOEBvqJeUk8FwLWKGQb3eBOREnLHDn6HiqoxkFukJHC4byyWZ+ApC2xQWq5ZNRI1uzneIBbO8hb0lLJK2gi0CZSI9T0gNM5yep2+HxZuKUFGVMI9SowyEd1rgOcDD5CjzxgZR3bvZy2D4KNc3HtAbKq/m50naBobj2/FYJzMx6rVG+kJHCyI8T1rN0BnqKXjjhYBufYBHm5Xwmcwi9Xq9537Tto1KtESEb805y+F8vrhQaLbbGd7MXx9NT/F/zvz2juezW6phTXkZ8ymKQktLC+fPn+f9999HCMGlS5dYXV0tfItaKapREa/GnEAhwvCr8LKtHHQfubsP/x0k9rUQ/8t/+S/zrW99q8R+8jx3+gfNmlIpIZ5Op3n8+DGff/45Qgh6enp477336O7ufukfANWoiFdqPqHAHyWulzw2a6zho5kOf3eZNxxyizfH0lsV8JSTYd3UCCtRWmgj5iGYAZrsBtas+Ka/vDTRoy80yKxRmm0dt5Mo1FOvNzGe3jklpV5vxnB1FFH+PhUCGvR2kk6KJ6lpWn3lnuje0CFixiIAw6kp2vylz6nXG5jJLG+ea5qAUl82V1egl0fJnHCeySx4CuJGXzMxY4OprPc45LznDf5eRnaIPBzPTnEocgghoEPtY9Tc+uYh6xr41TDqtmPrDfYznllkMjNPo8973kfJcfpCfXQFB5jdtij0D5Z+xOer1z232y2vYnzhbolGo5w+fZqPPvoITdOYnZ3l0qVLzM7OVuR9fZA84o7jPFdm+vb4w3zX64NoV6n24sqX8e8gsa+FeCQSIZVKvXAU00GzprzM8xVCsL6+zp07d/jiiy+wbZu33nqLYDBIbW1txT7A93NFfFiZY8lZL3t8yUixZgp8iq9srCvYVZZ4sm4nSKZ9pBzvv8GgEmRJy+V+CwRj6VWafW0ABBQ/sWx5cx6AmLFEVO3F2MES0uxr5klqkpnsPF3BIY+M8wHGNvO5XVxWzCwRbctr3eHv4XFR5dkRDhuWQUgNA2x6q0NkivK4Z7Ix+sJbVf2IiDKXXStUubOugaaE0dgSJhEtQtZRyDhZsq6BrkZQKRcug+Ej3Np4TN9TquqjqSmORE4yYZd3OZ3LLjAQ3vKa94cGGUnFcISTm1cJonpcwgNqANPxs2h4/x7+98l/z0zGO8lmN1TSI563J1RqvmAwSCgU4tixY/T09DA6Osqnn37K6OhoiY98rzmIHvHnJW9JqfS1/VXCEfvv30FiXwvxaDRKMundKORZqLYQr/RF5WVUxF3XZX5+ni+//JI7d+4QDod5//33OXnyJLW1tVVJatmPHnEhBF8ojz3HeoKdPE7NU693oCtbH3RhNcTYDnaVlkgrrl6Dj3Lx3uZrx1K2ukCawmLJsIhqdbQH+kgUJYyUHkcPN+LD3rYSoYDwk88bf5KapDewtXgzokWZyZamuiScFH4aUIVGSA2zbJa/19ftOLV6KwiFruAg80Z5hf9Rcoye4CA+4cN2fSVCHSBmLNC7KYh1fATVBlat9cL4XHaB/nBppGF/6BAPEuOb+x/3FONCQHdoiKnMmudNEsDj1DittNIXGORxcobiPPY5Y5HBSOmi0BqthpBaz3Bqilq93vM7XsM1+Yej/5q0XW5t2Q2VrIjn31OVrsDruk5vby9f+9rXOHnyJCsrK3z66ac8ePCAVMr77363cx6kivhu5z2oPvFq20ikNWV37GshXlNTs6uLYzWtKUDF595LkWpZFlNTU1y+fJmxsTE6Ojr44IMPOHToEMHgVqTdfhXGlZ7vVvwJi8pG2eNBxc9YOrdIcji1SLOvp1BFbfd3eFandTTmzHWms0vU+7pKrBsNej2jHg14Ek4aPy3MZBY9j09HZ8XMvRcfJEtFNsBgaIg5o3Tb4fQMNUYdQkBUayoTyACzxgLtvkHq9DYSO3TnnMzMcjRyliceC1XzTGeWqBedbODd3OVxcoy+4ABtgV5mswtl44+SY/QG+wHoCfbzJFnaWXMmvUTdZiRinsHwUR4kxlkyV+kO9e54bK4dYCqx6OlFf5QcYyCcswblLDLBQgzlZCZGm+udaR7Rovyz8d/Y07/NSnrE89eMaqW0KIpCa2sr77zzDu+++y62bfP5559z48YNVldX9+x1PUjWlGf1iEvKcVFw9tE/d6corn3Kvhfiu62ICyEqbhPJX4yqMe9u58xkMjx58oRLly6xtLTEkSNHeP/99+nu7vb0/+1nzzZUzgrz2wveXTR7w92ki6wnj5LztPt6iRBiODXtuc1AuI8NO/e+GU3H6AgMFmwiNVodXl0yASyhEFSbPW0avaF+Vq144efHqRhtmx7vWq2OMQ/fuItgXbE5FDzGxA6VewAHHSF2Xtzb7G/mZny8IJS96Ar2suaaqGJnISAIs2rGdxyfNZbpDw4xkV4oe40ybha/Ginc1LQ4ndxPbN0YPE5OMBgur5oPhg4x5i4RDTTmvjXwYCazSF+wl4wDy+Z66TGpK3T72rfOQcCh8GHuxSf5fPU231/4fMfzeV4qaRXJv4dfBU96bW0tZ86c4aOPPiISiXDjxg0uX77M3Nzcrq41+c+eg5Bdnp/3eTziki1csf/+HST29V99NBplfHznKthXkb8AVvrClP9wqUZF/EXn3NjYYGpqiuXlZVpaWnjzzTepra19pjn3uzXlZc/3ODHNE48FgT50JtLlFeoHqXmO0MqqNltWdwgoPiYypRXfR6lpTtUcxhIJRj2iDAF6A12MpHM+56ORfmaM0UJ0YL1ez5Ntot8RDvNGmjq9johWx7JZ7pGGXArKvJnFhw+L8up9o97IaDqGi0t3qJ1Fs7SBj44Py9UxXYvpzAr1vgbWt3UP7Qn2FkRxr9LOolIu+vtDQ9yJj9EZbEEjUdZICCCkRkg6Krbremarz2YXOF5ziHQ2w6gor6qPp+dp9DWyauW83YPhQ9yL5zqHzhiLnKwdYjg1UrZdVK8j4+ok7HT5pMCiFadOj7JhJRkKD3EvvnVN/LWp3+FQpIej0T7PbZ+HalhTXqXc8mAwyNGjRxkaGmJ2dpaRkRGePHlCX18f3d3d+Hze9qOnzQeVPUfIfe68SNfivZh3L246DqI1JV9J3i/sp3N5FvZ1RTy/WPNFKRbilSSfjVqNTO/nmdN1XRYXF/nyyy+5desWwWCQ9957j1OnTj2TCH+ROXfLfrSmfHvuEl2BHtRtF6+BcC9Jj4i7qBpmWKzRHzxUviAy1EPKKbeA3E1MEVabPOdXhErc3qq6P05N0x/MLYAUAkJqLbYofw+lnAx1ehfz2fLGPPltfXaY6ewirf7usmPNVZcDmMLCFg5rplnW0KYn1M+Ckdt/xs2iEEQv8r036A3MZreE+ZRYZCBUaptp93fyJJm7UZjLLtEXLvVlA4S1CBlHYSQ1w1BkqGw8T9aB9A4rkQzXRMGPhlYiwvM8iE/QE+wqeazWrmUulWAkNctguN9zv2k3S41WR1+wnweJiZIxWzj8/ZH/k7i1e39zNawpr0JFfDu6rtPX18fXvvY1jh8/zuLiIhcuXODhw4ek0943SzvNBxyY+MJqWWL2A9W2kryMfweJfS3Ed7tYM78S+6BkiT+rKLZtm6mpKa5cucLIyAhtbW18+OGHHD58mFAo9FLm3Cv2W2rKVGaJK+tPuJdYoMFpLohxDY1Jj2o4QFeoFUs43E1MMxDaEuNhNcRo2jtNYyjcwxfr4/QFy+0TQ+E+Frd1bbyfnKQvOEhfsJfxjHe1O6gEGEsvUudr97Rd9Af7WNZznu3h9AyDoUMl4wPhQeaKFl9u2EnCalPB/tEfGuThtmY7MWOZ7lA/QrApyEOkt914jKZiNPubAYhqtSybmZIbiQeJcfqLFl/68BFU61kxcx79e4lxekI9ZefTG+rlYWKWJTtJSATLxnPHt8TRmlNlIhxyCTVLRoIaLXez0RnoZF11MDcXzj5ITtKhtpZt58OH6eqgeFc5l811/tHov8MRu3sfVroiXumFec+7cFJRFNra2nj33Xd55513ME2Tzz77jJs3b7K2tvaV14X89f8gecR3Y005qIkpAK5Q9t2/g8S+F+K7Xcl+kLLEv6oKn81mGR4e5vPPP2dxcZFDhw7x3nvv0dPT88IX0INgTXmZHxC/EbtS+P+Yk6CJdlRUWt0GEm55NbxWi/A4uSWM78SnCwK3M9BB1iNrXBEqq2auknc/HqPT110YCyoBJjPeWeMjyQWcp3i3u4JdJJw0Y+kYfduq0BEtwtS2lJT7yUl6ArlFje3+Nh4ly+04U9l5eoNDNOgNnrYcgEfJCQbDQ3SF+oh5pKiYwsJ0NCJqGE2JErfLryET6UUa9HoQCq2B7rJFqrHsBlG9pvBzR6CT0eQSLi5pYRASNZ43H4PhQS6vPmEw7L14M26nqNMb6Q50MZ1ZL/t9Ldhxgu7Wa667OrVaM6OpGHfjEwyEu7fvEoBbG0/4Xmx3fvFKe8Sr0W7+Reesq6vj7NmzfPTRR4RCIa5fv86VK1eIxWI7Xo/y3zAcFCG+V6kpB5FqV69lRXx37GshvtvFmlD9CMNKspNIjcfj3Lt3j8uXL5PNZnnjjTc4d+4cra2tu/6Q2G/CeDsvswK/Yib44+XSFuwj5hpRs4646p3V3RlswRJ2yWO349McCh5hOO3t/z4U6WVxcxGgi2AsvUbUzOV3dwW7SHnYXyBnc3mcXKLV11w21hFo42Fqq+p7PzlFfzBn+RAC6vUWMtvyzQEmMiu0+tpI2s6Oi0YfJ6dp8JXnoxdjuT42rHILTp4FY5XOwBFmd7jJyLoGihJiMHSY4VT565a004S1BhAKLb4WYtlEyes+L9Y4UrMt8jDcz4P4DALBVGaFep+3vcsRCroS9Uy8yWJRG8jN63N8qFaYaWPrhmY2s069L1q23eHIEP9i/Pe4sT7s/YI8A5WsiL+u7ebzWeSffPIJHR0dPHnyhIsXLzI+Po5tl74vX9VW86/6vAdRjDuo++7fQWJfn22+Ir4bIXSQKuLFcwohWFpa4vr169y8eRO/3897773H6dOnqaur29M5Ky2M98tizd+ev+rpvQ6Hm4nqjWjb3t5RLVxSDS8m5SiFanMxPnRmMqWNYUxhsywc+gK9ZTF9eeq1Wh4l58i6JqumQ7So8Q5CwfRYFv8gOUdnoJv+UB+jO9wUGK5JSGny9L7nGQwPcCc+TYu//AYAoNXfwsPEHBuWTUj1togcjhzii/UnZWK5mIhWi+HRATTPZDrGkZqjrFt2mf0F4H58gu5gBwC9wR4eJ2K4mxGFaSdLSK1B2VY17w12MpFa4V58kp5ge9k+AWaMJY7VHCboa2BdK32dkk6GkBotRFgKkTvX2xtTuAj+v49/nSWjPAbzWaikR7yS1ff8fHs5p67r9Pf387WvfY1jx46xsLDAD3/4Qx49ekQmk/udHTSv9l7EFx5EEQ4gXgEryV7+E9Kasn943Svi1RLi09PTXL58mSdPntDS0sIHH3zAkSNHntv//axz7hdhvNN8L+NGYzmxxvdi18oeFwKWzTT3E4t0+btLxHhnoLWsGg7QoEd5mJzlTnyO/mBpesZAuIcND2uGoTjYbpiIFikbA6jzNRTmWrdTICL4Nz3KhyMDxIzyBZq5bpkGKXvnv/ueYAc3E+PU622e1o7OQAf3k1OYrkXaVgiqpdaYgOIn7ShYwmbFjNPoay9bBNoT7OZePGd7eZiYoT1QnsXdG+rifnya+4kJBsPeiSNhNchUOk7dDpVtgWDVzNAf7GM0tVzm0Z7MLHAkunUj0BPsZCKzhilsXFw2rIznjUSdFmUyvUFED3vOO5lZ4FBkoEiEb30zsWGn+buPv4XtPv+1p9LWlEqKrpeV0qKqKu3t7bz33nucO3eObDbLxYsXuXXrFhsbG1WriMv4wteLattIpDVld+xrIf46V8QrbU3JZrMsLS0Rj8eZn59naGiI999/n97e3ueO3Xoe5GLN5yNvE/o/bv8nsh5xfn16M/PGOkCJGK/RwgynvKvhrYFGHJGrxT5ILNIbyC00DKlBRlPlMXsADXaEO4kpXBEhtE3sdgc7eJwqjQCMGas06O3Ua9FCzKEXdVoDq6ZTJqAB/IqPFTNXWR5LxxgMlaaXBBQ/61a20PhmyVynyddRENpCQFugm0Vja2HpcGqWw5GtFvdhEWY2Ey9Upm3hkLRdgkULHZv8jcxk1gvWmMnMEo166bdEGhq1vibmjVWWzRQ1mrcoDqlhTDeA6ZbfIAHci0/QG+qiO9TBVGYNs8iOsmol6Ai2ltxI1Ou1uMLPgrFOLLtOyPV+797bmGBIH+COx6LQh4kpfnXy9zy3exr72ZqS/wx4mZXihoYG3njjDb72ta8RCAR49OgRpmkyPz9f0WvW62xNOagVccnrzb4W4rW1tdi2TTa7sxf0q9jv1pREIsH9+/e5fPkyhmEQDAY5d+4cbW1tFfmg2+8NffZCiAshWFlZ4caNG9y8eRPNr3M7XO5dFgIy2/5m8mK8O9iG6VENb/LV8iCxJZod4fIkuUJ3oJOeQIenT1uIrZzXmLFGWG1Bz7ckEMqOFe3R9Dxt/l6yjrd/vSfQwYPkDIvmBrVaW0lHT4DuYA+r1lbny3vJKQaKmvS0BzpLxqFUaB+KDPHIw0pzNz5Jd7AbTWgoIlRme1k2N2gLdm1GMQYxHZW0s/W6ZBwDnxZG22xkJAT0hHqZSOduYtatJI3+prLKe4u/kUUjw4PEFMej5ZGIkKuaK8LPqmF4esKfJGc4XpNLcGnQ67BdnaXN9JaEnSHgBMu+OVCESm+gi8fZRcKud5LKb859zo+W73mO7cR+FuKVzPQOh8McP36c06dP4/P5ePToERcvXmRiYqLMR/4yOGiWmP2AI9R99+8gsa/PtqYml1rwOra5f5kVcSEEy8vL3Lhxg+vXr6PrOu+++y5DQ7mvwStZVdjvFfHdzOe6LrFYjKtXr/LgwQMaGxv54IMPmG0wWbXKLVedaj0xp7zz40Q6TsZSyjzjAI2+hkL1N48lHFYNh7hVnqACcCjczYq6JVYnMku0+rtBKByK9BMzVj236w92cGV9jMPhct+1js560Xxj6Xl6g/0F8doT7OSBR0rKk9Q8bf4WBkN9PPZYNAlwJz7BschRHiW8K/ECwVwmTisdLLnenTMfJ6c5WnOIel8LS9u6VwJMZxYZivQDcKTmUJngH0nNcazIZhIhRMLKiWWAB/EZOj0sMB2BFsZSK9TqdWVCPs+j5AyHQr0Yrsryts6fy1qKY5Et64yGRn+4h+HsAlls6oJ1ZT70PN+NXWUm453x7kUlxXElRT9UJ7ccck2CPvroI44cOUIsFuPChQs8fvx4V8Wlr+J19Ygf6PhCFFzUffTvYH2zsa+FeCgUQlVVEonEVz95B/aTR9xxHGZmZrhy5QqPHj2isbGRDz/8kKNHjxIOhysuiuFgeMSfd758Tvvly5eZnJyku7ubDz74gP7+fnRd5zvTt+kLledFix2qCAOhVm5vxOgOlHrGW3x1PEp6t45v8NUxlU7Ttm3Bo4bGsll+E/A4FWMgNMR4yjsyUEMrNP25HZ9mIFi6MHQw1Fuo5Oa5n5yh2WwkoPhYMb0XZ1rCwXZ8LBg732z7FZ1YJkttUZzgdjqD7azZzo6iFMCwNcynvCfvJSY4HT3J3fiE5/iDxBRdwTaC+HHcQEn13hYOaccloGxZSVr9jSwbWdKOwXByjhM7VM1r9RqStkpqhxSY+8kp+kMd6Oh0h7pKfuczxgonavvLtjkU7OHLtQn+1oNvY+zwDcZ29ntFXFXVigrxvCBWVZWOjg7ee+893n77bdLpNJ9++im3b99mY+PFFtbuhBCiKkI8P+9uPeIH1ZpSbT+39Ijvjn0txFVVpaam5rWsiO+lNcUwDEZHR/n888+Zm5tjYGCgIOyK/d8HQYi/yh7x/O/p0qVLLC4ucuTIEd599126uroKH4zX1ia4n4gxvJFkMLSVmtEdbGbGKf9QDql+hjd93vfjC/QEuwtNf+p99WXVcMgJ9AfxWVKOwUrWpslXXxg7HOlh2fK+sTVdja5tnR+Lt1soEtqPk0t0BtoAaPU1cj/hXc2eUpL0BwfLLCd5hAAXPzph1B1uRPpCvUykF1FEAJ9S/kHfEWjhYXyOmLNOl9LmuY8jkZyfOv6UpJWBcA+3N+Zo0MvjASFn+8k4LiG3nlW3/Jq0aKzTE8rlfDf56klYDkl76wbkfnya7mDpDViDHsVwNIZTMfoj3q+9ANatLH2h7kKH0GLuxCc5HNnKF+/X2nmQyjV2Gkst8Csj/8lzv2XzHAAhXkm2z6koCg0NDbz55pt87Wtfw+fzcfXqVb744gsWFxf35LpWzW6eu5230g2eXiWqbSOR1pTdse+XKO82OUXTNAxj5zzil4WmaZimtzXgWUkkEkxPT7O4uEhDQwOnT5+mvr5+x4vVq5Rdvl/mexYhnkqlmJqaYmFhgcbGRs6cOUNdXZ3n7+nbM7mkFMN1eLC+wemGLobTswQVb3E4FG7ndnzLJnFvY4FTdT0YIsnDpLf4bfDVEcvm3jMbdgZdqaHeV4vhGoylvXO1W/z13I/P4CI4WzfAcHq8MFav1/AkNV/yfEs4xDIZGv31QAAHb0tIgxPhTmKBZn89y9Z62fjRSD93N0X86Wg/I5mxkvFD4b5CAspsdoUT0R5G0uPkX9qQGiBluYUYyFF7mZO1vYykt2ww3cF2HsZzAnbZjHO0povxzCTFv542fzNjyVWyrkmTvxXFSiGU0r8zRSj4lSgGBkKA19vwQWKKN2sPMZlZYX2b/cgRLknLJqj6ybomdXoNlvAX7Cj34tOcqu3jcbJ0AaYPnaAaJeOw47zTmVUafFE6Ai3c2ii1AP3uwg26nCj/96OfPFUoVTq+8FXuqrlXc+70eofDYU6cOMHhw4eZnp7m/v37aJpGf38/nZ2dL1xZrsSi1Fdp3v1Czpqyf25C9tO5PAv7+rZDUZQ9EeKvU0U8v7Dv5s2bXL9+HU3TOH/+PGfPnqWhoeGpH155kbrfc71flYr4+vo6d+7c4dq1nLg+f/48Z86c2fFmaTS5xNW1icLPlnC5vbrMmZpBHifLW9MHFN1TON/bWKBB824r3+FvLFm8CbBiJbGdAP2hLlIeedgAUbWmUF2/szHLYFGL9yZ/o+dCw6STpV5rZ9nwFuE+NDII0o6B4ehl6SzNvnoeJ7cE/t3ENIdC/YWfG/RaxlOl3TkfJKY5VrPVOKjN315miRlNLtPsbwByto8Vo7TF/ePkLMeK8sVr9AgJ2y10uZxIL3I0OlCyTyHgUGSAx8k5JuwVBnTvynuNFiKWzRQWfm5nydygO9hJrRbBFUGWtr12I8kFWvz1hZ81V6U10MZIcoEnyRinagfwImln6Q12c2fD++bs15Y/4zuf/idGR0exLG+ryn7urPmqNhDy+XwMDg7y8ccfc+jQIWZmZvj000958uTJC/nI8585lT5X27Z33UX0YHvE96aJzqvyz93f0rSMfV8Rj0Qir6U15Xmr047jMD8/z/T0NLZt09XVxcmTJ/H7vVMRvMhfBCu5ar4aVpFqCv/8QtmpqSmSySRdXV0cPXqUQGDnVvB5fn2mPDfcAeJZheM1PTzYtkDwcKSzpBqepz1Qz6WVCU7W9jGZnUQoW8cX1kJAucXFdB1iGZOQ6iezra36QKi95EZAAI8TywxE2tFUZUcfelQL8TCxQHugGcON4WzrlDkY7ubeZtV+0dxgKNxG1phDKC6KUNCUIKYovcl+mIzRH25jLrtIUK1h3in3rN+PzzAQ6SCihUsytPNkXRPh1hBSAoTVWiaz5fu4tzHNQE0789llImo9E9uec3tjkuPRbsY2GxMdrznEzaK5xq1VOkPNxIq6XgYUHzVaHVOZZXpCTWhoOJRfe6YzKwyEe7i5Mepx7BaaUouOhqqohOwwo0W+/Tvr0wzWtDKZ2XpMCDhRM8illTHeqO/jfmK8bL8WLt8Lj9Cx2MjY2Bjd3d309/cXegvk/8YraU05yBXx7aiqSmdnJx0dHaytrTE+Ps7Fixdpb2+nv7+f2lrvLPvt5P3hlbZ47MW8B9WWAuw7O4dzwG6q9r0Qj0aj+3qxpmmazMzMMDs7i9/vp6+v74WjB6slxPezRzw/n+M4LCwsMDU1heM49PT0cPbs2Wf+CnnZSPL7iw/KHq/3hXmQWMASNqfDrYxtCk8dlckdEi/q9CjTJLgXj3G6to+JTTHeE2gpqTAX0+Zv5G5iloFwM45YwhSbVVEBKY9ItZz1JE1PuH7Hc2r3t3LfmGUsvcTJaC+jmYmCbaIz0MyDbQJ+NL3A6WgfI5lxjkT6uZMov8mwhcuSkeV49DA318fKxiFn8VBFgKn0zokgc9lVztcf5+raQ08rh4vLmpGlP9zPXY8sboCZzAZ1eg1tgeYSEQ5g42K6Ar+iYwobHY22YBsjm6//dGaFs3V9PEiUnkNYDRBUotxZn6E92MB8USZ6nunMCmejfWzYBqNW6Q2Ci2DNNAmrAdKusSnCh7i5nrOj3Fqf4kRtF8Op8punqC/KHwUW+OvH/jMmJib47LPPaG9vZ2BggEgk19hpv3bWfFUr4ttRFIXGxkYaGxtJpVJMTExw5coV6uvr6e/vp6Wl5am/o2qcJ+w+qaXSN4KvGu4+qyJ7rV3az+x7If66VsS/ypqSTCaZnp5mYWGBhoYGTp48+ZXWk68ifyHc757tSs4nhCAej3P58mV8Pt8L3yj9xtwNbFF+3H2hZm4aM4DC3fQap0ItjLtLHK3p4k683GbQFqjjflGM391NMT6emUTd4XLQHqgvbDOeXuZwpI15YxZXFRyr6eVu3Lvi3RtqZTq1Rp1ew4ZTWrnuD7Zzv8gCcz8xxxt1gzxOj6GiYgnF82J8NzHD+boj3EpMeM4JOTvJfCaLjobtUVEOa0HmsknqfLVsWOlCY55ijtX086OVYd6o6+dh0nuu9mArKdve0XedsDMMRYa4s+4t1OeNdU7V9vA4MUlfpJuH2yxB+ar6yGYsY0DxUas3MpHerKIL3fMcdXTWTBvdY2EqwIqZ4Fi0k+HkNCeigwURnmcytUajL1qyQPZoTS9312O4xDhd18N//uY7BaF3+fJlGhpyVh65WHNv59yNOI1EIpw8ebLER67resFH7rXv1zW6EA62NcURCs4+agu/n87lWdg/t1A78Lp6xL2sKXn/961bt/jyyy8BOHfuHGfPnqWxsXHXH4L5VeeVPN9KC+P8h+nLvmhns1mGh4eZnZ0lm81y7Ngx3nnnHTo6Op77Az3jmPzW3K2yx4OqzuNEccVT4V5mgxPhXmaz6577qvfVlsnbu/EYJyOHSywMxUS0cIkoHk4tUmvVEVJ8TKW9M8NrtCAjyUVWrRSqCBFStyxSKioJq7yKfmtjhsPhPo5GepnLeu9XRWUqnaInUB7fCBBUfMRNi/HUEoOR3rLs7Vx3zVZWzCRjqUWO1vSX7aMr2MyDeM5qcz8eoyvYXPacQ5Fubq5P8Tgxt6Pvuj3QyN31GMeivZ7jAHc3pnmr7niZCM8znVmj3hfBp+g0+9u2RDgwk1nlaE3pvnU0uoPtDCcXmE6vE9mhs+bD+Bzn609wa738W4WUYxDWIqibHw/Havo2RXjuxfwnI7/P/Y2ZgtD7+OOPiUZzSTHXrl0jFou99Pf0QVisuVet5v1+P0NDQ3z88ccMDg4yNTXFhQsXGB4eLgsiqGZXTdne/sWptqf7Zfw7SOz7s823uX9RXoWKuOu6zM3NFRq71NbW8sEHH3D8+PFC06K9nHc/V8SL7Tcvg2QyyYMHD7hy5QrZbJb29naamppobm5+YeHw/fl7JOzyhVdHajpIO+XJOhlbo9XXVPZ4q7+2IDCLEQJi2TSHQn1sV+m9oRYeedhVZpU0Q8EB1i3vfO+eYCupzWOby67ToDUXFiAejfQSM9Y9t1vKZok/pXvgsUgv05lVptNJmn11ZeO9oU6WzFwl987GDCe2LZo8ER0oaexza2OKI0UNb4L4iFsO1ubiTEs4JGy3ZKFoe6CRseTWjcKd9Wl6Q6WLL6N6mLQlyDgmt9enGAx3eJ7PqegAX65N0+IvPxfILaKs1evpCnQyuhlDWcztjSmObEYPqqj0BDt5nMj9vpJOloDrL8tGFwJORgf4fHmc7lD53wnAeGqJ49E+jtX0cXt9tuRGzBYuf/Peb7BhpQEIBAIMDuYWwHZ2dvL48WM+++wzJicnX9q1U1bEnx9VVenq6uKDDz7gjTfeYGNjg08//ZS7d+8W7Juve3v7A2tNEeq++3eQ2Pe3oJFI5LWtiNu2zfj4OLOzs+i6Tm9vL21tbS/1QrnfhXj+Qr2XFXEhBOvr60xOTrK+vk5HRwfvvPMO4XCY8fFxMhlvsfosuEJwbbXc2qCiMp1e9zgWWDTSzGU2eLuxlyfpqYKEavTXMZstvyk9WtPOw3iuGn62vo/hdC6aT4idmwRFXJ1ra7OcqO3ncXqixJrRGWjk3jZbzGhqiRPRLjacNR7GvX3oQoBP9TOditMSrC/rYNkZaOLuZoxgyjGIOnWFKD+AQ+Eu7m2zydzZmONQTQeTmRhdwZaycYAnyQXag03MZ1eoU+uZMkt910tGnGPRTsZSU9ToQdIOJQtWc77rLDVaiKSTwafo1Ki1TGZz1WsBLGaT1Oph4na6sN3xmn5ublakW5So9+JMoaCIALq683t+MrVKs6+WOr2eB/HSnPBFJcObtX3c3bTy5EV4ft6M7RBUfWQ9Um0sB0xXeLo1F4wN/t8PfotfPvNfoBZ9q9XX10dfXx8LCwuMj48zMjJCb28vfX19z7Vw/KuotDDeq+r08/CyzlFRFJqammhqaiKZTJbYi2pra6viEd8La8pBZr9VkZ0D5hHfP7+5HYhGo6+dEE+lUkxPT2OaJuvr6xw/fpx33313R1/fXlLp832dK+Ku67KwsMCXX37J3bt3C99U5DuVwu7jEj9bGuMP5iY4s83ecCLawYpZLqr79TrmMrnUk+urCwyFelBRaPXXcn+HanimqAJ9ez3GkXCutfzhmo4dc8Pr3BCmcLi1McvxInuHEKDj87yMPkjE6PJ3Y7jeFe8T0R5GU0skHYOsrVKjbWWjq6jYjoZT5JOfNzZo9bWiCIWoFmYyWb5w0REuc+kkbYEmUrbr6bM3XJusk2tkM2WX7wPgUWKOE9EBGn1NZZGBAKtmkhZ/E7gKfaEuJtOlsYnrVpomX0MhMrJHa+bu+tZNwVR6pczCIgQci/ZzLz7L7fVpBsLekYcp26Az0MnDjfLfL+QWYA6G2xACTtVuiXCABSPOQKS9zMJzItrLrfVZJtNrNPm8v3W7vDLCv5/+YvNYtxbL5TtBvv/++5w9e5b19XUuXLjAgwcPSKfTnvt6Xg5CakolxH9NTQ2nTp3i448/pqGhgampKRKJBDMzMxX9HKhWJX6/4LLlE98P/yrbzaT67HshvhedNYUQFfE8rq6ucvv2ba5du1bwQL755ps0NTVV7ENnv6eY7EVF3HEcZmZmuHLlCqOjo7S3t/Phhx8yODhYVvXb7fn9XxM3AYUvluY5GcmJaiHwbPkuBKS3fXjeWlukL9hFo7/Oc/Hj8Zp2Jrb5vG+tz3E42MuG6d3IqivQwDRb76kba7Mc27R3HKvp2lG8H4p08KOVcU7U9JWNRbUgY0WZ34tGghq1AdXN/b6ORXqZ8fCNP0ku0K204s/6SLneDbDidhZfOsCKsfMNeY0WJrXZ8GYnLFd/6iKiJ8kYbzcc58EOi1eHk/Ocqu2nVallykyU/T5urU9xuKg75snoQMHD7SJYMTNEtNKYy7xYv7Qyzqn68tcVchX5pWyKM7WD3Fgr94Tf3ZjldN1W7vuJaC+312cRQNI2qNHDBb94MYcjHfzTJxe5vjpZuF4VX6cURaG5uZnz58/z3nvvYVkWn332Gbdu3dp1a/ZKp6ZUej6orDgNBAIcOnSIoaEhIpEIExMTfPrpp4yMjOy6sdyzsFce8QNrTdlMTdlP/w4S+/5s96IiDrxUr2MsFuPatWvcv3+faDTK+++/z5EjRxBCVHwleLWEeKXmzIuFF5nPNE3Gxsa4dOkSc3NzDA0N8d5779HT07PjB+ZuFqM+ji9yfW3L4vHlygJDwU5ORjuZzayXPb/fX0/MKa84LmSypEyBf5u9QQiI79CcxREadVqdpzANqIGyXkA31uY4FuphPusdFaqjsWLkbh5urM9yNNJTMt4ZbCbplAr/8fQyjVYd7XpDwZLihWEKIsGdc5KP13TzwF6l2Y56nk+9L8JsJsGYtcaQ7r0I9HhNDzfXp1jMpqjVwzs8p5cfLY7RH/LeB8BcZgPVCRQ86NuZTq9T74twItrPjW0LKVfMJJ3BlsI5CAEnawe4tZ77G7m5Ns1gxLtq3h1qJW7ZO95oPIwv0BGoLxHhecZSyyVCHXIifCSxQta1+H/d+U2WsomniqDa2lrOnj3LRx99RCAQ4OrVq1y9epWlpaUXusYdFI94pecUQhCJRPjwww85ffo0a2trXLhwgXv37u3qc/SrkBVxyUFm33vE96IiDrkLhc/nnUDwIliWxezsLDMzM+i6Tk9PD+3t7YX58t3rKpnpDdWzirzKTX0ymQxTU1PEYjHq6+ufKypyN9aUfzd5s+yxO+tLvNvUTY0WKBOuOy1waQ/Wcmt9jqPRFhbtlYIf+ES0k3sb5X5tFYVYNsGikeCthj4epLbauR8Kt/Eo4Z2uYrt+mvR6VszyD+yj0W5urm/dVNzdWOBotJ3xzDyD4TbuJbyF9jQp3tb7mdpB4DdpNczYGex0ksGaVqYypcfW7K9lJJXLC58kyQl/O6PW1jkrQqFWr2VxsyHPY3OFY9EORtNbNo+uYBMPN895zUpzuKaNhJUpaYTUF2rj/sYCDoIVM0tUC5LY1oW0RgtiOhobjkFI9ZER5TdBCTvL0ZpDXFvzzkB/kJjjzfo+7sUnOVU7wPWiCrcAlowMNVqQZNHcp2v7C897s76XO/Gp7bvFcG1aA83c3Zj2tBXdWJvmRG0nj5NzHI60M5JYwXRzNxOrZoq/8+R3+c+VLo8tSwmFQhw/fpyhoSGmp6e5e/cufr+fgYGB50oUOige8UqL0/yciqLQ0tJCS0sLiUSCiYkJLl26RFNTE/39/XuS0lXMXuWIH1T2X0Of/XMuz8K+P9vdVsTznse9qoin02keP37M559/zurqKseOHePdd9+lq6ur5EKUv+hX2p9eDY84VD67/Fku3PF4nHv37nHlyhVs2+btt9/mjTfeeK4PoRcV4stGih/EnpQ93hdu4PLSLAFRQ5M/Uni8N9TIuEcSSZM/XBDbjxMrNGoNRDQ/CFgzvVtgn6rtZNHICd8ba3OcjPTlKqkCkjskmtT7wjyIL3BvY5nBUHvJWKOvpsyf7giX8eQGvcGWHY8DoNut5craNIeDHqkjAsK+CFnXwhYuC5kMDfqWn1kVCgE1VJIs8zi7wkB46/i63HpGkovFu2Q2E6fRl4vjq9GCJG0Hs8jXPpxc4ERtf9H5RVnIpgtV7hUzRUugqaT6rKNRpzcwn42z4Ro0qfWe1elDkQ6urExwqnbnyMN7G3O8VXe4RITnWTVTdISaC/vudutKnnd3Y5aecHlSyomabq4uT3G4pnPHeafTa5yu6WUksVYQ4Xlux2f5Q8pz63eiOFKvt7eX0dFRLl68yMTEBPZTUnPyyPjClzfndkEcjUY5ffo0H3/8MbW1tdy6dYtLly4xOzu7Z9dt27Z3bU050KkpKPvu34vwT//pP6W/v59gMMi7777L1atXn/r873znOxw7doxgMMjp06f5/ve/X/achw8f8vWvf526ujoikQjnz59namqrmPHzP//zDA0NEQqFaGlp4ad+6qd49OjRcx33gRDiqVRqV3fMuxWnQgjW1ta4c+cOV69exXEc3n77bd56660dY+2qIVDz81YjxeRVaeqTz2q/ceMGN2/exO/3895773Hy5MlCVvLzzvUif3vfmbrjaV+I6rkFjDPpOFlDpzOYi70rjtcrpjvUWLJAcTS5Ro1Sy5naHk97i0/RmEj9/9n78xi58vvKE/3c2Pd9y41JMpNkMslkJplkFclSsaobgkpT7ZElY9SC0EA3ZI898EBtw2oIkJ9hu2fsbgtqt9HCuA0920+awTx7rLY00rOeLNn1ZBWrVCSrmHtySS6ZJHONfd+Xe98fkRkZEfcGRTJJZhXJAwRARtyM3703In73/M493/NtfX5yk4wftvSwWlAuZuzWuymKVaqSyO1Mmj0Gb+M1l9YuI24ABbGCWbBR7XB+fDobK1LdanMtEyUgtEb8HbH2s9jkK09VC2gEI/rNRjbDtn7u5FqLJmuSxHo+h0tr5YC5myXkhZfpahGDyoQWNR6dm0hJrsZPb/q59YIGjWAk1RbjuJAJcsxej06UJNhn7mExt+2dXyrHGbG3err3GL0sZhLUJImZxCr7zcoWl4OWXpYyqcZxtuNaeoNjjn4Om3pYklpFiKokUqzWMKi2//awpYcrqSAi9XGPWHsV39enc5CqiFQVPkuAt6V13o3cUnytE9RqNXv27OHVV19laGiIjY0N3n77bW7evCnLuG7G82JNedqK+P2Uab1ez4EDB3j99dfZs2cPS0tLnD9/nsXFxR37yF9YU3aGLUX8WXo8LL797W/zpS99id///d9namqK0dFR3njjDcJh5Tu4Fy5c4POf/zy/8iu/wvT0NJ/+9Kf59Kc/zZUrVxrbLC4u8rGPfYyhoSHefvtt5ubm+N3f/V0Mhu0ggfHxcb71rW9x/fp1/uEf/gFJkvjEJz7xUJzxubCm7NTb9qhEXBRFwuEwKysrFAoFenp6OHToEHq9MmlqhiAIu5LYshvWlN1o6tNOjrcSUJaXlymXy/T19TEyMrJjO9KjEPFSrcp3VuZkz3t0Zq6mtrOko6U8xZqOUWcvk0m5tcOhNXJVISrwbjaFVW3CrjGSqrYSyGFrF1NJebHhXDLImEOZoPUZXcyltscvilVW80W6jC5Mai3XMspxhQG9nankOl69BYu60mK1kSSQilDdtH/UkIiKVbx6O5FyioDewRWFFJiVQoJhawCJSks6SDPS1QLdxi42Cp0LBu/mo5x1HeRCXH5XYgvLuST7LH3MdhhnOrHCoMWHWWNWVK/nkuvsNXtZLkTw6e2Ei4WGbUhEIlqU20wOW3qZidc93GOOXuYzcpsJQLWmItrhTkOwmOKYvYermVUOWbq5mgpTa/qO3spE8OtthJrSYfaZfNzJJCmKVcZde5hNKXcL/ebiBfabffSYlHPRO0EQBAKBAH6/n0QiwZ07dzh//jzd3d3s3btX1i9hN4j447QmPgh2SxFvJhlKUKvV9PX10dvbSyQS4e7duywtLTU+K7PZfN+/7zTu48gRf17x7MUXPvyx/Mmf/Am/+qu/yhe+8AUAvvGNb/DDH/6Qb37zm3zlK1+Rbf/1r3+dT37yk3z5y18G4A/+4A946623+NM//VO+8Y1vAPA7v/M7vPnmm3zta19r/N3AwEDL+/zar/1a49979+7lD//wDxkdHeXu3buybTvh2fnkOmCnDX3g4Yl4pVLh3r17XLx4kTt37tDV1cXZs2cZGBh4IBK+hadNindrzKdNxJvHq1arLC8vc/HiRe7evUtvby9nz55l7969j+XC+yipKT/aWFBslNNncrQQJoBstUypouGwNSDbfq/ZrahEj9i7mEsGUYsGXNrti6ZRpeVWNirbHuCIrZtLsVWOtCWeSBKokZ+nbLVEqiRRE5XX+pIERpWRqiSyUUxjUznRNim8e0Qb62Lr7zZbLVGpqrGqDQiStmPB451cDLNa3kF0C4IkUKhI+HWejsWLgZqF8+FFDps6+573mgLEC2XUHaZREQmz2srNjHKKTFUSyVSq+HR2SlVBpqrHyzm6DdsWl0FTF1eT4cZxzSRXOWKTL46Grb1Mx9cp1UDTQVmaS63xsvMAC6lISyQkQKFWQSfoG8e11+hlOZumuGnPmYyvMGSVW4W8konryRhfnvo+5drPt5coQRAEXC4X4+PjnDlzBkmSuHDhAlNTUyQS23djngdryodNEW+HIAj4fD5eeuklXn75ZWq1Gu+99x5TU1PE4/GHmvceR47480zERUl45h4Pg3K5zOTkJB//+Mcbz6lUKj7+8Y9z8eJFxb+5ePFiy/YAb7zxRmN7URT54Q9/yMGDB3njjTfw+Xy8/PLLfP/73++4H7lcjm9961vs27ePvr6+jtu145kn4lvFmjsheg9KxAuFAjdv3uTChQtEo1EOHjzI6dOn6e3tfST/224o4s+LCl8ul1lcXOTChQuEw2EOHDjA6dOnZV79neJhFxmSJCkWaZrUWq6l5ITOrTUxmwgxH40x1JTWYdHouZaSd2JEglipbvfYKGaoVTV4dHW18aDFT6YqtwOY1TpuZOoEfTK+ztEmMn7Y2sXtDuS9x+AklC/hUEgZOWrt4Va2yaqRi+GsWEACq8pAUKWc5hIspdlv7GNVwVazhX6jn4vRZQ5blBX8EXs/t7MRZpNrjDR5vbfg1dmJq+q/gWupEF5BrvANWXqZjK+ylIsybFWecAfNASbjawT0ro6EP1XJE9D7CHUoRr2W3uCYvZ+9Ri9LmYQsB/12OopXt22ZOmTp5koyhIhEsJShC2U71aA5wFQsiEev/PrdXIwjtl76jG7WclkKtdbP41422bKI69Y5iFVrFGoVrqaC/PH1nyof8ENgy5t87tw5zGYzExMTXLp0iXA4/NTV4qdNxCVJ2jVF/FHGtNlsHDt2jHPnzmGxWJienubixYusr68/0Pz3osX9ziB+CFrSP87HVnxhOp1ueXSyq0WjUWq1Gn5/a2qU3+8nGFS+IxsMBu+7fTgcJpvN8tWvfpVPfvKT/OM//iOf+cxn+KVf+iXOnz/f8nd/9md/hsViwWKx8KMf/Yi33nrroRqYPfNE3Garx5o9qaY+kiSRSqWYn5/n0qVLVCoVjh8/zvj4OF6vd0er9MdZJPowYz7LKnwul6NcLnPt2jWy2SwjIyOMj4/j8/meiKLysNaUS5EVbCqj7PlDVp+MDAHsMbuoSSIiMJeMM6ByADBo9jYUzGaM2LtYK2xbDsKlHMWyin1GL9fSyl66QYuPbHXbAzoRX6e3ZkeNikhRuWuoXWNkIR0hXMqilUwt+dcmlY67Cl1Bl8Uch0x9+HSulgLLZvQYHLwfW+GAqVuR3B62dDO/2djmeipKr6G1MHHA5Gcqvm0TmU2ssb+pUY5GUqNBR25z/KogURQF9OL24qzb4OJWOtb4/1RilcNtvuqA3s5yLk1NEllIBzmukPGtQqDX4ONi9B6j9s7FmbFiHknUKn6e+VoZk8qICoEBk5+b6WiLwn1HzMo83/tNPpbSSdKVIhq0aDpcBiKFPGbB0jgXzchUS1g1ZlQIdBtcRItlik1dQb99b4ofrV/reEwPA4PBwKFDh3j99dfx+/1cvXqVVCpFIpF4avPGbhBx4EOtiCvBYDBw8OBBXnvtNXp7e7l9+zbnz59naWmpkQT2JMZ93rHb7eifVIv7vr4+7HZ74/FHf/RHT++cbs4tv/iLv8hv/dZvMTY2xle+8hV+4Rd+oWFd2cK/+lf/iunpac6fP8/Bgwf5l//yX1Isdg4haMczT8S3Cux2GmHYToi3PMWTk5PMzMxgNBo5c+YMR44caZD/nUKtVj/TpPhpjplKpZibm+Py5csADA4OMjo6+sAxhI+KhyXif7U4z/uhEEfMPY3cbxUCd7NJ2bYWtY7rqWbyLHC9kGPM2sfNrIIdokkNb0asnMeqsrYonFtwa01cUVDWb9fyjJn6CSkUMkLdN57fXDisFlI4VA70Qt3Css/oI1VRnqQqooBWULZvqSQBJA1VSWQutSHrNurSmFhqOk8lsUqqXG3kfts0RkLFfItlpSZJbOTzuLQWJAn6NC6W2xocxWsFejc7U+pFNalsSbYoupWO4tfXfdFmtZ5KTUWu6e7CTGKV/abtAlZJgsPWPq6n6+f2SipIj9EpO2a3zkKiWCVZLrcUWDZjKRflpH2Ae7mUohXpViaGV1+fk/qNHpaz2Qapv5uLc8Quv3PQbXAQK5W4nYm1pPM0YzEb5YRjH8lihawCWf9f5n7MUkb5bsmjQKvVsm/fPl577TX0ej3RaPSBSN7jwG540oGPrB1Go9E0inCHh4eJRCL37a76OOILn2drSg3hmXsArKyskEqlGo/f/u3fVjx+j8eDWq0mFGq9VoVCIQIBuW0TIBAI3Hd7j8eDRqNheHi4ZZvDhw+3pKYA2O12Dhw4wLlz5/jOd77DwsIC3/ve9x7483vmibhGo8FgMDw2RXzLU7zVVdHv9/PKK68wODj4c4tcHhbPkyL+JHJgJUkiEok0Fksmk4kzZ85gMpke6rbRTvAwRHw5m+Sd0F0ApqNhujQuHFojR+1dxMryi9dBm4+Cghe3WlOxR+9BK7T+vI+2qeFbcGiNTMU3iBWq9BlayWC30aVI7oySiqlkhKMKCRv9RhezydZCyqVcnIDWTbfaxpxCkSWASaVlNZ9mMr7OsEXuzT5q7+NeE0meTKwxtNmJUpLArrGRbbPWREs5bGobGtT4dC4SCucxVSlgEMwMqD3cLMm7dwIsZEMcs/XTZfSTkOS3Rwu1CoKkxSho8epcBIut57kmScRLxUbqzZDez0xiuyi2LNao1gR0wjYZsWgMqEQ9sXKOjUKaAYtChCPQY3QykwjRZ3Ipvp6vlTEKBvqNHjbyBdndhsn4KoebPN9+vY10uUaqUiRTLWHT1pXvdvj1Nq4nY3QZlQszC7UK/27q++Srj7czo0qlQqPRcPjwYY4cOdIgeQsLCw+lQj0MdiO3HD56ing7BEHA7/fz8ssv89JLLzW6q05PT5NIJBpz4+PwiD/P2G31+kkp4jabreXRqcZOp9MxPj7OT37yk+1zIor85Cc/4cyZM4p/c+bMmZbtAd56663G9jqdjlOnTnHjxo2WbW7evEl/v3IXY6DRiPF+qU/teOZNWYIgYDabd0zES6USt27dYn19HbPZzODgIB6P54lOzi884o8GURQJBoMsLy9TrVbp6+tjdHS04UF8UsRfCQ8z1l8vzbeotbdSSbwGA6JB/vdaQcViWk4aNZLArXSMdKXEIYeHYCVRV6YliJeUbST9JjdTxXXKYg0xJ9FvcXOvEKPH4GBWIY0FICCYWazlmIoFOe7q5Wq2niFdzxtX/k3czMQY1rlAyoMgP6ZBi5/pRH28+WSEQzY/t/N1xaJL72BOYV8WUhH6LR5sWiNTCeV9XcxGOecZ5N3obTqJZjVRolrTIEl03KZa0wCdfxvLuQQf8xzgvZhyhF+snOOwLYC7VuBKXq4UrxVSjDl7uJJeRidocKjtLGW3LTCziTWOu3qZT23ndfv0NtKlKulKEXVewK6VRykCFGtVugwublWTivt2L5fCrTUjCCoKVYg3LVhuZ6KcdNU7i27BrTNTqQnESjnKtRpOjYFEVU6Cy2KNr135Kb8/+onHqlhutZz3er34fD6SySR37tzhnXfeIRAIsG/fvkeKG+2E3SLiT1vlfZIWEbvdzujoKAcPHmR5eZnJyUnMZjP9/f079og/zxniUJ+VagqL5Y8qHoWBfOlLX+Lf/Jt/w8mTJ3nppZf4L//lv5DL5RopKv/6X/9renp6GvaW3/zN3+S1117jP//n/8y/+Bf/gr/5m79hYmKCP//zP2+855e//GU+97nPce7cOf7ZP/tn/PjHP+YHP/gBb7/9NgBLS0t8+9vf5hOf+ARer5fV1VW++tWvYjQaefPNNx943595RRx2FmGYTqdJJBKsra1RKpUYGxvj5MmT+Hy+Jz4xv7CmPBwqlUqjA9zKygp79uzh7Nmz9Pf3t0zyTzOl5UHHylbKfH/5uux5t97C9ViKw7bWTOkj9i6SCvaOvRoz6Up9JX4jGccp2Bqq+ppCXJ9bZ2YusV3Mkq2WWc0U2Gf0YtEYFZNH/Hord2rbVq+ZeLChYI/YulnKKavKI9YAV0oJhq09Mn/3PpOnQcJhq+FPGpdoQJAE1GhkhYoAZamGVFOzUehsPes3uXg3fI8xBZ821JX4QlXiejHBQZ1XcZthay8TsVVWcplGcWs79mLn7dCS4l2CLVRECUnsTHRmEmuM2PrYY/S3kPAtLKQiBAx1m4lDY6JaUzVIc6JcIKCXNwry6q1kKyKXosscsvrb3xKAdKWIT+9EFNVES/JzORFfbfytU2tCJekIF+tzaqZawqIyyNZWXQYb6VKF7yzP8Z178jjOnaCdGDscDo4fP84rr7yCWq3m4sWLTExMEIvFHsuie7dyy58lIr4Fo9HY8Px3dXVx61Z94bq2tvbIFqPnvbPmbqvXT0oRfxh87nOf44//+I/5vd/7PcbGxpiZmeHHP/5xoyBzqzv2Fs6ePctf//Vf8+d//ueMjo7yne98h+9///scPXq0sc1nPvMZvvGNb/C1r32NkZER/vIv/5Lvfve7fOxjHwPqNRHvvvsub775JoODg3zuc5/DarVy4cIFfD7lPhBKeKGIK2DL0rCyskI2m8VsNmOxWFo+oKeB58WaslNiXCwWWVlZYX19HYvFwtDQEG63u+NF7Gkq4g9qTfn+8nVyVflFSIWKQrXK1XCC8UAP08k1BElgPS/3ZqsRCLVZM+5mU3QZzVRryvvQY3AQLrRaRfK1ClJNS7lDPKBba2GDbbImAXPxMGOubpZzytncVo2exXw9fm4mscG4q4+5zMrmfqsoVBUa/tQqqFAz6uxjIqXctVGFQFGUECUVJpWWvNh6DvUqDcWqSFUSmYqtMezo4kZ2+3glCfpNfuY2rTQL+SQH7D6W8tve+26Di4VUXcFOV4q49S40FKg26TYHLQGuJ+vbzCeC+A0WwtXWOafL4GA5myZfrdBvtLNSlp8rSQJR1BJX6JK6dU40WHFojBhURlbail6vpUKMu/cws6lem9Ei1tTENr38G4UsDq1RFo9p1xoJ5Qt0m5wEOyS4bBSy9BqcVEWB1Xzrvt8rpjiodXC7Vt8fj85MqSqRKNfH+Y9XfsKww88Rh7Jf82HRiRibzWaOHDnC4OAg9+7da1jS9u3bh9/vf2RiuxtEfDesGk+zaFKj0bB37166urr46U9/SiQS4c6dO/T29tLf34/JJE9begFlvGhxX8cXv/hFvvjFLyq+tqViN+Ozn/0sn/3sZ+/7nr/8y7/ML//yLyu+1t3drdiN82Hx7Hxy98GDKuLVapWVlRUuXrzIrVu38Hq9vPLKKztOP3lUPAs2kSc5Zjab5dq1a1y6dIliscjY2Bjj4+Mdu5XudLxHwYMQ8Zok8leLcsWwx2jjWrJedCkCl4NhRm29jDgChIry7/Nhi4e0JCfzXp2VlVSOPW3+b5/eylxSHu0kSXWrxlIqzUFzq4K63+RWLN4UkaiUBKxV5bX9PpOnJXllMr7Osc3YvxFbj6JaD6CT1Kzl85jVyp7+EXsv9/IJ1gopug0umZf5kKWL9U1fvIjEnWySgH7b0zzq2NMg4VBvHBTMFxqFq0a1jlKlbu3Ywp1snMO2bQ97l8HO3WwKcfP+QRWJYllE23QxsWmNFKv1Ow4iEslKBatG7nccc/QzEVtFI2jRCMrT80YhzUFLj4yEb2Emvk6/yY1FpUMjaluIdaJcwKe3t6jmFo0es8rEeiHNZGyVgxZlJadcq+HVOVntsNi6WUkxbAvg0JlQoSXSpKxXxBr/buLvSHVoMvSw2LKmdIJer2+kd3R1dbGwsMC7777L8vLyIzdne9rWlKddqLmbkYmCIHD69GlOnTpFqVTi3XffZWZmhmQy+UDv8bxbU6QPQUv6x/mQniGbzYPgBRGnrqjevn2bCxcuEAwGGRgY4MyZM+zZsweNRrMrhBh2x5ryYSf/kiSRSCSYnZ1lYmIClUrFSy+9xMjICHb7g3Xze9S284+CBxnrneA9VvPyIkqfUZ5WMRkKoRN1mDWtTXQECUJFuaVAkiBRLpIoF9nIFhlsSu7w622yBkEAR+w+bmVilMQaNxMJhsyBxnuJovIEaRe0XMlEuFcucKitNfs+k4sZBX/3ZHydcfveFiLcuvOglVSsFFJ4tQ40tCp19aLQ7fddyERabC9HbN1MJ1q7hOaqZWqiGpNaxx6Tm9m4fOxkpYBJZUGLhl69l42i/LOZitctJGa1nkpVRa6tIDEmlti7mbSilgT0VV1LVniiWqTb0JovPmrvYyJWV/7v5RIctcsLVtWo2Gvy8m74LsM2ZXW5JonUamBXWYmK8oKh6+kwJ5z1RZBJrcWlsbGcSwL1uxuRYh6bprXw3KDS4NU6uBRZ4YSrc9RitFggoLWzoVAUvJpP8TvTf4/4mKwiD0K8tlTXc+fOMTg4yMrKCm+//Ta3b99+qLbsz4MivtuRiYIg4HA4GBsb49VXX8VgMHD58mUuXbpEMBjsOI9uFcc9z9jtdvQfhhb3H2U8F0e71dSnHel0mqtXr3Lx4kUKhQLHjh3j5MmT+P3+lkl3t4j482JNeZAxJUkiHA4zMTHB/Pw8FouFs2fPMjQ09NC3MJ/mMT6IDeavFmdlz9m1eq4m5BGEQ3Y3l0Lr2DDjM2x7lUecAcIKiSAjDn/DLpKvVridTDFs6aLbYGM2ISehkgSZJp9mRRK5lohz2NLFiL2ro//bp7dSQ6KKxI1UggNbZFyCDq4YJAlihRKDFmXf8pijhyB1Ink7G+OA2d8grlpBRUmUZAuJmeQ6o/Y+3DozS5lE+1sCsF5I0W/wki/XFH3nAEvZGOOOAa4kFZoibeJaMsygqUuRqANcy4QZdexhvynAWkUuBFxNhTjuqJPaYWs3k7HWxcpkfI0jtu00E0mCw7buRqOm5VwSl07+3dcJatRoMQjajo2EZhIbHLD48OtcLGVbP9NYKU+P0dn4W52gpkfv4Xam7lmfjK5xwCL30utRYxD0FKpix26jb4cW+T8XLyvv1EPgYYmxSqWiu7ubs2fPMjo6SiKR4Pz58x3j9HY63k6xW8o0fDiSWkwmE0NDQ43s+IWFBd555x3u3r1LtfpoXVufZex2F8zd7qz5UcdzQcStVmtDEd/yf09NTTE9PY1Wq+Xll19mZGQEh8OhqLI8T4r4h42I12o1VldXuXTpErdu3SIQCHD27FkGBgYeOYLwaRdr3o+I30rFeD+6Jnv+gE25Pb2w+ZNdzWbI50UGLHVVNa7QWKdOqltVv4ooMheN0G/wKBZijjoCDXV0CzVJZCEeRycpn+9Bs5sb+W3SW5FEFtNJBsxexhw93M0pE+Jj9m4W0lGuJ6IMtqnoHp2Za6nWBkPzqRBj9rqSO2ztbGeZSayzz+iTRRluQZKgJqkJtFl1mjFkC/B28A7HnZ3bFA/ZuriXTXe0zQBQU5NX+By3MJ1YY9zRz0Iqqvh5LGUTeHX1jPPjzj3MNhW0pislXLp6N9ItqFGxz+zjZjrKtWyUAU2nngYCJsHEWl75HF5Nhhh39dXfz+TnRnp7USgiESkWWlRzLWo8gpnFTJzbmRijDrmaD+DVW/jWzWk+iKwovv6geFRiLAgCHo+HU6dO8dJLL1Eulxs2iFRK+VzA0yfGu9XeHp4+Eb9fdOFWdvy5c+c4ePAgGxsbvP3229y4cYNCYXvOe96tKS/w0cZzQcQtFgvxeJz/9J/+E7/6q7/KjRs3cLvdnD17loMHD/5cRXU3ifhuxBd+GIh4pVLhzp07XLhwgfX1dfbt28eZM2fo6+vbcSvkD1Ox5l8tzDPu7GlxxGkEgdtpOXndY7ZxPblNiFLlEnfiGV717GVFgVAdcfgUGwH1mmy8s77CCVtvi2KqRiDUIX1k2Obl/fA6/VJbYogEZYXvS0msESuUFIswAcxqXWPfKpLI3UyKfmM9B1uSwKU1K3aSnIyv87JjH9NJ+eJlC8fsPUzGNtjTIVf7uLOXucQGE7FVjik0s/HqLaxkU0jAbHyDAbNHYYxeJmNrBIsZ+kxuReX5mKOHD2KrZMqVjmTdjo6VVAZth2Y92WoZs8bICUcfkzF5werNdIQTrs3FggRD1i6uNqn4y+UcXYZWMq5C4IDZz+XoGoMWX0fVfD4W5ISjv+X9thAr5eneVM3VqOjVOViubH93JmJrHLW35p47tEZUoppQIcu/++CHhAuPlmS1ZUXYKfGy2+0NG4ROp+ODDz7g8uXLRCIR2W/2eVHEdyup5efN6SqViq6uLk6fPs34+Dj5fJ533nmH2dnZ+y6gnhfsdkv6J/F4nvDMH+36+jrT09N885vf5P/6v/4vTp8+3Yi002q1P/8NeP6sKbsx5taFr1AocPPmTd577z2SySTDw8OcOnWKQCDw2C5Mu6GIK5HxZKnID+/dZnI9yGGTD6u2TtZGHAGSCkVtLq18wVipiayksow7WxVISYJCRfkWrl1bjyW8HNngeBMZP+boIqhQBGoQ1CwkIkjAYqXAMev2WMcc3dxtU9C30GOws5hMsdcoJ8SDFm9L/GKhViVcKNJlsDPq6GYho9AZFNCr1NzctNcooc/oZCYepFirki5VZOdsj9HJfGKbWF5Jhthvdjf+r0aFSWVoREBWJZFosYiz6X32mT0tlpWryRDjzlbf9AGLj/l4fZtwMUu/Alm3aQxIaFgppnHWOttIrBojNbHzd38qtsagxcMxR5/MblRGRCtoUG8t9SQ4Yu3hyuY5mIlvcNwpV68lCQ5ZA9xJJzGqlUnSlmo+ZO3itkLh6J10Ep++vnAzq7XYVKZG2k+0mOPfffBDqo/wO9z6LT2u+cBkMjE8PMxrr72G0+lkbm6uIQCIotj4/T4PiviHPalFEAScTifHjx9vLKAuX77M0tLSE97LDzd220bywpqyMzyzRHxmZoZ/82/+Dfv37yeZTHL69GkmJib4H//H//GhJ9QX1pQnP2axWOTKlStcunSJcrnM+Pg4x48fv28M4U7Ge5qKOCjn3P7fi9cbaRzXYjFMVT39JjuRotyz6tWbWgjkFg7a3SxlklwOhjhi9jUI17Ddy1JWrqr3mxzMJ7YtH5PRDUYs3ZhUGkX1HGCv1kqB7e/EVCzIfsGGQVBzrwMJ32tyMBPfIF+rEMwV2NPUvn2/yc2UQpFkulJCVdMQv093xCFLfbFwLRFjwNSqVOsEFZWqRG3T9x0t5TCrTeg3u1XqVRrKotRi+amINaLFYoOwD+rlnul4OY9Da0GNCofORKJUpNJmN5mIbedsBwxW1vOZFv/5lWSI8Sabiw4VLq2V6GaM4L1qjkGVvAHNEVsX09ENJmJrDNmUvfQiEg61lZsp5Xbyd7MJjjnqC65Rex8zbef+WjJCT1N3TEmC445epuMbbBQyHLQqq+aSBNWqQLaiXPSYqZYwqw2YVBoCeid32r6PE9FVvn71Z4p/ez88qfbvOp2OwcFBXn/9dfr6+rh9+3bDl/wkxrsfdksR3w0i/qhdNU0mE4cPH+a1116ju7v7ubamiKieucfzhEc62v/6X/8re/fuxWAw8PLLL/PBBx/cd/u//du/ZWhoCIPBwMjIiGLu4vXr1/nUpz6F3W7HbDZz6tQplpe3O7n9T//T/8TAwABGoxGv18sv/uIvsrCwIHsfSZL41Kc+xdmzZzGbzczOzvJrv/Zr2Gy2R57YnjdFfEsFetKQJIlYLEYkEiEcDqPT6Th9+jRHjx59rF3x2vE0FfGt71z7+ayKIn9z62rLc6F8HrNowKOXK997zHbFhBN1U8TdfDyOVzRi1ego1ZSPz6KVR+bNxkOM2fpkyR8Abq2RxbJcJb9ZyjFi6mrkRDdDkkCFumFdzlbLRPMleg0OVAgd9w3AqjFQLEuy1A6AAxZvg8BXJJG1bJ4u/bbt4rC1m7W2tI472Tj7Lf6GwrumkE6TKBewakwc1Lq4llcuRr2diTJi78apMRMryRdKErCWy9BndIKkbijqzZiOrzNo8YIEe/QuFjOtDXvu1PLsaYpW3KOzsZCMNmIRV7OZFmV+C8cde7gQXqHf5Oqoqk9EV/mYa4CpmDy9plirokKNRlAhSXDC2ddSODoT3+CES37HZdzVx2R0nUy5gklQJlJ3M0mOO/Z2XCT85c3L/NP6beWd7oCt39KTIl5qtZo9e/bw6quvMjQ01GgCcufOnYdqW70TPG0rDOwO+d8adycLAK1Wi8Egny+eJ9Qk4Zl7PE946F/dt7/9bb70pS/x+7//+0xNTTE6Osobb7xBOBxW3P7ChQt8/vOf51d+5VeYnp7m05/+NJ/+9Ke5cuVKY5vFxUU+9rGPMTQ0xNtvv83c3By/+7u/2/LjGh8f51vf+hbXr1/nH/7hH5AkiU984hMyoioIAr/+67/O8vIyf/Znf8ahQ4d21FkT6hOzJEm7EiW4G2PCk+1UttWC/vLly1y7dg2DwYDP5+PgwYMYjcYnNu4WPgyK+Ntrd9nIy7+TkiQwsx7mhKO7kSNt0Wi5ppCgstfiaDSR2cJ6pcx+vZeCQnOgfrOTKwn579Ss1jIVCeKsGTFKrRfEXrNDsWjUIWi5HAtz3Cb3WI85uljMtBLadKVEsljhpHMPyx0KBI/Y/MwlQqwXMthVFoxNvmmDSkO82EqCstUypYqAQ2NkyOJnKq7c4n4+EeRVzyDTHV6HusWnWlN1JLIAtZoKi7rz9zNTKeHXOQkqfK4ANUkiWsgzqHJwQyF9piqJ5EURs1pHl85KsFBoOfepShGP3tpSnDnq6OVyZG3zOOtWESWMO/cwHQ3h0inv/71skhF7D+POPiYUioevJcMtqvkpVx8Tm+OGClm6tFb5uZNg2Bbg7fW7jNynkc8fz73DcibZ8fV2PClFvB2CIBAIBDhx4gRQ71tw/vx5rly5opjC9TixG+r0bjYR2kndz/MeXQgvrCkfdTz0TPYnf/In/Oqv/ipf+MIXGB4e5hvf+AYmk4lvfvObitt//etf55Of/CRf/vKXOXz4MH/wB3/AiRMn+NM//dPGNr/zO7/Dm2++yde+9jWOHz/OwMAAn/rUp1pahP7ar/0a586dY+/evZw4cYI//MM/ZGVlpXHbsBn/3X/33+HxbN+2bk5NeRRsTU67UTi5G4o48EQWAM0Nk+7cuUNPTw9nz57F5VIuqntSeNoecZBfLP7q5rxs216zjeuJKCAwtRFir96JS2dkyO6hUJP7va0K6jZArlIllatw0NZq3TCrlWsietVGcrUK65UCDq0V92YkXp/Jzmxc3vAHwKXSU5FEJjZ95lswqTXcyyoTbTUCS8kMfr28RbxJrWlZmNzJJujWuVFtTsiHLAHCCjnp4WIOj9pO7D52li6DlYvBNUYVcrkBjCoN5RosFJIMG+WFmVAv8JyMrTMXD7GvyVPejFFHLxfCyxzrkBgC0G/ykKuKKEakUPeTH7L4KVQlCgqdTRdS28WZR23dTEdaP5/ZeJB+c+vv6YSjj8uRtTqRb0tZaYEoUKgozzfFWhW1oEIrqBh39vFBpJWs3yqkOGzYHree8tLLTKy+f7dTSfwG+V0uq1ZPqSrxGxf+vxQfMJZu67f7tKwIW7/d8fFxzpw5gyiKvPfee0xPTz9ww5mHxW4p4h92j3gnPM+2FADpQ9CS/nE+pBc54p1RLpeZnJzk4x//+PYbqFR8/OMf5+LFi4p/c/HixZbtAd54443G9qIo8sMf/pCDBw/yxhtv4PP5ePnll/n+97/fcT9yuRzf+ta32LdvH319nePFttApR/xBsVtEfLesKfB4j7VcLrO4uNhomHTgwAFOnz5NT08ParX6qfvSd0MRbz6+G4koE2G5R9prbLUd3E4k0ZTVlKryc9NttHIlLle3u1Q6bqRiZCoVbkWTjDnrRY37LU6uJuWqugkVdyvbVou1fAaqaroMVixqvSJnG7C4WCw3JWQ0FX0OWf2KdhWod6Bcz2eoVlR42vKvD1p8MsvHjXSULtHMAZNH0VMObKZ2qLGrzLR31YR68aVO0FOoVZiLhTjQ1jVSkmDA4md907JyNRvncFujnAGLm5lonVBWxBrJYhmHtlVZHnP0NpTkiegax+zdsn05autiMrLGciXPsQ7Z6RaNjvVsnr0dyP7W+5+093E1sW1b2UJFrFGqihg27yYMahxcjjQ1PUpFOemWz5nHnT1cjqxxN5OUfTZbuJdNctazr6HAt+NmIclec70W4KSrj4mmcXPVMgaVrqVbqF6lxqu1sppLcz0Z4X+d+qeOx9yMrcSUp0W+tkixIAhYrVaOHTvGuXPnMBqNXL58mffff59wOPxY55QXxZoPj+eZjNcQnrnH84SHIuLRaJRarYbf33oR8fv9BIPKylkwGLzv9uFwmGw2y1e/+lU++clP8o//+I985jOf4Zd+6Zc4f/58y9/92Z/9GRaLBYvFwo9+9CPeeuutB8qStlqt5HK5R54oBUHYFVK8G9YUJeL4qMjn8ywsLHDhwgWy2SwjIyOcPHkSn8/XMmk+bSK+24r4X9+8ItvOrtNzNSb30faYbVwLxjjhak0J8RstiiS5mYzWJImpYIgTzh50gvKt38OuAKU260mkmMepsiimrkgSKPXAmYhs8LJjD9Mx5XngsM3L3KYtJlzMIdS0jQLJAbOL6Q5Ee6Nawoypo2Vk1NHFfDLMtVSEo9Zu2XZjzh7ubNpkqpLIWjbTEud3wtnb0l1TAu6kEw0bhkNrJFYotRReRks5PDpr41wfsvqYibUXQEbpMzoa/99ndrOQjDU+s9lURFZ8qRXU+HVOVnIppqMbLWkuzejSmLkZjqLtcPt2PZ/mkC3AAb2bm4WM7PWJyBoHLNvK/6iji6lN0pyplHDqzAgK7z3m6Oanq3c51sFmUpUkCtUapxx9fBCWk/U7mQTHnPUFigqB/WYvt9PbFp3v3rnK3y7Jfxvt2I0ul+3jGQyGRsMZr9fL1atX+dnPfsbq6upjmVuet2LNnUbSPs8kHECUnjV7ym6f0aeLXdf/tyatX/zFX+S3fuu3GBsb4ytf+Qq/8Au/wDe+8Y2Wbf/Vv/pXTE9Pc/78eQ4ePMi//Jf/kuJ9bklvYacecdg9m0itVnuqHjhBEHa8AEilUszPz/PBBx8giiInT55kdHQUp9OpOGE+64p4c5Z4olTgh/duybYbtLvkXmwJIoV8nVCvhxlzdKFTqXHrjcwrqOF7zXZWZU1sBBLZImJBRN1Grjx6E3MKSSxIkKtU2MjkOWRt7aA46giwqNSxUoJkqcyovUtGhrWCilibvztYyKKTdLi1po5Z4wA9KiMfxDY4oWD38OrN3ExtFzxOx4OccGzbZA5b/TL1NlMpIdYELBo9+8zuhnWiGblqhWoN7BoDbq1VsTjzRirKqKOXgN7KSjYjK6Qt1aqUaxJmtRav3kIsX6TUZC+SgPVspmEDQoKDlkCjqLEqiWTKFSxt+ePdRhuZmkRMqhDQmjsuUIqVKkJNpbhYE5FIlIpYNDqO2v3MxUIt291MRRl3t57vEXuA2Wh9u8V0oqWrazMCBhvF+1hvJiLrHHN0MeLo5qpCvcL/OvlPXFN4vhm7ESXYaTytVsv+/ft57bXX2LdvH3fu3OH8+fMsLS1RqcjrNB5mzBeK+As8KHbbSvIkHs8THupoPR4ParWaUKj14h0KhQgElFWSQCBw3+09Hg8ajYbh4eGWbQ4fPtySmgL1BgwHDhzg3LlzfOc732FhYYHvfe97P3e/txTxnWC3muvAk/Fr3w+PQowlSSIajTI5OcnMzAxGo5HTp08zPDyMxaJ80d7JeDvB01TEt8bbIuJ/t3STUtv3SC0ILKWSsr874vKymt1WNGeCYbq1dgatbsXW7MYOHvBKvsSNTIo9Ogc2zbavvM9sp6JwHo65/NzJJCnUqtyOJzm6qdxqBZVigSnAUaeP68kok9Egxx2tjYJGHF0EFZq3rOUzHDD7SJeVkygOWj0sVus2l4noBsebPd4S2DVG8rVWsjMR3eCYrRuH1sh6Tnlf1/MZ+vQu8uVqxxb36/kMR2y93ErFFF8HuJ4I02dwk1FISNl6jwGzD62oVbTrJMtFnBoLgiRw3NnHXJsfP1TIste8nT/u1pkolyVSmxnzi4U04065BWbA4mYxmWQpn8arVk6TCBdzjNi7uR6PKqbxTETWOGirL8KGbD6uNW2XrZSxqvUyK9BBg5OZSJCZWJBxTwefvAR6QUe4w2dTFmv82/d+0DhGJYii+FQV0AdR4FUqFb29vXzsYx/jyJEjRCIR3n77bRYWFh5ILGrH86SIv/CI7xwiwjP3eJ7wUL90nU7H+Pg4P/nJTxrPiaLIT37yE86cOaP4N2fOnGnZHuCtt95qbK/T6Th16hQ3btxo2ebmzZv09/d33JetJgsPEidls9kol8uUy8p5tw+C542IP+ixiqLI+vo677//PgsLC3g8Hs6ePcvg4OADR0o9TYV6N8bbIuJVUeRv5q9y0t3VMs2MuP0kSvKLdXtWNUA0X+BOJMUhW6ttod9s51pSbm3p1RpZqdbf+042jUnS0220EjBamIvL1XAVApHCtgJclUSuRKMcd3RzzKFcMKlGIFrcJppT0Q2OO3qQpHqm9qzCOFD3uX8QWcepsWBpW0ToVWoSbSr6RHSDY5vdGo87u7mZVibJc7EwhyydveqSVC9u8ult97G8dHN+/a4stm/7TaDf5GYystHwRbdDhUChLOJr62zZjJvpKK96Blr81C3HEg9x0tWHRaPHgF52/mfjIfY3FWd6BB2ryTTFWpWiWEOzGUvYjkGrm4nwBsdcciK/eXjE8nlG7AGWkknZgu12Ot5ybvbqrCzm0oibJ3Q+FqLf7JC97ylPL++HVtEIanQdiGa6XOKPJt9pvFc7PgzWlE4QBKFR53Ty5EkKhQLvvPMOc3NzZDJym9D9xtwNRXw34gsfNUf8Bbax21GDL+ILd4aH/tV96Utf4i/+4i/4P/6P/4Pr16/z67/+6+RyOb7whS8A8K//9b/mt3/7txvb/+Zv/iY//vGP+c//+T+zsLDAv//3/56JiQm++MUvNrb58pe/zLe//W3+4i/+gtu3b/Onf/qn/OAHP+B//p//ZwCWlpb4oz/6IyYnJ1leXubChQt89rOfxWg08uabb/7cfd5SZHeanPIsFE4+6Lg/j/xXq1Xu3bvHhQsXWF5eZs+ePQ/dsfRhxnuc2C0F/u3lu6znskythThk9uDSG0GCeFFOGPdZHdxMyiPuhhxuwoU8N8MJxpt847YOCSp2U+vdiGA+RzpXZZ/JqaiEjrkCMtVbAhaTSYSaWpG4jrnlivdUNMiorRu7xqiouiOBRaOnIorczSbx6uyNAkOAw7YAIQXSPxcLc9LZq2yp2cSos4uZSIg9Jofi6yfdfczHQ0xFNzjplscv9pudXIvXC1svR9YZU+g8Oe7q40oiTEmskSvXZAk2kgSjjh6uJSNMRtY5ZPPJ3qO+r938dO0uRx3KxZtQV94PmX2s5ORpNFVJJFepYFZr6TJYqaBpSVtZL+cZdbbWF/SbHWzkchRrVeZiIfYoEGaoZ86rRU3HNJPLkTWG7T4GLW7WCgWqTV+OslijWhNbunKecHVzedM7fi+b4qhTfhdVr1Lj01n53p3r/D+vXlYc98NMxJux1QHy7NmzqFQqLl68yOTkJPF4/OcKAbtBil/EF350sds2khfWlJ3hoY/2c5/7HH/8x3/M7/3e7zE2NsbMzAw//vGPGwWZy8vLjQYIAGfPnuWv//qv+fM//3NGR0f5zne+w/e//32OHj3a2OYzn/kM3/jGN/ja177GyMgIf/mXf8l3v/tdPvaxjwH1wph3332XN998k8HBQT73uc9htVq5cOFCS8RhJ5jNZgRBeChFoh27QcS3ikQ/TPnlxWKR27dv89577xGNRhkaGuLll1+mu7v7kS8cu0GMd0MR/+tr2w18bsbiiEWJs4FeljPyJjNWhSJkvUrNzURdBZYkmFwLMWrz02+yMafgGR+0ubiWkKvkTr2ByfUwY/ZWImRQqbmTTioew4DFyQfhdcadrQWRTp1RMeMcoCaCTtIq+oWPu7paFO3FTIJegwu9oGbQ4mYqply8iQSxfIl+k7IKvcdkZy4eIletkC1XZc2RBixupqPb7z0RXmek6TyYVBoK5VpLAet8LMSAZfsOxKizu8V7Hipk6dY7WgocT7p6mYzWVW4RiY1cFldbGskhm4/5aBgJuJtOKvquVQj0m9wsZzId4yeDhSxDNj+VCiQULB0TkXUGDQ6g7jFPFsuNbphlsUZNrH/2zeg12Ynni/XFSiebCSDVBIoVkbKCxWctn+GQ3QcSHHMGGskzW5iKbHDCva3ICwgcsG4XcH597iLvbdyTj7mZmvK0sFPib7FYOHr0KK+99hpWq5WpqSkuXbpEMBjsOA+98Ig/HF5YU3a7uPIxP54za8ojLUO/+MUvtijazXj77bdlz332s5/ls5/97H3f85d/+Zf55V/+ZcXXuru7FbtxPigEQXgsEYa71eb+w6CIZ7NZlpeXCYfDuN1uxsbGsNvtHd7h4fC0Pdu7QfxvJeJMhlrJZbpUJp0pM+7qYjYZorq5T36jmSsxObk96vYyGWrLjQ5FOKQ34dbqibV5lXUduh06tEZWxAwzoQgnAz1MJNZAgKNOPxMROQHuMVmZjtYV6MlIkDFPF3PJDSShrq7OKGSNG1RqNnJZIsU8o+4u5lNBJEHaHN/ArbRc7b+ZjnHE4SVT6eypPe7qYiK6gVmjZY/RznJhWyXWCSpqNRoKfLSYZ4/FjlldIVerYNHoSJXLLb5wCbiRjLPXUm/B3qWxcqut4VBFFIkVirh1JmxaA1cVPpvryQinvL1MJlY4ag/IrCbJcpEDNjepcpEaIt16K8vpdGNfMpUyXoMFjZBvPCdJcMzV3Vg4HHP5mUts0M45rFo9wWyePrND0ToEsFbI0qXSky9WSLYV9K7m0pzwdDEdry8u/AYLhXKN1KZ3fyYWZL/VyVJbkW630cpaNkvAtJlNrnDtnIlucC6wl4uhFUWrydVYmH6znXvZFCfc3UxGWhNsvnThx3zvk5+n27xt7/moKOLt0Ov1HDx4kP3797O6usrCwgI3b95k7969jSjXxz3mw+CjSsSfZpTlhxXSM+arlp6hY3kQPBf6vyAImM3mj5w1BXYvS3wrrSWRSDA7O8vExAQqlYpTp04xMjLy2Ej41njPuiL+3UV5UkqXycK1WIzp9RB9OhtdmzaSXotVRlrUCCyn5cq5R6fnVqlIuaTisH07km7Q5txsDtSKfVYH87Ft9XwiGGTU1oVbZ+RaXLkNuUNraMmrnomG2Kuxst9oVyThAEccfiLFutd8NhZixO5vFPf1Wxxkq8r1GgZBi1VtRK0wNe2zOBvxiLlqhXSpgr9JRT5iD7Da1sJ+OZui1+hCLanoN7sJF+REtVirki5WOKp3yUj4FuKlAn69jXy5pthpFOpWjbPuvdxMxhVDQ26lY4y6erAJGgoVkVzbOVjKxBltKr485e5tUe/n4iFOelqtNEaVBq/Wwko21dGXDWDQ6PCZXCQ6FJZORTcYdXXVVfuaimixqU5AFClUai02E6/BTKUKyVKRhUSUIYPyfLDP4mQuEqbLKG/mA1ASa1RFeNnT20LCt5AsFfnNn/095abEmY8qEd+CRqNh7969nDt3jsHBQZaXlzl//jy3b99u1DE9T8WaLzziO8euK9hP4PE84bkg4rDzCMPdVMR3I0s8lUoxOTnJ/Pw8FouFM2fOMDQ0hNlsfuzjPese8bwo8taK/BZ7V1OazL1kmlS6xLg7oJgnPuL2tRRRbqHP7kSUJLLlMjfCCQZVdfuDtkNuuFKyymwkzGGzD5WCqnTI5uaKgvVkqZDDhh6TWj5Ot9EqsyHMxsIcsfo5Yvd2LN7cZ3YwHQ1yNRFh2OZrsXpoBRXlaq3F154oF6Gmwqk1Mmz3dbSzXE9G+JhvH/Oxzr5yv9FKvFRB12FK1AgCpapYJ/4d1nAunZE7qSQ+Q+ffyLV4mAAmYh0KSScia4w6uxh39bY04tnCTDTIPqtrc59U9JvcLKbrSnXdZiLJbCZWrQ6L2sBMIsyp+9hMgrkcXTqbYsLNRj7DIZsXJHDoDGglTcuiZiGfZr+xlYx3m2zE80USpSLVGi1Evhl+vYViuXPk4VwsxNemf9b4/9O2pjwpUqxSqeju7uaVV15hZGSEeDzO+fPnuX79OpVK5bmwpkiS9MIj/gLPPZ4LIr6liH8UrSlPUxGv1Wqsra2RSqUIh8P4fD7Onj3LwMAAer1yMeDjwLMeX/heKkG5bTyLVsu1aGvqR7FaQ1VVMWTztJIWCVYTciuHx2BkPrKtbksSLOZLnHb0cCclz/o+YHMpqt5+o5lLwXVsGAg0+5QlKHQo1DtosDCTiOHTWLE3RSJKElg1hpbCvS0sJKKYMCiq3WoEqjWpobzPx8OMOgINcnbMGah3/WxDsJDFp7MSKygTW4D9FhfvbixzyiMvzIS6FWMlnWKtnGefwS4nhBIcc3ZxKxVjJhZU9EzrVWocWiNruQyVqoRFI/f4qxHYa3ayVM7T3SGHG0At1W09SqhKIvlyFatGx2Gbn+tt3VJXc2mGmwo/9YIKn87Gcrau9E+E1xmyt2bDAxgEFdqamlylirrDbeGZWJBTnh7sahNrudbPQgLipVKjaNirN1GpiCQ3PetruTSHbF5Zse9RZ4CZcIjZaIhxj3KCi1Gt4Wcry3x/8Trw0VfE2yEIAl6vl5deeomXXnqJUqnU6EacVrgL9qSwG0R8ax5+oYjvDLtdWPmiWHNneG6O1mq1fuSKNZ/WuJVKhTt37nDhwgVWV1exWCz09fWxZ8+eHXc8exA8y/GFVVHk7YQ8Zu+Qy0Ox1kpyNYLAUjLJ3EYYp2Cgx1BXt/fpTUSr8uYge6wORcKbKpTxa6z4m5VZqV4Mp4Quk4WqKLKey1Io1Biw1BXXMXeAe1m5VcOgUhMq1W+h302nMKPHu1mIOOr0s6AQowgw4grwQXidIYtXRsbHXF2s5FpJx0wsxH6VmUGzk8mostotSSBIAlaVAa1CTJ9JrSVfrVAVRS6H1xhvi+vTCCrMah3pTcvGjVxSRtjHPT1MNY0/GVnniKOpSFyCQzYvS5vK9EY+U480bP5opHqay7VEhLIkgSQoKsRHHD5mIyHUkgq9SpmcbOSzHHf2MRtVVvinohscd3WjQUWX1spikx9fAsK5HHbddrSoXqXGqzaznEuzlE5w1CYn6lAnxNliTTkFB0hUSvSZHNi0enRoZTag6WiwhWwfsLm5FYs1bFizkRD7ra1FuAIC+80u7qST/N7Ff+J6PPLUifjTbCBkt9sZGxtDrVaj1Wq5dOkSly9fJhqNPvE5azeI+Na17YVHfGfYbRvJC2vKzvDcEPGPqiL+JK0phUKBmzdv8t5775FMJhkeHuall17CbDbvCjF+mm3nn9ZYby/fJdFGolUI3EvJla6jXh+JzeYfwWyeUKrIMbsblcLdCIfewJWo3DIS0Oi4kYizkk6Tz9U4bKv7xoecbsU4xD0WWwuhS5VLrCQyjNr9LGeU/dJHnX7STY101nNZpIrAPrOjpQFRM/rMNmY37SpX4hEOWTyNfOs+0/Zr7VipFHGoOre4H3d3cy0R5WYqzkGrt7U1uwQHbB6CTXGMM9EgR5oU41FnV4NAb+FyeI0Tm4T9kN3DTNsioJ5ykqLHVC8gPOXpZa7N9nIlHm4h9KfayPx6IVtvmNN0XPstLhaTSaqSyHI2VVe2245bkuCUu4e3V+/e12ZyKxnjkN7BXYUW9/FSgV5jXfnXCCr2mdwsN9lRZhIR+jWtCS8aQcVeo4vr8QhaSaW46AFYSsUZtXexmlNWcq/Ewuwx2+kz2Qmmcy3NraqiSLZYwardvJsgwQlXV6M4tlSr8cWf/pB0ufRMWFPuB1EUOXDgAK+//jpOp5PZ2VkuXLjA+vr6E5u7dqNAtFqtNtLBHgVb/USed+x2850XDX12hueGiFut1o+kR/xJWFMymQxXr17l0qVLlMtlTpw4wfHjx3G73bsSmbg1CT+tCfVpKuI/uC0v0jzi8RJt93tLsJ5qJb6iBOWygBHtNjnZxIDdqVg0qG0iotlKmZuRBCfsAcoV5c/TqtXLnBhlsYZGVLPP5JQRQZ/BzHxUHpUYLRbwqa3YlfLMJdCrNC3q/dV4lAMmD3pBhRa1orIP0Kc2cjka5KSrW0bG+8z2lsLTK/EIo86uxnbjnh5m21rY1ySJpWScfRYnJ1zdTHZqpBMLcdzVRSiXU8xbz1XLIMIpV08jG7sdl8NrHHX6Oe7q4nJYPs5sLMhJb51MdxutxAvFlrsk05ENTrTZNU65e7gcqr/XdDTIfotCjKNUj2mMlctoOlzQrsbDnHT3MGT1cV2hBiBWq2LdTN0RJGFzu/qdjnuZFKMueQa4VhDoNzm5sL7CoM0lex3qZNqk1iNWBTIVecFuuJCrR1NK9cVLe9LQajbNV69NIIuOeYLYDQVekiTUajU6nY7BwUFef/11+vr6uHXrFu+88w53796l2sE29qjYLUVcrVY/94r2TrHb6vULRXxneG6I+Ee5WPNxjCtJEvF4nOnpaSYnJ9FoNJw+fZqjR49is7V2/tstIv6sKeI3ojHeX1rjoNGyTYckyFXkNpM+vZ6wQitsjUrFtXAUQ03LQUed3Fi0Oq4pFHQO2J2stqViiJJEuSpiVellVocDdhdX43IS5tAbuBaPMhkMcsLR3WJp6TJYFBcA3SYLk+ENguk8Q9bWrp/HPV3cVvCsX0tEecnZx2pWWT09bPeyuFnUOBEOcrKpk6NGEEAUZPsyHQ0y7uqh3+zoWJxZqFUxoiV0nztkKqBUFjGoOjenMmv0FCq1jpYfAJWoIpbv7F+fjmww6gggikLDT92MeryfA9hsiBPaJvRVUSRXqWLWbO+jJMEJdw8z0RAbpQIHO3T9RIJaVSKv8F0EyFQrdFtcCJLAPrWZK7HWxddkeKOFjAsSDJqcLCSi1CSJTKksWzxCvfFUNl/BazB3LM68EgvzzwL7uBxUXiR9EA/zvfCK8h8/ATxtIr413zePqVar2bNnD6+++iqHDh1ifX2d8+fPc+vWrQfqLv2g434UC0RfWFNeEPGPOp4bIv5Rji/cCWkURZFgMMjly5e5evUqDoeDs2fPcujQIYxGo+LfPO1j3ZpEnxYRf1oK/N/MX6VUFbkdz7NPbyNgNjPgdLKUTMq2NRhNsuf2WG1ci9YJd6xQYDGc5KSniyGnW7GIspOnOFupMBcJE9BZtn3jUufj3291NN5/Ohxk2OLFqNZwyOZiLiZXw5HArq0XaBaqVZYSKUbsdQ+1Q6fntoIlBiBgtPBBcJ19Jpds381qLeF8612DifAGJzbj/Y45uxoFiO24GgvTY7B3jBk0a7QkimUEUYVFIyfakgTDdj9X4xHUkvI2foOZUDbHfCzMuFu5yHCP2cHtRAKxpuwHh/qdglpNoNRB3SzValRqIiecXUyF5D75YD7LgNWNJG3aVjy9TIa3t7uaTsjVa6lO6qfDQfKlSguRb8ZCIsrrgX0sleRpPQCLyQR+Y51QD2jNLDQttsL5HPssrhaybVCp8eksrGbTzISDjHuVz9uQw8OF1VWGnB7F1wH+PrrGOyt3O77+OLEbxaGg7JtWqVR0dXVx5swZxsbGSKVSnD9/nqtXr+7Iegm7Q8RfRBc+Huw2aX5BxHeG54aIW63Wj6xH/FHGrVarrKyscOnSJZaWluju7ubs2bPs27cPnULXxmbshiL+NH3bT4P4J4tFfnRzsfH/u8ksqWQJn8Yg23avzc6tpFwxdhhat5UkWAjFKJdEXG2vDdidXFeKPfT4uJeuE9bldJpCscqQ3c0Rt1dRpe42W5mNtCrJ12JRAmorGpQvmCNuH9ebClIrosi1aIzjzgB7LU5FCwISOLR6SmKNG8kYe43Olti9AzZ3S5b1FibDQT7m6VfMnN7CsMPHhfVVjrvkRE+SYL/Fw3ouw0o2TbfR0fCqb+GUt4fpTc/6ai5Nn8nZyECHetGiXtA2FOzL4XXG3K1t5F06I4VyjVylwko2zaBVnhiiEVTsMTuZj4XxGqwtYzTDqTEgVYWOPvnZaIhT3h5e8va2KOZbuJWIEzBuprRIcNLdw9QmWQ/msxywuRWTYk55eji/sswhhxsl5CplzIKWU+5uFhU+q/nN/QJQo2LA4mGx6Xs+HwnTb3W0/E2/xc5KKk2pViOUyeHSy8UCNQJulYF/9/Y/spxWXow9TjztLpdKing7BEHA7XZz8uRJzpw5Q61W42c/+xnT09MkFRb6Pw+iKDbsME8TO40ufIE6dps0vyDiO8NzQ8Q/yp01H4YwlstllpaWuHDhAsFgkIGBAU6fPk1vb+8DT7JPm4jD0y2gfBqK+Peu3WgpRIN6RNzl5RD7dBZ8pm0F3K5QjOkzmbgSkdtGDrs9XA1FoAjDTYphe3b0FhLFVltEplzmdjSBQ6VXtAa4dAZFT7RLbyScKtBvbs2K1qvUBBV+V6IkUSjWUIvKU8xxT4AbyW3yfiMZo8/owKBSc8ThbXTybIdVo2UhGue4U+5Rhnpqy3SkTqLnwiGONhVmwmZhZdN730jEOOIINEjufqO9RVEGuBaPMLblUd/0X99rK2S9Go0wsJnvbVCpsWmMLakhc9FQS/GmJNUbEF3fjJO8kYjK/OAAg1YXi4kk05FtP7kiagLRnLJynatWMKp0aASBU54eJtrI+mwkJFOnX/L2MhHaQJQkYvliI5awHep8hXy2s/VmJhJkwOrkmCPAtbaOpGWxRqUiNu4WeA0mssVKw7qVKBXx6M2tCxQJBk12lgs50uUSX/zJDykoJAo9TuxWXOKD2i2sVivHjh3j3LlzGI1GLl++zPvvv084HH7gOe5xpJc8Ch6XCv+8W1Mknq2Czeet/Pa5IeI2m+0ja015kHHz+TwLCwtcuHCBdDrNyMgIJ0+exO/3P/RFZDeI+NMc80kr4lVR5L9duSZ7vs9qRQKWUzlyqTInvAG8HQh3r9VGe3dNvUrFYqKuKKZKJRaCUU56ujhgdyp6xke9fsUUk2MePxdX1xlzBtA1fTcO2l1cUWjfbtJouJNKEisWiGYKLR08R1x+xUZDGkEgUy4xFQxyytXdQvpdOoOiXeVWMs5+k4t4oUOLewn2W11Ei3nmIhGOtZHsgNHS8r41SeJWPF5XfKknqEyF5Ur6TCTIKU8vTrWOcLEgO+8Ak+F1Tnl6OOnpbSkQ3UJZrJEolvDojQxavdxJJ2XbTITWGbb7kCQ47gjImh5dDq1zzLl9TH1mO+FsvlHAORsJMqBQBDnu7mYiuEGhXOtoM1lKJzjn6+y7vhIJ02+pL7JOeXpatosW8+yxOGQLt1PeHm6XClzLpOhTKxP1ak0koLdxSyHCE2A9l+Gg3YNFo0UvaIm1LRxvJmKcaFoknPL1cKNJBb8Rj/G7P/vpE11Uf1Ryy41GI0NDQ7z++ut4PB6uXLnCe++9x+rq6s+d6x5EhX8SeGFNeTzYbfX6hSK+Mzw3RPyjHF94v3FTqRTz8/O8//77iKLIyZMnGRsbw+l0PrJKsBvH+jSJ+JNWxP9p8Q7BbOt3Ta9ScTe9vRAsVmvMLocYsrpxt3n17Xo9VxXI+RGvj1RTYZaAwPRaEJ/WhM/Q6jFXUffptkMjCKxt5unPhcL06ux49SaQoFJTPv/DTi/JzXHz1Sq3ogkO6W14dYaOWdajHj/rm01pJoIbjLu66kROgh6zjaySXYV6R1ATOsWOnWNuP3ObiS2iJHEtGuXophddjYBJ0JJv81qXajWC6RxDdi+xfEFR7Yc6ye3VWMjcR12tVaBQ7pxUESvkOWwLcF2hABbqh7+cTjOkNjOt5LUHbicTdJvqGfD5YoV0efvzrsf7tRZBjrkCTIfqhL6jzYR62so/3bvLUZdf/iL1hYRYg1OeOqlvx5VYmJO+bUV+3NPN5Y1tsh6rVrErdG095e3lwuoqgx32C+BaLMIJVzerGeWi3YngOsfcfo67u1rG3MIPFm/w/742p/zmjwG7Uay5E3Kq1WoZGBjgtddeo7+/n6WlJc6fP8+dO3eodCjOrdVqO4oRfFTs9FhfRBfWsduk+QUR3xmeGyL+OOILn2bWdfO47WNKkkQ0GmVqaoqZmRkMBgNnzpxheHgYi6Vzx74HxfOgiD8JK8yWLegv3rske23QbpOlpZi1WqZXguTTFY77tq0Wgw6nzNaiFgSWU3I/7D6Hg0ur6xSLNUZc201mRn1+xe6Mo14/kaYiyLupFNWSxCuBXkUVN2CyMBtpJY01SeJmJstevU2RvHeZzMy1/c1UKMiYw8+o2y9L4NjCUWe9mc1iKkG33tai7noNJm4nWj3tNUniZjzOYZuHo1Y3dzLy/Ye6HcdQ06LukH2NVM9Gv5JOcdDkUNzkoN3NfDTMnUSyoRy345S3h3dXlznmCnQknYM2N/FyreVORDNy1Qo2tQGjoJOpw7AZ77fZLOiI08fVSLRlqNlIiJO+VpvJuLuLiU2F+14qiVehMBjAZ7AgVjtfAGciQfZbHRx3dzHZRtbzoojXaG1JkDmktzWIs9J+QX0xOWT3cnFtjf22DgkvgFSDaF7ZegPw1fd/xuUN5RjJnWI3iPjjGE+tVtPX18err77K8PAwoVCI8+fPc+PGDYptCU1P2we/hcfhEX+RmvKCiH/U8dwQ8S2P+KOuoLcmqd1QirfGFEWRjY0NPvjgAxYWFnC5XJw9e5YDBw5gMMiLAHcy5m4Q8aepbgiC8NjGKxaL3Lx5kwsXLnBlfYPbbXF1ggThvNxucchbTz8pVKrM3QsxbPPQbbFyIy63bYz6/Ipt3Lf8tdlymavBCAe1ZvQqFWsKlhSjWsPtRFL2fK5c5k40zbi7SyE33ERV4buw32RmIhpl1OVHLbR6eO06g2L3xcVkAm1NrUhCrVpdQ6kHWEwlCOgsGBAQJHBpjeQU1OqKKFJKF4hlOi+yD5vszERDUKop5pyf8vUwHQ7WFetsTtbd0Wc0E8kWqIoi+WqFYlnEoWv9vR1z+hvkdDoc5JQC6Rx2eLkSDhOpVhiyehTJulmjpViq4dAaO5L5q7Ewr3XtZTGeoCrJz/NsOMT+zSLIYbOT6eC2BSZTLuPQGGWFoWPuANPBDaZCG4x5lP33VVHEq7dwW+H7CXA7leDkpo1kzBXgRpvwMRsOsa/53EpwwtPFlUiYqihSKFewaOWqep/Fzt14CpXYuduoXq3mP116j5DC4nOn+KhYUzpBEAT8fj+nT59mfHycXC7HO++8w/z8fEOc2o3ElN0c91nDbpPmF0R8Z3huiLjNZttxi3t4+kR8yyZy7949Lly4wL179+jr6+PMmTPs3bsXrcKFa6d41hXxxzVeLpfj+vXrXLp0iVKpxIkTJ5hRaJyzz2om2qZAqQWBu/FWhftGKEav1sKgvb3NN6wrfHf32e2NeMMt3M7lGbV5UUvyn/YRt5e0QubwMZ+fYC7L9EaIE66uhnJ8yOFmXqF7p0YQSG2q+3PhMINmV4NAjXr8LMSV/cAH7W6mQkH2Gl0y68k+i5NEqfUcLaWSOCQdJ5w+xa6gABZBTUysEq+JDFjliuoRp5frmznlkXIJYwX0TQuHQ3Y3002xgCWxRjJfqsfyUV+8mAQdyaZ9C+dz+HSWRnfJ/VYnt+KJFt48FQoy7NxuFb/P4uBeMtUgzvOxSCNRZAtaQUWf0c7ddJKZcFBRQQbYb3MyvRFsJbVNqJPaGgd0Fm6kUjI+fysZbynOPObyMx8ON7a7EYvSY7bK3veo08fU+qZPvcMiYSK4zquBPcyF5d+biiiSLZYwbSqgL/l6mGpS1oO5HPutre/t0hspl6tkK2WW0ymGXT7Z2AICe60O5iJhfuOtH1F+zHP0bhDxJ0VOnU4nJ06c4OzZswiCwIULF5icnCSZTD51Wwo8vhzx5x2SJDxzj+cJzw0R32lqypZ/7mkS8VKpRCgUIpPJEI1GOXToEC+//DLd3d1PVEV41j3isDNFPJPJMD8/z+XLlwE4deoUIyMj1DRaLq3Kb48r+ZKP+r3E2xRutSBwL5HiynKYEYcXh76uuh7z+hSbz5gUFmFqYCmRIpMpMdpkVbHr9DLSDvXmQDdj28R5JhRiv8mBS2+kWFH2Q496/cTK2x7vm4k4DpWRfoutY5zckMPNdLjuJ7+ViOPXbnfhHHH6Gt7vdoiSRDxfxqLQHAYJem0O0pUKhWqVUDbPnibbiMdgZDXduoAJVcv0aC2oJHCotYSy8s6ZiVIRnaTFqtFxwOppxD8241YyzlGHH5/BRDJfaumIubXfK6k03SYLAaOFVKFEvk3RnwptcNhRL3xVIXDY5uVGvPWzOGBvLc7cY7ETzRbIlMuEczlcOuVeAG69EWoCoqj8Hb8cXOeIy8cRl49r0WjLOShUq2hR15smbWLI4eFWLE5VEpkNK9tMAA47vdyMJLDplIs3I8UCfkHHEYtT0e89Hwlzyl9foBjVGhwaQ0ue/EwoyJC5tQHZuK+r8d2eDYf4w/feURz7UfFRtabcDxaLhaNHj3Lu3DksFkujMVAwGHyqdyar1eqL+MLHgN1OOXnR4n5neO6I+E4mmadFULeU1osXL1Iul9HpdIyPj+P1ep/K6v9Zjy+Ehz9GSZJIJBLMzMwwOTmJXq/n9OnTHD58GLO5rp7+3ZWbZBNFxgMBVJuf0x67jeWsvJ19LCe3mYz4fY0ujNc3oghFiRG3R0bYoa6GX43IifV+k4lEqUShWuXKeoTxzWSUQYdLsQnQQaeLbJt3fTGRZNDsQivIF3seg5ErCir5WjZDl84ms2wA6FSqliJTgLvpFBZBzz6LnZUORXoaQQBJ4G4mjR0tpjaP97i3i4WmNI5spUwqX6LHbEWNgFNrIlWW3wG4k88y4vBhVekUX4d6K/UTrm6uK6TIbOFWIs6Q1SdT8pv3x6oxYBZ0ituIksRGOovPYGLMFWC+bTFSlUQShVJjQdZlspBtKuCMFwv4jGbZJWvI4eF2PMHtfI6R+zTF0Yhq4rmCovXobjrJmKeejX7A5uJeItWiNF+JhOm3tnrlB21O7sSThPM5uk0WhA5TrUlvpFrsXBQ7HdzgkMPNfquLO6mk7PXb2Sx7TPVamJO+biY3Wv3q/23hKt++fqXj+z8sniVFvB0Gg4FDhw5x+PBhdDodCwsLvPvuuywvLz+Va90LRfzxYLdtJC+sKTvDc0PEbTYbkiR9aJNTJEkimUwyOzvborQeOHDgiYx3PzwP1pQHJf6SJBGJRJicnGR+fh6bzcbZs2c5ePBgiy+/Kor87cw1CpUqs3eC9BusDDqdOBW8+4d9bplSK0gQaftuZopl1BUVLq0RW1sTJiU1XK9Ws1FoJZYzGyEOmd3EFDKmfSaTrKgS6nGFt+NxVhJpjrtbUza6LVZZISnAfpuDyxvrBFM5jjZZMgCOuf2KWePr2Sw+rQWTQtrG1t9FNlXktUIep9aEbVMZ3291MBsJyv4mVS5RLNV42dfLrQ52FiTQCBoCCpF8WxjzBHhnZbmeMqKwjRqBPRY7764uM+ZW9lTrVWrEilQ/vg7jpEolDlt9XFH4HACihTwBgxWfwUStWiffzViIRxu+bIADdhf3kqnGZ3Q9EWfALrewHHS4uRmNYdMYWgosmzERXOcVfx8b6SxFhTQasQaGTRLlVWkJZnKNOwPXY1FOBeSq+RG3l1uJJHeLBfYo2F8AaqKEW2tircMCrSZJ5MpVjnsCLf73Zvzhe+8wE1J+7WHxLCriSjCbzZw7d46BgQGWl5c5f/48i4uLlMvKCUePAy884i/wAs8REd9KE/mwEXFJkgiHw0xOTjI3N4fFYuHMmTMNpfVp22Hg+SDiP684VBRFgsEgH3zwATdu3MDr9XL27Fn279+v2Jn0/O17hDLb362VeJpUooBaFDC33XpVOswjfi/raXmhWaZU5up6BG1ZxRFPXd3c20ENP+rxklP4rmhVaiLJAmNuX8vzAZNFUQ097PaQLJWoiCIzwTDjni5UCBxyuhWJu0C966NEnaAtROL1wk9gn83RsKS0Y8Tj44PgBoVSVZZEss9kYart79byORwaI36jmXylQrXD59dlsrIUS+I1KKeDjPu6mQoFmQhucMonb5LTrTVwdfM4Z5QKLyUY9QQanUyvRSMM2Np9/QIH7B5uJxNciUYadot2vOTv4d2VZUY6EH6AYDbLQZtXMY4S6jaToy4v+6xO1tPZljsfVUkiW6q0RB4O2lysJTMUa1VuxmMdbSb9Vjt340llWxCwmkkz7PTRa7aSr4qyVKDJ4AaHnNtdOQ86XCzF6gWmFVGkKkoNv3gzxr0BLq2u0WOydVTVjSoNVAWkDtabiijyBz87T6TDOXsYPMuK+Ba2yL9KpaKnp4dXXnmFkZERYrEY58+f5/r16xQU7sztFDvNEZck6YUizguP+Ecdzw0R1+v16HS6D01Tn1qtxtraGpcuXeLWrVv4fD7Onj3LwMAA+qZOi1vxhU/Tt7cbUY0fFkW8VquxurrKpUuXWFpaore3lzNnztDf339fL+O3p67KntvndjC3HEJVljhkq/ta++12bkTbihklyJflt+oPe93cS9b9ycliieurUcbcfsUuhyaNhlsxuQLca7UyFwxTrFaZW49w3OVHr1azz25XJNUBs5nZcFv04EaQQzZ3R7/xCZ+fu03RiqIkMR0McdLVBWL9/+2w6XSsbHqvk6USsVyBQZsDAD0CiaKyCrecTjNgdsoU2i34jWbuJZOE8jl0aGQt0gftLmabCP7ljXXGmzpaOrQ68jWxJfXlcnCdce92C/tT/m6mmgo8y2KNeL6wHQsowQlPoEXlvryxLksjGfd0cXm97pOeDgU55ZcTYqtWh1Nr4L2VFY61LaSaUamICCIyMgwQyufYa6tHHu6zOQllci1+9cmNdYZdrXcxes02MvkyG9ksVq0OdQfVfCOTpcdgI6/wW6r7+wvYdHr6rTZCmSylJi/9Ri7LAUdrvvhhs42pYP3zuR6NcjIgX8BY1RqKFZHZUEjxdQCjRkO2WOY3f/zjHRdvPg+KeDv5FwQBr9fLSy+9xEsvvUSpVOKdd95hdnaWdFr5TsWj4EWL+8eD3baRvLCm7AzPDREXBAGz2bzrRLxSqXD37l0uXLjA6uoqe/fu5cyZM+zZs0dxQtoixU+TiG9dBJ5lIt6uiFerVe7evcvFixdZX19n//79nD59mp6enp+r2NwIRZlea70NrlOruBWpE+N8ucbtcJoDVgcBi1n294c8Lu4oxAqW2zK6BQTS2RKhWJahJqUR6ip2RuEWst1gaM2Z3gjjVZs6Fvl5jcpxhWaNlmyuzB5La6GcS29gQWEBsLW/No2+kS7SjL02R6NJENQJ5L1Emr16E4N2N8kOjXWOe/1cXF/DqtbL/OgaQcCs1jU87+vZDBa1rlE46NQZSBZKsuObCm4w6vajQcCm1pFUaDY0HdzgqMvLqNuvWGSYKBUxqbQY1RpO+XqYVLBMXI9G2be52Djm9MlsFdPBIAcd25+rUa3Bb7A0FjlLiSTdZnmfgB6LlXA2j0oSWgosmzEfCfOxnj3EswVZMyUJ2EhnG4uWbrOFYqnaSIpZTCQ44e9qf8v6wqMG8+EILpUymYoW8gzZ3eSKZcXv51w4xMlA/b2PefzcSLVatibX1znUZK0xqNVY0BDfTCGaWFtnxNO6QBGkel77cirNdDDIf3z3XcV9e1A8bWK8W4p4pzHtdjtjY2O8+uqraLVaLl26xOXLl4lGozu+Lu3UmvIiQ7yO3VavXyjiO8NzQ8Shbk/ZaYThoxLxQqHQyJqOx+MMDw/z0ksv0dXVdd9Jfuu1p2lPeR6I+JYiXi6XWVxc5MKFC8RiMYaGhjh16hSBQOCBL77fnpa3sz/s95IptRKPdL7E7J0gJ/wBjE2LLpXCheSAx8ViPCF73qLXEc0XuLURZ9wdQK9WY9Xp5Co7sN/p5GpYbmFxGgxcXY9y3NNqhzjodDKv0NHToTewEI0RyuWIpgsca0pj6bPaySuosH6TmSuRCPPhCHstDqxNdp4Rj09Rja9KEg6jFY1CkSjUGwVtpYqsZjJYVDqcTWR81B2QFfetpNN4Nr3lPqOFaEHulZeAq+EIw0Y7yx1yqEUgncyQyXe+PX8vneIlby8TCkQd6radTLHCPrWe67GYzIlSkySiuTxugxGtSsVei5PFpiZGuUoFLZqWLO0uk4VSuUayVGQxmWDMq+xX77PYuBGK4TPJF4IAyVIRv9FCl9FCtSzJvOgTG+scbSK8Lr0RnaQmlMtRrFZRS4JiPrzbYGQlmWagLf2lGbOhEKcDPdyIyM+JBKwm0zg0GgRJ4IDNTbCt8PdOrHWBctLfzZWmuzrfvnaV/3ZVfsfqQfE8KOIPQohNJhPDw8O8/vrrOBwOZmdnuXjxIhsbG488d7/wiD8eSB8CBftxPl4Q8WcUgiDsOMLwUYh4JpPh6tWrXLp0iXK5zPHjxzlx4gRut/uBVvJbk9TTJsW7MebTble8vr7OhQsXyGazHDt2jPHxcTwez0MpLIl8gX9YWJQ9H1Eojuxz2KnURGbvBbFKGo76vPTbbSxE5CS6veEK1BNYroa2ifLMWgi3YOSYxye3JEgodpIUqNtcyrUas2thxjatKkhyBX4Le23bZLtYrXIlGOGI2cF+k4W5sEKRoVQn+1sFg7cTCWwqPX6jGZtOp9ghFOrk7k4yxZVwhBNtNg41YFRrW/zPa9kMZpUOl87IMZePqQ7FeXdSSY67u7inkMCxheO+Lm5mMvQZlTvTdpksJGsikWweh1pZ/T3q9vGzlWVOKlhMtuDQ6anWgA7f9USxiEdn4rDdw0JMvohqztL2Gc2INaml0dNkcENGxnssVgrFCrFCgXSx1LIoakY8n2fA6lJcrAAsJ+tdOW06PRa1jvWmu4vRapWRts/MrtNjUukI5XJMbgQ52HYXp7F/ZivhVL5jt9G8KGJTGxjQ6rmisFCsL1DUGNRqjnu7mFjfkG3zh+++w/SG/Pmfh627kR/lhj4PgochxDqdjgMHDvDaa6/R09PDzZs3effdd7l37x7VDpaxTngcHvEXqC9YJekZeuz2CX3KeG6IONQV8adhTZEkiXg83oi602g0vPzyyxw9ehSbzfZz/74Zu5FfvhtjPi1FPJfLce3aNdLpNNVqlfHxcUZHR3E4HI/0ft+bW5B5UId8btbbbrEb1Cquh7aJVSxX5PpyhD1mGz5za1HhfqdDUeG26uXe8EKlytxymJPerhZbwmGvR9EzPhbws9aU2DIXDOPVmDjT3dPi897CgMPJbEhebHkrmcKMttHZs2UMv5+FWOv+r2ezlEpV+nVG5chACQImM5lyGQmYCYY46dm2Qxz3dilG2a1lM3QbLMTvo1SPeQO8u7zMfqsTrQLBGXH7mNhYpySKpEtlukytZLzukVaRqVTI1moY1XqMbYucQbuLxVgCUZKY2Fhn3Ce3cvRZbIRzOVYrZY665Y1poL5QMqm16FSajlejmVCQM119aCRVS8b2Fm7GovRY6okkfoOJcqnWsHJE8nn6rQ7Ze3uMRjSSmosrqxx2KUceZspl/EYzXp2JFQWf8NTG9iLArNHi0plY3dyu7hcvYmv7DgdMFjKFMneTSfZt+tiVELDacN5HVV9OpTnp7eZqSDl9piKK/MY//JjgQ94R3ZqTnrYi/mGypnSCRqOhv7+fV199lYMHD7K2tsb58+cbmeQ/D5Ik7dgj/sKaUsduZ36/yBHfGV4Q8YfAzyPioigSCoW4fPkyV69ebUTdHTp0CJNJOcHhQfA8JKc86fHS6TRzc3NcvnwZlUqFw+Ggu7sbq1U5Qu1BUK2JfGf2uux5JS6xx2qWNcjxW81curNGOl3kRFcAtao++Ri08gtTuxq+hUG3k3ylwtRqkG69lYDO0LH406BWcychJ9uJfJG74VRdhW7aeUECsYNKftBm52oiiUdnJNBkd7Dr9S12imY4UHErmWXYISdUJ3wBrreR96lgkIM6EwesdiZDymqmVlCRLVdAFGSFmQD9NjsLm81eFmJRhhzulsLDPVYbi4ntBUu6UgGRxnupEegx2VhrInDBQp5+mwvN5vu41FrCmWxLU5/ZULCF0PpM9c9/yyc9EwlxskuexnLcG2A2HGIquMF4QE7mob5vG8kM5g5pJoVNq4hXraNWbVXMAa5GIi3Rgi6DEb2kYSObRQKCmZziuTRpNBRLNdwG5foCgFuxOHttDnpMNu4mky2vRfN5+sz2xnfMpTci1AQShfoi4Uo4zKn2cwKMef1MrG0wub7BqM8vex3AZzRxPRjtaM2B+nfl//HWP1F6CNV2a056msT4w66It0OlUtHV1cWZM2cYGxsjlUpx/vx5rl69et870Ds9ty/U8G3stp/7hUd8Z3iuiPiTKtas1WqsrKxw6dIlFhcX6e7uvm/U3aOM+6zHCT6Jhj5bdyamp6eZnp7GaDRy5swZhoaG0Gg0Ox7v3Vv3ZBeDXoeVG+FWQqkWYEOhgU+XzYIoSZSrIjN3g3TrLYx3d3FNwdfdriQCOI0GrgS3FcDVVIZotsTLbi+rKbliOezzkizKG8sMez2Eczlm10Icd/kb2dBjfr+iSh4wm7m5+f6r6Qy5QqVRPNpvsysW5VnUalKSRFkUuRFJMN5kY+g2WxS7fgKsF0vY1IaOSumIx8dyOs16NotB0NQ7Sm7CqtVRrtRakjquRiKMuH2oAJtOT6VakzU6CuZy2DR6zBoNo55AS7fLLdyIxxjx+HHpDGhUWjJt1qCaJLGaStNjseLQG9Ciklk+poIbDLs300okOBnoYrrJXjMXDnHA2bposev1WDQ6ltNpUvlio9lPO0rVGh6VjnhBudnQdLBuFXHpjZgEbYvNJFEs4jNZWs65UaOhx2RnKZFgYn2DIx6vwrtCpVajy2DhTofF2NVIhFNd3Zi1WmwaPcG2+Xh6faPlmIdc7pYF6M1IDE+bgmoQBKRihWSxyMz6BkMuuQXGqFajk9S8v7LG//JP5x+YxO2GIr6b8YU7gSAIuN1uTp48yenTp6nVavzsZz9jenqaZNuibGtM2Nki5wUZr2O3Pd0vUlN2hueKiFut1sfqES+XyywtLfHee+8RDAYZGBjg9OnT9Pb2PtaJ9IUi/nDYymafmJjgypUrOBwOzp49y4EDBxrRkI/Dk/5XF+fJJkqc6Ao0Guy4Fe58HHA5yJRbyZ7TaOBqsFXhXktmqOQrjHl9LcS7z27lioIavtfhkPu6JbibyLLXbKfHsm2xcBoMigTfazYx30Tm54L1VJWDDidLCsWiSOAwGFoyvLPlMrcicc519zHXwRow4HQ3umtKwPRG3XqikgSMaq1ikyAk8Gh0TIfDjHn8Mt/8mMfPdJNtZiOXRSdocBuMCFI9BzuoUHw5Fw5x3OOn22RRbDQE9cLLU97ejo12AG5EY4y4AkSKyraYbKWMHjVdRjPrWbklQpQkVtIpAiYzpwLyDpFVUSSeL+DaJNtWnQ6n1tiwhUQLBQJGi6whj89oRiUK3MjlONaBMNckiWpVxKs3taj9W1iIRjm5qZob1Gr2mB3cjm/fOVhLpXEbW5VxtSBwyOHm/ZU1xnydlekroQhHnf5GNGf7fiXyBWx6Pf1WOyuJdEvKTbFaBVFoLBZVwIDDTWxzIVSTJDYSadzNjbQkOGD3sLK5ePz/XL/B/zkz13H/mrE1Jz1N+8OHIb5wp7DZbBw7doxz585hMBi4fPky77//PpFIpDHvVqvVhg3yUfHCmlLHrnu6n8DjecJzRcQflzUln89z48YNLly4QDqd5ujRo5w8eRK/3/9EJtDdUMSfZBdRJTwOIi6KIhsbG7z//vvcunULv9/P2bNn2bdvH9q2TpQ7VeCvrIW5shauF18uBdFVBE52B7jRXngpQaIg90vuczuotJHobpuFa8Eo8ythhJLEWKB+G96uoHp62gj0FgZtFqKFInfjKeLJPOPeejJKv8OumL3dZTa3ZGYDrGeyOFSGekfGtgnxmM/HgoJ/XadScX0jygGDBVWbmnHU41Us6pzaCPJqV1/H4s0T/gDLmwr+bCjMsNPT8MH3WKzcUPDAB3NZdKg53dXD1WiH9vQSCJIaq1rfUWkf8wZ4594yh51exc6TagT22Zy8u7ys6AcH6taVSr0DZadYwUy5zKDdxbUOhD9eLOAxmrDr9Hj1Zu61nasbsRgnm6IFfUYTKlEgtLnAuB6LsV+h/sGhM1CtiGgFdcemOZPrGxx1e9lndXGzzTaUKpXwGEyNMyNIcNTl42o40vjbUa/cRqIWBAasLpaiCewKd3kAYvkCB2xO8sWyYiJPrFLhgN0JIpzwdXG9rblVplJBVxbZopUvBXq40rZA/E/vXuDCvRXlA2/Clk3kaZK9D1t84U5gNBo5fPgwr7/+Oh6Ph/n5ed577z3W1taoVCqo1eoXRPoxYLdtJC+sKTvDCyL+ECiXy6TTad5///1God/Y2Bgul+uJTiZPmxTDR0sR37IGXbx4kbt377Jnz577ZrNvjbcTRfy/fdAah5YplKECLkHPUf+2Cjkc8BBqs6WYddqWws0teMymBi/MFsvM3w1x0ucnmZfbC3ptVlketk6tIti0bbkmMrMa4qQvwIZC184DLifzCkr7HruN6Y1QPVXFs5mqQt0jvNqhmcceg5FYschiJsd+i31bxdXqWopDm7HPbufC8ir7LU4sbQulfpuN+TbyfjUSZdDmxq7ToZKEFk92M9wGI8vx9HaDnTaMB7qY2thgcmOjnnDS9jU44HBxbZNQzofDnPC1eueR4Jg3wPVNO81MMFQvvmyCCoEDdhd3s1luxeMcaPJGN+Okr5v3llfZb3N1XBSsZdKMevzcUbi9DzCxvsExjx+P0Yh6M1JwCxVRJFeqtCSlOHQGrBodq+k01yIRuVd9E1qVCr2kIZRRnjNvxmKcDHQjSLBXb2Suraj3dixOl3m7fkCFwIjLx7VwhFi+QK/FpnjMNr2ecDrPPodT/uImrkSi/PP+vUwpJKQAhMplDlps9Gv1TKzK4yRFSeLf/egfFVX5lu12ya/9UfKIPwi0Wi0DAwO89tpr9Pf3s7i4yOTkJJIkPXTSygvIsduk+QUR3xmeKyJutVrJK6QM3A+SJBGNRpmammJ5eRmA06dPc+TIkR0V+j0MXlhTlNHcHGljY4MDBw5w+vRpuru7f+6FbCfHF07n+Mn1pZbndGoVi+EEoVSO63cjDNoc7HfJVW+AQz43hfbCTYuZqxtyUlyuiITjWU76A414t4DFzPyGXEEd8fvIVOQXtWK5Sj5b5rhvO6lDkFDcNyTQqdVsdcOc2wjj1Zros9gY8nga6Rst+67VcTuzTf6WEilUVRX7bQ4GHE5FX7pOpaJcFalJErficRxqA75N4qxXqajWJJlSD3UFeMThI1VUTmXoMpu5l0ixkc2ikdT42qxCQy4PMxvbhHFyfaOlo6XPYCSSzbeMPbURbCluPBXoZqapGY8oSSzGE+yzOxrncNQbYKHJyrGQSjHYVgA57uticpNIXolEOKXQJXLLm/2zeyuc8He2eyRyRbr0VpnnGiCUy7HHWl8INJPw7XOwzpC71VetU6kYtLuY3gjiN1k6ZhhMrm9w2tfFXYXUmnylgkGlrd8N2CxEnWu6i3MtHOVUd+siwKBR49WbWUtnmFzd4LBHOcFlxOPlvaUVDij4wbdQlAS8ts5kPl0q8cfvvEe2JK9p2MJuEPFnSRFvh1qtpq+vj1dffZW+vj4kSeLtt9/mxo0bFBXmiRd4MOy2n/uFR3xneK6I+MM09NmyOXzwwQdcv34dl8vF4cOH0Wq1GI2dUwOeBJ6HYs2HGa9UKnH79u2W5kinTp3C5/M98J0JQRAeWRH/7uQ1am3t3g93e0k3kcM7oSQURAyo8Zi2rSU6tYrFqNx7vVW42Yw+h5WrGxFqosT0chC3xsiw243PYqbWtq1Vp5PbYqg3BroejpKvVJhbDTPi9mDX6xnt8imqgccCPm7HWvdvPZ3FiBqq8oBXFQJ6vUEmbMYLBawqHXRYPx71+lq8yWuZDNWyyF6bnWG3V9G3DDDm9XFhZQ2nxtBQ3begV6vRom5kqgezWVQ1FV5jXZUNmCyspTKyczexvsEpXzcmlQqVKDS87O3bnPR3c9LfrZhTXaxWSeVLeI0mTvpbifoWFgtFBjZzyg+ZbUytt25zeX29xVttVGvoM9kb3uwroTCDCiqxx2ikVhVJFUoYO5Cpq5EIp3t6ZCQc6h9pOJPDtemr3iLhC5uWjxtNfvH2PzzuC3AtHMfaYdy7ySSjvgCn/N1Mr8vPydRakEObZFotCOy3uRq1CRKwkcriaZtvu7Q6bobjdQ99toDTILduuQxG8sUq8xsRBp3KZLzXauWDu2t85e/fotZh7nmhiD8ZCIKAzWbDbDYzPj5ONpvlnXfeYX5+/qHvWr+wtuy+n/uFR3xneO6I+M8r1qxWqywvLzdsDr29vZw9e5a9e/ei1+ufujINu6OIP23y/yBWkUKhwI0bN7h48SL5fJ6xsbGHao7UPt6jHF+xUuX7Uwuy58Np+ffKYtRzbSVCOlnkgMWMVa9jOOCVqblus5ErCgq3zdhKMMKZHNlcGSoSrrbXDnhc5BQiC9szzq8FoxglNRpJ/tM3ajSKaSuCBDVRYnYtzKDe1IjtAzgeCLCiYD2x6HSspjLMbYQZ9wZafMhDLhdTG3JSligWcaj1lCrK3/Vei7XR/GglnUaPuqGiI8Ehh1uWbx3K5VCLAntsNrSCWjHRBWBmI8gBg5VQoXMeebUiUqt0/s4kikUO2T3cVPDQb2GtUOSQ1sitlPJC43o4yn67A71azR6Lg1tNqnpFFEkWii0LEK/RhFZSE8xmWU2nOejyKNo9XHoDG/Eslg6Rh4liEZ/RjEGl4kATCd/C5No6h91N6rQE4/5upteCZMplbCqtopceCdSiQLXagehKEpFsHqfewIjHz/W2guJUsYRTb0LdVBuQLtUadyzihQI+o6WlkFenUuHUGYnm8lRFkUSu2FhkbEEvCJTyRfKVCueX7vG/vfe+8v7tkiL+rBPxrTE1Gg1Op5Px8XHOnj0LwIULF5icnCSRSNz3mvAiMWUbdfK6+3aSx/fY7TP6dPFcEXGr1dpxtb2lsr733nuEw2EOHjzI6dOn6enpaUxQu+HV3q1xP0wNfbLZbKM7abVa5eTJkxw7dgy73f7I4z2qIv4PV26Taiu+PNzlYSPV+r3y28xcW6tbTWoiLEVzqEugV6nRtF1k9zhsMoW9z2lTtKo4TAaurkeo5GuMB+oE12U0cFWhcPNYwMc9hdzwPruN6ZUgY14f5qbM8sNej2Lc3WG3k7ub73MnW6DbYMVvMOLV6xQLRgEGnA4Sm7eap9ZDHHZ6MGu1mLVaogpRjlBXdpfiKW6G45xoK/TTq9Ug0pKuEszmECsSPWYr4/6AzFO+hVA2R0BvpVTt8H2WYMTrZz6ZZriDL/mQ0831cISr4QhH3MpJJCf9XVxYXqHbbO1YnDlodxIqVHB1yOIu1WoUyzWGHR5ZgSRArFAv3lQLAj6TCY2karGjzAVDnOpqLR51GYyYVTpWUmlC6VzHse8kEpzu6pMVP8KmOp3O1AntJgmfWtu+M7BeLDHeJS9afamrh8mVDW5H4nRblbuWJvJFjnn8zK3LG0dB3Wt+3N+FU2+gVhEptM0TN6MxTmxlrktw2O1rSfyJFwq4DdtkHgkOujzEStsL1//XB9P83VX5Avt5sqY87eNs76ppsVgYGRnh3LlzWCwWJicnef/99wmFQi9I9ws8EP7rf/2v7N27F4PBwMsvv8wHH3xw3+3/9m//lqGhIQwGAyMjI/z93/+9bJvr16/zqU99Crvdjtls5tSpUw2bcjwe59/+23/LoUOHMBqN7Nmzh9/4jd8g1SGAoBOeKyKupIjncjmuX7/eUFlHR0cZHx/H6/XKVNbdJOLPozUllUoxOzvLxMQEGo2m4c23WJQv6Dsd7+dBkiRZkSYgK5oECNgtMmFyn8fBxK11vBojRwN1MucwGLimQLhtBnmiRL/T3iDn+UqFmeUg+20ODrpdshhDjUpgQ6HIzms2NbLH59bDmAUth1xuuq0WZoNyImRWq2RNgNbSGdLZEt06k6KPe9jrYbaNoF+PxLCrDRxxeYgqqM4C9YY82XIZUZKYWQ9z0tdVZ4ASDDndinaVWKGAW2tQLGjdwsnubi6vrSOI4G9qPrSFU13bVpIbsYQs7WOPzcZaKk1FFKmKIkvxhMwictwXaPi9b8ZiHPXIO2cOuz3cisZJ12rYtPpGBF8zNAhYVVqyxWpHMn8rHuelQA9qUaXoCZ9e37Z7uPRGjGgaBbPJYhGPwSSLgtSr1ey3u3jnzjJHvD7Ze0JdnfYYTIz7Ai0kfAuTqxsc8W4vUk4FuplYqRdK5jfb0Ct1Nj3V3cXPlpY52aNcNApwLRThsNNDOKdc4zO5Vm/2c6qrm7kN+ff4dizOmL/+uZ7q6lZsjvX7//BTfjQxSaUpqeV5sKaIoogkSR8aX7rBYODQoUO8/vrr+P1+rl27xrvvvsvKyors+vsivrCO3Vewd79Y89vf/jZf+tKX+P3f/32mpqYYHR3ljTfeINxBoLlw4QKf//zn+ZVf+RWmp6f59Kc/zac//WmuXLnS2GZxcZGPfexjDA0N8fbbbzM3N8fv/u7vYti8w7a+vs76+jp//Md/zJUrV/jf//f/nR//+Mf8yq/8ykPt+3NFxLcU8a1GA1udFgFOnTrFsWPHcDgcHX/YarUaSZJ2hRQ/69aUrThBSZKIxWJMTU0xMzOD2WzmzJkzjRXn4x7vYTB5d4PFSKt/eo/Lzq1Qa4ye3ajn2rr8Qh/L1gloOL1V0Olk2O+RkehOarhRp5U9V65Umbkb5IQ/gEGzfVE71uUnokBaAlZLy3jRXIFbwRgDNmdLx8kt9NvtFBXO0367nSvRFMe9/kYRKYBFqyXYIWXDazRyfSOm2EL9RCDArbbc8qm1IIN6E8fc7o755G6jkdVUhlA6L2t+AzDq8zOxVieD4VwOSZRayPhxf4CJ9e1UDRG4Fo40GtZ4jSbypUrDdw51P3gkm2+0kR/xeplvW8TMBkMtXSIPOd0sRRONhcvdZJIDTneLZUenUrHHaOZWPMFiPM6w061oM/GZzNyJJunqsCCtSRLhTI6ARoteUssWZLdi8W0FmXqB5F6rs1FjsJxM4TUrJM5IYNcaUN/nsrGayOAxGjkZ6GZypZWsLydTjPhaSf7Jrq7GdpMr6wx75d8NtSCwz+Zgfi1Ml0W+kNqCRlIRUrCIbWFqLci5vj1MKqSoAFQlif9wcYq/e+v/x40bNyiVSk+diG9dX552J094ut1DYdua0gkajYZ9+/bx2muvMTAwwL179zh//jyLi4sti6UXaOgVz9TjYfEnf/In/Oqv/ipf+MIXGB4e5hvf+AYmk4lvfvObitt//etf55Of/CRf/vKXOXz4MH/wB3/AiRMn+NM//dPGNr/zO7/Dm2++yde+9jWOHz/OwMAAn/rUp/BtzmNHjx7lu9/9Lv/9f//fMzAwwD//5/+c//Af/gM/+MEPHioN6Lki4mazmVgsxiuvvML/8D/8D2QyGc6cOcPhw4cxmztP8FvYmqh2gxQ/66kpgiBQqVS4fPky165dw+VycfbsWQYHBxtNeB4nHiW+8J/mFxn0tiqhdqN83/Z7nbJEkj1WA2vJVkU3lskzu7jBiNeL37r9/VNSwwfcDhYUIg+dJiOVmsjMShCboGO/1YJZo1Ys3Bx0OxWtJEcCXt67s4JLrcPfRPYPuV1cbyvchHpzoHubCuvseogug6URUzfgciraW5wGA3fiKXKVCjdDMcabIgEHnc6WJJNmZCtVKiURk8IFWyMIOHQGksUS+UqF5Xia4SaSP+BwymwWkVweSZQImC0cdLlk+dJQv8NxOxrnmNeHQaUhppAIki6VqFRqHPf5uRGOyQpAASbW1hn3dzHocLKSSMmaFl0JhRvRgdpNb/bdJtI8H4kyZGlNZgqYLVCrLyquBiMMdChE1KnUmEQ10Q4pUVsKslGjYY/Z0eJrz5TK2LSGbSsH1O0ogW4mVzeYWN3giE/ZnpMulRh2eZldldcAAEyvBTkeqBekjgcCTLWR9fVEBq+pacEt1bunLoTqBcdqUYV8OQqH3G6urIWR5DcxSgABAABJREFUqhImrTK522OzMb8SYtDVOUllv9vN3wRTxDbbtK+srDxVW8RudPJ8HB0uH3XcBxlTpVLR09PDK6+8wtGjR4lGo7z99tssLCy8IOSb2G31+kkp4ul0uuVRUiikh3q09OTkJB//+Mcbz6lUKj7+8Y9z8eJFxb+5ePFiy/YAb7zxRmN7URT54Q9/yMGDB3njjTfw+Xy8/PLLfP/737/vZ5FKpbDZbPddZLbjuSDixWKRv/iLv+Dzn/88uVyON998k2vXrvHKK688FMnbTSL+rKrwoiiyvr7O1atXqdVqdHV1NYpj25vwPE48rCK+HE3xg8s3uLOS4KDTyQGfC6dJbivRa9QyhRygqBAVOOBxUqrUuLYSIRHLc6I7wAGvU1ENV7ow73M7WraN5grcjWU5ZLMr2h6UbCRalYqNZL3AMZwvEstXGfcH0KmEjrFuPTYrhSa/9UoqTTpb4mM9vTJLCgASBMxmspuFkhIwvRZizOvHodeTLpZliTFQLx6tiXAznsSrN8u8zSM+P0uJZOP/5VqNm5E4Ix4fLoOBZKEoK1aFOhl3afXUqpKirai+kxJiRcKo7jyZ2nR6svkKhvtMuKl8EZtaT6GDOjKxts64L8BBu0vRm30rnaFXV5+j/EYTtYrUuNNREetJKc629JguS52s3yuUOOZTtpkArKeyHHZ6uaXQGGkxnmCsyXc9Hmj1hK8klFXzE4EA7y2tcLyrc9TiQijKme5eZhTIerpUwqHbXARIdcW82Tu+ls7Qoze0SGY9Nisb8QxVUWQ9nWHQIc9kt+v1lMs10qUS8WwBt0l+d22vw8G1jQg3onH+740EL58+TbVaJZVKMTc398CJWzvBbqjTtVptxx0uH3XchzlOQRAaZOjUqVOUOxReP5fYbfn6CUnifX192O32xuOP/uiPFA8/Go1Sq9Xw+1tthX6/n6BCghVAMBi87/bhcJhsNstXv/pVPvnJT/KP//iPfOYzn+GXfumXOH/+fMf9+IM/+AN+7dd+TfH1TtjRL+/DboxPJBL8x//4H9m7dy9f//rX+Y3f+A0Afvu3fxuXS34b++dha7J61gsnt8Z8kuS/OZ1meXmZnp4eBEGgr6/vqVyEHlYR/9uLV5AkEICljQR3luMMez0MeFu/R4e7vTICO+BxEM63PmfV67ixsU28aqLE7FIQq6DjeMCPukmMPOh1cSvSRpYk0Ajyn6/LqGM+lKCQr3IiEGj8wEe7OxRuGnXEm1JcREliejXIS13diufniM/LFQV/rVolsLARZdzrl3mbT3QFGmknzZhbD3PE6aXWIc/8gNNJfDMJZiWVRiMK9FltABz3+RVV9JokcSsSZ9jlJdYhAcWm15MslMkWynSZ5fYOAYFDLg/XwlE20ln2KXSm7LPZiGTzLMYT+I2WRtOjZvTb7EQyeRbCyt0tob4QqpRFRFH5uygCyarIAYuVQr4sU7hj+QJek7mhXvdabVRKItFNsj6zEWoo0M2w6nXY1Dri2bzivsOmau73cyLQJfOEZ0pl7Dp9i2p+IhBokOvJ1Q2OdlgEHHC5CCYzHcddjCU4HghwqrtbppgD3MsVGe+uLxIcBgO1kthY5AFc2QhzqslvrhYEAiYL4WzdtpIoFHHoDC1+dateR6FUaSzc/vHGIn81t0B3dzculwuVSsXFixeZmpoi2aGx0uPA1jz/tBXxp62GQ/0a8DCqYTMcDgfHjh17IndLP5L4ECjYj1UN31TEV1ZWSKVSjcdv//ZvP7VTusV/fvEXf5Hf+q3fYmxsjK985Sv8wi/8At/4xjdk26fTaf7Fv/gXDA8P8+///b9/qLEe+df+UTDG//Vf/zVvvfUW3/zmN5mfn+cLX/gCwI6Ujd2wiexWi/snMWalUuHOnTtcuHCBUCjEwYMHefnll2Ur0yeNh1HE0/kiP5q61fKcQath/m6IpXsxBh0ODvndqIDVuHLnyXYM+lyypj59LjuzyyHm7oYI6Cz12/+SspJ9yO+Wk3PAadBTkySKlSozy0H6LXYGnU6WE/L9cuq0rOTlqpLfYmZyeYNkpshxv7+hTpi0GsUOnQADLheJQpGZtRB7TDb8m1aVbqtFsTAOYKzLz6XlNVQ1gX1tCTjHu/yyrp/RfIFktsipQDdXw3L1GAAJhlxuLtxdbWnCswWtSoXfaCGYyRLJ5alWpFYyLtV941uLjVy5QjxbpM9ma2wSMFvIF6tkNhdci/EEgw53SwFkn81GKl8iUypTrFZJ5kuNc9K8Lwcdbq6GImyksh1TRVxGI2qVHqkDObsVizPmD9Bvs5MrlIm3LUCuhyL0N51fp96AS2vgbiLJSjLNsEc58lCQQCepCXX4zBdjiYbyfdBskSnc9+JJ2TEf9XlZCEZZTqQY8no7mkGlmkS51Nl2MLcWYsjjxq0zNAh2M6aW1xvHNerzc6ttIbgUS3Bks8GVAPRabLL3+caFCc7fW0On03H06FHOnTuHyWTi8uXLfPDBB0Sj0cduWxFF8amr07tFxHc67osklW3sdub3k8oRt9lsLY9OCy+Px4NarSbU1t03FAoRUBAiAAKBwH2393g8aDQahoeHW7Y5fPhwQxzeQiaT4ZOf/CRWq5Xvfe97D303/5F/7R8FY/yv//qv89Of/pQ333wTQRAaaRs7aXO/W0T8o66Il0olbt26xYULF0gmkxw9epSTJ0820mm2FOqnteB4GEX87yZuUGwjzYd6POQ3icLdYJLFezFe6uvGY2m9Xb/P42Axmmx5zqTTcDMoV4gthu0fbzCVZWE5wumebqRa235KUFDIDB/wOFhMtC4y78VTOLR6+s1WdKpWpbrb6ZCTfKkeh1iuiZSqNWZXQxx2uXEZDRz0uGUkD+opKc32gXuJFIVcmRG3B4NKrWgP6bZaGj72eKHARjLD6ObvfK/dztWgMnlXq1SsJ9IMu+VFfQDjXYFGYefk6gYvBXq2yZ4Ew24ft5usGNF8nYwHNueGY26PrPFMulQiV6wQsFjq9hgR2Xm4Fo4wuul777FYyRUqLXnxiUIRLWqsmxP0Fgnfys3OlMpQE1pa0UO9WDaTL3MzEmOPzd6xw2UyXyRgMCt2HC3VapQrNaw6HR6TEbNay0pye2E2ux5qKMxbUFEnsJMrG2hQdVbNVzd42evldko+p2bLZcxabUM1H/Z6uBWKNZrnzK4FOd4tjzwcDfiZXQmyFE3SbVNenIiiiE2tJ94hClMCVhNpzvT2MLOmfGt6di3IeE8X491dLHRY2P1vl+e5s1kAajAYGBoa4vXXX8flcjE7O8vFixcJBoOPjRQ+D818Hue4LxJT6thtBftJecQfFDqdjvHxcX7yk580nhNFkZ/85CecOXNG8W/OnDnTsj3AW2+91dhep9Nx6tQpbty40bLNzZs36e/vb/w/nU7ziU98Ap1Ox9/93d81hOOHwSP94j8qxvj2CU2lUmE2m39uU5/74VkgxQ865uM4znw+34iHLBQKHD9+nOPHj+NyuVom0a3P6mmpHA+qiFdrIt+91BpZqBJgLSZXmDdiWW7fjbLfZudwoE4UDQqFY0MBD/k2It3vtnN9XU4GgsksK8EUo15fw9c60u1TVLiV3A0es5H5tRDzaxEsooahzUK1w163Itkd6fKyEG5dJNwIx+g2WhCr8gEsOi1BBcU0V65gUGlw6YwtNhuoWwV0KjXFpsVzuSYyvx7mlD9AsVxVvAsgUG9hH8zkmN8IMx7YLvgEOOr1yrpVTqyu15VxqR5jOKcQ0RjN56mWRY5YrMwrWGigTqRNgoZuk5WQggIL9aZAZ3t6KZaqJBQKVtfSGfwmC3qEFhK+hY1Mlh6zrUFc9zscxLPFBrm+Ho4qZnV36/VsxNPMrIcY6FCIGMxmGXK50Yoq1hUaMM2vh9i/WfipFgSOenyNxdVKMs1wB/X6RFeAa6EELp1yo6A78ST/f/b+O0iSPL/uBD/uoTy01pG6ZFZlydaYQc+Q4A6A5YIDAliQa1wuDTz+Qd6QIHHgUpgBxK7Z8QguyePegWYgAB4BYgk54IILQRDkAD2NmdalVVbqzMgMrbVy9/sjMiPTwyOnq7u6q6a765mllZWHh4sID/f3e7/3fd9L0QhnAn42c2VdEfO9dJbZI7adc8Eg91J5VIaRhxMHASpcika4tpMi6nAeOziZ8XjIVprHDiIABn2ZZud45b0nK3x1ZZv0kQZMJpOJEydO8OqrrxKLxVheXuYb3/gGu7u7j32ffhoZ4k8johH0OeLP8Bg4sHN8mv4+IH7sx36Mn//5n+eXfumXePDgAX/9r/91ms3myAnxl//yX9ZYW370R3+UP/iDP+Cf//N/zvLyMj/1Uz/Fe++9x1e+8pXROn/37/5dfv3Xf52f//mfZ21tjZ/5mZ/hd37nd/gbf+NvAIckvNls8m/+zb+hVquRyWTIZDIfiD99qF/fJ9UYLwgCdrv9E2lN+aSR/3q9zt27d3nnnXdQVXUUD+k6MsU/vj/g204R/+O7m+RrWl/uYiJEoa5ddiYeYG/flrKTq7K6VeBSOKQjCVaTcWIx56RowvOJEMn9bd5N5mjVelyJhCdmZp+PBtksVnTLbarCYJ+hV7t9VtNlLgZCDCb4sm0moy7ZBYaZ5OVWh7t7OS4GQ9iPTLst+LwTSeec18PNVJYbexlmnR5NEsbFSJjtyoS6DhU6PZmAZMU6YWB9JRJhpXD42d3YzXAlHEZQYdrlZGNCwgsMvc5fnJ7lxq7eb3yAuMNJqt4hdExEps1kRFAFys3JLdUBwnY7a/nyiNBOQrJSY8Fi48GEBByAh4UiF0MRFjxecrWWrt7g2m5a4/leDAQodwd09zPO85Ua7gmkOO5yslWoMHVME6yBotBodwlYrZz1BnSdXm/uZbgS007xXo1GuZnM0BoMsIjixIxwgEa7i1U06VJjAPqyQrc3wG4yccrvZy1X0rSbT1ZqnA1prTMnnbaRDeZhrsDVCfnjs14PG7kS26UKZ4KTrTczXjcr2SJ75RoR5+TUrEWfm7v5Cn/rq79Pc+y7MBqNzM7O8p3f+Z3Mzc2xubnJ66+/ztbW1geKLjuKz5oi/mE94vAsQ/wonraN5OOypnwQ/PAP/zD/7J/9M37yJ3+SS5cucfPmTf7gD/5gxDt3dnZIpw+fAa+88gq/8iu/ws/93M9x8eJFvvrVr/Lbv/3bnD9/frTO93//9/OzP/uz/NN/+k9ZWlriF37hF/it3/otPve5zwFw/fp13n77be7cucOJEyeIRqOjv2Qy+cjH/uF/BR8xxo3xAJcuXeKNN97gZ3/2Z3n11Vc1639YY/yjtLn/VvgsdLk82OeHIcWVSoWtrS0qlQqxWIwXX3zxkfK/D26oT4qIP4oirqoqv/HGXd3y8c6aAL0JXRtVBVa2C0z7naj0SDa7nIkGuLmtHazOBjwsp7XETAQd2e8NZAQZWvUel6JhbqWyqMJQwcw19DF10047yQm5yiZRJJNvcCUS4UY6MxIfTgcDE6fxl6JhbuwTnzupHH67lbBTQlFkbqf0NSEWg4H2YDBKQtksVXBazCwG/KgCOuvHAa7EIlzf33/c7WRgUcjs/1aXQiGd2g1wM5XlUjRMrtU8NpnkbDDANzd2WIqEuJvP66IGT/v9LOcK9BUFj2gg5nSQOhIjaDEYSDhcrO4PAqbcLmSLSu1IlFbQZgMFCs0WhWaLy7EIN8ZECclgYNrp4mGxzHOJKO+lJg8MWr0+fouNjV5l4ut30zlO+r1YjSaWMwVN8kt9IBM1GakzLPQEmPN4KDfaVDtdiq0256LBib79RrfLlWiMN7eSTJKZ76XzzHo8bFUqPBeNagopM60Ol+MRrqe153zK72e3WEUQBGIuB6kJsyeZeoOXZhLc2stMtDHd2styJRHheirDhWCAuxntb+VaMsVSLDSK5gzYrdRb3dGMy+29LFeno1w7UnDqtlhod/p0BzLdgYzbKmEzGWkdsaCdCQZY3t/XSq7I3/uP/4X//Qe/B8OEmdZEIkE8HiebzbKxscH6+jozMzPMzMx8IL/oZ6W9/Uex32ce8SNQmTjY/MTiQ57LV77yFY2ifRSvvfaabtkP/dAP8UM/9EPfcps/8iM/wo/8yI9MfO0LX/jCR3Idfqhf/CfVGH+giH8SPeLfzsWaqqpSKBS4du0at2/fxul08sorr3Dq1KlHbsIjiuKHarLzYfEoividnSwP9rSE5WTUT7KgVXPnQx42slo1Nuyx82B3+N5UsU662OWE24MwUHU3GYtR/zBamgqTGfPdWk1GNvIVKq0Od7ayTDtcnA74uBAPk6trCbegAhMecgG7lfvpPK1en1s7GRZcHqbdLma9bm5NIOHTHhe397S/22KzTb7exiYYNM18DnA2HNA19al3e2QrTVxG80QrwbzXw60jKSh71TqtTp+EJBGz21ktTLaMGASBZqeHVTDisuiV4Gm3i51SFVlVuZPOccYX0FgVZtyHXTMBKt0uvZ48Kpw0CAILHt+IhMMwwcVvsY5mBgI2K0ZV1BT73U5nOX8ka1syGph1e1jbV+2v7aZ1vmyAxWCQ7UKF95IplsKTU0cGioLPbCVfa06MX0y3u5zdT4WKms1kKnWNd3yrWNEpwA6zmbjDxZtbSa5OTe5w2ZNlOr0BLxyTZnJjL8OlI7GFp/x+ksUKncGAdr+PUTBgNuivl1mvh3t7Oc6FJ2eTw3Dw8fJUnHuZyTMJG4UyMZcTm8mIzWCmNJb9fjOZGSrjDL/TsN1B/sjgda9SY87jHTVYCtitpCt1zU/1T9a3+Rd/9MaxxygIApFIhJdffpmLFy9SKpVGededzvGdX4/iabW3/yQS8Wc4xNP2cz9tj/gnHR+KiH+SjfEH3TU/LD5Livj77VNRFDKZDO+++y7Ly8sEAgFeeeUVFhYWMB/jGf1WeJJE/FH29Vtv3dctEydMhZon+MBDLocuG9stWbi9mWXG5Rq2uFdhPuDl4VjhplEUJqavnI4GqB0hVLulGul8jXqpjm/sGC4mwiQn+MjDLgfdI+r9ZrFCtlgnbndgGiNJwv75TmpWM+VysFyqE7TamfEc2h3OhPzcTOl92KgQctp5dyfNSY9PY+9wWszUOl3kMZN7vduj0u4Rs9no9idciyqcD4dYK5bZKFVwiGYiR1I6/FYr7d6A1pGmHw9yeWZdbmwmIyG7nUanT3PMr19stel2ZRJOJ+cCQR7k9OrxVrlCzO4k6nBgxqBrNa/sxyie8vuGTXOcblbG/Oc3dtMasr4UDrGaK44sHKv5InNej27fV6NR3ttOYTOYjvU/3y+UOGO1UuoO6IzN1jR7fUyCYZQ175UkfBbryNpzLZmaTIpVmHI56XQHxypWy9k8U24Xp/dJ+NFrLVmuci4c0rx3yu2i3GjT6Pa4mcxwMjA5VvaEz0eyUDu2WU+r18ckiCx4fSQnxHQqqkq6Uidos3Exok9RAbifyXM1EcUgCLjNkua3doD/493b/MZ1/SzZUQiCQCAQ4IUXXuD555+n1Wrx+uuvc/fuXVrHNFg6wGfJmvK4HvFn1pQxqJ+iv88YPvQv/pNqjP8kWlMMBgNPMlEEvrU1RZZl9vb2eOutt9jY2CAWi/Hyyy8zMzPzWJ6/J1mU+n6KeKpY493bSS5NhQm7h+Qu7nPxcKygMu5zsbynXeZ3Wrm/q7VsGAXYzFcA2C3WeLCTZ8bpGnbUHDuM84kwxbE0CI9V4kFKTwhDVhOb5Sb1psyVSBi70YhkENkcS2oBOB3yTWwWdD4W4q31PXxGK2cC/tHyS/EIWyU9qVkMB1je336qWmevVONKNIJbMpOtT/5tXYlHeLhfBLpaKIEMp/zDxisJp4vChPQLQQW/xcz1VJ7L0TBjoS9ciUW4dYT0p+sNOt0Bcx43VqMRp9k8ytM+itVCiTmnB4/ZMjEFBqDUahO3O49N5Riu0yJhd07cBwwV5Eqrw7lgkLWCvi5ABdbyJRZ8Xi5FItxP5zUKd3cgU2t3CRz461V4Phrlxr4avVWqcPqY6MGlUJDNeofpY/LLk5Uap4IBgjYbVoOR5Jhnf6dUJXy0nbwKV+NRru+kuZfOcTWhV/MPjjlst5OvNTUk/AA3dzNcjg9V87jLSaPdGxFeWVUpNdq4x8SVk34fW/ky6WqdqN0+Uq01UMEnWRFV4dgHea3T5ZTPp2vCdRTXdtJ8bmaajUL52HV+6a0bvLG+c+zrR+HxeLhy5Qovv/wyiqLwjW98g5s3b1KrTY45fRqk+GnsU1XVx/KIq6r6zJpyBE9bvX6miD8ePjQR/6Qa4x0OxyeyWBOenH8aJpPiwWDA9vY2b775Jru7u8zPz/PSSy+RSCQ+khv5kybi32pfX339Lq1On7srWYrZJmdDAaZ9+kJTr0M/I5PwuXTqbtwtURvzlltMRt55uMu008X56FAhl4wGNvJ6EjAdcOuITcAusVMfTnkrqsqt7SxCT+Wsx6UrLDMIArUJnTJ9NmmkyOfqTVZSRS4EQyz4vNyfkKrisJhJj1lmZEXlxk6GRX8Q84TrYHbMdgJQaXdYy5Z4dWbq2MLFK4kIyebw/G7uZVnw+HDu20/OBv3cmGClqXa65KpNrkaiExsYwfAz7vQHdLoD/JOsUypcjUV5dydFu9sn7nTqVvFKEjaDiWvJNKf8fm07+H04zWacRjNbBX2e9gG68rA4NVdrTOwuWmq1cZjMSAYDz8WiXBuzhNxJZXlurFjxaizK3XSevqpSarYmdpEEyJSrzLncE7PhG70eNpMJkygiwtDzfmTfN3cznA76de9bDAW5m8wx7XEfS4gfZPJciITodAdUxgp9S602UYdjZF+a8brJlOuja3+9WOWkWx9peDUR5VYyw5297LGDhMVQkHc29jhzzOCF/fN8ey3Jgn9ywa3ZIGJURf7nr/5nVo65bifB6XRy4cIFPve5z2E2m3nrrbe4du0a5bL2t/5Z8Yg/jQ6in2o8bQX7mSr+WHisX/xXvvIVtre36Xa7vP3227z44ouj11577TV+8Rd/UbP+D/3QD/Hw4UO63S53797le7/3e3Xb/JEf+RFWV1dpt9vcvHmTP/fn/tzotQNj/KS/2dnZRzrmT6IifnBjfpL7PeoR7/V6bGxs8MYbb5DP5zl9+jQvvPACkUjkI31oPEkiLgjCsYpKvdXl999ZOVygQqHY4Pq9PaYcLi5MhTEZRAJOG/d3tWTVbbXolpkMIvkJjXMOsFeq8WA7z5TTyXMzMeotLWGPuh3c3dUXRQbdDh3hd5hN3E1XCVlsnAsfEo4LibCOQANEXU5dY6G7eznsopGzEwjLnM8zMSXlYjzM21t71BtdLke0TYDavb7uOAFOBLx8c2OXxYB/RLAPcC4c5PpYg5i1QgmbaORCOMh2qTb5Xq3C6YCft7Z2uTwh6s8gCMx6vGyWKuxWaxgRRxniB+9/Lh7l+n7CSrndGZJx1yEZ90gSDqOZvf1Iu/uZPOeD2oQct8WCX7KyWapQarURBQHPBBvd1ViUd7dTCCq4pMnNKnbKVV6Mx7m+M7m489qBn1wdRjQe9W+X2x08koRxbDphzuOm1elzLZlm5pjEkK1ShaVIiPOhILfGvgtFVcnVmvish+e0FA6xminSk2Vu72W5cgwh9lmt9Loynf7k2MCHuQJXE1FiTgf1RldnHVotN1g8Yp25Eo9yffvIICGZ4XRIO0iY8rjYzldQVJU7e1mem3BsC34v93Zz9GWFcr1NwK4fwJwLhdgpVWn2+vytX/s9XW3G+8Fms7G4uMirr76Kw+Hg2rVrvP322+Tz+dGs59NQxJ80+T9IlXlmTfmoIHwK/z47ePLhoU8ZDofjE+kRFwThie73gBSvrKzwxhtvUKvVWFpa4urVq6MmPB/HPp/UdOO3Iv3/15vLdHpjXS9DHmRFJZ2vcX8li102ciYSwG3VkqvZsFeXlbw4FaTV1y47GfWxPhZjWGt1ubWRIeFwshQNjabgTaqsU0tPhL0Tc8cdkhlFVcnWmjxIFjjp9XE27OdBWr/u2UhgolXlYjzM3VSe28ksp3w+ovuFi+fCAe5MSEkJOeys7NtOOv0Bt5JZzgUCuMxmFvy+ibnbXkmi2GijqCrLuSKSYGBhP/Yv5nKweUwUYbs/oNLsTvROA1yNR7iZyqKoKjd30zwXix0OJtQhkTravCXXaDLoy0y5h7MdF4J+nepcbndod4Zk3GORcBrN7Fa11oLb6SyX9nPNvZKEy2TRKPLpWgOPJCEdFOaOkeZ0rUHIZtMVM5oNIueCQf5kfYerU5OJLcB6rsR3TCe4lkzpXtsollk6MjhaDAXJVBu0BjIqUGp1cU4oGLYYDXS6A0ziZPtApd0hYLMjAKfcLh6ktNaa23tZ5seU5ZjLSa8ns5ItsuDzHat8JUs1YnaHTjE/wG6xSshu53wkxM1t7felqCqZcoOgfdhcyyNJ9DrDgtED3NhOs3jEn++zSlTrndHxV1odnAYzpiP3ucuxCLeShwOSbK3J3/6139f1BHgUWCwWTp8+zauvvkogEODOnTujZmdPmlw+LfL/pDuIPsMzfLviM/cr+CQq4gf7fVJqcbPZZG1tDYBOp8OVK1e4dOkSXq/3Y31IfDso4v2BzH/4hraBj81iYnVXS2QFQeDagz0a5TZLsRAzATcOyczDMb+4ySCynddbJPoD/XkuRHy0un1S5Tr3t3METCZOeewkq3qfcm/C+89EA2yONRpaz5UwKiKn/T58tsNBg8VoIF/Xe5u9Vom1/OEAYS1XolRt8XwsOrFxjwC4LGZd59EHmQKnfD7kCccpAEG7TaOsF5ttdkoVnotGQEGn0sN+2oXDTrJS434mP8y1PvIVXoiERvGHB7iWTHE5GkFkqJzeTusLSYutNrVml/MuJ3eyxzf0MaoCs26XjoQf4OZehhen4lhF48R1tkoVEk4nBhWuxKI60rxeKHM6EBgNwBxmE7Nu76jx0rVkmstxPRk3iSInAj7WciWdv/rosV2dinIpGmE1U9DYnBr9AX67g6NUzGE2kXC4WM4UuLOXZe4Yq8ZqvsgVv4+1Yk1X1DtQFGrt7mi2I+5y0u0MRr77u6ncxMGF32ZFlGE1UyLkmKzW17s9pt1utnLliVy+1uniNJmxm034JasmIQWGl02yUCHqdGAQBHySVZe0sl2qkrBZQR0q6pNqNB5k8vyD//BfNNnnHwQmk4mFhQVeffVVEokEhUKBQqFAMpl8YvfCp+lLf6Zof0R42jaSZ9aUx8Jnkoh/0hRxeDLJKbVajTt37vDuu++ObpBnz549tgnPR42nUaw5Tsa/dmOd4lgDn5MJP+0xhXw+6qU3kFEUuL+RI7lbZSkaZCHs1SSrLE6FdA14zsQCbO0Xbh7A55C4n9SqzaVWHxWzTiFfSoTZKWrJvUEYNpsZx6mIn3t7ee4kc3SaA67EIpgNImcjQQoTssejHqfOCtAfDJuuWAUTJ8YI2eVEhPUJhW0xt4P76QLL6QKXI+FDJRi4HI9o4gAPIMsq7d4Av2TVp2OocD4SYu3Ivm7sZrgQCWEWRU76vcd6zW/uZfj8zAwPJnjeD3DC72O90mTOPfla91glVBV2yjUSx6wTdjjYzleGNpZjHiQbxQpnnHaN3/oo7qZzXIlH8UoW/JJNl+5xey8zbHCzD4fZxJzXy91UjnyjRchmm+hXRwVREeh2+xNTcLbLVS7sD2w8ZhOWgToqWBwoCvV2d6J15mo8yo10iRPeyZ9JodEi4XaTcLtod/o6sntrR5uU4rNKWDCQqzVpdHvYjKaJjYJmfR6W9/KcCviP/ay3ChWei8XYnFBzAcP0GFGBy9HIxLoMgO1qi0uhAEpfndgrAOD11S1+4fVrjzWbZzAYmJmZIR6P43a72d7e5utf/zqbm5sfujnQo+KTXCD6jMjv42mT5mdE/LHwmSPiLpfrmSJ+BKqqUi6XuXHjBtevX0eSJF566aVRnvuTLBB90vGFoD0/VVX5ja/f0axnNIhsZSqaZTaLkZU9LUGyW4zc28yxvJbHb5a4NB3BY7OwMyG9ZNJUdtAh6SwtZ+NBNnLlkUKecDpZigbZmxBLuDQVJjvWvMcgCJoC0U5/wM2tDAtuL0zIMz8fC01MlDgfC3I3lSdVqbORKXM5EsZmNBCxWbi9q1eYTaKIURRHDVVu7WbxmiQWfF4WQ4FRc6BxXElEeJAtcC+Tx22yMH2E8F6OaxNSDnAnneNswE+725+YqQ1DS8Hr69uE7XaNp/kAl6IRbuym6coKqVpDY1mAobXBaTazW6lRaXdodnsjK8sB4i4nsiyTazS5lkxP9CCbDSInfV7uV5pcTkSOfdhkqnXOBgLsTCg2lVWVnXKVhNuF32bFJ1k1ZH2tUOLCERsKDNNnrsajXNtOka42CB1TOHpzN8PLMwlMoonS2MCz0GgRdR5pJ7+/zQNv9m61SdSlL6IEaHa6JJxOyhM6wsqqSqnexiNJuCUJm2jS5OdvFyucj2rz1INWC+V6m1avz81kZvhZjkOFK4ko33i4zeWpyb0tAKLOoUo/MYllfzu9nnzsZwZwNhzkX//xu/z7N28du86jQlVVXC4X3/Ed38Hi4iKZTIavf/3rrK6u0usdX2fyOHgaRPxZe/uPGI/bTv7b8e8zhM8cEf8kNvT5OParqir5fJ5r165x584d3G43r7zyCidPnkSSpFEhzNPwpT+pfQEaFeu9lT020lpl7Ox0kGpTSyBOJgK0uloyfSoeoNkZLitV29xZyTDv9TLjdhNxHT7Ez8YD7Iw1BPJIRlbGyL4oQGVM4U6V6pgxYBeMoxxyGKq1Dyd4wCc1BYJhxNztnSzzHg8Lfg8wTEPZnUDwPVaJ7bEIw1vJLA7BhMdonFiEeS4aYmdsW9l6k1a7h91omnjTGS/OzNSbZKsNFhw2TnjdEzt+wtCPna42aHcHE33jS5HQKF1lu1zFKIiawsuL0TC3j2y7Jyus5IpciA7TnzyShGOfhB+g0u7QOELGp90uWt2+JnLyWjLNc0dsJA6ziRm3h5V9lfnGbmZi45x5n5dmp89bm3ujYxhHs9fHI1lwmS0kK/rv7OZehkv75NUkipwPh0aFnrVOF6vJODF//ITfx0qqgPuYotGH2QIXwkEEdWitOVog2RnIGAVR15xq3u+lUu/w7sYeZ8OB8U0Cw6SUabcLr8lCqqJPtLq5cxh56JXM9PuKZoB5dzen86JfnYpyY//47iRznAzq88kXI0FubqW5n8pz5Rj//YLLxsNsmfu7OU5M2IbfbiW1n/n/L/7zG/yXe2sTt/OoOCicFASBcDjMSy+9xKVLl6hUKnz961/nwYMHj9wc6IPs82ko4o8TdfssulCLp92O/tuhxf0nGZ85Iu5yuT6RRPyjsqYoikI6neadd97h4cOHhEIhXnnlFebn53VNeJ4kMX7S+5ukiP/6a3d062XL2mvFZBDZyGjJumQ2spYu6dbbzla4s5Eln2syJVmY97motfRNQkIep04cPT8dJl3R7ttrl3iwlydVqvNgJz+KPUz49MknAaeN+xM8rRenw2ztq/RbhQqbmQpLoSCnw359YZw6TGypd/RKXMhpY6XYZDEUwH8kXWIxEpxImo2igGQ0cm07zYzbPSoAhWFx5saE4syerFDvDJAEg67ZEIDVaNjPCm9TbndIletcjByS17MhP/fHWrnnGy1q7S4n/T6WwiHupXK6z15WFO7uZXkxHsdhNrM3we9daXeod7pcjUUotzoTiwqvJdNciUfwShJ+q02XJX4tmeLKEbJ+LhQkVa6NcrWXM/mJDW5OB/1s5SsYECbaNgBup3LMWiVm3R7ujhXYbpeqnA5pE3HOR0IkC9XhuTQ7eCfMHADcSec553FNtNbslmucObLdUwE/2VKdRreHCqTK9VEB5VG4JYlqozPxtQPc38uzGA5iVESqHe0geKAo1FrdkT/+YizMja3D45MVhUKtpblOpzwutnKV0UdwfSvNxZh24HM2HGCz3BrtI19pEj5y3YqAz2LVDAp+4j98bTQA+DAYjy8UBAG/38/zzz/PCy+8QKfT4fXXX+fOnTuPNbN7FJ9Ua8ozW8oRPG0bycfx9xnCZ46I2+12ms3mhx5Rf1KtKbIss7u7y1tvvcXW1haJRIJXXnmF6enpY5WJTzMRH1fE15JFBj0Zv+uQDJydDpKraB92Z2eCOjJ9OhGg0e6NrReickRJT1W6SIIRpTVg1iFh2H+GTPvdrIwTe5OB7TEPOUDc79IU2e2VarRbfWq17iiH/ABBp03nafXZJVbS+mLEgaxwdzPLlVgE6xFv9oVEeGLaymIkwP39xJcH6QKtVp/LsQhBu3WinQLgXCQ0Uta3ilXK9TaXomFsJiOKOrk40yMN7Tr3syUiVjvRI4V7ogAzHo9GET6Izbsai7Lg97JRrExU7BvdHpJoQGRy11AAr00iVakROaZYECDicJAqN44lrQCZSoPTAf+xn8v13TQXYmEuxyIsjxVR9mWFTLWhUfAvxSKs58o0e33WC2XOhIMTH1oBm5VuT9Gl/xzg9l52pAJfiUe5v5ujt39fKzXbBCZ4zW0mI6f8fjbKTbzmyfeM27vD7S6GguwUKprvtdYZFm4ejVL0WiVcJjO7pRrXt9M6G8oBLEYDRlk4NqGk2GgRcdg5E/LzYFc/AK20OrjNwxhHtyTR7cq0x7a1vFcYFaVGXA52C9qIzFq7iwkRu9kEwOVEjLWcdnDVG8j8nV/9/WN96e+Hb5Vg4na7uXz5Mq+88goA3/zmN7lx4wbV6uRr61HxtOILn3nEP0I8bRvJM2vKY0E8sCAc/P3Lf/kvn/Yxfaz4rCnig8GAra0t3njjDVKpFAsLC7z44ovE4/H3vfk+6XN9mor4b/7X29x9kKaaa3Iq6GNxKkh3jMSIAuwWtOqoxWhgc4xIm40iW1ntMgHIFGvkqm2ShQ4uwcKVRASXVW8DOBMPUh0j+zNBN3d3xqIDBVBQ2S3VuL+TZ9rl4pTfw5TLOjHaMOLWK+dWk5FCvUVfVri5lcGqGrkUDeO3SzqSAcOc9N0x+0CnP+D2ToYZtwfvBFvDUizErT2tv/vAHnMxHJ5IFk2iOIyU239tt1Kn1uyytK+4XoiER506x5GvN3EazYjHZNGeCfpZyRW5s5flSkxv//DbrFhEI3vVOtd30sOGOWNk91woyFahQrbeoNbqMu3RFyvO+jx0egPe204dazNBBTMGer3BxIY+jW6P/kDBK0k8Fx82rTma0HFnL6tLHlnwe+l1ZbLtHrKs4JTM45sF4OZOmu+cneHGdlrH5dfyJS7GDr3VPqtEyGpnJVukM5CxS1YsE2YpANSBgtJXJhY3bhYqw6JQhs2k7AaTpuZhM18mMtawx2Ex47fauLuXI2yzHuvn7vVl3EbLsbUCm4UyS9EwAatEfkL+d0+WqTU6RJwOzBhoTGiAtVeuMeV2sxgJcn1LHxUJQ8L+E7/1XylMSCV6PzwKKXY4HCwtLfH5z38eSZJ45513ePfddymVSh9KYHpa8YXPFPGPDoL66fv7LEFMp9Ok02n+2l/7a8zMzPCDP/iDT/uYPlZ8FPGFT7rd/MF+P8g+e70e6+vrfPOb36RYLHL27Fmef/55wuHwI6sfn2ZF/GB/qqqSLdb542vrw4UqbOwUkVsyhUydi9MhZkIeABZnwxTrWt/2mWm9Qn52OqRbNuWVqHaOqIOtLs1Wn9WtAheiIab2u3Z6bRIP9vQkWhT039nSdIjtI37z3VKN7VwVgzy0iBxlV4vR4ESryqmIn2Lj8JwqrQ63t7PMe7zEJ3QwjLodI+vEUVyainB9O02m2OBKNDKyTCQ8zlHnznFcnorw9uYeDFTOHS2QVIf2i81iRbN+uz/gXqrAF+amdXaLA4SddhqdHrf2sgSsNl2R3amAn81CZVQYe2M3q4lB9EkWTIKoiWq8tpPiajw6WudiNMzDbHGkINc6XapjZPxMKECu2qTS7qCoKvfTec6FtUWgBkHgcizCtZ0U64Wyzud8gFKzxWIwyL1jzvnaTppL++T2QjTMbqE26qKaqTWIOZw6ddtsGHrHb2ylji2yvJFMcykeIeZyYsbAzpFagb1KndMhvRp/Pujnzk6WUqN1bJTijZ00L8zEkQSjzhPe6vUxC4aRh91mMhKy2dk+sFOVG5wN6T+nmNtJtd7mvc0UF+LHD3rkvoJnUjfVfZQabRa8XrLV47svl+otHKLp2OlzAZAHCj/6y7+n63D7fvggBNVqtXL27FleffVVPB7PqPN0Lpf7QIT8k+gRf4YxPG0bycfx9xmCMRKJ8BM/8RP84R/+Ia+99hqJROJpH9PHCqfTSaPRQFXVDzWiPrhhPenpvEdVp9vtNjs7O6TTabxeLxcvXsTj8XyofT4tYvykcJDS8tWv3UEZtzAI0Or0ubcyVHKngi6sRiMum2VEsk0Gka1sRfM2yWRgPaNVko2iQLmlV317gwEDWeHe1pBgnYr5CHhtvLm2q1nvXCLEvbHOmnaLia0J+eSnIj7upYpQaTMbcGOzmtgolMlOyAA/GfJxa0efRHJxKsy1zaHP9Xw8SL7dIltvcmkqzM2kfv3TIT83doa+cFlVubmTIeyy43VKlNrdEWE9ivPRIDf2m6PUOl1qqTyXEmGWCwXOhgLcnJDGAkP/7+urO8z5PdT7PfLNQ9XRZ5NQFUb55LVWnmlvn1cSUG3nWfAbydTWiVkFugMjzb6RUtvGrT2FGZuNFiqCYCA7QS29nkzvp3Oo3NrN6p4TB4OTGY8bt9XCg3RBo8zKisJqrsgJn5u1UhWbyciM28PN/QLV7kAmX2+SGMspd1jMxJ1O3txIcjYSZDmXZ9Iv8s5els/NTvHN9aTutZVckUtTUW7spkEYWn78kpW7e8Nrym2TsJtNuthKgG63j9ds4UFJPzi8s5fl6kx02ABJhfMhH/f3rU/FZpuTYT+1Tkf3WUWddjL5OuYJTYQAkqUqF6bCLGfyxJxO1nPa2aUHmTKL8SD39+MoA3Yrg55Mdd+rvZIqMOV1kRwrGL4yFeXGVhqDKHAq4mdlQmb81ekob60kWZoOD2dxxh4RRlHAaTJzbSPF1bmorvkTwJXpGNc3h2r53/2VP+B//x//W0zHnOs4PkyLe7PZzMmTJ5mbmyOZTHLv3j1MJhPz8/OP1P34mUf8U4BPm53j03QujwDjT/7kT/LLv/zLvPbaa4/cJv6TDKfTiaIotNtt7N8ikuo4HCXiJpPpoz68Y/F+1pRGo8HOzg65XI5AIMDVq1dxOp3Hrv+o+/y0K+LVRof/9MZDzfKZqIf1Xe1D2uOQuH53F1EUWJwJoBrAbDZya0NbmJjw21nLagnAuZkwtzYzY8tC3BuzmnQ6A969v0fEbSfid/AgW0BWVLITkk8Woj5ubWvJatTjYPnIIOAgneXFE3Eq3e5Q+d6/v5kN4oi4HEXYZdco2Pf38hhFkZfm4izn9WTMa5UmkvxsrYnfbiVis9Ps9qgfUQanva6Jtpfbu1muTkUoTYi5A5h12bi9b3HZLFZwWsycDQd4kC3gtJixmkw02nn+55ev89+fu4fNNKDRM3EvH+BcKI3FOBwM9WSRm9kwc94cLqlLd2Ag2/CSb4V5O+VjOe/lVnqK9kBr6TAg0JdVRGGyt7zW6XI2FCDbaE60R/RlhWS5wZxNQjFaWB7LPa93e1iMRoIOG/lGi4jTjkEVR4TxQSbPpanIMP7xyHPKIAhciIS5k8wSdTlIT/g+bibTXJmOkqs36fdkNo/ksacqdRZjQe6n85rn34VomIepPC7rMFqwOiGt4+ZOhimnhFuycX+sYHk1W2Qx4uPeke96yuOi1eqRbTYJux3HDgBW0gWen47zzTX9wAKG13bE5aDV6w+V9fqhgt0dyPR7Cg6LeWQvuZKIjgo4ZUUlU2oQdNo1FpULsTA39gegd3ayXJmNcn1XS7SXomFubQ9/yzc20yxNhzTdZk+GfNw8Uij69vou/+v/+cf8Lz/wpxHF9ycXj2MTMRqNzM3NMT09zd7eHqurq6yurjI3N0c8Hp+43YPZ3acRX/hMEf8I8WlTkT9N5/IIMP67f/fvPjMkHIbWFBgS1w9DxA/a8j5pn/hx1pRqtcr29jalUolIJMILL7yAzXZ8+sAH3eeT9oh/3M0rjkIQBH7/jRWdR1myaAdYKlDZt28oisrKZh6jQSTid3J5KkK6VidTbWISIVXW+kIlk4HNMb+4KEC+pldd7VYTSkklV2mSqzSxWUw8fzKqK5iM+5zcGfeLA3bJjDyWtDIb9PDO2h4qMBd0I1lMPMgUWIyFuLmjTzexW8y6PHJQSZXr0IdL8TC397IoDH18QaeN1ayeVF+ainBzX/F2Wy1ciIS4nc7hslro9AaaosQDzAc83NrNoagqV6eHCu7BFT/v97Jb0RbP1bs9llMFnpuO0uxV+c7Ea/zIpZs4LT36ssg7exFmvQWuxIZkTlEFbmXD+G0VLkYPCZ7FKNMeGHFZd/grV28B0JdFHuSjvLc7y5vb87isl0YRgGcjQdaKRXpHc9/VYWTeO1t7OC1mZnwetksV3TmGbFYanR4u82RSVmi2iLmdnA+HSJaqOhvQzWSG56ajvLdPEN0WC2G7fdR63W4x45TME5Nuer0BfovEnaL+2rmfynPliLp9deqQuBYbLU6G/dQ7HZ0abxQFrKqRVHWy3e9+psS0S2Kn0WHO56FUbY2OLVttsBgPci+d1wwsbCYjMZeLt9f2WAh6WZ9Q+Njs9oi6HbiM5omDumytwZlokOVsnvPxEDfHkkzqnS4eu4TFaKA7kJn1e1gZq6u4uZVmymUhuT8DdjkR4daW9jezuldkPuhlo1DGKZkp19s6r//v31oh6LLzt7708sTP6Cg+iplWg8HA9PQ0iUSCTCbDxsYGa2trzM7O6orzD+7vT0MRl46xLj0KnsUXjuEZEf9Ew/hZIuEAkiRhNBo/cU19RFGk3x8qRwdNeLa2tqjX68RiMV5++WUslsn5v4+zz09rQx+AgQL/6Y1VzbJowMnDba2X+sxskOWxZWdnQ9xZz7CbG6rOCZ+NqbiPm2NWjzNTQW6OqebnZyPcHnugn4r7dU2CzEYD762k6A9kzk8FaQ36rOcrSGaT7mF/firE3bHOnKIwVGEP1tzet7JcnYvS6vWGN7sjBOjydGRkMdFsOxEekfbbW1kSPhcmo4Cg9CeS8JMhn6bRT7Xdpbqb41w0gMlk0BVuwtDbna+3Rkry9e00cwEP7cEAQYR8ozmx+M8sKCz5X+fzMxuIYpt7RTe1rgmHVEc0tNhpeFirqNS6ZlRk/NYBHdlEq2/CZuqzW/NT7QnM+bV2IJNBwWdt8tzUGn/h6jdIVn6Xr/nP80cr53iQgZMhP8lqlXZ/gEEQOB89zOo+UP9nfR62jpDxc5Eg69kS3YFMV4Vpj4udCTngIYedVrtH75hB6bWdNJemIhSbLfpdWUNEM9UGJ0I+2t0yg4NrZJ9Y39xKY7OYibmdpCZ4oK9vp7mYiCCCJv4Phur25Zko149YMVyShaDNxlquzJTXSaPbYzAhpSbf7nPCZWM3X6U39vr9vTxXZ2NcSw6tHHazibDdwfr+dVVpdPBYJV08pNVkhIGKTTLrruMDLKfzvHJyivfWUxNziZPFKuenQuxWajSa3YnXV7bRYybgQRDQdb6FYYFnudYm5LQTtNu4vze5e+sv/ckNpn1uvvz84sTXD/BRqtOiKBKLxYhGo+TzeTY2NtjY2GB6eprZ2VnMZvNTJeLPrCkfIZ4R8U80jJIkkckMH7Jer/cjJ3PfbhBF8RPZ1MdgMDAYDMjlcmxvb9PpdEgkEiwtLX1sFplPuzXl1kaVWkurHPpcVtLFQ5Kigi6a0GQQ2BwrqKy1+txbyyIMFC5MB2nLMulqXUeuJZOBrTHPqwCjZkBHEQ+4Rkkp93eGD/gXT8VpDfoYBJD3b1Z2i4lkUU/oLkxHuLmtJdYmg0i6XCdTabAQ8mA0GXiYKZLwObmzqycapyN+nXK+W6ox63cx6KuEnXaNp9pnk8jVmxMTQMwGAw/3ClyMhbi9lxvZIBwWM6Ig6FTczUKFiMvOlNfD2+U9Hdn6ztkN/vZ3fJO4a/hdJCteOqqJq5Gt0TqFpoPdmpOl6S3Ne/NtB6liHOijyCKpmpuYazhQKbZsJGs+FoK7+FzD85jylPgrL7zO//jcn/CNjdN8bfUcUccVmv0BHqs0sswcoL6fnT3r87BVrHAlEeXmzmE6SaPbwygOmwvt1YbXm7BPmA8a5ZwOB1jNFyfaYOSBgtcscbeg/87WciXOhn3cz5UwiAIXooe52s1uD6dkxmkxa+xCAE6LmUFPH+t3gBvbaS5ORbi1lyHicoAMG/vXcrJc59JMlJsTPNMnA37qzS6C2IEJRP3Gdooz0QB7lRp+q00T/Vc64jU/eKvZIJJwuUZk/cpcdDQIOoopn4s7m1lORQLcnTD4A1hJF3l+JsYbx1hgBoqKIKsYDaKu8+0Bqq0OL0UT3NmbXEwLsBgL8o//z9eQTEa++9KpY9f7OGqPBEEgFAoRDAYpl8tsbGzw9a9/nXg8TiQSGa3zJPG4RPwg5e0Z9vHMI/6JhhiNRjn4u3379tM+nicCh8NBvX58Vfz74UkTcUVRaDQalEolVldXiUQivPLKK8zNzX2sPvVPMxGXZYVv3NeS6YDHxoMtraJ1ejowUr0PEPVaaHS0auWJhJ9Wp09vIHN/I8fmdpFzkWGjnIDz0Cp0ekqfsnJ+NszeGJGeDXt1cYWSycB6usT9zRx+s5XLiQh2i4kTYR/VMV91xOPQFXgCLCZCZPbtK5u5Cqt7RU4GfYRdDgZjRMNts0ywqQytJuVWl2StTana5nI8gs1sxCAIuG3SRO/5xXiIW8ksnYHM7Z0cMx43Ux4XBkEY+pon+OBtZhMmg5F3NvY4Fw6OOj6e9Of4mf/uq/xv3/MfibsKlNtWrqWi+F1Fpr1DQtbpm7iRSmA0NTkT2RttszswcGNvCsHYYz60zXwoxYnoLk5nldWKmz/anGez6mIhuItB1JLGZtfM7fQUi1Ob/N0v/Ue+8sWf4U+dXKVQnzyob3R7lOstvmN2ihs7+ojASrtDtz8g7HRgMxlZDAc13SofZgssRoPaKC8Vrk7FuLebYy1XYna/M+o4HmRLnPHYWfB6R7aVA2SqDWJup6aJRMLjwm4w8yCVp9HpHZt4spzKc3U6Srvd19Uu3NweKvVHcSUR5X4yx06xysmxJkKjU1Kh0eoy7XaP0lGOYjU7LDYFMAqQcB4q5gC3tzOcCvs17wm7HDSbPRqdHuvp4iiV6ChE4GTQx5srSc7FJ+eXC4BFNKIM1GOLS0+Gfby3vkfM5dRkpB/Aa5NIFWqoKvzUb/4Rbzzcmbgd+HijBAVBwOfz8dxzz/Hiiy/S6/V49913EQThI2sO9Kh41uL+o8XTjhp8Fl/4eBBVVeXg7/nnn3/ax/OxQxCEjyTC8EkQcVmWSSaTvPnmm5TLZSwWCy+//DJTU1NP5Cb2ac4Rf/PWFmajVnmKBlwaJVcF2mP+caNBoKpNMMRpt7CS1JJ6j1Pi9nqG26tpyoUmUw6JM2EPG2OJKpLJwM5Y+onKMB98HKengpT3verFepvbGxnidieiDBGXtt7BbjHrFLy5oJfb23rridNi5sZ6mpMBHyeCh9FwUbeTyoTCybDbMSLbA0Xh5nYGk2rglfmpUdfOo1gIeLk7Fp24XaySKtb4jrnJ7zGKAnG3k+R+ZN79dB6PucE/+tLX+fEv/Cf8rjqrVSt/vBOlSoewf49s28Rm1c4bO7M8LPnoonA/F+NeNspuxcOddJxC28bZ2C4W46HqKysCd1IJZKPMmekdYqECmY6T63vT7JR99GUTN/emqMkmTkRTSKbhbyLuyfPly7/GT/3Zf833nltDELSft91sIu5ycSeZZe4YwlxstvFbJWbcbh6k9baGu3u5IblVQTIaWIqGRvnVnf6ASqtDyKmvdZlyO8jUu9jMkwfqK5kiFxPDSMZzkSClWntUdFtotAg69Q19AM5GAmQKdYRjMtrvJnPMB7zDAUMiys3N9MgWcm83x5VZfSt5l8lAr92n2e5N7KAKQ6vMpakIMZuVrbEsf1lRyZUbBBzDWEKvXQJZpbzfUKvTH9Drydo8dRUuTUVHzX82MiU9WVdhximxlimyna9wKuTXDSS8NolirYWsqKxliixGQ5p1BCDscIy6b8qKwt/793/A3QlpRaqqPrE0LpfLxaVLl7h48SKCIPDGG298JM2BHhXPWtx/xBiP/vs0/H2G8JnrrAlDRfzb2ZrS7/fZ3NzkjTfeIJPJcPLkSU6cOIHRaHyikYmfVkVcVVX+/W9fo5hu4TWYuDgX5sx0kIc7WiI0F3WzMxZPeHY2TLXZGVvPqyv4TIQ8Gs9pqthGVAWEjsLFRIjZoAdUldNTQd32lmbDbOe0+436nNwdS0kRGEYg3t7Mki8M283P+93MeCSNYghDS0qn39fd3xZC3lEKxHq2xEa6zKmAj5cXEixP6Kp5eTrCyoRc8Bm/h2883CHhcnEyeNiWPeCwkqs3J3a4vDQd5U9WdgjYbEOScwAVToeDrO57nw2izA9ceod/+QP/iu+Ye5u5YJZyV6StCCwldnBYekgmmVrXSrVn42R8i1ggy0I4xcnoHqKxT6ZnxeUtU+57uZWaZrMYoC+LrObDpBohZiMZXNbD78EutZkNZ9hrubieDWOyWJDMestGXzaQa9j4rguv87/++a9yOjr0mkdcdjwWieVMgUa3R6HWmkjGz4YDw9zvVg/PMR06byYzvDyfIGSzjyIHD1BpdTAIooZkXkpEyFRa1LoD7u/lORHyjW9yuN3tNF84OcOD3bzOjrKWLbEUDx8+ENVh/N/t7SzpSoOQwz6RqA8UhUa7y/PTsVECyVHc2spwOnL4Xcc8TkyiiUKzw06hypzbMfEhbDaIKD2FTn/yfbfa7uIyS3isEg6jmdxY8Wiu2iTudo2GD1dnY5p0k05/QLcn4zrSkOpCIsh25fCauJfMcXU2Nvq/KEDAYR8RfoC7O8NIxwNcmY6yMvY76vQH/O1f/F02x4pMD8jlk7zHm81mLBYL3/md34nVah01ByoWix8r2X1mTXmGZzjEMyL+IfBxEfFut8va2hpvvPEG5XKZxcVFnnvuOUKhEEaj8Yk3Efq0EvF3bu+wmRw+BOuNLvfup5EQcahGLsyGmQ27EARojhWImY0iO5mKZpnHKfFgrJAz7HNwb1NLmn0OM6t7ZZqdPnfXsyR3y5yNBBBlNN01JZORZEGvStklk47MXpiNkDyiDj7cLVCpduh1FJYSYQxHpsnPJUKkxxJVJJORWqen4z3d/oDr6ynOhPzMBTyj5SdDvolJK1N+N8v7au5uqcZausTZoJ+Ex4lkNE5M8LiQCI9sGJlqg9V0kYuxCHazkUtTkVHzmuemN/jZH/63/KXn36AzMJGphXlnewavrYHP1kZRh5aRW3tTeJw14r7D76LRsXAnNY3bVSfhL2ExyQTcWWYiGfoGeDczRaFvJd80M5C1pGAtF2an6mM6nCcRKuPxpMm3vWwWF+j2jQwUkXvpBOmmi+lIHoe1Tdid5//xPf+RH//ur2ERippmNY1uj3y1yfRBkyR16Ad/mBoS9XS1jtNsntgFczES5O5OjqBjcspTulon5LBjNRq4kohyazszKnodKArZaoPoWHMmyWhgKRbiG8s7nI4EJm735k6Gy9NRLPtK/FFivZYtcnHMhgLDegWfZKPa7DIprU9RVTLlBgGHjVm/h2azR+kIkV3N15h1aQckFqOBOZ+Xe8kciqxiM09WUjOVOuciQV332wM8TBW4PB1lKR7mxoa+K2a+1iTsciAKAqcjfu4l9QPR6xup0Xlfmo6yNmFQemMzzeXpCPPHzEDBcODwj//Da2TKh9fIwb3vSVo2DgixJEmcOXOGV199Fa/Xy82bN3nrrbfIZrMfCyF/HCL+TA1/hk8bPpNBnt9uRLzdbrO9vU0mk8Hn83Hp0iXcbrdmnacRmXg0qeVJ7e/jvsmqqsqv/c4NzTKn3cLqVoFub8D9B8MH54mEG8km4XHIrKeKyCqcng1xZ037YJ0Ke7izrl3mdVnJlLXXl8NqotTUElKjQeTW6rDByGJimE1uMhu4taUl8eemQ9wbS2zwO60sjxWMqkDQY2M1XSZbz+KxS8yEPbT6fW5PmAo/FfXrlluMBgaKQl9WWNlvznI2FkBFJVNv6ki7QzLT6fV1NpjldJFz8RBmk0ip0abVP5wxOBn2TezyeTuZ4YXZGK3BgIC9xv/0uT/ifDyJZOrRUkV2m3H8riRziRIK0AGWs3OYpRpm+4Dl/BT9ARgFhd7ASNRfZD6qVWVbXTMbhRDToTyzjkMCWO3bKRZ9GFAZCF0SAX0ajN3awCo1uZOdpdMTOBPbw2zU/yZPxZb58e9b47fefZlvPDiHrAwJR7PXR1FVEg4Jn9PN9bFkkmS5xmzAg6KoNHt9BHW/Ocy+FeXGTpqLU2FuTWh2VG51uBSP8tbGru61eqeniTWMuByYBJG7+zUEu6UqMY9T1+USIFWucyES5r0J7dxvbKW5NHMYUxl2OTCpwkgBvjwb5ca2XhWvtbs8H4nzMFUYWTaOYq/WI+aykaq3sBhEEi4nq/vXYrnd52TYy0qurCnetRgNJDwu3nqYHBZvTtgvQLPVw2Y5vq5mLVPk+YU4D5K5iQXHAPd2crx8Yoq3VicXeAJspEucjATYUsoTXzcbDeQrTb7y87/Dz/2NL+Nz2J5Kgsk4ITabzZw4cYLZ2Vl2d3e5f/8+KysrzM/PE41GPzK1/nE94s/IuBYCny5f9WdtruMzq4h/O3jEG40G9+7d46233kKWZZ577jkuXLigI+EH+3zSivin0SN+52GaB+tjjXCCDrpHrCVDj7bI/dUsG2sF7KqRS9NhxMHQI36AgMfG/THlezrs0Snk8zEvOwXt9TYb8Y46asqKyvJOnnKlRTpT4/J0mJh32IxJMhmHGd5jCLrtdPtaO8y56SCr6cMHf6XZ4f52jk67z4VYiNgRVfRsPDiRnJ+OB3TK+UqqgKqoxJwOpn3aazPmdpKva7PTAS7PRLi3l+PGVgazaOBSIoKgDtdPVeoTG95cmopwbTvJidDv8P/+H36RF+bXsVl67JSClNs+4v5NJNPwnLNVN2v5MJFgBp+zhddZIR7MYrL06ZsgHCvRFo08yMbYLCywmQ+xnp2hKVuYj+YwGrRPrVbPSKUvYvZWEMxmltNxegMtUVjPhtmqBAmFikwnCmRaHlYyUU0QiKwIrGZiFDoBvvela3zl+36HqO+Q1DtMJhhAa8IsAcBWoULE5SRgt3EmHByR8APc281xNhrULDsdDqD0Fd5a3+XydHSitSNTbRB2OjgXDdJoddktHarGzW4fRVF1avypsJ9uu89KukjY5RjfJAD3d3OErWbmfG567b7mWr2xlebClL7d/IVEmJubaeaC3onHOlAUegOViMtOUJLYHLNprWbLXJ07tIiYDSKzPs+oo+2d7Swnwno7zmzAw16hxnIyz+yRmZ6jcFrM7GarnDpmlgCGjbPW94pEPcc0TFNh2uvh3laWhSM1F0exGAuSKtXZKVT40V/4XRrt7uhe+yQtF8d50o1GI7Ozs7z66qvMzs6yvr7O66+/zvb29mM/Ew688I/jEX9mTRnDQWrKp+nvM4RniviHwOMS1Eqlwvb2NuVymWg0yksvvYTVav2W73laivinzZrya7+rVcMtJoGtvYpm2cK0n/Xk4ZRzq91HAO4up5EsRuamfMiAaBEpVA9JqAoYTfqH2ni28nHFmB6HlZXdAsXacJvzYQ/RkEunnJ5NBEdFZgdwWM0TIwwXp0Lc2sqMLCxn4n4MRnFUBHkU56Ymk/OLM9oYxHPxIJV2GwvyxDbhS1MhbhxZv9rqcms7w+moH6vZNDHD+nw8RH/wDv/oz38Dr71Bvu5gIJvoDPy4bUX6cp9qy4ooqGwXg8xGMrhdh4ObZtdCsR7H69njgFdYTDLRQJm9ooAsWnA6myQrIdwWFb8zjdko0+2bWM+FCQVLxMMlQMBur2G3Q6HtoF7wYDUO6AoywaD283U52rgcbbYqEWxAtSNisXUJhiqjdWL+Ml/5vt/hazcvks38KTbzNQr9AdaefGyzGkVWmXK5Rvaco5BVlY1ciRNBH2u5ElenY9zYSo2uphvb6WFHyDFFWGTY/GcgK8OozLHnXLba4GTET6tbQlZUrkxHub2VGanCbqsFq8lIe2zw15cVXEYD1VZvYlrOcqrAjN/DdrEytOPMRrm+MTy229sZLs1Gdc12AAayynzArRuIHOD6RorFqSCrmSILAR8PjzTjkRWFYrWF32EddpMFom4H1Xp75IWvN7t47ZLG320UBcJOB+uZErlqkxNhD2v5ima/TsnMoKdQqLUIux24rBadqn95JsrN/XPMV1pEPU7SR2YbzsVDmk67D1MF/s6//X3+X3/xi4ii+MSJ+LdSpkVRZGpqStMcaH19nZmZGaanpz9UatfTsOB86vFpK3D8NJ3LI+Azq4g/aSKuqirFYpFr165x69Yt7HY7L7/8MqdPn35fEn6wz0+7R/zjbuizspnn+j3t1H084qI3ONynyvBBfhRWycjG7lBt63QHPFjLUau22dwocC4e5NxUCMls5OSUn/U9raVhcS6kK/g8Pxtme2zZ6akAK7taq0lfVnj7/i5qR2UpHuJE2IdkMkxseT8T8uhiERciPp1HdWWviDJQcZslLibCo5SKoMvG5hjpADgd8+uyyB/s5XGZzQwGCkGbtu/AfNDLckrvrbUYDfR6Mre2MixFQpqkj8vTFl4++3/wt7/8H4mGikj2LpmWC1Xq4wvuYLA3MTn6bNWCpLpu7L4mm5Uw64VZ7qemubE9y17Vi9d7SMIB2l07K+kobm+DgKeOxTwgEipidZeoyk4epBd5kIuSiBYwG/XX3UBx0TUY6dt7lNsO2l29f1tWDNS7TkqCSFWxYTbr7wtGg8KXrt7gC8/9EpI0vD7avT7pSoMTRwpbDwoidwtVbu5kOBHyTyyI7A1kmt0eL8wMbSvjz6zrW2lOBz2j//tsEicCfm5sprmzk9UUHB7Fambo+74QC3FzM62xZuyWaswHfZoHpAhcnY6yUWrjtJgnRvf1BjKtXh+31cLl6UMSfoC7O1kWQlrVOOS0Yzcaubae4uK0PmXlAHv5KpfiEQ0JP0C11cFtsWAyiPgdVuSBQvXI76PUaOO1Wg+PWYWz0dBIVVdUlVSxQcB2+J0LQMzjGv3+stUGQZtNk/SyEPJx50izrnq7i9xThkkuDBNdknn9IPjWVpqf+o3XUIUn+0h+1LhEQRCIRqO88sorLC0tUSgUeO2113j48CHdrn4A9q1w0D35GRH/CPG0E06epaY8Fj6TirjT6SSfn9wB7VHwQYi4qqqjJjzdbpepqSkuXLjwgZWEAyKuquoTU0w+TYp4v9/n//cb39Ass5hEUjmtZeTkjJ/VneLYsiC3V7QEwuWUSBfrLG8MVUuTUcRlMrM0E2IjU6bZ7WMUBXJjXnGzUSRV0iqrRlEYxRIeQAXMJiOKotJTZO5t7hcvnorRUxREBAr7lpBTcb8uc9xiNFBvd3UdBS/Mhrm9n76yV6zhslqYj3vpyAPyY4Qm4LSyV9Kr13Gvk61ilW5fRgBmXBYaigqiSKnZ1vnFBWA+6GN53xd+bzeHySByZSrCbOwtvvPcf8EuDZXJQs1JtWNjOnJ4LPW2RLbiIxE5/M1aLTWKNejJEqHQkNhk2y5qdTsG1YTFKGF3pEhESozLv6miD9FkxB7IYAe2y356bTNTgQKSuU+5bqfV9+N05/Bah59xNFKm0ZVIpgLMhrKIgkq+kkAw1/Ht+8mdji71tpVcxcNs+PD7kGUjm7kAJuuA/+nLX+MPvnGV5c1p2r0+e+UaJ4I+0tU6836vpqPlg1Sec/EQD9I5TWv5UyE/xWqL9UyZsMsxih08irV8lSm3DZtkJVduaooKr2+muDgT0eWLxzxOCpUmQdfkotD7u7mR/9phMTPlcY0KOLcKVS7MRIYJPGO3p0a7y6XpKO9MaJojKwrlRmekTid8LjrtPpn938PNzTQXZiPcHisSNooCTgG20wUko4HOhK6YW/kKl+eiZMuNifauzWx5eMzJDFdmotwYGyS0+wMsRtNI9b48YZ2NbJnz02Hu7GVx2SxU6m1dUXW+1mQq4KZrHhByOFiZMHAAeG8jhaHr4bv+tILhCSWnfNCiSUEQCAaDE5sDzc3NYbPZ3ncbsiwjCMITTYf5tOPTlr39aTqXR8Fn8pfwJBRxRVFIpVK89dZbrK2tEYvFeOWVV5idnf1Q03kHN60naU950ir8x0HEe70eGxsb/F//6TVuLmvJaiLipNM7/DxV0KjjAHabmZUxz/d0zMvDscY/J2cC3FpO8WAly6DR50zYxwunE/TG4tbOzIYo1bWke3EuTK6iHRCcnwuzmdHaFmbDHq6tpri9lqFUbHEq6GcpEdIofQc4nQjoItyiXoeuwLPW7qIqsL5b4mI8TNw7zFI2iAIOyUJjzMtst5joywrd/fNSgWStS6szwGsQMKhj358KF6ciIxJ+AK+jyBcv/SIvn/k6vYGdZMHPre0Zyh07ZvOAestOs2NhJRVlgKgh4QPZyGoqhsnaI+g/VBet0gBVFEECgydPTXawkoqxkwvQHxgo1+1s5qI4PC1s9sPBkNvVJhiukm25uLY5RwcrLk9eN+CVLH2CwSr3UtNsFU7g8Oax27XJOjZrD3+wzmo2QrnuYS2VINN24gs1cDo7mE0Dvu+Lb/NdL11HFBU6/QEG4FTANyqePIp7eznO78cICgyb+ayli5SabcrNNoI6zLIeh6qqOEQjva6sa/YEwyi+o01wLsTDVKptdos1bm6lWYwHde+BYSLIC3MxXGazTom+vZ3h8lhO+EHr97dXklycmaxul5tt/HYbp8J+avUOpbFB6cPdPNNHoh8tRgPzfh/peo9is0dQMk5U0BySmVKlTdg92d9+cMyfPz2jI9gHqLT7hBx2Lk5Hjl3n7k6Wy9MRYi6n7rd9gGShyuWpGBsTUlYOcC4W5K3tCv/P33gNZULc58eBx0kv8Xq9XL16lZdffpnBYMA3vvENbt269b7N8g72+biC0jOP+BE8bfX6mSL+WPhMKuIfZ7HmYDAglUqxs7MzKngJh8OPPfo/uFk+aWL8SS3W7Ha7JJNJ9vb2cLvdZIpGFqb8bKfKDGQFi9lAKq+9Bk7MBFjb0ZKL+Skfd1YO1TgVMBi0DwCjQSRbPBzYyYpKtthgL1+j3e1zIu5DEGTqvT7LY1nlPpeVh0m933vcuiIKQ6vKUYV7ba/I0nyYVq3LxUSYaqfLVr5CxGXm9ljyikEUMBpFTbY5wKmYn1v7U+l39t9zOubH57by5uquRt0UgITPzcMJ+eLzYT8P9vKIAsy6JKqyQrndG/plj3iARVHhC5dv8aefv4XRMDyWXMkOopFw/PCcC3UH9Y6E318n33LRrZqQBwYsBiutfp9YsILhSMFlo22hUPMRCh5ag8yWLqFwl/7AyJ3UFJJZRDLpSWm/b6BSjyPaSoQSNbqyQCYdIeSq4rIPiZUsixSrURRTi0B0SOI3c0HcljY+t3ZQX23YGKgOMgOBPiI+qz556MriOpFAmfXl7+Pd1TImg4ETIS9rubJu3dvJLM/Pxak02lzf1Hqms9UGU343PVmm2R3uJ+iwYRNEHuZqeO1WAk7baPbkALKikCrVmfa58dtsmkxtVR2qxVN+l67uYGkqzOpeEa9jsp3uzk6GkxH/0Lsd8lGqNim0hr+zm5tpLszo1W0AyWhEMhhYm1DE2hvIdLp9nFYz3W6PuMvJWvqQ0O5WuyzGvNzPHn52VrORoN3OVrbMXrHKqZh/lAJ0FOfiId65n+RsLMiDCUk+AChgkBn++I/hfqIiYDUc/zhdCHt5dznJ2akgd/dyOp5xIuzj3v694ffeXcZqNvLj3//5j51sPm6eNwxnmC9evEir1WJzc5M333wTv9/P/Pw8Xq++WPVZV82PAZ828vppOpdHwGeSiDudzo9cEe/3+ySTSXZ3d7FarZw+fZpAIPCR3UgPqsQ/qcT4Uff3uLFUnU6HnZ0dUqnUKAqy0VL5z//5LRRVxWwxsDDtx+93sLyVpd0ZgCCgAv0xkup2SDzc1Cvfq2P5wmfn9bGG0zEvd/eXbe77y+fibqwuCy6nRKpcJ1dtEvY5ebCtVUJnoz7ujKWxLM1FuLWh3ceJuH+03t2N4b/zYTeC0tUVkZ2fCY8I9wE8dkkXswjD5j9vLe8S8zoIuG08SBfoywoXZ6MawnaAS0eWKyrsVDuIgsBZn43NI8Wc8WCBH/xTf0Js38rRHxjYyoSIhQscPJcVRWQ3H8XrKxJyDEmgy9mhaVRptAJYvHksQBuRYt2H0rVTboLH2dWQcBgSyt1sAKuzSzh6qJynql66TRNBT41i1Ynk7GHzHH7PBoNKIFQbNvxJRRBVFcnZw+7WkmSvv4ksw1oqwnQwT61po91zYvVUsUmV4Ur2PhupEFOhAqYxH7rf06Qx818IVU+RzgTYLdY4GfKNGhkdYCkR4sFunlNHGuEcRbJYZSHsY6dU4XQkyFamTLE7JLTlZpuY14lDMutmN9xWC26Lhc0J5L/dH9DuDvBYJSrtDgZR4EIiMvqeDaKoK3aE/S6XlQbPz8W4tZlhMGZTeriXZzboYetIPcLl6Si39ztwXpyLjBpMHUW+1uT8dIhcrsTWWIoKwINUmbNTAR6kCphE8BgNbO0Tc1lRSRfrhNwOckfqK05G/KztFhjICslchbjXyd6YhcVrNVOsNNlslbhyIjaxePR8IsTN9fTwmp8O8mBPe89wSmZqjS6yonJvO8el+f1Yx/1Hg81spNbsarjHV795F6vZxP/9v33pYyXjsixjsVjef8VHgM1m49y5cywsLLC9vc17772Hy+Vifn5e8yx8XPL/LLpQj2fWlE82PpNE/KNUxLvd7oj4uVwuzp8/j9fr/chvngeeuk+7NUVVVRRF+cAzCEez2P1+P1evXsXpHMaL/dt//0ejwrNeV2Z3u0Q2W6fR7OJ3WojHvZisJl0TnumYhzurWjV8vAOh3WZmfVertEUDLu6PRSTGAnY20vvq4j6XvXIqgiJAzOckVayDMIw1HCfhYa+d++MecJOBSkM/DW6TzNzfqSKKAovxAIgwQNWRcICAy8ZaWkv6ol4Ha/tdOdPlBulyA5fNwvn5MPf29NaJi9ORieT8QBUVgAWvkXPn3ubSmQcoioFqw025YaavGHC7WnT7FozKgHbHTbMPoZCWyGyng3i8bZxe7fJ210RXUfDFhmrvXtVLp2nGauphFBV6qgFfSD9N7nR2aHUk9ppeBooJSRUALUlVFMgWvIiSjNHSp9P0Y7FkMI6RaYMBVCPcy8RxSTJeX0W3v2C4Rq7mxib28bobNBt+ik0zNk+NUKLM90Tf4RtvLLGyOkWyWOVk2M9qtojVZORkyM+d/SSbG9vpYTb3hM87VarxwkyCt1aTuvzrVLnOQthHr1+hJyugwqWZCMt7edKlOnMhL+1ub/jaERTqLeZDXqxmI1aTSfM9lxpt5kJeGp2epiZAFAQWgj5ypSYGQUCbsbJfaNru4bZK1NodLk8fJowA3N/JMR/ysjE2OPA7rFQqbWwmI+i2OsROrsq034NZFFkfu64b7R4em4RkMtDpy0wHPKTztdGxt7p9nFbLKGsdwGY2YFQFivvWr5trKc7Phrl7JMc94XOxsXdY4LmVKmkHGipM+dwsH5n1urWR5upCjGvbQ1J/Mhzg9oTf5y//8Q2sZiN/9b95fuL5fhQ4Lr7wcSBJEqdPn2Z+fp6dnR1u376N1Wplfn6ecDj82NGF8Cy+UIdPW+Tfp+lcHgGfSSLucrloNBofuvDRYDDQ7/d58OAB2WwWv9/P5cuXcblcH8PRavf7Sfdsv9/+4IMpHs1mk+3tbXK5HMFgkOeffx67/bDYLJ2p8kd/sqJ5z8mTYe4uDx/+1XqXynKGRNyDXO+zEPficEm0BzLLm1riubgQ4v7Ysrm4b6R8w5Cs221mlOLhOQiCQH/M8ykKkC01yRSHRDHmdxD2OxiIDKXcI9elw2ohW9YOHE9NBXSE/exMkPv709uKorKcLOCwmvE6rVyejpCtNUdNWy7NRbi5qX34W81GFBj5vw/gsVm5traHoqhcnApTbLXZLdU4FfVrSMkBZgJutgsVFFUlHsnzxS++g8/ToIOJwcDIXt5HNFpEEgQUBFoDM+XSNJKrQE82s5kLogxEBMWMwWjB7qxgMB4S5W7PSLrgwx+qIomHy+2OLgajQr7swulu0axZMdUl7I7i6OOs1hwMZAf2EWHuIKsqyWwAm6mL31cnk/Nitoq4Akc+c0+JUtNBv20kHi6hqlAo+ugALm8bH31UVWUnHSQWLOoIu83eJZPzUW1H8QT3cFkPB1EGg8qrn7+Nx93gnffOsFOo8PxMjO1ChTtJ7ed7YyvNlVmtMnsi5KPe6vLGwx2WpsND4j52W1vPljiXCLFTrDDr92gGZpu5MucSIe7t6i0TVpMRr1Xi+mZat83NXJmlqfDwGIVhIojfahsR61EjqrH3FeotzsQCTPtcGhIOMJAVqkeKN2FYHNzryqNr9/xMmLtJ/XUnywohq3VisyiA3WKNxakQxUaTer1Dq6sdVGcrDU7G/Kx2i8OiRKuVZFE7Y7S6WxgNFBySGbk39PkfoNuXqdY6hFwOcrUGV+Zi3Fyf0AxpPcXlhSh9RZlIwg/w3souFoORv/SnLx+7zuPgUVNTPgxMJhMLCwvMzMywu7vL8vIyKysr+Hy+Z4WaHzWeWVM+0fhMEvHHUcTr9Tqbm5v0+8MH7zjx+zjxNDzbT3p/8GgPh0ajwdbWFoVCgXA4zAsvvDCxYv83f/u6pvBJkoxsjqWinD4R4uH6kGBvJ4fq1tnTEayKyMkpP6JJJFOskR8rqAx47TqyfnJab105dyLMnTGF/NyJiMbOki02CHkd3FvNEHLbiIVc1Do97DYTd8b2sRDTW1fcx8SiJYIulpOF0WtzYQ9Br537Y+q2CsyGvdwfyyd32ySa3d6InB94z6/OR+kpCrKsaohWxO2g0uowUDp88ZU7XFlaRRSHn3+57EUxDIjFDpNMCiUXBrMBp3+4X5Opi9XWYy/jxx2oYzTW6QHtvpNm3UyzLiEaVQKBmiaqUFEgnfXj9Hbwh4eEzSw1kIFM3U27KqEiEIyUsYgVzTkKgoA30CBfcJFLOnHYujhs+vuDzd5DsfZ5sBXHZBoQjNQwj28nXKdQc2JWZXzeBp2OlWzJgcPTxRlqAS12UgESkeLocznAxQsbeNwtimvfzb1kjumAZ2KzpOtbKa7MRLmdzIzsIgdj1zs72UOr0BgBHgxkzkaCvLu+p3vt3m6Oy7PRUWa9ySCytN94Z/h9x7i2qSeUd5JZZt0WRMlGpdYZxf/BsAPllXm9nSPgsNFuD471mZcabeYjPmrtLjN+D8VKi/oRm9XqXoHpgIedQmW0zGo2Ene7uLGe5szU0O896VmezBaZD3q4XZpcNLmaKnJhNoyiwt0tPdnvD2TK1TYhlx2/zcbDXT3przY7RM1OziVC3NmcXOAJkMrXiPuPF28Wwj5urae5uZbGYBD5i1+4eOy6HxZPwq99UCs1PT1NKpViZWWFwWDA1tYWiUTiQ6njz9RwLZ5ZUz7ZeEbEHwGqqo6a8FQqFUKhEACLi4sf1yFOxNPqdPmkIhMP9vGtVPharcbW1halUoloNMqLL754bA57Nlfja69r1fATC6GRGn6Aal3rcw0HXSyvZVFUlYdrw4fx4qkIxXKLi7MROvKA7WyFoNdO4Qg5FwQ0hAHAbjWxmdZOs/vcVh6OJbEEPDYe7qvZxWqLYrWFxyHRbRu5OBOm1e+zni5hMhp0eeEqEPY5eDiWQ740Fx4VYB6gUm9TbXYYdBXOx4J0ZZnVTIlL8xFujilzBlHA77SykdUev9smsVOsUqi1iPucBNxDYm+zmFBRcbh2+cF9FVyWBdptM6WKH38wP/KCDwYixWIIZ6CoIdTlip2ObMIf0RYJdrpGFFy49ws6O6qJYsGJ3DNgEGQMFgVvWG9DGQxEyjUnNm8bg0FmL+/HZRng9hxuv1Ry0FFMOL1tpH2LSrkcwWSq4nAcFGsKZPMeRKuMK9pCkaFSjOD05DAYxpJ2XF0KBSfpTQ+xeAlPWHuv8YUbpItefM46VulQlZVlEYd9QGv2v6KkzrKVUzkT9bM8ociw2GjzwmyCNye0Wb+5leZM2MPyvpfabDRwLh4akeorc5O9zje2htaXfLWJCKP1YdhA58J0mNvjSrQKKGATjWxOsEpd30ixOB0cDfBOhH0Uyi12KhV28pWhJ3yCIryRKfHKmSlurKY1ijMM7S3tTm9UB+GQzITsdjb27SjLyTyXT8R0ha1eu4RJFbizXWTKJ5Gs6gt3AQyITIhEH6Ha7PBSbGpi0ekBWt0+AdmGQRCQJwwJRGHYxfPuemair1wyGWi2eqMB1v/nt7+JySDyg59fOv7APgQ+TkV8HKIokkgk6PV6ZLNZUqmUpjmQ2azP6T8Oz4j4GJ4p4p9ofCaJuNPppNVqva9X7aAJz/b2Ns1mk3g8zuLiIqqqkslkPpSX+XHwpK0pBzfoJ0XED7rKTTrHarXK1tYW5XKZeDzOyy+//L5FRr/52zeQj/hXrZKJjW0tqZmOO9lOjXVMdFvIHEmLkCxGdlIVGs0u2cKQ7M0mvPTqfS7ORai0OyQzFRYXItxZ1z6c5xJ+nRoe8joo1Q4fvCrgcVnJV7XqZ9jv5OFOnsz+9LhDMnN+IUK52abcaI8K4S7MhXUpKdEJxBwBAm4b6/uxiAc2lotzYURVIOi0aRTYc1NhXUMgs9GA1yGNPLCpUp1UqU7QbWch6sQc/jpTM1sMDALFrp1q1YHZAlKwSQMbSh+KRSeqqCJZIJUPYkSkN1Dp9g1Y7V1c7sNjUBSBTMaLw9fG7KocnooAJkmm3rHiCjbodo3spvy47QMcrqH6Xy0FwNLDHTwgwgIu/5AsposeBh0DohFcgSamMd+x0VVBVmAnFcAASK4+9sAhcRMNILorFGtOTKqM19dAlkXyeTeqGWyeLm5Pi3I1gMNWxSJpbRBuX4tG00q7bcFkMNDvOxlINUyeNhFPmy94bvAnf3iRjazK2WiAB/tJNUZR4EJi+H3v5CrDPPAJxY3L2QqnQm5kRFrdvpZUH+SIjxPJfVXNZ5O4m9TXAyzv5TX+badkJuF28XCvgNQsk/C72J3Q3XUzUyHudRF02rm7ldU0zLq3k2M+7NUN9i7NRHnn3i7n5/RFxgCFWosTMT+iIOC2WEaFmQcY+bn3Bw5um4TdaCa1f3y5Wp+gw0K+oR3UXpqNcnNtWHg5HXCwU9IXM1+cjfDOgyQnEwFWs0WdJ18UhNG5np2erM5fmolxY204UNjcLXEi6mPtyGzCmViQ22PF2f/8t/4Eo0Hky6+c0x3Th8VHkZryQaEoCg6Hg/Pnz1MsFtnY2GBzc5OpqSlmZ2eRJH0c5zO8Dz5livgzIv4ZwEERX6PRwOPx6F5XFGXUhKff7zM1NcXFixdHpP2gM9jHUejyrfA0rSJP6jyPEvGDmYitrS1qtRqJRIKzZ88+knKSK9T5r68ta5YtLAQ1arggQKWufRBPJ7ysbGjVqRNzQe4+1PrAZWBn9/DBGfTaUfsKS3NhMuUG+XKDWMjNvQ0toTk1HWB5TA1fnAtxf0u73tm5EA/GlkUCTt66uwOAxWTkdDyA0Wxga8ySIgrDz3E8qvDCrJ6w+102trKVUcLK6Zgfs8WA0ShyY8xDjgAnoj6dfcUoCkzFGiQu/i5e75C4yLJIJusjGKmO/NmDgUg258EbHhaTApgdUC45UCQRR3BIkhuqhU7ZQqsmIasCdntXY+NQFSgX/ZhcbdyhJiBglmTMUhsF2E6H6PcMON1tHJI+Dq/VsFDrWLH7W3RbJnJZN8FgDeHIPgZ9kULBjcnVRRGgVbESDPcRxp52NmeXTsvI2mYUb7CDNaC9nszuBvWWhVbLgtd3SOo6HRPlmgOTVUDsCbj8ZY52F3C623zhe2/wjT+8wFoGzsYCdPsy3e5A873c2s6wNBXizhhxNokCIiBZzDqSC3A3meVMLDjKdw84bPjtQ3+3ZDIyE/SwPdZptS8rlOptgk47bquFar3Dw/1c+k5vQK8nT2z53h8MiLudLO/mdV1rB/vb9DmslBptBPZbxK8Pf6f3tnIsRHway8sByvUWZyJB3lnRzwoArO8VmA64KTfauM0WdguHv5PeQEZVLbgkM7X94swTQRe31g7Sf1RylTYhl5Vc7VDpPxXzc38/oWh1t8DSvL6J0YWZCLf2j//BTp4LC/uq//46p2OBEQk/OJZMrk7UZSNda7GY0JPwA/z0b3wdm8XEf3P11MTXPyieBhE/miMeCAQIBAJUKhU2NjZ4/fXXicVizM3NHWv5fJaaMgHPFPFPNJ4R8SNEXJZlMpkM29vbAExPTxONRnU3qoP/y7L8oZrzfFg8jWJN4COpcv8g+5RlmWKxyNbWFs1mk0Qiwfnz5z/QZ/3V376hiU6z2Uysb41lhM96Wds6JCkqIIzNSXvcVh0xP3sixIN1LfEJh13cPdJ9M+SxkfC5cNsldvJVGu0eBhHKYw0/7JKJ3TEi7bCZ2ctpl1ktRs17u/0By9t5psMe2vUuZ2N+TGYDm/kqXivsjHXEPBnzcWdbS8JNBhG71UzhSBzcaqrIqXiA7UyFS9MRqu3uMN5O0MYUHkAQFb7ri3vEF24h7ud6l0sOFFEgdCQysFxyIIvgj9Y4YCSDgUgu68Edamg+d1U2UG/asYcbI8JeHVihZqPRAAQVX7TO+CRNp2WiVrPhCDSR9l/MFd0YFfD668h9E4WyFZuvjcPaBgQs9gHYB9RaLgZtEY+nSa5gx+LqYgseft6mYIdGw4MRGatzqKrWKlaaHQmrt4Mt2qFSN+GSTZjtWhXVYhugKJBK+XDbBSodkDwdrMEhYVUVlWzaSziqJcw2e5dXv+cG7712GZshhEEVdE2eAO7u5kbFlgCnIn6K1QYPs1UMYo2zcb31QVZUNnMlZgMe3DaJtVSRleo+qe4PqDU7E/PHa60OL56Y4t52VheHmK81WYj6aHZ7o+6SQZcdh9HEeyt7nIwFaGYLjPeqqTQ7zIa89AYDZnzeEQkfHqdCqdrC57RqmuXEfS66nQHvLCe5MB+ZWPDY7cuIKsQ9LlbGZ4eAYq3FfNRHs1dmNuBmM13RvV/uq6PBRczrJJ2razpn3tnIcOXkoQ1m6QgJP8Dt9QyXTwzTbrx2iUxBb6FqdfsIqEx5baQnvH6AM4kg/8sv/Vd6PZk/+/LZY9d7VDwNIj4YDHTPE4/Hw5UrV0Y1WN/85jcJhULMz89PDEF4Zk15hk8TPpNE3GAwYLVaRz7xwWDA3t4eyWQSk8nE/Pw8oVDoWBX4aUQJwpP3iD+KZ/ujxIHScf/+/YkzEY+KfL7O7fe2OT8fQhUF8uUmwbCLew8PH5BGo0iuqCUZJ+cCrG5rH9ixsJv7q4cE1mTUNu8BiIZc3F/VEoFQwMm1O7vAUHlP+O14PGa6GCjXD20ls3HfKAP8ANNhj04hn4/7uTueLb4Q4fa+FWZlv0D01LSfcq3OuYSfdKVJqdHB45DIVpuaZkAqcHoqqCPnUZ+T3WKVVrfP7X3lNeFzMhvx6jo/urwNPv/qFopYI13yggD1hhWbp43JYGKvbEEZiMhdO2arQrsl0+976fR6KIqKLIh4/E0NCS8XHGBWce4r3YcHbKDUMmALthBEgVLDzqBhwmKScbk7dBoeFFsVZ7CleZ/N00HuG9jaC4AAfn8bcQLvGAgDql07tZITq0HEaNH7nQVbi74CxWQYu13F4KpjdxzaVazOPl0ZGlkv3lB5NFBo1i3U6zaMzh67DTPBQBPhyDEIooA91Cad8hGJlBCO3HbMZpmzV9a58c6ARsHDuXiQe2OkWlWHtpELUyEEBG7vHH6nsqKyni1xIuLXtLkHcFjMuCWJXLmhSxApNzvEfS7sFtOoUVDE7cBmNPH2cpLT8QCraT2pXk+XuDA7VIAXE0F2s1WKneF9djVV4OL85Cz6ZqfL+XiEd5aTukLSSrPDTMhDrdlhoKjMh33ki43RQOD+9mR7i8tqgT4ogoooCDoLCcBGusSLpxPcXE/rzgWg1OgwH/VhNIgofZXmhIZDN1dTXJgfWtRWdiYnttxcS3NxIUK702d1b3KhaLPTZ8prp2eYHM/osJrJFRuoKvzjX/ljFFXl+155vDqlp6WIH2c/cTqdXLhwgRMnTrC1tcVbb72Fz+djfn4en8/3RI/zE4VnivgnGp9JIi4IAg6Hg42NDf71v/7XnDx5kueff54zZ87g9/sfabT9pEkxPHlriiAIT0SFV1V1ZAUaDAaEw2FOnDjxoR8Qv/Hr75JJV8mkh4qsw2Gh0FM4HfdjlozDAi+XpLGbIAwfhEcRC7t4sKYlqqdPhLlzhNCrgGQ1aR7yVouRVO7QK6uq0B8orGxVkBUVk9HAfMyHx2MjU2kgoKLus49T0wEdCT81HdCR8NmoV0fgfS4ru4UazU6fXG1IzOcjHkJ+F1v5sqbI8+J8hFtj1hOH1YyiKjpS5rZLvPlgB1EQhq3PRRXZd52lF9YR9wsVGzWJTt+MN34wSJEZdKz0VRF7aPhZ2Jygyj3aBSfWQB2DINBUTQzqJuhYqTfBZFGwWrTWhlbRTV/qYg8OVWwAk1XGZJVpl93sVoyoPRWbbMPuaY4IsKqIVPIOREcfW3hImJuywCDvwenoYrS2GfSMVEp2TJ7uoUINVMpu7OYBJvv+YL0vUik5wKpgDnWodQw46l5MTi35Ew1g8bfI5Tw4TWZqchfJ00OShvs3Sh2KVStuax+TVXueznCLTN6L31Nn0HHT6ZvoW1oYPT2W/tQ6915b4GEajfp9cMDnpkKkS3V8Dj3B6Q1kUqUaMwEP24XKMEd8NsrKboHb1Qwhtx2PTaLS0hYv7pVqnIz6Wc8WuTAV4WGyQLY//H4f7hW4OBfl1oRYw7vbWV49O8uf3N3SHcutjfTw2juiYJ+M+MmXGryznOTSQlQXaQiwnatwdipAtVZnL1vV2K4O7C1ep3U0a+R1SNgM5lFa0IWF/et97FinA27ur2dZnAod28J+J1vmynyUd1f20E3D7COVrxIPuEkOKhNfBzAqAqZJo8CDzyHsYmWvQtBjH1l1jmI24OXeEWvZP/nV11BV+HPf8eHJ+JO2Vx7s8/3u7TabjcXFxVFzoOvXr+N0OkeE/JkirsWz1JRPNj6TRHxnZ4d2u81f+kt/icuXL/P93//9XL169QP9uJ8GEX/S1hT4eLPEFUUhm82yvb2NLMvMzMyQTCYJBAIfmoSn0xW+9rUHmmXTM37u3U9TKAxJhCQZqdvbTPkcGE0qZqsNk2Tkzor2QWy1WlDVw2lit1NidUureJ1ZCOkiDBdmg9xd0XrKJasRuTa8u/QHMtt7ZertLtliA6fVTCLiwWgSafX7mhxxu9Ws635pNRtptLsa8i+I4LRbKGa1D2910OPt+0MPbdzvIui1o6ByZ2wqXxQEIl6HrsHPXNjLenqYmy2rKtvlJM//qfuEEocENJvyYvc3RwkjigKFjAdnsIH5yNdYK9lQjSq2YIMDRiQIAr22HVXqYHcPf08yUG5YEVsuGh0Zi7ODTRrrZNu00eoaMLtbDEt2ByhAqW7H3JWQzCINoYV5zLMtGsDsaw9JbjaKbGxhDerTM0yuDl1VpVcK0+z0MHk6mP2HaqhJkunSRK4FMEoVjOahitmsSrTaFoyuHkVlgFWQGG8WJLl6NDoGzBU7ds+Q6MuyQK1kpycbkWt2TNY6Rmt3dIM2GBXOfWGNe18/wcMUnJ8KcTeZI+51YjeZuLs/s1FptJj22tkZy51v9fpUWm3OxoL0+zK3jpDOXLXJdMBNtz+gPZZQUqq3eHl+ijcmKNW3NtMsTQe5c6RZTcTjwGow8s27W5ydCvIgqVeI723lhgp9usjluSh3NzIju8ftjQyn44GR9/woRBUsoqirfRied4fZsJdGq4vbJmFEHBVmwtAeculEVFO0mvC7qNXaNDs9bq+lODs97GB6FAIqCbed95b3OBVzs5LVF6MaRAGvTWJjt3BswerZRJCbqylMBnGYVT6WhDMddLOVHQ4a8pUmUb8Tt02iuj84Ojcd1jUcA/jpX3sNFZUvf8cHL+A8aJ72NKwpj7pPi8XCqVOnmJubI5lMcufOHWw2G6+88srHfJTP8AxPDp8pIr68vMxP//RP86u/+qtYLBb+wT/4B/z4j//4h9rWZ0ER/7j2qSgKmUyGra0tAGZnZ4lEIoiiSCqVeqxinF/7tXc1ueFer42HK9oH2MLJMHfvp6hUhsTRaGzidEuE7TYCAQeCUUQwCNwbs5vEonqbSn6MJMfCLs06AIsnw7pOm2dPhLm9OiQFzXaPh5s5Fk+G2dguEnDbiAacyKgYzQZujSWxzMf9GmUM4PxcmNu6Bj+hUTIKQKpYo9PvIysKAZuNWMBFo9tjPVPi3GxIF3UY8Tgo1Joj4hOezzN7Jo3JZCK160OWDQwYDmxadRsCUG3IyKqAaIBezo1BVLFbDZSr4Ao3MBiPFER2zAy6dowerSdWHgiobQ8dRx2ze1+hrluRmybMoopBMIKnjlnSD5yVnpWGQaBh7mJoOVEqfSyuxsjuIfeMdGoOZEcLg2fY1KtT8YKxieQ4JMztmkSrbcLkaYNZhIYb0VPR2EYABvYanZYFQ8VL19TG7BxgsR+Qf5meMkCt+DG6ixox1STJ9PsK2V0vFklEtrYxeGQsyECXRs2CTe5hth4SY4NR5fwX1rj39QW2ckY+f2qat1aSGs+yrEKu1uFE2DfqkApgNorMB7ykyw0GE37PO4Uqp2IB1rPF4fZUuDwbZSVZ4M3lJFcWYlzf0Ece3t3JE/dI7FU6XJyNsLpTILdP5rczFRIBF7sFLTGVFYVqo83z83Gure5pvz9VZbdQI+J1jAagAodpJgJwejqgTwQCtrJlrp6Ms50uk63p007ubmQ4GfezmioS9TppNrujWSJVhe10SXu8qsrZuJ/l/b4Dq6kqCb/EbuXI4E5VOTcV5s5+caXV3Nep2WGPneS+t78vK6RzVaYDbnb2i0ctJgNyX9Z8j+linUTQjawoGA0iyUxFdz4H+MN3VpAHCj/w6geLNjwQWJ5WseYHwYFldGZmhkql8kwRH8cza8onGh/ZnNS/+lf/ahQ99OKLL/LOO+98y/V/8zd/kzNnziBJEktLS/z+7/++bp0HDx7wfd/3fbjdbux2O88//zw7Ozuj13/u536OL3zhC7hcLgRBoFKpTNxXPp/nB37gB7h06RIGg4Hbt2+zuLjI1NTUhz7fp6WIPw0i/lEp4rIss7u7y5tvvsnOzg7z8/O89NJLxGKx0fTo4+wvuVPi9a8/1CwLR9wMBofbc7utrIzbTU5HKJVbFIoNlh9mWL6fppxrICkiC2EvFxYiXDgVYTetLaA8fSJMsaL1mZtNRo1S7bCbdQ/ReNjN3TFyfXImwL19sl6qtri3nkVQ4e5yhoTbycXZMGengizNh3Uk/GTCryPhUZ9TV9hnEMCAQrXZpVBtcXs9w8ZuiavzMQQZzsSDGPf92m6bhKKq1Ns9jKYB57+4woXvWsWVaCD66/QEA6K3jz3aweBtgKtGuQXmYB9btIMU6mAJdhEsFgoDFUO4T0M1U6rbyedcVNJhiiUnzf6AQe/wNtQo2un1HMiuusbLbbQo9BUTHZuBum1AveSmW3Iy6A1XalctdGoeZEcfwdYbpu/Y2/TtA5otJ5Wsi17JT0sRwdPCsC9BCIKA7GgysKi0y146ZTelvIOBFcy+PoIoIBhVFFebbstFp3aYWd+qSJSyTlqCgaari6C4kAdagiCIAgNnnUbZjdw3osgCtYKNfMZNvWdl4Feod42IJu2Tx+Lq0x6Y6DS1BcqiQeX8Fzbwxyq88XCHmFOfINQdyOwVa8yHvEPbSiKE2yJxczNDttLAbDTgsumjP1dSBRYTIaIeBydDfm6tp2n3hjalG+spLs5GdO9RgXq7zwsLce6sZzSZ3+1en25Pxm3T2mXiPheSwUimVMdq1mtBzU4PEQGbxYTVbOR0LMjN/TQTFdjLDYn6OGaCHjZ2CkwF3brXYOiXzxTqnIkH6HX6VBvamZBOb0Cv08dtHx7vQsAxIuEHyFZ6xL2HjcOWZkIjEg7DAlCH2TQ6L7PRgEU00Dpie2t1+9TrHcKeYSrImViAdFFfoLmbrxKwWZnyuXT9CQ4Q9thZ3sryL379dX7tazcnrnMcDp4lT4OIf9jif4PBgNfrfUbEx3BgTfk0/X2W8JEQ8V//9V/nx37sx/hH/+gfcf36dS5evMiXvvQlcjl9Fi3AG2+8wV/8i3+Rv/pX/yo3btzgy1/+Ml/+8pe5e/fuaJ319XU+97nPcebMGV577TVu377NT/zET2iKPFqtFt/93d/NP/yH//BbHp/H4+HcuXOsra3xC7/wC5w6dQq73U6joVdNHhWfdFL8JPcpyzI7Ozu8+eabpFIpTp48yYsvvjhSwY/iuBzxR8Gv/urbmoLEcNilU8NjCQ+93uH3Jkki62N2k7NnIqSzNbq9AVvbRe7eS9GodmgWW4QdNs7NBLl0Kkqz2cVwpNBw8USYrT0t+Z2Oeak3Dx+iggiIaFR7u9VEbqxrp89tZXs/xSFdqHN3NUux2GBrt8yM383F2TAn436CHhvZqva9FpMBRIF2T2szOD0TIj8W13hmOsi11RR3NrM83M5jxsDF6TAnwh4qjRaeSI2XfvAW0ZNDBXLQM1BIu7AFO5j27SJKz0I558AaaiHse8YVWUCpBuhbW5gdw+MQBAFZFsFopedrIfh7yE5oYCaXc5FJ+lFxoCoGzffYLEk063YMvh4Y5f0M7x59Z59m20ol5UMeOBhY9BaTQddAqyHRtUPJ1KdetNPvaImHIgtQ91JRVKpmhXbPjNzX3xoVqYtsFijv+SkWnCj2IVkX9zlF396g17GhtrSxa6oCnQFkc25qNR+qW8Xs7yGahycp+jqUc05URUsuzPYBPQy0avvmm46ZZtFLPufEvrSLPVJnt9plaTqsO9ZOfwCqyvPzMe5v5yjUDgeM6XIDj03SkWCTQcQsGIi5naxPaCJ0bzvL6XhAs+xMxIfSh41UCe8Ef3qh2iTgtA0HeOow2q9YabJXqLFXqDEb9ureA8N8+tPxAAHbYaOrAzQ7PUR1SNQPcDoeIF+sU212uL2W4sxUYHyTwDCLXxiodHuTCyIL1RYBu5VLsxE2s/rnw0BWqDX7hD125oJO7m7qn3G7uSrTPjciQ5K9O5aABMOmQAxUrixENUR+HF67lXazP3HAIqDisJhHXW//v7/1TX7pD947dlvjOHh+fTt6xI+DqqrP4guPg/op+vuMQVA/gqv6xRdf5Pnnn+dnfuZngOGU19TUFH/zb/5N/v7f//u69X/4h3+YZrPJ7/7u746WvfTSS1y6dImf/dmfBeAv/IW/gMlk4pd/+Zffd/+vvfYaX/ziFymXyxNzwSfhwBf+oz/6o4+0/jhu376N1+t9LFX9gyKZTFIul7lw4cIT2+d7773H9PT0qJvoB8FgMGB3d5dkMokkSczOzhIIBL6lmnHjxg3C4TCxWOwD7WtjI8+P/Z1f1yw7eSrMyurhgzIYclIoNzUkOJGwk0wdElmb1YRoNNA40ujj9Kkwy2Mq+smTIVY28hiNIrGIG5fLCiLs5esUyg0QBOamfGzsaT3XS6ejI0vKARZPhLk3Vng5P+Vn40hOuSDCVMTD9hF1XRDgxFQAWVFw2C3DqMFsmbOzIe6NFXxOKoILOMyUO30G8uHnIQoQ99nYLTeZupBh+mwZARFZEWi2FXoDEcGogjBULWxmiUqnh9GkIBpURKOC3BcxSQawHhJjVRVo5ByYvF0wHO5PVaBZsGFy9xGOqMJKV8TStdPtqhicXYSxPHC5J9KqSBi9vZFdRO2LDGpGLFIfozQYvu4ZaPY33DgMKiYsUg+DbKNn6YFZO6hW+waUuogj0EIQQW5YqbdEROeQeAt9A2obbD49+VcVEOtWFKFLt2dCcAw7fwIoA7D1rODU+4h7FTMedwfBNCSJiizQqkioAwmTUUT1aN+jDAS2X5+mlbOzNB3m9r5P3CVZmA95ubudxWo24XFIJCf4lhciPnbyFfqywtlYkHK9NRoQXpqfXDRpNZvwu21Umx1m/B7N7Mx0yEO2Uh8Rw6O4OB9BHqgT28ZfPhHjxrrW9nI6HiCdq3IiHuDG+uQiytNTQR7u5Tk/E2Z5M6fJKLdZTLidVlJHYjzjfiftVo9Ko8Op6SAru/pGOwDnZ8IIqjCsozjmVnV+Lky6WKdYa01eAfiOczN88+72sduI+Ib+/mytoYuCBIj5XRTLTXp9mfm4j2S5pvlsL81HubWqtwv9le95jv/bn33hfVXjRqPBm2++yZ/5M3/mW673UeOP//iPuXz58iM/q4/iwNdusVieuJL/7YharYbb7ebE3/vHGCyfnkZIcrfD2k//Q6rV6sT4yk8bHnso3Ov1uHbtGt/1Xd91uFFR5Lu+67t48803J77nzTff1KwP8KUvfWm0vqIo/N7v/R6nTp3iS1/6EqFQiBdffJHf/u3fftzDHeGDtrkfx2fJmvJB99nv99nY2OCNN96gWCyyuLjIc889RzAYfN+Hw4dV4H/lV97W/D8e92hIOIDHa9OQ8IDfzm5aew3MzQU1JNxsNpDJa0nMiYXgKFt8MFDY2S2jKAp37qco5et4JAtnpwP4HFZOTvmxS0Plzu0w8WBMQTs1G9SR8KWTUQ0JBzi3ENaQcIClE0MP7/peiVsrabaSJS7NRZF7MpfmIsyE3AionJ4KDtMtjsDvstFD0JBwgLhHIjcoc+a/WyX0fJaOo0fL1qHUNqIGephjXUyhHqJ7AGY7DVcLY2gAXoWBXaVcc9C1i9QEqFTtlPMOijtucjtuTGYL9KSR8tutmWlWJcyBnpaEywKtioWquU3P26FtVOk0bdSyNtplC/WclY5swOTvaTzbgknB6BzQ7dgo12wgmiZG0g06BoxGGw2DhVIH+gP9NSmYZIxuhV4pSGHPRdsiY/Qeqt+qSQaXTKNgR+0fEoJO1UytYKNqUOnh1JBwANEIbWsLueJhXAIxe3oUijY6RT+FnIty10rfKTDwdmlYOrQrWjuJaFSZ/vwOkr/F7e0sF2fCXJ6JIg8Ubm0OCyAbnR61Vpe4T/8wW8+UWJoOcy4e5GEyr5mVubmRZmmCFaXd7RNxOfBZJZ1FaidXYT6ij5hbiPpI5+uYDJMfNzfWUizN7qv6qsrluShrO3ka7R4311IszekVf4CHOzk+tzjDvfWMrlFQq9tHkRUc1qF1ZzroptHoUtm3o6zs5Lk4H9Vt89x0mOWNHPc2MswFbLrXAUIeB3vpKh6rdOw5zYc9vH17h8sL+n3AcNbKiMBmqkTQaUcyaUml0SBgQKC3T7w39krM+NyYjcP1oj4n9ycUbwL84n96j1/+g2vvqxw/jehC+GDFmpMgCMIza8oYnraN5Jk15fHw2ES8UCggyzLhsPZmGQ6HyWQmT7llMplvuX4ul6PRaPBP/sk/4bu/+7v5wz/8Q77/+7+fP//n/zxf//rXH/eQgWFe6TNryke7z16vx9raGm+88QbVapWlpSWuXLnyyJGQH3R/B1i+n6JT63JqIUTAbwdVxWzRemunpn2srI3lYHskDRkKBhwsr4x5t0+EqFQPC6+MRpFyTZtMMjPl496R99UaHUwmAzfu7LKxXqBT6xGySwSdZs5OB5mLeDEaROw2M5mxxjuxoEtH1hem/LqowlPTgVEXwNF6CT+319Os7BS4vZommaowH/JiZNiWO+F3gapis5iwmI1Um1qbyrRPohXcY/HLD7GHhkrfoGWhVbFhCR3mfbeKEooiobgOj71bM9OuSViCXRCGxZoGSabbMaP4BxjCAxrWDg2jQr1toZr2ogxcmAU73aoZZf+n1C5KtJsmjP5D0gsgm/uIRjMdg4WuZEBtueiUzaj7l4rcE2nmrDRlA313D8Gp0HP2afVMNHNWBi0DvZqJet5KzyTQsrVQDSqid0DPCI2clUF7SA56NRPU3DQGInVHE/wDmgWJQUdPHkRPj3bDTmnXQa0mMbCDwTdAlBT6tjYDxUy3qvVxC4JA39mkV3Uhd400i1YqGQeVqo2BC0qigkkyac7fYFZRLCrtspaMG0wqs6/usLRoJVWooyqqLn6y1urS6vSIeA591XaLicszUe5uZhGPkWzv72itKFGvk1PRANdW9pAVVWMNOcCDnTyX9gmuURS4PBdlc69EvtLk5lqaczOTZ9aWd/KcTgRZTIS4tZrS/C4fbueYi2gtLAZR4OJchDdubbE0px8wAGTLDWJeJ3MRD5Vqi3pLe73fWktz4QgZPzsVYmUrP6rx2M61ODtmcXHZLBjUobVkM1XidDyom0r3OyXSuRqKqnJrJT36PEZQ4VQsQGp/gP//Z+9Po2TL8upO8HfOnWw2c/PJfJ7d3/Pnb4ghIzKSJAdBqUoCCVCtFloltZBWdalaiAZEN9RCogVUlRZqENWUFqVKgQpJLYkFAlSglFq5ik4BIkiUEZEZ8SZ//nyeZ3ebpzud/nDNzc3cPSJjjoyI91/LP7jZnWy6Z5999n/vjb0sw50daC0fw9xI5pKkZXn7hLGuFKYuCekazhXuMQDXh3v4pd/5Kn//V//g0gSltT4I60Kl1PsaEPexqQ9aSvJEnvKO6pvy13AGxL7ru76Lv/k3/yYAd+7c4Stf+Qpf+MIX+OxnP/uOzxGNRjk+vtx5/2br48SIfyNgXK/X2dzcZGdnh46ODu7cuUMymXzPztdaSin++T/+Ix49PF+inZnpxa65zE334gO5QhXNaB9wRkbSrKy162BTqQhHJ+esYHdnlIULDigz0xketPiISynaGtTgcggQBOz7wuox0HCCkIKZ8S5sz0N1J8kWqxzmSiBoSwSNRSxOCpU2YNKZjLBzwYmiMxnhMF9qY/xjEZNS1WZtL3u+XTzE+GAXlXqdas3ktBQA51uTaUrDX2d0LIfnSOySgVsJ4+seSnrUchYKqBUtop0ejnKRrkBIhX0SR6SqGPL8uut5E8eX6N02rWvztVMLTB+ZrtM6nfHKcaoNXB+RAuVWAwkMUM+ZOAhki6tJzQz2tosh/KIOlh80V9Je0lQoXSNXCmNKDTPk44v2z0tIgUj6FE7DRMsmbrSMa1TajqV1uDiuwD4KEe6sIV2Tcl7HM31kxIMQuFmLkFlDtjjDKNMFA+zTGEZHCSHAKevUyyaeBOHGCFkuMn5+TcLyKNZ9rIKFnjgHj5qp8IWimg3SPM8f96mO3Ce/PsTxeoXbo+0+3RCE4qRFmL6OGJlEjNW906aF4cPNQ26NXk6n9HzFxmGOyb40ccviwfoB+17wIe0cF5ga6GR194QLiyq8trLH89eG2D0qNJssz2p5+4SRnhQbLWmuAINdSdyay2nlstTH8XyyxQqpqEmubBMPW/Qmo9xvNDw/3jhkrK+j7XvefC8VpMNhNqqXnwOYXz1gcqATiWB16/gScF3ZOmW8L83q3imWodEZjbDR0gQ9v3bAU1N9TQ/yWMjEkgZZ5/x13FvcY2Y4zePdYJXr9kQf95cuvi/H9KdD7BZrTA10c3fpajnO0tYxL9wY4eXFrSufj4VMDhqNn7/zhw8p12x+4q98G/oVDPQHwYh/UE4tH/X6qLHIH6XX8mbqHQPxM8/ng4N24HFwcEAmczVTkclk3nD7rq4udF1ndrY9qOD69eu8+OKL7/SSAUgkEk37vLdTmqZRr1/dyf5e1QfhI/5G4L9arbK5ucne3h6dnZ0888wzxOPxd3S+twrEX/nqWhsIR0CpXGdvJ9d8aPJaLyuLhwz0Jkh2RJC6RLd0snGLfKEGQjA+1sXSSntTWLIjwmGLH3N3V4yFizaEM+3AXAiB1GQbIO7ujLGy2S41mRnv4bVH7frOuZkMhXI90NMqxVGuRDIZ5vHm+YRRk4JY1OJ471ybqmuSSMTk+OD8NUsh6O2IsbJ7fl4F9HbGeOXxdvOxdCzExJxJcfRVdKtG0TPxPQ27GEHrPAMTAZvs+QKjx21MJXTcoo5dF2gRhV6OYdd8DKVhSgslPIR0UDUBloNf16iXDPR0O1vru4L6qYVIOoh0g3EHlKfjHxv4nkSGfbT45f28vAUxD9UVfF9qRQtqYMQdpOljZy08HWTURxI4jbuAn7XQURgpG6+s49R0RMyHDp8yNZSjIfIGVke9PQHT17CsKNkjHU330VNu25Ki6HCxqxbS9zCT59erfEFdKdRxJxVZRYt7kPKaQL9qa8RrBm7ofGqiWQrb9fBzIczUOaiTRmD/Zx/HEFKj4vh4locMKzo/e8DRf+jj7vo+d8baPbMFgVtJzXbZOS5QrLZrku+t71/WhatAR16q1NkrF9smiABLOyfM9J8DTAgsPeeGM7y6sMPEQCcXy3Y9iuV6M7JeoHhqvJ/7y3t4vmKoJ0XJqF/SmedLNfo6olhJAb7Gaks6peP5ZAtVOhORNs323Ggvj9eO8HyfW1N93LtCa+75PmFNJ1+s4biX7zuu53OarZDpiJGKhK9Mzry7tMftqT7ur+0x0JFgaesywbOydUp/OoTQDR6tXi0p2T2tMTfey+YVzZ1nNdyb4pUHW0wMplk5PMW58JmM9aXbHJn+fy8vUanZ/A//zX+BdaHh84PyEId3DsSfSFMu1EeNRf4ovZY3Ue94Xco0TZ555hm+/OUvNx/zfZ8vf/nLvPDCC1fu88ILL7RtD/C7v/u7ze1N0+QTn/gEjx+3W9EtLi4yMjLyTi8ZCBjxSuX1G22+UX1Y9NrvxjkvAuNKpcKjR4/46le/iuu6PPvss9y8efMdg/Cz873Z/mHP8/kX/9sftT12bbavDYRrmiCbq+D7iv29PI/n91Cuz72vbVI6qhABJgc6SIUtbkz2MjyQwjI1Jia6WVo9H3QVkEiG26wQuzujPF5pl5HcmMmwvXd+fgSEI0bbIN+RCrNxgb2bHOnk/tI+G7tZ7j/eY35xn0xHnK2tLJO9aW6PZ7gx2sOdmX7WL4DrmbFuNltAOMCN8d42EA4w2Z/g0WYrSFD0PJslP/sSKlZBGAovH0F5oSYIVwoq+2EIeRgJt/lY9SCEayr0Dh9h+XhhG18KSlKRi1UoRetUwz5lKbBP0xRKFnVPR2VjePkQXlWjfmxRr+nItItoWZf3bYkoxHCTCr/Tx42AXbWoHoewT03qRxa2o6FSLqqFfSbso+KKci5E4TCKozRk5DK4klGfuqOTP4zg2mFE0oOW4wgDSPnUqib1Ywv71EKV4lSQ5MwqJH28iKJ2bKEu6MtVyMMLK8p7YSqHIYrHYYq2QS0ChVgNoZt45XYQIkyPonAgH257XOrgRRwqhxFUIU5hP0K9kKCsTLIWZB1QKRcZDq5dC3t0fXYfaXm8trbHnbEMqCB1sz8V58H6Acu7J0ghrnQ4eW21sQ8w2tPBeHcH8+uHbB7m8Tyf1BX7PN49ZaInkLxM93eRDkd4bWkXx/NZ388y1JO6tE+2VCUWMsmk40xlunhtcbfpob11mGO8r/PKgThq6iR0g6Ps5d6efKlGNGQGGmoFT433M79y0GS4H67sMzVw2Unl2lA3S+vHeK5PNHzZChKgWK4x3Jli5+j1AfLDpT1emBm5EoQD+ApsGzTXuTShOSuhoFqxGW3YTl4sU9dw6x6e77O0ecxETxpDPx/Crw11X7JFBfjK/Q3+1hf+PeULk68PKt5eCPG+S2I+8vVBy0i+SaQp38w22m9U78qv4Ud+5Ef45V/+Zf7ZP/tnPHr0iL/+1/865XKZv/pX/yoAf/kv/2V+/Md/vLn9D/3QD/GlL32Jn//5n2dhYYGf+qmf4pVXXuEHfuAHmtv86I/+KL/+67/OL//yL7O8vMwv/uIv8sUvfpHv//7vb26zv7/Pa6+9xvLyMgD379/ntdde4/S0HYBcVbFYjGLxsnfrm62PY7JmqVTi4cOHvPTSSyileO6557hx4wax2GVP33fjfN+ofu9359lqYZoNQzZj7c9q+kY/x0fnvQBWSGenZZt63SccNrn72hYLD3fZWT1B1FxU3WVmuItb0xlmJ3u4NdvP+nY7AI4nQm06ze50rNnEeVY3pjNstFgaKiCZCFOpnjOmiViojXmHwPbw4co+NdtldfuE+4/3wIevP9gmqhtM9QXg/JM3hjjOldtuXLenLluiDXWGWN4/l7PoEYfJ79lDTW4gJCgfSrsRvJiNbwUDtlvVcLIRzJ56U6/sVjWqJxZad0vjogfVgzBu2EfGzj87r6RRz5lUYlWIK0h5VGI2NST5YpiyrlErW4h8DFW08OsyAL6+pB4PJDPnF6zwPI2qLqlFwSmZmKVIEwj7dYl9bGK7On5KoVI+bkxRKxvYxya+LfAqAfiv1nS8hIKkohZxqRYNnKzRlP8oD/ycie5GqYY1qr5JyXbbr0cIRIdHva7j5AxQIEoWtaMQ5UKIWlJSFya+SdskwzEdfENilNt/M0KHatRG5OO4RYPKUZjiYYRiKUwpBjXHgrRHPVQHGWzvhz3sXLtOW4+5dH7rPlL3cVyfT04NMr9x2OYecpgvYxk6qchlYL13WuRbZobZ2MuydnD+vT0uVIiGTCLW5UXUg1yVT88GIPQwd/5bq9kupUqddKJ9goFSpMIh+mJRVq4I5nm0ccidqXPXJCkEd8b6WN3Js7pf5M7k1Y5KWwc5pgY6uTNx2U3E9xV7xwV60+fv++xwD6ubJziux/5Jkf50AnmRaVVwc6yPr81v09cRb7Mrba1bE328Nr99Scve+hrSsSjFsqI7eXUT6FBniNWdLPeX9rgz0XcJjMwO97Df4je+tHnMeHcAxqMh41K4WGvVaw4/9Pd/m9OWFYMPCohrmva2Ge0n1oVX1wfdWPnN0Kz5zW6j/Ub1rtgXAvziL/4iP/dzP8f+/j537tzhH/yDf8Dzzz8PwOc+9zlGR0f5p//0nza3/43f+A1+4id+gvX1daampvjZn/1Z/vSf/tNtx/yVX/kVfuZnfobt7W1mZmb46Z/+ab7ru76r+fxP/dRP8dM//dOXruWf/JN/wl/5K3/lDa/3137t1/i5n/s5fv/3f/9tvd69vT329vZ4+umn39b+b6cqlQovvfQSn/vc5963cy4tLVGv11FKcXJyQiaTYWRkhHA4/I13fhu1srKC67rMzMy84Xb1msPf+K//P5wenw8+szcHmH9wntQXi4dwlaLawgTN3hzgYYuUJRSWCKlTbQHGszf7eTh/voxtWTrhqEU+X6WzK0oqFSGZClOo1CmU6xycFHFcn7HhTta2zsF6T1eMbLHadD4AuD7Vy3wLi66AqbEuljbOAUk0YmJZOif580GzvzvBcbHS5n88MdTJ6l4W31eELZ2+7iDCvli3Oc6VOTgtoQQM98TYOik3m9CswTI9d8rY2PhCoTyJq0CLqcCqTymcnIGKeAgNdKnhuj5e3kBEFAYSTUh8H+rVRpKmqRC6woyAJ1ycrAkppw2EKkfg5ExU0m02fkLAsPs5A9f0EZ5AcwWhkMAP2yh8vJyBF1YI6/Ktyi9LVEUDTSGTbpuU5OwN9vM6nh/c3PWwgsjlCbRSoE51hA8kPTAuPq+QBQ095iAb16FsScSLUHMV1ZqDnvDa3F8ApCuhqtA7nEvHMwsmxGt4JQPXkfgSVEQRqlmoZLlVWo9SCnGqY/W0y+F8B2RNtklhANRplL0vd4EveWr8XMPcWv3peNNVpSseob8jwcONA5RSzA738HDj8gA20Zdm8zCwPNSlYKo3xep+HtdTTA91sXCFdGOwO8lJoUzVdumIhehLxlloHPv2VN8lHflZzY1n2D3K0xEJs3ZhdWf2imCrkKkx3tOJZeq8tnzZ1g8g0xmnUK0zlulgYfWwTUIGcHMyw72Vhm2hglsTGe63JOzOTWS4v9Zuazg32st8w940HrUIRwz2T1tAceM4DxrH6UxG8DTFaUvT92hPgo299r6P2zN9vLq8ByJowHx8hWc5BBamobAeXPcVNdGfbt6XBnqS/PwP/1n6uwNpZjab5amnnrpyv/eistksr732Gp///Off1v6+7yOEwLKsJ/IUzu0LZ374o2df+PgX3pp94YfRRvus3jUg/mGrL37xi/zoj/4oL7/88tva//DwkI2NDT7xiU+8y1f2+lWr1fjKV77C5z//+fflJpTP55mfn6darTI4OMjw8HDbTPC9qNXVVer1OtevX3/D7f71r7/Mv/iVrzT/j8VDuK5HrSXB7trNfh61AOrunhgnuSpei0ykbyDC3t75gNjdHeO0UG2ToMze6Ofho/PjxGIWSghKDdcRIeDWzQFKFRsrpOMrKJSrhCIWiy1hQam4QaHm4bV0t83NtDduKWBmvJvHLftFQgbRmMVhy+Dek45RrjuUWiYZQ73tPs6GLrk+2g2axFOKXKVMfnSd8Mw5q2YfWRB3z8GlK6ifWMiu8/fRr0ucgoHsPJ8EKA/cExORbmeK/byOKwNAL2yBKSS6LqjVPHxLtTHmAH5BR2gaTuhCwIoPfk7DF6AhkKaHjHlNAKRXTaSvUzLOmXPpC2RFgOYhTB+/rOOFALP9FifKAg2FSLqosoZf1xBhhdcA0aIqkX4A7C+WX5BYnoGMKKqG3c6S10FzBNoV+1klEz9eQdkSr6Lj+QJlQFiaONZ5Y+pZRaoh3GgZZPvj6kQjdBGM22A4Glo8+C4oH7yKTmUnSum1DkC8ri/4tYFuIobG/fXDNsmElILpgU4WrpBaXBvsQvk+x9ly0Ox79hoNjb50gvUWJv2spge7sHTJxm627TsLcGsyw90rQOTscA9CwaP1ywDU0DX6ehLNxsnuZJSQ1JvykdmJXh6+jr3fJ28M87X5rUvWnWd1e7qf15Z2Ge4MsXV0uXn09kx/E+hPDXSysZ1te++6O6LUPC8I7aHRnLnY/t73dcUp1G2K1TqpmIVddanalyeIt2f6WTs4BVdRKF/dk3RtpAfH8djK5qldCCoyNEl3PNrGpKeTEX7+h/8M1POUy+X3NZfi+PiY+fl5PvOZz7yt/c+A+Hs9Dn1YqgnEf+gjCMT/5zcPxG3bJhKJ8Ju/+Zt893d/d/Px7/u+7yOXy/E7v/M7l/YZHh7mR37kR/jhH/7h5mM/+ZM/yW//9m9z9+5dfN8nmUzyYz/2Y7z44ou8+uqrjI2N8eM//uNt5zirdwLEP7ZCrUQiQalUettLXR+UNAV4z+Up2WyWV199lddeew3TNOnq6mJ6evp9ufm9GWlKsVDlX/96e4Lc0Ei6DYT39iV5vNA+uCc6om0gfGi4ow2EKyB2QQc+ONTB/EL7INo/0NEE4QDpjiiPlg5YXj3i4fwejx7tkYqFWV46JGmZjGc6uDnRy8RwD4PdcRJhHaEUme7YpcatWzN9bSBcAYP9qTYQHrb0IHSoBdCkEyFOS+W2JrfORITV/Rx3l/Z4dLRJ+RML5yDck2i5OLLrnOF18wb1st4Gwt0TA9eTbSDcz+s4FQPR6TWBqHAlzomBF/MQUQVhhUr62Drk64paQmBbklpZR5bC+Ech6vsWjhDYVgt4UBCuhFF1Ay8BKg5uXGFbknrFwN63sPctKkpRMtuBsCcUjhLUawaVmoHjauBfnrD6Gth1ncqxhV0x8GN+E4QDqLCPF1W4OR0/rwWv98TAq5o4YUkp5lGoKVTpgkzDAi+mcE5MhCdBgSrruCcGVUdQPYlQtU2cOPhJhYooKqE6wjYRF6wRK+Eadq5xnJYSnR61w+B3qDwBFROzHqdctMhvxyjkwhTsEGVTR43VMe8ELOtrq3vcbrH56++Ic2u4l+XtY44L1SCNtfU98hUre1km+tt9wcd6OyiXatTKlTYQDlB3PE6LFXo72pNF+9JxhKfQkJdAOMCD1QOmB8/124YuuTPWx8LqITuHebpT0Uv7OK5HsVijIx5moj+NXXPbNNxLG8eMXpSJqCDY6qW7m8yOZl5Xh3pvaZdPzg5eCcIB7j7eZW48w2BXgr2DwiXN91G2TCoSImRqTA128nD58iRj77hIVyxCNGTQEY1eCcIB7i7scGOw53VBeCIaYu+owOr2CQPJxCVLyRujmTYQDnCar/B/+9n/nUcbxx9IquY7tS58woR/fKpQKLT9vZ5BxofVRvusvintC9+PikajH7pAn7Ob5nuh7VNKkc1mWVtbo1wuMzg4yNzcHHt7e+Tzr9+k9G7XmwHi//Y3vsboQEcQ41538H3F40ftrHIkbuEfni/1jk92s9wS8COkaDaIndX0TIbFlgRNIYPAm9a52uRkD49brAkVEE+GAp12o/oyCR41jlMs1SmW6sxd7+Pr987dSiIhHRybgVSYeDwCmoYQis39XKCTaAw2ty4mcQoY6ku3xX6busRXHqUWeU1HPIStfIqVOsZomfBMEekZuIcm9brCEyCkh1aPIjRQdQ1CoAmJyikkgkLJC+4QNog8xEMmhZKD0gPG23cFuilQVY16yEF0eJxR1tKTOFkNP+mBeT5wappGKa/w414Q44mAmiTqW9TKLj7gxB1oAcZCAQUdV1Oo5JmQWxAum2hKUBc2ypZgCbyw3/hUBJ6l8BTIfDDxQQl8qfCjQKIx+UBBTUOvC0TcRehAXWDaBjXfpx72ibkhfMvG1Vt+7xGF25CLaDEPYSrwIOSE0EyN/EkdBIik35C5NGzbPInKSWTqfPJhWy7CEYTKFl60ZaBJeNRKOpGwwq4rfFvieRIlQDvspJYogSZAc8AEVRdoSiLl+XUaYxVUReIsxrm7us/z0wMUynUWto7ZOw4A2tZRnpGeFEqV2zzIHddj97jASE8K3/PRBazvnrPddyb6eO2CE0mhUidk6sQjFnXb5cZwEFh10ACrd6YCtrm1fF+xc5SnvzOBrkk822t+5wvlOv1hi7ClU623s73ZQpXnZ4d4sLJPpdYuzXFcj3zx3ElFEkhd7jUcju4v7XF7up+7FyUsSnF7coC787t0xgxOSu3HPavjkxK9qSi7+4Urn9/az3F7qo+13dNL8pez2tjL8smbw7z86GorQoCZwQ6+eneD2zP93L3o+qKC9M3HjRWD9d1ThjIpTmSFYtVmpDfFg9exQXRcj3/ybx/wPZ+ZZG7udU//rtcHFSL0Ua+Pqn3hxeTyn/zJn+Snfuqn3pdreD9stM/qYwvEWxnxtzPD/qCB+LtVZ9rv9fV1qtUqQ0ND3Lp1C8Mwmud8PxtEv9H5djZP+e1/8RJeCws1fq0Xw/Pp7I4TT4aJpcKUqw6jw2my+SqFYo1iuZ2Ju369j/lH7TrwgwsJmrPX+3jQsk04bHB00t4QdeN6Hw9b7At1XeJDm/xkYqwraLZslAJGh7sautI67JcIh3VMS6dQqBELGXSmY/R2x6m7LjfGeilVbU5yZcaGu7i33A7Me9Jhto7PJwLRkEEobLKbz2F9Oo8+WsUDPHzcAxPVFbiUKEDVBHZZQ7TYCuplk6rvQvf5awjXQmQ9D6/z/DHdMagVBV7cB0dHVAWaJzB9jarrI3SFKGsQ8hFSoJdMaiGnAaZF880w6xYF5aMS549pZZ0YBqVqHWWAuiBpQQiqrg+2wItIBBKtDEJJVCPJUvoCVdJwFfhhHzzQ6hqmK7D1FlBngOsIODUR+Kg42OGz35igZNZBKWRWR0a9ptRFehqGriMqIfSqoGBVqEsXpAtxgn1O9QB0N4hHT1MQg2g5SjVcbj6uDEVVOCSKMUpOHd8TKAG+oagWIWRK3JjLGY1boIY8tho+7Y0rtRReVUA1sHw8K/NGiYyVoL5i8tLCDtcGLjcUbhzmGMt0sHdabJM3dCeihKTguFDltNwOSl9b2ePWeIZ7FxqDD7MlnpsZZPswf8kP+7WlXWZHe5m/oO+u1V3mRhIsb52QLbYHZu0eF4JI+q3zyWfI1Jns6+Tl+1tcH2sc78JtPFesMdSbwol6DHQkmhrts7q/tMu1ke5zXbtS3Jns595C0Gei1wI9d2uvBhA4zriK1c0TBroSlzz9AeIRi/2jAsM9KR6s7rdLmBo1N5Hhq69tcG28h4Wto0spsCO9SZa3gonP/ce73JzKcL9FbnNr8rIf+dZ+joGeJIauoVzV7Au5WNdGeri3uMc//uIDzEiSP/8n71y53btd7zRVE54w4leW4m07jXxTVuO1bG1ttUlTLMu6cvMPq432WX1spSnxeBzXdd+2F/gHAcSFEO+ac4pSisPDQ15++WUWFhbo6enhhRdeYHR0tAnC4f1/nd8IiP+z/+X3L4DwDKtLhzi2x/5OjtXFAzZXT3h8d4fNxSOKByXmZvowXMXMWBdzMxnmrmfwPZ/urhhnPYPjUz3kWxI0O7tiPL6QxDk62tWWstnVFWN5rb05bWa6l/2j86XgeMzi6LQdvM/N9DWbuyAYo1MJi1whWAqv1BzqdYeHS/vce7THo8UDtrayjPWlWds8oi8ZYqjDYioT57nrA+iGFVjLqWBZv7szzr5/TPhPH6GPNq7XljjHJvScWwXKbAhbgUg1Pl8ftNMw1ZAD0cad0BVY+QhFvY4XamynIF6JYaMCEA5gCHRp4AmdYszHTYETE9imxKzGqOV0So7Cz+mQ1ZEljWg1BBWdSshDhVsAvq9BTXLq29gxiWNJvJKGUTCJVEOInIZeNfAs8OIKNIEKK9y4wpHgH+v4RzpOWeBEFH5UBey7IfBiiqryUFkNTjVUVsOrabimwI2DE5d4voSsBna7S4qyFG5BwzvUESWTuhKUDI+iZZM164FUpdq+j5/08as6stoCPnwoKhurEMc7DFxdajmDqmNwoLloIoKbUHgJhQoDYbB9hVa54AOd9nCPLqR2hhWuq+HX22/tJ+O7nEQCwLiwk2UkfbnZem0/S39nAlOXTPalGe9KsnWQZ3Eni6sEPVdIRO6t7jPbkpY50dfBWHcHr8xvk4yErszsXNo+ZrxF8jLW28FAKsErD7dJxcJXxsYvbh4x2RcMyIPdSdLhMPMNT/9HawdtLiutVSrXuNbfzeIVOnOlYGM3y2BPMmDCJ/q59/icIa/UPSK6TrjFKSYesYgYBkenJSo1h1rNoSPe/l4auqQrEeHwpMTD5X1uT/XDBUA82pdisSFLW1g9ZGags22beMSiVLLbdnu4tM9kJngPejpiLG5cbowF2DnMM53pvLRKcH7ujiaAV8D/8ut/xC/+2ouvy9y/m/WEEX9v6oN2OHmvXFMSiUTb3+sB8Q+rjfZZfWwZ8TPP61Kp9LYcQDRNQymF7/vvq87unXqJ+77fbDR1XZfh4WH6+/tf9+b4zcSIv/bSGl//49Xm/5omKFxgq6ZvDDB//9w5JZmOsLy4T73mwu7ZNv0stjDdU9PdVPM1Zid6kLrE9XxCMQu1nW16kI+OdjH/+JxRU0AkYrSB7LHRLh5c2Ka3N8FSC1jvzyTaGjgB5q71NZfMAUxd4Phe20A6OtjB/PoBvq8oNyQot2bSvPywxSUmZDA+nOYkc0B0OIvwJaKsIx2dQrXR6LhvomsaniupKh+qAZCzpI7jQ8334dBCCIUhNBQaJeWAbSBkIFnRpUnWrJ4zkLYg5obJm1UwzqGXXtHwlSAfspuP+0CkblJzPaq6j/AFMicRCsIhHeUKKpaNH/VppThNTade8ykLF0yBrIEsa+iWwA25hF0T34aKdPCbDnWSUE3DRKOk1dGVIKwsyo6LYwbSGOFA3DGpChtPC753SoIbBVGRyLwACV5IBa+hgUVdR6HlJSrhNy/Tj6pgMpPVAucVAYano6EhHUklb6MiQVQ9mqCm2ei6jqgrVPhc1lOw6sRrEWyrit9o1vQNRd3xMYo6qiWF0097OEcmRgszLiM+smqiRB1hKoQn8WsC/XqRelUiCgYbp1VGOiNsnJz/fjQpiBgG05k0j7eOac23KVRsLMNoBvG01uOtI25PZHBqLgst4PDx5hE3JzJBAmYLIndcj6NcmaGeJJ2xCPeX9pqAc333NHBEWb3McC/vFLgz0c3C+mmbExHA3cVdbk5m2mw7RzMpCvkaX3u4xa2Z/ivTKmu2S73m8MzUAK8u7Fx6fucwz9RIN0s7x4Qtg45IiO39XPP503yFgZ4kNcuhWncRKKYGutp6P+493uX2tfPzd8RDFArtAUKP148Z7Y2wfhx8HgPp+JVAe3U7z2CXhY/f5qDUWiO9Kb7+cJuORJjejhgHLbaGUgpcx784L+A3fvcuBydF/vZ/8+2EzAuWQe9ivVON+MfUW+Ib10eUEX8r9SM/8iN83/d9H88++yzPPfccv/ALv3DJRntgYICf+ZmfAQIb7c9+9rP8/M//PN/xHd/Br/3ar/HKK6/wS7/0S81j/uiP/ijf+73fy2c+8xk+//nP86UvfYkvfvGLbW57+/v77O/vt9lox+NxhoeHSafbe2xerz62QDwcDiOlpFQq0d3d/Zb3PwOunue9r0D87TLUvu+zv7/PxsYGSilGRkbo6+v7htf+QQDxq262nuvzT3/x99sem7k1yHyL7rqjM8ryYvtSU09fkqWWps3Rie42PTkCShWb/RbrsGs3+rn7SmDYLwRkehKYQnB9rAfNkPjKJxQ22D8qEYtalEo1wmGT3AWAMne9ry110zQ1PEUbiJiZ6GkD4QgYHEiz0mKD2JEw2T3JtzFWc1OZdmAhYGAkzr2+ReizgeD7aZQsqok6hANUE6pa1IWPfQbmFISLYfKheqA3BnAhVAlRiNQb1IRoPGZRjtog3OD4tsIoGCgLso6DKOsBdlIQt0KUhI0yWiQSFQ2EpGS6zTuPMgSa0tA8jbyyQRdQF0hHYAqNkBG8Z0XDboDgBqAPgeHq2BUf39YoewEglmGJf3YXV4FPfN1T+JrA9zUc5eBHGgw5oAwoYIOj0PIaCIXSCBovzeBPKLDqOrZywTy/btcAWdIQUoGhELYgopkIU1LLuzjKw44pkF7wlxQYVQ20c3mLq/kQViQqIcqR8+bAolFHljSsiDrXphsCR3poOR2RclE+UJegg5mNg+YDkmKtTk0KVCGMiHoQIni/48DzJfjDBKKmsXFSYaa/g93jAl0xi+Oi03QaGemOs3NabmtEPMqXyaTjxCMWxUqwkjjYmSAVsVheP6an4zJjfn9ln9tTfdxtlVMpGO5O4dRd1rZPL4HC+dUD7kz38VrL9zsZDZEK6dxfPmJquPtKkLqwdsj4QJrVnVNujmVYXDtogt17j3e5Od3H/QuNk4Yu6YnHOD2tYBraJYAPsLRxxK2ZfvKFKhstGvmz2jnMMzncxfLuCbcusOpndW9hl7npDAvrhyQjoSuPs3lQ4c5MPwiuPMZZdSZSlKtXN5IamsS2PXxfcZKrkIyFGOxOst1oZL010cfd1zn2cbbE//1nf4e/+4PfQeqi9/u7VO8GI/5EmnJFPQHifO/3fi9HR0f8nb/zd5o22l/60peaDZmbm5tteOdTn/oUv/qrv8pP/MRP8Lf+1t9iamqK3/7t32aupWnie77ne/jCF77Az/zMz/CDP/iDzMzM8Fu/9Vt8+tOfbm7zhS98oc1G+8wR6M3YaJ/Vx9a+UClFMpnkS1/6Ejdv3nxb+//e7/0en/rUp95XK6WvfvWrTE5O0tl5OT76qvI8j729PTY2NtA0jZGREXp7e9/05OHk5ISlpSU++clPvpPLftN1fHzM6uoqzz33XNvj//5fv8r/9gvny0jJjjA126PewhpPzva3ge7x6V5WWzy7dV2S6opxdHguHRkYibG9fa6vTqYi2J5PpXLOMF6/0d+mJ+/pTXCar+A0Bm1dl1y73kepXMeydHRdohkaddelXHMoletk8xWmJ3vbJCm9XXFy5Rq1lga5m9f6uddidWYZAjOsUaics18zY90sbp409Z8KGH06ztroBjSSJEVFgmfgRBvH9sHMh6jGa00QSkVg+BbV8Pn5QxUTT4Nai4baKOn4BjjGOUgRJYGu6dTMFuDiQKhmBMdrGSxlUWDpGrbrgwJdE2imRBeBnr4o2/X7miOIKouCX0c1mHThKKQjiIdMUIK68KhqlxlB3ZdQUvj4CEMGTPaFcVv4ClERCKHQpEQ3NKrSQTWuOeLqaBJKut2+r6/QKjJI4fQFGkFDr6MpIsqgqtn4rT7iSqGVJX7MP5sXBa/PE2g2ePF20Be3LSpGNdjWEYE0pi5IRQxKdRtPgRKgpMJwNdxU+/usZSWiq/09EXkZ2DC2Yp+Chv7HCa719gQ+677P4vbJJUA8PdjF6u4J7gXJwlB3ElOXWFJv+oFDIKeIhU32Lrh0AAEzvrrPSE8KDdFs+hzt62DnKH9lvPzcZMCmz470sHOQp9hwDglbBulkmJ3Dy9rsRNRiZriLVx5uX3pO0ySjA2mWt08AiIVMepLRZlDXtfEeFjYOL2GASMigNxknkQhxd/H1AfKnbo3wlbsbl75vZyUFfGJumK/e37x6A2BysItYxLzU0Hr+fCerG8FnNTvdy4MLkpvbk32XQHw0bNLVHadmuxyflq5M9oyEDEK6RrZQpa87wd/74e9kpP/NsXlvpR4+fIiu698wJ+L1yvd9DMN4x84rH5U6sy+c/f6Pnn3h/D98az7iH+b6WH+b4/E4pdLrp5G9UZ3F9H6zxtx7nsfu7i4bGxsYhsHk5CQ9PT1vmU34ZtCIFwtVfv1X2qPsM0NpHrcE84xN9bSBcF2XFArtDPX0bD8PWwJ/unti7O2dL80roKs3zvLyOds2NtHdBsI1TaCZWhOEA0xN9XC/RSJiWTqJjgiHLVrx2esZ1jdPGeiMEwmbhMMGmqHR48VwfR/b9ohGTVa2TxFKoYRASsj0JVnfzTWP098TY3U32wThvlD0fk5jrW+t2fEhjk1USOH6HuQ0lAsWFnVcOAlSIJUrCIctyrYNJR2UQrkCEdOplxyECKLCcQV6XKdaczBcDSkFlmNQsOrUGu4cwgdZkPhRRTXi0nROKQsMqVMNe7g03EMUUBF4KEqGC75COBLdF8RME4mgLFwK0kY1GHrhQVyEqAqHrN+wLPQUsiqI6DqaLpBIKp5DXXoQEZy9GZojiQoD23PRpUQiKXsOnuWDkHiOQncFlmFQEwGIregu+CCKMgDtQiB0gTAETsgHH6K+Ts3wguZLoIgTNIMWZNBYKgERaNKlI5E18KJ+Q/8okFJDzwYs+xnwK0gXXYZQmo9jNd4vAw5dh4g0cCNnEyZBXXnoWR2VPv8eeh0+2omOaPV7T/r4OR2Zds8BYsKDZ8rMf+UQoYIHx3ribB6V2pyEFrePmRkMmF7PVwgU14cCz2rf81nbP6G1ipU6pq6RToTbwmoADk6KfPL6EC/db3cIWd/Lcm20m4X1ywz39n6eT84O89IF4FqtO9TqBqlYiFzpnBlOJ8KkoiG29/NEw+YVke4++0cFMp1xPNfHELItLXdh9TCQsLQ4qUTDJl3xKOs7p7ADN6YaspkLdXOij//09Q3uXL/sCnNWtyb7uXt/m7H+9KWAIoB4xODoqMhquc7t65cdXRLRECenleaEaX7xgFvX+rnX8IfvTZpXMunlqo23n2d2KsP+0eXJCwQTgPuNScbeUYHv/x9/k//+B/4Uz8wOXbn92y3P8554gL8X9YQR/1DXx7ZZEz6cFobfqFnTdV02Njb4yle+wv7+PjMzMzz33HP09va+rSW991uaIoS4dL5/9+uv4Lb47A6NdbaBcE2TlC64okzP9XPcAoR7MgkWWvzAFRCJh9vcTa5d72sD4eGwwclp+/fj2mw/uy3AuLsnzur6eeiJAkbHutpA+OBgB49XjyhXbPYOCiyvH2M7Hq892ObBo10WHu9j123mF/coF2tIBamwye3pfgx05kZ7uTXRx82xbiwNuuMGQz1xuvoixP4zn20jh31qUjs1sXfDFGNQ0gU1S2JXdWphjWzMpRKDekhi+xq1tCAbtrGT4AmBY0rqaUHWdLDj4LkS2xLUk5CXLrYpsIuSsiM41lxsV8OrSTjUEEUdqevIsk64bJKohEmWw4SUgfLAtCWaI9CLAtPTcMIK+yw8xxNYngaa5BSbY+pUlYfvQKxsEq+GiNoWyhNITQIC4UNcWYSEQdl1KbguWaeOU/exajpJ3yLqG8QdE6pQrNvUUZRcl1LVwfQlRoMiVrqg4rvUyz4yJwO9ekmgXIFvSryQhm9KQuj4Z98VKSibHp5SaMVAtkNwZUhDQF5iFQ3itRDxWgjTMdCFCccablVS9wVl4VO0fIRh4GsCNwpeGOqWh4NP1G5pStIFFdNFz7fwJkLgJhWctC/zeykfddLOr6iUT6TcHqvudtmo2+eT0LXDIpODXegXItwfbx8zmUlxezxDdzzKwvohKzsnrO1lGcqk0LX27U8KFSxDJxYJNDypWIjb433kclXuLuwykklxsRbWj7g12eJsoBS3JjJ4jseDxV36u+OX9jnJV0jEw5gN//NrI924dY+17VP2j4tkOhPIK+Loy1WbrkQYS8orQem9x7vcmuwDIGxppKNhNltkJIurR0wMtq9G3hjvZb6xinXv0S63G/u31tx4L/fmd7Adj6ODQtAg2lK6JohoWpP1v/9ol9sTLcdRkOmIk7swwXmwEGwXtnQ8//UlHzMjPdx7uMuNsd5Lz40NpJsg/KzKVZsf+5++yJdefPS6x3w79U6lKR/TBfxvWB90Y+U3Q8T9h7k+toy4EIJYLPa2GXH44ID4Ved0HIft7W22traIRCLMzs6STqffsZ7ug27W3Fg65Ld/5UV8TxGNmqQ6YyRiFtevZwIvcE8RiYfY3DzFMCSO49PVG29rxlRAKGLitUhSZm/2M9+SuplIhNnaaddtDo2kebx4vvQ7OtrJw0etEwCBaWrUWvyN52b723ThsZhFuWa3hQTdnO3n/sL5cRIxk+NcuZn0pxSMDHXyWsu50qkIvhY0hwG4/QWc5+t4ZsOfuhiw1XaDIdU8SahqUeg4dwWKlC2quoOXatzlXBB5DSd1ftcTFQGOwE2cPyZLAh+B04KHtJJACYGXAA9w8JGOwKv7lCLnr1U4oFUEhCSu4SNtsNAJKx0hBQqFjYfneEgfpCsI6wZlHEpaYLoIIB2IChPpS2q+iycVhibRpEnd97DQUAKqrktB2YEOwFFoSpAwTGrKQ8qgEdOuefh1QIFEoFkS11Cosx41BVHXoO67uKbCB8p4KBtkWUKDBQ+bJkpX1OsuUdukZDjYQkFYUEFRq7mgKdQZARgT6J7ELyn8WHCMmuYhBESrJpVwIxlTF5RUnXjVohQK/MgRgnrMR89qqNR5wqiXUmgnGnS2MOMpn0QpTCV2DtqK4RrySA+SUH2BVALV4+CN1tDWgwt8vHXE1EAn6/tZXNdneqAL33NZ2c3Slwpxkm8HgcvbJ1wb7mZxs916b++kyPWRbixdY2HtqOnQ4XpwWqjSm45xcMFJ6N7yPrcmMxzlyoR1vS2JMhIyL7HfAJt7WW6M96JL0d5nAaxsHTM31YiVb7kF3hjPsLRyxGAmia6JK9M1Hy7uMz3Swclphe399gwF1/M5OCzS151g76jAtZEeHi8ftsl67i/scWP6nDmfGOhkscWBqVJz0PO18/dBwVhvipXN9vvP/YU9bl4L5Dm3p/u59+hqpv3+o11eeGqUr9xbv/L5no4oj5YP8DyfR4/3g8bRBouuSYH9Ou4qvufza//266xsHPN//QvfgnaFm81brXdqX/hEH/469YQR/1DXxxaIAx9KIH5RmmLbNltbW2xvbxOPx5mbm6Ojo+Ndu2F9kEDc9xX/+P/1pSYTWS3bjMzEmH/1fKk63R2nVKpjN8BwLGrSnY6SiJiYloGmS0Ixk0KxzuhoJ5WyjYdiba2dxe7uS7LcMlhOTve0gfBw2CBfqrcNuNeu9fGgZXAc6E/xeLVFsykCPflKC2M+PdnTBsJ1XWBYGvnc+WA4N9PuopKIWWiWxvFJESUV9u06zkxDv6xAHGoBANcCdlYWJJ4fWPfJnAxkFjWBbfqETZNq3kV5CqUk4bCJW/ARgKaCsBhdl3hVhVQCFHgi+FycqteQqyiULlBCUSt7oBTCEYiIwGsE20gXpC3wwgov3HiXXYGogzIFOek0Bw9pQ1ga+MrDE1B23ACsSwOEQiCwlYftB2yxEAINCZ6g7nk4QuEoF10JorqJJgPpi24IKrZLseKgtIaExoeIZeJInzpegHF9gV5X+H7w2kOGjut5AdNdD5YNpSnxdEVAOgrCSsNzFTXDA11QwAmAvy3wIgpk0FCKAq0o8MMKdHA1BRGI2SY13cWVPkoKSrpLshaiLBrfMSUoKwczp6OHZTDZU4HrjDjUCUd1HNcLgKQUhLMhlBHo4cu2wykeWt4MAH/QI4sfUWj7Yfwz0C6AaZdQzcHYN0ApHNfj6cl+Nvazbb7d26dVhtJhdk6rbb+Bhc0jZkd7mF8/bAbMdCUiPF4/ZLQv3WY1CoF8JWTqJGMh8i3AOhY2wYeOSIhHa+265+NcmeG+DkqVWpuTy1BPkkKuSucVTaIAD5b2gyCcxV0EgTTkXuO3t7Z9yuxkhvnldqAO0J2OUszVX3e5uFy1CYcMboz3srR6dKXt39LKEZNDXZSqdQ4PL6dvFko1Og2NdDzMUG+K+xfSe89q/vE+z90c4mtXaN7P6sZEL199ZY07s/28ttx+HAEox8Fxz8eM+wu7gYRmeZfrIz08XLkstQG4OdnH/cd7bOxmWd855e/8jf+cePSdyUreCSN+xoY/AeOvUx8z8PpRqidA/EMGxM+kKfV6nc3NTXZ2dkilUty+fZtUKvWenO/9tGlsBeJ/8O/u8bjFFSXZGWFtqX3QSHbGOD05l48MTfSwcO9cr51KR6i7PtVG86UCJq5nKByX6EyEEZpPpj+F4ylmp3qRmghGL11jfLSTWt2lWnPo608FbHhjEJiY6G4D4SFLx/b8Nu343OxAG+juzyTaNKkIGB7qZGXzXGs7Pd7DgxZnh3DIIJ4Ms3WQw4142HM2kS4D58BH+eApICzxqxJPKvSsRj2tAgYVH83R8AyFSgevvua4SFfiNFbGbZwAKEqFOguB8UEvCtyoClxMAGGDrDYesxoa8FrAYLvhQEONgpCjoylBWXNQusBwJBECXbqHQuoC5UHEBU+pwEpRU9Q9F+kJdAWm1KjhkfMDNlh6EJEGFjq+5+ACNeUR1nSSmoWnfDQZuKVUXZeKCnxTNCAsdWKGiad8pC5RjffgDBgJJQiZOp7uU1MeLoqq42AqiaXpqIYOXvmgVRpjnQFoIpCiFL2GHhw0qRE2dJyqhxSBlEahUMJHVX2UL7A1Hx9FWbjorsSwBXbEByHI4aI5GpbUqBrBxNI1QNQ8TFOnrrUkZroSx/JxpcJBUcNBK4JKBEAfBH4E9LzET3uNMVrgpTy0rMTv8JvfwfpNm+mOLopbNht7WTb2soz3pS+lWW6dVpka6GB5J9s26M+vHfLJG0PkclUWN4/ZbzRRLm0dc32s5xKwPsqVGepNUreDz+HGaA/Lm8fcX9rD0DVG+9OsX9BQb+5lGeiKsHNSQUrJrfEMDxf38TyfnYP85QTaRt19vMvNqT7qVacJwpvXvdxgh1t01aP9HZyelimW68QjBh2JMNkLchCAVCxMveSga7JtteusXM+nUqqTjoc4fJ30zZNsmdvX+tnYyV35PEA8GmJ9/YTroz1XatO7O6KsN+4f9+d3uTM7wGtLO8371K2p/kuvGwIJzVhfmKXNy9p8gFQ8xPLGOYHwyoMt/sZP/yb/49/8Dob7LgdCvdl6Yl/43tRHTc7xUXotb6Y+9kD8w6YR932fo6Mj1tfXSafTPP300+9pV/EZ+H4/gbhSimKuwr/4B/+h7bnugQ6WWuQk0zcHWHzYwhx3RNhoYboB0pkEqy3M9rWbAyzMBwNT9rRMNG6ytHiMXW8ALmDyeoblB+eD17XZPh7d28bUJeGwQWdXDOX4TA13oRsaUkAkHqJWd+npjKF8hRnSKVZsxgbTOK6H43n4ysX3PSQBszl3rb9tCX54IM3azrmdm6FLenrjrO2cUh90KT9jowyoYqPVBW5YoayAFpcVgXQkTieAAA/0nAhkJw0CScsLPJMmCBcOaGWBm2jsQ4O91dT5Y14gQ3HDquHP3fDwdsANBzZ+QoFWDRw9mi4qXsB+owsKmnN+Pg80U6NM4KAiah4hqaELjarvBhIHTxHRTFzfo6p8dEDXJLoUGMLE8xWWpmNI2TQNMTQNQ0iELgLm3PUImwaalHjKp+66geOIgrCmY+Nhex6GIRFKYtsOeqOf0dJ1hC6puA4CCKMjNUFd8wNG3gcDDR8fZQa/CQlIR1JULkoPvkma66MchR8+e3sVhitQKmDLHRSEIOFaFIWN0sHToaJcOhyLnB5MRFRI4Pg+kbpBxQrey7LuIKogdFANObkXbzSLJvxm94+bVOinEj99BryDJNRYzaIcCmRLSioe9u0RXrWQjR1X904Z6e3gOFei3CJdWNrJcmO0l/m1A6KWRnfcoljx+er9LW5N9qGa36SgHq0dBv7eF2wDdw4LPHd9kLWdkzaXIMf1OM6V6e2McXAhxXbnuMJTUxlOstVLMo1AThLIZFprrD/NyVEJy7p6qLu7sBtIWJb3uTbazdrmSdPCsFhxGIhHmh7hZzU93M3G1gmO4zE12s3yzsklVjwWNtGV4GC/QHc6dinUC6CvO8HK6jHpVIRq3aZut48lAuhORVndOCabqzA71ct8CxiXUhC1DE6Oz499f36nyXYP9KaYv5Am2jy2UlRKLqOdKTZOC5c8yQe6km0OTxCkdn7/T/8G//xn/xIdifaegzdbTwJ93qN6Ik35UNfHGoi/E9cUeH+BeKVSYWNjg8PDQ8LhMM8++yyxWOwb7/gOqxWIvx91BsR/9R/+PsUWTer4bF8bCI/ELHa32jWVPf0plh6dDzwztwZ43LJPKh1hvSVcRwFdvSnWV8/B+8xsL49bvMi7e8+bMV3Xp1Sqk+6Ks94C+G/cHOCVr200/+/tTZAr1ag1AIyQgs4ui8PTc732rdl+VtaOSUdC6IZGV2eUSt1lsDuJlALdkITCJhXXxvicxklXoA0XPiTKIbLxWpP1SpZDlHUXqQlCtkTYoOyAzY5UNYQC5Ql8CcoNpBjSARsfdEGoJhAeKOVja4HCRdQg5OqURQD+dVdg2RrSF5Slg68LDFsQVQY1HBxNIYC4YyCUoISN0gU6kpin4aiAcdakIORpRIROybUx0LCUho4kLnQ0KUiFw3SEQ6SsECEpkHaNkOtwY2iAF25cp+tdmnj6vs/jzW1eWlhkt1hERWLUdY1i3SFbrZKt1SjUanhCgRJI5aF7IgBdesDmR12ouAGCN0yJJTSqFRdPKJSAkGmgOYKa5zRDjXSpMKrgmOBJRUk4aEhinkFOq4MQZIWNUdUQlsLRfHwJFcMJVirijV6CEGCDrIjAG50gaVQrSVT03DLRTUKqEqJw5lMuBSWtjiwKVONYnuHjftLB+EMT4QbXuXGQZagniRBVSg0HkpAZeMU/d22Qrz/aYaNy3vB5b3mP21MZ7l2Mkl9ueIkv7aFrktnRHnYP8nz1/iaz470cXmiILlXqhC2dRDREoRxcs2VIJvo7ub9wwI2p3kvabV8ptveCePedwzwCxe2pAR4s7OL7ikQsRHdHlKPsZeLl0eohz98c5pW7m5ci4XcO8kyOdrOyHYDta6PdrK4fN1nwpfUjbkwHQP7s92iZOl2JCJuNnpNuM0YyHibfkjOQiIXwbJ9K1aZStenriXJYqOK45+e/Nd3XnHD4SrG4fMDs5DkYvzWZuVI3fv/RLrev9XFarF5pVQgwM9LJ4toJJ7kTMt0xyqbe1ODPDHdfAuFn9cyNobcNwuGdA3EhxBNpyhX1hBH/cNfHGohHo9FveiBeLpebALynp4f+/iDK+f0A4fDBAPGDzSL/4XceNh8zTI3shQF0eKKHhZYEzckb/W0gPJGKsLVxLvlQQLIzSrYFdM/eGmS+hfnu7ImwvHIO1DVdopt6kMp5ts/cAA9aHFtGRzuZb9F3RiImHqoJwhUwMpxgfft8eXp6socHj3dRCipVSHdE2DsukW00YgopmBrv4eXtTcpPO/gSEsUQ5ZKD8qCguViOiecp3LrPScoBJRC+Qs/5OAnVsPBT6HmFaymU2QCBNYGqKfxIQ17iB82YbkQFCFyBVgZfg7oZgC9ZB+FCJeQhNIF0ZaD1NqCueYGjiU1gD2hKbMdDOJKYoaNrGspXGEgMXxLSdOKmRUcoTGfYZLQzzfVMN08PZOiIvv4AXywWWV5e5t4rrzA8PMzIyAiG8fYTAE9PT1lZWaFcLvPZa5MMDQ29LkBQSrF0dMLd3QMeH52wnc9zUq2Rq9Uo+QpTyKCRzYOq7QY6cimw0KhXPZQZ/G96Etfxcc3AJhwbQq6kaig8CXnlEFMmtvJwhI+nFKrukzRCVHDwvKBxVDvxsUIGfkPTrZRCqwhMSyIben69LHFEwPqHQzqFmoMsaRAKJgimIXF9H/IKLIWSipruYr2g478om7aGW4d5JvrSjGcMXNdnZeukGS0/N97Lg9WDNvbq7vI+10bSPN5ol5Ysbx3zqblh5lcP2laB5lcPuDnV12zoPKujbJmuhImuwWR/J3uHJRYav80HS/vMjHXzeK2d/a7WHcI1h6FMirDUuDd/fn8olGpkwolLtoZSCm6M9fDw0R69XXH2rnBSWV4/4sZ0H67rsbJ2fEn3/nBxn9vXB7i7uIuuCYa7k6y0yDqOTkoMZFI4jhs0auqSzniEjRaZ2t5hmcFMnN1s0LQ9O9F7CWT7fgDGr0/04Hr+6zZvAkgl6AiH2BV5LkrYM51x1rZyzf/3j0rEIzo9qTC5ss1prj2t+KzCIYMf+Ivf+rrnfDPluu4TD/D3op4w4h/q+lj/ImKxGJubrx+u8I3qvQTipVKJ9fV1jo+PyWQyPPfcc0QiEdbX19+RnOat1plf+vsFxJWv+OP/7wbKV02GafLmAPN3z7XiI1PtIDwSNTnYa2fIugeSrDw+Z3Wu3exnoYUd7+1PstTyvK5LjJCFd3rOWg0OJ1lfzzX/n5zubQPhyVSYk1yluSwtpKAnk2CtZQIwez3DfIuufWQozerWeXhKPGahmTrHx4GjixCCmckeXvH3KHzObaZdeicubjxw1ACgALahUB3BRMmqabiuh5MCEBiuRJUUTkNiInzQ8+CGFUIXhF0dtxIk8CkBSc+iVnbw3EDKEtdNnHIA5JBBYp9VD9w2KiJoUIwqA+lCyXfQNQ1LSXRHINAwNUlcs8jEIgymksz2dPHC6BDj3W/PyScej/PUU0+Ry+VYWVnhxRdfZGRkhOHh4bc0sOfzeZaXlykUCoyMjPDUU099w/2FEEz3dDHd03XpuaNymT9a3eLu7h6buQJ7xSJZu4b0JZoUhI2AQbY9D4/A6SWCpO542LpPzVAYXqC1r5tQFh74ioQMUZB1QCOPQ8zTqVguvlCAxPcFvgauKQARgPYKeAlF4DTjIasKZUJduI1kVYFeCOQqtgJ0ieaAqqtA3uLDse6SeSbG4HaMZCREvlhjbeeUTDpOre7gtIDQB6sHzI1neLDSzoAvbJ4y0hNh87DCUE+SZDTE0sYRf3x3gxsTveSL7e4n95f2mox5a0XDYYZ7urjbmLSelVJBs+XIQAcbrU5HStGXjuPaHht77atlAPtHBcaHO1nfzeL5ikQ0RHcywoPGRDocMi4x12cl/UDSdBGEn9W9RzvcvNaHa/s8vqL5cWc/x/hwJxsHWaaHu3m0dHmb7f0iMxM9lOp2myVqa/m+4vioyMAVNpBnNTnSxf0GSJ+Z6GFp96TJ4AsUEVPn0G0ft4oVF8v1Gc5EWNm9enz5q3/uebrTb58AUko9kaY8qSd1RX2sgXg8Hv+m04gXCgXW19c5PT2lv7+fT37yk20BCN/IR/y9qPczuOjf/+pL7D/OoumSeCpC/1gXtWKda9cygY+0BCNkok/3YtsutapN90BHW9T99M1+FlvY8XR3jNUWpltKiabrbY2V03PtYT8TUz1t7Hg6HWW3BexrmiCRCrPZIo8ZHU2y2gLCp6d720B4T3eco2yped6QpQfM/V4u2EDAxPUu/ii1Q70/+Ix1T0AOnI5gA+kL9JygngiSJs2ahlYB2/eRSCxHQyKoOm7AwhYFltIp+TZuKABjYU9DOecgLqJ0fDeQSmAKwr6G5/rUDQW6xHQEXk0hDYEuNfRaEIZimhKUIuGb6ELQn4gz1pHi1kAv335tgs43YLjfbqVSKZ555pkmo725ucno6OgbMtpwzqhns1mGh4e5devWO2LUz6o7GuW7b17ju29eaz5Wrtf5vaV1/nhji9VsloNShaoTgGhL06nYNp6EsJJIX1L1XZRQRD2JLwKQXJI2FhJlgS19SpqLqCpMS2JrPjXpgguaC14EEIEXuV4QePFgMuWHBbKqggCnwNYbN66CXoHkmSQFLEfH887DifbjJWIZg7WvZZt6772TIj0dMbqSEY7z54zpg9X9SxrwWNgkZIWY6hUs7+Zo9ft4tHrIzGg3jy8E+Nxd2mO4J8rmYZmBzhgR02Jl84Qt8tyYyvDwgg2h7Xic5ir0pKMcnpZJxUJkOmI8WgyuY2qsm6X1o0vE2urmCTem+8iXqlRLNmstjdIn2TJD/R3UWvXaSnF7ZoD7DXZ97lo/DxYvN4VKKfBt//VCNYNzbxzzyafG+Ord9dfdZmcvz9RoN7uv08ApBSSjIeYf7XJ9spdHFxo4YxGrLftgceWQ8ZEutk7y1Oout6b7myD9YvV2JtjZLjDSG2HjqJ0Vnxju4s/9Z7fe4NV94zobt55E3L/79USa8uGuJ0D8HQLxer3+jTd8E5XL5VhfXyefz9Pf388LL7yAZVmXtvug0jzfD/C/u37Cv/pf/wAAz/UpZCuE4yX2Ns+XcK8/O8q9P15t/j9+vY/5l9YBCIUMuvoSlLMVhgaSGKYeaK1jYVznzHtZEI5ZlEo1ojO9+J5POGqRy1fp70viuT6aoVEs1YlGzMAizvXwpUe5JfZ+5nofD1u8yvv6w6xunAP1wcEUa1vng3wiHsJVfvMYmiboG0ixsZMlZOlIAV03E/xx7y5KQqisEcbAsxVKg1ARTHQqyqVuBU2AlmcgfEUl4gGSkKchHEHJ9MCSmH6Q6FgKudCQhoiyCiQmUmB5ElXxqUsXU0qSukmpbONIP2BuaxJXBPrkhGE1EjkVMWkQM02GU0luZLr5tmvjzPVfDgp5LyudTtPR0cHJyQnLy8tsbGwwPj7OwMBAW1NxqVRidXWVo6MjBgcHuXHjBqZpvqfXFrUsvnNuhu+cC2K8faX4w5UNfm9pjeXjLPvlEjUv0JXbwidmGCig3EjZDCuNOj6OBOqKGDqOVLiuh2f76AIsU6Pm+Sip0PPgxwI5kRsNHG+8WMNCMSwQdYWsg2/RaNZUJOsWeSu4d9UNj4itUzWdpq58OZXl5q1udu8VmuDyMFuiMxmhpyPGYbalQXBln1tTGVzbR/mK5c1jlkqnCAGTgx0sb59PVn2lWN0+YWKwk5Xt9mROzxc8d22IV+5vAefHf7i0H7iiXADAxXKgJb81mWF1/ZjFFqnK0toRc9N9gQymFbcp0BB0xaPc3c5d+uy2drNMj/ewuH6IAG5M9TVBOMCjxT2mRgOQf1aaFEyPdLOwtI+uS8aHO1ndPLl07FvXBvjq19aYnenj4dJec8XvrKQMPL9fu78VbLOyh7oA7W9O9zevZ2n5IGjgPGPgFQz2Jnm80u5Ss7pxzNBAB8IQLFzBxJ+9Bs9VOK7P9k6ZG1PdPFw/AiEQwA/+pU+/Yx9x1w0kfk8Y8fegnkhTPtT1sQbiH7R9oVKKbDbL+vo6xWKRwcFBZmdn3xAofFDe5e81EPd9xT/66X+D0+JOcO3pYea/fi4dGp7qYeHueUR2JB7i6OA8pKdec9AtnY2WdMzZp4e51wDqAGPTvTy6v91c6k6lIzi+otRYLtc0Sd9wmr0Wpvv6rUHm53cDZwwpGJvqZHXxgLAmUErR3RulUHBJhhtpgqkw1ZqL1WCNLVMnErc4PCxiimAwGxnuZGk1uM4aLta3xvhP0UN8BChBzLU4MeuB1tuHjprJkVEPKDEfOuoWWd1G6ICClG2Rk3WEJtBqkBAmxYodNAy6kpCuU6zZCE0QtnWEo6jpCmEKokoDJSi6LoYhMTyJ8hSWZuB6HspTxDWDoXSCO/0ZvvP2NEMdqXf0eb8bJYSgq6uLzs5Ojo6OWFlZYX19nfHxcVKpFGtraxwcHNDf38+3fMu3fGDR2lIIPjs5ymcnR4Hgd//K5g6/fX+B+YPjoCnUrmNqgqhpUscl5EuEDxXNpyL8gD3XNeoysGaUvobUwRXBRC1eMyhrLroQ6JpEVkBIha8UuiEpVupojsI3A6ebvFFHzzfSOYGK6RK3TUqW3bRjvN95xNPXM2w/znL28z/JV+iIh8l0xlG+TyadoFp1WFg55NpoD/dX95vQUSlY3cszM9rD4/VzcOi4PjuHeXpSIQ6zNUYzcTRhsLZ9yslJ9bLkBLj3eC9gxluY95G+DqSvKBZrbT7ZZ/Vgca8NwMcjFoM9yabt6NxM35Xs9uLqIeODCVxX8fCCv7fvK7a2Txnu62BzL4uuCSaHunjcaG50XZ+DgwIDvUl2Ds4n5nPTmSaAnn+8x83r/dx/fG6HilKMD6RZWT9pbjN3raGdb2xzfaK3bVLg+4rFxYMgPGjlgLmZvkvXe1bbu1nmJvsoxSxOrtCAz033cW/+nClfWDrixmQvi7vHPDXdyeH2Aouywujo6NueyHqe15Q6vp16Yl34BvUEiH+o62MPxD8IaYpSipOTE9bX16lUKgwNDXHz5s03tVT+QUhT3o9z/h//6mUetYDunqEUj1t04aalUy7bTQCtgP7RTpZa7AuvPTXIwv3zwWRovItHLVryWCLMyWmpeQyhCeIdETbXW+Qkc/1tDZzXbw0w3zJAZQYSrK6eNIFJZ1eUXN6h1IimjsYsaq7XjLg3DElXT7zp9SukYGqqp8lauRFF5TMG25EiINAqEJI6pyG7+b8ldU51B2kLNBuSmkWhVsdSAk0JdEuj6NugCyxXQwhBXnchIom7BnU8CsJFC2nElUHZc5BCkFI6tapLXfmEpSDkgyfB0nQsTSMTi3It082fujHBU8MDb/ETff9KCEFPTw/d3d1sbW2xuLiI67qkUileeOEFIpF3XyLzTkoIwSdGBvnEyCAAB/ki//zlu7y6s89+pYyvdBBQcG1UHWKaxFYKFx9DCFRYUG5IU6QfMN1F6SDqYEtF3fRBgKgHYT5KC1ZIhAuiAspS4IKha3DoNkeBqvBIe2Fy1FCNpNFXu/Z52u5jbyNHVzKQpvi+oliu4ynRxlLfX97n5lSG+0vnYNz3FSvbJ0wNd7G02RKipTwSoTCdwzEetzgQ2Y7HSa5MX3ecvaPzSTbAo+UDpke7OTwpMtidZH6xxSFpvKc9TOvsmh7vcX2iB9v2yOUqbWzxo6V9pka7WLqgx+5ORykW6qRTVwcF1W2XfKFCX3ecRMRi8QIDXanaGIZGV0eM42yJ6xO9bQ3dAA8e7XJrdoB7DQ/zsYE4K+vtDa4PF/a4db2fe4u7ZHoSbGxc1o37SrGwuM8zNwd5sHg12w1wa6afew936EhG6O9JsHt43pQ60Jvk4ePLNocLywfcmOnjb//Ad+LaFVZXV/mDP/gDhoaGGBsbu3LF9o3qTB/+TqQlT1xTrq4n0pQPd32sgXgikaBUKqGUels/7rcKxJVSHB8fs76+Tq1WY3h4mIGBgbfUbPZBSVPey3Me7eb41f/5yy0nFAhNtjVGjc8NsHC3VQfe7iHeO5BiZeF8IAqFDcplp5nKCdAzkGR16XzQvH5rkIct2vKZuYE2ED401sliy+CWTFocn5SaINyyJLbnUioHchPDkKS7YmxsBQOqkIKR0a4m8y2EYGa6l0cN9qw8qMg/A660kTXQC0Gcd6XqYCKQLoioRhUPoQtCJUEtojiVDiIsidk6RdMF4aH7kqRvktXrSASWLQkpnXLdBgXpkEWxXqcgbOKaEQSO4BJCIAlsBqMSuk2DP33nGv+nTz6F9S5oqN+vqtfrrK+vs729TXd3N7FYjJ2dHV577TUmJibo6en5ph3Ae5Nx/h/f/mkAynWb3747z5eX1lg4PMYLsjQxpERDUBcKvQohoSH1oBdAs0ELSXxD4fgKrQpemMBj3lXIWuBbrnQQHmg1gReGKj7EBEZN4ESD38kJDik3TFbVoa7QfclC6pQ5J83+frHNVSQesRjKJNlqsRK8Coy7ns/Gfo7B7hiu4xAyDHYPy6xuF4mFq6TiFrniucSvVLExDZ10Ksxp7rxxMmTpRAyd7kS0DYQDPF49DBjuC1H3pqFhSA3bd8nm25swfV+xvZtnIJNkp/EaJke6ONwvUKrUOcnWmJ3OXOnF7TgePckY69uXJSgA+UKVnq44s5O9LC0fchWZe39+h1uz/Tiuz8Li1X7fDx7tcnt2gKOTYpCuekUZusbhboGZkS7uX3GtowNpHpxlJ+QrRGyT4d4EmwcFhABNiNdtQv3u//wWiVgICJFOp8nlck1APjg4yNjYGOFw+Mp9L9Y7jbd/Um9QTxjxD3V9rIH4+8WIK6U4PDxkfX0dx3EYGRmhv7//bd2UPqhmzffqnEopfum//7fUWvTXA5MpdlZyzf9HZzJtIDyRjrDVwmJrukSaWrMJUgHDU708bgHVs08PtzV0TlzLtIHwvsEUKy3MVjIVIVeoNd0GdF0gTUm9dNZwJMgMpFk/a84UMDh8vrSsgGvTGR41BkYFXL8WDOq+BrlrCtGvo4ouQgj0qsBOCmw8DKERcjWKMRfwCbs6uiMpxVxAoJchbOjUPBejCLoSmIZGybExlCBq6BRxcXCIaQa28Kh6LgnDwnV8vJqPgUIT0BWOcGewjz975xpPj/Sxvb3N2toad199lcnJSdLp9Fv+TN/Psm2bjY0Ntra2SKfTPPfcc8TjcQBGR0fZ2dnh8ePHrK2tMTk5SWdn5zctIAewNMknO+P0lZKkro+w5Eh+d2WTzdMcRcfG9TwMQ1DFR68LNEPiiQAwKwek8DGkxLSDpFVfI+gBcDVKuoOvBVrkmGtQ0h0QAiekSDgGBSOw3MzpNvGKTjHi4mqKYtjla9EjZpMpTF1r+k0XK3U832e0r4P1FpeSVjCuS8FgVwzlORTLNolomM2WpudS1SUZFYQtjWr9/F56mg8Y51jExPcVU8NdrKwdce/RLrGoRW9XnIPjdsb8weM9bs4EsewAk8Od5HJVHizsEo2YZLrj7F9g2Wt1h0rFpiMRZrivg4ePdtu8xBdXDpkc7WK5hTXvSISJWiYPHu0yPNiB7biXwngA4lGLetnGMOTr+nmXCjVisddnlgUKu+LQk4qxf5C/pCtHKSZHunm0sMfufp5bcwNtqxQhS6dSrre9pkrVxt53GeyJ0NmZapOktNYLz4zxuRem2h5LpVI8/fTTFAoFVldX+cM//EP6+/sZHx//hitP74Zjyjfzb/eDLKEU4iMk3fkovZY3Ux9rIP5eB/r4vs/BwQEbGxv4vs/IyAiZTOYd3Yw+ahrxP/y3d7GrdaZvDeDaHlKXHB/niKfC1GsOQgryLUyWAjq646wvnevAZ+4MMf/auXb82q1BFh60S1QWWhxR0l0xdndzzf/DEQPHUziNwVTTJbFUiO2zZi4BQ2NdrDY8yBUwNdPHo8aAr4Cx8Q7WNo4JWTqhkMHYeDen2QrT491omiSaCJI3h2518mpvjooZWMxFShq2rrAbaZdmFtyooio89FIQIx+KaFTrDoYPUoEdgbLy0FyBqWvUpIfte0SFjmMofCXowMJzfSq2S8zQqfs+jnLRfUW3ZfHc2CDf+8IdJno72z6P4eFh+vv72dra4u7duyQSCSYnJ0kmk2/vA36PynEcNjc32djYaDqpXLxGKSVDQ0P09/ezvb3NgwcPiEQi35QTDM/z2NraYn19nWg0ytNPPx2AHuB7n79D1XH4Fy/d48sLK+yWShiewlUeTsVHSfDDKnDOsaEa9qgqD1EO3FKUBr5yMQoCpRF8icIKvQRuDBCCgnCI2jplM2Bdi5ZLpKI1GoHB7lQ8ruUYdxJNpxKASs1hzy8yPphmdfsUlKK3Mx64jUx0sbB6zObeOYtuu4qhviRbLWA8X3bo7Yzi+RVs53wArtVdro/3srJ21Ob0USrXCZk6qXiI3EUrxMeBLtxz/TbWvFyxCVkGqUSIXKF9H9t2uTbaw8LKwaVAH8/z2d07Z837ehI4NZfdBoO+uZ1laryb5c3jtnTNyZEutjZPsR2P8dEuNvayzUn9WfX3Jjk8LLKxccJAX4Sdw8u2iTdnBrj/MLh33boxwL3HO21g/OZMf5PtBnjwYIfbcwPcbejPJ4e7rtSNu65PveJB8mrAEwmb/NB//bnXBb6JRII7d+40m6FffPFFMpkM4+Pjr5tx8U7j7eEJEH/desKIf6hLqI9xB8Ta2hrj4+Nks9m3BY5zuRwPHz7kW77lW9oe932fvb09NjY2EEI0Afi7ERFfLpd5+eWX+dznPveOj/Vm6969e6TTaQYHB9/V4+5vnvBj3/OLTTZcNzS6BjrYb3FJmX5mlM3lQ6yQgWkZDIx3c3pcCqLlNUEsFaVWtYPufgmGqeMpmoOilAJpaIFrSqOMiIldc4L4cAWhqNUI7VF4no8vXYrFKoZhELJCRBNhSuU6vq/wfZ9kR4SDwyKO4+HYHgMjHcw/2sN1g0a6gcEI23uNQVXA9dl+Hi7uU5iE3Awgg7h38xSkJdCFhl3zUAq0aNCQp9UBD7xG8I5eVBASeBpoviDuGXjCR3rgu4AmqLguhifQDIGrfGLCCLSDviIq4GZvmr/27Z9i9E06nDiOw/r6Opubm3R2djI5Ofm+BUm9Xnme1wTg0WiUyclJOjo63tS+rus2wW4ikWBiYoJUKvXeXvA3KN/32dnZYW1tDdM03xRrv5Mt8M/++FX+08YO+8USrqYwRSDn0jSBbXvUdB9lgOaD74Pf6K8z6wI7pBrffUXEltSEh/ABoYhGTQqNNFXlK6y6pB49B5CxZUlfMUIiYrF9kCcWNsmk48TCFiFDY2n9iGyLD/e1kU4W1k7avD9iEZNkJNSmUwYY6e9g5yBHZ8LEkJK942rAho92s7rRDnQBBjJJTrPlZvy8JgWzkxk2t0/p6ohe6Vwy0JfiJFtuyjzGBtMUclWyuQpjI51s7JziXUzAATqSEfp6E2xunra5J53V7EwfDxsOLVOj3WxsnLTbo072srh+LlHp6ojh2S65BskgBIyPd7HcYn96YyrD/KN2EH2zBYwP9aXY38tfAvhn29U9j8ev45IiJXTGQxyfVrnZAtzP6of/L5/nO7997sp9r6pyucza2hq7u7v09PQwMTHRXJk6q93dXba2tnj++eff9HFby/d9NE17z12PPkxVKBRIJpM89Rf/Lpr5wTSjvxfl2TVe/Zd/m3w+T+JdSlL+Zq6PNRA/Pj6mu7ub7e3tt/VhF4tFXn31VT7zmc8AAUjY3d1lc3MTXdcZGRmhp6fnXQHgZ1Wr1fjKV77C5z//+feNHXjw4AHxeJyRkZF37Ziu4/GTf+mXWbp3zmRf/8QYj1qi4qeeGmappfmyf6yLg90cXmPgSXREUJpGseECYJganQOpc8cTAePX+lhtBPco4NpTQ21hQLNPjbRJVPpHY+xsn7sKzN4a4GEL4zR7c4CHLcFAszcHeNhg6xQwNzfQZO8UMDrWwfJxntwU+HGBsCROzUNpogmyjbzCs0SQfumDWQQ7FriuhX2NsCNBk1SrdmBnGAZfCGRNYZgaNj4hXyOkafieQiLwPZ+EYTAaNfjO2WE+eXvubbPa9XqdtbU1dnZ26O3tfVPL0O92eZ7XBKyhUKjJar+d34DjOGxsbLC5uUlHRwcTExPv+81eKcX+/j4rKytIKd+2jv0/Lq7xq1+9x+LJCTXPxfYUnhGY6+i+RBoSQxP4QF4GLjoRX6MqPZQMriPhn8tS8CGmdEo46K5ABzQj8DOvSQ9P+tw+6SJW1AkZGg9aotA1TdCXCrFzwYP65mRgI9j6yhKxEFHTYL8hL+lMRRjoTiAQPFzcuwSGZycDT/6L7874cCcb2ydMjfRwmi1zdBKscIZDBh3JCLstziVnNTnaxfr2KbMTGR4+ag8LujbV6OG4cKK5qT5yuQq5YvVKIA5wc7afWt1lbe3oSnA8ey0A64lEmLCuNxu6z0rTJGNjXSytHzE2mGZ7K3ulpOXm3ABLG4fErKBn5apKd0QY6k9zd2H7kgUiwPRomqWVc9B/fSbD480jXE9x6/oAf///+T1I+dZ/W9VqlbW1Nba3t+nq6mJiYqJ539nc3OTw8JBnn332LR8XngDxq6oJxP+rjyAQ/9WPDxD/2EtTIPAafjsf9plMxHVddnZ22NrawjRNpqam6O7ufk+Acmvk/PvV+PJeSFP+9Rd+rw2Ej98YaAPhye4Imy02hKGIiW27TRAupKAjk2Sj0XypaDR0toDq2adG2iQrs08NMd8CwqfnBtpA+MBoku3t88Fx6lqG+ZYl8elrfW0M1fUb/U0QDjB3c4D7DdAeuKN082r1mNNPCZQRxMebWR83KUAKNE8Qs3VqEZ+IkogqeHUfoQuo+FBT1MN+wJCXFEIK/LBAdyEhDTAEvuujEXwfhC/otEKMxCM8lTa5MZx5V1hfy7K4du0aIyMjrKys8Md//MdNXehbdU54q+X7Pru7u6yurmIYBrOzs3R1db2j35ZhGExOTjI8PMz6+jovv/xyEzS814y/Uqpptei6LhMTE+9otewz02N8ZnqMYrXGP37xa/wf88tk6zWkJvE1ge/45F0fZADAa76HjUcqbJL3bHxDUNRcUp5JTgusC0u+S9jTqVoeLoDrI8rghwS4kgfylOSxIGxrXBvrZqHh3+15it3TGtfH24Nm7i/vcXO6HYwXSjU6+sPcmemnUKiytn3K6Ukgd7nWcEBpheLzywfMjHfyeLWFXVcKTUjuXBvk6/e3aK1qzcEybTo7Ipxk2ycG1arDnWsDfP1u+z4AC0sHzE73ML8c3Fc0Kbg+kWlOxkeHO7GdHI5z+X7o1F3CunYlCAeYX9jjztwAx8cldvYuTxA8z2dz44Qb0xm2XgeEAzx4sM1zz4zx1a+tXdaME6wCxiMh7t3f5vpMhoX1w7bVhNGhNMur7asFjx7vMzbSyWmlzo/8tT/xtkA4QDgcZnZ2lvHxcdbW1njppZeak913Kk15u6YKH4d64pry4a6PNSPu+z6RSISvfOUrTE1NfeMdLlS5XOarX/0quq4TiUQYHR19z5vBPM/jD/7gD/jWb/3WdyUZ8M3U48eP0XWdiYmJd+d4r27wd/7SLwcx9kC8I4ISglLDIUFoklQmRvbgfACdfmqYxVaQ/YlR5l9t0YU/NdRmVTg528dyi4vKyFQPW5unTXeA/uEODg5KzUGzbzDF8WkF2w6WrIdG0uwdFZq68dGJbra2z3We09czLC4fNNm0GxdA+LVb/XwtdspRKmAaQ7bAqAZMtqXrVIs2rg6+JZACtCI4Db2uXlUoQJgS3YGQkghN4ntBqEtdU2g2xEwDXUhCUmMoleDbpjKk/QqxWIyJiYn3TAddKpVYWVnh+PiY4eFhRkZG3nWWSinF3t4eq6ur74gxfjNVq9VYX19nZ2enuaz+XjD+p6enLC8vU61WGRsbY3Bw8F1dLTur/zi/wv/6hy+xnS/ioDANHU8KysrBkhq26+HrQUOUhU7dc1ESwqZO0QwkW3hgugLbCr7gInDTDEKBAFmHjnnQXcFgR4jt43PdtRAwN9bLg+V2B4/bU31UKzZhy+TotMT+UZHOVAThq0ve1rOTGeaXLzuAjPRF2dotMTPeS7lUZ7uRSnuVYwpApjtOsVynXLExdMn18Qzzj/fwfRV4eb9OyuTYcJKTXI2OWKTpgnRWM1O9LK61O6HcnOnjQaMPZfZ6Hw+vcEEJhw16UzESyTD3Xue8sYhFZzKC0AXrF87bPNf1fh483GHuxgD3H+1cAuPB8+fHn5zoYX0v0Ktbpk4yYjVXDi7Wf/tXP8N/+WeeuvK5t1O2bbO+vs7GxgamaRKNRnnmmWfe1u/Y8zwMw3jfxr0PQ50x4k//hY8eI/71X/v4MOIfayCulKK7u5vf+q3f4umnn37T+zmOw9bWFltbW3iex9zc3HvGgF8spRS/93u/x6c+9an3LaBkaWkJ4G1NVi5WpVTjx77nFzlsSdsbvdHPeksk/exz421BPgPT6TYXlbHrfay3WIL1j6Y5PCw2QXNXJkG5ZFNtLCGnOqO4QLGhx4wlLFwF1UoAulPpCL4U5BsTga6eGFXHa4b89A92cJIN2Lpo1KI3k8D1FboukUJghg3yxRrVqkO95uD1GTyyCvgmyJCGVldUwgo0geaBVlQ4ieC7YtUEjq+QUhCROjhBIqKrFJoDVd1HI2DIo2EDHQ3X8xAKRlIpPjc7yrcMpdjZ3iISiTQB+PvxXczn86ysrJDP5xkZGWF4ePgdN2OdOQytrKzg+z7j4+P09fW9L6+nWq2yurrK/v4+fX19b8ma7Y0qn8+zvLxMoVBgdHSU4eHh92U1a2X/iP/3l/4jDw5OKQmfkKZRdz1MS0PTNPIqsLaMawYFggmjXgcrpFFxHHw9yPZxG2+BqAcWiKqBg/QydDwC4QtuT/Zx94zxVopENMT0cBdO3UX5gQvK/lGBuYZMpbW601Fcx2vqpc/qjEU/q0jIYKg3jluvs7Z9GUjevNbP/YXLAHd0MI2haeTz1UtSjhvXrg7BGR/pJBoym5Pri3Xjej8PGx7gN2cCYHxWUgomJnpYbPE1PwPhmw1wfaNFwnZWhqEx0J1gc+uUUMiguzfBxnY7GL8+nWGh5XrnZhuvufH7mJnoZfEKXfjoSCf72SLjQ11tq3itNTfbz8/99H/5jhM0ryrbtvn6179OPp8nmUwyMTHxlle2fN/HMIx3fI/5KNUZEH/mez96QPxrv/4EiH8sSinF6Ogo//Af/sOmzvuNql6vs7W1xc7ODolEgtHRUV599dX3FRQD/P7v/z6f+MQniEavDpx4t2tlZQXHcbh27do7Oo5Sin/5s/+e+19dwXU8nLpLui/F5tIhju1SrzmMzQ6w9vh8IOkd6uDkqNRstkyko/hCUGoM2uGoSTgZ5uSwEaBjanRmUuw3gL5uSHqG0hzs5tAMiRQ+Xf0pHBssy0DXBLGOKHY9iBzXdQ1PKWzbxbE9rLDBSbZM9rSM43iMT/WwsXXabMycuzXYHKytqEF5zmSnow5CYLoCUVHYDbVD3Nao1VyEDyFNgge+LqkLn7AjqUgPNIFVF3iuTyxsgaco+w6Wr2EKQUckwq2hHv7P33obWS+zvr5OKBRiYmLiA7PmO2N6K5VKk+l9q0DzzGN/eXkZx3EYHx+nv7//PWGMv1GVy2VWV1c5PDxkYGDgbYWXQLBysLy8zMnJCcPDw4yOjn4gbF6+VOFn/82XeWXnkAo+nhBUlEesAcwdDSK6TkkGv4Go0qlJFw+FVIq4MEEX1JSLh4+tB7aIAF22xZ1SGvyAUd8/KnCSq1CtBcD+1lQf9y8A3ZtTl8F4b2eces0mf8EFZW46Q7lsEw2ZLK8dYTseQsDYYIrVzfb0TYAb05k2NrqvJ0EiYiEQLK0cXjJjEAIy3SH2DhvJuo2Gzwfzu+i6ZHCwg7WNy02fEDREeo7HoyuAvGlo9A92sLZ5cgmEn9XsbH+TxRcETanLK+dyvEjYpKM7xlYjZXR4oIP9/XxbEyjAjdl+Hizs0tUZo1oJ7Bivqts3B1jfPLnkNAMQChn8o//pL9KXee/ckR4+fIiUEsuyWFtbIxwOv6WVLs/zME3zCRBvqSYQ//MfQSD+rz4+QPxj/Y0WQrypmPtarcbm5ia7u7uk02nu3LnTbED5IAJ23m8v8XdLI/7lX/sq/+Yf/V7z/4GpXh6/vIbXiKdOdcc53c0S0gMHlXA8hGVppJIWQgh8PPSwwLUVsb4EQghS3Qmyx0V6u+MoX9E5kGJ/O0ciFsJxXAYnull+tIdS4NZh/HqG1cWG/lOTDE328NpL60BgY5jqSbDbAPFdPXFO8xVyjWXziyC8VY5iZCy2riuqIRvhQcrWqVQdJIJEUUPXJQUclClJejoF1wFTYLk+Wk3hCp+0ZVGrO9goIpqBW3UJGTpJ32C0s4M/9/wsf/LOZNC0+PghlmW9K5rpd1rpdJpPfOITTSC9ubnZZLK/EZBWSnF6esrKykpTsjEwMPCBBn9Eo1Fu3rzZlOC8+OKLDA0Nvel470olSCE8ODhgYGCAT3/60++5lv6NKhmL8Hf/qz9DrVbjl373j/h3j9aQvsCXIDVJGEG15mIK0EMaZeEiawrNEngCcr6DVgpCgvAVWgl0CSIkOLXqfKW+R3wj+P7NjvW0hf7cW9rj1rU+7i2c68PvL+0xN53hQQtgPjgp0tedwFeKUqnO6GAnsYjJ3kGB/p4ED1rArlKwsVtgYrSblfVz4ArwaOmA6fEejk6KDHQnebS4z0EDfc/O9DF/Qb6iFByd2owMpanXXHQhmnaArutzsF+gP5Ns2hU239N4iFK+Six69edqOx6H+wXGRjrxbf8SCAd49GiX6zMZHi3u098TbgPhEPh9i+MSA31JymWbYqF2CYQDPJzfZe56H8VynZPjq3Mx0h0RVpYOCYXNKz3Y/9r3fet7CsIhANKhUIjx8XGGh4fZ3t5mfn6epaWlZq/EEw3426+Pm676o1QfayAObxzqU61W2djYYH9/n87OTp555plLlkwflK/3+3nOdwrEfd9n5f4W/+Snf6f5WKwjQqlYa4JwzdCIdUTZbhmMMmPdLLf4f197doyFlubLsbleHr16LmGZfXaUhy3Pj17vZmn+3Ot79qmWUB8B49f7WWw0XxqmRnd/io1GIE+6M4on1OuC8NmbAzx4tIcS4M+EyHWB7kDClWhICmcR83WNivDwhY/hCixHUnEcYpqGcAUV4WHoEukqSjWbiNTRHB9TF6SjcZ6fHOCv/ImnScXC7O7u8kd/9EcYhsH169ffNznUmykhBN3d3XR1dXFwcMDy8jLr6+tMTEzQ29t75XVms1lWVlYoFovvq2TjzVYsFuP27dsUCgWWl5d58cUXm5r4q5jtWq3WtHDLZDJ86lOfelekLe9WhUIhfvDPfBv/7Z+s8zsvvsw///oiRc+nojzipkERB+koYkLD9nz8so8Mga+DZ9JI7BT4EdAq4CqgDiKpU+10CZ8I5tcOmRrqYnv3tBlyc29pj5vXAmb87FvwYGn/HIwrRXc6RmciTF86xv5hgfUW68GTbJm5mUxbDLvn+WztZRkZTLfJN2JhHal8uhJR5i/Ets8/3uPaVA8LS+2R9J7nk4qFOK2X2W7JF4Cg6dOs2HSmo5w0vNNHBjoo5qtsbJwgROC0snCFHMQwJJYSZKtXM9RKwdLiAc/eGuLrr11uHIXA/9yydIb6kjx4dJl5PzuQ8CFmmUgBF90XhYBENMTGSZlyxSYes+jpDHN4EqwqPvvUCN/xJ9+8VeHbrdZAH13XGR0dZWhoqBm6tby8/IYT+Cfx9m9QSnFlfOuHtT5Kr+VN1MceiEejUYrFdnagUqmwvr7O4eEh3d3dbygD+SCA+Pt9zrfLwPu+j1KK/EmRX/iBf4nTaIRECroG06y3DCxTd0ZY+Pq5a8rs8+PMt7ioXP/EGI9amjMnbw2w/PB8oJ2+M9gGwjNjcdaXWjx5nx5uOqQoYPb2cNNBRdMlQ+PdrDScEpIdYYSpcdKwFzsD4aGQSUcqTE8mQbXuMTzbxcPOCnkjeF1W3seNSTzpI21FWpkUqzaar0iFTHLKpSp8UpZJyXOQniAhDMo1m4hlgucjPJ/+WIjv+xPP8iefvd70pH949+tomsbMzMw3dVy7EIJMJkNPTw+7u7ssLi42AfkZc3+mLc/lcoyMjHD79u1v6gasRCLB008/TS6XY3l5ma2trSaI0HW92ZC2tbVFV1cXzz///Afut/5GZVkWf/7bPs2f/ZZn+Z0/eoV/9doie3UHQ0EorFF0HSwEdV2gOYq4qyNMSV6zG2AcvAjoFXAjgpr0YFAgXbDysLR1zEgmRS5XoVgOouvvL+0xNxMky/Z0xOhIRJBC8NzcECvrR5wclzg5DlYmh/pShENGU94C8GBxn9npXh4tngNe2/Y4zpbp702gSUksbLG4fMBi8RjLlPR0xzg8al/tXFg6ZGKkg5WNYNVrZKADt+5y79426Y4IqWT4klY9n6/S0x0nFrUYHexg8fFB09FEKVhZOWJ8tIvVlvTNnq44eD5Ly4d0pqN0JMNkLxwXpbgx08/917bp6bQ4PKlf+qyECDzHN1dPGcik2NnPXdrm5uwADxuExfR0huWN4zbHlbnr/c1GUoBiqU61JhkdTHGcrfIj3//t78v95KqIe03TGB4eZnBwkN3dXVZWVpqAfGBgoAnIlVJ8jFW0T+ojXh97IB6Px5uMeD6fZ2tri+PjY3p7e3nuuee+oXvCBwXE329pylt5jWcA3PM8fN/nC//db3K0c67nnH1+gvmX15r/X//EOI9aQPjEraE2ED56rY/HLY4pQ5M9rC+eM+ddAzGWWpo9MyMJDnfOVzmmb7XbFN54apiH9xoDk4DxaxmWFw/o6IiSSFqkumK4jkdvd5xQxGR3L48uBPVynVB/ipe/tklxVKM4qaN8hV5ShByJMHRUwcV0wYlJssIhaukoBQVcwo7AFBqluk3cMqn5LlIKolInbYb4xOQgf+Fbr1M4OmB/f4evfa1CpVJBSsnk5OSHaulWSsng4CB9fX1sb2/z8OFDQqEQmqZRKBQYHh5mbm7uQ+UJnEqlePbZZ5ua+PX1dZLJJLlcrvncN1sC6RtVKBTie7/t03zXtzzL//4fX+LXX1vmpOYSF4K6Cpx5vLCg5HvIoocwwVQCvSpxTEUt4pPwDApa4LRSHhXMVDtI+hag6EpGkAoqFYda3eHgsMjseODT3QqQb0xlyBaqzTS9rb0cIwMdHBwVm8E7AAvLh8xM9PB4JZgwh0MGY/1pXMfjNFth5ywJF6jbPqVSlXjMoFg6B/QAq5tZbsxkED5tGQGn2QqZ3gTRiHnJKzyXrzB3rZ+H8zuXbAVdz2d3N8dgf4rt3RzDAx3ksxWKDS32yWmZTG+SWNSn1JiYoBQ3Zwd5cD+4L2VP6owNd7G2eQ7mUYrZmX7mmw4oioG+FDt7569zfKSTRy2vYXFxn/Hxbjb3ctiOx+RYdxsIb16z67O9meNv/XffQVfn+zNpfKOI+7P7RX9/f9Nff2Vl5T11F/oo1RP7wg93feyBeCwW49GjR3znd34nhmHw9/7e3+P5559/00vKT6Qp59UKwM/2++Iv/Ude+4PHzW2mnhppA+GDU71ttoTdg2l2WpildG+C48MSvhf8Mju64+SylWbzZkdPnFLJaT6f7A6TPa3jez6hiMnAaJpKxWZ8qgfT0AnHLep1l+s3Mth1l3AszObaMcr2UJ5Hteay8bVA7jIz18+rr27i+4pIxKB3pJOHO4cUZjWMTgtZdtGqCi8uqZgQ8iAsDUohD90OfJtd38NxFPGQTkl5hEQAvHEVCWkykIzzXzwzw/d8ahYpZRD04rtks1lyuVyzofibSYbyVkrTNLq6usjlchwdBZOnVCpFb2/vhwqEt1YymaS3t5fV1dVmKm93d/cl2dqHpUKhEH/quVuMJy1eWt3lP2zlOKw7oEPY0RAaVEwXrS5wQmArH62g0AzAgFBFUIspfKl4LZSlcwn8cnC/SMXDxEyD3YNAN36cLTMz1sPqehAeA/BwaZ8b05kgkr4xAG/sZBkdTLN7kMduSFx8pVjfOeXO7AB2zWF17Zj5hna8qzNGMhEi3xJfX6l6xGOCcEhSrQXXYxoaM+M9bG2dku64vMq5f1BgZDiN7bhNr/Dhgf8/e+8dJ1lZZ/+/K4euzjlXV+g0mZlhSAICfglmUcF1lUXXtMIKA5JEksAwICAsKPhbERcFV9xVV1BWFonDEAcYJnVX6JxjVXflqnt/f/TcO7fDzHSo6jBT5/WaF3RV3VThPuf5POdzTi7hUIz33mvHbiukZYaUz0gkjt8XZnVDGR5XHxHFBGJivz4qKnJJJARCoShrGstlEg4Qj4v0do9OktpMvOYQiR4fnyDx5aXZdPX4yM/NmLg3TjkXr3eA6up8grE4/VPSS5U45aQaTjvZcdjnk43Z+Iir1WrKysooLS2lr68Pj8eD1+vFarVSXl6+Iu+Bi4J0xP2KxnFNxHfu3Mmrr75Kd3c3F198Mdddd92c0yOPB2nK0Yj4TARcq9Wy6+97efdvH1K7tgKVRoXBbCAhiDRuqkYUJ/y2tXodmdkTqw4qtQqdSU/k4JK0Sq3CYDIQjcQA1cHXa4lFEyQqBWLRCKFoFKPZQEF+BkazAd9ogEgsgjohkJdroqt1mHBoYn916yp4782DkwAV1K2pZM9BOUteQQYqvYb+g4ShYW05+w7qy7NzzRgsej4UR/Fv1IFGhRgXMKu1BLImSLc2kMBo1hCKJNBHRchQESRBtlqLwQBCRMSiViPGBbINBjbUlHHJxzZQXTzh9S2KojzwJBIJWSspWd91dnZis9lWVHVoqh3gaaedhlqtnhSi43A4Fs39Z6GYGi60evVq8vPz5YAeSYKzkICexYbk7DI8PExVVRXfPuEEvh6L8buX3uT373vxiwIxQUSLCr1ei1oQ8aviJIwqNGGRgDYOOrCMqYkgIGpE/DY1JR1GxkfDjI6FiBrj1FTm0XKwYbGppR9HVQEdXSNED06o97r6aHSWsN91iIy3dg5jq8wnEAxTlJtJNJqgrXOI/U09lJfkyNsCDA6NU1qcRTwuTKpmj43HKS/NZngkQH62jpHhiFwhjkbi0yrMAG3twzgdRXhaBlhVV8q+fT0y2fV4B6ivK+FAU+/k9E1RpLoil75uHyaTbhoRB+jsHMFanU9WppHdu6dXqcPhGIP9Y1SU5pCdbZ5Ewg99XhNkvLoiHyGeoGtwZqOBjo5h1jSW4xmf2fElN9fA1746v6j5+eJIFfGpkCRuxcXFDAwM4Ha7CQQCbNiQPI/zYwkqYeLfsYJj6Vpmg+OOiIuiyMsvv8yPfvQj3nrrLRobGzn11FP52c9+Nq/9HQ/SlMMd73AEXKPR0LK3k/u/8yvCB5diM/Ms6MwGhg9GTuuNOgor8+n2TlRJNVoNFfVltL3TCkyE+tQ0lrP/nWYhM4EAAMdjSURBVDb5+ar6UloOHPxbpyavNIuB7gkdtyXbhClTYKD3YGR2iYXB4QDR8MS51a4tp0lawj1Iwg8cXPLNL85EUMHQwPiEJeH6Cvbs6Z6wHSvNgXwdH5j9hNU6LAkVsdEYokoFZhU6v4CoVZE4SMKNag2aDBViVCCuEgnE4mTr9ai0KooyzJyzwc6XzlovD0jKpMWZbPtyc3PZtGmT7EjS1taG3W5fNG/t+UDZtFhcXMzJJ588SeJVW1tLVVUVLS0tvPHGG5SUlGCz2ZZVY6MSykkSTJy/sgG1uLiYoqIieUm9paXliE2qywHKSVJ5eTmnnnqq7Oyi0+n4pws+yhfOOJEn/m8nz+xtI4BIMBQjrgNDQoWoAo1Rgw4No0QJ6UUyBR1jmjiRuEB/fgy7PpOe/jGC4RjtA75JshJ3+yA15Xn0DYzJWvD97l7WNZYTGA9jMuiJReP0DYyRn5tBs7uPmCKxsqffR1VFLu2KPIKePj/5uQYiURXx+ARxNhq15GWZyTYbcbn7JqVehsIxxsbDFORbpvmLB8YjnLCqgnffa58WmHOgqZdVjWUTshbVRJXdbi1g756J+0lxcdZkGYoEUcRiMhAKxNBoVCQS08t+wWAUW00BIyMzGwhMnFsYa2U+o+Ohw76msb6U3R90UFSUhS4ng+HRQ/vTatV88vxKMjIW1+5uLkRcgkqloqioiIKCgkUfZ1cU0hXxFY2UlG0efvhhrFYrRqORLVu28NZbbx3x9U8//TT19fUYjUbWrFnDX/7yl2mv2b9/P5/61KfIzs4mIyODzZs3095+yDEjHA7z3e9+l/z8fCwWCxdeeCF9fdM72T//+c/z2c9+lo985CO0tbVxwQUXLIjUHi/SFOXxBEEgkUgQj8dJJBKo1Wr0ej0GgwGNRsNQzyh3fOURmYTrDFqyi7NlEq5Sq6iqL5NJOIB9fTVtCouy2g3VeBXaR9uaCloOTOjAVRoVFc5imYSbMvRk5lsYOGgxVliWTSSOTMKLKjNoPmhhOJWEF5ZkYbIYyMk20biqlBM2VRMKxMjJNFFcks0+tZ83xCGC8QSaEESDceIWDSqjmkQggd6gJUerJzOkRsPEMcWIiE6twSRqsKg11BXnc8vFZ/H4NV/kHz+2EY1GIxPwN998k/3798tkaKaKt+RIctJJJ+FwOPB4PLzxxhsMDAwsqwamaDRKU1MTO3bsIBaLsWXLFlavXj1jn4XRaKShoYGTTz4ZURR5/fXXOXDgAJHI9Ia1pYL0Gb3xxhs0NzdTXV3NySefPKNWX6VSUVpayimnnEJ1dTUul4s33niD/v7+ZfkZvf766wiCwMknn0x9ff2M9ooZGRl8+9Pn8Nt/vYhPOSvIQIUloUatUaNRqwmH4gRDUbKiGlRxkTF1nBz0qFQqwgaR7rwYJzRWsM5ZSkNNEXq9hk1rKlnrLGWts5RMs4FaayGrbEUU52SgRc0He7rQabXsbeqhydPPqD+Ep22Qqso8tJpD73k4EmdgJEB56WRN/tBIhKryfIoLLaypLUUVhz17uyci3Gumy7v8Y2EEIUFW1sQk0GjQsqa+lP4eH7vea2f1qvIZ38e9+7pZvaqM/NwMivIsHFD0qPT1+cnJNmM0HKpzaTQq6p0l7N3ThdvVh8NWNFM6PbXOYg7s62FsNERJyQz+yaLIqsZy9u7tYnhgnKrK6em5jfWl7D1YTe/v96OKC5QUHZJNff2S0yjMNyz6qk08Hp+3B7hKpUKj0Szbie1SQ9KIH0v/jickvSL+n//5n2zdupVHHnmELVu28JOf/IRzzz2XpqYmioqKpr3+9ddf50tf+hLbtm3jE5/4BE8++SSf+cxn2LVrF6tXT1gqeTweTjvtNL7+9a9z6623kpWVJTd/Sbjyyit59tlnefrpp8nOzuayyy7jc5/7HDt27Jh0vKuvvppf/vKXskl8RkbGYe0LZ4PjoSIuSVOOVAGXEApEuPOrjzAsLfeqVFjXVOH64NCkqWGznf3vHNKJN57sYN/brYf+3mJj3zuKZs01pbgUy7TOdYfi7nUGDYUVebQftD3MK84kmhDlFE3HqlK6OkfIyTOi1anIK85BDThri9AbtXR0jDDQ70er1VBTV8K+g/rwkhOKeVPnI25WoxFAHxBJ6MCi1aOLqQhGY8S0KsSxBGMGAaNKg0XUkdCIqBMimXo9JzhKufSCzZQWHBpQRVFkaGgIj8dDOBzGarXOOgBHInvFxcVyA2RGRgYOh4Pc3Nyjbp8qxGIx2traaG9vJzc3lxNPPHHWemmz2czq1auprq7G4/GwY8eOI1oELhbmG1KkbDrr7Oxk//79tLS04HA4Fi3xdCbE43Ha29tpbW2d82dksVi48gvn8TWfj/v/9AqvtvYSFUWyDXrCYoKAmCBL1BEIxBhTRcgy6vFrYoyoo7zq62aLqWhSyM5aZykf7j9kZVhamEUklpCbIPe7+6i3F+Hy9MuSEHfrIM6aQlpaB0kcfCwYiiKKAlmZOvxjMSwZBqrL8wgEImRbTOzd3z3JBc3l7p/w7Z4SwDM8EiI3R4+jJp/hgQB7FfHwew9Gye+ZIWEzGo5RUZLF7g+nP9fZOUJNTQEdXcNoNGoqSnJoOnDoPWhu6qW+oXTiXA5+J5yOIlo8/SQSAmNj4YmwoeIsevsO6bzXrKlgz8F7XygYZaDHj7UqX7Z7rCzPxd08uQA1MhLAEjNQVZ5LcWk2n/7kep5//vlFtQqVxo3lZE96TCFtX7iikfRkzS1btrB582YeeughYKJ6WllZyeWXX85111037fUXXXQRgUCAZ555Rn7spJNOYv369TzyyCMAXHzxxeh0Op544okZj+nz+SgsLOTJJ5/k85//PAAHDhygoaGBnTt3ctJJJx32fB999FGeeuop/vznP8/rel0uF6IoUltbO6/t54Pm5mZUKlVSIudnA7/fz/vvvy+/jzMRcJjw493+tZ/zzt/2yI81nlrLvre8h/4+ycF+RbNm/Yn2SbaF9ZtrOKCIty+rzaPbe2ggmrAxbAdRxGTRY19dydhoEL1Bh86gQWPQEo0kiIZjZOaYcR/oITAeQavTUOEooMU90QhaUZNLf3+ASCRORqaRvKIs2tuGEHUqNBtz6ImHMKg1mHQ6gokoYRVkiBrCkRiCXo05oUaVmEjiFOIJUKnQiiqKszL4f5ucXHzOhklR0crgmmAwKNvfLWRgisfjtLW10dbWRm5uLg6HY1EbBiVy19bWRlZWFg6HY8GuIUsVBy9B8gz3+XxUV1dTVVW1oCS/RCJBR0cHra2tSzJpEgSBzs5OOcnQ6XQu+Pjd/YPc8fsX2D/gZzwhkGHSESBOhkbHWCKKIIqY0RDVikR1IoYhkZOzSibSNA+ONqsdJRM+3wf/LszLQEyIslc3QJ2tCLe3f1IzYq2tEG/LQTIuiuTnmqkszUVMiOzZ3zPptQ21Jexv6mXq1Gd1Q+khYi2KOGxFBMaCJBJxRkbCzFRXqa8vZf9BX3KDQYujuoD9+7pRqcBZW0JT8/TVV5hIvRzzh+honx7oAxPpmnv3d1NWamGgPzhJOgOQlWXCmKGnr89PfV0JTTN4iev1Wsqr8ugfHMOgUTM8PHNhqawsh3vuvZjsLCN/+9vf+OhHP7poQVOJRILnn3+es846a15N2lLhyWg0pqviCkjJmls++SO0umMnWTMeC/Pmn3+YTtacD6LRKO+++y7XX3+9/Jhareacc85h586dM26zc+dOtm7dOumxc889lz/+8Y/AxA/w2Wef5ZprruHcc8/lvffeo6amhuuvv57PfOYzALz77rvEYjHOOecceR/19fVUVVUdlYgr7QvnA41Gs+jL6RqNhnh8ejNQsiFVwSVpSmtr62HjvkVR5Lfb/0xgNEDjiTYAjJkmQoEIDRutiKKI0awnFI5Tt74KAL3ZQCyWoP6EKlSo0Jt1RCNxahoLiUQimCwmVOhwNmYQi8XJKcyiq3WQDLOOSDhOmbWQPW9NkPq84ixEtZrhg97f9esr2b2rDVEQMZp0FFXl0+KeqJrb6ovwegYRRcgrzECl1RIOx8hdl487I0xEFUEnqFGjYliMohEhM6omEo2RbTQQjycIiSLGuAo1IhkaPbbSPL50zjo2NVRNe28kAj4+Pj7Jf3qh0Gq12O12KisraWlp4a233qK4uBibzXZU282FYCq5XLduHXl505fI54Ps7Gw2btzI0NCQnNK5GBZmUorm4OAglZWVSbNW1Gg08qpHe3s777//ftImLUeCKIqyZl2tVic1AKqsqICH/+UidjW1cs//vEpnIESGWkUoFEWnVZHQqwghkC3qCEbiqMwq3hrsYV1NEW0dQ0RiCfa4e6l3FOFtGSQeFxgYDpCbZaKkKJPe/onfcJO3n9qaQrwtAyQEEbNRx9hYkKpyEyQ0jIxGGR4MMjwYJD83g5xsE8MjQfk89zf3sqqhlL2K6jvAnv09rF5VTnA8jBAX8LoPBfxUVeXQ3j467Zqbm3txOoqIhGOEAxHZMlAUwePux24rxOOdnIxZWZ5DT+cwxSXZTMw4pr/3+/Z1Y7dl0tY2PqNm3O8PoVLD6sYymg7MHOgTjcbp6RymoXHC5WkmaLVqrr76PHJzzMRiE5r8xZzgSuPVQo6ZJuBHQFojvqKRVCI+ODhIIpGguLh40uPFxcUcOHBgxm16e3tnfH1v70T1ob+/n/Hxce666y5uv/12tm/fznPPPcfnPvc5XnzxRc444wx6e3vR6/Xk5OQcdj+HQ0ZGxlEj7o+EpZKmpJL8SwRcWYXYtGkTHo+HnTt3UlNTQ1VV1aSwhSd+9Ef+8G//K++jfouDXS/slf+2r6vC9UEHiYNOBzVrKvDu65ZDfmpWV9C8u4PEwYqQY10Fnt29sr62cYuN91+faJbT6DRYG8rwHHQ1KSzLJhoXGT1IwhtPOJSgmZltwpKXQZt3YKIR84QqfKNB6hvLUKkF+gb8DAaDjNWaGDPHUcVFsuMaYnGBaDxOnsmAX4wRU4mYtTrCoRgWgx5NPIFFr2dzXQVf/9SJFOZN9+IdHR3F4/HIvtnr169PidxCr9dTV1dHVVUVXq+XnTt3Ul5efthJ03whCAJdXV14vV6MRqPsGpKKATI/P5+8vDzZMSFVTarKpsWysjJOPfXUSZK3ZEGr1WKz2aisrKS1tZV3332XvLw87HZ7UlcxRFGUG3vj8XhKG3tPqLPy1Pet/Pdr7/Orl99HSESICCKqgEhGhg6fGJMDgMhV0xEew2ktQK/RkkiICKLI+lXlBPxhWZ6h12koyreAMHEtgiCyqraUjq4hRn0RQsGDDkj2Ivzjh4LYhkYCFBZYyMk2Muo7ZGG490APqxvL2LOvGxUThLTWXoR/NEiWxci+KZKT9vbRQ64oCuh1GkxaDYI6TueUkKBEQqCzY5iqqjzaD1a+G+pKcDf3Eo8LjIwEaWwsmzjWlM+htMREu9dPfUMpe/f1THseIDvTyFCvj7w8y8x2hKKIzVrAh7vaqasroal5+pj3rW9/lPqGsoPnezDNeBGJeCKRQKVSLXgynSbjM+NY01UfS9cyGyx71xSJDH7605/myiuvBGD9+vW8/vrrPPLII5xxxhkL2n9WVhaBQABRFOf1Iz+WmjWnEnClBMVgMLBx40YGBwdxuVx0dHTIITNP3/eXSSS8dpON5vcOyU1qVlfQ3twnk/DqxnK6W4dkEl7mKKDd3S+T8NoN1bg+7JpEwiXttk6vpaKuBM/BJdriylyCoRj+0QlNeOOmava9105GlomC4kyyCzKJRROYMwzozTr2vN+JCKxaX8m+/X2MFWpQ1ZuIROPoh0TUFi3jaoFMnQadWk0wECHHaCAQi6HTqNGpVZRYMjhro4OLz92AWj39O6NMjqyqqmLt2rWLonc2mUysWrWK6upq3G63rLe2Wq0LqsBL6Z5erxetVpvU6uqRIDkmFBYWytVdySJwoemikUiElpYWurq6ZnR2SRV0Oh1Op5Pq6mp5FaOwsBC73b5gG8fR0VFcLheBQGBRrS4/d9p6PnvqOh7446v8z3sHiGlUxMNxcnQ6guo4hAQSJhU9xgi+3j6K1SYy9AY5JbKsKItIMConT5qNOorzMmntOGS9V1poRhtQy9KNJk8/9c5iml19iAflKAOD45QUZWFJiLLNH8Ce/d2csLaCeDRBa+sQ+/cdqizX15dOqzRPckURRcpKM/CPRNjzYRcmk47y8ly6FAFlMFGVHhoYo7wsh9xsk5x0KWHfvm5WrT6YgHnwe1tjzabNO4Iowr493axeU86efZPPpbwsh6H+MYLBKNnZpmmacYA1q8tl3bj7QM8E6Vdc0zkfW8UFF6yV/5Ya7BeT1Er68IUcM03Cj4C0RnxFI6lEvKCgAI1GM82tpK+vj5KSkhm3KSkpOeLrCwoK0Gq1NDY2TnpNQ0MDr732mryPaDQqJ9zN5rgS0s2aRybgU1FQUEB+fj7d3d24XC6e/smzvPjYO/LzjhOseD7slAfHqoYyuloGZdJdWVdKX+cI0YOWZQWVWfR3+SeT8D2HIeEGLeXOYloO9KI3aCmtysOYaSRXpaLSClqjjsF+P2aznrxCC4ODAVq9Q1iyjeQVZ+P6oAudToOtoYR3u3oZW2MkYVRjFFSY9XpimgQJfwKLQUNYSGBWa8jQ6dEkVGSixV6cx8XnrOPk9TUzvo9+vx+Px8PIyEhS5Q1zhcViYf369TIx6+zsnFPDoQSlvEHqSVgKSz5lk2pXVxcHDhygpaUFp9M55wbIWCwmx9Hn5eUtWRy9tIohEfI33nhj3rKi8fFxXC4XIyMjVFdXs2HDhqRIn+YClUrFFZ89nUs/tombn3yePV39BMMx1CoVKo2ajLiGoCZBsFhNf08ISzhGna2QJu8A3f1+8rLNlBRl0dvvJxiO0dk/Skmhid6BCXLeMxDEVpVPV/eoHPBzwN03jYz39vspK8lGEASyM00U5lkYHhrn/fc7WNVQNs1SsNnVh8NRjNs9eQzau6+bDeuq8I0EaPEeChgLhWKMjgQoKsqaVp02mXRYTHo5i2Aq9u7porwig67OAI2NJezfM5l07/2wi9VrK9hzsFm0pCQL/2iA4EFfdJ8vhAiUlGTTe9AhqrGhVCbhAIIgsn/Pwf3s68bhKOK73z1r0m9kKZomZ4q3TyN5SFfEVzaSerfW6/Vs3LiRF154QdZvC4LACy+8wGWXXTbjNieffDIvvPACV1xxhfzY888/z8knnyzvc/PmzTQ1NU3aTrITA9i4cSM6nY4XXniBCy+8EICmpiba29vl/RwOWVlZK06akqyK+FwIuBIqlYry8nLe/2vzJBJuXV1B24EehIPuBxW1JfQrSHe5o5ihPj+R0MTAUmjNwTcYJh6bSMGsbijFPxKiylGIVqclKz+TSCRG4wmVoFIhiDAyOI7JqKWkKo+erlHCoRg6vYbq+hL2vjUxINWtq8Td3E88lqC0KpdwTKCtZZDc/Azy7XnsVQeIO80YowKx4TiaDB2heAJ9QoXapEWTAENcADFBbmYGJ9SV8dVPbqYof2YJwdjYGB6Ph6GhISorK1m1atWySI2UYteHhoZwuVy0t7fPSqogiiL9/f3TwoWWOqRGrVZTWVlJWVkZHR0dfPjhh1gsFhwOxzRZ2lQkEgnZNSQrK4uNGzcuizh6ycbRarXKsqLS0lJsNttRJTKhUAiPx0NfXx/l5eXL4nuXbTHzk29+mve9PdzzXy/R7R8jFBYIGETUQbCYNIhlWvISZgaGA6yuL+HDA70M+4JkmPRUlmbT0eMjFhfo90WocxTTdJAke9uHsFbm0dfrJ3wwMEci403NvZQUZpGXYwYRMk16OjtH6Ov2yee2d383DQ2l7Fc0PAqCSGv7EDXWAloOJvqWFGWSk2Xmg11tNDSWTbvGQCCKSiWSnW3E5wtPRNE3lNHiGWC4f5y8vAxyc82MKPTqEnq6A5y4uYa33/ROew5g7+5OVq8pp39wnNBYhPGxyRMHvy+EKIiUlmZjMuponqF5U9rPphNr+O6/noPBMHk1TqqILyaSQf7TFfEjIK0RX9FIetlk69atXHLJJWzatIkTTzyRn/zkJwQCAS699FIAvvrVr1JeXs62bdsA+N73vscZZ5zBvffey8c//nF++9vf8s477/Dzn/9c3uf3v/99LrroIk4//XQ++tGP8txzz/HnP/+Zl156CZho8Pr617/O1q1bycvLIysri8svv5yTTz75iI2aMNGsGY1GiUaj89LTrsRkzfkScCX+9NDfeOK2/8Zk0qEzaMm35jLcM0JWngmD0UB+eR5jwwEKy3JAFMkqzGSgbxStEbIMRoqrC+nvHIWEAIkE1vpSmt7vQBREVGoVdZtqeO+1ZgCyCywYLSb6DoZ31J9QTfO+boSESGaOmayCDFz7eiYkJxut7P2gE3OGHkdjKVq9hlgkTklVLrt8QzRHhxH1avRjCeIGNfoMPWZRjUmjJhSOY9Zo0ahU5GUbWVeTxdoaMzabjfyc6VVKZYNfRUUFp5122qK5EMwWKpVKXsVQyjscDsc0eYmkL/Z4PESjUWpqaigvL19yAj4VUgNkeXk5bW1t7Nq167CuMUrXEKPRyNq1a8nPz1+iMz88JFmR1WqVbRwrKiqwWq3TvlPRaJSWlhY6OzspLi7mlFNOWXZhSOttpfzm+1/iV//3Lr9+9X3iiQQxnUgskiAeh05tAHE8RjwqcEJjOZFQhHAkQiwWw1GdQyQiEk8IDPuDrKovpafXh0GnRUiINNSWEg5F0Go0CImJJM1VdRMEu6/nEPGursyjr88/KeXyQFMPdXXFNDUdqoDHYgm6en001BUjJiasBfu6J6ra+/Z2U99QyoEphHd8PEZWFuTk6MnLtrBfYXk4PBygqCiTjAw9gcChlE+LxUhhXgbv7PSyas2EF/hMGOwfo6wkmw8+6Jjx+bGxMIWFmZAQSCRmXhnVatV88aITKS6ePtkUBGHRq9OzibdPY/5IV8RXNpJuXwjw0EMPcc8999Db28v69et58MEH2bJlIk73zDPPxGq18vjjj8uvf/rpp7nxxhtpbW3F6XRy9913c8EFF0za52OPPca2bdvo7Oykrq6OW2+9lU9/+tPy8+FwmKuuuoqnnnqKSCTCueeey09/+tOjSlMk+5+WlpZ5DdCjo6Ps3buXU089dc7bzheSo4T0ns4WySDgoijyxK3/xX//5Dn5sfqTHLjeb5cr4YX2PHy9QWIHB8CyuiL6O33EDy4p155gxbu/R9aMN57kYN/BRE2tToN1VTnugxrL4qo8IlGB0YNRzo0n1rDvvYkBqqgiB1GlQqNVk5ltxmQxMD4WYXRonKKKXPZ92IVGp8GyrgAXQVRqFRbVRMUbtYpIII6gBYNKjV6lRqtSU1dVxJc/tYFVjjLZctDlchGLxeRqcjAYxOv10t/fT3l5uRxetRKgbLg0mUyyv/V8fbOXA5TEVNJbm0wmeeKh0WhmnHgsZ0irLMPDw1RWVmK1WlGpVEtqVzlf+ANhbn3yBd5v756wHVRDUDXhxmQZECEoUJxrwOePEokKqFSw2l7CXoXOeU3dQc32QVSU5TAyHJhEdOtri2luPiRTAbBW59PTNUo0dqhwodGosVkLcLn70WhU1NqLiIRiDA6MYbEY6VWQeQC1WoXdUYRLaVEoijQ0lDA+FqS/b5xodDohzsnVE4oIhENxystyiASiDA8dkkHWrypj//7JzaKVFbmMDgYYH4/QuLZ80jVLKCrKIjweIZEQySvKoKNjZNprtl5zPmd/bNW0x2HCAMHlci3qmNXd3U1HR8ecxywJEpFf6hWf5QaJv5zysVuPOfvC15+/+bixL0wJEV9JSCQS6HQ6du/eLUtd5oKxsTHee+89Tj/99BSc3cwYGRlh//79nHLKKbN6fTIIOEAinuCnVzzBC79+TX5s1Wl17HvTI/9dt9mO+8MOhIOa72JnHgMdYwgHrbkatthp2tUua8AbtjjY/24rACaLgcKqfNoPDnjVdSUM9I0RiyXIyc+g3F5MNBxDFMGYoae9dYihPj9FZTmIahX9PT7yijIxZhrpah/GXJ3NWL6GiEpEq1YTjsSJaiBDUENcwKjXIgoimSYDmxoqueRzm8nNnt4wJ2mlm5ub5VTRsrIyampqll0lcrZQBryoVCpEUaSmpiZp1opLgXA4jMfjoaenB41Gg1arlRuKVwoBnwrJV310dBSYWMFLhhf4UuDVD1v56V/foH3Yh04LMTUkVJDnUxP1xSktzCQeFRgcnph0r60t5cODbicAa+vL+HDvob/LSrLx+0OT5BszkXFbTQEd7cNyo6cKkRprAfk5Zpr2905q7MzONqHXaRiY4oyi1aqprMqjxTtIRXkuGhW0t000k1ZV59HT4yMWm07Gq6ryyLDo8TT1E4tOXsVUqaC2oZQDBycctpoCujtGiRyU8gHTyHh+QQZCRGD0oOzFaNJRWJZFe9shn/KLv3wSX/mn0w77OfT09NDW1nbU1eJkor29nf7+fjZt2jSv7aVxeilDvpYjZCJ+zjFIxP/v+CHiK3PETSJUKhUWi2XeOvHlLE1JFgEHiISi3Pu1n/PWX9+XH1v1kXr2veGW/2482TkprKd8VTFdriFZ76V8XqVRsepEB33dI1Q6izGYtFhyLEQjMeo3VGHMMDDQPYoaEbNJhynDyPs73KjUKuo3Wtn1xsR+6tZV0OLuJxqJ41xdRlwUiRrVJIoKaBNj6GJxzCoNoVCELIuBcDSOVg0alYbqvBzOO6OB885oOCJRC4fDDA8PE4/HsVgsBINBgsEg0Wh0xRLxYDCIzzdR+cvIyMDv9zM+Pk40Gl2RRFwURcbHxxkbG0Or1WI0GhkfH8fv95Ofn78iK2miKBIIBAgGgxgME5HkgUBAHpxWyoqFhI+ssbKlrpybfvkX3mnrIy6IaBMwYhFoLMwlS2UkGouTYdLR1jXC7uYeVjWUcqCpF1EQ2X2gm9WNEzZ/KqC710dJURYalRqff6Kp80BzHw21ExZ+Ehn3tgzSWF9CPCKg06jp7ByhxT1It0FLSUnWJCLu84Vm1HjH4wKB8QgbT6jkvXfaJpk6tLcNU1aRRW/PGMoeer1eQ4ZJT3g8NqMLhCiC60AvdXUlIIp4m/unBfrs291F49py9u3rJifXjCqOTMIBwqEY/Z0+amoKaGkZ5PQz6/jHS45c6V6KZs20NCWNNA6P4/6XoVKpFuQlrtFoDvrdCoumpT2aa0oyCTjAQOcQP770EXq9/RSU5WDKMJJblsP4aBDb6gkNsTkvg5EBH0U12ajVavJLCwj6I1Q7S4jFoqiNGrrcPViyjOgNWjLzM9lzkMRX1ZfS1zGK+8NuVBo19RutvL/j4HO1JYyOhmj3DGDJNlFQkce+9ztQa1Ss3VJDKBSldlUZolrF3uZu4pUWoqiJjEbJNRsZE+JoNWqMqFHHIN9gYpW9mC99ciM11QVHvO5QKERLSws9PT0UFxdz0kknkZGRIUe6v/POOxQWFuJwOBbF+i4ZmBpcIzX4SX7aO3fupKysDJvNtuz07oeD0rZPmVg6NjaG2+3mtddek1MyV0JF7XBe4IAsIWpra1uUoKNkQRRFuru78Xg8fGZdMZ89pYGfP7+b9hE/0USc/b5RqrQGBrrDmAxaNq+tIhyKgQpOWFtJW9sggVCUPQd6aKyXiPaES0pRgYUctYnRkSCZmSb8YyE2rq8iEopOVNiHxjiwtweno4jm5l45OCcSidPfP0ZFZS6dCnnH8HCAwqJMsrKM+P1hcnPNlJVk03ygh4AvRElpDj3do5Our7vTj81RQIt3CFGEkhILQX+IAwe14zZHEW2tg9NCe4TExOQgGolPI+ES9u/uYu2GCvp6/PT3TndkiUTidLUO85HTa7n8yo/JY9HhigtLRcQXGuazUle1FgMqji1d9fH2SR/30hRRFHE6nfz4xz/m7LPPnvP28XicV155hY985COLNsiHQiF27tzJRz/60Uk3p2QTcIDdL+/jx//0CL7BifCM3JJsLHmZdLkmQiNMmUbyqvLoappIpzNm6Kmor8Cze0LHnZVvIac4h46DIRM5JRkkEirGRiYqWA1b7DR/MBHkY8kxk1+WQ9tBaUrDZhvNe7rIzjWTX5KNKdNEJBxFo9UwNDROb9co1tpiBoNhevUJonl6tKKKTLWGSDSORlQhqEQMai2leZn8v9Mb+OTHVh+VuITDYVpbW+nq6qKoqAibzTajx3M4HMbr9dLT07PsyWswGMTj8ci69sOF/UhEfWhoiKqqKqqrq5cteZWItmTbdziifTiivhwxMjKC2+0+ohe4KIoMDAzg8XiIx+PU1NRQVla2LAm5clKRSCSw2+2TpEL/8bd3eerlD0hoIBCPUSbqGOuPEE9MlqZUluXgHwkRCkaxWAyUFWfjGw0Ri8YnpGoGLfFIYpKlYH1tCc2KyjhArbMYl6sPUcF5M8x6srNN08h1Q0MJWpWKA/t6JpHkzCwjer2aocHprij1DaVoNWr2f9iFIEweWq32fNpahuXiuEarptZRxIG93Wi0aqy2Qtyu/mn7zM3LQK9VkV+Uxb490zXjANU1Bdz+4y9gyTQgiqJMxGci5F6vF7/fz/r162fcVyrQ1NREIpGYZkM8WyQSCfR6fbqqPgWSNOXUs29Bqz2GpCnxMDteuCUtTTleIElT5uslLg3okoZtMSAdUwohmkrANRqN/G++EEWRPzzwHE/c/LQ8oNSsqWKozyeT8PzyHKIJQSbhRdUFqDQamYSXO0sIjkVkEl670UrLgR5ikTgqrYqqhhL2v9uGwaSjwlFERrYZQYTVJ9YgqtQM9Y+h1aopqS5g/wcdoIKGDVUc2DMxcDk3VdEeCxPMMqCPCaiDCRIaSCBgUmsxG3U0Oor5xwtPpLL86BHskUiE1tZWOjs7KSgoOKrHtNFopLGxkaqqKjlAp7q6murq6mUzYCir+iUlJUd12LBYLKxbtw6fzyd7kC838hoIBPB4PAwMDFBRUXFU2z7JxlFqvG1vb192jjBTJxVH8gJXBh319fXJTjiSzeRyqRz6fD6am5uPOKn46v/byPkn1nPTL/8X79AoPUKcmqosokMhdjd146jJo71jlI7uUQrzLRgNWgYGxxn1haipymd4eJxweKIpPDfHTGGhRdZ3H2junUbGm1191Mk68olzCASjqDVqiouz8PmC2KyFBMbDHNjTQ0VlHlqdZhIRH/OHycjQkp1jxDd6KMXTZitkdGCcvALLRE/MlI+h1TNEWWUm3Z1jZGebyco0yBXzRFygzTuI3VGIxz0gb1NUnEU8EqO/N0B/r59VayvYO4WMl5bncOv2C8nKnvhdi6Ior9JKY4SSkC+Vj/hyuScei0i7pqxsHPcVcYDTTjuNr3zlK/zDP/zDvLZ/6aWX2Lx584KT8WaLRCLByy+/zKmnnirLVKSb7UIJOMDY8Di/vetPuN5tQYgliERi5BZnM9g9SjQSIxqOYC4wE/JFERKgQkWJrYhxf5hENIFap6GgPJdwKIZaBRqtBlOWiWhkotFSp9cyHogw1Ocj6A9T2VBC24GJZE1rfSk+f5iRgQnnE51RR1frEIVl2RRV5hGPJ1Bl6Ng34mdUJ2JQq1GHEhhMOtSiClEQKM3L4pwz6/j0eetmRbSi0agc8pKfnz/v2PHR0VGam5sJhULYbLYlJXrK5MgjVfWPBFEUZYeeaDQqSySW6pqUKxCz9dqeCqVHuiAI0yq0iw2lF3hFRQU1NTVz1rMLgkBvby9erxe1Wp2U5NGFIBAI4Ha75VWV2Sa7PrtzP4/97V380QiqYAJHdjbhYAi9TkvfQIhAMEamxUCexUTHQSvTitIcfKNBuWEzO8tEhkEnB94A1NUW45rSwFlfV0JT04S8JTvLSHlZDirANxKku2t00nlVW/Pp7hye1oxZUGAhHk+gUWvIz8vAdeBQtHzjmnL2fdg14xq71WZhoCdEMBCf9pxOp6HCWoDX3U9ZeQ7jviBj/vCk1zQqyHh+oYW7fnIxRcXTq4YSIZ9aIW9ubl5QdXo+2L17NxkZGdjt9nltLwgCer1+2RQDlgukivhpHz32KuKvvXj8VMTTRBw477zz+NjHPsY3v/nNeW3/6quvsm7dukX7wkhEfPPmzRiNxqQRcICd//MOj1zxH4z2TwxkuaU55JXm4T1Y5dYaNJTVFdOxd0I+ojNoqd1sl51TTBYDlY0VNO+aiLgvqsxHbzbQ5Z2omtdvttFyoJdIOEZucRbmbCNd3iFUGhX2NeV49vVhytBjW1WOwMRgojfq2fdBB8aCDEK5BkbCETItBuIJgYQgok+oyM/OYE1DGV/47AmUluTM6lqj0ShtbW10dHSQm5uL3W5f8GcoyQbcbjeCIOB0OheVFCknFQUFBdjt9gUnR4qiSF9fH263e0mIntKecL6TiqmQyKvH40Gr1WK32xfV3lA5USouLpYtFxcCQRDo7u7G6/Wi1+ux2+0UFBQs6jV5vV66u7spLS3FbrfPWao1Hghz0+PPs7ezH3VEpL4onw/39ZBp0lKUbcRgMKLVaYlHE7g8/YgiFBdmEgvH5ebKTIuBbItxEqGWyLhaBSVFWWRlmcgw6+npHKVbIUnJzctAAwwNTV4hLSwyMjQQniQ3sWQacdqLaGsZYGRoukxl1doK9u7ulMm4SgWrVpWz78NOrPY8WlxDcty9Ejq9hobV5bj29xAKRqc9D7BqXQUdHSPcef9FVFQeebVvKiE/cOAAOp2Ourq6I26XTLz33nvk5uZitVrnvK1U3TcYDGkiPgUSEf/ImTcfc0T81ZduTRPx4wmf//znWbNmDVu3bp3X9q+//joNDQ0ptxRTSlB27dqFRqPB6XQmJaBktN/Pz69+gh3//Zb8WMOpdbTu6SJ8MBa6yJZHIgrDB312y2tLiCdE+tsnbLysqyrwjQYZORjx3HCyA++eLqLhGBk5JkptJbg/PJh+udFKKBhFb9BishgIRWKMDo+h1WlQafT0tI9gayxldDTIcCSKtjqH4ViMTK2WeCiO0ajFoNNSU57HeR9bxSknOWZ9rVKzZXt7Ozk5Odjt9qSnLCpJkcFgkOPYUwXlNSVrUjEVSg9yo9G46NeUCt/sqYE/DocjpYE/8Xhc9gLPy8vD4XAseKI0FYlEgs7OTlpbWzGZTNjtdvLy8lJGyOPxOK2trbS3t5Ofn4/D4VjwROl/32rioT/txKzRYs3KYu+BHkQR8jO19PWHUalUrHIU09vjIzPTSIZJj1GvnbAIVB3sj1GriIbjxOMJYtEEGRl6mvf3TKpsNzSUsn9f96Qkv/wCC0JcmOROAuBwFuF195OVZaS8LBd3Ux/RSJyy8hxGR4MEA9NJ86q1Fez9sJPCwkyMeg2d7YdsBhtWl7N/T9c0Ml7fUEqHd4Ci8hxaPANTdwlAdo6JW+/5IlZ74azfU+Xvqb6+ntLSUjQazaJM1N5++21KSkqorKyc87ZpIn54yET89GOQiL+SJuLHFS699FIKCgq46aab5rX9m2++KVefUgElAZeWFwG6urrkIKL5Dn6JhMDL//k6rz79BuOjQeLROLFYnOyiHNr2dRIJRUnERRwnVON+d8L/W6VW0XhKLQfe8SKKoNVrqD/RQXfLAFqDFr1BR0FlPqGxCCqNCoNJTywmEA5GUWvVoFLh/rALk8WAdVUFB95vx5hhoLq+lKYPO8nMNZBXlkVArcGvUeMfD2MwaEmIAiaNjrLCTM46o57zzl09pxtzLBajvb2d9vZ2srKysNvtR41GXyiU0erZ2dk4nc6kksl4PE5HRwetra1kZmbOKu59oZh6TQ6HI6k3y0QiQUdHBy0tLUtyTVlZWTgcjqROziRy3NLSQkZGBk6nM+XXlOrvhjSJ8Xq9Kbmm8WCEWx5/nuaOQYo0JrKMerwdQ5QXZuDyDqMCGuyFHDjQj4qJSnhOponOg7IVo0FLWVEWra1D8j5rncV4XH1yrgHMTMYzs3QIMZFg8KB8RBSpthZQmG9h93vt0zzBK6ryGBwYm3B6UUCFyOaTbOx+t21SwqeExrUV7NvdCSoVKkQqq7Lo8E4UOnR6DRU1EzIVJfLyLdx27xeoqJrdhFFyrHG73ZhMJmpra8nKypL14yqVKuWE/I033qCqqoqysrI5bytV8yULzzQOQSLip3/kpmOOiL/y6m1pIn484bLLLkMQBLZv3z6v7d955x0qKyspLi5O6nnNRMC1Wu2km1EkEpFDTCoqKrDZbLNqGhVFkTef2cWvb/09HQcm9IZGiwHbeiuud1uJRycGDduGasaGQwx2TQxuNWsqiURi9LUNkogL2NdVM+YPM9A5jEqtouEkBy37ewgHIuSV5pBbnI1nTxcarYa6jVZcH3YSi8Sp22RldDiAwagjM8+CiIpYLIGgV3OgZwQh24BKFA8mXqooK85h0wnVfPrTG7BY5nbDURISi8UiVwgXE1NjyRcqRVASO7PZLCdkLiaUMphk2DgqK+7KVYTF1Dorq4bJqFiLokhPT48sgXE4HIsqF4FDE9C2tjZycnIWPHGaKlVyOp0pvaY/vvwh//XyXkZ7/ViL8kEUycww8P6HHSQSIlWlFro7xxEEEaNRR1lRFi0tgwDodRqqynPxKirLTkcRLe7+SVaCDQ2lk2LqAYqLs9Bp1eRmmenr8TE4MOEcVd9YyoF9PZOIO0w4l/R0jxCNTJD0qup8EtE43R0jE17ge2aOtG9cW4HX3UdZaQ4tzZNJt053kIx7Jh4vLs3m1nu+QElZzqzeu6GhIVkTPlUmp5SspJqQ79ixQz7+XJEm4oeHTMRPOwaJ+GtpIn5c4frrr6erq4uHH354Xtu/9957FBcXz2u2PxNmQ8CnYnx8nObmZnw+HzabjcrKyhlfL4oie149wH/c/DTNb0/outUaDXVb7LQf6Cbom7AVLLEXYbSYads7MXjklmRTWFVA87sTQTr5Zbnklefhfr8dgOrGMqIxgd62ITQ6DXWbavDu7cZkMZJXkkVGdgbxWAKDSY/fF6Kvc4RSawE+X4ixsRCFtUUMRGJEAQ42QOXlGCkrNrJqdSZr1tbO2Y1Eqqy2trZiNptTvkQ/G4RCIdxuN/39/VRWVlJTUzMntx2JrLa0tCyJDngmLNTGUUou9Xg8y6LZEKZruG0225wmGVN7BZa6KRQO9US0t7fPu39geHiY5ubmRW/eHfIF2Pb43wmORTBpdOze24W9Kh8dKkQxTjwepaszQDwuotWqsVcV0Oya6GPRatTYrQWTIuod9iJaPQMkEodkKuVlZoYHI1RW5qPXahjsH0OtUTHmCxFQhP4ANKwqY/8MVoI19kJ8viBFBZk0TXm+YU05+/dOJ+PlFbkUFWXy/lutM2rGtTo1lbYCotEEt97zBfILj76iNj4+jsvlYnR0lJqaGqqqqg77OS0GIX/llVdYtWrVvGRfaSJ+eMhE/NQfHntEfMeP0kT8eMIdd9zBrl27ePzxx+e1/e7du8nNzZ2X/k2J+RDwqThcBSQ4FuKV373B/z72It4P2jBmGMgrzaW4ppCRQR/RWBSdToslOxODyUgkGJuIoRdFDBYj0XBs4rxQYcw0TugsRdDqtajUaqLROEJCICM3g4EeH6OD4+QWZaHRaWg90Eu5rQhDhgHv/h5sq8vIzLUQTCQYjMYYCUbQ6rRo1VCUa2HDCdV84pMbyMufkNoo3UjsdvtRPZOVGlmj0Yjdbic/P3/Z2LrBxA3U7Xbj8/nkaPkjyWyUzYUajWZZkNWpkNwyBgcHZbeMI00ylGRV8pheTvZ7gBx01NvbS1lZGTU1NUd1ahkZGcHlci0L95yZMB9HnbGxMVwuFz6fD6vVSlVV1ZLodZ9+4QNefceLRatj7/5uMjOMaETo6x+jKN8MsTgGvZbMrAxMBgPB8TCxuEA8kSArw8DIUACdToNWqyEry8DokJ94LIZapSMUjFNcnM2+D7smmZ2UlefgGw0QGJ+sAW9cfdAZ5SCyc0xUlucSiybwKIKDlKhfXcaBg5H1KkQaV1fQ9GEXiYTAqnWV7P2gY0YyXmnL5oobL6DGVn7E30c0GsXj8dDd3U15eTk2m23WLjypJOQvvvgiGzZsmJd0STono9G4rO4NywESET/jlGOPiL/8+tyJ+MMPP8w999xDb28v69at49/+7d848cQTD/v6p59+mh/+8Ie0trbidDrZvn07F1xwwaTX7N+/n2uvvZaXX36ZeDxOY2Mj//Vf/0VVVRUwUYi66qqr+O1vf0skEuHcc8/lpz/96ZwUEmkiDjz44IP85S9/4emnn57X9nv37iUjI2NeHeGQHAKuhCiKdHV14Xa58XWO07t7iJee3ClXu/PLcim2FdPyYTvhg5WeioYyTBYznvcndOBZBRYq68vw7O4gHIiQkWOmZnUl3r1dhMYjFJTnUlCRj+v9dgRBpG6jleGhAANdI5TZCsnKs+D3BcnIMpGRnUE4HMOUYaCza4SwTkNEq0IQBTKMeqor8znxJDtnfawRg2Fm4ibZzrlcrsMuhysb7wwGw7KoFh8NQ0NDuFwuucJYVlY26XwlGYDH40EUxWVRWT0afD4fbrcbv99/2EmGZIsYDodXRELk1ERSq9U6jeAoyaoUMLScvZOVKxklJSXYbLZpcimlveLhrnux0TXg44ln3mXfvm7KC7IYGBrHoNHiaRkgL8eMRhAYGpq41zXWFrF/X+9E8qAKGmonS1DKyiwM9gWJxQ5pvhsby6aR8fKKXEaGx6c1ZDauLqevZ5Tioiya9/WQOOg37qgvwdvcNy3UR6WC2lVl9PX6yMk00jalGXMmMv6Rc+r5xBcb6OruwGKxYLPZpq3sST0OLS0t5OXl4XQ6590wmwpC/vzzz3PyySfPS+aVJuKHh0zET77x2CPiO2+fExH/z//8T7761a/yyCOPsGXLFn7yk5/w9NNP09TUNKMk6vXXX+f0009n27ZtfOITn+DJJ59k+/bt7Nq1i9WrVwPg8Xg48cQT+frXv86XvvQlsrKy2Lt3LyeddJK8z+985zs8++yzPP7442RnZ3PZZZehVqvZsWPHrK83TcSBxx57jMcee4y//vWv89pesoOaq0dqsgk4gH9wjPf+voddz+/mvf/bg29gwsEkI8+MbZ2VaChGOBIlnoih02kxmc2YM82MDQdJxOIkBJGC8jwGuoaJRWOAilJbMSMDYwiCiEanJq80l+BYGLVGjUanA7WKWCSGOcuEfyRIT/sQFc4SQqEYvpFxympLGA3FGY/FEEQoyLfgcBZx1sdW0bC6Ys7vmdQgZrFY5OZHyaFE+hwW04puoZgqzZCccAYHB1dEeuJMEEVRDtCJRqPYbDbKysrw+/14PB78fv+SVlbnC+VKhkS2pSpkf3//vL3AlxLBYBCv10tfX59c9Ver1UntaUgFnn+jiWde2AdxgWg4TmaGgWZXL2q1huLcDNraJhxKaiqzaG0ZlYl1RZmZrvZD9oRWawG9XSOTmikbG0vZ92H3JDJeUZnH0ICfUCiGwaClxlZILBLDZNSz94POaefnbCjBfaAX5QirUkHj6jJEUWT/7pk14xIZV6lVfPkbp/O5fzgRlUpFPB6Xtf4SIc/NzZX1+jqdjtra2qT1iiSLkIuiyP/+7/9yxhlnzOs7JAXVpYn4dEhE/Mwtxx4Rf+nNuRHxLVu2sHnzZh566CFg4ntTWVnJ5ZdfznXXXTft9RdddBGBQIBnnnlGfuykk05i/fr1PPLIIwBcfPHF6HQ6nnjiiRmP6fP5KCws5Mknn+Tzn/88MMEHGxoa2LlzJyeddNKszj1NxJlYnrjjjjt49dVX57W9y+VCFEVqa2tn9fqpBDwWiTPQOUpf6yBDPaMUVeZRUJ6HKcNARraJjCwTGq0GURSJR+OExsOExsMERoN0NHXTcaBb/m8sEiOrIAuTeYIIqLQaYtE47vdaiUcSaA0aiu0FGAxGOpt6iUXiZOZbqKwvZ2xknE5XHxqdFvu6KhIJEe/eTrQ6DfZ1VYSCUdqbeimsyKOwIo/Wpl5QgX11BZFIAhEwmPWgVhEWYHgsTBzIzDZRXpnL6rWVnH3+aozGhZOUWCxGS0sL7e3tqFQqublvuck15gJBEOjo6MDjOajdV6sPm0i4UiBV9F0uF7HYhNxpNrKV5Q5JKx0IBBBFkZKSkmVJVueC8fFxWVoEE4mkdXV1SbeMTCYGR8Z56tlddHX7eP/DTlY7iokEY5hMeuKxBAcOhuyUFRvp7Q7KDZarG8vYs/tQ1buqOp+BHh/h8CHXk6lkPCvbiN1RRDQcw32gl6iSuK+tYN/708l4bWMprv0T1ovVNQXEwlF6OkdQq1U4Gkpp3tcz43Wt22zl/M9uYMtpzmnPSYS8tbUVmLhP1NbWpkzWtVBCnkgkeP755znrrLPmNUGVxkmDwbBi7+2pgkzET/zBsUfE37qDjo6OSUTcYDDM2H8UjUYxm838/ve/5zOf+Yz8+CWXXMLo6Ch/+tOfpm1TVVXF1q1bueKKK+THbr75Zv74xz/ywQcfIAgC2dnZXHPNNbz22mu899571NTUcP3118vH+Pvf/87ZZ5/NyMjIJNlVdXU1V1xxBVdeeeWsrnf5rpsuIqSIe+lGM1doNBoikchRXzeVgGs0GrRaLUajkcxsC7ZVFURCUfbscPHW3z5koGOI0QE//sExgv4Q2fkWdHotobEQvS19gIqcwizyy3JRqVXkl+ejN+rwDY2z/+2WCc12tpnc8myKawuJRwWiwRiRSJzMfD2rP1JPPCFMJM6pILc0l/yKfARBJJEQMOi0rD29DkEAlVqNKTsDc44FURTQZxgpd5bgHw0gajUIqBkLRjCixmTWU16Ww8fWVHDqWfWYTMmtDgqCwMDAAP39/RiNRgwGAz6fD5/PR15e3ooleD6fj/7+ftRqNRaLBZ/Px8jICPn5+YuW2ppshEIhBgYGiEajZGdnMz4+zvDwMHl5eSn1604lYrEYw8PDBINBMjMz5b9zcnJW1KqFEoIg4PP58Pv9mM1mNBoNfr+fvr4+jEbjsv1NFeRauOzLH+G5Vw8gItLRMUxOphlvywCBYJTVjcWMDPjQaNTYHbn0dvuIRmHP3i5Wry2XyXh72xCVlXkMH6x45+VmEArF2LTFSsgfZnBgnIE+P++/1UqVNX+ajHvf7k5Wra9g7xQy3ryvh7UnVBINRSc1bwqCiHt/D7UNpTTvn0zGnQ2lfOvKj1FaMXMuRTQaZWxswsElOzsbn89HV1cXRqOR3NzcpJNViXxLZFwQBHmsnA0hj8cnJiwLlWmlSfgRIDLNxWdF4+C1TO27u/nmm7nlllumvXxwcJBEIjFNl11cXMyBAwdmPERvb++Mr+/tnZi89/f3Mz4+zl133cXtt9/O9u3bee655/jc5z7Hiy++yBlnnEFvby96vX5a74NyP7NBmogDmZmZjI+Pz3t7jUZDIpE47POHI+AzDdgGk56N56xi4zmrAPANjbPvTQ+d7j5G+n0M9/pIoKawphSjxYDRpEcURUJjIdQaDbGEiM5kwLqumnF/EDQiOouBDIsZUKE36PGPjjPU72NI8FNYmY9Gp2egY5hEQqC4Oh+tXsv4SBARFXllOWjVaqLRBImEiDHHTCwuMB4T0GSZqLIWkJWbQbWjiC2n11FQlLrqmSTh8Hq9iKKIzWajpKQEtVrN2NgYzc3NvPbaa0d0jVmOUGqqq6ur2bBhA1qtVramfOONN+blRrKUCIfDtLS00N3dTUlJCaeccgomk0nWsu7evZusrCycTueK6YpXuvBYLBZOOOEEcnJyJun429rasNvtFBcXrwjiMNXdpba2Vj730dFRPB4Pr7322rLWvKtUKs4/vYE1zhJ++pvXIC5i0OXR0zXMngN92KtzaW0ZQRREqipyGegZBbWKzo5B1qwpZXQwSEIQiYZjlJTkMNjnY7h/jOH+MVpdEw4pA/1++XjtrUNUWfPp6xklEj5UFd87hYyXlGWTk2Nm7652nI2lEwmbCrIkCCLuAz0460twHehFpYIL//FkLrr0FLTa6XKtWCyG1+uls7OT0tJSTj31VAwGA7FYjI6ODj744IOU2rPOl5AnEgl524UcO43DQyWKqI4hcYN0LTNVxBcLkiTq05/+tFzZXr9+Pa+//jqPPPIIZ5xxRtKOtfzuqkuAVBHxuRDwwyE738LJF6ybtM+elgF6Wofo7xphtN/HUJ8f43iYRFwgHosTEQOEQnEsxRYsmZloNBqi4Rg6gw6VRoU5J4tYQoVaA8F4DI0oklGYhU6vw5hlQqXVkIEKg9mAJScDrVGHXq/DkmMmK89Mpb2QxnWVGJIgMZkNJKLj9XpJJBLYbLZptmmZmZmccMIJcvNje3s7DodjWTc2jo2N4Xa7GRkZobKykrVr106qPBoMBhobG6mursbtdrNjxw5Z1rEcCRFM9xY/6aSTJlXzNRqN3JzZ2trK22+/TWFhIXa7fdlW/QVBkL3A9Xo9q1evnuTCo1KpKCkpoaioiJ6eHpqbm2lpaVkSz/C5YHR0FJfLRSAQwG63T3N3ycnJYePGjQwPD+N2u2lvb8dqtR7V4WepUFGayw+/+zGe+uMO3tg1hN6kpbE0F2/LEDZHIZ1tw7R3jlBakk3IH8Y3GsI32kNVVTbdbX5EQaQfKC3LARHG/GEA9u/tpmF1OQf2dMlEur11iKqafPq6Ridpy/ft7uCEE2sYGw3iPtBL38FwoaY93dRP2QdMkHFvcx8bttRw4ZdPYtX66c5bkmTN6/WSnZ3NiSeeOEkupNPp5OKDRMgzMzPlps5kYyohF0WReDx+WEKeSCQWLcEzjWMLWVlZsyrUFBQUoNFo6Ovrm/R4X18fJSUlM25TUlJyxNcXFBSg1WppbGyc9JqGhgZee+01eR/RaJTR0dFJVfEjHXcmLM/RfJGRDGmKkojP1ISp0+mSUqFVq9WU24spt09eUonH47R4W9n/YTNCRE1+XiFalZ5oOE44EJ7wy1VrJhoyEwIa7YSERKVWMTg8iG9slPKqEmzOGvILssnMMWPKWNrqq1St83g8xGIxueHvcO+jSqWioKCA/Px8uru7ZUKe6ij2uSIQCODxeBgYGKCiooJVq1YdUTuZkZHBunXrZOLU2dm57LTjUnR7e3s72dnZbN68+Yg3UJ1Oh9PppLKyEq/XyxtvvEFpaSk2m+2o9oCLBcmpx+PxTKsWzwS1Wk15eTklJSV0dnayd+/eJQtbOhIkm8mhoaFJKzCHQ15eHps3b5adbtra2padLaP0/Wtra2NjYwEXnL2B/33ZxR+efZ9aRzHRUIzGVeV4PH309PrIz8ugyJhJf98Y7e0+iktMDPaFEBIiPd2jFJdkoVar8Y1OxNzv39tN/apymvYqyHjLBBnv7RqhqCiL7GwzXW1DvPeGl8Z105vQD+zppn5NBQd2H5KvaHUaPvOlE7nwH0/COEXCN9Upas2aNUdMb1YS8vb29mVDyOPx+IInbmkSfxQctBo+ZjDHa9Hr9WzcuJEXXnhB1m8LgsALL7zAZZddNuM2J598Mi+88MIkjbjk7iPtc/PmzTQ1NU3arrm5merqagA2btyITqfjhRde4MILLwSgqamJ9vZ2eT+zQbpZExgYGKCoqIiurq55NSb19/dPDAAbN04i4CqVKmkE/HCY2klvt9vnpRMMBoNyo1Z1dTVWq3XJql6iKMqOIZFIZN72dkpLr9zcXJxO54JSEheKmdwp5ko6pffG5XIhCAIOh2NJZRBTo9sdDge5uTNrW48E5eRkOTRzSo4v4XB43qRT+dvMzs5ecKLlQqFM4Z2v1Gmq9/tMq1OLCWUaqxTfrqxMubz9/MfTbxEMRmna30NOlonK0hxEQSQhCIyPhujsmKhal5ZaGOwdJx6fGBILCzOJR2OMDgXl/dUf1HQXF2eRm2dBFCYkGu3uvkkyFYDGdRXsm8FNpX5NOQd2d7L5VAeXXn4WpeXTfy8+n4/m5maCweCsshNmgpSo2t7enlJCLkEi4xIkQj40NMS+ffs4/fTT57VfQRDQaDQryolosSA1a370hOvRapZHASMZiCfCvLhr25ztCy+55BIeffRRTjzxRH7yk5/wu9/9jgMHDlBcXMxXv/pVysvL2bZtGzBhX3jGGWdw11138fGPf5zf/va33HnnnZPsC//whz9w0UUX8fDDD/PRj36U5557jiuuuIKXXnqJ0047DZiwL/zLX/7C448/TlZWFpdffrm8/9kiTcSZaCgzm800NzfPaTlBgkSMNm7cmDQbwqNhJiurZKRGKsNzHA7HNF/rVEIURYaGhvB4PITDYaxWKxUVFQueEESjUbxeL11dXZSWlmK32xdVazYbv+a5QhRFuru7ZblEMm3LZgNBEGTLyGQmfCr18kthb6i0J0zW8ZORaLkQxONxWltbaWtro6CgAIfDsWAZkLJfA5D7NRbzXiFNCERRxOl0HtGytNnTz99e2sfLLzcjCCJlhVm0eAcwGLQ4awoZ84cxm/VotWqC/nGi0SgGg4HMTAtiQkCIC0SjcULBKFnZJg582D3R5H4QVTUF9HcNz4qMN66t4KJLT2HtRuu081Qm70oFkYXK0KYScqlYkypMdVkZGBigtbWVU045ZV77SyQS6HS6ZdswvJSQiPhZG6475oj439+7a86BPg899JAc6LN+/XoefPBBtmzZAsCZZ56J1WqdFNz49NNPc+ONN8qBPnffffe0QJ/HHnuMbdu20dnZSV1dHbfeeiuf/vSn5eelQJ+nnnpqUqDPXLhkmogzQSqMRiNvvfXWnLzApep3IBCQY+4dDkdKl9bj8TgdHR20tbWRkZGRNAKuhNJyTqvVUltbm1KHC8lz2uPxEAwGU6ZDnbokX11dnVKtdSQSobW1lc7OzpTpoKWqf2trK9nZ2bKveqqg9DxXqVQpa0xUBv7MtyI4F0grQgMDAykLrlE2sC6GN/dMnvvZ2dlJP0ZPTw9erxetVrsoHv5Stfhw2vYjwdMywJ+e/YCdb3qprsjlwL4eNBo1tfYiDhwM+iktzSY4GpI14pmZBoxGHYN9Y/J+autLcO3vnUzGrfkM9IwSDsUmHVMi41s+4uQzXzqR+tXl084rHo/LdqypGkcWm5ALgiAXqTIzM1mzZo18T5/L9yNNxA8PmYivvw6tZmU08s8G8USEv78/dyK+UpEm4kyQi/z8fP70pz+xfv36o75eEAQSiYQ841er1USjUbnxrqamhqqqqqQSByUBN5vNcmd8Kgc8ySWipaWFnJyclEg7JAI+Pj4uE/BUNyIqI8hTQfJisZjcsJiXl4fdbk+5F7Pkq97R0ZESkidJYtxuN/F4fFEkCZJG1u12A6SE9EciEbxeL93d3YumUVdKlMrLy6mpqUnqCo1ysqTRaBalaVQpETEYDDgcjkkNrcmAcrK00GpxMBjl5dea2bO3i5deakIFrG4oY+9B/XZBoQWiAsODE038RpMGi1nP0MAhmYqzrgRv0+Qo+0prPoMKMl5clsOpH63jo+evpqJqejFDet88Hg8Wi4Xa2tqUEw8lIc/KypKDgZKJ8fFxmpub8fv9srQLDunK50LIBUFAp9Mt2wb1pYRMxNdde+wR8Q+2p4n48QQpZOTnP/+5rPuZCTMR8KkSlKGhIZqbm0kkEtTW1i64OrQUBHwqlNKOsrIy7Hb7gquFkjWa3++nqqqKqqqqRa14TG2EcjqdCyYrUxsW7XZ70iuQR4MykjxZKY+Sa0YwGJQH1cWUi0yVwUjNtwv5rKTJkiQXSYZcY66QAnSGhoaSpouXXIOi0SgOhyNlIS+Hg9LiMSMjIylWekrbPik4KZmTpZ7eUT74oJNd77URDsXY9XYrKiAnx4xRq6G/xweA0ajFbNYwMhiWt7XXFtPq6pej7dVqFZtPsVNals1Hzm7AVjvzxFHZ6zEbaU0qkApCLqXMdnd3U1FRgc1mk7/TEtVQ9lDNhpCnifjhIRPxNccgEf8wTcSPOzQ2NnLrrbdy3nnnTXtuNgRcCVEU6erqwu12z7vKsRwI+FQEAgFcLhcjIyPz1s/6fD48Hg+jo6NUVVVRXV29pEuOU5fv5/NZTSUf821YTCbGxsZwuVwL0jpLn5Uyzn0pB0PlCk1WVhYOh2POE51k7CPZmKqLn8+qkN/vx+Vy4ff7qampWXKLQWUPS1ZWFna7fVroxdGg/KwWQ3Y1cUyB1pYBOjpG6OwcYXBgjIHuUYYHx4lEJ/TfOq1IwB8hJy+DouIcrLZCsrJM1DaUYnMWTXM/mQop82BsbGxZuB/FYrFJBYT5EHJBEOTG+JycHGpraw87sZ0rIU8kEuj1+jQRnwESET979TXHHBF/Yc/daSJ+vGHz5s1897vflS1oYO4EfCqUVbeSkhIcDsdRl6CXIwGfCineOxaLzdqr2+/34/F4ZM/s6urqZdUFr/ysioqKcDgcR5V2SCS+paUFo9Eo29Qtt8/K5XIRiUSw2+2zkpOMj4/j8XgYHBxcFg4mUzGfanYqqurJhrTyEAqFZu0UpGzuq6yspKamZtl9VhLJy83NxW63H3VglaQ1brd7UXpU5gpRFBkZGZFXiWbb0xIOh/F4PPT29i77z0pa0Tva5Elqmm1ubkaj0czps5otIRcEAb1evyy965caMhFf9f1jj4jvvSdNxI83nHXWWXz2s5/ln/7pnxZMwKciGAzicrkYGhqS9eNTbyorgYArIYoiPT09uN1uDAYDdXV1M960x8bG8Hg8DA0NpawJLplQSjsON1hKpK6lpWXRGtQWAqn51u12o1arcTgcM56v8trna6+4mFDquw8nWVgMnXkyofTOP5IWPxqN0tLSIss1kuHEk0oog56O5BwjTfKXSlozF0hN5lJT8eFcnhKJxDTXGrPZvERnfXTMlpCPjY3R1NTE+Pi47LA1nzHySIRcej5NxGeGTMQbrz72iPi+H6eJ+PGGT37yk5xyyil861vfShoBn4qRkRGampqIxWI4nU6Ki4tlH+bW1lbMZjM2my3pTU6pRCKRoK2tjdbWVvLz83E6nZjN5klV1YqKCqxW64qJZ4dDy8dSs1FlZSUqlUp2iEilY0iqoGwMy8jIwOl0kpOTQyQSoaWlha6uLoqLi7HZbMuaKEzFVMcTafK02M4ryYSy4VKtVmO32ykqKkIQBDm4JicnB4fDkXK5RjIRDodpbW2d9l0bHx/H5XIxOjq6JLaVC8FMuQeSk4tUrDAajdM8zpc7DkfIlX70yazsH46QC4KAwWBYMd+HxYRMxBuuOvaI+P5700T8eMNpp51GWVkZP/vZz+YVRT9bSJVkaSkvHo/LNoQriYBPhXRz7u7uxmQyEQ6HKS8vx2q1Luuq6pEg+ZpLMhxpciZ5Jq8UUjcVUlNpa2srBoOBSCSyJP7WyYbkAT46OoperycWi604UjcVysmTWq0mkUhgNpuXXVrsXBEKhWRvfeX9wmazLesVsyNBuZoRiURQq9WoVCq56LJS7+3RaFTW+xuNRsLhMAUFBXLRJdlQEvLh4WEefvhhbrrpphV9b0oVZCJedwwS8abjh4ivTCaRAjQ2NvLXv/6VL3zhC7hcrpTdNAVBIBqNAhM3nEQigclkwmKxrNgbNUxUxgVBkP9frVZjNptX7KAqQVodkeRKWq0Wo9G4Ykm4BIkkCIKAKIrHhCuBNIGWPiuVSoVWq13RvyuVSoXBYECn08mflTQhXMnQ6XQYjUZUKpUsA4RDJGwlQqVSkZGRgdFolO+HUuz7Sr4unU5HZmYmer2eeHyiYTWRSMjjWLKhUqmIxWI8+uijbNiwgffffx+/35+SYx0rUIniMffveEK6Iq7A0NAQt9xyC//+7//OV77yFW688UYKCgqSsm+ls4bJZMJut5Ofn084HJ7mjbuSqndSZau3t1fWqhqNRrmSLAhCUmwcFxPKgCGpcU7ywZUqybm5uSnxVU8llM2lJpNJbi6Vgo4GBwfloKPl1ER2NCiTSyUvcIPBICcvCoKAw+FYcVVJZcqtZBuplKbk5uauOGmK1F/h8XgmRdJPbRBebs3cR4PStk+q7Ot0Ovr6+vB4PIiiuCJX0qTwpGAwKOvAJclKR0cHOTk52Gy2pEluRFHk+eef57rrrkMQBH784x/zyU9+ckX9bhcTUkX8HOeVx1xF/P9c9x83FfE0EZ8CURTZt28fV111FW+++SbXXXcd3/rWt+Y9KEwl4DabbUa/6tHRUZqamohEIjidzkWNi54PQqEQLS0t9PT0HFZXrBx0zWYztbW1S24VdzSMjo7idrsZGxs7rKxB6ateWlqK3W5f1vr3qemHhwt48fl8uFwuxsfHl4Wt2tGgdE85XHKpdO0ejwe9Xp+SoJlkQ/IXHx4ePmwCrLJZM1WprcnE1Eh6h8NBUVHRtM9BKS+SLDOX86RwaujZTLZ9khxR6i2RCPly/g5KBaK+vr7DhidFo9GkEvIDBw5www038Oabb3LjjTdy+eWXr6jJ2FJAJuL2K449Iu75SZqIH+8QRZFnn32Wq666CoA777yT8847b9Y3T+kGLenqDkfApx6zt7cXl8t1RCeSpYSy2aqoqAibzXZUAqCMb56tNeBiQ+lvPlsCIFWSh4aGluVqhtIxRBRF7Hb7UQmAMkEzkUjMapvFRiKRoL29ndbW1ll7gSsnxBaLBYfDsSx/W5K93WwTN2daDVhuPRnziaSfzYR4KSE5EblcLnQ6HbW1tUfV7CsnxBqNBpvNtuxWaZTN95IO/Gj36qmEfK5BZiMjI2zbto1f/OIXXHLJJdx2220UFRUt9FKOC6SJ+LGBNBE/CqLRKA899BC33347mzZtYtu2bdTX1x/25jkfAj7TPpR2V7O5GaYakUiE1tZWOjs7593Yp/Q8XmhEdbIwNjaG1+td0JL4yMgILpeLUCi0LNw5pCZTt9tNNBrFZrPN+ZyU9pSS7/ZSezkrV1gk3/a5npPSCSIvLw+Hw7Hk8qKplf352NsFAgG8Xi/9/f1JS1RdKBYaST9VInY4e8DFhiQZCofD87JYnGp/arPZZlwdWEwkowg0V0Iei8X45S9/ye23387atWu57777WLdu3bKamCx3yETc9r1jj4h7H0gT8TQmY2BggJtuuonHH3+cSy+9lBtuuGFSBSQej9PV1SU7Udjt9gVHps9meTDVUPr/5ufnY7fbF6xJVeoOl4q4KonLbKuPR4JUfXa5XKjVapxO54I///lAChoJBAKzDho5EqYmUTqdzkW/MUrVR4/HA3BYWcNcoLRsXCofbkEQ5PfWYrHgdDoXLN0aGxvD7XYzMjKyZMm1yY6kV9oDRqPRSfaAiwllHkQyVsAkR5yWlhb0ej02m21JemmUE4tkyCKVhDw3N5eamppJpF4URV588UWuvfZaIpEId999N5/5zGeWtQxuueIQEf9XtOpjiIgLEf7P+2CaiKcxHaIo8uGHH7J161Z27drFD37wAy666CIeeughfvOb3/Dwww+zbt26pBOwmRpmUn2znnoznU0i3lygTGRTq9XU1tYmrTH2SFA2l6ZiKV9qiPR6vVgsFmpraxflRjJVWzuTrnghiMVitLS00NHRsajyoqGhIVwu17wr+0dDMBjE4/EsaiV5anKktNqQzN+0UtqxWJH3qY6klya7Ho8HQRAWrflR+d2fbULyXJBIJGRCbjQa5Ub+VN/jlSuUVqs16dI6aQy5//77cblc3HjjjZSVlfGDH/yAV199lRtuuIHvfe97y05KtZIgE/Gay489It7yb2kinsbhIQgCTz/9NJdddhkjIyOUlJRwyy23cPHFF6dsUJiqSayrqyM3Nzfpx1Eu3c9H7zdXSMTV4/GkZPCWEA6HaWlpobu7e1FCa5Ryg1QS10AggMfjkcNsUp1cqtQxp5K4+nw+3G43fr9/UYjk2NgYLpcLn88n9wgke/VJkgy5XC7i8Th2uz2lyZFTkx8l55Vk36MWO5JeGXaUymAt5aQ6MzOT2tralDrUKPsYUpmuHI/HZeljcXExDocjpWS4q6uLm2++md/97neIosgnPvEJHn30UUpKSlJ2zOMFMhGvvuzYI+JtD6WJeBozIxQK8eijj7J9+3ZKSkpYs2YNf/rTnzj11FO58847qa2tTenxpUa1lpaWSUmWC0UsFqO9vZ329naysrIOG2ucKiiXs5PpRKKU1hQWFmKz2RZVE6yMjU9mCl2qK/tHgySBUFbgk0GUlVaKVVVVWK3WRZVWSMRVaRmYDOLq9/txuVyLNrFQYqZKcrImAEsZSS9prb1eLzqdDrvdnhRph7RaJ+VJLLbMLB6Py31GGRkZMiFfKKS+D5fLhclkoq6uLuUuVvF4nF/96lf86Ec/oqamhrq6Ov7rv/6Ls846i5tvvplNmzal9PjHOmQiXvUvxx4Rb/9pmoinMR0vvfQSX/rSlygtLeWWW26R/U37+vr44Q9/yBNPPME///M/c91116WkWq1EJBLB7XbT29tLVVUVNTU186rgSTd9yU0iWTf9+UKpw7RarfMmeMrKfiqkNXOFkojZbDYqKyvnRfCUtnVFRUXY7fYljaMfHh7G5XItOEZe6f5RVlZGTU3Nki1ZK632BEFYkHOMsmFxKSYWSkhEzOPxoNFocDgc8yauyymSfqq0Q/LHn891+f1+mpubGR8fn7XDS6oQj8flRMvMzEzsdvu8x5WRkRGampqIxWKLkvQpiiKvvvoq11xzDWNjY2zfvp3Pf/7zqNVq+vv7ueeee/jpT3/Keeedx9NPP53Wh88TMhGv/M6xR8Q7fpYm4mlMR1dXF++88w6f+tSnpt3ERFHkvffeY+vWrezdu5cbb7yRSy+9NOXNlWNjYzQ1NTE+Po7D4aC8vHxWN9jFWgadL0ZGRmhubiYSicyp0qYcvJaisn8kKKUJiURiTiEzUycWyynIRWmTCOB0OmdN8JT62+Xmh60krkfyX58JSq/5ZDQsJhNSk6DX652z+0wkEsHj8dDT07PsIumV97SMjAwcDsesiauyMX4hhY1UQFqtbGtrm7NfdygUorm5maGhIWpqahZlwuT1evnBD34gN2Ru3bp1RlleX18fr7zyCl/4whdSej7HMmQiXv7tY4+Idz2SJuJpzA+CIPDf//3fXHvttZjNZrZv384ZZ5yR8uqD1Pio0WiOqNFMJBJ0dnbS2tq6qI1B84FSe3o0r96pg/BSV/aPBFEUZRs+g8FAbW3tYQmD0jM7MzNzWfpfS1ASPJPJhNPpnNV1ZWdn43A4lu0NV/rNtLS0kJGRgdPpPOxnIE0EV0L66lQ/9iNNWuPxuJzomZ+fj8PhWDYTpqmQzrW9vZ3s7Owj9rko9dLLNeNAwtTJuM1mO+J1SdkNqWgwnQl+v5977rmHn/3sZ3zxi1/kjjvukBOJ00gNZCJe9q1jj4h3P5om4mksDOFwmPvuu4+77rqLM844gzvvvBO73Z7SYwqCIOvHp6a8KePNk2WvuFhQ6uJzc3OnXZdE/gwGw4pITpSgDM+YStpmqloupxWLI0FJ2qZ6dU+9LqfTuWwnTFMx2+s62iRkuWGqt7rSovRwkfQrAVLDdEdHxxGva6Wk/ko4kqWsKIp0dXXh8XjIyMhYFNemRCLBr3/9a2699Vbsdjv33XcfJ5544oq4V610yES89Fto1ctjZSoZiAtR/q8nTcTTSBJ6enr4wQ9+wG9/+1u+9a1vcc0116T8hh+NRvF4PHR3d1NeXo7JZKKtrS2pDU1LAeV1lZWVYTabaW9vR6vVHjPXVVJSQmZmJu3t7ajV6gXpeJcaSnlGcXExWVlZ8nXZ7fYlDzGZL5Qe5EVFReTk5NDe3g4kx+N8qaC8rsLCQvLy8mhvbz9iJP1KgDKMTHldgiDgdDqPiesqKCigoKCA9vZ2EonEolyXKIrs2LGDa6+9luHhYbZt25ZS57A0pkMm4iXfPPaIeO/P00Q8jeRBFEXeeecdtm7dSnNzMzfddBNf+cpXUqpBFASBlpYWWltbEQSBsrIy6uvrlzyVbqEQRZHW1la8Xi+CIFBSUkJjY+MxcV0dHR1ytHxhYSGrV69eNjrV+UKS4TQ3NxOPx8nPz2fVqlUpXyZfDPT29nLgwAFisRi5ubmsWbPmmLiu/v5+9u/fTzQaJTs7m9WrVy9pQ3CyMDQ0xN69e4lEImRlZbF69eplK6+ZC0ZGRti7dy+hUAiLxcLq1atT3j/S1tbGjTfeyP/+7//y/e9/n6uvvvqYeC9XGmQiXvTPxx4R7//3NBFPI/kQBIHf/e53XHfddWRnZ3P33Xdz2mmnJbVqIQgCvb29eL1eVCoVNpsNjUYjW3EtVnBOsqF0skgkEthsNgwGg+zJvBhOAKnATF7PZrNZjvVequTRZEAKlRkfH8dqtZKdnY3H42F8fFy28FuJ1yU5hoyMjGC1WsnLy6OlpYWRkZGUhCktFkKhEC6XS46kLywspK2tbdE86lMFZYNpRUUFJSUldHR00NfXt+QOPQvBVMvXiooKurq65KyEmpqapJPj8fFx7r33Xh566CE++9nPsm3bNiorK5N6jDRmD5mIF3792CPiA79IE/E0UodgMMiPf/xj7rnnHs455xxuv/12ampqFrRPqbHR6/UiiuK01LmpwTm1tbXLtolMCclpxO12E4lEpnk7SxVXt9u94jSsyvTDqRZwkhOJy+VCrVYvupfxQjA+Po7H42FoaGhazPpih9okE8owo5kcQ0ZGRnC73QQCAWw2GxUVFStionG0SPpUp7amCsoejJkyF5RhWIuVqpoMSP0IHo9nxqAhZcZASUkJNTU1C17RSCQSPPXUU9xyyy1UVVVx3333cfLJJ6+I3+2xDJmIF3zt2CPig4+liXgaqUdnZyfXX389//Vf/8V3v/tdrr766jkvKUqJm16vV64Ul5aWHpYAxGIxPB4PXV1dy85+bCqkSnEwGKSmpoaKiorDSlASiYTsflBQUIDT6Vy27gdjY2N4PB6Gh4enEdWpUKb7WSyWRWm+mi+URLWsrExetZgJU60BUxHznixMTUk9kne7KIoMDg7idruX/URjrpH0yonG0X6PSwnpu+V2u4/qSgSTf49S5X+pvN6PhsHBQZqbmxFFUV7dPNx3KxgM4vV66evro7S0lJqamjnfE0VR5M033+Taa6+lp6eHO++8k3/8x39cERPM4wEyEc+79Ngj4sO/TBPxNBYH0o1u69attLS0cPPNN/PlL3/5qAOcJNXweDzEYjFsNtucJAzKQI6FBMykAqOjo3g8Hvx+/5zjxpVkMJlJlslAMBjE4/HQ399PRUUFVqt11priqWRwOdmsLSRkSGkNKNkzLhf3CiVRzcrKwul0znpQWIgHeaqxkEh65QpVNBqd830n1ZCSPmOxGA6HY05BTD6fD4/Hg8/nkyfIy6XyPz4+TnNzMz6fb87360AggNfrpb+/f05SnI6ODm666SaeeeYZtm7dyrXXXrsiVlGPJ0hE/OzcS445Iv7CyK/SRDyNxYUgCDz55JNcf/31FBUVsX379hmX/qSKm8fjIRKJyJWp+Q6Ec6mwpBp+vx+Px8PIyMhRK8VHw9jYGM3NzYyNjS25TECZGllSUoLNZps3iQ6FQng8Hvr6+pZ8oqEMT5pNRfVIUE40CgsLcTgcS9YgqCTROp1OrtbPB8oVjbmGzKQCyYqkl1biPB4PoiguKH00GQgEArhcLoaHhxccXKOs/FutViorK5es8q90HlroCub4+Dher5eBgQHKy8upqamZsRAQCAT4yU9+wgMPPMAnPvEJ7rrrLqxW6wKvJI1UIE3Ejw2kifgyw/j4OHfffTf33Xcf559/Pj/60Y+oqqqSg4IyMjIwm81YrdakLQ0fTXOYakia4sHBwaQ2hUmTFpfLhSiKc0p8TAaUfr/JTo30+/24XC78fv+ir2hM9cyWPM6TgaPpsFOJqbKSuVZUjwSlB/lSJKOmKpJeEAR6enrwer1LUvlXEtWysjLsdnvS7h3KJuqFFjzmCkEQ6OjowOv1Jr2nZ2xsDK/Xy+DgIC0tLZx//vmUl5fLZgI333wzxcXF3H///Uk3E0gjuZCJeM5X0aqOISIuRnlh9D/SRDyNpUVbWxvXX389f/zjH7ngggvYt28fXV1d3H///XzhC19ISYVGGTdeWlqKw+FIKQlSahjLy8uxWq0pcS9QTjQWQ2etJF05OTkpS41UNj4mEgkcDkdKnWMkSYPH40m5x/n4+Dhut5vh4eFFaRD0+Xy4XK6UO7ooZTzFxcXY7faUSowWK5I+kUjIkzOz2ZzUydlMmBpelqoEU6UEMB6PU1NTk1IpjjQZbG5uTrnLlc/n46tf/SqvvfYa55xzDt3d3XR3d3PHHXdwySWXLEv9fxqTIRPx7K8ce0Tc90SaiKex9HjppZe44oor2LNnDyaTiTvuuIOvfe1rKa/KKJd5bTYbVVVVST1mKBSipaUlKVKNuUApfyguLsbhcCSV+Eua4tbW1kWVIUjOMR6PZ1bNafPZ/1I1II6MjOByuQiFQtMcc5IBpXOGRPgXQ+qjlBilgiAvVSS9Uq6UlZWVdM2/0k1Io9HMSd++0OOmWoqjlNPZ7fakf9dnQnd3N9/+9rd58cUX0Wq1/Ou//ivXX3/9ikm7Pd4hE/HMLx97RHzsN2kinsbSYceOHdx00028++67bN26lcsuu4z/+Z//4Qc/+AHl5eXcfffdbN68OeVEaHh4mKampqQltU1NJLTZbEsSAhEKhXC73fT391NdXY3Val1QtVWKy/Z6vej1ehwOx5I4gCjt2qZGsM8Xo6OjuFyuJXXKkKqSLpcLSE56ZSQSwev10t3dTWlpKTabbUm8pJNd+V8ukfTKSW9BQQF2uz0p38Xm5mZCoRAOh4OysrJF/41JOQ0ejweNRpOUhFhlsm5FRQU2my3lk8FgMMi//du/cd9993Huuedy991309vby80338xbb73F1q1bueKKK5ZN43QaM0Mm4pZ/OPaI+PiTaSKextJgZGSExsZGvvGNb3DllVdOqmyOjY2xbds2HnjgAT71qU9x2223UV5entLzEUVRlnWYzWbq6urm/MOIRqO0tbUldVBOBnw+H83NzQSDQbkCNZcBVSnVUKlUyyYGXDmwl5aWYrfb55z4uNjSkNlgKsl0Op1zrvwrK8XJmqwkA1MnPHOVxkzth1gu30XlhGe+Uhxl0JDVal0238Wuri5aWlrQ6/XY7fY5a+OV8prc3FycTmfKCxNSr9EPf/hD8vLyuP/++znjjDMmnfcrr7zCTTfdxMaNG7n33ntTej5pLAwSET/LfPExR8T/HvxtmoinsXSIRqNHXKZuaWnh2muv5S9/+QtXXnkl3/ve91LuMBGPx2lpaaG9vZ2SkhIcDsdRyV0sFpOXqVOplV4I5rPUPVWqcTTv9qVCIBDA7XYzNDQkV/6PVs2eKpk4nLPCUkJZ+ZcIzNHI9NQG0+UY/DRfCZBS377UDkGHw9R+kNl8r5Q9KzMFDS0HKO03zWYzdrt9VvePgYEBmpubF01eI4oi77//Ptdeey0ul4sf/ehHfO1rXzvshEYURWKx2LLNmEhjAjIRN1107BHx0H+miXgayxuiKPLKK69w5ZVXMjQ0xG233caFF16Y8gFYqk4NDg7K1amp5C6RSNDe3k5ra6vsDb3cSM9UzNalQBkytFxJz1QoddZ2u33GZrOpTYQ2m23J7ANnC+U5H46oSdpet9ud8gbTZGG2TbFTI+kXS9++ECgdkqqqqmYMz1FaPi6Fi9N8EI/H5f6QI93z/H4/zc3NBAKBea3CzQe9vb3ceuutPP3003z3u9/lxhtvTEtOjhHIRNzwxWOPiEd+lybiaawMJBIJfvnLX3LjjTdis9nYvn07J5xwQspv7iMjIzQ1NRGLxXA6nRQXF8sDaGtrKyaTCbvdTl5e3rImPVOhJHdKWYfP58Ptds8rZGg5QFn5V6vVOJ1OCgoK5OryUtnqJQPKoCSlt/rw8DAul4tIJLLsgmdmA+n31NLSMkmKc7RI+pWAmX5PGo1mUi/AUucazAeHWwWMRCK43W56e3upqqqipqYm5fePcDjMww8/zD333MNZZ53FPffcg9PpTOkx01hcyERc/wW0quU9CZ8L4mKMv0efThPxYw133HEHzz77LO+//z56vZ7R0dGjbiOKIjfffDP/3//3/zE6Osqpp57Kz372s0k3s+HhYS6//HL+/Oc/o1arufDCC3nggQcWXXfq8/m48847+bd/+zcuvPBCbr31VkpKSlJ6TCn4RCJ3iUQCo9E4L73kcoMk6xgcHMRkMhEKhQ5bwVtJkMidFFYTi8XIyMiYl956uUHyVvf5fBgMBjnwKlme2UsFyYmkpaUFo9FIJBKRLftW2qRpKqQVpkAggF6vJxaLLZpjSCoh9cW0tbVhNpsJhUIUFBTgdDpTvtIkCILc3J+Zmcl9993H2Wefvazvx8f6+JwqSET8o9rPH3NE/MX4748bIr5y73RzRDQa5Qtf+ALf+c53Zr3N3XffzYMPPsgjjzzCm2++SUZGBueeey7hcFh+zZe//GX27t3L888/zzPPPMMrr7zCN7/5zVRcwhGRnZ3N9u3b2b17N4FAgPXr13PPPfcQCoVSdkxpDieR8Hg8TkZGBpmZmcv6pj8bqNVqNBoNoigSjUbR6XRYLJYVVQWfCSqVCp1Oh1arJR6Py5OnlVZRnQk6nQ6DwYAgCMRiMbRaLQaDYUUTOgCNRoPJZJKJqiAI6HS6FT25kGA2mzGbzSQSCWKxGGq1esV/XjDxXczMzESv1xONRhFFEbVaTSrrXqIosnv3bi644AK+973v8f3vf59du3ZxzjnnLPv78bE+PqcconDs/TuOcNxUxCU8/vjjXHHFFUedcYuiSFlZGVdddRVXX301MFF1Li4u5vHHH+fiiy9m//79NDY28vbbb7Np0yYAnnvuOS644AI6OzspKytL9eUc9txffPFFrrzySnw+H3fccQef/vSnkzbAHc5TNxwOy7aAVqt1Vs2Byw0zuTwYjUZ6e3txu93o9fqk+3QvBg7XCCglWfb19U2SdawkKJv6ZvrMliLxMVmYKZI+HA7j9Xrl9NHl2FB7NMTjcVpbW2lra6OwsBCn0yl/ZsvNhWiuULoxOZ1O+TNLZXZCf38/t912G0899RTf/va3uemmm1bcPQqOj/E5mZAq4meqPnvMVcRfEv9w3FTEV3Z5L4VoaWmht7eXc845R34sOzubLVu2sHPnTi6++GJ27txJTk6O/CMHOOecc1Cr1bz55pt89rOfXYpTR6VScdZZZ/Huu+/y7//+71x55ZU8+uij3HXXXaxbt27eA9vRUuZMJhNr1qyR/X67urpk8rDcB9OpvsdbtmyZtHxZWlpKUVER7e3tvPfee+Tl5S2K3VgyoLTGm9pgajKZWL16NVVVVbhcLl577TVsNlvKkiWTCWVTcHZ2NieeeOIkqUZpaSnFxcV0dnayd+9eLBYLTqdzRTSqHSmS3mQysWrVKqqrq3G73ezYsYOqqqoV0awphU+53W5MJhObNm2a9HlIn1l3dzdNTU20tLQsmS//XCEVIvr6+qiurmbDhg3yCprJZKKxsRGr1YrX6+X1119PSppwJBLhkUceYfv27Zx22mm899571NfXJ+uSli1W8vicCsTFyDFVRY4TW+pTWFSkifhh0NvbC0BxcfGkx4uLi+Xnent7KSoqmvS8VqslLy9Pfs1SQqvV8u1vf5uLL76YH/3oR5x99tlcfPHF3HTTTdOu60gQRVHWcobDYTnY5XBELScnh82bN8sVyY6ODurq6palc4oyCTA7O3saMVBCo9HIkw+Px8Mbb7yR0tjwhWJsbAy3283IyMg0YjAVWVlZnHDCCQwNDeFyuejo6MDhcFBcXLzsCJAySVSv17N27drD2r+p1WqqqqooLS2lra2Nd955h4KCgkVLmpwrpkbSr1q16rDfLYvFwvr16+WJVmdn55KFLs0GQ0NDNDc3k0gkqK+vP2y1W61WU1FRQWlpKR0dHezZs2dRk2rnikQiQWtrK62trRQVFXHKKaccttptNptZvXo1VqsVj8fDjh07qKysxGq1zukeIggCf/nLX7jhhhvQ6/U89dRTnHfeecvut5oqHAvjczKg1+spKSnhtd6/LPWpJB0lJSXLclxNBVY0Eb/uuuvYvn37EV+zf//+46JCcCTk5ORw77338q1vfYurr76a9evXc8011/Av//IvR13SHhkZkZuprFYrlZWVsxrkVSqVXEVua2tj165dcrPSYsTZHw2JREL2lTabzaxbt27Wsc4Gg4HGxkaqqqpobm5mx44dy6qKrPQCr6ioOCKZU0KlUlFQUEB+fj7d3d00NzfT1ta2bKQ4ytAaQRCora2d9URBp9PhcDioqKjA6/XyxhtvUFZWhs1mWxayjqmR9CeddNKsJwpS1U+aRLW3ty8rb/vx8XGam5vx+Xxy8+xszkuj0WC1WqmoqKCtrY333ntvWeURSDaTLpcLo9HIxo0bZ11ssFgsrFu3Dr/fj8fj4bXXXpvVqoYoiuzbt49rr72WDz74gJtvvpnvfOc7y3IlJD0+px5Go5GWlhai0ehSn0rSodfrj4nepdlgRRPxq666in/6p3864mtsNtu89i05jvT19VFaWio/3tfXx/r16+XX9Pf3T9ouHo8zPDyccseS+aC2tpY//elPPP/882zdupXHHnuMO++8k49//OPTBkafz4fH48Hn81FVVXXEauqRoNFoZOs4j8fD66+/vmj2XTNBEAR6enrwer1otVpWrVo1b+2wxWKRq8jNzc10dHTgdDqXTNcajUbxer10dXVRXFx8xMrckaBSqSgvL6ekpEQmQEstxTmSvGYuMBqNNDY2Ul1djcvlYseOHUuaHDo1LfSEE06Y18qRchIl6azb2tqW1Dd9anV/9erV86pwabVa7HY7lZWVtLa28vbbb1NYWIjdbl/S72NTUxORSASn00lJScm83uOsrCw2bNjA6OioTMgPZ486ODjI7bffzhNPPME///M/8/TTT6c8CGghSI/Pi4Njpdn+eEa6WfMwkJpBrr76aq666ipgojGiqKhoWjPIO++8w8aNGwH429/+xnnnnbfsm0FisRiPPvoot9xyC2vWrOGuu+5i9erVvPnmm9x///1ceuml2O32pNv1+f1+mpqaCAaDOBwOysrKFoUkHK7BNFnHFkWRrq4uPB4PZrOZ2traRdMiK6ups02anAui0Sgej4fu7u5FryIr00El+8hkEmaJ4EsBTYtlm5fqSPqpSaIOh2PWKz4LhaTdb2lpSckETmpWTVXj45Ewm0CzhUCSAD733HMIgsDVV1+NXq/n5z//Odu2bWPLli3ce++9NDY2HpMylPT4nMbxiOOGiLe3tzM8PMz//M//cM899/Dqq68C4HA4ZNJSX1/Ptm3b5CaO7du3c9ddd/GrX/2KmpoafvjDH7J792727dsnz0DPP/98+vr6eOSRR4jFYlx66aVs2rSJJ598cmkudI4YHh7m1ltv5ZFHHqGoqIi+vj4+//nPs23bNgoLC1NyTClcprm5GZ1OR21tbcpIgkR4PB4P0Wg05cEuSjeIoqIiHA5HykiCMoFQ8gJPpQ5fSYqrq6tT6oqjrKammvxLTchutxtBEFKujV/MSHplYFN2dnZKZR2SVMPtdqf8dw2Tg5wqKiqoqalJmaZU+bsuLi7G4XCkrAopiiJ//vOf+eEPf0hfXx9Go5Hs7Gzuv/9+Pv7xjx+TBDw9PqdxPGNFS1Pmgptuuolf/epX8t8bNmwA4MUXX+TMM88EoKmpCZ/PJ7/mmmuuIRAI8M1vfpPR0VFOO+00nnvuuUk34N/85jdcdtllnH322XJgwIMPPrg4F5UEjI6OytUHURQxGo2sXbs2pdVclUpFcXExBQUFtLe38/7775Ofn5/0sAulvn2xmtgkq7yKigrcbrcsxUnmyoIUpOTxeBYsr5kLMjIyWLduHSMjI3JzoN1uT+rERiI87e3tc9ZKzxcqlYqioiIKCgro6emRtfFOpzOpRFIZSV9VVcW6detSru2VpGEVFRWTZB0OhyPpv7Xm5mYikciiOSWZzWbWrFnD2NjYnHTWc4HS5cVsNh+xmTuZcDqdWK1Wuru7UavVxGIx+vv7SSQSKz7LYCakx+c0jmccNxXxNCajq6uLH/3oRzz++ONcdNFF3HzzzdTU1PDXv/6Vq666ikQiwZ133sn555+f8gFVWf1Mhpe13+/H7XYzOjq6pPpf6Vyam5sZHx9fcGKgsnKbSCRwOBxJldfM9Vz6+/vlVFWn07mgycBiV/ePhKm2iAtNsFxOkfSSb3xvb29SVhqUqySpkGrMBaOjo7jdbsbGxqZZPs4Hkod7LBbD6XQuioPQ8PAwd955J7/85S/5p3/6J2677Tby8vL47W9/y80334xareaWW27hS1/60jFZGU8jjeMRaSJ+nOL111/ngQce4JZbbqGhoWHSc7FYjIcffpjbbruNjRs3sm3bNhoaGlJ+4x8bG6OpqWnepDUQCODxeBgYGJiXJViqIBFol8uFSqWaF2mVqtCSljmVcoa5QEmgLRYLtbW1c5I+SNp9t9udFEKfTESjUVpaWujs7JSDguYiMxIEQdZKJ4PQJxPj4+N4PB4GBwflyepcJr/KyUVpaSl2u31ZuM9MtVqdj+4/GAzicrkYGhqSXV5SPbmIxWL84he/4I477mDDhg3cd999rFmzZtLvIBaL8R//8R+8+OKLPPHEE8viN5JGGmksHGkinsZhMTg4yM0338xjjz3GJZdcwg9+8IOUd+lLpLW5uRmNRkNtbe1RjxkKheSkwbKyMmpqapZlF7mStGZmZlJbW3tUYqb0ApeqfMtxaVoZiDRbbbxktxeNRmWJy3IkF0o7yNms2Ci10lqtdlbf4aWCpFcfGxujpqbmqPakgiDQ0dGB1+slOzub2trapDYGJwtTV4+kJNkjfb+UCa0lJSU4HI6UTy5EUeSFF17guuuuIxaLcc899/CpT31qWUyy00gjjcVBmoincUSIosjevXvZunUr77zzDjfccAPf+MY3Uq5tVQ74OTk51NbWTtMKRyIRWlpa6OrqoqioCLvdnlTda6owdcCfSaqwmI1oycRsSOvY2Bgul0v2lZ6tN/1SQ3neh5M+DA8P43K5FlUrvVBIVWRpUjRTQ7NSijTbCfJygNRP4fV6UavVM9o5So5Hbrcbi8VCXV3doqxcNDc3c8MNN/D6669zww038L3vfW9ZrCqkkUYai4s0EU9jVpA6+a+++mo0Gg133XUX55xzTspJhtI6r6KiQvadbWtro729nby8POx2+7JZ8p8LlFZokgtJPB6XJxeLbc2WTPj9/mmVVqkXYLaV5eWKmSr5gUDgsJH0KwVKmZBKpZItFaU+h2AwKEvGlvvkYiqUdo5Go1G2c5R04IlEgtra2kXxXB8dHWXbtm38+7//O//4j//I7bffPqek4zTSSOPYQpqIJxHDw8Ncfvnl/PnPf5Y7tB944IHDLt22trZSU1Mz43O/+93v+MIXvgAw48Dw1FNPcfHFFyfv5GeJaDTKgw8+yB133MFJJ53EHXfcsSjJaOPj4zQ1NckOL5IV21I19CUTUjjI+Pg4oijKEezLccl/LhBFUQ47CofDCIIgrwCsxMmFEhJpdblcxONxEomEPFFcCSsXR4IUMuR2uxFFEUEQ5InicpRFzQWJREJeaVOr1QiCgM1mm3Xa50IQj8d5/PHH+dGPfsSqVau477772LBhw7Ke1BwPY1oaaSw10kK0JOLLX/4ye/fu5fnnn+eZZ57hlVde4Zvf/OZhX19ZWUlPT8+kf7feeisWi4Xzzz9/0mt/+ctfTnrdZz7zmRRfzczQ6/VcffXVNDU1UV1dzamnnso111zDyMhIyo4pCAIjIyOMj49jNBrR6/VEo1FisRgrfR6ZSCTw+XyEQiFMJhM6nY5QKEQkElnqU1swBEFgbGyMcDiMyWRCq9USCAQIh8NLfWoLRiKRIBAIEIvFMBqNaDQaxsbGCAaDS31qC4YgCIRCIRKJBCaTCZVKhc/nO2auLRKJyFatoigyMjJCIBBI2TFFUeSll17i1FNP5YEHHuBnP/sZf//73znhhBOWNQmH42NMSyONpUa6Ip4kSCleb7/9Nps2bQLgueee44ILLphTiteGDRs44YQT+MUvfiE/plKp+MMf/rDsblSiKPLBBx+wdetWdu/ezY033sill16aEr9sjUYj6ztFUZSbHrOyspZtw9iRIAiCrF3VarU4nU7y8/MRRVF22sjJyUl6SuZiQKqoer1eDAaD7Mcthcu0tramJHFxMTA1kr62tpacnJxp/ucOh2NFXpuUDqt0wFE24i51tPx8MbVRuq6uDovFMskZJxV9Jh6PhxtuuIGXX36Z6667jq1bty7LRvKZcDyOaWmksRRIE/Ek4bHHHuOqq66aVBmOx+MYjUaefvppOQ3sSHj33XfZtGkTO3bs4JRTTpEfV6lUlJWVEYlEsNlsfPvb3+bSSy9dNtUUQRD44x//yDXXXIPRaGT79u2ceeaZ8z4/qTHM4/HIS8czNb0pLdTKysqw2+3LXhYwNcXRbrfP6AUejUbxer10dXWt2Gs7XEKlUvef6tTMZEEZSS8IAk6nc8ZI+kgkgtfrpbu7e1nZ+h0JymsTRRGn0zmjVloZLV9aWorNZlsRpHJwcJDm5mZEUaS2tnZGe0yl81Iyrs3v97N9+3YeffRRLrroIu68805KS0sXeimLiuN5TEsjjcXEyhb8LSP09vZSVFQ06TGtVkteXh69vb2z2scvfvELGhoaJt2wAG677TbOOusszGYzf/vb3/iXf/kXxsfH+dd//deknf9CoFar+dznPscFF1zAAw88wD/8wz9w+umnc/vtt+N0Ome9n7l6AOt0Ourq6qioqKC5uZkdO3Zgs9morKxclvZf0rWFQqGjXpter6e+vp7KykpcLhc7duxY1k2Ao6OjuFwuAoHAUT3g9Xo9DQ0NVFVVydcmaZCX47XNJZLeYDDI1+Z2u9mxY4ecrLoc9dVjY2M0NzczNjZ21GszGo00NjZSXV2Nx+OZdG3Lsel2fHyc5uZmfD4fdrv9iNdmMplYtWoVVqtVvrb5ZBHE43F+/etfc+utt1JbW8vLL7/Mpk2bViTBPJ7HtDTSWEykK+JHwXXXXcf27duP+Jr9+/fz3//93/zqV7+iqalp0nNFRUXceuutfOc73zniPkKhEKWlpfzwhz/kqquuOuJrb7rpJn75y1/S0dExu4tYZPT29nLjjTfym9/8hm9+85tcd911R42FVqbizdfSTmoMXEwHhNlASvr0+XxyeMpcr02Z8reUiZpTIbmFDA8PzzvFVAorCoVCy8qVIxQK4Xa76e/vnzfhVE5QllMQkzJhc74ONj6fD7fbjd/vX1aTROVqUnl5OXa7fc7X5vf78Xg8jIyMzOp7LYoir732Gtdccw0+n4+77rqLL37xi8vis56K9JiWRhrLC2kifhQMDAwwNDR0xNfYbDZ+/etfL2gZ74knnuDrX/86XV1dFBYWHvG1zz77LJ/4xCcIh8PLdtlbFEV27drF1q1b2b9/PzfddBNf/epXpw1mysCaqqqqOSf8TYXS8WExPYFngtILPBlJn5Jm3u12YzAYqK2tJTc3N4lnPHsoZQrJkJcofaqXOmEz2ZH0U2Uth5PsLAYSiQStra20tbXJ7jwL1UQr7Rxn8iBfLMwme2CuGBkZwe12EwgEsFqtMxYIWlpauPHGG/m///s/vv/973P11Vcv6zyD9JiWRhrLC2kiniRIjS3vvPMOGzduBOBvf/sb55133qwaW84880wKCgr4/e9/f9Rj3XHHHdx7770MDw8n5dxTCUEQ+P3vf8+1115LZmYmd999Nx/5yEfYs2cPt912G1/84hdZu3Zt0gNrlKE5i63VVeqEk0HkpkLZ9Jifn4/T6Vy0gT8Wi9HW1kZbW1tKGveUTXXKhsHFQKoj6UVRlBs99Xq93KC7GFAe22g0yk2mydx/f38/brcbQPYgX4zJhtSb4HK5UKlU1NXVJfV9lWw43W43Tz31FJWVlVx++eVEo1F+/OMf8/DDD3PhhRdy5513UllZmbTjLjXSY1oaaSwO0kQ8iTj//PPp6+vjkUceIRaLcemll7Jp0yaefPJJALq6ujj77LP5j//4D0488UR5O7fbTW1tLX/5y18477zzJu3zz3/+M319fZx00kkYjUaef/55rr76aq6++mpuvfXWRb2+hSAUCnHvvfdy1113kZOTQ19fHx//+MfZtm0b1dXVKTtuMBjE5XIxNDRETU1NSpfPJZIqOWfY7faUOp5IATk9PT2yh3WqtLpStbGlpQWLxYLT6Tyq3GghUDp1FBUV4XA4UuY9vtiR9JKXdaoI/1QoZU1OpzOl1XilY85iTDaUGvej9SYsFKIo8utf/5rbb79d9vxvaGjg/vvvZ8uWLctCTpVspMe0NNJIPZZf99AKxm9+8xsuu+wyzj77bDn84MEHH5Sfj8ViNDU1TfPjfeyxx6ioqOD//b//N22fOp2Ohx9+mCuvvBJRFHE4HNx333184xvfSPn1JBPj4+OMjIyQSCTQarWo1WrsdnvKpRVms5l169bJZKSzs5Pa2tqkVuskYtXa2orFYmHjxo0pJakSDAYDjY2NckPna6+9lvRm1akkddWqVYsiGdHpdDidTioqKvB4PLz++uspSeNcikh6jUaD1WqlvLyclpYW3nrrrZRMNgKBAM3NzYyOjs6772KuUKvVVFRUUFpaSkdHB7t37yYrKwuHw5HU30Q0GsXtdtPT00NlZSVr165dlIZRu91OYWEh4+Pjsi9+f39/yo+7VEiPaWmkkXqkK+JppBR+v597772X++67jzPOOIPbb7+ddevW8dZbb7F161Y8Hg+33HILX/7yl1NOEqTlebfbjdlspq6ubkGyB8kLXCk1yMvLW7LKmGTTJghCUppVJe1vLBbDbrcvCkk9HPx+Py6Xa1Iz70ImG+Pj48smkj4UCuHxeOjr66OiomLBMi2lPWR5efmSpn0qVzYkTfpCpEySfMjr9ZKXl0dtbe2iyLLa29v54Q9/yF//+le2bt3KNddcg06n4+c//zm33347NTU13HnnnZx11lkpP5c00kjj2EKaiKeRUni9Xr75zW9y6623cuqpp056ThAEfvvb33LddddRUFDAXXfdxamnnppysieFr7S1tVFcXIzD4ZiThnuqz/lSNt9NhTJwxmw2U1tbO+dKpER6/X7/olVSZwNJq+tyuUgkEvN635VynqUmqVMxNjaGy+XC5/PNa3KQSCRob2+ntbU1ac2KycJCPciVzbwajYa6ujry8vJSeMYTCAQC3HfffTz44IN86lOf4q677pompRsfH+fBBx+ku7ubhx56KOXnlEYaaRxbSBPxNJYcgUCAe+65hx//+Mece+653H777SnVjUsIhUK4XC4GBwexWq2zshWUpAyz8TlfSignG7OVPShdXpazP7Sy8XC27jHxeFxuMl3uyZdKucxsXEiU8iGdTkdtbe2ikNT5IBAI4PF4GBgYmPV3zO/3y/IHh8NBWVlZyie9UpHglltuoaysjPvuu29RigRppJHG8Yc0EU9j2aCjo4Prr7+eP/zhD1x22WVcddVVixLvPjo6SlNTE9Fo9LAe3Uov8KWWMswF4XAYt9tNX18fVVVV1NTUTLOQVPoup8LlJVVQusfk5eXhdDqnkevDRdIvd0y1c3Q4HDNKjaTv7mJq3JOB2fyelF7nh/vuJhuiKPL2229zzTXX0NXVxR133MFXvvKVFfFbTyONNFYm0kQ8jWUFURTZuXMnW7dupaOjg1tuuYWLL754UfTjkke30t5tPhW85Qifz0dzczPBYBC73U5ZWRmiKMpENjc3F6fTuSgTn2RDqYmWPM31ev2sIumXOwRBoKurC6/Xi9lsxul0kpOTM8kNaLarOcsRM60wKb+XBQUFOJ3OlDnmKNHV1cVNN93E//zP//C9732P66+/fskyCNJII43jB2kivgIxPDzM5Zdfzp///Ge5k/2BBx44Iok688wzefnllyc99q1vfYtHHnlE/ru9vZ3vfOc7vPjii1gsFi655BK2bdu2JNHcgiDw61//mhtuuIHS0lK2b9++KBZhUuBJS0sLRqORcDgsk7uVUCU+EiS/5aamJgRBQBAEmdwtVynDXCClfA4NDaHX60kkEssqzXIhkKQ1ra2tGAwGwuEwpaWlOByOFR+Aoqz+x+NxAHn1YjECq4LBIA888AD3338/559/Ptu3b8dms6X8uAvF8TAOpJHG8YCVPTodp/jyl7/M3r17ef7553nmmWd45ZVX+OY3v3nU7b7xjW/Q09Mj/7v77rvl5xKJBB//+MeJRqO8/vrr/OpXv+Lxxx/npptuSuWlHBZqtZqvfvWr7N+/n3PPPZdPfvKTfO1rX0t5BLJEUFUqFdIcVa/XH1ODkFqtRhRFRFFEo9GsyAr/TFCr1XJVWPrs1Gr1iquCzwS1Wo1Op0OtViMIAsCk7+hKhkqlwmg0otfr5e+l9DtM5fUJgsDTTz/Nxo0befbZZ3n22Wf53e9+tyJIOBwf40AaaRwPSFfEVxiktLO3336bTZs2AfDcc89xwQUXHDHt7Mwzz2T9+vX85Cc/mfH5v/71r3ziE5+gu7ub4uJiAB555BGuvfZaBgYGltxZorW1leuuu45nnnmG733ve1xxxRVJbbZThqwofY99Ph9NTU2Ew+EVpcGdipGREVwuF6FQSJYAJBKJSVHuK7W6qkxRlVxwDAbDJI210+lcFP/zZGNqaqQUNiQ11g4MDFBdXU11dfWKnFCFw2FcLhf9/f1YrVasViuA/FvMzMxMeniUKIrs2rWLa6+9Fq/Xy+23386ll166oqQ9x+s4kEYaxyLSFfEVhp07d5KTkyPffAHOOecc1Go1b7755hG3/c1vfkNBQQGrV6/m+uuvnxTCsHPnTtasWSPffAHOPfdc/H4/e/fuTf6FzBFWq5WnnnqK/7+9+45r+t7+B/4KiIAooIBsWQlYFAQZAaLXRQtae7V2efu1jmqHtrUVB25cKKC4ireorbO3dbS1t0Nte2ldgCCCIiBksJWEvXfy+f3RH3mAijKSEOQ8Hw8et/fjZ5KQnM/7c97nXLp0Cb/99hvGjx+Ps2fPykcHe6qtpXpsbCzEYjFcXV07NOQxMDCAl5cXHB0dIRKJkJCQgIqKCkVckkrU1tYiJSUFKSkpMDY2Bo/Hk9fg1tLSgpOTE3x9fdHa2orY2FiIRCJIpdK+Pu0ukclkyM3NxY0bN1BbWwtvb2+MHTsWOjo6YLFYMDU1hZ+fH6ysrJCeno7k5GRUV1f39Wl3WVVVFZKSknD//n3Y2NjAx8dHfjOhp6cHV1dXeHp6orKyErGxscjLy+v134OqSKVSiEQixMbGAgB4PB4cHBygqakpb3g0YcIEGBoaIikpCXfv3kVtbW2vjysWi/Hhhx8iICAAEyZMQFZWFpYsWdKvgnBg4H4PEPI8en6etw8QYrEYI0eO7LBs0KBBGDFiBMRicafbvf3227CxsYGFhQVSU1MRHByMrKws/PDDD/L9tv/wBSD//0/bryqxWCxMnDgRCQkJOHnyJNavX4/Dhw8jPDwcnp6e3RrtbMtLFQqFAAAnJ6dOJ/OxWCyYmZnBxMQEeXl58qBWVZPIeqJ9xQlLS0uMGTOm09Gstu6jlZWV4PP5ePDggVqP/j/a7dPV1bXTNuoaGhoYNWoUzM3NkZubi1u3bimli6UiPVrpxt3dvdPUKAMDA3h4eMjrq+fn53da+UcdPDop2tPTs9PRbi0tLbDZbFhbWyM7OxsJCQk9rurT0NCAqKgoREZGYtq0aUhNTQWbzVbEJfWJgfw9QMjzhgJxNbF27VqEh4c/dZ379+/3eP/tcwddXFxgbm6OadOmQSQSwcHBocf77Quampp499138frrr2Pnzp2YPn06Xn31VWzdurXTR7LttQUtzc3NXarT3P64bWkdQqEQcXFxKiur1lXtOxmamJjA19e3y50HDQ0N4eXlBYlEIg/q1K0mdU9b0mtpaYHD4cDKygoikQhxcXGwtraGnZ2d2qR0PFr73c/Pr0s3CywWC8bGxjAyMpIHuXl5eeBwOJ3eoPSF9mVCORxOl28WtLW18cILL8DGxkY+im5tbQ1bW9tnpkrIZDL897//xYYNG2BgYIAff/wRU6ZMUcubFIC+BwgZiNQjeiBYuXIlFi5c+NR17O3tYWZmhuLi4g7LW1tbUV5eDjMzsy4fj8vlAgCEQiEcHBxgZmaGxMTEDutIJBIA6NZ+VUlfXx9hYWF4//33sWbNGri7uyMoKAjLly9/YgBTVVUFoVCI6urqXtUC19bWxpgxY2BtbY2srCzExsbCwcEBlpaWffYFL5VKUVhYKM+rfdpI49O0H/0vKCjA3bt31aJLo6Ja0uvq6mLs2LEYNWoUBAIBYmNj5d1D+6qyyqPdUHvz2llYWMDU1BQFBQVITU2Fvr4+OBwO9PX1lXDmXdOTxllPMmTIELi4uMhrkMfGxsrz4x/dH8MwuHv3LtauXYvMzExs27YNS5YsUZsb5s7Q9wAhAw9N1uxn2ibpJCUlwcPDAwDw+++/IzAw8KmTdB4VGxuLCRMm4O7du3B1dZVP0ikqKpI/8jxy5AhWr16N4uJitZ/ExzAMrl69ihUrVqC8vBw7duzAq6++Cg0NDdy9exd//vknXF1dFV4LvK9ab7c/flFREUQiEQYNGiQfBVXUDUH7Gt190RJemS3pGYaRPx2RSqVgs9kwNTVV6c1UaWkp+Hw+ZDIZHB0dn9i0p6faPx0ZOXIkHBwcuvx0RBFaW1uRk5OD/Px8pTSKKi8vh1AoRFlZGdLS0vDJJ59AR0cHEokE27Ztw5kzZ7B06VJs3ry5XzRx6g76HiDk+UGBeD80ffp0SCQSREdHo6WlBYsWLYKnpye++eYbAH83ppg2bRpOnToFb29viEQifPPNN5gxYwaMjIyQmpqKFStWwMrKSl5TViqVws3NDRYWFoiIiIBYLMY777yDJUuWYOfOnX15ud3S2tqKY8eOYdOmTbC2tsawYcMQGxuLt956CwcOHFBaLXCZTIb8/Hzk5OTIm+MocwS5fRDZ2tqq9Lzg9iPSbSPIypzgpsqW9AzDyEektbW1VVK/uqamBgKBAFVVVbC3t1fqiPyj8wWUfTPV9vsUCoUYMmQInJyclDYizzAM4uLi8N5776GpqQne3t7466+/MGnSJOzZswdOTk5KOa46oO8BQp4PFIj3Q+Xl5fj44487NHI4ePCgvJFDbm4u7Ozs8Ndff2Hy5MkoKCjAvHnzkJaWhrq6OlhbW+PVV1/Fxo0bO3xB5uXlYenSpbhy5Qr09PSwYMEChIWFqf3j3EeVl5djy5Yt+OKLLyCTyTBjxgwcOHBAJY9Wm5ubIRQKUVRUBCsrK9jb2ys8B7mqqgoCgQC1tbWws7ODlZWVyqo+lJWVgc/no7W1FRwOR+EjyH3Zkl4qlcqb5owYMUIpN1PtR/iV9f7oTNvNVEVFhdK6cZaXl3d4f6iim2lbHvinn36KqqoqjBo1Cp9//jmmT5+utrngikDfA4Q8HygQJ8+Ntg55bV04d+7cCX19faxevRp//vknVq9ejY8++kglHTJramrA5/NRU1Mjzx/v7YhnfX09hEIhSkpKFJ5i0x3tRzwVFSwzDKM2LembmpqQnZ2Nhw8fyruq9vaRfPsg38jICBwOR6VpIu21rynv4ODQ5cnKT1NfXy/vampnZ9fjHP7uYBgG6enpCA4Oxr1797BlyxYsWLAAX375JUJDQzFmzBiEhYXB19dXqedBCCG9QYE4eW4sXLgQGRkZCAsLw9SpU+XLGYZBTEwMVqxYgbq6OoSGhuKVV15R+uS8tuCSz+fLm7EYGxt3ez/Nzc3Izs7GgwcPlJJr21NSqVRe5cPY2BhsNrtHwWX7EX51aklfV1cHgUCA8vLyHo8gty/Xp6q0l66eV/vynWw2u0c3Pu2bKZmbm8PBwUElecQlJSXYvn07/vOf/+C9997Dli1bOszNqKqqQmRkJPbt24fExES88MILSj8nQgjpCQrEyXOjqqoK+vr6nQYTra2tOHLkCEJCQuDs7Izw8HC4uLio5NF5QUEBsrOzu1WBpH2e9IgRI8Bms+WPndVJ+xzk7pQEbGhogFAoRHFxcZ+O8D/LoyPIXa2O05am0dLSora1vWUyGR48eIDs7Gzo6uqCw+F06UahbTuRSIRhw4bB0dERw4YNU/r5Njc3Izo6GuHh4fD19UVkZORTg+zKysrnbqImIeT5QoE4GXAqKiqwbds2REdH41//+hc2b978WHMMZWg/sv20SXM9DY76Wvt0nKeNbD+pJb06jPA/DcMwkEgkEAqF0NDQAIfDkXe5fFT7kXRVpWn0VmtrK/Lz85GbmyufbNzZTV9ZWRmysrKUUumlMwzD4NKlS1i/fj00NTURGRn53OeAE0IGBgrEyYCVmZmJVatW4caNGwgODsaHH36oksfqtbW14PP5qKqqgoODgzxgfTRdgMPhqCTIUaT2ud4Mw3S4hvZPBvT19VU2iqpIMpkMhYWFyM7OxrBhwzrU6G5/o2VhYQEHBweVlnpUhKelQdXV1YHP56OyslLplV7aMAyD+/fvY926dbh9+zY2b96Mjz76SC2fnBBCSE9QIE46VV5ejk8++aTDrPwDBw50OlJWXl6OkJAQ/P777/LOjrNnz8b27ds7NCh5UmD57bffYu7cuUq7ls4wDIPLly9j5cqVaGlpQWhoKGbMmKGSHOW2/HGGYWBhYYHi4mI0NjYqbAJdX2qfuqCnpwcjIyM8ePAAgwYNgqOjo1p1fOyJR2t06+jooLCwEIaGhk8dTe4v2k8MtrS0hEwmQ1FRkUpvMMrKyhAaGoqTJ09i0aJF2LZtW4/mWKjaQPjcJIQoDgXipFPTp09HUVERDh8+LK9T6+XlJa9T+6i0tDSEhIRg4cKFcHZ2Rl5eHj788EO4urriu+++k6/HYrFw/PhxBAYGypcZGhr2aXpCS0sLvvjiC2zduhVubm4ICwuDs7Oz0kejq6ur5eXEdHV14eLi0qOuiuqqpKQEGRkZaG5uhoGBAVxcXLrUtr0/YBgGBQUFEAqFkEqlGDlyJJydnZ+b0VqZTAaBQICCggIAgLW1NdhsttLTbFpaWnD06FHs3LkTnp6e2Lt3L8aMGdNvngwNpM9NQkjvUSBOnqitc9utW7fg6ekJALh8+TJmzJjRrc5t58+fx7x581BXVyevQ8tisXDhwgXMnj1bWaffY2VlZdiyZQu+/PJLvPPOO9i4caNSRuEaGhqQnZ0NsVgMKysrWFlZobCwUP677Y9pDe092pLexMQEOTk5KC4uho2NDWxtbft1XeLKykrw+Xw0NDTIJ9EKhULU1NTIGx711yca7dOLgL9TpFgslrx5lIODA8zNzRUeGDMMg//9739Yu3YtpFIp9uzZg1deeaXfBODAwP3cJIT0XP/8piBKFx8fD0NDQ/mXCQD4+/tDQ0MDCQkJXd5PWyWTR4Oujz76CMbGxvD29saxY8egLveDRkZGOHjwIJKSkpCfn49x48YhKioKzc3NCtl/S0sL+Hw+4uLiIJPJ4OfnBycnJ+jp6cHJyQk+Pj5oampCbGwscnNzIZPJFHJcVWlqakJGRgYSEhKgq6sLHo8HOzs7DB06FC4uLvD09ERFRQViY2NRWFioNq97VzU0NCA1NRXJyckwMjICj8eDpaUlDAwMMH78eIwdOxYPHz5EXFwcxGJxv7u+2tpapKSkID09HVZWVvDx8YGJiQmMjY3h4+MDNpsNkUiEmzdvorS0VGHXl5WVhddffx0LFy7E4sWLkZaWhn/+85/9KggHBu7nJiGk5/rvkBRRKrFY/FglkUGDBmHEiBEQi8Vd2kdpaSm2b9+O999/v8Pybdu2YerUqRgyZAh+//13LFu2DLW1tVi+fLnCzr83WCwWxowZg0uXLuHXX3/FypUrcezYMezcuRMBAQE9Cg6kUikKCgqQk5MDfX19eHl5PbHtt56eHtzc3OQdLAsLC1VWmaI3Hm1J7+Pj88QSjQYGBvD09ERxcbE87aGtAok6a1/pxczMDH5+fo+lBLBYLBgbG8PIyAgPHz5EVlYW8vLy1KZ2+NM0NzdDJBLh4cOHsLKygouLy2MpNiwWC+bm5jA1NUVBQQHS0tIwdOhQcDicHqdTVVRUYNeuXfjqq68wf/58nDx5UiUVjJRlIH9uEkJ6hgLxAWbt2rUIDw9/6jr379/v9XGqq6vx8ssvw9nZGVu2bOnwb5s2bZL/t7u7O+rq6rB79261+0JhsViYOXMmXnrpJURFRWHJkiXw8vLCzp07MXr06C4Fxm0NXUQiEbS0tODq6tqliYptweyDBw+QkZGBoUOHwsnJSe2qjDzakn78+PHPrNvMYrFgamoKExMTFBQU4N69ezAwMICjo6PaTXJ8tEqKt7f3M18DFosFS0tLmJmZIS8vDykpKRgxYgQ4HE6X6ser0qM17ju7gWpPQ0MDNjY2sLCwQG5uLpKSkmBiYtKthk4tLS04fvw4duzYAVdXV8THx2PcuHFqe7NJn5uEEGWhHPEBpqSkBGVlZU9dx97eHl9//TVWrlyJiooK+fLW1lbo6Ojg/PnzePXVVzvdvqamBgEBARgyZAh++eWXZ04m+vXXXzFz5kw0NjaqpHxgT5WUlGDz5s04ceIEFi1ahPXr13fo5tdeW56tUChEa2trrxq6tK/QYWZmBjab3ee/J0W2pG9paUF2djYKCwtV2p3xaRiGQUlJCQQCAVgs1lPrhj9LU1MTsrOz8fDhQ1hYWMDe3l5tro/P50NTU7NXlWwaGxuRnZ2NoqKip9bHbzvulStXEBwcjMbGRkRERGD27Nlqn09Pn5uEEGWhQJw8Uduko6SkJHh4eAAAfv/9dwQGBj510lF1dTUCAgKgra2NixcvdmmELDQ0FJGRkSgvL1foNSgDwzC4d+8egoKCkJKSgg0bNmDx4sUdHuNLJBIUFBQovGV7fX09BAIBysrK+rRRjLJa0re/vp62lFeE6upq8Pl81NbWyjtpKuL62jf66cvrq6mpQVZWFmpra8FmsxVWKrO2thZCoRDl5eWwsbGBqalphyccAoEAGzduxLVr17Bu3Tp89tlnz13FD/rcJIR0FwXipFPTp0+HRCJBdHS0vAyXp6envAzXgwcPMG3aNJw6dQre3t6orq7GSy+9hPr6ely4cKHDI24TExNoamri559/hkQigY+PD3R0dPDHH39g1apVWLVqFbZu3dpXl9ptMpkMP/30E1avXo3BgwcjLCwMJiYm2LBhA8rKynDq1CnY2NgopZRdRUUFsrKy0NLSAg6HA1NTU5U80ldVS/qKigrw+Xw0NTWBzWYrpULHkzQ2NkIoFEIikSj9+gQCARoaGuSBviqur6mpCSKRCEVFRbC2toadnZ3Sru+nn37Chg0bsHz5cixcuBD79u3DkSNH8PbbbyM0NBRmZmYKP666oM9NQkh3UCBOOlVeXo6PP/64Q2OKgwcPyke5cnNzYWdnh7/++guTJ0/GlStXMGXKlCfuKycnB7a2trh8+TLWrVsHoVAIhmHAZrOxdOlSvPfee2r/ePpJmpqasGPHDoSHh6O1tRX+/v7Yt28f7OzslHrcttxzgUCAIUOGwNHRUWn1x/uiJT3DMBCLxRAKhdDS0oKjo2OnaUC91draitzcXOTl5cHExAQcDkfptc4ZhoFEIoFQKISGhkavUl+eRSqVIj8/Hzk5OTAyMgKHw+lyLndPyWQynD59Ghs2bEBVVRWcnJxw8uRJeHp6qm0euKLQ5yYhpDsoECekh2pqahAZGYnIyEhMnDgRurq6uHjxIpYsWYJ169Y9c9KiIrQPIhUdJKtDS/r2QaSiJzwyDCPv/qmrqwsnJyeVN1N6dDIoh8N5YjWdnmAYBsXFxeDz+Uq/mXn0uNevX8eaNWtQXV2NF198Eb/++itGjRqFiIgI/OMf/1D6ORBCSH9BgTghPXDixAkEBweDw+EgIiICfn5+YBgGKSkpCAoKQnp6OjZt2oSFCxeqpHFNW9pISUmJvGFOT/OP249Gq0tL+vYTHp81IbAr2spDSqXSXk00VZT2E3JNTU3h4ODQq1H56upqZGVlob6+Xp4Hrorry87OxsaNGxETE4Pg4GCsXLkSurq6qKurw4EDBxAeHo6JEyciOjoaVlZWSj8fQghRdxSIE9IDX3/9NfT19Z/Y+U8mk+GHH37AmjVrMHToUISHh+Mf//iHSgKhto6PjY2N4HA43a7UUl5eDoFAoPL87K6qra0Fn89HVVWVfMJqdx7Nt9/e3t5e7TpgNjQ0QCQSQSKR9CiPu32euyo7mFZXV2P37t344osv8MYbbyA0NPSJgXZpaSn27NmDdevWqfzpAyGEqCMKxAlRksbGRuzduxdhYWGYPHkyQkND4eDgoPTjto1oCwQCaGtrw8nJ6ZlpMm0t6SsqKvq0IktXdXdEu/1ERSsrK9jZ2fVqRF3ZqqurIRAIUFNTAzs7u2feMEilUuTl5SE3NxfGxsYqyXNvO+5//vMfbNmyBQ4ODti7dy+8vb3V6uaNEELUGQXihChZUVER1q9fj7Nnz+KDDz5AcHCwwvKAn0YqlcrzxzsLztoHqIpI+VAlhmHw8OFDCIXCTnO8H52oyGaz1a6pTmcYhkFZWRkEAgGkUinYbPZjFXJ6ctOlqHOLi4tDcHAwSktLERYWhrlz56rV0wVCCOkPKBAnRAUYhkFSUhKCgoLA5/MREhKCd955RyWjzk9KVwDQoSV9fwpQH9Xa2iofDW6reqKjo9Oh6oqTk5Pat5nvTPsbDh0dHTg6OmL48OG9TkPqqby8PGzatAmXL1/GqlWrsHr16n773iGEkL5GwxdE5Q4dOgRbW1vo6OiAy+UiMTHxqeufP38eo0ePho6ODlxcXHDx4sUO/84wDDZv3gxzc3Po6urC398fAoFAmZfQbSwWC15eXrh69SoOHDiAiIgITJw4EdevX4ey74V1dHQwduxYeHp6ory8HNeuXcP169dRVlaG8ePHY9y4cf06kBo0aBAcHBzA4/GgoaGB2NhYXLt2DQKBAGw2G1wut98G4cDf7x1LS0tMmDABJiYmSE5OxrVr13D79m0YGRmBx+OpJJe/trYWW7duhaenJ3R0dJCRkYEtW7ao5XtnIH7GEEL6JwrEiUqdPXsWQUFBCAkJQXJyMsaNG4eAgAAUFxc/cf24uDj861//wuLFi5GSkoLZs2dj9uzZSEtLk68TERGBgwcPIjo6GgkJCdDT00NAQAAaGxtVdVldpqGhgblz5yIjIwNz5szB66+/jnfeeQc5OTlKPS7DMGhubkZrays0NTXBYrEglUqVfhOgSlKpFFKpFCwWCxoaGpBKpWhtbX1urpFhGMhkMgCApqZmh9dUmdrywN3d3XH16lX88ccfOH36NEaNGqXU4/bUQP+MIYT0L5SaQlSKy+XCy8sLUVFRAP6uMGJtbY1PPvkEa9eufWz9t956C3V1dfjll1/ky3x8fODm5obo6GgwDAMLCwusXLkSq1atAvB3C3ZTU1OcOHECc+fOVc2F9VBBQQHWr1+P77//Hh999BFWrVql8Frd7Vu2t7WkZxhG5U1elKWlpQXZ2dkoLCyEubk5HBwcMHjwYJSWloLP54PFYim1YY6ytW/e1D4Xvq6uDgKBAOXl5bC1tYWNjY1CU50YhkFiYiLWrFmDoqIi7Ny5E/PmzVP7PHD6jCGE9Cfq/YlKnivNzc24ffs2/P395cs0NDTg7++P+Pj4J24THx/fYX0ACAgIkK+fk5MDsVjcYR0DAwNwudxO96lOrK2tcerUKfz555+4ceMG3N3dcfr0aUil0l7vu6GhAffu3cOtW7dgYGAAHo8nL/enqakJOzs78Hg8DBo0CPHx8RAIBEofXVUkmUyGvLw83LhxA3V1deByuXB2doa2tjZYLBZMTEzg6+sLa2trpKenIzk5GTU1NX192t1SUVGBhIQEiEQiODk5wcvLSz4hVU9PD25ubnB3d0dpaSliY2Px4MEDhTwBKCwsxOLFizFz5kwEBATg/v37mD9/vtoH4fQZQwjpb5RfYJaQ/6+0tBRSqRSmpqYdlpuamiIzM/OJ24jF4ieuLxaL5f/etqyzddQdi8WCj48PYmNj8c0332DdunU4evQowsPD4ePj0+1R3Edb0vN4vE67bWpra2PMmDEYNWoUsrKycOPGDbDZbFhaWqrt6HFbx0iBQABNTU24urp22nBIQ0MD1tbWMDMzQ25uLhITE2FmZgYHBweFdSBVhoaGBvD5fJSVlT2znOTw4cPh5eUFiUQCoVCIvLy8Hj8BqKurw/79+3HgwAHMnDkT6enp8sm9/QF9xhBC+hsKxAlRExoaGpg3bx5mz56NiIgIzJo1CzNmzMC2bdu6lI/7aEt6b2/vLqe5DBs2DB4eHigpKQGfz0dBQYFadNR8VFVVFfh8Purr6+Hg4NDlGwYtLS1wOBxYWVlBIBAgLi4ONjY2sLGxUUnDm65qbW1FTk4O8vPzYWZmBh6PB21t7Wdux2KxYGZmhpEjR6KwsBDp6ekYNmwYOBxOl0plymQynD9/Hps3b4apqSkuXbqECRMmqO3NGCGEPC/U+zkjea4YGxtDU1MTEomkw3KJRAIzM7MnbmNmZvbU9dv+tzv7VHdDhw7Ftm3bkJ6eDk1NTXh4eGD79u2oq6t74vpttaTj4uLw8OFDuLq6wsPDo9u55iwWCyNHjoSfnx/Mzc2RmpqKO3fudHpcVWpLs0lKSsLw4cPB4/FgZWXV7UBRV1cXrq6uGD9+PMrKyhSaztEbDMOgsLAQsbGxqKqqgpeXF8aMGdOlILw9DQ0NjBo1CjweD/r6+rh16xbS0tLQ0NDQ6XGTkpLw4osvYv369di6dSsSEhIwceLEfhmE02cMIaS/oUCcqMzgwYPh4eGBmJgY+TKZTIaYmBj4+vo+cRtfX98O6wPAH3/8IV/fzs4OZmZmHdaprq5GQkJCp/vsL2xsbPDNN9/gt99+w//+9z+4u7vj22+/lVfOAP7+XcTHx4PP58Pe3h4+Pj69HsXW0NCAra2tfDT25s2byMrKQktLS28vqdtaWlrkI9gsFgs8Hg9sNrvXo9iGhobw8vLC6NGjkZOTg5s3b6KsrExBZ9095eXluHnzJnJzczF69Gh4eHj0uuFT2xMAPz8/AH9XBrl48SJKSkrk6xQVFeGDDz5AYGAgJk2ahKysLLz77rtq3VH1WegzhhDS31DVFKJSZ8+exYIFC3D48GF4e3tj//79OHfuHDIzM2Fqaor58+fD0tISu3btAvB3ADFp0iSEhYXh5ZdfxpkzZ7Bz504kJydj7NixAIDw8HCEhYXh5MmTsLOzw6ZNm5CamoqMjAy1zgPuDqlUitOnT2PDhg2wsrLCu+++i1OnTiElJQX/+c9/4O/vr7QAqra2FllZWaipqZGngyh70p5MJsODBw8gEokwdOhQODo6Kq0bqUwmk1eQMTQ0BIfDwdChQ5VyrPbaqp5UVFTI88CV9Xutrq7Ghx9+iD///BMffPABBg8ejIMHDyIgIADh4eFwcHBQynH7An3GEEL6EwrEicpFRUVh9+7dEIvFcHNzw8GDB8HlcgEAkydPhq2tLU6cOCFf//z589i4cSNyc3PB4XAQERGBGTNmyP+dYRiEhITgyJEjqKysxIQJE/Dvf/8bjo6Oqr40pRMKhXjjjTdw584d2NjY4PTp0/Dw8FD6cRmG6VAO0NHREcbGxko7jkAgAMMw4HA4MDExUUmaRHNzM7Kzs/HgwQNYWFjIyyAq2qPlFtlstlKO86jW1lasW7cOR44cgYaGBtauXYuQkBC1r4TSE/QZQwjpLygQJ6QfqK2tRWRkJPbs2YOXXnoJy5YtQ3R0NC5duoQVK1bg008/VUkdcJlMhsLCQohEIhgYGMDR0VFho8c1NTXg8/moqamR1zvviyCxfX3uZ1Us6Y72o/zDhg2Do6OjwmvGPwnDMLhz5w6Cg4MhEAiwdetWaGhoYMuWLRg1ahT27NmDCRMmKP08CCGEPI4CcULUXFpaGl588UXY2dlh9+7d4PF4AP4OsK5evYqgoCCUlZVh27ZteO2111QSvLa0tEAkEuHBgwewtLSEvb19j0d1GxsbIRKJIBaLYW1tDTs7O2hpaSn4jLuvvLwcfD4fLS0tYLPZMDMz6/HIfNvTBIZh5E8TVDHKLxaLsW3bNpw7dw7Lli3Dxo0bYWhoCODvG459+/YhPDwcc+fOxdGjR5V+PoQQQjqiQJwQNdfc3IzLly/jlVdeeWLwJpVKcfz4cWzcuBEODg4IDw+Hu7u7SgK9uro68Pl8VFZWwt7eHtbW1l2+EZBKpcjNzUVeXh6MjY3B4XCgq6ur5DPunraulkKhENra2nB0dMTw4cO7vH1vfj+90djYiEOHDmH37t2YOnUqIiIiOk2jkEgkyMzMxKRJk5R+XoQQQjqiQJyQ50RVVRVCQ0MRFRWF1157DVu3blVZebWysjJkZWV1acSXYRg8fPgQIpEIOjo6cHR0lI/SqiupVIq8vDzk5ubCyMgIHA7nqalA7fPNe/vEoDtkMhl+/vlnbNiwAXp6eti3bx+mTZvWL0sREkLIQECBOCHPGaFQiNWrVyMmJgYrV67Exx9/rJKR5q7kQJeVlYHP50MqlYLNZsPU1LRfBYlNTU0QiUQoKiqClZUV7O3tO6TRKDOH/mkYhkFaWhrWrFmDjIwMbN26Fe+//75aNSsihBDyuOdvujwh7Rw6dAi2trbQ0dEBl8tFYmJip+sePXoUEydOxPDhwzF8+HD4+/s/tv7ChQvBYrE6/AQGBir7MrqFzWbjhx9+wI8//ojvv/8eHh4euHDhQof648rQ1k6ex+Nh2LBhSExMREZGBpqbm1FbW4uUlBSkpqbC3Nwcfn5+vcq57iva2tpwdnYGl8tFXV0dbty4gby8PEilUpSUlCA+Ph6FhYVwcXHB+PHjVRKEFxcXY/ny5Zg8eTLc3d3B5/OxbNkytQvCB+LfIiGEPAuNiJPn1tmzZzF//nxER0eDy+Vi//79OH/+PLKysjBy5MjH1v+///s/8Hg8+Pn5QUdHB+Hh4bhw4QLS09NhaWkJ4O8vf4lEguPHj8u309bW7lbesCq1trbiyy+/xObNmzF69GiEh4fD1dVVJQFwfX09MjMzUV5eDgCwtLRUWknAvlJaWorMzEw0NTWBxWKBzWarrNpLU1MToqOjER4ejgkTJmDPnj0YPXq00o/bE/S3SAghT0aBOFE4KysrrF+/HsuWLZMvi4uLg7+/P+7fvw8bGxuVnAeXy4WXlxeioqIA/J02YG1tjU8++QRr16595vZSqRTDhw9HVFQU5s+fD+DvL//Kykr8+OOPyjx1hausrMS2bdvwxRdf4K233kJISAhMTU2VdjypVIr8/Hzk5uZCT08PLS0t8rrgI0eO7Hcj4U/S3NwMkUiEhw8fwtDQEDU1NdDT04OjoyMMDAyUdlyZTIaLFy9iw4YN0NLSQmRkJAIDA9X6d0p/i4QQ8mSUmkIUjsvl4tatW/L/zzAMPvvsM6xYsUJlQXhzczNu374Nf39/+TINDQ34+/sjPj6+S/uor69HS0sLRowY0WH5lStXMHLkSDg5OWHp0qV91hq9OwwNDbF3717cuXMHZWVlcHNzw759+9DU1KTQ47RVGYmLi4NEIsG4cePg7e0NPz8/2NraIjMzE0lJSaiurlbocVVJJpMhNzcXsbGxaGpqgo+PDzw8PDBhwgQMHz4cSUlJuHfvHhoaGhR6XIZhkJGRgVmzZmHp0qX45JNPcPfuXUyfPl2tg3D6WySEkM5RIE4UzsfHp0Mgfvr0aRQUFGDdunUqO4fS0lJIpdLHRn1NTU0hFou7tI/g4GBYWFh0CCACAwNx6tQpxMTEIDw8HFevXsX06dMhlUoVev7K4uTkhJ9++gnnzp3Dt99+C09PT/z8888KyR+vrKxEYmIiBAIBHBwcwOVy5YETi8WClZUVeDweDA0NcevWLaSnpyv8RkCZGIZBcXEx4uLiUFRUBFdXV7i5uUFPTw8AMGjQILDZbPB4PLBYLMTFxUEgEKC1tbXXxy4tLUVQUBAmTpyIF154AXw+H8uXL1eLeuvP8jz/LX777bfQ1dVFUVGRfNmiRYvg6uqKqqoqlZ0HIaT/Uq/ZPOS54OPjg7Vr16K2thYsFgvr16/Hjh07VDJxTVHCwsJw5swZXLlyBTo6OvLlc+fOlf+3i4sLXF1d4eDggCtXrmDatGl9cardxmKxEBAQgKlTp+Lw4cP46KOP5LnGY8aM6fboan19PQQCAcrKymBrawsbG5tOO1EOGjQIHA4HVlZWEAgEiI2NfeY26qC6uhp8Ph91dXVwcHCApaVlp78nHR0djB07FqNGjQKfz8eNGzfk23Q3d7y5uRlHjhzBrl27wOVykZSUBGdnZ7UeAVc0df5bnDt3LsLCwrBz5058/vnnCAkJwf/+9z/cvHlTqelJhJDnB42IE4Xz8PCAhoYGkpOTER4eDhMTEyxatEil52BsbAxNTU1IJJIOyyUSyTNra+/ZswdhYWH4/fff4erq+tR17e3tYWxsDKFQ2OtzVjUtLS18/PHH4PP5cHFxwaRJk/Dpp5+ipKSkS9u3tLQgKysL8fHx0NLSAo/Hg729fZcCal1dXbi6usLd3V0+yiwWi6FuU1aampqQnp6OW7duwcDAADweD1ZWVl0KhPX19eHh4QFnZ2fk5+fj5s2bKCkp6dI1MgyDy5cvw8fHB1999RVOnz6NS5cu9ehGqa89z3+LLBYLoaGhOHr0KEJDQ/H555/j8uXL8gmlhBDyLBSIE4UbMmQIXFxc8P3332PPnj3Yt2+fSqpItDd48GB4eHggJiZGvkwmkyEmJga+vr6dbhcREYHt27fj8uXL8PT0fOZxCgsLUVZWBnNzc4Wcd18YMWIEDh48iNu3b+PBgwdwc3PDwYMH0dzc/MT1ZTIZ8vPzERsbi7q6Onh7e8PZ2Rna2trdPvbw4cPB5XLh4OAAPp+PW7duqcUjfalUipycHMTGxqK1tRW+vr7gcDjdLgnIYrEwcuRI+Pr6wsrKCunp6UhOTkZNTc0T12cYBpmZmZgzZw4WL16M999/H/fu3cPMmTP7XQDe5nn/W5w5cyacnZ2xbds2XLhwAWPGjFHp8Qkh/RtVTSFKsWzZMkRHR2PWrFm4cOFCn5zD2bNnsWDBAhw+fBje3t7Yv38/zp07h8zMTJiammL+/PmwtLTErl27AADh4eHYvHkzvvnmG/B4PPl+hg4diqFDh6K2thZbt27Fa6+9BjMzM4hEIqxZswY1NTW4d+9ejwJRdcMwDC5evIhVq1ZBKpVi586d8smAMpkMv/76KwwNDaGpqSnvoKkobS3vc3NzYWpqCjab3SEVQRUYhoFEIoFAIICWlhacnJwUWg6vpaUFOTk5KCgoQFNTE8aMGSOfwFxeXo5du3bh2LFjWLBgAbZv3w4TExOFHbsvPc9/i5cvX8acOXPQ3NyMtLQ0tS0hSQhRTxSIE6U4fPgwli9fjvT0dLDZ7D47j6ioKOzevRtisVg+0svlcgEAkydPhq2tLU6cOAEAsLW1RV5e3mP7CAkJwZYtW9DQ0IDZs2cjJSUFlZWVsLCwwEsvvYTt27crtRRgX2hpacGhQ4ewbds2eHh44PXXX8cXX3yBvLw8/PTTT3B3d1faU46GhgYIhUIUFxfD1tYWtra2Kskfr6qqAp/PR319PTgcDszNzZU2Cl1fX48NGzbg1KlTWLhwIaytrREZGQl3d3fs3bsXLi4u/XYEvDPP499icnIyJk+ejMOHD+PEiRPQ19fH+fPnVXZ8Qkj/R4E4UYopU6Zg/PjxiIyM7OtTIb1w584dvPnmmxAIBHB2dsaZM2fg4OCgkmNXVlaCz+ejsbERbDZbaYFxY2MjhEIhJBIJbGxsYGtrq5KulAzDYPfu3QgLC0NrayuWLVuGvXv3ql1HTPJkubm58PX1xaeffoq1a9ciISEBvr6+SEpKwvjx4/v69Agh/QTliBOFkclkkEgk2LlzJwQCAUJCQvr6lEgP1dTUYMOGDeDxeOByufjtt99gYWGBSZMm4d///jdaWlqUfg6Ghobw8vICh8OBSCRCYmIiKisrFbZ/qVQKkUiEuLg4MAwDPz8/sNlslQTCfD4fb775Jvbv34+tW7fi+PHj+Omnn+Dl5YU///xT6ccnvVNeXo7AwEDMmjVL3pCIy+Vi+vTpWL9+fR+fHSGkP6ERcaIwV65cwdSpUzF69GgcP35c/tiZ9C+xsbGYM2cORo8ejcjISPlEOZlMhl9++QWrVq2CpqYmwsLC4O/vr5IUCqlUiry8POTm5sLY2BgcDge6uro92hfDMBCLxRAIBNDR0YGjoyMMDQ0Ve8KdqKysRFhYGI4ePYp58+Zhx44d8lSKxsZGHDx4EKGhoQgICMDZs2efu/QUQgghHVEgTgjpoKysDNevX8esWbOeGAg2NzfLA0YfHx/s3LkTTk5OKjm3xsZGiEQiiMXiHqWRVFZWIisrC01NTeBwODAzM1NJsNva2ooTJ05g+/btGDNmDPbu3Qt3d/cnHrukpARxcXGYNWuW0s+LEEJI36JAnBDSI8XFxdi0aRNOnTqFxYsXY926dQqtMPI01dXVyMrKQn19PdhsNiwsLJ4aUDc0NEAgEKC0tFSlDYQYhsG1a9cQHByM2tpaREREYM6cOSov50kIIUQ9USBOCOkxhmFw584dBAUF4d69e9i4cSPeffddlU12LC4uBp/Ph5aWFhwdHTFixIgO67S2tiI3Nxd5eXkqL4koEomwYcMGXLlyBWvXrkVQUJDKyzESQghRbzQsQ4gCHTp0CLa2ttDR0QGXy0ViYmKn6544cQIsFqvDz6OBGsMw2Lx5M8zNzaGrqwt/f38IBAJlX0aXsVgsuLu7IyYmBkeOHEFUVBT8/Pzw119/Kb1LJovFgqmpKfz8/GBqaoo7d+7g7t27qK+vB8MwePDgAWJjY1FRUQFPT0+MHTtWJYFwdXU1Nm7cCC6XCyMjI2RmZmL9+vVqGYQPtPcrIYSoGwrECVGQs2fPIigoCCEhIUhOTsa4ceMQEBCA4uLiTrfR19dHUVGR/OfR2skRERE4ePAgoqOjkZCQAD09PQQEBKCxsVHZl9MtGhoamDNnDtLS0jBv3jy8/fbbmDt3rkrajWtqasLOzg48Hg9aWlqIi4vDtWvXIBKJMHr0aHh6esLAwEDp5yGVSnHixAmMGzcOt27dwtWrV3Hs2DFYWFgo/dg9MZDfr4QQoi4oECdEQfbu3Yv33nsPixYtgrOzM6KjozFkyBAcO3as021YLBbMzMzkP+2bkTAMg/3792Pjxo2YNWsWXF1dcerUKTx8+BA//vijCq6o+3R0dLB27VpkZWVh5MiR4HK5WLdunUra1kulUrS0tIDFYkFTUxNSqRTNzc1KH5lnGAbXr1/HxIkTERERgQMHDuDq1avw8vJS66on9H4lhJC+R4E4IQrQ3NyM27dvw9/fX75MQ0MD/v7+iI+P73S72tpa2NjYwNraGrNmzUJ6err833JyciAWizvs08DAAFwu96n7VAdmZmb48ssvcf36daSkpGDcuHE4duwYWltbFX6s1tZWCAQCxMfHQ0tLCxMmTACPx8OYMWOQl5eHhIQElJWVKfy4wN9NXd555x28/vrrmDNnDjIyMjB37ly1n4xJ71dCCFEP6v1tQUg/UVpaCqlU+lh7bVNTU4jF4idu4+TkhGPHjuG///0vvv76a8hkMvj5+aGwsBAA5Nt1Z5/qhMViwdPTE1euXEFUVBQiIyMxceJEXLt2TSGj1AzDoLCwEDdu3EBVVRW8vb3h7OwMbW1tsFgsjBw5En5+frCwsEBqaipSUlJQV1engCv7u+HRli1b4OXlBT09PWRkZGDz5s0YMmSIQvavbPR+JYQQ9UCBOCF9xNfXF/Pnz4ebmxsmTZqEH374ASYmJjh8+HBfn5pCaWho4M0330RGRgbeeOMNvPHGG/i///s/ZGdn93ifZWVluHnzJnJzc+Hs7AwPDw8MGzbsice2sbEBj8eDjo4Obt68iaysrB53BpVKpTh9+jTc3d1x/fp1xMTE4NSpU7C2tu7xtfQXA+X9SgghqkSBOCEKYGxsDE1NTUgkkg7LJRIJzMzMurQPLS0tuLu7yyc4tm3Xm32qE11dXWzcuBH379+HgYEBvL29sWnTJlRXV3d5H3V1dUhJSUFqairMzc3h5+eHkSNHPjMXe/DgwXjhhRfA5XJRV1eH2NhY5OfnQyaTdem4DMMgPj4eU6ZMwY4dOxAREYHY2Fj4+PiodR54Z+j9Sggh6oECcUIUYPDgwfDw8EBMTIx8mUwmQ0xMDHx9fbu0D6lUinv37sHc3BwAYGdnBzMzsw77rK6uRkJCQpf3qY6srKxw4sQJ/PXXX4iPj4ebmxtOnToFqVTa6TYtLS3IysrCzZs3oaOjAx6PB1tb227nYg8dOhTu7u4YM2YMCgsLcfPmTZSWlj51m/z8fCxatAizZs3CjBkzcP/+fcybN0/t88Cfht6vhBCiHpTfdYOQASIoKAgLFiyAp6cnvL29sX//ftTV1WHRokUAgPnz58PS0hK7du0CAGzbtg0+Pj5gs9morKzE7t27kZeXhyVLlgD4O8f6s88+w44dO8DhcGBnZ4dNmzbBwsICs2fP7qvLVAgWiwUul4sbN27gzJkzWLt2LY4cOYLw8HD4+fnJR5mbmpqQl5eHhw8fYtiwYeByuRg6dGivj21iYgIjIyMUFhYiLS0N+vr6sLCw6DByW1dXh3379uHAgQP45z//ifT0dNjY2PTq2OqE3q+EENL3KBAnREHeeustlJSUYPPmzRCLxXBzc8Ply5flk9fy8/M7jKJWVFTgvffeg1gsxvDhw+Hh4YG4uDg4OzvL11mzZg3q6urw/vvvo7KyEhMmTMDly5fVsjlMT2hoaODtt9/GrFmzsHv3brz66qsIDAzE9u3bkZiYiE2bNiEgIAAbN26EsbGxQtNANDQ0MGrUKJibmyMrKwve3t6YMmUKQkNDcf36dYSEhMDc3By//fYbeDxev0xBeRp6vxJCSN+jFveEELWRn5+PZcuW4dKlSxg0aBCWL1+O9evXQ1tbW+nHvnPnDpYuXYq0tDTo6elh7969WLRoETQ1NZV+bEIIIQNT/01yJIQ8V0pLSxEREYGYmBi89tprGDt2LL755ht89913T80fV4SHDx8iKioKQqEQr7/+OqytrREeHo5ffvlF6Q2BCCGEDFwUiBNC+lRrayv2798PDoeD3NxcpKSk4Ny5c7h16xZ27dqFrVu3YurUqUhISFB4UFxfX4+wsDC4u7ujpaUF9+7dw9mzZ3H37l2sWrUKS5YswbRp05CamqrQ4xJCCCEABeKEkD7GYrFw69YtnD17Fr/88gtGjx4N4O8c7vnz5+P+/fsICAjAzJkzsXjxYnkDmd6QyWQ4f/48PDw88Msvv+Dnn3/GuXPnYG9vDwAYNGgQPvjgAwiFQnh6eoLP5/f6mIQQQsijKEecENIv5ObmIjg4GL/++is+/fRTfPbZZ9DT0+vWPhiGQUpKCoKDgyESibBjxw7KAyeEENJnaEScENIv2Nra4syZM7h48SJ+++03jB8/HmfPnu1yUx6xWIylS5fipZdeAo/HQ1ZWFpYsWUJBOCGEkD5DgTgh/dShQ4dga2sLHR0dcLlcJCYmdrru5MmTwWKxHvt5+eWX5essXLjwsX8PDAxUxaV0GYvFwj/+8Q8kJCRg69atWL9+PV588UUkJSV1mj/e2NiIPXv2wM3NDTU1NUhNTUVERAQMDAxUfPbPNhBfU0IIGcgoECekHzp79iyCgoIQEhKC5ORkjBs3DgEBASguLn7i+j/88AOKiorkP2lpadDU1MQbb7zRYb3AwMAO63377bequJxu09TUxLvvvousrCxMmjQJgYGB+OCDD1BUVCRfRyaT4cKFC/Dw8MB3332HH3/8ET/88APYbHYfnnnnBvprSgghAxEF4oT0Q3v37sV7772HRYsWwdnZGdHR0RgyZAiOHTv2xPVHjBgBMzMz+c8ff/yBIUOGPBa0aWtrd1hv+PDhqricHtPX10dYWBju3buHhoYGuLm5ITw8HImJiZgxYwZWrFiB4OBgJCcnY+rUqWrdlIdeU0IIGXgoECekn2lubsbt27fh7+8vX6ahoQF/f3/Ex8d3aR9fffUV5s6d+9hkxytXrmDkyJFwcnLC0qVLUVZWptBzVxYHBwd89913+Omnn/D1119j6tSp8PDwQFZWFj788EMMGqTeTYTpNSWEkIFJvb+dCCGPKS0thVQqlbcib2NqaorMzMxnbp+YmIi0tDR89dVXHZYHBgZizpw5sLOzg0gkwvr16zF9+nTEx8f3iwmNLBYLU6ZMwb1793D9+nUEBAT09Sl1Gb2mhBAyMFEgTsgA89VXX8HFxQXe3t4dls+dO1f+3y4uLnB1dYWDgwOuXLmCadOmqfo0e2zIkCH9KghXhOf9NSWEkOcVpaYQ0s8YGxtDU1MTEomkw3KJRAIzM7OnbltXV4czZ85g8eLFzzyOvb09jI2NIRQKe3W+5NnoNSWEkIGJAnFC+pnBgwfDw8MDMTEx8mUymQwxMTHw9fV96rbnz59HU1MT5s2b98zjFBYWoqysDObm5r0+Z/J09JoSQsjARIE4If1QUFAQjh49ipMnT+L+/ftYunQp6urqsGjRIgDA/PnzsW7duse2++qrrzB79mwYGRl1WF5bW4vVq1fj5s2byM3NRUxMDGbNmgU2mz3g0jz6Cr2mhBAy8FCOOCH90FtvvYWSkhJs3rwZYrEYbm5uuHz5snyyX35+PjQ0Ot5nZ2Vl4caNG/j9998f25+mpiZSU1Nx8uRJVFZWwsLCAi+99BK2b98ObW1tlVzTQEevKSGEDDwsprN2dIQQQgghhBClodQUQgghhBBC+gAF4oQQQgghhPQBCsQJIYQQQgjpAxSIE0IIIYQQ0gcoECeEEEIIIaQPUCBOCCGEEEJIH6BAnBDyTNeuXcMrr7wCCwsLsFgs/Pjjj8/c5sqVKxg/fjy0tbXBZrNx4sSJx9Y5dOgQbG1toaOjAy6Xi8TERMWffA8NxGsmhBCiWhSIE0Keqa6uDuPGjcOhQ4e6tH5OTg5efvllTJkyBXfu3MFnn32GJUuW4LfffpOvc/bsWQQFBSEkJATJyckYN24cAgICUFxcrKzL6JaBeM2EEEJUixr6EEK6hcVi4cKFC5g9e3an6wQHB+PXX39FWlqafNncuXNRWVmJy5cvAwC4XC68vLwQFRUFAJDJZLC2tsYnn3yCtWvXKvUaumsgXjMhhBDloxFxQojCxcfHw9/fv8OygIAAxMfHAwCam5tx+/btDutoaGjA399fvk5/MxCvmRBCSO9QIE4IUTixWAxTU9MOy0xNTVFdXY2GhgaUlpZCKpU+cR2xWKzKU1WYgXjNhBBCeocCcUIIIYQQQvrAoL4+AULI88fMzAwSiaTDMolEAn19fejq6kJTUxOamppPXMfMzEyVp6owA/GaCSGE9A6NiBNCFM7X1xcxMTEdlv3xxx/w9fUFAAwePBgeHh4d1pHJZIiJiZGv098MxGsmhBDSOxSIE0Keqba2Fnfu3MGdO3cA/F2q786dO8jPzwcArFu3DvPnz5ev/+GHHyI7Oxtr1qxBZmYm/v3vf+PcuXNYsWKFfJ2goCAcPXoUJ0+exP3797F06VLU1dVh0aJFKr22zgzEayaEEKJiDCGEPMNff/3FAHjsZ8GCBQzDMMyCBQuYSZMmPbaNm5sbM3jwYMbe3p45fvz4Y/v9/PPPmVGjRjGDBw9mvL29mZs3byr/YrpoIF4zIYQQ1aI64oQQQgghhPQBSk0hhBBCCCGkD1AgTgghhBBCSB+gQJwQQgghhJA+QIE4IYQQQgghfYACcUIIIYQQQvoABeKEEEIIIYT0AQrECSGEEEII6QMUiBNCCCGEENIHKBAnhBBCCCGkD1AgTgghhBBCSB+gQJwQQgghhJA+QIE4IYQQQgghfYACcUIIIYQQQvoABeKEEEIIIYT0AQrECSGEEEII6QP/DzCT0zvs8MbYAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 318 } ], "metadata": { From ce81459c2becf1c39d8c9c46964c813c776f85b5 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 14 Jul 2024 23:06:59 +0200 Subject: [PATCH 09/21] example: add sign wrapper --- scratch/scratch5.ipynb | 551 +++++++++++++++++++---------------------- 1 file changed, 261 insertions(+), 290 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 4ebac98..5bdbe34 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.921189Z", - "start_time": "2024-06-09T22:13:59.917534Z" + "end_time": "2024-07-14T20:10:08.472111Z", + "start_time": "2024-07-14T20:10:07.704962Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 303 + "execution_count": 2 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.929958Z", - "start_time": "2024-06-09T22:13:59.923633Z" + "end_time": "2024-07-14T20:10:08.476898Z", + "start_time": "2024-07-14T20:10:08.473124Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 304 + "execution_count": 3 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.938213Z", - "start_time": "2024-06-09T22:13:59.931257Z" + "end_time": "2024-07-14T20:10:08.489326Z", + "start_time": "2024-07-14T20:10:08.477515Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[ 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416\n", - " 0.88781416 0.88781416 0.66588145 0.66588145 0.66588145 0.66588145\n", - " 0.66588145 0.66588145 0.66588145 0.66588145 0.4280844 0.4280844\n", - " 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844\n", - " -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015\n", - " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.9254663 -1.9254663\n", - " -1.9254663 -1.9254663 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", - " -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332\n", - " 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514\n", - " 0.72894514 0.72894514 1.845063 1.845063 1.845063 1.845063\n", - " 1.845063 1.845063 1.845063 1.845063 ]\n", + "[-1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188\n", + " -1.2944188 -1.2944188 -0.35210398 -0.35210398 -0.35210398 -0.35210398\n", + " -0.35210398 -0.35210398 -0.35210398 -0.35210398 0.16804749 0.16804749\n", + " 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749\n", + " 0.769309 0.769309 0.769309 0.769309 0.769309 0.769309\n", + " 0.769309 0.769309 -5.63848 -5.63848 -5.63848 -5.63848\n", + " -5.63848 -5.63848 -5.63848 -5.63848 -3.0203166 -3.0203166\n", + " -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166\n", + " -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536\n", + " -2.0521536 -2.0521536 0.75451875 0.75451875 0.75451875 0.75451875\n", + " 0.75451875 0.75451875 0.75451875 0.75451875]\n", "=========\n", - "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", - " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", - " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", - " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", - " 0.72894514 0.72894514 1.845063 1.845063 ]\n", + "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", + " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", + " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", + " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", + " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", + " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -2.0521536 -2.0521536 0.75451875 0.75451875]\n", "=========\n", - "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", - " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", - " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", - " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", - " 0.72894514 0.72894514 1.845063 1.845063 ]\n", + "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", + " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", + " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", + " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", + " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", + " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -2.0521536 -2.0521536 0.75451875 0.75451875]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 305 + "execution_count": 4 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.941155Z", - "start_time": "2024-06-09T22:13:59.939081Z" + "end_time": "2024-07-14T20:10:08.492491Z", + "start_time": "2024-07-14T20:10:08.490350Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 306 + "execution_count": 5 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.944464Z", - "start_time": "2024-06-09T22:13:59.941621Z" + "end_time": "2024-07-14T20:10:08.495895Z", + "start_time": "2024-07-14T20:10:08.493201Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[ 0.88781416 0.66588145 0.4280844 -0.00731015 -1.9254663 -1.0037332\n", - " 0.72894514 1.845063 ]\n", + "[-1.2944188 -0.35210398 0.16804749 0.769309 -5.63848 -3.0203166\n", + " -2.0521536 0.75451875]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[ 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416 0.88781416\n", - " 0.88781416 0.88781416 0.66588145 0.66588145 0.66588145 0.66588145\n", - " 0.66588145 0.66588145 0.66588145 0.66588145 0.4280844 0.4280844\n", - " 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844 0.4280844\n", - " -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015 -0.00731015\n", - " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.9254663 -1.9254663\n", - " -1.9254663 -1.9254663 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", - " -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332 -1.0037332\n", - " 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514 0.72894514\n", - " 0.72894514 0.72894514 1.845063 1.845063 1.845063 1.845063\n", - " 1.845063 1.845063 1.845063 1.845063 ]\n", - "[ 0.88781416 0.88781416 0.66588145 0.66588145 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.4280844 0.4280844 -0.00731015 -0.00731015\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.88781416 0.88781416\n", - " 0.66588145 0.66588145 0.88781416 0.88781416 0.66588145 0.66588145\n", - " 0.4280844 0.4280844 -0.00731015 -0.00731015 0.4280844 0.4280844\n", - " -0.00731015 -0.00731015 -1.9254663 -1.9254663 -1.0037332 -1.0037332\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 0.72894514 0.72894514\n", - " 1.845063 1.845063 0.72894514 0.72894514 1.845063 1.845063\n", - " -1.9254663 -1.9254663 -1.0037332 -1.0037332 -1.9254663 -1.9254663\n", - " -1.0037332 -1.0037332 0.72894514 0.72894514 1.845063 1.845063\n", - " 0.72894514 0.72894514 1.845063 1.845063 ]\n" + "[-1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188\n", + " -1.2944188 -1.2944188 -0.35210398 -0.35210398 -0.35210398 -0.35210398\n", + " -0.35210398 -0.35210398 -0.35210398 -0.35210398 0.16804749 0.16804749\n", + " 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749\n", + " 0.769309 0.769309 0.769309 0.769309 0.769309 0.769309\n", + " 0.769309 0.769309 -5.63848 -5.63848 -5.63848 -5.63848\n", + " -5.63848 -5.63848 -5.63848 -5.63848 -3.0203166 -3.0203166\n", + " -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166\n", + " -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536\n", + " -2.0521536 -2.0521536 0.75451875 0.75451875 0.75451875 0.75451875\n", + " 0.75451875 0.75451875 0.75451875 0.75451875]\n", + "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", + " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", + " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", + " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", + " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", + " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", + " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", + " -2.0521536 -2.0521536 0.75451875 0.75451875]\n" ] } ], - "execution_count": 307 + "execution_count": 6 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.948686Z", - "start_time": "2024-06-09T22:13:59.945394Z" + "end_time": "2024-07-14T20:10:08.499574Z", + "start_time": "2024-07-14T20:10:08.496570Z" } }, "source": [ @@ -323,15 +323,15 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 308 + "execution_count": 7 }, { "cell_type": "code", "id": "47ef065abf26f244", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.957206Z", - "start_time": "2024-06-09T22:13:59.949543Z" + "end_time": "2024-07-14T20:10:08.507514Z", + "start_time": "2024-07-14T20:10:08.500283Z" } }, "source": [ @@ -474,31 +474,66 @@ " return self.norm" ], "outputs": [], - "execution_count": 309 + "execution_count": 8 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-14T20:37:33.831325Z", + "start_time": "2024-07-14T20:37:33.826217Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "\n", + "class SignModelWrapper(nn.Module):\n", + " def __init__(self, old_model):\n", + " super(SignModelWrapper, self).__init__()\n", + " self.old_model = old_model\n", + "\n", + " def forward(self, x):\n", + " real_value_output = self.old_model(x)\n", + " binary_output = torch.sign(real_value_output)\n", + " return binary_output" + ], + "id": "9afa0015a6baf6fc", + "outputs": [], + "execution_count": 34 }, { "cell_type": "code", "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.967118Z", - "start_time": "2024-06-09T22:13:59.957842Z" + "end_time": "2024-07-14T20:45:28.739504Z", + "start_time": "2024-07-14T20:45:28.725884Z" } }, "source": [ - "from qulearn.qlayer import AltRotCXLayer\n", + "from qulearn.qlayer import AltRotCXLayer, HamiltonianLayer, ParallelIQPEncoding\n", + "base = 3.0\n", + "omega = 1.0\n", "num_qubits = 3\n", "num_nodes = 2**num_qubits\n", "a = -1.0\n", "b = 1.0\n", "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", - "var = AltRotCXLayer(wires=2*num_qubits, n_layers=1)\n", + "var = AltRotCXLayer(wires=2*num_qubits, n_layers=3)\n", "\n", "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=True)\n", - "obs = qml.PauliZ(3)\n", + "embed = ParallelIQPEncoding(wires=2*num_qubits, num_features=2, n_repeat=1, base=base, omega=omega)\n", + "obs = qml.PauliZ(5)\n", "model = MeasurementLayer(embed, var, observables=obs, measurement_type=MeasurementType.Expectation)\n", + "\n", + "obs = [qml.PauliZ(j) for j in range(2*num_qubits)]\n", + "obs += [qml.PauliX(j) for j in range(2*num_qubits)]\n", + "obs += [qml.PauliY(j) for j in range(2*num_qubits)]\n", + "model = HamiltonianLayer(embed, var, observables=obs)\n", "drawer = qml.draw(model.qnode, show_all_wires=True, expansion_strategy=\"device\")\n", - "x = torch.tensor([0.0, 0.0])\n", + "x = torch.tensor([0.99, -0.99])\n", + "x = torch.tensor([0., 0.])\n", "print(drawer(x))" ], "outputs": [ @@ -506,74 +541,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ──────────────────────────────────────────────────╭U(M3)────────────────Rot(5.04,4.86,2.95)─╭●\n", - "1: ─────────────────────────────╭U(M2)───────────────├U(M3)────────────────Rot(4.66,1.59,3.36)─╰X\n", - "2: ────────╭U(M1)───────────────├U(M2)───────────────╰U(M3)────────────────Rot(2.32,4.27,5.20)─╭●\n", - "3: ─╭U(M0)─├U(M1)───────────────╰U(M2)────────────────Rot(1.45,5.03,4.31)──────────────────────╰X\n", - "4: ─├U(M0)─╰U(M1)────────────────Rot(4.03,0.24,0.55)─╭●────────────────────Rot(3.37,2.28,3.15)───\n", - "5: ─╰U(M0)──Rot(4.08,5.87,0.54)──────────────────────╰X────────────────────Rot(1.43,4.52,3.75)───\n", + "0: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(5.87,3.65,2.77)─╭●──Rot(0.75,2.32,5.82)────────────────────────\n", + "1: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(6.08,1.97,1.26)─╰X──Rot(3.20,5.95,0.85)─╭●──Rot(5.48,3.67,4.07)\n", + "2: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(4.29,2.04,3.89)─╭●──Rot(4.16,3.09,1.08)─╰X──Rot(4.50,3.46,5.41)\n", + "3: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(3.06,3.52,1.50)─╰X──Rot(3.08,2.97,2.64)─╭●──Rot(3.16,5.35,6.23)\n", + "4: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(5.46,5.72,2.33)─╭●──Rot(4.88,0.89,4.10)─╰X──Rot(0.37,2.94,1.91)\n", + "5: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(6.05,3.83,1.56)─╰X──Rot(1.34,5.45,5.62)────────────────────────\n", "\n", - "───Rot(0.20,5.85,2.00)─────────────────────────┤ \n", - "───Rot(2.14,0.17,1.49)─╭●──Rot(1.43,0.71,0.14)─┤ \n", - "───Rot(1.16,2.66,1.15)─╰X──Rot(2.43,4.73,2.71)─┤ \n", - "───Rot(5.90,4.58,0.26)─╭●──Rot(0.26,1.57,0.52)─┤ \n", - "───────────────────────╰X──Rot(6.25,2.64,1.62)─┤ \n", - "───────────────────────────────────────────────┤ \n" + "──╭●──Rot(4.54,0.52,4.68)─────────────────────────╭●──Rot(4.41,1.60,1.89)─────────────────────────┤\n", + "──╰X──Rot(4.29,2.35,1.81)─╭●──Rot(2.87,5.46,1.77)─╰X──Rot(1.16,2.38,4.97)─╭●──Rot(6.23,4.98,1.51)─┤\n", + "──╭●──Rot(4.38,3.58,0.03)─╰X──Rot(1.57,3.34,3.34)─╭●──Rot(1.15,5.83,5.63)─╰X──Rot(1.88,5.21,4.63)─┤\n", + "──╰X──Rot(2.92,4.43,3.56)─╭●──Rot(5.35,0.17,4.13)─╰X──Rot(0.82,1.12,3.23)─╭●──Rot(4.61,3.90,1.22)─┤\n", + "──╭●──Rot(4.61,2.39,2.19)─╰X──Rot(3.53,4.93,0.61)─╭●──Rot(2.09,4.94,5.99)─╰X──Rot(3.47,5.64,3.76)─┤\n", + "──╰X──Rot(2.22,2.15,5.18)─────────────────────────╰X──Rot(4.93,0.44,1.91)─────────────────────────┤\n", + "\n", + " ╭<𝓗>\n", + " ├<𝓗>\n", + " ├<𝓗>\n", + " ├<𝓗>\n", + " ├<𝓗>\n", + " ╰<𝓗>\n" ] } ], - "execution_count": 310 + "execution_count": 44 }, { - "cell_type": "code", - "id": "93646da4c54dfbff", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:13:59.975004Z", - "start_time": "2024-06-09T22:13:59.968157Z" + "end_time": "2024-07-14T20:45:35.396362Z", + "start_time": "2024-07-14T20:45:35.393834Z" } }, - "source": [ - "import numpy as np\n", - "\n", - "num_qubits = 2\n", - "num_nodes = 2**num_qubits\n", - "a = -1.0\n", - "b = 1.0\n", - "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", - "\n", - "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=False)\n", - "\n", - "dev = qml.device(\"default.qubit\", wires=2*num_qubits)\n", - "@qml.qnode(dev)\n", - "def circuit(x):\n", - " embed.circuit(x)\n", - " return qml.state()\n", - "\n", - "x = torch.tensor([-0., -0.])\n", - "out = np.real(circuit(x))\n", - "print(out)\n", - "print(\"norm: \", np.linalg.norm(out))" - ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0. 0. 0. 0. 0. 0.50000007\n", - " 0.50000003 0. 0. 0.50000007 0.50000003 0.\n", - " 0. 0. 0. 0. ]\n", - "norm: 1.000000092212006\n" - ] - } - ], - "execution_count": 311 + "cell_type": "code", + "source": "model = SignModelWrapper(model)", + "id": "5ad9df503d305219", + "outputs": [], + "execution_count": 45 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:14:02.165041Z", - "start_time": "2024-06-09T22:13:59.975661Z" + "end_time": "2024-07-14T20:45:54.972665Z", + "start_time": "2024-07-14T20:45:38.650071Z" } }, "cell_type": "code", @@ -581,66 +591,64 @@ "import torch\n", "import matplotlib.pyplot as plt\n", "\n", - "num_pnts = 50\n", + "# Define the number of points in each dimension\n", + "num_pnts = 30\n", "\n", "# Generate a grid of x and y values\n", "x = torch.linspace(-0.99, 0.99, num_pnts)\n", "y = torch.linspace(-0.99, 0.99, num_pnts)\n", - "X, Y = torch.meshgrid(x, y, indexing='xy')\n", + "X, Y = torch.meshgrid(x, y)\n", "Z = torch.empty(num_pnts, num_pnts)\n", "\n", - "# Evaluate the circuit at each point in the grid and extract the j-th component\n", - "idx = 3\n", + "# Evaluate the model at each point in the grid\n", "for i in range(num_pnts):\n", - " for k in range(num_pnts):\n", - " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", - " out = circuit(xy)[idx]\n", - " Z[i, k] = torch.tensor(out)\n", + " for j in range(num_pnts):\n", + " xy = torch.tensor([[X[i, j], Y[i, j]]])\n", + " Z[i, j] = model(xy).item()\n", + "\n", "# Convert tensors to numpy arrays for plotting\n", "X = X.numpy()\n", "Y = Y.numpy()\n", "Z = Z.numpy()\n", "\n", - "# Create a 2D heatmap plot\n", - "plt.figure(figsize=(10, 6))\n", + "# Create a 3D surface plot\n", + "fig = plt.figure(figsize=(10, 6))\n", "plt.imshow(Z, extent=[-1, 1, -1, 1], origin='lower', cmap='viridis', aspect='auto')\n", "\n", "# Add labels and title\n", "plt.xlabel('$x$')\n", "plt.ylabel('$y$')\n", - "plt.title(f\"$\\\\varphi_j$\")\n", - "\n", - "# Add a color bar which maps values to colors\n", - "plt.colorbar(label=f'$\\\\varphi_j$')\n", + "plt.title(\"$\\langle Z_0\\\\rangle$\")\n", "\n", "# Save the figure\n", + "plt.colorbar()\n", "plt.tight_layout()\n", "\n", "# Show the plot\n", - "plt.show()" + "plt.show()\n" ], - "id": "8f41ff534081649d", + "id": "4b6a40bff231c2ce", "outputs": [ { "data": { "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de3xU1b3///dMkpkkaBIwkIBGAbFc5BINEkNtpSWHRPhZ+dZWUCqQUviK4i14IR4BFQW8cahKTaUg2iMF9StqlUYxmqPWCBrkeAMqFgQpCbeSgSC5zKzfH5Rpp0mYZCc7m0lez8djPzR71mftC2OcxXvW2i5jjBEAAAAAAA5xO30CAAAAAICOjYEpAAAAAMBRDEwBAAAAAI5iYAoAAAAAcBQDUwAAAACAoxiYAgAAAAAcxcAUAAAAAOAoBqYAAAAAAEcxMAUAAAAAOIqBKQAAAADAUQxMAQDtxubNmzV27Fi99tpreuKJJ9StWzedddZZeumll5w+NQAAcBIMTAEA7UJJSYkyMjL0zTffKC4uTjfffLPGjRunuLg4XXPNNfr222+dPkUAANAIBqYAgIh39OhR/eIXv9A555yj999/X6WlpfJ4PHr00Ud1//33q7q6WkVFRU6fJgAAaAQDUwBAxHvhhRe0e/duLVq0SJ06ddLHH3+s888/Xx6PR+np6ZKkgwcPKhAI6Mwzz1RFRYWzJwwAAEJEO30CAAC01Nq1a5WUlKT/+I//kCR9+umnGjFihCTp8OHDkqQzzjhDbrdbu3fvduo0AQBAI0hMAQAR7/PPP1f//v0VHR2tw4cPa8eOHRo8eLAkaevWrZKkiy++2MlTBAAAJ8HAFAAQ8SorKxUXFydJ+uyzz2SMCQ5M16xZo3PPPVfnn3++nnrqKV1zzTVOnioAAGgAX+UFAES8tLQ0ffLJJ6qurtann34qSRo8eLDeeustrVmzRsuWLZMkffHFFxo4cKCTpwoAABpAYgoAiHi//OUv9fe//12XX365XnzxRcXHx2v+/PkaPXq0rrrqKk2ePFnS8YHp+eef7+zJAgCAelzGGOP0SQAA0FL33HOPfvOb32jfvn1yuVzq2bOnpk2bpttvv11RUVGSpO7du+u9995Tnz59HD5bAADwrxiYAgDaldNPP1033HCDFi5cGLL/4MGDOuuss3TkyBG53XxhCACAUwn/ZwYAtBu7du3SkSNH1K9fv3qvffHFF+rfvz+DUgAATkH83xkA0G5s3rxZkhodmDK/FACAUxMDUwBAu3Gygemnn36qIUOGtPUpAQCAJmCOKQCg3Tty5IgGDRqk559/XhdddJHTpwMAAP5NxCWm7777ri6//HL16NFDLpdLL7/8ctiakpISXXjhhfJ6verTp49WrFhRr82SJUvUs2dPxcbGKjMzUxs2bGj9kwcAtLn169fre9/7nn76058yKAUA4BQVcQPTqqoqDRkyREuWLGlS++3bt2vMmDH60Y9+pE2bNumWW27Rr371K73xxhvBNqtXr1Z+fr7mzp2rjRs3asiQIcrJydHevXvtugwAQBvJzMzU3/72Nz366KNOnwoAAGhERH+V1+Vyac2aNRo7dmyjbe688069/vrr+vzzz4P7xo8fr0OHDqmoqEjS8Q8tF110kZ544glJUiAQUFpamm688UbNmjXL1msAAAAAgI4u4hLT5iotLVV2dnbIvpycHJWWlkqSampqVFZWFtLG7XYrOzs72AYAAAAAYJ9op0/AbuXl5UpJSQnZl5KSIp/Pp++++05///vf5ff7G2yzZcuWRvutrq5WdXV18OdAIKCDBw/qjDPOkMvlat2LAAAAANoJY4wOHz6sHj16RMyzpY8dO6aamhrbj+PxeBQbG2v7cU5F7X5gapcFCxbo3nvvdfo0AAAAgIi0a9cunXXWWU6fRljHjh1Tr3NOU/lev+3HSk1N1fbt2zvk4LTdD0xTU1NVUVERsq+iokIJCQmKi4tTVFSUoqKiGmyTmpraaL8FBQXKz88P/lxZWamzzz5bl2i0ohXTuhcBAAAAtBN1qtX7WqvTTz/d6VNpkpqaGpXv9eubsp5KON2+hNd3OKBzMnaopqaGgWl7lJWVpbVr14bsW7dunbKysiQdj8szMjJUXFwcXEQpEAiouLhYM2bMaLRfr9crr9dbb3+0YhTtYmAKAAAANOgfS69G2vS300536bTT7TvngCLrfrS2iBuYHjlyRNu2bQv+vH37dm3atEldunTR2WefrYKCAu3evVvPPvusJOm6667TE088oTvuuEO//OUv9fbbb+v555/X66+/HuwjPz9fkyZN0tChQzVs2DAtXrxYVVVVysvLa/PrAwAAAHDq8ZuA/DY+z8RvAvZ1HgEibmD68ccf60c/+lHw5xNfp500aZJWrFihPXv2aOfOncHXe/Xqpddff1233nqrfv3rX+uss87S7373O+Xk5ATbjBs3Tvv27dOcOXNUXl6u9PR0FRUV1VsQCQAAAADQ+iL6OaanEp/Pp8TERI3QFXyVFwAAAGhEnalViV5RZWWlEhISnD6dsE58zi/ferbtc0xT++6MmPvS2iJjfWYAAAAAQLsVcV/lBQAAAIC2FlBAds4Ctbf3Ux+JKQAAAADAUSSmAAAAABCG3xj5bVyex86+IwGJKQAAAADAUSSmAAAAABBGQEYB2Zdq2tl3JCAxBQAAAAA4isQUAAAAAMIIyMhPYmobElMAAAAAgKNITAEAAAAgDOaY2ovEFAAAAADgKBJTAAAAAAiD55jai8QUAAAAAOAoElMAAAAACCPwj83O/jsyElMAAAAAgKNITAEAAAAgDL/NzzG1s+9IQGIKAAAAAHAUiSkAAAAAhOE3xzc7++/ISEwBAAAAAI4iMQUAAACAMFiV114kpgAAAAAAR5GYAgAAAEAYAbnkl8vW/jsyElMAAAAAgKNITAEAAAAgjIA5vtnZf0dGYgoAAAAAcBSJKQAAAACE4bd5jqmdfUcCElMAAAAAgKNITAEAAAAgDBJTe5GYAgAAAAAcRWIKAAAAAGEEjEsBY+NzTG3sOxKQmAIAAAAAHEViCgAAAABhMMfUXiSmAAAAAABHkZgCAAAAQBh+ueW3Mdfz29ZzZCAxBQAAAAA4isQUAAAAAMIwNq/Ka1iVFwAAAAAA55CYAgAAAEAYrMprLxJTAAAAAICjSEwBAAAAIAy/cctvbFyV19jWdUQgMQUAAAAAOIrEFAAAAADCCMilgI25XkAdOzIlMQUAAAAAOIrEFAAAAADCYFVee5GYAgAAAAAcRWIKAAAAAGHYvyovc0wBAAAAAHAMiSkAAAAAhHF8VV775oHa2XckIDEFAAAAADiKxBQAAAAAwgjILT/PMbUNiSkAAAAAwFEkpgAAAAAQBqvy2isiE9MlS5aoZ8+eio2NVWZmpjZs2NBo2xEjRsjlctXbxowZE2wzefLkeq/n5ua2xaUAAAAAQIcXcYnp6tWrlZ+fr8LCQmVmZmrx4sXKycnR1q1b1a1bt3rtX3rpJdXU1AR/PnDggIYMGaKf//znIe1yc3P19NNPB3/2er32XQQAAACAiBKQWwHmmNom4hLTRYsWaerUqcrLy9OAAQNUWFio+Ph4LV++vMH2Xbp0UWpqanBbt26d4uPj6w1MvV5vSLvOnTu3xeUAAAAAQIcXUQPTmpoalZWVKTs7O7jP7XYrOztbpaWlTepj2bJlGj9+vDp16hSyv6SkRN26dVPfvn01ffp0HThwoFXPHQAAAEDk8huX7VtHFlFf5d2/f7/8fr9SUlJC9qekpGjLli1h6zds2KDPP/9cy5YtC9mfm5urn/70p+rVq5e+/vpr3XXXXbrssstUWlqqqKioBvuqrq5WdXV18Gefz2fhigAAAAAAETUwbally5Zp0KBBGjZsWMj+8ePHB/990KBBGjx4sM4991yVlJRo5MiRDfa1YMEC3XvvvbaeLwAAAIBTg9/m55j6mWMaOZKTkxUVFaWKioqQ/RUVFUpNTT1pbVVVlVatWqUpU6aEPU7v3r2VnJysbdu2NdqmoKBAlZWVwW3Xrl1NuwgAAAAAQIiIGph6PB5lZGSouLg4uC8QCKi4uFhZWVknrX3hhRdUXV2tX/ziF2GP8+233+rAgQPq3r17o228Xq8SEhJCNgAAAADtU8C4bd86soi7+vz8fC1dulTPPPOMNm/erOnTp6uqqkp5eXmSpIkTJ6qgoKBe3bJlyzR27FidccYZIfuPHDmi22+/XR9++KF27Nih4uJiXXHFFerTp49ycnLa5JoAAAAAoCOLuDmm48aN0759+zRnzhyVl5crPT1dRUVFwQWRdu7cKbc7dLy9detWvf/++3rzzTfr9RcVFaVPP/1UzzzzjA4dOqQePXpo1KhRmjdvHs8yBQAAACCJOaZ2cxljOvYdaCU+n0+JiYkaoSsU7Ypx+nQAAACAU1KdqVWJXlFlZWVETIc78Tl/6cYMxZ/e8BM7WsPRw35NvbAsYu5La4u4xBQAAAAA2lpAsvVZowHbeo4METfHFAAAAADQvpCYAgAAAEAYAbkVsDHXs7PvSNCxrx4AAAAA4DgSUwAAAAAIw2/c8tv4rFE7+44EHfvqAQAAAACOIzEFAAAAgDACcikgO1flta/vSEBiCgAAAABwFIkpAAAAAITBHFN7deyrBwAAAAA4jsQUAAAAAMLwyy2/jbmenX1Hgo599QAAAAAAx5GYAgAAAEAYAeNSwNi4Kq+NfUcCElMAAAAAgKNITAEAAAAgjIDNc0wDHTwz7NhXDwAAAABwHIkpAAAAAIQRMG4FbHzWqJ19R4KOffUAAAAAAMeRmAIAAABAGH655Jd9K+fa2XckIDEFAAAAADiKxBQAAAAAwmCOqb069tUDAAAAQBP49c+v89qzNd+SJUvUs2dPxcbGKjMzUxs2bDhp+8WLF6tv376Ki4tTWlqabr31Vh07dszS/WhtDEwBAAAAIMKsXr1a+fn5mjt3rjZu3KghQ4YoJydHe/fubbD9ypUrNWvWLM2dO1ebN2/WsmXLtHr1at11111tfOYNY2AKAAAAAGGc+CqvnVtzLFq0SFOnTlVeXp4GDBigwsJCxcfHa/ny5Q22/+CDD/T9739f11xzjXr27KlRo0bp6quvDpuythUGpgAAAAAQQWpqalRWVqbs7OzgPrfbrezsbJWWljZYM3z4cJWVlQUHon/961+1du1ajR49uk3OORwWPwIAAACAMPzGLb+NCxSd6Nvn84Xs93q98nq9Ifv2798vv9+vlJSUkP0pKSnasmVLg/1fc8012r9/vy655BIZY1RXV6frrruOr/ICAAAAAEKlpaUpMTExuC1YsKBV+i0pKdH8+fP1m9/8Rhs3btRLL72k119/XfPmzWuV/luKxBQAAAAAwjByKSCXrf1L0q5du5SQkBDc/+9pqSQlJycrKipKFRUVIfsrKiqUmpraYP+zZ8/Wtddeq1/96leSpEGDBqmqqkrTpk3Tf/7nf8rtdjazJDEFAAAAgFNEQkJCyNbQwNTj8SgjI0PFxcXBfYFAQMXFxcrKymqw36NHj9YbfEZFRUmSjDGteAXWkJgCAAAAQBhtNce0qfLz8zVp0iQNHTpUw4YN0+LFi1VVVaW8vDxJ0sSJE3XmmWcGvwp8+eWXa9GiRbrggguUmZmpbdu2afbs2br88suDA1QnMTAFAAAAgAgzbtw47du3T3PmzFF5ebnS09NVVFQUXBBp586dIQnp3XffLZfLpbvvvlu7d+9W165ddfnll+uBBx5w6hJCuMypkNu2Az6fT4mJiRqhKxTtinH6dAAAAIBTUp2pVYleUWVlZchcylPVic/5M//8/8l7mn2f86uP1OrR778WMfeltTHHFAAAAADgKL7KCwAAAABh+OWW38Zcz86+I0HHvnoAAAAAgONITAEAAAAgjIBxKWDse46pnX1HAhJTAAAAAICjSEwBAAAAIIyA3ArYmOvZ2Xck6NhXDwAAAABwHIkpAAAAAIThNy75bZwHamffkYDEFAAAAADgKBJTAAAAAAiDVXntRWIKAAAAAHAUiSkAAAAAhGGMWwFjX65nbOw7EnTsqwcAAAAAOI7EFAAAAADC8Mslv2xcldfGviMBiSkAAAAAwFEkpgAAAAAQRsDYu3JuwNjWdUQgMQUAAAAAOIrEFAAAAADCCNi8Kq+dfUeCjn31AAAAAADHkZgCAAAAQBgBuRSwceVcO/uOBCSmAAAAAABHReTAdMmSJerZs6diY2OVmZmpDRs2NNp2xYoVcrlcIVtsbGxIG2OM5syZo+7duysuLk7Z2dn66quv7L4MAAAAABHCb1y2bx1ZxA1MV69erfz8fM2dO1cbN27UkCFDlJOTo7179zZak5CQoD179gS3b775JuT1hx56SI899pgKCwu1fv16derUSTk5OTp27JjdlwMAAAAAHV7EDUwXLVqkqVOnKi8vTwMGDFBhYaHi4+O1fPnyRmtcLpdSU1ODW0pKSvA1Y4wWL16su+++W1dccYUGDx6sZ599Vn/729/08ssvt8EVAQAAADjVnViV186tI4uoq6+pqVFZWZmys7OD+9xut7Kzs1VaWtpo3ZEjR3TOOecoLS1NV1xxhb744ovga9u3b1d5eXlIn4mJicrMzDxpn9XV1fL5fCEbAAAAAKD5Impgun//fvn9/pDEU5JSUlJUXl7eYE3fvn21fPlyvfLKK/rv//5vBQIBDR8+XN9++60kBeua06ckLViwQImJicEtLS2tJZcGAAAA4BQWkEsBY+PGqrztW1ZWliZOnKj09HRdeumleumll9S1a1f99re/bVG/BQUFqqysDG67du1qpTMGAAAAgI4lop5jmpycrKioKFVUVITsr6ioUGpqapP6iImJ0QUXXKBt27ZJUrCuoqJC3bt3D+kzPT290X68Xq+8Xm8zrwAAAABAJDI2P8fUkJhGDo/Ho4yMDBUXFwf3BQIBFRcXKysrq0l9+P1+ffbZZ8FBaK9evZSamhrSp8/n0/r165vcJwAAAADAuohKTCUpPz9fkyZN0tChQzVs2DAtXrxYVVVVysvLkyRNnDhRZ555phYsWCBJuu+++3TxxRerT58+OnTokB5++GF98803+tWvfiXp+Iq9t9xyi+6//36dd9556tWrl2bPnq0ePXpo7NixTl0mAAAAgFPIibmgdvbfkUXcwHTcuHHat2+f5syZo/LycqWnp6uoqCi4eNHOnTvldv8zCP773/+uqVOnqry8XJ07d1ZGRoY++OADDRgwINjmjjvuUFVVlaZNm6ZDhw7pkksuUVFRkWJjY9v8+gAAAACgo3EZY4zTJ9Ee+Hw+JSYmaoSuULQrxunTAQAAAE5JdaZWJXpFlZWVSkhIcPp0wjrxOf//rMtTTCePbceprarRmv94OmLuS2uLqDmmAAAAAID2J+K+ygsAAAAAbY05pvYiMQUAAAAAOIrEFAAAAADCCNj8HFM7+44EJKYAAAAAAEeRmAIAAABAGMwxtReJKQAAAADAUSSmAAAAABAGiam9SEwBAAAAAI4iMQUAAACAMEhM7UViCgAAAABwFIkpAAAAAIRBYmovElMAAAAAgKNITAEAAAAgDCMpIPtSTWNbz5GBxBQAAAAA4CgSUwAAAAAIgzmm9iIxBQAAAAA4isQUAAAAAMIgMbUXiSkAAAAAwFEkpgAAAAAQBompvUhMAQAAAACOIjEFAAAAgDBITO1FYgoAAAAAcBSJKQAAAACEYYxLxsZU086+IwGJKQAAAADAUSSmAAAAABBGQC4FZOMcUxv7jgQkpgAAAAAAR5GYAgAAAEAYrMprLxJTAAAAAICjSEwBAAAAIAxW5bUXiSkAAAAAwFEkpgAAAAAQBnNM7UViCgAAAABwFIkpAAAAAITBHFN7kZgCAAAAABxFYgoAAAAAYRib55iSmAIAAAAA4CASUwAAAAAIw0gyxt7+OzISUwAAAACAo0hMAQAAACCMgFxyycbnmNrYdyQgMQUAAAAAOIrEFAAAAADC4Dmm9iIxBQAAAAA4isQUAAAAAMIIGJdcNqaadj4jNRIwMAUAAACAMIyx+XExHfx5MXyVFwAAAADgKBJTAAAAAAiDxY/sRWIKAAAAAHAUiSkAAAAAhEFiai8SUwAAAACAo0hMAQAAACAMHhdjLxJTAAAAAICjInJgumTJEvXs2VOxsbHKzMzUhg0bGm27dOlS/eAHP1Dnzp3VuXNnZWdn12s/efJkuVyukC03N9fuywAAAAAQIU48x9TOrSOLuIHp6tWrlZ+fr7lz52rjxo0aMmSIcnJytHfv3gbbl5SU6Oqrr9Y777yj0tJSpaWladSoUdq9e3dIu9zcXO3Zsye4/eEPf2iLywEAAACADi/iBqaLFi3S1KlTlZeXpwEDBqiwsFDx8fFavnx5g+2fe+45XX/99UpPT1e/fv30u9/9ToFAQMXFxSHtvF6vUlNTg1vnzp3b4nIAAAAARIDjqabLxs3pK3RWRA1Ma2pqVFZWpuzs7OA+t9ut7OxslZaWNqmPo0ePqra2Vl26dAnZX1JSom7duqlv376aPn26Dhw4cNJ+qqur5fP5QjYAAAAAQPNF1MB0//798vv9SklJCdmfkpKi8vLyJvVx5513qkePHiGD29zcXD377LMqLi7Wgw8+qP/5n//RZZddJr/f32g/CxYsUGJiYnBLS0uzdlEAAAAATnn2pqX2PiM1EnSox8UsXLhQq1atUklJiWJjY4P7x48fH/z3QYMGafDgwTr33HNVUlKikSNHNthXQUGB8vPzgz/7fD4GpwAAAABgQUQlpsnJyYqKilJFRUXI/oqKCqWmpp609pFHHtHChQv15ptvavDgwSdt27t3byUnJ2vbtm2NtvF6vUpISAjZAAAAALRPpg22jiyiBqYej0cZGRkhCxedWMgoKyur0bqHHnpI8+bNU1FRkYYOHRr2ON9++60OHDig7t27t8p5AwAAAAAaF1EDU0nKz8/X0qVL9cwzz2jz5s2aPn26qqqqlJeXJ0maOHGiCgoKgu0ffPBBzZ49W8uXL1fPnj1VXl6u8vJyHTlyRJJ05MgR3X777frwww+1Y8cOFRcX64orrlCfPn2Uk5PjyDUCAAAAOLWcinNMlyxZop49eyo2NlaZmZnasGHDSdsfOnRIN9xwg7p37y6v16vvfe97Wrt2rdVb0qoibo7puHHjtG/fPs2ZM0fl5eVKT09XUVFRcEGknTt3yu3+53j7ySefVE1NjX72s5+F9DN37lzdc889ioqK0qeffqpnnnlGhw4dUo8ePTRq1CjNmzdPXq+3Ta8NAAAAAJpi9erVys/PV2FhoTIzM7V48WLl5ORo69at6tatW732NTU1+o//+A9169ZNL774os4880x98803SkpKavuTb4DLmI7+xJzW4fP5lJiYqBG6QtGuGKdPBwAAADgl1ZlalegVVVZWRsQ6LSc+5/d+5i5FxceGL7DIf/SY/jppfpPvS2Zmpi666CI98cQTko5PcUxLS9ONN96oWbNm1WtfWFiohx9+WFu2bFFMzKk3Xom4r/ICAAAAQHvl8/lCturq6nptampqVFZWFvIITLfbrezsbJWWljbY76uvvqqsrCzdcMMNSklJ0cCBAzV//vyTPiKzLTEwBQAAAIBw7J5f+o85pmlpaUpMTAxuCxYsqHcq+/fvl9/vD05nPCElJUXl5eUNnv5f//pXvfjii/L7/Vq7dq1mz56tRx99VPfff3/r3ysLIm6OKQAAAAC0V7t27Qr5Km9rrXsTCATUrVs3PfXUU4qKilJGRoZ2796thx9+WHPnzm2VY7QEA1MAAAAACMOY45ud/UtSQkJC2DmmycnJioqKUkVFRcj+iooKpaamNljTvXt3xcTEKCoqKrivf//+Ki8vV01NjTweT8suoIX4Ki8AAAAARBCPx6OMjAwVFxcH9wUCARUXFysrK6vBmu9///vatm2bAoFAcN9f/vIXde/e3fFBqcTAFAAAAADCOtWeY5qfn6+lS5fqmWee0ebNmzV9+nRVVVUpLy9PkjRx4kQVFBQE20+fPl0HDx7UzTffrL/85S96/fXXNX/+fN1www2tep+s4qu8AAAAABBhxo0bp3379mnOnDkqLy9Xenq6ioqKggsi7dy5U273P3PItLQ0vfHGG7r11ls1ePBgnXnmmbr55pt15513OnUJIRiYAgAAAEA4/7Jyrm39N9OMGTM0Y8aMBl8rKSmpty8rK0sffvhhs4/TFvgqLwAAAADAUSSmAAAAABBGW63K21GRmAIAAAAAHEViCgAAAADhmH9sdvbfgZGYAgAAAAAcRWIKAAAAAGFYedZoc/vvyEhMAQAAAACOIjEFAAAAgKbo4PNA7URiCgAAAABwFIkpAAAAAITBHFN7kZgCAAAAABxFYgoAAAAA4fAcU1uRmAIAAAAAHEViCgAAAABhuf6x2dl/x0ViCgAAAABwFIkpAAAAAITDHFNbkZgCAAAAABxFYgoAAAAA4ZCY2orEFAAAAADgKBJTAAAAAAjHuI5vdvbfgZGYAgAAAAAcRWIKAAAAAGEYc3yzs/+OjMQUAAAAAOAoElMAAAAACIdVeW1FYgoAAAAAcBSJKQAAAACEw6q8tiIxBQAAAAA4isQUAAAAAMJwmeObnf13ZCSmAAAAAABHkZgCAAAAQDisymsrElMAAAAAgKNITAEAAAAgHFbltRWJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhENiaisSUwAAAACAo0hMAQAAACAcElNbkZgCAAAAABxFYgoAAAAA4fAcU1uRmAIAAAAAHEViCgAAAABhuMzxzc7+OzISUwAAAACAo0hMAQAAACAcVuW1VUQmpkuWLFHPnj0VGxurzMxMbdiw4aTtX3jhBfXr10+xsbEaNGiQ1q5dG/K6MUZz5sxR9+7dFRcXp+zsbH311Vd2XgIAAAAARIwFCxZIkjZu3Kjq6upW779ZA9Ndu3a1+gk01+rVq5Wfn6+5c+dq48aNGjJkiHJycrR3794G23/wwQe6+uqrNWXKFH3yyScaO3asxo4dq88//zzY5qGHHtJjjz2mwsJCrV+/Xp06dVJOTo6OHTvWVpcFAAAAAKesESNGSJIWLlyoCy+8UIMGDdL48eM1f/58vfbaa6qoqGhR/y5jTJND406dOmnmzJmaNWuW4uPjW3RgqzIzM3XRRRfpiSeekCQFAgGlpaXpxhtv1KxZs+q1HzdunKqqqvTaa68F91188cVKT09XYWGhjDHq0aOHZs6cqdtuu02SVFlZqZSUFK1YsULjx49v0nn5fD4lJiZqhK5QtCumFa4UAAAAaH/qTK1K9IoqKyuVkJDg9OmEdeJz/tkP3i93XKxtxwl8d0w777w7Yu7Ld999p88//1yffvqpPv30U73//vsaPXq05s2bZ6m/ZiWm69at0xtvvKHzzjtPK1assHTAlqipqVFZWZmys7OD+9xut7Kzs1VaWtpgTWlpaUh7ScrJyQm23759u8rLy0PaJCYmKjMzs9E+AQAAAHQsLv1zZV5bNqcvsBGHDx9WQUGBLrvsMl111VX69a9/rV27dikuLk4XXXSRpkyZol//+tcqKyurN2WyOZo1MB0+fLjWr1+vBQsWaPbs2crIyNB7771n+eDNtX//fvn9fqWkpITsT0lJUXl5eYM15eXlJ21/4p/N6VOSqqur5fP5QjYAAAAAaE+uueYaPfXUU0pKSlJ0dLSefPJJnXfeefqv//qvem0//PBDy8extPjRxIkTtXXrVo0ZM0aXXXaZfvazn2n79u2WTyISLViwQImJicEtLS3N6VMCAAAAYBfjsn87Bb377rt6+eWX9Yc//EErV67Uli1bVFxcrEWLFqmwsDCkbUyM9SmNLVqVd9SoUfrVr36lNWvWaMCAAbrjjjt05MiRlnR5UsnJyYqKiqo3sbaiokKpqakN1qSmpp60/Yl/NqdPSSooKFBlZWVwOxUWhgIAAACA1jRhwgSNHj1ao0ePVkFBgZ5//nmdccYZWrJkiR5++OFWO06zBqaFhYWaMmWKBg8erMTERI0cOVLvvfeerrvuOv3617/Wxx9/rAEDBujjjz9utRP8Vx6PRxkZGSouLg7uCwQCKi4uVlZWVoM1WVlZIe2l43NlT7Tv1auXUlNTQ9r4fD6tX7++0T4lyev1KiEhIWQDAAAA0E6ZNthOQRdffLF+//vfa+jQofr88881c+ZMDRgwQFdddZW++eYbTZ8+XU8++aTef//9Fh0nujmNH3jgAWVmZmrixIm6+OKLlZGRobi4uODr06ZN0/z58zV58uSQx7G0pvz8fE2aNElDhw7VsGHDtHjxYlVVVSkvL0/S8a8Zn3nmmcHn7Nx888269NJL9eijj2rMmDFatWqVPv74Yz311FOSJJfLpVtuuUX333+/zjvvPPXq1UuzZ89Wjx49NHbsWFuuAQAAAAAiwZtvvqmamhr9/ve/l9frlXR87Z8//vGPmjp1qnw+nwoLC/WXv/xF3333neXjNGtg2pSvq06ZMkWzZ8+2fELhjBs3Tvv27dOcOXNUXl6u9PR0FRUVBRcv2rlzp9zufwbBw4cP18qVK3X33Xfrrrvu0nnnnaeXX35ZAwcODLa54447VFVVpWnTpunQoUO65JJLVFRUpNhY+5aDBgAAABBB7E41T9HE9NFHH9XIkSM1cOBA5eXlaciQITp27JhWrFih9PR0Pffcc5Ikv9/fouM06zmmTWGM0bvvvqtLL720Nbs95fEcUwAAACC8SH2O6TnzH5DbxuAqcOyYvrnrP0/J+/Ldd9/pkUce0YsvvqjPPvtMkpSenq7f//73Ov/881vlGM1KTJvC5XJ1uEEpAAAAgPbtxPNG7ez/VBUXF6fZs2dr9uzZOnbsmOrq6nTaaae16jFafWAKAAAAAGif7JruyMAUAAAAAMLpoHNM20qLnmMKAAAAAEBLkZgCAAAAQDgkprZiYAoAAAAAYXTkxY/aAl/lBQAAAAA4isQUAAAAAMIxruObnf13YCSmAAAAAABHkZgCAAAAQDgsfmQrElMAAAAAgKNITAEAAAAgDFbltReJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhGPzHFMSUwAAAAAAHERiCgAAAADhMMfUViSmAAAAAABHkZgCAAAAQDgkprYiMQUAAAAAOIrEFAAAAADCcNm8Kq+tK/5GABJTAAAAAICjGJgCAAAAABzFwBQAAAAA4CjmmAIAAABAOKzKaysSUwAAAACAo0hMAQAAACAMVuW1F4kpAAAAAMBRJKYAAAAA0BQdPNW0E4kpAAAAAMBRJKYAAAAAEA6r8tqKxBQAAAAA4CgSUwAAAAAIg1V57UViCgAAAABwFIkpAAAAAITDHFNbkZgCAAAAABzFwBQAAAAAwjgxx9TOrbmWLFminj17KjY2VpmZmdqwYUOT6latWiWXy6WxY8c2/6A2YWAKAAAAABFm9erVys/P19y5c7Vx40YNGTJEOTk52rt370nrduzYodtuu00/+MEP2uhMm4aBKQAAAACEY9pga4ZFixZp6tSpysvL04ABA1RYWKj4+HgtX7680Rq/368JEybo3nvvVe/evZt3QJsxMAUAAACAU4TP5wvZqqur67WpqalRWVmZsrOzg/vcbreys7NVWlraaN/33XefunXrpilTpthy7i3BwBQAAAAAwmmjxDQtLU2JiYnBbcGCBfVOZf/+/fL7/UpJSQnZn5KSovLy8gZP//3339eyZcu0dOlSy7fATjwuBgAAAABOEbt27VJCQkLwZ6/X2+I+Dx8+rGuvvVZLly5VcnJyi/uzAwNTAAAAAAjD6sq5zelfkhISEkIGpg1JTk5WVFSUKioqQvZXVFQoNTW1Xvuvv/5aO3bs0OWXXx7cFwgEJEnR0dHaunWrzj333BZeQcvwVV4AAAAAiCAej0cZGRkqLi4O7gsEAiouLlZWVla99v369dNnn32mTZs2Bbef/OQn+tGPfqRNmzYpLS2tLU+/QSSmAAAAABCOhZVzm91/M+Tn52vSpEkaOnSohg0bpsWLF6uqqkp5eXmSpIkTJ+rMM8/UggULFBsbq4EDB4bUJyUlSVK9/U5hYAoAAAAAEWbcuHHat2+f5syZo/LycqWnp6uoqCi4INLOnTvldkfOF2QZmAIAAABAOKdYYipJM2bM0IwZMxp8raSk5KS1K1asaP4BbRQ5Q2gAAAAAQLtEYgoAAAAAYbTVqrwdFYkpAAAAAMBRJKYAAAAAEM4pOMe0PYmoxPTgwYOaMGGCEhISlJSUpClTpujIkSMnbX/jjTeqb9++iouL09lnn62bbrpJlZWVIe1cLle9bdWqVXZfDgAAAABAEZaYTpgwQXv27NG6detUW1urvLw8TZs2TStXrmyw/d/+9jf97W9/0yOPPKIBAwbom2++0XXXXae//e1vevHFF0PaPv3008rNzQ3+fOK5PgAAAADAHFN7RczAdPPmzSoqKtJHH32koUOHSpIef/xxjR49Wo888oh69OhRr2bgwIH6f//v/wV/Pvfcc/XAAw/oF7/4herq6hQd/c/LT0pKUmpqqv0XAgAAAAAIETFf5S0tLVVSUlJwUCpJ2dnZcrvdWr9+fZP7qaysVEJCQsigVJJuuOEGJScna9iwYVq+fLmM6eB/ZQEAAADgn0wbbB1YxCSm5eXl6tatW8i+6OhodenSReXl5U3qY//+/Zo3b56mTZsWsv++++7Tj3/8Y8XHx+vNN9/U9ddfryNHjuimm25qtK/q6mpVV1cHf/b5fM24GgAAAADACY4PTGfNmqUHH3zwpG02b97c4uP4fD6NGTNGAwYM0D333BPy2uzZs4P/fsEFF6iqqkoPP/zwSQemCxYs0L333tvi8wIAAAAQAViV11aOD0xnzpypyZMnn7RN7969lZqaqr1794bsr6ur08GDB8PODT18+LByc3N1+umna82aNYqJiTlp+8zMTM2bN0/V1dXyer0NtikoKFB+fn7wZ5/Pp7S0tJP2CwAAAACoz/GBadeuXdW1a9ew7bKysnTo0CGVlZUpIyNDkvT2228rEAgoMzOz0Tqfz6ecnBx5vV69+uqrio2NDXusTZs2qXPnzo0OSiXJ6/We9HUAAAAA7YfrH5ud/Xdkjg9Mm6p///7Kzc3V1KlTVVhYqNraWs2YMUPjx48Prsi7e/dujRw5Us8++6yGDRsmn8+nUaNG6ejRo/rv//5v+Xy+4FzQrl27KioqSn/84x9VUVGhiy++WLGxsVq3bp3mz5+v2267zcnLBQAAAIAOI2IGppL03HPPacaMGRo5cqTcbreuvPJKPfbYY8HXa2trtXXrVh09elSStHHjxuCKvX369Anpa/v27erZs6diYmK0ZMkS3XrrrTLGqE+fPlq0aJGmTp3adhcGAAAA4NTGHFNbRdTAtEuXLlq5cmWjr/fs2TPkMS8jRowI+9iX3Nxc5ebmtto5AgAAAACaJ6IGpgAAAADgBJc5vtnZf0fmdvoEAAAAAAAdG4kpAAAAAITDHFNbkZgCAAAAABxFYgoAAAAATdHBU007kZgCAAAAABxFYgoAAAAAYbAqr71ITAEAAAAAjiIxBQAAAIBwWJXXViSmAAAAAABHkZgCAAAAQBjMMbUXiSkAAAAAwFEkpgAAICK4oq19bHF5vdaPGWPxo5LFc1VUlLU6SS63xbyhreskye2yVueyWNeCczVtfa4tqbV8f9r2XI2/Wtpi/ZCOYY6prUhMAQAAAACOIjEFAAAAgDCYY2ovElMAAAAAgKNITAEAAAAgHOaY2orEFAAAAADgKBJTAAAAAAiHxNRWJKYAAAAAAEeRmAIAAABAGKzKay8SUwAAAACAo0hMAQBARHB5vZbq3EmJlo9p4qwdU54Ya8fzWP9oFoiJslhnLacwUdbzDRPtslQXiLJWZ6JbcK7WbquM29q5SlLA4v0xFi/Tap0kGQt/JnW1x6Qt1o/pGOaY2orEFAAAAADgKBJTAAAAAAjDZYxcxr5Y086+IwGJKQAAAADAUSSmAAAAABAOc0xtRWIKAAAAAHAUiSkAAAAAhMFzTO3FwBQAAAAAwuGrvLbiq7wAAAAAAEeRmAIAAABAGHyV114MTAEAQERwxVj72GLivJaPaTrFWqoLxMVYq/NGWaqTJL/F2kCMq03rJCkQbfGYlusslbXsmNb/KGUsnm8gytq5mpacq4VafzVf2kR9DEwBAAAAIBzmmNqKv64AAAAAADiKxBQAAAAAwmCOqb1ITAEAAAAAjiIxBQAAAIBwmGNqKxJTAAAAAICjSEwBAAAAoAk6+jxQO5GYAgAAAAAcRWIKAAAAAOEYc3yzs/8OjIEpAACIDNEWP7Z4YiwfMhBnrbYu3lqdP9b6l9ms1vo9Lmt1MdbqJClg8Y/Ecl20A+fagk/ZxmJtIMri8SzWSZKJbv5gyn+sYw/A0DAGpgAAAAAQBs8xtRdzTAEAAAAAjiIxBQAAAIBweI6prUhMAQAAAACOIjEFAAAAgDBcgeObnf13ZCSmAAAAAABHkZgCAAAAQDjMMbUViSkAAAAAwFEkpgAAAAAQBs8xtRcDUwAAEBmioiyVGY/1jzsBr7Vj+mOtfSmtLs76l9nqYl2W6vxei3UeS2WSpIDH2jEDMRaPZ7FOkgIW3z4tOmaMtRGKsfZ2lYm2PiKycn8Cng4+AkODIuqrvAcPHtSECROUkJCgpKQkTZkyRUeOHDlpzYgRI+RyuUK26667LqTNzp07NWbMGMXHx6tbt266/fbbVVdXZ+elAAAAAIgkxti/dWARlZhOmDBBe/bs0bp161RbW6u8vDxNmzZNK1euPGnd1KlTdd999wV/jo+PD/673+/XmDFjlJqaqg8++EB79uzRxIkTFRMTo/nz59t2LQAAAACA4yJmYLp582YVFRXpo48+0tChQyVJjz/+uEaPHq1HHnlEPXr0aLQ2Pj5eqampDb725ptv6ssvv9Rbb72llJQUpaena968ebrzzjt1zz33yONpwfdUAAAAALQLzDG1V8R8lbe0tFRJSUnBQakkZWdny+12a/369Setfe6555ScnKyBAweqoKBAR48eDel30KBBSklJCe7LycmRz+fTF1980Wif1dXV8vl8IRsAAAAAoPkiJjEtLy9Xt27dQvZFR0erS5cuKi8vb7Tummuu0TnnnKMePXro008/1Z133qmtW7fqpZdeCvb7r4NSScGfT9bvggULdO+991q9HAAAAACRhOeY2srxgemsWbP04IMPnrTN5s2bLfc/bdq04L8PGjRI3bt318iRI/X111/r3HPPtdxvQUGB8vPzgz/7fD6lpaVZ7g8AAAAAOirHB6YzZ87U5MmTT9qmd+/eSk1N1d69e0P219XV6eDBg43OH21IZmamJGnbtm0699xzlZqaqg0bNoS0qaiokKST9uv1euX1ept8XAAAAACRizmm9nJ8YNq1a1d17do1bLusrCwdOnRIZWVlysjIkCS9/fbbCgQCwcFmU2zatEmS1L1792C/DzzwgPbu3Rv8qvC6deuUkJCgAQMGNPNqAAAAAADNFTGLH/Xv31+5ubmaOnWqNmzYoD//+c+aMWOGxo8fH1yRd/fu3erXr18wAf366681b948lZWVaceOHXr11Vc1ceJE/fCHP9TgwYMlSaNGjdKAAQN07bXX6n//93/1xhtv6O6779YNN9xAIgoAAADgOJ5jaivHE9PmeO655zRjxgyNHDlSbrdbV155pR577LHg67W1tdq6dWtw1V2Px6O33npLixcvVlVVldLS0nTllVfq7rvvDtZERUXptdde0/Tp05WVlaVOnTpp0qRJIc89BQAAznO5rf19eiAmyvIx/V5rtf5Ya+daF+uyVNeSWr/Vuhb8/X3A4tP4AjHW6vwe6x/4rR7TxLTkmNZqLR8zqgUDophAs0tMTK3146HdiqiBaZcuXbRy5cpGX+/Zs6fMv/xNQ1pamv7nf/4nbL/nnHOO1q5d2yrnCAAAAKD9YY6pvSLmq7wAAAAAgPYpohJTAAAAAHAEzzG1FYkpAAAAAMBRJKYAAAAAEAZzTO1FYgoAAAAAcBSJKQAAAACEEzDHNzv778BITAEAAAAAjiIxBQAAAIBwWJXXVgxMAQBAZHBb+6JXIMb6F8QCMS5LdX6PxTqvtTpJ8sdaPGasxeN5rdW1pDbgsfbJ3WpdS2pNTAtGGTEBS2Uui3VR0dbqJCk6xt/sGr+7xvLx0H4xMAUAAACAMFyyeVVe+7qOCMwxBQAAAAA4isQUAAAAAMIx5vhmZ/8dGIkpAAAAAESgJUuWqGfPnoqNjVVmZqY2bNjQaNulS5fqBz/4gTp37qzOnTsrOzv7pO3bGgNTAAAAAAjDZezfmmP16tXKz8/X3LlztXHjRg0ZMkQ5OTnau3dvg+1LSkp09dVX65133lFpaanS0tI0atQo7d69uxXuTssxMAUAAACACLNo0SJNnTpVeXl5GjBggAoLCxUfH6/ly5c32P65557T9ddfr/T0dPXr10+/+93vFAgEVFxc3MZn3jAGpgAAAAAQjmmDrYlqampUVlam7Ozs4D63263s7GyVlpY2qY+jR4+qtrZWXbp0afqBbcTiRwAAAABwivD5fCE/e71eeb2hD//dv3+//H6/UlJSQvanpKRoy5YtTTrOnXfeqR49eoQMbp1EYgoAAAAAYbiMsX2TpLS0NCUmJga3BQsWtPq1LFy4UKtWrdKaNWsUGxvb6v1bQWIKAAAAAKeIXbt2KSEhIfjzv6elkpScnKyoqChVVFSE7K+oqFBqaupJ+3/kkUe0cOFCvfXWWxo8eHDrnHQrYGAKAAAig9vaF71MlPUviAViXJbq/FbrPJbKjtfW/+xqb12s9WcuWr3OgMVjBjwBaweUJIu1rhYcMzrGb6kuxlNnqc4Tbe14khTrqW12jd9Vbfl4jgr8Y7Ozf0kJCQkhA9OGeDweZWRkqLi4WGPHjj1e/o+FjGbMmNFo3UMPPaQHHnhAb7zxhoYOHdpaZ94qGJgCAAAAQITJz8/XpEmTNHToUA0bNkyLFy9WVVWV8vLyJEkTJ07UmWeeGfwq8IMPPqg5c+Zo5cqV6tmzp8rLyyVJp512mk477TTHruMEBqYAAAAAEMa/zgO1q//mGDdunPbt26c5c+aovLxc6enpKioqCi6ItHPnTrn/5ZsmTz75pGpqavSzn/0spJ+5c+fqnnvuafH5txQDUwAAAACIQDNmzGj0q7slJSUhP+/YscP+E2oBBqYAAAAAEE4znzVqqf8OjMfFAAAAAAAcRWIKAAAAAOEYc3yzs/8OjMQUAAAAAOAoElMAAAAACMNljm929t+RkZgCAAAAABxFYgoAACKD22WpzERbq5OkgMXaQIzF43lacK4ea3V+r8U6i8eTpECstWgoEBuwdkCPxTpJUV6/pboYT53lY3pirNXGeWqt1cVYq5OkTjE1za6pDTS/5pTAHFNbkZgCAAAAABxFYgoAAAAAYbgCxzc7++/ISEwBAAAAAI4iMQUAAACAcJhjaisSUwAAAACAo0hMAQAAACAc84/Nzv47MBJTAAAAAICjSEwBAAAAIAyXMXLZOA/Uzr4jAYkpAAAAAMBRJKYAACAyuFyWygJR1uokKRBt8ZgxFo9nsa5Fx/RYS2kCsdbTnUCsxQc2ev2WyqIt1kmSx1trqS7WY61OkjpZrI2PqbFUl+A5ZqlOkk6Prm52TU2dtfN0HKvy2orEFAAAAADgKBJTAAAAAAjHSLIY9je5/w6MxBQAAAAA4CgSUwAAAAAIg1V57UViCgAAAABwFIkpAAAAAIRjZPOqvPZ1HQlITAEAAAAAjiIxBQAAAIBweI6prUhMAQAAAACOIjEFAACRwW3t79NNtPW/hw9Y/KQUiHZZq4uxdjxJ8nuspS0By3UteKCjxdpor99SnTe21lKdJMV7ayzVdfJYq5Ok0z3VluoSYo61aZ0kJUUfbXZNda31Pw9HBSRZ+0+76f13YCSmAAAAAABHkZgCAAAAQBg8x9ReEZWYHjx4UBMmTFBCQoKSkpI0ZcoUHTlypNH2O3bskMvlanB74YUXgu0aen3VqlVtcUkAAAAAIsGJxY/s3DqwiEpMJ0yYoD179mjdunWqra1VXl6epk2bppUrVzbYPi0tTXv27AnZ99RTT+nhhx/WZZddFrL/6aefVm5ubvDnpKSkVj9/AAAAAEB9ETMw3bx5s4qKivTRRx9p6NChkqTHH39co0eP1iOPPKIePXrUq4mKilJqamrIvjVr1uiqq67SaaedFrI/KSmpXlsAAAAAkMTjYmwWMV/lLS0tVVJSUnBQKknZ2dlyu91av359k/ooKyvTpk2bNGXKlHqv3XDDDUpOTtawYcO0fPlymTBvjOrqavl8vpANAAAAANB8EZOYlpeXq1u3biH7oqOj1aVLF5WXlzepj2XLlql///4aPnx4yP777rtPP/7xjxUfH68333xT119/vY4cOaKbbrqp0b4WLFige++9t/kXAgAAACDykJjayvHEdNasWY0uUHRi27JlS4uP891332nlypUNpqWzZ8/W97//fV1wwQW68847dccdd+jhhx8+aX8FBQWqrKwMbrt27WrxOQIAAABAR+R4Yjpz5kxNnjz5pG169+6t1NRU7d27N2R/XV2dDh482KS5oS+++KKOHj2qiRMnhm2bmZmpefPmqbq6Wl6vt8E2Xq+30dcAAAAAtDMBSS6b++/AHB+Ydu3aVV27dg3bLisrS4cOHVJZWZkyMjIkSW+//bYCgYAyMzPD1i9btkw/+clPmnSsTZs2qXPnzgw8AQA4hRi3tU+EJsr6MQPR1o4ZiLF6PGt1LTqmx+LXBz3WP0VHef3WDumttVQX762xVCdJp3urrdXFWKuTpM7eo5bqEmO+s3a8aGvHk6Qu0VXNrjnmqbN8PLRfjg9Mm6p///7Kzc3V1KlTVVhYqNraWs2YMUPjx48Prsi7e/dujRw5Us8++6yGDRsWrN22bZveffddrV27tl6/f/zjH1VRUaGLL75YsbGxWrdunebPn6/bbrutza4NAAAAwKnNZYxcNs4DtbPvSBAxA1NJeu655zRjxgyNHDlSbrdbV155pR577LHg67W1tdq6dauOHg39W5/ly5frrLPO0qhRo+r1GRMToyVLlujWW2+VMUZ9+vTRokWLNHXqVNuvBwAAAAAQYQPTLl26aOXKlY2+3rNnzwYf8zJ//nzNnz+/wZrc3Fzl5ua22jkCAAAAaIdYlddWjq/KCwAAAADo2CIqMQUAAAAARwSM5LIx1QyQmAIAAAAA4BgSUwAAAAAIhzmmtiIxBQAAAAA4isQUAAAAAMKyOTFVx05MGZgCAIDI4HJZKjNua3WSFIiyWGfxE1YgxlqdJJkYax9qrda5PAFLdZIU46mzVBfrqbVU18lTY6lOkk6PqbZU19l71PIxu8RUWao7w2Jdl+gjluqs1h6N9ls+HtovBqYAAAAAEA5zTG3FHFMAAAAAgKNITAEAAAAgnICRrfNAeY4pAAAAAADOITEFAAAAgHBM4PhmZ/8dGIkpAAAAAMBRJKYAAAAAEA6r8tqKxBQAAAAA4CgSUwAAAAAIh1V5bcXAFAAARAaXy1JZINpanSQZi5+UrNYFYqx/MLVcG2NtwZXoGL+140nyxNRZquvkqbVUd7qn2lKdJHX2HrVU1yWmyvIxz7BYmxxz2Nrxoo5YqpOkrtG+ZtdURXfsRX7QMAamAAAAABAOc0xtxRxTAAAAAICjSEwBAAAAIBwjmxNT+7qOBCSmAAAAAABHkZgCAAAAQDjMMbUViSkAAAAAwFEkpgAAAAAQTiAgycZH3QQ69mN0SEwBAAAAAI4iMQUAAACAcJhjaisSUwAAAACAo0hMAQBAZHC5LJWZFvw1fCDK2jEDUdaOZyzWSZKJsZa2uGKszWuL8dRZqpOkOE+tpbr4mBpLdQkxxyzVSVJizHeW6s6IqbJ8zOSYw5bqukX7LNV1jbJWJ0ld3M2/t3HuCJ1LSWJqKxJTAAAAAICjSEwBAAAAIJyAkWRjqhkgMQUAAAAAwDEkpgAAAAAQhjEBGWPf/Fg7+44EJKYAAAAAAEeRmAIAAABAOMbYOw+UVXkBAAAAAHAOiSkAAAAAhGNsXpWXxBQAAAAAAOeQmAIAgMjgdlkqMy34a3gT1cZ10S1ITKKs1UZFW1sJ1BPtt1QnSXExtZbqEjzHrNXFWKuTpM7RRy3VdYk+YvmYZ0RZq+0a5bNY952lOknqYuG/r1iL71XHBQKSy8aVc1mVFwAAAAAA55CYAgAAAEA4zDG1FYkpAAAAAMBRJKYAAAAAEIYJBGRsnGNqmGMKAAAAAIBzSEwBAAAAIBzmmNqKxBQAAAAA4CgSUwAAAAAIJ2AkF4mpXUhMAQAAAACOIjEFAACRweWyVGairNUdr7VYF20t+Qi05JNZjLUVPaNj/JbqYj21luokqVNMjaW606OrLdUlRR+1VCdJXaKrLNYdsXzMrtE+a8d0H7NYZ6lMkpQc1anZNZ6oCF191hhJNp47iSkAAAAAAM4hMQUAAACAMEzAyNg4x9SQmAIAAAAA4BwSUwAAAAAIxwRk7xzTCJ1720oiKjF94IEHNHz4cMXHxyspKalJNcYYzZkzR927d1dcXJyys7P11VdfhbQ5ePCgJkyYoISEBCUlJWnKlCk6csT6hHUAAAAAsNuSJUvUs2dPxcbGKjMzUxs2bDhp+xdeeEH9+vVTbGysBg0apLVr17bRmYYXUQPTmpoa/fznP9f06dObXPPQQw/pscceU2FhodavX69OnTopJydHx479c9WyCRMm6IsvvtC6dev02muv6d1339W0adPsuAQAAAAAEcgEjO1bc6xevVr5+fmaO3euNm7cqCFDhignJ0d79+5tsP0HH3ygq6++WlOmTNEnn3yisWPHauzYsfr8889b4/a0mMtE4CzbFStW6JZbbtGhQ4dO2s4Yox49emjmzJm67bbbJEmVlZVKSUnRihUrNH78eG3evFkDBgzQRx99pKFDh0qSioqKNHr0aH377bfq0aNHk87J5/MpMTFRI3SFol0xLbo+AABQX9SA71mqOzS4i+VjVqVa+zv86i7WPl7VJFr/WGYSrD2+JfY0a49uSTrN+iNYzoizVpsSe9handfa41ckqbun0toxYw5ZPmZqtLVjdnVbu69do6y/76w8LsZ3OKDO3/urKisrlZCQYPnYbSX4Od/1f2z9nF9nalVi1jT5vmRmZuqiiy7SE088IUkKBAJKS0vTjTfeqFmzZtVrP27cOFVVVem1114L7rv44ouVnp6uwsLC1rsQiyIqMW2u7du3q7y8XNnZ2cF9iYmJyszMVGlpqSSptLRUSUlJwUGpJGVnZ8vtdmv9+vVtfs4AAAAATkEmYP/WRDU1NSorKwsZ57jdbmVnZwfHOf+utLQ0pL0k5eTkNNq+rbXrxY/Ky8slSSkpKSH7U1JSgq+Vl5erW7duIa9HR0erS5cuwTYNqa6uVnX1Px/yXFl5/G+26lQrRVwGDQDAqc/4q8M3akBd7bHwjRrhr7b2d/j+Y9Y+DAQ8LUhMY6wlpn63tcTU77L25yFJtQFrx6yps1ZXXWvt3kjSMU+dpbqj0X7Lx6yKtrYITpzbWl1sCxJTT1Tzj+k7crwm0r64affn/Dodf5/6fKEJv9frldfrDdm3f/9++f3+Bsc5W7ZsabD/8vLyk46LnOb4wHTWrFl68MEHT9pm8+bN6tevXxudUdMsWLBA9957b7397+vUmUAMAEC70vBnLfvqANjqwIEDSkxMdPo0wvJ4PEpNTdX75fZ/zj/ttNOUlpYWsm/u3Lm65557bD+20xwfmM6cOVOTJ08+aZvevXtb6js1NVWSVFFRoe7duwf3V1RUKD09Pdjm3ycI19XV6eDBg8H6hhQUFCg/Pz/486FDh3TOOedo586dEfEfWCTy+XxKS0vTrl27ImI+QqTiPrcN7nPb4D7bj3vcNrjPbYP73DYqKyt19tlnq0sX6/O/21JsbKy2b9+umhpriX1zGGPkcrlC9v17WipJycnJioqKUkVFRcj+ioqKRscwqampzWrf1hwfmHbt2lVdu3a1pe9evXopNTVVxcXFwYGoz+fT+vXrgyv7ZmVl6dChQyorK1NGRoYk6e2331YgEFBmZmajfTcUqUvH57Dyi8xeCQkJ3OM2wH1uG9zntsF9th/3uG1wn9sG97ltuN2Rs9xNbGysYmNjnT6NII/Ho4yMDBUXF2vs2LGSji9+VFxcrBkzZjRYk5WVpeLiYt1yyy3BfevWrVNWVlYbnHF4kfNukLRz505t2rRJO3fulN/v16ZNm7Rp06aQZ47269dPa9askSS5XC7dcsstuv/++/Xqq6/qs88+08SJE9WjR4/gH2D//v2Vm5urqVOnasOGDfrzn/+sGTNmaPz48U1ekRcAAAAA2lJ+fr6WLl2qZ555Rps3b9b06dNVVVWlvLw8SdLEiRNVUFAQbH/zzTerqKhIjz76qLZs2aJ77rlHH3/8caMD2bbmeGLaHHPmzNEzzzwT/PmCCy6QJL3zzjsaMWKEJGnr1q3BhYgk6Y477lBVVZWmTZumQ4cO6ZJLLlFRUVHI33g899xzmjFjhkaOHCm3260rr7xSjz32WNtcFAAAAAA007hx47Rv3z7NmTNH5eXlSk9PV1FRUXCBo507d4ak0sOHD9fKlSt1991366677tJ5552nl19+WQMHDnTqEkJE1MB0xYoVWrFixUnb/PvqXi6XS/fdd5/uu+++Rmu6dOmilStXtujcvF6v5s6d2+DXe9E6uMdtg/vcNrjPbYP7bD/ucdvgPrcN7nPb4D63nhkzZjSaeJaUlNTb9/Of/1w///nPbT4ra1wm0tZpBgAAAAC0KxE1xxQAAAAA0P4wMAUAAAAAOIqBKQAAAADAUQxMm+iBBx7Q8OHDFR8fr6SkpCbVGGM0Z84cde/eXXFxccrOztZXX30V0ubgwYOaMGGCEhISlJSUpClTpoQ8/qajae792LFjh1wuV4PbCy+8EGzX0OurVq1qi0s65Vh5z40YMaLe/bvuuutC2uzcuVNjxoxRfHy8unXrpttvv111dXV2Xsoprbn3+eDBg7rxxhvVt29fxcXF6eyzz9ZNN90Ussq4xHt5yZIl6tmzp2JjY5WZmakNGzactP0LL7ygfv36KTY2VoMGDdLatWtDXm/K7+mOqDn3eenSpfrBD36gzp07q3PnzsrOzq7XfvLkyfXet7m5uXZfximvOfd5xYoV9e7hvz9Tkfdzfc25xw39v87lcmnMmDHBNryX63v33Xd1+eWXq0ePHnK5XHr55ZfD1pSUlOjCCy+U1+tVnz59GlzctLm/79EOGDTJnDlzzKJFi0x+fr5JTExsUs3ChQtNYmKiefnll83//u//mp/85CemV69e5rvvvgu2yc3NNUOGDDEffvihee+990yfPn3M1VdfbdNVnPqaez/q6urMnj17QrZ7773XnHbaaebw4cPBdpLM008/HdLuX/8cOhIr77lLL73UTJ06NeT+VVZWBl+vq6szAwcONNnZ2eaTTz4xa9euNcnJyaagoMDuyzllNfc+f/bZZ+anP/2pefXVV822bdtMcXGxOe+888yVV14Z0q4jv5dXrVplPB6PWb58ufniiy/M1KlTTVJSkqmoqGiw/Z///GcTFRVlHnroIfPll1+au+++28TExJjPPvss2KYpv6c7mube52uuucYsWbLEfPLJJ2bz5s1m8uTJJjEx0Xz77bfBNpMmTTK5ubkh79uDBw+21SWdkpp7n59++mmTkJAQcg/Ly8tD2vB+DtXce3zgwIGQ+/v555+bqKgo8/TTTwfb8F6ub+3ateY///M/zUsvvWQkmTVr1py0/V//+lcTHx9v8vPzzZdffmkef/xxExUVZYqKioJtmvtnh/aBgWkzPf30000amAYCAZOammoefvjh4L5Dhw4Zr9dr/vCHPxhjjPnyyy+NJPPRRx8F2/zpT38yLpfL7N69u9XP/VTXWvcjPT3d/PKXvwzZ15RflB2B1Xt86aWXmptvvrnR19euXWvcbnfIh6Qnn3zSJCQkmOrq6lY590jSWu/l559/3ng8HlNbWxvc15Hfy8OGDTM33HBD8Ge/32969OhhFixY0GD7q666yowZMyZkX2Zmpvm///f/GmOa9nu6I2ruff53dXV15vTTTzfPPPNMcN+kSZPMFVdc0dqnGtGae5/Dff7g/VxfS9/L//Vf/2VOP/10c+TIkeA+3ssn15T/R91xxx3m/PPPD9k3btw4k5OTE/y5pX92iEx8ldcm27dvV3l5ubKzs4P7EhMTlZmZqdLSUklSaWmpkpKSNHTo0GCb7Oxsud1urV+/vs3P2WmtcT/Kysq0adMmTZkypd5rN9xwg5KTkzVs2DAtX7683jNvO4KW3OPnnntOycnJGjhwoAoKCnT06NGQfgcNGhR8oLMk5eTkyOfz6Ysvvmj9CznFtdZ/25WVlUpISFB0dOgjpzvie7mmpkZlZWUhv1Pdbreys7ODv1P/XWlpaUh76fj78kT7pvye7mis3Od/d/ToUdXW1qpLly4h+0tKStStWzf17dtX06dP14EDB1r13COJ1ft85MgRnXPOOUpLS9MVV1wR8vuV93Oo1ngvL1u2TOPHj1enTp1C9vNebplwv5tb488OkSk6fBNYUV5eLkkhH9RP/HzitfLycnXr1i3k9ejoaHXp0iXYpiNpjfuxbNky9e/fX8OHDw/Zf9999+nHP/6x4uPj9eabb+r666/XkSNHdNNNN7Xa+UcCq/f4mmuu0TnnnKMePXro008/1Z133qmtW7fqpZdeCvbb0Hv9xGsdTWu8l/fv36958+Zp2rRpIfs76nt5//798vv9Db7PtmzZ0mBNY+/Lf/0dfGJfY206Giv3+d/deeed6tGjR8iHytzcXP30pz9Vr1699PXXX+uuu+7SZZddptLSUkVFRbXqNUQCK/e5b9++Wr58uQYPHqzKyko98sgjGj58uL744gudddZZvJ//TUvfyxs2bNDnn3+uZcuWheznvdxyjf1u9vl8+u677/T3v/+9xb+HEJk69MB01qxZevDBB0/aZvPmzerXr18bnVH71NT73FLfffedVq5cqdmzZ9d77V/3XXDBBaqqqtLDDz/cbj7M232P/3VwNGjQIHXv3l0jR47U119/rXPPPddyv5Gmrd7LPp9PY8aM0YABA3TPPfeEvNbe38uIbAsXLtSqVatUUlISsjDP+PHjg/8+aNAgDR48WOeee65KSko0cuRIJ0414mRlZSkrKyv48/Dhw9W/f3/99re/1bx58xw8s/Zp2bJlGjRokIYNGxayn/cyYJ8OPTCdOXOmJk+efNI2vXv3ttR3amqqJKmiokLdu3cP7q+oqFB6enqwzd69e0Pq6urqdPDgwWB9e9DU+9zS+/Hiiy/q6NGjmjhxYti2mZmZmjdvnqqrq+X1esO2P9W11T0+ITMzU5K0bds2nXvuuUpNTa23Wl5FRYUk8V7+h6be58OHDys3N1enn3661qxZo5iYmJO2b2/v5cYkJycrKioq+L46oaKiotF7mpqaetL2Tfk93dFYuc8nPPLII1q4cKHeeustDR48+KRte/fureTkZG3btq1DfphvyX0+ISYmRhdccIG2bdsmiffzv2vJPa6qqtKqVat03333hT1OR38vW9HY7+aEhATFxcUpKiqqxf99IDJ16DmmXbt2Vb9+/U66eTweS3336tVLqampKi4uDu7z+Xxav3598G88s7KydOjQIZWVlQXbvP322woEAsEP/u1BU+9zS+/HsmXL9JOf/ERdu3YN23bTpk3q3Llzu/kg31b3+IRNmzZJUvDDT1ZWlj777LOQwdi6deuUkJCgAQMGtM5FngLsvs8+n0+jRo2Sx+PRq6++Wu9REA1pb+/lxng8HmVkZIT8Tg0EAiouLg5Jkf5VVlZWSHvp+PvyRPum/J7uaKzcZ0l66KGHNG/ePBUVFYXMrW7Mt99+qwMHDoQMoDoSq/f5X/n9fn322WfBe8j7OVRL7vELL7yg6upq/eIXvwh7nI7+XrYi3O/m1vjvAxHK6dWXIsU333xjPvnkk+CjSD755BPzySefhDySpG/fvuall14K/rxw4UKTlJRkXnnlFfPpp5+aK664osHHxVxwwQVm/fr15v333zfnnXdeh39czMnux7fffmv69u1r1q9fH1L31VdfGZfLZf70pz/V6/PVV181S5cuNZ999pn56quvzG9+8xsTHx9v5syZY/v1nIqae4+3bdtm7rvvPvPxxx+b7du3m1deecX07t3b/PCHPwzWnHhczKhRo8ymTZtMUVGR6dq1a4d/XExz7nNlZaXJzMw0gwYNMtu2bQt5FEFdXZ0xhvfyqlWrjNfrNStWrDBffvmlmTZtmklKSgquBn3ttdeaWbNmBdv/+c9/NtHR0eaRRx4xmzdvNnPnzm3wcTHhfk93NM29zwsXLjQej8e8+OKLIe/bE/9/PHz4sLnttttMaWmp2b59u3nrrbfMhRdeaM477zxz7NgxR67xVNDc+3zvvfeaN954w3z99demrKzMjB8/3sTGxpovvvgi2Ib3c6jm3uMTLrnkEjNu3Lh6+3kvN+zw4cPBz8WSzKJFi8wnn3xivvnmG2OMMbNmzTLXXnttsP2Jx8XcfvvtZvPmzWbJkiUNPi7mZH92aJ8YmDbRpEmTjKR62zvvvBNso388X/CEQCBgZs+ebVJSUozX6zUjR440W7duDen3wIED5uqrrzannXaaSUhIMHl5eSGD3Y4m3P3Yvn17vftujDEFBQUmLS3N+P3+en3+6U9/Munp6ea0004znTp1MkOGDDGFhYUNtu0ImnuPd+7caX74wx+aLl26GK/Xa/r06WNuv/32kOeYGmPMjh07zGWXXWbi4uJMcnKymTlzZshjTjqa5t7nd955p8HfMZLM9u3bjTG8l40x5vHHHzdnn3228Xg8ZtiwYebDDz8MvnbppZeaSZMmhbR//vnnzfe+9z3j8XjM+eefb15//fWQ15vye7ojas59Pueccxp8386dO9cYY8zRo0fNqFGjTNeuXU1MTIw555xzzNSpU/mAaZp3n2+55ZZg25SUFDN69GizcePGkP54P9fX3N8ZW7ZsMZLMm2++Wa8v3ssNa+z/Xyfu7aRJk8yll15aryY9Pd14PB7Tu3fvkM/PJ5zszw7tk8uYDvCcAQAAAADAKatDzzEFAAAAADiPgSkAAAAAwFEMTAEAAAAAjmJgCgAAAABwFANTAAAAAICjGJgCAAAAABzFwBQAAAAA4CgGpgAAAAAARzEwBQAAAAA4ioEpAAAAAMBRDEwBAAAAAI5iYAoAaFf+8Ic/KC4uTnv27Anuy8vL0+DBg1VZWengmQEAgMa4jDHG6ZMAAKC1GGOUnp6uH/7wh3r88cc1d+5cLV++XB9++KHOPPNMp08PAAA0INrpEwAAoDW5XC498MAD+tnPfqbU1FQ9/vjjeu+99xiUAgBwCiMxBQC0SxdeeKG++OILvfnmm7r00kudPh0AAHASzDEFALQ7RUVF2rJli/x+v1JSUpw+HQAAEAaJKQCgXdm4caNGjBih3/72t1qxYoUSEhL0wgsvOH1aAADgJJhjCgBoN3bs2KExY8borrvu0tVXX63evXsrKytLGzdu1IUXXuj06QEAgEaQmAIA2oWDBw9q+PDhGjFihAoLC4P7x4wZI7/fr6KiIgfPDgAAnAwDUwAAAACAo1j8CAAAAADgKAamAAAAAABHMTAFAAAAADiKgSkAAAAAwFEMTAEAAAAAjmJgCgAAAABwFANTAAAAAICjGJgCAAAAABzFwBQAAAAA4CgGpgAAAAAARzEwBQAAAAA4ioEpAAAAAMBR/z9taMwvBGysFwAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJOCAYAAACgF8qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMDElEQVR4nO3de5xVdb0//vceLoOoA3q4DJN4QU0l0TEIgtM3LebHoHxTz7GTlAZyDI6mdQxNpRJUMrx9/frV6FAd8fI9GmVfNS0DDaU6hehBOV5CjxgmioMXghHQAWbW7w9jn7ZcNjCsWXvPPJ+Px3roXvuzP/NZH9Zs9pvX/qyVS5IkCQAAAGhjFVkPAAAAgI5JQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCgAAQCYUpAAAAGRCQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCkDZuP3226N79+6xYcOG/L7evXtHLpfb4fZP//RPRfv+5je/GQMGDEhz+ADAB+SSJEmyHgQA7IzTTjstNm7cGA888EBERGzevDnmzJmzzbaNjY1x0UUXRVNTU/z85z+PE088cYd9P/bYYzF8+PB49tln4yMf+cgeHzsAsLXOWQ8AAHZGU1NTPPTQQ3HDDTfk93Xu3DnOPPPMbbYdPXp0vPvuu/G9732vaDEaETFs2LDo27dvPPDAAwpSAGgjvrILQFl49NFHY/369fGZz3xmh+2am5vjC1/4QixYsCAuv/zyOPfcc3eq/1wuF//zf/7PfPoKAKRPQQpAWXjggQfiYx/7WFRXV++w3bnnnhv33HNPnHfeeTFt2rRd+hknn3xyPPbYY/Hmm2+2ZqgAwE5SkAJQFh544IGi6eg3v/nN+OEPfxif+9zn4qabbtrln1FXVxeVlZXx4IMP7u4wAYBdoCAFoOQ99dRTsWLFijj55JO32+amm26K73znO1FXVxf/9//+36io2PW/4rp37x4jR470tV0AaCMKUgBK3q9//evo2bNnHHPMMdt8/kc/+lFccMEFMWTIkLj33nuja9euW7V58803Y8yYMbH33nvHEUccEfPnz99mXyeccEIsWLBgTw4fANgOBSkAJW/w4MGxZs2aWLZs2VbPzZs3L8aPHx+HH354PPjgg7HPPvtss4/zzjsvqqur480334zrrrsuPve5z8Xq1au3avf444/HkCFD9vgxAABbU5ACUPJGjBgRvXr1ivvvv79g/6JFi+K0006LPn36xEMPPRS9e/fe5uvXrVsX9913X1xxxRXRvXv3OPnkk2PQoEHxs5/9rKDdpk2bYu7cuUXXqgIAe4aCFICS16lTpzjppJMK1nYuXbo0xowZE127do158+bFQQcdtN3Xv/jii7HPPvvEAQcckN83aNCgeO655wra/frXv47GxkYFKQC0kc5ZDwAAdsbJJ58cY8eOjT//+c+Ry+Wivr4+3n777fjyl78cTz31VDz11FNbvaZPnz4xatSoWLduXVRVVRU8V1VVFW+//XbBvvvvvz+OPfbYOPDAA1M9FgDgfQpSAMrCqFGjoqKiIn75y19Gr169YsWKFRER8b3vfS++973vbfM148aNi1GjRsU+++wTjY2NBc81NjZutd70gQceiDPPPDOdAwAAtqIgBaAs7LvvvvGpT30q7r///pgzZ04kSbLTrz388MNj3bp18dprr8WHPvShiIh49tlnY9y4cfk2zzzzTLz88su+rgsAbcgaUgDKxsknnxxz586NTZs27dLr9tlnnzjllFNi2rRp8e6778bPf/7zePrpp+OUU07Jt7n//vujuro6Pvaxj+3pYQMA25FLduWfmAEgQ++99168+uqrcfDBB0fnzrv2JZ8333wzxo8fHwsWLIgDDjggvve970VdXV3++VWrVkVzc3PU1NTs6WEDANuhIAUAACATZfeV3d/85jfxmc98JmpqaiKXy8V9991X9DULFiyIj370o1FZWRmHHXZY3HbbbVu1mTlzZhx88MHRrVu3GDZsWDz++ON7fvAAAAB7QHupi8quIF2/fn0ce+yxMXPmzJ1qv3z58hgzZkx86lOfiiVLlsQFF1wQX/rSl2LevHn5Nj/+8Y9j8uTJMW3atHjyySfj2GOPjfr6+njjjTfSOgwAAIDd1l7qorL+ym4ul4t77703Tj311O22ueSSS+IXv/hFPPvss/l9Y8eOjTVr1sTcuXMjImLYsGHxsY99LL773e9GRERLS0v0798/vvKVr8Sll16a6jEAAAC0RjnXRe3+ti8LFy4suGhFRER9fX1ccMEFERGxcePGWLx4cUyZMiX/fEVFRdTV1cXChQu3229TU1M0NTXlH7e0tMTq1avjb/7mbyKXy+3ZgwAAgHYiSZJ45513oqamJioqyuMLm++9915s3Lgx9Z+TJMlWtURlZWVUVla2uu+06qLWavcFaUNDQ/Tt27dgX9++faOxsTHefffd+POf/xzNzc3bbPP8889vt98ZM2bEFVdckcqYAQCgvVuxYkUccMABWQ+jqPfeey8OOWifaHijOfWftc8++8S6desK9k2bNi0uv/zyVvedVl3UWu2+IE3LlClTYvLkyfnHa9eujQMPPDA+ESdF5+iS4ciAUnPvfz2Tav9/9+FBqfZPttI+f8hWOf/+OjfZXY3rWuKgj74c++67b9ZD2SkbN26Mhjea40+LD46qfdNLdBvfaYmDBr8cK1asiKqqqvz+PZGOlrJ2X5BWV1fHqlWrCvatWrUqqqqqYq+99opOnTpFp06dttmmurp6u/1uLzrvHF2ic05BCvy3NP/yigjvOe1c2ucP2Srn31/nJq1Vbsvc9tk3F/vsm96YW+L9vquqqgoK0j0lrbqotdr9O8nw4cNj/vz5BfsefvjhGD58eEREdO3aNQYPHlzQpqWlJebPn59vAwAAUM5KtS4qu4R03bp1sWzZsvzj5cuXx5IlS2L//fePAw88MKZMmRKvvfZa3HHHHRERcc4558R3v/vduPjii+Mf//Ef45FHHomf/OQn8Ytf/CLfx+TJk2P8+PExZMiQGDp0aNx4442xfv36mDBhQpsfHwAAUHqak5ZoTvH+JM1Jyy61by91UdkVpP/xH/8Rn/rUp/KPt6zjHD9+fNx2223x+uuvxyuvvJJ//pBDDolf/OIX8bWvfS3+z//5P3HAAQfEv/7rv0Z9fX2+zemnnx5vvvlmTJ06NRoaGqK2tjbmzp271YJeAACAUtBe6qKyvg9pKWlsbIwePXrECXFKWa8HAfa8eSuXpNp/fU1tqv2TrbTPH7JVzr+/zk12V+M7LbHfh/8Ya9euTWWt5J625XN+wwsHpn5Ro+ojXimbedlT2v0aUgAAAEpT2X1lFwAAoK21REvs2irPXe+/I5KQAgAAkAkJKQAAQBHNSRLNKV5+J82+S5mEFAAAgExISAEAAIpoiSRaIr0UM82+S5mEFAAAgExISAEAAIpoiSSaJaR7nIQUAACATEhIAQAAirCGNB0KUoCU1dfUptr/vJVLUu0/7fFDR5b272+ayv29DSgNClIAAIAi3Ic0HdaQAgAAkAkJKQAAQBEtf9nS7L8jkpACAACQCQkpAABAEc0p34c0zb5LmYQUAACATEhIAQAAimhO3t/S7L8jkpACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABTRErlojlyq/XdEElIAAAAyISEFAAAooiV5f0uz/45IQgoAAEAmJKQAAABFNKe8hjTNvkuZhBQAAIBMSEgBylx9TW3WQyBF5f7nO2/lkqyH0GGlfe74s6WjkZCmQ0IKAABAJiSkAAAARbQkuWhJUrwPaYp9lzIJKQAAAJmQkAIAABRhDWk6JKQAAABkQkIKAABQRHNURHOKeV5zaj2XNgkpAAAAmZCQAgAAFJGkfJXdxFV2AQAAoO1ISAEAAIpwld10SEgBAADIhIQUAACgiOakIpqTFK+ym6TWdUmTkAIAAJAJCSkAAEARLZGLlhTzvJbomBGpghQAAKAIFzVKh4IUAKAdmrdySar919fUptp/2tKeH2DnKEgBAACKSP+iRh3zK7suagQAAEAmJKQAAABFvH9Ro/TWeabZdymTkAIAAJAJCSkAAEARLVERzW77ssdJSAEAAMiEhBQAAKAIV9lNh4QUAACATJRlQTpz5sw4+OCDo1u3bjFs2LB4/PHHt9v2hBNOiFwut9U2ZsyYfJuzzjprq+dHjx7dFocCAACUgZaoSH3bVe2hLiq7r+z++Mc/jsmTJ8esWbNi2LBhceONN0Z9fX288MIL0adPn63a33PPPbFx48b847fffjuOPfbY+Id/+IeCdqNHj45bb701/7iysjK9gwAAAGiF9lIXlV1CesMNN8TEiRNjwoQJMXDgwJg1a1Z07949Zs+evc32+++/f1RXV+e3hx9+OLp3777VxFdWVha022+//dricAAAgDLQnORS33ZFe6mLyqog3bhxYyxevDjq6ury+yoqKqKuri4WLly4U33ccsstMXbs2Nh7770L9i9YsCD69OkTRxxxRJx77rnx9ttv77CfpqamaGxsLNgAAABa44M1RlNT01ZtSqkuaq2yKkjfeuutaG5ujr59+xbs79u3bzQ0NBR9/eOPPx7PPvtsfOlLXyrYP3r06Ljjjjti/vz5cc0118Svf/3rOPHEE6O5uXm7fc2YMSN69OiR3/r37797BwUAAJS85r/chzTNLSKif//+BXXGjBkzthpLKdVFrVV2a0hb45ZbbolBgwbF0KFDC/aPHTs2//+DBg2KY445Jg499NBYsGBBjBw5cpt9TZkyJSZPnpx/3NjYqCgFAABaZcWKFVFVVZV/nMYazj1ZF7VWWSWkvXr1ik6dOsWqVasK9q9atSqqq6t3+Nr169fHnDlz4uyzzy76cwYMGBC9evWKZcuWbbdNZWVlVFVVFWwAAED71JJUpL5FxFY1xrYK0lKqi1qrrArSrl27xuDBg2P+/Pn5fS0tLTF//vwYPnz4Dl979913R1NTU5x55plFf86rr74ab7/9dvTr16/VYwYAANiT2lNdVHZf2Z08eXKMHz8+hgwZEkOHDo0bb7wx1q9fHxMmTIiIiHHjxsWHPvShrb5rfcstt8Spp54af/M3f1Owf926dXHFFVfEaaedFtXV1fHSSy/FxRdfHIcddljU19e32XEB2zdv5ZJU+6+vqU21f4D2yHvzjqU9/rTnn6399TrPdPpPdql9e6mLyq4gPf300+PNN9+MqVOnRkNDQ9TW1sbcuXPzC3pfeeWVqKgoPFFeeOGF+Pd///d46KGHtuqvU6dO8fTTT8ftt98ea9asiZqamhg1alRMnz7dvUgBAICS1F7qolySJLtWirNNjY2N0aNHjzghTonOuS5ZDwfaFf8KD+VLisPuKveEsdzHn6bGd1pivw//MdauXVsW12HZ8jn/+08Ojr32SS/Pe3fd5vinjy4um3nZU8pqDSkAAADtR9l9ZRcAAKCttURFtKSY56XZdynrmEcNAABA5iSkAAAARTQnFdGcpHiV3RT7LmUd86gBAADInIQUAACgiJbIRUvkUu2/I5KQAgAAkAkJKQAAQBHWkKajYx41AAAAmZOQAgAAFNEcFdGcYp6XZt+lrGMeNQAAAJmTkAIAABTRkuSiJUnxKrsp9l3KJKQAAABkQkIKAABQREvKa0hbOmhWqCAFWm3eyiWp9l9fU5tq/wCUnrT/bgFKg4IUAACgiJakIlpSvFdomn2Xso551AAAAGROQgoAAFBEc+SiOdK7Em6afZcyCSkAAACZkJACAAAUYQ1pOjrmUQMAAJA5CSkAAEARzZHuOs/m1HoubRJSAAAAMiEhBQAAKMIa0nR0zKMGAAAgcxJSAACAIpqTimhOMcVMs+9S1jGPGgAAgMxJSAEAAIpIIhctKV5lN0mx71ImIQUAACATElIAAIAirCFNR8c8agAAADInIQVarb6mNushACWq3N8f5q1ckvUQKFNpnztp/24597fWkuSiJUlvnWeafZcyCSkAAACZkJACAAAU0RwV0Zxinpdm36WsYx41AAAAmZOQAgAAFGENaTokpAAAAGRCQgoAAFBES1RES4p5Xpp9lzIFKQAAQBHNSS6aU/xabZp9l7KOWYYDAACQOQkpAABAES5qlA4JKQAAAJmQkAIAABSRJBXRkqSX5yUp9l3KOuZRAwAAkDkJKQAAQBHNkYvmSPEquyn2XcokpAAAAGRCQgoAAFBES5LulXBbktS6LmkSUgAAADIhIQUAyta8lUtS7b++pjbV/tMeP7DntKR8ld00+y5lHfOoAQAAyJyEFAAAoIiWyEVLilfCTbPvUiYhBQAAIBNlWZDOnDkzDj744OjWrVsMGzYsHn/88e22ve222yKXyxVs3bp1K2iTJElMnTo1+vXrF3vttVfU1dXFiy++mPZhAAAAZaI5yaW+7ar2UBeVXUH64x//OCZPnhzTpk2LJ598Mo499tior6+PN954Y7uvqaqqitdffz2//elPfyp4/tprr42bbropZs2aFYsWLYq999476uvr47333kv7cAAAAHZZe6mLyq4gveGGG2LixIkxYcKEGDhwYMyaNSu6d+8es2fP3u5rcrlcVFdX57e+ffvmn0uSJG688cb41re+Faecckocc8wxcccdd8TKlSvjvvvua4MjAgAASt2Wq+ymue2K9lIXlVVBunHjxli8eHHU1dXl91VUVERdXV0sXLhwu69bt25dHHTQQdG/f/845ZRT4rnnnss/t3z58mhoaCjos0ePHjFs2LAd9tnU1BSNjY0FGwAAQGt8sMZoamraqk0p1UWtVVYF6VtvvRXNzc0FlXxERN++faOhoWGbrzniiCNi9uzZ8bOf/Sz+7d/+LVpaWmLEiBHx6quvRkTkX7crfUZEzJgxI3r06JHf+vfv35pDAwAASlhL5KIlSXH7y1V2+/fvX1BnzJgxY6uxlFJd1Frt/rYvw4cPj+HDh+cfjxgxIo466qj4/ve/H9OnT9/tfqdMmRKTJ0/OP25sbFSUAgAArbJixYqoqqrKP66srNwj/aZVF7VWWRWkvXr1ik6dOsWqVasK9q9atSqqq6t3qo8uXbrEcccdF8uWLYuIyL9u1apV0a9fv4I+a2trt9tPZWXlHjs5AACA0pakfB/S5C99V1VVFRSk21JKdVFrldVXdrt27RqDBw+O+fPn5/e1tLTE/PnzC6r9HWlubo5nnnkmP8mHHHJIVFdXF/TZ2NgYixYt2uk+AQAA2kp7qovKKiGNiJg8eXKMHz8+hgwZEkOHDo0bb7wx1q9fHxMmTIiIiHHjxsWHPvSh/Hetr7zyyvj4xz8ehx12WKxZsyauu+66+NOf/hRf+tKXIuL9K01dcMEF8e1vfzsOP/zwOOSQQ+Kyyy6LmpqaOPXUU7M6TAAAoIRsWeuZZv+7or3URWVXkJ5++unx5ptvxtSpU6OhoSFqa2tj7ty5+cW3r7zySlRU/Hfw++c//zkmTpwYDQ0Nsd9++8XgwYPj97//fQwcODDf5uKLL47169fHpEmTYs2aNfGJT3wi5s6du9WNYgEAAEpBe6mLckmSJKn13oE0NjZGjx494oQ4JTrnumQ9HADoEOatXJJq//U1tan2n/b4ab/K+dxsfKcl9vvwH2Pt2rVF10qWgi2f8//u4QnRZe+uqf2cTes3xr3/361lMy97SlmtIQUAAKD9KLuv7AIAbJF2SpS2NMcvfW3fyvnbAZuTTRHxx9T6T0uprSFtLySkAAAAZEJCCgAAUERLyvchTbPvUiYhBQAAIBMSUgAAgCKsIU2HhBQAAIBMSEgBAACKkJCmQ0IKAABAJiSkAAAARUhI0yEhBQAAIBMSUgAAgCIkpOmQkAIAAJAJCSkAAEARSUS0RHopZpJaz6VNQgoAAEAmJKQAAABFWEOaDgkpAAAAmZCQAgAAFCEhTYeEFAAAgExISAEAAIqQkKZDQgoAAEAmJKQAAABFSEjTISEFAAAgExJSAACAIpIkF0mKKWaafZcyCSkAAACZkJACAAAU0RK5aIkU15Cm2Hcpk5ACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABThKrvpkJACAACQCQkpAABAEdaQpkNCCgAAQCYkpAAAAEVYQ5oOBSkAAEARScpf2VWQAgDQpuatXJJa3/U1tan1HZHu2Mlemn++je+0xH4fTq17yoyCFAAAoIgkIpIk3f47Ihc1AgAAIBMSUgAAgCJaIhe5SPG2Lyn2XcokpAAAAGRCQgoAAFCE276kQ0IKAABAJiSkAAAARbQkucilmGKmeY/TUiYhBQAAIBMSUgAAgCKSJOX7kHbQG5FKSAEAAMiEhBQAAKAIV9lNh4QUAACATEhIAQAAipCQpkNCCgAAQCYkpAAAAEW4D2k6JKQAAABkoiwT0pkzZ8Z1110XDQ0Nceyxx8bNN98cQ4cO3WbbH/7wh3HHHXfEs88+GxERgwcPju985zsF7c8666y4/fbbC15XX18fc+fOTe8gAIAOr76mNrW+561cklrf7UGacx9h/tujUrwPaXuoi8ouIf3xj38ckydPjmnTpsWTTz4Zxx57bNTX18cbb7yxzfYLFiyIz3/+8/Hoo4/GwoULo3///jFq1Kh47bXXCtqNHj06Xn/99fz2ox/9qC0OBwAAYJe1l7qo7ArSG264ISZOnBgTJkyIgQMHxqxZs6J79+4xe/bsbba/884748tf/nLU1tbGkUceGf/6r/8aLS0tMX/+/IJ2lZWVUV1dnd/222+/tjgcAACgDLyfkOZS3HZtPO2lLiqrgnTjxo2xePHiqKury++rqKiIurq6WLhw4U71sWHDhti0aVPsv//+BfsXLFgQffr0iSOOOCLOPffcePvtt3fYT1NTUzQ2NhZsAAAArfHBGqOpqWmrNqVUF7VWWRWkb731VjQ3N0ffvn0L9vft2zcaGhp2qo9LLrkkampqCv7wRo8eHXfccUfMnz8/rrnmmvj1r38dJ554YjQ3N2+3nxkzZkSPHj3yW//+/XfvoAAAgJKXbjr63/c47d+/f0GdMWPGjK3GUkp1UWuV5UWNdtfVV18dc+bMiQULFkS3bt3y+8eOHZv//0GDBsUxxxwThx56aCxYsCBGjhy5zb6mTJkSkydPzj9ubGxUlAIAAK2yYsWKqKqqyj+urKzc4z9jT9ZFrVVWCWmvXr2iU6dOsWrVqoL9q1atiurq6h2+9vrrr4+rr746HnrooTjmmGN22HbAgAHRq1evWLZs2XbbVFZWRlVVVcEGAAC0T0kbbBGxVY2xrYK0lOqi1iqrgrRr164xePDggoW3WxbiDh8+fLuvu/baa2P69Okxd+7cGDJkSNGf8+qrr8bbb78d/fr12yPjBgAA2FPaU11UVgVpRMTkyZPjhz/8Ydx+++2xdOnSOPfcc2P9+vUxYcKEiIgYN25cTJkyJd/+mmuuicsuuyxmz54dBx98cDQ0NERDQ0OsW7cuIiLWrVsXX//61+Oxxx6Ll19+OebPnx+nnHJKHHbYYVFfX5/JMQIAAKWlrdaQ7qz2UheV3RrS008/Pd58882YOnVqNDQ0RG1tbcydOze/oPeVV16Jior/rrP/5V/+JTZu3Bif/exnC/qZNm1aXH755dGpU6d4+umn4/bbb481a9ZETU1NjBo1KqZPn57K97UBAABaq73URbkk2dU73rAtjY2N0aNHjzghTonOuS5ZDwcA6ODmrVyS9RBKWn1Nbar9m//ta3ynJfb78B9j7dq1ZXEdli2f8wfc/o3o1L1b8RfspuYN78Ufx3+nbOZlTym7r+wCAADQPpTdV3YBAADa3G6s89zV/jsiCSkAAACZkJACAAAUkSTvb2n23xFJSAEAAMiEhBQAAKCI3blX6K723xEpSAEAMpLmrUHSvq1JuXNbFigNClIAAIBikly6V8LtoAmpNaQAAABkQkIKAABQhKvspkNCCgAAQCYkpAAAAMUkf9nS7L8DkpACAACQCQkpAABAEe5Dmg4JKQAAAJmQkAIAAOyMDrrOM00SUgAAADIhIQUAACjCGtJ0SEgBAADIhIQUAACgGPchTYWEFAAAgExISAEAAIrK/WVLs/+OR0EKAJCR+pra1Pqet3JJan0D7CkKUgAAgGKsIU2FNaQAAABkQkIKAABQjIQ0FRJSAAAAMiEhBQAAKCbJvb+l2X8HpCAFAAAoIkne39LsvyPylV0AAAAyISEFAAAoxkWNUiEhBQAAIBMSUgAAgGJc1CgVElIAAAAyISEFAAAoIpe8v6XZf0ckIQUAACATElIAAIBiXGU3FRJSAAAAMiEhBQAAKMZVdlOhIAUAaIfqa2qzHkKrzFu5JOshAG1AQQoAAFCMNaSpsIYUAACATEhIAQAAipGQpkJCCgAAQCYkpAAAAMVISFMhIQUAACATElIAAIBi3Ic0FRJSAAAAMiEhBQAAKCKXvL+l2X9HJCEFAAAgExJSAACAYlxlNxUSUgAAADKxSwXpihUr0hrHLpk5c2YcfPDB0a1btxg2bFg8/vjjO2x/9913x5FHHhndunWLQYMGxYMPPljwfJIkMXXq1OjXr1/stddeUVdXFy+++GKahwAAANAq7aEu2qWC9Mgjj4ypU6fGhg0b0hpPUT/+8Y9j8uTJMW3atHjyySfj2GOPjfr6+njjjTe22f73v/99fP7zn4+zzz47nnrqqTj11FPj1FNPjWeffTbf5tprr42bbropZs2aFYsWLYq999476uvr47333murwwIAANhp7aUuyiVJstPfVv79738fX/va1+LVV1+Nq666Ks4666zUBrY9w4YNi4997GPx3e9+NyIiWlpaon///vGVr3wlLr300q3an3766bF+/fr4+c9/nt/38Y9/PGpra2PWrFmRJEnU1NTEhRdeGBdddFFERKxduzb69u0bt912W4wdO3anxtXY2Bg9evSIE+KU6JzrsgeOFACg45q3cknWQyAlje+0xH4f/mOsXbs2qqqqsh5OUVs+5x90zbejolu31H5Oy3vvxZ8u+dZOz0up1kW7apcS0hEjRsSiRYtixowZcdlll8XgwYPjt7/9bSoD25aNGzfG4sWLo66uLr+voqIi6urqYuHChdt8zcKFCwvaR0TU19fn2y9fvjwaGhoK2vTo0SOGDRu23T4jIpqamqKxsbFgAwAAaI0P1hhNTU1btSmluqi1dusqu+PGjYvPfvazcfXVV8eJJ54Yo0ePjuuuuy4OOeSQPT2+Am+99VY0NzdH3759C/b37ds3nn/++W2+pqGhYZvtGxoa8s9v2be9NtsyY8aMuOKKK7baf+9/PRNV+6Zzraj6mtpU+gUAAIpIcu9vafYfEf379y/YPW3atLj88ssL9pVSXdRaraqcRo0aFV/60pfi3nvvjYEDB8bFF18c69at21NjK2lTpkyJtWvX5rdSueATAABQvlasWFFQZ0yZMiXrIaVqlxLSWbNmxRNPPBFPPPFELF26NCoqKuLoo4+Oc845J4499tiYM2dODBw4MO65554YMmTIHh9sr169olOnTrFq1aqC/atWrYrq6uptvqa6unqH7bf8d9WqVdGvX7+CNrW1tdsdS2VlZVRWVu7OYQAAAOWmje5DWlVVVXQNaSnVRa21SwnpVVddFWvXro1x48bFo48+GmvWrInFixfHzJkzY9KkSfHII4/EOeeck9rFjrp27RqDBw+O+fPn5/e1tLTE/PnzY/jw4dt8zfDhwwvaR0Q8/PDD+faHHHJIVFdXF7RpbGyMRYsWbbdPAACArLSnumiXEtKd+Vrq2WefHZdddtluD6iYyZMnx/jx42PIkCExdOjQuPHGG2P9+vUxYcKEiHh/feuHPvShmDFjRkRE/PM//3Mcf/zx8b/+1/+KMWPGxJw5c+I//uM/4gc/+EFERORyubjgggvi29/+dhx++OFxyCGHxGWXXRY1NTVx6qmnpnYcAABAGWmjhHRntZe6aLcuarQjffr0iUceeWRPd5t3+umnx5tvvhlTp06NhoaGqK2tjblz5+YX377yyitRUfHfwe+IESPirrvuim9961vxjW98Iw4//PC477774uijj863ufjii2P9+vUxadKkWLNmTXziE5+IuXPnRrcUL+sMAACwu9pLXbRL9yFl+7bcn+jP/zXAVXYBAFrJfUjbr3K9D+nBV12V+n1IX/7mN8tmXvaUdConAAAAKGKPf2UXAACg3SmxNaTthYQUAACATEhIAQAAipGQpkJCCgAAQCYkpAAAAEXkkve3NPvviCSkAAAAZEJCCgAAUEySe39Ls/8OSEIKAABAJiSkAAAAxbjKbioUpABA2Zq3ckmq/dfX1KbaP9tX7nOf9rkJ7YWCFAAAoAhX2U2HNaQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQDEpryGVkAIAAEAbkpACAAAUYw1pKiSkAAAAZEJCCgAAUIyENBUSUgAAADIhIQUAACgil/JVdlO9gm8Jk5ACAACQCQUpAAAAmfCVXQAAgGJc1CgVElIAAAAyISEFAAAowkWN0qEg3cP+7sODonOuS9bDKEnzVi7Jegglrb6mNushAB1Q2u/Nab+3ee9sv8r9c4Nzc/s2J5si4o9ZD4MSoSAFAADYGR00xUyTNaQAAABkQkIKAABQjKvspkJCCgAAQCYkpAAAAEW4ym46JKQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQBHWkKZDQgoAAEAmJKQAAADFWEOaCgkpAAAAmZCQAgAAFCMhTYWEFAAAgExISAEAAIpwld10KEhhJ9XX1GY9BIA9znsbpSrtc3PeyiVl3b/fXdoLBSkAAEAx1pCmwhpSAAAAMiEhBQAAKEZCmgoJKQAAAJmQkAIAABThKrvpkJACAACQCQkpAABAMdaQpqKsEtLVq1fHGWecEVVVVdGzZ884++yzY926dTts/5WvfCWOOOKI2GuvveLAAw+Mr371q7F27dqCdrlcbqttzpw5aR8OAABA6kq5jiqrhPSMM86I119/PR5++OHYtGlTTJgwISZNmhR33XXXNtuvXLkyVq5cGddff30MHDgw/vSnP8U555wTK1eujJ/+9KcFbW+99dYYPXp0/nHPnj3TPBQAAKCMlPMa0lKuo8qmIF26dGnMnTs3nnjiiRgyZEhERNx8881x0kknxfXXXx81NTVbveboo4+O//f//l/+8aGHHhpXXXVVnHnmmbF58+bo3Pm/D79nz55RXV2d/oEAAAC0kVKvo8rmK7sLFy6Mnj175icxIqKuri4qKipi0aJFO93P2rVro6qqqmASIyLOO++86NWrVwwdOjRmz54dSdJBv8QNAABsLWmDLQWlXkeVTULa0NAQffr0KdjXuXPn2H///aOhoWGn+njrrbdi+vTpMWnSpIL9V155ZXz605+O7t27x0MPPRRf/vKXY926dfHVr351u301NTVFU1NT/nFjY+MuHA0AAMDWPlhXVFZWRmVl5W73V2p11AdlnpBeeuml21wM+9fb888/3+qf09jYGGPGjImBAwfG5ZdfXvDcZZddFn/7t38bxx13XFxyySVx8cUXx3XXXbfD/mbMmBE9evTIb/3792/1GAEAgBLVRglp//79C+qMGTNmbHM45VpHfVDmCemFF14YZ5111g7bDBgwIKqrq+ONN94o2L958+ZYvXp10e8sv/POOzF69OjYd9994957740uXbrssP2wYcNi+vTp0dTUtN1/jZgyZUpMnjw5/7ixsVFRCgAAtMqKFSuiqqoq/3h79Ui51lEflHlB2rt37+jdu3fRdsOHD481a9bE4sWLY/DgwRER8cgjj0RLS0sMGzZsu69rbGyM+vr6qKysjPvvvz+6detW9GctWbIk9ttvvx1OYmujcwAAoHzk/rKl2X9ERFVVVUFBuj3lWkd9UOYF6c466qijYvTo0TFx4sSYNWtWbNq0Kc4///wYO3Zs/spQr732WowcOTLuuOOOGDp0aDQ2NsaoUaNiw4YN8W//9m/R2NiY/0527969o1OnTvHAAw/EqlWr4uMf/3h069YtHn744fjOd74TF110UZaHCwAA0GqlXkeVTUEaEXHnnXfG+eefHyNHjoyKioo47bTT4qabbso/v2nTpnjhhRdiw4YNERHx5JNP5q8cddhhhxX0tXz58jj44IOjS5cuMXPmzPja174WSZLEYYcdFjfccENMnDix7Q6MsjBv5ZKsh9Aq9TW1WQ8BAEqGvxfZZSleCTfff0pKuY7KJe5vskc0NjZGjx494oQ4JTrndvzd6o6q3Au6cucvXgCgFGxONsWC+Fn+NiKlbsvn/IHnfic6VRb/2uruam56L/7wL98om3nZU8oqIQUAAMhCLnl/S7P/jijz274AAADQMUlIAQAAiinjNaSlTEIKAABAJiSkAAAAO6ODpphpkpACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABTjKrupkJACAACQCQkpAABAEdaQpkNCCgAAQCYkpAAAAMVYQ5oKCSkAAACZkJACAAAUYQ1pOhSktJn6mtqsh9Aq81YuyXoIAADQrihIAQAAirGGNBXWkAIAAJAJCSkAAEAxEtJUSEgBAADIhIQUAACgCFfZTYeCFAAAoBhf2U2Fr+wCAACQCQkpAABAEbkkiVySXoyZZt+lTEIKAABAJiSkAAAAxVhDmgoJKQAAAJmQkAIAABThti/pkJACAACQCQkpAABAMdaQpkJCCgAAQCYkpAAAAEVYQ5oOBSntxryVS1Ltv76mNtX+AQCgo1GQAgAAFGMNaSqsIQUAACATElIAAIAirCFNh4QUAACATEhIAQAAirGGNBUSUgAAADIhIQUAANgJHXWdZ5okpAAAAGRCQgoAAFBMkry/pdl/ByQhBQAAIBMSUgAAgCLchzQdElIAAAAyISEFAAAoxn1IUyEhBQAAIBMSUgAAgCJyLe9vafbfEUlIAQAAyISElHajvqY26yEAANBeWUOaCgkpAAAAmZCQAgAAFOE+pOkoq4R09erVccYZZ0RVVVX07Nkzzj777Fi3bt0OX3PCCSdELpcr2M4555yCNq+88kqMGTMmunfvHn369Imvf/3rsXnz5jQPBQAAoE2Uch1VVgnpGWecEa+//no8/PDDsWnTppgwYUJMmjQp7rrrrh2+buLEiXHllVfmH3fv3j3//83NzTFmzJiorq6O3//+9/H666/HuHHjokuXLvGd73wntWMBAADKSJK8v6XZf0pKuY4qm4J06dKlMXfu3HjiiSdiyJAhERFx8803x0knnRTXX3991NTUbPe13bt3j+rq6m0+99BDD8Uf/vCH+NWvfhV9+/aN2tramD59elxyySVx+eWXR9euXVM5HgAAgLSVeh1VNl/ZXbhwYfTs2TM/iRERdXV1UVFREYsWLdrha++8887o1atXHH300TFlypTYsGFDQb+DBg2Kvn375vfV19dHY2NjPPfcc3v+QAAAgLKzZQ1pmlsaSr2OKpuEtKGhIfr06VOwr3PnzrH//vtHQ0PDdl/3hS98IQ466KCoqamJp59+Oi655JJ44YUX4p577sn3+9eTGBH5xzvqt6mpKZqamvKPGxsbd/mYAAAA/toH64rKysqorKzc7f5KrY76oMwL0ksvvTSuueaaHbZZunTpbvc/adKk/P8PGjQo+vXrFyNHjoyXXnopDj300N3ud8aMGXHFFVfs9usBAIAy0kb3Ie3fv3/B7mnTpsXll1++VfNyraM+KPOC9MILL4yzzjprh20GDBgQ1dXV8cYbbxTs37x5c6xevXq732velmHDhkVExLJly+LQQw+N6urqePzxxwvarFq1KiJih/1OmTIlJk+enH/c2Ni41ckDAACwK1asWBFVVVX5x9tLR8u1jvqgzAvS3r17R+/evYu2Gz58eKxZsyYWL14cgwcPjoiIRx55JFpaWvKTszOWLFkSERH9+vXL93vVVVfFG2+8kY+yH3744aiqqoqBAwdut5/WRucAAED5aKv7kFZVVRUUpNtTrnXUB5XNRY2OOuqoGD16dEycODEef/zx+N3vfhfnn39+jB07Nn9lqNdeey2OPPLIfKX+0ksvxfTp02Px4sXx8ssvx/333x/jxo2LT37yk3HMMcdERMSoUaNi4MCB8cUvfjH+8z//M+bNmxff+ta34rzzzlNwAgAAZa3U66iyKUgj3r/K05FHHhkjR46Mk046KT7xiU/ED37wg/zzmzZtihdeeCF/9aeuXbvGr371qxg1alQceeSRceGFF8Zpp50WDzzwQP41nTp1ip///OfRqVOnGD58eJx55pkxbty4gvvtAAAAHdyW+5CmuaWklOuoXJKkeXfXjqOxsTF69OgRJ8Qp0TnXJevhAABASdqcbIoF8bNYu3btTn01NWtbPud//KQro3OXbqn9nM2b3ovHHpxaNvOyp2S+hhQAAKDUtdUa0o6mrL6yCwAAQPshIQWAVpi3ckmq/dfX1KbaP8C2pPne1vhOS+z34dS6T08b3Ye0o5GQAgAAkAkJKQAAQBHWkKZDQgoAAEAmJKQAAADFtCTvb2n23wFJSAEAAMiEhBQAAKAYV9lNhYQUAACATEhIAQAAishFylfZTa/rkiYhBQAAIBMSUgAAgGKS5P0tzf47IAkpAAAAmZCQAgAAFJFLUl5D2jEDUgkpAAAA2ZCQAgAAFOM+pKlQkAIAABSRS5LIpXjhoTT7LmW+sgsAAEAmJKTQQcxbuSS1vutralPrOyLdsUekP34AoB1o+cuWZv8dkIQUAACATEhIAQAAirCGNB0SUgAAADIhIQUAACjGbV9SISEFAAAgExJSAACAYpLk/S3N/jsgCSkAAACZkJACAAAUkUve39LsvyOSkAIAAJAJCSkAAEAx1pCmQkIKAABAJiSkAAAAReRa3t/S7L8jkpACAACQCQkpAABAMdaQpkJCCgAAQCYkpAAAAMUkf9nS7L8DUpDuYff+1zNRtW86wXN9TW0q/VIa5q1ckmr/aZ4/aY8dSpn3ZqA9SvO9bXOyKSL+mFr/lBcFKQAAQBG5JIlcius80+y7lFlDCgAAQCYkpAAAAMW4ym4qJKQAAABkQkIKAABQTBIRLSn33wFJSAEAAMiEhBQAAKAIV9lNh4QUAACATEhIAQAAikki5avsptd1KZOQAgAAkAkJKQAAQDHuQ5oKCSkAAACZkJACAAAU0xIRuZT774AkpAAAAGRCQgoAAFCE+5Cmo6wS0tWrV8cZZ5wRVVVV0bNnzzj77LNj3bp1223/8ssvRy6X2+Z2991359tt6/k5c+a0xSEBAACkqpTrqLJKSM8444x4/fXX4+GHH45NmzbFhAkTYtKkSXHXXXdts33//v3j9ddfL9j3gx/8IK677ro48cQTC/bfeuutMXr06Pzjnj177vHxt9a8lUtS7b++pjbV/tmxtOc/7fMHKE/+bgHYSWV8ld1SrqPKpiBdunRpzJ07N5544okYMmRIRETcfPPNcdJJJ8X1118fNTU1W72mU6dOUV1dXbDv3nvvjc997nOxzz77FOzv2bPnVm0BAADKWanXUWXzld2FCxdGz54985MYEVFXVxcVFRWxaNGinepj8eLFsWTJkjj77LO3eu68886LXr16xdChQ2P27NmRdNDvcAMAANuwJSFNc0tBqddRZZOQNjQ0RJ8+fQr2de7cOfbff/9oaGjYqT5uueWWOOqoo2LEiBEF+6+88sr49Kc/Hd27d4+HHnoovvzlL8e6deviq1/96nb7ampqiqampvzjxsbGXTgaAACArX2wrqisrIzKysrd7q/U6qgPyjwhvfTSS7e7YHbL9vzzz7f657z77rtx1113bbOqv+yyy+Jv//Zv47jjjotLLrkkLr744rjuuut22N+MGTOiR48e+a1///6tHiMAAFCi2igh7d+/f0GdMWPGjG0Op1zrqA/KPCG98MIL46yzztphmwEDBkR1dXW88cYbBfs3b94cq1ev3qnvLP/0pz+NDRs2xLhx44q2HTZsWEyfPj2ampq2+68RU6ZMicmTJ+cfNzY2KkoBAIBWWbFiRVRVVeUfb68eKdc66oMyL0h79+4dvXv3Ltpu+PDhsWbNmli8eHEMHjw4IiIeeeSRaGlpiWHDhhV9/S233BInn3zyTv2sJUuWxH777bfDSWxtdA4AAJSRlojIpdx/RFRVVRUUpNtTrnXUB2VekO6so446KkaPHh0TJ06MWbNmxaZNm+L888+PsWPH5q8M9dprr8XIkSPjjjvuiKFDh+Zfu2zZsvjNb34TDz744Fb9PvDAA7Fq1ar4+Mc/Ht26dYuHH344vvOd78RFF13UZscGAACQhlKvo8qmII2IuPPOO+P888+PkSNHRkVFRZx22mlx00035Z/ftGlTvPDCC7Fhw4aC182ePTsOOOCAGDVq1FZ9dunSJWbOnBlf+9rXIkmSOOyww+KGG26IiRMnpn48AABAecglSeRSvBNHmn2Xch2VS9zfZI9obGyMHj16xJ//a0BU7Zv5taJ2i5uXt2/zVi7Jeggly7lPR5b2e4PfL+CDNiebYkH8LNauXbtTX03N2pbP+XUfnhydO6W3ZG9zc1P86r9uKJt52VPKKiEFAADIRIr3Cs333wGVZ5QHAABA2ZOQAgAAFNOSRORSTDFbJKQAAADQZiSkAAAAxVhDmgoJKQAAAJmQkAIAABSVckIaHTMhVZCSV+73qSz3e92V+/yXM/dhBADIhoIUAACgGGtIU2ENKQAAAJmQkAIAABTTkkSq6zw76H1IFaQAAADFJC3vb2n23wH5yi4AAACZkJACAAAU46JGqZCQAgAAkAkJKQAAQDEuapQKCSkAAACZkJACAAAUYw1pKiSkAAAAZEJCCgAAUEwSKSek6XVdyiSkAAAAZEJCCgAAUIw1pKmQkAIAAJAJCSntxryVS7IeQqvU19RmPYTdVu5zT7bK/fwp59/diPIfP0CbaWmJiJaU++94JKQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQDES0lRISAEAAMiEhBQAAKCYliQiUkwxWySkAAAA0GYkpAAAAEUkSUskSXr3Ck2z71ImIQUAACATElIAAIBikiTddZ6usgsAAABtR0IKAABQTJLyVXYlpAAAANB2JKQAAADFtLRE5FK8Eq6r7AIAAEDbkZACAAAUYw1pKhSke9jffXhQdM51SaXveSuXpNIvpcGfL5SntH9362tqU+0fALKkIAUAACgiaWmJJMU1pIk1pAAAANB2JKQAAADFWEOaCgkpAAAAmZCQAgAAFNOSROQkpHuahBQAAIBMSEgBAACKSZKISPFKuBJSAAAAaDsSUgAAgCKSliSSFNeQJhJSAAAAaDsSUgAAgGKSlkh3DWmKfZewskpIr7rqqhgxYkR07949evbsuVOvSZIkpk6dGv369Yu99tor6urq4sUXXyxos3r16jjjjDOiqqoqevbsGWeffXasW7cuhSMAAABoW6VcR5VVQbpx48b4h3/4hzj33HN3+jXXXntt3HTTTTFr1qxYtGhR7L333lFfXx/vvfdevs0ZZ5wRzz33XDz88MPx85//PH7zm9/EpEmT0jgEAACgDCUtSepbWkq5jsolZbh69rbbbosLLrgg1qxZs8N2SZJETU1NXHjhhXHRRRdFRMTatWujb9++cdttt8XYsWNj6dKlMXDgwHjiiSdiyJAhERExd+7cOOmkk+LVV1+NmpqanRpTY2Nj9OjRI06IU6Jzrkurjm975q1ckkq/QLrqa2qzHkJJ8962Y84foL3ZnGyKBfGzWLt2bVRVVWU9nKLyn/Nzf5fa5/yIv8xLcm+q81KKdVRZJaS7avny5dHQ0BB1dXX5fT169Ihhw4bFwoULIyJi4cKF0bNnz/wkRkTU1dVFRUVFLFq0qM3HDAAAlKCkJf2tRLRlHdWuL2rU0NAQERF9+/Yt2N+3b9/8cw0NDdGnT5+C5zt37hz7779/vs22NDU1RVNTU/7x2rVrIyJic2yKSClzbnyndE5SYOdtTjZlPYSS5r1tx5w/QHuzOd5/Xyu3L2qm+Tk/33+8n8j+tcrKyqisrEzvB29DmnXUB2VekF566aVxzTXX7LDN0qVL48gjj2yjEe2cGTNmxBVXXLHV/n+PB1P7mft9OLWugVT9MesBlDTvbcU4f4D26e23344ePXpkPYyiunbtGtXV1fHvDel9zt9in332if79+xfsmzZtWlx++eVbtS3XOuqDMi9IL7zwwjjrrLN22GbAgAG71Xd1dXVERKxatSr69euX379q1aqora3Nt3njjTcKXrd58+ZYvXp1/vXbMmXKlJg8eXL+8Zo1a+Kggw6KV155pSx+scpRY2Nj9O/fP1asWFEW6w3KlXluG+a5bZjn9JnjtmGe24Z5bhtr166NAw88MPbff/+sh7JTunXrFsuXL4+NGzem/rOSJIlcLlewb3vpaLnWUR+UeUHau3fv6N27dyp9H3LIIVFdXR3z58/PT1xjY2MsWrQof4Wp4cOHx5o1a2Lx4sUxePDgiIh45JFHoqWlJYYNG7bdvrcXnffo0cMbWMqqqqrMcRswz23DPLcN85w+c9w2zHPbMM9to6KifC5n061bt+jWrVvWwyhQrnXUB5XPWRARr7zySixZsiReeeWVaG5ujiVLlsSSJUsK7nVz5JFHxr333hsREblcLi644IL49re/Hffff38888wzMW7cuKipqYlTTz01IiKOOuqoGD16dEycODEef/zx+N3vfhfnn39+jB07dqevDAUAAFCqSrmOyjwh3RVTp06N22+/Pf/4uOOOi4iIRx99NE444YSIiHjhhRfyFxiKiLj44otj/fr1MWnSpFizZk184hOfiLlz5xb8C8edd94Z559/fowcOTIqKiritNNOi5tuuqltDgoAACBFpVxHleV9SEtRU1NTzJgxI6ZMmdLmV8HqKMxx2zDPbcM8tw3znD5z3DbMc9swz23DPPPXFKQAAABkoqzWkAIAANB+KEgBAADIhIIUAACATChId9JVV10VI0aMiO7du0fPnj136jVJksTUqVOjX79+sddee0VdXV28+OKLBW1Wr14dZ5xxRlRVVUXPnj3j7LPPLrj8ckezq/Px8ssvRy6X2+Z2991359tt6/k5c+a0xSGVnN0550444YSt5u+cc84paPPKK6/EmDFjonv37tGnT5/4+te/Hps3b07zUErars7z6tWr4ytf+UocccQRsddee8WBBx4YX/3qVwuudhfhXJ45c2YcfPDB0a1btxg2bFg8/vjjO2x/9913x5FHHhndunWLQYMGxYMPPljw/M68T3dEuzLPP/zhD+N//I//Efvtt1/st99+UVdXt1X7s846a6vzdvTo0WkfRsnblXm+7bbbtprDD94T0fm8tV2Z4239XZfL5WLMmDH5Ns7lrf3mN7+Jz3zmM1FTUxO5XC7uu+++oq9ZsGBBfPSjH43Kyso47LDD4rbbbtuqza6+31PGEnbK1KlTkxtuuCGZPHly0qNHj516zdVXX5306NEjue+++5L//M//TE4++eTkkEMOSd599918m9GjRyfHHnts8thjjyW//e1vk8MOOyz5/Oc/n9JRlL5dnY/Nmzcnr7/+esF2xRVXJPvss0/yzjvv5NtFRHLrrbcWtPvrP4eOZHfOueOPPz6ZOHFiwfytXbs2//zmzZuTo48+Oqmrq0ueeuqp5MEHH0x69eqVTJkyJe3DKVm7Os/PPPNM8vd///fJ/fffnyxbtiyZP39+cvjhhyennXZaQbuOfC7PmTMn6dq1azJ79uzkueeeSyZOnJj07NkzWbVq1Tbb/+53v0s6deqUXHvttckf/vCH5Fvf+lbSpUuX5Jlnnsm32Zn36Y5mV+f5C1/4QjJz5szkqaeeSpYuXZqcddZZSY8ePZJXX30132b8+PHJ6NGjC87b1atXt9UhlaRdnedbb701qaqqKpjDhoaGgjbO50K7Osdvv/12wfw+++yzSadOnZJbb70138a5vLUHH3ww+eY3v5ncc889SUQk99577w7b//GPf0y6d++eTJ48OfnDH/6Q3HzzzUmnTp2SuXPn5tvs6p8d5U1BuotuvfXWnSpIW1pakurq6uS6667L71uzZk1SWVmZ/OhHP0qSJEn+8Ic/JBGRPPHEE/k2v/zlL5NcLpe89tpre3zspW5PzUdtbW3yj//4jwX7duYNsiPY3Tk+/vjjk3/+53/e7vMPPvhgUlFRUfDh6F/+5V+SqqqqpKmpaY+MvZzsqXP5Jz/5SdK1a9dk06ZN+X0d+VweOnRoct555+UfNzc3JzU1NcmMGTO22f5zn/tcMmbMmIJ9w4YNS/7pn/4pSZKde5/uiHZ1nj9o8+bNyb777pvcfvvt+X3jx49PTjnllD091LK2q/Nc7POH83lrrT2X//f//t/Jvvvum6xbty6/z7m8Yzvzd9TFF1+cfOQjHynYd/rppyf19fX5x639s6O8+MpuSpYvXx4NDQ1RV1eX39ejR48YNmxYLFy4MCIiFi5cGD179owhQ4bk29TV1UVFRUUsWrSozcectT0xH4sXL44lS5bE2WefvdVz5513XvTq1SuGDh0as2fPjqQD3vGoNXN85513Rq9eveLoo4+OKVOmxIYNGwr6HTRoUPTt2ze/r76+PhobG+O5557b8wdS4vbU7/batWujqqoqOnfuXLC/I57LGzdujMWLFxe8p1ZUVERdXV3+PfWDFi5cWNA+4v3zckv7nXmf7mh2Z54/aMOGDbFp06bYf//9C/YvWLAg+vTpE0cccUSce+658fbbb+/RsZeT3Z3ndevWxUEHHRT9+/ePU045peD91flcaE+cy7fcckuMHTs29t5774L9zuXWKfbevCf+7CgvnYs3YXc0NDRERBR8QN/yeMtzDQ0N0adPn4LnO3fuHPvvv3++TUeyJ+bjlltuiaOOOipGjBhRsP/KK6+MT3/609G9e/d46KGH4stf/nKsW7cuvvrVr+6x8ZeD3Z3jL3zhC3HQQQdFTU1NPP3003HJJZfECy+8EPfcc0++322d61ue62j2xLn81ltvxfTp02PSpEkF+zvqufzWW29Fc3PzNs+z559/fpuv2d55+dfvwVv2ba9NR7M78/xBl1xySdTU1BR8mBw9enT8/d//fRxyyCHx0ksvxTe+8Y048cQTY+HChdGpU6c9egzlYHfm+YgjjojZs2fHMcccE2vXro3rr78+RowYEc8991wccMABzucPaO25/Pjjj8ezzz4bt9xyS8F+53Lrbe+9ubGxMd59993485//3Or3IcpLhy5IL7300rjmmmt22Gbp0qVx5JFHttGI2qednefWevfdd+Ouu+6Kyy67bKvn/nrfcccdF+vXr4/rrruu3XyIT3uO/7ooGjRoUPTr1y9GjhwZL730Uhx66KG73W+5aatzubGxMcaMGRMDBw6Myy+/vOC59n4uU96uvvrqmDNnTixYsKDggjtjx47N//+gQYPimGOOiUMPPTQWLFgQI0eOzGKoZWf48OExfPjw/OMRI0bEUUcdFd///vdj+vTpGY6sfbrlllti0KBBMXTo0IL9zmXY8zp0QXrhhRfGWWedtcM2AwYM2K2+q6urIyJi1apV0a9fv/z+VatWRW1tbb7NG2+8UfC6zZs3x+rVq/Ovbw92dp5bOx8//elPY8OGDTFu3LiibYcNGxbTp0+PpqamqKysLNq+1LXVHG8xbNiwiIhYtmxZHHrooVFdXb3V1e9WrVoVEeFc/oudned33nknRo8eHfvuu2/ce++90aVLlx22b2/n8vb06tUrOnXqlD+vtli1atV257S6unqH7Xfmfbqj2Z153uL666+Pq6++On71q1/FMcccs8O2AwYMiF69esWyZcs65If41szzFl26dInjjjsuli1bFhHO5w9qzRyvX78+5syZE1deeWXRn9PRz+Xdsb335qqqqthrr72iU6dOrf79oLx06DWkvXv3jiOPPHKHW9euXXer70MOOSSqq6tj/vz5+X2NjY2xaNGi/L9wDh8+PNasWROLFy/Ot3nkkUeipaUl/4G/PdjZeW7tfNxyyy1x8sknR+/evYu2XbJkSey3337t5gN8W83xFkuWLImIyH/oGT58eDzzzDMFRdjDDz8cVVVVMXDgwD1zkCUg7XlubGyMUaNGRdeuXeP+++/f6pYO29LezuXt6dq1awwePLjgPbWlpSXmz59fkBr9teHDhxe0j3j/vNzSfmfepzua3ZnniIhrr702pk+fHnPnzi1YO709r776arz99tsFhVNHsrvz/Neam5vjmWeeyc+h87lQa+b47rvvjqampjjzzDOL/pyOfi7vjmLvzXvi94Myk/VVlcrFn/70p+Spp57K31LkqaeeSp566qmCW4scccQRyT333JN/fPXVVyc9e/ZMfvaznyVPP/10csopp2zzti/HHXdcsmjRouTf//3fk8MPP7zD3/ZlR/Px6quvJkcccUSyaNGigte9+OKLSS6XS375y19u1ef999+f/PCHP0yeeeaZ5MUXX0y+973vJd27d0+mTp2a+vGUol2d42XLliVXXnll8h//8R/J8uXLk5/97GfJgAEDkk9+8pP512y57cuoUaOSJUuWJHPnzk169+7d4W/7sivzvHbt2mTYsGHJoEGDkmXLlhXcUmDz5s1JkjiX58yZk1RWVia33XZb8oc//CGZNGlS0rNnz/zVnb/4xS8ml156ab797373u6Rz587J9ddfnyxdujSZNm3aNm/7Uux9uqPZ1Xm++uqrk65duyY//elPC87bLX8/vvPOO8lFF12ULFy4MFm+fHnyq1/9KvnoRz+aHH744cl7772XyTGWgl2d5yuuuCKZN29e8tJLLyWLFy9Oxo4dm3Tr1i157rnn8m2cz4V2dY63+MQnPpGcfvrpW+13Lm/bO++8k/9cHBHJDTfckDz11FPJn/70pyRJkuTSSy9NvvjFL+bbb7nty9e//vVk6dKlycyZM7d525cd/dnRvihId9L48eOTiNhqe/TRR/Nt4i/3B9yipaUlueyyy5K+ffsmlZWVyciRI5MXXnihoN+33347+fznP5/ss88+SVVVVTJhwoSCIrejKTYfy5cv32rekyRJpkyZkvTv3z9pbm7eqs9f/vKXSW1tbbLPPvske++9d3Lssccms2bN2mbbjmBX5/iVV15JPvnJTyb7779/UllZmRx22GHJ17/+9YL7kCZJkrz88svJiSeemOy1115Jr169kgsvvLDgdiUdza7O86OPPrrN95iISJYvX54kiXM5SZLk5ptvTg488MCka9euydChQ5PHHnss/9zxxx+fjB8/vqD9T37yk+TDH/5w0rVr1+QjH/lI8otf/KLg+Z15n+6IdmWeDzrooG2et9OmTUuSJEk2bNiQjBo1Kundu3fSpUuX5KCDDkomTpzog2Wya/N8wQUX5Nv27ds3Oemkk5Inn3yyoD/n89Z29T3j+eefTyIieeihh7bqy7m8bdv7+2vL3I4fPz45/vjjt3pNbW1t0rVr12TAgAEFn5+32NGfHe1LLkk6wP0CAAAAKDkdeg0pAAAA2VGQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJAC0K786Ec/ir322itef/31/L4JEybEMcccE2vXrs1wZADAB+WSJEmyHgQA7ClJkkRtbW188pOfjJtvvjmmTZsWs2fPjsceeyw+9KEPZT08AOCvdM56AACwJ+Vyubjqqqvis5/9bFRXV8fNN98cv/3tbxWjAFCCJKQAtEsf/ehH47nnnouHHnoojj/++KyHAwBsgzWkALQ7c+fOjeeffz6am5ujb9++WQ8HANgOCSkA7cqTTz4ZJ5xwQnz/+9+P2267LaqqquLuu+/OelgAwDZYQwpAu/Hyyy/HmDFj4hvf+EZ8/vOfjwEDBsTw4cPjySefjI9+9KNZDw8A+AAJKQDtwurVq2PEiBFxwgknxKxZs/L7x4wZE83NzTF37twMRwcAbIuCFAAAgEy4qBEAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJCJ/x8/zMgsyu+x4gAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 312 + "execution_count": 46 }, { "cell_type": "code", "id": "66ba7a519125ef4e", "metadata": { "ExecuteTime": { - "end_time": "2024-06-09T22:14:17.944302Z", - "start_time": "2024-06-09T22:14:02.165787Z" + "end_time": "2024-07-14T20:46:18.744840Z", + "start_time": "2024-07-14T20:46:02.595385Z" } }, "source": [ @@ -650,7 +658,7 @@ "import numpy as np\n", "\n", "# Define the number of points in each dimension\n", - "num_pnts = 50\n", + "num_pnts = 30\n", "\n", "# Generate a grid of x and y values\n", "x = torch.linspace(-0.99, 0.99, num_pnts)\n", @@ -696,21 +704,94 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAJOCAYAAAB4EvvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZAk6V3mi/58CY8t933PyFqyqqu6uqvV3epuwRngjIQGmBFjxlw0Z2wAk13DZgDZYUzMBzDZADOXiy7GMUzGHISuzRyOccW9A3OvMSAJIZgR9Cb1ppZ679orMyL3NSIyNl/f+yHTI8MjIrNyiYxc6v2ZNSK9Ivx1j/Bwf/zvz/v8FSGEQCKRSCQSiUQikRwY9bg3QCKRSCQSiUQiOe1IUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEImkKf/zHf0wsFqNQKJSX9fb2oijKrv/9q3/1rx647s9//vOcO3fuKDdfIpFIJJJdUYQQ4rg3QiKRnH1+6qd+Csuy+NrXvgaA4zj86Z/+ad3XZrNZ/u2//beYpsnXv/51fuzHfmzXdb/66qs899xzvPfee1y9erXh2y6RSCQSyYPQj3sDJBLJ2cc0Tf72b/+W3/u93ysv03Wdf/kv/2Xd1/6jf/SPKBaLfOlLX3qgoAZ45pln6O/v52tf+5oU1RKJRCI5FqT9QyKRHDl///d/Tz6f55/8k3+y6+tc1+Vf/It/wfPPP89v/uZv8gu/8At7Wr+iKPzjf/yPy1VwiUQikUiajRTVEonkyPna177G008/zcDAwK6v+4Vf+AX+/M//nF/6pV/iN37jN/Y1xqc+9SleffVVlpeXD7OpEolEIpEcCCmqJRLJkfO1r33tgVXqz3/+8/yn//Sf+Omf/ml+//d/f99jfPzjHyccDvONb3zjoJspkUgkEsmBkaJaIpEcKd///vdJpVJ86lOf2vE1v//7v89v//Zv8/GPf5yvfOUrqOr+T02xWIx/+A//obSASCQSieRYkKJaIpEcKS+88AIdHR089thjdf/9v/yX/8K/+Tf/hqeeeor/9t/+G4Zh1LxmeXmZn/iJnyAej3Pp0iW+9a1v1V3XD//wD/P88883cvMlEolEItkTUlRLJJIj5cknnySdTnPnzp2af/ubv/kbfu7nfo6LFy/yjW98g5aWlrrr+KVf+iUGBgZYXl7md3/3d/npn/5p1tbWal73+uuv89RTTzV8HyQSiUQieRBSVEskkiPlYx/7GD09PXz1q18NLH/ttdf4qZ/6Kfr6+vjbv/1bent7674/l8vxF3/xF/z7f//vicVifOpTn+LatWv85V/+ZeB1tm3zzW9+84HebYlEIpFIjgIpqiUSyZGiaRo//uM/HvA6f/jhh/zET/wEhmHwN3/zN4yPj+/4/tu3b9PS0sLIyEh52bVr13j//fcDr3vhhRfIZrNSVEskEonkWJDNXyQSyZHzqU99in/+z/856+vrKIrCJz/5SVZXV/nFX/xFvv/97/P973+/5j19fX386I/+KLlcjra2tsC/tbW1sbq6Glj21a9+lccff5yxsbEj3ReJRCKRSOohRbVEIjlyfvRHfxRVVfnrv/5renp6SKVSAHzpS1/iS1/6Ut33/OzP/iw/+qM/SktLC9lsNvBv2Wy2xn/9ta99rW6HRolEIpFImoEU1RKJ5MhpbW3lR37kR/jqV7/Kn/7pnyKE2PN7L168SC6XY3Z2luHhYQDee+89fvZnf7b8mnfffZepqSlp/ZBIJBLJsSE91RKJpCl86lOf4pvf/Ca2be/rfS0tLfzkT/4kv/Ebv0GxWOTrX/8677zzDj/5kz9Zfs1Xv/pVBgYGePrppxu92RKJRCKR7AlF7KdkJJFIJAekVCoxMzNDIpFA1/f3kGx5eZmf+7mf4/nnn2dkZIQvfelLfPzjHy//++LiIq7rMjQ01OjNlkgkEolkT0hRLZFIJBKJRCKRHBJp/5BIJBKJRCKRSA6JFNUSiUQikUgkEskhkaJaIpFIJBKJRCI5JFJUSyQSiUQikUgkh0SKaolEIpFIJBKJ5JBIUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEIpFIJBKJRHJIpKiWSCQSiUQikUgOiRTVEolEIpFIJBLJIZGiWiKRSCQSiUQiOSRSVEskEolEIpFIJIdEimqJRCKRSCQSieSQSFEtkUgkEolEIpEcEimqJRKJRCKRSCSSQyJFtUQikUgkEolEckikqJZIJBKJRCKRSA6JFNUSiUQikUgkEskhkaJaIpFIJBKJRCI5JFJUSyQSiUQikUgkh0SKaolEIpFIJBKJ5JBIUS2RSCQSiUQikRwSKaolEolEIpFIJJJDIkW1RCKRSCQSiURySKSolkgkEolEIpFIDokU1RKJRCKRSCQSySGRoloikUgkEolEIjkkUlRLJBKJRCKRSCSHRIpqiUQikUgkEonkkEhRLZFIJBKJRCKRHBIpqiUSiUQikUgkkkMiRbVEIpFIJBKJRHJIpKiWSCQSiUQikUgOiRTVEolEIpFIJBLJIZGiWiKRnCqEENi2jeu6CCGOe3MkEolEIgFAP+4NkEgkkr3geR6WZWGaJq7rEolE0DSt/J+iKMe9iRKJRCJ5iFGELPVIJJITihAC13WxLAvLsvA8D0VR0HWdUChUrlQrilIW16oqH8BJJBKJpPlIUS2RSE4cvsXDsixs20YIgaqqqKqKoigoikIoFCq/1v+vWlzL6rVEIpFImoW0f0gkkhOD53nYtl22eAghytaOnQSy/2++sHYcB9d1UVUVXdeluJZIJBJJU5CVaolEcqxUWjz8CYh+xXk3Ie1XqndaZ6U1xBfX0hoikUgkkqNCimqJRHIs+FVl0zTrWjx240GiunKMamuIruu7Vr4lEolEIjkI0v4hkUiaSqXF49atW3R0dNDb23skQrfaGnLv3j00TWNsbExaQyQSiUTSUKSolkgkTaEyxcO3eOTzeVpbW4/cluGL60KhgK7ruK4bSBKRkXwSiUQiOSxSVEskkiPDt3j4fmnP88oTCI/DguGPp2lauXptWVbZdiKtIRKJRCI5KFJUSySShuNH4pmmieM4AAHRepzb5VNtDXFdF9d1ZSSfRCKRSA6EFNUSiaRh1LN4nLTUjWqhXCmuARzHwXGc8k2AtIZIJBKJZC9IUS2RSA5Fva6HJ6EqvV/qWUNs28ZxHNmtUSKRSCQPRIpqiURyIHbqenjaxHQ9qq0h9cT1ad9HiUQikTQWKaolEsm+8DwPy7IwTRPP8wAObPGotF00g/2OVc8a4ndr9AW2FNcSiUQiASmqJRLJHjhI18OTykG2t9oa4nkenudJa4hEIpFIykhRLZFIduQsWzwOirSGSCQSiaQeUlRLJJIaKrseuq6LEKJclZaCcZNqcV1pDZHdGiUSieThQ4pqiUQCULY15HI5MpkMLS0tR27xOMh6i8Ui8/PzhMNhRkZGCIVCR7Ble6fyRsP/DEulEul0mr6+PmkNkUgkkocEeaaXSB5yfAtDPp8nm82ytrbGhx9+iK7rJ8bmIYQgk8nw7rvv8uqrr5LP51laWuL555/ngw8+IJ/PH/cmApRzuV3X5bvf/S6lUgnTNMtRg82clCmRSCSS5iIr1RLJQ4pv8bAsC8dxyhYPTdOAg1WRD8JuQtPzPJaWlkilUhQKBYaGhnj22WeJxWKEQiEymQzT09N8+9vfpru7m0QiQVdX147b3ixR64/vV6ilNUQikUjOPlJUSyQPGfW6HlZaPFRVPfaKqm3bzM7OMjMzg6ZpjI6OMjAwgK4HT1nt7e089thjTE5OkkwmeeuttwiHwyQSCQYHB8s3CJU0Q8z6n58fNej/7bounuehKIrs1iiRSCRnDCmqJZKHAH8inZ/icVK7HubzeVKpFAsLC7S3t3P58mW6u7sfuI2RSITJyUnOnz/P3NwcU1NT3Lp1i9HRUcbGxgiHw03ag02qb0rqdWu0LKssuv3v4SR9FxKJRCLZH1JUSyRnGN8vbZomjuMAPFBMH0dDltXVVVKpFOl0mv7+fp588klaW1v3vS6/qj0yMsLq6irT09O88MILDAwMkEgkGr/xD6DeZ1ydGuK6Lq7rykg+iUQiOeVIUS2RnEEqLR6H7Xp4VLiuS6lUYnp6GoDh4WGuXLmCYRiHXreiKPT09NDT00Mul2N6eprXXnsNTdPo6upCCHGkwnUvNyX1ujU6jlO+6ZHWEIlEIjldSFEtkZwRKrse+mLab6e9H3F21JVq0zSZmZlhdnYWIQQ9PT088sgjRyb4W1pauHr1KhcvXuSNN95gZWWFF198kfHxcUZGRmp82o1kL597PWtIvYYyEolEIjnZSFEtkZxyTkvXw2w2SyqVYmlpie7ubq5du0YymaStra0potEwDFpbW+nv7ycejzM1NcXt27cZGRlhfHycWCzWsLEOWgmX3RolEonk9CJFtURySvE8L5DiAY2xeDSyUu15HisrK6RSKXK5HIODgzzzzDNlAZtKpRoyzn5QFIXBwUEGBwdJp9NMTU3x0ksv0dfXx/j4OJ2dnccuXOtZQ/xIPl9gH/c2SiQSiSSIFNUSySmi0uJh23bdSLyTgG3bzM3NMTMzg6IojIyM8Pjjjx+p1eIgdHR0cP36dYrFIslkku9///tEo1HGx8cZHBw88A1Kozzb1dYQz/PwPE9aQyQSieQEcrKucBKJpC5+JJ5pmk2xeBy0Ul0oFMqReC0tLVy8eJHe3t4TJfjrEY1GuXTpUjmS7969e4FIvkZMnjws0hoikUgkJxspqiWSE4zf9TCbzTI9Pc25c+fKVemjElD7Xa8QgvX1dVKpFOvr6/T29vLEE0/Q1tbW8LEOy4NuFnRdZ2xsjNHRUVZWVpiamuLevXsMDQ0xPj6+55i/o0wXqRbXhUKB+/fvc+XKFdmtUSKRSI4RKaolkhOG/5i/0i9tWRYLCwtcunSpadvwIFzXZXFxkVQqhWVZDA8Pc/ny5aY3WjkKFEWht7eX3t5eNjY2mJ6e5pVXXqGzs5Px8fETUX33xbXruszOznL58mUsy5LdGiUSieSYkKJaIjkh7Nb1UNf1pjVkeZAQM02T2dlZZmdnMQyD0dFR+vv767YE3wvNbom+X6HZ2trKo48+yuTkJKlUivfffx9N0xgfH2d4eLiuT/yoc7DrjeW3Q/e7Nfpee9mtUSKRSJqDFNUSyTHjWzwsy8JxHIQQATHk0+wuh9VsbGyUI/E6Ozu5evXqiUjKaBaGYXD+/HkmJiZYWFgoR/L5vutoNHos21Up4KutIZWpIdIaIpFIJEeLFNUSyTFR2ajlQSkezWwdXi3k/Ui8bDbL4OAgTz/9NPF4vCnbchJRVZWhoaFAJN+LL75If38/4+PjdHR0NL1SXU11JJ/runieJ60hEolEcoRIUS2RNJHdLB67iRz/35ol1oQQpFIpUqkUQghGRka4du0aoVDoyMc+Shp5Y6IoCp2dnXR2dlIoFEgmk7z55pvE43H6+vqa+mRhp1i9et0aLcsq55lLa4hEIpE0DimqJZIm4EegmaaJ4zgA+4rEa5aoLhaLTE1NAbC4uMj58+fp7e09sizk4xBzRzFmLBbj8uXLXLhwgdnZWe7du4fjONy7d4+RkZEjjeTzPG9Pr6u2hriui+u6MpJPIpFIGoQU1RLJEVJp8fDFz0G6HlaK6kYjhCCdTpNKpVhdXaW7uxuAJ598UoqsfaLrOuPj47S1tfHmm2+ysrLC3bt3y5F8LS0tRzLufr6net0aHccp3+RJa4hEIpEcDCmqJZIGU9n10BfTfnvpg4qVoxA5nueVI/FKpRJDQ0NMTk6iKAorKysNH28nmp3+0Qx8f/xHP/rRcsb4d77zHbq6uhgfH6enp6dh3+lBn17Us4bUaygjkUgkkr0hRbVE0iB8UeL7pRvZ9bCRlWrLssqReLquMzo6ysDAQDkSz7Ks8liyYnkwKj+7trY2rl27xuTkJMlkknfffZdQKEQikWBoaOjAUYT1xjooslujRCKRHB4pqiWSQ1LdqAUoi5BGC5HDiOpcLkcqlWJxcZGOjg4eeeQRurq6pFhqEuFwmIsXL3Lu3Dnm5+eZnp4OtEKPRCIHWm8jb37qWUP8SD5fYMvjRSKRSOojRbVEcgAqLR62bT8wEu+wHLRSLYRgdXWVVCpFJpNhYGCAp556aldv71H6t4+bZu3TbkJX0zRGRkYYHh5mbW2N6elpXnjhBQYGBkgkErS3tzdsrINSbQ3xPA/P86Q1RCKRSHZBimqJZB/4kXimaZJKpbBtm7GxsYZYPHZjv0LXcRwWFhZIpVK4rsvIyAhXr1490hSKg9DM/O3KMY+aveyToih0d3fT3d1NPp9nenqa119/ndbWVhKJBH19fXsSrkdt06m2hrz99tsMDw/T3d0trSESiURSgRTVEske8LsemqaJ67rlvF/TNA/tid0LexUtpVKJmZkZ5ubmiEajTExM7FmcVY91FivVzWQ/QjMej3PlyhUuXrzIzMwMN27c4MaNG4yPjzMyMrJrPnizvO++uM5kMvT19clujRKJRFKFFNUSyQ74j7136nqoqmrTuxzWyyQWQpDNZkmlUiwvL9PT08Njjz1Ge3u7FDnHxEGPi1AoxMTEBOPj4ywtLTE9Pc2dO3cYHh5mfHy8bifLZk8o9SfgVlpDLMuS3RolEslDjxTVEkkVe+16qCjKnhtvNIJqoeJ5HktLS6RSKQqFAkNDQzz77LNEo9GGjCMr1YfjMMJSVVUGBgYYGBggk8kwNTXFyy+/TE9PD4lEIjDBtNnfky+qodYa4otrTdNkt0aJRPLQIUW1RLKFb/GwLAvHcRBCBMRBNcfhB/bjzvxIPFVVGRkZYXBwEF2XP+eTQiOrx+3t7Tz++ONcunSJZDLJW2+9RSQSYXx8nMHBwaZXqj3Pqxlvp26N0hoikUgeJuRVWPLQU9moZT8pHschqu/du8fKygptbW1MTk42tIlINWexUn2a9ykSiTA5Ocn58+eZm5tjamqKW7du0dHR0dT92k3EV0fyua5bFuHSGiKRSM46UlRLHkr2avHYjWZ4qoUQrK2tkUqlyv7VJ598ktbW1iMbs5mi5yynfxzVOJqmMTo6ysjICKurq9y4cYNcLsc777xDIpGgra3tSMb1qbR/7ES9bo2WZaGqauB3JgW2RCI5S0hRLXmo8O0TpmniOA7AgbseHqUgdF23HIln2zYjIyNkMhkmJiaOVFBXcpqrug8DiqKUPdYzMzNomsZrr71GW1tbOZLvKETrfm8YdrKGyG6NEonkrCFFteShoNLi4U8u9KtmB+UoJiqapsnMzAyzs7Nl32x/fz+qqjIzM9PQsXbiJAscx3GYm5tjZmYGwzBIJBIMDAycuEYkzfQ5CyHQdZ2rV6+WI/k+/PDDQCRfI/329TzVe6Fet0bHcco3tdIaIpFITjtSVEvOLJVdD30x7UeBNeLi3chKtR+Jt7S0RHd3N9euXaOjo6MmbaTZ3tmTQrFYLOdvt7S0cPHiRVzX5c6dO9y8eZPx8XFGR0d3zXOGk7VPjaJSwBuGwblz50gkEiwuLjI1NRWI5IvFYg0d7yDUs4bYti27NUokklOPFNWSM4d/kfb90r4HtNFdDw8rcj3PY2VlhVQqRS6XY3BwkGeeeWZX4dMMUXiSqoXZbJZkMsny8jK9vb1cv369nL8dCoUYHR1leXmZ+/fvc/fuXUZGRh4oHk+7p3ovY6mqyuDgIIODg6TTaaampnjppZfo6+tjfHyczs7OA2/fXjzVe6XaGlJPXJ+k41EikUh2Q4pqyZmhulELUL4oH8WF+aATFW3bZn5+nlQqhaIojIyM8Pjjjz/wEX0zK9XHMYHQRwjBysoKyWSSXC63a/62oij09fXR19dXznP2xWMikaCzs/MY9qC5PEjAd3R0cP36dYrFIslkku9973vEYrFyJN9+BLIvfhv9e6pnDfEj+XyBLcW1RCI56UhRLTnVVFo81tbWmJub4+LFi025CO9XeBYKBWZmZpifny9bGHp6evYsao5T6B4V1fFr/s2G53mMjo7u6WbDx89znpycZHp6mjfffJN4PM7ExAT9/f1N7zp4nJXqekSjUS5dulSO5Lt79y63bt1ibGyM0dFRDMPY01hwdNX+amuI4zi8+eabXLt2jUgkIq0hEonkRCNFteRU4l9wTdMsWzwsyyKTyTStCcpeRK4QgvX1dVKpFOvr6/T29vLEE08cKPbsrFaqHcfh7t27zM7OEo1GmZiYoK+vb0fxVHLzrDozTISu1f33aDTK5cuXuXDhAjMzM9y4caPsu25WB8yTkhtdD13Xy0J6ZWWFqakp7t69y9DQEOPj47umy/j71Qxh6+/T8vJyjTVERvJJJJKTiBTVklOF3/XQNE1c1y13PfSbSzS7bfhO4sl1XRYXF0mlUliWxdDQEJcvXyYcDh/JeKeRjY0N0uk0xWKRnp6emsmZnvDIOkus2rNknRVmzJssWlNknCUA/tfofyKut++4fl3XSSQSjI2NlSftZbNZAPr6+ohEIke6fyetUl2Noij09vbS29vLxsYG09PTvPLKK3R2djI+Pk5vb2/Neo+6Ul2N/3v2K9T+zbTs1iiRSE4iUlRLTjx+05MHdT1sRjOWSupF6pmmWW4hbhgGo6Oj9Pf3o2laQ8ZrFkcl4P1mNslkkkwmQzgSpne4g95ElEXnHW5m50nb84DGrfz3cLEBiKnt5LwMsP0ZzJZuMdny9APH9CftDQwM8Oqrr2JZFi+++CL9/f1MTEwcSbOU05bS0trayqOPPsrk5CSpVIr3338fTdNIJBIMDQ2Vn/74x3szbxigdm5E5TlBdmuUSCQnBSmqJSeW/XY9bHYlt3K8jY2NciReZ2cnV69ePVTCwk6cxkq15RXIWkvMrN5ibv0eJdahy8YZ2CBtL+AqJj3pCyxad8vv6Q2dKwtqgIKXIa52kvfS5WWzpZt7EtU+fmJIf38/XV1dTE9P89prr9He3k4ikahbmT0MJ71SXQ/DMDh//jwTExMsLCyUW6GPjo4yNjZWtn00y9e8k4ivTg2R3RolEslJQIpqyYnDt3hYloXjOGWLx4Mi8VRVbbr9w3Vdvve975HNZhkcHOTpp58mHo8f2XinwVP9dvb/y4L1DkV3jby7iuF2klE2LRt0bP5PRO1nw1kpF55DBPOlM848IKisTLfp3eStdPnv2eLtA20fQDwe58qVK1y4cKFcmdV1nfHxcYaHhw/9ZKGZExWh8QJeVVWGhoYYHBxkfX2d6elpXnzxRXp6eo5kvJ3wP8edxtupW6O0hkgkkuNAimrJiaGyUctOFo/daJbodByH+fl5kskkjuOUm7U8qPHIYTkNnupk6ftMl95m3X63vMxVbBQUBNvb3qp1suGulP8uebnAeixRpF0fIONsv0ZXgqerefMOrnDQlIOfxiors/Pz80xNTXH79m3GxsYYGxs7lAe+WRy0w+FeUBSFrq4uurq6KBQK3L27+TTh1VdfJZFIlLt9HhX+06m9bGd1koz/uUhriEQiaRZSVEuOlf1aPHbjqCvVlV394vE4IyMjTE1NMT4+fmRjVnLSK9Wu5/Dt1f8TyykFzixCcWjXxkg7c4H1V5Jx5lFR8dj+/lr1zoCoLrrZwHscYbNoTjEUubCv7ayHqqoMDw8zNDTE6uoqU1NTvPDCCwwNDZFIJGhpadnX+k57pboesViMc+fOMTs7y+DgILdu3Qq0Qt9LJN9+2auo9qnXrVFaQyQSSbOQolpyLPgRWaZp4jgOwKG7HlY+Bm7URVMIQTqdJpVKsbq6Gujql8/nmZqaasg4e+GkVqo9z2NpaYnvrXyVbMccqApxYeAqVvk1MbWVdMV7Su56cB04dOgjrDmz5WUKwX1NO4to6Lg45WWzxVv7EtUP+vwURaGnp4eenp5yIsZ3vvMdurq6SCQSdHd37+nYOsmReocdy5/AOD4+ztLSEtPT04FIvv3egDxovINWwneyhshujRKJ5KiQolrSVCotHn5V2a8iHRZ/HY0QGZ7nlSPxSqUSQ0NDTE5OBmLY6qV/HCUnrVJt2zZzc3PMzMwgNIfFke9svVnQEhoh49wvv1bgBt6bdRcJKTFsUSovi6ptwLaoLrhrgfd4uHSHhli2Z8rLZku3eJof3/e+7QU/EePixYskk0nefvttIpEIiURiT50IT+NExf2MpSgK/f399Pf3k81mmZqaOtANyG40wtqyU7dGaQ2RSCSNRopqyZFT2fXQF9P79UvvhXK+8T4fGVdiWVY5Ek/XdUZGRhgcHKw7ce2kVo6PmmKxSCqVYn5+ntbWViYnJ7lv/HesjW1ftK5sVisHtCKPGEUy3tuEdFh1DfJi87TTofezbE+X3+NhBcbJuksYaiuWVywvC6vBSaCzpZsN379qwuEwFy9e5Ny5c8zNzXHv3r0HdiJsdqW6mWkc9X6zbW1tPPbYY1y6dIlkMsk777yDYRiMj48zNDR04Imfh/ktV1PPGlLZUEZ2a5RIJIdFimrJkeFftHy/tH/xP4zFYzcqK9X7JZfLkUqlWFxcpL29ncuXLz+w0tbIyvheOO5KdSaTIZlMsrKyEugMmXNWeGfh64HXWsLiQmiDK0aBkZANFMr/dseK8t/zPYTVaOA9G84y1YkfXXofC9a28HaFHXhP1lkla6/SFuo+3A7vAU3TGB0dZWRkhOXlZaamprh37x7Dw8OMj4/XpL6c1Ur1bsKz8gZkfn6e6enpQCTffhvuNFJUV1JtDaknrmX1WiKR7BcpqiUNx2/KsLS0hG3bdHV11TRvOAoqK9V7QQjB6uoqqVSKTCbDwMAATz311J49oZWNKM6aqPYRQrC8vEwymSSfzzM0NMRzzz0XEEevZ/8/uIEqs+C89l0uG2k61ODnsuiEuGAUaVUX+fti0Fdd9DLE1E4KFVnUhhpM38g4i1QL79nSLdpCzx12V/eMoij09fXR19dHJpNhamqKl19+md7eXiYmJujo6Dg2S8ZJGUvTNEZGRhgeHmZtba088XNgYIBEIkF7+86dMA8y3kGpZw1JJpN0dXXR1tYmrSESiWRfSFEtaQiVFg/btnFdl7W1NUzTpK+vrynbUClyd8NxHBYWFkilUriuy8jICFevXt13esFex2sUzRTVQggWFxd5//33EUIwOjoa6Kzn4wqXRXO7aYuKx4/EFrlsbLDqxlCVYGXZUDa3v1+3+IfR7/JfnQGKYjuKsE3rDYhqWxQD7y95OVq1LjYqJjrOlm7xSGvzRHUl7e3tPP7441y6dInp6WnefPNN4vE48Xi8qd9VM9uG72csRVHo7u6mu7ubfD7P9PQ0r7/+Oq2trSQSCfr6+natRB9VpbredsLmzcD09DSGYRCNRnEcp5x3La0hEonkQUhRLTkUfiSeaZo1Fg/fu9gsFEXZNVavVCqVI/Gi0SgTExMPvKg/aDzYvPA3og35XsY76s/T/4wsy2JtbY3z58/T29u742e0Zq+hKV34Ewz/QXSBy0aOnKszoAUF9ZKj06dvJ3f06hafbp3nv24MUdjyWWtK8HPcbAITpFXvrhHVe+WoPr9IJMKlS5c4f/48MzMz3L17F9d1mZqaYmRkpOZmpJGcxEp1PfyGOxcvXmRmZoYbN24EIvnq5bw3S1RXj+lb1PxIPn8OiIzkk0gkuyFFteRA+F0PTdPEdd1y1FblBUfTtKamY0Ct8BRCkM1mSaVSLC8v09PTw2OPPUZ7e3tDUgX8MZrBUV7INzY2SCaTLC0t0d3djWEYTE5O0tXVtev7lq0lcu7maWRcz3DF2JysaGHUVKm1Opvfo9v8z7FF/io/iEDF9IJZ1LYo0akPse4slZepBEXWQukejmehq3t70nCUn6Ou6yQSiXLM4MLCAnfu3GFkZITx8XGi0eiDV7JPTtukyFAoxMTERDmSb2pqijt37tT1pjc77xu2hXy179pPDZHdGiUSyU5IUS3ZM0KIsl96L10Pmx05VzmmL2pmZmbKXuBnn322oaKm2aK60WP5nvJkMllus/7MM88Qi8V45ZVX9rSOZXuZmVKWgfCm7UNRYMMNMagHBfWKq9OjOTXvF0LQpua5bKT50Ooi7SzUZFHHtfaAqK5uAuPhsmDeYyR6eT+7f+REo1Eef/xx1tfXmZqa4sUXX6S/v5+JiYk9e4r3wmmpVFejqioDAwMMDAwEvOk9PT0kEgm6urqOrVJdOWZloaDyHCgj+SQSSTVSVEseyEG7Hh51h8N6KIrC3NwcKysrqKpajsQ7isfvp9VT7bpu2VPuOA4jIyM1bdb3KhJWrCXWnQL/S+cq8S0d4hACgqJaUH99s45Oh5bn6cgSt612HKBDH2bVSW2/SAkeQ2lnAR0Dp2Jy5Gzp1okT1T6dnZ10dnZSKBTKnuK2trayp/iwguwke6r3SqU3PZlM8tZbbxGJRBraSGav7Cbkq6vXslujRCKpRIpqyY74Fg/LsnAcp2zx2GskXjNFdT6fJ5VKYds2mUyGyclJenp6mpoccNQcdizLspiZmWF2dpZwOMz4+Dj9/f2HqgQuWcsM6BtcCq0BCmtOiP6qKvWqo9FbtQy2xOCW+I6pLtcjK3y31E+kKou64K4G34egOzTAkp0sL5sp3uKZzgdv73FOHozFYjzyyCNcuHCBVCrFBx98wM2bN0kkEgwPDx/Kl39SIvUOSyQSYXJykvPnzzM3N8ft27exbZvbt28zNjZGOBx+8EoOyV6q4zt1a5TWEInk4UaKakkNlY1afIvHQWa/H7WoFkKwtrZGKpUinU7T19dXzsnt7NyDwmoAzbS4HFRU5/N5kskki4uLdHZ2cvXqVTo7O3e96O91rBV7iX/d9S6uEEw5GgouuDamiBJRNHo0BwcVqjoqAsw5Ou1avvz34+FVPjA78aqyqDfcFcJqG6a3nXUdVmOB18yWbu25YnvcYicUCnHu3DkSiQQLCwvcv3+f27dvMzo6yvj4+L6F42m1f+yGnwluWRarq6tkMplAJF9bW9uRjOvbO/Z6rqu+sXZdt1zNl9YQieThQ4pqCXBwi8duqKp6JJXBSvuCbdsMDw9z5coVDMPgtddee6hbh/sIIVhfXyeVSrG+vk5/f/++Mrj3gu3ZPBp6E0PNsS4EhuLRpnqoChhsTlhMOSFCdU4zQgi8KotISBE8HVnmNXOJ6izqTr2PBWuq/Lez1d5cRaM9NIRGJyvWGr3ho28Csxf2Ij5VVWVoaIjBwcFAlvPg4CCJRILW1taGjdUojsr+sRuRSITHHnuMXC7H9PQ0r776Kh0dHYyPjzfEPlOJ//vabwGhXrdGaQ2RSB4+pKh+yPG7iZmmieNsTg7zqyyHvQA0ulJtmmbZvhCJRMoX1crH5s1ukHLSRLXneSwuLpJKpTBNk+HhYR555JEDZXA/aKwVM8UPtN5GKAIVML0wqhLMlS4KjZiaJmV3MBranny44Oh0VlSpfS4Zad4xF0EdIe+tlZcbqoGGTovej650kHMi5O1W7hcy2EIA61xrmzlRonqvVGY553I5pqameOWVV+js7CSRSDzQxnQWK9U+lVXjlpYWrl69Wo7k++CDDwKRfI2YN+Gfrw5jcdnJGiK7NUokZx8pqh9SPM/DNE0sywpcSBrpl2yUqPYj8fy4t2vXrtHR0VH3wtTsyZFHVY2vx24XYtu2mZ2dZWZmBl3XGR0dZWBg4Ejzsy3r/067urnvtlDp1kqBf3cEtKslFAXCSpqk3cHYlrC2qU0CAVAVeC66yJv2MxheL64XY8NVSRYjvJ0dwkMAWSBLh96+Jag3uZef4dmux49kXw/CQYRTS0sLjz76KJOTkySTSd59910MwyCRSDA0NFT393mS2pQ3mnpWDMMwyvaZxcXFmki+WCy2w9r2Nh4cTlT71OvW6PuufYEtxbVEcraQovohorLroS+md4vEOyyHEbie57GyskIqlSKXywXi3naj2TF+za6MV49VKBRIpVLMz8/T1tbG5cuX6e7ubkgG92775XqLtPCd8t85N0JrKCiq19wI3dp25Tqippm224kqgi6twE70a0XSGxlezKqACUBUDePhUWkJ6TLaWbO34/XuFWb2untHzmGPCcMwuHDhAhMTE8zNzXH//n1u3brF+Pg4o6OjgScPZ9n+sdt4qqoyODjI4OAg6+vrTE9P89JLL9HX18f4+PgD5w3sNJ6/7kZRbQ3xIz8dxwlUryUSyelHiuqHAN/fVyqV8Dwv0PXwKC+QBxHVtm0zPz9PKpVCURRGRkZ47LHH6nZb22nMZts/mj1RUQhBJpMhlUqxsrJCX18fTz755J49uI0gU/gcmrI5+VAI6KjqniiEIKzUVqOjaoYVp5WxXTTEnGswZrwPXCsvK3om3aEOVu1MeZmhBk9fd/OpBwrMZh8bh8WfsDcyMsLKygpTU1PcvXuX4eFhEolEuR36WbV/+IlDD8KPLSwWiySTSb73ve8Ri8VIJBIMDAzsWbT6Iv6o9rHaGmLbNrZtoygKhmFIa4hEcsqRovoMU9moJZPJ8M477/CDP/iDTZswsx/BWSgUmJmZYX5+npaWFi5evEhPT8+BJgyd5Up1Pp/nzTffpFAoMDQ0xHPPPUckEmn4OLvtl+W8j+K9Wf4754VrIvPSbpg2zax5b87T0dQ8Bc8gptaK7oKnEVHzjIdngKtQ0T2xM9QWENUlL7j+vFtk2Vqj7wG+6mYc+40Wn4qi0NvbS29vL9lslqmpKb797W/T3d2NbdfGFR4Vx2H/2OsNNWw23PHbxc/NzXHnzh1u3rzJ2NhYTYW/Hr4946ipFNeFQoGXX36ZT3ziE9IaIpGccqSoPmNUWjz8FA/YjPFqdneyB1WqKxMq1tbW6Ovr44knnjhUXNZxVKqPejzHcZibm2N+fh6Ac+fOHVlDm72wUfwVNLa/13Cda7+zQ7OXtBeiXSuy6IaYqCOqF90QMc2kVTO5Hs/zVn67+q4rwYrlsrlGdUrI3fzMA0X1aaetrY3HHnus7LteWVnh9u3bAPuqyh6E45youB90XS8L6eXlZaanp7l79y5DQ0OMj4/v+FSn2edIvwjgV6grrSF+3rW0hkgkpwcpqs8IfiSeaZrYtl2uKPkVD8dxytaPZl0U/YtB9YXKdd1yQoVlWQwNDXH58uWGNHZodqX6KEV8qVQilUoxNzdHPB6ns7MTwzAYHR09kvEq2elmoWj/D1TvXlnH2p5KW5X1o+BpdKilmvfaAmLqZnU5pm2w7Mbo1ba7ImZdnYiaK/99LTbFW/ltC0i9ynSn3sa6s1Fedi+f4rkTMFmxGb8zv1HK8vIybW1t3Llzp+y7HhkZ2VeFd68021N92M9RURT6+vro6+tjY2OD6enpXZNVjqstun+eru7W6M95kZF8EsnpQIrqU47f9dA0TVzXLXsQq0/AlQL3KBMhKqkW1aZpMjs7y+zsLIZhMDIy0vCEirNQqa5MO+np6eH69eu0t7dz9+7dpj/qryZf/Heoio4nHFwBGTdCXC2hVlzrs26IXr22Cr3sRmmtmLhYEjauAG3rvSueRrziUBg3ZoBH8RX8srlKdWU6VFICZ7EHTVZsZkfFZuELx0cffZSlpaVyGsbIyMih0zCqOS2V6nq0traWk1VSqRTvvfcemqaVk1V0XW/q+dGn2nJSLa4rU0Nkt0aJ5GQjRfUppV7Xw918eMcpqjc2Npifn2dpaYnOzk6uXLlCV1fXkVwYTqunWghRTjvZ2NhgcHCQZ599lmg02vCx9kK972a18P9k3c2wKWpDmJ5GTLWYsUPoik6/XgI8WlWr5r1CgFY1cdFQbWadFsZCJVadMPGq3OoWzeR8eJm7Zh8ARWHSprSQFduv62zrZKmwnQByN5c6lmpjPZqdyKEoCv39/fT395NOp5mamuKll16iv7+fRCJBR0fHocc6Dk91oz9HwzA4f/48ExMTzM/PMz09za1btxgdHaWlpeXYKtXVVEfy+XNkZLdGieTkIkX1KeIwXQ/9k3azBKcQgtXVVQDefvttBgcHefrpp4nH40c67mlL/3Bdt5x24nkeIyMjXLt2re6j++OM77PdNGvml6msEhe3Jhvqqgu4zDkalhcjYeRq1rXqRolpxZrlupon54VJC0G9Xo8faUmWRTVAX7SLbGFbVNtKtfWkxN+8+j+4PnGN/v7+ugLpNE5UfBDVY3V0dHD9+nUKhQLT09O88cYbtLa2kkgk6O/vP/C2HYf946hErqqqDA8PMzQ0VI7km5qaQtM00ul0Q25C9sKDbgL9z7vaGiK7NUokJw8pqk8BvsXDsiwcxylbPPYTieefdF3XPdJtdRynLBJ9UfaRj3zkUJMP98NpqVRXd4ecmJigr6/vgRfX46pUz+V/BdiuQDtCob2q2YumeJSApB1nLBSsOueFQj3HvKYIUo5Kl14/t/pSZJlKy8deJitaXQo3b97k1q1bJBIJhoeHj2VS50mIuYvFYjzyyCNcuHCBmZkZbty4UfZdH+RzOQnNXxqNoih0dXXR1dXF1NQU9+/f54033qClpaV8E3KU2+B3W9zrtspujRLJyUWK6hNMPYvHYWaDH2W3wWKxyMzMTHlS3fnz5+nt7eWll15qqkfxpHuqc7kcyWSybIXZrTvkYcc6LP5YGfPvMJ1XqdzEnBuhu0oIFz2d+NbEw/t2Cwk9h6JAwVPp2KXZS15ohN0Qca3WL15tATHrTVYMtbNe0QRmI27yT/7BP2RhYaHsLx4bG2NsbGx/H8ApYS9V8VAoxMTEBOPj44HPxfdd7zWW8SzYP3YjFAoRj8f5yEc+wszMDLdu3SpH8o2MjDwwku8gHCTGb6dujdIaIpEcL1JUnzAOY/F4EI0W1UII0uk0MzMzrKys0NvbW55U53McleOjrsZXshcRL4RgbW2NVCpFOp1mYGDgQFaYZotqAM9zWSz8B4KHniCm1grggjBo3eqAqKsWSSfOqJ5nzQvTXsf6AZB1w8RVi1U3WldUQ9ACsmyvU12Z7jE6AqL6Xj6FqqoMDQ0xODjI2toa9+/f54UXXkDXdUyzNj+70ZzUhiyVn8v6+jpTU1O8+OKLDAwMkEgkHvhE6TiavxxHZVzXdRKJBOPj4+XJn5WRfC0t9cxKBx/zoIWH6m6NldaQyrxrKbAlkuYgRfUJwe+uZZpm2eLR6K6HmqY1ROB6nsfi4iIzMzMUi8Vdm5AcZXW8Hqqq4ji1yRNHxW5C1/M8FhYWytGBIyMjXLly5cDVrmZ7dIUQzOT/A57YKCd0AGTdKJ1VItkVEK0S2qpqM+VEaaszcdEn4xnEVYuQ4iAE1NvFS5ElfCFdcIt06G2kK2L0QmpQkNwrzJTFn6IodHd3093dzcbGBq+//jo3btxgbW2NRCJBZ2fnnj+T/XBSRbVPpeUhn88zNTXFq6++umPUnM9xtCk/TrtJ5eRPv+nOd77zHbq6ukgkEnR3dx/682jUPtZLDaluhS7FtURytEhRfcx4nodpmliWVRafRxX4r6rqoaq4lmWVI/F0XWdkZITBwcFdqyzNFtUnwVNt23bZL+03oejv72+IDaaZnmpTzLFmvUh7Vea0Su02bHgRYnUqzQUvhCs0BtTayYt5VyembArusOqy4kbp1Wsr2i2axYXIMndKm9Xq7lB7QFRX51cX3BKL5ioDkZ7A8tbWVqLRKCMjIxQKBb773e/S2tpa9rOfVsFxWAEfj8e5evUqFy9eJJVK8e677xIKhcpRc5XH7XFUqk+KiPeb7ly6dIlkMsk777yDYRiMj4/XfE77YT+e6r2wkzVEdmuUSI4eKaqPgcquh76YflAkXiM4qMDN5XKkUikWFxdpb2/n8uXLe67QHEel+rjSPwqFAqlUivn5edrb23nkkUcaGh3YTPuHpc2zaPxvtLAWWF709JoJigBihw6KHgoCl7QboaPqfWtelHhFFbvghYD6NpGJClEdUoOnrXqTFe/lUzWi2iccDjM2Nsb58+dJpVJ88MEH5UmNhxFHlZz0SnU9KqPm5ubmmJqa4vbt22U/umEYZ3Ki4n7HC4fDXLx4kXPnzjE/P8/U1FQ5km9sbGzP/vT9jHkQqq0hld0aK6vXEomkcUhR3UR8i0cmkyGdTtPd3d1wi8du7Efg+pF4qVSKTCZDf38/Tz311L69hMchqps5HmyK6Xfeeafcav3JJ5/csQ3yYWiWqF4x38Ls+7/hiBY0ESIkXDRlc1xLhIBgRXrDDZcnKFZS8vQtS4hCztVoURV0fz2eSqQqDi+uWlieiqEGv78VJ0ap4lRlesGx6k1WvFeY4WPdT+y6n6FQiHPnzpFIJAIicnx8nNHR0SOZlHYUNFrAq6rKyMgIw8PDrK6ucv/+fe7du8fQ0BC2bZ+YyvFxj6dpWvlzWltbY2pqihdeeKHsT6+cW7IbB5mouF+qrSG2bTM1NcXw8DDhcFhaQySSBiFFdRPwQ/v9FI90Ok0ymTxUXuxB2Iun2nGcsg/YdV2Gh4e5evXqgQXGSU/jOCie57G0tMTa2hqe5zE6OsqlS5ca0mp9J5qxbzOFb/Hhxm8jUDHUIiYhltwQnlCIKiHa1LWa96TdKP3aRs3yghcqT2jUVY8lJ85QaNMGsuzGaj3YimDZjTOsbq/LEQr37G4i6rZPfmUPkxXv5nfvrBgYt0JErqyslEXkYToSnsZKdTWKotDT00NPTw8bGxtMTU2xurqKaZq0trYeWQOnSk5DZbzSt5/P55menub1118v54I/KCqzmQ25KqNVP/jgg/ITR2kNkUgagxTVR0SlxcNP8YBNYWsYRtMn/MDunupSqVSOxItGo3vKTd7rmGepUu04DnNzc6RSKRRFIR6P097ezvnz549sTJ+jFtW3c3/O3fz/TkQ1KXghooq5Ne5mnnTaDZP32ujQSnRsTVR0hEJ7HR+06ykYSvBYUxWXNTdKm1IipOzk7Q/u322zFwcNQ3XwhXTeLdSZrBg8ld0vzOAJD1XZ+/GrKAq9vb309vaSyWS4f/9+uSPhxMTEniuPzaYZN5Gtra1cu3aNYrGIqqq89dZb5Xz1gYGBIxO+p21iZDwe58qVK1y8eLGcC37jxg3Gx8cZGRmp29TJdd26y48S/5gxDKNsYfOtIX4rdGkNkUj2jxTVDcafdW2aJrZtlystlRUATdOaGvvmUy04hRBks1lSqRTLy8v09PTw2GOP0d7e3rAL2VmZqFiZw93S0sLk5CQ9PT3cunXrTFR23s3+H6yU/k8iqsCrk+QhBCiYqCpkRZicHaZP22DFjdNT1egFYN2N0lJjCVEoeVAkXrN+n6hqk3bDdGgmS3YL62KzTbumCCKKTUlsPjHpqpmsGPRr+5MVByO9Vfuxt6pue3t7uSPh1NQUr7/+Ou3t7UxMTOyYjHGQcRpFs8ZSFIWBgQGeeOIJZmdnuXPnDjdv3ixbZhotDo/D/tGIfajMBfcj+e7cucPw8DDj4+OBOM1mVqp9/OtPZeReZSSfP8dHdmuUSPaHFNUNwu96aJomruuWux7WOyEdh++3clzfujAzM0M+n2doaIhnn32WaDR6ZGM2i0bbTTKZTPmm47hzuI+qUv1m+n8ja/23cpxdUYRoU4OJGiURxigLYQVPgRmnHSHqX2x3vAQLSHvRHUU1bGZXt6gW9+yuQMZee6hIydoU1WGt/mRFBZWhcD8h2rmRWa4R1fslFotx5coVLly4QDKZ5N1338UwDCYmJhgcHNxR8DXT8tTMam7lpOqxsTFGR0dZXl7m/v373L17l+HhYRKJxIEsMzuN10xR7bpuQy1cqqoyMDDAwMAAmUyGqakpXn75ZXp6ekgkEnR1dTV9H4FAMzGfepF8vt/br15LcS2R7I4U1YekXtfDB/nSjqtSrSgKa2trzM7OoigKo6OjDA4OHmkL5+OIuDvseEIIVlZWSCaT5HK5XW86mt06vNFjvbL27zDdvytrV1dQt7ELGFRPULSFjq66LNhtDIS2/cyVnRWr2RARVEVgehphtf5vIKLa3LZ68KqsGy1aiUU2b2hMb3NbFBT6w71ElQ5aRZg3V9e4advAGkPGIj/Sf+XBH8IeMAyDCxcuMDExwezsLHfv3i0nhoyOjtb9DZ3FSnV1BV5RFPr6+ujr6yuLxpdeeom+vr5D54D74u402T92o729nccff7wcyedbaIQQdHV1HcmYO7FbjF91JJ8/J0h2a5RIHowU1QfgsF0P/eptsy4Y+XyemZkZFhcXMQyjbF04aYkjjRrvoMLTdV3m5+dJpVLlyYePP/74rjcdp7VSLYTgpbX/Fc/7XmC5KUK0VlWpbaESotbikffCdGkFXKGwYLcyENq0YxS2GrrUw0InpHiseXEG1Wzd1xS9EItOC4Ya3Ne4ZhJSQvSFesFtpcWb5FY2xw3bBta52j7Ehr0t/G9kFx/4OeyXygrt0tJSuUI7OjoaaPfd7HbyzRTVO4lOXzROTk4yPT3Nm2++STweP/D8DP8zbGYVtxkTIyORCJOTk5w/f565uTk+/PBDbt++jWVZjI2NHelkZ5+9ZGP7x1S1NcT3W0triERSixTV+8C3eFiWVe56WOk72yv+yewovXTVrbH7+vrKDUh6ew/3SHw/nAZPtWma5WYt+52k2cwOjo0S1Z7n8t9X/w055xZhxSh7nze7ItaK4aJr1FSePUF5maIoeKisOnE61EJNVJ5PzjUIKZvfjYKoG58nBMzYnbjoVFfG4yp8sNzFu8IBVukMRQMiOlzVWfFmdvFIkzH8Tnvr6+vcv3+/3O57YmKi/Jqjxj8eTlLSSDQa5fLly1y4cKE8Wc/3XY+MjOz5yZj/O26maGtGvJ2PpmmMjo6SSqXo6ekhk8kEIvke1DL+MOx3P6utIa7rloW57NZ4tJRKJSxr5660pxnDMPad637SkaJ6D9SzeBxmdrT/vkZ30vLXubCwwMzMDJZlMTw8zCOPPEI4HObevXuYpvnglTSQk1yp3tjYIJVKsbS0RFdXF9euXaOjo2NfF4fTZv9wPJNvrvxrhEhhqCDQWHVaiKs6HvmaKrUn2EreCFLwosS0ytcqmOjMO2306LVVbYCciBBRNtelKrDktDFipAOvWXJbMTGot5uGWsCt+If+SDtr1nbyiOkFt3PdKrJU2qA/ui1OjuK76uzspLOzk1wux9TUFK+88gq6rpebpRyl2Gi2qN6Pf1vXdRKJBGNjYywuLpYn61VX9XfiOCrVx+FvFkLQ0dHB5OQkuVyO6elpXn31VTo6OhgfHz+Sbp8HLejs1K1RWkOOhlKpxMR4CwtLzbeLNoOBgQHu379/poS1FNU7cFiLx25UiupG4Vdb5+bmCIfDjI6O1rTG3ktOdaM5zg6H9fAr+Mlkkkwmw+DgIB/96EcPPLGq2faPw2B5Bb65/PMoBG0RhupiegJLGERUu1xNhk0rR7SOqHZFvQuyQkGEyLge7VowZs/0VMJKcD2qKnA9BU31G8JoLNptoNTv0FjdBj2mB1MaFku1dpIb2cWAqIajE6AtLS08+uijXLx4kddee43Z2VkymQwTExP09/cfiVg7jkr1fvdDVVUGBwcZGBggnU4zNTXFiy++SH9//65NUvzf1VkX1ZXFlZaWlnLL+JmZGT744ANu3rzJ2NjYvqr8+xnzIFR3a/QbylR2a5TWkMNjWRYLSy733xynrfVsRRxmNzwmnpzGsiwpqs8y/snBNM2yxaPRXQ/9yYyNEGN+JN7S0hLd3d1cvXqVzs7Outu6W071UdFMe4Q/Xj0R77oui4uLJJNJHMc5dFMbn2ZWquHgldaim+FvV34etartuE/Ji6GqJqt2Ky1aiZZyFbr2OHKESlwr1FmHhq5AzgsTUpzAhMcNEUNXgse7rniseC30bzV7SVpdeIq2NWrtfoZUl7heIu9snoBtL3gsr5h5WvUIG852Bf1GdpEf6r9Yd5+PinA4TDweZ2xsDICbN2+WJzUODw83dGLwSbR/7ISiKOWqfmWTlPb2dhKJBL29vYF1H4f94zji7eoJecMwyt0+FxYWmJ6eDkTyHTZdpZFPSet1a6xuhS7F9eGIt2z+d5Zwm3fZbCpSVG/heR6maWJZVqBCclRVi8MIXM/zWFlZIZVKkcvlGBwc5JlnnnngifY4ovyO21NtWRazs7PMzMxgGAZjY2MNbVZxGuwfeWeVbyz/GmFlrW7WnesBiuUPQs6LYHohYlqpbvRdydOJaXUsIW6YmLbZxnrdjaOxQVh1cT0FtY5IBnBR8TwoYrAhIuUUElUBx1PQqyYrDkSz3N3YFNUrVq3NZCjWzs3sUvnvo5isuFdUVWVsbKxsf7h//z537twpL2vEhLSTbP/YDb9JyoULF0ilUrz//vvous74+DjDw8PlCmizq53HVaneaUxVVRkaGmJwcJB0Os309HQ5XWV8fHzHAspexmz0zcNO1hDZrfHweAi8Hc6hp5Wztj8+D7Worux66IvpvUTiNYKDxOrZts38/DwzMzMIIRgdHeWxxx7bc7OC4xDVzY7U8yvV+XyeVCrFwsICHR0dXLly5UjaKp90UZ11FvnLpV8GCpgiQrtWqnlNSUTRAtYMBRudFbuF3lAuYAcRgK7UeRLgEeiSqCgKy04bQ6F1MiKKWuc9sFmtXvXirLktNd+Ng4ZOULz3RnLc3egDYKGYIaLqlCq81C168MnDcYnqyopupf1hbW2N+/fv88ILLzA0NMTExESgEchBxoHTUamuh2EYnD9/nomJCebn55mamuL27duMjY3R3d3ddIF7HKJ6L9Xxyip/sVgkmUzyve99j1gsRiKR2Heh4ChEdeW2wrY1pLJbY2X1WrJ3PDya39niaDl7e7TJQymq/UdUlmVx69YthoaGiEQiDbV4PIj92D8KhQIzMzPMz8/T0tLChQsX6Onp2feJ6Tg81c0c0+8Q6boub7zxBn19fTz11FO0tBzdc7Nmesb3K6rT9jxfW/5lYFNIu0LF9hRCFdVf16Ou4PUEeGis2G10h0wMZdMjbXo6Rp186bQbI17leVZVWHZa0FRQdzmBZr0oRVFbtfXqNJbpMrar0wIYjnVwN7dSXuaI4DjzxSxpq0iH0fjGRrtR73tSFIXu7m66u7vZ2Njg/v37fPvb36anp4eJiYkDZTqfBk/1XlBVleHhYYaGhso3Hvfv30cIwcbGBq2trQ0fsx7NFtV+YWc/Y0ajUS5dusT58+cDXS39qMe9WNqalXJSbQ1ZWVkhm80yMTEhrSH7wBUiMEn7LHDW9sfnoRLVfoi9n+IhhGBhYaFmQl8zeJD9QwjB+vo6MzMzrK6u0tfXxxNPPHGomKXj8FQ3o1Ltd4hMJpOUSpsC8tlnn23K5IeTWqles1N8fflzKGz7i1UFsm6MbnVbmBa9MHodkWwJHU0RCBRWnQgtqkerZuKgYdQRyB71L9B5ESUirBo/dfl9YlOQK1vb9yA6jOAEyPZQUCyvmrWWkJvZRZ7pSQDNzY/eTSy0trby2GOPMTk5ydTUFN/97ndpbW0txznuVWg0c3/88Y5SBFXeeMzPz/Puu+/yyiuv0NXVRSKRoLu7+0jHPw5RDRzo+uPbZcbGxlheXmZ6epq7d+8yNDTE+Pj4rjciR1mprocvrnO5HCsrK4yOjkpryD6Q9o/Tw5kX1ZUWD9u2a7oeHld3w50quP6EupmZGUqlEsPDw1y6dKkh/suz5qm2bZu5uTlmZmZQVZXR0VG6u7t55ZVXDj0Bca+cxPSPjL3EVxf/LZpaG5+oqQLTayOsZnE9UHawZVQigA0viuVptOm16yx5Oi11xgJwhEbBDRNR7LqiOePF8NC2KtnBbamXANIWMqteE3zPfDGDoWhYYvs3faNCVENzJ749iEgkwuXLlzl//nwg7WFiYoKhoaE9C5/T5qneC5FIBMMweO6550gmk7z99ttEIhESicSuLeIPQ7NFdSMSTiq7Wm5sbDA9Pc0rr7xCZ2cniUSibqOv45iQCZvXNz96r9oa4rdCl9aQWjwE7hkToVJUnzL8SDzTNLFte8cUj+MU1ZXjmqbJ7Owss7OzhEIhRkdHGRgYaOiJ77gi9Ro9ZrFYJJVKMT8/T2tra6BDpL3VDOQkVo+bMVYuv8F/Wfk8nuqxU52qJBR0DwrCIFRHVAsRrvJYAyhkvRi2o9Or56i8RmedKG16rVfb9FQUBQQqG16tn9sRKll3s9LsoaBVnWTrJYBUN6fJ2MHKtYdgPNbBvfxqedlx+Kr3W9ENhUJMTEwwPj7O/Pw89+/f5/bt24yPj+/6SP+oEjKEELyffYvX039P1pmlPdRKWI2S6cyjbCyimxoRLU5EjRFW4sT1Fgw1QliNE1ZjhLU4mrK3uR474QvccDjMxYsXOXfuHHNzc9y7d49bt27ty+6w3zGbhX8NaNR5vrW1lUcffZTJyUmSySTvvfcemqaRSCQYGhoqJ8+4rtuUzo3VVFbIq60hfiv0yoZqJ+kGWHIy+IM/+AN+93d/l4WFBR5//HH+43/8j3z0ox+t+9o///M/57d/+7e5c+cOtm1z8eJFfuVXfoWf+ZmfObLtO3Oi2u96aJpm2eKxW2bmcYlq34pR2YDkKCfU+WOeZlGdyWRIJpOsrKzsaIfxL4jNqsSclEi9bDZLMpnkO6H/jBPLIoSKEFDvMBLYpN0okTq2DwAHHaiTTY1KQUSYNg1Gw+ub9pAdmsMAlDyjnN5heiFMxSZcMWbajeHHkdSrSqsK2J5KqKLrYkh1Cas2prcp2GaLaVRl00bi025EqeyqfvMUiGqfSm/xysoK9+/f5969ewwPD5NIJOom/DTqXLFmLvPK+t8zXXifBWsGx7MAQV+4h7CioWBTjMzzYXERryjoNnrQFMG6PUvJ20BBoTs0QkxroeRlyDnLGGqMNr2PjtAgQpgoioqhxjGUGK2hXjRUDC2+uUxtIazEMbQWDDVe8xn6HQhHRkZYXl5mamqq/NmMj48fasInUK6cHoeobvT53jAMLly4wLlz55ifn2d6eppbt24xOjrK2NhY0+0fPvXGrRbXlakhfvX6YRfX0v6xyZ/92Z/xuc99ji9/+cs888wzfPGLX+STn/wkN2/epK+vr+b1XV1dfP7zn+fy5csYhsHXv/51PvOZz9DX18cnP/nJRuxGDWdGVNfrergXn9ZxiGp/ouTMzAz37t1jcHCQp59++tAXhQdxXKL6MKJTCMHy8jLJZJJ8Ps/Q0BDPPffcjn5p//tultA9zomKQghWV1dJJpNsbGywPvIuljG/9drNSYWROtF3ACVhoAqbaFVLcU+wJX6Cr3eFsm3fUFVSVifDRpqcEyZaZwzXA62iCq5sRfWFt/zcpqeR94KVsno3AbYIESJo+RiIZpjO9wBgeS4j0Q5ShXTlmgKvn8qtUXRtolqo6R7kg6IoCr29vfT29pLJZLh//z4vvfQS/f39TExMlBumHMbjnHc2eCP9Anfz7zJvJjHdDcDDUHU84aApYCgurlhiyVqhxxgiJnTCmiDrLrJqLdETGmMonMARBWyvgKYoaHh06j20622oqLjCImfPIPDQlRCOmmHZXaaUz+B6Jq2hQaJaDNNLs2GnEHgYahchb5hst0tbJsvj7T8R+Gx8u0Mmk2F6ejow4XO/XVF9jquD41H6iStv0tbX15menubFF1/EMIxjqVT7No96VEfy+XOgZLdGOVHR5/d+7/f4+Z//eT7zmc8A8OUvf5m/+qu/4o/+6I/41V/91ZrX//AP/3Dg71/+5V/mj//4j3n55ZelqK6H4zjcvXuX4eFhHMc5UNfDZopqx3GYn58nlUphWRZtbW08/fTTe47EOyx+dfyoJxtVj3kQIV/5WQGMjIwEHl/uhL9fzfQ5N1tUe57HwsICqVQK27YZGRkhdsHinfRLgXqvKXQidSrOngeWCGG5IUJKAb1CWNsihFpnUqEttGDGtaIya3USUSyidcYwCdUIZA+NnBumRTNZd+NUrlBhUwpXH5X1Ojf2RXNlUQ3QZcQDojpbxxJyO7vEY53Dm2M14dhv5G+svb2d69evUygUmJqaKjdMmZiYIBKJ7HmcvLPB99Mvcjv/DktWipKbBjxURcH1NqMSw5pNSClgqCq2p6MpCr1GG1lngYIzg6bE6Qr10RaKIXBQFR1NcTCUKELVUdFwhYnrmQhcdDWKruqU3FVK7jpFIWjT+2nR4oQVlw07TdG+h8Y4IbWfeKgXx4M58wZwH8JwJ/dKQFRXfzb+hM/p6WnefPNN4vE4iURi310sz3IHR0VR6Orqoquri0KhwOuvv04ymWR9ff1An9VBcV33gRPI/eO52hri+60fRmuIt/XfWcLfn2w22Ak3HA7XveGzLIs333yTX/u1XysvU1WVj3/847zyyisPHE8Iwd/93d9x8+ZNfud3fudQ274bp1pUr6yscPnyZWZnZ4nH4weKxGuGqC4Wi+UW4vF4nPPnz5PJZFAUpWmCGrZ9eydZVJdKpfJnFYvFOH/+PL29vXVP+J7nURI5Cm6WvJsl72Zo13uaPnmwWaLadV08z+M73/kOuq4zNjZGf38/WWeZry/9xxoRK1DwPAW1qoFKSYTw5euaE6dbz5SryoqiUX36FmJzXdVHjINK1osS9YK2DiE24/vqTUwseAYCMEWtD9ajtklMvVi9gUjQm61XHRszxUxZpPvcyC6WRfVpJRaLBRqmvPvuu+i6vqNtYd1a4a3MS9wvvMeKlcIWGVQUXOHgCQ1dEURUF02xsRUdR6gYGCgUiakONh6G2kZXqJsWLQRCkFXyhBRBWIkgcFAUFU+YKIAiXEJalBAaJTeD7RWxXZ2Y3klMjYBQKXpLmJ6Dpo6jKX2E9RayzgbT5gKwAMBg5GpgP+ZKN7C9EiF1ZzEWiUTKMXMzMzPcunWLmzdvlj3pe+lieRyi+jhsGLFYjEgkwvnz53Fdt/xZ+a3Qj3KS9373t9oa4p8Dj6PKfpy4Z3Cior8/o6OjgeW/8Ru/wW/+5m/WvH5lZQXXdenv7w8s7+/v58aNGzuOk8lkGB4exjRNNE3jS1/6Ep/4xCcOvwM7cKpFtZ8/XCqVDpxjelSiWghBJpMhlUqxsrJCb28v169fp62tDUVRyOfzWJb14BU1kEq/cbMuHHsV1RsbGySTSZaXl+nu7uaxxx6jvb29LP5NL8+qNcuynWTFSrJsJ1mz5yh5Lo7YrrSej16nR33yRE0ePCylUolUKsXc3BwAly5dCszo/9byn1PPA60o4NKKynYlQAgwxfaNnIsvrHO4qCjUdlB0UOt6s0tuiLDmsui00a9ny8LaFPqO8XhCKKw4rXX/XdRIYahXn+kMBSvReSf4O7I8h+FYBzOFTHlZsycrHuWNq98wJZFIcPfuXe7du8fzLzxPZAzS0SQz1i3S9jyOyGGoOpZnIYSKqnjENAVPmNhCRwgFQzVQsAjpJqYbIqIamJ5AwcNQXDp0jYgChmYghIelCDRK6Mqm715TDIQisL0CQnHRhIOuRtDVMAWxjuWa2MJAUVpQ1EEMpYcl6z44d8r702NcZsPdzhovuZnA/no4zBbfJxF/8oGfja7rJBIJxsfHWVxcZGpqirt37zIyMsL4+DjR6M555We5Ul1v3HA4XO7MuLS0VP6s/Ei+o8j39xvA7BdfXB9H6/qTgCvOXltvf39SqVRgblSjb5haW1t56623yOVyfOtb3+Jzn/sc586dq7GGNIpTLaqj0SiaprGxsUFvb++B1tFoUe15XjkSr1gs7ugBPo7M6EpR3cwxdxqv0hOczWYZGBzg0acmMfV1Fpy3eHt9mjVnhjV7lry7zqDxCDPmzcA6ukMJFq1U+e9Z8zbdykeaWqk+qrFyuRzT09MsLS3R09PDI488wnvvvVdzrN/Iz9AWqp/zbKNR+SzEFa1UC1UHnbQbI6Lage6J5X8XWl1R7S9TFIUlp42+LWFtC21HUZ11IwhVxRBO3cp6Nbrq1nito3owizqVW6WabiN+rKK6GWiaxlvh/869kbfwQgWEa6NnNZyt5BYND0PxQHHxtj5dQ9FQFIeQ8HCFSkQJ4eCiKw5seagdvK1ccUG7HsJQbRQBrrCJ4BJRrC2LkIOuAmLTP+8KgSNcHM/F8iDvhYjqQ8yUbge2u0XrJ+cub++HEhRZ6/YsYaUFU2x/z8ni23sS1T6KojAwMMDAwADr6+tMTU3x4osv1njSK/HjApsp2JrVhGW3cRVFob+/f/OpVzbL1NQU3/nOd44kG/y4Jkieds6y/aOtrW1P/Td6enrQNI3FxeC5fHFxkYGBgR3fp6oqFy5cAOD69et8+OGHfOELX5Ciuh6qqhKPx8nnaxs+7BVN0zDN+hm7+8GyrHIknj9LfWBgYMfHjscRb+efGJsp5qtFpxCCvL3O1NIHJNduUlLX0HsstGGFl+2b2OubVUhDiZL3ghVIR9TGtkWUYOWp5OUpGuundqKi3/QnmUySTqcZHBzkmWeeIRaLlY/Tyiqo6zms2zkiWv1JibYoBbooFr1aewdAyQvhCoWOqmg8Ucd+AZsTDQOdFbeEdataDHRsrMT1wFW0Hf3TsDlRslKQb4o1JdAaPaoFj4uCcGhFZ6OiWl9tCbm9sYztNe+4b4bF6nvpl5m2/g694n5dEKKlorOlKxQiqoe61UJeYJNzonSEioCHEBtbdh2dsOagsEFEE5Q8jZjqoKsOJTe9mdqhRBGqC6qHUGxAJ+d4lESWDWcRV5j0hR9jvvReeXzbK6KgBPLE2/TegKjecBYIHhGCLmOYefNW+TXJ4tsH/pz89t6FQoHp6Wlef/112traSCQSgUY7xyFwjzMvut64bW1tPPbYY1y6dIlkMsk777yDYRiMj4/vKzd9t3H3YsXZjYetSg2b1ji37hnz9OLtc38Mw+DJJ5/kW9/6Fv/0n/7TzXV4Ht/61rf47Gc/u/dxPa8hmm8nTrWohk0LyMbGxoHff9hKdS6XI5VKsbi4SHt7O5cvX97Tnf1xdTc8ajG/YS9SFGuYboaSlyVvrbPc8z5/u/ISG84SG84SoVIPucgidG2/r59HsMX2Y31LFOnQh0g723elaWe+ZjxbFGqWZSMLp85TXdkV0jRNhoeHuXLlSl1/Y6Vgey//PUxPoeAauyZ9hDApuTpOHXsHbHqgi16ckBIlrq1X7GA80JXRx6qXLKIopMxOxsLr5Si9SgoiXK44e6g1rcsVwPI0Ilrwd+Ggo1dsd0hx0BUXp2IS40hbNx9WVKPTxeCNtu253M+tnpr0jwchhODvVv6PQAXfcjXiVVV8x4OwLir+VmmtuHFSFIHlhegO+b+jzYnMuqIT0ywy9n0A2vVxsu4HEIcVawaAmP4UrrBI28ntbfCC52JbFOgMnWPNni4vc0XVTZG7Sps+SNZZKi9TlaC4XbWmyTvrxPX9t3L3icViPPLII2VPut9oJ5FIMDw8fCxWjOOsVO8mkCuzwefn55mamgpE8h20W20jKtUPpagWwdjQs8BB9udzn/scP/dzP8dTTz3FRz/6Ub74xS+Sz+fLaSA/+7M/y/DwMF/4whcA+MIXvsBTTz3F+fPnMU2Tb3zjG3zlK1/hD//wDxu5KwFOtahWFIWWlpZDV6r3K25920IqlSKTydDf389TTz21Lw/aceZjH6XgfDn9+6zY7waWua0xNvw7QwXUaKnWOlvHdtCitQdEtS1KdOpDrDsL5WXrznxNJSwXXjw1nmo/5SSZTKIoCmNjYwwODta98NSLC3x/47t4qGTtKF1G7Q0GbApmIaAkdvaqOWLzwr7qqDgiQvuW8LLr7JonqNva3BVgaB4LdhvDRiYg+GxPwWZ7n1xUNOHVie5T2XR6V25b8EWKAmOxPPfy248MY3rw5mO+lKG6Hn4ju0g7py/9ox5fX/x/AZWz5gXhKs+N4xnE9aD/3BYKUaVSZCvl79on60TpMSrPqSIQjwgQUYeYN2/QH74cWJ6xp9GVGE7FzW5Ua6HyXi5tJ7duqbZ/8216d0BUZ2uq15Aqvs3l1h/msIRCIc6dO0cikWBhYYGpqSlu375Nb29v0wXbSatUV6NpGiMjIwwPD7O2tsbU1BQvvPACAwMDJBKJujaaRowrCeKewUr1Qfbn05/+NMvLy/z6r/86CwsLXL9+nW9+85vlyYvJZDJwk5rP5/nFX/xFZmZmiEajXL58mT/5kz/h05/+dMP2o5pTLaoB4vE4uVzuwO/fj7h1HIeFhQVmZmZwHIfh4WGuXr16oNnSx2H/gCNuG+6ZFL3aNBPDbqekb18wi6wRVTopim1RsFFxQfURdSbfxbW2gKh2hEW3PsqKM1deljUWsJ36FdlGc1BRbZomMzMzzM7OEo1GuXjx4gMv6vVE9Zy56ScveAZCqCh1bk4UBfJbqRv18ITAqxC8GTeOAsQ0E69OlbrkhQINWXwKTpiI7mytI0q7ViyL5qIIUymQxFa/xJq9rTeBsY4FZaLV4l6F7rOqrB1FXLr0GBmnxKCIEREt3Jhb45na1R8JR3lTl3OyfLDxDbSKj8V0dVoCLeQFRpXIdt0IbXrwXGkLnRZlu3JsewrtVUK817hKuvpGWelBkCbrLAY87wKPrtAoy9b23AfTSwfe64gSnaFzrNpT5WWeCB5neXeNKN0U2X5qkiw0RlT7qKrK0NAQg4ODrK2tcevWLSzL4t133yWRSBx48vt+OI5KtZ8Ws98Uju7ubrq7u8nn8wEbzfj4OH19fXvaj91yqve67Q8jUlRv89nPfnZHu8fzzz8f+Pu3fuu3+K3f+q0DjXNQTr2obm1tPXJRXRnzFolEGB8fP3Su53HYP4563LSzyqpdIlL1saii9nNqD/VRtLZFdcFbJ6Z2Uai4AG8K7aD08uoJbb2FlYrFtlZg2Z2lj9oOS41mvxMV8/k8yWSSxcVFOjs7uXbt2p6bVVS/xvUc0k4aiAAKQsRQlPq/hYJr7Ox1rpMFnXbjuG6cqJGt+TfL02pEtRBBj5xJiILnEtcsLE/DoXaMehYQv0tj5a7W+2g6jQ1gO6t62dy2HUS1EOdifbR4LbyeXOS25QA5zMwdnugbO1I/XSVHVfX8s9kvBtrIe0IQqepqWXRDtOmVTy4Euhb8/m3XoKPKLlJ0w8QqqtSaYlB0ZwOvieuXmTU30zsK7iqd+iB5d77iPcHvOmMnCSvtmGL72Ixo8UD1et1OoqLhVTyliIp2ikqFqC6+dSRPAHzBeOHCBT788ENUVeWVV16hs7OTRCIRSNppNMdRqT5sa/R4PM6VK1e4ePEiMzMz3Lhxgxs3bjA+Ps7IyMiOMbF+JJ60f+wfTyh140VPM2dtf3xOvahuxETFnUSmH4m3vLxMT0/PvgTQXsY9S5Vq27a5Mfs+c94K58MhhLp9xRRVlS+ovfDC5gSmgpUu/130MrSoveS8tfKyjLNItdB2Ra1IWnTuc5UnDrYz+2AvlWo/XjGZTLK2tnYgu5A/lr8+2PRTWxVfZcEN06LWimohYMVuYTjs4FGs+jcR8CZXvmfBjaA6GqPR9fLkQdPViGq1TwFMTyOmB5fnRATbVmCHm896FhBNEXgQkOAqXo3QjulV3l3P5YnWMTby8OH8Om94GZ7uj5O3tsXmgucghOCdd95haWmJc+fOHVk18qgqalOFm6xa7wQmc9qeTljfrjZ7AqJq8LsouAbtetDSoarBz77k6nSGgufSXuMSq9Zb2+/yFDbc4Lqjen9AVG84s1T/RjuNERbM7SzZolvh2wccYdJtnGfZmtrejyr/f95dZ81O0W2McRR4noeu61y9epWLFy+STCZ59913MQyDRCLB0NBQw6vKxzU5Eg4uqn1CoRATExOBSL47d+7s2Da+UeM+jMhK9enh1IvqRleqPc9jeXmZVCpVbov97LPP7ppv2ohxm0WjxXyhUCCVSjE/P89KzyzEoM0YJ1ORQ+sY62hEcNm+8G92cwtSPTkJoC3URc7cFtUlb4M2rY9sRa5t2q71Xy57U4far72ym6iubLFeKBQYGhri0qVLh87h9Md7f+ONzU6HW6zZGi11ikS20PDQWLU0OkLFgJDyUOpG2RXcEMaWeE4VuxiKpAmpHmtWjJ5IrXe75BrE1drc9aIwMOp4p2HTAuIIhVCVX9fbqln6qAo1rwtrOcaiXXSpbSxmLO4sZIh2wK317WPFrPp9ZW2LnArPXrnG+vo6r7zyCt3d3UxMTNDZ2XkkFdBG8xfzv49a5YmOVaWhmJ5OW4UVxBMQq/puTDdKeyh4Y1LdsCeidpK2Pwy+ppggFwlOGDbd4PFQ8tZp00fJOtsV7upfdsae2apeb29DRI0FXpNXFlGEgqjY32ThrSMV1b7ANQyDCxcuMDExEZio5zeTaVSDlOOoVDvO5o1mo45PVVXL8YXpdJrp6Wlefvllent7GR8fp6urC0VRyuMexv7xsHVS9HFRcWt+Raeb5quf5nDqRXWjJiratl2OxFMUhdHRUQYHBw8d/7MTp9n+UVl5XV1dpa+vjyeffJJvmwuQBUFV9U8RtKsDrLnbKQFZd56QEg8kfhTcNapR6wi+Vr0zIKpNUaBDHyDtbMd0rXjTuMKtWxFvJP5FOBBz57rlFuue5zE6OrqnFusPorpSPW/dwfa29y/najWRdAAbzqaILwiICY2wsv39F512VLX2SYLp6hhbYk3XBHNmB/1GNhijt4UjFKJ6bfV6c3a3ii1UDOy6Pg5XaISqLD2eUGq81Q46oUACiM3N+yYe/nGg0GYEb1aWi7Xif8YsEY1GGRoa4sKFC0xPT/O9732PeDzOuXPnAhFrh+EobAqpwgwf5FwUeggpGgIbBYGhuhiqjitsEB4h1cMWLdiehYrAEQpdIYWsY6IqAlVxiathss7mv6uKQCNOTEvjCqU8KTFGNxti+3emiBiFUKZmu9btJGElgsv2hMeY1hkQ1Vlnhtrq9XCgel2q8l67ikWLGGSD7cnKyeI7PNHxqYN+hLtSL/2jcqLeyspKuUGKX409bIOU40gc8YX8UYjTjo4OOjo6ypF8b731Vtky6T/lPcy4D6unWpxB+8dOca2nnTMhqg8TqWdZFo7j8O1vf5u2tjYmJyeP1EPn41eMm9kyHA5n//Cr+MlkstzYZnJyshyvlM5vXoDTjlNzTx2iOoJJ0KkPsLQV2QWQdRcxlBasiuSAglvb2KM2OgRatY6AqM6zzryZYiSS2M8u7ptKoevfmM3MzBAOh5mYmNjzBJ79juV6DkU3g0fl7HulJurOE1DwtsXmmt1Cv1FEVSxsVwOlVlB7AsJ6UDzrqmCq0ElPnYSR4g5xflkrQpthIdhsIKPh1h7rCjXWjnq4nkpBhMg4URbMdgrC4CMTq3z3/ravuvqomM9vENV0iu72tqWsbeEXDoeZnJzk3Llz5Yi1W7duMTExcSSP+g/LG+nv44jNU/ZmKksYXXGxXGOr7BNCQaALj4y7+e8ACh4bngA2n7YJAYbqAduV4ZAaRuA/rheE0DGEhc55wrpBRA/Ro3biaW/UbJeHQ1voAuv2tkC2RZ4W1SamCAzFI6QUiehR7lmC3NY+VH/laXuGsNIaaPpiEKxezxbfwxU2mlLft3sYdhO4iqLQ29tLb29voEHKYZ90uK7b9JbbzUjgiEQiTE5Ocv78eWZnZ7l//365g7BlWQ9dm/HDIu0fp4czIapXV+sJr50RQrC2tkYqlWJ9fdPb98QTT+w7HugwVHY3bObjv4OIasdxmJubI5VK7VrFX98StbPmKmNhDVHxgMepkycdUmtPrB36AEv2vfLfG+4yEaWdUsUkp1xdoV1bQZ037zRNVN+8ebOcVX7lypXyI8+jGEsIwXv579VEzQE1edWmaxCc6KkwW4oyGrVYs6O0hmotGznHIKrXfp6WZ7DhCQpFg8Ho5gRGT7CV4xHEFUpgMqOLhlov7l9R8FDQKtahbK3XERpFL8SK1YIlNApe0II10D1DZLaVkrV5HGWsWm/9SGsbt9PbT0BmrNqbCF3Xy97Qubk57t+/z507d8qP+g/yhOEobpZv5e5ULan93Ot9F9XL6hX7HM9CK+tJhY5QD2lnDguXgmeDBQW3na6ojlBrb6AUJWiHiLof8JMt6UBCyZxT4Kmwzd8VuphyomTt6up1bdMXW6nKGxclFkq3GI5erd2JQ7LXqrHfIGVycpJkMsn3v/99otEoiUSCgYGBfd2MHVc2drOuOZqmMTY2xujoaNlC88ILLzA4OMj4+PieOulV8rDaPySnh1MvqvfjqXZdtxyJZ1kWw8PDTE5O8uqrrxKLxR68ggbin9SaLar346kulUqkUinm5uaIx+O7xr4JIVi3NyvVtnBo0YbZqLB75MQcCiqiwitre7Xfm67WehU7Q/3MW0FRHVM7KHgVkXzuMtWPl+fNu8DH97SvB8GvWMHmjceTTz555DFcvoe72k/tk6nIq/YnKFYrWVWFnNOGptS3AW1OXAz+mxAQ0Tdbi3uKxlS+i5HoOgXHIBqqFVmrpXiN99oWOgZ2bYoJKqpwcYRKyQuRdqKUPB2zIld7Uxh6VLpzPeDZybs8/94VAGY2apNK2qoqYjNWbVdOH1VVy4/6l5aWuHfvHvfu3WNsbIyxsbFjr67Nm9Wt1uuEElb9KYSomSeq1vx+BUrVsRDXW0hXfa0516Sr1Aux2iZMGWeh/MShXTG5Fs4HBLUjoFN1iKiCH29Z5e1SC6+UBO36KJmKOEytattyLBJSYhU2MYVU8caximofvxp77tw5ZmdnuXPnTtl3vVsKRiXHMVHxOLKiFUWhtbWVWCzGE088wfT0NK+++iodHR0kEok9ZYQLIR5a+4cr1K0M/7ODe0a/ylMvqvfiqfYzgefm5jAMg9HRUfr7+9E0rfwjdV13TyfBRuGfSI9j3Ad5qrPZLMlkspx6cv369QdW8QteDrsihUNVOoFtUe1h066Pk3ZmyssyzmxNjFbJqxVGeh1fdLveS6Eiki/vpmlRu8lV+DIXrXsN91X7jX+SySQbGxsMDAwAcOnSpYZNXtoN/8JT7af2KXoG1tYkw7Qdrd8LHIW0FaU1lK75F1dQN91jww4HxHNIF8yUOtGFSzRUlX3sqbSF6sXWKdhCJ4SDwuaFouSFyLsGOW8zFtAnrFiBQqxAQVe8cpMatt7fFcsz2rtCarmHkusw3NLKbG5nO9iybVFwbHbry6coCv39/fT19bG2tsb9+/d54YUXGBkZIZFI7OkGvNGVattzyLnB81y9tderVFdjqHrgKZKCjqoEn1hU/+aEgJJepOi1EqFWVBfdNTr1YTx3mqciaYaqrixLrsFQRULJ45EcA7rJd+1xMhXiPevMUXmzoCkhesOPUHAFqzbcy6dxmOfZLhrOQavGuq4zPj7O2NhYIAVjZGSE8fHxXY+X44rUO86GMy0tLeWElVQqxfvvv1+uaI+MjBzZPKbTjIeCd8YmKnp7OFedRk790dvS0rJjpTqbzZJKpVhaWqK7u5urV6/WeN8URTm2luHHMe5O9g8hBCsrKySTSXK5HIODg/tKPVm3lwN/59zaS35Uaw1UvzwcOvUEq06qvCzjzKMpoc1JV1uUvNrJUfWEckeom5yZ3t4mZ545M8VoAywgnuexsLBAKpXCtm1GRka4du0auq4zOzvb1A6OjmtjeuvYot4kKYV1O0K/ZpNzwrWxC1uYXpR8yWMkmg74mTfsCPFQrai2PY1o9YRCFISmMJNvpz+6UbZ7pK0Y3eHtarkANMXD8TRML4wtohS9oMdex8WpOB3Vm+muKR5OldAWKDyRSDK72oHn6fREYwFRna2yhAjgbibNcO+DM8wrG15ks1nu37/PSy+9xMDAABMTE/t+dH0Yvp/+YOspT8W5q+ZVtTkuOwnvyqNVU3QgKKqdqpjKmNbGsl1iEYPxHbYxqrbyEWMJXQmjVuRouwI66lhG+nWbS973SIlubEVDVyIYaie9xiWyDkxn0yyLIhe8Vm7k7pbfN12YORJ7zWGtGP7NWH9/P+l0mqmpKV566SX6+/tJJBJ0dHTUvOe4KtUnoTW6YRicP3+eiYkJFhYWmJ6eLt+MjI2N1b0ZeVjtH9JTfXo49aK6tbU1UKn2PI+VlRVSqVRZHD7zzDO7VgvOSrzdXqgW1dVJFSMjIzz22GP7rp6vO0FRPWuuMVBVuBV18qQjWpxKrSZw6dTHWLWny8syzjwhJRqohBeqkgKg3mPtTQvIYUR15eRDXdcZGxsL+CZ9Md3Mx5Iflt7G8RRsLwzUHj8FJ4ztFRCKsuNpyxYOKCrzpTaGotsV/3rxeq6AWB3vdckJEQ57GCHBitWCIjzieomw5rBsxrE9DV0TNQIoVMf/bqgujrd9OnKEjoob6PRYb9scoRLWXJ6+eJ/Xbl7EqKrAzeRqn3zcyab5BzVLd6etrY3HH3+cixcvMjU1xauvvkpXVxcTExN1/fONFn3vZt+nWiIrSq39o3bIaj+1wKuqSnvCq0mMyTnBG9kWvYtle54NxaJVH2Gj4okTbAr1y+rLqIrKgB4U0ItOiKE6N2pFT2FQz/FMNMb/L/NRFqws4DARi3I3f7+8ZtMNWnZybo51O02Xsdvzhv3TSH9zR0cH169fp1AoMD09zRtvvEFrayuJRIL+/v7ysfEwVaodx6k7bmVnSz+S76WXXqKvr698M/IwCulKzqb9Q1aqTyS+qF5ZWeGP/uiPeO6551BVldHR0T2Lw+MS1cdRqdY0DcuyAm2yI5HIoZMq0vYKBjY/FL/Pqhvj7dIAcW2AvLvdUnzDmae2cUutxzWsBqvjAkFnaJClisYQGWcRQ4lhVUTy5Z3aSL5F837Nsr1Q6SdvaWnh8uXLdHd315zc/cpJs26OFEXhtext5s32ui3JAWwRYs2K7XghMh0NlE2R46CxYsbpCeexPZWYXm/iYphYlVASAqK6g99H0VA3JW/BjaJrbP23eWynS2HixraoslFR8BCV1eg6ky4N1aFUYXFxRO37HKERxmWkI83NeI5S1e+p6DgMxluYz28/zbqVqT1O9kosFuPKlSucP3++PEltpzi+RgqBZHG6ZtmeqtK1M0OpFtqOsKm8/9UVnWzVbymkbBclFKUfCIrqJ40VhkJ5SqKFyrtkV0C7Vv8ct+RqDOgWV8KL9Kp3WdjqgKpV5dWv2qtUnzemi6kTLap9YrEYjzzyCBcuXCh3H/R918PDw8caqddsXNfd1dqhKAqdnZ10dnZSLBaZnp7mzTffJBaL1dyMPGxs2j/O1r6ftf3xOfWiOpPJMDc3x9WrVzl//jw/9mM/xtWrV/d1ojrOSnWzx3Uch7W1NRYWFvbdJns3wu7f8AvdbxBVQFfgH7Uk2fAiTDsG71k9gIolcrRpg2TdpfL7shWTlHzsOkkhYaV6kpigKzTAglUZybdMRGmjVBHJtWTf35evemNjg2QyydLS0p795HvpqtgoFEUhac1iexqGVl9UOyhsOGHCev1/t7wolB/PK+RdA8N2cIRaNw2kXp5ozjaI6yYaIlDlVJXaKq1XU2FRiKg2xYqoP0toVAun2jq7QkhxsQK+aqVsMenpybK0XGsF643FAqL6dma95jX7JRwOc/HiRSYmJurG8TX6eFixV6qW1H639fzUatUyVdFq3itEiMqJqZ16N+mq32XlBXDedIhXfKVjeobL4SxpN8JI1aTVJddgsM6NmimgS9u+of5fOm9zc74LC52iG0xoKbgF2vV2Ms62rSdZnOGJ9sdq1nsYPM87svktld0HFxcXywkzQNOvAcftqd4L0WiUy5cvc+HChfIk0Js3b3L58mXGx3cyIJ1dvDPY/EV6qk8QQgief/55vvjFL/LXf/3XeJ7HX/zFX/BDP/RDB1rfWbd/+BGCyWSSdDpNOBzm6aefrmkjexBcb4V84f/KNeMmjgB9q8qkKtCulbioFOnTivxdcRRQN5tCVIhqWxTp0EdIO9uTnzLOPEqV89MSdZJClNqJgV1GH3Nb1WlDieAJmCpMcz5+bsd9EEKwvr7O9PQ0mUxmT5ahSpopql1FUBLpYJW3DmtWjEG9/lyDzQC7bfGjKArrdoy4VmvPsT21bmMXUHCEiipAraiY66rHhh0O+LLjhkWNYK7qoihQCSsOptgWNXY9oa2IqkLr5nY4QqWzLc+d6Q1iukHB2d6/sBY8zd3JrON6HloDKoT14vhu376N4zgNO6ek7SxFL/hER6n4v+VldZI/qpuUGkqoqv23QFOD33u95I9CxfhTxRU+0tqG6WUJ4fDRyGbEZVwNpsZ4AlrqNAsCWHR0+iuOqw7N5v/SeYv/9/oVVq0Vqr/3LqMjKKoLwUp5I2hGZrSqqgwODjIwMMD6+jrf/e53effdd1lZWSGRSDTFp38aRLVP9STQ407gOS6k/eP0cKBv6Q/+4A9IJBJEIhGeeeYZXn/99R1f++d//uc89dRTdHR0EI/HuX79Ol/5ylcOvMFf+9rXuH79Ov/sn/0zrl69yosvvojruvzgD/7ggdd5Vu0fnucxNzfH66+/zgcffEBHRwcTExPE4/GGCGrPsynmfwJD3ATAqLqqe0KgKYJe3eJ/jqbwH2JVE1ODlWBHmHToQ4FlGXsetepwNb3Ni6yGToc+Spd+DcsZJFOY5G5mnNfXu/n7FcG9wgL18CcfvvHGG7z//vu0t7fzsY99jEuXLu0rYlFV1aaJ6nvaPOxg+ygjDNJmDMerrTDbroJQasWzK1TW7Tg5J3ijknOMGr+t5aq0hExcNEyv9r7crapshzWXvBVcr1PnAqFV7ZeHSkgJqrvNC0u1fUGl5IYwNI+ujhwjLcHjqeQ6VX+7JDdqJ78eBj+O7wd/8Ae5cuUKQgjefPNNbt26hWnWS0LZO99Z/T7V+3zQ5A+3KjHGcUPoavB99dJ20vZ2dV8AUS0BwA9EFwjjMWVGSHuCpK0x7+isuRozdpjWOqLaEtCu1n4mz8WWOB9eo+SV6AgFrR3hqqjNZDFFo2mmFUNRFLq6utB1nccffxxN03j11Vd54403WF5ePtLzyUnzVO8Fv/lOMycHnyQ81DP531lk35XqP/uzP+Nzn/scX/7yl3nmmWf44he/yCc/+Ulu3rxJX1/tjPquri4+//nPc/nyZQzD4Otf/zqf+cxn6Ovr45Of/OS+N1gIwS/+4i/yMz/zM8RisXLjl1wud+DmLWfN/mFZVrnluj+5zo8QnJ+fb1h1vFD69+hsihNHQKxKfVlAaEto9+oWPxJN8apZLwurNhkgqrWyXrHYxaZTHyPrrtGi9QNtbDg6WauH+8X01qOkNCPhMFOWbx/ZHPtGPsUneitGq2pmMzY2xuDg4KFO+M0S1VOhzcfy1Y/1K7E9FRSFdTNGbzQYw5Z3whVNPraxPA1dhVWzBU1Y5Zg8Takdp+AYdIRLW5F4GnHNClRJQ3VEv+XqxCsqpI7Q0RWn3CEQ6tlEQFe8re6BW69BRVM83IqMbsfTyt7r3u4srRvBatZSoTZy88baChPtjfXkwnYChKqqPPLIIywuLvLCCy8wPDzMxMTEgfLwP9i4wYMnKdZr+lKLI0wqDQ4lVyFS5XiwqyYUR9QWVuzgZ5hxDSb0DANqiTkXIppDXN2uZjtAQURZdML0V/nxF6qq1D6qAj/TeYv/sPA0nXo7aTu9vT4v+PpVe52ck6NFP1yb8Eo2M72b72+Ox+MMDAyUI+beffddQqEQiUSCoaGhhgvg4+ji6I/rd989KA+rp9oVSk2x4rRz1vbHZ9+i+vd+7/f4+Z//eT7zmc8A8OUvf5m/+qu/4o/+6I/41V/91ZrX//AP/3Dg71/+5V/mj//4j3n55ZcPJKo/9alPBf72m22cVlHdSPtHoVAglUoxPz9Pe3s7jzzySE0yQaOq4663gup+tfy3XvdkF7zw9+kWz/I2L5euVzVuWah5rSssWrVBNKUD24uStmHVbeN7GyqbntA0AINGf8CbtWitlqfB+SyUVrmfn2NI7y5PzoxGo7s2s9kPzRTVmdAaQoCm7nzcFLZy59bMGN2RfKDS7IrNZPBqhNj6XBWFJcsg5sVp1UtbkxGDRHUbIQSOpyFQ8YQSEN8x3dpM/qiogIbqTFYzqkS1LXQ0XNyKxI961QxdcQOiWqDguJtJIx3xAvZGVfpEIU9cD5F3toXZjdUVfmziYs26G4WiKLS3tzMyMsLGxgb37t3j5Zdfpq+vj3Pnzu2r4rZo1eZC72lSoogCFclIAsJa0N9c78KWr07+0LpZsYNPe+YLM/x41yqrwkOg06YF7Slp16BLLyJEkSm7nURo8/u3haBNrfVY+3SpJT4aT7EqHgmur6JS7jNdnOFq6+Ud17VfjrsRS2XE3NzcHFNTU9y+fbvckbBRQvikROodlIdRWLtn0FPtSk/1ZgX0zTff5Nd+7dfKy1RV5eMf/zivvPLKA98vhODv/u7vuHnzJr/zO7+z/62tg67rRCKRBzaA2Y3TbP8QQpBOp0mlUqytrdHX17drZ7+DtCmvR6HwbwhtZdvaIkxMCVaSLCHKVepKejSTx8IpXi1u3gBpGOhKC936eUyhseEoLFsWd/Iuq5YLFLf+g4lonGo50arHoKKwZguHHrWTpYps6xV7jb+89SLXMwMNnZzp06z0D8uzcfQ8rlBqLBmV+E1hPFRyVpy28OZvw/WCrcN9PK9KpCsKBTdCwQ7RG80H3rNhGbQaFpa7/fgua0foDBcr307BDtFmbIunNsPE9pSqKnmdxA/FoVghmG2h1SR+1DsVe2Iz1UJXBdnwNBBMkBlubeXW+naixY316ol/jaVysmZrayuPP/44hUKhHMfX2dnJuXPnHtjOXghB1kk/cLx61g9HOMETvBcFNXieVJVq60dt8oeh1VrFPtH6Ni4WIYWtG5zg798XAIoCMSXDfTvOkK4yb4cYDNVORPaZdkNcj83y17lgtTztZIipcQre9nGWbLCobnYSh98hsHrMys6eq6ur3L9/n3v37jE0NEQikaCl5XDV+eNK/ziM/cPnYRTUsPkUr96TvNOMd0Y91fsS1SsrK7iuS39/f2B5f38/N27c2PF9mUyG4eFhTNNE0zS+9KUv8YlPfOJgW1yFoijE4/E9tyqvx2msVHuex9LSEqlUimKxyPDwMJcuXXpgNaMRotp23kX3vluhiWp/7JZQiNaxDpSAAW0W1XuCO6UIK3YBUJiItnO3EIwN69Q7WK+YnLRW8TjYxxW131uLFg2I6g23wKxY5+ef/icN8ZJX06xK9avr76KoHo6zc/IHbNk/tliz4rQaeRRlMxqvnhi3hLbD8hALxTYMxaE7kkdXRTkrulLk5h0jIKqhVi5rqmC9FKE9si2WTOEnUWyvS6lJfFMIqzYlb9tT6witNvu6Qvhr0WVgLDB+mxH8XdxYO1pRXQ8/ju/ChQtMT0/z1ltvEY1GOXfu3I5xYXfy09jCJviJetTYQUSMyqo0CMI1nTFrBU2o6jiqm/xRVc2+FkkxamxWjm1PpaOqSl3yNDrV4LK4mmfR0dGUne0vtgcRpUB7yEX1bgNBq0BPuItkcbb8d7LQWF91s0W1f83ZaUxFUejp6aGnp4eNjQ2mpqb4zne+Q3d3N4lE4oE3ZLuNexIj9SQ7IyvVp4emHOGtra289dZb5HI5vvWtb/G5z32Oc+fO1VhDDspuXRX3gqZph55MdNBx9yvmK/3Afh73wMDAnk9WjbCcFIu/grF1LreEQrxq4psrBOEdzvWu8NAU+Gj073l144cptyOuc8LoMoKiOuNs0Kq1sFHRrnm96lE1gOvVWhacsCCrFYnTeFHdrImKr2feBmpFTpDNNAz/Wlt0FTbsMG2GieOpdcX45vLg9rtC2bJvKNiEmC+2E1IcIppD1goHKpwh3aPk6EQqrCKbrc6Dlp7qSst24se2YLY9veZ9tVVYpfolRHWboqujKAqt0SLDrWFmN7aPy+o1LORzrJeKdEb21jF0v+zW/MUwjHIcX2V28cTEBMPDwwGR9eraWzXvr7fWomvTUqGTLEcjVtVwxfZcgrcWoqYlfb3kj6K3/TnqOPyDlu0YS6X2LogNz6BXD95kbS7XULHoEdS9iZt2QnTom2L80egtkoUnsdXt7Yupwa1PFhubANLsCq5/Ht7LmK2trVy7do3JyUmSySRvvfUWkUiERCLB4ODgvm4GTlP6RzUPbaWas+dBbm7bu+axL1Hd09ODpmksLi4Gli8uLjIwMLDj+1RV5cKFCwBcv36dDz/8kC984QsNEdWnuVKtqiqOUysA61EsFpmZmSk3I5mcnKSnp2ffJ5nDWk5K1l8REsnyld0TKlRVpE0B4XqT4YRA23rfkJHj8WiKt4ujAOS92kfCRp0Ugl6jk43itqheszO0qHFyFe/POBs1yiOu6/zlwuv868SP72U390WzKtWp0vTmdEwzysAOcXmIUM0xsVqK0aKb6Dv4sOsJHMdTCFV4ohVFoeAaqJqC8ASxgBhTyFgRIhXbZGgueTtENLR9rMXrZGBXC2YPlRAOdsV0OqdOtF7gPQLytkHOCdEetlAV6O5dY3Zj+wYqbdY2GbqxtsJzQ6N113lY9nI86LpOIpFgbGyM+fn5cnaxHyGm6zo3c3dq3qeIGCjB30u1Z73yaYWPVzUhuOTotBjB7+RByR+faLtBfEvoOkKhpeqY2mz2Ur9A4SFo1UqknFbGqwS/5UFU3d6nq5FFXnAN0hWi2qu6DC+YS5Rck4jWGK/xSatU18PPRz937hyzs7PcvXu33ExmdHR0Tznbp1lUP6ycxbSMs7Y/PvvaK8MwePLJJ/nWt75VXuZ5Ht/61rd47rnn9rwez/MaWhlubW09laJ6L+NmMhnee+89Xn31VUzT5Pr16zz55JMHnmB3GPuHEALb/PcIIO/prLoqjhB4lekMFcK5GrNKaHyq4/1yxN6ytYJaJZoKdYV27X1gG8FHyjmtiCGCr7O8Iu9vND6GC5ojqi3PxibDhh1mrRhlp+Esr/aiVfIM1qxYXfEsPL0mUg3AqyPKtK3X6YpXk5lab9y8FRQ7ccOmaAe/l4xVWymu9n27aNX3bVvb4ZDKtXE3281iqZW0GWW1uLm+cHQ18NqZXLZmIt/NI7aA7PX3qaoqw8PD/MAP/ABXr15laWmJ559/nps3b7JuL1N9M5F3qmMGN2MLK9HVWnEV1oLvs0Xtd1ad/BFW4uTdzXNrj7bB1XBlQaX2/etuBKNO+kvW08ti21A2WHOD25d0QoQr4vdiqs3leDLwmqWNpcDfAsFMaZZG0WxR7Y93kPO4pmmMjY3xP/1P/xNXr15leXmZ559/ng8++IBCYWfPOpxeUd2syeASyWHYt/3jc5/7HD/3cz/HU089xUc/+lG++MUvks/ny2kgP/uzP8vw8DBf+MIXAPjCF77AU089xfnz5zFNk2984xt85Stf4Q//8A8bthOnuVJdb1whBMvLy6RSKXK5HENDQzz77LNEo4d/VH0YUZ0ufomck8VVAFw8T0FRXZZc0AjRpbnYAkJ1rkuuEDUxcHHN4R93vM/X0tdwhEOv0ceitVz+92VrpaapcsmrvRlTXWqKmJ3EWWTbGrJgrZKzIqStHB1G42K4oDmi+jvr76AgWMrHsT0d0w3aLXyKTv3vdrUUYzCWqxGWlqehVGUJe4KaqrbrUR5PV7xAQgeApgmECCZQ6ErtsV1yQkQruu5FDQfLUdErVlevg6PngaIK8o7Bmhmj5BmMxNY3vdZbL9/0jUew8xq90TzhsIlpbgp703UZjrcym9u0E3WGI6xkdxcfh+Egx4OiKPT19dHX18f6+jo3796ipOVrjm29SrTarkakSlRHqsShEGqNqK5nI6pO/mgN9bDqbCZ//ET7++UbM0coxOt8v+Edmr3kPR1j6+mGqkDeK9Gq6oQUgekpxLTaieZXW+/y6mr39jq0PJqn4Vbs/3QhxYVdGjvth+MS1Yeh8pjJZDJMTU3x0ksv0dfXRyKRoLOzNjbyOHOqD+upfljtH2ez+cvZ2h+ffR/hn/70p1leXubXf/3XWVhY4Pr163zzm98sT15MJpOBE0U+n+cXf/EXmZmZKbce/ZM/+RM+/elPN2wnTnOlulLgOo7DwsICqVQKz/MYHR3l8ccfb+jkDk3TyrPO93OC8jyXjPWfy6pJCFHOI1YU8LBZdsFQVOoFG5aEqI38Ap6JJ3k+e4ENL0qb3hIQ1Zaw6TP6WLS2q46LZm23tVDM8ANCyhhVos8RDu2hGP9t/lU+M/7xPe/3XmhG+sd30+/guK2Yrg4o5O1QXVFt16kYA+TtCDlb0GoExYsjBNU1zYJpEAsHH887TghlSwzrqlfTRERTIWNG6Ihs2yzaIyUcT0GvOHdWN3gB2DCjdMa2v0Bb6Khi82F/3jFYNePgKRRFsAHIciF4c6QpAtsTmF6I+Xwr3d1Z5ua2A8p7o3HUkk2X1sad1BpvlGbhYzWb0zAOIwA6OztxJnRI1eZRG1r1TVCdcZSgrcN0dAwjeLxU3+TWTf5QN58CPRaZoV/fPnYEGkqVqF53DDrrtCS3hEJr1cRFQ7WZccJMhBymHZ2uOh7s8fAKrWqJDS+yNaagP9LLnLldLX9n/j2eiz99oPzvao7D/tFIcdve3s7jjz/O5OQk09PTvPnmm8TjcSYmJujr6yvv23FE6gkhDr2/iqI8tKJ6s23a2dr3s7Y/PgdSa5/97Gf57Gc/W/ffnn/++cDfv/Vbv8Vv/dZvHWSYPdPS0nKqI/VM0wzkJ1efBBs9Jux/JvZq8f/BZnbHJp5Q0aqqUjYqNqC40FZx7vSEx3ZuRBBdEXy6+3v85+UfoF5YWkeoJSCqTWHRQRtpticwLlmrVAttp05DmaFIC99ev3kkovqoK9Upc5r5fLS8hxtWmO5orRCp56WFzervQj5GWCuVRZmo8k37uHU6MVZOK9npVFh0InRUHCOaKlgvxOiqEMztEXPzqUXFxdETCiv5OEU7hB5yKHgGhuqQd7fTH1Q8qr/jvGtQ+RPZnDOngLJpGdmclSfojsS4EOsiUtC4MWOzzObxdG9lHcfz0Bv8O/OPhcMKgLcy76MRw6m4Y7Rdlage/N3VxFMLgVo1ediuc89nVFWuO/Ue0k7QTuEJFQ2XH2q5i+0prHkRhOIRwd3KFVdp38q+durYQQDW3DAdWu2xGlNzpOxWWutUqWGzov1MS5L/kZ0sL2vR44EIzQVviZdeeon+/n4mJiYO3KsAjkdUH8V4fvHqwoUL5YmwN2/eZHx8nJGRkWOJ1NvPpExJLbJSfXo4E/k2jUj/OA5RbVkWuVyOV155ha6urobnJ9fDP4nvp7LqeQXy9n8NLKt+BA2bEWlhxSUHCBfat86fJvUnw/n06BtElRLZiqQPH8uqtXv0xrpIF7ZfW/RKdIc6Wa2I3MuqeTaNxxWNbxSXRStNybWIaMGq52E4alFteTZrpkXOCZdvO7JmpMZuUZ384eN5mw1SBDCXb2O8dX3z6YLbAlViRwgwqkSb40J8KwpPEd6Owt2tI7e9KoGuKoLFfAu2q2N6Og4qjlBRNQGaAt5m3VxUJbh4qIRVG7MiWq/uz6Si06CqCia7dFIfWLwtFrg62Bt4qeW6JNfSnOup1+Xz+LmRXSbvWIQrztKOpwHB76e6EZDrGYT0YGW4+rMSQtQ86Yjr8Zrkj5Jn8rGW22SEjoqGqnpbVhywEdi4ZOwwjggxUid/WgiBoew8GXvJ9RhRvB3v1B6LzvE/shfxX1A9sXVNSfPcDz7HbHKW119/nfb2diYmJg40ifs47B9HKTIrJ8IuLi4yNTXFnTt3cF13zxPkG4U/3mGeuj7MnuqzGal3tvbH50yI6tbW1nK78oPQTFEthGB1dZVUKkU6nUbTND760Y825PHlXjiIqF4u/Adg+7GuJxQiVaLaE0EPbR5gS1hvVibrr9sTYAt4puU+L2xEMZQQlti2HmSsTM0Ft95PsSvUFhDVpmLTrXeyam97RNedNI7w+OrCG/z08A88YK/3zlFH6r20+hYrpU0/vf+oX6DieRG0yoxgYdQVEpX2ANMNsbDRzmBbBtvTUKuu6aatEQ4FfwuWHSJm+NYPF3uHXGtddzAdjXCFKFcUwWy2DUto2ELHRSFvhYmG7fI8Nx2BaWmEQtvHVNqMYxjB7TDtUGBunKpsTpINdAxVKp6JKJANLyFEHwDLuVrRd2tpteGiuhGVaiEE9/Nr9MXcquW1r632U+uEqXyqBLU3waar01LVXVFTan9ZjpviXHy1HKG4afsKbkRYddhww8w5YXo1m7i6LdhW3QgtWm3yCvgJMw7zbgsjav2iSJdeIBFeZcrsAaDgBqvarnBJK1keeeQRzp8/X27zbRhGuc33XoSyEOJUeqr3gqqqDA4OMjAwwNraGm+88QavvfYaAwMDJBKJQ1X394rruoe2bzys1g/YPIfvHqV6+jhr++NzJm4VToP9w3Vd5ubmeO2117hx4wYdHR08+uij6LreNEENmyem/UxWdLw1is5fBZap1EZYWag1qR95YNaqL8B8CkIFReFidBGBoINgJ8gNLU+oKvFjw639rtU6J9xuI7iuNTtDTAvxrZV3d96gA3CUlepSqcQ3p9/e8lIHT0RZO6iIrbq2DdCUoGs64xhkiwaeUit2TKc2NUKtEGQqOz91UBSF1UILCxtt3Fnv4Ua6jzWvhTUnRgkDV9n8rtU6TzkcN7gvhuHUdNzyP4Pt8WqzrzVFBL+LkIfasikelzby5Xx1n9tLB78ZP0peWPoAcGoqzNUdEDe7VFbd4NbYqGqr0vWeNjgiKLINJcqTsbcCY1a3pIfN9JGYYmKoNuuewqq7fX6obj9TyZIXI6R42A/46Xy0IgVkxVqtKWpPFzdTffw23z/0Qz/E+Pg49+7d44UXXuDevXvY9m5bsn0jdJo91Q9CUZRyp92PfexjhEIhXn/9dV5//XWWlpaOtDDg7+tBhXGjLFWnFW+rUn2W/jurkXpnolLdCFF9VJUKy7KYnZ1lZmYGwzAYGxtjYGAAVVXJZrMnKnWkHkuFfwcV/mRbGESrZwWyOemgeuITwIZQaREQqhfnJqDkqaBAm2YyFFpHmAOByrRAMBjuIVVa2N4mcxUdDafiMXiujtCul7k7Hu3gRm4Zx3XRG3RBO4qJirlcjmQyydLSEjdCmznBQoiAqE6bBp2R7f0u7PBEd6OoooWCmdML+XYGWjdqTgC1VgJoiWyLrYJlEDZ2Pnbmi220xCzQt79G29HQK/y7Yd194ERZVQHT0gNjhfQHf8bVq1Q0iCWy5N7brHR2hg0WS9v7c3s5ODGvETRCAPzN0ps14hVq4wadOuLY8kwqzU22qxKrsvTEtBjV1ezq5I9EpERfqLKCXFulBsh4Udq3qtGqIigJhzknSrtq0aHWr1JvfkSb+9Kimay6Ebp3qGiLCj+/LWx6jd6teRSbpIpBH7imaYyOjjIyMsLS0hL379/n7t27jI6OkkgkiESCnRph+8ndWaxUV+Kf91taWsrdPWdmZnj//ffRdZ3x8XGGh4cbLvYb0aL8YbZ/nM025Wdrf3zOjKg+rKcaGjtxJJ/Pk0qlWFhYoKOjgytXrtS0lW1Ed8ODsNdKtekksZwXAstKXpx41cXPFgp6nYutJyCkCtJeiB7VrhE8JaEgKhY+03qPt7TrNUkecS14EfTwGAr3MVORArBkrqIrGo7YXWi3hEII4G+W3+YnBj5Sb7f3TSMr1el0munpadbX1xkYGODaR66Tf+eVytHK/9+GGQ74qnecpFgTTAiKEmFmQ2EgliuLZsdViBrBip5phYjGNwWx6wlKDxDVVp3s42r/jqoKirYesJlUNy8BPyt7e7mueVvxe5U3CLt/7pomcCIeqB54KjE9+Bmd1Er1zVySbCmM42l0hVVsUcDQnBqrR734Qb16ArGnU+3D3jBNwhUPJWqTPwSTxjuB95iuTuv/n70/D9LsOs87wd85d/vW3JfKWjMLKBALCRACSIq0KdI2Lbpb4R7J0gTDDgcVihl5pqfZYw/d3ZIiZkh1hGWRNq2h7VFLM1Srx4s0kltqr7RJWRAhkESRgACCC9ZasiozKyv39Vvvveec+eN+y92+qqzKAopI1KuAWHm/u5y7nfuc5zzv81p5BXxSfwsBBCyFJc44e7nnt6GKFGIykT3l5ILqzbCILf1OQaDoczXsVJHCxTajXGsovrFa52+czB5DCMH09DTT09Nsb29z5coVnnnmGY4dO8bc3FyPtYW7A6rvhgtHmjF2XZezZ88yOzvL9evXuXLlChcuXOD06dOcPn0az7szhXXulSg/XChEbs7K2zmO2vl040g85UNDQ3cMVB+kItWgMMawvb3N4uIi29vbTE9P8+STT1Kp5PsidxnjW7W3O2wcFFRfq/2PyNjHWBuoiOxHMkBi57DUGoEQUUJC3UgqsWl/YzrSj1icdLb5kzALclSOk0fZKqbW0cy4k1xr9wtErPqb2EISmv5xfR0h9q+svfRDA6q7OvurV69Sq9U4ceIEDz74IJ7n8e+vf2fwdkhayqbYndo3+c+utLJtk1gYIbneqDKuGoyVmzR8h0ohCaq7oDVQkvW9KmPFwd7O9baD7WiCUCZYZTsXMCefd9dVBKEgTmbJnAqQoZKJ/Vl5umqSQwglBYUz+7Tms9rR5d199lttqoU7Ax7g8Ez1UmOTpm5QC0rUwwLrDYASYLClpmgrHCvAs0JKEupSU7BCLGkwRmT8qE3OYMuzb+z88XBhmaJMJgnn2SE2tMNQDhhWBoRQXA8qzDjZvrmFpBz7uyxb1JRNJdZ2bWBFFRHCcLoAvnmQbd9itV7h25sL0HFxqdjNm/aho6OjjI6OUq/XuXLlSi85fG5ujrGxsbvGVL/VbhiDgHy3ANHx48fZ2triypUr/Omf/ikzMzPMzs4mBiC3e9w7UaL8HSv/uMdUv23iSIDqcrl8KPlHV2d8u1IMrTVra2ssLCzQarUSoOhG0e1k3mpQfRCG/KWdX6Udfh9lqoDAEhph4GSKedIm63fbjXh2b83YeMbvyUB8IzKaKlcqzrgv46uHE2XLt2Nlknv7Ntl7VbFLCbstZRTHvGmWWn3v61V/A4Fkvrl6x6777YJqrTWrq6ssLCwQBEGuL/k3N9+IHymzj0bgUbRDjJGdipXJdcJQIPMqJhoTrSoEm34JmwImVfpaa6gU2uw0imy2ingoil6WqexG3fdAQNN3cOz+jSg4IYESyJgYO++qB6GNFQNVrnPzAacQEUCP6/ml7FZ8jBY6UuOPBjBvaKnsc39xfYvHT80MPMbtxu0+W/9m+ds0/MiPPB3KSGqBhCAaQLlCEjAEGGyhGHMlyBoFK6DiaMq2xqjkfrQxlFPlyePOHzYhDxRWEr8rIyjJ7OC2oV28nOX7ukhBBigMe8pjKFa6fEe5lGXy+ELAuipSsfquPgvBcG9Q1wp2+eraDgAPVJKDx1rYZrW9x7HCzRPuyuUyjzzyCPfffz8LCwu89NJLFItFjh8/3mnHW9cP3w2m+mZAXgjB+Pg44+Pj1Gq1xABkdnaW8fHx27pG90qUHy4UR4/ZvV3h66//+q/zD//hP2RlZYXHHnuMf/pP/ynvf//7c9f90pe+xD//5/+cH/zgBwA88cQT/P2///cHrn8n4kiA6i5TfRiQdDvJikEQsLy8zNLSElJKTp06xczMzIE7jzdDdnKQuBFTbYzh29v/N/aDFxixdSIpraELXPFHOe7s4XacPrbDElUnn6lKOlMLdrXDeEcGUh8wSn1vaYkd9WHqrT7A2wn3qFpV9lUMaKf0nwA6B2hX7WQSaFv7HC8cY6m5yx+tvszHj707tx23Erfq/hGGIdevX+8VSurq7POemzfqfXCTly290ygzXqwThh55IMxXdi6CDUwQWy5Y9S2EKrPnFyjIkJIbEGpBM3RoY4MU2DrslSrPi7a2wAI/lXQoBPihQyFWfCSy7UsOAkyKvbakoeXbuE5SApKNpLxFCggCgez0brataYYW1kSL7e3sNb6wtnlHQfVhpUAv7LxBw3fzLQNTEfT0xoLQ2Ky3DVImZ8Z0AIX9EYYdgTFNXKGYLLWZqUDDRCA2nn/wZPlKr7BTL7LjNZQRA509uldACsGukRSM1esz9rRLxcpaZRakT9DxTm9qm7oRvWswU+i/72vt7GzZxdrqgUB1NzzP49y5c8zNzXHt2jUuX74MwJUrVzh58uRbIlW4W0z1QY9ZqVR497vfzblz51hYWOC73/0uhUKB2dlZZmZmbumbdSc01e/kuMdUR/H7v//7fPrTn+Y3f/M3+cAHPsAXv/hFPv7xj/P6668zNTWVWf/pp5/mr//1v86HPvQhCoUCn//85/nxH/9xXn75ZU6cOHEnTiMTRwJUH5aphlsD1c1mk8XFRa5fv061WuWBBx64LV/UeCGWw8hObjUGsfJaB3xj628RmjcSzBJAQzl4HXbpWlClJEOm7RpqwDkv+WNMu8mPX9iRgQgtB466x+0aFZllQyfdUfabcfZ6l4osUdN9AfZWcDCgPeWVuNba5avr37kjoPqgiYq+77O0tNSrLnru3DkmJycHPjeN0Gcn6J9zHqiuhRZKCxpB/gdLKdkDl739aNAiWc9Ka5CWpGUkLeWw0yyiQ0PBiyeJDe4EjYnqrgC5nkJpuYdtadpB0kYvDzArJYiXfHRtTaAEVqLoSxbEGiXA7sowooqP5lib1kaRqmOxH/Sfiwvrd1ZXfRj5R6AV6+09Qm0ntOMHjbLl0TR9oGuMwbIhFBabIUCZwJesa8UrNfCY4ETRY0SMMmI9TkVeY9j6Hk1tY6FxROQl4uV4Te+oIiM5lRAb2qYo+zIiSxhWVYGTVp2msSnJLKCGyPbvuipzWta4Ggwl7utETEKyEzQYtkvshv1jX9xf5c9PPMCtRjc5b3h4mOeff57l5eVeUuOZM2fumKY4L+6mpvpWojsAOXv2LMvLy1y+fJk33niD06dPc+rUKVz35p7/d0pT/U6Vf9wr/hLFr/3ar/HzP//z/NzP/RwAv/mbv8mXv/xlfvu3f5tf/MVfzKz/O7/zO4m/f+u3fos//MM/5KmnnuKTn/zk7TX8JnEkQPVhy5TDwUD17u4uCwsLbGxsMDU1xeOPP87Q0NBtH/NW7e3uVOQd09c1vrn1c9gsoY1Fuq8PjI3XmbCxpKGNxRvtMU64WdbI15JRO3+QUzMWSkncXMYxYhnvK3ybHzRmE8s9mR10THpj1GKZ/9thFmjnMdpdbeiFxvIdkYDcTP7RHYQtLy/3rBRHR0dvetw/Xnu59++otHxOJyQEzXaRZijIK2injexUI+yHhYNOlZjWOisTiQNXow0tZbPXKDBUyrKT9ZbX89pzbIXSye3znCxCJROg2nVDlCYpE8m5RGFoYbk31lWnwxYaVdAYL2BmaIz9mOvHd68u0W6331QAddD4j8vfYaeZtc7LqzbqSQs/NWjc933s2KuilMTKuKbEfMuBy802681NasLnb51+gTYO7a4+3xgsFGWCTJJiXgEogKZ2KWc8sDXLqoIGygNAddQyxXpYRAudaOeQ3UCgMZ0R21RhiN1aDFTX1tK7uqUwxmDbNh/84AcTmuLjx48zOzs7MC/mMKG1fkvJFDicDCPuqrK+vs6VK1e4fPkyJ06c4MyZM5TL5YHb3pN/HC7MESxTnl9jeXD4vs8LL7zAL/3SL/WWSSn52Mc+xvnz52+wZT8ajQZBEDA29uYV/DoSoHpoaIggCPB9/7Y/jINAtdaajY0NFhYWqNfrHD9+nA9+8IO5tky3E4fRct9upDXV9XCNb23/HK7YwteCasoGKzQyl11q4XI9GGLariV0lWvhUIJZSu7LoomDS/60McAJ9zJwhsTH32SP74ksQ5IG2lvBLpPOOCVZxegC603NhU2Jazv42udra6/xF6cfGtiWg8QgUF2r1bh69Spra2tMTk7yxBNP3FLCz7NbMT21yUsFjcIPS4QM0DrngFkLmyClaIukF/F1DVZs4GMZQyAlO61iPqhuu73eRAhottzIWq8TBTfo7D0pCUo0VYAf2hRigDlXJpKzXVpXbTs6sZ5jaXxtsE62KDaT3d7Cbo2nn36akydPMjc3d2jf+MMw1V/f/AF7bQc3xz4wvTtH2vjxvsMYrDS7neNd7qSwTdnyqOkWD1euMe2l31uBwmYPm7ayGZYtHKHZV/kSDmUEBZnvCa2MQg8oZd4NT4Qs+iMZX21bGE4Ud1hqRh/Dsp3s5y/WVjlMdO3t4pri/f19rly5wrPPPsvExARzc3N3tOKtUuotH8jdqYTBqakppqam2Nvb48qVK3zzm99kYmKC2dnZXMLgsMd9J9vpwdFmqvf2ksSc53m578XGxgZKKaanpxPLp6enee211w50zF/4hV/g+PHjfOxjH7vNVt88jgSo7rIItVrtjoHqru51cTEqLHDy5EmOHz9+x7V2d8NWL85U7wSXeWHnb+GKLrMsM8U96srLfEC1gYIIsKVmwR/hlLtDQYYYA84NyhJf88epWvWedjIvytLnoWLAq80+aF73N0iDq7bOAdrSoSSLuM0CXmGCxXrINmWe3V+n69UnEfzo5EneaM/zn9ZeuiOguns9jTHs7OywsLDA9vY2MzMzfOADH7gtoHah3gcKfpDPRAPsBw7SDjLjfmPITVLMZQhSi7QSyNiYRRiDZWtaRHKTtLba16lCNIFNvAqnZRkabRs3xkzn2uiplI2erWkHEsfuHy/tpd0/AZPYrunb2J3tpGXAN1jDAWEjedxmqDj77kdpbKzxjW98I9dy7a2K+dp2rk1eXvhhsry3UgLLTd6XPCziOSLhp3OsMMLlxnU+NvHqDY/XxmFN25Tw8Y1FKae0y54uJKQfyd9KWEIzxGCmelOVaeJSyHH8mS1t9kC1Sc2+LDa2aKmAgnV7zG+evrlarfKe97yHc+fOcfXqVV544QXK5TJzc3NMT08fGlz/sGuqDxJDQ0M8+uijPPDAA1y9epUXX3yRcrnM7Ows09PTPXlLGIaH/na+s90/jm5FxVOnTiWWf/azn+WXf/mX7/jxPve5z/F7v/d7PP3003eMFM2LIwGqy+UyQgj29/cZHx+/rX10QXWr1WJpaYnl5WVKpRL33Xcfk5OTb5r27a0skd6NLju+2nqRl/c/jSuij1ygZYalNgbcHJBc115virds+1wLhjju7FFXHsN2Pgu9pzzKViNynFAVjsn93PUA7isu8WrzbO/vpm4x4YyzEStFHhWAMFStCqP2JH5YYL3u8uJaHRCwG0k/Hh8ZSexbY9hqSqSwuNhIFo64nZBSEgQB6+vrXL16lUajwYkTJ3jooYcOpDfMi3rYZifoS2iUEVgDuOq9UFC1RcbWMFQyI+MB8HWY0T2ndclpYKeUJCrMKNiul5io9tumNehUPmTeVKUJbXD6QNuxFaFO6qPzEiHD0MKxk0mOyiSraObpqnVMVw1gW4ZQwDUnq6G+1mjz0cceo9FocPnyZc6fP8/ExARnz55lJPX83Cxul6l+dfca1+ttpMiXvSSPAb5IDaRyPrrpAbLWEKZAb9n2+PDYGwznJBxnQ1AzHr62cZXK5F4ManbXmEaKKLl51M5aM2ojqOnBpMiJwk7v37tBUsutMczX13lo6PgBziEbNyrEUigUeNe73tUrg/7aa6/xxhtvMDs7e6hCKXer+MubAeTj12hpaYk33niD119/nTNnznDq1CmUUm8qkLkXb99YXFxMyGgHEaMTExNYlsXqanJWanV1lWPHjt3wGF/4whf43Oc+xx//8R/z6KOPHr7RN4gjAaqFEIeuqqi15vr161y8eJGJiQkeffRRhoeH3/SR8d2Qf0gpWefb1Pf/Xzgxba1BZD7mde1SzLHMSoOmohWyElYRRlAZwERd94eZdGu97X0tcHNA1J4qoHOqNo46Q2wEO4w7Y5TlKA3fod0WPLe7CTSABlU7+0K2VLb9BcuhGI7RtnZ4duMSH5q4L7fNNwutNbVajZ2dHTY3Nzl9+vQdmdH46urLA+Ue6TDaZq9WZGw4CVSC0MpNGlSEicXGkJENpJ96jcTqsIP7vscE/Xet3iogUsexHJUoTBO1M12ABoK2jVWI2+iFpGckRI7cIwgsvBjr3dcgR+uGocQPbEIVSSIsS2MJTYhFbWgXyXCC67y4tslHz81SKpV497vfzf3338+VK1d4/vnnGRkZ4ezZs5niTXc6/s3Sd9j3Ra6vd8FyaOtY8p+xMKkiL3nPi0zlLmglIVVdUeLzwdH5A7ezrR1sadjRJXxjM9HJn9hX3kDpx74u9BxF2sbOPBsAG2EFhMBG5/4+5fYH4cvN7UxJo4u1tUOB6pvdW9u2mZub48yZM1y/fp35+XkuXrzYK5RyqwPou6EzfrOBvG3bzM7OcubMGVZXV7ly5QoXL17E8zyKxeLNd3CDeKey1ECvtPdRiu75DA0NHSg3zXVdnnjiCZ566il+8id/Eoie56eeeopPfepTA7f7B//gH/Arv/IrfPWrX+XJJ5+8I22/URwpUL2/P5j5zItu0Y2FhQV2d3epVCq3PVV/u3E3mOp17xvsFn8PrQooIxAYytJl2Mom+6S9pCGqoJiXbCSFoaa9yLs61f+1lcVwzCnAkZrL7SkeLCZHncbAFX8cITSTzi474QQTzhSWqdL2y1zf1bziB0AEzt89NEOiymDYZsqrstbua0Ovt/ZIA7XQKBb2A8aGFP96+YVbBtVhGLK8vMzi4iJaa0qlEj/yIz9yxz5Y396+mPj7Rt8TPzC0fY/hajPB9IbayjK/Osteaw3pb3siUc6YhGTEl7JTQjwCw422k3DoALBsQ7ttU4gDZi9ncJa20bNybPTs7PsRFTSJg2poh5JAWTSaRdpaRhKWeLKlMbhOiFVQjE0UWNvoM7NvpCorFgoFHnzwQc6ePdvzMy6VSpw9e5apqakbfuBvl6l+YXMZENkkRWNoqyAx0nGFSzs18ExvpxUZB5Gy7RGSHHw9Uv3jXK/pQaE7cFYIQROX5cDmuLNL0zg4A9xnfWPhiW6is2ZblRiLsdWhkdSNgxDReTS1SymV7Djq9AdygVHMFEZYbvUTkQ+jq74VKUa8UMrGxgZXrlxhfn6eEydOMDs7e+Dvx91gqt8qazshBMeOHePYsWNsb2/zne98h8uXL1Ov15mbm2N4+OD2h/F9vlPjKMs/biU+/elP87M/+7M8+eSTvP/97+eLX/wi9Xq95wbyyU9+khMnTvCrv/qrAHz+85/nM5/5DL/7u7/L7OwsKyuRRW2lUnlTko/hiIBquDVbPaUUKysrLC4uEoYhJ0+epFQqIaV8SwE1HLy64Z2K7+79C3aLv4sUEYlpd57rBh6tcIgxq47bYcDa2qIksglwDV2gmuNPux2WGbLbLPhjzHpbid8W/DHG3eT9KVpBRp+7rUuEwgYM57w9/uflB1FGA7ucLTts+0kmzE5TpMCUV0mA6p2gybhbZtPvf8TX2vsEWrPf8FiQG7nXKi/itnilUokHHniAer1OrVa7ox/IizE9tdYgbuAPrbQAJPu1AiNDfaCVp6e1OwWf46G1TCQlAom/hSah5xZCsFUrMTPWTTCJ7lc6Wm03CapdRattYTsxSUaOPlopCTFQ7Tp51RYNxkA7sAlCi0ZoE2qJ1v0uTUgSjKcQAt93KBZ92lN7sNFnFgeVK3ddl/vvv5/Z2VkWFxd55ZVXuHDhAmfPnuXYsWO59/x2kqr2/SaX9nc77Uz+ppTEdpLXSZn0dYus8+KhlYQU6z3suWyG/fdgyK4zW7xy4HYaY3AT90yghMVVf5SxAY4/LW3jpUunI9GmP4BYDysJ0NTKAdUFGTLs1NkNIpeJMbeSANWXDuEAcjsAVwjB5OQkk5OT7O7ucuXKFb7+9a8zPT19IOB4t4q/vNWOI6Ojo5RKJY4dO0az2eS5555jaGiI2dnZmw5Q70UUGplLcL2d43bO5xOf+ATr6+t85jOfYWVlhfe+97185Stf6SUvdms/dOM3fuM38H2fn/mZn0ns583SbcMRAdVdpvpmtnpdQHTt2jU8z+PMmTO9ZIrLly/Tbg9OoHmz4q1kqp/b/qest/91hkX2tUSKfRCSTVXB0yGjVp1WTpEGw+BExO4H0rUU1/0hZjp2e1pDwcpOC5csnyv+BPcVooqHoRFcCbqaeMG0u46K4ZNrzR2S/CTUwizod2WWiTlWrKZAdY1hu8ieb9hqN3hh6ypPjJ3JPS+IbPEWFha4fv06IyMjvOc97+k5ATSbzTuanV4LW+wE/WdZaXlDprrL9u41C4xUW33Hj9xtsh2ZJZJX1YRgef3zMT5YxSSIq+sIkAoj0a7IRfAPTxxjObicWBb4NrbTfxZcN+wA37jcI7uvbrVFpSQN36HhR24U8fORKYs3ISK2VsQfByVotRxEsY7BRnS2v7q1QzsM8QbIduJT/9euXePChQtcuHCBubm5XF3trQKFL772dUJjAIMUKR+WHEanrYPEIEMrkbAnjLbLHic5c2H4azM/yLU7HBRbYZkhO/vO1U0BFUqOO1kLy5r2MqBaCthSJSbsOi1t0zJ24hkPB3xw50qbvLQbgWon9Z5f2L/9KqmHZY2Hh4d57LHHekmNXeA4Nzc30Iv+biUq3g1ts1KKUqnE7Ows999/P0tLS7zyyiu8/vrrzM7OvikmAEcplBGoI8ZU3+75fOpTnxoo93j66acTf1+5cuW2jnGYODJP8Y1Ada1WY3FxkdXVVUZHR3nkkUcytj93Q4bRPe5bwVR/Y+vvsRf8SS44C7ApdICyEAIfh/VwkqLMelA3lUPByikEERap9JglQYhgX3lUrTZLwSgVO3/AoumziS83jxOfr3eskLnSGvONqFJSW4ecKI6y2NzprbPU3MloK2sqzxUk+6ifrAzx8k6b/Rb87pWXckH1/v4+CwsLrK2tMTU1lWuLd6sVFW8W//F6Uk+ttczVRid+B4yRKL+K5e3l6qQBAq2zSYohiZ7ABBK8/rugAxurlLzn2haMyCmKtsvVev57txNmk9HSSF9KaPo2XsxGz4mx1MZAs+1Sazps1ksdHV60D6NJaLlz74BJPR3SoJSNH2rEtA+rEcBQxnB5Y5uHjk3mnku/vVHl1BMnTrCyssLly5e5dOkSZ86c4fTp09i2fcvPgjGGr16PLKEskx1S5H16RGpmIV2NEnIkQ8awFXQlcpqfPv4iRbvJdlhk2GpmBtvpCIyglPPuR200GCFZDYaZjgHrQMtsdcZOKAShEayF1QzotER+X3yquM1Lu6cBEhpzgL2wyXp7n6nCrdcOuFNSjFKpxEMPPdRLavzBD36A67o94Bg/xtul+MudPq7jOL0B6srKCleuXOHChQucOnWK06dP54L+O1FP4O0c9+Qfb584MqC6XC4nQLUxhu3tbRYWFtjZ2WF6eponn3xyoI7mboHqNztR0RjDU5t/j0bwNHauE4TMrZbmU6StFNo0E2x1gJ1rd1VTBQpWf/rXkrAWVClJfyDrBDDiNLnmD9PUHioFfANj8aGJy8wv9MuPjrqlBKhu6YCZwnBiGvhac4e0hroeZoF2qWO/1QptvrN1rddxd23xrl69ys7ODjMzM/zoj/7owESbmxV/udV4LqWn1ppcFw8AkeqY1vZsjk1AEOaz274OE24bAEam6lum9qkHuPk5YryTvJgPqlfa20wVPFox60MnRx+tUjZ6Wgv26gVayiZQNkYItBKI1CDBmCTgjIrjpOppp66BsMD4Br/t4I4EmNX+B/zi+uZNQXU3pJQcP36cmZkZ1tfXuXz5MpcvX+bMmTM3rJKZF7/x2nnqnRkXrbPPkWdLVOz6WMZCp5MU85w/UpKhslWiZRpINJ84+WeMuA2iAbDDlrKoyCYFqdgLiwzlVErcCcuM5Dj7tLTVk4yFQrCtSoxa0YBqW5UoDgDiUkSyD5VJRY2kHnm2m8e8/kB/vZ3NoblUW7uroLobruty3333MTs7y/LyMvPz81y4cKHnhuE4zpGw1DvMcePvULfgzjPPPMPMzAyzs7N3xdLyhzXMESxTnlvM7AjEkQHV1WqVer1Oq9Xie9/7HgDtdpsTJ07w8MMP3zQz+ygy1cYY/sP6f0dDvUqgi4zQyFZKjLHUiW3RIAS7ukiAxajVQBmRWwQmNIKhnI9t0Q55tXmM4152Sjgeu7pE07hZWYqxOVdJ6iStHLAy4ZUToLqhAsZFgc1YwZhrzV3SgKvZYbqEEGy1fP7g6vf5aHmmZ4t38uTJAz07By1TftBYauzSbtlRNTwcQhN2iqBkI/J1jiURKkG96UUWc6lvZ8Rep5YpkClv43jCmzFmIEv+3Z1d5io3zuifdCZZbC/1/va8gCCVLGkM7NYLNAMbP7TRQqJCgbT6pyY6GuqbYVWhId5XC2vAdkIQCAtRCLFaUTeYTlY8SHQLYUxOTrK9vc2lS5eYn5/HGEOr1TrQVPsfLn6XsKORzmrnDTr1fhotIS2nkOkBh8kkKU44FVaCPT5x6s86M0f9i2KQ7Osy676VC6ghvyomRO9pvw8R1LWLhaYqWzeVluzqUu6gHqBpPJxUkajxWFGpDX+fkvRo6L4c5UJtlQ9O3H/DY+bFm5U0mK5COD8/3yuDHobhO4apvpFPdbzgTrdg1vnz5xkdHWV2dpaJiYl3tEc1RLM6Kl/P97aNo3Y+3TgyoNq2bb785S/zT/7JP+Hhhx/mS1/6EseOHTtwB3I3QXUYHjzz/qChdMC/X/87tHVkleVIza4uMir7H8xBLHVgJN1CKUIImsYDVUaYWi543giqjAzwuK0bl92wMNC7GmAnLOHlsFmBsZi025wpbXC1MQHAXpD94OcB7WHpsBmTgdSVz0xhiOutPrt1vRUD2kLw269+i+NDj3Dq1Klb0vjdSab6+1vXeWUlwNBPmLUxuIX8ZzPIWbxbL1AttTPyD9s4qNS0ugqsjIWbjFfzCwTSzR8whAa0vjFotEXydyGhtecSWpKWsmmFFqGWHdQrBhod5+mjc3JUMxqQ3O1EdM8NAjMdYl2N7vP2fj6YPEgIIRgbG2NsbIyVlRVeeuklnnnmGY4fP87c3NzAEs7/duFl6rHk27RbiwoFwkku85XCST2aaes8FVpYTvK+jhUlH55+gbId0NIOpZw8h7Zx2AmjCxt/Z/fDSMqVDmVI2HJCdC32dIG2tnOlYr3z0BZ+p1JoMbcfyvbdFauFIwKCThn1meIwl+rrvd9v1wHkzXbiiFch3NnZYX5+HqUUFy9e5Ny5c28ZK3s3JCfGmAOD+UqlwiOPPMK5c+dYWFjg+9//Pq7rcvr0aWZnZ9/8xv6QhjZHTy6RMyl3JOJtz79fvHiRT33qU/zBH/wBV65c4fOf/zz//t//+1s25T9K8o9QB/ybtf9LD1B3w5aGfdX3cQ6wB0gEsmCyaUJ2dDE3uSC3Qh/QUA5Vq82uGuyoshMWQUbFZNKhsNAG/vxEXw6x1NzJMNp7YRawWzmIa8JLSn92gxbjdsS0CglbKsQ+d6qnjT1o3ElQ/T9feDGJCw2olp2bdAZZSzqAUNn4YfbZF2HOOank9kYbrJieWvkSawCoPlmYuCmo3gt9BILj3jFOuw8QNE+ztjfMZrtEPXRRWAgpSBP9uaRU6tkTefmRB9hOWqZ3v4xnmDjp8qAc4fvPLeVsfOtRLpexbZsPfehDGGP45je/yUsvvZQpxwuR9KNlInBrjEkOaCBJu3cifW2MzpYnr0gPMEx5e/zo+GV+6uR3eGL0X1N1fJoqH1BDlJEvJeyoEqt+X0bR1PmzNU3t5rLRQgh2dOmGyUh7uhjlcOiDu1FIAWdKfWehqpN8/m7XAeSttLcbGRnhve99LxB9d86fP8/zzz/PxsbGm16O+25ITrqzeLdy3K7rzkc+8hFmZ2fZ3d19RzPVuiP/OGr/HcU41Fn9+q//OrOzsxQKBT7wgQ/w3HPPDVz3S1/6Eh/+8IcZHR1ldHSUj33sYzdc/0ZhjOEb3/gGP/VTP8UjjzzCzs4Of/Nv/k3+yl/5K3ziE5+4rU7jqMg/fN3iX6/+LUKTXylQIwi0R2DyWWptwM5JLDLGRQjJSjBMGPtQ1pTLqJPP8G0GZaSAghWyHuQzMStB5KDRUvkf1rQEJDCKE4WRxDp5QLtusudm52RijcQozKYK+Y03bv2ZvFOJim0V8r2tLCgwxoqqA+bEoOW1/SKWSYLoMLx5G02Q1GLngfZuOMLjwt6NpT0tFbK1f5xnlkP+5PoWVxsNToxkNa9pTXAk9zhAe3MwaGa7tK66K70mYrCX5R4L1zbZ2K2z1zhIVcGDRaVS4T3veQ8f/vCHcV2Xb33rW7zwwgtsb28D8Pz6Atf29/uzBzkylaKdfS9kCkB3E1VBc6y4ywfG5/nxU9/mZ059h584/gMeH1nimLePI6PCOtaAxMGmcih2wLbsJCwvtMcItMy4AHVj0IA61AKDZGfAgLqtbcKOPmkQ7naEygy2IAmq03G1sRFVDL3FeKs9o7t9/kMPPcRHPvIRRkZG+O53v8v58+dZXl5+0ySBd0P+0Z2JvR13D8uyOHnyJI888sg7G1QjjuR/RzFuuxf5/d//fT796U/z2c9+lhdffJHHHnuMj3/846yt5TMFTz/9NH/9r/91vva1r3H+/HlOnTrFj//4j3Pt2q2XiTbG8Hf/7t/lgQce4NKlS/zLf/kvOXfu3E0t9W4UR4Gp9nWL3135O+yowUBHikir2Db5LHVb29niE4AmYnS1sLgejBB2Rpk7Yf60ttKi94EGaBsrM92z1BrpTXcP+jgv++NUrEgC0o0xN/mh9rXiRGE0sWxDNzN73PNzqjTGKjkJCRd2t7hWzzKKN4o7xVT/zxdeoBakGMTObkM//0OYN9o3JtLd7m4UE0xuW2efs7SLBCq9v8Ed33qrxZbf5mRhauA6ZTFCyUo+I40BFTcTRxVZR4u0bvig2+V5fCfWsKH2cHRt5pcHA7aDRtqpoFgs8vDDD/ORj3yEarXKCy+8wLe//W3+/ot/QhgDT3mnlym/rpOgWqB5YHiVvzzzKn9z9nl+YuZl3j18nclCjarTxiDYDou9gXBduYn3Mh41lZ0tEkJwqTWZ+37WQndg0Zi2caPKl9jUVZbl3tcFundBEoHwdFjC0ExXFQJmCv3+bT9MvtPKROXKbzXeallEFzRLKfE8j3PnzvGRj3yEEydOcOHCBZ555hmuXLlyx6WBdwNUK6UOpYk25mAD7KMcXUu9o/bfUYzb1lT/2q/9Gj//8z/fq2Tzm7/5m3z5y1/mt3/7t/nFX/zFzPq/8zu/k/j7t37rt/jDP/xDnnrqKT75yU/e0rGllHzrW99KvKTdRMXbjbvJVN+J4/q6xb9c/m8J2EYbecOkLmUUDe1REGF2KlmkDeoikKbjQEhIrgfDTFg1ylbWsxZgS5UTH1xXapb9EU56O502CGqm2Js6dgd8nHeVR127fGjiElcXIl113nmNuUUWm9u9vwM0x5wq12N+z4uN7cj6K+4KEtNdC8uw1/L5hz/4Ol/8wE/kticv7hSo/ndXXqeVsgnr2kcr34aUrV1E8eVcjDDSJje0RGwXKI9F7GvaPQNApryNk4ZuBmEnAdyQ02LEbTLs+tgscGpY4IoCjgzxkYTawlc2Le3QUjav79Q5XhxlsdkHq9tBA0fbBLF7nmvnlrLDE7JbCCfW3tztkn8KGXlvp3XV3edAOAZ/ROMPK+avb/HY/bdX6vpm4XkeDzzwAHNzc5x/42VeubKF68XPL5ukGJB8v0IlcSzNhLfHo2PXmfL2ewV02trJ+EELAUUrpG0c9kLJ8ABry1ALigPe5WggPcSY1aAa235PFZiwsn1ukmQV7OsCBRn03vWacnssdbeNTeNRJTtL4GuHcqr0+aQ7IC+iExdra7yrOpN7LoPirWaqu31+HODatt2zZlxdXeXy5cu9MuhnzpzB87KDnts57t1yHHknM82HjaMolzhq59ON2wLVvu/zwgsv8Eu/9Eu9ZVJKPvaxj3H+/PkD7aPRaBAEAWNjY7fThMwLepDiLzcKy7Iwxrzlneth5R/GGDa2VvnXtV/CWNHHRgpoaIfyAEaqrl1Mx/oqXirYN1aup2xgLIRI7UtILrUmOBVjjfptyk+qkMLgd+y3FtrjiaSsghXS1lYGFLhScT0Y4b5yn33aC7If37wOuyptrsfPA8PJlM/1YqNfUKabK/fs6hKtMKCQM/WeF3cCVH9/a4XVRj0roe1cx7BlZQZKYTjgIxXK3ptd912ceohTDBEpbbT2Rdb5IwaiwxZMD+0yXdln1G3iyBBjBJqoQ1QaPEsjaDFta4TQYARGgERgoRHiEhjJqZGoWEuoJCEW0lRZaWlqvse+77FvCmgjk/cxZ8bEaJEEn4LsADLnsohQQJzhtQ067DDKnTzJ/QcVl5Zv3QEk08abeOo6jsNvrVyIsGBspiCdpGiUxGQ01tF+Hx1b5ngxOaMihBlov2gJg29cagrGZNY/PLLEzA5s29qiIENAsBGWCY1k1GmiDAmAndgGJ3U/JNuqzIQd9c97qohMjaLykhKBji95MkrSpwukm8pnyhtiLWavdzu6amPMW85UD2JvuyW+p6en2d7eZn5+nj/90z/l+PHjzM7O3nZ55VtJGLyTcSdKo7/T3T80R9Cn+ojKP24LVG9sbKCU6pWG7Mb09DSvvfbagfbxC7/wCxw/fpyPfexjt9OETFQqlUMz1fDWTwPervzDGMP6+jqXrl7gexNfAic5oGgbhzJZUB1qie74wraMy3ZoGO1YaAUxv9l4KCNzddYBDsv+MCfdbZxY6eI9VcidYral4XowzJS9T4CVeaVqgYfnJT/4RRngY9EwHqdKWyw2xqLKikKgY0B2N8cVJPCzbRjziimf65ATpVEWG9HgQFiGZhjyj18+zy889mOZ7fPiTljq/dOXn0OmKhtC7E8j0UpgxUCv0QOe0zg2E4K9/SITso3wUgVcQol0VWLDoXKD4+U9RtwGBStAChOx+52BksBQkiG21GgTPTOISIfvyWjmQ5tIRiQMCKOxpKYqQyo2SAwGkGxxumKwhUIKhTYWgbYIjcQYgTKSpnKoBy61wIv+Nyyw1ShR0x6mA7aE6LDXsYcpkomkEzCTS3oTMqL/t3YF/2n/In+Xj+Rf11uIGwGAN7bX+fb6UiTj6KwWWRcmQbUnXYIUe9uVg+R5v1vC0DAuFbKMs9ICIaIchZryEhrpaFCSPyhsxgbntoySCwPfBnSu448xUX+RnnkIiY5rCT0A9OvcAYGVeh/qyuX7zZNUrDY1FSUpTngV1tr7nC5OUGWIK+ttOJd7OgPjre73D3K8uKPM/v4+V65c4dlnn2ViYoK5ubleRdeDxu0kDN6JUErdq5Z4yDBHUIM8SPL5do+78qR/7nOf4/d+7/d4+umn71jJ1C6ovt3KS3FQ7TgHz0Y/bNyq/EMpxfXr11lYWMAYw/ypfwMyy9AL6LHC8WibIYTof3SbxsPVNkWxj51TxUwbchOblBaULB8pYMkf5bS31ZverSuXSk4pY4hkHvPtcZycfj3MKTHiSEU9dNijxH3VNRYbYwRGcbIwykKqsqKFQMUQpe9AGl/kPRmThVIPVEupUVj84ZXX+B8e/fCBnqXDMtVtFfL8+jKOLZKY2pD4O/QtLLsPjK3AIa+OYHqJFpL93SLeWC3BRKMFnuVzvLjLWKHBkNPCkyFSRIBZI5GAJ0PsTuKgr200glBLHKEQQmFEBLh9JTEILKkjm7UOIMcIPBlStCLQHerOvTYCRypcEaJRBEKgjIUUGmMEYy7IkkEjaIcWSIFGRtXFEPyrC49H1mo5cg+tDCKG7ETO85YgxR0DbcNiaZ/F2g6nKiMD7tbN42bPwn/3ra+C6M8K6FAQ1hx8I5GWxnZDbE/h2VmPcNcSuFYb39hok5XNqAFTqrthGdeKGOea8rDRFDpgua7czAwRRO++m+oTpICWsQmUlQuqG9oZWJlxX3kIdK7WRwpo4VBKEQGuVPha4krNriryg+YJlLEZK9Sp1QucKo4zxAjlJry0Wgc2mCzkVfK8cdyNRMVbAbfVapX3vOc9vTLoL7zwAuVymbm5Oaanpw/UT3W/M+8Ub+yjFPcqKr594rberomJCSzLYnU16Qm6urrKsWPHbrjtF77wBT73uc/xR3/0Rzz66KO3c/jcGBoaYn8/W2HroCGEeNOrG+bFQeUfvu9z+fJlnn32WZaXlzl79iwf/OAHacp85w0hoJGywVJaEORUQ9xVkt2wmPsx9AckNDZjH09bGhbaYxgT2eiVBmgzAeqqwL7OLxgyqFBE0LH4O1bep4ugRlPJiqHRjIuk5nA1qGc8rHdyGO3EKhLA0FQh/8vr3xl4HvE4rPvHb732IqHStHJdC2JljdvJMXArHPDc5LzVzbZgZ6OMbGlOlzd4Yvwqf+XcD/j48Vd5bGyZmcIeBRlgC01Rhow4PiN2E1eGKCMJVNSpW0JjoVEKWsqKAI8IKVttSnYLTwY4KIoyYMxuMua0qNptLEwvWVUgcIRGolBaRJUTtcQWhoIV4AhFaCzaxqap3ejfuBgROZNY0uBIzf0jG9kT7USmbLdrMpMAiYRc0WFrJfyfvvbvBu73IHGjgf1XFy7w+t46dOzzVFsS7DmdWQeBVhZ+06OxU2Jr02V/q0hQ9/BUAROCthTjhQYgc60vHalpppaHWmDFQLPoSL+6iUK+yedWGspNzEB1IzA2SMG19kjmtxvZ4/k41Mxge81gQDuaxmM7LPG9+ilUZ51TBRuvNsNL8yHXthSLe/1ZyvVWg63WrXmO3w1N9e0cr1Ao8K53vYuPfvSjHDt2jNdee42vf/3rLCws3PTbdTeZ6jtxzHey/ONevH3itphq13V54okneOqpp/jJn/xJIHphn3rqKT71qU8N3O4f/IN/wK/8yq/w1a9+lSeffPK2GjwoDiv/gLuTrHgzIN9oNFhcXOT69euMjIzwyCOPMDo62vF3bbMT7lG18hO2DAKtRc81oWY8MsgCgMhTVigyiYeDoGI0FdX/tQuspdA3LPSyFxaxBvSNBcvPnQLu4tWK7XPf0DqX9qZyDIrh+NA4a7t9NxmF4XRxjKuNfpLcUnMXW8heBTuAnaDPbAkBQmqMtvit17/Dz73r8Zt25odlqv/VpVeAnGudNn5oOxjT6t3rPLc7o0mA6oLd5L7xLU4NbTJRrlOyfYQw+MrqsZoWCscKCY0k1JKWsnqAS2IQQiGMxhiJFIqSFWLZCmUELeVhYfCEiiQ/lk8jdAiNRUvZ2EIRaomUEfusiAZ3rlQUpUIIQ2gkDVWgLQQSkEKDNNiifxHcjq43Hqcq27y6PZNfBCYdAvAlFPr3XdgGE/QBsLAMRhku1bf43de/y99412MH2PHBwxjD33vx6U5zDF67xH6j8yZlBpQmGv4GNvUA6jXAt3CKmmo1IjPaxqaQM0hua4diLAl0XxUy5b6lgI2gwojdoCjzcy8iPXO2b6opj6rtY5AstcY4WYjer7BzX/PPHVrG6fRJ+brvQdPBO2GRq/5EIkO1rXZZrkXv7VY7C6Av7G7ygcLJ3P3lxQ87U50O27aZm5vjzJkzrKysMD8/30tqPH36dG4V2C6Qf6vB6Y2qKd6Lg8W9RMW3T9z2k/7pT3+an/3Zn+XJJ5/k/e9/P1/84hep1+s9N5BPfvKTnDhxgl/91V8F4POf/zyf+cxn+N3f/V1mZ2dZWVkBIjB8u4kX8ei6f9yu/APuDqgexFTv7u6ysLDAxsYGU1NTPPHEE5mqW2v+VQwQGpmbYCgE1E2BKk2UppMIlm1DdHjJtioBpqehDI3AyoHV3enYdBgRFYMYzsniB9gOShRshTEqV5piC0NdeVRTpdDjeu5HRq5zaW+Klf0c67McpnvULXA1NhusjGa2NM58PQm0HSkJOvfBcQR+G/bCNv/vV17g//zIjQeAhwHVz61dY6vdxLMt2mmAlJZXG9AtC6uoMKHInUYfc2rMHtvi+NAu44U6JTtAd2UbHdBsC40tDBiNMfTKhkthcGWI1hEjrY3EkYqCDJBC0dYeykR6fEdohuyQplC0tI0y0FZ9nbNDBIJFR8PiiY4OG0Mbl5Zx8HFwUDSUS8FSxEcRTeUkEuccqWkpO5HMN16o945HAHH3tVygHbueRoPet6PzcaIqksKGTrP5h9/7Bv/V3ENUblKiPi8G9UH/5PvnWWvXQIMJLPb9+A1Oru9KC9+knDywCLSk4ETvZ1O5uQNYRygCLXGkJtBycKlwIVn3q0y4WTIi0JJCDtg2hlhfEyV5XqhPcq68TkN72ANsD31j9XTwde1SldnZLEuYTN+yEVRY9MdIT7+U3f721+t72EIQxt7BCzubfGD61kD1W8ng3ikNt5SS48ePMzMzw+bmJvPz81y+fJmTJ08yOztLqdSfGbhbMozDHvedbqcH9+Qfb6e4bVD9iU98gvX1dT7zmc+wsrLCe9/7Xr7yla/0khcXFhYSncZv/MZv4Ps+P/MzP5PYz2c/+1l++Zd/+Xab0YtqtYoxhnq9ftslX+8WqO66jggh2NjYYGFhgVqtxvHjx/ngBz84UHe+6l8BIDQWTi4DHQFjYyJwPWis0dcyR1n6tgjwZJ1AW7kfycDYuR/qWlikaPnsBEVGUgVhtImSJ21hECLyuHVzpCsN7VJN+RjHWcpJr8aw22A7kJGGOtbhbuf4UJucQcGIW4AYjlBGc6Y0xqXaVm8riIDRP7/wXf7WQz9yww/gYRIVP/+db0TSA4sMiPaETTvVftWysYoK7UuKdou5kS2OV3cZL9YYclpYQtHuAGiJoR1KLGl6jLPRUYEUgelbHhqIALCmaIU4tk9obAIdSX8khooMKQhFXUXAuq1sVCfpVaKxhUYS6Z8dNI4MkEDbSAJh09AejlQoI3GlohQbQORp9mXOfQu0hRVjYD1LMV6osdmqYIJkOe+oeExqytjqeHjX7Mj3u5ut2BboducGSMCGhgr4O9/8Mr/1F37qQPfxZtEIff7ZGy9Gdoe+ID5dY1KWcACOsfDTLHFnFdeJrkFDObnWmV3p17BsUVOFXAkHRIPphvHYDGDcSQLrhnZzqy7WlZtxCSk6mqvNEcbc/MF0l6XuRoBNJtmhE23j4nYG5etBlQV/PHc9N9aG0BiOuUVWYu//G7uDpUF58XZjqtMhhGBiYoKJiQn29vaYn5/n61//OlNTU72kxtsBt/P1ZZ5af57/YvqDnCgO9qO/UdwJMP9Ol34cxWIpR+18unGoOZlPfepTA+UeTz/9dOLvK1euHOZQN40ukK7Vam8rUN3tyK9du8a1a9cIw5BTp07x6KOP3jRhcrV9BYjsqIo5Th/QYau1gxrAUhuTnnaVrIcuY1Y7V2OtddrLOH6wqPNraYdA+zgxJnozqKQAev4LlTd6LVoBTe10bJXgsbElnll5gNPFca7EpB3Xmjs4QhLEpB3bfjZpqesaYgvJ/eVJ7MClRIFGIeB6ax8tNTY2IYY91eb/+d1v83cf/2D+OXP7TPW12i5v7G0BJldP3W5lk7pC38IFtJL86NkrVFw/GkyqAvuhh2trZKe7ksLgh5KiHemUpTARK03HrUNECYUqSh+LBjzG4AiN1fEw1wgsBKHurEOIwOrMCggkkYOHLQyhEeieX4ONJxWt0KMYS6500LSVlQB6BRlJT+Ifzjy3mTzwfd/wOputCsIkpQpCRNUmuwmKRoFpS8KaHdHYXdcPJejnx8qIqQ4N2PCttSWeuXaFHzsxm3P3BkceU/1Lz/4x7ZaBwGKwqKoffqgyvbOxDGWv1XskNFY0oM5JMJbC0FJW7nXsRtM4nWJQLluh6dlrmgHJyRDpr70cQLwbVvBsw5CVBdZ17fZY6qhtg2e7uhZ619tDLIdj9PuJ5MDDkoay26TuR/kZVctmJbafN3ZuzRrx7aKpPkgMDQ3x2GOP8cADD3DlyhWef/55hoaGGB8fP9Ax94I639z6Lv957TkuN5YZtiv8H878V7fdnnua6sPHPab67RNHRujkui6u676tCsAEQcDS0hIAS0tLnDlzhmPHjh24s131rwJgkCgjBk7zNrU3kK2SogQmDcgFm2GFIauVYat87FywHSUo9q23toIyU+5e5PZgJBqZ8PYoWgGhEZEMIRZ5FdqiaWEbz4ruzWxli2+gGHGSDL7CMFsaY77e/6Bea+7iiv5UuidtHGPzsHOK19d2eWklSm597+Q0a5uaY2MjrJgdtFYgo4HI/3rlFf6vj74fZ8CH4XZB9a90WOpcjJXSRncj1BJMBBi9DlgVQmA6wNch7Hv7mkgfHuIQdlwyWsqiakUcaLuXyBol/nUIelq+RaXjQSwwaC1RlCjKyGJP6+hYnqVwpaJgqQichYWMd3Fex+kbGycGzLr+5V4MyDlS09Ip8G0FGfB9rNTxas4pbIMRKF9g6hY67DDTyiR7ve4MQfdaSyAQgCAIDZ89/zV+5+M/w/HbHKgD/M4r3+OpK/OE3a4ldV+rlse+TgLVICX9QEdtnRpKelO3tZ0YvHbDEob9sEDRGtyf9WecBA3tIUPDiN2M3EBytguNyGWvo31ZNLWHwFBN2fW1tZPx4G7FGOl4SAwrfpXlMMlQp4s2AUxVa8xvRqB6pDoEzX6i+mtba2xubjI2NnYgMPZ2Z6rzolgs8tBDD3H//fezsLDA/Pw8WmuWlpY4fvx44nx9HfD89iv86caLXKovsh3UehNnT4w8eChAeyc01e9kQA33QPXbKY4MqBZCUC6XD+UA8laB6maz2Us+7LLqjz76KOVyfsnvvAi1z2aw3Ps7MBaWyK9KuKeKVGnlJhENShZQxmI9HGKcfSqx5EVfWbjp0tZEH04nppO0LNgMK0w4NTaDauajanX002lNaMkOclms0Ei8DhPpSsUjo9dBnc60YzgFtDWGByoT2Mam3ZS8trrDN69v4kmLVuxebzabtJViaV0hpIOIJbQ1jc/nX/gm//f35/tWd90/bkXP3wgCvrm6CIDn5OipwwjYZUMg2zaqI7m4URhjMoOWdPO0MZlrLUT8IyaQlsHGIEQkyhAWbIclZt2tBMgqW37mGhRyBkl50o68c+3qgnvbCVAdl5BujLiR5EV1c3Al6ECg2jaqLRHaSuxeaJGVBCmSQFf0/7G8X+On/u3/j7/x0KP87Sd+NKfd2eheg3YY8n/86r/jubVr8V8j/X5sNqXeDkhW4zbZnlkBFoxVkqRBZF+ZLcKijGAvLOLJWr6rj0prrQX7qoDAoDoDpnTUwgJlOwuqG6HNqBtJLxrag1hhGN9YmXcf6NgyRgPweOyoEptBNscmb+w5Xq4xvzkJQEsln7OmVjz1Z9/m9PAYZ8+eZXJy8obv5t0A1W/V8RzH4b777sPzPC5dusT8/DwXLlzg1OnT7I74fLf2Bn+y/mc0VNQXv6syy2asEu2Tow8d6vhKqTtmnftOjXug+u0TRwZUw52pqvhmgur9/X0WFhZYW1tjYmKCxx9/nKGhIZ555plbZjrXg0V0bLpbaxdyAEyoJYFx2A4l024DEttAQPaDbIxBYRMx1lUC5TLqXqel8z+QgRG5xV4Qgo2gPLCwxCBP3boq4KaqvqVfv3eNrPHcSlba0b2Oo1aBMVVGmwLsFXhuLWn/eKo6zIWdWLJibY+CtGhphdEWpi4j9rNo0Bj+49IF/vsf+RBeDuNyOyzKF793Ht2BCVKKjJ5a6MEigXZTMlyp52hpU/prLXFTFfms9GBFW3hWGlSb1DqSYkpHq4zNVlCiZO32ltlCsx96lGMe5UUroJ6yZitYUfKkjJ2AK7LuHk7Oc6O0xI4NDqUw3De8wevXZ9B1C4WF6T1Xt5ngJEmUaayFAf/Td57nq5cv8et/+b9kbmT0hpsbY5hvNfjvf+//Sy3wk4BQkwDUAJYtes8CgINNkBogCxMNBqpe8n1tqPxEyrpy0cKipjyGckB307gZsC2EYDcs4qWrp/Z+z13MXlhkvFe0SdAwHq4OcYVKaKlTe6OVKlSzHZZYCUZwRXCgWzcc86PeaGZnKCcefoDp0OLll1/GcRzm5uaYmZnJBbN3Q/5xN5IGS6USYw/N8J8Wv8H/svEn1DZanLGme4AakomBtrB4fPgWK+mk4p6m+vBxD1S/feLIgGohxB2pqninQbUxhq2tLRYWFtjd3WVmZoYPfOADiazs2znuSvtq4u+yPYU2VzIfvrqKvJsNFk1VpWjt9H7LK7YCIEUR05t+FuyZgO3GBK4ImPByShyHBSo5DBYI9lQpKhKT85UsyDA30crX2XalC9OMOE1CcRVbjPbs8c4Ux3BVkWP+DJe39rhGG2jz3oksSzKUcnUwwOmhYd7oAm0RJZQVhU3TadMi5Ff/7Jv88o9+JHuWnRM46JSu1pp/c/X1znmJiGVL9y9aDJKd47dsTk5nkzLtFGBWOZ1Wmt3O69jSji9hzuBHCBOTj9x4XT8l44hmKZwEUHeloqGchPWbK8PI1zr2gORJHU4Wd/h+fRbRFphYk0RPNBBLCszDTellkshNxOqeU9T2S7vb/Jd/8Lv85P3v4v/x536MkpM9/3YY8oXv/Bn/buFSZ5xkGPCaRb9qCFKDGhUoSO+6M8DwnNTgJkf6ZUz/va8rj7LlJ36/UU6tbxwCbEQgGHX673pL2bnSD2XIYcoFO6pEWbQxN/A7DLF69nqrrSpbptppf/aZzLPbSziANGp40qKt+8/Hpf0d/uLDT3LmzBmuXbvGpUuXuHDhArOzs5w8ebInSegmih9VphpgsbHCl3e/wQvmNY4tTPHy/nzvtyDG8ksEi81+mfdHqmcpWodjme9EmfJ3ekQeSkcLhB5VT5cjA6rhh4up1lqztrbGwsIC7XabkydP8sgjj+T6h95O0ZlVfz7xd8kaYidIWutpI2nGUMauipLzHKlzEhRj+27ZDLnJ9lgW7PglRt1m5gM+SK/d0jaupdjxi7lg3JE6t/piHrNdkCE6hX7eM7bEMes9NNuCy+s1XllpI8UaDlEhjW5s5hSCUDkzA1XXyyxr+QraFkFB8+8uvs5/NfsAP3JsJtXe6FgHnW34V5depqlDSji0djTSA1VJXm+TNYTohQ4kI14rtb7JOLWkNzedJMR4yMy1Npn7mQdyLGEQ0kQWfYmkwyzwykt6S99LiACiQ5yFhkboJBIdPUvR1laCZZ0sd955cYOL1tspWb26RU9e0Ys0i2uBCQ1awP928TX+4/xF/srcffzyn/8oRdthv93mf/zmn/Kfr17uSxFMjowjddpCg0nhjbynyFhQdls9z/l4Q9s6CXib2kF3T0YI9sICozE3nkYOS92Nrj3nvi6gAsFExxWkMcAGb9svM5zr+iHZ10VcGQz0pQdB29i0Q6cHqCEqwZ4WPxnIDMALqYH8icoQl/e2e393kxWllJw6dYqTJ0+yurrK/Pw8ly5d4vTp05w5c6YHro9KomI3rrfWeXbrJa42Vnh267u95SN6pPdvS0i2Ra03UzaiymzErJHed0jpBxy+TPk9S717TPXbKe6B6lhYlkW7nZ0qvZUIw5Dl5WUWFxeRUnL69GmOHTt2w5H6QasqxqObpNjbh7BRJK31GtohjQ52wjITzn6Hxcw+1FpLSjklxhuhTcHRLDTHOO7t9DSXtZ7HcDZ8beFaiqKTr5OGbjW35PGKMsh8QItWwJ7yEh/o48Udriz4/Nlq/55rYzg5NMSl3f7H9Vp9P8NibbSyID9MTctHMoAOaG5bBNrw33ztP/GPfuwv86ETp3qr3Sqo/hdvfA+nbdMIFAVj4TeAQtbtYWAoSdlJXjNtRIbxTwPmQFsZOUiaSAy0pGTla/N7x9IRiyyEYDMoM+318xiKVkgj5TFdtnwCI5Nyj7yE1BxbyDxAr3Wk8+4d0w4YL++zqaqkXSIyIYj06mlw2kkEjDWGDk0etaO7bSdaKuTfXHydL1+6wGOT07y0vpLwSQaTZcCVyTDQlpCEqfM2A9o2NZKfL9LUTgJUd1nq+O8V3e4NlkJj5SY1Kx2fyRA0dIFrLZsZbze3jHnnLPOjIyFra4EnfKwB+HFPFdhSQ6l9SizChGMI3UTc2H13LI1n+7TD6KKOeElG9cJu0gFECMGxY8eYnp5ma2uL+fl5nn76aY4fPw68taD6zUpUXGlt8OLOqzy9+RxXGlHOzQmvX+XYxmKh0ZfCnSxMc7V5vff39PAkG7U+qD7tjx+aVb8n/zh83APVb5+4B6pjcRimut1us7i4yPLyMqVSiXPnzt00OaYbt8pUKxOy4S8llmnjExoZA6My83EFUFi09Bh+GFJwcnyiVRXbygLOpnJxrDaObVhujzLp7lGxfXztUsix0doJPAp2dE7RdL+LK/MKVWSBVMRgOxlJia9tilZIqCVbQYntoIQ3ehlWk/6pwynGORdo1/Z7GupurDdT5y0jdrJXcU8Imq2Qv/0nX+VzP/aX+Etn5nrL4eaguhmG/O2v/EcWNmqIzv9JKRHGIPdt9GgHaA5w/uifUFYGkNdBpeUgueukAF3eFGMagHWt2KAL4JJgL13pzxKGfZX0PfakoqXsRPJsQQYExkqA77yEOZOTtvbAseucr1cjS7zY9zs31dMcYOpRkA+0w84L1nFK0cLwwkoflBCXcx8AR7i2lQTVJkcu0mHRR8v5fVtTOb1Ex7ayMmXHhRDsqQLjshEV0BmQ4+CbrLOPEjZXW2PMeFlAXwsdRgZ4U3efI01ULbMiWplBX1vZbIYVup7wiTbnOMxHA6zk0unqPgvbkVOIlXppLu1uEWqNnQKEQgjGx8cZHx9nb2+PixcvAvDyyy9z33333bYl662EUuqmlqkHjeXmGue3v8u3tr7H1eYyY84QW0HkElO2ilxr9eUck3KEa6qfS1Kxi4l9bQX9+zxtjbI9v8Yzl1czkplbicOC6nc6oIZ7oPrtFEcOVL/Vmuparcbi4iKrq6uMjY3x6KOPMjw8fEsdwa0ed8NfQqXcIppqDzoG8RYGbSoppqcfW4HGaEkhp0/3jc48FMaAF69uZ2s2gyr7gc+Yl1NwxUR2XQXigCmkpe2MG0TBCmmENiU7nb3vUkl5bzeVw7pfZT8s9ChWt7AJTBBHoXmQIQ20DXBqKJmsuFzfp2jZNNUAplaAVuCHmv/ha0/x9z78Ef6L+871WJxBoNoYw1Ovv8Znv3WeAN3X+Gpod+67CCWiKTBFcwPnj04ztMG5gVVa95jpAUvWXzwrGSEXnCeP1VYOTkcHnFcqPQ3UO4fKRGAs3JTcww/t3mAMIq11S8uE1tqTYVQJMfaOnRyJBkxCpeQU3c1u9jrmffMH6a/Djk5b9D3Pe4dQnZLjeT1rjsyjnS7wokg5gQxOUuxGS/eLwNS1R97J+samrW1a2s0kq94sWsZluT3MlFtLWF7WwgJezgC8raxEGXIhs1VfG6HDtopcPlwREqYumLjpDYtivNIH1Y0wPQhXXN3f4b7hsYHbDw0N8fDDD7O2tobjOJw/f56xscgxZHR09E0DdHeKqb5QW+CXX/t1AhPdlwl3hA1/p/f78cIUr9cWen97IjlVsh0D0aNOlevtPrv/walH+bFTP9aTzMTLoN+Km8dh5R9wD1jfA9VvnzhSoLparb4llnrGGHZ2dlhYWGB7e5vp6Wne97733ZIlXvq4tyL/SEs/JBZ74QaIaGpXErITDqY690MPS2jaYQnP7n8UfW3lss610E0AnajNhvVWFd84HC8mvXO3/BJVNwkAhIiSnfIs1urKy4BqbSR15bITlNjxS7SwaWs3Yl9j76ItQ05ObbO01ve13Wpngb7OAbzpZEWAU0NDvLEdK4Gefu8jm2hCo/mlZ77G5e0d/psn3xcdI3UPjTGsr6/zK9/8Bn+6tYkRhrjqxjJJmCvqNhSCCJhlWhZrd6Vxm84fWVcPx76J1MMY3BQ492MVPC0p2A6KCc1u2fIJtUgA9mLPlrHf8DytdZ6e3lcpu0ZpCJRMSIGGC00sodAiBVSEiNjrWE9nuvVX4tewWzvGSi8z/QI8Boo4NHUwmIUW0X6K0qIpVf8Y2mTAMgpUWo5jcjjazqucnp2Ir9A2No5RNJU7YAAh2PY9inZ+/xZomauzDrXAFhojJKt+hRG7yZDdRhmR8STvRltbFNMDMeNgGb/jSS57gDpqWb7lXuYsc56NkWL/uVttZpn8C7ubNwTVQK+a7SOPPML999/P1atXefHFFymXy5w9e5apqak7DuruhKY60CH/2/JTPUANMOGOJkC1TD2oe7rf3w/bFZZb672/jxUmElZ67xt5KCGZ2d7eZn5+nmeeeYbjx48zOztLpZK1P0zHYRMV72mqo1maPCnc2zmO2vl040iB6kqlwu7u7s1XHBA3A9Vaa9bX11lYWKDZbHLixAkefPBBPC8rs7iVuFX5x0oqSbFqj1FTqwgEZXmaptrEv0E/FGgL2zasBwUmRLuniW6pKq6VZfrbOsk6Q8RGl5wQy4LFxjAniruRj7ABkWO7BxErXVcO5ZSLQHc6uq5caqHHflCgJSx0O4lCpNAZrbUQcGpyJwGqr9X2sIVIaFy32tnBwoGSFSUYHXOQ6ICmLrj+/3zvO/zJ1Sv8jcpQr/PXWrOyssKXf/Ay/2J5kV0dgauy41JTcbs5h4buXwthBKJmoS0zmFlVMDGRBQ9pwJzr6pECsXnuIGlpQKgtPDs9WEhutxcmQbUUhs1Wheliv52eVOwGRYoxSU9BBmgjEmAukoMk95/nHJPGOJYw3De1yoWl49l103IPCUIJjH0TXXX8GAGIQNAWCkdYhFrnMtkSERU88aNnxrgdOUfOK+EJK8tU54QlwXNbuXaW3Wgrm4Z2B/veEVlVGhFkEoMBmqGDlwO4d9pFhgsd8Cwk22GJZlhAiJDRHOnHnu9RzAX/gqZ2sIzqaN/7oXIuZEhHFhU7nbzzr8QG7xutBlXbZT/sn9+FnU3+yukbW8LFAa7neTzwwAOcPXuWxcVFXnnlFd544w3m5uYyBVMOE3eCqf5fr/1nGipJIKhUXsi635e8lSmwofsEyExhgt2YXNKPVXWtWEUerM72/hZCMDY2xtjYGLVajfn5eZ599lnGx8eZm5sbyOobY+6afeBRintlyt8+ceRA9bVr126+4oAYBKqVUly/fp2FhQWMMZw+fZqZmZlDT2nFj3tLTHXaTk9OE6qTfGe7zarf4uHhPUoDWK1AiV4SmRGG1XaVk8VdLGFymSplooIs6djzPYY709GuY1j1q4w5DXb8Qm95XoTGwpgAQ+Sx29QOjdBlxa+C7HS8suNqpkmwkVJ0mbPkx9VzWoxU6uzUyp1jGM6Uqlyt92ctrtX2MiXMc5MVder+d7W1ucVBon9f3N3m7+/ssPq97/FXT5zg66+/xr+8fp1rfru3rsFQC/3EtirnnpumxBQHJy0KDcPVdLvNTQvB5K2Th7/S1oV5xYEyCZA5tG2es8x+4CVAtRSwF3gMOf3nxZWKWuAmgHzRDjJFZYwWtJEExqKtHfb8ApVqC2OTtYnICUtBeMDXV7QEwojevVPGRKDczQH7AZiuBh8R5eBKME52XdfKgupMkmIIoWM4NSBJsRsN5USOKjc47UA77ISRjj2uZdd68OXKzogI2lg0fI+CFWb8y1vaoZguZNQ9FW113IiSOw2NFbl9JBZ3qpSmBtDpCYa0A8hMucp+LEHxjd2N/BOLRV4inm3bzM3NcebMGZaXl3sFU2ZnZzl16tSh+/7DMtWX69f4tytf42Shn08iEAnmecIdYa290/t7hAr7sboEOtYX2iKZwPj4yLuwBtghVioV3vOe93Du3LkEqz83N8f09HTiPe1+1w6rqb4n/7gn/3i7xJED1XdSU+37PktLS1y7dg3P83pTgXc6S/xWNNXaaNaDRYbt44Rqmh/shmw7k/xgvwu0BWutKrPOdu72e2EhkfwlpWC5Ocy4W8eW2Wu3HxQoO1lQnQZNUgo2gxKNwMXXNkNuK3GcQEt8beNrmy2/FOm9ux2liPS1TtoFIaf9eUlqttScmlln50JffjPkehAD1coYZodGuBSz3MpLVlxrZIF2BqiIFG4TEGL4rR98j3/16qvsGRWx4LHtyrZDPcZKx/XUiV0LgfQlOs2i9k5EUC4lBy1KC9Lf+DTwDbXs6aAHnVae1COvFWmvaEuaRJl6gFG3ka2umONz3FYOOMnz8bWNFy9jjmEv9AixaCg3msnQNkbIxHNYKHT8vvPkHpnIPkfpsYHwwWpKtBRZVro7YxHfJszU8ImAdQgikDBk0LH7knb9yEtSlAFoZ3CSYjfq2qUgB3M/Wnfl8oKNdpkJt47beT93gmLuO94OrYyMK1ouKbkhW2EZGWiOefsIAbXAZcTNSq8gchap6QJObtVXgcxJTOz7Hw4ORyocGRLo6IanZ5q6tno3ihu5W0gpOXnyJCdOnGBtbY3Lly8n7Phud5byMEx1qBX/0/zvYwuLa60+EJ4pTKRA9Rhr7f7MbVwCJ5Fci/lRny4e42KjX6H3yZGbW+kVCgXe9a53cd9997G4uMhrr73GG2+8wezsLCdOnMCyLMIwut+3OwjpVqq9F/fi7RL3QHUsuuC20Wj0yoiPjIzwyCOPvKlJK7ci/1hpb3B5711cbTaAaCpvKAXAmuE4bbV3A+eEdAME11tVTpSybFhe1cOWshjKmfr1lcdkqU6oBZvtMvXQQ2sYLTY7vsTRsUNkxrs278rKHN/hPF2lFFAptLHtkLBDP+bdq2Hv5smK1xs1KrZDLZ70lAOqMwhARBhruxWAJxLbGAzNMEgAMweJyoOsBmRboEsDPiQail7WTi8dmUIwWmQBW0aHbSHSUo/UyQdK5viSC9bbFc6U+gOWohWy0S4lElnH3Dp15SYqOFadFnH+UZuIdd1rFGlpG99YBNgoJTGJ7DewUQSxLkxYBtfxCdpeRu6Rnm3QeQ4Ykp57iGwKRBAJ4MvSpp5mX0VHQhKzeBM6B3wTHVtqidk1MKQi5tpAk2TRH6klOq2x1tHDVrnB7A9AoG2EUZnch97vps9iayG53qpyqrTTmf2xgJzZqKDASCH7nre1g0c7mtkSksXWCKN2k6Zy8OwsqA617CRQRgnMFgqVehhN7uxCjpwgtVQImKzus7w7mrvFQm2XVhhSuAGoO4hlnBCC6elppqam2N7e5vLly/zpn/4pJ06cYG5uLlHM6yBxGJu6f339T7jSWOZs6QRXmn0XqGG7yjJ9UB2fdRMINs1+7wKdLE6x0Fzp/e5Z/b5RInli5F0Hbk+c1V9ZWemx+mfOnOk5YL3TmebDxj1N9dsnjhSoHhoaOpSlXqPRIAxDvv3tbzM1NcUTTzzxltgrWZZFEOSXBk7HtdZOB1D3o62TIGvMqXK9McRsNclWt0Mrkb2f+M04bLRGGfe2e982ZSwqTvZj3ghcCoXo46k7mEJrgdKG5eYQRTvAtmHYbrPb9vqFKDqRB5YjaUJyuSM0oZaJDtkSBh3LHeuGaynmjq9xYSHS1O4FOeXXc847L1nxZHWI17ZjDJcEo1K2X+lBgd8BQAKMT6KyX9GyaZrkdS9Im7rKuecaZCtnnru7nbBwUsDJZCw4TEY/ndd9Zaor5vqWJ5c1tEseFmiqrJVMSzlAXGsdzXx0HSMCLWkol2utYQJt42OjkJ0BWOcCdA7f0jaeTMtX0mJpwcz4Dgv1qewZd3TwvfOyybUuFApkU3bAbOfc2iHkEZISRAjGjv53kA1i9zILLbB2LdSQwrUs/JTUxgkF7fSMgxU1vTAwSTGKVuiwbwqcsPdyf99ulxP7sCxYbgwzVdxP6JIT7ckblBsSEp5oPcNmUAIE9bpL1Wkz5EQWekpHLHo8bKFQqemDZN3LTuQ8tHnP8USlD6prQXrAabi0t8UjY1M5W3bWuQXWOK4t3tvbY35+nq9//etMT09z9uxZhoaGbr4Tbt9mbqmxyh8u/zEABSt5XVux74BAJJjoE4UpFmJ/V+3kIGC93f9WPFg9Q8W+tUECROTQ8ePHmZmZYXNzk/n5eS5fvgxAs9m85YFHN+6B8nvyj7dTHClQXS6Xb5mpNsawsbHBwsJCD5Cny4i/2XErTPVqTCPXjd0wCbLLdoGlWpmZUpKt3s9x8YDIAsu1NC1guTXETGEPKSBQVSwry16X7KAHpqMQSAm2ZTouDf2Xpeq2OyA4CYx9JbBjIMQShraWCccIISKf23TZbGVEhmW1pWZ0uEEXKV1r1DKE8tYBKyuW00Bb5HzMBdAGbHBCmZB7CKLfuvJRkcNshyp/WlsYkEZgKYFKS0AM2E7tpkVeoiIZqXUyiYwkGONoWfojbzKFgBqhQ8XNDgYcx0TFfmLSkHJnW2UEe0GR/dBjOyiy4o8Q9uQ/gv3A7ckPBFGZ9GaQLFTTT6Lrn3wt8DIOJ+PVGldlFkDl4G9kS6CLsectBKshsyM2i4ykpBdaRIkHA1hqmTquMAJrz6I4ZuOn9NRB3jPhCUpu84ZJigCN0KWhXWbMXqb5oRL5FowWrDSqTJdyZF++mysJqQcuFTeb6BgaK+ZZLVhrV9lpFZgq17Le13kafCGQRiXLmguTKTOfF6PFfv93vZHtry7sbN4UVN8Oazw0NMRjjz3GuXPnuHLlCt/61rcYGxtjbm6OsbGxGwLB2z3m05t/Rmiie7kf9u+bLSyuNftSkDSIHnIqEPt7J+byMemOsBpzDDmI9ONGIYRgYmKCiYkJlpaWeOWVV/j617/O1NQUc3NzjIyMHGr/78S4x1S/feKtKyH1FkSXqT6IBkspxfLyMt/+9rd5/fXXmZiY4AMf+ADAHTPlP2jcSqLiaoxRgKgi25af/JDYwsIgWGkmWZNBfXxb9dGCEZLl1jBKCwKd/aju+h6Fng2bIA5yXEvR8JOAVAqo+1k2WOm8Ry+vgTnJYDlrSQxSaI5P7QAQaM2ElbyPXVeQeOQlK/o5A5yc6tvR8pbIBeZCgPTBQdBI+15rEtUdE9FZXNTZZ1AEMDme4/yRBsc51zYj9cjp0NopG8a2sjMSovizktw/zNfGuVIb47W9KV7eP8Zie5Tnd07xUu0U8/4kG3qIuikQCpvIZzxqQ979DFPnYEtNmGLN84qYlIp+BH6Toz5yVEwkiHoN9o6FDETulMaAgoIdtnqA7ANwtZUBhcIIzDZUGx5uO+avnk5mDCGQmvGhm9mEGpqd6qmbrayt505QHADKBXuqyGYrSyA0w+w7C/nvbaBFItkUoBXaTJSb7LezFH9orNxrnGuxmF6QHhwBlZhEZddvM+YlC5q8sXPjZMWupd7tRqlU4uGHH+ajH/0ow8PDvPTSS3zrW99iZWVl4LfodhMVX9p5HYCi9FhOMNHT+KbfSQ05Sau7/bBPKFTtUqIgzISXtBx83yFBdTwKhQLFYpEf+7Efo1Ao8Pzzz/Ptb3+btbW1e1rpWwjTYaqP0n+3C6p//dd/ndnZWQqFAh/4wAd47rnnBq778ssv89M//dPMzs4ihOCLX/zibd6Bg8eRAtUH0VQHQcCVK1c4f/48i4uLnDlzhg996EOJpJPbrap4u3EriYpppnrUqaAzTG70cdpolfFVxAo1wixA6kbGG1gIFpvDiBypyM1ehHaYZaHSU71Aru1ennVapA1OLreEId0fCwGOUMxM7PSWVWTyuKExnKoOJ5Z1kxXjsdbMPkM6VVBENsFqC25ouiFA5ORtFdJeyvFNOrfIamevswxgeCjdNnOgYh5pqYfS2TZ4aSeHHAA96O4/5i3z5yqLvKeyzrnyNlNuAykNbeMmAItnKVTq3uU5l+RhnFAl2+xYOo2dEQIqxQYZp7ocW7veo2zA2ZYR+JWC3Fy6QWGiwdOg8P3Bgye/phC7kvKmi7WdnQ7p5nUWC0HmeU80wYheoad1v5wZMAU59xoiBtuzFHXtst7sg3FtoJTDRvtKUvVyNNbKTgzadtsFym6AFCaXle40OrvoABZbec9F2p1ouhgBytPlYd5fOcnytRtLAu9UIRbXdTl37hwf+chHmJmZ4bXXXuPrX/86i4uLGdLkdo652FjrlRQ/XpyKigx1omwni7HUYiC6KD0WY/rpE4XJxLqtmM3ntDfGqdL0LbXrRtGVuRSLRR566CE++tGPMjExwcsvv8w3vvENlpaWDkQovdPlH4bolTlS/93Gdfj93/99Pv3pT/PZz36WF198kccee4yPf/zjrK2t5a7faDQ4e/Ysn/vc5zh27Nih7sFB40jJP6rV6kBNdbPZ7CUfVqtVHnzwQcbHxxMvqxDilj2j70QcRv4xbJfY8JM6yqaKWCOD4HqzypnKDo3QjTHM/fC1xLWynZo2Hpu+wBGKCa+OENBWkiG3dcMPfN4xyo5PWiTsSoVJVcVzpCZI+RZbwtBWEis+KyyiD3y63Y5U2LaiUmxQa5ZyP8CjXoH52N8GODk0xMWd/gzAaqNOSUoasc7euIBvkAiKvk0QdorQ6DzXgiikEejQYNcEYaUvDylKB598HWsXVPt1BRUSQEsoQaWUBDU6x/kjzeAqHele49FUDtVEG0wGnKRBLJBxEAH4aPkC73Z38WL3yBjDnnb4X9bfwxr9GZPo3lmJIiSuFWYlQjmDrrzrHKaeX2Ukx8Z3ubRTzsg90hIO7UY7dXYkIkZlCwUmPVEwQAJSFQ5NEyKDyPouESkddzek6Ti/dE43VBq7ZWF8Salos2+1UWVD0XGoEVAptJHCDASdu34cUEm2WiUmi/XOvgXegAI/DeV2rp2ghcNas8xUsc6eH4HidNTbBUZLyZkdZaAakwjt+1E/071/I4UWe22PoXSiZd6gqXMP4u9tnvgj2ZNE771EobGwpWTGqyCE4MLFLVZoMFO9cYGSwyQN5oVt28zOznL69GmuX7/O5cuXuXjxYs+Or0ui3Ooxv7n5vZ5HiieTD2gtJgEsSJfFuBSkOMUbtX5CY/wp9aTL1cYKAsFc8TTvqbz7ltp0s0hrxx3H4b777mNubi5hVXjmzBlOnTr1ls8Sv10iqsN7tAYWt+NT/Wu/9mv8/M//PD/3cz8HwG/+5m/y5S9/md/+7d/mF3/xFzPrv+997+N974uKs+X9/mbEkQPV7XabIAhwO7rY/f19FhYWWFtbY3Jykscff/yGySS3U6r8sHEY+Ycns9O02zG93EarwslSYyCb2RpQ9MGWkeY1xGa5OcSw08JXFmOFZgdURy9EOml/yGtTD5yMHrYZ2InjSBEB+rTntDYSmWYu80TJAwuXGMYn9qktlhKguLdZzjVIlzAHmCmVuVRLTrtbLYFUgiDePkHWWq0TMgAtBMKAXYOwbEBCsx0MVLp0L4fRERuu4zPzGgpeEuyonDrh6XuttBUZM8fXSV3jZuhkpvDT1ypKUvMTa3y88jpnnD28FEDwDQxbIf/t9Hf4T/uzPNs40z+N1L2TIpILxPX+XgdoxwddaUeTqE0paYWAsUqdSzINvXJ01RZYuwJUdr28kKqT4Ng7EWi2AkBgfBP1prFdyZBcarUgbFopOjzK3RU0WwobG6tu8Ko2DVoRSBU6kk3kRDuVJLoTFHugeicoYlv5JxR5kHevqaCNw2qz0pkxyoJqL8evvhk4jHbY67rvYEuTGXgFee0WAptkeXKDxCZMJDZrBLIDKXqb9tovqCuH1dYQ75ldw9t6kvnFHRooLi5v97a5vl+j7vvZXInufu4wqO6GlJITJ05w/Phx1tfXe3Z8p06dAm7du/nV2uXev3eCPpFSkB5LCT31NBfqfRBti5hDDoJrzb5DyKniNEo7XNqB/7y+z9/80H231KabRRiGuXZ6cavC9fV15ufnuXTpEidPnmR2dpZiMZLw3JOIRHGUNdV7e0lS0PO8XKtK3/d54YUX+KVf+qXeMiklH/vYxzh//vyb29hbiCMFqrslU/f29njmmWcYHx/HGMPMzAw/+qM/2ntRbxR3A1QflKmuhU3qKgl80klAnnQSiYsGgR/M4lhXcveZO82uJVL0jyOliHyClSRoWgw5kQe1NrDdLjJeSGoc6oGLaycZ1WaQD94z7cnTs4qITYtHWkfcPRdpDONDdRbQbKogKhgR2+d2TgnzZjvLGo+WK9AB1RKBtQuiJSK7vNRBZWjIzLCbji9stxCIEVg1MCXwB3jvFqVNGNMtWK2stZ6bcoHIYy/T+ulGaHdmC/qRlnq0lZUpo522zquHbiyR1PBXq69w0qlh54woupaJloCfqM5z2t3l93beA4jMMwtd68bkoKsVJgdirqU655sFWIl2OyHG6lp75KxhwKoLZEsgA5FwaoGO/jqLybPn2O63IPIXN+j4tyBdobETKsipxpiTCVvfDxmbbiGFIa+UdzfaykpsHxiLeuBQdoKoeqqVZaq1zvqNg6CpbXQoKTt+Ahzvt12qGStHQ7kDtHfaBRq+y7FqdqZwtNBir1VgKGXPZwlDmDotKUzq7RCdc48G1m3l0FQW6+0qddVn6IcKNfaKz7PbOMNeMfs+X97c5j0z+bKGNwtUd0MIwdTUFJOTk2xvb3Pp0iUA3njjDc6ePUu5nNXBp0NpxXxjEYCKVWKltdG75yeKU1yqL/bWdVNEy1qMiDlRmGSptYYtLM4U5titV3h2PSqYNumVee/oiUOda6bdN3E56V6bqakpdnZ2emXQjx07xtzcHJVK5R0v/YBoACmOGKjukivdQWY3PvvZz/LLv/zLmfU3NjZQSjE9nXyPp6enee211960dt5qHClQ3R3dfPSjH2VnZ4d//I//MX/1r/7VHmt9kLhbTPVBjrmS4/wRpNjYcXeI5Vay4EFTDRMYp/cB7EYk/cge19dWr3R5f5ndKT/cd96Y3x8l0E4GVOclkNk5ILjPlsbZSJVlKIUm0DLjIKI0CVlItKeIKRsf32djc5iTpSpLsSIwS7V9LJFMLlxv5JRm79yPM5Vh6qs++0FUDdEMAlspe7Y8llIiKPkW+wPs0fxaiIwDxiDG0BvwSq0MIE3r0POkHul2GGMytmh5lRPTxVrqoUvJDQHDXxv6PtN2E2UEpdSmvjG4KVnVo4Vtpia+xa9vvB83B+TlXtLUR8SSkStI/PzsnAxCX9mMjdbZXqtmALNVF8gGiO7NysOqUiBCc0MJiFBE9zwuzwmBbsHAHLu+buSVOE+TuZYBJWFkvEFTOby+PcnZkeQsVTdU5upFPvGe3B0o/WiGDlYOg91WLq6tud4comgFPcZbaxtIO8G4jDgt1polMJLJSp3NRonxUjb5N9DZT00egx2fEo4MdQxN5bAblNjwKz27xTRr52ubmakd1LslKxey/f2luwiqu9G14yuXy3zta19Da803vvENpqenmZubY3h4eOC2z2x8r1eSfKYwwaXG1d5vrkg+qBv+bu/fk+5oQjI44lTxxAjfWW/y+toeQ7HB9l889kCij70TcSvWgSMjIzz++OPU6/Wem8ro6CgPPfQQhULh5js4wtHVIR+l6J7P4uJiQj1wuwWVfljiSCQq7u3t8Y/+0T/igQceQAjBT/zET/Daa6/x0z/907cEqOGHW/6Rln4A1FQS0FasbOez2apxrT6SkQq0cryF4WYAx/RA7vz+BButrF5xyG0lqndBZK0Xpk7RkoYwRwqQTmwUIt/TMu1EYEwkZ9EGJseiKaWxVGccas2xlDvARuhnkhVXGjWeHJthY7HOfrPz4UmSqYlGi/TyAY+QFeSs24mM6kWJ3uy8CGDiAM4fzSB7T9OJgK3QyR34xEObrJ1e1/njfcUFpjtFPtwBpYzzYki2+GvD34+SFVPnmmVNyX0Q0/fcliazL4RganQX6XdYZB/sXYm9I7Easg+oBxwDGHiPus0U7WzyVMRWd9YLyJ8GMjlOJDna66Id3cfKUJONZoUdv5RJyoTI6zvvOHXlsuWXcmcFAHyTz6d0r6+UgrZxWaiNsOe7VLz0DI/BEYrVVhVtLEaL0e9Vr8VeO9vnjpYa7KeWayROqqiONhKtI5ehi7UJXt2fYbU9zJo/1AHUAAIvZcfTDBwagc3xmS3Gz15hLDUreWlzi0HxVoHqbnS/L48++igf/vCHcV2X5557jueff57Nzc1cycPXN7/b+7eT6qu2gj6IHnGqrLb7pMqEOwpASRYYaU7xg3Wbryxss9pscX91gp2gf1//8swDd+YEY3E7ftzlcplHHnmk56Zy2JLwRyG68o+j9h9Erm3x/waB6omJCSzLYnV1NbF8dXX1LUtCPEgcuie5m/Ymq6ur/MIv/AKnT5/mD/7gD/jiF7/I5OQkP/3TP92Tgtxq/DDLP/I8qrdTdnquTHZAlpHsqBqhsVhuDmZCuhFqkfAahojZLHTYRUcohIBr9WFA0ggc9lK2WY6lqaWWCQHNIPuxzdWJ5UpAbtzuQEuuNYbYDktsNEpUC20KhVYu81JOAcFusiJAyXZ4cnSG0o7NwtVdwpRVxSC3j/hyV+d4HXei3QyRWQOFKNKgGoHVWVcGMDKUZQDTR8lz9XBTLi5+DmuYBrXN0M2cgkZSEU0eK0SdmjJZNUxoTFpFEtve8KC3xbvc1YwjhStVZiCW1tsPinTVT8dSFFwf2QJnTeDsWkg/P9HHWORWwr7RocUASTx02Goz+DlxENmCM3nrGgCN64aRC4uQNMPslY2W5ZwXktoAWzxj8h1XjMnq1qUUrDarXK8PsbQ/wkqtym6rwEa9xH5QRArDWKH/XFrSYElDK8x+Wlq57YkouHrgcLU+yuu1Yyw1R1hujRJ2gL+fw2in2ykkrLUqLNZHcMZaDB9P9osXf4hAddf5QwjRs+P7yEc+wsjICC+99BLnz5/P2PEttfolxLdintJDdjkBoqfd8eTBjOSM9yAXN0Z4rWZxYb9/HYacfh896hZ5cjw5DX8nIgzD23ZWcV2X+++//x3PUsPRBtUHDdd1eeKJJ3jqqad6y7TWPPXUU3zwgx+805f8tuNQPcndtjdZXV3ltdde4z/8h//As88+y1/7a3/tjpUqfyvDsiyMMTdlq9NMdcUq0EhVU1Qp/+Mxp4LpAMv9oMB2O2JwAi0z4BkiwJXGofW228vmd6Qi1IJLexMAhIHFSj2b+JlX3jzP4zav7HieX22etZ5jaZSB9VaJK7VRmir6aDeVQzu0mZ7cZT9HL5034JoqlHlfdQZ3VfCDV9dY3a5zfCinmuYgsNVNWCTyJs4LSaRlvZEFWzq8oFN2XQkq5SQaD5TIymoyiZ95Uo9sZ1ZMST38HDs9KTR/qXIJp3MMJ6f7aJv86mdto7FFNLj63w2/ijTp6ojZY7pWmGHt8hJu85IVjRBYBsTNmPTYfUvss6urTofssNQDYLUQAtnOYaM7of2DDRTafkhlvEkr7Gc/1nMGpe1wMIu32SpnvL0hskrMc3FpKyt3uS0EtmOwHQ22oImLbxxsqSjbfqa/KNghLeVkZsZGik1WamUW90a4tj/MtcYwC81xLtSnWW6P4nf0No5IS88crNSy3GpsJtLbB8ZGpaQylzfzpTNwd5jq9PHidnzHjx9P2PGtNDbZDqL2D9sV1vw+MD7mTST20717E+4YJ52H+aOFOn+8tEldKaZkEpwu1Hd6//4L0/dj3cKs00FDKXVopvmeprpfUfGo/Xer8elPf5ovfelL/LN/9s949dVX+a//6/+aer3ecwP55Cc/mUhk9H2fl156iZdeegnf97l27RovvfQSFy9evGP3Jh2Hetrvtr3Jo48+yr/9t/82saxSqRyqVPndAtVw8849z6O6ppJAa3NvO5EcNeJVWQ37rM1Ks0rFCWjlWNIBFIWDyaCM/sPvCsX1xlDPFzdUkpXaEA+MrSe2SNuzAVQ9H2NMRi8dVUiM66oNvhG9ZDeIwHc7tLClITARa1cPPHwDQaoMshSGrXaRiWqdl5d2SDN52+3omrnS4pHhCfxdRbga8v3ryXMoOjmvx6AkNiEoYdEMQho6yJ2Sj6z0gkgakNbcqvyPh606K2mwU/pYP+zq3GPrp0BnK3TwUmWo077koRYUU/vOKw7zWPkax51owNrSFmOpsYM2UBgoNzA4nd8KUvNzU8/zO9tPJo+pb56s6NkKpZPAXeRMl4dIRk/ssrk0mi/DiIXQOfh5gK5aBiC0GAiaIZKbmEEXIg9Tp1Y1BgJLMzm2T1312cRG6AJJwsBXdi5trk0ko1qpD3Gyupv4rR3aFJxsHxdqK6NRVxq8VJJroAQjXpMwtHJzMgCqrs9ms4hE0FQ2ylhIadhreVSLnf1FZj3YIuyx0kBM5tGPogyoxSweo9mW5IsYPdfR38ZpgdTQGcgv7+3T8ANKbpbt11q/pVZuN/KoTtvxzc/P89T8y5hC9OAcK4yzH8sRkTEgLBD4WjMhH+T80hYPD9s0Yt+yeIL02coYl2t9cP6xmXfdsfOLx+2WY78XyTjKmupbiU984hOsr6/zmc98hpWVFd773vfyla98pZe8uLCwkMBQy8vLPP74472/v/CFL/CFL3yBj3zkIzz99NOHPYXcuG1Q/cNqb/J2BNXdh+Bmo/o0qC7l6Kd9lwTzlpaDFGSBxfowE4XsNQqVhRCtxDc6CEWsYlnkQnBht188QGnBZrOc8Y2uuD57vksx9vF2LMVOo8BQLDtfiAhMpRlrrSWWpSOAoS2ayma3XaCh3B6gj84vm4hlS40yknrgMjy2i9M8yXK9f77CwPsqx7i8uMOr16Jqa6dGsmy7H+brfIWCPEmqrxTCB9xByFJ3zllgtQ0qJvscVLHRb6lOQpziamOUUuhTkCGeHWJCqBTaCX102tUjr/BHGgg1Q4diartMBUal+Qsj872/BTak9LBtA8UcsBkaneloHvC2eaSwzMut4/195sxaaNJA29BSdsKyMWJXkwDLsQzeWBtxRSSBcdoDEnJBKZD1qzbgtiWObVEnPwEQwAoFKMipg5Q9lskmKXpa0LahMtRiI+h7KjZy5BOBlvkOIzpyPqmFHvXATbi/DCIk8xRLvrIyrj0qtFgPKtHgN/Rw7TZVr40tdUcOViBAYlu64z4SlZ6PjpG9xx46cTVb2iF9P9M2mxpJEFo4sefAEqaXtCmloTRTo3Gt/15f3tri3ceyyYpKqbc0OeogzHjcju9fvPDNHgXdbiZJlNV2BIxPFU6igwm+cuU6dPznnRiYLVsO11RfpjPmlrlMtG3V8fjRib7l5Z2Mw8g/gAwJ806NCFQfretwu4OET33qU3zqU5/K/S0NlGdnZzOznW923PZ8z43sTVZWVgZs9ebH2xVUCyFuKP8wxrCWAtV+I5k8ZAuLXZVkstLP04Q7REs5bLbKmcSn/ZabwRsNv6+tdYRiaXeUVqPU27c2AoNgrZ6VSjRzypMHOQVFEsUeTDQN3QgdlvaHuLg3znxtnJXmMM0wCaghfxrYkgatBfXQZWS4zmSxRMm2eWL0GA/oMa69scfuRpt6q49kl3f3cVIfuvX9rIYZGJiEqG+gpQVot2LgMCUBGZQYBwKrCXI4pGVcttoVlpsjzO9PcKk2wfPrp/mz9ZP8YOsYb2yOs9assNYsUwtclM7TrZmM1CMXeKcYyyeKy5RklGC4EkbpZe3U9L49oM+va5HFsR0ZiBfzplDlfwABAABJREFUQ05b+HXbmw6dLlcuTaasuSNDZCnI3g8hMvdv0Lcqjf+sJmhlaLXCXB12t7kihEKOphidBdAoMkBb+R0K10oWfGmGSUmFNqAHaPf7UivBSqPa6wd8JXMrqwYDnIDSuzfGUHHbtJSL7RiUDU08VltVXtmaYk8VwBY4dgSG0vKUgtMRncdivZG0lAuNhSeCzLJ0hKnpAkuaxAe0NJ58fy9u5EtAfhjkHzeKXb3T+/eW6s86jDvDDFujWP45/uhqwE4r7kcNV2NM9JnCcOKRvd7qewN/dOr+TPLjnYo7If+4F/fi7RRH7mm/E6C6naPDfbPjZmB+O6jhmxQ7ZskEWTjuVjNsdlMnz6ViFxixK4xzjO8vXOfBE0s4HSZK5lSxc+MslYHvLJwm0BYVqRGW6rEIK/UhTg4lp5nzkqEKTjrbP5If1JTHvu/RMnYHOBtCJZK0mug0IgY0wgGmwsYAUqCwGBIK57rk5cX1zm4EI8UCC9v9D4syhlOjQ1zZ6p/DWq1OpehQ8wfQyKmwWiBCQZiTV2OlCtikmekbgXGrIXGOZdsgOgVOQmNTC220KrCb0CobLBOy1ByhYAUUCPHsgFGviSV0btXCbsSdP4Zlg3PeFmvKATQagabNjomsA10psQxUrCzA00aTsxiIZCD/+7Hv8C+33g9EQD6SAvXXyQXaeXIHLaJShZ1wLY20DVbBR6d89UQa3FpEWZephibAdkwLL0T0b513n41AYvCbOvL9TtssprBLWdo5rLehUG3TTiWUCiFohg6VTgnxVugMZPHi8p1A22w0y0yW6jRDB8/OXtN2qvgO5Ovx24FNy2S1/EIIQm2RfQ+Tfzu2puVbuE6MYc65xwUrpB1j5tvaQaATg+q0nWSnJb1/ecUQ7BA6wH6QA4gx5q4kKh4kntt+jbAz8Bx3h9kOdrCFxbiaYmulwDfCBhCRK1vt/iDibGWcS7V+AmM8CfhkaZilRr+f+9ib4PrRjcPKP4TIz9F4p8VRLv5y1OK2QfUPq73J25GphoitHsRUa615ZTkrrBdOElQPWSVW2Umssx30mespdwQ7GObVpRaB3gYKXF97mMmJ17CkopIq7tD0LcqxZcs7Iz2/2fqeh1Pwe6BhNYepHik2CXSyxLhtKZZ3hjBSoCxBS9t0hcpJr2RBEoYCQmChU5Z7AkeGGR9c2QGcbSTXrQXaYVLeIXPmwEeKBSA5MDgxNMTrG0nfb7qF6OK76DCUEP1vWh5SwMKP3SxhOsVCurghW9+mv24L7EL6mTTZ6frM9oIQh5qyqXUKZagWuM1ILmGjKFghngjYDzxKtk/F9nGkSlRXfMi7xp4RWEIRGiiL/jOhBbRMVF4eDZVUo1rmxi4ew1aNimxS00WEgJZvd7ywo3BldMy45t7JYVRNTkKeLQ3FUw2ChZvbasqAbAEfq6OrtsFqJJMTpconq8tYNAkRRMVh4hKfDJgH2q0ASsm2awuGp/ap5Vhe1kO3B6rz7BN7+0h9sDZbZYbcVgeU5hROShXfgQhou6k+wcKwqx2GU2XM/VDiOYpQiUQFxzzA7CsbNyZHKbohyiRzCvZbxcTXySBQgSBenTvP+17EBtiW1BRmGrQWo3d/EKj+YWaq/2j1+d6/p9wxRqxpXlxr8f1mi4eqFejMpg1Jh8v1fj816paA6G9XWlxp7vR+O1YY6oHqkuXw5ybnDnlGg+OepvrORGfu6kjFUTufbtx2T/LDam/ydnT/GHRcpRSLi4ucP3+eV1fmM9vEKycCeFbKPUHYbAf7nPAmOG7u58V5i8UdQxDTfZTEMC9ePc1GrZKZovdjU7c79SJvrPSlPgaB26rSJUbbymGrmfSG1UawujfE4vYIl7YmeX17ksXmWFQNTXi0tEv3EZQ5H/q8me28Bzav2lxkERd9YBuFBmnAUDvgbEQ5J7EJkWWWZZterT+Zs+uglTO1fsAJEekq7BS7qHVO/l3OVH1Gw2r6K4dEYHszrLDUHuON+jFe3D3NN9bneHrtfs6vzmEFAaN2v+hMYOzMfVEmOvSeMWwrk5AcmRt0nb6OZjP+XKU/YPRTQFGIrDzFsVRGJ5fvIqMojjfJ6JxyniuRLu3XWx79l55ZML3/l1zYavYHBAe5v9JLnpsxoF1wikGiXHc34rrqPIeW3j7SLJAQXNuv5hbeCZXAyUksTt/nUAl8bWG0lZnlqPuRdKyRcigp2FkHl7QkTUpD20/e93bOuTdTgwzH0tFsVqLN/Z0LAaWRvkTu0gAHkFuVYxw2boWpfr0W9fsjzhDLe0P8x6s7rDRbFCw7wUSf8JKkwWqrn8x4rjpJy/T7n812//v44amzme/GnYzDyj/ulSmP4m5b3/0wWOq9XeJQb9OnP/1pfvZnf5Ynn3yS97///Xzxi1/M2JucOHGCX/3VXwWi5MZXXnml9++uvUmlUuH+++8/5KlEUalUMuz5rcTdZKq7x/V9n6WlJZaWligWi5w7d47FIIRr/fVtIdkKkl6s6f5nrnictT2H89d2geiDki7TbSHwlc3rK8dY3mnzrgkfx9vAtUOKTsDK7hCLq2PUgtRct4GaH+CqAqLqo9Bc3RujFtRpa5tAWwgbau0CpU62v+hvmomUOqKzzGSW5W2bVw1QSlCBwJIgLBi5r83OpX7S17Xd/cw2u60sCgozlUU6oUi8PXGNtOjj+X4bg2xBcSuIJhrEAOeP3r6PtTPV76IOKQUsU39rI7ISjxzgbafWCQMH5RgCYfjzI5di+zOURBaU6Vjp8SaGZmhxzFYEmIHSD4Aakdb6rLfRm9rPS1b0fQcvltwauYIkJQQR0E5eR1dq3GKAUAYTQ4jGIqsYGqBNFgZkM3t/ehKQWH6b9JPvoKTjBNLBmdIWqPg9UgY/xeRavkEVBMbOBxNx0BoYmTtAUCZ/yrypPNYbgulyciav3vIoF9O2i4ZCCmgHgUXLOLkvYagkjqM7QL9/ryxpaPhOwm3EtbP9a9pu03MUfihTrHeOy4uW2LGZi6jSaj+5zS0GSDdE+/ZAB5AfVqZ6P2jQ1PsMOxXW9yZYb/aZ9vsrE/xgt5+7ZLluVwXCiHBZbOz0fvNieumpQoX5en8/f/lNcv3oxmETFe/JPzpxj6p+28ShQPUPo71JtVrl0qVLN19xQNxNprrVavHGG2+wvLzM8PAw7373uxkdHUUIwdrlpKPKmFNlLVaOFqClAwRwtnCK6zs21xslvrfdH2DYQnK9mQSTbd0FSYL9VgHdnONbi1WGSw0avosfOhCQdRhQgBD4ylCse4SlJiuNIQpFFXn5dm67nTNV7+bYeek8bbSAiArvP0O6JwpJ6qqNHuxqAGBN1uFSsbddMwiZrpZZ3e+zNtd29jKT4+u1/GRFIfp9gqckKraVEBFL2dXc2lkhSxSqz4TeKMRQ2NFP32S99Do5m2SAtxaInHLVAD899SKlGEWrjEUh5bai8jaVIRsaihicgaW6+0YcnlT8SOkqLzTmcstq5x0i8kHvX3MpoyS8LggzJjo3KcEbb9LaiyXDCXrlxruR49DW+WFwEqkIgTiozpHeWz6ELthGoFIDBumDTk7uIBTYXoA/YBKxrW2UjgZL2fLkUeT5wUenItj1i4S+5MRoP58gb1DaarsMleJOE4a2thEWuDnjzO6gL+9ehSmrxIITEmqRkIXlVfj0Axs7llTr9ZIc4+edHexgRG+xY2kKMzUaV0eAfAeQu1X85Wbx5ZXzWMJia38KSYH9sD8YcmPssictLu737UDvG5nihe0lILoMF3f7v50qjbDWivZTkDYfnjp72NMZGMaYQ8k/7rHUsTiKzO5RO59OHHre54fN3qRarb7t5B+1Wo1ms8mFCxeYnJzkR37kRxgaSk3npRIQh+xSAlTbQlKkCjWXp65F5//keFLnPF2scK25l1i21U6V9zORtGOnm5GvySRwAaD6H65moCm2CjQxaJMk/Tw3JFSCeL/qOop2KHFibJxBIIVJTVuLHAWowBY65QYgUEpmPJqtmG8t0mDPNAmv99nqyUopAap9pTk5MsTSTv8arezVKBVsGkES7EUS1Ci5TddUhk2RQR9UO74gzIEbUcVEc8O+RQiFdHXWPSOFAYwxCZDS2ZgkzDGZZNQwtPCc5HWT0jDp7PF4eTGxfzcnm7JhHEo5toa+AR/JuMm2HWBb21gxh5HHSku80Jij5AYJcAxkLN0AVGraXxtoBA5+26YeuNSDyClmyGtSnkmBaiIGOnFlbIEIDCZlh2jViHrJQbig+4gZckG5FUTPNnUNxeSPBdumkZIlGQGViRptYw1g+SNXG0+G0UgiJ/I8xgFC38ZyNXU8ljaHOTm+i9ZQ9LKjgVRtHpq+jRISARmpSDuwegNlu2ODGb/n6dmHSDvvUC7EAXNA+gKmQYQlDU3fxosNytPvfHSA/j+lAHfYpzs0vrixnQuq30rd70GZ6m9tvUq9Nc7Cfo0nx0YTvy3W+1KW+6uTvBxjreuqP202Wxxlvtlfd9fvz1R+aHKOkn3zfIPbjW6O0GEt9e7FPZ/qt1Pcc/9IxVsFqo0x7O7ucvXqVba3t3EchzNnznD2bD5zsJIC1W4nY8eTDqedU7y6GvKflrYT08th6ss45hUToNoRkjU/ycTWgpTXWzohr3cCJD5ezbahIAs02y7lQswTV0Q62YyNm29nPs4SnSn8kJdWlScLUR3n5HjYliJQUTlgOklLtRiodnI6+7FSIQGqIUpWvJCT5GS1QTsml+CEfsJi2FT5AxM6bOUN3kIx2s4FpWkduclhw9PraEMOc5zduWMr/sbUcwn2MDQW5RzwPAgaNLWNJQ01Y6hmPMjJiNKHrDYn3U2W/HGavks1JvcoOgFBitl0bMV+02M/8GgEDi1jIzToFFhpBg7l4YOJ12UIKoYx7JrB0gITmGwSI50ZiSDSQEs/R+MOIMCpGfJURJadTQ40Nsiy6szI5Ec9cAda6UHk8Z4bsU0a0mVpe5jhQpOil2qDMYl3GKDW9rDcCGwXCsnnoN52cTv7sKShFdgU48mmObNVaXbcsTWNto0bo8HzEhGVkpDyvledGYluSJJWhK4XIgoBpuVwOec9/mFkqo0x/GB7m81mNKKL66BPl0dZiIHquCa6antc2Osz0+PFcg9UV4TNxZgO+810/YBI+gEcSlN9T/4RxVHUIB+18+nGW9eTvEVRrVZ/qEG1MYb19XVeeOEFvvvd71KpVPjgBz/I8PDwwM5HGc1GSuphC4v73ftZW5vgP1/ewxg7qdcEdvwkC+2lOvIJy83wp9cbKa1xjqvCIBTZakKjVsyunvPy5OKPvIW5o9nsinkuA1Ikjy0sgzXWB1jNHKs8K+fjWnXz2RyhwW7k66EHJSxm1gsZ7HkMiPEwoyWNCiKkVsy5Tul1VJD9kGeKvGj4keGrnPJ2EsvzHDxaOisHidrXn9nbN5J2atMG+dP9HyxfBsh4TgsReZ7vNz2Wd4e4sDnBpb1xrtZH2A5KtIms5VQO8g2UhWUrZDoRL6/ni98HbbA6pN5gD/G+dGdQ8R4A45tcpruRssg0yqBdAa4eREJH24Uu7RxnkG7kebdrDTKV7NrAZW2/SrOVfL6bLTeRGOsHotd+neO/rVIAud5KFlLxbEWQmlnIe1/THvaeGySs4CD7TAuR3c6SOsFw2kLjTEU38421jcxxfxg11V9deRnfKEIlGXWLCR30lFdJrBsH2Ger44nvwLWYdd7p4ggAFelw1h9mbKXOzs7OIc7kxqGUugeK71QYcTT/O4Jx5JjqcrlMrVa77UpMbxao1lqzurrKwsICQRBw6tQp3vve9/aAdDxRMR3r/i6601GO2hVGmOHqmsN3t9Z664x6Ba41+gyrAFZSADlIWfZVLAfCPvAe94pstpKJjLnR0VPnLd/f9ZicSC7O01U7A5OVUohdktFVq16SXn892zIRcLhR+WhhcE/WaW5FH/2V/axMaL/tZ5aFg6wOZWStNugpEwocLTDWDdYRAitIJrwlfi8rrBRjZ7RA2mmwkQXeaTIzj8FM71uFgp+aeCmxLDCCcg6yDLBwckYEIXEQLtjSkkmpsUUEuP0BV2PG2aUo21iiiDZQaxbYD1zqocte28VyYtuJCOBZsesgbR0V4Ek9m83QoTJdZ+/aSG9ZnoQ/rihy9hgwyktFt5jjoOmKTlgNkJ4g6FwXS4FKadkrwqEm2yhrsNoEomRFT4b5SYpa5LY7DC1Ezk5bxmG5VcFuGIacNsPlBsYI/MBir16krhwCbTE21JnRyhm8pRnlPE23ryycmPNIwQ0yfXS61VJAs+VQjDHjef1GOgW4O5ju7tq2NO6QTxvNq9dX+N73vsfZs2epVCJwejeY6puVRf+Dxec6hX4Es+Uxtv1+lvpe0O+z58pjCcAdH0ycKo0kEhaVMfzI0Gm+v7DDsakZxspVnn/+eYaHh5mbm2NiYuKOAuCunvoeqD583JN/vH3iyIHqoaGhQ2uqjTF3rKMNw5Dl5WUWFxexLIvTp09z7NixzL5vBOZX2ztMuSMUwknOL+4Q6G1OlpKa60KqHPlEocR6Kynt2E0x13ZKmDtdqBwQVIt8AKEEzUYho6n03Gxikut2svvj4FAIhBbJAazo1+aIL8zqqiOG000xYFF54+jAjqtpK4OsBOiaw06zxWixwHas9O/yTtYVZKuef02sdtS+gf7SAsSOAvcGz5GOZAe5oLoSICTItPPHgGMldqtFAnBG62SBt5NiL398/GU0sKdclJF4MsRFZ85RGYE3IMNSpWhgg2RHw7jUNG7QkUoBj3tX+c7aSdr1EUyi8E8XBcf2q0VimRCgU/p9YwT7zQLD4y32Yu45ucmKDqANQoMI6J1zNIYzuWBVyKjS4o1wgwwi/bzYNAjLEAxBSbrsk/J6rvk459p0fdsHRWAs2sbKNSxpt+1cFj5UMgN+jQFpRQbpoRRsqSLbOwVsFCYs0X35rJglYbrSZiuwcFKJx2mnmuhYycba0tBo2RRi0pM8wJweCLq2wg+S/Ua8hLnWgmZo0wwidxhXaqQ0WJbGnmyxtS7xteHZZ59lcnKSs2fP3hVQfaPjKa251LhGO4geTh17FoacQiIpcdwr9UC1Iy0u7feZ+OlClcXGDgK4Tw5zfV2x0Yy2/av3P8hDZx/gvvvuY3Fxke9///t4nsfZs2eZnp6+Y9++ex7VdyjuuX+8beLIgeo74VMNh/cuzbPFm5ycHDhqtyxrYPGXhd0mfzZvozu2eBLBSsrFIz1NOuElQbWAzDZ+SnNdTMtPDGDlUHADXBIwYLSk2fAolfvaByHA9+0E4wSd7P500lPTxi0l15NCZ6aY83TVufpgS+Or/hSkEGCdbKBfGwZgeqicANWNIOBYtZxgsZd393FdiR8XxhqD1Yo0sINYZoi0tuoGuUBCQyW02MmpfS4n25H7RHrKO/NYZv2owyCrWU9PuYehheP1r3VRtnlydAG/2y2IyCNaYPAJqAq/J9uIEhSzmoe0JXQ3fCRbWiJupKUAHq1cIxBWpJONT1jkuZ/kLDNadJ7ZzinIiH2noEknCGQeISmQgcGuJ9luIaLlesB9lO3/P3t/HqzZkZ53Yr/Ms3z7d/d7q27ttwAUClth6Q3oVWRTbDY1GipmONJM2xJpmvJozLBo0rIpWkG1R39QGokKMaQJky1bY1kjhkRNjBQSh26bItUAW0Cj0UADjR213lpu3X371rOm/zjfck6e/G7dWoBqFOuNuEB9Z808J0/mk28+7/OSZE8cYbLHrVeAjATupkKWFRRVhmuvpKAw7nGj0UYpQcsvUCsaVlUiywiqTV6hOBLo2akjJbA04v0QjKtcUGM7xafum+OGBKHMTNhMAYVBZFHUVEH8SGYmRSb98SDM9huWVOx2XVp+AS+yAYEUEQ0v0U60RIxEUZjq0l4rUzxwgC88fIqLFy/y3e9+lyiK2N3dpVqtfiRe1RuNLf/zldcI44hu4GJLwYXGkAe9UJ3k9a2lwe/NlETqA9Vp3t1dSe1r82B1Bn/Xxm8ErHeTPq1k2/zIkRNAkm/i5MmTHD9+nKtXr/LBBx/wwQcfcOLECQ4dOnRboPhOpSi/7+m+z6n+ONk9y6m+1ajhNKi+Fet0Orz//vu8+OKL7O7u8vjjj/OJT3yC2dnZvbWI96B/nNvZySyyz5YqhFr9mmF2gC3b2VF+tlihG2evvx1lz4l0RBSTR3SjlrnDIXBtNfP5m5VBtsuEHUx8UJOZPkhpUKcQAuJgeG9HxsRlheplhCsZlmGnq+XMbwUcGcuuDLieQCqBgVKcMau79/6qsvDbIUYRg2qENLbjfABivmnp5ylDApnsST85/WYuLXgMIAQt5XI9qrAVFYkVWCPyql/1xxnlut+J5UjQ3beijPjRyXeJcjxZlfumTZrWwsTfj6EbO7hTN3gZgOxijCMYKXuoeisWe5lWTCEEfiOgvC2obgtEbxlGlcAph3uxSIAEDG81y+Z9I842yU1GUX5jbNjm9r6VyLdybchE9RAiz6suOoHh/eXP05PAFNy+jN7QlIIgkmx3iizt1ri6M8ZGu9LjmScXHVJCBJGy8CIb4ShEOeD8xhbFYpHTp0/zhS98AYB3332X73znO6yurn7oihM3ClT8veXX6PhJXRaqUzTCdAMbPrQpt5zJoliyhs/uaHmCkl/i7QtNzq5vZ4LWv3j4OGWt37Msi2PHjvH5z38+yYtw5QrPP/8858+fJwj2CBjYw243m+J95Q/N1D32d4/aPeeprtVqxHFMp9OhUqnc+ATNhBB7AtxR1mw2WVxcZHV1lZmZGZ555hlqtXzq7lG2p6e6tZ35PVkosdzJBmOudvb2zk8Xy6ykIsgL0mYzzKKBXV9DB7EYqU+dMY1T2moVmNFOsw0gzLTc6xbyWrTJAKnzqmWOQ21bicqCLi0XRwKr9xU7TgSBgzjiwXkHPzSUwTAQ1IvZiUIltOkS7h1kGClELAbSeybzmgFSSGRbEVdTdbYjhK1yutJgoHqEFmiZ8nRHWNhLI61dafCvWXeHk6W1zF6lsrNuIQRtHHYjh2nZzWHnWEHJyntP+9aOC1hAzRo9SCsFD1VX+F9yQDQBfGlqgWWpXMIXk553LAQt36Ey3sHfGILRNHtIRAqnkVA5TCsPozKty6CnGjKyRj3+tm62IFYQh4rCBigRE54MiFXP276HLnkYSvzQodV2qZS1522qf5znzicFy2/S6xlHCqeUnKtCw0qQbf4A/DD7DUkBrcCmlGqDie60XiaNJmLHdP2EytH2HFq+S8uzibsW/QZoShyllMwwdqSEjmdTmG+zvj3sB/vc5meffZbV1VXeeustXNdlYWHBSNO7E7aXp7od+lzprNL1HIQFdWcY+C3Jeq2PVibYSKk3XW1vU7MLPFg4QNxx+O5ywneqOi5Xup3B9/rVEw+OLJuUkvn5eQ4ePMj6+joXL17kwoULHDlyhOPHj1Ms5h0me9XzPv3jzth9T/XHx+5JTzXwkSiAKKXY2trijTfe4Hvf+x62bfPpT3+axx577KYA9Y3uebm5k/ld1NLK1hyX7SDrhWtq3oWilfVMzJermXFIAEupQEfAPJuMDB9CmAU27VYxt9xcKAboc4aCGxFqA7XtxASePtcTRH62cxYCgiA/J0x7zpSCnXaRrU6Jxu6Q621bMbIWEYuI9VY+uUvLoAqiUi7WExNjdNrhsCDGDCgJLUCSaBWPMtHzilqaRIaYS6T0LA20qNgUgJh/J5YWHBob3lsasP/Z6TdyS+0xwuABh1DZrEVlmnG2TV0P6tRGuG2jOFnKb+Hu6a1uKJe6a5YR1LWT+xzqtCXgMXuDhDoi8/QNCYQKd0tR2AQrMNcXzCI4kLzbvd6xCPITqoLSpkpS4HiCYr1L17OJDAobafP9pN3vtrMAJ4pEjn+fbJfmxEiGOukTUpmquJ55UwUFbEMip+Ta+YubsiYG2vefpihFsWCnXWCjWeHS5jgr7RrNsEAsrVz/Yno9+jGxkkg75gfvD8n1fUeG67qcOHGCL37xixw9epSzZ8/yx3/8x1y5cmWks+NWbS9P9T+/9B2ankD1nt+GP5wAnKxNsZsKLA9SK4/HK5McLkwSbhb5zsVVtlP5Bx6amBp022Xb4YuHj9+wjEIIZmZm+NSnPsUnP/lJOp0OL7zwAm+++ea+x9YwDG+b/nFfPaRnd9urfN9bvW+75zzVhUIB27Y/1AQwSinW19dZXFyk3W5z6NAhTp8+jTtCem0/tpd3/EorC6r1LmauWKURZPVX17rZ+sdaCx5zswPyXKnKcvsWJiKKBHGI4W8ntsEvQyHF6Rbgdx2KZT31cZ5XHfoWjsbTDEIby80epwxIp7/s6wUWW+0SUWyDlegmhztl6rUOjowIpYU47LFypUXZySZ3Wd7NP4et9pC7OK4K9FMtCHpaxYYxUgaJx136EN3AwSN9DVyMJ3XNBSka0pPrNIg4JhsAOjgva33v5enyEjNuvs66zjUk8wdJMjvZjEr4sc2knTybwOiSTeyCP82Mm7TJVuwYvdWhEqxFVYRQHCmvcz2Y1MqTr3usJFY6m6WEMMwGK1pSEUfgCYlwA5TvQE8O0WqDTA3aSaJGlUtbLoRAhAplp7bHCqv33oSvwDFMXEJyrouwE0I5u7FccOiOBzRaJUpOyF6+7yhO0pM3A5cwlANKhh/YZjAbSqSbf5emgEJdds9KPe8kQcvQTtQP89buFUzmuGFuJcnEj/Z8B8dO69orNholOqGLpyRCCEJN5UWIpI1nE8wYxmjtWxFS0Y0s3nAuDrb1AXPfc9wPJj98+DDLy8tcuHCBc+fOcfz4cY4cOXJHOMJ7eaq/tfYObS/JwTrhlrjUHPbrYymvdZJFMQlKfLR2kGpQ5Y8vJlkUp4olzm4NPdp+POzbfuToCYo3WYfx8XGeeuopms0mFy9e5MUXX2R6epqFhQXGx8f3rOd9T/WdMsGe8kIfS7vX6pPYPQeqpZRUq1UajbyKw35tFKiO45jl5WUuX75MGIYcPXqU+fn5O9LRjqJ/rHZadKLsMmk7zA5uNSe7Xl21XTb9rGLF7g2UP6YLZQOoztIwMqNWf6YZQlnY+GHEQrnK//bJp/iJ06f5H6/9Pr+/9u3sPZUNmuKBUcPaMPiadG1NySEEiu1WiZbvDsqe8KoFoSPZapSpl7qgFHIyIL4SMz9W49z61uAaO12PqXKRjfbwmV3bbuDYknqxwAfnVjP3lJGZBdKP4xOh9hz7ZQ1UDygmvN8+aFNOiHATDrF+VgIwsm0zJ2kWypyMYY6xoxSOk3h1f2zqnVzZvEhSMDzfMKU6IYSghcO2V2bWbjDrmL+5MBZUU8CphUtFBTmP+1ZYJu7xjZ6ZuMy/W5nIeKlMwYrGbjnKBitKS6FCRSwsxJiP+74FkUywrv5qhEBGClP+FBlAlPrUrVRM4SjOtYgM9A9Dobslj0gI4kgSSEle7T0xpSDstRohBLuNMpMTyXcbRtLYo8dKIsmvXOgTtjhKVorS1s9mGcdQLGa/3VGZGyEB7J1ulp6SpKDPPvA4Fmy3i7R9l05sEwtJGCTKNWLQzgwuLe3eCdDWJPq04kmpiJRkt9bGDyNc28qB6uGxQxrE6uoqFy5c4MKFCxw9epRjx47dlgNllKd6y2txvd1EKYmQKielt+YN++cHajM0Ax+3W+L75zc5Vk+tpI1NDFScaq7Le5tDRZC9qB83smq1yuOPP86DDz7IpUuXeOWVV6jX6ywsLBjl+O4EqL7vpb5vHze750A1DLWqb9V0UL1fWbzbsVGe6kWNTw3ZiG8AS0Mnc6UqzUbWc72icbC7GlAvWjZThTJHimO8t7SB31aJs0xCwbbwVIgSCV3BEZIgjJEILAFfODjLL332OQ5OTQ2ud7p6Igeqj02UuaaBfSOvupgffAvFkEjjzzpuSBQLwtDG8xw6ShIMUI+OIhOvlRKC7U4RKWNsG+K5gJohVe9cvZoB1ZFSHB8bY8ou8nasSeyZggwjNQiakyOcjmlnrRACq6MIayDmgkSOLzYkedHqpZTKSeclMmSazNkI5Y8vjL9PxcCD1pf6k3v1VwKyxCHHCjnvTXGqtJo7B+BqMMm4086csxMXmUhFccYKdhi684+VN5PU86m6WVacawMmDrVxWbHfnCoxMh2MZ+IVj1jt17enH5uIwSS7Z9uSQPeu23rbhPBYG89zUJHEVw5gDqqMApmp/65fYEI1E1CppHF1wUQIjyKZU+RQkYQMqFbYvdUh6duI1GqLUrDc3WIv6/hZUO1YMV3Pxlc2Lc+lE9l0fAfZZxGJ/rWzbUwauPP7MSFV5pUIkZQ7kJLfee8VfuaxzxDH8Z4UAyEEc3NzzM7Osrm5yYULF7h06dItcYz7NspT/U8u/EfWWxH0aFdxiu80U6iw2EvyMumWGYurvLF4jVh1OFStsbg7XM1s+sNn/uD4FK+tXQcSmuDnDx276fLqViwWefjhhzl58iSXL18eyPGdOHEiMy7eB9V30O5FusS9Vp+e3XOgWghxx1KV+77PlStXuHbtGuVymYceeuiOC+Sn72nyVF/R+NSutFjVqB2+BsbrThYkThXKmYAWgA1v+PuJ+gHsXZudyxE7bNJfaBcIiCHwFRILJRJIFaGQCKSCLx07xt/9iT+dK/epyjEEApX6ctaCLaTK8lMLbiKjZae8ZrYT43k2jjusl5SKbtvBLUbEMXQ9l65v0/IcsPUByvC1psCXEII4tIhlhJz1CDfyz71gWH2YLBW5+N5GbvuAV53izjqBGAIclSg8KI1bq3s3LU8R1gRyLBkUTeBO5rzSFnYheyETKSan/BEJHOHxqbFLuaODWOZUQABCpDETYqwSb/mF7hQLxezzUQojqPOw8GKLQm/GsR2XUCmexLjTMXOoNSrAMAAvBbRHpBQHoKgIxgKcHUc/7YaWqUWskveX8trrsntSkQPUhAql0UTKwsKbCOl6LgqBigVRmNcZB1BRtl2GStJqF6hWPGJULq5YKXKJgsBMnbL0hxFKrFJy7olCkS2GfWopKrGu9l4N7Cv5RLGg4RVo+AUa3WwSH8tWxoQ9aRMimQRYGanE/OqPfoVRNBEQ/L8vvzYA1ftxjgghmJqaYmpqip2dHS5cuMALL7zA/Pw8J06cuKmg+FGe6pfXLifSoUJhCcGFFPXjSGWC3aDLY5XD/GBxix/Ym4PYhEPVGteaybuYKBT5YGvomU6PDT9y5LgxCPtWzXGcgRzftWvXOHv2LGfPnuX48eMcPnz4jnCq71vP7oPqj43dc4GKcPta1QDXr1/nxRdfpNFo8Pjjj/PMM8/sqTN9uzaKcrKogerZYiXXFrc0z7XUqB0zxaz8VkHaLHeaHC/WOdqq8c77W1zfzoLuqpP33trpJVcF1UKBv/PjXzbWp2qXOVKcy2wLiZiI8oNP4Oc73lBLqR34Fu1OgdXNGkvbY2x2y7Rjl1jtb5AQtsoGLknwuxbCVlwWeaCsq4IUbZtyIGl381zgPq86beXUfFWQ6FXnztMCHGUgUMVoyH/V2ppSN5bFA5C6VzqQ+UyTSvBjU+/Rigv4GiE8GPFMda3wvm1HZYoypGCHXPPHMvtWghrjtil5juCSN9m7rmAjLuu7OVW9njtLpwslgCu7TZqCFXvAXlgQHQrSO3Li2qNYDSp1rNXNA8GyyLZj2conzbECg9e46xHZWW+p3v77ZoihZadTHAmeo0iaaTOGOiptycVJP4jeDLBqVThaOEWRk8bypU1KuLw2wfmtKVa7NTqxm5k4QcKB12X8jJrk2iYp2ZfkWr69JOeshU3e3Fy6pXwEY2NjPPXUUzz77LPEccy3v/1t3njjjX1TDk33XGxucn53OykjsFCdHkjpCaBKkXJjnJfOrTJfrbGZStK13hn+e2F8cvAW626B97aGij5fPfHQTdVzv9Zfvf385z/PQw89xNWrV/nWt77F9vb2bY2X9yX1Una304nfT1O+b7tnQfWteKobjQZvvfUWW1tbRFHEM888w5NPPsnExMSHvgw1iv6hBymOF7LLjZYQXNeSunhx1nNZ0egNC9VxzrjzXL3osbTrU7Asru9mr9Fua6O3UkTpoB8Ff+tPfRFrjwHpdPVEbptrWBwx9Z0CRavlsr5Z5draOEuNOg2/gC+sDCIwLv8bTAhQKfAlRPIf37fYGdvB0eqx0kjajyUEZ6ZnqK/D1bNZybm06RSPsK1J3BnAlNAAsVACpofKF7ryRxTKvLZv7qoqf56BIPz42FXmCk26qsBGVKUduYNUuMURSV1M8n4A0QCECyIh2QyHAHk3Hr08Pua2WQuqLPoT5LsiwZmxa7lzTF+h7nWVEuKcqsSw7HElJk5NPHL5aCRGRZf05MmkHOg3ss/NNUxCTPTg4GiXTmBDcGNQHRq67Hbg0O64xj4qHKEksp8gxacPzPb+lUxIZ6xTvL1R4Q+XN2jjcEibNOt2sHyANk4m6NP0verAt0/3yJhpEqAdk1RfC+LVzpF9vXMBv/7mH91WNsVarcYTTzzB5z//eRzH4aWXXuLVV19la2tvWozJU/1/f+9Fuv02J2DMSb6bByrTnOQQ3/5gmZVm4vhIjwFz5QoXdob366RUnx6YmBzkM6hIyWcPH72leu7XpJQcPHiQ5557jjNnzuB5HhcvXuTdd9+l09lHpl6D3ad/JNbvm++1v3vR/sSD6r4s3uuvv86rr76K4zjMzs4yNTV107J4t2Oj6B+Lze3M74KWjny2mE8Eo3uu+xSMmlPgE5XDVHfLvLU49M4erFVztGB9EimSbMb9C/KpQ/N84cSxPev0cPV4bltgiOjqa916ns3WTpnr63VWmlXWuxVayiWUEhB5bzMgrHxSEAwqEaZKCaESGoiA8bnsc11vdXhiZpoDLYdzP1ij1Q7Z6egJuNPXHv5T+opQ90KbAtn0ugDWWDDYaWt8cz1lM4CQeeCdA0zaz5L0eG72wmByIoRgV5VZi2p0YtuY/nozqBi9m15sU7OG7c0Sip2oSDtyaEQFpp29vkPBZb9ONALUHK1u7ivhi6lvVrr32h62E2krgiN76RwKI2iGnsM2Vnkg3jsvXRjbydcrNuiVR7MxUWRl3m8QjgDVpsQ0QrDdMoc2mtpMHAuEnrI8ytNNuioBcfPuQV5pW7y4voGvYpSCq50tiiK7KqFbK5IUtUmVZfhejbQN/f0Z6Eim5DHpRE+QB/FJrELy77d2rnOhsXHbsTHlcplHHnmEL37xi1SrVb73ve/x8ssvs76+nqurUkn90/fshAH/YeVC/wgA/Cjk8cJR3rnQwo4cuimHy1Jz6AA5Uh++g7FCgfdTQYleOOx0nizVcfT0mR+SCSGYnp6mVqtx4sQJut0uf/zHf8wPfvCD26Jl/ok2dY/+3YN2z4LqG9E/lFKsrq7yve99jzfffJN6vc5zzz3HqVOnKBQKt5xR8VatD6r1Tlj3VMca0XSykB1MbSFzKh6dMOQT9UPYqy6vn1tDasPYuB5so8glfUmXqmzb/MZXfmzvCgEPV/Ke6h2rPZAwq1plGs0iW60Si2t1rjfr7IRFPGEjHHLJJoQ0bNM80HuaBsiSsxRhKNmtNwfbHp2a5Fi3QOviLtvbQ3TlhzEHJkZNtAR9nGJ38qod+lxC+irnhQkmw4GesCnRhslyGe4MGfF08PETM2/jGFBhpCQbUZ3VoJZTdhjlMNqJSjkQ7loxS8EYy0HdCNDT1qZIaJLaAOpOFzQPfxJwqU1Y9uvM6p0mHIU/kXpuhvPlKDFtBXbH7EETQlDsP38FbZ0UrhSqoD3XKCYo9belPNVRHgDFocAsOA3NVpEwMOwzceC7hjbiaRQMYNlLJt5VOZsp28HiGJt+iyut0RkqK3GBs41tjtTGs/fZJ2DOea9lou5xQ4sM/YM+ee01fSUUf/f9l+6Y7FuhUODUqVN86UtfYnp6mjfeeIOXXnqJ5eXlQb/eH1fSoPq//f6/p9mjekgh+MzYCX5wfpdXLycrY05KPPxofYxrrSGobnhDXfiT45OD1cS6W+D9FLf6k9XxO1LHm7EoiqjVajz11FN89rOfRUrJiy++yGuvvXZDbz5wX6M6bXebpnGf/rFvuydBdT9VucniOGZpaYmXX36Zs2fPMjc3x3PPPcfCwsJAJmm/yV/upKUjpvtmktNraXJ6elKXA6VqhqbxRH2OzmrM6++v0+gmAFGX5Ms17diwsd9SFPwfn/00lcKNJaXGnCrzhWFuxZIsUA9qLDinkMEx3lwrsO6X6SiHSEskAqBMYMuUhWOfH6fQlpWFRS8YTtJUIcdnKhxqOSz+YIONjS4zk3lP3FTZ7BEUQKEHhI38aURPWi8xA8OC4ISH6HkLOw2XldU66+sVGo1Cwv826FHrXmnTklpa5eETY5eYcltGlNyMiiAEHi5X/ClaUfKOd4IidTsPoJQCd4SWnCMj2rlsK1m77o9RtgI2wuqIIwRP1JcyW6QFka8BQAOHeq9gRSEBWxH0tMD3kNfOmZIgRieNJG4mz6MQ5q9biPLaHKrq4StJ3FPaGVwnFsQ6pWgEJSQ5QbK9UzGu5OTMQAnRF8kOl8fx44AZd4JdL/uOZwrJd3Ghuc2EUzcWZ6Z4CBC0Wvl+WP+upcl7bfrMtfMSwLw30DaC6tRjPN/ZYDPe44XegvUD+L74xS8yPz/Pe++9x7e//W2uXr1K2PMe94H8jtflm9ffG5xbCSu0dyV+1JP6E4Lz20MAeqA8/FYmiyU+SOlRpz3TD4wPqR8TbpHTFfN7+jAtrf5RqVR47LHH+MIXvkClUhl48/dKC3+fUz00oe7Nv3vR7snQXJOkXhiGXLt2jStXrmDbNseOHWNubs649Hc3QHW/80lTQC5rXmqA9W42oFBpw/REocTV9i4L1QncpsvSYjeTXQsYcPP6tqp5DURMJoUzsRp4rhfGx/nPH3tkX3UCeKr2OFZ8lWttn3cauygETwiL840GaeRu7D8NG02D7b551RLiANLxZJLeSpQQnHU3GN92B9rRJg1te4+l4qgVgSvJaR/3rBBLur33pWNRhSIuK2wBXsshjC2EBWFkE7ZtWr2jXDek4IQUigGofJpokx5135s9Ybd4rLY00u0cpwptScV6VKUVB0SxoEx+FrAZlqnZZkCyEVapWB6bQZlJJ5+1UinoxA4FK6IT5SdUSXkkj41f5c3lw9lzQwkZZRiIQkF6dTsB2tl6Wiii3jZpKbyDEc62MwxWTLm8TTQNABn33t0IfNv3grqRJNTkW+wI9GSh3gEFSMNkURD6Fm4pJe1pWIWA3mcikgRJrWaBai3xXkaRMHOnDXXTNatniyUaHSipWTai7PuLBh54wZQzw1agZWIFVryk3G2HGy7zmlRdjMGKhvP0LsIUrJlLAuPGqEAipMBXIf90+wJ/lh+54f1u1mzb5vjx4xw9epSlpSUuXLjA2bNnkyL1Cv5//u7vp54nbO0G+BPDzuHB8UneTwHn9ZTy08LYBN9L6VFnqB+9uJpHJ2b4VGUG+y4kYTFJ6hWLRU6dOsXCwgJXrlwZpIU/ceIEBw8e/FDSwt8Tdi/SJe61+vTsngTV9Xqd1dVEM7fT6bC0tDSQxTt16tQNZfHuBqjuL3Wl73tF41OXbSeX1KWlpSOvWg5PFw/xg7NrQJtT01MZUD1WKLCpBY3s3GhZNQasZGb53/3Yj+67TgCT9jzPr7zR+5U8cz2QEszAWBgGSJ0LmmwbpWNrQLexJC0sLeUQaKmyonkypHY+AXnbzXxwTceg/jG4mxBIX40ErQUsuiR1l1G2bN3ZEFxF6Ev8rp0rtlIkICBw8AOHRrsEKqRcjCjYIYVygG3HOTASexbFcpdjpU2eqF/FVxaOQVi7HTmUtSyHUghayiVWEsjTqTqROxJUC5GcvxuWmLDbuUey5I9T6CWocUYJeQPzpe38tQ3NNfYsZDkLtMMQDWgreg5ALDvGK1tEVoQVWbkkLcoxyyDabZUk+xkBulUP6XndEEpZgBBp7zwmJqz3tsUin3kxsnBTeuPhCJe6ihmc22iVKJaSthAGEmGYr4icNrxCutlttlRU7TKvrm7jFIb9h1JwtT2chG92821p0hnjjfVtQLARtJkqltkNU9lVRwYrpkC1pYiibEZGYxIYXVbPjhMZvTQnSHtVQpDQRCTEMuai12S922S6OGrF5PZMSsnhw4c5dOgQi4uLvPfee7zwwguUD8zw0sYlot7kS8VQEE4GHNcLw8ReSVDi9uB3O9X3Pzg+xWuriVpO3S2w2mrxiepB3vxglV/4icexmvmJz4dtURSNlNRzHIeFhQWOHTvGtWvXOH/+fEaOz7bt+/SPtN2LdIl7rT49uyenhZVKhevXr/MzP/MzPPvsszQaDZ544ol9y+LdLVCtK4Asap7quWJejm7NS8BOybL5ZO0wwbrgBxfX6Y8kFSc7qo5rnVzNsmgGewRtkVxKAJ89eJiT05N7H6vZmbFDuW1Xu3kPvLRUzu0kbYXSAv6EBTomFwKD7u6Id6wHLrkK1Z9USAhmY8JKMsgtbzZyiXVWtpojZ9ixLXCa8ag7J6ms+5bqUBSK7okIy1Z0moWkQqb5Qc4sOr7LdrvMynqd5dU6jUYBb8fmgLPNZybO8dPHX+W/OvQKn586jy1iKob04ACegX4DsBuWEFKw6E1lXo8fW0y6eQ80wHZYotqL9KvYAdf8icz+WIGfcvXWbI9mZKaKVB2fovQy20zUDpPpvPRMsKKjUAK8QyMyvZDw3vWCO22zksugbFJgdfNgHMDXJon+wQjVD2Y0DDA63SMyUZ/Q275gZytRX1Hd/INSkQBXk2X0BdLJlq0ZNZizDzNfrhGoYZ80XxpnKxi+97d3NinJbEbXSSfLwT5QHM/st+x87IgJMOtBlok3PUeg0a7TW8lIn3eDTJxdEfJ/+95/yB1zp00IweTkJJZl8fjjj/O3z72MnXp3KpCcGp/GT61WLqVk+o6mghLrbiGjRx30uEICeHrqANGq4s2Lqxwer/PQxNhdSRcehuEN75uW43v44YdZWlri+eef5+zZs3iet+e5f6JM3aN/96Ddc6D6tdde43d/93d5/vnnabfb/ON//I958sknGR8f3/es926A6v59M/QPTaO67mYHr7LtsO11eXrsIPWtCq+/v8Z2O9sRxVrLLdnZTm7MNgy86U0qoX6UhcPXf+yLN1MdAA4W60y72clAK/I5VBrLbEsGQxMIMDRR0zYT4DBlOjTIdYn0EGsrdk9HKBRRrDg4mQ1M3G15TFTMMnECsPZQjvI7vdmAUhkQ1T4WgRvTbTvJVYyZFPeymBNj6/zY0Xf5rx5+hb/0yEv86NwHnKxsYsuI3ajEZlAeaDXrFihJaYTcRb8YUsKiPzUIYFwNatgjUg+242w7tUREJwXar3oTuFpw2nag6VT3TCF4sno1ez0n/20avZimYM/UYZaMCSZHf+eW5oV1G0kAqlH5I31eWxG7mgfVj4ndYbtVKMKJ1IUMRQ1T34OK90gLrtXTjxw6WwWjI8gUpIgW4OhKyYa/y6srDSa1IOYZN8vNjZRivngws+1aS4v7kNkJU5KU5ea1qU2a5MYZrC5VKfKc8XQ/IJ2Yf3/tHB+kPMQflsVxjG3bNAqSs8EufmqVRgUywyo6UqtngxJTmRLTnOmK4/LuxhrHamM84kyztdKl5SXH/sTpB0cmm/kwTSl1UxkVhRAcOHCAZ599ljNnzrC9vc277777IZfyY2R3G/zeB9X7tnuC/qGU4o/+6I/423/7b/Piiy/y2c9+ljNnzvC7v/u7t3S9uwWqdU/1ZS1FuaO56E5Vp2isRbz5bpJ5SwrB9ZTcEsDaThaYF0sl2BkuBbo6hy21lNz/XbQtfuTIMaYqZuCzlwkheGLsEH+09kFm+4xb5VonWzZTRjidD5lc1HQf0xeaP9DMq1ZDPrEDcQSthYjqBZvxapGr69ml07l6ha22WfnA8hXhiPg8pYbezz5ojmWMdzgkDq29J32pXY4MWJhYY2F8g7nKLiUroGp3sQ3PwJExDjFbQRJgWYxDXI1u0QwLVA00Di+2MtstCZf9aQ45m7lrpM+pWdlnY0tY8escL24QKUGExNJmPNEI/36gLE7XlvjO7jDZiLQVQSBIq0tKx0ALSgf+hYkmeeBL3HLcq48itgXdyZDSWn7wF9rsy2lFsA+QYHVi4qJEpdKRW162XfizEfR4zLH+zfUsjOQgzXYY7NE+Ypk7f6dbZKySn+GJKEt/AtDR99HyOJNukXf9LZRG/k97rfvWDYYvIqF+bJFusHpgNPSDbIe/LUsRRiDTmtam6ur8aJL+P5O63tQX9M6LPUng2UShBUpRrsWEMkKJmF/4j/+O/99/8rOGm9456yd++euv/H9RgYD06kUg+WBjqIV/sFLjSiPpe8a1TIlBKor11MQUbmTxg7PL+MUiW+3he//JRx4k2t35yEF13zl0s/fty/FNTU0RhuF9+kff7kUQeq/Vp2d3zFP93//3/z3Hjx+nWCzy6U9/mu9+97t7Hv+v/tW/4uGHH6ZYLPL444/z+7//+7d875//+Z/nv/gv/gs++9nPsri4yH/9X//XgyjrW7EfFk/1lVYWzIW9gJYDxSpPuvPYmy6La8Nj5qoVvCg7YG54WbC0qy2pRfoyrO7RUVBRNv/XP/35m6tMyp4Yn89t0z3oMCIIcQSH2rwtD76NAZC6J8vNLkcLGdOdg6AU5egfACXHTJUQgcLSKQOaOaGgmkL0zYejngxYahl4j3Gk6nb4b55+ga8uvMPDkytMFDoU7ZCW5h1OW6QSr6yUsBmVM9xcpUZzmk3qHbaM+aAza0wQA7AV1oypzCu2z1pQ5Zo/gWt4p1XLIzI4vqWACTcPDpVGjZCOytGCEOBtueyultnZqNBplAjbLn4nef6Jx1vhH4wTuoZGNYoKw+fkbvoDFChEVslFNzsQFDZiio1UghktbsGfDKHfjEZJQgoxkMkbFaTYr6duKpbs7JaJ2tnnJAztWQ9mnHCLvLeZ9BOr/nDiqxRcSfGp+/bOzjZWbwYzaWepHwDX2tt7rw71LJdZ0dBOdBMi8fBmtjnZvkCpJJC1u1Wk2y4SRTYIgYolraZF2LGQtmKxvc3f/f4f3/Cet2NxHLMYdHhjbQWVqp+K4WR9ilYqaHEpFUB+cnxiMBUq20Pe9emJaaxdwfffv04UK05Mjg9q/vDsNAtTkzflMb5T1h9/bydN+d2grPzQ2t2WvrsvqbdvuyOg+l/+y3/JL/3SL/E3/+bf5LXXXuPMmTP8+I//+CBYULcXX3yR//K//C/5uZ/7Ob7//e/zUz/1U/zUT/0Ub7311i3d/1d+5Ve4fPkyX//615menqZer9NsNm9ZkueHwVO91m3lPDzdMOST1cPsLka8fWkjB/hqWgc2Uy7TTYF0ASxpmRObWjpuHZdKH/7zJx6hcBud4xMGXvWKl0/pK604h4KFneI8D45T6A4zYciih8Cs96wfJrPBb8JRIBS7pxXNTp7XF+rPrGd2J0buAbYAXE/hbyfXDEsx4XhMHIrshEIrX1/dAaBW8PFU/l24IsqlG+9bMyoO6BaWgI2gQtzr0JpRkYIBVMcquabJPAos+eO5+8UxuCPANghasTvSI+3ImM0wHzMAsBOXqFkaf9vQIceBJPYk3e0CO6sVdnfLtLuFXsZHMTgvbLsE3URdBaGIi4qwGOW40nHRQvjJc3M0XO8YAvRSVUVIiegKSksBlhfjVIcTFG8iJJZi2PuO4ErDkFc9UvljlBJJKFAikdkLGsP2EhuCFEuV7P0dUeJys81kocRa6js9XJpgJ8hPcBphwOEeBWRJz8QK7IZdZgpZGpU09s3ZckgJejdsDHLMpalXxKEg6kq6LYf2VpGgWSDWU6T3/hsFNmHHRkWK/9fZ17jayK6g3UmLooj/x8ZFVDxcXVERxE2biVTOgaliiavesM23/WE/9NDEFEXb4VNj86xdbvHO0nCc3e4OV4m++siDg3t+1AA1iqL7gYZ30O629N0Pk6Te3XTg7sfuCKj++3//7/PzP//z/OzP/iyPPPIIv/Vbv0W5XOaf/JN/Yjz+N3/zN/nKV77CX/trf43Tp0/zt/7W3+Lpp5/mH/2jf3RL93/ggQeoVIYD8n6Sv+xld9NT3b9vmk8tgKfr8+xeDXj9gzWCnkuvq3nj4yDrlZ7R6Bpz1WomM5drWWzu4dG3OlCTDv+75565pfr07aHqDEUtE+Sq12DCyWo+J8DYoEVr0NU1JnwxzXwN20yqIpk7CEAqVAnerm7mgP7Gjpk4bXd7mfb2mMyFnQjHSp5F86EQ5ckE6er3z9Rh6MWvFDy6hqBCIaCj8ttDJTI61ZCAlRW/lnjwRoDcVlQwUjwiJahYHo6luOJPEKS4sdtRmaIxdWRim2GV3cis8w15LvbQBKfHVrJbUj1y5Ek62wVa20W2tyu0vSGQzs0LLEApgpZL6FlYMkYI6B6JjBMiuxlgN0OUPqn0zP2DBcSpZB04Nu6mItroDias/kycUbXYy2PT51WbUs0n5TBvH6w4CcFus4y/7aKiZFUmY4HET8klWkJycTsBZkcrWSA8pQHjtElVYcKp8/5u3pMNMOOOZY9349xk2Zgt08C9zgU56jSfhkOn75X2HECiZ7tMTtR+RBYFHP433/rXxjrcCfvtD95gJfaSyYGA2JNEDRcVWKykNL2Pj00M/l2UFme3Nwe/J+wCpR2LN86v8MD0JGHvOR6oVTm/njx/KQQ/cfrugmrLugGlbR92H5T3zMRHvhf+btLutgN3P3bboNr3fV599VW+/OUvDy8qJV/+8pd56aWXjOe89NJLmeMBfvzHf3zk8TdreyV/2Y9ZloVSypg2/MO0NP3jck9O78HqJA+EM1y71GKtmeWqrjaydSxVspJQJScLBKa1xCXztWquXffHd9tLMsf9+MMnb7tjs6XFo/WDue2HSuO5bcKY3MVwURNYNhXTMFALCfQdPzEQgkBlMrb1veat6QjrcHZAWtlqUnTyg5TjqR41wFCOfrEtiRQCbyIickXCb0iXURmCFFO/q65Hd0RSlYLMBgRCAo5NdAzbUlz365RNmWqAUQnZt4MSTg+ku5bisj9F2HsX4SjxZiCIJY6MCQxe9kGZRnjGa3aXx+vXcFIPVsXQ3iyyvVJhe7uaAOnYxsiFSJugRylOwBdBcnxUU5Qm8qDeChXuVpC7qmuZn4/cDXLfi+XHWDiUrweIckxsgUhzwPco8gBUjwxSHNGFp1+5EDS6Rfz1Uo5qMt/7BgvS5tHKCYrted7dSQBc2c2+T1/PRpOyc7tNI/Wjb7bIvnchINbUSSyjukfWTEGOWDF+y6a9WaS1U8LzXXKZdwbvPWV9kfrUMa1uwLXGLt94+5U9y3Er9ub6Cv/iWpLoRVgKu1Mk7iTByVPFMpcbQypfOpHLw1MzhMCkW+DBqMz33rrGdivpwNKOlcPjwyDSZw4fZK6WjAd9HvdHaftR/rhv9+1m7W47cPdjt/2lra+vE0URc3Nzme1zc3MsLy8bz1leXr6p42/WqtUqnU7nlr3N/c7gbmRVHNA/Om2eKsxz6f0ml1Z2malkl8ZtIVjvZEH2jpbkJdQmBQVN6WNUevJyaGHvQrXo8rPPPXUbNRraE+N5CogjDZ2uKdOyaZuRV23IrGfn1T5iTxJsuvgbBfztAv5ukaBdgKZL3LZRvkwGYZF4k9aPeISF7LOc19KVz9TLAzC9FwVEAFEY0jyWJCdRqAwOMZ1ppSgs1YJHqORIzeJAWYP6BkruqQHdiousBnnvY6AkpRFgW0/A7loxi940jbBAZcQ5AMvBGI6MqVg+ncgMrGu2R9uQCKZi+aAUT41dobFRYn25xnarQsd3idJA3qQgYWL/9CduQhL6dkIlkrB1KF/+QydnwM5PYvzQPOEWniEGoE8Wt20a01GCDHvFHhWk2LcwtIhCMWLGuIflrinodAtsrlXZXa7gbRQRnsOhWp1HyidpbE3wHy5uUnKGdW1HwxUZpeBya1O/6MCud1usdUZXpBHmaVRClzyUypDC3PBOVVKewJd0tgoJkG67WZqP6XGZPNVx9rci0Tf/R6+/zKohG+StWhBF/JXn/20SSxKA6th0PTUo1/FUOvey7WRSjEsp+OT0PGoNxgpj+H3VD9vi/ZXhcaspR9JPPPLQ4N93y1N9O3zq+9kU75tuP4wOXJPdc5J6kCR/AWg08rzd/djdAtVp+sfZS9u8dWGD/uhQ1ADxXKWSGSMsIbiuea63u9mBTAcCUhuoRQTSg2grKcNYocDc2J1JiPDEWD5YMa13OyiDERjndW2lrVAafhEyTwsRYrhNxRA2bMJmaklYH30jifJs4qYDvoQwEVfYfTQiTo3A6aQMAAdTk549QbWv2HhYgTMc/G+El9LVrLoeIHIe6b65MmK7p/TRilwMcWkARHHiJA9wWPWzwLoVFYzn+bFFzc6DI9eKudSdGlkPP5IDKokQjOROg3nf2c4sZ1uzPDFxlVhB3J9l6Z+nJE+9MfZwqWOEhI5ExdAaD5iqDVdzzhyao9K2jMF9yrURgUmz0fAQel5CrxoRVUCk3+ioIMVBSQV+2/yuIe+QBSAG04JAkntGEGDRDFzWt0pcXpd869I6272A5nohuZcErnaGIHqaEo3QrHgDMO1WsZRZahJ6CWP2pF/0iq6tVMmU9J1SEAYSz7NobJXoNEoEsd1zX2sX0r3QIyxXhN4GL4r5z/6Xf0njDmkl/zff+nds+O2ErhPJbLZWBZ1oSMF5aGKKoOcQOVKt420E/ODdFdp+Vg3j+MTYoNoHq2UubyWebseS/OlTC4Pj7oak3p0A8vepH0Mb+Hjupb9e3XZ3dzN/o/TJfxgduCa7bVA9PT2NZVmsrGQ5jysrKxw4cMB4zoEDB27q+Ju1ajUBgrfKqzYlYvkoLE3/WNzKBss0drNKIFPVLF96tlrJJA1IQHZ2UrHRzoLYlj/syIVKghLtRtLYC7bFjz92kjtlj4/N5wawK+2tHNdaWCoXXCjkCF61aZtRnFcQB4Jg2yX2E4qAkYWgLZmDTDSAuwIlofFwNlo/bVYnFRC6B6jefVQRpqV+dU+cgU/dl90SKMpuAn5GUUAALCumG1vGAMS+NaLSQLfax2GpOzY8f4T+dDMqGzFjFINtkQPnfVsKxjO8bkfGI2nnkYYS32sfYCuq0lUFNoMKP3LiveFO/V3vZ4kfAxCNBaItURLiOcUDs5M8ZI9x/pXrXLq0SdHNNxYBWG2N5xMpYv1YpYiLCbjYeRgQIptKe48gxb55LTOoVjEYaPRJmzWxqHJeX8VSK9tHBL2Mn8dq43TjYf9QFab2ppA9ys58cYpdbzTvqRMFHCxOZLaJgqmd5SfFoW/Rabk0tku0dsuE3gh6h/7b1Bb2vh2OZSWrR8Bqp8Wf+Tf/nHYwegVmP/Y/n3ub19auE3d6rnDtnq60+GBzmIpcCLCl5DNThzjgVTi3vAVA0bZ5f23omQ5TF6ql6EjPHTtCPbUKeTc51bdr94F1z+62SseHqP5x5MgRxsbGBn+//uu/fpcf9u3ZbYNq13V55pln+MM//MPBtjiO+cM//EOeffZZ4znPPvts5niAP/iDPxh5/M2aZVmUSqXb5lXfLfpHrBSXd7Ig2tKoGo7GkZvS+NIHqtUMyC5YFte157HWbnG8WOLRwjjuKtjNYYOI4pi/+Nknb69CKavaBRYq05ltMYpj5XyGRhNYNiVyMXmihLYxDhIVgHBHG4gt9ufp7HuzY0lYhNaB5KRGKzub3rg8fF+jYvUaR2O8CYaDqoE/naMVhwxeSsX1Bh5kL3ZGAlNXxjSi4p4ecJ3GEUuLFb9GO3KMwYZKgTWCLL4dlnFkTCgstsLsZC+IJUUre17JCtkOzZrnFcsj7onAvN06yG6cHGfJmI2wwkMTKxQN3vJhRQxAW3+mNtn3LJP/iLbFWqnN9dfXWbq8NditJwAanOZryWE6Uc6rXUKipKAzGRNVABS4yb1VBPg3Bg2RN2IZ3TeDZxM1XSlyWQlmS1V2/OyzvN7LdjpbyvYn/UQjUsSUHZ+JUpsDtQYlO3m3622f97c3KVqjveqTbnbVSxZilCYW0p/oxYGk03LZ3SzTbpbwuy5qoDYj8u90P3QPk/daU/4JVDS8toB1r82f/lf/jI5Ba3s/9vb6Kv/tS8/T7IQMgiW1sh6vTQyery0kfhhxIh7n9feWsVL9/KnZKbye8tBUucQHa0Mgvptqisdij/fee49uTwnkbknq3Q79A+4D6oype/QPuHLlCjs7O4O/v/7X/7rxEfwwOnBNdkfoH7/0S7/EP/7H/5h/+k//Ke+++y5/5a/8FVqtFj/7sz8LwF/8i38x86D+6l/9q3zzm9/kN37jN3jvvff4+te/zve+9z1+4Rd+4U4UByEE1Wr1YweqLcui2+3yH777PXzt3lvakoivifoWtE5zspwF4fP12mA8saXk2dl5nFXFyqUOFxa3cw7TB+YmKTq31ynqZuJVVwx8VRP1wKhhbUo/LBUqEoiWjb9ZINwpojxzAFsOfNyoD5eC7kHYOhVxubE9+HjmxirsbAxXAWSUL1dnNsabVtl7xBooilUO+KQDN6uFYRtQCLpGN2UCZJtRcSTvuhPZg2DDzHk4bIygZrQjl9KIFOdDzWFBO3bZDYfUmJWgbrxXZ4Sn3ZURG2GFNxqHaakhsHOtECEkq0GdP3W8563eL4fatCFdJJsevUjQDmK649nyVktmVRJba5QlA3CJGwmw2X0oeff9SZ8KBWrHQZoyHOrX6Fp5EAkJPclkhsdiheQexAEtsHmyWGTdS1b3RGqVwxWChr3FVKnFgVqT8VKXkpP4SZWASbfCBzubhEpxojwzsh7CMNwob/jMYk/id212t0rs7pbwui7xiDacm99JMFZcN70pChipAgmExLRCn5/61/8iEzx4I1NK8SvP/3t++t/9Lp20BKdhJarcA59Fy+bzs0e5+MEmV9Z2sKXk3PqQgpPW9j+e0qM+OT3Jco/6V3Ed/tc/8kXa7TYvvPACb731FkEQfGw91fetZ3cb/H6IoLper2f+CgVzf/vD6MA12R1BTX/+z/951tbW+LVf+zWWl5d58skn+eY3vzngsly+fDkTffzcc8/xO7/zO/yNv/E3+NVf/VUefPBB/s2/+Tc89thjd6I4AFQqlY+NrJ5Siq2tLZaXl/E8j81i1otXcmzW21kZt61O9negBSW6Woc21muoD05MEG9EeOs+u600SEsXCP7cJx65xdqMtifG5vnX197IbGtFhgAmS2XLAwh7oBGW2qYGGedUDJFnEXtWLxlEajAWAuOAa8JkIdkldQEEDL8UAXEZ1h+MGOs4qMWQg5UKF9lOnZIkB1G2IJYxrUPgzfSulcYIuipHJLIZ1jRL+NRD68YOJQMiaERFEJKdoMSUm/8GWmGBYk6vOMH0gXJY8WvMuVlagK9sHPLL4K3QoZLKuiiEYCcqU5AhEoVjmb+hsu0PFEHSFinBhe4MQluJcWVCaUFYTFbalB2PtirkPX9C32A2EQtUyvHZv45CsHMKnFcVdo+GJEdcL9Ik4UI/n3ExihXN+Zi4N8eVMkYFArWbTPTEjRygPaUSmjaMaaBulCKIYXPCVc6WV4/TOFyr8V4v4dSGv4srQypukKw0CEU3zB4fxImSzYRd5DJJO7MZ7ane8fOc7NgXBOsFvMgmtPqrQtzY3aO0+vRXJDLfl+k8wyYdaNug4mGWxnYccGlni8//zj/hZx57kr/y1Cf39KK+cv0a//t///tJ4Hj6kSmVq5cALmxvcXpims5agLcd0m9WD81O8fZKkmGx7Dh8sJryTKfiZdIB5z/60AJz01PMTU/RaDS4ePEirVaLS5cuUSqVqNVGyyLeSbvPqb6zdju6zj+sdiv1+aVf+iX+0l/6S3ziE5/gU5/6FP/gH/yDnAP30KFDAwrJX/2rf5UvfvGL/MZv/AY/+ZM/yb/4F/+C733ve3zjG9+4k1XJ2B1zRf7CL/zCSE/zt771rdy2n/7pn+anf/qn79TtM9b3VN9qoCJ8NKBaKcXa2hqLi4t0u11qtRrlcpkl7bUcqFa5uL09LJvMByVudbMDlqeV3bUsPjF+gLffWwYFc8fzyx/9Pqzo2PwnTz6U23+7dsaQBOZye5vccO/EiaZuOmWxBZEvkOkxW5FkjPOtno6vGGw3cpP1bYY+X/V0jDOucX2A73k6d8oh4gG42NmhOw6F7eEtYlux+4AiqDGklWReq8oBaKEMY37q3mlPNUAncpmwszx5L7Loxg5CgI9NJ7IppegXUQzOiEx1fmxhycRjfbUzzqHiNkIkQLc4wkvdjgvUZbZcloTVICGOl23zeZZQbIRVDrhD2kykBOc6c7RVkYoBwEexxLJiAmHz9KFFvn3poYQek36upvdnBFfZBpHu4KMSrD8Fs68qZCxot82c2th1kpmIFBArPD1PoIKwZNM8oYb3DAWqZfW8tslvY9vslysQCASqYyE0UG104iqM8QIyVjlnd0ujNJQdi6IdMFkOiK11agVhzH7Zt35Cmi2/Qb+hLu7R517tbIEQxCH4TRfPs4l8iSqJzLcouqB0dlBu8mS4gT7JkOQBuuk8vR+QJO3KSv0WsBN4/Ob3X+YbP3iVv/Tok/ziJz4zAH5KKd5eX+X/+YPv8/+5eA4EWLbIZqwV+fvPFCuccCZ444PrSCHxu8O3lFZrenBmkjeuJ8vYs9UKZ3sebCkEFze2ADhzYI7/9OGHB+fUajWeeOIJ1tfXsW2bl156iampKRYWFpiYmDA8iDtn9z3Vd9hSnt17xm6hPj+MDlzd7uz6/g+R/TAngInjmJWVFRYXF4miiKNHjzI/P8/Kygqrq6sspgA0QL2YXSqfq1YzmRFNyh+bKU/2melZ/GWP968NPR1+kK1bpeAMBtkzR+Y+FC/BwWKdcavIdjScAHTjgFlZYiXOet5VIBEF7auLBSpWqK5N6EviQCYDqe790b3NI0zZ5Addi6xnmt6/A7KDrw1ECuUIFp0OPGeBUkgPLF8RVMl6plOYH0i8avspY0o6UPdUN/wCgZP19u4EpdRkRLATlinK3QHGbMVFo241QIzE6q+PW5Lr/hgH3B2aUdFI/QhjQXnE2rkSglbkUmYvV+zwgYSx5Hx3llDYODIy4sxYDes1V99FiggVWFkQ2fdYpt+VaWzXAamV3RcXYO0pmHlVsbrRNAJfIQVWwycaK2DveAgnu2wpugE7j1oopzdb8gRK2UPoHQkkkigARsWd9oN2lYSWhEovC98I8Jzz1vYs/8YVV1sJf9q1A+rlDg17jSOT/uD6rnadgpW9Tp9e1FYtIPGAXm+3ODk5xnKPm50pmlLMxfO8t7XDQFbQ8A0I1ZOaHGwA4YFKPV5lXNHRXpIA4WfPMwZwOtzYO24DQTJZ64Yhv/X97/E7b7/JWKHISrtJoNLkjOR96yywom3TjbMTo/moyhuXlgHByelJzvZ40pZO/UiB8yPjdVabydj20MwU13cbPDUxx/q1Js8cz6ssKaV44IEHePTRR7l06RLf+973GBsbY2FhgampqQ+lr79dTvV9ST3N7oPqgf0wOXBNdk9K6kEyS/9h81RHUcTVq1d56aWXuHTpEkePHuXZZ5/lyJEjWJY1CFS8pCl/2NpS+GQpy5c+UKtm6B+uZbHcaDJbLnOmNM3Zt1a5vqkFKTayHs5uP72wgq8998TtVtVoQghOFady2yfdfNCalQrgUjGEbYug7eBtFPHbDnFomYnWe9kIukdu235y/vQBc7/zjxP1FOVAWJUJBUSJRIs3IN8pmgZ3XXtbS0FdKWQ9pt3QyXCTQyUJRRZBKiHZDYftZRRHNVICW6t4LCyW/fGRfd9OWM5la+xbM0wyMrYMutN9q9g+jbBAqCQfdA4Q9hKEWELhG9Jyp+cCloRjk5vmZEH7CFZMAGkKBjnaQC4grMDGGWi0PcZrZrk4q5s0oIplUAgJQ9rzKkku1BHIMDuzsnpzSxns0Y7TSjjt1D38/GQyuWf+WkqBTmGfcCROaZ2T8yucOrJCvdJNGnC/bBQzD9wPLFSqfcSKgdKObSmsFAd7zh03VuXR6hFcytnvtjc5zZipXrr0oM2+ghVz5/W919p5ORqOrbWHmEQlJhTJ/xE0fJ+rjV1sIbPXjMlP5CJFN9I6mxg2tob9cNp58tDsFLs9mcOy62RUPzZTVMC5UoXCruCd8yv8xFMPIQ0BKX2vcaFQ4NSpU3zpS19iamqKN954g5deeonl5eU7DmJvV6ca7tM/0nbX5e8+pL970e5ZT/UPE6c6DEOuXr3KlStXKBQKPPDAA8zOzuYzr/Uk9Ra3s6DaC7Pl0IMSJ0pFrqYmEAdrVWacEhc+WOOs32aqWmK9OeyIqwWX1d3ss4ll4uWpFBw+eTJP07gTppTihKzxsrbdLrig0S2FBVHDIogtYr8HoJN8KdqB5BxUiedJZSMeb4JXPXKJWPdW9paJRZRsV455EJCIZNk/UIieDJpytRvn6CH0wKHqFUlR0TzVYSzpxC713sNrhEXjQNSOC1Rin0DJkSDYiy0cQ+Cfryz8oIxFk4LGjzallYYEI9kyQghoxQXKMhg5/9mJSlzzJ1DaxDFQNgWNAqLzsw+Nb7F4ZdZ8Yc1y1BoJ+GSeeZqOrRwggGBMsPGY4siWw3Yzzwk+fHyGC502vh9CMftd7jzpIAKBjHvhiTnXe1IOEUrMkYhkJggqkIhAgKMgkOaVDsPrlV7ieZcyZqzaZrzWpupIhDPsExzRX6JJbLcbU00JgASRxE5lgfSjbArqghPS7gUdtoJ8XWwhObvW5khlPLdPBCl+OxDr3waYAXNI5rzBJPdG1B+DV3pU+xAKLCXp+yyU3gcAnV4AowhJPOyGVQehBEr7Xqq4rKX65SspZ0qG+jE9xRvXE13dg/UaFze3qbouj9SneOud6zR74PvPPD2kfvStnxk4TcVwHIeTJ09y7Ngxrl69yrvvvsvZs2dZWFjg4MGDdyT74u3SP4QQ90F12lISdPeM3Wv16dk9C6rvRKry2wXVvu9z5coVrl27RqVS4fTp03sut1mWRcv3WWtlvcg6XzrQlT9SHoFjY3UWZI2X37o62DZTr2RA9cGJKmeXU9nRlBrwMz9z4vBN1XE/lqa7zHj5DnupkwwmJcuh4BdZ3fAJsVBKJNkU+4+r72XSuZX6GCx6A5w+uJk4BaalcpcEGaZBuSRHARF+qjyjxqHUPUVvyVsEgG+BG6NKcXLNUIBGd0kP9GXXN6qidHvSehGSTo9LnTMh2A5L2CLGNilmYMYeAH6cKIWs+nWm3CblHg2kGbpURvGsI3fA2y7IiM2wzJSTT/QTKslWWGW/Y3jBivB6wXEA0+UWysnPtGSkiEdMcNIm4nyAbmZ/7935k4L3Ci2Ka/nn5JQKiE6bMPUNhgXF7gkIqwmgBhLMnO5tY4bty+BdHpQn3WaFgKYFEyFqH/rWkEjg1Updxuba1ModpOzhTv2ZaUs2lj750m4XaqnCC25I20t4Fu9vb1IsWok8Xc8eqR7h2xvr1Oy8xz/3HiySCU/q+82t4sDoYMXUN2qmiRgsjf9CkF6S+ElYIj9PMfUj/SLEJO/TVinMoLLgv2czdpnrJGPUwtQEF3rcaEvKwb8BolQk5aGxGmOFAs3lNrETDwD1o0dmOT6b50n3xzATwLVtm+PHj3P06FGWlpY4f/48Z8+e5cSJExw+fPi2QPH9NOV32O7TPz42ds+C6rvJqe52u1y+fJmlpSXGx8d54oknGB8fv+F5UkquayoflhQDuaS+7eTk9SJcy+LM+AzvvbfCoSNZOoUujVcpaGgzBmyBFIL/1Wcfv2E592txHHP9+nUWFxcRQnDs2DHmwoP89rn38HtDVc0uMF+Y5CAzvLa8kdBYeglhrA4D1YSBmQa0Udv2Yco2ny9CkQfl/WNiEH7PkyJIJiUmTqYaMfaqHsAOLPAlwo6JXVN2vuE/a4W8l9QSMQpBN3boxvaenh0vtlEywibPd/FjaQTbSg11g6WEzaBCqLrU7S6dyMWReeWWMBa51NJCJJ5NN+VpDuKEsy1lco5+/xyo61kUW8geYHetiAPTO1xfH8/0ZEausenR6IsFPf3qPuBUDhAmKhC7lZjOIzD+TvY1L6/scvTQOEvNLSJb0TgOQT1ZvRBieKQOHEU0BLYmykayndw7VV0bERs4S32TyQpCvdJhvNqmVunQaTmUq8MJkOfbFAvDa4SRRDrD37FKPM+Deypwnew9Y00O0rUjEia0oBtFnK7M8EEz8a660uK91aQPu9Lcya8sGb3QIrOao1zyHmbjZEx7Xg55jv0IXrXoQim26Yb9NqBy9xQCHCXxTRwx1XvnEaiQRJ2of3/DqkLYGl5jolyCHpB+aGaSd1YTukfFdXi/9++CZeEGgkvvr4OCmdpQEvGrT58yPYw9QXXfpJQcPnyYQ4cOsby8zIULFzh//jzHjx/nyJEjOM4+gj8M973Pqb5zdi/SJe61+vTtngXVlUqF9fX1Gx84wizLGpkuc5S1Wi0uX77MysoK09PTPPPMMzclYWRZFsud7D0PVKtcS1E7pBAsa1zxorQ45JV4++1kEGv7WQ+irmkdafJ7fY/ouFvg4cP7W07fy6IoYmlpicXFRRzHYWFhgbm5JPhxaWmJR+1pokKRrVbI+8s7XFdbnJmaI9AkyowJX/Zr+11ZEiQeaG3ckMKwIG8BnQQMZcCOEIhY5ZO8Ga6rF04IAZGFbEjwY1QxRhWT55D2zlXcvAKF25PFa0QFQmXtSTH3lEMrLCBp5WgcoZI4hh4uUFYmqFEIwW5YxIssyrZZEWPFqzFVzHqlLaFYD6rMWzu9+wmudceRVlLgMLawtYQzjoiJYoGlgW09ac3xyQ1Wro8Tp0G1QxJUZt+ABqCDMhvwUttFlhIS1GHrMZh4a3hIpxMwW7HYXlAEYyQNR6kkOJHR9884hiPMgXJGrrVANKzcxEGKmHqhw/hsh4IbUHTD9CkZCzW+uhfYlApB9nfqfC+wcd1hmxHKAZG9hhAJ8PaCpMEX5XA2/HDlMN/u9cVeHFGXBXZVqp+z87PaHB2jx3u+6WBFkhWllOT5MAlMeiGqLaAt8dyUF38EZSwgzr+vONtWku+6L62ZlwiVSrC63Rrca2l7qIJTTIHYB2emeH1pmeMT48zGRV57+xoAY+UC7y8lcnuOJfnxMw8ankXSF++XSiGE4ODBgxw4cID19XUuXLjAhQsXOHr0KMeOHRupHzzqvvfpH3fQ7nuqPzZ2z4Lqer3OpUuXbvn8m/FUNxoNLl26xMbGBnNzc3zyk5+kUjEn0djLpJQsd7IeyfFSMQOqZyplVnqR3xXH4dHqFO+8cZ00bl7Zznq2NxpZj/1WSycwJ2PBEwdHJ27Yj6W548VikVOnTjE9PZ3pHKWUjHfr/Lvr1zPn6sGYycGGQc2MM3KmHAz8StFf+86eri8/k0jiJQNvf4ke7I5AKWFWFhECEajhvhjz1zVioiBIPNcisFBNRVyIoDw8WJfTi2JByfEBQTsu4JrS6KUsVBYKwUZQ4YDcHTAPlMZySdu2V2RC85ALIdgMK3gqYMbNtrNQCSqOGWxXHJ+dsEjF8rjuDQF1r/I5EwK6gZObTOg87plKI8M975sMRAZom1RdkneVRVf63EJZQEqzOKzC5hmonYPOHAR1waqzDm7qGjGoVP1UTG5y1efhJ3USCfDTVmVGebDjpgXTSdsouR7zUztUS12kgDASvWc0PNfWVkEKVvZb052CkQa6w1jipqaYTU8a31kaVC/1+qiCtHlnJdtO5srVrEa+Q0K3SreJEcGKGXhqUuoxtSWTmkjA4FuVLQEd2TtOsxExFyJkOIlWJAGzxtUQgexKSgWbZipGYEIWafU47Mcmx1nc3E6qJATnN4fUjzCO+eTBed595zoHjw1nBifmJvn+paQP/ezDxxgrmwNpoyhCSnlTAFUIwczMDDMzM2xubnLhwgWef/55Dh8+zIkTJyhp2TZH3fdWQfV9L7XB7kFP9X1Q/TGzSqVCu53nce7XbgSqlVJsb2+zuLjI9vY28/PzfOYzn6FYNHdu+73nipcFEXpQ4lS5xEqzxaPT0+xcabHdamcA9USlyFZ7CIRKrs3KzhBUu7bF0lY2BboSULEc/rPPPHpL5Q6CgCtXrnD16lUqlQqPPPIIk5OTxo5cSsnJQn7CsdHt5LYpV+X9Tn38pPOqda9wPxBNB8CmyHwTKE+dL7uAL1D9+oyU3xK9AMkeaBoFqvX7aduEElhtG9VRCBmjCjHV45pGdeBQcvveRUGMwBrRS4WxGHh4lZBspTjOncgx6lbH8WiNaSkgFpLrXo1ppzWQ9Fvt1pgsjv7mOpHDTljKeTkdaf7OAsND1hVKinbIeK3JZqy1KcOjkAFZoG3gyefMYjgRikmW9oHdk73AVL2IscpNukREnlOrO7JDDfhBXsVkcKyFbCjimmKi2qZeHn7vXuBkvM5BKHGd4fNVChxt4lPU2qlOvdHpPEEskIZnVnBC+tP/xeYOR8crHCrM8O31tcxxY8UiaMy8Ww5WjDS6jzFYMX8tGQoiRyUe6s5o0ClEIuNplGDs0UrEHm2oT/Pp7IRIWxCXk0m9EwwvOFMpD0D1AzNTvNdT+jhQqxLvRLx5ZRUpBJfXtwfnbKccI6YAxb7pQYo3a5OTk0xOTrK7u8uFCxf44z/+Yw4ePMiJEyeoVqsjz7tP/7jDdt9T/bGxexZUf1iSekopNjY2WFxcpNVqcfjwYR555BFcd5TQ7M3dc83LAplY61yqjsvTtVnee2sVgPkjNa6kQPJsvZIB1QfHa5xfHXo+5idqXFrbTlcIZUEZi088dHNBir7vc/nyZa5du0a9Xufxxx9nfHx8T6+IlJITTt7TcaW5Q1FadOPhM48tEB7ZaHqRgFyday0DiHUKRzwiyEjfNIpXHYNoJtJ4w2AxRoNq2fMuWmo0UFMjPFoGTriQApSF6FpUrSyo9iKbUkqtIVISa4S32ouzn3k3dmmEETXboxvZOFbeu7wVlKk7efqTF8sBfURKwYpXZ8zuULZ9SiNAOCQe1GaUvDQ9oYgllDG7ojSAIUdEBCoLgo7Pr7F59cYrQ8Lg0dYBb185ZkABUEnbEjEJUBMM3q3oAexhW1DJYsiNCpIOUuyXw6AAomJhpPTIANSuhXJDKsXsu4s1CTm/a1OqDN+LH9gUXI1PbSUrHpBwpdP74zjRse7v1/Fq2vrSelFsAYIjpWneuLaTO64R5NubKVhR+NlgYyPdYx/Binq/AKBQyE5C+Ri0JUOyGEWedtK/j4h6B4xa6mFICUmyrApEQ6Gqis2t7iBTZzpmplJICvvUgQOUu5JXLy0B8MDBKT64noDt+ckaF9eSPn28UuSzDx8def87lYSlXq/z5JNP0mq1uHDhAi+++CIzMzMsLCwwNjaWO/5+oOJ9+5Nq9zSovpOBikqpJDHL4iKe53H06FHOnDlz21qcaRNCsK7xoXdTvO4z07OIzYj3Lq4OttnaUm6pkB1BasXsaDCmaVz3uYAnDk7su5zpQMyJiQmefPJJY8dqMiklFWlxrDrGYnM44EZKcbI+xgc7m9njw7zGrgk7mlde9wjTz9yEnKdb+OC2LULD6zVmPuybRaIvbZpjRWSJl/3rmSS+MnJhikpJA0++hNTcJFbCGPDXVwbRbScs0gltaiPoGtEIL2kQ2xn+s2PHNOICq80Kh6q7xnOiGDaCGq4V4UVp1+/QQiVxtO1FK8wvSogECDopvvmBsV24TBYMGXi6pqYgQ4jS76r3/kQEwhPJxErIxIusP0aZAoM9TKx7qZXCSP3Q1TdyCiARIyenMoLYktgbktLDGj1Gm5goLQowCCXpOOU8n9qiVMjyqQuFKPNbGFdpEktL6ym/yI6fj2u50toxrzbpFgpIByuakrQYymJHkjCtFmKTzbwZk+h8B5qHugeU81LuZm71QKVkVByfqZ9SgmLLIgyT93R4vM7VHp86iZdp8vTkAd55a5kH56cH55XcYUc0N17l2lbiMPrxMw9i7wFe73Rmw0qlwuOPP84DDzzApUuX+O53v8vExMQgS6MQAqXUfU71nbb7nuqPjd2zoLpard4RSb04jlleXmZxcRGlFEePHuXgwYMfyix8tdUm0DzTK80mk6USR0WVD95c5ehMFrx2/GyAlx6EGOueOf23AjcU/KefOX3D8nU6HRYXF1leXmZqauqmAzEhAdVxHHNmei4DqgHqbj4QxtitmmTwTCnHBwk+NK7mCK90/8nILlgti1gM6Rw50zmg/euEyVJ27Bi42wEjtaxzlk76UvJyS/A6NaAb2pRsha2N5EE6fXu6LEKw1q0gBYy53dw5dTfvpY6UMFI1pFA4tmKpPUbd6VBNAfUohq2wOlD+sGVs9HaaHrElFX4sKehAUQM5FcenhEeHYftJ1CKyhHGjp7O/OwarDcKTCE8NNaf7vGddEzl1ftJ28u8beiBNB9UGh77OnxZ7JITp4+RiNcwEcipFxssMYNl7a4vrscGRJpUXqawH3Q+tPekyVm8Vomw7nFvfNX5r7TCghEMntdJimgSZghWtQBClpCfN3msD3SPoFaUtEN0kOZMS+bKZ4itUfx6oT3x9gYjMnvD+tYzcc2ET9ep+oFYdgOonDs6xdmWXd7aXmaqVONfzTLu2xdnrSaZFIeDq+nDy+pMjVD/69mGlCy+VSpw+fZqTJ0+yuLjIa6+9RrVaZWFhgcnJSWBvxZH7dnN2X/3j42P3dEbFVqt1W9wsz/N48cUXuXz5MsePH+czn/nMbet37mWLO1lP32SpxEPjU8jrIR+cX0s8GdtZSsvaDYIQdzU1kR3tNzFYMXzpiRMjy9VqtXjnnXd4+eWXiaKIT37ykzz++OM3DaghBaqn5nL7+kkU0mYCobrnerBNd4D2vcZpEyK/DQaDn+yAbA2zNRqzK4okoUa+sAoR9JZ6fcNoul+x+zjLE62UDHJ6GljyOi4xIgeSuqNGfCDCZisoseNnVy+2vJIxlfmWVzJK7+36Rcp2QN31iLC41h4jihNAvRlUM9eyhCIwZHV0ZGjCQoRxft6vA3IhYGFO84iKZLUhbcrURiKBsyFwNiysjo2MJdLULZod7MN7eZg94SYcb7qO0q4/Srs61TYq9WwcgufbpBeuoljgFrKNvehm243Op7c1ZRidXx3fYOXHCxMu1SPVAyw1myzUJo3HTRWyFLBBwqbMzfPnKX1OZ/jGY13SsQuiJZGbNtKzE9k7IYyDutE5Kg0Toag3gUZQik2z/NGgod0eNsz1VhtLSj55YJ5CA9a3k5iEozPjA3D/0Pz0QNHpgQNTrPb6/IW5SU7fQK3pwwLVfXNdlwcffJAvfelLzM7O8tZbb/HSSy8B90H1ffuTafesp7pSqdySpzoIAq5evcrly5eJoohHHnkkp2DxYdmlre3Bv6fLJR4tTfHKD4ZJXGbHKizvDOtULbpspJK6OJbMBCFaQuR+X9OCFGUAhybMmfgajQaLi4usr68zNzfHpz71KcrlfErxm7G9QPXVVp4+EDkqoahklvYTEKNMXGuNri0ikZMfE3E+KExZIFsgu9lMcTKEyPCVKEvkneBdMdQeDnrgpz+uaEB5YAZvlp64plLOg+qimx3lwyjhsYZK4vZQWxgJIqQxgDGIBEU7SNQ8glJPUjG5jwlQky9mzxRuynttCcWY67EVVAiVpGAIgky8nzp/GtqBTVnTQzaVxDKg0vnJbd5ey2YCTdQishXoqz7YDYns9DyWmgSK0TMpBCLKyyZCcqyMBaqjkvZnDcsemXCFkZmSTMT6coro6bV7Jn0GyK9Uy87sgsjKqHR4nk2xOHyefmBlghbDSODY4aAwcSwopPZHsejpUw/3CzmaUhWEkii2KAjJmz3P6mShzIXmZu7YqXKZq372e0/qP/wdO/sMVgyz31bcUxORHZmsPCjRW2nQTjYFLctRq1Op1REF0hvSE4JunFCx0pePGPWYBk1/rlbFCyMecMZ4991liinq3laqX0/H1ZRTx9zISw0fPqjum23bLCwscOzYMS5evMi5c+f49re/zcLCAocOHbqlLI336R8pu0//+NjYPeuprtfrN+Wp9jyPc+fO8eKLL7K9vc1DDz0EwMzMzEf2cV/qpSd/fGIKcS0kaGQBxlQ1ixjnxrLR1wcnahlnz9x4FT8cApADqd8T5SJ2K0b4ijNH6pnr7O7u8oMf/IBXX30V13X5zGc+w+nTp28bUEPSUcZxzANjk5Q0PvqO7zFf1iLKRQ9IaCZNS+jG/Cn7e/9WRyCbeRUAPQ5qeILmvYrJ4EQhRMabLQLMMmGhgSai1aNa1sBTKCkU8u72OBZc3ZgcZLvb8CsjAXIzLAxwpJSCrbDMlleiHdpG6kc7sBkzJKBp+IUM3QMSZkwrLBCP4AnYIjZ6pSMDYjUlgXFElPuux0rdfKCm/lx9sHcl7oqN1bGGEyD9UcpEdzxnIwY22e2dI2QS/Na/XkgetBmCFAflS1E+RsnppeW8y7X8+8jcKtRSv4fZwniBk2nv3cDOeGq9wDbsH90XdvwE8NXsAq3eqtN2y6wGE6j8e819v1b+2zdrU6fKFIG1K7HWrWSC3FsdSprWjfuCGGWk56jUSoUbDttOcm2RW7kakbsIK9WGHpqYpHutw+K1LR48OEWjt4p4aLI+CCavl4Z61AXH4oPeZOXhg9N89cmHblifvqTeR2WWZTE3N4dlWTzwwAMsLi7y/PPPc/HiRULDSuR925/16R/32t+9aPesp7pWqxGGIZ7n7amrmeYJT05ODoLu+olf4jj+yDqlzVaHB+MiF95OOk6dD+3Y2UGxWszyIMbLRS5vDHnKk9XSIKCl/xtgzi5x9t1V3BhUQfLU0QRUb21tcenSJXZ3dzl06BCnTp26KcH//VjfU20JweOTs3x3dSmzf7ZUYamdXWEYqCxkNuavbfIijuRa9x1ucW8QDqSZH2n1PFeG66TLJT0StY70fiWRnZi41PeO501Gmp6yoW5Vjf7R8VwqKaDd9RxWW1Xea04TWRaiFXOitplLlJI2PYBNCtgOS1i+y8FKfoWnGRaNqcalVqtYwaZfpe56SZCkEjlg36eAuBqKsg1IxJVx7hpSJNrJTmab4vj0OufXUisglgIlsFoi0SKOJTLI64ybeLS697NX8CTJT7otaEoTQghkF1RBIWKDIk2PMmCyAZCO9hCJ6ZXVdgPcUhakuFoCHd1BmeMKa21AT30ea/v90OonO81ZHCcgHAFbUQd6/PaLjR0sWxBpbeBqy8y31s0KRUZezxysqJKg0o7oZTqVPa3w9DHkJzkj7i1DiPRuT/YmXwLCIM6/w5hhfaKew9twbRUlsSMPVSZYvbpLx0veWbpvTwIREy/+woFJXu/pUT90cJp3ltb4xKGDTIgC02M3Vry5XUm9W7EwDLFtm0OHDjE/P8/q6uogkcyxY8c4evTonmpZ9+X0Rtj9x/KxsHsaVAM0m00jqG42mywuLrK6usrs7Cyf+MQnMrqb/Y7oo5zpX353g6WNIYBqdbNuGj0zok5hkBqoSydUmagUmVAOF95fZlslwFtJODxTA6V49dVXBxKBjz322C2lpt2P9Z+lUoozU3M5UC1NnjDDmGCg2ia8am2gHiSWSD+b3gArFNgNqye1NnrmbPmKqJQvl7IZxnCNAgihgEgR38S4pk8EdE51ECSp/zZ2K1xrjLNFkTgWA8BzuTnBtNui7Jgl7oJIUrTzXiMpoRUVuNa2OFjaGTyyWEHZoBLSDBzGUl5tpWDdrw62CZEEPZqk/kwUkKIV6rGFAPixRcnSaCHaEoJSMFVtcb4niSx8EC2Js5n1Ku5LznAPk7EgSilLWN08718IkahCKAW69OMezjorEEQkNKJRunV9nFvW+NSBZ+EUhs9TKXAL2Xfmau+8qHVrls6vljFxLNjtFNjtFpHKpl4zU+q8wBmWWfb01WNJiOKB8hjnO9uZ43cDD1dL921UbNGRqQDLF0RFldAwepkQZX9Gvce7NAU+GuUxR4GXWPTSz+dvIqRAeoq4mHjXTf0TwJi0GWs5bLZaAypf4oEexgSkKXuNVAxMwbE56dZ5+40l/s7/4SdH1jNtHxX9Q79nXxVLCMHc3Byzs7Nsbm5y/vx5Ll68yJEjRzh+/PjIvA731T80u0//+NjYPQuqS6USUkqazSYzM8NMgTs7OywuLrK5ucnBgwf5zGc+YwTdaVD9YQHMtLW6Pksb2SDENH8aYKuZ9RTudrKDZkvTuG71glsen59l9YNNtvxWpiErCQ9MFlBKMTk5ecclAk3WB9WJAsiB3P71bt4b2pc8S3exqkDe82TQtgXyOrMxyI7A6mbpHka+LCBG8FsRmoax6RApkG2IRzBncp70HPdaUS4NB9YwlKy3Kry/M03XdkBAHApkalncixyuNevMj5l12ptBgaKTR3fd0KJoxygkV9t9YO6z7ZUYK+YpIXEqQEspWPOqjGmZHy2hjEDZEnkVECES/e2iBqBNkoDZ+risejV8aVONfbpr5SSITMicJ9mo4GGgYygbI+CKe57IPv1nlJqLiMCKJLQUUXlI8VHxyKaC6nmqpT8iJlINy1+uZ5+z33UopSY4fsfGKQ0nM0kSmOFVo1AinGF0pYolhVSb6Po2W50STd8FJCpO3rfr2RQN1KMoKpLuXKQTE3nJw5soVUED1QB1u8R6PAy0HgQrpt6HiZMuA4HyRMKX7j9YXV/amJFR+7ZEb+VBO3aUbr0MGf3yYAB8RjHGAPzrIethi8ePzQ769wfnp3nz8gqQBB9eWE046HNjVc6vJP9+6uhBzr5xHc+LmJmo8qnHRmtTp+1ugWr9nkIIpqammJqaYnt7mwsXLvDCCy9w6NAhTpw4cUeohfey3Yt0iXutPn27Z0G1lHIgqxfHMZubm1y+fJlGo7EvaoMQAinlvlOV365dWt3O/J6slthoD71Rrm2xkgLZQsB1TQlkRQPhjY7HU1MzfPD9ZaQQLAXZwCDLEvzkc6fY3rjO0aNHP5LON+upzkeuX2nuUrZs2lFq4LboLalr1/INgYmhAVTTGyODJHhJer2ELvpgmsqSlrbYNW9Pdo5eqh+UMwBlohPoS9SG8peLHpalaLSKXNmZYDUq43VdnPLw+ahAgqYGcq01xmytaVTrGDngRzaulUzEpAXrQQU3KBh5zU3PZaKQtM9OaLHpl5k2qJRIAUFsUdC81bZQeKFF0clu1ykHYH62/YQxK90ajbA4OOrI4Q3OL1eHJ+nBaClQ3DdlgQnhJ4GJuYjChFogk/ZnTFkPWB5gg93Tug6rau9G0r+nTxKkaKIbBQwAZ6maBdU56obvQApUu3EZxbB/8DoOxepwUt4NLEqFGBUWWd4pEqkyHTWcpMe96zfaRQpuM8u99i06obZq5sREvSJuGrKlAhQ0+c9ERUULVuxTP3peadGRCE8gbe1h6o3aJJ1pev6Gj0HZve8wrVsfJhQv5YwIOKY3ZrRVrv/pmxUMKT7X1obBm2m6Q70y7OQOTdXZ7XY5PTGF2wTPS97nT37uYax9rp5GUXTHKXz7uedeY8n4+DhPP/00jUaDCxcu8O1vf5u5uTkWFhYGK8z3vdSa3fdUf2zsng1UBCiXy/zrf/2v+fSnP81v/uZvMjExwXPPPccDDzywr47mRqnK76RdTGU9BJjR+HIHxquZIMSZWoVuMARWk9VSRj7vkYMziOWAD95JPCBzU1W6mqb1WLXIE48+CCSe44/C0p7qiUKJo9VskKQCjtbGcucZE74YAxM1U0AocDYl9raFlfZuGU7OBa0BSGEMjIQEWIkRiVIGx8QCy4ArxDBR3XCb1tEIJ+aVy0d5ZfsIy6pKLCXS3huIxqEgkjaLjbycmT+C+gHkMxpK6OLQDAtcb9XopgLdvNCmFThca4+xEVQZK/i0AzPakMLcfwYGt7GJV+3IaHB+GEu2gyKrXpVzzWkaYVZ2oVT2KI8PvZ+jeMnZDeb3PiJBZU+pQ+2pOZ6+hxUI7EYvgPEGYEF2RY7rPNg3aINxDlRb2uTEdbJde6ujZWrVdc4Di6Wtcc5t1WjGDh1fk9brPclISTrd7Eyi4+VnFsLuk4zhws4WNSePNMvl/NJ/7pkrkBsCa81GtGyIJfEeGQyHFyKXfGWoW39jywRIqp6GuRDGhC6Z84LRt5C9OeehqTqbnaTBFWzJu1eTZF6WFFxaGY4DYRQxF5d49+1lrm8ME8T85Oce2Vcd4O54qvuc6htZrVbjzJkzfO5zn8O2bV566SVee+01tre374Nqze52QOH9QMX92z0JqoMg4J/9s3/GxsYGv/3bv82f/bN/ll/+5V/mxIkTN0Xl+ChB9SUNVBfdbKc0pg1A0/XsctlsPQHhBdvimdk5ilsxOztDJGdrqEFYglPz0xmQ+1FYnyvXv9+ZqTwFpGoYgE1mWsofBIaFSQCis25ht6wkRbDOrTV81KOi9g05T7A6CiseDbiBRM+W3mCrXWPUvdIW2JKGlUpqEoPUpMb0EMg4SN7pWqfKjpdtN82gYMR13cCiYOcr2Q5cHFuBJdkMKlxujrO0U6MTOQTYxLFgstBBCkWoZE5qGBKvcmjQ8nVklFMBcWVEmAJ8SiWc6uVOjXPNad5pHOBye4rtoGIEzDGSQw+tGvbsbUbt6BGmhMIO9+g6Y5XzYFuhwN1m9ISuXw5fjASNfcBZGusiU7zuOBK4WsZN6WZ/25o+dR+EN1sF1rdnWGvVaIVJoZUCleJXJ1k5h/drdgqD9xZFAt8QMCBE4q2G5DNbqOYneGtB1xAh2it/RyQKHhs2dsce7iBZJdDbjWVod/qgrSxA/1ZHza9T51rdZGIM4N5oUhQJnBGJe6weqJ5NqTY9dGiGqHevg/Ui2+3koE+dmOfSm6usLO9y8sgUK5vJKsMnHz3C3NT+8wN81Oof/XveDJAvl8s8+uijfOELX6BSqfDaa6/RbptVY/7EmrpH/+5Bu6foH51Oh//hf/gf+Lt/9+9iWRYHDhzg137t1/jzf/7P39L1PlpQvZ35HWmjhqUNtK6mBFJybY5PjSHWQ9574zqPP5gFqwlnbQiyiwWHn3j2FFImvOKPqp4wVAABODM9x79b/CCzvx3mUaoxMLFAbolXBODuCOIoxZfuByTpY53KbxuVnyW3XYH0xYAOMMr6gWlCCKyOIqqOPhbyXFBL46/GgcQqZG8odEQxAKWCC7tTPDG1NMy8N6J+Xujg2vlgxLTnWAiBYyu6ocNspcVOp8hEeegVrjgB216JyWLeLW9SInGt2KgC0okcolDSDAs0gwJKJGv5sfZwTPOiWAkqZZ/KVJPWRhXjSzaY6b2P4lVbbZLg1xGeasvDmG1T+oK4qPb0VsuuIK6MANUktdGl9Ly2Q6E6/Gb8ro2dajdhIDNKIVEo8Tyb1dYYXSWxsRCpWaMKRWbiJmOZ4XjHSFrtAtWKR6frjPQqSjsmDpJ+yhZ5kLXtd7EjQdiPB+hlI7VXLFQ/+ZKJWtVfWUhrU+/TsWmFEKUnPCOCFfvzBBcL1Y0GhQhjldDODPP+JPETOKEkcHU3+RBUpxN4pYPPK8UibrPLUbdIsNYlCJJ9af3q/+QLj+6voj37YeFU78eKxSKnTp1iYWFhT3WQP5F2L4LQe60+PfvQp7Cbm5t87Wtfo16vMz4+zs/93M/dMCnLN77xDb70pS9Rr9cRQrC9vX3D+6ysrHDixAl++7d/m1//9V/nvffe4/jx4/i+QeR4n3Y3QXVDy3zYCbJAM90ZW0JQwWbz3R1Wl5MOe30ze72ury3tK/jsUyeSf6dA7kdh6fs9aUgCc7mZTwIzCEzMXKi3TBuCvSNw1izslg2elR/o9/kBJ/xaw3ZXZCgCVmfI+xMwclk4vZxt+WQi0MxBitpkSlvWV1H2k1Vq6BEc3nR4DS9yWNya7P3bygUB9s0xeKm9UOYURKIYJkodGl2X8VI7F+NXc7vsdvMDoi0VfpTvbsLYIlKCRlBgpVvlfGOKpe4Y17vjNMJSD1Dv31TPb3/4wcRbnQDj7DM1BrEZs4qIPC0kVj1ptdFUgFG0EctXI/WnBxaM4MowLLdO/Yg0/emgm52BBp2eBzqG7a0yi9enWAlqdFU/vkG/UbaMluG9NT2XOBZ44eiVv3S7XBrR51eFi2wJ3OXEK41n5ydgJrUN/Z0avNDGwOOcZ1wYJ8XKSYB7sZPXrjfpWMNwAh2E8YDqMdjXo4nN1opc78mcjleKfJDSoI4RHFRl1pa7XLiWcK7LRYf3F5O2PDlW5rkzx803H2F3Q1LvdoF839Fz34Z2t2ka9+kf+7cPHVR/7Wtf4+233+YP/uAP+L3f+z1eeOEF/vJf/st7ntNut/nKV77Cr/7qr+77PnNzc/xP/9P/xOuvv85f+At/Adu2qVartFqtG588wj4qUN32AlbTQYjA8nZ2EFrfzS6HbfaUQGbrFU4Vxlj6YIMoBbSb3rDF2pZkaW0nc/7MRGXQcX3UoDpN/zAlgWkGPkcq9dx5Os1CtsHaSWTTpJ+STjP0x/uhWiQHYuZVp+8fG8pi4uRqnOnEWz28Ri7To4FzK4t5j1fa4kCi486Ezzq0pe1xmr5LK3DN1I/QomgE1XnA5Ps2fmhRcf2h9ztdXpEA28jQYfaTu8QK2pHDhldmzatyrjnDUnec7aBCSHapP2vZi8YjODyxEpRLAbWZBgiRTx4k86cZVUEgSc6TMrsFQiYtTfqm2dde17oBVQiwfIltwp8hKNscpCi1xm1ry/1xJPAaE5xfnWYlqOJrkhqO7kVOy9wpCIxLMYLNnTLxHuBHWIm0HsBSq8FcMRsnMl0sM6PqiLaT6KtLCSJPtYoM7cwEunLf4D7f86iVJrsJXW+fCUtiMpMsvc31vdT10vCbOj43MZjvPX10npUPNlldbfDQsVn8XrubqTsEvYRdX3n2FLZ1c0P23eJU309RfoftblAzPoq/e9A+VPrHu+++yze/+U1eeeUVPvGJTwDwD//hP+SrX/0qf+/v/T3m5+eN5/3iL/4iAN/61rdu6n6f+9znMr8/LqB6cW074y0aK7lsecNeWU9HXugpgZyZn+XaW+usxG26wXCJcqJeYjN1/IHpGldXhqDasSSfTkky3U1PtS0lj03O8oqmVz1dLHNFT1veG7jshkD4ScChCMhH25uW8oUasSO/WY/8H2zvNQW7nR/URQy6goTlk6cO+BCVeoD7BklIhB0h9C9UAxgqFJCqv5FzLRXnd6c5UtvKVwrww6HqR9p0XWNQ1FyP15cOo4AzB68xXspTPaoFn/VWlblqs3d9Cz+2CJGstyv4yqb/YMyJHvpg+UbSDQKR5MDLbI2UxCbi0ANrvLdWMwYmotEHkCSUDp22kXp/IoK01IuMRQKKUqfIwHANSDzciCSxiKEmg3vECZgLNdpsvy05BZ9CisqhFDil7LtzehOxKJRsbVXY6haIC3JYl5QHWSjoKn+wT0UgU+1ShWIkJcrr2pQrEO5Ro7S03qHyGCvdpD9+sDbF5opHqZJf1bDirKSgMW28abVBb0qG95zEXGRfmjHgOUxoPiYpTGWRSw4kg7xDPU0T6YPqteZwQtToeBQdm0cmp2gvtwZ0j04qP0EonEFVZtwGly5d4siRI/sGrXeL/jFKf3o/dl+j2mD3Igi91+rTsw/VU/3SSy8xPj4+ANQAX/7yl5FS8vLLL3+YtwaS6OIbUU32so8KVOtBimlvBsCspgQyP1HjibEpzn9vmW43ZLLuZgb22ckscXe8ltWdi8KYn/pTjw1+f5Q0F8iD+DMGCoiOoaxOIqnlbGS90saMiQYKh7IFaF7Hm0n6AcmALELz8r6AXKpiE14UCOy22XMug+wJViF/I135Q0c8cWDlBnfhxnRCl+VW3Vgmk+JGO8h7r7u+zWa7zGanwlanwrcuPMjrS4fxNfpBy3eIlODC1iQXdydZ8WtshRUaYSkDqKE3gOaLZNwmDeuFxmDF3jNx3ZDSdMO4zCgMrnRpIOYOeNWA1VLZZyvyVABrRJCa9JOyjloFGZYrAXm6p7N/XnlMSwTUtrFSk6jQlyAUq6t1zq9PshGUiN2UnnggEKnupYib1XfWAjClIcAUkskbyqLbvkHgZWrVpP/JPz0xz+XLDbY7HhsGub39KLFElmFCZmLw6K/Zyr8zE03EaTAyqDRZpdC2hfoxYkgBUQnP/vBklZ1eboGZeoWOFzCvSqxd3eXs5ST5y4HpGud71I9jBye4upo4Q54+fZjPffpJlpaWeP7557lw4cK+0n5/nDjVfbufUfG+fZztQ/VULy8vMzub1SK2bZvJyUmWl5c/zFsDUKlUPiagejvz29U8XbXiUP1hYXqceiPm7MWhzun05DhLmylNa3fv1zpRKzE9MQTqd9NTDWZe9VqnRcmyeaQ2w856lyu7jR5K1SKXTNrSvSVkXZTACiHSH43JgT1qqmkJ7JYaHZgVDj1sQk9Mkz6u563WLZfSWgt2iiOR80LnPNeRDrKH5+z6JRZ3JzlW3xyAQ5NWNCRcZ92naouYN9bSAbCCS1tTXNsd49TMCkUnQFgqSY9tQ9d3qBV8Ml5BlZsHIITKyciZtpnMNPwqBNsdFx+b4lwH/0o+OtSYitroNBcpCogp+FARucPt8YgVkUHA6l44KOrfRWA3FP7UcJetBAFQ0oIUA9/GLicn+h2btY0qTbuQBO5JoCuhnPq2QwGpNqQikR0FNBRqWZLI4Inug+84ErnkQ4NjFERef4YrWNzd4RO1Q7x2bmUAWJebTaTKBhoacbzBCy09Mtr1+vczyqQWrKhs0Us6k/y2Oj0QPyKIMblZqiijhggFjpJEXoxQgkph+KAfnJvkndeuseWFnHl4nvXdxIN/YKrO8kYyZtWrQ2/vn/n8I4PMhOvr64PMhDdK+32f/nFv2L3IQb7X6tO3W/JU/8qv/MpgiWbU33vvvXeny3rT9nH1VOvKH6CwpOD0WI2VNzeJvGyZwjj7u6NlVtxpZL1BpxeyE527AarT3ognNFB9sjbBAVFlYqfEW++vcaWfaVKIfLAi5uVbo7Njnx9xJv14utxdlefnps8TYjDYSm+0I1wIgdVMJPkGFvXUTFJm60GKQf5z1T3Xer1jzfO41SlzuTExOM43yKooBSWN+uGHktVG1cizDiKb5UYd2+0B6n7Z9ulZvjnTJhEjeNWJR1xQqATEJcPLvIkx3/IUVleYRTvkMGBRBAr0pCQ96wMvkzTj4FLB8PlYXTLALe6Rb0vVbANUAjpNl6vXJzi/M8muX9pbCUPb11XD6ykFws4Cbt/wIQglhihYiB5wzlvYtlE9hFx1XObtGhtbXs4DPOFqK2kmZQ1TVUw61Fr/sK9gRVKe5xisVs9LLcAdMUSq1Jwz/d4y5RMCWnEiyScE17db2FLwifmDrJzbwvPCJInXekJzsyzJpeuJs6RYsDl7JQlifOT4LF94emFwzZmZGT796U/z5JNPsrm5yfPPP8/777+P5+Wznt4tSb3bycx7n/5hsLvNfb7Pqd633VLL/+Vf/mV+5md+Zs9jFhYWOHDgAKurWc3YMAzZ3NzkwIG8PvGdtjvBqTZ1VHfadE91UwuOabfbHPQsLl9NlgIj7bVt72a9V31NUwDXsVhaG3KTBfCnnzuVOf5ugOr0ZGWyWOLh8SmquGxtdLl6vsFVGjw8PcVGKzshsCPI4br9guVRQMrgXJRB3tPt9LB9zsPZMyGTZd6odINZeARWJJCN5JpBNSlEVN47SDHnhTZ4rnV5vVymvUCy7ZURKA7XtrENM5Jmu0CtoqXBDm3Or0+PRMW7u2XQPumi08+EkfJUCzC7/0wc6v3xqk0NwBKKCIElFYXDbboXaxkJvMjg1RyVpt5CskemeqSviEsCOxBG6cfkhmJwvAjVIOgwbelAO4HA2YkJJgREiqiQuE2LqffS2i6y1izTtlMUDld7Fin+tIoBd/jbURZBauKmAoFMnS8ji9hADYo8keGxKyWJfYlMXzso0O/GKo7LeFji3c0NPnHgIJd3djLXmx+rsrE+/M6VlUxK07J1RgqPCRwHmvymJJf6fK9gRacBMlW3Eha+IWm8EL34iGKeA542FYHdgZMHJ1nfaXCYIq219qBPXjg8xblrGwA8dHSGdy8l4+WDR6d5+8Iqzxw7wKRwcDQJ1XTa762tLS5cuMDzzz/PkSNHOHHiBMViEaUUcRzfFsC9Fbsd77hS6j79w2D3PdUfH7ulr21mZoaZmZkbHvfss8+yvb3Nq6++yjPPPAPAH/3RHxHHMZ/+9Kdv5dY3ZR8HT7UXhCxvDcsoBWy2hwPnsUqB7XMN2u24t19wPQWSC6498HQATI2VWW8MlUIOTtdZvD70hBcdm8+cOZYpg2VZd9VTDXCaaX7/g/OZbSowuIVDAwI2xR+OSgyjDbAIkgC1G6Q9tloqGUmVMlNG+peLkj8lR3tlZZBcq++xs5sKGYAv0rQQlQfVen0CibRSoEjlJfiEMIPsLa+CiBwO1DfRTc/QGMWClUZ9pLydisHrOviBhZu6v2PHdHyHQmqbED0KSLaURmhs2iaFypVPonpKIENzrIgoEoCgNNXBP1vL0gOsXlbEFHUD2X+3GhWlBaKktZv0/WNBrFTP+z86SHFwfGCgIZH3vDpNQTCRBMYqR1CZaCOlYmerzHq3jBfa2YDaIEvtwBdZkB1IRErjXPoC0hNElX3irmURqmy/oBQIJXMUnsiXCCdOlAY9iZea57eDgG4j6eO8ON+fOk7+Ydgh+ClQHbnkAkmN0ogjaCJxOvW5IVgRkXirZZatRNCNwBCsCAkQt7o5xUbt9gLLh9lqhY33N1ntdnn81BiQ9MnF4vAFqlThlVI8WKnx3suX+YX/5kdG3wCYmJjgmWeeYWdnhwsXLvDCCy9w6NAhjh5NgtF/2JO/3Ld92L3o2b3X6tOzD/VrO336NF/5ylf4+Z//eb773e/yH//jf+QXfuEX+At/4S8MlD+uXbvGww8/zHe/+93BecvLy7z++uucO3cOgDfffJPXX3+dzc08ANjLPg7qH4tr28QpgDlZKRIqcKTgdKUGqwwANcDcdBU/GJbp4Ewt0zanJ7NBjfXKcNS0LcnhiXpuaU33HH/YZvKMP3pgNnecbxitTLxJZWNAX+QpHMIsaWYKWtOxkd3ueRmFGM2hJBnoZTeHy7JF08rQV4WwG1BYS2gmwonJKZ1Z2sRHc5+qQObOMWlYR76kuVbm7OVpvvPWSa6uTwzSVkcxVEtZL/VWp8TqTo2R0wRfgpDstvJEcd+QeVDX2oY8+B+1zWSmo2ypBhOIQiFE1vIrTjkJNiFywaZ2QyEZHYCYnAeOJ4zeZwA7yBIeRmlV6/J9SIGzo+gLs8ROxNnr01zza3jSAk+7jl5G/T5auxWaPFu6fakYOnF+Uqt8aaSXKBJvdRwIwk4WJCupUD3u/yVDzoFtr5vblruF6CXVSVlUMLx7Q9mEXmALhFY1ZSXfn943+oZJQN9iST5Do2YyhE8dnefs96/R7UY4tuT81SQosVx0OHs5oXiM10p8sJhsf+T4LKtvrnLlbLLvmaeP732Tno2NjfHUU0/x7LPPEoYhL730EgDdbv75fph2n/7xIdjdpmncp3/s2z70Kew//+f/nIcffpgf/dEf5atf/Sqf+9zn+MY3vjHYHwQB77//fiYt6W/91m/x1FNP8fM///MAfOELX+Cpp57i3/7bf3tT965Wqz/0nmqd+lG0FNMlh8N+iSsfbDM9kQ2ymhjLuk1qlSwXoaB5ffqA/dSRaSZ9iycX8rSbu6lT3bcTtUruuHVD4p64IMwqHgautbMPFQHocUQ1SycNcRrZ4MQc+ElfS+SVAfZjsZ14roUSODuCQjdfUMvOA+TMNXR6iJYZLw4F3abD9loVL3AAQRDZnFua4+X3F7i+OUarU0YIaHddtnYrXF8fY21jjmhUWm7FANybQLVRF9u/s8vRSgmz0krv+VhS4R4xADcTfSD92GOF3TtNBDf4Ptrx6KUJrb2YNM1HDTJOcziJ84sQpjyA6kbAQ9+dDiZU0E01VBWKjHyjjKzc9ZUCuQcZPfQsgrZjfOn9pEYN3+fY+Hhm39VdQ7InEzjWPwkrP0keSb/RLP2enRY4OwJp4PgoO1nRMJmI9+bIAxxyKsRbAc12UtBjB8do9RRATh6dxus5SI7PT4KCp48foNZSNHeTGcSh+XEOHBjbX6V6VqvVOHPmzEB16zvf+Q6vv/46jUbjBmfeGbsfqHjnTdyjf/eifehkq8nJSX7nd35n5P7jx4/nqABf//rX+frXv37b967X67RaLZQardiwl33YoFopxdsXr2W2HRqb4J1XlliLk9HcLWQ7J0tbytODGttakKKKFY9OTnDxlevEjuDHf+R0rhx3U/1jd3eXS5cu0VjfwBaCMFWfhuczV62w0syuNtgehHrilBylAFSgoKC9dwM2NHKtB8vGCtnJnrengkOccC3DUTKtyjDwxwqV4vsKIbA06kdaxWNguvKH5pFTgQQ7ShQammV2GlZCYci4TZP/eYHD+1cPUlCQJN/Uv5cQUVG5zcqXAxDVaOdBdSGndQ1FN8TModnPNpHfJgRekFcx6fOqAQrjXdoal9sI3FKPNCOrdoM82JYHqjSCr6t5jE3tR/rmPiphGwlEMUgkHdM7Xe2bTf+OgRTVQ4UCkaKCCE+iiqn9kcgEKRalS1NpruFAGIKoh/cTnoVlC0IDD1vZCnoYfqZcZjHlsfajiNlSmdXO0LGSpC6/cZ8twuy3oxxyakDG71uBsxNjdcWQ1qPMlBLLg9AQPGl1E2BtCqzs2/alBocPDb+LIJWga7c9nOjttrqcnpjgvZcvc/TI5GD70/v0UpvMdV0sy+Jzn/scFy9e5KWXXmJ6epqFhQXGtYnNnTKl1H36x4dh96Jn916rT88+WrLVR2w/rPQPpRQrKyt897vf5b3L1wGoFBzOTEwTrHiDSH+Arp+9f7ubdYPqyh7LPaUMIeDpEwe4/Mp1Lr6TBL/Ux0ocOzqFbneDU93pdHjjjTd47bXXKJVKfP6zz3Fqdjp37JzBg22OCsp/oXrGQhhFHxHGa8pQ4eyA0Lm0fVxnMMvrea9G7Je+ynFzTZn5ZEVrd518enJLA1VCA9lxJOhuF9heqbHTsvMo0hAvmASXaeVTAkIH1bSzUmKKDMWg3XUJNWpHwYlyFBDbjvG6+ssxqQKblYJNqiKRgVLiWMMXUXAi7Jmst9rUPvqgSkQqSzeQYJaU6e2OBbIzYr9OuzB0KXZ7hDcUgdsAOe4h0lKbnsgmD/JF1kXiy+y71aghRUvPPJTcP/YlwZZLcxPiho1KnWebMiIBxOCEiYc6igyz2+RkVG9HO8hzJg6OZbPdxG5+Rcr0vkzKP/pKUeySKZPVShLsWL7MfosjXt+ojIuWv/cEW4SKSbfAB4sJjaNecVhc3gFgfqbOpaUtAE4fn8W/0uTiu8tMTFS4fGVIc3zm6WOjb3AD64PbUqnEI488whe+8AXK5TKvvPIKr7zyyk3TKfdj/XHkdkH1ffpH1u52OvGPW5ryzc1Nvva1r1Gv1xkfH+fnfu7nbsha+MY3vsGXvvQl6vWEIrttoKrtx+5pUP3DFqgYxzHXr1/n5Zdf5ty5cxw6dIjdUHJseozpps35t1fYbmQH/o2t7KRgeX24hKcre0yNl2m0PcZrRU7Xx4lWusS9FLcKmD9oXkb8KDnVOzs7bG5usry8TKVS4bnnnuPBBx+kUCjw2Fw++NUyee9M3kDDBxoVyEURKUsk0mf6+UZupMCQaBAhhDlFNT2PI3ne9OBcEyXFRF2oaAcaVDz0uEHZo4coBd6OS2O7SKtdHCo16PcxZ5/OWdwHN5FE7ToDqo3wLbJL/YJGK++i94P8Cwv0pQZAGFDNfnnVpjHYlmqAgy2pcKey39YgcFXfpkgmU2nKj0gCzkwmu8lEyTJRV2M932PvfetMnhHtJQlqBaF7pW/Ep77BHDlOB7j2jg22XMKdAiK0iRSowCJuuEQ7DnFbEijDRWPAlwSDSbnIc7l7m/v0k0s727n35RhAmO1nD4oK5CY2xmBFQwZN4ScZEgtr4LSEeUAf1dQM1elLZgoYSQdz2nD80NTASTI1VhjcYmYqofWdWThApQWba8k4dWh+fHC+bVuceeLIiELd2HSPcbFY5OGHH+aLX/wi4+PjvPbaa7z88susr6/fMcWNfkKaj1px5J43dY/+fUj2ta99jbfffps/+IM/4Pd+7/d44YUX+Mt/+S/veU673eYrX/kKv/qrv3pb976nW37fUx3H8S3NnO8UqO6D6cXFRYQQHDt2jAMHDhDGirlSmfOvLROGEQXXZnVjOAmolgts7AyXRKcnKqxvD0H2wZk6l5a3Br9nJipM1svsvL/J4s4ujz6WSgMv4PHT5rTwUkoCg/foTtr29jYXL15kd3eXcrnM5OQkDzzwQOaYx+Zm+Jf6ed18gJmu55xsExCojGwaUmC1VS7Rip78AQzO5yjhUivHPO+0PJXcM32NUCGihF6RTlGcOSbO9yUqpyqhoLI3f1p0RCY9edxbvpedEhvbFrFx5mGsysBcYREYRb/T5wpUw8GuxIRh/pq7rRIT9XZ2o+HGljT0qHusANzIChqBXinY9Qo0ui5jZQ8hoFAKaLsh9DndQiA9lVGGULbA6qiE96wvUJjoRDAA20IIhA8q9V5MGsYCkvuWUqBdmasuAwjnfeJcmkz9QP338GpKkaWGBAKv97zs2KazI1CpSU5BCDppkBVJnNjBj6JEos9RPc894A3pP8MbYlwFUbZChNAKAhbGxri4vTPY1zLET1ixFiohBbKbfV+xayANafe12mDvaitO0tBfjPg+4n58Rer8/iqG6P3bMEfEbik2GX4Lm43kJMuSXFvb5qkjB7j4+nKmuOkU5Y8+Mp9RB7lZG0XDcF2XBx98kOPHj3P58mXeeOMNyuUyJ0+eZGZm5ra8xFEU3Vag4X05vT3s/qPZl7377rt885vf5JVXXhnEFfzDf/gP+epXv8rf+3t/byCSodsv/uIvAvCtb33rtu5/T4Pqer0OQLPZZGzM7KXdy24XVEdRxNLSEouLiziOw8LCArOzswOJo6tXN3j/u0NO9dx0LSN/NztdpXF1uEQ3NZ4F1TVN2WPCKfDGdy4MPr7dlNdbWIKv/NgjxnJ+WJxqpdQATDcaDY4cOcJjjz3G5cuXjSl2H53LK4Bc2dnNca2V1QNDGsCxvbyG9V5KHZmypsdbD9xdEFJCZNYUNo3AdmeIL0YtC5t4vPqytihEORUP9Ix1muc6aNl02gWivri2Ig+0bjDO2UoSaC5OG0moA2AhCBsy4a06KnPdXQOv2jVEcxXdvIb1sOAaNzwXEyFQscqAJEsqvMBK6CaBxUanjBclbufdLtSLHq4T4hzoEFweUg1klHXqikjh7JKlWvT3jcjwKCIGz9puxwSptOByhNKH01F4KVA9KuhQxBAfCnISjaoQM9iig+YIKKTeWZDlU+MLsCBs2AS+hQwlUap9hTqwUX0VDAGBBb4CWyGFMFLNhRCokJxmtnIU9LqkyVI5A6qvG4LoTF7odNZSoBdISIYK049ZsFoKqy2QSiAilbueFWmTa4FZQl0KLC81OY9733f/Wx/Rxxyt1Lm6vA3AwpEpzvf0qE8dm8Ff7/Lea1d55PRB3n1nCYBKxeXSpfXB+U/fBvUDbpz4xXEcTp48ybFjx7hy5Qpvv/02rusOckzcCjDuA/nbAeb3qR95u5d1qne1QOVCoUChMCIZxD7spZdeYnx8fACoAb785S8jpeTll1/mz/25P3fL196P3dOgulZLBs9Wq3XLoLovoH8zWp9hGHL16lWuXLlCsVjk1KlTTE9P5zqLC1c2suWtZhtSuZR1dRbcLNLqf2PT42UmfMn24vZgY6Fgc21pe3Ds7Fyd2Zm6sbx3mlOtlGJra4uLFy/SarU4cuQIjz/+OI6TjGCjQPzR8Tq1gkvDG3prwjhmYWKcC5vbmWOtIO+xNnIf9xmYqHrZlO1WTz6v96pGaQrHtsgl8RABw4FWJYNt5l6xyvNCDYlAZEHTp45BFLXK9ZK8xE2L9lYRFThExVSvG5PNGqiDBaXtB/wwymHcMEyBt54lDmWReN09EgDXO6TVKRLFIuOJLhYD/MDCTgE3x4loeQ6FTCp2k161mVdt2hZGkpbvsusVM97TbuAiUNRLPk7NI6Cav0KscHeSFNUyMqeRT2ScVebaIlQoOSyjCEVmXjBqciVTFCTpq4z+cvbAmLgWZyYQytf41J6EdPvwDKnJ+wA3BidyaW2QFFJBlHpXMhYE2uhdUBIv9VakkElSlDAmVlHSjvpciLRpAYNIUFIhYkFHm1Rvex5Vy6KZcmKYvjuTt06GijjlcZYByG2w0ija9Hj1a4k9Vgz8YZuwdMlME6/bU8yNVVlZTgBDvy8/MT+O2PK5ejHp+73ucIXw6NEp3n33+uD37fCpgX2v0Nq2zYkTJzh69CjXrl3j/fff59y5cywsLHDw4MGbHvvuRJDifWCt2YdMl7gr1qvPkSNZitPf/Jt/87aEKpaXl5mdzTrobNtmcnKS5eXlW77ufu2eBtW2bVMsFm+ZV93vHPab6jUIAq5cucLVq1epVCo88sgjTE5OjuwgLmqgWrdI43t2DenHHz46zfrb66z6YSbAcf7QOBcuDa//wMLoZD13ilOtlGJzc5OLFy/Sbrc5evQoZ86cyfHrRoFqIQSPzs3wnctZRZSxYp6nux+PL5gj801JYESU8GitnkNusH1ER6Yv++pa14LsQAz9xBIagA4UsQ6qNT618iSylE/C0Vks07FskAKha3rnOCbabx10A6GK823V4ExWUcojj0B5INwEMKlY0GwVGatlA2i7vkPVzi7xh76tgeoejUXX2pb5hC9xLOh/kl5g0fQKND0HJS2tvAlM7wQFpADHimHCg62kTcUWOLsKq9XLpCf6lc5bn0ufnszZnezthEgCFuN+dsxRn1Vqe5Ku3txHBMeCnBdbtgTxeJqeMeIegxskx1b9EltbMaEQQ9AfZb+bsmXTjFP9TAweWa/4ZKHE//hnfoqjY2MsNRp8d/ka72ys8fr6Cu9urhEphZSCOBreu2/KVghfcHF7CymylPbZcolmY9hXRy43lQ3RaidBiFL1E/uQPU+bEBkfueG70E0PhBSy1y5SiYTcjmBxY5hy/NyVNY5NFbG3Qs5f3QZgarLCxYtDz3Sc6kMmxsssnLhxgrW97GZVOCzL4ujRoxw+fJilpSXOnz/PuXPnOHHiBIcPH97XGHi7GtVwH1Cb7F72VF+5cmXAKgBGeql/5Vd+hb/zd/7Ontd8991371j5btXuaVAthKBSqdwRUN33sprM930uX77MtWvXqNfrPP7444yPj9+wc7iYivIGaLaz/OHt3Sw3dXVzSP1wHYupYoEPXr4CwPET01xKgehyeTiiKODUw6PTwt8u/UMpxcbGBhcvXqTb7XL06FEOHTo0snPd636Pzc3mQHVkCJAyAeiwH8iUeu7KEQhPy5yX4tLarRi7DSCTj1znge7xCkUqu2Pi3dY8ugGQBtVhXn1Epx8AUNVQki+hB6qVJ/DWi7SVk8kCqT+Pqu3SJDX63wBkSwSx1mtbCCLtQIkgNvmSfRgvFWh7EY2dcg5U6ynWAWMQYtdzKJVvzO/v+C6djk0ncoiUhF6Yo9GrLRRKCVp+ATuOcGa6BJsFnF2F3U60wU0ygyazI5F+qoknWmszdkfhl0VCExhxHZE6yQ6FOWY0VITzYUIsTrWb3GPTgKuemlwgsDZKbEYKEcos11871de+tZJ06MTh4NhjdoGvP/wY4722Pl+r8VO1h/mpBx8GYKvb4e+89CJ/cOk8YRwThDFYCmH1Jl09ab12GHK4VOZaKj/BRLUGKVCNSCau6YmpKU5BBgprLaF5DB5JqAi1bz7JyJi6ltETbm5FfTBvBTkly6QMWlr1Y9Uaq6sJveWBYzNIL+L9N5Z44OQQKM/Pj7PZi6FxXYvFyynqx1PHbhtc3qq0nZSSw4cPMz8/z/LyMhcuXOD8+fOcOHGCI0eO7HnN+3J6H5Ldw57qer2eAdWj7Jd/+Zf5mZ/5mT2P6VOXVldXM9vDMGRzc5MDB0bjoDtl9zSoBm4LVAsh9vTidrtdLl++zNLSEhMTEzz55JM3RTNJe6qFyCp7OLYcyOMBjNeKbPfk86bGy5ys1Xjz5cuD/RUtCUyrPRz6LVvypz7/4Mhy3Cr9QynF+vo6Fy9exPf9AZi+UadqSv7St0cNCiDLmk41QOSKfMpxKwky05furSCvMysDcBoxIvFPjjRlCFIa7EvTAFLUj8E9QrIg39ApGtUL6ppXOgYVgL9RpBW6SE9A2nkfga521gz8LEXgBuOzowS+fkxMzrMeRyqzqWw7fOrAIf4vn3mOI/U6/6c//Pd8Z6MBZFdhHCf/DRXcPHguFoMch1qphEPd9V12O0W6sUUsJXGUDT4TEuIYdIdaP7s8QCgtUApX+NitQv8G2YmYZPQ7T7+aWKHj8cRkkq4+zKYnz1yH4T1UqDITpEG5VURcjrOZMxVE1aHnWCiBSvOnU6nJrcjCahZoeqkRWV/QSDMkYvDTBOEYOvQatoI/d/IUv/aZz3Lp0iVeeeUVpqamWFhYyAyIE8USf/tP/Si/rn6Eb3z/Nb7x+mt4XnLNhD0zLEDVzvYTekp0yNNnlN2bJBcEdlNhtwQylCOzWWaupVE7lN0H2mLkMZn7+opCKHMTTdCoZ0oxxv+fvf+OsiS/q3zRzy8ijsmTedJ7b8tkue6u7q52yJuWxIVhNIBEwyCGQRJ3SYBwahADEkKANAKExOjq3ssdrYXRe/MuerpX8GZgxEUjqaututWuuqrSnDSV3ufxJiJ+7484JlxmZVZlVndV116revWJjBMn4pww+/f97e/eQVawmsvzqxlmptaoqw0wMblaXm1lpaIl7e9rZmx8ufz6evXUcP0EV1EUOjs76ejoYGVlhcnJSWKxGP39/fT29voWTQ6CVN+uVN+GH1paWmhpufrszf3338/W1hbPPvssZ8+eBeBf/uVfME2Tc+fOHfZu3tqkWghxKKmKmUyGmZkZlpaWaGpq4uzZs2X99l6xuZ1mK16p5rU01rC8kbS9rmZ+rfK6tamGrWSWo73NrF9cQ/Y5maO9a1zTFObmt8qvBwaaqat1JjHasd9KtZSS1dVVpqenyefz9PX10dnZueeb6W6fd6rde9GsJFPUhkLEc7ZKvgAtK9Ddzh4FiVHluinbnoFqRqKli5Z36h60gkJYmk2/gAfNmvb1DZew3mqR/KIUwK/qbZ8ytlYyIeK0O9OTKulUFVIolWYq++forkq1gZNQS1BU19tcHyt8ct0Nw0k2NSHQi19mXTDEB8/cxc+cPO0IJPqTt72d/8/FNv4x/58d5LsqnEc3FcdXHgoaZHIaAVuTnapK0pkA4bCOYQiS6TCpfIBUPoBSGjcWt2EaisdFxJKFeKU4dhR0jdBAFhasDQrDNbgR/o1tgOW1LK11rMZUHzIMhNIlK0J/giCEQM1KjMjOTYpGb8Fq+rP9tiKtICO240sIqLW91gVSlch4gEJBtbyz7deIbVuaVNBt0eTVapCkLZo8ogZIGzpI+K17H+RnTp4G4OjRo/T39zvI9dDQkOMeKITgQ3ed5YWlZZ6Ynyvb8QkhytejCIWASuFgPe12jfH/9gJpSzNdqvZLDc/AyPTTqPtVmAuWBKi8isqOAyotW7wmfFHR0ofyClNza4z0NNOoBnj+eWs2sTqisb1tDST7+5qYsTUlaoHKTgjx2iDVlf0RtLW10draytraGpOTk0xNTdHX10dvby/BYOXmqOv6bTu9Q8CtLP84aBw/fpyHH36YX/iFX+ArX/kKhUKBj3zkI7zvfe8rO3/Mz8/z1re+lb/6q7/i3nvvBSwt9tLSEhMTEwC89NJLRKNRent7aWxs3PHz3Ljlz/6DDIBJpVLMzMywsrJCS0sLd999NzU1NVfZgj/c0o/G+oiDVFdXOUuP4VCAO/raGHt6FiRkc5USjqII5m0kuqurgWnb9k+e6Nh1X/aqqZZSsrKywvT0NLqu09fXR0dHx75v3LuR6oaqKrpqo8zHnW4AXXVR4itOeYwqfdLJ/XytA6AlJWqWyhSxrzk0vhri3RxElHzxhrcDMVIKRarqSn4DirpP5zJVMxCKxRH0jSCpVAhTV2CXZmj3/rmJgig4p6YVCaaLMOZ1w5kaiZeDhISGUAx+dOgov/dDb/Cke5bwE8dP89KlLhbyFRmPEJa0o7rKWZ3OFwIEgpXfNZ9XSSTDrCVV8krRrk0BUyoo7tHEDj+hL2ykS6hW0qJoKqCuB/y341P9t46jIh0SBel7vgHITLGiv8uloRb12W5njxKMdt2rRsgDtvGxMGy7L4FtBV0ELZtG6XK30J3HZBRMhy2jLm0nkoSMqaNIwR8+9GZ+5MhRx76FQiEHuX766afLaX12cv1nb387b/nrv2K7UNHCVAcDpPIFpra2UEUlpXEhmSSoKOTt9wbbNRNISNSUQM0Lj/MPBo6nmeU3fnUNtdWL4JSJiIJE+lxvuzWUCoE1SKoStIciDA7UEF9I8HJxGrqxIcLiUmXQUGObWVQUwRXb/XposJX6up2LIHvFXnuB9gohBC0tLTQ3N7OxsVEm1729vfT39xMKha6byN+21NsBt7D84zDwt3/7t3zkIx/hrW99K4qi8N73vpcvfvGL5b8XCgUuX75M2jaQ/8pXvsKnPvWp8us3vOENAHz1q1+9quzEjtcFqU742DXtFaqqkkwmmZ+fZ21tjba2Nu69914ikeu76bmbFAMB143Idi+sj4YJJAwu/sCqeAgBS8VkLrCaEueKzS8ANVHnE+HOM7277svVKtWmaZbJtGEY9Pf377srfD+fd6KtxUOqqwLeUzUQVMm5q6uuinIgIVHSxa/T/oBVhC+p9SXVu1z8wpSW48MObE6YJc21iemKnFcK0pKx2JdV6ehbAVKJEIZQrf1xPeDdWlBPBdyvkm37XtSCwHTZnZk4pQphoZGxsfWgUOmoquY/vfPd9OxB4nSydoSFNac23vTRVYMkmQ6SyobISA1DEei6hupyQHEH3VjLfKbh/QSvCEtCUbJaU01yuooYzqCuB9AQuIUou/3mSl5ihn202HaoRZnCLvxCKexc7TbCuiXrMIWDmLu/B7Mo/RDbKoWUhikqSYqi4Pzd3R7pbulHlor7S0QJUNBNPv+mt/P2wcEdj2Encj0wMEAmk2FiYoIPdfXwJ9Ox8pWayhU4UduMCAmyus7k5qZ1LFLSXV9HbHOrvH09INESWNp3SqMP74+jSJcuvdw86H+8lQP3Ee8YlXj7yputQbnhE/Bafl/B0n836wEuPz9HT1dD0T0HOtrr2NiwHuDBoMrUVEUG0tfbxJStan29rh8lGIbhqCIfFIQQNDU10dTUxObmJrFYjO985zv09PRYMzC35R8Hj9ukel9obGzka1/72o5/7+/v9wzgPvnJT16X60gJrwtSfa2V6ng8Ti6XK6cf3nfffYR9nCiuBW5Snc07a66ptPWYH+xqJDO5xdxK5Sbc3lHHwmKFVNfVRRykOmOrYr/pTUc5edLf7LyEnTTVpmmyvLzM9PQ0Ukr6+/tpb2+/7urH1Uj1ybYW/vt4zLEsmfOGQ8iQ8DgflEJgAmmJmhMWURRWVdFdefR9ePrA92Fc+tuOqtkSrMqm4mcB6HNTyZoa2WSgTG4U3UWiTZzSDnwcEa5ySIYuHRXKkFDJK87fI5vVy1W5KjT+/Yk7+MV77tl9wzaMVA/y39f+h2OZVpQaFHSFRDpMqhAkowes30VU9ruUDGmHGjCKhcfKwSma9C5TvAVKAEs9XySgwmq41AMCta6Auqyyn3BZRZflFMUdYUpU3WcmxQahS8tj2ecHM3vylvTDeRCY1Xb9NCAlgdUIKdM6x+xSD/dgyn4eawh0W4OjQ/ohrUHVn77lLbyhf28Er0Su+/r6uHz5Mk899RSKotDX18f99w9y5bHz/L8uXrAOVYHLS2sIU3BfbycNLWFe2VojXShUnH4khNdMRF5Yo0Z7U65voqp3NCx0CfZBq+LVUPtGn/vFyGfYMa68BFUKDBPmfrDC6dEuXrpgDSqjNWHGJyqNU0MDrVy6tFB+7e6Hueuu/t0/aI+41tCz/aChoYGzZ8+yvb1NLBZjZWWF6upq0un0NRWeric45lbGbfnHzYNbnlRfS1T55uYmMzMzbG9vo2lauTHjIOGWf9jjyAWwtpXmzEAbsSev0NRczYpNX93QUO0g1fm8UwqysLBFKKTxwQ++gbe99fhV98VNck3TZGlpienpaYQQ9Pf309bWdmBTiYqi7DrN59es6K5cA6QMHbVgm+KWRa/hpISgc1/9kgx94fNw9mtoKiGQMpGa4vtwprglLS19ia702Z5e7WGDDnjIuekkTuB1GPEMClwfETBU8q4PkliVTjUr6IhW74tQg0WqS9CERiIZIpHVWEyrGErR2FgBEZSehkNFkxh5UOyOFwoYBQXV5nUtBBiGwM0bTFOguhwx3DprRTUxTJX8UB51M+LfrLgDTE2xbPB2IdVqrpjKuBtMHMExlcUmNBSZnb1KnVYqpDoPrATIayr54tPJTfoclWjpJJCqqaDbQnnKDjsSmmSYP3nLO7i3u+sqB+DE9vY2ExMTxONx+vv7KRQKzMzMkEql+OgdZ3h8bo6ZpHXfMjUriXI7m2d8Zo1wQOXEQAchVeOe5g4uv7JMoVilV9MmhsPpRnit9nz2x++hrehOaZRfWqLf+ErNWM2z1uB8Bw28gOCGQX00wCuXKrM0A/1NvPhS5bWhO1n70nLlXl5VFWT0+O5yvb3iRjpx1NXVceedd/L888+TSCR47LHHaG9vZ3Bw8Jolkrdhw+1K9U2DW55U77VRseSxPD09TTKZpKenh9HRUS5dunTgI2fDMJm1JSdWR4Ksb1W0PY11YRqFysT5GQCammscpNqwEWAhYNFGsDs66xGq4Dd/45309jbtaX9KmmrDMFhaWmJmZgZFUTwJkAeF3SrVpmky3Fjv0FqCFW3cVRdlfttJrqNCY8ssEIxboQwoAtWUV7XuBX9Sa/0BD/F065RL0HJWsdw3qKIEXWJUub36pNdD2/A6l3huPK4DEwWQtskTT9OivDrpNnWzQt5MqJEBshkDxbCq8J96x5t8Dmp3RLUaTlbfzUQyzuWtbXLSBAX0vE9zYUFFDblIva6CyzFEGsKbLCl91N9+ZEqVGGalqm2RagW92nLT0LaENfNRfsPOAymhCut332VmXc0XK8e7Qvgm+JltujdRE6xkRFMi1zTyhobqCoGxz2gIA6cuuIBDRpQzbBp6CRlpNSSG0xoff8uD+yLUqVSKiYkJ1tbW6O3t5fTp02UL0sHBwXJD468MDvLrLz6PQTEEKQ8zm9a9K1sweGlsiaGWRmKLzoKDonuvZ3dzqenTrCh9Bj1+Gmq397jbWUjNSpSijEspSIwdSLUAwluS+voo23HrGIIBhYnJSpW6oT7ieN3VWc/8whbV1SEa6qs4NdqFph0MEX417O1KjiHt7e1MTU3x+OOP09ra6mlk3Qm3NdX+EFIWZ2NuHdxqx1PCLU+qo9Eo6+s7h6yUbOGmp6fJZrP09PQ4AkuuN6rcD1cWt8paO4DWpijJOWsfO1tqaTJMJl+x7bOL1C8vV6yY2tpqWVquEM277+7jpx45Ryi0s6/2TnjyySdRVZXBwUHa2toObRrOj1Sbpln+F1JVhpsauLzmfLi2VEccpDqoqvTV1JEbX7WcPIoPWT83Bb8pY99mJkX46gcU0+snrWQtRmQFv+z8XQlToGUkBXvqW15ihpxsSskZHonKbhVT8E5Vi4KTVIu8k1wFTYW8S16RyxuoukApCNChoJgoxeO/p6eLs127y4d2Qk6v58WtGccyaXpJsN+9dQdltAd+Emq/01YIkKaCKFawFYWyi0dmOEf9EyHL59y+bcN/ICUKEpExIbgzYVEKeAKB/PZJzUtHFRbAbC+gYDm/2Am3zAn05TCGYkmaDNv+ioLzdxZ5kD6pkFBsQrWdI9WK1TgYSql0VNfww8eP+r/RhWw2SywWY3FxkY6ODh588EGPPC4cDnPs2LGy5vqHonX8j8QWUrWcVNKFAgPNdVxZs8j1UjzhGdP6ueYouovc+mio3YPHytG7lriJdmlbxUPRUpW/+xF8O+7q6UBmDE4c7QAkmmKyuZFA1AaQpklXRzOpujR6waCQLdAYCZHaypKZ22YVOPGuO3bZ+v7wapDq0mdWV1dz8uRJhoaGmJqa4oknnig3stbX1+/4/tvSjx1wu1J90+CWJ9U1NTXMzs56lpecLGZmZsoey52dnR47oMMg1bFZJ8mvLga1jPa3svjcIma3c0S/tlohkk1N1azZQmAam2pYWk4QDgf40C++kTe/+die98MwDBYWFpiZsYhPyTj9sG9sdlJtJ9OlJhdN0zjd0e4h1aX9CmsaJxtbmJ/ZtFInXdZ4fqEOflPGVgiM6XESELq3gdHvwR5MmAjUHaOoS1AL1r6rqwb5WoEZUoqf69xvd0UZiceFwD04cO+Xe8rb4Q4BVlNlAJSMQM0IgoaKbtjkKaKigAkoCn/8rrfufnC74GRtN/+/pRccywKqgnQNT/wmQhR3RRp/rbUoL6t8EUKRvrpqz/aKSY1mLRQiBsJl1aHkpNfyEEvyo+pyV720osuranCVvCSQMElHKl+AHtERrvRMkVQobAcs2YxSeq9TBqQUdq6cC5yuHxERIGVrzVR1QTBhKc5/5aF7d99prM756elpZmdnaWlp4b777qO6epcOPirk+rO9vbz5b/+WNAZSs2ZWGqNVZVKdyhVorqliPVmxG/WTW/hWrwtODbXUBLg8wH1lWn4zGwWrGVXJyXKzMUAkGGDbN6oHlJzJ5e9Pl8/E0ROdXPzBbHn7oSqVzcub5Is9L4oqiFeHyCRz5df3vPGI77avBa8GqXbHlFdVVTE6OuqYsaivr2doaGhHm7LbxNqL25rqmwe3PKkuNU2UUGq+m5mZwTCMq9rCHQapnppzkmqJ5I6+VsYet8h/PF6xGKutq2LVJv1oaa11kGrTlPT2NfKbH38X3d0Ne/p8wzCYn59ndnaWYDDIyMgIFy5coKmp6Ybc0ErhL7que8h0SWpyor2F//Ml5/vi2Rz3tHYwE9vgwvwiAJlMwSvXUL0PU6i4Njj2xef56G7wgiKZdRe0ChK04s1hFxanmBKpCoRQCG5LpKp7oskBDFdfj7v6iMRbyb4aybbvhw7mtiSkq+X2yqCqottGBZoQ6MW73U+cHqUxskO5cw84UeuVEKiaLHpdV/ZMDRiY7obDgGmlAdoIt6JJDF2guNwwPMsEGAYerbVbDaCoJqauIASkTxpUv+L6u+5/11dzOIiWB6ZFxATFAdoOwSRa1kRI4RhgGV2FiuLEBHM5SAEVJS88TYh2OYf9dxfSaaEYlhoZm8BbNywpDjoE04plp4igs6aGtx8d3vGwDMNgdnaW6elp6urquOeee/aUhGZHdSTCr9xzH3/89ONWuqIOW2mnPK+lttpBqo2Qj4baR5aj+Mi+VN05E+CnofbbVmmWIZBwtiKnczqE/aePQtuVtudjxzu4/MIVB2FvaY0wP16R/fUMNjH7SiXwZfTOPmobdh+c7AcHbam318/086kuDaoGBweZmZnhueeeIxqNMjQ0VH7uSClvyz92wu1K9U2DW55UR6NREokEmUyGf/zHfyzLGvr6+vbkZKGqKrlcbtd19gu7h3RtTQixnmPsJYskVteEWF9LUSIdbR21bI9ny+u7LbWOHG3nkZ++j1Do6j+lrutlMl26yTU1WbrrCxcuHPjgwQ+maSKlxDRN4vE4dXV1DjJdwqn2tvL/14aCHK1tYmZyndXcNgWjwoRzBYOupijzG06ttaJLD3G1qk972ElfnUGR/BQfqFpch+LDQwjhG0FegnRUUQVCqqhxHRkQ6PYqpet56qkyuyzS9tKkaGlNQYsLAhkFqQtn85trIFD6vIii8L6hXkzTvOYHc1+kmRo1RNKoXD+G0DF0Z3OhUMDMK6gBVxNiQfForU1DQVFd+mufz5Y+WmtFMYs1xqJWVpUUClYDmlEvKUR1AonKdeRrh2cWK9BC7EiY1VzlF1cKO+vtRXEGI7RlkmlTMDER9RXym98KIkXxHHPLxu0/iemsWocMlaxWuZYLJRINICEnDdSUQEkLaoJBkhRASn7zTQ/47qdpmszPzxOLxQiHw5w5c2ZfYQhu/NQdp/irl15kQSYhCyvZnGOYFXZL14RAzZqOUCe3FSX4S6U8Th4+Gmo/GZiQEjVtWIMn14Ddb5YJILhtfdiRo21MvjyPtMl/GpoiLMa2HOvnUhnH6/vesvdZxr3g1ZR/7IRSEae/v5/Z2VleeOEFIpEIQ0NDNDc338A9vblwu1J98+CWJ9XBYJDx8XFGR0epr6/nm9/8Jl1dXXsmCodSqS7a6XW31RFYyxKbWCz/rb2zjsmJin1ewOXPvF6sUodCGh/+n9/Mm/dwI9Z1nbm5Oa5cuVKejmtsbHRZke0vVXG/sMs8gsEgvb29vPjii7S0tDA8POyxXxporKerNkpnsJqJsVVenrG+o8G2BmLLm451G2siHlLtO/Xup6v2IUWmT2UMoK22msW89SAMJA2wNRSJAh6rO2tj0hvuYUoIqQSSEEjpZBqt7bgr1R6/aT+SvVuTogkYENxUy41W7qa4rK47dq7UHPrRe84wOzvL7OwsQ0ND16SxV4TgeG0Xz2w67RFNQ0F1E2ND8TQmCisv3LnM53N8l/npqhUwC86qtiKkZYuoQLZfJ/BS5Qs0g4pndiKQMsvfg5o10Wu8J5War/xKlkxhpxkMQAFFt843vbvSoCj1YrNmaV9ciZn2waGSB9NWxdYLpuPOrtsuhqgZILtllM8Hs/h7d9XW8qbhAcf+SSlZXl5mYmICIQTHjh2jtbX1QGazHn3gQX7j2/9MQdFJ5At01VazHLfubfGk1+nHLfewx5WXYAb8WLV3kWJKTJeGWk3pGNWVL02vUghu6IiA96Kukgpuk1YhIZQyGRpuZfrSEobuPG8bG6rYWqz0wtQ3VbMy5zzO/tGG6xrEunEjLPXc2CuRDwQCDA0N0dfXx5UrV7hw4QKBQICRkRG6u7tvwJ7eZLhdqb5pcMuS6kQiwZe//GX+6I/+iEwmwxe+8AXe//737/smc9CkejuRYX0rzWh/KwvPztPV0+ho1AqHnTfxbVuUeU1NiJWlOF1d9Xz8t95Nb9/u7h6FQqFMpqurq33JdAmHRap30kyXPG0nJyd54okn6OrqYnBwsBxWoAjBoBHl+y8vOLZXG/GWmhWf4xE+V6wR9D6sZEB4XR6EQE0bGNXOc6WttY7FuUxRdOzS3+7gea3mpOf7VrMGZpVWqpcSWTXRVUnKPfPu3pyPXtrx2takqEkBG6DmlYoWXdHImE4lsGHbaEBRKGDSV1fH+++/F9M0WVhYYGxsjKmpKYaHh2lubt4XqTrpQ6oVv2Yx37KFd5lv4IvwNooqO+mqXRVsRbFcQQBkjUm+wSC4af22UhUoeWdVUs1WPkst+PtQ210/dpKQQIWvCyGo2jbJ3Vmw+mRNyCeC5c9xz1CoOecAzD2ANGx2giGpktMMAlJBbkFQUSuJhRLSxUHVb7/lwcp+FZ2QxsfHyefzDA4O0tnZeaBSgjcN9XPs2SZeSC2jmtDaWFMm1anC3u63asFEtwUqmUHvtew3aJa+16lZCXYxJaF13Yod9RkoKz7x88G4zrk7+3jx+zPoeef+d/U2Eru47FzW08j2UoVk9440sxFf5nvfW2JoaOhAvu9Xq1K9n5hyTdMYGBigt7eXubk58nlvHsFt3K5U30y4IYKrjY0NHnnkEWpra6mvr+fnf/7nd7W529jY4KMf/ShHjx6lqqqK3t5efumXfont7e2rftbm5iaf+tSn6Ovr4//+v/9vHn30UVpbW3nkkUeu6QZz0KR6em6DO/pbmX58hnxOpyrivGsnk5Wp8lBYY2Fhq/y6o7OeB39ohM//2U/uSqgLhQKxWIwnnniCzc1NTp48yV133bWrZnqnAJhrRUkzres6UkpUVSUYDBIMBssPi3A4zIkTJzh37hyZTIbHHnuMWCyGrltU5WiX16/aMLz7uOmaRgXQQ4rHVsKqbnnfrxR8iJrPV7GdsmQ4R9uaES7bq52a0tS0l3Z5pqRVBcU+RQ8gvWExe21S1BKC0IqKllGdv7frMIOKs4ReWvePHn4LYA20uru7efDBB+ns7OTChQs888wzbGw4G0h3g6+u2udu6teEqAS9152imUjTJetQrd4CO4QAmfcj7659Uc3yeSIUyPY6ffCUnGu7um12Zwd3DzuR3smrWhSko0OzujuMCFgDAT0ZtCr3pW24rflcH2uvYmuGcBDwkFCpK4RQ1wWqLsjZPJKrNA0U6K6r5cGBPsDymn722Wd58cUXaW9v58EHH6S7u/tQtLm/9caHqNGsnbVLN9YzOY/+3dcez+f7V13XtxnAmhmyb8vnMaAU1wlv6lQvGqgigJb3v6jzWe+PGt02ePafLjA81OI5x6qCmuM3EwJW5pyzbT/0ztM89NBDjIyMMDU1xXe/+11mZ2ev+Z4spXxNNCruFaqq0tvbS1fX/rzRXzeQt+i/WxA3pFL9yCOPsLi4yLe+9S0KhQI/93M/xwc/+MEdYyQXFhZYWFjg85//PKOjo8zMzPDhD3+YhYUF/u7v/m7Xz/qLv/gLvvvd7/L1r3+dN73pTXz/+9/nc5/73DXv+0GT6plXlhh7fKb8OpOpPDE1TWFhvnKz7exqIFaMr9U0hbe/8wRvf+eJHbddKBSYnZ1lbm6O2tpaTp06RUPD3poXS17V14udKtO7PZRramq488472dzcZHx8nCtXrjA4OMjRTu/AYT2Z9iybX4+jCNezUxWoGQOjynmDVwvSY53mS4h9xh5z69sEAgoRP3sRfCreO23IZ5HuykfwNEtKnyZF926YEFxRUAzF1/Yrp+uOAntAVcnZpqnzhsG5nk5GO1od71NVlb6+Prq6uso6yLq6OoaHh6/aqDYa9drxCZ/GRFWT6AWBYrcDVEHPC6/W2vB6XUtZ8sizLTMU3MbeQpGYhkAoEiEsIi10UUl1DEhyLTqhVWtH7MRZzZjOWREpPFrcUpNiCUrexE93pOVMRwPcQlMcoUoKyQCmVKx48h1g1827m1mr0EgUnT1EDoy8RM9Z34GCoGAnacWv53fe+kMOr+m+vj7OnDlT9po+LIy2tXC8sYnn5pZYTFSKLAXDpKs+ysJmRR7h58LiF76jGK5fXBTvAxGXlMb1uzW0RNmeSSBCwfJTUdH9Ca0S9n4vYs7a/4tPTzF67wAXLlgzbIMjbUxemHes2z/cxvQrzhm4+95yvOzx3NHRwdLSEpOTk8RiMQYHB+nq6toXWS2R8RtJqg+KyN92//DHrVrZvdVw6KT64sWL/OM//iPPPPMMd999NwBf+tKXePe7383nP/95Oju9D92TJ0/y9a9/vfx6aGiIz3zmM/z0T/80uq7vOr3027/92/yH//Afyq+j0eg1x5TDwZPqSzY5g1AEC/Nb5dcdXQ1csTUxVhWt9pqaqvn1R9/FsR2StvL5PLOzs8zPz1NXV8eZM2d29QL1w/XKP66FTLvR0NDAPffcw8rKChMTE2RS3qnAxc0EVQGNTKFSLTJMSVdDhPktJ+EWBelwTNgJfg1Oho+e1jAlR1oamb606llfYBF2w0WqPTpPCaaPRZhe71xPzYBuI9VCd5Fq0/bahMC2gkjj/L7doSKuj7WHCAUUBSkkf/Cut3j2rQRN0xgcHKS7u7tsj9Xc3MzQ0JBvapppmmwurtJCFavYZhMEGHkVLejSVedV0JzXmp/W2s/rei9lD0NXyJSrwBKhSFTTkltI1bSagIOSbLtBcLXokGJ7wGtp5wkhhEDNSkcDnb1J0dotH+INqLZipx4y0aMg0hqmqVqHUvpqpNMqT+Sdgy23lZ4uLUN1LSFQcgLdFj9frQVI6JUo8rSu01MXJZrc5smJy3R2dvLQQw8RCrlGnYeInzl7hssraywnU7RUh9kszgY11FQ5SXVAeBx9/K4jvxGroruIts3TuiqgcaKxmfnJDUTQbfnjv886stisaJFHJWugJSufcPHpKU6eG+CVVxbJZ7xN7qGg8/nVPdBMz2BlVk4IQUdHB+3t7WVN++TkJAMDA/T09OyJtJaeWTeSVL8aRP51Ayk9M683PW614yni0OUfTzzxBPX19WVCDfC2t70NRVF46qmn9ryd7e1tamtrr6rXcl/Q0WiUfD5/zVqtgybVly9WmhI7OuvJ2irV0TqnXjiTyXPydDef//P3+RLqfD7P+Pg4jz/+OKlUijvuuIM77rhj34Qarp1Uu2UeiqJ4ZB77gRCCtrY27r//fu48PkyVi5RKCe31Xtup5jpvxdSv4OFnn+VXBZOlh7gLTcEqcnn/88EtFVBTBdBccek5HekODcmbFFy7766eu72wRQEQEM6rBFdU1LTi/L5dwSGaUDxXe9Z2XgdVlYeHh2mpubqlVzAY5MiRIzz44IMEg0GeeuopLly4QCZjEWfTNJmbm+P8+fPMz89zqq7Hsw25x1PNlzb56qq96ykBWxU+rZGOh5Bm6UtQkKaKjoohVYykhsxZDYuEIN1lfeGm7XzxkwnZmxL9XgshUHPe9/X3WE4HEsnmWRMpFYySTYgJpSNX8jhKH24piEMCZEI+bxDcUFALCmHFea/M65WTKKypIOB/ao5iGAb3338/x48fv6GEGuCNI3301NYB0NlUuQiCPqmCYcP5I5et9mzwnUTyeXYrOZMGPUDdlsLFFxaJJ3M01Lr6NXYJ91HTlWsntJ73nKevPDXFPff0szC15lheHQ0Te8VZuT63Q7aAEKIswRkdHWV+fp7vfOc7TE1NlSVyO6H0zLqRlnqlfdqPptqO23Z6t3Er4NAr1UtLS7S2OqeTNU2jsbGRpaWlPW1jbW2NT3/603zwgx/c9+eXolGTyeQ1PTAOklQvLW6ztVGpptY1RJi3VaoLNrImBNx1Tz/ve+QcqivcJJfLlSvTjY2N3HXXXfv2i3Vjv8fprkwrikIgEDiwm7iiKPT09HCit53vTzqnSqXuHSCZPjdkU/PuixHyqRwqwkq2C7qric7Utju62jBWdh6cqekChTrV9lrHrHZeYmrWwHDZH2o5w2GtBxQDUirLPE2JOgTWFCgIFCwSbq+4u1+HVZWkbTpbQWDY5hMjwQD/4Z1v2PHY/BAOhzl+/Dh9fX3EYjHOnz9PQ0MD6XQaRVEYGRmhra2N1aXn+ZftMef++6li/HTVPstUn8CXSmOirZIckBhZhXw6gO7wEcRJtFSgIDAKKsKQiIBJoR1ySZOQtGQ9iiERPjUIN9FWs97ccSVvYri8jUu63O1REyMADosYu/7W7Udt/41lxQVE6BBNB8jZdMCqKsolWgXI2ZxUTGnSWRXmfW9+43XfO64HQghaqyLEa3OotgF0zvCSxq62Oia3tu1v9kg7/K5vt+2hljKp2pLkU3nsV3NzfQ2biYp9qRFUd4yqt//unUqIDJWqeqgqwOBQC8/8/Q84dt8wl8eXMYsyor6hFi4+M+3Y1n1vOe7Zvh2lQkNrayurq6tMTEwwNTVFf38/vb29viS25FF9I6UUhmEghLiuz7ze99+quN2oePPgmhnQo48+Wr4Advp36dKl697BeDzOe97zHkZHR/nkJz+57/dXV1cjhNi1MXI3HCSpvnzBSQ7dTXeLxabEcFWAh3+0l5/6mfschDqbzTI2NsYTTzxBNpvl7NmznD59+kAeinutVO/UgBgKhQ6lKnK8p9WzTFG8FaT1uFdrbYS9lSwUUXRwcEL4NCWVqsVVQY07G1uZeHqRzU3v55QgQ0HnlJZfsIwf+VelpynRHVJTJloS1IRA21JRC3v/vt0fG7ZVAlUh+FejRwldY4WpqqqKlpYWwuEwW1tb5HI5Wlpayo2xJ32aFbWAibuEqAZNT7VKCUhM94BCsaQcjmWiJAuxYOYUclsh0lshJ6HeAdYNXiBNBTOrIguCzKCOHpKoOUkgafpXzV3don7pmoprHBZQFZZXEmSaTHLNRUmJfTO2iqyjqc7lR63mBSiW1COwoRCwWfAhIWMjptVa0PG3vJR87N47rpqEeCPwzhPDRAmylq5IhNZ8eidqar1aLs/3rQjPjJFRvJaUgqRqWSeYEHR1entNqtz+2IpATbu7RIsoX4+SyEaeQHGg3NXXRF0kwMWnJgG49OQEQ/1NaMUBw7YtHRegqa2W4RNeCaQfhBC0trZy//33c+rUKZaXl/nOd77D5OSkp3L9atrp3SbFh4BXu6HwdqPinnHNlepf+7Vf4wMf+MCu65Rir1dWVhzLdV1nY2OD9vb2Xd+fSCR4+OGHiUajfOMb37imxhkhBDU1NddFqkthJddLGi+5mlNWbTfY1vZaVlYSdHU38KuPvoOpmQtIadmxZTIZZmdnWVxcpLm5mbvvvttXw3o9uBqpPgjN9H6xublJMBv3Ls94q8ULmwmqQhqZvO3hIgRaxkCPOB8uvq4BivDYo9XUhamtq0JZ1hmfsmZVllcTaNWKlUrn2YhAS+vo1dZ5Kn2msP2W5etcxKwAZpVzmREGNSXRthTwGVS4nUDcr7Ouyp+9Sa6zuob/+aF7vMdzFUgpWVtbY3Jyknw+z8DAAF1dXSQSCSYmJnjsscfo7++np6eHajVEyhYCI1SJmVcQriZEM6d6A190n8AXQ4ArytyUAiOnoKcD6KYCiOKN2+/u7RLM278vIawBUU6QPKLT8LTiIcb2dUXBRAYUq8rtTmcCVNf51lEfZXl9nfio5ZHt4fylQzVcUeQ5px+1zEuCSaVM7LM2u0RhOBtZC3qFHIY1lY66ampyac6fP1/+3W50+l4J7zo5wp/94+PUN0eIhAKkcwWW4ynCmupwK0lmvfpkP/qmZishTWBV98MrOoqhIIpG4PaejBLcDjIASs7AiHo/oyThCmwVWJ/eYPTeAZAw9kwMPe/c9sSz07QNN6PVVDE/7pSDnHvzsX2TUCEELS0tNDc3s76+zsTEBNPT0/T19dHX10cgELipnD/suE3I/SHMnR2mblbcasdTwjWT6paWFlpavJZnbtx///1sbW3x7LPPcvbsWQD+5V/+BdM0OXfu3I7vi8fjvPOd7yQUCvHNb36TcHgvUXheCCGorq6+LlINBxP5evmVip66vjHCxlqlgbKxqYb+oRZ++dffQSCoMDVjSVbm5+dZXl6mpaXlUMh0CTuRatM0MQyjTPBvFJmOxWLE43FO9XfAk06f4810nupQgFTOWUXqbqxjfMkZAb+bT7Ad7qKvkDDS2sjk80vkC/Zpc0lXUy0zK1u+2xnub+PS6gYib2BWBTyhL0bEdclJSd7VpKjknM1nSg4CWwKpK5YNmzuYRuKx43O/NpAOBlIKfRHAj58c3ffDbGNjg4mJCdLpNAMDA3R3d5evlbq6Os6ePcv6+jqTk5PMzs4yEG7kZWPRsQ2jINACrt/H8NkP9wiByuy+lKDnVPScSkFX8fil7XSaGjjJrIZFZksfpVi6b2EqxE9IWp5xJ/gU9wPQMiaFgIKWNhyDlRK6OxsZMyoD6IaqMBdPy8phudIRSx+k6QI9ZBt02JoX63JBMikdUZQ2CAN0H615aWtZ28BC01Q+8663caytmZWVFSYnJ5menmZgYODA/aj3AiEEd/R2MLcep6e5jsvzFvHsaIwybbvOFre8oTDSZw7ZPhsUiBsEk6DmKxVrgLWtNOGgRtZGgBOpLG6IHRxAzICKpkt61BDdR1uYe2GK5t4WD6EuYX12k76jKm1d9SzbJH/Xk6IohKC5uZmmpqby9Vgi19Fo9DXvUe2H26R6B9yKld1b7XiKOHRN9fHjx3n44Yf5hV/4Bb7yla9QKBT4yEc+wvve976y88f8/Dxvfetb+au/+ivuvfde4vE473jHO0in0/zN3/wN8XiceNyqWLa0tOz7ZnG9lWqwbhjXYzGVSee5Ml0hfK1tdWxuWtOdiiJ48I1HePePnEYIUXYrefbZZ2lra+Oee+459Glat8zl1SbTvb29nD59Gk3TqP/7Z9lyPfC6muoYW3BWfQI+pKK9u4HZuPNh7OcaYE9RrNdVqvMqF5+ep7OtloUV5/vrIjtr86uK50ggkcescg4E1VQes8b5XiVdwIgWs8RLywqVIBktDsENBSOklCPqlYIzUQ+3a5vrdUhRyNk7AyXoRTLSYAT5yXtP7ng8bmxtbTExMUEikShXoXd6kDY1NdHY2Mjq6iptl+d42bOGH1n2qRaq3mVSQjYepFDQkA4xsqsCrXoXAd7vTLiquwKL7EqBEYH4kKQu5v/AV3OSAqVGVe86yUQObGEtU8Ft9DDWyMB9vLafqVpobFMZOJoBULKgJRRLgm3TCgtpO4MkCLXyuloNkDQq2xlqqud4u1UQKWl1l5eXicViTE1NMTg4SEdHxw0l1w+M9PLHL32Xe0craXq1Vc5rJZ3XqQ8F2LINpg2fuHCpCJSsSXjdRCiqNQCTXglfe1OU6cXN8uuldS9pD9aE8JukEADbOeLPrjCxYd2bTMOkvrmGrTXns0YLqDS3VTHx1BShSJBj9x3j0kvzROurOHG232fr+4MQgqampjK5npycZGpqCk3TyOfz5UCtw8arUR1/veC2pvrmwQ3xqf7bv/1bPvKRj/DWt74VRVF473vfyxe/+MXy3wuFApcvXyadtnR0zz33XNkZZHjYGTNXatDYK0qV6mu11Ss14V2vrnrs4qJjerGksauuCfGxRx/mrnv6SaVSzMzMlOUyZ86cobGx8bo+d68oVapfK2TaPoA52tXMU2NzjvdUu/WPQNInBCbnM8dkhhTfFMXavEJrOMLS8jaldqj6aMRDqhWfymnlWKxzuKOrgfkN5/6oBemRWStZ3SNPAYkoCEJrAqTqkau4D6lGDZC0kS93BcDtRx1WVTLSQM1DX23dnrTU8XicyclJNjc36e3t3bOPcUkH+k71HP/Py9OOv9ndOUpQgybSxYKVgGk5ShmCfCZAIa9hojgry9an+ewAoAtwV8T3UhBTJNKwjiHdLVFykui8z0CgqOVWfdxBALY3M4TrQmQLOtk6g+1wslhql95Kuk0XbifCogBaWiAKVr+KhsAuhlADArP4w4cMQc4mjbH3boRVld9+6w8597/oMtHW1sbS0pKHXN+I6uEPnznCl//7U2yspVCFwJASxceHuqOpji3bYFoGFUTORJbItSnR0ibBlIKwyaRUVXi822tcg+NcwaC1sYaVzQoprmqJksx47ysANUIlsFkZ7Cc30/R1NBDfTGMWv3NFVRg40sLYM9ZsWy6d5+K/vMixh47Rd7LX04R+vWhsbKSxsZHx8XFmZmb4zne+Q29vL/39/Yfu7HKbVB8iblvq3TS4IaS6sbFxx6AXgP7+fkeD0pve9KYDtdeJRqMkEt4qxF5xEM2KdukHwPZWhp7eRh795P9EbX2ACxcuWBW9tjbOnTvHM888c+jhC3YIIcoNiDeKTG9tbTE5Ocn29rYvmS7heFeLh1TnfDSRaR/pwPJ2ippwkGTWWW8a6W5mfNGaOagOBOgNVFNfHeClMacjjerT+Z/y8c8uYXEpTqBR8VcxuDvuKMoXIs5lShZCGYVSadrto+3m9Jl0HiI7Ex+3M4qmqigFEy0u+eE3H93xfWBJkCYnJ1lbW7PcWE6cuKbKl1+zohIwLdJq+46FJjHyAqV4Gpi6oJDVyGVVTFQcbNivMOyWdYBvw6i1jk9V2w6Xzjo5BFKV1M66PlQUZzlMsSOvb6ut5rK+Qa7TKcPxkurirmTBKOqno3oAfd2wIreL783ag3wMKNhItJ4zy37OCoKMjU6ebm/lSGuzdyeh7I/sJtdDQ0O0tbUdKrkOqCp3D3by+CuznOlu5bnFZVY2tzzrhQPeR1a1UEkiCW4WCKQEQg1Yv4ft92zprGN+zTU49iHtjbVVDlK9Ec8QqdFI57z3G2UrTygUIJ+tDH5mXpln9MEjvPL9GYQQDI+2c/mpCc97p5+L8dHPvNf3uzgIhMNh6urqGBkZYXJyku9+97v09PQwMDBwaOT6ahkSV0OpkHMbXtyuVN88uCGk+tXG9VSq4WBItb1JMRTW6Olr4gMfvp/l5Tkuj6/R0dHBuXPnqKqqKn/mQcaG74RSZToQCJTDYzo6Og614rBXMl3CsW6vdn952yvnWUukqYuE2HYFLnTU1zC+5IzWrgkHCWgqp1tbmH5hiSv5dWpHvI2zKZ+myKXVONYcu/8DoLexlsUF7yDOiHjJaKFBLRMrJQeBdQWB6ti26fpq3F687teK5uSR7iZFaUq0bUlQU/hX9/jbeaVSKWKxGCsrK3R1dV13KEg0UEVfpImZdEUCJQSYWRVR7W1M1PMK+VwA3VCsFXX2dLdyyCDKC31WVLC2aT/NVaDgWqbISvVYQKoXpOaUgghFEEgavk2KJaRrdHJhV2XavV823aSasX7X2m2NrKETMtRy9VlIsKWYW/aJts2YttMsompWxVtCsCD44L1nd9zH8iEXk/3a29tZWFhgfHycWCzG0NAQra2th0Z8HjzSx7dfnGJ7YZugKogXvPfcgk+D8ImjnWTXc0wsrlLsQyQS0EjbBrFrW2mPk+LGlrcJOuhD2tsbaom57h8AXF5l6GQXF78/7Vh88YlxBs/0EQqqvPL4mPd9wC/+8fvoHt69Uf96UNI319fXc/bsWba3t5mcnOQ73/lOmVxfa5/Sbp95u1J9SLitqb5p8Log1dejqYbrJ9WmKRm/WKmAvudfnebU3fVcuPAinZ2d3HfffZ4b3EGHznj3ySnz6OnpIRwOE4vFmJ+fZ2Rk5MClJ/sl0yUc9yHV64kM9ZEwW2mn1rqjsZbteWfiYSHrtecKC5WOVIDLz1SCGLYS3mne5dUEbt/bTLZAa0cNK1v+A7W2mhpmCluOZSJbQFa5jtUwyTcHQEqCGwKRFagFYem7S+/TpUMDLgxpBdPYX9v8tRUDTLcNm4vr5ZIFNB2O97WgumYiMpkMsViMpaUlOjo6eOCBB8oDvevFaLTLQaqh6OKB9RUXshr5bIB8ToHStPhu/G1vPY276Kq9zhseUi5AGrJSTVch3WlVrOvHKxuM6ip535I4pNphPhR3fpaU3ruvUTkoJQehrCXjEFKQ0ypal6gaJG5WBnvhgFquRis56Th/cjkdVRWIhKQhGOLsoHfGYCcoikJ3dzednZ3Mz89z+fLlMrluaWk5UHKdTCZp1ZMENUFVdYhT0TqeXV6mPhJiO10ZJG/aeiuCmsrplhbEis7kxKrj5x0caOHlyco9N18waG6sZnWzcs1uJ70DZj9Xn2iVdzCspPIEVlNcXJ+g90QPs5etmchQVZD+Y+3o2TRLc/73h7e97z7e8GNnD7Uy626sr6ur46677irLuL773e/S3d3NwMDAgV3f10uqb3tU74zbleqbB68LUh2NRl9VUj07vUY6nScQVPmRnzhGZ69JVVUV999//47Vv4PQcfthN810d3c3HR0dzMzM8Pzzz9PQ0MDIyMh1O45sbW0Ri8XY2tqit7eXU6dO7UtC0FJbTWNNFRtJJ+ntaKjxkOoqn0pTsCoCW9Z6HbURGnIBFl9aY8NFipdWE6iKwLBp31OZPM2NNaxtOtetDWk4jSIrMFMG7Q01LNmmkYcH2phYcFa71EQOsyNEaEGxqpwCRMGAUOXBJHTAxsVFwWmVphTAsOea5CXY7PiqAxqpUqVaSiK6ipEykQLee9+J8nrZbJbp6Wnm5+dpbW3lvvvuO/Dm2JO1Xfy35Rcr+4rAMBRyy0FyiooUlYqwB35F4FLp0b6+hqWXt0/tK1iEdS93O/dn+yk6BGSaQA9LAklBaAPOtLby0oUKiTMBvQayjZAYkFbjoHBuw4/kKwUIrYJUlLKEQ82CXl1Z2cgWoHj5CF2S0fTyxhS9YsOnAKoBxCUKcNeRvfkhu1EKYiqR64sXL5bJdXNz83URoWw2y+TkJEtLS3R1dfHg0T42tzNMXVqloStMS3W1g1QvbSXQFMHR1mYSM0kuzS7Q19Hgs88+0o5oxEGqE5kCkXCAtE2+sbntHYD7WX+1x/P0nuwkWBVCCagMnepGlSZTz09x8X9Ymu9oazU19VUktyr3rf7RTv7dJ3+sHJRSCmg5aDK5k091bW0td955J4lEgsnJSb73ve/R1dXF4ODgdZPr25XqQ8RtTfVNg9cFqX615R/PPxujJhrkXe/t4+w9VgrW1abSD1r+sdcGRFVVGRwcpLu7m1gsxlNPPUVHRwdDQ0P7nv53k+mTJ09ekx5XCMGxrhYevzzrWB4Oeqvcmbw3rGF5O0U0HGQoEmXyxRVKVDdS5XygGoZJd3s9c0tbjvc311d7SLVZ2CEUAsjF8+SupDhxvJULVyzqXe3jGCLyBkhX6pnbK9fdX+e+D7lPEdfflQIgJVrKImeRoEpSmAQ0hXecHiafzzM9Pc2VK1dobm7m3Llzh2bbeKK2m4BQGYi0IQshXl7ZIpkvaYNdJNhNlhU80esIfJoVsWz53CTcx9ca1ad87bbWw5J7YNrsvhRrvUIUCrWQbod/ksuI+4SVcqgVBz7lfZAeXbwwQLpOX20TtJRAKQgMm0ZemLb9lJKM7a6tZkGP2qRCxb8JHRrMIMlUvrwbP/PGM1wPVFWlt7eXrq4u5ubmuHDhApFIhKGhIRobG/dFDAuFAtPT08zOztLS0sL9999PJBLhbXqA/+W/P002bzBaXY/hUih01EfpUqu48FylR2VlI+mZTcr6WNuFQ97HXVtjlCnbYHdpI4EinJdh0iUBU4TgztZ6nv3e98kVCf/xB45w6Rmn9WdiJUXnkVoM3SSTzFFVE+LX/5efIxwJIaVESnlo5PpqBDcajXLHHXeQSCSIxWJ873vfo7Ozk8HBQSKRyI7v2w0Hoam+DX/crlTfPHhdkOpoNMr8/PzVV9wB10qqt7a2mJ6eZnpqlo8++kOcPnN0z6TyoCrV1+rmEQwGOXbsGD09PUxMTHD+/PlyuMDVbpwHRabtONbd7CHVGZ8H58JGwkHIVEUwVN9AfCbO5ISzthyNqA5SDVAXDTPn7FUkEPB+V+FQBPBWtVRFMDezTi5nEPvBInfd2cUL88skM97gCimc+lfAIe0Ar+2yJ+TF3cRo19rqkkBeEI5XCGHJIeJUd2vZQ7qhoYF77rnn0OOq+yJNGPEmnlhJQCnWuaRjthNMwc4NhwfZN6vg9fwWVgKiI+FStWYIyndLs/jPKJ5mpZyZUGVMIwB0S79O0LXvpkS6xljCBDWrgioQhpPV6zY5h5oBw8557LtesKQfUUMjv62TIV/+e104xPFubzrptUBVVfr6+uju7ubKlSu89NJLVFdXl8n1bjBNkytXrjA1NUU0GuXuu++mrq6u/PcHj/bxmW98h3BQ5dIrS5y827LYa6utpkurZuzCEp0Dzi8vkytQX1vFli1ifNMvYdVH2lHj6nOQEprrwqxuV7a1sp503FPuPd7Dr/67t/OfwyH+219+GyklFx8fo+tUO4uXnDafC2OLDNzRx/yswS/+8U/SOWBJ2UoE+rDI9V4tYKPRKGfOnCGZTBKLxXjsscfo6OhgcHBw3zNVhmFcl077tvxjF9zWVN80eF2Q6pqamhtaqd7c3GR6epp4PE53dzf/86/86L5J5fVWqg/KGq+6upozZ86wubnJ+Pg4c3NzDA0N+YZE2Ml0T0/PgZDpEo51eXXVC5veRqN4JkdzbYS1RJpj7c3k59KMPzXPkcEWlnE2D9ZFIyxvOOUjftPG6xtbPsv8z6e+9gbmL1qabgFc+sE8I4NNbGe8le1wbwNbqm1gYEpHEhxSepsUXV+n4++y8nctKdGSkBEFx4Mqo+tIASfrFba3t7nrrruor6/3PZaDhqaoDEQbWc06B7hCF56q7XXdcPcjH/GravtcdlKRKDkrNVGqoiLf2G0/RfF8MgRSl5X1FZAh5xtFVpSDY+waeiUnHaElAaFYQT4ApkS3zdirOVASkoLUy4qXEu4b6dllR68NqqrS399Pd3c3s7OzvPDCC0SjUYaGhmhocEoypJQsLi4yOTmJpmmcPHmyHGNvRzigcWd/B+vhJFMz6+S2ctzd0sbYy8vlAB1N8/6YTfXVDlK9tpUiqKnkbYmM8aR3YOuHlsY6B6lOZfM0NoTZSFrL3nP/MQKhAP/2D36cjY1Nnvz6DwBYfGWFgTN9TL10xbG91elV/t3v/Rse+pG7PJ91WOR6vwS3pqaG06dPMzQ0RCwW4/z587S3tzM4OLjnmavrkX+Ujv82/HG7Un3z4HVBqmtraw9dUy2lLJPpZDJJd3c3J0+evGZbvGutjh+Wz3SpmrmyssL4+Dizs7OMjIzQ3Nxcbn45DDJdgp8DSDydo6U2wqqrKjXQ3EAXVUw+s1zmV+Ggj9baZx8TSW+qWirjZVnrW2mqG4Kk3JXuUBD3nIiSlxhbGY4MNjNWTIurrw6zZmRx+DHruJoUcTQhioL0vrYRMM0QGEISXJcoukCY0lHpVrA4ZFAR/OTbHrxhHuh2nGpo5+lVF6neq2PHXpep0vtHlR0q3T4SEPsla4CSUyyvawHSFrjiyJzxcfIQts8rkyMB5BXYlqCZyLBl/abkrL+LgsS0kWilgEMCYR9UaTattZayBlEUz4fqYIBESaIk4QNvvtN94AcGTdMYHBykp6eH2dlZnn/+eWpraxkaGqKuro719XXGx8fRdZ3h4WHa29t3JYv3j/Tw7eQkALMzG+TiBcfXq/ukHEZcvvVSQmtTlLnlrfKy5Y2EZxzknqkC0Hy8o8PFYKn6mjD3jfZw5coVYrEYb/7QvUTrorzwzxdYmV1nZWqFps4G1hc2aWiv40d+8e288+feSFXN7gT3oMn1tRLc6upqTp06VSbXjz/+OG1tbQwODhKN+uS123AQMeW3sQNM6ZUG3uy41Y6niNcFqT5MTbWUko2NDaanp0mlUvT09HDq1Knr9pjer/zjRoS2CCFoa2ujpaWFubk5XnrpJYQQmKZ5YDKPndBSW21VoF0EuqW2pkyqwwGNk83NBFd1Ll1ccTyI8z4P4njCS6AXVrY9y7aTOWqqwyTTLqu+xlomFpxuFskt7zajNWGmr2yQfHGZO+/q4vnZJdqboiy71g1rGmlbfVG4fn7FcFYfFR0M+2mWNgllKFc8VaGg2yhEQFUwMLl7sOtVIdQApxrbPMvcEhfAv7K8k9babY2nYElK7Hc3AeQFuCrEvg4iQRBJUPIKUikSGoEl2/DzsvbRdYudpCpFWYtAgK5CQiKERGSKv1kedNslZHdyUXKSvF35YEqEAcG4S56CsweoIRJmoO3wf+9AIMDQ0BC9vb3MzMzw7LPPoigKUkqGhoYcUfa74f4jvfzjD8YByOR0mmqr2IpXmv3iPnHifqirCTG3XHnt5wCyuukttvh54Dc11LEQX+F4e5jHzz9GIBDg+PHjtLS0cN/99wGwsbTFpacmmB9bJNoc5a0/9SABn5Cq3XBQ5Nrt/rFfRCIRTp48WSbXTzzxBK2trQwNDe1Irq83pvy2/GMX3JZ/3DR4XZDqg3D/yOWchKpEpqempshkMvT09HDmzJnruqm4P3Mv8o9XIwExkUiwvr6OlJLq6moSiQTZbPZQLQDBkoA8Fp9xLAsFrIf0ma421i9vMhabZ2TAW9Xe8unqX1pNIISTgOQLJtHqAImUs4LV3hxlYtZ5DtS4GiWrQhpXZr1+tql0sdFJwqVn5zl+pIVQKOCRcmg+QTMOuG9CpdeGpD4TIB8vOCrXiuo8OFksCf/0dTasXQ98SXWgWKq2P1BL+gV3Y6KP1lrJg+k2LjC936XdGaMMFWeTmwlqXIG8QIaEiysXv0/3phXLdaU8i+BXubbvl92tRQiQlutH+RhLuyYFelXl91PtWm9pfWeRbYFhgqJXrPQEkCoUytt66FjfDjtzOCgUCuV03OrqauLxOBsbGzQ0NOxJt9/VWOtIGmysjzhI9cqG916eznrt8dx2keB1AImnctRWh4inKtf2hs+9wihY9+KzA/VEIhESiQRra2tEo9Gya0Zjez0P/OjdVz2+veB6yfVBOXFUVVVx4sQJBgcHmZqa4oknnqClpYWhoSHPb3nb/eM2buN1QqpLmupr9QW1V6qllKyvrzM1NUU2my13wx8UmS7hapXqV4NMb29vE4vF2NzcdKTrZTIZJicnefzxx8vBAoeRBnmsq4XHLjpJNaZkNFDH1JOVcJ2NTe+sxMpakoCmULBVrAu6QWtTNcsufXRXWwOXYs6mRj/nAOmKD+9ra2BqxdnlqGkKs/NOoj01tsrosQ5EVan0aiHvImy7NSGWXqsZSSAOeak7q6hSenyTC0iqAgrJ+RjzYSs97zDPFz+0V9XQHI6wZvcOV4CcABfhVbMCI7K7G4q1zEfcvFepiL2qrYMat1IbfSUpJQcSH94gNVGuWCsFr7MH4O9UgiXzEViWE7pNJaBmJbrNBaRctTYloQ2LuZeSO+3nRkQLVCLOJfzsm+/w2ZmDRz6fL/vct7e38+CDDxIOh8nlckxPT/PMM8/Q3Ny8JynB0a5mFqc22U5kqXL5u+cLhuXIY7PEdLvzAA49dQl+13FLQ42DVK9upgiFVHL5yvtX1rcZ7qjjX7/7bWiaRiqVYmpqiscff5yOjo4D9Xu241rJ9U6WeteKqqoqRkdHy+T6ySefpKmpieHh4XKj6W1SfXgQ3Hoa5Ft1TuLGPlFfJRxETLmu66yurvLMM89w6dIl2traeOCBB/bkhnGtn+lHqk3TpFAooOt6eb1gMEgwGDw0grS9vc0PfvADnn32WWpqanjooYcYGRkpSz2qqqo4efIk99xzD4lEgscee4yZmZkDT4S0h8BEq4Lc3dLK6vOrzE06JRjrW2kirgexKSUdLd4qWUD17mPQR3+9ubXlWbYdd/pmh30S9fq6GjwaUE1TuDSxRMF+lzQlWbu4w92kKKWzsm1K1DQEt0CRAlUIh4uF21tXWK5wPHznUY4cOVJ+MC4vL9/QBiEhBKcavNVqxW/86Hf6+C3zlYp4j8kMsiMpF1mBsl208aAoSfFZV/hUwEv7IIyij/hO40l35b301qLaQM0BttkKu1uF0CVGlUDNSsLr1rplQmVKh3e5fXaiubqK7qb6HXboYKDrOpOTkzz22GNks1nOnTvHiRMnyo1yoVCIo0ePllM5n376aV588cVdZw8fPNJLW6tFvIXPfa2h1klgt5NZImHnF78V94Y5+TmAVIe9krX2Bifpj6d1fvwtd5bv9dXV1Zw8eZL77rsP0zR5/PHHeeWVV8hkvJ95ELAT6RK5NgwD0zR9r9/DIrjhcJjjx4/zxje+kerqap5++mm+//3vs7W1dd3yD+C2/GMnlHyqb7V/h4SNjQ0eeeQRamtrqa+v5+d//ud3vd9sbGzw0Y9+lKNHj1JVVUVvby+/9Eu/xPa2Vw56NbwuKtXRaPSaNdVSSlKpFFtbWySTSfr6+ujs7Dz0Eblb/vFqVqY3NjYclemdUFtby1133VVuTLpy5QrDw8O0tbUdyM3yWFczihDc0dnKwkurjCWt6nRttIq4q8GwrSnK1JyzQhz1aRZqaKhjbtX5IMz5WPXlCt79X1pNoIYERvHmsLHqvWgjVV5/6t7OBi6tOwcCAak4SLa7SVEpVJoYtQIE1ovVzVL/mymdhM11vwoHNTJS50PvuJe66jCtra3Mz89z6dIlpqenDyVBcyecamzn24tTzoV+2mafU9uvgmwGS/IR20K/EBgVRF44nTdMEBmBoqserbbQfQhySUPts2+y+J6dIBC+nL70HmHYDkKCYQvxUbNQJQT5tCVVsUfTWymaNumHoZc388bRgZ136Dphmibz8/PEYjGqqqq48847Pa4fdoRCIY4dO0Z/fz9TU1M89dRTtLa2+tq33dHfQaTGunb8vOerfLTKrY01TC9sll+vbCQ9YU72inQJ0udXMXXneu956DhvvmvIs16JXA8MDJQb+14LlevDrhqXfsuBgYHyLIRhGKRSKYdF4m0cDG67f+wPjzzyCIuLi3zrW9+iUCjwcz/3c3zwgx/ka1/7mu/6CwsLLCws8PnPf57R0VFmZmb48Ic/zMLCAn/3d3+3r89+XZDqa5F/SClZXl5mZmaGXC5HIBDgvvvuu2HTWyX5x81Apu0QQtDc3ExTUxMLCwuMjY0xMzNzIKStMRrhbHUTl59wuke0NNV4SHVNtZfM+g2ssjlviXTNR7O5vpUmGNDIFyrr64ZJR1M9c2vbNESrWJqLe7ihn5tITSSInnGuGUFlmwojU3Sn04MwACmJpBRk3ERxhYcYLgIphJPAKapgsKGBumprYGFPySvZodXV1TE8PHzoftWnfZsVvUJkM+wlyzKE1Zhov3OpQI5yymBlA167PKUARvHUEHkQSQ3hZ6sHvgEtiOJy9/qy4uAh3QMcANN/kICsNKSatkFUtVRJasXo8bxES0gKAese4HaBsXuXe6Qfbzl41w8pJSsrK0xMTACUG/b2em8tVTtL5PrJJ58sO0yUgkdCAY3u5lqeBzYT3uqvX3W2xhUnbkpJV3Mt86sV682V9YTnnHKHuwDU1FTDeobWhhp+42feyN2ju1sSllwzUqnUa4Jc3ygpRmkWor+/n29/+9tcuHCBubk5hoeH93W/v22ndxXcblTcMy5evMg//uM/8swzz3D33VaPw5e+9CXe/e538/nPf57OTm+y7MmTJ/n6179efj00NMRnPvMZfvqnf3rfoUavC1JdW1tbrjhfTctnmiYrKytMT09jmiZ9fX0Eg0EmJydvqF5MURR0XUfXdYQQaJqGqqqHSqZL1njXQqbdEELQ1dVFe3v7gcaeRwPe/akKe6tWfvfogu5duLrulQWtb6WpiQRJpisPWymhs7WW6flNx7rBomSju6mWsTknGQ8FVWZd6wMkkzkK1S4CchXpsDAhvAoYFrGSrmG+OxTGrfvNGQY/9UNnPPuiqioDAwN0d3czNTXFM888U25EOuiY8hJONHhDSGQQq7KsuirLGZCuCQYlh6NSC6DowqpYOza68z6ocQE5peyUIv2qzztwRD+yrdjlGHksqzw7/MJsitsSCJS8dNgpqsUfNBA30TLC8sYufZYpMUo755J+FMoJldBaE6G17mDTMUt+9ZlMZke/+r2ipNMtkesnnnii7I1cVVXFSFczEljdThEOKBQKlZk7Pys8xYfU10WrHKQ6VzBocTmALPvcAwqG5N0PHuMX/8391PjMNu2EErlOJpOvqub6et0/9osS6XjggQdYWFjgueeeIxqNlsn1bVnH9UFIibjFBh6HdTxPPPEE9fX1ZUIN8La3vQ1FUXjqqaf4sR/7sT1tZ3t7m9ra2n1Lml4XpLpE4nYj1aZpsry8zPT0NFJK+vv7aW9vR1GUsl7sRsA0TXRdJxQKkUgkmJycZGho6FAa/0pwk+nR0dF9R5LvhIOMPQfo727k+y84kxWlj3Y77pOotpXIe6pU24kstdGwVz7SXEty1pmO5lf91oo66mzcWwXv7WpkPLbqXF9TmFvYQj/mfMjkcJ1fNj9kLWk1Iwq7lMGenIjTeg1TYtrXlVbS47vOHvHsYwmBQIAjR47Q29tLLBbjySefpLOzk4GBgetKSfNDXTBMf00908ktx3KRF0gX71B0UQk7KcFXQ7G3ZaYG2rqCNCuEGixra/cVLnfwtpaBYrW4eEkKHasqbvs8r7ban1SUpB+WvKeyPGvqhNdMhFRQdIlhI9ymjWALgzLhFkC+pCU34V2nR3w/81qQTCYZHx9nc3OT/v5++vr6DqzIEIlEOHHiRJlcP/7443R2dnK6p4X2lhqWV5O0NkWZX6roG+1NiiX4RZP7eU431TodQNLZAtFIkERxEN1QW8W/+5F7uP90/zUfU01NzatCrhOJBOPj4+VCjGmaN8SqrtTjU1VVxcjICP39/WXP8urqaoaHh33DfvyO4TZ8UEpxvZVQPJ543BniFgqFrot/LC0t0drqLNxomkZjYyNLS0s7vMuJtbU1Pv3pT/PBD35w35//umhUDIVCBINBX6G6aZosLCzw5JNPMj09TX9/P/fdd5+jAnOtQSz7gWma5PP5cmW6oaGBc+fOoes6TzzxBFNTUwe+D/F4nOeff55nnnmG6upqHnroIY4cOXJghNqOUuz5fffdR6FQ4Pz580xOTu77mPp7mjzLEj46yaXVuId8pdJ5Guq9D7S2Jm81L1LlU6H3HVlb49K1VS+JD/k4DfR0NJAzjLIEAbCaFO0Nk6bVpKhKQWhdEoo73ebc0dohVXWs4G5SDGkq50Z69vTACofDjI6Oct9995HP5zl//jzj4+MUCt7K4PVgtLbZs2zPGjuf1Eup+bxZrTTDiAJomwrKtgq6iscsz++BJXbWSIuSxl5KRMFJBiwPalF5CLp9tO2HUty+faYhkAGxJRFFvYh9alzozsAf+2GEFQUpIKoFCGbg377Nm+C3X2SzWS5cuMBTTz1FJBLhoYceYnBw8FBm7Ur65HPnzlEoFJh65UUao9Z1WOvqh9hOZql2NSP7RZPrPveXgE8iY3uTJXl66I5+/vPv/sR1EWo7SuS6dC9//PHHuXjx4oE3NObzeS5evMjTTz9NJBLhgQceQNO0qzY0HhRKFfLSdVDyLH/jG99IS0sLL7zwAk8++SSrq6s77sdtQr0zSpXqW+0fQE9PD3V1deV/f/RHf+T7HTz66KPlc2ynf5cuXbru7zoej/Oe97yH0dFRPvnJT+77/a+LSrUQgurqagepNk2TxcVFZmZmUBSFwcFBWltbfafMDpNUlyrTpf1UVbUs8wgEAtxxxx1sbGwwNjZW1qpdLZHsaojH48RiMdbX1+nu7i535d8I7Cf23A/93V6d3tJqHHcJuqBLmptqPPro5oYaNredDzQ/+Yifc8m2T1jMylqCjqYoG7Etz9+2tr0Pzmh10LJJs/1+VaZKJlD5PDVnTfEHEyBL3sh2vbSrWU9eJZkqGFD58Dvu2XUdN0q/0/b2NhMTEzz22GMMDAzQ09NzXYQqm80Si8WI+IRueCQsYHlYu+CReVCUj/iFwGSFFS+es75zoVhaaumOe9/hKxTmDoYhGpandVo4JSul9wmBSEvMGstf2vAr9stSlVtiVAFSEtyU1Bga6RLLl04SbZeeKDhlMHrepFoKcvE8/e0Nvq4We0WhUGBqaoorV67Q2trKAw88cCgVVj+UIrMTiQRPzv4PLgL5gnfg3NJQQypTkVetbaXQVBXd5vCx5XPNbm56O/rrasL85r99Ew8/cPRQyF3pmJLJZFlzfRAzQYZhMDs7y9TUFI2Njdx3330O2VZJFlIq1qiqeigV4ZKG271dTdMYGhqir6+PK1eu8NJLLxEOhxkeHt6XDv91j1tYU33lyhVHH89OXOTXfu3X+MAHPrDrJgcHB2lvb2dlxWmJq+s6GxsbtLe37/r+RCLBww8/TDQa5Rvf+MY1KQReF6QarJtaIpEglUoxPz/P6upq+YJvbW3d9eJWVRUpJaZpHphObTcy7UZjYyPnzp1jcXGxHBF+5MiRXTvt/fBqkmk3dos93+236Olq8Aa25A0rsCXtLCs21Vd5SHXYxzXAL/bYz45rcTXu+exkOs/IUCsbbDnWDQUtmYcbqVS+HC1dXlcoZEplTVMS3DZBqmWSWRMMkDB2tpXI6YZDLuJuiGuvj9Lffm1NonV1dZw9e7bs6DI7O8vg4OC+tbT5fJ6pqSnm5uZoaWnhh++4l7974puOdSoE2iZ1COHVI2sgcsWmRRvKITASlLRAFOPFy4mIpa37OIhIv7RG2HkuTwU1IyzHjx1WkaqAvMTU/Nco6anVrCUlCWyDQLEGUMUdtBord/htCxKKDYsBoSC2dQwEMgxnOq0+kP1afhqGwZUrV5iamqK2tpZ77rnn0BtXd0I0GuWdD9zBf392nrxPUaMm4jwBpLRcf+ZtqagrG0nPNYsSACpk+8RQG7/yUz9EV+vhu1a4yfX58+eviVxLKVlaWmJiYqJcfPFrDHRrrnVdR1GUa44/3wlXiyjXNK08KJ+bm+PChQsEg0GGhoZoa2sr7+tt7IBDtqB7VVA8ntra2j3dY1paWmhp8Qa7uXH//feztbXFs88+y9mzZwH4l3/5F0zT5Ny5czu+Lx6P8853vpNQKMQ3v/nNax7svi5ItRCCqqoqvvrVr/IzP/MzPPLII/zyL//ynkfKpZvFQTR/7IdMu4+hs7OTtrY2ZmZm+MEPflA2379aQ1lJm/1aINN2uGPPL1y4QE1NDUeOHNnxIguHAnS21Tn0lQDtrfUkpp0a6JDPKFP3CYTwI9BLawk0VaDbAl503aSzrY6FlYoGrCYSQs17SXlfTzNjE87RsqYKrsxvUuh2nnMlyy81KwmuS7S8sCqXRaRTeQhXzg93RddBtFzSEKTkzaeu31atqamJxsbGsuvDzMwMw8PDVx2Q6rrOzMwMMzMzNDQ0cO+99xKNRskbOppQ0KXtu9MsWYVDiyyKjYkR53aVgsBwR44bAnVbQF7xyDvs8KuIl3ympeuOKFX8mwxlkcSHr6IRzYK5w+VZkpaoWYlIFQmOKa2o+tJmZYXpC93l+lHa9ZykzlBIIpACAqrKz/3oG5mcnOTKlSv09/dfdYZBSsni4iKTk5MEAgFOnz5NU5NXanWjcXKgg1BAwxTeR5XfN19XHcLuDaQbJvXVAbZsCalrW2nr91MFP/vDd/PIw3c6EhxvBK6HXG9ubjI2NkYul2N4eJiOjo6rPscOm1zv1aNa07Ty+Tg3N8fFixeZmJgoD9Rvwx+3LfX2juPHj/Pwww/zC7/wC3zlK1+hUCjwkY98hPe9733lc2x+fp63vvWt/NVf/RX33nsv8Xicd7zjHaTTaf7mb/6GeDxe1nq3tLTsa3b2lifVqVSKr3zlK8RiMeLxOH/4h3/IT/7kT+7rS7KT6mttGLxWMu23L4ODg3R1dTE5OcmTTz5Jd3c3g4ODnn1LJBLEYjHW1tZeU2TaDUVR6O3tpaOjo+x52trayvDwsGfKOZPJ0FgXYN7VbxD2kXAUfAi0W/oBsLyWQNMUR8XaMEy62+uZW9pyrNtQW1Um1SeH2lgcW+Wlp2c4daabl8YWy+sFNe/51dwQZnk5jR5xXnYZQye0IVEyAiEUTNV5t7FXOgVOEh1SVbJm5TiFy7otqKi8/01e149rgX0QtLCwUPa4LjUh2VGqeE5PT1NdXc1dd91FfX19Zb9UjeP1Lby0uex4n2IIDJfkwwpc2fkOLLICJaUgsgICVycHbuJcxlG2c+wAALTvSURBVA6NQH6kXk0DiB09q8vr6QKRkRgR79+0PNQsmUhVKScjOqLUpbPKrRhgFE9zFYGhSQIJEy0nKKjFxFcF7hjsoLGxkYaGBjY2NsqDoJLLi/2eI6VkbW2NiYkJdF0/EHnZQSIc1LjrSCfPjS14JhLWN7Y862s+111DXYStVGUQnisYnBpp58P/5n5GB7z2jjcSfuS6q6uL/v5+D7lOp9OMj4+zvr5+zc2ih0Wu92vhp6oqfX19dHd3Mz8/z+TkJC0tLa/J59NrArdwpfow8Ld/+7d85CMf4a1vfSuKovDe976XL37xi+W/FwoFLl++TDpt9WE899xzPPXUUwAMDw87tjU1NUV/f/+eP/uWJdWJRIIvf/nLfP7zn2dgYIDjx4/z7//9v+enfuqn9r2tkv/nteiqD4pMuxEKhRgdHaW3t5exsTEee+wxBgcH6enpKXulvtbJtBuBQICRkRG6u7s9seeGYTA1NcXCwgJtzRFeuux8b6HgU4He9jYurfgQaNOUdLfXcWVxy7FuXTTMnIu8K4qgrSlKnVAZf3auvPyV5+c4fUc3LxaJ9cam97NrIiGWRNoZRW2AtilRKOoIXBZpQpeYdk1tTiJt1VFNUcD0Py9FXnKms5lQ4GAvc0VR6O7upqOjg9nZWV588UVqa2sZHh4mGo0yPz/P1NQUwWCQkydP7tj1f6qxzUOqfasXvi4eEjUuEBkFKYRVmd7pme5mYwper2v8ZSGAFaxj24AoFKUbwuva4flcrIq2EcYVziOpXVMw86aTcNtlKrrTu9q0R5ErKvl1A8W00jRzhrVDUoWff4+lnxdClGcYVldXmZycLJPrzs7OslNEMpksO/Tc6Nj6veDcaC9PXJilpa6KDduguOBj/J3LeT2na6sjQIVUv/uhY/zijz9AtV8z8quE3ci1qqrEYjHm5ubo6OjgwQcfvO77+UGT62v1xVZVld7eXjo7O6/ZvvX1AGHu0Ex9E+Mwj6exsXHHoBeA/v5+R8Psm970pgNr5L2hpLoUBfn3f//35dHDn//5n+/qW/yhD32If/7nf2ZhYYGamhoeeOABPvvZz3Ls2LEd35PNZjl69Ch9fX389V//Ne985zv5kR/5kfKo5Fqw32bFwyLTbtTU1JRTDEtTaVLKm4pMu1GKPe/t7eXy5ct85zvfAaxpmHPnzqFVL/LP5522epu+BDpJQFMo2Am0lHS11nHFpXeurfZOuSoulwkhLP2zXMsw46p4CyxiffJkJ3PrcRaWvc1QUqpWk2Jxu1pKUpcUZGxsS9Elpk3qIXTpqL66CV7BFbssBYSFilzPo+Xh1LnDq8T5eVwrikIwGOTo0aNXlYacamyDSecy0y9e3CbzEHlQkwpSV6yDtculFbxSjRLxdU1k+Eo9drg0ZUBUiLm00g0rEeE7Hh5KvtSPKtDSEt12m1OzgoIBWsF2vNI1gLL91sKoWPhpaRPyOkoxMj0oBXox7KeuOswJV/VVCEFraystLS0sLy8zPj7O5cuXkVLS19fHmTNnDtWy83px7kQv/J/QUB9xkOr17YwnMXFl3Xvd6cWm42gkxK/9zBt5w9nBw9/pa4S9STMWi/HYY48hhKCurq4snTpIHBS53m9Aht9+3MYuuF2pvmlwQ8sSjzzyCBcuXOBb3/oW//AP/8B3v/vdq/oAnj17lq9+9atcvHiRf/qnf0JKyTve8Y5dCW44HObb3/42jz/+OA8//DBCCKLR6K7Z71fDXkm12xpP0zSCwSCBQODQqkCJRIK5uTlyuRx1dXVomkYikSCb9Xa+3yzI5XIsLi4Sj8epq6sjHA6TSCSsqPgub0PO6loSzWWVZUpJW4tXm70XAg2WBV8JzQ3VDDfU8dITM4SDAerr/J0QLr88z7HuFoJBZ9VGVQRz85sUIlbXVHjNJLgFuJzqPKN3t0WzazcNmyZZGJJA3ERdtAg1Et7zlhO++3lQkFKyubnJ+vo6wWCQaDRKNptlfX2dXM7r2GDHqQYv4TcD3oeHDIASB21VRWypSMOyEFR8ejd9qx8+y3wf4Yr/ulKzyDyAmsKp1y4ReR8I23KhO9dTi9zQTqJrhObYMYcftQ5ICG6bBFLO5tryegJ+6PTO+vl8Ps/m5ib5fJ66ujqCwSCrq6tsbGy8phPtOptr6Wmto8qdmGhKWhudBZl4uvhF2Zclc9x5rIu//L0ff00T6hKklKTTaRKJBOFwmGg0yvb2NvPz84d2Ty/NxiqKUibX+7Hiu94Ex9se1VeBvEX/3YK4YZXqa4mOBByku7+/nz/4gz/gzJkzTE9PMzQ0tOPnHT161PG6pqbmUEn1japM22HXTHd1dfHggw8SDofRdZ3p6Wm+//3v76hNfq0in88zPT3NlStXaGpqKldnpJTl2HNNC6CqCobhrEB3NkeZczUw1tWEmXN9ht/NO+0TVbxYTGI7MdjG3CvLzGas33d5OU5TUzUtzTWsrlXOqbbWWkIBlWefjNHd38hqJkey6KHd0VrD/HwcI6gQWSp6EAswXJVVd7XUXU21ywFUCXpRL6FkJaFtE3uhtyYcoKPt8BwNSnrdTCbj0OumUikmJyc5f/48vb299Pf3+1ZC+6MN1GhBkrrtu1dAyQrMMGCAti2goCLyAjPk9uve2376WvX5XZYC/whyLFs8kyJpF463WDpoF58QrluFEAItJdGLYzwtA0rexKiqfFg2kYNa6wf3yH5MSWhTokhBOKiRLfYLCN0kW+LUmihLP+ywN4s2NTWVbddM02R+fp7Lly8zNTXF0NDQVd13Xi3cd6KXsZlVz3IF58jKMCXNDdVWMyLWYPbhB47wk++803fg/FrD9vY2Y2NjpNNph9Vo6V6/m+b6IHCtlevrJdWv5UHdawG3ExVvHtwwUn0Q0ZGpVIqvfvWrZWue/aA02r9W7ESqX0tkugRN0xgeHqa7u5uJiQkef/zxXcnNawGFQoGZmRlmZ2dpaGjg7rvvpq6uQgjdseeNtQFWN52V0NpoGFyk2u9Bms54g0yWVhMe7a0iBPeOdPHC0zOe9dfXU9TVVdHRUcfS0jYnjnVy+dJiuYI4N71BS3stgbowm9tZ1GIJVckLZLBybhRcH2onUlYIjF3L63R/qBIaCbNAeMNAKwikJqyo7yKG+65uP3QtKHlXx+Nx+vv76e3tdTxQq6urOX36tMPj2m89RQhONrbx5MoVx/a1nMBMCUzd0ksj9q619lsmfZ71UsPXQm9HX2pRrC77eFL7kfuK9MO5bSVv/aZaFpSsiVEKCJIS3Uawo1qA7SJhjBQUjJRRjuG2n9KWPMj6/97WeprqKgLtEmmOxWJEIhFPs6iiKPT09NDZ2Vl234lEIgwNDb0mnD/sODfay/PjC57l0eoIrDmlWE11Fqlub6rhxx7ooK06yfz8HF1dXa9JzThYDdgTExOsrKzQ19fHnXfe6ZBTRKNRzpw585ol19dLqm/jNm4V3DBSfT3RkV/+8pf5zd/8TVKpFEePHuVb3/rWvpsaampqWFxcvPqKO8BNqktJVXDjyHQymWRycnJHMu1GOBwua5PHxsY4f/48Q0NDr6mHS6FQYHZ2ltnZWWpraz0PfjdK7ifHj46x+qRTkKv6HFPGh0CvrMU9hCqdydPUEGG9WOEa7G4iPZ8gdmGR7u4G5uY2PdvZ3s5QXxfh1PFOXnpp3vP31aU4VdUabS3VBAJhJElHkIeKQLclAbot05SCxAg79daG7e+aKYmsGijFUqwmcdTtfujenWdyrgXJZJKJiQk2Njbo7e3l9OnTuw7S7B7XExMTzM7OeoJ+TjVYpFoTCidr21hZSbO2nUaGhZOU+pyuvmRZxUuW/WzxBD5R4vgTdSySzE5+04pla2eG7AMi7z4LIVDTIMKWo4m0EXQtbaLXVHYwmckiQir1eZVAQZAofhmiYJIulcGlxCwO0CTw8P1Hiosly8vLTExMoCgKx48f39U+tOTE0NXVxZUrV3jxxReJRqMMDw/vei3eSJwe7iCR9sqJVB8dbyio8q4Hj/GRn3yQcEhjZWWFWCzG9PR0uUnztXL/03WdqakpZmdnaWtru+o9fSdyPTAwcCj9M3sl1wehqX4tzpC8ZnBbU33T4LpJ9aOPPspnP/vZXde5ePHidX3GI488wtvf/nYWFxf5/Oc/z0/8xE9w/vz5fY3QS+Ev14oSqX61yHQsFmN1dXVPZNqN2tpazp49y+rqKuPj41y5cmVPQSuHCV3XmZ2dZWZmhmg0yh133LGvMJvB3ma+6yLVW9teec/KurcCnSzGlbvt9ZobatiMZzg90Mal718plywNw6S/v4np6fXKylJy4kQn42PLLC8KBgdbiMW809OZlE53VxhdCKvqbPu+Q0JBt9VFFUNi2F0mdpE3BOKGo3qJlJandol8SXjnG3du5t0P0uk0sViM5eXl8vm3nwe42+O6ZMPX1tbGHY3t3BPtZnJhi5eWre9X8akGmz53KqkBhkVqyxD4O3voXhLuV5X2k36IgtXsKCWeJMYS7KRaFFz75NiYFfKiSNAjtoZU2wyDkrM0JlVrOjlVks8ZELZ2XilIjGBpvyRmyNpGSFP4N28+zcbGBuPj4+RyOYaGhujo6NjzvakU0NHd3c3s7CzPPfcc9fX1DA8Pv2oBMFBJ4YwGTLY0QUGvfFeJtFO2VV0V5MfefJI33l2xxWpra6O1tZXl5WVisRhTU1MMDg7u67s5aJRmESYnJ6murvbMzF0NbnL92GOP0d3dTX9//6tCrg3DuOaKeWmbt7ELJHuWu900uEV/8usm1TciOrKUCT8yMsJ9991HQ0MD3/jGN3j/+9+/5/2sqakhlUrteX03FEUhn89jGMZNQ6btKDkANDc3l6d6o9EoR44cOfCO8t2g6zpXrlxhZmamHIXtlwR2NfT3eKenN3wcQBLJHHW1YU/EuF9ceU1VgIGaKJeeccoRMpkCC/ObDA+1MDG5SjQapr01yisvV6ajZ6bX6eysYWGhQuxVVeHY0XYuvDyPqqm0HK1ntlDZR71glKfu/eAmeKYGGJLQpkGgIDDtowUTRyW1qS5CyCc9cj/IZrNlG8P29vbriqp2e1yPjY0xPT1Ne1cXz0067wumhjfERsFq6nQdkqJ7ie5O1nieffJb6OMgEogXSYVOmdC6ITWrARUhUAo7bdxqctSyEMpD2maNaIQqP3ZgW0cIFVSVIIJcuLIzpk06JGyuFyOt9bz04gtsb2/7Sm32g0AgwNDQED09PWXf+ObmZoaGhnZ1ajpolHpDZmdnaWpq4u33n+T/993LzNmsL1dtiamjg238zi+8jfZm7wBACEF7ezttbW0sLS15yPWNKi6UfMHHx8eRUjI6Onpdcd2vFXJ9tUTF27g+3NZU3zy4blJ92NGRbpQu5qs5C7hxraS6VJkOh8MsLCwQDofp6uo61BvIQZJpN+xBK1NTUzz99NO0t7czNDR0KNq8EuxhIJFIhFOnTtHY2HjND5P+bi8RT6V1IlUB0lln81JzY42HVIdDzlP/xFAbsy8t0dLkP8Ao5A2mp9a4684eJsdXmBh3EkHDMFlcSHLsWDuXLi3R2VmHaUguvGzJQgzdYHE9Xm5EAyvtjUCFJLmb3Rzx1oZEmBDesOQeoYBablYD6wYlbUzu1NFrTyezN4s2Nzdz7ty5AyNTdo/rK1euEBsfpzagES/YfjNh2dYZLv6uGF5rvD1XO3zGvu7vu/zxRqWqrdndPnb7LNWKGzdCRUa/03ktraq3ntchbJ0LasbAiKgoEoKredRCJakxJBRyRdsQJWdilgi2lBhBBVUIqlIGzUGT6upqTp48eWB+v8FgkCNHjtDX18fU1BRPPfUUra2tDA4OXjXF9Xpg14JXVVWVJWEta3G++9y0Y91MrkBjXRXvevA4P/s/3e0b/mKHEIKOjg4PuS7FZR8muU4kEoyNjZFIJA7cF7xEruPx+A0l17qulyWJnZ2dmKZ5TVKO2/KPq0By68klbrHDKeGGaaqvJToyFovxX/7Lf+Ed73hHOcr6j//4j6mqquLd7373vj5/v5Z6bpnHwMAAtbW1TExMsLCwwJEjR66pwrob7GS6s7PzQMm0G4FAgCNHjjiaGfv6+sphAwcFwzDKYSAljfdOYSD7QVtLLaGQRi6nu5bXMXVl3bEsFPA+uEoNheFQgJHWesaesTxCMsk8IyNtjI87Q0lUVXDsaDsvPDfL0WMdxONefb6UcPnSEvfe089zz844bM/AWY0EV1OilEibJaDb/SGQNAmkZfl7cx+RdH2f73jD/qUfdklOXV0d99xzz6FN+6uqSn9/P11dXYysbfDsmjNiHnOP54ef1non/bVLBiQ1fKvf5Uq3AUqm8h4pvNtwvE8HzcRZYfdZR5hQsDUlKgUJGYPqrIJuKA6f8oxplI/RIRHJS6QCwc0cuhD83CNvoa/X2bNyUAiFQhw7dqxMrp988kna29sZHBw8UFchKWVZogZ4tOCdzbU01TnJfEdLLR//wJs5fWR/g0hFUejs7KS9vZ2FhQXGx8eJxWIMDQ1d1V99v8hms0xOTrK0tERPT89VexGuB7W1tdxxxx2HTq6llCwtLTE+Pk44HObs2bPU1tYeePz5bRRxW1N90+CGhr/sNzoyHA7zve99jy984Qtsbm7S1tbGG97wBh5//HFP0+PVEI1GSaVSSCl3vdB300x3dHTQ2trK7Owszz//PE1NTYyMjBCJ+GQQ7wM3kky7EYlEOH36NFtbW4yNjTE/P19uJrueG2Kp2jQ1NUUgELhqs9R+oSiCvq5GxmLOinF1xPuwim/HPcu24hl6O+rR17KMvVCRcei6yeTECkePtXP5ktVA29pWi6aIctX54isLdHZVs7DglJvU10doqKvimSenOHGqi5dfmncQMrsdXlAo5NQK6VYKWDZyRZRDX0xJ1aaJmjaRtsFBzh7BLqVDL6wJwdnTe3fHMQyDubk5pqamiEQi1yzJuRYEAgHu7e/zkOodpRkulKrNwr2euzFxB/mIlgd9h2bFkuyjvFgUf6cdCsGmZv1919jyPFRLhaTtM5W8RM0JCopELZgYRYmHkjcplAZiUjoGZUreIJCRCAlV9aFDI9R2VFVVMTo6Sn9/P7FYjMcff/zAHChKVnKpVGrXZurhnmYe+34MRRH85Dvv4Gfec5bwdcicSjMnnZ2dZXvBErm+3vuVYRhMT08zMzNDc3Mz999//3U/K/aKwyTXW1tbXL58mXw+z8jIiCPW/qDjz2+jCJeV5y2BW00jXsQNJdX7jY7s7Ozkv/7X/3ogn321SvVeGxBLKXKdnZ1MTk7yxBNPlKO091t9cJPp69GsXi/q6+u55557yolrs7OzHDlyZN/WWqZpsrCwwNTUFKqq7ilZ71rR3+Ml1X6DXymCgFP+0VIbwdzOMb7sbV41TcnYpSVGj3cggcnxFfJ5Z0V8YT7FiZNdFtEWgiMjbSzMbTI9ZZHDCy/N2/6O5eJh+w6MdAEiFdbnTkoEi1TVxMHMu/TFUlqCAHuqn00q0tlat6fvu/RbxWIxAoEAJ06ceFWaV0dbvfIxv4ZAM4Cvs4co4LyTCVByYLr4i6/W2u98UUFkJcIQXss9HdipWdEoelbvchtQCqCUTlJTEl7VEZpakcbbfseQqlAatik5E7NKAykJxHW0jFmp4HbW7/yBh4BIJMLJkyfp7+8v+5H39PTQ39+/b+lJOp1mYmKC1dVVXys5N04OtHF8oJVf/bdvYqj74Gz/7PaC8/PzXLx4sUyu93tNlDz1JycnCYfDV3U0OkwcJLnOZDKMj4+ztrZGf38/fX19nlnN60lovE28d8ZtTfXNgxtKql9N7KSpvlY3j1AoxOjoKD09PVy+fJnz588zPDy8J7umZDLJ1NQUKysrrzqZtqPUzNPS0lK21qqvr2dkZOSqmlrTNFlcXCQWi6GqKiMjI4euURzwaVZMpbxa+5X1ZClhmkhYo0HA5adnURTBkaPtjF32WjqGwwEM3URR8BDqEi68PM+p010YBZOLr3jlIK+8PM/x0Q4uXVp0hHwAHjLnDihRcibBtMTEaoCzyzuCmkretCUpuvTU95zu9d3f8mcVLdcmJy33lCNHjhz6b7UbRn16MowAlue23QlkBxs8PxcPxfQphOxAoL0LIbgt/C30dqmuqBlrX8ydLuWinjotTZSc1XCq5iVG8S4s8gYyVNFMF+yJitKavQhuF1Btgywp4PSJrp136hBRU1NT1vFOTk7y2GOP0dvbS19f31ULDPl8nqmpKebm5mhvb9/z7NzpkQ6++OiP+dpnHgRUVaW3t5euri6Pd/deekA2NjYYGxujUCi86teVHX7kuqenh76+vquS61LD6MzMDG1tbTzwwANX/a12Itel5MbXwndyU+G2/OOmweuGVJfik3VdJxAIHJg1XjQaLdvVjY2NceXKlR0rvKlUilgs9poj026U9K6dnZ3EYjGeeuopOjs7GRoa8lSipJRlMi2EYHh42DEdeJjo8yHVy2uJsgtDCbpu0t5aS3VVgO2ZLdY2LdcP05SMX17i2PEOLl2skOKengbSyRxjRfnHwGA9U7EtT9Wys6Oe1aUEjU3V7CS2vfTKIqdPd/NCeouMLafarfsVpal9UxLaMtGytmOQOMhlUFPJ5yvsTrqq2CO9AdLptGequeQ8MDExQaFQYHBw8DXh2dtaXU1rdYSVlFNOo+SFh6AKw8db2ge+iYk+BNoI4fjp1CyoiWLF2c/GT8H/p5bSSlEsNRT5nP9KAdSsiaJLAkkQioqpVc4JRZfW/mANqgpVxR02JVJCZEtHuvKnpCJ451tGfQ72xqG2tpY777yTra2tMrnu6+ujt7fXU3UuNSxPTU1RV1dXTkzdK67WiHhQKHl3d3d3c+XKFV566SWqq6vL5NqNVCrF2NgYW1tb5XCy16Ibhp1cl36rnWYZShX3iYkJIpHIvm3/wEuuS7HndnJ9205vD7hNqm8avK5INUA8Hi///0FZ49nt6mZnZ8sV3iNHjlBdXe0g0x0dHa9ZMu1GMBjk2LFj9PT0lMNjSnZdiqKUq51SyrJt4o0kaH4OIJlsgaaG6nKIC1jJfQNtdTz7vUlvhVhKLr2ywJGjrYxdXmF0tJPLFxcxbXZl07EtTp7s4uWilMPyqO5i/PIShYLB8tI2R4+1Mz6+4ngfUnLseAfjF5dIDwQdy+36WFEMddFMCKwaqAXpCAZx73PBFs+OlA4CGQ5otDfX8MQTT9DV1cXg4CDBYLAcKZ5Op8texK+lh/5oSysrqWnHMk0K8ntoEfeLIfeTYEgVbyiLAkrW0rMH4tb/CyF2lC8KYQXBmK7inpItuoSIome1TyFPyUuqcwqFrIFQBKJgc/MADHtDbek8Ksk9ctLTjAoQiQTp7ty7v/thor6+nrNnz5bPtdnZWUd8/dLSEhMTEwQCAU6fPv2aS230Q6nAUPLufuGFF4hGowwNDdHQ0EA+n2dycpKFhYVyP8xBua8cJkoDoRK5/t73vucg1/aK+7Fjx65bwrcbub6tud4DbpPqmwZCvk6GiYVCgWAwyH/9r/+Vc+fOHarPdOlGOz8/T1VVFZlMhs7OTgYGBm4KMr0TNjY2uHz5MrlcrlxleDUTyqSU/PiH/g8SSafkY2SwlfEpK4iloS5Ck6KxMLXO0Egrl8eW/TZFOKzQ1VVDbMLb1FjC6IlOpmfW6OqsZ/yydzvDI23MzKxRKJiEwxr9fc1cfmURU4Wto5WqsZI3HaS62lTIZQuE48VuFNNLqsuvS1XQ0p916UhpPDHYxhc++V6SySTj4+NsbGwQCoXI5/PlAdH1JJ8dFr7y/Wf5T08/41hWawaIK85ETDUjMapcD2ATwNuALPI+HtY+y7SkpcEWps0+z3AlJDo+T2JUO/8W2JIIWZJkSPRa73trpgyiGYVc8ZarZHWMauu30HQTPVBpSiz5dAc2dbScCZrtb1CuhA8fbeMLn/tJ//18FSGlLCdpZjKZ8gBueHj4hvpCHzRKCbAzMzMEg0Hy+TwNDQ17ksi9lrG9vU0sFmNjY4NwOEwul2NgYOC6/M53g51cP/vss7z44ov88i//8oF/zs2OeDxOXV0dbz36a2jqwVsjvprQjRz/z+U/YXt7+1UNlzpovDayWm8ACoUCR48e5V//63/NH/3RH5HNZg+NCBYKBXTd0uEahoGqqtTU1ByKX+iNQkkXV/p/wzAIBALU1NS8avIBIQT9Ps1K4aBFVI70NSNW01yZWMUwTCbGljl2zBs01NVVi4IgNr5NZ1fVjiPoZDLL0EALEzsQ84nxZbq6GhjobyIaCXO5qLPWw87vJ4BTrmGsZwltV9q7g3YPbSkdlVjVTqgBYavkCkPyI289WX5d+l0Mw0BRFILB4Ksu9dgJoy3NnmVKyLuvRhhLa+1YEbSsZ1VUb0I9wvVWLQVaHBRT4KhPK+ysn3Z/viGd6/q9z5SE4rJMqAFMW2Va2uQ8StZEQxBc11ENvLMWJacF4MSJa/cjP0wIIQiHwwSDQUzTxCz2ANzs6XmaplFdXY2maRiGUT6ekpTwZkUkEil7j5eOq1AoHNpxCSFYWFjgQx/6ED/8wz/M1tbWoXzOrYJSo+Kt9u9WxGuvZHVIiEQiXLx4kaeeeoqPfexj/M3f/A2/93u/xyOPPHJgI/FUKsXU1BTLy8t0dHSUm2/W1tYYGxtjbm6OI0eO0NzsJRCvVZR0uJOTk+XqRVeX1Rg1MzPDc889d2DWgteC/p5GXrq04FhmGCZnBtu4+MysYxrfNCVjFxcZHe3klYuLCCRdXTXMz22XJRYLc2n6BuqYmdq2aZolJ091c/Glea6YkpGjbUzGVjDc5EpKaiIhEtsZMrb4ZHeTYom8CUNStaaj5qlUm6UkV9B31FOHghppW1CKVESxAc6kWlW5/+5eLly4wNLSUnk6OhQKlSPCZ2ZmGBkZOVB7w4OAX7PiViHntcYTxZAVV/aIUvCGxfg2JhYPWUuBWgx2EUjvqkJYYTN+nteacDRRahm39Z5AyUuHhaKWsWQ+stSUWDArftRSlm30AETOQEsVhduGifCJbbcOGt7+5ldXT+2HXC7H5OQki4uLdHV1cfLkSQKBAEtLS0xOTjI9PV2Wi72WzsGroWQ7ms1myxX3QqHAzMwMzz77LA0NDQwNDd1UVbeSA9DExAQ1NTVljXupcm1vaDwoWUs6neYLX/gCX/jCF3j3u9/Nyy+/zMDAwIFs+5bFbfnHTYPXjfzDDtM0+drXvsZv/dZv0draymc/+1nuv//+a77Bu8m0n8zDNE3m5uaYnJykrq6OI0eOvKanC6WUbGxsMDk5uasON5fLMTExwdLSEt3d3QwODh5asIEf/v5bL/MXX/1O+XVDXRWtWgjFlMQmV3d8X09fDbmsycqyN9oc4MixNsYuLVNVpdHcVMPc7Jbj74PDrczOrVPIW5WcmpoQ7a11TBZDY9o76shkCmxvZ0j0BClEK+PXkBQYukl40wTdtIhesdlQ6KajgokhHf7UYXuSopRgSMJZyynih+7p5tzdUdra2hgcHPQMctxJdSMjIzQ0vDb0uABv/6u/YcllexnRFdKas/Qb3Jbk65zXajAuKUSdy9SMTypjxiLUij1cpnQLdIe26LKcbOiGMCV6UQIS2JS4VdhSkei2/alaNoksVrzG7dKPKgQZYT00A1sFVF2UB1WiYFSkH6V9Lf4tVBXg6//vX/Tdv1cDuq4zMzPDzMzMjgNtu0uQpmkH4gd92Ein04yPj7O+vr5jQJbdzaS5uZnBwcF9NWC+GlhfX2dsbAzDMDhy5Ijv71Ai15ubm9dNrk3T5O/+7u/43d/9XVpaWvjTP/1T3vCGN7ymf/tXGyX5x9uGfuWWlH/88+QXbjn5x+uSVJeQTCb53Oc+x5/+6Z/yrne9i09/+tP09u5uR2bHXsi0G4VCoay33slR49VGiUynUin6+/v31Ml+mBG8u+GlSwv8+u9/A4Dh3ma2JjdIbmfRNIW+wWYmJlY872lri5CK6/QNNnPhwoLn7yWcvbuP8UtLJOJemz6AvoFmlla2aW+rZWs9zfaWk6A3t9QgpWCiUS+TKWGCmtQJJS0NcEBxNuOJvIkZspNojYxhI9El+YeUqGmDQMbECCjIoMLv/eZ9nBg9dtXBWik5cXp6+jWlB/2V//ZP/D9TU45lzWis4bQ0DMQlBZdmWU1LTLfW2sCScYgikU6DIoXXqo9iFTngXKbkJXrE/4Gv5E0KdQpKRqJlfdaRkkJ9ZXndhIGas61nVgh2jVBI6TqBbR01L5GBiq0epkSUyL7LVWRwsIUv/tn7fffvRsI9WDty5MhVfZnt7wmFQgwPDx9I0upBolAoEIvFyrZ/w8PDV5Xw5XI5pqammJ+fp6WlhcHBwdfEtWWH26mk1Hi+G7a3t5mcnGRra2vf5FpKyXPPPcfHP/5xpqam+IM/+AM+8IEPvKYapV+ruE2qbz68rkl1CTMzMzz66KN885vf5Jd+6Zf41V/91bK+zA92Mt3e3s7AwMC+pQ/2G9vg4CA9PT2vut51c3OTyclJEonEjpZYu6HUnDQ2NoZpmjtWPw4S8WSWn/jQ/8HpoXYuPzXrmPLXNIX+4RbGixpogWRkpJWJyyvl4uSJ0928/PKcg6wIJCdOdPPKi3OMHOtgYnzZ6ephW+/Os32MXV4mmfAR9QI1TRFm2yukKLRaIGDYkvEMiWEjc1WaStpGoqUQlSq2IS3pgSkJbhUQhkXM9ZDC6PF2Pv9HP7Gv7y6fzxOLxZifn6e9vZ2hoaEbluTph//t+8/yJVez4vGmJi6uO2Pn1azEcFeQTSvZRbiqzYFty61D2ITpbmlGeZmrMVEUfJoiS3/LS/Q6QWjDRAr/69YIFSUepqTnsiBV1BUreQOjqkKcw4ZAbhes66Rga0rUXdIP0xkC9KM/cge/8PNv8P3sG4FSrPjExARSymuSFZUs9qanp3e1rLuRKM0qxmIxotEoR44c2XfVOZvNMjU1xcLCAq2trQwODu76TLkRsA8SrrWgs19yvbi4yCc/+Um+/vWv89GPfpRPfOITtxSBOmyUSfXgL9+apDr257dJ9a0KKSXnz5/nYx/7WPlG8L73vc9BdA+CTLuxvr7O5cuXbxgJ9UPJXzYej9Pb20tvb+91SThKOr3JyUkikQhHjhzZt7/pfvCZP/wHnv4f475/EwLaOqtJJHRammqYjq151hk93c2FIrGurQ3T3FDDlE06Mny0jampNQy9IkOIVAdobY4yE1ujvbOeVCZHfNtLrLW2KlaaFVQTgst5tLxEBm0VGt1wvJZSOqUgtr9VBTSymTzBzYJVrBbWAeoRlS//yfsY6PfqkvcCe6pdb28v/f39N1TCA9YD/xvff5ZP/+B5x/LmSIS1tI9ER5eecBYtJTGKlWU1XdRNZ/GQZSXnJdB+pBrAFN6qNhQb7oIWaffIRiprUagTBJKS+vECRrGB1i79CCR0lHzRuUQ3QbVpq93SDxuplsDPf2CUhx48/arcM/YaK75XlGZPZmZmqK2tZWho6IanEJYGCePj4wghGBkZue6E0Uwmw9TUFIuLizvKsg4b9kFCbW3tgUgPt7a2iMViZXLd29vrqOJnMhm+9KUv8Sd/8ie8/e1v53Of+xzDw8PXeyivO1RI9S+hKbcYqTZz/HPsi7dJ9a0OwzD467/+az7xiU/Q1dXF5z73Oaqqqvj0pz9NLpfjD//wDw+ETNtRmgqdnJy85srItcBeddhrEtp+oOs6U1NTzM7O0tbWxvDw8KFUQtfXk/zub36duSsbvn/vH2ymJhLi5ZfmdtzG6Kku0pk8GytJ4tsZz98Hh1u5MrdBIW/Q19/E2tIW6VTFXqKlNUrBlGxuVFI7B4daGM8lSQYl4U3DqpYaJtim9+166qCikJO2pMS8zcdYSmqlQn4ti8BqoBNCIAU099Tz1f/1A3v7snbB9vY2ExMTJBKJG+ZlbRhGWYoiqqr46HPPe9YJo5LF6UKgJSV6jUtXvW15dmtJq4FT4G0YBKsC7ZZ6lGcB3Cj4yEqKUFNOEuw9OEmhURCZ0wlv2yzxpGWZGNguEJRK+chE3thd+gHlGZVAQOWLf/YjxGIxwuEww8PDe0r8u164Y8X7+/sP1KKx1Pg3OztLQ0MDw8PDN+ReGI/HGRsbI5lMHsggwY10Os3U1BRLS0u0t7czODh4Q+xVS03yUspyk/xBniNbW1tMTEzwwQ9+kIceeohHH32UJ598kt/5nd+hrq6OP/uzP+PNb37za0rWczOhTKoHPnprkuqpL90m1a8XJBIJfvM3f5P//X//35FS8pa3vIU//MM/5MSJE4f2mYVCgampKa5cuUJHRwdDQ0OHYsNXMvw/iOaTvSCTyTAxMcHKysqhPIgBNjdS/Pav/xcW5rYrC6XkxKkuLr68gJSSo6OdXHrFq6EWSEZPdiNNySsvz/um4QH0DTYTjYZ45YU538blhsZq1IDK2lqCEye6eOWlOVLNARSjaNcmJUIVlUhxw3Q0IYq8gRmykdiCiQypCCmpSunIlFHetxKpNlXBL/3K23jH2w7mvCxJeMbHx9F1naGhoUPxFS7NZrg1tQ//9d8yn0g41h2pb2R8yzlgcjcraklJcBPMoNMaz49Au2UUjuWuqrSaMSlE/clVYNPEdMfP2yABIyKpv5hFFKdugxLy0iSYMFAKZoVEm07SfDXpR293A1/+Tz/jGJREo1GGh4cPpcLr1hcftlTI3vh3mNrkbDbLxMQEy8vL9Pb2MjAwcKg+7vbZzlJ2wWF8j8lkkrGxMba3txkaGjr0HpdvfetbfOITn+DixYuEw2F+//d/n1/+5V9+TXri30wok+q+j9yapHrmL245Un37jPfB5OQkn/nMZ/ja177Gv/pX/4pEIsH58+f55je/eeBVajsCgQBHjhyhu7ub8fFxzp8/f6AG/IlEglgsxtraGt3d3Zw4ceKGNElWVVVx6tSp8pTx/Pw8Q0NDBxYas7W1RWxqkh/+1938/dcli/NxwlUBenoaufDifHm9SxcWGD3VySsvV4h1TU2ItrZaXnnRqmIfP9HJpYuLHtIcrQ2jStheT1EVCZJO5XFjcyNFW0eUkye6ePnFOcsNr1DRRFuhLq4mRJupsSMZUFquH6opCWzkkYVKVVSIioVbtC58YITa2ragubmZpqamcgJeyYbvIBrJpJRlez+Ao0ePOtLaRltbPKS6LhKCLdd2il+jlpAEUgIpRLGH0+XCoeGNDVeEr3xEKYDpucx2alSUqAVvjLr7nYE0iIJStgVUtjOElACYOM4FodsINhQ9XHf+rk+dtGwtVVUtzyqULC4PssJ7vbHi14pgMMjRo0fp6+tjamqKp5566kDlE7quMz09zczMDK2trTcs5ba6upqTJ0/S399PLBbj/PnzdHV10d/ffyDk2p7w2N3dzalTpw5dyrW0tMQ3vvENJicnee9738v6+jqf+tSn2Nzc5Fd/9VdfdY38LQFpWv9uJdxqx1PE7Uq1Cx//+Mf58z//c97//vfziU98guHhYaSUfPe73+VjH/sY6+vr/P7v/z7vfe97D72xsBQVq+s6IyMj1xwVm0wmicVirK6u0tXVxcDAwKsWRFPSLY6NjaEoynX5dtsr7iX5Siat82ef/W/MzWywsuyfjjh6qotXXp6nt6+RxHaWLZtkA+DIaAdjl5bKxLp/oImt9VTZ3aOjq55kMkci7tRQ9/TWs7qUQEpJY0uU+eU4hbrKoEUUK89lFAzHa2mrlAaEZdsm1vIWwRIVmzWJLBPsd//oHXz4w2/a/5e3R5imWSZVNTU1jIyMXLM+vlQBz+fzDA4O+g6q/vK5H/DnTz7lWDba0sIrq057xOCWRM0IpGIj0tJqVnRXoX3lHnmJdMlC1LSJUe3yFNd9miKB4KaJUhAUouw4swGgJQyqtq2/aytJRCCEoliR9Hrpo4rWiA4piWE6mi5DmkquaKUogT/57I9z7FiH5/NyuRzT09PMzc3R2trK0NDQNZFQKaUjVrw0qHq1kMlkiMViLC0t0dHRweDg4DWR0Bvd73E1uAsd/f3913RvLl2nsViM+vp6jhw5cuiNkdlsli9/+cv8x//4H3njG9/I5z//eY4cOQLA+fPn+dSnPsWTTz7Jl770JX72Z3/2UPflVkW5Ut3zi7dmpfrK/3LLVapvk2oX/umf/omhoSHfpgrDMPjqV7/K7/zO7zA4OMhnP/tZ7rrrrkPVi0kpy+b8kUiEo0eP7vkETKVSxGIxVlZWDnWq8Vrg9u0eGRnZcwUsmUwyOTnJ2toaPT099Pf3OyruiXiG3/v415kc99rpASAl994/yLNPTfm6egCMHGtncmKF46OdXHxpzrNea3st+ZzB1lYakJw41e2QhQSCCoHGMJuGTSOtm46mRFUV6KU36DYpiJRETUF+I2fRRdNGuKS0Al8UQVNDhP/0lz9LJHL4N9tCocD09DSzs7O0tLQwPDy8Z7JW0mrH43EGBgZ2tWh84socH/z7f3Asqw+H2cpaAxgtKQmlBAYgDDxyDd8mxJ0aE92kOmNiRLwDZSldpFxKwqtWVV8P7hJnDlQt5tDyKg15SSpjIFQFcgUIag4vaqnZvg8XoVYUgWmY5fUVIfjm//XRHT8Tro+Elgbz+Xz+NRcrbr+n7bdAUNIXm6Z5XUWKw0AikWBycpL19XXfe9pOsDdXlooUhz34MU2Tf/iHf+C3f/u3iUQi/Omf/ilvf/vbfb/L8+fPE4lEuPPOOw91n25VlEl114dvTVI9/5XbpPo2LJLwmc98hr/4i7/gve99L5/61Kdob/fGXx8k7E1/V9M0ptNpYrHYvvyzXy3YtZpX05Gn02kmJyf39EBNJrJ88tGvM37ZGSkeDKkM9DczdnGRE6e7ufDSvO/7q6tDHDnWzkvPz6Lr/tNUTS01VEWCBFSVqQlv0IxRF0C3k2hFVNrtdtBTCymJpE2MZMFZcbWlO0pNYXiohf/45+9H3a1R7hCQzWaJxWLltLzBwcEdH/6pVIqJiQnW1tb27Cqync3x0H/+qmf5na3txF5cJicqQStK1hvOomZMT4KlH6n2rV7rxWZFFzdQcia6rYKtJSWBTEnbXgmB8UNNLEtoI49SFSpr6UUig4zarse8UWlexev6oekGuqaCYVId0Girj/DFr/67HT/TjlQqxeTkJKurq1cla8lkkvHxcba2tujv7z8w2dlhwE5CS7NUOx1XIpFgfHyc7e3t14x96U6wh61crXncng1wGM2Vbkgpefnll/n4xz/Oyy+/zKc+9Sk+9KEP3dZNHyLKpLrzQ7cmqV74X2+T6tuoYGJigt/4jd/gn//5n/n1X/91PvKRjxw6ec1kMoyPj7O2tkZ/fz99fX3lB5+9OnVQln83CvbUMr/jKtlS7adzPpXM8anf+v9y+eIiAK2tUVRFsLSwVV7nxJluLrzg9Knu7m0gncizsZZkYLiVOVtyoh19A82YBYNc3mBlySs1yTUGKzpo0yLDJYi8UXH2KL5WwxrKWg5RMCsVWI/0A37ojUf4jU+856rHf5hIJpNMTEywsbFBX18ffX195YernXhfywzJu//ma1yJW9/nscYm1ARUSZUL886Bi5Y20V2VZT8Pa99mRVn8j/Ah1q511ZQV9FJCeE2Wfa+l9AbR2LfV8GIKoaqIYiVapHNI+8xCQQdVdeyHBhhFlxANMLYzqHkDJaMja8L86E/czQd+6a2+n7kT4vE4ExMTbG1teX4vd6z4bgOl1xrsDkYlb/0SCbUf16uR9no9KFnWbW9ve2xO7cfV09PDwMDAoR/XysoKn/70p/na177GBz/4QX7v937vtlb6BqBMqjs+hKbcHNfkXqGbef558Tapvg0XpJR8+9vf5mMf+1i5gv2jP/qjh14J2dzcLE/R9vb2kkqlyl6oAwMDr3rQwLWidFy5XI6+vj7S6fR1BSikUzl+/7e/gV4wmJtZI5speNY5cbqbC8VGxdGT3Vx+ZcHhSd032MzS0ha5bDHZT0pOnO7m0ovzmKaktq6Kqpqwg6xLAfnmCpGsUhUytkvNTarrggEy8wmrCmvarNps0g9VEfz4T93L+//tA/v6Dg4Tm5ubjI+Pk8lk6OvrI5fLlR0bhoaGruk8/PV/+u/MbsYRCZOpuU0A7urr4LmZRcd6asYbzqIUJKYfgbb5f5fh53Wd8SHqaZNCbfE3yJgEkkq5mL0bqQ5u6tROZhCKWrTIMyGng6YgTEmkJkxqPYmiiHJoUXV1mMxWqugWU2xIzemWfSIgo2H+1//yIVo7rk0HvLm5ycTEBKlUit7e3nIj4k6x4jcL7MFVvb29SCmZnZ29pY6rp6cHIcSuMfAHjVwux1e+8hU++9nP8sADD/Anf/InHD9+/FA/8zYqKJPq9g/emqR66X+7Tapvwx+6rvOXf/mX/O7v/i7Hjh3jj//4jzlz5syhavay2SwXLlxgY2ODQCDA0aNH6ejwNi/dbMjlcrzyyiusra2haRpHjhyhq6vrmreXTuf4w0/8X7z8wpUd1zlxpptC3mDswqLv33v6mljfSCAldHc1MHFpyfH36poQdY01zBe9soP1YRK24pHIG8iwbZrUJv+oLkBhM2udK1Ja8oOy3ANQBJoq+NVH38WDbzy67+M/bOi6zsWLF1laWkJRFAYHB+nv77/mc/9rT77IF/7bE45lxztbuLjgrFSX5Rp27NCsqGbN/3975x3eVNn+8e9J0jbdew/aZhQKpQVKS6m+oiDTgQPlFRVxICD6Shktq+xRZCigorKd6Ps6EVHkx2xZZcgqzejee6VNM875/QEJSdOWjiRN4flcVy/x5MyMc+7nfu77+4Wae++yEE6jfqkHcMdZkXu7LMS2VAWw9Ke7lbata1w75ipgW6kGh6ahbpCDsrICpTPYtgYDxZ2AWXueCiVonfoTGys2FHeUZhg2C7bu9vj6zzkGx+oMarUaYrEYBQW3B5JBQUHg8/kWWxLRUWiahkQiQV5eHgAgICAAAoHAYktYOgrDMMjKykJOTg5omoafnx/CwsJMWnZB0zT++OMPLFq0CBwOB5s2bcK4ceMspgb9QUEbVHu9eX8G1WU777ugunffRS0IDoeDGTNmQCQSITo6GiNHjsTs2bNRWlp67407SXNzMzIzM5GamgoOh4OYmBgEBgbi5s2buHbtGuTy1i2zLR2lUgmJRILU1FQAQHR0NIKDg5GZmYkrV65AJpPdYw+tY2dngyVrn0HEoKBWX3f3dEB1aT04mqC2FfJzK9En2BOebg4GATVwu9SkqrwOQSHu6BPqAXXLWK+F5jDDpkAxDKxrFVBVNGofVra2VncD6jvaxF6eDtj51ZsWF1BrFAdSU1PR2NiIQYMGISwsDHl5eTh//jyqqlo347kXPE/DaeWS2nqDZQyHuq2aoQtFgWU4GQFK1cqyVppUmVb0qxkrCqxG9R0rdMNbJqep9Zp7myIZWA3NYJQMWDY2egE11Goo5Qq9IIWiaYPLUSt1yo7YLAj7dX3QrJEzPHfuHCorKxEREYEBAwagvLwcaWlpKC4uRm/NsVRVVeH8+fMoLS1FeHg4Bg4ciOrqaqSmpqKgoAA03Tvlu+rq6pCeno6CggKEhYVh0KBBkMlkOH36NHJycqBWG5aldQeGYXDz5k1MnDgRb7/9NmbPno2rV69i/PjxJKDuSe6Ug913f/chJFNtIjIzMzFv3jycPHkSCxYswKxZs7otY6dQKJCTk6OdruXxeHqKGXK5HGKxGGVlZQgODkZwcHCvyNKoVCrk5+e3aWChq73anZrPZrkSa5f+jH8u5mqXhfK9UJpfjUZZMwCgb4Q/bt0oumvQcod+/X0hzSiGu6cjGuUK1NW0MnBhGAyICkSjrBkZFbV3lT40xh13AjY7DhsKhgZV3gSWigZDUYAm4NK1KQfwyGN98X6SZWWIGIZBaWkpJBIJWCwWeDyenpKCriGJi4tLpzWTa2RNGL1hv8FyVztbVDfqu112tFmR00BD5dAiUy2nQbfIXt/+rGBQa21VrQDFABRl+L1jNSkg99Jfzm5Uw+tsHQAGsG2xDcOAo1BCTekfm0sxaG5W660HhVr7vtK21piz/An8a/QAg3O4F+3ZitM0jeLiYmRlZYHD4YDP5xvdec9UyGQyiMViVFVVGWj6awYRUqkUNE0jNDTUopRM2kMul0MqlaKkpMTAMEtj0CSVSiGXyxESEgJ/f/9u3+srKyuxevVq7N+/H6+//jpWrFjRZblTgnHQZqo9Xr8/M9UVu02Sqa6qqsK7776L3377DSwWC8899xw++uijdg2k3n77bfz9998oKiqCg4MDhg8fjpSUFPTt27dTxyZBtQlhGAZ//fUX5s6di6amJqxduxYTJkzo9DRrS+ve0NDQdrVVa2trkZmZCblcbnGSWLqo1WoUFBQgOzsbdnZ2WqvlttBVJ9A8QDv7XioUKqxP/hmXzmWj/8AAZFzJNxgwhw3wR+YdAxg2hwVhmDduXb1rce7p4wSlikZNVaN2GdfWCoFBbhBnFINjxYbMnaspk70tmWZzd6rWHhToajloFX07a83RCb7vZLRtrDn4z/wxiB9hOdlpzcNcIpFAoVBo3Rbb+gx0XfE6a838xKavUFanPzPR188Dt4oq9JZZ1amhdNIPJloLqtnNDNQtpe/oFqU2d2ApDMtCrCsVYCkpMDaGDWFUswrNHvpT8XaFzXAR3R4AcLksNOlOCjY0gbJusR81DRZN630XrdkUlE13U+yUky0O/N/cTim+dMZWXCNzmZ2dDVtb23v+HnsShUKBrKwsFBYWws/PDzwer82BNsMw2kGDpjzJ29vbYu+Jubm5yMnJgYeHBwQCQZu/GY2cnlQqhVKp1AbXnb8nKvDFF19g7dq1GDp0KDZv3oz+/ftb5PvzoKENqt2m3Z9BddUekwTV48aNQ3FxMT777DMolUpMmzYNQ4cOxTfffNPmNp9//jn69u2LoKAgVFVVYfny5bhy5Qqys7M7NWAlQbUZUCqV+Oyzz7B8+XJEREQgJSWlQzctpVKJvLw85OXlwdnZGaGhoR22INZkE8ViMaytrSEUCuHq6mqEq+k+NE2jsLAQ2dnZsLa2Bo/H61RmrLKyUs8Up7MPSKVChV3bj+HPny+3uY6wvx8qKupha2OFwtxKg9fdPR0BikJlRQN8/FygVqpQfsdshrZiQeF+90GoW09t1awGVdOs1SFmgLtZ6jsNig72bMxPfhwDo/paTJ1rbW0txGIxGhoaEBwc3K7WdEt0beo7qlYw75vDOJmZq7dsUB9fXG7RrNhqUN1K/XRbtdYdrau2Lm8GODatehwyDAOVHfTqql2vyWBbcbcOhVEqAUdbQK4AKMrw+9ooB9Ui2LWzZqOp4U49NQV487zw6Q8zWjkDQ7pjK647c+Tk5AQ+n9+jBim60DSNvLw8ZGdnw8XFBQKBoMP25Rrjl6ysLFhZWVlURl7XbKez92tNRj4rKwsqlQohISEdcqtlGAZHjhxBUlISaJrGpk2b8MQTT1jE+0G4jSaoHuk69b4Mqo9W7zN6UJ2RkYHw8HBcuHAB0dHRAIDDhw9j/PjxKCgogJ+fX4f2c/XqVURGRkIikYDH43X4+CSoNiOa0c8XX3yBKVOmYOnSpfD09DRYT6VSIS8vD7m5uXB0dASPx+tyQNyZzIepoWkaJSUlkEqlYLPZBmUDnUHXFMfW1hZCobDDAw4AUCrV2LT8V5w7JW719RCeJ2xtrXHrRmGbBjEubvYIDPFA5vVCKJrvZhRVdlZQOek4KarUYKw54NQrwG5Q3VWc0M1S32lQjIkNxfT3H4JEIoFarQafz+/RrJrGaEdXD7ir8l0aWbfa2tp7msB8fiwdO49f1FvW398LNwr1DX3YzTTUNq0E0DQMjGE6WhbSMqj2UnEgK2m+rQrSxufA0Eoona20x/c5XQeWSv97wzQ3A1Zsg+AZDAPIFaB03wuGAZvGbdMXAAyHhXGTY/DW3NGtHl9DS1vxzpgqtUTX8MfDwwM8Hq/DAayx0S05YrPZ3TI5UavV2kE9l8vVZuR76jdmrJlFzXuUlZUFtVqtLXdpLbi+desWFi1ahHPnzmHJkiV49913e42M4oPEgxBU5+fn6wXVNjY23SqV3b17N+bOnYvq6uq7x1KpwOVy8cMPP+CZZ5655z5kMhmWLFmCX375Bbdu3erUb4OotpsRNzc3bN26FTNmzMDcuXMRFRWFxMREzJgxA9bW1qipqcG3336Lfv36wd7eHpGRkd2efmWz2VpLaKlUirS0NAQFBSEkJMRsov2am71UKgXDMODz+fDx8enWQ4yiKPj7+8Pb2xu5ubm4dOlSpwYNVlZszFvxFDavPIgzxzN1TxbhkYG49c9tF0V+Xx9kZ5XpSewBt13u/PxckJtZAjsHjl5QTVuz9PbHtuEAlc1gK2k9YxHdkMvaio1pM0dg/NNRAAAPDw8UFRVBJBIhNzfX7DMNujWdfn5+iI+P73ZPgJOTEwYPHqy1K8/Pz9eWkLT8LoT5GtZytiwHAXA7oG4pjUdRYMvVUNvrB+xUB3u66DvBOJuiMMjLGzf/KQbFYd3ep23rvxmW4u6/repUYMmVgOb3pVLdDppBAUo14MDWz5jLm0GxW+xXpQbN6KzDZmHCC9FtnrNuppPD4WDgwIHddtbT2JMHBQUhOzsb586dg7e3N3g8nlkH5jU1NRCJRGhqagKfz4efn1+37h1sNhtBQUHw9/dHfn4+rl27Bnt7e/D5fLP/xozZA0NRFHx8fODt7Y2SkhJkZWVBJBJBLBbj9ddfB4fDQVVVFdatW4fdu3dj6tSp2L9/P7y8vIx4VQSTwDC3y9XuJ+7kcwMDA/UWL1u2DMuXL+/ybktKSgy+0xwOB25ubigpMRQZ0OWTTz7BggULIJPJEBYWhiNHjnR6sEky1T0EwzA4dOgQ5s2bB6VSicjISPz9998ICAjAzz//3O0HR1vU1dUhMzMTjY2N2oYlU2VodGv+OjMt2RV0g8DOGCKoVTQ+XHMQp4/eAseKBZ7AB5ktXBZDw7yRn1MB5R0lBmcXOzg62qAw57a6ha29FZzdHVBcWHP7XDzttFlSKxpAtRwsGnfl8li3VUY0DYr2dtZY8+ELCAk1fLjpzjS4ublBIBCYVINctxnWy8sLPB7PJFq4LYPAllPxJTX1eGqLYf2bA9caDXKF3jJOgxoqB/1gxLpWDYWz/jKOzLCso7XsNWgGViwWhHYuyMm+q2DCVanRYN9GUC1XQu55+/vmkNUIJ1EDwGKBy6EglynA0lX5oAC17V1joNZKP1hKFRidoNrBywn7/ny/1WOby1a8qakJUqkUpaWl8PPzQ2hoaLcHWvc6nlgsRnl5udYQyhSJgJZldjwez6TlLmq1Gjk5OcjJyYGXlxcEAkGnzJE6Ck3TSEtLw9SpU8HhcBAXF4e///4bUVFR2Lx5s8klXwndR5updn4FnFaapHszKkaBo7VfdjhTnZSUhJSUlHb3mZGRgR9//BH79u1DZmam3mteXl5YsWIFZs6c2eb2tbW1KCsrQ3FxMTZu3IjCwkKkpqZ26vdJguoeRC6X45NPPsHy5cvR2NiIfv36Yffu3QgPDzfpzU5TgycWi8FmsxEWFmbUhqTWutMDAgLMUh+sa90bGhraoeOqVTQ+3/IXblzOR2Fu6zJwIQIvFORXwsfXGVVl9Whs0A/s7Bxs4OrliLyCKig8bwehLKUanKpmrZSanZ0VGuV36mzvlH4I+F5Y+9FkWNu0HyzoKqCYIqDRBO+5ubndLhvoDJrmuKysLDg4OEAgEMDZ2RkMw+DxlH2oa2rWW1/o4w5RiX6Nu3WtCgpn/fevtVrr1uqnW6u15shohNg7oahUX8ZvAN8HV/LbkMhU0VC43Ha+9DhVCpuyO7rjbWQ5aFoN2NsAKlpfau/OObHVjLbsiAEw8CEBlm/7t95qPWUrrikJ6oz9fGdQKpXIzs5Gfn5+p+vBu4NCoUBubi7y8/Ph5uZmoK7UXTQNkxKJBFwuF2FhYSavVWcYBn/++SdmzpyJyspK+Pn5YePGjXj++ectpl+D0DbaoNpxyv0ZVNd/3eGa6vLyclRWGvY36RIaGoqvvvqq2+UfwO37gaurK3bu3Il///vf997gDqT8owdobm7Gzp07sXbtWnh6euKrr75CXFwcli1bhn/961+YOnUqFi9e3O3p27agKAre3t7w8PBAfn4+rly5Ajc3NwiFwm5nJXUd2zrb0GYMHB0dMXjwYFRUVGhLDAQCATw9PdscqLA5LExPGI1P1v/RZlCdLSqFMMILuaIKKJoNNW8bG5pB0wzc/V1QrFCA1aSEVa1Cx8SFQWOj4m7wxmZh4nODMG3mox26Lmtra/Tr1w9BQUFaLW+NmkN33l9N02hWVhZsbW2NUnLUGVgsFoKCguDr64vc3Fykp6fDw8MDfD4fYb4euJClP2tgb2P4YKHYhp8rbd3aMtyVN9RuTIHdeLtUhNXMwKaWBotmwc3b3iCoVqraqR/hsGAlU0HFZcGmsln7XeOAhqoVOwAWiw1apgAoBuC2GBy1LP2gKDw0+q6LXUtb8f79+5u1HtbBwQGRkZFai/DTp09rLcK7k0nWHWA5Ojpi6NChZjWFsLa21pa75OTk4Pz5891yBtVF1wFXKBSapU9CLBZj8eLFOHXqFBYtWoSZM2fi66+/RkJCAtasWYMVK1bg6aefJtnq3gDDQL9g8D6gk/lcT0/PVnvQWhIXF4eamhpcvHgRQ4YMAQD83//9H2iaRmxsbCdOjwHDMGhubr73yjqQTHUPsHPnTnz00UdYsWIFJk6cqM0YMAyD69evIyEhARcvXsSiRYvw1ltvGTUL1Bq6D+nOlE7oUltbC4lEgrq6OqM8YI2BJmCUSqVwcHCAUChs9yFN0ww+3XAYf/92VW85iwV4+9mhJK8B/n3cUFUhQ1OjwmB7BycuVK5cKJpVUJXLQDHQkcujAc4dB0V7GyQsmYAhsaFdvjZde/CulPFoyi+kUilYLBb4fH67Aw9zIZfLkZWVheLiYpwsk+OPWwV6rw8I8ML1ghbNim2pfXSwWdGqVg2WCmAr7qpyRAh8cU2irzTi5myHMrm+TrYu1B0Nbc9UHedHhgHDYoFq8XtiaBqQy28/J7nWgJ1OJrZJv2mRZcPBN6cSQVGMdjbBkuy3q6qqIJFI0NjYiNDQ0E5rJmvKxMTi203DQqHQIlQ5dL+LnZWE1KApYamoqNCWsJg6yVBTU4P169drG+JXr14NHx8f7etyuRxffPEF1q1bh0OHDiEqKsqk50PoOppM9WN2k+/LTPX/NX5nMkm90tJS7NixQyupFx0drZXUKywsxMiRI7F//37ExMQgKysLBw4cwOjRo+Hp6YmCggKsX78eqampyMjI6FTfAQmqewCVSgUWi9Xm9BtN0zh48CDmzZsHNpuN9evXY9SoUSZ/yOiWTrQ0iGhvG4lEgurqagQGBhp9KtgY6KoYeHt7g8/ntzmdTNMMPt/0F/78+QoAwNaODUdHG5QXN2jX8e/jjuqqBr0SkIA+7mioa0RFkwJs1d1p+7umLrfl8tzd7LFxx8tw9ej+tLJuGQ+LxYJAILhnMKIpzRGLxVCpVG02CvY0MpkMXx87i50XJHrLfV0cUVxj6K5o0KwIgCNTQ9WiWdGqgYZSR+3DpkoFdgNAWeuvF+znipziarTE1tkG9XLDARUAsOrlsK1qgn1mnZ5KCMMwAIejDZRZYKCWNem954wVG7C/E7A1q/RKQnyD3ZG07WlIpdIuKd2YA4ZhUFFRAYlEApVK1a7yhC51dXUQiURoaGjo8D3H3DQ2NiIrK0tbSx4SEnLPchSVSoXs7Gzk5eWZrYRFpVJh3759WLVqFfr164fNmzdj8ODBbf62FQoFUfywcLRBte2L92dQ3XTAZOYvs2fP1jN/2bp1q1a9KCcnByEhITh27BhGjBiBoqIivPnmm7h48SKqq6vh7e2Nf/3rX0hOTkZYWOe8IkhQbcEoFAps3boVa9aswbBhw7B27dpOf8CdRTdrRFEUwsLCWi1DkclkkEqlKC8vR0BAAEJCQiz+Bq2rl9yWEYZGkmzvtuMoyKqDqplGXbVhdtI30BV1tXLI6uXoG+EPyc2i2+UBVnf2xzBg2PpyeUNiQrAk5TmjB7At65LbysjX1NRALBZDJpNp69wt2XEzp7waL2z/3mC5rRUHTUp933F7JSBrMZZrrVnRSkZDac8Cp4GGdR0NisUGpaLBcPQDORtrDpqVht7mIcHuEBe3Yb/erITLpTJY1yqAFu8rQ9OAjQ0otRpoVrQqzcewKIBrDYrS3zbyXwEY+UIY+Hx+lyUozYXuDAhFUeDxeK2WOsjlckgkEpSWlpqkLtsUNDQ0ICsrq917HsMw2tkxOzs7hIWFmbyEhWEYnDp1CgsWLEBDQwNSUlLw3HPPWdzghNB5tEG1zQv3Z1Dd/L1JguqehATVvYCysjIsXboU+/fvxxtvvIGFCxeaXPqJpmnk5+cjKysLLi4uEAqFsLe371LWxtLQ6MLqlk5odK+zsrK0hjS/f3sVv357vs39+AW5wd3TAdfSb5uUMGyWVtGBoRngTukHh0VhypsP4ZmXOl7P1RV0M/JeXl7g8/mwtbVFQ0MDJBIJqqqqtAFMT5fmdAQ1TePRtXsgbxHc9nFzRG6Vfraa52oPabW+5F5rzYpWTTQ4dTQohn1X3ZBhQFGUQcWij4cDSiob9JZFhPnick4bskxyFTyO5d+uoGbdtZ5nGAZQ04Bara9F3QKGYYDmZlg7O0AJFsBigaEoJG1/BtHDB/SqIEnXaEXX4EmjfJGbmwtPT88e1c3vKrqzc7ra7VVVVcjMzIRarYZAIDDLACgrKwuLFy/GsWPHkJiYiISEhF73fhLaRhtUW08Ch7LsQWdnUTFK/J/ih/suqO49d+l7sGbNGgwfPhx2dnadch1MTk6Gr68vbG1tMWrUKG1dn4aqqipMmTIFTk5OcHFxwRtvvIGGhoY29mgavLy8sGPHDpw5cwY3b95EZGQkPv/8cyiVyntv3EVYLBb69OmD+Ph42Nra4syZM0hLS8OZM2dAURSGDx+Ofv369bqAGgCcnZ0xdOhQ9O3bF9nZ2Th16hROnz6t1YOOjY2Fp6cnpr77GCZOaT0QdnDiworFQmleNZxd7e6UetxtStT828aajVUfvmjygBq4qys8fPhwUBSF1NRUpKWl4dy5c+ByuYiPjwefz+8VATUAsFksCHwMZ0lYasMMsp2DYSMZo2sKwzDgliphXQWwaJa+MyJFwd/LUIXBzcmwXplWGTaparAprAXq6mHNosE0K2DNAhhZE1AvAxqbgGYFbLntzAwolQDNQCGTA2o1oFTC19MOMQ8N7FUBNXD7/hEQEID4+Hj4+vri+vXrSE1NxenTp1FVVYXo6GgMHDiwVwaAjo6OGDRoEIYMGYLa2lqcOnUKaWlpuHLlCnx9fREXF2fyRsS6ujosWbIEMTExcHV1RUZGBhYvXmyx7+f9/Hw2BwzN3Jd/9yO9607dDgqFApMmTWpXg7AlGzZswNatW7Fjxw6cO3cO9vb2GDNmDORyuXadKVOm4MaNGzhy5AgOHjyIkydPYvr06aa4hHahKApRUVH4+++/8fnnn2P79u2Ij4/HsWPHYMrJBuZOFg+4nQmlKAqOjo4m1ac1FywWCxwOB2q1GkqlElwuFw4ODtrrpSgKr7zzKJ6bOlxvO98AV1izWciVlKGsuBZWbDbsHLk6Sh8AWCx4eTli5w8z0G9ggFmvi81ma6fSlUolWCwWbG1tLX56vTXCWgmqWyudqGwwLNFR2VCg1Ay49Wo4FNHg0BxQLAoc2nB7F0fDwSGnlaxyTX3bjYp25Q2gwKC5RgY0ydFcXXfb+EWHxqoGMK2UlTBKJaBRF9HUXrOAlV+91ebxegNsNhsODg6wsbGBUqmEWq0Gm8226BKWjmJnZwdHR0fQNK29N5oatVqNffv2ISoqCufOncOxY8ewZ88e+Pv7m/zY3eF+fz6bHIa+P//uQ+678o+9e/fi/fffR01NTbvrMQwDPz8/zJ07F/PmzQNwuyzA29sbe/fuxeTJk43mIW8K5HI5PvzwQ6xbtw7/+te/sHr1aggEAqPtX1NK0FKztaKiAiKRCAzDWEyXfmdpTa1ArVYjOzsbBQUF8PX1BY/H0w4cGIbBgZ2n8P3uVAj6+SBPXI5muf4sAWVnDZq526A4NI6HReufNet7o1KptOoQrq6u4PP5cHBw0DYmWoLteWf5+WIG1v56Um+Zj5MdSuoa9ZZRAKw5bDTryN55ONghzN4FV64U6mWmB/B9cE2qX8IxUOCLq2J9tQ9BoAfEBRV6y1gsCrQNBVWLLIsVm4V5g4TYm/Q99JT3WKy7zaoamNsyetpSELUaTLNO86ODHSiKwthpA9E3zr/DTX+WRkNDA0QikdaWPigoCCqVSntfMZZcnbnRVRVydHSEUCjU/s5Mpc3PMAxSU1ORmJiIqqoqrF+/Hi+++GKv+048KM9nY6Ep/xhBPXNfln8cZ36678o/esc8sAnIzs5GSUkJRo0apV3m7OyM2NhYnDlzBpMnT8aZM2fg4uKi/cECwKhRo8BisXDu3LkOi4ibAi6Xi6SkJLz22mtYvHgxhg0bhunTpyMpKalbhgKawEzjLjZkyBC9/Xl4eMDNzQ0FBQW4ceMGHB0dERYWpu2qtWQ0urq1tbUGsn8aE5yAgACtDrQmEGCz2Zj81r/g4GSL3Rv/Mtgvw6K0swXWVmxMfv0hPNNG2Ygp0DQqZmdnw9bWFoMGDdKruffw8IC7u3uP2p53lT6uht+r8vomWLFZUKrvZjoYAC7WbJSq1LBisxDl7Q3J1RLQwU5oOXxobTghazJU9Citqr+9Y50NaJqBv7szcstr9dYdJPDD+FcegX+gJ9a9+ikUClqzwe3Muu4ghqIAeTMYWy44HBZUuvKMFAWKxUJkbAjenP+itukvNzfXYmQP70VLHe0BAwZoG/qsra0hFAq11udnz57tslxdT1BZWYnMzEwwDIPw8HC9z0PzO9O4yObm5hrFRTYnJwdLly7Fn3/+ifnz52PevHm9biDSWXr789nYqJjm+y6zq4Lpyld7kgc2qNZ4wHt7e+st9/b21r7WHQ95c+Hj44OdO3di5syZmDt3LiIjI5GcnIxXX321U7WzGtWLnJwc2NvbIyoqqs2gS9ewIysrC+fOnYOfnx94PJ5FKoC0dICLiIhosxTC3t4ekZGRqK6uRmZmJgoKCsDn8+Hj44MnXhwKRZMSX318TH+jO8oRVhwWlmx4DhFDgk18RbfRtfpms9kIDw9vc+aAoij4+/vDx8cHubm5uHz5sllsz7uKQqFAVlYWyvILwKYoqHUm1NQMgyA3Z2SX1+ht4+XqDDtOI5oK5cgoKAKAVkuj6lvRGC+uqDNYVidrhqsTF9X1cr3lLrZc5EI/qI4f0AcAEDkiHBsOJ2HhEx+gqfHOQ0Otvl3SoSuhBwCNTWA7cKFXDMJmwc7OCgs/fw0URcHX1xfe3t4oLCxERkYGcnJywOfzzWrQ01HUajXy8vKQnZ0NNzc3DBs2rM3vFpfLRb9+/dCnTx9IpVKkpaXB398fISEhFllaJpPJIBKJUFNTg9DQUAQGBrYaKFMUBS8vL3h6eqK0tBRSqRQ5OTng8Xjw8fHp1ICooaEBGzduxPbt2/Hss88iIyMDgYGBxrwsi+V+eT53F2tra/j4+OB0yaGePhWT4OPjY5ExQ3ew6KC6o17vffv2NdMZWSYURSE6OhrHjh3Df//7XyQmJuLzzz/Hhg0b8PDDD7d7I1er1SgsLER2dja4XC4iIiLg5ubWoZu/lZWVNrsrEon0sruWMC3Z1NQEqVSqVSp56KGHOvzAdnV1RWxsrDZozcvLg1AoxLOvDQebw8K+j44CgLZB0dmJi027p8Hdy/TW3i01gTujNc1ms7X27VKpFGfPnjWJ7XlX0S1hcXNzQ3zcMISIqyEp1Zexc7bVr4H2dXaAO2OD7Ex9Y5iqWsOmpZKKOoMMdKNcCQ8Xe1TU6CuIeLk5GATVrFbe5+H9+2j/HRTuj4/PrcSmNz7DzbNScGxtoGhWgbLi3G7QUamBOy5dcoa5bQxD385Csa04WPrFNFhZ3b01s1gsBAYGws/PD3l5efjnn3/g7OwMPp9vEdOmuoM7KysrREVFdTjot7OzQ0REBOrr6yGVSpGamqqnqNHTKJVKSKVSFBYWdsq9kqIo+Pj4wMvLS/veZGdng8fj3VMVRK1W49tvv8Xy5csRFBSEv//+G3FxcRY3Q0Gez6aHy+UiOzsbCkXr2vi9HWtr614pdtAeFh1Uz507F6+99lq764SGds2VTuMwVVpaCl9fX+3y0tJSrcOUj48Pysr0H9IqlQpVVVV6DlWWAovFwgsvvIAnn3wSmzZtwqRJkzBy5EisXr3a4H3SlbyysrJCv379ujy1bG9vj0GDBqGyshIikQgFBQUQCoU9NlXd3NyM7OxsFBYWwtvbG3FxcV1yntNkCr28vJCXl6fN7o56JgJsNgu7Nx8BOCzwhd5Yu+MVWFmZXvNZV2taExx3ZQCja3suFouRmppqNse31mhplz548GCtSkCYr4dBUK2Ba8VBhLsHRP+UoMzT8H0oq5IZLJMrVPBys0dZCwk+Dxc7g6Caa20Y2DXI9G1rQ33d4OOmP5hy8XTCql/nQ3I5G5tf34GirDJwrO2hbGzWs+elNE17bDbYLArPvzMSwkF90BpsNhshISHw9/dHTk4OLly4AE9PT/D5/B5zVtTYbzc3N4PP53fZSMjR0RFRUVGoqamBRCJBfn4+goODteVX5kZTUiWVSrVlB10pcWOxWPDz84OPjw8KCwuRmZmpDa5bzioxDINz584hMTERxcXFWL9+PV5++WWLSFC0Bnk+mwcul3vfBZ73MxYdVHfU670rhISEwMfHB0ePHtX+SOvq6nDu3Dlth7KxPOTNja2tLZYsWaKtt46JicHMmTMxf/582NnZ4fPPP4dYLMbzzz8PoVBotMY1d3d3DBs2DIWFhbh58yYcHBwQFhYGR0fTZ28BfZ1mDw+PLj8IW6IJZvz8/LTZXcHgALw+93GUl9Vj2nsjjXD27aOrjdunTx8MGjTIKNJ4mlIfje15fn5+l2zPu0pLV8jWBnd9fT3w+xWR3nY1jXIM9PVCVVYtMnJvl3oUV9SDAvT0plVqBh7Otqio1VftcHcxDKptrAzfz2aF2mDZ7Uw3oy3nGN4/qNVrU6lUoJxoPL9pDMozanH6239QlFMJWqECo7hTGsJigcUCho2NwIyUF2HfioxfS3TrkqVSKc6cOWP22QaZTAaJRILKykqjDsY0NbKVlZXaGSJjN/21h2YWSCQSgaIoREREwMPDo9v71Z1tKCgowPXr17Fnzx5MmjQJTz75JPLz85GcnIyDBw8iISEBiYmJFt+nQp7PBIIh9436R15eHqqqqvDrr7/igw8+wKlTpwBAq4AAAH379sW6deu0DQwpKSlYv3499u3bh5CQECxduhRXr17FzZs3tSPDe3nIWzoMw+D8+fOYM2cObt68qZVbW7BgAaZPn26yB5VugNtSTcPYqFQq5OXlITc3F05OTuDz+d1q1rwXuqoG7dVXGgPdEhZTO1d2xfa8O1RVVUEsFqO5uRmhoaFtNnRdzi3G27t/1f6/v4sj3JVWyBZXGBi2+Ho4obhS3ximX4gXMrL1M1r9eV64nqW/rG+wJ27llOst83CxR0WtYbbb3dsBpXey2p+8/zQiQu5mxjSzQK3ZijMMg6snb+H4f89BejkX/YaH4fUVz8LGtuufqW7PQJ8+fUxaOqFUKpGVldWqSo6x0bi7SiQSqNXqTpU5dQXN77qurs7klunNzc1Yvnw5du3aBScnJ1RVVWHixIlYv349goODTXLMnoQ8nwkPChadqe4MycnJ2Ldvn/b/Bw0aBABab3cAyMzMRG3t3QajBQsWQCaTYfr06aipqcFDDz2Ew4cP6021fP3115g9ezZGjhyp5yHfmygrK0NjYyNYLBZomoaPjw8iIiJMmonUGJH4+/trywt01TSMQUvVi8jISLM0cDk4OGDw4MHacpf8/HyjO6gpFAqtxJ+3tzeGDx9ucnUEiqLg7e0NT09PPXUXgUBg1NpdTda9pqamQ1P8Au/bWtVcKw4G3Cn1qFXT8PFwREmFfgDt4mRrEFRbcQz3XVVVa7CsZemHZpm9nRVkTfqd6h6OdiitkcHZnovwPrebpTRZTrFYDIZh0LdvX4PvBEVRiHykHyIf6dfm9XYWBwcHREZGora2VjvbEBISgsDAQKP+1jQOq90ph+gMuk1/xcXFyMrK0jb9Gfu3JpVKUVRUhICAgHYbmY2FlZUVIiMj4eTkBJqmwWKxUFdXp83832+Q5zPhQeG+yVQTDDl69CgWL16MrKwsLFq0CDNmzIBarcYHH3yAjRs3YuzYsVi1ahX69Gm9htOYVFVVQSQSQalUQigUduuhSNO09iHL4XDA5/N7TC+bYRitZq2dnR2EQqFRJA11tabNVT7TkrZsz7tKd7LuC748DPHVEtTW3C3jaC0DPVDoZ6A3HRbsicwWGWg3J1tUtmLkYm9rGEDzAt0hLajUP06YHy7lFGPsUCEWv/yoNqBtaGgweZazPRiG0c4AKBSKdmcAOro/zewFm83Wzl70BLp19zY2NhAIBB1uqm5rfxq1EhcXFwiFQpMr4TAMg/T0dCQmJiI3Nxdr1qzB1KlTUV1djZSUFHz88ccYN24cVq1ahfDwcJOeC4FAMD4kqL6PWbhwIZydnTF79myDrFJeXh4WLlyIn3/+GbNnz8bcuXNNnnliGAZFRUWQSCRdCkA1D3iJRAKGYbokU2UqNKYWubm5XQpANVn3rKws2NvbQyAQdNjO19ToBsOBgYEICQnpVCZPqVQiOzsb+fn5XQ7Ol316GKcuZestGyj0xVVRywDaC5m5+gG0u7MdKmv1zWIAwK6VDDQvwA3SAv2myIECH1yV6Et0hfXxxI2SCiyZ8gh8uQqUl5ejT58+CA4OtggbeIZhUFpaColEAoqiwOfzOz2Qra2thUgkQmNjI3g8Xrf1lo2FRv4zOzsbjo6O4PP5nfqtaMpKRCIR2Gw2hEIh3N1bce40MkVFRVi2bBl++ukn/Oc//8HChQsNZoCKi4uxdu1aREdHY+rUqSY/JwKBYFxIUP0AwzAMzpw5g4SEBOTn52P58uWYPHmyybvtdQNQb29v8Pn8drubGYbRNi4ZI/tmSuRyOSQSCUpLSxEUFITg4OB2A1CGYVBcXAypVNrjWfd7UVdXB7FYjPr6em15QXufgW7w010JuL2/nMf+gxf1lvUN9sKtHP1M9e0a6FYCaK4VGlu4YIYGGgbQfbzskFumv31/njduZJXqLXN1skWVshnzx4QgOPC2Rrsldujr1ndzuVxtdrc9mpqaIJFIUFZWZlEDhZYolUqtUVVHZ3Xq6+uRmZmJhoYG8Pl8szTkNjY2YuvWrdiyZQvGjBmDDRs2dFkVg0AgWDYkqCaApml89dVXWLRoEXx9fbFhwwbExMSY/GHT1NQEsVisbbAKDg42COirq6shkUggk8kQHBxs1DpRU1JXVweRSNRmOUBLrWmNwYwlBtO6aAY47dmea2YkpFIprK2tIRAIup0JPJ4uxcrP9N0svdwcUFZlqENty7VCU7OepQpC/N2QXdgyA+2LfyT6mW5hoCtE+dV6y/w8nVDUijlMOM8V62eM77HynM6gMWbJycmBk5NTq3XyuuU+HRnsWgq6/QdeXl4IDQ01KOPQdXnsyGDXGNA0jR9//BFLly6Fm5sbtmzZgkceecTif+MEAqHrkKCaoKW+vh4pKSnYsmULnnzySaxcuRIBAQEmP25NTQ0yMzPR3NwMgUAAHx8fvWY2jaKBJWbL2kMzzSwWi0FRlLYeVaPF212t6Z5EN3C2sbHRKlxoBgoatQZjDRTyiqvxWvJ3BsttrNhoVurL3gX7uyGnSD8wjhD44lqLWuv+PG9cb5GB9vdyRmGZfhMji0WBxaKgUuvbBM979RFMGG68hkNzoBs4e3p6gsfjwdbWVtsX4ODgAKFQaBGmMp1FLpcjKysLxcXF8PX1RWhoKKysrLR10+7u7hAIBCbX9GYYBleuXEFiYiLEYjFWrVqFN954o1ckAwgEQvfoXU9yC6CqqgpTpkyBk5MTXFxc8MYbb6ChwTBbpiEnJwcURbX698MPP2jXa+31774zDCJMiaOjI1avXo0bN26AYRgMHjwYa9asgUxmqIpgTFxcXBATEwOBQIDMzEycOHECFy5cgIODAx566CHweLxeF1ADd9UL4uLiEBAQgOvXr+PEiRO4fPky3N3d8dBDD1mM+2Rn0diex8fHw9PTE5cuXcKJEydw/fp1+Pv7Y/jw4UaVP/P3coYVx/B98vYwDP4c7Qwl3lrLHdQ1yA2WlVTUgcPWP2eaZuBid/f7x2axMOPZYRg3rPc5xWlUeeLj48Fms3HmzBmcOHECubm5CA8Px5AhQ3plQA3cNskIDw/HsGHDoFQqcfr0aZw4cQIlJSWIiopCZGSkyQPqkpISzJo1C48//jji4uIgEokwffp0iw6o7+dnGoFgbnrf07yHmTJlCm7cuIEjR47g4MGDOHnyJKZPn97m+oGBgSguLtb7W7FiBRwcHDBu3Di9dffs2aO33sSJE018Na0THByM7777DocOHcKff/6JwYMH48CBA6Bp+t4bdxG5XI6qqiqo1WrtlHNzczPUakPzjd5Gc3Mz6urqQNM0uFwuaJpGU1MTVCrVvTe2cORyOerrb0vYcblcqNVqyGQyKJXKe2zZOdhsFoJ8XA2WO7USQLdGfQsXRAAoqaw3sBxX0wx8PQybZ+1tb5cKuDlxsek/4/Hi6CiwWL13Gl+pVEIul4PNZsPW1hZyuRy1tbX3xXdSpVJBoVCAw+HA1tYWjY2NqK6uNum1yeVybNy4EVFRUaitrcU///yDDz74wKR6+cbiQXimEQjmgpR/dIKMjAyEh4fjwoULiI6OBgAcPnwY48ePR0FBAfz8/Dq0n0GDBmHw4MHYtWuXdhlFUfjpp58s7qajVquxb98+LF68GMHBwUhJScGQIUNMosfs5eUFHo8HOzs7vYY/S26Wag9du3QfHx+EhobC1ta2Q7Xklk5zczOysrJQVFSkZwIik8kgFotRVVVldNvztTv/xt/nxHrLWivrCPF3Q3aL8o/WykQAwM/LCYXl+vXS/UO8cKOFVF8E3wcOtlaYEO0FRVNDj1podwe5XA6pVIqSkhI9JZfa2lpIJBLU1dX16mtr7Z5RU1MDsVhskr4Mmqbx66+/YvHixXB0dMTmzZsxcuTIXlM3/SA+0wgEU0KC6k6we/duzJ07F9XVdx/YKpUKXC4XP/zwg9YJqj0uXryI6OhopKamYvjw4drlFEXBz89P6y43Y8YMTJs2zWJuznV1dVi7di22bt2KZ599FitWrICvr2+X96fbue/m5gYej9dqw1dtbS0yMzPR1NQEgUBgUkc1Y6FRN9Fcm65rmC41NTUQiURoamoCn8+Hn59fr7o2d3d38Pn8VrV9NbbnTU1NRrM9/+aPS9j54zm9ZbxAd0jz9TWkbW2s0NSs1NqIa/B2d0Bppf60dnioN25k69dVB3naIq/8roY115qDd14YjgkP9QNFUVodaLlcblFSc+2hVqu1ijseHh7g8/mtlkJomlAtXWVHl5bXJhAIDCQbja0gxDAMrl27hgULFiAjIwMrVqzA9OnTe93A/0F+phEIpqB33QF6mJKSEnh5eekt43A4cHNzQ0lJSRtb6bNr1y7069dP7+YDACtXrsRjjz0GOzs7/PXXX5g1axYaGhrw3nvvGe38u4OTkxPWr1+Pt956C4mJiYiKikJCQgLee++9TmkO66oQODo6YvDgwe1qzDo7O2Po0KEoLS2FWCxGXl4ewsLC4OpqWArQ06jVaq3Do729/T2vzcXFRXttEokEeXl5ZtPM7SwtdbTvdW2urq4YOnSo1jgkLy+v27bnIX6GUnDlrah/NDUr4eFqj4oafWk8Nyc7g6CawzYMqii2NYDbQXX/UG8snPYY/L3uTuO7ubkhJiZGq5mel5cHPp8PT09PiwsYdBtKuVzuPT83d3d3uLm5aa8tNze3SxrX5oBhGJSUlEAsFsPGxqbda6MoCh4eHnB3d0dZWRmkUqnWnbGzzbRlZWVYuXIlvv32W8yYMQO//PKLRd6POsKD/EwjEEwBCaoBJCUlISUlpd11MjIyun2cpqYmfPPNN1i6dKnBa7rLBg0aBJlMhg8++MDibkA8Hg8//PADTpw4gTlz5mDv3r1YvXo1nnnmmXazPrpuaFwuFwMHDuywGxpFUfDx8YGnpyfy8vK0jX5CodDk1t0doaXW9IABA+Du7t6pa/Py8kJeXh6uXr0KFxcXCAQCk5vxdARdExEWi4X+/ft3ODA2tu15SIDhYKNO1gxney5qZfpNh+7OhkF1a3bldQ2GmtZl1Y3gsClMeyoGL46OBLuV77XutRUWFiIjIwM5OTlaFRRLoLKyEiKRCCqVCkKh0ED6sC10r62oqAiZmZnIzs42ijSisdDM8sjlcq1iUGevraSkBBKJRBtc32tQ1NzcjE8//RQbNmzAQw89hMuXL6NvX8tsViXPNAKhZyDlHwDKy8tRWVnZ7jqhoaH46quvujVV9uWXX+KNN95AYWEhPD092133999/xxNPPAG5XA4bm441Y5kblUqF3bt3Y+nSpRAIBEhJSUFUVJSBZrEm4GSz2UbJ6DU3N0MikaCkpARBQUEICQnpkWlXjWSeRCIBTdNGkZBTKBTIyspCYWEh/Pxum4p01Mrb2Gis5RUKBXg8Hnx9fbtVCtBSB1kj59ZRGIbBE+/uul3aoQM/0B2SFiUgHbUrt7VmoVFBAzofWbCfKxa/PhL8wI7bcevay7dX8mMOGhoaIBaLUVNTozXp6U4Nsa6Jj5OTE/h8fo814GmMaXQdLLtzbZoZmOzsbNja2oLP5xuY49A0jUOHDmHRokWwtrbGpk2bMHbsWIvL3OtCnmkEQs9AgupOoGnqSE9Px5AhQwAAf/31F8aOHduhpo4RI0bAw8MD//3vf+95rDVr1mDTpk2oqqq657o9TU1NDVavXo1PPvkEL7zwApKTk+Hl5YWvv/4aR44cwVtvvaUNyoz5INIYrMhkMqPV7XaUqqoqSCQSNDU1ITQ01MDcpbtoGv6qq6vN3jhWX18PsViM2tpakxy7O7bns9f9iJsttKVba1bsF+qNjBbNhm3ZlTs7clFzR15v0qiBeHNiDKytujZI021O1Wglm8tARaFQQCqVoqioCP7+/ggNDTXqgEx3UKSpy26tnt4UdNaFtbNoytLEYjF27NiBd999FyNGjMDNmzeRmJiIf/75B8uWLcPMmTNNbhpjTsgzjUAwLiSo7iTjxo1DaWkpduzYAaVSiWnTpiE6OhrffPMNAKCwsBAjR47E/v37ERMTo91OIpFAKBTi0KFDGDt2rN4+f/vtN5SWlmLYsGHgcrk4cuQI5s2bh3nz5mHFihVmvb7uIBKJMH/+fBw5cgQODg5QqVR49913MW/ePJMFhJpssUgkApvNRlhY2D1tmLuDbsDZp08fBAUFmTRLrskWK5VKk7sutgx2g4ODTZol76ztOQBs3H8ch07pT1sP4PngulS//tPXwwnFlfUG21tzKChU+rc8QR8PVNc3Iem1xzC4r38Xr0afxsZGbUbV1A5+un0KLi4uEAqFJg125XI5srOztcovphw4aGa6xGIxbG1tERYWZtIseU1NDZKTk/HVV1/B3d0dFRUVmD59OpYvX24xpS/GhjzTCATjQWqqO8nXX3+N2bNnY+TIkWCxWHjuueewdetW7etKpRKZmZlobNTPiO3evRsBAQEYPXq0wT6trKzw8ccfY86cOWAYBnw+H5s3b8Zbb71l8usxJpWVlairqwOHwwFFUXByckLfvn1Nmj3WGKx4eHggLy8P//zzD1xdXSEQCIwaWDQ2NkIqlaKsrAyBgYEYMGCAWcoy3NzcEBsbqw0sNI2axqzb1ZU19Pb2xvDhw81Sq+7k5ITBgwdrFSfy8/NbtT3XpbVmxTqZoYlLaWU9OGyWgQuir6cTcov1HRMjhX54ZfwQONobb0razs4OAwcORG1tLcRiMVJTUzs8cOgomkY9iUQCKysrREZGmnRAqYHL5aJfv34ICgqCVCpFampqp2ccOkJ1dTUyMzOhVCoRFhbW4Zrw7mBnZweBQABra2uwWCxQFIWamhrU1NTct0E1eaYRCMaDZKoJ3ebq1atYsmQJ/u///g9z5szB3Llz4eDggM8//xzLli1DeHg4NmzYgAEDBpj8oahQKCCRSFBcXIyAgACtVXFX0dVj9vHxAY/HM9t0fkvUajVyc3ORk5NjFMtl3Qyns7MzBAJBq7KG5qA12/PWFBUuZRRg3ubf9JZZW7GhaEWD2tfDAcWV+m6guqUi9lxrvD/lYYyMFRjxSgzRyLmJxWKoVCqjzDjU1NQgMzMTzc3N4PP5PSo1WVdXB4lEYrRyoaamJohEIlRWViIkJMQspU8Mw+Dw4cNYtGgRAGDTpk2YMGECcnNzsWLFCnz77beYNm0ali5d2mHtZgKB8OBBgmpCt9m0aRMKCgqwcOFCA3mm6upqrFixAp999hleeuklLF261GAdU1BfXw+RSIT6+nptvXVnMoS6Otru7u7g8XgWocYB3A70pVJplwcONE1rm0dtbGwgEAjMkuHsCLoDBzc3N4MZh+q6Rjw3d5/Bdl5uDihrIa8X6GmL/Ar9LPYAvg+uS0owUOCLpNcfg4+7+QYRLVViNGoanQmGGxsbIRaLUVlZaXRzne6iq9/dlT4DlUqF7Oxs5OXlwcfHB3w+3+QNbQzD4NatW1i4cCHS09OxZMkSzJ4922AWKiMjA8nJyZg+fToef/xxk54TgUDovZCgmmAWbt26hXnz5uH06dNITEzEjBkzzPLArKiogEgkAkVREAqF8PBoX9FBo3SQk5MDBwcHCAQCi7Ua1q3vDg0NvWdpQUu1knuVWvQkujMEfn5+CA0N1X5fnk3Yg5p6/WC5b4gXbrXignhNqt/U2MfXFaPjhHihDak8c9BSTaMjEoNKpRJZWVkoKCgwW8DZFRiG0Wpca6b97/UdYxgGhYWFkEqlsLe3h1Ao7JLkYmepqqrC2rVrsWfPHrz22mtYuXLlPRUsCAQCoT1IUE0wG5op1rlz50KpVGLNmjUYP368yR3bNLJZUqkUzs7OEAqFBlln3eyttbU1+Hx+p7OIPYVm4EDTNIRCYauShbpWzV3J3PcUrdmez99yEFcyi/TW4/s7Q1KoXyvND/SApOCurFigtwsWvzkSwj6WETjpqml4enq26nKoa7rj6OgIoVDYYyU6naGjv6eqqipkZmZCrVa3+d01NkqlEjt37sSaNWswePBgbN68GREREb3it04gECwbElQTzI5SqcSnn36KFStWICoqCikpKejXr59Z6q01GtAayTErKyutw5qlZ2/bg6ZpbU2ynZ0dhEIhnJ2d9YLSPn36oE+fPr3OShnQtz1PEzXhyPlsvdeDvB2QV6pf/uFkb4M6WTNAUXjyX+GYMSkOtjaWJ4cml8shlUpRUlKi973UqNqwWCyt02Zv+17qZuU1xj+638vq6mpt3bSpB3kMw+Do0aNISkqCUqnEBx98gKeeeqpXDC4JBELvgNxNLJCqqipMmTIFTk5OcHFxwRtvvIGGBkM7Zl1GjBgBiqL0/mbMmKG3Tl5eHiZMmAA7Ozt4eXlh/vz5UKlUpryUVrGyssJ7770HkUiEfv364eGHH0ZCQgIqKipMelxra2v07dsXsbGxaGpqwqlTp3D69GncunULgYGBGD58uEkl60wJi8VCQEAA4uPj4erqigsXLuD06dM4e/YsbGxsEB8fDx6P1ysDauCu7Xnfvn3BZTUbvN6sMvzM6mTNCPBxwapZYzDn5X9ZZEAN3FbT6N+/v8H38ubNmwgODsawYcO6Ze/ek7DZbAQHB+Ohhx6Ci4uL9nt55swZ7fcyODjY5IGtSCTCpEmT8Oqrr+K1117D9evXMXHiRIsOqO/35wCBcD9iuXeUB5gpU6bgxo0bOHLkCA4ePIiTJ09i+vTp99zurbfeQnFxsfZvw4YN2tfUajUmTJgAhUKBtLQ07Nu3D3v37kVycrIpL6Vd3N3dsW3bNqSnpyM3NxeRkZHYvn07FAqFSY9L0zQYhgFFUVCr1WCz2eByub0yaGmJZuKJoigwDAOGYWBlZWUxzWzdhcViwcfNUO6vrKoeVhz929mQ8ABsTngS8VEh5jq9bsHhcLQNp5rP8X6ZSGSz2bCxsQGbzQZN35Y5pGla+29TUV1djcTERMTFxcHf3x+ZmZlYsGCBRdajt+RBeQ4QCPcTpPzDwtA4XF24cAHR0dEAgMOHD2P8+PHtOlyNGDECUVFR+PDDD1t9/Y8//sATTzyBoqIieHt7AwB27NiBxMRElJeX95gVtgaGYfD7779j7ty5oCgK69atw+jRo40a6Ooacmh0ddlstrZJqjfVrLZEt/ZWt8GytrYWIpEIjY2N4PF48PPzs+jsXFto9J4bGhrg6x+ImRv+MljH38sZhWW14LBZePPZWDw/KhIsluUPlHTdAr28vLRugZqGPwDg8/nw8vLqlQM/Tc0/wzDaZmGN0ZBG993YRkMqlQp79uzB6tWr0b9/f2zevBmDBg3qNe/fg/ocIBB6OySotjB2796NuXPnorq6WrtMpVKBy+Xihx9+wDPPPNPqdiNGjMCNGzfAMAx8fHzw5JNPYunSpdrGp+TkZPz666+4cuWKdpvs7GyEhobi0qVLGDRokEmvq6MoFAps374dq1atQkxMDNatW4ewsLBuPQx1lSTacoDTVVfw9fUFn8/vFQ8YjQGIVCoFm80Gn883KBXQdZ3sbfW5TU1NkEgkKCsr09aEW1lZYXLilwYSegHuXChpFpa+PRrhPN8eOuOO01YdfFvr2NraQiAQtKrfbYk0NDRAJBKhtrYWPB4PAQEBBgM6XY1rzefbnVkVhmFw4sQJJCYmorGxESkpKXj22Wd73UDyQX8OEAi9ld5ZYHkfU1JSYqDjzOFw4ObmhpKSkja2Al566SX06dMHfn5+uHr1KhITE5GZmYkff/xRu19NZkKD5v/b26+5sba2RkJCAl555RUsXboU8fHxeP3117Fw4cJOaynrqit4eHhg2LBhbbosWllZISwsDAEBAXoOeOZooOoqGkMRhULRrgGIrutkQUEBrl+/bvFZ+ZYScvHx8XoDoRB/N4OgeujAUAwJtUVZfibsOQqjuhcaG13Fln79+rWpeqGplff19UVubi4uX76sdQy1FN30lrRsCG7PfVTjqllVVQWJRIL8/PwuaVwDgFQqxaJFi3DixAkkJSUhISGhx4yausuD/hwgEHorJKg2E0lJSUhJSWl3nYyMjC7vX7fWLiIiAr6+vhg5ciSkUil4PF6X99tTeHp64tNPP8WsWbMwZ84cREZGYvHixXjjjTfuaXTSUgc4Ojq6w1rT9vb2iIqK0kp9FRQUQCAQWNTUe11dHcRiMerq6rTW1x3J7rFYLAQFBcHX1xdZWVk4f/68xWke0zSNvLw8ZGdnw9nZGTExMa0G/iF+bjh3LQ8AYMe1wpyXH8HIWIGee2FHbM/NTWe1xTWw2WyEhoYiICAAWVlZOHfuXI87fLaEpmnk5+cjKysLLi4uiI2N7XDg7+bmhqFDh2p11HNzc8Hj8TrUOFxbW4sNGzbgs88+w4svvojMzEz4+lrmTAV5DhAI9zckqDYTc+fOxWuvvdbuOqGhofDx8UFZmb6JhUqlQlVVFXx8fDp8vNjYWACARCLRPpzOnz+vt05p6W1jjM7s15xQFIWBAwfiyJEj+PXXXzF//nzs2rUL69evx2OPPWbwsNVMlWdlZcHa2hoDBw6Eu7t7l47t5uaGYcOGobCwELdu3UJ+fr7ZTCnaQrcUIjAwEAMHDuySBbsmKx8YGKjNyvfp0wfBwcE91tCoKWORSCTgcDj3/OyC/W/PWoT18cSS6Y/D3+v2oImiKHh4eMDd3R1FRUUQiUTIzc1t0/bcXLR0wYyIiOjSZ6dRsAkKCoJUKkVqaiqCgoIQHBzcpf0Zg5YmSxEREfc0WWoNzYyKp6cnioqKIJFIkJOT06bzpEqlwpdffomVK1dCKBTixIkTiI6OtpgBVGuQ5wCBcH9Dgmoz4enp2SG3rri4ONTU1ODixYsYMmQIAOD//u//QNO09gbZETQ1c5qMTVxcHNasWYOysjLttOKRI0fg5OSE8PDwTl6NeWGxWJg4cSLGjRuHjz76CK+88gri4+OxZs0aCIVC0DSNffv2wc7ODgEBAQgLCzNKZpmiKAQEBMDHxwfZ2dm4cOFCj2R2FQoFsrOz2yyF6Cp2dnaIjIxETU0NMjMzUVhY2G4ZianQ2Fs3Nzd3+Pi8AHdMejwSbz4bCyuO4UCAoij4+/vDx8dHWzbRmu25qdG1XXd3d0dcXJyBwUtXsLOzQ0REhHbW4vTp052atTAW9fX1EIlEqK+vN5qpkO5npylXyszMRGhoKB5//HEwDIPTp09jwYIFqK2txUcffYQXXnjBYkt9dCHPAQLh/oY0Klog48aNQ2lpKXbs2AGlUolp06YhOjoa33zzDQCgsLAQI0eOxP79+xETEwOpVIpvvvkG48ePh7u7O65evYo5c+YgICAAJ06cAHD74R4VFQU/Pz9s2LABJSUleOWVV/Dmm29i7dq1PXm5naa0tBRLlizBV199hZEjRyIzMxPV1dXYuHEjnn/+eZM9XBsbGyEWi1FZWamttzZlAKMJyHJzc+Hi4gI+n2+yGmjdTLGVlRWEQmGna9g7S0NDA8RiMWpqahAcHGzS97M923NTwDAMiouLIZFIYGNjY/JMuabkRalUgsfjmXxgpFAoIJFItJl3jWGNKdAYtWzevBn9+/eHg4MD0tPTMX/+fMybN88ogxRLhDwHCITeBwmqLZCqqirMnj0bv/32G1gsFp577jls3bpVW5+Yk5ODkJAQHDt2DCNGjEB+fj5efvllXL9+HTKZDIGBgXjmmWewZMkSvXKF3NxczJw5E8ePH4e9vT2mTp2K9evX90pDkAsXLuDdd99Feno6rK2tsXz5csyYMcMs11JdXY3MzEwolUoIBAKj1+zqKj5wuVwIBAKTB7ga1Go18vLykJOTAxcXFwiFQqNndnVLITQOguZSWmnN9tzYgXxVVRVEIhGUSiX4fL7ZDIValtC0VTbRHXRr3jUNk+bI/NfX1yM5ORm7du0CADzzzDPYuHEj+vTpY/Jj9xTkOUAg9D5IUE3oVWRmZmLJkiU4dOgQ3nvvPcybNw/Hjh3DggUL4ODggJSUFPzrX/8yeRCjyUSKxWLY2toiLCysw82Q7e2zvLwcYrEYQM9qEysUCkilUhQVFRkt8FWpVNrMu7u7O/h8vllLMXTR2J7L5XKtfnd332fdgN0cMxltoWkYzM7O1tMs7w4Mw6CsrAxisRhsNhthYWFmGeip1Wp8/fXXWLFiBUJCQrB582Z4eXlh2bJl+O9//4sZM2Zg8eLFXarhJhAIBGNDgmpCr6G+vh59+vTBCy+8gOTkZD0DBLlcjs2bN2P9+vUYMWIE1qxZY5Zud13jDm9vb61xR2fRBHlNTU1dlhQzBbolGl2t2W2ptSwUCuHi4mKaE+4EDMOgtLQUEokELBYLAoGgS3bguhJyfn5+4PF4FqFxrlQqtYMYT09P8Pn8LpVK1NXVQSQSQSaTaeumzTFoPXPmDBITE1FWVoZ169bhpZde0vtNXL16FYsWLUJZWZlB8x2BQCD0BCSoJvQqampq2g3IioqKsHjxYhw4cAAzZszAggULzKLYoavMERwc3GEljYaGBkgkElRVVWnNLyxxGrayshIikQgqlarDJS8aVQixWAyapi1OmlCDrhulo6MjBAJBh74zuqUQLi4uFqsdLZfLkZWVheLi4k7Vkzc3N0MikaCkpARBQUEICQkxy3czLy8PS5cuxR9//IGEhATtLFRb3OueQCAQCOaCBNWE+w6GYZCeno6EhASIRCIsW7YMr7zyilmm4mtqaiASiSCXyyEQCNqsp5XL5ZBKpSgpKTF7XXFXYRhGK3V2r4yzrq24Rl/ZEjLv7aFrFuTt7Q0ejwdbW1uD9TQZbrFYDA6Ho3WotHQ6OoDT1NVnZ2fDw8MDAoGg1ffB2MhkMmzevBlbt27FU089hfXr19/XNdMEAuH+gwTVhPsWmqbx/fffIykpCS4uLkhJScFDDz1klqnrkpISiMVi2NjYICwsTBt86gZu3ZmS70nUarW25KVl0KWbse9p/eSu0tTUBKlUitLSUgQGBiIkJER7DZpBU1NTE/h8vlFqsc2N7jXolhrpDhY0Wubm0PamaRrfffcdli9fDj8/P2zevBnx8fG97n0lEAgEElQ/wFRVVeHdd9/V6y7/6KOP2pxqraqqwrJly/DXX39pg8KJEydi1apVeo1QrT0Mv/32W0yePNlk19IejY2N2LhxIz744AM8/vjjWL16NYKDg01+3JYaxfb29igoKDBa81hPo5tt19S3FxUVWZzTX1fRaEDX19cjICAAMpkMlZWVFl2m01E0TbESiQQ0TcPf3x/l5eVoamqCQCAwi1Y5wzC4cOECFixYgMLCQqxZs8ZsM0rd4UG5bxIIhM5DguoHmHHjxqG4uBifffaZVgd16NChWh3Ully/fh3Lli3Da6+9hvDwcOTm5mLGjBkYOHAg/vvf/2rXoygKe/bswdixY7XLXFxcejzIys/Px6JFi/Djjz/inXfewdy5c02m+6yBYRjk5eVBKpVCrVbD29sb/fr163XZ27agaVprCQ4AQUFB4PP5Fl/q0VEUCgUyMjJQVlYGNpsNgUCAgICA+yaL2tjYiGvXrqGurg7W1tYIDw/vkDlJdykoKMCyZcvw66+/4j//+Q8WLlxo8t+isXjQ7psEAqHjkKD6ASUjIwPh4eG4cOECoqOjAQCHDx/G+PHjUVBQoKes0R4//PADXn75ZchkMm3mjqIo/PTTT5g4caKpTr/LMAyDc+fOYc6cOcjNzcWyZcvw0ksvGT07xjCM1pBDpVKBx+PBzs4OYrEYjY2NvbZ0QENrmsgMw0AsFoNhGAgEAnh6evba62utebG+vl5bTy4QCHrU9ry7aEp4cnJy4OXlhdDQUJSVlSEnJwfOzs4QCAQmCXIbGxvx0UcfYcuWLRg3bhxSUlIQGhpq9OOYigf1vkkgEDoGCaofUHbv3o25c+eiurpau0ylUoHL5eKHH37AM88806H97Ny5EwsXLkR5ebl2GUVR8PPzQ3NzM0JDQzFjxgxMmzbNogIsmqbxzTffYOHChfD29kZKSgqGDRtmlHOsra2FRCJBfX09QkJCEBAQoA3aNXq/IpHIbM6FxqY9W3GaplFYWAipVAoHBwcIhUKzqK8YC12tcIqiDGT2dEt6esL2vLvo1vtzuVyDZlOFQoHs7GwUFBS026zZWWiaxv/+9z8kJyfD3d0dW7ZsMYuevLF50O+bBAKhfXpvUSChW5SUlMDLy0tvGYfDgZubG0pKSjq0j4qKCqxatQrTp0/XW75y5Uo89thjsLOzw19//YVZs2ahoaEB7733ntHOv7uwWCy8/PLLmDhxIjZs2ICnn34a48ePx8qVKxEUFNSlfTY2NkIikaC8vBxBQUEYOHCgQZkHRVHw9vaGh4cH8vLycOXKFbi7u0MgEFh8w2JHbMVZLBYCAwPh4+ODnJwcXLhwoVv63eZEo8fc0NCg1WNuWcbCZrO1zX1ZWVk4e/asWWzPjUFNTQ0yMzOhUCjaVKaxtrZGWFgYgoKCIJVKkZaWZtCs2RkYhsGlS5eQmJiIrKwsrF69GtOmTbP4uum2eNDvmwQCoX1Ipvo+IykpCSkpKe2uk5GRgR9//BH79u1DZmam3mteXl5YsWIFZs6c2e4+6urq8Pjjj8PNzQ2//vpruw/c5ORk7NmzR1t3a4nk5uYiKSlJW+M5Z86cDmcgdc0/Otukp2vZ3Z3gxZR0x1ZcVw2kT58+CA4OtrgGP7lcDolEgtLS0k4rlpjD9ry7NDU1QSwWo6KiotPnWF9fD7FYjNra2k6b/5SUlGDZsmX43//+h9mzZ2Px4sUW25xL7psEAsEYkKD6PqO8vByVlZXtrhMaGoqvvvqqy9OY9fX1GDNmDOzs7HDw4MF7BpC///47nnjiCcjlcovO5jEMg9TUVMyZMwfFxcVYsWIFXnzxxTab7nRtt93c3MDn87ts/lFfX4/MzEw0NDRo6617utnPmLbitbW1EIlEaGxsNJsr373QdcP08vICn8/vcqmDKWzPu4ux3D4BaPsDFArFPa+vqakJ27dvx8aNGzFq1Ch88MEH4PP53bkUk0PumwQCwRiQoPoBRdNwk56ejiFDhgAA/vrrL4wdO7bdhpu6ujqMGTMGNjY2OHToUIdKFtasWYNNmzahqqrKqNdgKtRqNb788kssWrQIgYGB2LBhA6Kjo7VBRHNzM4qKipCXl2fUpjVNPa9IJAKbze4xUxFT2Ypr6snFYnGPXh/DMNq6b1tbW4SFhRklg6pre65RCnF3dzd7cK1r0mNnZwehUGj069OU+eiWyNA0jV9++UWbkd6yZQseffTRHh9cGBNy3yQQCO1BguoHmHHjxqG0tBQ7duzQSkNFR0drpaEKCwsxcuRI7N+/HzExMairq8Po0aPR2NiIn376SS9r6enpCTabjd9++w2lpaUYNmwYuFwujhw5gnnz5mHevHlYsWJFT11ql6ivr8e6devw0Ucf4emnn8by5cvx999/Y926dZg8eTLeeecdkyhctLS/FgqFZmmGM5etOE3TyM/PR1ZWFpydnSEUCs1m762xW1er1Sa9vq7YnhuDqqoqiEQiKJVKCIVCk17f/PnzkZ+fj9WrV8PNzQ1JSUm4desWVq5ciTfffNPiynyMBblvEgiEtiBB9QNMVVUVZs+erWdisHXrVm2Ak5OTg5CQEBw7dgwjRozA8ePH8eijj7a6r+zsbAQHB+Pw4cNYuHAhJBIJGIYBn8/HzJkz8dZbb/V4OUNXycrKwuuvv45Tp07BxsYGc+fORUJCgsmnZBUKBaRSKYqKihAQEIDQ0FCT1Vv3hK24rtKEr68veDyeyd7ThoYGiEQi1NbWIjQ0FIGBgSa/vo7anhuDxsZGiMViVFZWIiQkpNUmUmNTVVWFhQsX4ttvvwXDMHj11VexZcsWo8xqWDLkvkkgENqCBNUEQjvcuHEDSUlJOHHiBCZNmoT09HTU1NRg5cqVeO6558zywNMEhHV1dUYPeC3BVlwmk0EikaCystLozX66TZYBAQEICQnpcJOlsdC1PTf2e6xUKpGdnY38/HyTD0x0aW5uxieffIINGzZg6NCh8PDwwC+//ILXXnsNy5Ytg4+Pj8nPgUAgECwNElQTCK2gkbL69ttvMX36dCxZsgSenp5Qq9XYs2cPlixZAh6Ph5SUFAwaNMgsls4VFRUQiUSgKApCoRAeHh5d3p9uMGYpknfV1dUQiUSt6l93FrVarS2h6W6TpbHQtT3XKGl0dXCkqXuXSCRwcHBAWFiYWRwJaZrG77//jkWLFsHW1habNm3C6NGjQVEUbt26hcWLF+PPP//E/PnzkZycfF/VUxMIBMK9IEE1gdAKNE1j8eLFeOutt1p1fKutrcWaNWuwfft2PP/881i+fLlZsnOaelapVNqlemTdem1TOud1FV2nxq6Y47TcPiwszKKcD3WdNtVqNfh8Pry9vTsVfOrWhQuFQrM4VzIMgxs3biAxMRHXrl3D8uXL8fbbb7eacT979izS0tKQkJBg0nMiEAgES4ME1QRCN5BIJJg/fz6OHj2KefPm4Z133jFZ3awuSqUSWVlZKCgo6JB2dEtb8Z5S3ugoupnmjjoXajLdCoUCfD6/VXMTS0FXoaOjCjIymQwikQg1NTVmqwsHbsvNrVq1Cl9//TXeeustLF++vNe5gBIIBII5IEE1gdBNGIbBsWPH8P7776Ourg5r1qzB008/bZaApyOBVnu24pZOc3MzsrKyUFRU1ObgQbcm21xNesaiI7bnugMoPz8/8Hg8s9SFKxQK7NixAykpKRg2bBg2bdqE8PBwkx+XQCAQeiskqCYQjIRKpcLOnTuRnJyMvn37IiUlBQMHDjRLAKspCdBI4Xl6emrd/tqzFe8ttKbeoVartcGmOZv0TIHu4EFje25lZaWV5nNycjKb9CDDMPjjjz+waNEisNlsbNy4EePHj+81AzECgUDoKYhWD8EkfPzxxwgODgaXy0VsbCzOnz/f7vo//PAD+vbtCy6Xi4iICBw6dEjvdYZhkJycDF9fX9ja2mLUqFEQi8WmvIROw+FwMGPGDGRmZiI6OhqPPfYYZs+ejdLSUpMf293dHbGxsQgKCsKNGzdw6tQpnD17Fra2toiPj0dISEivDagBwMHBAYMHD8bAgQNRWFiIEydO4NSpU5DJZIiNjUV4eHivDagBwMbGBv369cOwYcPQ3NyM06dP4+TJk8jPz0f//v0xaNAgkwfUDMPg5s2bmDhxIqZPn45Zs2bh6tWrmDBhgkUG1A/iPYZAIFg2JKgmGJ0DBw4gISEBy5Ytw6VLlxAZGYkxY8agrKys1fXT0tLw73//G2+88QYuX76MiRMnYuLEibh+/bp2nQ0bNmDr1q3YsWMHzp07B3t7e4wZMwZyudxcl9VhXF1dsXnzZly5cgUVFRWIiorChx9+iObmZpMel6ZpKBQKMAyjDaBpmsb9MhnFMAxUKhVomgabzQZFUVCr1VCr1T19akaDYRjQNA2KosBms6FSqaBQKEx+3MrKSsydOxcPP/wwBAIBRCIR3n//fbPLK3aUB/0eQyAQLBNS/kEwOrGxsRg6dCi2b98O4HZgFxgYiHfffRdJSUkG67/44ouQyWQ4ePCgdtmwYcMQFRWFHTt2gGEY+Pn5Ye7cuZg3bx6A2+ob3t7e2Lt3LyZPnmyeC+sCDMPgr7/+QkJCAuRyOdauXYsJEyYYtd66LVtxXUOQ0NBQBAUF9VojidraWohEIjQ2NoLH48Hf3x9qtRo5OTnIzc2Fp6cnBAKBWZpETUFrRj8cDsfktudKpRJffPEF1q5diyFDhmDz5s0YMGCARWamdSH3GAKBYIn0zicswWJRKBS4ePEiRo0apV3GYrEwatQonDlzptVtzpw5o7c+AIwZM0a7fnZ2NkpKSvTWcXZ2RmxsbJv7tBQoisKYMWNw5coVzJkzB7NmzcKTTz6J69evdzuDzDAMysvLcfbsWeTk5KBv374YOnSo1tHOzs4OkZGRiIqKQklJCdLS0lBaWtqrMtdNTU24du0a0tPT4erqivj4eAQEBICiKHA4HPD5fMTHx4PFYiEtLQ1isRhKpbKnT7vD0DSN3NxcpKamQi6XY9iwYQgLC4OVlRUoioKPjw+GDx8Of39/XL9+HZcuXUJdXV23j8swDI4cOYJhw4bh888/x969e/Hnn38iIiLC4gNqco8hEAiWCgmqCUaloqICarUa3t7eesu9vb1RUlLS6jYlJSXtrq/5b2f2aWlYWVlh9uzZEIvFiIiIwCOPPIL3338f5eXlXdpfbW0tLl68iBs3biAgIADDhw9vU+/Yzc0NsbGxCAkJwa1bt5Cenm6UwMyUKJVKiMVipKWlgaIoxMfHg8/ng8PhGKzL5XIxYMAADB06FLW1tUhNTUV+fj5omu6BM+8YDMOgrKwMZ86cQVFREQYOHIhBgwa1KhvIYrEQFBSE+Ph4ODk54cKFC7h+/Tqampq6dOzMzEw8//zzeO211/DGG2/g+vXreOqpp3rNLAa5xxAIBEuld9xFCYT7BDc3N2zduhUXL15EQUEBoqKisG3btg7Xzepmbp2dnREfH9+hsg6KouDv74/4+Hi4uLjgwoULuHHjhsXVi9I0jfz8fKSmpqK2thZDhw7FgAEDOuT26OTkhCFDhqB///7Iy8vD2bNnUV5ebnGZ+fr6ely6dAk3b95EUFAQYmNjO6QZbmVlBYFAgOHDhwNApzPz1dXVWLBgAYYPH46goCBkZmZi3rx5ZrdtJxAIhPsVElQTjIqHhwfYbLaB4kVpaWmbjoM+Pj7trq/5b2f2aemEh4fj0KFD+Oqrr7Bnzx7ExMTg0KFDbQaASqUSIpFIL3MrEAg63UjG4XC0gZlarUZaWhqysrJ6vNlPt5QlLy8P4eHhGDJkCJycnDq1H4qi4Onpibi4OAQGBuLGjRu4dOkS6uvrTXTmHae5uRk3b97E+fPn4ejoiPj4+C4ZuNja2moz83V1dUhNTUVeXl6bmXmlUonPP/8ckZGRuHHjBtLS0rBjxw54eXkZ47LMDrnHEAgES4UE1QSjYm1tjSFDhuDo0aPaZTRN4+jRo4iLi2t1m7i4OL31AeDIkSPa9UNCQuDj46O3Tl1dHc6dO9fmPnsDFEVhwoQJuHr1KmbNmoXp06dj4sSJuHnzpja4bmpqwsGDB3H69GnU19cjJiamw5nb9rC1tdWWHJSXlyMtLQ3FxcU9ktXVZG41pSxxcXHw8vLqVm0vi8VCYGAg4uPj4ejoiPPnz/dYZl6tViM7OxupqalQKpWIi4uDUCjstrKGk5MTBg8ejAEDBqCwsBBpaWk4ePCgNrjWmBLFx8dj+/bt+Pzzz3H06FEMGjTI4uum24PcYwgEgqVC1D8IRufAgQOYOnUqPvvsM8TExODDDz/E999/j1u3bsHb2xuvvvoq/P39sW7dOgC3p7EfeeQRrF+/HhMmTMB3332HtWvX4tKlSxgwYAAAICUlBevXr8e+ffsQEhKCpUuX4urVq7h582a3A0xLoaKiAsnJydizZw9effVVBAUFYdu2bfD29sZvv/0GDw8PkxyXYRgUFxdDIpGAy+UiLCwMzs7OJjmWLnK5HFKpFCUlJQgMDERISIjJJNyampogFotRUVGBPn36IDg42OS63Zq6abFYrLWGN5W9N8MwyMjIwNixY+Hl5YV33nkHhw8fxsmTJ7Fw4UK8//77983vBCD3GAKBYJkYdv0QCN3kxRdfRHl5OZKTk1FSUoKoqCgcPnxY2wSUl5enN+U9fPhwfPPNN1iyZAkWLVoEgUCAn3/+WfuwA4AFCxZAJpNh+vTpqKmpwUMPPYTDhw/fVw87Dw8PfPzxx4iOjsacOXNQX1+Pp556Crt27TKpVBxFUfDz84O3tzdycnKQnp4OLy8vCAQCk7y/ulJ4Hh4eGD58uMml8DSZ+ZqaGohEIhQUFIDP58PPz88kWdu6ujpkZmaisbHRpMfRQFEUwsPDkZaWhsmTJ2P27NkICgrC77//joceeshkx+0pyD2GQCBYIiRTTSBYCDdv3kRiYiJOnjyJxMRE8Pl8LFmyBGw2G+vXr8eoUaPMMm0vl8shFotRVlaG4OBgo2V1GYZBUVERJBKJnp62udHNILPZbAiFwg41CnYE3ey7JiPemmKJsVGpVNi/fz9WrlyJvn37YvHixfj555+xd+9eTJs2DcuXL++1NdQEAoHQWyBBNYFgAWzcuBFLly7FW2+9haVLl8LT0xPA7ea2bdu2YfXq1YiLi8PatWsRFhZmlnOqra1FZmYm5HI5+Hw+fH19uxzUV1ZWQiQSQa1Wg8/ntyn/Z05omkZeXh6ys7Ph4uICgUDQZStwtVqN3Nxc5OTkwMPDw2xGNAzD4NSpU1iwYAHq6+uRkpKC559/XpulvXXrFpKSkvB///d/+O677zB+/HiTnxOBQCA8qJCgmkCwAK5cuQJ7e3sIBIJWXy8rK8PSpUuxf/9+vPnmm0hKSoKrq6vJz4thGJSWlkIsFsPa2hphYWGdyi43NDRALBajpqYGISEhFunqqFAokJWVhcLCQvj5+YHH43VYZo5hGJSUlEAikcDa2hpCodAsnwsAZGVlYcmSJTh69CgSExMxd+7cNgP5U6dOQSAQECULAoFAMCEkqCYQegkMw+DKlStISEjAtWvXsGTJErz++utmKS/obCZW13bb398foaGhFq+HLJPJIBaLUV1djeDgYAQFBbVb9mLMTH5nqKurwwcffIBPP/0UkyZNwpo1axAQEGDy4xIIBAKhfUhQTSD0Mmiaxk8//YQFCxbA1tYWKSkpGDFihNnqrTU1w0FBQQgJCdEL6tVqNfLy8pCTkwNXV1cIBIJWXQItmaqqKohEIiiVSvD5fPj4+Oi9t6aqOb8XarUaX3/9NZYvX47Q0FBs2bIFMTExPV5GQyAQCITbWNY8LIHQBT7++GMEBweDy+UiNjYW58+fb3PdL774Ag8//DBcXV3h6uqKUaNGGaz/2muvgaIovb+xY8ea+jI6DIvFwnPPPYcbN27g5ZdfxksvvYTJkydDIpGY/NhcLhf9+/fH0KFDUVNTg9TUVBQWFoKmaRQXFyMtLQ2lpaWIjIxEVFRUrwuogbu27jweD2KxGOfPn0d1dTXUajWkUilSU1O1Bjw8Hs8s0nypqal45JFHsHbtWmzevBmnT59GbGysxQXUD9pvkUAgEHQhQTWhV3PgwAEkJCRg2bJluHTpEiIjIzFmzBiUlZW1uv7x48fx73//G8eOHcOZM2cQGBiI0aNHo7CwUG+9sWPHori4WPv37bffmuNyOgWXy0VSUhJu3boFLy8vDBs2DIsWLUJtba3Jj+3k5ITo6Gj07dsXEokEx44dQ2ZmJng8HmJjY02mx2wuNDKD8fHx8PDwwMWLF3H8+HGUl5cjOjraKAY8HSE3NxdTp07FM888g6eeegoZGRl46aWXLK4uHXiwf4sEAoEAkKCa0EUCAgLwySef6C1LS0uDnZ0dcnNzzXYemzdvxltvvYVp06YhPDwcO3bsgJ2dHXbv3t3q+l9//TVmzZqFqKgo9O3bFzt37tS6seliY2MDHx8f7Z+5ms+6gq+vL3bu3ImTJ09qg5ndu3dDpVKZ9LhNTU0oKSmBWq2Gi4sL1Go1ysrK0NTUZNLjmpO6ujpUVFTA2toazs7OaGhoQElJCZRKpUmP29DQgBUrViA6Oho2Nja4efMmli9fbtGZf/JbJBAIDzokqCZ0idjYWFy4cEH7/wzD4P3338ecOXPQp08fs5yDQqHAxYsXMWrUKO0yFouFUaNG4cyZMx3aR2NjI5RKpUFm9fjx4/Dy8kJYWBhmzpyJyspKo567saEoCtHR0Th+/Di2bduGjRs34uGHH8bJkyeNbj2uVCqRmZmJM2fOwMrKCvHx8RgyZAgeeughWFtb48yZM9qa5N5KU1MTrl69isuXL8PT0xPx8fGIjo5GbGwsZDIZTp8+jdzcXK0luLHQ1E0PGjQIx48fx19//YWvvvoKQUFBRj2OsSG/RQKBQCBBNaGLDBs2TC+o/vLLL5Gfn4+FCxea7RwqKiqgVqu1LmoavL29UVJS0qF9JCYmws/PTy8YGDt2LPbv34+jR48iJSUFJ06cwLhx46BWq416/qaAxWLhxRdfxM2bNzFp0iRMmjQJU6ZMQXZ2drf3TdM0cnNzcfr0achkMsTExCA8PBw2NjYAbmcUw8PDERMTg/r6eqSmpiI/P9/ogacpUalUEIvFSEtLA5vNxvDhwxEaGqqtm3Z0dMTgwYMRERGBwsJCbQ15dwcuDMPg3LlzeOyxx7BixQqsW7cOZ86cQXx8vMXVTbfG/fxb/Pbbb2Fra4vi4mLtsmnTpmHgwIFmKbUiEAi9BxJUE7rEsGHDkJGRgYaGBshkMixatAirV6/usnlGT7B+/Xp89913+Omnn/TqYydPnoynnnoKERERmDhxIg4ePIgLFy7g+PHjPXeyncTOzg5LlixBRkYGnJ2dMXToUCQnJ6O+vr7T+9I4EKalpaGwsBAREREYPHgwHB0dW11fE3iGh4cjLy8PZ8+etfjsIsMwKCgoQGpqKmpqajB06FD079+/zbppDw8PDBs2DMHBwbh16xbS09O7HGDl5+fjjTfewBNPPIExY8YgIyMDr776qkXWTZsKS/4tTp48GUKhEGvXrgUALFu2DH///Tf++OMPODs7m+08CASC5WN6gVvCfcmQIUPAYrFw6dIl/P333/D09MS0adPMeg4eHh5gs9koLS3VW15aWnpPk4uNGzdi/fr1+PvvvzFw4MB21w0NDYWHhwckEglGjhzZ7fM2JwEBAdi7dy9mzZqFOXPmIDIyEsuXL8eUKVM6pFpRW1sLkUiExsZG8Hg8+Pn5dSjYoygKXl5e8PDwQH5+Pq5evQoXFxcIhUKLqwuuqqpCZmYm1Go1+vbtCy8vrw5lh1ksFgICAuDj44OcnBykp6fDy8sLfD6/Q26KMpkMH374IT766CNMmDABN27cQHBwsBGuyPzcz79FiqKwZs0aPP/88/Dx8cG2bdtw6tQp+Pv7m+X4BAKh9/DgpEIIRsXOzg4RERH43//+h40bN2LLli1mz6xZW1tjyJAheo1NmkanuLi4NrfbsGEDVq1ahcOHDyM6OvqexykoKEBlZSV8fX2Nct7mhqIoxMbG4vTp09i0aRPWrl2LRx55BKmpqW2WLTQ1NeHatWtIT0+Hq6sr4uPjERAQ0OnPmMVioU+fPoiPj4etrS3Onj2LW7duWUS9dWNjI65cuYJ//vkHvr6+iIuL65J9OofDAZ/P15ZqpKWlQSwWt9koStM0Dhw4gMGDB+Pw4cM4dOgQvvvuu14bUAP3/2/xiSeeQHh4OFauXImffvoJ/fv3N+vxCQRC74CYvxC6zKxZs7Bjxw48/fTT+Omnn3rkHA4cOICpU6fis88+Q0xMDD788EN8//33uHXrFry9vfHqq6/C398f69atAwCkpKQgOTkZ33zzDeLj47X7cXBwgIODg1Z14bnnnoOPjw+kUikWLFiA+vp6XLt2TVs/3JuRyWT44IMPsHHjRowdOxarVq3SNpdWV1fj9OnTsLOzg7e3N/h8vlGl4xoaGiASiVBbWwsej9elQL27KJVKZGdnIz8/H76+vuDxeEb9XOvq6iASiSCTyVBTU4Nx48bB2toaDMPg4sWLSExMRE5ODtasWYOpU6eaxTjGHNzPv8XDhw/j2WefhUKhwPXr19G3b1+zHZtAIPQeSFBN6DKfffYZ3nvvPdy4cQN8Pr/HzmP79u344IMPUFJSgqioKGzduhWxsbEAgBEjRiA4OBh79+4FAAQHB7cq+bds2TIsX74cTU1NmDhxIi5fvoyamhr4+flh9OjRWLVqlUETVm8nLy8PCxcuxM8//4xZs2bB2toan3zyCYYMGYIvv/zSpPWiFRUVEIlEYBgGQqEQHh4eJm/Io2kahYWFkEqlcHR0hFAobLMuvLswDIPCwkKMHj0aAPCf//wH6enp+Omnn/Dee+9h0aJFcHJyMsmxe5L78bd46dIljBgxAp999hn27t0LJycn/PDDD2Y7PoFA6D2QoJrQZR599FEMHjwYmzZt6ulTIXQRhmGwefNmLF26FAqFAq+88go+/PBDWFlZmfzYNE2joKAAWVlZcHJyglAoNFmja2VlJTIzM8EwDAQCATw9Pc2iqlFdXY0pU6bgxIkT8PLywu7duzFhwgSTH5dgHHJychAXF4f//Oc/SEpKwrlz5xAXF4f09HQMHjy4p0+PQCBYGCSoJnQKmqZRXl6OXbt24ZNPPsHNmzfvy4zbg8C1a9cwb948pKenY+nSpXB0dERycjL8/PywYcMGxMTEmCXwVCqVyMrKQkFBAfz8/MDj8WBtbW2UfctkMohEItTU1CA0NBSBgYFmKTehaRo//fQTlixZAldXV6xcuRInTpzAJ598gilTpmDVqlW9tkb/QaGqqgrDhw/HiBEjsGPHDu3yCRMmQK1W4/Dhwz14dgQCwRIhQTWhUxw/fhyPPfYY+vbtiz179mindgm9iyVLlmDTpk2YNWuWNvADgPr6eqSkpGDLli148sknsXLlSgQEBJjlnHQD4JCQEAQFBXU5AFYqlZBKpSgsLIS/vz9CQ0ONFqi3B8MwuHLlChITEyEWi7Fq1Sq8/vrr4HBuCy1lZWUhKSkJf/zxBz7//HP8+9//Nvk5EQgEAsE8kKCaQHgAOXbsGIKCgsDj8Vp9PScnB4mJifj999/x/vvv4/3334ednZ1Zzq2yshIikQhqtRpCobBTpRqakhKpVApnZ2eTlpS0pKSkBCtXrsT333+vHay4uLi0um5aWhpcXV3Rr18/s5wbgUAgEEwPCaoJBEKrMAyDU6dOYc6cOSgrK8PKlSsxadIks5RPaBr9JBIJHBwcEBYW1m5TIcMw2uZHiqK0zY/mQC6X4+OPP8YHH3yARx99FB988AGEQqFZjk0gEAgEy4EE1QQCoV3UajX27t2LJUuWIDg4GCkpKRgyZIjZ6q1zcnKQl5fXpvydRqavrq4OPB4P/v7+Zqub/u2337B48WLY29tjy5YtGDlyZK+wFScQCASC8SHmLwRCJ/j4448RHBwMLpeL2NhYnD9/vs119+7dC4qi9P5aaj4zDIPk5GT4+vrC1tYWo0aNglgsNvVldAo2m4033ngDmZmZeOSRRzB27Fi8/fbbKC4uNvmxraysIBAIEBcXB6VSidTUVGRnZ0OtVkOhUCAjIwPnzp2Dvb094uPjzdKIyDAMrl27hgkTJuC9997DvHnzcPnyZYwaNcoiA+oH8TtLIBAIPQEJqgmEDnLgwAEkJCRg2bJluHTpEiIjIzFmzBiUlZW1uY2TkxOKi4u1fy11eTds2ICtW7dix44d2uBwzJgxkMvlpr6cTuPk5IT169fj2rVraGpqQlRUFDZs2ICmpiaTH9vOzg6RkZGIiopCSUkJTp48iVOnTkEul2PYsGEICwsziwxgWVkZ3nvvPYwYMQKDBg2CSCTCrFmztI2IlsaD/p0lEAgEc0KCagKhg2zevBlvvfUWpk2bhvDwcOzYsQN2dnbYvXt3m9tQFAUfHx/tn65pBcMw+PDDD7FkyRI8/fTTGDhwIPbv34+ioiL8/PPPZriirsHj8fDf//4Xv/76K37++WcMHjwY//vf/0DTtEmPyzAMVCoV1Go12Gw2WCwWVCpVm3bgxqS5uRkfffSRNqi/fPkyPvzwQ61qiqVCvrMEAoFgPkhQTSB0AIVCgYsXL2LUqFHaZSwWC6NGjcKZM2fa3K6hoQF9+vRBYGAgnn76ady4cUP7WnZ2NkpKSvT26ezsjNjY2Hb3aQlQFIVHH30U6enpWLRoEebOnYtx48bhypUrMEWbRn19PS5evIibN28iODgYDz/8MB5++GG4uroiPT0d169fN0mmlKZpHDx4EDExMfjyyy/x7bff4uDBg73Cppp8ZwkEAsG8kKCaQOgAFRUVUKvVBvbI3t7eKCkpaXWbsLAw7N69G7/88gu++uor0DSN4cOHo6CgAAC023Vmn5YGh8PB22+/DZFIhNjYWIwaNQrvvPOO0c6/ubkZN2/exPnz5+Hs7Iz4+HgEBASAoihwOBzw+XwMHz4cNE0jLS0NWVlZUKvV3T4uwzC4efMmnn76acycORPvvvsu/vnnH4wbN84i66Zbg3xnCQQCwbyQoJpAMBFxcXF49dVXERUVhUceeQQ//vgjPD098dlnn/X0qRkdFxcXbNy4EVeuXEF1dTUGDRqEzZs3dzl7rFarkZ2djdTUVCiVSsTFxUEgELRaN21ra4uBAwdi8ODBKC8vR2pqKoqLi7ucMa+oqEBCQgIefvhh9OvXDyKRCO+9955ZarZ7mgfpO0sgEAjGhgTVBEIH8PDwAJvNRmlpqd7y0tJS+Pj4dGgfVlZWGDRoECQSCQBot+vOPi0NoVCIn3/+Gf/73/9w4MABREdH45dffulwvTXDMCgtLUVaWhpKS0sRFRWFyMjIDhnPuLi4ICYmBgKBAGKxGBcuXEBNTU2Hz12hUGD79u2IjIxETk4O0tPTsW3bNri7u3d4H5YE+c4SCASCeSFBNYHQAaytrTFkyBAcPXpUu4ymaRw9ehRxcXEd2odarca1a9fg6+sLAAgJCYGPj4/ePuvq6nDu3LkO79MSoSgKo0aNwuXLlzF37ly8++67eOKJJ3Dt2rV2s8e1tbVIT0/HrVu3EBoaitjYWLi5uXX62L6+voiPj4e7uzsuXbqkVStpC4ZhcPjwYQwbNgy7du3C/v37cfjwYfTv37/XlHq0BvnOEggEgplhCARCh/juu+8YGxsbZu/evczNmzeZ6dOnMy4uLkxJSQnDMAzzyiuvMElJSdr1V6xYwfz555+MVCplLl68yEyePJnhcrnMjRs3tOusX7+ecXFxYX755Rfm6tWrzNNPP82EhIQwTU1NZr8+U1FZWcn85z//YbhcLvP6668z2dnZjEwm0/7l5OQw586dY3799Vfmn3/+YWpra/Ve785fZWWldt+XL19mCgsLta81NDQwFy9eZEaPHs24uLgwmzZtYpqbm3v67TIq5DtLIBAI5oME1QRCJ9i2bRsTFBTEWFtbMzExMczZs2e1rz3yyCPM1KlTtf///vvva9f19vZmxo8fz1y6dElvfzRNM0uXLmW8vb0ZGxsbZuTIkUxmZqa5LsesZGRkMOPHj2ecnZ2ZtWvXMrm5ucysWbMYe3t75pdffmEqKiqMFky3/CsqKmLWrl3LuLm5MevXr2dycnKYWbNmMVwul3n77beZsrKynn57TAb5zhIIBIJ5IDblBALBbDAMg0OHDmH69OkoLS2Fr68vtm3bhtGjR5v82DRNY+fOnUhOTkZjYyMGDhyIvXv3IiIioleXeRAIBALBMiA11QQCwWycPXsWq1atAkVRePHFFyGTybBt2zbcvHnTJPrWGhiGwbFjx/DFF1/Aw8MDL774IsRiMVatWoWcnByTHZdAIBAIDw4kqCYQCCanoKAAL730Eh5//HGMGzcOmZmZ+PrrryEWi9GvXz88/PDDSEhIQGVlpdGPLRKJ8MILL+CVV17B1KlTkZGRoT22s7Mz+vfvj6SkJDQ0NBj92AQCgUB4cCBBNYFAMDnl5eXgcDi4desWli1bBnt7ewCAu7s7tm3bhvT0dOTk5GDgwIH4+OOPoVAoun3MmpoaJCUlIS4uDn5+fsjMzMSCBQtgY2MD4LY83M6dO5GamgqxWGwU0xgCgUAgPLiQmmoCgWARMAyDgwcPYt68eaAoCuvWrcPo0aM7Xe+sUqmwd+9erFq1CuHh4diyZQsGDRpE6qYJBAKBYFJIUE0gECwKjQnLqlWrEBMTg3Xr1qFv37733I5hGJw8eRKJiYloaGhASkoKnnvuObBYZEKOQCAQCKaHPG0IBAvm448/RnBwMLhcLmJjY3H+/Pk21x0xYgQoijL4mzBhgnad1157zeD1sWPHmuNSOoy1tTUSEhIgEokQEhKC+Ph4zJ8/H1VVVW1uI5VK8e9//xsvvvgiJk+ejJs3b2LSpEkWGVA/iJ8pgUAgPAhY3hOHQCAAAA4cOICEhAQsW7YMly5dQmRkJMaMGYOysrJW1//xxx9RXFys/bt+/TrYbDYmTZqkt97YsWP11vv222/NcTmdxtPTE59++inOnTuHW7duITIyEp999hmUSqV2nbq6OixZsgSxsbFwd3fHrVu3sGjRInC53B4887Z50D9TAoFAuJ8h5R8EgoUSGxuLoUOHYvv27QBu6ywHBgbi3XffRVJS0j23//DDD5GcnIzi4mJtY+Brr72Gmpoa/Pzzz6Y8daND0zR++eUXLFiwANbW1li7di0KCwuxYsUKCAQCbN68GUOHDrX4umnymRIIBML9C8lUEwgWiEKhwMWLFzFq1CjtMhaLhVGjRuHMmTMd2seuXbswefJkbfCl4fjx4/Dy8kJYWBhmzpxpEhk7Y8NisfDMM8/g+vXrmDp1KiZNmoQlS5bgww8/xMmTJxETE2PxATX5TAkEAuH+htPTJ0AgEAypqKiAWq2Gt7e33nJvb2/cunXrntufP38e169fx65du/SWjx07Fs8++yxCQkIglUqxaNEijBs3DmfOnAGbzTbqNZgCGxsbLFiwAI8++ii8vb0RFBTU06fUYchnSiAQCPc3JKgmEO5Ddu3ahYiICMTExOgtnzx5svbfERERGDhwIHg8Ho4fP46RI0ea+zS7zNChQ3v6FMzO/f6ZEggEQm+HlH8QCBaIh4cH2Gw2SktL9ZaXlpbCx8en3W1lMhm+++47vPHGG/c8TmhoKDw8PCCRSLp1voR7Qz5TAoFAuL8hQTWBYIFYW1tjyJAhOHr0qHYZTdM4evQo4uLi2t32hx9+QHNzM15++eV7HqegoACVlZXw9fXt9jkT2od8pgQCgXB/Q4JqAsFCSUhIwBdffIF9+/YhIyMDM2fOhEwmw7Rp0wAAr776KhYuXGiw3a5duzBx4kS4u7vrLW9oaMD8+fNx9uxZ5OTk4OjRo3j66afB5/MxZswYs1zTgw75TAkEAuH+hdRUEwgWyosvvojy8nIkJyejpKQEUVFROHz4sLbRLS8vz8DcJDMzE6dPn8Zff/1lsD82m42rV69i3759qKmpgZ+fH0aPHo1Vq1bBxsbGLNf0oEM+UwKBQLh/ITrVBAKBQCAQCARCNyHlHwQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAAACdPnsSTTz4JPz8/UBSFn3/++Z7bHD9+HIMHD4aNjQ34fD727t1rsM7HH3+M4OBgcLlcxMbG4vz588Y/+S7woF0vgUAgEEwLCaoJBAIAQCaTITIyEh9//HGH1s/OzsaECRPw6KOP4sqVK3j//ffx5ptv4s8//9Suc+DAASQkJGDZsmW4dOkSIiMjMWbMGJSVlZnqMjrMg3a9BAKBQDAtxPyFQCAYQFEUfvrpJ0ycOLHNdRITE/H777/j+vXr2mWTJ09GTU0NDh8+DACIjY3F0KFDsX37dgAATdMIDAzEu+++i6SkJJNeQ2d40K6XQCAQCMaHZKoJBEKXOHPmDEaNGqW3bMyYMThz5gwAQKFQ4OLFi3rrsFgsjBo1SrtOb+JBu14CgUAgdA4SVBMIhC5RUlICb29vvWXe3t6oq6tDU1MTKioqoFarW12npKTEnKdqFB606yUQCARC5yBBNYFAIBAIBAKB0E04PX0CBAKhd+Lj44PS0lK9ZaWlpXBycoKtrS3YbDbYbHar6/j4+JjzVI3Cg3a9BAKBQOgcJFNNIBC6RFxcHI4ePaq37MiRI4iLiwMAWFtbY8iQIXrr0DSNo0ePatfpTTxo10sgEAiEzkGCagKBAABoaGjAlStXcOXKFQC3JeSuXLmCvLw8AMDChQvx6quvatefMWMGsrKysGDBAty6dQuffPIJvv/+e8yZM0e7TkJCAr744gvs27cPGRkZmDlzJmQyGaZNm2bWa2uNB+16CQQCgWBiGAKBQGAY5tixYwwAg7+pU6cyDMMwU6dOZR555BGDbaKiohhra2smNDSU2bNnj8F+t23bxgQFBTHW1tZMTEwMc/bsWdNfTAd40K6XQCAQCKaF6FQTCAQCgUAgEAjdhJR/EAgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBNSFBNIBAIBAKBQCB0ExJUEwgEAoFAIBAI3YQE1QQCgUAgEAgEQjchQTWBQCAQCAQCgdBN/h9H+4Envx0OpQAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAJOCAYAAAAd/wmUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZQkV33mDz83IjMra6/q2ves3vfW0upWi02ArJaGQWAYDLYZZDNmjG3mfW29v8MB28Ni+7V/73gMgrEY/Y4tDHiwhT2DMbKwEMja1dDaWlK31NVbLZm1de1LbrHc+/6RFdm5RNzIPburv59z4KgrI/JGREZGPvGN534fJoQQIAiCIAiCIAii4ijV3gCCIAiCIAiCuF4hMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEEQBEEQBFElSIwTBEEQBEEQRJUgMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEEQBEEQBFElSIwTBEEQBEEQRJUgMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEFUjW9/+9uoq6tDJBJJ/q2jowOMMen/fvM3f9P1vf/gD/4AW7duLefmEwRBEETRMCGEqPZGEARxffLhD38YmqbhkUceAQAYhoGHH37YdtnV1VX8X//X/4V4PI5/+Zd/wd133y1975/97Gc4duwYTp8+jX379pV82wmCIAiiFHiqvQEEQVyfxONxPP744/jKV76S/JvH48HHP/5x22XvuusuRKNRfOMb33AV4gBw9OhRdHV14ZFHHiExThAEQVy1kE2FIIiq8OSTTyIcDuP973+/dDnTNPErv/IreOqpp/ClL30Jv/Vbv5XT+zPG8O///b9PVt0JgiAI4mqExDhBEFXhkUcewS233ILu7m7pcr/1W7+F73//+/id3/kdfPGLX8xrjHvuuQc/+9nPMDc3V8ymEgRBEETZIDFOEERVeOSRR1yr4n/wB3+Av/qrv8Iv/dIv4etf/3reY9xxxx2oqanBj370o0I3kyAIgiDKColxgiAqzquvvopgMIh77rnHcZmvf/3r+NM//VPccccd+Nu//VsoSv6Xq7q6Orz3ve8lqwpBEARx1UJinCCIivP000+jpaUFBw8etH397//+7/G7v/u7OHz4MP7pn/4JPp8va5m5uTm8733vQ319PXbt2oUnnnjC9r1uv/12PPXUU6XcfIIgCIIoGSTGCYKoODfffDOWl5dx4cKFrNd+/OMf495778WOHTvwox/9CA0NDbbv8Tu/8zvo7u7G3Nwc/vzP/xy/9Eu/hMXFxazlTp48icOHD5d8HwiCIAiiFJAYJwii4tx2221ob2/HD3/4w7S///znP8eHP/xhdHZ24vHHH0dHR4ft+uvr6/jBD36AL3/5y6irq8M999yDAwcO4J//+Z/TltN1HY899pirN50gCIIgqgWJcYIgKo6qqvh3/+7fpXm533rrLbzvfe+Dz+fDj3/8YwwNDTmuf/78eTQ0NKC/vz/5twMHDuDMmTNpyz399NNYXV0lMU4QBEFctVDoD0EQVeGee+7Bxz72MSwtLYExhuPHj2NhYQG//du/jVdffRWvvvpq1jqdnZ248847sb6+jqamprTXmpqasLCwkPa3H/7whzh06BAGBwfLui8EQRAEUSgkxgmCqAp33nknFEXBv/7rv6K9vR3BYBAA8I1vfAPf+MY3bNf5xCc+gTvvvBMNDQ1YXV1Ne211dTXLX/7II4/YJnoSBEEQxNUCiXGCIKpCY2Mj3v3ud+OHP/whHn74YQghcl53x44dWF9fx+TkJPr6+gAAp0+fxic+8YnkMm+88QbGxsbIokIQBEFc1ZBnnCCIqnHPPffgscceg67rea3X0NCAD3zgA/jiF7+IaDSKf/mXf8Hrr7+OD3zgA8llfvjDH6K7uxu33HJLqTebIAiCIEoGE/mUowiCIEpILBZDKBRCIBCAx5Pfg7q5uTnce++9eOqpp9Df349vfOMbuOOOO5Kvz87OwjRN9Pb2lnqzCYIgCKJkkBgnCIIgCIIgiCpBNhWCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSniqvQEEQRDFIoSAaZpgjEFRFDDGqr1JBEEQBJETJMYJgrhm4ZxD13VomgZd1+Hz+eDxeODxeKCqKolygiAI4qqHCSFEtTeCIAgiH0zThKZp0DQtrSJeU1MDIQSEEFAUBYqiwOPxgDFGwpwgCIK4KiExThDENYEQAoZhJKvgnPOk4LaEts/nSy6bemlTVRWqqpKFhSAIgrjqIDFOEMRVjRACuq4jHo/DMAwASIrqTGFtifHUdYGEncVaniwsBEEQxNUEiXGCIK5KUq0onHMASFbCUxFCYGVlBaFQCJxzDA4OoqOjI0tsW9Vyy8JiVcvJwkIQBEFUExLjBEFcNVhdUVJFOGPMtpLNOcfly5cRDAYRjUbR09MDv9+PiYkJKIqCoaEh9Pf3w+PxZI1BFhaCIAjiaoHEOEEQVceyomiahvHxcQgh0N/fbyuQNU3D5OQkJicnoaoqBgYG0N3dDY/HA5/PB845ZmZmMD4+jvX1dfT392NwcBD19fVZYwLA7OwslpeXsXv37rRqOUEQBEFUAmptSBBE1eCcp3VFAYBYLAYgUbFOZW1tDcFgEJcvX0ZLSwt2796Ntra2LOGsKAp6e3vR29uL5eVljI2N4bnnnkN7ezsCgQC2bNmSZk3RdR1ra2vgnINzDsMw0qrlBEEQBFFOSIwTBFFRUq0ouq4nWxOm+retqrUQAvPz8wgGg1hdXUV3dzduueWWrCq3Ey0tLbjhhhsQi8UwMTGBU6dOoaamBkNDQ+jt7U0Kfqs1omVh0XU9S5RTtZwgCIIoB2RTIQiiIlitCePxOHRdT+sFnip0z58/D9M0UVdXh1AolLSs9Pb2wuv1SsfI7KaSiWmamJqawvj4OOLxOAYGBuDxeLC4uIjDhw+nbStwpQtL5oRPgiAIgigVJMYJgigrVkpmPB6HaZoQQjh2MYlEIjh9+jTC4TCampowMDCA9vb2nO0ibmLcQgiBxcVFjI2NYX5+Hl6vFzfddBNaWlpsl7Uuk1ZrRLuuLgRBEARRCCTGCYIoC3YpmXaVZUsYh0IhLC0twe/3o6GhAfv37897zFzFeCoXLlzA5OQkNE1DQ0MDhoaG0N3dbdtC0fqftS+U7kkQBEEUC3nGCYIoGU4pmZZoTcU0TczMzCAYDELXdfT19WH37t0IBoPJyZyVwOfzoaGhAYcOHUIoFMKFCxcwMjKCwcFBDAwMJAV+qp/d2k/TNJP7R75ygiAIohBIjBMEUTSWFUXTNBiGkbSi2InwWCyGUCiEqakp+P1+DA0NobOzM6t7SqXxeDwIBAIYGhrC3NwcxsbGcPHiRfT29mJoaAiNjY0AkDXJ1OoIQ+meBEEQRCGQGCcIomDsrChuKZlzc3Nob2/HgQMH0NLSctUJV8YYOjs70dnZibW1NYyPj+PEiRNoaWlBIBBIpnta251aLdc0Lbn/ZGEhCIIgcoHEOEEQeZGPFYVzjtnZWYRCoWRK5q233ora2toqbX1+NDY2Yv/+/di5cyeCwSDOnDljm+6ZaWExTROmaVJrRIIgCMIVEuMEQeSE1X87Ho/DMAwAV7qLyFIyPR4P+vv7kymZblRatOYyh93n82Hbtm0YHh5OpnueP38+K90z08Ji+crJwkIQBEE4QWKcIAgpnHNEo1HMzc2hqanJ0YoC5J6SebWR6/ZlpnuOj49L0z1VVU2zsKysrKC5uRl+v58sLARBEAQAEuMEQdiQmpJp/e+1117DO97xjqzqdrEpmU7jX+20tLSgpaUFu3btck33tKrlr7/+Og4cOIDW1laysBAEQRAASIwTBJGCZUWx/OBWSqadvUTXdUxPT6elZB44cMA1JXOz4ff7sXPnTmzbtg3T09MYGxvDuXPnMDAwgMHBQfj9fgBXJnpa4ju1NSKlexIEQVy/kBgnCCLZns/qiuKWkhkMBjEzM4OGhgZs3749r5TMzYqqqujv70dfX18y3fPpp59GV1cXAoFAMt3TOqaWhYVzDs45DMNIq5YTBEEQ1wckxgniOiXVimJ1RQHgmJIJAKdPn8bKygo6Ojpw4403oqmpqUIbq0M1n4Si/S9MxKOA79fQU/fvgBwqyXORE1hbfwBD3hV4a38VvOYegNVdeesSW2IYY2hra0NbWxvC4TAmJibw4osvoqGhIdmDPXXZ1C4suq5niXKqlhMEQWxumLgWzJkEQZQMqzVhPB5Ps6LYCb/UlMxIJJK0XtTU1JRt+y5duoR4PI49e/YAYgVe/Z/gMf4BiphNW25S34JV5QPoa/gNqErCCmKlZQpuYmLtYajx/4Vhbyh9/1kjuO8/gPt/GVB6MDY2hqWlJdx4441l2yfDMBAKhXD27Fl4vV4EAoG0dM/ktqUECVkTZcnCQhAEsbkhMU4Q1wlWSmY8Hne1omSmZPb19WFkZARve9vbyirEgYQYZ+Yodg2ehMf4FzDEpMuvmDUI8Xeho/4zqPdvwcTyA2jj/4JOz5p0PQEVwnsHJpfuwPR8J2688aZS7oYtP/3pT7F9+3bMzc1haWkpK90zbfs2quXAlRaSTl1sCIIgiGsXsqkQxCbHLiXTyYrilJIJACMjI+XdUCGg8J9jsPnbULACjzEKBs11tWY1DiGexPTKi1hYVdCurqPDG3ddj8EE9MfR7h9FY2ctmPYrEN5fAFj5JqBaFpZAICBN97SWzUz3tD47SvckCILYPJAYJ4hNSKlTMq0KbVkepIkYPMaP4NX/Hoq4hFr/xp/RCFPZD8ZHoWDJdtUpvRZh04PhmnXs8VxZZjTeAAaBQE3YfkjUQah7wHgQtZ5zqPUACL8Gwf4C3P/L4L7/ACgtJd7R9ONXaLpnahcWq1pOopwgCOLahcQ4QWwiLCuKpmnJyYKpldRU8knJLIfYY3wOHuMf4dX/NxhWsl/HGlT+CgRUmMpBQKxAFePgAhjVGuBjHAO+CGBTyB6uWQcAzOp+LJs+bK1ZhZcBgnVBKP1g5ltQzJezxxSXoUa/BiX6/4D73g/u/zigbi3ZPgshso5loemeVgccSvckCIK4tiExThCbADsrSjlSMktRGZ+IBhGMPI13+78HL6Zcl2cwofLXwVGLEf04FuKncWv9JJQcdGeXN4YubwwX4g0YqtsPj3nOVoRnjxmDqv0jFO0xcN9xCN8dEJ7bcureUij5pntmWlisz5ssLARBENcWNIGTIK5RnKwodrYFu5TMgYGBvFIyn3zyySz7Sq5wwfHa2ht4avFpXIxeAgCoAD68pR7variIOpx3XNdAF16NH8DfzRtYNk0AQJcnijsaJ/GO+lnUKNx2PVMAl+KNqFMN9HmjAAABD4S6H0wsgfFxxzEF64FQesDMM2BI+M+FshWm/+MQvn8PsPyPAQA8/vjjuO2229DQ0JDT8rFYDBMTEwgGg7bpnsntTZnsCYBaIxIEQVxDkBgniGsMqx91PB7H2bNnk60G7YSXXUpmb29vQSmZTz75JI4ePYq6ujr3hTeImlG8sPwzPLP0LBb0Rac9wjsa63FPyzza2KtgSIjrMHbhyfUAfrAYgemwZh3T8a6GGdzROIUtnsRkzzBXEdTq0e2NokXVHbdNKDshmBfMOJMseHNlF8C8UMzTzuuxFvCaj4DXfBRQutwOQRqPP/443va2t+V1EwQknnxY6Z7xeDwr3TO5bSkWlpGREWzduhX19fVkYSEIgriKIZsKQVwjcM4Rj8ehaVoyoGd6ehqDg4NZldJypGTmK+b+efZf8Mzys4hzt84mDM+uRfDsWh22+9+Nu/0ang+reEU3AUSka0aEF/+6NoDH1/pwuG4eB/2LuLluAbv9q67bx/g5MAAa70IoMoCh5lWo3L1jDBPLUGN/BSX2N+C+j0D47oHw7nddD7D3jOdCZrrn+Pi4Y7qntXwoFMLg4GBWkBBZWAiCIK4uSIwTxFVMakqmJcJTWxOmTugTQmBxcRGhUAhLS0tlScnM50HaK6uv5iDE07kQ0/BPsX6EEHJfOAUTCn4e6cTPIx14cn0VdzZN4ubaBamvnKMRF8xb8J1ZjknDROtqAz7eOYSDvtfhyQgYylp3o4Kuan8PaH8Prt4I7v84hPc9ACvfZTU13TMSiWB8fDyZ7jk0NITu7u7kDZcV5mSdI5TuSRAEcXVCYpwgrkIs8WT5wS1hldkVhTEGwzAwOTmJYDAIXdfR19eH3bt3lzycJ1/hpooCLy+mkjCUFwTDBa0ZF+ab0a7GcEfjJN7ZMIta5YrRRWd9eCm2H9+diyHMr9hYlkwT/2PahIqd+HD7jbi9fhS14kqlXECFUA+AiWUoGRV0xXwVSvhVCKUXvOZXwH2/CCjZN0GFVsbtqKurw549e7Bjxw6EQiFcuHABIyMjGBwcxMDAQHKszJu21NaIlO5JEARRfUiME8RVhNWuzuqK4paSyTnHqVOnUFtbi6GhIXR2dmZZVkpJPpVxpUAxzooS41eYN/14eHkbfrAyhNvrlvELW+rwbLgT/7y4BiGxv5gA/mE+jH+Y78TbmoZxT/MS2jwmFD4KxTwl33Y+BTX636FEHwD3fRCrvl9Dg7e3+J2R4PF4EAgEMDQ0hLm5OYyPj+PixYsAgHA4nJxwm2phEUKAcw7OeVa1nCAIgqgsJMYJosqkWlF0Xc8rJRMAduzYgZ6enrJXN/N5fyEEGC9MUQtDAXwFrWpLTHjwvy/34eRiFxZrJgDkvh/Pr4bxVqQPY2+14Q8Pd+BQ87NQsC5dR0DBAvbjn2YXcWLt/4sDTftxR/t7sLN+B4Dy9Gy33rezsxOdnZ1YWVnBiRMn8Morr+SU7kkWFoIgiOpBYpwgqoTVmjAej0utKIBzSubLL7+MhoaGigmnXCvjhsmhmGpBFW6hl746y7kCGAwowLnjYR68tqDgIz8exJaaX8Z/vWUZx3tfgA+TacsJ1GGM34LvzvtwMRaDNfn09dU38PrqG+j396GztgM61+GH32ak0mG1TrztttswOzubU7onQBYWgiCIakBinCAqjJWSGY/HXa0ouaRkVqo7aT6iTNfNRGX8qhHjDI0NTXBqriiDpezEYlzB7z23BQzvw385GMV/3PE6mjzTeE07hL+9rG/0QY/Zvk8oNolQyyTOX7qAd7W/E7e3vRNN3tJNrk3FOidqamqS6Z6zs7MYGxtzTPcE7C0sHo/HMUCKIAiCKB4S4wRRIexSMp0qj5kpmXv27EkmMKaSWtWsBLmOpRsmwAsTb1rEPsSnGDhXEl70Aq54dt53AYavv16Hr79+K/7DOxYxq8/k/H5r5jr+ZfZHeHXxLGKzN+ATBw5hT3tH/hsmwfqcrPNFURT09PSgp6dHmu5prZOZ7mmdq5TuSRAEUXpIjBNEGXFKybSzotilZN5yyy3SgJhKivG8KuMGBzPUgmwhsbBTxE/hcM4AUy3oisdcy/sFeuOFgh+cO4sfnDuLI719+MSBQ7h9MAC1BBXoTDGeSktLC1paWrBr1y5MTEzg1KlTtumemaI81cJiVctJlBMEQRQPiXGCKAOWFUXTNBiGkbSi2Ilwu5TMAwcO5JSSedVWxnUz0aKwADxl8FNzrkDohXnGmZCLbaVAMc5SKu4npyZxcmoSg03N+Pj+g/jQrj2o9xU+i1Umxi38fj927tyJbdu2JdM9z507l5Xumekrtzr+MMbg8XjIV04QBFEkJMYJooTYWVGc/LalSMmspAjKrzJuJrqiFIARK/0+mZyB64W9bzxuQHapdBPrTgiRfXwmVlfwpy88i6+/9HN87hd68K6OY2ivaS/gvXO/Qcs33TPTwmKd32RhIQiCKAwS4wRRJFZrwng8jvn5eczOzmLnzp2OVpTUlMzOzs6iUjKv5sp4weLXuQV4wXCuQGiFrRuNaIC0Wl/YTYfgCgB7f/y6puHppSfx+MJjuKH5EO5ofw+212/LW+jms3w+6Z6ZFpaLFy/C5/NhYGCAWiMSBEHkCYlxgigQu5RMXdextraWFbxjmiZmZmZKnpJ59XrGCxfjegxggkGw0u0XFwyGfZMTVxobW5GIAspGZQywqXDntE0SMQ4AutAhIPDqyim8unIKg7UDeG/7e3BLy83wKPJLdy42FRlu6Z6+DQuNJcrX19dRV1eX9JWThYUgCCJ3SIwTRJ5wzhGPx6FpGjhPiCnrUb3VGs4iFoshFAphamoKfr+/LCmZV2Vl3DChxwrrimJqDDVQYcAoaH07OGcw4oUdJy6cxaRPUbCqhQuaw8klnnqPApgi/QZgIhrE3wS/jSfmHsHv9e9Dfe1xQNliu74QoiQi2Cnds7e3F0NDQ2hsbEyOl3r+2wUJkYWFIAjCHhLjBJEDqSmZlgi3a03IGAPnHMvLywgGg5ifn0d7ezsOHDiAlpaWkouRq60ybnWEeeutEayuhAsax9QBVagwWOnEuOBK4WJcIpoVIbBizqGQeyuTOx/P+prsMQM1NfiP7QaG1Z+Caf8Mof13CN+/h+n/OKDuSFu2VGLcIjXdc21tDePj4zhx4kQy3dOqhlvLUronQRBE7pAYJwgJdlYUWUrm8vIyYrEYXn/99WRKZm1tbdm2r9ITOJ2Ev2EYSRsO5xy1dQ2oizVhpYBxdC0hxkuJAg/MeGHHSiaaG2trwQrsRKibzu9b573ypocb6vAfWpfRyU6ApTwtYNDAtO9D0b4P7rkV3P8fITxvB5hScjGeSmNjI/bv34+dO3ciGAzizJkz0HUdjLFkSBBA6Z4EQRC5QmKcIGyw2rdZXVFyTcm0quW33XZbWkpmuaj0BM5MUm04tbW1GB4eRmdnJ154eQzmbGEq1YwDShnEuFHgBE5TIpo9qgpFIigbFQ3r3AuB7GUMSTv1Wh/De5pq8MHWWTSKZ123UTF+BmX9ZxBKAGbNJyD4u8oudH0+XzLd88SJE1hdXcWTTz6ZV7pnarWcIAjieoXEOEFskGpF0XW9oJRMVVVx5syZighxoHrdVFZXVzExMYG5uTm0t7fj4MGDaG5uTh4n3TALtoXomoDCSy3GVRhaYdtjSMS4T1EBm4mmw7413NUYwuG6ecwYtfjJWh9eCHdCS7nJ0I3s9/UpBn557xu4d9ubGPCFIZR94GInFH7OdTsFWiFYO9ToV9CCr2JX3y0A3w8o3TnuaWEoioKamhoMDg6isbExr3RPsrAQBEGQGCeIZLpgPB53taIIITA3N4dQKITV1VX09PSkpWSurq4mJ3VWcvsrxfLyMsbGxrC+vo6enh4cPXoUdXV1WcslJnAWNoYeB1iBHUqcUIUKvWAx7vyaR1EAbHQugcANtYs43hjCLv9qcplebxT3brmADzeP4cn1Hvzbeg+WzRrEUyzxLf4IfuPAq/ilgXPY4rlSwmfmaQCAUAIQrAXMfAMso7OLYP0QSgeY+QYU86WNbQG2dv8bxMrTEN47wP0fh/DcUND+54I1h4LSPQmCIPKHxDhx3WKlZMbjcVcrSq4pmZWuVFdiPMMwMD09jWg0iqmpKQwNDeHgwYPShFBd59BioqBsSj0uwEpdGRceGPHCLniaRIx7FQU+xcRtDdO4s3ESPd6o47INqoH3Nwdxd1MIJyMd+OF6OwLNXnz64Mt4X9cYahXngRgfAwMg2BZwdSuYcQ5C6QaYF4p5BswM2a8HE0z/MRT9x+DqwYQo994BMPd013ywbmAt8k33tN4jM93TKTCLIAhiM0FinLjusEvJdLKi5JuSuZnEeDQaTfrB6+vr4fP5sHPnTnR0dLiuqxsmtJhAIVNXtZgAk3QwKQQVKvQ4d7zgcc6gKPbHUZM0dVGZgmZ40eWJokXNzZTuYQLDvlX8p60/xW9t4zDBUMMkij8VsQQIDULpBFg9GJ/LbT0AMMfwyuQzCGqtuGfXrbmvl8tmOUwYzTXdE8iulluiXFVVSvckCGJTQ2KcuC6wHoVbfnDOudSKUmhKpqIo17wYX1lZwcTEBObn59HR0YEbbrgBzc3NOHnyZM7voRsmtAjPW4yrUAGwkotxBR7pzYGuK6ipsRfEmuF8fBUmsMx9+N7yVvzzyiDe2TCLX2icRLsnbrv8aLwBCgSGasKA94qPZ96owYJRg4BvDTU2NwUCNRDqPjA+CcV8Pe01ru4BBKDwt2zHNNCFn8y8A1/8eSsW4wr+y+HSPnUArthUnCgm3ZMsLARBbHZIjBObGmuSWDweh2EYSSuKnQgvRUpmNSrjpYBzjrm5OQSDQYTDYfT29ma1ZcwrgVM3EY/m7533sI1LUqnFOPcgHnOuXBumihqHlE2ZGPepV6q1MeHB42t9+OlaL26qncfxpklsr1mDIYBL8UY0qzqGa9Zt36fdE0e7J44IV3E2Vo9uTxQtHh0CLRDqNjB+Dor5iv2+mQkRLpR+CNYBZp4Bg4aFcC/+ZfZ2/LdX6hHnV46nUYY5DZk2FRn5pnta3yfTNJOin9I9CYLYTJAYJzYllhUlHA7jrbfewr59+xxbqJUyJTO1olcJoVCs+Le88MFgEIwxDAwMoKenx7EbTD4JnLFI/tullkmMq0KRJoKapvNnHZOIca/NYeJgeCnagTdjLfjFlnH0eiPYXbMCJYfToU4xsdu/ikmtFmejt+NQXRC15svuKwJgPASGEOb0Y/juud34yzNewK6lIs/REpMHhZzvuaZ7ZrZGFELgtddew8DAAFpaWsjCQhDENQ+JcWLTYLUmtLqiWP2MFxcXsyaCCSGwsrJS8pTM1MloV7MYj0QiCIVCmJ6eRkNDA3bs2IGOjg5Xq0Gu6LoJPc7BwCCQ+/Z5NqZ8inJUxiWVet2QiHHdeT1VATIPS5saw52Nk3hnwwz8SmLdJcOHWcOPId86ahXn9zsfb8K/rvbhVLQNAjEA7XhHw534wJZFbMErYLBfV0DFROw2/PdTO/GvEx7samkFsGS7bLkq44We77J0T+vGOLM14sLCArq6umCaJkzTpNaIBEFc05AYJ655ZCmZqcsACTvG7OwsQqEQotFoyVMyU8V4pch1LOsGZGJiAgsLC3l54fMdSzc4AAYP80AXes7vr1qXJKO0YpxxFZwDChRwG0FrSMaLSloiej0CVmvDIe8a7mqaxC11c1Az9GCrR0OrR0OMKxiJNaHDE0u2MOQCeDXahsdW+3FBy/wsGJ5dj+LZ9Vps892OX+0wEFBfAkMEACBQi9Nr78SXTg7itQUlZS1nyiHG3TzjuZKZ7vnmm2/i7NmzGBoaQn9/f/I7LYRIs5pZvnKysBAEcS1CYpy4ZrHaoMXj8WRv78wKuPXfsVgMc3NzmJychMfjQX9/P7q7u0sezmONVykxnktlnHOOy5cvIxgMIhqNore3Fzt37ky2l8tnrFzR9EQLEi/z5SXGFasyrpdWSKkbrRK9zIu4yJ5cacgq4xKbikcVaFaAX217A/tql123w69w7PKvggtgJNaEoFaPn673YtbI7tWeyUVNxx9NAk3sFvzHTh/Ca/X4rz/vwFQ4+0ZClgqqV9kzngup6Z6zs7MYGxvD+fPnk+melvi3s7DYBQkRBEFczZAYJ64pUlMyNU1L/ig7VcLW1xMT5l588UW0trZiz549aYmApabSlXGZGNd1HZOTkwiFQlBVFQMDA0XfgOS6X6vRRKcQT56XGHUjoVKUuDKubHjCPcxjK8ZlteSIZjq+7lEZIqIOf7O4A3c0TuGdDTOok/QLB4A104N/W+/FE2s9WOO+XHchyargeGA2hpde3I6omb+wvtpsKjIURUFPTw96enqwvLycTPcEEgFbqamvlO5JEMS1Colx4ppAZkVxS8kEgIMHD6Ktra3s21kNMZ6J1Rt9enoaTU1N2LVrF9rb24sWIvmsv6olBG++YpxtiHFT0ts7XzgHsNFNJDlBNAuRsLFk3AMkurs477eqJOw4C6bftb3hZd2Px9b68Hy4C5oorr2gF16oUAAHD/m1alORkZru+fTTT+PcuXOYmJiQpnsCSGuNaAlzEuUEQVxNkBgnrmosK4oV0FNISubzzz9fMk+4G9WqjAshsLS0hGAwmOyNfvPNNyc7UpSKXPdr3Uj4oVWR3yVG2RCpvIQ2Fc4VqBv60+nmQFGEbfCP1yWpUlE5BINlG89qb3hX0yQA4LHVPrwcbYeQyuTc8Sk++Lxex7sWmU2l2q0Ni8WyVx05cgSrq6vSdE/gioXFmtBNFhaCIK42SIwTVx2pVhRd111TMsPhMEKhkGNKJmMs6SkvB1wIPBOcwHfffAN//PZ3Jf5WxvEyWVtbw4svvohYLJZzb/Sp5dewuPJX2NbwFs6F34Xhzt9Ek79Luk4+1cSwkRCJSr5inJdDjLNkjKbqUJFWVQ6eqqo38LiIcY8ioNsIbA6GF1a68fCbBzDYPwNfadPn4WVeeJmzkNQ0Z5/+tWRTcRpLCAGv11twuidZWAiCuJogMU5cNVhpe1ZrQjcrSq4pmeVKxYzoOv75/Aj+7s3TmFhL2GHCul6RFE5N0zA5OYmZmRkoioJt27ahu7tb3htdCIxcfhQe/bs42HoOaE/8ud3/z4jEH8Xrs7ehc8tvoatxp+QtctuvKLfEr0fumciAiYTANLUSinGhYH0p8fkIk9luD2MCnGfbPjyOtpYEAmZaa0MhgGjUh0vjXVhaSTyV6O+ZB7wl9N0A8MALVVLVNSU+n3JN4KykGAeQdrNN6Z4EQVzLkBgnqg7nPJmS6WZFKSQls9SV8cm1NTz81hn80/mzWNPSUx0julHWFM5wOIxgMIiZmRk0NzejtbUVtbW16Ovrc1xHN6I4O/MddHn+CTc1ztkuU+cxcGv7MzDFs3h14gDq6v8zhtqOpS2Tj0iJi8QkRsZVIA97NNvwdpu5N2BxhXOG5sYmLCGKeEQD6rOXUZgAN7P3T3W5RHoUgLOECF9dq8WF0R5EouldakxeenGnCi9UyedRW1sLRCO2r5Uj9KcSnvHUsQD78zHfdE8ASQuLpmnJ1oiZXZkIgiDKCYlxomqkdkVxs6IUk5JZykr1P771Jv7058+DO7zf+sYPeinFuPUUIBgMYnl5GV1dXTh8+DAaGhpw/vx5x7FWotMILvw1jPgpHOkch1dx3yaVCRxuex0T65/HN86+HcNt78Bd7XdmTYqTMRt5HP/5rp/iR2w3mNmSlxi3kjeNOEOppBDnCrAhtBvrmrBmE4bjpCMVl8q4ojAoZgN+9vJOGIb9siYvvahThQceiU1FlrMUjkbBOS+Z2MysVNsxu3oO0fXvYrj9XRDedwGs8AmsuYyXa7onkF0tt0S5qqqU7kkQREUgMU5UFOvRsOUHt0SBkxWlFCmZpayMX14POwpxIGFd8ZVIjJumidnZWQSDQWiahr6+PuzduzdZ3QPsWxtOLp/C0spf4VDri+htTVRBL0drMbrWgn2tc2iQWCZeXezAj1YGcEGpA9g63pz/V/x44Sc40nQYO7HdcT3OdUyufwf1/B+x1TuHrbuBj+5+Ey/N9+LRtR6MqbXIxa8iNkSzFuXIrwu6M5wzCGOjD32ethk3z7vCBJjugyFxofASp4kCgGJ6pJVxGWvhMJ555plktdjrLc7Qbp1/dt/J8cUXsbz0AG5oeQWeWgGEvw+hDIDX/Cp4zQcBZvOYwoXUTAE3Ckn3JAsLQRCVhsQ4URGsSVNLS0tYXFxEV1dXWuUplVKnZJayMu5xsRyEdQ01RYp/TdMQCoUwOTkJn8+HgYGB5PHKJCnGk37w/4WDreeTfnCLztooOmujWNO9+PnlHmxrXEJ7baIXuMEZ/u3yAP4t0o1ZT01WJdsQBl5Y+RlOeH+OreFh/Lr2CbT4WgAAcXMJ02sPoJs9jt2ecNa6h9uncLh9CudXW/DDhSGcYQ0QEhG1srgGoKnkEzjFRnCPIvITxsylrM+Y2AgUcrZ+8DJUxhlXoRbYmaW+qQl79uzB2NgYLl68iL6+PgwNDaG+Pn9hDNjYRoTAudnHYUT+CodaR4AtmdsehBr9v6FE/xK85kPgNb8MqP2Fj5cjuaZ7Zj4Fsm6KvV4vOjo6qDUiQRAlh8Q4UVYyrSirq6uYmppCf3/2j681KbHUKZmlrIwzF7tt2NDRVmBlfH19HcFgELOzs2hpacHevXtdA4oYY3hz7SRaZ//fjn7wVBq9Oo52TkPnCp6b7cOauQU/ijdgXfW4Xg0EE7hoXsIfXvwShvyD+IWGy7jR/yT25TA5cUfTMv4/TcuYjdbhgfH9CNbZe/wb6hITcI0SinGTKzD1jc/fVOxtM8z+82Iu/cCZIsDiHsjEeDlsKsxUoUpsKkLiUzE4R1dXF7q6urCysoKxsTE899xz6OjowNDQUN6hWKm2kRPjJ9Ehvox9zROAvKEPGNahxr8DJf6/YHrvQFD5z+ir3ek6tjVZtFBB7Jbuad2UpLZGnJmZQX19PZqbm5N+crKwEARRKkiMEyXHLiXT+vHyer1ZwnhtbQ3BYBCXL19GS0tLyVMyS1kZdxPjEU3PyzMuhMDCwgKCwSBWVlbQ3d2NW265Ja8q5f1nDTwyfQz/eddreG/fuOvyk5EG/HAugFdEM4x4A1BrP9FPxnhsAt+KcZytH8ZdTSH0eaOu6/zsci/+euQgnpkewNtuPWu7jAIPAAO6XUhmgXDOwDfEOMtTGK+uhgE4p2QycMd2ianjlxxDhVJgZTy1tWFzczMOHTqEXbt2YXx8HKdOnUJtbS2GhobQ09OTkxUk1aby1ZfHsBq9DffuaMSHAyOod7lRE6jFGD+C74Q4xuJfw1DtIN7b8W4cbr4ZHsX+56lUfnendM/29nYEAoG0a5A1qdy6lpimCdM0qTUiQRAlgcQ4UTJySclUFAWc86yUzJ6enrxFaK6UsjIudLnIDhu5tTZM7QpjGAb6+vqwb9++ND94LjDGwAXw8nwPfnO+B9ublvAbu07hnsEL8Knp+/z6UjseXR7AeaUegm20+MvTtpGKAQXPhbvxfLgLB/2LuKsphN3+1fRlOMOjwW345shBnFnu2Pir87ERRmJ79FjBm5UFz6yM2+Ako/y+Oul7M0VAMSsvxoWhyMW45PSz6zPu9/uxa9cubNu2DVNTU7h48SLOnTuX1YXEjlTbSETXMb7ejD969e346ulb8Etbz+IT20+jr349fR3WjLf0w/j2HMecbgBI3H2NRyfwzYlv4/94foDb29+Jd7a9A42ehqzxSt3pJDXdc2JiAqdOnUJNTU0y3dPyjtulexqGkbzOkYWFIIhCIDFOFI3VFiwej6dNrrL7wbTaGJ44cSItJbPYSWQyrBuAUsA1+ftEdR1M8TiK8Xg8nuwKY/3Yd3V1FSwuEmL8ylgXVlvxuRffjftP34J7d7yBj20bwcnFTvw03IMZGz+4xF2RMwIMr8Xa8FqsDVt9qwlR7lnF90b34Nvn92M6knsKKN9oaajHSusZN+KJHRWyyZQ2Q3q9tXCKnPcqClQmpJM3AWyECZUWoStSzzh3sak44fF4kgJ8bm4uy1fe0NCQtU5qZTyW0t98Ta/BQyOH8K1zB3C8bxSfu+kSumrX8Ur8Rnz7cgxhrmW9l8WKsYJ/nnkEP5p9DLe2HsF7O96NXn9vcrxyCV6/34+dO3di27ZtmJ6eTqZ7ejwetLa2JpfLTPd0ChIiCILIBRLjREHYWVFyScmcnp6GECIrJbOclLLVoBmXi/GwroP55Vac1tZW7Nu3D62trUWLCsaYrfCaiTbg//f6MXzj7K1obl9AX/cCfDbKW3BWooD2BJe0Jnxjfi/eeq0P89HmvNfnxkY3lVjpWkNyrsDQNsS4kV81WUiEtBeApsdhxl2CgcrgGeeavDIuO99zSeBM7UJiRc6/8MILaGtrw9DQENra2tIsHFbFOG5kn2OmUPCj0Db8KLQNv/j2y5g35nPYwwS60PHs4vN4bvEF/OXer8Hr9ZSlMp6Jqqpp6Z6nTp3C+fPnsbq6SumeBEGUHBLjRF7kYkVJXTYzJXPv3r1466230NnZWbFtLmVl3IjKy6BhXQervfLDPD8/j2AwWDYrTkIESLaXexGaasfk9BZ0tq+gv3cBdbVXKpLcyK8NeK5wqXWDwTQBuxbxwriyjAoVZglK95wz6Bs3UXaVcdnxS7QltN8Gn8eDldV5xOd1yC6l5aiMm3HmNOcUgNSlkncCZ1NTEw4ePJjsQvLaa6+hpqYGgUAAPT09aZXquCT5M7FhhYnoGqUm+TlVMmDISvesq6tDT08PotFoTumeANJaI1rCnEQ5QRB2kBgncqJUKZmRSKSkaZi5UMrKuOYixqNGwmcxPz+PixcvwjTNslpxnCrjyddhVS8VzM61YnauBW2ta+jvXUBTYxTcFOUR4y7dUHRdharaVFFT1vMyL0xRCjGuQMQTnxu3+fiEYGCKsLWpyNIza70+dLa3YSYoADifF+XwjJtxFFEZL+yY+v1+7NixA1u3bsXU1BRGR0dx7tw5dHV1JZdxE/qFPoepYTUweWKfrAJAJeGco7a2FoFAIKd0T+CKhYVzDs45WVgIgnCExDjhSKoVRdf1glIyM/3Q1uTGcvo+MyllZVyL6oCk3fnC2hrWfbXQdR1bt25FZ2dn2X9487vRYFhYasLCUiNamsLY2bJQno0ymLTkbhj2vblN/cp/e5hHXuLNEc4Z+IZn3O4mgXMGVbE/P2Ri3LchqhSuQibGZVaXQtHjgEOzEQCQBlPlYlORoaoqBgYG0N/fn7zp5Jzj9OnTcj86U/Lu827hRQ34hhivhE0lk9Qxi0n3JAsLQRB2kBgnsrDS5+LxeE5WlHxSMq0fNM55TlH2paCknnFDoEZVETftq4sRXUd9fX2yR3q5SVTGZa87voLllTqIptz9u3mhu4hxBxtLmhhHqZ4kqElRz20845wrUBT788MwnYWSR1XAmIAW4dJUz7KI8RgAidtJdrYXK8YtGGPo6OiAz+fDiy++CAAwJe9d6/Egr/jTFDz8yjyMStpULOxuACjdkyCIUkFinEiSjxWl0JTMaojxUlbGTZOjzuN1FOPC64HP5yuZ+HeDMSYvHktfZCiBC8SeuAJZnn2iMm7z95QGG2qJLk+KUJM3LHYNPEzOoCjc1jsuE+NeRQVjAnqMgdUKCAehWQ6bih4VUOol3VTKWBnPGmvju7x//36I559yXK7W44WCwiraqvAmK+PVsqnIxsw33RNA0sKiaRoYY0lRThYWgrj+IDFOZKVkyqwoxaZkporxSlHK0B/D5PBK3iqi5xf6UyxuY0mLbcK+UlwSXDzjhmEvOMwUsay4hOnkipJymTNtbSoKPB4Tpo3wtmkOksSjJBzQekSA1QsIB9Fdjsq4FhVOHRcBVFaMW5azaNy5VSEA+BUVrMBjoZpemOLqsKnIyEz3HB8fx/nz55OtIVMnb2dWyy1RrqoqpXsSxHUGifHrFMu/GIvFklVwJysKULqUTGv5SorxUoT+RKNRhEIhLC4uQu1yFjoRQwcX+fq4C8e1Mi5fGyhHOiTgKsZNh8q4Hr+yN27JlrmipvhlTC37aFmecbtqvWY4H12VKWCKQDwmoDBnbVyOUyEeEfDJuqlIBtU3QrdKJfSsa8d8RJ7kakRjiEbj0icmzit7qm5TyedJnizdM7M1pJOFRQgBn89HXVgI4jqAxPh1hiXCLT/4s88+m7SX2PnBS52SyRgrqW0kFxRFgeGWzOKA5Yefm5tDe3s76usb0FRrYnrNPq89ahjQDF4xMe6O8484AyAkNoyi0FzEuEPvbT1FLCtCLdRinEaq3cWwKd7KPOOa5MmBlzGACWhRASbpM1iOyngswlEjOcVMl/PPFAKeEopxxhjmXMR4S10DlEKPha5e1TYVGZnpnlZrSCvd0xL5ma0Rn3jiCRw9ehSNjY2U7kkQmxwS49cJTlYUy8KRepHXdR3T09MIhUJlSckspW0kF/KtjHPOMTc3h2AwiHA4jN7e3is3LI9cgk/W4BmAxsVVVBmXtT0snxgXLmLccEjCNFLucRj3lKQJuiI8sOrWtmJcMDAmbC09ccP5vPF6AIAhHuFQKjyBMxbmaJbZVFzOCoNzeEokaK1K9WI0Kl2uRvWi1l9X0BhCuyLGK21TsSrWxY7plO45MDCAwcFB+P2JRwapTw+t9oiapiX95GRhIYjNB4nxTYxdSmamFSW1Sm2lZM7MzKChoaFsKZmlsI3kQ67i3zAMTE1NIRgMgjGG/v5+9Pb2pvnhORfwuLRni3GzYvvn9oMs22smWNnEuOISZ+8UCqSl2FSYqZRGjMMDIKHCU20wqTBmbyeJSx6oeDaq6bEqiPHoGge486cr84wDpfWNW0J1KSavjHsEAwQr6GkHjytpYrySQtT6LpfqOpiZ7jk+Po6nn34aXV1dyXRPvmElSi2YWNdz0zSpNSJBbDJIjG9C8knJVBQFS0tLuHTpUjIl88Ybb0RTU1PZtq/SNhU38R+NRhEMBjE9PY2Ghgbs2LHD8SbEzEGMx0XlbCrF/BAzOE86LAbOAeYi8p36d+uxK58TK1GMvCfFe25o2SFHsmcLcd35NZ8nIeDjcVMqxkudwOlhKjiHdAKnm01FLzD4xw7rydpSzN66ZeHhrODQHzPGkm0TK21TKbUYt7DSPdva2hCJRDA+Pp5M9xwYGAAARwuLYRgwDCN5XScLC0Fc25AY30RYbbLi8XjaD4itqNxIydR1HWNjY+jv70+mZJabanjGM8VxZn/0jo6OnG5CTJND5fJybcy8mjzjzjAOp6T3ohCCQXGx6JsONpW0yrVD9TxfUruy6PH8iu0xXRJiowqIjZelMq3EYtzLEkmPssq4mxgvZWXcqlQvx2PS5RhnBR8LLYqq2VTKJcZTqaurw549e7Bjxw5MTk7i4sWLAIDx8XEMDg46pns6BQkRBHFtQWL8GqfYlEyv14udO3eis7OzYttczco45xyXL19GMBhENBpFb28vjh07lvRrusG5AHMRsHFuVkyMG6b8OMo2Q2EKhIMoLgbOFSgux4g7VL3jsSsbLBzaH+aLwq9c5rQ4z6uZR1TiGfeoSHajkdtU8hgwBzwisT+CC8e7gErbVBhjWHET4wYKbm0YXtFwbmEOnV2NVRPjlag8ezweDA0NoaOjA88880zyqWVPTw8CgQClexLEJoXE+DVKPlYUWUrmSy+9VPFtr1Y3lfHxcYRCISiKgv7+fvT09OTcH93C5NxdjIvKTeCMCTcxLpnAKcozgVMIlqi6S7DrpsLAYOocSVNxiW4UUivjWlQ2oTX7tajmvCOqKoCN/VAkoqfUnnFjw8qjx3XAIWPLqIJnfF2T9xlnhgBcLF52xGJenGI6fnriJ3hQO4YtNb68v7fFYCVlVtqnrigKbrnllrzSPQGkpXtawpxEOUFc3ZAYv8YoJiUztSuIhaqqFRXGQGXFeCQSwezsLFZWVsAYw86dO9He3l7wjxPnAqoupJPQYmblKuNxWSoNAFPiDVbA4KLlC4Jz5nrDYpdK6WHpcencpVd5rihmSmU85rzDmZ8YA4NmCjh92ArjyZsZmcQstWe8wZ+ojobXI45ivBqV8XVdLsaFLlwSYdMJR2oQmmrD5flmWJ9BJBxDdH4O9fX1WF5eRktLS+EbniPVaqVo+cXzSfcErlhYOOfgnJOFhSCuAUiMXwPka0XJJyWz0lXqSowphMDy8jKCwSAWFhbQ1NSE+vp63HTTTUW/t8k5FF0APudlKjmBU3fJs1cUFTDtDdzlq4wrrpVxblMhVTPc3KJE6aCpk0nj0dzPOy/zQnbXpSoiaUFRZHdnpbapINFitLGuAYC9NcR9AmfpPeNhXZcvp5k5VcZX12oRmmrDwlL2/I3tO3ciPDuJSCSCF198EY2NjQgEAujs7Cyb0LxaEj+LSfckCwtBXN2QGL+KsdLYrICecqRkKooC0yzDLD4J5RLj1pOAYDCIWCyGvr4+7Nq1CysrKxgfHy/JGKYpoGpcKsYr2dowJvE0J3CxqRgKBGdgDqE3hSA4SwwrBGybd0NWGb+CXXR9vnDOsLK4cuXfJqBAAZe1ItnAq8j76iuMpXjGK2dTUS0PvGQXCrWpmJzjgZdP4oVQEA//4kdy2h7ruhRxEeNmnLt6xsORGrx2ZtjxdWOjYtzZ2YmhoSGEQiGcPXsWZ8+eRSAQSKsUlwrL8lFJrPaFdpQi3dP6HSFRThBXByTGr0LysaIUm5JZrcp4KSvHmqZhamoKoVAo+SSgp6cn+WNWyvE4FzDjJtDgvEyluqmEw2GMT09Jl5FthSIYuK4kvNluMy7zQPCNBnbODg9b64aacTnictdDTnDO0FzfhFVcCaTxMA804f7mmduTjUgKYlmHllLbVNhGNx9Zd8J8u6nEDQP/94nn8P2Rt6CZJpp8uXdVsmwqMZeUWzNuFm2L0k0OsVE19nq9GB4extDQEC5fvozR0VGcP38e/f39GBoaQl1dYQFDmVwtlXE78k33BJC0sGiaBsYYtUYkiKsAEuNXEU4pmXYXyVKlZFbDM16q0J9wOIxgMIiZmRk0Nzdj9+7daVWhUo8HbEzgjMmFa6yM3VQsC87ExASWlpagq/IfbNcJnJqSaCHoLaUYdxcRdv3NM20qpamMK/AqmfYXkVN/Qw+Tf5dU5Uqf9oRNxf5Yl7oyzjY88MLlqYjzFl0R4yuxGL707FP4yejFdAGfx/lr2VRiDnYoCz1quFbGmUu6rclNICP0R1EUdHd3o7u7G8vLyxgbG8Ozzz6Lzs7OZIhOMUKzGmJcVhm3IzPdc3x83DbdE8iulluiXFVVSvckiCpBYrzKWI8OI5EIpqam0NXVJbWilDol81rzjAshsLS0hGAwmAwpuvnmm9NafpVyvExMk0NE5cK1HK0NM1sy9vX1Yffu3Xjy0kXggvN60so4x0ZlvLQ/vJZAZdzZImwnUFWRfjlaXZInOuYC5yyrl7rfWwudp1gqUjYl1VnjVhln7IqvXRUyMZ7vVrtgKABEsu+2Ex7GoDsMbnATf/LcM/i7M6/bbnU+m2zZVDQXu5sWNYq+MTFMAVUyobKlpQU33HADotEoxsfH8fLLL6O+vh6BQCB5bc2Xq7kynkku6Z4WdhaWqakpNDc3o6mpiSwsBFFBSIxXCWtSTTweh2EYiMViOHfuHHp7e7MuwkIILC4uIhQKlTwl81rxjJummfSDa5qWFKO5hBSV3KYSlVcAY7x0NhXrBzIYDIIxhsHBwbTJuJrLcZRuhQCEroBzVorU+Stva1W9JYPbiTIlU7nz4i9PdmI805tuwZBID7UKkorDchaqkohpB+QTOEtdGYehAjBcK+MeRYHu8N0emwji6fFRx48on/PXsqm4pXrGI3rSY++EW2VcNzlYDkK1trYWu3fvxvbt2xEKhXDu3DmMjIwkO5Dk8wSxWpXxYsaUpXsODQ2hu7s7+f6povzixYvYvn07/H4/WVgIooKQGK8wdlYURVGSCWupP4JWSmYwGISu63kJ0FxRFAW6y8SrUpOPGLc6w4RCIfh8PgwMDKCrqyuvR7iltakI6BEXMW4aRYvxWCyGYDCIqakp1NfXY8eOHejo6Mj6UdTcYs0l26HwhGe81B1V+Mb7MUknOzuBGllP7wyiwld0QKjJFYiMYCSnireiCgihwDKCK26VcYWDb5wKikRwl1qMWy0fTUN+jqlMgVPE6lo4jHDE+clDPqfvFTEu/47FwwYg3J82yDA4hyfDpiLD4/EgEAgkfeVjY2O4cOGCbQcSJ6pVGc/nGicjM93zwoULGBkZweDgIAYGBtLSPU3ThNfrTYpzTdOSKc5kYSGI8kFNRytAqhVlbW0N0WgUQgh4PJ7kjHbrwss5RywWw4ULF/D8889jcnISQ0NDeNvb3oatW7eWPK7+arWprK+v46233sILL7yAlZUV7N27F0eOHEmblJTPeKWqVJsmhxYzpd0zYmbh3VTW1tZw5swZnDhxArFYDDfccAMOHz6cFvKRStzFqiB7NeEZZyVrIZgc06p+Sg6B3XbV+tIn3Onx4j8zzhlExr2TKtLPH2vvFSbSurxEw3HpezOIpK9dlbTsK7UYF3piLJ5DZdyJwLatUDzO1eF8vi+WZ1w2adSvehJPYtwq4y4GGWNjcnS+4pgxhq6uLhw9ehRHjhyBrut47rnn8Morr2BxcVG6v6UUxrlSjg4uVrrnO97xDuzbtw+Li4t46qmn8MYbb2BtbQ3AlX21ikTWtdM0zWRXL7OCOQoEIeOZZ57B+9//fvT29oIxhh/84Aeu6zz11FO46aabUFNTg+3bt+Nb3/pW1jIPPPAAAoEA/H4/jh49ipMnT5Z+4zOgyngZyScl0/r3m2++icXFxbSUzHJWIqoV+mNXjbfsOBMTE1hZWUFXVxcOHz6MhgZJ65IcKGVlnHMBBqDW43Hsq5zvBE4hBBYWFjAxMZHsiHP06NGcukG4VcalYnzDM+7SqjxvxEZypqzXuJ1A9anpN5paTCC/6cjZcK5k2TkU4dQyjsNICQhiDssll1cFjI0bGUWyr6XupmLGrcq4/JxWJcManEvbH7qFBqViXddk69R5PAB0wHUCp3wsU/CiK9XNzc04dOgQdu3ahfHxcbzyyiuoq6tDIBBIs29YXOuV8UwYY+js7ERnZ2dWuqeu62n7apfuaRhG8neMLCxENQmHwzh06BA++clP4kMf+pDr8qOjo3jf+96HT3/60/jud7+LJ554Ar/xG7+Bnp4eHD9+HADwve99D/fddx8efPBBHD16FPfffz+OHz+OkZERdHZ2lm1fSIyXAattVDweT4pAq8pgt6yVkgkkgh0yUzLLydXgGc+04/T392Pfvn3Jx6elGK9klfGN7a5VJWI8x8qR5YOfmJiAYRgFdcRxswZIt4MnqqylFuM8ZQJnfiumfz/0kohxBq7nKsbTUz/rauU3gQwCxsYpoEg6yJS6Mm6JcbfKuCoRkAbn0hRO0+S4dOkSBgYGXM9HIYRrv/tajxcCUVfPOFy7qRQvxi38fj927dqFbdu2Se0bPA9bTKmoVG/zzHTPxcVFvPLKK1k92zPTPZ2ChAiiktx99924++67c17+wQcfxPDwMP7iL/4CALBnzx4899xz+OpXv5oU41/5ylfwqU99Cr/+67+eXOfRRx/FN7/5TXzuc58r/U5sQGK8RJQiJTMajaK/v79iQhyobp/xeDyePAY+nw9DQ0MFdzyQkdoxoJgf1UR/3oRY8KvOX50YN2FIYuozffDWpMxC9ttVjEteY1yA6wq4WdpHzpYHneUp8lmGoI1HBYrtFM2FAlNP3z8mVNv+54qS7pUWEutJjaJAwAQ3Nvo4V9Azbmy4Z9wr487j6i5iHAyYm5vDxYsXXft2c86xGpXPO6lRVMQA1z7jbhM4LZtKKcWxZd8YHBzE3NwcxsbGcOnSJfT29mJoaKgqNpVKj+nz+TA8PIzz589j69atmJqaonRPYtNx4sQJ3HHHHWl/O378OH73d38XQOK3+eWXX8bnP//55OuKouCOO+7AiRMnyrptJMaLpJQpmePj41WvUlcCTdOwsrKCEydOoLW1Ffv27UNra2vZLuCWyC32Rzz1MXyN4vxDGTdNxLTszzESiSAYDGJ6ehrNzc3Yu3eva0KqG/FizhcOCJ2VPK7dqrTLxThLpGGmHkYzXfxqeUTXO2FXGWdclfQZv/JZpE7mzMQDhoWFBRhrieq5rDLOOQPnCbFfCvSNea6mLj8+CnOpjEuUMQdw9OhRrKysYHR0NNm3e3h4OK09HpD4Xq3o8hClGpajGJe/DKOElfGssVPsG6urqxgbG8MLL7wAv9+P+vr6kt8EyOCc550ZUSzWb09vby8GBwfzSvcEkJbuaQlzEuXlIxaLQdNKkIx2lWH3PaupqSnJfLmZmRl0dXWl/a2rqwurq6uIRqNYWlqCaZq2y5w9e7bo8WWQGC+QcqRkVsO/XakxU33RKysr8Pl8eSWFFoP1eRT7I26mVJB9zFmMx0wD0ViiUiiEwMrKCiYmJrC4uJhTX/R8kFY3XUjYSFjpu6lYPmp50xkYcQW+upTt54n+2RaxkohxBYaeflfAuJJT6A/nzmK8zl+DlmYFU9HEj6Ee0eBcxmfgnEFRSnPXo8US7+NWGffIKuOmCVNyF2YJrObm5mTf7rGxMbz44otobGzE8PBwclKxEAKrLh2ZrO+L6wRON5uKWT4xnkpTUxMOHjyInTt34tVXX8XCwgJeeOGFZLJlucc3TTMtqKcSWGLc2rd80j2BKxYWvnHDRBaW8hGLxTA81ICZy5Ut3lWChoYGrK+vp/3ti1/8Ir70pS9VZ4MqBInxPLAuNKmzykuZkqmqalUq4+Uc0zTN5DGwfNEdHR2Ym5uriBAH0ivjxZB60+KVNCLiAGKGkfSDR6NR9Pb2YteuXSXvhuNmU5FhVa5LLcat7ixuNhXT8ABIqewY6cE5RlyAgUEUUbrnnMGMZxwjU0G6GV3Y/jeXVLtrVA9qvAK1vhoAa2AubQYNU4HHU5rvmRbdeE/NrTLu/LmuRWOOrwHZ8yxra2uxZ8+eZN/uN998EyMjIwgEAjBN07Uy7rG+L26nq2trw+LtZvng9/vR3NyMlpYW1NfXY3R0FOfOncPg4CAGBwdLNq8lk2r1Nre6qKTilO5p2Zdk6Z5kYSkPmqZh5rKJ0ZeH0NS4eW50Vtc4hm8eRzAYTMtRKdXvZnd3N2ZnZ9P+Njs7i6amJtTW1ibPU7tluru7S7INTpAYzwHLimL5wa0LZalTMq+GyZSlIh6PIxQKYXJyEn6/H4FAAJ2dnVAUBbOzsxV9ApBaGS8GM6WNoFfiJwaAlWgUFy9exMDAAHp6epIToUqNW9CKlI3DUXIxbkXEu7Sv100FqbMjsreDwcM80EXhffBNzmBkWIZYih0mNXHTGjO5ruS4eFUFTGEwNqrUNZ5aAGuOy3PTued3vmiRxJiJ+QvO26goMjEub9vodGvh9XoxPDyMoaEhzMzMYHR0FOvr65hZk6eleoT1HZQu5trasJQTOHOFc46amprkxM75+fksX3mpnnRZmKZ51fnUi033tCwsVjtfEuXFU9+Q+N9mwXr43NTUVJJQw0yOHTuGH/3oR2l/+8lPfoJjx44BSMyduPnmm/HEE0/ggx/8IIDE9+KJJ57AZz7zmZJvTyokxiVYVhRN02AYRtKKYifCS5GSuRlsKqurq0lPfFtbm217xkr71EslxnlKeIzq8laGwnDrrbeWXTQUUxlH2SrjG6mULhraMNN/+IWNYC1WjHOuQI+n+2VEihhP2Efsj6EpsVR4FRVM4dBjG/vgsomyKnu+xCKJ7WUAvIrieA7IJnCuR1y8piwxWdKj2m+3oijo7e1FT08Pfv7zn2NlcUn6dsrGOeY+gVP+urHR2rCSQi5V/DPG0NHRgY6ODqytrWFsbAwnTpzAli1bMDQ0hPb29pJsWzUq41YF2w27dM+XXnoJ9fX1jumewJUny5qmUbpnieAQ4KWe9FNF8t2X9fV1XLhwIfnv0dFRnDp1Clu2bMHg4CA+//nPY3JyEt/5zncAAJ/+9Kfxl3/5l/jsZz+LT37yk/i3f/s3/MM//AMeffTR5Hvcd999uPfee3H48GEcOXIE999/P8LhcLK7SrkgMW6DXUqm00WjlCmZ12plXAiB+fl5TExMYH193bVPdjXEeOpEo0JJrYyrLt5XnaEiP6aGS+iPDLaxrjBLu508h97bQMK6YbdeKh54AUQL3xbOYMTTv1OpNx8mVxy93JKGOPAwBoYr/m24BCcZpRTj6yl2KUV1FOMykbMel1fGASCuG/CochsGYwxerxdKbS2w6rxc8lxw9YzLt8ksMPSnGJyEcWNjIw4cOICdO3diYmICb7zxRrIrVCHhZKlUqrVhKoV0cMk13RPIrpZbojy1wEXCPD84uKvz61oi37156aWX8O53vzv57/vuuw8AcO+99+Jb3/oWpqenMTExkXx9eHgYjz76KH7v934PX/va19Df34+//uu/TrY1BICPfvSjmJubwxe+8AXMzMzghhtuwGOPPZY1qbPUkBjfINWKMjY2hoaGBjQ3NztaUWKxGEKhEKampuD3+0vSlu9a84wbhoHp6WkEg8GkJ/7gwYOuXQCq2U6xGFK32YjLZyfGKvQ5FmVTSVbGS7MtFlbipatnPLMybivGi7tEca6AazzNzJE6TmZlPPUMMSRPDDxMAVMEtA3rtVvxvpSV8Wj4yoH1SKwoisTCEom5P23QDAP1cPdEc84RMd08SZa1xvXtkPgU7Lfd4GbFq8ZuwrimpgY7duzA1q1bMT09jbGxsTRfeSGFmWqlfhY6ZmZ7yPHxcVy8eBE9PT0IBAJpNp5MUR4OhxEMBrFr1y6ysOSJKYQ0+fZaI999uf3226W/63bpmrfffjteffVV6ft+5jOfKbstJZPrXoxbk0zi8TgMI6EiFhYWoKoqtmzZkrXsysoKgsEg5ufn0d7ejoMHD6K5ubkkF49qitR8JkWl3ojU1tZi27Zt6OjoyPkHshr7WYoUTj2lVBpdDQMSr168QvunF1EZtwx6ZZvAmW9l3EbPqaK4S5QCNevBp2WjARIi2eswsVKTTMr0KAxCEVfaL7p0juFuYTc5okCBoV0Rqx5Ji01Za8OoS/cTAIjpLju1gRACEZebz5WFZQAAd5noCiQ6qjj1ZrdCt6plU5GR6qleWFjA2NgYnn76aVtB6kY1KuOlGFOW7jk0NJTswGMtyxhDPB7H1NQUtm/fnrQgkYUlN653m8pm4roV46lWlMyUTI/HkybcUlMyrc4Y5UjJrEZl3KqE5FKJsW5E5ubmiroRKWUiZiXG1HUdk5OTOP3WpeTfGmsbIbNPxIupWOeBUUxZ2zrFy2RTcRPjppF+vpl69nmk5NKDUIIKT5ZO5il/kHnGdYn1xMMUMAbEN/zbwqXNYKnEuE/xIbVq7JEIbtnXMqa5C+18xHjUlC9b660FEMHyksTLsgFj6eFLqRjmlWt1pci3Es8YQ3t7O9rb27G+vp70lbe2tmJoaAgdHR2u18xqVcZLOdE8Nd3T6sBz9uxZDA0Noa+vL/kE1drX1HRPTdPSfo/JwmIPh5C2KL3WIDF+nZCakmmJcCugIPWLboliu5TM7u7usnXGUFU1WZ2vFNaPjNPFn3Oe9IOHw+GS3IhcK5Xx1JCepqYmDA9vBXAeACB0Ie1VHXebqVYiivGMI+kZL9HGWGxUnl1tKhkdaeycDsVXxrPXT4285xLPuCZJJvWpAhAM2oZdKTPlM2vMEtlUvOk9GaWTNGXiJRehreVYGOCcu9qyVJ74stTXNcis5QDkvcavBTGeSkNDQ1rc/JkzZ5KWjr6+PkfBXa3WhuUY0+fzYevWrQgEApidncX4+HhauqdhGMnf1EwLi2maSfsMtUYkNjPXhRi3rChWa0K3lEzTNDE7O4uxsbGslMxyUq0JnEBin1O93oZhYGpqCqFQCADQ39+P3t7ektyIlMIyki/53ABYIT3z8/NpIT3BqSsdI7jGAUkmR6VsKrLQn/Su3TaUq5uK9X5ulXEzU4xnbwfjKiQt3V1RRbbYyRwn9Wud+opsWoDXk9jP+Eavb9MmcTUVJ9tFvnhZuofbIxFPMqGumabrcdVyLAwIIRBzeRJkTaJVJGFZFrIjZQgOVGhytEUphLHP58O2bdswPDyc9JWfP38eAwMDGBwczAr4qUZrw3KPqSgKenp60NPTk5bu2dDQkGWVtEv3NAwj+btNFpYEZFPZPGxqMW61UbK6ogBI3lnLUjJXVlZQV1dXsYRIi2rYVKxjYQnVaDSa9IPX19fn3CM9HwrxqZdqTCeszz/1CcCxY8fSfiR5yvpZQTIZVK4y7jyOW2drYYqEYC+xTUXk2E3FzKgWmzbd9pRixTi8yLwrcKtiW8QkcfMeNdFP3dyo1Oou0fSlqoyrIvfKuAzNNFyPa1zP7VokhIDmcvNpbohxtwROAICkMm6aHPBcnZ7xXFAUBX19fejt7cXi4mKar3xoaAjNzc0lHzNXKnkDkJruefr0aSwsLOD55593Tfd0ChK6XrneJ3BuJjadGBdCYHR0FC0tLUlxm29KZlNTE3Rdr6gQB6rTZxxI/ECsrKzg4sWLmJ+fR0dHB2644YbkD0M5xgMq64t0qsZndoQZGBhwfAJgptgW9Ki8aqhxXpGbDZkYl5pvAcAozwRO6LklcGb6qO0SJZmpFHWVSnjOM8S4JtnflMMVl0w29G7YVK68p3xnS/W19mTYdlSJopade7n0p9dzLAwkxLh8WT2S+L5wifXHQvaVMTYm+F2rYtwitVd3OBzG+Pg4Tp48iaamJgQCgap4xqsxpt/vR1tbGxRFQWdnJ6V75gmHe6jttcRm2pd82XRiHADe8Y534Jvf/CaOHj1aUErmxMQEYjF5XHQ5qLRNhXOOy5cvg3OOc+fOoa+vL6saXA6qIcYzK+OpCaG1tbXYunVrMiHUCTNFwLiJ8biokBiXVOCZm1FFJF63aylYDNxkCYlYApsKiqwoJzzn6WZ0U8ut+hKVxM2rqki7iTFcqsilsqnEwumPD6SecYnhQ3oTt0E8xwmcnHNXcR+PJD6DXG78ZCmcRpX6b5dzzPr6euzduxfbt29PTnQEgKmpKQwODpZtjlIm1bDGWONac7Ls0j2HhobSguPsLCymaaKmpua6E+PmJpvAuZn2JV82pRivr69HJBLJurDYpWTedNNNWS2nqmEXscatRGVc1/WkH9x6arB37160t7eXfWwgXYxXCqsyvr6+jomJCVy+fBmtra22CaFO8JTJklrEpTIOUZGOMfLKOKRanFmtDQ0FwmRgaom2N9fKeIZA1e2sP2Zx4kCx8YzrLuGTFlGJ9URReFpl3zTk0fQls6nwDJuK1GHtjOwmziLXCZxCCFdxH9sQ40VXxgUHY5X92aqUZcSa6Njb24unnnoK09PTuHTpUtJXXuruXZmYppkW0lMpUru42KV7vvzyy47pnkB1unNdLZjiSoT8ZmAz7Uu+bDoxzhhDQ0MD1tfXk3/LNyWzGhMpgfLfBEQiEYRCIUxPT6OhoQE7d+5Ee3s7fv7zn1e0olCqePpcsWblj4+PIxqNoru7u6D5AJY/GLhS6XNCE5UR46asm4pbp5WNU43rSqK9oVqicy/H1oaZAtWIZ5+DRVftbdY34rl9LhGNw0lgqwxphnwGeX/szBuPQqnzpTe3j4QjzgtLhsylAqXJIkhTEC6+VZUxGPFE8FJOHT8lnvH5+QWIxs6KeqqrYd8AgGPHjiUnOj7zzDPo6upCIBBAS0tLWcarZmXcbtx80j2Bys4juFogm8rmYdOJcQBJMX7hwgW89dZbaG5uzisl0+PxVEWMl+MmQAiB5eVlBINBLCwsoLOzEzfeeCOampqSy1Taq84Yq0h7Q6s//MTEBCKRCLZs2YIbb7yx4OpPqk2FG0IaRa5t2FTKjSmzqbi1U9l4TWgM4Crk0z1zJ9fQn0wxrtlUxlMDegohupZtNzM09zmhKlMhJGqWMZZ1bBUmYDqI7pKdCqaK1IFrfTVA1L7fvUya5CLG43m0NpR1QajzesEQ31jW/f1krQ29NT5wzvHMM89gaGgIAwMDZbdxVCPx07pGbtmyBVu2bElWiV988UU0NjYiEAigq6urpAK0GkFDQMJmIrsmu6V7Vnpu19UEB4NZ4NOxqxG+ifYlXzadGBdCIB6P46tf/SpGR0fxq7/6q/jjP/7jvMJpNoNNxRKiwWAQsVgMfX192LVrl+3TgGq1VCyXWLVCekKhEDweDwYGBjA/P4+2traiHsPyjEpznceLFS1uu2y8UpVxWUVSUZwn4YkrUpPrCoQhcxjnh9A3HiNvjOPkO8i2qWTvS7GV8eb6FkQwlz5OjMMtoNzLvC5LiCwxLru8iBLZVBI93K98pn5fjSx7yhFTIniTQ+VYGY/E5U+JalUPYInxXGwqktd8NX7U1NRg9+7dGB0dxcWLF5OT/cph47AmC1a6lWJmpdiqElu+8rNnz2JkZARDQ0Po7+8vyQ1JtT3jbjilezY3N2PXrl1ln+t0NcKF+wPQa4nNtC/5smnEeDwex/e+9z187WtfwxtvvIH9+/fjxIkT2LVrV97vVS0xXgpRnCpEVVXFwMAAenp6pBfZaoTwlGPMaDSaDOlpbGzE7t270dbWBsYYFhcXix7PzBASftWDFdiLcR0ccU0vqwczFoshruVogJYgdOXKpMtSkDoRU2KlzrR02HnGud2kzjzI7D4CAOtrcVcx7nER4ypjQMZkREUicEtlU0nc6Fy5Rsg+s3DE2cLCcxDjuXZTWZE1ZEfie2ItwXOYEyqrjJsbQrW7uxvd3d1YWlrC2NgYnnnmGXR3dyMQCJS0C1RqOnOlkFWovV4vhoeHMTQ0lMzCOH/+fPKGpK6urqhxryabiozUdM9gMOjYqGGzY26yyvhm2pd8yfsK88wzz+D9738/ent7wRjDD37wA9d1nnrqKdx0002oqanB9u3b8a1vfStrmQceeACBQAB+vx9Hjx7FyZMnc9qecDiML3/5yxgaGsKf/umf4j/9p/+Ej370o3jPe95TkBAHql8ZL6SiGg6HMTIygueffx6Li4vYvXs3br31VvT397te6K6VREwnVlZW8MYbb+BnP/sZNE3DjTfeiJtuugnt7e1pk3yKHS9zfb/kuOoQiEaLF8p2rK+v480338TPfvYzaWU81x+nhGe8VFsHIKV1oMyqkinGtVj2viwvrGf9LVdMzqDYiGBuXPncnISfx2WSIFNEloVGkVXGS1Tx4XrGmDIrjWxCaQ6nhmbm9n1Z0+SV8RrlyrHMzTPu/JK50drQorW1FTfeeCPe/va3w+v14uTJkzh58iQuX75ckidT1RDjuXjUrQCdY8eO4fDhw4jH43j22Wfx6quvYmlpSbpuMeOWg2JuAnw+H4aHh69bq4olxjfT/65X8q6Mh8NhHDp0CJ/85CfxoQ99yHX50dFRvO9978OnP/1pfPe738UTTzyB3/iN30BPTw+OHz8OAPje976H++67Dw8++CCOHj2K+++/H8ePH8fIyAg6Ozul7+/1ejEyMoJvfetbuPPOO6EoCs6ePZs2gTNfqinG8wnDEUJgaWkJwWAw2R3GSovMd9xrrTIuhMD8/DwmJiawvr6O3t5e3HrrrY6PqlNbYRVK5mRJnyRNMC4EwiUU45b3f3x8HMvLy+ju7saRI0egTE0AhlwMucE1BbxE7Q2FABQzozLuuGz6mPFo9oRJr+pHoU1GOWe2wUNGDh+LCrfKeHaVVy7GS3N8eUaPdLubDYvaulpgbcV+e3LQlrlWxlddxLiPKQhv/Dd3D/6UtjY0HSwjqe0Bg8EgTp8+Da/Xi0AgkBYiky9XW2XcjtbWVrS2tiISiWBiYiLZfcTylef6XtWqjBuGUbTN5nqsigOJJ26leup2NbCZ9iVf8v4G3H333bj77rtzXv7BBx/E8PAw/uIv/gIAsGfPHjz33HP46le/mhTjX/nKV/CpT30Kv/7rv55c59FHH8U3v/lNfO5zn5O+v8/nw9/93d+l/a2hoQHBYDCf3UrDEsWVnriTGk0vG5dzjpmZGYRCIcTjcdfuMLmMWw3PeCFi3DTNZEgP5xz9/f04ePAgvF65eCqFR93MqBTKxLgmeEnEOOc8mQwajUbR39+PvXv3Ju0v0sp4jmMkbCpFbyqAhABOrYazbGv1lWVTXlChwm6LVRTj8Veg2lzc4zYVeAvrFdWlMq4oZtYxK0aMS6z1aZgZHWdkq8jOdp6D5sq1teG6i/fEiyuDmaZwF+MulXHZtTE1dn5qaipp4xgcHMTg4GDetjHrGlXpkKFCRHFdXR12796d9JWfO3cuzVfudo28lmwqmVyvYnyzVZM3077kS9k94ydOnMAdd9yR9rfjx4/jd3/3dwEAmqbh5Zdfxuc///nk64qi4I477sCJEycKGrOxsbHoyjhQ+dnl1rhOIlXTtKQf3Ov1YmBgAN3d3UVfyK4Fz3hqSI/f78fw8LBrSE8qpbDFZE7g9EpkBQcQdakYyrBuOiYmJgAg6f3PrCBxqRjPLWmS6wwit3wXV7jI6DIiO+QpApU5+CYMe0t+btvCWbKXeiqmzsHAIOzk6oZtJe5yI8WU7JAiqRh32VZjXYG30f38zDweMuu340tcyDfWGisHm4oQAmGX75Un5XPO5aZP5hnnOT41VBQlGSIzPz+PsbExXLp0CX19fXl14LB+A66lxE+Px4NAIJDmK79w4UJy35185deyGL9eMaHALN1sn6pTeT/C1UPZxfjMzAy6urrS/tbV1YXV1VVEo1EsLS3BNE3bZc6ePVvQmI2NjQiHw+4LOpBaoXarJpQSq51VZpV6fX0dwWAQs7OzaG5uxt69e7Fly5aS/UBczWI8dd9bW1uxf/9+tLa25r3vJamMZ2yvx8V4G9bzF+OapiEUCiEUCsHv92Pbtm3o6Ohw/HGWifGciwwmQw4ZMDkheLqLOVfPuFe1r1jmYilxgnMnLzyDl3mhCZs339gmxeXSqDAOI9O/LTknheRc4RwwVn3wNrobcvIS407nhgHk8sAhF5uKEAIRIV8uTYwbxXVT4Xl2NmGMoaOjAx0dHVhdXcXY2Biee+45dHR0IBAIuF5LKt1JBSidOGWMJSe6rqysYGxsDM8++6zjvleztWEx+3u9Bv4AiWvoZrJ2lMrOdy2yabqppJIZ+pMvViplNTuqWGmhwWAQy8vL6OrqwuHDh9HQ0OD+JnmiqioMo0Sl0RyRifFML3xXV1dBIT2pMMaK/jwzu6nYWSBSiZq5i/FIJJLsBNPS0pLzTYesv7NsTZYWz5ndGaRQMi+mUjGe8t9eB1uIXbvDXOGcOUa6eZjHXoxvUOuXf88YBIwMYSmTMbIfGaEx8FhuYkTLaGPIJO/r1CaMcfdKPQDoOZSxOeeIuoghJeVtcpoTKuumIgqvGjc1NeHgwYPYuXMnxsfH8corr7h6qyttVSzXmM3NzTh06BB27tyJiYkJvPLKK6irq0MgEEB3dzeAxHW30hVqK5CNbCqFQTaVzUPZxXh3dzdmZ2fT/jY7O4umpibU1tZCVVWoqmq7jHWRyJeGhoaiKuNAddsbzs7O4s0334SmaVke4XKNeTX0Geec4/Lly5iYmEAsFkN/f39RXvjM8fQCKtVp25exvYrLIYvlcIOzsrKCiYkJzM/PFzQBV1YVkkmkTL1Tqj7YPKMCzHI8rVSHS5ERy73An70tCoRDJdbRE75xYJhkhqOKRAFdZJxO0sq4RDQbETWrS4oTejR9f+Q2FfsXcxXjq+th18nkQgjEXB6rpE7oNfUcKuNSz3jxlWq/349du3Zh27ZtCIVCGBkZwcjICAKBQFbP7mqI8XLaNmpra5P7nppqOTAwAAAVF+NWQabcwU0EcbVT9m/AsWPH8KMf/Sjtbz/5yU9w7NgxAIkJNzfffDOeeOIJfPCDHwSQ+II+8cQT+MxnPlPQmJZnPNeuJHZUWqDG43FMTk5C0zRcvnw5Wa2pxMWx2jYVXdcxNTWFUCgERVFy6o2eLyXpppJR1nMTmlEHMS6EwMLCAiYmJrC2tobe3l4cO3asoNAKqU1FQua3oujYeet9MkQ9c7kfsSYuKrD/rLWYcO0J7gTnDMKpMi659AkBCOF87nmZgvm5OfD19Jsm2dkqnUwZVSFy7KceyxTjkq8tdxDJObQYBwAsLC3h+eefT3YksROlCTHu8kVIuSEyc7GpSD3jvGRVUMtbPTg4mOatHhgYwNDQEPx+f1WsG5W4AchMtbx06RIAYGRkpKKtAq3f2GKu9Yyx67cyLhSYubRGukbIIRNs05K3GLdi5i1GR0dx6tQpbNmyBYODg/j85z+PyclJfOc73wEAfPrTn8Zf/uVf4rOf/Sw++clP4t/+7d/wD//wD3j00UeT73Hffffh3nvvxeHDh3HkyBHcf//9CIfDye4q+VKsZxxIXKwqIcbX19cxMTGBy5cvo7W1FX6/Hzt27EBHR0fZx7aoVp/xeDyO8+fPY2pqCg0NDdi5c2dab/BSUop9zPSMw0VYRM10JWp1wZmYmIBhGOjv78eBAweKmpdQqGVcSbOpAKJMNhX50wMGQ1PgreFQHcRvMWLc5Aq4QyVWdZDOChOJfRAKnCR0bY0PTc1ezJ5P93jLen7LKuNm1JNMLXUjHknfJllR2jHNLsevwZaODgwNDeHSpUs4f/58Mn4+9XzlnCPuUmcX+pUBc5rAKXktX894Llg9u1NDhJ5++mn09PSgqampKpXxSo1ppVo2NDTgmWeeAecczz//PNra2hAIBEo6N8kOyx5ZzP5ez55xDga+iSZwymyXm528xfhLL72Ed7/73cl/33fffQCAe++9F9/61rfSOkAAwPDwMB599FH83u/9Hr72ta+hv78ff/3Xf51sawgAH/3oRzE3N4cvfOELmJmZwQ033IDHHnssa1JnrhTrGQfKa1OxKqPBYBArKyvo7u5OeqJffvnligvjSvcZX11dxerqKi5fvozOzk7ccMMNJU3NS8V6OlKKCZyZ3VSELqTfIEuMW5V/KylucHAQ3d3dJfnBdbIiJF5zJsumUioxnvE+bpVxU1PhreFgDmI8HuPIr2v+FThn4Ib9ea3aJHMCiSYjnAOcpSddpuL3eOD3K6ivqQFwpY+3ME041cdlYpxH1ZyfTMTW07dJVuV2emqSa2Xc5AIDAwPo7+/H5cuXk/HzAwMDyYA2IQQ0F5sK10pXGXfqM14KGGPYsmULtmzZgnA4jLGxMYyMjEBRFMzNzZWtUJBJNcJ3rEh6y1M/MTGBU6dOwe/3IxAIoKenpyzH3Rr3eq1sFwt5xjcPeYvx22+/XSpq7NI1b7/9drz66qvS9/3MZz5TsC0lE6syXsxFrRw2FatdXSgUSlZG9+3bl+YHv5Z6fueDFdITDAaxtrYGv9+P3t5e7N69u6zjrkRiaKmvLUlrw8wJnELj0m9QREuv/O/atavkP+iF3l9ktj0slRjP9IwrLmLc0BI/8IpTZTwi/8wcWxQi4Rnnuv36TuMpCk9U1CVi3KsoYEzAyOj5LQvgkYrxmJqV5ulELJyxP47lb5snORvkKsaNjTI2YwxdXV3o6urC0tISRkdHk/HzPT090FxOQh6/chxzEeOy3+NcWxsWS319Pfbt24fGxkZcunQJb7zxBnw+n9SyUyqqJcatMf1+P3bu3Jn0lV+6dAnnzp3D4OAgBgYGSjp/qVSTN69XMb/5bCpUGd9UWBPgwuEwmpqaCnqPUtpUMntkDw0NOc7er1YaZrluAEzTxMzMDILBYJo1Y3R0tCIX0OnlNbTU15aoMp7+uZhxDti37E2MvTCPWH+ZK/8FPtZTMivjJfKMZ0Y7uopxc0OMO6TQxKPy/VOZCsOhSTrnDKaLGM88BRVFQDeVrJuKVLyKCgYdWkYnwhrVCycBLzv1zLiSUz49A8tOKZWJ8SLPd8PmOmSlPa6vr2NsbAyvvvoqdJdz0Iin2lRyaW0o7zNe6SC2uro63HzzzZiamsLo6GgyRKjUwtTCNM2yTth3GjPzuKqqmtxPq1f7xYsX0dvbi0AgUJLOXsWKcSux+nolYVPZPDcim2lf8mXz3FKlYInxYoN/ihWoa2trOHPmDF544QWEw2EcOHAAt9xyi/SR32apjGuahkuXLuGFF15AKBTC0NAQbrvtNgQCAXi93or51BfWwojrRmkq4xnCx4jLPyd/YyMOHDhQNiEOuHTFkPnJRXkq41k2FZdDbpieje1x6KNuAorkMuU08RNIiHGnz4gJ1VYgK0rCh21Kust4FAUKA/SMJM9CPeMiruRUGfcyLzLLxnLPuMMJkGtlXPLmDQ0N2L9/P26++WYYLmJIj125WcpsB2mH7B690mLcqlKrqoqBgQG8/e1vx759+7CwsICnn34ab775ZtHzkzKpxqRRmSi2erXfcsstOHbsGIQQeOGFF/DSSy9hfn6+KDFsGAZ1UikCvhH6s1n+V6j//YEHHkha544ePYqTJ086Lnv77bcnn6ak/u9973tfcplf+7Vfy3r9rrvuKmjbcmVTfgu8Xi9qamqKukgWKsZT7Rirq6vo6enB0aNHHVPPSjVuMZSyGh8OhxEMBjEzM4OWlhbs27fPtl92KVoN5oLOBeZXw1BL0E2FZ3RTMaLyz8mtYlhupJ7xzGXLZFNx6zhjiV4mE7+SnuAqUxx3lHPFsTLOuALBWJY/mTEBkyvSubkepoCp2W0GZTYVWTCHqalQVBerBwd8Hptqqek8b8Gusg0g516RRg5VbK/XC8PlPNcjV8R4TqE/sm4qqIxNJTleRmcTa8JjZ2dnMkjnueeeQ2dnZzJIpxRjVqPFYC5jNm4UGCxf+euvv5607xTSAYtsKsVBNhXge9/7Hu677z48+OCDOHr0KO6//34cP34cIyMj6OzszFr++9//PjTtyu/JwsICDh06hI985CNpy9111134m7/5m+S/S9FiWcamFOOMMTQ0NGBtba3g98hXFBuGkfSDc84L7pRRLZtKMWMKIbC8vIyJiQksLS2hs7PTNaCoUpVxk3PMr0bQU1/8cc2sjMfW5VntsVxaRxSB282FzMKSWbEWZmku6HlXxo2NH2LJ+I5pmXDuTw64VMa5Cs4YVCWjXSVLaFVDcnPiVRQIhSMeLY1nXGgKhFd+oIw1Dzxbsq8lQiLGzSJjVXNZXwjhGmEdD1+56RaCSX3+AKSm9mpUxp2EXmqQzvj4OF566SU0NDRgeHgYXV1dBQvEa6G3eU1NDXbs2IGtW7dienoaY2NjOHfuHAYGBjA4OJizcClnT/XrAV5ENflqpJBuKl/5ylfwqU99Ktl978EHH8Sjjz6Kb37zm/jc5z6XtfyWLVvS/v3www+jrq4uS4zX1NQUnHVTCJtSjAOJCTjF2FRyrdzGYjGEQiFMTU2htrYWw8PD6OzsLPhiWi2bSiFjWiE9wWAQ0WgUfX19OYf0lMLDnQsG55hfC6OvsaXknnEtIj8/YmZ5U021Is6TTEuFg+06bzJj393EeNIOIquMSy5TcpuKAj3usGMbkzQVxX4Ddcnx8LBEW0gtlr6uItkH6QROTQFzuVwYq154Wm1u7CXHN/PmMUmulfEcbl45564/oLFw+vfETYzLWxtWNm0xl4pxbW0tdu/eje3btyMYDOLs2bPJEKG+vr68bRjVEKiFjqmqKvr7+9HX14eFhYW0tpCBQMA1wMwwDBLjRWAKBnMTRchb+7K6upr295qaGltdoWkaXn75ZXz+859P/k1RFNxxxx04ceJETmM+9NBD+NjHPpbVW/+pp55CZ2cnWltb8Z73vAd/8id/gra2tnx3KWc2pRi3KuPFiHGPx4NIJOL4+urqKiYmJpItrw4ePIjm5uaifyhUVU17hFIJ8q1SG4aRbNXHGEu26svnR6dylXGB1VgEjLUWNV4kEsHly/Npf0tEtTt/3uWujMc1uYKW9iAvU2WcG4XZVBKVcYc2hIWKccGgO/n6TQWmwuD12I9pSLbbqzBAMGh6+kIFV8Z1BcIjmYhpblTGRbYYz7ROpZKLmJaRS2U8IcadqVHVrDs9BQpka8lsKgKVr4znOp7H48Hw8DCGhoYwMzOTDBHq7+9PhgiVesxSUewNAGMM7e3taG9vT07uPXHiBFpbWxEIBBy7SJXqxuO6talseK03C+bGTbqVCGvxxS9+EV/60peylp+fn4dpmlltsLu6unD27FnX8U6ePInTp0/joYceSvv7XXfdhQ996EMYHh7GxYsX8fu///u4++67ceLEibLdPG5KMQ4kJhiV2jPOOU/6wdfX19HT04Nbb70VtbW1xW5u2rjV6jPullgai8UQDAYxNTWF+vr6ZDhRIRfCUkyozAXDNLEciRVciU+NqzcyK9EC8Ksexwp4vNxi3KXyLq0+lqmbSqaod62Mbywv86w79QQHAEWWpMkVmIawv10yE2EZimL/dCMu8Tb7PALgCrSMmyFZwFHmE4NUuM6g+CSvryf6kCs2x8EpYRRwFtO5FtLcJmYCidahMmo9XgDpx0lwIW0dcLVN4Mx3PEVR0Nvbi56enqxWkMPDw67VYplAnVpbw3PBcfzS3v15bZMbpZw0ak3utXzlb7zxBrxeL4aGhtDX15e2b1afcaIwuFDAN5Fn3Jp0HgwG0zrhlcuv/dBDD+HAgQM4cuRI2t8/9rGPJf/7wIEDOHjwILZt24annnoK733ve8uyLZv2W1AKm4olxq1KcCgUghCJIIxDhw6V5SJSLZsKAEcxvra2lkwJbW9vL0mrvkpVxrlmYjkay0v8O8XVX7p8CkAobdlaj7MY1wSHppvwectzJx2ReSlcKFdrw3w941ZlXCbG7URo8jVJZVwm1GEqEEqie4odsocOHgXgZnZlnJnMUWRKOhBCGIpjOBEAmJFEQqfCs/dH1irQsTKe42+3U5/yVObX5AWPWjV7m72qF6aQXePknvGrzabiRGqIUGa1eHh4GG1tbbb7YncDMLW2hv/n1ZfwTyNv4e19g2UR46Wu+Pl8Pmzfvj3NV37+/Pmkr9zv95ekteH1zGatjDc1NeXUlrq9vR2qqmJ2djbt77Ozs65+73A4jIcffhh/9Ed/5DrO1q1b0d7ejgsXLpAYz5fGxsaibSq6ridDW+rr67F9+3a0t7eXtTJTrQmcQHp1JFWQFtIVJpcxK7KfcYHVeDynyrhbXL2dOKlVPVhyeD9NcESiGnze0j05SSVuuNlUJI/7M4v8hgJhMjCXrh5uZD4McLOpcEuMS1r7KUJ1dAMxiRhX4XGcXCgMBXCaWy3klXGvKmzLywp3FuNCKBDCvuorDHmfcTOqAKYCxczeVyHZTt3h+5VrZTyXzgaLYXll3K96kDnNWZF0wAHklXGB4qLT84VznvckfDusavGOHTswMTGB1157DTU1NRgeHs5qdZt6HU4V4dbnWctK/7NdTp+6oijo6+tDb28vFhcXMTY2lnxSoOt60YWd69WiAiSMfZvJM56vIvD5fLj55pvxxBNP4IMf/GDiPTjHE0884Roi+Y//+I+Ix+P4+Mc/7jpOKBTCwsICenp68tzC3Nm0YrxQm4oQIukHD4fDqK+vL2toSybVaG1oXfg55zBNE7Ozs46CtJRjVsQzrgmsxTVpZTzXuHpuU96sUZx/wOLcRDSmo6WpTGLcxQYjk1IiwxTNNQUwFEAt7tzLrLC7V8YTy3PJfYXCVaeUeakYV6A6inHZeAAQ052PnkfNvpkBkDh+DldUIRhMzuCxudkRhvzJQCKhkyEW0ZF5IDJTYdM2x0mM51oZz8EzvhSJSl+vYWq2GHep5Lm1NrzabSoyUruQTE5O4uLFizh37hyGhoYwMDAAr9cLzjnmYlHc/8ypNBGefA9WetFcqpsOGYwxtLW1oa2tDevr6xgfH8fU1FQynK9Qy6P13tcjm6+bSv77ct999+Hee+/F4cOHceTIEdx///0Ih8PJ7iqf+MQn0NfXhz/7sz9LW++hhx7CBz/4waxJmevr6/jyl7+MD3/4w+ju7sbFixfx2c9+Ftu3b8fx48cL3zkXNq0Yb2xszKu1Ieccc3NzCAaDCIfDaG9vRzQaxf79pX0c6EY1bSrj4+OYnZ2Fz+dzFKSlHLMSYjwa0RDWNdvKeKoHPpe4etNmspxP8sMY5yYi0fJNxo262FRkhU2P4gFwZduErkCYKphrozo5WTaVHCvjmRM/095DJsZtJjVaeOCBU78brjNp146YQ39yAFAUnvUEAACYi9WHm/Y3O8JUpGLcjHnADQYtnP15C4m9BUgU6rOWyFmMu1fGl6Py9p4+mzYxzKV1zLXuGc+F1HTLubk5jI6O4uLFi+jr64Npmvjr06/jkUsXbNf1Sbr2FEqlO7g0NDRg3759CIfD8Hg8OHPmDFRVTfrK87GAXq9CnEjw0Y9+FHNzc/jCF76AmZkZ3HDDDXjssceSkzonJiayvsMjIyN47rnn8Pjjj2e9n6qqeP311/Htb38by8vL6O3txZ133ok//uM/Lmuv8U0rxhsaGrC05GQguIJVFQ2FQmCMYWBgAD09PYjFYlhYWKjAlqZTaZtKJBJBMBgEkOgQs3fvXmzZsqXsF7hKifHlaBxhXU+rjK+vryc98G1tbTk/+bBrFWcnNixiG5XxcqG5VsadxVRmRz+uK/bV3jzJ2zO+8YhVyA6TRHzEIhrg8OAhEfjjkOzpIpxllXGFMfuQIpePOuGPtxPjTGpT4bFEQmdjbWvWIIYu/9A8igIt43smctRcPIfK+IohF+Nem7so18q45LwVqHxrw3KK/8wQodHRUXDOMbns/NujliigK5Vq9fsWQqC7uxs33HBDsgON5SvPpwPN9crmC/0pbF8+85nPONpSnnrqqay/7dq1y9HGWVtbix//+McFbUcxbFox3tjYmBSZdkQiEYRCIUxPT6OhoQE7d+5Mq4pWwy4CVKYyLoRIdglZWFhAV1cXPB4Pdu7cmdOkiVJQKTG+EosiahhgGwmcp06dwvLyMrq7u3HkyJG8PPB2NhWv5OJhCIFIvHxi3K2bimMceuLF9H9qSkkmcfIM77ebGBcbx8/UJZVxQwEcChKmwRy92ImJn/YbYLp8LBFJZZyB2ebSuPVqN53aR3Imt6nEVQiTQdgco2hYbhPJEuNC5GFTca+MrxvyJz+qjZ9V/kwC0kbjlU7grGQ0fXNzMw4ePIiZmRlEJddGpQzxBdUS44ZhwOPxZHWgsfqVd3d3IxAISIsl13NlnIOB5xoccA2wmfYlXzatGK+vr8/yjFtJkcFgEAsLC+js7MSNN95oK0BVVYUQouI9X8tZGbesOBMTE4hGo+jt7cXOnTvh9/vx/PPPV7QiX6nQn5VYHGGu4Y033gCQuEnbu3cvfD6baHEX7GwqqouyifLyifFYEd1UWIb4EzpzrRbnQqYgZQJwVMtIpGQCLuJY0gO9rq4RK4JBtVHHtd5axGA/b4RrzFn0CSBucDgvwGBbNHb5qLmD4BbCpfVhLCGSTD37OHg9PgDOkyg9qgqkTvQ1AXhy+5xzScNbdwlGU22OU1GecSFw5swZRKNR9Pf3l11AVvr6bxVidFUyZrz0181K3nRkjpv6GaZ2oAmHwxgfH8fJkyfR1NSEoaGhopJNNyNUGd88bFoxnhr6Y5pm0g+eKUKdsC4Qlb5IlaMibxgGpqenk08KLCtOqi+v0vaYclfGTdPE9PQ0ZhYXEWvU0dnZifX1dQwNDRXcktKum4qd2EglJkuPKRI3m4oUG5uK26TGXLCtrkuykbhwF+N6jAMOD2w4Zxux9tkCRdYSMSpLT+UKZOVZpghbW4mbzYc72W24g7i3XtYUMEXAjNu0wZN0UwEANUO4MBOQHJY0cquMy8W4YnMDwlxtKvIX+/r6EAqFcOHCBQwODmJoaKigm+tcqLQYt66JK5qz/Wf58hLi8XhJ/avV6vctq8jX19dj79692LFjB0KhUDLZdGhoCP39/fB4PNTacNO1Ntw8+5Ivm1aMNzU1YXl5GX/4h3+IRx55BPfffz927NiRc1Jkaru/cs8yzxy3VBX5WCyGUCiEqakp1NbWYtu2bejo6LB934q1GtygXKE/mqYhFAohFArB7/eDez0wVQ0DAwO4dOlSURdvO5uK2wTFqJsfokCEEFhcXZEvI3mNZeyL0JX8+0rZjWkjxplw3hZLjMvcDmsrEaDTYX3OwJl9eqfKnaum4VVJSz6XVmEqhK2thGvyk8F0EuMCcs+4xqB4GUwbfebmGWcZ5zsz5edFKmYOS0Zd7uCYTbcX5nJ85QmcQGdnJ3bs2IGFhQWMjo5idHQUfX19CAQCWZHWxVKNyjhjDKtxZzEeX9PyipzPddxqVMYNw3B9uuH1epPJprOzs2nJpv39/RWzVl6NcMGS19DNwGbal3zZlGJ8ZGQEf/u3f4vXX38djDF8/vOfxzve8Y68Z2hXwzduXZiK+RFIDelpa2vDwYMH0dzcLH28V+kuLtZNh1vqZ65YE1Gnp6fR0tKC/fv3o7W1FcbTF2CwK2MUcwNg10aOubXIc/F15wvnPNl6MjQ9U/gbZX7UgjnaKPLCrjLO4dgNxYqJNyVivLGuBWFM2L5mblTG7VAlnVb8vgY4uq0lPc8BQFUTLTOztsWls4mdGLe0ssymIjQFQuEwbCvjrr0j0/4p0bnZ753DjaubGLez7rjZVOSe8cS1IzV+fXV1FaOjo3juuefQ2dmJ4eFhtLS0uG16TlSjMh4zOOKSa3FDTSNuu+22ZIjQli1bMDw8XNTE+2LCjQpFCJGXV11RFPT09KC7uxvLy8sYGxvDyZMnyxbCci3AN1llfDO1acyXTSPGhRB48skn8ZWvfAU//elP8c53vhOdnZ14+umnC75AVbPnd76PDYUQWFxcxMTEBFZWVvIO6al0ZTy1t3kxPwKpcfWdnZ24+eab0ypFUdOAoVwR48VUxm0TCQ0hFQ+xEp0/pmliamoq2aZpcHAQPR4VWLpc0PtlVsYTgxR/IcycwAnIK+OWGNdlPliJODaTlfHM9wUUSRcWOzFt4XZTojBuu5+GJv/+2L2v0BgAJn0qwQ0FzBTQY9nbbEgmmgJAXW0tFtdSFHEeX3FZNx4Lt/Ob6xzeoyswQn6IyYStwt2mkhjX59GwfesMllcaMDPXAs4V25v3pqYmHDp0CDt37sTY2BhefPFFNDU1YXh4uKje1UB1KuOyKbl1Hi+4ybNChE6dOgW/34/h4eGCWtJWYwKn9XuTrz2GMYbW1la0trZC07SqVPSvFrhQwDeRz3oz7Uu+FLznDzzwAAKBAPx+P44ePYqTJ086Lnv77beDMZb1v/e9733JZX7t134t6/W77ror5+357d/+bXzkIx/BoUOHcOnSJfzJn/wJdJfJRW5Uq+c3YyzncTnnmJqawsmTJ/Hmm2+ipaUFt912G3bt2pVXp5BqeMaBwirVQgjMz8/j5ZdfTv4IHTt2DPv27ct6ZKtxDsEENM0s2hpjZ1MRLmKo2Mq4pmm4dOkSnn/+eczMzGDHjh249dZb0dfXB6MYv6TN6eXWDSQnnCrjDlhifG3FWYLInD6GeWUSaNqQnNl28rDQJZV4t4+MgcNuXq6bZcTOM66HNwSQZFsTPeAZtKhdNT5Pz7h06XRymcAZc5m3wDWOuu1hDP/qJWy5NwhlZ8TVpqKqOg7sGcORmy+gbcs6tg3P4MiN5zHYfxnMpzuKr9raWuzZswe333472tvbcfr0aTz//PMIhUIFf++rUhmXfGEavb60bjRWiNC73vUuDAwM4MKFC3j66adx6dKlvH7/qiHGrd+4YsatRgeYqwkTbNP973qloMr49773Pdx333148MEHcfToUdx///04fvw4RkZG0NmZbe78/ve/D0278uu3sLCAQ4cO4SMf+UjacnfddRf+5m/+JvnvfCaofO5zn8Nf/MVfJAXo6upqcgJnoXg8nqq0N8xFGOu6jsnJSYRCoWRqZFdXV8EXp2pWxnPFLq7+4MGDUk+/4BwQwNziWtEdXOwq4zzOAcncsULFeDQaTQYSNTc3J203qVU+2aNsV2wOuyhBZdxOjMvaG1qfBoMXtncIkLc9NExm+2iTc0VqyZBW4iVecwBQFEDXsrfJcPGM21V9RDQxlmwCpzAsMZ79GkOifaFT2mamGM/ZMI7ciuiay6xVM2ZCsEQzndbudbT+4jouhf0wTD8aG2K2TXZ6ulaz/u71mhjqn4fZu4DfP/0N/Pq2D+GG9m22Y3q9Xmzbtg2BQABTU1O4dOkSzp8/n5ZymSvVqIxH7J5abVDv8YIp2QfN+g0YGBjA5cuXkyFC/f39GBoakhZmrDlKlRa2xkaXn2KOr1W4u16hyvjmoSAx/pWvfAWf+tSnknGjDz74IB599FF885vfxOc+97ms5bds2ZL274cffhh1dXVZYrympgbd3d2FbBKGhobS/t3Y2AhN06BpWsGzzq/GXuOp3uimpibs3r0bbW1tRV+QKv0UIB8Pd65x9XYIkZi0Nr8WKUtl3HSxJrhVDjOxYqLn5ubQ3t6eZbtJJTMmOy9s/O+l6DMujOwu0tJJrsluKvaBOIB8cqdhAqbNuc85g0fiw9Zjko62bseBCdsEzoRNRTIR08amYsY2LsGyyrjJIDhDPGz/eXslYlyxEW65kktl3O0cNOI8q3dwXV1i8mw05oWmedDYEEXqV1l2KVMVgah/FA+E/gKei734D/3/Du/tu8l+WVXFwMAA+vv70wTqwMBA8qmuG5UWqZxzxCQFg1rFI60dMsbQ1dWFrq6upK/62WefRVdXF4aHh237dZeiQl0IlhWz0N+u672TCpC4Ym6manLl1dbVQ95iXNM0vPzyy/j85z+f/JuiKLjjjjtw4sSJnN7joYcewsc+9rGsme9PPfUUOjs70draive85z34kz/5E7S1teW7iQCQFDDr6+sFi/Fq2FQA+8q4mze6WKrRTcVtzHzj6u0QEFAMYGE9gppiK+M2fcaNqPz8yKUyboUwjY+PY2lpCT09PTkFEmnFnJs2q5ZiAqewiZnPpTKux5wXsusiYqGbALe5KeNcyUoZTUWLC6ccoURsvQRN0yHsfOzC+j+nnuo222lVxiWnpTAZYDJEHcS4R3JTqmT46fOawJmLGHf5PhkR3fFdav06av2FWQkZA0z/FP7+8l/jXV3/Ax6Ps5BMFahLS0sYHR3FM888g+7ubgwPD0uvo9WwqYQlN/B+5C5eW1pacMMNNyASiaT168700ldTjBc75vUuyKkyvnnIW4zPz8/DNE10dXWl/b2rqwtnz551Xf/kyZM4ffo0HnroobS/33XXXfjQhz6E4eFhXLx4Eb//+7+Pu+++GydOnCjoC1tXVwfGGNbX1wsW9NW0qZimCSFEMqQnHA6jt7cXx44dK0tEcKU944Bz8E+hcfV2WJXx5XAM3UpxlXHTpjKuuYlxSbcJy/s+Pj6OSCSCvr4+7NmzJ+eeyXoxfcZtKuOuFeFcsLGUuCUGCiG3jcj83bohwFX7yriw28cNtBhHjYNMlKVhehnD8tISjEV7Ka8w4diey87bbsY3fnxyqIzHHG5YPDYTWC2ybCp5wOHeYtVwMbPEoyZEGW0EpqnC4Bwep3Y9GVgT/9bX1127kVjdnipvU3E+pl7OpE8O7Kirq8OePXuwfft2BINBnDlzBqqqIhAIoK+vL/kbV2m7RynE+PVsUQEo9GczUfFuKg899BAOHDiAI0eOpP39Yx/7WPK/Dxw4gIMHD2Lbtm146qmnCmpdpCgK6uvri/KNV8umwhjD5cuXce7cOQghMDAwgN7e3rKGMlS6Mp45ppWOOj4+XnBcvS0iURlfjETR21RcZdzOpqJH5ZU9u24TVnvC8fFxGIaBwcHBgj5fvajKePa+uFWEc8G2z7h0Mxm4riAuqYwbNl1ELOKmfcXZFEw6bjzC4VQPlU0Y9Xu96OhowVwwArvHC8zZbWP7Q2Ola0qL0JwBnCEWMWFXdZdXxgsXK0IIPP300wgEAhgYGLA9P92CgeLheI4yuTAMU4FhmIAvvyyI1G4k4+PjePXVV1FXV4fh4WF0dXWlXZsq3k1FcpOtSqxXbni9XmzduhWBQADT09MYHR3F+fPnk5a/SgtbwzBK8pt2PQtyAbapIuTFJtqXfMn7m9De3g5VVTE7O5v299nZWVe/dzgcxsMPP4w/+qM/ch1n69ataG9vx4ULFwoS44yxtBTOQqi0GI/H4wiFQlhfX4eu69i6dSs6Ozsr8mOgKErR3WfyxeoaY/XNtiKuC42rt0OIRC/wlXgMjPmK7DOevW5cluSIdJuKYRhJ77uqqnl53+0oyjNut2pJPOM2gVIup5WpqTB1Z3uHHndsUw7NcOqmothX/zcwdEmwjETw+FUPFAXweWphF0OvMOHoezRtji/Xcpj3wAEOBpPZNwWUVcazhEoeH7FQGPbu3YsLl87irYsnsX3wRgwNDSVtf6bJpXVxBiAe56gtc2W8mO9BTU0Ndu7cia1btyIUCmFkZATnzp1DIBBIPv2tvE3FeX+YVrz4VBQFfX196O3txcLCAs6fPw/OOU6fPo1AIICGhoai3j9XqtHBZbNBlfHNQ95i3Ofz4eabb8YTTzyBD37wgwASF5AnnngCn/nMZ6Tr/uM//iPi8Tg+/vGPu44TCoWwsLCAnp6efDcxSX19PcLhcMHrV0qMp9oyWltb0djYiK6uroInsxZCpSvjpmmCc44zZ85AURQMDAygp6en5NV/IQDFBNZicSiKv8jKePbx0eMcClMcA1Ji3EA8Hk92vqmrq8POnTvz9r7bUWoxzstkU3FLKRW6DzKVqMUEap1eMziYQ2tDeVQ8c5ywyiXdW3yqCjDhWK1nkhJ30pKSOlbSpiLZVMEQ8StY2A/4loCWEcCTYt1RJWK8mMq416MjFPk29gW+jxZfFD+f2Y+zz70X27qPYnh4GBGXtop1Xi+gasn2leXANBXbMK588Xg8CAQCGBwcxMzMDEZHR3HhwgUApavg5gLnHBHZPBON521TccIKTlIUBa+99hqEEHjhhRfQ1taGQCBQVIhQLpAYLx5K4Nw8FHSFue+++3Dvvffi8OHDOHLkCO6//36Ew+Fkd5VPfOIT6Ovrw5/92Z+lrffQQw/hgx/8YJaHe319HV/+8pfx4Q9/GN3d3bh48SI++9nPYvv27Th+/HhBO1aKyng5q8VWSE8wGEzaMm655RbU19fj9OnTFZ+YUinPeGpcPecc/f392Lp1axmrTwmbylpcK7qbip1nnAGo83iw7nCerEUjeObZ59HRvgUHDhxAS0tLyX7gDMnjbAaXLnZ2fcaLnMApBMDsPOOuYlxuMdCi3FGMx3UBn93ESK5AuKRTOu2vrKuMV1GgKAK6w6RSmfg149nCI5fKOARg9QfUtgCXbxXwrgLN5wBfBPBIOqZkvpJL4alW1fEr297Eb+x6DR21V/opvr33daD3dbx4eSd+8rN3AbhR+j51Hi+4quXVTjFfDFMpzq6VgaIo6O3tRU9PD6ampvDGG2/gmWeeQV9fHwKBQFbTgVKT8Iw7748ZNZE9Rbr4Mb1eLw4cOJAWIlRbW4tAIFDU0zsZhmGURIxfzzYVYvNQkBj/6Ec/irm5OXzhC1/AzMwMbrjhBjz22GPJx3pWSmAqIyMjeO655/D4449nvZ+qqnj99dfx7W9/G8vLy+jt7cWdd96JP/7jPy64EwqAosW4x+NBJBIpeH07UuPMNU1DX19fli2jWsmf5RTjdnH1Fy5cQFNTU1kfA1sTONcNveh9tPOMA0Ct6nUU4xo49uw9gP7ejoLHdUKX9COWWJcBAMLMdufZdgjJAy6YbecUWTcVAOCm/Ac5LvGMxwxh28KQcwbhUrmFgxjnnDkW6n2qB4pqOnZ/USWH0E54u4lx63RN+7QYg94MzB8W8ESADsO5kpqPTaXeo+Hj28/gP+18HVv82RYci1s6z+GWznN4bb4P71o7iKdnBmzf2K94EPOg/JVxWZP2AmGMoaWlBYqi4NZbb8Xo6Ciee+45dHZ2Ynh4GC0tLSUfE9iwqRjO31wjYgIlvh9IrVD7/f6kbWdychLnz5/HuXPnkj3aS/mEgCrjxWNCgbmJIuQ3077kS8HfrM985jOOtpSnnnoq62+7du1yrPbW1tbixz/+caGb4sjV5BnPDOkZGBhAd3e37cWoWsmf5RhT1pJRVo23i73OB90w4fWogEh084joicp4qVsbAoBf8oPCfF4oamn875k49ZZODMyk/fLsBHKxfcYFZ7at89xsKpy7VMYjzvsZNzhqHSrjpks6quOTAF1xDHLyMAYoHJrDPbqsrbfdzY7Qrb+xxI1jxvpmWNl4ze7AMhj1wHQ0DI9qwlejIxJJ77SUWam308XNNVF8bPub+KWhEQw1rDnvQAaH2ifx0Dsn8fR0P348O4T/c34PTHHlu1CjqoiqboVxgUP+RaxyH0a1/Fu1GoYK3eF7WSxWJ5mmpiYcOnQIO3fuxNjYGF588UXbFoGlwDRNhCU2lfiaBlZf+sp4ZkHE4/FgaGgIg4ODmJ2dzQoRqq11elaV37jFiPvrva0hQDaVzUTFu6lUklLYVIoVqFaS4vT0NBobG3PqlV2tNoOlGlMIgYWFBYyPj2N9fd2xJaNszLVwHI31NQX/0M0trKO3qxkCAswEIoZRtsq4KnnLODcQiZXH6iQT48xFjNsppGJtKpwz2/d1q4wbhvwyFI86v0FE52hy8owXKMa5AYkYV8BkNhXHwYStJ5/rSsp/A5n3bWbEErfyz8brNXDzwUtYXGpAcKoNq2sO5dOUDWzzh/E7N76ID/deQL1qImqo+PnlHgQal9FVaxP3mcH4WhMW4n68ozuEd/WE8Hv7XsZ3x3bjm2/ciIjhgw8KuOpUGRe4sXYBH2iewJAvMa/nrVgz/nW1H2/EWl3318I0FZiSSnIxZLZ1rK2tTbYInJiYwOnTp+Hz+RAIBNDb21uSJ3ycc4Ql7Xxi63rJPOMWsgo1Ywzd3d3o7u7G0tISxsbGkj3aA4FAwS1n3cbNles+gROKbQLxtcpm2pd82dRivLGxsWibSqFiPLUi3NHRgRtvvBFNTU05rVuNzialuAHIN65eFk+vaQaiHgV1/sKqyjNzqwkxLgDVSCRhysbLBdPh+PC45MfTNBCJShplF4EheTwv/XkS9g2kiq6MC8X2fd3EuLCpbGe8AzzMA0OkVwxVpgJg9mE6LpVxATjaVGR2Hatzie7w3o6ecW7fpSV1LK4rUH3p78ujiUu02yGyKkpbWtexpXUdK6u1CE21g4n0SeBCATrq1vBfbnwRv9hzCbUphv5aj4mjndPQOcNLc13o9Ecw2JhdKR9dbcKy7seNbZcx1Lia/HuHN4bf3XEKn9x6Bv9ncjseff02CFVNE+MMAjfVLuCe5gkM+tIn1+/xr2CPfwUTWj3+dbUfJyMdrm3bTFOBUebKeCZerxfbtm1DIBDA1NQULl26hPPnzyetHE7Xu1wIR+OIS67DkZV4RcV4KlaP9nA4nAwRam5uRiAQKOgJgWEYJeuadb1iCgZzE1WTN9O+5MumFuOV7qZihbhMTEwkK8K33npr3o/0rjXPeKFx9dIxGUM4Ei9YjM8tbXzuG60N48IofgKnQ9eGlvpGTKzZe2yjhoFoFSrjhVAKm4odbjYVg7sLAQ88MJAuxj0sIXrsHm1yzmDEnQcWiuQmQbK9no0HDppubyVwtKmYsPWIpB5zrilAffpGmVZCp4sYzzz2zU1RNDcFEYnMocPcgrn5ZvQ0rOH/degk7ukZRY0kntSrCBzuSLSufW2hA01egeGmeVxabcaqXoMb2i4DWHVcv0nV8euDb+GX+0fw430B/P3CdjAIHK6bxz1NE+j3yefhDPrC+M32EXzYGMNjq314NtwNTdifI8ZG6E85sLNvpKKqKgYGBtDf34/Lly8nrRwDAwMIBAIFhbPNrjs/kaj3esFNDXn1p8wBznleFer6+nrs3bs3GSJ0+vRpeL3e5BOCXN+rWJsKQJM3yaayedjUYryhoQFTU1MFr5+rKDZNE9PT0wgGg8kOIbKKcC7jVsOmku8NQLFx9TJxLITAWkRDx5a8NinJwmLiiYjY6KYSE7woz7imadAcnlZ4JY/W4qaJcEyS514Essp4IS3thK5CGAzMU9gxcrqQulXGzRzChjzMC4j0Gx4rddE29IcrMDSJGFedt4tpTtVtAZ/KILgCzeG9VQehxAygpW8V4YgP9XVXnpSkWmWE3QTPWI5i3OHY19XFsHv7FLYNTONXOy/ijqYpeO2M/Q4capvDxPoWvL4wBLDwhhDPDb/C8f7AJezumUeUe9DjDaPLm/t3od0Tx4dbxnCgdgmjWgOeWOvDesb8AtNUYEgmMheDW/qoBWMMXV1d6OrqwtLSEkZHR5NWjuHh4eQcmVxYjjlPnG3y1gDQqlYZz8Tn82Hbtm0YHh7G1NQUxsbGcP78eQwODmJwcNC16k0JnMUjhLKpIuTFJtqXfNnUYryxsbGslXErpGdychJ+vx/Dw8MlCemp1gTOXG8AShVXLxtTCIFwpHARu7S6UWHa6KaigxdU/Y9Go5iYmMD09LTjBE7V5W7eLoWzFNi1WrQo5CeK6wqEoYB5Cttex8q4m2c8FzFuc6lS2YaFw8EzrsclNhVZuxmHPuNMB7yqADcZ4k6VcYcjrwiguT2M+joNa+t+MAg0NMTTKuNCtxHjG+0QhSr/RN0qSt4agX9Y2YrH1vrxC41TeE/jFOpcek6eW2lF3FRxYMs8BhsWAQCja81YjPlxQ9usvHOMAC7GG9Gsatjlv1JFvxRvgI+Z6PfJPelRrmBca8CAL4xDtUs4VLuEuxsn8Uy4Gz9e7cOCmag6G6ZacZuKDMvKsb6+jrGxMZw4cQJbtmzB8PBwTn271yT2xDrViyhKL0CLFcWKoqC/vx99fX2Yn5/H2NgYLl265NoOkrqpFI8JBnMTpVZupn3JFxLjEpzE+Pr6OoLBIGZnZ9Ha2or9+/ejtbW1ZBfJathU3Krx5Yirl4txYC1SuNd6ZS2WrIIrBmAwkVdlfG1tDePj40nP/+HDh6H873EA2T+WqstHFZf0DS4GeUu3QirjDMJ0a4ooWd/B2OxmUzFdPeOAaifGYYlxB8+4JglPUeCYOMoc2g0yE/CoAjAU58m8DsMxAagb1pDGhkT1MxzxQd0XgfliExhY2mROC6s3eaGV8UxWuQ//ZyWAH632490N07izaRLNavo5fXZ5CwyhYH/rfNb6w40rGG5cwXSkHsFwIw62Xobfc+U85AK4qDWiRdWww5/tN99ak3hiFdTqoAuGrTXp12dLhA/6wtjtT7fC1Cg8cSPRMIWTkQ7862o/XjeVstlUChHjFg0NDdi/fz927NiB8fFxvPrqq6irq8Pw8DC6uroc33dNd77m1SmehBgvaIucMU2zqBbCFowxdHR0oKOjA6urqxgbG8Pzzz+P9vZ2BAKBrN/IYsOUqJtK4vu2mawdZXrIdU2wqcV4KVobCiHAecLisLS0hGAwiKWlJXR1dSVDekrN1dRNhXOOubm5ssTVSyvVAlgLOz+ydWM9Ek+uzwQgmICmc3i98huOpaUlTExMJPvdHz16NOn5d6qMu4nNsolxaTcVyYoOFzyuKUX5xguvjLu/tyryr4xrMbeeig77qm0YwzMOoiXGuSTxUXGKWzIBVUn/e32dhvr3TCFyZAELL7eB2+gwEUuINjdbfb69vKPCgx+tDeDxtT68vWEW7/VPYy1eAwGGva0Lruv31IXRUxfGYrwGry1uwZ4tlzFr1KHVo2FHjXt7xIEN3/is7scq96LbE8akbi/CM1EZcKx+Dsfq53CnOovFaB8gftXlpM+fYsS4RU1NTbJvdygUwsjICM6dO4dAIID+/v6syrCsraHPutUrQ2W81FkPTU1NOHjwIHbu3Inx8XG88sorqK+vRyAQSN6MkE2lePgms6kUui8PPPAA/vzP/xwzMzM4dOgQ/sf/+B84cuSI7bLf+ta3kgGVFjU1NYilWMSEEPjiF7+Iv/qrv8Ly8jLe9ra34X/+z/+JHTt2FLR9ubCpxXix3VSsC8X09DQmJycRi8XQ39+P3bt3l6SS4ES1bCrWjYc1/vT0NCYmJgCgLHH1sv3kQiBcRGWcc4HL82tXdJEAVtY11NVm30QIITA3N4fx8XHpDYej+HUJl4nJ4q2LwCxxZShhUylGjBdaGWfJirJgsO1VrthM4FMknnEIxTX50XFfjY11M/Ny+IYXX/KD4STGGQDFYdLkltoI7rl9AkeaLuNflwbxOmuCuSEyrFAgh/mLV/alwOqYAYbLuh9zrA7CZGjx5WcNa/LGoTCBNaMGJhR43T7sDBpVDUumD2Ge+K6pyK8IMVS/hkfGfoZdg3dha2t7Xuu6ke/ERhkejweBQACDg4OYmZnB6OgoLly4gMHBQQwNDSWvNWFJgJN34zy/WjzjueD3+7Fr1y5s27YteTMyMjKCQCBQsgTO6xkO5tpx6FqikH353ve+h/vuuw8PPvggjh49ivvvvx/Hjx/HyMgIOjs7bddpamrCyMhI8t+ZN3X/7b/9N3z961/Ht7/9bQwPD+O//tf/iuPHj+PNN98saGJ2LmxqMW5VxgsJkLFCegBgfHwcg4OD6OnpqcjFo1qVcSAxKXNmZgahUAh+vx/btm1DR0dHWVIyZS0cBQTWo4V7xk0uMLeY/gh8ZS2OrrYrthrOefKGg3Oe/IydbjicrAnQhbM/AdUR47KznQl7wSh0JdFju0AKrYyb4ooY515AtbkHU7ia1cTb2lbTZlyWg/XFSYwLnQEcWeMxAShQbG8WLFShAHaCkgOKmr5inWngnd55vL93FHWexM7saF7GXKwW/zS7FS+J5itiPIevH+dA7l9Tgf3+JXygeQLbMyrZbyy2w6Nw7GlZdFxb5wynFrrQX7+GWzpmrvxdMJyLNaFVjaNDMlkzzFUEtXoMpVTCu70xhE0PRmN16PeG0SDxf13W/XhkdQD3P/N2RHUf7r2l9IKkFJXxTBRFQW9vL3p6erCwsIDR0VGMjo4m/dVhyRfQOhzlsKmU+3ct9WZkdnYWY2Nj0DQNwWAQfr+/IIFzvfcYB6i1IQB85Stfwac+9alktfvBBx/Eo48+im9+85v43Oc+Z7uO1T/fDiEE7r//fvzhH/4hPvCBDwAAvvOd76Crqws/+MEP8LGPfSzvbcyFTS3GC/GMR6NRhEKhZIcQRVFw8OBBNDQ0lGkrs6mGZzweT/xwnjx5MhlXX0ofvB1uNpViKuNCCCwsXfnsGQfW4gaEEDAMA5OTkwgGg8mWXDIfp4XThEmhCUDSvTJejMKVbU+BMeBOn6gwGNzeUnCAORwmpxAd98r4lf/mHnsxzmzEeGyjf7tdZdyr+lxrrMJh4qgwFFs9DZFoXSg7Rk4TOJHiGa83DbzHdxnv6xtDjY3g7PBH8Z+HzuCjmg//8M4wfjB3CPOqu1gRDjdZmRtyyL+Ie5onkv7tTA5sSXjFR5YTEzgPtl3xjmsmw2uLXRioX00T4RZeJrDTvwougAvxRtQyA30pkzUTIrwBQ751WztKvWpgt7oKjSsYiTWh0xNDq+fKCWGJ8BPhTphQENsIjCqHf9iyJ5YDxhja29vR3v7/Z++/4yS77yp/+H1v5e6uzjl3dU+OmtFoNHISlrCEjW2xxo9hDTJakB9YBBgvi4HH2P7Z2GBjjDF48e6yZuG39uIFgxNeYVugUZjWKI5GaVKH6pxDVVd1hRueP7pvTVX1TRV71NPn9ZqXra5b3xvq3u8999zzOZ9GQqEQIyMjPPHEE6yZFHCKydSXi7otxXwDYAVRFGlra6OlpYUf/OAHxGIxzp49S1tbG729vbZ7ccCuZxx2rk0lFMqqF/F4dN0IiUSC5557jt/93d9N/U0URe6++24GBwcN17O2tkZPTw+KonDixAk+85nPcOjQIQBGRkaYmZnh7rvvTi1fU1PD6dOnGRwc3CXj+SAXm0ooFGJsbIz5+XmamppSCSFPPPHEDePfLgXSmxMBHDlyhIaGhrKs26wJj6KqRApolqOoKkur1/OMRQlW12Osrq7y5JNPUlVVxf79+2loaLB9wzXyjMsJxZSMx0rkGVdMbkZmD3PGeyuYNrwBcMgKisFDi553G9jgh3q93jchp5FIxWBG0lO6qyqrDdfrwGlOxlVjZVyRBF0y7nMmQFBNlXHRKN4RqCPOvc5p7u0cxW2S862hxp3gwZMv8v5jr/B/ru7nzy+fZDVhTMoVVcBhQsYPeZd5b+1IquOlFfbVLgMwG65jJVnJqiTR49cn4dkQBVKKezBeiQQkVZEed5T93lXL77tFhX3eELIKV+N+VODxtdYUCYeNNwGaPacUs2W5SGp1dTXHjh1j7969/Lf//b+Nt2czHej1ZFMxgjbvHzt2jGQyyejoKE899RR1dXX09vbmFJF7M0Nhh+WMb96durq6Mv7+8Y9/nE984hNbll9YWECWZVpaWjL+3tLSwqVLl3TXsW/fPr761a9y9OhRVldX+fznP88dd9zBK6+8QmdnJzMzM6kxssfUPisFdjQZr6qqIhKJGNpUspv0tLW1bWnSsx3+bc2mko+9xg6M2tU/9dRTJfND6cG6gLMAZVxRWU1rxCNIMLmwxJEOL8eOHaO2tjan8QwtKoBs0lwGSlfAaUbGHQ4nSPoqm5FNBYwJaq2c5G7vDPd0BnlqsY3vhTuZdWYqFYbKOOh6sDWkP+Po1GkCEF6JQJb9T0h5xrcO7MRFEvM3EoY2FSnTb17vWec/7L3Izw28wqLi4+zsbQhCr24mrkNnW/Y1zPGbb3mGO5sneXWpkdFQDXs3ia4dXA3XEfR48NZEWZ03vj6tfOMj8SqeizZS74jjd9h7W5OQBVbW/bRUL1GjqATD1dS4YhkJKmZYkx2sqw563WssyR4mkz4C7jXj5khZWJS8PJZFwjXI8kYHVjC/FvJFKWwqZvD5fKybvHZR1jfmEaHIRpXtIOPaPdXhcOB2uzl06BB79uxhbGyMl156CbfbnWoiZPQb7NpUQN1hnnGtN/T4+HjGW5Ji1uidOXOGM2fOpP77jjvu4MCBA/zX//pf+dSnPlW09eSKHU3G/X4/qqoSjUYzbCayLDMzM8P4+Lhl23an07ktxZTadhazYNKqXX05FXmwbvoTLaBZjqKqLC1ffysiyuDw+aipqcmZiIN5colkkdpRKmXc1DNuMj+b0Yts60aznOCeiinubB5PEag3Nk3xxqYpzi+08t1QF5NO7+Z3TTR31dhAkX5kjZRxr6uCLXrqJhlWVXGL8L5R8GlFxrceCVUGFAFBgSZvhF/a9yI/2/8avk1PdxVJ7u/+EXf9cQX/+9xh/vnbRzZJobbe6xtxpGmG3zj2DG+um0odu6MN8wC8utyAogocrt8aH6jh2aVmvrPSzbjTC07BUhE18uxriKouvhvq5l/CHby5coZ7qydpcOpfYzFJ5OJSM4HqVfY1j6X+3loRYVlLUKldoNqt/8C3JjuYSFbSm2ZHaRc37CoLkodFyUO/J4TTYJPnkl6+E+rmqUjTFhKuIT2fvlQ2lXKScUVRWDeZKyIrG2/6doIyLm0WqqYfX7fbzcDAQKqJ0MjICFeuXKGnp4eurq6MgnpVVXdtKuzcDpzV1dW2LEuNjY04HA5mZ2cz/j47O2voCc+Gy+Xilltu4dq1awCp783OztLW1pYx5vHjx22NmQ92PBmHDX9QVVUViUQi1aTH7XbT09Nj6RXersxvoGjE2G67+nIXjpqRf0WFtTw841o84VokQjy6lmKAggTrSv4TuJFFBSARNSd9xfaMa282JDuZgDowU9a0Te2QYryjeoIzjdOGy55unOF04wzPLzXz7dVu5sw2R8GwyDX9pYNi0LTWJeoowmnKtKIIONIKJDcyyM0f5vQeHlRJpLE1zP/3jhd578Al3A79373DF+W37nqa+990kb9/+iD/9I9HScTdiIrIydZJfuPoM9xRO6v7XSAVH3gtVEs44eKWxvnUZxsPOZ1MOn0ZM7Qomp+7dhNVEqqDH6118G9rbdxeOc+9VRN0ejaI3rrk4OJSEwPVK9zWrP9Kts4T53TzNJGkk/NzbfT7l2n0bbyF0iPh2Wh0xml0xlmVXUwnffS41/Bt2nbskHAN6Q9Bs/NzHGhoLCp5LqeXWlufmTIeC23Mh6urq8RisaK9xSxFtKGddTqdTl1l2+Fw0NXVRWdnJ/Pz8xlNhHp6ekoSJ7yL1yfcbjcnT57kkUce4b777gM2rqNHHnmEhx56yNYYsizz0ksv8fa3vx2Avr4+WltbeeSRR1LkOxQKcf78eX7lV36lFLsB7HAy7vF4cLlcPPvss/z93/89t912G294wxs4dOiQ7eLE7bCpaK/fCl1vru3qy62Mm69PJZqDZ1xVVebm5hgbGyMWiyGKIm63F2F9Q40TJYhKUt77Z2ZTSUSNi64A4kU6fxRFYW5ujmAwuJFCY1KvZ56mYvSJykDVKj9deY1bc2h7fqJ+jhP1czzvD/K/Jo7z7GDvli0wVcY3P6iojNPdv8TYZNvWhXQsJRuFm2rq/9e61vGJMnOSTzeXfMv3s8ZsFKOccof4qf/fY7gsiK+GZneMX33j8/z70y/zjef3c8veOU7X2fcVDlSvABBc8xNcrebhWBvTLp/uzCxYtLHPVSGTEXky0sK5SDP7pTVu881ztH6B0wYkPBuVLonTzdMkZJHnVxtxuZLs9YYtc8I11DiS1DiSRBUHz0brubDeaIuEp7Y/TRkfGxvn8flF+vr66OjoKAqJVhRF921pqaAoCjETMq7GN35fWZZ47LHHaG1tpa+vLyU65YvtsqlYrVMQBJqbm2lubmZ1dZXR0VGeeOIJmpub6enpoba29qa3qezUAs5c8OEPf5gPfOAD3Hrrrdx222188YtfJBKJpNJV7r//fjo6OvjDP/xDAD75yU9y++23MzAwwMrKCn/8x39MMBjkl37pl4CN8+5DH/oQf/AHf8CePXtS0Ybt7e0pwl8K7Fgyrqoqjz32GKqqcv/993PPPffwpje9iaNHj+Y0znbYVARBKOghIN929eV+8LDqwGmngFOzHI2NjaGqKl1dXbS3t/O/H5khlpAylfECyLhZ6/mYlTKuygX5/7V9DAaDAKkIRnXosuF3zGhbdpGhICicedMo99/9AgcbFpmOVvLMfCvHG2ZtkdKEvBFz11UV5gs/90NGfsrP//rXo/zoXw5c91WbHPZqb4T/7wef492Hr1LlkHjxxxv4m38+ybNP9aaWUfQsJZs97bv8K/x84xXu9M/gEhTOR5v4Rk03y5graJpnvN0Z4SdrxjldMU9CcfDCQgu9/lWafeYt2zWMJyqQVYFfPn2RiOzkUqyabvcaFTaKNAFeXGyiypXkzR2T9EdX+ce5Pl4UqpGzYmtECzKeT9a4V5B4k3eWe6unqPfEeGW5geloFYdsNP4BWIp5uBqq41jDPG5RZjjhp1JM0uay17BrNunlu6FuBiPNOXtf020qR48do1Ulld/d09NDd3d3QWS63DaVyHqcuMGVKwDRTWW8sbGRO+44zejoKIODg9TX19PX10d9fX3Oc4zWW+JGJOPpqKmpSRW5ak2EOjs7OXLkSAm38sbHTrWp5IL3ve99zM/P87GPfYyZmRmOHz/Oww8/nCrAHBsby7iOl5eXefDBB5mZmaGuro6TJ09y7tw5Dh48mFrmt3/7t4lEInzwgx9kZWWFN77xjTz88MMlranbcWRckiT+4R/+gc9//vMMDw/j8/n40pe+xHve8568xtsOZRxyt4wUo139jaSMq5tpKkYkVsuBn5iYwOVy0dfXR3Nz83W/vQLxhJQySIsyRBW5JDYVVVZxi04SBn7PJArxhITXkxsxkCSJqakpxsbGcLlcBAKBjH1UzSi3yUfa0XQ4Ze586zXuv/MCfTXXHdlad8XZ9QqC4WqON8zidmwdMCo5eGmpmf7q5QxLQ19lmN9/55N84K4LfP2xozz8vYMb0YRZaKkM86vHn+Gn2obxideP3bH6Rb7w8z/g1XfV8f8+fAtPPtaPktx6DvjFRb505yBvaxrHmUZUz1TOc+bU1zjf3cL//M5JXrnQqXscBjoX+fnGVznpW0x5ur0OmduaZ0gqIs/Mt9JRsUZ7pX4iUzBRiQB0p6WTaNF8MUXkUqyaDlfUsFjyhYVmaj1xjjVct6h0VKzxa70vpbLGn1FrkTZ/b6FINhXYIOF3+ae41z9JVdr2aST82mota0kXx9PsM+lYjHkZCtVypH4+Q0nXElRG4lU4BDXj2KSjEBKuIV0ZRxBob2ujra2NhYUFRkZGGB4epquri97e3rxuouUm4xNLK4af+d0eVHWzozACVVVVHD58mD179hAMBnnhhReoqKigr6/PVkyrBm3+3Q7PeD71UD6fj/3799Pf308ikX+B/07BbtOfDTz00EOGtpRHH30047//9E//lD/90z81HU8QBD75yU/yyU9+Mq/tyQcFk/EbqQ3phQsXePe7343T6eQ3f/M3eeCBBwpuWb8dyjjYfwgoZrv6G8kzrqqgJFWW1tZp8F9/oIjH44yPjzM5OYnf7zeMJ1RVlXhCQtgswhakjVSTUthUAHxOJ4mEMRmPridtk3GttmFiYoKKigpDe5Hpg4XJnOYTErzjXa/y8298kfZK45i7Fl+UFl+U+XUfI2s1HK2bw+tUCCVcvLbSyL7aRU43G3vKuysi/M69g9x/54t89fJh/t8rR5FVB13+FX7t+DO8o2UUj4l6fLBmmT98379y9e3P8W/TJ5nZjGRpc0Z5R804t1c8jsNkP0+3zHL6we/zwmIjf/PPJ3j+fC8Ax06O8YF3PcetBkQTwCUqnGqaQVYFnl9oodETpdu/QTRH45U4BNU0ItArKuz3Xs/LbnGuU+tMoqjwwmIzjZ4YtzQaW4HSs8a/PRvgnFRvw6Zi+jEAPkHibv8Ub8si4dkYqFkBYGzNz+pcBQd753CIKovrXobCdRxtmDP0lAP0bWaYTyQqSKhiKtO8GCRcgyRdJ5BagbUgCDQ1NdHU1MTKygojIyM89thjtLW10dfXl1O/iHKT8emVsOFnVS4XsHmfTDtsHo+HvXv3EggEUh0ur1y5Qm9vL52dnZYkOz3VpJwo1BrjdDpxOBy7NpVdZXzHoCAyfqO1Id2zZw9f+MIXuO+++1IXemVlZc6Nf9KxHQWcdtYry3KqKBOK067+RlPGBQUWwxEa/BVEo1GCwSCzs7PU19dbWm9UVSWZlGHzmUTcJON5K+MWx8XncLJqUDCYVBXWY0lkOcHVuX+g2neI9tpjW5bTPP6Tk5PU1tZy5MgRU1+k2Rbp7WaVK85P917m/QOv0Oe35+sFaPKt0+RbZzhUzeRqFQealkxJeDbavVE+euxpfnrPJS6GGnlX8whem55sgD3+Vfb4/5VT0TrmJS93+adNSXg2bmlY4Jb7f8DZe9pIyiJ3t0/a/q5DUDnROIuiwtnRTppawhz0Wedka9DyshOKwFNTLXg9CidNSHg2atwJ7u+6xDvjbv5O2sc3VjxMhGt1lzVLU/EJEm+umuEu/xRNBgkqeuiuCkNVmIlQE1fWvJxomOW2HH77TvdGYehrsRqeWGvmqWhL0ZS8dGVc7y1RbW0tt9xyC2tra4yOjnLu3DkaGxsJBAK2EpXKXdi4sGZ8n6p0uNA+1ZsP0jtczszMpOw63d3d9PT0GIoz2j1mOwo4y/0AsBOxS8Z3Dgoi4zdaG9LKysotdpSqqirCYWPFwQpmLdtLCSOVOl01LXa7+u3wjBuRYy2Wem5hhfjiDIuLizQ3N9t+06EoKlKatUSUIU4ByrhsTh49DuNLSSHG6Mp/p9LxfU5Wr6Ko8PzYMaqrf52O2uMZDxoNDQ2cOHHCVqyT+YPF9c/qPev8wp6X+PmBV/C7E6kUjL01S9R5rInZbLSC4Fo1RxvmCVSHWI57OD/XxqG6eapc1kkxc0kPq4qbPb4Q+ytCLEtuggkvAU8Il425dzLhI646uKViswlN0ktIdtHvCdvKq9aU7Le0bJDIDbVWIOCx95Cu2Une0juxOV4VDhS6PFGLb4KkwnC8mgZnnNvbN0j98wvN1Llj9FVbPxClp5v8yp6XeHDgZX4w38WfXzzF1aXGjGX1bCqVYpIf90/y4/4pKkR50z5TQ7srQrWNrPGFdS8TE7UcCszTWS2nfnuzWMN0FFMJz0Y6GTd7K6BZOgYGBhgdHeWZZ56hurqaQCBgWtBebmV8NW58LXoF53UybjKGKIq0t7fT1tbG4uIiIyMjjIyM0NHRQW9v75a5UyPF5VaYJUkqiIzvxhpuYJeM7xzkTcZfL21ItcY/+cLpdBKNWt90i41sYhyNRhkfH2d6erpk7epvFGVcVVVWllcAePnVy9x1ch+33357Tr5PVVWRZTWjgDOOkr8ybtEn3qPTI77KmeBn+1/lgb0v0exL6wYqwK0NL6Kov8j5oQNMTb2NnsZTBVuq0qECbb41/sO+F/mZwKVUTjZcT8FYl5ycn2tlT/Uy9d6tRGBirYqZ9UqONczRUnF9+7Vou9WEm/NzbRysXcCvQ8ymk16iipM+9xrNwvXx65wJ6pwJVmUXM0kffe4wbh2lfCxegSII9GbZQVpcMVpcMRYkD0ubedV6SvlwvAq3oNCbRbo1tXY66SOiOBjQaQsvK3BhqYUmb3SLnaR3c3mtcDN7fNgg4UPxjXbue9PSRUQBTmyOd3GxCa9TYm/N1gZAmh9/T81ShifbKai8vXmMe+8a4+xyO39x8VZenNtIn0kn45Viknv8k9ztn8rw42/YZ1ZJqgKXY9U0OmM0OLd6b+fXvYys1XKsfp7je66vPzvWcMC/TINva7FmKUm4Bikt2tBO0x+v15vyG6c3lwkEArpRr+Um4+GksQfak5YLamfOFwSBxsZGGhsbCYVCjIyMpJJI+vr6Um8GtiPWUFtvocr4zW5RgV0yvpOQNxl/vbQhLZSMb6dNRVGUjHb1zc3NnDx5suAoK6t1lgvZTX80/3swGGR0YgWArp4+W/UC2VDUjfE0m60oQRK1ZMq4W7h+Y6n3rPOBPS/xcwOvUOM2vsGKApxpfQ2l5TVeWDrCcvLXqOSk7W0y2qKeqlV+ef8F3t1zxTAnG8DnlDjdPENMdmTkRY+EqllOeDneMEdnlX7xImxYKE43TxNOujg/18b+mkVqPAkmEj6SqiPlGzb8/ma0XVh2MhyroNcdxiuqKSW720J51vKqlyQ389J1pX0oXkWFKKd8ykZoc22kpcwlvaxuKu2KChcWW2itiHCy0TgnHKBrk9RPJn3EFQcBzxrJTSW8xbXOPouIv/QGQCobxZNrSSevLDexr8bcCiQK8GP1U/zYnd/h/GozX37lBCuqQJWY5F7/BG/1T2eQ8Gy4BJV93hCKCi+tNuAXk/T6Q8ytexkN13K8YY7bTNreaw90cdnBM/OtdFev0OKJlYWEa5DzbPrjcrno7++nt7eXyclJrl69ypUrV+jr68vwWZebjK8ljZVxl5JerJrbuNXV1akkkvQ3A319fTgcjm2xixSrod3NTshV8i96vBFxM7/vKGuayna0IfX7/aytmd+UzbAdaSqqqiJJUipPWmtXX+pW9duhjGv7qsUTwkZ0n7++G74zQsyi1bwRNjq0kaGMS0IByrhFdZxzM7bF74rzpTM/4vbmKdtjiwKcbHiJ8bUPc2X6MPW1P0ej74z1F7NwvGWK9/Ve4nT9NN1+++e81yFzunmaV5cauLRUz976ZVsWCg1+V5LTzdNcWGgmuiRytHmeKof9382/mUByKVZNeNnLoZYF27GAAPXOBLWOBK+u1yJLAgeqVnSVdiM0u2LUO2O8FKkjFK7gdPOUbnqMETpc68QVgYvrtTgFhf2ekO1277DRACiccPH4RAcej5yTHx/gdM0ch07/kAvRBlpc6+zx2rfliQIcqVlkdt3HY9OdNHqjpoWZ2fA4ZE41zTAWreIvF/bxbLSpbOQgV2U8Gw6Hg+7ubrq6ujJ81losYtnJuGRs+xHTHEX5Hl2fz8eBAwcYGBhgbGyMl19+OTXnl3tfd5Xx4mBXGd85yJuMv17akFZWVhZExsuZppLerj4Wi1FTU8OpU6fK1nii3A8eGvEfHBzE4/FkRPddGto4r9bW8/Prpwq6NjmddolHY/nFYVk9pDg3J5Fw0sPPPfqTvLl1nF8/9BzHbTTPGQ7VsJrwcKxhji7hKVCe4upyPy7vb9Dke4PudxLS9bvzGztH+dXDz3OqekNplVWB5+ZbaPGt0Vll/VboleUGBOBg/UasXUIWeXq+lZ7KUIY9xQgXFxvxOWWOb9ov4puxfu2uqKUvWVFhKO6n2pHcaBbTFiKqOLgUq6bLHaHSRN2F657semecwxUrAFuUdjOklGznOseqlqFqORXpeKxhDo/JmwWAmCIwmvDT4Ypy1Lexfs0+EzBp965BS6Y5WLvAmzo3CktHw9UsxTfeTFiR+rDsZDJZQZ97jTf6N47/ZKKCeFqCiRlWJBcj4VoOVS/y5rYNT/yryw0oKhyut84aD4ar+YtXT/BsvJ7eXuN0mlIgwzNegKYmCAJtbW20trZm+KyBstYLrZnYVMTk9f0rlISmvxm4dOkSk5OTnD17NtV2vhz3G0mS8kr82kUmdsn4zkHeZPz10oa0urp6ywNDLiiHTUWvXX0oFMLlcpW1A1y5ilXTO4MC7N27l+bm5oybjCZ0RdftJz+kQ1PAhSwuGFrLb//McsYBHBlJFgKPzXTz2EyXKSl/baUeSRE5Ur+w5bM97iFQfp1rywGc3l+nyfemjM9j8ST3BK7yKwde4HBlpufYIaicbJpNkfImX3QjFSMLLy42UeGUtjR4cTsUbmuaIakIm1nb4S0RiBt2jmbqPHGONmRuv8cg1i8d8iYJr3cmtii5FaLMfu/1rO5OV2SL0q6R6GxPNlxX2iOKg0uxSt0GPHFFYCThp13HTqJFOi7GvFxYrOVw3TyVrsz1rysiwUQVXa7olo6Tmn1mWXIzJ+kXqq7E3VxabeBw3cIWJbzXH6LXH2IiUsVMdMOzn918KSQ7mUpWENBpO9+xaZ8xK3TVtq3fE+aWukwSfVDLGg/Vsp7wcETHrqOR8O+M7UFWRdpblrYsU2pkFnAW/oI73We9urrK+fPneemll1hYWChKp0srRGTjuUmJXT9/iyUIOxwO6urqCIfD9PX1MTIywtDQUEHZ7HZRDJvKrjK+S8Z3Egq6Gl4PbUgLVcZLScbN2tVHIpGy22NKbVOJRCKMjY2lUkOOHTvG888/bxDft3FzjearjGv2lKx7dN5k3MKmoi/g6pPySystQJIDtdYEZsA9DMqHuLbch9P76zR63sD42t9QLX+dL9+6tfAvHRop1xI8GrzrdFaEeXGpmXpPLKPZjB5cosqpphkkReDZ+RbafGu0+CK8tNxEk289VYhoBC3WTysWbHbGqHIkGI5X0+SMsdfCTpGe1X0pVk2bK4pXkBlJ+Gmz4cmu3CT165tKe6crgkNQCSaq6NQh0dlo8MZo8M6wmnDz1Fwzh6oXEF0K48lKut0Ry+9rhaph2cm1RAXdQpQEDq6E6jlSP8/tFnaUzso1OivXNpT6tWqO1s8RUx3MSj76dEh4NrRC10XJw8JmoWtIdrMgeQl4wtTpFG6mY6B6BYDJBT8RpYZA4wSTkUwSrmE7vJ5Skcl4OmpqanA4HBw6dIiFhQUGBwdpaGggEAhQV1dX1HVpiMjGb5HkWPoEUzzCopHilpYWWlpaWF5eTmWzt7a2luwhZDfasDjYJeM7BwWR8ddDG9JCPeOlION22tU7HA7iJlFXpUCpCjhXV1cJBoMsLS3R0tKSSg3R1Gu9dWrcdy2W3zFI3ZzTh1YhHE3m1Zre8rgkzcjAdVL+831rvG/Po+yvze1tTZ9rhKHox5iIeqh1rNHmttduHDZ8wYfr5nlxqYWZaBUtvgi9OeSMO0WVI/XzXFhsZmbBT2tTmA6TZkHZcAkqve4wwwk/JL2bHm37diG3qNDjXmM0UQXqRuFljcP+Q5VPlOl2rzEa9wMqne6oacObbNS4E+yrWeLSRBOVLet0+0JUWNhn0uF3SHS4olwaaiJRK3Cobp4Kp/31t/iiCChcXGnEXxmn1x3GnYOnvsG50WT9bxb30O6K8lb/dEbHUit0NIaZCbn4rfNv5f9O9GeQcA25dP8sFuQCPeNWUBSFqqoqWltbGRgYIBgM8txzz1FVVUUgEKCpqamo6mzExDOejFw/X4opCGeT4rq6Ourq6lLZ7IODg9TX19PX10d9fX3R9rdQMr4bbbgBVRW25dorFXbSvuSKggs4b/Q2pIWmqRTLR62qKsvLy4yNjdlqV1/uZBMormdcVVUWFxcZGxsjHA7T0dHBvn378Hg8qWUEQTCNNwSIrufn8U7N1WlDCypE4nJeZFy2SFMJLa2CcQ8ibQt4ebGf5xd7aah4wZanXLNjXFeSN9Tk4XgVPlGizWVOyrWc6j7/KqfS0jEuLDZT47LOuo4kHby8vJFzrUXsKSo8t9BCU1pXSsP1KyLBhJ9OV4QDm0qurMKVWDX1jhiNLvPfN6I4GE9sKNHa9yVV4EqsmgaDWL50rMkOJpKV9LgjqWY96Uq9lTq8GPNyLVTL0foFTvVv2Ko0pb5Vx36TjRXJlVKyT+7bUMJTsYDVyzR4zX+/2XUfY2s1HKuf4zbfxrkSTVP6rQpl5yUP31vt5slIM/JmkfH3w13c7Z/kbv80laL5Q8H4ag1/+61buCq+gSc8W+1UGraDG0lSfmkqdpFe1Oj1etm3bx+BQIDx8XFeeeUVXC4XfX19tLW1FaX4MaoY/xbxtXQyXlxlXI8Ua9nse/bsIRgM8sILL1BRUUFfXx8tLS0F768kSbs2lSJAQdhRaSo7aV9yRVnTVLYDVVVVBRdwqqqad7V5vu3qtyPFpRg2FUVRmJubY2xsjHg8TldXF0eOHDH0vhs2/tE847F8bSobA6RbbQUJog4prxu3YmFTqfRUkmpXbQJBFXALjpRS/qaWCX7j8LNbSLlGYttdUV07hlacNxyvwiPIdLjXMz4PJ1y8utLI3qycag3a+i4sNlPtihOozuwqqRUW7q9d3PJ9UYCTm10pX9hsYNObReo3SHAV3e419nszx3YIsHczVu9qzE+1I0GLK677/R4dO4ZTUNnrDaVIfZ0jTlPW9zVPtZ6dQ4v1S5F6R4yGrIeC+XUvI+FajjbMb9l/96Z9RiP1Tc6tSr9GwgOeMPucmevXYgFjsoOn51rp8a/S4sv8/WaiFYxHqjneMEeLL3P9mqc+bvJQMCd5+d5qF+fSSHjq2CouvrXay8OhTn6sapq3+mZozHooGAnX8OVXT3D+4kGEC0l6TpnfJMutaClK5jotLs+csZHGpG6Z810uF4FAgJ6eHqamphgaGuLq1aup9vOFEMyoyXy/vlqat6RWOeMej4e9e/cSCASYmJjg8uXLXLlyJbW/+arbhSrjgiDsknF2bSo7CTuejFdXVxOJRPJSQ4HUhJFrc4RC29VvR755IWRclmWmp6dT8YQ9PT20trZaTrhG61RSynhhZDz9bbwowbpj48Eq1xuBbHFcBNneuSUAYmrCEXh8tovHZztTpDzgX2FK8W56kq3brmukfCRehVuQqULmtZUGDukUBupBI+UvLjZR6UxQ745xNVzP4bp5y++LAqmGOBcWm6h2Jahxx5lTPfR5wpbbLwqwx7uR7X0t7qdCkfAqKnMO92Zhovn300n9tbifKlXCg8IcHgKesKWnWiP12kNBJTIOVb2uRFtE/GmkXnsoqHXEcQoq85uFkbVO8/V7HTK3NW8Uyj4730qrb6PQcjLq53jDLK0WSTZaoaykNfBxxJAQ+V6oi0EdEp6NmOrk/4a7+EGog2NqiH/XPEJCdvDlV0/w3bEBZFWkOSngBFSLN0PlJuMbFpV0Ml5cNq7NSUZzvsPhoKuri87OTmZnZxkeHmZoaMiy/bwRkrJMXNWf7x2CwPra9Ye9UtpUjOB0Ount7aW7uzsjBjLf/d31jO9iF5nY8WS8GDYV2Jg87CSbFKtdfbkzvyE/a0wymUztr8fjyXl/sxv/pJBSxvO0qWz5PxtkPOaSc1bGVVVlddWcWClxBWw0zxQR2JqWd52U39k+we+cejwnTzJAnSPOrORjJeaj3hPD78rtIaatYo2RcA2RhJt6zzqVNtrcp6PFF+Uf5/pYVly8v/0q3hw8zaIAdY4E313qZm65gvcNXMvJEy0KUOtI8J35bkJxFz/VHsSVgydaFKDeGWcqWkUy4aTBGzVtlpQNhwANzhiLkhcRhRpHIidPtktUaamI8H9m+0ki8O8ag1vSU8zgFFRqHQn+cbWXp6JNKBYkPBuyIPK8UMvzs8c59+yBDE+4sFkLoVpIz+V2qaQXb26sv7xkXIMgCLS2ttLS0sLS0hLDw8OMjo7S0dFBX18fPp/P1vqml0OGe1DlcoN6/c1FMRVhRVFySuwSRZH29nba2toyYiA7Ojro7e213UFYkqRdz3gRsOsZ3znY8WS80AJOQRBsqdTFble/Xcq43XWmJ8FUV1dz6NChvPbX0DOeSlPJ1zO+VRkXZFhX7Hfh1Hzvo6OjDI+YF1xKNpsTCSqIitExEnh0qgtmT3DAu8i7a4IMeMw92YtJN4vyRjpGrTMEm3XOLy814nbIuq3W0zEVqWIqWsWxhjma0+wQLy014rHx/fGIn2/O93ERP6ooggifnDvOUe8y76oZo99i+2eTXv45lGanqIJPzNzCMe8S76wZz/37Irw4U88x3xLvqh6zzNpeSLpZkj30e8I0VF9Pt7m41ITPkWRPzYqN73vp94Qy/OtG9qFsBNf8/MN8gFdEP+pmKPkfrhymfzHKfXVBDtWaZ33PJH18N9TFU0XoeJlUnFuKM9XNZzrV4pLZHmX8OsqtjGdDEAQaGhpoaGhgdXWVkZERHn/8cduJJFPLxue53+VGSbPAFfNIy7KcVzhCegxkKBRiZGSEJ554gubmZvr6+qitrTX8rqqqRbGp7GLXprKTsOPJeFVVFbFYDEmS8s7sNiPGpWpXv10FnFbrjEQiBIPBVBLMLbfcQnV1ddHXqd1c12MSsqLgyPHNQko5yVbGVdlyHzXfu9YBtauri71qHfxwwvA7yZg9JVkABMmcOLhFLy/H6ng5Vsth74ouKU/PkM72OwMc3swuf3mpEZcos682k1SPhf0sxCs41jBHe+VWwnrE4vtD4Rr+caGP18Qq1C2daQQuxuq5GKvjkHeFd9eMsceT+WZhKunje6vdnNft2CjwYqyBF2P1HPau8K58vr/ewIvrG99/Z/XYlizy+aSHFdlNvyesW0R6tH4+tf9OUWF/Vgyl1fe1h4DRRCWiqtLtybScjKxV8835AK+KVaiOzO1XEbjmqOTzoQP0LMV4V+0YJ+ozawqmkz6+u9rF+Wjx2s7LytZrTEhuXCs3nk0lc1tLRcbzIX01NTUcP36caDTKyMhIKhaxr6/PULCYDRmT8QqHi4wrtAwFnLmgurqaY8eOsXfvXkZHR3nmmWeorq6mr69PN3FGO7b5+utTQssuId9VxncQdjwZ14hiOBymvr4+rzGyFWNNMQ0Gg6ytrZWkXf12KONmDwDp8YRWSTC5wPABQLu3SioLoQgttbk94OjdmwUJEqiGrzhlWWZmZoZgMAhAd3c3bW1tOBwOxueGTdeXjNr8rVTAgre7BTfrRAFhCyn3CRIx1UG/Z40WiyQVSCPly404BRmnoLAmuTneMG+ZhJL+/VeWG3AIKo51lW9Fu3nN5d9CIrdC4JVYHa/Eajng2SDlPlHmu6tdPLfeiGpJIq/v/wHPKu+sGaNKTPLdUDfPRnP7/j7PKu+uGaPOEWdNcRFwh7cUfZrt/2vL9TjCAtWNUcIOJ/02v9/r3rDIBaNVxOa9uOrj/MNCP6+JVRv+FovtDzp9/PnaPtpXenhnzTg91at8Z/MhxHr/c0M2wQVgUxm3KmAut2tgi02lBGRcFMWCCF9FRQWHDh1KxSI+//zzVFVV0dfXt6XJ2VzY2ErpE5wZZHw7PON24PP5OHDgAAMDA4yNjfHyyy/jdrvp7e2lvb09w/IJ7NpUigB1hynju2R8B6OqqgrYUHTzJeNOpxNZljPa1UuSRGdnJ0ePHi1Jl8zt8IxnrzP7oUMvnrDY67y+7o3/FSSYLYCMZxdwJtStNhVJkpicnGR8fDyVltDc3JzxitpKeUvYLDQVVFASCpicMk4huxgqnZQv8+6aMVvrSkdSFfjmSh+yKvBTtbl/X0bgm0s9XJMqcHhznTAFXovX8dpcXZ6F1AKvxWt5ba6WjaeZ3L9/OV7L5+ZqGXCv8s6accs289lwiArfXe4joqq8q3ks5+8LKvzVpaNM9Cp4fbk/ZE85vfzXyB6UsIqY68ptQp+Mvz6UcblEZLwYSE8kGR8f59VXX+XKlSv09fWlSGo4Yfxg586qARBvMGU8Gy6Xi/7+fnp7e5mammJ4eJirV6/S09NDV1cXkrShRhTr+N7MUNmeWNFSYQftSs7Y8WRcFMWCu3CKosjMzAyXLl1KtatvbW0t6WSynZ5xRVGYnZ1lbGwsZdM4duxYwbmwRus0yxkXFFhcM0+V0INeQZcgZyrj6cW2FRUVGR1QsyHL5g9GsYiEHZIoqKBakHGH4YcCL8fqeXnT/nGfDU/5UwutfC/UxaTTk1Jiv7S2j66VHu7TsT9k45nFFr672sW40wtOATXmAAo5LwslEoV9/1qihj+dr6HPHead1WPcUmHeBfXSah3fXOpjyFGBWrex7j+bP0SPa42frBnj1gpzT/dYrJK/vHKcf7h0CBWBk+o1Cjl+yaQTj6c084IeGRc2OaKlMFDmu2g5POPFnt+dTid9fX2pWEQtkaSnp4eQCRl36tiHioVcU8JyQXrizNzcHCMjIwwNDdHS0oLD4SjorcNutOEGFASEHZTNvZszvoMhCELeZFwrUgyFQiSTSVOyVmxoJDXfSMZ8oGXrDg4OIopi6qGjlBFURjnjKTIORKK5F3HqkXFRgqSgEI/HuXLlClNTU9TW1nLkyBFqa2tNj7PVa3oB8DmdrEvmHhQBAckieUVUrd60XLd/GJHyx+Y6+P5aB7NOj85VLjDu9PHna3vpXOnmvtoxTmaR8ifm2/l+uJPprO+rNiMc9aCqG/9uhHvoSMLPlxYO0eVa450145z0LWSo3a+sNPCPyz0MOyp07STBZBVfXjhIuyvCT1aPc7piPuP7o7EqvnL5ON+8fDDDTqIYFu/aQyLpKB0Z1yN9ic00FYtVFtsyY4X0hj9QOptKKSCKIp2dnXR0dDA3N8fw8DAj05OGy2c3iy12mkqpIwYFQaClpYWWlhaWl5e5cuUKsixz8eJFW8WtuzDGrmd852DHk3EgZzKutaufnZ2lsbGR2tpampqaaGpqKuFWZkKbIMsxWaYrxAD9/f20tLSU9aEjG+m31nziDY0840lB5eWXX6axsZETJ07YLj61yhkH8DmsyTiqihQzZzaiavf3ziTl76oeYyxUw/+NdLDkcNm4ugUmnD7+Ym0fnas9vLt6jLDk4v9GO5h3uHW/XwgZB22yvXFeRo4nq/gvCwdod0Z4i2OBFneUb6/0MOLw2fB0w1Sykv+2uJ9vr3bzjuoJWh3r/LfLx/jWlQO6BLWQm42qgiQ5gfwShqywRRlXVQTNM27xZmi7bSrFNvSVUjHWoJHU5uZm/jo4BasGb7kSatb3ircNhUYM5oq6ujoGBgZ46aWXEEWRwcFB6uvr6evro76+flftzhGKKiDsIAK7k/zvuWLHk3FBEGx14dRrV3/69GkqKip45ZVXtsUyAqVtjrC+vp6KJ6ypqeHgwYNcvHiRhoaGsk2KRjnj6WQ6ny6cekrZhjIOe/fupaOjI6fxZAvPLIDXYeNyUkBatyLsuV6WGimv2/jPPE6XCYeXP10+wKWrHXR3LlBbo28NKpiMc2ORcQ1jMT+/d3U//b0zVPhyP99mpQq+urSXV690sLhUY7hcIcq4ogj66nWRoGtT2fxf1SIBqPwFnK8/m4oRBEEgbrIqNZ45PxbTllAOsScbkiThdrs5fPgwe/bsIRgMcuHCBXw+H319fbS0tNg69rvE/frbxp2CnbQvuWLHk3Ewb/xjp129VsBZTmRXnhcTa2trBINB5ufnaWxsTMUxagTWboOjYsDKMw75N/7JhiCDLKg5d4sDa5sKgEe0cTmpEI+ak3FFcRQ3TNgmFFVgNVzFS69VUe2P0NM5v4WUF66MF/T1okOSRIITTUzN1AMCimLuobeClUJcCBmXZRGllGTcZGwrz/h2K+OvJ5uKHiKS8QNgaCFLMb9B01TyWWd6cevExASXL1/mypUr9Pb20tnZudul0wK7NpWdg5uinFlPGZdlmfHxcZ566imGhoZobW3ljjvuIBAIbCFr21FMqTUbKlaiiqqqrKys8OKLL/Lss8/idDq57bbbOHz4cMqzpxXFlDPFxQ4ZX7eZVKJ9b2FhIWUrSb+0tf8fWrOOBMyGHZuKR7Ch5qgQj5rvj6pszw1ITSOKoXAlL73Wy4uv9LK8kmZwL9DzrBb4/WIhKYlcG2lh8Nn9TM00oJ0dhZJdy+Y4hZBxRUTRSzwpEraMncZvlRtMGc8m40vLy0Wdt8pOxmXjOUHN0iKKdQUVo/lOPtBbp9PppLe3lze/+c3s2bOHiYkJHn30Ua5evUoikXkAdmMNr0Mj4zvpXz748pe/TG9vL16vl9OnT/P0008bLvvf//t/501vehN1dXXU1dVx9913b1n+F37hF1J8SPt377335rVtdnHTKOMaGY/H40xOTubUrl4URZLJ3F9dF4pcOmIaQSOnwWCQaDRKR0cHBw4cMFSHy91syFajIRvKeHajHjMsrkTpz2krrdNUAFw2yDgqJGMyDkE0jGOTZDEvqwmAokC+HEJPtQ2FK3j5Ug/VVVF6uubwFHAjVNWN7dtOJJMCo+MtzMzpx5wW6lnM7mCZjULIuKKISAW+mTBDNsFNjwW1zhkvcwFnlk1lYXGRxx57LKWoFpr8VG4yHjVRxtV45rEdGx9jYqIzI7s7H2jz7nbYVIzWKYoi7e3ttLW1sbi4yMjICCMjI3R0dNDb20tl5YYwsJumsoFdzzh84xvf4MMf/jBf+cpXOH36NF/84he55557uHz5Ms3NzVuWf/TRR/nZn/1Z7rjjDrxeL5/97Gd529vexiuvvJJhX7333nv567/+69R/FzPSWQ83BRn3+/2MjIzwwAMPsLKywsc//vGc2tU7nU6i0dzj9QpFIYp8djxhd3c37e3tljepcuebGz1wpN/8zTzj2Y16enp6aG1tha+/hpE3eXnVvEW5HuzYVFwWRGxjoI1xKpwuwkn9hwxJEiB3Jw2woZ6KYn6/nxmhCq1VcGWonSNNxqkP1uOD07l9qpaiwLWRNhaWak2WKVD5tyDLhSjvsiyyFvEBy5bL5jV+9ralnUZy8sa2qfT09bK/pZ3h4WGGhobo7e2lu7s7b7tdub3UZsr4+mpm7GFdXR0jIyNcvXqV3t5eurq68nr40Obdcud921HjBUGgsbGRxsZGQqEQIyMjPPHEEzQ3N9Pb20ttbW15NvYGx65nHL7whS/w4IMP8sADDwDwla98hX/+53/mq1/9Kr/zO7+zZfmvfe1rGf/9V3/1V3zzm9/kkUce4f7770/93ePxbHCJMmHHk/Hz58/z+OOPEwwGedvb3sZHPvIRjh8/ntMY22FT0dabKzGWJImpqSnGx8dxOBw5Z6IXQ43PBUZvHdKvyXUdZdyyUY/JVb0SysemYj1LOG2QcW2zvE6nIRlPSgWop7IIzjzJuAURlRWhoNpLQQCHY/ukcVEEQTTfgULIsqpiGXVRyI1TUYS8H7TsYIsynrYqyzSVUmyQCbZ24ITW1lZaWlpYXFxkeHiY4eFhuru76enpybk7cjmVcVlWWJf160icgkgskjk/1tTU8MY3nkrFIg4NDaX2Mxf1rhidMPOBLMs5PTxUV1dz7Ngx9u7dy+joKM8++yynTp0qasfr1ys2yPjOUca1+TEUCmX83ePx6J7biUSC5557jt/93d9N/U0URe6++24GBwdtrTMajZJMJrc0hXz00Udpbm6mrq6Ot771rfzBH/wBDQ0NOe6RfexIMq4oCt///vf54z/+Y55//nn279/PLbfcwv/8n/8zr/HKTVDzWW92A5s9e/bQ1NSU86u87VDGddeXXsAZv34zyt7P/fv366a/GJIDFVbzIeM2bCq2eNLmMl6TYs/l0Doee4mLGVBV8yI8K1ipwooslD1PutgQLWhjqW9shXi+ZVnEsU1k3Or8L78ynpWmsvm7piuqy8vLDA8P89hjj9HR0UFfXx8VFRW2xlcUpWw2iLnQWmr7s+F3u4HMN3kCmbGIy8vLjIyMcPbs2Zz2U4tvLLfdI1+fus/n48CBA7p1XTcrdmoBZ1dXV8bfP/7xj/OJT3xiy/ILCwvIskxLS0vG31taWrh06ZKtdX7kIx+hvb2du+++O/W3e++9l3/37/4dfX19DA0N8Xu/93v8xE/8BIODgyV7eC3ao/+NYqBXVZU3vvGNPPjgg/zET/wEY2NjvOtd7ypI5diONBWwp4yvr69z+fJlzp07RygU4siRI5w8eZLm5ua8Jtnt8IzrFeSkC9GxWJJYLMaVK1e27KdhEyYDziWoEFo37nZnBDvRaaKdU2Rzx7yi8QWdzLOAU1UF/ZbmOXzfDBtkvTDPuBmcKJZk2QwCKk6LxGnBgswWalPxiub1DYUWcJZUGc96kBPSzmfFKtqz3J5xG01/6urqOHnyJGfOnEGSJB5//HFefPFFwmHzrrVQXpvK5HLI8LMq11bSmT7fCYJAfX19aj9lWebxxx/nwoULW9TFbGxHrCEUnm3ucrnKbq3ZRXkxPj7O6upq6l+68l1M/NEf/RF/93d/xz/90z9lvGn5mZ/5Gd71rndx5MgR7rvvPr73ve/xzDPP8Oijj5ZkO6BIyviNZKAXBIE/+7M/4+jRo6nl7eSMm2E7bSpG602PJ2xqakrFExaK7bCpWCnjobV1nnrqKRoaGmw36jHiBoIEa/Hci3HtKONYJE4AKS7rNin2VMX8CkUUtbAcaisiKiCUJA3FJci8uXKGt1dPkFRFvhvqZjDSbLs1sojK6Yp53lkzhk+U+L+hLh5dayWh0zzJyrOeLxnvd4d4p3+cA297kofnu/nihdsYW63bOn4BpFWWxZLafLYo4+lkXFIxy/Eop29VUbY+OJq5yPx+P8eOHWPPnj2MjIwwODhIQ0MDgUCAurqtv9HGOspnU5k1avYDVIhOsj810lj8fj9Hjx5lYGCA0dFRnnrqKerq6ggEAroNdbYjSUVbb6EFtrvYgMqN2LUhf2j7Ul1dbes+39jYiMPhYHZ2NuPvs7Ozln7vz3/+8/zRH/0RP/rRjzh69KjpsoFAgMbGRq5du8Zdd91luV35oChXxI1moD916lTGf/v9/tclGc8mxlo84djYGMvLy7S1tXH69Gl8Pl9R11lOZdwoSjG6fv3VbDwpc+rUqVQlvR2oqj51EGWISLnnlts6Jkms3zVpw5gUxEUTKvk8VqlqYTYIO0S7mGTcLcjcWTXNT1RPUOu4/oD0Sw1XeFf1GN8LdXEu0oxscFBFVM5UzvGT1eO0uq6fLz9bN8zbq8d5ONTJv621EU8j5Q5HcT3jA+4Q764Jcti3kvrbu1pGefvbgvxgvos/e/E2hpav+wwLyWlXFBHRYvsLgRkZB3AIgmECUDlflW9YVLLJuPVxqaio4NChQ/T39xMMBnn22Weprq6mv79/i9WtnGR8LqzfAwPAK2wl41aoqKjg4MGDDAwMZDTUCQQCGZ2Vt5OMF7JeVVV3k1Q2sVNtKnbhdrs5efIkjzzyCPfddx+wce0+8sgjPPTQQ4bf+9znPsenP/1p/uVf/oVbb73Vcj0TExMsLi7S1taW0/blgoLJ+OvBQO/3+wtKQ9nuAs7seMLOzk7TeMJCsJ2ece1hIxgMMjQ0llommVRwFilWSJAgKuX+W9op4FSTClhsZjy2YZFJrhv71qOJ/M41tcAOjZYToVq4jQPAK0i8tWqae6onqXbov6VodsX4Dw1XeWfNGN9b7eLJSEuKlDtQuGOThDe79I9jjSPJ++pGNkh5uJN/DbcRU504LLxEdpXrAfcq764ZyyDh6XAKKm9vHuOeu8f418VOvvjiKS4vNhemjCsiToPjVQxknztiVk2heIOQ8ezizY31239I8Xq97Nu3j0AgwNjYGC+++OIWslpOC8f8mjEZd+u83bFLRN1uN3v27KGvr4+JiQkuXbrElStX6Ovro6Oj43VLxneRhp0qjeeAD3/4w3zgAx/g1ltv5bbbbuOLX/wikUgkJQ7ff//9dHR08Id/+IcAfPazn+VjH/sYX//61+nt7WVmZgbYcFBoLor/5//5f3jPe95Da2srQ0ND/PZv/zYDAwPcc889RdvVbBRMxl8PBvqqqipbPkEjbFcBpyAIrK6ucv78eWRZpqury1Y8YSHYDs+4LMssLCwwOjqaetjYu3cvPDYNbBDohVCEjnrjNuNbYHBRixKGyQVmsPTMAkrCmozHNv3qdZU1ENGPWFyL53f8C/WMW9pUBLUg0uVB4i3uOe5rClLlsPcbNDnjPNBwjXfWjPO91U4U4F01EzQ67fn+/Q6J99aO8hP+Cb633MnfOcwL26yU/373Kj9VO8Yh74qt9TsE+PHGCe566wSPLbfzP0f22/qeHhRZQCxhNGT2ubOFjJusupx8QO8ct6OMZ8PlctHf309PT0+KrF69epW+vr6ydiFejRufyy6d8zFXUVhrqNPd3c309DQjIyNcu3bNdrRvsSFJUkH3sN2M8TTsMGU8n9qT973vfczPz/Oxj32MmZkZjh8/zsMPP5zipGNjYxlvuf7yL/+SRCLBT//0T2eMoxWJOhwOLl68yN/8zd+wsrJCe3s7b3vb2/jUpz5V0qzxbTduaQb6Rx99dIuBXsORI0c4evQo/f39PProozl7dvx+P5FIJO/XW06nE1VVy/bqUosnnJubQxAEBgYGcoonLATlfPBQFIVQKEQkEuHSpUt0dXXR0dGB0+kkOHv1+jZJMLO6lhMZVw1yPwQJYnmQcTsdOKW4gpW/pLKikmXWcZiQvnAsPzKulLiAs752jYr23N8wVYpJftw/xd3+SZZiPmYkLwMO+7axpAqLkod314wDMCd5qXHEceVwKc9IXt7kn+Odt0zwDy0D/MULp1iObSXmRg8kez2rvLsmyB5PiOG4n2XJTZ3Tvt1pVvJxWfEjNiXyTqSRFbHgpkSm42fbVLIuE5fTSdwgjrP8NpVMGKWR2EE6WZ2ammJkZIT19XXq6+sLJo52YGaby34g2kB+x1oURTo6Omhvb2d+fp5Lly6lAgB6e3tL3tREw64yXjzs5oxv4KGHHjK0pWQXXY6OjpqO5fP5+Jd/+Zf8NqQAFDzLvB4M9MUo4ITrUVClQiKRYHx8nMnJSSoqKmhoaMDhcNDe3l6ydWajHDaV9EY92uvgM2fOZEzQ6a+dBdn8VW4uEGWIW/Us14Gdpj9SzAbJ1/bLpNhTVsEluEiquVkSVFUoyEZi9V1ZFnFV2n9QqxKT3OOf5C7/FL5Ne0hlxcZ1OJv0ElacDHiMr8ukCkPxatpc6+zzXk+GqHMmWJFdzCZ9BDwhQ1KuqDAc9+N3JDPW84GuS/x/Oq7yzckB/uLCKRbWr9ciZHvG93lWeHfNGAe8q9f/5g0hqQKXY9U0OmM0mJDyqaSP76x283S0qeBYSFkWwU5jqXzGVgSySZ6Ydfo5Tea+chICPZuKnevTCqIo0tnZSUdHB+fPnyccDnP27NmCGwhZIWIiDgiJrftVqCgsCALNzc1Eo1FmZmZYW1vj7NmztLe309fXl1NtTj4ohmd8Fxu42T3jOwkFk/HXg4G+UGVcI+ClenW5vr7O2NgY09PT1NXVceTIEWprawkGg0QixSGhdlFKMq7XqMftdnPp0qUtk3P6fCvIsGRg6TCC0XQtSBBX8/CM20hTSUatybi26mzVMRtuwZMXGS9IGbfKGZfsjV0tJri3eoK3Vk3jMYjia3HFaGGTlMsuBrzXbWRxRWAk4afdtc7+NBKejlpHklpHklXZxXTSR38aKVdUGIr7qXEkM8ZNh0+U+bmuy7yn4xrfng7wZy+cYj7qTynP+zwr3Fczxv40Ep4Op6CyzxtCVuFKrJp6R4xG13VSXkwSrkFRxJLdrPQKf7PJuMNk7iyvMq5DxotolBEEAbfbTWtrK1VVVQU3ELLCukn3TUXnLZlQtPNJwefzcezYMcLhMCMjIzz55JM0NTURCASoqcnBFpgDCo023LWppEEVyh4rWlLspH3JEUV5/3ajG+j9fj+yLLO+vp7XU78gCCUp4gyHwwSDQRYWFmhqauLWW2+lqqoq9Xm5/dvaOiUpdxuHGcwa9ayururuY/qtVQDW13MkpgZ/FyVI5HHjtqO8RWw0E1I3x1GTqunV5xJyL85VCizgtLJAKBZJIF5B4qdqgtxZNYPbZh52iytGiyvGbNLLquxERqTTFTUk4dmocSSpcSQJyS6uJb04UKlzJNljQMKz4RNlfqbjKj/VNsR3Znp5IdTE/c2v2V6/Q4C93hCKCq+G61AElSdiLUUl4RpkWTSN8Ct07Gxkk3HRlAAJGwlGZbiX6tpUiqyWauptMRoIWSGiGM9t8vrWubhYxzhdodZiEffs2cPo6ChPP/00tbW19PX16TZVyxeqqhakjKuququMp2HXprJzUBQyfqMb6LX87UgkkvcruGKRcVVVWV5eZmxsLLVvRvGE21E4WkxlPBaLMTY2xtTUFLW1tSnFP31iN2r6k/239TyywfUgSpC0aAyjBzuecSVpPZPIm5GGSkI2vfqcQu5vYEqtjMsWynhMdXBhvZ5e9xp7bZJZgHVFZFn20OmKEFWczCR9VIphRJv3f0WFmaSXJmcCjyAzmayg2pHAY1ZxmIUZycftjTO8u3WUkUQVq7KTGptFptr3vzUT4Pl4Hf7q3JtK2YGsiCW7Wek9xOWijANlI+PZDX821l3cA5NdH6Q1EAqHwwwPD/PEE0/Q0tJCIBAouL+DWUF5IqLzWQnIuAaty2V/f39G0kxfXx+tra0Fk3Lt3rKbM14k7Kap7BgU7Yq4kQ30Xq8Xh8PB2tqabhMiOyiUGKuqyvz8PMFgkPX1dTo7Ozl48KBpPOF2RCoW4wEgEokwNjbG7OysZaMeI/K/hYzHikPGBRmSQu5XvGwjTUVKmDdG2Rhnk4zHFTAR1hzkR8ZzzclOh5UyrloSfYHX4nW8NlfLAc8q99UETUl5VBEJJqrodkdSdpAqh0SzK8Zc0sOq7KbfY0zK5U1PeYMzzt40JXy/I8Sa7GQkVkGfO2xKykcTlThQ6XFft4Pt84ZIqgKXYtW0OtepdRqfe5ObdpRnok0EFxqp8ZfOVqYopfOH6j3EObKeKRwmjao2UFiHVrsoVpqKGYyK9bUGQtFo1HYDIStETZTx2NrWz4plUzFrvuN2uxkYGKC3t5fJyUkuX77M1atX6e3tpaOjI29lW7u37NpUioNdz/jOwU3xeCqKYsFFnE6nMy+SqigKMzMzjI2NIcsy3d3dtLW12VIGtsOmUogyHg6HGR0dZXFxkZaWFluNeoya/mTfW6Nx+8kVZv5uQQZZUHOuH7Bzs9dK4MyW1Ei9FDM/l0Q1HzKuT1Rsf99KGY/bPV4Cr8VreW2uRpeURxQH44lKut0RDhiQ9WZXnGZXnHnJw4qUScqlzcLMDRKu//0qh5RBynvca/jSrDOj8UqcgkqvW588uwSV/Zuk/HKsmmZnLCM9JZ2Ea3YUVRFKqgxv2FTKR8bFrEvO3KZSvlfMkq5NpbjrsErOMmogpAUN5DK3RE2U8ejK1rcsxbSpWL1pdjqd9PT00NXVxczMDMPDw1y7do2enp68ilo1C+RuO/si4iZWk3cSbgoyDlBZWVnWLpzZxYo9PT20tLTkNAlth00l1weA9EY9mu3m9ttvt13kpNlUtpDjrAkmZiepZBOSomAkfmtrWAmtU1djz/O5urrK4uKSrWUFQTB9Za5sNhxK6nhBM8ZRc780FbVQz7j5d1WbBZzXkUnKf6J6nGTMxYGaJdue7CZnnCZnnAXJw6LkAgSaspRwM2ikPKI4eGmtFp8o4XUq9HrsKdiuzUJNLT1FROVHa+0ZJFxDKWMHYdOmUsQOqNljZ0BVt/Q9tbapbJ8yrhZ5vXZjbLMbCF28eFG326URVFUlpujPBS5RJKHrGS+eMm5XoRZFkfb2dtra2lhYWMi7qFVT43eV7eJgVxnfObgpyLggCPj9/oLIuF1iHI/HmZiYYHJyksrKyoxixVyxXTYVO2RcVVUWFxczGvVY2W6M1gds6XiXrUTn4hmXrJJPVFhYipiScc3bPzo6SjgcRhDt3bSsfmVNGU+sm/+uqk7nPSuoSqE54+afC7KAqoClW2HrN3ktXsvLMzXUrDh46MALGVGFVpA2c8abnTFkBBYkD7WOhG1POcBc0ke1I0mjO854soKoIlJhs8gUYFby8q9rbbokXINSYmVckcWiF4VqsHPeiBbrLteNdDttKkbQayB05coVAoEA7e3thmMthCPIBg8S1W4PkH/naCvk02VUEASamppoampieXmZkZERHnvsMdrb2+nt7c0IINBDsTLGd8n8JnY94zsGNwUZhw1lvJCYQCubSjQaZWxsjJmZGerq6jh69Ci1tbV5rw+2z6Zitp+KojA3N0cwGCSZTGY06sl3fdq4GTnjWVdlLAcynpRly4t6cSXCHpq2/D37IaOrq4sjR47w6IVHbK/fDKq08XvGI+a2G1Vx5FyoVWjOuKXqqm4kqjhyKIzMhMCF1WY+M3OUQ76NJjpmpDypwnC8mpasnPHGTaV8adO+4jDZ7JF4FW5Bpi8tZ3y/I8S64uBSrJoud4RK0fh837Cj9PBMtNGaCKsChq9kioCNpj8lGjub4Oqs50a2qcjbTMY16DUQunbtGr29vXR2dm6ZJ6eWjc//SqcLPc18O5RxPdTV1VFXV8fa2hojIyOcO3eOpqYm+vr6DO99uw1/io2t/QFe39hJ+5Ibbhoy7vf7CYftvdrWgxFJDYVCjI2NsbCwQHNz85Z4wkJwI6WppDfqAejp6aG1tbXgiTWdjGcg6966HrdvU5FtMJbl1czcclVVUw8ZiURiy0OGnQJOW9uWpoyLgmio6MmyI+ers9AOnFY2C0EGVRGB/M9J0aGgKI4M+0o2KTdq9pOORmecRmecRcnDouSh3xPKIOXD8So8YiYJT4dPlNnvvU7KO10RqhzX9ysnEr4JpYQ2DVXdbMpUKs/4FpvK1mUcW4wr2V/ZPmW81GkquSK9gdDs7CzDw8MMDQ3R09NDT09Pyms9vWJ8T6pwuNA7+0sRbVgIqqqqOHLkSCoW8ZlnnqGmpoa+vr4t/vlCO5ruxhruYqfipiHjxVTGNQtDMBhkdXU1Z5+0XWjKeL7NigpZpwa9Rj3Nzc1FK8DR9iubjBdiU5EVa2V8JbSeWu/s7CzBYBBZlunp6aGtrW3LTcpOtKEdqGmdN31OJ5Gk/n7Jspjz1akW6BlXLTzjgmKdNW4+Pjgdcpp6f91Tvt+zyjtrgohg2uwnGw3OOA3OOIuSm0XJg0OQ8YkqAZPOnunQSHlMEbkUq8YtKPxLuDMnEp6+f7lYZ3KBstkhs1xpKnoCv9W+lcumotuBswRkvFh2itbWVlpaWlhcXGR4eJiRkZGU13o2ZHyeenHok/GCt2oDxVapvV4v+/fvJxAIMD4+zksvvYTH40n55zVxqdB17lpU0rBrU9kxuGnIeKFpKlozHE09jcVidHZ2cvjw4ZK1STaycJQSmjJu1qinmBAEQT9rPLuAMyebimJ+w1JheTXCxMQEY2NjCIKQUvqNHjJst9u2WCyd1Fc4XIZkPCkJkGOkfqE541bPG4JkvwunwQg4HcrmA4Oc8fdL8VoubZLy+2qCVDtyi7Jcld34HRIeQWZB8iA5wZnDqbooefm3tfa8SLgGVRUQSnQ30X7XkhVwZpNxnXPB2jNezC0yRjma/hSqjGdDEATdBkKX5owFIjcGc34RbSqlSDVxu9309/fT29vLxMQEV65c4cqVK/T19aGq6q5nvJjYJeM7BjcNGff7/Xkr47IsE4lEWFlZYXFxka6uLtrb20tOkLXxy0nGk8kkiUSCc+fOGTbqKTb0rDFbm/7Yt6kkZcX0ohZUGA5OMDm5cdNobm623D+zuMR0WM0laprdxWvymyal3I+3Vlmfb/MVyzQQRUDJY7s0qIDDKZtkoW+Q8j/aJOXvrglaKuRDcT8VopShhNc7EyxJbuYlL/2ekCkpn0xU8J1Qd0EkXIOqgoWTI29obzxKldiS/ZsIOk4kq3zrshVwlrjpj5buVKr4vfQGQt/6P/9suJzT4Forpk2llM13HA5HRiziyMgI0WgUr9dLMpnMW8TaJeJpUEtnXdsW7KR9yRE3DRnPJ9pQkqSUOqyNceLEibJlpGrrkWW5ZOq7Bq1Rz8zMDKqqcvLkScNGPcWGHhnPFqKlpMx6PIHPY53WYmUpEWRw+Cu47bbbbE/sdnzoYB2xpqaN4xGNL78cnj1S0KwMsizidOZuq7GKNhTkQpVxcDplG0WmmUq5HikfildRIcr0e/Q9t/XOBPXOBMubpDyQRcqLScLTt1ssUQGnUmIybk8ZN0c5yLii6B8DpYiSmjYXlXqe9/v94POBgW1cNJgDitn0pxz3svRYxIsXL7K4uMijjz5KV1cXvb29Rbd33kxQ1Z3VQn4n7UuuuGnIuN/vZ2Fhwday8Xic8fFxJicnqaqqYv/+/cRiMRYXF8varECzcJSyiDO7Uc+xY8e4cOFCwS2ec4F+45/Mq1KQYGZ1jb7mesvxZEU1lahFCWQxty5uxUq1UdN+So9JRmAsmbNLJTWRyYqIk9y314pMCZK+KpkLnE4lhy6hGimvZZ9nhftqgrgEhUpRot+mJ7zOmaBuk5RPx31UOCX+b7iryCR8EyoIeRx3O0jZVMpFxnWmHNGKjpfhRrphUdEh40Vcd7nIOMC6bGzHSka2NvyB4ijjqqqW9Y0rbMzzXq+X1tZW2tvbU7GIbW1t9PX12Q4+2FXG07BrU9kxuGnIeFVVlaVNJRqNEgwGmZ2dpb6+nuPHj1NTUwPA9PR02ZNNoDTxhmaNehKJRGqZck16+jaVrGUkmAtHbJFxycIzLsgQlXLzJNtXxi0+TxvHaUJu1hNqHmR8Y6/z9Y1bET1RATlZWI650yETT+T+ludyvJbPppHyVlcsp+9HFScPL3dzIVGLo0SzniqAUDJlfLPLZ5nSVPRtKuYoR5qKXvEmFNemUk4yHlWM7ylrywb3qyLMy5oVp9wxg1oBZ21tLbfccgtra2uMjo5y7tw5GhsbCQQCBUcC31TYtansGDg1wvWnf/qnfOhDH9rerSkhzJr+hEIhgsEgi4uLNDc367Zxt8oZLxWKqYzbadSTbo0ppx3HyjMuyrAQtm6Asb6+ztDIiKUyvi7l5gOxU8Bphw6oynVS4zKxhUQTKrW2tuw6tNf39pXnTMg2lHGlADIO4HJKrMdyfcy4jmxSbuUpn0xU8O1QN4OhJuIJN16Peb57IVDVfBoi2cP1As7Sjq9B0Lk8boQCTqMHzcWlJVZXV1PiSSHQ5qJyiBHrirEoUOGsYJn1LX8vxlZp95Ryk3FJkjLuN1VVVRw+fJiBgYFULGJ1dTWBQGBLLCLsRhtmQ1BL2tqg7NhJ+5IrnA8++CA/+MEP+Omf/unt3paSIlsZV1WVpaUlgsEg4XDYMp5wOzK/oThdOHNp1GOY+11C2FHGBQkWTN5sRCIRRkdHmZ+fJ4m5r1yQYN1EkdKDrQJOS+kwUzt0mHinI/H8bSZynvGDVkkdggRysoCbt7ppUykgHlGDFSnXSPizm3YUWXEgCGpJO2QKUEBDJHNoyrXKhm+62M/J2SRXrw+S9eldevKql6QCIIgiTz/9NHV1dQQCAerrrd+gGUFLUikHGY8pxqKAFNH/bHFpseC87u0i40ZFo1osYn9/P2NjY6lYxL6+vi0pV7s2lTTs2lR2DJw/+MEPePTRR+ns7NzubSkpNGU8kUjw/e9/n/b2duLxOJ2dnRw5csSyQHK7lPFCbCr5NOrRbkLbT8azPOMyrES3WhPSPe+tra2cPn2al6cWQX3JeH0SxE1ugnqwkzOeKxdxmAy5Fs/9XNPIdL5Z4xaBkDiKoIyLYnGLELNJuV+UMki4BlUVEMXSkXFZFnA4NsbPN83GfPzrnnG1BM2FtpDxvJTx7bOpVPn9vOUtb2F0dJTnn38ev99Pf39/XnGsxY41NMO6anydr4f13+Ksrqxy9uzZLQ2EcoH25rPcxNYqZ9zlcqViEScnJ7l69SpXr15NdTDdRRZ2bSo7Bs5HH32U3t7e7d6OksPtdjM5OcmRI0dQFIVvf/vbnDx50rYyUAyFOh/ko8gX2qjHqAtnqWCLjJPZ+EfzvC8vL295q6Go5u5VQYaYyU1QD7ZyxnOcR/R8uRoiic14xhzGTNlU8vWM21DGCyXjgI00ldyhkXKjg6YoAk6HXDIyrigiDoeCIGysq9je8VSailIiMp7tGdfjgRar3E6biqKquN1u9u7dS19fH2NjY7z44ov4fD7b8aWpscpJxk1EgfWQPhkfGOjn2JGWLQ2Eckkl2a629HbX63A46O7uprOzk9nZWUZGRrh27Rrd3d3s27evDFv6OsGuMr5j4NzpRHx5eZn/8l/+C3/yJ39CKBTiox/9KB/4wAcyfGt28HqwqRSrUU+591Wv6Y/eNbkeS7K0tMTo6CjhcJjOzk4OHDiw5bdMSuYPEqIEyRxbusty8ck4SeMxVQQ8ooe4qp+ooPsdtUBl3KqAMwlqAWRcOw1Lq6Dqj60p46WCvEn2YYMwF3td2m8qCKVpK2RHGVctroHttKmkR4pq6mpPTw8TExO8+uqrXL16lUAgQFtbm+V8WC4yrqoqcVWfjHscDpIx/c/SGwitrKykGgh1dHTQ19dHRUWF5brLWROUjlztNaIo0tbWRmtrK4uLiywsLOzaVNKxS8Z3DIp6NX75y19O5YaePn2ap59+2nT5v//7v2f//v14vV6OHDnC97///YzPVVXlYx/7GG1tbfh8Pu6++26uXr1qa1smJyf5rd/6Lbq7u/nhD3/Ipz/9adxuN7/0S7+UMxGHDZuKFgdVTtixqcRiMa5cucK5c+cIhUIcOXKEkydP6hbA2MGNoYxvXW5mboGXX36Zuro67rjjDvr7+3V/S8uccQkSOUbQ2TkeOXMREzIO4BZzO08LTlOxeJoQFVAThZDxjf0tV3OYdJSajGvKOJQmC1zz2Zfi2Mmb+fTp0GuAmrR4QC/HfdTIpqLXgdPpdNLb28tb3vIWuru7uXr1Ko8//jgTExOm13O5iOpyZB3J4Kj5XcZFzum/VG1tLSdOnODMmTNIksQTTzzBiy++SDhsEF6+iXLHGmrIV5HXHkD27NlTgq16HUPdgf9uUogzMzPE4/bVNyN84xvf4MMf/jAf//jHef755zl27Bj33HMPc3NzusufO3eOn/3Zn+UXf/EXeeGFF7jvvvu47777ePnll1PLfO5zn+NLX/oSX/nKVzh//jyVlZXcc889xGLWsWZ///d/z9DQED/84Q959NFH+Ymf+AnW19fzVny1CaTc6riZSh2JRHjttdd46qmniMfjnDhxguPHj1NXV1eQelCKOEUz6HrU9di46OSOO+6gr6/P1CcpWRRbCgrIm9FedmEr2jDHQx5eMc/Kdgl5kvF8lXErm4oCaiL/80rjN6VqXGOGDTJeuvEVRcTllFPrKjZK2YFT7+FN1CHjksUbp7Io4wY593pkXIMoinR3d/OmN72J/v7+VL51MBjUnVvLpYxPLRsnAVWZ+cB15na/38+xY8d44xvfiNPpZHBwkOeee47l5WXdIW50m4oRBCG3/hA7HppnfCf9u0khal2xCsUXvvAFHnzwQR544AEOHjzIV77yFSoqKvjqV7+qu/yf/dmfce+99/Kf//N/5sCBA3zqU5/ixIkT/MVf/AWwoYp/8Ytf5KMf/Sjvfve7OXr0KH/7t3/L1NQU3/rWtyy35zd+4zf4p3/6J26//XaAVDfJXLtwakiP/Csn9IhxOBzmpZde4plnngHg1KlTHDlypGgdM7dbGVcUhdXQ1huVIDhsveK02nbtcl9e3RobZjhmMdJUshe3SBVxWKTCZEMj03l7xq0mQhWUgpTxzWFK4Bm3Qqn9zLIs4EiR8VKMr0UblomM6+gz8bh5LKRQlgJOfSJn51lZFEU6Ojp44xvfyP79+5mYmODs2bMMDw8jpUWdlouMT68Yk3GfSXdeMy5aUVHBoUOHeMtb3kJVVRXPPvss58+fZ35+PkN82C4yLklS3utVcxRQbgZo0YY76V8+uJFcGflCVFWVU6dOFTRIIpHgueee4+67774+sChy9913Mzg4qPudwcHBjOUB7rnnntTyIyMjzMzMZCxTU1PD6dOnDcdMR/bTs9bdy6rxj9l421HEqa1TVVWWl5e5cOECzz33HB6Ph9tvv50DBw5syUQvFNvhGVcUBVmWmZiYYHBwkOXllS3LxRL2ElDsJJ8AzC/ZfzCzo4znOo84VPMHCwe5pSSkOnCWxKay8WlhNpXNkbZJGb/+/4s/vqKIuBylU8a1As6SjK1zvjh0ePe6TppROoTiuh51YXRu50LSBEGgtbWVO+64gyNHjjA3N8fZs2e5evUqiUSibGR8NmR8L/Ka9OOzcwZ4PB727dvHnXfeSWNjIxcvXmRwcJCZmRlUVd0WMr5d693R2G5LyQ1gU7nRXBn5oigzzsLCArIs09LSkvH3lpYWZmZmdL8zMzNjurz2v7mMaQan04nP58tbGYftSVQRBIFIJMJzzz3HSy+9RHV1NXfccQd79+7NqXo+F5RbGYeNdJTBwUGmpqYYGBjQjbGKxe2RcclOsSWwuGL/wczW8bC6S2ZtVnLd/FwSLMj6luELsKkoOr7hLdsDqPHCp4zt0LbSuVqpbCROVwltKnIJbSrZ54uqIuqc7i63ebMmoQwdOI3IuJzHE5YgCDQ1NXH69GmOHz/OysoKZ8+eZWpqqtDNtAWzvgluk4Zgudg0tGLWO++8k/b2di5dusTjjz/O4uJi2Qs4tTm0kHz0XZvKLrJxo7ky8kX5y6m3CYIgUFlZWRAZL6dirCgKMzMzTE9Ps7KyQlNTE3fccQeBQCCvAtRcUC7PeDKZTL0BiUaj7N+/n1OnTtHS0qJL2Owq44qdNoUqLK9Yd/TUYEsZz/EekYya70+uZFwjavko47bjBuOF3wi3RRlPI4p2LA25QlEEXM6N37MkNpUSKuN2zxerxlflUMaNbCqF2BcEQaChoYFTp05x6tQpYrEYKysrvPrqq6yv27ey5YrFiPH84zCzsOVxCjgcDnp7e3nzm99MIBBgYWEh1Y1ZyrEbcb7YrkZDu9i5uBFdGfki/0fUNDQ2NuJwOJidnc34++zsLK2trbrfaW1tNV1e+9/Z2Vna2toyljl+/Hhe21lVVVUQGS9H45/sRj21tbWoqkpPT09J15uOUivjiUSCsbExJicn8fv9NDU1parlU9C5ucYTxq2j02ErhhBYCdm/0RalA2cW4lHz/VGV3G5aGlHLJ8fbNsmL5etHL34jnFzXf/0/BIqtzyuKiNOpbK6rFDaVEqapZJNxg0NjeQ2U4WWaYc54kX7P2tpaOjs7mZubI5FI8Pjjj9PW1kYgECi6HXB53fiVt14BbeqzAi4kURTp7OwkGo2ysrLC1NQUQ0NDBTUQsguN9G9HpOJOhcDOaiGvndmhrJoxj8eDx7P1zZyZK+PSpUu66yi3K8MuinJVuN1uTp48ySOPPJL6m6IoPPLII5w5c0b3O2fOnMlYHuCHP/xhanmtDW76MqFQiPPnzxuOaYYbXRmXJIlgMMjg4CATExMEAgFuv/126uvry160Uqr9TI9gjEQiHD9+nBMnTlBZWbk1Z1xnl+MJe9tkizgDq2H7/q+iNP3JGiK+Lpl+RcmTjOeljNskeYV4xlNjbItPJd0zXhqyrHGMkhZwqgLFfk7ealMx2gbzHbPzQqpQ5BJtmC8URcHtdnP8+HHuuOMOAJ588klbkYG5YDVuMv8kjPenGDYNVVWpqqrizJkzHDt2jKWlJR599FEuX75cMl+sLMs4nc6Ct3/XppKG7U4+KVGaSldXFzU1Nal/f/iHf7jNB7r0KIoyDvDhD3+YD3zgA9x6663cdtttfPGLXyQSifDAAw8AcP/999PR0ZE6qL/xG7/BW97yFv7kT/6Ed7zjHfzd3/0dzz77LP/tv/03YOOC+9CHPsQf/MEfsGfPHvr6+vj93/992tvbue+++/LaxkKV8VJ4xq0a9WxHs6FiK+PRaJRgMMjs7CwNDQ2cPHkSv9+fsb5sMq53c5UlhVA0RnWFuVfeln9UhXDEfqSnnaJQK4635WMVfE4XUUlfBpNlMafHZS1pIx/PuN2UDjVPZTxzkMKHKGj1JbKpXEfpfN3XO3AWcewsgmuktFldAw6TBJBiwbDpT5HJuGalqKqq4siRI6lIxMHBQRobG+nv76empqag9URlY3uIEiv9G1iHw1GUBkK5rnMXRUSeRY83LDb3ZXx8PCMdTk8Vh9ePK8MOijZ7vu9972N+fp6PfexjzMzMcPz4cR5++OGU1D82NpbxeuqOO+7g61//Oh/96Ef5vd/7Pfbs2cO3vvUtDh8+nFrmt3/7t4lEInzwgx9kZWWFN77xjTz88MN5Fy7eSDaVWCzG2NgYU1NT1NbWcuTIEWpra7c89W9XgksxyPja2hrBYJD5+Xmam5s5deqU7qteXfKvM8GIEsyG1izJuGpDGReAUMSeAqQoqj0Cl6MyDuBzOs3JeA5vjQvyjNskeIIsoCogvI7fNFs1N8przFKntaR+0zKQcYPLR7Gyf5WhFiCfnPFcoZemokUG9vf3Mzo6ytNPP01tbS39/f3U19fntZ6YQfdNAMmknqQYwrAsy1tqj7QGQuFwmOHhYR5//HFaW1sJBAIZ4kkh6yyEjO/GGupgh5Lx6upqW1HN6a4MTaTVXBkPPfSQ7nc0V8aHPvSh1N+MXBka+dZcGb/yK7+S965ZoahSxkMPPWR4AB599NEtf3vve9/Le9/7XsPxBEHgk5/8JJ/85CeLsn1VVVV5RxtCcVTqSCTC2NhYSiU+ceKE6UlX7gY8ULgyHgqFCAaDLC4u0tbWxunTp/H5fIbL6zX9UXVmGEGGuVCEPa2NWz5Lh51iS0GG9aQ9D7rdY5EPF/E5jC/BpJTbgNc946VQxlW0pw1VERAK6GapbsNr5sw0leKPn/4wU4p7Y/rbjmJnjW95k2JExq2ugxKTcUUxfmgsNRnX4PV62b9/P4FAgGAwyPPPP4/f7ycQCOTc8TimGt9LEhEzMl74cTYjxloDoT179qTeBjQ0NBAIBKirq8t7nZIkFZSkArsWlWwUks19IyKffXk9uDLsoPTvFW8g+P3+bVPGA/1vbQABAABJREFUw+Ewo6OjLC4u0tLSYqgSZ2O7bCpJm0Q1HSsrK4yOjrKyskJHRwdnzpwxfL2Uvb4tZFzn5ipKsLBm/TBlx1IiSLAu29vHRNJm2kAeyrhHNFaK4nmS8XyU8VwIniILiM4C7gDbffMowfozjl+RSamqZtpgtksZt+S7JdYMNiwq+vtezJ/UTqt4t9vNnj176O3tZWxsjJdeegmv10sgEKClpcUWaYxjPK/HQsYNlorx69tRqbW3AQMDA4yOjvLss89SXV2d14OH3XXawS4hT8MOVcZzwevBlWEHNxUZL1QZz9UyoqoqKysrBINBVlZWaG9v5/bbb8/pB90Om0ouyriqqiwtLREMBgmHw3R2dnLw4MGc4hf1yfjW5QQJFiPWCSh2ii1FCdYtjqssy0xOTnJtaMRyvI0NtLdYOjyC8c0pkcxtSG23888ZN0a6YrFhmcifeQnbLOWUxKZS9BGvIzsDvthZ41vIuMFlYWUTKHVnVaPiTSi+Mm43VUTL8e7t7WV8fJzXXnuNa9euEQgEaG1tNU0OMbOpREMm9SxFUsbtpppoDYQCgQBjY2NcvHgRn8+X04OHts5CyfguEc/CLhkHbnxXhh3cdGR8YWEh7+/bVYxVVU1luEaj0bwIqobtsKnYWaeqqiwsLDA6OkosFqOrq4sjR47kFY1ll4yLEixFrcm4LWVchpiifzOUJImJiQnGx8c31K7+AUA/JikdlhxJZ59cJhWa60nIpXxKI0MbRX653bNzUVtVswxkeyMU+P08UOJ7eCmJaDZZLrYynm1rMiTjFg+5pbb0mr3xyafpjxHy6cCp5Xh3d3czOTnJ1atXuXr1KoFAgI6ODt3xYgbKuNfpRDKJcS2WZzxXYpz94HHp0iWuXLlCIBCgvb3d8phJkrRbwFlk7NpUdg5uKjLu9/tT+d35wOl0Eo0aN2pQFIW5uTmCwSDJZJKuri46OjoK8slpNhVVVcumCpgp46qqMjs7m9rH7u5uOjo6Cppk7dpUBBlWTbJ5NdjxjIsSJLLWmUwmUyS8oqKCgwcPUl9fT2jNZtRXrmkqmJPxWELNjYynSJqAogg4HPZnNsts8nRl3KCIznzbrpMIp0NFVgQcBfjObzSUQm3XkP2mo9hkPFtxFg0EWyu+a/BsWzQYJamA/boOO8iHjGsQRTE178/MzDA0NMS1a9fo6+ujq6srNU+GojFkg4fSapcHMCHjeW1ZJgpRqdMfPKamphgZGeHatWv09vbS2dlpeL/Tog0Lwa4ynoW0OMAdgZ20LznipiLjpbKpZDfq6enpobW1tSgqgDZGucl49n5qHUGDwWCqCVFbW1tRGjjYJuPAuo0unHZtKvHNAqpkMsn4+Djj4+P4/X4OHz5MXV1d6njbyhjXNtAMOsM4TEhwJKGQS05DOkmTZRGHIxdLVQ42lRy97NlwOBQUWcQhls9+lX7plELBLaUqnK1cF9umoti0qWzspPG6LdNWCkQ5bSqFzmuiKNLe3k5bWxuzs7MMDw8zPDx8ncSuhAy/W+l0YRa6Woz7gB1fvBW0BkIdHR2pfTRrILQbbVgC7NpUdgxuOjJezKY/kiQxOTnJ+Pg4LpeLQCBAc3NzUTuMaZNXLh6/QpFOjmVZZmpqirGxsZQi0tLSUtRt0SXjBssmbJBxO6+sBQkSqsy1a9eYnJykurqaY8eOUVtbu3U8m2Tccik9640JH12L56b2pZO0DTXVPtnNpWunUbycXTidcl5dQgvD9YNfkjWruv+3KCi1TSVbeTdSxq3KBExis4sCU5uK3QdmW+sp3lwrCAKtra20tLSwsLDA0NAQw8PDzGJc2F4hOk3JeDFQTGKcvo+Li4sMDw8zMjJCV1cXvb29qRqpYkQb7irjmdi1qewc3FRk3O/3F6SMa2kqVo16igntpiDLcklbFadDewMQDAYZGxvD4/GwZ8+eVNv6YkOv6Y9RsVjMRrKJYiNnXJRgHTnVCdSsgYfdjp6WNpUSk/FsZTyn7+ZiU0kWdhN3OpW8ikwLQfraSjHfp49Z7Ctky4NLkXcg+1wxasVuaVMp8YsOU5vKDaaMZ0MQBJqammhsbGR5eZn//sMnDZf1YH59lTraMF9YNRCSJCmvuqldmGBXGd8xuKnIeKHKuCRJrK+vc+7cOdNGPcWEIAhF74hphmQyyezsLJFIhPn5eQ4cOFCyBw0Ndgs4waYybidnXAVZgMOHj+BwmN947dpU8hIsTXYnJqmIiCg2k0vSSVuuWeNWZDz9QUJOFqiMO6TyK+NpO1CaU7l8BZylTlMxIuNWp6FtO5cO7DSSMrep3BiecSsIgkB9fT0V9Q2wol+/5FLN171dBZy5IL2B0MjICI8//jgej6cgMi4Iwq4yno0dpozvkvGbBJoynuvrLq1Rz8zMDIIgWDbqKTbKkTUej8cZHx9ncnKSiooKXC4XJ0+eLMvkp9v0x0gZt0HG7XZqE1RYXI3SXF9lupyddJaNAa02TOdPSRUzIcwjelhXrBNkNnY5f2XckuBlkPFClXEZRSmvdzTjNC6JadzwPwrGlgLOIj+Xb7GpGJBxq3rbQpRxRbYu6DWzRxXRpVJSMq5h0SQIQEhY/cCFzcmKoqCqallsj36/n6NHjzIwMMDTTz9NMBgkEokU3EBoF5vYVcZ3DF7HTa1zR67KeCgU4qWXXuKZZ54B4PDhw4iiWFYiDqWNN4zFYly5coXBwUGi0SjHjx9n3759QPkq1zWbih0SHU9a3/HlHArJFpdsNBGyO14+ZNzixusS7ClJ2T7iXG0guSjjSh7KePpP63QqZVfGM7LNS7DqjMNf5PFL7hkvmjJewDbYqEOQTG0qrw9lXMOySURreHHV9LuFTsvavaScxZQVFRX4fD72799PVVUVzz77LOfPn2d+ft62eGJ3uV3s4vWIm1IZN4NZo55oNFr2BjxQmsY/0WiUYDDI7OwsjY2NnDx5Er/fD2y8CShntrl240uv8Dd65W2nG2YsYb/8aWnFWKHSYLsBUh6ecTmugM/4O/bJeNa4uSrjVuQ47RDkQ8bT4XZJRKKl62SmB6HUNpUScv1SpqnIcmZDIQDRoPmj1evwQrZrIy7TqgmX8XmXlIo3P5aDjK/EjeNSa7zVLGNM1gs9fyVpYw4td7KJJEn4fD56enryaiC0a1PRwa4yvmNwU5Hx6upqkskk8Xh8SxdMrYlNMBg0bNTjdDpRVbUsk3U6imlTWVtbIxgMMj8/T3NzM6dOnaKysnLL+rabjBshbmJTCYfDjI6OMj9vs7GTCkurNpTxEkYbynGL39Vmckk2EcrZM25FpDLIeGE3RFHMLb2lUKgqiGkWCKHIM76iZI5fcptKMcm4znniMOrEbjElFJK1bucBz4yMJ5IJzp8/T39/f8E1LuWY38MJ43b3mHwEIBTBpqLVIpUT6T719AZCExMTlg2EdlVxfeymqewc3FRkvKpqwxu8traWIuO5NOrZjphBbb2FkvFQKMTo6ChLS0u0tbVx+vRpfD59SVazjZTroSOdjGswmnwTya0NkNL3rb29nYaGRsA4xzcdK6s2OnoWKU1FD8l1c6U/vi6ZKucasm0mco5dMq3IsZCWMa0WaFOxs75iQlGy1MQiz/iKIuJ0XD9Hii3eKXL2g1YxlfGs31JVcRickoIlGc8fSqIwm4rT5aaxsZEXX3yRiooKBgYGaGxszIuUl2Pei8hJQ5NoMmo+J6yGVguK+duuvG+99TocDnp6eujq6rJsILRLyHexk3FTkfGKigpEUSQcDuPz+Zibm2N6ehqw16hnO2IGtfXmq1QvLy8zOjpKKBSivb2dM2fO4PEYZ9xq64Py3JTgujc9fR8NxWhJZWltnQZ/BSsrK4yOjrK6upqxb8IzY7bXvWqju2ax0lT0OGDC4sbrr6hlTV20XnehnnGrjU8jhKoN4lTw+ooIRREzbCpiscmyIuJwppPx15EynoOdyWq31ELU6AKVcRWV/v5+enp6GBsb46WXXsLr9dLf309zc3NOxLUYDXGsEDex5MTXjLtvAgRHRxl0RWxZO/SwXWRckiTD9Vo1EHI6nbs2FT3s2lR2DG4qMi4IAhUVFXz+85/ne9/7Hr/6q7/K/fffb7tRjyAIJfFvWyHXdaqqytLSEqOjo0QiETo7Ozl8+LDtB4jrvu3yWFW0V6YZyoeBCiJIcG1iiuB6iHA4rGsnyiViLbxm7S8vZZqKFRkXbF6i2TaVYqeppKui+ZDxDQvD9QNQXjIuIAilJMsCzoxup0Uev4QFnDk9tFkVcBawHfaUcesOnE6nk0AgQHd3NxMTE7z66qtcvXqV/v5+WltbbZG5cogQpmQ8bE7Gjx49Smu9yKVLl7h69SqBQCCnbsjbQcZVVUWWZd03zukwayDU09NjKSTdbNi1qewc3DRkfH5+ni9+8YtEIhGefPJJPve5z/He974350l3u8i4HWKsqirz8/MEg0FisRhdXV0cO3bMcgLMhp5SXWpkq/9G16Qow/OvXuKeWw5y5MgR3QcM2w1AVIhErcl40XLGdYaJRZMIJi5mRXbYyjzKJmjF9oxnkPF4Mdpxl9MzLiKWkCwriojLeX180SoDMI/xM/67iGRc2WJTMV7W2qZSgDJug4ybN/3J/G+n00lvby9dXV1MTExw+fJlrl27liLlRvO+lupUajKeMHl0ia6av63bsHZ009XVxeTkJENDQ1y7do2+vj46Ozstt73cNkvIPcElu4HQ0NAQY2NjHD58uJSb+frETUxgdxJ2PBkfGxvjT/7kT/irv/or3vSmN9HR0cHnPvc53va2t+U1Xjkyv3NdZ7rvXZIkuru7aW9vz1v90JTqcu7nFjJuQIAFCRo6uwkEAoZj2SXPArC2Xj5lXPepXwWPw0HM4FjLspgXGS92B04hbfNebzYVVQWHeP03LDYPkRUBRxoZL/aelVQZzxrbjHBb2lQKIeNxG2TcpJjZyE+c7kmenJzk6tWrXLt2zbBQUJuDSk7GBf3rvdLlQpYsKziBjW3UapxmZmZS1g6NlBuJMNuhjGv3knzWqzUQKqc49LrBrk1lx6Dkj8dLS0u8//3vp7q6mtraWn7xF3/RNOt7aWmJX/u1X2Pfvn34fD66u7v59V//dVZXM7NXNf9Y+r+/+7u/y1jm2rVr7N27l+npaR5//HEefvhhGhsbWV+3LtozgtPpvGFsKoqiMDk5yVNPPcXw8DCdnZ2cOXOGrq6ugifbcieqZDf+MVK3RQlWYuYE2q4yLsiwbiMqUSlWzrjB4ax0GccX2m2OU6hn3FKpTifjNojTFmQdwrLaVFQhg4AXv8AyUxkXiqyMb/ktizh8LmOXsoBTjZmf54pi/kZAsVi7Rlzf9KY30d/fz/DwMI8//jhjY2OZ804ZyHg0kUAyeLKpMpkLNGQfBVEUaW9v5w1veAMHDx5kamqKs2fPMjQ0RDK51fKyHWRci1Ms5Ljuesa3QrOp7KR/NytKroy///3vZ3p6mh/+8Ickk0keeOABPvjBD/L1r39dd/mpqSmmpqb4/Oc/z8GDBwkGg/zyL/8yU1NT/MM//EPGsn/913/Nvffem/rv2trajM8HBga4fPkyPT09qb/5/X7C4XDe+7MdyrjD4UhNZrAxmU5NTTE2NobD4SAQCNj2veeyzu2wqaiqytzcHPPz87rLCZJ5wwzIQRmXIOa0JuN2ow3zKeAE8DmML0O7pDp7E3NWxnOyqeTjGc9eX85D5A1VzSTgRSfjiojTeV3NLH7OeOaI26WMW3vGS6eMb1hUjMe3m7QhiiIdHR20t7czPT3N8PAww8PDKTW5HGR8atn4/lPlcJskjG/AiJAKgkBLSwvNzc0sLCyk/Nbd3d309vam6mrKUaCaDc0vni+Z3k1SMcCuMr5jUFIy/tprr/Hwww/zzDPPcOuttwLw53/+57z97W/n85//PO3t7Vu+c/jwYb75zW+m/ru/v59Pf/rT/NzP/RySJGW8equtraW1tdV0G9KJOEBlZaVl4x8zbIdnXHsAkCSJiYkJxsfH8Xq97Nmzh6amppKoBduhjC8uLnLlyhVkWcbnqwCWtm6XbEMZt0meRRniNjr3Fe04GGyWWzDJT5bs/bbZNpMtXmALyFZkPD1NJZbH+ZatjOc+Qt7I1T+fK2RFwO26/lBXdGVczrZSlJCMm0xtZp9BodGG5uTQrHgTcqgT2YQgCLS3t9PW1sbs7CxDQ0MMDw/T0dGR+rxUmF42jl31ig4bZNzqc4GmpiaamppYWlpieHiYs2fP0tnZSV9f37bZVLYjwWWnY6epyTtpX3JFSe9Sg4OD1NbWpog4wN13340oipw/f972OKurq1RXV2/xwP3qr/4qjY2N3HbbbXz1q1+19fTs9/tNbTJW2A6bCmxkaZ87d47FxUUOHjzIrbfemnNkVy4o1xsARVGYmppifX2dmZkZuru7OXPmDBUVFbrLCxKE40WyqUiQUK33sVg540YTjVswvkklbDbYKXW0oZD2AkEogjJuXe1aRJR4glcUMcMGI1r5OXJEOZv+mHrGS1nAGbNSxs0/z/cn1tI77rjjDg4dOsTc3BwAw8PDGW8ji4nZkPH9x2tLH7N/nOvr67n11lu57bbbWF9f57HHHmN6errsSnMxyPiuTUUH6g78d5OipMr4zMwMzc3NmSt0Oqmvr2dmZsbWGAsLC3zqU5/igx/8YMbfP/nJT/LWt76ViooKfvCDH/Af/+N/ZG1tjV//9V83Ha+qqqogMl5Om0o8HmdsbIyJiQmcTidHjhyhtra2LBNSqZVxjYQHg0EcDgder5fe3l7a2toA42tSAGImXTg3xrapjEvmEWO5jpdPmgqAx4SMx5L2LtKyRhsmxS3WjxsZhZBEO8hWqovtcMh+y1HMNJVclPGSduC0JOMWnvICyaUgCDQ3N+P1ennqqaeYn59ndHQ0lXNdzL4Sc2HjN7MuG79tPtddTU0NJ06cIBwOc+HCBWZnZ7l48SKBQCDVDK+UyH6rvYsiYacR2J20Lzkir6vjd37nd/jsZz9rusxrr72W1walIxQK8Y53vIODBw/yiU98IuOz3//930/9/1tuuYVIJMIf//EfW5LxysrKG14ZX19fZ2xsjOnpaerr6+np6WFlZYW6urqSrjcdpfKMa373YDCIy+ViYGCA5uZmLly4kKHWGKWpACQsFKtcCjiTNmwqdj3j+SrjLpMXVLGkip1b5VZlPLc7tlWaiphWByZsLi847M+c2dne5U1TKe26sscXhK0+9UJQzqY/gsmlJVp6xvOHYlHAaWVTKdY9XFVVnE4np0+fZmlpiaGhIUZHR7f4rgvBYiRq+JnDhi2tEDHG7/fT0NCQupecO3eOpqYm+vv7qa6uzntcKxRLGd9FJnZtKjsHeZHx//Sf/hO/8Au/YLpMIBCgtbU19dpPgyRJLC0tWXq9w+Ew9957L36/n3/6p3+yVCZOnz7Npz71KeLxuGljAL/fz/j4uOlYZiilZzwSiRAMBpmbm6OxsZFbb72Vqqoq5ubmWFra6p8uJYqtjEuSxOTkJGNjY3g8Hvbu3Zvhd89u+qOa3F7jSfPjb3e7RQliNiiEXZuKZQGnwTAO1ZhoRBM2yXiBnnErVTNbMVVkATEHMr6d0NtKRSmegq1HxmVZwFGE46OqW5X3HHpaWSKb6IvbpoybEzVLm0qRbBdawx9BEGhoaKChoSFFys+ePZsi5YU0n1mKGpNxwbzfz8Yyea95A7Isp2qO+vv7GRkZ4amnnqKhoYFAIFAS0WeXjJcIu8r4jkFeZFwrDrHCmTNnWFlZ4bnnnuPkyZMA/Ou//iuKonD69GnD74VCIe655x48Hg/f+c538Hq9luu6cOECdXV1lpNkVVVVQQWcoijqxkUVgnA4TDAYZGFhgZaWFm677bYMz/SNmG1uF+lFpz6fjwMHDtDQ0LBlYt2SM25yUSYtyLjd61lQN0h/UpJxOU0aihRJGTfaMIfJ7kQSNh8ECo02tHiSELMUU1XO7ca4lfiWb9bVO5c2jleRCFwJx98g4llpKiUs4Mz+nTM+A1PJP9+9VdXCbSpmD++5QK/7Zn19PfX19anmM2fPnqWrq4u+vj5b96ZsrMSNm/qocRvXe4E/fzox9vl8HDx4kP7+fkZHR3n22Wepqamhv7+f+vr6ohFgSZJ2CzhLgV0yvmNQ0gLOAwcOcO+99/Lggw/y9NNP8+STT/LQQw/xMz/zM6kklcnJSfbv38/TTz8NbBDxt73tbUQiEf7H//gfhEIhZmZmmJmZSZHD7373u/zVX/0VL7/8MteuXeMv//Iv+cxnPsOv/dqvWW5TdXX1DWNTWV1d5eLFizz33HO43W5uv/12Dhw4sKV4cbsSXApRxpPJJMPDwxlFpydPnqSxsVF3gs/OGTdTuhKWynhuV/TisvnDWUmb/mCuRq7F7f3uW8m0gJwDYbZK6MhW7HJV3h2li8q2hiFZLtLwOseuWL5uPUW4mLV3W2wqBegM+e6zkhQtH+7KZVMx605ZW1vLyZMnOX36NLFYjMcee4xXXnkl574VoYRxUx8lZn29CwWycb1oQ4/Hw759+7jzzjupr6/nwoULPPXUU8zNzRXlrYMWbZgvdqMNd1EotrPnjR2UvKLia1/7Gg899BB33XUXoijynve8hy996Uupz5PJJJcvXya6+eru+eefTyWtDAwMZIw1MjJCb28vLpeLL3/5y/zmb/4mqqoyMDDAF77wBR588EHL7Sk02rBQxVhVVVZWVhgdHSUUCtHR0cG+fftMFf1yZ35D/mQ8kUgwPj7OxMQEfr/fdtFpLsq4lWc8p4lbhYXlCK1Nxn5JSbL3e1tyEaPDabI74Vh+yjhspHw4zGT39GVzVMYVm5GLGrJ//nK+cda1qRSTjOv9rVhkXOcNRyk9446CAkTy2y45KSJY7JNZ900oHhnXU8azUVNTwy233EI4HGZoaIjHH3+c9vZ2AoGAYQpUOtaSCTAQiZMR6x+g0GvHzDKi1fH09vYyPj7Oyy+/jMfjSdlO81XKd20qpcGuZ9w+trPnjR2UnIzX19cb7ixAb29vBnm68847LcnUvffem7HjuaDQaMN8VWpVVVlcXGR0dJRoNEpnZyeHDx+2VaW/XY2GciHjWvLL1NQUNTU1HDt2LKcTciv5L0AZz1FFWV7R93AqisL09DRDQ8P2BsrTpiLHZcMrUVZBiamIXvPB9QiaLIu4XDYfJCzIkCPrVFAsyJH1Cgv7em7Q2bcirl/v2BVLyNPLSC8mGc8evxBlPN9dVhIOG8q4NZGTFQVHgYUAdsi4Br/fz/Hjx1lbW2N4eJgnnniC1tZWy4SSdSVpSMYTa9Y/QKGk1A4xdjqd9PX10d3dzcTEBJcvX+batWv09fXR3t6ec1Ok3ZzxEmHXpmILN0LPGyvcdFlDmmdcVdW8JrVcbSqqqqZisuLxON3d3XR0dOT0ym67lHE7+xmLxVIkvL6+nltuuSWvqvxclHEpqZjeeHO1qSyvZr5mTo9ddDqd1Dc0AtPWA+VpUwktrUKz/mcA6jpgYU3Vs5nk4hu3VIqLTMaz01VKi63rKqpNRZeMl86mUsqmP2IhZDzPfZbjIlYJo3aiOhVVNeK4tpELGddQVVXF0aNHGRgYSFnzmpub6e/vx+/3b1k+blIJux42trAUC7kQY4fDQU9PD11dXUxNTTE8PMy1a9cIBAJ0dHTYHkeSpIKSaHYzxvWxq4zbg1XPm5/6qZ+yNY5Zz5tf+qVfIhAI8Mu//Ms88MADOZ+vNx0ZL9QzbpekKorC7OwswWAQWZbp7u6mvb09L3XA4XCgqmpeN4p8YVWomh6/2NDQwMmTJ3VvPLmsL/24mqrbsspCKEJLrf76clLGVVgObSjjsiwzPT2dIuFah9OJpYv2hsozTcXr9AHGjYyEpIiVZKC3y7lkjVs2/cnadjmZy9hbX62LDrWMWeU6ZLmYw5fQk65HvFVVKFoazBabSgFc0CpNxej3VuKipQ/azrlcjN+0kFbxFRUVHD58mP7+foaHhxkcHNSNDUwaZEQKQHTV+gcohzKeDVEU6ezspKOjg5mZGYaGhhgaGqK3t5euri5LcWnXM14i7FBlPBTK7FLr8XgKSjC6EXveZOOmI+OFpqlYKeOatSEYDCIIAj09PbS2thZEorXvmhUXFRtGnvFoNEowGGR2dpampqZU/GIx1pdB/k0mGFGCWRMybiM6PAOroXXGx8cJBoO43e4UCdduerbJfZ7KeGRxHeqNv5dcU/A0525TyUVBNVfGt9KsQpVxp0NBlkWczvK+8dFQ3Ozx8irjqioULa1lS7RhIWTcYp+NyfgGMTR7wLBjUym08c/GNhQuePh8Pg4dOrQlNrC/v5/a2lqSBk/llS43qmLeXRiK4xnPdx8FQaCtrY3W1lbm5+cZGhpieHjYsjnSrk2lRNihZLyrqyvjzx//+Me39JqB13fPm2zclGR8bW0tbwXEyDMuy3IqR9vlchEIBGhubi4KedbGKKdVJdsaE4lEGB0dZX5+nubm5i3xi4Vii03FZIYRJJg36WKn5Dg7jYxNMj3tY9++fVvSXmRZJpGw9+7ecq0GP9/SxDLsMT6WNu7Php5xu7BUxrPHThR2Y3U45KLaLcxQ6rXonavFEvJ0rUZqcaITN9J20o6OqhZGxvM80qoWa2iyT3ZtKoVCUZSi2SG8Xi8HDhwgEAgwMjLCM888Q6W/GsngqdzvcmP2hkxDoVtXiPqf2obNjqVNTU0sLi4yPDxs2hypUDK+a1PRx9bg09c3tH0ZHx/PeJtkpIq/nnveZOOmI+PaDxyJRPL2NqeT8fQcba/Xq0voCoXWhKKcRZzafq6trTE6OprKQD99+jQ+n68k68vswGmyrAwLa8Zk3Kx759aFweH0curUqS0kXDvetofLN9pQNL8MlYT1uaSnbOfkGVeEnGb1XGwqenA5lc3iwTKc03r1m8VUk0poU9FVxov0EKM3tuWvqmJ4nlgdU6PPtYY/Zl+3ijbcGL84ZLzYCq7H42H//v0EAgEGL7xsePwqnS6M2wGlYRtsKsabItDY2EhjYyPLy8upHPbOzs6MHPbsgrdcoKrqrk3FCDtUGa+urrbFz17PPW+ycdORcc1SkS8ZdzqdqKpKLBZjcnKSyclJqqqqOHjwYFGbJGSj3EWciUSCUCjEs88+S1tbG7fffnteDS7sIldlfDFinO2bSwMQAUjK13POVVVNkXBRFHE4HPZzffONNnSYP2k7nR6sFLNClHFVBYQcO3YWSMadTjnnxkT5Qij13aqE0pRemkrRMsyLfPytbSr6yrfW8EdVBDDoWmrV9AduHJuKEdxuN+66BsPPvYLTFhkv5Baj1R6VwjJSV1fHrbfeyurqKsPDwzz22GOpyMddm0ppsFvAaQ/pPW++8pWvkEwmdXve3HXXXfzt3/4tt912W6rnTTQa5X/9r/9FKBRKedmbmppwOBx897vfZXZ2NsWPfvjDH/KZz3yG3/qt38p5G286Mu52u/F4PHkXcUqbGddPPfUUtbW1HD16NK9MyVxRrsY/q6urjI6OsrS0hMvl4syZMwUVTtjF1qY/xsuKEqysG3exy/WmvL6ezFDCNRIuiuLGQ4LN8fIt4MxuNb9l+0JJrH4B3cYzNslWPnYRpWAyLiFJ5Zp+9KTrIjLoEkYbljJnfMvDWoHbnC8ZVy26b4J1zjjkbk/THaPERfKzq8b3HTFpT2wppOmPNseVkhhrOezpkY+wEX+bL3ZtKgbYocp4KXCj9bzJxk1HxgVBoLKyMmcyvr6+TjAYTFXeHj58mMbGxlJsoi5KnTW+srLCyMhIqhFRU1MTk5OTZSHioBdtaKKMy7ASMyPjOaxYgfVkMlXUlE7CU4vYHTBPm4oACLKK6tAfYIOImN+odW0qtpXx3PziUDgZdzkVEokyKeOlvoeXMMZc0cnfLhUZt6VKmSyTt01ls4DTaL8Uxd7bgGIp46UkqrNh4/tOImzLpFLQm5hykHEN6ZGPjz/+OC+//DKzs7MEAgFqampKvv6bBjuJjJcQN1rPm2zcdGQcNiaJcDhsa9lIJEIwGGRubi6VHvLcc8+VxDdthlLYVFRVZXl5mdHRUcLhMF1dXalGRIuLi2X3qOeijIdNVBY1h+MkSpBwKLhcri0kXIMs2+yCma9NhQ3rjWpwf7QV61aAZ9ya6GxVNFUbPnYzOBwKcrkKOEWdk6mI70MFnVcepezAWTKbSoHTi+U+G5LxTZuKUVMs2YEdBlosMm6nEVu+WFgzJtwNVbWEbBhVClGIZVkuu8rs8/lQVZXTp08zPT3N008/TV1dHf39/dTV1ZVtO3Yidm0qOwc3HRkXBMFWvGE4HGZ0dJTFxUVaWloy0kO2oyNmMdepqipLS0uMjIwQjUbp6uriyJEjGTcho2jDUiFXz3g4uTX2QZIkxsfHWTexsGxZrwQJl2JaXCQXSxk3OZzupELMo8/GRZcXMI+5KMgzbkGK9T7NxTOuF2knCMUrRLRCKdciKwJOPZ9zsWwqBtGGxdgpJVsZt3G5C2r+u2aofGvKuMH5YKd4E+DS5cuc3H+goNqWUttUlqLGZFtI2vtRC/nptTeA5STj2rxeUVGRSpcJBoM899xz+P1++vv7aWhosNymXZuKDnZtKjsGNx0Zh+vxhnrQPNPLy8u0t7frFi6Wy79d7HWqqsrCwgKjo6PEYjG6urro7OzUJaLlLhjdQsZNCLAAxKXrxyKZTKYSbSorK3G6XIC9OEJBhricJBqNGkY1ltqmAqCE4lClv/71qI0mUzpj2/aM52FTUeOFE5ZiKbxWKGUBpyKLOJxbf5/iNf0pnWc8m+TaIePmEAyzxGVJQEU/PUdJnUsGNi2bZDwej/PYY4/R2dlJIBDIi5SXmoyvxE2EgoRNz3gBP3+pbTh6yLbGeDwe9u7dS19fH2NjY7z44otUVFTQ39+f0d9hF9bYVcZ3Dm5KMp7tGc+2a3R0dHDgwAHD9r1WjX9KgULIsaqqzM/PMzo6SiKRoLu727KV8fYr4+ZISjLJZJLx8XEmJiaoqqriyJEj1NXVIX7/kv31SiAJKoODg6nK/2yffLFsKmZkR0wY77Fs5F9JX3cJlXHdortikPHttKkUCYoi4HTo/LClVMY3Sa8Z7HQ3zSb6VoXEdqCqAoLOHVWWRMO40pRNxeBzO0kqAAcPHaZSVRkaGuKxxx6jo6ODQCCQk6Ww1GQ8HDd+wyXZeOiGjW6CvZ31eZHq7Ug1kSQJQRC2HFeXy0V/fz89PT2Mj4/zyiuvpP7W2tqaIuW7sYYm2FXGdwxuSjKe3vhHSw4xsmvo4fViU1FVldnZWYLBIJIk0dPTQ1tbm63JeDvIeEbOuMVFGYslOHfuHH6/P0XCNeSSqiBIkBQ2/IxDQ0M88cQTW7rJyXaPgwX5cZo0NXGaMXmfDwgZf44+obbryc6HFBfqGYfiKbzm6wBRh4wXS3yTFRFnCZVxXc+4IhRl/C0FnHamlzyLNOWkwzDEXEmYF3Datakoqorf7+f48eOEw2GGhoZ4/PHHcyLlJSfjUsLwOEhRydYYMzMzPPbYAn19fXR1deVErreDjGvrNFK8nU4nfX19dHd3Mzk5yeXLl7l69SqBQCAVO7erlu9ip+OmJOMVFRU88cQT/I//8T/o7e3lS1/6Eu3t7babEtzoNhVFUZidnWV0dBRVVVMkPJebjEbGVVUty0SYS5oKbCjjx44dy4iV1LbXtq2EDf6sAG6Pl2PHjrG6usrVq1eZmJigt7eXrq6uotlU1FACRIMHvbgx4V/3WL9uLyxn3MqmovMQUQRlvBxkXFYEXTJeLAlGUURcOmS80GLI6+PrHaMSkXE7XNCSjBtkiUsigkv/oKRsKoYFnPbONVmRU/OVRsrX1tZSpFx782XWObiQVvF2EJWThmQ8HrbX/vTEiVuocMupVvS9vb10d3fbun9tJxm3gsPhoLu7m87OTqanpxkeHubatWv09vbS2dm5S8h1sGtT2Tm4qch4Mpnka1/7Gg8//DDJZJIPf/jD/Mf/+B9TjYDs4ka1qSiKwvT0NMFgEEEQ6OnpobW1Na+bizZ5lstjmCsZVxFSRDy7WU+uEID5pQgdLTXU1NRw8uRJFhcXuXbtGqMjo0SWzVXp1DZZ2VTM2HrCeNslG8q1nv+6WDnjehOknWzo1LIGP2U5yLii6NsmiuUjlxUBt2trfUIpO3BujF+EsbPOD9EGGTd+t7MBo8/khAOHU8++IqQuHKNjZtemkpSkjAJFrVj/2LFjKVL+xBNPmJLyUivjMdX4IK+Hbda5CCItLY00NzczPz/P0NBQKve4u7vb9M3ujUzGNYiiSEdHB+3t7czMzDA8PExtbS2VlZUl3MrXKXZtKjsGNwUZj8Vi/PVf/zWf/exncbvd3H777bS2tvLbv/3beY13o9lUZFlOkXCHw0EgEKC5ubmgm4r23XKR8eymP1ZISLJux0ytQ2quWFhao6OlJrUtdXX1xIIKX//095gZnqfnx/YR7W1jfsW486clTJQdM1UyqeYZbVgsz7geGS+KMl7wENbrUEREx9brplgqmyKLuHxbfzwj/3Ou0I2nFISi+O1Lp4zrrCsp6jbXlBPX5xaj88GuTQVBQFVVJElKxZTqkXKtEU1bWxv9/f0ZpFxV1ZKS8YRB4YgoCKyH7Cnj2qkrCALNzc00NTWxuLiYIuWazU6v5mm7PON23zqnQxAE2traaG5u3u3eaYRdMr5jUJ6uG8DS0hLvf//7qa6upra2ll/8xV+0bLxz5513piZT7d8v//IvZywzNjbGO97xDioqKmhubuY//+f/nOqSqeHHfuzH+Mu//Es++9nP8tprr3H77bcX1A3sRlHGZVlmbGyMwcFBpqam2LNnD6dPn85bDU9HOhkvBzTPuKqqJBIJIhHzvF1ZVojEYiklTOus6nA4cid5KiyvRFPjnv0/g/zarb/Hn/7if2V2eB4BmPu3y6z97Vm6o2H8FfrKk8NpfsxFk5bzVZUmflbR+kam7xkvUrSh3vGMWxcRpsY3UsZLGjq4AUUVcOh6xotzXiuKgB5PKFZsY3b8YGr8YijjWWM77AmzpjAk4wlR9zMlrfGT4XdtdN+EDc+4RsK1h3RZvv7QDtcb0bzhDW9AVVWeeOIJLl68mIq6LbVNRTIoJq5yuW2LCNlHSRAEGhsbOX36NCdOnGB5eZmzZ89y+fJlEolMgl/q/dNDoQ8Au903jaHZVHbSv5sVZVPG3//+9zM9Pc0Pf/hDkskkDzzwAB/84AdNOyIBPPjgg3zyk59M/Xe6iiHLMu94xztobW3l3LlzTE9Pc//99+NyufjMZz6TWu4b3/gGnZ2dqUkol6Y/etgOz3i6Mi5JEpOTk4yNjeH1etm3bx+NjY1FnbC0CbBc+6n9NlevXmVqaspyvYIES2sxepq3pgqYZZQbYWE5wtn/M8g3/vDbTF6d1l9IVpn/l1cRPQ76f/I4Mx4fkfUkvS01+IZneDTqhBr9BB4wT7hYX1oH9L8bM0la0VBIB07LiEEd3iogoCoCgp7cueX7BuaGcijjKuhyjyJdKooq6v+mOp0z84HRA5V163nrItXsse0o41Y3S8Mumwn9h2QtY3zjy/rflWzaVLTSDm3u0h7utUY36Up5ZWUlR48epb+/n+HhYZ588klaW1tTqnopIMuKKRkHe/0RzOb5+vp6brvtNpaXlxkaGuLs2bN0dXXR29uL1+vdtmjDXWW7RNhVxncMykLGX3vtNR5++GGeeeYZbr31VgD+/M//nLe//e18/vOfT1VM66GiooLW1lbdz37wgx/w6quv8qMf/YiWlhaOHz/Opz71KT7ykY/wiU98IvWarru7O+N7dpr+mEEURZLJIshIOcDhcCBJEiMjI4yPj1NRUcHBgwepr68vmWpQrqzxeDzO6OgoANFolBMnTvDP51YB4wcmUYKVWIKAziSfj2r4L197nLlvP2trWSUuM/XN52jc10TvQCvj//N5krEk6ptPmn7P7HcSTJRU2eFAVVQE0XgZXaJTJGVclPXJtCoL6HoPbGwbuiMWH0Z2DrFIEozR5VEMm4qqGm+/tfJu5e7OUxnP06aiJETdogolze5ktE+27VZZG2eXlB85ciRFyuPxOMPDw3g8npxriawwsxI2fAisdDixfUeyMd3X1dVx6623srq6mop67OzsBNgWm0oh69yNNjSGoKoIO+j47KR9yRVleV81ODhIbW1tiogD3H333YiiyPnz502/+7WvfY3GxkYOHz7M7/7u7xJN62A2ODjIkSNHaGlpSf3tnnvuIRQK8corrxiO6ff7LS0yZii3TSWZTLK4uMjS0hLLy8scPnyYkydP2upaVghKHW8Yj8e5cuUKg4ODxGIbqtCBAweorq62JGqCBHNh/dtXzpezChPBBTr2tNJzuNNy8c797fQf72Hh8jzD//wSDrdI7/FOMCHLWGSVm5FxRBEhYX6p6pEgVbXnLbZSxqWYQQpGodGJZVHG9detV9RZzPHVIkwPG8fNgNya/Gaqau+BNJvkijbIuEewIFVGVpO4gU0lbsOmkkO0oR7SCbiRfaWiooLDhw/jdDpxOBycO3eOF198saD7RDamVowLwX2CfV3MtBA8CzU1NZw4cSJlzRwbG2N5eTnjPlpqyLKcl2c8Hbs2FQOoO/DfTYqyKOMzMzM0NzdnrtjppL6+npmZGcPv/ft//+/p6emhvb2dixcv8pGPfITLly/zj//4j6lx04k4kPpvs3GLoYyXg4wnEgnGxsaYnJzE6/VSUVHBiRMnSr5eDaXaz3g8TjAYZGpqioaGBk6ePElVVRX/9m//hqIoG/8syKsow8KaARnP4+ladTuZvLBxzrTtbUZQRaauZp5DXfvbcPs8DL0wmvH3WCjO6IUJ+Nk24+21ILyVFV6WTD6X1hScXjMCZkBkDKP90r5r5Rk3Un/tWjEMlivHvGu0b8VyIhiSYrtFhyYwI6FmNhVZFm09bGxJU7FRPyhcXYEj1cbbZfT3hFgGm4r5PttRylVVZe/evRw4cIDh4WHOnTtHc3Mz/f39+P1+W9thhOkV4zd9buwrx/nw0urqam655RZeeOEFIpFIqoA1EAiUPKVk1zNeOuw0n/VO2pdcURAZ/53f+R0++9nPmi7z2muv5T3+Bz/4wdT/P3LkCG1tbdx1110MDQ3R39+f97h+v59IJJJ3hnapPeOagjE5OUldXR3Hjx8nmUwyPDxcsnXqodjKeCwWIxgMMj09TUNDA7feemvGq2DN/uNwOKxvrBIsRvSTTay+qwvX9Uth+socAHtP9bM8t4rH68Zb4eZaFgnPhhnfViUFsxdR62sJwDiSTLWwkzqTxqqiy2n+G+ZVwMlGdrQdGCnjuSh8+cLoVCjWvd3o2KlFcLGZFeCaKeOyIuIQFXK1qdhRxq1eIxs+FMYdm7UDmVBixVPGbRdAmpByLdrQ5/Nx6NAhAoEAw8PDDA4OFkzK5wzEAwCXTUuZtv35QhRF2tvbaWlpYWhoiCeffJKWlhb6+/uLbsvRsOsZLyF2mpq8k/YlRxRExv/Tf/pP/MIv/ILpMoFAgNbWVubm5jL+LkkSS0tLhn5wPZw+fRqAa9eupVrmPv300xnLzM7OApiOq3XgzBelsqmkk9X6+npOnDhBdfWGCrW0tHRDJLjkg/T9amxs3ELCNTVcEARWV1fx+XyWNxxRgpX1AmIGs6C6tt4sIqtRahr8uDxOpq7NWo9hYlMRLBoHiRaEWI6ZUXVQ44ru1WyUxpGxjFXTH6M25pI9UqAakvbSz7ylzjI3tKnYfFAxg5nn30oZF0Xr6zb73LCljFsMa3g8YvrKeEZevaEybvOhz9ZS15FNypeXl1OEXhNq0kn5yMgIg4ODNDU1MTAwkDMpN3qTB/Yy3osBLU1FK2AdGBgo+huAbEiShMfjyfv7u55xY+wq4zsHBZHxpqYmmpqaLJc7c+YMKysrPPfcc5w8uVHk9q//+q8oipIi2HZw4cIFANra2lLjfvrTn2Zubi5lg/nhD39IdXU1Bw8eNBxHU8bzRbHtG+vr6wSDQWZmZnTJKmxfgkshZNxqv1KWlM119Pf3MzIywvz8PJJkvq+iDKsx/XhKNYcOnLA5ATivk/GOva34qnxce34k9TeX18WhN+xj5KUxoiGDhwATMi5aqMAunUzgdKhx8+8nJFX3arYTb5ivTcW+Mm5rsZKg5GTc4O+CwZuKXFCITcVlY2ZPPzcEWbVXQJRnmooac+h7xmNpOeOGBZzFsakYYX19nWvXrjE/P09fX19KbEm3r/h8Pg4ePJihlDc1NdHf358STKywFDUWD8Sk/W0v5K1OtkqteeW1uXdwcJDGxkb6+/upqanJf0Um68wVuxYVE+wq4zsGZfGMHzhwgHvvvZcHH3yQr3zlKySTSR566CF+5md+JpWkMjk5yV133cXf/u3fcttttzE0NMTXv/513v72t9PQ0MDFixf5zd/8Td785jdz9OhRAN72trdx8OBBfv7nf57Pfe5zzMzM8NGPfpRf/dVfNX0Sr66uJh6Pk0wmdRsjWKFYyng0GmV0dJS5uTmampo4deqUoX+vXMkm6cj3oSOdhOvtVzYJ15r19PT00NHRwejoqOXDkiBBSCcrXpYVJEnOvTLZIdKxp5WKah9XnxvZ8nEyluSVJy9TUe3j0Bv2cfmZIaTEhpxVVVdJ98FOhszSTiQZM5uKbBFf6HR6AONsfNXABG3nFb+VMi4atDiXJXs3WBEnoCO7luEem+uDWe4rMLKpFL5zZgWypmRc0S+WzFhGziwOFWxe5t5Kj0nGkYkyHhV1b7TpBZxGN2K7OePxmL2mOanlN5NTpqamaGtr4w1veANer9fUU+71elOkfGRkhKeeeso2eV2JGXvNFIMiaT0UQk6Nog3THzZGRkZ4+umnqa+vp7+/P9XpOF8UQsY1VXyXkOtjVxnfOShbzvjXvvY1HnroIe666y5EUeQ973kPX/rSl1KfJ5NJLl++nKrydrvd/OhHP+KLX/wikUiErq4u3vOe9/DRj3409R2Hw8H3vvc9fuVXfoUzZ85QWVnJBz7wgYxccj1o6uza2hr19fU570uhKvXa2hrBYJD5+XlaWlq47bbbdFszp2O7un7m8gCwvr7O6Ogos7OzOZHw9Ina6XQyMDBAZdXzsGB88xIlCCev33xlWWHw28/yv//gH0mc6cCbQ0EUKgheJ5NXjYt+NURD67zy5GVqm2toH2hFEOHacyO8MngF3mvylsfiMAoW27u+mjC1qSgGDYWKoYwbPa4qFgkvGqSVGDRu/Xs5bq9mRaaqAiZ9mOyNb3TzSJRaGTf/nlVDpS3dN21OLfFwHPDmvl1RozSV9A6cOp8rNnLwN/FH7/9zfuH9d/Pj978Fj89YZJEkiWAwSDAYpL6+ntOnT2e8sbNT6On1ejlw4AB9fX0Z5HVgYMCQlOuJB6n9XLc/txdyZlkRY22/AoEAo6OjPPPMM9TW1tLf35/XvdLOOq2wa1Mxwa4yvmNQNjJeX19v2uCnt7c346Lr6uri7NmzluP29PTw/e9/P6dtqaysRBAEwuFwXhNMvsQ4HA4zOjrK4uIira2tnD59Gp/PpPNiGjY6S6qpAqNywK4aH41GCQaDzM7O0tzcvOXhwg4J3woL64QMESmBLCs8+c3zfOOPvs38+CIDJ/tyvluJEsgOgZaeRmaDC5bLV9ZU0LGnlWsvjFLbVE33wU4uX9yqpmdsr4VCK4gCQkJGdesfE4fTCxi/5lYMzolieMbl1Riw9U2TnLSbY+5CT9UvVrygKUweNBRVwFHg7G/07fTCxHxh9iBl9gAly/r+bLOx7TT8AWu7ldFDgLIu6j6QZuaMb/18w6Ji74Ku76znG5/5Fv/wue/yng//JG/7D3dmkHJFUZicnGR4eBifz8eJEydMVd9cSHm2oqxHysPJuOHLsUQ0B9N4ASqxXWLs8XjYt28ffX19BINBnn/+efx+P/39/TlH6kqSVHC04S6McTOryTsJN+UVohWw5OsbdzqdORHjUCjE6OgoS0tLtLe3c/vtt+P1GqtLetAm0HKScStlPN1mUzwSvgmrNBUVImsxfv3U7zFx5XrHzFeeuAx7TlmPnz6WBLJDZX58kQNn9jA9NMvK3NZM4IpqH31Huhm6MMorT14GYDY4z2xwno7DHZjRcZcNE68YV5ANyPh6WMIsgEw1OKbFUMZVA55gl4wnDV7BF6slvRnMmu9stLIv8E5maMsoPD3CTBk3TVOR7dhUsoo3bWoLVteuft49ELPOGdc7lnaLNwFGXx7Ht7hRmP9XH/ka3/zC93jPh3+SH3/gLayGV7h69SqiKHLgwAGamppsE0o7pNzj8bB//376+voYHR3l6aefpq6ujoGBgRThj8jS/5+9846TpK7T/7uq0+Scc57Zmc05yaGgIngmDJwoenJg4vwJChjAgIoETz24O9ETUDwwnqh4HgLioTu7O5vYNLOTenLOeaZDVf3+6OmeDhW6e3YXXOZ5veYF29VV9e1U9Xyf7/N5Pppk3DEbfvzO+fSMG8FqtVJZWUlJSQnd3d2cOnWKuLg4Kioqwu76vBZteAERblOBvxVcSq8lQrwmybi389rsrJ77URveC4u3yEcL09PTdHZ2MjU1RX5+Pnv27Im6qtx7nvPRQCGSc6qtAPiTcDWbzapI+DLC+UnOzSwGEPGIdvaD6AbJKiDLCucOtXmKNfdX03naU6zpJeEdp7t9JDwYffYhoFDzHO5FF2rqsj8sioAWJ9Il1Tqi2vnwjGtGG7rC+zwlDf+02awgyQImgxz0VUFPGQ+zaVFUpz0PZHw1aSqRkvFwbSreOgntcamcyy0iIERlUwk31hAIKaCeHJ7mh3c+yc8eeJod797I2z5+FSVlxVGLGeGScq+i3NnZydGjR0lNTaW8vJwlrVktsDCjbWEJGccqjCrREmOLxUJFRQUlJSX09PRw5swZYmJiKC8vJysrS5csr0UbrmENxnhNknFYXeMff2JssQQ6eRVFYWpqiq6uLmZmZigoKKC2tjaqQtHgcwqCcFGLOIOV8fn5ebq6unxe92Cbzfkg4V6EU3inGSUY4b1KkEA2r+zkWnLReKCFtLwUavdU0naiU5OE+6DXfRNjmwqAPOeEJPWfpK5KqpPEIIVBOEVFn5xoEbVwixS1rDJmk+RRpy8gGVfc2sc2bikfBjRmKvLM6i+tUdtU5MhtKuEq44ZL4mqE2ruCYmBTUdsebpKKxqkBmBtf4M/fP0zLC5287Z+v4g3X79f1lBshHFJutVp9pLyrq4tjx46xJKuTcZMgsDQXQTD9KpXx1aysms1mysrKKCoqoq+vj6amJl/UcHZ2tiopd7vda2T8AmGtgPPSwWuSjHuV8WjJuCAIIUWciqIwMTHhSwIpKChg/fr1IWR9NbjY8YYmkwm32x1AwtW87ueThHuhhCNvGxDgcCEACAKyKCDKCrZ4GxWbS+g808OxP54mNTuZdXsqaT7cph3dZjSWMMh4jNmiljkCgFvWfi9FnZSWcDzjLqf+d0pbGQ/vpi5pFFGazJJnfAZNiVYFA8/4hYK0YEZRVmcpkHWKT8+3TSVcz3g00Ybe1J1olPFIbCpaJNVkEaneWUn32V4e+fSP+fl9v+Xa267hTf94+UUh5VVVVZSUlOBuUZ/QJ1ptoITfMyHa75TXWnk+VlbNZjMlJSUUFhbS19dHc3MzbW1tvv4fXsLvfV9We841m4oG1go4LxlcHPPxqxCJiYlR21RgxcKhKApjY2McP36cxsZG0tPT2bt3L2VlZeeViPuf82LB7XYzPj7O0aNHMZvN7Nq1i5qaGh8Rl2UZt9uN2+1GURRMJhNWqxWbzbZqJSQs65hJxKzmsY7yW21JT6BufzVms4nG+hZfnvjk8DTnDrWRXZJJ5fYy1X2LNxbpHjsmxtie5NJZqnbrpK1IOrFoYXnGjUipVpfJMNNUFI0xWMyyrhXjvECnMZHWuCKCyuEVGXCaVm2D0VXGXyGbipFFQtVqsjxpE4LEX9klBH63VJXxSMh46LlLNhUQkxhDU30L89OepK7JoSl+eMeTfHTD7TzzH8/hWIwsEjH0tCsE3Es+JUlClmVfKIHJZEbS4KMJ5sjuE9HaVLz3jvNZc2QymSguLuayyy6jpKSEtrY2Dhw4QF9fX4BAs6aMXxgI8qX3d6EwMTHB9ddfT1JSEikpKdx4442GzR8vv/xy38Ta+/exj30s4Dk9PT1cc801xMXFkZWVxe23347bHXkXr9ekMg6sShkHzwVtfHyc5uZmHA4HRUVF5OfnX1A/98XKGp+bm6Ozs5OxsTFiYmJCCk79lXDvKoH3b7WQJJn6Xx/xdLyMMb5JxWcmkluYQfPhdrKK07ElWpmIYnYtAKa4GE8BqAaGOkcZ6hylqDYfQRDobuyjbHMJriUnHU29gHYDLMf8Egnox1cKTu3PVtQh8zpW1PA84wak1KRB7MJVxhHVP0ezyY3TdX4nrMHQs/CcD2VcrT28vJzhrcgCrKJAVNeapJumYjKczAZ/5uHaVIwKkdXSVLwRmJbZwG0BFhW0POPhX1MS3rSenMwxBg60UL65hMW5RbpO9Wk+30vK//vb/3PBlfKRmTlN5V4w8OGHnie68V1IYiyKIoWFheTn5zMwMEBHRwd2u52ioqJVnXMt1tAAa8p42Lj++usZHBzk+eefx+Vy8Y//+I/cfPPNuil/ADfddFNAXLZ/fZwkSVxzzTXk5ORw8OBBBgcHueGGG7BYLNx7770Rje81S8ajVcYVRWFkZASXy0Vvby+lpaXk5eVdlJn/hVbG/aMX8/LyKC4uZm5uzkfELwYJ/+uvGmg9Zse1vtiQjItuGF9YImZwivWvq2Fp3uHpmrmzIPIBKLAgSWH9IHqa+inbVMz619Uw1jfBUOcIpBso32HMofRaYi869IKldU4bljKuv90kqn++SphZ2g6NFXizWWbJ8cop4+H46Y2gRoyUZRK9WmU86gJOWTScaATbP8JVxl1L+t5mVZvKcqFvcLKNv0VFbTtEZlMZX3CTVldEXUIsc71jngl9GJgcmuLJr/03L//pLFuuWH9BSHnf+JTm8+NMFt1GSioniGpcF0IZD4YoihQUFJCfn8/g4CDt7e0A9Pb2UlhYGNW9Yi1NRRtrnvHwcO7cOZ599lmOHj3K9u3bAXj44Ye5+uqr+da3vuVrPqmGuLg4cnJyVLc999xzNDU18cILL5Cdnc3mzZv52te+xp133slXvvKViGoFX7NkPNICTlmWGR4epru7G0mSsFqtlJaWkpubewFHGYgLpYzPzs7S2dnpi170pr4MDAwwMzNzUUj4z+/7LX0tAwBYbGascRadfpMeCG7I217CyAstvnzwkg2FTETpJc+uzmdycApZ0n6PSzcUIcsyHae6PWMQBGp2V9I9M6V7bFMYN0BBr9jQov2jVnSIVDjKuFEjdNmh3j1UCZNIi7Y4YCr0cfHCJpoAaNTMocjKqi0yigImMfS74vV6G9p/DKAfbai/n9G5g2sJwvWMW7NT0JOvVH3hXjuToq+MqxZ/htl9E6BIgNHvP4+3U0DpxiIkt0RPU7/mPoJJoGp7GX3Ngxz/4ymO//HUBVHKh6a16XaSLY5ZpsM/bpTj8aaaXAxiKwgCeXl5JCQkcPjwYfr7++ns7PT5zNdyx88T1qINw8KhQ4dISUnxEXGAK6+8ElEUaWho4J3vfKfmvk8++ST/9V//RU5ODn//93/P3Xff7VPHDx06xIYNG8jOzvY9/81vfjMf//jHaWxsZMuWLWGP8TX7i0hISDD0C4GHhA8NDdHd3Y2iKJSUlJCTk8OpU6cu+hLa+VbG/Um4VvSiJEm43e6LQsK9cDncOBddkKj/9RQl6B4YI9bvc+g60ws7o5sgDQ1OkZeXSmpOMq1HOwK2FdcVIIgCnWd6Ah5XFIXmw21IBQnoQXEZT6L0rAJLeiqpHhkPg3BKRqRRK20lDDKuKDC/oGMVicQTHAUsGhYZwS0Ydqk0giSJmFSKT72vyei1GRV46nvG9cdllBQTbZqKwyWjRwdVrSbLZDxEGXcGKeNqqnoENpWhw60BWfydpz2/1bJNxbhcbnqDSHnVzjKGu0ZpabAHPH4h7Cujcwua2806hbpax4sGr0TEoCzLWCwW9u7dy8jICHa7nY6ODkpLSykqKgqLlK+p4tq4VJXxmZnAPh82my3qWGiAoaEhsrKyAh4zm82kpaUxNKTdefv9738/xcXF5OXlcfr0ae68805aWlr49a9/7TuuPxEHfP/WO64aXtNkfHBQJaN6GbIsMzAwQHd3NyaTiZKSErKzs31LfGaz+aK3pz9faSozMzN0dnYyOTmpSsK9KrjZbGZ2dpaBgQGKi4vPi5ohSTIHnz7Kz+/7Db3NA9pPDOP6K7hBSlhdZKQ/FJuZ0aZxRnvHKajOw2w1IUsyJrPJd2PXgltHTQfCSlOJj43R1MdcovZ7LxgU8xlD/zniKgs4JZ1VAb3EkHBgRGhdc+qSr7SonAcbiYDFHPp7VJatMefj+FowKuA07KoabQFnFGkqPjuKbKCMq7zeSGwqWi/Zu4pVtqkYl9ON2WLCueik9UiH+g7L8Cfl7/7MW3nTP/4d1pjorjdjOquwJh0rlRpWq4xfTPir8dnZ2WRlZTE2Nobdbqezs5Pi4mKKi4t1ww7WyLgOLlHPeGFhYM+OL3/5y3zlK18JefrnPvc57r//ft1Dnjt3Lurh3Hzzzb7/37BhA7m5uVxxxRXY7XbKy8ujPq4aXtNkXE0ZlySJgYEBenp6MJvNVFRUqDY1uNjJJrB6m4qXhHubEK1bty7A0xRsR0lPT2fjxo20t7czMDBARUUFOTk5UV0cvST8lw/+jvjkOKZGQztcBiKMfGw3SPEqX+Foo78sfjcqAUwmEdEksji7ZLyz0T0uDDKu5/12m3T887qNbcIo4DQi4xrbFYfxG60o4NaZSKxWGVdkEHTee60sdMUJ8mqVcVnEpELGfTaV1aapRNuBUw5DGQ9SnM9ftKFafKHXpqLxuHffC5Cm4o/FuSViE2JAAMEU/nHnp+c5+Nuj/P6R53nrx94YFSmfmNeOLlQckd1Hwop9VcErQcbdbneAiCMIApmZmWRkZDAxMUF7eztdXV0UFRVRUlKy6n4crzVcqsp4b28vSUlJvse1VPHPfOYzfPjDH9Y9ZllZGTk5OYyMjAQ87na7mZiY0PSDq2HXrl0Avmz9nJwcjhw5EvCc4WFPrUokx4XXMBlPSkoK8Iy73W4fCfe2ANZrmfxKKOPRTgC8nUCnp6fDIuEmkwmz2Ywoir4L5+DgIG1tbfT09FBZWUlaWlpY59ZSwm1xVkq2FNDbOIhkkHOtBcENctx5+gorgMVMflUusfE22l/uCthcs6uCkZ4xJganVHe3xusvoYVzwVyacaDVpVO2mFHcCoI59Pso6TX9CSdNxejt15r/LYVDaAQkXTK+WmVcQI8hWkT1m7soi4aTECPIsqiqjK/YVIxiAKO3qWjKwCwr4waTsODi1fPV9EfPMx48QQgu4FR7Te4IbCpac6vUnGSySzJpabAHWAvLt5TgXHTQ26yxQipA4fo8pgZmfClL/3n7f/Hf3/49194WmVI+rqOMK+E33wTg2LFjbFxfo3t/UsNqG/5EA60JgFfsSU9PZ2JiArvdzksvveQj5auxJLymcIl6xpOSkgLIuBYyMzPJzNROMfNiz549TE1Ncfz4cbZt2wbAiy++iCzLPoIdDk6ePAngqxXcs2cP3/jGNxgZGfHZYJ5//nmSkpKora0N+7jwGibj3mjDiYkJfvOb31BZWUlMTAw1NTWkp6cbXuQudgOeaM7pT8LVOoHqkXB/eItxsrOz6enp4eTJk6SmplJZWUlCgrpX2siO4lhw0vVyH0npCRRU5XHucKvvmpJRkMZwjHYDHC9ECcTUlZghk1mkakcF9VEua1oSY+ivb1bd1tzQjtlqpm5fNV2NvcxPeTygtjgrxRsKODc9qXtsWxgxjVp2EC/kBTCpXJ8UnYCLcBJDjEipFgFTwiDjigKSThyeHEGBnurxZX0y7pxR/724FmSU2NXbSGJitG0qhsq4wURCb9VAtwOnJBpaZKK1qVhEkUjXxZWlZTJmqIyrRRuG//0oqMljyT7P0pyH3cYlxVKyoYjWo3Ymh0INYPblCXfFlhKWFpwBtSuV20qZHpul90zotWticMpHyt/9mbfyxg9rk3KHw4HdbmdwahJiVZ+CezGyaMOcnGzOnj0bdjt6L2RZfsVsKnpIS0sjLS2NqakpHykvLCyktLQUi8WyZlPRwaWqjJ9vrFu3jquuuoqbbrqJRx55BJfLxS233MJ1113nS1Lp7+/niiuu4IknnmDnzp3Y7Xaeeuoprr76atLT0zl9+jS33norl112GRs3bgTgTW96E7W1tXzwgx/kgQceYGhoiLvuuotPfvKTEU8oX7NkXBRFmpubqauro7y8nF/96lea7Xy19ne5ImhhfB4Qrk1lamqKzs5OZmZmKCgooK6uLsCTFy4JVzt/aWkp+fn5dHR00NDQQG5uLuXl5b4vnizLHPrdcX769V/re8KXMTM+R9OhVrJLMknLTUaRofVYB65aF5j1L+KCG5xmhdr91aAoDNlHaDzUCuvDn+n6jgU43TIxOs9xO9001rcQmxjD+tfV4HQ66Wnqp7WhA2dZou7xnfNOYjVUb98YDNrSm2Qzal4WteV9L8JSxg1bnKs/LCiCxyaiJ+AqApJo0lT1V62MG5BOTZuKC2Tb6iYCkiRiNoW++T4yHoYyrnt8HXVby6YiLWecXygyLo3NAtrFyqoFnA4tZTw4TSX0eJF4xnvbBskWRda/rhqAjlM9NNVr9w3wwrsKVrG1FJPFxNLcEm3HOw33mxic4gef/S9+9S+/5713vp0rPrDfR8rdbjfd3d10d3eTnp6OYrWARj6UayEyUaekuIR11RX09vb62tFr2Sn98UrZVMI9Z0pKCtu2bWN6epqOjg7+8pe/kJeXF3L/WoMfLlHP+IXAk08+yS233MIVV1yBKIpce+21PPTQQ77tLpeLlpYWFhY8QpvVauWFF17gu9/9LvPz8xQWFnLttddy1113+fYxmUz8/ve/5+Mf/zh79uwhPj6eD33oQwG55OHiNUfGx8bG+Pa3v813v/tdFEXhscce4+qrr454+c5sNvs+tIsFownA5OQkXV1dzMzMUFhYyPr1688LCQ+G1WqlpqaGwsJC2tvbqa+vp7CwiIGTo/zy/t8x3D1K5dYybPE2HPPGa7Dpeamk5aTQcsROYU0eeZU5tIfpGTdlxjLcYWdxbonSDUVMTc9F94NWQDEbvw8Wm5nC2jzsp7pAgLzKbDpP9oJRnGIYVn+9QkwA16yEJSX0cT0yroRDmPWUcUU/+FCWBEyiTtSd978OEIKuNooLlFUq43qkU5b9VNngbS5jwmp4bklQtZl4FW3DiYKOMq4o0RVwegm8oU0lyP6hl3HvD6NUEdUJxoJnLGLQlzA0Z3x1TX8QoKg2n4G2YRyLTko3FtF+ohPHgnGHzYzCNEwmkZaGdiq2lpJflUN/q3EagmgSySnL4sl7/ptf3P9brr3tGureVElPXw+xsbFs3bqVlJQUFg++rFlX4piNsAOogC9UoLCwMICUl5eXa4pKr1QBZ6SF/8nJyWzZsoXZ2VkGBwfXunfqYE0ZDx9paWm6DX5KSkoCbGyFhYW89NJLhsctLi7mD3/4w6rHd1ENZJG2I+3q6gppRer9++Uvf+l7ntr2n/3sZwHHGhoa4rOf/SwlJSWcOHGCb33rW6SkpHDNNddE5aN7NRVwTk5OcuLECc6cOUNycjJ79+6lrKzMR8S12tZbrdZVeQjj4+PZsGEDrn6B+97xb3z7Hx+ht3kA56KLxvoWRJNAbm2WJhFMz0tl3Z5KT7v5w23Ikkx3Yx99zQOYbWFEXkmwJLsZH5hkYWaRxvoWEtKNfWZaMNkspGQnq2+zmKjeVY4l1kJrQweLM0ssTi/RcaKHzMJ08mu0mwYAxMbrae4eGCnj0qL6lUrf8y0gGaQ16CZvGHmEjeL7lgmWKIfeUBWXsU1FL7bRs12PjAvgVL+Ri4Jp1R04tQivvKzGG0cbGoxdZ0KqrYyH13AoQHWXlbBvgs55feKo9pqUxeXPYCQwazusAs4IJmspOSk0H25nYmiK+ekFGg+0YLGaqdtfjS1OfRKRkBpP7b5qJgenaTnqiThsP9FJf+uQh5RXahdh5VRlkJgRT1N9K7MTc8v2lSe56w0PMHBknE0bNpGSkgLAok6bXE+tSPhQZMVHGryk/LLLLqOgoIBz585RX1/P0NBQSPTuK5mmEg0SExMpLy9fs6noQVYuvb/XKC6qMh5pO9LCwsKQ+MEf/OAHPPjgg7zlLW8JePzxxx/nqquu8v3bexH04qc//Smtra28+OKL7Ny5k5MnT0bU9CcYr7RnXFEUnx1lbm6OwsJCNmzYcEGUcDXIsscT/rNvakcULs4ssdi0RFZRBilZybQe89zs0vNSySrOoPVoB+MD6l5rt9NtaFMR3SDZAp8zOTod3exaAbesMD81T92+ajrP9LAws+hRvqozmBqcDckj9mKke4yFWBdcmaJ5+KXZJawYdBTV6HTphayRXmK12dAz2MtuAaw66vUqFGLjIkXPdte8hCUx8LkeMm4wUXCLmFSsIL7tusq4gOJUv8S5FhXk+FWScbeIIisIQasiXrXf2KYSfSSl1me2QsaNlPGV7eFaVAAUA2KkTsaXxxTU1EoJnigFNwWSDSaKQZgcnSF4Kj435SHlCanxVGwppe1EB85FF5YYC1Xby7C/3KVpZWk/4bGqVG4rZX56kYF2j1JeVJsPCvScU28mNDe+wM+++lue+8FLPk+5Q2NWaRZFluYj84xLkhtJ8lzHveKTyWSiuLiYwsJC+vr6aG5uDkh8EAThb46MryEMrNlULhlcNDIeTTtSk8kUEg/z9NNP8973vjekcDAlJUU3SubTn/40t956q+/fiYmJzM/PoyhKVDPvVypNxRvH09nZ6fMxbdy4MWAp8EKT8MO/O85/f+d/aA/DVwkw0jPGSM8Y63ZVEJMYy+n/a9Ik4V4Y3fTBs6SlBPuQTdERLNENikXA5fD4whPTE9j4hlq6m3oZaBox3F8xsKkIYVW869+0JA2H0tK8fu2CR13UIbR6liCDYRuRca/QoZYYobgEFJeRMm5wfN3GOCLuBQ2bittYPTaCLAkobhCCRFfvazIeu/Y2o2ZNsiKoprGEq4z7bw/XogJhpKmoPbYger5hQRuVcSf4t+kJej88FpUIPiOdp85NztNY30JSRiIbLltHT2O/LyHFCF7/+MbLaxFEgVMvNoa1n9dT/vS//i/Of65UfU6ixQpoxx6qwWQyoSgKbrcbURQDSLkoihQVFVFQUEBfXx8tLS0+Uu59/sWE2+1eVTKK93WtYQ2XOi7aL9OoHWk4OH78OCdPnuTGG28M2fbJT36SjIwMdu7cyWOPPRayRBf8g05MTESW5ah93xfbpqIoCouLi8zOznL27FnS09PZu3cvpaWlPiIebEcRRfG82FG8xz7w3w18aucXuf8D/8Zw5yi1e6pCVEE1JGbEU72rnNbjnbz8whnKtxSTWZi+qvH4EHx+kxjV7FqQQDZ7yE3ljjIEEU6/2IQiKVTtDCPc32gSEI5nXBAQdDp1yhrENSZOI6bBu5+B+mzkGdc/dnhWDFlFuRdk0XhsBtv10mJkWQCXFhkXkA1sQUaQJVE1ycZbNGqojK8iH15RBPViSdl4IuAt8vTCqhfUHoLIlHFZEhC835Gg16vIQStFQftGUrwZxtCo2FpKXGIsx/94Gseig7p91VjCsMMlpsVTu7eKs39t5tSLjVRsLSWjKDWsIVVuKwVBQDKr/44SzJHnantJtyiKPlIuSRKyLPvue15Sftlll1FSUkJraysDAwMsLCysqldFpFiNMq4oSsh9fA2BEFjxjV8Sf6/0G/oK4qIp49G2I/XHo48+yrp169i7d2/A4/fccw9veMMbiIuL47nnnuMTn/gEc3NzfOpTn9I8lldZn5ub04zn08PFUsYVRQlQwk0mE7t379ZVwkVRxGKxXFA7yuyEJwUlMSuepPRE+s+FfoYp2cnklGTSdrwjwOLRerQDk9lE7d4qes71MzcZahcyW82EJdgFTbKSs5MwaiekehgJFKtAUnYibUdXOvPNjM4xMzpHbnk2sYmxdJzsCtk3PS+VlOo89L7F4d6QxCUJyaL+uUkaySALM0u602o9z7jnvrwKZdyIjC8TMKvFRrCXxr0kGxZwGh1fj7TKsoAiq1/iLDExq1fG3QKofCZhK+OrsaksK+Na+0k6P57gokh5dBaIU39yECLtwOnv+Q4m6q6gaMxgJ0dEDX+A5OxkFEZDHvd20/XaTsCT4uRVyiu35dJ6rMNjjfNDgJXlYKvvce9xyrcUszCzyKA9dOUsuywDt+Sm7XgnUqxZs8A7zmRmVnWLNryXPK9q7CWtWkp5YWEh+fn5NDQ0MDk5yYEDBygvLyc3N/eCK+VrNpULjEs0Z/y1iFWT8QvdjtSLxcVFnnrqKe6+++6Qbf6Pbdmyhfn5eR588EFdMh4TE4PFYonaN36hPeOKojA+Pk5XVxeLi4sUFRVRXFyM3W4PUMJfSU84wOzIPLMj8xTXFSBLEr3Ng6RkJ5NXnk3rUTvNw6H5vgCSW6LpYCuxCTHU7a+m9agdl8NN1Y5yZsZm6HS5wRSGarR8k/Oes7G1LyrPuAAgCEyOzqvy2kG7p6tW6cYinEsu+lsHSc5KIjErnoFzQ8zYRdivHW8ohFmYIji1VSsPOdGINtT5yPUIrZ5v2bOzgm4hoRFZXj7+4rTT35DgObdL0Iwe9O1vaPXQSRyRBRBEFJeCYAl83sKsCyVxtWRcRLUuzxmeMm40kdCHlmfcZHjskFhDZ/g/GItBk5vg75M/GY+NjwVWrreypK+MR5SkAkyNzrB9exlzk3MM2kdIz08jIz+NliPtmvvMjM3SNDZLclYS+RU5tBy1I7kk1u2pZNA+omtlsb/cDUDVjjJmx+cY7BghoyCNtNxUWo+uiA9SsrZNY2kk8vtP8CpvuKQ8JiaGnJwcLBYL7e3t2O12ysrKyMvLu2CkfLVkfM2moo+1NJVLB6sm4xerHemvfvUrFhYWuOGGGwyfu2vXLr72ta/hcDg0/WqCIBAfH6+b5qKHC2VT8ZLwzs5OlpaWKCoqIj8/H7PZzPT0tG858kKT8IO/PUr9r4+GvV93Yx8p2clsfeMG+loHA5QkPSzOLdF4oIUNl63DZDFx8k9nPRvWFYZ3YgU2vGkDwy2ec7rT9S0bRsci1gpzS5pP6TzdQ0pWEluvXE9/2xB9Zz0FxkaOB8kd3tKwqEPGY5MSgYmQx40ItRCcKegHIzuEaHAjlIw8316biis0xk9xa1tvfOMzIPu6LeO9EYMOEIJ4nywLhsWBRh0yFUnEhBmC1nAUX5pK9BMJY2Vcfz/dYwd95qJOB9dguB1u9G4bIWTczya0MLPkm5ApLgUluKA5aMyR21QE2o51kJAaz5Y3bmC4a0SXiPtjemSG6ZEZ6vZXY7VZOP1SU9i/2dajHSSkxLP1jRsY6R4NIOKgT8bH2kdJRr9HQTC0PlkjUu6NGSwoKCAvL4+BgQE6Ojqw2+2Ul5dfEFLudrsjjjZcQwRYK+C8ZLDqX8nFakf66KOP8ra3vS2sc3k7RBoVjiQkJDA7G+kioQdmsxlFUZBl+bxcwBRFYWxsjK6uLpaWliguLiY/Pz9AVfBeUN1u9wUj4T+/77e+lIC8imyssVa6zvTq7puSlUReRQ6txzo48fwZzBZTQCKJHnJrspCXZM78xbN6klueRWxiHOGVSHmKz06caCd22kndvmqaB0eZj/IHLQByrAVRg4wnpidQWJNH27EOTrxw1mO12VdNT1MfMwbe+bj4GH9RUHsMOmR8amxJtd2KkYrqXNJJUjEipG4ZvcJSQzIte20ToWQcDZtHwP5GZDwMdVlR8avLinGXSlkWMJm03zvZJeBccIe0clKW279jQCYjIcwh+xrljOvMDqWgSYLgDv8HE+m1xn+y5lHGPeKHrPJbCI42jNSmIlpE6vZX03Gqm5efP4MgCFTvrGByeIqR7jHdffMqcrDFWX1KeEp2EknZCfQ2DqJI2u+PyWKiZlcFnad7OPH8GQCqdpQzPTbDcKfHMiMlaq8mxFujKG40mCBrkXL/Ak5RFH2kfHBwELvd7lPK8/PzzxspX7OpXFgIihJmOMDfBi6l1xIpLtqUNZp2pF60t7fzl7/8RTVY/ZlnnmF4eJjdu3cTExPD888/z7333stnP/tZ3fEIgkBCQkLUNhXvxUqSpFVduLwkvLOzE6fT6VPC/S9gsiwHXNSampqoqqoiMTEyRUUNsixz6DfH+Nk3fxMS1TXQ7rFm5NVk416SGOkKvKElZyaRX5VL61F7gBLudkk01rcQlxRL7b5qWhraQlQmT1zYAgPNwwGPe/2XpqJMFUNGKEQ3SElW3GOenHGhNLzCKi2klWQxMxo4QYtPiaOkrpC2Ex001a+8Tskt0VTfQky8jfyqXBW36goWZ5eIx9h2o6dSSor6Tc2IUOt6xo2ufQbbJY0CyZXje85tsdoITo2Q3cZpKqsh416biBoZtyXEG64KGJFxxS0uq+DBkX3L5zUsPg3fShJyboNoQ/1jB35mVoNITX/IOsQUVAo4/T7fhVmHbzIpLIWOL/g1RWpTsSXE0Pj7FVuJoii0HGlHEARqdlUwMTjJSM94wD6pOclkF2fS3BCooE8NzzA1PENqTjK5pVk0H7EjS4HXsOqdFYz1jYdYWVqP2pcnAuVMjcwwk6D9u3dMLWEO47rgj3BdG15SvrS0hN1uZ2ZmhtjYWN+Kqte+kp+fH0LKy8vLzwspPx9kfM2mogOZsMIB/mZwKb2WCHFR148ibUfqxWOPPUZBQQFvetObQo5psVj493//d2699VYURaGiooJvf/vb3HTTTYbjSUhIiNqm4r3ASJIUVateRVEYHR2lq6sLp9NJcXExeXl5qiTcG78YExPDnj176Orq4siRI+Tl5VFeXo7VGnlFvh4JD8ZA8zCiKLBuTyX9rUMIAuRX5dF23K7bbnphZpGm+hbS81OXvZt2KraWsji7aNhuWpJkTzKKAQQJJL+b3ZLDtaqlrvHJeep2lDMx6GkkVLqhCPvJLhp1XufSvIORjmHYUaY9zjDHZNKZgUgaxnBbXIzuRUw/i1v/PTbyusvO8NTfxTl3iGfcYrYiO/WLS40a57j1lPFlMm5STAS/QbPTDuQ4/cJtSRKxWHTSbdyCqmdcWe4saUTGV5OmYtT0R9Hx+QcTdXkxErtdZGkqkl+WuP8295zK+xr0UKQ2lYXZRVVaqygKzQ3tnmvY7kpG+8Y9v+2NRbQetTM5pF7XAjA5NM3k0LSvN0JzQzvFtQW4XW5dC4xnIuAh5fF/t1Fzoh5JrKQX4VJTSZLo7u6mq6uL9PR0du/eTWxsrE8h95JxLzHPy8sjNzc3RCkvKCiImpS73e41ZfwCYk0Zv3RwUcl4pO1Ivbj33nu59957Vfe56qqrApr9RILVkHGvTSRS33g0JDzYjlJTU0NBQQFtbW3U19dTWlpKYWFhWBc9WZY59NvjPP/jlxjpGQ2r5bNnP4X+1iEK1+UhCAItywWX4WC8f5KUrBRqdleyOLtIf1t45wwHohvkeL/JkCBEH4+kADYLPef6qNhSiqIodDf2sTRv3CHPKGc8XMTF2ND6Rro1lHFJ0s+Ektw63wsjJcJge9g2FRViJS0pusq4rIiGvms9Mu4lu645CWvQGyQjhqGMG6jTLnGZcAdes+TlJjerUsbDiDbU2y+iAs4IbCpGImVImop/l02/75I8r3KgYGU8gu6b4QxOlhVaj9mp2V2JoigMdYyEfw0bmMS8bEnxEO2+sPZTFIWppSVAvZZFMPh+q+5j2HhJYXBwkPb2dmw2G1u2bCE1NTVgu9di6b3HqJHyoaEh7HY7HR0dUZFyRVF8PvVosBZrGAbWPOOXDF7TlRWrIeMQWRGnoiiMjIzQ1dWF2+2muLiY3NzciEh48Ni3bNnCxMQEra2t9Pb2UllZSXZ2turF2kvCf/7N39DdtHIjqdpRxmDnMLNj2nadpPRECmpyaTve6VuSTc5KIm9LCecOtem+7vLNxTiXXNhfXlHCK7eVMjU2y6iejzPcpdhgMi6yqh90cmE6Qt84Z//aDOBJe9lXTevxDlxL2s11knOS0HWlhrn8tjixAMXJqttcovrPdWnehaqZfBmGWdw6EFZNxgXN87iWZNBR1hVZ0LehyCBrTFAAX2yiWTQTnEIjWG2Gyquhb9tHxgPhXvB8TqtKUzHMKBdVfyPh2VQCt8XHx6Fo1ywHnTjCnHG/74f/Nps5RmXf4HFGpqgaBQNV7ShnYmDSdw0TzSL5dTlMDU4zP6Fd25KYnkBBVR4tDW0ML1+zMgvTSc9PpaWhXTeNrWJrKZOp2kXlosF3TA0upwtTrLrX3Hs/cLlcVFZW+rpv+iPYU65FynNzc8nJyWF4eDggfaWgoCBs4QfCj3VVw5pFxQBr0YaXDF7zZDxazziEF2+oRsKDq9YjIeHBSEtLY9euXQwODtLa2kpPTw9VVVWkpKT4jq1Gwr1oPdrhKULaU0HXmV6W5lZU4MT0BIpq8mk9HuiVhpX0AU/BZSwdJ7sDtpdtLsblcGMPehw8He1Ek0jt3ip6m/uZnVj5DGITYyjfVMwxQQiLU/sr4wXVuUxl2tA33ehjcnIe2/SKTWpxbonG+hbf5KP5cFvA9SK3LIuEtASOjs0C2o2MrDarbst6L/SWrd0aqSh6lgTQ9x/rWSU8TzDwCBsVYC4f3xwTAwQyPtktgks7tUSWBV1Sqrj11W3vvs45iWDq53TJuMPIMJdl0PoZyi51m4q8uEw+DJRxl15jnlXaVPSLQwO3LU4tEhN2oodxAo0/ZIcfEfMb8/yYWlXt6tJU4lLjKN9S7Isc9MITuyqHpJzIbpn+xiFMFk/PgwH7MFN+UayWGAtV28pof7mLc4cCr3+jveOM9o57SHleKi1HAkm5tyC0/UQnjj2bNMdsMVnU0kp18fFNd/Kez/49b/zQZVhsnmvf/Pw8bW1tTExMUFpaSlFRkSEJDpeU5+TkkJ2dzfDwsE8pD2c11ntvXPOMXzisRRteOlgj46sg43qNfxRFYXh4mK6uLiRJoqSkJKTJwmpIuD+8S4vZ2dl0dXVx4sQJUlPTmGqd4+l/+V9VEu4PySXRfKidxLQEyvYW0982SEF1Hm3HO3S90rBScFm2qZiF2UXiEmNxu9wh5DwYsiTTdLCVmHgbdfuq6W0eoLAmj84zPZw90ILy1u26+/teuwTmjHgKanPpaxpkyZUCpdlh7RsCBRSL+k/CO/nILskkMT2B6dEZUrNTPDf4jhGU1+fqHtq95MIcQglDIejcmGWLem2AYpCrqOhGG+qPRzRSQh3hqcuL86GsVZEERMmjfptNoQPxkGEdsu0W9HPGdQo43ZiQZZNufKEkC8iyiCiqv0mKS8RqtQErkzdZEsDbBdNworKKAk6jpj+6DYUCyZEQQfMjo2tTsDLu//2w2la+v8qi2uwr8J+RpqkszCxif3mAzOI0ElMTmZuYJzkz0bg+xeXpeWC2mn2kPLcsiwH7sOH1z0vKs4ozSM1JYaR7lOySTJoPr/jJpRi9NCIlnNKYAIwPTPL9257gV996hnfe+hZK9+UzPDpMXl4e+/fvj7iGKFJSPjIyQnt7O52dnbqk3Jv6tZoi0DUiboA1ZfySwWuejEcbbQjqNhVZln1KuCzLPjvKhSDhwTCZTJSWltJ3Ypjvf/ZJBDOMd09FcAQFQRRISI3HsejEuahtywjZU1GIibNii7UyPjAZ0X4InsQSSZJWohDDvAaLbnDHwKy3i6e4Cs84gEb3Sy8kt4TZYiI+KY5F/whEU2SKoRb0yLjLpP5zNcrL1rVyGBAx0UgJNbKpLBNit0o8ouIWEFzLz1EZoqwY2FTc+lnhXguJWuKJJJgAz/4mDTlGlkX94ztFpKCfiL+SrxgVn+plpBvaF4Rl4hv0unzKuHH+uu9IRv4OPxh9j4NXaWS/1BT/91JSmcQFfxfdEdpUvKeen17EEm9GsHiSncKF2+nGseAgISXO02reIDnGH9Njs2QWphOXGIsSVPQsx2h/FkIUt2DvuzQ5PM0ffvQnnP/m4q0feyOX7a/AYo08TMB33CBS7v0LJuXZ2dlkZWUxMjISoJQHq/HeJJU1Qn3hIMjGVsK/JVxKryVSvKbJeGJiIsPDw8ZP1IC/TUWWZZ8SrigKJSUl5OTkXBQS7j22mh0lJsFGXm0WA+dGNL3UCanxFNcW0HaiIyCmq3RDEc4lp27BZcl6T3OeztM9vsessRbq9ld7lmgX1L0Z1lgLldvK6G7s851z0D683HY+JuycccENSyjMjsxRu7eKpqU5ImgoGHgsALM6AUjNSSanNIuWI3bG+lYa71RtL2NqZJoJgwJOW4wFzcpMP4g65NghqI9NNiDMTp03xNDX7JTQyxlXDNNUlvdVmUgokuCxGSkiamv1smykfOsr53pk3C16O1UKmEQNMi7pZ5ErLgHnnDugNE/xt74Y2FRkHbIZjiqsNjbf5EUQNVX/4AmOIIu6HVwDnisIut2Q9GwqroWV1RHFofLag76LEeeMW03L150uBppWGsylF6VgtpoZbteu6siryCEm3uqz1fW1DGKJsVC3r5qec30BVjp/CMsJLb3NAwHXzpzSTJIyEmk92oFsU38dgltGjCBWEvC9wdlVGSxMLjLQ6Ll//ejzP+eZh5/j3UH2lWgQrlLuJeWjo6MhSrl31XjNonKBsaaMXzJ4TZPx1RZwms1m3G43g4ODdHV1AVBcXPyqIOFeLM05GGgaISkrgbiUWIZaV0K24lPiKakroP1Ep+pybOcZD8Gu2VXBUNdogJ+yuK4AQRRUGwI5F100HmghKT2B8k3FnPPzWVtsZqp2lNPT1K/aatrbdl4ozg7PMy6BHGPy2V5cm7KjL+BUwBTU7js5M4n8yhzNCLTWYx2IJpHMN29Abz3AteDCFo5NRU+pNplQHAqCLcgKYOQZ12vaY1TAaeQZdxj51ZcTTVTOo7hFRKd2saIsi0g6Fhxjm4pnX5NoJsSwv7yUr7cyIMmCp1BS6/gqBZwByriOTUWSBWQdBmzkGfecQIWMh0Fgg59jtVpUve/aB1DArEXGg96PRb8CTr/vqc0aHHTJqpv+mK0W1WvKeM8UALmVWVgsFnqaVqpKUrKTySnNpKXBHpLe4Vpy0Vjf4hMXus72MT+1Qsort5UyPTar2m14qHOUoc5Rcsqy6LKqv1figkQ0t+D04lSGW0MnFv72lYtJyrOyssjMzGR0dBS73U5nZyclJSUkJCSsxRpeaKylqVwyeM2T8Wg947Is43A46OrqwmKxUFJSQnZ29kUl4Yd/d5yf3atOwoMxMzLHzMgcGaWpiKJIamYKXad6DT2RAM0N7R6VaH81CzMLgBCghGuec3yOpkNt5JRmkpCWgMVmob91UPWGGQzPjdFYFRHcBChPkSxLq8EtK9RsLkFyScSnxNF6zK56s/WHLMmM949DXYHmc4wIsxcxsdrJCwDyApiCghRsCXG6+0iyzg1RMPguGrydRp5xL1lWs6mYTBZEtImnUct6WRINbSwArgU5tIBT9p5DXZX3btO1qTiEEDLv36RIL9pQlkSDnHHj74va2KIh426nHJFvWZAV7Xtm0Ab/74c/152bULHABb2eSG0qjiVnSJa9PwbbPGp5fnU2ZquFhOR4Wo/aaT4cOsn2h1dcsMXZqNtfzfyUp0bAyIsOMNQxgmQpVd0mLrqJ+BaswHi3vg3Qn5Rf+5m3cuWHLsMWE3kvCi8iJeVjY2O0t7fT0dGByWTC7XZHFW+4Fm1ojLWc8UsHq2eFf8NITEyMWBmXZZmBgQEOHz7MwsICycnJ7Nq1K8AXLssyLpcLt9sjN5lMJqxWK1arddVEXJZl6p8+yqd3382PvvhzLDHhKx/xKXFk5WYyPTjLzNQMltjwL5A5ZVkszi4y1jdJTHxM2F3gTBYTabmpjPaMszS3REKK3u0ycohBZFwRhdXNrk0CMQk2hrpGkCWZ+HDHa2BTCfcioxhkPssqEXRGnnG3DuGWDci2nocd0I0mhBVC5Vax2HhVZG1lXNBVxhXJQBlfJsMmIfQ34l62zei9d5KsbVORZAHRLYR0CA14LbrKuD7RD4dUh6jQsnExr/fc/hB0Vk7UD6Bjewou4FzwO7bfeym7VK49wcp4hDnj4VjfRZOAyWZiuGuE6fFpsksywz5+fHIsbpfEUNco8SlxxCXpT5wBJJuoWU8iLl1Yg2xMQgx/fOzPfHzTnfzhB3/C5Qi/BkgNXvItiqIvQ9z75yXOgiCQmZnJ7t27KSwsxO1289JLL2G32333w0jPuYY1vBawpoyHqYzLsszg4CDd3d2IokhZWRkzMzMAAST8YttRhrtHyavOZn5mgelB9WLU+OQ4StYX0v5yl0/lHWwexWw1kV+XzYh9HNeS+oWyoCYPW4wlIKLw3KFWsksySUhNCMgP94fJLFK9s4JB+7DvnNOjnverZncFQ52Bthd/pOWl0B9mEx1BAcXvZpdakKKf960HBRRB8Cn35w63YbGZqdtfTcepbhZn1cOY8ypykHJTmNIfaVhDcDskQHuCpUbGF+YcoB5N7tlHp4BTNrg/GkVNKSptzf3hJX6KSsKDa/m1aHXZlBVRPyNdEvQ948vFpa7FQNKjSAqKacUzrn98jYmCJCK6Qz33/mq4njIuGSjj4dhUQmwdYWZWBxB9WYnYtyzI2vPdkGZEC/42lZX/t1hDV3P830tZNp5kBiM5OwlBFEIKKL2o3Oap7+g5PQBA3zlPLUxhXR6SQ2agXb02JjYxhrJNxbQcsTMxOAVA44EWYhNjDK8N6RsK6NIYb5w5GguJwro9lYx0j2kWysemxJBZmEbPmQHfY9+/7Ql+9S+/592feetFs6/ExcWRkpJCaWkp7e3tdHV1UVJSQlFRUVhdq73HWYMO1jzjlwxe02Q8KSmJubk534VEDV4S3tXVhclkoqyszNdYZ2FhAYfDcXHsKN/8Dd2N6naUgZZhBGGlXf3MuIeUxyXF6rZzdzsl+huHiUuJJbMsLaDIs6A6D1ucFfvLXarnHO4aZbhrlNKNRTgWnL4bmWgSqdlZwVDniKa9o/lwu4/k2k92+bLNU7KTSS9IofNkj2cc4V6HRSjbXIJz0UnL0AykpoW5YyAEKZDYA7gcbhoPtJCQEkftvmpaGtqQ3B4WlF2aSfJykdbkehvoLJJbrGYwbuSJYGQbUVFbZYN9JI1mQWCcpiIYJEoYkXEv0XapECvZIBPbSBk3KrD0FlDKzuC4vcBzaMGjXmtbaERX6PsXMLEw8owbvDYjBJPVcD3W/s8TnTKRLpCKhIjYPvh/WxQFlAW/PB6/jQvTKkfw2+6JX4yMiE2PzlKdl0pGQTotDSt1KoXr8hEFgbbjHar79TZ6SGvRhnyc8y6GOjx2FtEkUrO7kp7GXlVr3eLsEo0HWohLivUUjr7chWO5W29qTjLZxZmcHB/XHK9rYolYnYm3KhQ4d6gNk9lE7Z4qhrpGfBMEW5yViq2ltB7tCCDiXoz3T/hI+Xs++1auvOHCknKvPSUjI4P09HQmJiZ8hZ4lJSUUFxeHRcrXoAMF7R/j3yJeu1z8tU3G9ZRxrx2lu7sbs9lMRUUFWVlZAaRdFEWfHeVCkPCjfzjJk1/7b00S7g9FUTh3qA1bnI31l61DUBTaX1Yn4cFYmFpkYWqRlLwkEtLiMQsmus6E1+6583SPbyIgmESGO0ZoOqTvsYYVkpuYlkDF/lKWlpboPNmzopZHch8WBOwnuzy7bI0yYxyP4ieb1ecBc1MLNNW3kJ6fSnZpFpLLTeuRDoY7PQWxioGS73ZIhOPaNLIMSM7QZBA9P7ogKcgIOo119MdjNYpKkwQUWdt67lW21bqHeolssNVjZWwCks5rk2UDZdypboMJION6hFjXpiIiuMBsicE/Jkf2V8Z1Yh+NJhJhKeMhZNwUtN04TUVYkoiUjCuS9pfGf0ySJOIfNGryU4IlSeV7JQXuGzEEgbG+Ccb6JsgqziCjIB2300XrUXUSHoyeM57CzqIN+SQkxTHaM0FTONfPmUUaD7QQnxxH5euqAYGWI+1MDk0jbdG+Hgmu6JmH5JZoOtSKyWxi3d5KTKJIT1CiixbG+yd45NYn+OW3fs8/fP4dXP4Pey8IKXe73b4CTkEQSE9PJy0tzUfKu7q6KC4upqSkRJWUr3nGjbHmGb908Jr2jKuRcUmS6Ovr49ChQ/T391NZWcnOnTsD2sx7PeE2m42JiQn6+vp8vvDz4Qk/+JujfHrP3dx3/cPEJ8cRn6xfoOdFXFIsFVtKsJ/opK91kGKdgsJg5FXkkJGTTt/ZQRYWFknNSwprP0HwpK2M9ozTfryDnNIsbHHhFQslpieQU57JuYY2RnrHKKjNCzxwmBAkSC71dL9cjWdcWD6vYlb/DNNyU8gqyqD5UBvzUwuB769BzrgtNrz3RBBEBJc22bFaQhNZ9JRxT78a7bxuI4+xtKjvYxHQV9e9aSSSSqqCd1vUaSpG0YPeaMMgsh+uMi7LoQWa/ttEN8ghOePhRRtKkhhq6fCOT4mugDPU0qMxkQhRxiODRSchI4CMB73vgt/tRnarkD+/oUTafRNWPOPxyXFkFqTTeqSdmbE5qraXhX2M3IpsFucWaTrYRnxaHJlF2l11/SGIAsV1BXQ39tN1tpeq7eVYYy1Iidq/e71uu+GiqDafqeEZmhvaya/MJTVHx6/mB7PVTE5pJj+880k+uvEO/vc/z5+nXBAE+vr66OnpITY2NsRTnp6ezq5du9i6dSuTk5O89NJLtLW14XQ6Q463BgMorFhVLom/V/oNfeXwmlbGExMTWVxcxO12I0kSo6OjdHd3Y7VaqaysJDMzM+CCEGxHycrKIi4ujra2NgYHB6msrCQnJyeqi4iWHaXpYKsvK3yweVTVD+m1o3Sc7vYp4YtzS0wOT1NQnYvJbNJU13PLs0lIiQtIBhixjyOIArnrspgenGVhajFkP0GA6p0VjA9Mcu5wm+/xxvoWkjISQyIN/ZGQGk9uZRadJ3toO+o578zwHDPDc5SsL8TldNMeupsmBAkmnU427qvmZfNSOF3n9RFrBT8PqH+8oXdJuK9lEICKraXMTs4xYsAdnAsuLCqFhGoQHBKKRvOhuQkHKUGP6UXkKS4JLGYPSVTtcmkwmDDCaWRJQDRrZHV7CaIohsQyKm7T8n+1POMGNhVZADy+blElK9yrTAcf359AG/m2tZR3SRIRAVdQEZ7/ufSjDbUnEt7XZYTgsasp4yH7BBH92Ch8y+4lN8SrE3L/c0pBKwNOx/KXSQJFzZ7hN67g1xIOBLNI3b5qOs/0+K6DQ50jDHWOkFeRQ1xyLO0aCSjpealkFKTRcsTue6zrVC+CKFC6pYiZkTnG+ydU963YVsrs2FyALa+x3rPql1iWwajqXmAyyPhXhTdnvDiDxPRE2k+svJ5zh1oxWzz2lYGOYc2anJzqDObHl3wq+tK8w6eUr9a+MjExQUtLC5IkUVNTQ2ZmZgAZ928ClJaWxs6dO5mYmMButwco5d4uomuE3ABrnvFLBq9pZTwxMRGAe+65h5qaGv76179SXV3Njh07AiwpwekoZrPZl47ivaBUVlbS1tbG0aNHmZqaCnsM/kr4/R/4N1XS7M0Kz8hPo3LbisrjLSACz8VfrYior2WQ7sY+qraXkVGw4qXOLcuiansZg/Zh1YguRVYYPDeC2+Emvy4bs3Xl5lizq4LMogyaG9oZ7Q31RM6MzdJ0qI3s0izKt5T4Ho9PjqNyZylLCw7ajnTidoYyva6zvfS1Dmq8W+oQ3eCKMdNY34LC6mbXggJyrCc7MDEtnrp9njjHpoOtqrGJ7Sc6GekeIyE9IfqTBsGmlz+tQlxlvRvW8uRNqxDSSBkXNIrhAk6h10nSTykVghXq5cJSzQJOWUDSeW1eoqypIi8r08FxkWY/y4yRb1uriNDndw8au79NRZDVW9aDh8xrHTtci0aoTSXcJJWV/ZwqE20j6H0n/Mcku4II9fJu8rz6/soqlXFbnJXG+paVLr5+GGgfov14JwXVeQHXJK/fe3p0JoCIr4xJofPlHiYGJynbWkRaXopvW35lDqUbimg/3slwdyjlnp2YY2JhQXO8Jp3Cak0IArV7qxjtmwgg4l64XR77ytyEpwlaSvaKUl64Lp+idfkMtYwxOxaaIua1r0SjlM/Pz3Py5ElOnTpFbm4ue/fuJScnB5PJ5Etf8YpZbrc7wIKSlpbGjh072L59O9PT07z00ku0tLTgcIRRZPNah3wJ/l0gTExMcP3115OUlERKSgo33nijbppeV1eXz4IV/PfLX/7S9zy17T/72c8iHt9rVhlfWFjghz/8IQC//e1vuffee7nuuutCcsK9BFwQBMxms+/i4g9BEMjNzSUrK4uuri6OHz9OVlYWFRUVxOrkRo/1T/D1d3/H11zHCKO944z2jlO5rZT45Dhaj3WE5REET3Mas8XE5ivW41x00XSwhcGOEcP9nIsu+huHiU+LJb8kjfmxRZobwtOtvYVQ1TvLMdlMtB3tpO2IcTZvpBDcICV6lBynS89lHB5y6gooWF/IuUOtYXnuFVlhdnoBvQJOFCFsH7w064QE9e+NGuEyx9hUnumBtwBTi6gJRkkaYdgl9Lp4+p/XvSBjjvdTxr2EVsPOIcsikp7q7/Wcy+olhd7uoPPTLhL9HnfMrvgD9H3bemkqQsBrCD4neD5uWRYwmULJpyxrp6mEm4oSzImDP2MPMQ58UvDkQYzGtxwmGQ9Wxr0TPy0yLgQo45GT8cUFJ0ZT4r4WT2FjyfpCUnOSaTliD6/vgazQcaIH0SRQtbsMm83GmZfOGe4nx+kUT0fz3iuKYd8DWCblB1sxW81sfH0tiqyENV4I9JR//ql/DhCAguFyuejo6KCvr89Hwm22wOtRsKfcn4j7K+Wpqans2LGDyclJ2tvbaW5uZseOHWGN+bWKNc94+Lj++usZHBzk+eefx+Vy8Y//+I/cfPPNPPXUU6rPLywsZHAwUBj8wQ9+wIMPPshb3vKWgMcff/xxrrrqKt+/U1JSIh7fa46Mz8/P873vfY8HH3yQwsJCrFYrP/vZz6itrfU9J5iEm0wmVRIeDJPJRHl5Ofn5+bS3t3Pw4EHfspta04OM/DT++Xs38uidT4VF+mISbJRvKqHzTA+Ls0vU7K5goG2I6TH1SEN/ZJdkkpyZxMk/nfUkg+ytprmhDVmnGMuLqu3lzE7M0n2in7SCZDLL0hjtUF+yDR5vUV0+nWd6cC66KN1SxETvJNOjBuONkE2LEsjxy8uqq80ZB8ZGZ5ho6qN6VwUD7cO+SEY9xCTG6Ha7j2S11SaaNK02aiTF6ZI0f8k+Mq5B8Nw6/nTwFLUaQasAM+S8wakmirqNxHdcWUARRBQJVGLKfURZM/5w2SZisQaSA4t5xcer7xnXsZJoJMGEdOTUION6yrheUWrAuUJsKkHkV2WfYMVZMMi1V4Ped8L/aCFkfPmHLS9orNL4HTcqm4pB3YYX1TvKGR+YpOtsLyXrC1EUJawieVu8jaLaPOwnulFkhYrtJYx2T+heH6RY7dchKmLk1zqfNz288VZsKeHcwVYUBWr3VtHfNhTW9aygOo+PfPM6TSIuyzL9/f3Y7XYSExPZuXOnb6VZC2qk3D+BzJ+Ub9++3ReMsAYdrNlUwsK5c+d49tlnOXr0KNu3bwfg4Ycf5uqrr+Zb3/oWeXl5IfuYTCZycnICHnv66ad573vfS0JC4LQ/JSUl5LmR4hWxqXzjG99g7969vhzScKAoCl/60pfIzc0lNjaWK6+8kra2toDnGC1DNDc3U1payi9+8Qsee+wxjhw5QkpKiq+IU5ZlnE6n7yLgtaNYLJaICjNjYmJYv34927dvZ2Jigvr6egYGBlSrwwvW5XLDv76Lq+/8O1Lz1ItvbPE26vZVI4qibxnWm56yNO+gbn+NZvOfrOIMqndWMNI9RutRzzLs3NQCTQdblm0vpZqvo3JbKXkVObQes/tU9Im+aUY7JsiuyiA5W/3ia4uzUr2rHAWF1oYOnAsuUKDzRA9Lcw7W76/GGqs+3szCdGp2VmiOSQ2CG6R4C5VbS1dvF1HABciy5/1dnFukbl81tnh19TmjII2aXRUsLRk41SO4xrhntY+l1k1Tdy1gWcXUzvI2iDYMp5BQQ9n2fN39PNRBBWve/bSVcf20FclnU9H4bS6Tf8dcoL1oaXZl+V23w6dOtKF3NUAJ+jyUoCZIeuq35rZobSrB74PKdy74vbKozXKMEK5NxRl07OXXqyxqvOd+KyzR2FQscVZPqpNGslFhrcem0XLUztiy/7vrbC/djX2UbSqmcF2+6n6CAOv2VGG1WWg72onklJDdMu3HupibmqdiRwlJGtcdJV5b7zIJkWthsuSZOJRuLKKoVnu8tXsqscVYaDzQgsvhxu1003SwlfnpBWr3VpGcqV6gH5sUw9/dvJObfvg+avapX4fHx8c5fPgwPT091NXVsXXrVkMiHji+leZBsCJ+BdtXTDqFwmtYxitecHkB/oCZmZmAv9Valg4dOkRKSoqPiANceeWViKJIQ0NDWMc4fvw4J0+e5MYbbwzZ9slPfpKMjAx27tzJY489psr1jPCKkHGn08l73vMePv7xj4e9zwMPPMBDDz3EI488QkNDA/Hx8bz5zW9maWnFJ3399dfT2NjI888/z+9//3v+8pe/cPPNN/u2V1ZW8tOf/pSGhgauueYaBEEgPj6e2dnZ80LCg5GcnMyOHTuorq7GbrfT0NDA5OQkAA6Hg5aWFg4cOMDS0hL/8P/ezX+e+Rc+9PX3+Tq7eUm42WzS9EI6Fp00HmgmITmOml0rF8+sonRfyknLkXbVL8dIzxhtxzsp2VBIXsXKrK5iawn5Vbm0He/UbIQx3DrG7Ng8ebVZxCR4iKolxkL1rjIEk0BLgx3HXCipdCw6OXughdiEWNbtqfQ9np6XSs3uSsb7J2g+Gurd1IPoBltOIm0nOpmdmjdsVGMExS/Oz7noorG+BbPFRF5dtk/JSslOZt2eSiYGp2huaDfs/mexhn/j1U1TSQy1wig66pHg84xrkEoDFVZcpTLuD/di4AfjSzvRiACUfcq5AVlXIbWyvEKM5SDCHBA/GK1NZfk1K0GX0ODXojVRkGVBRxkPTw00yhlXS2sJeY4jjArdIFjMemkqfuMLnpgs/3gEt8b+/jaVCLtvAjiWnJw71EZGflrAtTCjII2qHeX0NvXTc65fdd+OU930nuunYksJ+VUr18LyLaVkFWdy7lArsxOha1+SS6L9aBfzs4tU7iglIdXz+zRZRPLrspGsOq8jGs/48gyr83QPPU39lG0qpshvElG6sYicsiyaDrUxMx46Xi8pX5hZoHZvNckZHhJttph42y1v5oeN3+bj3/gIVpuVw4cPc/bsWZ9YNT8/z8svv8zp06fJz89nz549ISEHkSBcUr4GHbzSxPkCkfHCwkKSk5N9f9/85jdX9TYNDQ2RlZUV8JjZbCYtLY2hIXWOE4xHH32UdevWsXfv3oDH77nnHn7xi1/w/PPPc+211/KJT3yChx9+OOIxviI2la9+9asA/OhHPwrr+Yqi8N3vfpe77rqLt7/97QA88cQTZGdn85vf/IbrrrsurGUIk8nEFVdc4TuuIAgsLS1x6tQpXve614VtR4kEgiCQk5NDZmYmPT09nDhxApvNhsPhID09nR07dpCUtKJSvOvTV/OG9+/nmX//I3/80f+FZV8BmByeZnJ4mnW7K4lJjOHUn84y0qPdcMIfXWd6Adj2pg3MTs6HncsrSzIDTSPEpcRSsi2PkY5JWhrC23d6dIbp0RkqtpaSnJHAyRebVjrKhdl90wtRgnm3i1hYVbShF4o19CY5P7XgiTNcX0BGfhonX2wMSCswzBl3ypjC/FrpRZ7NTDvJCnpM0vF9W8wmXGirrUbKuJq9KhhaxCn4fhqcLqJInoYwWmQ7MIc8lDR6k1bUyKskCyjO5eOrkfHlXfQsIXrRid6VhlBlPOg16qjfWtGG56uAUy1/PuTYUfiW3Q43oFGn4O8ZdwSey6t0umY0ZnirtKl4J6Xe2priuuXf6p8bGeszttUBtC83Odv4+lpQ4PT/NYW1n+SUaDvaidlmomR7ATNDs/Q3DiO/t0j1+YJTMm7wpYagj6vjVDcAGy5bh8kicvJPjWEdxuVw03SwBYvNzDUfvZK3fvyNAYJMbW0tpaWldHZ2cujQIWJjY1laWiI/P5+6ujpf2sn5gFpOeUdHBz//+c+55557ztt5LknIRGx1elVj+RrQ29sbwIuC6xC8+NznPsf999+ve8hz58KrldDD4uIiTz31FHfffXfINv/HtmzZwvz8PA8++CCf+tSnIjrH34RnvLOzk6GhIa688krfY8nJyezatYtDhw5x3XXXGS5DvPOd71Q9dm1tLd/85jdpbW3lK1/5iqp36HxAkiRcLs/yuPeiEx8fT1xcaIZ4SlYSH/zqe7jsvXt47As/5eSfzhoePz0/jazCdFqOtCPLClXLvkitOC5/lG0qxuV0c/y5M1hjLdTtq6btRAfORf1qepPFRPnWEvpbBug6PkBCRhw51ZkMtWiFea3APy7Q7ZIo31zM/PQiQ53GRaXBENygxC/fHCIk8iFQQFEhoLYEqyc+8mQ33Wf7KK4rQJYVer1Km8F5zRYzSpgipJ6P15wQD0wFPKaXMy4tJ9ZoKrQGXExySFgMFtAkp9b2ILIY/HXyNuXRUsa9tgYtZVzxL+AM3lf0HT9Y/ZclwXflM2q8o0WY5eWJRbD9J9imotc0SCuWMdwCTkMyrvLZBh9bDFOF94fVatFsJus/JsURSKiXy3AQ1Br+EDhxicam4v0NmiwmanZV0Hm6h+7GPk98a2o8bceMhYKUrCRyy7I583/nUBTPdXR6dIbhLuNrWmZpGpJboutYH5YYM1W7yujSUMbFxcibLakhPiWO4toCGutbkCWZii0lLC04fYWqeijdUMRH7ns/G/9unep2m81GQkICJpPJF0/odrtxuVznlYx7IQgCs7OzPPjgg3zve9/jve99Lw6HQzcE4bWOS7WAMykpKYCMa+Ezn/kMH/7wh3WfU1ZWRk5ODiMjgdzC7XYzMTERltf7V7/6FQsLC9xwww2Gz921axdf+9rXcDgcmpMINfxNkHHvMkJ2dmA3s+zsbN+2aJchXnjhBTo6OrjjjjvYsmULt912G5/61KfO2wXA6XTS1dVFb2+vL8IpKSmJmZkZWlpaqK+v9xV9Bi/3FdcV8JXffJbjz53m8c//VDXyLz0vlayiDFqO2gOId+tRO2arp+V8x6lu1djD0g1FHhViWV2BFVtGclYSZZtLaD7UFrKfySxSvq2UgbZBWhtWLCVzYwvMjS2QXpyKAIx1T4bsm5ieQFFNPq3H7AGpAPaT3Yiip5Nnv32Y0NFqQ3SDK0Gkdl8Vh03OVSvjWFZIREyCjbKNxbSf7KL50EqKjLeAqmpHORNDkwwYFI+5XRImo+SSZegp4/MLoRtlnZUcb7dELbXVONrQmKxJwRF2vmMHj2Ul9URxg6B4bSr6hYxafnfJR8bVbCqC7/hykMrqT96Nmv5oTmK8NpWg7YojfGUcPBMKMegLG60yHjzWcGwqljC/k/5wLThBo59sgE3FEfw6PONxaVU6+01Wo+3AWb2znLG+iYCElEH7MAAF1bnYYq3YT3aH7GqLs1KxpZS2Ex0BfRNaj9oRBIHqXRVMDk6qrjYmZycQkxzDcOuY7zHXkpvWhg7k92SqDtW0KIFa1nqYMJlFqndV0nWmJ+A66lX2K7aWsji7SH9b6L0vJSuZD3z5Wt7wgddhUlmuUxSFsbExWltbEQSBDRs2kJGRwcLCAp2dnRw+fJjs7GxKS0uJj9dJkIoAkiTxX//1X3z1q1+lvLyc//u//2PHjh1rBZxG8LN2XBKI8LVkZmaSman+G/PHnj17mJqa4vjx42zbtg2AF198EVmW2bVrl+H+jz76KG9729vCOtfJkydJTU2NiIjDeSTj4S4X1NTUnK9TnjeUlZXxy1/+kpdeeolbb72VH//4x3zta1/jne98Z9SWFS8J7+vr81WHJycn+7YnJSWxfft2RkZGaGtro7e3l+rqatLS0gKOIwgC29+8ic1vqOOPj/6Zn977NLMT86TlppBdkknr0Y4Ve0cQ3E5Py/mE1Hhq91Zx7pCnqr5kfSGAbqTi9MgM0yMz5FfmYImx0HXG0wCjcnspgx3DASQ8GOPLJNzTXGKR2bF54lPiKKkrpO1Eh6b1xls0aU0I7TKpB0ECt1Wgqb4V6ztrwulTo4p4q8isww1mE5YYC1Xbyug626sbJdZ61I7JbCI+tRTdxOYIbioxMTamNbaptpXXK3QyyBnXy9kGEMNQ74K9wb5xBZFBUbTAsqaq+Dfe0Wn6A9qedO/Y1V5DAEkWA0mPLT7eU6WrsS943y9tz7hPrQ/xYKuo8Gpjl71kXoDgOscolfFgNTkcMi455IhvAno1Gf7WGHlJfTyhJN07GH9lPPJJQmxyLC1Hzmhu9zbqKqrNx2Qy0Xmmx1OcubuSvrYhzeuSoii0NLR7xILdlYz0jjPeP0FMgo204mSGW8aYHg6dYcgWEcWs/vlbw/yMVUZD5bZSpkZmaNKxMHozyCu3lTI/vchA+xAWm4W3//NVXPuZa4hLVBeb5ubmaGlpYXZ21icSee+BcXFx1NXV+ewrXlJeVlamusIb1qtRFOrr67nzzjuZmJjgO9/5Du973/vOq1X0koas6P8g/9YQRl+LaLBu3TquuuoqbrrpJh555BFcLhe33HIL1113nc8N0d/fzxVXXMETTzzBzp07ffu2t7fzl7/8hT/84Q8hx33mmWcYHh5m9+7dxMTE8Pzzz3Pvvffy2c9+NuIxnjcyHu5yQTTwLiMMDw+Tm5vre3x4eJjNmzf7nrOaZQhBELj88ss5duwYjz76KJ/97Gf5/ve/z/3338/mzZvDnqEHk/Bt27YFkPDgc2ZnZ/v85KdOnSI1NZXKysoQxcFsMXPNx97I371vL//zgxf473/5PedUVGs1zE3O03Swlbr91VhjLLz8grHtxYv+tiEEATZdUcto/xitR8LzhAMMtYwRnxJLybZ8xjqnwva/O4ySSYIgukGxeS7eS4sOrNHdF4iNt5GVl8rUyCzpNXlhj1dyS8zNLkK2ttIlRJAz7px1AuoTElcQsVQMoum8MXSaSqNRYkE4OeMaNpNgkcOxIPlyoAU/MqKtjOunregq437ETgo6/tzUki8SPtLoQt927wQheOzBvvgwlPGQbWHnjK/ephLOyofKiTU3BdhUloKb/uiTcX9OEY0yvjC/hPHCNvQ0eaxlm69Yj9vp5uxfm8M6viwrnDvctuwLz2dmaJ6BRm1bnZSko4wtuNBaXdCD2WxWbdKmBe9z33bLm3nrx99IdrG6sud0OrHb7QwMDFBQUMDGjRuxWNSvZ8Gk/NChQ1GR8q6uLu6++27++Mc/cvvtt/PZz372vCnta1hDMJ588kluueUWrrjiCkRR5Nprr+Whhx7ybXe5XLS0tLAQ1Kjrscceo6CggDe96U0hx7RYLPz7v/87t956K4qiUFFRwbe//W1uuummiMd33sh4uMsF0aC0tJScnBz+9Kc/+cj3zMwMDQ0NvkSW1S5DeGEymbj55pt53/vex9e//nXe+MY38p73vIcvf/nLuqTe6XTS3d1Nb2+vIQkPhiiKlJSUkJeXR3t7O4cPH6agoICysrKQC2JCajzvu/Pt7H/XLn5018848j8vGx6/cF0+FpvZt3RbvrmYuekFhjuNfZCV28sY7Rvj1J+aEE0i6/ZU0tPUz/y0dmc5WMlE7zjdTdfxfmKTYsirzWaweQTFYPabnpeGeuaBOgQ3yMvezPj8NFzqCwWGcEvgdktMLjiZr8pn3c5Kun9+EIfBa7UlWIlNijGw1kSgjNu0b9LuYD+7UUvtZUam2dbdIGdcNIqJQY+MB+5rsdkAj81G8msjr5mmYhBd6FPGVT3jfucWTChuBWFZpbTEx6o/T2V/zWjD5TEHTySkIAJqRMbVtmup6SFjCProoklTiWSSuLKPzpj8bSpByjiCiCIroZGHK09AUTyLSNGQ8YS08GJNc8uziE2I9dXilG8uxrHoCstnnVOdycLkIl3H+j2t53Wyu6VkbTIuht/cMgBul5uSyhxik2JpD4OUV24v48b73s+63ZWq22VZpqenh87OTlJTU9m9e3fYhFiNlOfk5FBaWqpLyufm5vjWt77Fv/3bv/Gud72Lc+fOUVhYGNY51xCE17hNJRKkpaVpNvgBKCkpUU3xuffee7n33ntV97nqqqsCmv2sBq/IWlBPTw8nT56kp6cHSZI4efIkJ0+eDMgEr6mp4emnnwY8CvKnP/1pvv71r/O73/2OM2fOcMMNN5CXl8c73vEOIHAZ4siRI9TX14csQ0SC5ORkHnzwQU6dOsX09DSbN2/mX/7lXwKiFMETUdjW1saBAweYm5tj27ZtbNmyJWwi7g+r1UptbS07d+5kbm6O+vp6ent7keVQwpRfmcMXf/5p7nnmDp/tJBje1s+95/rp8PNJ2k92M9o9Ru3eKhLT1C+8FdtLSc1Lpu1YB1NDnhuNLMmcO9SGoijU7avGZA79+lhjLdTtr8Zk8sQxer3qizNLDDQNk5SVQHZlhuo5U3M8cYGTfikl4UB0g2wTyfvEm5m2mqP2jC8uuVhyeMii0yVxanQW6e+3U/WB1yGoxLnZ4m3U7qsCGRYW9HNQI/E+Oue179RukzkgdcKwi9/yZs00FYNLQFhNf8Ik4wtzK353fxIbbO3wHddLiDXIqVcZV7PgBJNcxW+xZWFm5f3VTDSR9ZVx3/jdYsDkUlkM8qdrve/yBVDGo/CMm6LKGdfbKPjup8qCyuuQQXLpdKVc3jcam8rczAK55VmajWqSMxJZt7uSoY7RgDoZ+8lu+loGqNxWSm55tuq+6UUpZJSkMtQyysyI5z7l7XK5MLNA3b5qEoOyxnWV8cVozXSe1cr2450UVOdSvqVUfbz5adz66Ed54MW7VYm4oiiMjIxw8OBBBgcH2bhxI5s3b45KmfaS8j179gCeTOfGxkZfJKIXXl/45s2b+ctf/sILL7zAT37ykzUiviq8CqIIz2us4SU0sYgQr0gB55e+9CV+/OMf+/69ZcsWAP785z9z+eWXA9DS0sL09Aopu+OOO5ifn+fmm29mamqK/fv38+yzzxITs7Kcb7QMEQ0qKyt5+umn+dOf/sRtt93G448/zje+8Q22b9/Offfdx6FDh/jBD34QkRJuhMTERLZu3eorount7aWqqoqMjFASu+n1dXy7/h7+9JO/8OQ9v2ZqZJr8yhxiE2N9vkE1yLKnrXJsQgx1+6ppPtKO5JIo31rC1MgU7ce0912YWaSxvoXMwnRSspJpO96BxWamakc5PU39uu2lp4dmmR6a9SQPuGQm+qYCklUmh6ZRLJHdiAUFFBHsg1OQa/h0TTicbpzOQCI8O+/gFJD9ocvJGJnC/sxxrDYzVdvL6W7spal+2U9ulOISARnXTbgQReQlBTHOmzRicNrl/2oXcBop6/qbQc8zHvQ8P5U5wDNuZFMxmEioKuNBBF5xAHGB+2nt6/+4lrItuzxuegE8Yr/V83rlYGVcayKhY4M5b9GGYdhUiEIZN+vkjHvPKwie9yL40IIiYDZpF8d7XpMSVc44gsCgfQQYIb8ql9h4G+0vd2GNtVC5tYz2E50BxZnB8Fo6/BNUEjPiic+IY6hZexXR5XDTWN/iS6Lqauxjfmqe+NI0zX2iVcb9f49eD3xhTR7WGCv2k13Y4qxce9tbecenrsIWpz4ZmJ2dpaWlhbm5OSoqKlTDA6JBsFJ+3XXXER8fz913383s7Cx33nkng4OD3H///Vx//fVrvvDzgTVl/JLBK0LGf/SjHxlmjAcvFwiCwD333KObO2q0DBEtBEHgyiuv5MSJE3z729/mxhtvxOFwUFdXxwMPPMDWrVsvyDkzMzNJT0+nt7eXM2fOkJKSQmVlZUgrVpNJ5E0fvpz91+7i2Uf/zE+//mucS+Fd7Rfnlmisb6FufxUOl5P2hq6wxzjaO87E0BRb37SR2fE5XRIesm/nBHGpcRRvzWOqf1a3SDJcKACRc4vAY8ie4wQfY3hijnGble0feT2LZ7pD/ORGOeOqB9WAYKBWy4sgLhNLIzIelxjLEtpqq64yrgS3tNF4mlP9hYUUGGr5xLWUcZ0ccVjpPKq2XQkprPQbh9+r0ipslXw2FS0yvvIpCbIJkJe97UGTAC0y7o1tVDl+uAWcwa87OJtbbewhE5soWrKbDIibp4hTARVlXHErLM7p+VwEZFkxzL9X3dXvN9i/nDy19Y0bfNe4cNF61I4t3krx1jxmRxZ1ibg/vElUueXZVO8o5y+ytnFN0PjdxrtcZCbF0TXvAFWyGvre9TZ77DXv/PTV/P0n30R6bqrqsR0OB+3t7QwNDVFUVMSmTZs0feGrgZeU33vvvXzhC19g165diKLIxz72Me67776Q+9caVgH5ElOTL1AB598C/iaiDV8NGBsb49vf/jYPP/wwe/fuJS0tjWeeeYZf//rXrF+/PiRW8XxBFEWKi4vJzc2lo6ODhoYG8vPzKSsrC8l6jUuM5V2fvpp979zBj+/+BfW/PmJ4/LLNxcxOzdF4wEOGC2pyEYDe5tAYRX+YzCLVOysYtA9z4rnTANTsrmCoczSgGY4a4pPjKNlQSPvxTrpPDGC2mcmvy2akfRyXwx2RiuyFIBFdQ7sgWEwmrBYRl5+XWhQEanOSmfjjSU4tx6SF5LjrkXFZiUh5EgwSThT/2BaD1e6F6QXISNJWl6MgPSHj0VDGg/3Wst8H5D+JkKNUxlfIuBrp07apBCrjRgWc+p5x8PjfTTHq41Qj47KML1LyfCnjihJ6rLA841HYVFxLLkBf3ZZlBVS+F4oMJl1l3BtFGcX30m+Xsk3FLM4tcuJ5T7pK6cYi3G6J3iaDahQB8tZlMdk3Q/eJgZUElZ4xzdQqL2ITYyjbWEzLUTuD9mHc16nndwOIQd8Ls8PF2/dV8ndvLqO/v5/pMZnf/U8bA5JiuOpWu7eKG+9/PxUalhVJkny+8PT0dPbs2RN1+km4mJ+f57e//S2HDx/mzW9+M3Fxcfzwhz9kaWmJL37xi5SWqo91DRFCkQkpHvlbxqX0WiLE2jpRGHjssccoLS3lxIkTPP/887zwwgv84he/4OWXX2ZkZITNmzfzr//6rzgc+r7h1cBqtVJTU8OuXbtYWFigvr6enp4eVT95dnEmdzzxSe57/otUblO/6JVuLCS7LIOOk92Mdq1k5/Y1D9LbPEjNrgpSskNtN8JyFnhyZhJNB1sD/N3Nh9uZn16gbn81trjQIsTYRI8lRpZkGg+04Fj0MCS3w01/4zCWWAt5tdFNakQJcrNXr7jE2MzExayMvTYvhfzmXuz/8Ucml4k4eNSz6ZFp6vZVE58ch6KXMx7hbF8wyH4WJHVSqwqvZ1ynLbvRvkbQJuNB//Yjfv7KuOhSjxD0PqapXqNNaPU845LfOLQmI4aecae/yr/8XxVrhToZ99t3FZ5x/329TYQCthsQfcEhRWdPMLhfKopHpVc9shscOvXQCkJ0GeN4lPGc0izKt5TQcap72bLiQefpHnqb+ikPanfvj5zKDFJyEhloGmFxxqNqexNUpkZmWLenSvOaWLu3CpPZUyfjdnp+lC6b9nsrLk/GBJfEnoJUfvX4R/no/7uampoa9u3bR+2mQj74oWpufmsFOfhZEfx+Uzmlmdz5X7dw7x+/oErEFUVhaGiIgwcP+pLHNm3adEGJuCzL/OxnP2Pr1q0899xzPPvss/zhD3/gv//7vzlz5gxOp5N169bxhS984YKN4TWFV9rjfUF8469NrCnjYWDz5s0899xzvgIVL2pqanjmmWd49tln+cxnPsNjjz3GN77xDa6++uoL5odLSEjQ9JMH31jX7anigT9/ib/84hBPfPlXjPdPULy+AMeSg87TvbrnaW5oxxLj8UC2v9yJc9FJ9a4KxvomdCMVXUsuGg+0kJSRSNmmYs4davM01NhaSufpHt3l4oWpRRamFkkuTouo6Q94ln2Hn3uZmL8rJprIMC8sVjM2SaI6MRXHwWY6n27QfK7bJdFY30JcUizWOCtaxiBBisCjgrEy7ppbyYY2GUUTLl/cND3jujYV/UP7nqZhMwlpiGPyu9xI/mTcQ7j9O1F6rss6yrcMiqDjGQ8ixibBjHcZQbSt1JloesINbCr+1hzvhEit0FSNjPuTbcMkGB34j03t8zUqDhUdMlHpMUbilSIgaRX1ukGWLZo/B0XR6b7pNaNrwBpnYbh7FKVT+4trX26KU7m9jNnxOYY6R0jNT8ZsMzHUNqa5n+SWOHeoFbPVTO3eavpaBpgZn6Viaymz43OqNjspVvv2KsoiZXEWvnjPuyksDRQgYmJiqKmpobi42JNykmVmfMjN7/63jVFFIS4plvfc8Tb+/uNvxGJTt5lMT0/T2trKwsIClZWV5ObmXtAGOoqicOzYMe688056enr4xje+wQ033BBwfaqsrOSJJ57grrvuoru7W+doawgbazaVSwZrZDwM6HnCBUHgLW95C1deeSXf+973+PjHP87mzZu57777qK2tvWAXwIyMDNLS0ujv76exsZHExESqq6tD/HiiKHL5dfvYdtVGfvHd3/KHh/+M22Ekp3rgWvJ4IDdctg6TWeTki41hj29mbJbF2UU2X7GepfmliPzk00OzYT/XC9ENcoIF58Q8sash4yYTBQmxtD3yPO7F8PLOF2YWcThdhHRvWYYQqTIuiOCWQSWtBkDyt1wYpaksf/201FZFb5KghDeJ0ExDCRqa0+9rJwgrlx7R7SWlKyxPllf816rKt1sMem7wdm1lfNEl++Zrwd05V46pb1NBRRlXa06kSsb9yKYqYQ7XpiLrk3EjZVx0SERzCzBqv60ogmYBpjyvgKD9+hRFCPG+hwvnktswNtWLtmMdxKfGUbQll9nhRUY7Jox3wtNIrelgC4U1eZRvKab1WCfzU/Oqz5Vj1V9HwYTCVz55Nbv3attYAGJjY6mtraW0tJSOjg7Sc8xMjUjs+877ySlST31ZWlqivb2d4eFhiouL2bJlC+bgONTzjIGBAb785S/z9NNP8//+3//j85//vG4r86qqKqqqqi7omF4zuNTU5EvptUSINZvKeYLFYuFTn/oUra2t1NbWctlll3HrrbcyNqattqwWoihSWFjIvn37SEhIoKGhgXPnzuF0rjAPl8tFe3s7R08cZcvbavlW/Zd4w/X7wzp+1fYycsqyOPOXc5x8sZG8imxKNxQZ7meymKjdW01soifLt/lwOxVbS8kuVo809Ed8chxVu8rDGp8/BAmsxanElqzOu282i5zoGsP6vn1UvHt3WJpD1Y4yRL0EmChm+x6ipHE4P4uH5DQ4ttemEo1nPGxlXEtdDvInx64o0u75FeItyKGqcoDqq7JS4N8IKJwCTveCXw1AzErKhFuDbOulnQDgp4x7x6LWnEhNLb8gNhVVZTz0Mf9jCwYZ89owKOBUQHJpTHLmjAudNZVxA1jjbRTUGMfYmm0m8uuycS466Xl5kOmhadbtriQ9T73w0R9J6Yms21NJX8sgL79wFrfTTd2+auKSQn3wckzg64gfd3JHTh3P3vEJQyLuj9jYWF90YPWGPBrbztLU1MTi4krxiCRJ2O12Dh48iCzL7N27l4qKigtKxBcWFrjvvvvYsmULDoeDs2fP8s1vflOXiK/hPEPhlbeVnNe/V/oNfeWwRsbPM9LT03nooYc4duwYPT09bNq0iX/7t38LIMjnGxaLherqanbv3o3D4aC+vh673U57ezsHDhxgenqarVu3snXrVkprivl/37+Jb/3lK9TuUVcnKraWkleRQ+uxDoY6VnyXA+3DdJ7poXJbKVlF6SH7iSaR2j2VJKUl0HSwhZmxFYW7/UQno30T1O6tIj4lNMs2NjGG9fs9fvLWI/aI3wPRDTO5ycw5o80MWz7Osr1ofHqBM5JC5kffSNHr61SfW75l+X062oGkM6MPJ6s7GFYdq4otbuX9kw06cPqeZ2DHUEW4F0aDnHAvlvwmDv7KtUAocZcNrBz++6uRVzlo8Uf2O/ei32qCW0vBlXVUeYXAnHSvMq6mTqscP0AZV236E2aaiuI/IVGLdwzdJ0AZN5rIaSGMNBWt7HkjMu5RxqO7LTmWXPQ1D1CxVTsvPK82C1uclf7GYVxLni+Jvy+8dm8VKVmhZNJiM1O3rxrHotPXawHAseCgsb4Fb+8FW/zKRE9e7gpsnnNzLdn89dZPcMNbL4vqtYEnpWT9+vXs3r0bSZI4ePAgTU1N9PT0UF9fz9jYGFu3bmXjxo3ExmoXya4Wsizzq1/9im3btvHMM8/wzDPP8Mtf/jLqDttrWAVecfJ8Af5eo1izqVwACIJAXV0d//u//8v//M//+Pzk3/zmN3nTm950wawr8fHxrF+/npaWFjo6OhBFkdLSUkpLS0POWbm1lHuf+wIHf3OMH9/9c4a7RinfXIJzyambTw6ePF6T2aN+dzf2sjCzQPXuSkZ7xmjS8ZPLkuzJNk+MoW5/Nc0N7ZjMIpXbyug83cNZr5UlJnKbieAG+TykqQQHF/SOzEBKAtWfvIrFlxoZPdtLyfpCZFnG/rLf+6TDH8xGvm4VyHNOSFC/oc6OO/Dd8sPs1ggCkiRgMvkRYgV9YiUrhOV1d4qqdt5goun2K0wNUcKD/+1vwVBRjxUDQhtMgj3k2fPaJX/vOiJykF/dc8zlnHENG4noNxnwTAwUVWVc7fPxL0hdlTLudxw1NTk0XSXwsTidTq96EEwGaT8KSBpFvYJT/5ajKKERjWFj+ZTe61fVjnKmRqYZ6R4jozQVt8PNQJNO+3q3p4mPxWamdl8Vvc0DzI7PUbOrguGuUd16l8VZT3xiQkocFfuqaT3egWIWqB6z8MhN15OZfv7U4vj4eDZs2MDg4CDNzc309/eTnp5ObW1tQN+N8w1FUTh58iR33nkn7e3tfO1rX+MjH/mIcd3KGi4cZBnjIo6/IagEUrxWsKaMX0AIgsBb3/pWzpw5w80338yNN97oa/+r1nZ1NZAkia6uLg4cOMD8/Dxbt26lqqqK3t5ejh8/zszMjOr49r1zB/927F4++p0bGLAP+TJrDc/nlmg62ELpxkI2vWE9rUfsjPdPhrXv4uwSLUfsrH9dDVXby2k80MLCzMqSazRpe6IE8nmYWmpNlFoGJhFft47Nb9nM+MAEPUERaXo541KYme8B43BqX5T8yZpRElR86oqKrt6hUXvcpjCLkAVQb+sedD5JXPmAgr3UIQ1rAsi4kU0ljGhDf2tPEHlQjRf0PRaa9CLLQkDTFrPZsjwm/XH6jq0zkQgmzHoIUMbVyHjQY57zruzjnI4u/ckWq9NZEs/3SqvlvRl9sqjIQtQ2leDZYOtRO06Xi6ItubgW3EwNhFeL4nK4aapvJasog81XrKe3eSDsrsBzUwucrW+h4h07yW4UufOqN55XIg6wuLjI6dOnOXfuHEVFRezYsQNRFKmvr6e1tfWCrMIODQ3xiU98gje+8Y3s2bOHlpYWbrrppjUi/krjlVax15Tx84Y1Mn4RYLVaue2222hpaaGsrIz9+/dz++23MzERXtGQHiRJoru7mwMHDjA8PMz69evZsWMH6enpPj95cnIyR48epbGxUTV+0Rpj5eqbruCRUw/y5o+8HtGogQ3LfvLSLM7+tYWTfzpLel6qZoyiP0xmcdmqEsepFxs5+9dmimrzw/J66kFwg3IeyLiscjHIy0ikzu1m6HvPcfJ/T+JyeHyiFpvfCXXes2iUcVGnMNOfzCkGOePz0ys5csGE14j0ya7wW3arR/gFKeMm/0jGIPIdTM79CLZatKFspIy71JRxUJxKSDMV1eY4svbxJVlE9OM7zrllu4Oa5UXNR+5/bCWU6IebvKMoK63nw1HGgydjpihFKMeC/uRSUQRNZXxuyGgCoF38aQT/tzI2MYa82ixmhmfoeXmQufEFTQtKMDIK0qjaXob95S5O/ukssiSzfn81sYnGqnPe3ipyPvYmTjjcKEsKCfH6E5dI4Ha7aW9v5+DBg4iiyN69eykvLyclJYXNmzezY8cO5ufnOXDgAG1tbeeFlC8tLfGtb32LzZs3Mz09zalTp3jwwQfPW7fpNawSrzRxXiPj5w1rZPwiIjMzk//4j/+goaGB1tZWNm3axCOPPILLFbly6m3kcODAAQYHB6mtrWXnzp0hEYdms5nKykr27NmD2+2mvr6ezs5OJCmUaKVkJfGJhz7Mdw5+jc1vUPdJB/jJO1eWfEd7x2k73knphiLyKkJzfIPzyadHVpT6nqZ++poHqN5ZQVpuSlT9PkQ3KJbV23/8VywyU+PZYBKY/OGf6HjmuG9YS/OO5SXpeNbtrvTsp6eMO8NLr/GHzaQ9szD7+UENeyT4DStYQVazSATsGsF1Ua1QMZj8yWYzyrLHPdSmok2QJZXLlD95D0cZ9xJlRYULGjXeCVXGxYAReceiGm1ooIwHryhE5pdeIeNq1hajY8tL4U+2Ak9rXMApa9QRSIsGFhd5NTYVAdEskl+XjSTJDDSNIEvL1qRlC8r89AJ1+6pJTFOpW0ny9EGYGp6m9ViH7/HFuSXOHmhBFEXq9ldjjQ2NE0wpy6LslquwZ6fS5aeiJ6j0W4gUiqLQ399PfX09ExMTbN++nfXr14dYUpKSktiyZQvbtm1jdnaWAwcO0N7eHtX9RZZlfvOb37Bt2zZ+9atf8fTTT/P0009TWVm56tezhvMIWbn0/l6jWPOMX2QIgsDGjRt57rnn+N3vfsftt9/Oo48+yn333ccb3vAGQz+5LMv09/fT2dmJxWJh3bp1ZGZmGu4XFxfHpk2bmJycpKWlhb6+PiorK8nOzg7Zt2R9IV/57e0c/+MpHvv8z+hvG6RsczGuJZehn7zzTA+C4OlaN9A+xPTYLNW7KpgYmNTNJwdoOdKOyWIid30uXbrPDIUggSK5sAlRdu9bhiTJpCbFUuRy0fbES7S7tQnL5PA0k8PT5FXk0GkStesdo7jAuGedoLGkPzcv4c2MMZn021n7nzmEjBn5gSIYt4fsBr5XauRUcItgVhCD2qUGq8qKgWdcDiDjxiTYarUBLgRVBVn/MU8qycprC35d3nOpFWuqe8a1lfFw/eKeMRrYVAzIuBj5HHEZxkWY8pJGAeeiPtFWlOhtKiabmfiUWPobhzWf43K4aaxvwRZrpW5/NZ2ne1iaXyKvNpvRzgldX/j89AKNB1pITEugcmsZLUftmGIsFF+3j6bJBQZVbHoJ8avzcHuv1y6Xi+rqatXrdTCSk5PZunUrU1NT2O12Dhw4QFFREUVFRVgsBtcLReHMmTPccccdnDt3jnvuuYebbrrpgscjriE6KIqMcgl1rbyUXkukWPuFvUIQRZF3vOMdvOUtb+Ff//Vf+eAHP8i+ffv4xje+oZrBKssyg4ODdHR0YDKZqK6uJisrK+Ji0NTUVHbt2sXg4CAtLS2+pkHBy46CILD9qs1svmI9Lz5Vz4/v+jlzk+p5usFQFE86wbo9lZRuKqbxQLOnzX0YkFwSw+3jUJIf0esS3SBZBNwD81iIrhNnYryNhIk5xDNdtJ7oCnu/gfYhZLFYc3s0aSqCTkqKv1JsMrpJ+n0/QpRqA5tKJPno4SjjANKijClGQBACSUFoAaefTUVFGQ+0qaiowkE2FWlZEVdUVu5V87hlbbIfTHx9ZFzFmuEfQ6m2f/C5NXPNVeC/sqFuUwn2xgdFTUadbGiUpgKKQ510S0vqj1scLnavy6dV6Yw6TUWWZGbHwrtGORadNB5oYd2eSmyxVs41tOOYD8/WMTsxR2N9C5sur8VVk8+psTnckvqbGa0yvrCwQFtbG+Pj45SWllJUVBSxPzslJYVt27YxMTGB3W6np6eHkpISCgsLVcn1yMgI99xzDz/96U/52Mc+xm9/+1tSU1OjGv8a1rCGyLBGxl9h2Gw27rjjDj70oQ9x1113sWfPHv7pn/6Jz3/+86SkpOB0Onn88ceprq7GYrFQUVFBTk7OqhJZBEEgLy+PrKwsurq6OHbsGNnZ2VRUVIQsfZotZt70ob9jz99v4+f3/ZY//OBPSDpqMXisLIuziz4lPDU7meySTJob2g3GBdW7KhkamWFR95kq+7qBGBNClJ1PBcD0u6M0LheSVm4vY2p4mtHecd39kjOTyK/Iwa7ns49CGRd03mK33892YcbAg+s3LL0iSVVEQNZUixfVSNVyPrdzIfAFBqvKAWkqKkpswHY1ZdwZ+Jhz3nM+92LoizLyjIcQ5mBl3GtTUSHeGEUbBivjERDRSKMNg4+t9x3TgxCGMl6bmUHT0gLOmMBJl+QIvOWITjeX1+Zx651vwxZj5eZjL+OO0qaiAHX7quk62xtQK6GGvIocrLEW3zUqISWOiv3VtB7rwGVQcF26sYileQen/q8J/q+JrPJs0q/aTOPQNLLfb91qMWG1RnaLdbvddHZ20tPTQ05ODvv27cNmW53vPC0tjdTUVB8p7+7uprm5mfe///0kJSXhcDj43ve+xwMPPMD+/ft5+eWXqampWdU513CRoFxi1o41z/gaXmlkZ2fzgx/8gPr6es6cOcPGjRv58Ic/zPr163nwwQexWq3s2bPnvLY1NpvNVFRUsHfvXhRF8eWTq/nJE9MS+KcHruehI99gx9WbVY9XtqmYwnX5tJ/opL9tyPf45PA0zQ3tFFTnUVxXoLpv1Y4ysooyaT7cxsTwVMSvRZRAMnvUsWigKAoOv0SXtmMdTAxO+YpNgxGfEkfd/moWZhdpPBzaCtsf0SiQCfGh5/QdL8AzbvBdCPCMB5FIg3FFMm41Mq5GkqUlr2c8iHzrNf0xUMZVve/B5N7bmEdF/DRqSR9SZBk8qVn+t5oyruoZDyD6ka1WBBzbINoweGUi+N9CBOeKCIrAZXs38vRTt/DWTYWYHSvkVvaScUlmfUosP/nXG/jcl9+NbTnOVEDUnpAYKfICNNa3IMtySOa3F8mZSazbXcmgfZiuM72+x+emPBaU2IQYavdVYVLpfptVnEHF1lI6T/cwaF+xwkzah2n/9z+S19RLXV6Kb5iRFG8qikJfX5+vL8SOHTuoq6tbNRH3QhAE0tPT2bFjB2VlZfznf/4n69at44YbbmDbtm08+eST/OxnP+OZZ55ZI+J/S3iliy3XCjjPG9aU8VcRBEFg8+bNfPSjH+X222/n17/+NZmZmTzyyCPs2bPnguWTx8bGsmHDBqampmhtbaW/v5/KykpVBb6gKpe7fnErp/7cyGOf/yldZ3spritAEAQ6TnXrnqevxRObmFOVweKUg+mRWSq2lbIwvUDr0ZWCKaObrhoEN8gWoopF1IK36Cs20VPY1XykHbPVTMWWEjpOdtPozUU36Z80JjbyperFyUVA3d+54Je0YnTt8i8sjTRNJSLPuEqTFzWF00uGg0losK0kwLMtmFCUwK9F4NgFJFnA5JcVrgSp1D7CrGYbMSzgDCb26hOJ8Mm4NtGPRBn3/+yj8YzbbDYiXoIiHGUcYmUzFouJT33277lpwcm/Pvg7/q+pH7fTTJ5N4HN3vJ2aDYWqx47WpuIdli/zOzWeii0ltB61I4gClVvLaDvRwbnD2rUrM2OzNI3NkpaTQnapZzUvJt5GWlEyA+dGGOnW7qg8fq6f8XP9FG4sIv51tYRnmIHx8XFaW1uRJIna2tqwaoCihSAIFBYW8qMf/YiPfOQj/OY3vyE+Pp6vfvWrXH755RfsvGu4QJDlVfjNXoV4DXvG15TxVwlkWebXv/41mzZt4o477uDuu+9mYmKCf/7nf+aDH/wg1113HXZ75J0pI0FKSgo7duygsrKStrY2jhw5wtTUlOpzN72+jm/X38OtP/woUyMzdJ3tVX2eGoZax8gsSGfzG9bT3zrIQLt2wVW4EGTwxFFHeTMRBGQNi8vi7BItRz256JVbSmg80MLi3JJvu2JAxl0LkUeMiToWApd/XrcBofaPYwvJGTfY1xKBR1Utjk6VIHojBoMnBsHpJ8Eqfsh2g4lFEOn2jkVWcSCodsHUiTYMHqvN5lmpCLbGAOrRhno2lUgKOP1XD8IoTA15TpjdW4NhthoVAQr0tXZx7tw5HA4HsXFWPvfld/OL7/8TX731nfzoxx9XJeIeCPo2FZ3ZpxJEJOcm55d94VXU7KqkuaEN52J4ySITQ1O0HLGz6fI6yjeV0N84jBLm5HT0dA+Dj7/ItZu0XqMH8/PznDx5ktOnT5Obm8vevXujqgOKBGNjY9x6661cfvnlvOENb2BoaIgf//jHPP7441RWVvLII49c0G7RazjPeKVV7DVl/LxhjYy/SnDixAn++Z//mY997GO0t7fz0Y9+lKSkJL7whS/Q0tJCRkYGu3bt4otf/KJqA5/zBUEQyM3NZd++fWRkZHDixAlOnz7N4mKohGYyiVx+3V4eOfUA137mGiw2/Zs0QHFdASXrC2k/0cXJF89itpip3VMVKIZHcS8S8BBYMUqCAYBKsZUgCtTurSIhJd6Ti36ghYKaPHIrsnzP0Ys19Dwh8qGIgjYhcfslqBgR6oXFFU95iL3CYF/JEb6pWC1XWpUgainjOp5xte1GhY9KULSel/yrNeFR84zrJZ4ETyQWl337asp48KQg+NiriTYMLOAM/b6E2FSCmwDpNJbSg9ulv5+iCOzevAOn0+nLvHa5XCSlxLPrsnW6+wqI+jnjer+loLe6ZEMh+ZU5nP6/Jk7/XxPJmUnU7K4Ia+GtclsZ6XmpnHzxLGcPNJNTmkXV9nLjHYE3XL+f7528n7e8f7/qdpfLRUtLC4cPH8Zms7Fv3z5KSkoQo6x3CQdOp5OHH36YTZs20dPTw7Fjx3jooYfIyMjgHe94By+//DLf+c53ePjhh3nqqacu2DjWcH6hyPIl9/daxZpN5VWC7du309nZidUaSghzc3N57LHH+MQnPsFtt93Gpk2b+PKXv8wHP/jBC9YBzWQyUV5eTn5+vq/RRHFxMSUlJSGV+HFJsdzw1ffy5o+8nh/f/Qvqf30k5Hj5VbnExNuwv9wV8PjsxBxNh1rJKc0kLjmejpNdRKtuC24C2pRHCjnWguineNfsqmCsf4Kmg4Ge8L7lLqWlm4uYHZ9jeHxa97iKO/ILjJ4VQLZ48roFs6Dul/Y/t26aisEgIrCpSC5jMgj4WscHE9pg+0iI8u0SMK1Y5UP86KHKeNB5l8mqWuqLoWc8mDBrWWAcKoWkEXbgjCRNJXCMKq/BQHUXZBGiuHwY5c8rChSlZhObWcT09LQvXq+4uJiioiL9mDxF1I3cFBQdPr68W1ZROsmZSbQd7wzYPDE4xcTgFFnFGaRkJdN6NHSlMb8yB4vNQtvxjoDHhzpHGOocIb8yh9iEGNqDrmMAtXuruPH+91OxpVR1eN5YWrvdTmJiIrt27SIhIbrkp3ChKArPPvssX/jCFxAEgZ/85Cdcc801Ieq7KIq8+93v5p3vfCfnuzv0Gi4gFIWo1J5XK17D3701Mv4qghoR90IQBHbs2MFLL73EL37xCz73uc/xgx/8gPvvv5/9+/dfsKXNmJgY1q9fT2Fhoc9PXlFRQV5eXsg5U3KSePsXryR3ZxqHfnyS/nND5JRmkZgWH3JjDMZQ5ygwSvmWEiaWnAxEMVbRDWbRFBx3HTas6QnIo7NUbi9jdmLOMP2l82QPJrOJ6ssq9XPRo6h2VwxW05VFEBJBMZq46HjGjZTxSNI2gj3foE4QrTGxwAJKcOxesGc8uGgyRDnX/reiAEHHM5s8vy2z2QpBq/CResZDu4euooBzFTYV42hDfWVcEKJUYo2+zoqZWLOn8NCbeT0xMUF7ezs9PT2UlZWRn58fIiS43W7cTgHdybjeuUWR2n3VtDS0M9KjnYI00j3GSPcYeRXZxCXF0X6ik+TMJPLKs2luaNclo97C9KLafESTSNeZXtLyU9j9gU3sftu2gBUzf4yNjdHa2oqiKNTV1YU0ZzvfUBSF5uZmPv/5z3Ps2DHuvvtuPvnJT+reY4C19vZ/a5CVyLqzvdrxGibjazaVvzGIosh1111HU1MT73rXu3j3u9/NBz7wATo79cnuapGcnMz27duprq6mo6ODhoYGJicnAc8SaFtbGwcOHGBxcZF3fOit/FvDN7n9iU/idrkNibg/7C93IUZ5QxAkMK/iKx2TnkjRllw6z3Qz1DFivAOeIs/mY/pe/mjqa0SD1yEvJ7fFJoV2Egw8kLYybvTzj6gDpxoRVSG5S3OeWYYS1PQnVBlXjw/U2h6oEgNBTWfcy8eX1JTxkJb04E8IQz3jQWRc8Srjod9b21zojEbPM66m3GtD9N27VP35Qe9xKBlX/51lClBdnK53Wn1IoXa1tLQ0X0JIf38/Bw8epL+/H1mWkWWZvr4+6uvrVe1O4cJqNdFY32IYverFQPsw3U19bLliPVlFGZw73Ba2KtzT1M9I9xgf+84N/OD0t/jQ7e/HYrFw+PBhGhsbfba+ubk5Tpw4wZkzZygoKGDPnj0XtEATYGJigttvv539+/dTXl5OS0sLt956qyERX8PfIBTFU/R4yfytkfFLEt/4xjfYu3cvcXFxpKSkhLWPoih86UtfIjc3l9jYWK688kra2gKr7ycmJrj++utJSkoiJSWFG2+8kbm5uQvwCrQRFxfHl770JZqamkhISGDHjh18+ctfZnZ29oKdUxAEcnJy2Lt3L9nZ2Zw4cYL6+noOHDjA7Ows27dvZ/PmzSQmJiKKIvvftZP/OHEf//DFd2ILo/lFVlE6VTvKGe3RTizQg+gG91zkrZ+9mJ5apOflQWxxVvLWqStcwShZX0heda7+k6K6vuj/NE3LSSuzE/p5yv5+9mDCJhn46yNSxtU84zpe7BCPuE6aCoQSYEnRSV+RxZDCSWm555RjQYUc66jsEKpeh0wcvO+rn03F5HBx9foCHn/on0LOJ+kUh0aijPvvr6qMB+eM+x1bcMkhynisw8Un3rqZJ5/4BA9//X1850vvIj87OeS4okGNhCKr144IgkBmZia7d++msrKSzs5ODhw4wIEDB+jq6mLdunVYTAaTS52vrGI1k/2xN1J85YawfnI1uytISI7j5T+dpe14ByUbCimsNW42JooCV934er538gHectMVWGwWYmJiqK2tZc+ePXhjYg8ePEhDQwNxcXHs37+foqKiC+oLd7lcfO9732Pjxo20trbS0NDAf/zHf5CZmXnBzrkaXMr354sFRVYuub8LhVf79+2SJuNOp5P3vOc9fPzjHw97nwceeICHHnqIRx55hIaGBuLj43nzm9/M0tKKl/j666+nsbGR559/nt///vf85S9/4eabb74QL8EQhYWFPPHEE7z44ovU19ezZcsWfvKTn6hmhZ9viKKI2+1GlmUSExOJjw+9kdribFz3+XfwvZP38/r371M9TlpuCut2VzLWN7Hs44zeMy5EpCwGQlkuQJ2fXGTg3AgpeUlklasrhPlVuZRtKqbrbC/9doM0mCguMCZR30HmmF5WmI1i5vzEz2CfdXARZQgiUPTDjQx0LdeThjTOcQYTYg3C6/13iL0jWMlWV7PVss+NCHGISh80cfCuAMiLJgSXxM7cZH7+g3/i03e+jeSYWILhr1CH2FQijPVTFEH19QK4gyYs/scW/IpzTQ4Xb9tcxK9/egvveN9e3+N1lTk8/q3r+dptV5Oe6vfbNli4EhT9ibcgCMTHxxMbG4vL5cLtdmMymTxqsTt656QCdA/P0JwYR/4n3kzB/mrV5xXXFVBQnUvz4XYmh1fqPbrO9NLb1E/F1lLyKnJU9938hjq+c/BrfPxfP0xKVlLI9piYGJ8Y4XK5UBQFQRAuqA9bURReeOEF9uzZw/e//30ef/xxnnvuOTZu3Piqjip8LdyfLzhecSX7AvxdILzav2+XtGf8q1/9KgA/+tGPwnq+oih897vf5a677uLtb387AE888QTZ2dn85je/4brrruPcuXM8++yzHD16lO3btwPw8MMPc/XVV/Otb32LvLy8C/Ja9CAIArt37+bAgQM89dRTfP7zn+c///M/uf/++9m9e/d5uyBLkkR/fz+dnZ3ExMSwceNG0tLSmJubo6WlhQMHDlBRUUF+fn7IOdPz0vj0D27mmo+9kcfufIqmQ60kpSdSUJ1L61E7E4NTfi8ouvGJbhBX0chEsQSyjKkBT2pNdmUGjlknU0MzZBdnkJyZROuxlQIvozQVS4Rd+DwQECRFMzZRXlZhFUWfvCmmle2hnnGDEUSSM67WCl6nMDLESx0UCxiiVgeR92DVXS+K0POYyXBM2v82iGGUTMiSQKUthi989R3kF2f4tlnNloCMdEXRLw6NpIATPJMxNeuNZ1vwe7jyb9EheyYOxenc8cV3kJik3WRq15YSfrqlhOf/2swjT9bjFF3oSdSiDhl3OBzY7XYGBwcpKChg48aNiKJIX18fjY2NLMy6AO1GN/oFnCtb7INTkJlC9SffjPNQK0MnOknPTyM9NyXgt6uG9hMeW13VjnKmRqYZ6R4jvzKXj3zzOra9eZPq9VRRFJ8vXBAENm7cSEZGBrOzs7S3t3PgwAGKioooLi7GYjFOnQoXra2tfOELX+DgwYN88Ytf5FOf+tR5axR0ofFauT9fSCiygnIJecYv5KT11f59u6SV8UjR2dnJ0NAQV155pe+x5ORkdu3axaFDhwA4dOgQKSkpvjce4Morr0QURRoaGi76mP0hiiIf+MAHOHfuHFdffTVvf/vb+fCHP0xPT8+qjuvv6ezv76e2tpadO3eSnp6OIAgkJiaybds2amtr6erq4vDhw4yPqxdQVW4t5d7nvsDnnvoUSRmJNB1sxe0KX8UXnW42ZydhcrpDtgkSyObVkHF10jzcNoaCQvHWPGan5kNv5gZKoRhlJyJhSft9kZbdOHrJEwCidWVwkTb9iYngph6sbHuuqSrWFQ2bSkjTH4Oul3o54+oNcLTJuFG8YEi0YdBrFW02BMXEv3//nwKIuOrYglTs4MlUNMq4mkXFAyHAgun2vna3zHZrKj/85vv42v3v1yXi/njj62r470du5BN/v5dYnUQUNTIuSRIdHR3U19fjcrnYs2cP1dXVWCwWTCYTxcXFnkJ0OXoiqXYbbxmYYqSmgM3v2Y3VZjYk4v5oPWpnad7BLf/2ER468nW2X7VZlYjPzs5y4sQJGhsbKSoqYvfu3WRkeL4HiYmJbNmyhW3btjE9Pc2BAwfo6OjA7Q69fkWCyclJ7rzzTvbs2UNBQQEtLS3cfvvtfzNEPBr8rd+fLwTcigO3fAn9KZ6l05mZmYA/h8Nh8E6cf1zs79slrYxHiqEhT6V8dnZ2wOPZ2dm+bUNDQ2RlBfqJzWYzaWlpvue80khISOCee+7hxhtv5HOf+xzbtm3jU5/6FLfddpuqlUQLiqIwODhIR0cHgiBQVVVFdna26g1JEASysrLIyMigp6eH06dPk5KSQlVVVcg5BUFgz9u2se1NG/j9957nFw/8jsXZJb8nhI5FcLnZXpjOZz/3NlLTE5mZmufer/2aEwNTYPYQLdENinUV80tLKKtOTE+gsDqP1qN2podmscZZya/LZrBlFHk5stBIGXctuYglRvc5arAisKSxzeOxlkManQRD8qMoho1yguCacxAT5rhVM7ZVIC/PXBR3YHhjcMOcUJtKBMq4ilKsKObl/dQKHcMn+uCZOPg/4nILiIr2jMxDuD0TK6MJUaSecUUWdNV0WREwLStnsiRSOCLz1WvezM5NFRGdxx/v3buR9+zZwHeOHuYnZ0/jCsrINCsrhNB7DWlvb8dms7FlyxZSU1NVj2s2mzEJsei2BY1AOBMFgbrsJAZ/3cDJ4WlEUWDd7kqGukaYHJrW3ddkNnH1R6/gfXe+ncQ09fhBp9NJe3s7g4ODFBYWsnHjRk3VOzk5mW3btjExMYHdbqenp4eSkhIKCwsjSjBxu908/vjjfP3rX6eurs5nTXw121HOFy6V+/P5gNVqJScnhwNDf3ilh3LekZCQQGFhYMOsL3/5y3zlK1+5qOO42N+3vzky/rnPfY77779f9znnzp2jpqbmIo3o1Yvi4mKeeuop6uvrue222/jJT37CV7/6Vd73vvfpFhIpisLIyAh2ux1ZlikrKyMnJyes4iNRFCkpKSEvLw+73c7hw4cpKCigrKws5EZljbHyrluv4Q3v389TX/81z//4JWRZIYCNuyXWZyRy5+feTnb+yk08KSWe+/7lg7S3DPDN+35Hr0tCcAvIVhFTtKKTeeWmGJcUS+mGItpPdAbkjDsXnPQ3DpOYEU9CRjyDzSMBiSVqiLZbsTTrhPhQzzGsZF0bKePo2lQM9o1A0VeWggirBmlyyyKKFHrsEGXdwL4hBVswAlrMq31PTShuJWS/4H3V/x00NmfQRMItICj62dk+Mh5M9EMmFZGRKlkRVhRvtVPLAoieD+MzeZv5hw/+XUTH14IgCNy2cw//vG0n3zj4V55ubUZa/tDNeJTxiYkJWltbcblcVFZWkpOTY0gaZZW8+nDh/1ZW5aWy9Ncm2n99eOXYssK5w22YLSZq91bR2zLA7HhoodWOqzfzj9/4B/Ir1X3jsizT09NDZ2cnqamp7N69O2yRIy0tjdTUVMbHx7Hb7XR3d/uiHo2uyS+99BJ33nknCwsLPPLII7zzne+8oAWh0WDt/nxxEBMTQ2dn5yXZLdVbZ+EPrRWfS+n79jdHxj/zmc/w4Q9/WPc5ZWVlUR07J8dz8R0eHiY3dyUhY3h4mM2bN/ueMzISGHvndruZmJjw7f9qgiAI7N+/n0OHDvGTn/yEL37xi7588h07dgR86b2+x/b2dlwuF2VlZeTl5UV1wbdaraxbt47CwkJaWlqor6+nrKyMgoKCkOOlZCfziYf/kas/eiWPff6nvHyyCySZyqQY7vjs31Ncka1+EqCiOo9HH/8YLz1/mq8/8xJOiwBRkHFRlpFNIpYYC1Xby+g83UNjfYvm82fH5pkdmye9KIX5nBj69A4epQ1O1Ol0aImJBeb0CzhlBfw858FE0KhhUCSTiFBlXP3YYowVxaWy1aFPgIPVblkRAg4SQGK1PNROwBR6yTNSp0PTVEJzxgVdZdzfpqI/6YiqgFNnH/+6gGtfvyeiY4cDi8nEV153Obfv2stdf/kzL3R1IMgWTp48ycTEBKWlpRQVFYWt/rqdBs8z+C3lZSSS3D1C179rLxG7XRJNB1uxxlqo21dN55keFmYWKVlfyEe++Q9sen2d+qmXRYq2tjZMJhObNm0iLS3N6CWFQBAEMjIySE9PZ3R0FLvdTldXF2VlZeTm5oZcH+12O1/4whd46aWX+PznP8+tt95KTEzkK20XA2v354uHmJiYV+334GLhUvq+/c2R8czMzAsW1VRaWkpOTg5/+tOffG/2zMwMDQ0NvgrcPXv2MDU1xfHjx9m2bRsAL774IrIss2vXrgsyrvMBk8nEhz/8Ya699lq++c1vcs011/C2t72Ne+65h9zcXH73u9/x9NNP85GPfITS0lLVphzRICEhga1bt/qKm/r6+qiqqvJ5Kv1Rsr6Qr/7udg78zwkyi7Oo2VCockR1/N0bN2KqSeHb33+BuW4tc4c28vPTmJ5aIHdzCY0HtEl4MMZ7pnCYE/WfFGVRiujU3m9+xkUiYE1QV84BDxnXafojGCS2RKToB7ef1xi6wwWiipIruISAQsfQDptB5DxEGfezqWi0UzcpJmRVMh6hTSVo4qC4BUS9S6mfUm/kR4/GpqJH4FNsscwr8wgIWITzVzgYjHirlfsvez3Hs3I40tWJzWZj//79EWdbb04v4EzXNLLG26k3fRRkhaVf1DM5rWNz8YNz0UVjfQu5ZVn80wPXc/k/7MNkUn8vZ2ZmaGlpYWFhwdeZeLXWEK+1LzMzk+HhYex2Ow888ADr1q3jn/7pn5ifn+eBBx7g+9//Ptdddx0tLS0BpODViLX78xouJi6l79ura43rPKOnp4eTJ0/S09ODJEmcPHmSkydPBmRA1tTU8PTTTwOei+OnP/1pvv71r/O73/2OM2fOcMMNN5CXl8c73vEOANatW8dVV13FTTfdxJEjR6ivr+eWW27huuuu+5uo1E5MTOTee+/lzJkzuN1uNm7cSGVlJR/96EcpKChg7969ESlZ4cCbL+wtNjpz5gwnTpxQzeIUBIHXvXVbRETci0SblRQNf6cRnC6JmUUn9oIMqj72RmIzDAj2Mmp2V5KYrv/caIvdBZf2juY4T9Hdwpz2MqUgBe8vBBBLt1OfbQsRWCaUEDKukQJjsuBeCj2v6A4cW0hhY7CCHBxdGFDAqX5u15yES6UjZogyHtJgKNimEvRvA5uK4HeZDVHdDSIcjSHoEnhpeXXFJtoumK9YlmW6urqor68nRpK58Q1Xsm7duqiazNx+1WX8/t3XsdWcoZ5zr/Nbci05MIkidfuqMYeRYGSxWbj2M9fw7QP3cMUHXqdKxB0OB42NjRw9epSUlBT27dtHQUHBeX0vvf0bvEWt999/P2VlZdTU1HD06FFeeuklHn300Vc9EY8Ua/fnNVxMvNq/b39zyngk+NKXvsSPf/xj37+3bNkCwJ///Gcuv/xyAFpaWpieXinmueOOO5ifn+fmm29mamqK/fv38+yzzwYsBz355JPccsstXHHFFYiiyLXXXstDDz10cV7UecL4+Dizs7OIoogsyyQnJ7N58+YL2g5ZFEWKiorIzc3FbrfT0NBAfn4+ZWVl56U7XILFFlE2tj+WHJ54Erckc2p4hoQ3b6baJND204PIrlDfS+W2MmYn5mg+3MZiuZEyHt2YBJ2mPPMzbjIIja8L2F9SQk4tSSKi6GE5Rn7zyJRxISTCTw1OCRSVvkyC20NUTablsRl6xrUVZbUW9OCxqbhVtFXDKMOg7Z/6wOX84aeNdPd7OtDiEkI6igacV76Ayriir4zbrDEsyYvg8lzrSktLz1snRkVRGB4epr29HZPJxMaNG0lP1+ncGSaKMlJ54sPvoal/hC/9759olqfCko0UQWBucp7G+hZSspLJK8/mXEObaiORfe/ayYfueS/ZJeqqmiRJdHd309XVRUZGBnv37iU2VmcV6jxAEAQ2bNhAVlYWfX19mEwmFhYWGB0dvaDnfaWwdn9ew8XEq/37JigXMthxDa86nD17lrvvvpvnnnuOW265hTvuuIOUlBQef/xx7rrrLsrLy7n//vsvSoX+/Pw8ra2tTE1NUVZWRmFhYdQFSYqi0NLXx5cfe4HJ9vCWqf1htZpwOkOluKy0eDJHprE/cxwBKNlQiOSS6G0e8D1noTKJwU/Wah476dg0CfOhDUKM4M53MVKhTpzyZ/ope9M0557LZCxJnVCYZl1IiYHWhB1b2oixediwvTGTgVntJb60BicxS+FbG0o/ew5xmZM6XSYajoc2XYmfn2V9dR+9T4YW1OT/vzZiYjwTn4bjlThdK+cutE5QsnWlOv2vB2vA77uSkzVBZZln+0hXMrM/D1UlCt/dRFN3IbNxgZ9FYvw8mzd0+/7dO5BOV89KnUJK8hwb1q3Eg34y+y7WZ2Zz/HQP//LonxmdmWXdx+Z4aNfnAo67uLhIe3s735l/ElvCvGdsY0m0tBcEPG//riYEwTOBOdCwjkiC9jet62FqzkZ3r3pdxTv2jzLuHiXDnMG7Ft/G5OQkxcXFFBcXY9aJJzTC1NQUra2tLC4uUlFRQV5e3gW7Xhyx9/LVF/5/e3ceFmW5PnD8+86w78iugOy4AoKyWpmSmp7KU6cyLbMsfy3WySW33M01T4tle2adLKvTcspTlllmgorijsqwiiCLgiD7MvP+/kAmkJlhkc18PtfFVc68KzPM3O/z3s997+asohRlJagt9MxHKK/D+4VDTR5z8nCgV297kg+kAuAf5s20tZPoHxWgcxsNFxgpKSkYGxsTGBiot/pLR8rIyGDRokX88ssvzJ07l9mzZyNJEm+99RZr1qzB39+fVatWceutt3b6sQiC0PX+0iPjQnMJCQl4enqSlpbWZILBY489xr333suqVasYPXo099xzD8uXL+/USS+WlpYMGTKEwsJCkpOTm+STt+WL/dKlS6SmplJUWopRC3nQ+tTUqLUBUWMFReUUGBkR+sztGJ88y/HfTjVfWU9jngZmFiZQ3vZjqiquBHQH43VXRmI1Bn5PxkZKrr68aJzC0dLIuJGO/GpDZI0ClFfKPeoZVVcbKXWOjIOOlvZ6npM1NAnEmz2vb2S8Fuqk5iPYzUsbGkiB0UjYXemqGRbkyaevPcyPu5P4WdqhXaa2tpaMjAzOnTuHi4sLxkoTGt4AukaxNRoJpVLW2UlTIUloDI2XtDCBsyFFxtzInCFDhnDp0iVSUlLIzs7G29tb54RqQyorK0lJSeHixYsdEtS3RrivB//zfYhdJ1N5fU8cqVToXlDHaVw4V8iFc4X0j/Rn7GMjufm+SL3nW1JSQnJyMpWVlfj7++Pm5tbpAxKlpaVs2LCBTZs2cc8993D69Gnc3f+8WJs1axaPP/44r7/+Ort27RLBuCD8RYlg/Abz6KOP6n3O1taW9evXM336dJ5//nlCQkKYPXs2M2bM6NRbtA4ODkRGRpKTk0NSUhLW1tYEBARgbW04/ePy5cukpaVpR/tCQkLYlvBVu4/D0sKEsvKmOdiuDlY4FpRw6vUfUUj1dYrPp+VTcuGydpmW6ozXlNVg1I4642amJlzW81ztlYuOqycyNlZXWQvmTUtCNU6DaCkY19RoaLGjUePl1RLKK4PZ+jqD1iqMkWub71dRXQsGjq1xWsrVDYOgacCs63moT1NR67hYa17TXH+gr9ZI9Lqqxf3tIwYSf/SPJiXvbGxsCA8Pr2+NfvDrRuvrqnMuoUTWGagrkNAYyHOq78Cp/zVSXHn9zBT17wN7e3uGDRvGhQsXSE1N5ezZs/j5+bVYdrDxBYarqyvR0dFdXslh1CA/Rg3y49tdCbxyYD+Fzk3v2uh6O5uYm3D3zHH8/Z/jMLPUXR6tqqqK1NRU8vPz6du3L15eXp1+gaFWq9m6dSvLly/H29ubX3/9lYiICJ2vgbW1NQsXLuzU4xEEoXuJYFxoxs/Pj6+//prffvuNmTNn8uGHH7Jq1SruuuuuTqtrq1Ao8PDwwNXVlYyMDBISEnBzc8PPz69Zjmt5eTlpaWlcuHABDw8PBg4cqF3GSM/kvdYwMzHWBuMOthb0qawm9cNfKVHXFxCU5fo6xQ0l0VIOp1NTWftnorQ+7UwEqy2tAXRfBNVJ9X+6smTg9Wg2gbPpyGzLpQ3bmL/cZNRdzyEplU2CcalWzTBPB+YuvIvnVKvgSpsjQ3ncV7ejv/p5/TnjEnU65kQ0y0c3UAtco1E06z4pyzLKWiVxcXEYGRk1y51WSArtVAZdo9gNkzg1GgUPDBjEF6eTtDW7JQnD7x9ZYTDPvGFk3FT5ZyDauIpHQ0OezMxM/Pz8mt2Vaui+m56ejrW1tfYCoztNGBXOXSOH8dH2P3g36QiXHa98Plz1dzjszmBC7g7E1cuFqtpKzLjqwlStJjMzk8zMTJydnbskL1yWZfbt28e8efO4cOECGzZs4IEHHuhx9cIFQehaIhgXdJIkiZEjR5KYmMj777/PzJkzeeedd1i3bh1BQUGddvvW2NiYgIAA3N3dUalU7N27Fx8fHzw9PamuriY9PZ28vDzc3NyIiYlpNjqn0BOItYapiRHWlqb4KCBt215SqnTnUzSURLN1tsEnxItD5RcNb7i9EzgNVDORrpy3oTQVSUd6Q1tGxhVtyF2GpiUF9Qb6CgXqKgnUGgJszVmwYAJ9PB2uHG9Dy/rm6RqNO2fqCrZbOzKu0THi2VLTn8YVT2SNgv379+Pv74+Dg4M27aOuohbfQF+dqQ0KjLTBuO6R8fqmQLKs5IXom5g5LJJFv//Kzsz0ll8BWWFwAqc2GFc0HxWWJInevXvj6upKdnY2SUlJWFpa4u/vj62tLRcuXCAlJQVJkhg4cGCb08c6kyRJTL3jZh4aF8OmL3/h31nJVFnVn+uAqAAeXTcJ/1BvamtrOXv2LIcPH8be3h4/Pz+srKy0FyFmZmaEhYVhZ2fX6ceclZXF4sWL+fHHH5k9ezZz585tU0dkQRD+usTleAcoKipi8uTJ2NjYYGdnx7Rp03SW7WuQmZmJJEk6f7788kvtcrqe37ZtW1eckpaRkRFPPPEEKpWKoUOHMnLkSGbMmEF+fn6n7tfCwoKQkBBCQkLIyclh9+7dxMXFodFoiIqKYsCAATpvk7vZtW/UztzMmL4mCpTfHUT18R7UegLxxkoKLnNmXwqOfZvXTG+iDZ0sGzMUjFdcGYU2MtN96x3QOTzdOHCTFO1ssCLL2CtolmDfeMTaUCdJa3NrXpn7N954a5o2EAeQrowN6Fq3cZqKrjrijfO+NTrSYADMzXVPolVrmv4eDFZTkZX07t2bEydO8Pvvv3P06FGcnZ0J7KN/EqOiUaqPvpzx+v+pX87C2JiXY8fw6wNTiHE3XOKzpWoqhoJx7fFdqXI0fPhwevXqRWJiIr///jtJSUl4enoSGRmJk5NTjwnEG1MqlTw7cQxxzz3JZHNP5v57Bqt/Xoh/qDdQf3Hv5+fH8OHDsbCw4MCBA/z++++kpKTg7+/PsGHDOj0QLy8vZ+XKlYSFhWFsbExSUhLLly/v0YH4X/k7TRB6IhGMd4DJkyeTlJTEzp072b59O3v27GH69Ol6l/fw8CA3N7fJz/Lly7GysuL2229vsuyHH37YZLmG+pZdzc7OjpdffpmjR49y8eJFQkJCeOWVV6iuru60fdbW1lJUVER1dTXm5uYolUqqqqqoq9PfYnPJM2OZ+3+jcLRv3RedsZGSYBcbLHcd58jGHXgF9sahd+uqJyiUCgZEB1B2Wc+Esit0jVC3avsGgvg64/p82SodFWC0+9URjDcONA38Gq+s3/wxB42GFdNH8vlHTzFvcgzWNX9upHGQbGjU3dTanoEhXs0ebwhadQbjjUfGdaQiNRkZ15OqVJKj+3XSaKQm1xXN01Qa/VtWUl5ejkajwdzcHI1GQ2lpKdYK/ekNykaTRnWNjDfcRZCuys93srTk9dHj+O899xPQS0/JwBaC8YaGQ4aC8QZ1dXVUVtZXIjIzM0OtVlNSUtKpf+MdxcTEmPmP3EnM34fpvGhQq9VUV1cjSRJmZmbU1tZy6dKlTj03jUbDp59+ypAhQ9i1axc//fQTW7dupW/fvp22z45yI3ynCUJPItJUrtHp06fZsWMHBw8eZOjQoQC8/vrrjBs3jg0bNugs/K5UKptVKfnmm2+47777sLJq2rTGzs6uR7XxDQwM5LvvvuPnn39m9uzZbN68mdWrVzN+/PgOy3tUq9WcO3eOjIwMrK2tCQ0Nxc7Ojrq6OjIyMjh48CCurq74+flhato0yFAoJGKHBxIz1If//HCUL/53hOqa5lGnQpIY6GrLhR8Oo8r8s45v8sE0jEyMGBgTSNqxTKrKdH9Z94vw40J2IafiVVQObWFkvL30TIKsf0qBXC0jGxqt1BFMNw7cDKapyE0rmFvW1DLtvij+dk+49rFRt4cwcmww/37/N774+QTqRm3iZUN5zGrd5RKVGF85rubrNhkZ1zm63GjfNbr3ra7Sd0yStqJJ/fYNVFOpq79IjIyMxNLSkqqqKtLT0ylIP8+ZujM6a+YrpT8/ZnUf+5VgXE/jIF/7Xnx9930cPH+eF/b8yvmy0j/PtZU542YGgvG6ujoyMzM5e/Zsk9zpyspK0tLSiI+Px93dvUNrlHeVxufm4uKiTW1rmHcSFxfX4ecmyzIHDx5k7ty55OTksHr1ah588MFO7eHQkW607zRB6AnEyPg12rdvH3Z2dtoPLYDY2FgUCgUHDhxo1TYSExM5evQo06ZNa/bc008/jaOjI+Hh4WzevJmeUBZekiTGjBnDkSNHmDlzJk8//TR33HEHJ0+evKbj02g0nDt3jr1795Kfn09QUFCTfE4jIyP8/f2Jjo5GrVYTFxdHeno6anXz0WFzM2MeunsYm1+aRGxM05rC/Xvb0+fMOVLf/ImSzOYNNepq6kiKS8bYxJgB0QFN5oX5h3rj5uvMmQOpFF5p+tJSNRWpnWkqihb+PDUVoNFRqk+7X11pKo2DVgPBfgOTqloeiPHn623PNgnEtfuQJB6cNoLX192FSeNUEUMpNiXVpKWlNXvdGoLW9oyMN+nQqWfeQF21/t9V04op+tNUlAoTgoODtSkGZmZmDBgwgJigoVRVVbF3717S0tKa3L0xajTmcXUnUfhzZFyB4Zruw3r35ueJD7J+RCx2pmbadQ2OjF+5iNE1Mi7LMtnZ2cTFxVFUVMTQoUMZPHiwdhKjubk5gwYNIjw8nIqKCp3n1lPJskxOTg5xcXFcunSJoUOHMmjQIG1qm6WlJUFBQR1+btnZ2Tz22GOMHz+e2267jTNnzvDwww9fN4E43JjfaYLQ3cTI+DXKy8vD2dm5yWNGRkb06tWLvLw8PWs19cEHH9C/f3+io6ObPL5ixQpGjhyJhYUFP//8M0899RRlZWU8++yzHXb818LY2JgZM2YwadIkli1bxi233MLkyZNZvHgxTk76m8lcTZZlcnNzSU9PR6FQ0L9/f4M5qubm5gQFBXHp0iVUKhU5OTn4+/vj4uLSbB2nXlbMfSKWu0YP5otvDpGzPZHMb1r3hVJaVMapeBWu3s44uNtTVlhOyuGM5gu2EIybW5ohlxhcRCeppWC8CtQG7kaYW5lx9bh+k5HxFvY/up8bzz7/N0xMdAeJsixTUFBAamp9QxUXZ0cuUz9qe3Wb98YszewoLCwkOzsbX19fevfujUKhwAgj1LQiZ1xnmkqjYL1Wz8h4jaFgvGnFlMYaT0ZtPMrdmI+jO+auptpmONnZ2fj4+NCnTx+UihZyxq9sX9nKj+Nxfv6M8/PnoxNH+aVoR7vSVAoLC1GpVKjVavr164ezs7Pevzdra2ttjfLU1FTOnTuHj49Pm2uUd5WioiJUKhW1tbWtPrfi4mJSUlI4d+4cXl5eeHh4tCmArqio4LXXXuOVV15h3LhxnDx5Em9v7446pS51I3+nCUJ3EcG4HvPnz2fdunUGlzl9+vQ176eyspJPP/2UxYsXN3uu8WNDhgyhvLycl156qcd9cPXq1YuNGzfyxBNPMHv2bEJCQpg3bx5PPPGEwVu/sixr6x2r1Wp8fXVXo9DH3t6e8PBwcnNzUalUZGVlERgYiK2tbbNlA31cWDRrHPHeTmxZ/DkFZ1uogHKFm68LljbmJP2RjO8QL1y8nMi/ajRdbqHpT1VpFaYtjHrqomihgZGmCjQGLgSqLldBr6a3iJsEnQZGxu3NzJjzwt/1Pt9QRaSyslIbUO88eVJbFz3UqQ91Kbao5JJmDSVNjCwYNmwYBQUFpKSkkJWVhb+/P8YKY6ppHgwD1DW6MDGU6gHgYmRKTp0ajJoGUzqDcY2M18WGfPX6UdHmo9f1aSwKhaxNpbmauVF9sGtnZ9esjrdsqtF+0uo6t4YLFyOpbe+RhweHkLj/D4PBeMOFREMwXlZWhkqloqSkpM1db+3t7Rk6dCgXL17Unltb/2Y7U0VFBSkpKRQWFuLt7Y2np2erA+qGkeDCwkJSU1PJysrC29ubPn36GPz9aDQavvrqK5YsWYKDgwP/+9//uPnmm3vE7+Nq4jtNEHouEYzrMXv2bKZOnWpwGR8fH1xdXSkoKGjyeF1dHUVFRa3Ki/vPf/5DRUUFU6ZMaXHZiIgIVq5cSXV1dbNc6Z5gwIAB/PDDD/zwww/MmTNHm09+++23N/lykmWZoqIiUlNTqaqq0o4gtmeUraE8m4uLC5mZmRw6dAgXFxf8/PyaVVuRJImYu8MZNi6E7zb9zH82fE9laZXO7Tq698KhTy9tG22AtCOZKBQSA6IDOHsqh/LiK201W/zebecXs1xfAhCl7t+LptpwnXFdt39bmzNuoqf7ZllZGSkpKVy6dAkvLy/69u2rDXiMGnULtTO35OvHJrH7VDorfv+dAuNGv2fZBEmScHFxwcnJSVtWr1qqBjM9xyUpkOskJCO5xZHxe++Oxn9MH9at/56sarX2zkVtXdPArFdBLfOGD2f8zaFMT5z357b0BPv1wXjLH5kNdbwdHR05f/48VSkHteXiDVVTMWrHBZuJwkhvTfd69ftTapScOnWK3Nxc3N3dGTRoULtypCVJwsnJCUdHR/Ly8po0Duqu0oeNGxI1lDxtz+ejJEk4Ojri4OBAQUEBaWlp2guOq5siybLM4cOHmTdvHhkZGbz44otMnTq1R6ejiO80Qei5RDCuh5OTU6tSLaKioiguLiYxMZGwsDAAfv31VzQaDRERES2u/8EHH3DnnXe2al9Hjx7F3t6+R39oSZLE+PHjGT16NJs2bWL69OmEhYWxZs0a+vfvz65du9i0aRNPPfUUfn5+bRq9MkSpVOLr60ufPn1ISUkhLi4OLy8vvLy8mm3fxMyEf8z+G7EP3sTWlV/xy8d70FyJaGwcrHEPdCM5IY2L2UXN9qPRyJyKV2FubcbA4YGc2Z/S4sh4e+uMAyiqNWgs9KRdVErN2sI33W8LOeMGLhJMrvqdVVVVkZaWRl5eHn369GnSaKmBqdJEe64No7wjBvgwYoAP/447whtHD1JuqkaS/ww6G8rqubm58UPCaWrRn2+uqZNQGsm6R5fl+h9JAnMjM/z79eH9zU+wf89pXn37F4qUStR19R93FkU1TPMdxPRpI5Ekidra2iZpNbq2r2nH6LVCocDd3R3nImcySQf0d+AEMFG0PTi2UFiAvvbwgKwBJEg9ncJA6wHaiafXSpIk3NzccHFxaVKj3M/PD3v71lUjulYajYacnBzS0tKwsrLqsIZEjS8UGy445s6dy5gxY5g0aRIFBQUsXbqUr776imeeeYYdO3ZgY6O7bGZPIr7TBKHnEsH4Nerfvz9jx47l8ccf5+2336a2tpYZM2YwceJE7azznJwcRo0axccff0x4+J+T4FJTU9mzZw8//PBDs+1+//335OfnExkZiZmZGTt37mT16tXMmTOny87tWhgbG/Pcc8/x4IMPsmTJEmJiYnB0dKSwsJApU6YQHh6uM53kWpmZmTF48GBKSkpITk4mJycHPz8/nbfS7VxsefqNRxn/RCwfL/mSqopqUhLTORWvanE/laVVJO1NxrFPL/B0oNDQwgY7KF55Us+IolStBgvdf6ZKpeEvMEnHfpuMzBqowmFyZTS+traWzMxMsrKycHZ2JioqCgsLC53rmCnM4MqcTJOrgtaHYoYwKTKYdTv2YG3aPKA1NjbG3sqeUnQHw9DQzEejJ1j/syKKhfLPOyKRN/dn2839+fbzeD7dnUAMLrzw3B2YmBhr29enp6dDowseXZMsGxrzGLcxlQTApNFFiq6RcfkagnFrIysMBeMlJaVgBwP8BhDsGtzm7bek4WKqd+/enD17liNHjmib63Rmp87GOe8DBgzolDroCoVCe9dt7969zJs3j8WLF1NaWsrYsWM5fvw4fn5+HbrPnkB8pwlC1xPBeAfYunUrM2bMYNSoUSgUCu655x42btyofb62tpbk5GQqKpp+aW7evBl3d3dGjx7dbJvGxsZs2rSJmTNnIssyfn5+vPzyyzz++OOdfj4dqbi4mJKSEiRJQqFQYGZmRkBAgN6ArqPY2toybNgw7cjWuXPnCAwM1Nngw2uQJ4u/msXBH4/y4QvbOJ/SuklKkkLCysmSzKJSQH/gIekagZZlXCR4bsYYKsqreO29X7ls3PzPUVGjQV8l8Tq9pfoa9tH8ocaBrqmJKTXVuqdxGkkKMjMzycjIwMbGhmHDhrU4+memMNUG47pGkJVKBQvHj9C7vqmyPhjVN/mzoamQvmBdo1GgVKqxNGp+kTLh/mgm3F8/maxhwnBqaqq2ff2Xmb8j0zDCrn9k3Fhqe8BsrDDS/l50j7q3XH5QH2tjK6BA7/NmphZUAo52nVR+8wojIyN8fX3x8PAgIyODhIQEXFxc8PX17dAW8+Xl5ahUKoqLi9uc895ekiTRr18/rK2tqa6uRqlUcvnyZQoLC/+SwTiI7zRB6GoiGO8AvXr14tNPP9X7vJeXl8783dWrV7N69Wqd64wdO5axY8d22DF2tZycHFasWMFHH33Egw8+iEqlwt3dne3btzNnzhw++OAD1q5dS2xsbKflmTbcSnd2dta2xHZ0dMTf379ZgCBJEuHjhjAkdjA73vuVbWu/pexSud5t9w1ypyj3EplHz1Hr1LzuriG2tXU88fDNjLo9RPvY8JED2br5N7btOEGNWaM0jhr9w+oVl9Vgpfdpro7GzS/VcKejB5mcBaBGrX/b1RUV5OXlERQURK9evVr1GpkrTeFK49L2jPKaKUxAoz+XvSGXW2+wfuVxXcF4g6KiIlJSUqiurm5yx0SRWV/JRd9kyIZtmyrak9dtDGrQaJpWZmmgHRlvR6DvYGr4AsnYpP530ZqmPx3BxMSEwMBAPD09SU9PJz4+nj59+uDt7X1NqQi1tbWkp6eTnZ1N7969iYmJ6fSa57Isc+zYMebPn8+ZM2dYuXIl06ZNo7S0lA0bNjBq1ChiY2N58cUXGTRoUKceS1cT32mC0LV6Xl0q4S/h+PHjFBcXc+zYMd5//308PT1RKBTceeednDx5kmnTpjF16lT+8Y9/kJyc3KnHolQq8fHxITo6GqVSSXx8PCkpKTprChubGHHH06N56+h6xj9xG4qrJk96DHDD3t2Ws8ezKb1QH6y3XGe8/r/m1bU8PjaIL7c92yQQh4Z63SP56t9PMsLHGelKoyKpVn8Bwlo9JfwabRUAo7I67saFP559kiljb9E+W12nf9vWFhZERETg4ODQ6oslC6M/00PaWhkEwOxK2o3+NJX649CVRlL/eP16NsbN77qUlZVx5MgRbfv6mJiYJu3rDXX/hMZ53W0PKBsuTPQ152nYZ8mFYnJyctpUd9nR1M7g8w0XLu0Zdb8W5ubmDBw4kIiICKqqqoiLiyM1NbXNdbwbUoni4uIoLy8nIiKC/v37d3ognp+frx0ZHjZsGCqViv/7v//DyMgIe3t7Vq1aRWpqKp6envzyyy+deiyCIPz1iZFxoVPcfvvtzdogNzAxMWHOnDlMmTKFxYsXEx0dzbRp01iwYEGnTv4yMzNj4MCBeHh4kJycTFxcHH5+fk2CsgY2DlZM3/Ag4x4fyYcLt5Gddr6+KdGp3OYbbiEYN5Mk/j7Mh2lP39biZFVTMxMWLv8H03IvsfrFbzhIFbrrvUBdneE/X2NJIqLcilWP3I2dbf2kPdOa+qCsvqGQgVrg5uZtvmNhYfTn3Yb2BK0NI+v6J3DWB7P601Tq29pbmfx5HNXV9Q2GcnNz9U48hfr64bXoD5gbOoo2pNK0hemVEpW6qrTAn4G+i70TGRkZZGVltao6iUajgRLD7dw1V5U27GpWVlaEhIRo63hnZ2fj7e2Nu7t7i38LFy9eRKWqn78xcODALqnWUl1dzZtvvsn69eu55ZZbOHbsGAEBATqXdXV1bZK6IQiC0F4iGBe6jbOzM2+//TZPPPEEs2bNIjg4mEWLFvHoo49iZNR5b00bGxuGDh2qrXN97tw5AgIC6NWrV5PlZFnGzMGE2DlRpBzIZN/HR3RuT181FePSWu6wdmfBe+MxN2tbMOTiZs9rmx7lcFI6i//7I2edddTe1ugOZqQ6DYOLjZk8YhiWphKXSwqxsTZHoVBgemWU1khP85oGJoq2V7ixMv5zZLw9Ex0bRtb1BuNqyfDzGgUajYSp0pi6ujrOnj3L2bNncXBwaLGKSEOXTEOBPly5YGijhgBef6Bfv21nW0eiQ6ObVCcJCAhoNtG5odlSSkoKlWrDI80aWUJCatfr0ZEa1/FuqC2vr0Z5Qy30y5cvd1lzIY1Gw//+9z8WLlyIubk5X375JbfddluPrBcuCMJfjwjGhW4lSRJDhgxh165dfPvtt8ydO5f333+fdevWMWLEiE7NJ3dxccHR0ZGsrCyOHj2Kg4MD/v7+WFhYUFxcTGpqKmVlZXh7exP+TDiTZ9zHzo/28OnKryi5WNp4Y022raysYwS9WP7oBO2IdHuFDvThfwOf5ttdCbyUsJ8Spz+DqhrNVQGWRsa3UGLFhPEE96/P6bx48aL2gsPf3x97hyt3Hlpov3l1acPWsFL+OSJtpjAzsKRulsqGYFxPQHxlZFmtp1mRRiOh0SjIzs4mLS0Nc3NzQkNDdU7avZqyYfS6hXz09gTjJlfyzPXmo18ZvbY0NmtSnSQzM5PExEQcHBzw8/PD0tKSkpISVCoVFRUV+Pr6YuHgACn6G7VoNPWj4j0hqGxcxzsvL4+0tDQyMzPx8/PDycmJ2tpa0tLSOH/+PO7u7gwePBhj4869iJBlmZMnTzJ//nxOnDjB8uXLmT59eqfvVxAEoTGRM36dKCoqYvLkydjY2GBnZ8e0adMoKyszuE5DMNv454knnmiyTFZWFuPHj8fCwgJnZ2eef/75Nud1dgSFQsHdd9/NyZMnefDBB5k0aRITJ04kJSWlU/erVCrx9vYmJiYGY2Nj4uPj2bt3L4mJidjZ2TF8+HBtYxulkZKx027lrWPruXvmOIxM6gO4hpFxqVbD0GJT/vePSbz2zORrDsQbmzAqnD1zn+YR876YlNTPkqyV/wyYnQvqeHXwTfx3wZME9/eqP54rDVoiIyPx9PQkKSmJ/fH7kWTpSpqKfiZGbQ/GrY3/DMZNpbYHrRZXRtZbmsCp93mNAlkjkZmZSb9+/Rg2bFirAnEA4yt3CvTmdV+5AGhPMG52ZWRcby78lUDf2ujPXHcjIyP8/Py078t9+/axd+9eDh06hL29PTExMbi7u7d40aTRtO/CqDM1TKyOjo7Gw8ODU6dOsXfvXvbu3UtVVRWRkZEEBgZ2ekB84cIF/vnPfzJixAiCgoJQqVQ8/fTTPT4Q/6t/FwjCjUgE49eJyZMnk5SUxM6dO9m+fTt79uxh+vTpLa73+OOPk5ubq/1Zv3699jm1Ws348eOpqakhPj6ejz76iC1btrBkyZLOPBWDzMzMmD9/PsnJyTg7OxMZGcmCBQsoKSnp1P1qNBrtxDmNRlOf0mFqqvP2uKWtBQ+vvJ9NiWuInjAMCeh3UcHnt93JljmP4u7m0CnHqFQqmT15HLv/7zFGVdqgqTPC5mIt890G8+vCZ4iNGmxwfUmSkGUZI9lIO2FRH2MDnT31sW40cbI91VSsWpmmotYbjEvIGoW2jGZbNKRx6M3r1lZqaXuZPm2aSgsj49Y6Jp4qFAqMjY21r12z49bTnbXxtk3b8Vp0BUmSMDU1xcjISPv3J8tyfS58J6qpqWHjxo2EhIRw/vx5Dh8+zGuvvdYsTa2nulG+CwThRiLSVK4Dp0+fZseOHRw8eJChQ4cC8PrrrzNu3Dg2bNigbcSgi4WFhd4Wxj///DOnTp3il19+wcXFhZCQEFauXMm8efNYtmxZp1csMMTV1ZX333+fJ598UptPvmTJEqZMmdKh+eQ1NTVkZGSQnZ2Ns7Mz0dHRmJubc+HCBVQqFdnZ2QQEBODg0DzAdvV2Zt4nM5h2oQRHp45vYKSPjZUFrz0zmdyCSzg72OidCNc4t1ihUGibo/xw5mfqavVVL69n3I40FTvTP+sstmfCYMPIuqE64i09L0lGeHh4kJSUhJWVFQEBAa3qjmjckErSQppK44oxrWXeUs64Nhj/M9C/urtkQ533xhMhfXx86NOnj8F9qzXdN3nTkNLSUlQqFaWlpdpJ1HV1ddoa5c7OzvVpOB3Yj0CWZX788UcWLlyIUqlk69at3H777T0ihae1bsTvAkG4EYiR8evAvn37tBOgGsTGxqJQKDhw4IDBdbdu3YqjoyODBg1iwYIFTZo07Nu3j8GDB+Pi4qJ9bMyYMVy+fJmkpKSOP5E2kiSJoUOHsnv3bt544w3+9a9/cdNNN7Fnz542lX/Tpa6ujrS0NPbu3UtFRQXh4eEMHjwYCwsLJEnSBua9e/fm+PHjHDlyhPJy3XXHuzIQb8zN2V5vIF5UVERCQgLJycl4eXkRGRmJs7MzkiRhpjTF1MTwCK+Jsu0XPCZKI5DbH7RaaYNxfaULDY+MqzUSkqzE09OTmJgYbG1tOXjwICdOnKCystLwsTeMjLdwIWDVjvMya2lk/EoVGDtTC2RZ5sKFC+zfv5+srCwGDBhAWFiY9oKi4XNg4MCBZGdns2/fPowMVlzpWcF4dXU1p06dIiEhAWtra226jUKh0NYoj46ORqFQsG/fPk6fPk11teGKMS2RZZlTp04xYcIEpk+fztNPP83x48cZN27cdRWIw437XSAIf3ViZPw6kJeXh7Ozc5PHjIyM6NWrF3l5+rtFTpo0ib59+2oDynnz5pGcnMzXX3+t3W7jD19A+29D2+1qCoWC++67j7/97W+8/PLL3HvvvYwaNYoXX3wRHx+fNm1Lo9GQnZ1NRkYG5ubmDBkyRG85RYVCQd++fXFzcyM9PZ39+/fj7u6Oj49Pj80rLS0tJTU1leLiYry8vPD09GwWsJsoTFFrag1ux7iFco36SCiRqcPCQOMdfexMza9MwjScM66WFTqrMmo0ChRXGh0ZGxvj7++Pu7s7aWlpxMfH4+Hhgbe3t87XzkRhcqUxT+tHr1vLXJszbrgKjHGtmsOHD1NaWmqwikjDXABHR0fOnz+P4sxJvfuu04BpO/LcO5parSYrK4uMjAwcHByIiorSO+rdUKO8b9++pKWlERcXh6enJ3379m3z311hYSGrVq3io48+4tFHH+Wzzz7D0bFzu5F2phv9u0AQ/qpEMN6N5s+fz7p16wwuc/q0/koJLWmcRzh48GDc3NwYNWoUaWlp+Pr6tnu73cXCwoJFixYxdepUXnjhBcLDw3nyySd5/vnnW0xFkGWZvLw8UlNTUSqVDBgwoNV1i01MTOjXrx/u7u6oVCri4uK6rORaa1VWVpKWlkZ+fj7u7u5662lDfQOYagynqaBu4Xk9FChQQ7uCcWOlsj4Y11ct5UpArNHzmtWX8Wv6kWZubs6gQYPw9PQkJSWFuLg4vL29m7VRb+iSqVYbTlOx0pHX3ZKG34W+kXFZrq8CcyQxEQ8PD4KCgloVdEqSRJ8+fTAzMaampkbvcXd1w5/GGqdKGRkZERIS0urcbCsrK4KDg7WVjbKzs/Hy8sLDw6PFGuW1tbW89957rF69mqFDh3Lw4EEGDhzYY0fCxXeBINzYRDDejWbPns3UqVMNLuPj44OrqysFBQVNHq+rq6OoqEhvDqAuERERAKSmpuLr64urqysJCQlNlsnPzwdo03a7mru7O1u2bOGpp55i5syZhISEsGzZMiZPntzsS7qhvF9D9z99tY1bw8rKitDQUG0zkuzsbPz9/bukGYk+tbW1ZGRkcO7cuSY574aYKEyQ9LYSqldwPpdTp07h6+vbpjbm9cFwTbvSVKC+uY7+NJWGair6RsYlvRNTbWxsCA0N1da5PnfuHH5+fri4uNRPJFQaX2k4ZDiVxMa4HTnjRi104JQlNBplq147XYwN1ISv08jdlqZy+fJlkpOTqaio0NtcqzXs7OwICwujsLCQ1NTUJjXKr74YlmWZnTt3smDBAtRqNVu2bOGOO+7osUF4A/FdIAg3NhGMdyMnJyecnJxaXC4qKori4mISExMJCwsD4Ndff0Wj0Wg/VFvj6NGjALi5uWm3u2rVKgoKCrS3Pnfu3ImNjQ0DBgxo49l0LUmSiIiIYO/evWzbto358+fz7rvvsm7dOqKjo5EkiZ9//pnMzEwCAgI6dCTb0dGRXr16aZuz2NjYEBAQgJWVVcsrdxC1Ws25c+fIyMjA1tZWO8GvNUwVpkgtVFPx7tuXmpoa7UiyrnQXXRqC4fYGP7KsbLHWt1pP51CNRoHCQDOjxnWuz58/j0ql4uzZswQEBGgDVkOlDTUaBbZmbQ/GLZSGR8Y1V3Ld2xOIg+GKKuUV1RjJXfe+BKiqqiItLY28vDz69u3LkCFDrnnSdePXLj8/n9TUVP744w+qqqqYMmUKCoWCM2fOsHDhQg4cOMCiRYt45plnrpuJh+K7QBBubD3jHrtgUP/+/Rk7diyPP/44CQkJxMXFMWPGDCZOnKidPZ+Tk0O/fv20oxtpaWmsXLmSxMREMjMz+e6775gyZQo333wzQUFBAIwePZoBAwbw0EMPcezYMX766ScWLVrE008/3abR0O6kUCiYNGkSp0+f5s477+Tvf/87d955JzfffDOTJk3i0qVLDB8+HE9Pzw5NKWlozhITE4OlpSUHDhzg9OnTetMFOoosy+Tk5BAXF0deXh5BQUGEhoa2OhAHMFWYILXwp29lbkZISAghISHk5+cTHx9Pbm5uixNnFRgh6QmWW+VK0KtLQ7Mf/cG4pO2kaUhDekdMTAxOTk4cOXKEovxC7Tb0bVtzpWxiW5kYGSPLLeSjy22vXtPA0Mh4jVpDQU4+GRkZqNuZetRaarWa9PR04uPjUavVREdH4+fn16HVjyRJwtXVlejoaDQaDYsWLSI0NJR7772XmJgYvLy8SE5OZvbs2ddNIN4W4rtAEP6axMj4dWLr1q3MmDGDUaNGoVAouOeee9i4caP2+draWu0tYajPc/7ll1949dVXKS8vx8PDg3vuuYdFixZp11EqlWzfvp0nn3ySqKgoLC0tefjhh1mxYkWXn9+1ajj2EydO8N///hdAWzmhI4OBqxkbGxMYGNgsn/zqnORr1TjdRq1W4+/vj6ura7uCQ1OFKejJy27QEOD16tWLiIgI8vLytG3MAwIC9E96lY3adUwN7es1av0TOBuqqNQZmMBpZGBk/GpKpVJ7x+Ts8R/r92Go4omeYLo1NBqphZHx9r9HjQy8z4yNzfB0daQgr4Bz587pTe+4Fo3nY5iYmLS66+m1UCgU3HvvvVy4cIGVK1eSnp5OeHg4jz32WLMJjn814rtAEP56RDB+nejVqxeffvqp3ue9vLyajFp6eHjw+++/t7jdvn378sMPP3TIMXaXgoICVq1axbvvvst9991HSkoKubm5zJo1iyFDhrBs2TImTpzYqjSL9rK0tGTIkCEUFglM3fUAAD28SURBVBaiUqk4d+4cAQEBODk5XXO+akML9PLy8g5JtzFpxci4SaMLmIaOic7OzmRlZXHkyJEmLdoba+vIuEaj4fz589r29UrJWH+HTVmBrAb0nLtGI2Ektb3KjYmJCT7ufUm4aCBnvJ2j1zU1NaSlpSHLCoN1xpXX8FFsbOC9UKcBeys7wsPDtekdZ8+e1bagv9b3ZnFxMSqViqqqKvz8/No9H6MtZFnmt99+Y/78+VRVVfHJJ59w880389JLL3HzzTdzxx138OKLL+Lv79+px9FdxHeBIPz1iDQV4bomyzJjx44lMzOTgwcP8tFHH+Ht7U10dDTx8fGsWbOG5cuXM3LkSA4cOHDN9clb4uDgQEREBF5eXpw6dYrExERKS0vbta3y8nKOHTtGYmIi9vb2HZZu06qRcR0dOJVKJd7e3toW7fv37yc5OZna2j/LJCpkExSt6N7ZuJ524/b1SsnIYJqKpk7/tjUahbZeeFs1tLnXNyovaxRtCsbVajUZGRnExcVRXV1dXzHFQKUWJe0vlWmoQVOdun4CZ+P0joYW9IcOHaK4uLhd+6yqquLEiRMkJibi4OBATExMuydotkVKSgr3338/kydP5qGHHiIpKYm7774bR0dH1q1bh0qlwtbWlqioKL19AQRBEHoaMTIuXNckSeLXX3/VeVtcoVAwZcoU/v73v7Nu3Tr+9re/cccdd7BixQrc3d077ZgUCgXu7u64uLhoOwq6ubm1ujJJdXU16enpnD9/Hjc3N2JiYjo0b9NUYaJtzqOPiYEAz9TUlAEDBuDp6YlKpWLv3r3a1BxlK0bGL1++jEqloqysrNlIvwIjZANpKrKegBbqm/4Yt7P1u7nS7Mo2DKSStDDpFZqmbBgbGxMcHFxfyu/wvw2OjLdnRL+BoZHxWnXTpj8KhQIPDw/c3Nw4e/Yshw8fplevXvj7+ze7y6FLXV0dmZmZnD17FhcXF2JiYjBrx6TWtiopKWHt2rW8++67TJ48meTkZJ1VPtzd3Xn33XdZv359q85HEAShJxAj48J1r6X8VGtra1588UWSkpKQZZnQ0FBWrVrV6SNnxsbGBAQEEBUVRW1tLXFxcQYn0tXV1ZGamkpcXBw1NTVERkYyYMCADp9AZaowRW5hZNzEqOXAs6HUY1BQEOfPn6+fuFcr6U2Bqays5MSJExw8eBBbW1tiYmKajfQrMdafM44Cuc5Qt0lFfYnCdrA0ahgZ1x+Ma+rqLyT0KS4uJiEhgZSUFHx9fYmIiPizprasMJgz3t6LCGghGNdoMFM2D5aNjIzw9fXVXujt37+fU6dOUVWlu+SlLMva17ioqIihQ4cyaNCgTg/E6+rq2Lx5M8HBwRw9epS9e/fy3nvvtVhur7Nz1gVBEDqSGBkXbhheXl5s27aNP/74g1mzZvHxxx+zYsUK7r333k5t3mNhYUFwcDBFRUXa+uQBAQHa9vQNXUHT09OxtLTs9AlwJgpT6mdA6k/Z0ZWmoo+DgwORkZHk5ORQnbYf2USmpKQEW1tboGkt9JZGU40kI70jyGpZaiFNRcKE9gW1fzbm0d9QSIkRBw8exNnZGT8/P20pwoqKClJSUigsLMTLy4u+ffs2n59gIGdcI0sYX8vIuIG7GFePjF/N1NSU/v374+npqe122bdv3ybdLi9duoRKpaKmpoaAgABtbfbOJMsyf/zxB3PnzqW0tJQ33niDf/zjHz2myZYgCEJHEp9sQhNFRUVMnjwZGxsb7OzsmDZtGmVlZQaXf+aZZwgMDMTc3BxPT0+effZZSkpKmiwnSVKzn23btnX26TQjSRI333wzBw4cYPny5SxcuJDbbruNQ4cOdXo+eUNlEh8fH86cOcPBgwfJyMggPj6e7OxsBg4cyNChQzt9VM9UYdpiZRBDaSq6SJKEu7s7znZOKCUjDh06xPHjx0lNTWXv3r2UlpYSHh7e4miqESboLJUC1KEwmKZSPzLevmDc8kozH/0j4wpMjcy0Nezj4+M5ffo0p0+fZt++fRgbGxMTE4OPj4/OicISSjT6OnBqFJhKnTQyrm5d0x9LS0uCgoIYOnQoxcXFxMXFkZqayrFjxzhy5AhOTk5ER0e3u4JPW6SnpzNp0iTuu+8+7r//fk6dOsV9993XowPxv/rnpiAInavnfroJ3WLy5MkkJSWxc+dOtm/fzp49e5q0Ur7a+fPnOX/+PBs2bODkyZNs2bKFHTt2MG3atGbLfvjhh+Tm5mp/JkyY0IlnYphSqeTRRx8lOTmZW265hbFjx/J///d/5Obmdup+G2pcDxgwgMrKSm05uCFDhnRIdYvWMFWYoGnhusPQaKsh5kbmmChN8ff35+LFi2RkZODg4EBQUBDW1tYtrm+M/sBRjaQ3oIUrrd/bG4wr60e5DeWMG0nGmJubM2DAADw8PMjJySEnJwcPDw/69etnMJ1IamFk3FTZ/lQkg3XG6zT1cwRaydbWluDgYOzt7cnIyKCwsBA/Pz+8vb07tRoR1KcALV68mPDwcOzt7Tl9+jQvvPBCu5shdaUb5XNTEITOIdJUBK3Tp0+zY8cODh48yNChQwF4/fXXGTduHBs2bNA2lWhs0KBBfPXVV9p/+/r6smrVKh588EHq6uqa1Pi2s7Prca2VbWxsWLt2LY8//jhz584lJCSEWbNm8eyzz3ZKEFBaWkpKSgolJSV4eXnh5OREeno6+/bt05/i0MH+HBnX3wTG0GirIVId1GrqyLxYXyHF0tKSlJQU4uLi8PX1pU+fPgZHOOuD8Qqdz8mSEk1tC8F4O1u/KxSKK4199KepGGFEQUEBKpUKhUJBcHAwkiSRkpJCQUEBfn5+elM4JJQGm/6YX0Mwbii/v7Uj4/XHUd9QKi0tDQsLC8LDwykvLyctLY3z58/j7++Pg4NDu49TH7VazdatW1m2bBm+vr789ttvhIeH9/gW9g1uxM9NQRA6lhgZF7T27duHnZ2d9gsFIDY2FoVCwYEDB1q9nZKSEmxsbJo123n66adxdHQkPDyczZs3d3paSFv4+vryn//8h++++47//ve/hIaG8tVXX6HRaDpk+5WVlZw8eZKEhASsrKwYPnw43t7eWFlZabtoXrhwodWdLq+FqcJUby3vBm1NUykrK+PIkSOUXCzGSGGqLXVna2tLWFgYAwYMICsri/3793PhwgW952eC4Quguhr9x6XRKDA3an+6h6xR6B1512gUVFfWcvr0aby8vIiMjMTJyQlHR0ciIyPx9vZGpVKRkJDApUuXdGxAf064LIOZov0TIQ134JQxlVoOxouKipqUmRw6dCi2trb07t1bm55y/PhxEhMTDU5ibQtZltm7dy8333wza9as4eWXX+aPP/4gIiLiugnE4cb+3BQEoWOIkXFBKy8vr1n3OiMjI3r16kVeXl6rtnHx4kVWrlzZ7BbtihUrGDlyJBYWFvz888889dRTlJWV8eyzz3bY8V8rSZK49dZbOXToEJs3b2bOnDm88847rFu3jpCQkHYFCDU1NWRkZJCdnY2LiwvR0dE6R9zt7OobszR0umxoGtQZ+eOmChNausZobTBeXV1NWloaubm59OnTB39PX87UlDQZ3ZckCWdnZxwdHcnOziYpKQlra2sCAgKapa6YyIYDx7oWRsYtjNof1GpkBRo9VWZkjYS5kSkxw2KaBUsNqUeurq6cPXuWI0eONCsXKMmGJmhKmCvafxdG312M3lbWzBwWabAraUVFBSqVikuXLuHt7a2zjr1SqcTLy4s+ffpo6/lfPYm1rc6ePcuiRYv46aefeP7555kzZ851W4rwRv/cFATh2olg/AYwf/581q1bZ3CZ06dPX/N+Ll++zPjx4xkwYADLli1r8tzixYu1/z9kyBDKy8t56aWXeuSXipGREdOnT+e+++7jxRdf5LbbbuO+++5jyZIlrb5drFarycrKIjMzE1tbW8LDw1vMmW7c6TIzM5PExEScnZ3x9/fv0BJyHTEy3tC+/uzZs9pqKpaWlqRllSBV6/5YUSgUeHp64ubmpq2/7urqiq+vr/b8TDSGz1Ndq/+41BoF5tdQIlBW6/841MgStpa2zQLxxpRKpbZuelpaGvv376d37974+PggaQxfZFgo2x+IXp3fb2FszOPBoUwZFISpnuNtXOGmoZa9iYnh352xsTH+/v54eHiQlpZGfHw87u7ueHt7t7hug7KyMv71r3/xxhtv8Pe//53Tp0/j4eHRuhPtYuJzUxCEriKC8RvA7NmzmTp1qsFlfHx8cHV1paCgoMnjdXV1FBUVtRiElpaWMnbsWKytrfnmm2+0ZdH0iYiIYOXKlVRXV3d4He2OYmdnx4YNG5g+fTrPP/88Q4YM4fnnn+epp57SGxxrNBpyc3NJS0vD1NT0z6YvbaBUKrX51Q11x/v27YuXl5fBYLC1TBQmqNs5Mn51+/qryzBaGJvR0sdKQ/11Dw8PUlJSiI+P156faQsj47UGgnGQsLiGEWaDwbhGgVkrA30TExNtucCG16+2hZsqlkqLthxqEw0j4xJwd2B/ngkLx9FC9/Y0Go02L9za2rpVF4lXMzMzY+DAgfTt21c7H6ChHKK++Q5qtZpt27axbNkyPDw82LlzJ1FRUT06HUV8bgqC0FVEMH4DcHJywsnJqcXloqKiKC4uJjExkbCwMAB+/fVXNBoNERERete7fPkyY8aMwdTUlO+++65Vo7hHjx7F3t7+uvhCCQgI4Ntvv2XXrl3MnDmTzZs3s2rVKu644w7tLf2GIOfcuXNoNJoOqcdsZmbGoEGD8PDwIDk5mZycHPz9/XFzc7um7RpLxnore2iXuSoPWZZlLl68SEpKChqNhn79+mnrpDdmbWSBrGndx4q5uTlBQUEUFxejUqnIycmhqqLG4Dp1BoNxsGgh59wQjYFgXJYN1+vWxdLSkuDgYC5dusTHB04YXPaaRsYVSiJ69+H5iGj6OTjqXa6wsJDk5GRkWWbgwIE4Ojpe0/vIysqKIUOGUFRURGpqKufOncPT05M+ffpoR8plWebAgQPMmzeP3Nxc1qxZw4MPPtijyxQ2EJ+bgiB0FRGMC1r9+/dn7NixPP7447z99tvU1tYyY8YMJk6cqK0IkJOTw6hRo/j4448JDw/n8uXLjB49moqKCj755BMuX76sneDl5OSEUqnk+++/Jz8/n8jISMzMzNi5cyerV69mzpw53Xm6bSJJErGxsRw5coR3332XZ599lrfffpv169eTn5/PokWL8PHxYd26dS1WDGkrW1tbhg0bRn5+PikpKWRlZREYGIi9vX27z0VTZziobTwybqh9/dVsjC2QWhmMN7Czs9OeX3biMWwrFJRY6B66r1UrdU87l2W8ZRs8bFsOnq7WUOGmrsZQYCph1s5Rd3t7eyzNbYFKnc+7WFgyyMGtXdsGeGhQEA7m5noD6/LyclQqFcXFxfj4+ODh4dGh789evXoxbNgwCgoKeP311/nPf/7DokWLuOmmm1i2bBnbt29n1qxZzJs3Dysrqw7bb08hPjcFQbhWIhgXmti6dSszZsxg1KhRKBQK7rnnHjZu3Kh9vra2luTkZCoq6svPHT58WFsxwM/Pr8m2MjIy8PLywtjYmE2bNjFz5kxkWcbPz4+XX36Zxx9/vOtOrIMYGRnx1FNP8cADD/Dcc89pm8BMnjyZ1atXtztAbokkSbi6uuLk5ERWVhZHjhzB0dERf3//dk2iqzMwCgxgrFRo66AXFBTg6elJcHBwi7fRrY3NMVa0vZtkw/ndP9aJqKws3t2dwM/ll6g2a1o5orZOydVNNnvVmLAgZji3Bwe2aZ+NJ5+6u7tjXG44VcRc2f5Rd0ljwtXBuIlCwYzgUB4NG9bu7QJ6U1Jqa2tJS0sjJyeHPn36MHDgwFbndreVJEm4uLiwePFizMzM+Oc//0lNTQ0jRowgKSkJLy+vTtlvTyE+NwVBuBaSLOokCUKb5ObmsmzZMj7++GMmTJhAQUEBiYmJzJs3jyeeeKJLbiFXV1eTmppKXl4enp6eeHt7tymf/MldX/BHRqHe57+6aaS2Aoyfn1+rJ5CW1Vbxxpn/MH/wg60+Fl1qamo4o0rhtT8Oc4gy1Ffie9uKKkos6o/FrFrBtP4hPHFr22pSq9Vqzp49S2ZmJg4ODvj7+2NhYcEjv7/CwRT957ni1mHc7TtU7/OGzNj1Bbuv/L4VksTf/QN5wKU3OVd+x76+vh1W116j0ZCdnU1aWhq2trYEBAR0yYi0RqPhyy+/ZMmSJTg4OBAWFsYXX3zByJEjWbNmDQMGDOj0YxAEQbge9fzEPUHoIWRZZunSpfj5+VFUVMSxY8f47LPP+OWXX/jss8/497//TXh4ONu3b++w+uT6mJqaMnDgQIYNG0ZJSQlxcXFkZ2e3ugZxrYESgUaSRFlZWava11/N0sgUi2sYQW5gYmJC0KCBbJxyN68EhxJQaQaa+jQVZS3c0cuHvY8/ypMjW1+TWpZlzp8/T1xcHBcvXiQ0NJTg4GAsrowsSwZqgQOYXsvkULl+RDqidx9+n/wwy2++lX6BgURHRwMQHx+PSqWitrb2GvYhc+HCBfbt20d2djaDBw8mNDS00wNxWZY5ePAgsbGxLFy4kOXLl5OYmMgHH3xAamoqnp6ehIWF8dhjj1FeXt6pxyIIgnA9EmkqgtBKkiRhbW3Nr7/+2mRiliRJ3H777cTGxvLWW2/x5JNPEhISwrp16+jfv3+nVoywsbEhLCyMgoICbX3ywMDAFiu4uFn0Ai7ofM5UqdRORGsrSZKwNe644M/S0pKR0RGE9PNnx/5Efjubx7Ojohnk79Om32tRUZE22NU7uVY2QV9XUgnwsGhbVZzGRnn4MyMkhv6OTXPazc3NGTRoEJ6entrKJN7e3m3O6y4rKyM5OZnS0tJWdTrtKOfPn2fp0qV88803/POf/2TBggXY2Nhon3dxceH111/nn//8J5s3b74uWtsLgiB0NZGmIggdrLCwkKVLl/LBBx8wZcoUXnjhBRwd9Ve56CgajYasrCwyMjKwt7dv0nTmarIs81tWJuvi95JTXtbkOXszM/548JF2H8d3Z/dxZ9+odq+vjyzL5ObmkpqaiqmpKYGBgS02RWo8ebEhyNVXfu/RnR+ScLaq2eNBzi68Mmo0LpadP8JcWFhISkoKarUaPz+/Fivy1NTUaNvVu7u74+Pj02Jef0eorKxk48aNvPzyy4wZM4b169fj4+PT6fsVBEH4KxLBuCB0AlmWOXXqFLNmzSIhIYEFCxYwffr0TptA11hNTQ2pqanaiYm6ArSysjJSUlK4UFREkpGCL86mU1pTX1bQxcKSXZOmtHv/+/JPEeXSefnB+nK+G6upqSE9PZ2cnBx69+6Nr69vi7/7aT9v5UDWn63e3aysWDdiFKGuvTvlPPRpSKdpqFUfEBDQbGJwWy68OpJGo+Gbb75h0aJF9OrVi1deeYVbbrmlR9cLFwRB6OlEMC4InUiWZbZv386cOXOQJIk1a9YwevToLgleSktLUalUTVIXGipsNLSv9/HxwcTEhEtVlbx1+BCfn07CzcqaHfdPbvd+00rO42vb+QHs1dVQfHx8UCqV2iDVzs4Of3//VudMP7rjCxKyC7EwNmZeZDT3BHbvhMPGFx29evXSXnRcuHABlUqFUqkkICAABweHTj8WWZY5evQo8+bNIyUlhZUrV/Loo492SBMqQRCEG52YwCl0mU2bNuHl5YWZmRkREREkJCQYXP7LL7+kX79+mJmZMXjwYH744Ycmz8uyzJIlS3Bzc8Pc3JzY2FhSUlI68xTaTJIk7rjjDk6cOMH06dN59NFHufvuuzlz5kyn79va2prQ0FAGDhzI2bNn2bNnD3v37qW2tpbIyEj69eunHS22NzNnYfRNfH33/Yzs63VN+3U1b39udVuYmpoyYMAAwsPDKS0t5Y8//mDPnj3k5uYSFBTEkCFD2jR50d3SgQcHDubAlGndHohDfSdWHx8fhg8fjqmpKfv27eOPP/7g1KlTeHl5ERkZ2SWBeF5eHk899RS33XYbUVFRqFQqpk+f3iMD8RvxM0YQhOufCMaFLvH5558za9Ysli5dyuHDhwkODmbMmDHN2kg3iI+P54EHHmDatGkcOXKECRMmMGHCBE6ePKldZv369WzcuJG3336bAwcOYGlpyZgxY6iqap73291MTEyYNWsWKpUKb29vYmJieP755ykqKurU/cqyTHV1NWq1GqVSWd/wx0ClF197e+ZGxlzTPi1NWl99pSOo1Wo0Gg2SJCFJEnV1dajV6lZXlmmw4qZRzI8a3uNSLmRZ1p6fQqFArVZTU1PT6RV7qqqq+Ne//kVISAglJSUcO3aMl156CVtb207db3vd6J8xgiBcv0SaitAlIiIiGDZsGG+88QZQn3vq4eHBM888w/z585stf//991NeXs727du1j0VGRhISEsLbb7+NLMv07t2b2bNnazvSlZSU4OLiwpYtW5g4cWLXnFg7yLLMiRMnmDlzJkePHuWFF15g2rRpHTrx7ur29f7+/jg7O1NbW6vNpW6cpnI9qqysJCUlhYsXL9K3b1+8vLyQJEmbb21hYUFAQECPDR5bolartSk3jXPjL126REpKCpWVldr0o468gNBoNHz//fe88MILWFpa8sorrzBq1Kged5FyNfEZIwjC9UqMjAudrqamhsTERGJjY7WPKRQKYmNj2bdvn8519u3b12R5gDFjxmiXz8jIIC8vr8kytra2RERE6N1mTyFJEkFBQezcuZP333+ft956i+joaHbt2tXm0VxdLl++TGJiIklJSbi7uxMdHa2tymFiYkK/fv2IiIigoqKCuLg4srKyOn2UtSPV1taiUqmIj49HqVQSHR2Nr68vSqUShUKBu7s7MTEx2Nvbc+jQIU6cOEFlpe5W9D2RLMvk5eURHx9Pfn4+Q4YMaVIP3d7enmHDhtGvXz8yMzPZt28fFy5cuOb3jizLHD9+nHHjxvHss88yZ84cjhw5QmxsbI8PxMVnjCAI17Oel/Qn/OVcvHgRtVqNi4tLk8ddXFz05k7n5eXpXD4vL0/7fMNj+pbp6RQKBX//+98ZN24cr732Gg899BAxMTGsWrWKgICANm+vLe3rraysCA0N5eLFi6hUKs6dO0dAQACOjo49NvBq6CyZnp6OtbU14eHhWFtb61zWyMgIPz8/+vTpQ1paGvHx8drR856Y69ygpKQElUpFRUUF/v7+uLm56Xw9GtrPOzk5kZ2dTVJSEtbW1vj7+zep891aBQUFrFixgs8++4wnnniC//73v80quPRk4jNGEITrmRgZF4RuZmpqyty5c0lOTqZ3795ERUUxf/58iouLW7V+45FiSZKIiYnB39+/VWkvjo6OREZG4unpSVJSEocPH6asrKzF9bqSLMsUFBRoO0sOHDiQ0NBQvYF4Yw1NdYYOHcqlS5e0nUp72p2AqqoqTp48yaFDh7C3tycmJobevXu3eGGkUCjw9PQkJiYGGxsbDh48yMmTJ1t9J6C6uprXXnuNkJAQCgoKOHLkCK+88sp1FYgLgiBc70QwLnQ6R0dHlEol+fn5TR7Pz8/H1dVV5zqurq4Gl2/4b1u22dO5uLjw7rvvEhcXx7FjxwgODub999+nrq5O5/IajYazZ8+yd+9eSktL29W+HuoDOg8PD2JiYrCysuLAgQOcPn2amit1x7tTQ8rNqVOn8PT0JDIyEicnpzaP3tva2jJ06FD69+9PZmYm+/fv5+LFi5101K2nVqu1I/eyLBMdHY2fn1+bR++NjY3x9/cnOjoaqJ+c2NBxVBeNRsP27dsJDw/n3//+N5999hnff/89/fr1u+Zz6g7iM0YQhOuZCMaFTmdiYkJYWBi7du3SPqbRaNi1axdRUbo7NUZFRTVZHmDnzp3a5b29vXF1dW2yzOXLlzlw4IDebV4PJEkiNDSU3377jTfffJNXX32V4cOH8/vvv2tzgtVqNdu3byc+Pp7z588zePBgwsLCWjVSbIixsTGBgYFERkZSXV1NXFwcmZmZ3TKK3DBSfPDgQWxtbYmJiWlzi/irSZKEs7Mz0dHRuLu7c+LECQ4fPkxpaWkHHnnrNHQTjYuLo7CwkNDQUAYPHnzN7eIb7gQMGzaM0tJS4uLi+P7777Uj5bIsk5SUxJ133smTTz7JM888w7Fjx7j99tt7bHpSa4jPGEEQrmeimorQJT7//HMefvhh3nnnHcLDw3n11Vf54osvOHPmDC4uLkyZMoU+ffqwZs0aoH5k75ZbbmHt2rWMHz+ebdu2sXr1ag4fPsygQYMAWLduHWvXruWjjz7C29ubxYsXc/z4cU6dOtXm0eGeqqqqipdffpm1a9cyYsQIbrvtNjZt2kRhYSE//fQTgYGBnRZEFRUVkZycjFqtJiAgoF0j0m1VV1dHZmYmZ8+exdnZGT8/v2sOUPVpqCyTnZ2Nm5sbvr6+mJqadsq+GisuLkalUlFVVYW/vz+urq6d8nttqKgzfvx4CgsLeeaZZ8jIyOCTTz7hscceY9myZV1Sp7yriM8YQRCuVyIYF7rMG2+8wUsvvUReXh4hISFs3LiRiIgIAEaMGIGXlxdbtmzRLv/ll1+yaNEiMjMz8ff3Z/369YwbN077vCzLLF26lHfffZfi4mKGDx/Om2++2a7Jjz3d77//zkMPPcS5c+cICwtj27Zt9O7d+V0uZVkmJyeHtLQ0LC0tCQwMvOYR+Jb209UlCSsqKkhJSaGwsBAvLy/69u2LUqns8P00TLC9cOGCdjJpZ+znahUVFUydOpUffvgBGxsbNm7cyEMPPXRdj4TrIz5jBEG4HolgXBB6sLy8PJYtW8ZHH33Eo48+yh133MGLL75ISkoKS5cu5aGHHuqSgK6uro6MjAyysrJwdXXFz8+vw0aRCwsLUalUqNVqbT307ggUL126hEqlorq6Gj8/P72VTNqq8Wi/i4sLfn5+XTKqKssyP/30EwsXLkSWZVatWsXp06dZv349o0aNYt26dQQGBnb6cQiCIAiGiWBcEHqo77//nkmTJjF69GjWrFmjHY3TaDR8/vnnzJ8/H3t7e9atW8fw4V3TObLxKLK3tzeenp7tvhgoKytDpVJRUlKCj4/PNeeEd4SGGt+pqakYGxsTEBBAr1692r2t3NxcUlJSunS0X5Zlzpw5w4IFCzh06BCLFi1ixowZ2uZO+fn5rFixgs2bN7NmzRqee+65Tj8mQRAEQT8RjAtCD3X+/HkyMjKIidHdnr6iooINGzbw0ksvcdttt/Hiiy/i5eXVJcd26dIlkpOTqa2txd/fX9tUqDWqq6tJS0sjNzcXd3d3fHx8OrT7aEdo6H6ZmZmJvb09/v7+WFpatnr9a/n9XIuioiJWr17Nhx9+yNSpU1mxYgVOTk46l01OTqa6upqgoKBOPy5BEARBPxGMC8J17ty5cyxcuJCvvvqKGTNmMHv27E7J675aW0d+9bV378lqampIS0vj/Pnz9OnTBx8fH+0Isy4deeegLWpra/nggw9YtWoVQ4YM4eWXX2bw4MF/ybxwQRCEvxoRjAvCX4Asy+zfv59Zs2Zx9uxZli5dyqRJk7osn9xQTnTj1A8TExMCAgKuu6YyZWVlpKSkUFxcrA2yG6fUdGZOvSGyLLNr1y7mz59PbW0tL730EnfeeWe3p/sIgiAIrSc+sYW/pE2bNuHl5YWZmRkREREkJCToXfa9997jpptuwt7eHnt7e2JjY5stP3XqVCRJavIzduzYzj6NVpMkiaioKOLi4li3bh0vvvgit956K/v27aOzr7cbWs9HR0cjyzLx8fGkpaWhVqu5dOkSCQkJpKam4ufnR3h4+HUXiANYWVkxZMgQgoKCtPXB8/Ly0Gg0ZGdnExcXR0lJCeHh4QwcOLBLAnGVSsW9997LlClTmDp1KidPnmTChAk9LhC/0f4WBUEQ2qpnfWoLQgf4/PPPmTVrFkuXLuXw4cMEBwczZswYCgoKdC6/e/duHnjgAX777Tf27duHh4cHo0ePJicnp8lyY8eOJTc3V/vz2WefdcXptIlCoeChhx7i9OnTjBs3jrvuuotHHnmErKysTt+3ubk5gwcPJjQ0lIKCAnbv3s3hw4dxcnIiOjq6w6qTdCcHBwciIyPx8fHh9OnT/Pbbb6Snp9O/f/8OabzUGsXFxcybN4+oqCj69OlDcnIyc+fO7ZILgLa6kf8WBUEQWksE40KHcXd3580332zyWHx8PBYWFpw9e7bLjuPll1/m8ccf55FHHmHAgAG8/fbbWFhYsHnzZp3Lb926laeeeoqQkBD69evH+++/r+3e15ipqSmurq7an548wmtlZcWKFStISkpCqVQSFhbGiy++SHl5eafut6amhry8PCoqKrCzs8PIyIgLFy50S5fLzlJRUcGFCxeQZRk7Oztqa2vJy8ujqqqqU/dbV1fH+++/T3BwMCdOnCAuLo53330XFxeXTt3vtRB/i4IgCC0TwbjQYSIiIjh48KD237Is89xzzzFz5kz69u3bJcdQU1NDYmIisbGx2scUCgWxsbHs27evVduoqKigtra2WUm73bt34+zsTGBgIE8++SSFhYUdeuydoW/fvnz66af89NNP7Ny5kyFDhvDZZ591eIt7jUbD2bNniYuLo6KigoiICMLCwhg+fDhOTk4cPnyY48ePa9uyX49qa2tJTk5m//79mJqaMnz4cMLCwoiJiUGpVBIfH49KpaK2trZD9yvLMrt37yYmJoZXX32Vt956i19//ZXQ0NAefadB/C0KgiC0jgjGhQ4TGRnZJBj/97//zblz51iwYEGXHcPFixdRq9XNRgtdXFzIy8tr1TbmzZtH7969mwQRY8eO5eOPP2bXrl2sW7eO33//ndtvvx21Wt2hx98ZJEli+PDh7N+/n5UrV7J48WJGjRrFwYMHrzmfXJZl8vPziY+P5/z58wQFBREaGoqVlRUASqUSHx8foqOjUSgUxMfHk5qaSl1dXUecWpfQaDScO3eOuLg4ysrKiIiIoH///tqqKmZmZgwcOJDw8HBKS0uJi4sjKyurQy540tLSmDhxIhMnTuSBBx7g1KlT/OMf/+hxeeG6/JX/Fj/77DPMzc3Jzc3VPvbII48QFBRESUlJlx2HIAh/DUbdfQDCX0dkZCTz58+nrKwMSZJYuHAhL774ojYwux6sXbuWbdu2sXv37iYVQSZOnKj9/8GDBxMUFISvry+7d+9m1KhR3XGobaZUKnnkkUf4xz/+wZo1a7Q55StWrKB3795t3l5JSQkqlYqKigr8/Pzo3bu33pFaMzMzBg0ahIeHByqVipycnBbX6QkuXryISqVClmUGDhyIo6Oj3uO1trYmNDSUixcvkpKSwrlz5/D398fJyanN53j58mXWrVvHO++8w/33309ycjJubm4dcUrXjZ78tzhx4kTWrl3L6tWref3111m6dCm//PIL+/fv75LGToIg/LX0/OEV4boRFhaGQqHg8OHDrFu3DicnJx555JEuPQZHR0eUSiX5+flNHs/Pz8fV1dXguhs2bGDt2rX8/PPPLTZC8fHxwdHRkdTU1Gs+5q5mbW3N6tWrOXHiBLW1tQwZMoS1a9dSUVHRqvUrKys5ceIEiYmJ9OrVi5iYGPr06dOqgNPW1pahQ4fSr18/0tPTOXDgAJcuXbrWU+pwZWVlHD58mBMnTuDu7k5UVFSrgmpJknByciIyMhJPT09OnTpFYmIily9fbtV+6+rq2LJlC8HBwRw6dIjff/+dzZs3X5eB+F/5b1GSJFatWsV7773HqlWreP3119mxYwd9+vTpsmMQBOGvQwTjQoexsLBg8ODBfPXVV2zYsIFXXnmly2+nm5iYEBYW1mTCV8MEsKioKL3rrV+/npUrV7Jjxw6GDh3a4n6ys7MpLCy8LoOkBj4+PnzxxRd8//33bN++nbCwML788ku96RW1tbWkpKQQHx+PQqEgOjoaX19fjIzadoNNkiRcXFyIjo7GxcWFI0eOcOzYsVZfDHSmmpoazpw5w4EDB7CwsGD48OHNaoq3hkKhwMPDg5iYGGxtbTl48CAnT57UO8lTlmX++OMPbrrpJtavX89rr73G77//zrBhw3r0nQND/up/i3/7298YMGAAK1as4JtvvmHgwIFdun9BEP46RNMfoUM99dRTvP3229x1111888033XIMn3/+OQ8//DDvvPMO4eHhvPrqq3zxxRecOXMGFxcXpkyZQp8+fVizZg0A69atY8mSJXz66adNWs9bWVlhZWVFWVkZy5cv55577sHV1ZW0tDTmzp1LaWkpJ06c6JEl5dpKrVazefNmFi9ejK+vL+vWrWPIkCFIkkRNTQ0//vgjtra2WFlZERAQgI2NTYftu7q6mrS0NHJzc/H09MTb27vNAf61asgLT09Px87OjoCAACwtLTts+5WVlaSmplJQUEB5eTk333wzdnZ2AGRkZLBo0SJ++eUXnn/+eebMmdPjO5O21l/5b3HHjh3cfffd1NTUcPLkSfr169dl+xYE4a9FBONCh3rnnXd49tlnSUpKws/Pr9uO44033uCll14iLy+PkJAQNm7cSEREBAAjRozAy8uLLVu2AODl5aWz9OLSpUtZtmwZlZWVTJgwgSNHjlBcXEzv3r0ZPXo0K1eu7NFl5dqjpKSEVatW8cYbb3DPPfcwZMgQXn31VYyMjPj55587tVZ4aWkpycnJlJWV4efn1+rUl2shy7I2L1ySJAIDA3FwcOi0/ZWUlDBp0iSOHTvGjBkzKC8v56233uKee+5h9erVeHh4dNq+u8tf8W/x8OHDjBgxgnfeeYctW7ZgY2PDl19+2WX7FwThr0UE40KHuvXWWwkNDeVf//pXdx+KcA2+++47pk2bxsWLF7n11lv55JNPtCO5nUmWZS5cuIBKpUKpVBIQENBpwXFpaSkqlYrS0lJ8fX3p06dPl6RV1dbW8swzz7B161ZMTU1Zs2YNzz777HWbjnKjyczMJCoqin/+85/Mnz+fAwcOEBUVxaFDhwgNDe3uwxME4TokgnHhmmk0Gi5cuMAHH3zAm2++yalTpzo0jUHoOjk5OSxatIjPP/+cp59+muHDh7N48WIuX77MqlWruOuuu7okYNVoNGRlZZGRkYG9vT3+/v4dljZSU1NDamoqubm5eHh44O3tjbGxcYds2xBZltm3bx/z5s2joKCAFStWcOnSJVauXElkZCQbNmwQecc9XFFREdHR0YwYMYK3335b+/j48eNRq9Xs2LGjG49OEITrlQjGhWu2e/duRo4cSb9+/fjwww+1t6CF68snn3zCE088wd/+9jfWrFmDt7c38GfnxyVLltCvXz/WrVtHUFBQl4zk1tTUkJaWxvnz53F3d8fHx6fdgfPVAX5AQECX5WZnZWWxePFifvzxR2bNmsXcuXO1JT8LCwtZuXIl77zzDnPnzmX58uVdckyCIAhCzyCCcUEQADh58iRlZWVERkbqfL5hFPett95i4sSJLFmypMvydMvKylCpVFy+fLnNKSWyLFNQUEBKSgpKpZLAwMBmHR07S3l5OS+//DIbN27kzjvvZO3atXq70aakpHD+/HluueWWLjk2QRAEoWcQwbggCG2SnJzMnDlz2LNnD/PmzePJJ5/skioWV0+2DAgIwNHR0eA6ly9fRqVSUV5e3qVNhjQaDZ9//jlLly7Fzc2NV155hZiYGJEXLgiCIDQjgnFBENpMlmV+/vlnZs2aRVVVFatXr2b8+PFdlk+enZ1NWloatra2BAQENOvyWl1dTWpqKnl5eV1aLlGWZQ4ePMjcuXPJyclh1apVPPTQQyiVyk7ftyAIgnB9Ek1/BOEabdq0CS8vL8zMzIiIiCAhIUHvslu2bEGSpCY/jVt9Q31At2TJEtzc3DA3Nyc2NpaUlJTOPo02kSSJMWPGcPToUWbOnMlTTz3FHXfcwcmTJ+ns63uFQoGnpyfDhw/HwsKCAwcOcObMGWpqalCr1WRkZBAXF4darSY6Ohp/f/8uCcRzcnJ47LHHGD9+PLGxsZw5c4apU6f2yED8RnzPCoIg9FQiGBeEa/D5558za9Ysli5dyuHDhwkODmbMmDEUFBToXcfGxobc3Fztz9V1ldevX8/GjRt5++23OXDgAJaWlowZM0Zv98buZGxszIwZM0hJSWHw4MHccsstPPfcc1y4cKFL9t2vXz8iIyOpqKjgjz/+YM+ePeTn5zNkyBCCgoIwNzfv9OOoqKhgzZo1DBkyhLq6Ok6cOMHq1auxtrbu9H23x43+nhUEQehpRDAuCNfg5Zdf5vHHH+eRRx5hwIABvP3221hYWLB582a960iShKurq/an8SRIWZZ59dVXWbRoEXfddRdBQUF8/PHHnD9/nm+//bYLzqh9evXqxWuvvUZiYiLZ2dmEhITw+uuvU1NT0+n7rquro66uDqVSiUKh0P67s0foNRoNX375JWFhYfzvf/9j+/btfPHFF/j4+HTqfq+VeM8KgiD0LCIYF4R2qqmpITExkdjYWO1jCoWC2NhY9u3bp3e9srIy+vbti4eHB3fddRdJSUna5zIyMsjLy2uyTVtbWyIiIgxusyeQJIkBAwbwww8/8Mknn/Dhhx8SHh7ODz/80CmBcVVVFSdPnuTQoUM4ODhw0003cdNNN9G3b1+SkpI4fPgwpaWlHb5fWZZJTExk9OjRzJs3j8WLF3Pw4EFGjBjR4ydoivesIAhCzyOCcUFop4sXL6JWq5uV93NxcSEvL0/nOoGBgWzevJn//ve/fPLJJ2g0GqKjo8nOzgbQrteWbfY0kiQxfvx4jh8/zlNPPcX06dOZMGECp06d6pCgXK1Wk5aWRnx8PLIsExMTg6+vr3Zk3MPDg5iYGKytrUlISODUqVMdNkKfl5fHE088wZgxYxg+fDjJyck89thjPTIvXBfxnhUEQeh5RDAuCF0oKiqKKVOmEBISwi233MLXX3+Nk5MT77zzTncfWoczMTHhueeeQ6VS4e/vz0033cScOXMoLCxs1/ZkWeb8+fPExcVRWFhIWFgYgwcPbjaZEOrzyQMCAoiKiqK2tpa4uDgyMzPRaDTt2ndlZSUvvfQSISEhlJWVcfz4cdavX4+trW27tnc9uZHes4IgCN1BBOOC0E6Ojo4olUry8/ObPJ6fn4+rq2urtmFsbMyQIUNITU0F0K53LdvsaRwdHdm0aRMJCQmkpqYSHBzMm2++SW1tbau3UVxcTEJCAmlpafj7+zNs2LBWBcIWFhYEBwcTHBxMbm4u8fHx5Ofnt3qEXqPR8M033xAWFsZXX33Ft99+y9dff42fn1+rj70nEe9ZQRCEnkcE44LQTiYmJoSFhbFr1y7tYxqNhl27dhEVFdWqbajVak6cOIGbmxsA3t7euLq6Ntnm5cuXOXDgQKu32RNJksTgwYP56aef+PDDD3n33XeJjIxk586dBgPjyspKjh8/zuHDh3FyciI6Oho3N7c252b36tWLyMhIvL29OXPmDIcOHeLy5ct6l5dlmaNHjzJu3DhmzpzJ/PnzOXz4MCNHjuzxeeGGiPesIAhCDyQLgtBu27Ztk01NTeUtW7bIp06dkqdPny7b2dnJeXl5sizL8kMPPSTPnz9fu/zy5cvln376SU5LS5MTExPliRMnymZmZnJSUpJ2mbVr18p2dnbyf//7X/n48ePyXXfdJXt7e8uVlZVdfn6dpaqqSn7ppZdkW1tbeezYsfLhw4fl8vJy7U9OTo589OhR+bvvvpMTEhLkwsLCJs9fy09JSUmTbZ89e7bJ8+np6fLUqVNlMzMzeebMmfKlS5e6+9fVocR7VhAEoWfp/E4YgvAXdv/993PhwgWWLFlCXl4eISEh7NixQzuZLSsrq0lXykuXLvH444+Tl5eHvb09YWFhxMfHM2DAAO0yc+fOpby8nOnTp1NcXMzw4cPZsWOHztzo65WpqSlz5sxhypQpLF68mOjoaB577DHmzJnD1q1b2bBhAwsWLOChhx7CxsamQ/dtZGSEv78/7u7u7NmzhxEjRvDoo48yd+5cPv74Y9avX8/NN9/M0aNHCQwM7NB99wTiPSsIgtCzSLLcycV4BUEQDJCvpIQ88sgjnDx5EktLS1588UUeeeSRJkFhZ9mxYwfPPvsseXl5uLq68v777zNmzJjrOh1FEARBuH6InHFBELpVeno6K1euJD09nfvvvx97e3veeecdfv/9905t3CPLMidPnuT111+nsrKS+++/H1mWWbFihcH28IIgCILQkUQwLghCt7h8+TLPP/88gwYNwtHRkZSUFLZu3cqZM2d48MEHmTRpEhMnTtRW7ehIFy5c4J///Ce33HILgwcP1u5bpVJx2223MXLkSB588EFycnI6fN+CIAiC0JgIxgVB6BZ1dXWkp6ezf/9+3n33XW3OspmZGfPnz+fMmTM4OzsTGRnJwoULKSkpueZ91tTUsHHjRkJCQsjJySExMZGNGzfSq1cvACwtLVm+fDlnzpxBkiSKioqueZ+CIAiCYIjIGRcEoceSr7SenzVrFmfOnGHJkiVMmTIFI6O2zT2XZZkff/yRhQsXolAo+Ne//sW4ceNEXrggCILQ7UQwLghCj6fRaPjyyy+ZN28etra2rFu3jptuuqnFYFqWZU6fPs2CBQtITExkyZIlPPXUU5iYmHTRkQuCIAiCYSJNRRCuM5s2bcLLywszMzMiIiIMTjYcMWIEkiQ1+xk/frx2malTpzZ7fuzYsV1xKq2mUCi4//77OXXqFP/4xz+49957mTx5MhkZGXrXKSwsZPbs2dx00034+/ujUql47rnnemQgfiO+poIgCEI9EYwLwnXk888/Z9asWSxdupTDhw8THBzMmDFjKCgo0Ln8119/TW5urvbn5MmTKJVK7r333ibLjR07tslyn332WVecTptZWFiwePFiTp8+jY2NDcOGDWPJkiWUlpZql6mtreXNN98kODiYtLQ0EhIS2LRpE46Ojt145Prd6K+pIAjCjU6kqQjCdSQiIoJhw4bxxhtvAPXpGx4eHjzzzDPMnz+/xfVfffVVlixZQm5uLpaWlkD9KGpxcTHffvttZx56h5NlmYSEBGbOnEl6ejrLli3DxcWFhQsXolareemll7jjjju6pFb5tRCvqSAIwo2tZ39LCYKgVVNTQ2JiIrGxsdrHFAoFsbGx7Nu3r1Xb+OCDD5g4caI2aGuwe/dunJ2dCQwM5Mknn6SwsLBDj70zSJJEREQEe/fu5V//+hcLFixg4sSJTJs2jRMnTnDXXXf1+EBcvKaCIAhC20oSCILQbS5evIhardaWAGzg4uLCmTNnWlw/ISGBkydP8sEHHzR5fOzYsdx99914e3uTlpbGwoULuf3229m3bx9KpbJDz6EzKBQKJk+eTExMDBcvXmTo0KHdfUitJl5TQRAEQQTjgnCD+OCDDxg8eDDh4eFNHp84caL2/wcPHkxQUBC+vr7s3r2bUaNGdfVhtpuXlxdeXl7dfRhd6q/+mgqCINwIevY9XEEQtBwdHVEqleTn5zd5PD8/H1dXV4PrlpeXs23bNqZNm9bifnx8fHB0dOyUzpdCU+I1FQRBEEQwLgjXCRMTE8LCwti1a5f2MY1Gw65du4iKijK47pdffkl1dTUPPvhgi/vJzs6msLAQNze3az5mwTDxmgqCIAgiGBeE68isWbN47733+Oijjzh9+jRPPvkk5eXlPPLIIwBMmTKFBQsWNFvvgw8+YMKECTg4ODR5vKysjOeff579+/eTmZnJrl27uOuuu/Dz82PMmDFdck43OvGaCoIg3NhEzrggXEfuv/9+Lly4wJIlS8jLyyMkJIQdO3ZoJwBmZWU1qyCSnJzM3r17+fnnn5ttT6lUcvz4cT766COKi4vp3bs3o0ePZuXKlZiamnbJOd3oxGsqCIJwYxN1xgVBEARBEAShm4g0FUEQBEEQBEHoJiIYFwRBEARBEIRuIoJxQRAEQRAEQegmIhgXBEEQBEEQhG4ignFBEARBEARB6CYiGBcEQRAEQRCEbiKCcUEQ9NqzZw933HEHvXv3RpIkvv322xbX2b17N6GhoZiamuLn58eWLVuaLbNp0ya8vLwwMzMjIiKChISEjj/4drjRzlcQBEHofiIYFwRBr/LycoKDg9m0aVOrls/IyGD8+PHceuutHD16lOeee47HHnuMn376SbvM559/zqxZs1i6dCmHDx8mODiYMWPGUFBQ0Fmn0Wo32vkKgiAI3U80/REEoVUkSeKbb75hwoQJepeZN28e//vf/zh58qT2sYkTJ1JcXMyOHTsAiIiIYNiwYbzxxhsAaDQaPDw8eOaZZ5g/f36nnkNb3GjnKwiCIHQPMTIuCEKH2bdvH7GxsU0eGzNmDPv27QOgpqaGxMTEJssoFApiY2O1y1xPbrTzFQRBEDqeCMYFQegweXl5uLi4NHnMxcWFy5cvU1lZycWLF1Gr1TqXycvL68pD7RA32vkKgiAIHU8E44IgCIIgCILQTYy6+wAEQfjrcHV1JT8/v8lj+fn52NjYYG5ujlKpRKlU6lzG1dW1Kw+1Q9xo5ysIgiB0PDEyLghCh4mKimLXrl1NHtu5cydRUVEAmJiYEBYW1mQZjUbDrl27tMtcT2608xUEQRA6ngjGBUHQq6ysjKNHj3L06FGgvpTf0aNHycrKAmDBggVMmTJFu/wTTzxBeno6c+fO5cyZM7z55pt88cUXzJw5U7vMrFmzeO+99/joo484ffo0Tz75JOXl5TzyyCNdem663GjnKwiCIPQAsiAIgh6//fabDDT7efjhh2VZluWHH35YvuWWW5qtExISIpuYmMg+Pj7yhx9+2Gy7r7/+uuzp6SmbmJjI4eHh8v79+zv/ZFrhRjtfQRAEofuJOuOCIAiCIAiC0E1EmoogCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0ExGMC4IgCIIgCEI3EcG4IAiCIAiCIHQTEYwLgiAIgiAIQjcRwbggCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0ExGMC4IgCIIgCEI3EcG4IAiCIAiCIHQTEYwLgiAIgiAIQjcRwbggCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0k/8HtCzxQOPAjhYAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 313 + "execution_count": 47 }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T22:14:17.947505Z", - "start_time": "2024-06-09T22:14:17.944912Z" - } - }, + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "import numpy as np\n", + "\n", + "num_qubits = 2\n", + "num_nodes = 2**num_qubits\n", + "a = -1.0\n", + "b = 1.0\n", + "hat_basis = HatBasis(a=a, b=b, num_nodes=num_nodes)\n", + "\n", + "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=False)\n", + "\n", + "dev = qml.device(\"default.qubit\", wires=2*num_qubits)\n", + "@qml.qnode(dev)\n", + "def circuit(x):\n", + " embed.circuit(x)\n", + " return qml.state()\n", + "\n", + "x = torch.tensor([-0., -0.])\n", + "out = np.real(circuit(x))\n", + "print(out)\n", + "print(\"norm: \", np.linalg.norm(out))" + ], + "id": "93646da4c54dfbff" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "import torch\n", + "import matplotlib.pyplot as plt\n", + "\n", + "num_pnts = 50\n", + "\n", + "# Generate a grid of x and y values\n", + "x = torch.linspace(-0.99, 0.99, num_pnts)\n", + "y = torch.linspace(-0.99, 0.99, num_pnts)\n", + "X, Y = torch.meshgrid(x, y, indexing='xy')\n", + "Z = torch.empty(num_pnts, num_pnts)\n", + "\n", + "# Evaluate the circuit at each point in the grid and extract the j-th component\n", + "idx = 1\n", + "for i in range(num_pnts):\n", + " for k in range(num_pnts):\n", + " xy = torch.tensor([X[i, k], Y[i, k]], dtype=torch.float32)\n", + " out = circuit(xy)[idx]\n", + " Z[i, k] = torch.tensor(out)\n", + "# Convert tensors to numpy arrays for plotting\n", + "X = X.numpy()\n", + "Y = Y.numpy()\n", + "Z = Z.numpy()\n", + "\n", + "# Create a 2D heatmap plot\n", + "plt.figure(figsize=(10, 6))\n", + "plt.imshow(Z, extent=[-1, 1, -1, 1], origin='lower', cmap='viridis', aspect='auto')\n", + "\n", + "# Add labels and title\n", + "plt.xlabel('$x$')\n", + "plt.ylabel('$y$')\n", + "plt.title(f\"$\\\\varphi_j$\")\n", + "\n", + "# Add a color bar which maps values to colors\n", + "plt.colorbar(label=f'$\\\\varphi_j$')\n", + "\n", + "# Save the figure\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "id": "8f41ff534081649d" + }, + { + "metadata": {}, "cell_type": "code", "source": [ "a = 0.3\n", @@ -737,15 +818,10 @@ ], "id": "3d14fb660b4bb878", "outputs": [], - "execution_count": 314 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T22:14:18.230373Z", - "start_time": "2024-06-09T22:14:17.949180Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "import numpy as np\n", @@ -782,37 +858,11 @@ "plt.show()" ], "id": "3bb2b8e7616244d9", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAK9CAYAAADyuinTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsV0lEQVR4nO3deZgU1b3/8U91z8I6gwjDQARERBEBFzQwapQEwiIxGkmiBhWU6A2/QQWiV0mMolHxmjxxjeCSC2o0JiSikbihCF7jiIqiaBSFoEOEAdTLDIvM0nV+fxD60iwy32q6umvm/Xqefh6m+5w6S1U3dep76pTnnHMCAAAAgAiKZbsCAAAAABAUAxoAAAAAkcWABgAAAEBkMaABAAAAEFkMaAAAAABEFgMaAAAAAJHFgAYAAABAZDGgAQAAABBZDGgAAAAARBYDGgDIgnHjxunggw/OdjVSbN68WT/+8Y9VWloqz/M0adKk/bLdhx56SL1791Z+fr7atWuXfP9Xv/qVDjnkEMXjcR199NGSJM/zNHHixP1SLgCgeWBAAyBnzZ49W57n6Y033tjj54MHD1bfvn0zWoennnpK06ZNa3T6wYMHy/O85Kt9+/Y6/vjj9d///d/yfX+/1Ommm27S448/vl+2tet2Z8+erQkTJuihhx7Seeedl/Y2P/jgA40bN049e/bUfffdp3vvvVeS9Nxzz+k///M/deKJJ2rWrFm66aab0i5rT9asWaNp06Zp6dKlGdk+ACD78rJdAQDIZU899ZR++9vfmgY1Bx10kKZPny5J2rBhgx588EGNHz9eH374oW6++ea063TTTTfp+9//vs4444y0t7WzBQsWaNCgQbr22mv32zYXLlwo3/d1++2369BDD00pKxaL6Xe/+50KCgr2W3m7WrNmja677jodfPDBySgQAKBpIUIDAPtZcXGxzj33XJ177rmaPHmy/v73v+uggw7SXXfdpfr6+mxXb6/Wr1+fMiVsf21T0m7bXb9+vVq2bJnRwQwAoHlgQAOgyfn973+vAQMGqGXLlmrfvr3OPvtsrV69OiXN//zP/+gHP/iBunXrpsLCQnXt2lWTJ0/Wl19+mUwzbtw4/fa3v5WklGlkVq1atdKgQYO0ZcsWbdiwYa/ptmzZop/+9Kfq2rWrCgsLdfjhh+vXv/61nHPJNJ7nacuWLXrggQeS9Rk3btxXlr9+/XqNHz9enTp1UosWLXTUUUfpgQceSH6+cOFCeZ6nVatW6W9/+1tyux9//PFXbndf/XzwwQcnoz0dO3aU53maNm2aPM/TrFmztGXLlmRZs2fPTtn2ww8/rMMPP1wtWrTQgAED9NJLL+1W/qeffqoLL7xQnTp1UmFhoY488kj993//d0q7jj/+eEnSBRdcsFtZjTkGAAC5jylnAHJedXW1Pvvss93e31O048Ybb9QvfvEL/fCHP9SPf/xjbdiwQXfeeadOPvlkvfXWW8lIwZw5c7R161ZNmDBBBx54oF577TXdeeed+te//qU5c+ZIkv7jP/5Da9as0fz58/XQQw+l1YZ//vOfisfje42AOOf03e9+Vy+++KLGjx+vo48+Ws8++6yuuOIKffrpp7r11lslbb/B/sc//rG+/vWv6+KLL5Yk9ezZc6/lfvnllxo8eLBWrFihiRMnqkePHpozZ47GjRunjRs36rLLLtMRRxyhhx56SJMnT9ZBBx2kn/70p5K2D0L2pjH9fNttt+nBBx/U3LlzNWPGDLVp00b9+/fXoYceqnvvvVevvfaa7r//fknSCSeckNz2okWL9Mc//lGXXnqpCgsLdffdd2vEiBF67bXXkvdMrVu3ToMGDUouItCxY0c9/fTTGj9+vGpqajRp0iQdccQRuv7663XNNdfo4osv1je+8Y2UshpzDAAAIsABQI6aNWuWk/SVryOPPDKZ/uOPP3bxeNzdeOONKdtZtmyZy8vLS3l/69atu5U3ffp053me++STT5LvlZeXO8tP5SmnnOJ69+7tNmzY4DZs2ODef/99d+mllzpJ7rTTTkumGzt2rOvevXvy78cff9xJcjfccEPK9r7//e87z/PcihUrku+1bt3ajR07tlH1ue2225wk9/vf/z75Xl1dnSsrK3Nt2rRxNTU1yfe7d+/uRo0atc9tWvr52muvdZLchg0bUtKOHTvWtW7derdt79ivb7zxRvK9Tz75xLVo0cJ973vfS743fvx417lzZ/fZZ5+l5D/77LNdcXFxcv++/vrrTpKbNWvWbmU19hgAAOQ2ppwByHm//e1vNX/+/N1e/fv3T0n32GOPyfd9/fCHP9Rnn32WfJWWlqpXr1568cUXk2lbtmyZ/PeWLVv02Wef6YQTTpBzTm+99VZa9f3ggw/UsWNHdezYUUcccYTuvPNOjRo1KmU61K6eeuopxeNxXXrppSnv//SnP5VzTk8//XSgujz11FMqLS3VOeeck3wvPz9fl156qTZv3qxFixaZt2np5yDKyso0YMCA5N/dunXT6aefrmeffVaJRELOOf3lL3/RaaedJudcSh2GDx+u6upqvfnmm/ssJ5PHAAAgPEw5A5Dzvv71r+u4447b7f0DDjggZSraRx99JOecevXqtcft5OfnJ/9dWVmpa665Rn/961/1v//7vynpqqur06rvwQcfrPvuu0+e56lFixbq1auXSkpKvjLPJ598oi5duqht27Yp7x9xxBHJz4P45JNP1KtXL8Viqdev0tmupZ+D2NN2DzvsMG3dulUbNmxQLBbTxo0bde+99yaXgd7VjsUIvkomjwEAQHgY0ABoMnzfl+d5evrppxWPx3f7vE2bNpKkRCKhb3/72/riiy905ZVXqnfv3mrdurU+/fRTjRs3Lu3nxbRu3VpDhw5Naxu5rLH9nMnyJencc8/V2LFj95hm1+jdrjJ9DAAAwsOABkCT0bNnTznn1KNHDx122GF7Tbds2TJ9+OGHeuCBB3T++ecn358/f/5uaYOsahZE9+7d9fzzz2vTpk0pUZoPPvgg+XmQOnXv3l3vvPOOfN9PidLsabuN1dh+Duqjjz7a7b0PP/xQrVq1Si5U0LZtWyUSiX0OHPfWV5ZjAACQ27iHBkCTceaZZyoej+u6665LWepY2r6K2Oeffy5JyajCzmmcc7r99tt322br1q0lSRs3bsxQrbc79dRTlUgkdNddd6W8f+utt8rzPI0cOTKlTo2tz6mnnqqqqir98Y9/TL7X0NCgO++8U23atNEpp5xirmtj+zmoioqKlHtgVq9erSeeeELDhg1TPB5XPB7X6NGj9Ze//EXvvvvubvl3Xhp7b/vPcgwAAHIbERoATUbPnj11ww03aOrUqfr44491xhlnqG3btlq1apXmzp2riy++WJdffrl69+6tnj176vLLL9enn36qoqIi/eUvf9ntPgpJyZvTL730Ug0fPlzxeFxnn332fq/7aaedpm9+85v6+c9/ro8//lhHHXWUnnvuOT3xxBOaNGlSytLMAwYM0PPPP6/f/OY36tKli3r06KGBAwfucbsXX3yx7rnnHo0bN05LlizRwQcfrD//+c/6+9//rttuu223e3Yao7H9HFTfvn01fPjwlGWbJem6665Lprn55pv14osvauDAgbrooovUp08fffHFF3rzzTf1/PPP64svvkjWtV27dpo5c6batm2r1q1ba+DAgaZjAACQ40JfVw0AGmnHss2vv/76Hj8/5ZRTUpZt3uEvf/mLO+mkk1zr1q1d69atXe/evV15eblbvnx5Ms0//vEPN3ToUNemTRvXoUMHd9FFF7m33357tyV+Gxoa3CWXXOI6duzoPM/b5xLOe6vTrnZdttk55zZt2uQmT57sunTp4vLz812vXr3cr371K+f7fkq6Dz74wJ188smuZcuWTtI+l3Bet26du+CCC1yHDh1cQUGB69ev3x6XMW7sss07NKafgyzbXF5e7n7/+9+7Xr16ucLCQnfMMce4F198cY/tKi8vd127dnX5+fmutLTUDRkyxN17770p6Z544gnXp08fl5eXl7J/G3sMAABym+fcLvMFAAAAACAiuIcGAAAAQGQxoAEAAAAQWQxoAAAAAERWzgxobr75Znmep0mTJiXf27Ztm8rLy3XggQeqTZs2Gj16tNatW5eSr7KyUqNGjVKrVq1UUlKiK664Qg0NDSHXHgAAAIiWpnL+nRMDmtdff1333HPPbk92njx5sp588knNmTNHixYt0po1a3TmmWcmP08kEho1apTq6ur0yiuv6IEHHtDs2bN1zTXXhN0EAAAAIDKa1Pl3tpdZ27Rpk+vVq5ebP3++O+WUU9xll13mnHNu48aNLj8/382ZMyeZ9v3333eSXEVFhXPOuaeeesrFYjFXVVWVTDNjxgxXVFTkamtrQ20HAAAAEAVN7fw76w/WLC8v16hRozR06FDdcMMNyfeXLFmi+vp6DR06NPle79691a1bN1VUVGjQoEGqqKhQv3791KlTp2Sa4cOHa8KECXrvvfd0zDHH7LHM2tpa1dbWJv/2fV9ffPGFDjzwQHmel4FWAgAAIB3OOW3atEldunRRLJYTk4yStm3bprq6uqyU7Zzb7fy1sLBQhYWFe82TjfPvTMrqgObRRx/Vm2++qddff323z6qqqlRQUKB27dqlvN+pUydVVVUl0+zcmTs+3/HZ3kyfPj3lidMAAACIhtWrV+uggw7KdjWStm3bph7d26hqfSIr5bdp00abN29Oee/aa6/VtGnT9pg+W+ffmZS1Ac3q1at12WWXaf78+WrRokWoZU+dOlVTpkxJ/l1dXa1u3brpJJ2qPOU3ahuxFnsf9e6N17KlMX2AfiksMCV3xvR+y8b1T0qegrgtfaEtvSQljGUkCm2RuESBPXLn8o1lGNNLUsK2++Qby/Dtu9tepwC/QtZ6uXzb84ODxK79AmsZ9mcauzzflsHY7lie/T/juLFOeQX2MvLitjIK8203phbG7TeytsyrN6VvkWcvo1We7Wpvi5itTq2N25ek1vHafSfaScu4vYw21jJitjLaxraZ0ktSK89Wp0BlGNvRxrPt71Yx4++HpFbGWSstPft/Gq1ijf9Po2azr+7Hfqy2bduay8mkuro6Va1P6JMlB6uobbiRo5pNvroP+FirV69WUVFR8v29RWeyef6dSVkb0CxZskTr16/Xsccem3wvkUjopZde0l133aVnn31WdXV12rhxY8oocd26dSotLZUklZaW6rXXXkvZ7o5VGHak2ZO9heHylK+8Rn4ZY57xrE2SZ8zjxeyDJhl+GCTJxY0DmniAAU2e7TDz8+wDGi/flscznthb00v2wYMCDJpkPAzN7bYf5vY6BfgVstbLD2FAI+uAxlgnKYQBTb59sBEz1ileYD+xjxsHNHHj70FegN+cvDzbSUu+Mf32PLb0BXHb97sgwKC60LgvWsTtZbSI247DlsYT9VYx+/625mkdqAzbMdLGs6VvHeA82zqgaWWsk2Rvt6ScvT2gTVtPbdqGWzdf28srKipKGdDsTTbPvzMpaxMQhwwZomXLlmnp0qXJ13HHHacxY8Yk/52fn68XXnghmWf58uWqrKxUWVmZJKmsrEzLli3T+vXrk2nmz5+voqIi9enTJ/Q2AQAAALmqqZ5/Zy1C07ZtW/Xt2zflvdatW+vAAw9Mvj9+/HhNmTJF7du3V1FRkS655BKVlZVp0KBBkqRhw4apT58+Ou+883TLLbeoqqpKV199tcrLy7/yRigAAACguWmq599ZX+Xsq9x6662KxWIaPXq0amtrNXz4cN19993Jz+PxuObNm6cJEyaorKxMrVu31tixY3X99ddnsdYAAABobhLOV8I+yzLtMve3KJ5/e865kLs+99TU1Ki4uFiDdXrj76EJcCOVeVGAVrb0kuyLArQIYVGAQuM9NEEWBTDmCWNRAOs9NEHKyPiiAAHuoQllUYAcvIfGvChAE7mHxrooQH6Ae2gyvShAkBv2rYsCWNNL9kUBWsatiwLYbnSX7Dfstwq0KIDthnrrzfRFsS9N6beXYWt3UaBFAYwLDxgXBWgdwqIArTK9KMAmXwcc9k9VV1c36n6RsOw4j1y/vHtWFgUoOfyTnOuTsOV0hAYAAACIAl9OvsKNE4RdXq7KracSAQAAAIABERoAAAAgTb587f87WvZdJojQAAAAAIgwBjQAAAAAIospZ0AjeNxz12hh9FVO7o9crFMOci43n/CdaTue5p3pPKbtO/s1zUQI10GD1MsijDYkguxvY7t94wpkQZYT9o3NCDL9ybLscCaWKN6fEs4pEfLiwWGXl6uI0AAAAACILCI0AAAAQJpYtjl7iNAAAAAAiCwGNAAAAAAiiylnAAAAQJp8OSWYcpYVRGgAAAAARBYRGgAAACBNLAqQPURoAAAAAEQWERoAAAAgTTxYM3uI0AAAAACILAY0AAAAACKLKWcAAABAmvx/v8IuEwxoYMU3B9g/gkx7dl4IhUSfM/aTb+5XyZc9T6aFUSdrXyWcfSJIwtgOe52C7G9bOwK12zO2w9pPptT/LsN4f0bCs//mWFbpYkUv7A0DGgAAACBNiSw8WDPs8nIV99AAAAAAiCwGNAAAAAAiiylnAAAAQJoSbvsr7DJBhAYAAABAhBGhAQAAANLEss3ZQ4QGAAAAQGQRoQEAAADS5MszPx9of5QJIjQAAAAAIowBDQAAAIDIYsoZAAAAkCbfbX+FXSYY0KCZ8prIsiAeP2SNYu2nJtOt1nY7+1xsa55AZZhz5B4/QLuD5DFtP4S592GUkTBONvEDTE5JOGMZXoAyrO0wHh8Jz74vEsZvn+/s31bf8B+yz5pe2AsGNAAAAECaEllYFCDs8nIV99AAAAAAiCwGNAAAAAAiiylnAAAAQJqYcpY9RGgAAAAARBYRGgAAACBNvvMyvjrhnsoEERoAAAAAEUaEBgAAAEgT99BkDxEaAAAAAJHFgAYAAABAZDHlDAAAAEhTQjElQo4VJEItLXcxoEHT4JwxA3NOG8XarQF4AcrIeLVCaDcyxzfuvyC7O4yVhaxlJDKcXgpSJ/vJnW/MY00fhPU+hSD3NVjbkfBC2N/GH+hEgG9TwvD/tyUtmhcGNAAAAECaXBaWbXYs2yyJe2gAAAAARBgDGgAAAACRxZQzAAAAIE08hyZ7iNAAAAAAiCwiNAAAAECaEi4WaGW/9MoMtbicRYQGAAAAQGQRoQEAAADS5MuTH3KswOfBaZKI0AAAAACIMAY0AAAAACKLKWcAAABAmli2OXuI0AAAAACILCI0yDzr/Wrc34Z9ycVjJBeP8xDqZC4iSBku965A+sY6WdMH4YewXGwihOug1mVvrVeogyyra+3bIGUkPGM7jO32A1zJty4J7Ac4zH35GUmbDdlZtjkX/0MMHxEaAAAAAJHFgAYAAABAZDHlDAAAAEjT9ufQhDtFNuzychURGgAAAACRRYQGAAAASJOvWCgLZ6SWyaIAEhEaAAAAABHGgAYAAABAZDHlDAAAAEgTz6HJHiI0AAAAACKLCA0AAACQJl8x+SwKkBVZjdDMmDFD/fv3V1FRkYqKilRWVqann346+fngwYPleV7K6yc/+UnKNiorKzVq1Ci1atVKJSUluuKKK9TQ0BB2UwAAAICc1lTPvbMaoTnooIN08803q1evXnLO6YEHHtDpp5+ut956S0ceeaQk6aKLLtL111+fzNOqVavkvxOJhEaNGqXS0lK98sorWrt2rc4//3zl5+frpptuCr09QFq4yALsF87ZHjTnG9MHEaQMax57evs1zUzXSbI/KNDajiDL6lrzBLlKb733ot7Fbdv3Eqb0kuQb0we5nyPhNT5PIsf/o0w4T4kQfk92LdOiqZ57Z3VAc9ppp6X8feONN2rGjBl69dVXk53aqlUrlZaW7jH/c889p3/84x96/vnn1alTJx199NH65S9/qSuvvFLTpk1TQUFBxtsAAAAAREFTPffOmUUBEomEHn30UW3ZskVlZWXJ9x9++GF16NBBffv21dSpU7V169bkZxUVFerXr586deqUfG/48OGqqanRe++9t9eyamtrVVNTk/ICAAAAomjX89ra2tp95gnz3DvTsr4owLJly1RWVqZt27apTZs2mjt3rvr06SNJ+tGPfqTu3burS5cueuedd3TllVdq+fLleuyxxyRJVVVVKR0qKfl3VVXVXsucPn26rrvuugy1CAAAAM1NQrFAUxrTK3P7NLyuXbumvH/ttddq2rRpe8yTjXPvTMv6gObwww/X0qVLVV1drT//+c8aO3asFi1apD59+ujiiy9OpuvXr586d+6sIUOGaOXKlerZs2fgMqdOnaopU6Yk/66pqdntQAAAAACiYPXq1SoqKkr+XVhYuNe02Tj3zrSsD2gKCgp06KGHSpIGDBig119/Xbfffrvuueee3dIOHDhQkrRixQr17NlTpaWleu2111LSrFu3TpL2OvdP2r6Tv2pHAwAAABa+iwVabCO9MrdHaHasWtYY2Tj3zrScuYdmB9/39zrvb+nSpZKkzp07S5LKysq0bNkyrV+/Pplm/vz5KioqSobOAAAAAOxZUzj3zmqEZurUqRo5cqS6deumTZs26ZFHHtHChQv17LPPauXKlXrkkUd06qmn6sADD9Q777yjyZMn6+STT1b//v0lScOGDVOfPn103nnn6ZZbblFVVZWuvvpqlZeXE4EBAAAAdtJUz72zOqBZv369zj//fK1du1bFxcXq37+/nn32WX3729/W6tWr9fzzz+u2227Tli1b1LVrV40ePVpXX311Mn88Hte8efM0YcIElZWVqXXr1ho7dmzK2tkAAABApmVzUYDGaqrn3p5zAZ6C1MTU1NSouLhYg3W68rz8RuWJtWhhLsdr2dKWvpUtvSSp0Lb+t2thS+8XNq5/UvK0sI2b/ULbw8IkKVFofOhZgfFBbIX2B2UlCmx5EvkBHkBnXO7dWiffvrvNdfIDXFax1ssvsP3MBauTrQxnTB8oT57tsXhevvUxelLMmCcvz/5wv/x8W578uC19Yb79Cdct8mx5CuP2Mlrl1ZnStzCW0dq4fUlqGbflaRPf99Kxu2plLKNVzFqnbab0ktQ6ZmuHNb0ktfIyW0ZbYz9JUmvPdky1CvBMyVaxxv+fX7PJ18G916q6urrR94uEYcd55H1vDlCrtvZzmHRs3ZTQRccuybk+CVvWFwUAAAAAos6XlHABRnVplokcXBQAAAAAABqLCA3QnIQxwTQXJ7Fa65SLbchVxquRLsDVyyB5Mr39TNdJUsaXf/VDaEOQ+wkSxnYnZJxKG6Dd1qvu1jZIku9Z221LXx+gTnXGMvI9e7yg3jU+T4MhbTb4iskPOVYQdnm5il4AAAAAEFkMaAAAAABEFlPOAAAAgDQlXCzQdMN0ywQRGgAAAAARRoQGAAAASJMvT75xkYr9USaI0AAAAACIMAY0AAAAACKLKWcAAABAmlgUIHvoBQAAAACRRYQGAAAASFNCMSVCjhWEXV6uohcAAAAARBYRGgAAACBNvvPku5CXbQ65vFzFgAZAdrlsV2D/8IztcEHabc1j/Y8u0H+Mmd+B1r5yIfwHbz2JCFIn6/MlMp1eknzjDchBTrYy/VyNIFN0fGOeRIA2WPNY90XCy/y+SAT4OfANRfj2zaOZYMoZAAAAgMgiQgMAAACkyc/CogDW6GFTRS8AAAAAiCwiNAAAAECafBcz39u0P8oEERoAAAAAEcaABgAAAEBkMeUMAAAASFNCXqAlu9MtE0RoAAAAAEQYERoAAAAgTSwKkD30AgAAAIDIIkIDAAAApCmh8O9pSYRaWu5iQANkist2BfaDXG1DrtarGXLGfWFNH4TvbCcU1vRB+CGc5FjbkQjQbms7gvRtwjiFpt63ncr4XoMpvWSvU5BpQNYyEp51XwSok7UMcwlSneFHwZIWzQtTzgAAAABEFhEaAAAAIE0sCpA99AIAAACAyCJCAwAAAKQp4WLme6H2R5kgQgMAAAAgwhjQAAAAAIgsppwBAAAAaXLyQlmifdcyQYQGAAAAQIQRoQEAAADSxKIA2UMvAAAAAIgsIjQAAABAmnznyXfh3tMSdnm5igENEGUu2xWICGM/BfnvwVn3RZD/hKyFWJMHOJ7C+K/UZfg/7CDbt55EBDnpCKMMq4SxjESAiSDmdhuPwkSAo9bajkDttpZhnGpU58VN6SUp3yVsZQRod77nNzpt41OiuWHKGQAAAIDIIkIDAAAApCmhWKDoXLplgggNAAAAgAgjQgMAAACkiUUBsocIDQAAAIDIYkADAAAAILKYcgYAAACkyVfMvPz2/igTRGgAAAAARBgRGgAAACBNCeeZHz67P8oEERoAAAAAEUaEBgAAAEgTyzZnDxEaAAAAAJFFhAZoDJftCkQIfRVdQa70Wfd3CFcTwzgEwyjDeuXVnt5+TdOaJ8jV44TxWmvCWKd6FzelD5InSBl1xjz5ni19gUuY0ktSwjMeU7Lv73rDl6mB/1+wFwxoAAAAgDQ5Fwt0oSDdMsGUMwAAAAARRoQGAAAASFNCnhIBpt2lWyaI0AAAAACIMAY0AAAAACKLKWcAAABAmnwX/nNhfFZ+k0SEBgAAAECEEaEBAAAA0uRnYdnmsMvLVfQCAAAAgMhiQAMAAAAgsphyBgAAAKTJlyc/5OfChF1ermJAAzQjnrMuh5KbP5ReM13VxTOunuPM+zvzXIAVgKx5rOmDrBJkXckoyMpH9jJsky5ysU6ByjD+TgWrky1PIgfLSHj2/V3v4rb08s1l5HuNz8NDJLE3DGgAAACANCWcp0TIyzaHXV6uyuo9NDNmzFD//v1VVFSkoqIilZWV6emnn05+vm3bNpWXl+vAAw9UmzZtNHr0aK1bty5lG5WVlRo1apRatWqlkpISXXHFFWpoaAi7KQAAAEBOa6rn3lkd0Bx00EG6+eabtWTJEr3xxhv61re+pdNPP13vvfeeJGny5Ml68sknNWfOHC1atEhr1qzRmWeemcyfSCQ0atQo1dXV6ZVXXtEDDzyg2bNn65prrslWkwAAANAM7Vi2OeyXRVM99/Zcjk2ybt++vX71q1/p+9//vjp27KhHHnlE3//+9yVJH3zwgY444ghVVFRo0KBBevrpp/Wd73xHa9asUadOnSRJM2fO1JVXXqkNGzaooKCgUWXW1NSouLhYg3W68rz8RuWJtWhhbpvXsqUtfStbeklSYePavINrYUvvFzauf1LytLDNbPQLbXN2JSlRaJw7XmCce1xgD+la8wQpwzfuDmv6XKyTJDnjZNlEge1nzgWok59nKyNIu2Usw+UZ57Pn2/87iOUnbOnj9jLyjGXk5dnSF+TZrywWGMtoEaCMwrgtTwtj+lZ5dab0ktQyXp/R9Nvz2OrVypo+Zm+3NU+rWK25jNbGPNYyrNuXpBaebf+1NqaXpFaxxh+3mzf5Ov7IdaqurlZRUZG5rEzZcR559gvnqqCN7bwqXXWb6/TokN+n1SfZOPfe33Jm2eZEIqFHH31UW7ZsUVlZmZYsWaL6+noNHTo0maZ3797q1q2bKioqJEkVFRXq169fskMlafjw4aqpqUmONPektrZWNTU1KS8AAAAginY9r62t3fcANsxz70zL+oBm2bJlatOmjQoLC/WTn/xEc+fOVZ8+fVRVVaWCggK1a9cuJX2nTp1UVVUlSaqqqkrp0B2f7/hsb6ZPn67i4uLkq2vXrvu3UQAAAGhWfHnyXcivf6/81rVr15Rz2+nTp++1ntk49860rK9ydvjhh2vp0qWqrq7Wn//8Z40dO1aLFi3KaJlTp07VlClTkn/X1NQwqAEAAEAkrV69OmXKWWFh4V7TZuPcO9OyPqApKCjQoYceKkkaMGCAXn/9dd1+++0666yzVFdXp40bN6aMFNetW6fS0lJJUmlpqV577bWU7e1YiWFHmj0pLCz8yh0NAAAAWLgsPFjT/bu8HauWNUY2zr0zLetTznbl+75qa2s1YMAA5efn64UXXkh+tnz5clVWVqqsrEySVFZWpmXLlmn9+vXJNPPnz1dRUZH69OkTet0BAACAKGkK595ZjdBMnTpVI0eOVLdu3bRp0yY98sgjWrhwoZ599lkVFxdr/PjxmjJlitq3b6+ioiJdcsklKisr06BBgyRJw4YNU58+fXTeeefplltuUVVVla6++mqVl5cTgQEAAAB20lTPvbM6oFm/fr3OP/98rV27VsXFxerfv7+effZZffvb35Yk3XrrrYrFYho9erRqa2s1fPhw3X333cn88Xhc8+bN04QJE1RWVqbWrVtr7Nixuv7667PVJAAAADRDO27UD7tMi6Z67p1zz6HJBp5D03g8hyZzefz8IGXY0jfX59D4xuerBKmTb6yTC/DMF2se83NojM+5kSQv31ZG3FonSXHjM1/yjc+tyY/b0ku5+RyaQmMZOfscGuMzX6xlBHoOTdz6jBh7GdbnxJifERPgOTTmZ9149na38Br/Xdq8ydcJfdfm7HNoRj8/Vvmtw30OS/2WOv1l6AM51ydhy/qiAAAAAEDU+S4m34V7e3rY5eUqegEAAABAZBGhAQAAANIUhXtomioiNAAAAAAiiwENAAAAgMhiyhkAAACQJl+efIU85Szk8nIVERoAAAAAkUWEBgAAAEgTiwJkDxEaAAAAAJHFgAYAAABAZDHlDAAAAEgTU86yhwgNAAAAgMgiQoPmyWW7AtHg0U+5xbo/zFfuAuxwY5Ygh5QztiPT6YMIchXVuhyrtYwgdUoY81jTS1LCeK3V3O4Ay9zWu3hG0wfJk+81mNInwmi37O3O9/xGpw3ShjARockeIjQAAAAAIosIDQAAAJAmIjTZQ4QGAAAAQGQxoAEAAAAQWUw5AwAAANLkFGzRiXTLBBEaAAAAABFGhAYAAABIE4sCZA8RGgAAAACRxYAGAAAAQGQx5QwAAABIE1POsocIDQAAAIDIIkIDRFkOrtfoGetkTS9JzprHegXLXIC9HQGKyLww6hTC1URr3wa5wmnNk4tlNPj2a5oNXtyY3g9Qhi1PvbFO9c6WXpLyXcKU3nf2vk0Y89Q72ylcvbENkpQvW546476QbH1bn4u/mzshQpM9RGgAAAAARBYRGgAAACBNRGiyhwgNAAAAgMhiQAMAAAAgsphyBgAAAKTJOU8u5ClgYZeXq4jQAAAAAIgsIjQAAABAmnx58hXyogAhl5eriNAAAAAAiCwGNAAAAAAiiylnAAAAQJp4Dk32EKEBAAAAEFlEaIAM8Vy2a7AHuVin5irIvsj0/gtypc+Yxzl7I6xZrMuYBtoVIZRhvfJqT2+/pmm9ATnIDcvmMoztTgRotzVPvYuby7DmyXcNpvR1AeqU79nyxJ1vLqNejS+jIcejESzbnD1EaAAAAABEFhEaAAAAIE3cQ5M9RGgAAAAARBYDGgAAAACRxZQzAAAAIE0sCpA9RGgAAAAARBYRGgAAACBNLguLAhCh2Y4IDQAAAIDIYkADAAAAILKYcgYAAACkyUlyLvwyQYQGAAAAQIQRoUGT4HGJIjOaSL9aj48gx1MoV+WsZYRQJ2u7A92+arzp1XqTbJCban1ju4PcKJzpdvgB9oa1HYkA7bbmSRivzda7uCl9kDz5aghQhu2UrN4lTOnjAX6kzGUE+NGp8xpfRl2wX5DQ+PLkhVzHIN/jpogIDQAAAIDIIkIDAAAApIkHa2YPERoAAAAAkcWABgAAAEBkMeUMAAAASJPvPHkhTwELsuBIU0SEBgAAAEBkEaEBAAAA0uRcFh6s2UQer5AuIjQAAAAAIosBDQAAAIDIYsoZAAAAkCaeQ5M9RGgAAAAARBYRGgAAACBNRGiyhwEN0AheGKuINJWVSqztCNLuJtBXQY4pc5ZQ9oXxP9Mg7TaWYV31J8gJgb1O9jKsz5fwZUwfQp0a/Li5jAbPz2j6fC9hSi9J9c7WjnrffnqVH7fVy1qnfNdgSi9JdcYyYrLtC0nKN5RR3wR++5EZTDkDAAAAEFlEaAAAAIA0+c6TF/IUsCCR1qaICA0AAACAyCJCAwAAAKTJOfs9fPujTGQ5QjN9+nQdf/zxatu2rUpKSnTGGWdo+fLlKWkGDx4sz/NSXj/5yU9S0lRWVmrUqFFq1aqVSkpKdMUVV6ihwX7zGwAAANBUNdVz76xGaBYtWqTy8nIdf/zxamho0M9+9jMNGzZM//jHP9S6detkuosuukjXX3998u9WrVol/51IJDRq1CiVlpbqlVde0dq1a3X++ecrPz9fN910U6jtAQAAQPO0PUIT9rLNtvRN9dw7qwOaZ555JuXv2bNnq6SkREuWLNHJJ5+cfL9Vq1YqLS3d4zaee+45/eMf/9Dzzz+vTp066eijj9Yvf/lLXXnllZo2bZoKCgoy2gYAAAAgCprquXdOLQpQXV0tSWrfvn3K+w8//LA6dOigvn37aurUqdq6dWvys4qKCvXr10+dOnVKvjd8+HDV1NTovffe22M5tbW1qqmpSXkBAAAAUbTreW1tbW2j8oV17p1pObMogO/7mjRpkk488UT17ds3+f6PfvQjde/eXV26dNE777yjK6+8UsuXL9djjz0mSaqqqkrpUEnJv6uqqvZY1vTp03XddddlqCUAAABobpzzsjDlbHt5Xbt2TXn/2muv1bRp074yb5jn3pmWMwOa8vJyvfvuu3r55ZdT3r/44ouT/+7Xr586d+6sIUOGaOXKlerZs2egsqZOnaopU6Yk/66pqdntQAAAAACiYPXq1SoqKkr+XVhYuM88YZ57Z1pOTDmbOHGi5s2bpxdffFEHHXTQV6YdOHCgJGnFihWSpNLSUq1bty4lzY6/9zb3r7CwUEVFRSkvAAAAICiXpZek3c5r9zWgCfvcO9OyGqFxzumSSy7R3LlztXDhQvXo0WOfeZYuXSpJ6ty5sySprKxMN954o9avX6+SkhJJ0vz581VUVKQ+ffpkrO7IHI9F1RvNo6sax9pPQfo1jH1hnspgrFQI7Q4yHcMZC7GWEeQnJ+Hbrgf6zjeXYX0CeIOxTnHPfk2zwYub0ufFArRbtnbXO1s78pytDZKU7xKm9PUByrDmiRu/F/XGNkhS3PjlsNZJstWrIeTpXE1RUz33zuqApry8XI888oieeOIJtW3bNjnvrri4WC1bttTKlSv1yCOP6NRTT9WBBx6od955R5MnT9bJJ5+s/v37S5KGDRumPn366LzzztMtt9yiqqoqXX311SovL29UuA0AAABoDprquXdWBzQzZsyQtP0BPjubNWuWxo0bp4KCAj3//PO67bbbtGXLFnXt2lWjR4/W1VdfnUwbj8c1b948TZgwQWVlZWrdurXGjh2bsnY2AAAAkEnZXBSgsZrquXfWp5x9la5du2rRokX73E737t311FNP7a9qAQAAAE1OUz33zplVzgAAAIDI2vku/TDLRG6scgYAAAAAQRChAQAAANKVhXto7KtfNk1EaAAAAABEFgMaAAAAAJHFlDMAAAAgTc4Fe1BvumWCCA0AAACACCNCAwAAAKQpCg/WbKoY0ADNiGcMTVvT52oZYUTkrf+lBJkmYO4r4390waYuhLAzMtyOICcE1mYkfHsZiZgtT565n+x18o1HeoNvnwhS78VN6fM835S+wbdtX7LXKRbgy1Tv207J4jFbGfXO3u64s/VtXLb0krTN5RvSMrEIe8aRAQAAACCyiNAAAAAA6XJe+M+FYcqZJCI0AAAAACKMCA0AAACQJpZtzh4iNAAAAAAiiwgNAAAAkC6ncJbV3LVMEKEBAAAAEF0MaAAAAABEFlPOAAAAgDQ55wV6YG26ZYIIDQAAAIAII0IDAAAA7A/cpJ8VRGgAAAAARBYRGjRLnvlJVAHmqHKVJndY90UY+y7QvGdjxUJphzW9vd3O+n01lhFkDro1Txhl+Mb0Dc5+TTPu2/LkefZ2W+tlTZ8f4Pe83sVN6WMBnnZoLSPufFP6bS7flF6ytyMmW522l9H4PHX8v4q9YEADAAAApIlFAbKHKWcAAAAAIosIDQAAAJAup/CnmzMNTxIRGgAAAAARRoQGAAAASJunQIsIpV0miNAAAAAAiCwGNAAAAAAiiylnAAAAQLpYFCBriNAAAAAAiCwiNAAAAEC6iNBkDREaAAAAAJFFhAYZ5znb5YPmerHB2k+SJJeDyzVamxFkh2f4IPGC7ApjnjDKCGdf2I5BF+A4t/aVM9fJtv1gZdi/qwnfds0xEfNN6eMh1KkhFjeXkeds7aj3bWXkebbtS1LM+OWIy15GvWdrR9zYTzFjekmq9fNN6ePGY1CS4oYvYIN562guGNAAAAAA6XJe+Bcac/HCZhYw5QwAAABAZBGhAQAAANLkXLAprOmWCSI0AAAAACKMCA0AAACQLpZtzhoiNAAAAAAiiwENAAAAgMhiyhkAAACQLpZtzhoiNAAAAAAiiwgNAAAAkCbPbX+FXSaI0AAAAACIMCI0QGM0lSsg1nY0kXZbr2AFanYYfZXp/RekDb61DPt8b2fM44wN8X17nax5EjF7GTHj/vCN/ZTw7dc0/ZhthzcEKKPBs+WJGb/gDc5ep5gxT8zF7WX4tnbEPdu+sG5fkuLGg3CbyzeXYfkN2Rbgu4rmgQENAAAAkC6eQ5M1TDkDAAAAEFlEaAAAAIB0sWyzyRtvvKE//elPqqysVF1dXcpnjz32mGlbRGgAAAAAhObRRx/VCSecoPfff19z585VfX293nvvPS1YsEDFxcXm7TGgAQAAANLlsvSKoJtuukm33nqrnnzySRUUFOj222/XBx98oB/+8Ifq1q2beXsMaAAAAACEZuXKlRo1apQkqaCgQFu2bJHneZo8ebLuvfde8/YY0AAAAAAIzQEHHKBNmzZJkr72ta/p3XfflSRt3LhRW7duNW+PRQEAAACAdLFsc6OdfPLJmj9/vvr166cf/OAHuuyyy7RgwQLNnz9fQ4YMMW/PPKC5++679dhjj6l9+/b6j//4j5RCP/vsM33961/XP//5T3NFAAAAADR9d911l7Zt2yZJ+vnPf678/Hy98sorGj16tK6++mrz9kwDmjvuuENTp07VBRdcoOrqap166qmaNm2apk6dKklKJBL65JNPzJUAAAAAIo0ITaO1b98++e9YLKarrroqre2ZBjT33HOP7rvvPv3oRz+SJE2YMEFnnHGGvvzyS11//fVpVQQAAABA0xePx7V27VqVlJSkvP/555+rpKREiUTCtD3TgGbVqlU64YQTkn+fcMIJWrBggYYOHar6+npNmjTJVDgAAACA5sW5PYeWamtrVVBQYN6eaUDToUMHrV69WgcffHDyvb59+2rBggX61re+pTVr1pgrgGjx9nIAfpVQoqG+tZTMP1nXi2gYOG3WdofRT+Y62Y8P63cjwFfJfEw5YzuCHLPmdpi/q5J8WzucMb08+/629q01vST5vm0h0oSxb2MBdniDsU6xAF/whljcVoax3bUB1kOytiMeoG9jxi/TNj/fWIAtuSTJD5DHylCvbQG+R6FyXqD/P9IuM0LuuOMOSZLnebr//vvVpk2b5GeJREIvvfSSevfubd6u6Vt90kkn6bHHHtM3vvGNlPf79OmjF154Qd/85jfNFQAAAADQ9N16662StkdoZs6cqXj8/y5gFBQU6OCDD9bMmTPN2zUNaK666iotWbJkj58deeSRWrBggf7yl7+YKwEAAABEmefCn50Rtdkgq1atkiR985vf1GOPPaYDDjhgv2zXNKDp37+/+vfvv9fP+/btq759+6ZdKQAAAABN04svvihJqqur06pVq9SzZ0/l5QV/PGZaD9bcunWrKisrVVdXl/L+Vw16AAAAADRfX375pSZOnKgHHnhAkvThhx/qkEMO0SWXXKKvfe1r5mWcg9wipg0bNug73/mO2rZtqyOPPFLHHHNMygsAAABoVlyWXhF01VVX6e2339bChQvVokWL5PtDhw7VH//4R/P2Ag1oJk2apI0bN2rx4sVq2bKlnnnmGT3wwAPq1auX/vrXvwbZJAAAAIBm4PHHH9ddd92lk046Sd5OK00eeeSRWrlypXl7gaacLViwQE888YSOO+44xWIxde/eXd/+9rdVVFSk6dOna9SoUUE2CwAAAKCJ27Bhw24P1ZSkLVu2pAxwGitQhGbLli3JShxwwAHasGGDJKlfv3568803G72d6dOn6/jjj1fbtm1VUlKiM844Q8uXL09Js23bNpWXl+vAAw9UmzZtNHr0aK1bty4lTWVlpUaNGqVWrVqppKREV1xxhRoaGoI0DQAAAGiScuXc+7jjjtPf/va35N87BjH333+/ysrKzO0KNKA5/PDDk40/6qijdM899+jTTz/VzJkz1blz50ZvZ9GiRSovL9err76q+fPnq76+XsOGDdOWLVuSaSZPnqwnn3xSc+bM0aJFi7RmzRqdeeaZyc8TiYRGjRqluro6vfLKK3rggQc0e/ZsXXPNNUGaBgAAAJh5+r+lm0N7GeuYK+feN910k372s59pwoQJamho0O23365hw4Zp1qxZuvHGG42tkjzn7M+r/v3vf6+GhgaNGzdOS5Ys0YgRI/TFF1+ooKBAs2fP1llnnWWuiPR/4adFixbp5JNPVnV1tTp27KhHHnlE3//+9yVJH3zwgY444ghVVFRo0KBBevrpp/Wd73xHa9asUadOnSRJM2fO1JVXXqkNGzaooKBgn+XW1NSouLhYg3W68rzGPXk3ttMNTI3ltWxpS9/Kll6SVLjv9u7MtTCmL7DPUvRb2PL4hbanREtSIt82NvcLjU/gLrCP/f18289MwrYrtucxlmF9sLS1DZLkGw8Ra52C5HHGQypInVye7afU2k+hlGHcviS5uDFPnv3R456xXp6xjHjcXqe4sYy8vIS5jLyYrYx8Yxn5cXudCox5CmL2MgrzbDMsCmLW9PY6tYzXm9IXxu2zRKztKDSmbxGztUGSCr0QyjDk+XJzg648/n9UXV2toqIic1mZsuM8svt/3RDo/DAd/rZt+uTKqwP3SbbOvSVp5cqVuvnmm/X2229r8+bNOvbYY3XllVeqX79+5nYEuofm3HPPTf57wIAB+uSTT/TBBx+oW7du6tChQ5BNSpKqq6slSe3bt5ckLVmyRPX19Ro6dGgyTe/evdWtW7dkp1ZUVKhfv37JDpWk4cOHa8KECXrvvff2uOpabW2tamtrk3/X1NQErjMAAACQTbueyxYWFqqwsHCf+cI6996Tnj176r777mtU2n0JNKC5/vrrdfnll6tVq1aSpFatWunYY4/Vl19+qeuvvz7QdC/f9zVp0iSdeOKJyYdzVlVVqaCgQO3atUtJ26lTJ1VVVSXT7NyhOz7f8dmeTJ8+Xdddd525jkBGBVh60fqEYPMThUNYDjLIU46teaxFBKmTOdYdpG8zvL/t8foAnD3qZ51IYG93gEikb4yOGtNLUsJ4Y2zMWEbMs0eeE8bObQjwZYr7tnrFZAvBxgLUqTZISNUoZvyCx2WL4NUb+0mSYjFjX9mDnSZ1Ab5HoXJeoN+4tMuU1LVr15S3r732Wk2bNu0rs4Z57r0niURCc+fO1fvvvy9J6tOnj04//fRAD9gMdA/Nddddp82bN+/2/tatWwMPFMrLy/Xuu+/q0UcfDZTfYurUqaqurk6+Vq9enfEyAQAAgExYvXp1yrnt1KlT95knzHPvXb333ns67LDDNHbsWM2dO1dz587V2LFj1atXL7377rvm7QUa0Djn9rik2ttvv50MWVlMnDhR8+bN04svvqiDDjoo+X5paanq6uq0cePGlPTr1q1TaWlpMs2uKy/s+HtHml0VFhaqqKgo5QUAAAAElsUHa+56Xruv6WZhn3vv6sc//rGOPPJI/etf/9Kbb76pN998U6tXr1b//v118cUXN2obOzMNaA444AC1b99enufpsMMOU/v27ZOv4uJiffvb39YPf/jDRm/POaeJEydq7ty5WrBggXr06JHy+YABA5Sfn68XXngh+d7y5ctVWVmZXNKtrKxMy5Yt0/r165Np5s+fr6KiIvXp08fSPAAAAKDJypVz76VLl2r69Ok64IADku8dcMABuvHGG/XWW2+Z22WapHbbbbfJOacLL7xQ1113nYqLi5OfFRQU6OCDDzatHV1eXq5HHnlETzzxhNq2bZucd1dcXKyWLVuquLhY48eP15QpU9S+fXsVFRXpkksuUVlZmQYNGiRJGjZsmPr06aPzzjtPt9xyi6qqqnT11VervLy8UTdDAQAAAM1Brpx7H3bYYVq3bp2OPPLIlPfXr1+vQw891Nwu04Bm7NixkqQePXroxBNPDHTTzs5mzJghSRo8eHDK+7NmzdK4ceMkSbfeeqtisZhGjx6t2tpaDR8+XHfffXcybTwe17x58zRhwgSVlZWpdevWGjt2rK6//vq06gYAAAA02k5TwEIt0yCb5947r8Q2ffp0XXrppZo2bVpyoPTqq6/q+uuv13/913/ZGqWAz6GRtq8dPWvWLK1cuVK33367SkpK9PTTT6tbt267jbZyHc+hMaTnOTSNL8P6HJpAz2PJ7HNorM+5CVKGC3BdxPw8HWMZgeqUg8+hsbbDuv1AeazPrZHMz66JWdMHqFPM+OyaIM+hsT4fx/pcmfwAz9+xPocmyLNurM9wsT5XpiDQM2JsZVifESMFeNaN8ZkvQepkzZPv2fe35dk12zY36BcDF+Tuc2huujE7z6H52c9zrk/2JBaLpdyDv2MIsuO9nf9OJGzHUqAQy6JFizRy5EideOKJeumll3TjjTeqpKREb7/9tn73u9/pz3/+c5DNAgAAAJHkuWDL/qdbZlS8+OKLGdt2oAHNVVddpRtuuEFTpkxR27Ztk+9/61vf0l133bXfKgcAAAAg+m6//XbNnj1bRUVFevDBB3XWWWftt/vdAy3bvGzZMn3ve9/b7f2SkhJ99tlnaVcKAAAAiJQsLtscBfPmzdOWLVskSRdccIGqq6v327YDRWjatWuntWvX7rbU21tvvaWvfe1r+6ViAAAAAJqG3r17a+rUqfrmN78p55z+9Kc/7fW+n/PPP9+07UADmrPPPltXXnml5syZI8/z5Pu+/v73v+vyyy83VwAAAABA0zZjxgz99Kc/1d/+9jd5nqerr746ZZGAHTzPC2dAc9NNN6m8vFxdu3ZVIpFQnz591NDQoDFjxujqq68OsknsiW9fgcYs2CJ30ddMmx0G6w2KgXaFNVOm0wfIY18/TnLOmMv6/Q6h3YHK8G3tdtb0ASZfW7vW9+2FxGLGlfOMZSQCHISJmHEFuQDtrvdsK13GjD86QepkLiPAQRULsvRhjvFjAQ4qwyG1LYTTorREYNnmbDrxxBP16quvStq+4tmHH36okpKS/bLtQPfQFBQU6L777tM///lPzZs3Tw8//LA+/PBDPfTQQ4rH7UvuAgAAAGi6zjzzzOSzaGbNmpWysFi6Ag1oJOl3v/udRo4cqe9973s699xzdcYZZ+j+++/fbxUDAAAAomLHss1hv6Ji50UBLrzwQm3atGm/bTtQfPOaa67Rb37zG11yySUqKyuTJFVUVGjy5MmqrKzc55NCAQAAADQfObcowIwZM3TffffpnHPOSb733e9+V/3799cll1zCgAYAAABA0syZMzVlypTcWRSgvr5exx133G7vDxgwQA0NDUE2CQAAAESX87a/wi4zIk444YTcWhTgvPPO04wZM3Z7/95779WYMWPSrhQAAACApmnVqlVavny5zj33XJ1wwgn69NNPJUkPPfSQXn75ZfP2Gh2hmTJlSvLfnufp/vvv13PPPadBgwZJkhYvXqzKykqeQwMAAIDmh2WbG+2NN97QeeedpzFjxujNN99UbW2tJKm6ulo33XSTnnrqKdP2Gj2geeutt1L+HjBggCRp5cqVkqQOHTqoQ4cOeu+990wVAAAAANB83HDDDZo5c6bOP/98Pfroo8n3TzzxRN1www3m7TV6QPPiiy+aNw4AAAA0B9lYRjlKyzbvbPny5Tr55JN3e7+4uFgbN240by/wc2gAAAAAwKq0tFQrVqzY7f2XX35ZhxxyiHl7DGgAAAAAhOaiiy7SZZddpsWLF8vzPK1Zs0YPP/ywLr/8ck2YMMG8vUDLNgMAAADYCYsCNNpVV10l3/c1ZMgQbd26VSeffLIKCwt1+eWX65JLLjFvjwFNU+MiemTvzM92BXbnBelXYxYvyFry1mqZ62Rvt5OxHSEcstY5xkF2d5MoI0idfNv+DvTIhJi14cY6+QGOc882wcH37D9svrFvE3t4QN1Xse47SUr4tnYH2d2e8UCPKR6gFGRCIsjEH0OWuqZwjgNJ21dM/vnPf64rrrhCK1as0ObNm9WnTx+1adMm0PYY0AAAAADpysKiAFGN0OxQUFCgPn36pL0d7qEBAAAAEFkMaAAAAABEFlPOAAAAgHSxKEDWEKEBAAAAEFlEaAAAAIB0EaHJGiI0AAAAACKLCA0AAACQJi8LyzaHvkx0jiJCAwAAACCyGNAAAAAAiCwGNAAAAAAii3toAOxdkLm5xjxB5v9a87gQ6uScZyvDtxdiLEKebyzANxYgycVCmMBtrJezttsL0m5j+gB96/u2QqzNSNiSS5LqE0zYb0582Q6qAjVkqCbb1Vq/22g2GNAAAAAA6WLZ5qxhyhkAAACAyGJAAwAAACCymHIGAAAApInn0GQPERoAAAAAkUWEBgAAANgfiJhkBREaAAAAAJFFhAYAAABIF8s2Zw0RGgAAAACRxYAGAAAAQGQx5QwAAABIE8s2Zw8DGjQJzfULbW53CP1krZMLUqdMtyPA9sNot2dM75wxR5BK+RlOL9kbbizDedYCJOfb+soPUIYStjyesQxreknyfdvEDmMTJEme8csUM9apIch/GAl7llzjO/ukHN/4G5Kw/uYYy6hrAvsBmcGABgAAAEgXiwJkDffQAAAAAIgsBjQAAAAAIospZwAAAECaWBQge4jQAAAAAIgsIjQAAABAulgUIGuI0AAAAACILCI0AAAAQLqI0GQNERoAAAAAkcWABgAAAEBkMeUMAAAASBPLNmcPERoAAAAAkUWEBpnn5+DlA2uVAjTBfNUkhG6y1inIlR8Xxu7OcDsCtSGM/W1tt2/cvjW9JBfzTOnNdZLkrJferGXYmiBJcr4xU5AyjNccEwl7Gc2R7+w7w49nvnOt9fKNX4yCeIMp/fYybHUqDHCgW9pRl+vHOIsCZA0RGgAAAACRxYAGAAAAQGQx5QwAAABIF1POsoYIDQAAAIDIIkIDAAAApIllm7OHCA0AAACAyGJAAwAAACCymHIGAAAApItFAbKGCA0AAACAyCJCAwAAAKSJRQGyJ6sRmpdeekmnnXaaunTpIs/z9Pjjj6d8Pm7cOHmel/IaMWJESpovvvhCY8aMUVFRkdq1a6fx48dr8+bNIbYCAAAAyH1N9dw7qxGaLVu26KijjtKFF16oM888c49pRowYoVmzZiX/LiwsTPl8zJgxWrt2rebPn6/6+npdcMEFuvjii/XII49ktO7A/hboKkumr8yEUacAZVj7yhnTB9kX5jJ8z16IbyvEWYsIUCcv03WSJN+awVhIgDq5hPV6oLkRAXI0z1nkxkNQ+XF7z1q5AAd6vhKm9L6xDD/AgZ7nGesUqIzG7496684OWwTuoWmq595ZHdCMHDlSI0eO/Mo0hYWFKi0t3eNn77//vp555hm9/vrrOu644yRJd955p0499VT9+te/VpcuXfZ7nQEAAIAoaqrn3jl/OWfhwoUqKSnR4YcfrgkTJujzzz9PflZRUaF27dolO1SShg4dqlgspsWLF+91m7W1taqpqUl5AQAAAFG063ltbW1t4G1l4tw703J6QDNixAg9+OCDeuGFF/Rf//VfWrRokUaOHKlEYnsItKqqSiUlJSl58vLy1L59e1VVVe11u9OnT1dxcXHy1bVr14y2AwAAAE2cy9JLUteuXVPObadPnx6oCZk69860nF7l7Oyzz07+u1+/furfv7969uyphQsXasiQIYG3O3XqVE2ZMiX5d01NDYMaAAAARNLq1atVVFSU/HvX+14aK1Pn3pmW0xGaXR1yyCHq0KGDVqxYIUkqLS3V+vXrU9I0NDToiy++2OvcP2n7Ti4qKkp5AQAAAEF5WXpJ2u28NuiAZlf769w70yI1oPnXv/6lzz//XJ07d5YklZWVaePGjVqyZEkyzYIFC+T7vgYOHJitagIAAACRF5Vz76xOOdu8eXNyxCdJq1at0tKlS9W+fXu1b99e1113nUaPHq3S0lKtXLlS//mf/6lDDz1Uw4cPlyQdccQRGjFihC666CLNnDlT9fX1mjhxos4++2xWOAMAAAB20lTPvbMaoXnjjTd0zDHH6JhjjpEkTZkyRcccc4yuueYaxeNxvfPOO/rud7+rww47TOPHj9eAAQP0P//zPylhtIcffli9e/fWkCFDdOqpp+qkk07Svffem60mAQAAoDnK4qIAjdVUz72zGqEZPHiw3Fc8je7ZZ5/d5zbat2/PQzQBAACAfWiq5945vcoZAAAAEAWe2/4Ku0xEbFEAAAAAANgZERrknq8Ihe49jy259YqG59vSSzLXKQjP2lfO23ealO3bNr89jy2T59vqJEky7g/r/nMBLvWYj5EAZThru61lBDnOrXm8APs7YUvuzD8ItuRB8rgg7TZmse++3Lym6Yy/U3Fj+iB8YxlBfv6tZcRjtj1u7VdJaojZjpEGFzeXkec1/gte35Dj4YgA97TslzKRo79mAAAAANAIDGgAAAAARBZTzgAAAID9gSlgWUGEBgAAAEBkEaEBAAAA0sSyzdlDhAYAAABAZDGgAQAAABBZTDkDAAAA0sVzaLKGCA0AAACAyCJCAwAAAKSJRQGyhwgNAAAAgMgiQgMAAACki3tosoYBDWwc35zGMoeBQ+haa50C7W5jniDhcnO9QqiTfFtyZ0wvSZ7n2TL41obbkkuS842ZgnSusd3WbnIB2h0Gc08ZMwQ4BGWd2BHkNyQet2WylhHo6238LiWs3wtJ+XHbHokbD9yEb5+UE4/Z6lQQS5jLaIg1vl4NiWBHLZo+ppwBAAAAiCwiNAAAAECaWBQge4jQAAAAAIgsIjQAAABAulgUIGuI0AAAAACILAY0AAAAACKLKWcAAABAuphyljVEaAAAAABEFhEaAAAAIE0s25w9RGgAAAAARBYRGgAAACBd3EOTNQxokHE5GQ51xko5LzP12EmgfrLmyXR62dth3RXbM9mSe75x+9b0sh8i5jpJkrEMZy0jwGFuzxLku2Tb4c5YRuZrFJDxoHLxzH/5/LjtoPJc3FyG9cD1Y8Z+CvB77sdsfRULUoZvmzQTi9n6Kd+47yQpbmxHwtgGSYob2tHQEOSHE80BU84AAAAARBYRGgAAACBNnnPyAk07SK9MEKEBAAAAEGFEaAAAAIB0sShA1hChAQAAABBZDGgAAAAARBZTzgAAAIA0eS78R1Xk5KMxsoAIDQAAAIDIIkIDAAAApItFAbKGCA0AAACAyCJCAwAAAKSJe2iyhwFNc+fn3jchyJfT/qRcz16IlbVKAZ726zlbO6x9G2RfWJvhBTgGPd+4/4yxaOfb0kuSZ413ByjDetjGErYMfs7OXbB+X23tcAF+D6zfDRc3FxHgN8SYPECdnLMd6F7Mfky5uLEM44+Os/5+yN6OWMw+ASYRs/0oWMtoSNj3RdxYp3iA/W0pI1Ef5IcTzQFTzgAAAABEFhEaAAAAIF0sCpA1RGgAAAAARBYRGgAAACBNLAqQPURoAAAAAEQWAxoAAAAAkcWUMwAAACBdLAqQNURoAAAAAEQWERoAAABgP+Am/ewgQgMAAAAgsojQAAAAAOlybvsr7DJBhAYAAABAdBGhQbNknePqBbgCYi/DM5dhXt3EWiffuP0AeVyAyyrmMozpvQC7Qglb8iC7W9b9YSzDC9LwnJwwbmtHkO+3ixv7Kkg3xY1FWMvwA+zvuK0QFwvQt74tj2csI0idPOPvlB/ge+HFbPsjZmyHNb0kJWK2hsdi9v80PMOBnqgP8J8SmgUGNAAAAECaPBf+NZ6cvKaUBUw5AwAAABBZRGgAAACAdPFgzawhQgMAAAAgshjQAAAAAIgsppwBAAAAafL8YKuDplsmiNAAAAAAiDAiNAAAAEC6WBQga4jQAAAAAIgsBjQAAAAAIospZwAAAECaPLf9FXaZYEADKxfgm2PNE6gMe5aMb9+aJ0AZ1tVNPN9WiIt5tgIUpE7mIsy/4J5vbIe92eY8sYS9iFxczMZztob78cz/72vdfc7Yhn9nsqUP8F0y7/C4MX2AORrmn2cvQLtj1t8pa3pTckmSZyzD2gZJ8ox95Rvb4QU48/VitoPQ86wHoRQz9FWivsG8fTQPDGgAAACAdDkX7KJsumUiu/fQvPTSSzrttNPUpUsXeZ6nxx9/POVz55yuueYade7cWS1bttTQoUP10UcfpaT54osvNGbMGBUVFaldu3YaP368Nm/eHGIrAAAAgNzXVM+9szqg2bJli4466ij99re/3ePnt9xyi+644w7NnDlTixcvVuvWrTV8+HBt27YtmWbMmDF67733NH/+fM2bN08vvfSSLr744rCaAAAAACTvoQn7ZdFUz72zOuVs5MiRGjly5B4/c87ptttu09VXX63TTz9dkvTggw+qU6dOevzxx3X22Wfr/fff1zPPPKPXX39dxx13nCTpzjvv1Kmnnqpf//rX6tKlS2htAQAAAHJZUz33ztllm1etWqWqqioNHTo0+V5xcbEGDhyoiooKSVJFRYXatWuX7FBJGjp0qGKxmBYvXrzXbdfW1qqmpiblBQAAAETRrue1tbW15m1k8tw703J2QFNVVSVJ6tSpU8r7nTp1Sn5WVVWlkpKSlM/z8vLUvn37ZJo9mT59uoqLi5Ovrl277ufaAwAAoFlxWXpJ6tq1a8q57fTp083Vz+S5d6Y1y1XOpk6dqilTpiT/rqmpYVADAACASFq9erWKioqSfxcWFmaxNuHL2QFNaWmpJGndunXq3Llz8v1169bp6KOPTqZZv359Sr6GhgZ98cUXyfx7UlhY2Ox2NAAAADInmw/WLCoqShnQBJHJc+9My9kpZz169FBpaaleeOGF5Hs1NTVavHixysrKJEllZWXauHGjlixZkkyzYMEC+b6vgQMHhl5nAAAAIIqifO6d1QjN5s2btWLFiuTfq1at0tKlS9W+fXt169ZNkyZN0g033KBevXqpR48e+sUvfqEuXbrojDPOkCQdccQRGjFihC666CLNnDlT9fX1mjhxos4++2xWOAMAAAB20lTPvbM6oHnjjTf0zW9+M/n3jvtaxo4dq9mzZ+s///M/tWXLFl188cXauHGjTjrpJD3zzDNq0aJFMs/DDz+siRMnasiQIYrFYho9erTuuOOO0NsCAACAZsy57a+wyzRoqufennNh93zuqampUXFxsQbrdOV5+Y3KE9tpxzaW17KlLX2LAPf5FBaYkjtzevsY2BXY8vgFcXsZ+bbZkwljet+YXpJcnmcsw5ZeknxrGcbd58eD1MmW3tl3tzmPtR1h1CmcdhsLsO9ue7sDTHR2cdt/U9YygtTJOmE7ULtjmW13kEnn1jqFUob1uA1wnMvc7gCnVtZ6GcvwQmi3F+AGEs9wjPhbt+mTH/9S1dXVad8vsj/tOI8cdOr1ysu3nx+mo6F+m1596pqc65Ow5eyiAAAAAEBUZHNRgOYuZxcFAAAAAIB9IUIDAAAApGunB12GWiaI0AAAAACILgY0AAAAACKLKWcAAABAmlgUIHuI0AAAAACILCI0AAAAQLp8t/0VdpkgQgMAAAAguhjQAAAAAIgsppwBAAAA6eI5NFlDhAYAAABAZBGhQeY54+WDIFcbfFty6zKHQZZFtDY7SLs9482Anu/Z0gdoeCxhK8NYpe2MeeztCFKpEBibEbN+9YJc4rJ2bYAyrMettR0ubj/OzX0VpN0xY7utBQSok7lvg7Tby+z+Nn8xJMlcpyBlZDa9C/IfmXV/BynD0A6/Nm7ffog8ZWHZ5nCLy1lEaAAAAABEFhEaAAAAIF3OBZiesR/KBBEaAAAAANHFgAYAAABAZDHlDAAAAEiT57KwKAAzziQRoQEAAAAQYURoAAAAgHTxYM2sIUIDAAAAILIY0AAAAACILKacAQAAAGnynJMX8nNhwi4vVxGhAQAAABBZRGiaO+vI3s9MNXYW5GqDOYc1Q4A6eca+sqbfnsnLaBnGzf87k62vvESQQmxixt3n4vb97cu4LwJcVPPjtvTWMlyAS1zWPGGUYT1uXYBj0NyOQO227UBnbUagOhkLCfD1NrfDur+DXMq1lhHkx9P6XTL3U4AfHWtfBdrfhnrV5vh1eF+hnCftViaI0AAAAACILiI0AAAAQJq4hyZ7iNAAAAAAiCwGNAAAAAAiiylnAAAAQLqcAqxStB/KBBEaAAAAANFFhAYAAABIl3OBHvOQdpkgQgMAAAAguhjQAAAAAIgsppwBAAAAafLc9lfYZYIIDQAAAIAII0KTy3LwRq8gT6R1vjGDby/DM+Yxp0+Ykv87kxdCGZltR0y2NkiSdXfHAqw56ZytXn7cWoAxvaSY8bvhAlxOivnG/WEsI0idrHnCKMPcbvthbq9TkDKMvyFhtDuUMoy/a/Z9Ya+UuR2B9neGywil3QF+PA318rbl+HV4FgXImhw/MgAAAABg74jQAAAAAGny/O2vsMsEERoAAAAAEcaABgAAAEBkMeUMAAAASBeLAmQNERoAAAAAkUWEBgAAAEiXU6Bl/9MuE0RoAAAAAEQXAxoAAAAAkcWUMwAAACBNnnPyQr5JP+zychURGgAAAACRRYSmqbGO1EMY2ZuvHgSokjOWYa2T53um9JIk31hGwl6EZKtXzNi5QR5AHDPWKcgh6GLWY8pYpwCXepyxs4KUIWO7rWUEardn/G4EKcPaDuvXNVC7jRkC/ISY94exDHMbFPC4tTIeU2HsizD61lyvUOpk/M2x/h5IpnZ424I0IkQs25w1RGgAAAAARBYRGgAAACBdTsGmNqRbJojQAAAAAIguBjQAAAAAIospZwAAAECaWLY5e4jQAAAAAIgsIjQAAABAupyysGxzuMXlKiI0AAAAACKLAQ0AAACAyGLKGQAAAJAu57Iw5Yw5ZxIRGgAAAAARRoQGAAAASJcvyctCmWBAA6MgoU1rngBleL4tj0vY0ntegHYnbMm9UH4EbYXEAuwLZ/xxdXFzEXIxWzvMx0eA2LUz7j9rG7bnMWYw18m4fUnO+t0IpW+NBQT47jnrFzbI9zvD7bb2qyR7OwL1rT2PSRh1CmN/h1EnY6ZM77tEbdijBUQFU84AAAAARBYRGgAAACBNnnPyQr5JP+zychURGgAAAACRRYQGAAAASBfLNmdNTkdopk2bJs/zUl69e/dOfr5t2zaVl5frwAMPVJs2bTR69GitW7cuizUGAAAAclNTPbfO6QGNJB155JFau3Zt8vXyyy8nP5s8ebKefPJJzZkzR4sWLdKaNWt05plnZrG2AAAAaJZ2RGjCfhk1xXPrnJ9ylpeXp9LS0t3er66u1u9+9zs98sgj+ta3viVJmjVrlo444gi9+uqrGjRoUNhVBQAAAHJaUzy3zvkIzUcffaQuXbrokEMO0ZgxY1RZWSlJWrJkierr6zV06NBk2t69e6tbt26qqKj4ym3W1taqpqYm5QUAAABE0a7ntbW1tXtNm4lz62zL6QHNwIEDNXv2bD3zzDOaMWOGVq1apW984xvatGmTqqqqVFBQoHbt2qXk6dSpk6qqqr5yu9OnT1dxcXHy1bVr1wy2AgAAAE1eFqecde3aNeXcdvr06XusYqbOrbMtp6ecjRw5Mvnv/v37a+DAgerevbv+9Kc/qWXLloG3O3XqVE2ZMiX5d01NDYMaAAAARNLq1atVVFSU/LuwsHCP6TJ1bp1tOR2h2VW7du102GGHacWKFSotLVVdXZ02btyYkmbdunV7nBe4s8LCQhUVFaW8AAAAgMD8LL2k3c5r9zag2dX+OrfOtpyO0Oxq8+bNWrlypc477zwNGDBA+fn5euGFFzR69GhJ0vLly1VZWamysrIs13QvnJ/5MnzjahfW1TGCrHeeMOaJ2cvwPFsea/rkL4alDOfZMjj79QVn7Cvn2+pkTS8FaEaDuQi5uLHdMWO77c22tzuEMsztCKVOAQqxfpXCaLf1NyRQGcYMIbTbKsh3KeP7OwhznUKoVFPZ3waxvd8WgoAif279bzk9oLn88st12mmnqXv37lqzZo2uvfZaxeNxnXPOOSouLtb48eM1ZcoUtW/fXkVFRbrkkktUVlaW06swAAAAANnQVM+tc3pA869//UvnnHOOPv/8c3Xs2FEnnXSSXn31VXXs2FGSdOuttyoWi2n06NGqra3V8OHDdffdd2e51gAAAGhuPOfkBZnJkmaZFk313NpzLuSez0E1NTUqLi7WYJ2uPC+/UXliLVqYy/FaNG4+4/+lt5eh/MbVfwdXaEuvfPsY2MXjtvT5tvSSpDzbvBffmN7FA8TRjXn8eJApZ8b0xjoFabd1elegqTjGQyQ3p5xlfjofU84ys/0mU0auTkFiylnjNJX9bZCo3aZ/3PMzVVdX59T9zzvOI4ceNkV5cdu5XroaErV6/sPf5FyfhC2nIzQAAABAJOy0jHKoZSJaq5wBAAAAwM6I0AAAAADp8p1kXkV1P5QJIjQAAAAAoosBDQAAAIDIYsoZAAAAkC4WBcgaIjQAAAAAIosIDQAAAJC2LERoRIRGYkCT04I889T6xFgv4ZvSu5gtvSR51geMJcxFmL/O1tCkC/C0MOfb8sQSAX6UrA/KTBjTWx+SKfuD1QI9tNR4TLmYsW8DPQTR+kBR+/62P7zTuP1QHnoZ4DjPyQctZv5hrZl+EGIuPpBSCqFeTeABk5KaTjsMEnWcvGPPmHIGAAAAILKI0AAAAADpYlGArCFCAwAAACCyiNAAAAAA6fKdQr9J3ydCIxGhAQAAABBhRGgAAACAdDl/+yvsMkGEBgAAAEB0MaABAAAAEFlMOQMAAADSxbLNWUOEBgAAAEBkEaEBAAAA0sWyzVlDhAYAAABAZBGhyWVBRt3WuZTW9H6A5QEbbMk9ewmStVrWdsTsY38vbmyJZ2+5M5bhrGUE2RnGMlwsQCHG3WFudxDGIgLVKcPNcEG2H2T/GZnrFcL+DtRXmRZGnXKw3bn4/c5FLlcvYRv6tqE+kbl6INIY0AAAAADpYlGArMnV8ToAAAAA7BMRGgAAACBdTlmI0IRbXK4iQgMAAAAgsojQAAAAAOniHpqsIUIDAAAAILIY0AAAAACILKacAQAAAOnyfdkfjLc/ygQRGgAAAACRRYQGAAAASBeLAmQNERoAAAAAkUWEJiAXYETs+cY8LsC8yETClt7zbMmDXAmI2cbNLsB8UM/YDmudvJhx+5K5b83pJTlzu81F2IXQbitzPwWRi32ba9sPyOVmtWyC/IbkoFC+S00B3ZQRDQ212a4CchQDGgAAACBdTDnLGqacAQAAAIgsIjQAAABAunwnKeSIifV2hiaKCA0AAACAyCJCAwAAAKTJOV8uyIJOaZYJIjQAAAAAIowBDQAAAIDIYsoZAAAAkC7nwr9Jn2WbJRGhAQAAABBhRGgAAACAdLksLNtMhEYSERoAAAAAEUaEJkQukTCl9xo8exnWkXpDgy29F2AMHLO1w/Ps7VaQPBaxEMb+AdqQ4VYHk+l9EQbjMYsMawrHFJoXjtmM8PzabFcBOYoBDQAAAJAu35e8kJ8Lw3NoJDHlDAAAAECEEaEBAAAA0sWiAFlDhAYAAABAZBGhAQAAANLkfF8u5HtoHPfQSCJCAwAAACDCGNAAAAAAiCymnAEAAADpYlGArCFCAwAAACCyiNAAAAAA6fKd5BGhyQYiNAAAAAAiiwENAAAAgMhiyllArrY2lDwAAACQGlx9tqvw1ZyTFPJzYZhyJokIDQAAAIAII0IDAAAApMn5Ti7kRQEcERpJRGgAAAAARBgDGgAAAACRxZQzAAAAIF3OV/iLAoRcXo4iQgMAAAAgsojQAAAAAGliUYDsIUIDAAAAILKI0AAAAADp4h6arCFCAwAAACCyiNDo/+YfNqheYioiAABAzmlQvaTcvW8kG+eRO/qkuWNAI2nTpk2SpJf1VJZrAgAAgK/y+eefq7i4ONvVSCooKFBpaalersrOeWRpaakKCgqyUnau8FyuDnND5Pu+1qxZo7Zt28rzvGxXJxJqamrUtWtXrV69WkVFRdmuTmTQb3b0WTD0mx19Fgz9ZkefBVNdXa1u3brpf//3f9WuXbtsVyfFtm3bVFdXl5WyCwoK1KJFi6yUnSuI0EiKxWI66KCDsl2NSCoqKuLHOAD6zY4+C4Z+s6PPgqHf7OizYGKx3LsFvEWLFs1+UJFNuXdEAAAAAEAjMaABAAAAEFkMaBBIYWGhrr32WhUWFma7KpFCv9nRZ8HQb3b0WTD0mx19Fgz9hr1hUQAAAAAAkUWEBgAAAEBkMaABAAAAEFkMaAAAAABEFgMaAAAAAJHFgAZ7NW3aNHmel/Lq3bt38vNt27apvLxcBx54oNq0aaPRo0dr3bp1Waxxdrz00ks67bTT1KVLF3mep8cffzzlc+ecrrnmGnXu3FktW7bU0KFD9dFHH6Wk+eKLLzRmzBgVFRWpXbt2Gj9+vDZv3hxiK8K1rz4bN27cbsfeiBEjUtI0tz6bPn26jj/+eLVt21YlJSU644wztHz58pQ0jflOVlZWatSoUWrVqpVKSkp0xRVXqKGhIcymhKox/TZ48ODdjref/OQnKWmaW7/NmDFD/fv3Tz74saysTE8//XTyc4613e2rzzjO9u3mm2+W53maNGlS8j2ONTQGAxp8pSOPPFJr165Nvl5++eXkZ5MnT9aTTz6pOXPmaNGiRVqzZo3OPPPMLNY2O7Zs2aKjjjpKv/3tb/f4+S233KI77rhDM2fO1OLFi9W6dWsNHz5c27ZtS6YZM2aM3nvvPc2fP1/z5s3TSy+9pIsvvjisJoRuX30mSSNGjEg59v7whz+kfN7c+mzRokUqLy/Xq6++qvnz56u+vl7Dhg3Tli1bkmn29Z1MJBIaNWqU6urq9Morr+iBBx7Q7Nmzdc0112SjSaFoTL9J0kUXXZRyvN1yyy3Jz5pjvx100EG6+eabtWTJEr3xxhv61re+pdNPP13vvfeeJI61PdlXn0kcZ1/l9ddf1z333KP+/funvM+xhkZxwF5ce+217qijjtrjZxs3bnT5+fluzpw5yffef/99J8lVVFSEVMPcI8nNnTs3+bfv+660tNT96le/Sr63ceNGV1hY6P7whz8455z7xz/+4SS5119/PZnm6aefdp7nuU8//TS0umfLrn3mnHNjx451p59++l7zNPc+c8659evXO0lu0aJFzrnGfSefeuopF4vFXFVVVTLNjBkzXFFRkautrQ23AVmya78559wpp5ziLrvssr3mod+2O+CAA9z999/PsWawo8+c4zj7Kps2bXK9evVy8+fPT+knjjU0FhEafKWPPvpIXbp00SGHHKIxY8aosrJSkrRkyRLV19dr6NChybS9e/dWt27dVFFRka3q5pxVq1apqqoqpZ+Ki4s1cODAZD9VVFSoXbt2Ou6445Jphg4dqlgspsWLF4de51yxcOFClZSU6PDDD9eECRP0+eefJz+jz6Tq6mpJUvv27SU17jtZUVGhfv36qVOnTsk0w4cPV01NTcpV5KZs137b4eGHH1aHDh3Ut29fTZ06VVu3bk1+1tz7LZFI6NFHH9WWLVtUVlbGsdYIu/bZDhxne1ZeXq5Ro0alHFMSv2tovLxsVwC5a+DAgZo9e7YOP/xwrV27Vtddd52+8Y1v6N1331VVVZUKCgrUrl27lDydOnVSVVVVdiqcg3b0xc4/tDv+3vFZVVWVSkpKUj7Py8tT+/btm21fjhgxQmeeeaZ69OihlStX6mc/+5lGjhypiooKxePxZt9nvu9r0qRJOvHEE9W3b19JatR3sqqqao/H4o7Pmro99Zsk/ehHP1L37t3VpUsXvfPOO7ryyiu1fPlyPfbYY5Kab78tW7ZMZWVl2rZtm9q0aaO5c+eqT58+Wrp0KcfaXuytzySOs7159NFH9eabb+r111/f7TN+19BYDGiwVyNHjkz+u3///ho4cKC6d++uP/3pT2rZsmUWa4am7uyzz07+u1+/furfv7969uyphQsXasiQIVmsWW4oLy/Xu+++m3JPG/Ztb/22871X/fr1U+fOnTVkyBCtXLlSPXv2DLuaOePwww/X0qVLVV1drT//+c8aO3asFi1alO1q5bS99VmfPn04zvZg9erVuuyyyzR//ny1aNEi29VBhDHlDI3Wrl07HXbYYVqxYoVKS0tVV1enjRs3pqRZt26dSktLs1PBHLSjL3ZdkWXnfiotLdX69etTPm9oaNAXX3xBX/7bIYccog4dOmjFihWSmnefTZw4UfPmzdOLL76ogw46KPl+Y76TpaWlezwWd3zWlO2t3/Zk4MCBkpRyvDXHfisoKNChhx6qAQMGaPr06TrqqKN0++23c6x9hb312Z5wnG2fUrZ+/Xode+yxysvLU15enhYtWqQ77rhDeXl56tSpE8caGoUBDRpt8+bNWrlypTp37qwBAwYoPz9fL7zwQvLz5cuXq7KyMmW+cHPXo0cPlZaWpvRTTU2NFi9enOynsrIybdy4UUuWLEmmWbBggXzfT/6H19z961//0ueff67OnTtLap595pzTxIkTNXfuXC1YsEA9evRI+bwx38mysjItW7YsZTA4f/58FRUVJafFNDX76rc9Wbp0qSSlHG/Nrd/2xPd91dbWcqwZ7OizPeE4k4YMGaJly5Zp6dKlyddxxx2nMWPGJP/NsYZGyfaqBMhdP/3pT93ChQvdqlWr3N///nc3dOhQ16FDB7d+/XrnnHM/+clPXLdu3dyCBQvcG2+84crKylxZWVmWax2+TZs2ubfeesu99dZbTpL7zW9+49566y33ySefOOecu/nmm127du3cE0884d555x13+umnux49ergvv/wyuY0RI0a4Y445xi1evNi9/PLLrlevXu6cc87JVpMy7qv6bNOmTe7yyy93FRUVbtWqVe755593xx57rOvVq5fbtm1bchvNrc8mTJjgiouL3cKFC93atWuTr61btybT7Os72dDQ4Pr27euGDRvmli5d6p555hnXsWNHN3Xq1Gw0KRT76rcVK1a466+/3r3xxhtu1apV7oknnnCHHHKIO/nkk5PbaI79dtVVV7lFixa5VatWuXfeecddddVVzvM899xzzznnONb25Kv6jOOs8XZdDY5jDY3BgAZ7ddZZZ7nOnTu7goIC97Wvfc2dddZZbsWKFcnPv/zyS/f//t//cwcccIBr1aqV+973vufWrl2bxRpnx4svvugk7fYaO3asc2770s2/+MUvXKdOnVxhYaEbMmSIW758eco2Pv/8c3fOOee4Nm3auKKiInfBBRe4TZs2ZaE14fiqPtu6dasbNmyY69ixo8vPz3fdu3d3F110UcqSnM41vz7bU39JcrNmzUqmacx38uOPP3YjR450LVu2dB06dHA//elPXX19fcitCc+++q2ystKdfPLJrn379q6wsNAdeuih7oorrnDV1dUp22lu/XbhhRe67t27u4KCAtexY0c3ZMiQ5GDGOY61PfmqPuM4a7xdBzQca2gMzznnwosHAQAAAMD+wz00AAAAACKLAQ0AAACAyGJAAwAAACCyGNAAAAAAiCwGNAAAAAAiiwENAAAAgMhiQAMAAAAgshjQAAAAAIgsBjQAkEMGDx6sSZMmZbsaAABEBgMaAGhCZs+erXbt2gXKe+mll2rAgAEqLCzU0UcfvV/rBQBApjCgAQAkXXjhhTrrrLOyXQ0AABqNAQ0A5JiGhgZNnDhRxcXF6tChg37xi1/IOSdJqq2t1eWXX66vfe1rat26tQYOHKiFCxdKkhYuXKgLLrhA1dXV8jxPnudp2rRpkqSHHnpIxx13nNq2bavS0lL96Ec/0vr161PKveOOO1ReXq5DDjkkzOYCAJAWBjQAkGMeeOAB5eXl6bXXXtPtt9+u3/zmN7r//vslSRMnTlRFRYUeffRRvfPOO/rBD36gESNG6KOPPtIJJ5yg2267TUVFRVq7dq3Wrl2ryy+/XJJUX1+vX/7yl3r77bf1+OOP6+OPP9a4ceOy2EoAAPaPvGxXAACQqmvXrrr11lvleZ4OP/xwLVu2TLfeequGDx+uWbNmqbKyUl26dJEkXX755XrmmWc0a9Ys3XTTTSouLpbneSotLU3Z5oUXXpj89yGHHKI77rhDxx9/vDZv3qw2bdqE2j4AAPYnIjQAkGMGDRokz/OSf5eVlemjjz7SsmXLlEgkdNhhh6lNmzbJ16JFi7Ry5cqv3OaSJUt02mmnqVu3bmrbtq1OOeUUSVJlZWVG2wIAQKYRoQGAiNi8ebPi8biWLFmieDye8tlXRVm2bNmi4cOHa/jw4Xr44YfVsWNHVVZWavjw4aqrq8t0tQEAyCgGNACQYxYvXpzy96uvvqpevXrpmGOOUSKR0Pr16/WNb3xjj3kLCgqUSCRS3vvggw/0+eef6+abb1bXrl0lSW+88UZmKg8AQMiYcgYAOaayslJTpkzR8uXL9Yc//EF33nmnLrvsMh122GEaM2aMzj//fD322GNatWqVXnvtNU2fPl1/+9vfJEkHH3ywNm/erBdeeEGfffaZtm7dqm7duqmgoEB33nmn/vnPf+qvf/2rfvnLX+5W7ooVK7R06VJVVVXpyy+/1NKlS7V06VKiOACAnOa5HWuBAgCybvDgwTryyCPl+74eeeQRxeNxTZgwQTfccIM8z1N9fb1uuOEGPfjgg/r000/VoUMHDRo0SNddd5369esnSZowYYLmzJmjzz//XNdee62mTZumP/zhD/rZz36mtWvX6thjj9XUqVP13e9+V2+99VbyIZqDBw/WokWLdqvTqlWrdPDBB4fYCwAANB4DGgAAAACRxZQzAAAAAJHFgAYAAABAZDGgAQAAABBZDGgAAAAARBYDGgAAAACRxYAGAAAAQGQxoAEAAAAQWQxoAAAAAEQWAxoAAAAAkcWABgAAAEBkMaABAAAAEFn/H8sgbZVlG33VAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAKSCAYAAAB/ZFz8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXhkZ33n+znn1Koq7VJr6VZLve/tbrftdqtZzD6ESzaWZyZ3wCEEGD8EEpI8MJkLgcCwTDIzmGQYD2QI4RK4ScySm0tIAAezecHGbu27uqXW1tqqtJVUy1nuH+1zXFXapSrpdPfv8zx67K469dZ7zltV5/d9f5tiWZaFIAiCIAiCIAjCCqi7PQFBEARBEARBENyLCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkG4Q/mXf/kXzp07RyAQQFEUZmZmdntKW+KBBx7ggQce2O1pZDA+Ps6b3/xmysvLURSFhx9+OCfj/tmf/RkHDx5E0zTOnTsHgK7rfPCDH6Surg5VVfnVX/1VBgYGUBSF//pf/2tO3lcQBEG4sxHBIAguobW1lTe/+c3U19cTCATYu3cvr3nNa/iLv/iLnL/X9PQ0b33rWwkGg3z+85/nq1/9KqFQKOfvsx0aGhpQFMX527NnDy996Uv59re/nZPxFxcX+djHPsaPfvSjnIyXzgc+8AG+973v8Ud/9Ed89atf5d/8m3+z7TG///3v88EPfpDLly/z5S9/mU996lMA/NVf/RV/9md/xpvf/Ga+8pWv8IEPfGDb77USHR0dfOxjH2NgYCAv4wuCIAjuxbPbExAEAZ588kle8YpXsH//ft71rndRXV3N0NAQTz/9NJ/73Od43/vel9P3e/bZZ5mfn+cTn/gEr371q3M6di45d+4cf/AHfwDA6OgoX/jCF/j1X/91HnnkEf7Df/gP2xp7cXGRP/mTPwHIuYfihz/8Ib/yK7/CH/7hH+Z0TFVV+dKXvoTP58t4fO/evXz2s591HsuHUd/R0cGf/Mmf8MADD9DQ0JDz8QVBEAT3IoJBEFzAJz/5SYqLi3n22WcpKSnJeG5iYiJn7xOLxQiFQs6Y2e/lNvbu3cu///f/3vn329/+dg4fPsxnP/vZbQuGfDIxMZHzazsxMUEwGMwQC/l6L0EQBEFIR0KSBMEF9Pf3c+rUqRUNvz179jj/b8em//Vf//Wy4xRF4WMf+5jz74997GMoikJHRwe/8Ru/QWlpKS95yUt44IEHePDBBwG49957URSF3/zN3wTgpz/9KW95y1vYv38/fr+furo6PvCBD7C0tLTs/bq6unjrW99KZWUlwWCQY8eO8X/9X/9XxjEjIyP81m/9FlVVVfj9fk6dOsVf/dVfbf4CvUB1dTUnTpzg2rVrax43MTHBO9/5TqqqqggEAtx111185StfcZ4fGBigsrISgD/5kz9xwp7Sr99KXL16lbe85S2UlZVRUFDA/fffzz/90z85z//1X/81iqJgWRaf//znnXHXwjRNHn74YU6dOkUgEKCqqor3vOc9RKNR5xhFUfjyl79MLBZzxrTf6/HHH6e9vd15PDvE6rOf/Sz19fUEg0Fe/vKX09bWtmwOXV1dvPnNb6asrIxAIMA999zDP/7jP2ac11ve8hYAXvGKVyx7r//3//1/ecMb3kBtbS1+v59Dhw7xiU98AsMw1jx3QRAE4dZAPAyC4ALq6+t56qmnaGtr4/Tp0zkd+y1veQtHjhzhU5/6FJZlceTIEY4dO8YXv/hFPv7xj3PgwAEOHToEwKOPPsri4iIPPfQQ5eXlPPPMM/zFX/wFw8PDPProo86YLS0tvPSlL8Xr9fLud7+bhoYG+vv7+f/+v/+PT37yk8DNxN/7778fRVH4nd/5HSorK/nnf/5n3vnOdzI3N8fv/d7vbfpcUqkUQ0NDlJeXr3rM0tISDzzwAH19ffzO7/wOBw4c4NFHH+U3f/M3mZmZ4Xd/93eprKzkkUce4aGHHuLXfu3X+PVf/3UAzp49u+q44+PjNDY2sri4yPvf/37Ky8v5yle+wi//8i/zjW98g1/7tV/jZS97GV/96ld529vexmte8xre/va3r3tO73nPe/jrv/5r3vGOd/D+97+fa9eu8T/+x//gypUrPPHEE3i9Xr761a/yxS9+kWeeeYb//b//NwDnz5/nq1/9Kp/85CdZWFjg05/+NAAnTpxwBN7//X//38zPz/Pe976XeDzO5z73OV75ylfS2tpKVVUVAO3t7Vy+fJm9e/fyH//jfyQUCvH3f//3/Oqv/irf/OY3nfN6//vfz5//+Z/zn/7Tf+LEiRPOe8FNQREOh/n93/99wuEwP/zhD/njP/5j5ubm+LM/+7N1r4EgCILgcixBEHad73//+5amaZamadalS5esD37wg9b3vvc9K5lMZhx37do1C7C+/OUvLxsDsD760Y86//7oRz9qAda/+3f/btmxX/7yly3AevbZZzMeX1xcXHbspz/9aUtRFGtwcNB57GUve5lVWFiY8ZhlWZZpms7/v/Od77RqamqsqampjGP+7b/9t1ZxcfGK75VOfX299drXvtaanJy0JicnrebmZuvf/tt/awHW+973Pue4l7/85dbLX/5y598PP/ywBVh/8zd/4zyWTCatS5cuWeFw2Jqbm7Msy7ImJyeXXbO1+L3f+z0LsH760586j83Pz1sHDhywGhoaLMMwnMcB673vfe+6Y/70pz+1AOtrX/taxuP/8i//suzxBx980AqFQsvGePnLX26dOnUq4zH7cxIMBq3h4WHn8Z///OcWYH3gAx9wHnvVq15lnTlzxorH485jpmlajY2N1pEjR5zHHn30UQuwHn/88WVzWGkt3/Oe91gFBQUZ4wqCIAi3JhKSJAgu4DWveQ1PPfUUv/zLv0xzczN/+qd/yute9zr27t2bERqyFTYT6x8MBp3/j8ViTE1N0djYiGVZXLlyBYDJyUl+8pOf8Fu/9Vvs378/4/V2+I1lWXzzm9/kjW98I5ZlMTU15fy97nWvY3Z2lueff37d+Xz/+9+nsrKSyspK7rrrLh599FHe9ra38V/+y39Z9TXf/e53qa6u5t/9u3/nPOb1enn/+9/PwsICP/7xjzd8PbLHve+++3jJS17iPBYOh3n3u9/NwMAAHR0dmx7z0Ucfpbi4mNe85jUZ1+jChQuEw2Eef/zxLc3V5ld/9VfZu3ev8+/77ruPixcv8t3vfheASCTCD3/4Q9761rcyPz/vvP/09DSve93r6O3tZWRkZN33Sf/c2OO89KUvZXFxka6urm2dgyAIgrD7SEiSILiEe++9l29961skk0mam5v59re/zWc/+1ne/OY309TUxMmTJ7c07oEDBzZ87PXr1/njP/5j/vEf/zEjhh5gdnYWuBnHD6wZOjU5OcnMzAxf/OIX+eIXv7jiMRtJ5r548SL/+T//ZxRFoaCggBMnTqyb4Ds4OMiRI0dQ1cz9EDt8ZnBwcN33XW3cixcvLns8fdzNhpP19vYyOzubkaeSznYT3o8cObLssaNHj/L3f//3APT19WFZFh/5yEf4yEc+suoc0kXHSrS3t/PhD3+YH/7wh8zNzWU8Z39uBEEQhFsXEQyC4DJ8Ph/33nsv9957L0ePHuUd73gHjz76KB/96EdXTaBdK7k0ffd3LQzD4DWveQ2RSIQPfehDHD9+nFAoxMjICL/5m7+JaZobPgf72H//7/+9k2CdzVr5AjYVFRWuLvu6XUzTZM+ePXzta19b8Xk7MTuf7w/wh3/4h7zuda9b8ZjDhw+vOcbMzAwvf/nLKSoq4uMf/ziHDh0iEAjw/PPP86EPfWhTnxtBEATBnYhgEAQXc8899wAwNjYGQGlpKcCyrsxb3TVPp7W1lZ6eHr7yla9kJOv+4Ac/yDju4MGDACtW27GprKyksLAQwzB23OCvr6+npaUF0zQzvAx2aEx9fT3AutWLVhq3u7t72ePZ426GQ4cO8dhjj3H58uUNC7vN0Nvbu+yxnp4ep4+CvZZer3fddVrtev3oRz9ienqab33rW7zsZS9zHl+vkpUgCIJw6yA5DILgAh5//HEsy1r2uB1rfuzYMQCKioqoqKjgJz/5ScZx//N//s9tz0HTNICMeViWxec+97mM4yorK3nZy17GX/3VX3H9+vWM5+zXaprGm970Jr75zW+uKCwmJye3Pd/V+KVf+iVu3LjB3/3d3zmP6brOX/zFXxAOh3n5y18OQEFBAbBcfK017jPPPMNTTz3lPBaLxfjiF79IQ0PDlkLG3vrWt2IYBp/4xCeWPafr+obnthr/8A//kJGD8Mwzz/Dzn/+c17/+9cDNkr0PPPAAX/jCFxxRmk76OtmdwLPntNLnJplM5uQzKQiCILgD8TAIggt43/vex+LiIr/2a7/G8ePHSSaTPPnkk/zd3/0dDQ0NvOMd73CO/e3f/m0+85nP8Nu//dvcc889/OQnP6Gnp2fbczh+/DiHDh3iD//wDxkZGaGoqIhvfvOby3IZAP78z/+cl7zkJdx99928+93v5sCBAwwMDPBP//RPNDU1AfCZz3yGxx9/nIsXL/Kud72LkydPEolEeP7553nssceIRCLbnvNKvPvd7+YLX/gCv/mbv8lzzz1HQ0MD3/jGN3jiiSd4+OGHKSwsBG6Gap08eZK/+7u/4+jRo5SVlXH69OlV8xD+43/8j/w//8//w+tf/3re//73U1ZWxle+8hWuXbvGN7/5zWU5Exvh5S9/Oe95z3v49Kc/TVNTE6997Wvxer309vby6KOP8rnPfY43v/nNW74Whw8f5iUveQkPPfQQiUSChx9+mPLycj74wQ86x3z+85/nJS95CWfOnOFd73oXBw8eZHx8nKeeeorh4WGam5uBm123NU3jv/yX/8Ls7Cx+v59XvvKVNDY2UlpayoMPPsj73/9+FEXhq1/96ooCWBAEQbhF2a3yTIIgvMg///M/W7/1W79lHT9+3AqHw5bP57MOHz5sve9977PGx8czjl1cXLTe+c53WsXFxVZhYaH11re+1ZqYmFi1rOrk5OSy91utrGpHR4f16le/2gqHw1ZFRYX1rne9y2publ6xlGtbW5v1a7/2a1ZJSYkVCASsY8eOWR/5yEcyjhkfH7fe+973WnV1dZbX67Wqq6utV73qVdYXv/jFda9JfX299YY3vGHd47LLqtrv+453vMOqqKiwfD6fdebMmRVL0T755JPWhQsXLJ/Pt6ESq/39/dab3/xm55zvu+8+6zvf+c6y49hgWVWbL37xi9aFCxesYDBoFRYWWmfOnLE++MEPWqOjo84xWymr+md/9mfWf/tv/82qq6uz/H6/9dKXvtRqbm5e8bze/va3W9XV1ZbX67X27t1r/R//x/9hfeMb38g47i//8i+tgwcPWpqmZZRYfeKJJ6z777/fCgaDVm1trVMWmFXKsAqCIAi3FoplyTaQIAiCIAiCIAgrIzkMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVRDAIgiAIgiAIgrAqIhgEQRAEQRAEQVgVEQyCIAiCIAiCIKyKCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkEQBEEQBEEQVkUEgyAIgiAIgiAIqyKCQRAEQRAEQRCEVRHBIAiCIAiCIAjCqohgEARBEARBEARhVUQwCIIgCIIgCIKwKiIYBEEQBEEQBEFYFREMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVRDAIgiAIgiAIgrAqIhgEQRAEQRAEQVgVEQyCIAiCIAiCIKyKCAZBEARBEARBEFZFBIMgCIIgCIIgCKsigkEQBEEQBEEQhFURwSAIgiAIgiAIwqqIYBAEQRAEQRAEYVVEMAiCIAiCIAiCsCoiGARBEARBEARBWBURDIIgCIIgCIIgrIoIBkEQBEEQBEEQVkUEgyAIgiAIgiAIqyKCQRAEQRAEQRCEVRHBIAiCIAiCIAjCqohgEARBEARBEARhVUQwCIIgCIIgCIKwKiIYBEEQBEEQBEFYFREMgiAIgiAIgiCsiggGQRAEQRAEQRBWRQSDIAiCIAiCIAirIoJBEARBEARBEIRVEcEgCIIgCIIgCMKqiGAQBEEQBEEQBGFVPLs9AUEQdgfLskilUsTjcTweDx6PB03TUFUVRVF2e3qCIAiCILgExbIsa7cnIQjCzmKaJslkEsMwSCQSjkBQFAVVVfF6vWiahsfjQVEUERCCIAiCcAcjgkEQ7iAsy8IwDFKpFJZloSgKyWQSVVWxLAvLsjBN03lOURRHONgeCBEQgiAIgnBnIYJBEO4Q7BAkwzCAm94Ey7IcwbDS8RsRECu9VhAEQRCE2wfJYRCEOwDbq2CaZkaOwlr7BbZAsAWBLSB0XSeVSmUICDuESQSEIAiCINx+iIdBEG5jbANf13WAjHAiy7IYHh5mYmKCkpISSktLCYVCGw43yvZAAE5ok9/vd0SECAhBEARBuLURwSAItymmaTpeBcgUC6lUivb2diKRCDU1NczNzTE7O4umaZSWljoCoqCgYNMC4rnnnmPfvn1UVlaiKEpG+JIICEEQBEG49ZCQJEG4zbB3/VcKQQKYmZmhubmZUCjEpUuXnLAj0zSZm5sjGo0yMTFBX18fHo+H0tJSR0QEg8FVBYQtSOwwJU3TnHmkUinnmHQBYVdhEgRBEATBvYiHQRBuI1ZKbE4PQbp27Rp9fX0cOXKEhoaGNZOeDcNwBEQ0GmVubg6fz7dMQGTzi1/8grq6OqqqqpbNzQ5fSk+itgVEehUmQRAEQRDcg3gYBOE2wTRNpqenCQQCeL3eDMM7kUjQ0tLC4uIi9913HyUlJcDaSc92eFJpaSlwU0DMzs4SjUYZGRmhq6sLv9/vHFNaWorf73eqL2Vjex5s0j0hyWTS8XRkJ1GLgBAEQRCE3UU8DIJwi2P3VtB1nR/+8Ifcc889FBcXO89PTU3R0tJCWVkZp06dwuv1Os/ZDdy2kleg67ojIKLRKPPz8xQUFKDrOpWVlRw4cACfz7ep88j2QKiquiwHQgSEIAiCIOws4mEQhFuY1XorwE0x0Nvby/Xr1zlx4gR79+7NqbHt8XgoLy+nvLwcuJlIPTMzQ09PD1NTU4yMjBAKhZwE6tLS0gyxkk26ByL9HJLJpNONWgSEIAiCIOw8IhgE4RZlpd4KtmBYXFykubkZ0zS5dOkS4XA47/Pxer1UVlYyNDRETU0NFRUVRKNRZmZmuHbtGm1tbYTDYUdAlJSUrCogbBEgAkIQBEEQdh8RDIJwi5HeW8GyrIwqSIqiMDU1xeDgILW1tRw7diwjb2AnsEWL1+tlz5497NmzB4BkMukIiP7+fhYXFyksLHTEQ0lJCR7Pyj9JKwkI+y+RSJBMJgFEQAiCIAhCHhDBIAi3EKZpouu6E4KULhbsDswDAwOcPXt2WZWi3cbn81FVVeXMK5FIOPkPPT09JBKJZQJiNbGTXv1J07RlAsL2QCiK4iRQe73eZSVmBUEQBEFYHxEMgnALkF5RKL0kqc38/DxNTU1YlsWpU6d2VSysViUpG7/fT3V1NdXV1QDE43FHQHR1dZFMJikqKnIERHFx8aYFhGmaPPbYY1y8eBG/34+qqni9XscDIQJCEARBENZHBIMguJz1eisMDQ3R3d1NQ0MDY2Njm6pMlA+2aoAHAgFqamqoqanBsqwMATE6Ooqu646AKC0tpaioaNXqTulN5ABHHNjj2sfYzeNEQAiCIAjC6ohgEAQXY3sVDMNYZswmk0na29uZmZnh7rvvpry8nPHx8Q3t7qeTDwN5u9WaFUUhGAwSDAapra11ErlnZmaIRqMMDw9jGAbFxcWOgCgsLFxTQNjPZXsgREAIgiAIwtqIYBAEF5LeWyG9CpJNNBqlubmZwsJCLl++7HgVtmLc2sZ9rgzjfBjYiqIQCoUIhULs3bsXy7KIxWKOgLh+/TqWZTm5D7aAWGu81UKYEokE8XgcVVWXJVGLgBAEQRDuREQwCILLyA5BSjdSLcvi6tWrXL16lSNHjlBfX59hwCqKgmmauzLvdPLdD1JRFMLhMOFwmH379mFZFgsLC46AGBwcBHAa2C0sLODz+VY19rNzQmwBYRgGhmGsWsZVBIQgCIJwJyCCQRBchN1nYCWvQjwep6WlhXg8zn333ZfRzdnGDcbrbsxBURQKCwspLCykrq4Oy7KYn58nGo0yPT1Na2srqqo6CdSlpaWEQqF1BYQdxpQuIHRdd57PDmHKFh6CIAiCcDsggkEQXIBtjNpVkLLFwsTEBK2trVRWVnL33Xev2a8g37v7G2G356AoCkVFRRQVFdHf3899991HKpUiGo0yNTVFf38/mqY5+Q8lJSUUFBRsWkDYpWxFQAiCIAi3MyIYBGGXWau3gmmadHd3Mzw8zMmTJ9m7d++aY7lBMLjRQFZVleLiYoqLi2loaMA0Tebm5ohGo4yPj9Pb24vH48kQEMFgMCcCwu4DYYcwCYIgCMKthggGQdgl1uutEIvFaG5uBqCxsZFQKLTumJsVDPky7ndbtKyHqqpOgvSBAwcwDMMREGNjY3R3d+Pz+ZYJiNVYT0DY75ndhVoEhCAIgnArIIJBEHYB25jUdR1YnnQ7OjpKe3s7+/bt49ixYxs2LLfiYci1aHCDl2OzpIcnARiGwezsLNFolJGREbq6uvD7/c4xpaWl+P3+VcdbTUCkUimef/559u/fT0lJiQgIQRAE4ZZABIMg7DCmaTIxMeHE2acbibqu09HRweTkJHfddRd79uzZ1Ni3orG+E2z2mmiaRllZGWVlZcDNdbEFxNDQEB0dHRQUFDgJ1KWlpWs2zEsXEHbfB4BUKuV4IBRFEQEhCIIguBIRDIKwQ6RX2bl+/bpjcNrMzc3R1NREIBDg8uXLBAKBTb+HGwSDG+aQazweD+Xl5ZSXlwM3Df2ZmRlmZmYYHBykvb2dUCiUISC8Xu+q49n5DTbp4WmrCQiPx+PK/BBBEATh9kcEgyDsACv1Vkh/bnBwkN7eXg4ePMjBgwe3bBjejsa6G/F6vVRWVlJZWQngVGCamZnh2rVrtLW1EQ6HnfyHkpKSDAGRvb5rCYhkMul4J7KTqEVACIIgCDuBCAZByDMr9VZQVRXLskgmk7S2tjI/P88999zjxNBvFTcIBjfMIZ2dMKq9Xi979uxxQsiSyaQjIPr7+1lcXKSwsJDS0tKMilhrzXkjAiI7hEkEhCAIgpAPRDAIQp5Yq7eCoijEYjGeeOIJiouLaWxsXDMGfqO4zVi/U/H5fFRVVVFVVQVAIpEgGo0SjUbRdZ2WlhaKiooyPBDpAiGbdAFhr68tRFfrQi0CQhAEQcgVIhgEIQ+sFIKU3lthdnaWubk5Tpw4QV1dXc4MOzcIBjfMwW34/X6qq6uprq4mGo1y6NAhTNMkGo3S1dVFMpl0BERpaSlFRUWrCgj7syICQhAEQdgpRDAIQo6xvQrpIUg2S0tLtLS0sLi4SFVVFfv378/pe7vBWBejdH38fj8lJSXU1NRgWRbxeNzxQIyOjqLr+jIBsVrFpLUERCKRIJlMAiv3gZC1EgRBEDaCCAZByBHZvRWyxcL4+DhtbW1UVVVRXFy8bhz7VnCDYAD3N27bTbKvjaIoBINBgsEgtbW1WJbF4uIiMzMzRKNRhoeHMQyD4uJiR0AUFhZuSEBomub0gLAsa5mAsBOoPR7Pss+rIAiCINiIYBCEHGAnpJqmCWQ2YjMMg+7ubkZHRzl16hQ1NTX09vY6wiKXuEEwuNHo3O1rshkURSEUChEKhdi7dy+WZRGLxRwBcf36dSzLcnIfbAGx2nVP/yxmC4h4PE4sFiMSidDQ0IDX63U8ECIgBEEQBBsRDIKwDdKr16wUgrSwsEBzczOqqtLY2EhBQQFw04izxUUucYNggFvLQN8NNmOIK4pCOBwmHA6zb98+LMtiYWHBERCDg4MAGQIiHA5vWECkUikmJyepr693msrZORAiIARBEAQQwSAIW2atxGbLshgZGaGzs5P9+/dz5MiRjBASu6xqrtmKYEgmk3i93pwmXgv5Q1EUCgsLKSwspK6uDsuymJ+fd3Igrl27hqIoTvhSSUkJoVBozXWxqzCt5IFIfz49B0IEhCAIwp2DCAZB2AK2V8EwjGWGk67rtLe3Mz09zblz55zmXunkyxOwmXFN06Srq4vr16/j8XgyuhSvZ2Cuh5s8DG4zanN9bRRFoaioiKKiIurr6zFN0xEQk5OT9PX1oWlahoAoKCjIuC7Z/79SCJOdRB2Px1FVdVkStQgIQRCE2xcRDIKwCezeCrqurxiCNDs7S1NTEwUFBVy+fBm/37/iOLstGBYXF2lqagLg4sWL6LrOzMwM09PT9Pf3ZxiYpaWlBIPBDRuDbgmLulNRVZXi4mKKi4tpaGjANE3m5uaIRqOMj4/T29uLx+Nx1tYwjDXXK11AAI6AMAwDwzBWLeMqAkIQBOH2QQSDIGyQ9UKQBgYG6Ovr49ChQxw4cGDdEJB85TCsN+6NGzdoa2ujtraWY8eOOQZjcXGxs0NtG5g3btygp6cHn89HWVmZY2SuJoRsRDCszU4a0qqqOvkNBw4cwDAMZ33HxsaYm5sDoKOjw/FABIPBVcezBYQdYreagLBDmOz/ZgsPQRAE4dZBBIMgbIC1eiskEglaW1uJxWLce++9lJSUrDvebngY0qs1nT59murqasfQS2clA9NOsB0aGqKjo4OCgoIMD4TX682Yg+Be0r1HAGNjYwwODuL3+xkZGaGrqwu/35+xvmsJxNUEhK7rpFIp5/nsHAgREIIgCLcOIhgEYQ3SeytYlrVMLExNTdHa2kppaSmNjY0ZhvNa7HTScywWo7m5GUVRMqo1bQRN0ygvL6e8vByAVCrlCIhr167R1tZGOBx2jEvTNF3nYXDTfNw0F7j5mfF6vRw6dAi4mYMzOzu7TCCm57j4fL41x9uogLD7QNghTIIgCII7EcEgCKtgmibRaBSPx4PP58sQC6Zp0tfXx+DgIMePH2ffvn2bLpW5U2VVx8bGaGtrY9++fRw7dmzbhpnX66WystJJ5k4kEszMzBCJROjp6SEej+P1evH5fE6XYrsLseA+LMvK+Ox6PJ4VBeLMzAyDg4O0t7cTCoWc8KVsD1M2GxUQ2V2oRUAIgiC4BxEMgpBFem+F9vZ29u7dy759+5znFxcXaW5uxjAMLl26RDgc3vR77ERIkmEYdHZ2Mj4+zl133cWePXty/n4Afr+fqqoqqqqqAOju7mZhYYGlpSVGR0fRdX3DXYrvFG6lUJxsgZhKpYhGo8zMzCzzMNmhbFsREKlUyulCbRgGpmlSXFwsAkIQBMEFiGAQhDRWSmxOx04Yrqmp4fjx41veOc93SNLCwgJNTU14PB4aGxvXTGLNNT6fj2AwyMmTJ7Esi8XFRadHQHqX4tLSUsrKyrZdwnU9biXjfDfI9jCsh9frZc+ePY4ATSaTjoDo7+9ncXGRwsLCDAHh8ax+q1lJQExPTzM0NMS5c+fEAyEIguACRDAIwgus1FtBVVVM08QwDLq6uhgbG3MShrdDPj0Mi4uLPPXUUys2jNtpFEUhFAoRCoUyuhSnNxlTVXXLJVxvRdyWw7BZwZCNz+fL8DAlEglnfXt6ekgkEo6AKC0tdbwGq5EuILxeb4bHL5VKOcekCwi7CpMgCIKQH0QwCHc8a/VWUBSFpaUlnnrqKTweD5cvX87Jbn0+BIOu64yNjTE/P8/dd9+9YsO41diu0ZjOWueW3qV4//79TpOxSCTC+Pi4U8I1XUAEAoGczEtYnVwa236/n+rqakdUx+NxR0B0dnaSTCYpKipy1nelHJf0z6OdIJ3+nC0gksmkIy5WqsIkCIIg5AYRDMIdzXq9FeLxOJOTkxw4cIDDhw/nbLc+10nP8/PzTl5FWVnZpsTCbpLeZMwu4WpX6LFLfAYCgQwBsVaFnlsFNxmz+fZ4BAIBampqqKmpcb5TtoCwc1yyBcRaAnYzAiK9CpObrrkgCMKthggG4Y7FNE2SyeSKvRVSqRRtbW0sLCxQW1vL0aNHc/reucphsCyLkZEROjs7qa+vx+fzMT09nYMZbp3teE80TaOsrIyysjIApwN1NBp1KvSkl3BdLz7exm1hQG4il96l9VAUhWAwSDAYpLa21slxsdd4eHgYwzAIBAJYlsXs7Oy6SfLpAsJe55UERHYOhAgIQRCEjSOCQbjjsEOQUqnUir0VotEozc3NhMNh9uzZk5eE4VyEJOm6TkdHB1NTU5w/f56KigonqXg3yaUh5vF4qKiooKKiAngxwTYajdLb20s8Ht9UfLwb2O31WYndMp7Tc1z27t2LZVnEYjEGBgaYmZmhubnZSZK3E+ULCwvX9D4AKwqIZDLpdKEWASEIgrA5RDAIdxSmaaLr+qohSFevXuXq1ascPnyYhoYG2tvbd7wj80aYn5+nqakJv99PY2OjE+efr2TqzZKvOWQn2K4UH2+XcC0rK6OwsDAv87idcMPnxUZRFMLhMCUlJZimyZkzZ1hYWMjwMgEZAiIcDm9JQCQSCaeMqwgIQRCEtRHBINwRpMc52yEY6QZBPB6ntbWVpaUl7rvvPoqLiwGcKkm5Zqs5DJZlMTw8TFdXFw0NDRw+fDjjPNwgGHbS0MqOj19aWnIExPDwsFPhamxsjOrq6jWNy53EDXOw2cmQpI1imqbzHbWT5Ovq6rAsi/n5+WVVtmzxUFJSsmaZ3nQBoWma0wPCsiwREIIgCGsggkG47bG7yuq6DrBMLExOTtLa2kp5eTnnz5/PiInfyY7M66HrOm1tbUSjUe6++26nE+92x80HuzEHRVEoKCigoKDACW9ZWFjgueeeY35+ntHRURRFyUigLigoEEMQdwkYWF3EKIpCUVERRUVF1NfXO1W2otEok5OT9PX1oWlaRo7LWmuc/luwkoBID2Hyer2OgMgOYxQEQbjdEcEg3Nak91ZIbw5lP9fT08PQ0BAnTpxg7969y4wAVVWd8KVcstmk57m5OZqamggGgzQ2NuL3+1c8brOCIVs85QK3GFL27rSqqhw9epSCgoJlxqXH41nWAyLfuEHQpeO2+cDGvR7pVbYaGhowTZO5uTmi0Sjj4+P09vZmrHFJScmafT7WEhDxeJz29nYOHz5MQUGBCAhBEO4oRDAItyVr9VYAWFxcpLm5GdM0uXTpEuFweMVxdtvDYFkW169fp6enh4MHD3Lw4ME1DZM72cOwHtnGpWEYjnE5NjZGd3c3fr/fyX+4XUq4rocbQ5K2Oic7PKmkpMQp05u9xpvp85EtIGZmZpz5xeNx55jsHhAiIARBuN0QwSDcdqzVWwFgdHSUjo4OamtrOXbs2JpVdXJV/jSbjQgRu7TrzMwMFy5ccEqNrjfubhvrt4qhlB66AiuXcA2FQhm7016vNyfvfatco90iVyIme41X6vNhi0T7bzXvHdz0Sto5DekeCNM0HQGhquqyHAgREIIg3OqIYBBuK9bqraDrOp2dnUxMTHDmzBmn0s5a7JaHYXZ2lqamJkKhEJcvX97wTrcbBAO4z8Owkflkl3BNpVJOcm1/fz+Li4sZJVxLSkpcX8J1I7jVw5CrJonprNTnwxYQQ0NDdHR0UFBQ4KxvupfJ/gylz2u1ECbDMDAMg3g8LgJCEITbAhEMwm3Ber0V5ubmaG5uxufzcfny5TXDENLJl4fBNjqyjTXLshgcHKS3t5dDhw5x4MCBTRkWbhAMbphDLvB6vezZs4c9e/YAkEgkHAHR1dWVUcLV7lC8ESPXbdfGrYJhJ+bk8XgoLy93CgikUilmZmaYmZlZ5mUqKioCWHONbQGR/v1OFxDZSdR2KFM+cokEQRByiQgG4ZZnrRCk9ByAAwcOcOjQIVcY4Onzs/8/mUzS1tbG3Nwc99xzjxNGsdlxNztfMVQ2ht/vp7q6murq6hVLuBqG4exKr9dgzG24bZ67JWK8Xi+VlZVUVlYCL3qZZmZmGBgYAOD555+nrKzMyZVYK0xtLQGh67rzfHYOhAgIQRDchggG4ZbGMAwmJiYYHh7mzJkzGTdZ2wCfnZ3dcA5ANvnswwA4oVMzMzM0NTVRWFhIY2PjlpNttyIYci2I3OZhyIfhtVIJ11gs5giI9AZjtoBI7w/gJmPQTWtlk6+QpM2S7mVKJpP87Gc/Y//+/czNza0YplZcXJxRljmb1QSEruukUqkMAWF7IOwQJkEQhN1EBINwS5LeW8GOQ043wiKRCC0tLRQWFm4qByCbfOUw2AaAaZpcu3aNvr4+p7v0doxJtxnrdwp2h+JwOExdXR2mabKwsEA0GmV6epr+/n6nvKddYWcnSrhuhDs5JGkz2N+r6upqampqgMwwte7ubhKJxDIBsVaeiwgIQRBuFUQwCLccdm8F25BPzzOwLIv+/n6uXbvG0aNH2b9//7YMj3xWSQJobm4mFotx7733UlJSkpNxd1swuGEOu42qqssajNnJtQBNTU2bqs6Tb9xonLttTundp23Sw9TgZsd4W0B0dnaSTCYpKirKyHPZjoCAlbtQi4AQBCHfiGAQbhns8oW2WLBzFTRNc8oaNjc3k0gkuHjxopOkuB3y5WGw67krisLly5dzWq7zTjfW3Yiqqo7RODAwwL333uvsTmdX57H/cvWZWA83Gue36pwCgQA1NTXU1NQ4niRbQIyOjqLr+jIBsZUk6lQqRTKZdL7v9rgiIARByBciGIRbgrUSm1VVRdd1nnjiCfbs2cOFCxfWjCPeDLn2MFiWxdWrV7l69SoAJ0+ezKlh6AYjy42ixW3z8Xg8hMPhZdV5otEo165do62tbVOx8dvFDZ+bdNwoGGwPw0ZRFIVgMEgwGKS2thbLslhcXHTW2U6UT6+0ZXcmX2vMbAExPz/PlStXuHz5snNMugfCrsIkCIKwHUQwCK7H9ioYhrGsXKppmgwMDKDrOmfPnqW2tjan753LpOdEIkFrayuxWIz77ruPp556KifjppMvj8hm5yBsjuzqPCvFxm8mtGUzuE1MweaN851gu4nYiqIQCoUIhUIZifK2gLh+/TqWZTnVlzZSaSt908Tj8WR4YW0PRLqASK/CJAiCsBlEMAiuJb384EqN2GKxGM3Nzc5zuRYLkLvd8kgkQnNzM6WlpTQ2NuL1evOSH+EWQ8CNRqgb2Oh1yY6NTy/haoe2bGZner05ueVzY+PGOeVaxKQnyu/btw/LslhYWMjoNg4vVtoqKSkhHA4vm0O6kLFDNNOfyxYQqqouS6J227UWBMF9iGAQXMlaIUgAIyMjdHR0UFdXx759+3jiiSfyMo/tehjSk7CPHTtGXV1dRmnNfAiGzc4318aC24wPt80HNj+nlUJbbAFh70yn5z+kl3BdDzca526dUz5zAxRFobCwkMLCQurq6pxwo2g0SiQS4erVq6iqmiEgQqGQ43ldbcyNCIjsJGq3XXtBEHYfEQyC67A7Nq/kVdB1nY6ODiYnJzl37hyVlZXE43EnGTAfxu9WjfpEIkFLSwtLS0srJmHnSzBshqWlJVpbW0mlUpSVlW2oFORGEA9D/kgPbUnfmY5EIk4JV03TMgREMBi8pYxANwqGnQ6TUhRlWaUtW0BMTk7S19eHpmkUFBRgGAaxWIyCgoJ1Q5js77b9HTVNk2QymdGFWgSEIAjZiGAQXEN6bwV7Ny/9RjU7O0tzczOBQIDLly8TCASAzJ4GuYrrttlqTsD09DTNzc2Ul5dz/vz5FRNW85FvsBkRMjk5SUtLi9OYamZmho6ODifcxRYQm+1YLMbF6uSrRK+9M20blnNzc0SjUcbHx+np6cHn82UICPu7Y8/JbWvm1jntZvUhVVUpLi6muLiYhoYGZ52Hh4dZWFjg2WefdXp9pK/zatfRflwEhCAIG0EEg+AKTNNE1/UVQ5Asy2JwcJDe3l4OHjzIwYMHM25Y6cflms3mGViWRV9fHwMDAxw/fpx9+/atenPNVw7DemOapklfXx+Dg4OcOnWKqqoqUqlURrhLJBLJiKO2DZCysrIN7VaLh2H3sMNWSkpKOHDgAIZhOD0gRkZG6OzszCjhahiG6wxANwoGtyVi2+ucSCSIx+OcP3/eEYpjY2N0d3evKRSzWUlA2H+JRIJkMum8rwgIQbjzEMEg7CrpMbW2kZB+80kmk7S2tjI/P88999xDaWnpsjHSPQy5ZjM5DHYfiGQyyf33309hYeGax+crJGmt8Kz0OV66dIlwOOyINPv1driL3bHYDoOYmJigt7fXMUJsD0R2wzE3Gg9uEzA7eY00TaOsrIyysjLgZlifnf9w7do1YrEYs7OzpFIpJzY+nyVcN4IbBcNuexhWww7dTA9DA5YJxa6urk01C0z/LdY0bZmASPdA2AnUHo9nmWdYEITbAxEMwq6RndicLRamp6dpaWmhpKRkzeZm+RQMGzXqJycnaW1tpaKiYsN9IPIVkrQadpjUZuaYHQZhGyGRSMRpOBYKhTKMEHCfgS68iMfjySjh2tLSgqZpGIZBb28v8Xh8WQ+IXIf6rYcbBYPbPAw2tmDIZiWhaAuI7GaBdiK1z+db9X3WEhDxeNw5xhYQtgdCBIQg3B6IYBB2hfV6K/T39zMwMLCsstBK2Dey3fAwmKZJb28v169f58SJE+zbt2/DY+cz6Tnd4EpvFrdSmJR9098I2UZIKpVydqv7+/tZWloiGAySTCaJRqMUFxe7cld2t3CjkFJVlcLCQvbv3w+Q0Z3Yzmmxe0CUlZVtq4TrRnHjbr4b5wSrC4ZsPB4P5eXly5oFzszMMDg4SHt7uyP+bQGxVlPJjQiIkZERampqKCgoEAEhCLc4IhiEHWW93gpLS0s0Nzej6/qGwnpsctlgLZ21QnzS52qH92yGfPZhsMdNJpO0tLSwuLi4YqWm7eL1ep2kabhpbA4NDTE6Okp7ezu6rjvGR1lZ2Yp15IXdJfszGAgEqKmpoaamBsuyWFpacnJahoeHMU3TWdPS0tK8rKl4GDbORgVDNtnNAm3xPzMz43QbD4fDzjqvF6q2koC4du0aFRUVjoBQVXVZDoQICEG4NRDBIOwY6/VWGB8fp62tjaqqKk6cOLGpMIh87Nbbc4TlBszExAStra1bmqtNvj0M0WiUpqYmSkpKuHTp0pq7hbkiEAhQUVHB5OQkly5dykigHhgYQFGUjPyHnSj36UZjxE1zWss4VxSFgoICCgoKMkq4pudA2Gtq/61X2nO7c9otbnUPw3pki3/bSzgzM0NfXx+Li4vLQtXWC2u0LAuv14vX63U2XkzTdBK1RUAIwq2DCAZhR7BL9a3kVTAMg+7ubkZHRzl16hQ1NTWbHj+fHgbILDnY09PD0NAQp06d2lZ36XwKhoGBAa5du8aRI0eor6/flRvwagnUkUgko9ynLR7WS8IU8sdGPx/pJVz379+/Ym8Au7Snva5rVeZZDTcKhtvNw7AePp+PqqoqqqqqgJt9ZWyh2N3dTSKRWDPXxf49Tu9CvVIopGEYGIaxahJ19usEQdgdRDAIecW+IYyNjdHT08Ply5czfvwXFhZoampC0zQaGxspKCjY0vvkSzCkJ1Qnk0mampowTZPGxkZCodC2xs5H3oWu6wAMDQ1x7733UlJSktPxN8JqQig9gdou9zkzM5ORhGnHUJeVlbmiWk+ucWMOw3bmtFpSfHplnkAgkOGBWCuxNn1ObjMSb3cPw3r4/X6qq6uprq4GMnNdOjs7SSaTTq6L7T0EVp2bLQTSvbjpIav287ZwsD0QIiAEYXe4ve7GgqtI761gG8fpO/Z2Tfj9+/dz5MiRbd308u1hmJiYoLOzk5qaGo4fP56TqjG5zmGYnZ2lqakJgHvvvXfTORW5YqM3c03TliVh2gZIerWe9A7UbjTYbnVyaZyvVJnHFoXZibV2XPxKoXJu3M1345xg94RMdq5LuoAYHR0llUoBcP36dUpLSykqKlpznqsJCF3XSaVSqwoI+U0QhJ1BBIOQc1bqreDxeByDPpVK0d7eTiQS4fz581RUVGz7PfMlGGw6Ojo4ffr0lsKlViNXIUmWZTE0NER3dzcHDx6kt7d313fmt3Je2THUS0tLGQaInUBtC4jNJNu6bWffTYZnPnfzPR4PFRUVznc8mUw6AqK/v9+Ji08XhXbCrJuuEbjXw2AYxq5/3xVFIRgMEgwGnQaQkUiElpYWYrEYw8PDGIZBcXGxIxbXq7a1GQFhhzCJgBCE/CGCQcgp9g+6HRqT/qNvmiYzMzM0NzdTUFDA5cuXcxazno98gMXFRWfH/sKFC86uaa7IxZx1XaetrY1oNOrMsbe3d1Pj5towy9V42QZILBYjGo0SiUS4du0aqqpmhLrsRAK1sD18Pt+yqlrZYS3FxcXouk4sFlt3V3oncbOHwW3zUhQFn8+HpmmcPn3a+f7aYvH69etYluVU2yopKaGwsHBD5bNXExCwchdqt3x+BOFWRwSDkDPSeyuk/7DDzR97Xdd59tlnOXz4MA0NDTm9yeXaw3Djxg3a2tqora1lfn4+L8m4281hmJ+f58qVKwSDQRobG5055qti1GbIRzJ3OBwmHA6vmkCd3sW2rKxsQ7HyO81ur8tK7KbBuVIJ12g0yuzsLP39/fT29maUcF3PqMwnbvUwmKa54431NkJ6bkX69ze92pYtIAYGBgAyBMR6HsTVBEQqlSKZTAIiIAQhl4hgELbNer0VEokEHR0dmKbJ/fffn5dE3FwJhvSKTadPn6a6upqRkZG8lWzd6rjDw8N0dnbS0NDA4cOHM673bguGnTDo1kqgvn79upNAXVZWhmmaTilfYWXcsEOdXsK1v7+fc+fOoaqq44Gwy/Kmh6XlooTrRnGzYHDD+mWzlpBJr7ZVV1eHZVlOta1IJMLVq1dRVTVDQIRCoU0LCHsTy/ZA2OGxtoCwqzAJgrA+IhiEbbFeb4WpqSlaWlooLi4GcP6ba3IhGGKxGM3NzSiKklGxKd9N4TaDYRh0dHQwOTm5av7HZsfNxw1zpwVLdgK1HSsfiUTQdZ3m5mYnfrqsrGzXQ13cZKS41euhquoyr9LCwgKRSGRZCdfsyjz5wDTNXc8VWImdqpK0WQzD2PC8FEWhqKiIoqIi6uvrVyzXq2napkIQ7fwGm3QBMT09zdTUFIcOHXIERHoVJkEQluO+Xz/hlmGt3gqmadLb28v169c5ceIEFRUV/OhHP8pb+MN2jfqxsTHa29vZu3cvx44dWxZOlQ+jarPj2iVovV4vjY2Nq9a3vxM8DOuRHisfiUQ4ePAgpmkSjUZpbW3FNE2Ki4u3lEB9u+HGGPiV5qSqqmNUNjQ0YJqmU8J1bGyM7u7ujLC0XPf1cPNOvhsFw3bmlV2u1zRN5ubmiEajjI+PO4Ud0tc6EAhsWECkUinm5uac/08mk453IjuJ2o1rLgi7gQgGYdPYIUh2FaRssbC4uEhzczOmaXLp0iXC4bCTBJ2vm9tWjWTDMOjs7GR8fJyzZ886yZjp5NPDsNFxx8bGaGtr21AJ2q1ci1zfFN22a20bkukJ1HYH6uwE6rKysrztVLvtuti4zSjaiIhJXzO4WQDAFhDZfT3WKuGayzntBm4WDLnKrbDDk0pKSpwQRFtA2GLR5/MtExCrYRiGIwhs0j0Q6QIiOwfCjZ8BQdgJRDAIm2K9ECR7p762tpZjx445P8j2DS1fJQC3YtTbO/Yej4fGxsZVjcR8NFizx13PgDRNk87OTm7cuMFdd921oqDZyrj5xO031PQETLtbsW183LhxIyOB2vZAuDGBOle4UcRsxTj3eDzL+nqsVMI1vTPxZn6L3JzD4MZ5bSYkabOkhyfZ77VSw8D0hPl0b5MtGNJJ90DY3wnbi57ehVoEhHCnIoJB2DC2V2GlEKT0nfozZ85QVVWV8Vr72Hz1StisYBgZGaGjo2NDO/a5brC20XHtsq6KonDp0qUNd8HebcEA7jRCVyN799LeqY5EIk6zsXA4nLFTvV3R6yYjw2075/ZnZ7vGptfrpbKyksrKSuBm8QU7gbq7u5tEIpHRmXi9xoBuNcxlXis3DMz2NhUUFDjf32Qyuab3w/4+iIAQhBcRwSCsS3ZvhWyxMD8/T3Nz85o79em9GPLBRse2k4YnJiY4d+6cY0ysxW7kMIyPj9Pa2kptbS3Hjx/f1I13twXDrX7DzN6pTiaTjqHZ09PjGJq292G3E6hzgZvWzP7s5npOfr+f6upqqqurgZUbA6YnxofD4Yx1dZuwsnGrYFhpF3+nWM3bNDMzw+DgIAsLC3g8Hnp6ehwvxFrhaisJCPsvkUhklHF94okn8Hg8vPa1r83zWQrCziKCQVgTO6bTNsbt0nWQ2WG4oaGBQ4cOrbtTny/BsJGwIVvYeL1eLl++vGaMazo7mcNgmiY9PT0MDw87ZV23Mu5u7/Dv9vuns10jz+fzUVVV5XjNbEMzEokwPDyMaZqO0VFWVrZm+Uc3XRcbt80pX4Ihm+zGgIuLi05ey/Xr1wEyQlrs/jJuw62CwU3zyvY2dXV1kUgkALh27RptbW2b8iKm3wftzuT23z/8wz8QCoVEMAi3HSIYhBVJTwBbKQQplUrR1tbGzMwMd999t7OTsxb59jCsZvhYlsXIyAidnZ3U19dz+PBhV+zYZ4+7tLREc3MzhmFw6dIlQqFQTsbdadxoVOWSlTpQr5RAbXsg8lnqMxe4bed8pwRDOoqiEAqFCIVCy/oCTE9P09/f7/wmWpblqs7ikluxNcLhMIcOHQJe9CLOzMzQ19e36XyXdAERi8U2lGsmCLcaIhiEZayX2ByNRmlubqawsJDLly9vOCE034JhpeZcuq7T0dHB1NTUqn0LNjJ2PuadPufJyUlaWlqoqqrixIkT23Ll77ZgAPftWueL1RKoI5FIRqlPWzzYItANhmY6bprPbgiGbFbqC/DMM88QCASczuLpVXnKysry0g1+I7jVMHdrB2q4GS6V7mHO9iKulO+SLSBWO7dYLEY4HN6R8xCEnUQEg5CB7VWwK1yk37Qty+Lq1atcvXqVI0eOUF9fv6mber4Fg93N02Z+fp6mpib8fv+afQvWI59VkuwQpMHBQU6ePMnevXtzMq4bPAxu2rneqeuRnkANNwWrXanHjp0G6Ovro6ysjJKSkl03qtwm7twgGLKx6/NXVVVRWVmZ0Vnc7rpuJ9Xaf9sp4boZ3NofIl8V8XLBemImO98lHo87AqKzs5NkMpmRMF9UVOSMt7i4mDPB8JnPfIY/+qM/4nd/93d5+OGHnbn8wR/8AX/7t39LIpHgda97Hf/zf/7PjEIj169f56GHHuLxxx8nHA7z4IMP8ulPf9q16yHcGsinRwBe7K2g6/qKIUjxeJyWlhbi8Tj33Xffljo271TSs2VZDA8P09XVRUNDA4cPH97WDTVfVZIMw2BiYgKv18v9999PYWFhTsZ1i2AQbiZfVlRUOJ6tubk5fvGLX6DrurNzmZ5oW1hYuOO7xW4SduBOwQCZhnl2Z/H0Eq5biYnfKnbcvFs9DG6cF2y+5GsgEKCmpoaamhosy8oQEKOjo3zuc59jfHycS5cuMTw8nBNv07PPPssXvvAFzp49m/H4Bz7wAf7pn/6JRx99lOLiYn7nd36HX//1X+eJJ55wzu0Nb3gD1dXVPPnkk4yNjfH2t78dr9fLpz71qW3PS7hzEcEgOCFITU1NVFRUUFtbm3GztsNlKisrufvuu7d849uJpGdd12lrayMajW44t2KjY+eS6elphoeH8fl8XLp0KafGxG4LBhu3GaJuwA7fO3HiBHAzb8XOf0hPoE4PYdqJa+imdUovsOAm1jLMs5Nq0ytr9fb2Eo/HNxzSshnsa+VGw9ztIUlbnZuiKMvymEpKSvje977Hz372M3p6enjf+97Ho48+yite8Qpe8YpXcM8992zqN35hYYH/8//8P/nLv/xL/vN//s/O47Ozs3zpS1/i61//Oq985SsB+PKXv8yJEyd4+umnuf/++/n+979PR0cHjz32GFVVVZw7d45PfOITfOhDH+JjH/vYbd1TRsgvIhjucNJ7K9ilU9N7JvT09DA0NJSTcJl8exiSySRPPvkkwWCQxsbGnMUU59LDkB7WVV5e7tTxziW7LRjcZui5bT7pBINB9u7dy969e7Esi4WFhYxEW4/HkxHmko8EajeIy3TcKjQ3E/qzWmWtaDRKR0dHRgnX0tLSLXuW3CwY8tm4bbvksuSroiicPn2a06dP8/u///vcfffd/OEf/iGpVIrHH3+c//pf/yvJZJKXvvSlfP3rX3fCFdfive99L294wxt49atfnSEYnnvuOVKpFK9+9audx44fP87+/ft56qmnuP/++3nqqaeW9UJ63etex0MPPUR7ezvnz5/PyXkLdx4iGO5Q0nsr2DtnmqY5N6BYLEZzczMAjY2NW67Yk85qicnbxbIsZmZmiEQiHDlyhIMHD+bU4MiVAZ5MJmlpaWFxcZGLFy8yPT3N7OxsDma4HDcYgW6Yg9tY65ooikJhYSGFhYVOArXdfMpOoA4EAhkVmHIRJ+82A91t87HZTujPSiVcbQFx/fp1Z5faFhDhcHhD18DNgsHNIUn59H4sLi5y6tQpXvrSl/K+970P0zRpaWnhZz/72YZCef/2b/+W559/nmeffXbZczdu3MDn8y0THVVVVdy4ccM5Jrtxqv1v+xhB2AoiGO5AbG9CdhUk2wMwOjpKe3s7+/bt49ixYzn70c+Hh8Eu7zo9PU1RUZFTJi+X5GLedmWp4uJiLl26hNfrJRKJ7HhDuJ3AjcberYhdnrW0tBTITKBOj5O3xcN2EqjdtGZuFQy5Si5OL+G6b9++DM9Semne9NC01Uq4ujV8C27fkKT1iMViGRtsqqpy7tw5zp07t+5rh4aG+N3f/V1+8IMfbLlIhyDkCxEMdxDpvRXsm3L6jUZRFMbGxkgkEtx11105ryWda8EwOztLU1MToVCIo0ePMjY2lrOx09lODoNlWQwMDNDX17esslQ+qy9tVDCYpklnZyfj4+PLDJTtIh6GldmqcZedQJ1MJp38h66uLpLJ5JYSqN22Tm4VDPlKLl7JszQ/P08kEmF8fJze3l68Xm9GaJptTK5UoMIt7HRIkmJOYqmVGzo2X3Oz+7JstYDFc889x8TEBHfffbfzmGEY/OQnP+F//I//wfe+9z2SySQzMzMZXobx8XGnolN1dTXPPPNMxrjj4+POc4KwVUQw3CFk91bIFgtzc3OMj4+jadqmuiBvhlwJBsuyGBwcpLe3l0OHDnHgwAFu3LiRN8NnqzkMqVSK1tZW5ubmuPfee5e5kfNVfWmjgmFpaYmmpiYsy+LYsWMsLCxkhL6UlZU5pT83E/riRuPFbUZxLvD5fE7pR8uyMuLkh4aGnAZj9t9qCdRuM9DdNh+bnSpfqqoqxcXFFBcXc+DAAQzDcELTRkZG6OrqckLT3NI8biV2JCTJiuLRv4NH/yEJ/0eBjQuGfHgYEokEhmFsWTC86lWvorW1NeOxd7zjHRw/fpwPfehD1NXV4fV6+dd//Vfe9KY3AdDd3c3169e5dOkSAJcuXeKTn/wkExMTzqbfD37wA4qKijh58uQ2zk640xHBcAewXm+F69ev09PT4+xy5csVmgvBkG6E33PPPU64xk5UYNoMtvcjHA7T2Ni4YmWKneogvRJTU1M0NzdTXV3N0aNHMQyDyspKDhw44IS+RCIR+vv7WVpaorCw0PE+FBcX35I7124gX9dEURQKCgooKCjISKCORCIrJlCXlZVlfM/dZHS6tUzobs1L0zRHvENmaNro6CiGYfDzn//cWdd8lXDdLHkLSbIsNONpPPo/oBk/BkwS/oex1IYNz8uyrLzMLRaLAWw556+wsJDTp09nPBYKhSgvL3cef+c738nv//7vU1ZWRlFREe973/u4dOkS999/PwCvfe1rOXnyJG9729v40z/9U27cuMGHP/xh3vve9+5ac0Hh9mD3f1WEvLFeb4VkMklbWxtzc3NcuHCBSCTC0tJS3uazXaN+ZmaGpqYmCgsLlxnh+a7AtFFDz7IshoaG6O7udrwfqxljuxGSZFkW/f39XLt2zal8ZZpmRjJ6duiLXXM8Eok4BoqdoFlWVrZs59pNxuedSnqYi92p2N6lHh0dzfAi2TlNbsGNHga734Eb5pX+/aysrKStrY0DBw44JVyXlpYymorlqoTrZsl52I85Dvq/ENT/AdW67jyc8P0Bhqdx48O88Jubj2uysLDgiPd88dnPfhZVVXnTm96U0bjNRtM0vvOd7/DQQw9x6dIlQqEQDz74IB//+MfzNifhzkAEw21KdghStliIRCJOEq5tfM/MzOTN6AYyqjBthvQ8gMOHD9PQ0LDsxp1vD8NGqjvpuk57ezuRSIQLFy44O4JrjbuTHob0Kk2baRSX3bQoFos5sfNXr151dq7tXVB7d9MtHgY3GHnp7MZ80hOoDx48mOFFMk2T559/PqNPwG52oHaLYZ6O/Vl2m+fDNE08Hg979uxxwk9W6kqcXsK1qKhoR84jJyFJlgHGT1FS3wDjafzqQUcsmBSie34Z3fsbmxoy/Z6Ya2Kx2IYrXG2UH/3oRxn/DgQCfP7zn+fzn//8qq+pr6/nu9/9bs7mIAggguG2xDRNksnkil4Fy7Lo6+tjYGCAo0ePsn//fuf5fJU9tdnK+MlkktbWVubn51fMA7DJ1249bMzDMD8/T1NTE36/f8M9IHYyh2F2dpYrV65QVFTkVGna6tjhcJhwOJxR+jMSiTAyMkJnZ6ezuxaJRKioqHBFeISQSfou9ejoKOfOnXMMzfQEajsMbSc7ULtRMLi1GtFKeRXZAj89t8VuDpi+trk2cOHFAhtbFZ2WeQM19Q3Qv41i3UzY9Wr3opitGMoxTMUL+En53rfpsQ3DcKoC5ppYLEZBQYHrPieCkAvkTn4bYYcg2VWQssVCPB6nubmZZDLJxYsXKSoqynj9Vj0AG0VVVVKp1IaPt0uRFhUVcfny5TWN3HwZ37C+GBkeHqazs5OGhgYOHz684ZvFTngY0kOkVvPObIfs0p+pVIpIJEJ7eztXr16ls7OToqIix/uwk4anG3GL1yUdy7Kc2u7ZCdSRSMTpE5Ce/5BPo8iNgsHNHoa15rRSbkssFsso4aooSkZyfC7Wdiv9ISzLwNR/hJH6Nn7rOop11XlOVS8DJpZSjmJ1olBNIvg1UDa/8ZHPcq/ZJVUF4XZCBMNtwmq9FWwmJiZobW1lz549XLhwYcVd33yG9WxmfMuyuHbtGv39/ctKkW537K2wmhgxDIOOjg4mJiY4f/68E/O/UfKdw2AYBu3t7UxNTW0oRCoXeL1e9uzZQ3t7OxcuXMA0TcfwtHc30xuPyW6cO8jOQck2Mufn51fsQG2vYy4LJbhRMLjZw7AZozzdQ1hXV+eUcI1Go0xOTtLX15eT7uKbEQyWOYqe+gZG6ptgTRDQzqFYVzEtD2gnUZVSPObTKNbNMS0CJP0Pg7K137N89mBYWFhYtRqZINzqiGC4xVmvt4JhGHR3dzM6OsrJkyepra1ddSxN0/IekrSegZxIJGhtbSUWi3HfffdtqDPmRsfeKisZ9gsLCzQ1NeHxeLZchjafHoZEIsFTTz2F1+ulsbFx3fnl4wZnWdayDrd25R7bOPF6vY7RWVZWtmI1qVzNxS24zZhY79ooikJRURFFRUUZCdR2GFpXVxfBYDDDyNxOB2o3Cgb7GrltXtvNE0gv4drQ0IBhGMzNzWV0F/f7/Rlru5Fwy/USiy3LJKn/BCX1DUzjh8DN4/3aRbAmMNQLYPShWHP4rAGUF543lAZ07+9gace2fM75FAyLi4uEw+G8jC0Iu40IhlsYy7LQdd2pcJItFhYWFmhubkZVVRobG9et3LDbHgY7Ebu0tJTGxsZNGR076WEYGxujra2N/fv3c+TIkS3fsPMVRhWPxxkfH2f//v0cPXp0UyVQc9XJNn3M9MfTK/fY9eXtsJeOjg7C4XBGeUi3doq9XdjKuq/UgTo9xKWtrW1ZGd7NrKMbBYOdK+DGeeUyTErTtGVra1fXsr+joVAoIzl+pd9pO08g+3qZ5gTx5KMkko8S1KqwzGYALCuIR7sA1iSWeR24DkopfiWJZfow1ONgTWJqr8L0vmpb55jPhnILCwt5rZAkCLuJCIZblPTeCtkJXJZlOQmomzFqdyLpeSWjPr3U57Fjx6irq9v0jdnerc+HsWF7GEzTpKuri9HR0Zx0ws61h8E0TXp6epiZmWHPnj0cP348Z2Nvlo2sQXZ9+WQy6YQvZSfe2vkPbjPYNoubPB2QG6Ho8XiorKyksvJm06xEIuGsY2dnJ6lUalkH6rXeb6capG0Gt/aGyHdzNI/HQ3l5OeXl5cDNHCVbHPb397O4uLhida30eVmWRcp4kkTib0nq/wroFHjuA/MXoBzEUkpRrCQe8xeAnePmxaPdhWHNotCJYj6HqT2A4Xvvts8pnx4Gu0qSsHHi8TjJZHK3p7Gj+Hy+vPW7yiciGG4x1uutYJf2nJ6e5ty5c85NfCPsRNJz9viJRIKWlhaWlpZWTMTezNiQn91JVVXRdZ2nn34aYEPemo2QS8FgJ7SnUin27NnjisS7zZ6bz+ejqqqKqqoqJ/HWLt96/frNUorp5Vu3ElstrEwuvzN+v39ZB+rsdSwpKVk1j8XNHga3sSPdlNOwc5TszRJbHKZX1yoqKqKgoADVs8jM0pdRzKfR9cedMQLaPSiAqRzAMvtRlWr8pIAUlrIXS6nBpyhoxs9ePE/1IHrgU5CDNch30rMIho0Tj8c5UB/mxkT+NirdSHV1NdeuXbvlRIMIhluI9XorzM7O0tzcTDAY3FDcejY7EZKU7sGYnp6mubmZ8vJyzp8/v63ym/ZNMx830Pn5eWZnZ6mrq+P48eM5Gz9XSc+RSISmpiYqKiq4cOEC3d3du76TvV3jKj3xdt++fU5yZiQSYXx8nJ6eHvx+vyMe1oqbd5uh56b55Ptzkr2O6QnU6Um26XksbhQMd6qHYT2yxWE8Hmd69iliqS+yt+oppqf3U1LY88LRB/B59oPxLAZ2g9AQPqUESy3CsubA7MWj1qKZVwAw0UA9g+7/BCi52QTJZ0iSVEnaHMlkkhsTBteeq6eo0H3fr3wwN29y4MIgyWRSBIOQH0zTZHR0FFVVKSsrW7YjZzc2W6+78FrsREiSHTZk94I4fvw4+/bt27aBkC4YcoUd4jM0NEQwGOTkyZM5Gxu2n8OQvu7poVz5SqbeyvxyRXpy5oEDB5zGY6vFzZeUlLjSwHMbO53Mm51AbeexRKNRJ4zS5/OhKAqTk5OrxsjvNG4UMeAeIWNacWLJf2Fe/xv0QDv+AJiLByguHEHXz2Ba01jWHB7jF6iem2LB5BBBrRrMFiyjFwBVPY3HbMFUGrCUMrCuYfreBdr+nM013yFJGy3UIbxIKHzz707A2P1b85YRweBy0nsr3LhxA7/f78STwotVhRYWFrjnnnucZLWtsBMhSbqu88wzz5BMJjfVbXgjY0PuBEM8HqepqQld1zl69Cijo6M5GTed7Rj2qVSK1tZW5ubmllWT2uy4+TCE8m1cpTceg8y4+Y6ODnRdd8JeDMNwhYAC9+Uw2OyWMZydx5JKpejv7ycSiTgx8kVFRU6M/GYTqHPFbu/kr8ZuzytpDBFJ/B260Y1uPAG80K/CPIKqWFiYqJ5WNKWIAqUIwzJIps5gMYGR8FBQ+LQzlsFevEoRJntRrGso1jUM3+9ieV6S0znnu0rS3r178zK2IOw2IhhcTHYIUrZBPz09TUtLC6Wlpes2NtsI6R6AfBgQ8/PzLC4uUlJSsmoviK2yWmWerTA1NUVzczNVVVWcOHGC6enpHevIvBHm5+e5cuUKBQUFNDY2LitFupVQp3yVVd0pskMjFhcXiUQiRCIRlpaW6OjooKKiwgl7udVcwfnCbQLG6/USCoVIpVKcOXOGRCLh5D9sJYE6V7g5h2GnBZRlmSykfkok8bfEUk9SoB0GqxesAD7PSbAMPPShFMy+8AqNoHYOy5oHawKPtxWfdg8e3xVMSyOpHySZUghpM6iBZ5z30ZVXg++dOZ9/Pq+Z3YdB2BwmFibu+i3KF7fyeYpgcCm2VyE9sdnuk2CaJn19fQwODuYspAde3KU3DCOnxrxpmvT29jI4OIjH4+Hs2bM5Gzud7eZgpIdKnTx50tkpymeDtc2OOzIyQkdHBwcOHODQoUMrrrsbDJvdnIOiKIRCIUKhEHV1dfz85z+nqqoK0zSd2vJ23wA7hCmXn/eNzM9tuGlO6RsWfr+fmpoaampqHCGY3oEayHmX4tXm5FYPw06FbOnmLDPJHxCNf4mUOQKAT92LV7FQ1LtI6F0kjR4K1UJMZRZdL8XvP4JPUTCNnzrjeNTjaNYspnYPltGL19tHYeAMqhkBwDD9zMSOc6X7tQQCT+esv4eNYRh5u2aLi4siGLaAiUn+Yhvcxa18piIYXEZ2b4X0xGZN01hcXOSZZ55B1/WchvTY40Nu8wDSq/ecPXuW9vb2nI2dzXYEQyKRoLm5mUQisey65qtfwmY8DIZh0NnZyfj4+LrVr27HHIbtYAsI+5ql9w3o7+9naWnJyX8oKyujqKjIlcZhPnBjQ7LVPJzpQjA9gTq7EaBtXJaVlW2oydh25rTb7ERIUkzv4cbS3xFLNeFXJjGsGcBLUDuNhzkSRtcLR2oUqUdQFBVdD4HWiwewjJteA4tCNPUkGhFMqx+MfgB82v1gPo+pnsDCC8oYxVWf4nJF9bI8JbtPi52ntBWhbxhG3jyMUiVpaxiWheGS+0W+uZXPUwSDi7B7K9hGb3bjm8XFRSYmJti3bx/Hjx/PuVs113kAExMTtLa2OqE9S0tLu9oYbjXshnFlZWXcfffdy25C+aoetdFSsIuLizQ1NaEoCo2NjeuWE3WDYHCjcWWT3TcgHo87YS+tra2YpplR9jMUCuXsfHZ7XbJx23xg48Z5egK13aXYTqAeHh6ms7OTgoICZx2340na7VyB1cjXvExLJ5L8ITeW/p4FvQWPUkSR5sGyAgQ895AwhvAQJWX2AaApVYQ8RzDMdkxzCkUDK3EI1OdR1JNYig/LvIqXSbAGnPdRlXtRsG72YjDbARUr8AiodXhVVuzvEY1G6enpIZFIZOS3FBUVbeieKH0Y3IeEJN0aiGBwAZZlZYiF7HKphmHQ1dXFjRs3KCws5NSpU3mZh90AbruVktKrC506dYra2log/2VbNxviY1kWV69e5erVq2s2jMuXAZ6ed7GagTQ5OUlLSws1NTUbLunqBsEA7jFG1zM+A4EAtbW11NbWYlkWCwsLRKNRpqen6e/vX1b2M1e71m7CTQJvq7v56QnUhw4dIpVKMTMz4yRQ254kex03amCCu3MYcikYkmaE0aV/Yi75PRaNm+VQVbyUe49iWFGWzC6S+gSlnuMkjHZ82lksDPxKEN34sTOOpe9DpQBLKUc32wGFAu3czYpIFKOoR1BQ8VptKGbixdf53g+eyyvOLT1PCWBpackREKOjo+i67uS3lJaWUlhYuOK1yZdgsEPmcun1v1MwsTBuYUN6M4hgELbMer0V5ufnaW5uxuPxcPjwYaanp/M6n+0a9UtLSzQ1NWGaJpcuXcrYbcl3UvVmQoeSySQtLS3EYrFlVYZWGjdfOQyw8k0/PZ8iXXRtdNzdNtbdaFxtBEVRKCwspLCwkP3792MYBnNzc0QiEWfXOhQKZZRv3eyutZuuzW5/TlYiV78PXq93mSfJNjDb29sdA9Ney7USqG/3kKS5VCdDS99gMvFjyjz7WDR60CgiqB3Gry6yoD/hHFviuQ9IoiilxI1WQp7TWOazWJYXr3YaUFHUATTvEPbHK6BdBOJY6hksswPL6iWoFKBwUyyYVgF4Xw++397wnIPBIMFg0BH6dn6L3SDQsixKSkocgWh7CvPpLZKkZ+F2RgTDLmJ7FexGMtm9FYaHh+nq6qK+vp7Dhw9z48aNvPZJgO0Zx+Pj47S2tjq74dm7OOkhT/nY4dno3GdmZmhqaqK4uJjGxsZ1E+DyZYCnhySlk0wmaW5uZmlpaUt5Km4QDOBOY3SzaJrm7Fjau9Z20q0dFpFdtceNoSurcSvlMGyXQCCwLIHaDkUbHBwEyMh/CAaDa4p6N7CdeZmWzkTiRwwvPcqc3gFApfcEpjVH2HOWmN6FX00RN5qxLJWg5yR+tYS4/hN4IXEzoDbgIYaq3k3K7CFptBL2HMTUpgBQlAN41f1gtmIy88I7ewgqe7HMPiz1FBYaKCnwf5CtrvpK+S22p9DOgVBVldLSUuLxOLqu5+VzJiFJW0NCkm4NRDDsAnZvBV3XVwxBSqVStLe3E41Gufvuu52+C/nuk2C/x2ZFiWmadHd3MzIywqlTp6ipqVnxuN0WDJZlMTg4SG9vL0eOHKG+vn7DsdL59DCkG9bZYmYrMdduEAxuMkBzidfrZc+ePezZswe46VGzy7cODQ0BOPkP2UYnuE9EuXHnfCfmlF1Jy+4kHo1GmZiYoLe3F5/P54iHVCp12wiGhDnLwOJ3iOltzKR+BoBiean03YVujRA3BgAo854lZVwlqN1D3LiOgklC/yk3xUKQoHYaL1PoLzRdAwh77sY0+4jHT6FqM/h9oJrPAnHnGJ/2EkxrEQiD2Xbzv6G/Q8lRJ2dY7ik0TZO5uTmi0ShTU1NO1b70CkzbTYS2LEsEwxaRpOdbAxEMO8x6IUgzMzM0NzcTCoVobGzMiJfeijG/WTbrYbATcgEuXbq0pjs2H92Ys8dfbexUKkVbWxuzs7ObbnCXzypJgBOmdf36dXp6ejYlZlYb1w2GqRvmYJOvuQSDQfbu3cvevXuXVe2xjU5bPGynqWI+uRMFQzbpncTTE6htITg/P4+mafT09FBWVrblCj25ZjPlXmdTV+lf/DbDSz+k0neQJaMZn1JJQNuLV8EJO7JQKPacBStO0pojqT9PQK0Dsx+P2oCqlJA0B/AyjmFefeE1GgXaJSzmMKwYXn87llmIXwmBFQeqQa1DUwIoaSVWQYHgp1HUhtxemCxUVaWkpISSkhJnY8uyLKfDeFdXF4FAIENAZPe3WY+lpSUsyxLBsAVMuIWLjW6OW/k8d/8X7w5ipd4KNpZlce3aNfr7+zl8+DANDQ3Lbpo7IRg248W4ceMGbW1t1NbWbighN929nw9W8wTMzs7S1NTkiLDN3gjylXthj5VKpejq6iISiWy7W7c97m4b626Yw06zUtUeuyzk4OAg7e3tBINBDMMgEonsWtfidNy4Rm7oeZDdgbq/v5+ZmRkntyi9FK/dgXo35ryeh8GyTG4knqN/8e+ZSjYBUO49hEackHacOb2HgFpK3OhAo5Cg5wgqJimjheQL+QUepZQCTzW6aZIwrwFQ5jmBbjSjKvtQ1FpUwDSfcGrMW5aG19oHSgiLEkyzB80M4WH0xbnhA++7UD2vzM/FWQW7d0U4HHbWV9d157s6MDBAe3v7pku4xmIxABEMW8C4g5Keb+XzFMGwA6T3VrBvhumGZyKRoKWlhaWlpTUTcPNdZch+j/VEiWEYdHd3Mzo6yunTp52qFethV2HKp4ch3QCyLIuhoSG6u7s5ePAgBw8e3JLBv5FqRlvBHuv5558nEAgs8yhtZ1w3GoJ3GpqmUV5e7oQUJpNJRkZGGBwczOhavJGk23zhxpCk3ehevB6KolBQUMCxY8eAFxOoI5GIU6EnPcE2HA7vagfqlLnE1cUfMBz/GQnjKklrFo0A5b5jmOYws8ZNw71Qq8OnpFA8p1nQu0gYI/iUBSwS+LXDaBTjUSZZ1J9yxi7R7sEiiaUeJW724TNVPExzMzpbQ1NPkoipBIJdGEbyhQtYik+JYVk6lnoCEz+oZXj8/yHv1ygbO2cwHY/HQ0VFBRUVFcDN76qd/9Db20s8HncqbNkCMfszurCwgKZp0kV+CxjWzb87gVv5PEUw5BnTNNF1fdUQpMnJSVpbWykvL+f8+fNr7mK4ISQpFovR3Nzs9AQoKCjI6fjbIX1sXddpb28nEolk5IFsdVzIfeLj2NgYAGVlZZw8eTJnY29FMORaZLhJtLjFILZj4kdHR2lsbMzIfxgYGHCSMtOTbncCt1wfGzeKmGyvx1oJ1AMDAyiKktFJPDuXJVdki6uYPkF37B/pX/wBmqISUlU0xU+55wxJM0rS6CZlzaLgp8RzHE2ZYMG42UvBo4QpUP1o6h5SZoQl4yql3uMkjJthRz71KH51DwnjaawXchJUpZCAkkKhHEU9gW7241H9+AqeS5ulh4B2CpMkppkCsx2UWryBz6MoO+uVMU0Ty7LWFaQ+n4+qqiqqqqqAzApbnZ2dJJNJiouLKSkpYXBwkMbGRqfL81Z/xx955BEeeeQRBgYGADh16hR//Md/zOtf/3oAHnjgAX784x9nvOY973kP/+t//S/n39evX+ehhx7i8ccfJxwO8+CDD/LpT3/aFeFzwq2PfIryRHpvBfsGmH7DME2T3t5erl+/zokTJ9i7d++6NxR79z+fN9S1RMnY2Bjt7e3s3buXY8eObemHcScEw/z8PE1NTfj9/pzs2q+UnLwd0pPEVVWloaEhp0LEDca62ww+t2HvWBcUFLBv3z7ncxuJRLhx4wY9PT0EAoGMpmPrVfPaCrv9OVkJtwqG1ea0WgJ1JBJhfHycnp4eJ5fFFhGbDYtcDdvDcCPexbWlf2Zg6XEsTDyKnyrvEVLWPDN6HwZxClUNCFLgOciSMYrCCEvGCAAB9SAhrYhFvRXrhbCjUu9dpIxeAtq9pMwxFExSxpPATa+BQjFF2hlM6zq6eQ2MQbzqUVSjBQDDrEL17MerejGMJ9Nm7cMT/HMUpSQn12Az2Pe2zXqwsgWi3QOir6+Pt73tbaRSKQ4dOoRpmly5coVz585t+jd93759fOYzn+HIkSNYlsVXvvIVfuVXfoUrV644vZfe9a538fGPf9x5TfqGnWEYvOENb6C6uponn3ySsbEx3v72t+P1evnUpz61qbnsNJLDcGsggiEPZCc2r9Sxubm5ecVeBWth/8jl84a6kkFvGAadnZ2Mj49z9uxZp0LMVsfPl5dEVVWnC2hDQwOHDx/OyXXKZbJ2PB6nqakJwzBobGzkySefzLnR5gbBAO40Rt3ASp/J9KTbAwcOODHVkUiEa9eu0dbW5nS1LSsry2nM/K1knO8Wm2nclr2W6bksQ0NDdHR0EAqFnLXcagK1aRnMBnv4/sJ3CXsUplOtaPgp9R7Bq8wzmbq5y68pPvZ4D5G0ZpjTe1kyI1R6q0kYw4Q950laUQqUAmL6LwA76fkCWAvoVgxd/wVetRKNWQzLxO85i2VBQPWSSmvWpioVeEmBehcLS6P4/SN4lL0oxnMZ89b8H0bV8tN8dD3s3/DthLyli/29e/cyODjIL37xC/7yL/+Sq1ev8sADD+D1ennFK17BK1/5Sl75yldy7NixdT8/b3zjGzP+/clPfpJHHnmEp59+2hEMBQUFq4YAf//736ejo4PHHnuMqqoqzp07xyc+8Qk+9KEP8bGPfSxnIjUfmCgYWy6qe2th3sLnKYIhx6zVWwFe3KWvra3l2LFjm/rhso9dKQYzV2QLhoWFBZqbm1FVlcbGxm2HSeTLw2BXNUkkEpw/f95p1pQLcuVhmJ6eprm5mcrKSk6ePImmaXkp2bpZwWBXCwkGgzmLv3WbwecWNrou2THViUTCCXmxm46ll2+1m1Llaz47iRuSnrPZSBjLamTnsti9PNLj420xuJEE6qS5RFfsX2lb+CfmayapUw8TM0ao8J0hmhrAp8aZSfXgIUyR9xAeJcZU6hnn9TW+M5gsYqAyqzdT4TnLovELPEolPm0/qmWQNJ4FdAAUAoS0vWBZmEo/cb2VQs95TOOZF66NH492Eq+ikDJbwLqG3w+KVY/H7Lr5psoBUMpRtFNovrds6TrmgtXuy9tB0zQuXrzI+Pg43d3d/OIXv+C5557jX//1X/nWt77FH/zBH/DQQw/x3//7f9/UPB999FFisRiXLl1yHv/a177G3/zN31BdXc0b3/hGPvKRjzhehqeeeoozZ844YVQAr3vd63jooYdob2/n/PnzOTvnXGNaN//uBG7l8xTBkCPW662g6zqdnZ1MTEws+1JvFPsmYhhGXsITIDMkaXR0lPb2dvbv38+RI0dychPPh2CIxWLOrn1dXV1OxQK86CHa6rwty+Lq1atcvXqVEydOsG/fPue5fJRs3Yxg0HWd1tZWpqamMAzD6WJs73xuZyfOTcaom+ayFfx+f0ZIRCwWc5Jur1275jSYs8NeNir83Lib78Y5bcbDsB4r9fKwBUR6ArW9lnYC9bw+TXfsp7QtfJuEdbMiT2GsGkpSLJpzxJIz1PmPkjIjlHrPMJPqxaskmdU7USwvRd7jBFWNGf1pZy6l2mlQEvi1kywa3WB48CkzgI5KET7tCD4lRfwF7wNAQD2MZTSjqSewlBC60UVAUTHMFz0Jul5AyBMGrRrLvIFlXUVR/Hj9H8jJNdwq+dxsi8VihEIhPB4PFy9e5OLFi/yn//SfiMfjzM/Pb2iM1tZWLl26RDweJxwO8+1vf5uTJ08C8Bu/8RvU19dTW1tLS0sLH/rQh+ju7uZb3/oWcLNqYbZdYf/7xo0bOTzT3GPcQR6GW/k8RTDkAMuySCaTNDU1cfz4cfx+f8bNxY6p9/l829qlt0VIPislqarqGJETExOcO3cupwZ4rpvP2aVd9+3bh67reauustXrnkqlaGlpYWFhYcUKWPkIH9romAsLC1y5cgW/3+/sYtlhMN3d3SQSiYxd7M1UfnGbwXc7oSgK4XCYcDjsxMzPzs5m1JQPBoMZwm+tkBe3rZUbBUM+vR7BYJBgMEhtbe2KYjDujxCp6GTRewPVM0vKXGKP/xhB/EwqzzFtWCiWxv7AWVLWJPPGCBgj1PhOkjBHKPGcY16/hk8xmX/B8PcpVYS0BlJmO0t6FABNCRNQDDRlH6helowuQopF0njematX2Y9fKyNlzKC/4D0o8FzANG1BUYGqHMBMzKB4OzGd6NMivME/R1G2XwVuOxiGkbd7xGpN2wKBwIYF/LFjx2hqamJ2dpZvfOMbPPjgg/z4xz/m5MmTvPvd73aOO3PmDDU1NbzqVa+iv7+fQ4cO5ew8dgMRDLcGIhi2iWmaJJNJTNNkfHycI0eOZISw2GU9GxoaOHTo0LZvOvmulKTrOpOTk4TDYS5fvpzzEnG58jCYpklXVxejo6OOx6azs3PHSrZuhLm5Oa5cuUI4HKaxsXFFr9BuhSSNj4/T2tpKXV0dhw8fdpLp7Z1PO7Evu4qPbYSWlZWtm0x+q+/q54tcG8Pp1ZUOHjxIKpVyhJ/dMyA9/6GoqMj5HXLjGrlRMOTSw7AW6WLQqIjQO/sEQ4l2glaYgGWixEpQfApLi7PEvKMoRoDy4EECqsp06tmbg1gqVf7TGNYci8Y0i8YUZd7DLOlthD2nMawUhjVH0mzBsOYA8CpVFHn2kzB6SZidABR6zpAynkGhCK/nKKY5j09JkEgrsepTj4LZj6pewLRiGGYPfu0gvnB/+lnhDX4GVa3L+/Vbj3yW7F1YWFizcelG8Pl8HD58GIALFy7w7LPP8rnPfY4vfOELy469ePEiAH19fRw6dIjq6mqeeeaZjGPGx8cBNlz6XBDWQgTDFrFDkOwqSKqq4vF4HGM+mUzS3t7OzMwMFy5ccBrEbJd8CQbLshgZGWFsbIxwOMy9996blx21XAgGO2ncsqyM0q759L5sduzh4WE6OzvX7f+w0x4Gy7Lo7e1lcHCQM2fOUF1d7XyWs8fIruIzNzdHJBJhZGSEzs7ONcOX3GbwuYWdMNC9Xi+VlZWOZzAejzvCb2RkBNM0HYHhxnKLbhQMO5VXYVg67QvPcG3paa4u3QzxKVYrKfeXMpHsRddmKVar8JspjEQNS94xYrEplvzDeCik0NuAR4G5VBMWN7/TYXU/AdVPzAwzq3fgUcIUan6SRpwCz10YVoKg6iOmv1jJKKAcwIOFpd1F3OhE15+j2HMW3eh44Qg/XvUkXtVENxYwXkhs9mlnUF4ITTKtMKp2FNXzSrQdbs62GrvhYdgOpmmSSCRWfK6pqQmAmpoaAC5dusQnP/lJJiYmnHC3H/zgBxQVFTlhTW7FtBRMy13f+XxxK5+n++4WtwCr9VawKwBFo1Gam5spLCzk8uXLOa1OkI8cAF3X6ejoYGpqyvnx2amk6s0yMTFBa2srNTU1y7pL57sC00aMPcMw6OjoYHJyckP9H3YyhyGZTNLc3Ew8Ht9UdS64Oc+SkhJKSkqcXWw7bGKl8CW7M7YbcJvxudMEAgFqa2udkJeFhQUikQhTU1NO9+KOjg5n7Xa7moobBUO+PQwJc4nn537MM7M/oMpXxliygwpvPV7Fj8UMo4l2FFRqfEdRmGNGHwM/+BIlhIMaht7AojaEsTBCwD+DqViE1aP4tACm1c9MqhcABY1yz2FMJUXSjDGvt1LmPUvcuOmd8KoNeJVqFKuXJaPXmV+h525SxrN41JMoSpCU2Y9HmUdPO0ZTa/BYU6CeY3ZumnBoFAsNr+8debtumyWfOQx2H4at8kd/9Ee8/vWvZ//+/czPz/P1r3+dH/3oR3zve9+jv7+fr3/96/zSL/0S5eXltLS08IEPfICXvexlnD17FoDXvva1nDx5kre97W386Z/+KTdu3ODDH/4w733ve3PSEDSfSEjSrYEIhk2wXm8FVVUZGhpyQpPq6+tzfpPJtYchu2fB2NgYMzMzORs/m60KhvS+FadPn3aETS7G3ggb8QQsLi5y5coVNE2jsbFxQ+FcO+VhmJ2d5cqVKxQXF3Pp0qVt7yynJ26uFL5kmiZDQ0MYhrGh8KU7id00hhVFobCwkMLCQurr65mamqK7uxu/359R8jNXie9bwY2CIV8ehvnUDD+f+z7Pz/+YhLnE4eBhLJKUeGqZTo1S69/DvD5Dje8ECXOOlDXGojGFipdy7RBxdYR5BsEDQbWUcEEAzDIWrVHm9EHCSR+KPwJWgJB6hKCmMKs/67x/oecoutFPULtAyoyQMEYJeCBljTvHBNUzqIChlJN8IVwp7Lkb07DLsAbxqMfxKSqm2QbGDcIhgHL8wf+Oorina3c+PQwLCwvbahA6MTHB29/+dsbGxiguLubs2bN873vf4zWveQ1DQ0M89thjPPzww8RiMerq6njTm97Ehz/8Yef1mqbxne98h4ceeohLly4RCoV48MEHM/o2uBUDFQN3VUbLF/ltvZtfRDBsEMuy0HUdXX+h1FyWWIjH4ySTSaanp7l48SJFRUV5mUeudtEty2J4eJiurq6MngW5TkrOZitGfTwep7m5mVQqtebO+E51kV6JiYkJWlpaNt3UbidyGOzwqEOHDnHgwIFVjbGtGmorhS8988wz+Hw+Jwm3oKBg141QYTn2d/7QoUMcOnRoRc9RcXGxs3aFhYV5N+bdKBhy7WGYSN7g2dmf0LP4NAvGDH4lyNGCE0RTg8TMGRQUDgWPYVpJTFJMp65R5g2TMi32+M6woE9iMIbhn8ZCocxzBL9qMqt3YykmiqJS7a3DMOOYegVxZYD4whxG+GZXZ8tSCanH8GKxZC2Q1K8AUOY9TcJ4Ho1KPJ4GLCsBVj8JY86Ze4HnbgyjGU09C4qKbnTjUzWstH4LlqXiD/43VDW3Feu2Sz5zGGKxGPX19Vt+/Ze+9KVVn6urq1vW5Xkl6uvr+e53v7vlOewW1h0UkmTdwucpgmEDpPdWsEOP0rHDZFRV5fDhw3kTC5CbKkO6rtPW1kY0Gl0WNpNPo3sr409NTdHc3MyePXuc3gW5GnszrGbYm6ZJX18fg4ODq3o+1hs3Xx4G0zTp6OhgfHx8Q+FRuUJVVSeOvrq6etXwpdLSUsrLyzdVfelWx43CJf3aZ5f8XFxcdNbu+vXrABnlW4PBYM7Xzo2CIVcehsGlq/wo+n2G4v0UvXD3rQscw4PBSKIF04Iq3wEKNR+jiZsdkzU87AscJWktMGOOE0/F2OMtZUlfwrO4H084iVdNMKPfFAMewlT5jpIwr7NkjYAGpZ7jJLQWPNSCXkLSmiTFEKYv6sytSD0HGHi0EySMHlJ6jEKt3EmMtlAJ2N4G/OjmzfkFtAuZYoF9DA7dz8lT92/7euWafHoYthuSdCcjIUm3BiIY1mC93gqmadLd3c3w8DCnTp1iZGQk7ze67YYkzc3N0dTURDAYpLGxcVmoSD7zAOzxN2LUW5ZFX18fAwMDy3oXrEY+k55XyjVIJBI0NzeTSCQ2nROw1rjbxb4OP//5z53E8O023NsOa4UvDQ4OOtWXbEM015W5hNVZ77OX3tHWsizm5+eJRCKMj4/T09OD3+/PWLtc9IfZqYpEm2G7c+qKtfGj6Pe5ttRLgRqkIViFbhmMJAYo9hQT0Yeo8R1l3pglpHkYS7ai4aPCexCfqjOSvOkBUFDY7z+GYcWYZxSzYIgKz1Fm9DbC2iE0JUBAVZlJq2QUUvfhVTygHWDJuIbiGafM00DcGMVCRU01YCYLiIeaUUk5ryvSDqGbTWjqERSlGMOcQGMU3XgxXMmrHEQ127CUelD3YJo3sKx9TE2/xnVrCDvTh0EQbldEMKyCZVmOVwFYJhZisRjNzc0ANDY2EgqFuHHjhhOylC+2atCnl3hdq3LPToQkrTf/RCJBS0sL8Xic+++/n8LCwg2Pna8d3GwxEo1GaWpqorS0lLvvvnvLOQH58DDMzc2RSCSorKzkxIkTOx7+A6uf11rVl0ZHR+nu7nbCl+xKPrsx/3ziJkNqM7v5iqJQVFREUVERDQ0NGIbhlG8dHBykvb2dwsJCRzwUFxdvae1uFw+DaZk8N/c8XbFW2mPPYmFR56vHp+kMxG8mC9f4ainQfCwYXoYSvRwMHmZeH6PKd5Kp1CBezWQi2YmGnwrfIQKqxXjyxSZqoaX9KH4Vv1rLrH6VCu8RFvT2m89ph/EqxRhmD3P6Vec1Zd5TGOYkBZ57iBsDaP4lvIExTOtFsWAuHGOWGN5gOZqnD1Ao1I5hmgPOMapSj0erwTBTmNYAGAMoSjXwcVR1cNPXeCe41aok3SkYloph3SE5DO5zMm8YEQwrkB6CtFIb+ZGRETo6Oqirq+Po0aPOjSTfxvZW3yOVStHW1rahEq87EZK0lmCIRCI0NzdTWlrK+fPnN2WI5zuHwa78Mzg4SG9vL0ePHmX//v3bMm5yKRgsy2JgYIDe3l40TeP06dM5GTefrFZ9KRqN0tPTkxFDf6eFL+0UW72emqZRXl7uhLolk0nHc9TZ2UkqlcrIf9jo2rlRMGzGw5AyUzw183P+NfI4pd4CJpMD7A8cYMlYxKMlGEsOUebZQ7m3golkNzP6EgAN/qNY1hILZpT5ZIR6/zEWjXGqfSeZTg3gU0ymkjc3qYq0A/jMMPPBFqaS+guP7UOxJinynGXJuMGCPkSpd4mUNQ2ARjHF3uPo5jAJcxjMYVSChDQfKXMejUq8Wj0aGkbh06SnZ5qxQ5jhdlLJPaDUoHqm8WtF6MYTaWfuIRT8LAsLRXnbxd8uhmHkrQCDCIatY6Jg3iFJzya3rmIQwZDGSr0V0m8SdvnRycnJFTsg57up2lbeY3Z2lqamJkKh0IZKvO5ESFIqlVr2uGVZXLt2jf7+fo4dO0ZdXd2mjYZ85zCkUimam5uJRqPcc889lJaW5mTcXMzZ7s49OzvLqVOn6Orq2vaY22GrQmilGPpIJEI0GnXCl+wd7I2GL7nJ+HRbDkMu5+Pz+aiurnZ6e6TnP9iN/7LzH1abk5vWDDbmYVg0lvhZ9Akej/yYeWOeA8G9BDWFoFbAUPwaBwK1gEW1bz9xc4HpVD+GlWKv7yg+1cNkqgUTAyyF/YETmMwTMyaJGRPU+o4wl+ql3HuaRSOKisICzaAYgEqp5xgBNcG8PsmieTNkaI/vKDG9g5DnFBagoLOk/xyLF73gxZ4jKIoJapCE0QumiqrESBcLAfUc3iKNlFEH3mFgkkTsCIHC1ozz9/t+H4/nAqYZca1XMF9Jz/bnXQTD1pAchlsDEQwvsF4I0uzsLM3NzQQCgVU7IGua5pqQpPSd8PWq46SzGyFJyWSS1tZWFhYWuO+++yguLt7y2Pmau53cnOveGrkIo1pYWODKlSsEAgEaGxtJJBK7bpjmyuDLDl+an59nenraCV8KBoOOeLgdw5fyTb6Mc0VRCIVChEKhjLWLRCKMjY3R3d1NIBDIqJxl5z+4UTCs5WGY1xd4bOpnDMR76V/qJ6yGORM+ykiyl4lUHA2VU6HjRPQxoqlJwmohZd4C/OpeJpIjJKwF5vVRPEqAcm89mmIxnWpzGq/t8RxCU0DHYiLZQaFWRcoaxmOVoCSLUYOLeJQIc/p1Z057fBdQiKMohczpnfiVSvzKwgtiwUPQc4KAEiKuP431Qt6Cgo+gGkA3R1CVKjR1P5alY5ndJFhwxvapxygo7MWyQNcbSKaCLC0WMXHjBGVlXWia5rr1s8l3DoMIhq1xZ4UkuWvTaDOIYADHq7BSYnO64b1e115N01bcPc8lG/EwpFIpWltbmZub2/RO+E5XSZqZmaGpqYmioiIaGxu3lTSZj3wAgNHRUebm5igvL+fChQs5vRlud843btygra2Nuro6jhw5gqqqJJPJTY2ZXSI4V+R6LVRVpbi4mOLiYid8yY6hzw5fyi4ButsCKh03GVM7ZZynr92BAwfQdd1Zu/7+fpaWligsLKSsrCzvXtqtsJKHIZKc4V+mfsQTM89wMFjNjBHlUPAgKXOJ4UQPGhoHAjfLnfbHb1YUqvBUU+wpYDTRh4lBqaecAlWhSDnIROoacWMGgxsoqFR6j6ECMaOXOWMRgIBaSKmngqTlZ8a8Cr4otZ4DzOsdeCgi5D2ADz9z+pPwQuiDSoACRUNRK/ErB1k0+lEsgyXjZ84xAEXeu4AUiqKSMPtRzDkKtT0YaWJBVUrxqWEszmOa11A9AxR4q6gs/9+UFClEo1EmJiZIJBI888wzjpDfjVLKKyE5DO7kZkiSe34X88lmz/ORRx7hkUceYWBgAIBTp07xx3/8x7z+9a8H4IEHHlhWcvc973kP/+t//S/n39evX+ehhx7i8ccfJxwO8+CDD/LpT39607mXd7RgyO6tkC0W7J3v+fn5DRnemqYRj8fzOmdN00gmk6s+bxvghYWFNDY2bnonPN9hVbZgSBdihw8fpqGhYduGS67FjmmadHV1MTY2RlFREZWVlTk3rrYqGNIb2Z05c4bq6uqM53fbQN4JI9Qu3WqHBqaHwKSHLyUSibwLeWFzeDweKioqqKioAG72WrHXzg79s5Pey8rKCIVCuyq00j0ME4kpvjv5Q56afR7DMjhXeJi4uchMaga/ohLQTGq9+xmKX8ermlyPd1MbOIhhGniUOMOJbhRU9voPoyoLTKQGACjUyijQFHzqYaaTg8zpowRVk5S1SIFaRUirBqaYSDXdnJQCRck68JsUek4xq/fhM2dIWUPYQsCvVFPkqSNu9pEyhgAIKNVg9nOzUGoRXu0IXiXIov5T4MXfzyLPcXTjOSw8eNVjQBCfskjKeDHpGjTCBf8dr6eSigqoqKggHA4zOjrKvn37lvXzsNezsLBwV/Ic8iUYTNOUkCQhL+zbt4/PfOYzHDlyBMuy+MpXvsKv/MqvcOXKFU6dOgXAu971rowGfQUFBc7/G4bBG97wBqqrq3nyyScZGxvj7W9/O16vl0996lObmssdKxjsxGbbwMzeZZ2enqalpYWSkhIuX768oZ3vnchhWC0kyU547evr25YBnm7Q5+MGbYdtNTU1MTs7m7NcAMitYFhaWqKpqQnLsrh06RLd3d158bxsJYchmUzS1NS0ajnXfFaL2gw7PYf0EqDpITDT09P09fUxOjqaEQKz3W7XW8EN65KOW8J/AoEANTU11NTUMD09zbFjx0gkEkSjUa5evYrH48nIXdnpzuGWZTGWmuLvhx6jd7GLqVSEOn8tpd4AXYs3ux/v9VVT6PVwPX4Ni3GOFxxCwSCklTISH6Q+UMNsKkqd/zgLegSTCNHUDbBUqnyH8KlLTKduVjPyKn6KtEK8agFetZgZfZAiTyEz+gAAQbWKgF5OytvHjD4PgF8tQSOKiY9CzwmS5jwhLcy8/qRzHqpSQEDxoqpHMCydJaMH1ZrDNK+QLhZC2nmwlvBoF0gafSTMDkKeezCM9ozrEvS/H6/n3ozHDMPA4/FQVVVFVVUVgFNKORqNMjw8jGmalJSUOB6InRKE+cphWFxcxLIsEQxbxLyDOj1vNun5jW98Y8a/P/nJT/LII4/w9NNPO4KhoKBg2aahzfe//306Ojp47LHHqKqq4ty5c3ziE5/gQx/6EB/72Mc2tal8xwkGu6HVaiFIpmnS39/PwMDAppNvdyrpOdvATPeE3HvvvZSUlGx5fHvXJ1+GRCKRYHZ2lrKysi15QNYiV4LBbhZXVVXllCXNlxG+WQ/D7OwsV65cobi4eM1yrrttmO62EZoeAhONRtmzZw9+v59IJEJvby/xeHzHOxi7FTeedygUoqqqiv3792OaJrOzs0QiEUZGRujs7CQUCjkCIt/i7+riMP8SfJ7pkR9T7vNR6AnjUbwUen30LPZQF6jDp3qZN8YYjM9SpJWwL1DDaKKHhBVHAY4XHEe3ltBJMprso9ZfSUyfpcZ3kjl9Ck2ZZzp1MwchpFZS4asikuol+YJXYJ//OLOpTko9p0hZcTyKRUJreSHpGVS8lHkOYljzzOu9zKRaKPEcY1F/oaGapRHQjhFQgyzqLVgvlEf1KMV4mMYgBXjwacfxKCWYxvMkmHeugV87ifWCZ8FCQVUP4tUuEPT/h2XXy76vphMMBtm7d6/Tz2NhYYFoNMr09DT9/f2OILT/8tU3Jl85DLFYDEAEwxa5E3MY5ubmMh73+/3rboQYhsGjjz5KLBbj0qVLzuNf+9rX+Ju/+Ruqq6t54xvfyEc+8hHHy/DUU09x5swZR7wDvO51r+Ohhx6ivb2d8+fPb3jud5RgWC+xeWlpiZaWFpLJ5Kbq/9vsRpWkaDRKc3MzRUVFG/aErDc+5P6H1bIshoeH6e/vx+v15jwXALZfcciyLPr7+7l27dqyZnH5agq3GSEyNDREV1fXuh6kfIu+jbLboiUdTdMywpfSm8ddv34dRVE2XX1pq7jJQHfTGtlkf27t0DLbE5leetcWf0VFRRniLxe/XT0Lg3xr/Ie0zPfi96icCu5n0ojQvzjE6XA9Fjrl3goiepQiDwTVICWecjyqxUC8Dcuy2Bs4QKHqZfCFHAYFOFpwkoS1xJKZYDHRRUNgP9Opfiq8RzHQKVC93HihURtArfc0kMTCx1Sqk5BWgcYMKAaaXk0oUINfSRBN/dx5TYFag2H241cPoyqFxIyr+NQAMf2ZtDNUCWt7UABNrSNh9JMwB/EqE5hpYkFVytDMGyjqMVDCGOYgpjVHceD3Vvwsrxf2oygKhYWFFBYWZgjCaDSakRCfXlErFw0BNzK3rRKLxfB6vTvu+bpdMFHvuLKqdXV1GY9/9KMf5WMf+9iKr2ltbeXSpUvE43HC4TDf/va3OXnyJAC/8Ru/QX19PbW1tbS0tPChD32I7u5uvvWtbwE38xzTxQLg/PvGjRubmvsdIxjW660wPj5OW1sbVVVV3HPPPVv6UdmpkCQ7ZMguQ3rkyBHq6+tzYojYN9pcGsd2OdqpqSkOHTrEjRs38mI0bccLkEwmaWlpYXFxkYsXL1JUVJSzsddiI0LEMAw6OzuZmJjg7rvvdurer8dmm3LlEjcZxSuRvuO5UgWf9OpLuxW+tBPstqhcifXmlF16d2lpycl/sMNd0o3NgoKCTZ1j69w1Hp9+jub5dnTT4ERBA9OxG3Qs9eFTvJwtPMx4coRZfY4Czc+Rgn3MG/OMJUbYH6hlNjVBnf8wUX2KoKJxPdGGhpdq/wECqsrAC+IB4HDwOBYpPGqY8VQvdf5jTKVa8RKixNuAR9GIppqdUqheJUiR5kdVDqHHJ4hrE5Qoe5jXm50xA8o+Qp49LBlxFoybIU5F2jGWXvA2WGgEtaMEtFKSxhVM60VxUKydQDdemJ/lw6Mex6cVoBvtWKZdqlmhtOBLaGrFitdvJQ/DWmQLQjshPhqNcu3aNdra2pyGgNtNoM6nYNjs50x4EcNSMKw749rZ5zk0NJRhZ6wlNo8dO+aEcX/jG9/gwQcf5Mc//jEnT57k3e9+t3PcmTNnqKmp4VWvehX9/f0cOnQop3O/Pe+Cadi9Ffr7+6moqFgWK2kYBt3d3YyOjnLq1Clqamq2/F475WFIpVI899xzxGKxbZUhXQlbTOXqPOySn36/n8uXLzM/P8/o6GhOxs5mqyFJdphPUVERly5dWnE3K18ehvVCkpaWlrhy5QqKonDp0qUNuerTPQwbJR9iyC271+vdxFeq4GMboLkOX3LLNUnHbUbOZkVMMBgkGAxSW1vrhLtEIhEmJyfp6+vD6/U64qGsrGzVMMgrs338/diPWdBjmCxSH6xlPB4lwQIJNcGR4AG8GvQudqGhcTh4EIN5ehZvGtI13irCHh+zusFAvJdDwQPMGTfY6z/ORGoYrwLDiTZAocp3kEKtgLHkc1gv7DjW+g5jWDHKvSeIJPtZNCZRmXlBLGiUaocJahpR/YWSqxqEjH3E9Ct4lHKC2n4SRpSA5mU29aInwa/swTQHCahHUNUwS8ZVNEUlrv+UjCpJnrvR9VY82nlMIGn0EFD9pIynMq5TyP/b+L2XV12PzQqGbLIT4u2GgNFolK6uLpLJ5JYSqO1w5HwIhoWFBUKhUM7HFW5fioqKlm1MrobP5+Pw4cMAXLhwgWeffZbPfe5zfOELX1h27MWLFwHo6+vj0KFDVFdX88wzz2QcMz5+s1fLankPq3FbC4b0EKTr168TDoczYgwXFhZobm5GVVUaGxszMsu3wk4IhsXFRad823bLkK5GrnIB7I7Y9fX1HD58GFVVicViee3GvJmEbcuyGBoaoru7e91eFbuRw2DnUlRXV3PixIlN34R30zh1oxG6UTwez5rhS4AjHvIdvpRv3CZg7G7qW/38pIe71NfXYxiGk/8wNDRER0cH4XA4o9xn00I/fzv6I3pjI+z1l1ETCHN1cZa+2DAnC2swLJOkYmIpOuOJcQ4XHGQ8MYmlxLiRGKXGt5dCT5ip1FWuLd2MZT8QOAQkmDNmmTVmaAgcJKoPs9d/gqg+jkexGE0+B1j4lUL2eBtYNIeJGRMA+NUQfjWFQglF2kFmU9fxe1QiqRc9CV6jFB9ePNpR5vV+lswW9vhOE3M8CQpB9SBhrZi40cei2Qsm+NUqrBeqJAEoFBFQj2FZC+iYpIyb7xHQjmOY6RWRwKOeJ+z/vTXXwDTNnHrkshsC2h6laDTK0NAQlmVl5D+slkBtf7by5WGQ/IWtY9xBSc9GDjo9m6ZJIpFY8bmmpiYAZ/P70qVLfPKTn2RiYsLxyv7gBz+gqKjICWvaKLetYMjureDxeBxj3rIsJ3lu//79Tv367ZJPwWDH11+9ehVN07jrrrvyZpRtVzDYITTj4+PLOmLns8/DZmL3DcOgvb2dqampDYX55DOHIfszkx5ulp1LsRHc0ntgt98/V+Q6fMlNYsptIUn2ZyZXc9I0zVkbuLlbbXuP/rH7Z7Rbo1z1j1Og+DlbUM+oPkrbwgTV3nL2BEP0LA5gYrJHDxNQIWkl6V+8ypGCvSiKQoWvipixgEGElJlkv/8IHlVlMtWNbt0s5VvnO4iKSdxcZCjRRZVvL7OpXsq9DaiKj7gxw5zRS8K8GRrkpYAa3xEWzRvM6UPMG6NU+04wk2oGS6HIexiNApLmVZa0buzGzWXe48T05/Cr+/GqlSyZIxSoQRbS8hYUfARUDcP0ENDuxrTi6OY4WH0kzKkXr5tSisYNLExUZT+qWo1lJSgp+G8oytqfb8MwclrMIh1FUTKqoaV7lFZKoE4X9Om5i7kmFovteunfWxnTUjHvkKRnc5P3xT/6oz/i9a9/Pfv372d+fp6vf/3r/OhHP+J73/se/f39fP3rX+eXfumXKC8vp6WlhQ984AO87GUv4+zZswC89rWv5eTJk7ztbW/jT//0T7lx4wYf/vCHee9737vpnJvbTjCk91awm+0oiuIY87qu097ezvT0NOfPn3fcnrkgX4IhkUjQ0tLC0tISp0+fpqurK68/TNs5j1gsRlNTE5qm0djYuCyEJp+Cwb4m67nEY7EYV65cwev10tjYuKEd4o122N4s2R4GXddpbW1ldnZ2y+FmbhAM+Wqit9vsZPjSTuGm+eVaMGTj9Xq56p3ha/oT+IpgVl+kQaliNrXA9aUhCkwftZ4ygqpCz+JVav17qPAUcXWpi76lCEE1wIlwA6OJYeaNeUJaAbW+IrxqKWPmCAvGDKY5g2Kp7PMfRQWieh8p/eZuYLFaTpEWwrLKmEwN4lOClHj8zBsLlHkPouInoJrcSD7rzLnM24BhRSn1nGXeGCaa6qfa18CSNu0cE1L341N9mFYdi+YwmMOUe8+8WCUJ0CilxHsC3bqBbi2g6zcTq4s8x0imlUu1UAh5TgBxDMOPbl4H8zqlBZ/Fo+1d9xpvNyRpM2R7lNITqO1u8HZHcdsDkC8Pg4QkbR3xMKzOxMQEb3/72xkbG6O4uJizZ8/yve99j9e85jUMDQ3x2GOP8fDDDxOLxairq+NNb3oTH/7wh53Xa5rGd77zHR566CEuXbpEKBTiwQcfzOjbsFFuK8Fgmia6rq9YBUnTNObn5+nt7aWgoIDLly/nvKKBXfI0l7t209PTNDc3U15ezvnz54nH4zuWWL1Z7K7D+/bt4+jRoyveNHbKw7Aa4+PjtLa2rjnHlchnDoM9rp3vEQgEtlVy1g2C4U5hM+FLpaWlrlsTt84n14LBsiyeivbwteGf0L84zslwLT4NovEYqldhf1EJMcPPcHycg74KkqkEpWYhSXORAc8NAoafqnA1AQ90O30Xagl7PAzHr2FiUuQpotjjw6PWcSNxndnUJF41TspKUOGpJ6CFSJhDjCTaAFBRqfHvRUFFt0ymUgPU+Y8znbr5vE8posR7AMMcZ84YAm6WWL1ZivUKihHGTx2az8SjTDGT6nfON6w1kNCb0SjF72lAtxbxK0FiemZH2CLP3SSNZwA/Xu0o4MWneEnqP804Luj7dYK+X9rQtc5XnsBGSE+gPnjwYEZHcfv7+Itf/MLxPhQXF+dkriIYtocJd0zS82atiC996UurPldXV7esy/NK1NfX893vfneT77yc20IwpPdWsI319BuOZVnE43Gmp6c5cuTImrHq2yG9JOl2Yzgty6Kvr4+BgQGOHz/Ovn37UBQl743VYPNGvWmadHd3MzIysqze73bH3gxrVXiyOyMPDQ1x+vTpTSf75CuHwR73xo0btLa2Ul9fz5EjR7a1tm4QDLerh2E9suvNz83NZYQveb1eLMtiamrKFdWXbveQJMuy+Nl0Dz+NdPKTSBvVvhIulhyidaEXwzI5EdpHkgU6YwOowIWSw0wkp5gwo9QGygkpCkndw7g2SeH8DGP+KaqVGnRVx6+aXI/3o6Cwz9+AT00ymhwAbpZYLfL48KtlqEaQaf0GtWoJMWMaBZUK3yEKVA/jyTasF0yIat8hZpIdlPqOY1oWC/ooujlGzBhxzmeP9wRgEPIcY87qR6ebPeohYsaL5RF9SgUFahkpRWHJ6COpNxFU69DN3oxrE1CPAAZe7SwJo5e40UZAPYxh9mUc51EPUBz8yIaveb56HWyF9ATq+fl5rly5Ql1dHdFolM7OTieB2hb0Wy3Ju7CwIDkM2+DOKqt6657nLS8YsnsrZIuFRCJBa2srS0tL7N27l4MHD+ZtLrkSDPF4nJaWFhKJxLJ+EJqmbTsxcD02E5KU3hF5I4njtoGcD7d1ekhSOvF4nObmZlKplOOS2yz5FDqzs7NMTExw9uzZNcXWRnGDYBBurkN2+NK1a9cYHx9f1j+gvLx818KXblfB8LPpHv76+s8o8nqZSc1xLLQPFIOOhX6OhPaSMnXmzGkW9EWOhxrwaxatC11gKRwu2I9BjKHkGAC1eiklxWGSyRjj5hhVyRImjUnKrVqWPItgxRhL3jTsKz21FHsLGE32Y1ijKMCBQB1xc5Zq30mm9WH8isaN5IvlVcu1enyKh0UlyFSy5+Z7+g4wo3cBGsWew/jVQmL6FQziN1+kQAlHiBltaBRR4DmIbsYJqEnm9Bd7MmhKAT5lCd1KoFKOVzuAaZnANZaMF/MWVCWMlyjmC0kRFl486nFKCv4EVdl4QZCdDEnaDHZJ1ZUSqG0PRHoCdVlZ2YZLpS4uLopgEG57bmnBsF5vhampKVpaWigrK6OmpiYvFYXSscXKdkKGJicnaW1tpaKiYsVOvvlqrJbORo3jiYkJWltbqa6u5vjx4xty7aZ7AfIhGLLnHolEnJCuCxcubFnI5WPHPJFIMDIy4jQKzNUNZyuCIR99GNwiWNxiEHs8HgoLC5mbm+PChQsZ4UtDQzfDTdKbx+Wr2206blkjm1wIhien+/jr6z+lJzbOPSV1pKwUI/EZjoT8FHk8hD1BbsQjVPh97PGVEzd1vKrJ1cXrHC04QNxMMG9OMqvPUemtYI9WzIDa8/+z9+dBcqXneS/4O1ue3PeqzNo3FPZGA41mE0DTsoLiErTEUIzoESNkkfSMrixRpK5N6UbIsiVZV7rUwnBo8QzZHMvU4oXmmBrRCpOSKJIiKTV770YVgAJQQO17ZVbu+1nnj0JmVRa22hKoYuP5C8g6+Z3vLHnO+3zv874Pmdp6B6PT3mNodpV8NUeSZTrtEGl9Bb8ew1AMFAvma+utViVkjriPUbbWyJpJsmaSTscQSf0aquAjqPShWxUsO0lC26hJ6FJPYFhZwsoZcsbsnQzC6gZZANRaF6Jq4ZJOUDImyOpXaHOcpmxcbTofQfkEtm1giR6q5jRV4zIhZRhtE1kA8En9mOYcknQeCxPdvI3X8cM45FM7Ov+PU5L0IGz1YLhXAXWhULinA3U9A3G/ere6D8MT7A5vL6fnw3uch5Iw1L0VDMNoBJ6bXzB1+cnc3BwnTpygq6uLW7dutVz7v7m4eqewLIuJiQlmZ2cf2BmnHmSbptkyAvSwAt/N5/fUqVN0dnbuaOz6GK1APVC1bZuZmRkmJiY4duwYPT09e5b57Oecs9ksIyMjKIpCKBTa99Wpxx2wH5Qg/SBjq3ypUCiQSqVYWVnh1q1buFyupmClFfKl7ydJ0supKb6ZHONba2P0OENcDA/wVm4ChyBzPtDHfG2ZuVqJiOxhyBvhdnme+VqSc/5+bExk0cFSLYlfBr/sxyv5cYgwo93CwqZX7ccrq9yqbBQIn/Ycw6RGqZYnKybpEjpJMYOq+XDYPjyKxHztrcb2YakDhwAReZg1fZpE7Rbtjig5c50suMV2QnIXZXOaipUEEwQE2pUeCuZtRJz45CNIgoOyPUpZqDa6JAXlY5SN9X05xG5kMY6CQl5/sek8BZWzd+oW1iGJfTjFPnR7AZ0cmOvF0E75En71n+/4OhwkSdJmbMeBut4bf3MBdTqdZnFxkZs3bzb9JgOBQKPOrFQqNXUD3AleeOEFXnjhBWZmZgA4deoUv/Zrv8YHPvABYD1D/ou/+It86Utfolar8f73v5/Pfe5zTdnoubk5Pv7xj/Ptb38br9fLxz72MX77t3/7sUsetwsLAYuD8xxqJQ7zcR6Ou2kTtkqQtpKFcrnM6Ogopmly8eLFRiAmy/J9+9buJ3ZDGLZKZh4UPNaPt1UBN2wUb98LO5nrvdBqwiCKIpqmcfv2bXK5HO94xzsIBoP7Mu5+BOC2bbOwsMDNmzc5cuQIgiCQSqUe/sUd4nETBjhYq9cHaS73wuZgpS5fqhdrTk5OUqlUGvKlcDiM3+/ft0D/oBGGrbLSh+H19Cx/NP09nDJk9CLHvR24JJEbhTme8vdi2Qa3yjMEFS9P+QYomGmuFaeIKkFOeyPcKk+i2wYuSeW4u4NVLclsZZFeZ5yimaVL7mW1tooiCkxUxhAQ6HH245NUpqobq/mDziMIgkHE7CFpL+CX/BRYd1pWND9uK4zhTLBizTe+06kOkdfniCqnqdpFBAyyxigmG++quOMkNlX80inyxhR5fZKAHABxI9vgFNuRBA1FeoaqlaBkLuHBgWFNN50rjzSIboyiSCcRBA81cwHbBt18BXtT9kIUQkTdv72re+OgSpJ2mvm4lwN13f9hamqKP/3TP+WNN97g0qVLjI+P77j9dR3d3d38zu/8DsPDw9i2zZ/92Z/xoz/6o1y+fJlTp07xqU99iq997Wt8+ctfJhAI8MlPfpIf+7Ef43vf+x6wToR++Id/mHg8zksvvcTy8jIf/ehHURSF3/qt39rVnB41nmQYDgcOFWGwLAtN0+6ZVYCNLj2dnZ0cO3as6eHwKEzVdrOfZDLJlStXiMVinDhxYlsPtFYfy/0kSXWJVzQa5dlnn91V2vlREJ4rV640jO32qx/4fszZNE2uX79OMplseD/UjYf2GzshDJVKhdHRUTRNIxKJNPwE9iIrOEhB6EHDds7NVrfbzVrr/ZQvHTQitZOMx+XsPH809T1GcgtcjPRSsirMV9M8E+xGFNbHKRllFNGk393BYmWNkpJFEkSOuHpwSgJjpXG8kocjzj5qdpax0jgAXY4YfllltlolZ8/SboXI6KsMuIZZ01ZRBJi+QxZCUjtRpY1VbZyaXQEgqsSwSBFTjlKzyuRIIAt5SuTvHKhASO+jIlTQBI1V/Tqq6MMrgk4NbJGAMoRbDFIwRjDscuO4Y45jFIz1+geH3YMqtyMKSQrGRlGzLHiRyaPfST8IeHBKw8iCRU1wopvjdz534JaiGNYGWQCIuv8vZLF9p5cPODySpJ1ia0e0jo4O/vqv/5pvf/vbvPnmm7z++uu89NJLvOc97+GHfuiHOH/+/Lb298EPfrDp/5/+9Kd54YUXeOWVV+ju7uYLX/gCX/ziF3n3u98NwJ/8yZ9w4sQJXnnlFS5cuMDf/u3fcv36db75zW8Si8U4e/Ysv/mbv8kv/dIv8eu//ust88TYT7y92qoe3uM8VIQBaPJWqGOzUdj9uvQ8KsKw3X79e5X1tDLg3noMddO46enpXRmJ3Wv8Vsx/cXERXddpb2/n9OnT+xq07jXDUC6XGRkZQRCEJu+HVmUCtnvs9ba9bW1tdHV1kclkGB8fb3QPqROI3ZgSHbRg9CBgt+fE5XLhcrno7OxsyJfS6TSrq6vcunWr0Wt+p/KlgyhJeth8ruWW+culUb62co1eV4hL0V7eyE3hk5y8M9jPzdI8FUvjqCeGItlMlFZwiQpnAl1kjSIzlRVOebvJGVmG3QPMVZYxKLJUXaXP1YNTcJAyF5ioFAHoljqwrQo5q8R05TY9zm7WtFm61CFqVg3BtljSrmPYGgBtSg8BRSGhJViqrRcw96p9rOm3CUjdqJIf29LJizdAuHM/2AJuQwUJgvJpCuYCplUhZ05ibco2tDtOYVgZvPIzZMsz6MoSHjFIyZhqOkcBqRPNWsEln8ewq1TMSbyCTsW80rSdXzmBbq67OYu0I0m9OOXncCvv3vU1PMiSpP2cV29vLz/zMz/Dz/zMz/AjP/IjvPvd76atrY1vfvObfOYznwHgB3/wB/n85z+/7WYWpmny5S9/mVKpxMWLF3nzzTfRdZ33vOc9jW2OHz9Ob28vL7/8MhcuXODll1++K+55//vfz8c//nHGxsY4d+7cvh1zq2DZAtbbpa3qIT7OQ0UYRFG86wdfKBQYHR1FluV7GoXVIUkShmG0fI7bISb1zkKWZe1K1tNq8rNZkrTZNG5rx6bdYr8Jg2ma3Lx5k5WVFVRVpaOjY9+DoL3MeW1tjdHRUeLxOCdOnGi6h1vp7/Cg4NS2bWZnZ7l9+zbHjx+ns7MTXdeJxWLYtk25XG4U5E5NTaEoSiMgDYfDD62fOUhB6EGay35gs3ypv7//ofKlh7WKPEjn50GEYbyQ4PMTL1GzaqT0Iqf8HbhkgdulZc74e1EEm5HCJEPuOAHFyWR5nqpV47inG0SNkcJ6u9CTnm5sDBJalqSW5aSvExGBkBImpWfxyTZVs8qAcwgRSOkz1JT1FfiYHMcjqRQMhbnqFEEphCSUkHEQVwcpmQUUscJSbcMTYcB5EtDxSHHS5iIBdGxSDbLgEWP4aaNoTqOTpWQsI5oqtmRgietkwS324ZbaKZsT1KwkmHOgQFA8RumOARuAQ+zCK/Wi2QtU7QxVIwNASD5D7Q4xqMMjncK2CyjSc+hWgpo1h2J56XD+b3u6hgdVkrTXDMODUC6XGR4e5id+4if4uZ/7OUzT5PLly3zrW99quIw/CFevXuXixYtUq1W8Xi9f+cpXOHnyJCMjIzgcjrtktbFYjJWV9Va6KysrdxGS+v/r2zzBE+wHDhVh2Azbtpmfn2d8fJz+/n6GhoYe+JCSZflASJJWV1e5du3ajjoL7XQfe0U9w1DvMBQKhTh37ty+FVDtJ2HYunL/5ptvPnaJTx22bTM1NcXU1BQnT56kq+tul9RWZhjuN65pmg2382effZZQKNRwRq9/1+Px4PF46OnpwbKsRkA6OzvL2NjYXXr6e/32nmQYHg32Il86aNfoXoRhupji85Mv83eJ21yK9qJjsFDJ8Jy7BxODimkABrpt0u2MUrM05itpBtwx0loBRI2ZyjJH3T14JIXblUkM2yQg+Rh0tzFTnaNiVXGJKv2uMLKoUDE1UvoaTkmnZtcImW0EvUFy5iLTlQUAnKKTmCOCjp+V2ixztVsMOrtJ6EuItkybOoBHdLOkvdXwWlBFN4pYw7RUQsoQFSuLV/SSMS6zoVQQCCtRNKME1UF0OU1eTGNJa5hirnFexFoQwzWOUxpEFkJUrRVEQaVovILNxuKYS+xBN9flUyJ+HNIgAg5M+xaatbl+Sibu+V1EYffdueoNJw6iJKmVUqlyudzUrluSJJ599lmeffbZbX3/2LFjjIyMkMvl+PM//3M+9rGPbcuQ6/sF1ttIkvTEh+ERQhAENE3j2rVrZLPZhhb8YXjcNQybzc1OnTpFR0fHrvfRakmSIAhkMhkWFhb2pcPQVuzX/Ov1H5tX7lt1bnY6rq7rXL16lUKhwDvf+U78fv99x32UhKFSqXD58mVEUeTixYv3bRO4dY71YBPWs0717MPVq1exLKsp++ByuQ7UqvVBQ6vPzU7kS6ZpHqhrtZkwLJZzfHl+lC/OvUXc5editIc3stMEFTfvjPRytTCPbhmcD/awpudYqmbodgbpcnmZqZQYL81zyteBJAqEFT+aXWOlskDMEcEtOXFKAjfKdclQB15FZqYyg4WFW3TSprpxCCqGaZEXc6iWQcnM4xF9RJUObIrM3GmfCjDsGqRqZYk7TrCmL6DbVVa02w2yIKPS5ThC1cqQsWaoaGOE5G7yxsYYHqmLgBSnaM5QkdbAtYaAQJA4NXHmzjkSUfROREMADErmDDCDLHhwCA7MTWRBRMUt+YCnMK0cVWsa3RzFLx/dQhYg4vw4Tvn0nq7f5mYkBw2tyjDYtk2pVNpTpzuHw8GRI0cAOH/+PK+//jp/+Id/yIc//GE0TSObzTZlGVZXVxvmo/F4nNdee61pvNXV1cbfDgMsW8Q6xMXAO8FhPs5DRxgymQwjIyP4fD6ef/75bRf0PE7CUF8FB3ZtHPawfewXNE0jkUhQq9V47rnnCAQC+76PvQb1m12wt9Z/tIow7CQTUHcUdbvdXLx48YH36KPMMKRSKUZGRu4pjdoJ6rKvjo6OewakLpcLURRRVRXDMA5Na79HgUe9ov8w+VK5XMbhcDQkZ7t1ut0v2LZN3jb49LVvM1dJsVjJcjrQgSrBZCnBmUA3igSXczOc8nXilmVG89N4JSfPBvuZry4yWkjilZycD/YxWV6kaFbocoQJyA5kMcxCdZXTvj5myrMMu/vJ60VcssBUZb0OoMvRiV+RmatOYWEhIRLBi1N00+kYYLk2j6jqLNXmAHAJXnqcPRTNVbLGCrCCTwpi2muYtklUGUIQFJwiLNXebByrS/QjkEEVw7ikGCUzhUP0ktRfAzbuk7jjBHnjKj75OOCgaMzglB0YznE2i2xdVhydm2DLuOQjiLhxCBYl4/Wmc+yXz6GZzZ85pXOEnD+95+tXf/YeVMLQqmfRXgnDVliWRa1W4/z58yiKwre+9S0+9KEPATA+Ps7c3BwXL14E1mOKT3/60yQSCdrb1wvVv/GNb+D3+zl58uS+zamVMBEwD3G70Z3gMB/noXqTW5bFtWvX6O/vp6+vb0crY7IsP5Yahs2dm44fP74vD9LtFlbvFHVvAEmSiEQiLSELsLegXtM0RkdH71tT0UrCsJ1xl5eXG/dovW3qfoy7U2wmDJvrFfajaH3rfrYGpJlMhunpabLZLP/wD//QVDzt9Xofy4r2QZPePC5slS9dv36dWq1GqVR6bOZxdeS0Kp+bfp2/KNzkWWcnhm2RrJUZ8AXQbZOCoaGINhYWUdWHIFjMV5Oc8nWTNYosVJeQRZkT3l4cksVoYQJVUHjKN0BaTzJerhuv9SNh4ZAUbpdnOOntZbE6z6BriJyexyMLzFTX6x08ope4ECVlLrNYSwMw7B5ioTpOXO1HQEJAZ6l2DYv1Z7IiqEQdUQQgYy+S0KfpVodJatcax+oUwrQ7eimaq+SNBfLmGl6xjao5TZ0siDiIKsfX250KTrLGejakTTlF2dzwdgBw6kepmRVMsw/RlaBo3MLDUSpis4mbU+xDM0cAkIVeRDGGjUW757cQhL2vvh90wtAqSdJeCMMv//Iv84EPfIDe3l4KhQJf/OIX+c53vsPXv/51AoEAP/VTP8Uv/MIvNOSfP//zP8/Fixe5cOECAO973/s4efIkH/nIR/jMZz7DysoKv/Irv8InPvEJVFXdz8NsGZ5kGA4HDhVhEEWRd73rXbv6bj2Qb3VXkPp+TNNkfHycpaUlTp8+va+pwf3OMNi2zdzcHLdu3WqkRTOZzL6NvxW7DerrhCYQCHDp0qV7rha1KgB/mHTIsixu3brFwsICTz/9dGOl52FodYbBNE2uXbtGOp3eN0+KB6HeejCXy2GaJj09PQ350szMDJIkNcmXDkPLv+9nSJKEz+fjyJEj+9p9aScoGzpfmbvGCxOvoiAyrHi4nF3AK6s8F+lkNLeAbdu8I9LFbCXJmlbkaX8nkmiT1UsI2HS43AhCmPHiIt2uAMu1JCc8/eSMIklthaxRoFuN0a4GuFm6iXVHJnTGewQDDQuRifIUJ729zFYm6FJ7EQQJlygyVxtv1BcMOIcQALcUYKk2S0gOI5LDwsQp+gnLnSiiznLtRuP4okoXWX0ch+DDr/RRNcv4JGdTtkEWVJySRdU0CSknsQHNzFG2bmLYpcZ2XqmLqrlOPKxaEJ97EFGQqPEWtqI11NGiGcQWJ5rWMgXbjSrGsQihmfNUrEWwFulw/ztUaX8WEeqdiA6SzK2OVtUwmKZJpVLZtXIgkUjw0Y9+lOXlZQKBAGfOnOHrX/86733vewH4/d//fURR5EMf+lCTcVsdkiTx1a9+lY9//OMNBcPHPvYxfuM3fmNfju9RwORwr7zvBK3XubQOh4owwO6DzfqDotU9oiVJolqt8uqrrzYKcffbMv5Bxmo7hWEYXLt2jUwm0yiAnZ+fb3nb1p2Mv7nA/ciRI/T399/3hdSqmoAHzblWqzEyMtIws9vJi6OVNQzVapVXXnml0UHsUa421a+P2+3G7XbT3d3d5Jw6Pz/P9evX8fl8jYA0EAgcyJXJ/cZBC6bq89nv7ksPg26ZfHnmGi8lZxnLr3LM14Zt60wUkzwV7ECWbEZzC5wMdOCS4c3cNF3OEBdDA4wUpjBtiyPudhyyzc3SEgDPBfvRbI2CUWPBThJUREJKCLfkRhFFbpXHsWybAVcPfsXNjdKGa/Mp7wACJn45zHxtgWF3P3O1cURbJGjFiHhDLNauN2oEXKILt2jjkrowMUlosyiixaq2UZPgEtYdoxVhgJQ+S6l2k07HMGv6xsq/hJNOxwl0clTMNCn9JiIyESVKydwgC5LgxCMGQAhRMZPojiXyxi0CkhcbbdOZFQk6A9TMVWR6MY0gmplH0CWK3learoFX+UFCzg/t+hpuxUHtkAStyzCUSuvXaLcdBL/whS888O9Op5PPfvazfPazn73vNn19ffzVX/3Vrvb/BE+wXRw6wrBb1FfGDMNoKWEol8skEgl6e3s5duxYSx6e+5VhyOfzjIyM4HK5mupBWiV5qmMnhMEwDMbGxkin05w/f/6hLeoedQ1DNpvl8uXLhEIhzp8/v+MV2FZlGOomcV1dXfsmhdspth7XZufUoaEhNE1rZB/GxsYwTbNJDrPfRPsg4KBJox40n63ypWq12rheCwvrq/67kS9Zts3XFsb53M3X6HB7EEWBmmmiyAJV3ULHQpZswMarqCiixZpW4pi3A0mwGc1PccQbRwCKVo65co4BV4w21cNoYV2245GcHPPGmKuscLs0T4+zjbKZY8DVR6KWRhTgZuk6AJ1qJ1GHn6nKdUx7/bnX5+ymaubpcx5lqbJAVSiR0FMNshCVu4g43CS0aTLmeoFpjzrIqjaGYEtEHAMIKECexdqGFCksd1IwbiGhElAGsAGnKJHQm4tWY44j5IxRsGW8yhAiLhyCTsZo9lGIKAOUjJHG/wVchJWnsSlhE6NiL4G0hNdxHENtlidZupeliR+mEhhv/C4f1i75odf2gJq2Qev8IeqEYT9rGN5ueCJJOhw4dIRht6tzgiAgCELLAuG6eVwymSQQCHDixImW7Af2p2h4YWGBmzdvMjg4yODgYNN53c8Mxr2wXUJSLBYZGRlBUZRtr5A/qi5Jm7Mew8PDO66pqWO/CYNt28zMzFCtVunr69v2fbjfq97bOS6Hw0E8Hicej2PbNsVikXQ6TTKZ5Pbt26iq2qh92Isc5qCt6B8k7ESi6XQ66ezs3Fb3pWAweM/g83urs/ze9ZeYK2Z5JtrBjUIC07I4F4lxJb+EbhocV7zMlFNk9DIXIz0UzAoz5TQnfe04JYmIGmCxkibqdBBSfCiCA5/sYLRwizYlSLsjhEaBK4V15+NutY2Q4mS6skamNE2fK05KX2XANUDeKCALAlPl65iYOHDQ5+qlaudI6AnQE6ioqKKBgEyv8xg5I0NAUZmvbWQnIkocG412xynW9HmWtWn6nUdIaHONbVTBg18OoNsqGX2GpH6LsNxDVp9pOkftynFsTLzyUxSMWTL6JO2OE+S3kAWp1EnJO4JD6ECROjDsCiIWBeMVNgsfZCGAbS9sue4S3f7/E2PwXKPm6Nq1a/j9/gYJ3E3G76CatkFrMwyqqu6ZbL2dYdoi5iEOpHeCw3ych44w7BaCILSsu1CxWGR0dBRRFBkcHCSXyz38S3vAXo7DMAyuX7/O2trafVvSPgon6YeNv7KywtWrV+nt7WV4eHjbL6FHkWGo+xisra1tK+vxsHH3W16WzWbxeDx7mtejhiAI+Hw+fD4ffX19mKbZ8BLYLIepEwifz3doicBhnfdmbFe+FAqFiEQiTGkl/nzmOt9JTDHsj/JMtJOruSVO+NsRZZu3svOcDsSxLI2x8irDjjZOBKK8np3GIUg8G+hlSUsyUS7ilhw8HexgrpJkobjIGV8XVavCkLub2fIKEVVlvrzKkLsbWZTIGUlulZcB6HK045NV0rrJRGWauCNC3lwhokRxy17yRo60sUTRzAMgIdIpxqnYRbJWkkL1Nkdcgyxr69kJnxQlIMWpWMusaouN89OrDpPQxhCRCSsDgIQslFjWNoJ+VfQhkMbGQMGHV+lFxkHeHMO0K43tvFIHFWOjJgJbwiUOYlBFFLspWctgJJAENz5RxdyikvZKHVTNq8hCJ5LYiWlruOQTBF3vBReNDFK9XXImk2FsbAzDMAgGgw0SuB2397erJMntdn9f/K4fF2wErLdJDYN9iI/zbUMYoDVuz0tLS4yNjTUC2+XlZdLp9L7uYytEUUTTtIdvuAVbV+zv14P/cUqSNvtVnDlz5i4Hy4ehlUXElmU1WuSKovjAc7hd7FcNQ7lc5vLly8iyzMWLF3nrrbceq/xlr9dBkqS7zMjqcpi5uTkEQWgqnj4s3UAOGvarCcT95EtXlxf41bGXyJo13E4HKjKiYGNg4hAlRPmO9EhWEUSLiq7TIXgIqA7G8gs87e/BxmS8PI8iyJwL9FG08ryZm0RE4Ky/l4KZZ6G6hgg8HehGAIKKn6VaiqjqIG8UGXT1IgoSWWOFW+X1eoeA5COmBsgaNivaKqqZo01xk9LzROQYXsWPIpjM125Rf8f3qD1k9QU6HCcom0Uy+ioeSSVvJhrnok3uATTaHMdJ6XOs6hP0qsdY06ca2wgItCudgI0ihMkZM+jaJEEl2EQWJFRUQcOwVdzyMSzbpmTOI1HG8M5S2/QYDUl9VMzRxv9F/Hjlk1iUsYlTtlbBWkUR4wy5//e7ruHWdsmlUqlB2qenp5EkqUmCdq/f3EGWJLVqbsVicc+t0t/ueJJhOBx42xGG/QqE6xrxRCLB2bNnaWtr2/d93A+72Ued2PT19XHkyJEHrgK1WpJ0v/Gr1SojIyOYprlrv4pWSpIAXn75ZTo6OvatLmA/CM7a2hqjo6N0dnY26mZ2Om4rJEn7CZfLRVdXF11dXViWRT6fJ51Os7i4yI0bN/B4PI3sQyAQuCswOCi1AwdlHnW0qmtc3jL4/yyN85ez4zwdacOqWUxUCpxw+biVW6WCwdPeMNPFNbJGhX/U1sdyLc90Nc1JxY+AjYBI0ahgUOWYt4PpcpKyVWS1muUpXx+SYHO7PIthm7Q7QvS6gtwuz1CzdFRRZtjTjixIVCyNJS1JWHGQNwvEHO0EZD8Va41b5XEARAT6nDEERGwkEvoKQYdvnSwAgi3SrQ4go1EyqxTM9c8HXYOsaDfBFogovbgkPyVzmlV9o8tch2OwUeTsEiN4pThOUSGpvcFmv4U2dZDspmJol9hBUO6iaq1StpOU9XUJVMxxmqKx0WEJICSfpGxcxSkdQRSCaHYO2ypTNi5jUdm0pUCv99eRxAcX6AqCgNfrxev1NtzeN//mbt68icvlapKgybJ84CVJrapheFztor9fYNkClv32OH+H+TgPHWHYy4+y/kDbKzav1D///PNNq8yPijBsNyiu11asrq42EZsH4XFIklKpFKOjo0SjUU6dOrXrlaBWzL3uYwBw9OhRenp69m3svRAG27aZnp5mcnKSkydP0tXVtS/j7hdatX9RFAkGgwSDQQYHB9F1vZF9uHHjBrquN62EPu7z8HZCUdf477eu8uWZ6/gcKpfi3byyNs/pUIwev4+3Mos8FYxhoTNaStAruolKbl5KT+MXVc65otzSk2i5DEPuCAGHwo1ikjWtwFOBDgTBRhRFSmaZNX2NXmcboiDilWWuFddrFnrUGGFVZaI8g4mFIkj0uyIoogNJUEhoSXyywJqeBFug09lJUHIzU5vAsHUABpy9LNbGaVM6sWoiRfJU7TXy+lrjWAecR6hZeTocJ0nry6T0JeJijbK1QRb8Uhu2XaRNOU3VypEzFvCIQZLaKJvJQrvjOFntGj55EEnwUjYTuMQga3pzV6OgPEjRuNz4vyxEcIm9QA1L8FEwp+/8RSAo91E1K03fj6o/jk95546v671+c3UJ2sTEREOCVn/HHjRpUr3FdCsyDOVy+UmG4QneFjh0hGEv2Gswb9t2Y0Xzfiv1BynDUCqVmuQz2+1i0upj2Kzb3xz0Hj9+nO7u7j2RQlEU0XV9v6aKrutcuXKFQqEAQEdHx76NDbuvYdhcr3AvR+7dEIb9XCF7lKttiqIQi8WIxWINKUU6nSaVSjE5OQmsX0dVVfelE8xecZBWIvcrw6CbJv/fiTH+18wtRBnCThcOSaRg1mhzepAlG922iKoekC1sW6DfFSLiUlmsZDgptYGlc01fpc120q54WNQzLGg6nWqQDreXG8U5DNuiVw0TUlQsfExVVnja38tEaZajnj7yRhm/Q2G8vC7/icohOl0hZitzVKwqACe9PaS0VQadR1jT03gkJxPVjRqBuBzDKSp4pQgr2jICAh1imKyxXgfhl6NE5Th5c4GCuQasS5z6XUMk7tQ2eKU2fGIMyJIxpoH1+ga3GKJmLVInCxJOAvIAAhai4CVrrAf8LrGNsjXZdI4VwYtgp3BJR7AMJyUtge5I4RbzFO+YutURUs5QMd5o+kwVh+j0/Mu9Xej6XBSFtra2xgJUXYK2sLBAqVTiH/7hHxqdl+odzx7nfV9/xj6RJB1MmIiYHByC2Uoc5uN82xGG3dYwbC4WPnfuXEOre699tJowbLdo+Nq1a3R1de24vWurMwySJKHrOrquc/XqVQqFwj2D3t1gP4uIC4UCly9fxu12c+HCBb7zne/s+3nZTWBfLpd56623cDgcXLp06Z7mZ9/PGYYHYbOUore3F9M0uXz5MqIoMj09zdjYGD6fryFf8vv9ByqAf9TYK2GwbZu/mZvkP1x5DUUUCLldjKRWeEd7nNVaiblShn/U0ctkMU2iVuD5WA+LlRyzpTSX2nqoWgZZvUqfJ0jNtunTgpSNGstCliBOAqaCqutcLczgFZwc9cVZ0Ja5Vqy7NvcgYOOQVG6W5nja38tkeZohVy81y8AvK9ws3ZEVIXDGd4SqVaJgVshVJhl09TJXvYWMTKfaiyiIFMwlpqobBcyddoySkKJbPU7JKlAzK6SMCapWsbFNr/MIZTNB3HGKspklaywTVAOs6dONbUQk/LKTilklpJzGsHUKxhIWGdL6RhcjAQm35KBklgFwCGHcUjcOUaRg3MA07tRCOCCqPEV5CzFwiT1UjVEEPKjSAAhONGuNbu+vIAqtce6ud9DSNI1isUhfX18TaVcUpSnr96gNG1tJGEql0hPCsEc8kSQdDhw6wvA4JEmFQoGRkRFUVX1ooevjzjBsLhrercN0vRC3VWllURSpVqu89NJLeL1eLl68uG8vkP0qIl5eXubatWv09/c3XHCBfScM9fO73cAtmUxy5cqVpnqFe+FxE4aDEoRLkoSqqgSDQXp6epq8BObn5wGaiqf3WsT+MDxuEncv7PZavbm6zH+8/iZj6SRPRdoZza2gGBKXOrp4MTHHmVA759s7eXFtltOBdjo8br63NkOn08c7o928kZ3DsuAdkS7SRpHZcop2yU277EBzqMxWUpwLd5Cq5Rmw20gbRWaKc5REjQ4xRLvTz63KuuwI4KyvHzBxi25ul+c55e1jojJBQA4Qc0RwiALj5euN+XeoMQQ0ep1DLNUWWazNE1eDjQ5JDlT6XQNkywmqVJmt3UIWFGJKgIyxTha8UoSIHKdqrZI3UuSNFAA96tEmcza32E5U6aZsJahYZcraekajSz1KRm/2R2h3HMe08wTls1StNGVzAa/cSVa/3LSdpEeoCKObPlFwioM4pQCaJVG1ZtHM9f3EnD+BTzm7q+u8E9QLi7d2PMvlcmQymYZho9frbRCIYDDY8kLp+vuylTUMT7B7WIhYh3jlfSc4zMd56AjDXrDTYH6zX0E9cHzYy7W+j1YVE8L9uxhVKhVGRkawbXtPDtObXbFb8YAtFAqsra1x5MiRuzwg9oq9Zkc2E66nn36a9vb2pr/vd8BXP/aH3S+bpVunTp2is7PzoeM+7uD0ce//XtjqJVAv5FxeXmZ8fBy3291UyHlQO77sF3ZzjaZyWT478gbL1TwOWaLPHyChFen1BnA7ZLJalUFvEFkRqFo6Q54wkmST0sqcCcRxyMJ6G1V/B15F4Y3cFLIg8Uygh5VKkttmGipwMdxP3iyxoucJyC7CbgWfHCRTK2BbFrerM5iCRYwgbQ4vt8qTWHekPsfcPVi2Rp+zm7nqIkHZzWJtPWvglbx0qZ0UzCQLtSSw3gTpiLuXxeo0HWo/EhIWOgu1m5jSRla6V+2iaCTpVE9QNvNUrDwFc7apbiGidJLRb+CVunCJEYpWGpfoZll7vek8xhzDDbIg48Ur96OKHgrGFQx7I3vhFmOUjfGm7wq2jEPQcYgdyGIbhl2hbM7gkNzkjea6B6fYS7f753Z8nXeDe3UikiSp8ZsaGhpC1/VG96Xx8XFqtRqBQKDJQXy/3531gudWvJOfZBj2DtMWMA/xyvtOcJiP8wlhuA/qGvF0On1fv4L77QNa217uXkXPiUSCq1evEo/HOX78+J72XScJ+72aXi/AXltbIxAIMDQ0tK/jw94IQ61WY2RkBF3X7+rSVDf+axVheBA5MwyDq1evksvleOc734nf79/WuE8yDA+GIAgEAgECgQADAwN3BTKaphEIBBrype30od/ufg8StjufdLXC50be5Oszk5yOR1kqF+jweJEVgdupNM93dLNSKTJdzPCujm6WKgVmSxkutHdRMmssV3N0uD3Y2EQdPgQRbhYXedrfQ0Yvs6KlSJtl+qUwsYCfN/PrGv6g5OaYr43J8jKLtQydzhBQ5YjaQ6qWQ7EFpow5LMHGbTnplEKsaSuU7HVJT7sjTMFco0vtwcImqSUomSlSerJxbMfdx7DQUEUPi7VZ/JIfRdQazs6q7aHP00/JXCNv5cjXsggIdKudpO7IjmxbICL34JW8mHaZjLFKhlU8YpiKvdZ0Lj1iBOwyIeUsNatI3pjDMhdxW0YTWRCQcEoyZXO9/kIWwjjFbgQNauItilYarHUi5JGaXZ/XIdLv/XeIQmszZ3Vsp7BYURTa29sbizHlcrnxu5ubWze6q2cfQqEQLpdrz7+ZVhU8wxPCsB94Ikk6HDh0hGEvD47t1jDk83lGRkZwuVw8//zzO+rxXn8otfIBtZn4WJbF7du3mZub29bK83bQCsJQ9y8QBIHBwUGy2ey+jb0ZuyUMmUyGkZERwuEw58+fv6ercCtqOzZLku6FUqnE5cuXH1ivcC88bsIABzPD8CBsDmRs26ZcLjfkS1NTUyiK0iRfetzF0/uB7WRCa4bB/7h1g8+NvsFAIEjIq3I9vcapaJRX1hbo9QR4Z2xdhnTcH+VMtI1/SM7S5w5wLhrj1fQsqihzIdrL7WKClFbmXCiOIoJh28yUU0SdDqJKiJph4BBtLucn6VIjBBU3OmUu3yEPnY4QcdXLVCXHzdIsnWqYkpWj19GJjU1ZL5NgBc1e96nxWW78psoaJWaqc3cyCZ0s1GbwSX6iShyHKDJdHcO+k51QBBm/4qBkVOhWj5ItZVBliYXqVaxNpmj9ziOs1m4QVvqRRTcZfQWHJLJU25AYiUj4ZIW8UUKwJQJKPxIeBCFL2tiobwAIy1Hyxs2mz9ocpzHtAl75HFUrRdlcxCFG0KWbINib9uNAoniXaVtM/Ql8ytPbvBv2Dsuydvy7cLvduN1uurq67ukgrqpqgzzs9nfXasKw380wnuAJDiIOHWHYC2RZplar3ffvtm0zPz/P+Pg4g4ODu5LL1APAVhufmaZJtVpldHS0sSK+XzpKQRD21bwtkUg0dPfHjx9naWmpZUXVOy16tm2bubk5bt26xfDwMH19ffe95q3MMNxr3GQyyejoKN3d3Rw9enRH8rDHTRgO2ir6bjpGeTwePB5Pow99vY3k7OzsPYunt3N9DhqJetB8bNvma5MTfGN2irlinqOhMFmzSsTpIuJ2MV/OccwfQVUk0lqZE4E2ZAWyepUzwTiCZDKeT3Au1I0k2rySniGu+nhXtI+3crPotklEdjPsD3OjuMxMJc1xRxgLnX5njNlKkoBDZraUYNjThSyIFO0M10vrgXZE8hNXAyxWa0xVFgnKHlyyCabNoHOAmlHDtivMWRsFxd20YWgGMbmbFX0Zp5ijoic3yAIOjrqHKVs5qlaSueptnIILUdQbZEGwJbqdR7AxkUQ/q/p6LUy/8ygJ7VrTOexRj2FSI6icIKvPk9Rn6FaPk9abyUKH4wT5O9kBp9iFKrUhoZDWL2OxYdIpC24E1prIAkBIOUbJeAtJiKKKXdhIgEi35+M7uBv2jr3KWLc6iJumec/fXZ083Mtz5X7zahVhKJfLT2oY9gjbFrEOsaHZTmAf4uN8WxGGB0mSdF1vtKk8f/484XB4V/sQBKHlhc/18V966SWi0eh9V8T3gv1YTbdtm9u3bzM7O8vp06cbqzCt7MK0k6Jn0zQZGxsjlUrx7LPPEgqFHjp2K7okQXPgZts2U1NTTE1N7Tpr9LgJAxy84HgvEEWxkVmAdflaPftw9epVLMtqyj5st4Xx48b9MgxvrSzz7197FZ9ToWjoVAyNNp+LVKZMxOVEw2SumOdSRxdprcJMMcM72jsomhpLlTxtLieiKCMJEoJgkawVOe3vRBAs3szNEHf6aVO95MwCb+ZmcYoK7wj2MV9aIW2VEco2zwR7AIuww898JUmX20tSy9Lv7MAlqeTNDNeKEwA4RYV+VwQTi3lzmcnyLEc9XcxW19a9FtQOAoKbeX0S3dLBAtVyoBtZDAw61D4kQcEpikxUNgqJJUHCK0hU7CLtjkFEwUHVLJLWp9E2OTLHlB6Sd1qqusUoPrkdh+BgWXsLm41nRpsyQHpLkbNX6ABMfPIZSuYyeXMF2crhkdQmsgAQUXopGhvzk4UwHmkAy9YRhS6q1gpVKwOInA58HlF4tA7o+72SL0kSkUikIQnWNO0uz5XN9Q/3M1BrpaHcE0nS3mEiYHKwFplahcN8nIeOMLRCkpTL5RgZGcHj8fD888/vuWNPKwlDfUUc4MiRI/T09LRkNXevx1Cr1RgdHaVWq92V/Wg1YdjO2OVymcuXLyNJEhcvXtxWd5z9bNm6eUzYkH/V6xXy+fy26xXuN+6TDEProKoqHR0ddHR03FNG4XQ6G9mHugtuHQf53Mzn8vzeG6/y+tIiJ2JtvL66zJn2NkzZZjyX4lS0jVeTi3S5vZxrj/FiYo4eT4Cnom28kprHJzt4rq2Tq9kVSqbGu9p7yOlV5so5TvkdiKLFEW87s+UUbkWkaNR42t+DhclYcQbDtogKHoaCbdwozlKzdGRB4JQ/jiiItFlhFqpJet0hkloal6DS6+xAlDRu3vFeADjp7SOtJxlyHWFNSyEKMKvfbkh2JAT6nB1UjSqatcZibZ6wGWZNWaX+PhdsiWH3cVL5BIgai7VZZEGh3eGnZGyQBZfoQxVF3NIJilaavLGCZVhIlJrIglP0YdgrgI1H6kYVw2hWFVnIsaZvdG8CiCh95IxmYhGWj1IxpvBIp6lWTXQhgyYXUaw5NGu1adsO5z/F/wilSHW02rDN4XAQj8eJx+MN2WC9/mFmZgZRFJvat9af662UJBWLxScZhj3Csg+3tn8nsHb4Wn7hhRd44YUXmJmZAeDUqVP82q/9Gh/4wAeAdQ+UX/zFX+RLX/oStVqN97///Xzuc58jFos1xpibm+PjH/843/72t/F6vXzsYx/jt3/7t3e80HzoCMNesLWtat3B9/bt2wwNDTEwMLAvL/NWEQZN0xgdHaVSWX9ZdXR0tLQT026D43o9QCgU4plnnrnrptxPudNWbGfe9dakHR0dHD9+fNsvuP1q2boZm4upS6USb731Fk6nc8+tZh83YYDvrwzDg7BVRmEYRiOIuX37NtVqtVE8rWnagTov9QxDoVbjS9eu8+Xb1+nx+RmMhsjVqpxrjzFXydLtDSBIMFPM8FS4HUs0SVSKPBOJU0VnqpjmfLgLHZ1XUnMc97URdjp5OTWLAJwLxinbVaaLayiixPlQJzVLZ76SomhWSNRSDLljlKsVPKLESH49c9Cphul0+bhVnqNm6YjAcW8HmqVxxN3PTHkJWbKYrKwvoijIHPP0UzYLZPQCaT1PWA5QMtcwMQkpEUJyGEUwmaneMTsTISAFMKUcti3grkUQbBmXLDNZuQKbJPO9zh5WtJsItkjE0YuMC1EosqpPNLYREfFJLrJGovGZjJO44wiaXcawl+6YwC3TpR4no294PgBElGMNsiDaKm6lHwUfFqtU7RpV42bjzR2VTzU5PwOoYhe9nk/s/ebYBVop/dmKzbLB7u5uLMtqEPd61zOn09lwe2/Vu7JUKuHz+Voy9tsF1ttIkrTT4+zu7uZ3fud3GB4exrZt/uzP/owf/dEf5fLly5w6dYpPfepTfO1rX+PLX/4ygUCAT37yk/zYj/0Y3/ve94B1svzDP/zDxONxXnrpJZaXl/noRz+Koij81m/91o7mcigJw26Doc2BfN00LJ/Pb0uOstv97Bc2B+FPP/00f/d3f9dSc7XdEIbNBOxB9QCPK8Ng2zaTk5NMT0/vSurTigxDfdy1tTVu3bpFT08Pw8PDe16le9yE4XHvfzMe9Yq+LMtNLribi6dTqRSCIDA2NtbIQDxqE6vNMC2Lr03P8uJrryMpIoooISsixZqOhY0gQ9kwURSRqqWzVqvQG/BTMS1SWpk2jxOP6MC0bTR0bGyGvGG8DoU30/OcDXYiiwK3SotULYPj3hguReTN3AwAvc4QEYeTmuVmvLTMUSXCrJXgmKebiqUTcji4WlwveHaLKid9PSRqa6xo634HT/l6maxM0umI4ZLc2JhMVjYyCU5RJeRwoYpBimaRVW2ViBzYIAuAIih0qO3ohEloy+QcGdqkdgr2QtO5arc70fQq7fJR0uYSq9ocA85hVvWppu261KMktat4pRguqQ3NruASnSzWmg3WosogGf1K02cOIYAkWATkc2h2iaIxR0afJO4YpmDMNG2rmt0UhZEtV1TgiPffID2irkhb0Urpz8MgimJT1zPDMBr1D4lEAl3XeeONNxoF1IFAYF/mWi6Xd93C/AnWYSFgHWKpzk6w0+P84Ac/2PT/T3/607zwwgu88sordHd384UvfIEvfvGLvPvd7wbgT/7kTzhx4gSvvPIKFy5c4G//9m+5fv063/zmN4nFYpw9e5bf/M3f5Jd+6Zf49V//9R29fw4lYdgt6oF8NptlZGQEn8+3o84zO93PfsC2bWZmZpiYmODo0aP09vY2VqUfRZ3EdlFvQ5vJZB5KwFpJGO4XqOq6zpUrVygWi7uW+rQiw2DbNrZtMz4+3lTnsVccpID97Y56F5ju7m5mZmZIp9M4nc4mE6s6edivIGY7eGl+nk+P3cDjdGAqErlSje6Qj9dWljjbHmOmnCWRLXEyEuH1tUUiDhdnom28vraIX3ZwNhpjJLOMbhu8q72X+UqW2XKW56JdWLZF0OGiYFTJGXmGPTEyWhlVFrhWWKBN8THgiTJdWWIkv95y9LSvE7NWxSmo3Cgtctbfzc3SNN1qO27ZhVMUuFLY8CM47u1GxCaqRFmoJWhzhDDsPCYmMjI9zm6cEsxUp7DuSIN61E4WaxOAQMzRiSq6kQSDiepGdyK36EYQi1imiUNw4agF8Dq85MUpTEujrjIKE2NVH2t8T7Al4uowYOOUYuTMJDkzSVDuIKM1kwpV9GLYy+vbijFcUgzDNlEEg5Te3CkpqhynsKluYX1fDiQxh4WNhA9V6gXBSUB+moDj2T3eGbtHqyVJO4Esy0SjUaLRKIqiUCwWiUajpNNplpaWME2TYDDYIBC7aZtczww/yTA8wU6Rz+eb/q+q6kM7cpqmyZe//GVKpRIXL17kzTffRNd13vOe9zS2OX78OL29vbz88stcuHCBl19+maeeeqpJovT+97+fj3/844yNjXHu3Lltz/ltRxhqtRqvv/46R44cob+//0Dq/+uoB7mFQoHnnnuOQCDQ+FsrZT318bcb1BeLRS5fvtxwwn7YTX8vH4n9wr3mXSgUuHz5Mh6Ph0uXLu26HeZ+B+GGYXDlyhVs2+app57alSv3/fC4CcPj3v9BhSAIqKrK0NAQQ0NDTUWcY2NjmKbZpMHejx70WzGTyfIf33yLt5ZXaFMdzNQqnPBHsUQbzTJ5rrOT69kkRwJhbNliopDmbCRGydKYKKQ5H+kkb1Z4bW2eM8E4yBYvpmbwyyqXoj1cL6xQMGr0uQO0u1wUSyWu5hc5F+6gZNY44e1krVZgvrpKzigz4Gqn3enjamES3V5/pp32dSEIFnFHG3PVJCe8XYyX5sAW6Hd1ElTcTFYm0G0dAI/kRBZ0fHKYuOhksbaEKglMVW83jjskB1FEmx7XEGvaGkvaEsOuIeZqm+VEAp1qOwLglsKsavPocgaHVMK0NwqQnXgwhDVEU0WphREUCVMuUTDmqdkbgYAsOJDQsNionVPw0q4cxbBLWLZKwUxRMFPEHCfIbWmrqooBdKuZbMgEkWtdoGhIso+KuUjFGMchRjnt/8zeb5A9oJW1AnuBaZo4HI6muqNSqdT47U1OTiLLclP71u22U39S9Lx3vB2N23p6epo+/3f/7t/x67/+6/f8ztWrV7l48SLVahWv18tXvvIVTp48ycjICA6Hg2Aw2LR9LBZjZWUFgJWVlSayUP97/W87waEkDLsJRjRNY3x8HNM0uXDhwl0neD+xH4ShXojt9XrvmQVpZdAN2yckS0tLjI2N0dfXx/Dw8LaCm0cpSarPb2BggKGhoT0FX/s57zrJcjqdyLK87111HnfAftAKew8Kedk6j61FnKVSiVQqRTKZ5Pbt26iq2sg+hEKhPXVDK9Rq/PHrI1xdS4Ag0BX0kS8V8DoUTMFGFAUUWUTHxAZEGQxAswx0DDyygohAwazglhU63X5syWSpkueZYBeyBK9mZok43FyM9HK7tMIbmTQiApei/SS0HDPlFH5Zpd3pxC/7cIkODNvkRnEG3TaJCl5ispf56jJVaz1AH3C1UzTzHPP0s1RNkTeKFK1kgyyE5SC9rijL2jILtWUAjnn6mL5DFkJShJASRbfTLNTmG+ejW+1ivra+jVv0EVU6cEkSs9WxpmLlsOmnJG8UFfuldtoc7RTNFBljgZprFWyImFEq4oYZHEC73EdaH8ev9KMIfqpWHrfoZmWL67NbjFI0b7MVQTlC1VzBK58GZCrmGrLoQlOvrbdW3fSIPur9P5DFx1t8e5AyDJuxlcgIgoDX68Xr9dLb24tlWeRyOdLpNIuLi9y8eRO3290gD1sbF2zGkwzD3vF2rGGYn59vUjo8iKAeO3aMkZERcrkcf/7nf87HPvYxvvvd77Z8rltxKAnDTpHJZBgdHW2sAmxeqW8F9kIYNvsCPCgL8ihatz4oOLYsi5s3b7K0tMTTTz/dcO3cDlpVCwAbQb1lWYyPj7O0tMTZs2cbevK9YL/mXfel6Onp4ejRo3znO99pSUC73THrtR3Ly8uEQiEikcgDX5D7vf8nWMfmIKavrw/TNBvF05OTk1QqFfx+f4NA+Hy+bREzy7b5i2s3+ZM3RhhsDzGZzXKsLcxssYBW04gGPLy1usz5zg4mChk00+BUexuXUyuogsiptjZG0isg2LyjrYPbhRQTxRTPtXWi2SYFXUMQbVZqBc4EOknrJabKq+iWwdlAN05Z4LXs+ip5RPEw7Itwu7TMXCVNTPUjoNHnaqds6pRrJeatVWroSIgMe7qxqbFUybFay+KWVPyKg4JhMOQeoGzWCCgy18sbK/Pdaoysvka/c5i8USKhJQg5PKxqy41tAlIAy67S4zxC1aywqi0SlmvMVKeAjft20HmEFeEmIbEHVfaSNVIElBBztZGmc9zrPMqavuHBoFh+1GqYjJDFVFVSd7waPGKEot1c5AwCHtlFwVifnyIEcUtdOAUvFXOCipWnbK1nLUQcOAT/XT4Mbeq7iar/6KH3QqtxUAmDZVkPlB7XuyvVpbR11/dMJtNoXOD3+5vat9a7LtZqtV1lGH77t3+bv/iLv+DmzZu4XC4uXbrE7/7u73Ls2LHGNj/4gz94V2D4Mz/zM3z+859v/H+/OuA8Tli8jZye79Qw1BtlbAcOh4MjR44AcP78eV5//XX+8A//kA9/+MNomkY2m21aBF9dXW0oFuLxOK+99lrTeKurq42/7QSH547aBWzbZnp6msnJSYaHh+no6ODb3/52yzs57FYutJM6gFYThgetplcqFUZGRrBtm0uXLu244KtORlrRuaJ+7l9//XUMw+DixYv7VpC21xoG27aZmJhgZmamSYLUimzAdu/BzW1c+/r6KBaLjRdkMBhsBKc71fcetAzDYYQkSQ0NNqz/7uoSirm5OQRBaBC8+0koLi+u8Jm/fwlREHC5FZYKBY61RxjPpDgejXBtbQVBEHiuu4uRtRVORdqoCQbX0gmeDsdIG2VeX1vkbCROwazwYnKWLpefZ6MdvJFZwLRt3hntomLpLFZy1CyDNqeKRw4zXkggijZv5mYZcLfhllQsqryVWzcta1N89LqDTJZXuF5cJKp4QazgFlQG3V1k9Dw5I01Kz62fD0HgpLeLilUjrZcYL81y2tvLVGVdUqQKKj3ObkwqrFaLpPQCACc8/czV1msfvHcyCQgVlmqzJPX1TkYBKUjeXIKGgZtKp9qHhY5lqSRYAhPijm5WtRtN5zgsd5LVJwjJQ8iCi6KZRqeC6Umg2cWNDW0QqwaGs9r0/bjjNDZVAvIZKlaKkrmCxQqaUMSwS03bRh1HyevNXZFkwc+w9xe2d1O1GI+yS9JOsFOp1GbXd1j/7dXJ+/z8PB//+Mfp6+vjne98J8Cu2qp+97vf5ROf+ATveMc7MAyDf/Nv/g3ve9/7uH79ehMB+emf/ml+4zd+o/H/ze+z/eyA8zhhv42Knu19OE7LsqjVapw/fx5FUfjWt77Fhz70IQDGx8eZm5vj4sWLAFy8eJFPf/rTJBKJxv38jW98A7/fz8mTJ3e030NJGLYTjGiaxpUrVyiVSg39/+Ze9618qG1t37od5PN5RkZGGisND9NPtlLWUx//XsewtrbG6OgosViMEydO7Oo81legWkEY8vk8tm3jcrk4derUvl7nvWQY6vUopVKJCxcuNKWwW5VxeRgJKZfLvPXWW6iq2njx1a9NvbNPKpViamoKRVEIh8NEIhFCodC26kCeZBjujd3e8y6Xi66uLrq6uhotJFOpFIuLi9y4cQOPx9MgDxVB4ktXrvPK/CJht4uCpeGVFGRFQrNNoh43JVPDLUooikDNMvHICrpgoogSblkhY5TxO1Q63T7yZgXDsjgTiCPKNq9nFjjpbyfidPFyehobGPCECKlOxvJLmLbNM8EOLEx6XFFmSmucDrZzu7DKkCeOKiqU7QKX8+vkwS05GPJGWC3AipWlUK7R6/KzUM0RUvzE1AiKYHGluCHbOeLuZK46Ta/aC0isaAkqVp5VbUM+NODsIq0v06cOU7aqrNSWaVcN5qszjW1kQcaryFRMmS7HMXRLJ2ekyZvLFM0s3Fkwd4kedHutIVdyi2H8UhxZrJGyRBL6xpidjl7S+mTT9etyHicjXUG0nUh6FEMXEQWbNcawhWZ/oKAcIm80eyv4pD7ym7oqiXYYt9JFj+uf4hD3r8vfbmHb9oHNMOy1e5PL5cLlctHZ2YllWfzRH/0Rf/M3f8M3vvENAJ5++mne+9738p73vIf3vOc928q4/83f/E3T///0T/+U9vZ23nzzTX7gB36g8bnb7b7vSvB+dsB5nLDst1GGYYfH+cu//Mt84AMfoLe3l0KhwBe/+EW+853v8PWvf51AIMBP/dRP8Qu/8AuEw2H8fj8///M/z8WLF7lw4QIA73vf+zh58iQf+chH+MxnPsPKygq/8iu/wic+8Ylt1+nUcSgJw8OQTqcZHR0lGAw2Fbk+iu5CsLMMg23bjRf+TnT2j1qStNl9+MSJE3R3d+967PqDez9fLnUp1/j4+kri6dOn9/3FtdsMQ7FY5K233sLtdnPx4sW7gu1WZRgeNGad+HV2djZS4Jq2UdS5ubOPZVmN9oTT09OMjY010vORSOSe0piDlGE4SHPZr+u8uYXk4OAguq6TTqdZSSb502/8PbfyRWSHTNU0sbwOZjIZznV3cn0tSdTtQlJEriYTHPN4mC8XKRoaz3Z0ciW9io3F2fY44/k1lioFzkTbKOg1pgppno60Yws2fZ4gqizySnqa4/4YiiCQN8tcyS3il52c9LczVVklo5cBeC7UjYVJuxpkppxkyBdmoZKi3REgrgap2kVG8usBtgAc88TW9+PqZKayQqczxPgmY7Z+ZwcuUUESXExV1iU+xz3dzFTvEBDRQ7fagU6BnFEma6x/94i7n/lNLVUDcphORwd5M03RrFAwJ+6M383qls5GMSWCgY5f6qZgZsgZCUJKlFXtVtN23eox1rQNeZJgy0SUQQRE3FI/eWMRW1lGUARCYhtlmsmC3+ojv6X4WUTCKfpwimcwbZN8dR5bzuFhiJjzPRwE1N8XB5Uw7NfikSiKXLp0iUuXLvGTP/mTvOtd7+ILX/gC3/rWt/j3//7f85GPfITTp0/z0z/903zyk5/c9ri53Homre4mX8d/+2//jf/6X/8r8XicD37wg/zqr/5qI8uwnx1wtmJtba1x3pxOJ6qqIsvygXqevh2QSCT46Ec/yvLyMoFAgDNnzvD1r3+d9773vQD8/u//PqIo8qEPfajJuK0OSZL46le/ysc//nEuXryIx+PhYx/7WFPWarv4viIMm/vsHzt27C4XZEEQWh5ow/oF0nX9odsZhsH169dZW1vjmWeeIRKJbHsfj7JLkqZpXL16dU8tSbeODezbqrppmly7do10Os3Zs2d56623WrK6vZtMwOrqKleuXHlgUXgr2rXCvYPTzV4ZJ0+epKurC3jwtRBFsaHdPXLkCNVqtZF9mJ+fRxCEBnnY7CvwJMPw6KAoCldzJf5fr1yjI+hjzbLodijkShWEdIaoqnB9dZUjoSCjuTWGg2Ge6ezgrcQSp0NRypLJK4l5zkXjpIwyLybmOOqPEPe4eSW5gCwIPB/rYbKUYqVa4EwwhiRCpyvAbClNp9uDZducDXRhYjJamMWwLTqdAfrcQcYK81QtHQGbM4EOLCyG3HGmyyvEnG5my+ur6RF8dKg+5qsJyta6dOeYp4uJ8jRhJUCbEqZolqlYBZbKucbxn/T0sVRbYMA5gGYbrGlrFK0UKX2jCDnuaGdFmyIst+OTguTNPH7Zw0S12VF5yDXEUm1dduQUvEhlN7FAOyv6OLq9ISfqVgdJbJEnBaQYae0WPqkbpxiiZlcpGCuY5FjVlpq27VBPkNab26UqeDHFeWxLRqhFkQQ/gmLiUbykN0uRZBBwcML3f+z0VmkZ6s+QgyhJapVUqlgs4vF4eO9738v73vc+fvd3f5dkMsnf/d3f7Wh137Is/tW/+lc8//zznD59uvH5T/zET9DX10dnZydXrlzhl37plxgfH+cv/uIvgP3tgFNHtVrlP//n/8yLL77I9PQ0oigiCAJut5tqtcqXvvSlHdUsbgdvx6Ln7eILX/jCA//udDr57Gc/y2c/+9n7btPX18df/dVf7Wi/98KhJAz3CrpqtRpXrlyhUqk8MKitFyq1EtshJcVikZGRERRF4dKlSw0L+53s41FIkurdmuqeFbttSbp1bNgfwlAul7l8+TKyLHPp0qXGS6EVL4idBPb3q1e4Fx5VhsE0TcbGxkilUrzjHe/Ydacwp9NJZ2dnIz2fz+cb2t7r16/j8/lwOp0YhnFgJArfz+RlKpnhj159i7l0jp5IgHSlyrFYlLRWYSAcxpBsJNtG1TVWS3kCgki1WsKwFEKyQt6uEVDc9HoDJPUSLlnmqWA7VTQm8nnOhzsQZZvvpWbwSAoXoz1MlpOkimVUUeId4S6yRoXZchqPLLNSSzPsacewbXyKzJu5esGzl6O+CJPlFbLGujb/XKCbmfIyJzx95IwyqmZxy9jcySiCU5LoVOMsVFfJ6EUGXFGStXWy4BAUjrh70O0qNdtgsjIDwDFPN3N3sg0AMSVOWPFi6zXW9DXW9DUiSpSkPtt0LmNKBzUzR7d6nLJZYE1fxiWKLOpjTa1RvVKQornxXZcYxifFUATIWEXSxgqwHrD1OI+R0poN2vxSB9lNHg4yHjxyNx7RS9VKUDIXsJxr6KwhG2GKxlRDGlVHh/B/xy3vPtO736i/8w7C730rWtXutU4YNqOtrY0Pf/jDOxrnE5/4BNeuXePFF19s+vxf/It/0fj3U089RUdHBz/0Qz/E5OQkQ0NDu5/4A/C5z32OT3/603zkIx/hy1/+Mj/6oz9KIpHg5Zdf5h//43/cEpO6J5Kkw4FDSRi2IpVKMTo6SiQS4dy5cw/sDrCb+oKd4mGEod7qs7e3d9euvo+i6DmbzbK4uMjQ0BADAwP7loqsS8P2Shjq3Ya6uro4duxYU1akVY7M2xn3QfUKexl3p9gcJFerVS5fXl+hvHjx4o4J6v0giiLBYJBgMMjg4GDDV2BpaYlqtcqLL77YVJi7X/s9zNiv31GxpvHHL11mPJmiYuiEfC7ymoZDkajZJslimeMdUUaTCYYjIURRZi6T5WJXN7eyKQrlPH0OB8uVEqvVEkcDQQq2wVwxx2AgSFB2kqiWQLKZKaV5JtSFaZuM5BewLJunA51YgsErmRkA+txBIqqLkuXiemGFp4OdjOXnGPbGEBFxyxJv5jd0/ef9fei2jmZZjBXnOObpYE5cAFtgwN2BR3Syqi9zo5hofOeEp5upyix9zh4kQaJkllmozVG1qpu2GWCmepu4oxOX5GFNS+KWJSYrGzIfh+BAEU2KhoaIRLujG6fgomKtkNSToNc7FjmQJB19E1kQgLDsA8GPIDgoGCnyZpKgHGdF2yABABGlm/QmedL690XckhObYQRBoWpmKZrL+BBJ6s3dTEAg4HRR2vqsr7aTXzrNZH7ykRv+3Q+WZTWe7QcNrXKgLpVKeL3ePR3zJz/5Sb761a/y93//9w+V+tZrzSYmJhgaGtrXDjh1/MEf/AEvvPACP/7jP84Xv/hFfvVXf5VTp07xr//1v8Y0zR3r3reDJ07PhwOHmjBsXsU9fvw43d3dD/3hPipJ0r32YZomN2/eZGVlZcetSLeilZIk0zRJJpOUSiXOnz+/I6nUdrGXou3N1/3UqVN0dnY2/la//q1YUd5OhmGzSdy96hXuhVZnGDKZDCMjI7S1tXHy5Mn7vjj340Vf9xWQZZnJyUlOnDhBOp1meXmZ8fFx3G53Q74UDAYfe5DzqLEf19m2bb569TZ/+vJlOqN+bq+lGIpHuLaa4ERHG6OJVY61RXF5FKZzWc7G2/ne8gInI1FOx9p5aXWBs20xMmaFG4Usw54AhmByOZ/Eg0C/y8NkIUXVMnm+vYuabVLQdYpGjaxZ5LS/g9lSBlswuVFYocMZoNcVZLKyzBvZFACnfDFUUaBN9XOruMqZQCfXSzN4JRf9rnYcosi14iTWna5E3c4wBlW67ChZscxCNUmn00fOuNNlyBY44xvAQschOpmuLOAUVSIOdRNZEBhy9yIIFh7Jx9KdNqrH3YPMVsebzmG/qxcTA6foY1VbZLE2x5Czh6zR7KPQ6ehmRbiFbQuElA5cYhCnJLNUG8XaZILQJveQ1K43fVcWVAQK2Fg4hAAeqRNBkHAICkn9zaZtVdFLzZq761q3KScoGCNNnwm2A2X1/0asvYNqtdow/Ku7FofDYdxu9yMP3A9qhyRoXYahXC7vesXdtm1+/ud/nq985St85zvfYWBg4KHfGRkZAaCjowPY3w44dWSzWZ577jlg/Z1QLK7/Bj/xiU9w/vz5lnRfepJhOBw4lIRBEASq1SpXrlyhVqttaxW3jsdFGMrlMiMjIwiCwKVLl/Zs1NUqSVKpVGJkZATDMBqBXSuwW8LzsNX7/cpe3AsPG3dlZYWrV6/S39/PkSNHtv3CbmUNw8LCAjdu3ODo0aP09vY+cE71OexnoFHvNd3f39/obZ5Kpbhx4wa6rjdlH1qR6v5+w/jKGp/5xnqbVBSBqmESD/uomQYnOtrIajWORqPkjBrtbg+CBMlqheFgGEu0EAWJ4WCENaOMR3YwILspCwY12+S5tk4yepkbxTSdipuALPBKeh4b6FW9eGWJxZrOW5kFzoXi6LbJMW+MZK3AXDVJVq/Q6wrT5QpwvTBLpbxex3XU24aJzjFPN7dLKxTMMmuVNSxsXKKDIXcnVbvIXHV9ZVSwbE56u5iszNHuiBBSAgjY3C5PYt7pUCQAfa4ws9V5OtVOXJKLklkira9QtjZakfap3czdKXIOyhH8cgSnKDNdvYa9yW9hyDXIcq250LhHPYJlm6iVOKa7QlJfJaoIpI2FJrKgCE4s8k3jqYKfDnUQwy5h2hJFM0HJuoVfilOwl9mKiNxB1mjOTjiFEGXzFg4xjkNsB2SqVo6o4xkylR7a2trw+XxNrsWpVIrJyclGV7O64d+j6JbTqlX8/UAraxh201IV1gPwL37xi/zlX/4lPp+vUXMQCARwuVxMTk7yxS9+kX/yT/4JkUiEK1eu8KlPfYof+IEf4MyZM8D+dsCB9fPU0dHB7du36evrY3BwkJdffpkzZ85w8+ZNNE3bF1nyXft9QhgOBQ4lYUin07z++utEo1GeeeaZHRmUyLL8yGsYVldXuXr1apN0Zr/3sR/YPE+3283a2tq+jr8Zu8kw5PN5Ll++jNfrfeDqfatazt4vsLdtm9u3bzM7O8uZM2fuKkJ7GFrlylyvLdhpQf1+4F6kY3Nv881BTt3V2Ol0NrVuPairlY8DuUqV//7qNV6ZWcCtKhiihcuWcTgk0sUKcbeXrFajbOj4PA6WEgXafW7StQoz+SzPdnYwV8xTKBcZjoQxaiYr5SJ+2aZN9TJdzpMzKkiCyEl/Gx5V5s3MIn3uIFFRZbyWYDGfR7EFzrrCJKp5VrQiPlkl5nLiV1x4ZRXN0rhVWqBi6fgkJ0d9cRLaGjPV9ZqDdoePopGjyxlFFRUWqilKVp7F2sbK/km1C1mQaXdEWamlMCwDS6g0yAIInPEdwaCGR/KyUFtGFiS6nUEyxgZZCIg+FBF6nMNkjAxJPQVIJOy1puC+TWkjUZsAWyDi6MQp+jExSepzaHYFnIAFsqAgC5UmsgDQ4eghq88TUY4iCgpFI4NTdLJYe5PNJnACAqoImtn8/mlTjjTIgoiKW+pBEnwogkDOmEC30mCmAVDFMMe9/w9est9svEe2uhbXa8/S6TSzs7OMjY3h8/kaBKJV8qWDUq+0FbZttyzDUCqVdmXaBvDCCy8A6+Zsm/Enf/In/PN//s9xOBx885vf5A/+4A8olUr09PTwoQ99iF/5lV9pbLufHXBg/Rp+9KMfZXV1FUEQ+Gf/7J/xG7/xG7z00ku8+OKLfPCDH9zVuE/w/YFDSRjcbjfHjh1rdHjZCR5VhmGz2/Di4iKnT5/etabwXhBFcVudmLYDy7K4ffs28/PzjXkuLCy0vKh6J+PX6z6203q2VYThXhkGXdcZHR2lXC5z8eLFXa027Tdh0DSN+fl5NE3j+eeff2wr9w86pnsFOXVjpP0wjtu6r4OEnczHtm3+18g4Xx+bxBKhZpqIiCTzJSIBDzeTaxxpD/PG8jJnOmIsVgvoeZMz8XZeWl7gZCRCXzjIPyzPczIUxeEQeSWxSIfLw1AoyOXUMivFGu9o72K1UmCikOId7Z2UTY1jvjZKhsa0mcGlODjhDiNYOqOl9RVyry3RJ6gs1YrMVtKEFTdOGaKKn25XlDUtz0JthYy+HsSHJQ/97jDz1TWmyquIwAl/nInyAqqg0OfqwCpVmdAXsPX1e8cpKrhlgYRWoVON4ZE8yCLcLN9sCvqH3V3MVCcRbYm42olDcGGQZ6a6UZi8XregUzQ2npsuwU1ECaNJHtb0FVa0FQRW6VTj62RhE3qdvazckR3JqASVHjyCj6K5TMmqUtLW6zMUwYlDKLGZLAB0qsdJ6c3Fz04hikN0IQpnqZo5iuYyZWuWNsexJufoOk55fxZF9D4wOJckqUEOgEZdUTqdZmxsDMMwCIVC+y5fOqiSpFa2ey2Xy7vOMDzsmd/T03OXy/O9sF8dcGB9QfXf/tt/S7W6LvP75Cc/iSzLvPjii3zqU5/iX/7Lf7kv+9mKJxmGw4FDSRicTueuyAI8OsJgGAavvvoqlmU1mP9+72M/jqNWqzEyMoKu61y4cKHx8HucTtKbYVkWN2/eZHl5mbNnz9LW1ratsVtVw7D5nOymXuFe2E8JVT6f56233sLhcOByuR4bWdhpALLV1Xg/jOMOInZyX95cXuPf//X3cCgS87k8g7Ew6XyFow43a4qIQ5LojQYpmwZPdcRYKOfpDwQQJEhVyzwVbaNk6yi2yLlojBWtiGDBhVgnC9Ucb6WW6JPcOLwOvpeYRULg+Vg3i5U8c+UcHS4vbS4n7aKT67lVRK/NSGGZQU8Ur+TAFDTGS6tgg2oLxAyJjK0zqSXxSA7anSqJWpljni5sG2yhxuX8hrfBGX83VVvjqLuX6coKZbNCSkw0iIAAnPT2YqBTs00WagnalCD6FvnPMXcfpm3Qow6xXFthtrrECU8fC9XFpvPZ5+pgoTZBRI7jkYKUzCJ+WWWy0lx7MOA6wmKtuV1qp6MPzSoTV05TsYqk9WUyeoKquErFyjdvq3aT3FL87JPayejjeKUeHGII0zYpmgl8cozlWjOJUAQ3Nat57gBRx3m6XO/Gtm1s2952AFyvK4rH4y2VLx1USVL9mX3QMgwHEblcjhdffJEf/uEfbhir/uzP/iw/+7M/C7Su29wTwnA4cCgJw15WQx5FW9V8Po+mabS3t+/aDflh2I+Avm5wFw6HOX/+fJO0q9VO0tupwahWq4yMjGCaJhcvXtx28Psoahjq9Qo7Mdu7H/aL4NTnNDg4iKIojW4Zjwt7Oaa9Gsft51weNQqVGv/9lat8d3yW9pCHgqbR1xakYhm0+zzogoWNjeIQyZSrOGQRJJtMtcpAKEBGq5EolznWFqammaRrFdoUN+0uD4ulPMu1PDGnFwkRw6iyUs5xPtKJKou8nFpvaXo62I4lGIzl1++hZ8Lr3gl9rghTxTXOhuPcKKzS6woTUjxU7Qq3ywmwQQI6TQWhaqMKDm4Ulzjjj6+TCyCuhuh2hpmtLpG9U9QclL1U7SKmYBGW/LQ7IzhFkWulDVM0p6igShYFvYYqqHSqnThFlbnqBDV7w3Rw0NXDTHXDEVrBwaB7EIsaTiHEqpYEkvQ7+1ioNZuutSudLN/5LCjFUfGRLxYoSSnKVq55W0eMxBbTtpjS1yALEg58cg+y4EESdDJGjrSxDKxnaEJyL6l7ZBGiSh8Zo5lEiDg44/vfgb2tmLdSvnRQJUmtbPe6lxqGg4iJiQk++MEPNjpebcbXv/51PvKRj5BIJO7z7d3D5nB3D9oJDs+b6G4cSsKwF7SSMFiWxcTEBLOz62nwU6dOtUwOsZcuSbZtMzMzw8TExD0N7urjt5IwPCyor5OZSCTCqVOndkS6WlnDUJeZzc/P77nTVR17lSTVayjm5uYac1pYWNjRmPt9n+6nzGq3xnEHFQ861389cptv35ymUKvRFnSTLJXxe5yslEs4HTI12ySTyxMNeHhjaZmzXTHG0mv4NAcn2iN8b3mBwUCIrqCPV1eX6PH66Ar4GEmtElRUTrZFuJ1Lc7W8ylORKIW8hiJKINi8lV7kbKiDqqmTM0osVfOEHS6O+9u4WVwhp6/LFJ6LdGFg0ueKMldOEQw6mCwlcAgSw54YTlngauFOxx8bhgQ/M8VleoUwVclCFSSulSYw7fXfqEOQ6Xb6kUUJQRNYswuEbR83yvNN52bI3YGNjVP0slBdZqGaIKjITWQhLAfIGIt4JT8RJYZm62hWlfnqBPqm7QJSgKyx0DS+W/ATkAM4JRdpfZWksU4solLoLrLQpQ6S0Jo7L6mCF5foQhWfomoVyRlLJPVZutTjJPXmLIaIhEiZreFDUO4jY2wYyTnFdlSxjU7nD+CRm00W9+M3u5/ypYNKGOpSqVa8i0ul0l3OzIcRlUqFUqnE9PQ03d3dlMvlRoFz3ek5mUy2rBbuSYbhcOBtRxhkWaZWq+37uNVqldHRUXRd5/z587z22muNlF4rsNsuSYZhcPXqVXK53APNu1otSbrf/Dc7Ed+PzDwMrSIMlmWxtraGoihN8q29Yi/B9dauUfU57WbM/bxXW1k3sB3juDqB2Ksr+aPCVCLD7/2v7+FwykyupemOBphKZ+lrCzKVyTLcHub62hpD4RAr1RKCIHCuK85ELs2xcJiKbbBWqXA+3sFSpUClpnMh3sVkOcP1TJLn2jpYqOb53uo8bU4X59vijGZXqJoG50IxJFHAo6hMFlJE3SoOSeJMsAPLtngrO49um7SrPoZ9YW4Wl8gb6+ThmVAXab3AGV8PE6UkqixytbC+YCIicDbQg2Zr6OU8M3aGkOWkrOUwBQunrdDpiOJ1yIyXZ9dlRgK0ywES+io2Nh7RTYcawyMp3CjdwtrUJWnQHWOuXqNgC7Q72ompftK6TEJPkDWmUASZmMNHfhNZEBEIKCppPUPM0Y8iOMmZOUKyl8lqc2DfJfeSESeaPnOJformIqrgwy93IAgyxTvfX9wiRfKIYbJGcxYCoMNx9K56BkUI4JaCOMWnMewqRXOFgpnCQmXAvVFs2kpN/sPkS7IsN8jDVnLeqsLivaKVUqlyufx9IUkaGxvj537u5xAEgXQ6zSc+8YkGUfD5fFSrVf7+7/+ed73rXS3Z/xPCcDhwKAnDXiVJ+x0I143jotEo58+fb3zeygfVbo6jrrl3uVxcunTpgSuxrc4w3Gt8wzAYGxsjnU7z7LPPEgqF9m3svaJQKDA/P48oily8eHFHnbkeht1KqIrFYuN6bq2haFXnpZ3gUez/fsZxqVSKq1evYtt2I6tYrVYfu3Hc1nNS0XT+5NuXeXViAcUpYhoQC/mwsOmO+tEsk66gj7Kh43E4sGQby7aRZREdE90wEWQB0RSomDoVS6fN7SZZKTFfzdPn9ZOoyCxU84DN+UgHmmDwamqBuNNLWITxUpKqZeKUJN4R7SRRKzBRTHHEF2a5mmXQG0FExCWLvJZdr0FwCBLnQz2s6XkWKlkWKlnOBbq4VpglrgZpc/ixbJMbpTkMe/055ZZUgqqKRwqgGyaztSSmVuWmudGNTbUl3JJIu9pJ1dSZr6xQU2rMVacbZAHghLef2cokPWoPiqiQ0NYIKm5ulptbow66upnbJE8KylE61HZKVh4DmYXaehaj19l/lzzJK/opbqolcIkB/HIMt+ggayyTt5IU7xQ6x5QeElpz3QOAT/aSMZqlgT4pRk6fwC8NIIs+TNugZCYJKnFWtct3jXHW/wkkYeNZ3UrCsBkPki/Nzc1x/fp1vF5vgzwc5BqGVhGZUqm07ZbuBxkej4cLFy5w69Yt3G43+XyefD5PrVajWq0iCALvec97+NSnPvW4p/oEjxGHkjDsBfspSbJtm6mpKaamppqM4+pBgWmaLSvO3G2Xoe16BLTK56GOrfMvlUpcvnwZRVG4dOnSntwk9ztYXl5e5tq1a4RCIQRB2FeyALubbzKZZHR0lJ6eHo4ePXrX9XzchOFxdSbaukJaKBS4efMmhUKBl19++UAZx714fZb/3+tjmLZNwO+kUKvhdclMJzMMxsOMJZIMtYWZzeVwyzJOl8zocoKzXe1cS63hlmUG20K8ubpM3OOhO+BnZG2FuNtDb9DPtXSSiq7RHwpg2BbXswkibiclXeNMMA4iXM8v4xRkzoe7qNgVXkrNANDrChBxuKmYOjfzSZ4KtnO9sECnM0ibw4skwhu5qYag5pQvhijY9DnbmKmsYdk2OuV1smBDv6udsOpksrzEQnW9RegxTwdz1XVZkBuVsODHNjQWtTS2vm4AF5S8FMx0gyy4BCf9rk5Mu4YoOJi98/0hVw/T1eZMwICzl5XaHF1qP4KgkNZTOESVicoY9iby4RV95Iy7vRFiagRN91Epa9hug7y5RlCOMbelSFkWHFjk2Cov6nAcJX2nXapHjOGUwti2hCxopM0EFWPDqM0thsnpzWQHoFN9FzH12abPHpf050HypevXr6PrOg6Hg7m5uT13NttPtJowfD9kGE6cOMF/+A//gdu3b/P666/zEz/xE490/08yDIcDh5Yw7DYgkmV5XzIMmqZx5coVyuUy73znO5ukD4IgtNSJGbafYbAsixs3brCysrLtLkPQWifp+vh1wpBIJLhy5Qrd3d0cPXp0zy/D/cowbG43+/TTT1OtVkkmkw//4g6xk6Jn27aZnp5mcnLyLpfrzXjchAEef6GxIAj4/X68Xi8ul4vu7u4DYRyXKtX4P7/0d+R1jZV8iZDfRapYRnFIJIslfD4nS4UCR2MRJtIZjrSFuJFK0ac4OdPVzq1MmhPRCEmtzHyxwHOdndzOp7mVTfFcvJNb+RQvry5yNBBGcQi8lVpGFOBdHb0kqiWmillOh9rI6WX6RQ+rgoaGxnghSZcrQLcrwFQ5yeuZ9dX3Y94ITkmk393GRCmJV3YwV05gAwPuNmKql5ulOcrmuuzHKztxSBYOXPS7YixVM/gdKlcL041zEFeD5I0cw55eNMtgtrJCwOtpFEYDSLaAahjULJMuMY4lQckukdCXKZiFxnYhOcDapoA/IkcJyWE0ClQti5nqemDuFJ04Rb2JLABEHAFWtBmcgoeQEkcQFFyCxFz1DjFQARPcoo/cpiC/jm61j8QmKZKME5/UiSQqBOSj5I0VsuYamGt0Oo6Rugcx8MtBslsyEbLg4oz/Z+/a9qDUCmwl5zdv3qRcLpPJZJiamnqgfOlRopXtXr9fMgywLqseHh5meHiYf/iHf2BhYYGBgQEuXLiApq3/tlt1DZ8QhsOBQ0sYdov9kCRlMhlGRkYIBoP3baf5KGoAHjZ+pVJhZGQE27Z37C5dD7pbVYdRJyS3b99mZmaG06dPN+zu92PsvRIGTdMYHR2lWq022uK2yptiu5Ik0zS5evUq2WyW5557jkAg8MAxHyce9/43oz6Xx20cZ5gWXxud5dWpBLLLQdDrxBAsHIqE7BDxuVRqtokggNfhQLNMIh4XFcvArSjIiohpW8iSSMnSCapODNtioZynzxsgW6synk8Rc3no9vpImWWWsgWeDsWQFZG/X13X+58ORVFkgZViEcu2OBNqw8LmmK+d1UqBeSFNSivTrno54o1wu7zMVG7dk6DXFaRklTnp62K1ViCnVShbhQZZ8Ekqp/wdrNayzFfXWK5lOePv5kZxBgBVUOh3x5FFk+lKllRpPfAfdndxq7RBKKJykD53Oyk9RbaWYN5eRdBt2m0POTbIgiyIBBUnouBBFhTW9BRrehqXJLOiNbcm7XG2s1CbbPxfwUG/6wgmGgG5k5SeoFibISiFyZC+6/pFHSES2mTTZ21KNyUzSUQ5AUiUrBw5Y4WwJLFUu9q0rVPwUTCm2Yo2xzBZ4/pdnx/3/jPc0t0LPAeFMGyGIAhIkoTf72d4eBjLshrypXpt0Wb5UiAQeGT1Dq2USpVKpe8bh3qn00mxWOT3f//3+S//5b8wMTHBhz/8YS5cuMB3v/td/viP/5hPfvKTPP/88/u+b9sWsA9xIL0THObjfEIYdoDN3YWOHj1Kb2/vfQOjR+Fj8KDxk8kkV65cIR6Pc+LEiR0/MOsP81auziwuLiIIAhcuXNjXVZq9Eoa6o7Tf72+qV2jVqv12xq1UKly+fBlJkrh48eJDJVtPMgzN2DqXR2kcBzA2m+D//VevgKUjqyIhnwtTsPG7nRiCTUU3CPlFppaTnOmJc3U1SXfQR02wmEgkOd/TwZVkAlUUGWwLcTmxSrvHTZffx9VUAtOy6PB7sWs2y+UCYY9Ku9ODaVpIssCba0ucDrXjUxxcyS9RMQ3ckky/4GJNK7NSK+KRFOJuNy7ZQdjhZq1WZKqySlavINgCx31tKLLIeDHLcrWAS1LodLlYqeY55u1c92OQBd7IbUiDhtztzJQXOeLuQhREZsqrCILO7fJGMN/uCLKqrdLuCCOUbAwXhFUvV4vNNQEnff1MVtbHdttuXLobFYElVjGFjWfhMfcgM9XmeoRBVz9L1SnaHN24RA9ls4Ju15ir3cKwN4zcBMAnK6zpWtP3e9QhEtpNBFsioHSsu0HbJiZZskYaNhGMuGOANb25gxJARImR0puPSRZUdGsV2xZwSW2oYhRwoIhejrh/7J730kEkDLAemNefS6IoEgqFCIVCDA0NoWla4/dVz+4Fg8EGgWilfKlVkqT6osP3Q4ahfk99+ctf5s///M/5whe+wFe+8hXS6fX7+tlnn+WFF17gjTfeaAlhsBDeNm1VD/NxHlrCsBdJ0m5qGHRd5+rVq+Tz+Qd2F6rjcXYZmpiYYGZmhpMnT+7a4K7+QmoFYcjn86yurqKq6p4Mz+6HvRCGeq3H4OAgg4ODTS+xVvo7POheTqfTjIyMEIvFtk3+HjdhOEgZhu2gVcZxhXKN//btUcaX11BkkULNQhAhUSrj9zhYKRXpcfqpYFDUNHragkxns5zpaufVpSVOtUdxxyJcTSY43d7GTDHLWCrJO+JxxrJrvLKyyNPRGDmrwhvJZfyywlOxGDeya0wVcrwj1oFpW3S5fZSMGnPVNAHFyUm/H1kWeCMzDzXwSypnIjGmimvMlDP4ZAcRp0rFMjgb6GatVqJs11goZNbPlyBwNhhHt0xyepUbhWXOBbsZu5NJEGyBQXcMvyyzpkvcKi0BcDbQw81NmYROtY121cdK1WK5lgYZ2gmyvMV0rd/ZQcWqMOg6QkbPkdRTRP0RlrXZJhO3kBlgdlORc1huIyRHsOwSoLJcW5cuiQh0Otso6nrTfgZdQyxtMm2TbQdOPYjsVAjKA2SMFZL6updCn3OYlNZc+6AIDgxrja1oUwYaZMG2BTxyDFUM4xa9lMwEJjpZIwOsn993R/4vROHez92DShgeNC+Hw0EsFiMWi2HbduP3lU6nWy5felLD8HDUr913vvMdfuAHfoB/9I/+EX/0R3/U6LoXCoUol8uUy+XW7P+JJOlQ4NASht1iN4F8LpdjZGQEr9f70O5Ce9nPTiBJErZtNz2kN9dV7HXVfjNh2E8sLi42Wl/6/f6WFIXvJli2LItbt26xsLBw31qPR+UgXYdt28zPzzM+Ps7x48fp6enZ9piPmzDAwcow7BSbjePq3WFSqVSTcVw9+3A/47hvvjXBV1+9SdkwUF0KK8USYbdMsqzR3xEgUS7T3xYir9eI+b0IkoBDFGnzuclpNWLedZM2RZYIu10sVQp0en34dZVrmSR9/gC9/gDzlRyWbfHO9i4SWpHvrc7jUxxcindxPZckq1Xp9vgJOlV8toPr2QQ9Xh9vZBZoRyXuCyLINi/fKXhWRIGnQ3FyepWlYp6stsRRf4TbpVV8spNBdxSHBG9mZxrHesIX40Zxlm41QkDxkajm0Klwrbix8n7C28nN4gzdznY8koeVWga/rHKtsJGRUGwRRTTJGxqq4KDTGUcVHST1ZXLahqNyQPKSNRJNZMEpOnFKIm4zjm6YFMUiSSuNYkHabq4PGHQPMl9rzgKE5Sg5fZm44wiCoFAyC6T1VbyiwFytWTIUkmN3+TAAdKp9d7k8u4U2nKIPWXmamlWmYK6SNlL4JYmcfguL5gWsHucl4urZu8auYycuz48S2yUygiDg8XjweDz09PS0XL7USsJQLpe/LzIM9edXtVpt1GNWKpXGgqOmaWSz2YculD7B9zfetoRhO9r8zQHb0NAQAwMD2145fRSSJNh4SGezWUZGRggEAvuyai+KIoIg7NsxWJbFzZs3WV5e5uzZs2QymUYh1X5jpxkGTdMYGRlB07RGvcJ+jLtd3Cu4tyyL69evk0gkdtVi9nEThsOWYXgQtnaH2WwcNzs72zCWqxOItXyV//A/X8awLXK1GuGQm6pp0RX1ky0WCXlV8rqGLItomCQKJYY7IowsrXK6s41EtcxKsci57jhjySQuh0Jv0M9YKokARL1u8qaDVK2CwyEy4Asyk8+S1EuUDJ3z0Q4kUeCl5DwSAs9E4uTMCqOZFQCeiXRgYDHgDjNVStMlwZX8CmGHiz53GEsweTk90zj+Z0JxdNvkpLeD8eIqkmAzmt8o/u1zhfFIDqJKiNlKBqGS5rQ/zu3yHWM0G4bccVRRxif7mamsAWuc8fVyqzzVdK47TB9eyYtL8rBQW2WivMCQu42csUEWBCCqelisZRBtiZgaxyW6kUWbqcoEtmDDncdfn9RJwp5t2kdYDLNYWycpHjFAUGkDW0QQKqxoq2Q3FVTHhC5yykzT9wVAFaFsNT8bw3InRWOZsHwUUXCiWVVyRgKvEmN+S2clALeokrWayYIkqDzj/9/u2nYzDnKGYTeBeavlS62S1WqahqZp3xdOz/X76Ud+5Ef4j//xP3LlyhWy2Wzj889//vNYlsWZM2dasv8nNQyHA4eWMOw2IKk/OEzTfGB7TMMwuHbtGplMhvPnz+/YzfFRZBhgfZ5LS0uMj49z5MgR+vv79y1Y268AuVqtMjIygmVZXLx4EbfbTS6Xa1nb1p3MO5fLcfnyZQKBAM8888wD74lW1jBsnm+tVuPy5cuN87WTYvXNYz7uFf7Hvf9W4V7GcalUipnZOf7z117meqKC16tiiiKRkIeFbJ7OqJ/xlTXiASfTuQKnAjFGlxOciEdRnDJLhSJP98R4dXGRp+NxREXgjeVlzsZj3M6leW15kXPxOIuVAq/dcXCOeT2MplZZlUqcjEbRbJO5Yo5ev48buSTPRjvJ1Cqs1PKsVIuEVRcn/FFuFFfJ3nFtPiK5qNo6pwJxbuQTDIg2V3Lr8qG46mfQG+R2aZWMvi5FOOWPc704j0dU6fe0Y9oWaT3L5fyGDOdcoJvrpRm6nVH8spe0VqRkl5gtLjW2GXC1M1meWd+PI0JQ8eMUZa6VxqGaaWx3ytvLZKW50PiU9wimrdPl6GdFW2W+usIRd99d27U7oqSMZmmT0/bgqKlgR6gpVbJigaxRYMg1yJI207yt6KbC3V3RepzDrGrXkXHilztwCG50y0CkTNookN1UlO2TIqTuUc8QdwyT1e8udD7p/ad45Ae7x1uWdSAJ+X4VF++3fKlVGYZSqQTwfUEY6vfTT/7kT/Ld736XX/zFX+TKlStUKhU++MEP8o1vfIPf+73fa0n9AjyRJB0WHFrCsFvUA8IHEYatBme78QR4VBmG69evk8vldkVqtrOPvR5DXX/f1tbGyZMnGw/uVhrDbXfser3CdrNHrZrzZqlTncCEw2FOnTq16xfd4yYMBzGgaQXqxnErOZ1vjs+xUhLxB9wsZQqoTpHVYgGnSyFdKNAZ9VGp1eiP+MlpGsOxMFm9RrvXgygLFHSdoVCIrFEh4HQyFApxK5uiNxCgNxDgRi5FSHVyqaObm/k13kgum0xirAABAABJREFUczQYxumQeX1tPRh/Z3sXBgaGbXE7lyLocuCRHJwJdmDYBm/mFtAsE7+scjrYxnh2mWxxPfB5NtzF9fwST/k7KZs6XkXmtexGvUGfK4gqCQx7O7ldXOVGYYkBb4iUvhEgP+XrAgFCSpDZShqBFCd8cSbLicY2AcmNV1bwy30ktAxLtfR6QbTRrP3vd8aZqkwhI9Hh7MAhqAjArdJEk4lbSA6Q0JuJgSxIOAQTS3ITktsAkYyRpt0RZrbaHMC7DA8r1QnYEut2OGIsa3eKp22BgBzDI4WwbROP2EXOSFDR6sZvwyS0u1uu+mQvKX1ly9xUqubdvg8eKcZJ74fu+nwrDnKGYb/ntR/yJdM0W9IOtFgsAnxf1DDUIQgC/+k//Sf+x//4H/z93/89MzMzhEIhvv3tb3PhwoWW7fdJhuFw4G1HGB4mtVlYWODGjRsMDAwwNDS0p0xGKwlD/WFVrVb3bHR2P+zFvM22bWZnZ7l9+zbHjh2jp6en6Vy2kjA8rDjZsizGx8dZWlrakTdFq4ue6wRmPzJFuyEM+00yDkqGoZXkpVLT+eOvvsHUSpp0pYrbrYAsE20LICsiPtskX64iiBarmSx+l0y2poMp0ebyMZda4x29XSwWCuSqVY7GI9xOp7Fsm6jPharLFHUNJBj0h0jXKtzMJ+n0+Im7PRiixZXMKkf8YTo8Hr6XmMPCxi3JnIm0s1QtMFHIMOQLsqrn6XYF8CpOJNHm9ew81p0agPPBDmzbQhYkruSWOOZrY/xORqDPHaHd4WO+luBKfqMm4Vygk7HiPHE1SLsjgGEbzFRXqFobUsOn/b3cKE0jI9HriuEQFAzKjJc2mZZJKgbVhiM0QEQKEFDcyGIvS9VVpsvLOEWVoCI3kQURgYCisqytG725RQ8RpR2/7CShLZE1imSN9WdlhyPO/KaCaLgjb/J6WNOzTZ/7tQglSgSsPnQ0KlKeNT2JS3KxUmuWUXlEPxm9+bP1/Q3d03MhrgyQ0W/jlfpwiD5sRKpWiXP+f9bk6Hw/HGTC0OpWqbuRL7Uqw1Aul3G73QfyWuwVP/7jP86P//iPP7L92W+jDMMTwvAYsJcg4F7BvGmaXL9+nWQyyblz5xrdUvZzH/uFlZUVrl27hiiKnDx5siVkAXYf1G+Wc92vo1SrMwz3O/e1Wo3R0dFGvcJOemi3qugZ1jMLa2trOyIwD8KTDEPr8dr1Of7zX1/G5XFgSwLhoJuSpqGqIquZIm1hL0vpEvGIj9lUlsF4hNGlVQYDbmYqZSpalT6fm+/NzfNUe5SaIPPywgJnO2IsV4q8trLMsUgYSZa4tpak0+OhJ+hnqWxzO5diIBTAIUoc8YXxOhReTMziV1SOBaLkzSovJteD8i63jza3G6o2k8UMx/wR5sspVFEiZqm0BUNcLSyi3wnYu10BqlaVU/4uktUiy5U8kmixphUbx/6OQC+WYNGpRlispikYVQIOuYksHPd0YNoGR929zFYSTJSXOevvYarUvOLe64owU16g2xlHK9QwXQJBh5OxYrNzc787ykxlpumzY54BanaNfucwWT3Pmp7CJ2ncKk82FUTLgoxNtYlsAAy5hliojROU2/FIISygZBSx1RwpO7+RdbChXegiod1NDMJKmOQdZ+o6FEGlYq0XWjuFIG6pDVFwIqGQNecp2RYlY0Oi1aGeodf13F1j3wsHlTC00u/gfniQfGl6erpBFCRJolar7eu7slgsHhg36/3Eq6++yl/8xV+wuLiIJEkcOXKEj370o/T19bVsnzZwQNaXWo7DfJiHljDsBVtbqxaLRUZGRlAUhUuXLuF0Ove8j1Y4JW/u5PPUU09x8+bNlgXdsLtjKJVKXL58GYfD8cDMR6sJg76lXSJsyH2CweBD6xXuhVYE4bqus7i4SK1W49KlS/uW3j4IhOGgZBhgf7Md2UKF//GNK4wvruHzO1krlHB7VQrlKmXLQHHJaIKFKAq43AqiKNDTHqBmWRyJ+ElrNY61RanZBrphMOD1MJ1PEXaonAgGuJFZo9Pn41JXD2+tLWNYFs/FO5ir5Hg1sYgiClzo7GYyn2GxXODpaDsZrczZSAfj2TXKlsZ4fo2408uAN8R0ZY3XUusFyH2eAIoMJxxxbuYT5G2ddGkF3TZRBJETvji2aHCrsMpiNYeAzVPBODeKS/hlF/3uKE5RZjQ/1chOiECP289keRmX6KDPFUMVZWaq85TNWuO8Hfd0NrVU9Ugujnq6qFhVHKKTueoqKHBS7WOi0hyYH/X0MFOZQrRF4s71ImdJEJmoTGBuykw4BAWTYhNZABhw9TJ3x5tBRiasxPFKfmp2CVHwkdDToK9nT4ZdgyzW5pu+70ClbCfZ2kI9rvSR1NezFrYt4JXbcIkhPKKHspWhikDOLJAz12VfHWovRbO5LkJA5ELg//nwG+8ODipheNzzup986fr162SzWb73ve/ta/el75eWqpvxP//n/+Rnf/ZniUQiHDt2DMuy+OM//mN+93d/l7/8y7/kh37ohx73FJ/gMeJtSRg2r/4vLy9z7do1ent7GR4e3rcHnizL1Gq1h2+4TVSrVUZHRzEMo9HJ59atW4/F6+F+SCQSXLlyhe7ubo4ePfrAc7kXudPDcC8yUm/nutNuVw8bdy+o18rUdfD7+fLZTcBuGP9/9v48OrL8rO/HX3ere2vfF+3d6n2fXmameww22OCxTfI7xIYcfmwmAUMcG4LhgHMcOEBYHBzW5LDkl4DhJHb4fgETEpt4A9uM7ZnxzHSr901q7VJJqn2vu/7+qK6Sqks9rW5JPd2eeZ+j062rW597a7v3eT/P837eZqdl7w2sjy88f4OvXZhisVDG5VYwDYeGYxNSJURHIqGpmI5DyOvGlkC3bFyqRK7UIOBxYeNQbOrscLsoVQ3qjk1fxE+zKiKIUMckJinUqlUu1MqM+vw0cLhVzdMwDU7F+2lg8I/pGXDgRDxBw7GYrpaYqZY4Fk1gOBaHQgnmqkXmmwWWm1U8ksyhYIqcWeZqqRWwRhQ3ttAk5vKxx5Vgupqn7jSYLK9qCU5FhjAci73ePsaryyw3SzTsWocsABwPDWFistvTz63aMhO1NH2ap4ssxF2B2+ZsYcJKiIrZwMHmSnWiK+APWx4m691TjfpdcVyixKA6wqK+xEwjjSLIxFzerscCjHr6u3wYAPpcrUrHkLaPqlUlo6+woC8yrEFa7yYGKaWPheY641K1IRb1Ne1FtojL8lOv6WjyCLZiURcKZI08IVkmZ4xj031uKdcouXUE0Pu8byesbDx7+1oH5nfDw2hJuh+025dcLhcjIyOEw+FO9aHdvhQMBh/YnLFNGL6Zrpc//dM/zfd///fzO7/zO13b3//+9/NTP/VTvPzyyw80hONesBEQHmNDs/vBG8ZtrwE225JkGAaXL18mnU5z7NgxEolXn0zxIMfYqmA+m81y/vx5YrFYlxB2O4Nu2HiA7DgON2/eZHp6miNHjpBKpbZs7QfB2rXXjnPdbKvZVmbNl5aWuHDhAjt27EBVVZaXl+/9oPvA/Zxr28H8+vXruFwuotFo5yZ6v1WYBzn+44B0pswf/79fp6TrIAkobgVNUzAEm7CiUTYMBBEKjSa242DLUMiXCAXcjM0tcWQwyYX0EhFVoS/o5euzcxxOxjAli5cWFzkYj2GLDlezJfZGwvhUF8V8loVaBVVyCEsK87ZDxawzUSlwIppClkQuFNI0bQuvpHA8nmSykmehXkaVJIb9ASzH5nion7laiSWjyHy9CEBQUtkfiDKRTzNVKzBdy3MsnOJyeQHREdjjTxBzeThfnqFht6p1HklBER2yRhOvqDLiiRNQVMbK45jO6nf5oL+/o1EQERnRkoRdKgu6w0KzyEKziFtSiShyV8Cvii4cx0AVXaTUBCCyoueRJbhW7Z6AtMszyK07piLt0AaYbtzEJwWIKC2hc9WsojsNlhoL3Y93jzLX7HaDlhARhUZPdSLoRKlaBZKufYBE3aqRd5aJ+QZYaPZOOhJ1G1vuvvZLgozuZHv2VQUfJwPf37P91fCoEobXoiVpI2hrGBRFuWf7Ujgc7lQg7tW+9M1SYWjfK0VRJJ1O81M/9VMAnfhFkiQ+/OEP86d/+qfb4psEb4ieHxc8toRhs7h+/XrHafh++tg3iq1oSXIch8nJSSYmJti/fz+Dg4NdROlhTGK61/q6rnP+/Hnq9TpnzpzZ8Ii57RY9O45Ds9lkbGysU5XZ7Pu8FefsOA4TExNMTk52yNXc3NyWB9cbDdht2+by5ctkMhlOnDiBZVmdG+jly5cJBoMdjwGfz3ffRH0jfiePMmzb4f9+9Sr/8I1xZE1GkAUcSUR0YKlcIRzyMJsrs7MvzM3lLHv7Y1xfybIzFCJdtZElkSODCWZKRQ6kYiyUi5iOzZOD/VzNr5DwenlmaJCXlxfRZJk3DQ5wNrtEtWS0RqcGvJzPLJE2dQ4GQxhNHcURWCoVyAs6YZfGgKfl2vy125oFlyhyOj7AfL3EVKXAglhiNBhkvJzhQCCBIojYgsWL+VXh8cnIAHmjwrHAENO1HLptcq48jX7bJ0AE9vljOA74JTcTtWUKRpWZ5kIXWTgWGGSyNs8ezyACErP1FbyKwoVKd4vRqCfKRO02qXBE+rQEMdnHTGmBklWjVGtl/tcbq7pD62dyTctSSA4RkSO4JBufHaVgFiiYrRagvZ5Rpu5wjfZLflbWmWg06t7JfPMqPimCT4oiCArFWhFLbLBiZMBYrbwEpSjpOwgHQEoeoWCP92yPi8Pkrd7qwvHA96GK92f89Sgat91pIvooYb3Kx6tNX2oPPvH5fB0CEQqFetZoaxged6x9z/7Vv/pX/N3f/R0/9mM/1pksZVkW58+f59ixYw+cQLoXbEdAeIwD6fvB4yzuft0RhqWlJcrlMuFwmFOnTm3bBU6W5U0F84ZhcPHiRUqlEk899RTBYLBnn+0MuuHeFYy1HgbPPPPMfV1MtrvC0Gw2ef755wmHwxw6dGhLLnTtIPxBg2DTNDvv6Von7u2YvrQRwrDW7+H06dMd9/BoNAq0nD7XGpRJkrTh6sOjRBIe9FxmF/L89RcuMJctIbtlarpBSddJRH2UagbRqBfdshlOhmhYJgOxAHXLxKMq2CIYto2iSDRtG8OyQGoF8xYOZavJgN8PosB4McfhWJyaZfJyJk2/x0c06mamVuTl5UX6PV6GQwHOZlrVhEGPj5BLRjMkJusV/JbNuF0lqXjo9wYQZYHnVlptPSJwIprCwiamerlaWuZkpI+xYkuQ63Nkjsb6WWgWmKsXmKZAzOWlbFfRbRNNVNjlTeCXFc6XpjvCaI/kAtGgYbaqDwHJw05PAt1uYNhw7faEpUP+Aa5Vp7pe18P+IZb1FXZ7dmDZNnONFdySysXaza470pCWYLI+2fVYj+gGbHa4d2I7kDFyZIwSMVeQiTt0D32uVE97EkBMCbKgt7weNMFLWInjFr007DKiECJrlsmarVGxKfrJC72VgYDsYdnodo9WBBc661QRbC8FbiGZAWQngCJ7EGUBVfax3/OOnv3vBdu2ty1we1C0rzWPUktSGxuZknTn9CXDMMjn82SzWa5du9ZpX5JlmWq1ylNPPUW1Wn1gD4aPfvSjfOpTn+LatWud8e2/+Zu/yb59+zr7NBoNfvZnf5a/+Iu/oNls8uyzz/KHf/iHJJPJzj4zMzO8//3v50tf+hI+n4/3vve9fPSjH93w56PRaPDjP/7jpFKpjsPzv/k3/4aZmRlOnz6N2+3m7Nmz/Lf/9t/4L//lvzzQc90IHOd1JHp+jJ/no3XVuQ/cbxCwVjAcDAaJx+Pbmg3ZTIWhVCoxNjaGx+PhmWeeuesM6YdRYbhbINvOwjyoJmA7CUOxWKRQKLBv374tN7KDB8ua12o1zp49i8vl4syZM13v6Xa079xrzVKpxNmzZwmHwxw+fHhdobjb7WZgYICBgQFs26ZQKJDNZu+r+vA4Vhgsy+av/u95Lt1aolRv0HAswl4PoiOS8PuoGQbhkJu5XIn+eIDxlTyD0QALpTIel4ysSlxaXObwYIKxxSWSPi+JsI+XF9Ls8HuRZZErKxkOJ+K4VIlCqUlA03EpIjv9QZbrNeoY+BUXiagXRRF5fnkeTZR4Kt5PWi9zudIKeI9HkzQtnVFDYrJRwu843HJqiE6rIhByq7ycXx2feirSz5XSIkeC/TQMg2q1zLnibIcIqKJERFPRRC99aojx6grg8HJxNRgXcNjpDZEzKhzyjVA2m+T0EovNFXJrPBmSapC5ZstvQHREBt0JwoqPrJElp9fI3c7yR5UAC81uXwJNVLCoYWO3KghKBNsBRXCYaNxRrXAPMn3HNkmQcIRmV3uRiMRObRRBsOl37aFkFiiYOSrWLMPufpbuqDr4xSAluluZAAbVnSwbvURkQN1BWr+MJobxSlEkQcNybFRRYql5DUuuA/XbHzIYWfgnXF251vkObdQr4FHM5LfvQ4/aecGDtUopikIikSCRSHTal/L5PJ/73Of4yEc+gqZpxGIxwuEwi4uL9PX13df6X/nKV/jABz7Ak08+iWmafOQjH+Htb387V65c6VQtPvShD/GZz3yGv/zLvyQYDPLBD36Qd7/73Xzta1/rPK/v+q7vIpVK8fWvf53FxUV++Id/GEVR+I3f+I0NnYeu6ywtLTExMdEZ1X706FH++3//7/zRH/0RhmF0Jkz94A/+IOl0+h4rPhjeaEl6PPDYEob7Qb1e5/z581iWxZkzZ7h161bXlKTtwINWGNqB+OjoKKOjo68abG3HJKZ7rW/bNlevXiWdTm9KE7AdhKGtV0in0/h8Pnbu3Lml67ffi/u9YWezWcbGxujv72ffvn09j92Oca3tc10vYE+n01y8eLGL7N3r+KIodnp74d7Vh8eNJLQxMZ3h43/5Ig1aYmXFo+BWNTKlKuGwl+lMgVjEy1yuRCDgZr5YZkcyxK1sgV2JMFdXMuzwh9jTF2U6X+JYf5KJUgGnKfDMyCDfWJzHa8t8y8gQL6YX0C2Lo8kEFUvnUiZLWFXZm4iSrde5WcxxMpViqpLnVLyPTL3GdL3AcqNKyKVxMBRjvJplpXHbeC3ex0KtxGElznS1gNmo8Y3Gahb8iWAKGwdRkLhQWCSpeqlLTQzHQkRgjy9B0OXiamWRmtUajzrkDjFdX12jTw0x4omw2Myx3Kyw3KwgAvv9cSZqq0G/S5SIKCqy6MNyHGYbK8w3cphOg2V91cuh5aPgYq656u4ckLzs9gxSt2sYtkBGL5LRy+z2DjHR6K44uEWNitVt+Aawyz1CxlhiUB1FQqZq1aiYZZb1BWp2pWvfne6dLOi9BCDqCrLY7F5bEVzU7JZoXMaFX06gin5kwUXVyuMQ7PJ+iCsDZI2pnrUH1SM8s/v/Qzab7WqBaZOHYDB412vMo+j0vLYP/lFCu1VqM5WPte1LP/qjP8oP/MAP8JWvfIVf+7VfY3JyksHBQQ4dOsTb3/523v72t/Ot3/qt9xQGf/azn+36/c/+7M9IJBK88sorvPnNb6ZYLPInf/InfPKTn+Stb30rAB//+Mc5cOAAL7zwAqdPn+bzn/88V65c4Ytf/CLJZJInnniCX/3VX+XDH/4wv/zLv7xhAvq+972Pd73rXTQaDbLZLD6fD8dxME0TXdfRdZ1arfZIVo9eD9hINerbvu3b+MpXvtL1uJ/4iZ/gj//4jzu/b7YaBa8DwrCyssKFCxdIJpMcOHAASZK2PTMP9x/MW5bF1atXWVpa2nAgvt3P486WpEajwblz53Ach2eeeWZT0xK2mjCs1Svs3buXhYXezOBmsbbCsBGsNa87ePAgAwMD6+63XRWG9jms/f/4+DhTU1ObFvrfq/rQbrcql8sEAoHXPMC51+trmBb/63MXOXdlDlGTkGzI1ur4/BrZcg3BJWLYFoGAhiyJhAJuHBxiAQ9NyyLqd1O3TTRFBqk178OlSBQMnZTXi4XDrVKenT4fSPBiep4D0RiqLHExt4xuWZxMpsiadV5It3ruz/QPULN0Cs0m43YOv+bCJ7no9/hpWiZn8/M0bQsJgVOxfkpmk3SjwmKjwrFIgivlRSKKm5TkxTB1rpTTmLcz7h5JRpVBNhX2BPqYquXwKgqvFFcnFPklFQeDmMtPWPGx1Czjk1VeLo53yYKPBQe5UpkCYECLEVJ8KCJcKt/q2u9oYJAbd7QnHfIPM1OfZ6d7CNEWSVdXiLsjXKhc7drPL3nI3tECBLDDHWeqcQvBEYm7EngkPy5BYbk5S8mqUDBWycEezw5mGt36Ak10kzd7XZcH1REWm6v7esUQXjlCQA5Qs0qYjkrJzFHV00CaYW2YFaNXFyELvYkpAYFnQu8l5AoRCoU6BmRtAe7ly5exLItQKNQh4G63+4ETFg8DbRLzKJ4XbG2rlKZpPPvss3z+85/H6/Xyi7/4i/z93/89X/jCF3jf+97H0tISzz33HE8++eSG1ywWW8MI2gmZV155BcMw+I7v+I7OPvv372d4eJjnn3+e06dP8/zzz3PkyJGuFqVnn32W97///Vy+fJnjx4/f87jj4+P8+3//7/me7/kestksf/AHf8Dv/d7vbfi8twpvVBjujo1Uo6BF/P79v//3nd/Xaja3ohoF38SEwbZtxsfHmZ6e7gnWZFled07/VuJ+gvlarcbY2BiCINxXIP4wpiS1n0N7UlMikegQr61ae7MoFAqcO3eOSCTC4cOHyWaz2zKhZ23gfS9YlsXly5fJZrN3Na9bu+52aBhg9Vzvpp+4Ew/SQrRe9WFlZYVSqcS5c+eQZXlLJi9tF27eWuZ/f/Ey6WwJUwLFgZpponlVHBF8AY1qU0d0iZTKTQJ+lWtzWQ7tSHBpcYXhWJCKaTBdLHJwIMH5xSUSfg8hn5sL6WUOJmO4FImVQg2Pz4MiSsTcHqqGwUytxIFonJV6lRWjxky5yOFogpDq4rnlVgDqlWSOxBIs1itMlHLs8AXJmlWCLo0hTwgbm3PFBYzbn6G9gQiKJLLPn+R6aQVZkzAlE9NufRbikkYchXSjRhGDdHGeA/44F0qrAe+IO0Kf2890Pct0Pc90PU/c5WNZr3aRgL3eBIZjcMA3zEIzx2wji1/WuFbuDp4P+AY6ZEFEZEBLEpZ9lMw8ddtkotbyiVAFhazRWzHo00JMNVbXdAsaI+5BwCKhDLGirzDfXEEkw4AWpWSVuh4/qA70kAWAQS3FbHNNdcERCUsxNMFNn3qQfDVPXaqQs6o4gkpWn8GimwT0qcMsrWPoNqjuIrOO0/N+77cTdQ13bXO5XKRSKVKpFI7jUK1WyWazrKyscPPmTVRV7VQf2uOPHyU8yhOSYHu0FdVqlUQiQSQS4Xu/93v53u/93s7EwOHh4XsvcBu2bfPTP/3TvOlNb+Lw4cNAqwrscrl67hvJZLLTFpROp7vIQvvv7b9tBOVymampKaanp3n++ef5r//1v/Kxj32MZrOJLMtIkoQoip2f7cIboue7417VqDY8Hs9dJ1RuVTXq0bpz3wdeLahpu/k2m811gyNJkmg0Gtt6fhsN5peXl7l48SJ9fX3s37//vr6UD6PCoOs6k5OTjI+Ps3//foaGhrZk7XYbzmZ73Nvl/D179jAyMoIgCNsSgMNqheFea7crMQBnzpy5pxHgdlcY6vU6Z8+eRVGUHv3EdsDtdtPX18f4+DjPPPMMlUqlq/oQCAQ6BOJBJi9tFXTd5JN//TI3ZzNYooMuOnh9GnVDx+vXWClV0TwKDd2gbtsIuoAlORQbTQZSQWYLJQ4PJXhlboFDfQlkl8hENseJoRRjS8tULIMzOwZ4YWEex3E40d/HzXyGXE1ndzhE2KuxmK1wPZehL+jDp7gwLRuXJPLc8gxhVWNvIELRavDVpVawnHR7iXs9eE2Fq4UMbkkhY1QwbJsRb4gBt5/r1SUmaq3rm1dS0GSRignHQwPk9Boxzc1Yca7zOsRFjZnaMnHBTUjxkLHrhF1uXiqstv8ogkhAkZltFAnJHga0KJIgMq+nKTVqnf2SriBzje5gJar4MZxGy5XZNphrZFhs5mk6FXJGsXtfNDJWoWvbXu8wOSPDDm0HIjJFs0zJqrCkL1K2yl377vHsYOoOobMsyBhOdxsSQJ/ST82qMuDahwNUrRp5I4NPCTPeuB3or4kz/ZKHmtVd5RARsdZZWxZc1KzeoE0RNJ4Kfl/P9rUQBAGfz4fP52NkZATLsjoVvImJCWq1Go1GA8MwiEaj+P3+17yC9yhWPWCVMGzH61Or1XqmJAmCwN69e+9rnQ984ANcunSJr371q1t5ehvCzp07eetb38r3fM/3oCgKqqryr//1v0ZRFDweD16vt3ONPnToEO9617u25Txej6LnUqk7qaGq6oacyO+sRrXxiU98gv/xP/4HqVSKf/pP/ym/+Iu/2KkybEU1Ch5jwgDrB1rtTHg0Gr2rm+/DaEmSJOlVdRJrvQsOHTpEf3//fR/jbo7GW4lsNksmk7lnlvx+sRkBMXRrKU6cONGZ7NNeezsIw9qWgLshn88zNjbW8czYyE10OzUM+XyeixcvdlryHtZNvX38+9U+PKzqw7WbS/zPv3kZ3XFQNImGYeD1q6yUq9gihDWZum0S83ipVgwSAS8lvUnU78GRQBIEYgEPFUMn6fdRtQz8mooki0wWCuyNRbAFh5fTixxJJJBlkZeXFgkoCieiEa7XStws5wm5VA4k41zOrnBDz/FEIkHBqHM8muJqPkPVNrhezBJyaewLxVioF3kp02q3S2pebNFmfyBOXq+Tb9YxBYOC0SILLlHkRLSPnF5noVHibGGeE+H+brLgqOwKx5ip5VjSyyzpdUYEHxfL3YZmJ0PDGI6JgMhMPUPRmGOPP0rJXCULsiDilkVyDR2vqDGgxRERMYUGU/Xutp8j/kFu1qa6tu1W+5kxWseNyC2DN0WQyRjL5IwqOaPa2feAb5jJO8atRuQQ883uNQFG3cPMNm4RU1JoYqBFDswaTZrkmivAqgdKSA6z0JzoWWNQHWFJ761QDGu7WNSv9mwfUHewpF/GJfjwSFEUwQNI7PY8hUcK9ez/alj7HQF46aWX8Pl8VCoVZmdnEQShM/4zGo1uKOjYamxkEtFrgfZ5bQdhqFard63UbhQf/OAH+fSnP80//uM/Mjg42NmeSqXQdZ1CodB1311aWupkkVOpFN/4xje61ltaWur8bSMYHh7m937v9/jEJz7B//7f/5tKpUI6nSafz1Ov16nX6xiGwfz8PP/8n//zbSYMr48KQ/tWf2fy9Zd+6Zf45V/+5Vd97HrVKIDv//7vZ2RkhP7+fi5cuMCHP/xhrl+/zqc+9Slga6pR8JgThrVwHIdbt25x69atdT0L1kKW5W0XPbdHVK6XeWl7FzQajVdtD9nIMbaL+FQqFebmWoHFt3zLt2x5Vrr9mjxIKbvRaDA2NoZt2+u2cG33yNa7BfftasfevXsZHh7e8E1qOysM586d6/S+vha483mtp31Y6/uwHdWHtWvousnf/t8LXLq2gCWLCAJkqw0cGRTRhcutoGkyBg6xkJea1Wr/MLBZKdfY1R/h/NwSR0eSzBVL1HSD3X1Rzi8uMRwJ4lFdTBQKxPweREnErSiY2KxUaxyJJ8hWylytFAlpGgciUQpWk68vziECTyZTFMwmE6UCAg5PJJLUTINjkSRT5QLLzQqztVZWal8gil9VuFxYZq5aRBUlhgN+blVy7PHH8MgKsgRfy051nvs+f4wr5QUGtRBx1cdCrYBqmbxcWNUtDGhBclYFwRIYcAVRLRHBNHml2N1y80RokMuV1bUFR+BEcAdN2wBVYq6e4WplnmPBIcar3WRhn3egmyw4Av1qDFmQiBoR6qrBslFk2Siyx9NPzih0PX6H1tdDFgBCipv5ZgbBEYkoMbxyAJfoomhm0R2J+WYGaLU77fGMMtOYW2cNL4v6Stc2CYmmle/ZVxO9ZI1pHEfAJ4XxSCEkQUMUZGpWHghRsqqUrBbB80phDvm+vWedB0E0GiWRSGDbNuVymWw2y8LCAtevX8fj8XSJpx9GIP+oVhi20316M8ZtjuPwkz/5k/zN3/wNX/7yl3sGdJw8eRJFUfj7v/973vOe9wAt76iZmRnOnDkDtKrXv/7rv87y8nJHj/aFL3yBQCDAwYMHN3QeN27coFQq8e/+3b/jzJkzfOYzn+G3f/u3H+g5vYH7w+zsbGeULbAhon+3atSP//iPd/5/5MgR+vr6eNvb3sbExAS7du3asnP+piAMuq5z4cIFarUaTz/9dNebsB4eVoUBei+k7Qx0OBzm+PHjm8qobteUpKWlJS5evNiZ1LEdLSxrX5/7Qfv1i0ajXa7Xa7EdGfs21mt3WusmfWe1Y6NrbuX52rbN9estk6ijR49uONu0ldhIoL+2+rB79+7OlI7tqj7cuLnEpz9/iXSuhOmAosiIsoTH78IWoKobuFwSC4UyiYiPqUyB0b4I8ysldntiSKrIcrnKoeEEZ+cWOTqYYrpU5PLSCk8MpDibTmM7Dk8MJLmez5JvNHgilcQUbOYqZURJQJZg0OVhul4l4FGZr5Q5Ge9DEOBcPo1h22iSxFPJPmZqRaYrRWRRYE8ownytzMlIH9lGHUSbs7lWICoCJ2Itr4WE5uNGOcPJaD/nCqsB8bA7RNil0bADzNYLzNYLHA8muVRdHQ7gERUGPAESto+Zeo5ZvciQO0RerMCaj3y/4+ZKZQovKv1aFEGUkAWBl4vdQfyIO8bN6nTXtpDsJaMvk3BFCcgBDNtmsZnFJcncaMy07ki3L2n7PENMNqa6Hq+KCg2nu5QflEMMuFIY6MSUYVb0DAt6DvQcO9xJlvTuNqKA5GdxnUrEsDbM4jpahH5pkGVrHMcR8MthvFIYSVDRRIWiuUzDzpEzS+TM1nnt0EZZMWZ71nkm+D0o4uaz/2vvKaIoEgwGCQaDjI6OdvkHXL16FcMwusTTHo9nW7Ltjyph2M7Kx2Z8GD7wgQ/wyU9+kr/927/F7/d3srzBYBC3200wGORHf/RH+Zmf+RkikQiBQICf/Mmf5MyZM5w+fRqAt7/97Rw8eJAf+qEf4mMf+xjpdJpf+IVf4AMf+MCGq0x//dd/zaVLl/jEJz6BruscO3bsgZ7PZvF6FD0HAoF7xqprcbdq1Hp4+umngZaofdeuXVtSjYLHnDAIgkAul+P8+fMEg0HOnDmzIevyh0kYTNNEluWuiTlr++03e4ytzKSvbZM6cuQIhmF0PlRbjY2099yJ2dlZrl27ds/X72FWGHRdZ2xsDMMwHthNeis1F4ZhMDY21tHobGUb2YPgfoiQpmnbUn0wTZsvfGmClYKJKAtIqozqVqg0dfSmjkuTWS7VSMZ95KsN+uIBys0mu/ujFBsNdqUilMwmCb8XQRbQLYvRWJiFapmBoB8bh7GlJQ4mYkiyyIuL8+wKhzmUjPP1hTksx+FQLIaBxfVyFUmAk/19mI6D40DJaDJTLxLTPAx4/MgyHcEzOJxJDlEymjRMk3PZRY7GElwopPFIMvsCCdwukReyq4LgQ6EEF4rzRFxuRjxRqkYTnSYvrXF2PhpKcakyj+yI7PWnAAFRtHmlsLqPR1JAMDtuz4IjMOKJElE0xIZM2ixyrZbG6yjIUvfnVxMVTOpYt5lGQgkTVoKoksBUfZG5RgEoAHDYN8z4HaZrQcnbE+gD7PEMULfqhLU4Tccgq+eomxZT9jQ1u961727PCLON3kpE3BXqGuMKLZ1D3S50fveKQfxSiEbZxPKCXx6iaOY6pm4ROcaitYRD9/OOKikW1xvRqgxy0Pfmnu0Pgldzel7PP6BNwicmJlAUpVN9CIfDG7pfbgSPckvSdhCZ9mv7oBWGP/qjPwJa4zDX4uMf/zg/8iM/AsDv/u7vIooi73nPe7qM29qQJIlPf/rTvP/97+fMmTN4vV7e+973dk3KuRcqlQrXr1/HcRw++clPMjc3xw//8A9TqVR6RM/bqZNxbv+8HnC/z/Ne1aj1MDY2BtDxB9mKahQ8xoSh3YL0IAH4vfQFW4H2F8y2bUzT5NKlS+TzeU6dOkU4HN6SY2wl8VnbJnXmzBl8Ph8LCwvbRqzuR5xs2zZXrlxheXmZkydP9oh91lt7uwjD2rXbU4CCweBd9TIbwVZVRCqVCmfPnsXr9XL69Gn+/u//ftsqLffCZm8uW1V9GJ9Y5r9/8gKGAL6Qn2K9gaiK2LZF1TAIhj0YlkUy7qNpmERCHvK1On6vSrHZRLctNNnF3EqR4zv7mcoXEAWBZNjH7HKZiNeNpIi4ZAlbcCjrDfZForgUiRcW5zkcjyMgMFnJU2g2GdTcBD0qLy0vYjsOO/xBvKrMbiXM1XyGAZ+PFzML+BUX+4IxJFHguaXVIP5UPEXF0nki3M+14gqC6HSRhWFPAK8is9sX52Y5Q645x5FwgolSYXUfdwhFFNnjTnKrmuVSKc2JcD8Xy92jiHf7okzXVtjvG0BAYLaWQ5EEzldWjycCfR4/083uNp5ROYwjCITcQdLNAgvNIlFXgEuVbh+FmBJgttnbGpRUg0zV54i5IgTlIA4CkiBwrTqBfUeQvs873OMI7RbdZPXe3txhbYi55uq+LkElJMeIKREaVFEELwUzR8EsUzDLxMQYC9Z8p+rRhk9SqVq91xi3KFGxer9z3xL6PkRhawLXjQbBa/0DhoeHsSyLYrHYM/64TSD8fv8DB9evxwpDpVJ54HbijVyXNU3jD/7gD/iDP/iDu+4zMjLC3/3d3z3QOQC8853v5LnnnuMtb3kLS0tLOI7D+973PiRJwufzdUTPpmnyrne9a9sqEK/HCsNGca9q1MTEBJ/85Cd517veRTQa5cKFC3zoQx/izW9+M0ePHgW2phoFjzFhEAQB0zQfSIz7oKZq9wtJkiiXy9y4cQNVVXnmmWe2VJC2VS1JxWKxE/ieOXOmE3xtZ6YeNlYhWev9cObMmQ2NnH0YFYa2+dlGDPbuha1oSVpZWeH8+fMMDQ2xd+/eDiHb6Lrt/bcK9zOCdiO43+qDZdl85u8uMnZxjoZj4UgidcvEUQQ0j0rdNIhGfSzkSyRifiYWswz1h7i6sMKegSgX55c4MpziYrqIIIvsSIV5cXqOJ4b6GM/nWJxPc2wwxc18jly9wZNDfeSadcZzeY6kWiLniOZmpVaj7hgM+QPE3SaCbXCplMctyRyNJ5ivlxjLtDLpx+IJSmaDJyItwTPAi5lWMB3TPOwPRpmo5kjXW1N5DoZiXCwtIiOyP5BAFWXm9Twv5+Y7r9uTkQHOFWfxSS5GvXEAVowiY4XVffb6YlwurwbtSTXATk+UvFGmYVlcLrWIxInQIJcq3S1GRwNDXK5MtUTO7igiIoJlc12fZe300YjkZao+3/VYAQi7VGYbLSM3BZmA5WMwmKRsl3GJbtJ6gbReQBJE+tRAD1kY0fp7yALAsJZgam11wREIyWG8kpthbS+6Y1AyixTNApJVo2ClMZ3uARJJpY+cMM+dGHANs6T3Vi76XSOsGL3bh9SDjHo2NoVkI3i1CsOrQZKkrgEEzWaTbDZLLpfr6NXWiqfvNd1tLV6PhGEzGoZHBd/yLd/CL/7iL/LCCy/wu7/7u3g8HnK5HOVymXw+T7lc7oyoT6VS29ey9EaJ4a64VzXK5XLxxS9+kd/7vd+jWq0yNDTEe97zHn7hF36hs+9WVKPgMSYMAHv37n2gwPBhtCS1cf78eXbs2MGePXu2vKS3FS1JbaHuWtffNrabMNxr/Y3oFe627laMbL0bZmZmWFlZ2bT5WRubIQyO4zA1NcX4+HjPtK3tEFM/CrhX9SGX1bl4qUSpYSEoCigSgixiS+BWVRZyZXxBjWqlBrJAwzQJht1Yjs1IKkTDMjk8nCRdrbA7EaFi6aiSxOGBJNeyGXZFwyiKxDcWFjkQj7I/GeNrc7N4FZnTQ/1czefINxqkfF6GQgGmS0UuZlY40ZdkqlDhUCBM2ba4Vcmz0qh1yEO6UWG60hqZ90QsyVh+gaPhJJbjIIsCz2dmsW/fbYY8fmQJjgT6GC/nuFpaYXcwxHJzdcTn0WAKy7HZ7+vjZnmFC4VFDoZiLDdXR5H6UcibJUY8MfyyRrpRRhUkxopTGM7qNXKPL86VNZUFGZG9vhQIMKDFmW9kuVZdICx7QdC73i8BcDtQoTsgP+LdgSkY7PGMUjSqpJsZitTRGzNUrVrXvvs8w4zXu6cUKYJE0+4daTrgSlG1q4xou3AQqNl1cnqOiCvC9VqvL0LcFWSume05Z0l0Wv/p2i5gOt2jXKE1XtWke7tL8OKVwnxL6P/bs/9msFXBuaqq9Pf309/fj+M4HfF0Op3mxo0buN3uDnkIhUKvev3dTnHxZrBd59VuSXpQDcOjhO/8zu/kO7/zO9E0jcOHD/POd76TTCazIfPYLcPrqMLAfT7Pe93Dh4aGelye18Nmq1HwmBOGBw0G24RhuwLKtujUNE327NmzpSr1tdgM8Wm3+SwtLd1VqLvdxOpuhMFxHGZnZ7l+/fp9Txxqr9teZyvfX8MwMAyDXC7H6dOnt+xm8aAtVLZtc/ny5buOvX0tCcNWVxheDe3qQyrVx99+6iyvnM9gYNG0dGyaGECzaeNXRVy2gDugorgkBJcAlojsEmk2LMKqh3SpQsjnpmlblOpNkhE/mUIdSTbxKAqaLIMoUDF0dgSDqIrExZVlTvb1YQsOL6YX8blcnB4Y4FY5xwuLrQz1mwYHKegNcrqO4Tj4vSoqMidifdQtgwv5JepWKyV/MBRDkUR8isaF/DK7AiHmqyVsHPrdPoa9IRYaRS4VVtuATsZSjBXn8UgKe3xxNEnhUmmeurUapJ+K9HO+1BLjaqLMsBrGbtbJ2DrjlVZFwyu5EF1yF1kIyBolq0JCDRJVAjQsk6VmkbxZZrm26qMg4JDQvNyqdYuSjwSGuVaZIq6E8eFBNwyaZpPr1SksoftzHxe8LFndwXvcFWbqDvEzwG7PMHONGfpc/bglN5bjUDarmBis3NEiFZQC645cHVD7mWv2Cp2HtVEW1hmjOqKNsthcJR2q4MUnhwnJEUyngaKEadg1KlaBslVnQBsmpY32rLMZtF2VtxKCIHREmDt37sQ0zY54+vr16+i6TjAY7LQAer3ernN4lI3btuO8ms0mpmlueqzqowDbtrEsi5/7uZ/jT//0T3nPe97DZz/7WX7nd36Hn/iJn+Dv/u7vWFlZ4bu/+7sJBoOv9em+gdcQjzVheFC0W24sy9ryue9rR356vd5tvaA8aEBfr9c7ophXc5Z+LSoMlmVx9erVDesV1sNaQfVW3Syq1Spnz54FYN++fVuaWXoQDUOz2eTcuXPYtn1Xc7hHocLwsI6/OJ/nk//jRaqmierTaDYMJJeMz6dQKFdQRYdKtYJsydQtB1PQKDcMvAGN6WyRWNjLhdk0B4cTnJ9vjUgNBdy8ODXHsaEkC5UqVzNZnhrpY6lWYypf5NRwCgsHw7Jo2iYZvcGxZJLFSoXJSp5svc4T8SRul8xXF28H6pLA7mCAGg7XCi1H8gpNLNvmiUgKlyRyqbRMrdwK9FNuL03b4FAoTklvMlsr4nUpzNVXg/InY30YWBzyp7hRznCrnMOnyl1k4UgwyVQtw5HAALptMVHNoEoilyl1tQ7t8oW5VmmPAVUZcsfwKwpTtWXmmyXmbx/3WLCfq9VuN+fD/mGu3XZzFhyRfi1KVPajWw3coofFZhEoIgC7/TEKje7vfsoOsKT0Zvr9kkLRNFEFlZgSRZPcuESZjLFEzbaoNle1Cvu8O5is9wb6CTXIzO3WpzZEBByaPfsqgkLJWiUckiMTUGK4RS+SoJB07adu1yhbRUp2jbqRp26VqNndRElE4s3h9/SsvxncbVT3VkOWZeLxOPF4vGP+2G5fmpyc7GpvikQir7uWpGq15QnyzVBhEAQBRVH4xCc+wa//+q/zIz/yI3zjG9/oXLu9Xi+/+Zu/yeHDhzl58uS2nMPr0bjtccTrkjC0LyBbTRgymQznz5/vmGS99NJLr0mG/tWQzWYZGxvrnOOrXUy3a2zr2vXXnv9ah+Rnnnnmvnpo71wX7n9k692wVh+QyWS2/Aa0Nhu/kcxhqVTi7NmzhMNhDh8+fNfzea0Jw8Nwn3Uchy9/8Spfe2EC3XawRJAUCcUt4vFo5Ks1BFVGN0xMl0rAp7GcLeKxDEp6HbcOouQgODb7h+IsliocHkgwUy4R83p4aucAL80vsi8eYWcsxNdn50j4PJzeMcBLiwsYts2RRBwkgaVKhYZhEPFpBFQVw7KRZIGvp+cIuVT2hKMsVwucLbSy+VHNTcSrkZS83Chkma+VsEWbmmkgAgdC8VZQX1xmvtZqd3kiluRCIY0sCOwLxImobl7Jz9K4PclIEmDIF+ZauWVGllB9jHjDlMwqRaPJ+WKLDBwOprhc6e7PPx7sp2zVORIYpmg0mK5lcUkiZ4vdGoFD/r4espB0BWlYDQ56d1C3DebrWeYbOUS3fdv/YBWH/cPcrHVn9TXRRVNqdH6XbIkAfuJKAMu2CEkxskaB6dtOy6OeBFmje9KRX/KyuI6AekgdYKbRq3MYde9ktnmj87tHDOCTWoZxDbuOKkTI1jLUpAa1ZobdniAT9d6WpiF1mPlmr3nbUf+3ElG2dqRx+/v8MINzQRDweDx4PB6Ghoawbbsjnp6ZmeHKlSsoioLb7aZQKBAIBB4Z8rCdhKH9ujzuaLdt/f7v/z4f+MAH+Jmf+Rn+9m//tpNIPHXqFAsLCzSbveR6q/CG6PnxwGNNGB40IGlPMNqqYHitadyBAwc6M3K3u6XnftZ3HIfJyUkmJia6zvFe6z+sCkMul2NsbIx4PM7Bgwc3dZHfKsKw9jVr6wNyudyWvyb3QxjuR2x9v4RhOwL87SQs2UyFv/qfL7GwVMAQBVxeBUSBcr2B4lVoNHRqlo3XLSIgkor4ado2Q6kwkiISliQUTUYvlKk1qhh10G2HuinjlmUkWaRk6AyFAqgumclCnif6koiywNfn59gXjRDzengh3SIOfT4vg6EAF1aWaRTyHE8lyTfrHI+nuJpfoe7oTDeqKILAkUiSGgYXcq3A3i8raC4J2xE5Fe1ntlLEwuJcfnW06Kl4H1VT54lQS7eQa9aZbeQ6ZAHgeKSf5WaJ46FBsnqVpWaZZb3IXL3Q2Sel+ZmttzLomiOxK5DEr6jcqCxSNOtAKxM/7A5z4w5SEbltbCY4AoPuGAHZQ8M0MWkyUVvu2vdoYIirtysObcQUPzONbo8C0RE54Buh1Cjj1Q1MFyxbOSqCTsNcoGl1ax/2uIeYbvYSgD41ylSjm4iICFisOkTjCASUEH4xgIhCn2sfNatBwcyTNRoYdoWssYTh3NZh3L4MBaTAuh4NbsHLit57LrLg4k2h7+7Zvlm0rz2vZUAuiiLhcLgz7a/ZbHL58mUMw+DixYvYtt0lnt7IoIrtgm3b2+Ie3xY8P4ykyMNCJpNhdLTVPpfP5zvVE1mWyefz2/s+OsJ99/Y/tniMn+djTRg2g61yezYMgwsXLlCpVHpM4x6GBmAjJWrTNLl48SLFYpGnnnpqw32ID6MlybIspqenuXHjBvv27WNoaGjTF+H7Gdl6N1iW1RmFu/Y12w5TuI20UDmOw/j4OFNTUxsWW98vYdiu57UdeO4frvHcP17HEiVsl4QkC+iOjW5YoEnIqtwKXLwesqUymiqRLlUJ+jUy1TouWURUJKayJfYMxTg/t8RgyIdLsLm0lGM0oLFUarJYa3BqKEnTsVmu1EgFfTQsk12hCKIo8uLSIjuCQfwuFzmjzjfSC0iCwJN9ralJE8UC4HA8lWK5VuGAJ8iiXqeCzvViq/3GI8kcT6RYrFcYL+WYr5Y5EUtyLt9ySN7pDTPo83O1tExWb3kNeGUFWXao1FuB7Yg3xJAnyFQ9y0K91GlZOh5OcbG0Oi7VJUoMuH0I+Mk1qsw280xUM0RU9TZZaEEVZQTB7GgZBEdgQAsz6AlSNGvMWlmmalkgyxOBIS5XujP7A2qEG7XuKgRAVHVTMEwG1BSSoFCxGiiCyFhpHKc9PuR2rL7DG2eiPtX1eJcjs9iYb81zXYNBLdVNFhyBgBJkUE1hOgaaGKJq1ckZOVb0MmFPnGu1Xr+EpBphptHr6hxXo8w1cz3b+9Qk883rPdtPBb4Tv7w147PX4lEgDHdCVVU0TSMcDrNjxw4qlQrZbJbl5WVu3ryJpmld4untCODvBsuytsV4tFKpfNMQhvZn6dSpU3zuc5/ju7/7uzukD+Bv/uZvOu1p24U3WpIeD7xuCcNWBPPFYpGxsTF8Ph/PPPNMjwnOw6gwwKsHmpVKhXPnzqFpGs8888x9XTw3SkgeFIIgMDMzQ61W21J/Ctgc2anX65w7dw5Jkjhz5kzXKNzt8HhYK9JeD23CVyqVOH369IZ1Ma91SxJsPQkpl+v8xZ99nUyuhimJ1E0TExvNo+LgIMsKODbpQoVwxMNspkDY7yJdrrN7OM74co5dqQhX0xl2BsLIqkS6XOXkjn7Op5cYCPo5s2uQr83MkfK6ORgN8PLiEjhwMBZksVxmoVpjbyyCS5EY9gdYKJdJhnzkGg1OJVuuzWczaUzbRkLgmYEhVpo15qtV5nHYFwpyrZhlbyCKV5ZB4g6vhT5mawVORgdI1yogCLyUm6d5u5IgAqOBEHVT50R4gPlaCcdxOFuY7ao2nIj0c6E4h0uQGPXGUEUFRYJzxe5Afq8/xuVydyXhYCBBVi9xyD+EYdvM1XOEVQ8v3eHmPOSOcP2O9iRZEFAkB8u0kZHo06L4JA9e2cWt2jwFs8aKXru9r0hK9a+ShdvY6U71kAWAXf5+Ju4weVMsGakB/fIIkixTcxrkjAJ10+KWPU3jDkO3iBxmZp1RrAlXnNlGbxUhJseYb/bqIoJSmHSzd4yqKno4Hfyunu1bgUeRMMBqW4sgCPj9fvx+Pzt27MA0TQqFAtlslps3b9JoNAgGgx0CcT8GjA+C7WxJetxHqrbRfv1/7ud+jve///38yq/8CvPz87z00ktcuHCB3/iN3+Bnf/Zn78sR+L7xxljVxwKPNWHYzIVmM8G84zjMzc1x7dq1dceRbsUxNoJ7aTHa7SvDw8Od2fwPsv52EIZ6vU65XEZRlE3pFe6GBw2W261RbY3Hnc97OysM661br9c5e/YsiqJw5syZ+86WfTNpGC6eneazn75I3TCwJAlREhElEY+mUqw3qFsmobCXStUgGGqNSe1LBqnVasRCGnXTJB7yUrNMvJoLU7CRJQGvqpBt1BkMBfC4FaaLJY70JVAUkQvpZY71JZEEh5eWl5GB3R6NlWqZXEHHJYkc7Utg2g7zZomy3mSyWiCoqOwMhlBkiefSqy04hwJBBEFkwOPnRjHLk8k+Xs62KgB+2cWRSIIVvcpyvcZSvUZUddMU9A5ZaFcbbpYzrRGq1Tw+2YUsK11kYZc30tJB+PqYqGS4UlrmWCjFuWI3Mdgl+TtkISR7GHCHCcoqN6uL5IxqR+Tc7w4xXu02dlOEVsOP6awS6KDsZZ+3j7qj04/EQiPHZC1DSPaAoFOzu/ugD/iGuF69gwAIEoZT5U70u+KUzQo7tJ2ISNRtg5xeIKWFmDamW+LtNUXjIXWQGWOqZ52Q4qN8xyQmAI8oU1znbu6RXZSN3u0RJcBys0BASqCKPiRBxREEDnufRJO2J5hsT0h61DLbd5tGJMsysVisM6JzrXh6enq6a0RyNBrd8mrAdhOGR+192AyefPJJfvu3f5tf+IVfYN++fXzsYx9DURQ+9KEP8eEPf/i1Pr038AjgsSYMm8GDuj1blsWVK1dYWVm56zjStcfYTsLQvnHceQzbtrl58yazs7McPXqUZDL5QOtvtXi4jXZQLssyQ0NDW04W4MEqDDMzM1y/fp39+/czNDS07j7bUWG4G2HI5/OcO3furuTlXtgOcnO/2Irj602T//XJF7l+YwlTEFB8LmwcSg0dSwa/KCMqIuGgl4ZhEgx7SOdKJJMBrs+tMBDzMJmrsMOjUmrqFPN1dg3EOD+XZk8qiiCLXE+v8NToAFXTYKFUJhn0YuMQUFUESeB6Ls/JvhS6bXGzmKNumOz0enCweCndah0a8vmQJIF94RhXMivYODy/NIcAHAjHiLg1vr48i3U7KD2ZSHEuu8ihUBxJEGlaJq/kFmjare+zKkmE3Sq2Y7PDG2auWiTgcvG1zFTntRFw2OkPcqW8xKAWJKH5aVgGGb3MZG01KO7T/EzVu0eNJmUvtuNwNDBEVq8yV8/jAPOCSdlcFSDLgoAmQcbovl4e8veTM8oc8I1gOQ4regmXIHGuPNFFIgD63UHGa91tS0lXiFvrtC3t9w0y15hnUO1HE92Y2JSMKo4gMNdYoa2xAPBKbpatpZ41Qo6fWX26x0dhUB1gtjHds/+INsTiOlqEgB6kppRJKMMoggaImI6FIsgsNOeo2VCyC0Dh9vn4OZZ6U886W4VHdRrRRs/L7XYzODjI4OAgtm1TKpXIZrMdPyCfz9chD8FgcNPP9Y0Kw8bhOA5vectbeO6552g0GlSr1VeNb7b22G+Inh8HvK4Jw/0G89VqlbGxMSRJ2lBWXJIkDMN41X02A0EQegJjXdcZGxtD1/VNewW0L9ZbKQ6fmZnhxo0b7N+/n2y2N8u3VbgfwtD2pFheXr5na9R2axjaaN9A9+3bx/Dw8AOv/bhXGCZvLPG//p+XqDUNbFnCkaFhWwiyiMvnQnJJFGp1fEE3c5kigaCbYqGMoEqslKqkEgHSxQo7Yj5uLOU4PJRAF20WiiWeHO3n+Zl5UgEfT4328+LsPG5F5qmRfq6uZCg0mpwa7sNyHAzbJtdokNdr7I/GyNSqeL0aFzPLqKLIbl+AJb3GdK5lJLYnEGCmUuBUvI+ZchGXLPLV5ZlO/vpoJIEoCAQUlcv5FRJub8s74jZZGPIG2OELMlnNsVAvM1UpMOILMl5dDfoFR+BNiWEatknSFWC2VmKuVuRgKEFGX83QK6KIRxHJ1HUGtBAxl5+GZVK1qkzrRaaLrQlMAg59mo+b1dUxpQBHQwNcKk8jIzGgRfHJHlRR5kZthqrVZLZRAFqtUiOeCKbR/b3b7+tnvNYtdBZoVVTypklA9hFVQti6DZbNYjNH0TQomqtEYL93mFvrOTq74z0tSgBhj5da8w4tguNQrRc7QuY2JERkQaRP3YksKDiOQNPWqZhlTKFJySiD0W3KNqwNUlvHNO5bQ+/CJao927cKD+ryvN14ECIjiiKhUIhQKMSuXbvQdZ1cLkcul+Py5ctYlkUoFOoST9/vNWW7jNvaGoZvJqx9bTVN25ZE3qviMW7Veb3gsSYMmwlIZFm+r0B4aWmJixcvMjAwwL59+zZ0cZQkiUajcc/9NoO1xKdYLHLu3DlCoRAnTpzYtLhsPULyoLAsi8uXL5PNZjtBeT6f3zZR9UbP+04/g3tNgtiuCkO7hapt+rewsHDPCta98DhXGGzb4XN/c46L52fRbQcdMAUH1e3Csi1qhoHqdZEt17Bk0Bwb1aOgaQqG6OBySZiigygIhH0u6pZFfyRArtkg7veACLfyBQ71xRFlkYtLK5wY6AMJnp+dpz/g40AqzosLC5i2zUgoQMznJpetcS69yLH+JOlahZOJPlbqNdK2zoqhIwD7g0F0yyTXaJBpLLLD4+ViYQm/otIvayiyxEQ1R81sJRM8koymSAgWnIr2s1yvknR7+FpmNRMekFV0DEzb5mAgiUuQEQSH57PTXffZk9FBzhVWg3Of5OJ4eICK1SAkG8zUSszUSpyM9HOzXmQtnggOcqm8mvFXBZk9vhSOIzCs9jHXyDFezeISCyTdbqpWd3vRkcAQVypTXds8kkrWWK0IhGU/ESVIUPFQMst4JD85o0rOaGkahsQgOaPbz8AjaizpvVWEPjW2LokYdQ8yd4dJm+hIjLp3UjequE0/umFiYKLLBjE5xES9t+qwQx1i0cn0bE+5+lnQe/cPSGGeCr6lZ/tW4lGtMGxFJt/lcpFKpUilUjiOQ7VaJZfLkclkGB8fR1XVDnkIh8Mbur9tl3FbtVr9pvBgeFTwRoXh8cBjTRg2g41WGNrtPTMzMxw+fJi+vr4tP8Zm0J40NDs7y7Vr19i9ezc7duzYst7KrSAMbRGxKIpdJmPbOYVpI2u3Cda9/AzuXHc7gnBBENB1ncuXL9NsNjlz5syWzPh+HCsMmXSR//WJF1nOVrEkAVwSjuMgKQIN06Rmmrg8Co4EnoCKads4EiCALUG2UmNHf5gbs8sc2ZFkvlBEEGEw6eXC3DJHhhLo2CyVq/SHA1jYCA7YgkOu1uBwMo6iSHxtbo4Bv4+RcIhL2WWmFlqmY98yMkSu2WC5WqduWHjcCqZh82Syj4ZpMlUtUDZao34GPV40RWJY8DDdrDFvWsgK1G6PCg0pKoejCRbrFWbqRZbqFQ5H4pzLr+oFNFHiiWiKotmk1DS4XFghoXkxaHaRhX2BGOcLc4x4wkRcXopGE48k8bVcdwb+QCDBxVJ3xn9QCzFdW2a3N4VbUikZddKNEhmjzFKlm1gcCqS4XOkOmJNqgPFqd8tRUPay/7aeISwbLOsFVvQqDctixchQsbrFyCNyjEW7lxjs9CS4WeslBpok4Jjdn2+v4MUlKoyouwGRpmNSNitUrRqL+gpl63al4PZ8ChmJgrXSM3VJRKBmdz/vNiRx/e/UW8LvQhaUdf+2VdgOl+etwFYTGUEQ8Pl8+Hw+hoeHsSyrI56emJigXq8TCAQ6BMLv96/7umxXS1KtVvumqzC8pnhD9PxY4HVNGO6lYWg2m5w/fx5d1zlz5sx9ZxQeFmG4desWpVJp0xnp9bDZ59A2ikulUj19+Nvp83Av0fPCwgKXL1++b4K1HRWGNs6fP4/P5+P06dNbMnrwfsnNo+DD8MIXr/Dc31+n6ThIHhe2bbfm/AvgVVVMy8bn1SjWmoiChOXY5Ot1YoqP5VodzecCRWC5VGX3QJSxmTS74n4mCmUmMwWe2Jni5dlFNFni5I4+LqVXqOoGZ0YHydbrTOULPDGQpGQ0OZyIk2/UuZJboWEYHE+lcCkSz823AmOPLLM/HqFmmlypVpkuFXAkKBs6A14/Q/4At6p5rlZbgacmSfgViazZZKfsxnLAp7j46vJqVn/Q62e6lscjyezyxzAdG48i89zKaoCuiCIBVWay2srEe0SF3f4oiiQSUDxMVgtMVgvEVC/Z28SljZCskTVa0l4FkQReYoEwhqOzpBcpVFa9FI4HB7hY7iYWO71Rrla6dQcCDlHFQ1BWcUsaum2xrBcJKh5eLt3suT/u8Ma4Xu0mHC5RoeyUuRN9rigTtTuy+Y7Afu8OTHRGtd3YQNWskzeKpLQUVyq9k4sOeHcysY4D9G7PMJON3vGqUT1MUVzu2T6gDrGkT/VsD8sxTgS+pWf7VmO7Wmw2i+2ufEiSRDQa7dzfGo1GRzw9OzuLIAhd3g/tyXbbRRgqlcobFYYthUCP4OibFo/v83zdEoZ7tSTl83nGxsaIRCIP3N6z3YShXq93Wp62Y9IQPHgVwHEcpqenuXnz5l1FxNvpJH2383Ych+vXrzM3N8cTTzxx37Olt6PCsLKygm3bRCIRDh8+vKWB++NSYahVmvzVnzzH/HwBSxGxRLElnHVJyIKAyyWzUqrgKCI+l0axqTMYDrJUqjKYCpGp1tmZClNoNkmEfFjYOMDuvghzxSKDAS/egIfL6RWO9iewRIcXZxbYn4jidbv42kxLnHxqqI9cs8F4Lk/S58WrySQ1LzdzOURR4IXFebyyzP5YjJpl8MLi7QlHigu/phJwuQi7NOarZSRFYKne0hKIwFOpftKFHDnLZNJocCQU5WJ5VZPgFUQSsgu/ojBRzTOWT3M0nODlXPdko6ORBOlGieOhAWqWwa1KFh2Ti4XVtSQBYqrKeHU1CJcRORxK0rAMwrKPqVqWWadCXAhyrbzYdYzd3jiX7iALLlHCoonjQL8WJST7sB0HjyxzvjzRRQxkQcQri71kwZ3gRrVX6LzX28eNancVQXBEooofv6whCwqGY1M2q5TMKmk9S8Hsbl3yim7mmt2vFbQcoOcavcf0iG4W9dme7YogY3lqcOflw3HQzd7pTQDfFv4nSML2304f1QrDdgXmd4OmaQwMDDAwMIBt25TLZbLZLAsLC1y/fh2Px0MkEsGyrG15varV6ob9jN7AG/hmwWNNGDY7VnU9QfLaQHfv3r0MDw8/8HG2kzBkMhnOnz+PLMuMjo5um0DpQYL6tXqFJ598klAodNe1t0sUvh5hMAyDsbExGo0GZ86ceaCS8lZWGBzHYWpqivHxcSRJ2tRnbT3cz2jZtiBd13VisdhdS/zbcfybl+b4zP/zMrWmiSkK2IKA4laomxa1RgMUEbdLRNJkfH6NhmWRSvqp6DoBv0pFb32GHAmWCmUO7Uxya6VA2Kfh1hQqTZOE//akf9vBwMayHXaEg6iqwrmFNE/0JdFcMs/Pz+MAO8NBAh6Vi8vLWIUCJ/pTLDWqnEimuJ7NoDsWV3Kt/vadgRAxn5vLuRUmigaSKLAnGuFqIcNOX4io5kaSBJ5Lrwate4NhrlWz+GQXuwNRmqaBZRucq6z2zCdkjYlKazCACOz2R0m5fdyqZVmsV1ist0S3p6L9nC10twOdCA9wrjDLkCdMVPFSswwCiovnc91Beb/k5VKp+7GaqFC1ap1gPyC76dNCRBQPGb2ERIOZWoEZCkQUL5ZQ7yEGh/wDPXoGWRCxBb3HcyHhCpFt5kkJcSRkXJpKyawRlr1cqva2Ih3y7eBmrbeKMOROMl7v3T6gxbm1zvYhLclUo7fqsNM9zHTjRvdGRyBBPw29gteKI4suZNmFIIv4XH6O+c/0rLMdeFQ1DK/leYmiSDAYJBgMMjo6imEY5PN5stksjuPw8ssvd4mnPR7Ppq9ttVqNgYGBLXoGb+CNlqTHA481YYAHn7e/niB5rSPyqwW6G8V2ZNAdx2FycpKJiQkOHDjA4uLivR+0Cdxv21CtVmNsbAxRFHnmmWe6TM/uxMPUMFQqFc6ePYvP5+PMmTMP3PKzVRUG27a5fPkymUyGJ598knPnzm3L9KWNrGlZFhcvXqRQKOD3+5mdnUWSJCKRCLFYjHA43GNKuBWwLZvP/9UrnH95GksScFwyNg62LNJwbBxZQFVbQVnDtvD4VGZWCvSngowvZNk5GOXK3DL7R+LcyhfoUwTiUR9npxY5MpLk6lIGK2ezJxFgPF+ikS9xZtcQ04Uis4USJ4f7sHAIahq2AC8szHMoEUcSBJb1GreWlpCAU/19lMwms6USs6USx/uSXM9lOBFPkW/U8WkK31ha1Ryc6uvDdGxGvEGmygUibo1vZFb/HpVVwpobRZa4XswylktzKt7HK7nVCoFbktBkEb+tYgsKy45OqVFntpHveDIA7PVHOb/GWyHm8jLqjdC0Dfyym+lqgWkKDLgDzDW7x6q6BAlDMLDXfEYER+CJ4AB12yDmCrKil1lqlggoOhPVxdt1m1X0e3zcqHb3+iddQW7eoWcAOOgfZKo2z6CaxCO5sR2BqtVAkwQm62s8HqrgEmUsp96zRlDyMVPvrQrElBCT6xi9xZUIU+sIo0NyoEsYraDgk4N4BC8gMajup2nqFOsl0KBqVWgoJlmjsqp3cAADjmdOc614reMnsB3Owm08yoThUWmVUhSFRCJBJBJhcXGR48ePd8a33rp1C0VRusTTD3Jtq1arW6IxewO38QZheCzw2BOGB8WdGoZyucy5c+dwu9337Yh8N9zvJKZ7YS2heeqppwgGgywvL29r29P9BPVtvUJfXx/79++/541tOwnD2kpAe8LVyMgIu3fv3lR2aT3fi/vFnZOZNE3bFlfmjazZaDQ4e/YskiTx9NNPd16bYrFINptlcnKSy5cvEwwGOz3EGzUserXjZxYLfOpPv0ouX0d0K5iWjek4WBKoHoW6YWLSGiG5nC8TjnnJV+uEI16qusHwQISqbnBgZ5J0qcLuVISVWo2Iz83hkSSXF1fYm4qAJHBuLs3usA/N7+GrU7P4VRdP7xzg0tIK5abO0YEEkiSQ8vqYyRcJ+lWqus7JVApBFDi7ksa6/TyeGRygZhrYDpxdTnOiL8UrK4u4RJED4Rh+zcXXl+c6Qfj+SJQL+SU0UWJfKEatWqUm2byYWQ3yj0UTvHK77SjicrPDG0aWYKywiHH7M6yKIo5g0rRWr1l+yUXVarDXl0CTFNKNMmW9wVQt2zVWVRYE3IrI8h0+CnvcYSYaK+zyxvFKGjXLwCWKvFjoDrAlQUDE7iELB/193Kj2Bu8hRSVnmkTkAGFXAJegICCwUM9SMi1K5moVZZ+3n8l1CMA+zwDXa73jUgfcYcZrvWLkkOKlsI4ZW1BxU7RsFBQCShCP6EUWFLySStmqULcalKwKJatGySqy3xvhWm2NpkEGTNipjTDbXMcFWknwjt3/hHwuz+zsLFeuXMHv93e+K36/f0sD/EeRMNi2/UiOe21fp/1+P8FgkKGhISzL6rm2+f3+LvH0Rp7HG1OSthiO0Pp5PeAxfp6vW8KwNphvC2B37Nix6YByLbaywlCpVDh37hyapnURmu0Mutvr3+s5rG2tOXDgAIODgxtee7srDOPj40xOTnLkyJEtsbbfbIWhVCpx9uzZnslM2zWu9dXOtVgscvbsWWKxGIcOHcJxHAzDQBRFwuEw4XCY3bt3dwSG7ZusoihEo9FO9eHVMovrHf+FL1zha5+7jCkJmIoEooCgyK1JSC6JatOg3NQJRjwYjk0k3uqV9wdaYudQ0EOuUsPnV2mYJk3DRFJEDNNGkARMx0aRRCwBHMcm4dUwJYG5YpnjAykQ4fmZeUKaypmRAS5lVig1dTyKzIFUDMOxWapUKRs6U5UiLlFifzSKx6Xw1YXV4PZkX4p8s8HJeIob+RyI8NWl1b/3e3y4FYVD4TjXC1nOZ9Ps8viZb64G88O+ACWjwclwP0WjyXgpx6gfXrpDt3AwHOdCsVVNHFAD+B0Zy9GZbFRYaKz6ARwLJblU6q46PhHu4/ztqUheSWXQHSasuFmoZTEdgRu326A0SSbs6q0IHg0MdI1bBfBILjK3x6WKiCRdIYKKD5+kkjWKKIKHJb3K0m3icsjfT8boDvRdgkTR6g3+I7JvXRLRr8Z6BdDAkJZiqj6LX/bjl/2oooaIiCq4KFhZXEKAilWl2swDeRJKlFv1TE9rlFfyMN/s1TqICFTXOU+A74i+k0ggQiQc6XgJtMW4Fy5cwHGcLifjV6u4bgSPKmEAHsnzao8Gb6NdOY1EIkAredN+v+bn53Ecp0s8fbdW3zcIw9bCcVo/rwc8zs/zsScMm2lJMk2Ty5cvk06nH0gAu5FjbAVhSKfTnQz5nj17ugjNdgur79WSZFkWly5dIpfL3Xcb13aTnbm5OSzL4vTp0/j9/i1ZczPn3H4fR0dHGR0d7XofH3aFoX0ua6dEmaa57tzytQLDteMNb968SaPRIBwOdzKqa8v0dxLvRk3nU//1K8xO5TFFASQRSVWoWxZN3cKWBLyKgiA6RAI+sqUqwYiXqcU8fakAk+k8A30hLs0ssX9HnAszS+xIhnFpMmenFjk+2sd4Jk++XufM7kFuZQusVKvsjYfQbYtyQ8cRYbFc5nhfEgubbywuYts2RxJxLMnhpdstfjvDIWwRDkXjXM9lsbD5+mKrzSakahyMRZmplJittIS3eyMRrhYz4MDeUJSwS2O2UeRsZjV4fzLZz8vZVuvNiDdISvOTMSpMlPNM0gpI9wYjjBW6A/5T0X5MTI4F+5mpFpmtlzkV7eNcsTujPip6esjCXl9r0tIR/xCZZpW5eoEpu0DWVSKrdwt4D/iTPVOR+tQA1yur5EVCoF+LMOgOUbUbuEUf6UaBmXoRj17HIwsUzVrXGrs8yXUrEfv9A1xbR6OQ0oLrVhE0USQoBfDJ/pY5mgNN20QUbBxUskadrLHaxrTTHWeh2Tum1S+7yZm934shLcHkOpqGHe4RZhq9GoiYkuC4/8mubS6Xi76+Pvr6+nAcpyPGXVxc7Ihxo9EokUiEUCh030H2o0wYHpWWpDY2IsRWVZX+/n76+/u73q90Os2NGzdwu90dghEKhTqtrJsZq/qP//iP/Mf/+B955ZVXWFxc5G/+5m/47u/+7s7ff+RHfoQ///M/73rMs88+y2c/+9nO77lcjp/8yZ/k//yf/4MoirznPe/h93//9x9fEvNGS9JjgceeMDwoLMuiXC7jOM6Wzby/E7Isd8q1D1K1sG2bGzduMDc3x9GjR0kmkz37bDdheLUAuVarce7cOWRZvqde4W5rb8e512o1crkciqJw5syZLe0pfpBKgOM4jI+PMzU1xbFjx0gkEj37bJeD9J1rOo7DrVu3uHXrVte5OI6DZVk4joOu64ii2PlZizvHG9ZqtU71YXx8HE3TOn93HKdz/Jkbi/zvP3+ecs0ARcaRwRQEBAEEVcQlygiyQDpfxhtyU67UqNoWXttCVEVEUcDrV7Edhz3DUZZKVY7uTHE1vcKOWJj4Li8vTy1waDBBf8zP1ybnGAz5OTyYZGwhje3AmdFBSs0my+UaQbfGYq3C0WSCdLmCIdpcWckgCwKHkwkqls7NXCuDvi8a4Vouy4FIDFEQMB2LbywvdNqF+rxeBAmORJLMlotMFPLsiYWZr61OKDoSTZBv1tnvCpCzDabLBfwuFxPlVTfisEsjb1SxHJthT5C46kMUBS4WF7t0Czt9oR5i0Kf5WbZqBNGIS25s06Js6WRqJfJOt8HavkCEi6XuCsYeX+9UJBGBAXeQhO1DQKRo1FhoFBAQebEw3nPf2+NLcOUOfwZZEGjavVqEqOLjVq2XRPSJIZaaOQbVFJrkBgR028QjqtyoTWI6FqwhOnu9g0zWe/USo+4B5pq91Yh+NcH0OhOTApJ/3f0FB0pmvmc7wNui70AU7h68C4JAIBAgEAiwc+fOLjHulStXsCyrK5t9L9NIeDQJQ/sa/qhNb7pf07Y73y/TNDvv140bN/jYxz5GsVjkLW95C9ls9oEJQ7Va5dixY/zLf/kvefe7373uPu94xzv4+Mc/3vn9znvrD/zAD7C4uMgXvvAFDMPgX/yLf8GP//iP88lPfvKBzukNvIGN4HVJGFZWVrh27RqCIPD0009vW2akfbGyLOu+RbZ3ekDc7eK0naNJX2399pSmjeoV7rb2VlcY2joKTdNIJBJbLkC830pAW3dSKpVetdLxMCoM7WpQPp/vOhfHcTp6HkmSOoF+e1u7rH9neR/A4/Hg8XgYGhrqusFeu3aNZrPJrVu3+NJfv8LNC0uIqooliZgCCJKE4nFRberUdRPZrSCYArJHwaXKGGJLHGwJ4PO4sKVWYkZRJeqmicsl0bBMAm4NQRGoGyaDkQCmYFOpGxzpT2AINmfn04yGfLgVia9PtwLLvfEIHs2FXrIZW0xzsD/OQrnMqb4UuXqD+VqZ5VorS74zGCCoqfibLi5nVxjyB8gbdQzbJqK52RMMkzXqXM+tuhmfSCV5JbsIDuwORki5Pdws51hurAa6pxKr1QZoaRQOR+LULAMBielKiaV6jbhH6yILbknGwMRwWt8bv6wy4g7jdcnM1wXm60XyZosgPBFMcvGOcamjrkAPWVBFmZpdJ+YKEHf5kQSJktkgrGicLXQH0ZIgYAtmD1kYdke4VukNxA/5BrlSnerZ3qcFyZsSfsmLLMhYjkO2WsAWhZ5KgYRAQg20yMLac0GgvE6rkADozvrjT1Vx/Wt9vxZlstFLDOJ2nJyZ7tkeUxKc8D+17lp3Q1uMm0gkOk7G2WyWlZUVbt682SHbkUjkrq1+j6JWoE1iHkXCsJl7uyzLxONx4vE4juPw67/+63z605/mS1/6EvPz8/zQD/0Q3/Vd38Wzzz7Ld37nd264Q+Gd73wn73znO191H1VV79pCe/XqVT772c/y0ksvcerUKQD+83/+z7zrXe/it37rt+jv77+/J/oo4A0Nw2OBx54w3M9FynEcJiYmmJycZOfOnczMzGxrGbVNEu6XMBQKBcbGxgiFQvf0gNiIAd1mcGdL0lq9wsGDBzc1Wm4rs+prx+EeOHCAYnH9nuPN4n7OuV6vc/bs2Q1VOrZbw9BoNDh37hyCIHDmzBlUVe0Qg3YVTJKkzmfNtu1OxaH9/zbuVn248wb7D1/4Cl/5i8vksnUaloXk0ZA9Go6kIAkStm1hieD2q9gCoIhIhkNVNzAcm7ph0qyZaF4XN+cz7B6JMzadZk9/S2dwc3aJp/cOMp0vslKu8sSOFOWmTrpUxutRkESR4XAQVRa4lCuwKxom4fdydilNPW8iAM/sHKTQbFCoN7hhWgR8Gtl6naPxBIokMlkucCvd+ixFNA1btBkNhjEsm/FijqLZZLy4GmgeTyQo6k1ORvuZKRdZqlSo23oXWdjrC/JKdoGo6mbEG0a3TDwuucvADeBgONrTnnQ4HKdumaRUP1m9xky1gOqX+EauO1t/MJDoIQteSaFEiwhptkREcONCJuYLcKO+RNlskr6thwgrbnJ6oeczdSQwwKV1jNtcEj2i6LDsZbaxRJ8ril/2IgkSTdtEkxSulqewsIHV7+kOMcKC3T3JCWCfb7jHo6G1fYjxdSYg7fEMMdXo3T6s9TPb6K1GhOQAM83e/V2OCxuLpDKELLoQkQEBy7H5tvCbX7W6cC+sdTIeGRnBNM1Oq9+NGzfQdb1r0EB7FOijWGF4lCYkrcVWnpcgCBw6dIhDhw7x8z//8wwMDPAf/sN/YGJigt/6rd/ih37ohzh+/Djf8z3fw7/9t/9208f78pe/TCKRIBwO89a3vpVf+7Vf61R1n3/+eUKhUIcsAHzHd3wHoijy4osv8s/+2T/b9PEfNgSn9fN6wOP8PB97wrBR6LrOhQsXqNVqnD59GkEQmJzsvUlsJdpkZqMVAMdxmJ2d5fr16+zZs4eRkZF7EqKH2ZJkmiaXLl2iUCh0pjRtdu2tOPf1fB/K5fK26CM2Gtjn83nOnTtHMpnscbi+27rbUWGAVaF1JBLh0KFDnSqCbdtdgsW1n7W1hKBNKCzL6jzmzsfdWX249soUX/mfl1HcPgKxGD6XSKXRpG6Y6FYNyWliNUU0n5taw6RmWUQjPtKFCqPDEa7PZ9kzHOPqwgqjES/RmI+VUo2Te/r5xq0F9qQiHN2Z4uu35hiNh9nTH+XFqQVkCZ4cHWIimyddrnBiKEWxVmPQ58G0bc4vL2PbDsf7UiiKwFdnW4G2JkvsSkQQgIquM1koEPC4yDbqCE5Lo+DTVK5kM8yVW0H1iVSSs5lW9nlnIMiAz8/1Upbleu326w+HolEurzFUG5A1PLLCDm+YqUqBbGORQ+EYL2e7s/7Ho0nGCotICOz0RQgqGm5Z5sXcDJaz+vkb9UW6xqpCa3rSir5qaiY4AoOeIDu9EUpmA7VZYbFRouLUSQkas6WZFmFbgyF3kKuV7nWjLh/jtd4xzkcCg9yoztPnihC4TQwatolXkrhcmSFnFIBC6/MCDHvCt8nCKlyiTEnodXrWBBeLjV4dgioqLOm9TsyyIFK8SwuRQ+ta40LBK/txi25coouA7KFmxzAdi6atU7MaVKwKcSnBgjMHje7kQ1SJcjRwbN1jPChkWSYWixGLxXAch3q93hHjtkeBRqNRms3mhlqXHibut/XnYWG7zOQcx6FWq/Ft3/Zt/NiP/Rgf/ehHWVpa4gtf+AK5NZXGB8U73vEO3v3ud7Nz504mJib4yEc+wjvf+U6ef/55JEkinU73tLXKskwkEiGd7q2GPRZ4Q8PwWOB1QRiKxSLnzp0jGAxy5swZFEWh0Wh0MqjbVUoVBGHDAb1lWVy5coWVlRVOnjzZmeJwL2y3cLh9/rVarStbvtlpH7A1597OnAOdEaXttbeDSG2kwjA3N8fVq1fZt28fw8PDW7bu/UIQBEqlEjdv3uwSWq/VK7SPfa9zg1VRY7vi0CYS7few/T364v98kYsvTaE7IoqqoIsCgiSh+r0Ijo1PlSlW69T0JoLdpFjX8XpdlOs1+pM+6obJQCJAzTSI+D00HAu3S0GURbLVOiOxIIJLpFhvcqQ/Th2L8eUcJ4b7qNkGX5uaRZUkTu8cYDJfJF2ukPBoeGTY649wM5tDkODFhQUkQeBgPI4gC5xLp3EAl9SqTBT1JqeSfSyUS8iyxMtLq8HyqVTLyO1UvI+Fapm6YXE+t0zJWNULnEykGMsusj8Ywyu7SNcqWJbOWGl1rGhMczNfL3bdQ0Z9IVyixKFAislKjpulHEnNS4NmF1nQJJmmo3dGvraxLxijZuoMu6PUTIPZegGvpPFctnssqARICtz5FRx03D1kASCl+bheLRGRfURdflSxVTHL6WUMW2SmXqRdMdjpiXFrHW3BQf8g16u9WoH93n6u1XoTOLu9fesKo/d4+7mxztjVvZ5h8maBQXUQRVABERsHj+hi2VhBwkfFblDRS0CJsBxkujGLRfe1QkSgYpd61gf4zuhbkYTty6gLgtDV6tceNJDL5TojQcvlcqf64PP5XtN2oEex6gHbR2Tq9Tq2bXe1lyaTSX7wB39wS9b/vu/7vs7/jxw5wtGjR9m1axdf/vKXedvb3rYlx3jk8EZL0mOBb2rCsDZjv3YaDKwGPw+iL7gfbMT4rG12JggCzzzzzH25Nj+MCkO5XOb555+nv7+fffv2bdlFeLOEIZ/PMzY2RiwW4+DBg13ZpO1ykX61c7Ztm+vXr7OwsMCJEyc6JeSNYKsrDO0e6UqlwrFjxzr9sGsrCw/ad3y36kM2XeB//Zcvk8tUsWUFU5IxJRHV46KmmzRNG1ER0SQBt1/Dp3mpNHT6I0HmlvMENYeppRwBr0ITgabtMJgKcnF2hWOjKQr1BlOZAid29ZOv1VkqlhlOhvApLryqi6ptMF8sc2IghSSLPD/TCnqH/V4UReRWocStfJETAymmiwVO9vUxmSsgyAJjy60stksSeXqgn+V6jUy1ykq1yvG+Pl5ZbpGFpMfL7lC4Na2oUmK2XMIty8R8HkqVFlnQRIlj8SS6Y+KRXVwrtKYZnYinOJtbDUIlQSCiaSzUShwJJlFEiXStgiM4fGNNxUEEIm6VG+XuDPzBYJyx4jxhxcOAO4AiyKiSxMv5mS4S4ZEUskZv9n6/J8qNO7L0mihjKoABsiMSdDTcgkJAVik3mrjQWG7WWG62qihPhAaYa3RnVQUcBKH3mqSJCulmpmd7UPIw1eglKCHZx61aN+nwSR7Csh/LgV3uXTgO6LZF1apTt5pM1zOUrSprW50AhrUoK3qvT0NCDTFR780Kj7pHmGr0EpKQHOTp4NM927cTawcNGIaBLMt4vV5yuRzT09OIotjRPmy3cdx6eFRbkrarwlCtttoLH9ZEotHRUWKxGOPj47ztbW8jlUqxvNz9vTVNk1wutyWjw18TvFFheCzw2BOGuwU8pmly5coVMpnMuhn7h0kYXk1jsFnx8HYSBsdxOpmtw4cPb0qvsB42QxjaWfy9e/cyPDzc8znYrsrL3VqSDMNgbGyMZrP5QFO3tpIw2LbNpUuXqFarDA4OdpGFdmVgq0SK7c/rxa/e4It/+RK67WArLppYmLKDTsv0S3CJuBUZE4dMpUYw4mV2qUA07mMhUyIa85MuVNmzM8XYVJpdyQBThTIzS1l2xb28NLnAUMTPvoEYL0zMEdRcHBpJcmlhGd2yODqcxLAdmoaJI8LZhUWO9SewHIe5UpFcSUdw4ORgioZtka83ydTSnBhM8fLSIqPBICHNjSQLPDe/qgc4nkoxXshxMpGi3GxiODZns4vUO99ph12RMJOlPE9Ek9iOQ8VocqmwTM1cJazHYynO5hbbD2GHL8SIP8BivULDtLmQbwUAT8b7eCXfHTyfjPVxtrC6rU/zM+IN07B1kq4A6UaZXLNOQFZRJKGn4rA/GOtpW+rTAkzqq8G7X9JIqUESmpei2UAUVNKNImmaKBiEHZ283j3taEANcqXcW0U4HBjkWrVXAL3Pl+JKZapn+4g3yrXbwmgVhbArhEdyE5I91Ow6TdukYtYpmBVyRpN+Ncnlcu86h/0j61YddnkGmF1nMlJYDjBVX2cyElC2Cj3bAd4W/XYU8bW7bdq2jaqqnTHHtm1TLBbJ5XLMzMxsu3Hceni9tSRVq1UkSbqvxN5mMDc3Rzabpa+vD2hV0guFAq+88gonT54E4B/+4R+wbZunn364ZPYNvL7w2BOG9VCtVjl37hyKotw1Y98OmEzT3JL2mrvhbhWGteMtNyMe3q7Wm7Wu0uFweMvJAmys+nInbNvm2rVrLC4uvmoWfzs0AbB+61ClUuHs2bN4vV5Onz79QAR0qwhO20XacRwSiUTns71We7CVE01M0+T//P/+gRsXF7AlGUGTqdUalPUG/kgILeihVG1iOA6qrFBu6MhuGd2yCIQ8SJJIMOxBkET6En7qhsloX4SKabAjEQEZlksVdkV9VM0mt5arHIgHKOPw4tQ8w+EAkYCHs3MtN+YTwykcEQKaxky+hKrJNEyL/UE/Qb+fl5YWsezW+3dqqA8Lmx2BIJOFIif6NV5Kt4J6VRQ5mkhSs0xqus7ZpTQhVUNxCR2yEHSpHI0nyDbrNC2L85kl3LJM1OvuIgsjviBT1TxHw0nq1SortoFHUfjHpemuZNOhcIyzd5CFUV+YjF7leKgfw3aYq5Uo6wY3nRVyerffwU5/mIvFO3wY/DEu3EEWQrKbUV+YQlWmYZmUBYuMXiEgGzyfm+wRLx8J9HGx3BtwO7qOLXbv65YUFpu9mfyo4uNmdQ4cgZDiJSD70CQNDZmG1SQmp8g0ihQxKJp5+lSHW7V57Du0DhHZz0Stl6Rooov5Zq++QgD0dca6AiTUMBP1Xr3DqHuE6XVE0z7Jx5tCz6y71sPCne0/a00Wd+3aRbPZJJfLbZtx3EbO6VHBdlU+qtUqHo/ngZ9zpVJhfHzV72NycpKxsbHO+/Qrv/IrvOc97yGVSjExMcHP//zPs3v3bp599lkADhw4wDve8Q7e97738cd//McYhsEHP/hBvu/7vu/xnJAEb1QYHhN80xGGdDrNpUuXGBwcZO/eva/6pV7r9rxdWK8CYBgGFy9epFwu8/TTTxMIBDa1/lZn0tuEy+VyMTo6Sj6/vohws7jfIFnXdcbGxjAM455Z/IdVYVhZWeH8+fMMDQ2xd+/eBw7Et4LglMtlXnnlFUKhEEeOHOHq1asdktD+DG4lWcgu5Pmr//x5CoU6gsuF6UC1UaeOiT8aRlAVdMvBEsEbcGPYFv6Ih2K1juZyUVip0O8PMDNXYP/OODOZEh63gsfrYm45y/Hd/VSaOuWGQTQVxif5qGfy5C0TbIshjwswOTufJuXzMpoI8fJCmqZp4XO52J0M4yCQq9aoWRa3lpewbIe90QgJn4cX0wvot1+XI8k455aX2BuO4FVcVA2dS7kVarfJgSwKxPxulmtVTsRT1E0TRRL5anqm6/q/JxLhQq7V3jTg8dPv8VOzdeaLJS7cNhELyyoL9VLX4yIujXSztW3AHSCp+XAch6xZZbZSZGpNi83xSLLj+tzGkWCyhyy4RAkHm72+JG7JRdMyWWyUGPYGeT471bWvgIMqiT1kIan6uV5d4E4cDvRzrdobuA/gZdrMEpA8hBU/bklDQMAtySw0cmTsMkvNBkvNBgAHfSlu1nrbkcIuN1mzl3iktBA3qr0T0HZ7++5SXRhkptFbRXi16kLV6m3fAvj2yFtwiQ+33edO3Cs4V1V1XeO4hYWFLTGOu9s5PaotSdtBZCqVyqbakV5++WW+/du/vfP7z/zMzwDw3ve+lz/6oz/iwoUL/Pmf/zmFQoH+/n7e/va386u/+qtdZO8Tn/gEH/zgB3nb297WMW77T//pPz34k3qt8QZheCzw2BOGdvCz1uTs8OHDG+rl2+7+//Yx1rYklctlzp07h8fj2RJTsa1+Du0AeGBggH379rGwsLBtr1E7W78R4XmpVOLcuXMEAoF7jpptr71dhKF9zu0xrocOHdp0ZmezhGF5eZnz58+zc+dOdu3a1ZlcdCdZ2CqMffky//CX30B3BExRQZQkyvUKDcvG7Q8gaAouTaHa1PGFPKSzZTxBjVqljuE4lOs6qCJLhQr9qSDnp5Y4tCPBhbll/A0Xh3YkeOnWPCGvyr6hGBfmlnHJEgcGY2SrDSazeXb3Rag2m4z6vdiOxddvaxb2x8IIssS5hVaAnvK5qdomhxNxFisVRBGeX5zHvP352BuNoMoyMbeHG7k8EU1DlIUOWQi6VI4m46w0alR0nbPLaQb9fnK1ete1/1Syj4rZ5GS0j/lqmblKmajb3TUlCRwimsrEGifjpOplXzhK2WgiOEXmqmXmqmVOxVPMlrqD46PhRA9ZCMgqC40iqiAx5AnjVzR028Iry7yU764MBGWNmVpvIH4sNMDFddqL4qqbXKXQtU0VZZb0PKogE1cD+CQPsiAhOJBp5hFMF1mrSVZvaTr6lSDLVr7nPrnTHV+XLIy4Y4yvU0WIu4JMrOMY7ZE0ZtfRQAhA017fj+Fu1YWd7mFmGlMIjoiKCxkVn+pDEzXeHP7Wddd6mLifbP56xnHt6sODGseth0e5JUlRlC1ft1qtPrBpG8C3fdu3veq1/nOf+9w914hEIt9cJm1viJ4fCzz2hAFak3LOnz/fyTxv9Mu83R4G7WO0A9fFxUUuXbrEjh072L1795b1kG9FYLy2RWptALwdFYw21gpnXy1DlU6nuXjxYtekn42svR3n3V730qVLZDKZzhjXzeJBCcNaX4wjR4506RUEQWBxsRVcxuNxgsHgpj9zlmnxt3/wBW5emsOWFXC5sAWHlWIRxaMSigZwJAFkgZVCFdslIDgKpuTg9SqUDZ14xMdyuUos5KVumSiKxP6ROLcyefYORNEdi6mVAk+MJFiu1XllapFDA3GqtsmLUwsIIpzZPchiqcpsocLhgThTpRKH41HSpQrlRp25eiuDvTPoQ5ZFJkoNMotpRkJBpislVEniaDyOg8BEOc/1Qkv4qkoiQY/Gcq3C8XiShmXhccn848JqoOqVFRzRoWYa+BUXuwIRfC6Fs9lFqmtakU4l+ngl152d368FWGjWORZOIgkiC7Uyg14/zy13Z7sPhmKcy3c/NqRozNcLt994GHAHialefIrCbL1IwWhyo9IiAzs8Ia5X1mm38Yd7jNsCssZ0vVeMfNCf5HplAb+kEVUDeCUNEPBJMuO1JWqmzZRZoD0y9XCwj0VznclCprnuPVIS1/9+qtL6wWdM8ZM3ep/TLk+S6+tUF3Z7hphuTAEgOiIe2YtbdOMRNWxHZFTbg4OA7dgYjoXumDQtEBw/DbtJHQuokanXeFf8rbilh9Oz/mrYTPuPoigkk0mSyWSXcdzy8vKGjeO2+py2E5ZlbYvOoFardXwx3sDW4A0fhrvjox/9KJ/61Ke4du0abrebZ555ht/8zd9k3759nX0ajQY/+7M/y1/8xV/QbDZ59tln+cM//EOSyWRnn5mZGd7//vfzpS99CZ/Px3vf+14++tGP3lcL9WNPGIrFIi+88AKxWIxTp07dV2n0YVYYrl27xtzcHMeOHeuZobzZ9Tf7HNbqFe5skdrOsa33IgyO43Dz5k1mZmbu+3XbDiM0aN2EGo0G5XK5a4zrZvEg52vbNpcvXyaTyXT5YrTFzTt27CAQCHTcrwGi0Whn3vv9Zt+yi3n+6nf+jkKhieNSsUWJumFQMep4Ql6QXJQbTRSPC0WU0AIqsiph4RAOeWhYNpIiYgkO5XqTRNzPwlKFlNuPLUDTsBBkARcykiyyVKsT1FRGYyHyepN0qcKxgQS2BF+71cpAH+qLIckSumFxOZNlf1+cqVyBY8k4xXqdvKGTq+oAhF0KAU0m4A5zPZvlZi6Pz+Oi2GxlwlVR5KmBfnKNBk3T4tzyEgdiUc5l1s42dzgcj2E5Dn5ZZbyQY6ZUxJGdLrKwMxDiYuH25CVBZFcgQlR1czO/TNnUOX+7bWnIF+BSsdtnwC+7WNErXRl5n+TiSDhB3TKpmTqztSKztRIBReNr2W5iIQkgi/SOW/XHesgCwKg/wsXSHH5JI6EG8EgqAgKGo+MWveSMBjmjRUTiLi81u4ZudydaRj0xrq0zinWfL8V4rbelacDxMV3v9VHY4YoxVe/VIvSrEcZrvdWFsBSgbNYYUgeQxZYhoOOAadtYtoNfTFKx6lStBhWrATQ45B/m6jqjWndqA0w3eo+hCDLfEX3tqwuwdU7P6xnH5fN5crncqxrHrYdHlTBsV6vUZluS3sA6eKMl6a74yle+wgc+8AGefPJJTNPkIx/5CG9/+9u5cuVKJzn+oQ99iM985jP85V/+JcFgkA9+8IO8+93v5mtf+xrQilu+67u+i1Qqxde//nUWFxf54R/+YRRF4Td+4zc2fC6PPWHwer3s27eP/v7++2b8D0PDAC1mJ8vyfVU/NorNEoa2XkFVVZ555pmeFqntElW31wbuOnXowoULVKtVTp8+fd8X6O3wNSiVSly6dAlBEHj66ae39GZ0v+er6zrnzp3Dsqwu4rJW3Oxyubr6mYvFIplMhunpaS5fvkwwGOyQh3vNcr91YZq//eO/p2mC41KwJZmGbVBsVtH8fjS/H9228akSDd2kYds4ksBitkw84WNqscBQf4iVcg1bcvD5NcZuLXJ4NMWluSVkUWDfSJwLs0u4XTJ7BmJMZQpMZ4skoj5iqkalqWMJDhcXVtiXiBD2ary8kEa3Wp+fMzsHqZkGlu1wM5snFvKSq+lEXC4Smou8ZXBhpZVJlwWI+j3MVCscisaQRRGXIvGPc6sBY5/Xy2y1hOU4DPuCJNweXLLE15dW22VEAWI+N9eLq20+PlkhoLqIupPUDINbpTyz5RJZvcay2ejsp4gikijQtLu/X7tCIZYbVY4F+xARyDRrRFQ3X13prkJ4JIWMUel5r54I9TNW7G7pkQWRut0iRi5BIqUFcZkCGhI1w8QveinodQq3JyedCA9ytdxrAtWn+bla6a0iCGLvZ1cEqlav4FgEHBW4s7jrOJi0zlFBJqD48IgaqugiqLgJygFMx6Jh6ZStBmWzSkKLrRv87/EMMLEOwQhKXqbqvdsBnJ4TauFN4ScJyI9GgLhdwfmdLu13M45rC3PXZiW3axrRZrFdrVLVavUNwvAGHho++9nPdv3+Z3/2ZyQSCV555RXe/OY3UywW+ZM/+RM++clP8ta3vhWAj3/84xw4cIAXXniB06dP8/nPf54rV67wxS9+kWQyyRNPPMGv/uqv8uEPf5hf/uVf3nBr/GNPGBRFeeAJPttdYSgUCqysrKBp2gNPz7kX2oHmg9xIlpeXuXDhwqsKxLezJWmt/mQtqtUqZ8+exe12d4z27hdbXRlpt0UNDAywsLCw5TfI+2lJqlQqvPLKKwQCAY4ePdpxbm5XFqBX3CwIAqFQiFAoxO7du2k0GmQyGTKZDJOTk52AIB6PE4lEup7fS587z5f+329giSKC240jSZRqVaq6QTAeQfW5KVYaCKqIYDmsVOqk+gJkCjVSfUFylTp7dsaZzRQZHYgwkyvSFwkQDrm5Mr/EgaE4uUaDs1MLHB1JsViu8MLEHBGvxv7hOBfnl6kbBk+MpLAch4GQH9O2Obu4hOM4HEnFUV0SX59pBcmyKLA7FUUWRfZHo0zkcnhViXSjFawLwNF4lFKjgYrA5UyGvcEAY9lVvYBbkugP+sGBhUqFmVIJn8vF2Vx3EH08meLlzAJ+xcWoP4wkiCA4nMt277cvEuVCvnvbsWiSV3ILiAgMe0NEVDc+WeFScYm8Xmex2iIDIUWjvM6knwOhOOcK3Vn9hOrlenm1YhFzeUmofmKqh5xRw1QE0o0ytyoFBBwGVS+LlW7SEVE83Kj0Zvl3eWPrGrrdTQB9KDDIlUrvdKVD/kGWm3lG3ClUQUFARNd1nLpOwa4jCBoVwaRiVoAKQ+4YN9YJ/n2im8l67/kANOzGutuHPLF1xdFDaoq5Zm8lREDg2dhb1l3rtcDDyOa/mnHcrVu3OsmGtvZhu0eTPyi2c6zqVif+3sDrD6VSd+JFVdUNTTErFlv3qbZVwCuvvIJhGHzHd3xHZ5/9+/czPDzM888/z+nTp3n++ec5cuRIV4vSs88+y/vf/34uX77M8ePHN3TOj963/CFiuwjDWsO4YDCI1+vdtgvqWvfdjd5I1uoVDh8+3JnvvB62syVJEISeCsZWTR3aSm3H+Pg4U1NTHDt2DLfbzfz8+kHKZrDRlqT26zMyMtLRwdzp3NwWPL8aNE1jcHCQwcFBbNsmn8+zsrLC9evXaTabhMNhYrEY5z5zhWuvzICqIigKBlCuV2hi44+FEFQXdcNEF2yCPg8NwyCRCtDQTSIxD9Wmjt+vUjdMZFnEFm9XZJVWy4xHU8k16vg1lZF4mLlia0LNqZ39LNWqvDg5T0Bz8fSuQa4uZSjUG+yMhmhgczAV51a2gCxLvDTfCsYH/D76w36uZLKUdR1w2BsNcr1YZMDnI+XzI8siLyyuvodDPh+T1dZxB1wu/IoKLpmX06sBftLjZbZaxG6TOgeeSCQRgL3+KLdKeS5kljmRSPWSiliSc/nVAFxG4EgkhYDAgUCCqUqByXKBQrMBokVxjVs0wEggwMVi95p7/FHGCmvN3QQG3EF2eENULZ2KqbNYL7PUqAMiE9UMzTvaiPZpEcaNXgH0kDfIpXL3Z1zAobck0KpcZIxuYbaCRFTxISBw0Dtyu73Jpm7pVM0m840COaPKkr4qSBaBqKSSF3qJkdBstljeHdjpTaxbXdjt6WdqHZdpr6Qx3ejdDq2JUuvhgLSLuGvjBozbjdei/WetcdyePXuo1+sd8fT09DSO4+B2u/H5fK+Jcdzd8AZheHwg8DrSMNz+d2hoqGv7L/3SL/HLv/zLr/pY27b56Z/+ad70pjdx+PBhoJXMdLlcPVrKZDJJ+vY9LJ1Od5GF9t/bf9soHnvCsBnhkSzLWy56tiyr01d+8uRJcrkc9fr6c8C3AvdrQGeaJhcuXNjwSNeH4STdzo5PTk4yMTGxJVOHtoIwtLUdpVKJ06dP4/f7qVQq2+LvcK8Kw92mMm2FGVvbKTYajeI4DrVajaXFJf7ytz7NwlQeyeNGUm3UgEhFb6A7AprPj6gqSC4R07IJRbykcyXiySA3p5fZsTPOlakl9u5KcGVmmeFUCEsUOD+5yIl9g1yZX0YA9o0kGE9nKdV1YmEvcbfCTLbIUq2KblmcGEqBLPD8VCvQ25+MIrskptIrzBZKHB9KcXlphSf6kpSbOn6PixcXVoPzUwMpqo06A2438+UKUa+HlxdX/x7RNKJ+D7GAl6ligflGg0MeD5eKq+JaRRRQFZFyw+ZoNIEsiJSMJhOlHGVD7+w35Pdzudjdlz/g8TFRzrIvEMWvqCwXi5Qck7lakZVmt4/CkN/PpUK3nuFoeJ1xqYKI36VyTOkHR6BgNJivFQnIGs9lpnre34TqJaN3jwr1Sy7S6wiUR71RLpd7CfHRwABXKrez/A6EXF7CipeUGqBmN4koYWqmTt6oUjBq7POFOF/srS48ERzkUqV3nOl+3wA31pmANKRGWTR7tQ4e0XXX6oLp6Otu3+lJrltdSLli62oXAN6knlx3+2sF27Zfc7Gt2+3uMo5r66PaxnGBQKBTfXgYxnF3w3b6MLzRkrTFeB1OSZqdne2KvzZSXfjABz7ApUuX+OpXv7ptp/dqeOwJw2aw1cFwrVZjbGwMURQ7hnHFYnFbA+72zWMjx6hUKpw7dw5N0zY80nU7Kwzt9dt6hXw+3yXe3Qw2O6a0Xq9z9uzZjvak/Vpt97jW9WDbNleuXGF5eblrKtN2ODcLgoDVdPjif30Bs64S7uvHEgWquk6mXEbSZCRVQVAFLMFhJVdpeSsUawgumWpdJxj3UWvqjO6IsVyocGRXy715z0AMf0Dl5Yk5juy43Xp0c5YdiTAej8LluWW8mot9gzHqhsnVhRX6wn4uLizxxECK/z97fx4kWX6X98Kfs+e+r7V2VfW+T/dsLeCySEYSF1+D5D+EMcEWQBBIERj75Q+bGyzGEEbcAMQrww1fB8sbyCB8jQUyGoyFAQnNaKa7qrqr1+qqrn3Jyn1fzznvH9mZVVl5qqe7umrUM9NPRMdMncw852RW5Tnf5/f9Ps9jmCbLpQKZdJuAXxxsr5AoksT0eoJLI3GubmwgCQKnwiF8Nq3HPnXC7+NOJoUAHPUH8KoamWaVqa3tIv1MKMytzLYNalizMWjTSNWrNFo6N1JbSAIc8fl6yIImSSBCXdeREBj3+PEpGg1BJ5WrcC+f2T6GJ8CtUu/K/sVglBu5frvUzXqeUbsfv+YAEzL1KmG7g2vp3pVyuySzWe8nAGc8EW5baBGOe0Nc36VzEDARxHYSg2AKhFQXPsWBQ1JRRIGjzkEKzRqpRolkvUa1ZbJZL1DWezsibsnGfKX/mDZRYbnWX/yLQK5p4a4EOFXZqrFBWHeyRn93ZNweY7nWP1pkE1VWLbYDeGQ7qWb/9hEzTlw+OIOKg8CzJjAWRRFZlvH7/QwPD39DguP2wmF1GEql0p6Boc+xT7wPRc8dy+PHxSc/+Um++MUv8vd///cMDQ11t8diMRqNBrlcrqfLkEgkuq6JsViMN998s2d/iUSi+9jj4j1BGPZbHEqSRLNpcafYB5LJJDdu3CAej3Py5MnuRf2wV+gFQXgsnUFHr/Ckoz6dAvlxshL2A0EQuHnzJpqmceXKlQO7oTxNYZ/NZpmamiIajXLq1Km+ZFXgwD+PvcTlu8PqOl7ph5XcvDa3yf/7m39JuWYi2jQEQaDeatEUTdw+L/WWSaXZpFFrpxujyjSbdWSbhCJJCDYRoQqKXabZ0nE7bRTrTUIeJw10ZEHiSDTAar6I06ZweSLOQibPwmqW04NhmhhcXWwXdi9NDNI0DByKykouj6iIFGt1LsSjODWFr6+ud8nAhaEoqWqFFwfizKezmJj8w/pqd4Qo4nRg1xTO2sMs5Qvcz2Q4Hwszv6OTMOBysVjMMe7149dsJMolwi4Hk6ne4nfC7mS2sP06wWxnMNR1HZessVDIMpvL8FI0zvV0b8dgXHX2kYWgZmOx3CYUcbubiOZCEkQUSWA6u8GWUWOh1B77GXK4uZHrL3zP+CJM7tIzqKJIttmfQzDi8HHzYfqzS1CJ2L04ZQ2PrJJtVYgpfrbqJTZrZTZrZS75B7ma6+8WHHOHuFHoX5k/6gpx0yIZ+qQ7atldOO0e4q6F1mHUHmbewmHJKdrIiCWw+HrXapX+jWwHuwmmiF3SsIk2VFHFLtowgTH7OEJ7MAITMEyTS+WJZ6o4h2ePMEBvYf52wXFOp7NLHrxe76G+l8MSPVcqFUZGRg58v+9rvA8Jw2M/3TT51Kc+xZ/92Z/xt3/7t4yNjfU8fvnyZRRF4ctf/jIf//jHAbh37x7Ly8tcuXIFgCtXrvDv/t2/Y2trq+s2+dd//dd4PB5Onz792OfyniAM+4UkSU89LrRXfsHOY3wj0qR3nt/8/DwLCwtvq1fYa99wOO3dTCZDvV4nHA7zwgsvHOjFfb+EYXV1lTt37nDixAnLm0KnMD9owmBFekulEpOTk7hcrm5Y3duJm58Gt742y5d+7+9oiTKGKmOIIuVmnUK1ht3rQXM5Qddx2T1U6k08DoWtTIG6oZNKFXF5VBIbNY6Nhbj1IMHpiSipUpVEtsiFEwM8SLTDu6IhF8iQr9YpNBsM+Nz4bBplvcVCKsuRoI9YwMWbS21C4LFpxP1ubJJMvdmi1GhwL5OmZRi4VZXTsRCb1QpL2TxL2Tyjfi/zuQyGaTLgcDDk85GsV5hJbncOLsWjXEu2iYAqihz1BbArMtV8iwe5NhkY9Xi5lU32fEZnQ2FuZreI2ByEVRv1RgPT0PnqZm/hfNTrZyrT2zHwqTa2dohxXbLKiNNLyGYn3ahgGgXWyyXWyyVO+0JM5nqPLWDiVBXW671/16NOH9fz/YX1eV+MqdwqIgJRmxuf4kCTFDRRQBYkNit5cmaLXDGNJkr4NJV0o5dgeGUb98uJvn0HVSd3LYTRQcXJbKn/XFySxoNqf9dBFgRSjVzfdgDbHnkM484od0qLOCU7dqntoqQKCqopU2/WiDSV9vdDFkESQRRI1CoYhpOa0aCst4C20Pusa4Q7pX4dxKgtzqAZ/oaP/+xE57v/rBGGvUjMo4Ljbt26dWDBcXvhuYbhOd4L+Kmf+ik+97nP8YUvfAG3293VHHi9Xux2O16vlx/90R/lZ37mZwgEAng8Hj71qU9x5coVXn31VQC+8zu/k9OnT/MDP/AD/Nqv/Rqbm5v83M/9HD/1Uz/1RIu072vC8LS2qp1RmlKptKce4J0gDHsVx81mk5mZGYrFYncGfz/7hoMnDMvLy9y7dw9N0xgeHj7wm+CTEgbDMLh37x7r6+tcunRpz5bzzs/jIM95t+g5lUoxPT3NyMgIx44d6xKKTleh85qDKmj+7k/f4Ot/NUNLlBA1FUSRXKlMTdfxRQOodhv5Sh2bWyOdL1M1DUIOmUK9xXgsRKLSwO12UkNgI11gMKRx7cEGR+MeImEXr99b4fhgEF2E60ubRH0uRiJeFrayzG9miARdOFSZY5EALofG1xZWEUw4HQ8hKiK3NpNtAuB1s1UpM+rzoskypXqDmVSScqPdKQw57Zhmi0FVpSaKrJfL+D1OHuRy3fd6KhxiLp/lhXAMwzCZy2aQJZFrW9sFrUOWqdNqd1FoW6VOePwoskjM7mKzUmKrWiFos9MQemdmVEEgVyv15iCYcMofIpXLoTk0ckaTtXIBRZT6Qts0SSLT7F/IeCEQZ3oXMRAwUSUR3TQREYjbPPhVB05Zoao3GLAF2KwWWK2UWKXEOV+MaYsOxTlftM+KFdoZDTcK/duH7F5uFot924cdPm5ZbD/qClt2F065hrjzcLtmyLhVJ07FjluyYwo6xx3jGCZtO1WjhWEaLFVyNHSZmt4EtjvEx10xHrS22qrCzp1Nh6GGhw0l13dsl2i3FEcDfDT8zZhLz1Zx3vneP0vnBI9/LXy74Di73d4lDz6f76nuN52u+HMNw7sDz4Pb9sbv/M7vAO2E8J34vd/7PX7oh34IgN/4jd9AFEU+/vGP9wS3dSBJEl/84hf5yZ/8ya69/w/+4A/yS7/0S090Lu8JwvA0I0n7LeaLxSJTU1M4nU4+8IEP7Gn9+Y3qMHT0Ch1r0v06V3RuBLqu78vedDcMw+DOnTskEgkuX77M3bt3DzWR+XHQbDaZnp6mXq9z5coVHA7Hns/dywr2abEzh2FpaYnZ2VlOnz7dtQzeqVfouEsdBAzD4L/99l9x7/oKok1DlBUaQKlapimYuIJeTEUmX6lRM00cioigycQ8NkqNFiNDAcrNJrGwh4ZgEvK7EVWJcr3BWFQhV6sjCSbjIQfrhQItw+SliQEepHK8Ob+GJotcOjrIg2SOB8ksF47EmE2muTQUI1mq0BRMZjfac+9Rt5PhgJeFTJZ7W2nCLge6BOVGE4+mciwQIF0pslDctgm9NBTn6mZ7Jdxns3HM76esN6k0Wkw/nOG8HI9xdat3tXzc76PUanApFKNQr7NUzFExm9zf2tYiCAKEnA7u5npTkk8HQ9zJJxlWHGg6NATwaBqvbz0sThvbdqlL5f7k4nP+CNcsUp7nyw9HmUyI2lwENRdB1Ua+VWNQ87FZLbJSLrBSLnDeH+VmoXdFXxFF0vX+Yj6g2Llb7O8ixG0ebhX7ycWQzcdtC2F0XPNwp9hbgEuIhFUPFb3BMccQsiAhILRJgGFQbDZxij4KrSoFU6dQL0O9zAlXlLlKfwfjgmeY26X+cx20BXlgMb4kArqDnbxi+3wlD0t6/2v8iodX/Re4vjD9THUYnmXC8KSF+aOC4+7du0ej0cDn83UJxJMmK3c+q+eE4V2C5yNJez/9MWpbm83GZz/7WT772c/u+ZzR0VH+8i//8skOvgvvCcKwX3RSmJ8UGxsb3Lx5kyNHjnStLR91jHeaMCQSCWZmZnpWp/eLzsjLQRTI9Xqd6enpbtiY3W4/tJyHDol8u9GhztiP0+l8rKyMnRqGgz7fjrh5c3OTF198Eb/f3z3WQYubAarlGn/y7/+cxEYewW6jiYCoiOQLRZqmgOpyIdk1BFlAUyVUUaBcb+J0aaRLVewOlWKjQbnWIBJ2MbOwyQsnh9jKl8mWqowO+BCqMrVmizI6cY+DbLnK7bUEpgBnB4JUTIN/mGuP81w8EsMUQNcNrq8lODEY4s5mktOxEKokk6pWeGOpXZA6VQWHXcGlacRdLmZTKdLlAgvl7ZGaiwNRFvM5XozGKTYarBUKJKoVlgvbNqDHAwGmk+0C1KNqjHt9eG0a06lNcvU6C7Sfezka5dqubIVL4RhX0+2i1q2ojLq8BDU7a9Uiui6y3Gp3CXyKZlmoj7hczOxyVRp3+5neIX52SDIDdi8DThelZoNCs856pchGpUK5obMqZynssmE96Qn3kQWA896YZRfhiMvHDYsE6KBmZ6uZ69vuUVU2GiY2UcGnOHFJGpqo4FVshFoemoZOWW+Qb1YptKoENQ8zFlqH854h7lkU/yP2gCVZUEWJVQvRNLRHpxIW5kjHnIPMWwS1KYhs6f2iaYDvDH0AWZCeufGfzjXnWTonOBitwOMGxwWDQfx+/9tep3eObB40KpXK85Gkg8ZzwvCuwPuaMDzpSFJnbGVtbY0LFy50xSOPwjs1ktTx4e9kBpw7d+6J1O9vt/+nLerz+TxTU1P4/X7Onj3bXfk5LNehxxEn7yfz4bA6DIZhkMlkUFW1R9x8WGQhvZ7hjz/9RYrlJoasIigqjWaTXCaH3e3A6XIi2mQq9SblUhO3187KZo6BYT/zaxkmxkNcn9/g7NE46/ki5ODEeJTX765wdDCI3+/g2oMNRsI+IgEXt1a2AAGPz0VElphPZMhWK6wUq4y47fg9Dq6vJboi5ZcmBmgaJkGng7mtDCMhHyu5tpPORNBHwO3kzlaSxUy7oD/qczD7kCyEHHaO+gOk6lUy5SrpcrtwPz8Q5foORyS/ZkNRRC5GYuTqVR7kchQadW5mt2ju+P2eCASZyuwSL7u9tAydS4EY6VqVlVKBVbPIWrVItt4bGjbs9XAz11vojqmOPrIQUO3E7C4Cmp26rpOqVdisFhHtAn+f6B/nOe4LMJntLfQlQegmOu+EX7Exa1GcDyhObhb6V9mPOoNs1YuM2SPYJQVZkNq5GaLCeiODho1Ss0HpobvRsN3PreJa373QJ9stQ+AkQSDR6O+uADhlFfrfAiddA9wpLfZtD6se5irWo0V102JHwDHXIHOV/n3JpkRgRWWxsnhghhgHhc595FnqesDhjGfuFRw3Pz9PtVrtCY6zSqnXdf1AO7EddEap9jPe+xx74/lI0rsD7wnCsN8L6JMU853V8VarxQc+8IFHjq3s9xj7RcftaXJyknK5vG+9wl7Yy8HncbG+vs6tW7c4evQoR44c6fl9HTZhsLqZ7ZVp8Djo6AYOssNQLpdZXm67xHS6HJ3uSGcW9yDJwoPrS3zhd79MrWWApqGbItVajWqrjivgoa5Ds97EYZMp1Rq4/Q6ahkls0ItuGoyMBCg3Wpwci7CeK3Ak7qduGuQrdS4dG2AhnUMQ4MqJYW6sJVjK5jgS8eFyatxc3UIU4eRQGEkSaQgiiipzM5nBMEyGXBoep423ljcwTBNBgDMDEdYKBS4PxdkslnDZbby5sl0oj7vtbDYaXI7FKdQb5GpV7uUyZHYYGlwejHM1sYFNkjgWCKKKIiW9yc0dQmiXolAxmj1kwa2qZJoVvKrGiMuLIkqkq1Uaps71dK8oedjjZmaXSPpiKMr1XO9qv0OUUe02zooOBN2kWK+TbFQJ6CJf2+pdDW8TgP7C9YjTy3ULLcLFQLwv/RlgzOXnen7HdhM8okpEcRJWPciCRMswqOgtco0quimyWa2ySa+W4qQnyGo117d/j6KxblGbjzkDzBT7V/hPuwe2cx12YED1cr/c/75kQSBRt+4IRDUv2Vb/OR2xR1it9XdaBCC3K2yug//Nf5kxZZR0Ok21WuXu3bukUimCwSCBQOBAxjL3i4O+DhwUDivvoIO3C46TJKlr3doJjjsswTM8H0k6FLwPcxjejXhPEIb94nGL+Ww2y/T0NIFAoGd1/EmOcVi2pLDthOTxeLhy5cqB39T2OzZkmib37t1jdXWVixcvEg6H+57zThCGnTAMoxustzPT4ElwUCNaAOl0munpaTweD4IgdMnCYYmb3/qraf7X59/CUGQMRQVJplKvUazVcPg8yHYbektHdak0mgb+iJtsvoo/5GR5M8vQkJ/1dBGXS8MQBfKlGuGwG7Nm0NR1MtUqQ0EP5XqD66ubDAQ8uO0qC5k8DzI5wm4HozE/t9a2KDeaTEQD5Os1zg/GWM8VCXjtTG+2i24JOBnwUK7VyFXrXFvd4NJwnGsPg9lcqkJMlWlKEqVqjWvrm6iSyFDAw3x2e/X6dDjYHoEKhbmfyTCztcXlgTh3k73ag/GAn+up9iq8W1EZ8/jw2DWWi3mWywWy1XZH4HIszrVkb1F7IRRlOttbnAZUGwvlDCHVTtzhRhNlkrkcPpeT6/leYhG2OVjTezsTAKecPm5VMn3bVVlEr/WSVo9sY660/Z4UQSSsuYhoLgTggneYmt4k36yRrJfxiDamyknY5bx6xhPlbrm/K3DKHeZ+ub8AH3UELB2T/IqDe3t0F5IN64Ldp9pJtPo7Dyddg9wr93dZvLKD+T26C3ulNx91DLJU67dxFRD47ti3EtECDAwM8LWvfY3BwUGazSaLi4vdULJO8Wq1sn2YeBYtVeHw7Ev3wu7guHw+TyaT6QmOczqd3YWdg/4dVSqV54ThOd6XeN8ThkdpGEzTZHl5mdnZWY4fP87IyMgTX3wO05YU2rHe2WyWQCDA5cuXD+UGtp+ivtlscv36darValeVf1D7fhxYjQ7V63WmpqYwDIMrV65gs9n2te+dAuWnQccp6tSpU5imSSKR6I4gHca88pf+0/9i5vU5WoqMqGmAQKZUotbS8ceCyJpKpdHE5raxsp4hGPOSSORweO0srmcIhN1M39/gzLEYN5cS+Fw2RoYCTM6tMxT2EPI7uLm0xVDYg9ttIyK4KFTrpKtVPHaNAZ8LUxJ4c6G90n08FsRuU1jO5UkWN7gwGmNqfZMRv4eQ04komry1tl2gjrnt3NpMcDoUoNFqkS1XWGs1Ke/oJJyOhZlKbDLs9hB1OWkaOgvFPPnM9vL3mUiIa4negv9yLE6l1eClyACZWpXFfB5Flvjqeu8q+KlgiMldZCFgs/Gg1C5yXbLCiMuLQ1KRJYH7+TSpRo1UtU0GBhUbNwq9ZAEg7nAykyv1bPMrGnO1/sL6gj/CzEONgoRI1ObEpzgI2x0UW3UqrSaZeoVUvcJqq4hHsXF31/iTgElT7F8sEYGSYW013bRSDgNO2XqB4ojDb9ldOOUe4I5Fd8FrqNy30C6IQHaPjsCoI8TtnWNKpoAmykTVAIVWhZgaQhZkJEFCEiRERFySyoR9ov10HmqdMBl3DBDRAr3n5PXi8/k4evQotVqNTCZDOp3uWdl+p7oPz0LK8258o61eRVHE7/fj9/uZmJjoBsdtbGzQbDb5yle+cqDBcYZhPLdVPQw81zC8K/CeIAz7vYjKsrxnKJmu69y6dYt0Ot0jQH1SdEjCQbdITdPk/v37LC0tdS+Yh3UzedKRpJ1C4itXrjxSoPZOaBgACoUCk5OTfRqK/eBpOww7LVwvX75MIBBgdXUVwzAORa/QbLT401//7yzNbSHaNRAkmibkqyV0SSAQDmGKAslcGckuI7R0FKeKokqIdhmHXaUpmgiiwOljMRYSGU6ORkiUymxmirxycpiZ1QSr2SJnxyIky1UeLG4S9jgYjvrIlWvMbWU4dyTGnfUtLgzFEERYyOTIJduF9NmhMIIIYwEfC+kcPoedG2vt1X5JEDgbj9DQmxjVOreTGWyigMOuUK63la4C8OrIIHVDZ8DlZqVQYLNcYtjvJV/fJgsRh4PlYgFMGPV6CdsdKKLIdCpBdcfiwaDL1ZP4DO2uQ7JW7l7vRQRG3F5GPF6KzTpb1QprpQK3M2kuhLZzHjqQBYE6rb77xVl/mJmchfjX4+PGw3Eml6QQkGxoOlTyJUYlN2UMMq06q+UyOCTulbZ6rVyB094wd4v9QuFz3jg3C/3F+TlfjJsWzkhnPVHuWowKjTtC3Cv1dx0Ce3QXRCCzR6qzBwVdMNrBalI7W0ERJbyynbrZIKAEMM12qFrLbH//MvU6XilM3WhRNxrU9CZV3WTYbudBqZ+YjdhD3C33dxcAvm/gQz0/7y7QbTYbAwMDDAwMdFe20+n0O9Z9eBY7DIfpRrQfdILjZFmm2Wxy8uRJMpkM6+vr3L17F5fL9VTBcZVKBdM0n2sYDhjPNQzvDrwnCMN+sbOY31nUVioVpqamkGX5qVaiodeW9KDQWb2vVCpcuXKF5eXlQ9VJPMlIUidRenR09G0dpODp9RFvt2/DMNjc3GRmZobx8XHGx8ef+kb+NB2Gzu+uVqv1WLgKgkC9XqdYLB5osVHMlPjPv/rnZHJlBJtKU5BAEckUC+hIyDY7qDKmYOLy29vjlYqAapPRBZOWbiIoIpVCE7fXRtPQESWRYqNBwGWnqsrcWk0wEQuAIHA3kaSlG1wai7NRLHP1wcPU5mMPU5tVlbVsAWTIVWtMhPxEfS6urW1QbbYL9uPRILeTScaDfrw2G/lajQfZHIWHhb8ADAW9zGVzjDrsSKaJKIm8sb7WFU0DnItFuZbYLlq9msbxUIBSs8lSPsdyPk+iWCLsdvaQBUkU0DSZWq23+3gyFKLSbDLm9lNsNFgu5vFrNv5uvXdUxqOorFb6V8SPKDbm9N4kYk2USNa2OwsB1U7E5iKo2akaTY47QyRqZXKNGkVKvBiKty1Xd30dbabRRxZEoGL0WwfJgkjSwrVJEgS2Gv3bRaCkW3cdtD3C1Y44gqxUU4QkDzZJQREUJEHEI6uUjTpeuS0arxktanoDRZBYqWXRmyb5ZhV2aCfGnAGWq6m+Y1zwDDNrQQq8soO5cr+OA8Ata5aC6iP2GGfcvQmqj1o537my/U51H55FwnCYbkRPg8493ev14vV6e4Lj0un0voPjyg+NFZ6PJB0wnncY3hV4ThiAVqvVJQzJZJIbN24wMDDAiRMnnvpCKAjCgQqfd+Y/dPQKh7VK38Hj7H9novSTODQd5rkLgsDi4iLr6+uP7Wr1uPvdzzlXKhWuXbuG3W7vEze73W5sNhtvvfUWmqYRCoUIh8P4/f59/w2uz23yX37zS1TqBoakYMoKtWaTQrmK3eNEcziQ7Ar5Ug3FoVBttKjrBqopU6g1KLdaaE6FmfkNzp6IcXNxC5dDYTDmZ2YhwWjMh8uloVarlOoNsrUaJwfCZEpVVvJFEvkS4xE/Qa+Tq0tr6IaJ167hcqn47DbsqkLD0Jle3+yShSMBL16HRrjhZD6Vxa2puBxalyxIwCtHhqjoLTyqxnK5StjpoKo3e8jCMa+bycQGR30+/DY76UqVgNPOV1d7R2FOR8JMbvWukL8Qi/HW1joxh4u4w4WAgF2R+drmSs+1PmCzMVfo1xccCwSYTPWurgckmeUdjj1uRWPA7iJud1Fo1fAoNhLVEulajWy9xqDTzWqldyU+Yncyk+/vRBx3+Zmr9guCz/mizBQt7FV9MaYthNEX/HGuW9iunvXGuF1awyGpeGU7joc2qk5JpYnOaecwTdOgpjcptxoIgsD1/AYNQwe2dRkCJiNOH2u1fo3CBfcg6/X+z3LCEWax2v+eJUFgfQ8R9JgjyK1SP/HxyU7mKtZE4rsir/Rte5IRoHei+/AsEoZ3UzbE7uC4UqlEJpN5ouC4SqWCLMtPPdr0HLvwPuowPCcM71J0xj46M+OdgvdJnXMe5zgHQRg6K+W78x8kSaJet7YPPAi8HeFptVrMzMxQKBSe2KHpsDoMrVYLwzDY2to6FNeoJ+0wZDIZpqamGBgY4OTJk33JzXa7nRdeeKFrr5pMJrl16xatVotgMEgoFCIUCj32jerWP9zjS3/wFVqmgKEq6EiUa3VqRgOX30O1+XBJp94kW64yFLCzmSsxPBxgfi3N6GCA+5tphv0OJsZC3F1JcXY8yuxmhluLCc5PRJnbyjKbSHN0MIDLaWM1V2AxmcNmlwm7HThVBY/LxtcX2kXoWMiH32Pn1kaShVSOkMuBIYFumlwciIIAq8UiC8vtroQkCsT9buZSGYYdNmyyjNfr5h9WtotaVRJx2BUSufbKn1fTGPd4qbTqOASJ+UwOyHHU6+bqLt3C+UhkmyyYMOrxMOB2U9FbhFQHm8Uym8Uyfs2GKRl91/lBj4cb6d5i9pQ/2EMWRBNCksrRYJgGBtVWi0S1RKpWoSSrfLW43B2v6eCFQIzJbP84T8zuJJnv1TmIQEPo//4oCCwW+1flHaLCQrm30HbLGj7ZjmDCOc8goiBiGCZNU6fWalFsNhEMlXxLJ18vAe1zOOUJM1vqH3e65B9kK5/r237KE2fWYqzJLWnMVfpJAYCyRwfjpGuAu2WLfAVBYtmCYACMOILctiASbsnB/xY437d9v7P5h9V9eFYJw7Po3PR2I8CCIOB2u3G73U8UHFcqlbqC6ifF3//93/PpT3+aa9eusbGxwZ/92Z/xPd/zPd3HTdPk53/+5/mP//E/ksvl+KZv+iZ+53d+h2PHjnWfk8lk+NSnPsVf/MVfdJN9f+u3fuvd3/F43mF4V+A9QRie5mIlyzL1ep27d+8eiiUpPL21qmmazM7OsrKywvnz54lGoz2PH+ZYT2f/e62oVyoVJicnu/kBT5ooLYoijYZF4tJToFqtMjk5CcDZs2cP/Pf5pB2G1dVV7ty5w8mTJxkeHgbYU9wsSVJPgFGpVCKZTLK2ttZdqex0H9xut+Xf/t/96Ru88doMpiyhywqmLFGqVKm0Gjh9PlAUBFHH5lCoNnXig35qLZ1IzEO10cLnd1AzdRyaSlM0kCWRiN/FfCLLSMSHKZhMLycIuR1cOTXMtcUNaokMPofGscEgc4kMN1e2uDgR5+baFheGY1TqDZAFri0/dDjSFEYjPpotndmtNPcSKSIBN8lye2RHEgReHRsmX66gCgIr5fb40vTmrgI9HiZbrfJifIBctUaiVCLRqLJe3C4M/ZrGeq13FCigajQMnRejcRq6zlIhT7JSoWYabJZ7i/JhXz8xOB+OcH3XNpck41JVLofaq8ybhTxbjRoxr4+vJftX7r2axlq1t4vgU23MFvtXzo+5A5bdhYuBGNP5/iL8QnCAydwqbknFJSgoLZBMAY+kUZcgIDvJVsuUzCb5RoOjrhBXs/2r7xd9cWYsQt0mnEFLsuCWNO5ZdDUAGqb19/yoK8KNQr+uYNDm576FWxNAeY8RqZOuOHct3JQUQWJlDyLxj8KXUcX+ov2gRMZ7dR+WlpaeqPvwLBKGd9oh6XHxpOe1OziuUql0Sd6dO3f46Z/+aV5++WXGx8cfa3TJCuVymQsXLvAjP/IjfOxjH+t7/Nd+7df4zGc+wx/8wR8wNjbG//l//p98+MMf5vbt292x6O///u9nY2ODv/7rv6bZbPLDP/zD/PiP/zif+9zn9nVOz/EcT4L3BGF4GgiCwPXr1w/NkhSePCBuJxqNBjdu3KBarfLqq69ariQcVlpyB3sRho4l6NOMbx30SFI2m2VqaopoNEqz2TwUMd7jdhg6trJra2tcunSJYDDY3f444uadq2Dj4+M0Gg1SqRTJZLK7UtkhD4FAAFEU+bP/719xf3qlTQpsGoYBmUKRhmESjIcQZJmWYOJQZDbTRcJxH3NLSY4cCTG/miYWcVNv6Swv5jhzMs7tpS2CPid+n51kuUJDb1FptTgeD1LXda4tbuB12DgT8rBZLPHGXLswvjQRxwBsssTNlU1OjkS4ub5FyGnnSMhPvlHn6lK70BUFODEQ5vZmkmORAG5VbTsULWwXkUGnnUy9RtMwkAWBY8EgIZedO+k0yXKFpWy78D4/EOkJZxMFCHmczGbSDHu8+BWVar1OVW9yJ91bmL8Qi/WNJ12MRpjeRQy8qka6XuW0L4RTVmkaBslKmQGPm7e2eotrl6ywWu0X+Z4PRLhhIXSe8PqZTPcSAAHQxf7viF2UKDSrHHOGesLVTNNko1JGNhRyrRY52uNeHlljo5Wn1mjt2o/cY8fagSRAykLTAO3fqxWOuUNMW6Q6H3OGWbDoImiCzGKlX4cA7aTpTQuOMeGIsGiZr2CSa1kLqo87B7hX6ScSEiIfCb/ct/2wUpV3dh+AJ+o+PIuE4Vk8J3g6kxFBEHA6nTidToaHh6nVavy7f/fv+B//43/wh3/4hySTSb7t276Nj3zkI3zkIx/hwoULj/UZfPSjH+WjH/2o5WOmafKbv/mb/NzP/Rz/5J/8EwD+8A//kGg0yn/7b/+NT3ziE9y5c4fXXnuNt956ixdffBGA3/7t3+a7vuu7+PVf//UDnYp4x/G8w/CuwPuaMKyvr9NoNIjH45w/f/6ZcRnqoFgsMjk5idvt5tVXX92TzBx2ONzu/e8MPjt16hRDQ0P73vdBEobOSv6JEycYGRnhK1/5yqFZtr7dflutVleY/uqrr3Zt+HZ2Fp60la+qas9KZS6XI5lMMjs7SzFX4safz1EuGtg8LkxFoWWYFKplUGRCIR+1lk4+W8IXcpFOlXD57SQzRQaH/axu5Tk2EeHavVVOjUdoSSaT99c4d2yAuc00D5JZzoxFaJoGC5tZxgcCSIrIRCzAcirHVqnCSrrAqYEwfreN1x+sdjUFF8diNAyDU7Ews4kUUb3F7NZ2sf7KxDD1Vouwq53qfCoWYmpjuyBUJZGIx4kiSQx73MylsjR0nddX13pC1i4NRrmW2H5dzOniWChAvl7Hr9lZyRdYAS4PxJhN9K5cj6haH1kI2Gw8KOZwyDIjLi9uRaOh66iyyFtbG+ykBsNuD1Npi+yCYIirqV4CoIkSiXqp77ljbh/Tu/bhllXO+qNUjAYvBobQDZNqq0m2UWXY4eZqtr+7cDkUZ7XQL7o+7g1YhroNChrzrf7zOeuNWaZAH3EEuFvsL/7tosJcpb/rAKBI1n/np9wxS+vVgOLkXqn/2ND+e7DCMWechaq1RqGgWxOfl32nCKnevu07M1AOE0/SfXgWV/OfVcJwkDbmNpuNj33sY3zsYx/jC1/4Ar/yK7/CP/tn/4zXXnuNX/mVX8HpdPLhD3+YT33qU91C/kmxsLDA5uYmH/rQtlOX1+vllVde4fXXX+cTn/gEr7/+Oj6fr+cYH/rQhxBFka9//et87/d+71O/128UnrskvTvwniAMT3pR32lr6XA4iEajh3pj2E9Bv7Gxwc2bNxkbG2NiYuKR53fYhGFnUb/Tbna/wWd77Xu/2Pn73LmSf5iWrY/qMHTGtDRN6yF6Hb3CQcz9iqLY9RcPuSP84b/9r5TKJnVMirkCstNGwzTRkVFsNlAkTMPAE3SCKOAJOkAQcHrtGEAk6qZQrXFkwE+qXMXvceDz2JlZ2mQ44uPESJg351bRDZMzRyJU9Bb31lPYVZnhqA+bKlNvuUCENxbaZCHuc3Ek4uPWZopcpS1+feFInMnVDcIuByN+L6oi8bWF7YJx0OvmQSaLQbtgPxL0IUsi19Y30I32Z+61aeRb9R6yMB7wsVDIcz4SQRZE1otFPJrKV1dXesTQR7xerid7i12PqlGUBWi1NQERWcUlitgVlZTeJNFocPdhN+JMMNTTwWjDxKZKtKq9f2tjHp8liTgfjPJWeruw9SgaUZuLAaeLkOakaRoUG3W2ahUarRb3C2lS9d6RKr9q47ZFnkNIs3PTYnQpqNq5XbAq8mW2pCbsiqMRMUlUcn3PB3Aryk4tcxenPBHL7sKoI8CsReCbJAhs1q2PMeLwM1PsL/JjmnUSNICAgYKMLIpIgowsSEiCSET1UNTLDKgRBEFAROz+97sjr1ru67A6DI/C23UfoN2tTiQS3/DU6Q4OM1H5aaDr+hOPxz4OSqUSwWCQn/iJn+AnfuInaDQavP7667z22mtPpSPc3Gx/P3aPG0ej0e5jm5ubfcYdsiwTCAS6z3mO5zhMvCcIw5OgVqtx/fp1Wq0WV65c4ebNm4dabMOTFfQ79QqP6+zzTrgk6bpOrVZjamoK4KntZnfu+2nOfXdAXMem9CD2vRce1WHIZrNMTk4Sj8c5efJkl1zsTG4+SJHg/PVF/vx3v0y9ZWL3erHJMuVanWKjhmxTaRk6LbHGVrqJO+AknSsTHfCyupRh/GiEW3MJTh+PkciVqNQbDA/6SW9mqbdaIIkMBr1oqsS1B2ucHokgySJ3N1JUGk1iPhcDIQ+31raoNlociwdZyuQ4HQ9Tb+k4HSr/8GB7dv/y2AAt0+B4OMD9rQwht7Onk+DSVCR0hhwahqyykMkB8ObqdoEoCBDzubmTSiEJAhMBPz6bjVyjRi5fI1Nuz7a7VZWWaPaQBVUSaQlGD9EI2eycCYUpt5qEtDrLhTyJRoNQKMRMtrcgV0WB5C4tBMClaJxrfWNEJrIkdK1OZUEg7vAQ0hwICLzgH6DUbJColCnU6oy5VP5us3+O/+XwAG+l+/UP454Ak5n+1fQRt48pi67DqMvLdQutw1GHn5sWXYGTjhD3av2EZNju446FRkEVJRYsrE+hbTO7VgdVkLFLCqqooAoycZuXYqtKQPFgGiblUhmf14f00BDgpHMUwwTDNNAx0Q2DoOpAMBWahk7L1GkaOg1TJ6S4uF1IY9Ip8Ft0WJBb8vKg3D+qNOaIcMo9annO71SH4VHY3X2YnZ0ll8v1dB8640t76ZkOG89qh+GwujG7Q9tUVeVbv/Vb+dZv/dYDP9b7Cs9Hkt4VeF8Rhmw2y/T0NMFgkDNnziBJ0qGvzsPjE4ZGo9H16N9Lr/A0+98vJEmiVCrx+uuvEwqFOH369IGtKj2N/uLtAuI6TkQHjb06DB1hcmckCvYWNx8E3nptmr/7L2/SlCRMRaOFQLlSpU4Ld8BHvWUS8NnZShdoYtLKl8nXGggpA9kusbKR5ehEmLfurHD2WJyK0eStu6ucOxYjX22wuNp2RpIUEbfdRrHaIFEuMxT0oMgSTdPg6kK7CB2L+nA7NeSSxMzqFmdHIkytbiICJ2IhAm4Hby6t0Xj4dzoc8LCYzaGbJnGPi5jLSaZUYLHYKcgrHA35uZHoLWZfHh2k3tI5H47wIJvlfjLDucEI93bpEY4EfdxI9r72XDRCulrlxWiclm6yUSoSc7v4u9XeQt2jaqxV+le3J5we7uzKV/CqGvfy24W1Q5IZcHoYdLqp6E3OeKNkalUS1RLLhQL+kJ2prd7CXRFFtmr9I0F+1cZti25B3O7ihoWL0qDDw41c//aw5uB2ob/ItwsiDywsTkWgyC7xgAl2QcJWbREWHdgVDZusosoKgiDilhWKrRoDajtUrW7oNPQWDlllvphD11VKpkGJJnQSo02RpeouK9VciRd8Q9zI93cqXJLGWi1F3Wj1PRZ0OVhv9IvFg4qLuT2E098dvWy5Hb4xHYZHQRRFNE3D4/Fw+vRp6vU66XSadDrN8vLyO5463cGzOCYFh9f5OKyU544NeSKRIB6Pd7cnEgkuXrzYfc7WVu81rdVqkclkHtvG/FnF85GkdwfeE4Th7VZWTNNkeXmZ2dlZjh8/zsjISI8laavVfwM6SDxOUVwoFJiamsLtdr9tOvJuHLZLUsep58SJE4yOjh7oStZ+uwDJZJLr168zPDzM8ePHLc/pneow7OwKvfDCC4RCoe72gxpB2o3X/p//xfTX7mMqCoYkgyJRLFWomzpOr4eGAS1JQJRFFIdGyOcgV6kxHHSTLVdxqCZ1s8VWOsvEsJf5RJqBkIeRuJ8376/htKm8dGqQW2tJStUGo1Effq+dpmAwt5nhxHCIe+spTg+GcdgUZhNpHqRyAByPB8nX61wcirGUztHUdd5c3iYLfocdh03hlMdJqlRhKZvHjs5iadv5JuCwk67XME2T46EAbk1DlkS+vrzWs0BzcTDKZGJXjsJAW7xskyTGvH5cqoJNlrma2KDaarGYaxf9Pk1jyWLWfzzgY2pXSvOY18dsefu5iiAQklX8gkjdUECzUzBapGpVtswyqVqFXKN3bueUL8SNTD8BuBCKcTVt4UTk9XPNYnvU4WLTIngtbHewXu9/P6NuL1PZbUIimAJuRWXA0KjLAg7VhiyIiEK78HPLCslGhRFNpaI3KbXqlPUGbruH+/UChmFCa3v8QgSCqo10y6L74h+gVO4f1TjmCjFv0dkQgU2L99B+TdjSTckhqsxZjDwBDDv8zBT7uwsOSeU7QucsXwPPRodhN3bO5Wua9rbah3ei+3CQWoGDxGEShsOwMB0bGyMWi/HlL3+5SxAKhQJf//rX+cmf/Emg3dXP5XJcu3aNy5fbZPdv/uZvMAyDV17pzxF5juc4aLwnCMOjoOs6N2/eJJPJ8OKLL3bnQzt4Ggejx8XbkZKOXmG/ScSH5ZJkGAZ3794llUrh8/k4cuTIgR/jSYv6nYLrt8vLOEwNQ2e/rVaLGzduUCqVerpCj+uE9KRoNlp8/te/yMr9JKamIWgKLd0km83TMAVCg0GQJGRJQDEMarqBoslUWzqNpo7DayOfyHPieIRktkzL0Gli4FCgUi2zmstzYsCPbFN4a34dp03h5eNDzG6lWXiQQxDghYcOSGGPk2ShjFGGfLWOU1M4ORAmXa2ynM6znM4T9brYqlZotHQibgcjfh+lVoM7ie3xlSMuG/M7yIJHUzkVC5Gv12k0dWaTGYJOO016sxCGvB5upbZX912KwoTfjyyKHPX6WcrnuZtK4VQU7DalJ80ZYMTXr2c4Ewr3kAXBhKjTyaDbTcjhoNHSSVYrbFZKKKLE7Ub54S9mx3nZ7NzeNf8vCFAz+68BHkXjnoUWYdDh5nqmf2V8zO237C4ccfpYKecZdfhxSAqq2J7lVwWJqt7gmDNGudWg2KxTaNSpGgYLYoVqRYcdAXHtcDUvK9X+oj1qc1oW80c1H3PN/tA1j2yzFEfD3sLlk+449yw0ChKwbtENATjmjnDTQjgtCyJLVWsR9neEzmGX9p5x328Gw2FiL5vX3dqHd7L78KyOJB3WeT1Nh6FUKjE3N9f9eWFhgenpaQKBACMjI/z0T/80v/zLv8yxY8e6tqoDAwPdrIZTp07xkY98hB/7sR/jd3/3d2k2m3zyk5/kE5/4xLvbIamDd/HK+/sF7xnCYDV+UqlUmJqaQpZlPvCBD1iGXr1TI0lWhWtnLnV1dfWpkogP4z00Gg2mp6dpNBqMjY1RtBAgHgSepKg3DINbt26RSqUeS3B9mB0G0zS7eQ+KovDqq692RXYHKW7eiWKmxH/+1T8nnSkjODQMU6SpGxSqZSS7RjTso1hu0KSFzamylsgzNBpkcS3F0fEwmWqNRtpkYNDHm7dWOTkexmgJLKxnuHBigIbRYn0lTaVRI5PPcyTooG7ArY0titUGYxE/QZ+D6aUNmrqB267hcmo4VJlBn5tUscKDTHZbR2DTcDs04pqbQq3Gg2S2rT/YQRaidoXVeoNBj5uY20W+Vsfj0Pjq4nYBKAoQcNqZTW8XpZosoWkSxxxBbJJMplpltVCgpDeZX+8tEo+Fg0zt6kKcj0T6yIJDkpBkkUvhOCIChUad9VKRIbeXr671FqQC7Q7Nbgw6XNyr9BfVFwNRprP9xfMxf6BP/wAQsttZr7X345QU/JoDt6IRsTkIqg4MTBq6QaXVINeo4ZRtLJTypKq9XY3LoTjT2f7V96MOH7cs0qFPeSLctchXaIum98hXUMwewtRBxFRYMPvzEuKah7t7ZDW0rHYEnHDHuVfq77YImCQb1laqJ9xx7pb6iQTAd0cf7WZzUBkMB4nHXc1/J7sPz7Lo+bA6DOFweF+vvXr1Kt/+7d/e/flnfuZnAPjBH/xBfv/3f5+f/dmfpVwu8+M//uPkcjm++Zu/mddee61HK/hHf/RHfPKTn+SDH/xgN7jtM5/5zNO9qWcBzzUM7wq8ZwjDbmxtbXHjxg0GBwcfmREgSdKBB4dZHWO3g0JHr1Cv17ly5cpTzUUeNGHo2Ll6PB4uXbrExsYGuVzuwPa/E49b1NfrdaampjAM47EF108asPa4EEWRSqXC66+/TjQa5dSpU11dQ6ez0HneQRUd6/MJ/vT/+kvquokuqyBI6BJkiwV0FGyaDR2BSrNFMOKhUKkxMhaiUKlx8niM5a0840NBEsUytUaTl88Nc+3+On6PnZfODfPW7Bq6YXLhaIyWabKcq6KpBlWjiV+TcYgqsqTz1oN20eZzaJwYCrOUyjO3mcFlU/F4bGSyVRyKzNFoEFOEW+tbXeHvC6Nxrq21V8cFE2J2hVjAj1iuspYvspYvcn4g0n1OBy8Mxbm6voEmSYz5/ThVBVkWeWttvbtvgMtDMa5u9r72bCTcRxY8qsZmpcRRnx+fZsMwTbK1KkGHg6u77FYDNht3sv0dgBMuD3ct8hU8Dhuru8aFbKLI/Vy/IHjQ6eZmNkHc7sKr2HDICpIgYhMl0o0qQzYfmXqVUqNJqVHkhE/jbzf7swQm3H5uWmQ6xO0uZnL9hblNlFixsFEFaGJ9HRlx+LhuYbF60h1mttx/bEUUSYl1rHYX1hwkmrm+7RHBxnzZOpOhZVgTieOuOHMVa41CVbewcgLOuoc54nh00fesdhietDtw2N2HZ7XDcJiEYWxsbF+v/bZv+7ZHauoEQeCXfumX+KVf+qU9nxMIBN6TIW3PNQzvDrznCINpmszNzbG4uPi2IyvwznUYdo4kFQoFJicn8Xq9vPDCC0+kV7DCzmL1aQvUzc1NZmZmesajDjMY7nEIQ+fz8vv9nD179rFvBI8bsPakqFar5PN5Tp482dXD7BY3C4JwYGTh5lfv8tr/7ys0DBFTVkCSKDcalOpVnF43gqqhuVRqDZ1AxE2hUsPls1MoVdHsKg1dRwDqGDjtCpIssZTMcWI0jCiLvHF3leODQQI+B1+fbVuiRnxOhmM+5jczrOSqnB0Nc2MtyaDHhogJstQNaVNkkXjIjSiInB+IMptIgwg31rYLydMDYWY2E5yOhGjV62wWK9hdTiY3tlezB7xu7me2x05E2kFsACdCQRYyOe4mU5yNhbm62VtYjgf8TO8iBm5VZa1cQhIERjxeApoN0wRZEbm2uc5Wubz9ep+vL4cBYNjrYTrVWxC7JZnVVn8xei4U4cauLoKIwOXIIOlaBcUUMFotqo0GNcPAZQhsNA02mmU22D6Xk/4gd/NWjkPWf8s2xfr6MeB0k8j2dwbPBqJcy/Q7L530hK3Tm2WV2T0K+b3ufmc8cWYK/cdwCFI7Cdriq+ESFNL0dySG7X5LvQO0u09WGLEHWKpan/PbdReAA7mWHjQOojg/6O7D+40wVCqVQxE9v+/xvMPwrsB7hjAIgkC9XmdmZoZyucyrr76K2+1+29e9UxqGTlG8vr7OrVu39q1X2Gv/0L5I7pd8dIjW0tJS33jUYdq2vt2+rQjMQe37SWGaJvfv3yefzxOLxRgdHe1uPyxx8999/nXeeG0GU1UwZKnthFSt0BRM3AE/piSiOlWWV7PEhv3MLyYZHg8xc3eNU6cGmF1M4nFr+ENObs1vcO74ADomiUyJcNBNQ9c5EvGhajJfn11lIOgmFnDzIJXlrbl2N+HSsTg6EPO5WMuXOD0U5tZ6uxgL2ST8bhvrmQLFensV+NJ4nGsr7VVfTZY4GQthiqAIEnc224XwheEoUxvbxbVNlhAlAZemcDIcpKkb5Co1FnIFcrXt4jxgt7O8S8SqyRI1s0nrIVmLO11EnU5cmsZGqUi51mAxk2MROB0OMZnqLSRFAQyBHgtWgFPBYB9ZADgaCjKV2hEsJ4rEHC6cisJLoUFME6rNFtl6FQF4M7HeY+UKMOH2cs8i5+CEx29JFk77w9zO9xfNRz0Bbuf6t0f36C5oosSDUv8oEoCwR913whthMmuVr+CzJBgCJqk9xoROemOWWQ0uQWEV67HHgGJn3aJZENHce4qdfYqdNQtbfL/i5JsCJy1fsxPP6kjSQRbnB9F9eFZFz4d1XqVS6VBEz+93PO8wvDvwniEMhUKBa9eudV2GHre1+k52GO7cucPa2hoXL17c9xzkXvuH/ROGTipxh2jtviAepgvTXkX9zk7R+fPn+wJtnmbf+0Gr1WJmZoZCoUAsFuuORB2WuNk0Tf7rb36J+zOr6LIMkgwP7W1bAthcLorVBja3nWa1iebR0A0Df9RNo9Hi5MkBFtcznDwa5e5qknq2xEvnRnjz3ioCcOnUICupPBvpIqfH2wnORweCJAtlljJ5UoUKE7EAEb+LNx+s0tTbn+PF8TgLySwvjMZJFcoEPHamVreL6hGvjZvrCU6E/CiyzGahzGapzGZhewTm3NA2WdAkiYlgAJ/TxmImS7JQIVmoIAhwLBZkOdlbeEa9Tm4ntwtqmyzx0lCcaquFX7WxViiyWSgRsjv46kqvo45dlknW+518XojF+0aRZFGgsMMJSDAhZLNxxOvHFOByaIBKs0m6ViVVrRC1u3hjvX9k50IkylqtvxBWLLsCJvlq2WI7llai0CZLVhh2ekhadRf8USaz/Sv/E64A9wr9xb8mSsyXrFfqfaqNFasAN3eUe+UEoimgiCKKKKMIMrIgUG41GbT5kQQRCREREdM0cOoC2UYZTAFZklBkGVlR0KT2dfyMa0degrDt9FTSAw83mrSpCsgImKbBKeeRvnN7NXAURXz7QvJZXDk/7HPaT/fhaRapDhOHZfdaqVQeayHyOZ7jvYhn75u+T8zOzjI0NPTEq9DvhK2qaZoUCgUajcZT6xWs0Hm/+ymOy+Uyk5OT2O32PYnWOz2StLM4f9xO0ePuez+o1WpMTk4iSRJXrlxhfn6+R9h80GShVq7zuV/9AomNHKgakqZQaxqk0zl0USI0GMQA3A4NA0ARkWsGpixi1E1ku4JuGvj9TtYyBUZiPgRF5Nr9Nc6Ox1BUiTfvraJIIi+cGGAjX2I9XcTj1PB57HicNjRJQlUk3phfQTdMZFHg8sQg+VqdYrXO1OIGF8ZiTK20V3g1WeLkQJh6q4lZbXBvK4sADPnsLO8gCyMBL9lalUuDcWrNJvPJLJos8bXF3lXnF4bbuoWduDQUYzGX50I0giJKZCpV7IrMV5dWerq8LlVhvdxfLJ+OhvqIQdju4HZ6m4Aoosigy82o10u51cSNTLpcJm/qpCo1PLYa8/letx6/ZuN2tr8rMO71cT3dvwJ+NhjmlkVX4Hwwxg0LgfK45mS+2O9CdNwb3KO74LTMY1BEkeVK77lLiLgUlZDmRDcNVElCEaRuSrJX1Sg9JE4m7S6MYZpokkSpVeeIPdp22jJ0Gg//NQ0RvSXTwKSmQydE7bw3xs18/3lJgoBHVskbD9lHJ3OtBhOCi0Whv1uhiBIOWaZoMRr2gneIGxZdDAH4/xz77r7tVnhWNQzv1Dk9bvehWq0eSqLy08AwDEzTPDQNw85w0Oc4IDwfSXpX4D1DGF588cV9FYeHPZKUz+e5f/8+AK+++uqhrMZ0dAZP+j4eJ8sADn8kqTPSI4pi13lIlmWuXLnyVDejgwhuy+VyTE1NEQqFOHPmTJcY6Lp+KOLm1FqGP/n0FymWGog2O01ToNnUyVdLqG4b3pCfXKGGw2sjlyujuTWyyRL+iIvbcxucPzvM7fkE8ZgHu1PhwXyGYNCJIYDLriFIcHs5wcWjcRAFphc30Q2TqN/JYMTHndUtFrdyHB0IcD+ZIeZzE3E7ESWBrz9YpfNxnhwMcXsjyZmBMJIgkiqVWc7luw5JAOdHokyvJxBMiDsUnKpCqdVgvVRlJdMuAof9Hm4ne1ewJ0J+pjbbhfOA20XM5cImy8zn2g5MnWM4ZBmnQ+m7/h4N9bsiTQT8PRoFWRAYdHsY9XqptJrUWzrpapVEuUSl3uTr6+vU9N6FhIvRWM8oUgfjfj/XtvoLYVWW+s5NEOgW4DshCpBp9Hc/wKSxR40oPxzgd0gKbkXDKatokkxEs7OZywACTqcLBGgZJj5NY7WSR1ZUqq0m5VaDuqHjUO18PbnWf65A3Olko9pPvl4MDnLHoiMx6vBxt2itNyhbvG+AM54YN4v93RkBk7KqWzowHXeEuFOxHkdKN61Hmy75jjBg81k+thvPoobhG0li9uo+JJNJ8vk8uVzuG5463UHnunzQhME0Tcrl8vMOw2HgOWF4V+A9Qxj2e4E6zJGkTvJvPB4nnU4fauv2ScaGTNNkYWGB+fn5xxKGH/ZIEtC9CU1NTfU4Dz3tvptNa3eVx0EnH+Po0aMcOXKkS0AEQSCTybC+vk44HLa0690P5qcX+cLvfJm6YWKIMqYg0JIgWyhiCioOt4tipU6+UscZsJOr1hmPeVhN5QkKAoPDQe4ubHHqeJSpuXVEQeDCqQFmV9PkyzUunx6koRsYJtRaOvc300zEg6iySKnZ4upDzcJIxIfbZWNYMHmQyOJUFR6ks5hmu4g8NRhGUSVUUeL2WhJVloiH3KyltjsJ54ejVGs1Rp02Ug2d9UqT424X66ntFW5VEmjoLeqth39bJgz73YTdTuyawmquwEa+xFaxzJDfQ6LUO65zIhZicqO3UD8VCfWRhZDdTsTpxGe30dQNstUq66USblnj73eNLQHE3C62Ur1Fr02SWCn126UOuzxMJ/sL1zPBMDctVv8vhmJMW+QrXAjGmMpsIJgCPk3DLWs4FYWQzUlVbxJ3etFNk1qjQblRR9NNlrM5RFOirOuUGxWgQkC1MZtN0erclR6OQwnAgMvNeqV/tT5qd3YtXHfirC/KzUL/udpFmdk9SEHA5mDZIi9hzBlgoWKtnaga1i51J91RZvfQKKTLeUvh9LgztGf2wv8evWC53QrvBw3DfrGz+1AqlfD5fKiq2u0+iKJIMBh8x1OnO+gsbr2bgtve73iuYXh34D1DGPaLwxhJMgyDe/fusb6+zsWLF1EUhWRyD5eRA8Ljjg11guyy2Swvv/wyXq/3wPa9H3RugKurq9y/f58TJ04wMjJyYPvez3nv1E/sFIB39AoDAwMIgsDa2hp3797F4/EQDocJhUK4XK59FRpv/uUUf/dfr9JExFRVTFGiVK9RrjewOV2YqoxmV2nVW0QHvdQMg4FBH8V6g2jES7nZxOXQcLoD3Fzc5NRYBEEWeeveGgNBD0ePhJiaW6elGxwfCaNpMmGvi4XNDKMDfh4kMoyEfcQCLu5tpFh6kANgOORhNV8g7nMTdDnIlaskSmVSpe3V8OODQW6sbRF2ORj2e5Elgam1TRo7PvtLI/E+u9SxgJdkucyYQwNRIlVv4rFpvL7UO2N/YTDGtfV+YrCbLNglCUkUuRiNIQkC5UaD9WKJUZ+Pr6327lOVRFIWeobj/gA3Uv0F59lIhLe2+lfBPTaNlV1FuChAcddquiqKBFQ7kiBwwR9DESUEoGUYtAyDSqOFX3KQb9TIVOpkqLdD1LxNli2IyplAmFKuX+8QMEQyFktY5wNRbliIoAOqjVt563C1umlNtk/7o0xZ6CC8io07e2Q1+FQbSxYNlGG7l/mylSMU7JHtxrDdz1q9f0QLQNWtv+9e2c63BI9b79ACz0pxvhPP6jlpmkY8Hu/pPmQymXc8dbqDjn7hMI7z3CXpkPC8w/CuwHuGMDwrHYZ6vc709DTNZpMrV67gcDgoFovviLD67Y5RrVaZmprqzuI/7sr4YY4kdTA3N8elS5cIBoMHts/9nLeu68zMzJDP53v0EzvFzXa7nYmJCSYmJqjX6ySTSVKpFA8ePEBV1S55CAQCj3WD/9L/8zdc/4c5TE1BR6SlCxRLJQxVwBP0IdlUdCBbrOH02Ejmyri9tvYYTa7MkSMhZheT2F0aiEL7fYsCuUKFU6MRVJvMW/dWCbjtHB0KcXN1i9J6A1EUOH0kAqLAkYiffKVGNdUkV2nPhce8TqJ+NzqwnMqTyJWIhdykstuV38sTgzRNgyMBL0vpPLVGE1kResjCsUiA6Y12IRlw2Bjx+XDZVG5vJUnXmnTWnSd8Lm5u9RaP40Ff97UduBSFTK3CEa8Xv92OgEC+Vsfn0Li6i0REnA5upvrJ+vlolKuJXgIgCpCr9BfhEYeTG+n+ovp0IMStTBKbJBGyOfCoGjZJwaOqFJp13F6NUqNBtl6j0Kgz5PdwLdG/Yn8pEuOGhRvTuWCUGYt8hTGPj1u5/vdkEwRWjX5bUoCybr2Kf9Qb4GqmPxBtwu3nfrG/kBcw2axZOyAd9QQtBdWPIhJhu4u1eq5ve0h1cm+PlOiQ5rAkDA5RYaFhTSQ+HDn7WGLnDp7FkaRnteuxcyV/Z/ehc33cqX14J7oPhyV41nWdSqXyvMNwGHhOGN4VeM8Qhv1CluWuSOppL8adkRqfz8fly5e7I0jvlBPTo46RyWSYnp7e17jPbp3BQaHZbHL9+nUAXnjhhQMlC/DkhKFWqzE1NYUgCLz66qtdQvUocbOmaQwNDTE0NISu62QyGVKpFLdv36bVahEMBrsEYrceo9lo8vlf/yIr8yl0WWo7IYkSxWIBwSYjyxq5cgOfXWV1PcfAaID5lTRHj4WZvLXK6RNxBFVi5t4Gp0/FmF1NUyjXePn8COlClaXNHOdPxkkXypwdi1Jr6kwvblJrtoj7XQxGvdxa3aJca+LUFAJ+B4lciXMjUQzDIFer8+b8w2JSgKODQW6ubXEk6MPvsiNLIm8ubs++CwL47DLLpe2i1WfXcNk1LthjbBXLrOYKqHKJXLpGtbnd2Qs7HWzWe4taRYRMuYRhmEQddqJuF4okIcsSkxubNPQKi9l28Toe8DO52V+URtwuEsnejkHM6WTGokAfs9mZq/cX3CNeD/aqjEdRUSUZTGi0WpgCeCSNQqPOaqMIFJFFgYDdwdYutyNVElmy6BRIosBq2boAL+nWM/8e1ZroH3MFmClZBMSJmqVo2ibJ3LMgBQAuxVo7dMYXs0x8lgShT1DdPS93yNKW1Smp3MlbE4l2UFy/FsEmytwvW48cHXdHmClaJztP5DRWVlYIBoOPJVp9v4ueHxdvV5xbaR8Ou/twmKFtwHMNw3O8b/G+JwwHkWEA7ZGaO3fu9My77zzGYRTcO/Go4nh5eZl79+7te9yn8xkd5PmXSiUmJydxOp2IonhgOoCdeBLRcz6fZ3JykmAwyNmzZ/eV3CxJEuFwmHA4zMmTJymVSiSTSVZWVro3xw55MBvwn//9X5BJl0FVkTWVar1FMpPBlBUiAT+lagOvt91diAz5MEyTI2NB8qU6Z07EWUrmGYp6GRrycfXuGsdGQowNB3nj1goC8NLZYTKlCstbeY7IIlvFMuNxP62Wgc2h8uZDzYIsCZwZi1JttEjlK9xe3WI8HuwKkwFePTZEraUTdTtZTOVoGjqZWq1nseSIz858scqwz0PE5aRcb2DKApMr26vqkihgV2U2SttkQRDA77azlWz3Grw2jWGvh4DTzkahSD1fYKtcZatcZdBhY6Xe64wjiQI6el+OwtlohJlkf3EZcjnY3KG3EBAIiCKKqnHZ40UURBq6TrHewKHIfW5NABejUUsB9IVIzFIAfT4c5WrSwnY1FOVaqv/554IRy/TmIZeHG5n+7ZogstKwTm/2etysF/rdhE66/NywyFGI2Jzc2qOQ103rRYkzvigzFg5IogDLFetV/1HVw916f6dEEgSWqtZ6h+OuMDdL/Z8jQKZp/f5PO+OcDo2SSqWYm5vDZrMRDAYJhUL4fD7La9qzupr/rBGGJzmnd6r7cJihbcDzDsMh4LmGYW/8/d//PZ/+9Ke5du0aGxsb/Nmf/Rnf8z3f0338h37oh/iDP/iDntd8+MMf5rXXXuv+nMlk+NSnPsVf/MVfIIoiH//4x/mt3/qtJ/5bfs8QhqcZSYK2led+CINhGNy9e5eNjQ1eeOEFQqHQnsc4rFZp5xi7OwyGYXDnzh0SiQSXL18mEAjs8epHY6cw+SCw253pb/7mbw5l5OlxOwydcLiJiQnGxsa6RKPTVYAnT24WBAG3243b7WZ8fJx6vU4qlSKZTHLtK9Nc+8JdRNmO5nEhCCKNeoNipYzd68IT9FCpNHD5HWwmikSGPCwupRkZC5HJVzAxMWUFSRBAESlWG4zF/ag2hRvzG5wdj6LZFb5+t73aOhz14vc6KNQa3F5KcuF4nKmFDQJOO6MRLy1Mvn5/e5Tk3FiM68ubjIS8hFwOZEXk9fntx52agiFApdGecbcrEgMOBVnVCNlhNVNgNVPghSNxrq32FpEXhmM920Tg5dFB6rrOxViURLHMZrFE06nzlYXlHkKiSiJ1qf93cDrk50a6t8C0SVLPKr9gQtBhZ9zvRzcNXowMUGu1SJXLJCsVBvx+ZjJpoLcLcCzY/52RRYGNSn9xapMkFvL9q+w2SWK+0F80S6LAyh7dhaphrR8I252sWgiXzwajXEv3F9JHXD7uFPqLchFYLlt3BEZcXpKZ/tX9I04f94rWWqyqbn2+ZzwxblkIpwVMturW7/20J8btYv+YFEBBtwh+AMYcQZZr1uf2fwxcYjg6zPDwMK1Wi2w2Szqd5s6dO7RaLfx+f7dQ3Zmv8m4uzt8pPE1A2tt1H9xud/f38iTdh8MKbSuXy6iq+o6LuN8XeD6StCfK5TIXLlzgR37kR/jYxz5m+ZyPfOQj/N7v/V73590LsN///d/PxsYGf/3Xf02z2eSHf/iH+fEf/3E+97nPPdG5vGcIw34hiuK+XYA6eoVWq9XVK1hhJ2E4rIvN7vfQOTdd17ly5Qp2u/2p9g089ViVaZosLS1x//79Hnemw9JIvN1+TdPkwYMHPHjwoCccbqdeQRCEA7lJa5rG4OAgmYUSD/5uC7vLS7mlUymWEbQ6LRNMUcHjdbG+nscZcJDbKiDZZRYWU0SHfFy7scypU3G2cmXm7mZ48eIoG+kCq1t5zpyIAQJ+lx1JkXjr3irDER/xoIvbaymW7reLswtHY9RbOqeHwsyupTBFHzcWt1eTXzo2SNMwGPS7WUnlUSSR5fXtwk4Q2i5K2UqVF4Zj5IoVsuUKm3WdUjHXfd7RaIDptd5V6pOxELc2tzgRDuJSVSqNJi3D4NrqRjcYDtphboVmo++6enYg2rfaH7Sp3M1sF+OSIBB3upgI+ik1mww4XORqdRKlErlKjTW5yFqxtxiOOhzcyfUXz+fCYW6k+1fgL0SjXLXoIpwNR7lqIYw+F47wlmV3Ica1VP/2s4EwtyxSneN2FzMW3QVJEFgp9487AfhtNpbK7c9UFWU0UUIRJUbcXlK1EgEETN3AaLUwdB1ZEKmWq5x1RpFlGVEQ6NgReRSVoOp6+LPZtdi1yzJVvcUF93DP78w0wSnKnHUNgSBgYoLZXqnVDAPJYWdgp66gvVucotINattZIzokhZrR4Jzroa7o4UFMTNyyilO0tc9JaD9qYiKLEt8W2k52lmW52wXs2GSm02kSiQSzs7M4HA6CweChZ/PsB88iYTioRbCD7D4c1sJcqVTC6XQ+c52n9wKedxj2xkc/+lE++tGPPvI5mqYRi8UsH7tz5w6vvfYab731Fi+++CIAv/3bv813fdd38eu//utv65K5E+97wgD70xh0/PkDgQBnz5595IpGp+g8TB3DTiejjpbC7/e/7bk9Djrn/zRFvWEY3Lp1i1QqxUsvvYTP5+s+9o0gDDvdol555RU8Hg9weMnNAH/3J1/jjf9xk5YgITntuASJUr1KuV5HR8EUIJ3N0hDAKem0BBO/x4agidTqLV64OMLU3TXGR4JEYm7evLWM26Fy6cwQdxa3KFUbnD8Zp95qMTEYpFipM7uZoVCpE/Y6GR8MMLueIvNQY3BhIsbU4gZ+l43RkB+bJvH63HYnIeiyk67WaOg6ogATkQBhr5MHySwb+RIb2RKiAEMhD0vZbVLhtmlkajV008SpKIwGfLg1pb2tZTKbaHcDJFFgKODtIQsAZwYifa5IYwEfUzvEz5IgMOhxM+r3Um22qDabpEplUtUalUqNfyiv0No1onR5MM7Vzf5Cv61z6LXwkQSBjIWewS7LfcFtAG5F5Z5FeJtDlpnN94/XyOLeRb4hmPhVOw5ZRhPb/xRRImi3M9CoU6lUaLVauJwuEEU8qkqyVsEvO2jqBg1Dp663cMoKd9NpTF2kppvUaNIJNXBIKnPF/uOf94aYsegieGSVhqlbJk5fCg4wle0nPoMOD+u5nOV7POeLcMPCnSlu87CZt/5cLvsHmcr1dx4cooIpGNQszu0fx84gm4JlsS0IAi6XC5fLxejoKM1mk0wm080XMAyDmzdvdgvVb3RA2fup6/E03YfDGknqEIbnOAS8DzsMhUJvh1XTtH2PZv/t3/4tkUgEv9/Pd3zHd/DLv/zLXU3o66+/js/n65IFgA996EOIosjXv/51vvd7v/exj/OcMPDkhOFReoWDOsaTorP/9fV1bt269UTn9jh4mqK+Xq8zNTWFYRhcuXKl2/Y/iH0/CoIgWO63Xq8zOTkJ0OMWdVhkwTAM/uwzrzE7vYJo0zBNgXrToFApI9kkfKEAoqq0C3NVwiiUaRo65UoVqWjQMgScbhv5co2hmBfJJrO8mePC8TgNTN66s4pdk7l8ZoiFrSzJXJmAx46kSkQ9LiJeJ4Io8NbcKrrRvlqdG4uiY3I8HmRuI0PBWePWxvYFTJMlfB47miwxEvCwmMyhyBJfm+tNVT47HOH6+vZquF2ROT8codJo4VFVljN57mwkOTsU4X6ydyznwlCsz2r1aMjfQwwAgnY7UbeTgMNOSzfIVmusF4r4VI2vLPaLXGMBL5lUb/HulCTuWLglnQgGLHUOF6JRSy3CmUiYtxL9xfGJYKivu+CSFS5EomxWSww5PahiOz1ZQMCtKmTqNSKqi7quU2s1qTSbxF0ubj20YM6yLXr2azbuZlPUjR3XkFp75GrM42OxlOs7pyORARYr/dsnPH7mLETQAiaZPYTWEVNi3uh/zC2rlgFuAHGHi/Va//G9io3ZPcTWg04Pm41+wqAJErMWeguA454w1/PWI0zfFT3dM1rY+V5bdQ4VRSEajRKNRpmfn+8WiGtra9y5c6dbpIZCoXc8nKxjzPEsEYbD1uV18KTdh8PUMDzvMDzHQWF4eLjn55//+Z/nF37hF554Px/5yEf42Mc+xtjYGPPz8/zrf/2v+ehHP8rrr7+OJElsbm52reE7kGWZQCDApoVRyKPwniEMT/MllmX5sVrQHU3A5ubmE1uAHjZhEEWRZDJJuVzm4sWLhMPhA93/fs+/UCgwOTmJz+fj3Llzlhfyw+ww7BY9d85nZ/elI27eywnpaVAt1/jjX/0CW5tFdEVBFyUMUaBSKiG7FUxTo2kK6PUm+XIDt89O3RColnViw0Hu3E9wbMJPKl8ila8zMeql1WpSqTaomyabmQLnj8URFYE3Z9vdgaDHzthQiAcbGe4uJRmL+1nLFzEMkxODIfxuO5OLG9QeuhSFPA7SlSqNlo7bpjIWCaAoIjdWEjQehqpFvS4WM7lesjAU5vZmihORIC5NJV+p4XHZ+Op8bxF/fijK9Y3e1eQxC7tUVRSxayrnohFkQaTSaLJZKHHE7+ONpd6CUJMkNi0sUM9EQ5Y2qiNeN7fzub7tTYu/O5sksVDof65XUdkoFxlz+3AoCpokIyEgiyJ1XeeMN0yl2aTUbJCv1zFbcCO5RbHR6/4kChB1uix1ELE9RGjjHh9X0/0E5rQ/zJ28hcWqJHM3b12Uu/dwWTrtj3DbYhRKAMqqCBbygTGHl5lS//FVUeT+HnqHY3vYr0qCwIM9MhlOeaPc2IMUlPcgOSMOPy9FxzAMo7sQ0Pmew3bndK+xQ5vNxtjYGGNjYzQajW6ROj09jSAI72g4Wec69iwRhsMMSHsU3q770NEZFAqFAyV25XL5eYfhsPA+7DCsrKx0JxugX3fwuPjEJz7R/f9z585x/vx5JiYm+Nu//Vs++MEPPtWp7sZ7hjA8DR6nGN65Sv6BD3zgiTUBh0kYms0myWSyq6U4jIvafor6jph4fHyc8fHxPS/c79RIUiKR4MaNGz3ns1vcfJBkIbWW4fOf/iLZQhVBtSFrKpV6k1Q6h2TX8Dk9bKXKDMTcrG3kGRzxM7uQYmI8xIP1NJVqkxdeGObqzVWiIRenTvi4vZDENE1G4w7K5RL5Yo1oqMWtuSQTgwFcNo1MpcZb99oF2UDIAzKcHAqzksxTrNZZyRW6ZMGhKvg9duyaQrTRYj6RQZIEri5sr5ZrsoSiSpRLTQQToi4bI+EAhUYDCYHZzfbIzXDAw8x6b8EZdjuYS/euZiuSSBODAbeboNOOhEi+VsPvsPHWLpF02Ong9lZ/4XlmINKnZ5BFgUzN2hb1XqF/1XrMZuPBQxLhlhUCDjsuRSPstFNqNhlz+6jrOuVGmwCMB3xctchReDEe70uXhnaXwirs7XwoyrRFrsMRj4/bWYviX5S4nbFeXd+rfjwbCHPVQgQd0OzczFrnG4h7/N2f8UX2DHfbsBBgt18TZdpifAjYM8fhlDdqKZAGqO0hAh+we5mzsJIF+O6Bs8C2Tg22V+o7BGLnNXn383ZeB1RVJR6PE4/HMQyDQqFAOp3usQftEIj9hjc+CjuvT88KnoVzsuo+3L17l3K5zNTU1IHmPpRKpecOSYeEbaXUex+d9+nxeHoIw0FhfHycUCjE3NwcH/zgB4nFYmxt9d4/Wq0WmUxmT93DXnhOGHj7Yv5J9Ar7PcZ+0bEnFUWRSCRyaCsgT3L+O5OSd4qJ98JhEwbTNFlYWGB+fp5z5851vySdwuEwVu/mphf5wn/4axqGgKjZ0REpVWsUKxVsbhfekJemrhMZ8lFt6ASiHqpNnUDQSbZcJRRwIdtkVjbznD0ep2bq3Jzf4uhwEJtT5cZcu0AdG3BTKBUJOlSWN7MMRDwsbxWwqzLHR0IUag3mN9oFu89lo4FAqdbA49AYj/gwRYGZlUR3VOnkYIjp5d7i9+xolHKtzhG3jWxdJ12tYytXWEznus9RZRFDhMaOvxFBAJ/TxlayQsTlJOZ2oYgimiozubpBrdVi9aH2YdjnYXLdIkfB62Qr0asvGPC4uL7ZX8BeiEctNQp2RcIrSvhsNnxOV9tdyoSa0SJeFsnUapTqTUr1Jg5RZCErUtF7O44Bm40ZiwRor6Zxy6KjYZMk7uet7USzDWunH59NAwtn0CFF5X6zPyZ5xOXhlgXBAJONar/LEcCE189bqf5CPm53cTtnTUr2upOf9Ib2zHFI70EkTnpCzFp0JABMrK8BcZub+8U9xp5sbjYsxp5EBP73h4ShZ/vD7/hOq+id3YdOp7kjnLUauRFFEZ/Ph8/nY2Jiglqt1u0+LC0tIctyt0j1+/1PZdfdwc6uyLOCZ4Ew7IamadjtdhwOBxMTEwfmvATPOwyHivdhh+GwsLq6SjqdJh6PA+2x61wux7Vr17h8+TJA15nylVdeeaJ9v2cIw9NcSCVJ2nMkaWVlhbt373Ls2DFGR0efmURpgK2tLW7cuNE9r06wzGHgcYv6VqvFzMwMhUKhJyn57fZ9GGSqs9+ZmRnS6TQvv/wyXq8XOFxx81tfmuZv/sub6IJISxAwDWhJLUrVKg6vB7vbwcZmntiIn9n5JBPHIyyuZvD67KhOhbtzCS6cH6JSa1EoVnF6NRRF4kjcj2xTuDG3ScjrYGw4yM2lBOVqA0kUGIi4qFZrjPhtZKstNrIFNvPtQlOTJSJBF5osE3DamdtII4giU0vbBXbM62I1V8A0TcbDfnwOG5oq8/p8r27h4pEYUyu9xf3poSiTD7sDdkVmxO8l4naSrlTxazaShTLJQpkjQR/LG3n0HaNiggCyInVJSwdn4mFuJiwEuA4bq+UdOQomDHrd1HSdF6IxJEFENwzKjSZ2UWAmmcIEcvUS5NuvuzwY52ayf99jfh83s/2F/pGAzzKl+Zg/YNl1OBOJWDsmhSLMWHQL4g4XMxZdBwGTrGD9vQs7nKxYWawGIty0KP4VUWSuYJ1vMOTysFnvJxlxu4s7exAJbY9CeFBzsdKwJgw22XqFN6Q5uLuHFmLQ4SVhYcEqCrC0R8bDS8FRorbHu/bs7CoYhkGxWCSZTDI6Otq9L3Set9fo0uDgIIODg+3Aw1yOdDrN/Pw81WoVn8/XLVIdDse+rjUH6dh2UNB1/Zk7J2ifl6ZpB5770NEwPMfB47lL0t4olUrMzc11f15YWGB6eppAIEAgEOAXf/EX+fjHP04sFmN+fp6f/dmf5ejRo3z4wx8G4NSpU3zkIx/hx37sx/jd3/1dms0mn/zkJ/nEJz7xRA5J8B4iDPBkQV078agMg/3oFaxwkEWxaZrMz8+zsLDQXTFfXFw8lFX6Dh6HMFSrVSYnJ5FlmStXrjy2q8hhdRharRbNZpNyudwjtt65knjQZOG//8cvM/O1OXRRAkUFQaTarFMs1TAEte0glKngCDpIpUsMjwe5v5Dk2PEo03fX8HntnD49wOTtNRRZ5PzZIZY2siQyJU4ejVKpNzl1JAICXJ1ti5jddpVTEzGWt/IkCg1kWSAWcrKcLiGLMORzYHNo3F/P0Hr4OZ8bizG5gyy4NYXRqI9KvcliMseDRJbRsI+1fKGHLJweDPeRhTODEXTD4NJgjEy5ymqmQKnaYCGb62ogoO2KZAhmD1kAuDgUZ3KX+NkmS2ztIsBBh52JoJ+mafBiPE6j2SJfq7NVKhN2OJnaJeASMAlqSt+CjlNRuG9BCgJ2O3PF/sLULUnc2OrvfnhUjdvp/hV2RRJZKFhnHFR164WJAbebjVp/wX7SG+C2hUA5oNm5uceYkr7HEtbZQISpTD+5sYkS9yx0EABDTg+bFucV1Ox7diRCNjvrzf7P0YHI7Zz1yNERl590tn/BQxRgqWxNCk66o9wpWov2/rFFd+HtIIoixWKxmxEzPDzcHVncec14lPZBFMXujfzYsWNUKpVukfrgwQNUVSUUChEMBvH5fI/drX4eJPf42CuH4WlzH56PJB0inncY9sTVq1f59m//9u7PP/MzPwPAD/7gD/I7v/M73Lhxgz/4gz8gl8sxMDDAd37nd/Jv/+2/7dFE/NEf/RGf/OQn+eAHP9gNbvvMZz7zxKf+niIM+4Usyz3FfK1WY3p6et96hcc5xn6xcwV/px3oO+XCtBey2SxTU1NEo1FOnTr1RDeSwyAMxWKRmZkZAF5++eU+cXPHceSgbsLNRovPf/ovWJ7bQtA0DEOg3jDIl0vIThlvwA+qDJKAzWdDAESvBgiMjgVZXM9w4miUhmFwe26Tc8fj5Gt1vj6zjCgKvHR+hI10kaWNLMdGQzzYyjIa9eOwKYiKxBt32kJjQYDjo2GausH5USdz62nsThu317eLrgG/g9vrW0S9LgZ8Lsq1Jqom88aO8DaHKlOsVXtEwUGnnZVcnkGfh4jbQUs3KdZqrOYK5CrbYzaiADabTKPU+/eyO7QN2hqFOzs0CoooEve4OBLwUW42ibvcFGp1EsUSpUqdJTFPotRbWI76vVxPWGgCnHYWqv2ahpORkOXo0hG/j2sW249Fw5bdhVGnk5lcfzF7PhzharL/+ScDIe7m+gmGX7Nx0yJfAaC2x3LUUV+At5L9o0WjLi93ctbFf26PUagzgSiTmf59aaLEbMF65GjcHeRqpl+4rIkis3uInU8FYpa2qAKwYuHmBHDKE+VOwZoUyHtcY1yyxrdFjlk+9ihkMhmuX7/OxMQEIyMjPY91ug+df1baB6trnsPhwOFwMDw8jK7r3dC4e/fu0Wg0ekLjHnWfeRaL88MKSHtaPI5L0qO6DysrK11Ru6IoeDweotHogY4k/cIv/AK/+Iu/2LPtxIkT3L17F2jXIP/yX/5L/viP/5h6vc6HP/xh/sN/+A9vO977HO89fNu3fdsjF8L/6q/+6m33EQgEnjikzQrPCQO9I0nZbJbp6WmCwSBnzpw5sAviQXQYKpUKk5OTqKrat4J/2DkPjyrqOzazJ06c6LvRPu2+94OtrS2uX7/O4OAgKysrXbJwWOLmQrrI5371zynkquiyAoKILguUa0VsXg1TUNHcNjY3C4QGvKwvbDF+Ks79B0lGRoMYmJQrdRqmjqJIBH1OcrU6m6m2A5IhCbxxcxmA8aEADqdK1OfiwXqG88cHmJ5vF6cjYS+xiJt7qyly5XZxeG68ndoM7cJsKOjCqclUm022siW2siVODQaYWektWCMejYVcGcGEoaCHsNMBksD9rQxrmQJrmfYK8pnhCAvZXkHxxdH+hOdBn5uZje0VaVkUGPR4GA54qTSb1JstMpUqW8Uyum7ytcXVbjekg0vD8b58BgBNlTF2XVBlAayGYvw2m6XmIOJwcGOrv2gPOxyWtqsuWea+hZOSJAos75HeLAptbYNdajssKaKEKooMud0kaxUkQaBZq9NsNnG5XHhtGlVdJxh0tDPN2rlniAKYOlz0tWdUDdPABAzTJGC3YxdVTEzaE17t/4ZsdrbqZY7YAt2AtM4n1mwajGoBTLaD0gTa3YXVapGg4kZAaAsTBQERqDV0Tjii7Z8FEBBoNhvI9QY4bGiq8vAV2/vUBIkXvG0rQdM0aekt6s0GcsugWK0zJLkRZQlEAUOAlqnjEBXcskZd12mY290Zt2zjbsGaZP2j6Als0pOJW5PJJDMzM5w4cYLBwcH+390ewunOIsTjdB8kSSIUChEKhTBNs9t92Nra4v79+93QuGAwiNfr7Xn9s0gYDisg7Wmxn/Pa3X3oiNr/+I//mE9/+tOcPNkO/3vxxRcP7Hdx5swZ/uf//J/dn3dqXf7Fv/gX/Pf//t/50z/9U7xeL5/85Cf52Mc+xj/8wz889XGfWbxfOgzvYjwnDLQv5I1Gg+XlZe7du8fx48cZGRk50Bbw03YAOnZ+AwMDnDhxwvJm9E6PJBmGwb1791hfX3+qsa2DIgymabK4uMjc3Bxnz57F5/OxvLx8qOLm1fub/L+/+SXK1RYoCpKmUa03SGZzOH0uWrpIVW8i11uUmy1slRrOoJM7s5scOx7l5v1NRMHk9Okh7i0k0HWD4ZEgiiySREAXYWZug4Gwh6Gol5mlBHOb7VXtc8fiLCayXByPkS5U8HvtfP3e9qrv0cEgt9e2OBoL4LZpbGaKSIrCnc3tcZmhgJO7id7xmaNBBwgCZ+NhVjMFVlMFQm5nzwgTwPmRKNfXeou2QX8vMQAIOe2MBr1EPS6auk62XGOjUMSlqnz1wXLfZ+qxa31pzH6HnTsWmoPTsbClFuF8PMqkhcf0WNBv2UUY9HpIJPqFxcM+D8nNMi5VwSmrOBQFmyQTdbko1OuIbI++1RsNbIJAuQUuuwdDEKjrBnW9Rdju4M5WWz9Qpw4PMxZskkSyUqHQ2GUNWq1yLhxhxiJp+lIkxmSq/z24FZW5QpaaxdiTW43ywGJM6qjXz409uhuKJLFQ7H/NGV+Y63u8ZsLt5YFFV+KoJ8B82lo/cTEQZzFb7GTKdeEUZRLlBE3zoeAXGVWUsUkyJ5xhVqt5VFFCEURkUUISBCRB4P8YPG95nL2QSCS4efMmZ8+efawV3L2E051FicfpPgiCgNPpxOl0MjIy0nUtSafT3Lp1C13XCQQCXQLxLBKGZ/Gc4OmD23aK2v/Nv/k3/PN//s/58z//cz7zmc/w+c9/ni996Ut85CMf4aMf/Sjf+Z3fue/7nizLli41+Xye//Sf/hOf+9zn+I7v+A4Afu/3fo9Tp07xxhtv8Oqrr+77vT2reK5heHfgPUUY9qthEEWxu9Jz+fJlAoHAgZ/bfgmDaZosLS1x//59Tp06xdDQ0IHu/3Gxe//NZpPr169TrVa5cuUKDofjqfb9tITBMAxu375NMpnsipvr9XYR1mq1DnwECeDmV+/ypd//Ck1TAE1FFyQqlSq5QgnN5cQT8JIr1Ij67WTyFYZG/GzlygQDLnxhF7fnNjl1LEq2XOPqzDLxsIdg2MXtBwlaLYOzp+M0WgZHh4JUak1ur2x1Bc7njsapNpuUKjWuz29waizCjaV2EScKAscHg2g2BaeiMv9wHOncRIzrS9tFtNdpo6ybuO0aQ343zUaDSq3GQq6CbkLHsmc05OPGam+BGHTZmUvtGscR2nkNQbcDWRAp1xus50uM+Lx8bb53fEWVJFKV/gJ9L6HzaMDbF+gmiQK5ev+YjUdTmc30jwpFXU5ubCVwKQpuVcOlKNhkBYeiYGDyYiSObpo0dZ16q4Usiiykcsi6SKXSokK7EHcqCquFIqVmY9cRTAbcLtbK/VZHQ3vMPp8Jh7lqERAXd7q4lbEe7ck2+sesAE4EQryV7Bdae1VtDzel9mNWGHZ5md1DIC3tUSTGbU4elHNPdBynpFjmSACM2FzcrW0TFhOoGy3qRotkvcxqpd8qd9Du5Zzv8YV8a2tr3Lt3jwsXLhAKhR77dTvxKNvWxw2Nk2WZSCRCJBLBNE1KpRKpVIr19XXu3buHzWaj1WqRz+fxeDzPhJ7hWR1JOujzGh0d5VOf+hRf/epX+Y7v+A5eeeUVvvSlL/Hv//2/5wd+4Ad4+eWX+fKXv/zEo8v3799nYGAAm83GlStX+NVf/VVGRka4du0azWaTD33oQ93nnjx5kpGREV5//fX3JGF4rmF4d+A9RRj2g1qtxurqKq1Wi2/6pm86EL2CFTpdjCeBruvcvn2bVCrFSy+9hM/n2/O5hyUcttp/uVzm2rVrOJ1Orly58tS2gXslMj8uGo0GU1NT6LreI27u3FQXFxeJRqMH6nDxv/7ka7z5pRl0WaIpiOhNE11qUK5VCUSDCLJEramjOmRqLZ2mboAiUqs1MWTAMPG5HaSLVcDk7Ik4uWqdG7MbuBwqJ87EWFjPkMqVCfmdNEUTp01lLBZAN01uLiVoPhQUj8b9PNjKMhEPYFcVNjNF8rU66+vbK73nx2NMPyQLiiQyFvHjc9tZzxZZzeS5Va6hSOBz2R+ShTZkEfKVUt94UMjjoFhvcDQUQBIECtU6Ppedq0u9BavfYWc22V94nh2K9I0tqZJIqtJfDB+xCHkDOD8Q5drD7aIJHlUh6HIx5HFTbNaRENENk4auU202CTjtZMo1yo1WuyP0EBcGokxbdCMuD8TJZfrP/WQ4ZOmMdHaPjoBPUbhlIY4Gkw0LcgEw6PawUe1/7JgvwP09Cvm1irWV6nF/0FLv4JZVbu+hd4janaxYFOQ+1cbtrLXYecjtZTPdf86P0kKc8IWZzPSTHICmbE1MgqLKfMn6M/iuwZOW262wtLTEgwcPuHjx4oEtEr2dbevjhMYJgoDb7cbtdndD45aWltjY2OD69esA3c5DZ87+G4FneSTpMIhMqVTC6/XyLd/yLXzLt3wLv/Irv8L6+jpf+9rXnrhueOWVV/j93/99Tpw4wcbGBr/4i7/It3zLt3Dz5k02NzdRVbXvfh+NRp84mffdgucdhncH3teEoSPU7VjdHRZZgCfvANRqNaampgB6iuCD2v+ToqORSKVSTE9PMzw8zPHjxw9kpUsUxcdK2rZCqVTi2rVreDwezp071yUvHVeREydOkEqlePDgAQ6Hg3A4TDgcxuv17tve8L995jVmb6ygSzLICqIkUW1UKeRryJodQVVYXskwejTM3P0EI0eC1E2DW3fWOXdhhNmFLRBgbCxEsVJnI1HAkETqjSbnjscRFZG3brdFzF6XjZEhP9lChfm1DKIokK3UumTh6EAAp9tOtlzj/mq6K3q+u7pdCE4MBEgUy1w4EqPR1FnYyuKwqXx9rnfVfyIW4M5m78r8mZG2hapXU/FrMoJp4LApzCdz1Fo665l2kRrxOFkt9hesQ0EPN9Z7uxMxr6tvbAng7ECUa2v9hbgiiQQddnw2G05FQZEkRARqrRZHnG4y5QoVXadQbaIKNd7IFXryIADiHheTG5t9Dk0xt5ObFtoFn83GTQvtQtsBKde3HaBuWH//job2EFnbHSyU+z8zuyRzN2tdYDtV6+LwdCDELQtBNZis7qGpOBEIci3VX6wrorgnKTnq8XPV4jWiAAsla2eoU74w1/dwRyq1rBdRBu2ePUnBkMtLtmRNWr5r4O0JQyeXZXl5mUuXLnWtlg8DTxoaZ1WAq6qK1+sln89z+fLl7nz9ysoKd+7c6br7hEKhQwmN2wvP8kjSYZxXpVLpc0kaGBjgn/7Tf/rE+/roRz/a/f/z58/zyiuvMDo6yuc///lDrUOeWTzvMLwr8J4iDI97oTRNk5WVFe7du8eJEydQFIXFxcVDPbcnGbvpBMU9ifD6nSAMuVyOlZUVzpw588T+vY/Cfrov0BYqXr9+ndHRUY4ePdodSevclAGGh4e7M8LpdJpkMsn09DRAlzwEg8HH+oyr5Rr/+Vf/nMRaDsFmwzCgUmtRrBbRXAqKzYEv6qFSaTJ6LEImW+bU2UFm7q1zdDyKJ+jk6o1ljo+HaWAydXsNp13l+LEopWqDlc0skYiHqdl14iE3sZCbrUKZq3fahX3Q66DSauF32zg2GCSVr1DWdWbntgu480fjTC9sIAoC47EAfpeN9XyRjUz7H8DxwWBXCN3BqcEgtx8mNkuiwGjQR8TrpFRvEHY4SJUqFKoNQm47G7kKtVbv35rbrpDYZYN6IhbqIwsAfqeNjVJvjsKQ30O12eRiPNa2XzVMKo0mXofGtbUNdMN82I1p4/JwnBsWpGM44CVpFQDndrJusZofd7ssV/kngn6ubVh0ESIRJi0sVo/6/cxm+wtchyxzd4/Z/dYeBON0KMS1ZP8xAjbbnlaqexVIZwIRbu1hf5qsWee2nAlEmM5Yr2QmqtavOf2INOiGaf0+43bXnp2HAaeb9Xp/hwMg1bIeyRoUbCRvz2GGcoTDYUtrTNM0uX//PhsbG7z44ovvqE3m44bGWXUfOkWwIAh4vV68Xi/j4+N92QKSJPVkCxxEaNxeeFZHkg6rw3CYwW0+n4/jx48zNzfHP/pH/4hGo0Eul+vpMiQSiSdO5n2O5zhIvKcIw+OgM+aTTCa7eoVkMnmoxTY8OhxuJzqOQ08aFHeYLkmGYZBOpymXy7z88suPHI3aD550nGqnrmMneXmUuFmWZaLRKNFotOvBnUwmuX//PjMzMwQCAcLhMKFQyLKbk1zL8Ce/9heUqy10WcYwoWlCpVXF4behqHYUp41isYrTZ6dSa+LwaJTrTYIBF+VmE0kWOXk8SrpYZStd5MyxGJVWi2u324Tg/OkBGrrBxHCQ1c0cmkNhZatdNAU8dsaGg6yl8qxuFVhPFZkYCXFvdcfY0USUlqFzbjTKQiLLg80MRwb8rKS3V5j9LjuJQrnHVSjicaAoCi+MxilV6yyn8mzly2SrNTLl3uIs6HGS3OzddjTk5n4q17NNkcQefYEAhJwOxkJ+mobO5YE49VaLfLWdoxBw2Lm+i1xIokCk6eoLdPPYNG4l+ovgmNvFjc3+7QMeFzMWz484HdzYsnBAUhXupvoLWVGAzYr1CJFdtb6Ung6FLceXQrLCSrNu8QpYtBiDApjw+XnLIgwuYnfuqVEQRevrx3FvgPtF6+NYiaYBjrn3fo20x4Ju2ObYM+Nh0Ollo9b/eQqYe9qsHnUHeVC2Jhn/9Oglhl3DJJPJbjBXx5Wosyhw584d0uk0L7300lPprg4CVqFxe9m2dkLSdsMqWyCdTrOwsMCtW7fwer3d97/f0Li98CyOJHXGvg6aMJimSblcfqwg0v2gVCoxPz/PD/zAD3D58mUUReHLX/4yH//4xwG4d+8ey8vLXLly5VCO/43G85GkdwfeV4Rh55jPBz7wgW5h+LjF/NPg7ToMT+s4tDNn4CBvCvV6nampKRqNBqFQ6MDJAjwZYegE6iUSiR5dx07b1LcTN+/04D5+/DjlcplkMsnGxgZ3797F7XYTCoWIRCK4XC7mp5f4i//7y1TqBqYiI9s1yo0GmXwBd9BLJl0jNqpyf3aTsZMxbt5a5+TZAbYyJfKFKidODZBIFakUKygOlUjQhSyJFBsNFtey+L12xkdD3F9NkytWEUWBo2MhFtYznB2P0mwZNDF482HWAsCZiRjXFzbxu+yMRLyossT15U3qze1C48LROFOL28WqIEDI52AjV2TU60CRRJqISIrcI4YGOD4U4sYuq9ULozGmV3uf57FrbNW2u0OqJOLXFHyKhI6Jx++l2jLYKlXIl2ssiTkSxd5V6iNBn2Un4vxAlEmLbkHcYeNurn/1OeZxWnYLwm6npRB50OchsdG/Yn4yHObqRn9hfjYa5Xqy/zwH3S5uWli1SoLAskUQHEDU7SKZ7xdmnwmGLYt/SYA5i+cDjHi8JJL97yNsd+ypN3DtEaoYd7i4l99jHGqP1WqfattTC3HE7SeVtu5KrJStOwjHPGHul6z351M1sNidiMB3j5wlYnN1i+dcLkcqlWJ+fp6ZmRkURcE0Tc6fP//MjX1YjS51rmemaVKtVhEEgWaz+cjQuM517ejRo1Sr1b7QuE73we/3P3VR/SyOJHXugYfRYTjIpOd/9a/+Ff/4H/9jRkdHWV9f5+d//ueRJInv+77vw+v18qM/+qP8zM/8DIFAAI/Hw6c+9SmuXLny3hQ8w/ORpHcJ3lOE4VFFYiaTYXp6mkgkwunTp3sudIc9zvN2x2g0GkxPT9NoNPbtONS5QOq6fmBt6EKhwOTkJD6fj0gkQj5vfYN/WjwuYeh8Ts1mkytXrnRv+jvngvfjhNSxNzxy5AiNRoNUKkUymWRpaYmlyQ3mX99ActhRnU6QFTLFMtlcCZffgyipKC4T3TDxxzzkchVOXxhi8sYKJ45FkR0KV28sEwq6GB4Jcn8xSSZbJjrgxQROj0cRFZGrd1cxzXZR/+LZIcq1JqIgcnM+weljUe4sbBdQL5wYQDdhPOpnMZFl0TCQNamHLJwejXTJgsumMhry4XPZWNjKUC43KJXbRf7F8XifXeqZ4UgfWQg4bcwltwtWmywx4PUwGHBTajSpNpqkSxVSxQqCXeFBqdIWeu/AyYiXO+n+vyFFkfquoTZZYtGCFHhVhbl8fxE+4HHv0V1wW3YXQg47MxZhbzZJ4v4eK/x91qcPEXW5WLXQIpwNRywJhkdWWCgXUUWxnW8gtJ2tRARUScQlb+sUTMA0DYY0O0u1Mioi5sM/b4N23sRcwZpIHPH4SFoQCY+i7kkkBp0ey1V/uyjtGQh3zBvgarpfVA2wbiGcBjjhCXGvaE1M9iIzkiAwV7J+zYvBISK27fGinYnLExMTTE1NdQu+qakpNE0jFAoRDofx+/3PVOG7e3RpeXmZ9fV1zp5tp1c/rvbBbrczNDTE0NAQuq6Ty+VIp9PMzs7SaDTw+XxdArGfe86zOJLU+WwO4/dZLpcPbIRtdXWV7/u+7yOdThMOh/nmb/5m3njjDcLhMAC/8Ru/0U3k3Rnc9p7Fc8LwrsB7ijBYwTRNlpeXmZ2d5cSJEwwPD/cVlAeVwvwo7EUYisUik5OTeDweLl26tO9if+fq1EFgc3OTmZkZxsfHGR8fZ2Vl5dBcmB6HMJRKJSYnJ3G5XD2f0842/kHYpqqq2m3xf/H//p8sT6bRZYViqYZebqC5NJqGSTAWRNY0TFnEhkkDA02Tke0KhVKNkydiZMs1qvUml84Ps7CRZfLmKqoicv7cEBvJIisbOU4cjXB7MYHHaeNI3I+oiLxxa7uTcOHEAFPz60T9LuIBN7Iicm1+A8PojF0JhIMu7q9vF7kxvwtBFLh0JE6mVGUlmafebPH67ErPKNJIuN8u1evQWMltF+QCbZHyeDRAtdGk3tJJFysk8iVkUeQr9/tzFIJuO5ul3qLTa9dYyPcXoqfiIW5v9ReBp+MRSwF02K6SKzb7tgdddtZK/UV72O1gbVcxL5gwFvAxn81ikyQ0SUGRBBRRJuS0ka83EAWhGzwG4FBkis0G3mAUwzQxTBPdMFAliUK5zpjDh24atAyTlmGgGwbNho5TUDFMk5auo5smJnCix2Vp+/cRd7m4vrFleT8RHTYajf7if8Tp4n6xiCSISIKAKAjIgogsiiQLFcKSC1kQEAURWWz/d8TjJlEtIz7MLRAfPi4JIBkiL/oGH36PTECg2WrSqpRpajKqqtIyDXTToGEYNE2dmt7CJatUWy10tr/Hx71B7u9BCpyKNSlQRZH7hT2Sor0Rbu+R+vxdg6cst7daLaanpzEMgytXrqAoCrquk8lkSCaT3Lp1i1arRSAQ6I4vvZ3BxDuJjpPTpUuX8Pl8faFxj2vbulPbcOzYsW5oXCqVYm5uDrvd3n3c5/M9VsH9LI4kde6xB01kWq0WtVrtwAjDH//xHz/ycZvNxmc/+1k++9nPHsjxnnU8H0l6d+A9TRh0XefWrVuk02lefPFF/H6/5fM640IHPc6z+xi7CUOnKB8bG2NiYuKpjr1THPc0ME2T+fl5FhYWOH/+fDfI6DA1Em9HGKycmXaLmw8yY6HZaPEnv/bnrMwlkewOHJKMXZIo1asUizVUt41UpoDq1KjWTSKDPu7//9l78yhHFrS68xcRCim071vuS2VmZa2vlve6Cjc22D3gXhhsGE6DGcPBx9inh/bYxjNzvM3YAwzgZZi2PSweDHYbuxuMDQ24mR6gwca4t/cqM6ty3/dFKSml1L5GzB8qqVKpiHq1ZNZ7VV33nHe6S5kKhZYMfff7vnvvyiFXbvSRPMqRyZXwBBz4vXaSqTzre0dUairXx7vIVap87UGDEAwPBEASGO0LsLyZQBU0JhcfdWqvjUTRBI2+kIftWBqAXLXaIgsAV4YjTK3vN9KYXXZK1Rq5SoWZzUdEwG6RSRUKbWRBlkSqmkrtxBRAFAQudgcpVqpIfi/ZUpn9VBa/3cZ/XWonBpIkUKh1Fu4XuwLM7ncWfANBL1O77cWeIMBBOt3xux6rwtxh5zECipm1XCO7QQScFgtOixm/zYqqwo1IuNWp1zQNi8nEcbnMmNtHqVajVK1RqFYxmySmdw4pn/o8S6LAod1KXCcfYjwcYE4nIO52d5QHOm5KQ14P8zpiZ1HAcE2py+nUFWb3OF0s6giqAeoP67UmiQEoU+eKP8iMga5BEDVdp6cr/pCu2BpgwOFkPdM5LRhwenjQInwCJlHGKslYTSb8Jgd1RUCWRGRBQhIbBEUSRQQNbnp6UNGoqXWqWp1KvU7QamM5G29Y4tJ+TTAZ6DEsosR/ExnpuL1arTI5OYkkSdy6datVREqS1DI8OJl50FxJdDgcLfLwrG5qZ4H19XU2NjbanJzeLTTuSSNilx8AAQAASURBVG1bT4fGpVIpkskk8/Pz1Go1vF5vi0AYEShVVd8zS1cjnBSHnyVyDxsg56Vh+LrH6wnDS4FXijCcvEgUi0UmJycRBOFdbUnPY51H7zGaxa2maaysrLCxsdFWlD8PBEF47tWqWq3G9PQ0mUyGO3futF0czzNJ+nFkpJm+fenSJbq7u4FOcXOzq3YWyCSzfOYnfoNUqoigWNAQKBSrFGp5NEGkhplI0M/h0QH+bjuJ7RT7+wkCUSvvTG4SCtqJdHmYX47h89pwemz4LCbWNhPkqzWWNxN4XVaG+v2s7R+R3G0Up+PDYR6sHeB2KAxEvMiyxOTqXqugt1lkJFkil2l0me0WmfH+IOW6SsBuYzeeYTee4dqFCFt77YVd1GtlOd5epF7qD3GYyXO9N/IwR6GEw2rhq8vtVqs2s8x+prNzf60vwsRW+wRAEgWOy51rO/0GGoU3eiNMnCARZgEcskyf00ZJA6vZjKrWyWZzCJIJv8eFnD4mV66QK1fIFMpkCmV8ViszOo5Jb/REmNUJgbvYG+AdnenFlUiIKZ01pR6XUzdlWhIF1nUID4BLUUBnG+dSMMhMQseuVRRZSemvFoXtdnZynSQjYrfr2rIC5AzyHfpdbkNbWMngbyhoUdgo6JOcgNXGRu7R8WqqSlYtU6pXmT6qkO0It4Pr/rBhUrRNtJDMVwEBi2TBYZKxmmTcZguVssAVew+S2JiKgIaKxqg7gENuD4Yrl8tMTExgtVq5evWqYcdZL/Og2Xlvuqk1LUsDgcALKZA1TWNtbY3t7W1u37792CL1aWxbHxcad5pAJZNJDg4OWFpawm63t8iDy+Vqe7z324ThvNakCg+bCC/SVes1XuP9hleKMDSRTCa5f/++rl5BD80LTK1WO3fCUKvVuH//Pvl8vqMof148zxSgWCwyMTGByWTi7t27mE/tEZ9nMJzesVVVZWFhgYODg7bp0PPqFR6HneU9fu3/+v8oVlVUyURNFShVamRKRRweO6JswWe3UChXGRwNkUwXGBoKka1UyWSLjF7wsn2YI7awTzRsx2I3s7oZRxAFLlwIUa2pjA+FyBXKLGzFyRYaxfWFPj+SLDHaE2BlJ0nsKEu2UmmRBUEQ6O3yks6XeGMoQr5YoVStM711SKnySKx/aSDE1EZ7h3g45GQ5nsFpNdPjc6HIMhbZxIOtAwqVKvvJRsHpUMwkdULTRrsDTJ4iBn6HlXmdKcK1vjAT250darMs4rEqeBQLNrOMWTJhEgUqqsqY30+uVCFVKFKs1pBkiZnDFLVTzkhdbgdvb++1TUkAut1OZg90phE2K9M6mgbFJLGY0O/Wp3XIDkDQYWNbp2C/EgpxXy/DwWJhVmfqAHScfxOXAkGmdPQOsiiybEAkelz64W4ei4UdAwcmv6KwqcMlnLKZOYOJRL/Hy2G887MhCrCWMche8AaYTumTAtWgw+Y0mVk44ahUrtco12tQLhJUokwe6Wc5/LnBG23/bl7L3G73E13/T8JsNhONRolGo2ia1nJT29jYaHMdOq/Mg+exfT3r0LiBgQGq1SpHR0ckk0mmp6fRNA2fz4ff76darb7vCujzWpPK5/MoivK+02y8KhA0DcHg2viq4WV+nq8UYdA0jY2NDZaXl7l48SK9vb1PdL9ml+Y8dQzNDv2Xv/zlVhT8WXernnUK0AywC4fDjI+P615wX+RKUrVaZWpqinK5zJ07d1qCvPMkC9N/NM//9+k/olwDVZIwKWaqxTKFWgmH10GtJuLyKCSOcticCqogkMuVcQXs2BQz1Vqd/aMyPV1+BEFjN5FhN1lANgkM9LtJHGVJpIr4fXZqokauUGakL4DHaWVu85DcbqModNjMaJJArlhBFGAw6iPgdbAeOyJ2lOMgkUGRJTw+RxtZCHrsrCcaxZsAdPmcWKXGnn3YaefwOM9CPoEiSzidCoVK+zrRYMTXkc0wGPJwX4cARH1OpncfFcQiEPU6qdTqvNEdRhJE6qpKoVLDbbMwuX1ATVVJZR4VnTf6ox2OSwA9fg/x3c7bTWpVt9gOOGzs6kxA+vwe4jpThEuRIPd0nJfGgn4WdMTOLouFWZ3pAkBep3sOMOj1MKFDJLqcDuaT+sfSW+8CuGxAJCRBYO1Yv1i/4PXzjo79qijAgk4SNcCY1887cf2C/LQGpImLngBzumFxjXUzPTjldlJwEhc8PiaT+udQNcissEoyfyIy0Pp3Pp9nYmKCQCDAxYsXn+saIQgCHo8Hj8fDyMgIpVKJRCLRCoI0m80t8uDz+Z67mNQ0jcXFReLx+JnYvp5FaJwsyy07ak3TyGazJBIJdnZ2yGaz5PN56vU6fr9fN/fiReM8U57tdvt7/vxeWbxeSXop8EoRhlQqxfr6+mP1CkY4b6ek9MPVhbP4IjPCszyHZu7D6OgofX19hud13itJzWM3v/BtNht37tw5N3HzSfynX/kyX/5/76NKJjDLSLKJRDJDOlsg1BvkMJYj0h9gbn6PsSvdzC3u43Ip9Az6mVvYJ9rlxhd0UktkOTouUEfDarXQ1+2jjsbsaqNIUywiZquGRzGDppE4ynOUL5ErNgpPSRLoCrtBEAi47WzFUpjNJr4y364fGOoLtmkUJBF6wx7qqkq5UmM7fsxeIkuX38puur0zPNYbZOqUhepIV2eQmyhCXXjUETeJAmG3gy6Pk5qmcaMnSqlaJZ0vkcgWCDjsHeRCFCDidVI79blxKhYWdITOEZeDB/s6tqUeJ9u5zra4XzHrriK5LBZdDYQkCmzrOCwBiAZBAiMBL+/oBLgNe72spDoLdlGAVQOXpajDwZ5O8d3ncrFkMEUoGNg9jwcCTBsU/4cG4WpXAiEeJPW7/nGDFaYLj8lrsEj6DQ+7SWbRgEiMuP1MGJCCskH+g1O2sGBg9fonogNYH7pKNQ0kurq6WkGOZwlFUdpch1KpFIlEgsXFRcrlMl6vt5Xl8rS2rZqmMT8/z9HREbdv3z5z29eT04fmtfZJQ+OaEAQBl8uFy+ViaGiId955B7vdTj6fZ3t7G0EQ2kLj3gt9w3kThtc4H7wWPb8ceKUIg9/v5xu/8Rufaa3ovLIYmlOPlZUVAIaGhs6tS/G0eQZPk/vwIlaSkskkU1NTdHd3MzY2du7iZlVV+bV/8gWW72+hmmTKFY1qrYZaLVOsVQj2hDCZzfi6TI1d6StdrG8lGB/vYufwmMXlA65c6WY7dsz27C5+n52ubg+FUpWVjTjBoJPZpX0Ui4mRgQD5apWV7SRQwGQScLnMJNIlLLLEcI8fq83M9NpBa3IQ9TvZiLUXpVcvRJjePGQw7MVjVyiUqtjtZu4tt9tajna5WYy1L9Ff6OqcIlhMEunio/UVt1Uh5LYTdtvIl2vYIiZSuSKJbIGDoxwgsJtqL7p7/S6mdzoL0au9nbkNABfCPiZ2OovGkMvelgDdhN9pYyfbWWgHbArJcmeX/0LIp+uwdDkS4v6BjkbB7dLVKJgeo1FwKGZdjUKvRWGjUuq43SJKuknQAEGbnU0dIXSPw2l4H6PvnAsen6HNqmpwr4jFymZBf4rgsphB50dWycSCgc3qRW+AiWTnhAOMJyles2KY/zDi8jFhsI70p3saYud0Os3k5CQDAwMMDg7q/u5ZQpKk1nRB0zQKhQLxeJxYLMbi4iI2m63183dzHVJVlbm5OY6Pj7l9+/a5uzQ1z+VJQ+OMpg8APp+vLQwzmUyysbHB3Nwcbre7RSBeVHf+vAhD05L39YThnPB6wvBS4JUiDMAzaxDOw1q1Xq8zMzNDKpXirbfe4itf+cq5rz09yfGr1Sr379+nWCw+ce7DeU5gmmRtYmKC8fFxenp6AHSdP87qgl3MlfjMT/wGsd00qmhC1QRExUS9WqRUrhPujXCULKB4bGT38wSibmp1DZvdwm78mFDQiddvZ2kzTrVa5+p4F/FMgfvzjULpyuUu0pkSV0YibOwkKdRqD8kCCKLAyFCIarWGw1plJ54jk8sws/Wo0LRaTCBBodwosHqCbsI+B7lSFUWS2NhvEInhbh+Ta+3FVNhtZS3ZXnhbTBKZUoXmVo9LsRDxOAh57GRKFVwWM/HjPJl8CRMCe6kM+XJ7cffGYITJrU4CYFPMqOn2q6BZkthOdVbUfruVGb28BLeDaZ3pQpfbybTOFCFot7GW6SQXZhHmdY4PkC51FvLQWGvS0yhcDoeYinU+X5/VarimJFpk0CEMl0JBJg87i15Fkpg/0i+UjfIdAlYr80f6j++yWHRv9ymK4X163B4OdDQKErBgoGu46A0wmdR3VCrW9UmBX7GydGyQYu3y8o4BySiq+o0cm0nmj0cGWhk7IyMjT7yGepY46Tp0cu8/kUgwPT2NqqptwumT+jBVVZmenqZQKHD79m0sBu/feeLdQuOMpg8nRc+nQ+NKpVIrNG59fR1ZlttC485LK3heoud8Pv96wnCOeD1heDnwyhGGZ8VZF8RNlyZRFLl79y4Wi+Xc156e5PgnV37u3r37xBfu85owqKrK+vo6qqry1ltv4fP5gHa9gt54/HkQ30nyy//gP5LNlRGtFup1KJaqlKslMsdVvGEvBwcZrG4rs9M7jL/Rx8LCAR6vlVC3h9W1OLlCmUy5wvBAkFS6wN5Rlngyh1WRuTQWZj+RZefgGAQYvxhldvUA2SQy3BvAZrfwYGWfysOgteFeP2uxR11hDYj6FERJYrwvyH4yS/I4T1VVOUg9KpLtikyqWGrb7ZdEsFgtVHONAlAUBLp9TvpDHnLlKh6rQvw4TypXxGW18OWlbeqnVKg9QRf3t9qLd6diZuWwcwVnrCvAwkFnwXu5N9ThogTQG3AzqTN1sAiqrhg24LLp5iv0et3EdzvtTy9Hwzw4OEQRRSQaUwLZZCLqdJCp1xj2ehGbQWmCgEkSUesaV4NBWskLAggI2E0yN0ORjsdwWxXSpRINnx6NSqVCoVjE7XCgmiSuma0PG2Yaqtb4X4soMuLxUX9of6pqjayGXpebpfQRkiBQqdep1lXqaA3XpLRBIJvHQzzW+dwVSTJcBRr2eHlbR9cgCLBsQFhG3T7mDNaRygaaAr9iNTyHQaeXZFmfFGQMRNpes8KSweThm6ODZI9STE9Pc/HiRbq6unR/70Xj9N5/JpMhkUiwvb3N3NxcK0ne5/Oxvr5OpVLh1q1bHUYT7wXezbb15PdLvV43bOAoikJ3dzfd3d1tqdsrKyuUSiU8Hg+BQOCZQ+OMcF6i51wu974TeL/Ga7xovFKE4Xm6z2e5kmSUKn3ehOFZ8gye9thnmVXRnHQ0LetehBPS8sQ6v/mzv0cVAWSZUkUjkytRqJVx+5yY7TIOj5VEpojXKtN7IcTc3B4XL3exuplg9/42Q0MBrA4LOysZqpU6ZocZsyxxZTSCaBJ5e+aRNenVS10UylUuD0dY30likiXemX/084DXTiyTQ9NguMuH02pBkgXeWWovrIa73KzE2rvgA90+pk9oGUyiwO3RbgqVGp7+CMe5EvtHWUyCxJcWtjtEw4rF1EEWBsPejpRngOGov8MtSRAgX+3sJjsVM4sxHY2C28H0Xnv3XwSCikymUmPQ68FskjBLIpIgYjGZqKFyOxpFA+qqiqpqmESBXKHMgMtNta5SqTU8/Gv1OjtHWdSqRqVt7lvHhsB2obPzf7Mnqru+NOz36lrBSqKA26boOkrddHt1BdUDXjdf1dFsAFgFM6lM+3nJgsi1cJiV4xRB2Y4sio0sA1FCEgTUKlz3NuxwRbFBcgRBwC7LZKsVVLSHIXIqVbVORa1TrtXwyAr5WoWq9uga0Sfb2Kx2kg8ASdb/enAIouHkYcjl5Z2E/vGOyp2vGUBQsbGc0ScmQy4f9wwmD2/ZAjx48IArV66ciTX1eUAQBNxuN263m+HhYcrlMslkksPDQ9bX1wEIh8OkUin8fv+5dd6fFUbC6VQqRblcRpIkKpXKY21bT6ZuA63QuGQyycrKCoqitIXGPc+E4LxXkl7jnPB6JemlwPvr6nQGaO69Py3Oqphv5gaMjY3R19d3Lo9hBKPja5rG5uYmy8vLXL58+Zk6cSc7TmdxQS4UCkxMTKAoCrdu3eK//Jf/0nrfzossfPXzE/ynX3ubak2gLoDJLlOtl6hJNVwuFxaHHU2uUqqqOJwKhUodxWZmYDjIwmoMn9fO6GiYBwt7lLZqOB0WhoaDJNMFNraTOBwWFpcbRWZPxEM04mJxK0E62yiURgaCzKw/KkJdNjODPT5yhQqbBynWdo4Y7PaxEW/v5F/s8zO/295tHu3xkjjOM+R3gKZSw4RJknh7abeNBIiiQB21gyxcHQh3EgOhsed++s+ny+fkgc5U4GpfmPsntAsiDUHzpe4QyVwBiyxhEkWEh0FqVkXGk1MoPwxQyxXLFKs1PFYbS8ljjnLteoQ3+iK604ibfVGW453d9+vdYe4biaZ1nJQEAVYNLFYdin63dzwUYFpHUG0WRZaO9CcCPpuV9eN0x+29LherOsLpuqZRUutkdGxeR30+JnXWpADGA37mk53EZNDjYXr/0e1m0YTVZEJSVdyihYt2G7LUeK8kQUQQGsSohsob3ggVtZHmXKrXyNbKjLn9vGMgXE6W9AXXXTYna1l9V6d+p4d4Wf9++Zq+E5VNNOGKpbl+/Q0CgYDu77wfYbFYCIVC7O3t4XK5GBwcJJVKsbq6yvT0NF6vt7W69H4rUJtE4Pj4mNnZWUZHR3G73U9l2wpgs9mw2Wz09va2yEcymWRhYYFqtdqybX1caJwRzoswvF5JOl+8Xkl6OfDKEYZnxfNqGFRVZX5+nlgsxq1bt1rdlJN4LwiDqqrMzs6SSCR488038Xg8z3Tsk12m570gHx0dMTk5SVdXF2NjY61zrtVqLYJw1mTht/+fLzL1R0uoooSgmDFbZOLxY0r1Gg63k1yhBuYa5bpKcjvJhUtdrK7F8YogmCS6u7zU6yoPFvawmGXGRiLEM3nuTT9MbR4McJjKcWUkSipdwO4w8/bcTqtQ7wq52E4cE/LaCfucZHMlFJuZr81ut87RabeQKpbaCv6wz8FGPINdkenxu5GlxmRmK56hUDkpToTukKdjYnB1MNyRzeBQZLaSnfqCa/0RpnQ0Cm67hWKthttqwWY2Y5ZETKJIXdC4FApQqFTJFhshaiZNZGJ9j0qt/XMYcTs4zOepn2IjAbvC6lGnfsBrs+omRpsliZWEfmGuV2ADhJx2dnQIw6jPw8JRuuN2l2Jh3mAiUDNoRoyHg7qhb2ZRZEkn8Rkg7LCzrSN29tsUFnUKfwCHRZ/I+K0KiwbuTD7FytoJwlJVVaqVCmZBYKWQp6gzWb0ZjnDPwGY1bargVBUcshmbbMKEgKDWkeoqlVyVi7Ib0SShSSIVVPK1Cr12F3tFfWH1UVl/IuG3GGseLpscvHXz1lO74b3X0EufDgaDjI6OUigUWratKysrWCwWAoEAwWAQr9f7vghJa07Px8bGWkGa8GS2rc3/fxInxeOjo6Pk83mSySSxWIylpSVsNluLPLjd7nd9Dc5Tw/B6Jekc8XrC8FLgNWF4iOcp5svlMlNTU9Trde7evWtoifciVpJOHr9cLjM5OYmqqu+adv0kx4ZGB+d57PKaNq4nJzDNzlSpVMJqtZ6puLlaqfLL/+A32V6No8kylapGvVynlC+QOi7RNxplZyfNwEiYyaktLo5HyVfr3Lu3ycXxCMVanfXVQwYHA9RFGBoIsr1zxFGuyM5+GlEUuHghTE3TOM6UOErt0dfjY3XvqEUW+ru8+Lx21DjsxzPE4lmujnVxf/VRQSYIEAm5WNxuFMlBt42Iz4lsNiEdZdlPZlh6+LPhXl8bWQDo8SpsxtNttwXddhZ2OwvPoS4/909Yq8qSSNhtR6DR1RcFgXpdpVCp4rJauL99QF3VSJ/MURiMMrnRWVD2hzxMbuo4IHkcug5I3QEPcZ2sh4Ggh4ltnRyFriCTOjkNF4I+VpKdRMJhlg2Lf9Wg+AiYRNYqnX+nEaeDhbj+sYzcf8bDAV0iIQmC7nQBYMDjJXHQ+dwfN8UY9HhJHuhrFIySnceDIe7rZDwA5Aw6+1G7g9WH+Q+5UzkUb4a7mDvcAx1tuVQTMVdlXGYzDrMFq8mERTJhl2UqWh2Px0ZVq1OqV8nVK2QqJQadPpLJ3c6DAd81fvOlIwuVSoWJiQksFgvXrl3rKGxtNht9fX309fVRr9dbidOzs7PUajV8Pl+ruD5vJyU9NANR9fQi7xYa96S2rQ6HA4fDQX9/P9VqtWVdOzs7S71eb5s+6AnE6/X6uax1vdYwnD9e5s771wteOcLwPCtJz6JhOD4+ZnJyEq/Xy5UrVx7b3XgRE4Zm8Z3JZJiYmMDj8XD16tXn7ro0L/LPKnxuhhLt7u622bg2bVPdbjdf/vKX8Xg8BINBgsHgc4vhMskcn/nJz5FKFqhpErU61EWRslamDvRciFBXoavfz3G2yMhYhN14Fq/PRndvP1Ozu9RqKhfHIpTqdTY2EpjNEl19XrL5MtcudpErltmKpcnmGt3toN/BUaFANOjCZVOIxTNIJpGJE7qFoV4/M+vtRe/N8W7K1TpXB8IcJLMkUgW6g24mltoLpot9AeZ227uuEZ+D/VznfrjVInCYa3ymHYqZoMuOz2FFReNaT5hCucpRrkg6XyTocnQSAKFBAE5PLaxmEyuHnYWrz64wu6vjaOSyM6OjB/DZFWb3On/fZpZZ0inyBQFiWf3VFcWsfykbDQd0NQp9XjdLOpMKQYC8AVkN2RT2dfIKul1OlnTICkDJKEchGGTGIA06VtB/jheDQR4YFPhxg/uM+QKGLkxGqdN+q5VlA8F1j9PJfkE/s8Eo/yFkUdh9eJ9EqUii9OizejvcpRsyB5BXagRFF06zGavJhFquUKtV8bpcfMvgRd37vF9RqVS4d+8eNpuNq1evvmunXJIkQqEQoVAITdPI5XIkEgn29/dZWFjA4XC0yIPb7T53u89EIsGDBw8YHx8nGo2+6++f1j48i22rLMttr0E2myWZTLK3t8fCwgJOp7NFHlwuF4IgnKuG4WUjqC8VNI2OXdhXFS/x83zlCMOzwmQyUTZYaTDC3t4es7OzDA8PMzg4+K4X7RdBGMrlMgcHB0xPTzM0NHSmuQ/P6pRUq9W4f/8++XyeO3futHZBmyNsTdN48803KZfLxONx4vE4y8vL2O32FnlofiE8KXaW9/nVn/ptCsUaosWCaAK1rlKsFMlmqvSNdrO2HGPwYoTkUYFqTcUVkHHYzUiyxMzCPmMjYQSTyNLaIaVyDdEkcP16D8l0gWQyR7VSx6SYWmRhoMeL22tncy/F5najC3tlPMqDlUcFq8dlJZEt4LZb6Ap6EDTQBI2JpT3UE4X5UJePB2vtpMLrUFg5OFXICWC3mdk/ziEKEHI78Dqs2C0S6VyBiN1Cplgln6+Qz1cQumDtVLZDwG1jdqezeL3cG2JG5/aL3UEmdKYIfSGv7nSh2+fkcLuzmOwPeHWnCGPRgP50IRpk5qBzTSnstDOnc7sgwI5BUJvPZmUz3bmWNR4KMKczRRAFWDHo7oddDnZ0nJwiTjuLButIGHyUh7weVnX0DgB1Tf9vr8/tYjOjEwoBWA2Ey07ZzIIBkRhwu0kc6q8JJYr6wuUeh4vNrP459Hu9HB7q3y+ms5IF4LNYWUgnUTWtg4h8NNyNWXp5vrpKpRITExM4nU4uX7781KtFgiDgdDpxOp0MDg5SqVRa04epqSmAFnnw+/1nHpj2tGThNJ7VtvUkTobGNV+Do6Oj1tRDEAR8Ph+FQgGn0/n8T/oUXq8kvcZrvCYMLTxNMa9pGktLS2xvb/PGG28QDAaf6H6nV4bOGoIgcHx8zP7+PteuXTtz55BnITxNcbPFYuHu3butLzM9JyRFUejt7aW3t5dqtUoymSQejzMxMYEoii3y4PP5HttFevCH8/y//+q/oIoiomIhX6xxfFxAs0CtJuIMeNjeTBAdDHLvnS1GxiPUxDqzM3uMX+lGNEtYFJlsoUwsmcNmMzMyHKKGxtemGqnLVkXG7lKoqyrXxrqIJTKIsonJuUcTgctjkRZZsMgSA10+7A4L+/Ese4kMqeMD7FYZi01uIwtWi4lsudzRAbaYIVnUEGis+PhcVrxOK8f5Er0+F7F0nthRjnS2iMNuIZFpL/r6A7YOsgAQ8TmJb7X/rigKJPOdRZ5TMbOoY6Pqd1h1SYffYWVGZ4rgVCzM6xT5JlFgU0dXAFCq6X/2ur0uYvlOQnI5EmQ61vkYTovZcE1JEPUr+V6bwkaxc9dGEmApoX+sbpdTdyLhURQWEvouQx6rohsI51WMdQ0hm40tHcJgFkVDXcOIz8fEob54Oq2TIwHQ7XAarjdFHQ528vrFv9HkIWBR2C7qTysGXB6SCX0NxYd6h3Rvfz+iWCxy7949vF4vly5dOpPmjdlsJhqNEo1GUVWVTCZDPB5nfX2dmZkZ3G53i0A4HI7nesx4PM6DBw+4fPkykUinxfDTQm916VmmD2azmUgkQiQSab0GTRK1urpKIpFoTR+e9zWABmE4DyLyGg28Fj2/HHhNGB7iSVeSToeePY1zwnmEwzVRq9WIxWLk83nu3r17Lhe3p50wpFIpJicniUQiXLx4EVEUWytIzS8II3GzLMttXwipVIp4PN5y0vD7/QSDwY4gpN//7Jd4+3enqdYFKhUV2SFQrteomzXcHjflKtgdCoJFJpcr88ZbA8zO72FRZG68OcDs4gGlUpXePi9Wu4U+m5mVtTjRLphbahRYPo+VwcEge4cZ9mON/y6PdzG9/KjAGej1clwocn0kSrFUZWMvhcUic2++fcWor9vH7Eb7mslwb4DphytLFlnCZ7fgtIqYFBsWS43YUZbDoxzlco3t+DG5Uvsu+cX+EFOnwtxkSaSgdr7OQYeZmS2dlOa+sK4A+kLUrztd6A14OmxXoTFdSOx2Eo8LYZ/uFOFyd5gpHY3CUMCrK3a2yzILOhauAGWDz+pI0K+7phR02IyJhCyDDmG44HGzcNxZrIsChinRF3xe3tnvfHz5MRqFIa+Xe7HO+wgCbOo8PsCYP8CDhP7aU8HgWhe22VlJ62sruhxOdnWC5ABiBmtK3Q6n4eRhwO0lYSCsPtIJ0gOwSBLfGO3T/dn7DYVCgXv37hEIBLh48eK5rA2JoojH48Hj8TAyMkKpVCKRSBCPx1lbW8NsNrfIw7s1Wk7j8PCQ6enpc7WtNbJtbX5PPMn04eRrkEqliEajCIJAMplkc3MTSZJawXnPGhr32iXpnPFa9PxS4JUjDM96UX6S7nkul2NiYgK73c6dO3eeevR7XitJxWKRiYkJ6vU6Ho/n3DohTzMh2d3dZW5ujtHRUfr7+4HO5OYndUISRbHVLRobGyOXy3F4eMjW1hZzc3N4PB78fj9f/dX7rM7sUxNEBNmE4jSTSByjmgVMJgXFYSOxmcTut6FV68iKiZ39FBdGQiBJTE7vIMsS1651c5DMsfmQIFy52s3iWoxLoxEqlRqyIvP2g0fuRlfGu3iwvI9JEhjs8eO0K+wkj4kls2zvN4ql0YEgD1bbi6PLI5EWMQBQZInxgRCq0LA9TR4XODjKkhMqHJdF8qcsK3sjHqZPOSCFPA5mt3TWiwbDTK53Fmd2h5XDYjvhkCVR10XJY1eY2+vsjAecNmZ2Y4iAYpZRZAnFJGOVJZKpYwbdDmw2K5IgIgpCIz8AgVvdUR6mnzW+L1QNWZR4IxJu/FvTHq62arhsChZBenitfWT9GnLbiGXyD7VLjQIaGhOMbKXMJV8AQXiYEv7wfEUV3giF224XEHBazWQrD18LDcqVCvlCHpfDhibLXLUo1DWNuqpS1VRqdRWH1Ya3XKZUq1Ku1mlysh6rwqbB+o7eNATgYjDAAwNdQ7Kkf6wxn99wtahokGzts1pZSulPHnrdLg5K+sW/ESnodbjYMlgtijoc7Bb0f3Zc0V8BdZpktg2ck74h0otdfu8Dzt4N+Xyee/fuEQ6Hnzrz5nmgKAo9PT309PS0LEsTiQSLi4uUy2W8Xm+r0WJkzgGPyMLVq1cJhUIv5NyfJjTOaPpQr9db7lJdXV2t0LhkMsnq6irFYrH1fdEMjXuS96ZQKLxeSTpHCGrjv68HvMzP85UjDM+Kd+v+Hx4e8uDBA/r6+hgZGXmmLwBRFM8sHK6JZhc/HA7jcrnY1+lcnhVOiqqNcHJd68aNGy2P9JOdI+i013tSnNznHR4eplQqsb2xwy//2G9yuJ9FVCyIohnFbWJv65AaAj67l3SxxO72Eb4uD9NTO1y80o1mEjjazOMPudiPHXN5PEo2X2Z164hsrlFs3bjRS7lSRxJE5hYPuHK5iweLj17j0eEQKhrjgyE2d1OsbSfp6/MRSz7qxPrcVnaT2TatU9hvJ1cqc20ogqBBKlMkky+xcZAmdUrA3BP1MbfVXqgPd/s6yAKA320llmkv7LwOK4t7nUXleG+wgwCYRIEBr5WjQpkepxWrxYLVImMymbArZjLFMjW1USxXanVKlSpdfhfTWzFqNSjWqhSpAiUGvVb2jstAGXh0Tm8MRHlnrVPoOhYNMKWTu+CzKywcJjrE1wD5aoXddGfX+0ZflMVYZ1E8GvIzozMJEQXwOWwk8p2F6k2Pl3s7+hOJqeR+q2EkADaThMVkwq84qFZB1DREwGI2YZHNeBxWKqpGRLGjAbVWwJqKXZYJWW3ka1UKlSraw0tMn9vFhoGuwUijYBMl1g2mAUNuD+/oTCvAeH2o12lMCiIOB9sG60jJkn7hH7BaWTk2mKa4fUwd6Yu7e/NV5ubmWh3z91vQGUA2m2ViYoLu7m6Gh4dfGFk4jZOWpZqmUSgUiMfjxGIxFhcXsdlsrZ97PJ7WNTkWizEzM/NCyYIejKYPJ1eYmr/XdNY7LXo+GRo3MjJCsVhshcY1JzBN8uD1eg0nMLlc7vWE4TzxesLwUuD9d7V9j/C40LO1tTXW1ta4evXqc+1xPouw+nFoWpSOjo7S19dHLBZ7T5Oka7UaDx48IJfLcefOnVZH5jyTm7OJPF/42T8CzYbTZ6FQqlKq1akV81SBYNTFQSzHwHCI7b00iXiOG3eGmJjcRFU1rrzRS7VeJ5MuYJIESg+f39VLXcgWiXvTj9yNLo1HebC4j8dlpTfqQZJEFjbjFEuPLDWvXIry4MRqkigJuNw2duPHXOjx47CaKZYqlOsqGzvtqx+XRiId7kkXB4IdZEGSBF3v/LHeAHPbnROAvrCbnUSGsNuBVTZhNkmIgGgSuRQNUqrUKJQrZAqNz+ZBtka2WANqQIO82GSRqgCVevv777ZZmN6KUT6lL5BFiBU7rUYFAfaP9QtZI/1Af9BLUqfIHw37WYp3kgKzJLGsczuAxaDAHgsHdNeRBAFdcTRAn8dNPNdeEJdrdcySxHwiReXk32KxDOQZKhZZ00mcdisW1hKpFikyCSI2WcZulum3eXBgxixJSFJjSoMAGhqaqjHm8VOsVclVqxxXStQ1jS5FYdmg+E+V9ScPPU5j8XTE7mDbYE3oQEenAQ0LViPNQ7/T0+aWdBLHOgJyaFjRfvzmB6geZ1heXqZYLLasRoPB4GM75i8KTXe6vr4+hobeP1oLQRCw2+3Y7XYGBgaoVqscHR2RSCSYnp5GVVX8fj9ms5mdnR2uX7/+xNq8F4F3s21tfi81v/+a3zWnYbVaOyYwyWSSpaUlKpUKXq+3RSCanydN085dw/DTP/3T/KN/9I84ODjg+vXr/LN/9s946623zu3x3m94rWEwxh/+4R/yj/7RP+LevXvs7+/z67/+6/yZP/NnWj/XNI2/9/f+Hj//8z9POp3mj/2xP8bP/uzPMjIy0vqdo6Mj/spf+Sv81m/9FqIo8p3f+Z38k3/yT556avbKEYbnWUk63f2v1WpMT09zfHzMBz7wAVwu13Od21mJnlVVZXFxkb29vTaL0hed83ASzbUoWZa5c+dOS1dwcrJw1mRhZXKDz/3s71Is1ZEUC2bZjGaxUM3nEGUzgaibSr2GbIbN3ThOp4Jss3BvYoPh4RAen513pjbRNPD5bQQjLmo1jZW1Q8qVGjMrj4r3C0MBJElkqMfHxs4Ra5Uadre1jSxcHAm1yILdKtMb9uJ2KezFM9QrKqtbjYL02lgXiyvtBfBof6CDLFgtJmLHnR3aK4MRpk6sF7ltCl6Hgstq4cZgFDSo1OrkSxUUWWJ2LUZd1ThKF04cI8yDlc4u/43hKBM6q0uDES8ze51F+GDIy+Rm51RgrCvAjN5Uozuka6UacTtY0Alqk0SB9US643Zo6Dv0MN4V1NVBOC1mQ72DSdKfeI2FAswbZC/sZ/QL5eGAj8n9zscXBUgZfFn0up1Mn3gcVdPIVSrkKhU0AWK5zuL/ajjItM4Kk02UcFqcjIgWFJMJWRKRWsFZAvl6lWGXl2y1wnG5RFlt/E1HHHa28/qEYd9gWtHrcBkSiR6Hk32DsLbTGQ5NmAWBnao+obkV7GIoEoVIlLGxMfL5fGtfvxny1Vy3eZKQr7NGOp1mcnKSwcFBBgYGXuhjPy1kWSYcDhMOh9E0jUwmw8bGBtvbjVXL9fV1MpkMwWAQp9P5nk1JjKA3fVhdXQUagujmd/njhNN6E5im0cby8jKf/exnMZlMfOQjHyGfzz+3zbcRfuVXfoUf/uEf5ud+7uf4wAc+wKc+9Sm+9Vu/lcXFxfd0wvMa7w/k83muX7/OX/gLf4Hv+I7v6Pj5P/yH/5B/+k//KZ/+9KcZHBzkf/1f/1e+9Vu/lbm5uVZey/d+7/eyv7/P7/7u71KtVvmBH/gB/tJf+kt85jOfeapzeeUIw7Pi9EpS093HbDbzDd/wDW3C2mfFWRT0p0XXJy9iz2p7+qQwWklKp9NMTEwQCoW4dOmSrv/2WZOFr35+gt//la+iyTKyzUq+WCWTy6OZVVJHVYYvB9laT+L0WAn1hliY3cMTcFIolvC4zZRrJd6ZSmC1ylwYDnOYzjMz1yiU+/t9rO+lcNgt9Hf7EESB5a0EhWKjYBYEga4eL0vrjwrcUNCBKIpcvxAllSmye3BMtVrjazPbbW5HvREPs+vt6xZWi6mjUw1woS/I/bUDREEg5LHjsVuxKyZU4FJXgGyhTDJTIJspMhjy8PZiZ8jVeH+wY5VHFCGe7Xw8q2zqtG0FHBaZ9WRnUWgWBRZ0chcEAWI6uRBAe9f9BCJeB/vZzgJ8vCvItA7B8NqtzOu4NQHkyvrF6IWQnwmd1SKXYmHegEjIJn1SMuz3sprUFwcbFcOjwYBh8NtR1mB9yOc1DHgTDSYyitnM9OFhR6o2wK2uKHOniJndJONWLNTLGtfdEWRJRBAFNDQqah2TJLKfz2IRpRa5aCJstxuvI5X1PwNei8KywTpSv83JkoHm4UO9g+3n/bBj3gz5Ojo6Ih6Pc//+fTRNaxWDgUDgzK1GT6O5GjoyMkJvb++5PtZZQxCEVrF848YNnE5nK3G6KRo+adv6flsDE0WRtbU19vb2uH37Njab7ZlC45qfp76+Pmq1GolEgt/4jd/gk5/8JOl0mr/zd/4OH//4x/nwhz/cEVz3PPipn/opfvAHf5Af+IEfAODnfu7n+PznP88v/uIv8jf/5t88s8d5X+N1DoMhPvzhD/PhD3/Y4FAan/rUp/i7f/fv8u3f/u0A/Ot//a8Jh8N87nOf47u/+7uZn5/nC1/4Am+//Ta3b98G4J/9s3/GRz7yEf7xP/7HT/VZfn/95b+HOFnMJ5NJpqamiEajLXefs36MZ0E+n2diYgKbzcbdu3c7LtzvxYShmUUxMjJCf39/KzjvWcTNT4rP/z9fZPpLK9QRqVZVRFEjeZRFsptAkxkcD7KyFGP0Sjczs/vUDzJcvtHHzm6KRDzH2OUoyXSevh4XiXierf0kR+nGOk4o5MLtsWEym1jbTLCxncRiN1M4IQy+PB5lemmf/m4vbodCsVghX60xu/yoq2xTZNKFdmtUkySgClA7tdYz3B/gwdoBiiwQ8blx2hRsisxxvkSX20E8neMwkeUwkeXycJiZU4TDZpF17VKHol7mdVaULg9E2pKemxjrC+oKoy/0BHRTnS/1R3RvHw66WUl0dqr7Ax6WdXQFNtnE4oH+CpFR8NlgQD8Jusfj0nVTAnT1CQDDAQ+TOsFydrPMooFrkkvpTJmFhq7B6PEVA/IRtNvYK+qfm2Iwv7ZIEksGGQ9DPi/3DLRMKZ01oGKthl+06SZSA9zuihJ7OJ1yyQpuxYLTbEYxmbAi86a/i6qmUqzXyFTLpMoFPBYraxl9ojPk9nLPwB3JZrWCAWH4Uz3GKz6nO+bHx8ckEgk2NjaYnZ3F7Xa3pg92u/1Mr0fNLICxsTG6u7vP7LgvCs0gtOvXr7em1d3d3XR3d7dEw0270unpabxeb4tAvB/2+tfX19na2uLWrVutFYvnDY0zmUx813d9F9/1Xd9FsVgkHA5z48YNfvEXf5G//Jf/MlevXuUjH/kI3/Ed38GtW7ee+dybgX5/62/9rbbz+tCHPsSXv/zlZz7uy4avx5WkTKb9OmexWHTTyx+H9fV1Dg4O+NCHPtS6ze1284EPfIAvf/nLfPd3f3crELdJFgA+9KEPIYoiX/3qV/mzf/bPPvHjvXKE4XlWklRVZX19nZWVFcbHx+np6TnTc3uegr4Z0tPb22vouvEiCEOTBGiaxsrKCpubm21ZFGclbtZDtVLj3/3D32R94YCaJqCZTMg2hdRxFpNLxqrYkSxmVFWjbzjE3Pw+F0ZCmBQTU1NbCAJcfaOH41yFw1gOi8VEsNvD1s4RXREHkqSRyhW5P9vo9kqSQCDkZG2rUZh5XApD/QEK5SoORWZru1EYXh6PsrTTXrz19/mYXWsvwC5diHJ/ZR+LLBHxu3DZLVgtJrYPkzhMEvlSnc29NAgw0O1lfb+94OqPeDosWKExiThtowog6qzZSJLAvo5IWJElVmOdha7R7ZIosK3jpASQN+jwu+wW0KmlR7uCTOoU/31+N8s6idKiANsp/ccOuuxsZzoLzkG/l7Uj/QJ2x+D2kZCfyb1OYmUSBVYT+vfp9bo5LHQW/2ZRZNkgDbrX6+ZQhzAIwI5BsvVY0M+DQ/0Cv1Dt1I4AhOw21lJp3Z+FHXbD1aLDE65OuWqlNUHpcjjYO9Rfyxp0ezDXJZyWBrGQRAFV0CirNcyChEdWOK6UWsJuAFkQDScPl31BuuxPtkMuCELLZvPChQttVqOrq6stF51gMIjX632ua1Q8Hmd6evqZQ83ea+iRhZM4KRoeHR2lUCi0pg/Ly8soitIiYs/7Wj4LNjY22Nzc5NatW7oag7MIjSs+dDv723/7b+N2u0kmk/zO7/wOv/3bv81v/uZvPhdhSCQS1Ov1DtvacDjMwsLCMx/3pcPXoej59CTy7/29v8ff//t//6kOdXDQ+H7S+/w0f3ZwcNCx2mYymfD5fK3feVK8coThWdG8SKyvr3P79u1ziYF/Epeh09A0jc3NTZaXl7l06dJjO1gvaiWpqe3IZDJ84AMfaF2onyRf4VmRSWT5Nz/+OVJHBUSzGQEBk2Jma/0AZ9DJ8UGR0PUwq8uHRPp8iCYRxWwCk8DCwgGXr3RjMkvcn9lFVTVMssjo5Sh1VcPrtpE8KhGMuMieCCsLhRSyuTxjg34KxRq1Wp251Vi7buFCmOnl9j+6SyNhZh6SBbddIex34nYq5EoVIh4H8VSerb0UkiTgdMocZdsL7CtDYaZ1iIEoiR3TTJ/Tyvx258rOaE+AJR0NweWBMFM67koXe4NM6t4e0k1vvtwb4r5OfsNI1K87RbDLom6wG8CBgRbA67CyqUMMxruCzOroHR4ndnZZ9Ts3IauZw5I+wckYGBRcDAV0E6dBX2sAcDEc4MGB/vM/MrBfHfH7WDTIZcgX9B/HrVgMJw99bn0yA5A0OIeow8GWDgED6HI62TMQPKcrJXayGTjFTe0mmZJWp6aqyKIJhyDitVlx2Wy4FQvZWoWyWiNbLXNUKZJ5SE4+9JjpwrvhtNVoU+w7OztLrVZrefQHAoGn6vA13YTOM6fgPLG7u8vi4iJvvPEGPp/vie5js9no6+ujr6+Per3eCktrvpZNEXogEGjtT58XNjc32djYMCQLp/Gstq35h4S5OU3x+/18z/d8D9/zPd9z1k/p6xZfjxOG7e3tNl3s004X3gu8JgxAqVRicnISgFu3buF2u8/lcZ40HK4JVVWZm5sjHo/z5ptv4vF43vX4zc7JeYUElctlvva1ryFJEnfv3u0QN58HWdhZ3OPf/5P/j1K5RqWuUcgWwWKmmM5SRUKUzLjCJh5MbDH+Ri8bG0mO0wWuvTVAra4iigKVWp255Rgmk8iF4RCaSeD+QwckQRS4MBpmafUQSRQY7A/g8VpZXjsknSmRSBSRTAIut6WNLPi9djZj6da/7VaZ3ogHs9nE+ECIw2SOo+MC+UKZcMjN7mF78dsdsLKRaC/gbBaZ7URngXZpMMzsZmeB3hXy8OB0oS9AWedzJksi2zpaBItJYj2e1v39zWTjdlEQkCWxJaAtlCq4zRImScJsNjfyFUQBr02hz+duZR4gNHbhw04b20dpavU69YefEVGUCHucHOTy+O1WVK2xrqVqKiZJ1CUeQEcCdhNGYmerbDJcLfI7bBzqTES63E5DjQLof7YHfB7DsDajc446HawbdP0dir5uSpEktg0K/yGvlwmDrtGxAQEK2+2sG9i2djv106ofdzyX2cJKSp/oDPt83I83PsdVVSWFSiqbhWyWW5EoE7H2c7ebzPitNv6bnmHd4z0tJElqJcZfvHiRXC5HIpFgd3eX+fl5nE5na/rwOLHv/v4+8/PzXLt27X3lJvSk2NnZYWlp6anIwmlIkkQoFCIUCqFpWuu1bE4tHA5Hizy43e4z/U7Y3NxkbW3ticmCHh4XGndypTaTyWC1Ws9lehIIBJAkidipdcBYLHYmydovDb4ONQwul+u5jXSan5FYLNY24YzFYrzxxhut3zk8bG9W1Wo1jo6Onvoz9soRhqe9KDWdLfx+P5lM5lwFXU+zMlQul5mcnERVVe7evftE3ZrmBa1er5/L86hWq8TjcSKRCJcvX34h4ubpP1zgC5/+Q4rlOqLFjCCLCIpARa0gyDI9ETeHyRz+gBNfxM39iS2iXW76RwaYmdmlVlO5MBqmUKpycSzMxnoCTAKzC4+65leudFOq1Lg0EmFzO4mmqdx7sI16Qix8YTjE/OqJPzpRwOu1EJDsSKJEMl3gMJGlpmlMnkpzvjwS5f5ye5feYZXYP+4suC70B7h/KuBNNokcHncWbV1BNzM6JOLqQJj9VJYevwuLbMIsSZgkEZdDIV+u0O9zo2mgair1uobHoRBL5/CZlVa+QrVWZ6DLx/TmAZLaIIRV6lSpMxz2sLrbLKbrQKPgDnsc3Fve7bjum0SBbK5MWsdO1KKqJLKdr8ONwQiTmwfITaJikjCJIgGnjexxmQGHG5MkYhJFJElEEgXsoombkchDT/bmlFvDbjGTKhapqSqVukq+XCZfKoMI2wYrPxGXg10dIbJLsbBgQD58doX1dOftTrOZRYPJR5dbv0svCrB6pHMwYNDjZN5ACB03ICx+q8KKwbSix+3iwMCC1YgUeBWFVYNE6GGvh8lDfdLyuEuDnqVrsVYDTWPYc/YT35OZLoODg1Qqlda6zdbWFqIottZtTmY+NDvzRms873dsb2+zvLzMjRs3zmySrvdaNqcPU1NTAG3C6ecRoW9tbbG2tsbNmzefu+Bq4nHTh09/+tOUy2Wq1eqZd4HNZjO3bt3ii1/8YssqU1VVvvjFL/LJT37yTB/rNV49DA4OEolE+OIXv9giCJlMhq9+9at84hOfAODu3buk02nu3bvXWp/7/d//fVRV5QMf+MBTPd4rRxieBs0cg6ZgNx6Pn3mw2kk86UpS08vb4/Fw9epVwzAZveMD57KWtL+/TywWw+VyceXKlZa4udmVgbMXN//+Z/8rX/78fTCZMDmslEo1qppKtlDA6XVRyFUQzBKaqiHIEkeJPCMXI8hWman725hMIpev9ZDJFtl5qDe4dL2H6fk9TCaR4cEgLpfCg/k9SuXG++732Ykd5dvIwuXxKHOrMQa6vbgcVkqlKiYzzK62F46jQ34WttpvCwUczG90rqIEA05W99Jtt0UDTl2NwuWhMHuJLEMRL4pZRpYaOQpmRcZjs1Cu1imVqxRKVbLFMqnjIsmj9g60KAp43VYSx523+9024sedBePhcY5qvfOzVDTwz4/4nLrrRRd7Q0xvdz4vn8PKfk7fQrNJkFRNo1yrt3IeBkNeXV1D2O1gWsexCYzXpK70hJjZPcRplrFZZBRZxmKSMJskpDrcDkdbxKOOSrWu4rFZ2EhlyFcqZMrllhORKMCaQYF/wcBmFeAgp9+9Hw0EmE/oE5OCwfqQy2Jmz6DA73e7SRokP2cMEpd9VqvhpGDQ4+mYBjSh584EjRyF5SN94jTo9hhmNvzx3n7d288aZrOZrq6utoTgpsVmM/PBZDIRj8e5cePGM3fm30tsb2+zsrLCzZs333Vi/Twwm81Eo1Gi0SiqqpLJZIjH46yvrzMzM4Pb7W5Ncp5GhL69vc3q6io3b948t00AePRd9rM/+7N85jOf4Ytf/OK5rYz88A//MN///d/P7du3eeutt/jUpz5FPp9vuSZ9PeDrcSXpSZHL5VhZWWn9e319nampKXw+H319ffy1v/bX+LEf+zFGRkZatqpdXV0tAjo+Ps6f/tN/mh/8wR/k537u56hWq3zyk5/ku7/7u5/a7evrkjC8VzkGzeM/bmXo4OCA6elphoaGGBoaeqoC/OSE4azQ9LdeX18n0ureCh3i5ubtZwFVVfkP/9fnWbm/Q12UQJQoZsscxjI4/BaO01VcPglVkpie2OLGN1wgnSqwvZXk0o1edvfSXLnaTaVSY3k1RrnUIAPjV7solqtcvhhlYzOJqmq8c2KSYJYlFIeZxF4aQYC+bi8+r53jfBlZlNjcTgEp+nt8LO+m287Z5TB3iJQBHHaFWKq9GB/u9bG81yjEzCYJv9uGy2rB57UR8jpQ6xrlao18oUK1Vmd5I0GhVOXk1nx/1Mu6jtB5fCDUEfQGDe1Cx+oSMN4XZHZLXwOxsN9ZsHqtJvYznQWm2SSxYuR0VNUn4f1BD0kdl6Woy8puWqeQFmBPR7AN0OV1cqBjyxp02lh5zGqTBuQrVfKVR6tmIyFfh/VoE8NhH3snVsacZhmHYqbf5yFbaUw+pIdic1XTqKp1LJJE1OEgUy6TPyFI7ve62TjWF28rBgFzZhEODETNwz6f4TrSgcFEwmu1smwweRjwuDk60CcnZYNrjFkUWU4ZaCjsDtYM8hwCNpshYfgTL4gwnMRJsW8z82F5ebk12l9YWHhPMx+eBVtbW6yurnLjxo1zJQunIYpiS4Q+MjLSJkJvpi03pw8+n8+wQbazs8PKygo3btw4V7IAje+9X/iFX+BHf/RH+fznP88HP/jBc3usj3/848Tjcf63/+1/4+DggDfeeIMvfOELL6Uu5pnxdSh6flK88847fPM3f3Pr3z/8wz8MwPd///fzr/7Vv+J/+V/+F/L5PH/pL/0l0uk0H/zgB/nCF77QtpXyb//tv+WTn/wkf+pP/alWcNs//af/9KlP/ZUjDO9WtFYqFaampqhUKh05BqezGM4aJycApy+KJwvza9euPdPFQhCEMyU99Xqd6elp0uk0d+7cIZFIcHx8fK7i5mKuxGd/4nPsbhxRqUNNq2O3W8ke5XBHbVTKIuM3wsw82KGr18fl2wNMvL0BwI07g+QKFTLHRaxWmXSuTLlUo6fHSzjqZnHtkEym0WWNRNzsxNJtk4QrV7opV2rYh8xs76XZj2Uo1VQODh8ViGazRKFWa7sfQCjsZmmzvcjsDllZ3UnitMo4FAmzScTtdKKJAoMhD+lMkeNciVgpg7M/wFcebHW8HtdGG85Kp2Gx6P/p5ko6xaQASZ3chcbv6wt+MfD47wn5SOkQjLGeIA+2OovVqM/Jsg6REATYOdIX04b9bvZ1chyiDoU9ndUsBNg1IBK9fjdxHTtVp2I2tHI10g4EHDZW4+3FdZNsRN1O5vUIlk0hXX5kr6tIEi7FglMx0+Ny4TdbER9mHlQ1jVKtSq5SYc8gDXs04GfGYPJQqusTM4+icGAwReix2zkyyEswsrS1mkwsG0weRv1+ZhL6kx7R4PzAWHRtM8m8FX3vrUpjsRjpdJq33noLq9X6nmY+PAuaO//n3Zl/EpwWoadSKRKJBIuLi5TLZbxeb4uMNdOWm5qL856MQOO7+Jd+6Zf4O3/n7/Bbv/Vb50oWmvjkJz/5db2C9HrCYIxv+qZvajVmdY8nCPzIj/wIP/IjP2L4Oz6f76lD2vTwyhGGxyGbzTIxMYHL5eLmzZsvPMegSRLq9XobYTjpOnTnzp3niqA/K6ekphBcEATu3r2LxWLh6OiIer1+buLm+E6Sz/7Eb5DNVRAsMrLQ2L0/OEhicSnIZgWLTSJ1XKS7z4fFrjD7YIex8Shmh5l79zYBCIWdaJLIwICfVKoAosCD+T3KD9eOHA4LVRr7+6NDIcyyhKyYuPdgu+18Lo93MbPUXqyPXAgzfeq2S2MRFjZidAVceBwK5ocJxMlsAUWqkMtVaG6ejJhllnbS7U9cgFK183PndVpZ0JkWDHR5WdDJVxjrC7Kwo5Ou3BdkTuf3R7r9LO93Fs1Rv5PFvc7ft5pNrOrkPQBkivrrLiGPQ3cqMBYN6BbYZknUtXEF8Dhs7OmsMA0HvawY2JzGDByYhoI+pnb00pgF1gyO1ed3E9cRGz/uPv1+D0cnhNiVep1EvkAiX6Bcq7OX6XxtxsMB5g4T2EwSHquCGQ0JDbfLiVtRuBGUKNbqZKtlUqUihVoNp9lsnMvg9RhOHlIF/dfHKcssGUweRnw+HugkTEPDqcoIWYMuvN9qZf1Y//W729Xz2GOeN5qNnN3d3TaB7XuV+fAs2NjYYH19/X1BFk7jdNpyM707FouxuLiIzWZDURRSqRRvvPHGCyELn/3sZ/mf/qf/ic997nN80zd907k+3ms8hKo1/vt6wEv8PF9JwtBcmTmJ5qrP4OAgw8PDhjkG56lh0FsZKhaLTE5OdrgOPSvOgvQ0NRQ+n4/Lly+3yE0zEfT4+BiXy3WmX4Qrk+v85s/8HhVNoKaJ5NIlrF47q7O7dI0E2FpNc/ENN9l8mc21BGPXe0AU8PsdSIqJ+1PbCAKMjkXRJIGVlUP29tL4Aw7KZbVFFvw+OwNDAdLpIsepIssrh/T2eNndaO92j42EO8jChaEgM8v7+D02Ah47itmEIAgcpnMINYGDgwwHNI5zeTzK9kH7uonDZmbzsLNAvDQUZlZH59AT9fBAZ7pgMusXUM09/9MoGqwESTo5DQABj123Yz/WE2RKJ9htMOxlLd5Z8MmSyKpBF9/osce6g0zvdOodFFli3WAiUTPokPf6XGyn9e9TqOiv9YyG/SwYpD4f6Yi23+0+RpkIvV7jc7M8XEcq1+rEToiyLYUKgih0dP4dssxVX5BUsYwiNzMPoFyvkatWDB2anGYz+waah267jQWDdSnR4O9eEDAs/LsdTnYM1pEGXB6SBrqYP9H34teRmtA0jaWlJWKxGLdv39YNKXuRmQ/PgiZZuHXr1pkJhM8LgiDgcDhwOBwMDAxQrVZZWVlhd3cXSZJ48OBBmwXu835X6uE//If/wF/9q3+VX/3VX20Lw3qNc8brlaSXAq8kYTiJkwFj77bqc94rSadXhlKpFJOTk4TDYcbHx8/ky0Qvjflp0CRWw8PDDA4OtombPR4PiUSCiYkJZFkmGAwSCoXweDzPde5f/Y+T/Od//1VKddAkiXyhQk0UOUod4+3yUMipXH5zgMm3N3A4LVx7a4DlxQNy2TKXbvaxu5fm6tUejhI5jvMl9vcbhY7dbkZSTDhFgf4eH6mjPG6/nXcmHq3+2G1mCrUatdqjqYzfZ2P7II2ARijgxOexYzGbyBUr2M0yR8k8R8lGITc+FmEv1l749UQ9zKx0dnQHevxMnyIAoiiwrdNRD3jszK93Fs4DXV6WtjuL05HeAEu7ncX5cLePlf3O43cHXCzsdE4RHFYzC7s6+/sCxPR0BQ/vo4eLPUEe6Iid3TZFVx8B+nawAKPRAPd1jmWWROJlg316Tf9YfoeV5UN9ImOR9clY2GVn3cBm1Uhv4FIsrMT1u/RBh12XMAgCbBiJp4M+ZmOd702xWiNfrrGo85zsZpn9ZA6baMJvs+FUzFhlGVESsFtkYoU8x5USiVKxTZdQNSCfkiAYuyN5vKyk9Z9v1OEwJAxlVf99EoA/3vPeEAZN01hYWCCRSHD79u221dXH4bwyH54F6+vrrVCz9ztZ0EM8Hmd/f5+bN2/i9XrJZDIkEgm2t7eZm5vD5XK1XsvHWeA+KX7jN36DT3ziE3zmM5/hIx/5yBk9i9d4jVcHrzRhqNVqPHjwgFwu1xYwZoTzXkk6+RhNh6bR0VH6+vrOrFv/LOFw0PiCXFtbY21trY1YnRQ3W61Wrl27hqZpHB0dcXh4yPT0NKqqtrzN/X7/U1m6fv6f/x4T/3kRTZKQrBaqNQ0UE+VsHsXpRLFZEM0ya8sxLr/RS7mmMvnOJoIAb3xgkFyuTOaowGKmRKTfx85mo2jq7fHiDzvZ2U0Ti2fZ201z8VIXM/PtBXtXn4/F1UYh6nQodIWcOFxW0scFDg41Dg+zHB5muTTexfJGe7E2PBBgbqWziNVEtWPC1R1yMbvWSSIuj0R4oEMuPE6ZeKbTuchoumDURTbq5PtcVnZ1OvYXuv1M6EwRxroDLO52Fvkum4UFnYA4gJxB4vNQ2MuEjtg56LIbZi8UDKYko10BXXckAYgV9LvnfX43iXxnR1sWRVZ0HJgAur0uDnRC2R63jjQU9DKpkwsBkNDRVQAM+32GidCywXtplkSWEwa5BwEfD/Zj1FQa608n3vKr0RBLJyZAAcWK16bgUiyYTCIeq4NCuUy6XOKoWqKsafRarWzopFJDQythhLSBhsIiSoZ6iMuBEMEnLNTPEpqmMTc3RyqV4vbt2609+qfFWWU+PAvW1tbY2tp6rpyC9xL7+/utBOqmG5Xb7cbtdjM8PEy5XG5Z4G5sbLStNj3tdxDA5z//ef7iX/yLfPrTn+bbv/3bz+MpvcZjIPB1pGF4r0/gOfBKEgZBEMjlckxMTKAoCnfu3Hmi8eV5ryRBYwKwtrbG0dFRm0PTWeFZSE+9XmdmZoZUKsUHPvCBVjfKKIxNEIS2vdPj4+PWCH5mZgafz9f6ojTqolUrNX75Jz7H9loCzDImi0wynkMzCaSSObpHoizPHjB+q59qVaVarlOq1tnZPuLStR7MiszkvcakQJRE+kZC5PMlrlzuInaQweGxMjn1SJPQ3eNlZeNRYSugce16L5VancsjEZLJHLF4FnOPl3v328XHg/1+Zk/lKJgkQVcwPNjnZnWvc5XDZrOgngpksykyGzrOSkGPlc3YMTaziCxJKBYTVosZj9NGuV7n6kAYEQFBFBAAxWyiVK1xYyDy8H1rvHdWi4l8ucrVnlDr/dRodNHLlTqXugIIJy5fggDlfJl+uwWrzYbF0kjUFgSwKWbsfVE0Ghc8TWj8r91qJlMsNz4rmoaqatRUFbNZIl0oEXLZKVdrFKs1Kg+71vsGk4pev4u4TlEectkNHZhqBvug/T4nGwZC6JiecBoYi/iZMXBHSuoQDICRkN8wFM5INBxxOtjSSbCGxkRAD6IA6waTh5GgnxmdyQMYfzmZRKEjmC5dKpEulRgPBZja15kMmc0ETDZMJgFBUxFNEqokUkQlUS5yYBDw5rEYZzaM+H3MJPTP/b1wR1JVldnZWbLZLLdv3z6ztOJnzXx4FqyurrK9vf3SkoWDgwPm5+cfm3NhsVjo7u6mu7u7zQJ3ZWWF6elpvF5v6ztKb5XsJH73d3+XH/iBH+Bf/It/wX/33/135/GUXuPd8HUY3PYy4pUkDPF4nMnJSXp6ehgdHX3idZnznjBUq1Wq1SrHx8cdDk1nhad9Ds2AOE3TWuJmePLk5pM7vCMjI+TzeQ4PD1tpny6Xi1Ao1PLbBjhOZPnsT/wm8dgxxVKdGgIKIgcHGUIDLmqCzO7mEWM3+pib2gEBxm70Ule1RrEKTD5cK/IHHPQNB9jbS7O/f8zeTprL13qYmd9rnaPDYaFYreN1Wwn4Hah1lVpdZWZ+r20VKRJ2sbjW3q2WTSK5UrXjb3x8LMqDxXYSYTaJHBy1F00iMDYUIpMvcaEngEVuBJAJgoDNZuY4V6TqUalUa5TKNYqlChGvi8RRkRoaJVSy2SpQpBYos3vUuUc/PhRiTkcDcfVChFmdtabrI1HmNzt/fzDiZq3pCJV61BH2u6yk8iXqOsV5NOBk/6izML8+HO1Y1ZIFgZFuP4eZPL0OJ2bZhNnUELZLooCMyK3eKKqmoWraw6C1OkGXnZqqkitX2nQaXruVpQP9Yt3lsIEOYQjZFXYNCINg4AwVdTsM14SsZv1LqNNiZtlgHanL4zTMX9gwEC4PB3yGUwTZQBQsCQJrR/qF+oWAn4W4/mtntGKVq1TZL5Q5yHVOGLyyiVylTLdkxW424XI5UdHI1yq4bQpf29/VZS9myfgr6JteMGFQVZXp6WkKhQK3b98+lx35Jp4k86E5fXjSCcdJgfbt27dxOBzndv7nhYODA+bm5rh27doTN9NOW+AWCoUWGVteXkZRlBYZO60j+U//6T/xvd/7vfzMz/wM3/3d331eT+s13gWvXZJeDryShGF3d5dLly49fSiFyUTZQAT4vMjn80xMTCAIAiMjI+dCFuDpXJKy2Sz37t3D6/Vy5cqVNtvXZ7VNtdvtDA4OMjg4SLlcJh6Pc3h4yMrKSuM5FyT+8JfeoaoKqKIJUTFhU0zEE2kig16Oj6sMXAhTrqlM39uibziAzWNj9sEOqqoxdrmbtfUEFy9FKZeq2FxKyx0JYHg0xNzDQt7tthKNuDFbZTY3kySPixzGMphlCW/I0UYWBFHAbJWpJNvJ1thopIMYBP0OFtYOkUQBn9uO026mXqugWEQkWaFe1yiUquTyJTLZErlMuaN4tltlVAkKp2xQg147c+udxXzE72Av1Vlk+lwKC5v6WoRFHcckQYCdhH53u1zRXyHqDXlIrOqInSNe1g87C1JRFNjQuV3VNCyyiaNsZ7d+OOLjwVYnuQEo+KqkU437WE0SDsWMzSLTF3KTKpQxSSLVaoVCsYBitYIkUS7X8NutZIplqif+HnoCXmJbnc/FLAosGpCPqMfJnk7Gw7utI03t6T+ftIGjVMBiIl7Rn0o4H7PvvpnWfz+HA16WDEiGzYDoAOzqODcBdLmc7OmkXwN0uV3MJI/IVIFSGU6s012LhLBWZYIOO27FgiJLaAIUalUK1QomUaR26poVstm5FAganuNZo16v8+DBA8rlMrdu3TpXsnAaepkPTeH00tISNpvtXTMfTrs5vYxkIRaLMTs7y/Xr1wkEAs98HJvNRl9fH319fdTr9Vbi9OzsLP/n//l/UqlU+JZv+RZ6e3v5oR/6IT71qU/x5//8n3/P3ay+rvFa9PxS4JUkDDdu3HimScF5rSQlEgmmpqbo7e0lnU6f+fFP4kknDIeHh9y/f78tIO6sk5stFktLAFir1fij3/oqv/tL/4lSXaWuiZjMCibFTHw/g91lxeZ0kozHyZeqSCaRodEwmEXmZ3YBGLvShSiJCJrGwuweF692M/3wZwDhiBPJJHHpYpRUqsDeXpqeXh/3H+y0ndfIWITphb222y6PR5k+RQy6o24291L0d3mx28zIkki9pmIym6jvqRwfF0nGsyTj4LDLlOoqlWp78XbxQpj5tU4CMDwQ4P5yZ+EaCbo4PO7s4Ab8DvZ1CIPLLpHMdV6Bhnv9TOk4LI32BXUtWV1WE/vHOmRZgN2kvpuP065fxI52B5jXEU6bRIHVA/0C1m7TL9D6gh62EunWvyu1Oke5Ike5ImazpGPzWuJyb4jFnUevudMi47Yq2BUZsQY3oxFEQaCORqVep1Ct4DKbmDHQTxzqrEnB49eRqgakPWi3GYqnw24XcYOphJ79KsCQ38uqwRThcSRjz8ButsftYjuj/35HnQ5DwpDRsZuFxlBhOZGgXFfZOc6wc+LPY8DjZuM4jShAl8OB12ZtTGxEeCMUMTz3s0a9Xmdqaop6vc6tW7fe8xwFu92O3W6nv7+farX6rpkPTWOPvb09Qzen9zsODw+ZmZnh2rVrz0UWTkOSJEKhEKFQCE3TUBSFX//1X+cXf/EXWVtbo6enh42NDb761a/y5ptvGobGvcb5QtA0hJd4Vedp8DI/z1eSMDwrznolSdM0Njc3WV5e5tKlS3R3d3Pv3r1zXXt6N5ckTdNYX19ndXWVq1evEolEWrc3pwpwtsnNAH/477/G177wAJvLi1ipN3QGAYG1hUMiQ14O9vKoOzkuvTnA/k6a+GGWgYthdndSXLrajSiJLC7FqDy0Rx0cCbG0EsNmk+nr82MySRwe5VlcfNTV7R8MMLdwyhr1QqiDLETCLg6TOUYGgigWE2pdI18oI5hEsvvHZNOPOuJD/QFWdYTOfb1+ZpbbBa6CIHCskxtgVWRWdRyN3A79aYHbobCwoZOLYDERO9aZCgiwaVCYG12qBrqC3F/vFOiOdPt13ZfMJomVPf0CW5T0Pzej3QFmdZyZRFHQnVQA+J3WNsLQRMBpY83gPqc/toVylUK5Sq/fxfKagcC2N4RQBp/VgsMiI4sCglZHFDS0msqI101F08iUK6QLJTTBeB3JZpYN15F6vfpZDgBZA2eiPo+LrWP9It5jNd6xNyIZPW4XOwakIOywGxKGvMEEyiTAgYHA/YLfy7IBofHbrGwcp1E1iGXzbRay33fpuu59zhq1Wq2VN6OXzfNeQ5Zl3cyHzc3NVuYDNCbYLzNZmJ6e5urVqwSD5zdVEgSBt956C0mS+PSnP82P/uiPMjAwwG//9m/zkY98BEmS+PCHP8z3fM/38OEPf/jczuM1XuNlxfvr6vge4yxtVVVVZW5ujng8zptvvtkKnHkR4XBGK0lNQV8ikeCtt95qfdmc1CsIgnCmXuGqqvLvf+q3Wbi3TqUuoDjNqIKG3WejXK4yeqOPhel9+kf8HOcrTH51A9EkMHotiqqKqFWVVDJPOldukYVotxuHS6G/P8DWRoLFhQNGxqPETqz9OBwWMrliWyKz06lwlC3Q1+3F6bAgIJDLlUAU2Ng+4vCEhcz4eIS55XZiIAhCS7h7EqGAQ3eKMH4hzOxqJ7kYGdSfLvR3+wxu9+rePtIf1E2BHu7ysLKf7rg96LGzpFOwC6LAtsGaktmggBrrDTC92fnc7IrMkgGRMEqPHu3yM2/gtLRjMN3oDriIb3YW3o8Lfgs47WzpHM9sklg5SKJpcFwoc3zCXelaX4j7O+3vrVkU8NoUaoUa14MhZJOEBlTUGvlKFa/Dyr2dfd2d/ZxB0R122tk0EEIHHXZDwhAzmH50u52Gq0Vhp92QMGQM3IxssslwktHvcrJi8Fiux4iG94/0PycmUeQDPeef7lytVpmcnMRkMnH9+vX3fXf5dOZDsVhkdnaW44d5GVNTU+9p5sOzIB6Pt8hCKBQ698e7f/8+3/7t387f/tt/m//5f/6fEQSB//6//++p1Wp85Stf4fOf/zzT09OvCcOLhvrwv68HvMTP8zVhOIGzKuabQmJVVbl7926b08aLIAx6x69UKkxOTlKv19vO6UnFzc+CYq7EL/3IrxHfP0Ywm7GazWSOi6gmjVyuSLA7iIpIV5+fck0kFS8ycilCVVOZn24Uow63mWyhjCgKXLrSTa2ukkzleXD/0ZrR5Ws9TM+1Tw2iPR5W1+P0dHtxuxQ0VUMwicwt7JNUH61jXL7UxcypVSRFMXVoDgDGRyPMLnd24b0+Owen1oUEUSCps1qkWEys7XUWtDZFZlknX8EiS6ztdv6+IMB+Ur9IEwyKfKtJ1TVoGOsNMq+zpuSwmnWtVMHYAWi4y8/9jc7XyG4xJhImk36hNhT2Gk4RYkZZBVE/c3o5EkA8a7BaFPExa3CfTLkzeK2maohq3ZDkOHvNKDUJn92Ky2bBapYRRQFEyFcrhO12Evk8J/9Kuz36tq0ASYOJRMTpYMeASEScDkPCkCnpkwKn2WxICob9XqYNnJhcDgcYPJbRudtMJg4NrHIvBfzYz3ktqFKpMDExgcVi4dq1a+97snAazel1sVhsmVU0Mx/m5uaoVqsvNPPhWRCPx3nw4AFXrlx5IWRhZmaGb/u2b+Ov//W/3iILTZhMJj74wQ/ywQ9+8NzP4zU68Xol6eXAK0kYnrXoPcuUZI/Hw9WrVzu+iM6bMIiiSOVUFzObzTIxMYHb7W47p/MkC/GdJL/yD36L9HGJXL6K4rKxs3aI2WlmfzXL9W8YZmv9iEq5hq/LjcthoZgvIZpl1mcbxb/TbaF7qBG4FtvLMT+3R6TXRSLxqDgfuhBk9uHakdOp0BV14/ZYOTjMYEJgd/uIXWB0LMzCXHsh63IqrO90FuONtaVTDkhmib3DzuKst9vDvM4U4dKFiG542+hQUHdacKFf//bRwZBu2vNYf5D5rc4CLup36hIP2SSSLOp/7mqq/u1DXX7ur3U+dsBtY1WH9ABkdaxmm8d6oEMkLA+7+3pw2fS70y7FxH5WXzhslDsR9TrYNphWmAyKRa9dYUMnwRqgK+gjttX5fCQBVg9TVGp1Do5zHJxwZLreG2Zpp/FcBSBoV/DabdgVGYcoczMSoVitkiqVSBQK1DSNoN3GhsHkocvtZN/AbSljYN7gtJgNnZMG/R7uH3ROygBMonFBvW+ga/DZrGwYCLKHfF5m4vqP1aOp/NEf/VFbt/wsC/pyuczExAQ2m42rV6++FJ34k9A0jcXFReLxeFtORNPKWtO0F5r58CxIJBItsvC4MNWzwvz8PN/2bd/GJz7xCf7u3/277/nzf41TeC16finwShKGZ4XJZHou0XMzJfmkkPg0XvRKUlMs19/fz4ULF9rEzc/qhPRuWJ5Y5zd++ncplGqUKnUqdTADxUodRZIYutzD5Fc2CEScDFyMsDS7R7lU5eLNfuZndxkeDWMxS2SL1dakAeDCWJDl5UfFsNerIFskxkfDJJN5YrEMx1aZ9c0Eleqj19huN3MQ7yxqunu9zC22F32hoJP55U4CMDoc7hBFA8iWzj8hSRSIPbRXFdAa9qFmExZZJJMvEfU7EUUBSRAQJRFRgFpN5UKX/2GCDQ8vKhoicKHL38pQ0DQNTdWwKma6/E40VaOmNohfTdUIB5zEjnMdFqhj/SGmdTQKLqvMis4EA+Aoq98d7g26Sej8LOxxsGagnSjodOoBLnQHmNFJcBYEdLULAGGXjeNEZ/FvEgXWDNaRwm6nrsuUKAisGYS19QU9HOmQAoCYTqgeQNSpsG1AZuonOksacJQvcZQv4bSYKVSrbT+XRIGQw86Iz0/WXkEUBaqaSqZSJlkokKlUyBqsD7kVC2sGwuohn5f7B/ruTY+7Bmwd6xf+DSG0Pmnpc7s4KurnV5gNpkoAf+4bv5Eu2UQ8Hmd+fv5Mu+WlUol79+7hcrm4fPnyS0kWTiZQ61muvsjMh2dBMpnkwYMHXL58+YWQheXlZT72sY/x/d///fzv//v//posvB/xOofhpcBrwnACz1rMNy3t1tfX21KSjR7j9ATgLNF8DicF11euXCEajbbO9aS4+azJwpd/6x5/8O++CiYTgixjls3UpAqJZBpP0IlotpDLlrj6Zj+Hh1mmH1qiXv+GYaqVGh6PjfXlGMOXu9jafNR5vnS9h9W1OCMjYcyySDyWQVQkFuYfFT+CJCArJiqJ9vewd6BT/Dw0GOggCwAur5XYicLSqpjwuOwkk2m6QzbcDgcmk4QAWKwyuUKZ8YEQtVqdarVOpVInEnaxtBHHgki1Vqdaq1Et1hi8GGV6qZN0XB6NMqNzLqODQaZn9zpuj4Zc3J/Z6bjdIkusrMahpCGLAhbZhCxLmE0ilWyRsMWM3W5FsZiRJBFRFHA5LWTyFaq1KuVKhUqlQl0Dq1UmU67itlnIlyqPAtIE2NPJXYDGdONAx30n4LKxajBFUDX9hc7hsI8Vg+K/atDtHokGmN/TX5tJ5/WL+JGIj0WDcysZrMxEPQ72DELhAl4v29nO91gUYMXAtnUg6OlIq66rGoeZPH6HjTmdMLkulx21oPKGv6GhqKORr1ZIFAr0+ty6wWsAmoEJuPCYYLh+r9vQurXL5WDPYMrxuK/FXQMNhUdRuBIJIz4Mh2x2y+PxeKtb7nK5Wt1yh8PxxNevYrHYspG+dOnSS1c4aprG/Pw8R0dHT5VAfR6ZD8+KZDLJ/fv3GR8fbxlunCfW1tb42Mc+xsc//nF+8id/8qUjiF8veJ3D8HLglSQML3IlqVarMTMzw/HxMXfu3HnXZM0XsZJUr9eZnZ3tEFw3V5C0hwz3rC+ev/Uzv8v0V1bAbCaXLVOrQ406xXKF3HGVocsRyqUKmaM8h4dZEodZxq52Y3UqTL690TrO+I0+Zh/apXZ1ewhHXRylitRKNVYWGoX15Rs9TM+0F9O9fU42t9s7q8PDwQ6yIEkC5VqdgN+By25BsciYTCKKInOcLTEQ8VIoVMjkSpSyVWR3le39Rkd9n0ed5cGhAKubOlkHJoF84RQpFCCR0u9K6zkpPbyLLoJ+O3s66zXDfcFWUJuqahTLVYrlKl6nmdXdAhqQyLSfVyjgaE1DTmKkx0LyxFTGLkvYrWZ6I15ypTKhrlCLdGg0Up5FoD/gJleqNPIP6g0y0BNwE9eZSDgUM8v7+sW63apvsxpw2QwdlWST/uc54LSxbrBaZLXo78pbzSZWDSYPEY+TfYPwNyMiEbZb2M/rTwREg+uVWRJZNXBbCjntTO/pr/QMOT0MWF247ApmWWoEqFWrJAsFQ1Iw7DN2MwrabIaEIW9AqkQB1lIG61xOJ3s5fcJwp7en7fU42S0fGhqiXC63uuUbGxvIsvxEq0uFQoF79+4RDAYZGxt7KcnC3NwcqVTquRKozyLz4VlxdHTUIgvNBtZ5YnNzk49+9KN827d9Gz/1Uz/1miy8xms8J15JwvCsaK7zNNd03g3FYpHJyUkkSeLu3btPFPZz3oRB0zTS6TQ2m+2FiZur5Sq/8g9+k9XZPUpVDatbJrZ3THDAw9bsEdF+P9FBLzPvbODy2gn2eTErMsVCBdEktZOFN3oplapcvtpNbC9NIVdmbS3B8Qlr0/6hALNzpzITerzs7rcXIWYzlCpFBvs82BQLIFAsVnB7bUxN76BpkORhgSdAd7eXnb102zGsVon9eGdB39fj0yULI0NBljY6b78wEGRZxzJ1oMfH+l5nYeX32FjWOb5JElg3WCHSc3ACcNtljnKdU63+Li8bB52PLQidxKJcrVOuFnHbJNYOO4vl/oiHjVi67TanIuO0WRAqKlcjQWSTBKKAqjUSnJ12haWDBMeFEvUTXRdRMLZZ7fG7iOskDUuPsWbt8bt0CQsChrqG4bCvo+vfRNZANNztdbGT1j+ewyKDAWFYMyAFgyEfCwZTCcng+iQIsBJPNc7xqP1cLoR87OQyDLrcuGwWZJNETVPJVir4bFYwIAyHWf3nZJEkQ5H0kM/LisHPoi67IWH4Y709ure3HtNiobu7m+7ubur1OqlU6l1Xl3K5HPfu3SMajTIyMvLSkoV0Ov1cZEEPT5v58Kw4OjpiamqKixcvvhCysLe3x0c/+lG+5Vu+hf/7//6/X5OF9zteryS9FHhNGE6guctZr9ff9QKTSqWYnJwkHA4zPj7+xBekd8tJeB7kcjlWV1cBeOutt1rPR9O0ljbjrMlCJpnll37k10kcZlBFCZvXQrlUw9PlIBHLMX6jj8PDHHtz+wxejCApMqsLB6iqxui1bhbm9jDJIgPDIdxeG7OzexQfducFUaB/OMj62qOiyWY3kymU2+xSHQ4z/qADt8eKABQKVY6SObr7vMzOn3ZAkjhIZjv+ZsdGIyzoaBd6e7wsrXV2wS1W/T+dutG1wOAltxoElnVHPLouSxcGQ8yvd55nwGNnRSfZGSBf0X9wl0O/8LjQE2DZICU6oUM8ANwOK5wiDIVSFafNwoNVfR3AaF+QTLLUSMy2Kw1HIYuM12UlX6mStxXJFguooonjUoVitUa6oF90j0T8LOzrP/9sUf+cB4New8mDYGAB67RaDIlJyGU3JAw5gz/5HredHQM9hM1sXKBtGQihB/1eQ/2CS7FQjNfY0rPQDWj4sBB02XEoZgRJoFSvkc7n2NMhaADDfh+zcf0VMM9jitqiwVQC4G5fr+HPTkOSpFYxa7S65HK52N/fp6enp6XhepmgaVrLOvXWrVtnShZO40kyH5rTB7vd/sSvZSqVYmpqirGxMbq6us7t/Js4ODjgIx/5CN/4jd/Iz/3cz70mCy8BBLXx39cDXubn+UoShudZSYIGYXhcN2VnZ4f5+XlGR0fp6+t7qsc7y6yHk2h2hfx+P7lcDpPJ1CZu1jTtzMnC9sIe//5Tv02+UKOOiMWhsLOewOq3UKtpmEwysViWQNiFy2ujUK6z/7D4H7wYRgVGL0XZWotznM6zu3/cIgsA49d6mJ3ebXvMC+MRCsUqXRE35XKNRDxLV6+XB5Pbbb8XDDlZWunsEEe6nKxtthdMgiiQPu4UZzodFja20x23d0VcLK13Hruny6s7dYiGXCzrBK+5HApLOreLosD2vn7RVzP47HRF3MQznYXdQJeXdZ1jiaLApsFjKDpCboChbh8rBu5IGwbagYjP2aYJacJmkVnbbxxLVTVS2SKpbOM9uDYc4f7aSZLR+Ez0B1xohTqXA0EsZglBFKhpKoVKFafVgiQIbcJhALdNMbRm9dgV0DltSRQM7zMY9PBAR6QNxnalEbfDcIUp5HEZEoathIEY2+diK2WgAbApYBCDcVTQFyC7FAubyTQakCm2P4d+pxWxBL0uJ16Hglk2UacxlbA/htAYip1FkdWU/vMa8fsIPWPwmN7q0vb2NhsbG0CjiKzVaufiunReaObmZLNZbt++/UKtUU9nPpRKpdbq0urqKhaL5YkyH9LpNJOTk4yOjtLdff7ZGoeHh3zsYx/j1q1b/MIv/MJL8T6/Bq8nDC8JXknC8KxohpYZOSWpqsri4iJ7e3vcvHkTv9//1I9xHmnSW1tbLC0tcfnyZSwWC7Ozs+cubp7+w3m+8Ok/JJ+vkT4qYPM62JrZxRWxs72YItDlJToYZHs9zvZaAk/Uzf5Oip4BP8GIi+WlGNlMY9XHapMRZBOFxKPC6cLFCCtLMQaHAtjtFsrlGharzP2JrbbzCIWdbenOTXj8dg5P7eb7Aw62djt3zKNhK7s6uQv9/X5mFjoFrC6PjZ145+87HPpf6D6fnT0dV5/+Xh8PdJyXRgeCLOgQkoDXzoqOZSoC7OmcD4DDrn9OF3r9LOocSxIFNgyIhM1AV9Ab8rAVT+v+7DinXzgOdvmY2dRf+dkw0DX4XTbdNGqERvFvKkHQacNtV7BZZESTiM0qE8vkSRdKJHKFNkIRMyjiL0R8LBiJtFX9i71TsRhOK6IefTE4GBfxIaeNmEFnP+CwGxKG45K+HsapWNg80p9KDPjdPDDQQ7hdTjZyRfbS2Q59RsldJShYCbga1rCaKFCoVshXqqyn0rrHG/Z7mU/oT4K+offJpwvvhmKxyPb2NiMjI/T09DzR6tL7CaqqMjMzQy6X49atW+/5OSqKQk9PDz09PdTr9SfKfDhJFnp6Hr9qdhZIJpP8t//tf8v4+Dj/+l//6/ddavdrPAavbVVfCrz+izoFo4K+Wq1y//59isUid+7cwf6MnbCzXElSVZX5+XlisRi3b9/G6/WSTqep1+vnKm7+/X/7X/ij35pCkGU0SUS0mtGoY/FYODoocvXuMOvLcR58bR2LVabvYhSTLFGvqeSyRbKFSossCKJA11CQlcUYVpuZnh4vNodC8ihHrVJnfaXRAna6rKg6zSKH20Ys0d6hHboQYklnvSgQdBI/JTw2mUSK5U4i5XCYWVzVKdoDDhZ0chcCXjtL6zrhZ3YzyxudxxFEgZ2YfgFXq+vPLLsiLuI63eihHj+rOroGkyTqhr4BmGQDp6HeAAs6+Q6CCJunVo6a8LmsuoTBaTV16BqaMLpmht0KBxn9otfItWgg5GXj4UQgcVwgcWKV62JfkNXtRvFvEgVCTjseh4LXYaWi1glYrWTLFZL5YmtCYDXonMuPESEPBj3c39GfPBQMXNG8NiubBtax3V63IWE4NCjGnRYzGwbH6/e7DUXSj7s+7BkQnZDTzv7Dn6VOkZ5rXWGO60XCbgcOqxlREinUqyQKBWyPmdz+sadYR3ocmvvyIyMj9D4kIe+2uvQsrkvnhSZZyOfz3L59+4m0cS8SkiS9a+aD0+nk4OCACxcuvBCykEql+PZv/3YGBgb47Gc/+1x6i9d48Xgd3PZy4JUkDM9zwddbGcrn862gnzt37jzXxeisVpIqlQpTU1NUq1Xu3r3bssNrTkiy2eyZB/Soqsqv/uP/yMqDbUw2hXy2jMVpJX9wTLEq4Qt4cDhVVhdj5DJFhsa7kG0yy7P71OsqilXGG3Gzt9Mo7mRZ4srtfsrlOr09Pna3j1heOGBwLMz2ZnthFu3zsLjQ3l2+eKmL+VN2pKIkkNdZDenp9bGgk9I8NhZlZr7TujTgV9jY6ZxGhEJODnVWbCIRN/HFzgJvsM+vO0UYGwwxrzNFCPsdrOp0/gURtg0IhlXRLyhG+gLM6ZAVi1lidUe/gy4ZOA0Nd/tZ3tW/z+mU6yaGuoPcX+187pIotNaRTsOumECnea6YTazpCLQBvA4FnaeJLImsxx7dp65qxI/zxI/zvDEcZepUKJ1bkQm47JhqAre7otRQyVerHOULHBVKDId9hjqJ06tQTdhkE6sG6019fhepHf0JQ9FgymmVTRwU9AlVf8DDjAEpMBJJA+wYTCuiLuOMhS63k0ODZGpREMiXq7prXV4sjNi9OG0WREmgWK8RL+TJlivc7Hp+MWzTtnNsbEx3BeasXJfOC6qqMj09TaFQ4NatW+87snAaepkP29vbrK+vIwgC6+vr5HK5c818OD4+5s/+2T9LOBzm3/27f/e+f81e4zVeVryShOF5cHrCkEgkmJqaore3l9HR0ecuwM9iwpDP57l37x4Oh4ObN2+2iZstFgs+n4+3334bRVEIhUKEQiFcLtdznXsxV+Lf/h+/zs5qAmQTuUSOak1jZzuJr8/D4VYO2VyhVK3TNxwkcZBBlCUWHjQ0CKIk0jUUJJnIMX61m2q5hiSbmPzaRttK36UbvR26hdFLkQ6yYLOZ2TvoLKDHL3cxM9cgALIs4rAr2KwywYADm1VuWIEKQmP9TIBqtUZvyIrJZMJiVqjXVSSTSKlco8fvpFqrUavWqdXrmGWR/c0kfkVpSxQ2m02kYlm63HZEsWE12vyvXqxzsTvQ+PeJx7baZN640PAhV7VGoVBXNdxuKxaziXKlRrFcJV+sUFc1RgaCLOq4LFktJpYMVnuMitgLvQFmdITTFtmYSFgVfZLcG3KzFTew3DRIfe7229lM6hebFU2/QBuK+pjb0n+eSYNO/GDEx+KefoGvFySXL1Vx2+pM6pAcu2zCb1K4Fg5hMkuomkauUiGRK5Atllk91H/dBkM+Zg2KeNXg/TFLkqFz0lDQy6xOLgNA3sDNCGDbgBR0e5zsHutbwUbcxoTBKD8DYPdY/7G8NoXVhD55+uPDfZifsziPx+NMT08/lW3nu7ku+Xy+ltD3vNeCVFXlwYMHlEqll4Is6KFUKrG1tdVaQzrvzIdsNst3fud34nK5+LVf+7VzFYW/xjnitYbhpcArSxiaicZPC0mSqNVqbcFnly5dOjPB1slgtWcp4JPJJFNTU/T09LQRmKZeQRAErl+/Tr1eJ5lMcnh4yMTEBJIkEQqF3lWkpof4dpJ/+398jqN4lnyphi9qI7Z0SLDPBRYzWwtH9I6GcHodJOb2ScYyjN3sZ+Fh4d/V5yPc62V/J006niMdz+ELOCiratvfTrTHw9IpYmB3mDk4bC9AFMXE2KUox5kS3V0eJFFoFF+aRu64SNBtI5srUS7USBdy+IaCTL2z2fG8LowGWV49WVA2Ct8rV7p1BdNjY0EWljsL0EsXI8wudU4vLgwFWdRZjfJ7bSQzhY7rhiAIuD1WUqcE2FazhE2Q6HW7sFgaqdEmSUQQoV4vky2UsVitVOoa+VKFXLGCLEv6egdo5SOcxnBPgLmNzvMVRUHXfhXA57bpEgaX3WI4RXC7nKBDGNw2M9sG5MMk6X9evQ6FrUOjyYs+yVFkqW3ycBJBj53dVGcBXarW2DxMc5DuLKCHgk4ypRLDQQ8Wi5mqVue4VCaWyRuetygIrBloHoZDXuYM7FQfl5B8bNCH6HY72ckY5EM47YaEoWLwOQEMNRQRp4MDA5LR63WTKupPR97ofr7pQiwWY2ZmhitXrjxzevCTuC6d1+rSabLwMq7UZDIZ7t27x9DQEH19fQDnmvmQz+f5ru/6LmRZ5nOf+9y5h869xjlCA15i96CnwsvLF15dwvCsMJlMVKtV3eCzs0BzxP0shGFra4vFxUXGx8dbe6FNJ6Tm1KIpbjaZTC2LPFVVSaVSHB4eMjMzg6qqBINBQqEQfr//sWP35Xtr/MbP/C6lSh3JquC0CeSyJZwBhUSsSCDsZuhSNytzB2yvNwrES28OcHSU59L1HuL7x7i9Nia+vN46piiJ2H12kuuPiiKTSQSTRLXaeB5Wq0wg6CTc7aZYqNIVrlPIV0inCtjsFu5PbHUIUC9f62FzQ6fTq2eRKUBMpzgVRYHd/c7bBVEgmdIvdg4MusGyWf917erytO3ZNzHU72dlq/P8RUFgcS1OudK5phINWdmPF4H2AvzieBc7sWPsNguKIiPLEqIogATlWp2BkIdMsUw6V6T5MmoGV7ILPX4WDSxb9RyQAAYiXh6sdZIoQRDYPEzr3ifstZHWsUAVBAzv0xvykNITQgP7BonUgxEf8zv6XfqizmsMEHLbdckCAGqNRK5KInfqvRMgZy0x7vdjVWQ0AQrVKolcAb/TxlJMfyqhPMZ9aNcgGK7nMRkQsto5TWmiUNH/mSjAhoE9a5/PbWjrGnUZEwajgDqAt/qfvSGzv7/P/Pw8165dIxgMPvNxTuJFri6pqsr9+/epVCovLVnIZrNMTEwwODhIf3+/7u+cZeZDsVjk4x//OPV6nS984Qs4HI7zeFqv8YLwWsPwcuA1YTiF5t6lLMttwWdnheYXS61We+KRs6qqLCwssL+/3xI3w5MnN4uiiN/vx+/3c/HiRY6Pj1tj4unpafx+f2v6cPJC/ZX/OMEf/oe3KZZqHKeLeKNe9jYTVNUa7pAHixUq1TprCzEKuTKBsIvekRA7m0kO94/Z30zSdyHE0kJ71/riG73MPthpvB4mkWjUTaTXRyFfxmqWSCXypI7yiEEn976y3tGJD3W72T/VVbbbzayudhaBvX0+1tY6b49EbOwfdu6Pj4yGWVjq7LIPDwVZ1jlOd5eHnYN0x+2KYmJlXb/Ijif1CyqLQUd8sC/A3EpnUWy1SBwe6ZOYfLFKMl0gmW4nJpdHI21TD5Mg4HYq+Dx2pIrGG30RBEmgptYpVGqN6YVZ/zLRHXCxYxB8Vq7qt7sHo15WDaYVqqBfdIWcFmJZ/edZNQirC3sdhgW+WdZ/PmaT8eShy+fk0MD+tCbKQOdnqcfnMiQ6F9xeLri8OOzmxgpcrcZRochhJm+YFt3lcbJnMA0IOY0zICx2O+ikiUuCwJqBdetgwMuKwfpQwG4zJAy1x6wq7RtMOZwWMxfDAcP7PQ47OzssLS1x/fr1Z3Kte1LorS4lEonnXl2q1+vcv3+farXKzZs3X1qycO/ePfr7+xkYGHii+zxP5kOpVOLP/bk/Rz6f53d+53dwOp3n9Mxe44VB46Ve1XkqvMRP85UlDM+ykpTJZEilUlitVj7wgQ+ci+Ctecym3em7oVqtMjU1Rblc5u7du9hsNoA229SnsUw97a+dz+c5PDxka2uLubk5vF4vwWCQe78xw/0/XEaQZQ73j/F3+5n60gqRC15MNYWN+UPCfT5qdY2egQClQgWzzczkV9daf/duv4P0cYnaw+JREGHsajeapnLpSheZdIHYXhpNVZn4ylr7xEAAVei8hvQPBljWKegHhkPMzOx23G4UjCZbFPSKvFJZv8Ns9Pp6vDZdwhAOWtnc7SxYe7u9bOnYlppMIhs7+sVb3eCzMtQfZFZHyO2wmw3ToE8X2KqmkcoUCQedLOi4QgkC1Ao1grKC22lt6EBMIhpgc5jRNEhk820Ewa7IrO3pd88dNn0CbldkwxUmv8dBLNspZJclkXUD8hHxOQ0Jw/6RfmE9GPGysKtP8ozWc5xWMztJ/UI44LKzY/BYiWyBTR1nqW6vE+oC18MhZFmiVK+TKhY5yOQIuxyGhMFoUmCWRNaTnY8DEFJM7Jf07+e2Pi54zXhiYWTdGnbaiWX1Cdet3q7HTh+MsL29zcrKCjdu3Gg1UV4ETq4ujY2NPfPqUpMs1Gq1l5YsNFO0+/v7GRwcfKZjvFvmw/3795mZmeHbvu3b+JN/8k/ygz/4g8TjcX7v934Pt9t9xs/oNd4TvNYwvBR4ZQnD0+Lg4IDp6Wnsdvu7ruk8D94t6+EkTrsznRQ31+v1pyYLeuficDhwOBwMDQ1RLBbZ293nMz/6OXbXkphtVqRaHavXwfFxlt5LAQ62C1TLNfouhHD4HKzN75M8yNA3EmJt5bD1t2CSJTxBFwIaPf0+Svky6aMCe9spMie63oIoIMqmjvWii1e7mZ/rFJ8idT5Xu9PCio7moKvLw7KOhqCvz8fmdmeh2dPjZWOzs9D1++ys6EwXzLLEuk5QG4CKgTWnbKAfGAiysNb5HGxWmdUtgyLWoIvf3+1nRmcioVhMrBuQEiMXnf4TwW+pTDvB6o16OHwoPA84FTxOK3abGZfLSqZQplCpclQoksoUWuup24cGHe2oj2kd/QTAcVG/QA06ZPYy+mFpeqJmgKjXyb5BB99oFUgUhJZt62n0BT3MbOuLmssGNrAOxcy2XtoyEHTbmdo8YPdUbocsCcg1gevhMCaTSFmtkywUGjoJUTRMdx4M+liI6X9+vA4H+yX9+522Sm3CJAqGBGTA62HDwPI16nISM3BVerPv6dN/NzY2WF9f5+bNm+9p0fisq0v1ep2pqSnq9XqbccXLhCZZ6Ovre2ayoIfTmQ+iKDI1NcVf+2t/jaOjIxwOBz/yIz9CxcCu+Czxkz/5k/ytv/W3+Kt/9a/yqU99CmhMOP7G3/gb/PIv/zLlcplv/dZv5Wd+5mfatDNbW1t84hOf4A/+4A9wOBx8//d/Pz/xEz/xUr7Pr/EaTXzdf3o1TWN1dZX19XWuXbvG0dHRE3f/nxVPEt7WFDd3d3czNjbWIW5+XrKgh2q+xu/8zB9RyYqEe7rYWTvEGVFIHx4jW2VSsQp9F4KYJBPxwxxb6w0hsT/q5ihdoFat0TPgx+2xY7KYmJncol579FqOXe9hYbbdwvTi1R7mZtpvsygm9nV0BBcuRlhe0ZkuDAZ1pwsuj1XXSUmx608dHE79rmq0y0Mi3ak5GB4OMqcjdu6KuNne1U9XPojrO/pg8DYO9Pr1pwg2M+vb+l38isFna6DHx7wOKREEdKceAC6nAjq8zeO0snMiY+E4W+L44drQpQsRZlcfnbPFJOH32HDaRMrVGj3dQSqqRqpQJJFphKkZNV1CHkdH8dyEz+NiL9NJ5BRZYv1An5iEfQ5DwhAzmEgMhr2sxgyIloGoWRIFwyC3/qCH2R0DZyuDa4+mwdzWYUcWhWISuToQoqyqSLJIsVojns8Tf+gcZXuMHqJo8KJbRIENA1Iw5PeyZLDG5HNYDQmD+pg5/Jt9T65f0DSN9fV1tra2uHXrFi6X64nv+yLwJKtLfr+fg4PG38fLShaaTn09PT0MDQ2d2+NIksQ3f/M3843f+I38xb/4F3n77bf5nu/5Hn7lV36Fv/E3/gY3btzgYx/7GB/72Me4efPmmX4fvv322/zzf/7PuXbtWtvtf/2v/3U+//nP86u/+qu43W4++clP8h3f8R381//6X4EGGfzoRz9KJBLhS1/6Evv7+3zf930fsizz4z/+42d2fq8UVAy/A185vMTi7rNN9Hof4UkuHLVajfv377O7u8udO3cIh8NnlpPwOEiS9FhSsr29zcTEBKOjo1y8eLG1XqWqakuzcNZkYXtxj5//m59lYzFGJlvmcDeNzetk7UEMm8uK2+/BYjaxsxbn4CDFUbxRdLm8VnqGg3T1+nA4rOysJalUa9x/e6ONLFy43NVBFlweGxvrnUXv8HiUdKq9sBZEgWy+cw/b6bLqkohgyMmSzupSMOhkWWca4XJZWdZZyZEkgc1t/QKpYLDO4fPph/oNDwXJ63TLZZPAyoa+CNdoijDQ49MNeLNaTKwbnK+RxmWwx0c2r9+p1yNKAD1ht26RLwiwfWpNqFqrc5DIUq3U2DooML98yOpqnKP9HOYS9NkcCFWVG/0Rrg9EGO32E3DZEATo8huLGWM6wnEAn00ydIIymjyE3Hb2ddyRoOH4ZIRdo/WmsJeSgYDayDkJAbYMNCEDQa9ucF2lpqLWYWY9xv2lfZbW46QOC7hVmVG3D0WQuNEdYSTow3ZCu/G45OfhUMDwO82sZyDwEEWDtSiAbQPNg89m5ULQZ3i/k9A0jZWVFba3t7l9+/b7jiycRnN16eLFi3zwgx/kzTffxOl0sry8TDqdRlVVtra2yGazz+To914hn8/zzjvv0N3dfa5koYl6vc7/8D/8D9y/f58vfelL/PiP/3irEP8rf+WvMDc3x5/5M3/mTCcOuVyO7/3e7+Xnf/7n29bdjo+P+YVf+AV+6qd+ij/5J/8kt27d4l/+y3/Jl770Jb7yla8A8Du/8zvMzc3xb/7Nv+GNN97gwx/+MD/6oz/KT//0T7+QqcjLiKbo+evlv6fB3//7fx/hoR1787+LFy+2fl4qlfihH/oh/H4/DoeD7/zO7yQW05/WPy9evtbGGaFYLDI5OYkkSdy9e7clQG7aqp4njB5D0zQWFhbY29vj5s2bLRHfaXFz80NzVrj/B7P89i/+ZypVjXJFw9flZGPlkHq2yOibPazPJaiuZ1BsZoI9AdJHOfrH/OSzRQTZxNRXHjkgeQJ29nfTbce3Oy3EYp2FUKTPx+Jse/vaH3aytHCALIvYbBYUq4zFbCIYdpHNlfBetD7MMgAQsDsV8vkKoLWJiWwOCx6nmWKxgN1mb72/dpdCON8QyWmApja8gRwuK0epPLW6SqVao1qtU67U6On2MrPY2eGPhN1s6DgaSaLAls50ARoTBj0MDwSZ11l5stvMxutIBmLf/l6/7hRBFAU2DHQNDpt+QRzw2Nk1sCytG4hb+6JeNgymFSazFWgv8mt1FcUis6BD4uxmCbkmcrU7hEmWqGkqx4USh+k8AZfNUB/g93nZzejkTJhEQ1FzxOckZiBqThrcHvU6DQXKTqsxyYgdG9iO+lxsGTwn12OOl9Yh0vlSlXg6z9rBURuxCzkshHwuAi4rR+UyyWKRg+NsW2aHxUAUDpDM6Z/741aVej0utg2yGW4/4TqSpmksLS21Uu3tdn1S/n6FIAhYrVaOjo5wuVxcvnyZo6Oj901g3JOiSRa6uroYHh4+91RsVVX5H//H/5GvfOUr/MEf/EFbvkYwGOT7vu/7+L7v+77WxP2s8EM/9EN89KMf5UMf+hA/9mM/1rr93r17VKtVPvShD7Vuu3jxIn19fXz5y1/mzp07fPnLX+bq1attK0rf+q3fyic+8QlmZ2e5cePGmZ3nK4PXGobH4vLly/ze7/1e698np5LvNvE6S3xdEoZUKsXk5CThcJjx8fG2C82TrAs9L/QmDM1pR6FQ4M6dO60vxLPSKxjhi//mv/C135mhXNX+f/b+PE7Sujz3x99P7fu+9t6zTw8zwzDDMhrRiIDIMigxGBMgaDQSNMcth5hg4nLAqL8YjVE8OfEbNRFzFHADjogRcGOdfbpn632vql6quqq6u9bn90dPF708d8FA9zADdb1evF5MVdezVdVT9/W57+u6QKfDYDYSj6WwuQxYbC46D8cpl1QcbgsbdjQzkciQnZolk5yh7cIW2g8MPr8xBcwOA8klCckNa4KV7oLDacHjs+H3OymUymw5r55yqUwhV2RmOo835CA9nqVQKJGeLpBmrruQm8kTX0I6TGY9BrOJbGbx6rjFaqSslsnn5t/HuYLPaNRhsBqZzi5Z5VHAH3QyNra8GMq77ZgKKlarEavVNGdRatbjDzgJuqwoOgUVlWJZpVAs4XCY6R2eRK9TKC3QZdhtJroEvUOhpH0D8Th1ZGaWP2e3mujWICtz56L9+VjT6OekQD5igmtTJOwkoVEs63UKfcPahbdbGGEyG/X0jSQ1X+MUVvBLJZWjXaPLHZcUqK934DQY595rBTKzeRJTWaamcwwJIuSgw8Rg6vTclhwWIwPCSFTI6xAJQ0qjiAcIumyiGNvvsouEISOE4NlMRvqFQr3J7+bIktGniUyOiUyC81sidPTNkSqzQUfE58btMKMzzN1jXBYzU0sS0+0mI3EN21uAeqedPoEIBZ12kTC8GP3C/ELK2NgYu3btqhg/nEsoFovs378fnU7H+eefj16vXxXXpdXE9PQ0e/fupa6ujnXr1p0RsvCxj32Mxx57jMcff5zGxkbxb1eSLPzXf/0X+/bt49lnn1323OjoKCaTaZnVejgcroyZjY6OLssCmf/3/N/UsAQ1wlAVBoOBSCSy7PH5jte9997Lm9/8ZgD+/d//nc2bN/PUU09xySWXvOzDXXQcK7q1swjSzWxwcJCjR4+yYcMGmpqalv3dmRpJWriP6elp9u3bh8Vi4ZJLLqm4ZawmWSiVyjzwjw9xdF8f+XyJxOgUzoAD1QijnRO0bKljoHuc1k0RdHodeqORfb/prLx+7dZ6Og4OLtrmpu0NHDsyjNGkw+k2YbObcXrt5GeK1EXdTI5nyU5Ok52chrLC4BKBcSDs4ujhoWUC6LWbIpzUWOVfuzG6TP8AEIna6e1JLnt8zfowxzS209wc0OwWuNxWenrGKJdVMpkcmQXEJJWcYVyj0N7YFmUqlkFRwG0343BYsNlM+INOsjN5UOZW1adzBbLTOUqodAtahJKq/SNYH3Fxond58W+s4rRkESxbIwEno0KBncvL41BdwjGnNOw7AZrrfJwQCIv0mpY6L51aydMqpDM5TmoE022s96EaFJo8TlS9QjZXIDGVJZmdxe/zMJha/v7rFOgRRM1ei46M9rSWLGo2G+kbS2o+F/W6SKS1R6m0Ro5gzu5V2l5z0MPRYe1xNmOVkLeFFrH5Ypn+eBLi4LFZSE7PvR8Rp5Wg14HZYiBfLmE2Gdg7qMEGAas0ZgXkqnRsX0i/oKoqHR0dTE5OsmvXrnMynKtYLFbCM+fJwkKslOvSamJ6eprnnnuOSCRyxsjCJz7xCR5++GEee+yxF23X+nIxMDDA//gf/4NHH320lhpdw1mDkydPUldXh8ViYffu3Xzuc5+jqanpRXW8VhKvWsKwFKqqcvz4cYaGhhaN+yzFmeowzO9jYmKC/fv3U1dXx8aNGysrJaspbp7JzPKdT91Hd8cwDp+Lkc4Ea7Y1cvCpbkrFMmu3N2CxW3G4snQdGWLLxWtp39dfeX0g6mZ4MImqgsdnIxhx4XBZmUrN4vPamUikmZgukjTM4pzKkVqSFbBuSx0njy4v3IJRN2MaRXhemAWfnNQuvKY0LDhBTji2O7VX8BobfbS3LyckjU0+BjR0AgaDjr5TxENVWUQydHqdpnbivC11qJkibp8Vq82EzqCQyWZQDHpUnRGXvcTUEn1BJqs9IrOmOcCxHo3iUUEcLQr5HZqEwWzSi9asdosgGreb6Re6CBazNmFxWE30LxBPL9qPVXs/Br1Cn/Qam4lDGg5RPrsZJaeyozGCqoN0Ls9oMk12tkDUbWUwpe0KZLfbIbX882TQKSLJaAp56BCC4STxr05RNG1WAVqCHk6MSCFv8i18WOg8eOwWhgW9RoPPVSEM4+kZxtPPX5fzW6I4cnoifidOm5myHlKzOYampijotMmJokCP4OAUcTlo8soOR+VymSNHjpDJZLjwwgvPmpX200GhUGD//v0YDAa2b9/+gqNGZzIw7sViZmaGvXv3Eg6HWb9+/RkhC3//93/P/fffz2OPPca6detWdX8LsXfvXuLxOBdccEHlsVKpxK9+9Sv+5V/+hUceeYR8Pk8ymVzUZYjFYpUV4EgkwjPPPLNou/Mz5VqrxDXwmuwwTE0t7rqazWbNe9zFF1/Mt771LTZu3MjIyAif/vSnecMb3sCRI0deVMdrJfGaIAyFQoGDBw8yMzOzaNxHC2dKw1AqlSrdjo0bN9LU1ATIyc0rhcTAON+964ckJ7JY3Q7y+RLRtSEOPNlFoN5JXUuEw8/2UTo1orHxgpYKWdDpFRpagvgiLrLpWRIjKZLxNFNjGerWhhhcElS2aXsjHQcHFh+AAgmNMCtvwM6JY8tXLxtb/fRpBKC1rAvR07388WDYTiK+vKD2+e30aOgEDAYdvVrp0LCoo7AQbreVgYHlj7e0BjTD3cxmA30adq0AuVyRqfQsU0uCyTZvjtJx6nrYzQa8XlulW1FWwGG2kcxMM5mZpVCcuwEVS9qf28aoRyzk09Pa59hS7+dYn7aTTyKpTViaIh7au7XFVvEJYW4/4qGjV3s/k2ntIr4p4qVrWJvM5AvapNBk0Gu6TYVcVloDAYLuArOFPJPZGRKZ2co4WSylfa4tYS8nBScmk7Syr8CgYKfaEvLQJRAQu1kOeBzPaJNmu8lAXLh+C0nBUhiqFKCT2Wlm8sWKze48bGYDJWOJ80Nh9AYdmUKe4ak06VyeBqedASF/4cJGeRypXC5z+PBhpqen2bVr14sOuTybUCgU2LdvHyaTiW3btr2k4n61AuNeLGZmZnjuuecIBoNs2LBh1cmCqqrcfffd/Od//ie//OUv2bhx46rubykuu+wyDh8+vOixW2+9lU2bNnHHHXfQ2NiI0Wjkv//7v7nhhhsAOH78OP39/ezevRuA3bt3c9dddxGPxwmFQgA8+uijuFwu2trazuj5nDN4DbokLR2x+/u//3s+9alPLfvzq666qvL/27Zt4+KLL6a5uZnvf//7Z7zj+qolDPM3tqVZBi8UjnMmRpJ0Oh2xWIxMJrNM3DzvhLRQEb9SOLmvhx/9yyPEh5K4I166Dg8RXRcinc7gDTuw2mx07OuvkIXmTRGy6VnadjSRzxUY7E7g8Fg58LuuRdvdtKNp2XiS3WWhT8N1aMN59cuEzgCBqIvJo8uLTYsw324UVlYDIbcmYYg2eBk/sry4WrMuxHENNyW/306/oBPQsnwFMJq1j6mlJaCZHm0y6SsdiaUoLeiG5HJFRkengCk2rg9zfEmnwusw43SaULM5mr1m0OsolBWS2QLTuQIel1WTMDgdZvoEgbbBqD1iEvDaGUloz6PnC9rz7QGPXRx70hu09+OwmRmMaV9nSfOgKDAgdB6ififjGq5Kk1MzjCbSi4TaOgXCHit+j4XpQh6b00y2WCa5wOHKUUWELGkUGnwuUajtFgLtAFJCce+0mBgY175GfquRzOm6NDEXwqcFh9nIgODg1Ohzc2x0nMElWo+Iy8Zar5+w08V0scDwVJrkAl1EvVFhbGwMn8+3aAa9VCpx6NAh8vk8u3btOicDzRaShe3bt6/IjP2ZHl2a7ywEg8FF1t6rBVVV+eIXv8i//uu/8stf/pItW7as6v604HQ6Oe+88xY9Np/NNP/4e9/7Xj760Y/i8/lwuVx86EMfYvfu3ZXxjyuuuIK2tjZuuukmvvCFLzA6Osqdd97J7bfffk52yc4EXop70LmK+fMcGBhY5PT2Yj8bHo+HDRs20NnZyeWXX/6CHa+VxKuWMACMjY1x4MABGhsbX/TqyGqPJBWLRSYnJymVSqK4eT7cbSXx5E/28ovv/pbkeJayTk/7U92s29lE7/FRpqfy1K0NkoilKRXLrGmrw+m2MtA7zkQ8DcytmrdsjHB0f/+i7Xr8dno0Rm2aN4TpOLB4GV6v1zGeWF5M2Z0muk8u34Y/5KRTQ3Pg9dvp1CjArVYj3Z3aIzmjGi5NAKrwkYjWeRmfWF5gSuNIik5hYFC7+FYEd6SWZj8nNK6dXi9vy6Cxep3O5PB67fT1Lz8up0XPbDLL5kY/JouRfLFMKjNLfDJDU9RLu8b4TrURpmjQyZjQYRiKa1/jaNDFmGCBKhGJpoibjh7tzoOkeWgKe8RRJUkMbjEZlpMMFRKTM9T53Rzrff59cBh1OB0G7DYT5As0B9yMpjKLRNlBl10kDMEqyc/pKqJmSb/QFHDTPqQ9+uRxO+kTxqwSU9rvhctqZmhSIAUBN0eHtTUoNqEDMjY1zXhyZpHGIuCwEPLaMeoVtvi9lZVyv99fGbPp6OioBJqdi2Qhn89XNGnbtm1b8Xs5rP7o0uzsLHv37sXv958xsvDP//zP/PM//zOPPvrosuyDswn/9E//hE6n44YbblgU3DYPvV7Pgw8+yG233cbu3bux2+3ccsstfOYzn3kFj/osx2twJMnlcr0ka+hMJkNXVxc33XQTO3fufMGO10riVUsYEokE+/fvp62tjfr6Fx8MtJojSTMzM+zbtw+YmzE7U05IP/rqzzj4mxOAQq6o4g3ZaPFa6Xh2rvgPNvrwhN04/U4GOuP0HR+lfl34FFmYg9lqJJ3OLftOBxv9nFgSmhaq93D88PIgtQ3b6uk4uPzx5vUROg4NLnvc7tIzNr78JlLX6Gdicvnft64P0aGx35Y1QXo0RMIOh5nuLu2Ca3JSuygWx5FaAnRruCDpqhAJg1H7R7ypyU+3xvECjApFuculvUJtMBjo7Z5cNjmv0ylYVYXNDUHMFgNFVSU7myc+kcHvtdE3mtTcnpQL4XebGJvSLnoLRe0xobDPweikdnEtJU/bzEaRFHhcVvG5UcHpqCni4biGeBqWa15yhTK5yTyZbIn+kQxldY6HRN0WfB4HZqsRq8VIoVzStDqdeUmiZjdHh7SPz1gl8GssrU2q3DaLTAr8bjFQzlKlcE/Pao+1KbDMwSmZmSWZmaXO6+T1F2xHVdXKSnl/fz/t7e0YDAaam5vJ5/PnHGHI5/Ps3bsXm83G1q1bV4UsaGElR5dmZ2d57rnn8Pl8lRyg1YSqqtxzzz18/vOf55FHHmHnzp2rur/TxeOPP77o3xaLha997Wt87WtfE1/T3NzMww8/vMpH9ipCWQXlNUIYyqd3nh//+Me59tpraW5uZnh4mL//+79Hr9fzR3/0R7jd7hfseK0kXrWEwefzcfHFF582g9Pr9ZXRoJW82S+0cjUajZUAl9UkC4Vcge997kcMnIyTSc3g8LnITeeZyefpaY8RbfUTiHgYHpik49neyuvaLlpDx77FnYQ1bfUcXdIxWLOlbhlZUFDxhpzMzhYwmQwYTDoMBv2cY0sZ1qwPzo1anfprRa9QKhRZsy5IuayilsuUSiqgMpMtYbMZyBdKlAplVBQMRp2mpgFYFvY2D4tNewW0qTWgKWqORNwMLcmSmIc0jmQT0qObm/10a2kkFOgXXIPswvFGwi5G49or8mlBb9FQ5+Woxuy+WlY52RljemZ5ERuuD2CJ6LHYjKg6yMzkiU9myBdKYpZDNORlTCP7QKdT6B/VJkwhv0wYRie0z7Mx6uFYnzbJk4L0Ql4HcWE/5iqiYSlhuinirZAMVYWx5CxjybkCfU3YSTY2Q8BpIeR3YLWZyJVLTGSm6RdIQWvIy7ER7c+CuUrBLI0PeaqSAhepQW0yYawyqiRpHox6HX3CWFSj302/8Nz5TXN++vMr5RaLhUQigcfjIRwOMz4+Tk9PDxaLhWAwSDAYxO12n7EC/KXglSILS6E1ujQ2NlYZXXI6nZVrunR0KZfLsXfvXrxeL5s3bz4jZOGb3/wmn/3sZ3n44Ye5+OKLV3V/NdRwrmFwcJA/+qM/Ynx8nGAwyO/93u/x1FNPEQwGgRfueK0kXrWEwWAwvKR2z3wgRqlUWrEb/vDwMO3t7WzYsIHm5ma6u7uZnp6u6BVg5cXNqbE03/rk/2WgM4HRYiI9laf76Elazq8jXygQafYzNpTCaLUwvmBcZ/32xmVkYe159ZxsHyIQceN0WzBbjOj1Copez/qNYfK5ArmZAtn0LN6ggxN7+5Ydz8btjRzVeLztgqZlo0sAbTsWP64wl6MQipiZSuUIOA04XHas1jnveIvNRC5XwLUxTC5fYnY2TyaTo1gq062hpQBZ1BwIOjVHmKRxJBQYEkTFNmHePuC3MDauXYSNTWgXgoGAU5Mw2KxGBqSwOL32ZyoacTEikI+p9Kxmh2Pzxgi5UhGLzUxRLZGYnGIyk6dQLJPRSLAGaKnz0S2QDKlbEfJVKfCFUDGDXiYm4Srbi0n2pwEXI8LMvlVwfAIYP/WZSqVnSS1Y5W+NeslkZtgQ9GJ3mCkrKhPTswxPTmGrtj3BgtVts4jjTfV+F5OiqFm+p01ktEeYrEaDnPUQ8NAZ135/fQ6bTBian5+v1RrhaWpqolQqMT4+TiKR4ODBgwCVMRu/378ovOiVxjxZsNvtnHfeeWcNsVk4utTa2lp1dMlut7Nv3z48Hg9tbW1nhCx85zvf4W//9m/56U9/yutf//pV3V8NZzFegyNJLxb/9V//VfX5F9PxWimcPXfcswTzs56lUullt8NVVeXkyZP09/ezY8cOAoEAMEcOSqVShSystLh54Ngw3/uHHzM6MIGvzs/hJ7vwRly07IgyeGKc4iknmY0XtnJ8QVHuj7gZi6VpbA3gcFtRgHyuQGZqhlKuwNjQBGOnGgqbLmji2N7+Zfuuaw1oHlM2q12cJ4XRn8zU8oKnWChTVnWkk3PdmYn48wXOxm1Rjh9ZLqbetLWe0eEUkaALq92EwWRAp1PQGXSkp/MEAw4mk9MUF4zNxIWxH2kcqanJR58wdiRpJxx2kyZh8PsdjIxqF1kzQmhWQ4OP453a7kTDwrYCfocmYdDpoE/IWDDodBw9voRIKNBS58GGnvPXRsmXSoynZ0hMZCirqpgirdcp4thT2C8X+JJDU3PUS5dATMrCDdpkUEhofM4Agh6bSBhSwmc54LaJWg2lXGAmV6RnSU6G2ahDl4cL6iOUdZCcnWVoYopCqYzLamZwQli9D7hIDQikoEqxKukXnBYTA8K+moIejgsdkGoJ1MUqWrAdzXMdhvkVbYfDsazQ1uv1hEIhQqEQqqqSSqVIJBJ0dXVx+PDhRWM2r2Q+w/w5OJ1OtmzZctaQBS0sHF0ql8uVtOmOjg5yuRxmsxm3200+n19Vga6qqnzve9/jr/7qr/jxj3/Mm970plXbVw3nAl5DhEGw1j4XUCMMSzAvOH65OoZiscjhw4dJp9NccsklOBwOYO5GaTKZmJiYoKOjg3A4jM/nWzE/7YOPd/D//v1xsukcdq+TxOgUjRvD5NUCve3P/+hv2b2O9ud6Cdd78YacqKUyxbJKd/swkwsKubaL1jC6JDNB0ekYiy0vNr1BB10dy4v2umY/AxoWqHXNPoY1hLr+sIt+LQtUo47EiHbBM6wV8MXcPSg5kSW5ZNW+bXsjvafcmhQFfG4rbo8Nb9hJoVAm6LEzm5+zPJ1IZimVVHEcyemyAssJQ13UzdCodtFZKGoXFZGwizENC1KTSU+/QEqMghYiEnIxKjgazea0P9/NDT66tboowJSWTacKNouJk8cXExabWU8o7Mam6Nm2JkIml2d0PF0ZG2qq84qdh6KQl+F1WhkWxoSquRYNCdcg4rXTp5HuDZwai1sOs1HPgIYtMEDEJ4u7EXIKdCgc6RxdlAqu1ys0BD00hl2k83mSszmGJqfIL0ijrra8ENdI54YX0i946BjS7sTZq3RApvPanSWAIaED4rNbaQ54KsJat9tNW1tb1UJbURQ8Hg8ej4f169czPT1NIpEgFotx/Phx7HZ7ZczG5XKdsXCzc4ksLIVOpyMQCOByuRgfH8fv9+PxeBgeHubYsWNVR5deLu6//34+/OEP84Mf/IDLLrtsxbZbwzmKWofhnMCrljC8nJvby7VWnRc3GwwGLrnkkoqH+Lxewe/3s2PHDuLxOMeOHaNQKBAIBAiFQgQCgZfcav/v7/6G3/10P70dwzRvbSQ1Mc3A8WHqNgcZ6Z778faH3TRuCJNNz+JwmIn1jRHrG2PTrha6lgiPHW4rvRpuRBu2NXBcQ6QcbQkwuW9518HldzA0sLzY9fgdDGsUwZF6D+Maq991LT76upYXmeF6DzGNkSCdTqFPg3gAzC6Yd1dVmErOMJWcweWxLbOI1ekU1m8KUyqVia4Po+h05ApFUplZxsazxBPaoz0+v1OTMHi8VoaGlx8vQE6wwmxu8nNSEGjHhI5IIODQJAx6nSKOMDkc2uJpo0F+jUXDTjafKzEWSzM0lHw+uVuBOr8Dr9+Bz2vDpNeTSGUX2Z0qCgwInYe6oEscm5HyJKJ+JyOCE5PH4xQJw5CQl9AU9nBiSJucirccBeKCY5HXZmBkiVi8VFIZHE3it1s50jVH1vV6hdagB4/bQokyU1NpDDqF4hIBndduFUPZqukXzALpBEjNaF9bnaLQJ4wqRT0ORgS3qO1NkYplp8/ne0mz8jabjebmZpqbmykUCoyNjZFIJNi3bx86na5S6K7kYsxSLCQ8W7ZseUUSmF8u5kep5u1EdTrdqgfG/fjHP+a2227je9/73iKP+RpewyjP6RZfEzhN0fPZhFctYYA50qC+BDb3cqxVk8kk+/fvJxgMLlo1Wyhu1uv1eL1evF4vGzZsIJ1OE4/H6e7upr29HZ/PRygUIhgMvqjAolKpzPfu+iEn9vcxNpKkoa2eA78+AUB0UwC1qKdtVwuT8Slmp3OcODjA9IL5aofHptkBaNoYXaZnUHQKkxpFlsVmpPe4htWp3US3hjWqwaijr1t7RVOrewFgMgl6gLBTkzBEG90M9S8v/MwWA/2CcFpL11Auq5hMBto1SFI46qY0U2RjUwCTzUgZyM7kGZ/IkhRWm+ujXpLJ5QWk0aijT1jdl8S5oYCDmEY6NkBecOVpbPTRK3URBMvS+qiHXg3SB8jnWeehc6EWQoXEWIbEWIY1zQG6T2VQ+B1mgmEXVrsRg9HA4HiK6dnCslEiyZ7WYjKIadFBj10kDEmBfET9TkYE0bWtSidDGpeqD7hEAbXf62ZkSpsILjy+eRIxOAo2k47pQhmjXqE55MblslLWweT0DG67hYms9nlV1y9ov4cmg14UazcF3PQIz4VcMmFoi/p49tlnCYVCK2LZaTQaiUajRKNRyuVyxSHo2LFj5PP5imXrSoabzZOFMzXvvxqopruQRpdebmDcQw89xJ/92Z/xne98h+uuu241TquGcxFqee6/1wLO4fN8VROGl4qXaq06MjLCkSNHWL9+Pc3NzRXCMu+6pOWEpChKxY933bp1ZLNZ4vF4JQXa6/VWyIPFsnz1dzo9w3f+7gcM9Y1TKpbx1vk5/LtO3EE7njoHU4k8yXiS0Z4xFJ1CU1s9fccWF/D168IcP7CYGPijHk5oWJSu39qg+fiazXWa4uWWjVHNx9dsinKiY7lDUX2znyGNMSWL1UivZIE6LoxgeJ2ahMEXsjEysLwgtFiNDAqJzJJ+wB900nF4iLElnQSny0J6eopGvx1VV8LuclAowfhEVizkm5sCnBRIVEzoYgRDLk3CUM3O1Sl0EcwmPYNC56NUEFxyDIos+LZok12DXmFwwWvSmRzpzNx7u3VTlPHeFA6LgXDEjd1poaSoTGZmiQlFfFPEwwnBGrVY1r4528xGBoSsiaDHLhKGjLDa7nFYRWengMsmEoa8MPpk1FFl9MlJdyxFsaTSP5KCBaNy4fV2Nni8OB1mCqgkMtOMptKoqqxfqBbK1hLwcCKm/Z3w2K0gEIZqi4X6qTGim9aybt26FS+0dTodfr8fv9/Phg0byGazy8LN5rsPdrv9Je1/oe3omXASWg3MB8vZbLYXFGnPjy69FNelhXj00Uf50z/9U/7t3/6t4hlfQw01nDuoEQYNnG6HQVVVOjs76evr4/zzz6/YXS0kCvDinJDsdjutra20trYyMzOzaE7X5XJVRIA2m43EwBjf+dR9ZDN5eg4P0HheI8VCkUiLl9mZAoneDDMLBJptF6+lfYF9KkBLW90ysgBzhGFpyJqiU5jSsC5V9AqxYe3ia0KaERcKObfPrkkYmtaFNBOi/SEnw8JquXRMVqsZWF7cNbT4OXlseZfEaNQzIBCJYlH7cxKp93Li2OgC8fbc/nQ6halCmbVRLzanmbKikJnJEY+nMVuELkLQSVy4jhL5aGrw0SuIlzOCaLexwcfJHm1SVlaMwPKV6+amAJ3Ca5KCw09jnW+Z+Hce885Js7NF+nqf/5uAz8F0doa1EQ9Ot4WyAhPZGUbGpqq6Fg0KpKAx4uFYv/Zxl4SupNGgE3Me6gNOsWOxdGxoHjpFEUlBU8RH17D2NXI6bCCkYI8lswwmFj/nthppqfOiN+vxWC2MTqUZX3CsTQEPHUIAnF0gfQC5KosqoymhS6hXuHjTOtatW7vqhbaiKDgcDhwOxyKHoEQiQXd3N2azuVLoejyeF6U/eLmjVGcDCoUCe/fuxWq1nrb964t1XTIYDNTV1VWyhh5//HH++I//mHvuuYd3vetdq3VqNZyrqGkYzgnUCIMGTkfDUCqVOHz4MKlUiosvvhin0wk8P4I0PxL1UsRwVquVpqYmmpqayOfzJBIJ4vE4nZ2dpAazPPv9I4yPZJjN5ll/4Tp62oeYGs9gcZhwBtykFswX168Lc2z/kuRlg56Z6cUr50aTnrrWICN94zjcFlR1TmCpqiqN68J0anQF1m+p54RGnkHLhjA9GsnLHr+dHg1thKIoDAmFeVkousL1bsbHlhcnkQYPo0PaRVVSsDOdmREK3Ba/tjWrAsODSc3X5PLaxWNDk4/+3vHlidcKFH0zbG4OYLTOJTJPJLMkxjMiYaiWCO10ao8JmE0GWYtg0S68LWYDo3FtwmIVXqPXKwwJDk1OhzzCMCwUwiG/g8RkhoElZNJq0mPIqexojlBUVMYzM4yOpymrKg0ht0gYquUvSMLqprCHTqGIrzbTLbktNYTc9AnH56wy+jQS1/6O2M1GzWOfnimgFlQOdT9PuEMuC+GAE6PZgM1ixG42ks0tFzBnc9qdNRQYECxT/Q4rMUF4vSnsY/36ddrbXGUsDTebmJggkUhw+PBhyuXyIstWLYe8mZkZnnvuOQKBwBkJNFsNzHcWLBbLimRFSKNLn//85/nhD3/IRRddxMaNG/nud7/LV77yFW666aZVuW733HMP99xzD729vQBs2bKFv/u7v6toJN70pjfxxBNPLHrNn//5n/ONb3yj8u/+/n5uu+02HnvsMRwOB7fccguf+9znzir73lctahqGcwKv6m/Cy9EwvJiRpNnZWfbt24der2f37t3LxM0rGcZmMpkqN+Zf3fckB36yn5G+JI6gBaPbzMFfHQdA0euoWxelZ0Fh7w7Y8QRd2N02DEYdalmlmC/i9DkY7Erg8VjJz+TJzRYoZItYTHrSGiupuZCTYnoGnV6H2WLEZDFiMhsw6VRaW30YTQb0Rj06nQ4VsLksqKrKdDbPVGqG2VNe/fWtAZL7l3c1mtYG6OtaPlpitZno1SAeANm09mq5P+jSJAzRBi8jQijbdFa762EVQtnqGrwiYUgltY9rzlFJ43Gnla4Ty0mJ3WrEqipsXR9B1UEqk2M0PkWhUKKxwUdPv3bxKAW5NTXKXYTklDbJaaz3clIQj6cFzUNTvY9uocORFmbsw0GnOHqlCHkSAB3HRiktcFaaG2fy4LToUbwWZsq6Ze5Fk1qOT0CkSvq0w6Y9ygUwIYz7hLwO4sIsv9dpFQmDVKibDDomprXvTXUBJycF5ynTkvyKyalZJk91v9ZEvRQmCzQFnPg9NtArTMzMEEtmxATqRp+LfsEFqc7rWtTBWIjdG1s1Hz/T0Ov1le6CqqpMTU2RSCTo6enhyJEjeL3eyoy+zWZjenqavXv3EgwGV0R38UpgniyYTKZK3sVKYuHo0r/+67/y/ve/n69//et885vfBOD//J//w+joKNdeey3btm1b0WvY0NDAP/zDP7B+/XpUVeXb3/42e/bsYf/+/WzZsgWA973vfXzmM5+pvMZms1X+v1QqcfXVVxOJRPjd737HyMgIN998M0ajkbvvvnvFjrMGAbUOwzmBVzVheKl4MSNJqVSKffv2EQgEFtnpLewsrHQYG8BPv/4o+37ZDqqBUqGE0+XlxL75QDSVpq0hiqU867fXU8yVGBuepL41RPuTJxdvSFEINfmJL1mhtjktdGt0EVw+O32nugLlUpmZbI6ZbA6b08zRfX2UiouLbZ1ewWw1LxqJstpMOD02mM2zeWMYnUFHqawyO1skmcySLwrF57oQx44sPyan28qARsAYwFRSu4DzBhyahCEYdhIXVtGHhXENr8+hSRhsdiPJCe1zyQlpxNF6N+ljy4us3GyBrmMx0gtE6jq9jsY6N1GvA4fVRGYmz0gsVbFKtVYJcpO6CDarUdQiWISRH1MVzYNdCKxDgWEhmyLgtYuEYUJ4PxvCnmXEZG6caZz6sJXYqawOn8NMOOLGYjOSV0sMCXqDoFcmDNlZ7SLeYTWJrkphr10kDPmiNkHVKYo8ShXy0DUijHMJHTKAtKC9MOp1DIxNoaowkkgzsuD6r436KOvB4TCTV0vEpjIkTo2Z+R02kTDoq9zzzj+Vv3A2QVEU3G43brebdevWVUZBE4kEJ06cwGq1ksvlCAQCbNiw4ZwkC8Vikf3792Mymdi+ffuq27/qdDp0Oh0///nP+dKXvsS73vUuHn74YR588EH+4R/+AZ/PxzXXXMM///M/r8gK/rXXXrvo33fddRf33HMPTz31VIUw2Gw2IpGI1sv5+c9/TkdHB7/4xS8Ih8Ocf/75fPazn+WOO+7gU5/61IsyH6nhZUDlnC6kTwvn8GnWCIMGXogwjI6OcvjwYdatW0dLS0vlB2Rer7CSnYV55HN5vnXn9xnsStDbMURmcppNu9fT0zFEZK0Hh8OO0Wzi6HO9i15ntBjoO7F89n/NefV0a2QmNG+KLtsGQMPaEB0aSc2N68IcP7hc1Ny0PkLvEnek2ek8FpuJjiU6CgAUUKdthD1WXF4bJqsJVYGZ2SJ6gw5FWX4/aWjxc/Twcucil8cmipezUrpzxK1JGBxOi1j8S0LoxuYgx44uv7aKAkOnmaUQDruJLSmwy6UyowOTWE0Gek4JwRWdQkPEhSfowO62Ep/MMBKfWmQfCzApFN71dV5OCILrlNR5qPPS1adN2GaE4ro+ImdTzOa03xu71cSIUEA7JGICLHRazWRyZDrnzm99a5DscJao304g6EBvNpCezTE4NiWGvOl1Cv2C3qAh6Bb1ELLXKqIQujHkok8YzXIKQXgARosNWP5Z1SsKAwmBgATddMeEsTarmQPdiz/HQYeVSNCB22RmQ9jPwESKmSU6mjHBccmo17GlISQe/9mChaOg8wtDZrOZ8fFxfv3rXy8aXVoty9aVRLFYrNh8r0ZnQQsHDhxgz549/O3f/i1/+Zd/iaIo3Hrrrdx6663kcjkef/xxnnnmmVUZ9ymVSvzgBz8gm82ye/fuyuPf/e53+c///E8ikQjXXnstn/zkJytdhieffJKtW7cSDocrf3/llVdy22230d7ezo4dO1b8OGtYgFqH4ZzAq5owvNSCXdIwqKpKd3c33d3dbN++nVAoVHn8dMXNp4NUYoqvf+TbzE4XOfybEzh8NnZctoXhvhiF6RyjJ2YxmlN4ot5lr23cFKbniEYKsPCjkRYKSqnQlj76Nqf2+Eak0UdyfPk+QvVu4sNTTE3OEF+wOq7TKxhNBiwoBOo92L12DCYDuUIJvV5Bp1OW6Rvqm7wcPby8yLXZTQz2ahOJfF6bINY3eTmuVfzrFLG7oRPsK+sbfQxqCLoBUho2qwC+gGMZYYC5OnRhp0Qtq8SHU8SHU2zZ3sBg++gciYi68AQcKEY9s/kCA4KuwGDQ/rxaLcZFjkYLYbNqr7rpdIr4Gp/bLhKGcSH1uy7i5kSvkKehMXcP4HVbmRSyD+Z1F+PjWcYXOGzp9DoUT4nzm8KUdDCenmFkYm71vSnsoXtUu7CupoeQrFbDPgejwvlaqoxfzQo5HTpFJiA+h5F4RpvAuezymFVe4x6YzMyQzMzMpVpPTaPTQWvAhddjo6xTmZrN0StoGzbVBbEYz52fnGw2y8GDB6mvr6+MuiSTyUrnIZfLVexFg8HgqiYjv1TMdxb0ej3bt28/IwTnyJEjXHfddXzsYx/j4x//+LLfQrPZzJVXXsmVV165ovs9fPgwu3fvZnZ2FofDwQ9/+EPa2toAePe7301zczN1dXUcOnSIO+64g+PHj/PAAw8Ac4uAC8kCUPn36OhyW/Aaangt4ty5e59B6PV6cktWO0ulEkeOHGFycpJLLrlkRcXN1dB/dIjv/q8HSE3OkElOs+nCNegMOvY/dnTR3224cC3tT3ctesxiN5HQsA91BCx0ty+3Rg03+hjsXL7K7PE76D+5nHQYjHr6OzXICDAhhImpQkZtIOIlPrz8NfXNAQZOzc8PLTi2OSJhxIhKsN6L029HZzQwM1tAUbTfg4aWACc0uip6g44BgUhIxX9js59+4TUJIVnY7bFpEgaL1ciwMEIkoa7eK3YrMqd0BWpZJTaUInZKy7F+Qxh1fJamBg9unw1Vr2MyPcNIfIoRYZW5oc4j6hcyQlhaQ9RD37D29qQUZ4/LKmooSiVBeIssko4EXUwK25sWOkNuh5kTS8TtbpuRSNRN0OvEZDAwPDHF1JLzTgk6Do/dIlqthjxOkTBMz2pvDwUGhdGnhqBH7IBEQz7iGe2iJ1eQk5qlY/c5rYyd0myUyzAUn2Lo1Pd9U2MQV0GPy6bH43WQVxQGJlNkcwXOb9IeBzkbkc1mee6556irq6vYvyqKgs/nw+fzsWHDhkra9MjIyKonI78UlEol9u/fj06n4/zzzz8jZOHo0aNcc801/MVf/AV/+7d/e0avwcaNGzlw4ACpVIr77ruPW265hSeeeIK2tjbe//73V/5u69atRKNRLrvsMrq6uli7du0ZO8YaBJTLwLmbT3BaEBwizwXUCIMGloqeZ2dn2b9/P4qisHv37spKUrV8hZXAoSc6+M6n7scd8TCbzTF0cpTouhCJJTP4wUYfJ/YvHxdau72Zjmd6lj1e3xLh+P7lY0TesIuYRhFatzZEUmNMqWljRFPv4Ak6GRVW0qXHC8LKqdNr03w82uxnqGeuYB/uSsB8RoMCNocFj0mPv96LxWGhqKokk9PopeK/JVAZ7VmKuOT0I4iX7Q4jCSF4Lp/TPsf6Bi9dGkQNYEyY6fd4bZqEQa9XGBZE3WazkXKpzEjfBCN9z78PTrsBl2Klab2ffLlMfCLN+Cn7XK0UZ5izGJW6CC6XFQTCMCIQyUjIJRKGWaH7Ew26GBHImcGo/V4rCgwJJCMccC7rSkxPF+juGsOEnp5TI1uNQQe+gANMClMzOXFlvy7oItmnXfyrVQZZ0wI/qve7GBIcl7wOC/3aHyEKAkkD6BeIYsBtWyYUn0fE5xQTt3VqienZItOzRUYn5oiVokBzwMWFzfXicZxNyGQy7N27l/r6etau1bZ/VRQFu92O3W6npaWFfD5fsWydtxedJw9er/eMjAEtxDxZUBTljJGFEydOcM0113DrrbfyqU996owTJpPJxLp1cw5cO3fu5Nlnn+UrX/kK//t//+9lf3vxxRcD0NnZydq1a4lEIjzzzDOL/iYWm1sMk3QPNawgaiNJ5wRe1YRhJUaSpqam2LdvHz6fjy1btlRuvKvhhLQQ/+/ffsl/f/e3FIpl9v2iHQCr00JmaoZSYXEB4Ay4SCwZ87A6zPRpJCxb7Wb6NNx4FJ1C34nlxT9ARhjtMAsC2kiTj6SGDWik2c9o//ICRdEpDAnjPZJI2O21VwjDQoTrPZUV9amJxQWP0jBLc8SJw2enrOhIJqeJjaSwCzafoYiLuFDgjgtjFw3NQY5pdDEAhoTsAYtNe7TH5baSiGsThqIgmI3WexkQ9pMV8hcCASf9fUlG+p4/p6DXRrDOjc1gYE2Tn+EFomqAxnof3f3CeyaQv6DfQWJCe1XdYNAuqPQ6hcSk9ufPZJQL4am0dqEeDbkqq+HLtycXVaMLrHvjiQzxU7a4a5v8WLIqa+p82JxmZkpFhsbnuhBGg7y9uDCqFHTbSaS0n/O7bSJhKFWx6pOSroNuOwnB/jTgsIqEwVTlvCY0tjcnqJ5iY31AfN3Zgnmy0NDQwJo1a170fd1kMlFXV0ddXR2lUonJyUkSiQTt7e0Ui8WK7iEQCGhatq4kSqUSBw4cAGDHjh1nhCx0d3dzzTXXcOONN/K5z33ujBMkLZTL5WWTAvOYvz7R6JwIf/fu3dx1113E4/HKqPGjjz6Ky+WqjDXVsIqoEYZzAq9qwvBSMS96jsViHDp0iDVr1iz68VhNcXOpVOY/P3M/J5/rJp8vM3BKsKwo4Io4iPckF/39hgvXcEIjeG3NtibN7kLLeQ2aouY1W+rpOrJ8TMnlszGgNXakKAwLwuKlhGYebp9NkzDUtfgZ0hjvURQYEQPTtPfhC7oqhGEhXD4bcQ1HI6PFgDJb4LzNUUoKTExOEx9NoaoQCGsTBr1BITGq7Xwj/VAGQjbG4pI+RLu4jUTdTE1pP5cQil6XxwrLdeBz11JwNHK57cDi51KT02RPFd3FYhlFp9Dc4MHtt1PSKVhtRro1tqUoMDSqvZ9QwCkSBklYXV9lvEmvl7sfUgaE12MXCYNkRRvw2hkTtD12q4lcrkTPEvLaGHRgU/Vsb4kwnplhePx5QbXHbiEmODFFfA6RMFT7namWMp0QAvTCXodIGGZnZcelpSNZC5Ga1e4G1fldeB3aXbmzBel0mr1799LY2PiyxlT0en3FXnTTpk2k02kSiQR9fX20t7fjdrsXpU2vJObJQrlcPmNkoa+vj6uvvprrrruOL33pS68IWfjEJz7BVVddRVNTE+l0mnvvvZfHH3+cRx55hK6uLu69917e9ra34ff7OXToEB/5yEe49NJL2bZtGwBXXHEFbW1t3HTTTXzhC19gdHSUO++8k9tvv/2s1Ka86lDLYTgnUCMMGtDpdGSzWQ4dOsTWrVsrLUlVVSudhfm/W0myMJOZ5dt/932ee+QwVo+dwROjmCxGfPUurG4jRsx4tjnIz+bJTeeZSc+ST2VwGEFv1KM3zP+nIzcxxdr1AYxmIzq9njJzZARVxem1kV6S2CzN6nujTqaSy4vWhnVBBjXGePQGHQOC286EsCrv9jk0CUOkybdodGYhYsLMvyq8H6GoZ1nHAaBcLHNifz/FwvOFjt1hJtzsx2HRs2FjhHh8iuSC6xUM2xkd1i60pBGiUNirSRh0ekUUQhsFMa3Ha2NiXHv/JWH8JBr1MCwQhtlZ7Y5AtM5TCUpTyyoj/ZOMnCJ8a9eH8Kg6IvVeTA4T2dkCQ7EkPq9dHPmRYDEbxALfXWW8SRJJe11G4pOCSL+KC9Kw4MQU8jtFwpAvaBfIyeQM4xPTlffDZTUSrXNjcZgwmw0c7IsxrSHYrnY/iU1qf7b8LltFU7AUYZ9TJAwG4Ts/96QZrWRvvU4RdRR1PgfDE9pEaEvT2e2ONE8WmpqaWLNmzYptV1EUXC4XLpeLtWvXMjs7W7Fs7ezsxGazVToPHo/nZf2elEolDh48WCELZyJwbGhoiKuvvporrriCf/mXf3nFOgvxeJybb76ZkZER3G4327Zt45FHHuHyyy9nYGCAX/ziF3z5y18mm83S2NjIDTfcwJ133ll5vV6v58EHH+S2225j9+7d2O12brnllkW5DTWsHlS1jKqeu7P9p4Nz+Txf1YThpdx8y+UyAwMD5PN5du/ejcvlAlZf3BzvH+Mf3/u/6T86xKZL1pOfLdCwJsBQ5ygjR7PUrY/Q3bl46djqtJDqSFNeUiT6Ih5GenqX7cMbcTN5anXV4rDgq/Pi8Dkx202oKDSuC5EYSTKbfX6IWtKbGsza17ZpfZieY8tHoXR6Ham4kE0gON14Ag5NwuCPuBgXdAJJoWA3CeNT0SYfg0tWh2cyOXrbh0nFp5g8NXriC9qxeEyYHRZ8IS8T47llmgSP10ZcyBhYmlMxj0jEybCG2BtgShgFC0dciwjMQiQkzYPPJhKGmFCsuwSdBsDoaIpsJkfX1PPvtaJTaGwJE7BbKSgq8YkMYwuK+jGhu1Af9dAljKTlC9pkxmLWkcpof258XqdIGCaEMZu6sJsBQZOhF8alAGIaKeMAdSE3vQtC1GZm5rQQAFs3Rikn8kS9RhwuCxanjdFUlkQqy5jQXfA4rOIYU8TnYFwgDPoqjkuSDsGo1zEo6DICDhMxISwx4K5CGJrDmo+fDZgfO21ubqa1dXWD5SwWC42NjTQ2NlIsFhkfHyeRSHDw4EGARZatp1Pwl8tlDh06RLFY5IILLjgjZGF0dJSrr76aN7zhDXzjG994RceQ5sPhtNDY2Lgs5VkLzc3NPPzwwyt5WDXU8KrCq5ownC5yuRz79++nUChgMpkWkYXVFDcff6aLL/7pPYSa/Kzf0cr+Rw8vet4b8TCsIYqtXx+h68BysXOw0c+ERuEaqPdVCMNsZpbhEyPACM1t9fR1zI0jKYqCN+rBV+/D4XOSK5QJNXhJDCdRF7TSpjSsUQGsgk1j/ZoAA53Li0KdXmGoR7tYlEabghGPJmGwOcxi52FaGDdxeuzA8u6G02OrkAWAVCJLKjFXsOk2qzCeoak1gNPvpIRKYixDMOxiUrBHlcaBfAGXJmEwGBTRBckgzJC7PVbGNbQjAOWS9sp6IOhkTHiN1K0IBB0kNF6jllVmMnmOLhDCh3x2gvVuzDYTY5kZ9Hrdsu3aLXIokiSSrgu56R4QukxoFy5mo8KosD2PyyoSBinN2ue2iQTEJehiAKays6iqysREnomJPDB3TK1hFw6jhVCLneTMLAOJVEWbUBdwkhQSsg1Vxk6kRGuLUS+GzTVVCYeLBrzE0tqOSwWB3AFsaT47OwxTU1Ps3buX1tZWWlpazui+DQYD4XCYcDiMqqqkUikSiQRdXV0cPnx4kWWrxSLb35bLZQ4ePEg+nz9jZCEej3PNNdewa9cuvvnNb54TeRQ1nMVQ1XN6VOe0UNMwnPuYb0l7PB42btzIvn37gNUXN//m/qd55P97nMJsjs79PRhMy1fCo2vDTGoQAIsQ4qQXvM6lVXa7+3knIlVVmRieZGJ4kvU7Wzh5KkXabDMTWRPGEXCitxgZi2dQdMoiEgEwMqjtNjRXmC8nBvWtwYpt6lKMDmgXLYpO+z2INPnoPrq8mFEUeVvSiEqozq2dSaFAfDBJqVhm6GQcTj5P5BoDDja1BjBYjaQyOYaHkpRKZcJRN7ER7eJsabBa5Vzq3AwOaL8mJXUeom7RaWhUKACrEYbxce3H/QFtwgCQXDImlJzIkpzIsn5DmNGTcWwWI9EmL1aXhelCgaF4iqxgcxr0O4gLK9Z2uxXQJgyjgnNSfdRLl/A5KAmEyqBXGBK6RqGAQyQMkjNRNZcmu8XMiePP64XsZj119V5sTgtWqxGb2ag5xiSSApNBFEk3hDx0Dmvrg6qFwxWrWAKOTmifl8mgZ329X3zdK4X5ULY1a9bQ3Nz8ih6Loih4PB48Hg/r168nm80yNjZGLBbj+PHjOByOCnlwOp2L9HSHDh2qkIXVFlQDjI+Pc91119HW1sa3v/3tM0JQaniVQ30NaRhqhOHsxIst7uPxOAcPHqS1tZW1a9cyPT1NsVhcVXEzwI/++f/x068/ytjg3A/3ljdsouN3J5f93Yzg+JKUxJuCoHJWKMxUoQgwLVj5zU3n6DsyJ67euKuV4X09WBwWousj2H0u8sUy09M5hnu1C7IpYYRGsk0N1XmIC6vyk0KxahUKnXCjT7RznRRGeMxCKFkg4mZMKCCT8fQi8mOxGomsCRKs9+CwmxgeTjEz/fx7oCgwLHQR3B6HJmHQGxTxNQbB5cds1pFKaXdYJKtZh8MsOjRJHQ6LxaAZMjd3DHOFTG62QO+JxXkaOquN7WsiFFAZGZ+qWJtWIwyS49OcE5P2axxVQsqGRrWL57qIh37hc1jNLUgav/I4jUyktUmi1bL4dpzLlejpnjuu1kYf5bE8rVE3Hq+NglJmeDLNdK5QJZvBzUmBFDiEzzfIugyAUeHe4rCYSAr3l5agi1KxWLUTcqZxNpEFLcxbtjY3N5PP5yujS319fRgMhsrY0vDwMLOzs+zcufOMkIXJyUn27NlDa2sr99577xnZZw2vAZTLoJy7s/2nhZqG4dyEqqr09vbS2dm5SNys1+tRVZVCoYBOp1txslDIFfjn277Jr77/ZOUxnV7P4Mnlq+MOt43+o8vdi+xuKyPdGmFqJj0jwop9YkC7eEgL4tGCkBtgOCXGnc3M0rO/t/L4xgvX4DGD1W/FaLMwM11ibGQKo0XPkHBMs9PaRYY/7NIkDHanhZhgGzojbMvrt2sSBqvdJJKSqaQQWhV0ahIGRbdciJ2bKdDXPozNZKBvfz+KXqGx2Y877KagqhTLqpi/MDujXVTW1XkY0HCagucD25YiEHQwNCjoJISORDjiJiMcm7SfSNRDrzBeJiUyh4Iu+roXvyYacuCPunFZzUQCzkWWpnBKeCs4MVUjDFJgm9NuJiWMrLkcMslIC583l90sHoPPY2cindR8TrKj1ekUhmMp1LLK8FByUc7Glo0RSnrAqCMxlWV4gVtSNVIgJUYDjAiOS16HVRRX1wVcnBjUfu+jTgO//vWvcblci9yBXqlgs2Qyyf79+1m7di1NTU2vyDGcDkwmE9FolGg0SrlcZnJykng8zuHDhymXywQCARKJBIFAAJNJfs9fLlKpFNdffz3hcJjvf//7q7qvGl5jqHUYzgm8ZglDuVymvb2dsbExLrroItxuNzBHInQ6HWazmSeffJJgMEg4HH7ZDhbzSCWmuPuPvsKxpzoXPd6wJcJA+3LC0LC5nmNLEpwB6tZF6FxQrM8juibMgEb+gifsJqkxqqHTK8QE69KUIOgsCMUfisrk8CSTC1xtLA4LG7avZTpXJJ3JMT6arQiAq+kXysKXKtrsp7N9eV6EoiiM9Gufh5QuHWn00XNcSqoWVtdN2qukoTqvZugdQPrU2IpaUhnpHmPkVIG8eUcTEasJf72HslFPYizNWCKDoihi8rPLbUNrFEfRwaBApLxepyZhMBh0orbCatVeOdTpFEaE8Sq7XR5liQsidY/XxugS0fV4PMN4PENDo5fJwUncNgN1LX5MdhMT6Vn0Rh29wmiRTviOVhsFqgu7OS44eyUntV8zV8QnNZ+LhFxM9WgT5Gqz6DFhBKwu6GJQcHDSo9C+IPcj4DATrfdgsOjR63TodYpmRsOwMKpULQfCbdUjrC1g0xilnMdll2zn9ZsaKu5A3d3dWCyWCnlYqXvri8E8WVi3bh2NjY1nZJ8rCZ1Oh9frZWhoCKvVyqZNm0gmkwwMDNDR0VGxbA0EAitKytLpNDfccANut5sHHnigZjVaw4pCLZdRXyMdhppL0jmGfD7P/v37KZVK7N69u/IjvtAy9fWvfz0TExOVcSVFUQiFQoRCoZec3DlwbJjP/sGXiPUuLyaywly65K5jEgo6p8+h+XiwwatJGEJNAUY1ihuDSc/YkHZRlhLGeFLJ5dufzcxSnM7R+eQcQdKb9ETXhjC6LJQViA0Jbj9CISuFxYUbvIwKBXtKKMSsQoFrc5mYntJePZ7Jaj/u8ds1CYNOpxDTyH+Yx9hwkrEF5+oPOmjZFGG2DOPJaUaXFOfV0qIHhPOfEboV0Xq5WyFZrUaiboaE90YSSXt9diaFkTTJ2lOvVxg5JUKenS7S3fE8sTtvWwOWiA+zw8TUbJ6B0WQll0PScFQLbDMLmh+A2YJ2wVUXcjEouEtZzHLxLB2fz21lQrgHeFxWkTAUltwf0pkc6VMk2OE0Yy9Cfb0fq91EupCnP5HE67AymtT+ToS9cg6ErsoK4ExeWEQAtjSFMZvNNDQ00NDQQKlUWuYONE8e/H7/qgloJycn2b9/Pxs2bKChoWFV9rHaKJfLHDlyhGw2y65duzCZTPh8PtasWcPs7Gwlbbqrqwuz2byIlL1UF6NsNss73/lOTCYTP/7xj7Faz+48jRpqqGF18KomDFqrK+l0mn379uFyudi2bVvV5Ob5m+3CNvCRI0dQVZVgMEgoFMLv97/oG3FuJsfrrr+QZx7az9DJ51cFoxvDjGo4CBktRvo7lo8jASSFWfGiMH9sEsYT3AGnJmEINQYY1lh1NZj0JKQMhLx2cVVeUNSU8iWGj86d+6aL11IYSRBo8WN0WyipeiYTM9icFnGFPyMEmXmDDk3CYLEZRSJRyGtfq2hjgC6NLgbI+Q+SFiBU5xH3n9HQpqQSGXJ1sxw/OGeh6/XZCbcE0NuMTKZmxNV9l8cGwn4GhVE0l0u7WwGy1arbYxMJgySSDgadImGQHIi8XjNj49rPlQoleo49TyAsZgN1TT7sHjOZQhGTSU9+yXtbLbBNEl27HBYxf4GyHF42IwjZzUY9w4IgO+R3ioSBKqvEY8LoU8BnJ3HKhrV7wTigwaBjbb2HOpeT6VKRgfEk2QXHa6h2LzOYAG0yMSTYsAbddsLexYsYer2+sviiqirJZJJEIsHJkyeXuQOt1Er2xMQEBw4cOKfJgqqqtLe3k8lkKmRhISwWiyYpWzi6NE/KXqz2YGZmhhtvvJFyucxDDz204kFzNdQA1EaSzhG8qgkDzJGGeSec+RWt5uZm1q1b96KTm3U6HX6/H7/fX2kBx+Nxjh07RrFYJBAIEA6HX3B1bN2OVtbtaOVP/9eNHHnmKD/7j18wdDCOTmdAy0Go5bxGTu7tXfa4w2tnRBihSAhjKTlh3loSyroCDk3CEGrwaz6u6HRMCEVmVlhV1ekU1GKZROfzBY2i1+HcHsHeZEPFyNhoplLY6w06hqWxI+E7GGn00SuMHY1JK8QW7a9FIOpiTBityQoz8G6/XZMwKIoi6icWhuilJ7KkTwlo/WEn+tkim9YE0dtNTCZnGBlJoqpQLGqTn1DYJWdDlLRf4w84RHtWYbqrqkjaJATQKQrLxpHmYXfIhCG5pIgv5Ir0nYzT3OKnv3ccg0FPU4sXh9dGtlBgYDSF9GOkKDAsjCpFq4wWOZ0uEHJFRoRuQF3ETbfw/TRV6XKkBBckp91MQpgRCngdFcKwEMVimdxMgfaT8wnyCmuibtw+G3lKTOe07xNzgW2Cxa3fyfC49nvf9gKBbYqi4PV68Xq9FXegRCLB8PAwx44dWxHdwzxZ2LhxI/X19af9+rMB82QhnU6zc+fOF9QPLCVl85atPT09HDlyBK/XW7muUsdgdnaWd7/73WSzWX7+85/jdDpX49RqqGHOUlU5dwvp00KNMJzdUFWVvr4+Tp48yZYtW6irq6s8frrJzQt/4DZs2MDU1BTxeJwTJ06Qy+Uq5CEQCIh2cwMDA8TSw/zx3/wB0WiU1NgUzzx0gCd/8hyHfnWM4ilBol5wYalbF+bk3p5lj3tCLiaFAiwurDLPCCu8EvFx+u3QvfzxYIOXhLDCPS4k9c5qON2opTJOk42OUxoPnVFPoNmLPejB7LDR1S5oDoQxKZsgWnX7baLb0sy0EAgWkglD/DQ7D8Goi/iIdgE2IzgA+YJOTh4ZpnN/f+Uxt8dGuNVPKZ/D4zGRTC4u+Px+h0gYhoa0PxOBKoQhJay4hyMuMp3axfWMsIIfjriXjVzNY24lc/lzRpNedGJynBoxKxVLizI/dHodhnCZ89dGmS4WGYglK12AupBb1DaYBaIDkBScy9x2AylhbM1RReORndF+z01VuhLRoIt0VvuaG41ypyCdff7YVVVlaDjJ0HASg16HokCz347Xbyc1k2F8usDUbIHGoJveeFJze36nXSQMp5O/oCgKDocDh8NBa2sruVxuke7BbDYTCoVOS/cwPj7OwYMH2bRpU+W+f65BVVU6OjqYmppi586dp911WWrZOj09XRldOnHiBHa7nWAwSDKZZMeOHej1evL5PDfffDNjY2M8+uijFY1fDTWsClQVOHdn+08LNcJw9mJe3ByPx7nwwgvxeDzA4jA2mLupnu7qlaIouN1u3G4369atI5PJEI/H6e7upr29HZ/PRzgcJhgMYjQaUVWVEydOMDIyws6dOyvH4g64uPyWS7n8lkvJpqZ59mcHeeqn+zihQQoAjEIhE2wMkEwsL/Q8IRdJQcA8JhS6s9PaBYxBWAl1B5yahMHldzAljKpIqcwLZ+HLhRKJzjESnWPUbwqiTE4SXRfG5nOTTheIDyWxuyyi5kFyegpGvaQmtFdupZV/o9CNCUTcYrdiWij+PX6nSBgSQhGt9b5nktMUjuWZnZ0jvT6fjXBrEJ3VwNhEFkWoG51OC+kp4T0WSI7JpGd0VPuYrVa5iJEKfK/XJhIGyb0pGnHTL1jkloXgH71e4fiRkcrzik5hTZMXV8CGxW5iMjXNtMYY0bSg/bBZjWLWg99nJ5UV9AbCuKBClYC6sIte4TtqNcu3b2nMSqdTRAJSF3bTPzzJaCzN6AJiXO+30+R24bKYGU1liC/ROFS7bb6chOcX0j0EAoHKWKjWAsc8Wdi8eTPRaPQlH8criXmykEwm2bVr14qMaNlsNpqammhqaqJQKDA+Ps7g4CDXXnster2eN7zhDYyMjDAzM8Njjz2Gz+dbgTNZjnvuuYd77rmH3t5eALZs2cLf/d3fcdVVVwFzHY6Pfexj/Nd//Re5XI4rr7ySr3/964TDz3+m+vv7ue2223jsscdwOBzccsstfO5zn6tlQ5xjUMsq6mukwyBlP50LeFV/q1RV5bnnniOfz7N79+5K63WhXkFRlBWJtFcUBafTidPpZO3atWSzWeLxOP39/XR0dODxeMjn86iqykUXXYTNpp0/YHfbeNONu3nTjbuZzebY94vDPPmTfTz380OVPIYJwVLSKIgtAw0+TcLg9jtEQfCEkHo7k9VeWZVyC3wRjyZhMFoMYjckK6xiuz1uho4lGD48BMxpO+x+O81NQYr4GB1OLct7kIr/MtpEwh9yMi6M1kwLK8e+oEMkDIlh7celUTBPwE5yTLC5FawwXX4rs0Nz13hqYpqpiefTv31b62lbE0Q16Ykl0kyMz207EnWTPqk91jYa0+48ROs89AqOWnnBOcsfcDA+Lohohe+dXq8TR5UcTtllSAq0i0bc9C1IhVbLKkO9Ewz1TrClrY5ybJY1TV6cfhszpRIDsSSzuSLD0mhRyE1nn7a7V7GK+HdwVJvoRIIuRoQi3lUlO0K0RlUQt1cXdDEodFTcwr7GxrOEvU6Od825r0W9NkIRNxgVYlMZJoSRKb1Ox6bGoHj8p4PT1T2MjY1x6NChc54sHD16lMnJyRUjC0thNBqJRCJEIhF6e3v52c9+xic+8QmGh4cxGAy8973v5brrruPqq6+u2I6vFBoaGviHf/gH1q9fj6qqfPvb32bPnj3s37+fLVu28JGPfISHHnqIH/zgB7jdbj74wQ/yjne8g9/+9rfA3Ejl/HH97ne/Y2RkhJtvvhmj0cjdd9+9osdawypDLfPa6TCcu+f5qiYMiqLQ0tKC1+utrDisdnLzPOx2O62trbS2tjI5OcmhQ4col8sUi0Xa29sJh8OEQqGqNosWu5nX7dnF6/bsopArcOCxDp792SGeenCf5t9nBY90s00IIWvwaRIGu9vKpLDimRCCoIoF7S+B1aH9Ixeo84k6jHGBrOQ1VoGz41mmYuMMtMdBgWBLkEBLiHxJIZOZJT6kXRylhYRef9glEgaJfEjFfzXyISU8B0IukTBManSPAPxBD/Gh5c8pOug9HltENMJRN4EmLw6PDZfLumwlX6dTSE9pF6JWmyyUTAjdokAVwqAl+gaIRt0MCqvqki7OaNTJo0pVSMZUerZCIDgVOqjT69jWFkYxG5guFekfnSMQ87BVyTdQFe1r5HJYSAlk2+00M6I9WaRpiToPyYY14nfKWQouq0gYSmU5sG0y/fz3ZWJymolTxNxs0mO3mdkeDYFJRyL9fBbE2jpfVQeql4qluofp6Wni8XhF92C1WpmZmWHdunUrXuSeKaiqyrFjx5iYmGDXrl1VfydWCgaDgYceegiz2Uxvby/JZJKf/OQnfPOb3+TP//zP2bVrFx/96Ef5wz/8wxXZ37XXXrvo33fddRf33HMPTz31FA0NDXzzm9/k3nvv5c1vfjMA//7v/87mzZt56qmnuOSSS/j5z39OR0cHv/jFLwiHw5x//vl89rOf5Y477uBTn/pULSeihhpWGK9qwgAQDocrY0dniiwsRCqV4tChQwSDQTZt2kQ+nycej1d0Dy6Xq7JyJnUdYK57cOFbt3PhW7fz5/+/d3PkN8d58qf7ePqh/STjU+gNOka6tAtwSfBsFpKRA/U+slPLXYJ0BoXMuPZqYlawYpSusdNrZ0TjcZffzpRQYE4JjjBOhxOIgwqJngSJU0LVxrYwzXV27AE3E5MzjM6vMiuQTWoX7AZh3MsfkYmEFBjnq0IYxoUVdJNgG2uxGRkXSJxURAcjy9Oyx0dSjI+kWNcWZbpnjIaWAJ6om1y5zODQJD6/nSHBBjaZ1D5mj8cquiBJY1yKAsMCAXO5rSAQhpRA9CIRDwNCNoNUcut0CjGN4rlcKkMBjh4eAObE9uubfdh9VjKFIoWCEGioVxgRRv8iQadIGDIZ7dcAjGsIl6G6DavfaxcJQ7Vm+Ggiqfm42aRfFp43j7qgm56hCSYWdAVDbiuRiItdG1c/50BRlEWLM8PDw3R0dOBwOOjq6mJwcPC0dQ+vNObJwvj4+BkjC+Vymb/8y7/kqaee4rHHHqOuro66ujra2tr467/+a+LxOA899BAul2tV9l8qlfjBD35ANptl9+7d7N27l0KhwFve8pbK32zatImmpiaefPJJLrnkEp588km2bt26aETpyiuv5LbbbqO9vZ0dO3asyrHWsPKojSSdG3jVEwZ4XtxczQlpNRCLxWhvb68kiiqKgsViqcyPLiQPnZ2dOByOCnlwOLTzFGBODL39TW1sf1Mb7//iuzn2dCcHHuvg8f/7tKZLkiR4LgnOOna3NnEJNfoZ1QhaUxRFtFqVtBBGIQDNG/ZoEgZFp4idh1lhXlvRK/QuCLez+Wz4Wvx4w0F6urRHSmYEtyN/SCYMkn7CJMyYu7w2UkKBLdnihqIe+ru0l6HTgtWsx28XuyKTYxlQYbRnrPKe6vQ6oq0BfJusZGbzDAxOVvINAApF7ffM57OTTApEUhjj8gfsjCWEFDDhq2kwyF0EZ5UugnR9IhEXw9LImOH5calSsUx/1xicyk/0B+1sCLixui3Ek1PEJ2cplVXqIx76hO+BuUo2g05vAZYfo81iICaIiavZsOp08r0tJXR19DpIprXfq7qgm55hbTLm1BByp1IzpFIzXLe7TTyO1UA8Hufo0aNs27aNUCj0knQPrzRUVeX48eOMjY2dUbLwsY99jMcff5zHHntMM9AuFApx6623rvi+Dx8+zO7du5mdncXhcPDDH/6QtrY2Dhw4gMlkquj85hEOhxkdnRuNGx0dXUQW5p+ff66GcwdFNXdOj+qcDorIY6tnO14ThGGhuPlMkAVVVent7aWnp4etW7cSDGrP8ZpMpoqor1AokEgkiMfj9PT0YLVaCYVChMNhHA6HeMw6nY623Rto272Bd//N9Zzc18uTP93HUw/uZ6Q7XlXwnJRWrAW4Ay5NwuCNuJkUCrlJYfyhKATS2YTCzx/1iAJtKZHablvsGT49Mc30xDRsypHtTNCwuQFXnY90tsBQ3zjlkirmLIgEJ+hkUhjHyc1or0QHIm6mhAI7KYyZ2F3a1oeKoogiaWlUymIzarpKlUtl8uk8R0+5MJmtRlrXhzC75whEnyA2zhek/ABEkbTJJK+yTAmFcCTqZnBAGFUSoNcrjAqfTbfbJhKGaaFr5HJZGR/PLhqzspkN1Df78PudKCr0jyaXCbClbAaDXhYhu+wGpgXRfjUb1rRkWKDXMSpYo4Z8NkbGtEmsFimYR6kkv4/rm1dGv/BiEIvFOHLkCFu3biUUmnNmeiXyHl4O5k0xEokEu3btOiMBaeVymU984hM8/PDDPP7447S0tKz6Phdi48aNHDhwgFQqxX333cctt9zCE088cUaPoYZXDiaTiUgkwm9GH36lD+WMIhKJnJMjc69qwqCqKl/+8pe57LLLWL9+/RlZUSqXy3R0dDAxMcGFF174or2rjUZjpQ1cLBYZGxsjHo/z7LPPYjKZKuTB5XJVJTzrL2hh/QUt3Pz376CvY4iDT3Tw3997kv6ji0eMjBaDmNmQFcY+pALUG3JpEgazzURSWJWXhM3Subn9Dk3CoDfqRfG0lm0rzKVNq2WVgfYBaJ8bO7F7bKzZuZaiTs/IUIrUxOLVb6mADIRkwjAmFKoWYQbebDGQEArsXE77XAIRF3HhNZJDVCjipr9bu8Oy0NUpN1Og59CcuLxlYwh3sUx0TRAsBmKJdKVoNpvtaAV6+X12xie032eXy8WwRsp3NcGzy2lFCpqTXJXCETdDAinQ6+XvUVwg06GQg6nM4n3lc0V6TsSx6PWMHI3jshmJNvsw2U2Mp2cYjk/JIuSwh37BdjgU8DI6oTW4B1mBFCg6qoi1XfQLXbqA1y0ShlJZXvmbFHRTJqOeljqv+LqVxDxZ2LZtm7g4s9QOe96UYiXzHl4OVFXl5MmTxONxdu7cecbIwt/93d9x//338/jjj7N27dpV3+dSmEwm1q1bB8DOnTt59tln+cpXvsKNN95IPp8nmUwu6jLEYrGKLiUSifDMM88s2l4sFqs8V8PZD4vFQk9PD/m89u/rqxUmk+mMdA9XGq9qwjA1NcWvfvUrPvnJT7J27Vr27NnD29/+djZv3rwizkhLkc/nOXjwIKVSiYsvvvglr1oZDIaKc8V8Wz0ej7Nv375Fq2Zer7fqD1tzWz3NbfVcd9vlDHXFeOrB/Tz14H46D/QRbgoweEK7bRsXZsHzgs2kRViBDNb5GOzU3seYUCRJbjui3qLOS0wIc5sQuht26/KRq2xymrH+EUZOjqEoCtENUbyNAbKzJQZ7x2WrVWHsyOG2it0CMWSt3suAMHaUFGbSPX6HSBgmhCwFqVsBMC6QHJvdTOZknJN7n3dgitZ7CDT6UI16bDbTMlJlscqfTclxqqrgWdicXq+Io0put1UkDNK4lM9rq4h6l0IaM4PnScvMdIHuo8/nhbQ2erG4LeiiXmLJ7KIxI7eQEwKQFz4nAIOj2teoLuRmUCAMbocVSGo+V64yVzshkLFq2oa1jX4xg2QlMTo6Snt7e1WyoIWFuodcLldZoJnPewgGg4RCIdxu96r8VizEPFkYHR1l165dVbVsK7nPu+66i+9+97s89thjbNiwYdX3+WJQLpfJ5XLs3LkTo9HIf//3f3PDDTcAcPz4cfr7+9m9ezcAu3fv5q677iIej1e6So8++igul4u2tjM7DlfDS4fFYjkni+fXIl7VhMHtdvPTn/6UZDLJT3/6Ux544AG+/OUv09DQUCEP27ZtW5EfhGw2y/79+3E6nZx33nkr1s1YSBDK5TITExPE43EOHTqEoigEg0HC4TBer7fqedSvDXPD/3grN/yPt5IYnODAY+089n+f5vizXYvGJ9xhFymhK5AUVkkl/3u7V7sw9YRc4jjUlFDkSkIhp8+uSRgMJr04qiQFo1lOuUmpqsrw8WGGj891ZULNQTw+C/omH6MjKZILxlFywqhJKOomI4zWJAVRdzU3n2xKez9Gs/bnzGw1MiFcY4ljurxWpia1j1nr8o8NJSnM5ElNTKPoFVrXhnAEHaRnCgwMTuL1uhka0tCjKDAijFFVEzxLo0rhsFsUUFf7TkgkIxB0iIQhldJ+TTXSYreaOH7k+U5BxGcn1OimbNBhqKI3iAuEM+xzEJMMAKo4WVUT200KXUWLyUDsBQTPWjgT40gjIyMcPXqU7du3EwgEXvJ2zGYz9fX11NfXn3Hdg6qqdHZ2Mjo6ys6dO88YWfjCF77A//k//4df/vKXr1hx/YlPfIKrrrqKpqYm0uk09957L48//jiPPPIIbreb9773vXz0ox/F5/Phcrn40Ic+xO7du7nkkksAuOKKK2hra+Omm27iC1/4AqOjo9x5553cfvvtZ8WIWQ01vNrwqiYM8/B4PNx0003cdNNNpNNpHn74Ye6//36uvPJKAoEAe/bs4frrr2fXrl0viTxMTExw8OBBGhoaWLdu3aq1s3U6HYFAgEAgwKZNm0gmk8TjcY4cOUK5XK6QB5/PV/WHLdjg4/Kb3sDlN72ByViKpx8+wFMP7efwb09gsmu/zmgxiInN04Ko1CAkVXsFwqDTK4wLGROi05NFe7zH7rWQimkX5lL2hFWj8wCg6Iqc+N3xyr/rNtbhbQqSnS2JVqcWwcrWZDaQEEZupEreF3YyISRM53OSSNrNgDR2JAq73SJhyApiWV/QRWpiGrWkMngiBifmVtZtNhOWskrbhjDDsUmSqeffP6/XwsSE9vZeahdBIgwZ4VyDQQcJ4b0zmeSie3pG+3pXIy3GJXqD5ESW5KmRt7qohyaLDV/ESV5R6Y8lyUzn8bqsTEjWv167SBiy04KQHJh8CZ2CupCbbiERvJq2YcMqE4aFZMHv96/YdpfqHlKpFPF4fFV0D6qq0tXVxfDwMLt27TqVbr66UFWVr3zlK3z1q1/l0UcfZdu2bau+TwnxeJybb76ZkZER3G4327Zt45FHHuHyyy8H4J/+6Z/Q6XTccMMNi4Lb5qHX63nwwQe57bbb2L17N3a7nVtuuYXPfOYzr9Qp1VDDqxqvCcKwEE6nkxtvvJEbb7yR6elpfvazn3H//fdz/fXX43K5uO6669izZw+XXHLJi1pNGhoa4tixY2zatIn6+vozcAZz0Ol0+Hw+fD4fGzduJJVKEYvFOHbsGIVCgUAgQDgcJhAIVD0Pb9jNlX96KeveUM+Jjk6UlJm9P+vg4BPHKC7w7w81+BnqjGluY3xEm0hIQWPSCJM/6hV1FXJ3Q3u+2h/xaRIGg0lPUhhVygluSzaXjYWz8/PdB5vLAorC+q3N6GwWRgZTTJ3SZpQEUXeo3sughnAcICsUdP6gSyQM0tiRo8rYkaSTsNplEVZCuGZWgRjNTufp3D9QIRqhkJNga4CSTofJamRiYlDzdclJ7YI3EnEzNJTUfE5yBVIUWfDs88mEIS98bo1GHamUNgFxu2TSkhO2ZzDoiMWnKJXKxE91XBSdwtpGL5FGL/H0NP2jk+SWOGctdHBaBp0ZWP45Mhp0jAiC57qQmx7he+cQ3l+oLnheTcIwrztYabKwFIqi4PF48Hg8Fd1DIpFYMd1Dd3c3Q0NDZ5QsfP3rX+eLX/wiP/vZz9i5c+eq77MavvnNb1Z93mKx8LWvfY2vfe1r4t80Nzfz8MOvLcFsDTW8UnjNEYaFsNlsvOMd7+Ad73gHs7OzPProo9x///3ceOONmM1mrr32Wt7+9rfz+te/flnUfLFY5KmnnqJQKLBjxw58Pt8rdBbLf9jS6TSxWIzOzk6OHDlSaakHAgGMxsWrp/Mi7cnJSS598+/hcDi46qbfZzo9w95Hj/Dkg/vZ98t2nD7tHzR3wMGUIGzVSniGuaJI2pYWYTCaDaILkzReZBU0D/6ol5iQ0isdr9WmXXxbXCYmBqc48ZtjwNz7UN/WgLveR0lVUZTlozxOt1zISzoJk+DQZLGd/tiRx2cjKbxf5ZI2yfEGHUwK10YibE6PlfQCJ6jJeJrJU6NubTuaaPHacIZcpGcLDA7N2bfqdPKYkNttEwmD2EUIOYkJ43UmQcAPMC6QsLo6D32CvqeagHpcClgLuxhcck5qWWWobwKv00p/+ygGo57mFh82t4XkzCz9o0nSgvZiLgdC+/p5HUbiSe3r5BS+K1A9OK664Hl17odDQ0McP36c888//4zfc+12O3a7nZaWloruIZFIvCTdw3xGxM6dO88YWfi3f/s3/tf/+l88/PDDXHzxxau+zxpqqOHVhdc0YVgIi8XCtddey7XXXks+n+exxx6r2LwBXH311bz97W/n0ksvZXZ2lj/8wz8km83ys5/97Izc8F8sFEXB5XLhcrlYt24d2WyWWCxGb28v7e3t+P3+SpCRoigcOHCAcrnMRRddtKjFbnNaecM7LuQN77iQ3Eyew78+zq9/+BzP/fwQ0wvGU7xRjyZhUHSKKGzOCQWPSXAP8ke9jPYKYmDBoUjSVTh9dk3CoOgUUSQtuQ25vE4mBp8v0FRVZbB9gOFjgyiKgsNrp66tEdVoYrBvYpED0VIEIi7GhJV/acU7GPXIbkdCEe0LuUTCkBFGy3xVCENWeI3FpiOd1HyKmekcQyfjcHIuaNBqM1G/IYw9YGdgOEVc4z0tFISsDQXRVcnntYuEQbI5dTjMjE8IGpMqAmVJQO1wmJkQtudy2UAgQflTXYVioUTfyec/+y67EbuqY9vaCIlUdlFQXF3ITV9Me3tmo1zA5vOyL/i4EMhYbYxpTcPqCJ4HBwc5ceLEK0IWluLF6B6CwSB+v3/ZYlN3dzcDAwPs2rWrat7OSkFVVb7zne9w55138tOf/pTXv/71q77PGmqo4dWHGmHQgMlk4sorr+TKK6/knnvu4Ve/+hX33XcfH/jAB5ienkZVVQKBAA899NBZRRaWQlEUHA4HDoeDtWvXVqwEBwcHOXr0KIqiYLPZ2L59e9V5XLPVxK4rtrLriq0U8kUO/eoYTz64n2d+dhCbQ3vFPFDvJSGsxk4K40VqlSJfizCYrUZSAmGYyWgXsiYhQMsX8YgajYyQtmsXzt3msZIZn2YqkWbqiQ4AdAYdLVubsZoUwvUeYksKRZfHKhKGCWF0pvrY0emNECkKYp6DWSBy1fbjdNtJDGtft6UBeLPTeboODLBpWwOTHSNE6twEmv3kgf7BSWZnC0wKo0rhsFskDJINMEBC+NyEQk6xY6FWmTgRbViD8vaUKjW1JLp22i2cXCCgDvtshBs9lA0KJotBJAxWmw2tUSWQE56tZjk4rprgeTXGkebJwo4dO/B6z4xd64uFpHuY7/Au1D0MDw/T39/Pzp07zxhZuPfee/mrv/orfvzjH/OmN71p1fdZQw01vDpRIwwvAIPBwJvf/Gbe/OY3c+utt/K2t72NQCBAJpPh4osv5qqrruL666/nLW95yxlxuHg5mLcS9Hq97N+/v/KD9bvf/Q6321350avmAW40Gdj5lvPY+ZbzKJX+mKNPd/G7n+zj6f93cFFIm9vv1CQMRotBzE2Qi3ztj6kn7CLWJ2ketAsdTbsfwO23i4RhQjjekjDC4wu5yYwvLvjKxTI9+3sY642TnswSaAoQ2lBHrgT9PePM5rWLOavNJI4dSfD47aITk3TM/rDc4RBfE3QyLlxns0mbgDqcFqaEYlh/ajZ/fDjF+CkrVL1Bx7oNYWwBB2aTieGR1KK30GqVq+6sIJR3u62kBMclWxVylJY0Jn77oiC3hZAIGsjZHhaLgTFh9d7rsRNfQLiSE9OVjtGWtjparHY8YSczaonekQly+blORTqr3UWwmg2kpoUOls9Ov/DZd1QZY1pph6SBgQE6Ozu54IILliX/nm2opnuYX6RpaGhAURRUVV31vIf77ruPj3zkI/zgBz/gsssuW9V91VBDDa9u1AjDi8SPf/xj/uRP/oQ777yT//k//yeqqvLMM89w33338bd/+7f82Z/9GVdeeSV79uzhrW996xlZPXopiMVitLe3s27dOpqamoC5ULB4PF5xA3E6nRXyUK2DotfrOO916znvdet53+f+kGPPdvPUQwd46qEDmK3aK/mBOh8j3XHN5ySdglSwYtAu/k2WKp0HyVLVrj1u4vI7RG3DjOAcZHdpE0ej1UD61Er5WP8YY/1z40R6sx7Puk24zosyMjy1KDQuWOemv1N7HCsrECx/yCkShrSQMO31O0TCkBZC9jwBh0gYxGOLuMgI103LorZULDM9kaWvY25V3eO1EV0XomzQMTiapFyWswqkVf9g0CkShpkZ7WPT6WSXJr/PIRKGchVhcFzYXiTspkdI1TZW6Zqk07OMDqYYHUxVjnltsxt30ElyNodOpywb1asLueka0HZBUlR5VKlabsNKdhj6+/vp6upix44dZz1Z0MK87kFRFDKZDE1NTWQyGZ5++umK7iEYDOLxeFY87+FHP/oRf/EXf8H3vvc9rrrqqhXddg011PDaQ40wvAh85Stf4c477+Tb3/4273jHO4C5laRLLrmESy65hC984Qvs37+f++67j7vuuosPfOADvOUtb2HPnj287W1ve8F05jMBVVXp6+uju7ub8847rxJ0A3PzuI2NjTQ2NpLP50kkEsTjcbq6urDb7ZWU6WpOIIqisPmitWy+aC23fvoGuo8M8ORP9/PUQwcWuSs5vTa0smstdrOYmyDZtrq9LmIayb/+Oq9ISiRLVQnekEskDJJzk064Rv6Ih1ENh6RSrsREzxgjPQkURaFuUxRvQ5BUJi+PHSlUnHWWQrKaVXTya6QAOkUnuyqZLbL9qDSqZKtixTkpFN0en6NyDJnJaU4+23vq4MAbXoNzvZXU9CzDo1MV5x6n28zUlCCIr3LckkA5FHaKjkuSKB0g9RK6EnaHfI2kYENFgdgSgqSWVYZ6khhKeob7x3HbjNS1+jHYjMRSWUbH09irdFTsDifEtMnihDCmZzSsXMLz/P3qggsuwO12r8g2XwnMn8euXbtwuVwAi3QPhw4dAqrrHk4XDz74IO973/v4zne+w3XXXfeyz6GGGmqooUYYXgTq6up47LHH2LVrl+bzOp2OnTt3snPnTu6++26OHDnCD37wA7785S/zF3/xF7z5zW9mz549XHPNNS+YzrwaKJfLHD9+nHg8vuhHSwsmk6ki5isUCpUE1N7eXiwWS4U8OJ3Oquex5rxG1pzXyB9/4jr6jw3PdR4ePoBR8Lj3Rz2ibaskRtbptAs1h0d7hb+apWpesFS1CkJXs9VISnDTyc1qb8vlc2gSBoCx4bkVZVVVGTo6zNDRudC4bZduYtOGACW9gYHecWZPpW37g07GBG2D1JEJRjyiE1OxoL1SH4x4iAvZGCUhidgbcDApXBvpE2O2GMTRK5NFuE2pMHA8VrGytdlM1K0PoZp1lCgzNaX9PuSFc9XrYSqtXZB7PDaRMMjbU8QuR7WuRJXFe8YEAXUoKDtCORxzpGBmukBX+/PfsWjAjktnZEtriP54ivSS7tu40Fky6hVGBW3Dmga/mL9yOujt7aWnp+ecJwv9/f0V0rPwvqule0gkEpq6h9PNe3jkkUd4z3vewze/+c1KSnINNdRQw8tFjTC8CLzzne980X+rKApbt25l69atfPrTn+bYsWPcd999/Ou//it/+Zd/yaWXXsr111/PNddcU3EqWk0Ui0UOHz7MzMwMF110UVV9wlIYjUai0SjRaJRSqcTY2BixWIznnnsOo9FYIQ9ut7vqeTRtqqNpUx1/+LG3Mdqb4MkH58hD5/6+Svqsw6td5NtdVjKC4HVaWL2VNA/+iJdYv2CpKuxDL3je+6JyFyMtzOgbTdrH5fI7xLn+bDJL16EBAAxmA61bm7D4nOjNJpEwSOfi8dtFwpASClG3zyYShrGE4E5UhTBITlGBiJuhXu3RmGJBmwA5nJYKWYA58XT3wbl8hy0XNFFvNuKKOsnkC4zEMxSLc5+1hHDcc1kPgoC6ShEs2bBGwm6GRKtc+dabFkTSdrtJdFzyem0iYZBo2uRYlkHDGKOjU5X8B1fQRqZQIJ7MEp/Q3l5DxCsKnpsiTsrl8ssar5knCzt37qy6uHG2Y2BggK6urhckPQt1D+vXr1+W9zA/Ivpi8h4ee+wxbrrpJr7+9a9z4403rsZp1VBDDa9R1AjDKkJRFDZv3swnP/lJ7rzzTrq6urj//vv5j//4Dz7ykY/wute9jj179nDdddcRjUZXnDzMzs5y4MABjEYjF1544bIMhtOBXq8nHA4TDocplUpMTEwQi8XYv3//otWyF5rFjbQEefsHL+ftH7ycseFJnn74AE8+eACdYMPoi7jFQLNJYfVWmht3+u2ahEHRKUwIRbEUPuf0WDVHq6CKSFpakQ+7RcKQGHm+iC7minQ/1w3Alt3rCNsUAq0h0jMlBnvHKZfVuVVtaexImH/XG3SifkEaVUKB5JhguVllzGWpQ9I8quVTpAW/f3/YRSajre8o5kskBidJDM6NrJlNBlrWBdDZDcSFlXO32y4SBkmgbLebRBtWt8sqEoZ8QftzVS1sLhR00ZPVJryS7SxARtCTGI26ioB6Pv9h6JSJwJpWP3UBG2anmUQ6y9CC8btqgmcz0zzxxBOV1fHTHa/p6emhr6/vnCcLg4ODdHZ2smPHjtPukCzMe5gfEV2a96Cle/j1r3/Nu971Lr7yla9w0003veJjsDXUUMOrCytvll2DJhRFYd26ddxxxx089dRTdHZ2smfPHh544AE2b97MFVdcwVe/+lX6+/srq+4vB+l0mmeeeQan08mOHTteFllYCr1eTzAY5LzzzuONb3wjW7ZsoVwuc/jwYX71q1/R0dHB2NiYGOo1j0Cdl6v/7Pf5Xz/6CB/9xq184It/xPlv2rzIDtMizHPbXBbSQqE2fbqWqmE3xbx2MZ8VxLFGYVuesIuCMGc+IdlXCueo6BSyk9rnUi6ViXWO0v7oIfp/045tOs2mdX62nN8gdjLyQp5EuM4tjjFJhMnttVAqan9OxTA3t420cD31Asmcs3vVLqBtVWb9p1KLSUEhX6S/Y5Ty+CzTJycI6RSagxYiQTNG41xhlctpX2uAuKBXCQXlolapEuYmdQpCIaeYu2Gv5riUlY9d6jyEQy4xr8RmM9NzLM6xZwcYPzZBuGxiW0OI81rD6IXgRYCrL389O3bswGw209XVxRNPPMH+/fsZGhoin5dJDczlE7xayMK8BezLFWrPj4ief/75vOlNb2LDhg0Ui0UOHTrE7//+7/POd76Tb3/72zz66KO8853v5POf/zzvec97VoUsfO5zn+PCCy+sdDyuv/56jh8/vuhv3vSmN6EoyqL/PvCBDyz6m/7+fq6++mpsNhuhUIi/+qu/oljU/szXUEMNZw9qHYZXAIqi0NzczEc/+lE+8pGPMDw8zAMPPMADDzzAnXfeyY4dO9izZw979uyhtbX1tG/+4+PjHDp0iObm5pf0+tOBTqfD7/fj9/tRVZXJyUni8TgdHR2USqVK+qnf70evl8c6PEEXV9z0e1xx0++RSU7z7M8P85sfP8tYTHtMxRfxMJ3W1jwkJRtSyVI14GR8JKn53KSgeZBSkT0BJ0lhhXg6pV3U6YVxF3/EzZiwQj0WXzwSkpnIcuxXHazf0Uyhf5g125qx+FzE4pnKqn5SEPQ6PXbo17aUTQmdj2DES2pCu8cikQJ/yEE6pb29WSFILRB2iwJqUYBfRahtd851MpKxNMnY3HUxGPXUtXrRl4p43EaSqcXH4vPamBCOu3oRL+hirEZRXO3x2BgVCvxqzkSzee1rEQw4SAgjUy6XVQyOW7qv1OR05bNQF3XTanPgDjnIlor0jU6SL5QwGvSsqfdhMOgXjdfE43GGhoY4evQobre7ck9YaEPd1dXFwMAAO3fuxOl0iud5tmNoaGjFyMJSLNU93HnnnfzoRz/i05/+NLFYjLa2NvR6PaOjo0Sj0RXdN8ATTzzB7bffzoUXXkixWORv/uZvuOKKK+jo6Fjkpve+972Pz3zmM5V/L3yfS6USV199NZFIhN/97neMjIxw8803YzQaufvuu1f8mGuooYaVQ40wvMJQFIX6+no+9KEP8cEPfpBYLMaPfvQjHnjgAT796U+zZcuWCnnYsGHDCxb/g4ODHD9+nLa2tlX50agGRVHw+Xz4fD42btzI1NQUsViMEydOkM/nCQQChEIhAoFA1TEFh8fG1jevRQ1kqY80kDgxxVMPH2Tff7cze2oG3u7W1jxUc1uSLFXNQtHn8NjF0LZZqRgU7Fn1Rh3ZpDZhkATHTp9DJAyFae3XGM0GSvlSZXQJILIuQmBNmPRMUdNa0yDoNIwmPWMCYTILHRZAHG+q1hGQNA8en10kDDPCmFAw4iY+rP0alOVFd6lQYuTEGBabidnpPIGAHWfUzmy5zPhkHrvDwISwuVKVIn6pa9E8QiEXfX3aRLha2NyUMJpnt5mYFIidz2cXCYPk5gVzFq1amBNypymWyowMJAGwmAysW+Ojvsm3TOsxn/3S2tpKLperOLB1dnZis9kIBoOVsZszlXy8WhgeHub48eOcf/75qx4upygKl19+OcFgkB/96Ed8/OMfJxAI8J3vfIfbb7+dXbt2cd1113H99dfT1ta2Ivv82c9+tujf3/rWtwiFQuzdu5dLL7208rjNZiMSiWhu4+c//zkdHR384he/IBwOc/755/PZz36WO+64g0996lOYTDIBr6GGGl5Z1EaSziIoikIkEuEDH/gAjzzyCCMjI3zwgx/k2Wef5ZJLLuHiiy/mrrvuoqOjY9nYUqlU4rvf/S4nT55kx44dZ5wsLIWiKLjdbjZs2MDrX/96LrzwQmw2G93d3TzxxBMcOHCA4eFhCoXlK8tDQ0McPHiQzZs3s7FtA793/S4+/q/v5Vvtn+evv/V+3vgHF2ET3It8EXleWLJUleomb1he6UwKpEQnjKEE6rziqJmk0bDatX889UYdU0IRODmRXPbYaOco4yeH6ft1O7aZDJvW+9mwOYLlVFbGvPPSUgSjblEPUhBIjj/s1MxTANn9x2w1MilcT9EhCZgQMiDcgksWwMSYduXv8duZPUVApsayDB2OM94+hi6ewamoNIYseN3L3w8pzyHgd4i6B0cV4pQTxsZ0OkUcLQqFqrmeyddvWnAGUxSIC9c2HHZRXNJdy+eLdB+LYylV/zkxm800NDRwwQUX8KY3vYk1a9ZUxL2KojAwMMD4+PgLjjKejZgXKJ9//vn4fL4zss8jR45w7bXX8vGPf5wvfOEL3HHHHfz2t79leHiY97///Tz99NPccccdq7b/VGruu7T0fL/73e8SCAQ477zz+MQnPsH09PNk9sknn2Tr1q2Ew+HKY1deeSVTU1O0t7ev2rHWUEMNLx+1DsNZCkVR8Pv9vPe97+U973kPqVSKn/zkJzzwwAP80z/9E42NjezZs4frr7+etWvX8id/8ie0t7fz29/+9oz9YL1YKIqC0+nE6XSybt06MpkM8Xic/v5+Ojo68Pl8FReQwcFB+vv72bFjx7LzMFmMXPTW7Vz01u0UCyUO/+Y4Tz10gKd/dqiSleDwaAfNVbVUFQrc+fGVpTCaDeLYk6QTcPocxIRVZSmwDmGu3x/2EB8Ugr302iTDfkpUnBnPcOyJDmDOdWnt9mYcVoOmFarLY2V4QPvQJFclr9/BeEzI0xDcf4IRF4M9gkNSUbt4tDst4riU5JIFkE1rF8m+gEMz7K5cLKPP64gdnhMb+3xWHBEbBZ1CMl0gJnymfD47YwJBVQXdAMCYQATDIRcjQqel2liUREBAJgXBoFN8zu2yMix0b1qb/eK+lkKv15NOpykUClxyySWVLkN7ezulUqmSSfBC3cizASMjIxw7dozt27efsXvv0aNHueaaa7j99tv5m7/5m0Wd51AoxHve8x7e8573rIgeTgvlcpkPf/jDvP71r+e8886rPP7ud7+b5uZm6urqOHToEHfccQfHjx/ngQceAGB0dHQRWQAq/x4dHV2VY62hhhpWBmf3nbgG4HnbvZtvvpmbb76ZdDrNQw89xP3338/ll19OsVjE6XRyzz33EAyuXMrqasHhcOBwOFizZg3T09OLZpzn9R0L5161YDDq2fH7bez4/Tbe//l3cezpLp58+AAJoZCuZqkq2aDqhfEQX9gjbisrzLqbhLAwu9sqdhgKApFx+u0iYcgIDkDTM8uL4WKuSO/+HtRSN+WySt3GOrxNQVLZAkN945RV7WLdYNQxJoWYVRtVEoprh0DMQE6ZDoRdZCWHJIFkmMx6Mikh6btK0T21IB07MzFDZmLu34GIAyw6dE4T0wWYmHx+29XC3KRxH6fTwqSUqu2xiYShmrZhQrLY9VhJSqnfXrtIGPSCmxlAS0tAfG4hVFXl5MmTjI6OsmvXrsr8u9/vr4wyJhIJenp6KpkE8wsKp5tJsNoYHR3l6NGjbN++Hb//xROml4MTJ05wzTXX8J73vIdPfepTVcdUV0u/dvvtt3PkyBF+85vfLHr8/e9/f+X/t27dSjQa5bLLLqOrq4u1a9euyrHUUEMNZwY1wnAOwul08q53vYtdu3Zx4MAB/H4/jY2N/Nmf/Rlut7syu3rxxRdXFRqfDbDZbDQ0NDAxMVGZfZ2YmKCvrw+Xy1XJeqiWH6HX69jyuvVsed16VFXlxL7euaC4hw4Q659buRYtVRWYEATPsrbARqxf+1jGR7TFw9KqsjfsJpvWznOQin+TkOSsN+pEwbXT5QKWr+L7wu6K9ejw8WGGj88FxjmDLnLpJE2tXkaG0ovckoIRDyMD2oRFclvy+GwkJ7TPR7LUnRMvC4nR1RyShEI4XOdlQAjOk94fRYdIjvwBN8ePDFX+7fVasIetqCYj2az2uSoKxITtBYNOpoQuTLVYgymBgFQTVwf8TpEwmKroKGaE8TV4cR0GVVU5ceIEsViMnTt3LhLLwvOjjG63m3Xr1lUWFOZX8V0uV0U0vfS1ZxqxWIyOjg62bdt2xshCd3c311xzDe9617u4++67X1bexUvFBz/4QR588EF+9atf0dDQUPVvL774YgA6OztZu3YtkUiEZ555ZtHfxGJz5hWS7qGGGmo4O1AjDOcofve733Hddddx66238vnPfx6dTsfMzAyPPvooDzzwAH/4h3+IxWLh2muv5e1vfzuve93rzsrWfi6XY//+/RiNRi666CKMRiNr166tCCRjsRidnZ04HA7C4fALFgqKorBxZysbd7Zyy9+9nZ4jgzz50AGGu2J07u9b9veekEscCRKD4YSC3eayMD2lXbzlhHlxu0smQlLCtbRoWG1USepWYNQu8NOJKcwmHWNDSUxWE+vPb0HvsjE8lMTlsTIijCpJeRK+oEskDJLmIRB6aQ5JUifD7tTWvQBkhUI9EHSRED4fSztQ2cnZig2uJ2gjatNj9FjJ5lXGT3UlwmEXo5IovEqXY0JQXet0ikhAwiEXvcIYnNUqd4JmBVtgkEem/D77nOtSFcyThfnE+RfqIsLcgkJLS8uiTIJ4PE53d3cleT4YDL5geORKIxaLceTIEbZt20Yg8OI6Ky8XfX19XH311ezZs4d//Md/PONkQVVVPvShD/HDH/6Qxx9/nNbW1hd8zYEDBwAqmrrdu3dz1113EY/HCYVCADz66KO4XK4VE2fXUEMNq4Ozr4Ks4QXxyCOPcMMNN/DFL36R2267rfK41Wrluuuu47rrriOfz/PLX/6S+++/vxLic8011/D2t7+dN7zhDWeFG0U2m2X//v243W62bNmy6AdwXiDZ0NBAoVCokIeuri5sNluFPDgcjqqFQut5DbSeN7cKNnhilKcePsCTDx2g58hcIrAnKBOGCUlbIIyA2DxmkTBMCSu9BpN24ebyO8TX5IVVXqdPHlWa0pjPBwgE/SR6NIpRBVKnkqTzM3lOPnli7mGdwrpGN1u2RBmbnCG2wMWpWrFebeRHdEjyn75DUjWSIQnSAcYFTYrbbxcJg5RRYTTpmRqfoZxQoW9utMfjNeOKOnA4DUxM6Mlr5H4sFRMvxNSU9nseDjkZkSxk7XIXRhKtgzzG5HJaSAkkuvUFxpFUVeX48eMVN6TTSZyfx3wmQX19PaVSifHxceLxOPv370en01UCzXw+36p2VuPxeIUsnKkR0KGhIa6++mquvPJKvvrVr74inYXbb7+de++9lx//+Mc4nc6K5sDtdmO1Wunq6uLee+/lbW97G36/n0OHDvGRj3yESy+9lG3btgFwxRVX0NbWxk033cQXvvAFRkdHufPOO7n99tvPunGzGmqoYTFqhOEcxPnnn88DDzzAFVdcIf6NyWTirW99K29961u55557eOKJJ7jvvvt4//vfTy6X45prrmHPnj28+c1vfkVu1MlkkgMHDlBfX8+6deuqFv1Go5G6ujrq6uooFouMjY0Ri8Xo7e3FbDZXyIPL5aq6nYYNEf5gw1v5gw+/lVj/GE89fJD+o8P0tg8tEwfaXVZRjzArFKu+oJex/uXFqk6viHkO0giPN+QSCUNasHqV7GH1Bp3crRBCuGxuM9PJ5avualklG09xfG8vAMHmIMH1EaYLKrOzBUYlX3/B+cZiNYpuR9XEy9Jrqtmw5gSi5fJamZrULoSr2cdOSfqKiIuRJbkW05M5pidztGxU0I1miDbYsfocJLNFJk51ZSTHJZvNQHZa+9jntA0Csa2CpPDZtlmNjAvkMhh0iuNPLVXGkVRV5dixY4yNjb1ksrAUCzMJyuUyyWSSRCLBsWPHKBQKi0TTKxlaGY/HOXz4MFu3bj1jZGF0dJS3ve1tXHrppdxzzz2vCFkAuOeee4C5cLaF+Pd//3f+9E//FJPJxC9+8Qu+/OUvk81maWxs5IYbbuDOO++s/K1er+fBBx/ktttuY/fu3djtdm655ZZFuQ011FDD2YkaYTgHEQ6Hq5KFpTAYDFx22WVcdtll/Mu//Au//e1vue+++/jwhz9MOp3mqquuYs+ePbzlLW95UWMCLxfzK3Tr16+nsbHxtF5rMBiIRCJEIpHKKmMsFmPfvn0YDIZKEeHxeKqSh3BTgD0fuAyAP/7EtTz9/w7y5EMH6Xiqk3KpjCfsEsXIUxPahbxR6Bb4Ih7GhrS1DTNCKrWY/qzAxIgQCiDAF/aQGNLuPEjdilCdn97ksOZzC69Loi9Bom9OfLzxwjW41/hQzSb6+yYWEatsWnJIcou6gmJBckgyiw5J6ORV+kmhEPYHnSJhKJa0V+L1ekXUNrjcNkbQfr+NBhPlYpnx3jT0zpG7A6BGAABxZElEQVQeX8CCt8FN0aBgMOiWibbrIl46u7UF3tVEyGnhs2U06ohXsWjt7RfGmAThPsgdBlVVOXr0KBMTEytGFpZCp9NV8l82bNhQcWHr6+ujvb0dr9dbGV2yWOSxtBdCIpGokIX5cZrVRjwe5+qrr+aiiy7i3/7t315RTdoLOS41NjbyxBNPvOB2mpubefjhh1fqsGqooYYzhBpheI1Br9dz6aWXcumll/LlL3+Zp59+mvvuu4+/+Zu/4X3vex9XXHEF119/PVdeeeWqhCj19/fT2dnJeeed97J/dJeuMs6PKBw8eBBFUSrPeb3eqqtyvoiHq259I1fd+kZSY2meeeQwXQf7iPWOLRM+6w06JoQV7GJBe0TF5XeIhCEpudEI6c+ekFvsVoijSn6bSBjSwviJVci5AEgMa29Lr9fR8aujc/9v0rNmewsWn5ORWFp2SHLJ+5FW8P0hF9mM4Hg1pU3mzBaDmPVgsckdtoyQzh0Iu4gJ9qLSeweQ0jinzNgsZr2e8VgWs0lHXYsH1aIjmS2RzhQqeRlakBKyFQXiVbQNg0InqFpGRKmKHWxL83LCoKoqHR0dTE5OsmvXrpdVrL9YLLRwXrt2LTMzM5VxxuPHj+NwOCr3Bbvd/qJ1D4lEgkOHDq3IfevFYmxsjGuvvZYtW7bwrW9966zUoNVQQw2vHdTuQK9h6HQ6du/eze7du/niF7/Ivn37uO+++/jsZz/Ln//5n/OWt7yF66+/nquuuuoFx31eCPNWisPDw1xwwQV4PJ6VOxFYNMNcLpeZnJysdDJUVa04q/j9/qrkwR1wcvkfv47L//h13HTn9Tz388M8+dABDjx+lPxsAV/keVehpZBE0mar9qiQyWIUU6klhya33y4SBqn4t1iFIlCBMcHVSRxVqiLsLi9YjS/lS3Q/2wWAJ+jE63fR2hYhlckz1P884ZDei5cqXlZL2sV6IOJmqFd75ZwqC6diF8FrFwmDpG3QG3RiRoU/4GY8lqWYLxM78fz1CUUd6PM5mho8DA6nlqV0SynOwaBT7CK4XFaQRseqrCJPpbU/3waDjsaGxcnG82QhmUyeMbKgBavVSlNTE01NTeTzecbGxiqWrWazudJ5qNaRHBsb4/Dhw2zZsmVZhsBqYXJykj179rBmzRruvffeFR2rqqGGGmp4KagRhhqAucJt165d7Nq1i7vvvpsjR45w33338aUvfYm/+Iu/4M1vfjN79uzh6quvxuv1nhZ5KJfLtLe3k0qluPDCC1fdDlGn0+H3+/H7/WzatIlkMkk8HufYsWMUi0UCgQChUIhAIFC1xW93WXnjH1zEG//gImanc+z773b2PX6EXz+wj8Ls8qJwUhDOStfKX+dhRChis8I8u7TyryiInQ/prbJ7LBVXn6UoaohyAXwht0gYxuLanQd3wEnf0SGGj81ZkHrrvEQ21ZNTFdEhKRh2ExdGr8TPngITCW3S5Kzi4DOT1R6X8gedjEv6iio5C5JTVCDiIjakfU5GYXupkQyGssp4LIvdZiC0xo/BaWE4np0TpgufE6/HLhIGXZXvbka0dZXdmBobfItGo1RVrXzfd+7c+YqRhaUwmUwVLVSpVGJiYqLSkQQqCw5+v79yXxgfH+fQoUO0tbWdMdvPVCrF9ddfTzQa5fvf//5ZYVBRQw011FAjDDUsg06nY9u2bWzbto1Pf/rTHDt2jPvuu49vfOMbfOhDH+KNb3wj119/Pddccw2BQKAqeSgUChw8eJBSqcRFF110xn/8FEXB6/Xi9XrZsGEDU1NTxONxTp48yZEjRyrkIRgMVm35W2xmmi8IM2tPcv2HL2Pk6ARPPXSAZ39+mExyGpvLIuYmiEnSbjta2QgAk/HTEylXG1WSinKH1yYSBkm/YatSeKt57WMz2xavjk4OTzI5PNfZiK4Ns6HFi2IzM9A/WUmDdvvsImGYFSxqA2EXY4IAWMp6ABgTCmuP3y4SBikcrpq2we21i4RBeo8UBdKnxOf56SKDR2KnnoDWrSF0QT9TsyUGF7hVQfUshWnh+ikKxAXSGw46GRHOq7XlecHz/OJAOp1m165dZ63zjV6vrxAEVVUroukTJ06Qy+UIBAJYrVYGBgbOKFlIp9O84x3vwOPxcP/995+116+GGmp47aFGGGqoCkVR2Lx5M5/85Ce588476ezs5P777+fb3/42H/7wh3n961/Pnj17uO6664hEIovIQ1dXF7/+9a/Zvn07O3bseMVD5JaGQs2LI3t6emhvb8fv9xMOhwkGg4tGAFRVpaenh76+Pnbs2IHX66WhsZ4Lr9hKqVji8G9PcOjXx3n8+09rahKkUSGzMJtuc1nEDoO08l9tVEkiMr6Ah1i3dldA2pbRpH3L0OkVkgntgjKT0R6b0Rt0xHoTjHTNFcE6g47WbS1YQy5MVWxYxxOCDavPLhIGibQ5XBYy4ihZNYck7ddU0zYYqxTxY/Gk5uP+oFOb0KigzhTpOjSXLeL1WAiv8aNaTPQNJZnNy1kKUopzMOAgLow4uT02kTDM6xfK5TJHjhwhk8mwc+fOc6bYXbiosH79erLZLH19ffT1zV3boaEhCoUCwWBwVUTb88hms7zzne/EbDbzox/9aFX3VUMNNdRwuqgRhhpeNBRFYf369fz1X/81d9xxB319fdx///3cd999/M//+T+5+OKLue6669izZw/Dw8O8853v5Oqrr+bmm29+xawAJSwVR2azWeLxOP39/XR0dOD1egmHwwQCAXp7eythU06nc9F29AY9579xM+e/cTN/8jfXceyZbp586ABPP3yQsVOr6NKokJj+XGXsR1r5t1QRKUv7l1bdHW4bGcF2U7JHreYE5bA70OqkeEIuxhesjJeLZXr2dQOw6cI1RG06fC0hUtk8g31zxMbmMJOaEAhYFQvUpPCaQMhFRtRknH76c1Vtg5R9oEBmSnvV3+2zix0Qm90OzF2X6eQsPfvmRr50Bh0Gr4Xz1oeJJ6cXEQSPxyomPHu9dpEwGKoIuVtbAhWykM1m2bVr1zk7RqMoCvl8nlgsxpYtW/D5fJWwuBMnTuBwOCp6qBfKgDkdzMzMcOONN1Iul3nooYde8RTrGmqooYalqBEG4Gtf+xpf/OIXGR0dZfv27Xz1q1/loosueqUP66yGoii0tLTwsY99jI9+9KMMDQ3xwAMP8MADD/CJT3wCmEv1/PjHP35GE1hfKux2O62trbS2tjIzM0M8Hmd4eJijR4+i0+loaWl5QeGhTqej7ZJ1tF2yjvd85gY6D/Tx7M+P8JsfPcdo73JXHyl8zO6WVxallX/JXtMTdIpOTIWctjjXG3aJhGFGmHF3+ewiYZgWLFV1VWrK6fQMIydGGDkxAoAn4iba1ojRZaX94CCl4vJiXrJANZkNYm6DtUq4WVbIHKiW/lxN25CW9AZ+O5NjkmBdvkjTgvZCp4PugyMVMXc44iDYGmSmrGIw6UXCIHWPAGZntT+rAM1NPg4fPsz09DQ7d+48Z8kCzImNDxw4wMaNG6mrqwPm7EIbGxspFAoV0fSzzz6L0WhcJJp+qYsis7OzvPvd72Z6eppHHnlk2aJEDTXUUMPZgNc8Yfi///f/8tGPfpRvfOMbXHzxxXz5y1/myiuv5Pjx42fMPu9ch6IoNDQ08Jd/+Zf4/X6eeeYZbrjhBkZHR9m5cydbtmzh+uuvZ8+ePaxfv/6sJxBWq5W6ujoSiQROp5NwOMz4+Dg9PT24XK6KLWO1zApFUVi/o4X1O1p49x3X0NsxxFMPzaVMDxyfK4LFPAej9tfS7raJYXJS8e8OyIThpegUJFenatakkh4jGPaT6E1qPrf0mJOjKZKjKRo2h9DFJlmzoxWdw7ZI91DNAnW4X3v0qtpHUSIF1dKfJW2DopO1Df6QSyQMUrAfyOF1oYhn0fkmRzMkR+c+a2u3BNkUdaN3WhiMTS0STecFdyeAMSHDwuO2MjjQxczMzDlPFpLJJPv372fDhg3U19cve95oNBKNRolGo5RKpYoT2+HDh1FVtaKHWiiafiHk83luvvlmxsbG+MUvfoHb7V7p06qhhhpqWBG85gnDl770Jd73vvdx6623AvCNb3yDhx56iP/v//v/+Ou//utX+OjOHaiqyhe+8AXuuusufvSjH3HFFVegqirj4+P8+Mc/5v777+fuu+9mw4YN7Nmzh+uvv57NmzefleQhl8uxb98+LBZLRXvR2tpKPp8nHo8Tj8fp7Oxc5On+QpkVLW31tLTV866/uprhrhhPPXyQp39+eNFIzjxKwkq5L+wSCYNU/OtN8vWVuhUGYdbeaDaI5EN6G6vpMRBeYzDrxZRrRQeF6QInf3sCOKV72N6CNeRmfEJ7P84qHRupy+Px20kKRXL19GdB2xCq0pWokmidFcLXHE6LuK9q55ufKTDQfioEToHmVj/uOg/JmTyTgtbG4TCTlDIx/OYKWTiXrT8XkoWGhoYX/Hu9Xk8gECAQCKCqKqlUikQiwcmTJzl8+DA+n6/SfZBIVKFQ4E//9E8ZGBjgl7/8JV6vV/PvaqihhhrOBrymCUM+n2fv3r2VERqYGyt5y1vewpNPPvkKHtm5hzvuuIP/+I//4IknnmDHjh3A3Cp7IBDgve99L+95z3tIpVL85Cc/4f777+cf//EfaW5urpCHrVu3nhU6h2w2y759+/B6vbS1tS06JpPJRENDAw0NDRQKhcpsc09PD1artUIenE5nVSJUtzbMOz50Be/40BXEByd4+uGDPPnwQU7s7aFcVpkVRk2qrfyLDkk5oeD02EQxdElYJfdHPIz2aQem5YUORzUbVkmIHKr3M9wd13zOYlqs1SgXy/Ts7cYTcpGMT1G3sQ5vS4jkgrwHvUH+XI0L+gBfwCESBmnVv5q2wVOlKyFdb0DObQg5yQgjU4Yq54u64Javwmj3OKPd4xhNOsx2M+dtCFE06OkbmmTm1PsTCjhFu9Wg33LOk4VUKsX/v707j4uq3B84/hn2dViHTQUFd0VRAUXNfUcE1FIzl7K6uWVlZnVNKy3NbouW5S27ab+yTEFNc18pRVRUFFBEXBBkGBbZdzi/P7hMInNG7SqgPu/Xy9dL55yZec6w+HzP83y/39OnT9OyZcu7ChZup1AosLW1xdbWVps0rdFoSE1N5fz589jY2KBSqSgvL6dVq1YAVFRU8MILL5CYmMjBgwdxcHC4w7sIgiA0rIafoTWgzMxMKisr6zTjcXZ2Rq1WN9CoHk7Dhw/n2LFj2mDhdjX/qU6ePJmtW7eSnp7OokWLSEpKYvDgwXTu3Jl//vOfnDx5Ujax9kHLzc3lxIkTuLi40KFDB70BjLGxMW5ubvj4+NC3b188PT0pKiri5MmTHDlyhIsXL5KTk4OkpxEWgFNTe4Je7M+HW17hm5Pv8+KHT+Lk7qBzkit359/SxoIimcmjuZnubVN2TkrZMRXL3dW2k9+CJRd86Aty5KpHWdnKPyczXffWIlvH6hWeGwk3iNt9htQj8dhVldK+jQpTY0Odn6eltZlsN2kzPVWa8mVWcxxVStmmbSZ68gPkciVs7Sxk8xQs9HRkLpOppAXyAY2NvQUFN4tJjLrGlSOXUaTk0tpBiXcrF+xs5L/u/n7tHvpg4dSpU3h5edGsWbP78po1+VD+/v488cQTuLq6cvXqVfz8/OjQoQNz5sxh7NixxMTEsH///ge69XXp0qX4+flhbW2Nk5MTISEhJCQk1DqnpKSEmTNn4uDggJWVFWPGjCE9Pb3WOcnJyQQGBmJhYYGTkxPz5s2jokJ+C5sgCI+ex3qFQbh/+vfvf0/nK5VKJkyYwIQJEygsLGTnzp2EhYURFBSEra0to0aNIiQkBH9//3opx5qZmcnZs2dp2bIl7u7u9/RcIyMjXFxccHFxobKykqysLDQaDadPn8bQ0FC78nCnhnf2zjYMm/IEw6Y8QX52Icf3nCXy9xjO/plARVkllTJVdvRtVSop0n0XX99EXq48qomZ/MQwW52j83F9ibRy1ZuMTeTfp7RAZkKuowTqzdSb3Ey9iYuHI6Y5hTTr3BzMTEm+lk1xURkOTtayk3W5ClaAbOlWfbkNRcW63wfkJ/F2KmtyZJrA6fs+kmscZ2tvKV8tSmVDpvqvbWCVFVVci7sBgFdbJ5oYGuHQ3J6CikquXs/Wdpxu6VU/nY8fhLy8PG2wcK8/83fL1NRUuyp5+fJlwsPDWb58OTdu3MDFxYUlS5YQHBxM3759H0j+x+HDh5k5cyZ+fn5UVFTw9ttvM2TIEOLj47WVmF599VV+//13Nm7ciI2NDbNmzWL06NEcOXIEqN4iGRgYiIuLC0ePHiUtLY3JkydjbGzMhx9+eN/HLAhC4/RYBww1nX5vv5uSnp5eb416hOo7cmPHjmXs2LEUFxezZ88ewsPDefLJJzE3NycoKIiQkBB69uypt7na31VTDalDhw7/89f91gChqqpK20327NmzKBQKVCoVzs7O2NnZ6V3BsLa3ZOD4AAaOD6Aov5iT++KIi7zElbhUSm9rvPV3tirJrVaYmhuTK1NaU46+Skxyq0U1W4ju5TmWSnPZXI18mV4PAFnqHMpLK0iIOA+AoYkhnp2b46CyIi+nSOfWo0KZLTj2jtZkyyR+m+gt66r7OXYqK27K9JUw17PKUVKsOxDU1zjOXmUlGzDo27aVl1tIZlohmak5AFiYGeLe3g0Da1Pcm9nLPq8xy8vLIzo6Gk9PzwcWLNzO1taW2NhYjI2NuXDhAlevXmXr1q1MnTqVwsJCAgMDefbZZxk0aNB9e89du3bV+vfatWtxcnIiOjqaPn36kJuby3fffcf69esZMGAAAN9//z3t2rXj2LFj9OjRgz179hAfH8++fftwdnbGx8eHxYsXM3/+fN59992HOtFdEIS791hvSTIxMaFbt27s379f+1hVVRX79+8nICCgAUf2+DI3Nyc4OJh169ahVqv59ttvqaioYNKkSbRs2ZLZs2ezf/9+ysvlG1Pdi6tXr5KQkICPj899DxINDAxwdHSkffv29OnTR5unERcXx+HDh4mNjSUjI0M2ybmGhbU5fUJ9mb58PGvPfci8b57jidBuWFhX7+eXm/zrSziW2zdv72IrO45SmQRhG0f5MpByZVhrthDpUpSve8y2zvLbqKp7Pegam1WdClKVZZVcPpFE4XUNOTGXaaI0okN7F1yb2mrPyZIJZuwc5evjy1Y0UkBRvkwJW3s99fb17Ga7KZMU7uislB2HvhKtZaXy34NFBbWPlZdUknTqOjkX0yktlUlob8Ty8/M5deoULVq0wMPDo17es6qqijfffJNdu3axb98+WrduzZAhQ1i1ahXXr19n7969NG/enMuXLz/QceTmVt9AsLevDvSio6MpLy+vFaS0bdsWd3d3bR5fZGQk3t7etbbuDh06lLy8POLi4u55DHfapikIQuP0WK8wALz22mtMmTIFX19f/P39+fzzzyksLNRWTRIajomJCSNGjGDEiBF8/fXXREREsHHjRl588UXKysoYOXIkwcHB9O/f/567ykqSxMWLF7WlX5VK+cno/WBgYIC9vT329va0adOG3NxcNBoNFy5coLy8HEdHR22jOH1bsEzNTQgI9CEg0Ify0nJi/rhIbORFLsdep/i2fgf6GsAVy0zKrWzl96vnydydNtfTNE6uDKu+52Sl6+7nYKlnJaVIJjAytpD/LCvKKkGSSI1LITUuBQBHD0fcOjQlr6iS4qLMOs3bTPVMugtlPuvqikv3nishl79gZm7MTZlVIH2N4/RN1HJl8kmUthayeR72ThZERUVhZmamXVVTKpWNsvJZjfz8fKKjo/Hw8KB58+b18p5VVVUsXLiQ8PBwDh06hJeXV63jBgYG+Pn54efn98DH8corr9CrVy86duwIgFqtxsTEBFtb21rn3prHp1ardeb51Ry71zHcurJaWVmp/X0nSVKj/t4RhMfdYx8wjBs3joyMDBYuXIharcbHx4ddu3bV+QUpNCxjY2MGDhzIwIEDWbVqFX/++SebNm1izpw55OfnM2LECIKDgxk0aBDm5vITS6j+TysuLo7c3Fz8/Pz09lN4EG6vqpKfn68t1RobG6ut5+7o6Kg3odTY1JiOvb0os8ilc+DTKArMidp5lqhdZ8nR5OltAJcjM5E3ltlWozBQkC3XNE5mO4u+MqxyXaYVhgqKcnVPlPXmQ8iMzdHZnsxk3cd0JV1nXsvE0sKEa+dvYGVvRdNOHlQaGZF8LYvSkgq9CfmZMmOwd7SWDRj05UpkyXx2js5KUq7W7ZwNYKyncVxxoe4VIkMjAzJlVlTsHS1lA4aOPl707dtLm7Nz6tQpDA0NtZ2Q77Ttrr4VFBQQHR2Nu7s7LVq0qJf3lCSJDz74gJ9++omDBw/SunXrenlfXWbOnElsbCx//vlng7y/JEna74f33nuPmJgYFAoF/fr1Y/bs2SJYEIRG7rEPGABmzZrFrFmzGnoYwl0yNDSkb9++9O3blxUrVnDs2DE2bdrEW2+9xfPPP8/QoUMJCQlh6NCh2sS+Gjk5Oezfv58mTZrg5+d3zysT95tCoUCpVKJUKvHy8qKwsJD09HSuXr1KXFwcDg4OsvXca0rAOjg4aHta+PRpywsfjCUh+ipxRxO5mZ5HRkrtykL68hQkmQmxvbOSrDTdE+IKmcpA+sqwylUTsnNSki3zPnLbqPSViDU0kp9AZ97QXXHJ/L8ViAqyC7hwqHrLhbGZMS27NMfc2ABrG/M6XZv15SLo2wpUKNMF20ppJtsZ2kopvzqjr0RrpkwJWZWLEnVKjs5jFZL81r+mzR0wMjLC2dkZZ2dnqqqqtM3MYmNjqaqq0gYP99LM7EGoCRaaNWuGp6dnvbxnTW+aNWvWcODAAdq3b18v76vLrFmz2L59OxEREbVKx7q4uFBWVkZOTk6tVYZb8/hcXFw4fvx4rderyfu7l22cNQFBUFAQKSkpDBs2jMuXL/P9999jZ2fHM88883cvTxCEetB4bv8Iwt9gYGBAz549+fTTT7l06RIHDhzAy8uL999/n+bNmzNhwgQ2bNhAXl4eqampDBgwgB9++AFfX98GDxZup1AosLKywsvLi4CAAHr27ImtrS0pKSlEREQQHR3N9evXKS0trVUC9vYGeAYGBrTz82TsnKH8O+pdPt75OqNnDcbNs7p8o948hWLdd6GVDvJ5CnKVhvSVYZXLrdBb7rVQZsuPnufIdcBWOlhSLrNvX2FQ905neUk5lyITSTwUS0H8VTwcTGnfwRXVf/Mq7OzlczL0bQWSy5Vw0HNNhjKrM4DeIKNAJmFcqadsqr6bvk1bONb6t4GBgTZ47dOnD126dMHU1JTExEQOHTrEmTNnuHHjxn3LP7pbhYWFREdH07Rp0zrbgR4USZJYsWIFX3zxBbt378bb27te3lfXOGbNmsXmzZs5cOBAnZWVmh4at+bxJSQkkJycrM3jCwgI4Ny5c2g0f/VG2bt3L0ql8p6DoAULFpCamsqOHTtYunQp33zzDc2aNePQoUN//yIFQagXImBoYO+++y4KhaLWn7Zt22qP302NbKFazV7gjz76iAsXLnDkyBE6derEv/71Lzw8POjUqRNGRkasXr26Qe923i0LCwtatGhB9+7d6dWrF46OjqjVaiIiIjh+/Dg2NjY0bdr0jkv5Xp3ceeatIL78YwGf7X+TYVN649HOTee5eTLNyvTttZerxKSvDKvcc0zN5N8nV2aLjr7cBrmqSrYqG9nnZGfpzqEwtzaj4GYRUpXEtTPXiN91moyTF3ExA0dbU1Quljq7V8utIihtzWWrMVlYyn8OpTJBkEIhX6JVXwCibxuTkYHuoFqhgKYe8s3GarbdtWrVip49e9K9e3eUSiXJyckcPnyY6OhokpOTKSmRLzd7PxQWFnLy5EmaNGlSrysLX331FR9//DG7du2ia9eu9fK+usycOZMff/yR9evXY21tjVqtRq1WU1xc/XNhY2PDtGnTeO211zh48CDR0dE8++yzBAQE0KNHDwCGDBlC+/btmTRpEjExMezevZsFCxYwc+bMe7rpotFouHbtGpMnT8bV1ZXKykpsbGwYPXo0cXFxlJWVNVgPHkEQ7kxsSWoEOnTowL59+7T/vrV06J1qZAu6GRgY4OPjg4+PD6GhoQwZMoSWLVtSXFxMu3bt6NevH8HBwYwcORJHR8dGv3/W3NwcDw8PzM3NycvLw9nZmdLSUo4cOaJtyuTk5FRnC9btPNq64dHWjaAX+pN2JYPIHWeI2nmWxNPXMDBUcFOjeyIvl3OgrxKTHCsbCwpk+kbIMTGT30ZlpGfbkVxgYmEtP9ExQnegY6uyoljHaoo6UY2JKWTEqrF1scG1gzulkoJrVzKprKiSzw9wUpKXo/uz0/f9mCuTfG7vZC3bGVpfAFJRLj9Jkysh6+hsg6megPBWNStnVlZWeHp6UlxcrO2SfvHiRe33r0qlwtLS8r79LNasLLi5ueHl5VUvP+OSJLFmzRqWLFnCzp078ff3f+Dvqc/XX38NQL9+/Wo9/v333zN16lQAPvvsMwwMDBgzZgylpaUMHTqUr776SnuuoaEh27dvZ/r06QQEBGBpacmUKVN4//3372ksFhYW9O3bV9uzp+amjampKTdv3sTQ0LBOzotIhBaExkMEDI1ATeOv291NjWxBvwMHDhAaGso///lP5s2bB8ClS5fYtGkTa9eu5ZVXXqF3794EBwczatQonJ2dG+1/UKmpqSQkJODt7a3tDltWVqadfCUlJWFpaYmTkxPOzs53nHy5tlAxeuZgRs8cTGbqTU7ui+XP305x4fhlbWOuGnJbe+z1VGKSK8Nq56SUDRjKSnRvV7F3tUF9RXc+hFxZWn25DQZ6VphyZPb6VynkS4+W/LeiUY46lxz1OQDMleZ4+nlRbmhMcnI2Jbd9HuZ6chtKZLaGGRkbyCZD29pZygYMehu9yQR85pYm5Gbr/vyatZBfXbgTc3Nz3N3dcXd3p6ysjMzMTDQaDZcvX75vFZeKioqIjo7GxcWFli1b1luwsG7dOt555x22bdtGz549H/h73s2Y7sTMzIxVq1axatUq2XM8PDzYsWPH/zQWKysrJk+eXCcXy9HRESMjIyoqKjA0NOTo0aOsXbuWb775ptH+LhaEx5HYktQIJCYm4ubmhqenJxMnTiQ5ORm4uxrZgryNGzcSFBTEypUreeONN7Rbvlq1asVbb73F8ePHuXjxIoGBgWzcuJE2bdowbNgwVq1aRUpKSqOqF3716lUuXryIj4+PNliA6tKzTZo0oUuXLvTt25fmzZtTUFBAVFQUR48eJTExkby8vDtei2MTO4ZNeYIlYXNYc2ox/1g2js592mgrIMlNvPU1jZMrw4qx/Fjyc3Q/x9pWfuWkSCaHQl8+RGWF7sm/vuZw9o7yTcoqS+repS/OK6bgRhYX95ym/HIKXq6WtGvvgs1/czv0zYVuZur+HFTONnVKvdYw09HtuoZcozd925gc9fS9aNLcUfbYvTAxMcHNzQ0fHx/69u1Ly5YtKSkp4dSpU/zxxx+cP3+erKyse9qqUhMsODs706pVq3oLFtavX8/8+fPZsmULffv2feDv+TC4/etmYmJSJ8C3saneHmhqasqxY8cYOnQoKpWq3sYoCMLdESsMDax79+6sXbuWNm3akJaWxnvvvccTTzxBbGzsXdXIFuRZWlqyceNGRowYofO4QqGgRYsWvP7668ydO5eUlBTCw8MJDw/n7bffpmvXroSEhBAcHIyHh0eD3O2SJIlLly6Rmpp6x34RxsbGuLq6avcH19y5PXnyJMbGxtqVBxsbG73XYqtSMnRSL4ZO6kVBThEn9pzj5L44MlKz66w0yJU61VeGVUL35E+hQLZCkrGp/K8quY7RFnqqCckmXTsrZQMGZIIuhQFky0y6za2qA6rKskqSoi799wkKmnVoirmRAmdXG9Jvu2Yzc2PZxmzWthakpejOsaiUCSQA2b4NDk7WZMqsSljq6ZXRtPnfX2GQczcVl1Qqld5eJcXFxURHR+Pk5ETr1q3r7Wd206ZNvPrqq2zatEm7Gvy4u7XHwtmzZ6moqMDLy0sbINTIzs7G0NCQI0eOMGrUKGbOnMkHH3zQEEMWBEEPETA0sOHDh2v/3qlTJ7p3746Hhwe//vrrHfsJCPrJBQq6KBQKmjVrxpw5c3j55ZdRq9Vs3ryZ8PBwFi5ciLe3tzZ4qK8tDlVVVZw/f57s7Gz8/PzumJ9wK0NDQ+3kq7KykuzsbDQaDadPn8bQ0FC77cPW1lZvrXwrWwv6P9Wd/k91p7ighOj9cRzbEcOpA/GUFMknKeorw2phbglk1Hnc1slGNudAruuxqYWJ7EqGkbH8rze5XA1LPRWDigt0r2Q4uNqRmap7Em9gqOP7RJK4Hnudgoxcbqbn4eTphKqlK/kllVy/loXKRcn1KzJ9Fozlv1aFMuPTF4DY2FnIBgxyeSsAze7TCoOcmopLDg4OtG3bltzcXDIyMrS9SmrKDTs6Omq3uBQXF3Py5ElUKlW9BgtbtmxhxowZ/PLLLwwbNqxe3rOxq6qq0gYLEyZM4NSpU1RUVFBaWkp4eHit3A5zc3MuXLhAnz59mDNnDsuWLWuoYQuCoIcIGBoZW1tbWrduzaVLlxg8ePAda2QL959CocDV1ZUZM2Ywffp0srKy2Lp1K5s2beKDDz6gTZs2BAcHExwcXKek6f1SWVlJbGwshYWF+Pn5YWYmf7f3TmqaaalUKtq1a8fNmzdJT0/n3LlzSJKkDR7s7e31Bg/mVmb0Du5G7+BulBaXcebwBWKPJpKckFbnjr3SwVo2YJDLbbBxsJQNGG7f/1/D3sWGtMt1gw+AinI9245kVhj09W2Qa0KndLCSDRiyMnT3ejA2NdLmSmgua9Bcri5ZqXSywdmuKSbGTiRfyaL8tmu4/d+3ylTLby2Sa/RWViZfpUgunwQezAqDnFsbHbZs2ZLCwkI0Gg3JycnEx8dja2uLnZ0dqampqFQq2rRpU2/Bwvbt23nhhRf4v//7P4KCgurlPR8GNb9HnnrqKZKSkvjll1/w8PCge/fuhISE8PXXXxMcHAxU5zCYmZnx8ssvs3jx4oYctiAIeogchkamoKCApKQkXF1d76pGtvBgKRQKHB0dmTZtGjt27ECtVjN37lxiYmJ44okn8PX15b333uPs2bP3rSRgRUUFZ86cobS0FF9f3/8pWLhdzZ3b9u3b06dPHzp37oyBgQHx8fEcPnyY2NhYNBqNbCJxDVNzE7oP68S098fwfcyHLPjxJQY9HYDSvnoVRF8Z1pwM3RNbMz1bYPJk7pBb/Y0VAVs9e/OrKnV/DY1NjWSrNJnqSV42kHTfk7FzVurMK8nT5FKsvknSvhgM1Bm0drehTTsXLP7bTE6uqpKtnQXFMkGVlZ48ExTy/wXIrUrYOljqf80HqKbikqenJz169KB3797Y2dlx9epVbX+SK1euUFBQ8MBzkHbv3s2zzz7Lf/7zH0aPHv1A3+thtG3bNjIyMti4cSNdunThiy++oKioCF9fXyZMmMDWrVsBaNq0KeHh4SJYEIRGTqwwNLDXX3+doKAgPDw8uHHjBosWLcLQ0JAJEybUqpFtb2+PUqlk9uzZtWpkC/VHoVBgZ2fHlClTmDJlCnl5eWzfvp2wsDAGDhyIq6sro0aNIjQ0lC5duui9Wy+nrKyM06dPY2RkRNeuXWuV2L3faq7Hzs6ONm3akJeXR3p6OhcvXqSsrAxHR0fttg994zAyNqRr//Z07d+efywbx/moJOKjklBfy+TmbXv79XWZlmtIpq/cq75eD3K5Dfr6NhTnyyQ8u9iQfk33XXp997LlekdgKB+QVZRX54mUFpZy8c8L1acbG+LVpTlmtmaUFFmSc9s2LDuVNTk3Zbpd69oW9V9Sle7P3NjEUDbvoekD3o50r9RqNa6urnh5eZGVlYVGo+HKlSvaiksqleqOeTv36uDBg0yaNInVq1fz1FNP3bfXfVTU5Cs8/fTTeHp6snr1atasWcOPP/5IQEAAXbp0YerUqXzyySc899xzDBw4sKGHLAjCHYiAoYGlpKQwYcIEsrKyUKlU9O7dm2PHjmmrRNypRrbQcJRKJU8//TRPP/00BQUF7Ny5k/DwcAIDA7G3tycoKIjQ0FD8/PzuqlFcSUkJ0dHRWFtb07Fjx78VcPxdCoUCGxsbbGxsaNWqFQUFBaSnp3P58mXi4uK0e8ZVKhXGxvKTdENDAzr2bEXLrs1w87MiN7WYjIQConaeJT05C3sXW9Ku6N5CJFu61cVWdsuP3IqAvtwGY325DTITfIWR/N1qua07ljYWFMqUj7VX2aO5ojsIKtCxXaqyvJKc65lkHU8ChYIm7Ztg28yRrJxS1DdyMNezolNaovtzBWTzF1QuNtxI1r2dSl/DtvpUWlpKdHQ0tra22q2Bbm5uuLm5aZP+MzIyOH36NAYGBtqtd3Z2dv/Tz9Yff/zB+PHjWbFiBc8884wo/Qns3LlTm483Z84c/P39mThxIk2bNqW8vJzw8HBefvll+vfvT1FREW3btsXR0ZHY2NgGHrkgCHdLITWm2pGC8AgoLi5m9+7dhIeHs23bNiwsLBg1ahQhISEEBATovFuvVqtJTEzEwcHhgeVF/F0FBQVoNBo0Gg0FBQXY29trJ1+311SHv8pa3n4tl2OvczYigQO/RpGSWLdbeZOWzqReqvu4Z6emXD6bonNsLTo25Ups3WOunirZ3Ia2fp5cOHG5zuOmFiay+RXNO7ly9WyazmNO7g5okuuuPjRt7ULKRd3VzNr5e3H+eJLOY6YWxpQW1Q1C5K5V1VxFi26eqDMLSbmWXaeHhspFSYaO/AZbB0tyZDp7t+nYhITYVJ3HXpg7hOFju+k8Vl9qggWlUkmHDh30/rzcWnEpIyODysrKWqtn99L1PTIyktDQUD766CNeeumlRvVz2lCuXLlCr1698Pb2RqVSsWfPHk6dOkXTpk2B6t9t3bp1Y+nSpUyePJnU1FQmTpzIt99+S6tWrRp49IIg3C2xwiAI95m5uTkhISGEhIRQUlLC/v37CQ8PZ+LEiRgaGhIUFERISAhPPPEExsbGREREMGHCBL799lt69+7d6CYht3bpLSoqQqPRcOPGDS5cuICtra02eDAzM6OgoEDbMOv2SjWeHZvh2bEZITMGkZKoJvL3GI7tOMOVuOqJqVzCs5m5fFfmXJlOxH8nt8He2UZ29cPcTPc2JoUCstU5Oo/p2/pUWlyq+zl6ViXk8kIyrmZgZWVKcmwKSpWSJt7ulBkYknwlCwlJttGbvaOVbMBgZCw/ia7PhGddysrK7jpYgLoVl/Ly8tBoNNqKSzUBsEql0hkA1zh58iRjxoxhyZIlIli4RbNmzVi/fj2BgYEYGBhw7tw57cqCsbExLi4uDBo0iBkzZnD48GF2795Nz549RbAgCA8ZkfT8mIuIiCAoKAg3NzcUCgVbtmypdVySJBYuXIirqyvm5uYMGjSIxMTEWudkZ2czceJElEoltra2TJs2jYIC3fufHzdmZmYEBgby3XffkZaWxk8//YSRkRHPP/88np6eBAUFERwczLRp0xgxYkSjn4RYWFjQvHlz/P396d27N05OTmg0Gv78808iIyOJiorC2dn5jmUtm7Zy4clXhvLJnvl8dXQhz74bStNWLvd0/YbGBrJ5Cnr7NshMoK3t5IMMuSpNds42VJTpzkeoaXqnS65MQrGdnoTsvDzd1wp/JYXnZeRx/kCsNmm6vZcDXi1VmJrVDQDM9CRrl5fJb2O6X03b/o6ysjJOnjyJtbX1XQULt6vZeteqVSt69epF9+7dsbW1JSUlhYiICE6ePElycjK5ubWD1zNnzhAcHMyCBQuYPXt2o/85rS+SJGFkZISRkREqlQonJyeeffZZysrKMDY2prS0OjD+8ssvmT17NsXFxUydOpVff/21gUcuCMK9EgHDY66wsJDOnTuzatUqnceXL1/OypUrWb16NVFRUVhaWjJ06FBKSv66Sztx4kTi4uLYu3cv27dvJyIighdffLG+LuGhYWxszKBBg1i9ejUpKSnMmTOHiIgIzM3NWbNmDc8//zzbt2+nuFimcVgjY2Zmhru7O76+vnTq1ImioiLMzMxISUkhKiqKK1euUFgo0+35Fi4ejgS90J9l217j38ffZdriMXQMaKntA1Amk9vg4GJbZ/tNDUnmcRMzY9lVCWMT+dyMvGyZPgaO1rLPqazQnV9haGRQJxm8hr5VCWMj3RN8Q2MDnaszpYWlFKbfJHFvDOWXb9DCyZz27V2w/W8lK32bUXNlOntbWpth72gl/8QHqGZlwcrK6m8FC7pYWVnRokULunfvrg2AMzIyCA4OxsfHh/nz57NhwwZGjhzJvHnzmDt37gMNFu50A2fq1KnajvU1f27v/VAfN3BqKsLVfBY9e/YkOjqadevWodFo6NevH8XFxZiaVq8OWlpa8u6777J+/XqWLFlyX8ciCEL9EAHDY2748OEsWbKE0NDQOsckSeLzzz9nwYIFBAcH06lTJ3744Qdu3Lih/Y/s/Pnz7Nq1izVr1mj/0/3iiy/45ZdfuHHjRj1fzcNj3bp1LF++nLCwMLKysvj9999xcXFh/vz5tGjRgilTprB58+a7mnA3tIyMDGJjY2nbti29evWib9++uLu7k5OTw7Fjxzh69ChJSUnk5+ffsdSlo5sdgc/15f1NL/Pd6cVMXz4e1+aOOrfIWNvJN7IrKdS95cfB1Vb2OXJlcfVN8PWVjy2S6Rht72Ijm6ytb1WiOF/3NVnYmskGTiVl1WOoqqjiysnLxO86TU5MEk2sDbEwBhc32zrPMTBQkClzvQ2V8FwTLFhaWj6wggA1AXC3bt3YsGEDL7zwAseOHeO5555DoVCQk5NDVFTUfSufrMudbuAADBs2jLS0NO2fn3/+udbxB30Dp6qqSvv579u3j//7v/8jPDycwsJCevfuzVdffUVxcTH9+/cnLy+PiooKRo0axYYNG+7bGARBqH8iYBBkXblyBbVazaBBg7SP2djY0L17dyIjI4HqJEBbW1t8fX215wwaNAgDAwOioqLqfcwPg+XLlzN37lx+//13Ro0ahaGhIb169eLTTz8lKSmJffv24enpyXvvvUfz5s15+umn+fXXX/VuSWko6enpnD17lvbt29OkSROgeiXFzc2NLl260LdvXzw9PSkoKOD48eMcOXKExMREcnNz7xg82DhYM3hiT15dNYXvYz7g5RXP4D/UW1tK1VTPZF1uy4+lrfy2o8K/McFX6Jm43pTZLqW0l79DL7cqoVBAtkwjPEdnO9nXMzLUsWoiSaTGpXAp4jzqY+dxMqykQ1sn3Js7oFCAo4uN7Diatqj/7Ujl5eWcOnUKCwuLeqse5uzszODBg0lJSeHVV1/l22+/Ra1WM2LECJo2bcr06dPZs2cPFRXyW7f+Dn03cGqYmpri4uKi/WNn99fXvz5u4NR8/u+++y5Tp05l7dq1LFy4kHHjxrF582b69u3Lp59+SmVlJc2bN8fPz4+0tDQmT558X95fEISGIZKeBVlqdXWFF2dn51qPOzs7a4+p1WqcnJxqHTcyMsLe3l57jvCX3NxcNm3axMGDB+nSpUud4wYGBvj7++Pv78/SpUs5e/YsmzZtYvny5bz00ksMGjSI4OBgAgMD73tt+XuVmppKQkICnTp10pYBvp2RkZF2YlNZWUlWVhbp6emcOnUKIyMjbcK0ra2t3muxtLGg31h/+o31p7iwlFP747h46iqXz6XUWU0wMjGUzW0wNZXfdpSVrrt0q9LeiowU3cfKS3WXVDW3NqNAZluPvkZvcqsStiob2V4U5noa3hUX6k7wru6H8d9O01c0aK781Wm6mXMTrC1NuHY1q0637PpOeC4vLyc6OhozMzO8vb3rrdTw5cuXGTlyJBMmTOBf//oXBgYGjB49mvLyciIiIti8eTNz5szR9kypT4cOHdKWhx0wYABLlizBwaH663KnGzj6ApF78euvv7J69Wo2bNhA3759+fLLL3n99de1n0W/fv0IDw/Xriq8/vrr9+V9BUFoOCJgEIR6ZGNjQ1RU1F1N9A0MDPDx8cHHx4fFixcTHx/Ppk2b+PLLL5k5cyb9+/cnODiYkSNH4uDgUK/BQ3JyMklJSfj4+GBvb39XzzE0NNQGCFVVVdomWzExMSgUiruuk29uaUqvUV3pNaorE98M4kzEBY79HsPJfbEU5BRh72Krs8wpyG87UhgqKMrVveVH30pGgUyzNHtnJan5uifr+sitStiorGQDBvQs1JTk6U7WluuHkafJpUSTQ9KxJMysTPH0aYHCwozka9kUF5XVa8BQs7JgZmZGp06d6i1YuHbtGoGBgYSEhGiDhRrGxsYMHDiwwRqNDRs2jNGjR9OiRQuSkpJ4++23GT58OJGRkRgaGtbbDZyzZ88yYsQI+vbty/bt21mwYAGffvopQUFB5Ofno9Fo8PLyEoGCIDxCRMAgyHJxcQGqt524urpqH09PT8fHx0d7jkajqfW8iooKsrOztc8Xavs7E3uFQkGHDh3o0KEDCxcuJDExkU2bNvGf//yHOXPm8MQTTxAcHExQUBDOzs4PLHiQJIkrV66QnJxM165dsbGx+VuvY2BggEqlQqVS1aqTHxsbiyRJ2oorDg4OeieKJmbG+A/xxn+INxXllcQevUhcZBL7fo7UmdwsV+3I3llJ1o17n5Bnp+fofNxSKb/1qbRY9xgslPKrEuaW8qVl5a7J2NSI/GzdrycZyXearqqsvuCSgls6TZsY4tm5Oc3qKYehoqKC06dPY2JiUq/BQmpqKiNGjGDYsGGsXLmyXpsn3o3x48dr/+7t7U2nTp3w8vLi0KFD9RrEFBcX06pVK2JjY3n66adZvHgxM2bMoKqqil9//ZWioiKmTZuGhYX8z4EgCA+XxvXbUGhUWrRogYuLC/v379c+lpeXR1RUFAEBAQAEBASQk5NDdHS09pwDBw5QVVVF9+7d633MjwOFQkHr1q15++23OXHiBAkJCQwfPpwNGzbQpk0bhg0bxldffUVqauod8wTuhSRJJCYmcv36dXx9ff92sHC7mjr57dq1o0+fPnTu3BkjIyMuXLjA4cOHOXfuHOnp6VRWyk9yobp3gE/fdkx8cyTfnV7M4rCXCZzWt1aic55MboOtSv5aSmU6Ods4WlFarPuYsYn8vRi5DtR2TvJj0JcrIXdNDm62sl9/a2v5PIriororLZVllSTHXMXR9f58zfWpqKjQblnr3LlzvU3aa3IU+vXrx1dffdXoggVdPD09cXR05NKlS8D9v4Fza45Gdna2tkxqv379+Oc//0mnTp347LPPmDNnDlDdrf7XX3/l2rVrIlgQhEdM4/+NKDxQBQUFnDlzhjNnzgDVic5nzpwhOTkZhULBK6+8wpIlS/jtt984d+4ckydPxs3NjZCQEADatWvHsGHDeOGFF7RJrbNmzWL8+PG4ubk13IU9JhQKBZ6ensybN48jR45w+fJlxo4dy7Zt22jXrh0DBw5kxYoVXLt27X8KHiRJ4vz586Snp+Pn54eV1YMpralQKLCzs6NNmzb07t2brl27YmZmxqVLlzh06BAxMTGkpaXdMdnUwMCADj1aMu39MXxz4j0+2j6XkBkDZbcXmZrJ5zbk39Q9wbdVyfdMqJRNklaQLdOgztJGvqSqXK6EoZGB7OtZ2cpXkdK37z4zLVvn487ujg98El2zslDfwYJGoyEwMBB/f3++/fbbe+r+3JBSUlLIysrSrgDfrxs4Bw4cIC0tTft9sm7dOoKCgujcuTNPPvkkVVVVfPbZZxgbG9OkSRMyMjJITEzk6aefJi0tjaVLl97fCxUEocEppPt5C1J46Bw6dIj+/fvXeXzKlCmsXbsWSZJYtGgR33zzDTk5Odqyea1bt9aem52dzaxZs9i2bRsGBgaMGTOGlStXPrBJpXBnkiShVqvZvHkzYWFhRERE0KlTJ0JCQggODsbLy+uuty1VVVURFxdHXl4e3bp1w8xMPsn2QZEkiYKCAjQaDRqNhsLCQhwcHHB2dkalUmFsLD/hv13UwVMc2BRJ6rlsbiRV7+Nv392L+KikOucqFGBobKizOVtbvxZcOHFF53t4tHPj2vm6VWkcXG3Ikql21CGgJXGRl3Qec22uIu1q3ZwDBzdbsm7k6H69Hi2JO6b79Zq3d+NqfN3xGZsZUVFWqbNHg+/gjrz9/Qs6X+9+qAkWanJ36mvSnpmZSWBgIG3btmX9+vX39L10vxUUFGhXC7p06cKnn35K//79sbe3x97envfee48xY8bg4uJCUlISb7zxBvn5+Zw7d07b82D48OGkp6ezevVqysvLefbZZ/H19WX9+vV3NYbY2FiCgoIYN24cb7/9NvHx8fTv35/33nuPgoICkpOTWb9+Pa+88grW1ta89957uLm54eDggLm5Ofv27ROrC4LwCBIBgyA84iRJIjMzky1bthAWFsbBgwdp06aNNnho27atbPBQWVnJ2bNnKS0tpWvXrpiYyCcA16fCwkI0Gg3p6ekUFBRgZ2enDR5qJk66XL9+nUuXLuHj44OdnR2pl9KJ3BHD5XPXObYjps759i42ZKvvfYJv42hFbmbdrUItOjblSmyKzue09W3BhZO6AxBTc2Od25+cWtiiuZKj8znt/D05f/yyzmO2KmudHa9dW6hIu5qp8zndgzsw6Z8j7zlAuxuVlZWcPn0ahUJRr8HCzZs3GTlyJB4eHvz6668N/v2t7wbO119/TUhICKdPnyYnJwc3NzeGDBnC4sWLa1Wyux83cH7++Wc++eQThg0bRllZGdbW1rzzzjtAdYC1Zs0aFi9eTFhYGE2aNOHKlSs4OjrSrVs3vT9/giA8vETAIAiPEUmSuHnzJr/99hthYWHs3bsXT09PRo0aRWhoKB06dNBuA7l58ybTp0/nueeeo3///g1651Wf4uJibfCQl5eHjY0Nzs7OODk51VoNuXr1KleuXKFLly7Y2trWeR3N9SyO7YghckcMF6OvIkmS3gl+667NuXjqap3H5Sb3oH8S797WleQLaXUel5vcA3h2bsLlmFSdx1p0aMKVuLrHTMyMKZPJy2jdtTkXT1/TeWz0a/1p2dNFG6DVVLX6XyeINcECVN9Vr69gITc3V1skIDw8XEx0bxMeHs7HH39Meno6U6ZMYdGiRdpjGRkZTJ8+HZVKxddff92AoxQEob6IHAah0YmIiCAoKAg3NzcUCoW2q3SNqVOnolAoav0ZNmxYrXOys7OZOHEiSqUSW1tbpk2bRkGB7uTQx4lCocDe3p6pU6eybds20tPT+ec//0liYiIDBgzAx8eHd955h3379jF48GDS0tLw9/dvtMECgLm5OR4eHvj7+9O7d29t4ueff/5JVFQUV65cISEhgatXr9KtWzedwQKAUzMHRv1jAEu3vsq30e/zwgdP4tWpGQaGun9Nyjd60/36UJ3DIEeud4S+XAkzc/ntYTk6VjhAf7drI1P53AZvv3b06NGDXr164ejoiFqt5o8//uDEiRNcu3aN4mLdn4c+lZWVnDlzBkmS6jVYyM/PZ/To0djb2xMWFiaCBR1Gjx7NokWLKCgo4Pfff9dulQJQqVQ4OzsTFxfXgCMUBKE+iYBBaHQKCwvp3Lkzq1atkj1n2LBhpKWlaf/8/PPPtY5PnDiRuLg49u7dy/bt24mIiODFF1980EN/6NjY2DBx4kTCwsJIT0/nww8/5NKlS4SGhnL58mV8fX25cOHCHSsUNRZmZmY0a9YMX19f+vTpQ5MmTUhNTSU5ORljY2MyMzPvKnC0d7Zh+NQnmPHxBP5zZgkz/jWBrgPaY2Ty14T2pmyysfz+bbk7+2aWJrLVk8ys5CezpXpKqsoFIPrGJ1XJLzi7tqhuzlcToPn5+fHEE0/g6upKVlYWR44c4dixY1y+fJmCgoI7JtlXVlYSExNDVVVVvQYLhYWFPPnkk5iZmbF58+YGycl5WAwbNoxffvmFwsJCPvvsMxITE7XHMjMzcXR0pLxc9/e0IAiPFtGHQWh0hg8fzvDhw/WeY2pqKlsm8Pz58+zatYsTJ05oO55+8cUXjBgxgn/961+iepMMKysrevTowYIFC3jyyScZO3YsW7duZcyYMVhaWjJq1ChCQkIICAh4KKrIGBsbU1hYSFVVFf7+/tq8hytXrmBubq7dUmNtba03AVxpb8WgCQEMmhBAYV4xJ/fFcmp/PFG7zuo830RPN2n5Rm823LhcN6kZwFBfSdVs+VUEtUwugomeilDFBbqbzRmbGuHoZlvncVNTU5o2bUrTpk0pLy8nMzNT+xmbmZlpP2OlUlnrM64JFioqKujatWu9dUsuLi7mqaeeoqqqit9//x1LS/lKUkK1AQMG8MUXXzBr1iz2799Pr169UCgUREREcPTo0Ua9+igIwv0jAgbhoXTo0CFtV+ABAwawZMkSHByqm0pFRkZia2urDRYABg0ahIGBAVFRUYSGhjbUsBu1ixcvMmjQIAIDA1m1ahUGBgaMHTuWkpIS9u/fT1hYGE8//TRGRkYEBQUREhJC7969G+WEQZIkLly4QGZmJr6+vlhYWGBjY4ObmxsVFRXaie3JkycxMTHRTmxtbGz0Bg+WSnP6jvaj72g/SovLOHUgnmM7qrtMFxdU16iX6yYNkKXO0fl4dQlU3QFDWZnuO7gGhgqy03WvIljbWiDX11eu5CvIb2NydtffQA+qAzRXV1dcXV2prKzUfsanTp2q1eVbqVRy7ty5eg8WSkpKmDBhAsXFxezevRtra+t6ed9HwYABA/jPf/7DhAkTOHDgADNmzGDx4sW1GnoKgvBoEwGD8NAZNmwYo0ePpkWLFiQlJfH2228zfPhwIiMjMTQ0RK1W4+TkVOs5RkZG2Nvbo1bLTaMeb9nZ2fTp04epU6eydOnSWpNmMzMzAgMDCQwMpLy8nEOHDrFp0yaee+45KisrCQoKIjg4mH79+jV4lRmoDhbi4+O5efMmvr6+mJvX7m9gZGSEi4sLLi4uVFZWkpWVhUaj4fTp07UmtnZ2dnqDB1NzEwICfQgI9KG8tJyYiASO7YwhNUmj83xbJ6XsNiFjE/kVG7lVBHsXWzJTb+p+PTP5r0NJQd3GbFC98pArk1xdsx3pbhkaGuLs7IyzszNVVVVkZ2ej0Wg4e/YsFRUVGBkZ0bZt23rrs1BaWsqkSZPIzs5m7969963p4OOkR48e/PTTT7z33ntMmzYNe3v7hh6SIAj1SAQMwkNn/Pjx2r97e3vTqVMnvLy8OHToEAMHDmzAkT287O3t2bx5s7aDtxxjY2MGDx7M4MGDWbVqFX/++ScbN25k5syZFBUVMWLECIKDgxk0aFCD7A2vqqoiNjaWgoICfH197ziGWwOE2ye2CoVCm9xpZ2end3JrbGqM7+CO+A7uSGVFJbFHL3Fsxxmidp/TBgm2jlayAUOlntyB7LQcnY8r7S1lAwZ9+QM5GbrH4OBqK1tS1aW5o+zr3YmBgQGOjo7Y29tTWlpKUVER9vb2JCYmEh8fj0qlwsnJCQcHhwey2lBeXs7UqVNJSUnhwIED2NnZ3ff3eFz07NmTrVu3irwPQXgMiYBBeOh5enri6OjIpUuXGDhwoLZKzq0qKirIzs6WzXsQuGOwcDsjIyP69etHv379WLlyJZGRkYSFhfHGG2+QnZ3NsGHDCAkJYfDgwfWyV7yqqopz585RVFSEr6/vPa921ExsHR0dadu2LTk5OWg0GuLi4qisrNQGD/b29npzOAyNDOncpw2d+7ThhQ+fJOHkFY7tiEGdnKmzWRpAiUzugLm1CcX5uhObzSzkk6HlXs/EzFhnfwgAaztL2YDB7R5XGG5X87UpLS3VVt2SJIn8/Hw0Gg1JSUnExsbi4OCAk5PTfev1UFFRwfPPP09SUhIHDhzQblsU/j4RLAjC40kEDMJDLyUlhaysLO1+2oCAAHJycoiOjqZbt24AHDhwgKqqKrp3796QQ31kGRoa0rt3b3r37s0nn3zCiRMnCAsLY9GiRbzwwgsMGTKE4OBghg8f/kD2jtc0mCsrK8PX1/d/nmwaGBhou+u2adOG3NxcNBoNFy5coLy8HEdHR5ydnXF0dNQbPBgYGNDO34t2/l4AXIpJ5tiOM0T+HkPalb9yFuT6LNg52VCcrzu3AT2NunOz5JOhb33fW+krqXqvW5JuVRMsFBcX061bN+3XRqFQoFQqUSqVtGzZkoKCAjIyMkhOTiY+Pv5/7vVQWVnJ9OnTiY2N5eDBg3W2KQqCIAh3TzRuExqdgoICbc3vLl268Omnn9K/f3/tBO69995jzJgxuLi4kJSUxBtvvEF+fj7nzp3TTiyGDx9Oeno6q1evpry8nGeffRZfX1/Wr1/fkJf22KmqqiImJoZNmzYRHh7O1atXGTRoEKNGjSIwMPCOScZ3o6aWf2VlJV26dHmgSdi33hVPT0+npKQEBwcHbfBwL+997cINbcL05bMpOrcRtfXz5MIJ3Y3evDq7kxSTXOdxY1MjKsoqdb5e664eXDyluzFbu+5esk3l/h21CFWTe9+zXrNFrLCwkG7dut31qk9NMz6NRkNubi5KpVIbPFhYyJeFrVFZWcnLL7/Mn3/+yaFDh2jSpMk9j10QBEH4iwgYhEbn0KFD9O/fv87jU6ZM4euvvyYkJITTp0+Tk5ODm5sbQ4YMYfHixTg7O2vPzc7OZtasWWzbtg0DAwPGjBnDypUrsbKyqs9LEW4hSRJxcXFs2rSJzZs3c+HCBfr3709wcDAjR47E3t7+noOHiooKTp8+jUKhwMfHp94q7kD19RQWFpKeno5Go6GwsBB7e3ucnZ1RqVT3tCXqxmUNx3bG8Odv0VyN/WvbUoceXsQdS9L5HKdm9miuZ9d53NndgfTkLJ3Pad/Di3iZ12veoYnOLVMmpsb8fOnje/7a/N1g4XalpaVkZGSg0WjIzs7G0tISJycnnJ2dsbS0rDOuqqoqXnvtNfbt28fBgwfx8PD4W+8rCIIg/EUEDIIg1DtJkrh48SJhYWGEh4cTExPDE088QUhICEFBQTg5Od1xglpeXs6pU6cwNjamc+fODd4boqioSBs85Ofn3/OWmszMTM6ePYuznRuXT6ZxbEcMVZVVJERfrXOuwkCBoZEBFWV1G+q19HHn0pm6Kw8A7fw9ZVcRbJ2UOrdGNWvtwooDb91x/LeSJInY2Fjy8/P/Vj6JnFt7PWRmZmJqasr58+dp2bIlffr0QaFQ8Oabb/Lbb79x6NAhPD0978v7yomIiODjjz8mOjqatLQ0Nm/eTEhIiPa4JEksWrSIb7/9lpycHHr16sXXX39Nq1attOdkZ2cze/bsWjc3VqxYIW5uCILQqIiAQRCEBiVJEpcvXyYsLIzNmzdz8uRJAgICCA4OZtSoUbi5udUJHtLS0khISMDW1pZOnTrVW3nOu1VcXExGRgbp6enk5uZiY2OjDR5uL/MKkJGRwdmzZ+nQoUOtxPybmjyO7zpL5I4Y4iITqayo7qHg6GZL5o0cne+tdxWhfROuxqfWedzEzJhymW1M/kO9efO75+/msoG/VpLy8vLo1q3b38o/uBs1JXHfeecdbcdmJycnNBoNERERtG/f/oG876127tzJkSNH6NatG6NHj64TMHz00UcsXbqUdevW0aJFC9555x3OnTtHfHy8Nnl4+PDhpKWl8e9//1u7fdLPz09snxQEoVERAYMgCI2GJElcv36d8PBwwsPDOXr0KH5+fgQHBxMcHIy7uzvXr19n2LBhjBgxguXLlze6YOF2paWl2v34N2/exNraWhs8WFpaaoOFjh071tpWd7v8m4Wc2BPLsR1nyM0uIFEmF6F9dy/io3QHDHK9IFxbqGQrJAX/YwBT3gm+iyv9qwdGTk4Ovr6+DyxYuF1xcTHTpk1j9+7d2opco0aNYvTo0fVW4lehUNQKGCRJws3Njblz5/L6668DkJubi7OzM2vXrmX8+PGcP3+e9u3b1+pKv2vXLkaMGEFKSoroSi8IQqPRuP+nFYRGYunSpfj5+WkneyEhISQkJNQ6p6SkhJkzZ+Lg4ICVlRVjxowhPT291jnJyckEBgZiYWGBk5MT8+bNo6Kioj4vpVFTKBS4u7vzyiuvcPjwYZKTk3nmmWfYs2cPnTp1IiAggB49euDh4cEHH3zQ6IMFAFNTU5o1a0a3bt3o06cPTZs2JScnh8jISP744w9iYmJo2bLlHav4WNtZMmBcd95e9w8W/TyDV1dNISDQBzOL2tt9igvvvTGblZ182VuXFnfXg+HWYOFBrizoet8VK1Zw5MgRjh8/Tnp6Olu3bsXOzo7Zs2ejUqkYP348BQW6K0c9KFeuXEGtVjNo0CDtYzY2NnTv3p3IyEjgzl3pBUEQGovG/7+tIDQChw8fZubMmRw7doy9e/dSXl7OkCFDKCws1J7z6quvsm3bNjZu3Mjhw4e5ceMGo0eP1h6vrKwkMDCQsrIyjh49yrp161i7di0LFy5siEtq9BQKBW5ubsycOZP9+/cTGRlJWloaFhYWHD16lH79+rFs2TIuXLigt1FZY2JiYkKTJk3o0qUL7du3p7S0FKVSyaVLlzh69CiJiYnk5ube8XosrMx5IqQb8755ju/Pfsgba6bRd7QvFkpzcrN0BwUOrrayr2uip6Tq3fRgkCSJ8+fPc/PmTbp161ZvtfolSeLzzz/nyy+/ZM+ePXh7e2NoaEivXr345JNPuHz5MhEREXTt2rVeeoHcqqar/O2rRs7Oztpjoiu9IAgPC9GHQRDuwq5du2r9e+3atTg5OREdHU2fPn3Izc3lu+++Y/369QwYMACA77//nnbt2nHs2DF69OjBnj17iI+PZ9++fTg7O+Pj48PixYuZP38+77777n1LDH0UJSYmEhoayvjx4/n888/Jzc1l69athIeHs3z5cry8vBg1ahShoaG0b9++0a88pKenc+HCBTp37oxKpaKyslKbzBsdHY2xsbG2EtCdSs+ampvQY3hnegzvTHlZBeeOXOTYjhiO7zpLXvZfAa2VrXw50srKKtljd+rBIEkSFy5cIDs7+666a98vkiSxatUq/vWvf7F79266dOlS5xyFQkGXLl10HhMEQRDuXuP+X1UQGqnc3FwA7O2ra9NHR0dTXl5ea/tB27ZtcXd3r7X9wNvbu9Ydx6FDh5KXl0dcXFw9jv7hEh8fT9++fZkwYQIrV67E0NAQe3t7nn32WbZt20Z6ejpvvfUWCQkJ9OvXjy5durBo0SJOnz5NVZX8RLihqNVq4uLi8Pb2RqWqnowbGhri7OyMt7c3ffv2pW3bttqSsREREZw/f57s7Ow7Xo+xiRFd+7dnxscT+O7MB7z36yyGT30CexcbTMzke0SUyG1jMjXGwdVW9nk1wUJWVla9ryx8++23fPDBB/z+++/4+/vXy/vei5rk9du3Jaanp2uPia70giA8LMQKgyDco6qqKl555RV69epFx44dgepJoImJCba2trXOvX37ga7tCTXHBN1++OEH/vGPf7Bo0SKdd9ptbGx45plneOaZZ8jPz2fHjh2Eh4czbNgwHB0dGTVqFCEhIfj5+TX4ykNaWhrnz5+nU6dOODrqzg0wNDREpVKhUqlo164dN2/eJD09nXPnziFJEiqVCmdnZ+zt7fVej6GhAd69WuPdqzXPLxlL4ulrHN1+hmM7ztTp3yDXadq5uYPs6oYkSSQkJJCZmYmvr6/O6k8PgiRJrFu3joULF7J9+3Z69uxZL+97r1q0aIGLiwv79+/Hx8cHgLy8PKKiopg+fTogutILgvDwEAGDINyjmTNnEhsby59//tnQQ3ksLF269K6bhllbWzNu3DjGjRtHUVERu3fvJiwsjNDQUKytrRk1ahTBwcEEBATUe9+GmmChc+fOODg43NVzDAwMcHBwwMHBAUmSyMnJIT09nfj4eCorK1GpVDg5OeHg4KD3ehQKBa27Nqd11+ZMXRhC0rnrHPs9hmM7Y8hIyZYNGFyb696OVNNHIyMjo96DhfXr1zN//ny2bt1Knz596uV95dzalR6qE53PnDmDvb29Nnl/yZIltGrVSltW1c3NTVtJqV27dgwbNowXXnhB25V+1qxZjB8/XlRIEgShUREBgyDcg1mzZrF9+3YiIiJo2rSp9nEXFxfKysrIycmptcpw+/aD48eP13q9mu0KYvuBvHvtMFzDwsKC0NBQQkNDKSkpYd++fYSFhTFhwgRMTEwYOXIkoaGh9OrVC2Nj+e0698ONGze0OQt3GyzcTqFQYGdnh52dHW3atCEvLw+NRsPFixcpKyvD0dERJycnHB0d79jx2su7GV7ezZj45khSEtUc/T2GYzti6vRo0JXwLEkSiYmJpKen13uwsHHjRl599VU2bdqkzRVqSCdPnqzVlf61114DqrvSr127ljfeeIPCwkJefPFFcnJy6N27N7t27aq1deunn35i1qxZDBw4sFZXekEQhMZE9GEQhLsgSRKzZ89m8+bNHDp0qFanVqjOaVCpVPz888+MGTMGgISEBNq2bUtkZCQ9evRg586djBw5krS0NG1llG+++YZ58+ah0WjqrQzl4668vJyDBw+yadMmtm7dSlVVFYGBgYSGhtK3b9/7nnyemppKQkICPj4+2pyX+0mSJAoKCrRdpouLi3FwcMDJyQmVSnVPwZD6aibHdsYQuSOGS2eS+cfSpxjyzF9bfiRJ4tKlS6SlpeHr64uFhXwi9f22ZcsWXnzxRX755RdGjhxZb+8rCIIgiIBBEO7KjBkzWL9+PVu3bqVNmzbax21sbLR3WKdPn86OHTtYu3YtSqWS2bNnA3D06FGguqyqj48Pbm5uLF++HLVazaRJk3j++ef58MMP6/+iBCoqKvjjjz/YtGkTW7ZsoaioiMDAQIKDgxk4cOD/nMSbkpLCxYsXH1iwoEthYaE2eCgoKMDe3l7bKO5egqHMGzkYGhlg56QE/goWbty4ga+vb72WKd2+fTvPPvssP/74I6GhofX2voIgCEI1ETAIwl2Q2xbz/fffM3XqVKC6cdvcuXP5+eefKS0tZejQoXz11Ve1thtdu3aN6dOnc+jQISwtLZkyZQrLli274xYS4cGrrKzk6NGjhIWFsXnzZnJychg2bBghISEMHjz4nu+m1wQLXbp0wc7O7gGNWr+ioiJtl+m8vDxsbW21wcO9BEOSJJGUlERqamq9Bwu7d+9m0qRJfPfdd4wbN67e3lcQBEH4iwgYBEEQblNVVcXx48e1wYNarWbIkCEEBwczbNgwrK2t9T7/+vXrXLp0iS5dutSpnNVQSkpKtMFDTk4OSqVS2+vhTnkISUlJpKSk0K1bN6ysrOppxNUVg8aPH8/q1auZOHHi385nEQRBEP43ImAQBEHQo6qqijNnzrBp0ybCw8O5du0agwYNIjg4mBEjRtRprPbFF1/QpEkTBgwY0GiChduVlZVpg4fs7GysrKxwdnbGycmpzurB5cuXSU5OxtfXt16DhYiICJ588klWrFjBs88+K4IFQRCEBiQatwmPhfLyclJSUhp6GPfd0qVL8fPzw9raGicnJ0JCQkhISKh1Tr9+/VAoFLX+vPTSS7XOSU5OJjAwEAsLC5ycnJg3bx4VFRX1eSmNloGBAV27duXDDz/k/PnzHD9+nK5du7Jy5UpatGjBmDFj+OGHH8jKymLx4sUsXrwYlUrVaIMFABMTE5o2bUrXrl3p27cv7u7u5OTkcOzYMY4ePcqlS5fIz89vsGAhMjKSp556iuXLl4tgQRAEoREQKwzCY2H37t3MmzePb775hh49ejT0cO6bYcOGMX78ePz8/KioqODtt98mNjaW+Ph47Z3ifv360bp1a95//33t8ywsLFAqq5NZa5KxXVxc+Pjjj0lLS2Py5Mm88MILIhlbj5rGZWFhYYSHh3PmzBkUCgXTp09n7ty5qFSqh26iW1FRQWZmpnb1QZIkXF1dadasGUqlsl6u58SJEwQHB/P+++8ze/bsh+4zFARBeBSJTEvhsRAeHo63tzfNmzcHqreZNHTX3/th165dtf69du1anJyciI6OrtXUysLCQrbXw549e4iPj2ffvn04Ozvj4+PD4sWLmT9/Pu++++59LzP6qFAoFLRt25Z//vOfGBkZkZSUxKRJkzhx4gStWrUiICCAkJAQRo0ahaur60Mx8TUyMsLFxYWSkhKysrLw9PQkPz+fU6dOYWRkpE2YtrW1fSDXc/r0aUJCQliwYIEIFgRBEBqRh3/GJAh3UFxczOnTp+nYsaN20mxgYMCjuLiWm5sLUKeE508//YSjoyMdO3bkrbfeoqioSHssMjISb29vnJ2dtY8NHTqUvLw84uLi6mfgD7GlS5eyfPlyDh48yBdffEFkZCSXLl0iNDSUzZs307ZtWwYPHswXX3xBcnJyo/++u3btGleuXKFbt254eHjQsWNH+vbtS7t27aioqCAmJoaIiAjOnz9PVlYWVVVV9+V9z507x6hRo5g3bx5z584VwYIgCEIjIrYkCY+8o0eP8uqrrzJixAgqKytp1qwZU6ZMqXPnXJKkh3qSUlVVxahRo8jJyeHPP//UPv7NN9/g4eGBm5sbZ8+eZf78+fj7+xMeHg7Aiy++yLVr19i9e7f2OUVFRVhaWrJjxw6GDx9e79fysPjggw/47LPP2L9/P507d65zXJIkbty4webNmwkLC+PPP//Ex8eH4OBggoOD8fT0bFTfc8nJySQlJdGtWzftlrXbVVVVkZOTo+31IEkSKpUKJycnHBwc/tbKXXx8PCNGjGDGjBksWrSoUX0mgiAIgtiSJDwGNmzYwIkTJ3B2dqZt27Z88MEH/Pbbb6xbt67WnfiaSUrNHdOHbcvSzJkziY2NrRUsQHVAUMPb2xtXV1cGDhxIUlISXl5e9T3MR4qtrS0HDhygU6dOOo8rFAqaNGnCrFmzmDlzJhqNhi1bthAWFsb7779P+/btCQ4OJiQkhNatWzfoRLkmWOjatatssADVPxf29vbY29vTtm1bcnNzSU9P58KFC1RUVODo6IiTkxOOjo4YGhre8X0vXrxIUFAQ06ZNE8GCIAhCIyVWGIRHWmlpKb6+vjRv3pwtW7ZgaGjI2bNn6d27Nz/99BNBQUEAHDlyhLS0NAYOHKhtslWz4lBYWEhmZiYeHh6NdhVi1qxZbN26lYiICFq0aKH33MLCQqysrNi1axdDhw5l4cKF/Pbbb5w5c0Z7zpUrV/D09OTUqVN06dLlAY/+8SNJEtnZ2WzdupXw8HD27duHl5cXwcHBhIaG0q5du3oNWGv6RnTt2hUbG5u/9RqSJJGXl6dNmC4pKdEGDyqVSmdzwqSkJIYPH864ceP4+OOPH7ogXRAE4XEhfjsLj7QzZ85gbm7OtGnTtHc7mzdvTq9evYiMjCQnJ4cpU6bw0ksv8eGHH9K0aVPGjx/PzZs3tYGBWq2mS5cu/PDDDygUivu2Z/t+kCSJWbNmsXnzZg4cOHDHYAHQBgaurq4ABAQEcO7cOTQajfacvXv3olQqad++/QMZ9+NOoVDg4ODAc889x/bt21Gr1bz55pucP3+evn370rVrVxYtWsSZM2ce+PdbSkoKiYmJdOnS5W8HC1B9TTY2NrRq1YqePXvi7++PlZUVV69e5dChQxw+fJiVK1eSnp4OwNWrVxk5ciQhISENEiy8++67dcoNt23bVnu8pKSEmTNn4uDggJWVFWPGjNGOXRAE4XEjAgbhkfbrr78C0K1bN+1jxcXFZGRkUFFRwaeffsq1a9c4cuQIp06d4tixY2RmZrJmzRqgunnUG2+8QVVVFZMnTwYa11almTNn8uOPP7J+/Xqsra1Rq9Wo1WqKi4uB6ju4ixcvJjo6mqtXr/Lbb78xefJk+vTpo91GM2TIENq3b8+kSZOIiYlh9+7dLFiwgJkzZ2JqatqQl/fYsLW1ZdKkSWzevJn09HQWL17MtWvXGDp0KN7e3rz99tscP378vgcPKSkpXLx48b53pFYoFFhbW+Pl5UVAQAABAQGUlpaydu1abQWpJ554gj59+rBy5coG+5nq0KEDaWlp2j+3bud79dVX2bZtGxs3buTw4cPcuHGD0aNHN8g4BUEQGprYkiQ8ssrLy+natSslJSUkJiZqHz906BDDhw/nk08+4dtvvyUuLo4ZM2YQFBTEwIEDWbZsGQcOHGDPnj3s27ePkSNHAuDi4sLUqVN57bXXau3xliRJW6ZV13alB7mNSe51v//+e6ZOncr169d55plniI2NpbCwkGbNmhEaGsqCBQtqXcO1a9eYPn06hw4dwtLSkilTprBs2TKd20iE+lNUVMSuXbsICwvj999/R6lUMmrUKIKDg+nRo8dd5QjISU1NJSEhgS5dumi34dWHP//8k/Hjx2NkZER2djY9e/ZkzJgxjB49mmbNmtXbON599122bNlSaytejdzcXFQqFevXr2fs2LEAXLhwgXbt2hEZGflI9XIRBEG4G2I2IDyyTp8+TVZWFs7Ozvz0009MnDiRqKgoPv/8czp06ECTJk04f/48mzdv5qeffuKZZ57BwMAAAwMDWrduTXZ2Ni1btqRZs2Y8//zzNG/enF27dpGQkIC3tzdRUVG4u7vTokULvRO3W5Op7/ed1DvF+82aNePw4cN3fB0PDw927Nhxv4Yl3CcWFhaMHj2a0aNHU1JSwt69ewkLC2PcuHGYmpoSFBREaGgovXr1uqfg7saNGyQkJODj41OvwYJGo2HOnDkMHz6cH374AY1Go60g9frrr9OlSxfmzJnDxIkT62U8iYmJuLm5YWZmRkBAAEuXLsXd3Z3o6GjKy8sZNGiQ9ty2bdvi7u4uAgZBEB5LYoVBeGTl5+dz+vRpEhMT+fTTT1EoFJSUlODm5saqVas4efIkH374oXb1IT8/nz/++IPdu3djbW3NkiVL+PHHH5kxYwaXLl3CyclJ+9q///47P/74IwcOHECpVPLKK68wbdo0zMzMtCsKaWlpbN26lTZt2tC/f/+G+hiER1BZWRkHDx5k06ZNbN26FYDAwEBCQ0Pp06eP3mZ7aWlpnD9/Hh8fnzr9Oh6kzMxMAgMDadeuHevXr68T4GRmZrJ161ZsbW0ZM2bMAx/Pzp07KSgooE2bNqSlpfHee++RmppKbGws27Zt49lnn6W0tLTWc/z9/enfvz8fffTRAx+fIAhCYyICBuGxoNFo2LBhA+bm5owdOxZbW1sOHjzIxIkTWbZsmTY/4VaFhYXMmjWL+Ph4oqKiqKio0E5y1Go1pqamlJeXs3nzZj755BNWrVrF4MGDtSsJP/30E+vWrePChQtkZmbyn//8h/Hjx9f3pQuPuIqKCiIiIti0aRNbtmyhpKSEwMBAQkJC6N+/P2ZmZtpz//3vf3P16lVef/11HBwc6m2MN2/eZOTIkXh4ePDrr782yu7hOTk5eHh48Omnn2Jubi4CBkEQhFs0nuxNQXiAnJycmD17Ns8//7w2ubN///5MmzaNTz75hHfffZfjx4/z+++/c/78eaC6Ln1kZKR2kl9ZWQlUT9BKSko4f/48Tk5O/OMf/2DEiBF8+umnwF9J0YGBgXz11Ve8/PLLqFQqHB0dARpVlaUH6euvv6ZTp04olUqUSiUBAQHs3LlTe/xuqtAkJycTGBiIhYUFTk5OzJs3j4qKivq+lEbNyMiIAQMG8NVXX3H9+nW2bNmCvb09r776Ki1atOC5557jt99+Y9WqVbz11lv4+/vXa7CQm5tLcHAwbm5ubNiwoVEGC1CdeN66dWsuXbqEi4sLZWVl5OTk1DonPT1d2y1eEAThcSICBuGx9s477/DKK6+wZ88exo0bx3fffUdqaipQvUXi4sWL2u0RNXkKL774IqGhoTz//PM4OTkREhJCTEwMJSUlwF+Bha2tLS1btkSj0eDk5MSAAQOAxlVl6UFq2rQpy5YtIzo6mpMnTzJgwACCg4OJi4sD7lyFprKyksDAQMrKyjh69Cjr1q1j7dq1LFy4sKEuqdEzNDSkT58+rFixgqtXr7J7926aNm3KnDlzeOONN+jcuTOVlZUUFBTUy3jy8/MJDQ3F3t6esLCwRl11q6CggKSkJFxdXenWrRvGxsbs379fezwhIYHk5GQCAgIacJSCIAgNRBIEQZIkSSopKZEuXrwoFRUVSZIkSZGRkZKzs7MUERGhPefYsWOSQqGQfvzxR+nixYvSkSNHpLlz50oKhUL68ssvJUmSpKqqKqmqqkqSJEmKjY2VBg8eLM2YMUOSJEmqrKys56tqXOzs7KQ1a9ZIOTk5krGxsbRx40btsfPnz0uAFBkZKUmSJO3YsUMyMDCQ1Gq19pyvv/5aUiqVUmlpab2P/WG1adMmycLCQvr888+lN998U2rdurVkbm4uBQUFSWvWrJFu3LghFRQUSIWFhff1j0ajkXr37i3169dPKiwsbOiPoY65c+dKhw4dkq5cuSIdOXJEGjRokOTo6ChpNBpJkiTppZdektzd3aUDBw5IJ0+elAICAqSAgIAGHrUgCELDeDxudQrCXTA1NaVVq1aYm5sD1VVRnnnmGfr27cugQYNQq9VcvnwZExMTRowYoW1QFRgYiEKhoFevXkDtUqexsbGkpKRoO0o/riorK/nll18oLCwkICDgjlVoACIjI/H29sbZ2Vl7ztChQ8nLy9OuUgj6bdmyhcmTJ/PLL78wZ84cli5dyoULF4iKisLHx4fPP/+c5s2bM3bsWH744Qeys7PvWHnrbhQXF/PUU08BsG3bNiwsLP7n17zfUlJSmDBhAm3atOGpp57CwcGBY8eOoVKpAPjss88YOXIkY8aMoU+fPri4uBAeHt7AoxYEQWgYIulZEO5AkiSOHj1Kx44dycnJYfTo0Xh4ePDKK69w5MgRVqxYQYsWLThw4IA22AAoLS1l0aJF7Nmzh2PHjjXavdsP0rlz5wgICKCkpAQrKyvWr1/PiBEjWL9+/R2TSl988UWuXbvG7t27tceLioqwtLRkx44dDB8+vL4v56Gya9cuxowZw/r16wkODtZ5jiRJXLhwgU2bNrF582ZiY2Pp06cPISEhjBw5EpVKdc89REpKShg/fjz5+fns2rXrf+oeLQiCIDQOYoVBEO6gZvXAxsYGDw8PVq5cSUVFBTNnzsTc3ByNRsOoUaO0wUJNDH716lXOnDmDv78/JiYm2tyGx0mbNm04c+YMUVFRTJ8+nSlTphAfH9/Qw3ostG/fng0bNsgGC1D9vd2uXTveeecdoqOjiY+PZ/Dgwfzf//0frVq1YsSIEaxevZobN27c1cpDaWkpkyZNIjs7mx07dohgQRAE4REhGrcJwj3q1asXv/32G1B9xzs+Pr7W3e7jx4/Trl074uLiSE1NZfbs2YB8V+ZHmYmJCS1btgSgW7dunDhxghUrVjBu3DhtFZqaqlVQuwqNi4sLx48fr/V6NVWURKWaO3N3d8fd3f2uz1coFLRs2ZL58+fzxhtvkJycTFhYGOHh4cyfPx9/f39tl+lmzZrV+X4uLy9n6tSppKamsn///nptCCcIgiA8WGKFQRD+BxYWFnzzzTf4+PgA1bXcX375ZVxdXZk1axYZGRm0a9cOeHyqI+lTVVVFaWnpXVWhCQgI4Ny5c2g0Gu05e/fuRalU0r59+3of++NEoVDg4eHBa6+9xh9//MHVq1cZP348u3btwtvbm/79+/PZZ59x+fJlJEmioqKC559/nqSkJPbu3VuvZVsFQRCEB0/kMAjCAxAREcGGDRvYvHkzarWaKVOmsGbNGm1p1sfBW2+9xfDhw3F3dyc/P5/169fz0UcfsXv3bgYPHsz06dPZsWMHa9euRalUaldijh49ClQnSvv4+ODm5sby5ctRq9VMmjSJ559/ng8//LAhL+2xJUkS6enpbNmyhfDwcA4dOkS7du1QKBQUFRUREREhVn8EQRAeQSJgEIQH7PDhw6SlpT12XZ6nTZvG/v37SUtLw8bGhk6dOjF//nwGDx4MVCfHzp07l59//pnS0lKGDh3KV199VWvCee3aNaZPn86hQ4ewtLRkypQpLFu2TNtxW2g4kiSRnZ3N+vXrWbZsGYcPH9ZuPxMEQRAeLSJgEARBEARBEARBlthULQiCIAiCIAiCLBEwCIIgCIIgCIIgSwQMgiA8dr7++ms6deqEUqlEqVQSEBDAzp07tcf79euHQqGo9eell16q9RrJyckEBgZiYWGBk5MT8+bNo6Kior4vRRAEQRAeOJE5KAjCY6dp06YsW7aMVq1aIUkS69atIzg4mNOnT9OhQwcAXnjhBd5//33tcywsLLR/r6ysJDAwEBcXF44ePUpaWhqTJ0/G2NhYVHASBEEQHjki6VkQBAGwt7fn448/Ztq0afTr1w8fHx8+//xznefu3LmTkSNHcuPGDZydnQFYvXo18+fPJyMjAxMTk3ocuSAIgiA8WGJLkiAIj7XKykp++eUXCgsLtU3jAH766SccHR3p2LEjb731FkVFRdpjkZGReHt7a4MFgKFDh5KXl0dcXFy9jv9xtmrVKpo3b46ZmRndu3ev0xlcEARBuD/EliRBEB5L586dIyAggJKSEqysrNi8ebO2g/TTTz+Nh4cHbm5unD17lvnz55OQkEB4eDgAarW6VrAAaP+tVqvr90IeUxs2bOC1115j9erVdO/enc8//5yhQ4eSkJCAk5NTQw9PEAThkSK2JAmC8FgqKysjOTmZ3NxcNm3axJo1azh8+LA2aLjVgQMHGDhwIJcuXcLLy4sXX3yRa9eusXv3bu05RUVFWFpasmPHDoYPH16fl/JY6t69O35+fnz55ZcAVFVV0axZM2bPns2bb77ZwKMTBEF4tIgtSYIgPJZMTExo2bIl3bp1Y+nSpXTu3JkVK1boPLd79+4AXLp0CQAXFxfS09NrnVPz71s7VQsPRllZGdHR0QwaNEj7mIGBAYMGDSIyMrIBRyYIgvBoEgGDIAgC1XeoS0tLdR47c+YMAK6urgAEBARw7tw5NBqN9py9e/eiVCp1rlAI91dmZiaVlZU6t4WJLWGCIAj3n8hhEAThsfPWW28xfPhw3N3dyc/PZ/369Rw6dIjdu3eTlJTE+vXrGTFiBA4ODpw9e5ZXX32VPn360KlTJwCGDBlC+/btmTRpEsuXL0etVrNgwQJmzpyJqalpA1+dIAiCINxfImAQBOGxo9FomDx5MmlpadjY2NCpUyd2797N4MGDuX79Ovv27ePzzz+nsLCQZs2aMWbMGBYsWKB9vqGhIdu3b2f69OkEBARgaWnJlClTavVtEB4cR0dHDA0NdW4LE1vCBEEQ7j+R9CwIgiA8dLp3746/vz9ffPEFUL2lzN3dnVmzZomkZ0EQhPtMrDAIgiAID53XXnuNKVOm4Ovri7+/v3ZF6Nlnn23ooQmCIDxyRMAgCIIgPHTGjRtHRkYGCxcuRK1W4+Pjw65du+okQguCIAj/O1ElSRAEoRFbtmwZCoWCV155RftYSUkJM2fOxMHBASsrK8aMGVNnP39ycjKBgYFYWFjg5OTEvHnzqKioqOfRP1izZs3i2rVrlJaWEhUVpS1/KwiCINxfImAQBEFopE6cOMG///1vbXWmGq+++irbtm1j48aNHD58mBs3bjB69Gjt8crKSgIDAykrK+Po0aOsW7eOtWvXsnDhwvq+BEEQBOERIJKeBUEQGqGCggK6du3KV199xZIlS/Dx8eHzzz8nNzcXlUrF+vXrGTt2LAAXLlygXbt2REZG0qNHD3bu3MnIkSO5ceOGdovO6tWrmT9/PhkZGZiYmDTkpQmCIAgPGbHCIAiC0AjNnDmTwMDAWt2MAaKjoykvL6/1eNu2bXF3d9d2OY6MjMTb27vWfv6hQ4eSl5dHXFxc/VyAIAiC8MgQSc+CIAiNzC+//MKpU6c4ceJEnWNqtRoTExNsbW1rPX5rl2O1Wq2zC3LNMUEQBEG4FyJgEARBaESuX7/OnDlz2Lt3L2ZmZg09HEEQBEEQW5IEQRAak+joaDQaDV27dsXIyAgjIyMOHz7MypUrMTIywtnZmbKyMnJycmo979Yuxy4uLjq7INccEwRBEIR7IQIGQRCERmTgwIGcO3eOM2fOaP/4+voyceJE7d+NjY3Zv3+/9jkJCQkkJycTEBAAQEBAAOfOnUOj0WjP2bt3L0qlkvbt29f7NQmCIAgPN7ElSRAEoRGxtramY8eOtR6ztLTEwcFB+/i0adN47bXXsLe3R6lUMnv2bAICAujRowcAQ4YMoX379kyaNInly5ejVqtZsGABM2fOxNTUtN6vSRAEQXi4iYBBEAThIfPZZ59hYGDAmDFjKC0tZejQoXz11Vfa44aGhmzfvp3p06cTEBCApaUlU6ZM4f3332/AUQuCIAgPK9GHQRAEQRAEQRAEWSKHQRAEQRAEQRAEWSJgEARBEARBEARBlggYBEEQBEEQBEGQJQIGQRAEQRAEQRBkiYBBEARBEARBEARZImAQBEEQBEEQBEGWCBgEQRAEQRAEQZAlAgZBEARBEARBEGSJgEEQBEEQBEEQBFkiYBAEQRAEQRAEQZYIGARBEARBEARBkCUCBkEQBEEQBEEQZImAQRAEQRAEQRAEWSJgEARBEARBEARBlggYBEEQBEEQBEGQJQIGQRAEQRAEQRBkiYBBEARBEARBEARZImAQBEEQBEEQBEGWCBgEQRAEQRAEQZAlAgZBEARBEARBEGSJgEEQBEEQBEEQBFn/D7wxG5kX4HLMAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 315 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T22:15:24.998641Z", - "start_time": "2024-06-09T22:15:24.512492Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "from torch.utils.data import DataLoader, TensorDataset, random_split\n", @@ -865,53 +915,11 @@ "plt.show()" ], "id": "b74ce22a367906f2", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-1.0000, -1.0000],\n", - " [-0.9592, -1.0000],\n", - " [-0.9184, -1.0000],\n", - " [-0.8776, -1.0000],\n", - " [-0.8367, -1.0000]])\n", - "tensor([[-1.0000],\n", - " [-0.9990],\n", - " [-0.9990],\n", - " [-0.9990],\n", - " [-0.9990]])\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAK9CAYAAAAjXS2jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACClklEQVR4nO3deXwU5eHH8e/s5gaSgAECFUGOciiIQkEoKkpqEKrSWpWKchShHqiIF7TKISpeVao/qpbK4VWtikerogii1SIogloFipZLJJyFGI6Q7Dy/Pyhb1gTI8yS7m00+79drX5rZ557ZYZ55nnnGM8YYAQAAAACsBeJdAAAAAABIVHSoAAAAAMARHSoAAAAAcESHCgAAAAAc0aECAAAAAEd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhAgAAAABHdKgA1CpDhw5VixYt4l2MCEVFRbr88suVm5srz/M0evToeBcpLhYuXCjP87Rw4cLwtnjsr7Vr18rzPM2aNavK0jzcPt68ebN+8Ytf6JhjjpHneZo6dapmzZolz/P08ccfV1n+AIDooUMFoIyjXdD17t1bJ554YlTL8Prrr2vixIkVDt+7d295nhf+NGjQQD/60Y80Y8YM+b5fJWW666679PLLL1dJWt9Pd9asWbryyiv15JNP6rLLLjts2BYtWsjzPF1zzTVlvjvYIXnhhReqvIyonMPt4+uvv15vvvmmxo0bpyeffFJ9+/aNSv62vycAQMUlxbsAAFCe119/XdOmTbO6CDz22GM1ZcoUSdLWrVv1xBNPaPjw4frXv/6lu+++u9Jluuuuu/SLX/xCAwYMqHRah1qwYIFOPfVUTZgwocJxpk+frnHjxqlp06ZVWpbqZvr06VXWIY6nw+3jBQsW6Pzzz9eNN94Y3vbhhx9Wef4uvycAQMUwQgWgxsjKytKll16qSy+9VNdff70++OADHXvssfq///s/lZSUxLt4h7VlyxZlZ2dXOPwJJ5ygUChUJZ3EI9m9e3dU06+I5ORkpaamxrsYlXa4fWy77wEA1Q8dKgBV5qmnnlKXLl2Unp6uBg0aaODAgdqwYUNEmL///e+68MILddxxxyk1NVXNmjXT9ddfr71794bDDB06VNOmTZOkiGl8tjIyMnTqqadq9+7d2rp162HD7d69WzfccIOaNWum1NRUtW3bVvfff7+MMeEwnudp9+7dmj17drg8Q4cOPWL+W7Zs0fDhw9W4cWOlpaXppJNO0uzZs8PfH5yit2bNGr322mvhdNeuXXvEdFu0aKHBgwdr+vTp+vbbb4/aDsuWLdM555yjzMxM1a1bV3369CkzCnJwmue7776rq666So0aNdKxxx4r6X9TPD/77DOdccYZysjIUOvWrcNTC9999111795d6enpatu2rd5+++2ItNetW6errrpKbdu2VXp6uo455hhdeOGFR62nVPYZqu9P7Tz0c+gzTzt37tTo0aPD+7R169a65557yox27dy5U0OHDlVWVpays7M1ZMgQ7dy586jlqmg+h9vHB9vbGKNp06aVe4zv2bNHv/71r3XMMccoMzNTgwcP1n/+858yZXjjjTd02mmnqU6dOqpXr5769++vL774IqINj/R7uv/++9WzZ08dc8wxSk9PV5cuXZg2CgAWmPIH4LB27dqlbdu2ldle3mjPnXfeqdtuu00XXXSRLr/8cm3dulUPP/ywTj/9dC1btix8F/7555/Xnj17dOWVV+qYY47RkiVL9PDDD+ubb77R888/L0n69a9/rW+//Vbz5s3Tk08+Wak6/Pvf/1YwGDzsKIAxRuedd57eeecdDR8+XJ07d9abb76pm266SRs3btSDDz4oSXryySd1+eWXq1u3bho5cqQkqVWrVofNd+/everdu7e++uorjRo1Sscff7yef/55DR06VDt37tR1112n9u3b68knn9T111+vY489VjfccIMkqWHDhket129/+1s98cQTuvvuu/XQQw8dNtwXX3yh0047TZmZmbr55puVnJysxx57TL179w53hA511VVXqWHDhho/fnzECNV//vMf/fSnP9XAgQN14YUX6pFHHtHAgQP19NNPa/To0briiit0ySWX6L777tMvfvELbdiwQfXq1ZMkffTRR/rHP/6hgQMH6thjj9XatWv1yCOPqHfv3vryyy+VkZFx1PoeWu/LL788YttTTz2lN998U40aNZJ0oCNyxhlnaOPGjfr1r3+t4447Tv/4xz80btw4bdq0SVOnTpV0YN+ff/75ev/993XFFVeoffv2eumllzRkyJAKlaUi+RxuH5988snhZ6l+8pOfaPDgwWXSHzVqlLKzszVx4kStWrVKjzzyiNatWxfupEkHjsshQ4YoPz9f99xzj/bs2aNHHnlEvXr10rJly9SiRYuj/p5+//vf67zzztOgQYO0f/9+Pfvss7rwwgv1t7/9Tf3796/wvgGAWssAwPfMnDnTSDri54QTTgiHX7t2rQkGg+bOO++MSOfzzz83SUlJEdv37NlTJr8pU6YYz/PMunXrwtuuvvpqY3OKOuOMM0y7du3M1q1bzdatW82KFSvMtddeaySZc889NxxuyJAhpnnz5uG/X375ZSPJ3HHHHRHp/eIXvzCe55mvvvoqvK1OnTpmyJAhFSrP1KlTjSTz1FNPhbft37/f9OjRw9StW9cUFhaGtzdv3tz079+/QukeGnbYsGEmLS3NfPvtt8YYY9555x0jyTz//PPh8AMGDDApKSnm66+/Dm/79ttvTb169czpp58e3nZwn/fq1cuUlpZG5HnGGWcYSeaZZ54Jb1u5cqWRZAKBgPnwww/D2998800jycycOTO8rbx9vmjRIiPJPPHEE+FtB8v/zjvvhLd9f3993wcffGCSk5PNr371q/C2yZMnmzp16ph//etfEWHHjh1rgsGgWb9+vTHmf/v+3nvvDYcpLS01p512Wpk6lKei+Rhz+H0syVx99dUR2w7uiy5dupj9+/eHt997771GknnllVeMMcZ89913Jjs724wYMSIifkFBgcnKyorYfqTf0/f3z/79+82JJ55ozjrrrCNVHwDwX0z5A3BY06ZN07x588p8OnXqFBFuzpw58n1fF110kbZt2xb+5Obmqk2bNnrnnXfCYdPT08P/v3v3bm3btk09e/aUMUbLli2rVHlXrlyphg0bqmHDhmrfvr0efvhh9e/fXzNmzDhsnNdff13BYFDXXnttxPYbbrhBxhi98cYbTmV5/fXXlZubq1/+8pfhbcnJybr22mtVVFSkd9991yndQ916660qLS097LNUoVBIb731lgYMGKCWLVuGtzdp0kSXXHKJ3n//fRUWFkbEGTFihILBYJm06tatq4EDB4b/btu2rbKzs9W+ffuIUa6D///vf/87vO3QfV5SUqLt27erdevWys7O1ieffGJZ6/8pKCjQL37xC3Xu3Fl/+MMfwtuff/55nXbaaapfv37E8ZiXl6dQKKT33ntP0oF9lJSUpCuvvDIcNxgMlruCYnkqmo+rkSNHKjk5Ofz3lVdeqaSkJL3++uuSpHnz5mnnzp365S9/GZF/MBhU9+7dI353R3Lo/vnPf/6jXbt26bTTTqvUvgGA2oQpfwAOq1u3buratWuZ7QcvIA9avXq1jDFq06ZNuekcelG4fv16jR8/Xq+++mqZ50F27dpVqfK2aNFC06dPl+d5SktLU5s2bcLTwA5n3bp1atq0aXh62kHt27cPf+9i3bp1atOmjQKByPtWlU33UC1bttRll12mP/7xjxo7dmyZ77du3ao9e/aobdu2Zb5r3769fN/Xhg0bdMIJJ4S3H3/88eXmdeyxx5Z5xicrK0vNmjUrs01SxL7du3evpkyZopkzZ2rjxo0Rz6a57vPS0lJddNFFCoVCmjNnTsTCFatXr9Znn3122KmTW7ZskXRgHzRp0kR169aN+L689ipPRfNx9f3fU926ddWkSZPws2erV6+WJJ111lnlxs/MzKxQPn/72990xx13aPny5SouLg5vd3luEQBqIzpUACrN9315nqc33njjsKMb0oERk5/85CfasWOHbrnlFrVr10516tTRxo0bNXTo0Eovj12nTh3l5eVVKo1E89vf/lZPPvmk7rnnnipZzv3Q0YpDlbdfj7T90E7TNddco5kzZ2r06NHq0aOHsrKy5HmeBg4c6LzPb7rpJi1atEhvv/12ePGMg3zf109+8hPdfPPN5cb94Q9/6JTn98UqnyPlLx14jio3N7fM90lJR/8n/u9//7vOO+88nX766frDH/6gJk2aKDk5WTNnztQzzzxT5WUGgJqIDhWASmvVqpWMMTr++OOPeBH5+eef61//+pdmz54d8RD+vHnzyoSN1d3x5s2b6+2339Z3330XMUq1cuXK8PcuZWrevLk+++wz+b4fMUpVXrqV0apVK1166aV67LHHyiww0bBhQ2VkZGjVqlVl4q1cuVKBQKDMCFM0vPDCCxoyZIh+97vfhbft27fPajW9Qz377LOaOnWqpk6dqjPOOKPM961atVJRUdFRO9fNmzfX/PnzVVRUFDFKVV57laei+bhavXq1zjzzzPDfRUVF2rRpk/r16xfOX5IaNWp01DIc7th98cUXlZaWpjfffDNilG/mzJmVLT4A1Bo8QwWg0n7+858rGAxq0qRJESMT0oGRiu3bt0v632jGoWGMMfr9739fJs06depIkvNFd0X169dPoVBI//d//xex/cEHH5TneTrnnHMiylTR8vTr108FBQV67rnnwttKS0v18MMPq27duuV2BFzdeuutKikp0b333huxPRgM6uyzz9Yrr7wSsUT55s2b9cwzz6hXr14VnhZWGcFgsMxx8fDDDysUClmn9c9//lOXX365Lr30Ul133XXlhrnooou0aNEivfnmm2W+27lzp0pLSyUd2EelpaV65JFHwt+HQiE9/PDDFSpLRfNx9cc//jFiRc1HHnlEpaWl4WMyPz9fmZmZuuuuu8pdefPQVwUc7vcUDAbleV7Evli7dq1efvnlSpUdAGoTRqgAVFqrVq10xx13aNy4cVq7dq0GDBigevXqac2aNXrppZc0cuRI3XjjjWrXrp1atWqlG2+8URs3blRmZqZefPHFct+t06VLF0nStddeq/z8fAWDwYhFEarKueeeqzPPPFO//e1vtXbtWp100kl666239Morr2j06NERS6N36dJFb7/9th544AE1bdpUxx9/fJlRoYNGjhypxx57TEOHDtXSpUvVokULvfDCC/rggw80derUMs9sVcbBUapD33F10B133KF58+apV69euuqqq5SUlKTHHntMxcXFZTpg0fLTn/5UTz75pLKystShQ4fwVL1jjjnGOq1hw4ZJkk4//XQ99dRTEd/17NlTLVu21E033aRXX31VP/3pTzV06FB16dJFu3fv1ueff64XXnhBa9euVU5Ojs4991z9+Mc/1tixY7V27Vp16NBBc+bMqfBzXRXNx9X+/fvVp08fXXTRRVq1apX+8Ic/qFevXjrvvPMkHXhG6pFHHtFll12mU045RQMHDlTDhg21fv16vfbaa/rxj38cvlFwuN9T//799cADD6hv37665JJLtGXLFk2bNk2tW7fWZ5995lx2AKhV4rS6IIBq7OCyzR999FG5359xxhkRy6Yf9OKLL5pevXqZOnXqmDp16ph27dqZq6++2qxatSoc5ssvvzR5eXmmbt26Jicnx4wYMcJ8+umnZZapLi0tNddcc41p2LCh8TzvqEuoH65M31feMtzfffeduf76603Tpk1NcnKyadOmjbnvvvuM7/sR4VauXGlOP/10k56ebiQddQn1zZs3m2HDhpmcnByTkpJiOnbsWO5S3K7Lph9q9erVJhgMllk23RhjPvnkE5Ofn2/q1q1rMjIyzJlnnmn+8Y9/RIQ50j4/XNtWdCnw//znP+F2qFu3rsnPzzcrV640zZs3j2jDiiyb3rx588Mu5X9o23733Xdm3LhxpnXr1iYlJcXk5OSYnj17mvvvvz9iKfLt27ebyy67zGRmZpqsrCxz2WWXmWXLllVo2XSbfFyWTX/33XfNyJEjTf369U3dunXNoEGDzPbt28uk8c4775j8/HyTlZVl0tLSTKtWrczQoUPNxx9/HA5zpN/T448/btq0aWNSU1NNu3btzMyZM82ECROsXlsAALWZZ8z35mEAAAAAACqEZ6gAAAAAwBEdKgAAAABwRIcKAAAAABwlVIfqvffe07nnnqumTZvK87wKLeu6cOFCnXLKKUpNTVXr1q01a9asMmGmTZumFi1aKC0tTd27d9eSJUuqvvAAAABAAuNavHwJ1aHavXu3TjrpJE2bNq1C4desWaP+/fvrzDPP1PLlyzV69GhdfvnlEe8Mee655zRmzBhNmDBBn3zyiU466STl5+dry5Yt0aoGAAAAkHC4Fi9fwq7y53meXnrpJQ0YMOCwYW655Ra99tpr+uc//xneNnDgQO3cuVNz586VJHXv3l0/+tGPwu/q8H1fzZo10zXXXKOxY8dGtQ4AAABAIuJa/H9q9It9Fy1apLy8vIht+fn5Gj16tKQDL01cunSpxo0bF/4+EAgoLy9PixYtOmy6xcXFKi4uDv/t+7527NihY445Rp7nVW0lAAAAUGnGGH333Xdq2rSpAoHqNUlr37592r9/f1zyNsaUuX5NTU1VampqpdOO1rV4dVOjO1QFBQVq3LhxxLbGjRursLBQe/fu1X/+8x+FQqFyw6xcufKw6U6ZMkWTJk2KSpkBAAAQPRs2bNCxxx4b72KE7du3T8c3r6uCLaG45F+3bl0VFRVFbJswYYImTpxY6bSjdS1e3dToDlW0jBs3TmPGjAn/vWvXLh133HHqpX5KUnKF0gik2ff6vfR0y/Bp1nkoNcUquLEM76dXrH0i4qQE7cKn2oWXpJBlHqFUu5HIUIr9yKVJtszDMrwkhex2n3zLPHz73W1fJoezmG25TLLdzGjjUqYU2zzsZ2ubJN8ugmW9A0n2FwNByzIlpdjnkRS0yyM1udQufNAuvCSlJ5VYhU9Lss8jI8nubndawK5MdSzTl6Q6weKjBzpEetA+j7q2eQTs8qgX2GcVXpIyPLsyOeVhWY+6nt3+zghYnj8kZVjO2kn37P/RyAhU/B+NwiJfzU9Zq3r16lnnE0379+9XwZaQ1i1tocx6sR05K/zOV/Mua7VhwwZlZmaGt1fF6FRtUqM7VLm5udq8eXPEts2bNyszM1Pp6ekKBoMKBoPlhsnNzT1suocbBk1SspIqeDIIeJZXjZI8yzhewOHHYHFikiQTtOxQBR06VEl2h6mfZN+h8pLt4niWHQvb8JJ950UOnTZZHobW9bY/zO3L5HAWsy2XH4MOlWw7VJZlkmLQoUq27+wELMsUTLHvWAQtO1RBy/NBksM5JynJ7qIp2TL8gTh24VOCdr/vFIdOfarlvkgL2ueRFrQ7DtMtOwoZAfv9bRunjlMedsdIXc8ufB2H63zbDlWGZZkk+3pLqraPZ9St56luvdiWzdeB/DIzMyM6VFUlWtfi1U31mkBaxXr06KH58+dHbJs3b5569OghSUpJSVGXLl0iwvi+r/nz54fDAAAAALBXW67FE6pDVVRUpOXLl2v58uWSDizFuHz5cq1fv17Sgal4gwcPDoe/4oor9O9//1s333yzVq5cqT/84Q/6y1/+ouuvvz4cZsyYMZo+fbpmz56tFStW6Morr9Tu3bs1bNiwmNYNAAAAqM64Fi9fQk35+/jjj3XmmWeG/z74HNOQIUM0a9Ysbdq0KbxDJen444/Xa6+9puuvv16///3vdeyxx+pPf/qT8vPzw2Euvvhibd26VePHj1dBQYE6d+6suXPnlnk4DgAAAIiWkPEVivHLjELGbsor1+LlS9j3UFUnhYWFysrKUm+dX/FnqNLsF4ywXpQiwy68JPtFKdJisChFquUzVC6LUljGicWiFLbPULnkEfVFKRyeoYrJohTV8Bkq60UpasgzVLaLUiQ7PEMV7UUpXBaMsF2Uwja8ZL8oRXrQdlEKu4UWJPsFIzKcFqWwW9DBdjGHzMBeq/AH8rCrd6bTohSWC19YLkpRJwaLUmREe1GK73zV/+G/tWvXrqg8L+Tq4HXkllXN47IoRaO266pdmySahBqhAgAAAGoiX0a+YjvOEev8aqqEeoYKAAAAAKoTRqgAAACAOPPly35iZeXzROUxQgUAAAAAjuhQAQAAAIAjpvwBMeDxzGeFxaKtquX+qI5lqoaMsV/Nsibw5bBSqEMcq/SN/T3ZUAzu47qUy0Ys6hBy2d+W9fYtV+BzWc7bt6yGy/Qzm2W/bZcIj7WQMQrFePHtWOdXUzFCBQAAAACOGKECAAAA4oxl0xMXI1QAAAAA4IgOFQAAAAA4YsofAAAAEGe+jEJM+UtIjFABAAAAgCNGqAAAAIA4Y1GKxMUIFQAAAAA4YoQKAAAAiDNe7Ju4GKECAAAAAEd0qAAAAADAEVP+AAAAgDjz//uJdZ6oPDpUiC1+uUDVcJn2brwYZJL4jGU7+dbtKvmyjxNtsSiTbVuFjP1EmpBlPezL5LK/7erhVG/Psh627WQV+r95WD6fE/Lszzk2q9Sxoh2ihQ4VAAAAEGehOLzYN9b51VQ8QwUAAAAAjuhQAQAAAIAjpvwBAAAAcRYyBz6xzhOVxwgVAAAAADhihAoAAACIM5ZNT1yMUAEAAACAI0aoAAAAgDjz5Vm/H6wq8kTlMUIFAAAAAI7oUAEAAACAI6b8AQAAAHHmmwOfWOeJyqNDBTjwasiyOB4n0gqxbaca06y29Tb2c/Ft4zjlYR2j+vEd6u0Sxyr9GDx7EYs8QpaTdXyHyT0hY5mH55CHbT0sj4+QZ78vQpa/Pt/Y/1p9i3+Qfda0Q5TQoQIAAADiLBSHRSlinV9NxTNUAAAAAOCIDhUAAAAAOGLKHwAAABBnTPlLXIxQAQAAAIAjRqgAAACAOPONF/XVOcvLE5XHCBUAAAAAOGKECgAAAIgznqFKXIxQAQAAAIAjOlQAAAAA4IgpfwAAAECchRRQKMZjHaGY5lZz0aECJMkYywjMOa4Q22Z14DnkEfVixaDeiB7fcv+57O5YrKxlm0coyuEllzLZX1z6lnFsw7uwfU7F5bkW23qEvBjsb8sTdMjh1xSy+PfbJixggw4VAAAAEGcmDsumG5ZNrxI8QwUAAAAAjuhQAQAAAIAjpvwBAAAAccZ7qBIXI1QAAAAA4IgRKgAAACDOQibgtLJl5fKMaXY1FiNUAAAAAOCIESoAAAAgznx58mM81uHz4sQqwQgVAAAAADiiQwUAAAAAjpjyBwAAAMQZy6YnLkaoAAAAAMARI1So/myfl+T5ShxNdTxGquNxHoMyWWfhkoepfndgfcsy2YZ34cdgueZQDO7j2i47bXuH3mVZa9u2dckj5FnWw7LevsNIhu2S3L7DYe7Lj0rYeIjPsunV8R/ExMMIFQAAAAA4okMFAAAAAI6Y8gcAAADE2YH3UMV2inKs86upGKECAAAAAEeMUAEAAABx5isQk4VbIvNkUYqqwAgVAAAAADiiQwUAAAAAjpjyBwAAAMQZ76FKXIxQAQAAAIAjRqgAAACAOPMVkM+iFAkp4Uaopk2bphYtWigtLU3du3fXkiVLDhu2d+/e8jyvzKd///7hMEOHDi3zfd++fWNRFQAAACDhcD0eKaFGqJ577jmNGTNGjz76qLp3766pU6cqPz9fq1atUqNGjcqEnzNnjvbv3x/+e/v27TrppJN04YUXRoTr27evZs6cGf47NTU1epUAooWbTECVMMbuRZe+ZXgXLnnYxrEPb39PNtplkuxfVGpbD5dlrW3juIxS2D57U2KCdul7IavwkuRbhnd5nifkVTxOqJr/QxkynkIxOJ98P09bXI+XlVAjVA888IBGjBihYcOGqUOHDnr00UeVkZGhGTNmlBu+QYMGys3NDX/mzZunjIyMMjswNTU1Ilz9+vVjUR0AAAAgoXA9XlbCdKj279+vpUuXKi8vL7wtEAgoLy9PixYtqlAajz/+uAYOHKg6depEbF+4cKEaNWqktm3b6sorr9T27duPmE5xcbEKCwsjPgAAAEAi+v51bXFxcbnhqtP1eHWSMB2qbdu2KRQKqXHjxhHbGzdurIKCgqPGX7Jkif75z3/q8ssvj9jet29fPfHEE5o/f77uuecevfvuuzrnnHMUCh1+aHvKlCnKysoKf5o1a+ZWKQAAAEAHpobG4yNJzZo1i7i2nTJlSrllrE7X49VJQj1DVRmPP/64OnbsqG7dukVsHzhwYPj/O3bsqE6dOqlVq1ZauHCh+vTpU25a48aN05gxY8J/FxYW0qkCAABAQtqwYYMyMzPDf0fr+aWqvB6vThJmhConJ0fBYFCbN2+O2L5582bl5uYeMe7u3bv17LPPavjw4UfNp2XLlsrJydFXX3112DCpqanKzMyM+AAAAACufBOIy0dSmevaw3WoqtP1eHWSMB2qlJQUdenSRfPnzw9v831f8+fPV48ePY4Y9/nnn1dxcbEuvfTSo+bzzTffaPv27WrSpEmlywwAAADUFFyPly9hOlSSNGbMGE2fPl2zZ8/WihUrdOWVV2r37t0aNmyYJGnw4MEaN25cmXiPP/64BgwYoGOOOSZie1FRkW666SZ9+OGHWrt2rebPn6/zzz9frVu3Vn5+fkzqBAAAACQKrsfLSqhnqC6++GJt3bpV48ePV0FBgTp37qy5c+eGH4xbv369AoHIPuKqVav0/vvv66233iqTXjAY1GeffabZs2dr586datq0qc4++2xNnjw5oda+BwAAQGI7dJGI2OVp/24ursfL8oxxeIsaIhQWFiorK0u9db6SvOQKxQmkpVnn46Wn24XPsAsvSUpNsQpu0uzC+6kVa5+IOGl2/X4/1e5lhZIUSrV86WKK5YsgU+1fnBdKsYsTSnZ4Aabd7rMuk2+/u63L5DvcFrItl59id5p0K5NdHsYyvFOcJLvXcnrJtq/xlAKWcZKS7Fd8Sk62i5MctAufmlxqFV6S0pLs4qQG7fPISNp/9ECHSLPMo45l+pKUHrSLUzdY/tLNR5JhmUdGwLZM+6zCS1KdgF09bMNLUoYX3TzqWbaTJNXx7I6pDId32mYEKv5vfuF3vlq026Rdu3ZVq+ffD15HTv+kizLq2V/DVMae70IaccrSatcmiSahRqgAAACAmsiXFDIOvcpK5onKS6hnqAAAAACgOmGECkDFxWKCcHWchGxbpupYh+rK8m6scbh76xIn2ulHu0ySwsshRy/96NfB5XmSkGW9Q7KcyuxQb9tRB9s6SJLv2dbbLnyJQ5n2W+aR7NmPl5SYiscptQgbD74C8mM81hHr/GoqWhEAAAAAHNGhAgAAAABHTPkDAAAA4ixkAk7TPSubJyqPVgQAAAAAR4xQAQAAAHHmy5NvuUhKVeSJymOECgAAAAAc0aECAAAAAEdM+QMAAADijEUpEhetCAAAAACOGKECAAAA4iykgEIxHuuIdX41Fa0IAAAAAI4YoQIAAADizDeefBPjZdNjnF9NRYcKQGIz8S5A1fAs62Fc6m0bx/YfWqd/mKO/A23bysTgAsP2IsalTLbvl4l2eEnyLR+Ad7nYi/Z7dVymSPmWcUIOdbCNY7svQl7090XI4XTgW2Th2ycPVAhT/gAAAADAESNUAAAAQJz5cViUwnb0FOWjFQEAAADAESNUAAAAQJz5JmD9bFtV5InKoxUBAAAAwBEdKgAAAABwxJQ/AAAAIM5C8pyWzK9snqg8RqgAAAAAwBEjVAAAAECcsShF4qIVAQAAAMARI1QAAABAnIUU+2eaQjHNreaiQwVUVybeBagC1bUO1bVctZCx3Be24V34xu6Cxja8Cz8GF1m29Qg51Nu2Hi5tG7KcwlTi210K+V6pVXjJvkwu07Bs8wh5tvvCoUy2eVjnIO23OCnYhAVsMOUPAAAAABwxQgUAAADEGYtSJC5aEQAAAAAcMUIFAAAAxFnIBKyfhauKPFF5tCIAAAAAOKJDBQAAAACOmPIHAAAAxJmRF5NXJHw/T1QeI1QAAAAA4IgRKgAAACDOWJQicdGKAAAAAOCIESoAAAAgznzjyTexfaYp1vnVVHSogNrMxLsACcKynVz+eTK2+8LlH0HbTGyDOxxPsfin3ET5gsElfduLGJeLnljkYStkmUfIYSKNdb0tj8KQw1FrWw+netvmYTnVa78XtAovSckmZJeHQ72TPb/CYSseErDDlD8AAAAAcMQIFQAAABBnIQWcRicrmycqj1YEAAAAAEeMUAEAAABxxqIUiYsRKgAAAABwRIcKAAAAABwx5Q8AAACIM18B6+XvqyJPVB6tCAAAAACOGKECAAAA4ixkPOuXX1dFnqg8RqgAAAAAwBEjVAAAAECcsWx64mKECgAAAAAcMUIFxIKJdwESCG2VuFzudNru7xjcTY3FIRiLPGzvPNuHt78naxvH5e55yPJecciyTCUmaBXeJY5LHvst4yR7duFTTMgqvCSFPMtjSvb7u8Tix1TKvy+IEjpUAAAAQJwZE3C6UVHZPFF5tCIAAAAAOGKECgAAAIizkDyFHKY9VjZPVB4jVAAAAADgiA4VAAAAADhiyh8AAAAQZ76J/XuhfFY+rBKMUAEAAACAI0aoAAAAgDjz47Bseqzzq6loRQAAAABwRIcKAAAAABwx5Q8AAACIM1+e/Bi/FyrW+dVUdKgAVJhnbJcDqp4naq+WrmrkWa4eZaz3d/QZhxWwbOPYhndZJct2JS+Xlb/s87CbtFIdy+SUh+V5yq1MdnFC1TCPkGe/v0tM0C68fOs8kr2Kx+EltogWOlQAAABAnIWMp1CMl02PdX41VcI9QzVt2jS1aNFCaWlp6t69u5YsWXLYsLNmzZLneRGftLS0iDDGGI0fP15NmjRRenq68vLytHr16mhXAwAAAEhIXI9HSqgO1XPPPacxY8ZowoQJ+uSTT3TSSScpPz9fW7ZsOWyczMxMbdq0KfxZt25dxPf33nuvHnroIT366KNavHix6tSpo/z8fO3bty/a1QEAAAAk/W/Z9Fh/bHE9XlZCdageeOABjRgxQsOGDVOHDh306KOPKiMjQzNmzDhsHM/zlJubG/40btw4/J0xRlOnTtWtt96q888/X506ddITTzyhb7/9Vi+//HIMagQAAAAkDq7Hy0qYDtX+/fu1dOlS5eXlhbcFAgHl5eVp0aJFh41XVFSk5s2bq1mzZjr//PP1xRdfhL9bs2aNCgoKItLMyspS9+7dj5hmcXGxCgsLIz4AAABAIvr+dW1xcXG54arT9Xh1kjAdqm3btikUCkX0aCWpcePGKigoKDdO27ZtNWPGDL3yyit66qmn5Pu+evbsqW+++UaSwvFs0pSkKVOmKCsrK/xp1qxZZaoGAACAWs6XJ9/E+PPflQ+bNWsWcW07ZcqUcstYna7Hq5Mavcpfjx491KNHj/DfPXv2VPv27fXYY49p8uTJzumOGzdOY8aMCf9dWFhIpwoAAAAJacOGDcrMzAz/nZqaWmVpR+t6vDpJmA5VTk6OgsGgNm/eHLF98+bNys3NrVAaycnJOvnkk/XVV19JUjje5s2b1aRJk4g0O3fufNh0UlNTq/RAAwAAQO1m4vBiX/Pf/DIzMyM6VIdTna7Hq5OEmfKXkpKiLl26aP78+eFtvu9r/vz5Eb3eIwmFQvr888/DO+v4449Xbm5uRJqFhYVavHhxhdMEAAAAagOux8uXMCNUkjRmzBgNGTJEXbt2Vbdu3TR16lTt3r1bw4YNkyQNHjxYP/jBD8LzPm+//Xadeuqpat26tXbu3Kn77rtP69at0+WXXy7pwIojo0eP1h133KE2bdro+OOP12233aamTZtqwIAB8aomAAAAUC1xPV5WQnWoLr74Ym3dulXjx49XQUGBOnfurLlz54YfYlu/fr0Cgf8Nuv3nP//RiBEjVFBQoPr166tLly76xz/+oQ4dOoTD3Hzzzdq9e7dGjhypnTt3qlevXpo7d26ZF44BAAAA0XJwoYhY52mL6/GyPGOMiXchEl1hYaGysrLUW+cryUuuUJyAwwHipafbhc+wCy9JSk2xCm7S7ML7qRVrn4g4aXb9fj81aJ1HKNVu9qufYhc+lGJ/wrKN4ye75GEX3rfcfS71ts3DNrwkGctbSX6y3WnSpUy+ZZmMZZlc4pgk3y6DJPsyecl2eQRtyyQpmBSyCp+cbBk+aBdeklIsy5SWVGqdR2rQLk6qZR4ZSfutwktSerAkquElKT1gVy7bPDIs05ekjGD5S1BXZR51AnZ5pHl29bZNX5IyLOPU8ezrneZV/LdU9J2vnidu0q5duyr0vFCsHLyOvODtIUquY/kPcyWV7N6vF/NmV7s2STQJNUIFAAAA1ES+Ccg3sV3eINb51VS0IgAAAAA4YoQKAAAAiLNEeYYKZTFCBQAAAACO6FABAAAAgCOm/AEAAABx5suTrxhP+YtxfjUVI1QAAAAA4IgRKgAAACDOWJQicTFCBQAAAACO6FABAAAAgCOm/AEAAABxxpS/xMUIFQAAAAA4YoQKcGHiXYDE4NFO1Yvt/rC+c+mwwy2juBxSxrIe0Q7vwuUusu1yyLZ5uJQpZBnHNrwkhSzvFVvX22GZ6RITjGp4lzjJXqlV+FAs6i37eid7foXDutQhlhihSlyMUAEAAACAI0aoAAAAgDhjhCpxMUIFAAAAAI7oUAEAAACAI6b8AQAAAHFm5LboSWXzROUxQgUAAAAAjhihAgAAAOKMRSkSFyNUAAAAAOCIDhUAAAAAOGLKHwAAABBnTPlLXIxQAQAAAIAjRqiA2qwarpfqWZbJNrwkGds4tnfwrDOwr4dDFtEXizLF4G6qbdu63OG1jVMd8yj17e/JlnpBy/C+Qx52cUosy1Ri7MJLUrIJWYX3jX3bhizjlBi7S8ASyzpIUrLs4uy33BeSXduWVMfz5iEYoUpcjFABAAAAgCNGqAAAAIA4Y4QqcTFCBQAAAACO6FABAAAAgCOm/AEAAABxZownE+MpeLHOr6ZihAoAAAAAHDFCBQAAAMSZL0++YrwoRYzzq6kYoQIAAAAAR3SoAAAAAMARU/4AAACAOOM9VImLESoAAAAAcMQIFVBNeSbeJShHdSxTbeWyL6K9/1zudFrGMca+ErZRbJcRdtoVMcjD9s6zfXj7e7K2D8C7PDBvnYdlvUMO9baNU2KC1nnYxkk2pVbh9zuUKdmzixM0vnUeJap4HqXVfDSGZdMTFyNUAAAAAOCIESoAAAAgzniGKnExQgUAAAAAjuhQAQAAAIAjpvwBAAAAccaiFImLESoAAAAAcMQIFQAAABBnJg6LUjBCVTUYoQIAAAAAR3SoAAAAAMARU/4AAACAODOSjIl9nqg8RqgAAAAAwBEjVIAkj1s00VFD2tX2+HA5nmJyV9I2jxiUybbeTo9PWz50bfuQtstD3b5lvV0eVI92PXyHvWFbj5BDvW3jhCzvLZeYoFV4lzjJKnXIw+6SrsSErMIHHU5S1nk4nHT2exXPY7/bGSRmfHnyYlxGl98xymKECgAAAAAcMUIFAAAAxBkv9k1cjFABAAAAgCM6VAAAAADgiCl/AAAAQJz5xpMX4yl4LgveoCxGqAAAAADAESNUAAAAQJwZE4cX+9aQ15vEGyNUAAAAAOCIDhUAAAAAOGLKHwAAABBnvIcqcTFCBQAAAACOGKECAAAA4owRqsRFhwqIAS8Wq+jUlJV6bOvhUu8a0FYux5R1lJjsC8t/zF3qbZmH7apXLhck9mWyz8P2/TK+LMPHoEylftA6j1LPj2r4ZC9kFV6SSoxdPUp8+8uz5KBduWzLlGxKrcJL0n7LPAKy2xeSlGyRR0kNOPejemLKHwAAAAA4YoQKAAAAiDPfePJiPAXPZaQZZTFCBQAAAACOGKECAAAA4swY+2c4qyJPVF7CjVBNmzZNLVq0UFpamrp3764lS5YcNuz06dN12mmnqX79+qpfv77y8vLKhB86dKg8z4v49O3bN9rVAAAAABIS1+OREqpD9dxzz2nMmDGaMGGCPvnkE5100knKz8/Xli1byg2/cOFC/fKXv9Q777yjRYsWqVmzZjr77LO1cePGiHB9+/bVpk2bwp8///nPsagOAAAAIOngCJUX4499ObkeLyuhOlQPPPCARowYoWHDhqlDhw569NFHlZGRoRkzZpQb/umnn9ZVV12lzp07q127dvrTn/4k3/c1f/78iHCpqanKzc0Nf+rXrx+L6gAAAAAJhevxshKmQ7V//34tXbpUeXl54W2BQEB5eXlatGhRhdLYs2ePSkpK1KBBg4jtCxcuVKNGjdS2bVtdeeWV2r59+xHTKS4uVmFhYcQHAAAASETfv64tLi4uN1x1uh6vThKmQ7Vt2zaFQiE1btw4Ynvjxo1VUFBQoTRuueUWNW3aNOIg6Nu3r5544gnNnz9f99xzj959912dc845CoUO/4K8KVOmKCsrK/xp1qyZW6UAAAAAxWO6nxd+aXizZs0irm2nTJlSbhmr0/V4dVJrVvm7++679eyzz2rhwoVKS0sLbx84cGD4/zt27KhOnTqpVatWWrhwofr06VNuWuPGjdOYMWPCfxcWFtKpAgAAQELasGGDMjMzw3+npqZGJZ+qvB6vThJmhConJ0fBYFCbN2+O2L5582bl5uYeMe7999+vu+++W2+99ZY6dep0xLAtW7ZUTk6Ovvrqq8OGSU1NVWZmZsQHAAAAcGXi9JFU5rr2cB2q6nQ9Xp0kzAhVSkqKunTpovnz52vAgAGSFH6gbdSoUYeNd++99+rOO+/Um2++qa5dux41n2+++Ubbt29XkyZNqqroiDGPlypUmEdTVYxtO7m0ayz2xX+ndlhEiGpwpyys6yAZy0xs83A55YR8u/uZvvGt8/At61FqWaagZ39PttQLWoVPCjjUW3b1LjF29UgydnWQpGRjN22pxCEP2zhBy99FiWUdJClo+eOwLZNkV65Sh/MHInE9Xr6EGaGSpDFjxmj69OmaPXu2VqxYoSuvvFK7d+/WsGHDJEmDBw/WuHHjwuHvuece3XbbbZoxY4ZatGihgoICFRQUqKioSJJUVFSkm266SR9++KHWrl2r+fPn6/zzz1fr1q2Vn58flzoCAAAA1RXX42UlzAiVJF188cXaunWrxo8fr4KCAnXu3Flz584NPxi3fv16BQL/6yM+8sgj2r9/v37xi19EpDNhwgRNnDhRwWBQn332mWbPnq2dO3eqadOmOvvsszV58uSozR0FAAAAvu/QRSJimactrsfL8oxhflRlFRYWKisrS711vpK85ArFCRzyIF5FeenpduEz7MJLklJTrIKbNLvwfmrF2iciTppdv9+k2A+8hlLtpkqELPPwU+xPWCHLOKFk+zx8y90Rstvd8mNQJtvwkuRb3koyluH9ZPvTqnWZYpKH5XSroMM/J0l2cTzbMkkKJNnFCQbtwicl2U+FSrLMIzW51DqPlKBduZItw6cG7cuUZhknLanEOo/0oF2clIBdmWzTl6SMwH6r8KmWZZKkjGD5y1wfTppnl0dGwC59SUoL2LVVmmfftnUsyrXnu5Au7LxSu3btqlbPvx+8jmz5xG8UzLC/PqyM0J59+vfgu6pdmySahBqhAgAAAGqkQ1eJiGWeqLSEeoYKAAAAAKoTRqgAAACAeIvDM1T2q7+iPIxQAQAAAIAjOlQAAAAA4IgpfwAAAECcGeP2ovDK5lmb7du3T/v3R67C6bLaISNUAAAAAGqFPXv2aNSoUWrUqJHq1Kmj+vXrR3xc0KECAAAA4uzgi31j/altbrrpJi1YsECPPPKIUlNT9ac//UmTJk1S06ZN9cQTTzilyZQ/ABXmWU4NsA1fXfOIxYwI23/SXKZpWLeV5T+0blNHYrAzolwPlwsS22qEfIeXgwfs4iRZt5PDi7stj/RS3/6+b4ln96L2JM/uJculvl36kn2ZAg4/phLLN3cHA3Z5lBj7egeN5Uu1Zf/i7n2m4m9332cYR4D017/+VU888YR69+6tYcOG6bTTTlPr1q3VvHlzPf300xo0aJB1mhxZAAAAAGqFHTt2qGXLlpIOPC+1Y8cOSVKvXr303nvvOaVJhwoAAACIN+PF51PLtGzZUmvWrJEktWvXTn/5y18kHRi5ys7OdkqTDhUAAACAWmHYsGH69NNPJUljx47VtGnTlJaWpuuvv1433XSTU5o8QwUAAADEGcumx8b1118f/v+8vDytXLlSS5cuVevWrdWpUyenNBmhAgAAAFArPPHEEyouLg7/3bx5c/385z9Xu3btnFf5o0MFAAAAxJuJ06eWGTZsmHbt2lVm+3fffadhw4Y5pUmHCgAAAECtYIyR55VdjOObb75RVlaWU5o8QwUAAACgRjv55JPleZ48z1OfPn2UlPS/blAoFNKaNWvUt29fp7TpUAEAAABxZozn9MLsyuZZWwwYMECStHz5cuXn56tu3brh71JSUtSiRQtdcMEFTmnToQIAAABQo02YMEGS1KJFC1188cVKS0ursrR5hgoAAACoDliQIuqGDBmiffv26U9/+pPGjRunHTt2SJI++eQTbdy40SlNRqgAAAAA1AqfffaZ8vLylJWVpbVr12rEiBFq0KCB5syZo/Xr1zstnU6HCnDgWb8Jz2GOci29c1Qt2e6LWOw7p3nvlgWLST1sw9vX29j+Xi3zcHkGwTZOLPLwLcOXGvtJLkHfLk5SOStxHY1tuWzDJzucz0tM0Cp8wOFtq7Z5BI1vFX6fSbYKL9nXIyC7Mh3Io+Jx9vPvKnTgxb5Dhw7Vvffeq3r16oW39+vXT5dccolTmnSoAAAAgDhjUYrY+Pjjj/XHP/6xzPYf/OAHKigocEqTZ6gAAAAA1AqpqakqLCwss/1f//qXGjZs6JQmHSoAAAAg3mK9IEUtXZjivPPO0+23366SkhJJkud5Wr9+vW655RbnZdPpUAEAAACoFX73u9+pqKhIjRo10t69e3XGGWeodevWqlevnu68806nNHmGCgAAAIg7T06LWFU6z9olKytL8+bN0/vvv6/PPvtMRUVFOuWUU5SXl+ecJh0qAAAAALVKr1691KtXrypJiyl/AAAAAGqN+fPn66c//alatWqlVq1a6ac//anefvtt5/ToUAEAAADxxqIUMfGHP/xBffv2Vb169XTdddfpuuuuU2Zmpvr166dp06Y5pcmUPwAAAAC1wl133aUHH3xQo0aNCm+79tpr9eMf/1h33XWXrr76aus0GaECAAAA4o0RqpjYuXOn+vbtW2b72WefrV27djmlSYcKAAAAQK1w3nnn6aWXXiqz/ZVXXtFPf/pTpzSZ8odqzzN2t09q4c0WSfbtJEky1XC5VNtquOzwKB8knsuusIwTizxisy/sjkHjcJzbtpWxLpNd+m552P9WQ77dPdNQwLcKH4xBmUoDQes8koxdPUp8uzySPLv0JSlg+eMIyj6PEs+uHkHLdgpYhpekYj/ZKnzQ8hiUpKDFD7DUOnXUFA899FD4/zt06KA777xTCxcuVI8ePSRJH374oT744APdcMMNTunToQIAAADizXixv9FZHW+sRsGDDz4Y8Xf9+vX15Zdf6ssvvwxvy87O1owZM3Trrbdap0+HCgAAAECNtXz5cmVlZUUtfZ6hAgAAAOLMmPh8aoMGDRpo69atkqSzzjpLO3furNL06VABAAAAqLHq1q2rbdu2SZIWLlyokpKSKk2fKX8AAABAvMVjGfNaMkKVl5enM888U+3bt5ck/exnP1NKSkq5YRcsWGCdPh0qAAAAADXWU089pdmzZ+vrr7/Wu+++qxNOOEEZGRlVlj4dKgAAAAA1VklJia644gpJ0scff6x77rlH2dnZVZY+z1ABAAAA8XZw2fRYf2qB+vXra8uWLZIkz6v6OtOhAgAAAFBj1a1bV9u3b5ckvfvuuyxKAQAAANQ0njnwiXWetcGhi1IYY1iUAgAAAAAqikUpgJqgptwBsq1HDam37R08p2rHoq2ivf9c6uDb5mE/991YxjGWFfF9+zLZxgkF7PMIWO4P37KdQr79UwN+wG6HlzrkUerZxQlY/sBLjX2ZApZxAiZon4dvV4+gZ7cvbNOXpKDlQbjPJFvnYXMO2efwW0XNkJ6ezqIUAAAAQI1m4vSpZd555x1lZ2dr//79WrVqlUpLSyudJh0qAAAAALXC3r17NXz4cGVkZOiEE07Q+vXrJUnXXHON7r77bqc06VABAAAA8cay6TExduxYffrpp1q4cKHS0tLC2/Py8vTcc885pckzVAAAAABqhZdfflnPPfecTj311Ih3Up1wwgn6+uuvndKkQwUAAADEWzyeaaqFz1Bt3bpVjRo1KrN99+7dzi/9ZcofAAAAgFqha9eueu2118J/H+xE/elPf1KPHj2c0mSECgAAAECtcNddd+mcc87Rl19+qdLSUv3+97/Xl19+qX/84x969913ndJkhAoAAACIN5ZNj4levXpp+fLlKi0tVceOHfXWW2+pUaNGWrRokbp06eKUpvUI1R/+8AfNmTNHDRo00K9//Wv16dMn/N22bdvUrVs3/fvf/3YqDAAAAABEU6tWrTR9+vQqS89qhOqhhx7STTfdpHbt2ik1NVX9+vXTlClTwt+HQiGtW7euygoHAAAA1AqMUCUsqxGqxx57TNOnT9cll1wiSbryyis1YMAA7d27V7fffntUCggAAAAA1ZVVh2rNmjXq2bNn+O+ePXtqwYIFysvLU0lJiUaPHl3V5QMAAACAasuqQ5WTk6MNGzaoRYsW4W0nnniiFixYoLPOOkvffvttVZcPNYxn7MeWYzIa7dvmEv03i3u1dRjett6xaCfrMtkfH7a/DYefkvUxZSzr4XLMWtfD+rcqyberh7EML4f3lti2rW14SfJ9u3WnQpZtG3DY4aWWZQo4/MBLA0G7PCzrXeywQLJtPYIObRuw/DHt85MtM7ALLknyHeLYsijXPoffUUwZz+nfj0rniUqz+nn06tVLc+bMKbO9Q4cOmj9/vt54440qKxgAAAAAVHdWt1nGjh2rpUuXlvvdCSecoAULFujFF1+skoIBAAAAtYVnYj87pbbMhvn5z39e4bDlDR4djVWHqlOnTurUqdNhvz/xxBN14oknWhcCAAAAAKIhKysr/P/GGL300kvKyspS165dJUlLly7Vzp07rTpeh7KfCHyIPXv2aP369dq/f3/E9iN1ugAAAAAgVmbOnBn+/1tuuUUXXXSRHn30UQWDB565DIVCuuqqq5SZmemUvlOHauvWrRo2bNhhn5kKhUJOhQEAAABqpXi8F6qWTPk71IwZM/T++++HO1OSFAwGNWbMGPXs2VP33XefdZoua7Zo9OjR2rlzpxYvXqz09HTNnTtXs2fPVps2bfTqq6+6JAkAAAAAUVVaWqqVK1eW2b5y5Ur5vtvSlE4jVAsWLNArr7yirl27KhAIqHnz5vrJT36izMxMTZkyRf3793cqDAAAAABEy7BhwzR8+HB9/fXX6tatmyRp8eLFuvvuuzVs2DCnNJ1GqHbv3q1GjRpJkurXr6+tW7dKkjp27KhPPvnEqSAVNW3aNLVo0UJpaWnq3r27lixZcsTwzz//vNq1a6e0tDR17NhRr7/+esT3xhiNHz9eTZo0UXp6uvLy8rR69epoVgEAAABIWIl8PX7//ffr5ptv1u9+9zudfvrpOv300/XAAw/opptucpruJzl2qNq2batVq1ZJkk466SQ99thj2rhxox599FE1adLEqSAV8dxzz2nMmDGaMGGCPvnkE5100knKz8/Xli1byg3/j3/8Q7/85S81fPhwLVu2TAMGDNCAAQP0z3/+Mxzm3nvv1UMPPaRHH31UixcvVp06dZSfn699+/ZFrR4AAADAoTz9b+n0mH0cypno1+OBQEA333yzNm7cqJ07d2rnzp3auHGjbr755ojnqmx4xli/p15PPfWUSktLNXToUC1dulR9+/bVjh07lJKSolmzZuniiy92KszRdO/eXT/60Y/0f//3f5Ik3/fVrFkzXXPNNRo7dmyZ8BdffLF2796tv/3tb+Ftp556qjp37qxHH31Uxhg1bdpUN9xwg2688UZJ0q5du9S4cWPNmjVLAwcOrFC5CgsLlZWVpd46X0lexd48HkhLq1C4Q3np6XbhM+zCS5JSU6yCmzTL8Cn2s0z9NLs4fqr9jyGUbHdvwU+1Cx9Ksb934SfbneZCdrviQBzLPPyKHd6HhLc/VfuWh4htmVziGMtDyqVMJsnuVGzbTjHJwzJ9STJByzhJ9vPbPctyeZZ5BIP2ZQpa5pGUZL/YU1LALo9kyzySg/ZlSrGMkxKwzyM1qdQyD9vw9mVKD5ZYhU8N2pVJsq9HqmX4tIBdHSQp1YtBHhZx9haV6pYf/V27du1yXs0tGg5eRza/5w6n68PK8Pft07pbbrVqk+p6PW6jtLRUCxcu1Ndff61LLrlE9erV07fffqvMzEzVrVvXOj2nEapLL71UQ4cOlSR16dJF69at00cffaQNGzZErTO1f/9+LV26VHl5eeFtgUBAeXl5WrRoUblxFi1aFBFekvLz88Ph16xZo4KCgogwWVlZ6t69+2HTlKTi4mIVFhZGfAAAAIBE9P3r2uLi4nLDVafrcVfr1q1Tx44ddf755+vqq68OP7p0zz33hDt0tpwWpbj99tt14403KiMjQ5KUkZGhU045RXv37tXtt9+u8ePHOxXmSLZt26ZQKKTGjRtHbG/cuHG5K3VIUkFBQbnhCwoKwt8f3Ha4MOWZMmWKJk2aZF0HIKoclj61fUO69RvVY7Acq8tb3m3j2GbhUibruQIubRvl/W0/38GBsR/1tJ2IYV9vh5FY33J02DK8JIU8uzgByzwCnv092ZBl45Y6/JiCvl25ArIbgg44lKnYZUjZUsDyBx6U3QhmiWU7SVIgYNlWbgusVdh+h99RTBnP6RxX6TwlNWvWLGLzhAkTNHHixDLBq9P1uKvrrrtOXbt21aeffqpjjjkmvP1nP/uZRowY4ZSm0wjVpEmTVFRUVGb7nj17akVHY9y4cdq1a1f4s2HDhngXCQAAAHCyYcOGiGvbcePGxbtIUfP3v/9dt956q1JSIp+VaNGihTZu3OiUplOHyhgjr5w7X59++qkaNGjgVJCjycnJUTAY1ObNmyO2b968Wbm5ueXGyc3NPWL4g/+1SVOSUlNTlZmZGfEBAAAAnJk4faQy17WpqanlFrE6XY+78n1foVDZZyG/+eYb1atXzylNqw5V/fr11aBBA3mepx/+8Idq0KBB+JOVlaWf/OQnuuiii5wKcjQpKSnq0qWL5s+fH97m+77mz5+vHj16lBunR48eEeElad68eeHwxx9/vHJzcyPCFBYWavHixYdNEwAAAKiNasL1+Nlnn62pU6eG//Y8T0VFRZowYYL69evnlKbVpN6pU6fKGKNf/epXmjRpkrKyssLfpaSkqEWLFlHtiIwZM0ZDhgxR165d1a1bN02dOlW7d+8Ov4Rr8ODB+sEPfqApU6ZIOjBH8owzztDvfvc79e/fX88++6w+/vhj/fGPf5R0oAFHjx6tO+64Q23atNHxxx+v2267TU2bNtWAAQOiVg8AAAAgESX69fjvfvc75efnq0OHDtq3b58uueQSrV69Wjk5Ofrzn//slKZVh2rIkCGSDvQkf/zjHyspKfoPWR7q4osv1tatWzV+/HgVFBSoc+fOmjt3bvghtvXr1ysQ+N+gW8+ePfXMM8/o1ltv1W9+8xu1adNGL7/8sk488cRwmJtvvlm7d+/WyJEjtXPnTvXq1Utz585VWoyXrQQAAEAtdsgUvJjmaSnRr8ePPfZYffrpp3ruuef06aefqqioSMOHD9egQYOUbvmKooOc3kMlSV9//bVmzpypr7/+Wr///e/VqFEjvfHGGzruuON0wgknOBUmUfEeKovwvIeq4nnYvofK6X1M0X0Ple17rlzyMA73dazfp2WZh1OZquF7qGzrYZu+Uxzb91ZJ1u+uCtiGdyhTwPLdVS7vobJ9P5bte6WSHd6/ZfseKpd3Xdm+w8n2vVIpTu+IssvD9h1RksO7rizf+eRSJts4yZ79/rZ5d9W+olLd1n1B9X0P1V13xuc9VL/5bbVrk0TjtCjFu+++q44dO2rx4sWaM2dOeMW/Tz/9VBMmTKjSAgIAAAA1nWfi86ltgsGgzjzzTO3YsSNi++bNmxUM2t+Ulxw7VGPHjtUdd9yhefPmRSw5eNZZZ+nDDz90KggAAAAARJMxRsXFxeratau++OKLMt+5cOpQff755/rZz35WZnujRo20bds2p4IAAAAAtVYcl02vTTzP04svvqhzzz1XPXr00CuvvBLxnQunDlV2drY2bdpUZvuyZcv0gx/8wKkgAAAAABBNxhgFg0H9/ve/1/3336+LL75Yd9xxh/PolGS5yt9BAwcO1C233KLnn39enufJ93198MEHuvHGGzV48GDnwgAAAABALIwcOVJt2rTRhRdeqPfee885HacO1V133aWrr75azZo1UygUUocOHVRaWqpBgwbp1ltvdS4MqphvvwKTtUr05hNaLa12LNg+IOu0K2wjRTu8QxyXSQnGWMay/X3HoN5Oefh29Ta24R3metg2re/bZxIIWK4caZlHyOEgDAUsV1B0qHeJZ/dQecDypONSJus8HA6qgMvSn9WMH3A4qCwOqX0xuCyqlARZNj3RNW/ePGLxiTPPPFMffvihzj33XOc0nX59KSkpmj59usaPH6/PP/9cu3fv1sknn6zWrVs7FwQAAAAAomnNmjVltrVu3VrLli3T5s2bndJ0vp3x+OOP68EHH9Tq1aslSW3atNHo0aN1+eWXuyYJAAAA1ErxWMa8Ni6bfjhpaWlq3ry5U1ynDtX48eP1wAMP6JprrlGPHj0kSYsWLdL111+v9evX6/bbb3cqDAAAAABUpQYNGuhf//qXcnJyVL9+/SOu5vf991NVhFOH6pFHHtH06dP1y1/+MrztvPPOU6dOnXTNNdfQoQIAAABQLTz44IOqV6+eJGnq1KlVnr5Th6qkpERdu3Yts71Lly4qLS2tdKEAAACAWsV4Bz6xzrMWGDJkSLn/X1WcOlSXXXaZHnnkET3wwAMR2//4xz9q0KBBVVIwAAAAAKiswsLCCofNzMy0Tr/CHaoxY8aE/9/zPP3pT3/SW2+9pVNPPVWStHjxYq1fv573UAEAAAC2WDY9arKzs4/43JR04IW/nucpFApZp1/hDtWyZcsi/u7SpYsk6euvv5Yk5eTkKCcnR1988YV1IQAAAAAgGt55552opl/hDlW0CwIAAADUViybHj1nnHFGVNNP/NdqAwAAAICFPXv2aP369dq/f3/E9k6dOlmnRYcKAAAAQK2wdetWDRs2TG+88Ua537s8QxWobKEAAAAAVJKJ06eWGT16tHbu3KnFixcrPT1dc+fO1ezZs9WmTRu9+uqrTmkyQoVIpgb8svx4F6Asz6VdLaN4Lu+SsC2WdZns621kWY8YHLK2c8xddneNyMOlTL7d/nZ6ZUrAtuKWZfIdjnPP7n6m79mf2HzLtg0dZQWs77Pdd5IU8u3q7bK7PcsDPaCgQy6IhpDLfX6LKPtrwjUOKm3BggV65ZVX1LVrVwUCATVv3lw/+clPlJmZqSlTpqh///7WaTJCBQAAAMSb+d/CFLH61MYRqt27d6tRo0aSpPr162vr1q2SpI4dO+qTTz5xSpMOFQAAAIBaoW3btlq1apUk6aSTTtJjjz2mjRs36tFHH1WTJk2c0mTKHwAAAIBa4brrrtOmTZskSRMmTFDfvn319NNPKyUlRbNmzXJKkw4VAAAAEG/xmIJXC6f8XXrppeH/79Kli9atW6eVK1fquOOOU05OjlOadKgAAAAA1EoZGRk65ZRTKpUGHSoAAAAg3hihigljjF544QW988472rJli3w/chXVOXPmWKdJhwoAAABArTB69Gg99thjOvPMM9W4cWN5lq+MKA8dKgAAACDOwkuZxzjP2ubJJ5/UnDlz1K9fvypLk2XTAQAAANQKWVlZatmyZZWmSYcKAAAAQK0wceJETZo0SXv37q2yNJnyBwAAAKBWuOiii/TnP/9ZjRo1UosWLZScnBzx/SeffGKdJh0qANHjMjfbMo7L/G/bOCYGZTLG7qFYz7fPxDILef7Rw0Tw7R/sNYEYTOC3LJexrbfDA83Gcn6IcWhb37fLxLYaIbvgkqSSUC18YKMW82V3UKWoNEolOaDY9reNGmnIkCFaunSpLr30UhalAAAAAGoMlk2Piddee01vvvmmevXqVWVp8gwVAAAAgFqhWbNmyszMrNI06VABAAAAqBV+97vf6eabb9batWurLE2m/AEAAABxxnuoYuPSSy/Vnj171KpVK2VkZJRZlGLHjh3WadKhAgAAAFArTJ06tcrTpEMFAAAAVAe1cMQolkpKSvTuu+/qtttu0/HHH19l6fIMFQAAAIAaLzk5WS+++GKVp0uHCgAAAIg3E6dPLTNgwAC9/PLLVZomU/4AAAAA1Apt2rTR7bffrg8++EBdunRRnTp1Ir6/9tprrdOkQwUAAACgVnj88ceVnZ2tpUuXaunSpRHfeZ5HhwoAAABIRCybHhtr1qyp8jTpUAGqnScUyaHeMWgn2zIZlzJFux4O6cei3p5leGMsY7gUyo9yeMm+4pZ5GM82A8n4dm3lO+ShkF0czzIP2/CS5Pt2j25bVkGS5Fn+mAKWZSp1+QcjZB+luvGN/WP3vuU5JGR7zrHMY38N2A+oWua//265nM8OxaIUAAAAQLyxKEXMPPHEE+rYsaPS09OVnp6uTp066cknn3ROjxEqAAAAALXCAw88oNtuu02jRo3Sj3/8Y0nS+++/ryuuuELbtm3T9ddfb50mHSoAAAAAtcLDDz+sRx55RIMHDw5vO++883TCCSdo4sSJdKgAAACARMSiFLGxadMm9ezZs8z2nj17atOmTU5p8gwVAAAAgFqhdevW+stf/lJm+3PPPac2bdo4pckIFQAAABBv8VgkohaOUE2aNEkXX3yx3nvvvfAzVB988IHmz59fbkerIhihAgAAAFArXHDBBVq8eLFycnL08ssv6+WXX1ZOTo6WLFmin/3sZ05pMkIFAAAAxBsjVDHTpUsXPfXUU1WWHiNUAAAAAOCIESoAAAAANVogEJDneUcM43meSktLrdOmQwUAAADEGcumR9dLL7102O8WLVqkhx56SL7vO6VNhwoAAABAjXb++eeX2bZq1SqNHTtWf/3rXzVo0CDdfvvtTmnToUL151fD2ye2RXKogvVdoxg0k22ZXO58mVjs7ijXw6kOsdjftvW2vVHncGPPBI48/eL7rMskydg+LWybh10VJEnGt4zkkoflY9KhkH0etZFv7HeGH4x+49qWy7f8YaQE7adB2ZYp1eFAt6nH/up+jLMoRcx8++23mjBhgmbPnq38/HwtX75cJ554onN6LEoBAAAAoMbbtWuXbrnlFrVu3VpffPGF5s+fr7/+9a+V6kxJjFABAAAAqOHuvfde3XPPPcrNzdWf//zncqcAuqJDBQAAAMQbU/6iauzYsUpPT1fr1q01e/ZszZ49u9xwc+bMsU6bDhUAAACAGm3w4MFHXTbdFR0qAAAAIM5YNj26Zs2aFbW0WZQCAAAAABzRoQIAAAAAR0z5AwAAAOKNRSkSFiNUAAAAAOCIESoAAAAgzliUInElzAjVjh07NGjQIGVmZio7O1vDhw9XUVHREcNfc801atu2rdLT03Xcccfp2muv1a5duyLCeZ5X5vPss89GuzoAAABAjVWbrt0TZoRq0KBB2rRpk+bNm6eSkhINGzZMI0eO1DPPPFNu+G+//Vbffvut7r//fnXo0EHr1q3TFVdcoW+//VYvvPBCRNiZM2eqb9++4b+zs7OjWRUgKpzuMkX7zlQsyuSQh21bGcvwLvvCOg/f4V0avl0mxjYLhzJ50S6TJPm2ESwzcSiTCdnez7SuhEOMhLnHWqUsD0ElB+1b1pZxONCTFbIK71vm4Tsc6EmeZZmc8qj4/iix3dmxVsOeoapN1+4J0aFasWKF5s6dq48++khdu3aVJD388MPq16+f7r//fjVt2rRMnBNPPFEvvvhi+O9WrVrpzjvv1KWXXqrS0lIlJf2v6tnZ2crNzY1+RQAAAIAarrZduyfE7ahFixYpOzs7vEMkKS8vT4FAQIsXL65wOrt27VJmZmbEDpGkq6++Wjk5OerWrZtmzJghc5RbxcXFxSosLIz4AAAAAIno+9e1xcXFlUqvul27R1tCjFAVFBSoUaNGEduSkpLUoEEDFRQUVCiNbdu2afLkyRo5cmTE9ttvv11nnXWWMjIy9NZbb+mqq65SUVGRrr322sOmNWXKFE2aNMm+IgAAAEB54jjlr1mzZhGbJ0yYoIkTJzonW92u3aMtrh2qsWPH6p577jlimBUrVlQ6n8LCQvXv318dOnQoc3Dcdttt4f8/+eSTtXv3bt13331H3Cnjxo3TmDFjItL//oEIAAAAJIINGzYoMzMz/Hdqamq54RL12j3a4tqhuuGGGzR06NAjhmnZsqVyc3O1ZcuWiO2lpaXasWPHUedPfvfdd+rbt6/q1aunl156ScnJyUcM3717d02ePFnFxcWHPZhSU1MP+x0AAABgy5PTGjeVzlOSMjMzIzpUh5Oo1+7RFtcOVcOGDdWwYcOjhuvRo4d27typpUuXqkuXLpKkBQsWyPd9de/e/bDxCgsLlZ+fr9TUVL366qtKS0s7al7Lly9X/fr16TABAAAAh+DavXwJ8QxV+/bt1bdvX40YMUKPPvqoSkpKNGrUKA0cODC8SsjGjRvVp08fPfHEE+rWrZsKCwt19tlna8+ePXrqqaciFo9o2LChgsGg/vrXv2rz5s069dRTlZaWpnnz5umuu+7SjTfeGM/qAgAAAAmrtl27J0SHSpKefvppjRo1Sn369FEgENAFF1yghx56KPx9SUmJVq1apT179kiSPvnkk/AqIq1bt45Ia82aNWrRooWSk5M1bdo0XX/99TLGqHXr1nrggQc0YsSI2FUMAAAAqGHvoapN1+6eifc6gzVAYWGhsrKy1FvnK8k78jzPgwIVGML8Pi893S58msPQp2Uck5ZiFz61Yu1zKD8laBc+1f4+gZ9i9waBkGV4P8V+VrSfbPnSxST7PEK2eVjuPt/hlo1tPWzLJEnGsly29TB2h2zM8jBJdqd73zKPWJTJBO3/ybLNw/qFIg5lso3jObxM1rPMIxCwDO9QpqBlHNvwkpQUsIsTsAzv8mJf2zLZhpek5KDdS3SDFi/ElaQUy/Ql+xf7uuVh8WLf3fv1Qt4T4aW4q4uD15EdrrxLwVT768PKCBXv05eP/KbatUmiSZgRKgAAAKCm8syBT6zzROUlxIt9AQAAAKA6YoQKNY/LLFbLKLZ3dCxnVhwQg7tGnm1bGbvpeC53vmzL5PkOi8xa7g/b/WccblVZHyMOeRjbetvm4XKc28bxHPa35SwiY31CsAvuEse41Nsyiv3uq573ZI3leSpoGd6Fb5mHy+nfNo+g5bRC23aVpNKA3TFS6jBv2GZaYUlpNR+OqWHPUNUm1fNsCAAAAAAJgA4VAAAAADhiyh8AAABQHTAFLyExQgUAAAAAjhihAgAAAOKMZdMTFyNUAAAAAOCIDhUAAAAAOGLKHwAAABBvvIcqYTFCBQAAAACOGKECAAAA4oxFKRIXI1QAAAAA4IgRKgAAACDeeIYqYdGhQmwZfrkVZT0MH4OmtS2T0+62jOMyXcG6XDEok3y74MYyvCR5nmcXwbetuF1wSTK+ZSSXxrWst20zGYd6x4J1S1lGcDgEZTsxxuUcEgzaRbLNw+nnbflbCtn+LiQlB+32SNDywA359pOaggG7MqUEQtZ5lAYqXq7SkNtRCxwNU/4AAAAAwBEjVAAAAECcsShF4mKECgAAAAAcMUIFAAAAxBuLUiQsRqgAAAAAwBEdKgAAAABwxJQ/AAAAIN6Y8pewGKECAAAAAEeMUAEAAABxxrLpiYsRKgAAAABwxAgVAAAAEG88Q5Ww6FCh2quWw9HGslDGi045DuHUTrZxoh1e9vWw3RUHItkF93zL9G3Dy/4QsS6TJFnmYWzzcDjM7aO4/JbsdrixzCP6JXJkeVCZYPR/fH7Q7qDyTNA6D9sD1w9YtpPD+dwP2LVVwCUP327SUSBg107JlvtOkoKW9QhZ1kGSghb1KC11OXECR8eUPwAAAABwxAgVAAAAEGeeMfKcpl1ULk9UHiNUAAAAAOCIESoAAAAg3liUImExQgUAAAAAjuhQAQAAAIAjpvwBAAAAceaZ2L8qplq+miYBMUIFAAAAAI4YoQIAAADijUUpEhYjVAAAAADgiBEqAAAAIM54hipx0aFC5fjV75focnKwf1O4Z5+JLdsiObzt3DN29bBtW5d9YVsNz+EY9HzL/Wc5lm98u/CS5NnOF3DIw/awDYTsIvjVdu6I7e/Vrh7G4Xxg+9swQessHM4hlsEdymSM3YHuBeyPKRO0zMPypGNszx+yr0cgYD+BKBSwOynY5lEast8XQcsyBR32t00eoRKXEydwdEz5AwAAAABHjFABAAAA8caiFAmLESoAAAAAcMQIFQAAABBnLEqRuBihAgAAAABHdKgAAAAAwBFT/gAAAIB4Y1GKhMUIFQAAAAA4YoQKAAAAqAZYJCIxMUIFAAAAAI4YoQIAAADizZgDn1jniUpjhAoAAAAAHDFCBTiwnePsOdwBss/Ds87DenUf2zL5luk7xDEOt4Ws87AM7znsCoXsgrvsbtnuD8s8PJeKV8sHBuzq4fL7NkHLtnJppqBlFrZ5+A77O2iXiQk4tK1vF8ezzMOlTJ7lecp3+F14Abv9EbCsh214SQoF7CoeCNj/o+FZHOihEod/lIAKoEMFAAAAxJlnYn+PqVre00pATPkDAAAAAEeMUAEAAADxxot9ExYjVAAAAADgiA4VAAAAADhiyh8AAAAQZ57vtjpuZfNE5TFCBQAAAACOGKECAAAA4o1FKRIWI1QAAAAA4IgOFQAAAAA4YsofAAAAEGeeOfCJdZ6oPDpUiC3j8Mu1jeOUh32UqKdvG8chD9vVfTzfLhMT8OwykEuZrLOw/hfE8y3rYV9t6ziBkH0W1XExJ8/YVdwPRv9ff9vdZyzr8N9IduEdfkvWOzxoGd5hjov16dlzqHfA9jxlG94quCTJs8zDtg6S5Fm2lW9ZD8/hytsL2B2Enmd7EEoBi7YKlZRapw9UBB0qAAAAIN6McbspXNk8UWkJ8wzVjh07NGjQIGVmZio7O1vDhw9XUVHREeP07t1bnudFfK644oqIMOvXr1f//v2VkZGhRo0a6aabblJpKXcwAAAAAFe16do9YUaoBg0apE2bNmnevHkqKSnRsGHDNHLkSD3zzDNHjDdixAjdfvvt4b8zMjLC/x8KhdS/f3/l5ubqH//4hzZt2qTBgwcrOTlZd911V9TqAgAAAByqpj1DVZuu3ROiQ7VixQrNnTtXH330kbp27SpJevjhh9WvXz/df//9atq06WHjZmRkKDc3t9zv3nrrLX355Zd6++231bhxY3Xu3FmTJ0/WLbfcookTJyolJSUq9QEAAABqqtp27Z4QU/4WLVqk7Ozs8A6RpLy8PAUCAS1evPiIcZ9++mnl5OToxBNP1Lhx47Rnz56IdDt27KjGjRuHt+Xn56uwsFBffPHFYdMsLi5WYWFhxAcAAABIRN+/ri0uLq5UetXt2j3aEmKEqqCgQI0aNYrYlpSUpAYNGqigoOCw8S655BI1b95cTZs21WeffaZbbrlFq1at0pw5c8LpHrpDJIX/PlK6U6ZM0aRJk1yrAwAAAEQyiv6qw+XlKalZs2YRmydMmKCJEyc6J1vdrt2jLa4dqrFjx+qee+45YpgVK1Y4pz9y5Mjw/3fs2FFNmjRRnz599PXXX6tVq1bO6Y4bN05jxowJ/11YWFjmQAQAAAASwYYNG5SZmRn+OzU1tdxwiXrtHm1x7VDdcMMNGjp06BHDtGzZUrm5udqyZUvE9tLSUu3YseOwcyzL0717d0nSV199pVatWik3N1dLliyJCLN582ZJOmK6qamphz3QAAAAAFvxXJQiMzMzokN1OIl67R5tce1QNWzYUA0bNjxquB49emjnzp1aunSpunTpIklasGCBfN8PN3RFLF++XJLUpEmTcLp33nmntmzZEh6WnDdvnjIzM9WhQwfL2gAAAAA1F9fu5UuIRSnat2+vvn37asSIEVqyZIk++OADjRo1SgMHDgyvErJx40a1a9cu3Gv9+uuvNXnyZC1dulRr167Vq6++qsGDB+v0009Xp06dJElnn322OnTooMsuu0yffvqp3nzzTd166626+uqrGYECAAAAHNS2a/eE6FBJB1b8aNeunfr06aN+/fqpV69e+uMf/xj+vqSkRKtWrQqvBJKSkqK3335bZ599ttq1a6cbbrhBF1xwgf7617+G4wSDQf3tb39TMBhUjx49dOmll2rw4MERa98DAAAAUWdMfD5RUpuu3T1jotiStURhYaGysrLUW+cryUuuUJxAWpp1Pl56ul34NIeeeqrd+v3GOrz9LFOTYhfHTwna55Fsd28hZBnetwwvSSbJs8zDLrwk+bZ5WO4+P+hSJrvwxn53W8exrUcsyhSbeltmYL+77evtcBvQBO3+mbPNw6VMtrczneodiG69XW7J2pYpJnnYHrcOx7ms6+1waWZbLss8vBjU23N4gMizOEb8Pfu07vLJ2rVrV4WeF4qVg9eRp/a7XUnJ9teHlVFask8fvj6+2rVJokmIZdMBAACAmiyei1KgchJmyh8AAAAAVDeMUAEAAADxFscX+6JyGKECAAAAAEd0qAAAAADAEVP+AAAAgDhjUYrExQgVAAAAADhihAoAAACIN98c+MQ6T1QaI1QAAAAA4IgOFQAAAAA4YsofAAAAEG+8hyphMUIFAAAAAI4YoUL1Zyxvn7jcbfHtgtsuM+qyLKlttV3q7Vk+jOr5nl14h4oHQnZ5WBbpAMs49vVwKVQMWFYjYPvTc7lFZ9u0DnnYHre29TBB++Pcuq1c6h2wrLdtBg5lsm5bl3p70d3f1j8MSbIuk0se0Q1vXP4hs93fLnlY1MMvDtqnH0Oe4rBsemyzq7EYoQIAAAAAR4xQAQAAAPFmjMP0lCrIE5XGCBUAAAAAOKJDBQAAAACOmPIHAAAAxJln4rAoBTP+qgQjVAAAAADgiBEqAAAAIN54sW/CYoQKAAAAABzRoQIAAAAAR0z5AwAAAOLMM0ZejN8LFev8aipGqAAAAADAESNUqBzbOxt+dIpxKJe7LdYxbCM4lMmzbCvb8AcieVHNwzL5/0ayaysv5JKJnYDl7jNB+/3ty3JfONxU9IN24W3zMA636GzjxCIP2+PWOByD1vVwqrfdDjS21XAqk2UmDj9v63rY7m+XW9G2ebicPG1/S9bt5HDSsW0rp/1tUa7iaj6O4Csm10ll8kSlVfMjCwAAAACqL0aoAAAAgDjjGarExQgVAAAAADiiQwUAAAAAjpjyBwAAAMSbkcMqWVWQJyqNESoAAAAAcMQIFQAAABBvxji9ZqXSeaLSGKECAAAAAEd0qAAAAADAEVP+AAAAgDjzzIFPrPNE5TFCBQAAAACOGKGqyarhg4Yub+Q2vmUE3z4PzzKOdfiQVfD/RvJikEd06xGQXR0kyXZ3BxzWfDXGrlx+0DYDy/CSApa/DeNwOyzgW+4PyzxcymQbJxZ5WNfb/jC3L5NLHpbnkFjUOyZ5WJ7X7PeFfaGs6+G0v6OcR0zq7XDytCiXt6+ajyOwKEXCquZHFgAAAABUX4xQAQAAAHHm+Qc+sc4TlccIFQAAAAA4okMFAAAAAI6Y8gcAAADEG4tSJCxGqAAAAADAESNUAAAAQLwZOb12o9J5otIYoQIAAAAAR3SoAAAAAMARU/4AAACAOPOMkRfjRSJinV9NxQgVAAAAADhihAqRbO9UxODOhvXdE4ciGcs8bMvk+Z5VeEmSb5lHyD4Lya5cAcvGdXkBe8CyTC6HoAnYHlOWZXK4VWUsG8slD1nW2zYPp3p7lr8Nlzxs62H7c3Wqt2UEh1OI9f6wzMO6DnI8bm1ZHlOx2BexaFvrcsWkTJbnHNvzgWRVD2+fSyViiGXTExYjVAAAAADgiBEqAAAAIN6M3KZ2VDZPVBojVAAAAADgiA4VAAAAADhiyh8AAAAQZyybnrgYoQIAAAAAR4xQAQAAAPFmFIdl02ObXU3FCBUAAAAAOKJDBQAAAACOmPIHAAAAxJsxcZjyx5y/qsAIFQAAAAA4YoQKAAAAiDdfkheHPFFpdKgQWy5Dy7ZxHPLwfLs4JmQX3vMc6h2yC+7F5CRsl0nAYV8Yy5O7CVpnIROwq4f18eEw9m8s959tHQ7EsYxgXSbL9CUZ299GTNrWMgOH356x/cG6/L6jXG/bdpVkXw+ntrWPYyUWZYrF/o5FmSwjRXvfhYpj3VtBbcGUPwAAAABwxAgVAAAAEGeeMfJivEhErPOrqRihAgAAAABHjFABAAAA8cay6QkrYUaoduzYoUGDBikzM1PZ2dkaPny4ioqKDht+7dq18jyv3M/zzz8fDlfe988++2wsqgQAAADUSLXp2j1hRqgGDRqkTZs2ad68eSopKdGwYcM0cuRIPfPMM+WGb9asmTZt2hSx7Y9//KPuu+8+nXPOORHbZ86cqb59+4b/zs7OrvLyAwAAAIdVw0aoatO1e0J0qFasWKG5c+fqo48+UteuXSVJDz/8sPr166f7779fTZs2LRMnGAwqNzc3YttLL72kiy66SHXr1o3Ynp2dXSYsAAAAAHu17do9Iab8LVq0SNnZ2eEdIkl5eXkKBAJavHhxhdJYunSpli9fruHDh5f57uqrr1ZOTo66deumGTNmyBylt15cXKzCwsKIDwAAAJCIvn9dW1xcXKn0qtu1e7QlxAhVQUGBGjVqFLEtKSlJDRo0UEFBQYXSePzxx9W+fXv17NkzYvvtt9+us846SxkZGXrrrbd01VVXqaioSNdee+1h05oyZYomTZpkXxEAAACgPHGc8tesWbOIzRMmTNDEiROdk61u1+7RFtcO1dixY3XPPfccMcyKFSsqnc/evXv1zDPP6Lbbbivz3aHbTj75ZO3evVv33XffEXfKuHHjNGbMmPDfhYWFZQ5EAAAAIBFs2LBBmZmZ4b9TU1PLDZeo1+7RFtcO1Q033KChQ4ceMUzLli2Vm5urLVu2RGwvLS3Vjh07KjR/8oUXXtCePXs0ePDgo4bt3r27Jk+erOLi4sMeTKmpqYf9DgAAALDmS/LikKekzMzMiA7V4STqtXu0xbVD1bBhQzVs2PCo4Xr06KGdO3dq6dKl6tKliyRpwYIF8n1f3bt3P2r8xx9/XOedd16F8lq+fLnq169fPTtMxo9+Hr7lULPt0LTLUHbIMk7APg/Ps4tjGz58xrLJw1ieVY39I5HGsq2Mb1cm2/CSQzVKrbOQCVrWO2BZb4d/EK3rHYM8rOsRkzI5ZGL7U4pFvW3PIU55WEaIQb1tufyWor6/XViXKQaFqin720Kgco8FQVy7H05CPEPVvn179e3bVyNGjNCjjz6qkpISjRo1SgMHDgyvErJx40b16dNHTzzxhLp16xaO+9VXX+m9997T66+/Xibdv/71r9q8ebNOPfVUpaWlad68ebrrrrt04403xqxuAAAAQE1S267dE6JDJUlPP/20Ro0apT59+igQCOiCCy7QQw89FP6+pKREq1at0p49eyLizZgxQ8cee6zOPvvsMmkmJydr2rRpuv7662WMUevWrfXAAw9oxIgRUa8PAAAAcJBnjLwYL0oRzfxq07W7Z+K9zmANUFhYqKysLPXW+UrykisUJ5CWZp2Pl2Y3lOk55KHkipX/IJNqF17J9n14EwzahU+2Cy9JSrKbd+RbhjdBh3kMlnH8oMuUP8vwlmVyqbft9DqnqVCWh0j1nPIX/emUTPmLTvo1Jo/qOgWMKX8VU1P2t4VQ8T59+dhvtGvXrgo9LxQrB68j8344RknB2E5bKw0V6+1/PVDt2iTRJMwIFQAAAFBjxXHZdFROQrzYFwAAAACqI0aoAAAAgHjzjWS9inAV5IlKY4QKAAAAABzRoQIAAAAAR0z5AwAAAOKNRSkSFiNUAAAAAOCIESoAAAAg7uIwQiVGqKoCHaoazOWdzbZvzPZCvlV4E7ALL0me7QsOQ9ZZWJ9ObId2jcPbCo1vFycQcjgp2r6oN2QZ3vYlvbJ/saPTS5MtjykTsGxbp5ew2r7Q2H5/27882DL9mLx01+E4r5Yveo3+y6Kj/SLW6vhCXCkG5aoBL7iVVHPqYSG0n84DooMpfwAAAADgiBEqAAAAIN5YlCJhMUIFAAAAAI4YoQIAAADizTeK+SIRPiNUVYERKgAAAABwxAgVAAAAEG/GP/CJdZ6oNEaoAAAAAMARHSoAAAAAcMSUPwAAACDeWDY9YTFCBQAAAACOGKECAAAA4o1l0xMWI1QAAAAA4IgRqprM5a6D7Vxa2/C+w/KcpXbBPfscJNti2dYjYH/vwgta1sSzr7mxzMPY5uGyMyzzMAGHTCx3h3W9XVhm4VSmKFfDuKTvsv8sWZcrBvvbqa2iLRZlqob1ro6/7+rIVNdb8BZtW1oSil45UKvRoQIAAADijUUpElZ1vd8AAAAAANUeI1QAAABAvBnFYYQqttnVVIxQAQAAAIAjRqgAAACAeOMZqoTFCBUAAAAAOKJDBQAAAACOmPIHAAAAxJvvy/7FmFWRJyqLESoAAAAAcMQIFQAAABBvLEqRsBihAgAAAABHjFDFiXG4I+D5lnGMw7zYUMguvOfZBXe5ExKw6/cbh/nAnmU9bMvkBSzTl6zb1jq8JGNdb+ss7MWg3ras28lFdWzb6pa+I1M9i2XH5RxSDcXkt1QT0ExRUVpaHO8ioIaiQwUAAADEG1P+EhZT/gAAAADAESNUAAAAQLz5RlKMR4xsHydBuRihAgAAAABHjFABAAAAcWaML+OyoFgl80TlMUIFAAAAAI7oUAEAAACAI6b8AQAAAPFmTOwXiWDZ9CrBCBUAAAAAOGKECgAAAIg3E4dl0xmhqhKMUAEAAACAI0aoEogJhazCe6WefR62dypKS+3Cew59+IBdPTzPvt5yiWMjEIN7Fw51iHKt3UR7X8SC5TGLKKsJxxRqF47ZqPD84ngXATUUHSoAAAAg3nxf8mL8XijeQ1UlmPIHAAAAAI4YoQIAAADijUUpEhYjVAAAAADgiBEqAAAAIM6M78vE+BkqwzNUVYIRKgAAAABwRIcKAAAAABwx5Q8AAACINxalSFiMUAEAAACAI0aoAAAAgHjzjeQxQpWIGKECAAAAAEd0qAAAAADAEVP+4sQUF8ckDgAAAKRSUxLvIhyZMZJi/F4opvxVCUaoAAAAAMARI1QAAABAnBnfyMR4UQrDCFWVYIQKAAAAABzRoQIAAAAAR0z5AwAAAOLN+Ir9ohQxzq+GYoQKAAAAABwxQgUAAADEGYtSJK6EGaG688471bNnT2VkZCg7O7tCcYwxGj9+vJo0aaL09HTl5eVp9erVEWF27NihQYMGKTMzU9nZ2Ro+fLiKioqiUAMAAACgdqhN1+4J06Hav3+/LrzwQl155ZUVjnPvvffqoYce0qOPPqrFixerTp06ys/P1759+8JhBg0apC+++ELz5s3T3/72N7333nsaOXJkNKoAAAAAlM/48flESW26dvdMgo31zZo1S6NHj9bOnTuPGM4Yo6ZNm+qGG27QjTfeKEnatWuXGjdurFmzZmngwIFasWKFOnTooI8++khdu3aVJM2dO1f9+vXTN998o6ZNm1aoTIWFhcrKylJvna8kL7lS9QMAAEDVKzUlWqhXtGvXLmVmZsa7OGHxvI6MRZtUx2v3qlZjn6Fas2aNCgoKlJeXF96WlZWl7t27a9GiRRo4cKAWLVqk7Ozs8A6RpLy8PAUCAS1evFg/+9nPyk27uLhYxcXF4b937dolSSpViZRQ3VMAAIDaoVQlkqrvc0PxuI482CaFhYUR21NTU5WamhrTskTz2j3aamyHqqCgQJLUuHHjiO2NGzcOf1dQUKBGjRpFfJ+UlKQGDRqEw5RnypQpmjRpUpnt7+v1yhYbAAAAUbR9+3ZlZWXFuxhhKSkpys3N1fsF8bmOrFu3rpo1axaxbcKECZo4cWJMyxHNa/doi2uHauzYsbrnnnuOGGbFihVq165djEpUMePGjdOYMWPCf+/cuVPNmzfX+vXrq9UPtDorLCxUs2bNtGHDhmo17F7d0W72aDM3tJs92swN7WaPNnOza9cuHXfccWrQoEG8ixIhLS1Na9as0f79++OSvzFGnudFbDvc6FSiXrtHW1w7VDfccIOGDh16xDAtW7Z0Sjs3N1eStHnzZjVp0iS8ffPmzercuXM4zJYtWyLilZaWaseOHeH45TncMGhWVhYnNkuZmZm0mQPazR5t5oZ2s0ebuaHd7NFmbgKB6rcmW1pamtLS0uJdjKNK1Gv3aItrh6phw4Zq2LBhVNI+/vjjlZubq/nz54d3QmFhoRYvXhxebaRHjx7auXOnli5dqi5dukiSFixYIN/31b1796iUCwAAAEhEXLuXr/p10Q9j/fr1Wr58udavX69QKKTly5dr+fLlEevOt2vXTi+99JIkyfM8jR49WnfccYdeffVVff755xo8eLCaNm2qAQMGSJLat2+vvn37asSIEVqyZIk++OADjRo1SgMHDozbKiEAAABAoqtN1+4JsyjF+PHjNXv27PDfJ598siTpnXfeUe/evSVJq1atCq+4J0k333yzdu/erZEjR2rnzp3q1auX5s6dGzGk+vTTT2vUqFHq06ePAoGALrjgAj300ENWZUtNTdWECRNivhpKIqPN3NBu9mgzN7SbPdrMDe1mjzZzQ7vFVnW+dq9qCfceKgAAAACoLhJmyh8AAAAAVDd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhqoA777xTPXv2VEZGhrKzsysUxxij8ePHq0mTJkpPT1deXp5Wr14dEWbHjh0aNGiQMjMzlZ2dreHDh0csJZnIbOu2du1aeZ5X7uf5558Phyvv+2effTYWVYoJl2Oid+/eZdrkiiuuiAizfv169e/fXxkZGWrUqJFuuukmlZaWRrMqMWPbZjt27NA111yjtm3bKj09Xccdd5yuvfbaiFWGpJp3rE2bNk0tWrRQWlqaunfvriVLlhwx/PPPP6927dopLS1NHTt21Ouvvx7xfUXOcTWBTbtNnz5dp512murXr6/69esrLy+vTPihQ4eWOa769u0b7WrElE2bzZo1q0x7fP/lphxrZZV33vc8T/379w+HqenH2nvvvadzzz1XTZs2led5evnll48aZ+HChTrllFOUmpqq1q1ba9asWWXC2J4rAUmSwVGNHz/ePPDAA2bMmDEmKyurQnHuvvtuk5WVZV5++WXz6aefmvPOO88cf/zxZu/eveEwffv2NSeddJL58MMPzd///nfTunVr88tf/jJKtYgt27qVlpaaTZs2RXwmTZpk6tata7777rtwOElm5syZEeEObdNE53JMnHHGGWbEiBERbbJr167w96WlpebEE080eXl5ZtmyZeb11183OTk5Zty4cdGuTkzYttnnn39ufv7zn5tXX33VfPXVV2b+/PmmTZs25oILLogIV5OOtWeffdakpKSYGTNmmC+++MKMGDHCZGdnm82bN5cb/oMPPjDBYNDce++95ssvvzS33nqrSU5ONp9//nk4TEXOcYnOtt0uueQSM23aNLNs2TKzYsUKM3ToUJOVlWW++eabcJghQ4aYvn37RhxXO3bsiFWVos62zWbOnGkyMzMj2qOgoCAiDMdaWdu3b49os3/+858mGAyamTNnhsPU9GPt9ddfN7/97W/NnDlzjCTz0ksvHTH8v//9b5ORkWHGjBljvvzyS/Pwww+bYDBo5s6dGw5jux+Ag+hQWZg5c2aFOlS+75vc3Fxz3333hbft3LnTpKammj//+c/GGGO+/PJLI8l89NFH4TBvvPGG8TzPbNy4scrLHktVVbfOnTubX/3qVxHbKnLSTFSu7XbGGWeY66677rDfv/766yYQCERcpDzyyCMmMzPTFBcXV0nZ46WqjrW//OUvJiUlxZSUlIS31aRjrVu3bubqq68O/x0KhUzTpk3NlClTyg1/0UUXmf79+0ds6969u/n1r39tjKnYOa4msG237ystLTX16tUzs2fPDm8bMmSIOf/886u6qNWGbZsd7d9VjrWKHWsPPvigqVevnikqKgpvq+nH2qEqcr6++eabzQknnBCx7eKLLzb5+fnhvyu7H1B7MeUvCtasWaOCggLl5eWFt2VlZal79+5atGiRJGnRokXKzs5W165dw2Hy8vIUCAS0ePHimJe5KlVF3ZYuXarly5dr+PDhZb67+uqrlZOTo27dumnGjBkyNeRVapVpt6efflo5OTk68cQTNW7cOO3Zsyci3Y4dO6px48bhbfn5+SosLNQXX3xR9RWJoar6He3atUuZmZlKSop813lNONb279+vpUuXRpyPAoGA8vLywuej71u0aFFEeOnAMXMwfEXOcYnOpd2+b8+ePSopKVGDBg0iti9cuFCNGjVS27ZtdeWVV2r79u1VWvZ4cW2zoqIiNW/eXM2aNdP5558fcV7iWKtYHR9//HENHDhQderUidheU481F0c7r1XFfkDtlXT0ILBVUFAgSREXsAf/PvhdQUGBGjVqFPF9UlKSGjRoEA6TqKqibo8//rjat2+vnj17Rmy//fbbddZZZykjI0NvvfWWrrrqKhUVFenaa6+tsvLHi2u7XXLJJWrevLmaNm2qzz77TLfccotWrVqlOXPmhNMt71g8+F0iq4pjbdu2bZo8ebJGjhwZsb2mHGvbtm1TKBQq9xhYuXJluXEOd8wcev46uO1wYRKdS7t93y233KKmTZtGXKD17dtXP//5z3X88cfr66+/1m9+8xudc845WrRokYLBYJXWIdZc2qxt27aaMWOGOnXqpF27dun+++9Xz5499cUXX+jYY4/lWKvAsbZkyRL985//1OOPPx6xvSYfay4Od14rLCzU3r179Z///KfSv3nUXrW2QzV27Fjdc889RwyzYsUKtWvXLkYlqv4q2maVtXfvXj3zzDO67bbbynx36LaTTz5Zu3fv1n333VetL3Kj3W6HdgQ6duyoJk2aqE+fPvr666/VqlUr53TjKVbHWmFhofr3768OHTpo4sSJEd8l4rGG6uPuu+/Ws88+q4ULF0YssjBw4MDw/3fs2FGdOnVSq1attHDhQvXp0yceRY2rHj16qEePHuG/e/bsqfbt2+uxxx7T5MmT41iyxPH444+rY8eO6tatW8R2jjUgdmpth+qGG27Q0KFDjximZcuWTmnn5uZKkjZv3qwmTZqEt2/evFmdO3cOh9myZUtEvNLSUu3YsSMcv7qpaJtVtm4vvPCC9uzZo8GDBx81bPfu3TV58mQVFxcrNTX1qOHjIVbtdlD37t0lSV999ZVatWql3NzcMqsUbd68WZJq9bH23XffqW/fvqpXr55eeuklJScnHzF8Ihxr5cnJyVEwGAzv84M2b9582DbKzc09YviKnOMSnUu7HXT//ffr7rvv1ttvv61OnTodMWzLli2Vk5Ojr776KuEvcivTZgclJyfr5JNP1ldffSWJY+1o7bZ79249++yzuv3224+aT0061lwc7ryWmZmp9PR0BYPBSh+/qL1q7TNUDRs2VLt27Y74SUlJcUr7+OOPV25urubPnx/eVlhYqMWLF4fvxPXo0UM7d+7U0qVLw2EWLFgg3/fDF8TVTUXbrLJ1e/zxx3XeeeepYcOGRw27fPly1a9fv1pf4Maq3Q5avny5JIUvPnr06KHPP/88ouMxb948ZWZmqkOHDlVTySoW7TYrLCzU2WefrZSUFL366qtllmkuTyIca+VJSUlRly5dIs5Hvu9r/vz5ESMDh+rRo0dEeOnAMXMwfEXOcYnOpd0k6d5779XkyZM1d+7ciGf7Duebb77R9u3bIzoLicq1zQ4VCoX0+eefh9uDY+3IdXz++edVXFysSy+99Kj51KRjzcXRzmtVcfyiFov3qhiJYN26dWbZsmXhZbyXLVtmli1bFrGcd9u2bc2cOXPCf999990mOzvbvPLKK+azzz4z559/frnLpp988slm8eLF5v333zdt2rSpUcumH6lu33zzjWnbtq1ZvHhxRLzVq1cbz/PMG2+8USbNV1991UyfPt18/vnnZvXq1eYPf/iDycjIMOPHj496fWLFtt2++uorc/vtt5uPP/7YrFmzxrzyyiumZcuW5vTTTw/HObhs+tlnn22WL19u5s6daxo2bFijlk23abNdu3aZ7t27m44dO5qvvvoqYknh0tJSY0zNO9aeffZZk5qaambNmmW+/PJLM3LkSJOdnR1e+fGyyy4zY8eODYf/4IMPTFJSkrn//vvNihUrzIQJE8pdNv1o57hEZ9tud999t0lJSTEvvPBCxHF18N+K7777ztx4441m0aJFZs2aNebtt982p5xyimnTpo3Zt29fXOpY1WzbbNKkSebNN980X3/9tVm6dKkZOHCgSUtLM1988UU4DMda2XY7qFevXubiiy8us702HGvfffdd+HpMknnggQfMsmXLzLp164wxxowdO9Zcdtll4fAHl02/6aabzIoVK8y0adPKXTb9SPsBOBw6VBUwZMgQI6nM55133gmH0X/fWXOQ7/vmtttuM40bNzapqammT58+ZtWqVRHpbt++3fzyl780devWNZmZmWbYsGERnbREdrS6rVmzpkwbGmPMuHHjTLNmzUwoFCqT5htvvGE6d+5s6tata+rUqWNOOukk8+ijj5YbNlHZttv69evN6aefbho0aGBSU1NN69atzU033RTxHipjjFm7dq0555xzTHp6usnJyTE33HBDxBLhicy2zd55551yf8+SzJo1a4wxNfNYe/jhh81xxx1nUlJSTLdu3cyHH34Y/u6MM84wQ4YMiQj/l7/8xfzwhz80KSkp5oQTTjCvvfZaxPcVOcfVBDbt1rx583KPqwkTJhhjjNmzZ485++yzTcOGDU1ycrJp3ry5GTFiRI27WLNps9GjR4fDNm7c2PTr18988sknEelxrJX/G125cqWRZN56660yadWGY+1w5/KD7TRkyBBzxhlnlInTuXNnk5KSYlq2bBlx3XbQkfYDcDieMQm4DjAAAAAAVAO19hkqAAAAAKgsOlQAAAAA4IgOFQAAAAA4okMFAAAAAI7oUAEAAACAIzpUAAAAAOCIDhUAAAAAOKJDBQAAAACO6FABQA3Su3dvjR49Ot7FAACg1qBDBQAImzVrlrKzs53iXnvtterSpYtSU1PVuXPnKi0XAADVFR0qAECV+dWvfqWLL7443sUAACBm6FABQA1TWlqqUaNGKSsrSzk5ObrttttkjJEkFRcX68Ybb9QPfvAD1alTR927d9fChQslSQsXLtSwYcO0a9cueZ4nz/M0ceJESdKTTz6prl27ql69esrNzdUll1yiLVu2ROT70EMP6eqrr1bLli1jWV0AAOKKDhUA1DCzZ89WUlKSlixZot///vd64IEH9Kc//UmSNGrUKC1atEjPPvusPvvsM1144YXq27evVq9erZ49e2rq1KnKzMzUpk2btGnTJt14442SpJKSEk2ePFmffvqpXn75Za1du1ZDhw6NYy0BAKgekuJdAABA1WrWrJkefPBBeZ6ntm3b6vPPP9eDDz6o/Px8zZw5U+vXr1fTpk0lSTfeeKPmzp2rmTNn6q677lJWVpY8z1Nubm5Emr/61a/C/9+yZUs99NBD+tGPfqSioiLVrVs3pvUDAKA6YYQKAGqYU089VZ7nhf/u0aOHVq9erc8//1yhUEg//OEPVbdu3fDn3Xff1ddff33ENJcuXapzzz1Xxx13nOrVq6czzjhDkrR+/fqo1gUAgOqOESoAqCWKiooUDAa1dOlSBYPBiO+ONMq0e/du5efnKz8/X08//bQaNmyo9evXKz8/X/v37492sQEAqNboUAFADbN48eKIvz/88EO1adNGJ598skKhkLZs2aLTTjut3LgpKSkKhUIR21auXKnt27fr7rvvVrNmzSRJH3/8cXQKDwBAgmHKHwDUMOvXr9eYMWO0atUq/fnPf9bDDz+s6667Tj/84Q81aNAgDR48WHPmzNGaNWu0ZMkSTZkyRa+99pokqUWLFioqKtL8+fO1bds27dmzR8cdd5xSUlL08MMP69///rdeffVVTZ48uUy+X331lZYvX66CggLt3btXy5cv1/LlyxnFAgDUaJ45uJYuACDh9e7dWyeccIJ839czzzyjYDCoK6+8UnfccYc8z1NJSYnuuOMOPfHEE9q4caNycnJ06qmnatKkSerYsaMk6corr9Tzzz+v7du3a8KECZo4caL+/Oc/6ze/+Y02bdqkU045RePGjdN5552nZcuWhV/i27t3b7377rtlyrRmzRq1aNEihq0AAEDs0KECAAAAAEdM+QMAAAAAR3SoAAAAAMARHSoAAAAAcESHCgAAAAAc0aECAAAAAEd0qAAAAADAER0qAAAAAHBEhwoAAAAAHNGhAgAAAABHdKgAAAAAwBEdKgAAAABw9P+lBXp9ix1GdQAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAKSCAYAAABYyt0UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZQjV33vv7VoV6vV+za9T0/PPuPZ7OkxYMxiDIEYBxzgELyAeSQYAg7hsSRgCMQJBDBx/GJ8YsCBJBiD4eXFYBuMDRiPsbGn933fV0ndrV1Vdd8fPVWW1OpuqVvVXTP9+5zTxx6pdOuqrqT6fe9v4xhjDARBEARBEARBEDrA7/QECIIgCIIgCIK4fCHBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEBny+OOP4/jx47BareA4Dj6fb6entCmuueYaXHPNNTs9jQRmZmbwjne8AwUFBeA4Dvfcc89OT2lH+O53vwuO4zA8PKw9thPr9cwzz4DjODzzzDNZG3OtNe7r68Mb3/hG5ObmguM4/PSnP8Vdd90FjuMwPz+ftfMTBEEQ2w8JDuKSp62tDe94xztQXV0Nq9WKiooKvOENb8C9996b9XMtLCzgpptugs1mw3333Yfvfe97cDgcWT/PVqipqQHHcdpfcXExXvWqV+EnP/lJVsYPBoO46667smqEqnz84x/HE088gU9/+tP43ve+hze96U1rHqu+v6997WurnlMN9j/84Q9ZnyOxNdZa45tvvhltbW348pe/jO9973s4deqULuf/z//8z10rZAmCIHYKcacnQBBb4bnnnsNrX/taVFVV4fbbb0dpaSnGxsbw/PPP45vf/CY+8pGPZPV8L774IpaXl/F3f/d3eP3rX5/VsbPJ8ePH8Vd/9VcAgMnJSXzrW9/CjTfeiH/913/Fhz70oS2NHQwG8YUvfAEAsr7j/qtf/Qp//Md/jE984hNpv+arX/0q/vzP/xx2uz2rczEaTz755E5PISukWuNQKITz58/js5/9LO644w5dz/+f//mfaG9vx8c+9jFdz0MQBEG8AgkO4pLmy1/+MnJzc/Hiiy/C7XYnPDc7O5u18wQCATgcDm3M5HMZjYqKCrz3ve/V/v2+970Pe/fuxTe+8Y0tCw49mZ2dzejaHj9+HM3Nzbj//vtx55136jYvdf13ErPZvKPnzxap1nhubg6A8b9XBEEQxOagkCrikmZgYACHDh1KaagUFxdr/z88PAyO4/Dd73531XEcx+Guu+7S/q3GjXd2duI973kP8vLycPXVV+Oaa67BzTffDAA4ffo0OI7DLbfcAgD47W9/i3e+852oqqqCxWJBZWUlPv7xjyMUCq06X3d3N2666SYUFRXBZrOhsbERn/3sZxOOmZiYwG233YaSkhJYLBYcOnQI3/72tzO/QBcpLS3FgQMHMDQ0tO5xs7OzeP/734+SkhJYrVYcO3YMDz30kPb88PAwioqKAABf+MIXtLCm+OuXisHBQbzzne9Efn4+7HY7rrrqKjz22GPa82oIFGMM9913nzbuRpw7dw7XXnstvvKVr6S81sn86le/wqte9So4HA643W788R//Mbq6uhKOWWv9gZVwtT/6oz/CM888g1OnTsFms+HIkSNaeNmjjz6KI0eOwGq14uTJk7hw4ULC2K2trbjllltQV1cHq9WK0tJS3HbbbVhYWNhw7sk5HMmhc/F/8eFu6X6WxsfHccMNN8DhcKC4uBgf//jHEYlENpxXuudZa43vuusuVFdXAwD++q//GhzHoaamJmHs+fl53HTTTXC5XCgoKMBf/uVfIhwOr5rD97//fZw8eRI2mw35+fl417vehbGxsYRr+Nhjj2FkZEQ7v3quaDSKz33uczh58iRyc3PhcDjwqle9Ck8//XTa14AgCIJIDXk4iEua6upqnD9/Hu3t7Th8+HBWx37nO9+JhoYG/P3f/z0YY2hoaEBjYyMeeOABfPGLX0RtbS3q6+sBAI888giCwSD+/M//HAUFBXjhhRdw7733Ynx8HI888og2ZmtrK171qlfBZDLhgx/8IGpqajAwMID/9//+H7785S8DWEmqveqqq8BxHO644w4UFRXh5z//Od7//vdjaWlpU6EgsVgMY2NjKCgoWPOYUCiEa665Bv39/bjjjjtQW1uLRx55BLfccgt8Ph/+8i//EkVFRfjXf/1X/Pmf/zne/va348YbbwQAHD16dM1xZ2Zm0NTUhGAwiI9+9KMoKCjAQw89hLe97W340Y9+hLe//e149atfje9973v4sz/7M7zhDW/A+973vrTf21133YVXv/rV+Nd//dd1vRy//OUvcf3116Ourg533XUXQqEQ7r33Xpw7dw4vv/zyKiM3ef1V+vv78Z73vAf/63/9L7z3ve/FP/3TP+Gtb30r7r//fnzmM5/BX/zFXwAA7r77btx0003o6ekBz6/s7fziF7/A4OAgbr31VpSWlqKjowMPPPAAOjo68Pzzz6clslTuuece+P3+hMe+8Y1voLm5WVvndD9LoVAIr3vd6zA6OoqPfvSjKC8vx/e+9z386le/Smsu6ZxnrTU+evQo3G43Pv7xj+Pd73433vzmN8PpdCaMf9NNN6GmpgZ33303nn/+efzzP/8zvF4v/v3f/1075stf/jL+9m//FjfddBM+8IEPYG5uDvfeey9e/epX48KFC3C73fjsZz+LxcVFjI+P4xvf+AYAaOdaWlrCv/3bv+Hd7343br/9diwvL+PBBx/EddddhxdeeAHHjx9Pe20IgiCIJBhBXMI8+eSTTBAEJggCO3v2LPvkJz/JnnjiCRaNRhOOGxoaYgDYd77znVVjAGCf//zntX9//vOfZwDYu9/97lXHfuc732EA2IsvvpjweDAYXHXs3XffzTiOYyMjI9pjr371q1lOTk7CY4wxpiiK9v/vf//7WVlZGZufn0845l3vehfLzc1Nea54qqur2Rvf+EY2NzfH5ubmWEtLC3vXu97FALCPfOQj2nGvec1r2Gte8xrt3/fccw8DwL7//e9rj0WjUXb27FnmdDrZ0tISY4yxubm5VddsPT72sY8xAOy3v/2t9tjy8jKrra1lNTU1TJZl7XEA7MMf/nBa48Yf+9rXvpaVlpZq1ybVOh0/fpwVFxezhYUF7bGWlhbG8zx73/vepz223vpXV1czAOy5557THnviiScYAGaz2RLW9Vvf+hYDwJ5++mntsVRr91//9V8MAPvNb36jPabOf2hoSHsseb2S+eEPf8gAsC9+8YvaY+l+ltS1/+EPf6gdEwgE2N69e1e9h1Rk8plNtcbq9/OrX/1qwuPqWrztbW9LePwv/uIvGADW0tLCGGNseHiYCYLAvvzlLycc19bWxkRRTHj8LW95C6uurl71HiRJYpFIJOExr9fLSkpK2G233bbu+ycIgiDWh0KqiEuaN7zhDTh//jze9ra3oaWlBV/5yldw3XXXoaKiAv/93/+9pbEzyXWw2Wza/wcCAczPz6OpqQmMMS2sZm5uDr/5zW9w2223oaqqKuH16s42Yww//vGP8da3vhWMMczPz2t/1113HRYXF/Hyyy9vOJ8nn3wSRUVFKCoqwrFjx/DII4/gz/7sz/CP//iPa77mZz/7GUpLS/Hud79be8xkMuGjH/0o/H4/fv3rX6d9PZLHPXPmjBaWBKzsKn/wgx/E8PAwOjs7NzVuPHfddRemp6dx//33p3x+amoKzc3NuOWWW5Cfn689fvToUbzhDW/Az372s1WvWWv9Dx48iLNnz2r/vvLKKwEA1157bcK6qo8PDg5qj8V/TsLhMObn53HVVVcBQFrruhadnZ247bbb8Md//Mf4m7/5GwCZfZZ+9rOfoaysDO94xzu0Me12Oz74wQ9ueO5sfWbX48Mf/nDCv9ViEOq6Pfroo1AUBTfddFPC+UtLS9HQ0JBWWJQgCFqejKIo8Hg8kCQJp06d2vL8CYIgdjsUUkVc8pw+fRqPPvoootEoWlpa8JOf/ATf+MY38I53vAPNzc04ePDgpsatra1N+9jR0VF87nOfw3//93/D6/UmPLe4uAjgFcNzvdCvubk5+Hw+PPDAA3jggQdSHpNOMvyVV16JL33pS+A4Dna7HQcOHNgwIXdkZAQNDQ1a+I/KgQMHtOc3w8jIiGZ8rzXuVsPhXv3qV+O1r30tvvKVr6QUCurcGxsbU87jiSeeWJUYvtb6J4vF3NxcAEBlZWXKx+M/Dx6PB1/4whfwgx/8YNU6qp+TTFlaWsKNN96IiooK/Pu//7smXjP5LI2MjGDv3r2rQrpSXa9ksvWZXY+GhoaEf9fX14Pnea1PSV9fnxb2mAqTyZTWeR566CF87WtfQ3d3N2KxmPZ4Jr8FBEEQxGpIcBCXDWazGadPn8bp06exb98+3HrrrXjkkUfw+c9/fs3YeFmW1xwvfjd6PWRZxhve8AZ4PB787//9v7F//344HA5MTEzglltugaIoab8H9dj3vve9WoJ6MuvlS6gUFhYaumyvHnz+85/HNddcg29961tZqXa01voLgpDR4ywu/+Omm27Cc889h7/+67/G8ePH4XQ6oSgK3vSmN2X0OYnnlltuweTkJF544QW4XC7t8Wx9ljZiu84TT/L3WVEUcByHn//85ynXITknJBXf//73ccstt+CGG27AX//1X6O4uBiCIODuu+/GwMBA1uZOEASxGyHBQVyWqE3DpqamAAB5eXkAsKor+GZ37eNpa2tDb28vHnrooYRk51/84hcJx9XV1QEA2tvb1xyrqKgIOTk5kGV52wVDdXU1WltboShKgpeju7tbex5YbeylM25PT8+qx5PH3Sqvec1rcM011+Af//Ef8bnPfW7VHACsOY/CwkLdy956vV489dRT+MIXvpAwv76+vk2P+Q//8A/46U9/ikcffRT79+9PeC6Tz1J1dTXa29vBGEtY31TXK5nt+Mz29fUleBn6+/uhKIqW6F9fXw/GGGpra7Fv3751x1rr8/ujH/0IdXV1ePTRRxOO+fznP7/1N0AQBLHLoRwO4pLm6aefTthBVlFju9WQEJfLhcLCQvzmN79JOO7//J//s+U5qDuq8fNgjOGb3/xmwnFFRUV49atfjW9/+9sYHR1NeE59rSAI+JM/+RP8+Mc/TilM1H4FevDmN78Z09PTePjhh7XHJEnCvffeC6fTide85jUAoDXYSxZv6437wgsv4Pz589pjgUAADzzwAGpqajYd8pYKNZcjObSnrKwMx48fx0MPPZQw7/b2djz55JN485vfnLU5rEWqzwmATXe9/uUvf4m/+Zu/wWc/+1nccMMNKc+X7mfpzW9+MyYnJ/GjH/1IeywYDK4ZIrXZ82yW++67L+Hf9957LwDg+uuvBwDceOONEAQBX/jCF1ZdX8ZYQtlhh8ORMnwt1fr8/ve/T/jcEgRBEJuDPBzEJc1HPvIRBINBvP3tb8f+/fsRjUbx3HPP4eGHH0ZNTQ1uvfVW7dgPfOAD+Id/+Ad84AMfwKlTp/Cb3/wGvb29W57D/v37UV9fj0984hOYmJiAy+XCj3/841W5HADwz//8z7j66qtx4sQJfPCDH0RtbS2Gh4fx2GOPobm5GcDKrvXTTz+NK6+8ErfffjsOHjwIj8eDl19+Gb/85S/h8Xi2POdUfPCDH8S3vvUt3HLLLXjppZdQU1ODH/3oR/jd736He+65Bzk5OQBWQo0OHjyIhx9+GPv27UN+fj4OHz68Zh7Gpz71KfzXf/0Xrr/+enz0ox9Ffn4+HnroIQwNDeHHP/7xqpyRrfCa17wGr3nNa1ImuH/1q1/F9ddfj7Nnz+L973+/VhY3Nzd3wz4i2cDlcuHVr341vvKVryAWi6GiogJPPvnkhr1R1uLd7343ioqK0NDQgO9///sJz73hDW9ASUlJ2p+l22+/Hf/yL/+C973vfXjppZdQVlaG733ve2l3b9f7Mzs0NIS3ve1teNOb3oTz58/j+9//Pt7znvfg2LFjAFY8HF/60pfw6U9/GsPDw7jhhhuQk5ODoaEh/OQnP8EHP/hBrbP5yZMn8fDDD+POO+/E6dOn4XQ68da3vhV/9Ed/hEcffRRvf/vb8Za3vAVDQ0O4//77cfDgwVXlhwmCIIgM2eaqWASRVX7+85+z2267je3fv585nU5mNpvZ3r172Uc+8hE2MzOTcGwwGGTvf//7WW5uLsvJyWE33XQTm52dXbMs7tzc3KrzrVUWt7Ozk73+9a9nTqeTFRYWsttvv521tLSkLMXb3t7O3v72tzO3282sVitrbGxkf/u3f5twzMzMDPvwhz/MKisrmclkYqWlpex1r3sde+CBBza8JtXV1ewtb3nLhselKrM6MzPDbr31VlZYWMjMZjM7cuRIylLCzz33HDt58iQzm81plcgdGBhg73jHO7T3fObMGfY///M/q47DJsvixvP0008zACnX6Ze//CU7d+4cs9lszOVysbe+9a2ss7Mz4Zj11n+ta5tqLqlKvY6Pj2trn5uby975zneyycnJVdcwnbK46ntM9Rdfxjbdz9LIyAh729vexux2OyssLGR/+Zd/yR5//PG0yuJmcp50rxVjr6xFZ2cne8c73sFycnJYXl4eu+OOO1goFFo1hx//+Mfs6quvZg6HgzkcDrZ//3724Q9/mPX09GjH+P1+9p73vIe53W4GQCuRqygK+/u//3tWXV3NLBYLu+KKK9j//M//sJtvvjllGV2CIAgifTjGUsSjEARBEARBEARBZAHK4SAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQukGCgyAIgiAIgiAI3SDBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEARBEARBEIRukOAgCIIgCIIgCEI3SHAQBEEQBEEQBKEbJDgIgiAIgiAIgtANEhwEQRAEQRAEQegGCQ6CIAiCIAiCIHSDBAdBEARBEARBELpBgoMgCIIgCIIgCN0gwUEQBEEQBEEQhG6Q4CAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQukGCgyAIgiAIgiAI3SDBQRAEQRAEQRCEbpDgIAiCIAiCIAhCN0hwEARBEARBEAShGyQ4CIIgCIIgCILQDRIcBEEQBEEQBEHoBgkOgiAIgiAIgiB0gwQHQRAEQRAEQRC6QYKDIAiCIAiCIAjdIMFBEARBEARBEIRukOAgCIIgCIIgCEI3SHAQBEEQBEEQBKEbJDgIgiAIgiAIgtANEhwEQRAEQRAEQegGCQ6CIAiCIAiCIHSDBAdBEARBEARBELpBgoMgCIIgCIIgCN0gwUEQBEEQBEEQhG6Q4CAIgiAIgiAIQjdIcBAEQRAEQRAEoRskOAiCIAiCIAiC0A0SHARBEARBEARB6AYJDoIgCIIgCIIgdIMEB0EQBEEQBEEQuiHu9AQIgtgZGGOIxWIIh8MQRRGiKEIQBPA8D47jdnp6BEEQBEFcJnCMMbbTkyAIYntRFAXRaBSyLCMSiWgCg+M48DwPk8kEQRAgiiI4jiMBQhAEQRDEpiHBQRC7CMYYZFlGLBYDYwwcxyEajYLneTDGwBiDoijacxzHacJD9YCQACEIgiAIIhNIcBDELkENoZJlGcCKN4MxpgmOVMenI0BSvZYgCIIgCEKFcjgIYhegejUURUnI0Vhvv0EVGKqgUAWIJEmIxWIJAkQNwSIBQhAEQRBEMuThIIjLGFUgSJIEAAnhUIwxjI+PY3Z2Fm63G3l5eXA4HGmHSyV7QABoYsNsNmsihAQIQRAEQexuSHAQxGWKoiiaVwNIFBuxWAwdHR3weDwoKyvD0tISFhcXIQgC8vLyNAFit9szFiAXLlxAaWkpSkpKwHFcQvgVCRCCIAiC2H1QSBVBXGaoXodUIVQA4PP50NLSAofDgbNnz2phU4qiYGlpCV6vF7Ozs+jv74coisjLy9NEiM1mW1OAqIJGHU8QBG0esVhMOyZegKhVsAiCIAiCuHwhDwdBXEakSgyPD6EaGhpCf38/GhoaUFNTs27SuCzLmgDxer1YWlqC2WxeJUCSUT0cZWVlq+amhl/FJ6GrAiS+ChZBEARBEJcP5OEgiMsERVGwsLAAq9UKk8mUYLhHIhG0trYiGAzizJkzcLvdANZPGlfDq/Ly8gCsCJDFxUV4vV5MTEygu7sbFotFOyYvLw8Wi2XNcdUEc5V4T0w0Gk3wjMQnoZMAIQiCIIhLG/JwEMQljtpbQ5Ik/OpXv8KpU6eQm5urPT8/P4/W1lbk5+fj0KFDMJlM2nNqA8DN5FVIkqQJEK/Xi+XlZdjtdsiyjIKCAtTV1cFsNmf0PpI9IDzPr8oBIQFCEARBEJcW5OEgiEuYtXprACtioq+vD6Ojozhw4AAqKiqyaqyLooiCggIUFBQAWElE9/l86O3txcLCAiYnJ+FwOLQE9Ly8vASxk0y8ByT+PUSjUa0bOgkQgiAIgrj0IMFBEJcoqXprqIIjGAyipaUFiqLg7NmzcDqdus/HZDKhqKgIk5OTKCwsRHFxMbxeL3w+H4aGhtDe3g6n06kJELfbvaYAUUUECRCCIAiCuPQhwUEQlxjxvTUYYwlVqDiOw/z8PEZGRlBeXo7GxsaEvIntnKPJZEJxcTGKi4sBANFoVBMgAwMDCAaDyMnJ0cSH2+2GKKb+SUolQNS/SCSCaDQKACRACIIgCMKAkOAgiEsIRVEgSZIWQhUvNtQO4MPDwzh69ChKSkp2ZI5rGfhmsxklJSXavCKRiJb/0dvbi0gkskqArCWW4qtvCYKwSoDEe0DUBHRRFFeVCCYIgiAIQn9IcBDEJUB8Raf4krIqy8vLaG5uBmMMhw4d2jGxoZJOLQqLxYLS0lKUlpYCAMLhsCZAuru7EY1G4XK5NAGSm5u7KQHyy1/+EqdOnYLNZtMEiOoBIQFCEARBEPpDgoMgDM5GvTXGxsbQ09ODmpoaTE1NZVQZSg82a8BbrVaUlZWhrKwMjLEEATI5OQlJkjQBkpeXB5fLtWZ1rWRBpooLdVz1GNXzQQKEIAiCIPSDBAdBGBjVqyHL8ipjOBqNoqOjAz6fDydOnEBBQQFmZmbS8i7Eo4eBvdVq2xzHwWazwWazoby8XEuE9/l88Hq9GB8fhyzLyM3N1QRITk7OugJEfS7eA6IoCgkQgiAIgtAZEhwEYUDie2vEV6FS8Xq9aGlpQU5ODs6dO6d5NTZjHKviIFuGtR4GOsdxcDgccDgcqKioAGMMgUBAEyCjo6NgjGm5H6oAifcEJY+XKgRLURREIhGEw2HwPL8qCZ0ECEEQBEFkDgkOgjAYySFU8UYuYwyDg4MYHBxEQ0MDqqurEwxgjuOgKMqOzDt+Dnr3E+U4Dk6nE06nE3v27AFjDH6/XxMgIyMjAAC3262JE5vNtqZYSA7BUgWILMuQZXnNMrwkQAiCIAhiY0hwEISBUPtMpPJqhMNhtLa2IhwO48yZMwndxFWMYvzqLTiS4TgOOTk5yMnJQWVlJRhjWF5ehtfrxfz8PDo6OsDzvJaAnpeXB4fDsaEAUcOw4gWIJEna88khWMnChSAIgiAIEhwEYQhUY1atQpUsNmZnZ9HW1oaioiKcOHFi3X4V223sp5rDTsNxHFwuF1wuF4aGhnDq1CnIsqwJkIGBAQiCoOV/uN1u2O32jAWIWoqYBAhBEARBrA0JDoLYYdbrraEoCnp6ejA+Po6DBw+ioqJi3bGMIDiA7fdwbATP83A6ncjNzUVNTQ0URcHS0hK8Xi9mZmbQ19cHURQTBEg6IVjpCBC1D4gagkUQBEEQuw0SHASxQ2zUWyMQCKClpQUA0NTUBIfDseGYmQoOvRK8jQ7P81qCeW1tLWRZ1gTI1NQUenp6YDabVwmQtdhIgKjnTO6CTgKEIAiC2A2Q4CCIHUA1RiVJArA6aXlychIdHR3Ys2cPGhsb0zZMN+PhMGJZ3O0mPrwKAGRZxuLiIrxeLyYmJtDd3Q2LxaIdk5eXB4vFsuZ4awmQWCyG5uZmVFRUIC8vjwQIQRAEsSsgwUEQ24yiKJidndXyDOKNTEmS0NnZibm5ORw7dgzFxcUZjW2EkCojejgyvSaCICA/Px/5+fkAVtZFFSBjY2Po7OyE3W7XEtDz8vLWbbgYL0DUvh8AEIvFNA8Ix3EkQAiCIIjLEhIcBLFNxFc5Ghsbg81mg9vt1p5fWlpCc3MzrFYrzp07B6vVmvE5jCA4gEvPw7ERoiiioKAABQUFAFaEgs/ng8/nw8jICDo6OuBwOBIEiMlkWnM8Nb9DJT68bi0BIoqiIcUcQRAEQWwECQ6C2AaSe2sk93wYGRlBX18f6urqUFdXt2nD0giCYzcYxSaTCUVFRSgqKgKwIkC8Xi98Ph+GhobQ3t4Op9Op5X+43e5NC5BoNKp5R5KT0HfDtSYIgiAufUhwEITOpOqtwfM8GGOIRqNoa2vD8vIyTp06peUQbBYjCA7AWB6O7TDKTSYTiouLtRC4aDSqCZCBgQEEg0Hk5OQgLy8voSLZenNOR4Akh2CRACEIgiCMCAkOgtCJ9XprcByHQCCA3/3ud8jNzUVTU9O6OQDpYgTBQUYvYDabUVJSgpKSEgBAJBKB1+uF1+tFNBpFe3s7XC5XggckXmAkEy9A1PVVhexaXdBJgBAEQRBGgQQHQehAcghVcm+NxcVFLC0t4cCBA6isrMyaYWgEwQEYy8NhBCwWC0pLS1FaWorFxUXU1NSAMQav14vu7m5Eo1FNgOTl5cHlcq0pQNTPCgkQgiAI4lKBBAdBZBnVqxEfQqUSCoXQ2tqKYDCIkpISVFVVZfXcRhAcZNRujNlsRn5+PsrKysAYQzgc1jwgk5OTkCRplQBZq2LVegIkEokgGo0CSN0HhNaKIAiC2A5IcBBElkjurZEsNmZmZtDe3o6SkhLk5uZuGMe/GYwgOADycKxH8rXhOA42mw02mw3l5eVgjCEYDMLn88Hr9WJ8fByyLCM3N1cTIDk5OWkJEEEQtB4gjLFVAkRNQBdFcdXnlSAIgiCyBQkOgsgCakKvoigAEhv5ybKMnp4eTE5O4tChQygrK0NfX59W/jSbGEFwGGEOyRhtPuvBcRwcDgccDgcqKirAGEMgENAEyOjoKBhjWu6HKkDWEgvxn8VkARIOhxEMBrGwsICamhqYTCbNA0IChCAIgsgWJDgIYgvEVw9KFULl9/vR0tICnufR1NQEu90OAFqVqmxjBGPfCHMwOpkY8hzHwel0wul0Ys+ePWCMwe/3awJkZGQEABIEiNPpTFuASJKE2dlZVFdXa00J1RwQEiAEQRBENiDBQRCbZL3EcMYYJiYm0NXVhaqqKjQ0NCSEwOhllG9m3Gg0qhmV2YIEx9ps9dpwHIecnBzk5OSgsrISjDEsLy9rOSBDQ0PgOE4Lv3K73XA4HOuKBbUKVioPSPzz8TkgJEAIgiCIdCHBQRCbQPVqyLK8yvCSJAkdHR1YWFjA8ePHteZw8RhBcCiKgu7uboyOjkIQBM1AzcvL29BA3WgORsJo88k2HMfB5XLB5XKhuroaiqJoAmRubg79/f0J6+t2u2G32xPEcfJ4qUKw1CT0cDgMnudXJaGTACEIgiDWggQHQWSA2ltDkqSUIVSLi4tobm6G3W7HuXPnYLFYUo6z04IjGAyiubkZAHDVVVdBkiR4vV4sLCxgYGBglQCx2WwZGZPk4dg5eJ5Hbm4ucnNzUVNTA0VRsLS0BK/Xi5mZGfT19UEURW1tN1qreAECQBMgsixDluU1y/CSACEIgiBUSHAQRJpsFEI1PDyM/v5+1NfXo7a2dl1ji+d5LcE8m3Act+G409PTaG9vR3l5ORobGyHLMhhjCTvk8QZqb28vzGazZqDm5+evKaTUORDrs53XiOd5Lb+jtrYWsixr6zs1NYWlpSUAQGdnp+YBsdlsa46nChA1RHAtAaKGYKn/TRYuBEEQxO6BBAdBpMF6vTUikQja2toQCARw+vRpuN3uDcfbCQ+HLMvo7u7G1NQUjhw5gpKSEs1QjCeVgbq4uKiVaO3q6oLdbk/wgJhMpoQxyMOxNjt9beK9V8CKAB0aGoLFYsHExAS6u7thsVgS1ncjgZlKgEiShFgspj2fnANCAoQgCGL3QIKDINYhvrcGY2yV2Jifn0dbWxvy8vLQ1NS0yvBei+0WHIFAAM3NzauqZaWDIAjIz89Hfn4+6uvrEYvFtApJQ0NDaG9vh9PpTDtEZycw4pyMglqNqr6+HsBKDpIqMMfGxtDZ2Qm73a5VwMrLy4PZbF5zvEwEiNoHRA3BIgiCIC5PSHAQxBooigKv1wtRFGE2mxPEhqIo6O/vx8jICPbv3489e/ZkXOpUr5CqZON6cnISHR0dqKysxL59+7Zs2JlMJhQVFWnJ8NFoVKuQ1NfXh1AoBJPJhIGBAeTl5SE3NzerFbAuB4y0s88YS5iPKIooKChAQUEBAGgC0+fzYWRkBB0dHXA4HFr4VSoPVzzpCpDkLugkQAiCIC4fSHAQRBLxvTU6OjpQUVGBPXv2aM8Hg0G0tLRAlmWcPXsWTqcz43NsRx8OWZbR1dWFmZkZHDt2DMXFxVk/HwCYzWaUlJSgpKQEANDf3w+fz4dwOIzOzk5IkpR2l2xi+9noc5gsMGOxGLxeL3w+3yoPlxqKtxkBEovFtC7oiqJo3dVJgBAEQVz6kOAgiDhSJYbHG2RqwnVZWRn279+/6Z17vUOq/H4/mpubIYoimpqa1k0CzjYmkwlWqxWHDh0CYwzBYFDzgMR3yVYFyHpN6rKBkbwJgPHCu5I9HBthMplQXFysCVjVw+Xz+TAwMIBgMIicnJwEASKKa99qUgmQubk5DA8P44orriAPCEEQxGUACQ6CuEiq3hqq4IhPuD58+DBKS0u3dC49BUcwGMT58+dTNhzcDuKNV47j4HA44HA4ErpkxzepU5PU1QpYmZbgJbbOVq53socrEolo69vb24tIJKIJkHRC7NS5cBwHk8mU4HGMxWLac/ECRK2CRRAEQRgTEhzErme93ho8zyMUCuH8+fMQRRHnzp3LirdAjxwOSZIwNTWF5eVlnDhxImXDwbXIdJc7nfFSEd8lu6qqSmtS5/F4MDs7i/7+fphMpoQKSVarNWvzMgpGMo6zLXwtFgtKS0s1UR4OhzUB0tXVhWg0CpfLpa2vy+VaJUDUAg3AK13O459TBUg0GtU2BlJVwSIIgiCMAQkOYlezUW+NUCiE2dlZ1NbWYu/evVnzFmTbw7G8vKzlleTn52ckNrJNJoZefJO65BK8aolWq9WaIEDWq5BEbA49jXOr1YqysjKUlZWBMZYgQCYnJyFJ0ioBsp4AzkSAxFfBIgFCEASxc5DgIHYtiqIgGo2m7K0Ri8XQ3t4Ov9+P8vJy7Nu3L6vnzlbSOGMMExMT6OrqQk1NDUwmExYWFrIww63PazPEl+AFVrw2agne5ApJ6t96+QFbnY8eGGkuQPa9W+vBcRxsNhtsNhvKy8u1HB91jcfHxyHLMmw2myY+NyoyEC9A1GubSoAk54CQACEIgtg+SHAQuw41hCoWi6XsreH1etHS0gKn04ni4mJdEq6z4eGQJAkdHR1YWFjAFVdcgcLCQi0peyfJpiEniiIKCwtRWFgIYCVBWTVO1QTl+N1xKsGbOTv5eYnP8amoqABjDIFAACMjI/B4PGhpadGKDKh5Pjk5Oet6PwCkFCDRaFTrgk4ChCAIYnshwUHsKhRFgSRJa4ZQDQ4OYnBwEHv37kVNTQ06Ozu3rV9GJiwtLaG5uRlWqxVNTU1anoNeyeiZoOcczGZzQoWkVPkB8SV4XS6XLvPYKkYzbo0yH47j4HQ64Xa7IUkSjh49Cr/fn+DlApAgQNarcraeAIlEIloZXhIgBEEQ+kKCg9gVxMd5qyEk8QZFOBxGW1sbQqEQzpw5g9zcXAD6Gc88z29KyDDGMDY2hp6eHtTW1qK+vn5VVaidFhzA9u2aJ+cHhEIhTYCMj49DURQoioLp6WnNmCVDMpHtDKlKF0VRtO+oWmSgsrISjDEsLy+vWeXM7XbD4XCkJUAEQdB6gDDGSIAQBEHoCAkO4rJH7WosSRIArBIbc3NzaGtrQ0FBAa644oqEnIDt7Ai+EZIkob29HV6vFydOnNA6QW913GyzU4YZx3Gw2+2w2+0J4TkvvfQSlpeXMTU1BY7jEvI/7Hb7ts93p9cnGaPNB1hbBHEcB5fLBZfLherqaq3KmdfrxdzcHPr7+yEIgra+brd73TWO/y1IJUDiQ7BMJpMmQJLDMAmCIIj1IcFBXNbE99aIby6mPtfb24uxsTEcOHAAFRUVq4wInue18KtskqkwWFxcREtLC2w2G5qammCxWLIybrL4yhZGMGJVj4YgCGhoaIDT6VxlnIqimCBAtrNBopEwmvGcrtclvspZTU0NFEXB0tISvF4vZmZm0NfXl7DGbrd73T4v6wmQcDiMzs5O1NXVweFwkAAhCILIABIcxGXJer01ACAYDKKlpQWKouDs2bNwOp0px+F5Xms2lk3SFQaMMYyOjqK3txd1dXWoq6tb17DZzR6OjUg2TmVZ1ozTqakp9PT0wGKxJAiQtYTdVjHSNTJiSNVm56SGV7ndbq3McvIam83mtPu8JAsQr9erzS8cDmvHJPcAIQFCEASRCAkO4rJjvd4aADA5OYnOzk6Ul5ejsbFxw67HO5XDoZbm9fl8OHnypFYqdj2MIDgAY3g4NiI+9AZYCVlTe4CMjY2hs7MzoQSv2+2GyWTa4VlnHyOuVbZEUPIap+rzkonIZIxpOR3xHhBFUTQBwvP8qhwQEiAEQex2SHAQlxXr9daQJAldXV2YnZ3FkSNHUFJSsuF4m03u3oiNhMHi4iKam5vhcDhw7ty5tJvdGUFwGNGwSueaiKKIgoICLTcmFotpyclqCd6cnJwEAbKZErw7vT6pMNqa6eV1SdXnJVlk2u12bX3jG02q4iI+LHOtECxZliHLMsLhMAkQgiAIkOAgLhM26q2xtLSElpYWmM1mnDt3bt0winj0MuDjS/HGz5MxhpGREfT19WmleTMxTIwgOABjGtWZYjKZEkrwRiIRTYD09PQgEoms6gGSrU7024kR12q7wrxSiUyfzwefz7eq0aRauW6jJoTxuWLJAiQ5CV0NxdIrl4ogCMIokOAgLnnWC6GKz4FIVUZ2I/T0cKjzU/8/Go2ivb0dS0tLOHXqlBYGkum4mRqQ2TZ0LlfDyWKxoLS0FKWlpVoMvypAJicnIUmStiueboM6I3A55XBsFZPJhKKiIhQVFQF4xcvl8/kwNDQEALhw4QLy8/O1XJH1wuzWEyCSJGnPJ+eAkAAhCOJygwQHcUkjyzLm5uYwOjqKo0ePJtykVQN+cXEx7RyIZPT2cKihX2p3c5fLhaamprRDqFKNm+l89Xh/Rto118Nw4zgONpsNNpsN5eXlWgleVYDEN6hTBch6/SF2GqPNKzl0aaeI93LFYjH89re/RVVVFZaWllKG2eXm5iaU1U5mLQEiSRJisViCAFE9IGoIFkEQxKUMCQ7ikiS+t0YsFsPS0lKC0eTxeNDa2oqcnJyMciCS0cvDoRoQiqJgaGgI/f39aGhoQHV19ZaMPyOEVBnNeN0O1BK8TqdzVYO6hYUFDAwMaAnMaoLxTvQASYVRPRxGM7LV71VJSQnKysoApA6zSxYgGxWlIAFCEMRugAQHccmh9tZQhYAgCNr/M8YwMDCAoaEh7Nu3D1VVVVs24PUMqWppaUEwGMTp06fhdruzMu5OCw7AWB6OnSBVgzq1POvs7CxaW1thNpuRn5+vewnejTDiWhlRBKm/A/Hzig+zA5AQZtfV1YVoNJqQ5+NyubYkQIDUXdBJgBAEYXRIcBCXDGr5SVVsqLkaqhciHA6jpaUFkUgEV155JVwu15bPyfO8LgaZz+fTxm9qaspauVUjCA6jGYpGIL4/xMjICE6ePIloNJqyOpL6t50leI22ZkYVHBvlVlitVpSVlaGsrGzNPJ9kAbKZJPRYLIZoNKp939VxSYAQBGFUSHAQlwTrJYar3cB/97vfobi4GCdPnlw3jjoTsm3AM8YwODiIwcFBAMCBAweyalgaxUjbadGTjNHmIwhCyupIXq8XQ0NDaG9vh9PpTCjBm63PdDJGNO4vhzmlyvMJBoPaOo+Pj0OWZeTm5iYUGshUgCwvL+Pll1/G1VdfrR0T7wFRq2ARBEHsJCQ4CMOjejVkWV5V7lZRFAwPD0OSJBw9ehTl5eVZPXc2czgikQhaW1sRCoVw5swZPP/881kZNx69QsAynQOxNqnET3J1pEgkAp/PB4/Hg97e3lUleDcKzcl0PkZbM9WbYCS2mlfCcRwcDgccDgcqKiq0QgOqABkdHQVjTPOEbVTpTB1TFSCiKCZ4gVUPSLwAia+CRRAEsZ2Q4CAMS3z5yFSN/AKBAFpaWjTjJNtiA8ieh2NhYQGtra3Iy8vDFVdcoe06Znvn3QiGhBHCui51LBYLSkpKtOaUoVBoVWhOJjvjG2GEz008u0EExRca2LNnDxhj8Pv9mgBJrnTmdrvhdDpXzUH9bVTHjBeiqQQIz/OrktCNdq0Jgrj8IMFBGJL1QqgAYGJiAp2dnaisrMSePXvw7LPP6jKPrXo44pPYGxsbUVlZqb0PvQRHpvPVw9gwkuAwojGV6ZxSheaoAiR+ZzwvLw/5+fkZleA10lqpGFFw6F05i+M45OTkICcnZ1WlM4/Hg8HBQS0XSBUgDocjQXCkGjMdAZKchG60a08QxKUPCQ7CcKgdw1N5NSRJQmdnJ+bm5nD8+HEUFRUhHA4D0MdI2UqIUiQSQUtLC8LhcMokdj0S0jN9/6FQCK2trZAkSauYtFEpz2zPgciM+NCc+J1xVYAMDQ2B5/mEBHSbzbbmuhjVuDfanLY7zCtVpTNVgMzNzaG/vx+CIMBut0OWZQQCgQ1LLccLEPW3R1EURKPRhC7oJEAIgsg2JDgIwxDfW0PdTYy/0S0uLqKlpQVWqxXnzp2D1WoFkNjTIltx7SqbFQXz8/NobW1FQUEBTpw4kTLhV498i0y8JrOzs2hra0NxcTFycnLg8/nQ1dWFWCymhevk5+dvGEeeCiPumhsFPUSmujNeVVWlGaYejwczMzPo7e2F2WxOECDqdyd+DCNhRMGx071BeJ5Hbm4ucnNzUVNTo5VaHh8fh9/vx4svvghRFFet80bd7kmAEASxHZDgIAyBoiiQJCllCBVjDCMjI+jr60NdXR3q6uoSbnh6Co5MRYGiKBgYGMDw8DAOHDiAioqKdW/4ehifG42pKAr6+vowOjqKQ4cOoaSkBLFYbM1wHWAljlz1gKSzi2o0dpMAijdMa2trIcsyFhcX4fV6MTExge7ublitVs0olSRp040x9cKIgsNoiexqeFU0GkU4HMYVV1yh9XqZmppCT0/PhkIznlQCRP2LRCKIRqPaeUmAEASRKSQ4iB0lPqZYNTLib17RaBRtbW1YXl7GqVOnkJeXt2qMeMGRbTLxcKh9QKLRKK666irk5OSse7yegmMtg02dYywWw9mzZ+F0OjWRp74+OVxH3S1XwzhEUdTER35+fsqGdbvJwN8M22mgCYKA/Px85OfnA1gJS4xPTPb7/TCbzZBlWfcSvOliRMGx0x6OtVBDT9VO9upvZCqhabFYEgTIes0m43+LBUFYJUDiPSBqArooiqs80wRBEAAJDmIHSU4MTxYbamUnt9uNc+fOrdmvQn2NXh3B0zGe5+bm0NraiqKiorT7gOgVUrUWaphXYWFhRnNU48hrampWGTFdXV2w2+2aAHG73WRsGBxRFFFYWIjCwkIAQHt7O4AVA7Wvrw/hcBg5OTmaUbrVnJ7NYETBYTQPh8paSeOphKb63U1uNqkmoq/n6VpPgKh5dPECRPWAkAAhCAIgwUHsEBv11lDDkpIrO6VCvRHqsau+UZWq+PCkgwcPoqKiIqOx9UoajzfY4itlpQrzUo2GdEg2YtSGdR6PBwMDAwgGg7Db7YjFYvB4PDtirBoZI3p+VK9WTU0NACR0x+7q6kI0Gl2V06P3Tr8RBYfRPRwbIYpiymaTPp8PIyMj6OjogMPhSBAg6zUlTUeATExMoKysDHa7nQQIQexySHAQ28pGvTVCoRBaWlogSVJaYUkq2WzQF896IUrxc1XDkzYzdjaJFxlAYrPBVJWytkqqhnUTExMYHR1FZ2dnQr+IzSagX44Y6Rokf7atVivKyspQVlYGxlhCD5Dx8XEoiqIZpHl5eSl7Q2RjTkYz7i81D8dGJH93Y7EYvF4vfD7fprrdpxIgQ0NDKCgo0ObH8/yqHBASIASxOyDBQWwbG/XWmJmZQXt7O0pKSnDgwIGMdsb1EhzqjTLZKFMrPG1mrip6Cw6v14vm5uaEZoN6Y7FYUFBQgMnJSZw7d05LQPd4PFoCenwM+UYJ6NmAjJmNWa+wgd1uh91u17pjJ5fg5Tgu62tKHo70yZYQMplMKC4uRnFxMYCV/DlVgPT39yMYDK4KtdvoN4UxBpPJBJPJpG3cKIqCSCSCcDhMAoQgdhEkOIhtQb3JpCp3K8syenp6MDk5iUOHDqGsrCzj8fX0cACv7CIqioLe3l6MjY3h0KFDW+purmcOx/DwMIaGhrBv3z5UVVVte/8A9b/xCeiKosDv9yckoJtMJs37sVES6+WAEUOqMjHu1yrBG98bIrk0q81m03VO28Xl5uHYCLPZnNDtPhKJaEKzp6cHkUhk3Vwf9bdNfSw5R08VILIsQ5blNZPQk19HEMSlCQkOQlfUG8r09DS6u7tx9dVXJ9w8/H4/mpubIQgCmpqaYLfbN3UePYx3INHDEQwG0dLSAkVR0NTUBIfDsaWx9fBwSJIEABgfH8eZM2eQm5ub1fHTJdX74nl+zQR0NYlVjSFX/7LllTGioW8UtnJtkntDyLK8qjSrWhlJFZXplOA1ouAwsodjO+ZlsVhQWlqK0tJSAKlzfVwuV4KnC8Cac1OFRPxvbHzIrfq8KjxUDwgJEIK4NCHBQehGfG8NVRDEh/yoVY6qqqrQ0NCwpZumHgnY6rjASrhXd3c3ysrKsH///qwkQmd7zouLi7hw4QIA4NSpUxnnlGSLdI2B+AT0+vp6LYbc6/ViYGAAoVBI20HNz89Hbm6uIQ2+zWA0gylb80kuzZpcgjc+MVnNC0iVmGxEwbHbPBwbkZzrEy9AJicnEYvFAACjo6PIy8uDy+Vad55rCRBJkhCLxdYUIJfLbwJBXO6Q4CCyTqreGqIoah6IWCyGjo4OeDweXHHFFVp5zq2gV0iVKgi6urpw+PDhTYV7rUW2PByMMYyOjqK3txf19fXo7e01RB+FTEmOIVcNGI/Hg46ODi0BXd0ppwT07KCn9ye5BG+yqEzOC3C73RAEwZDGvZE9HOtVk9oOOI6DzWaDzWbTGoh6PB60trYiEAhgfHwcsixrBSTU72+2BIgagkUChCCMCwkOIquoNwQ1tCf+pqEoCnw+H1paWmC323Hu3LmsxezrITiCwSCam5sBACdOnNDKSWaLbAgOSZLQ3t4Or9erNUbs7e3NaNxsG3bZGi95BzUYDMLj8cDr9WJ4eDghWTk/Px82my3luY1kuBo1tGu7rlGyqIzPC+ju7tbCcmKxGAKBgKG8WkYUQcDOeTjWg+M4WCwWCIKAw4cPgzGGQCCgebtGR0fBGNOqnbnd7g03EDYSIEDqLuhGuzYEsVshwUFkjfjeGvE3BmDlZiFJEl588UXs3bsXNTU1Wb15ZzuHY3p6Gu3t7SgvL8fy8jKsVmvWxlbZqkhaWlpCc3MzbDYbmpqaNPGmV0+SdNGr+paagF5ZWZmQrDw7O4u+vj6YzWbN+7EbEtCzxU6GL8XnBcSX4O3r68Pg4CD6+/sTSvDupFfLqB4Oo85L7bEErHx/nU4nnE4n9uzZo1U7UwXI8PAwACQIkI3KLa8lQGKxGKLRKAASIARhJEhwEFtmo94akUgEnZ2dYIzh9OnTcLvdWZ9DtvIh4itmHT58GKWlpZiYmNjRLubJxOe/1NbWor6+PuF677TgAPTfyU+VrLy4uAiPx7MqAV3NIzISRtop3+nPikp8Cd7BwUEcPXoUgiBoHpCRkREASBAgDodj264leTgyY715xVc7q6ysBGNM20DweDwYHBwEz/MJAmSjtU4lQNRNMNUDoob3qgJErYJFEIT+kOAgtsRGvTXm5+fR2tqqVUvSq2pSNkKqAoEAmpubwfN8QsUsvRLSNyMMJElCZ2cn5ufn1wzzynRco4ZUZUKqDuiqoRqLxdDW1gaXy6V5QIwUqrPTGDFBW921V3fFVa+W2gNkYWEBAwMDWSnBm8mcslEsItsYWXCke704jtMq2FVXV6cstxxfkEBd640ESPz54wXIwsIC5ufnUV9frwmQ+CpYBEFkHxIcxKZRFAXRaDSlV0NRFPT19WF0dBQHDhxAUVERnn766YxuQpmwVcExOTmJjo4OVFZWYt++fQk3cL27mKeLWkLYZDKhqalpzTCv3eDh2Ij4XAGv14vq6mqtGeLk5CQkSdJ2T/Pz83Xplp2Knb4ua2E0IyuVCIovq6wapWpZ5eQSvHqE1ZGHIzPiQ6oyJdmDqSiKVm55ZmYGfX19q8Sm1WpNW4DEYjEsLS1p/x+NRjXvSHISuhHXnCAuRUhwEBmjhlCpVaiSxUZ8v4qzZ8/C6XRqSeSyLBtKcMiyjK6uLszMzODYsWNaMms8ehnwmcxZFUTplBDezHyznU9jNMxmMwoKCrQKOoFAQPOADA8Pa+Ebqgdko93TywkjiqB0vC48zyeU4JVlWcsJUMPq7HZ7glG6lWpORvQEAbtDCKnfT7fbjdra2pT9Xsxm8yoBshbqfWgtD0i8AEnOATHitSaISwESHERGbBRCNTU1hY6ODpSXl6OxsVH7QVdvPHp4CoDNJY2rHgNRFNHU1LRmOMZOejhkWUZ3dzemp6fXFESbGVdvdvr86xGfwBqfgO7xeDAzM4Pe3t6EnfL8/Py0mtVlOgejYERDejNzEgQBBQUFWphhLBbTBMjQ0BDa29tXdcbOpHy0UT0JenmNt4qe80ru9xLfRHRiYgLd3d2wWq0J+T7x3q5UG1/xHhD190v14sd3QScBQhCbgwQHkTaqVyNVCFW8p+DIkSMoKSlJeK3egiPTPIuJiQl0dnbq5jFIh43GVcvychy3riDKdFy9udRuwPHhG+ruafJOucPh0Lwfbrd7x/ucZBujrVk2RJDJZEJRURGKiooAJJbg7enpQSQSSeiM7XK51jWQjVoNyqgejq2EVGVKcg6XJEmaAEn2drndbkSj0XXXWr2eJEAIIntcXndNQheSe2ski43l5WW0tLRs6ClQG3rpQbpeCEmS0NXVhdnZWRw/flwzRrIxdqas55VRy/JWVFSgsbExoxv3TgsOFaPsnGdjp1ytntPX14dwOJxgqGaSgG6EdUnGaHNS55NtYzW+BC8ArQRvfF7Peo3pjGrYG9nzslPzEkUxpbfL5/NhZGQEfr8foiiit7dX84KsF26XSoCof5FIJKEM7+9+9zuIoog3vvGNOr9Lgri0IMFBrIsa06oaxmrpQWDlR3dsbAw9PT2oqalBfX39ujcYvQz3dMdWhZHJZMK5c+fS7q2xnR4ORVHQ09ODiYkJrSxvNsbdToxolG2F5GZ18YbqxMQEZFlOyP/YrgT0bGKk+aqfXb3nlNwZOxgMauuqNqaLzwkgwZEZeuXrbYZkb1d3dzcikQgAaOF2TqczoeP9el7M+PugIAgJAuSnP/0pHA4HCQ6CSIIEB5GS+AS6VCFUsVgM7e3t8Pl8aXfh3inBEd+3Ih1hlEy2mwqqJIeBhUIhNDc3a8n2DodjU+PutOBQMYqHI9skG6pqArrH48HQ0FBCMrPaAT0ZI10Xo63TdgmOeOIbS8Y3pvN4PFoJXtXTC8BQhQWMKjiMOi8Vp9OJ+vp6AEA0GoXX64XP50N/fz+CwWBG+T7xAiQQCKSVa0cQuw0SHMQqNkoM93q9aGlpQU5ODs6dO5d2Qq2egoPjuJTN3SRJQkdHBxYWFnDFFVegsLAw47H17MOhXo+5uTm0traipKQEBw4c2NLO4E4LDiMYYdtFJgnoavldo2EEcRrPTgiOZOIb06kleF988UVYrVZtXTOpiqQnRs4tMeK8gBXvS/x6mc1mlJSUaLmHqfJ9kgXIWr/RgUDAkN9zgthpSHAQCaheDTXhL/6mzxjD4OAgBgcH0dDQgOrq6oyMAr09HMmG0/LyMi5cuACr1bpu34p0xtYzh6O3txcjIyM4dOgQysvLszKuEYxII8xBZbvmsl4Cuho7DgD9/f0oKCgwTAK6kUSiEQRHMjzPg+d5lJSUoLi4eFVVpK6uroQSvG63O+uVzdbCqIa9LMtZ7YOSTTaqoJWc7xMOhzUB0tXVhWg0umbBgWAwmLHg+M1vfoOvfvWreOmllzA1NYWf/OQnuOGGG9Z9zTPPPIM777xT6x/1N3/zN7jlllsSjrnvvvvw1a9+VatyeO+99+LMmTMZzY0gssXO3+kIQ6D21pAkKWUIVTgcRmtrK8LhMM6cObOpjuHbFVIVn1tSW1uL+vr6LRkvehnwsixjdnYWZrNZ61eSDXZacBjJUNxpkhPQA4EAfv/732tCM75SUn5+Plwu17YbjxRSlR7x1ylVVSTVIB0aGtJ2udPNCdjKnIwqOIw6LyDzClpWqxVlZWUoKysDYyxBgExOTuKb3/wmZmZmcPbsWYyPj2cstAKBAI4dO4bbbrsNN95444bHDw0N4S1veQs+9KEP4T/+4z/w1FNP4QMf+ADKyspw3XXXAQAefvhh3Hnnnbj//vtx5ZVX4p577sF1112Hnp4eCvkidgQSHIQWQtXc3IyCggJUVFQk3OzVcJ+ioiKcOHFi0zfO7RAckiShvb0dXq837dySdMfOJgsLCxgfH4fZbMZVV12VVWNkpwWHihHmYDTUSjhq5TE1Ad3j8WBiYgKKoiT0DtiOBHSjrZORBcdaRqooiglJyWpOgNfr1SqbpRuSk+mcgOxX9MoGRhccm73+HMetyuNyu9144okn8Oyzz6K3txcf+chH8Mgjj+C1r30tXvva1+LUqVPr/sZff/31uP7669Oew/3334/a2lp87WtfAwAcOHAAzz77LL7xjW9oguPrX/86br/9dtx6663aax577DF8+9vfxqc+9alNvXeC2AokOHY58b01VA+HeqNXd2HHxsZw8OBBVFRUbOlceguOSCSC5557DjabDU1NTVlz52fTgGeMYWBgAENDQygsLATHcVnf+dxpwWE0Q9Fo84knVQK6x+PRdsrVBPT4DujZxmgejviKeEYikypVyTkB8TvinZ2dkCQpwbOVXII3kzkBxhUcRqlSlUw2K2hxHIfDhw/j8OHDuPPOO3HixAl84hOfQCwWw9NPP41/+qd/QjQaxate9Sr853/+J9xu95bPef78ebz+9a9PeOy6667Dxz72MQArgvell17Cpz/9ae15nufx+te/HufPn9/y+QliM5Dg2KXE99ZQd+7i+2QEAgG0tLQAAJqamjZdMSkevQQHY0y7mTc0NKCuri6rxkq25h2NRtHa2opgMIgrr7wSCwsLWFxczMIMV2MEwWG0nXMjsN41iU9Ar6qqgqIoWFpagtfrxdTUFHp6emCxWDTxkZeXl7U8ASMZ90YTQCpb2bFPDskJhUKasBwfH9+0Z8uo4gzY3sZ/maKnGAoGgzh06BBe9apX4SMf+QgURUFrayueffbZTYUip2J6enpVc92SkhIsLS1pXlNZllMe093dnZU5EESmkODYhaihR8lVqARBgCzLmJycREdHB/bs2ZNx07n10ENwqOV5FxYW4HK5tDKH2SQbHgOv14vm5ma43W6cPXsWJpMJHo9Ht2R0Ixj7RpjDpQzP83C73XC73aitrYUkSQkJ6B0dHVqeQH5+/oalO9fCaOtkVMGRrXlxHAe73Q673Z5Qgjc+B4TjuIQKWHa7PeW5ycOxOfTsERIIBBI26Hiex/Hjx3H8+HFdzkcQlwokOHYR8b011Jtn8k1sZmYGkUgEx44dy3piWbYFx+LiIpqbm+FwOLBv3z5MTU1lbex4tjJvxhiGh4fR39+Pffv2oaqqSrvmepbbTXdcWZbR1dWFmZkZrXndWr0jMjk/sT6buUaiKKKwsFAr7azmCXg8Hq10p8vl0jwgmSSgG2nNjCw49DDs40vwqp6t5eVleL1ezM3Nob+/H6IoJoTWqRX31DAvI16v7c7h4JQ5ML4orWP18r6oYZE5OTlZHzue0tJSzMzMJDw2MzMDl8sFm80GQRAgCELKYzbTTJYgsgEJjl1Ccm+N5JvU0tISpqenIQhCRl24M4Hn+ZS9MjKFMYaRkRH09fWhvr4etbW1mJmZ0bXHx2aEQSwWQ1tbG5aWlnD69OlVsbvb2cE8FcFgEM3NzQBWkg6Xl5cTekeo4iMvL09Lds4EI+2cG2ku2SI5T2C9MJ38/Hw4HI6UhqnRDHyjzUdluzqNx5dWrqmpWVWCt7u7G1ar1VDNB1OxLSFVzAtR+h+I0q8QsXweQPqCQw8PRyQSgSzLuguOs2fP4mc/+1nCY7/4xS9w9uxZACu/DSdPnsRTTz2llddVFAVPPfUU7rjjDl3nRhBrQYJjF7BRb43R0VH09vbC5XLBbrfr1sAqGx6OaDSK9vZ2LC0t4dSpU8jLy8va2GuxmbFV74vT6URTU1PKWPudFBxq5bGysjLs27cPkiShsLBwVejO0NAQ2tvbkZOTo4kPt9u9riFhVAPICOgpfGw2GyoqKlBRUbEqTGdwcFAr5aqG6aheLKOJMaMKjp1qsJeqBK/6/ZycnISiKPj973+fUIJ3MxsE2Ua3kCrGIMjPQ5R+CkH+NQAFEcs9YHxN2vNijOkyt0AgAAAZ5zz6/X709/dr/x4aGkJzczPy8/NRVVWFT3/605iYmMC///u/AwA+9KEP4V/+5V/wyU9+Erfddht+9atf4Yc//CEee+wxbYw777wTN998M06dOoUzZ87gnnvuQSAQ0KpWEcR2Q4LjMmaj3hrxxvvJkyfh9Xq1H0w92KooiO9wnmzE65m3kMnY8QJO9b6sZTzFdxrPJuvNlzGG/v5+DA8Pa40Gk+eQHLqjdt31eDxahR01/Gq9BFejGbJGQm+DOlWYztLSEjwej5aAru6SqzldRsGIgkMNRzXCvOK/n8XFxWhra0NtbS28Xi8GBgYQDAYTNgiyVYI3U7IeUqXMANLjsEk/Bc9GtYcj5r+CLDZlNC8AulwTv9+v5ehkwh/+8Ae89rWv1f595513AgBuvvlmfPe738XU1BRGR195z7W1tXjsscfw8Y9/HN/85jexZ88e/Nu//ZtWEhcA/vRP/xRzc3P43Oc+h+npaRw/fhyPP/74qkRygtguSHBcpiSHUCWLDY/Hg5aWFuTm5mrG++Liom5eAnUOmxk/Pg9irQ7nens4YrHYhsfF9wA5efKktiO53rjb6eGIRqNoaWlBKBTCVVddlbbbP77rLmMMwWAQHo8HHo9HK92qGjf5+fm6ecg2ixGMxJ0mPgEdSNwll2VZ88bFe7F2KuHXqIIDMF5ythoaVFxcrOXcpeqKnZubm9AVezveR1ZCqpgMyL8FF/sRID8PC1+niQ0FOZDEt0EyvSfjeQH6rKXa8DHTz+8111yz7r3gu9/9bsrXXLhwYd1x77jjDgqhIgwDCY7LEEVREI1GU3o14ne4k5OY1SpVesHzfMY7qdFoFG1tbfD7/SnzIOLH3skcjuXlZVy4cCGjHiDbGVLl8/nQ3NysCczN9v7gOA4OhwMOhwOVlZUJO+eTk5Po6enRQnUWFhZQUlKiS4flSxWjeH3id8knJydx9OhRzZOlJqCrRupW+kRsBiMLDiPOK3ldUpXgVQXI+Pg4ZFlOKMGbk5OT9fe11Q7oTJkGH/sRIP0EHFtJfDYJp8EpbZC5RiicCYAFMfNHMh5blmVwHKeb4FirohhB7HbIEriMUEOo1CpUyWIjHA6jpaUF0WgUV155JVwuV8Lr9TTagRVBE41G0z4+vpRsU1PTunHJO5nDMT4+jq6uLtTW1qK+vj7tm812CA7GGMbGxtDT07Omd2grxO+c19XVQZIkeL1etLW1YWRkBL29vVp4R35+/rbtrhKZYTabkZeXp3mxko1UNQFd9YCslYCeDXYqV2I9jOrh2Miojy/Bq+b2BAIBbW2Hh4fBcVzC2mbDYFavVyZeMsZkKNIzkGM/gYWNgmOD2nM8fw6AAsYVgGNd4FCKiO0/AC7zXBU9y/Uml8QlCOIVSHBcJqzVW0NldnYWbW1tKC4uxsmTJ1PuOmeritRapCsKGGMYHBzE4ODgKi/MVsfeDGvlWsiyjM7OTszNzeGKK67Qch62Ou5WUQWHJEno6OiAx+NJK8QrG4iiiKKiInAch+PHj4Pnea1yUltbW4Lhmp+fvyt3A432fpM9CqmMVDUBfWFhAQMDA1qZVj3C6Izo4TBqg71MvQjxzSVVD6Xf74fH41lVgje5uEAmZBK2xJRJSLEfQY79GGCzsArHwbFBKEwEhIPguTyIyvPg2MoaMFgRtdwDcJv7PdOzB4ff79dVjBPEpQwJjkucjXpryLKMnp4eTE5O4uDBgygvL19zrPhO43qQjiiIRCJobW1FKBTCmTNn0u7MqmfSeKpcC7/fj+bmZphMJjQ1NW3K4NIzhyMSieD555+H2WxOK8Qr2zdIdTyr1Yry8nKUl5evabjGl99NJxRtMxgllMmIbHRtUiWgq2Va4xPQ4ytgbaVKkhEFh5E9HFu5VjzPw+VyweVyoaamJuXaWiyWBAGSznd0o4aEjCmISr8BF/sRFPlXAFaOtwhXAmwWMn8SkPvBsSWY2TC4i8/LXA0k0x1gQuOm37OegiMYDMLpdOoyNkFc6pDguIRRd7HVvIhkseH3+9HS0gKe59HU1LRh5Qy9Q6o2Gn9hYQGtra3Iy8vD8ePHMzJatjOHQ+3EXlVVhYaGhk0bIXqJpHA4jOnpadTU1KQ9Pz1i1JPfW7LhKsuylv8xNjaGzs5OOByOhMTlyy3/w6jCJ5N153leMz6BVxLQ1SICahnl+DKtmYXWGE9wGNnDkU3jOdXaqgJE/Y7a7faE72iq3+m18iQUZRbh6COIRB+BTSgBU1oAAIzZIAonATYHpowCGAW4PFi4KJhihszvB9gcFOF1UEyv29J71LM/iN/vz7hCFUHsFi6vu/kuIr63RvIPO2MMExMT6Orqysgo3qmQKsYYBgYGMDQ0hMbGRlRWVmZ8Y1e9BXoYK+q8ZVlGd3c3pqens9KJPduCQ1EU9PT0wOfzoaSkBI2Nm98F3CrprIEgCJpxU19fj1gsppXf7e3t3dHE5d3EVr8za5VR9nq96O7uTqiSlM46GlFwGDGvBNC/GaEoiigoKEBBQQGAlWamanWz+BK86vc4NzcXoigmhHoxxhCTn0Mk8gNEpacASLCLZwDlDwBXB8blgWNRiMofAKjVAE0QhWOQ2SI4dIFTXoIiXAPZ/OEtvyc9PRxqlSoifcLhcEa5nZcDZrPZcNUctwMSHJcYG/XWUOP2FxYWcPz4cRQVpdd5FdiZkKpIJIKWlhaEw+GUieyZjA3okxDIcRwkScLvf/97cByHs2fPZmUXK5s5HOFwGM3NzZBlGSUlJYbYZctUTJlMpoTynmrnbNUDAiAh/8PIXZbXw0hz1sPjklxGWU1AV9eRMZaQ/5Gcx2OUfhfxGHFOgA69LjbAZDKhqKhIu6/Ei0u1upnaQJYXAvCFvgNOeR6S9LQ2hlU4BQ6AwtWCKQPguVJYEAMQA+MqwLgymDkOgvzsK++Tr4Nk/XsgC2ugd9I4CY70CYfDqK12YnpWv41OI1JaWoqhoaFdJzpIcFxCbNRbY3FxES0tLVpp1kw/zNsdUjU/P4/W1lYUFBTgxIkTWwqf0VNwLC8vY3FxEVVVVWhsbMzaDT5bORwLCwtoaWlBUVERDh48iO7u7h0P3cmGcZbcOXt5eVlLbu3r64PZbE7I/0jVzT1bc7nc0esarZWA7vF4ViWgq+tIHo702W7BkUy8uARWNgkWFs8jEHsAFSXnsbBQBXdO78Wja2ESqwD5RcgIXXzMATPnBuNdYGwJUPog8uUQlJX+EgoEgD8CyfJ3AJed6k96hlRRlarMiEajmJ6VMfRSNVw5xvt+6cHSsoLakyOIRqMkOAhjoigKJicnwXEcCgoKVvXWUBvjbdTdej22K6RKURQMDAxgeHgYBw4cQEVFxZYNDPX12Q5R6u3txdjYGGw2Gw4cOJC1sYGth1QxxjA0NISBgQHs378fe/bs0fJ4jCA4sjkHjuMSkltlWdZCO0ZGRtDR0aE1rsvPz9+x7sobsdPrksx295eIz+Oprq5OSFKemJhAd3c3TCYTOI7D7OzslhPQswV5ODaYBwsjEH0cy9L3IVk7YLECSrAWuTkTkKQjUNgCGFuCKP8BEFfEhoJ62IRSQGkFk/sAADx/GKLSCoWrAePyATYExXw7IFRlba56h1SlW+iEeAWHc+VvNyAb6xawrZDgMDjxvTVmZmZgMpkSyq9GIhGtMd6pU6e0ZL/NoIZU6bXDqDb+e/HFFxGNRjPqdp3O2ACy5qEJhUJoaWmBLMtobGzExMREVsaNZytGeSwWQ1tbG5aXl1dV88p0XD37KeiFIAgJseXRaFQrv9vV1YVYLIbc3Fzk5+dDlmXDGfpGYaevS3ySstrHZWBgAPPz86sS0HdSSJKHIzVReQyeyMOQ5B5I8u8AXKzmpTSA5xgYFPBiGwTOBTvngsxkRGNHwDALOSLCnvO8NpaMCpg4FxRUgGND4NgQZPNfgolXZ3XOelepqqio0GVsgrjUIcFhYJJDqJJzLOKrOp07d27LO4HxSX56GKFLS0sIhULIy8tbsxfIZlF39rMhOObm5tDa2oqSkhIcOHAACwsLuvbLyJSlpSVcuHABTqcTZ8+eXRVKtJnroFdZ3O3CbDYn5A0Eg0EtbyAQCKC7uxtzc3Oa4bqZ3gLZwog75UaZkyiKcDgcCIfDOHbsmJYj4PF4NCHpcrm08KvtKiRgVA/HTgghxhT4Y7+FJ/IDBGLPwS7sBVgfwKwwiwcBJkNEPzj74sVXCLAJx8HYMsBmIZraYBZOQTRfgMIERKV6RGOAQ/CBt76gnUfiXg+Y35/1+euZw6H24SAyQwGDgt2xKbRb3mcqSHAYFNWrEZ8YLooiIpEIFEVBf38/RkZGEkJptor6I5ztGFdFUdDX14eRkRGIooijR49mbex4tpqDEn9dDx48qO1U6dUvYzPzVbua19XVoa6uLuW6G8Uw2qndc47j4HA44HA4sGfPHrz44ouaV3B6ehq9vb1Z7RtxKbPdIVXpEL/hkSoBXfVkjY6OAlgpJLBWAno252RED4csy9tWOlpSFuGL/gLe8IOIKSseXzNfARPHwPHHEJG6EZV7kcPnQOEWIUl5sFgaYOY4KPJvtXFEfj8EtghFOAUm98Fk6kOO9Qh4xbPynhQLfIH9uNDzRlitzyf0AMnG91SWZd2+78FgkATHJlCgQL/sUWOxe97pakhwGIzk3hrxieE8zyMajeKFF16AJElZDUlSxweyF5YEvBKaJEkSjh07hra2tqyNncxWhEE4HEZraysikciq66p3R/B0kGUZXV1dmJmZ2bCruVFyOIyCmrhcUlKC2tralH0jXC5XQtiOXsblTq9LMkabD7C2hzU+AX3Pnj1aIQGv14v5+fmERpKqgZqtpMzd7OEISL2YDj2MQKwZFm4OMvMBMMEmHIaIJUTk7otHCnDxDeA4HpLkAIQ+iACYvOK1YMiBwB+EAA8UNgDIAwAAs3AVoLwMhT8ABhPATSG35O9xrrBUy9NSv6dOpzOhv8tmxJYsy7ol61KVqs0hMwbZgL9FerBb3mcqSHAYCLW3RnyTqfibXCAQwNzcHPbs2YP9+/frUv4VQNYSx2dnZ9HW1qaFJoVCIV2rYG1WGKhVntaqlqVnR3Bg4xC2YDCI5uZmcByHc+fObXizNILgAIxpzAKp+0ao5Xc7OjogSVJC+V2Hw2FIYzObGOn9pRvSGV9IoLq6OqGRpJqAbrPZNCG5VpO6dOdkRA+HXjkcCpPgif4K06Efwi+1QuRccAkiGLPCKp5CRB6DCC9iSj8AQOBK4BAbICsdUJR5cALAIvUA/zI4/iAYZwZTBmHCHMCGtfPw3GlwYCu9OJQOADyY9V8BvhImHgkleKPRqFaCt6+vD+FweFUPkHTuidSHw3hQSNXugASHAWCMJYiN5HK38Q3nnE4nDh06pMs8OI7LSi+O+OpOhw4dQnl5OYBXQoj0TErPZO6MMQwODmJwcHDd0DS9DPh0BMfs7CxaW1tRXl6O/fv3p2VcGEFwGMmA3WguFosFZWVlKCsrA2MMgUBAyxsYGhrSGhSqAsRiseg6n+3E6CFVmRDfSBJYu0md6gHJJAHdqB6ObAuOqOLBZOgxLEWfQFBeKWfLw4QC0z7IzIuQ0o2oNIs8cT8icgfMwlEwyLBwNkjyr7VxmLQHPOxgXAEkpQMAB7twfKUiFXLB8Q3gwMPE2sEpkVdeZ/4oIJ5LOTez2YySkhKUlJQAgNbfxev1orOzE5IkaQ0m18vv0UtwqLlj2Yw62C0oYJB3iSFOgoPYMTbqrbG8vIyWlhaIooiGhgbMzs7qOp+t5kEEg0G0tLRAURQ0NTUlxLOqP/JGEBzRaBStra0IBoMbNhzUqz9JfAhb8o2RMablvRw+fBhlZWVpj2sEwQEY18OxHhzHwel0wul0orKyMmXZVpvNpomPzYZ1GAUjrlG2vAmpmtSlqmQW3wF9rd8lI3s4svFbuhTrwljoR5iL/Br54h4E5V4IcMEm7IWFD8Iv/U471i2eARAFx+UhLLfBIR4GU14EYyaYhMMAeHD8MATTGNSPl1W4EkAYjD8CpnSCsT7YODs4rIgNhdkB0/WA+QNpz9lms8Fms6G8vDyhUISa38MY0/J78vLy4HQ6NS+4XmtJSeMEsTaX7p3yMkD1aqhJ2sm9NcbHx9Hd3Y3q6mrs3bsXs7OzuoYkAVvrxTEzM4O2tjaUlZWlDPlaz8DOBukKA6/Xi5aWFuTm5uLs2bMbhlnomcMBrDb61O7rkUgEZ8+ezdhFbwTBYbTd4M1ej+Syrequucfj0cI64qsmuVyudT/bO70ua2Gk9dJrQyLZk5VsoAKvdLLPy8tLSEC/HD0cCpMwG3kG46FHsCR1AgCKTAegsCU4xaMISN2w8DGE5RYwxsMmHoSFdyMs/Qa4mPhq5WsgIgCeP4GY0ouo3AanWAdFmAcAcFwtTHwVoLRBge/imUXYuAowpR+MPwQGAeBigOWT2OwVTi4UoTaYVNd3aGgIPM/D7XYjHA5DkiRdPmcUUrU5KKRqd0CCYwdQe2tIkpQyhCoWi6GjowNerxcnTpzQeg0IgqBrYz71HJka14qioKenBxMTEzh06NCau/F6JKXHs5GhHd8gsaGhAdXV1WndcLYjh0PF6/WiubkZeXl5m+6+bgTBARjXuN4KybvmaliHx+PB+Pg4FEXRBIqeVZOyhRHXaDs6jacyUOM72ff398NkMmlrGYvFDOvhyHReEWURw8H/QUBqhy/2LACAYyYUmY9BYhMIy8MAgHzTUcTkQdiEUwjLo+CgICL9FitiwwabcBgmzEO62LQPAJziCShKP8LhQ+AFHyxmgFdeBBDWjjELV0NhQQBOQGlf+a/jYXBZ6iQOJDaYrKqqgqIo2vouLCxo3uP4ClhbTSRXwzFJcGQOJY3vDkhwbDMbhVD5fD60tLTA4XCgqakpIV5cr9CeeDI9h5rQDABNTU2w2+3rjg3oJzjWm7vaKG9paQmnT5+G2+1Oe1y9PRxqXsvIyAj6+vqwb98+VFVVbdroMoLgMLKRnU2Swzr8fj88Ho9WNUk1WtUQLMBY1+ZyyuHYCqk62ceH0i0tLUEQBPT29moVkoxQSjkTwbEYG8RA8CcYD/0KReY6hOQWmLkiWIUKmDhoYVMMHHLFowALI8qWEJVehpWvBJQBiHwNeM6NqDIME2YgK4MXXyPALpwFwxJkFoDJ0gGm5MDCOQAWBlAK8JUQOCu4uBK5AAfY7gbH12T3wiTB8zxyc3ORm5urbYwxxhJCJa1Wa4IASe5vtBGhUAiMMRIcm0ABdk2x2N3yPlNBgmMbSdVbQ4UxhqGhIQwMDGDv3r2oqalZddPdLg9HuueYnp5Ge3t72gnN2WzOl4q1BMfi4iKam5vhdDrR1NSU8Y1Er4aI6lixWAzd3d3wer1b7havjrvTggMw5u65nsTvqqpVkxYXF+HxeDA2NobOzk7YbDbIsoyFhQW43e4d6Zqdat5GYicERzKCICSIxMHBQXi9XjDGMDAwgFAotKkKSdlmI8HBmILpyEsYCP4Q89FmAECBqR4CwnAI+7Ek9cLK5yEsd0JADmxiA3goiMmtiF7MrxC5PNjFUkiKgogyBADIFw9AklvAc3vA8eXgASjK77QeA4wJMLE9AOcAgxuK0gtBcUDE5Ctzgxkw3Q5evFafi7MGiqLAZDLB6XRq66uWyvZ6vRgZGUFHRwccDkdChbONvM2BQAAASHBsAnkXJY3vlveZChIc20B8bw01+TD+hhqJRNDa2opQKIQzZ84gNzc35TjbITjS8XDIsoyenh5MTk7i8OHDKC0tzer4myV5bMYYxsbG0NPTg/r6etTW1m7KkIn3zGTTqFDn8vLLL8Nut6/yaG1l3J029nfaYDQCyUZrNBrF5OQkhoaG0NPTg0gkgtzcXO2Y9ZKW9cIIxn0yRkzQ5jgONpsNjY2NABIT0JMrJG3nWq4lOGJKCIPBX2A8/Cwi8iCibBECrCgwN0JRxrEorxj+OUIlzFwMnHgYfqkbEXkCZs4Phggswl4IyIXIzSEondfGdgunwBAF4/chrPTDrPAQsYCV6HQBAn8QkQAPq60bshy9eAHzYOYCYEwC4w9AgQXg8yFaPqT7NUomVWPb5FLZ0WhUEyB9fX0IhUJar561BKbf74cgCLr1+LickdnK325gt7zPVJDg0BlFUSBJ0pohVHNzc2hra0NBQQGuuOKKdXdRjBBSFQgE0NzcDJ7nNwyh2sz4WyF+bEmS0N7eDq/Xi5MnT2pG32ZYK7l7q0xOrtz0CwsLcfDgwawZKJsRHHqIlJ0WPSpGMajNZjPy8/MxNjaGs2fPJuR/qEnLqsGal5cHm82m+9yNskbxGFUExc9prQT05LVU11OvtUwWHAFpFj2B/8ZA8BcQOB4OnofAWVAgHkFU8SIq9yDGFsHBAre4HwI3C7+80ktD5Jyw8xYIfDFiigcheRB5pv2IyCthU2Z+Hyx8MSLy82AXczJ4LgdWLgYOBeD4A5CUAYi8BWb7S3GzFGEVDkFBFIoSA5QOgCuHyXofOG57haUavrrRxpHZbEZxcTGKi4sBrDSGVRPQu7q6EI1GkZubC7fbjaGhIVx99dVal/HNiOX77rsPX/3qVzE9PY1jx47h3nvvxZkzZ1Iee8011+DXv/71qsff/OY347HHHgMA3HLLLXjooYcSnr/uuuvw+OOPZzw3gsgWJDh0Ir63hnqzir/hKIqCvr4+jI6O4sCBA6ioqNjwhqQmdOt5Q17PizI5OYmOjg5UVlZi3759m/ph1VNwqOFay8vLaG5uhtVqzYrXID7XIhsoioLu7m5MTU2B5/m0k9fThTwcxkb9LVC7ZldUVCQkLc/MzKC3txcWi0UTH/n5+brlDBhtrYxYEWq90KXkBHRFUbRcnuQEdHU9s+HJBF7xBk2HuzEU+jmGQ0+DQYHIWVBiakCMLcMn9UNGGDm8AMAGu1iHkDwJDhMIyRMAACtfB4fgQlBqA7sYNpVnOoaY3AercBoxZQocFMTk5wCseC045MIlHIHCRiEpQ4A8AhO/D7zcCgCQlRLwYhVMvAmy/FzcrM0Qbf8MjnNn5Rpkgnpvy9RTbbVaEwSmulnQ39+Pm2++GdFoFPX19VAUBS+//DKOHz+e9jkefvhh3Hnnnbj//vtx5ZVX4p577sF1112Hnp4eTfDE8+ijjyIajWr/XlhYwLFjx/DOd74z4bg3velN+M53vqP9O1ufOT2gHI7dAQkOHUhODE8WG/G9KjIpe6re8GRZ1q32fypBIMsyurq6MDMzg2PHjqX8EcxkfL3Cwnieh8/nQ19fH2pqarB3796sGC7xORxbJRQKobm5GYwxnD17FufPn8+6ADOK4NjpOcRjpLmkIlXSslp+V40pV3MG8vPzs5YzcCl4E4xAJmFePM+vmYCu5vKo+QHq32Z+zxUmw2frwZP+x+AUOSzE2iDAgjxTA0zcMuZiK14GgTOj2FSPKPNhSepDSPGgyFSKiDwOp3gFoswLO2dHQPrDynsFh1zxJMD8kFgAkvQHmPgiCFiEzBRYxKNgDLDyJsTimv3xXCFMiAH8MfhDk7BYJiByFeDklxLmLVj+BrygT/PajVB/a7fy3UneLBgZGcHLL7+MBx54AENDQ7j22mshCAJe+9rX4tprr8W1116L/fv3r/mZ/vrXv47bb78dt956KwDg/vvvx2OPPYZvf/vb+NSnPrXq+GRv/Q9+8APY7fZVgsNisWQU7ryTKOAgb7oo8qWFskveZypIcGSZ9XprAMDU1BQ6OjpQXl6OxsbGjH741GP1DKtKFhx+vx/Nzc0QRRFNTU2w2WxZHT9bqDf1aDSKK664QovFzQbZ8nDMz8+jpaUFJSUlOHDgAARB0MUwz3RMtVqL1Wrd8voS65PuugiCgIKCAq0kdjQahcfjgcfjSWhap+Z/qE3N9JrPdmJEwbGV/K34XJ76+nrEYjEtPCc5AV0Vk+uJm6gSQnfgKbT7f4bl0llU8nsRkCdQaD4Cb2wYZj4MX6wXIpxwmeohcgHMx17QXl9mPgIFQcjgsSi1oFA8iqD8B4hcEcxCFXgmIyq/CEACAHCwwiFUAIxB4QYQltqQI14BRV4ZkzELROEgTByHmNIKsCFYLADHqiAq3Ssn5WoBrgCccAiC+Z3Jb2nbWOu+vBUEQcDp06cxNTWF7u5u/OEPf8DLL7+Mp556Cj/96U/xiU98Ah/60IfwjW98Y9Vro9EoXnrpJXz605/WHuN5Hq9//etx/vz5Vcen4sEHH8S73vWuVQ0Hn3nmGRQXFyMvLw/XXnstvvSlL2m/J0ZDYSt/u4Hd8j5TQYIjS2zUW0OSJHR1dWF2dhZHjhxBSUlJxueI93DoRXxI1cTEBDo7O1FVVYWGhoasJHLq0dNCFUWyLGPPnj1ZFRvAKx6qzc6bMYbBwUEMDg7iwIED2LNnT8LYOyk4JElCW1sbFhYWIMty1rpoG83DcaljNptRWlqK0tJSLWdATVoeHh7WGhSqa5dJ4qrRjHsjCo5szslkMqXMD/B4POjo6IAkSQkdstUE9GVpAT2B36Ld/xNE2EpFpJxAKeCOIagsIRD1odKyDzHFgzzTEfhifTBxUSxKXeCYCS7Tfth4AT7peW0uecJhgIvAIhxEUO4BZBFmzgdAAg8XzEIDzFwM4YveDwCw8nvB5BYI/AEwzgFJ7oaV4yErr3gyJMkOh5gDCGVgyjQYGwTHWWCyfDwr13CzpEoYzxaBQAAOhwOiKOLMmTM4c+YMPv3pTyMSiWB5eTnla+bn5yHL8ip7oKSkBN3d3Rue84UXXkB7ezsefPDBhMff9KY34cYbb0RtbS0GBgbwmc98Btdffz3Onz9viMp4yci7yMOxW95nKkhwZAE1hOrChQtobGyE1WpNuDmpOQVms3lLXgKO43SvVMXzvGaEzs7O4vjx41qTs2yNn835T01Nob29HVVVVZAkSbebyWY9M9FoFG1tbQgEArjyyivhcrkSnt9JweH3+3HhwgVYrVZcddVVAKCVce3t7d1yFSUSHKnZquEanzNQWVkJRVGwtLQEr9eLqakp9PT0wGq1JgjHtfI/jLhGRhQcW+novRHJ+QHJYjJkXoC3sBtB8zR4cRExJYRiSyNsnAVz3EtYkBk4JqDKehQxNodleQKQJ1BmPoiIMgG3eBzL0hDMnILli8LBzJXAIdQgpnQgJHkBAALnhJWTIXB7AN6EkNwNB8cQlV/W5mriqmAR8hGTfZAuei/s4kkoiipICsFztVAiPnCmLijaT70LJts/g+N2No9AlmXdDO61mv5ZLBbd8icefPBBHDlyZFWC+bve9S7t/48cOYKjR4+ivr4ezzzzDF73utfpMpetQIJjd0CCY4soioJoNApFUTA3N5eQNxBflrWmpgb19fVbvmnpXalKkiTMzs7C6XTi3LlzWS/xl635q4nXk5OTWl5JV1fXjnUxT4Xa/yMnJwdnz55NafTpsZ7pzHV6ehptbW2a90ot2RzfRTu58g7HcWnvohvNYLyc4XkebrcbbrcbtbW1Wk8Bj8eTELKjJiwnh+wYba2MKDi2a07xYlIu9KB38XcYi3TAxnJgZTK4gBucmUMouIiAaRKcbEWBtQ5WgcdC7MWLk+VRYjkMmS0hKC8gKM8j37QXIakdTvEwZBaDzJYQVVohsyUAgIkrgUusQkTuQ0TpAgDkiEcQk18ABxdM4j4oyjLMXASRuBK5Zn4foAyA509CYQHISi8sQh3MzoH4dwWT7R/A85W6X7+NyHZp83j8fv+qsKaNKCwshCAImJmZSXh8ZmZmw/yLQCCAH/zgB/jiF7+44Xnq6upQWFiI/v5+QwoOYndAgmOTqCFUahUqnucTvA/RaBQdHR3w+XxbLssaj14eDsYYJiYmMDk5CafTidOnT+uyo5cNA3ut7uZ6J6SnO2/GGMbHx9Hd3b1h/4/t9nCo1dHGxsZw9OhRlJSUrHlsfGKkWv3L4/Fou+gbhV8Zcfd8p9mOa5LcUyA+ZGdychKyLMPtduta+WorGLEPh54ejnhkJqHD/wKGQs9jMLQSopTLF6HAkofZaB8kYRG5fAksSgxypAwh0xT8gTmErBMQkYMcUw1EDliKNYNh5bfQyVfBylsQUJxYlDohck7kCBZE5TDs4jHILAIbb0ZAeqWSlJWrhQgGJhxDWO6CJL2EXPEoJLnz4hEWmPiDMPEKJNkP+WJiuFk4Au5iaJXCnOCFfeDFayFsc3O/tdgJD8d6mM1mnDx5Ek899RRuuOEGACuftaeeegp33HHHuq995JFHEIlE8N73vnfD84yPj2NhYQFlZWUZzW+7UBgHhRlrk0Evdsv7TAUJjk2wVm8NVQx4vV60tLQgJycH586dy7iz9XroYVRLkoTOzk7Mz8+jvLxc15urWtp3s8zMzKCtrS1ld3Oe5xGLxbIxzVWkKwxkWUZHRwfm5+dx4sSJDZP0tlNwRKNRNDc3IxKJ4Kqrrsro5sjzPHJzc5Gbm6vtoqtGbF9fH8LhcEL4lZEw2m75dpMcshMIBLQEdK/XC0VR0NnZqXmvdrp85m70cESUEF5e+jVeWPwFSsz5mIp2otBUDRNnAYMPk5EOcOBRZt4HDkvwSVOABTBH3MixCZClGgSFMcj+CVgtPigcg5NrgFm0QWED8MX6AAAcBBSIe6FwMUSVAJalNuSbjiIsr3hHTHwNTFwpONaHkNynzS9HPIGY/CJE/iA4zoaYMgCRW4YUd4zAl0Fk8wB/HItLC3A6JsEgwGS+Vbfrlil65nCofTgy5c4778TNN9+MU6dO4cyZM7jnnnsQCAS0qlXve9/7UFFRgbvvvjvhdQ8++CBuuOGGVfcYv9+PL3zhC/iTP/kTlJaWYmBgAJ/85Cexd+9eXHfddZt/gzpCIVW7AxIcGbBRbw2e5zE+Po6ZmRk0NDRkvb8CsHWDPZnl5WUtjr+pqQnT09PweDxZGz+ZzXo4FEVBb28vxsbGcPjw4ZQ7NdvR42M91KaIgiCgqakprXC07RIcPp8Pzc3NcLvdOHHixJbLKouimBB+FQqFNCN2dHQUsixDURQoipJxEvPlzk4a0xzHwel0wul0oqqqCgsLC+js7ITFYsHExAS6urq0kq1bLRywWYwqOPQwVJdjPvx+6Um8vPxrRJQQ9tr2giEKt1iOhdgkyi3FWJZ8KDMfQERZQoxNISjPg4cJBUI9wvwEljEKiICNz4PTbgWUfATZJJaUUThjZnAWD8CscPANsAkcFqUXtfPniPsgyQOwCScRUzyIyJOwikCMvRLiY+OPgAcgcwWIXgy3coonoMhqGV0bRH4/zBwPRWkH5Gk4HQBQAIvt6+A44yQp6+nh8Pv9m6oC9ad/+qeYm5vD5z73OUxPT+P48eN4/PHHtUTy0dHRVZ+9np4ePPvss3jyySdXjScIAlpbW/HQQw/B5/OhvLwcb3zjG/F3f/d3O76ZsBYyeMgwlldTL/TLwDU+JDjShDEGSZIgSRdLBSaJjXA4jHA4DEmSUiYHZ4tshVTFh/3U1taivr5e89JsZ9nddAiHw1oVqqampjV3kfTuYr6eMFA9L3v27MmoKWI6QiZTkgXH2NgYuru7sXfvXtTU1KxpzG3F0LPZbKioqNDCr1566SVYLJa0w6/0xijhXUaZhwrP8xBFEfX19QCQULJV9Vy5XK6EwgF6hxYZUXBkuxnhbHQaLy7+Br3B5+GXfbBwNuyzH4A3NoKA4gMHDvW2RigsCgUxLMSGkG9yIqYwFJuPwC/NQcYUZMsCGDjkiw2w8AoWpR4wTgHH8Sg1VUJWwlDkQoQxjLB/CbJzpas4YzwcfCNEKAgzP6LSBQBAvukwIvLLEFAEUawBYxGADSAiL2lzt4snIMstEPijAMdDkntg5gWwuH4bjPGw2L4Gns9ewZFsoGcORyAQQHV19aZee8cdd6wZQvXMM8+seqyxsXHN3xKbzYYnnnhiU/PYKdguCqliu+R9poIERxrE99bgOG7VDXd2dhZtbW0QBAH19fW6iQ0gO4JDkiS0t7fD6/WuCvvROyk90/Hn5ubQ2tqa0LtiLfQsxbrWvONzIg4fPpxxoyU9ygSr10Ft2Dg7O5tWeFe2UI3YwsJClJeXbxh+lWn1KyJ7JBv3ySVb1Y7KHo8H4+PjUBQloWO23W7P+toZVXBkQ2iNhAbxjPdJjIUH4Lp49620NkKEjIlIKxQGlJhrkSOYMRlZ6dgtQMQe6z5EmR8+ZQbhWADFpjyEpRDEYBVEZxQmPgKftCImRDhRYt6HiDKKEJsAeCBP3I+I0AoR5YDkRozNIYYxKGavNjcXfxyADFE4gIjci5gUQI5QoCWWM/Cwqt4OWCApK/OzCicTxQb2YGTsKhw8dNWWr1e20dPDsdmQKoJCqnYLJDjWYaPeGoqioKenB+Pj4zh06BCmpqZ0n9NWBcHS0hKam5ths9nQ1NS0ysW6HWV305k/Ywz9/f0YHh7GwYMHUVFRkbWxN0MqMROJRNDc3IxYLJZxTsR6424V1Wvy+9//HhzHpR3ele05qGwUfgVAEx95eXnUfHAb2eizZ7PZYLPZUF5eDsYY/H4/PB4P5ubm0N/fD5PJpK1bfn5+VvLVjCg4tjqn7kA7nvE+iaFQH+y8DTW2EkhMxkRkGLliLjzSGMrM+7AsL8IhiJiKtkGAGYWmOph5CRPRFQ8EBw5VlkbILIBlTEGxj6FQ3Aef1A6nUA+Bs8LK8/DFVZJy8Htg4kRAqEVIHgInziBPrEFYngQDD16qgRKxI+xoAY9XcuBcQj0kpRkC3wCOy4WszELAJCT5lXArE1cHXmkH46oBvhiKMg3G9mBu/vWGW0Nge/pwEASRGhIca6D21khODFcJBAJoaWkBAC3MZ3Z2VldjHdi8IGCMYXR0FL29vairq0NdXV3KG4IRPByRSAQtLS1acnNOTk7Wxt4syWN7PB60tLQgPz8fJ0+eNFSDvKWlJUQiERQXF+PAgQM7VvFnPZd/fPhVptWvLnWMZoilOx+O45CTk4OcnBxUV1dDlmWtb8vo6Cg6OzvhdDo1AeJ2uze1m2xUwZHp90hhCl5aehndgTZ0BF4EA0OluRpmQcJweCXZusxcDrtghl82YSzShzrbXixLUygxH8R8bAQmQcFstAsCLCg018PKM8xEX2nC5whVgbPwsPDlWJQGUWhqgF/qWHlO2AsTlwtZ6cWSNKi9Jt90CLIyB7t4CmF5GII5BJNlCgp7RWwo/kYsIgCTrQCC2A8wDjliIxRlWDuG56ohCmWQlRgUNgzIw+C4UnD4IgRhZBNXWX+MVqWKWEFmPGS2S3I4jBVVu61cXnfyLBEfQpUsNIBXOnBXVlYmxOvr7R0ANlelKhaLob29Pa0SvXqWllXHX6+S1MLCAlpbW5Gfn59xcvN2eDgYYxgeHkZ/fz8aGxtRWVm5JeMomzkcjDEMDQ2hv78fgiDg0KFDWRl3M6R7TdKpfqXmEBQUFFzy4VdGy+HYinEvCEJCVbJoNKqtXXd3N6LRqNYxO5PQOSMKjkxyOGJKDOd9v8dTnqeRZ7JjLjqMKmstQnIQohDBVHQM+WIxCkyFmI32wCeFAAA1ln1gLAS/4sVy1INqSyOC8gxKzQexEBuGmVMwH13Z5HIJtTArTizbWjEflS4+tgccm4NLPIqQPA2/NIY8UwgxtgAAEJCLXNN+SMo4Iso4oIyDhw0OwYyYsgwBRTAJ1RAgQM55HvHprUqwHoqzA7FoMcCVgRMX4BBckOTfxb1zEQ7bN+D3uwxX1lhFlmXdEqdJcGweBRyUXZI0rsBY94DthARHHKl6a8TfZNTysXNzcyk7cG+H4Mg0qVttPudwONIq0btTSeOMMQwODmJwcHDThrweCdgqqlBqbm7G4uIiTp8+DbfbnZVxs2GEqt3hFxcXcfjwYXR1dW15zK2ymfe1XvjV2NgYACQ0H0wn/MpoxquRyKYAMpvNKCkp0Xq7qGvn9Xq10Ll01i7bCdrZIB0PR1AO4Vnv7/C059dYlpdRa6uATeBgE+wYCw+h1loOgKHUXIWw4sdCbAAyi6HCvA9mXsRcrBUKZIBxqLIegIJlBOQ5BORZlJsbsBTrQ4HpMIKyFzw4+NECcDIAHnliI6x8BMvSHILKSshTsXkfAlInHOIhMAAcJISk34NB0uacKzaA4xSAtyEi9wEKD54LIF5sWPnjMLkExORKwDQOYA7RQANsOW0J799ivhOieBKK4tHNi7BV9EoaVzvEk+DYHJTDsTsgwXGRjUKoFhcX0dLSAqvVumYH7u0SHOmcgzGGkZER9PX1bdh8Lp7tCKlKnn80GkVraysCgQDOnDmD3NzcTY+t1w6yLMvo7+9HTk4OmpqastZbJRshVX6/P6G0cSQS2fGd9GwZjPHhV4wxLC0twePxYHp6Gr29vbBarQn5H5dC+JXRjGk95sNxnNY4cs+ePQmhczMzM+jt7YXFYklYO7UJ4aXm4ViW/Pjl/LMYDvdhIDQAJ+/EEec+TET7MBsLQwCPQ4798EhT8Mbm4ORzkG+yw8JXYDY6gQjzY1mahMhZUWCqhsAxLMTatcZ9xWI9BA6QwDAb7USOUIIYG4cIN7hwLnh7ECLnwZI0qs2p2HwSHMLguBwsSV2wcEWwcP6LYkOETTwAK+dAWHoe7GLeBgczbLwVkjIBniuBwFeBMQlM6UEEfm1sM98Ie04fGANkqRaRmBWhoAuz0weQl9dlyGaSKnrncJDg2By7K6SKPBy7GtWrkSoxPN5wXy/3AVgxeKPRqK5zTecc0WgU7e3tWFpawqlTp5CXl5fR+HqHVMUbw2qTxNzcXDQ1NW3pZqWXWJqYmMDi4iIKCwtx8uTJrBpDWxUc09PTaGtrQ3V1NRoaGsBxHKLRaEZjJpd4zgZ6JcOvFX41MDCAUCiUUMLV5XJp72unBZhR2a7rkip0zufzwev1YmhoCO3t7cjJyUF+fj4kSTLceqXycHiiPjw+/wx+53sBdbZS+GQv6m11iCkhjEd6IUBArXWlXO1AeKWiU6FYilzRjslIPxTIyBMLYOc5uLg6zMaGEJZ9kDENDjyKTI3gAQTkPizJQQCAlc9BnliIKLPAFxsELF6Ui7VYljohwgWHqRZmWLAkPQdcDN3gYYWdE8DxRbBwdQjKA+CYjJD8rHYMALhMxwDEwHE8IsoAOGUJOUIx5DixwXN5MPNOMFwBRRkCJw7BbipBceGDyMvl4PV6MTs7i3A4jBdeeAF5eXlaPo8RNgMoh8OYrIRUGWuTQS82+z7vu+8+fPWrX8X09DSOHTuGe++9F2fOnEl57DXXXINf//rXqx5/85vfjMceewwAcMstt+Chhx5KeP66667D448/vqn5pcPO/wLsIMm9NZLFRjQaRVtbG5aXl9My3EVR3PGQKrXB22Z34rcjpEqW5QQhl60midkWHIqioKurC9PT08jNzUVhYaFhDHO1EeL4+DiOHj2qNYlSMZrBpgfphl+Fw2HdOtBnihHXZSe8CWrZ5MLCQgArhSJU8RiLxdDa2ppQftfpdO6o1yPewzEbmcfP5n6F84svQ2YyjufsRVgJwhfzwcLxsAoKyk1VGAuPwsQrGA33oNxaB1mRIXJhjEd6wIFHhWUveM6P2dgwACBHyIdd4GDm92IhOoIlaRI2XkGMBWHnS+AQSgHMYzbWvDIpDnBFKwGLghzxEBalfpgVH2JsDKqQsHClcImVCCv9iMkr3wkrVwooA1gpdOuCSWiAibMhKP0WwCu/ny5xPyT5JTCIMPGNAGwwc0HE5FeS1gEBTvvXYRILUVAAFBQUwOFwYGJiApWVlfB6vejt7UUkEoHL5dLW1OXamTwPvQSHoigUUkXoxsMPP4w777wT999/P6688krcc889uO6669DT06OVMI/n0UcfTdiYXlhYwLFjx/DOd74z4bg3velN+M53vqP9W+/GkLtWcKiJ4aqBmrzLqyYvu91unDt3Lq2dd729A8DaIVXxycxbMeBVD4ReYQ08z0OSpKznQqhjZ0twhEIhNDc3gzGGpqYm9PT06GIsbmbOahWvaDSKs2fPrirFqGdoWbro2RNlLZLDr5aXl7GwsACv14vBwUFMTU1dcuFXemOU8CWLxYLS0lKUlpZiYWEBDQ0NiMVi8Hg8GBoaAs/zCeV3t7vMM2MMU7F5PDL2FPqC3ZiPeVBpKUeeyYru4Eq+VIW5FDkmEaPhITDMYL+9HhxkOIQ8TIRHUG0tw2LMi0rLfvglDxR44I1NA4xHibkeZj6EhdhKNSkTZ4FLyIGJt8PE58InjcAl5sAnDQMAbHwJrFIBYqZ++KTllWvIuyHACwVm5IgHEFWW4RCcWJae094Hz9lh5Uzg+QbITEJI7gXPlqAoFxAvNhzCFQALQRROIir3I6J0wiGegix3JFwXm+WjMImnEx5TFAUmk0nL5wES+7lMTExAUZSEggIOh2NbPod65XAEg0EwxkhwbBJlF3Ua30zS+Ne//nXcfvvtuPXWWwEA999/Px577DF8+9vfxqc+9alVxycXBvrBD34Au92+SnCov7vbxa674zLGEsRGqt4aAwMDGB4ezjh5eaeqVKmeGL/fv2UDXt11kmVZF4MsHA5jaWkJ+fn5Wc2FALJn5KrNBktLS7WysnoZ0JmO6/P5cOHCBeTl5a1bxWunBcdOz4HjOLhcLrhcLiwuLqKgoAA2m23N8Kvt6KAdPzejYITPSSocDgdycnJQWVkJRVG03J3k0slqyI6e4nEwOI6f217CwuQzKDCbkSM6IXIm5JjM6A32otJaCTNvwrI8hZHwIlyCG3usZZiM9CLCwuAA7Lfvh8RCkBDFZLQf5ZYiBKRFlJkPYkmah8AtYyG2koPh4ItQaC6BJ9aH6EWvxB7LfizGupAnHkKMhSFyDBGh9WLSOMDDhHyxDjJbxrLUB1+sFW6xEUHpYkM+JsAqNMLK2xCUWsEulrcVuVyIWICMGAARZmE/RM4NRX4ZESxr18AiHAS76Nlg4MDzdTAJJ2GzfGjV9UqVJ5HczyUQCGgFBVRBGe/R0qsXj145HIFAAABIcGyS3ZjDsbS0lPC4xWJJ6WGIRqN46aWX8OlPf1p7jOd5vP71r8f58+dXHZ+KBx98EO9617tWbU4+88wzKC4uRl5eHq699lp86Utf0rVB8K4SHBslhodCIbS2tiIajWbU/0FlJ6pUeb1eNDc3w+12bzkHQh0fQNbDqhhjGBsbw+DgIEwmU9ZzIYCtezjWazaoV35IuoJDvX49PT0berDUG+pO7l4byajmOA48zyeE8MTvuG62+tXlgFE8HPEkz4nnebjdbm0jRc3d8Xq9mnhU8z+yGa7T6x/BozO/QutyHywCj0O2KszJHgwEx3DYWQ0GCQWmQngkL1wiYONtcIsFEHmG4XA7GGOosNYihzdh5GIOBwdgn/0gIiyEkBJBMNKNGmsVFmIDKDTtgwwJdt6E6YuN/gCg3HQYQBQMZszHuuAQCiHAB3AyBKkUDmsZLFwE3tjvtdfY+TLIygAs/F7wXA4C8iDMvBUB6YW4d8jDKRSDAyDwlYjIA4goIzBxs1DixAbP5UNQpsHxjQDnhKyMQGFLyLV+LOVnZ6Ou7BzHwel0wul0oqqqShOUXq9XE5RqQQFVUGZrY0qvkKpAIACTyaR7SMrligJ+15XFraysTHj885//PO66665Vx8/Pz0OW5VVh0yUlJeju7t7wfC+88ALa29vx4IMPJjz+pje9CTfeeCNqa2sxMDCAz3zmM7j++utx/vx53fKcdo3g2Ki3xszMDNrb21FSUoJTp05t6oJvZ5Wq+DKy+/btQ1VVVVYMB/VGkU3jWpIkdHR0wOPxYO/evZicnNQtXGuz845Go2hpaUEoFEopNvX0cGw0Z1mWtXLMG/VRiScTY1KP9TDq7jmwesc1uYKSXtWvjHhNjC44kknO3QmHw9pueVtbmxauo66f3W7P6D22LQ3h6YWX0LLcAUmRccBRiwX/FDpD/TBzJhzN2YuZ6AQWpSXYBQsa7HuwLC9jKjKBKms5FmOzqLTshVeah40TMBpphwATSi21sPI8hi+KDwDYa9sPhhhE3omZWB8qLY2Yj7XBBAfcphqInABvrEUrZWvibHAJFvBcPaTILMLCLNxcMZalFm1MK7cHDrEYITkMv7wSouUSGhG66O1gEGAT9sEq5CEqX4DCXhEXucIBSPLF+TEzRH4/zIIdktwBpqjGDYc8+4MQ+MKU1y9Toz5eUCYXFBgZGUFHRwecTqe2IbDZhpKbmVu6BAKBjD9nxCvIjIPMdse1U9/n2NgYXC6X9rheYvXBBx/EkSNHViWYv+td79L+/8iRIzh69Cjq6+vxzDPP4HWve50uc7nsBYfaW6O/vx+FhYWrkg9lWUZPTw8mJydx6NAhlJWVbfpc2xVSFYvF8Ic//AGhUGhLZWRToeayZOt9LC8vo7m5GRaLBU1NTfD7/RgfH8/K2MlsVnCoifa5ubk4e/ZsSi+RXh6OjfItgsEgmpubwXEcmpqa0opdj/dwpIseFaUuFeLDr2pqajSDxwjhV3pjRAGUqdfFarWivLxcE49+vx9erxcLCwsYGBiAKIoJ4nGtG/uFxX78cOrX8EsBKAii2laOmbAXUbaMCB/BXlstzALQF+yGAAF7bXWQsYze4IohXmYqgVM0Y1GSMRzuQ72tFkvyNCos+zEbG4eJA8Yj7QA4lJjrkCPYMRV9Cezijme5eS9kFkCB6QA80QEE5Tnw8F0UGwLyhL2wCQK80sWSuTzgkPcgIF2AyBXAJlQhInthFUxYjL3iybBwxVCUEVj5BvC8EyF5EALHIyz9FglVqsQTkKQ2iMIVUABE5V5YeQticmLYhsPyAVhM59Zcj408HBuRXFAgvqFkT0+PloCurme6Hi01nFoPweH3+1eFq1zqeDweLC8vaxu0drsdVqsVFosl69dQ3kU5HPLF75x6z9mIwsJCCIKAmZmZhMdnZmY2zL8IBAL4wQ9+gC9+8Ysbnqeurg6FhYXo7+8nwbEZ4kOoJiYmtLhgFb/fj5aWFvA8j6amJtjt9i2dT+8KT8DKB0g1gI4fP65LzfNsvQ+1I3tNTQ327t0LjuMQDAZ1bc6XScJ7fJjS3r17UVNTs+br9GoquJ7nZH5+Hi0tLSgrK8P+/fszvonvtDG50+ePJ5O5JBs86g56tsKvjCTGLoWQqkzgOA45OTnIyclBVVUVZFnW8j/GxsbQ2dkJh8OREK7T7B/ADyafQV9gAhWWfJRZnRgMLqI/MI6DOWVQGEOUUwDEMBOZxV57HWYic2BcANORSZSZK5AjOjEfG8RQaCWWv9ZaDyCCJXkRi7IPNdY6eKVxVFgOwCvNQOQYJqMvAWCwcDkoNtUgqIwjIM8CACy8AxY+Bg5uuIQ6LMZGYRF5eGKveDLMch7MMEEU9mFZGkBIaUWx+TACmieDg42vg1PIRVjuR1DpAxTAwpeAXaxSBQAcXLDyjWDMDwkKYvLKOazCfshKfEUqQOSvgNPysXXXINtGfXxDSQAJDSXHx8cTPFp5eXlrJqCr9wa9PByXU/5GX18f/uqv/grnz5/HwsKC9rjJZIKiKIhGo4b73bhcMZvNOHnyJJ566inccMMNAFa+Y0899RTuuOOOdV/7yCOPIBKJ4L3vfe+G5xkfH8fCwsKWNt034rIVHMm9NeJL1jLGMDExga6uLlRVVaGhoSErO5aCIGgldrMNYwwDAwMYHByEIAg4duyYbl/4re7my7KMrq4uzMzMrOrIrmdjwfieCxtdm/gwr3TClPSqQJZKyMSHyyXnkqQ7pjrOTnE53YySd9C3K/xquzDSWmW7Qp4gCJqwqK+vRywW03bL/1/v79DBJjFomYEdFhy1VWNSnkS7fxalpgIU2xzoDQ5DgYJiyQmLwCEai2IgOIgGewU4jkOhuQQB2Q8ZHsSUKKosDRB5HnOxHkhspRRzpbkOPBSElSDGIt0oMVdgMdaHAlMNeM6MsOzDktyHiLIS2mSCHWXmBgSVaSxJY1iWJ1FqPgBfrAVgHFymvRBgR1QZREjogdo4PN+0HwHpJVj4Kpj4IoSUCdh5G/xxeRsczLDyAmRFhFU4AYWFISkzAOtHRJl/5bpxeRAwDQYFPFcFni8FYxG47V8Dx63/+ZZlOavFQJJJrkanerRUj6QgCAmCUt0QiM/dzDaBQGDbKm3pjSzL+NjHPoZwOIyf/OQnuP766/HQQw+hq6sL9913H+6+++6sv0+F8VB2SdK4son78p133ombb74Zp06dwpkzZ3DPPfcgEAhoVave9773oaKiAnfffXfC6x588EHccMMNqxLB/X4/vvCFL+BP/uRPUFpaioGBAXzyk5/E3r17cd11123+zW3ApXVnTIP43hpqsyaO47RwJ9XQXFhYwBVXXKHtYmYD1TOQ7V1DtQxqOBzGkSNH0NnZqesP21ZCwwKBAJqbmyEIQsqO7HoKjvj8k/VuKn6/H83NzTCZTGhqakordlJPD0f8uLFYTOv9cuWVV6blck01JrDzHoadPr8ebDX8ymjXxGjzUdHr900URQyIXvxH7FmYczksxoKo4UqwGPNjNDwGu2JGuZgPGw/0BgdRbilGoejCYKgbAyEPbLwVB5w1mIyMY1lehkOwo9zsgonPw5QyAb/sg6L4wDEeeyz7wAPwSv2ISREAQC5fAJfgAGP5mIuNwMzZ4BYtWJb9yDfVgYcFVl7BdPRFbc75phrIzIs88SiW5XF4YwMoNdcgJLyy8+zgq2DmzVBYJYLKOKCMo8B05JUqVQAE5MFtOgCJTUNifkjSSmK6S2xENK7cLQMHh3gAQBiybIGkjALKKPLs34AobLz5sdWQqkxI9milqmhmtVq1Xi4AdPNwXC4hVX6/Hy+88AJaWlq0cLWrr74ab3/72+F2u/Hkk0/i5ptvzuo5d2NIVSb86Z/+Kebm5vC5z30O09PTOH78OB5//HHN6zc6OrrqO9fT04Nnn30WTz755KrxBEFAa2srHnroIfh8PpSXl+ONb3wj/u7v/k7XwgeXleBQFAWSJKWsQiUIApaXlzEwMAC73Y5z585l/cIKgpD1HbqFhQW0tLSgoKAAJ06cQCQS2ZY8kc0Y11NTU+jo6MCePXuwb9++lDed7RIca6F25s7Us6VXb4v4kKrl5WVcuHABdrsdZ8+e3fQuoREEx+Ww05cOmYZfGREjrZX6mc32nBhjOO/txX+M/wYDwRkcdJbDzANeKQDexKHK5UZAtmI8PI06cyGisQjylBxElSCGxWlYZQtKnKWwikCP1nejHE5RxHh4CAoUuEQXckUzRL4S05FRLMbmYOLDiLEICsVqWAUHIsoYJiLtAAAePMosFeDAQ2IK5mPDqLTsx0Js5Xkz54LbVAtZmcGSPAZg5fO0Ukr3AjjZCQv2QDAziNw8fLEB7f06hRpEpBYIyINFrIHEgrBwNgSkxO7DLvEEovILACwwCfsAmGDmTIhKv004zma+ETbzm9O61tspOJJJVdFMTUBXv48vvvii5gHZSgJ6PJeb4FAUBQUFBVhYWEBubi68Xi+Ki4tx9OjRtPIBMkUBdk3S+GatnzvuuGPNEKpnnnlm1WONjY1r2gA2mw1PPPHEJmeyeS4LwRHfW0M19uNvWIwxhMNhzM3NoaGhAbW1tbrcZNUfrmzU+o7vB3LgwAFUVKy48CVJ0sWLEk+mokBRFHR3d2NychJHjhxZVb4t1dh6zH89wbFRZ+6N0KtKlSpkpqam0N7enpDvslmMIDiMcH6V7TSoNwq/MplMYIxhbm4ObrdblxysTDBaDkd8I9ZswBjDswu9+K2nC7/xtKPU7MaV7nq0+fsgMwUHHHsQhR9dgWHwAE6692I2Oo9ZxYtyWwEc4BCVRMwIc8hZ9mHKMo9SrgwSL8HMKxgND4ADhz2WGpj5KCajwwBWSuS6RDMsfD542YYFaRrlvBsBeQEceBSa62HnRcxE28EumiCl5nr4op3IM++Hwhj80iQkZQoBeUJ7P8WmAwBkOMRGLLEBSOhFMV+PgDytHWPmCmHn8xHjOITkfkSlZtj4SkhKX8K1sfINAGSYhKOIyH0Iy+2w8nshK/0Jx4l8LXJtf5v2NderEtRmiN8QKC0txYULF1BVVQWv16sloOfm5mqbApstCOH3+y+bHA7GGA4cOICOjg7U1NSguroaP/zhD/GZz3wG//f//t+EEOlssbvK4u6O95mKS15wJPfWSBYbkUgEbW1tCAQCKCsrQ11dnW5ziRccWzEkwuGw1kk6uUSr3o35gMxCqtQqSgDSSrzXs0eEOl6y4FCvpyRJKTtzp4OenpnFxUXMzs7i2LFjKC4u3vJ4RhAcRjJid4pU4VcjIyOYnJxc1T+ioKBgR6pfGUUUqmTTw/HsQi++O/osXCYTfLElNDr2AJyMTv8AGhwViCkSlpQF/H/2/jS6svQs74d/ez7zrOloLkk1V3UNPVW1YTl2YxMSLxxCYhOybCC0gxPDS7z+/8YGg8GGBmwv2+CXYHCWJ0KA8CaBRZyYxA0Nxj24u6ukGqUqqTTPOvO8x/eD6hzpqCZJpVOlctW1Vn3QqX2e/ezh7H1fz31f95U3i+z39qBJDufzw+AI9Hu6sCgwrc8DEDfChMN+9EqBRXueFj3EirVM1GmjJJfAKTCvrxKDJjlOUPEwp49hOXMIQK+rk7KdoVU9SMKcQRMkFvS19rhRqRtVkCkKblb0K6v7VHtJm8OARFDuRxP9FMyzWJRXvyRAyBmgYF1AIoBH3oNpl3GJOllzzZNDEjyoQgnTqSASRZF6sR0bGKdkrek2RMGHQgr7uijEQUEW9xPy/BqisPmGKvczw3E7VIlQ1dHecZyaH896AXpV+3E7AfpGFIvF7xnCEYlE+OAHP8js7CwnTpzgueee4yd+4if4tV/7NUKhEF/4whfu9xQf4QHFA0047uStsbKywrlz54hEIrUMQSNRNRi7m5Knqst1U1MTJ0+evIFUNMqYbz02G1wvLS1x7tw54vH4prsobVZnsV1sLH2qlqTFYjEOHTq07ZW3RmQ4KpUKMzMzGIaxbSJ0M2yHcDxsPhz3A7Is4/f7cblcPPHEE3XlV7Ozs7VgZ71/xL3AbiKHO0E4Xk6M8tWpb3OlsMjjoU4Mx2C2nGbAqxGQZXyym4Vykpim0qxGKdsmimhzrTjFXk8vZbtCzl4mY2ZpUmI0S0EmxCukyqsdpA779qE7ZbKVDMvOAnEnQtJYIGC0YCoGig3TldVWuRIy/Z59FO0V0tYyaWuZuNrHsnEBTfATUrox7BK2s8ySvqbJaNcOYNppIspRMubk9QzG4hrZALRKO6Jm45YOUDBHSRvnaFIPUzTP152PkHwAxzGxRS9la5yyeZawMoC+jmwA+KUeLGsKSTqJjYVhXcWn/hNU+dCWzv9uJxxVVFu9ejyeGwTo61sqV8lHJBK5ZVvyqg/H9wLcbjc//uM/Xvv7fe97H6dOneLy5cscOnSIvr6+Hd/nw+U0/nAc583wQBKOqrdGtbxoI9mwbZurV68yNTVVK0caHR2lUqk0fG7bFVyvn/PtOhOtz3A0Cnc6hvVzPXz48JbaqDXCWHDj+NWSrfHxccbGxti/fz8dHR13FcTsdIYjnU5z9uxZNE3D5/PteP1vo0rAtrL/R7g9blV+tbS0xNWrV2tuy9V680aUX+22kqq7IRyvJK7xreWLvLhykU5XmFORXs5kRlEFmZPBbqYr80xVCkRlL32+KFeL00xXljke6MHBQhZV5irLBGQIyAF8UgBVhAn9CjYOXVoPPlnjSmlNYH3Yuw+LCoVKhrS4TIcQJ8EEmu5HtX14VZnpypna9hGpDVWAqDzAijHOUuUKzWqMjLVKNjxiM2G5naI1TsleBgsEBJqVTnLWVURc+OV+JEGl6AxRFMq1LlUheR9Fc3VfqtiBLLaioJA1/qHuPIWUY9d1G6uQxG5cYjeGM4NBBqxVMblLPk1A+4ktX4dGeV3cLe5U6nUzAXomk6lzQK92pKvqP6o6u0KhsO1So9/7vd/j05/+NAsLCzz22GN84QtfuMGkrYqvfvWrtc5EVWiaRrm8RkQdx+HjH/84X/rSl0in0zzzzDP8/u//PgMDA7edRzWWOnPmDC+++CLPP/987fc4MDDAwMAAY2Nj/M3f/A1ve9vbtnWst9w3Aja75znUSDwsx3kzPHCEY2MJ1UayUSwWGRoawrIsTp06VUtzyrJMoVBo+Py2QzhKpVJdyc/tUrM7kUW5E24XXJfLZQYHBzc111uNDY0jTKIoous6Z8+eJZvN7pgx4k51qVrv/TEwMIAgCKysrNz5i1vEbiAcuynDsZvmcrNg+nbdr8bHx7l48WKt/CoSiWza7OxO2E3nBbZHOF5PTvKl8e/gkiFl5Nnva8MtiVzOTXEk0IXtmFwpThBSfBzx95KzklzIXyOmhDjsi3KlOIbhmLgljf2eNhb1ZSZLs3S5WslbaTrkbuYrCyiiwGjpIgICna4e/JLGtfJaNmGPqx9BMIlanSw7MwSlADlWnb7lih+vE8V0LbFgT9e+E9f6yBpTxJTDlJ08AiZpcwiLtcWxVvUgDmUC0iGy5jWyxhhBOQjiWpDpEpuRBB1FOkHZXqJgzeFFxbTH686VV9qDYQ6hSAcRBC8VawbHAcN6FWdd9kQUwsQ822t/uhMaxkZgq0RIFMVadgO44Tf51a9+lddff51Tp04xMjKy5fblAH/2Z3/Ghz/8Yb74xS/y1FNP8fnPf553vvOdjIyM3LK8NhAIMDIyUvt74zX61Kc+xe/+7u/yta99jd7eXn75l3+Zd77znVy6dOm2xrHVazY0NMRXv/pVnn/++RvG/ou/+Au+8Y1v7DjheJTheDjwQBGOquHMzbIasNqB6MKFC8Tjcfbt21f3cLkXLuDb2c/S0hLnz5+npaWFAwcObOqB2GiDwVsRjqoRXXNzMwcPHtzWKlZVY9PI+Z87dw6/38/p06d3rB/8TnSpsiyLixcvsrKyUvP+mJ6ebnj3qzuhStJ1XScajRKJRAiFQg+cn8T3Em7X/epm5Vdut3tbweFuzHBs1OHdCmfT03zp2ncYzMxwKtpFwS4xXU5yItSBKKyOUzCLKKJFj6eN2dIKBSWNJIj0uztxSQIXCyP4JC/9rm4qTpqLhdVArl1tISBrTJbLZJwJmuwQKWORXvcAK/oiigDj18lGWGompjSxqI9QcUoAxJQWLBK0KHup2EUyLCELOQpkrx+nQMTopiSU0AWdReMSmujHJ4JBBRyRoNKHRwyRMwcxnWLtuFvUfeTMVf2H6nSiyc2IwjI5c00ULgs+ZLIY19MfAl5c0gCyYFMRXBjWyPXPVTxSDNNeIxsAMc+vI4vb05M9KCVVW8XG32Q8Hueb3/wmf/u3f8vZs2d5/fXX+c53vsOzzz7L29/+dh5//PE7PkM/+9nP8txzz9WyFl/84hf5xje+wZe//GU+8pGP3PQ7giDc0mHacRw+//nP87GPfYwf/uEfBuDrX/86LS0t/MVf/AXvfe97bzmXiYkJlpeXuXDhAn6/n5WVFXRdr5WdqarK7OzsDZ4OO4GHqy3uw3GcN8MDF1Gs99aoYr3R3K26JO02wlHtmjQ9Pc2hQ4eIx+M7vo/tYuP4juMwOjpa65jV0dFxV+M3SoA9MzODruu0t7dz+PDhHQ2k7pYkFYtFzp49iyRJnD59urbS1KhMwGaPvUoiW1tba+0Pr169SrlcJhgM1giIz+fb0vlsNKl8ULHda72x/Cqfz5NIJHak/Go3Eo7b4UJmnr+cG+IbCxfococ5Hevijcw1/JKLp0I9DBemKdk6e70tKJLDaGEBt6hwNNhO2swzUVrgkK+DjJlmwNPLVGkekzxz5UW63Z24BJWENcNoKQ9Ah9SGY5fI2AXGS1fpdHWwok/SrvVRsSsIjs2cfgnT0QFoUjoJKgpL+hJzlVUBeJfWzYpxlaDUgSYFcGyDrHgZhOv3gyPgMTWQICQfJmfNYNklMtYY9rpsR7N6CNNO4ZNPkC5OYChzeMUQBfNa3TkKSnF0ewG3fBLTKVOyxvAJBiXrXN12AeUAhrXqJi7SjCR14ZKfxKNsfwV7N5dU7SQR6uzs5LnnnuO5557jn/7Tf8rb3/52mpub+da3vsVnP/tZTNPkrW99K3/4h39405hE13XefPNNPvrRj9Y+E0WRZ599lldeeeWW+83n83R3d2PbNidOnOCFF17g0KFVnc34+DgLCws8++yzte2DwSBPPfUUr7zyyk0JR/U39/d///d85CMfwTAMcrkc3//93187Z5qmsbKygmma/NZv/dbdnLabwnYE7IelLe5Dcpw3wwNFOERRvOGBkcvlGBoaQpZlTp8+XXMV3YhGuoBv3M+dyEB1Rdm2bU6fPr3l+v17WVJVqVQ4d+4c5XL5ho5Z28VOZ2jWE06Xy0VbW1tDWu5uN1isNgJoa2u7QVzfKPJ1JyLjOA4TExOMjo5y4MAB2traMAyjlsYvlUokEgmSySQTExM1x+YqAdlM5mi3lOvspoB6J7C+1rynpwfLsrZdfrVbrlEVtyMcI7klvjj6MhW7QsLIcyjQhlsWuFqY52igC0VwGMyN0edpJai4GCtOU7Yr7Pd2gKgzmFtt93rQ24GDyZKeZllPc9AfR0QgrERIGGn8skPZKtPr6kMEEsYEFWU1A9Ait+KVNHKmwlT5GiEpjCQUkFFp1fZQsHIoYom5yponRq/rIGDglVpJWrMEMXBI1MiGV2whQBN5awKDFAVzHtHScCQTW1wlGx6xG4/UTNEapWIvgzUFCoTEfRSuG/gBqGI7PqkL3Zmh7KQomykAwvJRKteJRRVe6RCOk0ORnsSwl6jYUyi2jzbXT9/VNdytJVWNbNdbLBbp7+/nX/2rf8XP/MzPYNs2g4ODvPjii7f031lZWcGyrBvISEtLC8PDwzf9zr59+/jyl7/M0aNHyWQyfOYzn+H06dM1/6uFhYXaGBvHrP7fRlR/b6dPn+aP/uiP+PrXv87Kygrve9/7yGazlEolKpUKqqryzDPP8Pjjj2/p3DzCI1TxQBGO9VhfC9/T00NfX99tH3KyLO+KDMfi4iLnz5+vBZ/beQDeq5KqZDLJ0NAQ4XCY48eP71iJzU4G2dW2vIIgcPr0ac6cOdOQc7MdwuE4DmNjY4yPj98yi9XIDMetxjVNkwsXLpBOp2saF9M067Z3u910dHTQ0dFRE09WzewuXbqEz+erkY9gMHjDb+97LcjfSez0uZEkiWg0Wit1KJfLpFIpkskk58+fv2P51W66VjcjHOP5BF8ce4W/WbrK6VgXBiYzpRRPejqxMClZJmBiOBYdrhgVW2e6lKTX00JSz4GoM1GaZ6+nE6+kcLU0hulYBCU/ezxNTJSnKNll3KJGjzuCLCqULJ2EsYJLMqg4FcJmEyF/iIw1y3hpBgCX6KJFjWIQYKEyyVTlCntcHSwZc4iOTJPWi1f0MKefqXltaKIHRaxg2RphpY+SncYn+kiZZ1mrtBCIKDF0swCVPgwpQVZMYksrWGKmdl7EShjTPYJL2oMshCnbC4iCRt58FYe1xTW32IlhrZZ/iQRQpT0IqFjOFXR7rTMWyLR6fxtRuPmi3Wavn+M4uzLD0cjMS7FYrFs4FEWREydOcOLEiR3dz6lTpzh16lTt79OnT3PgwAH+4A/+gE9+8pN3NXZ/f3/tn6qqtLW13TNPFfshKql65MPxAEEQBHRdrwVMJ06c2FRN4f0uqbJtm5GREWZnZzl06NCWOjttxL3IcKysrDAzM8O+ffvo7Ozc0aBkpwhHVf+yPnPQyIzBVsY1DINz586Rz+d56qmnCAQCtxz3XhKOammXLMucOnUKTdPuONZ68WRfXx+6rtf0BBcvXsSyLEKhUI2AVLOMu231fDfgXpyTapavra2tVn6VTCZZXl6+ofzKNM1dSzhmixn+fHqI/zJ1hlZ3gFOxTt5IjxNSPDwV7eJ8bhrDNjkZ6mTFyDBXTtHhCtHu9jFRKjBSmOaQvw1JFIgoAXSnwkJphhY1ikdy4ZIELherJU9t+BSZidIENjYe0UWT5kEVNEzLJitl0GyTgpXFK/qJKW045JmorK1ED7j3ULbTtKoHWDFmMJwyC/rVGtmQ0WhX+ynbKVL2BCX9ImG5g6y5NoZXaicotZK3JihJKyCtICAQopWKOHH9HIkoRhzRFHAwKFgTwASy4EUVVKx1ZENEwyP5gSNYdoayPY5hDRGQ924gGxB1fRCXfPiurl/1GfkwZTgcx6FQKGy5gUosFkOSJBYXF+s+X1xcvKVGYyMUReH48eOMjq5m76rfW1xcrIsxFhcXOXbs2B3HM02T7u5upqam+OIXv8jf/d3f8Z73vId3v/vdTExMUC6X6evr2/GOebYjYj8kYuqH5ThvhgeOcKRSKQYHB/H7/TzzzDObFgXfT8KxVXO87exjp6DrOgsLC1QqlR3r8LQRd0sKHMfh6tWrTE5O3pA52A2EI5fLcfbsWbxeL6dPn77tw/leEo6qXqPaVGG7QYGqqnXmWYVCgUQiURfQKoqCLMuYpvlIfH4fsb78qru7+4byq0KhgKIoKIqyo92vtgvHccg6Jr9x4W+ZKiWYLaU5HGxDk2CssMTRYAeKBGczExzyx/HIMkPZcXySi8dDPUyXZxnKLeOTXJwMdTNWnCVvlWhXIwRlFVmMMFNe5LC/m4niJAOeHrJGHrcscK20qoNoV+MEFJmp8jVsbCREovhwiR7iai/zlWlEzWCuMgWAW/DR6eokby2SNheABfxSCMtZwXIsYkofgqDgEmGu8mbtWN1iAIEUmhjBLbVQsBKooo9l47vA2m+3VT1A1jyPX94PqOTNCdyKiuEaYf1bwG23YjAMjoxb7kfEgyrYFMzX685xQD6ObtV/5pKOE3Y9d9fXb333yN2GRprlbodwqKrKyZMnefHFF3n3u98NrBK2F198kQ996EObGsOyLM6fP88P/dAPAdDb20traysvvvhijWBks1lee+01PvjBD952LMdxkGWZq1ev8v73v598Ps+FCxc4fPgw7373uxkaGuIrX/kKH/vYx3a8rMpCwHpI2sU+LMd5MzxQkYBt21y4cIGenh66u7u3tDJXDX4ajY1kYH3nrM2a421mH40IqtPpNIODg8iyXCuVaQTuhhTous7Q0BDlcvmmbXkbJVbebEnV3NwcFy9epKenh/7+/jveo42a73rCsd6T5HYeL9vdj8/nw+fz1QLaVCrF+Pg42WyWb3/72wQCgTo37fuxov4o27KKjeVXw8PDlEolSqXSpsqvGomMXub3x1/nv+Uv8bi7HdOxWa4U6fUHMRyLnKmjiA42NjHNjyDYTJeXOeTvIG3mmSnPIYsyB3xdqJLNUG4UTVA44u8laSwzUqwa9/UgYaNKCleLExz0dTFbnmaPu4+MkcUrC0yUV1eMvaKPNjHGijnPbCUJwICnj5nyCK1aDwISAgZzlQvY18N/RdCIqTEEIOXMsmSM06ENsKxfqB2rS4jQrHaRtxbJmjNkrRV8YhNla5wq2RBRiSn7V9vVCi7S5mo2pkk5RNFa8/YAcBn7qFglLKsb0b1E3ryCl72UxHoTQJfYjW4NAiALXYhiCw42zd4XEIS7X/1/GDMcsD3CAfDhD3+Y97///Tz++OM8+eSTfP7zn6dQKNS6Vr3vfe+jvb2d3/zN3wTgE5/4BE8//TT9/f2k02k+/elPMzk5yU//9KruRhAEfv7nf55f//VfZ2BgoNYWNx6P10jNrVAtOXvhhRdob2/nz//8z3n3u99du5bf//3fz2/8xm8wPz+/5eO8Ex5lOB4OPFCEQxRF3vKWt2zru5Ik4ThOw1v2VQmHZVmMjIwwNzfH4cOHN50i3co+dgqO4zA5OcnVq1fp7++vlVQ1CtslHNXs1u00JTvRvvZmuBMxWF8y99hjj92yh/pGNHK+juPcVK/RSEiSRCwWI5fLUS6X6enpqZVfTU9PIwhCnfh8MyVd32vYTSVMkiTh8/kYGBi4Y/lVo8wHi6bB/5i6wO+PvoaCyIDi5Wx6Bp+s8WQ0zlBmBsdxeCLazmRpmRU9z2OBOJLokDYKCDi0uT0IQoSR/Cwd7iDzlWUOeHvImHmW9QXSZo4OrYVmLchwYRj7epnTUV8/Jjo2IqPFaxz0dTFZGqVd60IQJNyiyFRlpKav6HX1IQAeKchcZZKwHEEkg42FSwwQkeMoosF85XLt+GJKO2ljBFXwE1C6KVtF/JKrLtshCxouyaZsWYSVgziAbmUo2sOYzpp/lE9qp2ytEhe7EsLv7kUUZSqcwVH0WnW4aIVwxNG6tVTB8aCJrdiE0a1pSvYs2LO0eT6OJt1d58EqbtWyfjegURoOy7IolUrbMm99z3vew/LyMr/yK7/CwsICx44d45vf/GZN9D01NVUXr6RSKZ577jkWFhYIh8OcPHmSl19+mYMHD9a2ef755ykUCnzgAx8gnU7zlre8hW9+85u39eBYj6GhIf7dv/t3AExPT/OOd7wDgHA4TCKRaMw55OFZ+W98nc3uxQNFOGD7wWr1R9LoDhqSJJHP53n11VcRRXFHSqg2YifLhgzD4MKFC2QyGR5//HHC4TAzMzP3xefjVlhPiAYGBm6b3WpUSdXtiEGlUqmZIW71ejeypKpUKnH58mVUVd1RT5LNwnEc3G437e3ttLe3Y9s2uVyORCLB7Owsly9fxuv11onPd6PYdCex2zIt6zUTdyq/unDhQi1btRPlV4Zt8ecTF3h5eZKL2UX2+ZtwHIPR/DJHQm3IksNQZoaDwTbcMryZGafdFeZUuJfB3DUsx6bf04wqOwwX5gB4MtSD7ujkzAozzjIhRSSshPFIHhRR5EpxBNtx6HV3ElA8XC6suYYf8vUiYBGQI0xXZhjw9DBVGUF0REJ2M1FfhNnKpZpGwi268YgObqkdC4slfRJFtFnU1zQZbmHVsVwRekkYkxQqw8TVAVaMtcyDhIu4egCDDCUrScIYRkQmqsQoWGtkQxJceMUgCGFK1jKGOkfWukIQPw76ujMrEnIFqViLyHRhmSEMOwu6RN73at018ClvJez659u+hhuxWztUQeMyHFVD4e12cPzQhz50yxKql156qe7vz33uc3zuc5+77XiCIPCJT3yCT3ziE1uaR/U5UPWHgtX4IBQKATA6OorjODUfkkd4hK3igSMc20X1QWOaZkNW6aooFAosLS3R3d3N3r17G/Lw3akMRzabZXBwEI/HUxeQ3k8n842ortCnUqkaIdqpsbeCW41bzbpEIhEOHz685RdaowhHtVVwR0fHXek1toubEUJRFAkGgwSDQfbs2YNhGKRSKRKJBJcvX6693KoExOPx7MqV0u813Oocbyy/qlQqtWzV3ZRf2Y7DN2ZG+I/D36XN40UUBSqWhSILlA0bAxtZcgAHn6KhiDYreoF9vjYkwWEoe41+XysCkLczTBUz9LpbaNK8DOVWy468kot9vhamSgtcLUzT6WqiaGXodXezVEkiCjBcuARAXIsTUwNcK13Cclafe92uDspWlm7XXuZKM5QpsGQka2QjJrcTVT0s6eOkrFXRb6e2h0X9IoIjEVV7EVCALLOVtVKqiBwnZ15BQiOo9OIALlFiyfhu3TlqUfvJmEPgyPiUPkTcqIJByqz30YgqeyiYg2vXEjcR5TEcCji0UHLmQJrDp+7HVOvLq2zDx+zVH6IYHN6xDNZuNf2DxpGhKuHYTknVbkL13Dz33HP89m//Nu9617vIZrO1LoU/+7M/y+HDh+nt7d3xfT8qqXo48MARju0GIIIgNFRsXQ3wlpaWCAQC7N+/vyH7gbsnBI7jMDMzw/DwMHv27GHPnj115/VetN3dzPzz+Txnz55F0zROnz69qfKbe6GJgNVzODU1xZUrV9i7dy9dXV3bujd3er5VvUa1nGmz92EjAvs7ESlFUWhubqa5uRnHcSgWiyQSCRKJBGNjYzUhczQavatg6BFpuTW24jSuadotu1+Njo6iqmqtXO5W1+s7i5N89tLLTOXTnIi1cTm3hGXbHI+2cC47h2GZ7Fd8TBQTpIwip6Kd5KwSE8UkB/3NuCSJqBZktpQk5lIJK34UQcUvqwzlrtCkhGhWw+jkOJdbdd7u0JoIKy7GSyukCuN0u1tJGIv0unvJmjlkQeBa8RIWFioq3e4uyk6GJWMJjCU0NDTJQkCmy7WPjJkiqGhMV9ayI1GlFQedZvUQK8Y08/o4Pa5+lvSptfMneAnIQQxHI2VMsGxcISJ3kjYm6s5Rs7IfBwuffIScOUnKGKNZPUB2A9mQCnEKvkFUoQ1FasN0SojY5MxXWV+4IQtBHGdmw3WX6Ah+Aqv/eM1rp+owXSUf28k43qs2qttBIzMc1UYZ3wt4z3vew/DwMO9617soFAo8//zz/NRP/RQDAwP85V/+JU1NTTu+T8sRsR6SQPxhOc6b4YEjHHeDRhGOfD5fE1v39/eTSCTu/KW7gCRJ6Lp+5w1vAtM0uXjxIolE4pYthRuVJVg//p2C0fn5eS5cuEB3dzcDAwObDoruRYbDsqzaOdxM1uVO4+5UhsM0Tc6fP08mk8Hr9d7VvO4WWw3yBUHA6/Xi9Xrp6uq6rZldNBolEAg8sERiN817u/feZsuvqhmQCbPE/2/iEi8tXWMgEONELM75zBwHAs2IssOZ9DSHg604ts6F4iIDahMHgjFeT4+jChKPB7uY05cZLebxSCqPhdqYKi0zk5/lqL+dsl2iz9PBZHGBqKYxXVykz9OBLEpkzGWuFFeFru1qM35ZI2lYjJbGaVWjZK0FokoMj+wja2ZImnPkrSwAEiJxsZWSkydtL5MrX6XfvYd5fTU74pdiBKVWSvY8i/ps7fx0aQMs6RcRkYkovYCELBSY19dIgyb6EUjiYKLgx6d0IaOStS5iOaXadj6pjZK5pgnBkXCLezApI4odFOx5MJeQBA9+UcPaUCXuk9ooW+eRhTiSGMdydNzyAUKuZ8FF7R2wvt11NeMYDAZrGSyfz3fHe3e3ZzgaRTi+l7Kxtm3z8Y9/nH//7/89r732GvPz8/T19fF93/d9Devy5SBgPyQaDuchOc6b4aEjHDvdqWp2dpZLly7R1dXFwMAAi4uLDW+/u90MxPqMwTPPPHPLjMG9KKm61fjbFV+vH7uRIuxCoVAjl6dOndq0EO9O494tCoVCXTbozTffvK96gbs9rpuV81Sdz2dmVldr14vP7/Y63CvsNg0H7AwBulX51fn5GX7l0iukrQoel4KKhIiNiYMqSojy9dIpWUMQbYqmQZvgIaipXMzO8FigEweLkeI0iiBzPNhN3s7yZmYMEYFjgS5yVpaZ8goi8FiwAwEIKQHmKglimkrWzLPH3YUoSKTNBa4UV/UeQclPixYkbTos6ItoVoYmxUPCyBKVW/ApARTBYrpyhWqM0Kl1kjZmaFMPULTypIxFvJJG1lqqnYsmuRPQaVL3kzCmWDRG6dL2sWJcWzvnCDQrccBBESJkzAkMfYyQEqojGxIamqBjOhoeeR+241CwppGEIqZvksq610BY6qZkDdX+Fgngkw9iU8ShlaK9CPYiithKn+fnbriGG9tdF4tFkskkqVSKiYmJmh9PlYDc7De3mwlHo0Tj+Xx+W4Lx3QpRFDFNE9u2efrpp3G73Wia1tDM1aMMx8OBh45w7FQgbZpmrYTq2LFjtTTjvfD72M4+qsRoM67s98rJfCPK5TKDg4PYtr1tsX0jfTgAXnnlFdrb23dMF7EThGN5eZmhoSE6OjpquqGtjrvbV+c0TSMejxOPx3EcpyY+n5+fZ2RkBLfbXSMfoVDohpfjbgz0dwO2UlK1FWQsgy/ODvOXkyM8Fm3CrtiMlvIc9Pi5kl2ihMlRb4Tx/Apps8T3NXUzX8kyXkpyQAkg4CAgkjdLmJTZ52tjvLhM0c6zWE5zxN+NJDhcLU5iOhbNapgud4irxQkqtoEmygx4m5EFiZKtM6cvE1FUslaOFrWZoBygZK9wpTgCgIhAt6sFAREHiSVjgZDqXyUbgOCIdGi9yOgUrDI5a/XzPe49LOjD4AhElS7cUoCCNc6ikaqdizZ1T00k7haj+KRWXKLCsv4G6/02mrQ9pNeJyd1iGyG5nbK9SNFZpmislnC1qIfJm2sdrgDC8kGK5nlcUj+iEEJ3Mjh2kaJ5FpvSui0Funy/iiTeXuC8PuPY2dmJbdtks1lSqVTdb65KQEKhEIqi7PqSqkZpODaT/XlQkEql+MpXvsJ//a//tdZZ8MCBA/y//+//W+tYtdOwHQHb+d44f3fCw3KcN8MDRzju5kcty/KOkIFcLsfQ0BCKovDMM8/UrfTcC8KxlaC6qi2pOo1upv7yXpRUbRy/akrX0tLCgQMHtv3SakR2ptolC2D//v10dOxMC0m4Ow2H4zhcu3aNa9eucfjw4Tpn2UaJ0TeLRu5fEAQCgQCBQIDe3l5M06yJz0dGRtB1nWAwWCMgj8jGrbHT5yZv6PzJlfP8+cQl/KrG6dYOXl2Z5nC4hc6AnzOpWY6EWrAxOFdYokv0EBM9vJwcJyBqHHfHuGIso2dS9HmiBFWFy/llVvQcR4JtCIKDKIoUrCIrxgpdriZEQcQny1zIr2o2OrUWIprGaHECCxtFkOhxR1FEFUlQWNKX8csCK8YyOAJxV5yQ5GGiMorpGAD0urqYrYzQpMSxKyJ5MpSdFbLGWrvwXlc/FTtLm3qQpDFPwpijVaxQtNfIRkBqwnHyNCmHKdsZMuYMXjHEsj7EerLRrO4nrV/AL+9BEnwUrSXcYogVo76rVEjeQ948W/tbFqK4xS6ggi34yVnj1/9HICR3U7ZKdd+Paf8Sv/LUlq+rKIqEQiFCoVDtN1ctoRsbG6NUKuH3+2ukY7dlOhzHaRgZKhaL3zMZDtu2+aVf+iX+83/+z3zoQx/iscceo1Qq8a1vfYt3vetd/OEf/iHvf//77/c0H+EBxQNHOO4Gd0sGHMeptfPs7u6ueVasR6PLkWDzx1Et/5EkidOnT+N2uzc1/r3sUrU+aD5w4MBdB/M7LcI2DINz586Rz+cBav3RdwrbLQGr6jWy2SxPPfUUgUCg7v+3E/A/qCt0sizT1NREU1MTjuNQKpVq5VfXrq2WsZTLZVwuF5FI5L6LO3fbed6J+RiWxZ+NXuSvJq4gyhBxuVElkZxVocnlRZYcDMcmpnlBtnEcgR53mKhbY7aU5qDcBJbBBWORJsdFk+JhzkgxoxvEtRBtHh+X81OYjk2XFiGsaNj4uVZa4LFAF6OFSfZ6u8maRQKqwkhx9brH5DBxd5jJ0hQluwzAQV8nCX2RPa5+VowkXsnFaHlNI9Eqt+ASFXxSlAV9HgGBVjFCxlzVgQTkGDG5law1Q85aAVZLtHrcfSxd13b4pCb8YguQJmWOA6v6Do8YpmLPUiUbEi6Cci8CNqLgI22uEga32ETRHqs7x4rgQ3ASuKV+bNNFQV/CUBN4xCz566aAVYSVo5TMN+o+08Q+4t7/z91d6OuQZZlYLFZrkVoul0mlUszMzJDP5/n2t79NKBSqCdC9Xu99ve+r74RHJVU3RzXTWc1ufOtb3+KZZ56p/f9P/MRPcODAAX7zN3+zIYTDQsRi9xDURuJhOc6b4aEjHNvVcJimyaVLl1hZWeH48eO37EW9U1mU22EzhKPqcL6+zGYr49u23bByi+p1WB/M3yxo3g52UsORy+U4c+YMPp+Pp556ipdeemnHV4S3QwwKhQJnzpzB5XJx6tSpm/prfC9nOO60X4/Hg8fjqZWCDA4OAjA5OXlT8fm9XIndbdmWu52P4zh8c2qM3z33XRRRIOxxM5hY4InmVhYrBaYKKb6vrYuxfJKlSo5nWjqZLWWYLCQ53dRJ2TZJGyW6vUEqjkO3HqZolFgQM4QcF0FbQTMMzucm8Aku9vpbmdHnuZCvuoZ3IuCgShrDhSkeC3QxVhynz91FxTYJyArDhetlUQgc9fdTtgvkrBKZ0hh73F1Mla8gIxPXuhAFkZw1x7XymgA8TgsFEnRo+ynYOSpWiYQ5StnO17bpcvVTtJZoVQ9RtNKkzXlCWpAVY7y2jYhEQHZRssqElcOYjkHOnMMmRdJY6yIlIOGRVApWEQBViOCROlBFkZx5Gcu8rgVRIaYcobiBWLjFTsrmEAJeNKkXBBe6vUKH72OIwuYWnbYKl8tFW1sblUoFt9tdZ/g5NjaGLMs18nE/DD8bSTgKhcIDTziq73nLsmhqamLv3r03bHPq1Cl+53d+pyH7f1RS9XDggSMc96OkKpfLMTg4WBPk3k6gei8yHHcSXQ8PDzM3N8eRI0e2tSJfDcAaRThEUaRcLvPyyy/j8/k4ffr0jq0671Q52NzcHBcvXqS3t5e+vr7a5ztdalY9v5s910tLS5w7d47Ozk4GBgZuGSzfb8IBuyO4FkURTdPw+Xx0d3ff0kuiWn612Szg9wru5jf+5uI8f3jpTS4mlzkSbWYos4BiSpxua+cflqY4Gm7mZHOcf1iZ5HCwmTavh++sTBB3+Xkq1sEb6SlsG56ItpM080wWEzRLHpoUDUN1MVlKcDzcRqKSZY/TRNLMM5GfoiDqtIlhmrUAV0qrZVMAx/w9gIVH9HC1OM0hXzejpVGCcpAWNYoqCowUL9Xm36a1IKDT5epjrjLLbGWaVi1U61ClotHj7iVTWqIslJmsXEEWFFqUIClzlWz4pChRuZWyvUjWTJA1VzsUdmp768z9PGIzMaWDor1EyS5S1FczKu3aXlJGvT9Gs7ofy8kSko9RtpMUrRl8cpy0cbZuO8mIUhKG1n2i4BL34JKC6LZE2Z5Et1b30+L6V/iVY9u6zltBVZjt8/nw+Xx0dXXVfBySyWSd4ed6/Uejuh9VUX1fNlLD8aDCNE1mZmbw+Xzkcjne8Y538IUvfIGPfOQjCIKAy+UinU7zzW9+kx/5kR9pyBxsROyHZOX/YTnOm+GBIxx3g62WVK33q+jp6aG/v/+OL2dJknAcp6E1rLcSdReLRYaGhnAc564czhvpyu44DtlslkQiwcDAAL29vTtKau6WcFQJ2/z8/E01L43IcFTHvd15cByHsbExxsfHb9Br3Grc+53h2I24mZdEIpFgcXGRK1eu1MquotFowwKh3XZutjqfa5k0vzf4BvPlLKos0R0IsqTn6fIF8agyab3MHl8IWREo2wZ93giS5JDQixwNtqLKwmob3EAbPkXhjcw1ZEHiRLCThdIyo1YSSnAq0kPWKrBgZAnKbiIeBb8cIlXJ49g2VysTWIJNCyGaVB9XimPY10uV9nk6sR2dblcHU+VZQrKH2cpq1sIn+WjX4uSsZWYqy6vnAOj3dDFbHqdN60FCwsZgpjKMJa5lxbu0dvLmMnHtAEUrS8nOkrMm63QbUSVOyriMT2rHLUbJ20ncood5/fW689iiDtTIhowPn9yDJnrJmecwnbXsiUdsoWiO1F8zR0YVDFSxDVlswnRKFK0JVMlD1qzXfbjELjo8/25L13i7uNl7r9rdqtqmu2r4mUqluHr1KuVyuc7B3u/37/h7p/oua8Rv70HPcIyPj/NjP/ZjdHV14fV6SafTfPnLX+bv/u7vOHnyJIZh8J3vfIfl5WU+85nPNGQOliNgPSQr/w/Lcd4MjwjHLbDe4fpWfhW32gc0tj3gzTIcS0tLnD9/nra2Nvbt23dXqePqvHd6Nd+yrFpZWtVteqdxN4Sj2iXLsixOnTp1A2FrhJh+/bm+1f1imibnzp0jl8vx9NNP4/ffvsMM3H/CAbsjw1HFzeay3kuip6enJoRNJBK1QKjqQxCNRr+nOtFUsZUMR7Jc4j8OvslfT4xxuDXGXDFHm9eHrAhcTSR5pq2DhVKe8XyKt7R1MFfKMVlI8XRzOwWrwnw5Q5vHi4NDTPUjiDCcn+WxQCcpo8iCniBpFemRwrQEg7yZXdUwhCQP+/xNjBXnma2kiLvCgEG/1klCz6DYIuPmFLbg4LFdtElhVvQFCs5qSVKzGiFnrdCudWLjsKwvUbASJIzl2rHt9+zDRkcTvcxWJglIARRRrzmLa46Xbm8PBWuFrJ0hW0kjINChxUlcL5tyHIGo3IlP8mE5RVLmIikW8YoRSs5K3bn0ilFwioSVY1TsPFlzCtuaxWObdWRDQMIlyRStVf2JLERwiR0IOlTEK+TtJNirRMor9da5jq9CpMf3cUTh3rSN3kzr2fWGnwClUolUKlVreb1dB/vboZHdsx50wuHxeHj66acpl8s1Afy73vUuUqkUL730ErquY9s2xWKRP//zP+c973nPjs/hUUnVw4EHjnDczYNHkiTK5fIdt8tmswwODuJ2uzftcL1+H7AaJDYqTbw+w2HbNlevXmVqaopDhw4Rj8fvevz19Zw7hfUC9r6+PpLJ5I6NvR7bFY2nUikGBweJRqMcOnTopi+nRgTx6zMcN0PVO8Xtdt9Sr3GrcR9lOLaGjULY9eLzyclJRFGskY9IJLLpa7Eeu4mEwebmUzFN/uuVy/zHoTfoDYYI+zQuJVc4FIvx6soMXd4gT7WsllHtD8Q4Gmvi28uTdHuCHI+18FpyEk2UeTrWxdX8Egm9yPFwK4oIpuMwUUwQc6nElDAV00QV4Wx2jHYtSkjxYFDk7HXyEVfDtGo+rpUyDBcmiWsRCmToVOM4OBSNIsssoDurxqh+20PA0lihwER56nomI85MZQK/FCCmtKKKIuPlizjXsyOKIBNQVApmiQ5tL+lCGk0WmSmfx15nqtfj6mexcpmI0oMsekgZC6iSyFxlrURKRMIvK2TNAoIjEVR6kPAiCGmS5pq+AyAix8iaw3WfNamHsZwcPvk4ZTtB0ZpFFaMY0jAIzrr9qEjkbzD9a9H+FX7lsU3cCTsDy7K2/N5zu9243e5ay+uNDvaKotTIRzgc3tbvrtGE404Z592MSqXCv/yX/5Lv//7vB1YrJW5VHbFdw+FHeAR4AAnH3eBOGg7HcZiamuLKlSvs2bOHPXv2bDlwqqZtG6njqGZqyuUyQ0NDGIbBqVOndqyOVBCEHfXiWFxc5Pz58zX/ivn5+Ya13d2qaLza8vbq1avs3buXrq6uW17zRmQ4bkc4qnqNqqnkVu7F+004YPcF11uF2+2mo6ODjo6Omg9BIpFgenqaS5cu4fP5agQkGAzuqjagW8Gt7ivHcfjG2Cj/d/IaU/kse8MR0laZqMtN1ONmuphhXyCKpkgk9SIHgk3ICqSNMkdDrQiSxUh2iePhDiTR4dXkBK2an7fEujmTmcRwLKKyh4FAhMv5eSZKSfarESzHoMfdwmRpmaAqM1lYYsDbjiyI5J0UlwqrgXpUCtCqBZktV7hWmiUke3HLFlgOe1y9VEwdxykyZa8JsjucGKZu0iJ3sGDM4xIzlIzlNbKByl7PAEU7Q9leZqp8FZfgRhSNGtkQHIkOVz8OFpIYYNGYBqDHtZcl/ULdOezU9mFRIaQcIG1Ms2xM0KHtJ2nUk4029QDZ69kJl9iOJjUhoZA0zmKzFuTJggeBlTqyARBW9lEwzyAJMTSxHQcJEOnwfnCLd8Pd4W4z+zdzsK/qP6pNH6q/u3A4fFPPnVvNq1GEo1gsPtAajv/xP/4Hn//855menuaP//iP+eM//mP+1//6XzfddjtkbzNwHBH7ITHEcx6S47wZHirCcbuSKsMwuHDhAul0mpMnTxKJRO5qP430saiO//LLL9PU1MTBgwd3/GG6E8H1+uzLkSNHaG1t3bGxb4WtjG2aJhcvXiSZTPL444/XaoxvhUZmONbP2XEcRkdHmZiYqDtvWx33UYZj57Deh6Cvrw9d12vi84sXL2JZFqFQqE58fqtzsJvOza1Kqs4szPOZ776G36WQNw1Kpk6T300iVSTqdqFjMZXPcrqtnaReYiKf4onmNvKWzlwpS5PbhSjKSIKEINgsV/IcDsQRBJs3MxO0ugI0aT4yVo43M5O4RIUnQt1MFxZI2kWEosOJUCdgE1EDTJeWaff4WNbT9LjacEsaWSvFhfwoAC5RoccdxcJm2ppnrDjJXm87k+WVVa8NrY2Q6GFKH8OwDbBBs1UMM42JSZvahSSquESR0dKaEFsSJHyCTMnJ06zuQRRUylaepDGOvs4RvEXpZPl6S1yPGMMvN6MKKvP6GRzWfttNSi/JDSJxn9AGWPjloxSsebLWArKdwStpdWQDIKp0kTfX5icLEbxSL7ZjIArtlO0FynYKEDkc/CKicO+7Qe3ku0iSpFp2A1ZX2KvlV8PDwxiGQTAYrJVg+f3+m97PjTL9gwe/pKq5uRm/38/LL7/Ma6+9xuLiIsvLy+i6jtvtxuVyNd5pHAGL3fNcbCQeluO8GR44wnG3JVU3a4ubyWQYHBzE6/XyzDPP3DWLv5v2u3eC4zhMTEwA0N/fT1dXV0P2c7eeJZVKhaGhIXRdvyH7shsIR6FQ4OzZsyiKsumyuXuR4ai2Ci4UCpvWa9xq3PudYbjf+28kVFWltbWV1tZWHMehUCiQSCRYXl7m6tWraJpWIx/hcLjhXXi2i43XaDqT5bNvvMbrc7McaGni9cV5jjY3YckOI5kEh2JNvLY8S7vHx/HmFv5haYpOb5AjsSZeTUzjl1WebIpzPr1AwdJ5S3MnGaPMVDHDoYCKKNr0+5qZLCbwKCJ5s8JjgU5sLC7mJzAdm5jgpS/UxOX8JBXbQBYEDgVaEQWRJjvCTHmZLk+YZT2JW9DocrUhSjrD1703AA76ukkay/S5+1nRE4gCTOhXayVHEgLd7jbKRhndXmFWnyFihVlRlqjGA4IjMeDZTyK7DGKZ2coksqDQrAYomGtkwy360UQRj3SAvJ0kay5gmzYShTqy4RL9mM4C4OCVOtDECLpdRhYyrBhr3bMAoko3GbOemETkvZTMa3ilw5TLFoaQQpfzKPYUur1Yt22b60cJ3MNSqioaGdjD6u+upaWFlpaWmudOMpkklUoxNTUFUNd+t9p1rpElVfl8/oHOcDzzzDMcPXqUf/Nv/g3ZbJZcLsc/+Sf/pEYeJUmqdar6mZ/5GT7wgQ/s+Bxs5+HRNtjbfC3+3u/9Hp/+9KdZWFjgscce4wtf+AJPPvnkTbf96le/yk/+5E/WfaZpWp2kwHEcPv7xj/OlL32JdDrNM888w+///u8zMDCwvQluArvzLdggbCypWl9O09fXt2MdkxqV4ahUKpw7d45SafVlt52V783iboLrqh4iEolw4sSJG4KtRhKOzWg4qqVK1RKvzb4gG5XhqI6bz+c5c+YMHo+HU6dO3VWr4PtNOHbTKn6jIQhCrQ1otQykKj6vujBXu/CYprnriJggCOQqFf70wiX+/OolOv0B9sTCZCpljje3MFVK0+ELIkgwkU9xJNKMLVoslfKciLZSxuBaPsnJSDsGBq8mptjvbyLicvFKYhIBOB5qpeiUGc+voIgSJ8NxKrbBdClB3iqxVEnQ52mhWCnhEUQGs6uZi7gWIe72c6U4RcU2EIH9vjZ0W6ff08NEcQ5ZshkrrQabCjL7vD0UrRwpI0fSyBKRgxSsFSwswkqUsBxBESwmytfN8kQISkEsKYvjCHgrUXBk3LLMWOkcrPsZdrk6WdCHERyRqNqFjBtRyLNojNa2ERHxS27S5lLtMxkXrWo/ulPEdOZIm/PAPO3aflLGmucHQFTZVyMboqPhUXpQ8GOzSNmpUDaHa2/umHyoznkcQBPb6fL++7u/MbaBe+kwvt5zp1r2mMvlSCaTta5zmqYRiUQa1uIdVhevtrswdL/hOA579uzhq1/9KmfPnuWFF14gn8/z4z/+4ySTSXRdp1KpYJomCwsLO6IRvRnsh6ikajvH+Wd/9md8+MMf5otf/CJPPfUUn//853nnO9/JyMhIrfnCRgQCAUZG1rrbbbz/P/WpT/G7v/u7fO1rX6O3t5df/uVf5p3vfCeXLl26rfXD3eCBJBzbDabWr9rrus6FCxfIZrObKqfZ7n52CslkkqGhIcLhMMeOHePFF1+8Z27gm8Vm9RD3K8OxvlRpM61ltzL23UAQhNrK+Hb0Grca834Htvd7/1Xca/IjSRLRaLTW2a5cLtfE54lEAsdxuHDhQi0Dcq9N0NbDsm3+5/gEL7/+BpIioogSsiKSrxjYOAgyFE0LRREp2wYrlRJdwQAlyyahF2nyuvCKKpbjoGPg4NDni+BTFd5MTnMsFEcWBa4UZinbJvt9LbgVkTczEwB0ucJEVRcV28NIYZ59SpQpe4l93g5KtkFYVTmfXxWMe0SNg/5OliorLOirfhdH/F2MlcaIqy24JQ8OFmOltUyGS9QIq240MUTeyrOoLxKVg2tkA1AEhTatGYMIS/o8aTVFk9RMzpmpO1fNdpyKXqJZ3kvSmmNRn6LXNcCica1uu3ZtL8v6eXxSC26pCd0p4RZdzFbqDfpiyh5Sxrm6z1QhiCTYBOXj6E6BvDlFyhijVR0gZ07UbauZHeSFwQ1XVKDf94tI96gr1UY0UitxJ4iiSDAYJBgM0tvbW+s6l0qlWFxcRNd1Xn/99VqJ1k7prm4nst7tEASBv/zLvyQYDPLWt76Vt73tbbjdbn76p3/6pts36pluI2A/JKVG2znOz372szz33HO1rMUXv/hFvvGNb/DlL3+Zj3zkIzf9jiAIt1yUdhyHz3/+83zsYx/jh3/4hwH4+te/TktLC3/xF3/Be9/73i3PcTN4IAnHdlElAul0msHBQfx+P6dPn95xIdROEg7HcRgfH2dsbIx9+/bR2dmJIAgNNxjc6jGYpsn58+fJZDI88cQThEKhW27byLnfSjSu6zrnzp2jWCxuu1SpEUG84zg4jsOVK1e2rde4Ge434dhtGY77eS5cLhft7e20t7czNTXFysoKHo+H2dlZhoeH8Xg8deLzexWwvTw9zW+cv4hXU7FUiUyhQkfYz3cX5jjW3MJEMc1SusDBaJTXV2aJqm6Oxpp4fWWWgKxyLNbCYGoewzF5S3MX06U0k8U0T8basR2bkOomZ5bJmFkGvC2k9CKaLHAhN0OT4qfXG2O8NMdgdrVl7GF/HKtSxiVoXC7McizQwXBhnA6tGY/sxiUKnMutrdjt93Ug4hBTYsxUlmhSw5hOFgsLGZlOVwcuCSbK17CvlzZ1anFmK6OAQIsaRxM9SILJaHmtO5RH9CCIeWzLQhXcqJUgPtVHVrqG5ehgrG4XdlpYNC7Wvic4Eq3aAODgklrIWMtkrGVCchspvZ6UaKIP05lf3VZswS21YDoWimCSMOo7VcWU/eTW6TZW96UiSRlsHCT8aFIXCC6C8mME1cfv8s7YPhpdUrUVrO86J8sy+Xyepqammu7KNE1CoVCtBGs7ba+r5ZQPaoYD4NOf/jSPPfYYb33rW5mYmLhtSc1ue64/yMhms3V/a5p208UnXdd58803+ehHP1r7TBRFnn32WV555ZVbjp/P5+nu7sa2bU6cOMELL7zAoUOHgFXvlYWFBZ599tna9sFgkKeeeopXXnnlEeHYCUiSVFvlGBgYoLu7uyE/oJ0iHLquc/78efL5PE8++STBYLBuH40Upm9lNT+Xy9Vat26GwN3rDEc2m+Xs2bP4/f67KlXa6XlX9RqO4+wo2YDdQTh2S4ZjN0EQBBRFqXXBq5qgJRIJLl++jGEYdeJzj8ez48+oiVSaP3zzDGfmF2h2qYxXShwIxrBFB922eDIe51J6mf5gBEe2Gc0lORZtoWDrjOaSnIzGyVolvrsyzdFQK8g2/5CYICBrnI51cim3QM6s0O0J0ux2ky8UOJ+d5XikjYJV4YAvzkolx3R5kYxZpNfdTLPLz/ncGIaz+tw87G9HEGxa1Samyssc8LUzUpgCR6DHHSekeBgrjWI4q9G/V3IhCwZ+OUKr6GK2MocmCVwrX60dd1gOoYgOne4+VvQV5vQ5Btx9TFXWl0MJxLVmBMAjRVjUpzHkFKpUWCUb1+HGiyWuIFoaciWCqEhYcoGcOU3FWQskZEFFQsdmTdOn4KNZ2YvpFLAdjZyVIGclaFEPkNnQFlcTgxh2PVmRCSFX2kGpIMl+StYsJXMEVYxxOPCpu79B7gL3sqRqK7As6wbdVbFYrDV+GB8fr7W9ruo/NltW8qCLxg8ePMj4+DgXL17k7//+77Esi+XlZQzDwOPx1ALhRl7Xh9H4r7Ozs+7zj3/84/zqr/7qDduvrKxgWRYtLS11n7e0tDA8PHzD9gD79u3jy1/+MkePHiWTyfCZz3yG06dPc/HiRTo6OlhYWKiNsXHM6v81Ag8k4dhOMKPrOsPDw9i2zdNPP33bFfi7xU4QjmoWJhAIcPr06RuC5EZnODYbXM/NzXHx4sVNO7FvZeztYOPYs7OzXLp0adttjtdjJ4Poql7D6/WiKEpN3LhTeBTw705svCbrTdCqQVAikajpP6oeBNFolHA4fFe6nlylwpdfH+T8yhIIAu0hP9lCDp+qYAkOoiigyCIGFg4gymACum1iYOKVFUQEclYJj6wQ9wRwJIu5UpYToXZkCV5LTRJVPZyKdnG1sMAbqSQiAqdjPSzpGSaKCQKyRrPLRUD24xZVTMficn4Cw7GICT5aZB/T5XnK9mqA3+tuJm9l2eftYa6cIGvmydvLNbIRkUN0uWPM6/PMVOYB2OftZvw62QhLUcJKDMNJMlOZrp2PDq2d6crqNh7RT0xpwy1JTJYv1om9I1aAgrwmyg5IzTSpzeStBClzhop7ERyIWjFK4pqZIECz3E3SGCGg9KAIAcp2Fo/oYWGD67hHjJG3rrIRITlK2VrAJx8GZErWCrLoRtcurLbGXfcK2Ov7f5DF+ytebqQ4+26wcV6CIOD1evF6vXR2dtbaXieTSebn5xkZGcHtdtcIyO0aPzzoGY6f/Mmf5Bd/8Rf58R//ca5du8bKygqvvfYajuPURONut5tEIsGXvvQlnnjiiR2fw8Oo4ZieniYQCNQ+38nS2lOnTnHq1Kna36dPn+bAgQP8wR/8AZ/85Cd3bD9bxQNJOLaKVCrF0NBQrZPE+ovcCNwN4Vivg+jv76enp+emQfK9aL17u2OwbZvLly+zsLDAsWPHaGpq2vTY90I0bts2w8PDzM/Pb3l+t8JOzXthYYHz58/XSNpLL73UEHKw2TGr2pb5+fk6h9+76az0iPBsHeuDoK6urpoHQSKRqK1A+v3+GgHx+/2bWnW0HYf/fmGYr7wxyJ7mMGPpNPuaIkzmc+gVnVjQy5nFeU7G2xjNpdAtk0PNTZxNLKAJIoeamhhMLoDg8ERTG1dzCUbzCZ5siqM7FjlDRxAdFio5jgbjJI0C14qLGLbJsWAHLlngu+nVVfqo4mXAH+VqYZ6pUpIWLYCATre7maJlUKwUmLYXqWAgITLg7cChwlwpw2IljUfSCCgqOdOkz9NL0aoQVGQuFddW+jq0FtLGCj2uAbJmgSV9ibDqZVGfr20TlILYTplOVz9lq8SiPktErjBRvgas3bd7XP0sCMOExU402UfaTBBUwkxVBuvOcZdrLyvGmgeHYgfQyhFSQhpL00hc9+rwilHyTr1IHAS8spucuTo/RQjhkdpxCT5K1iglO0vRXs2aiKioQuAGH44m7W3EtO+7473QaOzWDIdt27fNvK9vew2rJcKpVIpUKlXX+GF9+91qN8pKpbKtDMdWug596Utf4utf/zoXLqzeYydPnuSFF16o2/4nfuIn+NrXvlb3vXe+851885vfvO08Tp06xZe//GWmp6f51//6X/Pss8/y+OOPk8vl6kTj1fdDI2DzEDmNX9dwBAKBTcWisVgMSZJYXKzvRLe4uLjpqghFUTh+/Dijo6vZ3Or3FhcX67Ssi4uLHDt2bFNjbgff04TDcRyuXbvGtWvX2Lt3L/F4nBdffBHTNBtmYAPbJxzrvUDuJGRvhDB9PW4XXJdKJQYHB3Ech1OnTm1ZMCdJUk27sNPlItV5f/e738W27W3N71bYrot5FY7j1HxJjh49WktnNiI432wGbH0b3t7eXnK5HNeuXePixYsEAoGa+Hk79c2PcHNs9jxu9CCoVCo18fnMzKqguRoARaPRm5aAnJ1d4FN//zKiIOD2KMzlcuxrjjKSSrA/FuXiygII8GRHO4MrCxyKNlERTC4kl3gs0kLSLPL6yizHoq3krBL/sDxJuzvA47E23kjNYDkOT8XaKdkGs6UMFdukyaXhlSOM5JYQRYc3M5P0eprwSBo2Zc5kVk3vmhQ/XZ4QY8UFLuVniSk+BLGMW9DY42knZWTJmEkSRmb1fAgCB33tlOwKSaPASGGSw74urpVWX6KaoNHp6sCixGI5T8LIAXDA28NUZVX74bueyUAoMVeZZNlY7SQVlEJkrTmoGQBqxLVubAxsW2OJObCgVe1gUb9cd44jcpy0MUpY7kMW3OStJAYlLO8SupNf29ABsWxiusp1329VD+NQJigfpWQnKFgL2CygC3lMp1C3bUzdS9ao70olCwEGfB/exB3VeOxWwrHVzIssyzQ1NdUWqsrlcq397rlz5/i3//bf0t3dzVNPPQWw5ba4W+069NJLL/FjP/ZjnD59GpfLxW//9m/zjne8g4sXL9Le3l7b7gd/8Af5yle+Uvt7M6vmjuPQ29tLb28vH/rQh3jve99703b7jez05TxEonFni8epqionT57kxRdf5N3vfjew+jt78cUX+dCHPrSpMSzL4vz58/zQD/0QAL29vbS2tvLiiy/WCEY2m+W1117jgx9snFnoA0k4NnPTVyoVzp8/T6FQqOkfqkFdIwN12B4ZyGazDA4O4vF4NuUFci9Kqm42/vLyMufOnaO1tZX9+/dvK31efSE1oqNJNpvFcRw8Hg+HDh3a0fG36mK+HoZhMDQ0RKlU4umnn74nviR3mmuhUODMmTO43W6eeuopHMehtbWVgYGBWn/7qsOvKIo1XUEkErnj/fkow7Hz0DSNeDxOPB7HcRxyuRyJRIKFhQWuXLlSKwGJRqOURZk/PXeJV6dniXjc5Gwdn6QgKxK6YxHzeihYOh5RQpVFKraFV1YwBAtFlPDICimzSEDViHv8ZK0Spm1zNNiKKDu8nprhYKCZqMvNK8lxHKDXGyasubiYncNyHE6E2rCx6HTHmCiscDjUzNXcIn3eVjRRoejkOJtdJR8eSaXPF2Uxl2DBTpMvVuhyB5gpZwgrAVq0KIpgcy6/VnbU74kzVR6nS+sCJBb0JUp2lkV9bSWw19VO0pinWxugaJdZqMzTrJlMlydq28iCjE+RKVky7eo+DNsgYybJWvPkrTRcj5/dohfDWamVW3nECAGpFVmskLBFloy1MeNqF0ljrO76tbv2k5LOITouZKMJwxAQBYcVLuII9b5NITlM1qxf0fRL3WTXdbUSnQgepZ1O94+iio1Zed4KHMe5r12qboe7FbO7XK7ab8+2bb7yla/w13/917z44osAHDlyhGeffZYf+IEf4O1vf/sdOyButevQH//xH9f9/Z/+03/iv/23/8aLL77I+973vtrnmqZtWQtYjacMw+D5558nmUzy+uuvs7y8zFNPPUU0Gm0o2YBVD46HJsOxjeP88Ic/zPvf/34ef/xxnnzyST7/+c9TKBRq98/73vc+2tvb+c3f/E0APvGJT/D000/T399POp3m05/+NJOTk7XuY4Ig8PM///P8+q//OgMDA7W2uPF4vEZqGoEHknDcCetbyK7XPwiC0PDMAKwSDsMwNrWt4zjMzMwwPDy8JZ3BvXIzXz/PsbExxsfHOXjwYN2qylbRCMJRLUW7cmW13eVOkw3YfhBdFdX7fD6efvrpG+rwG5XhuN2Yy8vLDA0N0dnZyd69e3EcB11fJ4p1u2udlWzbJpPJkEwmmZqa4tKlS/j9/lr241alPbuFcOymzMxOnRNBEGop+WoL0FQqxfzSEp//1rcZyeaRVZmSZWH7VCZSKY53xLm0skzM40ZSRM4vL7HP52O6lCef03m8Lc655CIONseaWxnJrjBXynE01kTOqHAtl+SxaDOO4NDtDaHJIq8mx9kfaEERBLJWkXOZWQKyi4OBZq6VFkkZRQCeDHdgY9GshZgoLtPnjzBTStCsBmnVQpSdPIPZ1QBdAPZ5W1b3444zUVog7gozss7Yr8fVhltUkAQ310qrJUr7vR1MlK8TGNFLh9aGQY6MWSRtrn6339PD9LqWuEE5QlxtI2slyVslctbo9fE7WNzQWapFiWJiEJA6yFkpMuYSYSXGon6lbrsObR8r+lp5leDIRJU9CIh4pB6y5iwVZQ5BEQiLTRSpJxt+q5vsBvG4iIRL9OMSj2I5FtnyNI6cwUsfLa5n2Q2ovi++FzIct4Moijz99NM8/fTT/NiP/Rhvectb+PrXv86LL77I7/zO7/D+97+fAwcO8IEPfICf+7mfu+H72+06tB7FYhHDMGrZzypeeuklmpubCYfDvO1tb+PXf/3Xa+257wRFUZicnOQ//If/wLe//W0SiQQvvvgi/+gf/SN++Zd/Gcdx+NjHPrbjesNHuDPe8573sLy8zK/8yq/Uyti/+c1v1qokpqam6n53qVSK5557joWFBcLhMCdPnuTll1/m4MGDtW2ef/55CoUCH/jAB0in07zlLW/hm9/8ZsM8OOB7jHCsD4rXt5Bdj3tFONY7Ot4Kpmly6dIlVlZWOHHixKYfDNV93KuSqp1oKbtxbGDHCJNpmly4cIFUKsWJEyd44403GhLsbicTUdVr9Pb20tfXd9Pgt1HZgJuNub7N8qFDh2pGTrfbvyiKNeFkX18flUqllv2odtmqZj6i0Siapu2qIP9hgCzLDKVyfOGV87SF/KzYNh2qQq5QQkyliWkKlxYX6Q8HGUonGAhHOBFv48zSHIfDUYqSm1eXpjkeayVhFvmHpSn2BqK0ej28ujyDLAg809LJWCHBQjnH0VALkghxd5DJQpK4x4vtOBwLtmNhMZSbxHRs4q4g3Z4QF3PTlG0DAYejwTZsbPo8rYwXF2hxeZgsrq7mR/HTqvmZLi9RtFefofu87YwWx4koQZqUCHmrSMnOMVfM1I7/oLebucoMva5edMdkRV8hbydIGGsi7la1mQX9GhG5Gb8UImtlCcheRsv1jt597j7mKqtlUy7Bh1T00BJsZsEYwXDWnusd2h6WNpRXBaUWkvoV/FIHLjFMxSmTMxewyLCoz9Vt26YdIGnUt7tV8GFL0zi2jFCJIQl+BMXCK/tIGoPrLjgIqBzw/z9bvFMah91MOBqVecnn83i9Xt72trfx9re/nRdeeIFkMsnf/M3f3LLBw3a6Dm3EL/zCLxCPx+vamv7gD/4gP/IjP0Jvby9jY2P84i/+Iv/4H/9jXnnllU0f+0c/+lGy2Sznzp3j2LFjNW3KD/zAD/BzP/dz/MIv/EJDCMfDKBrfKj70oQ/dsoTqpZdeqvv7c5/7HJ/73OduO54gCHziE5/gE5/4xLbmsx08kITjZsHMehfup5566pZinKrQq5HYDBnI5/MMDg6iKEqtLnMruBclVaZpkslkOHv2LMFg8K7dr6uoXr+dIByFQoGzZ8/WzmP1wdoog76tCLGvXLnC9PQ0jz322C3dQLc67mZxswyHZVk1YraxzfJWoGkabW1ttLW11ZX2zM3NMTIyUnP/NU1z19R075ZsC+x8xuXacoovvXaGqWSGzmiQZKnMvpYYSb1ETySCJTmIjoPL0Fks5AiKAuVyAcNWCMsKWadCUPHS5QuybBRwyzJHQs2U0RnNZjkZaUOUHb6TmMArKZyKdTJWXCaRL6KJEk9E2kmbJSaLSbyyzEIlyYC3GdNx8Csyb2aqgnEfe/1RxooLpM1VbcLxYAcTxXkOeLvJmEU0w+aqub6TVBSXJBHXWpkpL5Iy8vS6YyxXVsmGKij0ezoxnDIVx2SsNAHAPm8HU9ezHQAtSisRxYdjVFgxVlgxVogqMZaNybpz2aK0UbEydGj7KVo5Vox53KLIrHGxrrWtTwqRt9a+6xYj+KUWFAFSdp6kuQCstpfsdO0jodcb/AWkNtLrPDxkvHjlDryij7K9RMGawXatYLCCYkbIW+O10q4q2oR/gUfu2Mqt0lBUn7m7taSqkYRjPSKRCD/6oz+64/uq4rd+67f40z/9U1566aW6uGG9d8KRI0c4evQofX19vPTSS7z97W/f1Nj/5//8H/7u7/6OtrY2KpVKTf/Y39/P+Pj4jrz/b4ZHJVUPBx5IwrERiUSCoaEhotEox48fv213HVmW77uGo9pKtru7m/7+/m0FZPfChyOXy/Hd7373tt2ytoOqceHdzn9paYlz587R0dHB3r1768a8nxkOXdcZGhqiXC7foNe4Ge5WjH4rrD8HpVKJs2fPIkkSp06d2rEWfBtLewzDqLWW1HWdb3/723XC5oc9Hb+T92W+ovPll88yspygZBqE/W6yuo6qSFQci+V8kf1tMYaWlxiIhhFEmalUmlPtHVxJJ8gVs3SrKvOlIovlInsDQXLAVD7DnmCIkOxiqVwAyWGikOREuB3LsRjMzmDbDo8F49iCyaupCQC6PSGimpuC7eZSboHHQnEuZqcY8LUgIuKRJd7MrukaTga6MRwD3ba5mJ9in7eNKXMGHIFeTxte0cWiMc/l/FLtOwe8HVwrTdLt6kQSJApWkZnKFGW7vG6bXibKV2lV47glLyv6Mh5ZYqy0tnqsCiqKaJE3dUQkmtUOXIKbkr3AsrEMRrVjlIokGRjryIYARGQ/CAEEQSVnJshay4TkVhb0NRIBEFU6SK4rr1r9vohHcuEwgCAolK00eWsePyLLxnc3XGWBgMtNYeP7pNxMZvYQo5nRmmv2/Q70LctCEIRdmd1slCFhoVDYckONu+k69JnPfIbf+q3f4lvf+hZHjx697bZ79uwhFosxOjq6acJhmmbdgmD13bWysmrO2ajn9yOn8YcDDzThqLbznJiY4MCBA7S3t9/xh3+vSqputg/Lsrh8+XKt9djdtGpt5HGYpsnS0hKFQoHHH3/8hjrRncDdEI711/3w4cN1Ar2dzJ5sxGaIQS6X48yZMzWTwc20lr0bMfpmxkwmkwwODtLS0sKBAwdu+eLdiUBBURRaWlpQFIViscjRo0dJJBIsLS1x9epVXC5XTXweDofve5D0IMJxHP7n+at89ZWzxGMBrq4k6GuNcmFxiQNtTQwtLbKvKYbbqzCeSXOstZnvzM9wMBrjcEszLy/OcKyphZRV4nIuzYA3iClYnM2t4EWgx+1hLJegbFucbm6/3vrWIG9WSFt5DgfamCykcASLy7kF2lxButwhxkrzvJFOAHDI34ImCjRpAa7kFzkajHOpMIFPctPjbkYVRS7kx7Cvd4XqcEUwKdPhxEiJRWbKy8RdfjLm9S5PjsBRfy82BqroYrw0g0vUiKraOrIh0OfpQhBsvJKfuettcPd79jBZHqk7hz3uLixMXKKfRX2W2coUfa5O0ma9j0Zc7WBBuILjCISVNtxiCJckM1cZwl5ngtEkd7KsX6r7rixoCORwsFGFIF4pjiBIqILCsvFm3baa6KNiT91wrZuUA+TMwbrPBEdFXfoR2lrbKZfLdYaR1dJGr9d7zwP/3ZLNvBkaleEoFotb7oK43a5Dn/rUp/iN3/gN/vqv/5rHH7+zm/zMzAyJROKOAvYqLMviXe96F7/3e7/HRz/60dq7rlAo8IUvfIG3vOUtmxpnO3iU4Xg48EASDkEQKJfLDA0Noev6lnQF94twFAoFBgcHEUWR06dP3/VKQaNKqqolSpZl1VamG4HtEo476Ul2KntyM9yJGMzPz3PhwoUtmww2UsMxNTXFyMgI+/btu2mrw43bV+dzt6iudPp8Pnw+H93d3TVhczKZ5MqVK+i6TjAYrInPG+Gq/b2GkYUVPvV/V9vcogiUTYvWiJ+KZXKgrYm0XmFvLEbGrNDs8SJIsFwuMRCKYIs2oiAxEIqyYhbxyiq9ioeiYFJxLJ5sipM2i1zOJYkrHkKKyGvJaRygS/XikyVmKwZnUjMcD7diOBb7fC0sV3JMlZdJGyW63BHa3UEu5SYpFVcbZ+z1NWFhsM/bwdXCAjmryEppBRsHt6jS54lTdvJMlVdXfAXb4aCvnbHSFM1qlLASRMDhanEM63qHKAHodkeYLE8T1+K4JTcFq0DSWKBor7WS7dY6mLouEg/JUQJyFJcoM16+gLPOb6PPvYf5Sn39fKfWj+1YaKVWLE+JZWORmCKQNGfqyIYiuLDJ1o2nCQHatD2YTgHLkchbSxTsKwSkVnLOPBsRldtIm/XZEZcQpmhdQRVbUcVmQKZsZ4ipJ0iXOolGowQCgRtcs69du4YsyzXysZmucjuB3dqhChqr4dhqS1zYeteh3/7t3+ZXfuVX+C//5b/Q09NTc4OuPl/z+Ty/9mu/xj//5/+c1tZWxsbGeP755+nv7+ed73znpuYkSRLPP/88/+Jf/Avm5+exLItPfvKTnDt3jqmpqRt0AjuJR4Tj4cADSTiSySTf/e53aWpq4uTJk1syKJNl+Z5rOBYWFrhw4QLt7e3s27dvR1aBttIJa7OozrOjowOPx8PS0tKdv7RNbIcUZDIZBgcHa9mDW9WTNqpE6Vbj2rbN1atXN6XX2Mq4d4tMJkMqleLkyZMNI463w0YStb63veM4lEqlmq/EtWvXUBSlrvXu3RgP7mZsh1RlSmX+5LULvDoxg0dTMEUbtyOjqhLJfIlWj4+0XqFoGvi9KnNLOZr9HpKVEhPZNI/H25jKZ8kV8wxEI5gVi4VinoDk0KT5GC9myZglREQOBprwajJvpmbp8YSIihojlSVmszkUR+Axd4SlUpYFI49f1mhxuwgobnyyhm7rXCnMULIN/JKLvf5WlvQVJsqrmotm1U/ezNDuiqGJCjPlBAU7y2xlLbNwUGtHFmSa1RgLlQSmbWILpRrZAIGj/n5MKnglHzOVeWRBosMVImWukY2g6EcRodM1QMpMsWwkAIklZ6WOHDQpTSxVRsERiKpxXGIAC4tlYwrdKYELsEEWFGShVEc2ANrUTtLGNFFlL6KgkDdTuEQXs5U3WW8iKCCgiaBb9e+fJqW/RjZENDxSJ5LgRxEEMuYohp0EKwmAJkbY7/tJXrbfrL1HbuaaXe0qNz09zaVLl/D5fLXfVaPKrxpVtnS3cBynYRmOQqGwLdO/rXYd+v3f/310Xb9BG/Lxj3+cX/3VX0WSJM6dO8fXvvY10uk08Xicd7zjHXzyk5/cUvnskSNHePXVV3nhhRf4gR/4AYaHh3nrW9/Kz/7sz95xweoRHuFOeCDf6B6Ph/3792+rNeu9zHDYts3IyAizs7McOXLkhq4Ud7uPzXTC2gxs2+bKlSvMzMxw+PBhWltbmZ2dvW/GgjfDzMwMly9f3lT24F5mOKp6jUqlwqlTp7b18tnpDEelUmFqagrTNHnmmWfui27iTkG1IAg1cXlnZyeWZZFOp2vkYyeNB3dT1mSr19lxHP5qcIS/vjiGLULFshARWc4WiAa9DC+v0N8c4Y35eY62tTBbzmFkLY62NvPy/AwHo1G6IyG+PT/NwXAMVRV5dWmWNreXvnCIs4l5FvIVnmhuZ7GUYzSX4InmOEVLZ5+/iYKpM26lcCsqBzwRBNtkqLDabcnnSHQJGvOVPJOlJBHFg0uGmBKgwx1jRc8yU1kgZaySgIjkpccTYbq8wrXiIiJwINDKaHEGTVDodrfhFMuMGjM4xup5cokKHllgSS8R11rwSl5kEYaLw3WkYcDTzkR5DNGRaNXiqIIbkywT5TVh96puwyBvri3UuAUPUSWCLnlZMRZY0BcQWCSuta6SjXXocnWxcL1sSkYjpHTiFfzkrXkKdpmCvqpPUQQXqlBgPdkAiGv7SRj14nGXEEMV3YjCMcpWhrw1T9GepEndV+dcXsUh38+giL7bli9t7Cqn63ots9jI8qvdWlLVyO5ZxWJxWxkO2FrXoYmJiduO5Xa7+eu//uttzWMjQqEQn/rUp3ZkrM3iUYbj4cADSThcLte2fSDuFeEwTZPXXnsNx3E4ffr0jrldV7FTJVXV0jTDMOoC5nshSt/M/G3b5vLlyywsLHD8+HFisdimxm5EidLGTEQ2m+Xs2bMEAoE7Niu4HXZyvtWuYqqq4vF47qtIeyvHJElSjVzshPHg9wKG51f4zP/+DqoiMZ3JsqclQjJbYq/qYUURUSWJrliIomVypK2FmWKWnmAQQYJEuciRWBMFx0BxRI7HWljQ8wg2PN0SZ6ac4Uxijh7Zg+JV+c7SJBICz7R0MFvKMlXM0Ob20eR20Sy6uJRZRPQ5DObm2OON4ZNULEHnSmERHNAcgRZTIuUYjOnLeCWVZpfGUqXIPm87jgOOUOFsds3b4migg7Kjs9fTxXhpgaJVIiEs1YiEABz0dWFiUHEsZipLNCkhjA3lS/s83ViOSafWx3xlgcnyHAe83cyUZ+vOZ7e7jZnKKFG5Fa8UomDlCcgaY6V67UWvu5/ZSn2727jajW4XaVUOU7LzJI15UsYSZXGRkp2t31brYHmDeNwvNZMyRvBJnahiGMuxyFtL+OUW5iv1JEQRPFTs+rkDxNSTtLvfhuM4OI6z6QBaVVVaWlpoaWm5ofxqfHy8ztE+HA5vu6HEbi2pqr5ndlOGY7dj/bP7XizYPCIcDwceSMJxNz+Ae9EWN51OY5omgUBg227cd8JOEIKqmDgWi/H444/XzbNRWYKtjF8ulzl79myNtG02eG5khqNaxlbtNLZVvcbNsFMZjuqc+vv7b9oF5V7ibl9SO2E8uB67qS3unZArVfiTV8/zdyOTNIe95HSd7qYQJduk2e/FEGwcHBRVJFUso8oiSA6pcpnecJCUXmGpWGRfU4SKbpGslGhSPDS7vcwWssxXsrS4fEiImGaZ+UKGk9E4mizySmK1Je3hUDO2YHIxu3oPnYisemd0u6Ncy69wLNLK5dwiXe4IYcVL2SlxtbgEDkhAu6XglBxUUeVyfo6jgVZGCqtjtWphOlwRJstzpK+LwkOyj7KTxxJsIlKAZlcUlyhyobBmqucSFTTJJmdU0ASNuBbHJWpMlUepOGumlXvcnUyU1xzJFVT2ePZgU8ElhFnUl4FlelzdzFTqTfualTjz1z8LSa1oBMjmsxSkBEU7U7+t2sLSBtO/FqW7RjYkVPxyJ7LgRRIMUmaGpDkPrGo4wnIXiZtkMWJKNymznoSIqBz1r5rI3c2KfSPLr3ZrSVWVcDRibtvVcOx23OussMPD073pwXkT7TweSMJxN5BlmVKpdOcNt4FqLf/U1Gq3kYMHDzbsh3s3mZr15m/79++no6PjhnneC5+P25GCaqvjpqYmDh48uCXS1ijCIQgClmUxPDzMzMzMXXcaWz/u3QTEjuMwMjJSN6eZmZktjbnT9+lOloltx3hwN+N25/p/D17lb4fHyVUqNIU8LBeKBLwuFooFXKpMxbFIZbLEgl7emJvnWHsLF5Mr+HWVA81RvjM/w55gmPaQn9cW5+j0+WkP+hlMLBJSNA42RbmaSXK+uMiRaIx8TkeRJBAcziRnORZuo2wZZMwCc+UsEdXN/kATw/kFMsZqCeeT0XZMLLrdMaaKCUIhlbHCEqogMeBtwSULnM9d77jkQJ8QYCI/T6cQoSLZaILEhcIolrP6G1UFmQ5XAFmUEHSBFSdHxPFzuThdd276PG04OLhEHzPleWbKS4QUuY5sROQgKXMWnxQgqrSgOwa6XWa6PIqxbrugFCRtztSN7xECBOUgLslN0lhk2VwlJjEpfAPZaNf2sKTXd77SBB9u0Y0mHqFs58mYcywbk7Rr+1k26rMoIhIiRTaGHyG5m5S5ZkToEpvRxCbiru/HK69m9au/q50IoDf+tqptrdeXX1UbO9yp/Go3l1RJktSQd3GhULgv+ridhG3bdefmfpSgPspwPBx46AhHo0qq1pcmPfHEE7z66qtYltUw4et2CYFhGJw/f55sNntb87dGl1TdanzHcZiYmGB0dPSWZOhOaKSvRSKRQFXVbes1boa7ma9hGAwNDVEqlermtJ2AfzdpHW6HzRgPVgOkUCh0v6dbh1tdk2tLKT77V99BdcmMrSTpiAW5lkzT3RTiWirNQHOESysr9EXCLJQLCILA8fZWRjNJ9kUilByTlVKJk61tzJVylCoGT7e2M1ZMcSm1zJNNbcyUs3xncZoml5uTTa0MpRcoWybHQy1IooBX0RjLJYh5NFRJ4mioDduxOZOexnAsmjU/A/4Iw/k5suYq+TgRbidp5Djq72S0sIwmi5zPreomRASOBTvRHR2jmGXSSRG2XRT1DJZg43IU4moMrypzpTi5WiYlQJMcYMlYxMHBK3po01rwSgqXC1ew13Wp2uNpYaqq0XAEmtVmWrQASUNmyVgibV5DEWRaVD/ZdWRDRCCoaCSNFC1qD4rgImNlCMs+xsr1xKBd7iIljtZ95hYD5K1ZNMFPQG5DEGTy178/u6GUyitGSJv1WRCANnXvDXoORQjikUK4xMcwnTJ5a4GclcBGo9fzrtp2jdQkVNta3678qtq9MBKJ1JH73VxS1SgiVCwWH/iSqt1AEh8RjocDDyThuNuSqp0mHCsrK5w7d45YLMbJkydrP+BGEo7tEIJsNsvg4CAej4fTp0/ftg7+fpRUmabJhQsXSKfTPPHEE9sOFhuh4chkMkxOTiJJEk8//fSOXtftzjefz3PmzBm8Xu8Nnh+NarW7Wdyr/d/KeDCZTHLp0qXab9Dr9VIqlXad8WBJN/jK357ltdEZFJeIZUJL2I+NQ0csgG5btIf8FE0Dr6piyw624yDLIgYWhmkhyAKiJVCyDEq2QZPHw3KpwHQ5S7cvwFJJZqacBRxORtvQBZPXEjO0unzERIGR4jLlvIVLkngiFmepkmM0n6DfH2G+nGaPL4qIiFsW+W56VYOhChInw52sGFlmSmlmSmmOB9u5kJukVQvRpAawHYvLhSlMZ/V565E0QpqGVwpimDaTlSVso8KItZZp0BwJjyTi1+KULYPp0gIVpcJUebxGNgAO+HqYLI3RqXWiiApL+gohxcNwsb617R53B1PryqtCcow2rZmCncVEZqaymkXpcvXcUF7lEwPk12kp3GKQgNyCR1RJm/Nk7WXy14XiLUonS3q97gPAL/tImfWljX6phYwxSkDqRRb9WI5JwVompLSyqJ+9YYxjgX+PJKw9q6vPzUYvENyu/KraxMPr9dbIh2EYuyJ43YhGdaiC1QzHZlvy70ZMTk5y/vz5mi7O4/Hg9/tRVRVFUdA0DU3Tvmc7Bj7CvcVDdxftZFtcx3EYGxtjfHy8znjQcZxa+U2jsFXiNDs7y6VLl+jt7aWvr++OL6t7XVKVz+cZHBysZQ/upixmp8lSVRtRTZ3v9MN3O8H54uIi58+fr7nVb7ye95tw3C9sXKEtFAoMDw9TKBR49dVXd5Xx4D9cmuS/vX4Ry3EIBlzkKhV8bpnx5RR7WiNcXFqmrynCZCaDR5ZxuWWG5pc41t7MhcQKHllmT1OYNxfnafV66QgGGFxZoNXjpSsU4EJymZKh0xMOYjo2l9JLRD0uCobO0VAriHApO49LkDkZaafklHg5MQFAlztIVPVQsgyGs8scCTVzKTdD3BWiSfUhifBG5lqtIOiQvwVRcOh2NTFRWsF2HAyKq2TDgR53MxHNxVhxjpnyaovXfd42psqrZMMjaEQI4Fg6c3oKx1jdJiR5yVnJGtlwCy563HEsp4IoqExe/36fu5Pxcn0motfVxUJlinatB0FQSBoJVFFjtHQRZx158Yl+MuaN3hgtWhTd8FMq6jgek6y1QkhuYWqDyFsWVGwybCyPalP3krze7tYrtuCSIjiOhCzoJK0lSuaa0Z9HjJAx6skSQFx7Cy1avclbtXTpXmckb1Z+lUqlSCQSDA8Po+s6iqIwOTlJJBK5q85yO4lGE44HOcPx7W9/m49//OO0trYiyzK6rpPNZvF6vbXr53K5KBQK/NRP/RTve9/7GjKPRxmOhwMPLOHYbkC1UxmOSqXCuXPnKJVKNxjQVc3nGh2wb2b89e7mm+3yBPemS1V1/Grw3NnZycDAwF2vku0U4ai2NZ6bm+PYsWOUSqWGeJNs5V5eT3KPHDlCa2vrXY/ZCNzv/Vfn4PP58Pv9hMNhuru7d4XxYLJQ4df+9G/IGjoL2QLhgJtEvoiiSiznC/j9LuZyOfa2RBlNpuhvCnM5kaBbcXG0vZkrqSQHYlGW9SLT+RxPxuNczSa5kk7wZGucK9kEryzOsjcYQVEFziTmEQV4S1sXS+UC1/JpDoebyBhFekQvi4KOjs5Ibpl2d5AOd5BrxWVeT62u/u/zRXFJIj2eJkYLy/hklaniEg7Q62miRfMxXJiiaK2WLflkF6pko+Kmx93CXDlFQNU4nxuvnYNWLUTWzDDg7UK3TSZLCwT93pqwHEByBDTTomJbxMUWbAkKTpElY56clattF5aDrKwjDFE5RliOoJOjbNtMlFcDe5fowiUadWQDIKoGWdAncAlewkorgqDgFiSmyteJhQZY4BH9ZNaRhCo6tG6W1pVSybjwS3EkUSEo7yVrLpC2VsBaIa7uI3ETYhGQQ6Q3ZEJkwc3RwM/csO1u0UooikJzczPNzc01HVmhUCCTyTAxMXHb8qt7iUaWej3oGY7HH3+cX/qlX0JVVZaXl/nv//2/o+s6J0+eJBqNcvXqVV5++eXadW4UHhGOhwMPLOHYLnaCcKRSKQYHBwmHw7dshyrLcsMzHHcKqovFIoODgwiCsGV382qZT6NeblXCdOXKFSYnJ28bPG9n7LslHLquMzg4iK7rnDp1Co/Hs2Uh9maxWQ2HaZo1/c3NXNY3jnm/cb8Jx0bcb+NB07L5q8EJXh1dQPFohHwuTMFGVSRkVcTv1qg4FoIAPlVFty2iXjcl28SjKMiKiOXYyJJIwTYIaS5Mx2ammKXbFyRdKTOSTdDi9tLh85OwisylczwWbkFWRP5+cVXvcDgcQ5EFFvJ5bMfmaDiGjcM+fzOLpRzTQpKEXqRZ89Hvi3K1OM+1zGqjjS53iIJd5KC/ncVKjoxeomjnamTDL2kcCrSxWEkzXV5hvpLmaKCDy/kJADRBocfTiixajJfSJAqrxGHA086Vwhohickhuj3NJIwE6coSM84SguHQ7HjJsEY2ZEEkpLgQBS+yoLBiJFgxkrglmQW9vrVsp6uZmcpY7W8FlR53PxY6QTlOwlgiX5kgJEVIkbzh+sXUMEv6WN1nTUoHBWuZqHIAkCjYGTLmAhFJYq5yvm5bl+AnZ46zEU3qAGnz0g2f7/f9OB7pxqYUG0W+uwHVRbZAIMDAwAC2bZPNZkkmk8zOzt5QfhUKhe5ZdrGRGo5CobDjLe/vJfbv38/+/fsB+LM/+zO6u7v5yle+Qn9/f22bv/qrv+KrX/1qQ/VwjiPgPCSB+MNynDfDI8KxBawXNO/du5eurq5bPvgbneG403EsLy9z7tw52tra2L9//5YfuNXtG0U4HMdhbm4OURQ5derUjrYWvFvReNXLIhQKceLEiVrgeS8NBTeiWCxy5syZWsnZnXwo7neGYbcFRBvPxb00HgS4OLnE//d/vQq2iaxJhP1uLMEh4HFhCg4lwyQcELk2v8zRzlbOLy7TEfJTEWxGl5Y52dnGueUlNFFkT1OYs0uLNHs9tAf8nE8sYdk2bQEfTsVhvpgj4tVodnmxLBtJFnhzZY7D4Wb8isq57Bwly8QjyfQIblb0EguVPF5JodXjwS2rRFQPK5U810qLpI0SgiOw39+EIouM5NPMl3O4JYW4281COcs+X3zVj0MWeCOzVtrU52lmojhLv6cdURCZKC4iCAZXi2tkoFkNsagv0qxGEIoOhgYRzcf5fL0m4qC/h7HS6thex4vLcKMhMMcilrD2LNzn2cNEuV6Pscfdw1z5Gk1qB27RS9EqYTgVpipXMJ01I0AB8MsKK4Ze9/1OrY8lfRjBkQgqbatu5I6FRZq0mYR1BKVV7WXFqO9gBRBVWkgY9cckCxqGvYjjCLilJjQxBqgooo9+z4/c9F7aLRmOjbBtG0VRgNVnWigUIhQKsWfPnlr5VTKZZHh4uNb9qkpAGll+1aiSqmrJ5oOc4XAcB13X0TSNP/qjP+LgwYM1slG9z971rnfxuc99jjNnzvD00083ZB42wkPTFvdhOc6b4YElHNsNqLar4dB1nfPnz5PP52/b3amKRhsMVoPfql6kCsdxGB0dZWJigkOHDhGPx7c1fvUB3YgAO5PJsLi4iKZpN4iddwJ3Ixqval36+/vp6em5oV1gozIctxs3kUgwODhIPB5n3759mwo27jfhgN2X4bgdGmU8mCtW+OO/HWJkfgVFFslXLEQJlgpFAl6VhUKeTleAEiZ5XaezKcR4Os3R9mZem5vjUHMMT0uU88tLHG5uYiKf5mJimSdaW7mYXuHVhVkei7WQsUu8sTxPQFY40tLC5fQK13IZnmhpw3Js2j1+CmaFqXKSoOLiYCCALAu8kZqGCgQkjaPRFq7lV5gopvDLKlGXRsk2ORbsYKVSoOhUmMmlVs+XIHAs1IphW2SMMpdz8xwPdXDxZFSh4wABAABJREFUeiZDcAT2eFoIyDIrhsSV6+7kx4KdDK/LZMS1Jpo1Pwtlm/lKEiRoJsT8BtO+HlcbJbvEHnc/KSPDspEgGogwr0/WmQCGrSCTpatU3+kRuYmwHMV2CoDGfGW19EpEIO5qIm8YdfvZ4+5jbp3pn+youIwgskshJPeSMhdYNla9NLpdAyT0eu2HIqiY9soN90GT0lsjG44j4JVb0MQIHtFHwVrCwiBtpoDV8/u26K8jCjcPkncr4bAsC5fLddP/21h+tf73NTExgSiKtd/WTpdfPdJw3BqCINTev52dnZw5c4bLly9z4MCB2rvv6tWrzM7ONpRYPSqpejjwwBKO7WI7RKC64u33+zl9+nRtFedO+2l0W1mor0/VdZ2hoSHK5fIdS27uhPUZjp1EtbtJIBDA5/M1pPvFdjIRtm0zPDzM/Pz8LbUujWq3e6txHcdhcnKSq1evcuDAATo6OrY05qMMx/axE8aD3zozyv98bZiiaaK5FRbyBaJehaVChZ62IEvFIj1NYbJGhZaAD0ESUEWRJr+HjF6hxbdq8qfIEhGPm7lSjrjPT8DQuJBapjsQpCsQZLqUwXZsnmpuZ0nP853FafyKyunWdi5llknrZTq8AUIuDb+jcim9RKfPzxupGZrRaPGHEGWHV64LxhVR4LFwKxmjzFw+S1qfY28gytXCIn7ZxR5PDFWCN9MTtWM94G/hcn6SDi1KUPGzVM5gUOJCfm3l/4AvznB+gg5XM17Jy0IlRUDWuJBby4gojogimWRNHU1Qibta0USVZWOejL7m6B2UfKTNpTqy4RJduCQRr92GoVvkxBzLdhLFckhSr73a49nDdKU+CxGRY2SMeVrVfgRBoWDlSBqL+ESRqUp9yVNYbrnBhwMgrnXf4DLuEZpwiX5k5TEqdpGctUjSTBCQJDLGFWzqF8A6Xadp1Y7dMHYVu5VwbHZe67OLHR0dDS+/aiThKBaLD3SGA9ZiiQ984AM899xzfPCDH+Sf/bN/RmtrK4lEgt/93d8lHo/zzDPP3OeZPsKDjoeScGxWm+A4DlNTU1y5cuWmK9532k8jHc2rD4nqwzSdTjM4OEgoFLqlrmQr2Gnhu23bXLp0icXFRU6cOEEymaRSqezI2BuxVcJRqVQYHBzENM2aXuNW494rDYdlWVy8eJFEIrGtFsH3m3DAg5XhuB1uZzw4NDQEUGc8mMhV+N2/eAXTsclUKkTCHsqWTXssQDqfJ+TTyBo6siyiY7GUKzDQFmVwbpHD8SaWykUW8nmOd7RycXkZt6rQFQpwMbGMAMR8HrKWSqJSQlVFev0hJrJplo0CBdPgZKwNSRR4eXkaCYET0VYyVomh1AIAJ6JtmNjs8UYYyydpl+BcdoGI6qbbE8EWLF5JTtSO/0S4FcOxOOhrYyS/iCQ4DGXXxNPd7gheSSWmhJkspRBKSQ4HWrlavN7u1oE+TyuaKOOXA0yUVoAVjvq7uFK8Vneu47Yfj+TDLfmYqSwyWpyhz9NExlwjGwIQ07zMVlKIjkSL1opb9CCLDtdKo6sk5PqaUI/UzqIzUbePsBhhtnK9NEsMElKawBERhBIL+iLpdYL0VrGdtFj/fQHQRCja9c/GiBwnb84TkfciCi50u0zGXMKntDC9obMVgEfUSNv17whJ0DgR+Okbtl2PB51wbMTtyq9GRkaoVCqEQqFtl181SjSu6zq6rn9POI07jsPx48f5yle+wgsvvMBnPvMZcrkcmqbx3ve+l49+9KM7prG8+f4faTgeBjywhGO7K6jVB49pmrcti6h6QqRSKR5//HHC4fCW99PoLk+wOs/5+XmuXLnCwMAA3d3dO7a6vFOahVKpxODgII7j1MTr6XS6YednK5mIavYqHA5z6NCh2xK1RmY41gfn5XKZs2dX+/GfOnXqlmUKWxnzXmM3ZTh2ei63Mh6cnpnlP//v17i4WMLn17AFkWjYy0w6SzwWYGRhhdaQi/F0jkNBL0PzSxxojaG4ZOZyeR7rbOG12Vkea21FVATemJ/nWGsLVzNJvjs/y/HWVmZLOb573UG8xedlKLHIolTgYCyG7lhM5TN0BfxczizzeCxOqlJioZJloZwnork5EIhxOb9I+rpreL/kpuwYHAq2cjm7RK/ocC6zWv7UqgXY4wtxtbBIyigCcCjQyqX8NF5Ro8fbjOXYJI00Z7NrZUTHgx1cKkzQ4YoRkH0k9TwFp8Bkfq62Ta+7mbHixOp+1CghJYBLlLlQGIFyqrbdIV8XY6V6ofYhXz+WY9Cu9rCgLzJdXqDf033Dds1qjJUNbuIux4tW0RCcKBW5TFrKkTZz9Ln3MKdP1G8reiiyfMP173QNsKhfQsZFQG5DFTwYtolIkaSZI71O1O6XoiRuoudoVQdIGzcKxQ/6fhSvfPtuQLuVcOxUJmGny68aleEoFAoA3xOEo9rG/8iRI/zJn/zJPd//o5KqhwMPLOHYLtZnBm6FqkGe2+3mmWee2XS99sb9NFLDIQgCgiBw+fJlstnstkjRnbAThCORSDA0NERzczMHDhyonf9Giuo3O+9qeddms1eNynCsHzedTnP27FlisRgHDx7c9ovyfhMO+N7JcNwOVePBuVSF/zs8wUJBJBj2MpfM4nKLLC5k0dwqiWyOeMxPqVKhJ+Ino+sMtERIGxWafV5EWSBnGPSFw6TNEkGXi75wmCvpBF3BIF3BIJczCcKai9NtHQxnV3hjeZ69oQguVeb1ldVg/qnmdkxMTMfmaiZByK3ilVSOhtowHZM3MzPotkVA1jgcbmYkNUc6vxo4PR5p51J2jiOBOEXLwKfIfDe9prfodofQJIEBX5yr+UUu5+bo9YVJGGsB9hF/OwgQVkJMlpIIJDjgb2WsuFbSFJQ8+GSFgNzNkp5irpJcFZSb9dqHHlcr10rXkJFoc7WhChoCcKUwWmcCGJaDLBn1mg9ZkFAFC1vyEJabAJGUmaRZjTBZricAHsvLfHkUNsTwbWoL8/p18bkjEJRb8EphHMfCK7aTMZco6VXjwAGW9Btb5vplHwljYcPcNMrWjb4fXqmFg75/fsPnG7FbCUcj5nWn8qvh4WE8Hs9ty68sy9rWO/xOyOfzAA+0hmM9JEni/PnzfOtb32JiYoIPfehDDAwMMD09jc/n2/H4Yj0eZTgeDjx0hEMQhFuSAcdxajWkmzXIuxUaXVKVz+dxHIdKpcLp06cb0uN8pzp67d+/n87Ozrr/b6ST+Z2IwXq9xokTJ4hGo5set5EZjioB2olM1XYIx06SlN2U4WgkShWDL//PN7i2kCRZKuPxKCBJxJqCyIqID4tcsYwo2Sym0gTcMmkdHNuk2eVnKrHCE13tzOZyZMpl9rZGuZpMYjsOMb8bzZDJGzpIsCcQJlkpMZxdJu4N0OrxYoo251KL9AcitHm9fGdpChsHjyRzNNrMXDnHaC5Fnz/EopGlwx3Ep7iQRIfXU6vbApwMteE4NrIgcS4zxz5/EyPXMxLdnijNqp/pyhLnsmuajOPBOBfz07RqIZrVIKZjMlFeoGyvdXh6LNDF5cI4MhJd7hZUQcGkyEhhnemdpGFSrjmSA0SlIEHFgyx2MVdeZLw4j0vUCClyHdkQEQgqGvN6YnUs0cv/n703j5IrP8v7P3etfV+6ele39l0jaRbJBifYP89gSLANHNshAYaDDQkmwBATFhsnGPCGiW3sMAQCmIPHgIE4rMYLOF5mLI9G+y611HtXd9e+111/f5SqukvVklqtLo1kzXOOzkzfvvW933v71r3v833f530iShy/7GRBmyVnlMgZjcCwV00wtcx1HBrlURGPh5Sea9vu1yKU7TIBaxgNjZpcIKUv4pJcJOvtZWAe0U9Wb9/WON7GFT03EsoIWf0yXmkYVfRhI1Kzyjzi/6E2R/Gbwbbth4Zw3Ii1lF91K8NRqVRwu9335d9iLThy5Aj/4T/8BxRF4fz587z5zW9m8+bN/O///b+5fPkyzz77bNf0KvZDlOF4hXA8gLibgGalQNowDM6dO0cqlbqjIPRWx+hWQD03N8eZM2eQJIlt27Z1zVBprQF20y8in8/ftKNXtwmHfkP3mSZWq9dYCd3MGuRyuXW79+D+yHAAHV3Uvp3wrXOT/Mk/HsflUbElgXDQTVnTcDhE5rMlYmEvs5kyiYiPiXSO0USEk7PzjAbcjFcr1LQawz4335icYlc8Sl2QeWF6mn29PcxVS3wrOcfWSBhJljiTWqTP42Ew6Ge2YnM5n2YkFEAVJTb5wnhVha8vTOBXHGwNRCmYNb6+2Ajq+90+Ym431GzGSlm2+iNMVdI4RIkey0EsGOJ0cQb9esA/4ApQs2rs9PezWCsxVy0giRYprdQ690cDQ1iCRZ8jwkwtQ9GoEVDlNrKxzdOLaRtscQ8xUV3gSmWOff5BrpbbV/yHXBHGK9MMOBNoxTqmC4Kqi7OldufwDe4o49Xxtm1bPSPU7TobnJvJ6QVSehqfpHGpMtYmKJcFGZtaG1kB2OjayHT9IkE5jkcKYQFlo4TtyJO2C9CMU22I0ceC1kkswkqYRT3dtk0RHFSthpGfUwjilmKIghMJhZw5Rdm2KBtLJWa9jj0MuR7rGHsl3M8ZjnvlrdHEasqvmouM9Xp9Xd+VpVIJj8fzbfN8e+aZZ/g3/+bf8JGPfITe3t7Wu/HNb34zb3rTm7r6PrGB++B1dU/wkJzminhgCcfd4MbWuKVSiRMnTqAoCocPH15TzfyN6EZJVdP5emZmhr1793LhwoWuPgTWcg6lUonjx4/jdDo5fPjwTVPZ3SYcK43dLFcKh8Ps2rXrjl+O3ZizpmlMT0+jaRqvetWr1s1E6uUmHPfbS3g9r0WuWOUvvniKizMpfH4nqWIZt9dBsVKjYhkoLhlNsBBFAZdbQRQFBuMB6pbF5kiAlFZjayxKHRPd0Bn1eRgvZAirKtuDAc5nU/T5fBzuH+RYag7Dsngs0ctkNc+RhRkUUeCJvgHGCllmKkX2RuNktQr7Ir1czKWoWBoXCykSTi8j3hDXqim+lW5oGYY9ARQZtqsJLhYWKNg6mXIS3TZRBJHtvgS2aHCpOM9MLY+Aze5ggvOlWfyyiw3uKE5R5mThais7IgKDbj9jlTlcosqwqweHKDNem6JiLjWG2Obpa2uJ65FcbPH0U7VqqKKTydo8KLBdHWKs1m6Qt8UzyHj1KqItknA2ROKSIHKlegVzWWZEFRRMSm1kA2DENcTkdW8OGZmwksAr+anbZUTBx4KeAb2RvdnsGmWmPtX2eRUHVTrb3fYowyzqjayJbQt45RguMYRH9FCxstQQyJtF8majbK3XMUTJbNeFCIg8Efix29x1S7hfCUc3DfZWg5uVX509e5Z8Ps/zzz9/2/KrO8GD3hL3Rpw+fZrnnnsOWMreAMTjcWZnZ182p/hX8O2Dh5JwLA+kZ2dnOXv2LMPDw2zatGndHpiSJKFp2u13XCVqtRonTpzANE0OHz6M2+3m8uXL98TrY7VIJpOcOXOGwcFBNm/efMtr2c0M0Eri7vUoV1rvIL5YLHLs2DFkWSYUCq2rY+1a5qppGrIsrwtZaI7x7Zbh+OILl/jGqXHmckVUl4Kh29Rsi6BDQrQl4k4Hhm0T9LiwJNBMC9UhkSnU8LtVNMGmUNcYcakUymWqlkVvyEetLCKKUMUkJitUymVOVQqMev3UsLlazlIzdA7G+qih89XkJNiwPxanZptMlAtMlgvsjcTRbZOdwTjT5Twz9RwL9TJuSWZnIEHGKHK+0Ah4I4oLS6gTUb1sVuNMlLNU7RrXikuB9cHwILptssXTy5XyAgv1AjWr0iIbAI8EBzEw2OTu42plgbFKkl6nu41sxFT/dXO/ECElSMmoYWNxrjzWRhhCppvxWrsWok+NoYoSA45h5rR5JmtJFEEmqnraPgsw6u5j4oayqV61kWkZdG6lbJZJaYvManMMOSGptROLhNLLbH2FdrfOQea0ZeVRlohq+ahVNBzyELZiUhHypPUsQVkmo1/Bon1uCXWUzAoC8q2e1xNShju23wz3o9M43H9EqFl+paoqw8PDhEKhjvKrpvngWsw9m4Tjfvxb3Cls2yYQCHD16lWGh4dbPwOtNvbdJBwWAsJDYoj3ivHfA4i7LanSdZ2zZ8+STCbZu3cv8fitO4Os5RjrRQaawutYLNYmJO5mluBOxrcsi8uXLzM5Ocnu3btX1T7vXmU4LMvi/PnzJJPJuy5XWs8uVclkktOnTzM6OoqiKCwsLNz+Q3eAOyEctm1z9epVLl++jKIorRdwJBJZlefMw4Bkqsizf/E8BU0DSUBxKTidCrpgEVKcFHUdQYRcrY5l21gy5LIFgn4XJ6bn2T3Qw6nkPGGHSiLg5vmpaXb1RDEkkxfn5tgRi2KJNufTabaEQ0SdKvlMmtlKCYdkE5IUZiybkl5hrJxnfySBLImcyiWpWyYeSeGRWA/XSllmq0UcksSQz49pWzwS7GO6UmBezzNTzQMQkBxs9UcYyyaZqOSYrGTZG0pwtjiLaAts9sWJqm5OFiepWY3yRLekoIg2ab2OR3Qw7I7hVxycKF7BsJe+Fzt8fS2NhojIsLOHkOpgVrOZreeZredxSQ7CitxGGByiim3rOESVhCMOiCxqWWQJLpTbO1BtdA9w9YauVBuc/UzULuOV/ISVhlC8bJTR7Brztdn2z7tGma63u5FLiIhCrSM7ErAjlM0cPepWQKJqVsjaC0Q9/czKnZ2mRM3Cktuf/ZIgo9npjn0dgpcD/n/Xsf1WuN8C+yZejpKq1aCp4bhV+VXT3DMcDhMKhQiHw7etdPh2ynDYts2P/MiP8IEPfIBAIICmaRQKBa5cucIv/dIv8aY3vanLx39FNP4w4IElHHeLy5cv43A4Wm1a1xvrQTiageDVq1dXNH7rdies1Yy/3Gzw0KFDq24R2K0Ws7AkGm9mhSzLWpe/83p0qbJtu0XOmkR3enp63cufVks4TNNsa/9smmbL4O78+fMdBnerJfrLMxwPMizL5h+/fp5//tYVZKeMIAvYkohow3yxRCjoZipTZKQ3xOWFNFv6olxcTDMSDJIsW8iSyO6BOJOFPNsTUeaKeUzb5tGBPs5nF4l7PBweHODowhxOWeZVA/0cS89TLuiN1rd+DydT8yQNnR2BALquo9gC84UcWUEjpDrpc/tRZIFvXNdsqKLIE7F+ZqoFxks5ZsUCo4EAV4optvvjKIKIJZgcyS5lEg6E+8nqJfb6B5moZNAsg+PFCbTrPhEisNUXxbbBJ7kYqyyQ08tM1mfbyMZe/wDXKjNsdg8gIDFVXcSjKJwqtWsfRt0RxirXSYkt0uuME5W9TBZmKZgVCpVG5mGltrgbnH1cqy6NF5SDhOUwqmThtSLkjBw5o1HCtMU9yvgNruU+ycfiCh2lRl0jzNTP45XCeKUIgqCQr+QxxWpDo6EvZX4CUoTkDYQFICEPk7OudGyPCkPkzM7sxiP+t+IQ70yIez8SDtu2X/aSqpthJSK0UvlVs7317OwsFy9ebJVfNT14bhyjqeH4doAoivzMz/wMTz/9NG9961txu9287W1v4+rVq+zbt4+PfOQjXT2+ZQsID0kg/rCI41fCQ0c4kskk+XyeYDDIo48+2rUH5N2SAV3XOXXqFKVS6abC624TjttlIZoeFoFAgEOHDt2R2WA3S6pEUaRer/PCCy8QiUTYuXPnuqy8NQnHWsuEDMPg5MmTlMtlnnjiiRY560a2ZzWEo+n3IQgCTzzxROv8lhvcpdPphsfE1BSCIDyQ2Y+1ZkOnZrP81RdPMZ0uILtkKppOQdOIR7wUKjqRiAfNtBjqCVIzDfqjfqqmgduhYImgWxaKIlG3LHTTBAkUScTApmjW6ff5QBS4ks+wKxqjYhocTSXpc3uJRFxMVvIcXZijz+1hKOjnWKqRzRjweAkqCk5d4lq1hM+0uGKV6VHc9Ln9iIrA1xYngAZR2B9JYGIRdXg4X1jgQLiXE/mGoNlry+yO9jFXzzFdzTFBjqjqoWiV0SwDp6iw0RPHJyucLEy0hOVuSQVRp2Y0sh9+yc2IO45m1dAtuHC9w9VOXz8XyuNt13WXb5AFbZFN7g2YlsV0bRGX5OB05XLbG2nQGedatV3L4RZdgMUG1wiWDSk9Q0ovEFUDjFXbSU2vmugorwKIKgFmtYbXh1PwEFJiuEQPNauIKARJG0XSRqPVb4I+skKmYwy/7GZBn2/bpggqGitkMWwveesqkuFHtv0osgtRFnHIXra5n+rY/3a4HzMJzWfN/Ug4VtOlShRFAoEAgUCg1f0ql8uRyWS4dOlSq/xKkiSKxSKHDh2iXC6v2YPjk5/8JB/+8IdbFRa/8zu/w2OP3bxpwGc/+1ne8573MD4+zubNm/ngBz/IG97whtbvbdvmve99L7//+79PLpfjVa96Fb/7u7/L5s2bVz2nWCzG3/3d3/GFL3yBM2fOtGKPp56683v0TmHbD5Fo/CE5z5XwwBKOOw0ilguug8Eg0Wi0qw/HuyEDhUKB48eP4/V6OXz48E0Du256WTTHv1kgPDU1xYULF+7YgX01Y98tcrkc+Xyebdu2rasR4t3oEsrlMseOHcPlcnHo0KG2v2k3BN63GzOfz3Ps2DGi0Sg7d+5EEISOzl4Oh4O+vj76+vpaAsx0Os3k5CTnzp3D7/ffNPvxIGc4TNPiL//xJGeuzlOo1qjZJiGPG9EWifu8VHSdUNDFdKZAX8zPlcUsAxE/s4UiblVGdkicmVtg10CcE3Pz9Hg9xENejs4m2eDzoMgi5xZT7IrHUB0SuUIdv1NDVURGfAEWqhWq6PgUlXjEg6KIvLAwg1OUeCzWR1IrcrbUCIIfifRQNzVGdYlrtQI+2+aqXUG0Yas3QtDt5Gh2qqW5OBju41xhjt2BPmqGTrlU5ER+qkUkHKJE2OnAKXrodQS5Ul4EbI7ml4J5AZsRT5CMXmKnd5iiUSejFZirL5JZ5snR4wgwXW/4TYi2yIArTkjxktbTZLQKmetZhojiZ7be7kvhFBVMKlhYjQyGEsayQRFsxmo3ZEtcA0zcsE0SJGyh3lYeJSIx4hxFECz61M0UjBw5I0PJnGLI1cf8DVkPnxigQHspFsCAY4QFvZPI9Ds2kNTO4hRDeKQIkuDEtC0cosR8/QKmXAWq128yGJr5Xs4tnG+R+NXWyFuWdd+R/eaz/H4jQrA2MbuiKMRiMWKxGNAQUWezWb7whS/wS7/0S8iyTCwWIxwOMzU11dH2/Vb48z//c5555hmeffZZHn/8cT760Y/y5JNPcvHixRVLu59//nne9ra38f73v5/v/d7v5bnnnuONb3wjx44dY9euXQB86EMf4uMf/zif+tSnGBkZ4T3veQ9PPvkk586dW1UTnFKpxD//8z+ze/duXv/61/P617++9bt7ocN7paTq4cD9txzRBVSrVY4cOUImk2mV/XTTIwPWTjimp6c5cuQIAwMD7N+//5Yvlm67ma90Ds0SnMuXL7N//35GRkbW9DDqBuGwLIszZ86QTCbxer1rIkK3QvOldafzXlxc5IUXXiAej3PgwIGOv2m3CAesHPDPzs7yrW99i5GREXbt2rWql3FTgLlx40Yee+wxXvWqV9HX19fq8Pb1r3+9pYlaTlweNMIxNpHivf/jH3nxwjSmYKG4FUJhD6liBdWlMJHOY8sC05kCfr+LmXyRDT1BJvMFRmMhslodn0Nlc2+EiWyBvX09lDEo1jUODw8wU6+Qqdd59fAgF/MZXppLsjUSwRQszqQWSZZLbIqG8Cgql/NZFEVkvJTlYKyXhNvLRDXHVLlAUHVyOD7ATK3A+WKaq7UCB2K9VFSR3d4YHlHB0Kp8a5nXxr5AAgsbUZA4lZsjr1cpSnV020REYKu3h73BPuZqBc4Wk5wtzhF3eJmoLq3k9zqCPB7aSMnQWKiXOFWYYqKyQL/L10Y2VFEirDgYcvay0TWELDqYqWVY1FIk60tZgIaPhkrNWhKY+yUPOzyjBKQQPilMSityqTwBgtVBNlyik5LZ2T1qo2sYzdIYcIwy7NhCVB5AxcuCNsu16hUma1fJGQ3SNuIa6SAbABE1gCm0k3BFUKlYDdG9jEpIHiChbmfAsZeyWcMmQM4oMVOfYLJ2Ec2qMFs/jUn7OAOO3bx6y/fhdruZnZ3l+eef58iRI1y+fJl0On3Ld8f9WFLVnO/9Ni/bttclI+R2u+nv7+fpp59mcnKST33qU/h8PiYmJhgZGWHHjh387M/+LP/wD//QciC/GX77t3+bt7/97Tz99NPs2LGDZ599FrfbzR/+4R+uuP/HPvYxnnrqKd71rnexfft23ve+97F//34+8YlPtM7xox/9KO9+97v5vu/7Pvbs2cOf/MmfMDs7y+c+97lbzqX5fD516hRvfOMb+cmf/EmuXGmUBDbfc5/97GcZHR29k8v1CrqAT37yk2zYsAGn08njjz/Ot771rZvu+/u///t8x3d8R6sc8HWve13H/j/6oz/aMpBu/ut2NuuBzXCsFouLi5w6dYpEIsG2bduQJAlZlruaGYA7JxymaXLu3DkWFxdXLW6+1xmOarXaKsE5dOjQXWki1ptwNMuDbNtm69atzMzM3P5Dd4g7XbW3bZtr164xNjbGzp076evru+m43SQcy///0qVLTE1NsW/fvtbq3Vpwu+xH0yCqWCwSCoVe9k4ut7u+umHyuX86zfFz04hOCcmCdKWK1+ckXawgqCK6ZeL3O5ElkaDfhY1N1O+mbppEfC6qloFTkUFq9FtRFYmcrpHweDCxuVrIMuL1YolwJDnD9kgUhyxxOrOAZpoc6EmQNqp8M9m4dw/19VMxNXL1OlesDD6nildS6XP7qJsGx7Iz1C0TCYGD0T4KRp1krcRcrcTecJxzxTnCiouE7EHXNc4VkxjXyYdbknHKIBsKm/29jFcyeBSFl/ITrWvikxzY6ERVHyHFy3y9iFd2cDR/pU1WvTcwwLnSOAD9zihBxYsiwpni1bb99vgHuHRDedVO3xCT1RlGXINItshcaZGYK8yp0vm2/XySm/QNJUwAG1wxxmtXEWyRmBrHLflQBYWF+hQFs0ROX/IO2ezewGStXV/hFF1kjU7X7wHHMHP1pX09YhCPHMYv+6mYBQzbQcHIUNaSQJIh5xCLeidpkYXOhS0BgcPBHyGgtpfwZLNZ0uk0Fy5cQNf1loFdJBLB7Xa3vkP3I+FoPstf7u/5jehG5kVVVV772tfyD//wD3g8Ht773vfyL//yL3zhC1/gp3/6p5mamuIb3/gGjz76aMdnNU3jpZde4pd+6Zda20RR5HWvex0vvPDCisd74YUXeOaZZ9q2Pfnkky0yce3aNZLJJK973etavw8EAjz++OO88MILvPWtb73puTTfD8ViEZ/PRzgc5s1vfjPPPfdcK3tSLBa7onNtn8crGY5b4U6zYl/5yld429ve1rJ5+OAHP8jrX/96zp49S39/f2u/p556ij/6oz9q/dzt1sfftoTDsiyuXLnCxMRER7C33i1rV8KdEI5KpcLx48eRJOmOfEDuhYajOX46nebEiRMkEgm2b99+1y+89SQc2WyWEydOEI1G2bFjB+l0uiuZnzvJcCwXY99Mg9NENwT0N5Kjm+lHbsRa0ufL3X+b2o9UKsXFixc5ffp0q/tLJBIhHA7f1Jvl5cLlqwv8zZfOkkwXMCRQbKgYBk6PA1sEr99Jua4hqiKFYh2/z8GF6TQ7N8Q5M7fIUDRAydCZyOfZ0R/n5Nw8cZ+boNfFqeQCO3qiqIrEYq6C2+dGFiWiLjdlXWeyUmB7JMZitcyiXmGymGdXJE7QofK1hUYA65FkdkfjzFVLjBUybPAGSBtlAqqTQXcQC4vj+Vn06/fQFn8YRRLZ6uvhYmERWZQwJAPDatwLMclFTJBJ1irk0UnmZ9jujXGqsBQwD7vC9Lp8TFTTTFSzTFSzxFQvC1q5jURs8cTRbZ3t3iFm6xmmaml8spMLxfbge7u3v0U2RET6nT2EZC8FI0vVMhirNHxCHIJCWu/MWPQ6g23tcl2Ck2HXAGASVwZZ1BaZqS8ikqLfGaFgFto+P+Do7yAbAAPOBFP1ZeVRtkhIiuIUXPQ6dpAtZ6lKJTJmGVtwkNYmMWknEb2OIeZXMAQccGwktYLT+DbPvyaiDrVtu7GDUqVSIZPJkE6nuXr1aqt7XDgcvi/F2c0swv1GOJrvr26UepXLZeLxOMFgkDe96U2tTk5jY2MdDV6aSKVSmKZJT09P2/aenh4uXOi8V6ChO11p/2Qy2fp9c9vN9rkdkskk27Zt4zOf+Qxvectb+Lf/9t/yx3/8x3znd34nhUJhzVqV1eIV0fitsTwrBvDss8/y93//9/zhH/4hv/iLv9ix/6c//em2n//gD/6Av/qrv+LLX/4yP/zDP9za7nA4VtVVdL3wwBKOWz3YarUaJ0+eRNf1FTsndTtQv5NjLCwscOrUKfr7+9m6desdvUia7X27heb4V69eZWxsbMVOWWvF3QqwoREcT01NcfHiRbZs2cLQ0BCCIHRNH7LaDEczEyRJEocOHbrtqsF6dL+6EcvnWqlUOHbsGA6Ho0M/0g04HA56e3u5ePEiTzzxBNVqddXaj3sJTTN47q+OcnkqhSnaaKKNx+ukqmt4fE4WC2WcboWaplO1LARNwJRs8rU6/YkAU7kCuwbjvDQ9y87eOLIqMpbOsH8wwYn5BUqmzqEN/Xxzdgbbttnf18vlbIpMWWNTKEjI42QuXeJiJkVvwItXUTFMC1US+drCJCGHky3+MHmzxtfnG8F2j8tDzOPGYyicz6VwSQopvYRuWQx7gvS7fFwszzNWqQHgkRScskjJgEeC/WS0ClGnixP56dZ1iEtOJqsLRHERUtyk7CohxcmLuSXBtiKI+BWZqVqeoOym3xlBEkRmtCSFWqW1X48aYLrWHuREFB+6XWu4gls607UUc/UsdbtERs+372s7SZm5tm1bPENk9BQbnBsQkckbRQpmiXltjqJZbNt3s3sD4zcIxWVBRrdL3IhepY+KWaZf3YoNlM0KWT2FVwlxpXY9+FsWp/okNxWzPcsiImKuMLYsqFTMzmBPEZw8Frj5ijM0vrsejwePx8Pg4CCmaZLP51vu2eVymUqlgqZpre/Qy01A7kcSBEuEoxvPmEqlsmKXqo0bN677sbqF5nunVCq13pmf+cxneOaZZ3jzm9/MX/zFX6Dr+rp6RK08j4dHTN08z0KhfVHE4XCsGCusJSt2IyqVCrquEw6H27Z/5StfIR6PEwqF+K7v+i5+/dd//a6sA26HB5ZwwMqlKE3Pimg0yoEDB1bsnHQvCcfNAurl3hW7du2it7d3Tceo1WrrMd0VYdt2q0vR7Vbp7xTLswVrWX2yLItz586xsLDAgQMH2r5I3SQct8tGZDIZTpw4QU9Pz6ozQd0sqcpkMpw+fZq+vr47JrTrhRuzH+l0mkwm09H56l5mPy5cnucz/+comm2jOCVquo7H52CxWMYSIeSUqVoGUbeHckkn7vdQ0OpEfG5sCSRBIOp3U9I1enxeyqaOz+lAkkWu5XJsiYaxBJujyTl2x+PIssjR+TkCisL+cJiL1QKXi1mCqoPtPTHOphe5pGXYF4+T06s8EklwPpuibOlczKcJqk62BqPMVvO8mGoImXucHizRYps/Rlarkq1XMQSdnN54JqiiyP5ILxmtymytwLHcDPtDfW1kI2Y7GA1GmaxkWNCKLOhVNoheTpem267XgeAQum0gIDJZTZHXp9nsi1AwlsiGLIi4ZJFMTcMjOul3xhARMYQa49X2sqXdvgEuV8bbtm129jFx3YgvLDcMAhVBJqUvkNHLZPSl2vjt3iGu3dAuNywHmam3jwkw6hpiqnaVqJLAKfob5MKoUKdOpr4ILHngBOUQs/WxjjEGHMPMa50ZkiHnRua08x3b+x0bmNfOogpe3FIERXADEpvcj+GWgh373wqSJLWyG5s2beLo0aN4vV4qlQozMzOtznLNfbpd/rIS7scyL1jqUNUNwlEul1ulo6tFNBpFkiTm59uJ6/z8/E1XmhOJxC33b/53fn6+LY6Yn59n3759q5pXKpVq65r40Y9+lEgkwo/92I9Rr9e7XtvfIBwPR4aj+aq/sdHAe9/7Xv7bf/tvHfuvJSt2I/7rf/2v9PX1tZXdPfXUU7z5zW9mZGSEsbExfvmXf5nv/u7v5oUXXuha84cHmnAsh23bjI2Nce3aNbZt28bAwMBNHzKyLN8T0TisHFDX63VOnjxJvV6/I++KG9FNDUepVGJ6uhF0vPrVr173QLD5clpNy8Ib0dRrACuWoHXT4+NWY09OTnLx4kW2bt3K0NDQivvc6ZhrRfPeP3HiBDt27Fi3zNSdHv9G3E3nq7uZS5PQaZrB//3HU5y5MIspiwgCpMs1bBkUUUV1KTidMjo20aCHimkgiiI6FovFChv7wpycnmfPcA/T+QIVTWdTb4STc/MMhQO4HSpjuRxRnxtREnEpCgYWi+UKu2Nx0uUi58s5gk4X28MRcmad5+emEYFHexLkjDpjhRwCNvviPVQMnb3hHsaLORbqJaYqjVWxrf4IPofC2dwC0+U8DlFiyO/jainDZl8Ut6wgS/CN9HjrOmz1RTlXnGXAGSTm8DJbyaGaBkdzS7qNfmeAtFlCMAX61QAOU0QwDF7Kt5cM7QsOcLa0NLZgC+wPbKBu6eCQmK6mOF+aYW9gkCvldrKx1dPfTjZsgT5HFFmQCethag6dBT3Pgp5ns7uPjJ5r+/wGZ28H2QAIKi5m6ikEWySsRPHIflRRJW+k0WyJmXoKaJRrbXaPMlmbXmEMD3PaYts2CYm6me3Y1yl6SOsT2LaAVwrhloJIghNRkKmYWSBIwSxTMBsE0SOF2On91x3jrAXhcLhVftX0j0gmk1y6dAmXy9UiHyv5R3QDa3mO3wt0s4XwWoz/VFXlwIEDfPnLX+aNb3wj0Jjjl7/8Zd75zneu+JlDhw7x5S9/mZ/92Z9tbfviF7/IoUOHABgZGSGRSPDlL3+5RTAKhQJHjhzhP/7H/3jTuTQrDAB2795NMBgEGuW3oijynve8h97eXt7xjncQjUbv6DzvFA+jhmNqagq/39/a3i39xAc+8AH+7M/+jK985SttsdJybc/u3bvZs2cPGzdu5Ctf+Qqvfe1ruzKXbwvCoWkap06dolKp8Pjjj7f9EVfCvcpwQOeDuKk3CIfD7N+//468K1Y6RjcC66YLdigUAujKqvNaOz41Mwg3uq7fOHa3uiOtNHbTzXx+fr4j27IarHeGozkfgL1793asjNxL3Oq8VtJ+dDP7cenyPH/3hTMkMwUMGxRFRpQl3D4VS4CypqOqErO5IvGwl/FUjtHeMDOLBTa5o0gOkYVimZ1DcY5Nz7FnIMFEIc/Z+UX29Sc4lkxi2Tb7+nu4mE2TrdXYl+jBECymS0VESUCWBAYUDxPVMn63g5lSkQOxXgQBjmeT6JaFU5J4rKeXyUqeiVIeWRTYHAwzUylyINxLulYF0eJYphHIisD+aMNrI+70cqmY4kCkj+O5pYB6yBUkpDqpWX6mqjmmqjkeCfRwprzU9tUtKvS7/cQtL5PVDFNankFXkKxYgmVf017LxdnSOB4c9DkjCKKELAgczbeTgGFXlMvlibZtQdlDSlsgrkbwy350y2KunkaVZC7WJhpvpOuP5q3uQa7Vxts+7xAVanZ7KUJADtKvJtDRiCpDLGopZrUMaBk2uHqY19pXh/2Sj7kVMiFDziHmVtBi9EkDLJhXsG0BnxzCI4WQBAdOUSFvLFCzMmSMAhmjMa8NzlEW9amOcQ4HfgBFvPugwrKsFhEXBAG/34/f72dkZATDMMhms23+EcvF5x6Ppyur/fd7hqMbWKsPxzPPPMOP/MiPcPDgQR577DE++tGPUi6XW/X5P/zDP0x/fz/vf//7AfiZn/kZXvOa1/CRj3yE7/me7+HP/uzPOHr0KP/rf/0voHEP/OzP/iy//uu/zubNm1ttcfv6+lqk5kY0Ky9kWUbXdd785je3frc8JvnxH/9xvv/7v/+B6zb4IKD5vb0d1pIVa+K3fuu3+MAHPsCXvvQl9uzZc8t9R0dHiUajXLly5RXCsRIEQWgFoMFgkMOHD68qgL8XhGP5Cj40vuATExNcvny5TW9wt8dYz/NolnlNTU2xZ88edF1nbq6zg8t64E4Jx3K9xtatWxkcHLzp9eumx8eN5KBer3PixAlM01xz5671JEiapnHixImWtmc9y+DuBGu5t7uV/TAMi89/6QqpvIkoC0gOGYdLoVTX0OoaqlNmoVChJ+YlW67RG/NTrNfZ1BchX6uxMRGmYNSJ+zwIsoBmmoxGQ8yWi/QHfFjYnJifZ0c8iiSLHJmbYWMoxM6eGM/PTmPaNjujUXRMLmZLSAIc6OvFsG1sGwp6nclqnqjTTb/bhyzTEoyDzaGeQQp6nZphcDw9x55onFO5JG5JZqs/jksV+WZ6SVC9MxjnVH6GsOpi2B2hrNfRqPPiMmfxPcEEZ0ozyLbIFl8CEBBFi5dyS/u4JQUEo+U2LtgCw+4IYcWJXFeY03NcqCTx2Aqy1P59c4oKBlXM60wlroQIKQEcksB4dY7pWg7IAbDLO8SVG0z7ApKngygAbHb3UzWrhJwx6rZOWstQNUzGrQkqVrVt303uYaZqnZmQmBpkut6esZAFmaqVa/3sEQP4pCC1ooHhBp88SN7ItEwBw3KUOXMem/bzjigJ5rROj46IMsAO73d2bF8LbhXcN/0hYrEYtm1TrVbJZDIt/cfy8qz1LGG8nwlHN+bV1MatxWn8LW95C4uLi/zqr/4qyWSSffv28fnPf761MDQ5Odk258OHD/Pcc8/x7ne/m1/+5V9m8+bNfO5zn2t1kQL4hV/4BcrlMu94xzvI5XK8+tWv5vOf//xNG9AIgsBnP/tZwuEwr33ta3nxxReZmpoikUjg9XpbGiK3243P57urhdHVwL7+72HAnZ7nWrJi0PBm+Y3f+A3+6Z/+iYMHD972ONPT06TT6TWV968WDyzhsG2bq1evrimAlySp6yVVgiC0iI1hGJw+fZp8Ps+jjz7aSl3eLdaTODXLvDRNa3Uxmp2dfVmdzJtY3jL44MGDrczL3Y67Fiwfu+m0HgqF2LVr15pX0tYrw1EsFjl27Bh+v59HHnmEL3/5yy/7ytRaj79e2Y8rYwt86k9Pogs23qCPfLWG6BCxLJOyrhMIudFNk56Yl7puEA66yVaq+DwO8vU6mmXilFWmF/M8MtLHeDaHKAj0hLxMLRQJe1xIiogqS1iCTVGrsTUcQVUkvjk3w65YDAGBa6UsuXqdAaeLgMvBiwtzWLbNBl8Aj0NmkxLifDZFv9fLkdQsPkVlayCKJAp8bX6JBByMJSiZGvtCfVzILyKIdhvZGHL78Sgym7wxLhdTZOrT7A7FGSvklvZxBVFEkS2uBGPlFGcKSfaH+jhdbDe52+SNMFFZZJu3HwGBqUoGRRI4WVo6ngj0un1M1NvLkEbkEAgCQVeAZD3HbD1PRPVzptTuHB5V/EzVO0ubehwBxqvTRNUwATmAjYAkCFwoj2HdEORv9Qx1OJK7RBdprVO0PeQcZLq+tK8qOAjKUaJKmBplFMFDzsiQM4rkjCJRMcacNcMNh8QrOSibnc8YlyhRMjvv+VcH34oorE/gu9rgXhAE3G43brebgYEBLMtqic+Xt69uko9AILDm4Px+Lanq5rxKpdIdaziaeOc733nTYPErX/lKx7Yf/MEf5Ad/8AdvOp4gCPzar/0av/Zrv7bqOXz1q19ldHSU1772tXzmM5/hE5/4BJFIhFqthmVZ2LaNoihks1k+/elP87a3vW3VY98pHsaSqjvBnWbFPvjBD/Krv/qrPPfcc2zYsKHVrczr9eL1eimVSvz3//7f+f7v/34SiQRjY2P8wi/8Aps2beLJJ59cv5O9AQ8s4RAEAdM01xTA3wsfDmgQgmKxyPHjx3E6nRw+fHhdy5PWq6Qql8u1skTLy7zuhbHg7cavVqucOHECWFmvsRK6reGwbZvZ2VnOnj27Zqf1lca8GywsLHDy5Ek2bNjApk2bWgL31Y7b3H89sZ7j3Wn2wzQt/v4fTnPi9DR128SUBKqmga0ION0OqoZOJOJlNlsgHvUxNpdmsC/I+dlFNvdHOD0zz+6hBKeTeQRZZEMixJGJafYN9nIlm2FuJsnegQSXsxky1RqPDvaSqVe5ksmyO9EQiYedLhYrFaq2zqDPT8xlIFgGZ4pZXJLMnlicmWqBE6nGSv7eWJyCUWNfuCEYBziSagTjUaebbYEIY+UMyWqjK9KOYJTThTlkRLb54zhEmRkty9HMkgfNo+F+juen8Eoqo56G78qinudEbmmfLd4oZ4tLQX+Pw8+IO0JWL1IzTc4WGkRkf3CAM6X2Eqk9/sFGeZXopN8VQUREMC0uaVMs7x4bljyMV9u9cQQgpDqYqjUM+BRkfKaXwUAPRauIKrpIajmSWg5JEOl1+DvIxrCzr4NsAAw544wvz27YAkE5hEdyMeTcgmbrFIw8eSOHZFbImUkMu73jX4/SS0bo9PPpV4eY1zozJ33qMIt65/ZBxw5G3Y90bF8r1ppNEEWxZQS2ceNGNE1rtd49c+YMlmW1ic/vpDPR/ZzhuJ80HPcTfuVXfqXVsfBnfuZneMtb3gI0Fh/r9TqapqHrOul0msOHD3d3Mq+kOG6JO82K/e7v/i6apvEDP/ADbeM0hemSJHHq1Ck+9alPkcvl6Ovr4/Wvfz3ve9/7uurF8cASDoDNmzevKbC8XQep9YJt25w+fZqRkZFWELieuNsMh23bTE9Pc+HChRUD525mClYzfrNcLh6Ps2PHjlW/0JaXa633S1AQBCYmJkilUndtnrd8zLVe5+Xmgrt3726r6exG96s7QbeOf7vsRypV4/SZAsWaBYqMrYqIkoAlgcvhYDZTxBtwUi5VQBaoGQaBkAvTthhOBKmZBruGehqu3/EwJVPDIUns6u/hQjrFxkgIRZH41uwc22MRtvVE+cb0FB5F5onBPs5nM2RrNRJeD4NBPxOFPKdTi+zv7WE8V2KnL0jRtrhayrJYq7TIR7JWYqLUaBO7L9rDiewse0I9mLaNLAq8kJpquYYPun3IEuz293KlmOF8YZFNgSAL9aUWrXsCCUzbYpu3l8vFRU7l5tgRjLJQX2ol60MhaxQYdkfxyU6StSIOQeJEfhzdXnq2bPbGOLcssyEjssWbAAH6nTFmamkulGcJyR4Q2j2OBMBlQ+kGt+3dng0Ygs5m9yh5vUyynsKmytXaJGWz0rbvVvcQV6rtXaIUQaJudbak7VcTlK0yw86N2AhUrCoZLUNYDXOx0tnVJaYGmF7mft6csyTajf9p2y5g2O2teKHRHtegfbsqePBIIV4dXN+V4fV6rqmqSiKRIJFIYNs2pVKJTCbDwsICly9fxul0tonPb1VWc78Sjm6JxpslVd32p+gWbNtue1cMDw8zPDz8Mk7o4clwsMbzvJOs2Pj4+C3Hcrlc/NM//dOa5nE3eKAJx1oDeEmS7toD4lawLKvlFrtp0yY2bdq07seAuyMEq3E2v9dO5k3Yts3k5CSXLl1i27ZtHe3jVjNuc5z1hK7raJpGLpfj0KFD67a6tVYNx+3MBV9uwnGv0Mx+9PQk+L9/fYyXTi2iY1G3NEy9jgHULAu/KqFaAi6/A0WVEFQBTBFZFanXTEION8lCiaDXRd0yKVTr9IR9pHJVJNnArSg4ZRlEgZKusSEQwKFInF5c4EBvL5ZgcyQ5h1dVeaK/n6vFDN+ca6yQv2pggJxWI6NpaLaN3+PAgcz+aC9VU+dUdp6q2UgJ7AhGUSQRr+LkVHaBjf4gM+UCFjZ9Li9DniCztTxncktlTAeiCU7kZ3BLCpu9MZySwpnCDFVzKcg/GO7jZKEhZnaKMsOOEGa9SsrSuFJqZFQ8koqoym1kwy87KZgl4o4AEcVPzTSYr+fJGkUWKks+GgI2caeHq5V2Ufdu/xAXSuPElBBe3Gi6Tt2oc7E8jim0f/9jgod5sz34j6khxm8QjwNscg8xXZukV+3DJbkwbZuiUcZAZ/GGEq+A5F+xZW6/o4/peqdQfMg5yuwKbXCHnaPM1ZdIi0Pw4JVDBOUwhl1DUULUrAolM0fRrNLvHCLhHO0Y527QrYUUn8+Hz+djeHgYwzDI5XJkMhmuXLlCrVYjEAi0yhi9Xm/bu/N+LqnqBhGq1+sYhrHmkqqXG4Ig8KEPfYhkMkkikcDtdrdEzH6/v1V64/V6cblcRKPR+87U8RU8eHigCcda0VypMQxj3TswNUuAbNtufWG7hbVmOJrGdIIg3LJMqdslVSsRDtM0OXv2LOl0elV6jZuNC+u7ulUqlTh27BgAW7duXddUepMY3AkBbrYGFgThpuaCLzfhuJfHn5vJ8tyfHqFsGDg8Tuo1HUmR8XlVsqUiTsGmVCkhWTJVw8aDk1JNxxNwMpHOEw15ODWVZMdQnJMzjRa3Qb+LI+PT7B3sYbZU5nwqzWPDvcxXKoxn8xwcSmBio5smdcsgpdXY29PDXKnEtVKWdLXKvlgPLlXm63PXA31JYJPfR1WAC7l0Y2WZOqZlsS+cQJVEzhQWqBQbRCHh8lC3dHYGYxS0OlOVPB5VYbq6FNQ/Gu1Fx2SnL8GlYoqrxQxeh9xGNnYHehivpNjt70ezTMbKKVRZ5Gy90Fb6tNEb4kKp2cbVwaArik9RGK8sMFMvMHP9uHsDfZwvt7uJ7/INceG6m7hgi/Q5I0RkH5pZwyW6mavngTwCsMkXJVdr/+73WH7mlc5Mg09SyBsGDsFBVInglFyookxKn6dimZTrS1qNrZ4NXKt2EoW4I8Dk9dKtJkQEbOod+yqCQsFcIiySLeNXorhED5Kg0KNuo2pVKJp5ClaFqp6lahaoWO1ES0TiO0Pf3zH+3cK27a5nE2RZJhqNttqhNsXn6XSaiYkJRFFsE5/frxmObhGhcrnhCfOgZjgAzp07x9GjRxEEgXK5TLVabSulal47Xdc5efIku3fv7tpcHkbjv4cRDyXhuLGD1HohlUpx8uTJlunb0aNHu54huNPxm3NMJBK3Naa71yVVTSIkiiKHDh1alV7jZuPCnbfcvRmabvDDw8MsLCy87FqHfD7PsWPHiEaj7Ny586Z/w5ebcNwL2LbNV750nm98cwzNsjFFkBQJxSXidjvJlisIqoym6xiqg4DXxWI6h8fSKehVXBqIko1gW2wbjDFXKLGrP85ksUDU4+axkX5enJljayzMSDTI81PTxL1untjQz4tzs+iWxe54DCSB+VKJmq4T9jrxOxzopoUkCzyfnCaoOtgcirBQznE83wiqI04XYY+THsnDpVyamUoBS7SoGDoisD0YwyGJnM0vMFNplOvsi/ZwKpdEFgS2+mOEHS5eyk5Ru95JShJg0BviQrFhZhd3eBn2hCgYZfJ6nZP5BpnYFUhwttSuT3gk0EfRrLLbP0RerzFRSaNKIsfy7RqJnb7eDrLRowaomTV2eDZQtXRmqmlmahlEl3Xd/2IJu3xDXK60ZxWcooouLZmYSpaE3/YRVXxYlkVQipLWc0xcd/oedcdJ6+2dpnySh7kVBOiDjn4ma506j1HXCFP1S62f3aIfr9QwHKxZVRxCmHQlRUWqUamn2OQOMFbtLMkadAwxU+80/9vj+w7Cyq3bVt4pmmLeex3cu1wu+vv76e/vb2moMpkM09PTnD9/HkVRcDgcZDIZgsHgfUM+ukk4mqL8BxW/93u/h2EYmKaJaZotomEYRiubX6/XKRaLbN68uatzeUU0/nDggSYcaw38lneQWg8sNx3csWMH/f39QPfF6c0MxGpWxptdva5evdo2x9uNf69KqtLpNCdOnFgVEbodmtfibgnH8r9rUx+RTqe75gq+mozMnYjV75RwdINIdZPwpFMl/vIzLzI7n0MXBVSPAqJAsVpD8SjUahoV08LrkhBsi0TER92yGEyEkBSRkCShuGS0bJFKrYJWtahbUDVkXLKMJIsUdI3BoB+HKnMtl2Vfbw+iLPD8zDRbI2GiHjffTDaIR6/Xw0DQz6nFBWq5LI8kesjWqzwSS3A+u0jV1piolVEQ2B3poYLOqUyDGPhkBacqYdkiByN9TJXymJgczy61hj0Y66VsaOwLNnQbmXqVqVqmRTYAHgn3sVAv8EhwgLRWZr5eZEHLM13NtfZJOH1MVRsr+E5bYqO/B5/i4FJpjrxRBRqZgCFXiEs3kJLwdWM8wRYYcEXxy25qhoFBnbHKQtu+e/yDnL+e8WgiqviYrLV7VIi2yHbvMMVaCXddw3DCQj1DSdComUnqVrsmZLNrgIkVyqN6HRHGa+1ERkTAZMmhHFvArwTxiX5EFHrVrVTMGjkjS1qvoVsl0vo8un39mNe/jn7Jv6JHh0vwsKh1khlZUHlV8I0d2+8Wze/TyxnQL9dQjY6OomkaZ8+eRdM0zp07h2EYHeLzl6scx7KsrrR0bQrGH+QyI4fD0VWB8B3BFtasbXjg8LCc5wp4oAnH3WC93MZvZTrYbQ3ErdzMl8MwDE6dOkWxWFyVMWITTULQLa1L8/qMj49z+fLlNek1VsKddmhaCc1WxoVCgSeeeKJVq9uNIHo1mhPbtrl06RJTU1OrFqvf6VwfpGzI1/75Al/76kVMUcJSJSRZQLMtNN0Ep4TskBtddzxuMsUSDqdEslAm4HOSKldRZRFRkRhPFdg8GOXk9DwDQS8OweLMfIYRv5P5Qo25Sp0DAz1otsVCqUIi4KVmGmwMhhFFkSPzc2wIBPCpKhm9yreSs0iCwKO9ja5VY/kcYPNIIsFCpcR2d4BZrUoJjYvXMx1uSeaReIK5aokrhQwz5SL7oz0czzY8cEY8IQa8Ps4XFkhrDa8Jj6wgyzalaiMwHvYEGXQHGK+mma0WWiVXj4QSnC4stbtVRYl+lxcBH9l6mclalrFyirDDcZ1sNOAQZQTBaGk5BFug3xliwB0gb1SYMtOMV9JAmn3+Qc6W2jML/Y4wlyrtWRCAiMNFTjfodySQBIWSWUMRRE4UrmBzXaR9vcppgyfGWHW87fOqLTNXnW0RgSYGnIl2smEL+JUAA44Ehq3jFIOUzSoZPcOiViTkjnGh0umX0eMIM1nrdBWPOSJM1zMd23sdPczUL3ZsP+j///DJd14Oejs0F1HulwwCNMTnDoeDYDDIhg0bKJfLZDIZUqkUY2NjqKraVn7VbU+H5TBNsyvGtaVS6YEnHDfi/PnzjI+PU6/XsSwLj8eDz+dDURQOHjzY5QY7D0+p0cNynivhoSUc67F63/Rh8Pv9HDp0qNVibj2PcSssLw27GeFotuV1u90cOnTojh6+ywPhbjxsBEFgcnKSWq22rv4kcHflYJVKhWPHjqGqasc160aZWfPa3izgNwyDkydPUi6XWx4pqx33203DUSxW+bM/fp5UpoIhiVQNAwMLp9uBjY0sK2BbJHMlQmE3U6kcYb9KslBh81CcKwsZNibCnE+mGPGHkB0SyWKZAxv6OJmcpz/g49DGAb4xOU3C62JH1M9LyXmwYUfUz1yxyGy5wpZoGFWRGPL5mS0W6Ql6ydRqHOxpuIYfSyUxLAsJgcP9gyzWK8yUy8xgsyUY4GI+zRZ/BI8sg8QNXhu9TFVyHIj0k6yUQBB4MTND/XomQwRG/UGqhsb+UD8zlQK2bXMsN9WW7dgf7uNUfhpVkBj1RHGICooEx/PtRGCLL8rZYnsmY4c/TlorsNM3iG5ZTFczhBxuXrzBTXzQFebiDeVVsiCgSDamYSEj0euM4JXceGSVq5UZckaFRa1yfV+RhMPXIBvLMOJKdJANgI2+PsZuMAlUTBmxZtMnDyPJMhW7RkbPUTVMrloT1G4wBAzLISZXaKUbV2NM1TqzGFE5yky9UxcSkEIk651tcB2imycC39OxfT3QfPbcb4FuU8MhCEJLuzg0NIRpmi3x+dWrVzl79ix+v79FPvx+f1fPpZslVQ9yS9wb8fWvf52f+qmfYnZ2lnQ6jcPhQNO01vO7Xq93xDfrilfa4j4UeKAJx908qO6GDCx3vb5VaUu3CcfyDMdKmJub48yZM23eDGsZvxudPqrVKoVCAUVROHz48LqndtdKDJqlXX19fWzdurXjvLvh8XErwtEkPw6HY0VSezu83FmL9Tz+6WMTfP7vTlPVdUxJQpREREnE7XSQr9aomgbBkIdSWScQbLS57e0JUKlWiQVdVA2DWNBDxTTwOFUMwUKWBDwOhXStykDQj9ulMJEvsLs3jqKInEousLe3B0mEF+fnkYGNbieL5QKZnI4qiezpjWNYNjNGgaJW51o5R0BxMBIIosgSX0sulRDt9AdAEOh3+7iUT/NoTy9H040MhE9W2R2Os6iVWahWmK9WiDhc1AWtRTaa2Y7LxVSjBW45i1dWkWWljWxs9IQbOhBvL2OlFOcKC+wNJjiebycWo5KvRTaCspt+V4iA7OByeY6MXm6JxPtcQa6U240BFaFRsGTYS9+HgOxhq6eXqq3Rh8RsLcO1Soqg7AZBo2K1i7S3ewe5WL6BQAgSul3mRvSpMYpGiQ3OEUQkqpZORsuRcIaY0Mcb4vdlSetBtZ9JY6JjnKDipXhDJywAtyiTXyEacMsqRb1ze1jxs1DP4ZfiOEQvkuDAFgR2eR7FKXUnGLUsC0EQ7qsMB9w8yy5JUssfZ/PmzdRqtZbz+dRU43vRJB+RSGTd3wPdJhz3G/FbC2zb5ud//ud57LHH+NCHPsTo6Cj/7//9P6anp/mVX/kVfvM3f7O7ZOMVPDR4oAnH3WCtbuPNLkqpVOqm7WSXH6ObhKP54rnxGJZlcenSJaanp9m7dy/xeHxN46+3+LqJZlCvKAqDg4NdqSO9U8Jh2zYTExNcvnyZ7du3MzAwcNNxu6nhWI7bkZ/boRtzvROs18tYqxt87rkjXLw0jyEIKF4VC5tCTcOUwSfKiIpIKOChphsEQm6SmQI9PX4uTi/SH/VwLVNkg9tBoa6Rz1bZ2B/l5HSSzYkIgixyMbnIY6P9lA2d2UKRnoAHCxu/w4EgCVzMZDjQm0CzTC7nM1R1gxGPG1sweTHZKH0a9HqQJIGtoSjnUotY2LwwP40AbA9FCbucPL8whXk9qD0QT3A8PcfOYAxJEKmbBi9lZqlbje+zQ5IIuRxYtsUGT4jpch6/qvKN1PjSNcZmxBfgXHGeAWeAuNNHzdRJaUWuVZaC6l6nj/Fqe6vYHsWLbVns8Q+S1spMV7PYwIxgUDSWBNyyIOCUIKW3Py93+vrI6EW2e4cxbZtFrYAqSBwvjrWREIA+V4Arlfayqx41yNUVyq62eQeYrs0w4OjDKbowsCjoZWxBYLq2SFNjAuCRXCyYnY7iQXxM6ZMdPhoDjn6map0kZNg5yNwKWgy/FqCiFIkrQyiCExAxbBNFkJmtT1OxoGDlgNz1+fjYm3hVxzjrhSbhuN+w2kUpp9PZMvC0bbslPp+dneXixYu43e4WAQkGg3dNFl7JcNwe5XKZS5cu8Y//+I+oqopt24TDYfbs2YOmabz//e/nu7/7u7s6h1dE4w8HHlrCsRZBd7lc5vjx461V+dt1UVorqbkT3Ehq6vU6J06cQNf1u/aKaKbI11NcPz4+zpUrV9i+fXtXBNhN3EkmYnkr3tuVdt2rDMfk5CQXL168JflZDR70DMe1S/N87s9fpFLXsWQJW4aaZSLIIqpXRVIlcpUq3oCL6VQef8BFPldEcEgsFsok4n7m8yWGo14uzWfYNRhHEy1m8wUeHe3jhckZEn4vj432cWRqBpci89hwH+cXU+RqdQ4O9WLaNrplkanVyGoVtkWipCplPB4np1MLOEWJTT4fyXqFiUxjZX6zz89kKcfBWC+TxTyqLPL1hcnW+vmecBxREPArDs5mF4m7POiYLbIx6PGzwRvgWjnDbLXIeCnHsDfAlfISaRBsgVfFh6hZBj2qn6lKgelKnh3BOCltKUOgiCJuRSRV1eh3BomqPmqmQcUsM2Hmmcg3zPMEbHqdXi6X2wP4PcF+zhQnkJHod0bwym4cosylyiRls85ULQc0Sr2G3WEMvf37sc3bx5VKu1BcoJHRyRoGftlLRAliaRaYFnP1DHlDJ28sCea3eYa4upKjuCvWUWIFEHJ5qNRv0GLYNuVqvkP/ISEiCyK9jhFkQcG2BeqWRskoYQg1CnoR9HZTvyHnAJUVTAe/I/gGVLF7Qtz7tf3sWuYlCAKBQIBAIMDIyAi6rpPNZkmn0y0fq2Aw2CIga8kodMv4r6nh+HZAuVxu6WoqlQqhUIjZ2VkGBgaIRqOcPn363kzkIS41eljwQBOOe1lSlUwmOXPmDAMDA2zZsmVVD9d7QTiWr+TncjmOHz9OKBTiwIED6yLOWy/NQtOkLpPJtIL6bDbbtba7q13db/pZAKtqxdutDEdT72BZFufPn2d+fn7NPiRNPMgZDsuy+af/c5zTJ6fQLBsNMAQbh0vFtEwquo7Do5IuVjBlcNoWDreC06mgizaqKmGINqIgEPI5qJomfWE/mXqNmM8NIlzN5tjZG0OURU7PL7K/vxckeGFqhj6/l+2JGEdmZzEsi+Ggn6jXRSZd4Xhyjr19PSQrJQ7Ee1msVpgzNRZ1rZHNCASpWzqZWo1UbY4Nbjenc/P4FAd9shNZEhkrZ6gYDZ8MtyTjVCQEEw5G+liolulxuflGamkl3i870NAxLIsd/h5UQUYQbF5IT7S9pw9EBjieWwruvZLKI6F+SmaNoKwzWSkwWSlwINzH5Wqe5dgXGOBMcSnj4BBkNnsT2LbAkKOX6VqGK+U0qpijx+WibLaXR+32D3KuNN62zS05SOtLGYmQ7COsBAgobgpGEbfkI6OXyegNTcegGCCjt/tZuEUn89o8N6LXEV2RhIy6Bpi+oYuVaEuMukao6mVcph9NM9DQ0WSdmBxkrNqZ9djgGGTOXuzYnlD7mNU69/dLIR4LvKZj+3rifiYcdxvYK4pCPB4nHo+3nLyb5VdXr15FUZQ28flqyny6ZfxXLpcfaA+O5RBFkcOHD3Pq1Ckee+wx9u7dy2//9m/zrne9i49+9KNs376963N4JcPxcOCBJhx3g9USjuXlSbt27SKRWH1f9W4b5zWPYRhGa0V88+bNDA8Pr1vafT0IR6VS4fjx48iy3KbX6KbPx2rGbhK0aDTKjh07VvXC7EaGozluvV7nzJkzreyUy+W663EfxAxHKpnnc58+wkK6jCkJoErYto2kCNQMg4phoLoVbAncfgeGZWFLgACWBOlShQ19IS5NLbB7Qw8z+TwIMNjj4dT0ArsH42hYzBfL9IX8mFgINliCTaZSY1dPDEWR+Mb0NP0+L8OhIGfSC4zPNkzrXj08SKZeY6FcpaqbuF0Khm7xaE8vNcNgvJyjqDe6Rw24PTgViSHBzUS9woxhIitQuW7KF1Qc7IrEmauWmKzmma+W2BWOcTy7pJdwihL7IgnyRp1CXedsbpG404NOvY1sbPVHOZmbZtgdIqx6yOt13JLENzLtGYDt/jinC+0ZhwFnkInKAps8CVySg4JeJVkrkNKLzJfaiclOf4KzpfaAu8fh50q5vWQqIHvYdl3PEZJ1FrQci1qZmmmyqKcome1i7g1ylFmrk1iMuONcrnQSC6ckYBvt95dH8KCKCsOOTYBI3TYoGiXKZoU5bZGieT1TcT1WlZHIWYsdpVciAhWr/bybkMSV7+nXhN6ALHS31v1+JRzrHdgLgoDH48Hj8TA4OIhpmuTzeTKZDOPj4yuKz1c6frdKqiqVyrdNhiMYDPLMM8+0fEV+7ud+jre85S38xV/8BZs3b+aP/uiPuj+JV0TjDwUeWsKxmra4tVqNkydPrrk8qdsaDmg8mK9evUqpVOLAgQOEw+F1Hf9uz6FpNNjb28u2bdvaXgovJ+FoGlbdKUHrZtbg5MmTBAIB9u/fv27ZqZfbh+NO8c0vneNrX75I3baR3CqWZTV8HgTwOBwYpoXX4yRfqSMKEqZtka1WiSpeFipVnF4VFIGFQplN/RFOTCbZFPdxOVvgWirHvpEER6fmcMoSBzb0cia5SFnTOTQ6QLpaZTybY19/DwW9zq54jGytyrnMIjVd55FEAlWR+NpMI7B2yzLbYmEqhsG5cpmJQg5bgqKu0e/xMejzc7Wc5Xy5Ebg6JQmfIpE26ozILgwbvIrK1xeWsgoDHh8TlSxuSWajL4phW7gVma8tLgX4iijid8hcKzcyAW5RYZMvgiKJ+BU318o5rpVzRB0e0nq7h0VQdpLWG9JoBZE4bqL+MLqtMa/lyZWWvDQeCfRzuthOTEY8Ec6X2nUXAjYRxU1AduCSnGiWyYKWJ6C4OVq43PF+3eCJcrHcTlhUUaFgF7kRvWqEscoN2QRbYJtnAwYao85NWEDZqJLV8yScCc6VOjtHbfeMMLaCA/km9xDXap3tccNakLzYmd3odwwyr413bA/JUfb7X92xfb1xvxKObs9LkqQWudi0aRP1er2V/Th9+jS2bbd5fzQXa7pFOEql0rdNhkNRFF7zmqXM3Gte8xqSySQzMzP09vbeo/tNoIP1f9viYTnPTjy0hON2gXQmk+HEiRNEo9E1lyd1u6SqUqlQrVaxbXtVmpK1YK2kYLle42ZGg6Iodu363CwTYVkWFy9eZHZ29rai/zsZ926wsLCAZVkt5/D1DPwflAxHpVTnL//315iZyWEqIqYoNoTHqoQsCKiqzGKhhK2IeFUn+brGQCjAfKHMQCJIqlxlJBEiV68TD3oxsbCBTb1hpvN5Bv0ePH4PZ5OL7OmLY4o2RyZn2RaP4HGpfGOyIe4+ONhLpl7jSiZLj9eDxynT4/RwOZNBFAW+OTeDR5bZFo1SMXW+OXe9w5Si4nM68KsqIdXJTLmIpAjMVxtaChF4LNFHMp8lYxpc02vsCUU5VVgK8D2CSExS8CkyY+UcJ7JJ9oTiHM20d5baE46TrBV4JNhPxdS5WkqjYXA6txQgSwJEHQ6ulJeCeBmRXcEeaqZOSPYyXkkzZZeJCUEuFOfajrHJE+PMDWRDFSVM6tg29DkjBGUvlm3jlmVOFsfaiIUsiHhksZNsuOJcKncKxbd4erlUbs9iCLZIRPHhk53IgoJuWxSNMgWjTFJLkzPaS688oovpevu1goYD+XSt85hu0cWcNtWxXRFkLHcNbvya2zZ1o7N7FsC/Cn0vktD91+nL4TK+GnQrsL8ZHA4Hvb299Pb2Yts2xWKRTCZDMpnk0qVLuFwuwuFw1xb8yuUygUCgK2O/XMhkMi0HdafTSTAYxDCMrviYvIKHEw804bhbDYemaR3blwfKW7duZXBwcM3H6WZJ1eLiIqdOnUJRFEZGRrpCNmBthMMwDM6cOUMul+Oxxx676YP5Xmc4NE3jxIkTaJrGoUOHcLvdaxp3vYJ427a5du0aY2NjyLJ8V/faSrgTH4zmfa9pGtFolEAgcNdzWe3nL5+Z5u///CiVuoEhCliCgOJSqBomlVoNFBGXKiI5Zbw+JzXTJNHjo6Rp+H0OSlqjPMmWYD5XZOdID1cXc4S8TlxOhVLdIO5zNIJfy0bHwrRsNoQCOBwKx2eT7OvtwanKvDAzgw2MhAL43Q5OLyxg5nLs70swXyuzvyfBxXQKzTY5l0kBMOIPEvW6OJtZZCyvI4kCmyNhzudSjHiDRJwuJEnga8mloHdLIMT5UgqvrLLJH0EzdAxb50R5qbNUXHYyVmr8LAKbfBESLi9XK2nmqiXmqg3R8sFIH8dy7eVM+0P9HM9NMegOEVE8VEwdv6LyQqY9qO8V3ZwptH/WKSqUzUqLLPhlF73OIGHFTUorIFFjspJjkhxhxYMpVDuIxU5ff4eeQxZELEHr8NyIq0HS9SwJIYZkS6guJwWjQkj2cKbcWUq107uBy5XOLMagq4cr1c7t/c4YV1fYPujsYbzWmfUYcQ0xUbvUvtEWiNNPTSvhNmIokoIkqwiyiE/1s9d3qGOcbuBhzXDcCoIg4Pf78fv9bNiwAcMwWuJz27Y5evRom/jc6/Xe9bOtUqmsuIj2IELXdT7/+c/z6U9/mnQ6jaZpSJKEw+GgXC7z1FNP8cu//MvdncQrJVUPBR5owgFrNxdbKcOh6zpnzpwhn8/fMlC+m2PcLWzb5urVq1y9epUdO3YwNzfX1VXsOz2Hpm+EoigcOnToli1vu0nIbiQGxWKRY8eO4ff776pkab0yHE0RfTab5bHHHuPYsWNdEaOvZszlTvQ+n69VotDsnx8Oh9e0ynW741umxRf+8iVOHp3AlARsVcbCxpJFaraFLQs4HI2grmaZuL0OJhdz9CUCXJlNMzIQ4dz0AtuGY1zN5uhVBGIRL8fG59g93MP5+RRmxmJzj58rmQK1bIFDGweZyOWZyhU4MNSLiU3A6cQS4JuzM+yMx5AEgQWtwtX5eSTgYF8vBaPOVKHAVKHAI709XMyk2B9LkK1V8ToVvjW/pLk42NuLYVsMewKMF3OEXU6+lVr6fVhWCTldKLLExXyaE5kkB2O9vJRZylC4JBmnLOGzJSzbZMHWyNcqTNUyrU5WAFt8EU4u89aIqh5GPWHqlo5PdjFRzjFBjn6Xn+l6e4mQQ5AwRANr2d9IsAX2BfqpWjpRNcCiVmS+XsCvaIyV567njZbQ5/ZyqdyudehRA1y+Qc8BsMM3wHhlhgFHD27JhWULlM0aTkngWnWZx0cZVFHGtKsdYwQkL5PVzqxEVAlybQWjwJgSZnwFYXlQ9rcJyxUUvHIAt+ABJAYc26gbGvlqAZxQNkvUFJ20XoTmV8EGdNi3+Djnsuda35VutPlu4hXCcXvIskwsFmt1Wzpw4ECr/e74+HhbedZan23lcnlNC1b3E5p/s69+9av89E//NMPDw3zXd31Xo4y1VsMwDBYWFtbcVv+O8ArheCjwwBOOteLGcqfljtyHDx9elzTiehMOXdc5ffo0xWKRxx9/HL/f3yrH6RbuJAvR1Gus1jfiXmU4kskkp0+fZmRkhI0bN97V6tZKvid3imZnLEEQWqSsW+12b0c4qtVqiyA+/vjjrc8VCgXS6TRTU1OcP38en8/XIiA+n++uVwhTczn++g+/TiZbRXQpGKaFYduYEjjcClXdwKBRPrKQLRKKesiWq4TCHsqazlB/mLKms32kh2ShxKZEmMVKhbDXxa7hHs7OLbIlEQZJ4Ph0ko1BLy6/m6+PT+FzqDw+0s+Z+UWKdY09/XEkSSDh8TKZzRPwOShrGgcSCQRR4NhiEvP6dTw80E/F0LFsOLaQZH9vgpcW51BFke2hKD6nyvML060gfls4wqnsPE5RYmswSqVcoSKZHEktkYS9kTgvXS+bCqsuNnhCyBKcyM2hX78nHKKIIFjUl917PkmlZNbY4o3jlBSStSJFrcZ4Jd3WFlcWBFyKyMINPhqbXCHGaots9MTwSE4qpo4qihzJtQfokiAgYnWQjR2+Xi6VO4P/oOIgYxiEZT8h1Y8qKAgIzFbTFAyTgpFq7bvV08e1FQjEVnc/Fyud7W77XSGuVDrF3EHFQ24FM7+A4iJvWigo+JUAbtGDLCh4JAdFs0TVrFEwSxTMCgUzzzZPmAuVZZoOGTBgxDnMVH0FF3Ilzhu2/FuymSwzMzOcP38er9fbMrILBALrGojfjz4clmU1mjrcw5Kq1aD5nPZ6vfj9fgYGBrAsqyU+n5yc5Ny5c/h8vhb5WO3f69uhS1Xz3XDkyBE2bdrEl770pZdxMkLj38OAh+U8V8BDSziW+3DMzMxw7ty5dQlIl2M9CcdyQnTo0KEWIeq2MH01Afby0qCb6TVuNnY3CYdpmly+fJmJiYm7MkBcjrslBvl8nmPHjrX0Gs2XW7fa7d5qzFwux7Fjx4jH4+zYsQPbttF1va0//ujoaEugmUqlmJycbK0QRqNRwuHwTbNFNzv+N794jm/801kMScBQJBAFBEVuBC2qRLmuU6xrBMJudNsiHGtoBXz+hlg8GHCTKVXw+hzUDIO6biApIrphIUgChm2hSCKmALZtEfc4MWWYzhd5pD8BIrwwOUPQ6eDQcD9nUosU6hpuRWZ7IopuW8yXyhR1jfFSHlWU2BaJ4FYVvj67FBwf6E2Qrdc4EEtwKZsBEb4+v/T7PrcXl6KwMxTjYi7NyXSSTR4fM/UlMjDk9VPQaxwI9ZHX61wpZBj1wYs36DZ2hGKcyjd0Fv0OPz5kTEvjWq3EXG3JD2JvsIczhXY9xr5QLyevd6XySA4GXCFCiovZShrDFrhUahAApyQTUjtX5/f4+9va5QK4JZXU9Xa3IiI9apCA4sUrOUjreRTBzbxWZv468dnp6yOltxMFVZDIm53kISx7VyQhfY5op4AcGHQmGK9O4ZN9+GQfDtGJiIhDUMmZaVTBT8ksU65ngSxxJcLVaqqjtMsjuZmpd2o9RATKK8wT4HWR7ybkDxEKhhgdHUXXdTKZDOl0mrNnz2KaJqFQqJX9uNvOc93ylbgbNJ+H90uGo4mVXNlFUSQUChEKhdi4cSOaprXE58v/Xk0CcrMsxrcD4WjGOQMDAyQSCbLZ7F21Yb8b2Hbj38OAh+U8V8IDTzjupqTKMAzOnj1LMplk3759xGKxdZ3bepGBubk5zpw5w4YNG9i0aVMbIVqPFfdb4XZlT6vVa6yEbhIO27aZnp7Gtm2eeOKJdXs53A0xmJ2d5ezZs2zatIkNGza0/R3Xeh/fCrcaszmX5V26DMNYsb3lcoFmc4UwnU5z7do1zp49SyAQaGU/bmXOVato/PXv/z+mxrMYogCSiORQqJomdc3EkgQ8ioIg2oT9XtKFMoGwh/G5LL0JP9eSWfp7g5yZnGfbhhinJufZ0BNCdcocG5/jkdFerqSyZKtVDm0a4Go6x2K5zJZ4EM0wKNY0bBHmikUe6e3BxOJbc3NYlsXueAxTsnlxrhGsj4SCWCLsjMS4mEljYvH8XKNMKOhwsiMaYbJUYKrUEC5vCYc5n0+BDVuCEUKqk6lanmOppeD/0Z4+jqYbpUPDngAJp4+UXmKsmOUajYB2SyDMiVw7YTgY6cPAYG+gj8lynqlqkYORXo7n21f0R0VPB9nY4m10utrtGyRVLzNdzTFu5UirBdJauwB6u6+noytVr8PPxdIS+ZEQ6HOGGXAFKVs1XKKXZC3HZDWPW6vilgXyRqVtjI3unhUzIdt8/VxYQaORcAZWzGI4RZGA5Mcr+xrmejbULQNRsLBxkNarpPWlMqwRV4zZemebXZ/sImN0fi8GnXGuraDp2OAaZrLWqQGJKnEe8T3atk1RFHp6eujp6cG2bUqlEul0mvn5+TYxcyQSWZOT9v2a4YD7j3CsRsiuqiqJRIJEItH6e2UyGRYWFrh8+TJOp7PN+bzp/bFebXEzmQw//dM/zd/+7d8iiiLf//3fz8c+9rGbvq8ymQzvfe97+cIXvsDk5CSxWIw3vvGNvO9972t79650j3zmM5/hrW99a+vn5t/r3/27f8eVK1f4wAc+wI/92I8hyzIejwe3243D4ehqiWALr5RUPRR44AnHWmEYBuVyuWV6sx6eBzdCkqSWmdtaHsbNjkozMzM3XaG/FxmOm5GCpvO6qqprKkPrFuEol8tkMhlUVeXQoUOrMohaLdYyZ9u2uXz5MpOTkzcltveKcNxsLrZtY5omtm2jaRqiKLb+LcfyFcJNmzZRrVZbK7rXrl1DURSi0Wir+1fz+JOX5vibT71AsaKDImPLYAgCggCCQ0QVZQRZIJkt4gm6KJYqlC0Tj2UiOkREUcDjc2DZNpuHIswXyuwZSXA+uciGaIjYRg9Hx2fZORCnL+rjG9emGQj62DXQw4nZeSzb5tDoAIV6nYVihYDLyVylxJ6eOMliCV20OLeYQhYEdvXEKZkalzONFfytkTAXMmm2h6OIgoBhm3xrYbZV7tTr8SBIsDvcw1Qxz1guy+ZoiJnKUoeo3ZE42XqVbQ4/GVNnopjDp6qMFZfcsEOqk6xexrQthtwBYg4voihwOj9H3VoqhxrxBjuIRa/Tx4JZIYCTmOTCMiwKZp1UpUDWbjfo2+oPc7rQnkHZ7O3sSiUi0O8KELe8CIjk9QqztRwCIkdyVzrem5u9cc7d4M8hCwJ1q1OLEVG8XK10kpBeMch8PcOAI4FTcgECmmXgFh1cqlzDsE1YRpS2eAa4Vu3Ui4y6+pmud2ZD+hxxJlboWOWXfCvuL9hQMLId2wFeG3kKUbj5c10QBHw+Hz6fr0PMfPHiRTRNIxgMtrIfbrf7tmTiftJKNNF8/9yP87qTOS3/ew0PD2MYBrlcjkwmw9jYGL/5m79JNpvlNa95DalUal00HD/0Qz/E3NwcX/ziF9F1naeffpp3vOMdPPfccyvuPzs7y+zsLL/1W7/Fjh07mJiY4Cd/8ieZnZ3lL//yL9v2/aM/+iOeeuqp1s/BYHDFMSuVCpVKhY9//OP8wR/8AT09PViWhcPhIJlM8rGPfayNqLyCV7BWPJSEY3FxkXPnzgHw+OOPd+1B2VxdWYspUr1e58SJE7f1AJEkCV3X73quN8PNMiiLi4ucPHnyjpzXVxp7vQlHc15Op5N4PL6uZAPunBgYhsHJkycpl8u3zLTcC8JhGAanT5+mUCi0zcW27ZaeqUmSl29rliXcWJ4A4HK56O/vp7+/H9M0yeVypNNpLl++TLVa5erVq3zlr17iyulFRKcDUxIxBBAkCcWtUq5rVDUD2aUgGAKyW0F1yOgiRGQHpgBet4olNRaGFIdE1TBQVYmaaeB3OREUgapuMBD2YwgWparO7r44umBxbCbJaNCHUxF5fqIRmG6JhXE7VbSCxYm5JDv6YswWixzsTZCp1pipFFmoNFbpRwJ+Ak4HvrrK2fQigz4/Wb2KblmEnS42B0Kk9SoXM0tu2vsTPbyUngMbNgXCJFxuLhczLNSWAuWD8aVsBzQ0GrvCMSqmjoDERKnAfLVCzO1sIxsuSUbHQLcb3xuf7GDYFcKjysxUBWaqebJGg2A8EkhwqrhMjA2Mqv4OsuEQZSpWlajqJ6b6kASJglEjpDg5lmsPwiVBwBKMDrIx5ApzodQZyO/0DnCuPN6xvdcZIGtI+CQPsiBj2jbpcg5LFDoyFRICcYe/QTaWzwWB4gqlTgKg2Su3r3WIK6949zkjXKt1EouYGSVjdGZJokqc/b7HVhzrZmiKmWOxWJuTdjqdZmxsDFVVW9mPUCi0Yqni/Ug4mnO63zIvd9uqV5ZlotEo0WgUgA9/+MP83d/9Hf/yL//C3NwcP/RDP8Qb3vAGnnzySV7/+tffkSkwwPnz5/n85z/Piy++yMGDBwH4nd/5Hd7whjfwW7/1W/T19XV8ZteuXfzVX/1V6+eNGzfyG7/xG/z7f//vMQyj7Z4JBoO3nFPz+vz6r/86n/3sZ3nXu97F7t27qVar1Ot1dF1nYWGBHTt23NF5rQmvaDgeCjzwhONOHnK2bXPlyhXGx8cZHR3l2rVrXTcrgsYX+04C32w2y4kTJwiHw7f1ALnXJVXLu2Tt3LlzxYfiarGehGN5O+OdO3eSy+W60r3rTjQczY5dDofjtpmWbovGa7Uax44dQ5KklgaoSSyWiz6b95plWa2MR/P/m7hZ9kOSpFZpFcBXvvRVvvYX58mka9RMA1F3oLic2JKKJEhYlokpgsvnwBIARUTSbcqajm5bVHWDesXA6VG5PJNi03CMExNJNvc1dBaXp+Z5fMsAE9k8i8Uy+zYkKNY1koUiHreCJIoMhQI4ZIGzmRwbIyHiPg/H5pNUswYCcHhkgFy9Rq5a45Jh4vc6SVer7InFUSSRa8UcV5ONoDbsdGKJFqOBELppcSWfIW/UuZJfClQficfJa3UORPqYLOaZL5WoWlob2djiDfBSepaIw8WwJ4RmGrhVuc0AEGBHKNJRXrUrFKNqGiQcPtJahclyDodP4luZ9mzBDn+8g2x4JIUCDSLltCTCggsVmajHx6XaAkWjTvK6HiSkuMhouY57are/nzMrGP+pEh2i8pDsYao2T68awSd7kASJumXglBTOF8cxsYAlwrBBCjNrdZrtbfUOdXh0NLYPcmWFDlSb3YOM1zq3Dzn7mKp1ZkOCsp/Jeuf+qq1iCRY9yiCyqCIiAwKmbfGvQt95y+zG7bCSk3aTrI+NjVGtVgkEAi0C0mzlej8TjvsN66132bp1K1u3buWZZ56hv7+f//E//gdjY2N84hOf4Omnn2b37t38wA/8AO9+97tXNd4LL7xAMBhskQ2A173udYiiyJEjR3jTm960qnHy+Tx+v78jTvipn/opfvzHf5zR0VF+8id/kqeffrotXmq+G55//nl+4id+ovutb28BwW78exjwsJznSnjgCcdqoWkaJ0+epFqt8sQTTyBJEleuXMG27a6tzDRXhFdLCGzbZnJykkuXLq3aAbubrWWhndA0V8jz+XyrS9Z6jX03uLHFbCAQoFAodOW6rFbDkU6nOXHixB117OpGhgNWFqo3icTy+usbtUHNOTcJiWmarc/c+Lkbsx/nj17jXz5zFlF1449G8DkkitUaVcNEr1cR7DpWTcTpc1KpGVRMk0jYSzJXYnQozMWZNJuHopyfXWQ07CES9bJYqHBgcx/fujrL5kSYPSMJnr86zWgsxOa+CEfGZ5EleHR0kLF0lmSxxP7BBIVKhQGvG8OyOLmwgGXZPNKbQFEEvj7VCNSdssTGeBgBKGka13I5/G6VdK2KYDc0Gl6ng3PpFNPFRlC+P9HDsVQSgBF/gH6vj4uFNAvVyvXrDzsjEc4uM+QbUJy4ZYUNnhDjpRzp2hw7Q1GOptuzDo9EejiRm0NCYMQbJqA4cckyRzKTmPbSfT3qDbe1xYVG96pFbckUT7AFBtwBRjxhCkYNR73EXK1Aya6SEJxMFacahG8ZBl0Bzpfax42oXq5U2gkQwG7/AJfKM/SqYfzXiUXNMvBIEmdLk2T0HJBr3C/AkDt0nWwsQRVlCpRuHBqnoDJX68wwOESFeW2hY7ssiORvUgJl03jWqCh4ZB8u0YUqqvhlNxUrimGb1C2NilmjZJaISXFm7WmotWdRIkqEPf69Kx5jrbiRrC8vVZyYmGg1atA0rWueS2vF/Shkh+6ZETazU69+9av50R/9Ud73vveRSqX40pe+RCqVuv0A15FMJjvKpGVZJhwOk0wmVzVGKpXife97H+94xzvatv/ar/0a3/Vd34Xb7eYLX/gC/+k//SdKpRL/+T//59Y+zWvzAz/wA1SrVSqVysvX6vcVDcdDgYeCcORyOU6cOEEgEODw4cPIsoymaa2gq5sPy9VqLEzT5OzZs6TTaQ4ePLjqbhH3QsPR1LscP34ch8Oxbm2D1yPDUa1WOX78eGvlvilwEwShK9dlNZmIyclJLl68yPbt2xkYGFj1uN0gHPl8nsuXL7cJ1ZfrNeD2tdfN3ze/J82MR5OINK9Hk7B86TNHOP3iOJol4HLKaKKAIIo4fB4E20J0yBTKVcpaHdHSyVfreDwKhUqZ3riXim7QH/dTMXTCPjc128SlKoiySLpcZTgaQFBF8tU6u/tiVDG5spBh/1AvFUvnG+NTOCSJJ0b6uZbNkyyWiLscuF0KW3xhLqczCBIcmZ1FEgR2xGIIssDxZBIbUKVGZiSv1TnY08tssYAsSxydXwq2DyYaRoAHY73MlotUdZOTmQUK+pJe4kA8wYn0HNsCUTyySrJSwrR0ThSWgpKo08VMNd/2Dhr1BlFFiZ3+BNdKGS4XMvQ4PdSot5ENpyRTt7VWy94mtgaiVAyNIVeEiqEzVc3hkZx8Ld3e1lUCJMXmxtt5wHZ1kA2AhNPLxXKBsOwlovpwiI1nQEYrolsik9U8zYzFiDvK1RW0FTt8A1wsd2oltnn6uFDpzDJs8vSuKCzf7Onj0gptc7e4h8gaOQYcAyiCAxCxsHGLKgv6IhJeSlaNklYACoTkABO1KUzanxUiAiWr0DE+wP8X+S4kobsB9vJSxeWNGtLpNJlMhlKp1Mp++P3+l7WcaS0lw/cC3ZpXtVrFsix8Pl9rWzQabekcfvEXf5EPfvCDtxzj/Pnzdz2PQqHA93zP97Bjxw7+23/7b22/e8973tP6/0ceeYRyucyHP/zhNsLRRE9PD+9+97splUq86U1vwufztbJvLpfr3hDcV0qqHgp8WxOOW2UMlpc7vdyEo1KptAXNd/IFvxclVYVCgRdeeIHBwUE2b968bg/xu13Vz2QynDhxgp6eHrZv397R/rAbJVW3GteyLM6fP8/8/PwdkUZY/5KqZseVSqXCvn37WitpyzMba627vln2I53M8bnf+wqZVBlLVjBECUMUcbpVKppB3bAQFRGnJOD0OfE4PZRqGn1hP9MLOYJ+gYmFLH6PTA0BzbQY6A1yemqRvaMJctUa46kc+zf2ka1Umc8XGeoJ4lVUPA6VsqUzky+yvz+BJIu8MNkImof9HiRZ4FquwNVsnv39CSbyOQ709nItk0OQBU4sNFbRVUnk8f4+FqoVUuUyi+Uyj/T28tJCg2z0uD1sCoYa3aJKBaaKBVyyTNTrplBqkA2nKLE31oNmG7hllQu5Rjep/bEExzJLpEUSBMJOJ7OVArsDPSiiRLJSwhZsvrUs4yECYZeDS8UlETrAjkCME/kZQoqbfpcfRZBxSBJHs5NtJMQtKQ3Duhuw3R3h4g1ZAqcoYyiADrItErCduFDwKw6KtToqThbqFRbqjSzOvmA/07VM2xgCNoLQ+UxyigrJeucKcEByM17rJDhB2cvVSjtp8UpuQrIP04aNro3YNmiWSdmsUjXrTFRTFM0yy0u1AIacERa1Tp+OuCPIWDXTsX3UNcx4rZPQBOUAjwce79jeTSxv1KBpGoqi4PV6SafTTE83rk+TfHTbeHAl3K8lVd16t5fLjfLIm+nxfv7nf54f/dEfveUYo6OjJBIJFhbav3+GYZDJZG6rBykWizz11FP4fD7+z//5P7ct2X788cd53/veR71eb90fzeqOv/7rv0YURX7v936Pj33sY8iyjGVZyLJMLpfj7NmzbN++/Zbj3zVeyXA8FHjgCcfNAqZmy9tMJrNi8Nd8QHYzWIfbE47FxUVOnTq16tKblcbvZmvZbDZLJpNhz5499Pb2ruv4d0OWmlmErVu3MjQ0tOLY3SqpWmlcTdPaRP532vVsPTMcpmly+vRpqtUqAwMDbWSjmZlYL5Fn8349/fVLfOmzL6JZNpaiogkWhgyaICBhIagiLkXGwCZVqhAIe5iazxGJeZlNFYhEvSRzZTaP9HByPMloIsB4tsDkfJrRqJsXr80yGPaxtT/KN8emCThVdg73cGZ2Ac002TPUg27Z1HUDW4Rjs3Ps7Ytj2jbThQKZSh3BhgMDCWqWSbZaJ1VJsn8gwdH5OUYDAYJOF5Is8LWZJT3EI4kEV3IZDsQTFOt1dNviWHqOass01GZjOMS1QpZ9kR4s26ak1zmTW6BiLDVzeCS6jGzYsMEbZNjnZ65aomZYnMo2Ao9HY728lG0Pvg9EezmWW9rW6/Qx7AlRszR6VD/JWpFMvYpfdqBIQkfGY1sg2lF21ev0c1VfCv59kpOEI0Dc6SFv1BAFB8laniR1FEEnZOtktfZ2t32OAOeKnVmMXf4BLpQ7BeRbvQnOlcY7tg97Ily4Lix3oBBSg7glF0HZTcWqUrcMSkaVnFEio9fpc/Rwttg5zi7f8IpZj43ufqZW6EwVkv2MV1foTAUUzVzHdoDXRv41ivjyvTZt20ZV1Vabatu2Wyad98J4cCU8bCVV5XIZSZJuujDYbAxwOxw6dIhcLsdLL73EgQMHAPjnf/5nLMtqmbCuhEKhwJNPPonD4eBv/uZvVrVAeeLECUKhUBsZXd4W9yd+4icIBoNomka9Xqder6NpGvl8fsX36yt4BWvBA084VkKpVOLEiROtdq0rrfgIgtDhNt4N3Ixw2LbN2NgY165duyvxdbdKqpZ3NAoGg+tONmBtpGB5FuHAgQOEw+F1G3s1WIkYFItFjh07ht/vZ//+/bcU+d8M65WRWe5iHovFWqVvy7UX69lRxjAM/vZ//TOXTs9iSTKCS6FSqVKs1/CGAriCbgrlOrpt45AVijUN2SWjmSb+oBtJEgmE3AiSSG/cR1U3GOkNUzJ0NsTDCLLAQqHEpoiXsqExNl9me8xPwbY4Mj7DUMhP2O/m2HTDDXz/UAJbBL/TyWS2gMMpUzMNtgV8BHw+Xpyfw7Qa1/ngYC8mFhv8Aa7l8uzvc/JiskEKHKLInngPFdOgomkcm08SdDhRVKFFNgKqgz2xOOl6lbppcjI1j0uWiXhcbWRj2BtgvJxlT6iHWqXCgqHhVhS+Oj/Rtti1MxTl2A1kY9QbIqWVeSTYh27ZTFcKFDWdy/YimRsIwIgvxOn8DT4cviinbiAbQdnFqDdErqJQ03WKoklKK+GXdV7IXOsQf+/293K62Bmwo2lYYvu+Lklhrt6ZSYgoXi6Xp8EWCCoe/LIXp+TEiUzNrBOVE6RqefLo5I0svQ6bq5UZrBu0HmHZx1ilk+Q4RZWZeqe+RAC0FdryAsQdIcaqnXqPUdcwEyuIzr2Sl1cFD6841r3CjdmEG006u208uBLu15KqbhGhcrmM2+2+63Pevn07Tz31FG9/+9t59tln0XWdd77znbz1rW9txQMzMzO89rWv5U/+5E947LHHKBQKvP71r6dSqfCnf/qnFAoFCoVG6V8sFkOSJP72b/+W+fl5nnjiCZxOJ1/84hf5zd/8Tf7Lf/kvbcdvZjg+8pGP8D//5/9kz549d3U+d4VXMhwPBb7tCEcymeT06dMMDQ3dtvxnudt4t7ASIdB1nVOnTrVapS6vBb1TdKOkqlQqcfz4cZxOJ6Ojo6TTnQHEeqBJClYr3G+2CjZN87ZZhG50fYJOIrOwsMCpU6cYHh7uMGW8E6xHhqMpDo9EIuzatYtz5861SMbyXvnrRTbSs1n+8ne+QC5XRVBVDBvK1SoVS8MbDiI6VTTTxhTB43ehWya+sJt8uYpTVcktlujz+ZmczrFtJMZkqoDbpeD2qEwvpHlkUx+lukahphFOhPBIItVUlqxpgGUy6FYBg2MzSXq8HjbGgxydTVI3TLyqyqaeEDYCmXKVimFwdWEe07LZEgkT97o5kpxFu35ddvfEOL4wz5ZQGI+iUtY1zmQWqVwnF7IoEPW5WKiU2R9LUDUMFEnk68nJtvfH5nCYU5lGeVa/20ef20fF0pjJFzh13YQuJDuYrRbaPhdWnSTrjW39Lj89Ti+2bZM2ykyV8owvKxF6JNzTch1vYnegp4NsqKKEjcUWbw8uSaVuGszVCgx5AryQHm/bV8DGIYkdZKPH4eNiub3bFcAufx8Xyp2Bf5/tZtLI4JfchBQfLsmJgIBLkpmtZUhZRebrNebrNQB2eBNcrnSWU4VUF2mj87mTcAa5VO5shbvJ03uT7MYAk7XOLMatshtls7P8DOBfh1+DKt69du1ucLvypW4bD65lTi8XukWESqXSuhnJfvrTn+ad73wnr33ta1vGfx//+Mdbv9d1nYsXL1K53qb72LFjHDlyBIBNmza1jXXt2jU2bNiAoih88pOf5Od+7uewbZtNmzbx27/927z97W9v27/5HpibmyOXy63L+awZrxCOhwIPPOFofmmWm+Tt2bOHnp6e236224LrlY5RLBY5fvw4Ho9nXUzp1rukqhlADw4OsmXLFmZnZ7t2jZovg9UQjnw+z/HjxwmFQuzateu2L8puZzhs2+batWuMjY2xe/fuO+7BvtK4dzPfJtHeuHEjIyMjrc5RN5KN9cKJr5zlnz/7LTRbwBAVRFmiVC1R0S3c/gCiS0F1KpTrGt6gm2S6iDvgpFKqots2xaoGDpH5XIm+RICT4/Ps3BDn1PQCvprKzg1xXrw6Q9DjYOtglFPTC6iyxPaBKOlyjWvpLJt7w5TrGqN+D5Zt8vx1zcbWSAhRkTg+2wjwe70uyrbJrniMuVIJUYQX5mYwrl/vLZEwDlkm6nJzKZMl7HQiykKLbARUB3t6YizWKpQ0jWMLSQZ8PjKVatu742BPLyWjzoFILzPlItOlIhGXq61LFdiEnQ7Gljlp9zg8bA1FKOp1BDvPdLnIdLnIwViCqUJ7cL0nFO8gG37ZwWwtj0OQGHSH8ClONMvEI8u8mG3PTARkJ5OVzkB+b7Cf0yuUR8UcLjKlXNs2hygzr2VxCDIxhx+v5EYWJERbYFHLIugqabNOWmtoWvqUAAtmtuM9O+KKrUg2hl1RrqyQxYipAcZWcCx3S06mVtCACEDdWtmP42bZjRHXEJO1cQRbxIGKjIrX4cMpOvnO0HesONa9xJ04jd/KePDChQvoun7HxoM3m9P9WlK13j5M0MhwrIfLODS0Nzcz+QPYsGFD20LUv/pX/+q2C1NPPfVUm+Hf7fD000/zx3/8x/T19bWy4pIktf7dE7wiGn8o8MATDmiUkTRXvg8fPrzq1m73mnDMzs5y9uxZRkZG2Lhx47qsNK/XOSwv8dq1a1erhKqbGpHlXY9uFQw3r9vyTku3QzdF46ZpcurUqbY2vHeLtWY4lvuiLCfaTRI3N9cITmOxGIFA4K7vOdMw+b+f/CKXz0xjyQqoKpYAqXwe2aUSCoewJRFkgcVcGUsVEGwFQ7LxeBSKukYs7GWhWCYa9FA1DRRFYttwjKupLFv6I2i2yfhijn3DcRYqVV4an2Nnf4yyZXBkfBZBhEObBpgrlJnMFdnVH2OiUGBXPEqyUKRUrzKda6ygb/B7URSR+UKN1FyS4WCAiVIBhySxJxbDRmCsmOViriEcdkgiAbeThUqJR2I91EwTtyrz1dmlQNcjK9iiTcXQ8SkqG/1hvKrCsfQc5WWlVAfjvbyUac8ObHP5malX2BvqQRJEZitFBjw+vrbQvtq+IxjleLb9s0HFyUw1d/0PD/2uAFGHB6+iMFXNk9PrXCo1yMQGd5CLpRXKhXyhDuM/v+xkotop5t7h6+FiaRaf5CTi8OORnICAV5K5UpmnYliMGzmaLW93BXqZ01cw4jM7jQIBJHHl54pDWvlZEFV8ZPXOc9ro7uHiCtmNTe5BJmrjAIi2iFv24BJduEUnli0y6tyMjYBlW+i2iWYb1E0QbB81q04VE6iSqlZ5Q+y7cEkvfzvau8kmrIfx4Eq4X0uqTNPsSoelZvvY+83ocC2wbZujR4/yN3/zNxw5cqSld212p3K73bzrXe/q+jxe8eG4PT75yU/y4Q9/mGQyyd69e/md3/kdHnvs5uajn/3sZ3nPe97D+Pg4mzdv5oMf/CBveMMbWr+3bZv3vve9/P7v/z65XI5XvepV/O7v/i6bN29e2wRXgQeecOTzeb75zW8Si8XYsWPHHTHye6XhMAyD8+fPMzs7y759+1YlKFst1qOkyjAMTp06RbFY7Cjx6lamoDk2cNPxbdvm4sWLTE9P3/F169a8dV2nXq9TrVbb2vDeLdZCkJb7jyz3RWmKwzds2IDf7295ggBEIpGWe+6drv6l57L85W//A7lcHVt1YIkSNd2gqFdx+N0IskqxpqG4VRRRwul3IDskTGxCQTc100JSREzBplitE4/5mJ0vkXD5sASo6yaCLKAiI8ki85UqAaeD0WiQrFYnWSixtz+OJcE3rjZWwHf2RpFkibpucnYxxbbeGOOZHHt7YhSqNXJGnXRFAyCkKvgcEn5XiIvpNJczWbxulXy9sRLvEEUe6+8jU6tRN0yOL8yzPRrheGp5T3ybXbEopm3jkx1cyWWYLOSxZbuNbIz4g5zOXe98JYhs9IeJOFxcyS5QMnROXi+7GvT6OZNv95nwySqLWqktSPdKKrtDcaqmQcXQmKrkmaoU8CtOvpFuJyaSALJIZ7tcX7SDbACM+sKcLkzjk5zEHX7ckgMBAd3WcIkeMnqNjN4gMjHVQ8WqoFntz81Rd5QLK7TS3epNcKXSWZLVb3uZqHb6aGxQI4xXO7UYfY4wVyqd2Y2Q5KdoVBh09COLCpIgYdtgWBamZeMTeyiZVcpmjZJZA2rs9A1xfoVWuyPOfiZqncdQBJnXRV7+7AasX/nSWo0Huzmn9Ua3Mi/rWVL1ckPTNLxeL29/+9tZXFxkamqKS5cuUa/XqVQqOJ3Oe0I4XimpujX+/M//nGeeeYZnn32Wxx9/nI9+9KM8+eSTXLx4scPLBRpmjm9729t4//vfz/d+7/fy3HPP8cY3vpFjx46xa9cuAD70oQ/x8Y9/nE996lOMjIzwnve8hyeffJJz5851rRXyA084PB4P27Zto7e3945XHO6FhsO2baanp1EUhUOHDq27sU4zA7FWA8OmXsPlcrUcqJejm213b0U4dF1vGTUeOnTojlPY3SAc+XyeM2fOIAgCjz322Lq+ZO80w1Gv1zl27BhAG/FZLg6/sZtNPp8nlUoxMTHB2bNnCQQCLfJxq4AC4OqpCf7vs1+mboCtKliSTM3SydXLOH0+XH4vumXjdUjUNIOaZWFLAnPpIrG4l/G5HIN9QRaLFSzJxutzcuLqHLtGE5yZnkcWBbYOxzg1NY9LldncH2U8lWMinSce8RJ1OCnVNUzB5vTsIlvjYUIeJ0dnk2hm4+98aGSAiqFjWjaX01miQQ/pikbEoRJzqOQsg9OpRuAsCxDxuZksl9gZiSKLIqoi8dXppYCz1+NhqlzAtG2GvAHiLjeqLPH8/FK5jyhA1OviYn6pTMkrK/gdKhFXDxVd52ohy1SxQFqrsGDUWvspoogkCtSt9u/XxmCQhVqZvYFeRARS9Qphh4uvL7ZnQdySQkrvNMvbF+zjRL69JEkWRKpWg1ipgkTCGUA1BJy2SEU38IkeclqVnNbIdOwPDXC+2Gk+1uv0cb7U6U8hiJ33rgiUzU7BtgjgBPQbfmHbGHaDHCrI+BUvbtGJQ1QJKC4Csh/DNqmZGkWzRtEoE3dGVyQPm939jK1AUAKSh/Fq53YAm5UXn14VehS/fH8EmN0K7ldrPNgsv1q+WHE/l1R141qVy+VvG8LhcDj40z/905d7Gq/gNmhqcJ5++mkAnn32Wf7+7/+eP/zDP+QXf/EXO/b/2Mc+xlNPPdUii+973/v44he/yCc+8QmeffZZbNvmox/9KO9+97v5vu/7PgD+5E/+hJ6eHj73uc+1PGXWGw884VAU5b7r8NRENptlYWEBp9PZcjdfbywvS7rT8efn59sE9isFnN0sqVquM1iO/5+9Pw+SbL+re9HPnnOex5qnnsfTfaY+j4cJS1ccJOOAUGDzjC1Q2JKREbYEfoAJsAh0QdgIhxCXB8G1McZI2AIjQAIdIySsK1ln6O6q6ql6quqa55znae/9/sjOqsrKXd3V3VV9mtO9IhRHvSvzlzuzsvb+rt/6ru8qFAqMjo5u+FwedurTXp53q62rt7eXhYWFPb+RPQjhyOVyjI6OtvlZWr6SnczhgiDg8/nw+XyMjIxQqVRIJBIkEgmmp6dRFIVgMEg4HCYQCLR9l87/z0v8zRfeQhdFBLsdU5LIl0rka1W8YT82l4NsoYKgiQi6yXqhTCzuIZEpEYt7SRXKHBgMM5/IMtQdYC6VJR7w4PfZmVhc5UhvmFSlwujMEif7YyznC7wxtUDAaeNwX5gri2uU63VO98fQTZNun5uGYTC6vIppmpyIhdFUiW/PNYtsWRQYiQWRRZHDwSBTqRQOVWK53Cx+BeBUOEiuUkVD4FoiwUGPh/HkZjuQXZLo8rrBhKVCgblcDpeqMppqL8Kfi8a4kFjCragMuf1IggiCyViy/XGHAkEup9uPnQpGuZhaQkSgz+kjoNlxyQpXs6uka2WWi00y4VNs5C0mLR3xhRnLtKsKEc3JzfymYhJSnUQ0NyHNQapeoqEIrFTy3ClkEDDp0ZwsF9pJS0BxcKvQqTIMO0OWgYA7GciPeXqYKHROtzrm7mGtmqbfHkMTFEREqvU6ZrlKplJGEGwUhAaFRgEo0GsPccuCPLhEO9PlzvMBqBgVy+O9jpClubxXi7FQ7VRiBAS+O/R3LNd6O/C41ISdggdnZ2eZmJjA7XZvEJBGo/FQ1+j9xn6Oxd0rD8eTgqWlJe7caf5deL1eYrEYwWDwiVSu3iloTRdrQdM0y46JWq3GxYsX+Tf/5t9sHBNFkXe/+928/vrrlmu//vrr/MRP/ETbse/+7u/mT//0T4HmgIGVlRXe/e53b/zc6/Xy0ksv8frrrz8jHPuB/SIcWwMHfT4fNptt33aAtuaJ7PY1TNNkcnKSmZmZ+xqe97Olymr9vZz6tBfnbZomt2/fZm5ujtOnT2O325mft94hfRTs9nxXV1e5fPkyQ0NDDA0NWSaHt4jcvWCz2ejp6aGnpwfDMEin06yvr3Pz5k2q1Sp+v59QKMTYX0xw4+IcaBqColAHCpUCFXQ8IR+iplGuN6gJBl6Xg0q9TiTmoVJrEAg5KFZruN3Nx8iyiCHeVZSVZsuPw6aRqpRx2zT6w34Wss0JQc8PdrFaKvLm9CIem8pLwz1cX02QKVcYDPqoYHA0FuZOMoMsS5xfbBbz3W4XXX43E4kk+VoNMDkU9HIjm6Xb5SLmciPLIm8sbxaqfW4X0+Xm63arKi5FRVBkLqxsEoSow8l8MYvRIoUmnI5EEYCD7iB3cmkuJ9Y4E4l1kpJQlLH0ZgEvI3AiEENA4Ignwkwhw3Q+Q6ZaAVEnuyWtHKDf4+FKtn3NA+4g41vIhohAt93LgNNHUa9RaNRYLudZrZQBkaliguq2NqhDtgCT9U4Dea/Ty9V8eyEvYIKFAiALIoltvg0FiaDiQkDgqLP/bnuWQVmvUWxUWaxkSNWLrNY2Dd0iEBRtpAWLEbbVapMlbsOgM2Kpbow4upixSDl3SjZmK53HoTnRywpHpGHCatDyZ28H3o72pa3Bg9BUV1vqx8LCArquY7fbcTqdb0vw4E54Rjh2h/Pnz/PJT36SCxcukM/nMQyDw4cP87M/+7O8//3vfyznIPAUeTju/re3t7ft+Cc+8YmOxHiARCKBrusdg5Ci0Sg3btywfI2VlRXLx6/cvae1/nuvx+wH/tYTjkcxbsmyvOcejlZffStwMJVKUSh0tj3sFbYqHLvBg47k3W8VaOto3JZpfS+mPu2FabzRaHDp0qWNz8rlclEsFh97gjmw41SsvQjzE0Vxo52iZSZdXV7ljz79ZZZm0kgOO5JmoHlEivUqVQNsLg+ipiKpIg3dwBdwspLKEY56uT27xsBgmImZVQ4OR5iYW6Mv5kMXBS5NL3PmUA8Ti2sIwKH+CJMrSXLlGiG/k7BdYS6ZZbVUpKbrnOmNgSzw+kyzUDwcDSKrEjMr68xncjzXG+Pa6jqn41Hy1Rpuh8qbS5vF/fPdMYqVCt02O4v5AkGngwvLmz8P2GwEXA6Cbicz2QyLlQrHHA6u5jIbj1FEAU0RyFcMTgYjyIJIrl5lKpciX69tPK7X7eZatt2X0O1wMZVPcsgTxK1orOWy5IwGC6Us69X2HI1et5urmXY/x0m/xbhbQcStapxSusAUyNQrLJayeGQb30zMdPx+I5qTRK191KtbUlnRO1ujhpxBruU7VYOTnm4mCneJtgk+1YlfcRLTPJSMKgHFT6lRI10vkqmXOOTycSnbqW6c9vZwtdA5jvawq5tbFhOo+mxBluudXg+HoO6obrTasrZj0BG1VDdiasjSuwHwinrG8vjbhSfBL6FpWlurZssf9nYFD+6E/czheKe0VM3MzPCTP/mT6LrOf/2v/5Wenh4ymQy/+7u/y0c+8hEkSeL7vu/79v9EnsIpVfPz8xu+S+CJIer7ib/1hONRsNfFdKlUYmxsDFmWNwIHs9nsvhbsgiDs2mfRalVyOBy7Hsn7OBSOVkp3LpdrMz8/6rqPct6lUonR0VE0TWv7rB5noGALhmFw9epVkslk21Ss/UgOFwQBvWry1//3GzTKGv54F7ooUKzVSOTzSDYZSVMRNAFdMFlPFZrZGtkSgipTLNfwhl2UqjWGBkKsZQqcGI4xPrPCge4Qbo/GhakFTgzcbZ26Pc9AxI/DoXBtYQ2nTeVQT4hyvcH1pXXifjdXllY53R3DME3mCjlSyeYu+Onu5u6MIkmML61ypi/OheVlJEHgSDiEz6a1jb8d9vu4nkogACP+AF5VI1UvM7a2WeQfC4W5ltocYxvRbHTZNRKVMtWGzuXEGpIAA15vG9nQJAlEqOo6EgJDHj8+RaMm6CQyJW5mUxuPPeoJMFFoVxZOB6NcznSOu12pZum3+/FrDjAhVS0Ttju4mGzfqbdLMivVTgJxzBNhwsKLcdAb4tI2n4eAiSA2kzgEUyCkuvApDhySiiIKjDi7ydUrJGoF1qsVyg2TlWqOot6uyLglG1Olzte0iQpzlU7yIAKZeue5AzgUudPrAURMJwtGpzozZI8xV+lsjbKJKgsWxwE8sp2ExWv00UWXcv/x6o8Tpmm+7YRjK1oBun6/n97eXmq12sbo3ccVPLgT9kvhKBQKG16Xv61o3TOuXLnCysoKFy9ebNt8fPHFF7Hb7fzu7/7uYyIcPHWmcY/Hs6taJxQKIUkSq6vtm1Grq6s7bszGYrF7Pr7139XV1bZQ59XVVU6fPr3bd/LAeEcQjocdKSpJErWa9W7Yg6LVCtTd3c2hQ4c2bgqPY/TuborgVivOwMDAA7UqtXbe93Nn7dq1azua1h8Wj0IMWlOdurq62n6XsKmoPaxJfyfs1FJVrVYZGxvDMAzOnTu3MT1iv5LDFydX+B+f+UuKFRPRpiEIArVGg7oELq+Hmg6lep1apZmujSpTr1eRbRKKJCHYRIQyKHaZekPH7bSRr9YJeZzU0JEFiYFogIVsHqdN4exwnOlUlumFNEe7w9QxuDDTLAxfGO6mbhg4FJX5TBZREclXqpyKR3FqCm8uLG2QiVM9URLlEs93xZlKpjEx+fbSwsakpojTgV1TOG4PM5vNcTuV4mQszFR2c8xql8vFTD7DkNePX7OxWiwQdjkYTbQXz8MOJ7fymc3fndnM4KjqOi5ZYzqX5lYmxQvROJeS7Rf9Ic3ZQTaCmo2ZYpOQxO1uIpoLSRBRJIHx9DJrRoXpQrNtqcfh5nKms3A+5oswus3PoYoi6XpnDkWfw8fVu+njLkElYvfilDU8skq6USKm+FmrFlipFFmpFDnj7+ZCplOtOOAOcTnXqQyMuEJctUgmP+yOWqobR9093LDwevTbw0xZTLhyijaSYgEs/rwrlVLnQTaDAQVTxC5p2EQbqqhiF22YwKB9CKHZ2IEJGKbJmeLejC7fSzwJCsd2bD0nVVXvGzzYIh97FTy4E/bLNF4qlejr69vzdd8O5HI5VFXtaBETBAG/308+bx2Cued4CgnHbqGqKmfPnuVrX/vaBvkzDIOvfe1rfPSjH7V8zrlz5/ja177Gxz72sY1jX/3qVzl37hwAg4ODxGIxvva1r20QjFwux5tvvslHPvKRB31Hu8Y7gnA8LPZiLO5WP8SxY8c6DOxvR7jgTue320DE7WvD/tzokskk1WqVSCTC6dOn93T9hyUcc3Nz3Lx5kyNHjtDT02O5Luy9XG9FOPL5PBcvXsTn83HixIldmcMfBde+fYuv/Odv0BBlDFXGEEVKjRrZchmbx43N7ULQdVx2D6VqHY9DYS2Vo2roJBJ5XB6V1eUKBwZDXLuzytHhKIlCmdV0nlOHuriz2gx/i4ZcIEO2XCVXr9Hlc+OzaRT1BtOJNANBH7GAi7dmm4TCY9OI+93YJJlqvUGhVuNmKknDMHCrKkdjIVbKJWbTWWbTWfr9XqayKXTTpMthp8fnZ71a4sr6pnJxJh7l4nqTSKiiyIgvgF2RKWcb3Mk0SUi/x8u19HrbZ3Q8FOZqeo2ozUFYtVGp1TANnW+ttBfeI14/Y6l2xcKn2ljTN83MLlmlz+klZLOTrJUwjRxLxQJLxQJHfSFGM+2vLWDiVBWWqu3fk36nj0vZzsL8pC/GWGYBEYGozY1PcaBJCpooIAsSK6UsGbNBJp9EEyV8mkqy1k5QvLKN28XVjrWDqpMbFsbyoOLkVqHzXFySxp1yp+ohCwKJWqbjOIBthzyOIWeU64UZnJIdu9ScYqUKChoKlVqZaEOh0dBBEjFlAUEUWa2UMAwnFaNGUW8AzTbX464+rhc6fSD9tjg9RJ6o4n6/N34eFjspCY8rePBBz+tR8U7wcLQ+5+HhYRRF4ROf+AQf+9jHEAQBl8vFhQsX+PrXv87LL7/8Np/pMwD8xE/8BD/8wz/M888/z4svvshnPvMZisXixtSqD3zgA3R3d/OpT30KgH/1r/4Vf+fv/B1+7dd+jfe97338t//237hw4QK/8zu/AzR//x/72Mf4P//P/5MDBw5sjMXt6uraV0XrqSYcjzoWdzd+iP2c8rT1Nazex9bzO3fu3EP1nd4vK+NhYJoms7Oz3L59G5vNRnd399s69Qma7+/GjRusrKxw9uxZAoHAjusCe+7j2O7hWFtb49KlS20hka2Co/W72I05fLf4xh+9wZv/8woNUULUVARJJF0oUWk08EYCaA4b2VIVm1sjmS1SNg1CDplctcFQLMRqqYbb7aSCwHIyR3dI4+KdZUbiHiJhF6/fnOdgdxBdhEuzK0R9LvoiXqbX0kytpIgEXThUmQORAC6HxrenFxBMOBoPISoi11bWMUyTLq+btVKRfp8XTZYpVGtcSaxTrDV7YkJOO5g63YpKWRVZLhXxe1zcyWQ23uuRcIjJbJrnwjEMw2QynUKWRC6ubRbEDlmmSqOp4tAcdTvs8aPIIjG7i5VSgdVyiaDNTk1o/9tTBYF0pdCeg2HCEX+IRDaDpmpkjDqLxRyKKHWE/mmSRKreaZ5+LhBnfBuxEDBRJRHdNBERiNs8+FUHTlmhrNfosgVYKedYKBVYoMAJX4xxC4XkhC/aMUoXmhkdl3Odx3vsXq5a7H72Onxcszg+4gpbqhtHXD1cv3tcM2TcqhOnYsct2TEFnYOOIQyT5jhco4FhGsyWMtR0mYpeZ2u/1UFXjDuNuy1brTubDj01L8tKZ2CgS7RbmssBvif8HRizu0/1fhxoXR+eNMKxWxK0m+DBFvl4kODBnc7JNM1nHo4d0Ppev/TSS3zgAx/g05/+NG+++SZDQ0NkMhn++q//mueff75th3xfz+dZ8N898Q//4T9kfX2df/tv/y0rKyucPn2a1157bWMDeW5uru1v8JVXXuHzn/88P/dzP8fP/uzPcuDAAf70T/90I4MD4Kd+6qcoFot8+MMfJpPJ8B3f8R289tpr+5bBAe8QwvEoLVUPSzhyuRxjY2O4XK57+iEeR7iglYcjn88zNja2MVr2QUPetq4Ne0c4dF1nYmKCRCLBCy+8wPXr1/eFkD2IwtHykNTrdc6dO3fPPuP9IGCw+R02TZOZmRkmJyfbEt+3+jVavp29gGEY/Olv/E9uXppHtGmIskINKJSK1DFwBb2gymRLFSqmiUMRETSZmMdGodagrydAsV4nFvZQE0xCfjeiKlGs1hiMKmQqVSTBZCjkYCmXo2GYvDDcxZ1EhremFtFkkTMj3dxZz3BnPc2pgRi31pOc6YmxXihRF0xuLTeLyKjbSW/Ay3Qqzc21JGGXA12CYq2OR1M5EAyQKuW5s6XgPdMT58JKcyfeZ7NxwO+nqNcp1RqM3+1xPRuPcWGtfbd+yO+j0KhxJhQjV60ym89QMuvcXtv0YggChJwObmTaU7qPBkNczyboVRxoOtQAt6bx+trd4ra6Oe52tthZCJ/wR7hokTI+VbzbimVC1OYiqLkIqjayjQrdmo+Vcp75Yo75Yo6T/ihXc+2KgiKKJKudZCCg2LmR71Qx4jYP1/Kd5KTH5mPCwlge1zxcz7cX8BIiYdVDSa9xwNGDLEgICE0SYRjk63Wcoo9co0zO1MlVi1AtcsgVZbLUqaCc8vQyUeg8125bkDsW7VcioDvN5i9hG2Kihzmj8zl+xcPL/lNcnrn0RBGOrRsNTxIeRnXZbfBgi4DcLyfI6pyAZ4RjB7TuJ7Is8/GPf5yzZ8/yuc99jsXFRWw2G5/97Gd5//vf//iMzM9aqu6Lj370ozu2UP2v//W/Oo79wA/8AD/wAz+w43qCIPCLv/iL/OIv/uLDndBD4B1BOB4WD0s4WpkMW0eT3us1HofCsfU1VlZWuHLlygP7NazwIKb0+6FSqTA2Ngaw4UfYLxN2SzG4n9cin88zOjqKx+PhzJkz991Va621H4RD13WuXbvG+vr6vpvDAcrFCv/93/05q8tZBLuNOgKiIpLN56kboLrcSHYNQRbQVAlVFChW6zhdGslCGbtDJV+rUazUiIRdXJle4bnDPaxli6QLZfq7fAhlmUq9QRGduMdBulhmYnEVU4DjXUFKpsH/nmy2I50eiGEKoOsGlxZXOdQd4vrKOkdjIVRJJlEu8cZss6B1qgoOu4JL04i7XNxKJEgVctwpbrYEne6KMpPN8Hw0Tr5WYzGXY7VcYi63Ocb1YCDA+HqzgPWoGkNeH16bxnhihUy1yjTNx56NRrm4LVvjTDjGhWSzKHYrKv0uL0HNzmI5j64LzDWaKoVP0UjWLNQAl4ur26ZaDbn9jG8xjzskmS67ly6ni0K9Rq5eZamUZ7lUoljTWZDT5LaN0T3sCXeQDYCT3pilijHg8nHZIoE8qNlZq2c6jntUleWaiU1U8ClOXJKGJip4FRuhhoe6oVPUa2TrZXKNMkHNwxULr8dJTw83LchDnz1gSTZUUWLBwnQOzdavVQtSccDZzZRF0J+CyLqF6RzgPaFXkAXpiWtfal1znqRzgr1pXbpX8ODMzMw9gwd3OifYn8+qVCr9rW6pan2vt97rvvM7v5Pv/M7vfPtO6hnheCrwVBOOBx2L22q7WV5e5vTp04TD4fs+53GZxls5DK3MiIfxa9xr/UctsDOZDGNjYwSDQY4dO7Zxg9pPwgH39lo8TObHfrVU6bpOKpXaMM+3ZM39IhvJpRT/7Ve/TL5Yx5BVBEWl3qiTTmWwuR04XU5Em0ypWqdYqOP22plfydDV62dqMcXwUIhLU8scH4mzlM1DBg4NRXn9xjwj3UH8fgcX7yzTF/YRCbi4Nr8GCHh8LiKyxNRqinS5xHy+TJ/bjt/j4NLi6kbOxQvDXdQNk6DTweRair6Qj/lMc5LRcNBHwO3k+to6M6kmIRjxObl1Nygv5LAz4g+QqJZJFcski83C/2RXlEtbJlL5NRuKInI6EiNTLXMnkyFXq3I1vUZ9y3fyUCDIWGqb+dvtpWHonAnESFbKzBdyLJh5Fst50tX20Ller4ermW3EQnV2kI2AaidmdxHQ7FR1nUSlxEo5j2gX+H9WO9uRDvoCjKbbiYIkCBuJ4lvhV2zcsiju44qTq7nOXf4RZ5C1ap5BewS7pCALUjM3RVRYqqXQsFGo1yjcnS7Va/dzLb/YcS/1yXbLEEFJEFitdao7AE5Zhc63wGFXF9cLMx3Hw6qHyZJ1a1TVtFgIOODqZrLUuZZsSvhnZe4U7tBoNJ4oNeFJJRz7QczuFTx47do1PB7PBvnweDwdvydd1/dUCW7BNE2KxeJ9x8k/qWhNOfviF7/I+fPn6enpwe1243K5Nvw2rVBHp9P5wMrSw+JZS9XTgXcE4XjYP4gHIQOVSoXx8XF0XefcuXM4HI49f42HRWva1sWLFymXyxuZEXu5/qO8h4WFBa5fv86BAwfo7+9v+33tlwJ0L8KxU6bFbtDyTewl4SgUChs9mC+++CKyLG+oM61e5L0kG3cuzfJnv/01Kg0DNA3dFKlUq5TqFZw+NzVToFCt47DJFCo13H4HdcMk1u1FNw36+gIUaw0OD0ZYyuQYiPupmgbZUpUzB7qYTmYQBDh3qJfLi6vMpjMMRHy4nBpXF9YQRTjcE0aSRGqCiKLKXF1PYRgmPS4Nj9PG+bllDNNEEOBYV4TFXI6zPXFW8gVcdhtvzW8W2kMeOyu1CmdicfLVGplKmZuZFKnypg/ibHecC6vL2CSJA4EgqihS0Otc3WIkdykKJaPeRjbcqkqqXsKravS5vCiiRLJcpmbqXEq2m7p7PW6ubDOZnw5FuZRpVxscooxi1zguOhANk3y1wlq1jF8X+fZa+258k0B0zmwdcHq5ZOHFOB2Id6SPAwy6/FzKbjlugkdUicoOIpoHWZBoGAYlvUGmVkY3RVbKZVZo95Ic9gRZKGc61vcoGksWtf2gM8CVfKfCcNTdtZnrsQVx1cvtYuf7kgWB1aq1IhHVvKQbnec0YI+wUOlUegQgsy2ssIW/E3ieYWWIZDJJqVTi+vXrrK+vb+yu79UUvYdBq53ySSJBsP+Ts6yCB5PJJKlUaiOEdav6oWnavhnG4Z3RUjU6Osrv/d7v4XK5KBQKlMtlqtXqRgt4tdr8Y/693/s9PvCBD+z/CT2FORxPI94RhONhsdtCOpVKcenSpY7d+d2+Rqto3K8bhWEY3LlzB7/fz7lz5x7JbGeFh1UhDMPg5s2bLC0tcebMGcvZ5fuZawGdSkQrmDGdTre1LT0I9vKc19fXuXTpEj6fD2CDbOyXOfz8/xznb75wHkORMRQVJJlSrUKuXMbp86I47RgNHdWlUqsb+CNu0tky/pCTuZU0PT1+lpJ5XC4NQxTIFiqEw27MikFd10mVy/QEPRSrNS4trNAV8OC2q0ynstxJZQi7HfTH/FxbXKNYqzMcDZCtVjjZHWMpkyfgtTO+0izaJeBwwEOxUiFTrnJxYZkzvXEu3g32c6kKMVWmJkoUagajSyuokkhPwMNUenP3/Gg42GzhCoW5nUpxZW2Ns11xbqy3ey+GAn4uJZoqgFtRGfT48Ng15vJZ5oo50uWmInE2FufientRfCoUZTzdXtwGVBvTxRQh1U7c4UYTZdazWXxOB5ey7cQkbHOwpLcrIwCHnT4mSqmO46osolfav9se2cZkYfM9KYJIWHMR0VwIwClvLxW9TrZeYb1axCvaGSslYNsk2WOeKDeKnarEEXeY28XOAr7fEbCcWOVXHNzcQd1Yr1kX/D7VzlqjU/k47OrmZrFT5fHKDqZ2UDd2Sg8fcXQzW+kcwysg8L7odxLRAsTjcV5//XW6u7tpNBobmyZut3uj9cdqZ30/8aS1eLWwXwF7O0HTNLq6uujq6sIwDPL5PMlksi14sLUzvx+fWalU+ltLOFrf15/+6Z/mx3/8x2k0GtRqtY0BOouLi7zxxhv8l//yX7hy5cquujie4Rl2i2eE424rktWNY+s0pUOHDtHb2/vAN5jWhbhl0NprLC8vk06n8fv9PPfcc/tyA3yYArtlxK7VavdUhB5HS1ULLQ+JIAicO3fuoQ1xe6FwbP1uHTt2DF3XWV1d3Wih2o+JNF/5T3/DldcnaSgyoqYBAqlCkUqjgT8aQraplGp1bG4b80spgjEvq6sZHF47M0spAmE347eXOXYgxtXZVXwuG309AUYnl+gJewj5HVydXaMn7MHtthERXOTKVZLlMh67RpfPhSkJvDXd3Gk/GAtitynMZbKs55c51R9jbGmFPr+HkNOJKJqcX9wscAfddq6trHI0FKDe0EkViyzW6xS3KBlHY2HGVlfodXuIupzUDZ3pfJZsanP7/VgkxMXVdsJwNhan1KjxQqSLVKXMTDaLIkt8a6l9F/5IMMToNrIRsNm4U2gWyS5Zoc/lxSGpyJLA7WySRK1CotwkE92qjcu5drIBEHc4uZIptK+raNypdBbmp/wRrtz1aEiIRG1OfIqDsN1BvlGl1KiTqpZIVEssNPJ4FBs3trVvCZjUxM52UhEoGJ0TsgDqVgl8gFO27qcfcPgt1Y0j7i6uW6gbXkO19G6IQHoHRaLfEWJia5uVKaCJMlE1QK5RIqaGkAUZSZCQBAkREZekMmwfbj6cu8MaMBlydBHRNqfTmaaJ2+3G7/czNDRErVYjmUySTCZZWGiSnNbO+uNQP55EwvF2j+oVRRGv14vX6934HaVSKZaXl6nX63zzm9/c0+BBwzDeEWNxW6SshVwuxxtvvMHv//7v8xd/8RecO3eO3/u93+O55557PCf0zMPxVOAdQTgetsjeupu8fYem0Whw7do1UqkUzz///Iac+6DYL8Jhmia3bt1ifn6eQCCA1+vdt922B22pehAj9n4qHFuzLbLZLKOjowSDQY4fP/5IN8hHPWfDMLh+/Tqrq6u88MIL+Hw+FhYWMAxjX/wa9VqDP/r0XzA7uYZo10CQqJuQrRRpiCaBeBBTFFnPFJHsMkJDR3GqKKqEaJdx2FXqookgChw9EGN6NcXh/girhSIrqTwvHe7lysIqC+k8xwcjrBfL3JlZIexx0Bv1kSlWmFxLcWIgxvWlNU71xBBEmE5lyKw3C/HjPWEEEQYDPqaTGXwOO5cXm2qDJAgcj0eo6XWMcpWJ9RQ2UcBhVyhWm05hAXi5r5uqodPlcjOfy7FSLNDr95KtbpKNiMPBXD4HJvR7vYTtDhRRZDyxSnmLn6vb5WpLHIem6rFeKW7cL0QE+txe+jxe8vUqa+USi4UcE6kkp0KbOR8tyIJA1dQ77jfH/WGuZDr9Fb0eH5fvtmO5JJWApKHpUMoW6JfcFDFINaosFIvgkLhZWGsfxQsc9Ya5ke80Wp/wxrma6yzuT/hiXLWYTHXcE+WGRavTkCPEzUKn6hHYQd0QgdQOqeIeFHRBxy7ZsEnNbA1FlPDKdqpmjYASwDSboXwNs/n3l6pW8UphqkaDqlGjotcp6ya9djt3Cp3Ers8e4kaxU90A+P90vbvt39tTvVVVJR6PE4/HMU2TXC63QT4eh/rxpKWMw5PnK1FVlVgsttFmfPTo0T0NHiyVShtE9J2AxcVFvv71r/NHf/RHfOtb3+LcuXP8zd/8zb6mTVvhmYfj6cA7gnA8LLaSga0XnmKxyNjYGIqi8MorrzzSaLhW4biXPo5arcalS5eoVCq8/PLLzM/P7+skrAcpsFsTsrbmR+zV2g+K1tqtqWIjIyMMDAw8ciGwUyr4brDTCF5BEKhUKuTz+T016uVTBf7wU39OKlNEsKnUBQkUkXQ+TwMR2W4HVcEUTFx+e7O9VBFQbTK6YNLQTQRFpJSr4/baqBs6oiSSr9UIuOyUVZlrC6sMxwIgCNxYXaehG5wZjLOcL3Lhzt3U8AN3U8NVlcV0DmTIlCsMh/xEfS4uLi5TrjcL/oPRIBPr6wwF/XhtNrKVCnfSGXJ3iYMAdAe9TKUz9DvsSKaJKIm8sbS4YToHOBGLcnF1s+j1ahoHQwEK9Tqz2Qxz2Syr+QJht7ONbEiigKbJVCrtCsDhUIhSvc6g20++VmMun8Wv2fjGUnurj0dRWSh17sgPKjZu6+39S5oosV7ZVDYCqp2IzUVQs1M26hx0hlitFMnUKuSp83wo3hyZu+3rp5lGB9kQgZLRObpJFkTWLcbjSoLAmsU0LREo6Naqh7ZDON+AI8h8OUFI8mCTFBRBQRJEPLJK0ajilZum+4rRoKLXUASJ+UoavW6SrZdhi3dk0BlgrpzoeI1Tnl5uWZAKr+xgstjpYwFwy5qlIX3AHuOYe7Dt2L3aYAVB6NhZ32/140lUOPZz/OyjoLXBt9fBg8W7U/D+trZUtTA/P883vvENvvzlL3P16lVefPFF3nzzTQ4cOPD2nNAzheOpwFNNOFoX761koDW5qKenh4MHD+7JBX4vjeOt/A+3273h1xBFcV+zPnYzFvdhE833k3AIgsD09DSrq6u7niq2G2wP6dstCoUCo6OjuFyuDeWnZQ53u93Y7XbOnz+PpmmEQiHC4TB+v/+hv4NLkyv88We+QqlqYEgKpqxQaTTIZfLY3Q5cTieSXSFbqKA4FMq1BlXdQDVlcpUaxUYDzalwZWqZ44diXJ1Zw+VQ6I75uTK9Sn/Mh8uloZbLFKo10pUKh7vCpApl5rN5VrMFhiJ+gl4nF2YX0Q0Tr13D5VLx2W3YVYWaoTO+tLJBNgYCXrwOjXDNyVQijVtTcTm0DbIhAS/2d1M2dDyqxlyxTNjpoKzX28jGAa+b0dVlRnw+/DY7yVKZgNPOtxbaW3mORsKMrrXv0D8Xi3F+bYmYw0Xc4UJAwK7IfHtlvu1eEbDZmMx1+isOBAKMJtp39/2SzKy56dFwKxpddhdxu4tco4JHsbFaLpCsVEhXK3Q73SyU2pWAiN3JlWynEnLI5ed2udNQfdwb4arFZKqTvhjjFsbyU/44lyzG5h73xpgoLOKQVLyyHcfdMbhOSaWOzlFnL3XToKLXKTZqCILApewyNUMHNt+zgEmf08dipdOjccrTzVK187McdoSZKXe+B0kQWNrBRD7oCHKt0EmcfLKTyZI1EXlv5KWOYy2T9m7wONSPJ5Fw7Of42UeBVdeCVfBgiyTuNniwVCohy/Ljy6fYY7RI9Mc+9jG++MUvMjQ0xE/91E/xvd/7vdTrdWZmZnA6ndhsNlRVfaw5HE/Nzv/T8j4t8FQTDkEQNqYybC2Ytwau7QX2inAsLy9z9erVjvwPSZI2pkrsB+43SarRaHDp0qV7Jq7vBFEUqdete8MfBY1GA13XSSaTez6162EUjkQiwfj4OL29vRw8eLAjOdxut/Pcc89hGAapVIpEIsHExAT1ep1AIEA4HCYUCu36BnDtf9/kK//lmzRMAUNV0JEoVWuU9SpOv5tKHcCEap10sUxPwM5KpkBvb4CpxST93QFuryTp9TsYHgxxYz7B8aEot1ZSXJtZ5eRwlMm1NLdWk4x0B3A5bSxkcsysZ7DZZcJuB05VweOy8eZ0s4gdDPnwe+xcW15nOpEh5HJgSKCbJqe7oiDAQj7P9FxTFZFEgbjfzWQiRZ/DhibJeL1uvr2wWTSqkojDrrCaae48ejWNIY+XUqOKQ5CYSmWADCNeNxe2+TZORiKbZMOEfo+HLrebkt4gpDpYyRdZyRfxazZMyei4T3R7PFxOthfDR/zBNrIhmhCUFEYCYeqCSbnRYLVcIFEpUZBVvpWf22gPauG5QIzRdGc7UszuZD3b7vMQgarQeW1RBIHZQmdB7hAVpovtx92yhk+2I5hwwtONKIgYhknd1Kk0GuTrdQRDJdvQyVYLQPMcjnjC3Cp0tmud8Xezls10HD/iiXPLoi3LLWlMFjtJBYCyg4Jy2NXFjaJFvoYgMWdBUAD6HEEmLIiIW3LwnYGTHccftoVpJ/WjNXwEHk79eBIJx5M6Oet+U6q2Bg/29fXdN3jQ6XQiiiKFQgGn0/nI7zeVSvHjP/7jfOlLX0IURd7//vfz67/+6/e8T33Xd30X3/jGN9qO/fN//s/57d/+7Y1/z83N8ZGPfIS/+Zu/weVy8cM//MN86lOf6iBPly9fpquriyNHjvD5z3+e//gf/yOyLCPLMpIkoaoq1WqVL33pS4+nfeyZwvFU4B1BOB7lj1+WZarVKjdv3qRUKj1wwbwbPCrhMAyDW7dusbCwwKlTp4hEIh3rv10tVcVikdHRUWw220Mlmu9VqOBWlEolRkdHEQSBY8eO7bn8/aAKx9zcHDdv3uTo0aN0d3cD7GgOlySpbReuUCiQSCQ2JrC43W5CoRChUGjHndJv/NEbvPHaFUxZQpcVTFmiUC5TrNVw+X0IioIg6tgcCuW6TrzbT6WhE4l5KNca+PwOKqaOQ1OpiwayJBLxu5haTdMX8WEKJuNzq4TcDs4d6eXizDKV1RQ+h8aB7iCTqymuzq9xejjO1cU1TvXGKFVrIAtcnLs7YUpT6I/4qDd0bq0lubmaIBJws15sthxJgsDLg71kSyVUQWCu2Gy/aqWDt3AkHiZdLvN8vItMucJqocBqrczSlrRxv6axVGlvZQqoGjVD5/lonJquM5vLsl4qUTENVortRX2vr5NYnAxHuLTtmEuScakqZ0PN6TkruSxrtQpxr5/XE507615NY7HcrmL4VBu38p1E4YA7YKlunA7EGM92FvGnAl2MZhbwSBpOQUbRBSSjOQq3KkLA7iRdLpI362RrNUZcIS6kO8/xtC/OFYtQwGFn0JJsuCWNm/lOTwdAzbRI5gNGXBEu5zp9Fd02P7ctpmUBFHdo8TrsinPDYpqVIkjM70BE/o/wWVSx87r1IArHvbBX6sdenc9e4nFPqNotdF1/IHJmFTzYIok3btzgox/9KM8//zzDw8OPbDwH+KEf+iGWl5f56le/Sr1e54Mf/CAf/vCH+fznP3/P533oQx9qS4beOoxF13Xe9773EYvF+Pa3v83y8jIf+MAHUBSFX/7lXwY2a6Xf+q3fIpfLkclkqFar1Go1KpUKlUqFarVKtVoln8//rVVynuHJxDuCcDwKBEHgypUreL3ehyqYd4NHIRwtv0a1WuXcuXOW0zH2o2jfzfqtka5bd+0fZu29JEvJZJLx8XG6uroe+KazW+x2SlUrKHJlZaVt8MBuw/wEQdjoQR4cHKRWq5FIJEgkEhu5Ha3Wq0Ag0Ax0+r/+J7fH50FREGwahgHpXIGqoROIhxBlmYZg4lBkVpJ5wnEfk7PrDAyEmFpIEou4qTZ05mYyHDscZ2J2jaDPid9nZ71YoqY3KDUaHIwHqeo6F2eW8TpsHAt5WMkXeGOyqWacGY5jADZZ4ur8Cof7IlxdWiPktDMQ8pOtVbkw2yyURQEOdYWZWFnnQCSAW1WbE6KmN4vQoNNOqlqhbhjIgsCBYJCQy871ZJL1YonZdLNwP9kVaQv3EwUIeZzcSiXp9XjxKyrlapWyXud6sr2wfy4W62ivOh2NML6NWHhVjWS1zFFfCKesUjcM1ktFujxuzq+1F+cuWWGh3GmSPhmIcNnCKD7s9TOabCcQAqCLnX8jdlEiVy9zwBlqC+czTZPlUhHZUEg36qTvTpfyyBorem6jfW1zHbltnG4LkgAJC08HNH+vVjjgDjFukSp+wBlmutT5fjVBZqbU6cOAZtL5igVHGXZEmLHM1zDJNKwN6QedXdwsdRIRCZFXwy92HG+1Ou719eNR1I8nUeHYr2vso+JRczjsdjs9PT309PRw+PBhPvOZz/Daa6/xhS98gZWVFV555RVeffVVXn31VZ5//vkHeq3r16/z2muvcf78eZ5//nkAfuM3foP3vve9fPrTn6arq2vH5zocjh1zo/7qr/6KiYkJ/vqv/5poNMrp06f55Cc/yU//9E/zC7/wC23fpXe/+92Wa7xteKZwPBV4qgnH4uIilUqFrq4uTpw48cRMeWqh5dfweDw899xzO0572m+FY/v6pmkyMzPD5OQkx44du+cF8n54WD+EFVpKwuHDh+nt7SWZTO7byN37rVuv1xkfH6darfLyyy9v7ERtVTYedBKVqqpt8+czmQzr6+vcvn2bXDrP5T+fpJg3sHlcmIqCbkCuUsSQRULhIJWGTjZdwBdykUwUcPntrKfydPf6WVjLcmA4wsWbCxwZitCQTEZvL3LiQBeTK0nurKc5NhihbhpMr6QZ6gogKSLDsQBziQxrhRLzyRxHusL43TZev7Ow4ak4PRijZhgciYW5tZogqje4tbZZ7L803Eu10SDsaqaKH4mFGFveLChVSSTicaJIEr0eN5OJNDVd5/WFxbaQvjPdUS6ubj4v5nRxIBQgW63i1+zMZ3PMA2e7Ytxabd8571O1DrIRsNm4k8/gkGX6XF7cikZN11FlkfNry2ylFr1uD2NJi+yKYIgLiXYCoYkSq9VCx2MH3T7Gt63hllWO+6OUjBrPB3rQDZNyo066VqbX4eZCulPdOBuKs5DrNK0f9AYsQwG7BRtTjU5icdwbs0whH3AEuJHvJA92UWGy1Kl6ACiS9ff8iDtmOTo3oDi5Weh8bWh+H6xwwBlnumzt0cjp1sTpRd8RQmpnFk/rmrTfisKDqB9PYnH/JJIg2FvlRVVV3ve+9/G+972PP/uzP+NXfuVX+PCHP8xrr73Gr//6ryMIAu95z3v4+Mc/zosvdpLX7Xj99dfx+XwbZAOaBEAURd58802+//u/f8fnfu5zn+MP/uAPiMVifO/3fi8///M/v3Fvef311zlx4kSbf/K7v/u7+chHPsK1a9ce34jbh8CzKVVPB94RhONBbwqtnefl5WVcLhehUGhfbywPQzhak5W2+zX2av0HwdYCey+C87av/ajnvlVJOHv2LIFAc5b+XieCt3A/D0erzczhcPDyyy9vEMWWX2Mvxt6KokggECAQCBByR/j9P/gTCkWTKpDP5JCdNmqY6KaM4rSDImEaBp6gE0QBT9ABgoDTa8cAIlE3uXKFgS4/iWIZv8eBz2PnyuwKvREfh/rCvDW5gG6YHBuIUNIb3FxKYFdleqM+bKpMteECEd6YbpKNuM/FQMTHtZUEmVLTPPzcQJzRhWXCLgd9fi+qIvHt6c2Cs9vr5k46jUGz4B8I+pAlkYtLy+hG83fptWlkG9U2sjEU8DGdy3IyEkEWRJbyeTyayrcW5tvM5ANeL5fW24tlj6qRlwVoND0REVnFJYrYFZWEXme1VuPGXTXkWDDUpqA0YWJTJRrl9u/EoMdnSUJOBqOcT24Wxh5FI2pz0eV0EdKc1E2DfK3KWqVErdHgdi5JotreEuZXbUxY5HmENDtXLVqvgqqdiZwVSZBZk2qwbeaEiMlqMdPxeAC3omz1gm/giCdiqW70OwLcsggMlASBlar1a/Q5/FzJd5KEmGadRA4gYKAgI4sikiAjCxKSIBJRPeT1Il1qBEEQEBE3/vv3Ii9brrUfOTj3w/3UD8MwkGWZ5eXltz31vIX9TPR+FOi6vi+fT6FQwO/388EPfpAPfvCDNBoNzp8/z2uvvbbr+9jKykpHW7QsywQCAVZWrNsRAf7RP/pH9Pf309XVxeXLl/npn/5pbt68yZ/8yZ9srLt9WEvr3/da9xme4XHhHUE4HgSVSoXx8XEMw+DcuXNMTEzsa7EOD0YIWunci4uLu56s9DgIh67rlMtlxsbGEEXxkYLztq/9KCrETmNm92LtnXAvVabV0tXd3c2hQ4c6zOGt5+8VwZ26NMOf//bXqDZM7F4vNlmmWK2Sr1aQbSoNQ6chVlhL1nEHnCQzRaJdXhZmUwyNRLg2ucrRgzFWMwVK1Rq93X6SK2mqjQZIIt1BL5oqcfHOIkf7IkiyyI3lBKVanZjPRVfIw7XFNcq1BgfiQWZTGY7Gw1QbOk6Hyv++szn16OxgFw3T4GA4wO21FCG3s03JcGsqEjo9dg1dUphJN3fp31rYLDAFAWI+N9cTCSRBYDjgx2ezkalVyGQrpIrN3n63qtIQzTayoUoiDcFoIyohm51joTDFRp2QVmUul2W1ViMUCnEl3V7Qq6LA+jYvCMCZaJyLHW1QJrIkbIyqlQWBuMNDSHMgIPCcv4tCvcZqqUiuUmXQpfKNlU4fw4vhLs4nOydHDXkCjKY6d/P73D7GLFSPfpeXSxZejxGHn6sWqsRhR4iblU5C02vzct3Co6GKEtMWo2uhOSZ4sQqqIGOXFFRRQRVk4jYv+UaZgOIBw6SQL+Dz+ZHu/s0cdvZjmGCYBjomumEQVB0IpkLd0GmYOnVDp2bqhBQXE7kkJi2C0KDFotySlzvFzlarQUeEI+5+y3Nu/a2+nZ6J7erHrVu3SKfTT0TqeQtPqsKxX2rQ9tA/WZY5d+4c586d42d+5md45ZVX7vn869evP/Rrf/jDH974/ydOnCAej/Oud72LqakphoeHH3rdJwLPWqqeCjxVhCOVSjE+Pk44HObo0aNIkrTvxTrsnhBsT+febZrpfns4JEmiWCzy+uuvE41GOXLkyJ5dzB+FFNwvYHA/QwWt1p2fn+fGjRscOXKEnp4eYGdz+F7g/GvjfOOP36IuSZiKRgOBUrlCxazj9nup6hDw2VlL5qhj0sgWyVZqCAkD2S4xv5xmZDjM+evzHD8Qp2TUOX9jgRMHYmTLNWYWmpOpJEXEbbeRL9dYLRbpCXpQZIm6aXBhulnEDkZ9uJ0ackHiysIax/sijC2sIAKHYiECbgdvzS5Su/s97Q14mEln0E2TuMdF3OUkVcgznd8s6EdCfi6vthfDL/Z3U23onAxHuJNOc3s9xYnuCDe3+TEGgj4ur7c/90Q0QrJc5vlonIZuslzIE3O7+MZCe6HvUTUWS52768NOD9e35Wt4VY2b2c3C3CHJdDk9dDvdlPQ6x7xRUpUyq+UCc7kc/pCdsbX2wl8RRdYqnS1WftXGhIVaEbe7uGwxxarb4eFypvN4WHMwkeskCXZB4o7FiFoRyLPNPGE2H2+r6IRFB3ZZxaZoqLKCIIi4ZYV8o0KX2gzlqxo6Nb2BQ1aZymfQdZWCaVCgDq3EclNktrxtFG6myHO+Hi5nO5USl6SxWElQNTpHgAddDpZqnWb7oOJicgfj+d+LnrU8Dm+PwnEvCIKAqqp4PB6OHj26Z5OvHhVPMuHYD+XlXinjP/mTP8mP/MiP3PP5Q0NDxGIx1tbar02NRoNUKrWjP8MKL73UHOU8OTnJ8PAwsViMt956q+0xq3eHbDzIum8HnrVUPR14RxCO++3smKbJ7Owst2/f5tChQ/T29raNlN3PDIvWa9yPEGSzWcbGxvD5fPdN57Zafz89HLlcjkQiwZEjR+jr69vTtR+WFLTyUvr7+xkZGbH8DjwuhaOlSi0tLbW1dG1VNvZS1QB47T/+DePfvo2pKBiSDIpEoVimrNdx+rzUTGhIIMoiikMj5HOQKVXoC7pJFcs4VJOq2WAtmWa418vUapKukIe+uJ+3bi/itKm8cKSba4vrFMo1+qM+/F47dcFgciXFod4QN5cSHO0O47Ap3FpNcieRAeBgPEi2WuV0T4zZZIa6rvPW3CbZ8DvsOGwKRzxOEoUSs+ksdnSmC5uThwIOO8lqBdM0ORgK4NY0ZEnkzbnFtg2i091RRle35Wh0Nc3fNkli0OvHpSrYZJkLq8uUGw1mMk3S4NM0Zi28DkMBH2PbUsIHvT5uFTcfqwgCIVnFL4hUDQVTs5E3dBKVMmtmkUSlRKbW3nd0xBficqqTQJwKxbiQtJgE5fVz0eJ41OFixSK4L2x3sFTtfD/9bi9j6U1CI5gCbkWly9CoygIO1YYsiIhCs3B0ywrrtRJ9mkpJr1NoVCnqNdx2D7erOQzDhEYVKs1zEIGgqpFsdE6OOuPvolDsHNl9wBViykJZEYEVi/fQfE7YcpqVQ1SZtGjZAuh1+LmS71Q3HJLK3w2dsHwOPBkKx3ZsLe7f7tTzFp7klqr9Ihw7TT1sTRe8H86dO0cmk+HixYucPdskvV//+tcxDGODROwG4+PjABsj/M+dO8cv/dIvsba2ttGy9dWvfnWDpD7DM7zdeEcQjnuh0WhseA5eeOEFfD5f289lWX7bFY7FxUUmJiYYHh5mcHDwgW8O+6VwGIbB9evXSaVS+Hy+PScb8OBkyTRNpqenmZqa4sSJE/fcudlPwtFat16vc+nSJcrlMufOneswh+812ajXGnzh019m/vY6pqYhaAq6YZLK5KgZJqHuEEgSiiSgGAYV3UDRZMoNnVpdx+G1kV3NcuhghPV0sdlyhYlDESiViyxkshzq8iPbFM5PLeG0Kbx4sIdba0mm72QQBHju7gSqsMfJeq6IUYRsuYpTUzjcFSZZLjOXzDKXzBL1ulgrl6g1dCJuB31+H4VGjeurm+03A24bU1vIhkdTORILka1WqdV1bq2nCDrt1GnPwujxeriW2FQXXIrCsN+PLIqMeP3MZrPcSCRwKgp2m9KWJg7Q5+v0cxwLhdvIhmBC1Omk2+0m5HBQa+isl0uslAooosxE7W4hvyVKpsdmZ6KUaVtXEKBidm5seBSNmxZejG6Hm0upzp35QbffUt0YcPqYL2bpd/hxSAqq2PQyqIJEWa9xwBmj2KiRr1fJ1aqUDYNpsUS5pMOWgMFmOJ+X+XJn0R+1OS3JwIjmY7LeGdrnkW2W5nLY2fh92B3npoVHQwKWLNQYgAPuCFctjOeyIDJbtjax/93QCezSzipAKyDtSSIcO03N2q/cj93gSVU49uu87qVw7BZHjhzh1Vdf5UMf+hC//du/Tb1e56Mf/Sg/+IM/uDGAZXFxkXe96138/u//Pi+++CJTU1N8/vOf573vfS/BYJDLly/z8Y9/nO/8zu/k5Mlmhsx73vMejh49yj/5J/+Ef//v/z0rKyv83M/9HD/2Yz/2t2O87VO88/+04B1DOKwMwsVikbGxMVRV5ZVXXrH8o3tcLVVW4XZbd8afe+45QqHQQ6+/14V1tVplfHwcXdcZGhoik8ns6fotPAgp0HWda9eukUqldmVYf5iAvt2g9V1r5X3YbDZefvnljZHKe2kO34p8qsAffurPSaaKCA4NwxRp6CbZcgFRU4iG/eRLNeo0sDlVFlez9PQHmVlMMDIUJlWuUEuadHX7eOvaAoeHwhgNgTtLKU4d6qJmNFiaT1KqVUhlswwEHVQNuLa8Rr5cYzDiJ+hzMD67TF03cNs1XE4NhyrT7XOTyJe4k0pv+ihsGm6HRlxzk6tUuLOebvovtpCNqF1hoVKj2+Mm5naRrVTxODS+NbNZQIoCBJx2biU3i1pNltA0iQOOIDZJJlUus5DLUdDrTC21F5kHwkHGtqkgJyORDrLhkCQkWeRMOI6IQK5WZamQp8ft5VuL7QWtgEnV6Pyb7na4uFnqLMpPB6KMpzuL7wP+QIf/AyBkt7NUaa7jlBT8mgO3ohGxOQiqDgxMarpBqVEjU6vglG1MF7Ikyu2qytlQnPF05+7/sMPHhEU6+RFPhBsW+RpN0/kO+RqK2Ua4WogYCtN0qh5xzcONHbI6GlYLAYfccW4WOtUeAZP1mvUo3EPuODcKnUQE4O9Fn7c83sKTmnmxmyL6caofTyrh2E+FYzcqxv3wuc99jo9+9KO8613v2gj+++xnP7vx83q9vpENBs3f6V//9V/zmc98hmKxSG9vL+9///v5uZ/7uY3nSJLEl7/8ZT7ykY9stGT/8A//cFtuxxOLZx6OpwLvGMKxHa2Wm56eHg4ePLjjRXG/U7pbr1GptBcCrYK+ZXbeGuDzMOu3fAJ7cZNstXf5/X6OHz/O8vLyvrVs7ZZwVCoVxsbGEARh14b1vRy5uxWCIGx4Wrq6ujh06NDGa7WUjdbr71XRsjS1yh/92l9S1U10WQVBwpAhnctTNyVsTju6IFCqNwhGPORKFfoGQ+RKFQ4fjDG3lmWoJ8hqvkilVufFE71cvL2E32PnhRO9nL+1iG6YnBqJ0TBN5jJlNNWgbNTxazIOUUWWdM7faRZ9PofGoZ4ws4kskyspXDYVj8dGKl3GociMRIOYIlxbWtswTj/XH+fiYnN3XjAhZleIBnyIxQqL2TyL2TwnuyIbj2nhuZ44F5aW0SSJQb8fp6ogyyLnF5c21gY42xPjwkr7c49Hwh1kw6NqrJQKjPj8+DQbhmmSrpQJOhxc2DYuN2CzcT3dqUAcdLq5Welsa/I4bCxsa3eyiSK3M52G6m6nm6vpVeJ2F17FhkNWkAQRmyiRrJXpsflIVcsUanUKtTyHfBr/a6UzS2LY7eeqRaZH3O7iSqazsLeJEguNTs8IQB3rzZc+h49LFiNyD7vD3LJICVdEkaRUxWq5sOpgtZ7pPI6NqaJ1JkfDgtwBHHTFmSxZezTKusUoLeC4u5cBx72Lxv3I4HhUtKZUPQj2W/14GluqBgcHH3mdQCBwz5C/gYGBtntXb29vR8q4Ffr7+/nLv/zLRz6/x41nHo6nA+84wmGaJrdv32Z2dva+LTfw9rRUbfVrnD179oFvIlbrw97MHm+N493a3rWfpvTdEI5sNsvo6CjBYJDjx4/vuhDYr5aqcrlMNptt87RsN4fvZTvG1W/d4LX/+k1qhogpKyBJlOp18vkSDo8bu6ahuVQqNZ1AxE2uVMHls5MrlNHsKjVdRwCqGDjtCpIsMbue4VB/GFEWeePGAge7gwR8Dt681RxpG/E56Y35mFpJMZ8pc7w/zOXFdbo9NkRMkKWNkD9FFomH3IiCyMmuKLdWkyDC5cXNQvRoV5grK6scjYTQa1WWcyXsLidjy5sFZpfXze3UZtuMSDPID+BQKMh0KsON9QTHY2EurLQXpkMBP+PbiIVbVVksFpAEgT6Pl4BmwzRBVkQuriyxVixuPt/n68jhAOj1ehhPtBfUbklmUe/cpDgRinB5m4ohInA20k2yUkIxBYxGg3KtRsUwcBkCy3WD5XqRZTbP5bA/yI2s1cQn6zuVTbG+fnQ53aymLfI1AlEupjonXx32hK3Tw2WVWzsQgZ3unsc8ca7kOl/DIcjcLKw00wy3v46okLJQRHrtfku/BzTVLyv02QPMlq3P+X7qBjy5CsejntNeqx9Pm8JRKpUeuaXqGSzwTOF4KvCOIRyCIFCtVrl06RKVSoVz587taO7aisfRUrW1YG/5NUZGRhgYGNiTm1rrgv8ohKM1dnF+fr5jHO9+mtLvRwpaBOhhPq+9JhymaXLz5k2y2SyxWKyNbOyXOfwbX3idN167gqkqGLJEA4FiuUxdMHD7/ZiyiOpUmVtIE+v1MzWzTu9QiCs3FjlypItbM+t43Br+kJNrU8ucONiFjslqqkA46Kam6wxEfKiazJu3FugKuokF3NxJpDk/2VQzzhyIowMxn4vFbIGjPWGuLTWLuZBNwu+2sZTKka82d6HPDMW5ON/cddZkicOxEKYIiiBxfaVZSJ/sjTK+vFmc22QJURJwaQqHw0HqukGmVGE6kyOzRR0M2O3MbTMBa7JExazTuEv24k4XUacTl6axXMhTrNSYSWWYAY6GQ4wm2gtRUQBDoG2ELsCRYLCDbACMhIKMJbYEE4oiMYcLp6LwQqgb04RyvUG6WkYA3lpdahvFCzDs9nJzm88D4JDHb0k2jvrDTGQ7i+4RT4CJTOfx6A7qhiZK3Cl0tlIBCDvUjYe8EUbTVvkaPkuCImCS2KHN6bA3apnV4UJhwcxbEpGAYmfJQqyIaO4dzeI+xc6ihXDtV5z8vwKHLZ+zFU+qwrGXRbSV+pFKpUgmk7tWP55UwrHXn1ULhUJhV3XFMzwYnikcTwfeMYQjm81y8eJFvF4v586d27Vq8DgIhyzLNBoNJiYmWF5efiS/hhVaF1Zd1zd8BA+C7cbn7Ts4+6UU3GvtllI1Nze36zyS3a79MGg0Gly6dIlisUgsFsNms22c536Yw03T5E8+8xVuX1lAl2WQZLg7nriOic3pIl+pYXPbqZfraB4N3TDwR93Uag0OH+5iZinF4ZEoNxbWqaYLvHCij7duLiAAZ450M5/IspzMc3SomSA+0hVkPVdkNpUlkSsxHAsQ8bt4684Cdb35OZ4eijO9nua5/jiJXJGAx87YwmZR3ue1cXVplUMhP4oss5IrslIospLbbOE50bNJNjRJYjgYwOe0MZNKs54rsZ4rIQhwIBZkbr29cI16nUysbxbkNlnihZ445UYDv2pjMZdnJVcgZHfwrfn2iUZ2WWa92pmj8Vws3tFKJYsCucZmxSqYENJsDPj8mAKcDXVRqtdJVsokyiWidhdvLHW2HJ2KRFm0aL1SLFUJk2y5aHEcy1Gw0CRbVuh1eli3Ujf8UUbTncrDsCvAzVwnedBEiamCtVLgU23MWwUAuqPcLK4imgKKKKKIMoogIwsCxUadbpsfSRCREBFptiI6dYF0rQCmgCSKKIqCIitocvN6dsy1JS9D2Jy0VdADdw+aNKkOyAiYpsER50DHub0cGEER71+IvlMVjntBVVVisRixWGzX6oeu60+kIXm/cjhKpRJut3vP132GZ3ga8I4hHJOTk/T19T3wlKfH0VKl6zr5fB5d1x/Zr2GFVvvOw7yPQqHA6OgoTqdzR6K2n6SsRQq2+k+2Fvcvv/zyQ+8o7ZVpvGUO1zSNc+fOMTk52WYM32uyUSlW+fyn/ozV5QyoGpKmUK0bJFJZdARC3SEMAdxODQNAEZErBqYsYlRNZLuCbhr4/U4WUzn6Yj4EReTi7UWOD8VQVIm3bi6gSCLPHepiOVtgKZnH49Tweex4nDY0SUJVJN6Ymkc3TGRR4OxwN9lKlXy5ytjMMqcGY4zNN3eYNVnicFeYaqOOWa5xcy2NAPT47MxtIRt9AS/pSpkz3XEq9TpT62k0WeLbM+273s/1Nn0bW3GmJ8ZMJsupaARFlEiVytgVmW/Nzrep1C5VYanYWWwfjYY6iEXY7mAiuUlgFFGk2+Wm3+ul2KjjRiZZLJI1dRLlCh57hals+7Qkv2ZjIt2pSgx5fVxKdu7AHw+GuWahSpwMxrhsYfAe0pxM5TunQB30BndQN5yWeRyKKDJXaj93CRGXohLSnOimgSpJKIK0kdLtVTUKd4mXSVMFMkwTTZIoNKoM2KM0jLsBfHf/VzdE9IZMDZOKDq0QvpPeGFezneclCQIeWSVr3GUvOhvej2HByYxgQdhECYcsk290Mp7nvD1ctlBRBOD/e+DvdRy3wpOqcDyuc9qt+lGpVB5qk2s/0bqf7JeHY6/v38/As5aqpwTvGMJx9uzZhyou9zuHI5vNcuvWLQBefvnlfTPYPUzbU8tY39fXx4EDB3YsmPdb4YDNMZTbi/tHuZnthfcknU4zNjZGLBbj8OHDG8RC1/V9MYcnFlP891/9MvlCDdFmp24K1BsGuXIe1anhDfvJ5Co4vDYymSKaWyO9XsAfcTExuczJ471MTK0Sj3mwOxXuTKUIBp0YArjsGoIEE3OrnB6JgygwPrOCbphE/U66Iz6uL6wxs5ZhpCvA7fUUMZ+biNuJKAm8eWeBVtfR4e4QE8vrHOsKIwkiiUKRuUx2Y0IVwMm+KONLqwgmxB0KTlWh0KixVCgzn2oqF71+DxPr7TvowyE/YyvNwrvL7SLmcmGTZaYyzQlYrddwyDJOh9Jx/R4JdU6lGg742zwasiDQ7fbQ7/VSatSpNnSS5TKrxQKlap03l5ao6O3XhdPRWFsrVQtDfj8X1zoLaVWWOs5NENgo4LdCFCBV61RfwKS2Q40p3zUwOCQFt6LhlFU0SSai2VnJpsAAp8sFgkDDMPFpGgulLLKiUm7UKTZqVA0dh2rnzfXFznMF4k4ny+XOgv/5YDfXLRSRfoePG3lrv0XR4n0DHPPEuJrvVIcETIqq9QSsA/YgN8rWI3eT9c7zBTjjG6DL5rP82XY8qQrH20WCdlI/UqkUuVyOdDr9tqeet9C6Lu/1vdY0TYrF4jOFYz/wjHA8FXjHEI6HvcDt5+59S4ru6upibW1tX6d5PMj7ME2TO3fucOfOnV0Z6x8H4TAMg3Q6zfj4eNvkp0dd22oc8W7R8tscPHiQ/v5mS0eLGCWTSZaWlgiFQhvtVY+KqfEZ/uy3vkbVMDFEGVMQ0CWBTC6HjoLH4yJfqpItVXEG7GTKVYZiHhYSWYKCQHdvkBvTaxw5GGVscglREDh1pItbC0myxQpnj3ZT0w0MEyoNndsrSYbjQVRZpFBvcOGuZ6Mv4sPtstErmNxZTeNUFe4k05hmswg90h1GUSVUUWJicR1VloiH3CwmNpWMk71RytUq/U4biVqDpVKdg24XS4nNHXZVEqjpDaqNu99bE3r9bsJuJ3ZNYSGTYzlbYC1fpMfvYbXQ3m50KBZidLm90D8SCXWQjZDdTsTpxGe3UdcN0uUyS4UCblnj/9nWdgUQ97hY25ZSbpMk5gud4257XR7G1ztJyLFgmKsW6sPpUIxxi3yNU8EYY6llBFPAp2m4ZQ2nohCyOSnrdeJOL7ppUqnVKNaqaLrJXDqDaEoUdZ1irQSUCKg2bqUTNFp3tWrzdyIAXS43S6VOb0XU7twYwbsVx31RruY6z9UuytzagVQEbA7mLPIyBp0BpkvW3pGyUbM8ftgd5dYOHo102dojMuQM7Zi98b7oKcvjVnjaFY57Yav6kc/n8fl8aJpGMpnk8uXLmKb5tqSet9C6Vz3u4L9neHg883A8HXjHEI6HxX4QDsMwuHHjBsvLyxup4Ssr1jfOvcJud/MbjQZXrlwhl8vx0ksv4fF47vuc/W6pApibm2NqaorDhw/T29u7Z2s/DFHaaqDf6rdp+TW6uroQBIHFxUVu3LiBx+MhFAoRDodxuVwPRX7f+ssxvvEnF6gjYqoqpihRrFXJVyrYHE4UTUGzqzSqDaLdXiqGQVe3j3y1RjTipViv43JoON0Brs6scGQwgiCLnL+5SFfQw8hAiLHJJRq6wcG+MJomE/a6mF5J0d/l585qir6wj1jAxc3lBLN3MgD0hjwsZHPEfW6CLgeZYpnVQpFEYXM3/mB3kMuLa4RdDnr9XmRJYGxxhdqWz/5MX7xj3O1gwMt6scigwwaiSKJax6OpvD7b7jE41R3j4lInsdhONuyShCSKnI7GkASBYq3GUr5Av8/Htxfa11QlkYSFn+OgP8Cl9c6C9Xgkwvm1zl14j01jflsRLwqQ37abr4oiAdWOJAic8sdQRAkBaBgGDcOgVGvglxxkaxVSpSopqs0QPm+dOQuicywQppDp9HsETJGUxRbayUCUyxYm8oBq41rWWimomtZk/ag/ypiFD8Sr2Li+Q1aHT7UxayHg9Nq9TBWtJnLBDtmA9Nr9LFY7W8wAlIb137tXtvP/Dh60XtACzxSO3UHX9Yfyfuz3Oe318I4Wnk2p2ic8UzieCrxjCMejKByNRmPPMiyq1SpjY2MYhsErr7yC3W6nUCjsm0LQwm5aqlrtSqqqcu7cuV3vPFn5LPYa09PTnD17lkAgcP8H7xIP4+FoNBpcvnyZQqHQ5h/Zag632+0MDw8zPDxMtVolkUiwvr7O9PQ0qqpukA+/37+rXbav/Mevc+l/T2JqCjoiuiGQLxXRZfAE/Mh2FR1I5ys4PTbWM0XcXluzDShTZGAgxK2ZdewuDcTmGGNDFMjkShzpj6DaZM7fXCDgtjPSE+LqwhqFpRqiKHB0IAKiwEDET7ZUoZyokyk1++JjXidRvxsdmEtkWc0UiIXcJNKbleOLw93UTYOBgJfZZJZKrY6sCG1k40AkwPhysxANOGz0+Xy4bCoTa+skK3WSd3tmhn0urq6374IPBX0bz23BpSikKiUGvF78djsCAtlKFZ9D48I2EhJxOria6DQ9n4xGubDaTiBEATIWpu2Iw8nlZGdRfjQQ4lpqHZskEbI58KgaNknBo6rk6lXcXo1CrUa6WiFXq9Lj93BxtVMxOBOJcdliGtaJYJQrFvkagx4f1zKd78kmCCzonWNlAYq6tYow4g1wIdUZqDfs9nM730kEBExWKtbqwognaGlIvxcRCdtdLFYzHcdDqpObO6SUhzSHJeFwiAozFonnAN8dOb4rs3gLT6LC8SSe03YSdC/vx+NSP/bLMK7rOqVS6ZnCsR94RjieCrxjCMfDomWS3osxeplMhrGxMQKBAMePH99Yb6+D+axwPxUimUwyPj5OPB7f8CI8yNqw96MGa7Ua4+PjAJw+fXpPyQY8ePBfuVxmdHQURVF4+eWXN26G9zKHa5pGd3c33d3d6LpOOp1mfX2d69evU6/XCQaDhEIhQqFQxzSXeq3OFz79ZeanEuiyBJKMIEnk83lMVUSWbWRLNXwOlYWlDF39Aabmk4wcCDN6bYGjh+IIqsSVm8scPRLj1kKSXLHCiyf7SObKzK5kOHk4TjJX5PhglEpdZ3xmhUq9Qdzvojvq5drCGsVKHaemEPA7WM0UONEXxTAMMpUqb03dLUYFGOkOcnVxjYGgD7/LjiyJvDWz2fsvCOCzy8wVNoten13DZdc4ZY+xli+ykMmhygUyyQrl+qZHIux0sFJtL4oVEVLFAoZhEnXYibpdKJKELEuMLq9Q00vMpJvF71DAz6iFihhxu1jdpljEnE6uWBT4gzY7k9XOgr3P68FelvEoKqokgwm1RgNTAI+kkatVWajlgTyyKBCwO1jbRlxUSWTWQqmQRIGFonUBX7DI+oBmcKEVDrj8XLEYedstapamc5skc9OCVAC4FOtC8JgvZpk4LglChyF947zcIcuxuk5J5XrWmog0gwY7vRg2UeZ20bpl6qA7wpW8dbL4YEplVpolGAzidDp3lS/xpCkc+1VIPwrud094O9SP/Qz9A555OJ7hGR4STz3h2DpS9lEuUq0L6IEDB+jv72+7cG59jUcN+dsJO7VUmabJ7Owst2/f5siRI/T09DzU2rC3hCOfzzM6OorH40EUxX3Z6XqQlqpMJsPo6CiRSISjR48+VHK4JEkb5MI0TQqFAuvr6ywuLnL9+vW21iuzBn/4775EKlkEVUXWVMo1nfVECkOSiUb9FMp1vN6muhHp8WGYJgODQbKFKscOxZldz9IT9dLT4+PCjUUO9IUY7A3yxrV5BOCF472kCiXm1rIMyCJr+SJDcT+NhoHNofLWXc+GLAkcG4xSrjVIZEtMLKwxFA9uGLsBXj7QQ6WhE3U7mUlkqBs6qUqlbbNm0OdgMl+i1+ch4nJSrNYwZYHR+c1dfUkUsKsyy4VNsiEI4HfbWburbnhtGr1eDwGnneVcnmo2x1qxzFqxTLfDxny1fTKRJAro6B05GsejEa5YtEeFXA5WtvhNRAT8ooiiapz1eBEFkZquk6/WcChyx7QsgNPRqKWB/FQkZmkgPxmOcmHdYmxuKMrFROfjTwQjlunhPS4Pl1OdxzVBZL5mPVLX63GzlOuc5nTY5eeyRY5GxObk2g5EQDetNzWO+aJcsZhAJQowV7JWHQY0D9crnUqNJAjMlq39HgddYa4WOj9HgFTdOj39qDPOycgQyWSS6elpFEUhFAoRDAZ3VCGfRDXhSTynByFBj0v92M/QP+CZwrEPeObh2BukUil+/Md/nC996UuIosj73/9+fv3Xf33H72wqleITn/gEf/VXf8Xc3BzhcJjv+77v45Of/CRer3fznC3qnj/8wz/kB3/wBx/o/N4xhONhd0ZaF8tGo/FQFzjDMLh+/TorKyucOXOGYDDY8ZitCsF+wUrh0HWdiYkJEokEL7zwAj6f76HW3ko49gKt6Vj9/f2MjIzw9a9/fV8+m90Sjla44FayuDXMDx48OVwQBNxuN263m6GhobbWq9FvXeLin91AlG1oHjeCIFKv1smVimhuJ96gl3K5hsvvYGU1T6THw8xskr7BEKlsCRMTU1aQBAEUkXy5xmDcj2pTuDy1zPGhKJpd4c0bzd3e3qgXv9dBrlJjYnadUwfjjE0vE3Da6Y94aWDy5u3NVpgTgzEuza3QF/IScjmQFZHXpzZ/7tQUDAFKtWYrlF2R6HIoyKpKyG6ykMqxkMrx3ECciwvtReip3ljbMRF4sb+bqq5zOhZlNV9kJV+g7tT55vRcG6FRJZGq1Pk7OBrycznZXqDaJKlNZRBMCDrsDPn96KbB85EuKo0GiWKR9VKJLp+PK+kU0K5CHAh2qm6yKLBc6ixubZLEdLZzl98mSUzlOotuSRSY30HdKBvW/omw3cmChfH7eDDKxWRnIT7g8nE911nUi8Bc0VqR6HN5WU91qgsDTh8389aZHGXd+nyPeWJcszCeC5is7tCaddQTYyLf2eYFkNMtgj+AQUeQOQvyAvD3u87QHd1UITOZDMlkktu3b1OpVPD7/RtFbmvk6ZOocDyJHo5HOaed1I/WBo3b7d4gIK2Nqd2e034pHKqqPnFjgN8ReNZStSf4oR/6IZaXl/nqV79KvV7ngx/8IB/+8If5/Oc/b/n4paUllpaW+PSnP83Ro0eZnZ3lR3/0R1laWuKP//iP2x77n//zf+bVV1/d+PfD1JPvGMLxsBAE4aGzOCqVCuPj421+DSs8KqnZDbZ7OCqVCmNjYwCcO3fukSYpbR0F+ygwTZPp6WmmpqY4fvw48Xjc8tz3CvcjHKZpMjk5yezsbFu44Fa/hiAIe3KTb7VepaYL3PnGGnaXj2KjQSlfQtCqNEwwRIWA18XychZnwEFmLYdkl5meSRDt8XHx8hxHjsRZyxSZvJHi+dP9LCdzLKxlOXYoBgj4XXYkReL8zQV6Iz7iQRcTiwlmbzeLu1MjMaoNnaM9YW4tJjBFH5dnNnezXzjQTd0w6Pa7mU9kUSSRuaXNwlAQmlOs0qUyz/XGyBRKpAslVqo6hXxm43Ej0QDji+275IdjIa6trHEoHMSlqpRqdRqGwcWF5Y1gQWiGAebqtY7r8vGuaIfaELSp3EhvFvOSIBB3uhgO+inU63Q5XGQqVVYLBTKlCotynsV8ezEddTi4ns2wHSfCYS4nOxWAU9EoFyxUjOPhKBcsjOUnwhHOW6obMS4mOo8fD4S5ZpEqHre7uGKhbkiCwHyxs10LwG+zMVtsfqaqKKOJEooo0ef2kqgUCCBg6gZGo4Gh68iCSLlY5rgziizLiIJAK/7bo6gEVdfdf5sbI5LtskxZb3DK3dv2OzNNcIoyx109IAiYmGBCuVxC1Q0kh52urb6K5rI4RWUj6G9rze+QFCpGjROuZkuLefdFTEzcsopTtDXPSWj+1MREFiW+K7SZLC5J0ga5gOaudTKZJJFIMDk5ic1mIxgMPiMcu8ReFff3Uj+uXLnyQOrHfrWeFQqFXbXjPcOD45nC8ei4fv06r732GufPn+f5558H4Dd+4zd473vfy6c//Wm6uro6nnP8+HH+x//4Hxv/Hh4e5pd+6Zf4x//4H9NoNNo6cnw+330nmt4PTz3hgIebwtQa4RoMBjl27Ng9L7qCIOxbUd3C1paqlpdkN+f2IOs/yvnrus61a9dIpVK8+OKLbXLdfo3dvZdpfPu0rlZf7n4lhwN8479/mzf+6ioNQUJy2nEJEsVqhUK1go4MAiQzGWoCOCWdhmDi99gQNJFKtcFzp/sYu7HIUF+QSMzNW9fmcDtUzhzr4frMGoVyjZOH41QbDYa7g+RLVW6tpMiVqoS9Toa6A9xaSpC667E4NRxjbGYZv8tGf8iPTZN4fXJTyQi67CTLFWq6jijAcCRA2Ovkznqa5WyB5XQBUYDukIe59CYpcds0UpUKumniVBT6Az7cmtI81jC5tdpUIyRRoCfgbSMbAMe6Ih1TqQYDPsa2mMclQaDb46bf76Vcb1Cu10kUiiTKFUqlCv+7OE9jW4vV2e44F1Y6iULT59E+QkkSBFIWfg67LHcE/wG4FZWbFuF/DlnmVrazPUgWdyYJhmDiV+04ZBlNbP5PESWCdjtdtSqlUolGo4HL6QJRxKOqrFdK+GUHdd2gZuhU9QZOWeFGMompi1R0kwp1WqEWDkllMt/5+ie9Ia5YqBgeWaVm6paJ52eCXYylO4lTt8PDUiZj+R5P+CJctpiOFbd5WMlafy5n/d2MZTqVD4eoYAoGFYtz+97YMWRT2LFYdzgcOBwOent7aTQapNNpkskkq6urGIbB5cuXN4rcvRp//bB4EknQfhX3j6J+7FdLVYtwPMM+4ClUOHK5doVX07QOn+eD4PXXX8fn822QDYB3v/vdiKLIm2++yfd///fvap1sNovH4+lo//+xH/sx/tk/+2cMDQ3xoz/6o3zwgx984OvRM8LBgxOO+fl5bty4wcGDB+nr69vVh76fo2Vb6xuGcU8vyaPgUUL0WmqLIAicO3eu449qvwjHTqbxSqXC6OgokiS1TevaL7JhGAZf/Oxr3BqfR7RpmKZAtW6SL+cQNAlvKICkKs3CXpUwckXqhk6xVEbKGzQMAafbRqZYoSfmRbLJzK1kOHUwTg2T89cXsGsyZ4/1ML2WZj1TJOCxI6kSUY+LiNeJIAqcn1xAN5qfx4nBKDomB+NBJpdT5JwVri1vXgA1WcLnsaPJEn0BDzPrGRRZ4tuT7anex3sjXFra3I23KzIneyOUag08qspcKsv15XWO90S4vd7eVnSqJ9YxKnck5G8jFgBBu52o20nAYaehG6TLFZZyeXyqxjdnOk3CsYCXVKK9+HdKEtctplUdCgYsfR6nolFLL8axSJjzq53F9aFgqEPdcMkKpyJRVsoFepweVLGZ3i0g4FYVUtUKEdVFVdepNOqU6nXiLhfX7gYhptk0jfs1GzfSCarGlr/BSrNlbNDjY6aQ6TingUgXM6XO48MeP5MWJnIBk9QORvWIKTFldP7MLauWAYAAcYeLpUrn63tlG7d2MKt3Oz2s1DoJhyZI3LLwmwAc9IS5lLVuwXpv9Ghba2Tr79pKuZRlmXA4TDgcRlVV8vk8Xq+X1dVVbt26hcPh2CAfXq/3saoNLT/Zk6RwtNpO9/ucHlT92E8PxzOF4xn2CtvH/3/iE5/gF37hFx56vZWVFSKRSNsxWZYJBAK7jmVIJBJ88pOf5MMf/nDb8V/8xV/k7/7dv4vD4eCv/uqv+Bf/4l9QKBT4l//yXz7QOb5jCMejXARkWd5V2rhhGExMTLC2tvbAI1z3m3CIosja2hqVSmVHL8mj4GEVmmw2y+joKMFgkOPHj1venPaTcGxft3U+oVCIY8eOtZnDd5pE9SgoFyv8t0/9GWsreXRFQRclDFGgVCwgORVMVBqmQLVaJ1us4fbZqRoC5aJOrDfI9durHBj2k8wWWM9WGe73Uq/XKJVrVE2TlVSOkwfiiIrAW7ea6kTQY2ewJ8Sd5RQ3ZtcZjPtZzOYxDJND3SH8bjujM8tU7k6JCnkcJEtlag0dt01lMBJAUUQuz69SuxvKF/W6mEll2sjGsZ4wEysJDkWCuDSVbKmCx2XjW1PtJOBkT5RLy+272YMW425VUcSuqZyIRpAFkVKtzkquwIDfxxuz7QWlJkmslDpN0seiIcsxuH1eNxMWbVN1i++dTZKYznU+1quoLBfzDLp9OBQFTZKREJBFkaquc8wbplSvU6jXyFarmA24vL5GvtY+fUsUIOp0WfpAYjuY+4Y8Pi4kOwnQUX+Y61mLEbmSzI2sdVHv3mHK1VF/hAmLVi4BKKoiWNgnBh1erhQ6X18VRW7v4Pc44LUenysJAnd2yOQ44o1yeQdSUdyBJPU5/LwQHcQwjI2NhNbfObBBOqzIh2maaJpGf38//f391Ov1jSL36tWrjz3cbithelKwnwF798L91I+WzyKTyTyQ9+N+KBaLzxSO/cJTqHDMz8+35aDtpG78zM/8DP/u3/27ey55/fr1Rz6tXC7H+973Po4ePdpBfH7+539+4/8/99xzFItFfvVXf/XpJRyPgt2Qge2eiJ38Go/yGg+LWq3G2toauq5z7ty5DePjXuJhSEHLjD0yMsLAwMCORfzjIhzLy8tcvXq17Xy2m8P3kmwkFlN84Ve/TDpXRlBtdydR1VlfzyDaNPwuD2uJIl0xG4vLWbr7/NyaTjA8FOLOUpJSuc5zz/Vy4eoC0ZCLI4d8TEyvY5om/XEHxWKBbL5CNNTg2uQ6w90BXDaNVKnC+ZvNgq4r5AEZDveEmV/Pki9Xmc/kNsiGQ1Xwe+zYNYVorcHUagpJErgwvblbr8kSiipRLNQRTIi4bPSHA+RqNSQEbq00W4Z6Ax6uLLUXrGG3g8lk+266IonUMehyuwk67UiIZCsV/A4b57eZzMNOBxNrnYXrsa5Ih59DFgVSFeuxtjdznbvmgzYbd+6SELesEHDYcSkaYaedQr3OoNtHVdcp1poEYijg44JFjsbz8XhHujk0VRKrsMCToSjjFrkeAx4fE2kL8iBKTKStd/d3qqWOB8JcsDCRBzQ7V9PW+RbiDt/7Y77IjuGAyxYG9uZzooxbtD8BO+Z4HPFGLQ3mAJUdTPRddi+TBWuS8ve6jgPNv+mtgy+2Kplbr8lbH7ddTVAUhWg0SjQaxTRN8vl8R4tPawS22+3e813wJ5lwvJ3nZKV+XL9+nVKp9MDej/uhUCg8m1C1T9h0ir3z0XqfHo9nV8HLP/mTP8mP/MiP3PMxQ0NDxGIx1tba7xONRoNUKnVf70U+n+fVV1/F7XbzxS9+8b6DEV566SU++clPUq1WH6gN7Bnh4P5koOXXCIVCHD169KF2dPaLcLTGy0qShN/v3xeyAQ/WUmWaJrdv32Zubq7NjH2vtfeTcJimydTUFNPT05w6dWpDdmwVHq22q728cU6Oz/Bn/7+vUjMERM2OjkixUiVXbE6i8oV81HWdSI+Pck0nEPVQrusEgk7SxTKhgAvZJjO/kuX4wTgVU+fq1BojvUFsTpXLk80Cd7DLTa6QJ+hQmVtJ0xXxMLeWw67KHOwLkavUmFpuFvw+l40aAoVKDY9DYyjiwxQFrsyvbrRaHe4OMT7XXjwf749SrFYZcNtIVXVS5Sr2YomZZGbjMaosYohQ2/IdEQTwOW2srZeIuJzE3C4UUURTZUYXlqk0Gizc9X70+jyMLlnkaHidrK22+yu6PC4urXQWwKfiUUuPhl2R8YoSXk3D73I3p3uZUDEaxIsiqUqFQrVOoVrHIYpMp0VKerviGbDZuJLoLPq9msY1C0XFJknczlqPg03XrCct+WwaWEx27VE0btc71Zw+l4drFgQFTJbLnVOmAIa9fs4nOolA3O5iImNNanaqBA57QzvmeCR3ICKHPSFuWSgiACbW14C4zc3t/A5tWzY3yxZtWyIC77tLONqO3/0b3zo5cKv60VK6G43GxvVj+3VBEISNYmFwcJBarUYymdzIOhIEYaPADQQCezLV6Eko7rfjSTwnVVWx2+04HA5GRkb2bPIVPFM49hVPocKxW7TaPO+Hc+fOkclkuHjxImfPngXYmAD60ksv7fi8XC7Hd3/3d6NpGn/+53++K6/a+Pg4fr//gT0n7xjC8Sg7Sq208e0wTZP5+Xlu3rzJoUOH6O3tfaRE870mHCsrK1y5coXBwUFEUewwIe0ldttStVNS973wKP6Qe6FlGr906RKZTIaXX375sZjDz39lnK//8VvogkhDEDAN0CWDfKmI3ePG4XGyvJIl1ufn1tQ6wwcjzCyk8PrsqE6FG5OrnDrZQ6nSIJcv4/RqKIrEQNyPbFO4PLlCyOtgsDfI1dlViuUakijQFXFRrlTo89tIlxssp3OsZJvFuiZLRIIuNFkm4LQzuZxEEEXGZjcL9JjXxUImh2maDIX9+Bw2NFXm9al238bpgRhj8+3k4GhPlNG76oRdkenze4m4nSRLZfyajfVckfVckYGgj7nlLPoWb40ggKxIG6SnhWPxMFdXLQzMDhsLxc3KXDCh2+umous8F40hCSK6YVCs1XFIIpfX1zGBTLXBbK5ZuJ/tjnN1vXPtQb+Pq+lOojAQ8FmmhB/wByxVj2ORiPXEqlCEKymLCVQOF1csVA8Bk7Rg/bcRdjiZtxqRG4hw1YI8KKLIZM4636LH5WGl2klS4nYX13cgItoOmULdmov5mvW1yCZbF98hzcGNHbwg3Q4vq9XO9UQBZnfI+Hgh2E/Udv+Atu3qh2EY5PN5EonEhpF86+OsClRVVYnH48TjcQzD2ChyZ2dnmZiYwOPxbBAQl8v1UNearW1gTwp0Xd+zKX57CV3X0TRtTydfwaaH4xn2Hs+mVD06jhw5wquvvsqHPvQhfvu3f5t6vc5HP/pRfvAHf3BjQtXi4iLvete7+P3f/31efPFFcrkc73nPeyiVSvzBH/wBuVxuo44Mh8NIksSXvvQlVldXefnll7HZbHz1q1/ll3/5l/nX//pfP/A5vmMIB7DRIvOgsBqLq+s6169ffyi/hhX2knC0xrnOzMxw8uRJotEos7Oz++4RuR/hKJVKjI6Oomka586d2/XO3n4pHI1Gg3q9TqVSaTOrb93J3Guy8Rf/99e48u1JdFECRUUQRMqNGrlsGUNQcdttpFIlHEEHiWSB3qEgt6fXOXAwyviNRXxeO0ePdjE6sYgii5w83sPscprVVIHDI1FK1TpHBiIgwIVbTRO4265yZDjG3FqW1WwNWRaIhZzMJQvIIvT4HNgcGreXUjTufs4nBmOMbiEbbk2hP+qjVK0zs57hzmqa/rCPxWyujWwc7Q53kI1j3RF0w+BMd4xUscxCKkehXGM6ndnwgEBzKpUhmG1kA+B0T5zRbeZxmyyxVmzf1Q867AwH/dRNg+fjcWr1BtlKlbVCkbDDydg2Y5yASVBTOjaUnIrCbQtSEbDbmcx3FrZuSeLyWqf64lE1JpKdO/yKJDKds864KOvWXrEut5vlSmfBf8gT4HrB4lw1O1ctiAuAvsMW2vFAhLFUJzmyiRI3LXwgAD1ODysW5xXU7DsqIiGbnaV65+foQGQiY90yNeDyk0x3qjiiALNFa1Jx2B3let7aDPm9FurG/SCKIoVCgUuXLtHd3U1fX99Gy+XWa8a9vB+iKOLz+fD5fAwPD1OpVDbUj9nZWWRZ3ihw/X7/roNg92Nj5FHxJI7phZ1H9T5q7sezlqp9xDOFY0/wuc99jo9+9KO8613v2gj+++xnP7vx83q9zs2bNzdCLEdHR3nzzTcBGBkZaVtrenqagYEBFEXhN3/zN/n4xz+OaZqMjIzwH/7Df+BDH/rQA5/fO4pwPCy2k4Gtfo1XXnllT8Yh7hXhaDQaXLp0iWKx2LZj/zjH7lqh1U7Q1dXFoUOHHuhGtNM0qUdBLpfj8uXLALzwwgtIktRmDm/1aO/VDbxea/CFX/0Sc5NrCJqGYQhUawbZUgHZIeEJ+BBUBSQBm8+GAIheDRDoHwwys5Ti0EiUmmEwMbnCiYNxspUqb16ZQxQFXjjZx3Iyz+xymgP9Ie6spemP+nHYFERF4o3rTaO2IMDB/jB13eBkv5PJpSR2p42Jpc2ircvvYGJpjajXRZfPRbFSR9Vk3tgS/udQZfLVcpupOui0M5/J0u3zEHE7aOgm+UqFhUyOTGmzTUgUwGaTqRXavy/bQ/+g6dG4vsWjoYgicY+LgYCPYr1O3OUmV6mymi9QKFWZFbOsFtoL036/l0urFp4Ih51pC0/H4UjIsvVqwO/josXxA9GwpbrR73RyJdNZDJ8MR7iw3vn4w4EQNzKdBMWv2bhqka8BUBWt/y5GfAHOr3e2RvW7vFzPWJOHzA6tXMcCUUZTnWtposStnHXL1JA7yIVUp/FbE0Vu7WAWPxKIWY61FYB5i2laAEc8Ua7nrEmFvMM1xiVrfFfkgOXP7oVW6+zg4CADAwNtP2upH63/WXk/rK55NpuN7u5m6KBhGBuhg1NTU5TLZXw+X1vo4E7XoydtQhU8uYRjN1Oqdqt+SJKE0+mkr69vz1qqHjQNemZmhsHBQcuffeELX+AHfuAHNt7TdjxMGvQz/O1FIBDYMeQPYGBgoK3W+q7v+q771l6vvvpqW+Dfo+AZ4aCdDKRSKcbHx4lEIhw9enTPLqh7QTiKxSKjo6PYbLYOBeFxjd21wtzcHDdv3uTw4cMdo952g71uqWq1mvX19TE9Pb1BNvbLHJ5L5vn8p/6cXKaMLisgiOiyQLFaQPOogIrNbWdlJUeoy8vS9BpDR+LcvrNOX38QA5NiqUrN1FEUiaDPSaZSZSXRnEBlSAJvXJ0DYKgngMOpEvW5uLOU4uTBLsanmsVtX9hLLOLm5kKCTLFZXJ4YaqaGQ7Ow6w26cGgylXqdtXSBtXSBw90Brsy3F7wRj8Z0pohgQk/QQ9jpAEng9lqKxVSOxVRzB/tYb4TpdLsh+3R/Z8J4t8/NleXNHXFZFOj2eOgNeCnV61TrDVKlMmv5Irpu8u2ZhQ01poUzvfGOfA4ATZUxtl00ZQFyFtq132az9FxEHA4ur3UW/WGHw3JsrkuWuW0xyUoSBeZ2SA8Xhaa3wy41J1wpooQqivS43axXSkiCQL1ao1at4Xa58No1yrpOMOhoZuI1c/MQBTB1OO1rBmcapoEJGKZJwG7HLqqYmDQ71Jr/DdnsrFWLDNgCGwF7rU+nXjfo1wKYbAbtCTTVjYVynqDiRkBoGjsFARGo1HQOOaLNfwsgIFCv15GrVXBoaKp69xmba2qCxHPe5vXBNE0aeoNqvYbcMMiXq/RIbkRZAlHAEKBh6jhEBbesUdV1auamOuSWbdzIWZO0/yN6CJv0YL6JRCLB5cuXOXjwID09PZ2/ux2M561NjN2qH4FAgEAgwIEDByiVSqRSKRKJBHfu3EFVVUKhEMFgEJ/P11Y0P4nF/X6Nn31UPEw2yE7qxxe+8AV+5Vd+heHhYURR5OzZsx2BaA+KB02D7u3tZXm5/br3O7/zO/zqr/4q3/M939N2fC/SoN82PC0Kx1OMZ4SDZktVpVJhdnaWW7duPbJfwwqPSgjW19e5dOkSvb29HDx4sOPc9ssHsXX97YTDMAxu3LjBysrKI7Wd7VVLlWma3Llzhzt37nDy5Ek8Hg/T09MbRGM/zOELt1f4H5/5CsVyAxQFSdOo1OqsJdM4vE50XaKsN5CrDYr1BrZSBWfQyfVbKxw4GOXq7RVEweTo0R5uTq+i6wa9fUEUWWQdAV2EK5PLdIU99ES9XJldZXKluat+4kCcmdU0p4diJHMl/F47b97c3HUe6Q4ysbjGSCyA26axksojKgrXVzbbfXoCTm6utrf/jAQdIAgci4dZTOVYSOQIuZ1tLVgAJ/uiXFpsL/q6/e3EAiDktNMf9BL1uKjrOuliheVcHpeq8q07cx2fqceudaSB+x12rlt4Lo7GwpZejJOxCKMWqsdg0G+pYnR7PaxuM6dD08y+vlLEpSo4ZRWHomCTZKIuF7lqFZHN1r1qrYZNECg2wGX3YAgCVd2gqjcI2x1cX2v6J6pU4W7Ghk2SWC+VyNW2jXatlDkRjnDFIun8TCTGaKLzPbgVlclcmopF25ZbjXLHos1rxOvn8g7qiiJJTOc7n3PMF+bSDs8Zdnu5Y+ETGfEEmEpa+0dOB+LMpPOtTMINOEWZ1eIqdfOufwEZVZSxSTKHnGEWyllUUUIRRGRRQhIEJEHg73eftHydnbC6usrVq1c5evQo8Xj8vo/fyXje2tTYrfrRCh3s6elB1/WN0MGbN29Sq9Xw+/0b6seTGPr3JJIgeHQitFX9+Jmf+Rk+8IEP8OUvf5lf+7Vf40//9E8Jh8O85z3v4Xu+53t49dVXHyh9+WHSoCVJ6niNL37xi/yDf/APOlSRvUiDfjvwzMPxdOAdRTge1sMhCALpdJpUKsXzzz+P3+/f83N7WMJhmiYzMzNMTk5y7NgxywtSa/3H2VJVq9UYHx+nXq8/1Jjg7Ws/6rnrus7Vq1dJp9O89NJLeDweqtXqxs/2uoUK4Oq3bvCV3/smdVMATUUXJMrlCulsHtXpwBv0kclViPrtpLIlevr8rGWKBAMufGEXE5MrHDkQJV2scOHKHPGwh2DYxcSdVRoNg+NH49QaBiM9QUqVOhPzaxsG8RMjccr1OoVShUtTyxwZjHB5tlkEioLAwe4gmk3BqahM3W2nOjEc49LsZnuK12mjqJu47Ro9fjf1Wo1SpcJ0poRuQmtkUn/Ix+WF9gIz6LIzmdjWTiQ08zqCbgeyIFKs1ljKFujzefn2VHv7jSpJJEqdBf5ORvH+gLcjEFASBTLVzjYhj6ZyK91ZKEddTi6vreJSFNyqhktRsMkKDkXBwOT5SBzdNKnrOtVGA1kUmU5kkHWRUqlBiWYh71QUFnJ5CvXatlcw6XK7WCx2jprqcVq3SxwLh7lgETAYd7q4lrJuTUrXOtvEAA4FQpxf7zSqe1Vth2lWzZ9Zodfl5dYOBnNphyIzbnNyp5h5oNdxSopljghAn83Fjcrm79EEqkaDqtFgvVpkodQ56rjb7uWEz/oaaYWlpSVu3LjByZMndzUJxgr3Gru729BBSZIIhUKEQiFM06RUKpFMJllbW+P27dtomrZBSh536OBOeFIJx04ejodFV1cXH/7wh/na177Gu971Lr7jO76Dr3zlK/zWb/0W//Sf/lOee+45vvnNb+7qHrgXadAXL15kfHyc3/zN3+z42V6kQb8teObheCrwjiIcD4Nyuczc3ByNRoPv+I7v2BO/hhUkSaJW216g3Btbi+gXX3wRr9d7z/UfV0tVoVDg4sWLeDwezpw580jyMjw64ahWq4yNjWGaZps5vHWhnZ6eJhqN7qnh72/++7d56ytX0GWJuiCi100MuU6hXMIfDSDKMpW6juqQqTR06roBikilUseQAcPE53aQzJcBk+OH4mTKVS7fWsblUDl0LMb0UopEpkjI76QumjhtKoOxALppcnV2lfpdQ3Z/3M+dtTTD8QB2VWEllSdbqbK0tNl/f3IoxvhdsqFIIoMRPz63naV0noVUlmvFCooEXpftLtloQhYhWyp0tDeFPA7y1RojoQCSIJArV/G57FyYbS94/Q47t9Y7C9fjPZGOtitVEkmUOovpAYuQQICTXVEu3j0umuBRFYIuFz0eN/l6FQkR3TCp6Trlep2A006qWKFYazQVqbs41RVl3CKJ9WxXnEyq89wPh0OWk6mO76BI+BSFaykrL4TJsgU5Aeh2e1gud/7sgC/A7R2IwGLJehTuQX/Q0u/hllUmdvB7RO1O5i0Kep9q2zETpMftZSXZec738oIc8oUZTXWSJIC6bF3MBkWVqYL1Z/De7sOWx60wNzfH5OQkp0+ffuShIC3cb+zubkIHBUHA6XRueAcajQazs7MsLi5y7do1dF1vm670oKMp9wpPckvVfpxXoVDA4/Hw0ksv8dJLL/ELv/ALrK+v8/rrr+96w20v0qD/03/6Txw5coRXXnml7fhepUG/HXimcDwdeKoJR8uv4XK5MAxj38gGPDghKJfLjI2NIYpiWxG9Ex5HS5Wu66ytrXH58mX6+/sZGRnZk92TncYS7wa5XI7R0VH8fj/Hjx9vu9GLosjhw4dZX19nenoau92+MdPa5/M99HjKP/3sa9y6PI8uySAriJJEpV4hky6j2OyIqsrcfIr+kTCTt1fpGwhSNQ2uXV/ixKk+bk2vgQCDgyHypSrLqzkMSaRaq3PiYBxRETk/0TSBe102+nr8pHMlphZTiKJAulTZIBsjXQGcbjvpYoXbC8kN0/iNhc1CcrgrwGq+yKmBGLW6zvRaGodN5c3JdtVhOBbg+kq7anGsrzkC16up+DUZwTRw2BSm1jNUGjpLqWaRG/E4Wch3Frw9QQ+Xl9rVkZjX1dF2BXC8K8rFxc5CXpFEgg47PpsNp6KgSBIiApVGg0Gnh1SxSEHXyZXrqEKFNzK5tjwQgLjHxejySseErJjbyVUL74bPZuOqhXejOYEq03EcoGpY//2NhHYwqdsdTBc7PzO7JHMjbV2gO1Vrb8LRQIhrFoZ0MFnYwVNyKBDkYqKz2FdEcUdSM+Lxc8HiOaIA0wXryVxHfGEu7TCdqtCw3oTptnt2JBU9Li/pgjXpeW/X7gjH9PQ0MzMznDlzZl/73B80dNBKMZBlGbfbjd1u5/nnn6dQKJBIJFhaWuLmzZs4nc6N0EGPx/PYdrSfVIXjYTwcu0GpVOrYtAqHw/z9v//3H1sadLlc5vOf/3xb8nMLe5UG/bbgmcLxVOAdRTh2e6E1TZPZ2Vlu377N4cOH0TSN27dv7+u5PQjheBjj+n63VLXazhYWFjh+/Piuep13i4dVONbW1rh06RJDQ0MMDQ1ttNS1buoAPT09G/P0U6nUhhcGIBQKEQ6HCQaDu1JpysUKf/ipP2d1MYNgs2EYUKo0KFTyKE4Z1W7HF/VSKtXpPxAhlS5y5Hg3V24uMTIUxRN0cuHyHAeHwtQwGZtYxGlXOXggSqFcY6s4NJ4AAQAASURBVH4lTSTiYezWEvGQm1jIzVquyIXrTWIQ9DooNRr43TYOdAdJZEsUdZ1bk5sF4MmROOPTy4iCwFAsgN9lYymbZznV/B/Awe7ghpG8hSPdQSbuJoZLokB/0EfE66RQrRF2OEgUSuTKNUJuO8uZEpVG+3fZbVdY3TbG9lAs1EE2APxOG8uF9hyNHr+Hcr3O6XisOT7XMCnV6ngdGhcXl9EN864a1MTZ3jiXLUhLb8DLulWAoNvJkoWaEHe7LFWG4aCfi8sWKkYkwqjFiNwRv59b6c4C2SHL3NjBu7BdNWrhaCjExfXO1wjYbDuOwt3pGnEsEOHaDuNr1yudY2hbzxlPWe+2rpatn3P0HmnkNdP6uhe3u3ZUPrqcbv7/7P15kGR7XteNv86W+75n1r5X9Xa7b/eduT2OyBPwDDgDjoAIgoJEKMaEGkrgFoobPIAQ6oPoD/BRDAcFRBEGhplnZAbQwYfZbld1V3V1VXXt+5JL5b7nOb8/sjO7svKcXqqr7tb9jrgx06cyT56Tyzmf9/fzeb/fe5XuDgtAoq4/UtYjWIg/WEELpAkGg7qJ3y1L8b29PW7dutV2+Xs78Kyhg3rdj5O2uE6nE6fT2Q4dbLkrta5rJ0MHXyRZ+2l4NxOOi+hwPMml6u1Igwb49V//dYrFIt/3fd/31MeeNQ36FV7hovC+IhzPgkajwfz8PMlksq3XSCaTF9odgGcnHC3Hp4mJCfr7+595/60OhKZp577C1Wg0SCaTFIvFp452nQXPSzg0TWN9fZ3V1VWuXr3avlA/KTlclmVCoRChUAhN08hkMsTjcVZXV5mbm8Pn87W7H3qdrvhuil/76U9TKNVpyDKqBnWgWC9jcZsxmW0odgu5XAm7x0qxXMPmMlOo1PD7HBRqNSRZZHI8TDJX4iiZ4/JYhGK9zp0HTUJx7VKMakNlpM/PzkEas01h+6hZdPlcVob6/OwmMuwcZdlL5BjpD7C0c2JsaiRMXW1wdSDM+uExawcpBmNetpOPV7i9DiuH2UKHq1PQZUNRFG4MRMmXKmwlMhxlChyXyqQKncWd32UnftC5bTTgZDmR7timSGKHvkIAAnYbQwEvNbXBzViUSr1OptTM0fDZrNw7RU4kUSBUc3QFArosZuYPu4voiNPB7EH39pjLwZzO40N2G7NHOg5UJoXFRHchLApwUNQfgbKa9C+llwJB3fGroKywXdO3qd3QGeMCGPF4+ZpOmGDIajfUaIii/rVg3O1jOaf/Onqic4Axp/FzJIO6M2ixGWZ89Njd7Je7308BzdAmd9TpZ62gT1L+zOjr9Dn6iMfjbG1tIYpiWxfh9/uRJInFxUUSiQS3bt16x0Pc9EIHjWx3jVbtjdyVtre329kSre7HWUMHjXDeWonzQGts7byPS9M0CoWCIUG96DToFn7xF3+RP/Wn/tQzvdZZ06DfCbwaqXo58FIRjtNjSq3C8qL1D8/yGqqqsrCwwOHh4Zkcn1oX2PMmHK1Mklqths/nO3eyAc9HOFRVZX5+nkQi0UF+TtrePk0cLghCO5xrbGyMQqFAIpHg8PCQpaUlHA5H+wbidDpZvbvJp//t71GsqGiKjGw1U6xWSWayOHwujpMVIgMmlh8eMDQZ4f78HpNXYhyl8mSyJSamYhwmchRzRRSbiZDfgSyJ5KpVNnaP8bqtDA8EWN5Jks6VEEWB0aEA63sprgyHqdVVaqh89VHWBsDlkQj31g/wOqz0h9yYZIl7WwdUao+/Y6+NRpnZ2D9x3hDw2NhP5xj02JAFgRoSkknuEJMDjPcGmD1llfvaQIS7O52Pc1nNHJUfj8WYJBGvWcGjSDTQcHnclBoqR/kimUKZTTHNYa5zlXzQ79HthFyLhZnW6VbE7BYWjrtXvyMuu263Iui06wq5ezwuDve7V+wng0He2u8u7K+Ew9yLdx9nj9PBfR2rXUkQ2NIJEoRmx+Uo0z1OdNkf1CUPkgArGf0AvH6Xm8N493kErTZDvYXDYOU7anOwlDEY5zJICfeYLIZakEGnl0RSvyuyXdDvYIy5gizn9ffnMZlBZ3ciAt/Sf4WQxUEsFmtnXiQSifaigqIoqKrKtWvXsNlsuvt/p6A3enXSXa8V1FWr1Z6o/TiZLVGpVNqhg1tbW0iS1NH9eFHt3UWNLr0IWh3uiyBC55E0fpY06BZWVlb44he/yGc/+9mu/Z5nGvQ7glcjVS8F3leE40lFZiuYLhKJMDU11XGhfBENwbPiSYSjUqlw9+5dGo3GmR2fWhfY87wJZDIZpqen8fv9RCIRjnWcf84Dz0o4qtUqMzMz7fepRRhPzkWfxYmqJdAcGBigVquRSCTaq6Trd3ZZ/dI+stWGyWEHWeE4VySVzmH3upAkM4oDGqqGN+IinS5y6bVepme3mRgLI9sU3prdIuB30NfvZ3kjTuq4QDjmRgMuDYcRFZG3FnfQtCYpuHWll0K5hiiI3F895NJYmIX1xwXYjYkYDQ2Gw142Do/ZUFVks9RBNi4NhNpkw2ExMRDw4HFYWD86plCoki80i93rw9Euu9vLfaEusuGzW1iJPy54LbJEzO2ix+ckX61RqtZI5oskckUEq8JavtgUyp/ARNDNYqq7yFQUqesabJElNtLdj3WbFZbT3UV8zOU06G44dbsbAZuVOR3bXIsksWzQYeiyrn2EsMPBjo4W40owpEtQXLLMeiGPSRSb+RZC01lMRMAkiThOFPYaoGkqvWYrm+UCJkS0R19vlWbeyEpWn4gMujzEdYiISzEZEpEeu0u362AVJRYMRrPG3D7eSnaL0gH2dITnABOuAEs5fWJjRIYkQWAlr/+cW/5eQpbH8/UnMy9GRka4e/cu+Xwep9PJ3bt3MZvN7ZFKr9f7riqcT49ebW9vs7e3x5UrzfT0Z9V+mM1mYrFYm4BlMhmSySTr6+vMz8/jdrvb3Y8nhQ4a4d04UtV6by7iuAqFwrkYjzxvGnQL/+E//Ad6e3v5yEc+0rXP80yDfkfwinC8FHhfEQ49nNRrTE1N6YY6ybJ8YeNILRiJujOZDDMzM3g8Hq5evXrmlZnWBbbRaHQEAp4Ve3t7zM/PMzo6yuDgIDs7OxemEXkWwpHL5Ziensbtdne8TyfHEM7D9lZRFKLRKNFolN/5t19gZ/oYVTaRLpRpFKuYnWZqDQ1fxIditqDJIhY0qqiYzTKyVSGbLzM5EeG4UKZUqfH6tT7W94+Zvr+DSRG5drWX/XiO7f00E6MhHmwc4rJbGIx6ERWRL88/7mS8NhFjZnWPsNdB1OdEVkTurO6jqq2xMYGg38Hy3uMiOeJ1IIgCrw9GSeVLbMczVGp1vvRwu2OUqj/YbXfrtpnZPlHQCzRF3sNhH6VqjUq9QTJX5DCTRxZF/nC5O0fD77RykO8sWt1WMxvZ7kJ2KhLgQby7iLwUDekKyAMWE+lcrWu732FlN99d9AedNnZPkQFBgyGfh9XjYyyShFlSUCQBRZQJ2C1kKlVEQWgH1wHYFJlcrYrbH0bVNFRNo6GqmCSJbKHCkM1DQ1Opqxp1VaWhqtSqDeyCCVXTqDcaNDQNDZgInhyzevx5RB0O7u0f6d6PRJuFarWbPPTbHSznckiCiCQIiIKALIjIokg8WyQoOZAFAVEQkcXm//a7nByWCoiPcivER3+XBJBUkVuenke/Iw0QqNVr1ItFaiYRk9lMXVNpaCpVVaWmNSg36jhkE6V6nQaPf8fjbj/LBqTCruiTCpMospw1SCp3h3hgkDr+0Z4p3e2NRqO9mPOhD30IRVFoNBptPdf8/Dz1eh2fz9cev7pI85DnxdbWFqurq9y4cQOv19sVOvistruiKOL1evF6vYyOjlIqldrdj/X1dUwmU7v74fV6n+k+9G4cqWrdY8/7uOr1OuVy+VwIx/OmQbfwEz/xE/zET/yE7nPOMw36ncCrkaqXA+9rwtGylU2lUrzxxhuGbiQni9eLuoC2SM1JtIr6kZERhoaGXqhYbt1sXnQ0TNM0lpeX2dra4vr16+1Z0Yt0wXoa4dBzxjotDj/PjI1atc6v/fRvs70SR7RasUkyNlkmVymSzZYxOy0kUzkUe5VyRSPU42Z5Jc6VG/0kU3my+TKegAO/107yuMD6XopqXeW1qRj5ao2vzjYJxchgACSB8f4Ay5sJVEFjZunxSvG1sSiaoNEf8rB9mAYgX6u1yQbAlZEId9f3m2ngLjvlWp18tcr9zcdEwm5WOC4WO8iGIonUNJX6iS6EKAhM9gQpVWtIfi+5coX94xx+u43/72EnsZAkgWK9u/CfjAWY3+8uGAeDXu7udhaLggAHmXTXYz1WCw+OuvcRsJhYzzdX/UTAaTbjNJvw26yoKtyIhNudAk3TMMsymUqFCbePcr1OuVanWKthkiXmdo6onPo+S6LAkd1KXCcfZCoc4IFOwOCtniizOm5Ww14PCzpicVHAcMwq5nTqCtt7nS6WdATpAA2p+Z1vkSCACg2u+IPcN9B1CKKm67R1xR/SFasDDDocrOeycIrTDTo9zB61SIWALCpYJQWrLOOXHTQsAookoggSktgkOJIoImjwuqcXFY262qCmNag2GgStNpZz8aalMZ3XBNlAj2IWJf7PyFjX9lqt1h6hPWnfLUlSe2RS07S269P+/j6Li4s4HI42+XC73e9YjsFJJ63W6OjTQgefxXYXwGq10tvb2w4dTKfTJJNJHj58SLVaxePxtAmI0fjZeS1unSdaHf7z/szyjxZQ3k6TgZcKrzocLwXeV4Tj5EWmWCwyMzODLMt86EMfeqJw6uQ40kURjpMjVZqm8fDhQ7a3tzuK+vN4jRfpQtTrdWZnZ8nn87z55psdqzkX6YJlRDhOhh6edMY6LQ5vreqdB7LJHL/yk7/F8XEJwWJGQ6BYqlEsFFGBBiZ8QT9Hxwf099hJbh+zv58kELXy1swmoaCdSMzDwvIhPq8Np8eGzyyztpmgUKuzvJnA67IyPOBnbT9FcrdZ3E6NhJldO8DtsDAY8aIoEjOre21CYDMrSIpEPttc5babFaYGglQaKgG7jd14lt14lmujEbb2OsdYoj4by0ed2y4NhDjKFnitL/IoR6OMw2rmK8udVrk2k8J+trtzcK0/wvRWZwdCEgUyle6xowEDjcb1vgjTJ0iISQCHotDvtFLWBCwmE6gq2VwOQZLxe5wo6Sz5SpV8pUq2WCFbrOCzWrmv41h1vTfCvE6I4GRfgLd0uidXIiHu6oxZ9bqcuinnkiiwnk53bQdwWSygM010KRjkfkLHblcUWTnWH40K2+3s5LtJSsRuZ11nO0DeIN9jwOU2tPWVDH5DAbOFDYOMj4DVxkb+8f7qqkpOrVBu1JhLVcl1hSPCa/6wYVK5TTSTLNQAAbNkxiErWGUFt8lMtSJwxd6LJDa7MqChojHuDuBQOq/v1WqV6elpzGYz165dM7yu67k+JZNJEokEd+/eBWiPHQUCgbelwNY0jbW1Nba3t7l58yYul8vwsc9ju/uk0MEWuRgbG2uHDiYSCVZWVrBare2/ezyeLuesdxMuatGwNd50nllOr/AKLxveV4SjhZZeIxqNMjk5+dSLYutiXK/XL8xGsNUhqFarzM7OUiqVuH379rk6pbyI+L1YLLZv0Ldv3+66sZ5HGrgR9PatqioPHjwgHo93dKdeVK/xJOws7/Eb//f/oFRTUSWZuipQqdbJlUvYPTZE2YLfYaZYqTE0FiKZLjI8HCJXrZHNlZgY9bF1lONwcZ9oyI7ZYWJ1M44gCoyOhqjVVaaGQ+SLFRa34uSKzeJ8tN+PpEiM9wZY2UlymMqRq1bbZEMQBPpiXtKFMteHIxRKVcq1BnNbR5Srj7VHlwZD3N3oXKEeCTtZPsrgtJjo9buwKApmRWZ264BitcZ+sllIOiwmkjqhe+M9AWZOEQu/w8qCThfjWn+Y6e3uFXKTIuKxWvBYzNhMCiZJRhYFqqrKhN9PvlzluFiiVKsjKRL3j9LUTzlTxdwOvra939GlAehxO5k/0OmG2KzM6Wg6LLLEUkK/W5DWIUsAQYeNbZ3C/kooxD29DA+zmXkdggJ0HX8LlwJB7uroPRRRZNmAiPS69MMBPWYzOzX9c/FbLGzqcBGnYuKBQUdk0OMlHu/+bogCrGUNsje8AeaO9UmFarDC55RNLJ5wtKo06lQadaiUCFqizKT0szy+Z+hGx7/L5TJ37tzB6XRy5cqV5yqKTSZTe6TypJvdxsZGW/fQIh/n7foE3ba9z1PgXlTo4PHxMclkkoWFBer1Ol6vF7/fT7VafdcV4BclZC8UClgslnfdCNn7BYKmIRhcG99veFnOUw/vK8LRsktdWVkx1GvoQRCEC3eqarXzv/SlL+FwOHjzzTfPfbXsrGNPLYIWi8WYmJjQvWBf5Ptz+rgvShz+JMz97wX+xyf/N5U6qJKEbDFRK1cp1MvYPQ7qDRGXx0IilcfmtKAKAvl8BVfAjs1iolZvsJcq0xvzI4oaO/Esu1tFFFlgcMBNIpUjcVzC77NTFzXyxQpj/QE8TisPNo/I7zaLSofNhCYJ5EtVRAGGoj4CXgfrhykOU3kOElksioTH5+ggG0GPnfVEs/gTgJjPhU3SqNUbhJ12jjIFFosJLIqE02mhWO0chxqK+LqyOYZCHu7pEIioz8nc7uNiXgSiXifVeoPrPWEkQaShqhSrddw2MzPbB9RVlePs46L1xkC0y/EKoNfvIb7bvV1Wa7rFesBhY1enA9Pv9xDX6WJcigS5o+N8NRH0s6gjFnc9gTwUdFbvAYa9Xu7oZHXEnA4Wkvr70htPA7hsQEQkQWAto1/sj3r9vKVjnysKsKiThA4w4fXzVly/oD+tgWlh0hPggW7YYHNcTg9OpZNUnMSox8dMUv8YagahilZJ4U9EBtv/LhaL3LlzB7/fz9TU1AtdI0672ZXLZRKJBIlEgrW1NUwmU5t8+Hy+Fy5GNU1jaWmJo6Ojc7HtPa/QwZPjZy1Hv4ODAzKZDPl8nlqtht/vx+VyveMdj4tMGbfb7e/YeN37Hq9Gql4KvK8Ix/HxMZubm2fKirhowpF8NM8dCoWYnJy8kAvXWcaeWrkfk5OT9PX1GT7u7epw5PN5pqencTqdXL16tU3UzlscfhL/89e+xJf+33uokgwmBckkk0xmOc4VCfUGOTrKExkI8GBhj4krPTxY2sflstA75OfB4j7RmBtf0Ek9kSOVKdJAw2o109/joyFozK80izyLWcRk0fBYTKBpJFIFUoUy+VKzcJUkgVjYDYJAwG1n6/AYk0nmywud+onh/mCHRkMSoS/soaGqVKp1tuMZ9hJZoj4re5nOlemJviB3T1ngjsW6gwBFERrC4xV5WRQIux3EPE7qmsaN3ijlWo10oUwiVyTgsHeRE1GAiNfZFXDntJhZPOouVCMuB7P7OrazHifb+e5leb/FpDtK5TKbdTUgkiiwndEfQRINgiTGAl7e0gkAHPF6WdFxbRMFWEnpF+FRh4M9neK93+XioUEXo2jgnjcVCDBnQB6ODML5rgRCzCb1uw5xgxGs0SfkdZgl/QUTu6ywZEBExtx+pg1IRcUg/8OpmFk0sOr9E9FBrI9cvfL5PHfu3CEajTI2Nnbu11iLxdKhezg+PiaRSLC0tESlUsHr9RIMBgkEAs/tNKhpGgsLC+18qPO27T3Z/Whda581dLAFQRBwOBw4HA4GBwe5c+cOdrudSqXC3Nwcmqbh8/na41cXGTpohIsmHK9wMXglGn858L4iHH6/nw9/+MNn8he/KGvc1jzu2toa0HSguKhVkuchTaqqsri4yP7+/jPlfrwdhKOVAt7f398uGC5SHK6qKr/xrz7H8r0tVFmhUtWo1eto9SrFepVATxDZbMYXk5uz4ldirG8lmJqKsXOUYWn5gCtXetg+zLA9v4vfZyfW46FYrrGyEScYdDL/cB+LWWZsMEChVmNlOwkUkWUBl8tEIl3GrEiM9Pqx2kzMrR20OxdRv5ONw86i9upohLnNI4bCXjx2C8VyDbvdxJ3lTlvSsaiLh0edxfVorLuLYZYl0qXH4zduq4WQ207YbaNQqWOLyBznSyRyRQ5SeUBg97hzv31+F3M73YXs1b7u3A6A0bCP6Z3uojPksnckkLfgd9rYyXUX6gGbhWSlu8swGvLpOlxdjoS4d6Cj0XC7dDUa8hM0Gg6LSVej0We2sFHtDvQzi5JuEjlA0GZnU0dI3utwGj7H6J416vEZ2uSqBs+KmK1sGmg0XGZTl1AcwCrJLBpkb0x6A0wnuzssYNzJ8ZoshvkfYy4f0wbjVN/c2xSLt9z++vv7X9iA41kgSVK7u9HKyYjH4+0sH5vN1v77Sd2DHlrjo+l0mjfeeOPCXbJax/KsoYNG3Q9N0/B4PO3QwVwuRyKRYGdnh8XFxXbooN/v1019vwhcFOFoZXC86nBcEF51OF4KvK8IB3DmMCM9F6kXRb1eZ25ujkwmwwc/+EG+/OUvX2gX5VlHqqrVKnfv3qVWq3H79u1nWk27yA5QSz9z9+5dLl++3A5A0nNeOa8Lfilf5ld+8rc43E2jijKqJiBaFRrVEqVSnVBvhONUEatXJrdfIBB1U29o2OxmduMZQkEnXr+dh5txarUGV6dixLNF7i00C60rl2Oks2WujEXY2ElSrNcfkQ0QRIGx4RC1Wh2Htc5OPEc2n+X+1uNC1WqWQYJipVmg9QbdhH0O8uUaFkliY79JREZ6fMysdRZjYbeV9VTnKrdZlsiWq7SmklwWMxGPg5DHTrZcxWU2Ec8UyBbKyAjsHWcpVDqLw+tDEWa2ugmEzWJCTXdeRU2SxLZOOJ/fbuW+Xl6G28GcTncj5nYyp9PFCNptrOnY7JpEeKCzf4B0WT/ZO2Cg0bgcDnH3sPt8fVar4ZiVYFJAh3BcCgWZOeoumi2SxIJBR8Qo3yNgtbKQ0n99l4E5hs9iMXxOr9vDgY5GQwIWDXQdk94AM0l9R6tSQ59U+C1WHmYMUtRdXt4yICklVX8hyCYrfF1kkFQqxb179xgeHmZgYED3sReJk7qHwcFBarUaqVSKRCLB3Nwcqqp2CM9Prvyrqsr9+/fJ5/O88cYb70gq9NNCB426HycF2oIg4HK5cLlcDA8Pt8X3rdRzQRA6QgcvSnx/UaLxQqHwqsNxgXjV4Xg58L4jHGfFeRfULRG2yWTiQx/6ECaT6cLHtp5lpOrkyNJJq8in4aI6HKqqsra2hqZp3Lp1C6/XC3TqNYysHc+K+E6S//JTv0MuX0G0mmk0oFSpUalVyKYreCM+Dg+zWN1W5ud2mLrez+LiAR6vlVCPh9W1OPlihWylyshgkON0kb1Ujngyj9WicGkizH4ix85BBgSYmowyv3qAIouM9AWw2c3MruxTfRTUN9LnZ+3w8aq0BkR9FkRJZKovwH4qTzJToKaqHBw/LrLtFoXjUrlD2yCJYLaaqeWbBaQoCPT4nAyEPOQrNTxWC/FMgeN8CZfVzJcebtM4peLtDbq4t9VZ/DstJlaOukeIJmIBFg+6C+bLfaEuFyuAvoCbGZ2uh1lQdcXEAZdNN1+jz+smvtttX3s5Gmb24AiL2MyVkAUBRZaIOp1kG3VGvF7EVtCeICBLImpD42owSDt5QwABAbus8Hoo0vUabquFdLlM0ydJo1qtUSwVcdvtqIrMNbP10YKdhqo1/9csiox5fDQe2deqWjOro8/l5mE6hSQIVBsNag2VBlrTtSptEOjn8RA/7D53iyQZjjKNeLx8TUfXIQiwbEB4xt0+HhiMU1UMNBV+i9XwGIacXpIVfVKRNRC5e00WHhp0Pv6P6BC51DFzc3NMTEzQ09Oj+7i3G4qiEA6HCYfDaJpGNpslkUiwvb3NgwcPcDqdBAIB/H4/6+vrlMtlbt269Y6MIJ3G02x3T96/Go2G4QLQSfG9qqrt92BjY4MHDx7gcrna78F5dg4uSjSez+ffdQL5V3iF9xreV4TjRS5a50kGjFyyLtJatrX/J52DXp7Fs0IUxfZN57wu6K1OS+WRO9Db4US1PL3Ob//8F6ghgKJQrmrk8mUK9Sounx2TQ8bhsZLIlvBaFfpGQzx4sMfk5Rirmwl2720zPBzA6jCzs5KlVm1gcpgwKRJXxiOIssjX7j+2lr16KUaxUuPySIT1nSSyIvHWwuO/B7x2DrN5NA1GYj6cVjOyIvK1h50jUsMxN6uHnavwgz0+5k5oOWRR4NZ4D8VqHc9AhEy+zH4qhyxI/NHidpfo2mKWu8jGUNjblTIOMBL1d7lVCQIUat2r2U6LiaVDHY2G28HcXmf3QQSCFoVstc6Q14NJljBJIpIgYpZl6qjcikbRgIaqoqoasiiQL1YYdLmpNVSq9WaGQ73RYCeVQ61pVDv61g1sFNgudnceXu+N6o5fjfi9ula+kijgtll0Hb1ed3t1BemDXjdf0dGsAFgFE8fZzuNSBJFr4TArmWOCih1FFJtZFqKEJAioNXjN27QzFsUmSRIEAbuikKtVUdEehRCq1NQGVbVBpV7Ho1go1KvUtMfXoH6Tjc1qN3kBkBT924NDEA07H8MuL28l9PeXqnS/ZwBBi43lrD6xGXb5uGPQ+figPcjs7CyXL18mEukmhu8GCIKA2+3G7XYzMjJCpVIhmUxydHTE+vo6AOFwmOPjY/x+/5k79BcFI+H58fExlUoFSZKoVqtPDR1sie9HR0cpl8vt7sfGxgayLHeEDr7Ie3DRI1WvcEF4NVL1UuDddXU7B7Tm/p8Xsiy/sIbjaanmF6UTacFopKrl3rW6utqRZ/E8OLnidR6Eo1AocOfOHRwOB1euXOGLX/xie98XRTa+8plp/udvfI1aXaAhgGxXqDUq1OQGTpcTi90OSo1yTcXhtFCsNrDYTAyOBFlcPcTntTM+HmZ2cY/yVh2nw8zwSJBkusjGdhKHw8zScrNI7Y14iEZcLG0lSOeahdbYYJD764+LWJfNxFCvj3yxyubBMWs7KYZ6fGzEOzsJk/1+FnY7V7vHejwksgVGAk60RoO6ICNLEl97uNtBIkRRoIHaRTauDoa7iYXQnPM//fOJ+ZzM6nQlrvaHuXdCuyHSFIRf6gmRzBcxKxKyKCI8CuKzWhQ8eQuVRwF8+XKFUrWO22JlOZUlle/UY1zvj+h2Q17vj7Ic7179f60nzD0j0bmOk5UgwKqBRa7Dor/aPBUKMKcjSDeJIg9T+h0Jn83Kuk7AYZ/LxaqO8LyhaZTVBlkdm95xn48ZnTEvgKmAn4VkN7EZ8niY23+83STKWGUZSdVwC2Ym7TYUqflZSYKIIDSJVR2V694IVbWZJl5u1MnVK0y4/bxlIPxOlvUF6zGbk7WcvqvWgNNDvKL/vEJd3wnMJsk4D465du21c8sxejtgNpsJhULs7e21sz/S6TSrq6vMzc3h9Xrbo1fvtgK3dd3PZDLMz88zPj6O2+1+LttdaIrve3p66OnpQVXVdujgysoK5XIZj8fT7n48r3j+ogjHq5Gqi8WrkaqXA+87wnFWvGiHQ1VV5ufnSSQSHaNB5/kaT4NeB6XRaDA/P08qlTqTe1cLJ1e5XhStDlBvby/j4+Pt96Rer3cIGs+TbHz2//k97v7vh6iihGAxYTIrJOIZSo06DpeTfLGOYKpTaagkt5OMXoqxuhbHK4IgS/TEvDQaKrOLe5hNChNjEeLZAnfmHqWGDwU4Os5zZSzKcbqI3WHiaw922oV+LORiO5Eh5LUT9jnJ5ctYbCa+Or/dPkan3cxxqdxBGMI+BxvxLHaLQq/fjUkWqFZrbCVyFKsnxZ3QE/J0dSyuDoW7sjkcFoWtZLe+4tpAhLs6Gg233UypXsdtNWMzmTBJIrIo0hA0LoUCFKs1cqVmCJ+siUyv71Gtd37PI24HR4UCjVNsJmC3sHbcTQa8NqtuYrlJklhJ6Bf2egU6QMhpZ0eHcIz7PCym0l3bXRYzCwYdibrBYsZUOKgbGmgSRR7qJI4DhB12tnXE4n6bhSUd4gDgMOsTIb/VwpKOrS+Az2Jl7QThqakqtWoVkyCwUixQ0lkEeT0c4Y6BTW5aruJULTgUEzZFRkZAUBtIDZVqvsak4kaUJTRJpIpKoV6lz+5ir6QvTE9V9DsifrOx5uOy5OCNG68/1ezi3YZarcbdu3cRBIGbN28iyzKhUIjx8XGKxWLbdndlZQWz2UwgECAYDOL1et9xy1mAVCrF3bt3u0bYnsV2t/X/T0IURXw+Hz6fryN0MJlMsrq6itls7ggdfBqZuEgNx6uRqgvEqw7HS4FXhOMRXoQMlMtlZmZmADpyI/Re4yJHqk53OFrHJQgCt2/ffiFBYutG8aKEqWXDe7ID1CIWpVKpPc97XmSjVq3xX37qt9lejaMpCtWaRqPSoFIsk8qU6RuPsLuTYXAszMzdLSanohRqDe7c2WRyKkKp3mB99YihoQANEYYHg2zvpEjlS+zspxFFgcnRMHVNI5Mtkzreo7/Xx+peqk02BmJefF47ahz241kO4zmuTsS4t/q4oBMEiIRcLG03i+yg20bE50QxyUipHPvJLA8f/W2kz99BNgB6vRY24+mObUG3ncXd7sJ1OObn3glrXEUSCbvtCDS7CqIg0GioFKs1XFYz97YPaKga6ZM5GkNRZja6C9KBkIeZTR0HKo9D14GqJ+AhrpP1MRj0ML2tk6MRCzKjk9MxGvSxkuwmIg6TYkgeVIMCLiCLrFW7v+cRp4PFuP6+jNyXpsIBXSIiCYJudwOaQXuJg+5zf1IXZcjjJXmgr9EwShafCoa4p5PxAZA36CxE7Q5WH+V/5E/lkLwRjvHgaA90tPlSXcRUU3CZTDhMZqyyjFmSsSsKVa2Bx2OjpjUoN2rkG1Wy1TJDTh/J5G73zoDvnLrxniQb09PTKIrCa6+91lUY22w2+vv76e/vp9FotNO+5+fnqdfr+Hy+dvfjop2s9JBMJrl37x6Tk5NtY48WnhY6+Cy2u9B8D2w2G319fe3RrWQyyeLiIrVard0B8vl8utbDjUbjQsbSXmk4Lh4v88r/y4L3HeE460jVWQlHOp1mZmYGv9/P5cuXn7i6ctEjVSfPIZPJMD09jd/vf+60XT2cdCY5C07a8J4Wh6uqisfj4Stf+Qput7sdNPWiLexsMs+v/LNPcZwsUtck6g1oiCJVqtQ0jd7RCKoqEBvwk8mVGJuIsBvP4fXZ6Okb4O78LvW6yuREhHKjwcZGApNJItbvJVeocG0yRr5UYeswTS7fXF0P+h2kikWiQRcum4XDeBZJFpk+odsY7vNzf72zaH59qodKrcHVwTAHyRyJ4yI9QTfTp7QckwMBHux0rvpGfA72893z8VazwFG++X1zWEwEXXZ8DisqGtd6wxQrNVL5EulCiaDL0U0ghCaBON01sZpkVo66C1+f3cL8ro6jlMvOfR09hM9uYX6v+/E2k8JDHZIgCHCY0x+9sZj0L2Xj4YCuRqPf6+ahTqdEEKBgQHZDdiv7OnkVPS4nD3XIDkDZKEcjGOR+XN9N67Cof46TwSCzBgQhbvCcCV/A0AXLKPXcb7WybCBY73U62S/qZ3YY5X+EzBZ2Hz0nUS6RKD/+rt4Kx3RDCgEKljpB0YXTZMIqy6jVKrVaDZ/LxUeGpnSf825FtVrlzp07WK1Wrl279tTrsSRJhEIhQqEQmqaRz+dJJBLs7++zuLiIw+Fokw+3233hdq1PIht6OK39OIvt7knr4fHxcQqFAslkksPDQx4+fIjNZmt3P9xud3vB7aI0HHpTC69wTtA0umZ53694Wc5TB+87wnFWyLLcFi8/K3Z2dlhYWGBsbIyBgYGnXvTfDtF4tVplb2+P+fl5RkdHzzX346yEozVGUKlUOmx4Wy34lkNVpVIhHo8Tj8dZWVnBZrO1ycfz3lR3lvf5b//ysxRLdUSzGVEGraFSqpXIZWr0j8dYWz5iaDJCMlWkVldxBRQcdhOSInF/cZ+JsTCCLPJw7YhypY4oC7z2Wi/JdJFkMk+t2kC2yG2yMdjrxe21s7l3zOZ2cxX4ylSU2ZXHBa/HZSWRK+K2m4kFPQgaaILG9MM91BOF/XDMx+xaJynxOiys7J8qBAWw20zsZ/KIAoTcDrwOK3azRDpfJGI3ky3VKBSqFApVhBisncr2CLhtzO90F7+X+0Lc19k+2RNkWqeL0R/y6nY3enxOjra7i9GBgFe3izERDeh3N6JB7h90j1mFnXYe6GwXBNgxCPrz2axsprvHyqZCAR7odDFEAVaMRqNcDnZ0nLQiTjtLBs/B4Ks87PWwqqP3AGho+r+9freLzaxOKAhgNRB+OxUTiwZEZNDtJnGkP+aUKOkLv3sdLjZz+scw4PVydKT/vEOdkTIAn9nKYjqJqmldROZj4R5M0nvn1lWpVDr0as+7+CMIAk6ns635aFnOJhIJ7t69C9AuzP1+/7lbziYSCe7du8elS5fOpP87q+3uSZwMHRwYGKBWq7W7H/Pz8zQaDXw+H8Vi8UI6Ea9Gql7hFV4c752r9gXjeUPzlpaW2Nvb4/XXX8fv95/7a5wFoiiSTqc5PDzk+vXr5y6mPMvxFwoFpqensdlsvPnmm+12t54TlcVioa+vj76+Pur1Oslkkng8zszMDKIotsmHz+d74irW7BcX+H//4x+iiiKixUyhVCeTKaKZoV4XcQY8bG8miQ4FufPWFmNTEepig/n7e0xd6UE0SZgtCrlihcNkHpvNxNhIiDoaX73bTP22WhTsLgsNVeXaRIzDRBZRkZl58LgjcXki0iYbZkViMObD7jCzH8+xl8hynDnAblUw25QOsmE1y+Qqla4VaJMJqiUNgeaIks9lxeu0kimU6fO5OEwXOEzlSedKOOxmEtnOonEgYOsiGwARn5P4VudjRVEgWeguEp0WE0s6Nrh+h1WXtPgdVu7rdDGcFjMLOiRBFgU2dXQVAOW6/nevx+visNBNaC5Hgswddr+G02wyHLMSRH0m0GezsFHqnhWSBHiY0N9Xj8up2xHxWCwsJvRdnjxWi26goNdirOsI2Wxs6RAOkyga6jrGfD6mj/TF52mdHBGAHofTcDwr6nCwU9AnD0adj4DZwnZJv1sy6PKQTOhrSL6xb1h3+7sR5XKZt956C4/Hw6VLl85Fh6FnORuPx1lfX+f+/fu43e42AXE4HC+04BSPx8/VCUxv9Oos3Q9FUTo6QLlcjmQySSqVYm1tjXg83u5+uFyuF150KxQKOJ3OF9rHKxjjlWj85cArwvEIz1pMt6xcq9XqM4fmPe9rnAX1ep29vT3K5TK3b9++kNWY5+1wtMThPT09TExMdCSHt24wRuJwWZbbXvYtJ5N4PM7S0hKVSgW/308oFOoK0vr9X/0jvvb5OWoNgWpVxeQQqaoN6oqGx+2mUge7w4JgVsjnK1z/wCDzC3uYLQo33hhkfumAcrlGX78Xq91Mv83EylqcaAwePGwWaD6PlaGhIHtHWfYPm/9dnooxt/y4QBrs85IplnhtLEqpXGNj7xizWeHOQueIVH+Pj/mNzjGZkb4Ac49GrsyKhM9hxmkRkMx2LOY6h6kcR6k8lUqd7XiGfLlzln5yIMTdU2GAiiRSVLvf56DDxP0tnZTw/rCugHw06tftbvQFPF22uQA9fieJnW7iMhr26XYxLveEuauj0RgOeHXF4nZFYVHHghegYvBdHQv6dcesgg6bMRFRFNAhHKMeN4uZ7mJfFDBMKR/1eXlrv/v1lSdoNIa9Xu4cdj9HEGBT5/UBJgMB7hmMbRUNRr3CNjsraX1tSczhZFcniBDg0GDMqsfhNOx8DLq9JAyE6UmdIEYAsyTxx6P9un97t6FYLHLnzh38fj9TU1MXMvZ00nJ2bGyMcrlMIpEgHo+ztraGyWRqk4+nLdScRotsXLlyhXA4fO7H3jp+Pdvd1n3iWbsfrdDBZDJJLBZDFMX2GJggCPh8vjYBOUsH6JVL1QXjlWj8pcD7jnCc9aL+LPqKXC7H9PQ0LpfruULzTr7GRRCOVsigpmm4XK4La/0+a5I5wPb2NouLi0xOTtLX1wd0J4c/qxPVSSeT8fFx8vk88Xi8HaTldrvx+wN85dfvsXZ/n7ogIigyFqeZRCKNqoCiWLA4bSQ2k9j9NrRaA8Uis7N/zOhYCCSJmbkdFEXi2rUeDpJ5Nh8RjCtXe1haO+TSeIRqtY5iUfja7GN3qStTMWaX95ElgaFeP067hZ1khsNkju39ZrE1PhhkdrWzuLo8FmkTCwCLIjE1GEIVmra1yUyRg1SOfKFKuiRSrHSuivdFPMydcqAKeRzMb+mMRw2FmVnvLu4cDitHpU7CokiCrouVx27hwV73ynzAaeP+7iEiYDEpWBQJi6xgVSSSqSyDLjt2mw1JFBEFoZkfgcDNniiP0vOa9xtVQxElrkfCzX9r2qPRXg2XzYJZkB5dqx9b94bcNg6zhUdktlmAQ7ODkqtWuOQLIAiPUuofHa+owvVQuGO7gIDTaiJXffReaFCtVckXCjjtNjApXDVbaGgaDVWlpqnUGyoOqw1vpUK5XqNSa9DidL1WC5sG40d63RiAyWCAWQOCkCzr72vC5zccjSrqECRoJqU/PNbvfPS5XRyU9cmDEanoc7jYMhiNijoc7Bb1/5ap6o+wOmWFHQPnqg9F+rAr73xA3tPQsv0OhULtxZa3AxaLhd7eXnp7e9ui60Qi0V6o8Xq9BINBAoGArui6haOjI+bm5i6UbJzG84QOGnU/Go1Gm2RFIhFUVSWXy5FIJNja2mJhYQGXy9UmH8/aAbqoUa1XaEJQm/+9DHhZzlMP7zvCcVbIsvzEYvrg4IC5uTmGhoYYGRk50w1EkqTn1ok8Da0uQiwWw+Vysb29/fQnnRHPokHRNI3FxcWucbOTK1fQbY/4rDg5zzw8PEy5XGZ7Y4df+/Hf5mg/h2gxI4omLG6Z/a0jqhr4Q17S2TK72yl8MQ9zd3eYvNKDJgukNgv4Qy72DzNcnoqSK1RY3UqRyzeLtRs3+qhUG0iCyIOlA65cjjG79LhwHx8JoaIxNRRic/eYte0k/f0+DpOPV4J9biu7yVyHVizst5MvV7g2HEHQ4DhbIlsos3GQ5viUALw36uPBVmehP9Lj6yIbAH63lcNsZ2HodVhZ2usuSqf6gl0EQhYFhrw2ksUKvU4rVrMJi9mEIsvYLSaypQp1tVlsV+sNytUaMb+Lua1D6nUo1WuUqAFlhrxW9jKPit7k4yL7+mCUt9a6hcIT0QB3dXI3fHYLi0eJLvE6QKFWZTfdvep+oz/K0mF3UT0e8nNfpxMjCuBz2EgUugvd1z1e7uzod0TuJvfbC1YCYJMlzLKM3+KgVgNR0xDRMCsKZpMJj91KVdOIWOxoQL0d0KdiVxRCVhuFeo1itYb26BLT73axYaDrMNJo2ESJdYNuxLDbw1s63RIwHn/qcxqTiojDwbbBOFWyrE8cAlYrKxn9bs6I28dMSl8c31eoMT8/3x6tfLcF5UHT0ejOnTvEYrHnDlg9T5wUXWuaRrFYJB6Pc3h4yNLSEjabrf13j8fTviYfHh5y//59rl69SigUekeOHYy7HydHsFqPazkbnhaNi6KoG7yYTCbZ3NxEkqQ2+XjS9ymfz7/qcFwkXnU4Xgq8+67W7xCMug+aprGyssLm5ibXrl17odWe8+5wtCxmW12Ew8PDC7fdfdL+6/U69+7do1gs8uabb7Yv0BeZHJ5LFPjcz/9v0Gy4fGYK5RrlRoN6qUAVDX/MzdFhnsGRENt7aRLxPDfeHGZ6ZhNV1bhyvY9ao0E2XUSWBMqPzu/qpRiKWeLO3GN3qUtTUWaX9vG4rPRFPUiSyOJmnFL5sSXqlUtRZk+MVomSgMttYzeeYbTXj8NqolSuUmmobOx0jq5cGot0uVdNDAS7yIYkCbrZCRN9AR5sd3cg+sNudhJZwm4HVkXGJEuIgCiLXIoGKVfrFCtVssUmGd7P1cmV6kAdaJIfmyJSE6Da6Pz83TYzc1uHVE7pKxQRDkvdVrGCAPsZ/ULYSD8xEPSS1CEJ42E/D+PdpMIkSSzrbAcwGxToE+GA7jiVIKArLgfo97iJ5zsL6kq9gUmSWEgcUz35Wy9VgQLDpRJrOonnbouZtcRxm1TJgohNUbCbFAZsHhyYMEkSktTsEiGAhoamakx4/JTqNfK1GplqmYamEbOYWS7pF/vHFf3OR6/TWHwesTvYNhhzOtDRqUDTQtdI8zHg9HS4VZ1EWkeAD00r4e96/YPUMlmWl5cplUptq9hgMPjEFfu3C9lslunpafr6+hgeHn7HyMZpCIKA3W7HbrczODhIrVYjlUqRSCSYm5tDVVX8fj8mk4mdnR2uXbv2jpKN03ia7W7rvtS6vxoF1JrNZmKxGLFYrCN0cG1tjfn5eTweT5uA2Gy29hjweWg4fvzHf5zPfOYz3L17F5PJRNpg5PIkNE3jH//jf8y/+3f/jnQ6zR/7Y3+Mn//5n2dsbKz9mFQqxV//63+dT3/604iiyHd8x3fwr/7Vv3pPdWReaTjOB2f5Lnz91389/+t//a+ObX/lr/wVfuEXfqH9762tLT7xiU/wB3/wBzgcDr7/+7+fn/zJn3zuBZ/3HeF4kZGq02SgXq8zOztLPp/ngx/84AtfcM6LcJy0mL1582bbj/7tEKUb7b811mWxWHjzzTfbc7InOxvnTTZWZjb41M9/nlK5gWQxoygmrBYz9UIeQVYIRN3UG3UUE2zuxnE4LZisZu5MbzAyEsLjs/PW3U00DXx+G8GIi3pdY2XtiEq1zv2Vx8X/6HAASRIZ7vWxsZNirVrH7rZ2kI3JsVCbbNitCn1hL26Xhb14lkZVZXWrWdBem4ixtNJZQI8PBLrIhtUsc5TtLhqvDEW4e2I8ym2z4HVYcFnN3BiKNseB6g0K5SoWRWJ+7ZCGqpFKF0/sI8zsSneX4cZIlGmd0auhqJf7u91F/FDIy8xmd1diIhrg/r5OV6UnpGuFG3E7WNQJ+pNEgfVEums7NPUtepiKBXV1IE6zyVDvIUv6HbeJUIAFg+yN/ax+oT0S8DGz3/36ogDHBjebPreTuROvo2oa+WqVfLWKJsBhvrvzcDUcZE5nBMsmSjjNLsZECxZZRpFEpHbwmkChUWPE5SVXq5KplKmozd90xGFnu6BPOPYNuiV9DpchEel1ONk3CPs7neHRgkkQ2KnpE6KbwRjDkShEokxMTFAoFNp6hZZNamtcqGWT+naiZUU+ODjI0NDQ2/razwtFUdoaOU3TyGazbGxstDvkGxsb5HI5gsEgTqfzXUOcWtDrfqyurgJNUX1rPPpJwvPToYOlUqnd/VhbW+OTn/wkoijyzd/8zRQKhedOPT+NarXKd37nd3L79m1+8Rd/8Zme89M//dP87M/+LJ/85CcZGhriH/7Df8g3fdM38eDBg3YWy/d+7/eyv7/P5z//eWq1Gj/wAz/AD/7gD/Irv/IrL3S8r/Dew1m/C3/5L/9lfvRHf7T975Pf9Uajwcc+9jEikQh/9Ed/xP7+Pt/3fd+Hoij8xE/8xHMd3/uOcJwVsix3aDha7kqtAvqkMPmsOA9C0BKt12q1LtH682gszgKjkapUKsXMzAyxWIyJiQld//XzJhtf+cw0v/9rX0FTFBSblUKpRq5QQFU0jhMVRq4E2FpP4fRYCfWFWJzfwxNwUiyX8bhNVOpl3rqbwGpRGB0Nc5QucP9Bs9AeGPCxvneMw25moMeHIAosbyUolpoFtyAIxHq9PFx/XCCHgg5EUeS10SjH2RK7BxlqtTpfvb/d4TbVF/Ewv945LmI1y10r5QCj/UHurR0gCgIhjx2P3YrdIqMCl2IBcsUKyWyRXLbEUMjD15a6Q9KmBoJdo0iiCPFc9+tZFZmVA53wPLPCeqK7qDSJAos6uRuCAIc6DldA56r/CUS8DvZz3QX8VCzInA5B8dqtLOi4ZQHkK/rF7GjIz7TOaJTLYmbBgIgosj6pGfF7WU3qi6uNiunxYMAwODCVMxh/8nkNAwJFg46QxWRi7uioK9Ud4GYsyoNTxM4uK7gtZhoVjdfcERRJRBAFNDSqagNZEtkv5DCLUpuctBC2243HqSr63wGv2cKywTjVgM3JQwPNxzf2dRbxrRX7lk1qKpUiHo9z7949NE1rjwsFAoFzt4o9jePjY+7evcvIyAj9/e8NUXsLgiC0U86vX7+Oy+VqJ563xo5O2u6+28bYRFFkbW2Nvb09bt26hc1mO1PooNVq7dC/ZDIZfvu3f5u///f/Pul0mh/+4R/mz/7ZP8vHPvaxMxHKf/pP/ykA//E//sdnerymafzMz/wMP/IjP8LHP/5xAH7pl36JcDjMpz71Kb77u7+bhYUFPve5z/G1r32NW7duAfCv//W/5qMf/Sj//J//82fKTHlX4FUOxwvjRb4LNpvN0IXud3/3d3nw4AFf+MIXCIfDXL9+nR/7sR/j7/7dv8s/+Sf/5Llq43fXleMdRIsMaJrW9h3v7e1lfHz83FbKXpRw5PN5pqencTqduqL1tyPJ/PT+W1kkExMT7RvtWcXhz4rP/D+/x9wfrdBApFZTEUWNZCqHZJfRVJmhSwFWHh4xfqWH+/P7NA6yXL7Rz87uMYl4nonLUZKZAv29LhLxAlv7SVLp5jhRKOTC7bEhm2TWNhNsbCcx200UTwirL09FmXu4z0CPF7fDQqlUpVCrM7/8eFXbZlFIFzutbWVJQBWgfmosaWQgwOzaARZZIOx34bJZsVkUMoUyMbeDeDrPUSLHUSLH5ZEw908RFptZ0bW7HY56WdAZsbo8GOlIGm9hoj+oKywf7Q3opopfGojobh8JuFhJdheNAwEPyzq6Cpsis3SgPwJlFJw3FNBPIu/1uHTdrABdfUbzeD3M6AQT2k0KSwauVS6LWXd70GEzfH2LAXkJ2m3sGYw/WQz672ZJ4qFBxsewz8sdHRcsgGOdMaZSvY5ftOkmogPcikU5fNQdcykW3BYzTpMJiyxjReENf4yaplJq1MnWKhxXinjMVtay+kRp2O3ljoE7lc1qBQPC8Q29xna4p1fsM5lMu2Cen59vB4oGAgHsdvu5Xo9abkjj4+P09vae237fLuzv77OwsMBrr71GIBAAoKenh56envbYUSKRYHV1lbm5uXbad+u9fKexvr7O1tYWN2/ebI+OnEfo4Mc//nE+/vGPUyqVCIfDfP3Xfz2/+Zu/yQ/90A8xOjrKRz/6Ub7zO7+TN99888LO6+DggG/8xm9sb3O73Xzwgx/kS1/6Et/93d/Nl770JTweT7vABPjGb/xGRFHkK1/5Ct/2bd92Icd23ngZR6qy2c7rnNlsxmzWv688C17ku/DLv/zL/Of//J+JRCJ867d+K//wH/7D9mL2l770Ja5evdohJ/imb/omPvGJTzA/P8+NGzee+Rjfd4TjRUaqANbW1lhbW+Py5cvnvjrwIoTj6OiI2dlZBgYGDIWIb+dIlaZpPHz4kJ2dnQsRh+uhVq3zX3/6t1lfPKCuCWiyjGK3kM7kkJ0yFosd2WJGVTX6R0I8WNhndCyEbJG5e3cLQYCr13vJ5KscHeQxm2WCPR62dlL0RByIksZxvsS9+eZqsyQJBEJO1raahZ3HZWF4IECxUsNhUdjabhaWl6eiPDyV/j3Q72N+rbOAuzQa5d7KPmZFIuJ34bKbsZpldo5SOGSJQqXB1l4GhAyDPV7W9zsLtoGIp8tCF5qdkNM2uACizpiQJAns64isLYrE6mF3oWy0XRIFtnWcrAAK1W7tBoDLbgadWnw8FmRGhzz0+90s6ySaiwJsH+u/dtBlZzvbXbAO+b2spfQL4B2D7WMhPzN73cRMFgVWE/rP6fO6OSp2kweTKLJskEbe53VzpEM4BGDHIFl9Iuhn9kifIBRr+u9/yG5j7Tit+7eww244GnV0wlUrX6u2Ozgxh4O9I/2xsiG3B1NDwmluEhNJFFAFjYpaxyRIeBQLmWq5LYwHUATRsPNx2RckZn+2kVZBENpWsaOjox1Wsaurq5jN5nbB7PV6XyiZumUdOzU19d5ZTT6Bvb09FhcXee2113TzpE47BLY6IYlEguXlZSwWS5vIeb3et32MbWNjg83NTW7evKk78nweoYOlR25zP/zDP8yP/uiPks1m+cIXvsBnP/tZvvCFL1wY4Tg4aF57TutGw+Fw+28HBwddWhtZlvH5fO3HvCfwEorGW+6dLfzjf/yP+Sf/5J+cebdn/S58z/d8DwMDA8RiMWZnZ/m7f/fvsrS0xG/8xm+096v3HWz97XnwviMcZ0WrgN/a2uIDH/gAbrf73F/jLIRA0zTW19dZXV3lypUrT0x6bRECTdMuZOa21UE5qW05LQ6/qBGqbCLHf/6JT3GcKiKaTAgIyBYTW+uHOIJ20gdVxl+LsLp8RKTfhyiLWEwyyAKLiwdcvtKDbJK4d38XVdWQFZHxy1EaqobXbSORKhOMuMidGAUKhczk8gUmhvwUS3Xq9QYPVg87dRujYeaWO390l8bC3H9ENtx2C2G/E7fTQr5cJeJxED8usLV3jCQJOJ0KqVznCM6V4TBzOsRClMSubqzPaWVhu3vkaLw3wEMdZ6rLg2Hu6rhbTfYFmdHdHtJND7/cF+KeTn7HWNSv28WwK6JuMCDAgYEWwuuwsqlDLKZiQeZ19B5PEou7rPorRyGriaOy/ghU1sBRbjIU0E08B32tBcBkOMDsgf75pwzsc8f8PpYMcjkKRf3XcVvMhp2Pfrc+GQJIGhxD1OFgS4fAAcScTvYMBOPpapmdXBZOcVu7rFDWGtRVFUWUcQgiHpsVt82G22ImV69SUevkahVS1RLZR+TmG5/Q3XgaTlvFtsTSCwsL1Go1fD5fu2h+nhXGlnXseYXivd3Y3d1laWmJ69evt3WAT4PNZqO/v5/+/n4ajUY78Xx+fp56vd4W8QcCgbbG4KKwubnJxsaGIdk4jbPa7hYeEe7Wfc7lcvHt3/7tfPu3fzt/7+/9vafe5xYWFpicnDzTOb4seBk7HNvb27hcrvZ2o2vP3/t7f4+f+qmfeuI+FxYWznw8P/iDP9j+/1evXiUajfIN3/ANrK6uMjIycub96uEV4aC5gjEzMwPAjRs3LoRswPMTjkajwfz8PKlU6plIUOtCelGEQxRFKpUKX/7ylzGbzdy+fbtLHH4RZGNnaY9f/1f/g3KlTrWhUcyVEMwmSukcNQQkyYw7rDA7vcXU9T42NpJk0kWufWCQekNFFAWq9QYPlg+RZZHRkRCaLHDvkQOVIAqMjod5uHqEJAoMDQTweK0srx2RzpZIJEpIsoDLbe4gG36vnc3DdPvfdqtCX8SDySQzNRjiKJknlSlSKFYIh9zsHnUWzz1BKxvxzgLQZlbY1tFLXBoKM7/ZXeDHQh5mTxMFASo6o0iKJLKtM+pkliXW42ndx28mm9tFQUCRxLYAuVSp4jZJSJKE2WRq5muIAl6bhX6fu515gdDUAoRdNraTGeqNOo1H3xFRFAl7nBzki/jtVlStOW6maiqyJOoSF6Argb0FI7G4VZENR6N8DhtHOpqPmNtpqNEA/e/2oM9jGPZndMxRp4N1g66Dw6I/G2uRJLYNiMOw18u0wapTxoBAhe121g1sd3uc+mnpT9qfy2Rm5djA8tbn4168+T2uqSrHqBzncpDLcTMSZfqw89jtsgm/1cb/2Xs+Nz5JkggGgwSDQTRNI5/Pk0gk2N3dZWFhAYfD0SYfT0qoPjg4YH5+/h23jj0rdnZ2ePjw4XORjdOQJKkj7bv1Xra6Jg6Ho00+3G73ud4TNjc3WVtbe2ayoYcnhQ6eHAnOZrNYrVbd7s0P//AP8xf/4l984usMD5+NLLdI7OHhYcdC4+HhIdevX28/5uiocyGjXq+TSqXeWyT4JdRwtMIqn4Zn/Y6d13fhgx/8IAArKyuMjIwQiUT46le/2vGYw0fjt8/7HXvfEY7nvagdHx8zMzNDKBSiUCi8UHv9aXgewlEul9sk6Pbt28+08tY69kajcSGt7Wq1ytHRET09PUxNTb0t4vC5Ly7yuU9+kVKlgWg2ISgiolWg0qiiyQq9QwGOknn8ASe+iJt701tEY24Gxga5f3+Xel1ldDxMsVxjciLMxnoCZIH5xcer9leu9FCu1rk0FmFzO4mmqdyZ3UY9IbYeHQmxsHrixywKeL1mAqIdSZJIposcJXLUNY2ZU2nil8ei3Fvu7BI4rRL76e6CbXQgwL1TAYGKLHKU6S76YkE393VIyNXBMPvHOXr9LsyKjEmSkCURl8NCoVJlwOdG00DVVBoNDY/DwmE6j89kaedr1OoNBmM+5jYPkNQmoazRoEaD0YiHlbalbwNoFuxhj4M7y7td9w1ZFMjlK6R17GDNqkYi1/0+3BiKMLN5gNIiOrKELIoEnDZymQqDDjeyJCKLIpIkIokCdlHm9UjkkSd/q0uvYTebOC6VqKsq1YZKsVohX6qgicYjSxGXg10dIbfLYmbRiLzYLaynu7c7TSaWDDovMbd+l0AUYDWlszNgyONiwaCgjxsQHr/VwopBt6TX7eLAIH/DiFR4LRZWDRLJR7weZo70Sc+TLg16lryleh00jRGP1/iJZ8TJTJ+hoSGq1Wp7XGhrawtRFNuWuyczGk6OIbU0D+8ltMjGjRs38HrP533Vey9b3Y+7d+8CdAjPX0TEv7W1xdraGq+//vozFWzPgid1Pz75yU9SqVSo1Wpd9+EWeb0IDA0NEYlE+L3f+702wchms3zlK1/hE5/4BNCsDdLpNHfu3OHmzZsA/P7v/z6qqrYLx1d4b+NZv2Pn9V1o/V5bJPf27dv8+I//OEdHR+3Flc9//vO4XC4uXbr0XOfyviMcz4NWjkVL8ByPxy/c5elZ9t+yV/T7/Vy+fPmZSVDrotloNM7dlWV3d5fDw0PcbjeXL18GWknQWvuczpts/P6v/n986TP3QJaRHVbK5Tp1NLKFIk6Pk3qhhmCS0FQNQZFIJQqMTUZQrAp3720jyyKXr/WSzZXYeaS3uPRaL3MLe8iyyMhQEJfLwuzCHuVKsyPg99k5TBU6yMblqSgPVg8Z7PHiclgpl2vIJoH51c6xmvFhP4tbncVoKOBgYaN7lCYQcLK6l+7YFg04dTUal4fD7CVyDEe8WEwKitTM0TBZFDw2M5Vag3KlRrFcI1eqcJwpkUx1roCLooDXbSWR6d7ud9uIZ7oLzqNMnlqj24SgWNQfv4n4nLrjUZN9Iea2u8/L57Cyn9e3QG0RLFXTqNQb7ZyPoZBXV9cRdjuY03HMAuMxryu9Ie7vHuE0KdjMChZFwSxLmGQJqQG3wtE2cWmgUmuoeGxmNo6zFKpVspVK2wlKFGDNgCCMGtjkAhzk9bsH44EACwmjBHH97obLbGLPgCD0u90ky/rvddYg8dtntRp2KoY8nq5uRAt67ljQzNFYSekTryG3xzCz4+v6BnS3nzdMJlNXRkM8Hu/I/JAkiUQiwY0bN87cGXgnsb29zfLy8rmSDT2YTCai0SjRaBRVVclms8TjcdbX17l//z5ut7tN5p5HxL+9vc3q6iqvv/76hU0iwON72c///M/zK7/yK/ze7/3eCwl6oVlvpFIptra2aDQa7cJudHS0LXafnJzkJ3/yJ/m2b/s2BEHgb/7Nv8n/9X/9X4yNjbVtcWOxGH/6T/9pAKampvjmb/5m/vJf/sv8wi/8ArVajb/21/4a3/3d3/2e0hS9jCNV541n+S7s7u7yDd/wDfzSL/0SH/jAB1hdXeVXfuVX+OhHP4rf72d2dpYf+qEf4uu+7uu4du0aAB/5yEe4dOkSf+Ev/AV++qd/moODA37kR36Ev/pX/+pz/yZeSsKhqioLCwscHh525VjUDVxxzgOSJLXbtUYdiL29Pebn5xkdHWVwcPC5CvjWRfI8nao0TWN5eZmtra2Otu5pcXgr6fU8oKoq//3//gwr93ZoiBKIEqVchaOjLHafmcxxDZdPRpVU5qa3uPGhUdLHRba3kly60cfuXporV3uoVussrx5SKTc/06mrMUqVGpcno2xsJlFVjbdOdDJMioTFYSKxl0YQoL/Hi89rJ1OooIgSm9vHwDEDvT6Wd9Mdx+xymLpE3gAOu4XD485ifqTXy/Je87EmWcLvtuGymvF5bYS8DtSGRqVWp1CsUqs3WN5IUCzXOElvBqJe1nWE4lODoa6gQGhqN7pGr4Cp/iDzW/oakEWdHA2vVWZfpyNhkiVWjJymavq/qYGgh6SOy1XUZWM3rVOIC7CnI3gHiHmdHOjY6gadNlaeMJql0RS5nxS6j4V8XdaxLYyEfeydGHlzmhQcFhMDPg+5arPzIj0S66uaRk1tYJYkog4H2UqFwglB94DXzUZGX/xuMQgoNIlwYCAKH/H5DMepDg2sdb1WK8sGnY9Bj5vUgT65rBgsnJhEkeVjAw2J3cGaQZ5HwGYzJBx/4m0iHCdxUizdyvxYXl4mHm9+LxYXF9/RzI+zYGtrq12sezyet+11RVFsi/jHxsY6RPxra2uYTKZ296NF6vSws7PDysrKhY49t6BpGr/4i7/Ij/3Yj/GZz3yGD3/4wy+8z3/0j/4Rn/zkJ9v/brn7/MEf/AFf//VfD8DS0hKZE9eEv/N3/g6FQoEf/MEfJJ1O8+EPf5jPfe5zHfqYX/7lX+av/bW/xjd8wze0w95+9md/9oWP923FSygavwg87btQq9VYWlqi+Ggk12Qy8YUvfIGf+ZmfoVAo0NfXx3d8x3fwIz/yI+3nSJLE7/zO7/CJT3yC27dvY7fb+f7v//6O3I5nxfuOcDyt6K1UKty9e5dGo8Ht27c70mllWb7wDgfojzydLOyvX79+5jbteTpV1et15ubmyOVyvPnmm8TjcdLp9IWKw0v5Mr/6k59idyNFtQF1rYHdbiV/nMcVtlGriky9Hub+7A6xPh+Xbw0y/bUNAG68OUS+WCWbKWG1KqTzFSrlOr29XsJRN0trR2SzzVXeSMTNzmG6o5Nx5UoPlWod+7CJ7b00+4dZynWVg6PHBabJJFGs1zueBxAKu3m42Vmk9oSsrO4kcVoVHBYZRQK3ywmiyFDIQzpbIpMvc1jO4hwI8OXZra7349p409nqNMxm/Z9uvqxTjAqQ1MndaD5eXzCNQcZDb8jLsQ6hmegNMrvVXexGfU6WdYiIIMBOSl+MHPa72NfJJYk6LOzpjJYhwK4BEenzu4nr2OE6LSZDK14j7UTAYWM13lmct8hK1O1kQY+g2SykK4/tkS2ShMtixmkx0ety4TdZER9lXtQ0jXK9Rr5aZc8gjX084Oe+Qeej3NAndh6LhQODLkaP3UbKIC/DyJLYKsssG3Q+xv1+7if0O02iwfGBsWjdJit8INpj+Ly3C0dHRxwfH/PGG29gs9ne0cyPs6BFNm7cuPG2kg09nBbxHx8fk0gkWFpaolKp4PV622SudX9ujYG9HWRJ0zT+03/6T/yDf/AP+PSnP30uZAOa+RtPy+DQTnUHBUHgR3/0R59Y3Pl8vvd8yN+rDsf54GnfhcHBwY7vWF9fX1fKuB4GBgb47Gc/+8LH974jHE9CJpNhZmYGj8fD1atXu1ZS3g5bWegeeTrt+vSkGPqn4bzOoVQqMT09jaIo7eDDVCrVnm29CLIR30nyqz/5W+TyVQSzgiJIKLLIwUEKk8OMyWTBYpc4zpTo6fdhtluYn91hYiqKyWHizp1NAEJhJ5okMjjo5/i4CKLA7MIelUdjUw6HmRpN/cL4cAiTIqFYZO7Mbnccz+WpGPcfdhb7Y6Nh5k5tuzQRYXHjkFjAhcdhwfQoATuZK2KRquTzzf8ALGYTD3fSnScuQLnW/Zl5nVYWdYr7wZiXRZ18jYn+IIs7Oune/UEe6Dx+rMfP8n530R31O1na63681SSzekIkfxLZkv64Tsjj0O1KTEQDugW6SRJ1bXgBPA4bezojWCNBLysGNrWHBhqN4aCPuzt6aeACawb76ve7ieuItZ/0nAG/h9QJIXu10SBRKJIoFKnUG+xlu9+bqXCAB0cJbLKEx2rBhIaEhtvpxG2xcCMoUao3yNUqHJdLFOt1nCaTcS6H12PY+UgbuF05FYWHBp2PMZ+PWZ2Ec2g6hRkhZ0Bi/VYr6xn99+92rPeJ+7xotBKsd3Z2uHXrVlug/E5lfpwFLYH1RY8hnQUnQwU1TWunxx8eHrK0tITNZsNisXB8fMz169ffFrLxq7/6q/ytv/W3+NSnPtXuPLzCBUPVmv+9DHhZzlMH70vCIQhC10pBa1RpZGSEoaEhwxyLixypahXoJwlBsVhkenq6y/XpRV7jRQlHOp1mZmaGYDDIpUuX2kRJEAQKhQLpdPrcXUdWZtb57Z/7AlVNoK6J5NNlbF4HK/d3iY4F2F5NM3ndTa5QYXMtwcRrvSAK+P0OJIvMvbvbCAKMT0TRJIGVlSP29tL4Aw4qFbVNNvw+O4PDAdLpEpnjEssrR/T1etnd6FxtnxgLd5GN0eEg95f38XtsBDx2LCYZQRA4SucR6gIHB1kOaO7n8lSU7YPOcRmHzcTWUXeBeWk4zLyOzqM36mFWp7shm/QLsJbO4TRKBiNNkk5OB0DAY9ftGEz0BrmrEww4FPayFu8uGBVJZNWgi2D02hM9QeZ2uvUeFkVi3aAjUjdYoe/zudg+1n9O0SArZDzsZ9EgdTylI3p/2nOMMjH6vC620/rHZn40TlWpNzoIk7lYRRCFrs6DQ1G46gtyXKpgUVqZF1Bp1MnXqoYOWU6TiX0DzUeP3caiwbiXaPC7FwQMiUOPw8mOwTjVoMtDUieQEOBP9L/941QttLrO+/v73Lp1S3ch6O3M/DgLNjY2WF9ff1eSjdMQBAGHw4HD4WBwcJBarcbKygq7u7tIksTs7Cx+v7/9fj5PwvGz4r//9//O3/gbf4P/9t/+W0fg3itcMF6NVL0UeF8SjpNoBdRtb28/dVTpokeqTr9GKpViZmaGWCzGxMTEucwBv2jaeIuYjY2NMTAw0CZvmqbh8XhwOp3cvXu3bS8ZCoVeOPDpK78zw//69a9QboAmSRSKVeqSSPI4jSfmppRXufzGIDNf28DhNHPtA4MsLx2Qz1W49Ho/u3tprl7tJZXIkymU2d9vFkp2uwnJIuMUBQZ6fRynCrj9dt6afjy6ZLeZKNbr1OuP3zO/z8b2QRoBjVDAic9jx2ySyZeq2E0KqWSBVLJZCE5NRNg77Cwce6Me7q90rygP9vqZO0UgRFFgW2dFP+Cxs7DeXXgPxrw83O4ubsf6Ajzc7S7uR3p8rOx3778n4GJxp7uL4bCaWNzV0S8IcKinq3j0HD1M9gaZ1RGLu20WXX0I6Nv5AoxHA9zT2ZdJEolXDPQEmv6+/A4ry0f6RMis6BeEYZeddQObXCO9hctiZiWu3yUIOuy6hEMQYMNIfB70MX/Y/dmUanUKlTpLOudkNynsJ/PYRBm/zYbTYsKqKIiSgN2scFgskKmWSZRLHbqMugF5lQTB2J3K42UlrX++UYfDkHBUVP3PSQC+rvedIRyaprG0tMTR0RG3bt165kTti8r8OAvW19fboXjn5eb0diIej7O/v8/rr7+O1+slm82SSCTY3t7mwYMHuFyuNvlwOp0vvAD2W7/1W3ziE59oi2hf4RVe4XzxviYctVqNe/fuUSqV2mKXJ+GiR6rgcQei5ZA1OTnZlTh5Hvt/XmiaxsrKCpubmx3E7KQ43GKxcPXqVTRN4/j4mKOjI+bn52k0Gvj9fkKhEIFAoG0f+Sz4zL/9AtP/awlNkpCsZmp1DcEiU8kVMDscWO0WRJPC2vIhl6/3UamrzLy1iSDA9Q8Okc9XyKaKLGXLRAZ87Gw2i66+Xi/+sJOd3TSH8Rx7u2kmL8W4v9BZ8Mf6fSytNgtZp8NCLOTE4bKSzhQ5ONI4OspxdJTj0lSM5Y3OYm9kMMCDle4iWBPVrg5bT8jF/Fo3Cbk8FmFWh5x4nArxbPe4i1F3w2gV26iT4HNZ2dXpGIz2+JnW6WJM9ARY2u0mCS6bmUWdgEGAvE6+BcBw2Mu0jlg86LIbZm8UDbo047GArjuVABwWDRyb/G4She4VdUUUWdFxwALo8bo40An1e9I41XDQy4xOLghAQkdXAjDi9xkmkisGn6VJEllOGOReBHzM7h9SV2mOb534yK9GQzw80YEKWKx4bRZcFjOyLOKxOihUKqSrZVLVMhVNo89qZcPAJcvzhKC3tIGGxCxKhnqQy4EQQZvNcJ8XBU3TWFhYIJVK8cYbb3To/J4H55X5cRasra2xtbX1QjkV7yT29/fb1sMtUxe3243b7WZkZIRKpdK2MN7Y2OgYzfL7/c91DwL4zGc+w1/6S3+JT37yk3z84x+/iFN6hSdA4CXScLzTB/AO4n1JOARBIJfLMT09jd1u580333ymUaW3i3Csra2RTqc7HLLOC2fpcDQaDebm5shkMnzwgx9s36CMwvwEQcDv9+P3+5mcnOyyPGyt4gWDQcO02Vq1zn/5yU+xvZYAk4JsVkjG82iKwHEiT89olOUHB0zdHKBWU6lVGpRrDXa2U1y61ovJojBzp9mpECWR/rEQhUKZK5djHB5kcXiszNx9rMno6fWysvG4MBbQuPZaH9V6g8tjEZLJPIfxHKZeL3fudYq3hwb8zJ/K0ZAlQVdwPdzvYeWU3S2AzWZGPRXoZ7MobOg4WwU9NjYPM9hMIookYTHLWM0mPE4blUaDq4NhRAQEUUAALCaZcq3OjcHIo8+t+dlZzTKFSo2rvaH256nRXMWvVBtcigUQTlz+BAEqxQoDdgtWqwWzxYxAM9PCZjFh74+i0bxgakLzf+1WE9lSpfld0TRUVaOuqphMEulimZDLTqVWp1SrU320ar5v0Cnp87uI6xT1IZfd0AGrbjAPO+B1sKEnMAcODbZPRPzcN3CnSuoQFICxkN8wVNBIdB1xOtjSSVAHcJj1r1OiAOsGnY+xoJ/7Op0PML65yaLQFWyYLpdJl8tMhQLc3dfpTJlMBGQbsiwgaCqiLKJKEiVUEpUSBwYBgR6zcWbHmN/H/YT+sb8T7lSqqvLgwQMymQy3bt06t7Tss2Z+nAWrq6tsb2+/Z8nGwcEBCwsLvPbaa/j9ft3HmM1menp66Onp6bAwXllZYW5uDq/X2yYgT1to/PznP88P/MAP8O///b/nz/yZP3MRp/QKT8NLGPz3MuJ9STgODw+5d+8e/f39jI2NPfPK0UVrOKrVKtVqlVwux+3bt7FdwOrd85KmcrnM9PQ0kiRx+/bt9lzssyaHC4LQXnkaHR2lWCxydHTEwcEBS0tLuFyuNvloCSgziRy/+pO/TfwwQ6ncoI6AVZA4PMwS7HdRFxR2t1JM3Ojnwd0dEGDiRh8NVWsWu8DMo7Eof8BB/0iAvb00+/sZ9nbSXL7Wy/2FvfYxOhxmSrUGXreVgN+B2lCpN1TuL+x1jFJFwi6W1jpXyxVZJF+udV0jpiaizC51khCTIrKf6hwbEYGJ4RDZQpnR3gBmpRlgJwgCNpuJTL5EzaNSrdUpV+qUylUiXieJVJE6GmVUcrkaUKIeqLCb6tYRTA2HeKCjAbk6GmFeZyzrtbEoC5vdjx+OuFltOXIdP34dv8vKcaFMQ6e4jwacXecM8NpItGvUTBEExnr8HGUL9DmcmBQZk9wMJZREAQWRm31RVE1D1bRHQX0Ngi47dVUlX6l26FS8disPD/SLfZfTDjrEImS3smtAOAQDUXPU7TAcc7Ka9C+hTrOJZYNxqpjHaZi/sZHQJ1YjAZ9hF0Mx0AVIgsBaSr/QHw34WYzrv3dGI2L5ao39YoUDHQcxryKTr1bokazYTDJulxMVjUK9ittm4av7u7rsxyQZ34K+/m0mHKqqMjc3R6FQ4NatWxc68vQsmR+tgvlZ7xOaprG2tsb29rah5uTdjoODAx48eMC1a9cMycZpnLYwLhaLbTK3vLyMxWJpd5JOj//+z//5P/ne7/1efu7nfo7v/u7vvqjTeoWn4JVL1cuB9yXhODg44PLlyx25Ec8CWZapGIgoXxT5fJ7p6WlEUWRkZORCyAY830hVK2AwEAhw+fLlc0kOt9lsDA4OMjg4SLVaJR6Pc3R0xNraWnO1sCjxxf98h7oqoIoyokXGbpWJxzOEBzxksnUGR8NU6ipzd7boHwlg89iYn91BVTUmLvewtp5g8lKUSrmGzWVpu1MBjIyHePCICLjdVqIRNyarwuZmkmSmxNFhFpMi4Q05OsiGIAqYrArVZOd7NzEe6SIWQb+DxbUjJFHA57bjspto1KuYzQKSYqXR0CiWa+QLZbK5Mvlspav4tlsVVAmKp2xsg147D9a7yUDE72DvuLtI9bksLG7qazGWdByrBAF2Evqr62WDsZe+kIfEqo5YPOJl/ai7oBVFgQ2d7aqmYVZkUrnubsFIxMfsVjc5Aij6aqSPm8+xyhIOiwmbWaE/5Oa4WEGWROr1GoVCAbPViiBLVCp1/HYr2VKF2omOX2/Aw+FW9+ubRIElA/IS9TjZ08n4eNo41d09/fNJGzh6BcwKcQMxu/MJxe9mWv/zHAl4eWhAUmwGRAlgV8c5CyDmcrKnk74O0ONxMZdIka0B5QqcGAe8FglhrSkEHXbcFjMWRUIToFivUaxVkUWR+qmubMhm51LgYhKc9dBoNJidnaVSqXDr1q0LESQbQS/zoyU8f/jwITab7amZHy03rd3d3fcs2Tg8PGR+fv6FE9xtNhv9/f309/fTaDTaiefz8/P8i3/xL6hWq3zkIx+hr6+Pv/pX/yo/8zM/w1/4C3/hHXcTe6nxSjT+UuB9STiuX79+ptGoixqpOjo6YnZ2loGBAY4NArjOC886UnVwcMDc3FxHwOB5J4ebTKZ227ter/O/P/0VPv+fv0i53qChicgmM7LFTGIvi9VpxeZykUzEKZRrSLLI8HgYTCIL93cBmLgSQ5REBE1jcX6Pyas9zD36G0A44kSSJS5NRjk+LrK3l6a3z8e92Z2O4xqbiDC3uNex7fJUlLlTxKIn6mZz75iBmBe7zYQiiTTqKrJJprGnksmUSMZzJOPgsMuUGxrVWiexmBwNs7DWTSBGBgPcW+4u4iNBF0eZ7hXkgN/Bvg7hcNslkvnuK9hIn5+7Og5X4/1BXUtdl1VmP6OjuRBgN6nvpuS06xfB4z0BFnSE57IosHqgXwDbbfoFXn/Qw1Yi3f53td4glS+RypcwmSRWD0/9no7LXO4LsbTz+D13mhXcVgt2i4JYh9ejEURBoIFGtdGgWKviMsncN9CPHOmMecGTx6lqBr/BoN1mKD4Pu53EDboieva5AMN+L6sGXYwnkZQ9nUR4gF63i+2s/ucddToMCUfGQJMiAMuJBJWGyk4my84JbjTocbORSSMKEHM48NqszY6RCNdDEcNjP280Gg3u3btHrVbj5s2b73iOht1ux263MzAwQK1We2rmR0t/t7e3x82bN9+TZOPo6Ij79+9z7dq1FyIbpyFJEqFQiFAo1NYh/uZv/ib/4T/8B9bW1ujt7WVjY4OvfOUrvPHGG2+7i9grNCFoGsJLMmr0spynHt6XhOOsOO+RKk3TWF9fZ3V1lStXrhCNRpmenr7wcMEn7b+1Era+vs5rr71GKPR4vr/V1YDzTQ4H+OKvf5Wvfm4Wm9ODWG1wdJDFEZBYWzwiMuzhcL/A/m6eS7cG2d9NEz/KMTgZZnfnmEtXexAlkaWHh1Qf2dsOjYV4uHKIzabQ3+9HliWOUgWWlh6vKg8MBXiweMradjTURTYiYRdHyTxjg0EsZhm1oVEoVhBkkdx+hlz68Yr48ECAVR2heH9fgPvLnQJhQRDI6ORGWC0KqzqOUm6HfrfC7bCwuKGTi2GWOTAgCZsGhb3RpW4wFuCezvjVWI9f1/3KJEus7OkX6KKk/70Z7wkwr+OMJYqCbqcEwO+0dhCOFgJOG2sGzzn9tS1WahQrNfr8LpbXDATKfSGECvisZhxmBUUUELQGIipaXWXM46aKRrZSJV0sownG41Q2k2I4TtXn1c/yAMgZOEP1e1xsZfRJgMdqrDEwIim9bhc7BqQi7LAbEo5CVd8EQBbgwMAgYNTvZdmAEPltVjYyaVStmZdy0gL4+y69pvuc80a9Xufu3btomsbNmzdfSDtxEVAU5amZH9DsoL/xxhvvWbIxNzfH1atXzxx4+ywQBIEPfOADSJLEJz/5SX7sx36MwcFBPvvZz/LRj34USZL4k3/yT/Ln/tyf40/+yT95YcfxCq/wsuLddXV9h3GetriNRoP5+XlSqRQf+MAH2jeGtyNc0Gj/LXF4Op3mzTff1BWHC4JwLva8Laiqyq//y8+yeGedakPA4jShCho2v41ypcbYjX6W5vYZGPeTyVeZ+eoGoiQw/loUVRVRayrHyQLpfKVNNqI9bhwuCwMDAbY2EiwtHjA2FeXwxNiSw2Emmy91JII7nRZSuSL9PV6cjqYgOp8vgyiwsZ3i6ISFz9RUhAfLnQW4IAht4fNJhAIO3S7G1GiY+VWdIn5Iv7sx0OMz2O7V3T42ENRNIR+JeVjZT3dtD3rsPNQp+AVRYDuhX2SaDAqwib4Ac5vd52a3KDw0ICJG6eXjMT8LBk5XOwbdlZ6Ai/hmd+H+pODAgNPOls7+TLLEykESTYNMsULmhLvVtf4Q93Y6P1uTKOC1WagX67wWDKHIEhpQVesUqjW8Dit3dvZ1NQt5g6I97LSzaSAkDzrshoTj0KD70uN2Go5GhZ12Q8KRNRirsymyYSel3+Vk1eC1XE8QXe+n9L8nsijywd6LTxev1WrMzMwgSRI3btx4169un878KJVKzM/Pk3mUl9LKTnqnMj/Ogng83iYbrcWvi8S9e/f4+Mc/zt//+3+fv/23/zaCIPDn//yfp16v8+Uvf5nPfOYzzM3NvSIcbzfUR/+9DHhZzlMHrwjHCZwXGSiXy8zMzABw+/btDvHhi+ZkPA1G59A6JkEQOo7pWcXhZ0EpX+Y//ehvEN/PIJhMWE0mspkSmgL5bIlgbxANkVi/n0pN5DheYvxShKqmsjDXLGYdbhO5YgVRFLh0pYd6QyV5XGD23uMxqcvXepl70Nm1iPZ6WF2P09vjxe2yoKkagizyYHGfpPp4nOTypRj3T41SWSxyl+YCYGo8wvxyt82p12fn4NS4kyAKJHVGoyxmmbW97oLYZlFY1snXMCsSa7vdjxcE2E/qF3mCAUmwyqquQcZEX5AFnTErh9Wka4ULxg5MIzE/9za63yO72ZiIyLJ+YTQc9hp2MQ6Nsiqifh7o5YgAcYPU8bGIj3mD52Qr3ZqKuqohqg1DkuTsM2GpS/jsVlw2M1aTgigKIEKhViVst5MoFDj5K+3x6NvuAiQNOiIRp4MdAyIScToMCUe2rE8qnCaTIakY8XuZM3DCcjscYPBaRsduk2WODKyOLwX82C94rKlarbYDV69du/aeKM5PQtM0tra2KBaL7eu5XuZHy/nqojM/zoJ4PM7s7CxXrlx5W8jG/fv3+dZv/VZ+6Id+qE02WpBlmQ9/+MN8+MMfvvDjeIVuvBqpejnwviQcZy2az4NwtITYfr+fy5cvd93ILtoJS5IkqqdWUbPZLNPT0/h8vo5jukiyEd9J8ms/9WnSmTL5Qg2Ly8bu2hGKy8T+ao5rHxphez1FtVLHF3PjcpgpFcoIJoX1+SZ5cLrN9A43A/sO9vIszO8R6XORSDwu7odHg8w/GptyOi3Eom7cHisHR1lkBHa3U+wC4xNhFh90FsIup4X1ne5ivjl2dcqByiSxd9Rd3PX1eFjQ6WJcGo3ohv+NDwd1uxWjA/rbx4dCumnjEwNBFra6C8Co36lLXBRZJFXS/27XVf3twzE/99a6XzvgtrGqQ5oAcjpWwa19zeoQEfOj7oIeXDb91XGXRWY/py+8NsodiXodbBt0S2SDYtNrt7Chk6AOEAv6ONzqPh9JgNWjY6r1BgeZPAcnHLFe6wvzcKd5rgIQtFvw2m3YLQoOUeH1SIRSrcZxuUyiWKSuaQTtNjYMOh8xt5N9A7errIH5hdNsMnSuGvJ7uHfQ3akDkEXjgnzfQNfhs1nZMBC0D/u83I/rv1avpvKHf/iH7dV6n893roSgWq1y584drFYr165dO9eO7tuBVihhPB7n1q1bbQMSvcyPvb09FhYWcDqdF5b5cRYkEok22QiHwxf+egsLC3zrt34rn/jEJ/iRH/mRd/z8X+EUXonGXwq8LwnHWfGiI1WtlO6TQuzTkCSJWk3fieY8cHqk6vDwkNnZWYaHhxkeHu4Qh5/VieppWJ5e57f+f5+nWK5TrjaoNsAsQLHawCNIDF/u4e6XNwhEnAxORng4v0elXGPy9QEW5ncZGQ9jNknkSjUezD0u5kcvhVh++LjI9notKGaRqfEwyWSBw8MsGavC+maCau3xe2C3mziIdxdFPX1eHix1Fo2hoJOF5W4CMT4S7hKVAyjm7p+QJAocppqFoIDWtH81yZgVkWyhTNTvRBQFJEFAlEREAep1ldGY/1ECEo8uShoiMBrztzM0NE1DUzWsFhMxvxNN1airTeJYVzXCASeHmXyXhe3EQIi59e4C2WVVWNHpoACkcvqr031BNwmdv4U9DtYMtCNFnU4BwGhPgPs6CeKCgK52AyDkspJJdH+esiiwZjBOFXY7dV2+REFgzSDsrz/oIaVDKgAOdUIZAaJOC9sGZKhxYmVLA1KFMqlCGafZRLFW6/i7JAqEHHbGfH5y9iqiKFDTVLLVCslikWy1Ss5g/MltMbNmIEwf9nm5d6DvnvWka8BWRp84NIXk+qSn3+0iVdLPLzEZdLUAvufr/jgxWSaRSLC4uEi1WsXv95/Lan3LBtzhcHDlypX3JNlYXFwkkUhw69Yt3VDCtzPz4yxIJpPMzs5y+fLlt4VsLC8v8y3f8i18//d/P//0n/7TV2Tj3YhXORwvBV4RjhM4a/dB0zSWl5fZ2trqSOk2eo1yWb8gOQ+0RrZanuxra2tcu3atfWE/LQ4/b7LxpU/f4Q/+61dAlhEUBZNioiFViSczeAIOJLOFfK7C1TcGODrKMffI0va1D41Qq9bxeGysLx8ycjnG1ubjle9Lr/WyuhZnbCyMSZGIH2YQLRKLC49XSQVJQLHIVBOdpLFvsFs8PjwU6CIbAC6vlcMThanVIuNx2Ukm0/QEbbicDhRZQgDMVoV8scLUYIh6vUGt1qBabRAJu3i4EceMSK3eoFavUyvVGZqMMvewm7RcHo9yX+dYxoeCzM3vdW2Phlzcu7/Ttd2sSKysxqGsoYgCZkVGUSRMskg1XyZsNmG3W7GYTUiSiCgKuJxmsoUqtXqNSrVKtVajrqrYLCaylSpum5lCufo4YE+APZ3cDWh2Vw503I8CLhurBl0MVdMfLxwJ+1gxIA91Uf+yNRYNsLCnP/aTLuj/5sYiPpYMjq1sMPIT9TjYS+u/BwGvl+1c92csCrBiYLs7GPR0paU3VI2jbAG/w8YDnTDCmMuOWlS57m9qSBpoFGpVEsUifT63bnAfgGZgAi88IVhwwOs2tN6NuRzsGXRZnnRb3TXQkHgsFq6Ew4iCQCAQYGJiomO1fnFxsb1aHwwGcTgcz3z9KpVK3LlzB6/Xy6VLl95zhefJBHQjsqGHi8j8OCuSyST37t1jamqKSOTincjW1tb4lm/5Fr7ru76Lf/bP/tl7jmC+LHiVw/Fy4H1JOF50pErTtGfeR71eZ3Z2lnw+z5tvvvlUl5CLFo23SNPc3BypVIoPfvCDuFwu4PEIlfaIYZ/3xffTP/d55r68AiYT+VyFugoNGhTKVQqZGsOXw1TKVbKpAkdHORJHOSau9mB1Wpj52kZ7P1M3+pl/ZHcb6/EQjrpIHZeol+usLDYL88s3epm731mM9/U72dzuXNkdGQl2kQ1JEqjUGwT8Dlx2MxazgiyLWCwKmVyZwYiXYrFKNl+mnKthctfZ2m+u6O/vP17ZHhoOsLqpk3UhCxSKp0aLBEgc66+K6zlZPXqKLoJ+O3s640Ej/cF20J+qapQqNUqVGl6niZWd5vEnsp3HFQo42t2YkxjrtZA80RWyKxJ2q4m+iJd8uUIoFmqTFo1myrgIDATc5MvVZv5Fo0kmegNu4jodEYfFxPK+frFvt+rb5AZcNkNHK0XW/z4HnDbWDUajrAbJ3laTzKpB5yPicbJvEB5oRETCdjP7Bf2OhGhwrTFJIqsGblchp525Pf2RpGGnh0GrC5fdgkmRmgF8tRrJYtGQVIz4jN2kgjabIeEoGJAyUYA1AwvwmNPJXl6fcLzZ19vxfhit1sfjcTY2NpBl+ZlGr4rFInfu3CEQCDA5OfmeJhs3b958ZrJxGueR+XFWpFKpNtl43oyss2Bzc5OPfexjfOu3fiv/8l/+y1dk4xVe4R3G+5JwnBWtm5Wqqs80M1wsFtvCwzfffPOZwqIumnA0Gg0ymQyNRoM333yzGbbHxeo1apUav/ZTv83q/B7lmobVrXC4lyE05GXtfpxov5/okJf7b23g8toJ9nsxWRRKxSqiLHWSjet9lMs1Ll/t4XAvTTFfYW0tQeaENe3AcID5B6cyM3q97O53FjEmE5SrJYb63VgtFgQESqUqbq+Nu3M7aBokeVQgCtDT42VnL92xD5tVYi/ePRbS3+vTJRtjw0EebnRvHx0MsqxjeTvY62N9r7sw83tsLOvsX5YE1g1GoPQctADcdoVUvltbMRDzsnHQ/dqC0E1MKrUGlVoJt01i7ai72B6IeNg4THdsc1oUnDYzQlXlaiSIIksgCqhaM0Hcabfw8CBBplimcWLVRxSMbXJ7/S7iOknX0hOsdXv9Ll3Cg4ChrmMk7OvqOrSQMxBd93hd7KT19+cwK2BAONYMSMVQyMeiQVdEMiieBAFW4sfNY0x1HstoyMdOPsuQy43LZkaRJeqaSq5axWezggHhODLQaJglyVBkPuzzsmLwt6jLbkg4/lhfr+72Fk6v1h8fHxOPx584elUoFLhz5w7hcJjx8fH3JNl48OABx8fH3Lp1q31NPw88b+bHWZFKpbh79y6Tk5NvC9nY29vjYx/7GB/5yEf4N//m37wiG+92vBqpeinwinCcQGuWtV6vP5VwpFIpZmZmiEajTE5OPvMF7SIJRy6XY2VlpcNvHJo3rNao2HmTjWwyx3/60d8kcZRFFSVsXjOVch1Pj5P4QY6pG/0cHeXZe7DP0GQEyaKwuniAqmqMX+th8cEesiIyOBLC7bUxP79H6VF3QBAFBkaCrK89LrpsdhPZYqXD7tbhMOEPOnB7rAhAsVgjlczT0+9lfuG0A5XEQTLX9ZufGI+wqKPd6OnxsLzeXRCarfo/nYbRtcTgLbcaBN71RDy6LlejQyEWdPIyAh47KzrJ4gAFfR03Lod+4TLaG2DZIKU8oUNcANwOK5wiHMVyDafNzOyqvg5ivD9INlluJrbbLU1HJ7OC12WlUK1RtJfIFouookymXKVUq5Mu6hftYxE/i/v6558r6R/zUNBr2PkQDCx8nVazIbEJueyGhCNv8JPvc9vZNtCD2EzGBd6WgZB8yO811G+4LGZK8TpbeknzAQ0fZoIuOw6LCUESKDfqpAt59gzcs0b8Pubj+iNsnicUxSWDrgjA7f4+w7+dhiiK+P1+/H6/4eiVy+Xi4OCAnp4exsbG3pNko2V9e95k4zSeJfOj1f2w2+3P/F4eHx9z9+5dJiYmiMViF3b8LRwcHPDRj36UP/7H/zi/8Au/8IpsvAcgqM3/Xga8LOeph/cl4TjrTaUVdvc0QrC1tcXS0hKTk5P09T37DRIuNs383r17hMNh0uk0kiR1iMM1TTt3srG9uMev/8xnKRTrNBAxOyzsriew+M3UqxqypHB4mCMQduHy2ihWGuw/Ig9Dk2FUYPxSlK21OJl0gd39TJtsAExd62V+brfjNUenIhRLNWIRN5VKnUQ8R6zPy+zMdsfjgiEnD1e6V6gjMRdrm+mObYIokM50dzGcDjObO93FWSzi4uF69757Y17drkc05GJZJ7jP5bDwUGe7KAps7+sXjXWD704s4iae7SYogzEv6zr7EkWBTYPXsOgI4QGGe3ysGLhTbRhoJyI+Z4cmpgWbWWFtv7kvVdU4zpU4zjU/g2sjEe6tnSQpze/EQMCFVmxwORDEbJIQRIG6plKs1nBazUiC0CG8BnDbLIbWuh67BXQOWxIFw+cMBT3M6ojcwdhuNuJ2GI5gBT0uQ8KxlTAQs/tcbB0baCBsFjCIQUkV9QXcLouZzWQaDciWOs9hwGFFLEOfy4nXYcGkyDRodkXsTyBEhmJxUWT1WP+8xvw+Qna74T6fBL3Rq+3tbdbX14FmEdpoNC7E9eqi0CIb2WyWW7duva3WtqczP8rlcnv0anV1FZPJ9EyZH+l0mpmZGcbHx+npufhslaOjI77lW76Fmzdv8ou/+Ivvic/5FXjV4XhJ8L4kHGeFIAhPJASqqrK4uMj+/j43b97E5/M992ucN+HQNI2NjQ1WVla4evUqJpOJVCp14eLwuS8u8LlPfpFCoU46VcTmdbB1fxdXxM720jGBmJfocJDt9Tjbawk8UTf7O8f0DvoJRlwsPzwkl21qF6w2BUGRKSYeF16jkxFWHh4yNBzAbjdTqdQxWxXuTW91HEco7OxIF2/B47dzdEqb4A842NrtLtSiYSu7OrkbAwN+7i92C4BdHhs78e7HOxz6BYHPZ2dPJ1hvoM/HrI7z1fhgkEUdQhPw2lnRsbxFgD2d4wFw2PWPabTPz5LOviRRYMOAiNgMdBV9IQ9b8bTu39J5/cJzKObj/qb+yNKGga7D77JxT8dpC6FJHuQyBJ023HYLNrOCKIvYrAqH2QLpYplEvthBSA4NSMBoxMeikchd1b9ZOC1mw25J1KMvpgdjEhBy2jjUGR0DCDjshoQjY2BI4bSY2Uzpd0UG/W5mDfQgbpeTjUKJvXSuS59SdtcIClYCrqa1ryYKFGtVCtUa68dp3f2N+L0sJPQ7UR96zsWbJ6FYLLK1tcXo6Cj9/f3PNHr1boKqqszPz5PL5bh58+Y7fowWi4Xe3l56e3tpNBrPlPlxkmz09j55VO48kEwm+VN/6k8xNTXFL/3SL73rUuNf4Ql4ZYv7UuDVL/IUjJyqqtUqd+/epVarcfv27TO7eZwn4WjdlBKJRDvNPJPJoKrqhYrDf/+X/5D//em7CIqCJomIVhOaoGLxWEgeFLn65gjrK3Fmv7qO2arQPxlFViQadZV8rkSuWG2TDUEUiA0HWVk6xGoz0dvrxeawkEzlqVcbrK80l6CdLiuqzmKVw23jMNG5Qjw8GuKhznhUIOgkfkq4LcsipWo3EXM4TCyt6hT9AQeLOrkbAa+dh+s64Xl2E8sb3fsRRIGdQ/0CsN7Q77nGIi7iOqvhw71+VnV0HbIk6oYGAsiK/srfWF+ARZ18D0GEzVMjUy34XFZdwuG0yobPMbrmht0WDrL6RbORa9RgyMvGo45EIlMkcWIUbbI/yOp2kzzIokDIacfjsOB1WKmqDQJWK7lKlWSh1O5QWA1W7pUniLiHgh7u7eh3PooG6eJem5VNA+vfHq/bkHAcGRTzTrOJDYP9DfjdhiLzJ10fjCxvQ047+49I1PEp0nQtFibTKBF2O3BYTYiSSLFRI1EsYnuCDuCPPcc41ZNwfHzMzMxMm2wATx29aq3WO53Od3zsSlVV7t+/Tz6f59atW8+kDXw7IUnSUzM/nE4nh4eHjI6Ovi1k4/j4mI9//OMMDg7yq7/6qy+kN3mFtx+vgv9eDrwvCceL3DD0sjjy+TzT09M4nU5ef/31F1o5OS/CUa1WmZmZodFocPv27fZsryiK1Ot1stksTqfzXMmGqqr8t3/+O6zMbiPbLBRyFcxOK8WDDMWahMfvwu7UWH14SD5bYngqhmJTWJ7fp9FQsVgVvBE3ezvN4lBRJK7cGqBSadDX62N3O8Xy4gFDE2G2NzsLu2i/h6XFztXtyUsxFk7ZyYqSQEFntKW3z8eiTkr4xESU+wvd1rMBv4WNnW6xbCjk5EhnRCgScRNf6i4Qh/r9ul2MiaEQCzpdjLDfwapO50EQYduAoFgt+gXJWH+ABzpkx2ySWN3RX8GXDJyeRnr8LO/qP+d0ynoLwz1B7q12n7skCu1xqtOwW2TQWby3mGTWdATuAF6HBZ3TRJFE1g8fP6ehasQzBeKZAtdHotw9FWrotigEXHbkusCtWJQ6KoVajVShSKpYZiTsM9SJnB7lasGmyKwajGf1+10c7+h3OEoG9txWReagqE/IBgIe7huQCiOROcCOQbck6jLO2Ii5nRwZaDtEQaBQqemOpXkxM2b34rSZESWBUqNOvFggV6nyeuzFxcQt21WjVfXzcr26KKiqytzcHMVi8V1JNk7jSaNsgiCwvr5OLpe70MyPTCbDt33btxEOh/mv//W/vuvfs1d4hZcV70vC8SI4TQiOjo6YnZ1lYGCA0dHRF179Og/CkcvlmJ6exuVyce3atQ5xuNlsJhgM8tZbb2E2mwmFQoRCIdxu9wsdeylf5pd//DfZWU2AIpNP5KnVYWc7ia/PzdF2HpOpRrnWoH8kSOIgi6hILM42NRiiJBIbDpJM5Jm62kOtUkdSZGa+utEx0njpRl+XbmP8UqSLbNhsJvYOugvwqcsx7j9oEghFEXHYLdisCsGAA5tVaVq5PtLqNAP36vSHrEiSjNlsptHQkGSRcqVOr99JvV6nVm9QrzdQFJH9zSR+i6Uj0dpkkjk+zBFz2xHFplVs679GqcFkT6D57xOvbbUpXB9t+tCrWrPQaKgabrcVs0mmUq1TqtQolKo0VI2xwSBLOi5XVrPMQ4PRJKMieLQvwH0d4blZMSYiVov+imFfyM1W3MAy1SB1vMdvZzOpX6xWNf0Cbzjq48GW/nkmDToBQxEfS3v6BEEviLBQruG2NZjRIUl2RcYvW7gWDiGbJFRNI1+tksgXyZUqhha6QyEf8wYkQDX4fEySZOhcNRz0Mq+TywFQyOkTB4BtA1LR43Gym9F3oYq4jQmHUX4KwG5G/7W8NgurCX3y9XUj/ZhesLiPx+PMzs5y6dKlZ3ZCOovr1UXhJNm4efPme7JwLpfLbG1ttQnfRWd+5HI5vuM7vgOXy8Vv/MZvXKio/hUuEK80HC8F3reEo5Wo/bw4mcWxvr7O6uoqV65cOTcrv5PBfGchAC3LwtME6KRe4+rVq6iqSjKZJB6Pc/fuXQRBIBgMEgqF8Pl8z9X5iG8n+eUf/xSpeI5CuY4vauPw4RGhfheYFLaWjukbD+H0Okg82Cd5mGXi9QEWHxGHWL+PcJ+X/Z006XiedDyPL+Cgoqodv71or4eHp4iF3WHi4KizgLFYZCYuRclky/TEPEii0CzeNI18pkTQbSOXL1Mp1kkX8/iGg9x9a7PrvMYmgjxc6S5Ir1zp0RWcT0yEWFzuLvYuTUaYf9jdPRkdDrKkM9rl99pIZotd1x1BEHB7rByfErBbTRI2QaLP7cJsbqaWy5KIIIKqVsgWKpisVmoNjUK5Sr5URVEkfb0HtPMxTmOkN8CDje7jFUVB1z4XwOe26RIOl91s2MVwu5ygQzjcNoVtA/IiS/rfV6/DwtaRUedHnyRZFKmj83ESQY+d3ePuArxcq7N5lOYg3V2ADwedZMtlRoJ+zGYTNa1BplzhMFswPG5REFgz0HyMhLw8MLDDfVJCd8ZgHaPH7WDHQEMSdtoNCUfV4HsCGGpIIk4HBwYkpc/r5rik35253vNi19fDw0Pu37/PlStXzpxe/SyuVxc1eqWqKrOzs5TL5fcs2chms9y5c4fh4eH2KNtFZn4UCgW+8zu/E0VR+NSnPnXmbJJXeBdAA14W96aXl2+8fwnHWSHLMtVqtR2c19JGnBda3YhGo/Fc7WVN09jc3GR5eZnLly+37QVbTlStrklLHC5JUru70UqXPTo6aov8AoEAoVCIQCDwxONYvrPGb/3c5ylXG0hWC06bQD5fwRmwED8sEQi7Gb7sZOXBAduP7GMvvTFIKlXg0mu9xPczuL02pr+03t6nKInYfXaS64+LKlkWQZao1ZrnYbUqBIJOwj1uSsUasXCDYqFK+riIzW7m3vRWl4D38rVeNjd0Vuj1LE4FONApVEVRYHe/e7sgCiSP9cdfDgxWoxWTfnEYi3k6dAYtDA/4WdnqPn5REFhai1Opdo/ZRENW9uMloLOAn5yKsXOYwW4zY7EoKIqEKAogQaXeYDDkIVuqkM6XaL2NmsGVcLTXz5KB5a6eAxXAYMTL7Fo3CRMEgc2jtO5zIl4H6ZJ+LojRc/pCHo71hOTAvkEi+lDEx8KOfpegpPMeA4Tcdl2yAUCjTiJfI5E/9dkJkLeWmfL7sVoUNAGKtRqJfBG/08bDQ/1ukuUJ7k+7BsGCvU/IAFFUYxvaYrW70wPNn8yGgb1uv89taMsbdRkTDqOAQ4APDJzdwWh/f58HDx5w7do1gsHgmfdzEm/n6JWqqty7d49KpcLNmzffk/qDVtd9aGiIgYEB3cecZ+ZHqVTiu77ru2g0Gnzuc597auDuK7y78UrD8XLgFeHQwcbGBmazmdu3b597G/0shENVVR48eEA8HueNN97A4/EAz54cfjpdNpfLcXR0xNraGvfv38fv97e7HydX1r78O9N88b9/jVK5TiZdwhv1sreZoKbWcYfcmK0C1VqDtcVDivkKgbCLvrEQO5tJjvYz7G8m6R8N8XCxc9V88nof87M7zfdDFolG3UT6fBQLFawmieNEgeNUATHo5M6X17s6AaEeN/unyILdbmJ1tbuI7Ov3sbbWvT0SsbJ/1L3aOjYeZvFh9yr/yHCQZZ399MQ87Byku7ZbLBIr6/pFejypX5CZDVbkh/oDPFjpLqqtZomjlP6KcaFUI5kukkx3EpvL45GOrossCLidFnweO1JV43p/BEESqKsNitU6uWIFs0n/e9oTcLFjEJxXqekvtw9FvawadEsagv73N+Q0cZjTP8+aQdhh2OswJAgmRf98TLJx5yPmc3JkYF9blxSgm4z2+lyGRGnU7WXU5cVhNzVH+Op1UsUSR9mCYVp5zONkz6AbEXIaZ4CY7XbQSbOXBIE1A+vdoYCXFYPxp4DdZkg46k8YtdrP6h+702xiMhwwfN6TsLu7y9LSEq+99hqBwNn28Sy4qNGrRqPB7Ows1Wr1PU027ty5w8DAAIODg8/0nBfJ/CiXy3zP93wPhUKB3/3d38XpdF7Qmb3C2wbt/8/ee4fJWZ7X/593eu9tZ7tWXaghAQKXH8YYgZER4DiQAhjHJI5DnBiXuHfj2Dg2NrEhiXFi8nWl2A6GgAlGrgKMulbalbS9TdmdmZ3e5/fHake7O+8zqOwKgfZcF9eF3pl528zO3Oe573MO58+o0XlymXJ4zRKO0xmpmpycZGJiAqPROCs4b77P62SyPqYx0x1ry5Yt1bbxTNvbU7G8lSQJi8WCxWJh6dKlpFIpwuFwdWzAarXi8XjY/fNO9v32KJJaTWhsEmejk71/OIZvqQ1lUUf/4TDeFgfFUoWmNhfZdB6NQcOeF3qr3xtWp4nYZJbi8eJTUsCKtY1UKmVWX+AnHksTHI1RKZfZ/Xzv7I6FBGWp9juotd3FURlC0Nbh4eDBkZrtomA9lUYP1BZh2Zz8arDo/trsBlnC4fMYZUXnzY12BmVsZ1UqBf3D8sVfqSxfxC1pddMpI4Q3GTXCNPK5BXq5UiEaz+B1m+mSceWSJCimi7jVOqxm/ZQORqWgAhhMGioVGE+kZhEMo05N76j86r3JID9jbdSphSNYLpuZYKJ2f2qlgj4BefE5zELCMRaRL8zbfXa6RuRJomi8yKzXMDwhX0i7LEaGBccaT6QZkHH2arSboSSx3utBrVaSLZWIZjIE4km8FpOQcIg6FRqlgr6J2uMAeHQqxrLyr7Pq6wX3yb8GEFrves1Gggl5wrap2V+3+yHC0NAQR48eZcOGDadlUX66OJnRq2nyUW/0qlQqsW/fPorFIhdeeOGrkmwkk8kq2Whvbz+tfbxc5se+ffs4ePAg1157LVdccQV/8zd/Qzgc5v/+7//mdfpgEa8gFjUc5wVes4TjVDE6OkpnZycWiwWr1bpg7iQvl/UxEyJ3rOnOxqmSDTlMt7nb2trIZrOMjozxoy/+D8M946j1elSFEnq7kcl4kqbVToJDGQq5NC1LPZgcJnoPjzERiNOyzEPvsVD1b0mlVmJzW5Co0NTqIJvKEYukGR2KEp+x6i4pJBRqVc141Mq1jRw+VCveRVl7rUazlmMymgu/38ZRGQ1FS4uDgeHaQrWpyU7/QG1h63QYOSbT3dColfTJBP0BlCryf1oqtUA/0eamq7f2Ggx6NT2DgiJY0EVobXRyUKYjotOq6BOQGpGLUeuM4MBofPYqfnODjdBx4b7LrMNm1mM0aLBY9MTTOdL5ApF0hmg8XR3PHRIF6jU4OCCjHwGIZeQLXLdJzWhcPmxPThQO0GA3MyboIIhGmRSSVLXdnYsWt42DQ/Ki8JzAxtek0zAkl/YNuK1G9g4EGJmT26JWSqiLEuu9XlQqBblyiYl0ekonolAI08Xb3Q66gvKfH5vJyFg2JvvYXKvbaagUkpDAtNlt9AssexssZoICV6uLWk49fXpgYIDe3l4uvPDCasf3lUC90auBgQHh6FWpVGLv3r2USqUzdj58pTBNNlpaWk6bbMhhbuaHQqFg3759fOADH2BiYgKTycRnP/tZcjn5v/3TwW9+8xvuuecedu3axdjYGD/96U+5/vrr675mx44d3HXXXXR2dtLc3MwnPvEJ3vnOd856zre+9S3uueceAoEA69ev57777uPiiy+et/NexCJeTXj1fcvNMyqVCkePHmVwcJANGzYQjUYp1FnBmw+cDOEYHx9n7969tLS0sGzZshpx+HyQjbnIJws8/a3fkotLeJv8jPSGMfl0xEJx1Ho10UCe5g43apWKcCjJYN+UENvZYCUSS1MsFGlqc2K1GVFpVRzcM0ipeKLAXrG+ia7O2Ra0K9c2cejg7G1anYoxGR3F0pU+jh6T6W60u2W7GxabXtbJSmeU73qYzPKrug1+G+OxWs1FR4ebQzJicb/PytCIfLp3MCzvqITgbWxrdsp3MQwa+obkuwh5wWerrcnBYRlSI0nIdl0ALGYdyPA+m1nP8IyMjclElsnjY0+rl/ro7DlxzlqVEqfNgMWoJJsv0NToJl+uEE1nGI9PhfGJFn08NlNN8T0Nh83CaLyWCOrUSvoC8sTK6zAJCUdQ0BFp99rpCQqImkAUrlRIwiDAVreNzmGBs5igm1WpwKHBUE0WiU6lYG2bh1y5jFKtIFMoEk6lCB937jLU0YNkBfdcq1DQH4nJPrbEaeeIYAzLYdILCUe5zhzBRS2npt/o7e1lcHCQCy+88Jxb4T6Z0Sun00kgMPX38WolG6lUil27dtHU1MSSJUsW7DhKpZI3velNvOENb+Dd7343f/zjH/nzP/9zHn74YT74wQ+yYcMGtm3bxrZt27jwwgtP2wY+lUqxfv163vWud3HjjTe+7PP7+vq49tprec973sP3v/99nn32Wd797nfT0NDA1q1bAfjxj3/MXXfdxQMPPMAll1zCvffey9atW+nu7sbj8ZzWeb5mUUb4G/iaw/kijpfB/CbCnUM4mUK8WCyyZ88eAoEAW7Zswe12z3sSuBxe7hgDAwPs2bOHVatWsXz58up42MxAv/kmG0Pdo/zHR35If3eQeCJHaCSG3m6id38QvUWP1WlDq1Ex0hcmEIgSCU8VbRa7nqYON/5mByaTnuHeCfKFIvv+2D+LbCxd468hGxabgf6+2qK5Y1UDsejswlxSSCRStSNQZoteloS4PWaOyIxeud1mjsp0QywWPUdlRoqUSomBIfkCKy0YR3E4jLLbO5a4Scms1qtVEsf65UXMoi5GW5NDNiBQr1XRJzhf0Y9xe5ODREp+tVCOaAE0ea2yJEGSYGjOmFOhWCIwniCfLTAYSHP4aIienjCRsSSaLLQYTEiFMhtbfaxv87G80YnLYkCSwO8Ui0GDMsJ7AKdRJXTiEnU+PFYjYzLuVDDluCXCiGg8y2snKxCgi5yrkGBQoIlpc9tlgw/zxTLlEhzsC7LvyBhH+sJEQ2msZTXLrQ50kpKNjT6WuR0YZmhX6iWPd3icCALV0dT5xcgIxroAhgSaD4dBz1L3yY1DVSoVjh07xuDgIJs2bTrnyMZcTI9erVy5kte//vVcfPHFmM1mjh49SiwWo1QqMTAwQDwePy1HxVcKqVSKl156icbGxgUlG9MolUq8973vZd++ffzhD3/gi1/8Ir///e8ZGxvjH/7hHzh8+DA33HDDGS0UXnPNNXzhC1/ghhtuOKnnP/DAA7S3t/Mv//IvrFq1ijvvvJM/+ZM/4etf/3r1OV/72te44447uP3221m9ejUPPPAABoOB7373u6d9nq9VTIvGz5f/FgqRSIS/+Iu/wGKxYLPZ+Ku/+iuSSYHZCVN65ekx/7n/PfzwwyfeH5nHf/SjH53y+b36llbmCel0mt27d6PVatmyZUtVLP1KEo5yuUxXVxeBQIDNmzdjt9uBWnH49Bs+X9j3XCdPfvfX5AsVcvkKDr+Z/mNhSokMyzY10t81wWhfHJ1Bg7vJRSySonWFi3QyQ0WlZO/zJxyobC4jYyOxWfs3mrUEg7WFlK/FQXfn7OVzp9fMka4AarUCg0GLTq9Gq1Hh9lpIJLPYV+qPZ1kASBjNOlKpPFCZJcYymLTYzVrSmRQGvaEq5DRadHhTUyLDClApT3kzmSx6ItEUxVKZfKFIoVAily/S1GjnYHdth8HntdIv4yilVEgMynQ3YKrDIYeOdg+HZciO0aARj1MJxNKtzU7ZLoZCIdEv0HWYDPIFtctmZERgOVsSiINbGuz0C7olKq0emE0SiqUyOq2aLhkSaNQoURcVrG30oFIrKVbKTKazhGIpXBaDUB/hsNsYnpTJGVEphKJwn8NMUCAKn4jLE5sGu1ko8DbrxSQlOCmwjXVYGBRck6XO/mIyRDyVLRCOpegNRGYRQ49Ji8dhwWXRE8nlmMhkCEwmZmW2aAWieoAJwVhUvVGrZpuFIUE2x+aTHKeqVCocOXKk+t34anMlkiQJvV5PJBLBYrGwevXqakZFvdGrcw3TZMPv99PR0bHgqezlcpn3ve99PP/88zz33HOz7Ondbje33HILt9xyS7Xjf7awc+dOrrzyylnbtm7dyj/+4z8CU9rLXbt28dGPfrT6uEKh4Morr2Tnzp1n7TxfNVjUcMwL/uIv/oKxsTGeeeYZCoUCt99+O3/913/ND37wA9nnNzc3MzY2uwb793//d+655x6uueaaWdv/8z//k6uvvrr679MZZT0vCUckEmHPnj00NDSwcuXKWV9UKpWKoiDld76gUChqCEehUGDv3r3kcjkuvfTSWeLw+dJryOHZ//dbXvzlQXKFCigUqLRqQsE4BosSrcFET2eYcqmCyapj+cZWIuEkqXiGZCzN6ova6Nw7fGJnEmiNKmIjs4uwpiXuanfDZNZhcxhwOs0USmXWXNBIuVSmkCuSSeexe0wkJlIUCiUS6QIJprobuUye0BzSotEqUWk1pJKzV+d1ejXlSpl8bvoeTxVJarUClV5NOjUnkE4Cp9vM+HhtIZi3GtEUKuj1avR6zZTFrFaJ02XGbdEjKSQqVCiWKxSKJUwmLf2jUZQKidKMZWKjQUOPQO9RKMoX7zazgmSm9svJqNfQK0N2pq5F/vOxpNnJUQF5CQpcs3xeM2GZIlypkBgYlS/crYIRLK1aycBYTPY1ZkEHoVSqcLgnUOt4JUFjowmzSj31XkuQzOYJx1PE0zlGBCJut1nLcExemyByuzLp1EK9hcduEhKOSRkSAOC2GIRidqfFKCQcSUGIokGjZlBQ6Lc4rRycM7oVSeaIJMNsaPNxaGCKlGlVCnwOK1aTFoVq6jvGotMSz87+uzJq1IQy8ufhNxkZFGR9uM1GIeE4Gf1GpVKhq6uL8fFxLrroonkJjDvbmO6mS5LExo0bUSqVGAyGcyJw8GSRTqfZtWsXfr9/XkJwXw7lcpkPfOADPPfcc+zYsYPm5mbhc88m2QAIBAI1eS9er5d4PE4mkyEajVIqlWSf09XVdTZP9dWBRcJxxjh8+DBPPfUUf/zjH9m8eTMA9913H29961v56le/Wo1SmAmlUonP55u17ac//Sl/+qd/WrOoY7PZap57qnjNEg7Rl+Hg4CDd3d2sXLlS9gvsbHQ4VCrVrGNMz8MajUa2bNmyIOLwuSiVyjz2L09wePcA+XyJcCCO2WWiopYIHJugdXUDw70R2lf6UCgVKNVqdv/uWPX1HWsbObRveNY+V25oouvAKGqNArNVg8GoxWwzkMsW8DdYiU6kSEXTpKJpKEsMzxFou7wWDh8YqRGQd6z0cVSmy9CxoqFG/wHg85vo760tiJcs89Ils5/WVpdst8Ji1dPXN065XCGZzJGcQWwmYxkmZAr1FasbiAeTSBJYjVpMJh0Ggwan20wqkwdpalU/nSuQSucoUaFXoMUoleXf70afmSMyeSPqOk5XOoHlrs9lJiAo0HN58ThXj+CcJ2XsVwFa/Q6OCAiP6DVtfjvH5JLPK5BI5jgqE2y4otFBRSXRYjNTUUqkcgXC8RSxVBan3SpLOBQS9ApE4XadgqRAmyoUhWvVDIzHZB9rsFsIJ+Q7JnIjUzBl1yvaX6vbxuFR+XE8dZ2QwJkWv/limcFQDEJgM+iIpafeD59Zj9tuQqtTkS+X0GpU7BqWYZOAQSUu+HJ1FnBeTr9RqVQ4dOgQ0WiUzZs3vyrD3YrFIrt370apVLJhw4aa7sVc16u5zoEn63q1kEin07z00kv4fL6zRjY++tGP8uSTT/Lcc8+dtN3uIhZxvmLnzp3YbLYq2QC48sorUSgUvPDCCyc1Lrhr1y727t3Lt771rZrH/u7v/o53v/vdLFmyhPe85z3cfvvtp/w98JolHHMxPa40NjbGpk2bhDaKZ4NwzOxwTExMsHfvXpqamqp6jenzXShxeCaZ5aHPPELvoVFMDgtjx8IsWdfMvud7KRXLdKxvQmfUY7Kk6Tk4wppLOujcPVh9vavByuhwjEoFbA4Dbp8Fk0VPfDKLw24kEk4QSReJqbKYHTkm52RFLF3j5+jh2sLf3WBlXKaIzwtm4aNR+cItHhesYgvm+o1m+RXE5mYHnZ21hKa5xcGQjE5CpVIwcJy4VCrMIikKpUJWO3LBGj+VZBGrQ4/eoEGpkkikUkgqBRWFGouxTHyOviKZkr/uJa0uuvpkik8J4WiUx2mSJRxajVJorWvUCUT3Ri2Dgi6GTitPeEx6DYMzxOezjqMXWBorJQZErzFo2C/j0OUwapFyFTY2+6goIJHLE4glSGULNFj1DE/Kf2aMRiNM1jIOlUKiT+Rc5bFxSBAsKBJPKyRJ1iYXoM1t48iYKCRQ/BU+Kuh82Iw6RgV6lSaHpUo4JhIZJhIn7suGtgZMOSU+pxmzQUtZCZPZHCPxOAWFPLmRJOgTOGj5LCZa7GIdRrlcprOzk3g8zubNm9HpxFa95yoKhQJ79uxBpVKxfv36lx2VkiQJk8mEyWQ6JderhUQmk2HXrl14vd5ZBiYLhXK5zKc//WkeffRRnnvuOZYuXbqgxzsd+Hw+gsHZY5vBYBCLxYJer0epVKJUKmWfc6arxK9JnIcdjnh8dtdXq9WeUTczEAjUmBGoVCocDkfVpOLl8OCDD7Jq1Souu+yyWds/97nPccUVV2AwGPjlL3/Je9/7XpLJJO973/tO6RzPC8IxM8vi0ksvrduSP5sajuluy6pVq2hqagLEyeHzhfDQBN//4k+JRVLorSby+RINHR727uzB2WjG3+bj4B8HKB0fMVlxYVuVbCiUEk1tbhw+C6lElvDYJLFQgvh4En+Hh+E5QXcr1zdzaN/Q7BOQICwThmZ3GTnSVbt62tzuZEAmQK9tqYe+3trtLq+B8VBtQe5wGumTsbZVqRT0y6WTw6yOxkxYrXqGhmq3t7W7ZMMBtVoVAzJ2uwC5XJF4Ikt8TrDdqlUNHDp+P4xaFXa7odotKUtg0hqIJTNEkxkKxakvMNEoYHODTUgEEmn5a2xrdNI1IO+kFI7Jz/G3+Gx09spb24YiAt2Cz8ahfvnjRBPyJKDFZ6dnVJ4M5QvypFKjUsq6fXksetpdLtzWAtlCnmgqQziZrY7DBSflr7XNa+eowAlLI+osSDAsGM9q89joERAYo1aeeAFMJOXJp1GrIiS4fzNJxVyo6hSw0VSaTL5YtUmehkGroqQuscHjRalSkCzkGY0nSOTyNJmNDAnyNy5qFo9TlctlDhw4QDqdZvPmzefMWNGpoFAosHv3btRq9UmRDTksVODgySKTyfDSSy/hdrtnLYgtFCqVCnfffTf/7//9P371q1+xYsWKBT3e6eLSSy/lySefnLXtmWee4dJLLwWm3rdNmzbx7LPPVu11y+Uyzz77LHfeeefZPt1zH+ehS9XcCZtPf/rTfOYzn6l5+kc+8hG+/OUv193l4cOHz/i0MpkMP/jBD/jkJz9Z89jMbRs3biSVSnHPPfcsEo5pTH8xTmdZmEymk7IgPFsajmAwSDqdntVtmelENdMNYL5wdHcfP/vXpwmNxLD67PQcGMG/zEM8kcLuMaLXGzi8e7BKNlpX+kglsqze2EI+V2C4N4zJpmfvH3pm7Xflxpaa8SqjRceAjBB6+QWNNUJxAJfPTLSrtkDSCeb71YKVXbfbJks4GprsTBys3b5kqYduGTcrp9PIoEAnIWfZC6DWyp9TW5tLNr1co1FWOyJzUZrRjcnligQCcSDOimVeuud0SuwmLWazBtI5Wu1aUCrIlyUmUwXSuQI2i16WcJhNWgYEAneVWn5ExmU3MhaWn8cXucS4bEbh2JZSMIpjMmgZDsrfZ5HmQ5JgSND5aHCamZBxtYrGMwTCiVlCd4UEXqsep11HupDHYNaSKpZn5YGY6oi4RRqNJodFKHS3CgIRASYF5MCs0zA0IX+PnDoVSUGIpdAli6kQRzmYtGqGBA5azQ4rXYEJhufYF/ssBjrsTrxmC+ligbF4gugMXYhfBeFwuGalfjp9O5fLsWnTpqqhx6sJ02RDo9Gwfv36edEYnO3Rq+nOhtvtZsWKFWeFbNxzzz38+7//O7/61a9Ys2bNgh5vJpLJJMeOnRgZ7uvrY+/evTgcDlpaWvjoRz/KyMgIDz30EADvec97+Nd//Vc+/OEP8653vYtf/epX/OQnP+GJJ56o7uOuu+7itttuY/PmzVx88cXce++9pFIpbr/99rN2Xa8WLLR707mE6escGhrCYrFUt4sWDD7wgQ/U5LvMxZIlS/D5fIRCs2uDYrFIJBI5qa7aI488Qjqd5tZbb33Z515yySV8/vOfJ5fLndJCx2uWcACEQiH2799Pa2vrSc+dLnSHo1AoEIlEKJVKs7otM/UakiTNuwhu5//s4v++/3tiEynKCiWdz/eydHMr/d0B0pM5/B1uxkMJSsUyS1b7MVv1DPVPEAklgKlV+7YVPg7vGZy1X5vTSJ/MqFDrci+H9s5uAyiVCibCtcWY0ayh91htZ8DpMXNMRnNhdxo5JlPA6/VqenvkR4oCMi5ZABXBR6LBb2ciUlugisapJIXEkEyY4PRjcmhrdXJE5t4pleJ9qWRWzxPJHHa7kf7B2vMy65RkoylWNTnR6NTkS2Umk1lC0SQtDXY6ZcaP6o1gNbjNjAs6HMPC11gYF1jYiohIi8/KoT75zodI89HitQlHrURiep1GVUtSKhCOZfC7rHT1n3gfTGoFZpMKo0FDJZ+n1WUlMJmcJWp3W4xCwuGukzyeqCMKF+k3WlxWOkfkR7dsVgsDk/L3KSxw3bLotYxEBaTCZeXwqLwGxyDowIzH00zEMrM0Ji6TDo/diFopcYHLQVdXF4VCobpS73A4OHToEKVSiU2bNr0q07cLhQK7du1Cq9XOG9mYi5MZvZomH6czepXNZtm1a1eV3JwNsvHNb36Tb37zmzzzzDOsW7duQY83Fy+99BJvetObqv++6667ALjtttv4r//6L8bGxhgcPPHb197ezhNPPMH73/9+vvGNb9DU1MR3vvOdagYHwE033UQ4HOZTn/oUgUCADRs28NRTT9UIyRfBeTlSZbFYZhEOEdxuN263+2Wfd+mllxKLxdi1axebNm0C4Fe/+hXlcplLLrnkZV//4IMPct11153Usfbu3Yvdbj/lruprlnCEQiH27dvHBRdcMMtK7+UwTTgqlcq8f8lOu3xIkoTH45ElGwvhRPWz+55i3++OABK5YgW7x0C73cChF6eC+9zNDmxeK2anmaFjIQa6AzQu9R4nG1PQ6tUkErma7wR3s5Mjc0L3PI02ug/UBvEtX9fIoX2121uX+Ti0f7hmu8GiZHyi9kvI3+wkEq19fvsyD4dkjtu2xE1ff22xZDJp5QkKEI3KF9XCcao2F70yLlSKOkREpZYvAlpanPTKnC9AICSwTbXIr5CrVCr6+6I1ygGFQkJfkVjV5EarU1GsVEhl84QiSZx2AwOBmOz+RLkgTouG8YR80Sxy4fI6TASi8sW5KPncoFULSYXNohc+FhCEB7b4bHTLiM+hVvOTK5TJRfMkUyVyY0nKlSke47PqcNiM6PQa9Do1hXJJ1qo2c1qicCuHR+TPT12nWzuekCcbVoNOTCqcVmEgoa5O4Z/Iyo/lSVDjoBVLZokls/jtZl534XoqlQrJZJJwOMzQ0BCHDh1CqVTS2tpKLpdDpVK9IiLp00U+n2f37t3odDrWrVt31tyT5nP0KpvN8tJLL+FwOFi5cuVZIRv3338/X/7yl3n66aerxdLZxOWXX143C+W//uu/ZF+zZ8+euvu98847F0eoTgblCkjnCeEQhRydIVatWsXVV1/NHXfcwQMPPEChUODOO+/k5ptvrjpUjYyM8OY3v5mHHnpoVuL9sWPH+M1vflMzJgjw+OOPEwwG2bJlCzqdjmeeeYa7776bD37wg6d8jq9ZwuFyudiyZQtms/mUXje9ElQqleY1AXbaitfv96NSqchkpsaHFpJsFHIFfvilnzF0NERyMoPJYSGXzpMt5Ok9GKSh3YHLZ2d0KMqhP/ZXX7f64iUc2j27k7FkdSOH53Qslqzx15ANiQp2j5lstoBGo0KlUaBSKaccc8qwZJl7alTs+LMlpUSpUGTJUjflcoVKuUypVAEqZFMlDAYV+UKJUqFMBQmVWsGAoBifGxY4DZ1BfgW2pd0lKwr3+ayMzMkSmYZonMogSC9vbXXSK6cRkWBQ4PRkFJyvz2shEJLvCCQEepMmv53DMtqFSrnC0aNB0tnaItjb6ELnU6IzqKkoIJnJE4omyRdKwiyPBq+d8URt10mhkBgMyBMuj1NMOAIR+etsbrDRNSBPEkVBjB67iZDgONo6omtRwnmLz14lKZUKTMSyTMSmCvwlXjOpYAaXWYfHaUJv0JArl4gk0wwKSEW7x07XmPxnWlun0BeNP9nqkgoLk8PyZERdZ9RKpPlQKxUMCMa6mp1WBgWPbWiZWgSSJAmz2YxOp2N8fLxqvTg+Pk5/fz9arba6wmez2c66/empYDp7wWAwsHbt2lfsXM9k9CqXy7Fr1y7sdjurVq06K2TjwQcf5POf/zxPPvnkSa3ELmIRi5DH97//fe68807e/OY3o1AoePvb3843v/nN6uOFQoHu7m7S6dm10ne/+12ampq46qqravapVqv51re+xfvf/34qlQpLly6thlqeKl6zhEOpVJ4y2QCqJGM+Ccfw8DCHDx+uWvH29fVVScZCicMnxxP81yd/zNCxMGqdhkQ8T+/ho7RtbCSXL+BtcTA+Eket1zMxY9xo2frmGrLRcUEjRztHcPmsmK06tDo1SqWEpFSybIWXfK5ALlMglchid5s4smug5nxWrG/msMz21Re21IxeAazeOHu7xFSOhsenJT6Zw2VWYTIb0Bt0KFQKdAYNuVwBywovuXyJbDZPMpmjWCrTK6MlAbEo3OU2y45gicapkGBEIMo2CPQGbqee8IS8qHc8Il9IulxmWcJh0KsZEoUNKuU/Uw0+C2MC8hJPZGU7LKtW+MiViugMWoqVMuPRSSLJPIVimaRMgjpAm99Br4CkiLolHkcdgiAIpVMpxcTGW2d/QYGTU4PLwphAs6AXOG7BVM4FwGQiy+SMLkN7g51kMsNytx2jSUtZqhBJZxmNxjHU2d+EwELXatAJx7ManRaiQlG4uAiOJOU/j3q1Spz14bJxLCT//jpMBjHhaD0xUzzdFdBqtaxbtw6lUklzczOlUolIJEI4HObAgQOUy+Vqoex0Os+pcatpsmE0GrngggvOGWJ0KqNXRqORPXv2YLPZWL169VkhGw899BAf//jHefzxx3nd6163oMdbxDmM83CkaiHgcDiEIX8AbW1tsp28u+++m7vvvlv2NVdfffWswL8zwWuWcJwupgv/+dBxVCoVuru7GRkZ4cILL8TpdAInxramjzHf4vChrlF++M8/JzAUweF3cmBnDw6flbYL/Qx3j1M87uSz4qJ2umcU9U6flfFgguZ2FyarHgnI5wok4xlKuQLjIxHGjzc0Vl7YQteuwZpj+9tdsueUSskX9zHB6FIyXlswFQtlyhUlidhUERYJnSiQVqxtkBWjr1zbSGB0Ep/bgt6oQaVRoVBIKFQKEuk8bpeJaCxNccbYT0gwtiQap2ppcTAgGJsSaUeMRhVhmQaH02liLCBfpGUEoWtNTQ66j8m7Q40K9uVymmQJh0IBA4LOi0qh4HD3HCIiQZvfhgElGzoayJdKTCQyhCNJypWKMMVcqZCEY1tep5ggiByyWhvs9AiITVnwBa9RSYQFOge3zSAkHJOCz7LLahBqVaRygUyuSN+cnBStWoEiDxc2+igrIJbNMhKJUyiVsei1DEcE3QOXhckhAamoU+yK9BtmnYYhwbFa3Da6BR2YegnoxTrfoRtbpzocuVyO3bt3y3YFlEpltbtRqVSIx+OEw2H6+vo4ePAgdru9+vgrmc8x3RUwmUznFNmQg2j06vDhw1UBqNVqJZ/PL6gzWKVS4Yc//CEf+tCH+PnPf87ll1++YMdaxKsB5xHhEFijnw9YJBwymA/heLFYZN++faTTabZs2TLl58/UF61GoyESidDZ2YnH48Hlcs2bn/q+HYf43//cQSqRw2g3Ew7EaVnpJVcu0H/wxCjKmkuX0vlSP95GO3aPmUqpTLFcobdzlOiMQnD1xUsIzMnMkBQKxoO1xardbaLnUG3R7291MiRjYetvdTAqI3R2ei0MylnYqhWEx+QLztER+SK5UoFYJEVsTtdg9fpm+o8TFEkCh1WP1WbA7jVTKJRx24xk81OWtZFYilKpIhynMlv0QC3h8DdYGQkIHJ2K8u+3z2thXMZCVqNRMiggNWqBFsTnsRAQOEplBQ5GrU0OeuW6OEBczma1AgadhqPdswmPQavE47VikJSsW+IjmcsTmEhUx55a/HZh56MoyEuxm/WMCsac6rlGjQjugdduZFAmXR44PtZXC61ayZCMrTOAzyEWx0sK+a9aBRIHjwVmpdIrlRJNbhvNXguJfJ5YNsdINE5+Rhp6veWJkEw6PLycfsPGoRH5TqCxTgcmnZfvbAGMCDowDqOeVpetKky2WCysWbOmbqEuSRJWqxWr1crSpUvJZDKEw2HC4TBHjhzBaDRWyYfFYjlruo9psmE2m1/2Gs41TI9emc1mJiYmcDqd2Gy2sxI4+Oijj/KP//iPPPzww7z5zW+et/0u4lWKxQ7HeYHXLOE4ky/HM7XGTafT1RGBLVu2VFv/03oNu93Opk2bCIfDHDt2jIMHD+Jyuark43RHBZ79/u/4w+N76D80SuvaZiYjaYa6R/GvdjPWM/Xj7/RaaV7uJZXIYjJpCQ6MExwYZ+XmNnrmCLdNVj39Mm5Qy9c10S0j8m5ocxHdXdv1sDhNjAzVFss2p4lRmSLa12hjQmb13d9mZ6Cn9vneRhtBmZEmhUJiQIa4AGRnzPtXKhCPZYjHMlhshhqLX4VCYtlKL6VSmYZlXiSFglyhyGQyy/hEilBYfjTJ4TTLEg6bXc/IaO35AuQEIYetLU6OCgTuQUFHxuUyyRIOpUISjmCZTPLic7VK/BqdjB1wPldiPJhgZCR2IjleAr/ThN1pwmE3oFEqCU+mZtnVShIMCToffrdFOPYjyhNpcJoZEzhh2W1mIeEYEeRltHhtHBGQW+FXjgRBARGxG1SMxWd3rkqlCsOBGE6jnoM9U2RfqZRod9uwWXWUKBOPJ1ApJIpzBIh2o14Y6ldPv6EVkFaAyYz8vVVIEgOikTSbiTGBW9f6Fl/VctVut5/W+I5er6elpYWWlhYKhQITExOEw2F2796NQqGoko+FDMebJkxWq5U1a9a8qsTt05geBTObzdXuzJIlS+bd9Womfv7zn/O3f/u3/PCHP+Saa66Zx6tZxKsW5Snd5nmBBRKNvxrwmiUcMEU66jlPiHAmHY5oNMru3btpaGhg5cqV1RWvmeJwpVKJzWbDZrOxdOlSUqkUoVCIgYEBOjs7cTgceDyekw5zKpXK/PCLP+XIngHGx2I0rW5k72+PANCwwkW5oGT15jaioTjZdI4j+4ZIz5gvN9kMsh2IlhUNNXoOSSERlSnSdAY1/d0yVrVGDb0y1rYqtYKBXvkVVbnuCYBGI18Mu7xmWcLR0GxlZLC2cNTqVAzKhAmCvK6jXK6g0ajolCFZ3gYrpUyRFS0uNAY1ZSCVyTMRSRETFJmNDXZisdrCWa1WMCDoLojEzR6XiaBMOjtAXuCK1NzsoF/UxRBYzjY22OiXIY2A+Dr9No7N1IJUIDyeJDyeZEmri97jGSROkxa314LeqEalVjE8MUk6W6gZhRLZC+s0KmFaudtmFBKOmIC8NDjNjAlE64Y6nRTRuFejyyIUoDvtVsbi8kRy5vlNk5DhABg0CtKFMmqlRKvHisWip6yAaDqD1agjkpK/rvr6Dfn3UKNSCsXuLS4rfYLHPBYx4Vjd4OSll17C5XLNiwuSWq3G5/Ph8/kol8vEYjHC4TDd3d3kcjkcDkeVgMzXmNA02ThbeoeFQD3dyUIFDj7xxBO8+93v5qGHHuK6665biMtaxKsRlfLUf+cDzpfrlMFrmnCcLk6XcEyLw1esWEFLSwtwIjm8XC7LOlHNFPUtWbKETCZDKBRibGyMrq4urFYrHo8Hj8cjO6ecTmR46FMPMzIwQalYxu53cuAPx7B6jNh8RuLhArFwjGDfOJJComV1IwNdswlA41Iv3XtnEwtng40jMhazy9Y2yW5fssovK/5uW9Egu33JygaOHKp1iGpsdTIiM2al06vpF1nYTghGSOxmWcLh8OgZG5IhTXo1w4JEcJF+wuk2c+jACONzOhlmi45kJk6Ly0hZKmG0mCiUYCKSEhKB1hYXRwUkLCjoorg9FlnCUc+O1yzoYmg1SoYFnZdSQeBSpJLEgnmdvNuWSikxPOM1iWSORHLqvV27soGJ/klMOhVenxWjWUdJqhBNZgkKSECLz8YRgbVtsSz/5W7QqhkS5Ia4bUYh4UgKVvttJr3QWctlMQgJR14wuqVWUGd0y0xvcJJiqcLg2CTMGPXzLjOy3GbHbNJSoEI4mSYwmaBSEes36oX6tblsHAnK/03YjHoQEI56i5XKeBjP8vYFSa5WKBQ4HA4cDgfLly+XdWiaJh8mk+m0jj9tG3u63ZlzAdPBhAaD4WV1J/MVOPjMM8/wzne+k+985zu8/e1vX6hLW8QiFnGOYpFwyOBUCUelUuHIkSMMDQ2xceNGXC5Xdfs00YCTc6LS6/W0trZWfejD4TChUIijR49iMpmq5MNoNDI+PMFDn3mEVDJP34Ehmi9oplgo4Wu3k03lCQ2kyM4QuK6+pIPOGfa3AG2r/TVkA6YIx9yQPkkhEZexnpWUEsFR+eItIpqRFxSCVodRlnC0LPXIisKdHjOjgtV60TnpDTqg9rya2pwc7art0qjVSoYERKRYlP+c+BrtHOkKkKiKkqeKUYVCIl4o09Fgx2DWUpYkkpkcoVACrU7QxXCbCQnuo4i8tDQ56BeIv5MC0XNzk4OjffKkrowaqF05b21xcUzwmpjAYanZ76gRT09j2rkqmy0y0H/iOS6HiXQqQ4fPhtmqoyxBJJVhbDxe1zVKFEbY7LPRNSh/3iVBV1StUghzPhpdZmHHZO7Y0zQUkiQkFS0+Bz2j8vfIbNQD8tc1HksxHJ79mFWvps1vR6lVYtPrCMQTTMw41xaXjUOCAEGjgDQC5OqMnQYmBV1KpcTFKzpYtuzkgljPBHIOTeFwmPHxcfr6+tBoNFXyYbfbT0p/MT0K5nA4zopt7EJgOphQr9efsn3vybpeqVQq/H4/JpMJgB07dvAXf/EX3H///dx8880LdWmLeLViUcNxXmCRcMjgVDQcxWKR/fv3k0wm2bJlS/ULdnqEanqk63TEhFqtlqamJpqamigUClWRZF9fH5GBBC890snEWJJcKs+yi5bS1zlCfCKJzqTB7LIyGYlV99W41EvXnjnJ3yolmfTslXu1Rom/3c3YwAQmq45KZUqgWqlUaF7q5ZhMV2LZmkaOyORZtC330ieTIG5zGumT0YZIksSIoLAvC4o2b6OVifHa4sbXZCMwIl+UxcblV+vTGflOSXObU95aV4LR4Zjsa/J5+WM0tTgY7J+oTVyXoOjIsKrVhVqvJl8sE4mlCE8khYSjXiK52Sw/5qDVqMRaDJ184a7TqgjIJMQD6AWvUSolRgQOWWaTeARjNCj/Go/TRDiaZGgOGdVrlKhyFTa2+ihKFSaSGQITCcqVCk0eq5Bw1MvfEAnTW7w2jglIQL2ZdpHbVZPHyoDg/Mx1RrfGwvLnYNSqZc89nSlQKVTY33uCsHssOrwuM2qtCoNOjVGrJpWrFYCncvKdPSQYEljeOk16ggLh+gqPneXLl8nvc4Gh0WhobGyksbGxark7Pj5OZ2cnpVIJp9OJ2+0W6ugymcy8joK9EpjubOh0unnJChGNXn31q1/l4Ycf5qKLLmLlypX88Ic/5Bvf+Aa33HLLvN+3b33rW9xzzz0EAgHWr1/PfffdNyvUbCYuv/xyfv3rX9dsf+tb38oTTzwBwDvf+U6+973vzXp869atPPXUU/N63ouYgUUNx3mB1zThWGgNRyaTYffu3ajVarZs2YJGM7UauBBhfmq1uvrF/ttHX+DAL/YQGIhhduvQWLXs+003AJJSQcPSBvpnEAOry4jNbcFoNaBSK6iUKxTzRcwOE8M9YWw2PflMnly2QCFVRKdRkpBZyc15zBQTGRRKBVqdGo1OjUarQqOo0N7uQK1RoVQrUSgUVACDRUelUiGdyhOfzJA9ntXQ2O4itqe2q9K61E2/DEHRGzSy2wFSCfnVeqfbIks4GprsjAlC/TIp+c+K3iBfVPub7ELCEYvKE44pRyuZ7WY9PUdqSY1Rr0ZfkVi7zEdFAZPJHIFQnEKhRHOTg75BeYImCgJsaRZ3MWJx+RX65kY7RwXi+4RA89HS6KBX0GFJCDoBXrdZODomCfJEAA51BSjNcLaaGseyYdEpkew6MmVFjXtUVM5xC/DVST83GeRH0QAignElj91ESKBlsJv1QsIhKvQ1KgWRtPxiiN9l5qjA+UszJ78kGs8SPW49vaTBTiFaoMVlxmkzgFIikskQjCWFCejNDguDAhcqv90yq4MyE5etXCK7/WxjpuXuypUrSSQS1VX6zs5ObDZb9XGDwfCaIhsajWZBUtBnjl498MAD3HHHHXz729/mP//zPwH4t3/7N0ZHR9m2bRsbN26cl3v44x//mLvuuosHHniASy65hHvvvZetW7fS3d2Nx+Opef5jjz1GPn/ib2tiYoL169fzjne8Y9bzrr766up5AwtqEbwIFjsc5wle04TjdHEyhCMajbJnzx68Xi+rVq2qEYdXKpV5D/MDePzbz7D7V51UKkpKhRImi50ju6cD9Sq0rPVQLOVZtr6RYq7E+GiUxnYPnTuPzt6RJOFpcRKas0JuMOvoleliWBxGBo53JcqlMplUjkwqh8Gs5fDuAUrF2SNSCqWEVq8lM2N8R2/QYLYZIJtn1QovCpWCUrlCNlskFkuRLwqK16Ueug7WnpPZqmdIkDoejwlcgVwmWcLh9poJheQLw9FR+WPYHSZZwqE3qoWEIydIw25otJLoqi3SctkCPV1BEjNE/gqlgma/lQa7CZNeQzKTZyw4WbW61dcJAhR1MQx6tVCLoROMLGnqaD6MgsBDJBgVuWrZjULCERG8n01eWw2xmRrHmqDRqyd4PKvFYdLi9VnRGdTkKyVGBHoLt11MOFJZeRJg0muErlZeu1FIOPJF+bFChSSJR8E8NnrGBONoGfl7BJAQaE/USgVD43EqFRgLJxibcf87GhyUlWAyaclXSgTjScLHx+ScJoOQcCjrfOdtOJ6/cS5BkiQsFgsWi4WOjg4ymUx1TOjo0aPodLqqUHrFihWvSrJRLBbZs2cPGo2G9evXL7h97/Rv39NPP83XvvY1/uzP/oz//d//5fHHH+eee+7BarWybds27rvvvjMKcJxOPL799tsBeOCBB3jiiSf47ne/y0c+8pGa5zscjln//tGPfoTBYKghHFqtFp/PxyLOEiqcP4X4eXKZclgkHDJ4uZGq0dFROjs7Wb58OS0tLdUfoGm9xnx2NqaRz+X5r0/8hOGeMP2HRkhG06y8dBl9h0fwddgwGg1odToOvdQ363VqnYqB7lrtw5ILGumVycxoXdnA4Zf6a7Y3dXg4JJMU3rzUS/e+WlF4yzIf/XPcqbLpPDqDhkNzdCQASFBOG/DadFjsRjR6DRUJMtkiSpUCSar9Pmpqc3L4QK1zlMVmEIq/U6J0cZ9VlnCYzDpiEXnykBFYsTa3uug+XOvMJUkwcopZGl6vleCc8MByqUxgKIpeo6LvuJBeUkg0+SzY3CaMVj2haJKxUHyW/S9AVFC4N/rtHBEI1idFnQ+/nZ4BeTKWERTnjT5xNkk2K3+fjXoNY4IC3CQiNsDMtyeZzJE8NnV9y9rdpEZTNDiNuNwmlFoViWyO4fG4MCRQqZAYFOgtmtxWoR5E7JWLUEje7LEwIBgtMwuCFAHUOgNQew+VksRQWEBg3FZ6g4KxPL2Wvb2zvyPcJj0+twmrRstyr5OhyCSZOTqicYHjlVqpYE1T7arzuQa9Xk9zczPNzc3E43F27dqFTqcjGo3ym9/8Zpblrkp17v+EFotFdu/ejUqlWpDOhhz27t3L9u3b+fjHP8773vc+JEnitttu47bbbiOXy/Gb3/yGF1988YzIxrTL1kc/+tHqNoVCwZVXXsnOnTtPah8PPvggN998czUnaxo7duzA4/Fgt9u54oor+MIXvlAN7l3EAmCxw3Fe4Nz/tjwDnG7Br1QqKRRqV6IrlQpHjx5lcHCQDRs24Ha7q9tPVRx+KpgMx/n2+79HNl3kwO+OYHIY2PjmCxgbDFJI5QgcyaLWTmJrsNe8tnmVj74DtcUvgh+dhKAgFRXqoj8dg1l+/MTX7CA2UXsMT6OV0GicRDRDaEYHQqGUUGtU6JBwNdow2o2oNCpyhRJKpYRCIdXoOxpb7Bw+UFskG4wahvvliUg+L9/Ramyx0324lphJCkkoJBfN8zc2OxiWEcQDTMrY5AI4XKYawgFTdezMTk2lXCE0OklodJI165sY7gxMkZAGCzaXCUmtJJsvMCTQVahU8p8HvU49y1FqJgx6eUGxQiEJX+OwGoWEY0JwD/w+K0f6BXkqMroDALtVT3RSfn/TupOJiRQTMxzOFEoFkq3EhhYvJQVMJDKMRaZW/1u8NnoD8oV5PT2IyCrX6zARiMo/plOJvzuygpwWhSQmMA6TmlBSngBajOIxsbxMlzeWzBBLZqZS1eNpFApod1mw2wyUFRXi2Rz9Am3HSr8bnfrV85OTSqXYu3cvjY2NLFs2pTuZttw9evQo2Wx2Vtq5Tie+l68UpjsbSqWS9evXL1gmyUwcPHiQ6667jg984AN88IMfrPkt1Gq1vOUtb+Etb3nLGR1nfHycUqmE1+udtd3r9dLV1fWyr3/xxRc5ePAgDz744KztV199NTfeeCPt7e309PTwsY99jGuuuYadO3eelfu3iEW8VvHq+fY/i1AqlTWrrcVikQMHDhCPx+ddHF4Pg4dH+P4XHmMymiEZS7PyoiUoVAr2PHdo1vOWX9RB5ws9s7bpjBrCg7VFiMmlo7ez1trW2+xg+FjtKrfNaWLwaK3IW6VWMnisdjtARDA2UxFkJLt8dkKjta9pbHUxdFw/MDLj3KaIiBo1FdyNdsxOIwq1iky2gCTJvwdNbS6OyHR1lCoFQwIiohBkFzS3OhkUvCYsuHarzSBLOHR6NaOCESgR/I12YbckeVxXUSlXCI5MEjyuZVm23EtlIktLkw2rw0BFqSCayDAWijMWlCdCTX6bUL+RFHR4mhpsDIzKn5soRdxm0Qs1JKWSQLiMWGTuc1uICvaXFlgcW01ajswxB7Aa1PgarLjtZjQqFaOROPE51z0p0LHYjDqhVa7HZhYSjnRafn9IMCwY3Wpy24QdGL/HQSgps+gA5GQWVqYhOneHWc/4cc1KuQwjoTgjxz/zK5vdWApKLAYlNruJvCQxFJ0klSuwoeXVM6KSSqV46aWX8Pv9LF16wlHLbrdjt9tnWe4GAgG6u7sxmUxV8jHfydyng1KpxJ49e1AoFGzYsOGsFMuHDx9m27ZtvPe97+XjH//4K34P6uHBBx9k7dq1NQLzmS5aa9euZd26dXR0dLBjx47FVPSFQrkMnCf5FAKHzvMBi4RDBnM1HNlslt27d6NUKrn00ktnicMXaoQKYP+vD/HQZx7F6rORTeUYORqgYamX8Jzi1N3s4Mie2nGnjvWtHHqxr2Z7Y3sD3TKJ4HavmaBMEevv8BCTGbNqWeGT1XvY3GYCgpV80faCYOXWbDfIbm9odTLSN1Xwj/aEYTqjQwKDSYdNo8TZaEdn0lGsVIjF0ihF5KHNVR1NmouQyGlJIP42mtSEZVLSAfI5+WtsbLLTI0P0AMYFmgab3SBLOJRKiVGBKF6rVVMulRkbiDA2cOJ9MBtVmNHRvMxHoVwhFEkwcdz+WC5FHKYsYkVdDItFDwLCMSYgYz6PRUg4soLuU4PbwphMkjpMBUvKQZJgREBSvC5zTVcknS7Q2zOOBiV9x0fOmt0mHC4TaCTimZyws+B3W4gNyJOHSp1B3oSAAzQ6LYwIHK/sJh2D8h8h8gKSBzAoGKdyWQ01Qvtp+BxmYeK7olImnS2SzhYJRKaImSRBq8vCRa2NwvM4l5BMJtm1axeNjY10dHQIv9eNRiNGo5G2tjZZe9iZo1dnY4xpJqbJhiRJZ41sHDlyhG3btnH77bfzmc98ZsHJhsvlQqlUEgzOXvQKBoMvq79IpVL86Ec/4nOf+9zLHmfJkiW4XC6OHTu2SDgWCosjVecFXtOE43S/8GZqOGKxGHv27MHtdrN69WrZ5PCFIBv/+51f8ez3f0+hWGb3/3UCoLfoSCbSlAqzCwizy0J4zpiK3qRlQCbhW2/UMiCTCC4pJAaO1K7+AyQFoylagQDZ1+IgJmPj6mt1EhisLXAkhcSIQPwtEllb7cYq4ZgJb6OtuqIfj8wumKSmLK0+MyaHkbKkIBZLExybxCiwafX4LIQEBXJEMDbS1OqmS6aLAjAiyJ7QGeRHkyxWvZC8FAWC44ZGO0OC46QE+RtOl4mhwUkCM7phbrsBt9+KQaViSYuT0RmidIDmRge9g4L3TEAe3U4T4Yj8qr5opEupkAhH5T9/GrW4kI4n5Av9Bo+luhpfuz9xURaYYb0cCicJHbcJ7mhxoktVWOJ3YDBryZSKjExMdUHUKvH+QoJRK7fVQFhQ6DutBiHhKNWxWhQlrbutRsIC+1qXSS8kHJo61xWJ1/7dTwnS46xodAlfd67gZMnGXIjsYQ8fPkyhUJhluTu9YLVQKJVK7N27F4CNGzeeFbLR29vLtm3buOmmm/jSl750VgiWRqNh06ZNPPvss1x//fXAlI7y2Wef5c4776z72ocffphcLsdf/uVfvuxxhoeHmZiYoKHh3DM8eM1gkXCcF3hNE47TxXSHY2xsjIMHD7Js2TJaW1vPiji8VCrz/z73KEdf6iWfLzN0nARIEpi9JsJ9sVnPX37REo7IBPctWdci291ou6BJVhS+ZE0jPQdrx6wsDj1DcmNTksSoQMMwlxBNw+o0yhIOf5uTEZnxJEmCMWHgnvwxHG5LlXDMhMVhICTjKKXWqZCyBS5Y1UBJgkg0TSgwSaUCLq884VCqJEIBeech0Q+ty2NgPCTSx8gXx74GK/G4/GOisS2LTQ+1OvqpeylwlLJaTQzNCZKbjKZJHS/ai8UykkKitcmG1WmkpJDQG9T0yuxLkmAkIH8cj8ssJBwiYXpjnfEslVLcfRFlgNhtRiHhEFkJu+xGxgXaJqNeQy5Xom8O+W12mzBUlKxv8zGRzDA6cUKQbjPqCAqcsHwOs5Bw1PudqpdyHhYEMHrtJiHhyGbFjldzR8pmYjIr343yOy3YTfJdwXMFiUSCXbt20dzcTEdHx2nvZ24ydzKZJBwOMzQ0xKFDh7BardXux1yx8plimmyUy+WzRjYGBga49tprue666/ja1752Vrs5d911F7fddhubN2/m4osv5t577yWVSlVdq2699VYaGxv50pe+NOt1Dz74INdff32NEDyZTPLZz36Wt7/97fh8Pnp6evjwhz/M0qVL2bp161m7rvMOizkc5wUWCYcMFAoF6XSazs5O1q9fX/XzrlQq1c7G9PPmk2xkklm+96mf8NLTB9DbjAwfCaDRq3E2WtBa1KjRYF9nIp/Nk0vnySSy5CeTmNSgVCtRqqb/U5CLxOlY5kKtVaNQKikzRWaoVDDbDSTmJIaLtAp2v4V4rHbcqGmpm2GZMSSlSsGQwO0oIpg/tzpMsoTD1+KYNfozE0GB5qEieD88DbaajgdAuVjmyJ5BioUThZLRpMXb6sSkU7J8hY9QKE5sxv1yewwExuQLMtEIlMdrlyUcCiVCIblaIEa22Q1EJuQLxZJgfKahwcaogHBks/IdiQa/rRq0VylXGBuMMnacMHYs82CrKPA12tGYNKSyBUaCMRx2o3BkSQSdViUkCNY641njAg2E3aImFBWYHNRxoRoVOGF5nGYh4cgX5AvsWCzDRCRdfT8sejUNfis6kwatVsW+gSBpGcF7ve+TYFT+s+W0GKqairnwOsxCwqES/M1PPahFLlleqZCEOhK/w8RoRJ5IrWk5t92ppslGS0sLS5bMX1aIJEmYzWbMZjNLliwhm81WR696enrQ6XRV8mG1Ws+oWC+VSuzbt69KNs6Gg9bIyAjXXnstV111Ff/6r/961kfHbrrpJsLhMJ/61KcIBAJs2LCBp556qiokHxwcrDmn7u5ufve73/HLX/6yZn9KpZL9+/fzve99j1gsht/v56qrruLzn//8YhbHAqJSKVOpnB/ahvPlOuXwmiYcp0MGSqUS/f39FAoFLrvsMsxmM7Dw4vDQ4Dj/8lf/xuDhEVZuWUY+W6BpiYuRYwFGD6VoWOqjr2f20rXerGPyUILynCLT4bMx1tdfcwy7z0r0+OquzqTD4bdjcpjRGjVUkGhe6iE8FiObOiGqLQkWM1Ua+XvbssxLX1ftKJdCqWAyJL+KnRM4DdlcJlnC4fRZmAjKF18xQcGvEYx/NbQ4GJ6zOp1J5ujvHGUyFCd6fHTG4Tahs2vQGLQ4PXYikZEaTYbNbiAk4ygF1OSUTMPXYGF0RP41ccEom9dnmUWAZiIs0nw4DELCERQU+xaBTgUgEJgklczREz/xXksKieY2Ly6jnoJUIRRJziIF44LuRmODjR7BSF2+IE+GdFoFk0n5z43DbhYSjoige+D3WhkSaFKUgnEvgKBMyj2A32Olf0YIXyYzpQUBWLuigXI4T4Ndg8miQWc2EphMEZ5MMT4pf49sJr1wDMvnMDEhIBzKOoGJIh2GWqlgWKBLcZk1BOOCTpC1DuFo9cpuPxcQj8fZvXs3ra2ttLe3L+ixdDodTU1NNDU1USqVmJiYIBwOs2/fPmBKl+B2u3E6nadEGMrlMvv376dYLHLhhReeFbIRCAS49tprecMb3sADDzxw1snGNO68807hCNWOHTtqtq1YsUK48KDX63n66afn8/QWsYhFHMdrmnCcKqbF4ZVKBZVKNYtsLKQ4vPvFHu555/14Wpws29jOnmcOzHrc7rMx1lPbNWhc5qNnb61Y3N3sJCJT+LoaHVXCkU1mGT0yBozRurqRgUNT41SSJGFvsOFodGBymMkVynia7IRHY1RmtALlugUAeoHNZuMSF0PHaotKhVJipE++2BSNZrl9NlnCYTBphZ2PtGBcxmwzArXdFbPNUCUbAJPhJJPHGzrKVRWYSNLS7sLsNFOiQng8idtrISqwdhWNMzmc8oRDpZKELlQqwQy91aZnQkY7A1Auyf/AutxmxgWvEXVLXG4TYZnXVMoVMsk8h2cYCXgcRtyNVrQGDePJDEqloma/Rp14pl0kMm/wWOgbisk+VkG+8NGqJQKC/dkseiHhEKWpO6wGIYGxCHRBAIlUlkqlQiSSIxLJAVOf5XavBZNah6fNSCyTZSg8WdVm+F1mYin5z5aqztiMKFFdp1YKwwpb6oQLNjjtBOPyjldyVuLTWNN6bnY4pnM22tvbaWtrO6vHViqVeDwePB4PlUqFycnJaufjwIEDOByOKgHR68Xkv1wus2/fPvL5/FkjG6FQiG3btrF582YefPDBRbvYRZwZKpXzZ9RoUcOxiMnJSXbv3o3T6aStrY0XXngBWHhx+O8efYGnv7uDQjbHsT19qDS1K/ENHV6iMgRCJwgBUwq87kWr/EbrCSeoSqVCZDRKZDTKsk1tHD2eYq41aPEt8WJymVHq1IyHkkgKaRYJARgbknd7mirsa4lFY7u7ans7F4Eh+aJHUsi/B74WB72CwD3RvkQrXR6/VT6TRILQcIxSsczI0RAcPUEEm10mVra7UOnVTCZzjI7EKJXKeBusBMfki7u5wXzVa/HbGBYU1JOizkeDVej0FAjIX389wjExIb/d6ZInHACxOWNOsUiKWCTFsuVeAkdDGHRqGlrs6C060oUCI6FJUgKbWrfTREiwYm4yGoCY7GMBgXNVY4OdHsHnoCQgZCqlxIiga+VxmYSEoyAga5IEw4KRM6NOy5EZhg5GrRJ/ox2DWYder8agVcuOYQlJhUYlFJk3eWwcG5XXR9ULFyzWsXQMCJLHNSolyxrPvdC06e/8V4JszIUkSdhsNmw2G8uWLSOdThMOhwmFQhw5cgSj0VgdvbJYLLP0hPv376+SjTMJ0jtZTExMcN1117F69Wq+973vvSrCDxdxjqNyHmk4FgnHaxMnSw4CgQAHDhygo6OD9vZ2stkspVKpOkK1UGTjZ9/8Xx7/9jOMD0/98K95w0oO/eFozfMyAsedmEj8KhCkZgWFXUVQRGhmrDzn0jkGDk6J01dsbmd0dx86k46GZT6MDgv5Ypl0Osdov3xBFxeMAIlsbz1+GyFBVyAqKHb1gkLJ2+wQ2vFGBSNIWkGonctnZVxQgMZCiVnkSadX41vixt1ow2TUMDo6SSZ94j2QJBgVdDGsNqMs4VCqJOFrVAKXJa1WQSwm3+ERWQWbTFqhQ5aow6LTqWRDCqfOYaoQymUL9B+Znaei0BtYv8RHgQpjE/GqNW09wiFy3JpywhKRFHEw20hAvvj2+2wMCj6H9dyaRONjNrOaiMD3Vq+b/XWcy5Xo6506r/ZmB+XxPO0NVmx2AwWpzGg0QTpXqJPNYeWogFSYBJ9vEOtSAAKC7xaTTkNM8P3S5rZQKhbrdmLONqbJxpIlS2htbX2lT6cGBoOB1tZWWltbKRQKVd3H7t27USgUVcer0dFRstksmzZtOitkIxqNsn37dtrb2/nBD35wVo65iPMA5TJI54m2YVHDcX6iUqnQ29tLb2/vLHH4dHs4n8+jUqnmnWwUcgW++bcP8puf7KxuUyiVjByrXZ03WQ0MHq51jzJa9Yz1yoTxaZSMCToG4SH54iMhEN8WBLkRquNi5mwyS9+e/ur2FRctwaYFvUuPSqclmykzPhZHrVMyIjinbFq+SHF6LbKEw2jWERTYvmYE+7I7jbKEQ2/UCElNPCYIPXObZQmHpKgVsucyBQY6RzFoVAzsGURSSjS3OrF6rRQqFYrlijB/I5uRL0r9jTaGBuoH/s2F021kdFj+euKCjojXZyUpODfRcXwNNvoF43GiRHCP28JA7+zXNHhMOBusWPRafC7zLEtaOC5cFjhh1SMcosA/s1HLpGDkzmISk5SE4PNmMWqF5+CwGogk5AmCyE5YoZAYDU5SKVcYHYnNyllZs8JHSQmoFYTjKUZnuFXVIxWixHKAMYHjld2kF4rT/S4LR4bl33u/Rc1vf/tbzGYzHo+n6s70SoXCTVudd3R00NLS8oqcw6lArVbT0NBAQ0MD5XKZWCxGKBTiwIEDlMtlnE4noVAIl8u1oMLmyclJrr/+erxeLz/5yU8W3N53EecRFjsc5wXOW8JRKpU4ePAg0WiULVu2zNJrwJR4bOfOndUZW7vdPi+iuMlwnLv/7Bt0PX9s1vbmCxoYPFib39C0qpGuOQniAP6lPo7NKPan0bDEy5BM/obNayUmM2qiUEoEBdazkwJBbEFQPKKA6GiU6AxXIZ1Jx4oNS0llCyRSOSbGUlUBdT39RlnwR9nQ6uRYZ23YoCRJjA3KX4co3dzX7KBPJpMEICJa3dfIr9J6/HbZ0ESAxPGxm0qpwljvOGPHC+xVG1vw6TU4G22U1UrC4wnGw0kkSRImj1ssBkAuywSGBUTMYbfIEg6VSiHUluj18iuXCoXEmGA8zGgUFzshgcjfZjcQmCNanwglmQglaWq2Ex2OYjWo8Lc60Zg0RBJZlGoF/YLRKIWgiK0X+Of3WukWOKvFojH54ygkRoPyj/k8FuJ98gRbp9cD8ucRFIyw+d0WhgUOWkokOmfkvrhMWhoabah0SpQKBUqFJJvRMSoYtXJbjYQFwnWrXolgbQKDzCjoNK64ZB2vX9VMOBwmHA7T29uLVqutjgjZbLazJjieJhtLly6lubn5rBxzPqFQKLDZbAwPD6PX61m1ahWxWIyRkREOHz6MxWKZZbk7X6QukUjw9re/HavVymOPPbbo2LSIeUWlXKZynnQ4Fl2qzjPkcjl2796NJElceuml1S/PmZa3l156aXUl6eDBg1QqFdxuNx6PB6fTeVo/kENdo3z+T75GsL+2GEkKbDdF7kYaQUFodphkt7ub7LKEw9PiIiBTHKk0SsZH5Iu6ScEY0mS0dv/ZZJZCKsuxnVMES6lR0tDhQWPRU5IqBEcEbkuCQlgUNuhtshMQFPyTgkJOLyiQDRYN6bj86nUmJb/d5jTKEg6FQiIok/8xjfHRGOMzrtXpNtG20ke2DBOxNIE5xX29tPIhwfVnBN2ShkYbQzK5KCC2yvU1WBkRvDcikbndYSQqGKkTWbMqlRJjx0Xc2XSR3sMniOEF65rQ+RxoTRri2TxDgVg1l0WkYakX+KcVaJ4AskX58/O7LUIthk4rLr5F5+ew6okItDk2i15IOApzvh8SyRyJ4yTaZNZiLEJjoxO9UUOikGcwHMNu0hOIyf9NeO0mIeFQ1FmBzOTrCMZbvGg0GhobG2lsbKRUKhGJRKqr9JVK5bTdmU4F0WiUPXv2sGzZslcl2YApzcbBgwdJpVJs3rwZjUaD3W6nvb2dXC5XHb2aT1KXSqV4xzvegUaj4ec//3ldAfsiFrGIRYjwmiYccqs70xaIdrudCy64oDo+JScOnw5vWrlyZZV8dHV1USwWcblceL1enE7nSTt05DI5Lrv+Il58Yg8jR0+sSjas8BA4Vrs6r9apGTxUO04FEBPMyhcF89cawXiF1WWWJRyeZhejMqu+Ko2SsGD1vSxfi1OeURSV8iVGD09d+6pLOhgeC+Nuc6Ky6ilVJKLhLAazTthhSAqC8Oxukyzh0BnUQiJSyMvfq4ZmFz0yXRQQ53+ItBAev014/KSMNmcynCTnz9K9b8oC2e4w4m1zoTSoiU5mhN0Fi80AguMMC0bpRN0SEFvlWm0GIeEQiczdbrOQcIgcoOx2LeMT8o+VCiX6uk4QEJ1Whb/FgdGmJVkootEoyc95b+sF/olE6xaTjnHBeVMRh99lBEYAWrWSUYGg3eM0CwkHdVapxwWjWy6HkfBxG93eGeOMKpWCjkYbfouZdKnI0ESM1IzzVdUpSisqDSBPRkYENrpuqxGvffYiiFKprBbCIncmj8eDy+VCpxOPtJ0KIpEIe/fuZfny5TQ1Nc3LPs82KpUKnZ2dJJPJKtmYCa1WW0PqwuFwdfRqJqk7We1FJpPhpptuolwu88QTT8x7UOEiFgEsjlSdJ3hNEw6YIh3TY1LBYJD9+/ezZMkSlixZctLJ4ZIkYbfbsdvtLF++nHg8XnUPyeVyVfLhcrnqrs4t3djO0o3tvPMLN3F4VzdPfO+XDO8JolSqkbNmbbugmaO7+mu2m+xGxgQjIGHBWE1OMG8uEhpbXCZZwuFpcspulxQKooIiNSVY1ZUUEpVimdCxEwWRpFRgXu/D2GKgjJqJQLJKDJQqBaOisSnB37Cv2UG/YGxqXHC+Op38e+hqsDAuGA1KCTQAVqdRlnBIkiTUj8wMYUxEUiSOC5CdXjPKbJGVS9wojRqisQxjYzEqFSgW5cmTx2sRZoMUS/KvcbpMQntdwXRaXZG5RhBgKEnUjFNNw2jUCAlHbE43sJArMnA0RGubk8H+CVQqJS1tdkx2A6lCgaHAJKIfM0mCUUGnoqHOaJTFYoWQ/PmNCboRfp+VXsHfp6ZOl2VS4EJlNmoJC2acXHZTlXDMRLFYJpcp0Hl8wUOSJJY0WLE6DOQpkc7Jf08oFZKQVPidZkYn5N/71S8T+DfXnSmVShEOhxkbG6Orqwuz2VztLJ/uiNA02VixYgWNjY2n/PpzAdNkI5FIsGnTppfVT8wldfF4nHA4TF9fHwcPHsRut1eF5waDvHFHNpvlz//8z0mlUvzyl7+sjh0vYhHzjnIFpPOkEF8kHK9tVCoV+vr66OnpYe3atfh8vur2U00OlyQJq9WK1Wpl6dKlJJNJQqEQvb29dHZ24nA48Hq9uN1u4SrS6Ogoo7Fhbv7wDTQ1NTE5HufFJ/ay839eYv9vuigeF3QqBS44/qVeju7qq9lu81iERX9IsMqdEawwi7o2ZqcRemu3u5vshAUr7BOCpOisjNNQpVTGrDVw6PgIlkKtxNlqx+i2ojMZ6OkUpJgLxrwMAtGv1WkQul1l0oJAOY+YcIROsfPhbrAQGpMv4DICByaH28zRg6Mc2zNY3Wa1GfC2OykXcthsGmKx2QWj02kSEo7REfnPhKsO4ZgUjP55fRaSx+SL84ygg+D1WWtGxqZhNJmA2vNWa5RCJyzT8RG5UrE0K/NFoVSg8pbZ0NFAulhkKBirdiH8HqtQ26EVECWAqIBEW41qJgVjd6Y6GpdURv4919TpijS4LSRS8vdcrRZ3KhKpE3/zlUqFkdEYI6MxVEoFkgStTiN2l5HJdJKJdJ54tkiz20p/KCa7P6fZKCQcp5q/YTQaMRqNtLW1kc/nq7qPvr6+0xoRmpiYYN++faxcuRK/339K53KuoFKpcOjQIeLxOJs2bTpl/cTc36xMJlO9r0eOHMFgMOB2u4lEImzatAmVSkU+n+fWW29lfHycZ555BqvVukBXt4hFcLwIP0+0DYuE47WLaXF4JBLhkksuwWKxALPD/GDqS/lUV88kScJsNmM2m+no6CCVShEKhRgcHOTQoUPY7fYq+dBqtVQqFY4dO8bw8DAbNmzA6Zzypre6LLzltjfyltveSGoyzR+f2sfzj+/miAypAFALCiF3s4tYuLZQtHksxAQC8HFBoZxNyxdAKsFKrNVlliUcFqeJuGDURpQKPlO3Ui6UGD82zvixcRpXuZGiURqWejHYLSQSRUKjMYwWnVDzIXLacjfYmYzIF42izoNa0A1y+azCbklaQB5sTrOQcIQFRbjc+56MpSl058lmpkizw2HA2+5GoVcxHkkhCWoys1lHQpAYLSJJGo2SQED+nPV6cREkIgh2u0FIOETuWQ0+K4MCi+OyIDhKqZToPjhWfVxSSCxpsWNxGdAZNUQn06RlxqDSAu2LQa8WZn04HQYmUwK9hWDcUUIccOj3WugX/I3qteKvb9GYmEIhCQmM32tlcDRKIJggMINYNzqNtFgtWHRaApNJQnM0HvW+Ns8kYfxMdR+vJbIRi8XYvHnzvIi19Xo9LS0ttLS0UCgUmJiYYHR0lBtvvBGA17/+9QQCAbLZLM899xwOh+OMjzkX3/rWt7jnnnsIBAKsX7+e++67j4svvlj2uf/1X//F7bffPmubVqslm51NnD/96U/zH//xH8RiMV73utdx//33s2zZsnk/90XMPyrlCpXzpMMhyv46H/CaJhyVSoWXXnqJUqnEli1bqvPAM/UakiTNm0OK0Wikvb2d9vZ2MpkMwWCQ0dFRurq6sFqtFItFisUiF198sXAW1mg1cPlNl3L5TZeSTeXY/X8H2Pk/u3npl/ureRwRgSWoWiBWdTU5ZAmH1WkSCqojgtTlbEq+IyLKrXD4bLKEQ61TiUewBKvoVquVkUyY0QMjwJS2xeA00tLipoSdwGi8Ju9DRB4qCMaJPGYmBKNBacHKtcNtEhKO8Kj8dtEom81lJDYusCkWWJlaHHqyI1P3OB5JE4+cSJ93rG1k9RI3FY2SYDhBZGJq374GK4mj8t2iYFC+89Hgt9EvcDTLC5zLnC4TExMCEbLg706pVAhHrUxm8Uy/KBCxwWdlYOhE0V4pVxjpjzDSH2HNaj/lYJYlLXbMTgOZUomhYIxsrsioaDTKY+XYgLy7WiEvEDIBw2Py987ntjAmIAGWOtkhQmtbCeH+6ondrYJjjU+k8NrNdPdMud812A14fFZQSwTjSSKCkS+lQsHKZrfw/E8Fp6r7GB8fZ//+/axatYqGhoZ5OYezjUqlwuHDh4lGo/NGNuZCrVbj8/nw+Xz09fXxy1/+kn/6p39iZGQEpVLJO9/5Tq677jq2bds2b6Ttxz/+MXfddRcPPPAAl1xyCffeey9bt26lu7u7ak0/FxaLhe7u7uq/5y4OfuUrX+Gb3/wm3/ve92hvb+eTn/wkW7du5dChQ/OmA1rEAqJS5vzpcJwn1ymD1zThkCSJjo4ObDZbXXH4QkCv19PW1kZbWxvxeJx9+/ZVCUdnZ2fVblc0PwugM2q5bPtmLtu+mUKuwN7nDvHHp/bz/C92yz4/JfDI1xoEIXZNDlnCYbTqiQpWXEOCILFiQf6PSG+S/5F0+R1CHcqEgOzk5VahJ1IkghMMdYZAAlebG1ebh0JJIpnMEhoRrKBPClK0vRYh4RCRFxF5qEdeRAnjLo9FSDiiMt0rAKfLRmik9jFJAf3dwVlExdtgxdVix2QzYLHoazoJCoVEIi5fyOoNYqFpWNCtctUhHHKieYCGBivDglV9ka5QrVaIR63qkJR4IlslIBwPrVQoFaxb7UXSqkiXigwGpgjINAx18i2QNEBtAW4x6ZgUkHWrScuY/GSUrKXtNEQ2uj6nWZylYdELCUepLA78iyZOfLdEomkix4m9VqPEaNCyvsEDGgXhxIkskA6/o64D2Oni5XQfer2eTCbD0qVLq+OzrzZUKhW6urqIRCJs3rz5rBTNSqWS//mf/0Gj0dDf3088Hufxxx/nv//7v3nve9/Lxo0b+cAHPsDNN998Rsf52te+xh133FHtWjzwwAM88cQTfPe73+UjH/mI7GskSRK+l5VKhXvvvZdPfOITbN++HYCHHnoIr9fLz372szM+30UsYhHzg9c04QBwu93VsamzRTZmIpFIsG/fPux2O6tXr6ZYLBIKhQiFQhw7dgyTyVQlHyaTvKUtTHUvLrp6PRddvZ6/+eqfc/B33ex8fDcvPLGHWCiOUqVgrEe+gBcJxrWCZG5Xo4NUvNalSaGSSE7Ir2amBFaaontsthupTR0Bi9NIXFCgxgWOPGaTGQhBBcb7wowfF/o2r/bS6jdidFmJRDMEple5JUjF6ocazoXTJyYiosBBRx3CMSFYwdcIbH91BjUTAhIogttXm9Y+MTbJxNgkS1c3kO4bp6nNha3BSq5cZngkisNpZERg4xuLyR/fZtMLXahEY2iSBKMCAmex6kFAOCYn5Y/j89kYEmRziEp2hUIiKFN8l0tlKMDhA0PAlFnBslYHRoeeZKFIoSD47CglxgSjiz63WUg4UimBQB+YkBF+Q30bXafdKCQc9Zr5gXBMdrtWo6wJX5yG322lbyRCZEZX0mPV4/NZ2Lzi7FjPztR9jI2N0dnZidlspqenh+Hh4Vck7+NMME02JiYmzhrZKJfLvO997+P555/nueeew+/34/f7WblyJR/60IcIh8M8+eST2Gy2MzpOPp9n165dfPSjH61uUygUXHnllezcuVP4umQySWtrK+VymQsvvJC7776bNWvWANDX10cgEODKK6+sPt9qtXLJJZewc+fORcLxKsDiSNX5gdc84YAT4vB6TlQLgWlLwra2Ntrb25EkCY1GQ1NTE01NTRQKBcLhMKFQiL6+PvR6PR6PB6/Xi8lkEp6jUqVk/eWrWX/5av76nj+n64Vj7H3uEDt+/IKsS5VIMF4SOBsZrfJdF0+zk4BMUJ8kSUKrXJEWRC0I0LN7bbKEQ1JIws5HVjSvrlTQPyMc0eAw4GhzYvO46e+VH4nJCNymnB4x4RDpRzSCGXuL3cCkoEAX2Rp7GmwM9sgvgycEVsE2p1HYlYmOJ6ECgb7x6nuqUCpoaHfhWKknmc0zNByt5lsAFAWZFA6HgVhMQEQFY2gul5FwWJAiJ/jTVKnEXQxznS6G6P74fBZGRSNvqhPXWiqWGewZh+P5m063keUuK3qrnlAsTiiaoVSu0OizMSD4O9DWyeaQVFrkuiIGnYqgQIxdz0ZXoRB/t00KukoqBcQS8u+V322lb1SezJllhPCTkxkmJzNcd+lq4XksBEKhEIcOHWLt2rV4vV5Za9hp8rGQeR9ngkqlQnd3N+Pj42eVbHzgAx9gx44dPPfcc7IZJW63m9tuu+2MjzU+Pk6pVMLrna3t8Xq9dHV1yb5mxYoVfPe732XdunVMTk7y1a9+lcsuu4zOzk6ampoIBALVfczd5/Rjizi3UazkzptRoyLizKLXOs69b9wFwExx+NkgG5VKhaGhIY4dO8bq1auFrWC1Wl1dSSoWi4yPjxMKhfjjH/+IRqOpkg+LxSI8Z4VCwepLl7P60uX8+ceu5+jufnY+vpvnf7GHsd5QXcF47BRXzK0uiyzhsPusRAWFYFQwvlEUBBoaBIWjs8EmFLiLEtHnjqulI2nSkTSVlTlSx8I0rmrC6neQSBUYGZigXKoIczaEBMltJioYJ8pl5FfCXT4rcUGBHhOMyRgt8mFbkiQJReaiUS+dQS3r6lUulckn8hw+7oKl1atpX+ZBa50iIAMCsXa+IMikkBCKzNVq8SpPXFBI+xqsDA8JRq0EUColAoLPptVqEBKOtKBrZbHomZhIzRoTM2hVNLY6cDrNSBUYDMRqBOyibA6VUmJU8HdoMapIC0wP6tnoJkSGD0oFAVFehsPA2Lg8CZYjFdMolcTv47LW+dFvnAyCwSAHDx5k7dq1VR3Ayeg+ph8/F+b8K5UKR44cIRwOs3nz5rMSsFcul/noRz/Kk08+yY4dO2hra1vwY54qLr30Ui699NLqvy+77DJWrVrFv/3bv/H5z3/+FTyzRZwpNBoNPp+P3wWefKVP5azC5/O9rLX1axGvacIxPdv55je/mWXLlp10QN+ZoFwu093dTSgUYtOmTSdtJ6hSqarivVKpxMTEBKFQiN27d6NUKqtjV3a7vS5hWnZhG8subOPWT9/IwKER9v36EM/+cCeDh2ePSKl1KmFmR0owtiIqYO0eiyzh0Bo0xARdAZEwXHRtVqdJlnAo1Uqh+FzOdhemyEOlXGG4c4jhzqmxGYPVQMfmDooKJWMjk0xGZq++iwpQl0dMOMYFha5OoAHQ6lSEBQV6Pid/LS6fhZDgNSKHLo/PyqCgwzPTVSuXKdC3f0qc37bCg7VYpmGJG3QqguFEtejWag1ALVFyOoxMROTfZ4vVzOho7WP1BOMWsx5RUKHI1crrszIiIBVKpfjvKCQgAR6PiXhy9rHyuSJ9R0LolErGDoewGNQ0tDrQGDVMJDKMhuJiEbfXxqDANtrjshOIyA0eQkpAKiQFdcTuFgYFXUKX3SokHKWyeOUxKtCNadRK2vx24evmE3JkYy5Euo9AIEB3d3c178PtdtftLi8UKpUKR48erf5unC2y8alPfYpHH32UHTt20NHRseDHdLlcKJVKgsHZ2UjBYPCk9TZqtZqNGzdy7NiUdfr064LB4CyDgGAwyIYNG+bnxBexINDpdPT19ZGvY7bxWoRGozknFjnONl7ThCMej/Ob3/yGT37yk3R0dLB9+3ZuuOEGVq1atSCzvIVCgQMHDpDL5bj44otP+0djJsEol8tVO8j9+/cjSRJutxuv14vdbq97Ha2rG2ld3ch1f/sWRnqCPP+LPTz/iz0c2zuAt8XF8BH5dnNIQETyAptQnWAF1O13MHxM/hjjgiJL5HYk1Jv47QQFYYARQXfFoK8dGUtPphkfHGPs6DiSJNGwvAF7s4tUtsRw/4TYKlcwNmWy6oXdCmFIX6OdIcHYVFQwk29zmoSEIyLI0hB1SwAmBCTJYNSSPBri6K4TDlgNjTZczQ4qaiUGg6aGlOn04qItnZJ/n+sKxgW7Uyol4aiV1aoXEg7RuJfDbqiKoudCNCYHJ0hPJl2g9/CJgqq92Y7OqkPRYCcYS80ak7IKcmIA8oLPCcBwQP4e+T1WhgWEw2rSAzHZx8p15oojAjJXT9vR0ewU2ivPJwKBAJ2dnaxbtw63++Q7KnPzPqa7y6eb93EmmCYbgUCAzZs31zUSmc9jfvGLX+T73/8+zz33HMuXL1/wY8JUobVp0yaeffZZrr/+emCK+Dz77LPceeedJ7WPUqnEgQMHeOtb3wpAe3s7Pp+PZ599tkow4vE4L7zwAn/7t3+7EJexiHmETqc7L4vv8xGvacJhtVp5/PHHicViPP744zz22GPce++9NDU1VcnHunXr5uUHJZPJsGfPHnQ6HRdddNG8zQcrFApcLhcul4uVK1cSi8UIhUIcPHiwOpPs9XpxOBx1OziNHV7e/g9X8/Z/uJrwcIS9z3Xy3I9foPuPPbPGP2xei7ArEROs0oryD4x2+cLW5rEIx7nigiJZJLQyO4yyhEOlUQpHrUTBerrjpKZSqTDaPcpo91RXyNPqxubQoWxxEBibJDZjnCYnGJXxNFhJCkaDYgJRfD03pdSk/HHUWvn3XKtXExHcY9HircWuJx6VP2e52z8+EqOQyTMZSSMpJdo7PJjcJhKZAkPDUex2KyMjMnocCcYEY2D1BOOiUSuv1yoUoNf72xaRFJfbJCQck5Pyr6lHeox6Dd0HT3QqfA4jnmYrZZUCVR29RUhAWL0OE0GBgYJJL9aK1BMrRgVdTZ1GRfBlBONyOBvjVGNjYxw+fJj169fjcrlOez8ajaY62nq2dR/T2UyBQIBNmzadNbLxla98hf/4j//gV7/6FatXn12tzV133cVtt93G5s2bufjii7n33ntJpVJV16pbb72VxsZGvvSlLwHwuc99ji1btrB06VJisRj33HMPAwMDvPvd7wamulf/+I//yBe+8AWWLVtWtcX1+/1VUrOIRSzilcdrmnBMw2azccstt3DLLbeQSCR48sknefTRR9m6dSsul4vt27dz/fXXs3nz5tMiH7FYjL179+Lz+Vi+fPmCrYgpFAocDgcOh4MVK1YwOTlJMBikq6uLQqGAy+XC6/VW29YiuJscvOWWN/CWW95ANDjJC0/u5fkn9nDg90dQG+Vfp9aphInhaYEoVyVISrcLCIdCKTEhyBgROm3p5MeTjHYdk0H5wl6UPSLsSCmKHPnDCQ94/wo/9hY3qWxJaFWrE1gRa7QqwoKRIRETcHhNRILyx8nnRCJzK0OisSmhMN4qJBwpgdjY4bYwGUlTKVUYPhKEI1Mr+waDBl25wuoVXkYDMWKTJ45pd+iITMjv73S7GCLCkRRcq9ttIix47zQacdGezsjf73qkRz1HbxGLpIgdH9nzN9ho0Rlw+MzkpQqDwRjJdB67RU9EQAKcdqOQcKQzAiE+4nT0ui5UHiu9gkT6etqO5QtMOKbJxrp1686IbMzF2dR9VCoVenp6GB0dZfPmzcJspvlEpVLhG9/4Bvfddx/PPPMM69atW/BjzsVNN91EOBzmU5/6FIFAgA0bNvDUU09VRd+Dg4OzfkOj0Sh33HEHgUAAu93Opk2b+MMf/jCLKH34wx8mlUrx13/918RiMV7/+tfz1FNPLa6cL2IR5xDOC8IxE2azmZtuuombbrqJdDrNU089xaOPPsr111+PxWLhuuuuY/v27WzZsuWkNB9jY2McOnSIZcuW0dLSchauYAozZ5KXL19OIpEgGAxy7NgxDh48iMvlqgZhqdXiAsrutbL1nW9kxeUtHNrfhRTTsvuXh9n36y6KM/IbPE1ORo4FZfcxMSZPRERBdaIRLGeDXagrEXdX5OfLnV67LOFQaZTEBKNWOYHbldFiYKZ2YLr7YbDoQJJYtrYVhUHH2PAk8ePalJJAFO9ptDMsI7wHSAkKQqfbKiQcorEpU52xKZFORG8Ui9jCgnumFxCrbDrPsT1DVaLi8Zhxt7soKRRo9GoiE8Oyr4tF5Qtmn8/KyEhM9jGRK5MkiQXjDoeYcOQFn1u1WsHkpDyBsVrEpCcn2J9KpSAYilMqlQkd7/hIComOZju+ZjuhRJrBQJTcHOeymQ5aNVDIO16pVQrGBIJxv8dKn+DvziR4f6G+YHwhCcd0mOr69etxOp0LdpyF1n309vYyMjJyVsnGt7/9be655x6eeuopNm3atODHFOHOO+8UjlDt2LFj1r+//vWv8/Wvf73u/iRJ4nOf+xyf+9zn5usUF7GIRcwzzjvCMRMGg4Ebb7yRG2+8kWw2yzPPPMOjjz7KTTfdhFar5W1vexs33HADr3vd62pa6eVymRdeeIFsNnvGLf0zhSRJWCwWLBYLS5cuJZVKEQwG6e/vp7OzE6fTicfjwe121zgjlMtlurq6GB8f5w1veh0Wi4W33nYF6USGXc8cZOcv9rD7V52YHfI/iFaXibhAGCyXMA5TRZVoX3KEQ61VCV2wRONRekFqsrPBTlCQEi06X71BvnjXWTREhuMc+d2UnaMkSTSubsLa6KBUqSBJtaNIZquYCIh0IhqBQ5bOcOpjUzaHgZjg/SqX5EmS3W0iKrg3IsJntulJzHDiioYSRI+P6q3e2EKb3YDZYyGRLTA8MmW/q1CIx5ysVoOQcAi7GB4zQcF4oEZggAAwISBxfr+NAUHWRz0B+oQooM9rYXjONVXKFUYGItjNegY7A6jUSlrbHBisOmKZLIOBGAmB9mQqB0T+/tnNakJR+ftkFuijoH7wYH3BuEP4ujPByMgI3d3dbNiwAYdjYY4hgpzuIxwOn5buYzojZNOmTWeNbHznO9/hC1/4Ak8++SSXXHLJgh9zEYtYxCJm4rwmHDOh0+l429vextve9jby+TzPPfccjzzySNV7/Nprr+WGG27gjW98I4VCgb/8y79keHiYX/3qV5jN5lf47E9AkiRMJhMmk4mOjg5SqRShUIjh4WEOHz6M3W6vCtKVSiX79++vitxntp8NZj1vuPEi3nDjReQyeQ78tpvf/vQlXvrlftIzxmvsDTZZwiEpJKEwPCcomDQC9yZng51Av7yYOiZwiBLpSswOoyzhkBSSUGQucnuyOMxEhk8UeJXKlPPVaNfw1PtgN+Jf3UxFrWF4IDLLAWouXD4L4yKHKsEKubvBJnabEhThDo9FSDiSgtE4Rx3CkRK8RmdQkIjJPkQmnWPkaAiOTgVV6g0aGpd7MbqMDI1OEpJ5T/MF+c+MJCF0tXLYjULCIbKpNZm0TEQEGps6Am+RAN1k0hIR7M9iMYCAROWPdzWKhRIDR0989i1GNcaKgnUdPsKTqVlBg36PlYGg/P60dboiubzYF35CEOhZbwxrSdPCCMZfSbIxF2ei++jt7WVoaIjNmzfXDXudL1QqFR566CE+8YlP8Pjjj/O6171uwY+5iEUsYhFzsUg4ZKDRaNi6dStbt27l/vvv5ze/+Q2PPPII73nPe0in0ygUCkwmE7/4xS/OKbIhB6PRSHt7O+3t7WQyGUKhEIFAgK6uLhQKBTqdjvXr19edddXqNWy+ai2br1pLIV9k/2+62PmLPbz41D4MJvkVe1ejnbBgNTgqGI+q1CEJcoRDq1czKSAcmaR8IawRBLA5fDahRiUpSHs2GuWv3WDTkZzIEA8niP/6EAAKlYK2ta3oNRLeRhvBOYWmxW4QEo6IYPSn/tjUqY1ASRLCPA+tgAjWO47ZYiA8Kn/f5gYoZtN5evYOsXJdE9FDY/j8VlytTvLA4HCUbLZATPAeeL1WIeEQ2TgDhAWfG4/HLOyYVOpMzAhtdN3i/Ul1anKRaN1s1HF0hgDd6zDgbbZRVklodCoh4dAbDMiNWgEEw4LPilYcPFhPML4Q41TDw8McOXKEjRs3YrefHbvdk8Wp6D7GxsYYHBxk06ZNZ41s/OAHP+BDH/oQP//5z7n88ssX/JiLWMQiFiGHRcLxMlCpVFxxxRVcccUV/O3f/i1bt27FaDSSyWR4wxvewDXXXMP111/PlVdeeVYcRs4Eer2e1tZW7HY7e/bsQa/Xo1AoeP755zGbzdXOR70Wv1qjYtOVF7Dpygsolf6Cwy/08If/2c0L/7tvVsif1WmWJRxqnUqYmyEmCfIfU5vXQnBApPmQL5Rk7ZYAq9MoJBwRwfmWBCNITo+N5MTs4q5cLNO3p4/x/hCJaApXiwvPcj+5Egz2TZDNyReYeoNGODYlgs1pFDphCc/ZK+6wCF/jNjMhuM9arTyBNZl1xAXFtPL4KvzE6CQTx61slSoFS5d7MbhMaNUaRscmZ72Fer24ak8JjAasVj2TAscrQx1ylRBpbJzGWUGAMyEieCDOdtHpVIwLugd2m5HQDMIWi6SrHas1q/206Y3YvGYylRL9YxFy+alOSUJgQ6zXqphMyz/mthsZFHT9THXGsObboWpoaIijR4+ek2RjLurpPrq6uqbGLhsbgSkysNB5H4888gjvf//7efjhh3nzm9+8oMdaxCIWsYh6WCQcJ4lnnnmGd7zjHfz93/89n/3sZwF48cUXeeSRR/j4xz/Ou9/9brZu3cr27du5+uqrz8rq1elguu3f3t5OW1sbkiSRz+cJh8OEQiF6enowGo3VlHOj0Sj8UVQqFVxw2TIuuGwZd3zpT+n6Yy/PP7GX55/Yi1Zgz+nyOxjrDck+JtJpiApeVPLkQaOr0/kQWeIKNB8Wp0mo7cgInJsMFnniqdarSBwXRY8PjjM+ODUOpdIqsS1dgeWCBsZG47NCB91+K4PH5MfJUgKC5vSYhYQjIUg4tztNQsKREIQ02lwmIeEQnpvPQlJw3+QshkvFMulIioFDU6v6NruBhqUeymoFw2OTlCviUDpR18HtNgsJRyYr//lQKMQuWU6HSUg4ynWE1SHB/nxeK32CVHd1na5NIpElMDxJYHiyes4dLVasHjOxbA6FQqoZNfR7rPQMybtQSciP8kH93I757HAMDg7S09PDhRdeiM1mm7f9ni1M6z4kSSKRSNDa2koymeTFF19c8LyPn/3sZ7z3ve/lhz/8Iddcc8287nsRi1jEIk4Vi4TjJPCd73yHf/iHf+CBBx7glltuqW7fsmULW7Zs4Stf+Qp79uzhkUce4Ytf/CLvec97uPLKK9m+fTtvfetbsVgsZz25Vg5DQ0McOXKENWvWzEp11Wg0NDY20tjYSKFQqIZg9ff3o9PpquTDbDYLr0OSJFZd3MGqizu4/bNvp/fgEDsf38PzT+yd5W5lthuQy07WGbXC3AyR7a7FZiYokzzt9NuFpEZkiSuC3WMREg6Rc5ZCcI+cDTYCMpqLYq5EpG+Csb4wkiThX9mAvcnNZDIvHpuSqDobzYXIKlhSiF8jCjCUFGJXK61O7H4mGrUy1LFSjQqKdpvDVD2HZDTN0T/2Hz85sHuXYF7uZTKVZTQQrzonmS1a4gmBoUCd8xZ1Fjxes9DxSiTqB5g8ja6I0SS+R6JgTEmC4ByCVSlXGOmPoSorGR2cwGpQ4293ojKoCU6mCEwkMNbp6JhMJhBYS08IRtzUqvlLGJ8mGxs3bnxVko1pDAwM0Nvby+bNm7FYLACyuo9pZ8H5yPv4xS9+wR133MFDDz3EddddNx+XsYhFLGIRZ4RFwnEScDgcPP3007z+9a+XfVyhULBp0yY2bdrE3XffzcGDB3n44Ye59957ee9738sVV1zB9u3b2bZtG3a7/ayTj+kk29HRUTZt2lT3x1utVtPQ0EBDQwOlUonx8XGCwSAvvfQSarW6Sj6sVmvd61hyQTNLLmjmLz56HYNdo1Odjyf3ohZkHDgbbELbXZGYW6kUpHzb5DsM9Sxx8wJLXL1AKKzVq5kUuBnlsvL7sthNBJAXeY+PTq1oVyoVRg6PMnJ4KnRw3RtXsnK5i5JSxVD/BNnjae9Ot5lxgbZD1BFy+2xCJ6xiQT5fwu2zERJko5QESdh2l4mo4N6IPjFanUo4OqbRCb6mKjDUHaxaERsMGvzLPKBTUqREPCH/PuQF16pUQiIhX9DbbAYh4RDvTxJ2Wep1Reo0DxgXCNA9brEjl8k0RSoy6QI9nSf+xhpcRiwKNWvaPQyGJknM6f6NCzpbaqUk1HYsaXIK83dOBdNF+oUXXojVaj3j/b1SGBwcrF7HNNmAhc37ePrpp3nXu97Fgw8+yNvf/vb5vqRFLGIRizgtLBKOk8CNN9540s+VJIm1a9eydu1aPvvZz9LV1cUjjzzCv//7v/O+972PN77xjVx//fVs27YNt9u94OSjVCpx8OBBEokEF1100SlZMCqVSrxeL16vt7oiFwwG2bNnD0qlsqr5eLlxgJaVflpW+vnTD7yVQH+Ynb+YIh/H9gxU049NdnmSYLToSQqyGdKC1WOR5sPpsxMcFFjiCo6hFLj7OBrEXZSEQKOg1sifl8VpEuoaUrEUPfuHAFBpVbSvbUHnMKPUaoSEQ3QtNqdRSDgmBYWs1WEQEo4JgdjYUYdwiJy6XD4rI/3yoz3FgjyBMpl1VbIBU+Lz3n1T+R5rLmyhUavG4reQzOcZCyYpFqc+a+GQ/HlPZX0IBOh1imiRja7Pa2VEaHUs/upNCETmRqNG6HhltxuEhENE86LjKYZV4wQC8Wr+h8VtIFkoEIqlCEXk99fkswsF4y0+M+Vy+YzGg/r7++nr63vVk42hoaHqOFi965jPvI/nnnuOW265hW9/+9vcdNNNC3FZi1jEIhZxWlgkHAsISZJYtWoVn/zkJ/nEJz5BT08Pjz76KP/93//N+9//fi677DK2b9/OddddR0NDw7yTj3w+z969e5EkiYsvvrgmg+NUMHNFrlwuE41GCQaDHDhwgEqlUiUfDoejbrHha3Nzw51v4YY738L4aJQXntzLzl/sRSGw0XT4rMJAvKhg9Vg0N292GmUJh6SQiAiKalF4odmmlx0Ngzoic1FHwGsVEo7w2IkivJgr0vtSLwBrLl2K1yDhaveQyJQY7p+gXK5MraqLxqYE8/9KlUKo3xCOWklTBasc6rlazXWomka9fJKEIO/B6bWQTMrrW4r5EuHhKOHhqZE7rUZF21IXSpOakOBeW61GIeEQCbyNRo3QRtdq0QsJR74g/7mqF1bocVvoS8kT5oLANhggKdDTqNWKqgB9Ov9j5LgJw5J2J36XAa1ZSziRYmTG+GA9wbhOyvDrX/8al8uF2+3G5XKd0nhQX18fAwMDbNq0aVZH4NWG4eFhjh07xsaNG0+ZNNXL+9BoNNVMpbkLPb/97W+5+eab+cY3vsEtt9xyTozxLmIRi1jENObfLH0RspAkiaVLl/JP//RPPP/88xw7dozt27fz2GOPsWrVKq666iruu+8+BgcHq6v+Z4JUKsWLL76ITqfjwgsvPCOyMRcKhQKn08nq1at54xvfyLp161AoFBw6dIhf//rXHDx4kFAoRKkkX2BPw+W3c+2738QXfvZ+7nrgdt5zz5+x4fJVs+xM9Wb5cQKDRUdCUOilT9US12ulmJc/15RAXKwW7MvmtVAQzNlHxmOy2/WCmX1JIZGKyl9LuVQmeCxA5zP7GfxdJ4Z0gpVLnazZ0CTspOQFeSJev1U4hiUiXBa7jlJR/nMqDAO0GkgI7qdSQFKn7HrlC3BDHa1DfHI2qSjkiwweClAaz5A6OoFXIdHm1uFza1GrpwqzXFb+XgOEBHodj1tcFEt1wgBFnQqPxyzMXTHWcbxKpcTnLup8eD0WYV6NwaClrytE1x+HmOiK4C1rWNfk4YJ2L0pBcCfAW6+8jAsvvBC9Xk9fXx87duxg9+7dDA8Pk8uJc2hgKp/itUI2pi18z1R7Mp33sX79ei6//HJWrlxJqVTiwIEDXH755dxwww1897vf5emnn+Yd73gHX/7yl3nXu961IGTjW9/6Fm1tbeh0Oi655BJefPFF4XP/4z/+gze84Q3Y7XbsdjtXXnllzfPf+c53IknSrP+uvvrqeT/vRSxiEecGFjscrwAkSaK1tZW77rqL97///YyOjvLYY4/x2GOP8YlPfIKNGzeyfft2tm/fTnt7+yn/eESjUfbu3UtTUxNLly5d0JUuSZJwOBw4HA5WrFhBPB4nGAxy5MgR8vl8VQj5ciudNreFq255PVfd8nqSsTR//OUBfvfzlxgPyY/ZOHw20gl5zUdMZCMrssR1mZkYi8k+FhVoPkSp3DaXmZhghTodky8KlYJxHafPyrhghXw8NHukJRlJ0fWbQyzb2EphcJQl61rROSwEQ8lqVyEmEL+bbUYYlLcEnhR0A9w+O5MR+R6PiFQ4PSYSk/L7ywqC+Fxeq1CALjQwqCN0N5qnOinRYIJocOq+qNRKGtvtqCtFbFY1scnZ5+KwG4gIzrseCUgLwgD1erUwfdxmMxAQEIR6zlC5vPy9cLtMhAUjXxaLXhg8OPdYk9F09bPgb7DSbjBh9ZhIlYoMBKLkCyXUKiVLGh2oVEqsVitLly4lnU4TCoUYGxujq6sLi8WC2+2usd/u6elhaGiITZs2nfPZRvUwMjIyb2RjLubqPj772c/y2GOPcffddzM2NsaKFSumNGAjIzQ1Nc3rsX/84x+SrKOyAACIXklEQVRz11138cADD3DJJZdw7733snXrVrq7u/F4PDXP37FjB3/2Z3/GZZddhk6n48tf/jJXXXUVnZ2dVVtggKuvvpr//M//rP5bqxUvIixiEYt4dWORcLzCmPZl//u//3vuvPNOgsEgP/vZz3jsscf47Gc/y5o1a6rkY/ny5S9LHsbGxjh06BArVqyY9x+dl4MkSVitVqxWK8uWLSOZTBIMBunt7aWzsxOn01kdB1CrxU5BJpuB9VcuA3car8tHpCfF80/uY/eznWSPawCMVnnNRz23K5ElrlZQNJpsRmHoX1ZUTArsdZVqBSkB4RAJts0Ok5BwFNLyr1FrVJTyperoFYBvqQ/XEi+JTFHWGlUl0KmoNUrGBYRLK+jwAMLxrHodCZHmw+YwCglHRjDm5PZZCY3KvwaptmgvFUqMHhlHZ9CQTedxuYxYGkxkyiUmonmMJhURwe5KdUjAXNeoaXg8FgYG5Il0vbDCuGC00GjQEBUQQ4fDKCQcIjc1mLLYlcOUED5BsVRmbCgGgE6jYukSB40tjhqti8FgoK2trToeNG2/3dvbi06nw+12UygUCIVCXHTRReesnfjJYHR0tJqEvtB5IZIk8aY3vQm73c5jjz3Ghz70IbxeLz/5yU/4h3/4BzZs2MB1113H9ddfz7p16874eF/72te44447uP322wF44IEHeOKJJ/jud7/LRz7ykZrnf//735/17+985zs8+uijPPvss9x6663V7VqtdpZj4iIWsYjXLhYJxzkESZLw+Xy85z3v4W/+5m+IRCJV8vGlL32JZcuWsX37dm644QZWrVo1i3yUy2UefvhhPB4P69evx+VyvYJXMnUtZrMZs9nM0qVLSSaThEIhBgcHOXToEA6Ho6r7mDvuNU2aVq5cObUathZef/1m8tkCe3ccYucv9gqtah0+K6M9p2aJK6q77F6zkHDEBKRGIRijcfntBAVFpkijojfKEyGlWkFcUERGo7WdisCxAFKpxFhfGJPTRNMFLZRVagaPu15NO1/NhbvByqggLb4gIElOr5mJoPy9EdXmWr2aqOB+Ch2qgIggA8RqMwgJR2RCfvvMsMT4eIr4cX2KQqXA3GCkxasnkS0RnZxNckR5Hi6niXHB581Uh3jlBGNvCoUkHI3yeCz09ctrO+qJ09MCZzZJgpDg3nq9Fkbn3Nt8vkhvV4iOxvrfOTPtt6cd8Hp7e0kmk6jVagYHB3G73TgcDpTKM3e6OpsYHR2lq6uLDRs24HA4zsoxDx48yNve9jY++MEP8rGPfQxJkvjABz7A+Pg4Tz75JD//+c/54x//yOOPP35Gx8nn8+zatYuPfvSj1W0KhYIrr7ySnTt3ntQ+0uk0hUKh5t7s2LEDj8eD3W7niiuu4Atf+AJOp/OMzncRi1jEuYlFwnGOQpIknE4nf/VXf8W73vUuJicn+Z//+R8ee+wxvv71r9Pc3Mz27du5/vrrWbFiBbfffjs7d+7k97///StONuRgMpkwmUwsWbKkOmYx/SNts9mqnY/pjogcadLo1Fx89Xouvno9xUKJA7/r5vkn9vLCU/urBMRkk3fhqmuJKxjnmR6/mQu1ViUc2xLpJMwOk5BwiAIPEeganF4boWF5IqBRyhezxuOi7OREkq5fHwKmXK861rdi0qtkrWwtNj2jQ/KnJnK1sjtNQsKRFrgvuX0WhvsEDlVF+dE1o1knHPcSuZQBpOLyRbbDZZINSywXyyjzCgIHpsTpDoces89ATgGTiSJBwWfK4TAKCUdFoJsAGBcQSa/Hwpig01NvrEtEYEBMKtxus/Axq0VfQzim0d568oWiQqEgHo+Tz+e59NJLq92Prq4uCoXCLNF5vW7ouYDpcbH169efNbJx+PBhtm3bxt/93d9VycY0XC4Xt956K7feeuu86AHHx8cplUp4vd5Z271eL11dXSe1j3/6p3/C7/dz5ZVXVrddffXV3HjjjbS3t9PT08PHPvYxrrnmGnbu3PmqI5yLWMQiXh6LhONVgGnbxOkfkUQiwRNPPMGjjz7KW97yFkqlEnq9nvvvvx+/3/9Kn+7LYuaYRTabJRQKEQwG6e7uRpIkmpubX9a+V6VWsvFNq9n4ptX89ZdvpuuFHnY+uZewoBCvZ4krsrFVCsZbHF6bcF8pway/RhA2Z7TqhR2OgoAImZ1GIeEQpYKnM7XFdDFXpH9PH5VSL+VyBf8KP/YWN5OpAiMDE0LNgEqtYFwUgldv1EpQnJsExA7E1+PyWkiJHKoEJEWtVZKcFCTN1yna4zPS2ZORDMnI1L9dPhPoFCjMGtJ5iMRO7LteGKBoXMls1hEVpbrbDELCUU/bERFZJNv0xESp83ajkHAoBW5yAG1tJ7fQMZ0LNDY2xubNm6t/6w6Hg+XLl1e7oQMDA3R2dmK326sLEqeaSbHQCAQCHD58mPXr15+1lfkjR46wbds23vWud/GZz3ym7pjtueBU9c///M/86Ec/YseOHbPev5tvvrn6/2vXrmXdunV0dHSwY8cO3vzmN78Sp7qIRSxiAbFIOF6FMJvN3HzzzVx66aV0dnai0+lob2/nb/7mb7BardXZ3UsuueScXynS6XQ0NjYSjUbR6/X4/X6i0Si///3vMZlMeL3eGoHpXCiVCtZctow1ly2jUqlwZHf/VNDgE3sJDk6tnAstcSWICATjYm2FgeCg/LlMjMmLr0Wr2navlVRCfgQsKSg+NYIkcaVaIRSsWywWRqntIjg8VsIjU+c82j3KaPdU4KDFbSGXiNLcbicwkpjlVuX22RgTjFqJ3K5sDgOxiPz1iCyRp8TfgsTyeg5VgkLa57cz1CdPFEXvj6RASK6cLivdB0eq/7bbdRi9eioaNcmk/LVKEgQF+3O7zcQFXaB6sRZxAYGpJ053Oc1CwqGpoyPJCMbv4OQ6HJVKhSNHjhAMBmeRjWnMHMXs6Oggk8kQDoerCxImk6k6imk0Gl/RgjoYDHLo0CHWrVt31shGb28v27Zt4+abb+buu+8+o7yTk4XL5UKpVBIMzjbpCAaDL6u/+OpXv8o///M/83//938vqyVZsmQJLpeLY8eOLRKORSziNYhFwvEqxUsvvcTb3vY2brjhBr75zW+iUqnIZDI888wzPPbYY/zpn/4pOp2u+pzLLrvslPzwzxZEWSGFQqFaaPT09GAwGKrko174lSRJrNjUzopN7dz2qRvoOzjMzif2MtoT5NiegZrn2zwW4UiTMFhQUPAbrDrSk/LFX04wL2+0iFf3RQnrohqr3qiVaGwMjXyhHQ/HUWsUTIzE0Og1LNvQhtJiYHQkhsWmZ0wwaiXKE3G4LULCkRM5VHlOz6FK1EkxCiyWAVKCQt/lthAWfD7mdsBS0WzVxtjuNtBgUKK26UjlYCI69Vnyei0ERKL6Ol2WSET+NQqFJCQwXo+FfsEYn14v7kRlBbbOIB75cjqMU65XdTCXbBgM8sYPs89TT0tLCy0tLTWZFFqttup4ZbPZzir5CAaDHDx4kHXr1p21EdaBgQGuvfZatm/fzr/8y7+cFbIBU9qbTZs28eyzz3L99dcDU5rBZ599ljvvvFP4uq985St88Ytf5Omnn2bz5s0ve5zh4WEmJiZoaGiYr1NfxCIWcQ7h3KtAF/Gy2LFjB29729v4zGc+w1133VX9odXr9Vx33XVcd9115PN5fvWrX/Hoo49WQ6C2bdvGDTfcwBve8IZ5zeU4XaTTafbs2YPJZOKCCy6Y1Y1Rq9X4/X78fj/FYpHx8XGCwSD9/f1otdoq+bBYLHULjfYLmmi/YMqta/hIgOef3MvOJ/bSd3AqkdrmFhOOiEhbIRhh0Vu0QsIhErmrNPKFn8VpEr4mL1hlNjvEo1ZxGX0CgMvjINwXq31AgvjxJPN8Js/RnUemNiskljZbWbOmgfFohuAMF616xX69kSWhQ5Xz1B2q6pEUkaAfYEKgybE6jULCIcooUWuUTE5kKIcrMDA1mmS3azE1mDCZVUQiSvIyuS9FQXcIIB6XJ0Rej5kxkQWwUdwFEon+QTyGZTHrmBSQ8PaXGaeqVCp0d3cTDodPmmzMxXQmhd/vp1QqEYlECIVC7Nu3D6BqGet0Ohe0sxsKhapkw+12L9hxZmJkZIRrr72WrVu3ct999501sjGNu+66i9tuu43Nmzdz8cUXc++995JKpaquVbfeeiuNjY186UtfAuDLX/4yn/rUp/jBD35AW1sbgUAAOKHlSyaTfPazn+Xtb387Pp+Pnp4ePvzhD7N06VK2bt16Vq9tEYtYxNnBIuF4FeKCCy7ghz/8Idu2bRM+R6PRcPXVV3P11Vdz//338+tf/5pHHnmEv/7rvyaXy7Ft2za2b9/OFVdc8Yp4n09OTrJ37168Xi8rVqyoSxpUKhU+nw+fz0epVGJiYoJgMMju3btRqVTVEYuXW+VsWu7jT5ZfzZ/849UEB8d5/sl9DB4epb9zpEZcabTohXqMrKDYdXrsTAzVFrsKpSTM8xCNINk9FiHhSAics0T2vkqVok63RP5+Gaxa0rHaIrdSrpAKTdK9qx8Ad6sb9zIf6UKFbLZAQJTrIAgD1OnVQrepeuJv0Wvq2ejmBETNYtcTj8oX0vXsf+MifYnPwticXJNUNEcqmsOwUkIRSNLQZETnMDKZKhI5fmyR45VBryKVlic3U9oOATGug5jgs23Qq5kQkFO32ywc32qrM05VqVTo6upifHyczZs3o9fX74ScDOZmUsRiMcLhMEeOHCGXy80Snc/n4kooFOLAgQOsXbv2rJGNQCDAW9/6Vt74xjdy//33n3WyAXDTTTcRDof51Kc+RSAQYMOGDTz11FNVIfng4OCs87r//vvJ5/P8yZ/8yaz9fPrTn+Yzn/kMSqWS/fv3873vfY9YLIbf7+eqq67i85///GIWxyIW8RqFVJkPG4tFvGpQKpX4/e9/zyOPPMJPf/pTEokE11xzDdu3b+fKK688rZXHU0U4HObAgQN0dHTQ0tJy2qMQ5XKZiYkJQqEQ4XAYSZKq5MNut5/0D3MkEOOF/93Hzif2cej5Y5RLZRqXeRk5Kh8s6Gq0Mz5Sq9VYc+kyOncePennA7SuaWLg8GjN9pUXtdP1x76a7ZIEKrVKdnV99ZYODj3fU7Pd3eggPCLf+Vi6voVj+2oFKW2r/fQfqj0vgKZlXoZl7s2Ki5aAXktFq2FwIDKLmDUvcTPUWyvybm53CXUVK9Y20X1guGa70awllZQnfcsvaODIQflAQofbLEtU2pd76Dsir6NZsa6R7v0jNduVSgkkiZKMQH3F2ka6D9S+BmDZGj9HD80+P5NLh63RQkmlZjiQqBG9L13i5pjMvQO4YI2fg53y71NLi4PBwdr3Xa1WUCpVZFPG21qd9A/Kj2FdsNrPQcFn4kPvv4rL37iiZnulUuHw4cNEIhE2bdo0L2SjHiqVCqlUqvqdkEgkZrngncnxw+Ew+/fvZ+3atbJhdwuBUCjENddcw4UXXsj3vve9c3IsdhGLWMQiTgaL317nGZRKJW984xt54xvfyL333ssLL7zAI488wsc+9jHuuOMOrrrqKq6//nq2bt26ICFcIyMjdHV1sWbNmjMOfFIoFNVVznK5TDQarY47VCqV6ny30+msSz4cPhvX3P7/cc3t/x+T4wlefPoAPfsGCPaP1wjHlSoFEcEKerEgvwptcZqEhCMmcgMSpI/bPFZht0Q4auU0CAlHQjA+ozeJ9Q7hUfl9KZUKDv3m8NT/a5QsWd+GzmFmLJgQO1RZxMcRdRCcHguppDxJicfl76dWpxJmfegM4hXVpGBEzuW1EBTYw4reO4BJmWtKjmfRKlVMBJNoNQr8bVYqOiXRVIlksoCunt5CoH+RJAjV0XYMCzpR9TJCSnXsfNtaa0eqzjbZgKmO3UwL7mw2Ww0bPHLkCEajsbooUU8L9v+3d+dxUdXrA8c/M+wgMOyLoiyuuKGghFlupLiCbVqaZqal2aqV9nO5ZZta3bLs2p7d8moCmqXhbpbihqKyuYEiAjNsw77P+f3BZa7InBFNEPX7fr14FWfOOgx4nvP9Ps9ztfpgo0ePHi0WbOTm5jJ27Fi6d+/O999/L4INQRBua+Iv2F1MqVQSEhJCSEgIK1as4NixY0RGRrJ06VKeeeYZQkNDiYiIYOTIkdfMlbgWSZJITU0lPT2dPn363PR69UqlEicnJ5ycnOjatStarRaNRkNKSgo1NTU4Ozvj6uqqr7gix97ZlgcmDeCBSQN4YmEER7efInZLPPF7k6mqqMbR3Z6cDMPBg1ySuYWV4Skd5pZmsl3R5Spk2TvZyAYccsGDpZXMTaQCcmWqaimUMlOt7CwpKzJ8E66r/d8511bVknqkbrRF5WKLg5MdPv7uFJZUcfmKp+5ygeCNJn9LtYZ/ts7u9ly+YPjJPUbGeOUqVNk52MgGHHK5HSamStkeJU7OduSpS6ip0qE+87+fiauHDSZVlbRvpyIjs7DRqIRcF3EXF1s0Mo0C7eysQG7qm5EB76Jiw59vU1MlXu0adtaWJImkpCS0Wi1BQUG3rJytpaUlXl5eeHl5UV1drU86P3LkCGZmZg2SzuU+i7m5uZw6dYru3bs36kXRXAoKCggPD8fX15e1a9e2+l4kgiAI1yICDgGou/ELCgoiKCiId999l4SEBCIjI/noo4+YPXs2Q4cOJTw8nNGjR+Pg4HBdwYdOp9M/6ezXr1+zjJxcSaFQ4ODggIODA507d6aoqAiNRsPZs2dJSEjQBx8uLi5Gnxra2Fkx6OH+DHq4PxVllRzblcixfYn8GRlHdUXjm8oCmcRjuffKyVNFlsxNcKnMfH65kQeFAtmRF7kfVRuVJSUFhoOHGgNJzVBXRlcu4MjVGB75sHe25WLyZTJT6qYZOXg64N61LZWSQrZClYubPZqs68s7QQH5OYaDLlsjFZTKSw0nZDu52JInl19ipM+GXKUuZ3c71JcNX5OZzP4Ks0ox1UGeuhQba1NcfRwxtbMiU1MKCvm8DweVjWzAoTTyu1siW5ZXvhqWVzvHBv05JEkiMTGRwsJCAgMDW03vDDMzMzw8PPDw8KC2tlY/Inrq1CkkSWqQ91H/UCIvL4+TJ0/i7+//t0dkm6qwsJCIiAg8PDz4+eefW0WBD0EQhL9LBBxCI0qlkl69etGrVy/efPNNUlJSiIyMZPXq1Tz//PMMGjSIiIgIxowZg7Ozs9Hgo6amhpMnT1JZWUm/fv1a/OZDoVBgb2+Pvb09HTt21DcVS0tLIzExEScnJ9zc3HBxcTH6FNHS2gLvQHfKrQsIf34I2SkFHNwSz5HtpyjRlmFtZynbN0O2k7m9DRjojQFQoJG52ZYZeTA21Urupt7GwVo24JBrRmht5MZdqjZ8bhbWDd/XgswCCjLrnuJ7+LnR2dsBhbUFl9IL9N3I7R1tZAOOCpkSw85uduTKJFDL9foAyJW5MVc52cgGHHLNBU1MFLKjIvYONrIBR6VMKVqFAor/m7xfVVZDRuJ/c00U4NPDFYWzE8WVtWRcUS0MjPfSKJN5/xQK0MgEzW4utmTJXJeP9/8SxuuDjaKiIoKCglptArCJiQnOzs44OzsjSRKFhYXk5ORw7tw5EhIScHR0xNramoyMjBYNNoqLi3nwwQdRqVRERUW12vdPEATheomAQzBKoVDQrVs3Fi1axMKFCzl37hxRUVGsWbOGl156iXvvvZfw8HDGjRuHu7t7g+AjPT2d3bt307NnT/r163fL5yBf3VSsPrk0PT2dpKQkHBwc9MHH1f/QX7hwgbS0NAICAnBycsKrfTv6De9JbU0tp/af4eSfp9n78yGDORlyU50sZObmW9tZyo5wyI08GJtqJRcIOTirUKcaHpWQ25eZueGfodJEgVbmZrWk1PC0HxNTJeoLOWSdr0tAV5oq8enljZWrHeZGyujm5ciU0XW0kQ045IK+NnaWlMhOhTNWocrwNsZyO8yMBAG5aq3B5U4utoYDIgmkylrSTtX1lnFQWeDq6wyW5ly8rKWiSr6XhlwXcRfnNmhkpmjZq6xlA476/A2dTkdiYiLFxcUEBgbeNjfLCoUClUqFSqWiU6dOlJaWcvHiRdLT64opZGRkUFlZiaura7MW1SgtLeWRRx7BwsKCTZs2tUjOiyAIQksRAYfQZAqFgk6dOjF//nxef/11Ll68SFRUFJGRkbz22msEBwczbtw4wsPDyc3N5cEHH2Tw4MFMmTLllpRyvBYbGxt8fHzw8fGhvLwcjUZDZmYmKSkp2Nvb64OP9PR0srOzCQwMxM7OrsE+TExNCBjUjYBB3Zj8xjhSDqcSuyWeQ1tPkPvfp/hyU51ku48bmbYkN/JgaSTJW+74JjJP/dvYW1MiUzZVrryto7tKNjG+jY0thkZyVK625F1xc66r0ZF2LBWArv188bBW4ujtSmFpFRkX6wIj6zYWFObLBHBGSthqZbZxdrWjRDYn5fq7jxvN7ZDrfaGAkiLDow72jjayIzB1N79172uZtpILx+qmrClNFZg4WNKjkysabXmDAEOlspLtMO7gYCMbcJgaSYT38XZGp9ORkJBASUkJQUFBt/U0oMrKSrKzs+nevTtOTk76pPNz585hbW2tn475d/ParlReXs6ECRPQ6XRs2bKlUQd2QRCE213ruwtsJu+88w4DBgzA2toalUrVpG0kSWLx4sV4eHhgZWVFaGgoZ882LHuan5/PpEmTsLOzQ6VSMX36dEpKDP+jfSdRKBR4e3szd+5c/vrrL9LS0nj00UfZunUr3bt3Z9CgQXh7e7Nw4cIW7QB8o6ysrOjQoQP9+/dn4MCBuLu7o9Fo+Ouvv7h06RIeHh7XHKFRKpX439OR6Usf5oujb7Fs6zwefikMJw97g+vLNa+zsZd/sik38iAXPKhcbGWf7ldXGk5udnCzM7gcoFxmjr+do/wNklzwZGIu/7koKy4n60wWidtPkLE/GVVNBd06u9Cxqxsmpoa3q6k1fENvbmEq27fDykhzvFKZnhPOLnayieHGcjuK5fItnGyoqZbrUyJ/414mk3tiolSQdiKLs3+lUpiQhRvQw9cZP29n3Fzlf7Zyo1cAFRWGP6sAHdo7curUKUpLS2/7YKOgoID4+Hi6dOmCp6cnFhYWtGvXjr59+zJ48GB8fX0pLy/n2LFj/PnnnyQnJ5OXlycbiDdFRUUFjz/+OGVlZWzZsgVbW9ubeEWCIAitw10zwlFVVcUjjzxCSEgI33zzTZO2Wb58OStXrmTNmjX4+PiwaNEiRowYQVJSkj4XYdKkSWRlZbFjxw6qq6uZNm0aM2fOZO3atc15Oa2KQqGgXbt2vPDCC3h6enLkyBHGjRtHbm4ugYGBdO/enYiICMLDw+nUqVOrD0AsLS3x8PAgJycHGxsbPD09yc/P58CBA9jY2Oi7nBtLflcoFHTq402nPt48/voYLiRd5uCWui7nl07X9WEoyjccmJqZGf61tLG3lm1GKBc82DvbypbevZE8DbmqWsZKy8rlozi7OaG5oDX42tXnrM0uRJtdiJe/K0p1Ab59fFC2sW6Q92GshG2mgX4UIJ9QD8h2GDfWfVwut0OhlM/tcHK1oyDX8AiMXGNIkG9+6OKuanC9WnUJWnXdZ83P34WuHnaY2FqRoS5qkHReJRNEAeTKNANU2VuRcek8ZWVlBAYG3tbBhlar5fjx43Tu3Jm2bds2ev3KBqRXluFOTEyktra2QdJ5U6ePVlVVMWXKFHJzc9m5cyf29oYfTgiCINzu7pqA48033wTg+++/b9L6kiTx8ccfs3DhQsLDwwH44YcfcHNzY9OmTUycOJHk5GRiYmI4cuQIQUFBAHz66aeMGjWKDz74AE9Pz2a5ltbqk08+YeHChaxbt46xY8ciSRJ5eXn88ssvREVF8e6779K5c2fCw8OJiIigW7durTL4qKqq4vjx45iamtK/f39MTU3x9vamurpaP70iLS0NKysrfU1/W1tbo9fi7d8Wb/+2THx1NJnn1RzceoJD20+Rd1WyL9Q1ZzTE0c1ONuCQCx5MLOQHMeVGS0xlcg3MLExlgxe5SzeWj4LMNqYWJrJd1lFAdVk1Z/efAf6b99HbGytXe/LyDR/H1siIkdwok8rJBq3MTbbx7uMyuR2udrJBirGO6qUlhoOoNraWsscydr1VlTVcSvpvE0EFtPdxQuWpQlteRYFMrlGbNhZo5XqiOFlQXl5+RwUb7dq1u+b6V5fhLioqIicnh9TUVH3Sef3UK7lclurqap588kkuXbrE7t27cXBwMLieIAjCneCuCTiuV1paGtnZ2YSGhuqX2dvbExwcTGxsLBMnTiQ2NhaVSqUPNgBCQ0NRKpUcOnSI8ePH34pTvyWWLFnCv/71L3bt2kX//v2Buqf8zs7OTJ8+naeeeorCwkI2b95MVFQUH374IR06dNAHHz179mwVeR5lZWUcO3YMe3t7unfv3uCczMzM8PT0xNPTk5qaGnJzc9FoNBw9ehRzc3N98GFvb280+PD0c+PB54fz4PPD0WTkc2jrCWK3nuBMXBo6nUSFzFQZYyMPcsFDRYXhm9I2KmvZZHJD3bMBnNxVZF803HCvSmaExVgZXbmpXq5tnchMNdz529K8Ya6KrkZHWlwqKlc7tJoiPLt44uDtivaKfh8mpvKfqzyZ/AhH5zayAYfcqIOx3A6VkVERufcbkO/b4WpLicyUL1Mj14vuimBSAnVqHurUPMzMlVjYWNCjsys1piZcvFxA+X9/Pq7OtrLlcl2cLAgMDLyt+0QUFhZy/PhxOnbs2KRg42pXV8IrLS0lJyeHrKwsUlJSsLOzw8XFhYqKCrp16wbUVe+bMWMGZ8+eZc+ePTg5OV3jKIIgCLe3W3+H10plZ2cDNGr05Obmpn8tOzu7UddZU1NTHB0d9evcLYYOHcqBAwf0wcbV6ivBTJkyhV9++QW1Ws2SJUs4f/48DzzwAL179+b//u//OHr06N+aD/13FBUVceTIEVxcXOjRo4fRAKh+ekWvXr0YNGgQnTt31o+M/Pnnn6SkpJCfn49kpJEagGs7R8bOHMK7m17iy6NvMfPdR3Bt72TwJllu5MHG3poymZtPa0vDVXUcjMzlL5d7qu4gX6FHLngxFiTJVe9qo5LfJldteGqUyrluelvm6UwSt8VzeX8SDrpK/Lu4YGFmYvD9tLG1lO1mbmmkSlaxzGiS8dwOI6MYMj87lYO1bJ6GtZGO4FUylczAWEBkTUlBOWcPXSRtfyqKjEI6O9nSs5M7DvbyP/f+/fxv+2Dj2LFj+Pn54eXldVP2aWNjg7e3N/369eO+++6jbdu2pKenM2DAALp06cLs2bN58MEHOXHiBLt27Wq2zuWrVq3C29sbS0tLgoODOXz4sNH1N2zYQNeuXbG0tKRnz55s3bq1wetNyWkUBEGQc1sHHPPnz0ehUBj9SklJudWneVcYNGgQHTt2bPL6dnZ2PPbYY0RGRqJWq1m2bBnZ2dmMHTuW7t278/rrrxMbGys7vehmy8/PJy4ujg4dOtC5c+frmuplYmKCq6srPXr0YNCgQfj7+6PT6Th58iT79u0jKSmpSYmljm72hE29j/nfzODb4+/w3IeP0XeoP6b/TUSulaly5GgkybuizPAogrFAQJsjM/XHUv7GMj9ba3C5sURkuepZZubyx6kskUkMN1DCtuByAUk7T5F19BwW+QV08XGgSzd3rP4bTDi5yifnylUQA2RL79o7ySfOl5cbDipAPghwcJE/P2OfT7nGgypHG9kpZE7ODXMHamt0XEzM4syf5yi7mIuniSm9/Fzx7eCE8opeMB39WqbzdnMoKirSBxvt27dvlmNYWFjQtm1bBg0aRFpaGgsWLGDXrl3s2bMHrVbLkiVL2Lp1KxUV8p+PG7F+/XpeeeUVlixZwrFjx+jduzcjRoxAozE8cnjgwAEee+wxpk+fzvHjx4mIiCAiIoKEhAT9OvU5jatXr+bQoUPY2NgwYsSIm37ugiDcmW7rKVVz587lySefNLqOr6/vDe27vtGTWq3Gw8NDv1ytVhMQEKBf5+o/4DU1NeTn57dYo6g7gY2NDQ8//DAPP/ww5eXlbN++nejoaB555BGsrKwYO3YsERERDBgwoFl6eWRnZ5OUlETXrl3/dt6NUqnUNxTr2rUrWq22QWKpi4sLbm5uODo66rsZG2LraMOwiSEMmxhCWXE5R3cmkhh7jrTEy1Re1bjtRqZayY2WWFiZUShTGlWOykU+MV0uyKqfAnU929jYWcnmqsj1+gDIy9ZSXVnD6X3JAJiYm+Db2xsnlzYUacsMTp0qlZlC5OhsS75M4ry5kdyOgnzD2zi4tKFApq+IlZFRlopyw4GkscaDji5tZMsDG5t2VlxYSl5WKXmXtQBYW5rQ3t8Tpa0F7b0cZbdrzYqKioiLi8PX17fZgo2r2dnZER8fj6mpKSkpKVy6dIlffvmFWbNmkZ+fz8iRI3nqqacICwv728f66KOPmDFjBtOmTQNg9erVbNmyhW+//Zb58+c3Wv+TTz4hLCyMV199FYClS5eyY8cOPvvsM1avXt2knEZBEARjbusRDhcXF7p27Wr060YTGX18fHB3d2fXrl36ZUVFRRw6dIiQkBAAQkJC0Gq1xMXF6dfZvXs3Op2O4ODgv3dxdykrKyvCw8NZs2YN2dnZfPXVV9TU1PDEE0/QsWNHnn/+eXbt2kV1tXxjs+tR3/SvV69eNz3JX6lU4ujoSNeuXbnvvvvo06cP5ubmpKSk8Mcff3Dy5EnUavU1R3Gsba24f3wQs5ZP5PtT7/Lql09x3/hArG3r8hnkggdjCdtyeQOO7irZ86iUeTpu7yz/JF6ujG79FChDykoMn7PKyEhOG2vD+7N3smlUwau2qpbUI+cpvaRBeyKVtnamdPd3x6OdSr9Onkww5OAsP4ohW1FKAWXFMiWIjZQTxshsvAKZpHpnNzvZ8zBWYreqUv4zWHbVqFJ1RS3nj11Ce0ZNRUXZNacNtjbFxcUcO3YMHx8fOnTo0CLH1Ol0zJ8/n5iYGHbu3EmnTp0YOnQon3zyCRcuXGDfvn1069ZN32zw76iqqiIuLq5B/qFSqSQ0NJTY2FiD28TGxjZYH2DEiBH69a+V03g9brfPiyAIN8dtPcJxPdLT08nPzyc9PZ3a2lri4+MB6Nixo768adeuXXnvvfcYP348CoWCl156ibfffptOnTrpy+J6enoSEREBQLdu3QgLC2PGjBmsXr2a6upq5syZw8SJE++6ClXNwdzcnFGjRjFq1Cj+9a9/sW/fPjZs2MDMmTOpqqpizJgxhIeHM2TIkOvuaixJEufPnycjI4PAwMBmL0d5dTfj4uJifTOxhIQEnJyccHNzw9nZ2eiceAsrc0JGBxAyOoDqympO/HmGhNgzpCZcory44c29sQaC5cXyyeRyimSejlsZaTooV0bX2DZ52YYbCNoYGcmRC6zMbEwN9RwE/tu1XZK4nJjB5cQMAJw7OOPZvR1FZbWUl+U2av5nYeSmvVTmva6reHX9uSJy+RuWVmYUyIxCGWs8aOxGr1Amn8ZOZS2b5+LkZs3hw4exsLBocsGEW624uFg/ddLb27tFjqnT6Vi8eDHR0dHs3bsXPz+/Bq8rFAr69OlDnz59bsrxcnNzqa2tNZh/KDfFODs7+5r5ivXL5NZpCp1O1yA3rra2Vj/SK0lSq/7sCILw99w1AcfixYtZs2aN/vv6P+579uxh8ODBAJw+fZrCwv/9Y/3aa69RWlrKzJkz0Wq1DBw4kJiYGH0PDoCffvqJOXPmMGzYMJRKJQ899BArV65smYu6i5iZmTFs2DCGDRvGqlWr+Ouvv4iMjOTFF1+kuLiYUaNGER4eTmhoKFZW8jemUPePXnJyMvn5+fTr16/Fu/oqFArs7Oyws7PDz8+P0tJS1Go1Fy5cIDExEUdHR32Xc2MjdGYWZvQY6Ee1TRG9Rj2GssSKQzGnOBRzEq2myGgDQa1MIGAmMy1IoVSQL9d0UGY6jrEyukqZRoUKEwVlhYZvtI3mg8icm7ObI7nphl8zlLSeezEXG2tzLiZn0saxDe16daDW1JT0i3lUVtQYzcPJlTkHR2db2YDDWK5Insx75+xmR8YFw1GUmZHGg+WlhkeoTEyV5MqM6Dg628gGHN17+zF48EDy8vLIyckhPj4ehUKBi4sLrq6uODo6torKc/VKSkqIi4ujffv2+Pj4tMgxJUninXfe4aeffmLPnj107ty5RY7bGkmSpP88vPnmm5w4cQKFQsHgwYN5/vnnRbAhCHe4uybg+P7776/Zg+PqJ4AKhYK33nqLt956S3YbR0fHu6rJX2tgYmLCoEGDGDRoEJ988gkHDx4kMjKSBQsW8PTTTzNixAgiIiIYMWJEo2CiuLiY7du34+npSb9+/RoEj7eCQqGgTZs2tGnTBj8/P8rKylCr1WRkZJCcnIyDg4P+6fHVozj1JXwdHBzo1q0bSqWSgEHdmPHOw5yOu0DigbMUqIvIyWhY2clYnoYkc0Pt6GZHXpbhG+oamcpMxsroylVzcnC1I1/mOHLTwIyV+DUxlb8Bz800XPHK6r8VoEryS0jZmwiAmaUZHft4Y2WmxNbeqlHXcGO5GMamMpUWGw6u2thZynYmb2Mn/5k1VmI3V6YEsIu7HdkZWoOv1UjyUxfbeTvpCya4urqi0+n0OUvJyclUV1fj7OyMq6vrdTXDaw71wYaXl9cN5/VdL0mSWL58OV9//TW7d+/G39+/RY7r7OyMiYkJarW6wXK1Wi2bW+ju7m50/abkNF5LfUAxduxYMjIyCAsLIzU1le+++w4HBwcmT57cpP0IgnB7aj2PnwThBiiVSgYMGMBHH33EuXPn2L17N35+frz11lt4e3vz2GOPsX79eoqKisjOzmbo0KF8/fXXBAUF3fJgwxBra2t8fHwIDg7m3nvvxdnZmezsbP7880+OHDnCxYsXKS8vp7i4WF/C19/fv8GTZKVSSbd+vjz84gi+OPQPVvw+jwfnPICnb135TaN5GuWGn4LbOcnnaciVdTVWRlduCpTRcr2lMlOWjGwj14HdzsmGapm8BUNPWqsrqjkXe5azexMoSbpABycL/Lt74PLfvBIHR/mcFGNTmeRyRZyMXJOJzOgQYDRIKZFJuLczUvbW2EPndj7ODb6/Mmdp4MCBBAUFYW1tTWpqKnv37uX48eNkZGRQVWX4M9ZcSktLiYuLo127do2mMzUXSZL45JNP+PTTT9m2bRs9e/ZskeNC3VTUwMDABvmHOp2OXbt26fMPrxYSEtJgfYAdO3bo129KTmNTLFy4kMuXL7N161bee+89vvzyS7y8vNi7d+91XKEgCLcjEXDcQvn5+UyaNAk7OztUKhXTp0+npES+2s6FCxdky/9u2LBBv56h19etW9cSl3RLKZVK+vXrx7Jly0hJSWH//v306tWLDz74gA4dOtCjRw90Oh1fffXVLX3a2lRWVlZ06NBBX8/f3d2d3Nxc9u/fz8GDB7G1taVdu3bXnIrg16s9kxeM5bM/F/LPXfMJmzqQDt0M5xgVyTS7M5ZrIFcJy1gZXbltLCzlj1MoM8XIaG6HzE22ykU+Zyc/33AOiZWtJSUFZUg6iYvxF0mKOU7O0TO4W4KzygIXdxuD3dPlRjHsVFay1bCsbeTfh0qZIEqhkC+xayyAMTYNy1RpODdKoYB2HeSb1dVPG+zYsSMDBgwgJCQEBwcHMjMz2bdvX4PguTmVlpZy9OhR2rZt26IjG59//jkrVqwgJiaGvn37tshxr/TKK6/w1VdfsWbNGpKTk5k1axalpaX6qlVTpkxhwYIF+vVffPFFYmJi+PDDD0lJSeEf//gHR48eZc6cOQANcho3b97MqVOnmDJlSoOcxmvRaDRcvHiRKVOm4OHhQW1tLfb29jz44IMkJiZSVVV1y3owCYLQ/Fr/XdcdbNKkSWRlZbFjxw6qq6uZNm0aM2fOlJ2i5eXlRVZWVoNlX375JStWrGDkyJENln/33XcNyiuqVKqbfv6tmVKpJCAggICAAB599FFCQ0Px8vKiurqaHj16MHjwYMLDwxkzZgzOzs6tfv6whYUFXl5eWFpaotVqcXd3p7q6mtjYWGxsbHB1dcXNzQ0bGxuj19KhqycdunoydsYQstJyiN0az6HfT3L2+EWUJgoKNIYDAbmcC2OVsOS0sbempNDwFCg55pby08BMjUybkgtsrG3liwyYYjhQsnduQ7mB0Zzss9lYWEBOQjYqd3s8urenUlJwMS2X2hqdfH6Eqx1FWsPvnbGfYaFM8r6jq61sZ3JjAUxNtfxNnlwJYGc3eyyMBJRXs7Gx0TfEq6ysRKPRkJOTw9mzZ/WfX1dXV9q0aXPTfhfrRzY8PT3x8/Nrkd9xSZL4+uuvefvtt/n9999lG6E2twkTJpCTk8PixYvJzs4mICCAmJgYfdJ3enp6g1HRAQMGsHbtWhYuXMgbb7xBp06d2LRpEz169NCv05ScRmOsra0ZNGgQQ4YMAdAni1tYWFBQUICJiUmjnB+RSC4Idw6FJGrU3RLJycn4+/tz5MgRgoKCAIiJiWHUqFFkZGQ0ucpVnz596Nu3L998841+mUKhYOPGjU1+8nQn+/PPPxk3bhyvvPIKCxcuBODcuXNERkYSHR1NfHw8AwcOJDw8nHHjxuHm5tZq/4HLysoiKSmJHj166G8cqquryc3NRaPRkJubi6Wlpf7mzc7OrsnXknu5gKM7E/hr8zFSDqeiuyqZuXNfb84cu9Bou3Yd3cg4p260HMCvlxfnT15qtNyrkzuXzhqubNOxd3vOnWhcGtTdx5nsNMP5IF37+ZByJK3RcmO5Hf73dCTp4DmDr8n1+3Dzc0B93vDoh6uPA5q0hq9Z2Vnh28+PahMz0tPzqbiqrHC33l4kn2j8/gD4dnEj9XTj99XUTIlOJzWqngXg19Wd8ymG31f/AC+S4g0fy8PLkaxLjfNZrGzMZRPN+4b4svCjCQZfux5Xfn7z8vIwNzfXJ52rVKob/l0sKyvj6NGjuLu706lTpxYLNtasWcP8+fP59ddfGTRoULMf83ZTVVXVqBDGzp07eemll4iLi8PCwoIDBw7w/fff8+WXX96isxQEoTmIKVW3SGxsLCqVSh9sAISGhqJUKjl06FCT9hEXF0d8fDzTp09v9Npzzz2Hs7Mz/fv359tvv70ra5//8ssvjBw5kmXLlrFo0SL99LJOnTqxYMECDh8+zJkzZxg9ejQbNmygS5cuhIWFsWrVKjIyMlrVe5aenk5ycjIBAQENSlOamZnh4eFB7969GTx4MB07dqSiooK4uDj++usvTp8+jVarvea1OLd1IGzqfbwd9SJfH1vKM+9PoPf9XfQVqORu3I01HZQro4uZ/LkUaw1vY6uSryRWJpNDYiwfpLbGcP6GseaCTs7yTe5qKxqPEpQXlVOSmceZ7cepTs3Az8OGbv7u2P83t8XYPXBBruH3wcXN3mCwAXXlcuXINQo0Ng3L2Ujfk7bezrKvXY8rP7+DBg2iS5cu1NTUcOLECfbt20dSUhI5OTnXNdWmrKyMuLg43NzcWjTYWLt2La+//jqbNm0SwcZ/Xf1zMzc3b9R3qL4kuYWFBQcPHmTEiBG4uLi02DkKgtAyxJSqWyQ7OxtXV9cGy0xNTXF0dGxyXfNvvvmGbt26MWDAgAbL33rrLYYOHYq1tTXbt29n9uzZlJSU8MILL9y0878dWFpa8uOPP8qO9CgUCnx8fJg3bx5z584lIyOD6OhooqOjeeONN+jbty8RERGEh4fToUOHWzLycT39QkxMTHBzc8PNzY3a2lry8/PRaDQcP34cpVKpn3alUqmMlitVudgx4ol7GfHEvZRoyziy/RRHdyaSczm/URK2XKlaY2V0JQzfPCoUyFaoMrOQ/1Ml17Hc2kg1J9mkdTc72YBDLmhTKCFf5qbdqk1dQFZbVcv5Q/8dUVEo8OreDitTBW4e9qivumZLKzPZxn62KmuyMgyPstTKBCKAbN8OJ1dbcmWmYdkY6ZXSzls+f+NGmZiY4OLigouLi77iVU5ODikpKU2ueFVeXk5cXByurq507ty5xX5nIyMjefnll4mMjGTo0KEtcszW7soeGydPnqSmpgY/P79Gf8Py8/MxMTFh//79jBs3jueee4533nnnVpyyIAjNSAQcN9n8+fNZtmyZ0XWSk5P/9nHKy8tZu3YtixYtavTalcv69OlDaWkpK1asuOsCjhEjRjR5XYVCgZeXFy+++CIvvPAC2dnZbNy4kejoaBYvXkzPnj31wUfHjh1b7KlpSkoKOTk5BAUF6RtUNsWVN2/dunWjoKAAtVrNqVOnkCQJFxcX3NzcrtkroY3KmiGPBjPk0WDKSyqI25XIwa0nOLY7iYoy+SRPY2V0ra1sgJxGy1Wu9rI5F3Jdty2szWVHUkzN5P+8yeWq2Bip2FReYngkxcnDgdzLhoMApdLA50SSuJRwiZKcQgrURbj6uuLS0YPiilouXczDxd2OS2kyfTbM5H9WpTLnZyyAsXewlg045PJ2ALxu0giHnPqKV46OjnTu3FnfKDMtLY2EhAQcHR1xdXXFxcVFXy66vLyco0eP4uLi0qLBxqZNm5g9ezbr1q1rkDd3N9PpdPpg47HHHuPYsWPU1NRQWVlJdHR0g9wWKysrUlJSuP/++3nxxRd5//33b9VpC4LQjETAcZPNnTuXJ5980ug6vr6+uLu7o9FoGiyvqakhPz9ftlb6lSIjIykrK2PKlCnXXDc4OJilS5dSWVl53R2570YKhQIPDw9mz57NrFmzyMvL45dffiEyMpJ33nmHLl26EB4eTnh4ON26dWuWGxudTkdCQgLFxcX069fvms0MjVEqlTg5OeHk5IQkSWi1WtRqNUlJSdTW1urnzDs5OelvEgyxamPJwPBABoYHUlleRfwfKSQcOEv66axGIwZ2TrayAUdlmeG8AHsnG9mA4+r8h3qO7vZkpTYOXgBqqo1Mm5IZ4TDWt0OuiaGdUxvZgCMv13CvDzMLU7T/7YuhSdWgSa37W2Dnao+bQzvMzVxJT8uj+qpruPr7K+Vmy0+NkmsUWFVlOEgBqKow3oOjpVzZKLNjx46UlZWh0WjIzMwkJSUFe3t7fQUsFxcXunTp0mLBxm+//caMGTP497//zdixY1vkmLeD+ocYjz76KOfPn2fdunV06NCB4OBgIiIi+Ne//kV4eDhQ1zfE0tKSF154gaVLl97K0xYEoRmJgOMmq3+qfC0hISFotVri4uIIDAwEYPfu3eh0OoKDg6+5/TfffMO4ceOadKz4+HgcHBxEsHEDFAoFzs7OTJ8+naeeegqtVsvmzZuJiorigw8+wNvbm3HjxjF+/Hh69OhxUzor19bWcuLECaqqqujXr5/RbuPXS6FQ4ODggIODA126dKGoqAi1Ws2ZM2eoqqpqcqM2CytzgsN6ERzWi6mLIjj512kObj3B4ZiTFOWXGi2jq80xfGNsaWQKT5HME/o2NzAioTIybUpXa3jExszCVLZKloWRxn5KyfB76OBmhya9cTBSpCmkPLuA8wfPYWFjQec+PihsrLh0qYCykkrZqlYqB2u0BYbzbNoYybNBIf95lRsVUTnZGN9nM7O2tsbb21tf8SozM5PU1FT9NKzU1NSbXvHKkG3btjFt2jS+/fZbHnzwwWY7zu3q119/JScnhw0bNuDr68ubb75JWVkZQUFBPPbYY/znP/8hPDycdu3aER0dzbBhw271KQuC0IxEwHGLdOvWjbCwMGbMmMHq1auprq5mzpw5TJw4UV+h6vLlywwbNowffvihwRD0uXPn2LdvH1u3bm20319//RW1Ws0999yDpaUlO3bs4N1332XevHktdm13qvqb9alTpzJ16lSKior47bffiIqKYtiwYXh4eOiDjz59+txQ8FFdXa3PuQgKCmrWfiEKhQJ7e3vs7e3p1KkTJSUlqNVqUlNTSUxMxMnJST9txcxMPiHZ1MyEvkP86TvEn2fen0DyofMkHTpP9sVcCq7KbTDW5VyuoZ2xcr3Gen3I5XYY69tRXmz4ht7R3R71RcOjBMZuaeV6h2AiP1JRU12XJ1NZWsmZv1LqVjczwa+PN5YqSyrKbNBeNY3MwcVWNuAwMZE/Q0ln+D03MzeRzfto18zTqa6HJElkZmbi4eFBp06dyM3NJScnhyNHjty0ileG7NmzhyeeeILVq1fz6KOP3rT93inq8zUef/xxfH19Wb16NV9//TU//vgjISEh9OnThyeffJIPP/yQp556SgQbgnAXEAHHLfTTTz8xZ84chg0bhlKp5KGHHmLlypX616urqzl9+jRlZQ1vJL799lvatWvH8OHDG+3TzMyMVatW8fLLLyNJEh07duSjjz5ixowZzX49dxs7Ozsef/xxHn/8cUpKSvj999+Jjo5m9OjRODo6MnbsWMaPH0+/fv2MTlWqV1FRwfHjx7GysqJnz55N2uZmUSgU2NraYmtrS8eOHSkpKUGj0ZCenk5SUpJ+zryrq6vRERcTEyU9BnSiY18v2va3peBSKblnSjn0+0nU6Xk4uqvISjM8BUquK7iju0p2ypLciISx3A4zY7kdMgGCwkhlLbmpRzb21pTK9BtxdHFCk2Y4iCoxMN2rtroW7aVc8g6fB4WCtv5tUXk5k6etJDtTi5WREaXKCsPvKyCbv+Hibk+mgREYMN7wryVVVlYSFxeHSqXST2308PDQN5WrL5pw4sQJAH3w4ejo+Ld+t/78808mTpzIJ598wuTJk1ttGe2W9Pvvv+t7Qb344ov079+fSZMm0a5dO6qrq4mOjuaFF15gyJAhlJWV0bVrV5ydnUlISLjFZy4IQksRfTgE4SYrLy9n27ZtREdH8+uvv2Jtbc24ceOIiIggJCTE4KiFRqPh9OnTODo60q1bt5syNetmqZ8zr9FoKCoqQqVS6YMPQ02/6isFOTg4NLiW1IRLnNx3mt0/HyLjbOMeE207unHZQE8P317tSD2ZYfDcfHq0Iy2h8Wsevi6yuR1d+/mSciS10XILa3PZ/JIOPT24eCrL4Guu7Z3QpDce/WjX2Z2MM4YrznXr70fy4fMGX7OwNqOyrHEQI3etLt4u+AT6kp1bSsbF/EY9VFzc7cgxkN+hcrJBK9NZvkuPtpxOuGzwtRlzhzPy4UCDr7WU+mDDzs6O7t27G73pr89bqv8MX1nxysnJyejo3dViY2MZP348y5Yt49lnnxXBBpCWlsa9995Lz549cXFxYfv27Rw7dox27doBdRUZAwMDee+995gyZQqXL19m0qRJfPXVV3Tq1OkWn70gCC1FjHAIwk1mZWVFREQEERERVFRUsGvXLqKjo5k0aRImJiaMHTuWiIgI7rvvPszMzIiNjeWRRx5h1apVDBw4sNXdxFw5Z76iokJ/43bmzBns7Oz05XatrKwoKSnh2LFjuLq6Nkre9e3hhW8PLyJmh5JxNpvYLSc4uDWetMS6G1u5hHFLK/nco0KZTtg3ktvh6GYvO/piLZO0r1BAfrbW4GvGpm5Vllca3sbIqIhcXkzOhRzatLEgPSEDOxc72vZsT5XShPS0PCQk8mRGbRyd28gGHKZm8iMALZkwbkhVVVWTgw1omLdUX/EqJyfHaMUrQ44ePcpDDz3E22+/LYKNK3h5ebF27VpGjx6NUqnk1KlT+pENMzMz3N3dCQ0NZfbs2fzxxx9s27aNAQMGiGBDEO4yrecxqnDL5efnM2nSJOzs7FCpVEyfPp2SEsPzuOsNHjxY31Cv/uvZZ59tsE56ejqjR4/G2toaV1dXXn31VWpq5Kd53EksLS0ZPXo033zzDVlZWfz000+Ympry9NNP4+vrS3h4OGPGjOGJJ54gPDy81d/EWFpa0r59e4KCgrj//vvx9PQkPz+f/fv3s3//fg4dOoSzs/M1KwW16+TOIy+N4MPtr/P5gcVM+8d42nVyv67rNzFTyuZpGO3bIXMDbusgH6TIVclycLOnpspwPkZ900RDCmUSsh2MNNsrLDJ8rfC/pPqinCKSdydwfucJlNk5+Ps54dfRBQvLxgGEpZFk9+oq+d/Pm9X070ZUVVVx9OhRbG1tmxRsXK2+4pWfnx8hISEMGDAAR0dHMjMz+fPPPzl8+DAXLlwgP7/hdLL4+HjCw8NZuHAhzz//fKv/PW0pkiRhamqKqampfsratGnTqKqqwszMjMrKusD6s88+4/nnn6e8vJwnn3ySn3/++RafuSAILU1MqRL0Ro4cSVZWFl988QXV1dVMmzaNfv36sXbtWtltBg8eTOfOnXnrrbf0y6ytrbGzq7txqq2tJSAgAHd3d1asWEFWVhZTpkxhxowZvPvuu81+Ta1VTU0Ny5cvZ8mSJdjY1HXRHjVqFBEREQwbNuxvlcG9FXJycjh58iRWVlaUl5djZWWlH/m4nmpBuZkFHIo5yaGtJ0g6nIquVkfHgA6ci7/YaF1XL0c0lwznGXTr70vy4cbTpswtzWRzLrrf05HEg+cMvubkqSIvU9toudw0J4AuQT6cPprWaLmJqRJJMpx/IrdN3bHakmZgmpOJmRKpVmo0lQrAr7cX509cQmmqpEOAN1bO9mRmF6PNL6Vbby+ST1wyeCy3tirUl7WNltvYWvLv7S8b3Ka51Y9s2NjY3LSKcFeqrKwkJycHjUbDq6++ilqtZvjw4QQGBvL6668zb948FixY0GLBRn5+Ps8//zy//vqrPsfvk08+ke3Hk5+fz5IlS9i+fTvp6em4uLgQERHB0qVLGzTbM3T+//nPf5g4cWKTz02n0zV4/3U6HQUFBSQnJ/PMM89gb2/Prl279H/HdDod1dXVolKiINzFxAiHANQ1I4yJieHrr78mODiYgQMH8umnn7Ju3ToyMzONbmttbY27u7v+qz7YANi+fTtJSUn8+OOPBAQEMHLkSJYuXcqqVauoqjL81Phu8J///Id33nmHdevWkZeXx5YtW3B3d+f111/Hx8eHqVOnsnHjRkpLDU95aU3y8vI4deoUXbp0YcCAAQwaNAhfX19KS0s5fPgw+/fv5+zZsxQWFsp2667n7OnA6KcG8VbkC3xzfCmzlk/Ew9vZ4BQfWwcb2f1UlBqesuTkoZLdRq6JoYmpslG1rXrGyv+WyZTedXS3l012NzYqUlZseCqYtcrSYLABUFFVdw66Gh1pR1NJijmO9sR52tqaYG0G7p6qRtsolQpyZa73ViWMN3ewAWBhYUG7du3o27cv69ev54UXXiA+Pp6ZM2ciSRIajYY///yT2lr5CmM306RJk0hMTGTHjh389ttv7Nu3j5kzZ8qun5mZSWZmJh988AEJCQl8//33xMTEMH369Ebrfvfdd2RlZem/IiIimnxeVwYbO3fu5N///jfR0dGUlpYycOBAPv/8c8rLyxkyZAhFRUXU1NQwbtw41q9ff93vgSAIdw4xwiEAdZWv5s6dS0HB/6oB1dTUYGlpyYYNGxg/frzB7QYPHkxiYiKSJOHu7s7YsWNZtGgR1tZ101MWL17M5s2biY+P12+TlpaGr68vx44do0+fPs16Xa3RJ598wqJFi4iOjiY0NLTBazqdjqNHjxIVFcXGjRu5fPkyDzzwABEREYSFhTUI5loDtVpNQkIC/v7+eHh4NHq9traWvLw81Go1ubm5mJqa6hPOr6dUaWlhGUd2JHBw6wni/0ihqqIa/3v8SDpoOPHa0d2e/OzGOSEd+3Tg3PHGoyUA7bt6kJ7SODHcpZ0DORmGq2T539ORJJlRkTYqa0q0jfMx/Hp5cf6k4ZEFuREOhaKuc7qhqU5yIx8AHXp4cDHBcLK7vbMthbnFuPq44tLpik7nHio0BkZzAIaN7c1zb4wy+Fpzqa6uJi4uTl+9raUKKpw5c4aRI0cyadIkBg0axC+//MIvv/yCQqHQl78ePnz4dSWdN1VycjL+/v4cOXKEoKAgAGJiYhg1ahQZGRn60unXsmHDBiZPnkxpaam+WIVCoWDjxo3XFWQY8o9//IOvv/6aLl26kJWVhb29Pa+99hrjx49nz549vPbaa5w/f54OHTqgVCqJi4v7W8cTBOH2JkY4BKCukoirq2uDZaampjg6OpKdbbjSDsDjjz/Ojz/+yJ49e1iwYAH//ve/mTx5coP9urm5Ndim/ntj+71TFRcX8+OPP7Jz585GwQbUdejt378/y5YtIyUlhf3799OjRw+WL1+Ot7c3jz76KD/99BNarfaaowXNLTMzk4SEBHr27Gkw2AAwMTHB1dWVnj17MmjQILp27UpNTQ0nTpxg3759JCcnk5eXJzu6UM/G3prBD/dn/rcz+O7ku8z915P49fTC0qbxFA1TcxPZ3A4LC/mbwzy14aDCztHwFBaA6krD07OsbC0NBhtgvFGg3KiIysVeNq/CykjDRLkE+bp+KP/tdJ6mIXH7CdL3JWBbXoaXmw1+nVwNjiq1dMJ4fbBhaWnZosFGamoqY8aM4bHHHmP58uWMHTuWr7/+muzsbCIjI7G1teX1119vtly02NhYVCqVPtgACA0NRalUcujQoSbvp7CwEDs7u0aV8Z577jmcnZ3p378/33777XX/Lfn5559ZvXo1P/30E7t27WL27NkcP35cf5zBgwcTHR3NG2+8waRJk0SwIQiCqFJ1p5s/fz7Lli0zuk5ycvIN7//KIf76G89hw4Zx/vx5/Pz8bni/dypbW1sOHz7cpCf7SqWSgIAAAgICWLp0KUlJSURGRvLZZ5/x3HPPMWTIEH3SuZOTU4smsl66dImzZ88SEBCAk1PTbkKVSiUuLi64uLjou0LXj5BIkqRPOnVycjJ6Y2llY8G94/py77i+TJo/lvh9KRzccoKjOxMo0Zbh6K4yWKYW5KdNKUwUlBUanoZlYWTaVIlMsz1HNzsuy0yBMqZAJlCyd2kj2/wQI/eKFcWGpy3K9UMp0hRSodFy/uB5LNtY4Bvgg8LakvSL+ZSXVbVowFFdXc2xY8ewtLSkV69eLRZsXLx4kdGjRxMREcEHH3zQ4LgmJibcf//93H///c16Djf6AOhKubm5LF26tNE0rLfeeouhQ4dibW3N9u3bmT17NiUlJbzwwgtNPr+TJ08yatQoBg0axG+//cbChQv56KOPGDt2LMXFxWg0Gvz8/ETDWUEQ9ETAcYebO3cuTz75pNF1fH19cXd3R6PRNFheU1NDfn4+7u7uTT5ecHAwUNcN3c/PD3d3dw4fPtxgHbW6rtfC9ez3TnIjgYFCoaB79+50796dxYsXc/bsWSIjI/n222958cUXue+++wgPD2fs2LG4ubk1a/CRlpbGhQsX6Nu3LyqV6ob2oVQqcXR0xNHRka5du1JYWIharSYlJYXq6mp98OHs7Gy0SZu5pRn9h/ek//Ce1FTXknDgDImx59n5n1iDJXPlqk05utmRl3n9N/T5aq3B5TZ28hWvKssNn4O1nfyoiJWBkZx6ctdkZmFKcb7h/Umm8nkIutq6C64ouaLTubkJvr298WqhHI6amhqOHz+Oubl5iwYbly9fZtSoUYSFhbFy5cqbftzmfgBUr6ioiNGjR+Pv788//vGPBq8tWrRI//99+vShtLSUFStWXFfAUV5eTqdOnUhISODxxx9n6dKlzJ49G51Ox88//0xZWRnTp0/XT60VBEEQAccdrv6J8rWEhISg1WqJi4sjMLCuqdfu3bvR6XT6IKIp6nM16qfYhISE8M4776DRaPRP7Hbs2IGdnR3+/v7XeTUC1AUfnTt35o033mDBggWkpaURFRXF+vXrmTdvHvfccw/h4eGEh4fj6el504IPSZI4d+4cmZmZBAUFYWtre1P2q1AoUKlUqFQqOnfuTFFRERqNhnPnzpGQkKBv0ubi4mKwaWI9UzMTAgZ1I2BQNx57bRTJh1M5uPUEB7eeIC9LC/yvfOzVVC72sgFHpUxVK3vnNhTmGt6fmbn8ecp1QHdwtaesyPCoiMLIja/cNTl5qshOyzX4mq1dG7IxXOGrvKzxSE9tVS3pJy7g7GFvYIubq6amhmPHjmFqakrv3r1bLNjIzs5m1KhRDB48mM8//7xZjtsSD4CKi4sJCwvD1taWjRs3XjPHJDg4mKVLl1JZWdmoilRNTY3+dy4/Px8bGxssLCwYPHgw4eHh/N///R9fffWVPjG9oqKCn3/+mZ49e4pgQxCEBkTAIQDQrVs3wsLCmDFjBqtXr6a6upo5c+YwceJEfYLi5cuXGTZsGD/88AP9+/fn/PnzrF27llGjRuHk5MTJkyd5+eWXuf/+++nVqxcAw4cPx9/fnyeeeILly5eTnZ3NwoULee6550SJxJtAoVDg6+vLq6++yrx588jIyCA6Opro6Gjmz59PUFAQ4eHhRERE0L59+xsOPiRJIiUlhZycHIKCgvSlfG82hUKBvb099vb2dOzYkZKSEjQaDRcuXCAxMREnJyd98GFuLj/VSalU0v2ejnS/pyNPvfkg5+LTid0az+Ftpwyub2Epf1NWXGA4QFC52MkGHLUyVagUSgX5Mg0ObezlSyHL5YqYmCpl99dGZQMYDjhMTeT/9OdmGg5E3No7N/vNf/3IRksHGxqNhtGjR9O/f3+++uoro6Nqf0dzPwAqKipixIgRWFhYsHnzZiwt5fN76sXHx+Pg4NDg7/Hu3bvp1q2b/sHRmjVr+PLLL8nLy6Nnz55MnjyZf/7zn7z22mu0bduWnJwctFotr776KllZWfz222/XPK4gCHcXUaVK0MvPz2fOnDkN6r6vXLlSX/f9woUL+Pj4sGfPHgYPHsylS5eYPHkyCQkJlJaW4uXlxfjx41m4cGGDakoXL15k1qxZ7N27FxsbG6ZOncr7779v9Gm18PdIkkR2djYbN24kKiqKffv20atXLyIiIggPD8fPz6/JwYdOpyMpKQmtVktgYOAt6xFSWlqKRqNBrVZTUlKCg4ODvuLV9QSvh/ceZ9eGA1w+lU/m+bo8Bv9gP5IONa54pVCAiZmJweZ+Xfv5kHLEcM+MDt08uZjcuJy0k4c9eVmGA4TuIR1JjDVc8crD24WsC41zLuT6g4DxviLe/p5cSGp8fmaWptRU1WLoX4WgB3rwxnczDO7vZqgPNupzl5rrpv9qubm5jB49mq5du7J27dpmqTp1I0aOHIlardY/AJo2bRpBQUH6vkhXPwAqKipi+PDhlJWVsXHjxgYPBVxcXDAxMeHXX39FrVZzzz33YGlpyY4dO5g3bx7z5s3jzTffBCAhIYGxY8cyYcIE3njjDZKSkhgyZAhvvvkmJSUlpKens3btWl566SVsbW1588038fT0xMnJCSsrK3bu3ClGNwRBaEQEHIJwh5MkidzcXDZt2kRUVBR79uyhS5cu+uCja9eussGHTqfj5MmTlJeX07dv31YzKlVeXq4PPoqKirC3t8fNzQ1XV1ejT3WvTHZ3dHTk8jk1sVtPkHrqEge3nmi0vlx5XTAeIMhNtzLWKLBrkA8pMk3/LKzMqCxvPMrh6qNCk6Y1uI1c80MAlYutwY7rHj4uZF0wPCoSHO7PpAWjcXV1NTq6dCNqa2s5fvw4CoWiRYONgoICxowZQ4cOHfj5559v+nX9Hdf7AGjv3r0MGTLE4L7S0tLw9vYmJiaGBQsWcO7cOSRJomPHjsyaNYsZM2Y0GE36z3/+w4cffkhYWBhVVVXY2trqcz9yc3P5+uuvWbp0KVFRUbRt25a0tDScnZ0JDAxsNX8jBEFoXUTAIQh3EUmSKCgoYPPmzURFRbFjxw58fX31fQW6d++uv/EoKirimWeeYerUqQwbNqzVPPm9WkVFBTk5OajVarRaLba2tvrg48onrRcvXiQ1NZU+ffoYTHbXXMrj4NYTxG49wZm4C0iSZDRA6NzXmzPHLjRaLhccgPEgQK4PiFxwAODbuy2pJwz34PDp3pa0xMavGeu23rmvN2dk+pQ8NHcone71oKioCJVKpR9dasq0HWPqgw2oS2JuqWCjsLBQX2QhOjpa3ChfJTo6mhUrVqBWq5k6dSpLlizRv5aTk8OsWbNwcXHhX//61y08S0EQbheiD4fQquXn5zNp0iTs7OxQqVRMnz6dkhLD8+br13/++efp0qULVlZWtG/fnhdeeIHCwoZPqRUKRaOvdevWNffl3HIKhQJHR0eefPJJ/fSK//u//+Ps2bMMHTqUgIAAFi1axO7duwkNDeXSpUsEBwe32mADwNLSEi8vL4KCgrj//vtp164d+fn5HDhwgNjYWFJTU0lJSSE1NdVoZS1XLyfGPTOU9355ma/i3mLGO4/g18sLpYnhP5Olsp3EDe8f6nI45Mj1DlG5yDd7tLSSv9nXyuSXGOu2bmohP82xR1BX+vfvz8CBA3FzcyMnJ4e//vqLQ4cOkZaWRmmp4VwXY2pra4mPj0eSpBYNNoqLi3nwwQdxdHQkKipKBBsGPPjggyxZsoSSkhK2bNnCuXP/G81zcXHBzc2NxMTEW3iGgiDcTsQkeqFVmzRpEllZWezYsUM/j3nmzJn6ecxXy8zMJDMzkw8++AB/f38uXrzIs88+S2ZmJpGRkQ3W/e677wgLC9N/f6MlXm9n9vb2TJo0iUmTJlFSUsLWrVtZu3YtH3/8MWZmZkybNo3Tp0/Tr1+/FrsZ/DvMzc1p27Ytbdu2pbq6mpycHNLS0igrK8PS0pKcnBwUCgW2trZGc1gc3ewZ+eR9AExeMJbD205xcOsJTv51Wp/PUSCbrC0/f11uZMHSxly2epVlG/mb4UojJXHlAhhj5yfp5Ae8PXzqkp3rAzwvLy+qqqrIzc1FrVaTmpqKlZWVfuTjWu9xbW0tJ06cQKfTtWiwUVpayiOPPIKlpSUbN2782yM0d7KwsDDWrVvH888/zz//+U9eeuklOnXqBNRNrXJ2dqa6urpVP5AQBKF1EFOqhFYrOTkZf39/jhw5ou+4GxMTw6hRo8jIyNBXz7qWDRs2MHnyZEpLS/WJ6gqFgo0bNxIREdFcp39bysjIIDQ0lJ49ezJhwgR++eUXfvvtN2xsbBg3bhwRERGEhITcFsGHJEmcPXuWrKwsAgICqKioQK1Wk5ubi7m5uf7G2N7evskJ9KVF5RzdmcCxXUkcijlpMIAwlqzt3sGZ7IuNcyQ8fV3ITG2cFH6t/bm0cyAno3GHdHdvZ7JlcjGM5Z54d29rOJncwpT/nF1htGpUTU0Nubm5aDQacnNzMTMz07/HKpWqwXtcH2zU1NTQt2/fFisgUV5ezsMPP0x1dTW///77TSvtfKfbvXs3c+bMQafTce+996JQKNiyZQsHDhzAx8fnVp+eIAi3ARFwCK3Wt99+y9y5cyko+N8NVU1NDZaWlmzYsIHx48c3aT9ff/01CxYsICfnfzd0CoUCT09PKisr8fX15dlnn2XatGkt2q27tTl//jzDhg3jgQceYPXq1fqgoqKigl27dhEVFcXmzZsxNTVl7NixREREMHDgwFb5dFOSJE6fPk1OTg6BgYENcjlqa2vJy8tDo9GQk5ODiYmJ/sbYwcGhyZ+ByvIqju1O4uDWui7n5SV1/SuM5WmYWZhSXVnTaLlcPghAp74dOHuscV6F0kSBQqmktrpxBa1OAe05G59ucH9d+/uSIpdM7mZvcGSkXSc3Vu55w+A2htTW1pKfn69/jxUKhX4ajr29PadOnaK6urpFg42KigomTpxIUVER27Ztw96++XuK3EkOHjzIY489BsDs2bOZPHmyvmyuIAjCtYgpVUKrlZ2drW8WWM/U1BRHR0eys7ObtI/c3FyWLl3KzJkzGyx/6623GDp0KNbW1mzfvp3Zs2dTUlJyXd127yRarZb77ruPxx57jA8++KDBTbelpSWjR49m9OjRVFdXs3fvXiIjI3nqqaeora1l7NixhIeHM3jw4FZR5UeSJJKSkigoKCAoKKhRGd8rAwydTqe/MT558iSA/jVHR0ejT/QtrMwJGR1AyOgAqiurObHvNAd/P8Hl8xqD66tc7WSnOZmZy48YFeUbzsVwdFeRe7nx6AaAmaX8z6GipHFjP6hLJi+USU6vn07VVCYmJvqeEzqdDq1Wi0ajITExkaqqKkxNTencuXOLBfiVlZU88cQT5Ofns2PHDhFs3IB77rmHn376iTfffJPp06fj6Oh4q09JEITbiBjhEFrc/PnzWbZsmdF1kpOTiY6OZs2aNZw+fbrBa66urrz55pvMmjXL6D6Kiop44IEHcHR0ZPPmzUafxC9evJjvvvuOS5cuNf1C7jAHDhwgJCSkyTeBNTU1/PXXX2zYsIFNmzZRVlbGqFGjCA8PJzQ09JbMjdfpdCQmJlJUVERgYOB1nUN9BS+NRoNGo6G2thYXFxdcXV1xcnJq8jSy2ppaEg6c4+DWeA5tO6UPMuR6X4DxUQczCxOqKxuPYvj2bEfqKcMVtLoF+5FsoK8I3FhJ3LEzBzNtcdNGFOXodDpOnDhBeXk5jo6O5ObmUllZqe8k7+zs3CyjZdXV1UyZMoULFy6we/dunJycbvox7iYVFRUi70UQhOsmAg6hxeXk5JCXl2d0HV9fX3788ccbnlJVXFzMiBEjsLa25rfffrvmP5BbtmxhzJgxVFRUiIo1N6C2tpbY2FiioqLYuHEj+fn5hIWFERERwQMPPNBsncmvpNPpOHXqFGVlZX+7Z4gkSRQWFup7fVRXV+Ps7IybmxtOTk5Nngak0+k4fTSNg1tPkJ2ey5FtCQbXkwtGrGzNKS82nBgu16wQjJfEra6swdCffWMlcZ957xFGPDHQ4GtNUf+zKS8vJzAwEDMzMyRJorS0FLVajUajobS0FEdHR/0I080YLaupqWH69OkkJyeze/fuRiOmgiAIQssQAYfQatUnjR89epTAwEAAtm/fTlhYmNGk8aKiIkaMGIGFhQVbt25tUtfbd955hw8//JD8/Pybeg13I51Ox5EjR/TBR2ZmJsOHDyc8PJyRI0c2S6JubW0tJ0+epLKykr59+97UqV2SJFFcXKwPPioqKnBycsLNze26n8qfO5HOwa3xxG45QVba/3KK5EYdPP1c9N3Qr+Z/jx9JBw0HHHINCz18XBoct8H+QjrK7u8f62bTa2AXg69di6Fgw5CysjL96FJ9M8f64ONGutvX1tby7LPPcuzYMfbs2YO7u/sNnb8gCILw94mAQ2jVRo4ciVqtZvXq1fqyuEFBQfqyuJcvX2bYsGH88MMP9O/fn6KiIoYPH05ZWRkbN25s8GTdxcUFExMTff+Je+65B0tLS3bs2MG8efOYN28eb7755q261DtS/TSayMhIoqOjuXDhAqGhoYwbN47Ro0dfV4UoOfW9HGpra+nTp0+zJ7GXlJTog4/6p/Jubm64uLhcV6BzMSVTn3CeejLD4KhD136+pBwxPNXKr3d7zp9onBhuZmFKTVWtzChGB84YSECH/07DkpnW9cWhJbi0vf45+zqdjoSEBEpLSwkMDGzy+1PfzFGj0VBQUECbNm30zRybMlpWW1vLCy+8wF9//cXevXtp27btdZ+7IAiCcPOIgENo1fLz85kzZw6//vorSqWShx56iJUrV9KmTRsALly4gI+PD3v27GHw4MHs3buXIUOGGNxXWloa3t7exMTEsGDBAs6dO4ckSXTs2JFZs2YxY8YMo0nCwt8jSRKJiYlERkayceNGUlJSGDJkCOHh4YwZMwZHR8frDj5qamoadKluqYpH9eqfyqvVaoqLi1GpVPrg43rmuWemajj4+wn+2hzHhYT/Ta3qfo8fiTKjDq5ejmguNR6Rc2vvhDrd8JRFY6MiciVxzS3M+M+5Fdf9s7nRYONq9f1UNBoNeXl51+z1odPpeOWVV9i5cyd79uyhQ4cON3RcQRAE4eYRAYcgCC1OkiTOnDlDVFQU0dHRnDhxgvvuu4+IiAjGjh2Lq6vrNW9wq6urOX78OCYmJgQEBNzy3iAVFRX64KOwsBA7Ozv9U/mmTAnKzc3l5MmTuDl4kno0i4NbT6Cr1XE67kKjdRVKBSamSn0Twit1DGjPOZmSuMZK9qpc7QxO6/Lq7M4nuxdc8/yvJEkSCQkJFBcXExQUdNOmuNXU1DQoaWxmZkZiYiLe3t6EhoaiVCqZP38+mzdvZu/evfj6+t6U4zZFfn4+zz//fIOHI5988on+4YghgwcP5o8//miw7JlnnmH16tX679PT05k1axZ79uyhTZs2TJ06lffee6/Fg2tBEIS/QwQcgiDcUpIkkZqaqs/5OHr0KCEhIYSHhzNu3Dg8PT0bBR9qtZrk5GTs7e3p1avXLQ82rlZZWanPR2jKlKCcnBxOnTqFv79/g1yDAk0Rh2NOErv1BImxZ6mt0QHg7KkiN1Nr8NhGRzH823IhSSaZXGYaVv8RPZn/zdNNuWzgfyNZ9ZXCmqsIg06nIy8vj7feeovIyEiUSiWurq7k5ubyxx9/0KNHj2Y5rpyRI0eSlZXFF198oZ/+2a9fP/30T0MGDx5M586deeutt/TLrK2tsbOzA+qmhgUEBODu7s6KFSvIyspiypQpzJgxg3fffbfZr0kQBOFmEQGHIAithiRJXLp0iejoaKKjozlw4AD9+vUjPDyc8PBw2rdvT0ZGBiNHjmT48OF88MEHrX4aXFVVVYMpQTY2NvopQW3atNGPbPTo0QM3NzfZ/RQXlHJkewIHt8ZTmF9isBkgGK9eJdcLxFhJ3PBnhjJ1UXgTrvR/PVC0Wi1BQUEtVvGtsrKSp59+mt9//x17e3vKy8sZM2YMDz74ICNGjGj2Kmn1BS6OHDlCUFAQADExMYwaNcpogYvBgwcTEBDAxx9/bPD133//nTFjxpCZman/bKxevZrXX3+dnJycVtH3RhAEoSla97/UgtBKrFq1Cm9vbywtLQkODubw4cNG19+wYQNdu3bF0tKSnj17snXr1gavS5LE4sWL8fDwwMrKitDQUM6ePducl3BbUCgUtG/fnpdeeok//viD9PR0Jk+ezPbt2+nVqxchISHcc889tG3blvfee6/VBxsA5ubmtG3blj59+jB48GC8vb0pKSnh8OHD7Nu3j/j4eHx9fa9ZstXWwYahE4J5Y80zLPnPbF5eNZWQ0QFYWje86Swvvf7Gfm0c5G/I3X2cr3GFda4MNppzZMPQcf/5z3+yb98+Dh06RGZmJjt27MDLy4sFCxbg4uLC+PHjKSxsXLXrZomNjUWlUumDDUA/xevQoUNGt/3pp59wdnamR48eLFiwgLKysgb77dmzZ4NAdMSIERQVFZGYmHjzL0QQBKGZtP5/rQXhFlu/fj2vvPIKS5Ys4dixY/Tu3ZsRI0ag0RjuKH3gwAEee+wxpk+fzvHjx4mIiCAiIoKEhP/1YFi+fDkrV65k9erVHDp0CBsbG0aMGEFFRUVLXVarp1Ao8PT05LnnnmPXrl0cOnSI7OxsrKysOHjwIIMHD+b9998nJSXF4FSg1sjU1BQPDw969+6Nv78/1dXVqFQq0tLS+Ouvvzh9+jRarfaa12Pdxor7IgJ59cun+O7ku7z29XQGPRiEtZ0VhXmGgwonD5Xsfs0t5PMBPJvQZVySJJKTkykoKLjuhot/hyRJfPzxx3z22Wds376dnj17olAo6NevH++99x4pKSkcPXqUgQMH6qcpNYfs7OxGAaOpqSmOjo5kZ2fLbvf444/z448/smfPHhYsWMC///1vJk+e3GC/V4961X9vbL+CIAitjcg6E4Rr+Oijj5gxYwbTpk0D6qY0bNmyhW+//Zb58+c3Wv+TTz4hLCyMV199FYClS5eyY8cOPvvsM1avXq2/SVq4cCHh4XVTVX744Qfc3NzYtGkTEydObLmLu02cP3+e8ePH88gjj7By5UoKCwv55ZdfiI6OZvny5fj5+TFu3DjGjx+Pv79/qx/5UKvVJCUl0bt3b1xcXPT5CBqNhvj4eBQKBa6urri5uaFSqYxej4WVOfeM7M09I3tTXVXDqf1nOLj1BIdjTlKUX6pfr41Kvh9Nba1O9jWPawQckiSRkpJCfn4+QUFBLRpsrFq1ig8++IBt27bRp0+fRusoFAr8/f3x9/e/oWPMnz+fZcuWGV0nOTn5hvYNMHPmTP3/9+zZEw8PD4YNG8b58+fx8/O74f0KgiC0NiLgEAQjqqqqiIuLY8GC/1XpUSqVhIaGEhsba3Cb2NhYXnnllQbLRowYwaZNm4C68rzZ2dmEhobqX7e3tyc4OJjY2FgRcFwlJSWFoUOH8vjjj7NiRV15VkdHR6ZNm8a0adMoLCzk119/JTo6msGDB9O2bVv9qFLv3r1bXfCRnZ1NUlISvXr1wsWl7mZeqVTi4uKiDz4KCgrQaDScOnUKSZJwcXHB1dUVJycno9djZm5K3yH+9B3izzPvTyDp4DkObj3BoZiTmFvK9yepkJuGZWGGk4dKdrv6YCMvL6/FRza++uor3nnnHX7//Xf69+/fLMeZO3cuTz75pNF1fH19cXd3bzTiWVNTQ35+/nU1HAwODgbg3Llz+Pn54e7u3mj6plqtBhCNDAVBuK2IgEMQjMjNzaW2ttbgtIaUlBSD28hNg6ifAlH/X2PrCP/zww8/MH36dN566y2DpXLt7e2ZPHkykydPpri4mK1btxIdHU1YWBjOzs6MGzeOiIgI+vXrd8uDjyuDDWdnw7kRSqUSJycnnJyc6Nq1K1qtFo1GQ0pKCjU1NTg7O+Pm5oaTk5PR6lwmJkp63tuZnvd25um3H+bs8Ysc+C2eg1vjG/XvMFQOF8DN20m2PLEkSZw+fZrc3FyCgoJuqBv4jZAkiTVr1rB48WJ+++03BgwY0GzHqg8CryUkJAStVktcXByBgYEA7N69G51Opw8imiI+Ph4ADw8P/X7feecdNBqNfsrWjh07sLOzu+FRG0EQhFtBBByCILRq77zzTpObztna2jJhwgQmTJhAWVkZ27ZtIyoqivHjx2Nra8u4ceMIDw8nJCSkxUvpZmVlkZycbDTYuJpCocDBwQEHBwc6d+5MUVERGo2GM2fOUFlZqQ8+nJ2djfZlUCgUdO7rTee+3jy5OILzpy5xcMsJDv5+gpyMfNmAw8Pb8M12fR+VnJycFg821q5dy+uvv84vv/zC/fff3yLHvZZu3boRFhbGjBkzWL16NdXV1cyZM4eJEyfqK1RdvnyZYcOG8cMPP9C/f3/Onz/P2rVrGTVqFE5OTpw8eZKXX36Z+++/n169egEwfPhw/P39eeKJJ1i+fDnZ2dksXLiQ5557rsWS8gVBEG4GEXAIghHOzs6YmJjopzHUU6vVslMa3N3dja5f/1+1Wq1/kln/fUBAwE08+zvD9Xa4rmdtbc348eMZP348FRUV7Ny5k6ioKB577DHMzc0ZM2YM48eP595778XMTH660c2QmZlJSkoKvXv3xsnJ6Yb2oVAosLe3x97eno4dO1JSUoJarSY1NZXExEQcHR31Xc6vdT1+Pb3w6+nFpPljyDibzYEtJzi49USjHh2GEsYlSeLs2bOo1eoWDzY2bNjAyy+/TGRkJEOHDm2R4zbVTz/9xJw5cxg2bJi+8d/KlSv1r1dXV3P69Gl9FSpzc3N27tzJxx9/TGlpKV5eXjz00EMsXLhQv42JiQm//fYbs2bNIiQkBBsbG6ZOndqgb4cgCMLtQPThEIRrCA4Opn///nz66adAXcOx9u3bM2fOHINJ4/VP13/99Vf9sgEDBtCrVy990rinpyfz5s1j7ty5ABQVFeHq6sr3338vcjiaWXV1NXv27CEyMpJffvkFnU7H6NGjGT9+PIMGDbrpvQ0uX77M6dOnCQgIwNHR8abuu15paSlqtRqNRkNJSQmOjo76Xh/Xcz3ZF3I5+PsJYree4Fx8Os+89yjDJ/9vypIkSZw7d46srCyCgoKwtpZPRL/ZNm3axMyZM1m3bh1jxoxpseMKgiAIf58IOAThGtavX8/UqVP54osv6N+/Px9//DE///wzKSkpuLm5MWXKFH1fCKgrizto0CDef/99Ro8ezbp163j33Xc5duyYvvvxsmXLeP/991mzZg0+Pj4sWrSIkydPkpSU1GKJt0JdYu+ff/5JZGQkmzZtoqysjNGjRxMeHs6wYcP+9s+iJYKNq5WVlem7nBcVFaFSqfTBx/VcT26mFhNTJQ6udeVk64ONzMxMgoKCmr2Z3pV+++03pk2bxo8//sj48eNb7LiCIAjCzSECDkFogs8++4wVK1aQnZ1NQEAAK1eu1CeD1jdz+/777/Xrb9iwgYULF3LhwgU6derE8uXLGTVqlP51SZJYsmQJX375JVqtloEDB/L555/TuXPnlr404b9qa2s5cOAAUVFRbNy4Ea1WS1hYGBERETzwwAPX/TQ/IyODM2fO0KdPHxwcHJrprI2rqKjQBx9arRY7Ozt9ud3rmQolSRLnz5/n8uXLLR5sbNu2jSeeeIJvvvmGCRMmtNhxBUEQhJtHBByCIAhX0el0HD58WB98ZGdnM3z4cMLDwwkLC8PW1tbo9pcuXeLcuXP06dMHlUrVMid9DVVVVfrgIz8/nzZt2uhHPtq0aWN02/Pnz5ORkUFgYOA1172Zdu/ezcSJE1m9ejWTJk264XweQRAE4dYSAYcgCIIROp2O+Ph4IiMjiY6O5uLFi4SGhhIeHs6oUaOwt7dvcCO8atUqPDw8GDp0aKsJNq5WXV1NTk4OGo2GvLw8rKys9CMfbdq0aXA9qamppKenExQU1KLBxr59+3jkkUf45JNPmDZtmgg2BEEQbmOtqyOWIDST6upqMjIybvVp3HSrVq3C29sbS0tLgoODGzUJu9JXX33Ffffdpy+zGhoa2mj9J598EoVC0eArLCysuS+jVVMqlfTt25d3332X5ORkDh8+TN++fVm5ciU+Pj489NBD/PDDD+Tl5fH222/z5ptv4uTk1GqDDQAzMzM8PT0JCAhg0KBB+Pr6UlZWxpEjR9i/fz9nzpyhsLDwlgUbsbGxPProoyxfvlwEG4IgCHcAMcIh3BW2bdvGq6++ypdffsk999xzq0/npli/fj1Tpkxh9erVBAcH8/HHH7NhwwZOnz6tbxJ2pUmTJnHvvfcyYMAALC0tWbZsGRs3biQxMZG2bdsCdQGHWq3mu+++029nYWFxy3IQWrP6xndRUVFER0cTHx+PQqFg1qxZzJ07FxcXl9vuRrm2tpa8vDw0Gg1qtRqdToe7uzvt2rVDpVK1yPUcOXKE8PBw3nrrLZ5//vnb7j0UBEEQGhMBh3BXeOaZZygpKeHDDz/E3d0dnU53y7tO/13BwcH069ePzz77DKib+uPl5cXzzz9vsFzv1Wpra3FwcOCzzz5jypQpQF3AodVq2bRpU3Oe+h1nxYoVvPPOOzzxxBMcOXKEuLg4QkJCiIiIYNy4cXh4eNxWN84XLlwgLS0NPz8/iouLycnJQaFQ4OLigpubGw4ODs3y+3P8+HHGjBnD//3f/zF37tzb6j0TBEEQ5InGf8Idr7y8nOPHjzN+/Hh90z2lUokkSbftDU1VVRVxcXEsWLBAv0ypVBIaGkpsbGyT9lFWVkZ1dXWjcq179+7F1dUVBwcHhg4dyttvv33DzeruBsuWLWP58uXs3r2bvn37IkkS6enpREdHEx0dzWuvvUb//v0JDw8nPDwcLy+vVv25u3jxImlpaQQGBmJnV1cSV6fTodVqUavVJCQkIEkSLi4uuLq64uTkdFOCj1OnTjFu3DheffVVEWwIgiDcYcQIh3DHO3DgAC+//DKjRo2itrYWLy8vpk6d2qgh2u0UgGRmZtK2bVsOHDhASEiIfvlrr73GH3/8waFDh665j9mzZ7Nt2zYSExP1/RnWrVuHtbU1Pj4+nD9/njfeeIM2bdoQGxuLiYlJs13P7erdd9/lo48+YufOnQa7xEuSRGZmJhs3biQqKoq//vqLgIAAffDh6+vbqj5z6enpnD9/vkGwcTVJkigsLNQ3GqyurtYHH87Ozjf0OUlKSmLUqFHMnj2bJUuWtKr3RBAEQfj7xAiHcMdbv349R44cwc3Nja5du/LOO++wefNm1qxZ0+Dpfv1Njk6nA7jtp1wZ8/7777Nu3Tr27t3boBnclV3Oe/bsSa9evfDz82Pv3r0MGzbsVpxqq2Zvb8/u3bvp1auXwdcVCgVt27Zlzpw5PPfcc2g0GjZt2kRUVBRvvfUW/v7+hIeHExERQefOnW/pjXZ9sNG3b1/ZYAPqrkmlUqFSqejcuTNFRUVoNBrOnTtHQkICzs7OuLq64uLigqnptf+JOXPmDGPHjmX69Oki2BAEQbhDiREO4Y5WWVlJUFAQ3t7ebNq0CRMTE06ePMnAgQP56aefGDt2LAD79+8nKyuLYcOG6ROk60c8SktLyc3NpUOHDq1mFKSqqgpra2siIyOJiIjQL586dSparZZffvlFdtsPPviAt99+m507dxIUFHTNY7m4uPD222/zzDPP3IxTF6j7bOXn5/PLL78QHR3Nzp078fPzIzw8nPHjx9OtW7cWDXjr+4b07dsXe3v7G9qHJEmUlpbqRz5KS0txcnLSBx9XjyhCXX+PkSNHMmHCBFasWHFHB/mCIAh3M/HXXbijxcfHY2VlxfTp0/VTPby9vbn33nuJjY1Fq9UydepUnn32Wd59913atWvHxIkTKSgo0AcW2dnZ9OnThx9++AGFQqEfAbmVzM3NCQwMZNeuXfplOp2OXbt2NZhidbXly5ezdOlSYmJimhRsZGRkkJeXh4eHx005b6GOQqHAycmJp556it9++43s7Gzmz59PcnIygwYNom/fvixZsoT4+Phm/7xlZGRw9uxZ+vTpc8PBBtRdU5s2bfDz8yMkJISQkBBUKhUZGRns27ePP/74g+XLl5Oeng7UJaaPGTOGiIiIFg828vPzmTRpEnZ2dqhUKqZPn05JSYns+hcuXGhULrr+a8OGDfr1DL2+bt26lrgkQRCEVk2McAh3tLlz5/Lnn38SFRWFl5cXAGq1mtGjRzN06FAsLS3Zt28fmzdvxs7OjlOnTvHyyy8zYsQIXn31Vfbt28cnn3zCrl270Gq1t/ZirrJ+/XqmTp3KF198Qf/+/fn444/5+eefSUlJwc3NjSlTptC2bVvee+89oC65efHixaxdu5Z7771Xv582bdrQpk0bSkpKePPNN3nooYdwd3fn/PnzvPbaaxQXF3Pq1CksLCxu1aXeVYqLi9m6dStRUVH8/vvvODs766ddBQUF3dQb84yMDM6cOUOfPn2atfRxeXk5Bw8eZP78+SQlJdG5c2fUajUjR47k3//+d4uPbIwcOZKsrCy++OILqqurmTZtGv369WPt2rUG16+trSUnJ6fBsi+//JIVK1aQlZWl71GiUCj47rvvGvSuUalUDaYtCoIg3JUkQbhDVVVVST169JA6duzYYPmePXskS0tLadWqVVJAQIBkZmYmvfjii9LOnTslSZKk9957T3rggQckSZKkHTt2SBYWFpKFhYXUoUMHacmSJVJhYWGD/el0OqmmpkbS6XQGz0Nu+c3w6aefSu3bt5fMzc2l/v37SwcPHtS/NmjQIGnq1Kn67zt06CABjb6WLFkiSZIklZWVScOHD5dcXFwkMzMzqUOHDtKMGTOk7OzsZjt/wbjS0lIpKipKevzxxyV7e3vJy8tLeu6556Tt27dLRUVFUmlp6Q1/nTlzRvr111+ljIyMv7Wf6/3au3ev5OjoKLm7u0umpqZSv379pPfff186e/Zsi7ynSUlJEiAdOXJEv+z333+XFAqFdPny5SbvJyAgQHrqqacaLAOkjRs33qxTFQRBuGOIEQ7hjnX48GEiIiJwc3Nj3rx5TJo0iUOHDvHee++RkZHBokWLmDBhAlFRUfz000/s2bMHpVKJUqmkc+fObNiwgaKiIh544AGefvppvL29iYmJYfbs2fTs2ZNDhw7Rvn17fHx8mnQ+d0LvD+HWqaioYMeOHURFRbF582YsLCwYO3Ys48eP5957721Sgna9zMxMUlJSCAgIaFQWuTlpNBpGjhxJ3759+eGHHygoKGDz5s1ERUWxc+dOunbtyosvvshTTz3VbOfw7bffMnfuXAoKCvTLampqsLS0ZMOGDYwfP/6a+4iLiyMoKIj9+/czYMAA/XKFQoGnpyeVlZX4+vry7LPPik7pgiAIiCpVwh2sW7durFu3jrNnz/Luu+/y3nvvUVFRgaenJ9999x1Hjx7Fy8uL0aNHM3r0aIqLi/nzzz/Ztm0btra2ODo6snXrVtRqNdOmTcPV1ZUJEyYAsGXLFn788Ud2796NnZ0dL730EtOnT8fS0lKfWJ6VlcUvv/xCly5dGDJkiAg2hL/F0tKSsWPHMnbsWKqqqtizZw+RkZFMnToVgNGjRzN+/Hjuv/9+gwna9bKysm5JsJGbm8vYsWPp2bMna9aswcTEBGdnZ5566imeeuopCgsL+e2335p9+lF2djaurq4NlpmamuLo6Eh2dnaT9vHNN9/QrVu3BsEGwFtvvcXQoUOxtrZm+/btzJ49m5KSEl544YWbdv6CIAi3IzHCIdwVNBoN69evx8rKiocffhiVSsWePXuYNGkS77//vr7T9pVKS0uZM2cOSUlJHDp0iJqaGv1T5OzsbCwsLKiurmbjxo18+OGHrFq1igceeEA/kvHTTz+xZs0aUlJSyM3N5dtvv21QdlYQboaamhr27dtHZGQkmzZtoqKigtGjRxMREcGQIUMa3MB/8cUXXLhwgXnz5rVoM8eCggLGjBlDhw4d+Pnnn40GRDdq/vz5LFu2zOg6ycnJREdHs2bNGk6fPt3gNVdXV958801mzZpldB/l5eV4eHiwaNEi5s6da3TdxYsX891333Hp0qWmXYQgCMIdSjxyFe4Krq6uPP/88zz99NOoVCoAhgwZwvTp0/nwww/5xz/+weHDh9myZQvJyclAXV+C2NhYfZBQW1sL1N3gVVRUkJycjKurK8888wyjRo3io48+Av7Xv2P06NF8/vnnvPDCC7i4uODs7AzQKqpctYRVq1bh7e2NpaUlwcHBHD58WHbd77//vlF1n6ufdEuSxOLFi/Hw8MDKyorQ0FDOnj3b3JfR6pmamjJ06FA+//xzLl26xKZNm3B0dOTll1/Gx8eHp556is2bN7Nq1SoWLFhA//79WzTYKCwsJDw8HE9PT9avX98swQbUFYhITk42+uXr64u7uzsajabBtjU1NeTn5+Pu7n7N40RGRlJWVmbwIcXVgoODycjIoLKy8oavSxAE4U4gplQJd7VFixbh6+vLV199xZo1a+jTpw+zZ8+mW7du5ObmcubMGR566CEAfVndmTNncvz4cSorK8nNzWXAgAEUFhbq91lbW4uJiYm+OZpGo8HV1ZWhQ4cCd3ZDwXrr16/nlVdeYfXq1QQHB/Pxxx8zYsQITp8+3Wg6Sz07O7sGT52vnve+fPlyVq5cyZo1a/Dx8WHRokWMGDGCpKQkUQXov0xMTLj//vu5//77+ec//8nhw4eJjIzkxRdfRKPR0L9/f2praykpKdFXVmpOxcXFjB8/HkdHR6Kiopq10pmLiwsuLi7XXC8kJAStVktcXByBgYEA7N69G51OR3Bw8DW3/+abbxg3blyTjhUfH4+Dg4Oo8CYIgnArM9YFoTWpqKiQzpw5I5WVlUmSJEmxsbGSm5ubtG/fPv06Bw8elBQKhfTjjz9KZ86ckfbv3y/NnTtXUigU0meffSZJUl1VqvrKVAkJCdIDDzwgzZ49W5IkSaqtrW3hq7o1+vfvLz333HP672trayVPT0/pvffeM7j+d999J9nb28vuT6fTSe7u7tKKFSv0y7RarWRhYSH95z//uWnnfSeKjIyUrK2tpY8//liaP3++1LlzZ8nKykoaO3as9PXXX0uZmZlSSUnJTa9GpdFopIEDB0qDBw+WSktLb/Xb0EBYWJjUp08f6dChQ9Jff/0lderUSXrsscf0r2dkZEhdunSRDh061GC7s2fPSgqFQvr9998b7XPz5s3SV199JZ06dUo6e/as9Pnnn0vW1tbS4sWLm/16BEEQWrs7/1GrIDSRhYUFnTp1wsrKCoCuXbsyefJkBg0aRGhoKNnZ2aSmpmJubs6oUaPo1KkTAwYMYPTo0SgUCn1viyufzCckJJCRkaHvaH43qKqqIi4ujtDQUP0ypVJJaGgosbGxstuVlJTQoUMHvLy8CA8PJzExUf9aWloa2dnZDfZpb29PcHCw0X3e7TZt2sSUKVNYt24dL774Iu+99x4pKSkcOnSIgIAAPv74Y7y9vXn44Yf54YcfyM/PR7oJaX3l5eU8+uijAPz6669YW1v/7X3eTD/99BNdu3Zl2LBhjBo1ioEDB/Lll1/qX6+urub06dOUlZU12O7bb7+lXbt2DB8+vNE+zczMWLVqFSEhIQQEBPDFF1/w0UcfsWTJkma/HkEQhNZOJI0LwjVIksSBAwfo0aMHWq2WBx98kA4dOvDSSy+xf/9+PvnkE3x8fNi9e7c+WAGorKxkyZIlbN++nYMHDzbb3PXWJjMzk7Zt23LgwIEGXc9fe+01/vjjDw4dOtRom9jYWM6ePUuvXr0oLCzkgw8+YN++fSQmJtKuXTsOHDjAvffeS2ZmZoOu548++igKhYL169e3yLXdTmJiYnjooYdYu3Yt4eHhBteRJImUlBQiIyPZuHEjCQkJ3H///URERDBmzBhcXFyuu6RrRUUFEydOpLi4mJiYmL/VvVwQBEG4M4gRDkG4hvrRC3t7ezp06MDKlSupqanhueeew8rKCo1Gw7hx4/TBRn0Mf+HCBeLj4+nfvz/m5ub6pHOhsZCQEKZMmUJAQACDBg0iOjoaFxcXvvjii1t9arctf39/1q9fLxtsQN1nu1u3bixatIi4uDiSkpJ44IEH+Pe//02nTp0YNWoUq1evJjMzs0kjH5WVlTzxxBPk5+ezdetWEWwIgiAIgAg4BOG63XvvvWzevJlTp04xc+ZMnn76aUaOHKl//fDhwxQVFZGYmMjly5f106nuluZfzs7OmJiYoFarGyxXq9VNqgIEddNT+vTpw7lz5wD02/2dfd5t2rdvz5gxY5q8vkKhoGPHjrz++uscPHiQc+fOER4eTnR0NN26dWP48OF8+umnpKenGww+qqurefLJJ7l8+TLbtm3DwcHhZl6OIAiCcBsTAYcg/A3W1tZ8+eWXBAQEAKDVannhhRfw8PBgzpw55OTk0K1bN+DuqE4FYG5uTmBgILt27dIv0+l07Nq1q8EUK2Nqa2s5deqUfvqUj48P7u7uDfZZVFTEoUOHmrxPoekUCgUdOnTglVde4c8//+TChQtMnDiRmJgYevbsyZAhQ/jnP/9JamoqkiRRU1PD008/zfnz59mxY0eLlt0VBEEQWj+RwyEIzWDfvn2sX7+ejRs3kp2dzdSpU/n666/1pXXvdOvXr2fq1Kl88cUX9O/fn48//piff/6ZlJQU3NzcmDJlCm3btuW9994D6jo033PPPXTs2BGtVsuKFSvYtGkTcXFx+Pv7A7Bs2TLef//9BmVxT548KcritiBJklCr1WzatIno6Gj27t1Lt27dUCgUlJWVsW/fPjHiJAiCIDQi+nAIQjOo74WwatUq/vjjD7Kysu6aYANgwoQJ5OTksHjxYrKzswkICCAmJgY3NzegrqnilSM+BQUFzJgxg+zsbBwcHAgMDOTAgQP6YAPqks5LS0uZOXMmWq2WgQMHEhMTI4KNFqRQKHB3d+fZZ5/lmWeeIT8/n7Vr1/L+++/zxx9/iGBDEARBMEiMcAiCIAiCIAiC0GzujknlgiAIgiAIgiDcEiLgEARBEARBEASh2YiAQxCEu8qqVavw9vbG0tKS4OBgDh8+LLvu4MGDUSgUjb5Gjx6tX+fJJ59s9HpYWFhLXIogCIIg3BZE0rggCHeN9evX88orr7B69WqCg4P5+OOPGTFiBKdPn8bV1bXR+tHR0VRVVem/z8vLo3fv3jzyyCMN1gsLC+O7777Tf29hYdF8FyEIgiAItxkxwiEIwl3jo48+YsaMGUybNg1/f39Wr16NtbU13377rcH1HR0dcXd313/t2LEDa2vrRgGHhYVFg/VE0ztBEARB+B8RcAiCcFeoqqoiLi6O0NBQ/TKlUkloaCixsbFN2sc333zDxIkTsbGxabB87969uLq60qVLF2bNmkVeXt5NPfe71TvvvMOAAQOwtrZGpVI1aRtJkli8eDEeHh5YWVkRGhrK2bNnG6yTn5/PpEmTsLOzQ6VSMX36dEpKSprhCgRBEAQQAYcgCHeJ3Nxcamtr9b1A6rm5uZGdnX3N7Q8fPkxCQgJPP/10g+VhYWH88MMP7Nq1i2XLlvHHH38wcuRIamtrb+r5342qqqp45JFHmDVrVpO3Wb58OStXrmT16tUcOnQIGxsbRowYQUVFhX6dSZMmkZiYyI4dO/jtt9/Yt28fM2fObI5LEARBEBB9OARBuEtkZmbStm1bDhw4QEhIiH75a6+9xh9//MGhQ4eMbv/MM88QGxvLyZMnja6XmpqKn58fO3fuZNiwYTfl3O9233//PS+99BJardboepIk4enpydy5c5k3bx4AhYWFuLm58f333zNx4kSSk5Px9/fnyJEjBAUFARATE8OoUaPIyMjA09OzuS9HEAThriNGOARBuCs4OztjYmKCWq1usFytVl+zQ3ZpaSnr1q1j+vTp1zyOr68vzs7OnDt37m+dr3D90tLSyM7ObjBtzt7enuDgYP20udjYWFQqlT7YAAgNDUWpVF4z6BQEQRBujAg4BEG4K5ibmxMYGMiuXbv0y3Q6Hbt27Wow4mHIhg0bqKysZPLkydc8TkZGBnl5eXh4ePztcxauT/3UOGPT5rKzsxtVJDM1NcXR0bFJU+sEQRCE6ycCDkEQ7hqvvPIKX331FWvWrCE5OZlZs2ZRWlrKtGnTAJgyZQoLFixotN0333xDREQETk5ODZaXlJTw6quvcvDgQS5cuMCuXbsIDw+nY8eOjBgxokWu6XYzf/58g71NrvxKSUm51acpCIIg3ESiD4cgCHeNCRMmkJOTw+LFi8nOziYgIICYmBj9E/H09HSUyobPYU6fPs1ff/3F9u3bG+3PxMSEkydPsmbNGrRaLZ6engwfPpylS5eKXhwy5s6dy5NPPml0HV9f3xvad/3UOLVa3WCESa1WExAQoF9Ho9E02K6mpob8/PxrTq0TBEEQboxIGhcEQRBatetNGp83bx5z584FoKioCFdX10ZJ40ePHiUwMBCA7du3ExYWJpLGBUEQmomYUiUIgiC0Sunp6cTHx5Oenk5tbS3x8fHEx8c36JnRtWtXNm7cCIBCoeCll17i7bffZvPmzZw6dYopU6bg6elJREQEAN26dSMsLIwZM2Zw+PBh9u/fz5w5c5g4caIINgRBEJqJmFIlCIIgtEqLFy9mzZo1+u/79OkDwJ49exg8eDBQN+WtsLBQv85rr71GaWkpM2fORKvVMnDgQGJiYrC0tNSv89NPPzFnzhyGDRuGUqnkoYceYuXKlS1zUYIgCHchMaVKEAShFdi3bx8rVqwgLi6OrKwsNm7cqH8qL2fv3r288sorJCYm4uXlxcKFCxvlR6xatYoVK1aQnZ1N7969+fTTT+nfv3/zXYggCIIgXEVMqRIEQWgFSktL6d27N6tWrWrS+mlpaYwePZohQ4YQHx/PSy+9xNNPP822bdv066xfv55XXnmFJUuWcOzYMXr37s2IESMaJU0LgiAIQnMSIxyCIAitjEKhuOYIx+uvv86WLVtISEjQL5s4cSJarZaYmBgAgoOD6devH5999hlQ13fEy8uL559/nvnz5zfrNQiCIAhCPTHCIQiCcBuKjY1t0FEbYMSIEfqO2lVVVcTFxTVYR6lUEhoaql9HEARBEFqCCDgEQRBuQ9nZ2QY7ahcVFVFeXk5ubi61tbVGu24LgiAIQksQAYcgCIIgCIIgCM1GlMUVBEG4Dbm7u6NWqxssU6vV2NnZYWVlhYmJCSYmJgbXER21BUEQhJYkRjgEQRBuQyEhIezatavBsh07dhASEgKAubk5gYGBDdbR6XTs2rVLv44gCIIgtAQRcAiCILQCJSUl+k7aUFf2tr7LNsCCBQuYMmWKfv1nn32W1NRUXnvtNVJSUvj888/5+eefefnll/XrvPLKK3z11VesWbOG5ORkZs2aRWlpKdOmTWvRaxMEQRDubmJKlSAIQitw9OhRhgwZov/+lVdeAWDq1Kl8//33ZGVl6YMPAB8fH7Zs2cLLL7/MJ598Qrt27fj6668ZMWKEfp0JEyaQk5PD4sWLyc7OJiAggJiYmEaJ5IIgCILQnEQfDkEQBEEQBEEQmo2YUiUIgiAIgiAIQrMRAYcgCIIgCIIgCM1GBByCIAiCIAiCIDQbEXAIgiAIgiAIgtBsRMAhCIIgCIIgCEKzEQGHIAiCIAiCIAjNRgQcgiAIgiAIgiA0GxFwCIIgCIIgCILQbETAIQiCIAiCIAhCsxEBhyAIgiAIgiAIzUYEHIIgCIIgCIIgNBsRcAiCIAiCIAiC0GxEwCEIgiAIgiAIQrMRAYcgCIIgCIIgCM1GBByCIAiCIAiCIDQbEXAIgiAIgiAIgtBsRMAhCIIgCIIgCEKzEQGHIAiCIAiCIAjNRgQcgiAIgiAIgiA0GxFwCIIgCIIgCILQbETAIQiCIAiCIAhCs/l/Hld48FmVHG0AAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 320 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T22:14:18.536764Z", - "start_time": "2024-06-09T22:14:18.526641Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "from qulearn.qlayer import ParallelIQPEncoding, AltRotCXLayer, HamiltonianLayer\n", @@ -936,37 +944,11 @@ "print(\"Number of parameters: \", nump)" ], "id": "7453d8e6508e91c0", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: ──H──RZ(1.00)──╭MultiRZ(2.00)────Rot(6.03,0.47,4.18)─╭●──Rot(0.65,3.98,3.35)───\n", - "1: ──H──RZ(2.00)──╰MultiRZ(2.00)────Rot(2.78,4.74,6.11)─╰X──Rot(3.99,4.64,5.69)─╭●\n", - "2: ──H──RZ(3.00)──╭MultiRZ(18.00)───Rot(3.03,4.07,4.49)─╭●──Rot(2.15,5.80,1.15)─╰X\n", - "3: ──H──RZ(6.00)──╰MultiRZ(18.00)───Rot(4.48,1.69,2.32)─╰X──Rot(0.62,0.48,4.54)─╭●\n", - "4: ──H──RZ(9.00)──╭MultiRZ(162.00)──Rot(2.76,4.93,0.53)─╭●──Rot(4.92,1.76,4.20)─╰X\n", - "5: ──H──RZ(18.00)─╰MultiRZ(162.00)──Rot(2.12,0.28,5.54)─╰X──Rot(1.37,4.20,2.80)───\n", - "\n", - "───────────────────────┤ <𝓗(0.06,-0.00)>\n", - "───Rot(2.61,5.92,1.27)─┤ \n", - "───Rot(3.91,4.16,1.82)─┤ \n", - "───Rot(0.27,0.18,1.47)─┤ \n", - "───Rot(2.46,1.67,4.02)─┤ \n", - "───────────────────────┤ \n", - "Number of parameters: 50\n" - ] - } - ], - "execution_count": 317 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-09T22:14:34.833926Z", - "start_time": "2024-06-09T22:14:18.538243Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "import torch\n", @@ -1014,19 +996,8 @@ "plt.show()" ], "id": "bb0c58697d65985e", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAJOCAYAAADyPWKqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z5BcaX7eif6OSV9Z3nsDb9sAbTXdzRWDMpSGH3iXV6tQkLofbjAormKlXW3s7qV2R7qK1dVdXjlqNVpJy5Uo7WqGGlEkZ6ghh27Q6GkADTS8R3mb5U36Y9/7ISuzMitPoQFUIROoen8RiEDlm+e852RVnnzOP5/3+StCCIFEIpFIJBKJRCKpKGq1D0AikUgkEolEIjmISCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAlKISyQSiUQikUgkVUAKcYlEIpFIJBKJpApIIS6RSCQSiUQikVQBKcQlEolEIpFIJJIqIIW4RCKpOr/2a79GOBwmnU4XHmtpaUFRlKf++/mf//mv3Pcv/dIvMTg4+DIPXyKRSCSSF0IRQohqH4REIjnY/PRP/zSmafK9730PANu2+fa3v+353Hg8zt/4G38DwzD4nd/5Hf7Mn/kzT933lStXeP/997l37x4nT57c82OXSCQSieRF0at9ABKJ5GBjGAa///u/zz/4B/+g8Jiu6/ylv/SXPJ/7p//0nyaTyfDNb37zK0U4wLvvvktbWxvf+973pBCXSCQSySuFtKZIJJKq8sMf/pBUKsWf//N//qnPcxyHv/gX/yIXLlzgb/2tv8Uv/MIvPNP+FUXhz/25P1eotkskEolE8qoghbhEIqkq3/ve9zh//jzt7e1Pfd4v/MIv8B//43/kF3/xF/nGN77xXHN8/etf58qVKywtLe3mUCUSiUQi2VOkEJdIJFXle9/73ldWw3/pl36Jf/kv/yU/8zM/w6/8yq889xw//uM/TiAQ4Pvf//6LHqZEIpFIJHuOFOISiaRq3Lx5k+npab7+9a/v+Jxf+ZVf4e/+3b/Lj//4j/Nv/+2/RVWf/7IVDof5k3/yT0p7ikQikUheKaQQl0gkVePTTz+lvr6eM2fOeI5/61vf4q/9tb/GuXPn+M3f/E38fn/Zc5aWlvjJn/xJIpEIR48e5Y/+6I889/XJJ59w4cKFvTx8iUQikUh2hRTiEomkarz99tusr68zMjJSNvaDH/yAn/u5n+Pw4cN8//vfp6amxnMfv/iLv0h7eztLS0v88i//Mj/zMz/D6upq2fOuXr3KuXPn9vwcJBKJRCJ5UaQQl0gkVeODDz6gubmZ7373uyWPf/HFF/z0T/80ra2t/P7v/z4tLS2e2yeTSX7rt36Lv/23/zbhcJivf/3rnD59mt/+7d8ueZ5lWfze7/3eV3rRJRKJRCKpJFKISySSqqFpGn/2z/7ZEu/2w4cP+cmf/En8fj8/+MEP6Ovr23H74eFhampq6O7uLjx2+vRp7t+/X/K8Tz/9lHg8LoW4RCKRSF4pZEMfiURSVb7+9a/zF/7CX2BtbQ1FUfhTf+pPsbKywl/5K3+FmzdvcvPmzbJtWltb+Ymf+AmSySS1tbUlY7W1taysrJQ89t3vfpezZ8/S29v7Us9FIpFIJJLnQQpxiURSVX7iJ34CVVX53d/9XZqbm5mengbgm9/8Jt/85jc9t/nZn/1ZfuInfoKamhri8XjJWDweL/OTf+973/Ps1CmRSCQSSTWRQlwikVSVaDTKj/3Yj/Hd736Xb3/72wghnnnbw4cPk0wmmZ2dpaurC4B79+7xsz/7s4Xn3L17l4mJCWlLkUgkEskrh/SISySSqvP1r3+d3/u938OyrOfarqamhp/6qZ/iG9/4BplMht/5nd/hzp07/NRP/VThOd/97ndpb2/n/Pnze33YEolEIpHsCkU8T/lJIpFIXgLZbJaZmRn6+/vR9ef7om5paYmf+7mf48KFC3R3d/PNb36TH//xHy+MLyws4DgOnZ2de33YEolEIpHsCinEJRKJRCKRSCSSKiCtKRKJRCKRSCQSSRWQQlwikUgkEolEIqkCUohLJBKJRCKRSCRVQApxiUQikUgkEomkCkghLpFIJBKJRCKRVAEpxCUSiUQikUgkkioghbhEIpFIJBKJRFIFpBCXSCQSiUQikUiqgBTiEolEIpFIJBJJFZBCXCKRSCQSiUQiqQJSiEskEolEIpFIJFVACnGJRCKRSCQSiaQKSCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAlKISyQSiUQikUgkVUAKcYlEIpFIJBKJpApIIS6RSCQSiUQikVQBKcQlEolEIpFIJJIqIIW4RCKRSCQSiURSBaQQl0gkEolEIpFIqoAU4hKJRCKRSCQSSRWQQlwikUgkEolEIqkCUohLJBKJRCKRSCRVQApxiUQikUgkEomkCkghLpFIJBKJRCKRVAEpxCUSiUQikUgkkioghbhEIpFIJBKJRFIFpBCXSCQSiUQikUiqgBTiEolEIpFIJBJJFZBCXCKRSCQSiUQiqQJSiEskEolEIpFIJFVACnGJRCKRSCQSiaQKSCEukUgkEolEIpFUASnEJRKJRCKRSCSSKiCFuEQikUgkEolEUgWkEJdIJBKJRCKRSKqAFOISiUQikUgkEkkVkEJcIpFIJBKJRCKpAnq1D0AikUj2CiEEjuOgKAqqqqIoSrUPSSKRSCSSHZFCXCKRvPYIIbAsC9M0sSwLXdfx+Xxomoamaaiq/PJPIpFIJK8eihBCVPsgJBKJ5EVwXRfTNDFNE8dxEEKgaRo+nw9FURBCoChKiSCXVXKJRCKRvCrIirhEInmtyNtP8tXvvBVF07SCyM4L7nydwbZtHMdBVdWCKJeCXCKRSCTVRlbEJRLJa4EQAtu2MQwDy7IQQqCqqmeVO18R3759/nK3vUoukUgkEkk1kEJcIpG80riui2VZGIZRYj9RFGXHqraXEM+TF+TStiKRSCSSaiOtKRKJ5JUkbz/J+7+3209elLyAz4vxYtuKrutSkEskEomkYsjvZCUSyStDPv0klUoxOTnJ/fv3EUKg6zq6ru+pQM5HHObFfSKR4OrVqxiGgW3byC8LJRKJRPKykRVxiURSdfL2E9M0CyI4L8g1TXvp8yuKguM4bGxsIITANM1CBT5/AyCr5BKJRCLZa6QQl0gkVcPLfrLTAsxKoapqwbbiOI60rUgkEonkpSGFuEQiqSh5gZtPP3FdtyB0XxWRW+wjh9wNg+u6KIqCrusy/lAikUgke4IU4hKJpCJs736Zjx98VQS4lyc8f1yaphWq5KZpFqr20rYikUgkkt0ghbhEInmp5LtfGoaB67oABSH7NKohbp825/a0lbxtRcYfSiQSieRFkUJcIpHsOcXdL03TLNg69oOlY7ttxbZtbNsuVMj3wzlKJBKJpDJIIS6RSPaMvbafvMoRgl62FcuysG1bdu2USCQSyTMhhbhEItk1L9L9cj+x3bbiJcgPwusgkUgkkudDCnGJRPJCFNtPLMva0+6XrytetpV8/GFelB/U10YikUgk5UghLpFInot8W/h8/OCrln7youylDWa7bcV1XVzXlbYViUQikZQghbhEInkm8vaTxcVFgsFgSYX3ZQjwVy01ZTf73G5bWVtbIxgMUlNTc2DsOxKJRCIpR5ZkJBLJU3Ech0wmQyKRIJVKcf/+fTKZDD6fT3qfn4PirqHDw8PEYjEMwyh0FX2VF6ZKJBKJ5OUgK+ISiaSMvP0k7/+uVvfL/ShOi20riqIUctZl106JRCI5eEghLpFICuStE4ZhYNt2If3kdfd/PwuVFP35ubbbVmTXTolEIjlYSCEukUhKmu/k00926n5ZnAoieXGKBfZOXTvzglxagCQSiWR/IoW4RHJA8ep++Sz2k0oJwv2yWNOLnW5ktscfOo5T6EoqbSsSiUSy/5BCXCI5YOxF90tZEd89z3KzU9y1U9pWJBKJZP8hhbhEckDILwo0DAPXdQF2tJ88DSn+do8Q4plfx51sK7Jrp0Qikbz+SCEukexjvOwne9H9slIVcVl532Knrp3StiKRSCSvL1KISyT7kL2wn+zEqyr2hFjDtf8Y1/oBjhomGP3HKIrvObavbGrKi76OXrYVy7Jk106JRCJ5DZFCXCLZR+S7XxqGUWgS8zK6X74qlWohXIT9hzj2HyLs7wMOAI4DRvK/JlDzD1GUV+8yt1evn1fXzu2C/FW9cZJIJBKJFOISyWtPsf3EsqyCXeF1tyo87diFMHHt7+GYvwruOCgtQCOwVHiObX4fkj4CNb+Momi7nnOv2cu5drKtqKpaEOWv89+CRCKR7FekEJdIXlPy3S8Nw2B0dJSGhgZqa2tfevOdago6IVxc6zdxjH8OTBcNLIHSBaIO2Cg8bJu/DakAgcj/jKLsf7vGdtuK67qMjo7S3NxMQ0ODtK1IJBLJK4a8Ikskrxmu62IYBolEgmQyiWmarKysYFlWxSqf1bCmuM4D7PR/gWP8TRS1Hth2nmIWlAYgvPWQENjWl2TS/+iVsdPA7jziz0q+KdPCwgLpdLpgWcov2n2VXg+JRCI5qMiKuETymuDV/bLY/10pYVXJinjO+5zEMX4F1/q/gFzsonDvoqhvIdwb2zaYAPUIuHGE1oPtzuM6I5D5J4BDOPLfPnWu/Uh+oa6qqoVvUWTXTolEInk1kEJcInmFyQunvP97p+6XlW47X6m5wsERzPSvgPsAZVOEF47BvQHqeXCvbT1GCw4RUAM49lVg6zgzmW+iKBFC4b+y43yV7KxZ6bmKF+zmbSumacr4Q4lEIqkiUohLJK8g+QQMwzCwbRtgz+IHd0slRL8QAp/2bYb6/zeE66CoJxDu4zIxjnsNRX0L153EVfuwnVvgLACg629j29dLnp5O/zKKUkMw9LMv9fi/ikpX37f/zWxPW5FdOyUSiaQ6SCEukbxCeNlPnqX7ZaUr4i8TITawsv8DQd8fbz3mPihYUZQib7gQOhYKQulAOF+W7Me2r6Pr72DbV0seT6W+AYQJhv5vL/U8vopXofq+U9dOaVuRSCSSyiCFuERSZby6Xz5v9bvSHvGXNZfjjGIZfx+cPy4bE+4NVO08bApuVxnCJIvrXAWCaMoQiNGSbWz7aqkYV9pB62Ut9XepV2sJBX7ipZzHV/GqNQ/avs7AcZxCF1ZpW5FIJJKXhxTiEkmV2Mvul/uhIm7b18mkfwFI4lOPg3hY9hzXuQbKORxFYDlfsuUBz+KKZVTagfmSbSzrCzT/x1juKpZ9F9wYAKvx/5Lmul8j4H//pZ7XTrwKFfHteHXtlLYViUQieXnI+EKJpMK4rks2myUej5NKpbAsC1VV8fl8L1x5fN0r4pb1h2TS/w9yGeAOljuJ43aWPU8o3WTEAo6boHghJoBgHVdRgNqtB9UhXO0YafNzENv85ZisxP+fmNa93PavWJW62nMV26Ly39oYhlFoGvW63/hJJBLJq4CsiEskFeBld798nSuUpvnvMLJ/B0oWYqZwCOPaEXx6CgBHOUPWeQxkEETR1C6EmC3ZlxBzCPUQimjAVRsw7ZuFMdsZR1cHsN3xoucnWdn4OZrrvwPUvNav407sVvTLrp0SiUTy8pAVcYnkJZL/aj+VSpFIJMhmswgh0HV9TxNQXteKeCr7L8ka34HtaSiAoixh2LW4IoilvE3WuQVkABAkcIUD1JVsI4SCQwOW0ohh3yodI40r4qhKW8njrlhhNfk/4rC4J+f0LLwOFfHt5AV5Xni7rltI9slHa0okEonk+ZBCXCJ5CRR3v0ylUgWf7ctc+Pa6NfRJG79G2vhlTHcClG7P52j6CqZ2DsO5VjbminlQWhHCt3lgXTjqEIbzJaZzE5/+jsc2KyiKH4giBKjaWWz1BBvmFVL8dRQ1tSfn9lW87pnvedtK/qasuGuntK1IJBLJsyOFuESyR+Sb76TTaZaWlvjiiy9wHAdN0/D5fC81Cu51a+iTMb5FKvs/5/ZFClPYiGJvN+CKOpJWA1n7M1StXFQDOO4winoSoZwj6y5ju1upKYZ91VOM2840mu9tLHWQhH0Pw3mcm48x6jr/Ia7I7urcnpXXrSLuRbGPXFEUZmdnefjwIaZpYtu2FOQSiUTyFUghLpHsknxFsNh+4rou6+vrFWvA8zq1uM+Y/4Fk9hslj7kihqO0I0Ru2YqgnYwI4gvkElBM5xqq9mb5zkQEAxcbDTDLhrP2dTT9zNaxq4extWPEzc/Q1Pqy5/tCT4ht/DWEsF/8BJ+B/bYwNG9bMQyDVCpVYluxbVvaViQSiWQHpBCXSF6QYvtJMpkssZ/oul6If6sEr0tFPGP+AYn0L3mO2e5jXO00Ln1kMUFZKBk3nPso6uGtB5RuDKUB07lH1rmGorzhsVcXyx5B1U4j9PMknTFMZxiArH2boO982RYp8w9YTPxPL/313A8V8e3ks8eLbSumaRZsK67ryiq5RCKRFCGFuETynDiOQyaTKfi/vewneeGzH4X4i4o6w77Ocvq/zjXl2QHLXcdQOnDFqtcollhGoRXUM2TcdRwxV7T/+5hGT9lWyXQXcWODrDVZNpa1rhHynSt5TAiFtD3MUuqfP/vJPSev42LN551re1dY27alj1wikUi2IYW4RPIMbLefZDKZp6afVFqIV5rnPS/LmWA59YuARca5jqKeKn+S0kfGXSXtXENVT3vux3XXsdVjpO0xBOnSzVUbLZBAoX3zkQhCPYcSHEeoc2SzPoTwl+0zY10noJ9BCJVs5ghC7SNh3WE+9Q9ZSX/nuc7zVaWSQjwvvIvnLvaRu65bqJJLH7lEIjnoSCEukTyF/FfryWSyYD95lrbflRbi+aYrleB5RZ3jrrGc+nlcsb75iCDrTKAovUU77SYjUrjkGvVknHGEKE1SEQJQ3yFpXyKTbccV5cfhig0cxYeinMakjkxRjrgeWMA2ejy2E7j4cMVZCI5hujOFkdnEN4gbnz7X+T4LlapS5+1RlbameJH/pkjaViQSiWQLKcQlEg/y9pN890vbtgv+72dJP8lXBV8H3/bLnEsIk5XUX8V2S20hgjSmsMh1wWwnKyxcsVY2btuRzf0oZK3TZJzrAOjBCXxaqaUk9zwQdJJVdCx3qWxcC4zhV98q/GzbjdjuaTbMO5hM41r127ZwmFz/r0hbd57pfF9VXjUbjOzaKZFIJDmkEJdINimOHyy2n2iaVhDgz4r0iOfOfSXzDzCcLz3HHbGAoxwiix9HLJdvryyRsZpwXD8byUGE/qBkPOtcR1e3klSE0FG08yScm2Ts+wR85UIdwHRvENDOo6rvYCoGJo9y27OBK/woREqPgwzjaz+PYU8903k/C5WsiMOrJ8TzFFfIFUXBtm1pW5FIJAcKKcQlBx6v7pfArprv5LepVGzbq5iasmb8OkvZ30BRB3fYSZC0SCGUDnbaneaPkci8gS884TmecR6gqYeAOhztCCnnVmEsaV3Hr5eLcVXtIOkmscmCUhp5qPqWEHYHQmxdGoUATRtgZP1/xHLXtu/uhajU76oaQvx5bljzbO/aWWxbyXftlKJcIpHsR6QQlxxYXNclm80W7CeWZaGqKj6fb9fdL6tREX+VSNt3mE//LwgM0k4WaCwZF0LB1Y5huhOknVv49PIkFddVSGUGcIO3PcdzWNjCh6V0Y2zGEhaTtO/i044Vftb1t0m5abLOKFlnFp/aWT6vNoqR6scVoCknEOph1s27JKwbPFn9r3CF8VyvxU7sx4r40zziz8p220o+bUXaViQSyX5ECnHJgWK7/SSdTuO67gvZT76KSttFXpW5bHeVmeR/A+Sa4thiGZPWksQSRXuHjHO/8HPSuk02vbV4UwhwOYsWynnLk/YdNPV42Vyq2k/SXcUWNngkooBN1l1EV/tQ9PNsWHdwRS5txREJXBRUomVbBSMGVvY8CWeErLPlb09YNxlZ/yWEeD0a1Lzq1pSnsZNtRXbtlEgk+wkpxCUHAi/7ydPiB/eCSiaZwKsRlSiEw2zyf8B2tzXjcccQ2hmEAEU7T8q5Ubqh4qIE46ibNhVVeweT+0VPcMi486hKe+ERVT1EytnAEesY7gQ+/cQOFpcQhtJBynpcNmK6c/j0HsTmpdAVGgHfu2TEOk7gDiHtZNk2q9kfMJX4R8/4inhTaY94pXhRa8rT2G5bKe7ambetSCQSyeuKFOKSfU1x98vr16+zsbFRSD/Zrf3kq3iVqtSVmmsp87+Rsi97jqXsO6D9ZyRt7wQSoSSxCKAq75Mqih3M44oENkEQITT1OClnEZdkYTxt3yG4zRPu046ScR0S1m38+lFPoZ62HxL2vQWiF9NqZ8O8gcACBIYzSlDrL9smlvpXzMW/5Xkez8J+9YjvhTXlaWyPPxweHmZ6elo2CZJIJK8tUohL9h35OLS8/STf/XJ9fR3gmeIH94JXRRxXirh1jQ3rxs5PEE0sZe+STfXu/BSlgwzmjos3TXcGRX+HuD2FS6ZsPGnfxK/mqth+/W3i1gy22MiNWfeI+N8tn1OAKXxYohl8iyVjLlkckUBXSj3urtHN4+Vf4+aTf0cqldr5nJ/CfvSIV6rSnxfkGxsbZLNZaVuRSCSvLVKIS/YN+e6XeQHuZT+p5NfYlZyv2qLfduOMJb/Bhn0PXT1Wto3r6qSNEIqWhtAamlLeil5XTxK37pJ2HhLQ3/GcW1ePsmLdxq+/scPRCdL2JH79I9bNu5uV7S02zOsEi7ZVqEPVz7Jm3iTDI1yj/LgsdwVdrUMhgE9tw6+/gemfRwkusBH+J3z+5Xe4ceMGq6urz5Gvvj8r4pVsHpSfT1VVT9uKbdvStiKRSF55pBCXvPbk7Sf57peGYXh2v6y0Z7va4vhlzlWMEIKJ1P8Hy11E4JB0l1BoK92Gk6iBnG/cJYMhFBRqCuOa0kvSngFywilu30QVpf5sXR0g4SwgMInbN/Frp8uOTQjQ9FNs2DOo2/LA86SsYfzaAD7tKCYRktajzREXW1/Dp7aVbZO1pwn7PyDhxIlb97YG1Cw1R75NsMbkxo0bXL58mVgs9kwCcL9WxPfaI/40XNctzCe7dkokktcRKcQlry357pd5+4lt22iahs/n87SfVKMivl/jC4vPa8X8PmvmHxR+dkSCeFbBdQMA+LU3MZTSZjymO49Q+hFCRaGerGuXWU0yTGIbrQBoSg9JN45LujCetCfR1e6iYwJdO8+GdRvDiaHrg4iydvbgYuAqPaTsOKa7UjqoZnAIohAqPOTT+hFaH4vG59T6z5btzxQLZBr+CV/7+F06Ozt58uQJFy9eZHx8HMuyyp5faXFcyb+Nl+0R345XBb44/hAoxB9KH7lEInkVkUJc8lqRt5/k00/y3S+fJf2k0hXxSs5XLdFvOHNMJv+XsueogVVU/Ria0kfCfuK5n7TzBE05h6O0YXl11sTAUlw0ZYi0sHBEomTcJYO5WVkXQkXXzhEvWgiatB4Q8Zcu3hRCIeB7h2XzS1StFYFWNm/WmcGvH0IIjaDvHTbsBdLONABr5g1qfGfKtklYDxhO/C36+nr56KOPOHbsGAsLC1y4cIGHDx+STqfLtqkE1bCKVFr471SBLxbk+Ztw2bVTIpG8akghLnktyH/VnLefmKbpaT95Gvu5Ig6VjarL3RAZPFz573DxXqyYtsewlQEEpue4EJBVVFzqd55HNTGVdix33XPcdOdRlEFU9U3i9t2y8XXzBmHfZhVb+PH53mDVvAVA0h6mxv+G534zzjIB/8esmLcQOCVjCesJIW2g5DFVqSNpx3m08U0URaG9vZ333nuP8+fPYxgGn332GTdv3mRtba2iFfFqebYrxdOEeJ58/KG0rUgkklcRvdoHIJE8DcdxCmkIeRFd/LXz81ANj/h+XKzpOA7JZJLPH/0HQq2xHe/mdf00S9Z1mnxvYjnlcYRB/W1W7bso+KjTBrHcsZJxIXQyZisZ9Rb1+ltknS/L9iEEmIRQlZ0vZXFrhIh2HAOXDet+ydi6eYsG/5skza3jC+oniNuLxI0rNPjOlMUtupiYIoFPacR014j432bNHCfh3GXFvEuNr5+eyJ8DoL6+njfeeIN0Os3U1BRffvklNTU5b3wl/jaqUaF+lSvweVEuhCikKzmOg6ZpaJpWsUQliUQiySMr4pJXju3dL/P2k912v9zPFfFKzBWPx7l//z6xWAyDGKL9DxF6C4oIlj03oJ5m3cpVqFetEXRlqGRcVwdYs3OLJAUWKTeFSkNhXIjcAk+CMQDW7dsEtTdK9iEE+PVzbNj3WbNuE/JYvAmgEiFLiKy95Dm+bj4gqA0hBNiZY6xaY9ibNpgNa5Sg1le2jemu4tMH0bTjLBl3scVWnvndtb/HilEa4xgOhzl27Bg/9mM/RltbbjHoF198wcTEBLZtex7XXnCQrSlPY6eundK2IpFIKo0U4pJXBq/ul8CeNd+RqSnPjxCCpaUlrl+/zs2bN/H5fLR3tEHXdxGYpN0ZFO14Se63RgNxZ35rH1gk3DQquSxuhSgZYZZEC1piDUdtBZGrbAf0c6R4WHIsG/YT/Gp/4eegfr4g9nPjE/iLFm8C6GorphJmw3qEX+/zXLwpsDGFgSLewAyOA1sn42Jguia6Ulv0mkDEd54F4zGKGmH7qy6wub7y35Oyp8vm0nWd3t5cjvrQ0BCxWIwLFy7w6NEjMpnyXPTdIq0pT2d7185i20q+a6cU5RKJ5GUihbik6riuSzabLaSfWJb1UrpfqqoqK+LPiOM4zMzMcOXKFZ48eUJzczMffPABR44cwYhcwvRttYvfsB8R0HONcoQAoXZji3jJ/iyxhqW0IIQfRe3HdMur02lnHF0/i189zZpH902BRdbNolJHQDvHqrXdMpLFEBRiC31qO4bwkXVyTXri1mNq/W+X7VdXGjCJkCWDEOWLNw13CV3tBKGhK8349FMsGncQ2KyZ92j0v1W2jeXGubb8N7DceNlYnryP/O233yaTyXDx4kVu3brFxsbGjts8L/u9Ir6X8xUv7swvCs8Lcpm2IpFIXhbSIy6pCnl/pmmahQ+64srUy6DSiycrXYHfCwzDYGZmhtnZWUKhEAMDA7S2thaqjllngfXgvy/bbsW6Q5PvTRQ0Vq3yRZMAKWeSet9HxK2L7PQrzrjr6Ep5jnceU6wQ1D9g1bwGHvsw3AWi+lE0d5WMANMtTWNZNW/R4D9NcvMY/VoXGUchu5mK4jcGIDhStt+EPUKj/yOWzTvYznDJ2LJ5mwbfceJWaQVfIcrVlV/m/eZvlHjYixdrKopCQ0MDDQ0NpNNpJicnuXr1KrW1tfT399Pa2rqr90Ol//4q7RHfbUXci2IfOeTiDx3HKTQOepnXKIlEcvCQFXFJRclXmtbX13n48KFn98uXRTUq4q/LYs1EIsGDBw+4dOkSqVSK06dPc+7cOdrb2wtCRwjB4+TfRyhZz30knTRpx3sMIKAOEjOuE9LPeY6rhMm4sGw9IKAe3mEfh5k3b28loXiQddZAO1SeEb5J3JogoHUR1A6TtLNki6rzZmCcWt8bJc8XQqHGd57p7FUi+hDlCOL2NEGtEwCf0kBQP8uCOcxs5iK31v7XHY+1mHA4zPHjx/nkk09obW3l4cOHfPbZZ0xOTr6wj/x1rlA/Cy9DiOfZbltxXZfl5WWmp6cLthWJRCLZLVKISypCvvtlIpEgmUySyWQYGxvbc/vJ05CLNUsRQrC8vMyNGze4fv06mqbx7rvvcubMGRoaGsp+J/PGH7FiXt5hXwqWCLLhJNCUpvLjE0EyroXAZcl8SEA9vm170NRDZDe7cyacdTTRWPIcn9JO3FlDYLNq3SWily/O1KjHEAEWjBvU6CfLxgEckUFTe4jbcayiRZZ5Vs1HhLVBAFRCBPXTLBh3NseeENkWXZjbZxpHuNTo50i6sGI+KoyNJH+TkcRvF53r0+MLfT4fAwMDfPTRRxw6dIjZ2VkuXLjA48ePC+smnpX97hGv1PnlbStra2vEYrGCbUU2CZJIJLtFWlMkLw0hRKGJRv4DK19h8vv9hedUSijIxZo5HMdhfn6e6elpbNumu7ub06dP4/P5dtzGdJPcTXyLoNKGLRbKxiO+N1kyc9GAfnpQRQKhbOWHB/QTrBaiA13W7SVqtXYskVvUGdbPsVxkabFEHF3pRnE3UFQHlRoMEcAWa4XnrFnjRLVeDHcKyHnDXaWRrDMLwLo1Q0TrwHBjpceqnyKWfUiD/xCmuV5mk3GxyLgJwtoRUq5Bwnq8bSyFrtRhiy0vt0YNitpOVpjYolws31z7x9T6emgNlvvJd0JVVTo7O+no6GBtbY2JiQk+/fRTOjo66Ovro66u7iv3ISvie0v+RqO4a6e0rUgkkt0ghbhkz8nHD+b93/kPy2LrSbHdoVIc9Iq4YRjMzs4yOztLIBCgr6+Ptra2ZxIyD5L/mqQzg9Da0d0QirqV8OFTWlkxt3zTSWeaRt9JTPsmigJh7TTL2/K7bZEiKzrQRYiA3ls2DpARM+iZAfyhcRS9l4w9WjLuYmAIG40aXGGhaN0k7YmiOdLY1KMSwMUAIKKfZskcReCwaj6iJfAW62Zp1CCArjZhECZtz5R50Q13lVrfILaVBMUhoh8mYSdJmDnB3hI4w4pxq2QbgcOl5W/wJ9v+GX7RAjx7Qx9FUWhsbKSxsZFUKlXwkdfV1dHf309LS8uO+9rPOeL5LPBKCvG86M6fo6ZphYKD67rYtl2IWK3kcUkkktcXKcQle4bruliWhWmahSzefPb39g/n/IeU67poWnlSxctgv7e434lkMsn09DQLCws0NDRw8uRJT+vJTqxZw4yl/xMAKWeesNuDjxEU1UUIcNUmXEqb8axaj2j1n8N2Jli3Zz33m3ZiNOin2LAmAO8bJDs0TZ3vI1asS57jWXeJWu0IqlDZsJ+UjafsORr9J0hZt6nxnWHJHEYUzbVk3KXRd5SEvVX1juonWTIncbFoDZxmbbMTZzFxa4wm32lQdBaM+9v2eYdm/0lWzW03H67BjbVf5a2av+p5Ls9CJBLhxIkTHDp0iOnpae7fv4+mafT399PV1eX5Xtqv1pRKdijN41WB394kKN/1t/jaJ6vkEolkJ6QQl+ya4u6Xz5p+kh+rdIXacZyvfuIezletxZpCCFZXV5mammJjY4P29nbOnz9PJBJ5rv0K4XIr/r9SLJTT6gw15jG0wAMi+pssWQ88t10wHtDifwvbubbDvhWSrkNQO4Lt0TUTwE31MxO6RaNviIwzWjYuBFjUoCg7i79V8wFtwU+IZb8oEcybeyBhLxJQmzHcZRTjEIvuWOF5i8ZdWgKnWDfvlWylESQtBDp47BNWzVFq9F6Sds42E9UPkXAyjKc/x3BMBB/uSpz5/X6GhoYYGBggFosxMTHB8PAwPT099Pb2EgwGN1+f/WtNKe60WymeZoXZLsiLbSv5KrkU5BKJZDtSiEteiGexnzyN/IdSJYW4qqovtYvhdiodl5iPhFxYWGB6ehrTNOnu7ubkyZMFT/7zMpH5AWvWo7LHk74JOrT3WLXLx/LU+c4wazyhQe/GcGfKxqO+N1gwcyK+zX+CtFMq6P10sR5YBBwSdoKQ2oBV5BEHqNHfZn5zH62+46Sc0ghBgBrfMSYzd2jwDZG0h8vGLZEgQDd+t4N1X3lVfdUco0brIr3pPQ+orViEWDGHUfFR59sS3HlcTEyRIai04Pf1MJ/dqo7PGdeINCvAn/F41Z4PVVXp6uqis7OT1dVVJiYmuHjxIh0dHfT39+9ra0q1hPjT1lJAefxhfp2MoigVXZwukUheD6QQlzwXxY0u8qL2eQR4MdXwbO9Xj3j+pujSpUv4/X56enpoa2vble3HcOPcT/wfO45vuC4BtZe087hszK80s2SN42CQcqMEiOKQKIwH1T4Wza3tVqwY9frWwkqNCBnhgpr7BsMUGwSVPnAToOT+7sLaCebNLeG9aseIau2Y7lZXz7A+yLI5hyNMEvYaAaUBc5uYFwIUtY2MMDyzyR1hYAkXnQhBvZN1ewVz8zjdzSZDPiWKJRIl26kEUfV25jP3yvabar7KeOoCgzU/tuPr+zwoikJTUxNNTU0kk0kmJye5fPky4XC40B2yEuKvksL/VbGm7ET+uLbbVvL+cWlbkUgkIOMLJc+I4zhkMhni8TipVArbtnf9lWulc733Y2pKKpXi0aNHPHjwANd1OXHiBO+88w6dnZ279t7fj/8rTOHdGVK3elmyhlmylvGrHSVjQoCiNONspodk3GVQu0HkLjeqCJARLoItm5AtsqRdPyphhABd7ccQqyX7jduThcjCoNrLsjlHcTt6W2SwRBBVBDaf0826tY4jcgs1DXcDVW2Gou6ZQkCt/23msvdZFyPoxqDn+aadRaL+N1kyZjHd0sjDjLNCQOsonB/kvg1YthLEsvdpDpbHLAJ8vvL3WTbKK/C7paamhpMnT/LJJ59QU1NDJpPhRz/6EdPT0y/VmpX/W69UhTp/7XhVhXgx27t2Oo4ju3ZKJBJACnHJU8jbT9LpNIlEgkwmU7IAc7cfuPu5wU5+vpfxAZv3f9++fZtr164hhODYsWP4fD6ampr2RJgsm2PMmnN4Hr7rI00uNcUSGVKuH42awnCt7yxrdunizXV7nNBmo5yg7wTpzbbzxaSdRTR1iKj+Fmt2eXdLgCXrATXaORKOjbOZhFJM0onh14/iV1pIuTaWSJUehzVBnf8MUCrC86T0OWq03pJthIB6/1uMZ27QFDzleVxr1iiNgTMowkeN701msk9wRC6+MZa9R5O/PNPcESaXV75JylotG9sL/H4/ra2t1NXVMTAwwOTkJJ9++inDw8MYRvlrt1sqXaHOi+LXQYjnyQvyfCU8/01W/htGKcglkoOHFOKSMvJfoaZSKRKJRKGJyF77G/d7RXyv53Ndl1gsxtWrV7l//z7RaJT333+f48ePEw6H92wuIQRX1v81C+YIEf3tsnG/OIylbVXKU84SQu0FoeFTmlixxj33u2g+IKp/jSXTe3EngOUKMu5T/OxCY82x0ZTojk9Zt2bQtKNk3TXP8QXjHnW+U2UiHEAoDmnXQldyNxZCQH3gLWY3nzeXvU+9z7vr57o1R9T/NrFsuU99yRglqvdszSOg0X+WOWOKHyz+PRxh7XzOuyBvFenu7ubDDz/kzJkzbGxs8Omnn3Lv3j0SicRX7+QZqXSFutL+d9i73PLtXTuLLX/5NTdSlEskBwPpEZcU2N58Byip3uw11bCKvI4VccuymJ2dZWZmBl3X6enpob29vcR6spe/n8nsVeY3o/dmjMf0Bt4g6dwCIKi2s+pMlG2zak3Qqp8GsthirGwcwKfUMm1OUq8NknLKn6NTw4aTIOtO0+k/RsIpXwhao58hZj4kpDbgI4rNNiEpNHSti+nsXVr9gyRs72MxRA1pu7wqD5B2lmnyH8I2h6kNnNom1gXr9hJBtYmsu1J0XH1s2BnixmNq9HaS9nzJPp1NL7lfiSIEGJk6ZkTu/OaNh3y2/M/5uPkX9/x9VixWFUWhubmZ5uZmEolEwUfe2NhIf3//rr9NqYY1pdJZ3S9jzu1pK5ZlYdt2oUGQTFuRSPY3UogfcPJ+xWw2i2VZhQ/uSqzs3+8V8d0K/3Q6zfT0NLFYjLq6Oo4dO/ZUsbQX5+YIi6vr/6bksWljjO7AEZL2E1zqEIp3pdlCR1Vqdzg28Gs9rFsjrCOIbFs0KQT49V7iVs6SsmgtUKe2YbLVxTOqn2LOyFWbM+4aYd8Alj2MoriFfdT6TrKw2V5+w04QVOowizpgAtT732A6e5+o3opGEIfyTpgrxjjtoQ+YzX5RNma6SUK+HhRnA6HY1PtPMm9MFawoLgo6Qext+007q3QE32YhO44RXCoZe5D4Ac2BQU7V/lnP1+9F2alqHI1GOXXqFIcPH2Zqaorbt28TCATo7++ns7PzhcRmtawpleRlzrk9bSUffyiEwOfzvdCCeIlE8uojrSkHlHzlJW8/uXLlCisrK+i6XrELvvSIlyOEYG1tjTt37nD16lUcx+Htt9/mzTffpLm5ecffy15V3+8nf5e4U1rNFbjMm2vU+86zVtS5shidMMv2PDPGMDVauXWj3neCxU2RnXXjOEojitiKgav3n2bZ2vKF2yJD1vWDk7OphNRuFozSiMAVa5z6Tb93bo6zBRGem2cDVWvbtojyFNPZ3HMS9iI1/qFyH7zQiPqPM5a+ScMONpQNa5o6/3Ea/G8ymx0piPDcfheoC/RTvFshoMn/BqPp+0S1bs99/mj5XzCXuec59qJ8lX0jEAhw+PBhPvnkE/r6+hgfH+fChQuMjo5imuaO23khrSl7w3bbytWrV5meni6xrUgkkv2DFOIHDNd1MQyDRCJBMpksidOqdJRWNXLEX9XUFNd1mZ+f59q1a9y9e5dIJML777/PiRMniEZ39kO/yFw7kXE2uBX/jvfxCZdFOxfT50VEH8JwkwgEi9YqAbWtMOZT6li2SsX9uj1L2HccISCkdrBolFtIUmIJK9uBKsKkXHAoF4Yx4wG1+jFq9WPEzHJv9qo5QX3gLAC1vqPMGqX+9QXjCc3Bs4WfhasS9R9nwRgGBGvWMkG1sWy/QoApAhiu9/tl0XhCezB3k6ATpM5/kunsQ0AQsx7jz3SUbePi8IOFv0fC8rbMvAjPKlY1TaOnp4c/8Sf+BKdPn2Z1dZULFy5w//59ksnkV26fnwtkRXwvyb+vNU0r8ZHn7YPSRy6RvP5Ia8oBQAhR5v/ebj/RNK2iXSehOtaUV034W5bF3NwcMzMzqKpKT08PHR0dzx09uBdC/Eb81zFF2nOswX+YGeMRTb5uFCeDULcaI0W1fmJFmeCmyJB2W/ATxhZp/Fo36055Csq8+YQu3xuk3FUcvBcrZgILNPjeIWZc3fG4M46Lw86Nmuay9+kJvsOM8bgkMnFr/BEt/gHi5iSa3ccCW01/DDdJWOtBEXHEZn45QqXOf4qZ7CM0xUeD3kVis9lPMbHsA9r9Z1m1V5g3Ss8/7V+lQesg4cQKjylCJ6z38Vvz/z/+QtffwacGdjynZ+V5q8aKotDS0kJLSwvxeJyJiQkuXbpEU1MT/f39NDY2PtUaVcmb+YMgxCEXHZv3int17cx7yaVtRSJ5PZFCfB/zPN0vKy1SqzFnpTtdPm2+dDrNzMwMsViMaDTKkSNHnmo9eZa5dsOyOcNo+pLnWEhtJGbk2suvWDM0MYQlHqMogFDJuOXiNuEs0eLrp15VmDO9owgBMsKHokR2HNczvYyKO3T6D7Pu0RVTJ0zCNVEVHY2AZ6RhSGtmzlwioNZhe8QmClwSdoqgOMaqPlo2vmZN0xk8yYp5G1X4CPmOMJfN5X87wsIQwtMTXucbZMFaB49EFKHaWAh8hLDIENZacKkp2Gb+YOlf8Gda/8s9EVcvuo/a2lrOnDnDkSNHmJqa4tatWwSDQfr7++no6CgTpJXsqgm569tBEuJAyY1OvsDiui62bRciZSt9fBKJZHfId+w+JG8/SSaTJJNJDMP4yvbKmqbteyFebU+6EIL19XXu3LnDF198gWVZvPnmm7z11lu0tLTsSsTs9ibj4tp/wKETRZTfmwe01pKK9QpT6OYhABp8p4g7C2XbAGzYy2TdnW01tXo/M+YTlq01gmpz2XhIaScZWAIEy9Zy2XOEUAhovSSdFeL2AhH9cJnfWyeELcIk7GUcEUCjPBpRCAjpPaSF5Z2bDsxlH9DkO01AH2LBKBXrCXuJqG+gZNsm/ynmsjHi9hJ+rR5FlH/DkbCXiPp7adSPsWEbrFpbVfUHiQvc3Pi+98E8B3vhow4Ggxw5coRPPvmEnp4eRkdH+fTTT8t85JX2bFda+OfnrIb49/qGrDiTPB85m7etyPhDieT1QVbE9xGO4zzVfvI0VFXd99aUai3WdF2XpaUlpqamyGQydHZ2cuTIEYLB4J7O96IfvLPZYUYyNwDoDhwnZd8l/ydTp/cz71HRXtVn6dffZN4qr1LniWq9TBkP6QmcZM0uzevW8JN0DEBgiDQW7WgkChVtFT+G0BCbiSimSOPQjkocd9Mr3ug/w6yxtThz3hymO3CaVevu5guiEvT1s2jm/Ocb9jydgaMsm/cofku0BM4ytZn93WAPkPGV56DrBEk4AktkPM913hihJ3iGBeMOzYE3mMxsHdeyOU138DgLxraFmELFJYxQwBLlyS0/XP7XNPv76A17NxF6FvZSHGuaRm9vLz09PSwtLTExMcHY2BhdXV309fVVvEJ9UKwpXzXn9vjDYtvKbjofSySSyiAr4q8529NP8t0vnzf95CBYUyq9WNN1XTKZDJcvX2Z0dJT29nY++OADDh06tOcivPjr6udBCMGna79e+HnGGKNuswOmEAqG2Nl7veGoRNTyRYcADfoAc2ZOpM8aE9Rq/SXjtb6jJJ2tHO51e55QUUW71neUpLtcOp89T41+JNdkRz9aIsLzzBqjRPW+XMOcwOmCCM8zZzymNbDVcr7Zf6YgwgHW9Gka/aVJKRp+Ano3C+Y4jtA8q+oAs9kRWgLvlYjwPDPZh7QFjhV+Vh0/Uf8hJjOPmMo+psU/WLaNwOV783+fuLVUNvasvIwqtaIotLa28s477/DOO+9gWRY/+tGPePjwYUEMVoJqVMTzAvdVnDNfIc8L7/y6INm1UyJ5tZFC/DUl/1Vk3n5imuZX2k+eRrWE+OuU6/2sZDIZhoeHC1/dHz58mPfff5+enh50/eV8CfWiQnw0c4sZ40nJYxPZYer007QEjrO+rTFNnqDZzqwxyrKVKUsVUYWPlLNVOXZxWLWTBNUGAOr0QWaNx2wnZo7Q6D9Dg+84c9uOKc+8OUyz722WLG87jMAhbmdoCbzNTLZcEAPMZUeo03to8p9gyuM5K9Yioc1z0vAT1PtYMnPRiRv2Ao2B8shDVejU+g8xa0wRUL3tOPPGFLVaGxG1DdOJsGBMFI56xVoiopWns1iuye8vfQvLfb4owTwv+/1VV1fH2bNn+fjjjwkGg9i2zeXLl5mbm3vp77VKV+DzNxnVmPN5Fm/nK+TStiKRvB5IIf6a4TgOmUyGeDxOKpXCtu09+QpSVsR3z8bGBnfv3uXKlSsYhkFvby81NTW0tra+9MrdiwhxV7hcXPv3nmOzRoysu8NNg1DJbKaPZNwkhluLxlaFv8l/lERRtRsg6yZxRD1+aonbqR2PadlaJuv4dhxXhMaykySste74nIDayJptlOSHF+Nio9DEoukdE2i4KVS1Fl0ECen9LJmTJeNz2Sd0BE8UftbwE/EPMpcdJe1sENFaEKL8920Lg4DWScK2MfXS18Bw02hKBLXILRjVO3CVZu4mvuB3Fv7VC/3tVko4BoNBenp6CAQCdHV1MTw8zMWLFxkfH8eyvBNxdkulbSKV7hwKlHQ4fhGKq+T55m35PHIZfyiRvBpIIf4akPf9pdPpEvuJpmkFAb5bDkJ84ctITXFdl8XFRb788stCqsR7773HqVOnqKmpqdj5vYgQf5D6nGWrPHYPoMk3wEQmRlTrKhur4xAZLV74ed1eJKAOgFCpUduZM7xTUtbsGBH9NEnHuzOnEKApTcTMRcIeizcBGv3HWbHmWLeTBDy6eIbUBlbtdRbMSVqD3t7qqNbBrDFDROvYcXHmqhmjIfgWi+aE5/hcdpQ6vQtdCRHUe4qq27BgTtIZOlm2TVvgBKPpx0S0Vs95V6w5WgM5e06L/wSLZpINO2fPuRW/yLX1P/Q+2KdQSaGVvyb19fXx0Ucfcfz4cRYXF7lw4QIPHz4knfaOxtzNfJW0puSvj88bLbob8teP3c5ZXCFXFKWQpiVtKxJJ9ZFC/BUm/5Vi3v+dzeYWdL2o/eRpVKMiXo2GPnv1taxt20xPT3PlyhVGRkZobW3lww8/5PDhw4RCIaCycYnP+7dguyafrf2G51hIrWPGGMcSJsuWU2I98Ss1LLvldpWYOUmtdhKUEK5HVjdAvd7H4/RdWnynPcdb/SdZMKcwRAZThNFEqRe7UT/M9KZlJeMm0NTmkjQSVfgQ1JJ1c9Xmicwjmv1HSvYRUGpJuwJTZIgZY3QEy49FCGjwH+Nx6jat/qOex+pg46ATULtZMqfLxqcyD2nxDxX21xY4zXh6BIFg3pqgxii/wQGYyYzSHXqPscwY9rbYw99d/LdMpcstPU+jkmK12LOtKAptbW28++67nD9/HsMw+Oyzz7h58yZra943Yi8yX6UXh8LrVRHfzvauncVNgmTXTomkOkgh/griui7ZbJZEIkEqlcKyrIL95GU1bjgI1pQX9VEXk81mGRkZ4fPPP2dhYYGhoSHee+89ent7y/zflc4th2c/t9uJy8TtVc+xWr2jIALTToKsU4tG7uYiqvVjeWR1A1hCA+o8x3K+8ZzPeSI7TKNeuiAyorYyY2xZQNbsRYLqYKFyHFTrWdq2aHHZmqHRfxzIid06/2FW7VjJc+aNeSJarrqu4kPXmkk4W+c9lXlMk2+g8LMQ0Bo4w0x2ZHP7OWq0lrLz8Skh0q4PoQR3rqpbS0TURloCJxnfJqA3fIs0+kpb3fuVCFFfP49T92nyeXfe/PW5XyFhP7uQraQQ32mu+vp63njjDT766CNCoRDXr1/n8uXLzM/P7+r9Xy0hXumIxpeVerLdRy67dkok1UEK8VeEYvvJkydPiMfjhUYOlYigOghCPP+h/SIfMPF4nHv37nH58mUymQxvvPEGb7/9Nm1tbTuKgWpUxJ9lPsPN8nsrv0OLv7waXKe1Mp0tzcles5fwKX3UaT1M72A78RNi0VpgPDNBvT5QNt7kP8KGveUbjxmL1KhtuR+EgiCCs60CPG9PoGd6QCioSiOGR9fPaeMJTb6j1HGIWY9jM0WWtKGjuH7q/UdYMmdKxgWCdTtOUM3ZXGqsQSYzj0u2dwmisuVb1wmiqR0smzFmsmN0edhQAEzXIKIPMp0eKxsTikvKzuLfbGZUq7UhiDJvTOMIG8M1CCrhsu2Szjq/GfuX2E9JsymZp8JC/GnCOBQKcezYMT755BM6Ojp49OgRFy9eZGJiAtt+tvPZPt9+EcVfNefLZHvaim3bzM/Ps7S0JG0rEkkFkEK8ymyPH8xXXPOd0ip10T8oHnHgmecUQrC0tMT169e5efMmfr+f9957j9OnT1NXV/eVv5tXVYhfWb9Aykkwkh6lxVcqInU1iqB8H3PGNArdO+6/0d9Pxk0hcFkw44TVrSpyVGtnOlsqRi1hkHZ0fIRp8Z9i2Zrz3O+6f5lW/zmWrRnPcYDFeII1M7HjeEpdRUn2Mp3xzjxPO3ECagu17iGWtHLP/Ko1X7C46ATxa90smVvHO5EepcHXU7KNhp+oPsBw+j5dIW97S9JZo1bvoNk3xJqdYaPoG4q4vUa9r62s2t7k62IiPcPvzH9rx/Mt5lWoiG9H13X6+/v56KOPOHbsGLFYjB/+8Ic8evSITMY7p92LalTEq9lV82VTbFuZnZ1leXlZ2lYkkgoghXiVyHe/TCQShfjBYvtJpasQsiK+heM4zMzMcOXKFZ48eUJzczMffPABR44cKfi/n3W+V02IZ50MF9d+v/DzcHqcZj0nMpv0XuaMSc/tOgJDPEo/oM1fvgCyTmtnKrtVjc66aTJuAJ0QQig4IujpG487K9RoR5jJljfQyeM36xnNzhBWy6P9IJfHbfrA9QfR8c5mb/EfZjE0T70or9TncfFjuoEdx6eyT2jznyCg97Cwraru4pC0s/g3K9g+AoT1bmKbr+V45jHtgUOe+xUEcYliuOUNfeaMCfrCxws/dwaOETNWSTpxLq39EdfXP9/xeIuphkf8WVBVlfb2dt5//33OnTtHJpPh4sWL3Lp1i/X19Wea7yAI8Wq0rM/fAEjbikTy8pGdNStIvsviV3W/PAjV6WrM+VUVccMwmJmZYXZ2llAoxMDAAK2trbuKDnvVUlM+X/8jMm6pxWM8E6M32I8pvP/mFKGxbudSUkYyI/Tqg6wztjkfoATKqujr9god/h4aNB+T2R26bwqFFTtFk+8Ii9b9smFN+MkqAsNNE9baUEUCV9myrwgBdYEBZo1xsKEr0M+q9aSka2ZUayVm5DLHF1mgVe9kwy6tvtfqHcxml7CEQYvTQVIv9ZnnX4OEo2O4Sc9TSTjrdAYGSFjT+LU2FoxSsb5oxojqTSQ27TlCQGfwFMPpYRQUeoJ9LJjlN0GT6cd0BgZACTGaLn0d/2Ps1+gI9tAZ7PU8ptw8r15F3IuGhgYaGhpIp9NMTk5y7do1amtr6e/v3zH+U3byfHk4jlP4RlZ27ZRIXi6yIl4B8hWF7fGDO3W/PAjt5vNzVrqhj5ddJJFIcP/+fS5fvkwqleL06dOcO3eO9vb2XX0IVnqx5ld9IKadFD/yiMBzcLBEFNP1PtbOwCE2ihYIztgLBMzcAsiOwBEWTe8IxA17g4yzcwfR9uBxlq0FxrIjtPrK7RsNvgEMPXfTsGItoGRKY//aAydyInyTWWOC9sCW1cZHAFP4MDerzY6wSTsCn7J1TLoTYjmdxRK5BajrSpKI1lByHLkunUeZyo5hCQ19h86ay+Y8Tf5TJbaVPIabRVVCqGgIAWGzh+FNYS0QLFsbhD0aAfmUIIYIsmiUd9e0hMm/mf4npJ2dc9lfJY/4sxAOhzl+/DiffPIJra2tPHz4kIsXLzI5OVnmIz8IFXHXdSsal1g8b/G55n3k+aLR9q6d0rYikbw4Uoi/RPL2k3z3S8Mwnqn7paZpFb+wHbQqvBCC5eVlbty4wfXr19F1nXfeeYczZ87Q0NCwJ+KlGkL8afP9aO0PPC0QCIU1O8GqJYiopSLUr4SY2yYsXRzWsajV2lkyd26/HtHaGcmM0Oo7XjZWozUzmZ0o/DxpzFCndxZ+bvENMm2WWlY2Aiu0BXKNdGq1TqYyE2xnIjNCo96PEBD1DbC2LWllw14hujmu4cfnb8fUtnzJlmKgUFuIRRQC2oOnmMzkFrCuWku0BAbZ/jL7lCABtYXHqYe0+Ev94nmWzRjtgSPUq4dY0kubCaWdJEGtCYoaAUW1JlAamMiM49dqUEW5IFu1lvj27D/HFd7vo2rFF+4Wn8/HwMAAH330EUeOHGF2dpYLFy7w+PHjQozrQRDi1bameCG7dkoke4sU4i+BfPfLfPxgvvulz+d7pq/yDlJFvBqVlIWFBb744gsePXpEY2MjH374IUePHiUcLk+p2A2vUnxh0k5waf2HnmPdwUOsWqsknQQZN1LwOgM0+/rIuuUL6CzVQFe6sXews7T4+pnaFNpjmSmaipJUhABVieIUJX84wmbDtggoUXwiRCzjLfDHMxM0+4bIuC4O5UkbAsGKFaczeJaZbHlaCcBMdoyO4ClqfUMsmeU2lCUrRo2TE9MdwVNllpCJzAjdwWOFn334CWntLJoxXFw27DSBzTSUYlR0Eg7YO3T8jBkzdIdyNy1Nvh42HMGqlbOyLBgxusOHPbdbNdf4g6Xf9Rx7XawpO6GqKh0dHbz//vu89dZbpFIpPv30U27fvo1hGPteiFerIv4si0SL01Yg11tB+sglkudHesT3iLx/zjTNwgrzvI/ueT+cDkp1upIe6rz/23EcFhYW6O/vf2r04F5QDevNTvN9tvaHmKI8/1sVGkvWVlrHqrVKR6ADVUwS0WqZ3GEhZcCp4UlqlLZAJ5Y7jlC2/l4VoRG3tyrvLi4xc4MGvZmUu0xH4BhjHiI56cQRVh1BxYfl8xbiAhfLrcN0N7xfBKBGa2LZzKIIreS4isk6fgyxc9LKojpHY7KfEcfb3z6VnaTJ10bSXiWidxEr8oQn7A26g30sGqMFv7qGj6ivn6nsJD78BN0aslq533w0/YSj4Td5lH5SFlE4mh5mIHSokHEO0B08ylh6iqnMd+kO9XIyWhpJ+bpZU3ZCURQaGxtpbGwklUoxOTlJLBYjnU4TiURoaWl56ecpK+LebLf8OY5T+HbkZfa+kOTIZrOYplntw9hz/H4/weDO1sb9hBTiu6R4RXnew/iiAjxPNawp+7UinkwmmZqaYnFxkYaGBnw+H8ePH6e+vv6lzguvjjUlbif4YuMRQbWG7LbFhl3BIUYypaI4ZsToCx7Cr9i4xPFCs6M4+gpzxhyDoaOsWA8KorMjcITRTGkWedbNkHWbiGqtzBjennKAcKABXQ+A5S3E2/1DDGeGafN3oIhUmdAOqbUsm3HSboqh8DHmjPJFoO2BwzxJDxPVaj1fE4A2/wDzYpWwqCWtlL8GtrBwhE69PsC0UX6zMpOdZCh8gpnsA3QCRHzdzGSnALAwCYhaNDScbWky3cFjPElPE9ZqiNvrZfudzc7SoLewZi3THTrOcGpLlP+b6V/lvz30N2n2Nxcee90r4l5EIhFOnDhBKpVC0zTu37+Ppmn09/fT1dX10irIsiL+dPK/+3zqV962kq+aFy/+lOwN2WyWgb4a5hcrW7irBO3t7YyPjx8IMS6F+AviOE4h/aS49fFeXKirYU3JXzwr+WHzsoS4EILV1VWmpqbY2Nigvb2d8+fPE4lEuHTpUkUjBfMfSJX48NlJiP/RyqfMm0u0+ZvxKTaWyFWrdXRi5oLnvtKOBVoEIWD7oTeonczpy4WfxzITHAmfZNG6T0RrYHJTcG5nzV6h0XcK070DHi9HSKlhyVkjY6U5FD7KvFnajTKs1jG3uWhxwYwxGDrCovlw6wlCIaA0sermhP5oepjB8BFixpPCU+r1diYz8wAknDjdvh6yTgoUUfScNuaMZQw3S9TfjmqlcLdX1oWCqtTioHq+RgDj6RF6QgOkHIXZbGmKSlKLMxg6xPRm8yAhoDd0giebwrpW70ARibIbDVOYKEqQVv/hEhEOkHbS/OrkP+OvD/13+FX/5n4rdyO4lx7xZ6WlpYU33niD+fl5xsfHGR4epqenh97e3j3/AJcV8Wdne9qK4ziFfWqaJtNW9gjTNJlfdBi/3kdtdP84jeMJl4G3JzFNUwpxSSn5C0qxAPeKH9wt1aqIQ2U/bPZaiOdtJ9PT05imSXd3NydPnsTv30q5qGTlvzhSsFJCfDtJO8WFtVze9IK5TFegE1dM42DRERxiJD1ato0QIPDxJD3BscgJ5s0HRYMKhsfL9yQ9zuHwkVwCiPDOIm/3D3Av9ZgOt4ekv1ysR/UOVjd95ePpKTr9nay5c4Vj8quNZIsa+4xlxhgKHWHBzAntzsBxRjOl4nQ6M0eTv5UNexG/EiLpKlhi62vcmew0h8PHmTVy5+hzQ6Qct7CoddGcZyh8hJnsluAXAiLZdibd3LEeCh9hOrsl9vNo+Mi6EdYs728AxtIjDIQOMZ0ZoadIhAPMGzEOhQ8xkS29GYloUdKOQlTXPW8AZrLTfGfu3/EXu36uIIT2gzXlafOpqkpnZycdHR2srq4yMTHBxYsXaW9vp7+/n9ra2j2ZrxqiuBoV8XxBZi/m3W5bsW27sGZK2lb2jkhN7t9+wTlgywv2zy3USyT/FVtx90tgx/jB3VItjzg8e9fJvZpzLyp2pmkyNjbGpUuXmJ6epqenhw8++ICBgYESEb6Xcz4Lz9Ptcq/m2z7XH69exHC3vOGzxjwRbYAAIWay3t0sOwM9zBq5sUepCdp8R4rGDrPiLHtul7I10o53q3JN+JhP5xYextRF2nylCw87/EMlKSoODqt2Bt3OVUO6AseYM8q7a05m56jX22nx9TOWKb+psISJ6er4CBDRu1kv8sPnGUmP0OrvRxU6uFE2tllCRtPDdBU15OkJnWDFv/UajKcnqddaSrbR8FHj62IsPU69r70sZSXPXDZGb+h0WXU7f1w9wcHCzw2+Viw3wKK5yGh6jIGId5OgK2uXuLJ2Gdif1pQ8XhF7TU1NvP3223zwwQdomsaVK1e4du0aS0tLu34fVvpGA6oj/vOfPXs5b3HXzvw1WHbt3DtcxL77d5CQFfGnsL35DlD4Su1lfuCoqoplWV/9xD2eE6ojxF+0Cp9KpZiammJhYYH6+npOnDhBY2PjU383lfRtP2snz72keK6Uk+aPVz8re85EdoYzkZOMZG6VVVSFgLRbKqZH0jEGwn1sWDEWTG8RrgiVDSeD4Wap0xpJuqWCN2w2s+grEq+ZOXpCPaxY0wSUMAtmuUBOuSlqrCgNwUbGPaIKIefVNtwAGWGUNRXKs2otcyTyJg+S5ecLuaSVRWOdereXOWXacx+zxjx1WhNRXwvDqdIFnA4O8YyJquu4qo2KTr2/j6lMbl9TmSkOR44ymSmtbitCpcHfx6KRQEP3TIGJZReo1RsIqTXMG+tki+Inx9NTtPrbWNpmL+oJHubfzPwG7cGu3DyvYXzhs/A04V9TU8PJkyc5fPgw09PT3L17F5/PR39/P52dnS9U7a2WR1zXK/sxnf8MeFmV+O22FcuysG1b2lZ2gYvLfrqV2V9n89XIivg28ukn6XSasbExpqenC962SnUSq4Y1JR9FVclK/IsI1bz/+9atW1y7dg2Ac+fO8cYbb9DU1PRM0ZCvWrfLvZyveK4frn5WItzyBJUg95KTdPiPl1Vqe4ODLG7LBndwmMnG6QgcI+l4d5bsDQ2xaq2SctIYbhBdbLWLjyqNLPtKhbaDw6KRIqLWU693k9phv0ktiU9p3zEmUQgQIoiq1JVkcBfTHhjkRvw+faHypkF5mv29xIUNrvc+DDdLVO9iPOXtf8/oKeqUToSrELBaCyI8z2hqnFZ/19YDrkJr4BCj6QkWzEW6QoN4kXWzNOo9xLJrZb9LW9ikXYvgZoOinM/8OI9SkxiuwTfHf5W0mzkwFXEv/H4/Q0NDfPLJJwwMDDA5OcmFCxcYHh7GMMpThJ5GtarTlbamvIyKuBfF8YeKomBZFnfu3ClE/sr4w2fHEWLf/TtISCG+Sf7OvNh+srGxQTwefyn2k6dRjcWa+XkrXRGHZ6vCu65LLBbj6tWr3L9/n9raWj744AOOHz9OTc2zm+Nexbbzezlffq6Mk+WPVy56Pq8z0EPWNXiYmqQrsNVsRxEqK5Z3pJ+u+BlNbxBR68rGQmqEqSKby4q9imo1gcgtZNS0Gs8KR9pNE9Z6mMnunKISNVq5n3xCT/CI53hP8CjTxixT2Rk6g+VCu0ZrYDabs8QMpyZKxfAmXYFBHqdGWHKXaRTdnvO0+Lt4kJykIzi047HOuzH6Qm+yrK6Ujbm4JGyDgBJCERphu4Ox9JaXfjg1Ro+HGO8NHeZOYoTOYJ/nnOvWOk2BDjSh0xk8wsPklj1nxVrlj7TPKvYl76vccl5VVbq7u/nwww85e/YsGxsbfPrpp9y9e5dEYucYyxedb6+o1gLRSnq38xVyRVGYmprCcRxpW3lOqm0jkdaU3XHghXi++2UikSCZTBbilvL+72oI4mp4xKHyQjx/oX/anKZpMj4+zqVLl5icnKS7u5sPPviAwcHBMv/3s1ANj3glhX/+3C6s/oi0RyOeoBJkPLMlfO8nJ+n05wRsT2iQtaJW9sU06G2sWOvYIoqPQMlYvdpG1i2tLi6rq7QGjtAdPEzMo2kOgA8fM9lV6n19nh7qRr2NJd86AMOpaVp83WXjxWL2SXqMNn9/4WcVDUWJktl8HVxc1i2DkLrVbKfR18pUdsvaMcs8nYFSQVyrNbJkZLCFzZPUGN0eYlwI6Aoe435yjEZfS9k4wIa9TpOvm1q6WPIQ69OZBer1xsLPvaFjPExOIhA8To3Rt0PVfN5YpDd8ipH0RNnYlDrLxcwlz+32mkpXxF9kPkVRaG5u5ty5c7z//vsoisLly5f58ssvWV5efuq14aDEF1ajCp+fF3JdVfPXsrwgl02Cno6LwNlH/6QQPyBs736Zv/gUd7+sliCuhjUFqlMR36lCnUqlePz4MZcuXWJ9fZ3jx4/z7rvv7joneL9XxAGyjsHV+A3P53QGejDc0uYPD5IzdPoPEzO8/d+NehMj6ZwlY9FcIUA7uLlLR41Tx4ThbdeYyS5guTtHT7UHBtiw44xnpukOHi8ZU9HJOgpiM1bQxWXZTBPRcgkYuUQSpSyHe9ZYJarlxGx78AgxY75kfMPeoEZv24w6DJF2wNz2esxll4lq9QAElBCWCJJyUoXxqcwidVpjyTZ9oeM8SY1hCQvb1dC9lt+4CusZE0V430AargFKEFXomyK8NN89J9QbSh6LanXoNHAnPkxnoNNzvz9Mf8a9+EPPsb2k0h7x3QrjaDTKqVOn+Pjjj6mvr+fOnTt8/vnnzMzMeF4jqiWKD4IdBnKJKnm7ilfXzuL1WlKQS/YTB0qIb7efZDIZhBA7pp9UszJ9UCrxxcJYCMHa2hq3b9/m2rVrOI7D22+/zZtvvvlM/u9nodLdLitdgRdC8EcrX7KcFUS1UstOSA2VVMPzCASGE6Rmm7jM41drSxZCzlqLBLKtuC6oatAzExyg1de9WXEfKBtr9rUzXFTBfZQap8O/VWnuCgyxYpf6ypNOClXUo6LT7h9gxSqvKmfdLDYhuoJHeJIqT1EBmMpM0xM8Sq2vgzWr/BuAjJtBU6Lo+IloHSybpfPkBHMYdVNs9wRLRfOSuUxncFv1Wii0+fuJuYtM2XNE7ajnsc1nFxmKnCkT4blzM1CVENrmvI2+FgzHz6K5govLhpUmXFTtL0wNfH/xj1k2vb/t2CteZWvK0wgEAhw6dIiPP/6Yvr4+xsfHuXDhAiMjIyUdC2VFvDLzFl/n84I8/3g+QCHfQE/aVnJU20YirSm740Ckpriui2VZmKZZWASSX3z5NHEnK+KVmdO2bebn55mamiKbzdLV1cWxY8cIBAJfvYPnpJIV8fx8lRT+pmvxO4ufsWYlaFfqiWguKScNQIe/m0ep8i6QfsXHZHYBW9j0BDtYtresJO3+TiYy5bGBi74Nzobe4HHmnudxNPvaGE7nbBXj6WU6g+2s2JvVaaFguirbU07GM4t0BNrRUEpEejHz5gLHwyd5lN7q5Fn2Gjg2hhrcsdEOgCV8OO7OyURz2XlORc9yN3HX+ziMRY5EDiOExeNk+bEOp8Y4HBliKjuKENATOszw5msvFIGhuGiuhqNuXV+EgIHwUb7ceMihSD8THkkxuXkHyTgpFowUaWfLfrRhJ+gLdZHOpgsNioSAXt8AtzZG+Mej/5r/6ehfxae+nMt+NawpeymMNU2jp6eH7u5ulpeXmZiYYGxsjM7OTvr7+w9MQ59XtYnQ9rQV0zQL31wf9K6d+22B4346l2dhX1fE5+bmmJ+fL9hP8o0Eiu0nT6OaQvwgeMQty0IIwZ07dxgfH6ezs5MPP/yQoaGhlyLCofIV8UoKcUVRuJp6yNrmgst5Yx2cekJqcMdqOEBvqJeUk8FwLWKGQb3eBOREnLHDn6HiqoxkFukJHC4byyWZ+ApC2xQWq5ZNRI1uzneIBbO8hb0lLJK2gi0CZSI9T0gNM5yep2+HxZuKUFGVMI9SowyEd1rgOcDD5CjzxgZR3bvZy2D4KNc3HtAbKq/m50naBobj2/FYJzMx6rVG+kJHCyI8T1rN0BnqKXjjhYBufYBHm5Xwmcwi9Xq9537Tto1KtESEb805y+F8vrhQaLbbGd7MXx9NT/F/zvz2juezW6phTXkZ8ymKQktLC+fPn+f9999HCMGlS5dYXV0tfItaKapREa/GnEAhwvCr8LKtHHQfubsP/x0k9rUQ/8t/+S/zrW99q8R+8jx3+gfNmlIpIZ5Op3n8+DGff/45Qgh6enp477336O7ufukfANWoiFdqPqHAHyWulzw2a6zho5kOf3eZNxxyizfH0lsV8JSTYd3UCCtRWmgj5iGYAZrsBtas+Ka/vDTRoy80yKxRmm0dt5Mo1FOvNzGe3jklpV5vxnB1FFH+PhUCGvR2kk6KJ6lpWn3lnuje0CFixiIAw6kp2vylz6nXG5jJLG+ea5qAUl82V1egl0fJnHCeySx4CuJGXzMxY4OprPc45LznDf5eRnaIPBzPTnEocgghoEPtY9Tc+uYh6xr41TDqtmPrDfYznllkMjNPo8973kfJcfpCfXQFB5jdtij0D5Z+xOer1z232y2vYnzhbolGo5w+fZqPPvoITdOYnZ3l0qVLzM7OVuR9fZA84o7jPFdm+vb4w3zX64NoV6n24sqX8e8gsa+FeCQSIZVKvXAU00GzprzM8xVCsL6+zp07d/jiiy+wbZu33nqLYDBIbW1txT7A93NFfFiZY8lZL3t8yUixZgp8iq9srCvYVZZ4sm4nSKZ9pBzvv8GgEmRJy+V+CwRj6VWafW0ABBQ/sWx5cx6AmLFEVO3F2MES0uxr5klqkpnsPF3BIY+M8wHGNvO5XVxWzCwRbctr3eHv4XFR5dkRDhuWQUgNA2x6q0NkivK4Z7Ix+sJbVf2IiDKXXStUubOugaaE0dgSJhEtQtZRyDhZsq6BrkZQKRcug+Ej3Np4TN9TquqjqSmORE4yYZd3OZ3LLjAQ3vKa94cGGUnFcISTm1cJonpcwgNqANPxs2h4/x7+98l/z0zGO8lmN1TSI563J1RqvmAwSCgU4tixY/T09DA6Osqnn37K6OhoiY98rzmIHvHnJW9JqfS1/VXCEfvv30FiXwvxaDRKMundKORZqLYQr/RF5WVUxF3XZX5+ni+//JI7d+4QDod5//33OXnyJLW1tVVJatmPHnEhBF8ojz3HeoKdPE7NU693oCtbH3RhNcTYDnaVlkgrrl6Dj3Lx3uZrx1K2ukCawmLJsIhqdbQH+kgUJYyUHkcPN+LD3rYSoYDwk88bf5KapDewtXgzokWZyZamuiScFH4aUIVGSA2zbJa/19ftOLV6KwiFruAg80Z5hf9Rcoye4CA+4cN2fSVCHSBmLNC7KYh1fATVBlat9cL4XHaB/nBppGF/6BAPEuOb+x/3FONCQHdoiKnMmudNEsDj1DittNIXGORxcobiPPY5Y5HBSOmi0BqthpBaz3Bqilq93vM7XsM1+Yej/5q0XW5t2Q2VrIjn31OVrsDruk5vby9f+9rXOHnyJCsrK3z66ac8ePCAVMr77363cx6kivhu5z2oPvFq20ikNWV37GshXlNTs6uLYzWtKUDF595LkWpZFlNTU1y+fJmxsTE6Ojr44IMPOHToEMHgVqTdfhXGlZ7vVvwJi8pG2eNBxc9YOrdIcji1SLOvp1BFbfd3eFandTTmzHWms0vU+7pKrBsNej2jHg14Ek4aPy3MZBY9j09HZ8XMvRcfJEtFNsBgaIg5o3Tb4fQMNUYdQkBUayoTyACzxgLtvkHq9DYSO3TnnMzMcjRyliceC1XzTGeWqBedbODd3OVxcoy+4ABtgV5mswtl44+SY/QG+wHoCfbzJFnaWXMmvUTdZiRinsHwUR4kxlkyV+kO9e54bK4dYCqx6OlFf5QcYyCcswblLDLBQgzlZCZGm+udaR7Rovyz8d/Y07/NSnrE89eMaqW0KIpCa2sr77zzDu+++y62bfP5559z48YNVldX9+x1PUjWlGf1iEvKcVFw9tE/d6corn3Kvhfiu62ICyEqbhPJX4yqMe9u58xkMjx58oRLly6xtLTEkSNHeP/99+nu7vb0/+1nzzZUzgrz2wveXTR7w92ki6wnj5LztPt6iRBiODXtuc1AuI8NO/e+GU3H6AgMFmwiNVodXl0yASyhEFSbPW0avaF+Vq144efHqRhtmx7vWq2OMQ/fuItgXbE5FDzGxA6VewAHHSF2Xtzb7G/mZny8IJS96Ar2suaaqGJnISAIs2rGdxyfNZbpDw4xkV4oe40ybha/Ginc1LQ4ndxPbN0YPE5OMBgur5oPhg4x5i4RDTTmvjXwYCazSF+wl4wDy+Z66TGpK3T72rfOQcCh8GHuxSf5fPU231/4fMfzeV4qaRXJv4dfBU96bW0tZ86c4aOPPiISiXDjxg0uX77M3Nzcrq41+c+eg5Bdnp/3eTziki1csf/+HST29V99NBplfHznKthXkb8AVvrClP9wqUZF/EXn3NjYYGpqiuXlZVpaWnjzzTepra19pjn3uzXlZc/3ODHNE48FgT50JtLlFeoHqXmO0MqqNltWdwgoPiYypRXfR6lpTtUcxhIJRj2iDAF6A12MpHM+56ORfmaM0UJ0YL1ez5Ntot8RDvNGmjq9johWx7JZ7pGGXArKvJnFhw+L8up9o97IaDqGi0t3qJ1Fs7SBj44Py9UxXYvpzAr1vgbWt3UP7Qn2FkRxr9LOolIu+vtDQ9yJj9EZbEEjUdZICCCkRkg6Krbremarz2YXOF5ziHQ2w6gor6qPp+dp9DWyauW83YPhQ9yL5zqHzhiLnKwdYjg1UrZdVK8j4+ok7HT5pMCiFadOj7JhJRkKD3EvvnVN/LWp3+FQpIej0T7PbZ+HalhTXqXc8mAwyNGjRxkaGmJ2dpaRkRGePHlCX18f3d3d+Hze9qOnzQeVPUfIfe68SNfivZh3L246DqI1JV9J3i/sp3N5FvZ1RTy/WPNFKRbilSSfjVqNTO/nmdN1XRYXF/nyyy+5desWwWCQ9957j1OnTj2TCH+ROXfLfrSmfHvuEl2BHtRtF6+BcC9Jj4i7qBpmWKzRHzxUviAy1EPKKbeA3E1MEVabPOdXhErc3qq6P05N0x/MLYAUAkJqLbYofw+lnAx1ehfz2fLGPPltfXaY6ewirf7usmPNVZcDmMLCFg5rplnW0KYn1M+Ckdt/xs2iEEQv8r036A3MZreE+ZRYZCBUaptp93fyJJm7UZjLLtEXLvVlA4S1CBlHYSQ1w1BkqGw8T9aB9A4rkQzXRMGPhlYiwvM8iE/QE+wqeazWrmUulWAkNctguN9zv2k3S41WR1+wnweJiZIxWzj8/ZH/k7i1e39zNawpr0JFfDu6rtPX18fXvvY1jh8/zuLiIhcuXODhw4ek0943SzvNBxyY+MJqWWL2A9W2kryMfweJfS3Ed7tYM78S+6BkiT+rKLZtm6mpKa5cucLIyAhtbW18+OGHHD58mFAo9FLm3Cv2W2rKVGaJK+tPuJdYoMFpLohxDY1Jj2o4QFeoFUs43E1MMxDaEuNhNcRo2jtNYyjcwxfr4/QFy+0TQ+E+Frd1bbyfnKQvOEhfsJfxjHe1O6gEGEsvUudr97Rd9Af7WNZznu3h9AyDoUMl4wPhQeaKFl9u2EnCalPB/tEfGuThtmY7MWOZ7lA/QrApyEOkt914jKZiNPubAYhqtSybmZIbiQeJcfqLFl/68BFU61kxcx79e4lxekI9ZefTG+rlYWKWJTtJSATLxnPHt8TRmlNlIhxyCTVLRoIaLXez0RnoZF11MDcXzj5ITtKhtpZt58OH6eqgeFc5l811/tHov8MRu3sfVroiXumFec+7cFJRFNra2nj33Xd55513ME2Tzz77jJs3b7K2tvaV14X89f8gecR3Y005qIkpAK5Q9t2/g8S+F+K7Xcl+kLLEv6oKn81mGR4e5vPPP2dxcZFDhw7x3nvv0dPT88IX0INgTXmZHxC/EbtS+P+Yk6CJdlRUWt0GEm55NbxWi/A4uSWM78SnCwK3M9BB1iNrXBEqq2auknc/HqPT110YCyoBJjPeWeMjyQWcp3i3u4JdJJw0Y+kYfduq0BEtwtS2lJT7yUl6ArlFje3+Nh4ly+04U9l5eoNDNOgNnrYcgEfJCQbDQ3SF+oh5pKiYwsJ0NCJqGE2JErfLryET6UUa9HoQCq2B7rJFqrHsBlG9pvBzR6CT0eQSLi5pYRASNZ43H4PhQS6vPmEw7L14M26nqNMb6Q50MZ1ZL/t9Ldhxgu7Wa667OrVaM6OpGHfjEwyEu7fvEoBbG0/4Xmx3fvFKe8Sr0W7+Reesq6vj7NmzfPTRR4RCIa5fv86VK1eIxWI7Xo/y3zAcFCG+V6kpB5FqV69lRXx37GshvtvFmlD9CMNKspNIjcfj3Lt3j8uXL5PNZnnjjTc4d+4cra2tu/6Q2G/CeDsvswK/Yib44+XSFuwj5hpRs4646p3V3RlswRJ2yWO349McCh5hOO3t/z4U6WVxcxGgi2AsvUbUzOV3dwW7SHnYXyBnc3mcXKLV11w21hFo42Fqq+p7PzlFfzBn+RAC6vUWMtvyzQEmMiu0+tpI2s6Oi0YfJ6dp8JXnoxdjuT42rHILTp4FY5XOwBFmd7jJyLoGihJiMHSY4VT565a004S1BhAKLb4WYtlEyes+L9Y4UrMt8jDcz4P4DALBVGaFep+3vcsRCroS9Uy8yWJRG8jN63N8qFaYaWPrhmY2s069L1q23eHIEP9i/Pe4sT7s/YI8A5WsiL+u7ebzWeSffPIJHR0dPHnyhIsXLzI+Po5tl74vX9VW86/6vAdRjDuo++7fQWJfn22+Ir4bIXSQKuLFcwohWFpa4vr169y8eRO/3897773H6dOnqaur29M5Ky2M98tizd+ev+rpvQ6Hm4nqjWjb3t5RLVxSDS8m5SiFanMxPnRmMqWNYUxhsywc+gK9ZTF9eeq1Wh4l58i6JqumQ7So8Q5CwfRYFv8gOUdnoJv+UB+jO9wUGK5JSGny9L7nGQwPcCc+TYu//AYAoNXfwsPEHBuWTUj1togcjhzii/UnZWK5mIhWi+HRATTPZDrGkZqjrFt2mf0F4H58gu5gBwC9wR4eJ2K4mxGFaSdLSK1B2VY17w12MpFa4V58kp5ge9k+AWaMJY7VHCboa2BdK32dkk6GkBotRFgKkTvX2xtTuAj+v49/nSWjPAbzWaikR7yS1ff8fHs5p67r9Pf387WvfY1jx46xsLDAD3/4Qx49ekQmk/udHTSv9l7EFx5EEQ4gXgEryV7+E9Kasn943Svi1RLi09PTXL58mSdPntDS0sIHH3zAkSNHntv//axz7hdhvNN8L+NGYzmxxvdi18oeFwKWzTT3E4t0+btLxHhnoLWsGg7QoEd5mJzlTnyO/mBpesZAuIcND2uGoTjYbpiIFikbA6jzNRTmWrdTICL4Nz3KhyMDxIzyBZq5bpkGKXvnv/ueYAc3E+PU622e1o7OQAf3k1OYrkXaVgiqpdaYgOIn7ShYwmbFjNPoay9bBNoT7OZePGd7eZiYoT1QnsXdG+rifnya+4kJBsPeiSNhNchUOk7dDpVtgWDVzNAf7GM0tVzm0Z7MLHAkunUj0BPsZCKzhilsXFw2rIznjUSdFmUyvUFED3vOO5lZ4FBkoEiEb30zsWGn+buPv4XtPv+1p9LWlEqKrpeV0qKqKu3t7bz33nucO3eObDbLxYsXuXXrFhsbG1WriMv4wteLattIpDVld+xrIf46V8QrbU3JZrMsLS0Rj8eZn59naGiI999/n97e3ueO3Xoe5GLN5yNvE/o/bv8nsh5xfn16M/PGOkCJGK/RwgynvKvhrYFGHJGrxT5ILNIbyC00DKlBRlPlMXsADXaEO4kpXBEhtE3sdgc7eJwqjQCMGas06O3Ua9FCzKEXdVoDq6ZTJqAB/IqPFTNXWR5LxxgMlaaXBBQ/61a20PhmyVynyddRENpCQFugm0Vja2HpcGqWw5GtFvdhEWY2Ey9Upm3hkLRdgkULHZv8jcxk1gvWmMnMEo166bdEGhq1vibmjVWWzRQ1mrcoDqlhTDeA6ZbfIAHci0/QG+qiO9TBVGYNs8iOsmol6Ai2ltxI1Ou1uMLPgrFOLLtOyPV+797bmGBIH+COx6LQh4kpfnXy9zy3exr72ZqS/wx4mZXihoYG3njjDb72ta8RCAR49OgRpmkyPz9f0WvW62xNOagVccnrzb4W4rW1tdi2TTa7sxf0q9jv1pREIsH9+/e5fPkyhmEQDAY5d+4cbW1tFfmg2+8NffZCiAshWFlZ4caNG9y8eRPNr3M7XO5dFgIy2/5m8mK8O9iG6VENb/LV8iCxJZod4fIkuUJ3oJOeQIenT1uIrZzXmLFGWG1Bz7ckEMqOFe3R9Dxt/l6yjrd/vSfQwYPkDIvmBrVaW0lHT4DuYA+r1lbny3vJKQaKmvS0BzpLxqFUaB+KDPHIw0pzNz5Jd7AbTWgoIlRme1k2N2gLdm1GMQYxHZW0s/W6ZBwDnxZG22xkJAT0hHqZSOduYtatJI3+prLKe4u/kUUjw4PEFMej5ZGIkKuaK8LPqmF4esKfJGc4XpNLcGnQ67BdnaXN9JaEnSHgBMu+OVCESm+gi8fZRcKud5LKb859zo+W73mO7cR+FuKVzPQOh8McP36c06dP4/P5ePToERcvXmRiYqLMR/4yOGiWmP2AI9R99+8gsa/PtqYml1rwOra5f5kVcSEEy8vL3Lhxg+vXr6PrOu+++y5DQ7mvwStZVdjvFfHdzOe6LrFYjKtXr/LgwQMaGxv54IMPmG0wWbXKLVedaj0xp7zz40Q6TsZSyjzjAI2+hkL1N48lHFYNh7hVnqACcCjczYq6JVYnMku0+rtBKByK9BMzVj236w92cGV9jMPhct+1js560Xxj6Xl6g/0F8doT7OSBR0rKk9Q8bf4WBkN9PPZYNAlwJz7BschRHiW8K/ECwVwmTisdLLnenTMfJ6c5WnOIel8LS9u6VwJMZxYZivQDcKTmUJngH0nNcazIZhIhRMLKiWWAB/EZOj0sMB2BFsZSK9TqdWVCPs+j5AyHQr0Yrsryts6fy1qKY5Et64yGRn+4h+HsAlls6oJ1ZT70PN+NXWUm453x7kUlxXElRT9UJ7ccck2CPvroI44cOUIsFuPChQs8fvx4V8Wlr+J19Ygf6PhCFFzUffTvYH2zsa+FeCgUQlVVEonEVz95B/aTR9xxHGZmZrhy5QqPHj2isbGRDz/8kKNHjxIOhysuiuFgeMSfd758Tvvly5eZnJyku7ubDz74gP7+fnRd5zvTt+kLledFix2qCAOhVm5vxOgOlHrGW3x1PEp6t45v8NUxlU7Ttm3Bo4bGsll+E/A4FWMgNMR4yjsyUEMrNP25HZ9mIFi6MHQw1Fuo5Oa5n5yh2WwkoPhYMb0XZ1rCwXZ8LBg732z7FZ1YJkttUZzgdjqD7azZzo6iFMCwNcynvCfvJSY4HT3J3fiE5/iDxBRdwTaC+HHcQEn13hYOaccloGxZSVr9jSwbWdKOwXByjhM7VM1r9RqStkpqhxSY+8kp+kMd6Oh0h7pKfuczxgonavvLtjkU7OHLtQn+1oNvY+zwDcZ29ntFXFXVigrxvCBWVZWOjg7ee+893n77bdLpNJ9++im3b99mY+PFFtbuhBCiKkI8P+9uPeIH1ZpSbT+39Ijvjn0txFVVpaam5rWsiO+lNcUwDEZHR/n888+Zm5tjYGCgIOyK/d8HQYi/yh7x/O/p0qVLLC4ucuTIEd599126uroKH4zX1ia4n4gxvJFkMLSVmtEdbGbGKf9QDql+hjd93vfjC/QEuwtNf+p99WXVcMgJ9AfxWVKOwUrWpslXXxg7HOlh2fK+sTVdja5tnR+Lt1soEtqPk0t0BtoAaPU1cj/hXc2eUpL0BwfLLCd5hAAXPzph1B1uRPpCvUykF1FEAJ9S/kHfEWjhYXyOmLNOl9LmuY8jkZyfOv6UpJWBcA+3N+Zo0MvjASFn+8k4LiG3nlW3/Jq0aKzTE8rlfDf56klYDkl76wbkfnya7mDpDViDHsVwNIZTMfoj3q+9ANatLH2h7kKH0GLuxCc5HNnKF+/X2nmQyjV2Gkst8Csj/8lzv2XzHAAhXkm2z6koCg0NDbz55pt87Wtfw+fzcfXqVb744gsWFxf35LpWzW6eu5230g2eXiWqbSOR1pTdse+XKO82OUXTNAxj5zzil4WmaZimtzXgWUkkEkxPT7O4uEhDQwOnT5+mvr5+x4vVq5Rdvl/mexYhnkqlmJqaYmFhgcbGRs6cOUNdXZ3n7+nbM7mkFMN1eLC+wemGLobTswQVb3E4FG7ndnzLJnFvY4FTdT0YIsnDpLf4bfDVEcvm3jMbdgZdqaHeV4vhGoylvXO1W/z13I/P4CI4WzfAcHq8MFav1/AkNV/yfEs4xDIZGv31QAAHb0tIgxPhTmKBZn89y9Z62fjRSD93N0X86Wg/I5mxkvFD4b5CAspsdoUT0R5G0uPkX9qQGiBluYUYyFF7mZO1vYykt2ww3cF2HsZzAnbZjHO0povxzCTFv542fzNjyVWyrkmTvxXFSiGU0r8zRSj4lSgGBkKA19vwQWKKN2sPMZlZYX2b/cgRLknLJqj6ybomdXoNlvAX7Cj34tOcqu3jcbJ0AaYPnaAaJeOw47zTmVUafFE6Ai3c2ii1AP3uwg26nCj/96OfPFUoVTq+8FXuqrlXc+70eofDYU6cOMHhw4eZnp7m/v37aJpGf38/nZ2dL1xZrsSi1Fdp3v1Czpqyf25C9tO5PAv7+rZDUZQ9EeKvU0U8v7Dv5s2bXL9+HU3TOH/+PGfPnqWhoeGpH155kbrfc71flYr4+vo6d+7c4dq1nLg+f/48Z86c2fFmaTS5xNW1icLPlnC5vbrMmZpBHifLW9MHFN1TON/bWKBB824r3+FvLFm8CbBiJbGdAP2hLlIeedgAUbWmUF2/szHLYFGL9yZ/o+dCw6STpV5rZ9nwFuE+NDII0o6B4ehl6SzNvnoeJ7cE/t3ENIdC/YWfG/RaxlOl3TkfJKY5VrPVOKjN315miRlNLtPsbwByto8Vo7TF/ePkLMeK8sVr9AgJ2y10uZxIL3I0OlCyTyHgUGSAx8k5JuwVBnTvynuNFiKWzRQWfm5nydygO9hJrRbBFUGWtr12I8kFWvz1hZ81V6U10MZIcoEnyRinagfwImln6Q12c2fD++bs15Y/4zuf/idGR0exLG+ryn7urPmqNhDy+XwMDg7y8ccfc+jQIWZmZvj000958uTJC/nI8585lT5X27Z33UX0YHvE96aJzqvyz93f0rSMfV8Rj0Qir6U15Xmr047jMD8/z/T0NLZt09XVxcmTJ/H7vVMRvMhfBCu5ar4aVpFqCv/8QtmpqSmSySRdXV0cPXqUQGDnVvB5fn2mPDfcAeJZheM1PTzYtkDwcKSzpBqepz1Qz6WVCU7W9jGZnUQoW8cX1kJAucXFdB1iGZOQ6iezra36QKi95EZAAI8TywxE2tFUZUcfelQL8TCxQHugGcON4WzrlDkY7ubeZtV+0dxgKNxG1phDKC6KUNCUIKYovcl+mIzRH25jLrtIUK1h3in3rN+PzzAQ6SCihUsytPNkXRPh1hBSAoTVWiaz5fu4tzHNQE0789llImo9E9uec3tjkuPRbsY2GxMdrznEzaK5xq1VOkPNxIq6XgYUHzVaHVOZZXpCTWhoOJRfe6YzKwyEe7i5Mepx7BaaUouOhqqohOwwo0W+/Tvr0wzWtDKZ2XpMCDhRM8illTHeqO/jfmK8bL8WLt8Lj9Cx2MjY2Bjd3d309/cXegvk/8YraU05yBXx7aiqSmdnJx0dHaytrTE+Ps7Fixdpb2+nv7+f2lrvLPvt5P3hlbZ47MW8B9WWAuw7O4dzwG6q9r0Qj0aj+3qxpmmazMzMMDs7i9/vp6+v74WjB6slxPezRzw/n+M4LCwsMDU1heM49PT0cPbs2Wf+CnnZSPL7iw/KHq/3hXmQWMASNqfDrYxtCk8dlckdEi/q9CjTJLgXj3G6to+JTTHeE2gpqTAX0+Zv5G5iloFwM45YwhSbVVEBKY9ItZz1JE1PuH7Hc2r3t3LfmGUsvcTJaC+jmYmCbaIz0MyDbQJ+NL3A6WgfI5lxjkT6uZMov8mwhcuSkeV49DA318fKxiFn8VBFgKn0zokgc9lVztcf5+raQ08rh4vLmpGlP9zPXY8sboCZzAZ1eg1tgeYSEQ5g42K6Ar+iYwobHY22YBsjm6//dGaFs3V9PEiUnkNYDRBUotxZn6E92MB8USZ6nunMCmejfWzYBqNW6Q2Ci2DNNAmrAdKusSnCh7i5nrOj3Fqf4kRtF8Op8punqC/KHwUW+OvH/jMmJib47LPPaG9vZ2BggEgk19hpv3bWfFUr4ttRFIXGxkYaGxtJpVJMTExw5coV6uvr6e/vp6Wl5am/o2qcJ+w+qaXSN4KvGu4+qyJ7rV3az+x7If66VsS/ypqSTCaZnp5mYWGBhoYGTp48+ZXWk68ifyHc757tSs4nhCAej3P58mV8Pt8L3yj9xtwNbFF+3H2hZm4aM4DC3fQap0ItjLtLHK3p4k683GbQFqjjflGM391NMT6emUTd4XLQHqgvbDOeXuZwpI15YxZXFRyr6eVu3Lvi3RtqZTq1Rp1ew4ZTWrnuD7Zzv8gCcz8xxxt1gzxOj6GiYgnF82J8NzHD+boj3EpMeM4JOTvJfCaLjobtUVEOa0HmsknqfLVsWOlCY55ijtX086OVYd6o6+dh0nuu9mArKdve0XedsDMMRYa4s+4t1OeNdU7V9vA4MUlfpJuH2yxB+ar6yGYsY0DxUas3MpHerKIL3fMcdXTWTBvdY2EqwIqZ4Fi0k+HkNCeigwURnmcytUajL1qyQPZoTS9312O4xDhd18N//uY7BaF3+fJlGhpyVh65WHNv59yNOI1EIpw8ebLER67resFH7rXv1zW6EA62NcURCs4+agu/n87lWdg/t1A78Lp6xL2sKXn/961bt/jyyy8BOHfuHGfPnqWxsXHXH4L5VeeVPN9KC+P8h+nLvmhns1mGh4eZnZ0lm81y7Ngx3nnnHTo6Op77Az3jmPzW3K2yx4OqzuNEccVT4V5mgxPhXmaz6577qvfVlsnbu/EYJyOHSywMxUS0cIkoHk4tUmvVEVJ8TKW9M8NrtCAjyUVWrRSqCBFStyxSKioJq7yKfmtjhsPhPo5GepnLeu9XRWUqnaInUB7fCBBUfMRNi/HUEoOR3rLs7Vx3zVZWzCRjqUWO1vSX7aMr2MyDeM5qcz8eoyvYXPacQ5Fubq5P8Tgxt6Pvuj3QyN31GMeivZ7jAHc3pnmr7niZCM8znVmj3hfBp+g0+9u2RDgwk1nlaE3pvnU0uoPtDCcXmE6vE9mhs+bD+Bzn609wa738W4WUYxDWIqibHw/Havo2RXjuxfwnI7/P/Y2ZgtD7+OOPiUZzSTHXrl0jFou99Pf0QVisuVet5v1+P0NDQ3z88ccMDg4yNTXFhQsXGB4eLgsiqGZXTdne/sWptqf7Zfw7SOz7s823uX9RXoWKuOu6zM3NFRq71NbW8sEHH3D8+PFC06K9nHc/V8SL7Tcvg2QyyYMHD7hy5QrZbJb29naamppobm5+YeHw/fl7JOzyhVdHajpIO+XJOhlbo9XXVPZ4q7+2IDCLEQJi2TSHQn1sV+m9oRYeedhVZpU0Q8EB1i3vfO+eYCupzWOby67ToDUXFiAejfQSM9Y9t1vKZok/pXvgsUgv05lVptNJmn11ZeO9oU6WzFwl987GDCe2LZo8ER0oaexza2OKI0UNb4L4iFsO1ubiTEs4JGy3ZKFoe6CRseTWjcKd9Wl6Q6WLL6N6mLQlyDgmt9enGAx3eJ7PqegAX65N0+IvPxfILaKs1evpCnQyuhlDWcztjSmObEYPqqj0BDt5nMj9vpJOloDrL8tGFwJORgf4fHmc7lD53wnAeGqJ49E+jtX0cXt9tuRGzBYuf/Peb7BhpQEIBAIMDuYWwHZ2dvL48WM+++wzJicnX9q1U1bEnx9VVenq6uKDDz7gjTfeYGNjg08//ZS7d+8W7Juve3v7A2tNEeq++3eQ2Pe3oJFI5LWtiNu2zfj4OLOzs+i6Tm9vL21tbS/1QrnfhXj+Qr2XFXEhBOvr60xOTrK+vk5HRwfvvPMO4XCY8fFxMhlvsfosuEJwbbXc2qCiMp1e9zgWWDTSzGU2eLuxlyfpqYKEavTXMZstvyk9WtPOw3iuGn62vo/hdC6aT4idmwRFXJ1ra7OcqO3ncXqixJrRGWjk3jZbzGhqiRPRLjacNR7GvX3oQoBP9TOditMSrC/rYNkZaOLuZoxgyjGIOnWFKD+AQ+Eu7m2zydzZmONQTQeTmRhdwZaycYAnyQXag03MZ1eoU+uZMkt910tGnGPRTsZSU9ToQdIOJQtWc77rLDVaiKSTwafo1Ki1TGZz1WsBLGaT1Oph4na6sN3xmn5ublakW5So9+JMoaCIALq683t+MrVKs6+WOr2eB/HSnPBFJcObtX3c3bTy5EV4ft6M7RBUfWQ9Um0sB0xXeLo1F4wN/t8PfotfPvNfoBZ9q9XX10dfXx8LCwuMj48zMjJCb28vfX19z7Vw/KuotDDeq+r08/CyzlFRFJqammhqaiKZTJbYi2pra6viEd8La8pBZr9VkZ0D5hHfP7+5HYhGo6+dEE+lUkxPT2OaJuvr6xw/fpx33313R1/fXlLp832dK+Ku67KwsMCXX37J3bt3C99U5DuVwu7jEj9bGuMP5iY4s83ecCLawYpZLqr79TrmMrnUk+urCwyFelBRaPXXcn+HanimqAJ9ez3GkXCutfzhmo4dc8Pr3BCmcLi1McvxInuHEKDj87yMPkjE6PJ3Y7jeFe8T0R5GU0skHYOsrVKjbWWjq6jYjoZT5JOfNzZo9bWiCIWoFmYyWb5w0REuc+kkbYEmUrbr6bM3XJusk2tkM2WX7wPgUWKOE9EBGn1NZZGBAKtmkhZ/E7gKfaEuJtOlsYnrVpomX0MhMrJHa+bu+tZNwVR6pczCIgQci/ZzLz7L7fVpBsLekYcp26Az0MnDjfLfL+QWYA6G2xACTtVuiXCABSPOQKS9zMJzItrLrfVZJtNrNPm8v3W7vDLCv5/+YvNYtxbL5TtBvv/++5w9e5b19XUuXLjAgwcPSKfTnvt6Xg5CakolxH9NTQ2nTp3i448/pqGhgampKRKJBDMzMxX9HKhWJX6/4LLlE98P/yrbzaT67HshvhedNYUQFfE8rq6ucvv2ba5du1bwQL755ps0NTVV7ENnv6eY7EVF3HEcZmZmuHLlCqOjo7S3t/Phhx8yODhYVvXb7fn9XxM3AYUvluY5GcmJaiHwbPkuBKS3fXjeWlukL9hFo7/Oc/Hj8Zp2Jrb5vG+tz3E42MuG6d3IqivQwDRb76kba7Mc27R3HKvp2lG8H4p08KOVcU7U9JWNRbUgY0WZ34tGghq1AdXN/b6ORXqZ8fCNP0ku0K204s/6SLneDbDidhZfOsCKsfMNeY0WJrXZ8GYnLFd/6iKiJ8kYbzcc58EOi1eHk/Ocqu2nVallykyU/T5urU9xuKg75snoQMHD7SJYMTNEtNKYy7xYv7Qyzqn68tcVchX5pWyKM7WD3Fgr94Tf3ZjldN1W7vuJaC+312cRQNI2qNHDBb94MYcjHfzTJxe5vjpZuF4VX6cURaG5uZnz58/z3nvvYVkWn332Gbdu3dp1a/ZKp6ZUej6orDgNBAIcOnSIoaEhIpEIExMTfPrpp4yMjOy6sdyzsFce8QNrTdlMTdlP/w4S+/5s96IiDrxUr2MsFuPatWvcv3+faDTK+++/z5EjRxBCVHwleLWEeKXmzIuFF5nPNE3Gxsa4dOkSc3NzDA0N8d5779HT07PjB+ZuFqM+ji9yfW3L4vHlygJDwU5ORjuZzayXPb/fX0/MKa84LmSypEyBf5u9QQiI79CcxREadVqdpzANqIGyXkA31uY4FuphPusdFaqjsWLkbh5urM9yNNJTMt4ZbCbplAr/8fQyjVYd7XpDwZLihWEKIsGdc5KP13TzwF6l2Y56nk+9L8JsJsGYtcaQ7r0I9HhNDzfXp1jMpqjVwzs8p5cfLY7RH/LeB8BcZgPVCRQ86NuZTq9T74twItrPjW0LKVfMJJ3BlsI5CAEnawe4tZ77G7m5Ns1gxLtq3h1qJW7ZO95oPIwv0BGoLxHhecZSyyVCHXIifCSxQta1+H/d+U2WsomniqDa2lrOnj3LRx99RCAQ4OrVq1y9epWlpaUXusYdFI94pecUQhCJRPjwww85ffo0a2trXLhwgXv37u3qc/SrkBVxyUFm33vE96IiDrkLhc/nnUDwIliWxezsLDMzM+i6Tk9PD+3t7YX58t3rKpnpDdWzirzKTX0ymQxTU1PEYjHq6+ufKypyN9aUfzd5s+yxO+tLvNvUTY0WKBOuOy1waQ/Wcmt9jqPRFhbtlYIf+ES0k3sb5X5tFYVYNsGikeCthj4epLbauR8Kt/Eo4Z2uYrt+mvR6VszyD+yj0W5urm/dVNzdWOBotJ3xzDyD4TbuJbyF9jQp3tb7mdpB4DdpNczYGex0ksGaVqYypcfW7K9lJJXLC58kyQl/O6PW1jkrQqFWr2VxsyHPY3OFY9EORtNbNo+uYBMPN895zUpzuKaNhJUpaYTUF2rj/sYCDoIVM0tUC5LY1oW0RgtiOhobjkFI9ZER5TdBCTvL0ZpDXFvzzkB/kJjjzfo+7sUnOVU7wPWiCrcAlowMNVqQZNHcp2v7C897s76XO/Gp7bvFcG1aA83c3Zj2tBXdWJvmRG0nj5NzHI60M5JYwXRzNxOrZoq/8+R3+c+VLo8tSwmFQhw/fpyhoSGmp6e5e/cufr+fgYGB50oUOige8UqL0/yciqLQ0tJCS0sLiUSCiYkJLl26RFNTE/39/XuS0lXMXuWIH1T2X0Of/XMuz8K+P9vdVsTznse9qoin02keP37M559/zurqKseOHePdd9+lq6ur5EKUv+hX2p9eDY84VD67/Fku3PF4nHv37nHlyhVs2+btt9/mjTfeeK4PoRcV4stGih/EnpQ93hdu4PLSLAFRQ5M/Uni8N9TIuEcSSZM/XBDbjxMrNGoNRDQ/CFgzvVtgn6rtZNHICd8ba3OcjPTlKqkCkjskmtT7wjyIL3BvY5nBUHvJWKOvpsyf7giX8eQGvcGWHY8DoNut5craNIeDHqkjAsK+CFnXwhYuC5kMDfqWn1kVCgE1VJIs8zi7wkB46/i63HpGkovFu2Q2E6fRl4vjq9GCJG0Hs8jXPpxc4ERtf9H5RVnIpgtV7hUzRUugqaT6rKNRpzcwn42z4Ro0qfWe1elDkQ6urExwqnbnyMN7G3O8VXe4RITnWTVTdISaC/vudutKnnd3Y5aecHlSyomabq4uT3G4pnPHeafTa5yu6WUksVYQ4Xlux2f5Q8pz63eiOFKvt7eX0dFRLl68yMTEBPZTUnPyyPjClzfndkEcjUY5ffo0H3/8MbW1tdy6dYtLly4xOzu7Z9dt27Z3bU050KkpKPvu34vwT//pP6W/v59gMMi7777L1atXn/r873znOxw7doxgMMjp06f5/ve/X/achw8f8vWvf526ujoikQjnz59namqrmPHzP//zDA0NEQqFaGlp4ad+6qd49OjRcx33gRDiqVRqV3fMuxWnQgjW1ta4c+cOV69exXEc3n77bd56660dY+2qIVDz81YjxeRVaeqTz2q/ceMGN2/exO/3895773Hy5MlCVvLzzvUif3vfmbrjaV+I6rkFjDPpOFlDpzOYi70rjtcrpjvUWLJAcTS5Ro1Sy5naHk97i0/RmEj9/9n78xi58vvKE/3c2Pd9y41JMpNkMslkJplkFclSsaobgkpT7ZElY9SC0EA3ZI898EBtw2oIkJ9hu2fsbgtqt9HCuA0920+awTx7rLY00rOeLNn1ZBWrVCSrmHtySS6ZJHONfd+Xe98fkRkZEfcGRTJJZhXJAwRARtyM3703In73/M493/NtfX5yk4wftvSwWlAuZuzWuymKVaqSyO1Mmj0Gb+M1l9YuI24ABbGCWbBR7XB+fDobK1LdanMtEyUgtEb8HbH2s9jkK09VC2gEI/rNRjbDtn7u5FqLJmuSxHo+h0tr5YC5myXkhZfpahGDyoQWNR6dm0hJrsZPb/q59YIGjWAk1RbjuJAJcsxej06UJNhn7mExt+2dXyrHGbG3err3GL0sZhLUJImZxCr7zcoWl4OWXpYyqcZxtuNaeoNjjn4Om3pYklpFiKokUqzWMKi2//awpYcrqSAi9XGPWHsV39enc5CqiFQVPkuAt6V13o3cUnytE9RqNXv27OHVV19laGiIjY0N3n77bW7evCnLuG7G82JNedqK+P2Uab1ez4EDB3j99dfZs2cPS0tLnD9/nsXFxR37yF9YU3aGLUX8WXo8LL797W/zpS99id///d9namqK0dFR3njjDcJh5Tu4Fy5c4POf/zy/8iu/wvT0NJ/+9Kf59Kc/zZUrVxrbLC4u8rGPfYyhoSHefvtt5ubm+N3f/V0Mhu0ggfHxcb71rW9x/fp1/uEf/gFJkvjEJz7xUJzxubCm7NTb9qhEXBRFwuEwKysrFAoFenp6OHToEHq9MmlqhiAIu5LYshvWlN1o6tNOjrcSUJaXlymXy/T19TEyMrJjO9KjEPFSrcp3VuZkz3t0Zq6mtrOko6U8xZqOUWcvk0m5tcOhNXJVISrwbjaFVW3CrjGSqrYSyGFrF1NJebHhXDLImEOZoPUZXcyltscvilVW80W6jC5Mai3XMspxhQG9nankOl69BYu60mK1kSSQilDdtH/UkIiKVbx6O5FyioDewRWFFJiVQoJhawCJSks6SDPS1QLdxi42Cp0LBu/mo5x1HeRCXH5XYgvLuST7LH3MdhhnOrHCoMWHWWNWVK/nkuvsNXtZLkTw6e2Ei4WGbUhEIlqU20wOW3qZidc93GOOXuYzcpsJQLWmItrhTkOwmOKYvYermVUOWbq5mgpTa/qO3spE8OtthJrSYfaZfNzJJCmKVcZde5hNKXcL/ebiBfabffSYlHPRO0EQBAKBAH6/n0QiwZ07dzh//jzd3d3s3btX1i9hN4j447QmPgh2SxFvJhlKUKvV9PX10dvbSyQS4e7duywtLTU+K7PZfN+/7zTu48gRf17x7MUXPvyx/Mmf/Am/+qu/yhe+8AUAvvGNb/DDH/6Qb37zm3zlK1+Rbf/1r3+dT37yk3z5y18G4A/+4A946623+NM//VO+8Y1vAPA7v/M7vPnmm3zta19r/N3AwEDL+/zar/1a49979+7lD//wDxkdHeXu3buybTvh2fnkOmCnDX3g4Yl4pVLh3r17XLx4kTt37tDV1cXZs2cZGBh4IBK+hadNindrzKdNxJvHq1arLC8vc/HiRe7evUtvby9nz55l7969j+XC+yipKT/aWFBslNNncrQQJoBstUypouGwNSDbfq/ZrahEj9i7mEsGUYsGXNrti6ZRpeVWNirbHuCIrZtLsVWOtCWeSBKokZ+nbLVEqiRRE5XX+pIERpWRqiSyUUxjUznRNim8e0Qb62Lr7zZbLVGpqrGqDQiStmPB451cDLNa3kF0C4IkUKhI+HWejsWLgZqF8+FFDps6+573mgLEC2XUHaZREQmz2srNjHKKTFUSyVSq+HR2SlVBpqrHyzm6DdsWl0FTF1eT4cZxzSRXOWKTL46Grb1Mx9cp1UDTQVmaS63xsvMAC6lISyQkQKFWQSfoG8e11+hlOZumuGnPmYyvMGSVW4W8konryRhfnvo+5drPt5coQRAEXC4X4+PjnDlzBkmSuHDhAlNTUyQS23djngdryodNEW+HIAj4fD5eeuklXn75ZWq1Gu+99x5TU1PE4/GHmvceR47480zERUl45h4Pg3K5zOTkJB//+Mcbz6lUKj7+8Y9z8eJFxb+5ePFiy/YAb7zxRmN7URT54Q9/yMGDB3njjTfw+Xy8/PLLfP/73++4H7lcjm9961vs27ePvr6+jtu145kn4lvFmjsheg9KxAuFAjdv3uTChQtEo1EOHjzI6dOn6e3tfST/224o4s+LCl8ul1lcXOTChQuEw2EOHDjA6dOnZV79neJhFxmSJCkWaZrUWq6l5ITOrTUxmwgxH40x1JTWYdHouZaSd2JEglipbvfYKGaoVTV4dHW18aDFT6YqtwOY1TpuZOoEfTK+ztEmMn7Y2sXtDuS9x+AklC/hUEgZOWrt4Va2yaqRi+GsWEACq8pAUKWc5hIspdlv7GNVwVazhX6jn4vRZQ5blBX8EXs/t7MRZpNrjDR5vbfg1dmJq+q/gWupEF5BrvANWXqZjK+ylIsybFWecAfNASbjawT0ro6EP1XJE9D7CHUoRr2W3uCYvZ+9Ri9LmYQsB/12OopXt22ZOmTp5koyhIhEsJShC2U71aA5wFQsiEev/PrdXIwjtl76jG7WclkKtdbP41422bKI69Y5iFVrFGoVrqaC/PH1nyof8ENgy5t87tw5zGYzExMTXLp0iXA4/NTV4qdNxCVJ2jVF/FHGtNlsHDt2jHPnzmGxWJienubixYusr68/0Pz3osX9ziB+CFrSP87HVnxhOp1ueXSyq0WjUWq1Gn5/a2qU3+8nGFS+IxsMBu+7fTgcJpvN8tWvfpVPfvKT/OM//iOf+cxn+KVf+iXOnz/f8nd/9md/hsViwWKx8KMf/Yi33nrroRqYPfNE3Garx5o9qaY+kiSRSqWYn5/n0qVLVCoVjh8/zvj4OF6vd0er9MdZJPowYz7LKnwul6NcLnPt2jWy2SwjIyOMj4/j8/meiKLysNaUS5EVbCqj7PlDVp+MDAHsMbuoSSIiMJeMM6ByADBo9jYUzGaM2LtYK2xbDsKlHMWyin1GL9fSyl66QYuPbHXbAzoRX6e3ZkeNikhRuWuoXWNkIR0hXMqilUwt+dcmlY67Cl1Bl8Uch0x9+HSulgLLZvQYHLwfW+GAqVuR3B62dDO/2djmeipKr6G1MHHA5Gcqvm0TmU2ssb+pUY5GUqNBR25z/KogURQF9OL24qzb4OJWOtb4/1RilcNtvuqA3s5yLk1NEllIBzmukPGtQqDX4ONi9B6j9s7FmbFiHknUKn6e+VoZk8qICoEBk5+b6WiLwn1HzMo83/tNPpbSSdKVIhq0aDpcBiKFPGbB0jgXzchUS1g1ZlQIdBtcRItlik1dQb99b4ofrV/reEwPA4PBwKFDh3j99dfx+/1cvXqVVCpFIpF4avPGbhBx4EOtiCvBYDBw8OBBXnvtNXp7e7l9+zbnz59naWmpkQT2JMZ93rHb7eifVIv7vr4+7HZ74/FHf/RHT++cbs4tv/iLv8hv/dZvMTY2xle+8hV+4Rd+oWFd2cK/+lf/iunpac6fP8/Bgwf5l//yX1Isdg4haMczT8S3Cux2GmHYToi3PMWTk5PMzMxgNBo5c+YMR44caZD/nUKtVj/TpPhpjplKpZibm+Py5csADA4OMjo6+sAxhI+KhyXif7U4z/uhEEfMPY3cbxUCd7NJ2bYWtY7rqWbyLHC9kGPM2sfNrIIdokkNb0asnMeqsrYonFtwa01cUVDWb9fyjJn6CSkUMkLdN57fXDisFlI4VA70Qt3Css/oI1VRnqQqooBWULZvqSQBJA1VSWQutSHrNurSmFhqOk8lsUqqXG3kfts0RkLFfItlpSZJbOTzuLQWJAn6NC6W2xocxWsFejc7U+pFNalsSbYoupWO4tfXfdFmtZ5KTUWu6e7CTGKV/abtAlZJgsPWPq6n6+f2SipIj9EpO2a3zkKiWCVZLrcUWDZjKRflpH2Ae7mUohXpViaGV1+fk/qNHpaz2Qapv5uLc8Quv3PQbXAQK5W4nYm1pPM0YzEb5YRjH8lihawCWf9f5n7MUkb5bsmjQKvVsm/fPl577TX0ej3RaPSBSN7jwG540oGPrB1Go9E0inCHh4eJRCL37a76OOILn2drSg3hmXsArKyskEqlGo/f/u3fVjx+j8eDWq0mFGq9VoVCIQIBuW0TIBAI3Hd7j8eDRqNheHi4ZZvDhw+3pKYA2O12Dhw4wLlz5/jOd77DwsIC3/ve9x7483vmibhGo8FgMDw2RXzLU7zVVdHv9/PKK68wODj4c4tcHhbPkyL+JHJgJUkiEok0Fksmk4kzZ85gMpke6rbRTvAwRHw5m+Sd0F0ApqNhujQuHFojR+1dxMryi9dBm4+Cghe3WlOxR+9BK7T+vI+2qeFbcGiNTMU3iBWq9BlayWC30aVI7oySiqlkhKMKCRv9RhezydZCyqVcnIDWTbfaxpxCkSWASaVlNZ9mMr7OsEXuzT5q7+NeE0meTKwxtNmJUpLArrGRbbPWREs5bGobGtT4dC4SCucxVSlgEMwMqD3cLMm7dwIsZEMcs/XTZfSTkOS3Rwu1CoKkxSho8epcBIut57kmScRLxUbqzZDez0xiuyi2LNao1gR0wjYZsWgMqEQ9sXKOjUKaAYtChCPQY3QykwjRZ3Ipvp6vlTEKBvqNHjbyBdndhsn4KoebPN9+vY10uUaqUiRTLWHT1pXvdvj1Nq4nY3QZlQszC7UK/27q++Srj7czo0qlQqPRcPjwYY4cOdIgeQsLCw+lQj0MdiO3HD56ing7BEHA7/fz8ssv89JLLzW6q05PT5NIJBpz4+PwiD/P2G31+kkp4jabreXRqcZOp9MxPj7OT37yk+1zIor85Cc/4cyZM4p/c+bMmZbtAd56663G9jqdjlOnTnHjxo2WbW7evEl/v3IXY6DRiPF+qU/teOZNWYIgYDabd0zES6USt27dYn19HbPZzODgIB6P54lOzi884o8GURQJBoMsLy9TrVbp6+tjdHS04UF8UsRfCQ8z1l8vzbeotbdSSbwGA6JB/vdaQcViWk4aNZLArXSMdKXEIYeHYCVRV6YliJeUbST9JjdTxXXKYg0xJ9FvcXOvEKPH4GBWIY0FICCYWazlmIoFOe7q5Wq2niFdzxtX/k3czMQY1rlAyoMgP6ZBi5/pRH28+WSEQzY/t/N1xaJL72BOYV8WUhH6LR5sWiNTCeV9XcxGOecZ5N3obTqJZjVRolrTIEl03KZa0wCdfxvLuQQf8xzgvZhyhF+snOOwLYC7VuBKXq4UrxVSjDl7uJJeRidocKjtLGW3LTCziTWOu3qZT23ndfv0NtKlKulKEXVewK6VRykCFGtVugwublWTivt2L5fCrTUjCCoKVYg3LVhuZ6KcdNU7i27BrTNTqQnESjnKtRpOjYFEVU6Cy2KNr135Kb8/+onHqlhutZz3er34fD6SySR37tzhnXfeIRAIsG/fvkeKG+2E3SLiT1vlfZIWEbvdzujoKAcPHmR5eZnJyUnMZjP9/f079og/zxniUJ+VagqL5Y8qHoWBfOlLX+Lf/Jt/w8mTJ3nppZf4L//lv5DL5RopKv/6X/9renp6GvaW3/zN3+S1117jP//n/8y/+Bf/gr/5m79hYmKCP//zP2+855e//GU+97nPce7cOf7ZP/tn/PjHP+YHP/gBb7/9NgBLS0t8+9vf5hOf+ARer5fV1VW++tWvYjQaefPNNx943595RRx2FmGYTqdJJBKsra1RKpUYGxvj5MmT+Hy+Jz4xv7CmPBwqlUqjA9zKygp79uzh7Nmz9Pf3t0zyTzOl5UHHylbKfH/5uux5t97C9ViKw7bWTOkj9i6SCvaOvRoz6Up9JX4jGccp2Bqq+ppCXJ9bZ2YusV3Mkq2WWc0U2Gf0YtEYFZNH/Hord2rbVq+ZeLChYI/YulnKKavKI9YAV0oJhq09Mn/3PpOnQcJhq+FPGpdoQJAE1GhkhYoAZamGVFOzUehsPes3uXg3fI8xBZ821JX4QlXiejHBQZ1XcZthay8TsVVWcplGcWs79mLn7dCS4l2CLVRECUnsTHRmEmuM2PrYY/S3kPAtLKQiBAx1m4lDY6JaUzVIc6JcIKCXNwry6q1kKyKXosscsvrb3xKAdKWIT+9EFNVES/JzORFfbfytU2tCJekIF+tzaqZawqIyyNZWXQYb6VKF7yzP8Z178jjOnaCdGDscDo4fP84rr7yCWq3m4sWLTExMEIvFHsuie7dyy58lIr4Fo9HY8Px3dXVx61Z94bq2tvbIFqPnvbPmbqvXT0oRfxh87nOf44//+I/5vd/7PcbGxpiZmeHHP/5xoyBzqzv2Fs6ePctf//Vf8+d//ueMjo7yne98h+9///scPXq0sc1nPvMZvvGNb/C1r32NkZER/vIv/5Lvfve7fOxjHwPqNRHvvvsub775JoODg3zuc5/DarVy4cIFfD7lPhBKeKGIK2DL0rCyskI2m8VsNmOxWFo+oKeB58WaslNiXCwWWVlZYX19HYvFwtDQEG63u+NF7Gkq4g9qTfn+8nVyVflFSIWKQrXK1XCC8UAP08k1BElgPS/3ZqsRCLVZM+5mU3QZzVRryvvQY3AQLrRaRfK1ClJNS7lDPKBba2GDbbImAXPxMGOubpZzytncVo2exXw9fm4mscG4q4+5zMrmfqsoVBUa/tQqqFAz6uxjIqXctVGFQFGUECUVJpWWvNh6DvUqDcWqSFUSmYqtMezo4kZ2+3glCfpNfuY2rTQL+SQH7D6W8tve+26Di4VUXcFOV4q49S40FKg26TYHLQGuJ+vbzCeC+A0WwtXWOafL4GA5myZfrdBvtLNSlp8rSQJR1BJX6JK6dU40WHFojBhURlbail6vpUKMu/cws6lem9Ei1tTENr38G4UsDq1RFo9p1xoJ5Qt0m5wEOyS4bBSy9BqcVEWB1Xzrvt8rpjiodXC7Vt8fj85MqSqRKNfH+Y9XfsKww88Rh7Jf82HRiRibzWaOHDnC4OAg9+7da1jS9u3bh9/vf2RiuxtEfDesGk+zaFKj0bB37166urr46U9/SiQS4c6dO/T29tLf34/JJE9begFlvGhxX8cXv/hFvvjFLyq+tqViN+Ozn/0sn/3sZ+/7nr/8y7/ML//yLyu+1t3drdiN82Hx7Hxy98GDKuLVapWVlRUuXrzIrVu38Hq9vPLKKztOP3lUPAs2kSc5Zjab5dq1a1y6dIliscjY2Bjj4+Mdu5XudLxHwYMQ8Zok8leLcsWwx2jjWrJedCkCl4NhRm29jDgChIry7/Nhi4e0JCfzXp2VlVSOPW3+b5/eylxSHu0kSXWrxlIqzUFzq4K63+RWLN4UkaiUBKxV5bX9PpOnJXllMr7Osc3YvxFbj6JaD6CT1Kzl85jVyp7+EXsv9/IJ1gopug0umZf5kKWL9U1fvIjEnWySgH7b0zzq2NMg4VBvHBTMFxqFq0a1jlKlbu3Ywp1snMO2bQ97l8HO3WwKcfP+QRWJYllE23QxsWmNFKv1Ow4iEslKBatG7nccc/QzEVtFI2jRCMrT80YhzUFLj4yEb2Emvk6/yY1FpUMjaluIdaJcwKe3t6jmFo0es8rEeiHNZGyVgxZlJadcq+HVOVntsNi6WUkxbAvg0JlQoSXSpKxXxBr/buLvSHVoMvSw2LKmdIJer2+kd3R1dbGwsMC7777L8vLyIzdne9rWlKddqLmbkYmCIHD69GlOnTpFqVTi3XffZWZmhmQy+UDv8bxbU6QPQUv6x/mQniGbzYPgBRGnrqjevn2bCxcuEAwGGRgY4MyZM+zZsweNRrMrhBh2x5ryYSf/kiSRSCSYnZ1lYmIClUrFSy+9xMjICHb7g3Xze9S284+CBxnrneA9VvPyIkqfUZ5WMRkKoRN1mDWtTXQECUJFuaVAkiBRLpIoF9nIFhlsSu7w622yBkEAR+w+bmVilMQaNxMJhsyBxnuJovIEaRe0XMlEuFcucKitNfs+k4sZBX/3ZHydcfveFiLcuvOglVSsFFJ4tQ40tCp19aLQ7fddyERabC9HbN1MJ1q7hOaqZWqiGpNaxx6Tm9m4fOxkpYBJZUGLhl69l42i/LOZitctJGa1nkpVRa6tIDEmlti7mbSilgT0VV1LVniiWqTb0JovPmrvYyJWV/7v5RIctcsLVtWo2Gvy8m74LsM2ZXW5JonUamBXWYmK8oKh6+kwJ5z1RZBJrcWlsbGcSwL1uxuRYh6bprXw3KDS4NU6uBRZ4YSrc9RitFggoLWzoVAUvJpP8TvTf4/4mKwiD0K8tlTXc+fOMTg4yMrKCm+//Ta3b99+qLbsz4MivtuRiYIg4HA4GBsb49VXX8VgMHD58mUuXbpEMBjsOI9uFcc9z9jtdvQfhhb3H2U8F0e71dSnHel0mqtXr3Lx4kUKhQLHjh3j5MmT+P3+lkl3t4j482JNeZAxJUkiHA4zMTHB/Pw8FouFs2fPMjQ09NC3MJ/mMT6IDeavFmdlz9m1eq4m5BGEQ3Y3l0Lr2DDjM2x7lUecAcIKiSAjDn/DLpKvVridTDFs6aLbYGM2ISehkgSZJp9mRRK5lohz2NLFiL2ro//bp7dSQ6KKxI1UggNbZFyCDq4YJAlihRKDFmXf8pijhyB1Ink7G+OA2d8grlpBRUmUZAuJmeQ6o/Y+3DozS5lE+1sCsF5I0W/wki/XFH3nAEvZGOOOAa4kFZoibeJaMsygqUuRqANcy4QZdexhvynAWkUuBFxNhTjuqJPaYWs3k7HWxcpkfI0jtu00E0mCw7buRqOm5VwSl07+3dcJatRoMQjajo2EZhIbHLD48OtcLGVbP9NYKU+P0dn4W52gpkfv4Xam7lmfjK5xwCL30utRYxD0FKpix26jb4cW+T8XLyvv1EPgYYmxSqWiu7ubs2fPMjo6SiKR4Pz58x3j9HY63k6xW8o0fDiSWkwmE0NDQ43s+IWFBd555x3u3r1LtfpoXVufZex2F8zd7qz5UcdzQcStVmtDEd/yf09NTTE9PY1Wq+Xll19mZGQEh8OhqLI8T4r4h42I12o1VldXuXTpErdu3SIQCHD27FkGBgYeOYLwaRdr3o+I30rFeD+6Jnv+gE25Pb2w+ZNdzWbI50UGLHVVNa7QWKdOqltVv4ooMheN0G/wKBZijjoCDXV0CzVJZCEeRycpn+9Bs5sb+W3SW5FEFtNJBsxexhw93M0pE+Jj9m4W0lGuJ6IMtqnoHp2Za6nWBkPzqRBj9rqSO2ztbGeZSayzz+iTRRluQZKgJqkJtFl1mjFkC/B28A7HnZ3bFA/ZuriXTXe0zQBQU5NX+By3MJ1YY9zRz0Iqqvh5LGUTeHX1jPPjzj3MNhW0pislXLp6N9ItqFGxz+zjZjrKtWyUAU2nngYCJsHEWl75HF5Nhhh39dXfz+TnRnp7USgiESkWWlRzLWo8gpnFTJzbmRijDrmaD+DVW/jWzWk+iKwovv6geFRiLAgCHo+HU6dO8dJLL1Eulxs2iFRK+VzA0yfGu9XeHp4+Eb9fdOFWdvy5c+c4ePAgGxsbvP3229y4cYNCYXvOe96tKS/w0cZzQcQtFgvxeJz/9J/+E7/6q7/KjRs3cLvdnD17loMHD/5cRXU3ifhuxBd+GIh4pVLhzp07XLhwgfX1dfbt28eZM2fo6+vbcSvkD1Ox5l8tzDPu7GlxxGkEgdtpOXndY7ZxPblNiFLlEnfiGV717GVFgVAdcfgUGwH1mmy8s77CCVtvi2KqRiDUIX1k2Obl/fA6/VJbYogEZYXvS0msESuUFIswAcxqXWPfKpLI3UyKfmM9B1uSwKU1K3aSnIyv87JjH9NJ+eJlC8fsPUzGNtjTIVf7uLOXucQGE7FVjik0s/HqLaxkU0jAbHyDAbNHYYxeJmNrBIsZ+kxuReX5mKOHD2KrZMqVjmTdjo6VVAZth2Y92WoZs8bICUcfkzF5werNdIQTrs3FggRD1i6uNqn4y+UcXYZWMq5C4IDZz+XoGoMWX0fVfD4W5ISjv+X9thAr5eneVM3VqOjVOViubH93JmJrHLW35p47tEZUoppQIcu/++CHhAuPlmS1ZUXYKfGy2+0NG4ROp+ODDz7g8uXLRCIR2W/2eVHEdyup5efN6SqViq6uLk6fPs34+Dj5fJ533nmH2dnZ+y6gnhfsdkv6J/F4nvDMH+36+jrT09N885vf5P/6v/4vTp8+3Yi002q1P/8NeP6sKbsx5taFr1AocPPmTd577z2SySTDw8OcOnWKQCDw2C5Mu6GIK5HxZKnID+/dZnI9yGGTD6u2TtZGHAGSCkVtLq18wVipiayksow7WxVISYJCRfkWrl1bjyW8HNngeBMZP+boIqhQBGoQ1CwkIkjAYqXAMev2WMcc3dxtU9C30GOws5hMsdcoJ8SDFm9L/GKhViVcKNJlsDPq6GYho9AZFNCr1NzctNcooc/oZCYepFirki5VZOdsj9HJfGKbWF5Jhthvdjf+r0aFSWVoREBWJZFosYiz6X32mT0tlpWryRDjzlbf9AGLj/l4fZtwMUu/Alm3aQxIaFgppnHWOttIrBojNbHzd38qtsagxcMxR5/MblRGRCtoUG8t9SQ4Yu3hyuY5mIlvcNwpV68lCQ5ZA9xJJzGqlUnSlmo+ZO3itkLh6J10Ep++vnAzq7XYVKZG2k+0mOPfffBDqo/wO9z6LT2u+cBkMjE8PMxrr72G0+lkbm6uIQCIotj4/T4PiviHPalFEAScTifHjx9vLKAuX77M0tLSE97LDzd220bywpqyMzyzRHxmZoZ/82/+Dfv37yeZTHL69GkmJib4H//H//GhJ9QX1pQnP2axWOTKlStcunSJcrnM+Pg4x48fv28M4U7Ge5qKOCjn3P7fi9cbaRzXYjFMVT39JjuRotyz6tWbWgjkFg7a3SxlklwOhjhi9jUI17Ddy1JWrqr3mxzMJ7YtH5PRDUYs3ZhUGkX1HGCv1kqB7e/EVCzIfsGGQVBzrwMJ32tyMBPfIF+rEMwV2NPUvn2/yc2UQpFkulJCVdMQv093xCFLfbFwLRFjwNSqVOsEFZWqRG3T9x0t5TCrTeg3u1XqVRrKotRi+amINaLFYoOwD+rlnul4OY9Da0GNCofORKJUpNJmN5mIbedsBwxW1vOZFv/5lWSI8Sabiw4VLq2V6GaM4L1qjkGVvAHNEVsX09ENJmJrDNmUvfQiEg61lZsp5Xbyd7MJjjnqC65Rex8zbef+WjJCT1N3TEmC445epuMbbBQyHLQqq+aSBNWqQLaiXPSYqZYwqw2YVBoCeid32r6PE9FVvn71Z4p/ez88qfbvOp2OwcFBXn/9dfr6+rh9+3bDl/wkxrsfdksR3w0i/qhdNU0mE4cPH+a1116ju7v7ubamiKieucfzhEc62v/6X/8re/fuxWAw8PLLL/PBBx/cd/u//du/ZWhoCIPBwMjIiGLu4vXr1/nUpz6F3W7HbDZz6tQplpe3O7n9T//T/8TAwABGoxGv18sv/uIvsrCwIHsfSZL41Kc+xdmzZzGbzczOzvJrv/Zr2Gy2R57YnjdFfEsFetKQJIlYLEYkEiEcDqPT6Th9+jRHjx59rF3x2vE0FfGt71z7+ayKIn9z62rLc6F8HrNowKOXK997zHbFhBN1U8TdfDyOVzRi1ego1ZSPz6KVR+bNxkOM2fpkyR8Abq2RxbJcJb9ZyjFi6mrkRDdDkkCFumFdzlbLRPMleg0OVAgd9w3AqjFQLEuy1A6AAxZvg8BXJJG1bJ4u/bbt4rC1m7W2tI472Tj7Lf6GwrumkE6TKBewakwc1Lq4llcuRr2diTJi78apMRMryRdKErCWy9BndIKkbijqzZiOrzNo8YIEe/QuFjOtDXvu1PLsaYpW3KOzsZCMNmIRV7OZFmV+C8cde7gQXqHf5Oqoqk9EV/mYa4CpmDy9plirokKNRlAhSXDC2ddSODoT3+CES37HZdzVx2R0nUy5gklQJlJ3M0mOO/Z2XCT85c3L/NP6beWd7oCt39KTIl5qtZo9e/bw6quvMjQ01GgCcufOnYdqW70TPG0rDOwO+d8adycLAK1Wi8Egny+eJ9Qk4Zl7PE946F/dt7/9bb70pS/x+7//+0xNTTE6Osobb7xBOBxW3P7ChQt8/vOf51d+5VeYnp7m05/+NJ/+9Ke5cuVKY5vFxUU+9rGPMTQ0xNtvv83c3By/+7u/2/LjGh8f51vf+hbXr1/nH/7hH5AkiU984hMyoioIAr/+67/O8vIyf/Znf8ahQ4d21FkT6hOzJEm7EiW4G2PCk+1UttWC/vLly1y7dg2DwYDP5+PgwYMYjcYnNu4WPgyK+Ntrd9nIy7+TkiQwsx7mhKO7kSNt0Wi5ppCgstfiaDSR2cJ6pcx+vZeCQnOgfrOTKwn579Ss1jIVCeKsGTFKrRfEXrNDsWjUIWi5HAtz3Cb3WI85uljMtBLadKVEsljhpHMPyx0KBI/Y/MwlQqwXMthVFoxNvmmDSkO82EqCstUypYqAQ2NkyOJnKq7c4n4+EeRVzyDTHV6HusWnWlN1JLIAtZoKi7rz9zNTKeHXOQkqfK4ANUkiWsgzqHJwQyF9piqJ5EURs1pHl85KsFBoOfepShGP3tpSnDnq6OVyZG3zOOtWESWMO/cwHQ3h0inv/71skhF7D+POPiYUioevJcMtqvkpVx8Tm+OGClm6tFb5uZNg2Bbg7fW7jNynkc8fz73DcibZ8fV2PClFvB2CIBAIBDhx4gRQ71tw/vx5rly5opjC9TixG+r0bjYR2kndz/MeXQgvrCkfdTz0TPYnf/In/Oqv/ipf+MIXGB4e5hvf+AYmk4lvfvObitt//etf55Of/CRf/vKXOXz4MH/wB3/AiRMn+NM//dPGNr/zO7/Dm2++yde+9jWOHz/OwMAAn/rUp1pahP7ar/0a586dY+/evZw4cYI//MM/ZGVlpXHbsBn/3X/33+HxbN+2bk5NeRRsTU67UTi5G4o48EQWAM0Nk+7cuUNPTw9nz57F5VIuqntSeNoecZBfLP7q5rxs216zjeuJKCAwtRFir96JS2dkyO6hUJP7va0K6jZArlIllatw0NZq3TCrlWsietVGcrUK65UCDq0V92YkXp/Jzmxc3vAHwKXSU5FEJjZ95lswqTXcyyoTbTUCS8kMfr28RbxJrWlZmNzJJujWuVFtTsiHLAHCCjnp4WIOj9pO7D52li6DlYvBNUYVcrkBjCoN5RosFJIMG+WFmVAv8JyMrTMXD7GvyVPejFFHLxfCyxzrkBgC0G/ykKuKKEakUPeTH7L4KVQlCgqdTRdS28WZR23dTEdaP5/ZeJB+c+vv6YSjj8uRtTqRb0tZaYEoUKgozzfFWhW1oEIrqBh39vFBpJWs3yqkOGzYHree8tLLTKy+f7dTSfwG+V0uq1ZPqSrxGxf+vxQfMJZu67f7tKwIW7/d8fFxzpw5gyiKvPfee0xPTz9ww5mHxW4p4h92j3gnPM+2FADpQ9CS/nE+pBc54p1RLpeZnJzk4x//+PYbqFR8/OMf5+LFi4p/c/HixZbtAd54443G9qIo8sMf/pCDBw/yxhtv4PP5ePnll/n+97/fcT9yuRzf+ta32LdvH319nePFttApR/xBsVtEfLesKfB4j7VcLrO4uNhomHTgwAFOnz5NT08ParX6qfvSd0MRbz6+G4koE2G5R9prbLUd3E4k0ZTVlKryc9NttHIlLle3u1Q6bqRiZCoVbkWTjDnrRY37LU6uJuWqugkVdyvbVou1fAaqaroMVixqvSJnG7C4WCw3JWQ0FX0OWf2KdhWod6Bcz2eoVlR42vKvD1p8MsvHjXSULtHMAZNH0VMObKZ2qLGrzLR31YR68aVO0FOoVZiLhTjQ1jVSkmDA4md907JyNRvncFujnAGLm5lonVBWxBrJYhmHtlVZHnP0NpTkiegax+zdsn05autiMrLGciXPsQ7Z6RaNjvVsnr0dyP7W+5+093E1sW1b2UJFrFGqihg27yYMahxcjjQ1PUpFOemWz5nHnT1cjqxxN5OUfTZbuJdNctazr6HAt+NmIclec70W4KSrj4mmcXPVMgaVrqVbqF6lxqu1sppLcz0Z4X+d+qeOx9yMrcSUp0W+tkixIAhYrVaOHTvGuXPnMBqNXL58mffff59wOPxY55QXxZoPj+eZjNcQnrnH84SHIuLRaJRarYbf33oR8fv9BIPKylkwGLzv9uFwmGw2y1e/+lU++clP8o//+I985jOf4Zd+6Zc4f/58y9/92Z/9GRaLBYvFwo9+9CPeeuutB8qStlqt5HK5R54oBUHYFVK8G9YUJeL4qMjn8ywsLHDhwgWy2SwjIyOcPHkSn8/XMmk+bSK+24r4X9+8ItvOrtNzNSb30faYbVwLxjjhak0J8RstiiS5mYzWJImpYIgTzh50gvKt38OuAKU260mkmMepsiimrkgSKPXAmYhs8LJjD9Mx5XngsM3L3KYtJlzMIdS0jQLJAbOL6Q5Ee6Nawoypo2Vk1NHFfDLMtVSEo9Zu2XZjzh7ubNpkqpLIWjbTEud3wtnb0l1TAu6kEw0bhkNrJFYotRReRks5PDpr41wfsvqYibUXQEbpMzoa/99ndrOQjDU+s9lURFZ8qRXU+HVOVnIppqMbLWkuzejSmLkZjqLtcPt2PZ/mkC3AAb2bm4WM7PWJyBoHLNvK/6iji6lN0pyplHDqzAgK7z3m6Oanq3c51sFmUpUkCtUapxx9fBCWk/U7mQTHnPUFigqB/WYvt9PbFp3v3rnK3y7Jfxvt2I0ul+3jGQyGRsMZr9fL1atX+dnPfsbq6upjmVuet2LNnUbSPs8kHECUnjV7ym6f0aeLXdf/tyatX/zFX+S3fuu3GBsb4ytf+Qq/8Au/wDe+8Y2Wbf/Vv/pXTE9Pc/78eQ4ePMi//Jf/kuJ9bklvYacecdg9m0itVnuqHjhBEHa8AEilUszPz/PBBx8giiInT55kdHQUp9OpOGE+64p4c5Z4olTgh/duybYbtLvkXmwJIoV8nVCvhxlzdKFTqXHrjcwrqOF7zXZWZU1sBBLZImJBRN1Grjx6E3MKSSxIkKtU2MjkOWRt7aA46giwqNSxUoJkqcyovUtGhrWCilibvztYyKKTdLi1po5Z4wA9KiMfxDY4oWD38OrN3ExtFzxOx4OccGzbZA5b/TL1NlMpIdYELBo9+8zuhnWiGblqhWoN7BoDbq1VsTjzRirKqKOXgN7KSjYjK6Qt1aqUaxJmtRav3kIsX6TUZC+SgPVspmEDQoKDlkCjqLEqiWTKFSxt+ePdRhuZmkRMqhDQmjsuUIqVKkJNpbhYE5FIlIpYNDqO2v3MxUIt291MRRl3t57vEXuA2Wh9u8V0oqWrazMCBhvF+1hvJiLrHHN0MeLo5qpCvcL/OvlPXFN4vhm7ESXYaTytVsv+/ft57bXX2LdvH3fu3OH8+fMsLS1RqcjrNB5mzBeK+As8KHbbSvIkHs8THupoPR4ParWaUKj14h0KhQgElFWSQCBw3+09Hg8ajYbh4eGWbQ4fPtySmgL1BgwHDhzg3LlzfOc732FhYYHvfe97P3e/txTxnWC3muvAk/Fr3w+PQowlSSIajTI5OcnMzAxGo5HTp08zPDyMxaJ80d7JeDvB01TEt8bbIuJ/t3STUtv3SC0ILKWSsr874vKymt1WNGeCYbq1dgatbsXW7MYOHvBKvsSNTIo9Ogc2zbavvM9sp6JwHo65/NzJJCnUqtyOJzm6qdxqBZVigSnAUaeP68kok9Egxx2tjYJGHF0EFZq3rOUzHDD7SJeVkygOWj0sVus2l4noBsebPd4S2DVG8rVWsjMR3eCYrRuH1sh6Tnlf1/MZ+vQu8uVqxxb36/kMR2y93ErFFF8HuJ4I02dwk1FISNl6jwGzD62oVbTrJMtFnBoLgiRw3NnHXJsfP1TIste8nT/u1pkolyVSmxnzi4U04065BWbA4mYxmWQpn8arVk6TCBdzjNi7uR6PKqbxTETWOGirL8KGbD6uNW2XrZSxqvUyK9BBg5OZSJCZWJBxTwefvAR6QUe4w2dTFmv82/d+0DhGJYii+FQV0AdR4FUqFb29vXzsYx/jyJEjRCIR3n77bRYWFh5ILGrH86SIv/CI7xwiwjP3eJ7wUL90nU7H+Pg4P/nJTxrPiaLIT37yE86cOaP4N2fOnGnZHuCtt95qbK/T6Th16hQ3btxo2ebmzZv09/d33JetJgsPEidls9kol8uUy8p5tw+C542IP+ixiqLI+vo677//PgsLC3g8Hs6ePcvg4OADR0o9TYV6N8bbIuJVUeRv5q9y0t3VMs2MuP0kSvKLdXtWNUA0X+BOJMUhW6ttod9s51pSbm3p1RpZqdbf+042jUnS0220EjBamIvL1XAVApHCtgJclUSuRKMcd3RzzKFcMKlGIFrcJppT0Q2OO3qQpHqm9qzCOFD3uX8QWcepsWBpW0ToVWoSbSr6RHSDY5vdGo87u7mZVibJc7EwhyydveqSVC9u8ult97G8dHN+/a4stm/7TaDf5GYystHwRbdDhUChLOJr62zZjJvpKK96Blr81C3HEg9x0tWHRaPHgF52/mfjIfY3FWd6BB2ryTTFWpWiWEOzGUvYjkGrm4nwBsdcciK/eXjE8nlG7AGWkknZgu12Ot5ybvbqrCzm0oibJ3Q+FqLf7JC97ylPL++HVtEIanQdiGa6XOKPJt9pvFc7PgzWlE4QBKFR53Ty5EkKhQLvvPMOc3NzZDJym9D9xtwNRXw34gsfNUf8Bbax21GDL+ILd4aH/tV96Utf4i/+4i/4P/6P/4Pr16/z67/+6+RyOb7whS8A8K//9b/mt3/7txvb/+Zv/iY//vGP+c//+T+zsLDAv//3/56JiQm++MUvNrb58pe/zLe//W3+4i/+gtu3b/Onf/qn/OAHP+B//p//ZwCWlpb4oz/6IyYnJ1leXubChQt89rOfxWg08uabb/7cfd5SZHeanPIsFE4+6Lg/j/xXq1Xu3bvHhQsXWF5eZs+ePQ/dsfRhxnuc2C0F/u3lu6znskythThk9uDSG0GCeFFOGPdZHdxMyiPuhhxuwoU8N8MJxpt847YOCSp2U+vdiGA+RzpXZZ/JqaiEjrkCMtVbAhaTSYSaWpG4jrnlivdUNMiorRu7xqiouiOBRaOnIorczSbx6uyNAkOAw7YAIQXSPxcLc9LZq2yp2cSos4uZSIg9Jofi6yfdfczHQ0xFNzjplscv9pudXIvXC1svR9YZU+g8Oe7q40oiTEmskSvXZAk2kgSjjh6uJSNMRtY5ZPPJ3qO+r938dO0uRx3KxZtQV94PmX2s5ORpNFVJJFepYFZr6TJYqaBpSVtZL+cZdbbWF/SbHWzkchRrVeZiIfYoEGaoZ86rRU3HNJPLkTWG7T4GLW7WCgWqTV+OslijWhNbunKecHVzedM7fi+b4qhTfhdVr1Lj01n53p3r/D+vXlYc98NMxJux1QHy7NmzqFQqLl68yOTkJPF4/OcKAbtBil/EF350sds2khfWlJ3hoY/2c5/7HH/8x3/M7/3e7zE2NsbMzAw//vGPGwWZy8vLjQYIAGfPnuWv//qv+fM//3NGR0f5zne+w/e//32OHj3a2OYzn/kM3/jGN/ja177GyMgIf/mXf8l3v/tdPvaxjwH1wph3332XN998k8HBQT73uc9htVq5cOFCS8RhJ5jNZgRBeChFoh27QcS3ikQ/TPnlxWKR27dv89577xGNRhkaGuLll1+mu7v7kS8cu0GMd0MR/+tr2w18bsbiiEWJs4FeljPyJjNWhSJkvUrNzURdBZYkmFwLMWrz02+yMafgGR+0ubiWkKvkTr2ByfUwY/ZWImRQqbmTTioew4DFyQfhdcadrQWRTp1RMeMcoCaCTtIq+oWPu7paFO3FTIJegwu9oGbQ4mYqply8iQSxfIl+k7IKvcdkZy4eIletkC1XZc2RBixupqPb7z0RXmek6TyYVBoK5VpLAet8LMSAZfsOxKizu8V7Hipk6dY7WgocT7p6mYzWVW4RiY1cFldbGskhm4/5aBgJuJtOKvquVQj0m9wsZzId4yeDhSxDNj+VCiQULB0TkXUGDQ6g7jFPFsuNbphlsUZNrH/2zeg12Ynni/XFSiebCSDVBIoVkbKCxWctn+GQ3QcSHHMGGskzW5iKbHDCva3ICwgcsG4XcH597iLvbdyTj7mZmvK0sFPib7FYOHr0KK+99hpWq5WpqSkuXbpEMBjsOA+98Ig/HF5YU3a7uPIxP54za8ojLUO/+MUvtijazXj77bdlz332s5/ls5/97H3f85d/+Zf55V/+ZcXXuru7FbtxPigEQXgsEYa71eb+w6CIZ7NZlpeXCYfDuN1uxsbGsNvtHd7h4fC0Pdu7QfxvJeJMhlrJZbpUJp0pM+7qYjYZorq5T36jmSsxObk96vYyGWrLjQ5FOKQ34dbqibV5lXUduh06tEZWxAwzoQgnAz1MJNZAgKNOPxMROQHuMVmZjtYV6MlIkDFPF3PJDSShrq7OKGSNG1RqNnJZIsU8o+4u5lNBJEHaHN/ArbRc7b+ZjnHE4SVT6eypPe7qYiK6gVmjZY/RznJhWyXWCSpqNRoKfLSYZ4/FjlldIVerYNHoSJXLLb5wCbiRjLPXUm/B3qWxcqut4VBFFIkVirh1JmxaA1cVPpvryQinvL1MJlY4ag/IrCbJcpEDNjepcpEaIt16K8vpdGNfMpUyXoMFjZBvPCdJcMzV3Vg4HHP5mUts0M45rFo9wWyePrND0ToEsFbI0qXSky9WSLYV9K7m0pzwdDEdry8u/AYLhXKN1KZ3fyYWZL/VyVJbkW630cpaNkvAtJlNrnDtnIlucC6wl4uhFUWrydVYmH6znXvZFCfc3UxGWhNsvnThx3zvk5+n27xt7/moKOLt0Ov1HDx4kP3797O6usrCwgI3b95k7969jSjXxz3mw+CjSsSfZpTlhxXSM+arlp6hY3kQPBf6vyAImM3mj5w1BXYvS3wrrSWRSDA7O8vExAQqlYpTp04xMjLy2Ej41njPuiL+3UV5UkqXycK1WIzp9RB9OhtdmzaSXotVRlrUCCyn5cq5R6fnVqlIuaTisH07km7Q5txsDtSKfVYH87Ft9XwiGGTU1oVbZ+RaXLkNuUNraMmrnomG2Kuxst9oVyThAEccfiLFutd8NhZixO5vFPf1Wxxkq8r1GgZBi1VtRK0wNe2zOBvxiLlqhXSpgr9JRT5iD7Da1sJ+OZui1+hCLanoN7sJF+REtVirki5WOKp3yUj4FuKlAn69jXy5pthpFOpWjbPuvdxMxhVDQ26lY4y6erAJGgoVkVzbOVjKxBltKr485e5tUe/n4iFOelqtNEaVBq/Wwko21dGXDWDQ6PCZXCQ6FJZORTcYdXXVVfuaimixqU5AFClUai02E6/BTKUKyVKRhUSUIYPyfLDP4mQuEqbLKG/mA1ASa1RFeNnT20LCt5AsFfnNn/095abEmY8qEd+CRqNh7969nDt3jsHBQZaXlzl//jy3b99u1DE9T8WaLzziO8euK9hP4PE84bkg4rDzCMPdVMR3I0s8lUoxOTnJ/Pw8FouFM2fOMDQ0hNlsfuzjPese8bwo8taK/BZ7V1OazL1kmlS6xLg7oJgnPuL2tRRRbqHP7kSUJLLlMjfCCQZVdfuDtkNuuFKyymwkzGGzD5WCqnTI5uaKgvVkqZDDhh6TWj5Ot9EqsyHMxsIcsfo5Yvd2LN7cZ3YwHQ1yNRFh2OZrsXpoBRXlaq3F154oF6Gmwqk1Mmz3dbSzXE9G+JhvH/Oxzr5yv9FKvFRB12FK1AgCpapYJ/4d1nAunZE7qSQ+Q+ffyLV4mAAmYh0KSScia4w6uxh39bY04tnCTDTIPqtrc59U9JvcLKbrSnXdZiLJbCZWrQ6L2sBMIsyp+9hMgrkcXTqbYsLNRj7DIZsXJHDoDGglTcuiZiGfZr+xlYx3m2zE80USpSLVGi1Evhl+vYViuXPk4VwsxNemf9b4/9O2pjwpUqxSqeju7uaVV15hZGSEeDzO+fPnuX79OpVK5bmwpkiS9MIj/gLPPZ4LIr6liH8UrSlPUxGv1Wqsra2RSqUIh8P4fD7Onj3LwMAAer1yMeDjwLMeX/heKkG5bTyLVsu1aGvqR7FaQ1VVMWTztJIWCVYTciuHx2BkPrKtbksSLOZLnHb0cCclz/o+YHMpqt5+o5lLwXVsGAg0+5QlKHQo1DtosDCTiOHTWLE3RSJKElg1hpbCvS0sJKKYMCiq3WoEqjWpobzPx8OMOgINcnbMGah3/WxDsJDFp7MSKygTW4D9FhfvbixzyiMvzIS6FWMlnWKtnGefwS4nhBIcc3ZxKxVjJhZU9EzrVWocWiNruQyVqoRFI/f4qxHYa3ayVM7T3SGHG0At1W09SqhKIvlyFatGx2Gbn+tt3VJXc2mGmwo/9YIKn87Gcrau9E+E1xmyt2bDAxgEFdqamlylirrDbeGZWJBTnh7sahNrudbPQgLipVKjaNirN1GpiCQ3PetruTSHbF5Zse9RZ4CZcIjZaIhxj3KCi1Gt4Wcry3x/8Trw0VfE2yEIAl6vl5deeomXXnqJUqnU6EacVrgL9qSwG0R8ax5+oYjvDLtdWPmiWHNneG6O1mq1fuSKNZ/WuJVKhTt37nDhwgVWV1exWCz09fWxZ8+eHXc8exA8y/GFVVHk7YQ8Zu+Qy0Ox1kpyNYLAUjLJ3EYYp2Cgx1BXt/fpTUSr8uYge6wORcKbKpTxa6z4m5VZqV4Mp4Quk4WqKLKey1Io1Biw1BXXMXeAe1m5VcOgUhMq1W+h302nMKPHu1mIOOr0s6AQowgw4grwQXidIYtXRsbHXF2s5FpJx0wsxH6VmUGzk8mostotSSBIAlaVAa1CTJ9JrSVfrVAVRS6H1xhvi+vTCCrMah3pTcvGjVxSRtjHPT1MNY0/GVnniKOpSFyCQzYvS5vK9EY+U480bP5opHqay7VEhLIkgSQoKsRHHD5mIyHUkgq9SpmcbOSzHHf2MRtVVvinohscd3WjQUWX1spikx9fAsK5HHbddrSoXqXGqzaznEuzlE5w1CYn6lAnxNliTTkFB0hUSvSZHNi0enRoZTag6WiwhWwfsLm5FYs1bFizkRD7ra1FuAIC+80u7qST/N7Ff+J6PPLUifjTbCBkt9sZGxtDrVaj1Wq5dOkSly9fJhqNPvE5azeI+Na17YVHfGfYbRvJC2vKzvDcEPGPqiL+JK0phUKBmzdv8t5775FMJhkeHuall17CbDbvCjF+mm3nn9ZYby/fJdFGolUI3EvJla6jXh+JzeYfwWyeUKrIMbsblcLdCIfewJWo3DIS0Oi4kYizkk6Tz9U4bKv7xoecbsU4xD0WWwuhS5VLrCQyjNr9LGeU/dJHnX7STY101nNZpIrAPrOjpQFRM/rMNmY37SpX4hEOWTyNfOs+0/Zr7VipFHGoOre4H3d3cy0R5WYqzkGrt7U1uwQHbB6CTXGMM9EgR5oU41FnV4NAb+FyeI0Tm4T9kN3DTNsioJ5ykqLHVC8gPOXpZa7N9nIlHm4h9KfayPx6IVtvmNN0XPstLhaTSaqSyHI2VVe2245bkuCUu4e3V+/e12ZyKxnjkN7BXYUW9/FSgV5jXfnXCCr2mdwsN9lRZhIR+jWtCS8aQcVeo4vr8QhaSaW46AFYSsUZtXexmlNWcq/Ewuwx2+kz2Qmmcy3NraqiSLZYwardvJsgwQlXV6M4tlSr8cWf/pB0ufRMWFPuB1EUOXDgAK+//jpOp5PZ2VkuXLjA+vr6E5u7dqNAtFqtNtLBHgVb/USed+x2850XDX12hueGiFut1o+kR/xJWFMymQxXr17l0qVLlMtlTpw4wfHjx3G73bsSmbg1CT+tCfVpKuI/uC0v0jzi8RJt93tLsJ5qJb6iBOWygBHtNjnZxIDdqVg0qG0iotlKmZuRBCfsAcoV5c/TqtXLnBhlsYZGVLPP5JQRQZ/BzHxUHpUYLRbwqa3YlfLMJdCrNC3q/dV4lAMmD3pBhRa1orIP0Kc2cjka5KSrW0bG+8z2lsLTK/EIo86uxnbjnh5m21rY1ySJpWScfRYnJ1zdTHZqpBMLcdzVRSiXU8xbz1XLIMIpV08jG7sdl8NrHHX6Oe7q4nJYPs5sLMhJb51MdxutxAvFlrsk05ENTrTZNU65e7gcqr/XdDTIfotCjKNUj2mMlctoOlzQrsbDnHT3MGT1cV2hBiBWq2LdTN0RJGFzu/qdjnuZFKMueQa4VhDoNzm5sL7CoM0lex3qZNqk1iNWBTIVecFuuJCrR1NK9cVLe9LQajbNV69NIIuOeYLYDQVekiTUajU6nY7BwUFef/11+vr6uHXrFu+88w53796l2sE29qjYLUVcrVY/94r2TrHb6vULRXxneG6I+Ee5WPNxjCtJEvF4nOnpaSYnJ9FoNJw+fZqjR49is7V2/tstIv6sKeI3ojHeX1rjoNGyTYckyFXkNpM+vZ6wQitsjUrFtXAUQ03LQUed3Fi0Oq4pFHQO2J2stqViiJJEuSpiVellVocDdhdX43IS5tAbuBaPMhkMcsLR3WJp6TJYFBcA3SYLk+ENguk8Q9bWrp/HPV3cVvCsX0tEecnZx2pWWT09bPeyuFnUOBEOcrKpk6NGEEAUZPsyHQ0y7uqh3+zoWJxZqFUxoiV0nztkKqBUFjGoOjenMmv0FCq1jpYfAJWoIpbv7F+fjmww6gggikLDT92MeryfA9hsiBPaJvRVUSRXqWLWbO+jJMEJdw8z0RAbpQIHO3T9RIJaVSKv8F0EyFQrdFtcCJLAPrWZK7HWxddkeKOFjAsSDJqcLCSi1CSJTKksWzxCvfFUNl/BazB3LM68EgvzzwL7uBxUXiR9EA/zvfCK8h8/ATxtIr413zePqVar2bNnD6+++iqHDh1ifX2d8+fPc+vWrQfqLv2g434UC0RfWFNeEPGPOp4bIv5Rji/cCWkURZFgMMjly5e5evUqDoeDs2fPcujQIYxGo+LfPO1j3ZpEnxYRf1oK/N/MX6VUFbkdz7NPbyNgNjPgdLKUTMq2NRhNsuf2WG1ci9YJd6xQYDGc5KSniyGnW7GIspOnOFupMBcJE9BZtn3jUufj3291NN5/Ohxk2OLFqNZwyOZiLiZXw5HArq0XaBaqVZYSKUbsdQ+1Q6fntoIlBiBgtPBBcJ19Jpds381qLeF8612DifAGJzbj/Y45uxoFiO24GgvTY7B3jBk0a7QkimUEUYVFIyfakgTDdj9X4xHUkvI2foOZUDbHfCzMuFu5yHCP2cHtRAKxpuwHh/qdglpNoNRB3SzValRqIiecXUyF5D75YD7LgNWNJG3aVjy9TIa3t7uaTsjVa6lO6qfDQfKlSguRb8ZCIsrrgX0sleRpPQCLyQR+Y51QD2jNLDQttsL5HPssrhaybVCp8eksrGbTzISDjHuVz9uQw8OF1VWGnB7F1wH+PrrGOyt3O77+OLEbxaGg7JtWqVR0dXVx5swZxsbGSKVSnD9/nqtXr+7Iegm7Q8RfRBc+Huw2aX5BxHeG54aIW63Wj6xH/FHGrVarrKyscOnSJZaWluju7ubs2bPs27cPnULXxmbshiL+NH3bT4P4J4tFfnRzsfH/u8ksqWQJn8Yg23avzc6tpFwxdhhat5UkWAjFKJdEXG2vDdidXFeKPfT4uJeuE9bldJpCscqQ3c0Rt1dRpe42W5mNtCrJ12JRAmorGpQvmCNuH9ebClIrosi1aIzjzgB7LU5FCwISOLR6SmKNG8kYe43Olti9AzZ3S5b1FibDQT7m6VfMnN7CsMPHhfVVjrvkRE+SYL/Fw3ouw0o2TbfR0fCqb+GUt4fpTc/6ai5Nn8nZyECHetGiXtA2FOzL4XXG3K1t5F06I4VyjVylwko2zaBVnhiiEVTsMTuZj4XxGqwtYzTDqTEgVYWOPvnZaIhT3h5e8va2KOZbuJWIEzBuprRIcNLdw9QmWQ/msxywuRWTYk55eji/sswhhxsl5CplzIKWU+5uFhU+q/nN/QJQo2LA4mGx6Xs+HwnTb3W0/E2/xc5KKk2pViOUyeHSy8UCNQJulYF/9/Y/spxWXow9TjztLpdKing7BEHA7XZz8uRJzpw5Q61W42c/+xnT09MkFRb6Pw+iKDbsME8TO40ufIE6dps0vyDiO8NzQ8Q/yp01H4YwlstllpaWuHDhAsFgkIGBAU6fPk1vb+8DT7JPm4jD0y2gfBqK+Peu3WgpRIN6RNzl5RD7dBZ8pm0F3K5QjOkzmbgSkdtGDrs9XA1FoAjDTYphe3b0FhLFVltEplzmdjSBQ6VXtAa4dAZFT7RLbyScKtBvbs2K1qvUBBV+V6IkUSjWUIvKU8xxT4AbyW3yfiMZo8/owKBSc8ThbXTybIdVo2UhGue4U+5Rhnpqy3SkTqLnwiGONhVmwmZhZdN730jEOOIINEjufqO9RVEGuBaPMLblUd/0X99rK2S9Go0wsJnvbVCpsWmMLakhc9FQS/GmJNUbEF3fjJO8kYjK/OAAg1YXi4kk05FtP7kiagLRnLJynatWMKp0aASBU54eJtrI+mwkJFOnX/L2MhHaQJQkYvliI5awHep8hXy2s/VmJhJkwOrkmCPAtbaOpGWxRqUiNu4WeA0mssVKw7qVKBXx6M2tCxQJBk12lgs50uUSX/zJDykoJAo9TuxWXOKD2i2sVivHjh3j3LlzGI1GLl++zPvvv084HH7gOe5xpJc8Ch6XCv+8W1Mknq2Czeet/Pa5IeI2m+0ja015kHHz+TwLCwtcuHCBdDrNyMgIJ0+exO/3P/RFZDeI+NMc80kr4lVR5L9duSZ7vs9qRQKWUzlyqTInvAG8HQh3r9VGe3dNvUrFYqKuKKZKJRaCUU56ujhgdyp6xke9fsUUk2MePxdX1xlzBtA1fTcO2l1cUWjfbtJouJNKEisWiGYKLR08R1x+xUZDGkEgUy4xFQxyytXdQvpdOoOiXeVWMs5+k4t4oUOLewn2W11Ei3nmIhGOtZHsgNHS8r41SeJWPF5XfKknqEyF5Ur6TCTIKU8vTrWOcLEgO+8Ak+F1Tnl6OOnpbSkQ3UJZrJEolvDojQxavdxJJ2XbTITWGbb7kCQ47gjImh5dDq1zzLl9TH1mO+FsvlHAORsJMqBQBDnu7mYiuEGhXOtoM1lKJzjn6+y7vhIJ02+pL7JOeXpatosW8+yxOGQLt1PeHm6XClzLpOhTKxP1ak0koLdxSyHCE2A9l+Gg3YNFo0UvaIm1LRxvJmKcaFoknPL1cKNJBb8Rj/G7P/vpE11Uf1Ryy41GI0NDQ7z++ut4PB6uXLnCe++9x+rq6s+d6x5EhX8SeGFNeTzYbfX6hSK+Mzw3RPyjHF94v3FTqRTz8/O8//77iKLIyZMnGRsbw+l0PrJKsBvH+jSJ+JNWxP9p8Q7BbOt3Ta9ScTe9vRAsVmvMLocYsrpxt3n17Xo9VxXI+RGvj1RTYZaAwPRaEJ/WhM/Q6jFXUffptkMjCKxt5unPhcL06ux49SaQoFJTPv/DTi/JzXHz1Sq3ogkO6W14dYaOWdajHj/rm01pJoIbjLu66kROgh6zjaySXYV6R1ATOsWOnWNuP3ObiS2iJHEtGuXophddjYBJ0JJv81qXajWC6RxDdi+xfEFR7Yc6ye3VWMjcR12tVaBQ7pxUESvkOWwLcF2hABbqh7+cTjOkNjOt5LUHbicTdJvqGfD5YoV0efvzrsf7tRZBjrkCTIfqhL6jzYR62so/3bvLUZdf/iL1hYRYg1OeOqlvx5VYmJO+bUV+3NPN5Y1tsh6rVrErdG095e3lwuoqgx32C+BaLMIJVzerGeWi3YngOsfcfo67u1rG3MIPFm/w/742p/zmjwG7Uay5E3Kq1WoZGBjgtddeo7+/n6WlJc6fP8+dO3eodCjOrdVqO4oRfFTs9FhfRBfWsduk+QUR3xmeGyL+OOILn2bWdfO47WNKkkQ0GmVqaoqZmRkMBgNnzpxheHgYi6Vzx74HxfOgiD8JK8yWLegv3rske23QbpOlpZi1WqZXguTTFY77tq0Wgw6nzNaiFgSWU3I/7D6Hg0ur6xSLNUZc201mRn1+xe6Mo14/kaYiyLupFNWSxCuBXkUVN2CyMBtpJY01SeJmJstevU2RvHeZzMy1/c1UKMiYw8+o2y9L4NjCUWe9mc1iKkG33tai7noNJm4nWj3tNUniZjzOYZuHo1Y3dzLy/Ye6HcdQ06LukH2NVM9Gv5JOcdDkUNzkoN3NfDTMnUSyoRy345S3h3dXlznmCnQknYM2N/FyreVORDNy1Qo2tQGjoJOpw7AZ77fZLOiI08fVSLRlqNlIiJO+VpvJuLuLiU2F+14qiVehMBjAZ7AgVjtfAGciQfZbHRx3dzHZRtbzoojXaG1JkDmktzWIs9J+QX0xOWT3cnFtjf22DgkvgFSDaF7ZegPw1fd/xuUN5RjJnWI3iPjjGE+tVtPX18err77K8PAwoVCI8+fPc+PGDYptCU1P2we/hcfhEX+RmvKCiH/U8dwQ8S2P+KOuoLcmqd1QirfGFEWRjY0NPvjgAxYWFnC5XJw9e5YDBw5gMMiLAHcy5m4Q8aepbgiC8NjGKxaL3Lx5kwsXLnBlfYPbbXF1ggThvNxucchbTz8pVKrM3QsxbPPQbbFyIy63bYz6/Ipt3Lf8tdlymavBCAe1ZvQqFWsKlhSjWsPtRFL2fK5c5k40zbi7SyE33ERV4buw32RmIhpl1OVHLbR6eO06g2L3xcVkAm1NrUhCrVpdQ6kHWEwlCOgsGBAQJHBpjeQU1OqKKFJKF4hlOi+yD5vszERDUKop5pyf8vUwHQ7WFetsTtbd0Wc0E8kWqIoi+WqFYlnEoWv9vR1z+hvkdDoc5JQC6Rx2eLkSDhOpVhiyehTJulmjpViq4dAaO5L5q7Ewr3XtZTGeoCrJz/NsOMT+zSLIYbOT6eC2BSZTLuPQGGWFoWPuANPBDaZCG4x5lP33VVHEq7dwW+H7CXA7leDkpo1kzBXgRpvwMRsOsa/53EpwwtPFlUiYqihSKFewaOWqep/Fzt14CpXYuduoXq3mP116j5DC4nOn+KhYUzpBEAT8fj+nT59mfHycXC7HO++8w/z8fEOc2o3ElN0c91nDbpPmF0R8Z3huiLjNZttxi3t4+kR8yyZy7949Lly4wL179+jr6+PMmTPs3bsXrcKFa6d41hXxxzVeLpfj+vXrXLp0iVKpxIkTJ5hRaJyzz2om2qZAqQWBu/FWhftGKEav1sKgvb3NN6wrfHf32e2NeMMt3M7lGbV5UUvyn/YRt5e0QubwMZ+fYC7L9EaIE66uhnJ8yOFmXqF7p0YQSG2q+3PhMINmV4NAjXr8LMSV/cAH7W6mQkH2Gl0y68k+i5NEqfUcLaWSOCQdJ5w+xa6gABZBTUysEq+JDFjliuoRp5frmznlkXIJYwX0TQuHQ3Y3002xgCWxRjJfqsfyUV+8mAQdyaZ9C+dz+HSWRnfJ/VYnt+KJFt48FQoy7NxuFb/P4uBeMtUgzvOxSCNRZAtaQUWf0c7ddJKZcFBRQQbYb3MyvRFsJbVNqJPaGgd0Fm6kUjI+fysZbynOPObyMx8ON7a7EYvSY7bK3veo08fU+qZPvcMiYSK4zquBPcyF5d+biiiSLZYwbSqgL/l6mGpS1oO5HPutre/t0hspl6tkK2WW0ymGXT7Z2AICe60O5iJhfuOtH1F+zHP0bhDxJ0VOnU4nJ06c4OzZswiCwIULF5icnCSZTD51Wwo8vhzx5x2SJDxzj+cJzw0R32lqypZ/7mkS8VKpRCgUIpPJEI1GOXToEC+//DLd3d1PVEV41j3isDNFPJPJMD8/z+XLlwE4deoUIyMj1DRaLq3Kb48r+ZKP+r3E2xRutSBwL5HiynKYEYcXh76uuh7z+hSbz5gUFmFqYCmRIpMpMdpkVbHr9DLSDvXmQDdj28R5JhRiv8mBS2+kWFH2Q496/cTK2x7vm4k4DpWRfoutY5zckMPNdLjuJ7+ViOPXbnfhHHH6Gt7vdoiSRDxfxqLQHAYJem0O0pUKhWqVUDbPnibbiMdgZDXduoAJVcv0aC2oJHCotYSy8s6ZiVIRnaTFqtFxwOppxD8241YyzlGHH5/BRDJfaumIubXfK6k03SYLAaOFVKFEvk3RnwptcNhRL3xVIXDY5uVGvPWzOGBvLc7cY7ETzRbIlMuEczlcOuVeAG69EWoCoqj8Hb8cXOeIy8cRl49r0WjLOShUq2hR15smbWLI4eFWLE5VEpkNK9tMAA47vdyMJLDplIs3I8UCfkHHEYtT0e89Hwlzyl9foBjVGhwaQ0ue/EwoyJC5tQHZuK+r8d2eDYf4w/feURz7UfFRtabcDxaLhaNHj3Lu3DksFkujMVAwGHyqdyar1eqL+MLHgN1OOXnR4n5neO6I+E4mmadFULeU1osXL1Iul9HpdIyPj+P1ep/K6v9Zjy+Ehz9GSZJIJBLMzMwwOTmJXq/n9OnTHD58GLO5rp7+3ZWbZBNFxgMBVJuf0x67jeWsvJ19LCe3mYz4fY0ujNc3oghFiRG3R0bYoa6GX43IifV+k4lEqUShWuXKeoTxzWSUQYdLsQnQQaeLbJt3fTGRZNDsQivIF3seg5ErCir5WjZDl84ms2wA6FSqliJTgLvpFBZBzz6LnZUORXoaQQBJ4G4mjR0tpjaP97i3i4WmNI5spUwqX6LHbEWNgFNrIlWW3wG4k88y4vBhVekUX4d6K/UTrm6uK6TIbOFWIs6Q1SdT8pv3x6oxYBZ0ituIksRGOovPYGLMFWC+bTFSlUQShVJjQdZlspBtKuCMFwv4jGbZJWvI4eF2PMHtfI6R+zTF0Yhq4rmCovXobjrJmKeejX7A5uJeItWiNF+JhOm3tnrlB21O7sSThPM5uk0WhA5TrUlvpFrsXBQ7HdzgkMPNfquLO6mk7PXb2Sx7TPVamJO+biY3Wv3q/23hKt++fqXj+z8sniVFvB0Gg4FDhw5x+PBhdDodCwsLvPvuuywvLz+Va90LRfzxYLdtJC+sKTvDc0PEbTYbkiR9aJNTJEkimUwyOzvborQeOHDgiYx3PzwP1pQHJf6SJBGJRJicnGR+fh6bzcbZs2c5ePBgiy+/Kor87cw1CpUqs3eC9BusDDqdOBW8+4d9bplSK0gQaftuZopl1BUVLq0RW1sTJiU1XK9Ws1FoJZYzGyEOmd3EFDKmfSaTrKgS6nGFt+NxVhJpjrtbUza6LVZZISnAfpuDyxvrBFM5jjZZMgCOuf2KWePr2Sw+rQWTQtrG1t9FNlXktUIep9aEbVMZ3291MBsJyv4mVS5RLNV42dfLrQ52FiTQCBoCCpF8WxjzBHhnZbmeMqKwjRqBPRY7764uM+ZW9lTrVWrEilQ/vg7jpEolDlt9XFH4HACihTwBgxWfwUStWiffzViIRxu+bIADdhf3kqnGZ3Q9EWfALrewHHS4uRmNYdMYWgosmzERXOcVfx8b6SxFhTQasQaGTRLlVWkJZnKNOwPXY1FOBeSq+RG3l1uJJHeLBfYo2F8AaqKEW2tircMCrSZJ5MpVjnsCLf73Zvzhe+8wE1J+7WHxLCriSjCbzZw7d46BgQGWl5c5f/48i4uLlMvKCUePAy884i/wAs8REd9KE/mwEXFJkgiHw0xOTjI3N4fFYuHMmTMNpfVp22Hg+SDiP684VBRFgsEgH3zwATdu3MDr9XL27Fn279+v2Jn0/O17hDLb362VeJpUooBaFDC33XpVOswjfi/raXmhWaZU5up6BG1ZxRFPXd3c20ENP+rxklP4rmhVaiLJAmNuX8vzAZNFUQ097PaQLJWoiCIzwTDjni5UCBxyuhWJu0C966NEnaAtROL1wk9gn83RsKS0Y8Tj44PgBoVSVZZEss9kYart79byORwaI36jmXylQrXD59dlsrIUS+I1KKeDjPu6mQoFmQhucMonb5LTrTVwdfM4Z5QKLyUY9QQanUyvRSMM2Np9/QIH7B5uJxNciUYadot2vOTv4d2VZUY6EH6AYDbLQZtXMY4S6jaToy4v+6xO1tPZljsfVUkiW6q0RB4O2lysJTMUa1VuxmMdbSb9Vjt340llWxCwmkkz7PTRa7aSr4qyVKDJ4AaHnNtdOQ86XCzF6gWmFVGkKkoNv3gzxr0BLq2u0WOydVTVjSoNVAWkDtabiijyBz87T6TDOXsYPMuK+Ba2yL9KpaKnp4dXXnmFkZERYrEY58+f5/r16xQU7sztFDvNEZck6YUizguP+Ecdzw0R1+v16HS6D01Tn1qtxtraGpcuXeLWrVv4fD7Onj3LwMAA+qZOi1vxhU/Tt7cbUY0fFkW8VquxurrKpUuXWFpaore3lzNnztDf339fL+O3p67KntvndjC3HEJVljhkq/ta++12bkTbihklyJflt+oPe93cS9b9ycliieurUcbcfsUuhyaNhlsxuQLca7UyFwxTrFaZW49w3OVHr1azz25XJNUBs5nZcFv04EaQQzZ3R7/xCZ+fu03RiqIkMR0McdLVBWL9/+2w6XSsbHqvk6USsVyBQZsDAD0CiaKyCrecTjNgdsoU2i34jWbuJZOE8jl0aGQt0gftLmabCP7ljXXGmzpaOrQ68jWxJfXlcnCdce92C/tT/m6mmgo8y2KNeL6wHQsowQlPoEXlvryxLksjGfd0cXm97pOeDgU55ZcTYqtWh1Nr4L2VFY61LaSaUamICCIyMgwQyufYa6tHHu6zOQllci1+9cmNdYZdrXcxes02MvkyG9ksVq0OdQfVfCOTpcdgI6/wW6r7+wvYdHr6rTZCmSylJi/9Ri7LAUdrvvhhs42pYP3zuR6NcjIgX8BY1RqKFZHZUEjxdQCjRkO2WOY3f/zjHRdvPg+KeDv5FwQBr9fLSy+9xEsvvUSpVOKdd95hdnaWdFr5TsWj4EWL+8eD3baRvLCm7AzPDREXBAGz2bzrRLxSqXD37l0uXLjA6uoqe/fu5cyZM+zZs0dxQtoixU+TiG9dBJ5lIt6uiFerVe7evcvFixdZX19n//79nD59mp6enp+r2NwIRZlea70NrlOruBWpE+N8ucbtcJoDVgcBi1n294c8Lu4oxAqW2zK6BQTS2RKhWJahJqUR6ip2RuEWst1gaM2Z3gjjVZs6Fvl5jcpxhWaNlmyuzB5La6GcS29gQWEBsLW/No2+kS7SjL02R6NJENQJ5L1Emr16E4N2N8kOjXWOe/1cXF/DqtbL/OgaQcCs1jU87+vZDBa1rlE46NQZSBZKsuObCm4w6vajQcCm1pFUaDY0HdzgqMvLqNuvWGSYKBUxqbQY1RpO+XqYVLBMXI9G2be52Djm9MlsFdPBIAcd25+rUa3Bb7A0FjlLiSTdZnmfgB6LlXA2j0oSWgosmzEfCfOxnj3EswVZMyUJ2EhnG4uWbrOFYqnaSIpZTCQ44e9qf8v6wqMG8+EILpUymYoW8gzZ3eSKZcXv51w4xMlA/b2PefzcSLVatibX1znUZK0xqNVY0BDfTCGaWFtnxNO6QBGkel77cirNdDDIf3z3XcV9e1A8bWK8W4p4pzHtdjtjY2O8+uqraLVaLl26xOXLl4lGozu+Lu3UmvIiQ7yO3VavXyjiO8NzQ8Shbk/ZaYThoxLxQqHQyJqOx+MMDw/z0ksv0dXVdd9Jfuu1p2lPeR6I+JYiXi6XWVxc5MKFC8RiMYaGhjh16hSBQOCBL77fnpa3sz/s95IptRKPdL7E7J0gJ/wBjE2LLpXCheSAx8ViPCF73qLXEc0XuLURZ9wdQK9WY9Xp5Co7sN/p5GpYbmFxGgxcXY9y3NNqhzjodDKv0NHToTewEI0RyuWIpgsca0pj6bPaySuosH6TmSuRCPPhCHstDqxNdp4Rj09Rja9KEg6jFY1CkSjUGwVtpYqsZjJYVDqcTWR81B2QFfetpNN4Nr3lPqOFaEHulZeAq+EIw0Y7yx1yqEUgncyQyXe+PX8vneIlby8TCkQd6radTLHCPrWe67GYzIlSkySiuTxugxGtSsVei5PFpiZGuUoFLZqWLO0uk4VSuUayVGQxmWDMq+xX77PYuBGK4TPJF4IAyVIRv9FCl9FCtSzJvOgTG+scbSK8Lr0RnaQmlMtRrFZRS4JiPrzbYGQlmWagLf2lGbOhEKcDPdyIyM+JBKwm0zg0GgRJ4IDNTbCt8PdOrHWBctLfzZWmuzrfvnaV/3ZVfsfqQfE8KOIPQohNJhPDw8O8/vrrOBwOZmdnuXjxIhsbG488d7/wiD8eSB8CBftxPl4Q8WcUgiDsOMLwUYh4JpPh6tWrXLp0iXK5zPHjxzlx4gRut/uBVvJbk9TTJsW7MebTble8vr7OhQsXyGazHDt2jPHxcTwez0MpLIl8gX9YWJQ9H1Eojuxz2KnURGbvBbFKGo76vPTbbSxE5CS6veEK1BNYroa2ifLMWgi3YOSYxye3JEgodpIUqNtcyrUas2thxjatKkhyBX4Le23bZLtYrXIlGOGI2cF+k4W5sEKRoVQn+1sFg7cTCWwqPX6jGZtOp9ghFOrk7k4yxZVwhBNtNg41YFRrW/zPa9kMZpUOl87IMZePqQ7FeXdSSY67u7inkMCxheO+Lm5mMvQZlTvTdpksJGsikWweh1pZ/T3q9vGzlWVOKlhMtuDQ6anWgA7f9USxiEdn4rDdw0JMvohqztL2Gc2INaml0dNkcENGxnssVgrFCrFCgXSx1LIoakY8n2fA6lJcrAAsJ+tdOW06PRa1jvWmu4vRapWRts/MrtNjUukI5XJMbgQ52HYXp7F/ZivhVL5jt9G8KGJTGxjQ6rmisFCsL1DUGNRqjnu7mFjfkG3zh+++w/SG/Pmfh627kR/lhj4PgochxDqdjgMHDvDaa6/R09PDzZs3effdd7l37x7VDpaxTngcHvEXqC9YJekZeuz2CX3KeG6IONQV8adhTZEkiXg83oi602g0vPzyyxw9ehSbzfZz/74Zu5FfvhtjPi1FPJfLce3aNdLpNNVqlfHxcUZHR3E4HI/0ft+bW5B5UId8btbbbrEb1Cquh7aJVSxX5PpyhD1mGz5za1HhfqdDUeG26uXe8EKlytxymJPerhZbwmGvR9EzPhbws9aU2DIXDOPVmDjT3dPi897CgMPJbEhebHkrmcKMttHZs2UMv5+FWOv+r2ezlEpV+nVG5chACQImM5lyGQmYCYY46dm2Qxz3dilG2a1lM3QbLMTvo1SPeQO8u7zMfqsTrQLBGXH7mNhYpySKpEtlukytZLzukVaRqVTI1moY1XqMbYucQbuLxVgCUZKY2Fhn3Ce3cvRZbIRzOVYrZY665Y1poL5QMqm16FSajlejmVCQM119aCRVS8b2Fm7GovRY6okkfoOJcqnWsHJE8nn6rQ7Ze3uMRjSSmosrqxx2KUceZspl/EYzXp2JFQWf8NTG9iLArNHi0plY3dyu7hcvYmv7DgdMFjKFMneTSfZt+tiVELDacN5HVV9OpTnp7eZqSDl9piKK/MY//JjgQ94R3ZqTnrYi/mGypnSCRqOhv7+fV199lYMHD7K2tsb58+cbmeQ/D5Ik7dgj/sKaUsduZ36/yBHfGV4Q8YfAzyPioigSCoW4fPkyV69ebUTdHTp0CJNJOcHhQfA8JKc86fHS6TRzc3NcvnwZlUqFw+Ggu7sbq1U5Qu1BUK2JfGf2uux5JS6xx2qWNcjxW81curNGOl3kRFcAtao++Ri08gtTuxq+hUG3k3ylwtRqkG69lYDO0LH406BWcychJ9uJfJG74VRdhW7aeUECsYNKftBm52oiiUdnJNBkd7Dr9S12imY4UHErmWXYISdUJ3wBrreR96lgkIM6EwesdiZDymqmVlCRLVdAFGSFmQD9NjsLm81eFmJRhhzulsLDPVYbi4ntBUu6UgGRxnupEegx2VhrInDBQp5+mwvN5vu41FrCmWxLU5/ZULCF0PpM9c9/yyc9EwlxskuexnLcG2A2HGIquMF4QE7mob5vG8kM5g5pJoVNq4hXraNWbVXMAa5GIi3Rgi6DEb2kYSObRQKCmZziuTRpNBRLNdwG5foCgFuxOHttDnpMNu4mky2vRfN5+sz2xnfMpTci1AQShfoi4Uo4zKn2cwKMef1MrG0wub7BqM8vex3AZzRxPRjtaM2B+nfl//HWP1F6CNV2a056msT4w66It0OlUtHV1cWZM2cYGxsjlUpx/vx5rl69et870Ds9ty/U8G3stp/7hUd8Z3iuiPiTKtas1WqsrKxw6dIlFhcX6e7uvm/U3aOM+6zHCT6Jhj5bdyamp6eZnp7GaDRy5swZhoaG0Gg0Ox7v3Vv3ZBeDXoeVG+FWQqkWYEOhgU+XzYIoSZSrIjN3g3TrLYx3d3FNwdfdriQCOI0GrgS3FcDVVIZotsTLbi+rKbliOezzkizKG8sMez2Eczlm10Icd/kb2dBjfr+iSh4wm7m5+f6r6Qy5QqVRPNpvsysW5VnUalKSRFkUuRFJMN5kY+g2WxS7fgKsF0vY1IaOSumIx8dyOs16NotB0NQ7Sm7CqtVRrtRakjquRiKMuH2oAJtOT6VakzU6CuZy2DR6zBoNo55AS7fLLdyIxxjx+HHpDGhUWjJt1qCaJLGaStNjseLQG9Ciklk+poIbDLs300okOBnoYrrJXjMXDnHA2bposev1WDQ6ltNpUvlio9lPO0rVGh6VjnhBudnQdLBuFXHpjZgEbYvNJFEs4jNZWs65UaOhx2RnKZFgYn2DIx6vwrtCpVajy2DhTofF2NVIhFNd3Zi1WmwaPcG2+Xh6faPlmIdc7pYF6M1IDE+bgmoQBKRihWSxyMz6BkMuuQXGqFajk9S8v7LG//JP5x+YxO2GIr6b8YU7gSAIuN1uTp48yenTp6nVavzsZz9jenqaZNuibGtM2Nki5wUZr2O3Pd0vUlN2hueKiFut1sfqES+XyywtLfHee+8RDAYZGBjg9OnT9Pb2PtaJ9IUi/nDYymafmJjgypUrOBwOzp49y4EDBxrRkI/Dk/5XF+fJJkqc6Ao0Guy4Fe58HHA5yJRbyZ7TaOBqsFXhXktmqOQrjHl9LcS7z27lioIavtfhkPu6JbibyLLXbKfHsm2xcBoMigTfazYx30Tm54L1VJWDDidLCsWiSOAwGFoyvLPlMrcicc519zHXwRow4HQ3umtKwPRG3XqikgSMaq1ikyAk8Gh0TIfDjHn8Mt/8mMfPdJNtZiOXRSdocBuMCFI9BzuoUHw5Fw5x3OOn22RRbDQE9cLLU97ejo12AG5EY4y4AkSKyraYbKWMHjVdRjPrWbklQpQkVtIpAiYzpwLyDpFVUSSeL+DaJNtWnQ6n1tiwhUQLBQJGi6whj89oRiUK3MjlONaBMNckiWpVxKs3taj9W1iIRjm5qZob1Gr2mB3cjm/fOVhLpXEbW5VxtSBwyOHm/ZU1xnydlekroQhHnf5GNGf7fiXyBWx6Pf1WOyuJdEvKTbFaBVFoLBZVwIDDTWxzIVSTJDYSadzNjbQkOGD3sLK5ePz/XL/B/zkz13H/mrE1Jz1N+8OHIb5wp7DZbBw7doxz585hMBi4fPky77//PpFIpDHvVqvVhg3yUfHCmlLHrnu6n8DjecJzRcQflzUln89z48YNLly4QDqd5ujRo5w8eRK/3/9EJtDdUMSfZBdRJTwOIi6KIhsbG7z//vvcunULv9/P2bNn2bdvH9q2TpQ7VeCvrIW5shauF18uBdFVBE52B7jRXngpQaIg90vuczuotJHobpuFa8Eo8ythhJLEWKB+G96uoHp62gj0FgZtFqKFInfjKeLJPOPeejJKv8OumL3dZTa3ZGYDrGeyOFSGekfGtgnxmM/HgoJ/XadScX0jygGDBVWbmnHU41Us6pzaCPJqV1/H4s0T/gDLmwr+bCjMsNPT8MH3WKzcUPDAB3NZdKg53dXD1WiH9vQSCJIaq1rfUWkf8wZ4594yh51exc6TagT22Zy8u7ys6AcH6taVSr0DZadYwUy5zKDdxbUOhD9eLOAxmrDr9Hj1Zu61nasbsRgnm6IFfUYTKlEgtLnAuB6LsV+h/sGhM1CtiGgFdcemOZPrGxx1e9lndXGzzTaUKpXwGEyNMyNIcNTl42o40vjbUa/cRqIWBAasLpaiCewKd3kAYvkCB2xO8sWyYiJPrFLhgN0JIpzwdXG9rblVplJBVxbZopUvBXq40rZA/E/vXuDCvRXlA2/Clk3kaZK9D1t84U5gNBo5fPgwr7/+Oh6Ph/n5ed577z3W1taoVCqo1eoXRPoxYLdtJC+sKTvDCyL+ECiXy6TTad5///1God/Y2Bgul+uJTiZPmxTDR0sR37IGXbx4kbt377Jnz577ZrNvjbcTRfy/fdAah5YplKECLkHPUf+2Cjkc8BBqs6WYddqWws0teMymBi/MFsvM3w1x0ucnmZfbC3ptVlketk6tIti0bbkmMrMa4qQvwIZC184DLifzCkr7HruN6Y1QPVXFs5mqQt0jvNqhmcceg5FYschiJsd+i31bxdXqWopDm7HPbufC8ir7LU4sbQulfpuN+TbyfjUSZdDmxq7ToZKEFk92M9wGI8vx9HaDnTaMB7qY2thgcmOjnnDS9jU44HBxbZNQzofDnPC1eueR4Jg3wPVNO81MMFQvvmyCCoEDdhd3s1luxeMcaPJGN+Okr5v3llfZb3N1XBSsZdKMevzcUbi9DzCxvsExjx+P0Yh6M1JwCxVRJFeqtCSlOHQGrBodq+k01yIRuVd9E1qVCr2kIZRRnjNvxmKcDHQjSLBXb2Suraj3dixOl3m7fkCFwIjLx7VwhFi+QK/FpnjMNr2ecDrPPodT/uImrkSi/PP+vUwpJKQAhMplDlps9Gv1TKzK4yRFSeLf/egfFVX5lu12ya/9UfKIPwi0Wi0DAwO89tpr9Pf3s7i4yOTkJJIkPXTSygvIsduk+QUR3xmeKyJutVrJK6QM3A+SJBGNRpmammJ5eRmA06dPc+TIkR0V+j0MXlhTlNHcHGljY4MDBw5w+vRpuru7f+6FbCfHF07n+Mn1pZbndGoVi+EEoVSO63cjDNoc7HfJVW+AQz43hfbCTYuZqxtyUlyuiITjWU76A414t4DFzPyGXEEd8fvIVOQXtWK5Sj5b5rhvO6lDkFDcNyTQqdVsdcOc2wjj1Zros9gY8nga6Rst+67VcTuzTf6WEilUVRX7bQ4GHE5FX7pOpaJcFalJErficRxqA75N4qxXqajWJJlSD3UFeMThI1VUTmXoMpu5l0ixkc2ikdT42qxCQy4PMxvbhHFyfaOlo6XPYCSSzbeMPbURbCluPBXoZqapGY8oSSzGE+yzOxrncNQbYKHJyrGQSjHYVgA57uticpNIXolEOKXQJXLLm/2zeyuc8He2eyRyRbr0VpnnGiCUy7HHWl8INJPw7XOwzpC71VetU6kYtLuY3gjiN1k6ZhhMrm9w2tfFXYXUmnylgkGlrd8N2CxEnWu6i3MtHOVUd+siwKBR49WbWUtnmFzd4LBHOcFlxOPlvaUVDij4wbdQlAS8ts5kPl0q8cfvvEe2JK9p2MJuEPFnSRFvh1qtpq+vj1dffZW+vj4kSeLtt9/mxo0bFBXmiRd4MOy2n/uFR3xneK6I+MM09NmyOXzwwQdcv34dl8vF4cOH0Wq1GI2dUwOeBJ6HYs2HGa9UKnH79u2W5kinTp3C5/M98J0JQRAeWRH/7uQ1am3t3g93e0k3kcM7oSQURAyo8Zi2rSU6tYrFqNx7vVW42Yw+h5WrGxFqosT0chC3xsiw243PYqbWtq1Vp5PbYqg3BroejpKvVJhbDTPi9mDX6xnt8imqgccCPm7HWvdvPZ3FiBqq8oBXFQJ6vUEmbMYLBawqHXRYPx71+lq8yWuZDNWyyF6bnWG3V9G3DDDm9XFhZQ2nxtBQ3begV6vRom5kqgezWVQ1FV5jXZUNmCyspTKyczexvsEpXzcmlQqVKDS87O3bnPR3c9LfrZhTXaxWSeVLeI0mTvpbifoWFgtFBjZzyg+ZbUytt25zeX29xVttVGvoM9kb3uwroTCDCiqxx2ikVhVJFUoYO5Cpq5EIp3t6ZCQc6h9pOJPDtemr3iLhC5uWjxtNfvH2PzzuC3AtHMfaYdy7ySSjvgCn/N1Mr8vPydRakEObZFotCOy3uRq1CRKwkcriaZtvu7Q6bobjdQ99toDTILduuQxG8sUq8xsRBp3KZLzXauWDu2t85e/fotZh7nmhiD8ZCIKAzWbDbDYzPj5ONpvlnXfeYX5+/qHvWr+wtuy+n/uFR3xneO6I+M8r1qxWqywvLzdsDr29vZw9e5a9e/ei1+ufujINu6OIP23y/yBWkUKhwI0bN7h48SL5fJ6xsbGHao7UPt6jHF+xUuX7Uwuy58Np+ffKYtRzbSVCOlnkgMWMVa9jOOCVqblus5ErCgq3zdhKMMKZHNlcGSoSrrbXDnhc5BQiC9szzq8FoxglNRpJ/tM3ajSKaSuCBDVRYnYtzKDe1IjtAzgeCLCiYD2x6HSspjLMbYQZ9wZafMhDLhdTG3JSligWcaj1lCrK3/Vei7XR/GglnUaPuqGiI8Ehh1uWbx3K5VCLAntsNrSCWjHRBWBmI8gBg5VQoXMeebUiUqt0/s4kikUO2T3cVPDQb2GtUOSQ1sitlPJC43o4yn67A71azR6Lg1tNqnpFFEkWii0LEK/RhFZSE8xmWU2nOejyKNo9XHoDG/Eslg6Rh4liEZ/RjEGl4kATCd/C5No6h91N6rQE4/5upteCZMplbCqtopceCdSiQLXagehKEpFsHqfewIjHz/W2guJUsYRTb0LdVBuQLtUadyzihQI+o6WlkFenUuHUGYnm8lRFkUSu2FhkbEEvCJTyRfKVCueX7vG/vfe+8v7tkiL+rBPxrTE1Gg1Op5Px8XHOnj0LwIULF5icnCSRSNz3mvAiMWUbdfK6+3aSx/fY7TP6dPFcEXGr1dpxtb2lsr733nuEw2EOHjzI6dOn6enpaUxQu+HV3q1xP0wNfbLZbKM7abVa5eTJkxw7dgy73f7I4z2qIv4PV26Taiu+PNzlYSPV+r3y28xcW6tbTWoiLEVzqEugV6nRtF1k9zhsMoW9z2lTtKo4TAaurkeo5GuMB+oE12U0cFWhcPNYwMc9hdzwPruN6ZUgY14f5qbM8sNej2Lc3WG3k7ub73MnW6DbYMVvMOLV6xQLRgEGnA4Sm7eap9ZDHHZ6MGu1mLVaogpRjlBXdpfiKW6G45xoK/TTq9Ug0pKuEszmECsSPWYr4/6AzFO+hVA2R0BvpVTt8H2WYMTrZz6ZZriDL/mQ0831cISr4QhH3MpJJCf9XVxYXqHbbO1YnDlodxIqVHB1yOIu1WoUyzWGHR5ZgSRArFAv3lQLAj6TCY2karGjzAVDnOpqLR51GYyYVTpWUmlC6VzHse8kEpzu6pMVP8KmOp3O1AntJgmfWtu+M7BeLDHeJS9afamrh8mVDW5H4nRblbuWJvJFjnn8zK3LG0dB3Wt+3N+FU2+gVhEptM0TN6MxTmxlrktw2O1rSfyJFwq4DdtkHgkOujzEStsL1//XB9P83VX5Avt5sqY87eNs76ppsVgYGRnh3LlzWCwWJicnef/99wmFQi9I9ws8EP7rf/2v7N27F4PBwMsvv8wHH3xw3+3/9m//lqGhIQwGAyMjI/z93/+9bJvr16/zqU99Crvdjtls5tSpUw2bcjwe59/+23/LoUOHMBqN7Nmzh9/4jd8g1SGAoBOeKyKupIjncjmuX7/eUFlHR0cZHx/H6/XKVNbdJOLPozUllUoxOzvLxMQEGo2m4c23WJQv6Dsd7+dBkiRZkSYgK5oECNgtMmFyn8fBxK11vBojRwN1MucwGLimQLhtBnmiRL/T3iDn+UqFmeUg+20ODrpdshhDjUpgQ6HIzms2NbLH59bDmAUth1xuuq0WZoNyImRWq2RNgNbSGdLZEt06k6KPe9jrYbaNoF+PxLCrDRxxeYgqqM4C9YY82XIZUZKYWQ9z0tdVZ4ASDDndinaVWKGAW2tQLGjdwsnubi6vrSOI4G9qPrSFU13bVpIbsYQs7WOPzcZaKk1FFKmKIkvxhMwictwXaPi9b8ZiHPXIO2cOuz3cisZJ12rYtPpGBF8zNAhYVVqyxWpHMn8rHuelQA9qUaXoCZ9e37Z7uPRGjGgaBbPJYhGPwSSLgtSr1ey3u3jnzjJHvD7Ze0JdnfYYTIz7Ai0kfAuTqxsc8W4vUk4FuplYqRdK5jfb0Ct1Nj3V3cXPlpY52aNcNApwLRThsNNDOKdc4zO5Vm/2c6qrm7kN+ff4dizOmL/+uZ7q6lZsjvX7//BTfjQxSaUpqeV5sKaIoogkSR8aX7rBYODQoUO8/vrr+P1+rl27xrvvvsvKyors+vsivrCO3Vewd79Y89vf/jZf+tKX+P3f/32mpqYYHR3ljTfeINxBoLlw4QKf//zn+ZVf+RWmp6f59Kc/zac//WmuXLnS2GZxcZGPfexjDA0N8fbbbzM3N8fv/u7vYti8w7a+vs76+jp//Md/zJUrV/jf//f/nR//+Mf8yq/8ykPt+3NFxLcU8a1GA1udFgFOnTrFsWPHcDgcHX/YarUaSZJ2hRQ/69aUrThBSZKIxWJMTU0xMzOD2WzmzJkzjRXn4x7vYTB5d4PFSKt/eo/Lzq1Qa4ye3ajn2rr8Qh/L1gloOL1V0Olk2O+RkehOarhRp5U9V65Umbkb5IQ/gEGzfVE71uUnokBaAlZLy3jRXIFbwRgDNmdLx8kt9NvtFBXO0367nSvRFMe9/kYRKYBFqyXYIWXDazRyfSOm2EL9RCDArbbc8qm1IIN6E8fc7o755G6jkdVUhlA6L2t+AzDq8zOxVieD4VwOSZRayPhxf4CJ9e1UDRG4Fo40GtZ4jSbypUrDdw51P3gkm2+0kR/xeplvW8TMBkMtXSIPOd0sRRONhcvdZJIDTneLZUenUrHHaOZWPMFiPM6w061oM/GZzNyJJunqsCCtSRLhTI6ARoteUssWZLdi8W0FmXqB5F6rs1FjsJxM4TUrJM5IYNcaUN/nsrGayOAxGjkZ6GZypZWsLydTjPhaSf7Jrq7GdpMr6wx75d8NtSCwz+Zgfi1Ml0W+kNqCRlIRUrCIbWFqLci5vj1MKqSoAFQlif9wcYq/e+v/x40bNyiVSk+diG9dX552J094ut1DYdua0gkajYZ9+/bx2muvMTAwwL179zh//jyLi4sti6UXaOgVz9TjYfEnf/In/Oqv/ipf+MIXGB4e5hvf+AYmk4lvfvObitt//etf55Of/CRf/vKXOXz4MH/wB3/AiRMn+NM//dPGNr/zO7/Dm2++yde+9jWOHz/OwMAAn/rUp/BtzmNHjx7lu9/9Lv/9f//fMzAwwD//5/+c//Af/gM/+MEPHioN6Lki4mazmVgsxiuvvML/8D/8D2QyGc6cOcPhw4cxmztP8FvYmqh2gxQ/66kpgiBQqVS4fPky165dw+VycfbsWQYHBxtNeB4nHiW+8J/mFxn0tiqhdqN83/Z7nbJEkj1WA2vJVkU3lskzu7jBiNeL37r9/VNSwwfcDhYUIg+dJiOVmsjMShCboGO/1YJZo1Ys3Bx0OxWtJEcCXt67s4JLrcPfRPYPuV1cbyvchHpzoHubCuvseogug6URUzfgciraW5wGA3fiKXKVCjdDMcabIgEHnc6WJJNmZCtVKiURk8IFWyMIOHQGksUS+UqF5Xia4SaSP+BwymwWkVweSZQImC0cdLlk+dJQv8NxOxrnmNeHQaUhppAIki6VqFRqHPf5uRGOyQpAASbW1hn3dzHocLKSSMmaFl0JhRvRgdpNb/bdJtI8H4kyZGlNZgqYLVCrLyquBiMMdChE1KnUmEQ10Q4pUVsKslGjYY/Z0eJrz5TK2LSGbSsH1O0ogW4mVzeYWN3giE/ZnpMulRh2eZldldcAAEyvBTkeqBekjgcCTLWR9fVEBq+pacEt1bunLoTqBcdqUYV8OQqH3G6urIWR5DcxSgABAABJREFUqhImrTK522OzMb8SYtDVOUllv9vN3wRTxDbbtK+srDxVW8RudPJ8HB0uH3XcBxlTpVLR09PDK6+8wtGjR4lGo7z99tssLCy8IOSb2G31+kkp4ul0uuVRUiikh3q09OTkJB//+Mcbz6lUKj7+8Y9z8eJFxb+5ePFiy/YAb7zxRmN7URT54Q9/yMGDB3njjTfw+Xy8/PLLfP/737/vZ5FKpbDZbPddZLbjuSDixWKRv/iLv+Dzn/88uVyON998k2vXrvHKK688FMnbTSL+rKrwoiiyvr7O1atXqdVqdHV1NYpj25vwPE48rCK+HE3xg8s3uLOS4KDTyQGfC6dJbivRa9QyhRygqBAVOOBxUqrUuLYSIRHLc6I7wAGvU1ENV7ow73M7WraN5grcjWU5ZLMr2h6UbCRalYqNZL3AMZwvEstXGfcH0KmEjrFuPTYrhSa/9UoqTTpb4mM9vTJLCgASBMxmspuFkhIwvRZizOvHodeTLpZliTFQLx6tiXAznsSrN8u8zSM+P0uJZOP/5VqNm5E4Ix4fLoOBZKEoK1aFOhl3afXUqpKirai+kxJiRcKo7jyZ2nR6svkKhvtMuKl8EZtaT6GDOjKxts64L8BBu0vRm30rnaFXV5+j/EYTtYrUuNNREetJKc629JguS52s3yuUOOZTtpkArKeyHHZ6uaXQGGkxnmCsyXc9Hmj1hK8klFXzE4EA7y2tcLyrc9TiQijKme5eZhTIerpUwqHbXARIdcW82Tu+ls7Qoze0SGY9Nisb8QxVUWQ9nWHQIc9kt+v1lMs10qUS8WwBt0l+d22vw8G1jQg3onH+740EL58+TbVaJZVKMTc398CJWzvBbqjTtVptxx0uH3XchzlOQRAaZOjUqVOUOxReP5fYbfn6CUnifX192O32xuOP/uiPFA8/Go1Sq9Xw+1tthX6/n6BCghVAMBi87/bhcJhsNstXv/pVPvnJT/KP//iPfOYzn+GXfumXOH/+fMf9+IM/+AN+7dd+TfH1TtjRL+/DboxPJBL8x//4H9m7dy9f//rX+Y3f+A0Afvu3fxuXS34b++dha7J61gsnt8Z8kuS/OZ1meXmZnp4eBEGgr6/vqVyEHlYR/9uLV5AkEICljQR3luMMez0MeFu/R4e7vTICO+BxEM63PmfV67ixsU28aqLE7FIQq6DjeMCPukmMPOh1cSvSRpYk0Ajyn6/LqGM+lKCQr3IiEGj8wEe7OxRuGnXEm1JcREliejXIS13diufniM/LFQV/rVolsLARZdzrl3mbT3QFGmknzZhbD3PE6aXWIc/8gNNJfDMJZiWVRiMK9FltABz3+RVV9JokcSsSZ9jlJdYhAcWm15MslMkWynSZ5fYOAYFDLg/XwlE20ln2KXSm7LPZiGTzLMYT+I2WRtOjZvTb7EQyeRbCyt0tob4QqpRFRFH5uygCyarIAYuVQr4sU7hj+QJek7mhXvdabVRKItFNsj6zEWoo0M2w6nXY1Dri2bzivsOmau73cyLQJfOEZ0pl7Dp9i2p+IhBokOvJ1Q2OdlgEHHC5CCYzHcddjCU4HghwqrtbppgD3MsVGe+uLxIcBgO1kthY5AFc2QhzqslvrhYEAiYL4WzdtpIoFHHoDC1+dateR6FUaSzc/vHGIn81t0B3dzculwuVSsXFixeZmpoi2aGx0uPA1jz/tBXxp62GQ/0a8DCqYTMcDgfHjh17IndLP5L4ECjYj1UN31TEV1ZWSKVSjcdv//ZvP7VTusV/fvEXf5Hf+q3fYmxsjK985Sv8wi/8At/4xjdk26fTaf7Fv/gXDA8P8+///b9/qLEe+df+UTDG//Vf/zVvvfUW3/zmN5mfn+cLX/gCwI6Ujd2wiexWi/snMWalUuHOnTtcuHCBUCjEwYMHefnll2Ur0yeNh1HE0/kiP5q61fKcQath/m6IpXsxBh0ODvndqIDVuHLnyXYM+lyypj59LjuzyyHm7oYI6Cz12/+SspJ9yO+Wk3PAadBTkySKlSozy0H6LXYGnU6WE/L9cuq0rOTlqpLfYmZyeYNkpshxv7+hTpi0GsUOnQADLheJQpGZtRB7TDb8m1aVbqtFsTAOYKzLz6XlNVQ1gX1tCTjHu/yyrp/RfIFktsipQDdXw3L1GAAJhlxuLtxdbWnCswWtSoXfaCGYyRLJ5alWpFYyLtV941uLjVy5QjxbpM9ma2wSMFvIF6tkNhdci/EEgw53SwFkn81GKl8iUypTrFZJ5kuNc9K8Lwcdbq6GImyksh1TRVxGI2qVHqkDObsVizPmD9Bvs5MrlIm3LUCuhyL0N51fp96AS2vgbiLJSjLNsEc58lCQQCepCXX4zBdjiYbyfdBskSnc9+JJ2TEf9XlZCEZZTqQY8no7mkGlmkS51Nl2MLcWYsjjxq0zNAh2M6aW1xvHNerzc6ttIbgUS3Bks8GVAPRabLL3+caFCc7fW0On03H06FHOnTuHyWTi8uXLfPDBB0Sj0cduWxFF8amr07tFxHc67osklW3sdub3k8oRt9lsLY9OCy+Px4NarSbU1t03FAoRUBAiAAKBwH2393g8aDQahoeHW7Y5fPhwQxzeQiaT4ZOf/CRWq5Xvfe97D303/5F/7R8FY/yv//qv89Of/pQ333wTQRAaaRs7aXO/W0T8o66Il0olbt26xYULF0gmkxw9epSTJ0820mm2FOqnteB4GEX87yZuUGwjzYd6POQ3icLdYJLFezFe6uvGY2m9Xb/P42Axmmx5zqTTcDMoV4gthu0fbzCVZWE5wumebqRa235KUFDIDB/wOFhMtC4y78VTOLR6+s1WdKpWpbrb6ZCTfKkeh1iuiZSqNWZXQxx2uXEZDRz0uGUkD+opKc32gXuJFIVcmRG3B4NKrWgP6bZaGj72eKHARjLD6ObvfK/dztWgMnlXq1SsJ9IMu+VFfQDjXYFGYefk6gYvBXq2yZ4Ew24ft5usGNF8nYwHNueGY26PrPFMulQiV6wQsFjq9hgR2Xm4Fo4wuul777FYyRUqLXnxiUIRLWqsmxP0Fgnfys3OlMpQE1pa0UO9WDaTL3MzEmOPzd6xw2UyXyRgMCt2HC3VapQrNaw6HR6TEbNay0pye2E2ux5qKMxbUFEnsJMrG2hQdVbNVzd42evldko+p2bLZcxabUM1H/Z6uBWKNZrnzK4FOd4tjzwcDfiZXQmyFE3SbVNenIiiiE2tJ94hClMCVhNpzvT2MLOmfGt6di3IeE8X491dLHRY2P1vl+e5s1kAajAYGBoa4vXXX8flcjE7O8vFixcJBoOPjRQ+D818Hue4LxJT6thtBftJecQfFDqdjvHxcX7yk580nhNFkZ/85CecOXNG8W/OnDnTsj3AW2+91dhep9Nx6tQpbty40bLNzZs36e/vb/w/nU7ziU98Ap1Ox9/93d81hOOHwSP94j8qxvj2CU2lUmE2m39uU5/74VkgxQ865uM4znw+34iHLBQKHD9+nOPHj+NyuVom0a3P6mmpHA+qiFdrIt+91BpZqBJgLSZXmDdiWW7fjbLfZudwoE4UDQqFY0MBD/k2It3vtnN9XU4GgsksK8EUo15fw9c60u1TVLiV3A0es5H5tRDzaxEsooahzUK1w163Itkd6fKyEG5dJNwIx+g2WhCr8gEsOi1BBcU0V65gUGlw6YwtNhuoWwV0KjXFpsVzuSYyvx7mlD9AsVxVvAsgUG9hH8zkmN8IMx7YLvgEOOr1yrpVTqyu15VxqR5jOKcQ0RjN56mWRY5YrMwrWGigTqRNgoZuk5WQggIL9aZAZ3t6KZaqJBQKVtfSGfwmC3qEFhK+hY1Mlh6zrUFc9zscxLPFBrm+Ho4qZnV36/VsxNPMrIcY6FCIGMxmGXK50Yoq1hUaMM2vh9i/WfipFgSOenyNxdVKMs1wB/X6RFeAa6EELp1yo6A78ST/f/b+O0iSPL/uBD/uoTy01pG6ZFZlydaYQc+Q4A6A5YIDAliQa1wuDTz+Qd6QIHHgUpgBxK7Z8QguyePegWYgAB4BYgk54IILQRDkAD2NmdalVVbqzMgMrbVy9/sjMiPTwyOnq7u6q6a765mllZWHh4sID/f3e7/3fd9L0QhnAn42c2VdEfO9dJbZI7adc8Eg91J5VIaRhxMHASpcika4tpMi6nAeOziZ8XjIVprHDiIABn2ZZud45b0nK3x1ZZv0kQZMJpOJEydO8OqrrxKLxVheXuYb3/gGu7u7j32ffhoZ4k8johH0OeLP8Bg4sHN8mv4+IH7sx36Mn//5n+eXfumXePDgAX/9r/91ms3myAnxl//yX9ZYW370R3+UP/iDP+Cf//N/zvLyMj/1Uz/Fe++9x1e+8pXROn/37/5dfv3Xf52f//mfZ21tjZ/5mZ/hd37nd/gbf+NvAIckvNls8m/+zb+hVquRyWTIZDIfiD99qF/fJ9UYLwgCdrv9E2lN+aSR/3q9zt27d3nnnXdQVXUUD+k6MsU/vj/g204R/+O7m+RrWl/uYiJEoa5ddiYeYG/flrKTq7K6VeBSOKQjCVaTcWIx56RowvOJEMn9bd5N5mjVelyJhCdmZp+PBtksVnTLbarCYJ+hV7t9VtNlLgZCDCb4sm0moy7ZBYaZ5OVWh7t7OS4GQ9iPTLst+LwTSeec18PNVJYbexlmnR5NEsbFSJjtyoS6DhU6PZmAZMU6YWB9JRJhpXD42d3YzXAlHEZQYdrlZGNCwgsMvc5fnJ7lxq7eb3yAuMNJqt4hdExEps1kRFAFys3JLdUBwnY7a/nyiNBOQrJSY8Fi48GEBByAh4UiF0MRFjxecrWWrt7g2m5a4/leDAQodwd09zPO85Ua7gmkOO5yslWoMHVME6yBotBodwlYrZz1BnSdXm/uZbgS007xXo1GuZnM0BoMsIjixIxwgEa7i1U06VJjAPqyQrc3wG4yccrvZy1X0rSbT1ZqnA1prTMnnbaRDeZhrsDVCfnjs14PG7kS26UKZ4KTrTczXjcr2SJ75RoR5+TUrEWfm7v5Cn/rq79Pc+y7MBqNzM7O8p3f+Z3Mzc2xubnJ66+/ztbW1geKLjuKz5oi/mE94vAsQ/wonraN5OOypnwQ/PAP/zD/7J/9M37yJ3+SS5cucfPmTf7gD/5gxDt3dnZIpw+fAa+88gq/8iu/ws/93M9x8eJFvvrVr/Lbv/3bnD9/frTO93//9/OzP/uz/NN/+k9ZWlriF37hF/it3/otPve5zwFw/fp13n77be7cucOJEyeIRqOjv2Qy+cjH/uF/BR8xxo3xAJcuXeKNN97gZ3/2Z3n11Vc1639YY/yjtLn/VvgsdLk82OeHIcWVSoWtrS0qlQqxWIwXX3zxkfK/D26oT4qIP4oirqoqv/HGXd3y8c6aAL0JXRtVBVa2C0z7naj0SDa7nIkGuLmtHazOBjwsp7XETAQd2e8NZAQZWvUel6JhbqWyqMJQwcw19DF10047yQm5yiZRJJNvcCUS4UY6MxIfTgcDE6fxl6JhbuwTnzupHH67lbBTQlFkbqf0NSEWg4H2YDBKQtksVXBazCwG/KgCOuvHAa7EIlzf33/c7WRgUcjs/1aXQiGd2g1wM5XlUjRMrtU8NpnkbDDANzd2WIqEuJvP66IGT/v9LOcK9BUFj2gg5nSQOhIjaDEYSDhcrO4PAqbcLmSLSu1IlFbQZgMFCs0WhWaLy7EIN8ZECclgYNrp4mGxzHOJKO+lJg8MWr0+fouNjV5l4ut30zlO+r1YjSaWMwVN8kt9IBM1GakzLPQEmPN4KDfaVDtdiq0256LBib79RrfLlWiMN7eSTJKZ76XzzHo8bFUqPBeNagopM60Ol+MRrqe153zK72e3WEUQBGIuB6kJsyeZeoOXZhLc2stMtDHd2styJRHheirDhWCAuxntb+VaMsVSLDSK5gzYrdRb3dGMy+29LFeno1w7UnDqtlhod/p0BzLdgYzbKmEzGWkdsaCdCQZY3t/XSq7I3/uP/4X//Qe/B8OEmdZEIkE8HiebzbKxscH6+jozMzPMzMx8IL/oZ6W9/Uex32ce8SNQmTjY/MTiQ57LV77yFY2ifRSvvfaabtkP/dAP8UM/9EPfcps/8iM/wo/8yI9MfO0LX/jCR3Idfqhf/CfVGH+giH8SPeLfzsWaqqpSKBS4du0at2/fxul08sorr3Dq1KlHbsIjiuKHarLzYfEoividnSwP9rSE5WTUT7KgVXPnQx42slo1Nuyx82B3+N5UsU662OWE24MwUHU3GYtR/zBamgqTGfPdWk1GNvIVKq0Od7ayTDtcnA74uBAPk6trCbegAhMecgG7lfvpPK1en1s7GRZcHqbdLma9bm5NIOHTHhe397S/22KzTb7exiYYNM18DnA2HNA19al3e2QrTVxG80QrwbzXw60jKSh71TqtTp+EJBGz21ktTLaMGASBZqeHVTDisuiV4Gm3i51SFVlVuZPOccYX0FgVZtyHXTMBKt0uvZ48Kpw0CAILHt+IhMMwwcVvsY5mBgI2K0ZV1BT73U5nOX8ka1syGph1e1jbV+2v7aZ1vmyAxWCQ7UKF95IplsKTU0cGioLPbCVfa06MX0y3u5zdT4WKms1kKnWNd3yrWNEpwA6zmbjDxZtbSa5OTe5w2ZNlOr0BLxyTZnJjL8OlI7GFp/x+ksUKncGAdr+PUTBgNuivl1mvh3t7Oc6FJ2eTw3Dw8fJUnHuZyTMJG4UyMZcTm8mIzWCmNJb9fjOZGSrjDL/TsN1B/sjgda9SY87jHTVYCtitpCt1zU/1T9a3+Rd/9MaxxygIApFIhJdffpmLFy9SKpVGededzvGdX4/iabW3/yQS8Wc4xNP2cz9tj/gnHR+KiH+SjfEH3TU/LD5Livj77VNRFDKZDO+++y7Ly8sEAgFeeeUVFhYWMB/jGf1WeJJE/FH29Vtv3dctEydMhZon+MBDLocuG9stWbi9mWXG5Rq2uFdhPuDl4VjhplEUJqavnI4GqB0hVLulGul8jXqpjm/sGC4mwiQn+MjDLgfdI+r9ZrFCtlgnbndgGiNJwv75TmpWM+VysFyqE7TamfEc2h3OhPzcTOl92KgQctp5dyfNSY9PY+9wWszUOl3kMZN7vduj0u4Rs9no9idciyqcD4dYK5bZKFVwiGYiR1I6/FYr7d6A1pGmHw9yeWZdbmwmIyG7nUanT3PMr19stel2ZRJOJ+cCQR7k9OrxVrlCzO4k6nBgxqBrNa/sxyie8vuGTXOcblbG/Oc3dtMasr4UDrGaK44sHKv5InNej27fV6NR3ttOYTOYjvU/3y+UOGO1UuoO6IzN1jR7fUyCYZQ175UkfBbryNpzLZmaTIpVmHI56XQHxypWy9k8U24Xp/dJ+NFrLVmuci4c0rx3yu2i3GjT6Pa4mcxwMjA5VvaEz0eyUDu2WU+r18ckiCx4fSQnxHQqqkq6Uidos3Exok9RAbifyXM1EcUgCLjNkua3doD/493b/MZ1/SzZUQiCQCAQ4IUXXuD555+n1Wrx+uuvc/fuXVrHNFg6wGfJmvK4HvFn1pQxqJ+iv88YPvQv/pNqjP8kWlMMBgNPMlEEvrU1RZZl9vb2eOutt9jY2CAWi/Hyyy8zMzPzWJ6/J1mU+n6KeKpY493bSS5NhQm7h+Qu7nPxcKygMu5zsbynXeZ3Wrm/q7VsGAXYzFcA2C3WeLCTZ8bpGnbUHDuM84kwxbE0CI9V4kFKTwhDVhOb5Sb1psyVSBi70YhkENkcS2oBOB3yTWwWdD4W4q31PXxGK2cC/tHyS/EIWyU9qVkMB1je336qWmevVONKNIJbMpOtT/5tXYlHeLhfBLpaKIEMp/zDxisJp4vChPQLQQW/xcz1VJ7L0TBjoS9ciUW4dYT0p+sNOt0Bcx43VqMRp9k8ytM+itVCiTmnB4/ZMjEFBqDUahO3O49N5Riu0yJhd07cBwwV5Eqrw7lgkLWCvi5ABdbyJRZ8Xi5FItxP5zUKd3cgU2t3CRz461V4Phrlxr4avVWqcPqY6MGlUJDNeofpY/LLk5Uap4IBgjYbVoOR5Jhnf6dUJXy0nbwKV+NRru+kuZfOcTWhV/MPjjlst5OvNTUk/AA3dzNcjg9V87jLSaPdGxFeWVUpNdq4x8SVk34fW/ky6WqdqN0+Uq01UMEnWRFV4dgHea3T5ZTPp2vCdRTXdtJ8bmaajUL52HV+6a0bvLG+c+zrR+HxeLhy5Qovv/wyiqLwjW98g5s3b1KrTY45fRqk+GnsU1XVx/KIq6r6zJpyBE9bvX6miD8ePjQR/6Qa4x0OxyeyWBOenH8aJpPiwWDA9vY2b775Jru7u8zPz/PSSy+RSCQ+khv5kybi32pfX339Lq1On7srWYrZJmdDAaZ9+kJTr0M/I5PwuXTqbtwtURvzlltMRt55uMu008X56FAhl4wGNvJ6EjAdcOuITcAusVMfTnkrqsqt7SxCT+Wsx6UrLDMIArUJnTJ9NmmkyOfqTVZSRS4EQyz4vNyfkKrisJhJj1lmZEXlxk6GRX8Q84TrYHbMdgJQaXdYy5Z4dWbq2MLFK4kIyebw/G7uZVnw+HDu20/OBv3cmGClqXa65KpNrkaiExsYwfAz7vQHdLoD/JOsUypcjUV5dydFu9sn7nTqVvFKEjaDiWvJNKf8fm07+H04zWacRjNbBX2e9gG68rA4NVdrTOwuWmq1cZjMSAYDz8WiXBuzhNxJZXlurFjxaizK3XSevqpSarYmdpEEyJSrzLncE7PhG70eNpMJkygiwtDzfmTfN3cznA76de9bDAW5m8wx7XEfS4gfZPJciITodAdUxgp9S602UYdjZF+a8brJlOuja3+9WOWkWx9peDUR5VYyw5297LGDhMVQkHc29jhzzOCF/fN8ey3Jgn9ywa3ZIGJURf7nr/5nVo65bifB6XRy4cIFPve5z2E2m3nrrbe4du0a5bL2t/5Z8Yg/jQ6in2o8bQX7mSr+WHisX/xXvvIVtre36Xa7vP3227z44ouj11577TV+8Rd/UbP+D/3QD/Hw4UO63S53797le7/3e3Xb/JEf+RFWV1dpt9vcvHmTP/fn/tzotQNj/KS/2dnZRzrmT6IifnBjfpL7PeoR7/V6bGxs8MYbb5DP5zl9+jQvvPACkUjkI31oPEkiLgjCsYpKvdXl999ZOVygQqHY4Pq9PaYcLi5MhTEZRAJOG/d3tWTVbbXolpkMIvkJjXMOsFeq8WA7z5TTyXMzMeotLWGPuh3c3dUXRQbdDh3hd5hN3E1XCVlsnAsfEo4LibCOQANEXU5dY6G7eznsopGzEwjLnM8zMSXlYjzM21t71BtdLke0TYDavb7uOAFOBLx8c2OXxYB/RLAPcC4c5PpYg5i1QgmbaORCOMh2qTb5Xq3C6YCft7Z2uTwh6s8gCMx6vGyWKuxWaxgRRxniB+9/Lh7l+n7CSrndGZJx1yEZ90gSDqOZvf1Iu/uZPOeD2oQct8WCX7KyWapQarURBQHPBBvd1ViUd7dTCCq4pMnNKnbKVV6Mx7m+M7m489qBn1wdRjQe9W+X2x08koRxbDphzuOm1elzLZlm5pjEkK1ShaVIiPOhILfGvgtFVcnVmvish+e0FA6xminSk2Vu72W5cgwh9lmt9Loynf7k2MCHuQJXE1FiTgf1RldnHVotN1g8Yp25Eo9yffvIICGZ4XRIO0iY8rjYzldQVJU7e1mem3BsC34v93Zz9GWFcr1NwK4fwJwLhdgpVWn2+vytX/s9XW3G+8Fms7G4uMirr76Kw+Hg2rVrvP322+Tz+dGs59NQxJ80+T9IlXlmTfmoIHwK/z47ePLhoU8ZDofjE+kRFwThie73gBSvrKzwxhtvUKvVWFpa4urVq6MmPB/HPp/UdOO3Iv3/15vLdHpjXS9DHmRFJZ2vcX8li102ciYSwG3VkqvZsFeXlbw4FaTV1y47GfWxPhZjWGt1ubWRIeFwshQNjabgTaqsU0tPhL0Tc8cdkhlFVcnWmjxIFjjp9XE27OdBWr/u2UhgolXlYjzM3VSe28ksp3w+ovuFi+fCAe5MSEkJOeys7NtOOv0Bt5JZzgUCuMxmFvy+ibnbXkmi2GijqCrLuSKSYGBhP/Yv5nKweUwUYbs/oNLsTvROA1yNR7iZyqKoKjd30zwXix0OJtQhkTravCXXaDLoy0y5h7MdF4J+nepcbndod4Zk3GORcBrN7Fa11oLb6SyX9nPNvZKEy2TRKPLpWgOPJCEdFOaOkeZ0rUHIZtMVM5oNIueCQf5kfYerU5OJLcB6rsR3TCe4lkzpXtsollk6MjhaDAXJVBu0BjIqUGp1cU4oGLYYDXS6A0ziZPtApd0hYLMjAKfcLh6ktNaa23tZ5seU5ZjLSa8ns5ItsuDzHat8JUs1YnaHTjE/wG6xSshu53wkxM1t7felqCqZcoOgfdhcyyNJ9DrDgtED3NhOs3jEn++zSlTrndHxV1odnAYzpiP3ucuxCLeShwOSbK3J3/6139f1BHgUWCwWTp8+zauvvkogEODOnTujZmdPmlw+LfL/pDuIPsMzfLviM/cr+CQq4gf7fVJqcbPZZG1tDYBOp8OVK1e4dOkSXq/3Y31IfDso4v2BzH/4hraBj81iYnVXS2QFQeDagz0a5TZLsRAzATcOyczDMb+4ySCynddbJPoD/XkuRHy0un1S5Tr3t3METCZOeewkq3qfcm/C+89EA2yONRpaz5UwKiKn/T58tsNBg8VoIF/Xe5u9Vom1/OEAYS1XolRt8XwsOrFxjwC4LGZd59EHmQKnfD7kCccpAEG7TaOsF5ttdkoVnotGQEGn0sN+2oXDTrJS434mP8y1PvIVXoiERvGHB7iWTHE5GkFkqJzeTusLSYutNrVml/MuJ3eyxzf0MaoCs26XjoQf4OZehhen4lhF48R1tkoVEk4nBhWuxKI60rxeKHM6EBgNwBxmE7Nu76jx0rVkmstxPRk3iSInAj7WciWdv/rosV2dinIpGmE1U9DYnBr9AX67g6NUzGE2kXC4WM4UuLOXZe4Yq8ZqvsgVv4+1Yk1X1DtQFGrt7mi2I+5y0u0MRr77u6ncxMGF32ZFlGE1UyLkmKzW17s9pt1utnLliVy+1uniNJmxm034JasmIQWGl02yUCHqdGAQBHySVZe0sl2qkrBZQR0q6pNqNB5k8vyD//BfNNnnHwQmk4mFhQVeffVVEokEhUKBQqFAMpl8YvfCp+lLf6Zof0R42jaSZ9aUx8Jnkoh/0hRxeDLJKbVajTt37vDuu++ObpBnz549tgnPR42nUaw5Tsa/dmOd4lgDn5MJP+0xhXw+6qU3kFEUuL+RI7lbZSkaZCHs1SSrLE6FdA14zsQCbO0Xbh7A55C4n9SqzaVWHxWzTiFfSoTZKWrJvUEYNpsZx6mIn3t7ee4kc3SaA67EIpgNImcjQQoTssejHqfOCtAfDJuuWAUTJ8YI2eVEhPUJhW0xt4P76QLL6QKXI+FDJRi4HI9o4gAPIMsq7d4Av2TVp2OocD4SYu3Ivm7sZrgQCWEWRU76vcd6zW/uZfj8zAwPJnjeD3DC72O90mTOPfla91glVBV2yjUSx6wTdjjYzleGNpZjHiQbxQpnnHaN3/oo7qZzXIlH8UoW/JJNl+5xey8zbHCzD4fZxJzXy91UjnyjRchmm+hXRwVREeh2+xNTcLbLVS7sD2w8ZhOWgToqWBwoCvV2d6J15mo8yo10iRPeyZ9JodEi4XaTcLtod/o6sntrR5uU4rNKWDCQqzVpdHvYjKaJjYJmfR6W9/KcCviP/ay3ChWei8XYnFBzAcP0GFGBy9HIxLoMgO1qi0uhAEpfndgrAOD11S1+4fVrjzWbZzAYmJmZIR6P43a72d7e5utf/zqbm5sfujnQo+KTXCD6jMjv42mT5mdE/LHwmSPiLpfrmSJ+BKqqUi6XuXHjBtevX0eSJF566aVRnvuTLBB90vGFoD0/VVX5ja/f0axnNIhsZSqaZTaLkZU9LUGyW4zc28yxvJbHb5a4NB3BY7OwMyG9ZNJUdtAh6SwtZ+NBNnLlkUKecDpZigbZmxBLuDQVJjvWvMcgCJoC0U5/wM2tDAtuL0zIMz8fC01MlDgfC3I3lSdVqbORKXM5EsZmNBCxWbi9q1eYTaKIURRHDVVu7WbxmiQWfF4WQ4FRc6BxXElEeJAtcC+Tx22yMH2E8F6OaxNSDnAnneNswE+725+YqQ1DS8Hr69uE7XaNp/kAl6IRbuym6coKqVpDY1mAobXBaTazW6lRaXdodnsjK8sB4i4nsiyTazS5lkxP9CCbDSInfV7uV5pcTkSOfdhkqnXOBgLsTCg2lVWVnXKVhNuF32bFJ1k1ZH2tUOLCERsKDNNnrsajXNtOka42CB1TOHpzN8PLMwlMoonS2MCz0GgRdR5pJ7+/zQNv9m61SdSlL6IEaHa6JJxOyhM6wsqqSqnexiNJuCUJm2jS5OdvFyucj2rz1INWC+V6m1avz81kZvhZjkOFK4ko33i4zeWpyb0tAKLOoUo/MYllfzu9nnzsZwZwNhzkX//xu/z7N28du86jQlVVXC4X3/Ed38Hi4iKZTIavf/3rrK6u0usdX2fyOHgaRPxZe/uPGI/bTv7b8e8zhM8cEf8kNvT5OParqir5fJ5r165x584d3G43r7zyCidPnkSSpFEhzNPwpT+pfQEaFeu9lT020lpl7Ox0kGpTSyBOJgK0uloyfSoeoNkZLitV29xZyTDv9TLjdhNxHT7Ez8YD7Iw1BPJIRlbGyL4oQGVM4U6V6pgxYBeMoxxyGKq1Dyd4wCc1BYJhxNztnSzzHg8Lfg8wTEPZnUDwPVaJ7bEIw1vJLA7BhMdonFiEeS4aYmdsW9l6k1a7h91omnjTGS/OzNSbZKsNFhw2TnjdEzt+wtCPna42aHcHE33jS5HQKF1lu1zFKIiawsuL0TC3j2y7Jyus5IpciA7TnzyShGOfhB+g0u7QOELGp90uWt2+JnLyWjLNc0dsJA6ziRm3h5V9lfnGbmZi45x5n5dmp89bm3ujYxhHs9fHI1lwmS0kK/rv7OZehkv75NUkipwPh0aFnrVOF6vJODF//ITfx0qqgPuYotGH2QIXwkEEdWitOVog2RnIGAVR15xq3u+lUu/w7sYeZ8OB8U0Cw6SUabcLr8lCqqJPtLq5cxh56JXM9PuKZoB5dzen86JfnYpyY//47iRznAzq88kXI0FubqW5n8pz5Rj//YLLxsNsmfu7OU5M2IbfbiW1n/n/L/7zG/yXe2sTt/OoOCicFASBcDjMSy+9xKVLl6hUKnz961/nwYMHj9wc6IPs82ko4o8TdfssulCLp92O/tuhxf0nGZ85Iu5yuT6RRPyjsqYoikI6neadd97h4cOHhEIhXnnlFebn53VNeJ4kMX7S+5ukiP/6a3d062XL2mvFZBDZyGjJumQ2spYu6dbbzla4s5Eln2syJVmY97motfRNQkIep04cPT8dJl3R7ttrl3iwlydVqvNgJz+KPUz49MknAaeN+xM8rRenw2ztq/RbhQqbmQpLoSCnw359YZw6TGypd/RKXMhpY6XYZDEUwH8kXWIxEpxImo2igGQ0cm07zYzbPSoAhWFx5saE4syerFDvDJAEg67ZEIDVaNjPCm9TbndIletcjByS17MhP/fHWrnnGy1q7S4n/T6WwiHupXK6z15WFO7uZXkxHsdhNrM3we9daXeod7pcjUUotzoTiwqvJdNciUfwShJ+q02XJX4tmeLKEbJ+LhQkVa6NcrWXM/mJDW5OB/1s5SsYECbaNgBup3LMWiVm3R7ujhXYbpeqnA5pE3HOR0IkC9XhuTQ7eCfMHADcSec553FNtNbslmucObLdUwE/2VKdRreHCqTK9VEB5VG4JYlqozPxtQPc38uzGA5iVESqHe0geKAo1FrdkT/+YizMja3D45MVhUKtpblOpzwutnKV0UdwfSvNxZh24HM2HGCz3BrtI19pEj5y3YqAz2LVDAp+4j98bTQA+DAYjy8UBAG/38/zzz/PCy+8QKfT4fXXX+fOnTuPNbN7FJ9Ua8ozW8oRPG0bycfx9xnCZ46I2+12ms3mhx5Rf1KtKbIss7u7y1tvvcXW1haJRIJXXnmF6enpY5WJTzMRH1fE15JFBj0Zv+uQDJydDpKraB92Z2eCOjJ9OhGg0e6NrReickRJT1W6SIIRpTVg1iFh2H+GTPvdrIwTe5OB7TEPOUDc79IU2e2VarRbfWq17iiH/ABBp03nafXZJVbS+mLEgaxwdzPLlVgE6xFv9oVEeGLaymIkwP39xJcH6QKtVp/LsQhBu3WinQLgXCQ0Uta3ilXK9TaXomFsJiOKOrk40yMN7Tr3syUiVjvRI4V7ogAzHo9GET6Izbsai7Lg97JRrExU7BvdHpJoQGRy11AAr00iVakROaZYECDicJAqN44lrQCZSoPTAf+xn8v13TQXYmEuxyIsjxVR9mWFTLWhUfAvxSKs58o0e33WC2XOhIMTH1oBm5VuT9Gl/xzg9l52pAJfiUe5v5ujt39fKzXbBCZ4zW0mI6f8fjbKTbzmyfeM27vD7S6GguwUKprvtdYZFm4ejVL0WiVcJjO7pRrXt9M6G8oBLEYDRlk4NqGk2GgRcdg5E/LzYFc/AK20OrjNwxhHtyTR7cq0x7a1vFcYFaVGXA52C9qIzFq7iwkRu9kEwOVEjLWcdnDVG8j8nV/9/WN96e+Hb5Vg4na7uXz5Mq+88goA3/zmN7lx4wbV6uRr61HxtOILn3nEP0I8bRvJM2vKY0E8sCAc/P3Lf/kvn/Yxfaz4rCnig8GAra0t3njjDVKpFAsLC7z44ovE4/H3vfk+6XN9mor4b/7X29x9kKaaa3Iq6GNxKkh3jMSIAuwWtOqoxWhgc4xIm40iW1ntMgHIFGvkqm2ShQ4uwcKVRASXVW8DOBMPUh0j+zNBN3d3xqIDBVBQ2S3VuL+TZ9rl4pTfw5TLOjHaMOLWK+dWk5FCvUVfVri5lcGqGrkUDeO3SzqSAcOc9N0x+0CnP+D2ToYZtwfvBFvDUizErT2tv/vAHnMxHJ5IFk2iOIyU239tt1Kn1uyytK+4XoiER506x5GvN3EazYjHZNGeCfpZyRW5s5flSkxv//DbrFhEI3vVOtd30sOGOWNk91woyFahQrbeoNbqMu3RFyvO+jx0egPe204dazNBBTMGer3BxIY+jW6P/kDBK0k8Fx82rTma0HFnL6tLHlnwe+l1ZbLtHrKs4JTM45sF4OZOmu+cneHGdlrH5dfyJS7GDr3VPqtEyGpnJVukM5CxS1YsE2YpANSBgtJXJhY3bhYqw6JQhs2k7AaTpuZhM18mMtawx2Ex47fauLuXI2yzHuvn7vVl3EbLsbUCm4UyS9EwAatEfkL+d0+WqTU6RJwOzBhoTGiAtVeuMeV2sxgJcn1LHxUJQ8L+E7/1XylMSCV6PzwKKXY4HCwtLfH5z38eSZJ45513ePfddymVSh9KYHpa8YXPFPGPDoL66fv7LEFMp9Ok02n+2l/7a8zMzPCDP/iDT/uYPlZ8FPGFT7rd/MF+P8g+e70e6+vrfPOb36RYLHL27Fmef/55wuHwI6sfn2ZF/GB/qqqSLdb542vrw4UqbOwUkVsyhUydi9MhZkIeABZnwxTrWt/2mWm9Qn52OqRbNuWVqHaOqIOtLs1Wn9WtAheiIab2u3Z6bRIP9vQkWhT039nSdIjtI37z3VKN7VwVgzy0iBxlV4vR4ESryqmIn2Lj8JwqrQ63t7PMe7zEJ3QwjLodI+vEUVyainB9O02m2OBKNDKyTCQ8zlHnznFcnorw9uYeDFTOHS2QVIf2i81iRbN+uz/gXqrAF+amdXaLA4SddhqdHrf2sgSsNl2R3amAn81CZVQYe2M3q4lB9EkWTIKoiWq8tpPiajw6WudiNMzDbHGkINc6XapjZPxMKECu2qTS7qCoKvfTec6FtUWgBkHgcizCtZ0U64Wyzud8gFKzxWIwyL1jzvnaTppL++T2QjTMbqE26qKaqTWIOZw6ddtsGHrHb2ylji2yvJFMcykeIeZyYsbAzpFagb1KndMhvRp/Pujnzk6WUqN1bJTijZ00L8zEkQSjzhPe6vUxC4aRh91mMhKy2dk+sFOVG5wN6T+nmNtJtd7mvc0UF+LHD3rkvoJnUjfVfZQabRa8XrLV47svl+otHKLp2OlzAZAHCj/6y7+n63D7fvggBNVqtXL27FleffVVPB7PqPN0Lpf7QIT8k+gRf4YxPG0bycfx9xmCMRKJ8BM/8RP84R/+Ia+99hqJROJpH9PHCqfTSaPRQFXVDzWiPrhhPenpvEdVp9vtNjs7O6TTabxeLxcvXsTj8XyofT4tYvykcJDS8tWv3UEZtzAI0Or0ubcyVHKngi6sRiMum2VEsk0Gka1sRfM2yWRgPaNVko2iQLmlV317gwEDWeHe1pBgnYr5CHhtvLm2q1nvXCLEvbHOmnaLia0J+eSnIj7upYpQaTMbcGOzmtgolMlOyAA/GfJxa0efRHJxKsy1zaHP9Xw8SL7dIltvcmkqzM2kfv3TIT83doa+cFlVubmTIeyy43VKlNrdEWE9ivPRIDf2m6PUOl1qqTyXEmGWCwXOhgLcnJDGAkP/7+urO8z5PdT7PfLNQ9XRZ5NQFUb55LVWnmlvn1cSUG3nWfAbydTWiVkFugMjzb6RUtvGrT2FGZuNFiqCYCA7QS29nkzvp3Oo3NrN6p4TB4OTGY8bt9XCg3RBo8zKisJqrsgJn5u1UhWbyciM28PN/QLV7kAmX2+SGMspd1jMxJ1O3txIcjYSZDmXZ9Iv8s5els/NTvHN9aTutZVckUtTUW7spkEYWn78kpW7e8Nrym2TsJtNuthKgG63j9ds4UFJPzi8s5fl6kx02ABJhfMhH/f3rU/FZpuTYT+1Tkf3WUWddjL5OuYJTYQAkqUqF6bCLGfyxJxO1nPa2aUHmTKL8SD39+MoA3Yrg55Mdd+rvZIqMOV1kRwrGL4yFeXGVhqDKHAq4mdlQmb81ekob60kWZoOD2dxxh4RRlHAaTJzbSPF1bmorvkTwJXpGNc3h2r53/2VP+B//x//W0zHnOs4PkyLe7PZzMmTJ5mbmyOZTHLv3j1MJhPz8/OP1P34mUf8U4BPm53j03QujwDjT/7kT/LLv/zLvPbaa4/cJv6TDKfTiaIotNtt7N8ikuo4HCXiJpPpoz68Y/F+1pRGo8HOzg65XI5AIMDVq1dxOp3Hrv+o+/y0K+LVRof/9MZDzfKZqIf1Xe1D2uOQuH53F1EUWJwJoBrAbDZya0NbmJjw21nLagnAuZkwtzYzY8tC3BuzmnQ6A969v0fEbSfid/AgW0BWVLITkk8Woj5ubWvJatTjYPnIIOAgneXFE3Eq3e5Q+d6/v5kN4oi4HEXYZdco2Pf38hhFkZfm4izn9WTMa5UmkvxsrYnfbiVis9Ps9qgfUQanva6Jtpfbu1muTkUoTYi5A5h12bi9b3HZLFZwWsycDQd4kC3gtJixmkw02nn+55ev89+fu4fNNKDRM3EvH+BcKI3FOBwM9WSRm9kwc94cLqlLd2Ag2/CSb4V5O+VjOe/lVnqK9kBr6TAg0JdVRGGyt7zW6XI2FCDbaE60R/RlhWS5wZxNQjFaWB7LPa93e1iMRoIOG/lGi4jTjkEVR4TxQSbPpanIMP7xyHPKIAhciIS5k8wSdTlIT/g+bibTXJmOkqs36fdkNo/ksacqdRZjQe6n85rn34VomIepPC7rMFqwOiGt4+ZOhimnhFuycX+sYHk1W2Qx4uPeke96yuOi1eqRbTYJux3HDgBW0gWen47zzTX9wAKG13bE5aDV6w+V9fqhgt0dyPR7Cg6LeWQvuZKIjgo4ZUUlU2oQdNo1FpULsTA39gegd3ayXJmNcn1XS7SXomFubQ9/yzc20yxNhzTdZk+GfNw8Uij69vou/+v/+cf8Lz/wpxHF9ycXj2MTMRqNzM3NMT09zd7eHqurq6yurjI3N0c8Hp+43YPZ3acRX/hMEf8I8WlTkT9N5/IIMP67f/fvPjMkHIbWFBgS1w9DxA/a8j5pn/hx1pRqtcr29jalUolIJMILL7yAzXZ8+sAH3eeT9oh/3M0rjkIQBH7/jRWdR1myaAdYKlDZt28oisrKZh6jQSTid3J5KkK6VidTbWISIVXW+kIlk4HNMb+4KEC+pldd7VYTSkklV2mSqzSxWUw8fzKqK5iM+5zcGfeLA3bJjDyWtDIb9PDO2h4qMBd0I1lMPMgUWIyFuLmjTzexW8y6PHJQSZXr0IdL8TC397IoDH18QaeN1ayeVF+ainBzX/F2Wy1ciIS4nc7hslro9AaaosQDzAc83NrNoagqV6eHCu7BFT/v97Jb0RbP1bs9llMFnpuO0uxV+c7Ea/zIpZs4LT36ssg7exFmvQWuxIZkTlEFbmXD+G0VLkYPCZ7FKNMeGHFZd/grV28B0JdFHuSjvLc7y5vb87isl0YRgGcjQdaKRXpHc9/VYWTeO1t7OC1mZnwetksV3TmGbFYanR4u82RSVmi2iLmdnA+HSJaqOhvQzWSG56ajvLdPEN0WC2G7fdR63W4x45TME5Nuer0BfovEnaL+2rmfynPliLp9deqQuBYbLU6G/dQ7HZ0abxQFrKqRVHWy3e9+psS0S2Kn0WHO56FUbY2OLVttsBgPci+d1wwsbCYjMZeLt9f2WAh6WZ9Q+Njs9oi6HbiM5omDumytwZlokOVsnvPxEDfHkkzqnS4eu4TFaKA7kJn1e1gZq6u4uZVmymUhuT8DdjkR4daW9jezuldkPuhlo1DGKZkp19s6r//v31oh6LLzt7708sTP6Cg+iplWg8HA9PQ0iUSCTCbDxsYGa2trzM7O6orzD+7vT0MRl46xLj0KnsUXjuEZEf9Ew/hZIuEAkiRhNBo/cU19RFGk3x8qRwdNeLa2tqjX68RiMV5++WUslsn5v4+zz09rQx+AgQL/6Y1VzbJowMnDba2X+sxskOWxZWdnQ9xZz7CbG6rOCZ+NqbiPm2NWjzNTQW6OqebnZyPcHnugn4r7dU2CzEYD762k6A9kzk8FaQ36rOcrSGaT7mF/firE3bHOnKIwVGEP1tzet7JcnYvS6vWGN7sjBOjydGRkMdFsOxEekfbbW1kSPhcmo4Cg9CeS8JMhn6bRT7Xdpbqb41w0gMlk0BVuwtDbna+3Rkry9e00cwEP7cEAQYR8ozmx+M8sKCz5X+fzMxuIYpt7RTe1rgmHVEc0tNhpeFirqNS6ZlRk/NYBHdlEq2/CZuqzW/NT7QnM+bV2IJNBwWdt8tzUGn/h6jdIVn6Xr/nP80cr53iQgZMhP8lqlXZ/gEEQOB89zOo+UP9nfR62jpDxc5Eg69kS3YFMV4Vpj4udCTngIYedVrtH75hB6bWdNJemIhSbLfpdWUNEM9UGJ0I+2t0yg4NrZJ9Y39xKY7OYibmdpCZ4oK9vp7mYiCCCJv4Phur25Zko149YMVyShaDNxlquzJTXSaPbYzAhpSbf7nPCZWM3X6U39vr9vTxXZ2NcSw6tHHazibDdwfr+dVVpdPBYJV08pNVkhIGKTTLrruMDLKfzvHJyivfWUxNziZPFKuenQuxWajSa3YnXV7bRYybgQRDQdb6FYYFnudYm5LQTtNu4vze5e+sv/ckNpn1uvvz84sTXD/BRqtOiKBKLxYhGo+TzeTY2NtjY2GB6eprZ2VnMZvNTJeLPrCkfIZ4R8U80jJIkkckMH7Jer/cjJ3PfbhBF8RPZ1MdgMDAYDMjlcmxvb9PpdEgkEiwtLX1sFplPuzXl1kaVWkurHPpcVtLFQ5Kigi6a0GQQ2BwrqKy1+txbyyIMFC5MB2nLMulqXUeuJZOBrTHPqwCjZkBHEQ+4Rkkp93eGD/gXT8VpDfoYBJD3b1Z2i4lkUU/oLkxHuLmtJdYmg0i6XCdTabAQ8mA0GXiYKZLwObmzqycapyN+nXK+W6ox63cx6KuEnXaNp9pnk8jVmxMTQMwGAw/3ClyMhbi9lxvZIBwWM6Ig6FTczUKFiMvOlNfD2+U9Hdn6ztkN/vZ3fJO4a/hdJCteOqqJq5Gt0TqFpoPdmpOl6S3Ne/NtB6liHOijyCKpmpuYazhQKbZsJGs+FoK7+FzD85jylPgrL7zO//jcn/CNjdN8bfUcUccVmv0BHqs0sswcoL6fnT3r87BVrHAlEeXmzmE6SaPbwygOmwvt1YbXm7BPmA8a5ZwOB1jNFyfaYOSBgtcscbeg/87WciXOhn3cz5UwiAIXooe52s1uD6dkxmkxa+xCAE6LmUFPH+t3gBvbaS5ORbi1lyHicoAMG/vXcrJc59JMlJsTPNMnA37qzS6C2IEJRP3Gdooz0QB7lRp+q00T/Vc64jU/eKvZIJJwuUZk/cpcdDQIOoopn4s7m1lORQLcnTD4A1hJF3l+JsYbx1hgBoqKIKsYDaKu8+0Bqq0OL0UT3NmbXEwLsBgL8o//z9eQTEa++9KpY9f7OGqPBEEgFAoRDAYpl8tsbGzw9a9/nXg8TiQSGa3zJPG4RPwg5e0Z9vHMI/6JhhiNRjn4u3379tM+nicCh8NBvX58Vfz74UkTcUVRaDQalEolVldXiUQivPLKK8zNzX2sPvVPMxGXZYVv3NeS6YDHxoMtraJ1ejowUr0PEPVaaHS0auWJhJ9Wp09vIHN/I8fmdpFzkWGjnIDz0Cp0ekqfsnJ+NszeGJGeDXt1cYWSycB6usT9zRx+s5XLiQh2i4kTYR/VMV91xOPQFXgCLCZCZPbtK5u5Cqt7RU4GfYRdDgZjRMNts0ywqQytJuVWl2StTana5nI8gs1sxCAIuG3SRO/5xXiIW8ksnYHM7Z0cMx43Ux4XBkEY+pon+OBtZhMmg5F3NvY4Fw6OOj6e9Of4mf/uq/xv3/MfibsKlNtWrqWi+F1Fpr1DQtbpm7iRSmA0NTkT2RttszswcGNvCsHYYz60zXwoxYnoLk5nldWKmz/anGez6mIhuItB1JLGZtfM7fQUi1Ob/N0v/Ue+8sWf4U+dXKVQnzyob3R7lOstvmN2ihs7+ojASrtDtz8g7HRgMxlZDAc13SofZgssRoPaKC8Vrk7FuLebYy1XYna/M+o4HmRLnPHYWfB6R7aVA2SqDWJup6aJRMLjwm4w8yCVp9HpHZt4spzKc3U6Srvd19Uu3NweKvVHcSUR5X4yx06xysmxJkKjU1Kh0eoy7XaP0lGOYjU7LDYFMAqQcB4q5gC3tzOcCvs17wm7HDSbPRqdHuvp4iiV6ChE4GTQx5srSc7FJ+eXC4BFNKIM1GOLS0+Gfby3vkfM5dRkpB/Aa5NIFWqoKvzUb/4Rbzzcmbgd+HijBAVBwOfz8dxzz/Hiiy/S6/V49913EQThI2sO9Kh41uL+o8XTjhp8Fl/4eBBVVeXg7/nnn3/ax/OxQxCEjyTC8EkQcVmWSSaTvPnmm5TLZSwWCy+//DJTU1NP5Cb2ac4Rf/PWFmajVnmKBlwaJVcF2mP+caNBoKpNMMRpt7CS1JJ6j1Pi9nqG26tpyoUmUw6JM2EPG2OJKpLJwM5Y+onKMB98HKengpT3verFepvbGxnidieiDBGXtt7BbjHrFLy5oJfb23rridNi5sZ6mpMBHyeCh9FwUbeTyoTCybDbMSLbA0Xh5nYGk2rglfmpUdfOo1gIeLk7Fp24XaySKtb4jrnJ7zGKAnG3k+R+ZN79dB6PucE/+tLX+fEv/Cf8rjqrVSt/vBOlSoewf49s28Rm1c4bO7M8LPnoonA/F+NeNspuxcOddJxC28bZ2C4W46HqKysCd1IJZKPMmekdYqECmY6T63vT7JR99GUTN/emqMkmTkRTSKbhbyLuyfPly7/GT/3Zf833nltDELSft91sIu5ycSeZZe4YwlxstvFbJWbcbh6k9baGu3u5IblVQTIaWIqGRvnVnf6ASqtDyKmvdZlyO8jUu9jMkwfqK5kiFxPDSMZzkSClWntUdFtotAg69Q19AM5GAmQKdYRjMtrvJnPMB7zDAUMiys3N9MgWcm83x5VZfSt5l8lAr92n2e5N7KAKQ6vMpakIMZuVrbEsf1lRyZUbBBzDWEKvXQJZpbzfUKvTH9Drydo8dRUuTUVHzX82MiU9WVdhximxlimyna9wKuTXDSS8NolirYWsqKxliixGQ5p1BCDscIy6b8qKwt/793/A3QlpRaqqPrE0LpfLxaVLl7h48SKCIPDGG298JM2BHhXPWtx/xBiP/vs0/H2G8JnrrAlDRfzb2ZrS7/fZ3NzkjTfeIJPJcPLkSU6cOIHRaHyikYmfVkVcVVX+/W9fo5hu4TWYuDgX5sx0kIc7WiI0F3WzMxZPeHY2TLXZGVvPqyv4TIQ8Gs9pqthGVAWEjsLFRIjZoAdUldNTQd32lmbDbOe0+436nNwdS0kRGEYg3t7Mki8M283P+93MeCSNYghDS0qn39fd3xZC3lEKxHq2xEa6zKmAj5cXEixP6Kp5eTrCyoRc8Bm/h2883CHhcnEyeNiWPeCwkqs3J3a4vDQd5U9WdgjYbEOScwAVToeDrO57nw2izA9ceod/+QP/iu+Ye5u5YJZyV6StCCwldnBYekgmmVrXSrVn42R8i1ggy0I4xcnoHqKxT6ZnxeUtU+57uZWaZrMYoC+LrObDpBohZiMZXNbD78EutZkNZ9hrubieDWOyWJDMestGXzaQa9j4rguv87/++a9yOjr0mkdcdjwWieVMgUa3R6HWmkjGz4YDw9zvVg/PMR06byYzvDyfIGSzjyIHD1BpdTAIooZkXkpEyFRa1LoD7u/lORHyjW9yuN3tNF84OcOD3bzOjrKWLbEUDx8+ENVh/N/t7SzpSoOQwz6RqA8UhUa7y/PTsVECyVHc2spwOnL4Xcc8TkyiiUKzw06hypzbMfEhbDaIKD2FTn/yfbfa7uIyS3isEg6jmdxY8Wiu2iTudo2GD1dnY5p0k05/QLcn4zrSkOpCIsh25fCauJfMcXU2Nvq/KEDAYR8RfoC7O8NIxwNcmY6yMvY76vQH/O1f/F02x4pMD8jlk7zHm81mLBYL3/md34nVah01ByoWix8r2X1mTXmGZzjEMyL+IfBxEfFut8va2hpvvPEG5XKZxcVFnnvuOUKhEEaj8Yk3Efq0EvF3bu+wmRw+BOuNLvfup5EQcahGLsyGmQ27EARojhWImY0iO5mKZpnHKfFgrJAz7HNwb1NLmn0OM6t7ZZqdPnfXsyR3y5yNBBBlNN01JZORZEGvStklk47MXpiNkDyiDj7cLVCpduh1FJYSYQxHpsnPJUKkxxJVJJORWqen4z3d/oDr6ynOhPzMBTyj5SdDvolJK1N+N8v7au5uqcZausTZoJ+Ex4lkNE5M8LiQCI9sGJlqg9V0kYuxCHazkUtTkVHzmuemN/jZH/63/KXn36AzMJGphXlnewavrYHP1kZRh5aRW3tTeJw14r7D76LRsXAnNY3bVSfhL2ExyQTcWWYiGfoGeDczRaFvJd80M5C1pGAtF2an6mM6nCcRKuPxpMm3vWwWF+j2jQwUkXvpBOmmi+lIHoe1Tdid5//xPf+RH//ur2ERippmNY1uj3y1yfRBkyR16Ad/mBoS9XS1jtNsntgFczES5O5OjqBjcspTulon5LBjNRq4kohyazszKnodKArZaoPoWHMmyWhgKRbiG8s7nI4EJm735k6Gy9NRLPtK/FFivZYtcnHMhgLDegWfZKPa7DIprU9RVTLlBgGHjVm/h2azR+kIkV3N15h1aQckFqOBOZ+Xe8kciqxiM09WUjOVOuciQV332wM8TBW4PB1lKR7mxoa+K2a+1iTsciAKAqcjfu4l9QPR6xup0Xlfmo6yNmFQemMzzeXpCPPHzEDBcODwj//Da2TKh9fIwb3vSVo2DgixJEmcOXOGV199Fa/Xy82bN3nrrbfIZrMfCyF/HCL+TA1/hk8bPpNBnt9uRLzdbrO9vU0mk8Hn83Hp0iXcbrdmnacRmXg0qeVJ7e/jvsmqqsqv/c4NzTKn3cLqVoFub8D9B8MH54mEG8km4XHIrKeKyCqcng1xZ037YJ0Ke7izrl3mdVnJlLXXl8NqotTUElKjQeTW6rDByGJimE1uMhu4taUl8eemQ9wbS2zwO60sjxWMqkDQY2M1XSZbz+KxS8yEPbT6fW5PmAo/FfXrlluMBgaKQl9WWNlvznI2FkBFJVNv6ki7QzLT6fV1NpjldJFz8RBmk0ip0abVP5wxOBn2TezyeTuZ4YXZGK3BgIC9xv/0uT/ifDyJZOrRUkV2m3H8riRziRIK0AGWs3OYpRpm+4Dl/BT9ARgFhd7ASNRfZD6qVWVbXTMbhRDToTyzjkMCWO3bKRZ9GFAZCF0SAX0ajN3awCo1uZOdpdMTOBPbw2zU/yZPxZb58e9b47fefZlvPDiHrAwJR7PXR1FVEg4Jn9PN9bFkkmS5xmzAg6KoNHt9BHW/Ocy+FeXGTpqLU2FuTWh2VG51uBSP8tbGru61eqeniTWMuByYBJG7+zUEu6UqMY9T1+USIFWucyES5r0J7dxvbKW5NHMYUxl2OTCpwkgBvjwb5ca2XhWvtbs8H4nzMFUYWTaOYq/WI+aykaq3sBhEEi4nq/vXYrnd52TYy0qurCnetRgNJDwu3nqYHBZvTtgvQLPVw2Y5vq5mLVPk+YU4D5K5iQXHAPd2crx8Yoq3VicXeAJspEucjATYUsoTXzcbDeQrTb7y87/Dz/2NL+Nz2J5Kgsk4ITabzZw4cYLZ2Vl2d3e5f/8+KysrzM/PE41GPzK1/nE94s/IuBYCny5f9WdtruMzq4h/O3jEG40G9+7d46233kKWZZ577jkuXLigI+EH+3zSivin0SN+52GaB+tjjXCCDrpHrCVDj7bI/dUsG2sF7KqRS9NhxMHQI36AgMfG/THlezrs0Snk8zEvOwXt9TYb8Y46asqKyvJOnnKlRTpT4/J0mJh32IxJMhmHGd5jCLrtdPtaO8y56SCr6cMHf6XZ4f52jk67z4VYiNgRVfRsPDiRnJ+OB3TK+UqqgKqoxJwOpn3aazPmdpKva7PTAS7PRLi3l+PGVgazaOBSIoKgDtdPVeoTG95cmopwbTvJidDv8P/+H36RF+bXsVl67JSClNs+4v5NJNPwnLNVN2v5MJFgBp+zhddZIR7MYrL06ZsgHCvRFo08yMbYLCywmQ+xnp2hKVuYj+YwGrRPrVbPSKUvYvZWEMxmltNxegMtUVjPhtmqBAmFikwnCmRaHlYyUU0QiKwIrGZiFDoBvvela3zl+36HqO+Q1DtMJhhAa8IsAcBWoULE5SRgt3EmHByR8APc281xNhrULDsdDqD0Fd5a3+XydHSitSNTbRB2OjgXDdJoddktHarGzW4fRVF1avypsJ9uu89KukjY5RjfJAD3d3OErWbmfG567b7mWr2xlebClL7d/IVEmJubaeaC3onHOlAUegOViMtOUJLYHLNprWbLXJ07tIiYDSKzPs+oo+2d7Swnwno7zmzAw16hxnIyz+yRmZ6jcFrM7GarnDpmlgCGjbPW94pEPcc0TFNh2uvh3laWhSM1F0exGAuSKtXZKVT40V/4XRrt7uhe+yQtF8d50o1GI7Ozs7z66qvMzs6yvr7O66+/zvb29mM/Ew688I/jEX9mTRnDQWrKp+nvM4RniviHwOMS1Eqlwvb2NuVymWg0yksvvYTVav2W73laivinzZrya7+rVcMtJoGtvYpm2cK0n/Xk4ZRzq91HAO4up5EsRuamfMiAaBEpVA9JqAoYTfqH2ni28nHFmB6HlZXdAsXacJvzYQ/RkEunnJ5NBEdFZgdwWM0TIwwXp0Lc2sqMLCxn4n4MRnFUBHkU56Ymk/OLM9oYxHPxIJV2GwvyxDbhS1MhbhxZv9rqcms7w+moH6vZNDHD+nw8RH/wDv/oz38Dr71Bvu5gIJvoDPy4bUX6cp9qy4ooqGwXg8xGMrhdh4ObZtdCsR7H69njgFdYTDLRQJm9ooAsWnA6myQrIdwWFb8zjdko0+2bWM+FCQVLxMMlQMBur2G3Q6HtoF7wYDUO6AoywaD283U52rgcbbYqEWxAtSNisXUJhiqjdWL+Ml/5vt/hazcvks38KTbzNQr9AdaefGyzGkVWmXK5Rvaco5BVlY1ciRNBH2u5ElenY9zYSo2uphvb6WFHyDFFWGTY/GcgK8OozLHnXLba4GTET6tbQlZUrkxHub2VGanCbqsFq8lIe2zw15cVXEYD1VZvYlrOcqrAjN/DdrEytOPMRrm+MTy229sZLs1Gdc12AAayynzArRuIHOD6RorFqSCrmSILAR8PjzTjkRWFYrWF32EddpMFom4H1Xp75IWvN7t47ZLG320UBcJOB+uZErlqkxNhD2v5ima/TsnMoKdQqLUIux24rBadqn95JsrN/XPMV1pEPU7SR2YbzsVDmk67D1MF/s6//X3+X3/xi4ii+MSJ+LdSpkVRZGpqStMcaH19nZmZGaanpz9UatfTsOB86vFpK3D8NJ3LI+Azq4g/aSKuqirFYpFr165x69Yt7HY7L7/8MqdPn35fEn6wz0+7R/zjbuizspnn+j3t1H084qI3ONynyvBBfhRWycjG7lBt63QHPFjLUau22dwocC4e5NxUCMls5OSUn/U9raVhcS6kK/g8Pxtme2zZ6akAK7taq0lfVnj7/i5qR2UpHuJE2IdkMkxseT8T8uhiERciPp1HdWWviDJQcZslLibCo5SKoMvG5hjpADgd8+uyyB/s5XGZzQwGCkGbtu/AfNDLckrvrbUYDfR6Mre2MixFQpqkj8vTFl4++3/wt7/8H4mGikj2LpmWC1Xq4wvuYLA3MTn6bNWCpLpu7L4mm5Uw64VZ7qemubE9y17Vi9d7SMIB2l07K+kobm+DgKeOxTwgEipidZeoyk4epBd5kIuSiBYwG/XX3UBx0TUY6dt7lNsO2l29f1tWDNS7TkqCSFWxYTbr7wtGg8KXrt7gC8/9EpI0vD7avT7pSoMTRwpbDwoidwtVbu5kOBHyTyyI7A1kmt0eL8wMbSvjz6zrW2lOBz2j//tsEicCfm5sprmzk9UUHB7Fambo+74QC3FzM62xZuyWaswHfZoHpAhcnY6yUWrjtJgnRvf1BjKtXh+31cLl6UMSfoC7O1kWQlrVOOS0Yzcaubae4uK0PmXlAHv5KpfiEQ0JP0C11cFtsWAyiPgdVuSBQvXI76PUaOO1Wg+PWYWz0dBIVVdUlVSxQcB2+J0LQMzjGv3+stUGQZtNk/SyEPJx50izrnq7i9xThkkuDBNdknn9IPjWVpqf+o3XUIUn+0h+1LhEQRCIRqO88sorLC0tUSgUeO2113j48CHdrn4A9q1w0D35GRH/CPG0E06epaY8Fj6TirjT6SSfn9wB7VHwQYi4qqqjJjzdbpepqSkuXLjwgZWEAyKuquoTU0w+TYp4v9/n//cb39Ass5hEUjmtZeTkjJ/VneLYsiC3V7QEwuWUSBfrLG8MVUuTUcRlMrM0E2IjU6bZ7WMUBXJjXnGzUSRV0iqrRlEYxRIeQAXMJiOKotJTZO5t7hcvnorRUxREBAr7lpBTcb8uc9xiNFBvd3UdBS/Mhrm9n76yV6zhslqYj3vpyAPyY4Qm4LSyV9Kr13Gvk61ilW5fRgBmXBYaigqiSKnZ1vnFBWA+6GN53xd+bzeHySByZSrCbOwtvvPcf8EuDZXJQs1JtWNjOnJ4LPW2RLbiIxE5/M1aLTWKNejJEqHQkNhk2y5qdTsG1YTFKGF3pEhESozLv6miD9FkxB7IYAe2y356bTNTgQKSuU+5bqfV9+N05/Bah59xNFKm0ZVIpgLMhrKIgkq+kkAw1/Ht+8mdji71tpVcxcNs+PD7kGUjm7kAJuuA/+nLX+MPvnGV5c1p2r0+e+UaJ4I+0tU6836vpqPlg1Sec/EQD9I5TWv5UyE/xWqL9UyZsMsxih08irV8lSm3DZtkJVduaooKr2+muDgT0eWLxzxOCpUmQdfkotD7u7mR/9phMTPlcY0KOLcKVS7MRIYJPGO3p0a7y6XpKO9MaJojKwrlRmekTid8LjrtPpn938PNzTQXZiPcHisSNooCTgG20wUko4HOhK6YW/kKl+eiZMuNifauzWx5eMzJDFdmotwYGyS0+wMsRtNI9b48YZ2NbJnz02Hu7GVx2SxU6m1dUXW+1mQq4KZrHhByOFiZMHAAeG8jhaHr4bv+tILhCSWnfNCiSUEQCAaDE5sDzc3NYbPZ3ncbsiwjCMITTYf5tOPTlr39aTqXR8Fn8pfwJBRxRVFIpVK89dZbrK2tEYvFeOWVV5idnf1Q03kHN60naU950ir8x0HEe70eGxsb/F//6TVuLmvJaiLipNM7/DxV0KjjAHabmZUxz/d0zMvDscY/J2cC3FpO8WAly6DR50zYxwunE/TG4tbOzIYo1bWke3EuTK6iHRCcnwuzmdHaFmbDHq6tpri9lqFUbHEq6GcpEdIofQc4nQjoItyiXoeuwLPW7qIqsL5b4mI8TNw7zFI2iAIOyUJjzMtst5joywrd/fNSgWStS6szwGsQMKhj358KF6ciIxJ+AK+jyBcv/SIvn/k6vYGdZMHPre0Zyh07ZvOAestOs2NhJRVlgKgh4QPZyGoqhsnaI+g/VBet0gBVFEECgydPTXawkoqxkwvQHxgo1+1s5qI4PC1s9sPBkNvVJhiukm25uLY5RwcrLk9eN+CVLH2CwSr3UtNsFU7g8Oax27XJOjZrD3+wzmo2QrnuYS2VINN24gs1cDo7mE0Dvu+Lb/NdL11HFBU6/QEG4FTANyqePIp7eznO78cICgyb+ayli5SabcrNNoI6zLIeh6qqOEQjva6sa/YEwyi+o01wLsTDVKptdos1bm6lWYwHde+BYSLIC3MxXGazTom+vZ3h8lhO+EHr97dXklycmaxul5tt/HYbp8J+avUOpbFB6cPdPNNHoh8tRgPzfh/peo9is0dQMk5U0BySmVKlTdg92d9+cMyfPz2jI9gHqLT7hBx2Lk5Hjl3n7k6Wy9MRYi6n7rd9gGShyuWpGBsTUlYOcC4W5K3tCv/P33gNZULc58eBx0kv8Xq9XL16lZdffpnBYMA3vvENbt269b7N8g72+biC0jOP+BE8bfX6mSL+WPhMKuIfZ7HmYDAglUqxs7MzKngJh8OPPfo/uFk+aWL8SS3W7Ha7JJNJ9vb2cLvdZIpGFqb8bKfKDGQFi9lAKq+9Bk7MBFjb0ZKL+Skfd1YO1TgVMBi0DwCjQSRbPBzYyYpKtthgL1+j3e1zIu5DEGTqvT7LY1nlPpeVh0m933vcuiIKQ6vKUYV7ba/I0nyYVq3LxUSYaqfLVr5CxGXm9ljyikEUMBpFTbY5wKmYn1v7U+l39t9zOubH57by5uquRt0UgITPzcMJ+eLzYT8P9vKIAsy6JKqyQrndG/plj3iARVHhC5dv8aefv4XRMDyWXMkOopFw/PCcC3UH9Y6E318n33LRrZqQBwYsBiutfp9YsILhSMFlo22hUPMRCh5ag8yWLqFwl/7AyJ3UFJJZRDLpSWm/b6BSjyPaSoQSNbqyQCYdIeSq4rIPiZUsixSrURRTi0B0SOI3c0HcljY+t3ZQX23YGKgOMgOBPiI+qz556MriOpFAmfXl7+Pd1TImg4ETIS9rubJu3dvJLM/Pxak02lzf1Hqms9UGU343PVmm2R3uJ+iwYRNEHuZqeO1WAk7baPbkALKikCrVmfa58dtsmkxtVR2qxVN+l67uYGkqzOpeEa9jsp3uzk6GkxH/0Lsd8lGqNim0hr+zm5tpLszo1W0AyWhEMhhYm1DE2hvIdLp9nFYz3W6PuMvJWvqQ0O5WuyzGvNzPHn52VrORoN3OVrbMXrHKqZh/lAJ0FOfiId65n+RsLMiDCUk+AChgkBn++I/hfqIiYDUc/zhdCHt5dznJ2akgd/dyOp5xIuzj3v694ffeXcZqNvLj3//5j51sPm6eNwxnmC9evEir1WJzc5M333wTv9/P/Pw8Xq++WPVZV82PAZ828vppOpdHwGeSiDudzo9cEe/3+ySTSXZ3d7FarZw+fZpAIPCR3UgPqsQ/qcT4Uff3uLFUnU6HnZ0dUqnUKAqy0VL5z//5LRRVxWwxsDDtx+93sLyVpd0ZgCCgAv0xkup2SDzc1Cvfq2P5wmfn9bGG0zEvd/eXbe77y+fibqwuCy6nRKpcJ1dtEvY5ebCtVUJnoz7ujKWxLM1FuLWh3ceJuH+03t2N4b/zYTeC0tUVkZ2fCY8I9wE8dkkXswjD5j9vLe8S8zoIuG08SBfoywoXZ6MawnaAS0eWKyrsVDuIgsBZn43NI8Wc8WCBH/xTf0Js38rRHxjYyoSIhQscPJcVRWQ3H8XrKxJyDEmgy9mhaVRptAJYvHksQBuRYt2H0rVTboLH2dWQcBgSyt1sAKuzSzh6qJynql66TRNBT41i1Ynk7GHzHH7PBoNKIFQbNvxJRRBVFcnZw+7WkmSvv4ksw1oqwnQwT61po91zYvVUsUmV4Ur2PhupEFOhAqYxH7rf06Qx818IVU+RzgTYLdY4GfKNGhkdYCkR4sFunlNHGuEcRbJYZSHsY6dU4XQkyFamTLE7JLTlZpuY14lDMutmN9xWC26Lhc0J5L/dH9DuDvBYJSrtDgZR4EIiMvqeDaKoK3aE/S6XlQbPz8W4tZlhMGZTeriXZzboYetIPcLl6Si39ztwXpyLjBpMHUW+1uT8dIhcrsTWWIoKwINUmbNTAR6kCphE8BgNbO0Tc1lRSRfrhNwOckfqK05G/KztFhjICslchbjXyd6YhcVrNVOsNNlslbhyIjaxePR8IsTN9fTwmp8O8mBPe89wSmZqjS6yonJvO8el+f1Yx/1Hg81spNbsarjHV795F6vZxP/9v33pYyXjsixjsVjef8VHgM1m49y5cywsLLC9vc17772Hy+Vifn5e8yx8XPL/LLpQj2fWlE82PpNE/KNUxLvd7oj4uVwuzp8/j9fr/chvngeeuk+7NUVVVRRF+cAzCEez2P1+P1evXsXpHMaL/dt//0ejwrNeV2Z3u0Q2W6fR7OJ3WojHvZisJl0TnumYhzurWjV8vAOh3WZmfVertEUDLu6PRSTGAnY20vvq4j6XvXIqgiJAzOckVayDMIw1HCfhYa+d++MecJOBSkM/DW6TzNzfqSKKAovxAIgwQNWRcICAy8ZaWkv6ol4Ha/tdOdPlBulyA5fNwvn5MPf29NaJi9ORieT8QBUVgAWvkXPn3ubSmQcoioFqw025YaavGHC7WnT7FozKgHbHTbMPoZCWyGyng3i8bZxe7fJ210RXUfDFhmrvXtVLp2nGauphFBV6qgFfSD9N7nR2aHUk9ppeBooJSRUALUlVFMgWvIiSjNHSp9P0Y7FkMI6RaYMBVCPcy8RxSTJeX0W3v2C4Rq7mxib28bobNBt+ik0zNk+NUKLM90Tf4RtvLLGyOkWyWOVk2M9qtojVZORkyM+d/SSbG9vpYTb3hM87VarxwkyCt1aTuvzrVLnOQthHr1+hJyugwqWZCMt7edKlOnMhL+1ub/jaERTqLeZDXqxmI1aTSfM9lxpt5kJeGp2epiZAFAQWgj5ypSYGQUCbsbJfaNru4bZK1NodLk8fJowA3N/JMR/ysjE2OPA7rFQqbWwmI+i2OsROrsq034NZFFkfu64b7R4em4RkMtDpy0wHPKTztdGxt7p9nFbLKGsdwGY2YFQFivvWr5trKc7Phrl7JMc94XOxsXdY4LmVKmkHGipM+dwsH5n1urWR5upCjGvbQ1J/Mhzg9oTf5y//8Q2sZiN/9b95fuL5fhQ4Lr7wcSBJEqdPn2Z+fp6dnR1u376N1Wplfn6ecDj82NGF8Cy+UIdPW+Tfp+lcHgGfSSLucrloNBofuvDRYDDQ7/d58OAB2WwWv9/P5cuXcblcH8PRavf7Sfdsv9/+4IMpHs1mk+3tbXK5HMFgkOeffx67/bDYLJ2p8kd/sqJ5z8mTYe4uDx/+1XqXynKGRNyDXO+zEPficEm0BzLLm1riubgQ4v7Ysrm4b6R8w5Cs221mlOLhOQiCQH/M8ykKkC01yRSHRDHmdxD2OxiIDKXcI9elw2ohW9YOHE9NBXSE/exMkPv709uKorKcLOCwmvE6rVyejpCtNUdNWy7NRbi5qX34W81GFBj5vw/gsVm5traHoqhcnApTbLXZLdU4FfVrSMkBZgJutgsVFFUlHsnzxS++g8/ToIOJwcDIXt5HNFpEEgQUBFoDM+XSNJKrQE82s5kLogxEBMWMwWjB7qxgMB4S5W7PSLrgwx+qIomHy+2OLgajQr7swulu0axZMdUl7I7i6OOs1hwMZAf2EWHuIKsqyWwAm6mL31cnk/Nitoq4Akc+c0+JUtNBv20kHi6hqlAo+ugALm8bH31UVWUnHSQWLOoIu83eJZPzUW1H8QT3cFkPB1EGg8qrn7+Nx93gnffOsFOo8PxMjO1ChTtJ7ed7YyvNlVmtMnsi5KPe6vLGwx2WpsND4j52W1vPljiXCLFTrDDr92gGZpu5MucSIe7t6i0TVpMRr1Xi+mZat83NXJmlqfDwGIVhIojfahsR61EjqrH3FeotzsQCTPtcGhIOMJAVqkeKN2FYHNzryqNr9/xMmLtJ/XUnywohq3VisyiA3WKNxakQxUaTer1Dq6sdVGcrDU7G/Kx2i8OiRKuVZFE7Y7S6WxgNFBySGbk39PkfoNuXqdY6hFwOcrUGV+Zi3Fyf0AxpPcXlhSh9RZlIwg/w3souFoORv/SnLx+7zuPgUVNTPgxMJhMLCwvMzMywu7vL8vIyKysr+Hy+Z4WaHzWeWVM+0fhMEvHHUcTr9Tqbm5v0+8MH7zjx+zjxNDzbT3p/8GgPh0ajwdbWFoVCgXA4zAsvvDCxYv83f/u6pvBJkoxsjqWinD4R4uH6kGBvJ4fq1tnTEayKyMkpP6JJJFOskR8rqAx47TqyfnJab105dyLMnTGF/NyJiMbOki02CHkd3FvNEHLbiIVc1Do97DYTd8b2sRDTW1fcx8SiJYIulpOF0WtzYQ9Br537Y+q2CsyGvdwfyyd32ySa3d6InB94z6/OR+kpCrKsaohWxO2g0uowUDp88ZU7XFlaRRSHn3+57EUxDIjFDpNMCiUXBrMBp3+4X5Opi9XWYy/jxx2oYzTW6QHtvpNm3UyzLiEaVQKBmiaqUFEgnfXj9Hbwh4eEzSw1kIFM3U27KqEiEIyUsYgVzTkKgoA30CBfcJFLOnHYujhs+vuDzd5DsfZ5sBXHZBoQjNQwj28nXKdQc2JWZXzeBp2OlWzJgcPTxRlqAS12UgESkeLocznAxQsbeNwtimvfzb1kjumAZ2KzpOtbKa7MRLmdzIzsIgdj1zs72UOr0BgBHgxkzkaCvLu+p3vt3m6Oy7PRUWa9ySCytN94Z/h9x7i2qSeUd5JZZt0WRMlGpdYZxf/BsAPllXm9nSPgsNFuD471mZcabeYjPmrtLjN+D8VKi/oRm9XqXoHpgIedQmW0zGo2Ene7uLGe5szU0O896VmezBaZD3q4XZpcNLmaKnJhNoyiwt0tPdnvD2TK1TYhlx2/zcbDXT3przY7RM1OziVC3NmcXOAJkMrXiPuPF28Wwj5urae5uZbGYBD5i1+4eOy6HxZPwq99UCs1PT1NKpViZWWFwWDA1tYWiUTiQ6njz9RwLZ5ZUz7ZeEbEHwGqqo6a8FQqFUKhEACLi4sf1yFOxNPqdPmkIhMP9vGtVPharcbW1halUoloNMqLL754bA57Nlfja69r1fATC6GRGn6Aal3rcw0HXSyvZVFUlYdrw4fx4qkIxXKLi7MROvKA7WyFoNdO4Qg5FwQ0hAHAbjWxmdZOs/vcVh6OJbEEPDYe7qvZxWqLYrWFxyHRbRu5OBOm1e+zni5hMhp0eeEqEPY5eDiWQ740Fx4VYB6gUm9TbXYYdBXOx4J0ZZnVTIlL8xFujilzBlHA77SykdUev9smsVOsUqi1iPucBNxDYm+zmFBRcbh2+cF9FVyWBdptM6WKH38wP/KCDwYixWIIZ6CoIdTlip2ObMIf0RYJdrpGFFy49ws6O6qJYsGJ3DNgEGQMFgVvWG9DGQxEyjUnNm8bg0FmL+/HZRng9hxuv1Ry0FFMOL1tpH2LSrkcwWSq4nAcFGsKZPMeRKuMK9pCkaFSjOD05DAYxpJ2XF0KBSfpTQ+xeAlPWHuv8YUbpItefM46VulQlZVlEYd9QGv2v6KkzrKVUzkT9bM8ociw2GjzwmyCNye0Wb+5leZM2MPyvpfabDRwLh4akeorc5O9zje2htaXfLWJCKP1YdhA58J0mNvjSrQKKGATjWxOsEpd30ixOB0cDfBOhH0Uyi12KhV28pWhJ3yCIryRKfHKmSlurKY1ijMM7S3tTm9UB+GQzITsdjb27SjLyTyXT8R0ha1eu4RJFbizXWTKJ5Gs6gt3AQyITIhEH6Ha7PBSbGpi0ekBWt0+AdmGQRCQJwwJRGHYxfPuemair1wyGWi2eqMB1v/nt7+JySDyg59fOv7APgQ+TkV8HKIokkgk6PV6ZLNZUqmUpjmQ2azP6T8Oz4j4GJ4p4p9ofCaJuNPppNVqva9X7aAJz/b2Ns1mk3g8zuLiIqqqkslkPpSX+XHwpK0pBzfoJ0XED7rKTTrHarXK1tYW5XKZeDzOyy+//L5FRr/52zeQj/hXrZKJjW0tqZmOO9lOjXVMdFvIHEmLkCxGdlIVGs0u2cKQ7M0mvPTqfS7ORai0OyQzFRYXItxZ1z6c5xJ+nRoe8joo1Q4fvCrgcVnJV7XqZ9jv5OFOnsz+9LhDMnN+IUK52abcaI8K4S7MhXUpKdEJxBwBAm4b6/uxiAc2lotzYURVIOi0aRTYc1NhXUMgs9GA1yGNPLCpUp1UqU7QbWch6sQc/jpTM1sMDALFrp1q1YHZAlKwSQMbSh+KRSeqqCJZIJUPYkSkN1Dp9g1Y7V1c7sNjUBSBTMaLw9fG7KocnooAJkmm3rHiCjbodo3spvy47QMcrqH6Xy0FwNLDHTwgwgIu/5AsposeBh0DohFcgSamMd+x0VVBVmAnFcAASK4+9sAhcRMNILorFGtOTKqM19dAlkXyeTeqGWyeLm5Pi3I1gMNWxSJpbRBuX4tG00q7bcFkMNDvOxlINUyeNhFPmy94bvAnf3iRjazK2WiAB/tJNUZR4EJi+H3v5CrDPPAJxY3L2QqnQm5kRFrdvpZUH+SIjxPJfVXNZ5O4m9TXAyzv5TX+badkJuF28XCvgNQsk/C72J3Q3XUzUyHudRF02rm7ldU0zLq3k2M+7NUN9i7NRHnn3i7n5/RFxgCFWosTMT+iIOC2WEaFmQcY+bn3Bw5um4TdaCa1f3y5Wp+gw0K+oR3UXpqNcnNtWHg5HXCwU9IXM1+cjfDOgyQnEwFWs0WdJ18UhNG5np2erM5fmolxY204UNjcLXEi6mPtyGzCmViQ22PF2f/8t/4Eo0Hky6+c0x3Th8VHkZryQaEoCg6Hg/Pnz1MsFtnY2GBzc5OpqSlmZ2eRJH0c5zO8Dz5livgzIv4ZwEERX6PRwOPx6F5XFGXUhKff7zM1NcXFixdHpP2gM9jHUejyrfA0rSJP6jyPEvGDmYitrS1qtRqJRIKzZ88+knKSK9T5r68ta5YtLAQ1arggQKWufRBPJ7ysbGjVqRNzQe4+1PrAZWBn9/DBGfTaUfsKS3NhMuUG+XKDWMjNvQ0toTk1HWB5TA1fnAtxf0u73tm5EA/GlkUCTt66uwOAxWTkdDyA0Wxga8ySIgrDz3E8qvDCrJ6w+102trKVUcLK6Zgfs8WA0ShyY8xDjgAnoj6dfcUoCkzFGiQu/i5e75C4yLJIJusjGKmO/NmDgUg258EbHhaTApgdUC45UCQRR3BIkhuqhU7ZQqsmIasCdntXY+NQFSgX/ZhcbdyhJiBglmTMUhsF2E6H6PcMON1tHJI+Dq/VsFDrWLH7W3RbJnJZN8FgDeHIPgZ9kULBjcnVRRGgVbESDPcRxp52NmeXTsvI2mYUb7CDNaC9nszuBvWWhVbLgtd3SOo6HRPlmgOTVUDsCbj8ZY52F3C623zhe2/wjT+8wFoGzsYCdPsy3e5A873c2s6wNBXizhhxNokCIiBZzDqSC3A3meVMLDjKdw84bPjtQ3+3ZDIyE/SwPdZptS8rlOptgk47bquFar3Dw/1c+k5vQK8nT2z53h8MiLudLO/mdV1rB/vb9DmslBptBPZbxK8Pf6f3tnIsRHway8sByvUWZyJB3lnRzwoArO8VmA64KTfauM0WdguHv5PeQEZVLbgkM7X94swTQRe31g7Sf1RylTYhl5Vc7VDpPxXzc38/oWh1t8DSvL6J0YWZCLf2j//BTp4LC/uq//46p2OBEQk/OJZMrk7UZSNda7GY0JPwA/z0b3wdm8XEf3P11MTXPyieBhE/miMeCAQIBAJUKhU2NjZ4/fXXicVizM3NHWv5fJaaMgHPFPFPNJ4R8SNEXJZlMpkM29vbAExPTxONRnU3qoP/y7L8oZrzfFg8jWJN4COpcv8g+5RlmWKxyNbWFs1mk0Qiwfnz5z/QZ/3V376hiU6z2Uysb41lhM96Wds6JCkqIIzNSXvcVh0xP3sixIN1LfEJh13cPdJ9M+SxkfC5cNsldvJVGu0eBhHKYw0/7JKJ3TEi7bCZ2ctpl1ktRs17u/0By9t5psMe2vUuZ2N+TGYDm/kqXivsjHXEPBnzcWdbS8JNBhG71UzhSBzcaqrIqXiA7UyFS9MRqu3uMN5O0MYUHkAQFb7ri3vEF24h7ud6l0sOFFEgdCQysFxyIIvgj9Y4YCSDgUgu68Edamg+d1U2UG/asYcbI8JeHVihZqPRAAQVX7TO+CRNp2WiVrPhCDSR9l/MFd0YFfD668h9E4WyFZuvjcPaBgQs9gHYB9RaLgZtEY+nSa5gx+LqYgseft6mYIdGw4MRGatzqKrWKlaaHQmrt4Mt2qFSN+GSTZjtWhXVYhugKJBK+XDbBSodkDwdrMEhYVUVlWzaSziqJcw2e5dXv+cG7712GZshhEEVdE2eAO7u5kbFlgCnIn6K1QYPs1UMYo2zcb31QVZUNnMlZgMe3DaJtVSRleo+qe4PqDU7E/PHa60OL56Y4t52VheHmK81WYj6aHZ7o+6SQZcdh9HEeyt7nIwFaGYLjPeqqTQ7zIa89AYDZnzeEQkfHqdCqdrC57RqmuXEfS66nQHvLCe5MB+ZWPDY7cuIKsQ9LlbGZ4eAYq3FfNRHs1dmNuBmM13RvV/uq6PBRczrJJ2razpn3tnIcOXkoQ1m6QgJP8Dt9QyXTwzTbrx2iUxBb6FqdfsIqEx5baQnvH6AM4kg/8sv/Vd6PZk/+/LZY9d7VDwNIj4YDHTPE4/Hw5UrV0Y1WN/85jcJhULMz89PDEF4Zk15hk8TPpNE3GAwYLVaRz7xwWDA3t4eyWQSk8nE/Pw8oVDoWBX4aUQJwpP3iD+KZ/ujxIHScf/+/YkzEY+KfL7O7fe2OT8fQhUF8uUmwbCLew8PH5BGo0iuqCUZJ+cCrG5rH9ixsJv7q4cE1mTUNu8BiIZc3F/VEoFQwMm1O7vAUHlP+O14PGa6GCjXD20ls3HfKAP8ANNhj04hn4/7uTueLb4Q4fa+FWZlv0D01LSfcq3OuYSfdKVJqdHB45DIVpuaZkAqcHoqqCPnUZ+T3WKVVrfP7X3lNeFzMhvx6jo/urwNPv/qFopYI13yggD1hhWbp43JYGKvbEEZiMhdO2arQrsl0+976fR6KIqKLIh4/E0NCS8XHGBWce4r3YcHbKDUMmALthBEgVLDzqBhwmKScbk7dBoeFFsVZ7CleZ/N00HuG9jaC4AAfn8bcQLvGAgDql07tZITq0HEaNH7nQVbi74CxWQYu13F4KpjdxzaVazOPl0ZGlkv3lB5NFBo1i3U6zaMzh67DTPBQBPhyDEIooA91Cad8hGJlBCO3HbMZpmzV9a58c6ARsHDuXiQe2OkWlWHtpELUyEEBG7vHH6nsqKyni1xIuLXtLkHcFjMuCWJXLmhSxApNzvEfS7sFtOoUVDE7cBmNPH2cpLT8QCraT2pXk+XuDA7VIAXE0F2s1WKneF9djVV4OL85Cz6ZqfL+XiEd5aTukLSSrPDTMhDrdlhoKjMh33ki43RQOD+9mR7i8tqgT4ogoooCDoLCcBGusSLpxPcXE/rzgWg1OgwH/VhNIgofZXmhIZDN1dTXJgfWtRWdiYnttxcS3NxIUK702d1b3KhaLPTZ8prp2eYHM/osJrJFRuoKvzjX/ljFFXl+155vDqlp6WIH2c/cTqdXLhwgRMnTrC1tcVbb72Fz+djfn4en8/3RI/zE4VnivgnGp9JIi4IAg6Hg42NDf71v/7XnDx5kueff54zZ87g9/sfabT9pEkxPHlriiAIT0SFV1V1ZAUaDAaEw2FOnDjxoR8Qv/Hr75JJV8mkh4qsw2Gh0FM4HfdjlozDAi+XpLGbIAwfhEcRC7t4sKYlqqdPhLlzhNCrgGQ1aR7yVouRVO7QK6uq0B8orGxVkBUVk9HAfMyHx2MjU2kgoKLus49T0wEdCT81HdCR8NmoV0fgfS4ru4UazU6fXG1IzOcjHkJ+F1v5sqbI8+J8hFtj1hOH1YyiKjpS5rZLvPlgB1EQhq3PRRXZd52lF9YR9wsVGzWJTt+MN34wSJEZdKz0VRF7aPhZ2Jygyj3aBSfWQB2DINBUTQzqJuhYqTfBZFGwWrTWhlbRTV/qYg8OVWwAk1XGZJVpl93sVoyoPRWbbMPuaY4IsKqIVPIOREcfW3hImJuywCDvwenoYrS2GfSMVEp2TJ7uoUINVMpu7OYBJvv+YL0vUik5wKpgDnWodQw46l5MTi35Ew1g8bfI5Tw4TWZqchfJ00OShvs3Sh2KVStuax+TVXueznCLTN6L31Nn0HHT6ZvoW1oYPT2W/tQ6915b4GEajfp9cMDnpkKkS3V8Dj3B6Q1kUqUaMwEP24XKMEd8NsrKboHb1Qwhtx2PTaLS0hYv7pVqnIz6Wc8WuTAV4WGyQLY//H4f7hW4OBfl1oRYw7vbWV49O8uf3N3SHcutjfTw2juiYJ+M+MmXGryznOTSQlQXaQiwnatwdipAtVZnL1vV2K4O7C1ep3U0a+R1SNgM5lFa0IWF/et97FinA27ur2dZnAod28J+J1vmynyUd1f20E3D7COVrxIPuEkOKhNfBzAqAqZJo8CDzyHsYmWvQtBjH1l1jmI24OXeEWvZP/nV11BV+HPf8eHJ+JO2Vx7s8/3u7TabjcXFxVFzoOvXr+N0OkeE/JkirsWz1JRPNj6TRHxnZ4d2u81f+kt/icuXL/P93//9XL169QP9uJ8GEX/S1hT4eLPEFUUhm82yvb2NLMvMzMyQTCYJBAIfmoSn0xW+9rUHmmXTM37u3U9TKAxJhCQZqdvbTPkcGE0qZqsNk2Tkzor2QWy1WlDVw2lit1NidUureJ1ZCOkiDBdmg9xd0XrKJasRuTa8u/QHMtt7ZertLtliA6fVTCLiwWgSafX7mhxxu9Ws635pNRtptLsa8i+I4LRbKGa1D2910OPt+0MPbdzvIui1o6ByZ2wqXxQEIl6HrsHPXNjLenqYmy2rKtvlJM//qfuEEocENJvyYvc3RwkjigKFjAdnsIH5yNdYK9lQjSq2YIMDRiQIAr22HVXqYHcPf08yUG5YEVsuGh0Zi7ODTRrrZNu00eoaMLtbDEt2ByhAqW7H3JWQzCINoYV5zLMtGsDsaw9JbjaKbGxhDerTM0yuDl1VpVcK0+z0MHk6mP2HaqhJkunSRK4FMEoVjOahitmsSrTaFoyuHkVlgFWQGG8WJLl6NDoGzBU7ds+Q6MuyQK1kpycbkWt2TNY6Rmt3dIM2GBXOfWGNe18/wcMUnJ8KcTeZI+51YjeZuLs/s1FptJj22tkZy51v9fpUWm3OxoL0+zK3jpDOXLXJdMBNtz+gPZZQUqq3eHl+ijcmKNW3NtMsTQe5c6RZTcTjwGow8s27W5ydCvIgqVeI723lhgp9usjluSh3NzIju8ftjQyn44GR9/woRBUsoqirfRied4fZsJdGq4vbJmFEHBVmwtAeculEVFO0mvC7qNXaNDs9bq+lODs97GB6FAIqCbed95b3OBVzs5LVF6MaRAGvTWJjt3BswerZRJCbqylMBnGYVT6WhDMddLOVHQ4a8pUmUb8Tt02iuj84Ojcd1jUcA/jpX3sNFZUvf8cHL+A8aJ72NKwpj7pPi8XCqVOnmJubI5lMcufOHWw2G6+88srHfJTP8AxPDp8pIr68vMxP//RP86u/+qtYLBb+wT/4B/z4j//4h9rWZ0ER/7j2qSgKmUyGra0tAGZnZ4lEIoiiSCqVeqxinF/7tXc1ueFer42HK9oH2MLJMHfvp6hUhsTRaGzidEuE7TYCAQeCUUQwCNwbs5vEonqbSn6MJMfCLs06AIsnw7pOm2dPhLm9OiQFzXaPh5s5Fk+G2dguEnDbiAacyKgYzQZujSWxzMf9GmUM4PxcmNu6Bj+hUTIKQKpYo9PvIysKAZuNWMBFo9tjPVPi3GxIF3UY8Tgo1Joj4hOezzN7Jo3JZCK160OWDQwYDmxadRsCUG3IyKqAaIBezo1BVLFbDZSr4Ao3MBiPFER2zAy6dowerSdWHgiobQ8dRx2ze1+hrluRmybMoopBMIKnjlnSD5yVnpWGQaBh7mJoOVEqfSyuxsjuIfeMdGoOZEcLg2fY1KtT8YKxieQ4JMztmkSrbcLkaYNZhIYb0VPR2EYABvYanZYFQ8VL19TG7BxgsR+Qf5meMkCt+DG6ixox1STJ9PsK2V0vFklEtrYxeGQsyECXRs2CTe5hth4SY4NR5fwX1rj39QW2ckY+f2qat1aSGs+yrEKu1uFE2DfqkApgNorMB7ykyw0GE37PO4Uqp2IB1rPF4fZUuDwbZSVZ4M3lJFcWYlzf0Ece3t3JE/dI7FU6XJyNsLpTILdP5rczFRIBF7sFLTGVFYVqo83z83Gure5pvz9VZbdQI+J1jAagAodpJgJwejqgTwQCtrJlrp6Ms50uk63p007ubmQ4GfezmioS9TppNrujWSJVhe10SXu8qsrZuJ/l/b4Dq6kqCb/EbuXI4E5VOTcV5s5+caXV3Nep2WGPneS+t78vK6RzVaYDbnb2i0ctJgNyX9Z8j+linUTQjawoGA0iyUxFdz4H+MN3VpAHCj/w6geLNjwQWJ5WseYHwYFldGZmhkql8kwRH8cza8onGh/ZnNS/+lf/ahQ99OKLL/LOO+98y/V/8zd/kzNnziBJEktLS/z+7/++bp0HDx7wfd/3fbjdbux2O88//zw7Ozuj13/u536OL3zhC7hcLgRBoFKpTNxXPp/nB37gB7h06RIGg4Hbt2+zuLjI1NTUhz7fp6WIPw0i/lEp4rIss7u7y5tvvsnOzg7z8/O89NJLxGKx0fTo4+wvuVPi9a8/1CwLR9wMBofbc7utrIzbTU5HKJVbFIoNlh9mWL6fppxrICkiC2EvFxYiXDgVYTetLaA8fSJMsaL1mZtNRo1S7bCbdQ/ReNjN3TFyfXImwL19sl6qtri3nkVQ4e5yhoTbycXZMGengizNh3Uk/GTCryPhUZ9TV9hnEMCAQrXZpVBtcXs9w8ZuiavzMQQZzsSDGPf92m6bhKKq1Ns9jKYB57+4woXvWsWVaCD66/QEA6K3jz3aweBtgKtGuQXmYB9btIMU6mAJdhEsFgoDFUO4T0M1U6rbyedcVNJhiiUnzf6AQe/wNtQo2un1HMiuusbLbbQo9BUTHZuBum1AveSmW3Iy6A1XalctdGoeZEcfwdYbpu/Y2/TtA5otJ5Wsi17JT0sRwdPCsC9BCIKA7GgysKi0y146ZTelvIOBFcy+PoIoIBhVFFebbstFp3aYWd+qSJSyTlqCgaari6C4kAdagiCIAgNnnUbZjdw3osgCtYKNfMZNvWdl4Feod42IJu2Tx+Lq0x6Y6DS1BcqiQeX8Fzbwxyq88XCHmFOfINQdyOwVa8yHvEPbSiKE2yJxczNDttLAbDTgsumjP1dSBRYTIaIeBydDfm6tp2n3hjalG+spLs5GdO9RgXq7zwsLce6sZzSZ3+1en25Pxm3T2mXiPheSwUimVMdq1mtBzU4PEQGbxYTVbOR0LMjN/TQTFdjLDYn6OGaCHjZ2CkwF3brXYOiXzxTqnIkH6HX6VBvamZBOb0Cv08dtHx7vQsAxIuEHyFZ6xL2HjcOWZkIjEg7DAlCH2TQ6L7PRgEU00Dpie2t1+9TrHcKeYSrImViAdFFfoLmbrxKwWZnyuXT9CQ4Q9thZ3sryL379dX7tazcnrnMcDp4lT4OIf9jif4PBgNfrfUbEx3BgTfk0/X2W8JEQ8V//9V/nx37sx/hH/+gfcf36dS5evMiXvvQlcjl9Fi3AG2+8wV/8i3+Rv/pX/yo3btzgy1/+Ml/+8pe5e/fuaJ319XU+97nPcebMGV577TVu377NT/zET2iKPFqtFt/93d/NP/yH//BbHp/H4+HcuXOsra3xC7/wC5w6dQq73U6joVdNHhWfdFL8JPcpyzI7Ozu8+eabpFIpTp48yYsvvjhSwY/iuBzxR8Gv/urbmoLEcNilU8NjCQ+93uH3Jkki62N2k7NnIqSzNbq9AVvbRe7eS9GodmgWW4QdNs7NBLl0Kkqz2cVwpNBw8USYrT0t+Z2Oeak3Dx+iggiIaFR7u9VEbqxrp89tZXs/xSFdqHN3NUux2GBrt8yM383F2TAn436CHhvZqva9FpMBRIF2T2szOD0TIj8W13hmOsi11RR3NrM83M5jxsDF6TAnwh4qjRaeSI2XfvAW0ZNDBXLQM1BIu7AFO5j27SJKz0I558AaaiHse8YVWUCpBuhbW5gdw+MQBAFZFsFopedrIfh7yE5oYCaXc5FJ+lFxoCoGzffYLEk063YMvh4Y5f0M7x59Z59m20ol5UMeOBhY9BaTQddAqyHRtUPJ1KdetNPvaImHIgtQ91JRVKpmhXbPjNzX3xoVqYtsFijv+SkWnCj2IVkX9zlF396g17GhtrSxa6oCnQFkc25qNR+qW8Xs7yGahycp+jqUc05URUsuzPYBPQy0avvmm46ZZtFLPufEvrSLPVJnt9plaTqsO9ZOfwCqyvPzMe5v5yjUDgeM6XIDj03SkWCTQcQsGIi5naxPaCJ0bzvL6XhAs+xMxIfSh41UCe8Ef3qh2iTgtA0HeOow2q9YabJXqLFXqDEb9ureA8N8+tPxAAHbYaOrAzQ7PUR1SNQPcDoeIF+sU212uL2W4sxUYHyTwDCLXxiodHuTCyIL1RYBu5VLsxE2s/rnw0BWqDX7hD125oJO7m7qn3G7uSrTPjciQ5K9O5aABMOmQAxUrixENUR+HF67lXazP3HAIqDisJhHXW//v7/1TX7pD947dlvjOHh+fTt6xI+DqqrP4guPg/op+vuMQVA/gqv6xRdf5Pnnn+dnfuZngOGU19TUFH/zb/5N/v7f//u69X/4h3+YZrPJ7/7u746WvfTSS1y6dImf/dmfBeAv/IW/gMlk4pd/+Zffd/+vvfYaX/ziFymXyxNzwSfhwBf+oz/6o4+0/jhu376N1+t9LFX9gyKZTFIul7lw4cIT2+d7773H9PT0qJvoB8FgMGB3d5dkMokkSczOzhIIBL6lmnHjxg3C4TCxWOwD7WtjI8+P/Z1f1yw7eSrMyurhgzIYclIoNzUkOJGwk0wdElmb1YRoNNA40ujj9Kkwy2Mq+smTIVY28hiNIrGIG5fLCiLs5esUyg0QBOamfGzsaT3XS6ejI0vKARZPhLk3Vng5P+Vn40hOuSDCVMTD9hF1XRDgxFQAWVFw2C3DqMFsmbOzIe6NFXxOKoILOMyUO30G8uHnIQoQ99nYLTeZupBh+mwZARFZEWi2FXoDEcGogjBULWxmiUqnh9GkIBpURKOC3BcxSQawHhJjVRVo5ByYvF0wHO5PVaBZsGFy9xGOqMJKV8TStdPtqhicXYSxPHC5J9KqSBi9vZFdRO2LDGpGLFIfozQYvu4ZaPY33DgMKiYsUg+DbKNn6YFZO6hW+waUuogj0EIQQW5YqbdEROeQeAt9A2obbD49+VcVEOtWFKFLt2dCcAw7fwIoA7D1rODU+4h7FTMedwfBNCSJiizQqkioAwmTUUT1aN+jDAS2X5+mlbOzNB3m9r5P3CVZmA95ubudxWo24XFIJCf4lhciPnbyFfqywtlYkHK9NRoQXpqfXDRpNZvwu21Umx1m/B7N7Mx0yEO2Uh8Rw6O4OB9BHqgT28ZfPhHjxrrW9nI6HiCdq3IiHuDG+uQiytNTQR7u5Tk/E2Z5M6fJKLdZTLidVlJHYjzjfiftVo9Ko8Op6SAru/pGOwDnZ8IIqjCsozjmVnV+Lky6WKdYa01eAfiOczN88+72sduI+Ib+/mytoYuCBIj5XRTLTXp9mfm4j2S5pvlsL81HubWqtwv9le95jv/bn33hfVXjRqPBm2++yZ/5M3/mW673UeOP//iPuXz58iM/q4/iwNdusVieuJL/7YharYbb7ebE3/vHGCyfnkZIcrfD2k//Q6rV6sT4yk8bHnso3Ov1uHbtGt/1Xd91uFFR5Lu+67t48803J77nzTff1KwP8KUvfWm0vqIo/N7v/R6nTp3iS1/6EqFQiBdffJHf/u3fftzDHeGDtrkfx2fJmvJB99nv99nY2OCNN96gWCyyuLjIc889RzAYfN+Hw4dV4H/lV97W/D8e92hIOIDHa9OQ8IDfzm5aew3MzQU1JNxsNpDJa0nMiYXgKFt8MFDY2S2jKAp37qco5et4JAtnpwP4HFZOTvmxS0Plzu0w8WBMQTs1G9SR8KWTUQ0JBzi3ENaQcIClE0MP7/peiVsrabaSJS7NRZF7MpfmIsyE3AionJ4KDtMtjsDvstFD0JBwgLhHIjcoc+a/WyX0fJaOo0fL1qHUNqIGephjXUyhHqJ7AGY7DVcLY2gAXoWBXaVcc9C1i9QEqFTtlPMOijtucjtuTGYL9KSR8tutmWlWJcyBnpaEywKtioWquU3P26FtVOk0bdSyNtplC/WclY5swOTvaTzbgknB6BzQ7dgo12wgmiZG0g06BoxGGw2DhVIH+gP9NSmYZIxuhV4pSGHPRdsiY/Qeqt+qSQaXTKNgR+0fEoJO1UytYKNqUOnh1JBwANEIbWsLueJhXAIxe3oUijY6RT+FnIty10rfKTDwdmlYOrQrWjuJaFSZ/vwOkr/F7e0sF2fCXJ6JIg8Ubm0OCyAbnR61Vpe4T/8wW8+UWJoOcy4e5GEyr5mVubmRZmmCFaXd7RNxOfBZJZ1FaidXYT6ij5hbiPpI5+uYDJMfNzfWUizN7qv6qsrluShrO3ka7R4311IszekVf4CHOzk+tzjDvfWMrlFQq9tHkRUc1qF1ZzroptHoUtm3o6zs5Lk4H9Vt89x0mOWNHPc2MswFbLrXAUIeB3vpKh6rdOw5zYc9vH17h8sL+n3AcNbKiMBmqkTQaUcyaUml0SBgQKC3T7w39krM+NyYjcP1oj4n9ycUbwL84n96j1/+g2vvqxw/jehC+GDFmpMgCMIza8oYnraN5Jk15fHw2ES8UCggyzLhsPZmGQ6HyWQmT7llMplvuX4ul6PRaPBP/sk/4bu/+7v5wz/8Q77/+7+fP//n/zxf//rXH/eQgWFe6TNryke7z16vx9raGm+88QbVapWlpSWuXLnyyJGQH3R/B1i+n6JT63JqIUTAbwdVxWzRemunpn2srI3lYHskDRkKBhwsr4x5t0+EqFQPC6+MRpFyTZtMMjPl496R99UaHUwmAzfu7LKxXqBT6xGySwSdZs5OB5mLeDEaROw2M5mxxjuxoEtH1hem/LqowlPTgVEXwNF6CT+319Os7BS4vZommaowH/JiZNiWO+F3gapis5iwmI1Um1qbyrRPohXcY/HLD7GHhkrfoGWhVbFhCR3mfbeKEooiobgOj71bM9OuSViCXRCGxZoGSabbMaP4BxjCAxrWDg2jQr1toZr2ogxcmAU73aoZZf+n1C5KtJsmjP5D0gsgm/uIRjMdg4WuZEBtueiUzaj7l4rcE2nmrDRlA313D8Gp0HP2afVMNHNWBi0DvZqJet5KzyTQsrVQDSqid0DPCI2clUF7SA56NRPU3DQGInVHE/wDmgWJQUdPHkRPj3bDTmnXQa0mMbCDwTdAlBT6tjYDxUy3qvVxC4JA39mkV3Uhd400i1YqGQeVqo2BC0qigkkyac7fYFZRLCrtspaMG0wqs6/usLRoJVWooyqqLn6y1urS6vSIeA591XaLicszUe5uZhGPkWzv72itKFGvk1PRANdW9pAVVWMNOcCDnTyX9gmuURS4PBdlc69EvtLk5lqaczOTZ9aWd/KcTgRZTIS4tZrS/C4fbueYi2gtLAZR4OJchDdubbE0px8wAGTLDWJeJ3MRD5Vqi3pLe73fWktz4QgZPzsVYmUrP6rx2M61ODtmcXHZLBjUobVkM1XidDyom0r3OyXSuRqKqnJrJT36PEZQ4VQsQGp/gP//Z+9Po2TL8upO8HfOnWw2c/PJfJ7d3/Pnb4ghIzKSJAdBqUoCCVCtFloltZBWdalaiAZEN9RCogVUlRZqENWUFqVKgQpJLYkFAlSglFq5ik4BIkiUEZEZ8SZ//nyeZ3ebpzud/nDNzc3cPSJjjoyI91/LP7jZnWy6Z5999n/vjb0sw50daC0fw9xI5pKkZXn7hLGuFKYuCekazhXuMQDXh3v4pd/5Kn//V//g0gSltT4I60Kl1PsaEPexqQ9aSvJEnvKO6pvy13AGxL7ru76Lv/k3/yYAd+7c4Stf+Qpf+MIX+OxnP/uOzxGNRjk+vtx5/2br48SIfyNgXK/X2dzcZGdnh46ODu7cuUMymXzPztdaSin++T/+Ix49PF+inZnpxa65zE334gO5QhXNaB9wRkbSrKy162BTqQhHJ+esYHdnlIULDigz0xketPiISynaGtTgcggQBOz7wuox0HCCkIKZ8S5sz0N1J8kWqxzmSiBoSwSNRSxOCpU2YNKZjLBzwYmiMxnhMF9qY/xjEZNS1WZtL3u+XTzE+GAXlXqdas3ktBQA51uTaUrDX2d0LIfnSOySgVsJ4+seSnrUchYKqBUtop0ejnKRrkBIhX0SR6SqGPL8uut5E8eX6N02rWvztVMLTB+ZrtM6nfHKcaoNXB+RAuVWAwkMUM+ZOAhki6tJzQz2tosh/KIOlh80V9Je0lQoXSNXCmNKDTPk44v2z0tIgUj6FE7DRMsmbrSMa1TajqV1uDiuwD4KEe6sIV2Tcl7HM31kxIMQuFmLkFlDtjjDKNMFA+zTGEZHCSHAKevUyyaeBOHGCFkuMn5+TcLyKNZ9rIKFnjgHj5qp8IWimg3SPM8f96mO3Ce/PsTxeoXbo+0+3RCE4qRFmL6OGJlEjNW906aF4cPNQ26NXk6n9HzFxmGOyb40ccviwfoB+17wIe0cF5ga6GR194QLiyq8trLH89eG2D0qNJssz2p5+4SRnhQbLWmuAINdSdyay2nlstTH8XyyxQqpqEmubBMPW/Qmo9xvNDw/3jhkrK+j7XvefC8VpMNhNqqXnwOYXz1gcqATiWB16/gScF3ZOmW8L83q3imWodEZjbDR0gQ9v3bAU1N9TQ/yWMjEkgZZ5/x13FvcY2Y4zePdYJXr9kQf95cuvi/H9KdD7BZrTA10c3fpajnO0tYxL9wY4eXFrSufj4VMDhqNn7/zhw8p12x+4q98G/oVDPQHwYh/UE4tH/X6qLHIH6XX8mbqHQPxM8/ng4N24HFwcEAmczVTkclk3nD7rq4udF1ndrY9qOD69eu8+OKL7/SSAUgkEk37vLdTmqZRr1/dyf5e1QfhI/5G4L9arbK5ucne3h6dnZ0888wzxOPxd3S+twrEX/nqWhsIR0CpXGdvJ9d8aPJaLyuLhwz0Jkh2RJC6RLd0snGLfKEGQjA+1sXSSntTWLIjwmGLH3N3V4yFizaEM+3AXAiB1GQbIO7ujLGy2S41mRnv4bVH7frOuZkMhXI90NMqxVGuRDIZ5vHm+YRRk4JY1OJ471ybqmuSSMTk+OD8NUsh6O2IsbJ7fl4F9HbGeOXxdvOxdCzExJxJcfRVdKtG0TPxPQ27GEHrPAMTAZvs+QKjx21MJXTcoo5dF2gRhV6OYdd8DKVhSgslPIR0UDUBloNf16iXDPR0O1vru4L6qYVIOoh0g3EHlKfjHxv4nkSGfbT45f28vAUxD9UVfF9qRQtqYMQdpOljZy08HWTURxI4jbuAn7XQURgpG6+s49R0RMyHDp8yNZSjIfIGVke9PQHT17CsKNkjHU330VNu25Ki6HCxqxbS9zCT59erfEFdKdRxJxVZRYt7kPKaQL9qa8RrBm7ofGqiWQrb9fBzIczUOaiTRmD/Zx/HEFKj4vh4locMKzo/e8DRf+jj7vo+d8baPbMFgVtJzXbZOS5QrLZrku+t71/WhatAR16q1NkrF9smiABLOyfM9J8DTAgsPeeGM7y6sMPEQCcXy3Y9iuV6M7JeoHhqvJ/7y3t4vmKoJ0XJqF/SmedLNfo6olhJAb7Gaks6peP5ZAtVOhORNs323Ggvj9eO8HyfW1N93LtCa+75PmFNJ1+s4biX7zuu53OarZDpiJGKhK9Mzry7tMftqT7ur+0x0JFgaesywbOydUp/OoTQDR6tXi0p2T2tMTfey+YVzZ1nNdyb4pUHW0wMplk5PMW58JmM9aXbHJn+fy8vUanZ/A//zX+BdaHh84PyEId3DsSfSFMu1EeNRf4ovZY3Ue94Xco0TZ555hm+/OUvNx/zfZ8vf/nLvPDCC1fu88ILL7RtD/C7v/u7ze1N0+QTn/gEjx+3W9EtLi4yMjLyTi8ZCBjxSuX1G22+UX1Y9NrvxjkvAuNKpcKjR4/46le/iuu6PPvss9y8efMdg/Cz873Z/mHP8/kX/9sftT12bbavDYRrmiCbq+D7iv29PI/n91Cuz72vbVI6qhABJgc6SIUtbkz2MjyQwjI1Jia6WVo9H3QVkEiG26wQuzujPF5pl5HcmMmwvXd+fgSEI0bbIN+RCrNxgb2bHOnk/tI+G7tZ7j/eY35xn0xHnK2tLJO9aW6PZ7gx2sOdmX7WL4DrmbFuNltAOMCN8d42EA4w2Z/g0WYrSFD0PJslP/sSKlZBGAovH0F5oSYIVwoq+2EIeRgJt/lY9SCEayr0Dh9h+XhhG18KSlKRi1UoRetUwz5lKbBP0xRKFnVPR2VjePkQXlWjfmxRr+nItItoWZf3bYkoxHCTCr/Tx42AXbWoHoewT03qRxa2o6FSLqqFfSbso+KKci5E4TCKozRk5DK4klGfuqOTP4zg2mFE0oOW4wgDSPnUqib1Ywv71EKV4lSQ5MwqJH28iKJ2bKEu6MtVyMMLK8p7YSqHIYrHYYq2QS0ChVgNoZt45XYQIkyPonAgH257XOrgRRwqhxFUIU5hP0K9kKCsTLIWZB1QKRcZDq5dC3t0fXYfaXm8trbHnbEMqCB1sz8V58H6Acu7J0ghrnQ4eW21sQ8w2tPBeHcH8+uHbB7m8Tyf1BX7PN49ZaInkLxM93eRDkd4bWkXx/NZ388y1JO6tE+2VCUWMsmk40xlunhtcbfpob11mGO8r/PKgThq6iR0g6Ps5d6efKlGNGQGGmoFT433M79y0GS4H67sMzVw2Unl2lA3S+vHeK5PNHzZChKgWK4x3Jli5+j1AfLDpT1emBm5EoQD+ApsGzTXuTShOSuhoFqxGW3YTl4sU9dw6x6e77O0ecxETxpDPx/Crw11X7JFBfjK/Q3+1hf+PeULk68PKt5eCPG+S2I+8vVBy0i+SaQp38w22m9U78qv4Ud+5Ef45V/+Zf7ZP/tnPHr0iL/+1/865XKZv/pX/yoAf/kv/2V+/Md/vLn9D/3QD/GlL32Jn//5n2dhYYGf+qmf4pVXXuEHfuAHmtv86I/+KL/+67/OL//yL7O8vMwv/uIv8sUvfpHv//7vb26zv7/Pa6+9xvLyMgD379/ntdde4/S0HYBcVbFYjGLxsnfrm62PY7JmqVTi4cOHvPTSSyileO6557hx4wax2GVP33fjfN+ofu9359lqYZoNQzZj7c9q+kY/x0fnvQBWSGenZZt63SccNrn72hYLD3fZWT1B1FxU3WVmuItb0xlmJ3u4NdvP+nY7AI4nQm06ze50rNnEeVY3pjNstFgaKiCZCFOpnjOmiViojXmHwPbw4co+NdtldfuE+4/3wIevP9gmqhtM9QXg/JM3hjjOldtuXLenLluiDXWGWN4/l7PoEYfJ79lDTW4gJCgfSrsRvJiNbwUDtlvVcLIRzJ56U6/sVjWqJxZad0vjogfVgzBu2EfGzj87r6RRz5lUYlWIK0h5VGI2NST5YpiyrlErW4h8DFW08OsyAL6+pB4PJDPnF6zwPI2qLqlFwSmZmKVIEwj7dYl9bGK7On5KoVI+bkxRKxvYxya+LfAqAfiv1nS8hIKkohZxqRYNnKzRlP8oD/ycie5GqYY1qr5JyXbbr0cIRIdHva7j5AxQIEoWtaMQ5UKIWlJSFya+SdskwzEdfENilNt/M0KHatRG5OO4RYPKUZjiYYRiKUwpBjXHgrRHPVQHGWzvhz3sXLtOW4+5dH7rPlL3cVyfT04NMr9x2OYecpgvYxk6qchlYL13WuRbZobZ2MuydnD+vT0uVIiGTCLW5UXUg1yVT88GIPQwd/5bq9kupUqddKJ9goFSpMIh+mJRVq4I5nm0ccidqXPXJCkEd8b6WN3Js7pf5M7k1Y5KWwc5pgY6uTNx2U3E9xV7xwV60+fv++xwD6ubJziux/5Jkf50AnmRaVVwc6yPr81v09cRb7Mrba1bE328Nr99Scve+hrSsSjFsqI7eXUT6FBniNWdLPeX9rgz0XcJjMwO97Df4je+tHnMeHcAxqMh41K4WGvVaw4/9Pd/m9OWFYMPCohrmva2Ge0n1oVX1wfdWPnN0Kz5zW6j/Ub1rtgXAvziL/4iP/dzP8f+/j537tzhH/yDf8Dzzz8PwOc+9zlGR0f5p//0nza3/43f+A1+4id+gvX1daampvjZn/1Z/vSf/tNtx/yVX/kVfuZnfobt7W1mZmb46Z/+ab7ru76r+fxP/dRP8dM//dOXruWf/JN/wl/5K3/lDa/3137t1/i5n/s5fv/3f/9tvd69vT329vZ4+umn39b+b6cqlQovvfQSn/vc5963cy4tLVGv11FKcXJyQiaTYWRkhHA4/I13fhu1srKC67rMzMy84Xb1msPf+K//P5wenw8+szcHmH9wntQXi4dwlaLawgTN3hzgYYuUJRSWCKlTbQHGszf7eTh/voxtWTrhqEU+X6WzK0oqFSGZClOo1CmU6xycFHFcn7HhTta2zsF6T1eMbLHadD4AuD7Vy3wLi66AqbEuljbOAUk0YmJZOif580GzvzvBcbHS5n88MdTJ6l4W31eELZ2+7iDCvli3Oc6VOTgtoQQM98TYOik3m9CswTI9d8rY2PhCoTyJq0CLqcCqTymcnIGKeAgNdKnhuj5e3kBEFAYSTUh8H+rVRpKmqRC6woyAJ1ycrAkppw2EKkfg5ExU0m02fkLAsPs5A9f0EZ5AcwWhkMAP2yh8vJyBF1YI6/Ktyi9LVEUDTSGTbpuU5OwN9vM6nh/c3PWwgsjlCbRSoE51hA8kPTAuPq+QBQ095iAb16FsScSLUHMV1ZqDnvDa3F8ApCuhqtA7nEvHMwsmxGt4JQPXkfgSVEQRqlmoZLlVWo9SCnGqY/W0y+F8B2RNtklhANRplL0vd4EveWr8XMPcWv3peNNVpSseob8jwcONA5RSzA738HDj8gA20Zdm8zCwPNSlYKo3xep+HtdTTA91sXCFdGOwO8lJoUzVdumIhehLxlloHPv2VN8lHflZzY1n2D3K0xEJs3ZhdWf2imCrkKkx3tOJZeq8tnzZ1g8g0xmnUK0zlulgYfWwTUIGcHMyw72Vhm2hglsTGe63JOzOTWS4v9Zuazg32st8w940HrUIRwz2T1tAceM4DxrH6UxG8DTFaUvT92hPgo299r6P2zN9vLq8ByJowHx8hWc5BBamobAeXPcVNdGfbt6XBnqS/PwP/1n6uwNpZjab5amnnrpyv/eistksr732Gp///Off1v6+7yOEwLKsJ/IUzu0LZ374o2df+PgX3pp94YfRRvus3jUg/mGrL37xi/zoj/4oL7/88tva//DwkI2NDT7xiU+8y1f2+lWr1fjKV77C5z//+fflJpTP55mfn6darTI4OMjw8HDbTPC9qNXVVer1OtevX3/D7f71r7/Mv/iVrzT/j8VDuK5HrSXB7trNfh61AOrunhgnuSpei0ykbyDC3t75gNjdHeO0UG2ToMze6Ofho/PjxGIWSghKDdcRIeDWzQFKFRsrpOMrKJSrhCIWiy1hQam4QaHm4bV0t83NtDduKWBmvJvHLftFQgbRmMVhy+Dek45RrjuUWiYZQ73tPs6GLrk+2g2axFOKXKVMfnSd8Mw5q2YfWRB3z8GlK6ifWMiu8/fRr0ucgoHsPJ8EKA/cExORbmeK/byOKwNAL2yBKSS6LqjVPHxLtTHmAH5BR2gaTuhCwIoPfk7DF6AhkKaHjHlNAKRXTaSvUzLOmXPpC2RFgOYhTB+/rOOFALP9FifKAg2FSLqosoZf1xBhhdcA0aIqkX4A7C+WX5BYnoGMKKqG3c6S10FzBNoV+1klEz9eQdkSr6Lj+QJlQFiaONZ5Y+pZRaoh3GgZZPvj6kQjdBGM22A4Glo8+C4oH7yKTmUnSum1DkC8ri/4tYFuIobG/fXDNsmElILpgU4WrpBaXBvsQvk+x9ly0Ox79hoNjb50gvUWJv2spge7sHTJxm627TsLcGsyw90rQOTscA9CwaP1ywDU0DX6ehLNxsnuZJSQ1JvykdmJXh6+jr3fJ28M87X5rUvWnWd1e7qf15Z2Ge4MsXV0uXn09kx/E+hPDXSysZ1te++6O6LUPC8I7aHRnLnY/t73dcUp1G2K1TqpmIVddanalyeIt2f6WTs4BVdRKF/dk3RtpAfH8djK5qldCCoyNEl3PNrGpKeTEX7+h/8M1POUy+X3NZfi+PiY+fl5PvOZz7yt/c+A+Hs9Dn1YqgnEf+gjCMT/5zcPxG3bJhKJ8Ju/+Zt893d/d/Px7/u+7yOXy/E7v/M7l/YZHh7mR37kR/jhH/7h5mM/+ZM/yW//9m9z9+5dfN8nmUzyYz/2Y7z44ou8+uqrjI2N8eM//uNt5zirdwLEP7ZCrUQiQalUettLXR+UNAV4z+Up2WyWV199lddeew3TNOnq6mJ6evp9ufm9GWlKsVDlX/96e4Lc0Ei6DYT39iV5vNA+uCc6om0gfGi4ow2EKyB2QQc+ONTB/EL7INo/0NEE4QDpjiiPlg5YXj3i4fwejx7tkYqFWV46JGmZjGc6uDnRy8RwD4PdcRJhHaEUme7YpcatWzN9bSBcAYP9qTYQHrb0IHSoBdCkEyFOS+W2JrfORITV/Rx3l/Z4dLRJ+RML5yDck2i5OLLrnOF18wb1st4Gwt0TA9eTbSDcz+s4FQPR6TWBqHAlzomBF/MQUQVhhUr62Drk64paQmBbklpZR5bC+Ech6vsWjhDYVgt4UBCuhFF1Ay8BKg5uXGFbknrFwN63sPctKkpRMtuBsCcUjhLUawaVmoHjauBfnrD6Gth1ncqxhV0x8GN+E4QDqLCPF1W4OR0/rwWv98TAq5o4YUkp5lGoKVTpgkzDAi+mcE5MhCdBgSrruCcGVUdQPYlQtU2cOPhJhYooKqE6wjYRF6wRK+Eadq5xnJYSnR61w+B3qDwBFROzHqdctMhvxyjkwhTsEGVTR43VMe8ELOtrq3vcbrH56++Ic2u4l+XtY44L1SCNtfU98hUre1km+tt9wcd6OyiXatTKlTYQDlB3PE6LFXo72pNF+9JxhKfQkJdAOMCD1QOmB8/124YuuTPWx8LqITuHebpT0Uv7OK5HsVijIx5moj+NXXPbNNxLG8eMXpSJqCDY6qW7m8yOZl5Xh3pvaZdPzg5eCcIB7j7eZW48w2BXgr2DwiXN91G2TCoSImRqTA128nD58iRj77hIVyxCNGTQEY1eCcIB7i7scGOw53VBeCIaYu+owOr2CQPJxCVLyRujmTYQDnCar/B/+9n/nUcbxx9IquY7tS58woR/fKpQKLT9vZ5BxofVRvusvintC9+PikajH7pAn7Ob5nuh7VNKkc1mWVtbo1wuMzg4yNzcHHt7e+Tzr9+k9G7XmwHi//Y3vsboQEcQ41538H3F40ftrHIkbuEfni/1jk92s9wS8COkaDaIndX0TIbFlgRNIYPAm9a52uRkD49brAkVEE+GAp12o/oyCR41jlMs1SmW6sxd7+Pr987dSiIhHRybgVSYeDwCmoYQis39XKCTaAw2ty4mcQoY6ku3xX6busRXHqUWeU1HPIStfIqVOsZomfBMEekZuIcm9brCEyCkh1aPIjRQdQ1CoAmJyikkgkLJC+4QNog8xEMmhZKD0gPG23cFuilQVY16yEF0eJxR1tKTOFkNP+mBeT5wappGKa/w414Q44mAmiTqW9TKLj7gxB1oAcZCAQUdV1Oo5JmQWxAum2hKUBc2ypZgCbyw3/hUBJ6l8BTIfDDxQQl8qfCjQKIx+UBBTUOvC0TcRehAXWDaBjXfpx72ibkhfMvG1Vt+7xGF25CLaDEPYSrwIOSE0EyN/EkdBIik35C5NGzbPInKSWTqfPJhWy7CEYTKFl60ZaBJeNRKOpGwwq4rfFvieRIlQDvspJYogSZAc8AEVRdoSiLl+XUaYxVUReIsxrm7us/z0wMUynUWto7ZOw4A2tZRnpGeFEqV2zzIHddj97jASE8K3/PRBazvnrPddyb6eO2CE0mhUidk6sQjFnXb5cZwEFh10ACrd6YCtrm1fF+xc5SnvzOBrkk822t+5wvlOv1hi7ClU623s73ZQpXnZ4d4sLJPpdYuzXFcj3zx3ElFEkhd7jUcju4v7XF7up+7FyUsSnF7coC787t0xgxOSu3HPavjkxK9qSi7+4Urn9/az3F7qo+13dNL8pez2tjL8smbw7z86GorQoCZwQ6+eneD2zP93L3o+qKC9M3HjRWD9d1ThjIpTmSFYtVmpDfFg9exQXRcj3/ybx/wPZ+ZZG7udU//rtcHFSL0Ua+Pqn3hxeTyn/zJn+Snfuqn3pdreD9stM/qYwvEWxnxtzPD/qCB+LtVZ9rv9fV1qtUqQ0ND3Lp1C8Mwmud8PxtEv9H5djZP+e1/8RJeCws1fq0Xw/Pp7I4TT4aJpcKUqw6jw2my+SqFYo1iuZ2Ju369j/lH7TrwgwsJmrPX+3jQsk04bHB00t4QdeN6Hw9b7At1XeJDm/xkYqwraLZslAJGh7sautI67JcIh3VMS6dQqBELGXSmY/R2x6m7LjfGeilVbU5yZcaGu7i33A7Me9Jhto7PJwLRkEEobLKbz2F9Oo8+WsUDPHzcAxPVFbiUKEDVBHZZQ7TYCuplk6rvQvf5awjXQmQ9D6/z/DHdMagVBV7cB0dHVAWaJzB9jarrI3SFKGsQ8hFSoJdMaiGnAaZF880w6xYF5aMS549pZZ0YBqVqHWWAuiBpQQiqrg+2wItIBBKtDEJJVCPJUvoCVdJwFfhhHzzQ6hqmK7D1FlBngOsIODUR+Kg42OGz35igZNZBKWRWR0a9ptRFehqGriMqIfSqoGBVqEsXpAtxgn1O9QB0N4hHT1MQg2g5SjVcbj6uDEVVOCSKMUpOHd8TKAG+oagWIWRK3JjLGY1boIY8tho+7Y0rtRReVUA1sHw8K/NGiYyVoL5i8tLCDtcGLjcUbhzmGMt0sHdabJM3dCeihKTguFDltNwOSl9b2ePWeIZ7FxqDD7MlnpsZZPswf8kP+7WlXWZHe5m/oO+u1V3mRhIsb52QLbYHZu0eF4JI+q3zyWfI1Jns6+Tl+1tcH2sc78JtPFesMdSbwol6DHQkmhrts7q/tMu1ke5zXbtS3Jns595C0Gei1wI9d2uvBhA4zriK1c0TBroSlzz9AeIRi/2jAsM9KR6s7rdLmBo1N5Hhq69tcG28h4Wto0spsCO9SZa3gonP/ce73JzKcL9FbnNr8rIf+dZ+joGeJIauoVzV7Au5WNdGeri3uMc//uIDzEiSP/8n71y53btd7zRVE54w4leW4m07jXxTVuO1bG1ttUlTLMu6cvMPq432WX1spSnxeBzXdd+2F/gHAcSFEO+ac4pSisPDQ15++WUWFhbo6enhhRdeYHR0tAnC4f1/nd8IiP+z/+X3L4DwDKtLhzi2x/5OjtXFAzZXT3h8d4fNxSOKByXmZvowXMXMWBdzMxnmrmfwPZ/urhhnPYPjUz3kWxI0O7tiPL6QxDk62tWWstnVFWN5rb05bWa6l/2j86XgeMzi6LQdvM/N9DWbuyAYo1MJi1whWAqv1BzqdYeHS/vce7THo8UDtrayjPWlWds8oi8ZYqjDYioT57nrA+iGFVjLqWBZv7szzr5/TPhPH6GPNq7XljjHJvScWwXKbAhbgUg1Pl8ftNMw1ZAD0cad0BVY+QhFvY4XamynIF6JYaMCEA5gCHRp4AmdYszHTYETE9imxKzGqOV0So7Cz+mQ1ZEljWg1BBWdSshDhVsAvq9BTXLq29gxiWNJvJKGUTCJVEOInIZeNfAs8OIKNIEKK9y4wpHgH+v4RzpOWeBEFH5UBey7IfBiiqryUFkNTjVUVsOrabimwI2DE5d4voSsBna7S4qyFG5BwzvUESWTuhKUDI+iZZM164FUpdq+j5/08as6stoCPnwoKhurEMc7DFxdajmDqmNwoLloIoKbUHgJhQoDYbB9hVa54AOd9nCPLqR2hhWuq+HX22/tJ+O7nEQCwLiwk2UkfbnZem0/S39nAlOXTPalGe9KsnWQZ3Eni6sEPVdIRO6t7jPbkpY50dfBWHcHr8xvk4yErszsXNo+ZrxF8jLW28FAKsErD7dJxcJXxsYvbh4x2RcMyIPdSdLhMPMNT/9HawdtLiutVSrXuNbfzeIVOnOlYGM3y2BPMmDCJ/q59/icIa/UPSK6TrjFKSYesYgYBkenJSo1h1rNoSPe/l4auqQrEeHwpMTD5X1uT/XDBUA82pdisSFLW1g9ZGags22beMSiVLLbdnu4tM9kJngPejpiLG5cbowF2DnMM53pvLRKcH7ujiaAV8D/8ut/xC/+2ouvy9y/m/WEEX9v6oN2OHmvXFMSiUTb3+sB8Q+rjfZZfWwZ8TPP61Kp9LYcQDRNQymF7/vvq87unXqJ+77fbDR1XZfh4WH6+/tf9+b4zcSIv/bSGl//49Xm/5omKFxgq6ZvDDB//9w5JZmOsLy4T73mwu7ZNv0stjDdU9PdVPM1Zid6kLrE9XxCMQu1nW16kI+OdjH/+JxRU0AkYrSB7LHRLh5c2Ka3N8FSC1jvzyTaGjgB5q71NZfMAUxd4Phe20A6OtjB/PoBvq8oNyQot2bSvPywxSUmZDA+nOYkc0B0OIvwJaKsIx2dQrXR6LhvomsaniupKh+qAZCzpI7jQ8334dBCCIUhNBQaJeWAbSBkIFnRpUnWrJ4zkLYg5obJm1UwzqGXXtHwlSAfspuP+0CkblJzPaq6j/AFMicRCsIhHeUKKpaNH/VppThNTade8ykLF0yBrIEsa+iWwA25hF0T34aKdPCbDnWSUE3DRKOk1dGVIKwsyo6LYwbSGOFA3DGpChtPC753SoIbBVGRyLwACV5IBa+hgUVdR6HlJSrhNy/Tj6pgMpPVAucVAYano6EhHUklb6MiQVQ9mqCm2ei6jqgrVPhc1lOw6sRrEWyrit9o1vQNRd3xMYo6qiWF0097OEcmRgszLiM+smqiRB1hKoQn8WsC/XqRelUiCgYbp1VGOiNsnJz/fjQpiBgG05k0j7eOac23KVRsLMNoBvG01uOtI25PZHBqLgst4PDx5hE3JzJBAmYLIndcj6NcmaGeJJ2xCPeX9pqAc333NHBEWb3McC/vFLgz0c3C+mmbExHA3cVdbk5m2mw7RzMpCvkaX3u4xa2Z/ivTKmu2S73m8MzUAK8u7Fx6fucwz9RIN0s7x4Qtg45IiO39XPP503yFgZ4kNcuhWncRKKYGutp6P+493uX2tfPzd8RDFArtAUKP148Z7Y2wfhx8HgPp+JVAe3U7z2CXhY/f5qDUWiO9Kb7+cJuORJjejhgHLbaGUgpcx784L+A3fvcuBydF/vZ/8+2EzAuWQe9ivVON+MfUW+Ib10eUEX8r9SM/8iN83/d9H88++yzPPfccv/ALv3DJRntgYICf+ZmfAQIb7c9+9rP8/M//PN/xHd/Br/3ar/HKK6/wS7/0S81j/uiP/ijf+73fy2c+8xk+//nP86UvfYkvfvGLbW57+/v77O/vt9lox+NxhoeHSafbe2xerz62QDwcDiOlpFQq0d3d/Zb3PwOunue9r0D87TLUvu+zv7/PxsYGSilGRkbo6+v7htf+QQDxq262nuvzT3/x99sem7k1yHyL7rqjM8ryYvtSU09fkqWWps3Rie42PTkCShWb/RbrsGs3+rn7SmDYLwRkehKYQnB9rAfNkPjKJxQ22D8qEYtalEo1wmGT3AWAMne9ry110zQ1PEUbiJiZ6GkD4QgYHEiz0mKD2JEw2T3JtzFWc1OZdmAhYGAkzr2+ReizgeD7aZQsqok6hANUE6pa1IWPfQbmFISLYfKheqA3BnAhVAlRiNQb1IRoPGZRjtog3OD4tsIoGCgLso6DKOsBdlIQt0KUhI0yWiQSFQ2EpGS6zTuPMgSa0tA8jbyyQRdQF0hHYAqNkBG8Z0XDboDgBqAPgeHq2BUf39YoewEglmGJf3YXV4FPfN1T+JrA9zUc5eBHGgw5oAwoYIOj0PIaCIXSCBovzeBPKLDqOrZywTy/btcAWdIQUoGhELYgopkIU1LLuzjKw44pkF7wlxQYVQ20c3mLq/kQViQqIcqR8+bAolFHljSsiDrXphsCR3poOR2RclE+UJegg5mNg+YDkmKtTk0KVCGMiHoQIni/48DzJfjDBKKmsXFSYaa/g93jAl0xi+Oi03QaGemOs3NabmtEPMqXyaTjxCMWxUqwkjjYmSAVsVheP6an4zJjfn9ln9tTfdxtlVMpGO5O4dRd1rZPL4HC+dUD7kz38VrL9zsZDZEK6dxfPmJquPtKkLqwdsj4QJrVnVNujmVYXDtogt17j3e5Od3H/QuNk4Yu6YnHOD2tYBraJYAPsLRxxK2ZfvKFKhstGvmz2jnMMzncxfLuCbcusOpndW9hl7npDAvrhyQjoSuPs3lQ4c5MPwiuPMZZdSZSlKtXN5IamsS2PXxfcZKrkIyFGOxOst1oZL010cfd1zn2cbbE//1nf4e/+4PfQeqi9/u7VO8GI/5EmnJFPQHifO/3fi9HR0f8nb/zd5o22l/60peaDZmbm5tteOdTn/oUv/qrv8pP/MRP8Lf+1t9iamqK3/7t32aupWnie77ne/jCF77Az/zMz/CDP/iDzMzM8Fu/9Vt8+tOfbm7zhS98oc1G+8wR6M3YaJ/Vx9a+UClFMpnkS1/6Ejdv3nxb+//e7/0en/rUp95XK6WvfvWrTE5O0tl5OT76qvI8j729PTY2NtA0jZGREXp7e9/05OHk5ISlpSU++clPvpPLftN1fHzM6uoqzz33XNvj//5fv8r/9gvny0jJjjA126PewhpPzva3ge7x6V5WWzy7dV2S6opxdHguHRkYibG9fa6vTqYi2J5PpXLOMF6/0d+mJ+/pTXCar+A0Bm1dl1y73kepXMeydHRdohkaddelXHMoletk8xWmJ3vbJCm9XXFy5Rq1lga5m9f6uddidWYZAjOsUaics18zY90sbp409Z8KGH06ztroBjSSJEVFgmfgRBvH9sHMh6jGa00QSkVg+BbV8Pn5QxUTT4Nai4baKOn4BjjGOUgRJYGu6dTMFuDiQKhmBMdrGSxlUWDpGrbrgwJdE2imRBeBnr4o2/X7miOIKouCX0c1mHThKKQjiIdMUIK68KhqlxlB3ZdQUvj4CEMGTPaFcVv4ClERCKHQpEQ3NKrSQTWuOeLqaBJKut2+r6/QKjJI4fQFGkFDr6MpIsqgqtn4rT7iSqGVJX7MP5sXBa/PE2g2ePF20Be3LSpGNdjWEYE0pi5IRQxKdRtPgRKgpMJwNdxU+/usZSWiq/09EXkZ2DC2Yp+Chv7HCa719gQ+677P4vbJJUA8PdjF6u4J7gXJwlB3ElOXWFJv+oFDIKeIhU32Lrh0AAEzvrrPSE8KDdFs+hzt62DnKH9lvPzcZMCmz470sHOQp9hwDglbBulkmJ3Dy9rsRNRiZriLVx5uX3pO0ySjA2mWt08AiIVMepLRZlDXtfEeFjYOL2GASMigNxknkQhxd/H1AfKnbo3wlbsbl75vZyUFfGJumK/e37x6A2BysItYxLzU0Hr+fCerG8FnNTvdy4MLkpvbk32XQHw0bNLVHadmuxyflq5M9oyEDEK6RrZQpa87wd/74e9kpP/NsXlvpR4+fIiu698wJ+L1yvd9DMN4x84rH5U6sy+c/f6Pnn3h/D98az7iH+b6WH+b4/E4pdLrp5G9UZ3F9H6zxtx7nsfu7i4bGxsYhsHk5CQ9PT1vmU34ZtCIFwtVfv1X2qPsM0NpHrcE84xN9bSBcF2XFArtDPX0bD8PWwJ/unti7O2dL80roKs3zvLyOds2NtHdBsI1TaCZWhOEA0xN9XC/RSJiWTqJjgiHLVrx2esZ1jdPGeiMEwmbhMMGmqHR48VwfR/b9ohGTVa2TxFKoYRASsj0JVnfzTWP098TY3U32wThvlD0fk5jrW+t2fEhjk1USOH6HuQ0lAsWFnVcOAlSIJUrCIctyrYNJR2UQrkCEdOplxyECKLCcQV6XKdaczBcDSkFlmNQsOrUGu4cwgdZkPhRRTXi0nROKQsMqVMNe7g03EMUUBF4KEqGC75COBLdF8RME4mgLFwK0kY1GHrhQVyEqAqHrN+wLPQUsiqI6DqaLpBIKp5DXXoQEZy9GZojiQoD23PRpUQiKXsOnuWDkHiOQncFlmFQEwGIregu+CCKMgDtQiB0gTAETsgHH6K+Ts3wguZLoIgTNIMWZNBYKgERaNKlI5E18KJ+Q/8okFJDzwYs+xnwK0gXXYZQmo9jNd4vAw5dh4g0cCNnEyZBXXnoWR2VPv8eeh0+2omOaPV7T/r4OR2Zds8BYsKDZ8rMf+UQoYIHx3ribB6V2pyEFrePmRkMmF7PVwgU14cCz2rf81nbP6G1ipU6pq6RToTbwmoADk6KfPL6EC/db3cIWd/Lcm20m4X1ywz39n6eT84O89IF4FqtO9TqBqlYiFzpnBlOJ8KkoiG29/NEw+YVke4++0cFMp1xPNfHELItLXdh9TCQsLQ4qUTDJl3xKOs7p7ADN6YaspkLdXOij//09Q3uXL/sCnNWtyb7uXt/m7H+9KWAIoB4xODoqMhquc7t65cdXRLRECenleaEaX7xgFvX+rnX8IfvTZpXMunlqo23n2d2KsP+0eXJCwQTgPuNScbeUYHv/x9/k//+B/4Uz8wOXbn92y3P8554gL8X9YQR/1DXx7ZZEz6cFobfqFnTdV02Njb4yle+wv7+PjMzMzz33HP09va+rSW991uaIoS4dL5/9+uv4Lb47A6NdbaBcE2TlC64okzP9XPcAoR7MgkWWvzAFRCJh9vcTa5d72sD4eGwwclp+/fj2mw/uy3AuLsnzur6eeiJAkbHutpA+OBgB49XjyhXbPYOCiyvH2M7Hq892ObBo10WHu9j123mF/coF2tIBamwye3pfgx05kZ7uTXRx82xbiwNuuMGQz1xuvoixP4zn20jh31qUjs1sXfDFGNQ0gU1S2JXdWphjWzMpRKDekhi+xq1tCAbtrGT4AmBY0rqaUHWdLDj4LkS2xLUk5CXLrYpsIuSsiM41lxsV8OrSTjUEEUdqevIsk64bJKohEmWw4SUgfLAtCWaI9CLAtPTcMIK+yw8xxNYngaa5BSbY+pUlYfvQKxsEq+GiNoWyhNITQIC4UNcWYSEQdl1KbguWaeOU/exajpJ3yLqG8QdE6pQrNvUUZRcl1LVwfQlRoMiVrqg4rvUyz4yJwO9ekmgXIFvSryQhm9KQuj4Z98VKSibHp5SaMVAtkNwZUhDQF5iFQ3itRDxWgjTMdCFCccablVS9wVl4VO0fIRh4GsCNwpeGOqWh4NP1G5pStIFFdNFz7fwJkLgJhWctC/zeykfddLOr6iUT6TcHqvudtmo2+eT0LXDIpODXegXItwfbx8zmUlxezxDdzzKwvohKzsnrO1lGcqk0LX27U8KFSxDJxYJNDypWIjb433kclXuLuwykklxsRbWj7g12eJsoBS3JjJ4jseDxV36u+OX9jnJV0jEw5gN//NrI924dY+17VP2j4tkOhPIK+Loy1WbrkQYS8orQem9x7vcmuwDIGxppKNhNltkJIurR0wMtq9G3hjvZb6xinXv0S63G/u31tx4L/fmd7Adj6ODQtAg2lK6JohoWpP1v/9ol9sTLcdRkOmIk7swwXmwEGwXtnQ8//UlHzMjPdx7uMuNsd5Lz40NpJsg/KzKVZsf+5++yJdefPS6x3w79U6lKR/TBfxvWB90Y+U3Q8T9h7k+toy4EIJYLPa2GXH44ID4Ved0HIft7W22traIRCLMzs6STqffsZ7ug27W3Fg65Ld/5UV8TxGNmqQ6YyRiFtevZwIvcE8RiYfY3DzFMCSO49PVG29rxlRAKGLitUhSZm/2M9+SuplIhNnaaddtDo2kebx4vvQ7OtrJw0etEwCBaWrUWvyN52b723ThsZhFuWa3hQTdnO3n/sL5cRIxk+NcuZn0pxSMDHXyWsu50qkIvhY0hwG4/QWc5+t4ZsOfuhiw1XaDIdU8SahqUeg4dwWKlC2quoOXatzlXBB5DSd1ftcTFQGOwE2cPyZLAh+B04KHtJJACYGXAA9w8JGOwKv7lCLnr1U4oFUEhCSu4SNtsNAJKx0hBQqFjYfneEgfpCsI6wZlHEpaYLoIIB2IChPpS2q+iycVhibRpEnd97DQUAKqrktB2YEOwFFoSpAwTGrKQ8qgEdOuefh1QIFEoFkS11Cosx41BVHXoO67uKbCB8p4KBtkWUKDBQ+bJkpX1OsuUdukZDjYQkFYUEFRq7mgKdQZARgT6J7ELyn8WHCMmuYhBESrJpVwIxlTF5RUnXjVohQK/MgRgnrMR89qqNR5wqiXUmgnGnS2MOMpn0QpTCV2DtqK4RrySA+SUH2BVALV4+CN1tDWgwt8vHXE1EAn6/tZXNdneqAL33NZ2c3Slwpxkm8HgcvbJ1wb7mZxs916b++kyPWRbixdY2HtqOnQ4XpwWqjSm45xcMFJ6N7yPrcmMxzlyoR1vS2JMhIyL7HfAJt7WW6M96JL0d5nAaxsHTM31YiVb7kF3hjPsLRyxGAmia6JK9M1Hy7uMz3Swclphe399gwF1/M5OCzS151g76jAtZEeHi8ftsl67i/scWP6nDmfGOhkscWBqVJz0PO18/dBwVhvipXN9vvP/YU9bl4L5Dm3p/u59+hqpv3+o11eeGqUr9xbv/L5no4oj5YP8DyfR4/3g8bRBouuSYH9Ou4qvufza//266xsHPN//QvfgnaFm81brXdqX/hEH/469YQR/1DXxxaIAx9KIH5RmmLbNltbW2xvbxOPx5mbm6Ojo+Ndu2F9kEDc9xX/+P/1pSYTWS3bjMzEmH/1fKk63R2nVKpjN8BwLGrSnY6SiJiYloGmS0Ixk0KxzuhoJ5WyjYdiba2dxe7uS7LcMlhOTve0gfBw2CBfqrcNuNeu9fGgZXAc6E/xeLVFsykCPflKC2M+PdnTBsJ1XWBYGvnc+WA4N9PuopKIWWiWxvFJESUV9u06zkxDv6xAHGoBANcCdlYWJJ4fWPfJnAxkFjWBbfqETZNq3kV5CqUk4bCJW/ARgKaCsBhdl3hVhVQCFHgi+FycqteQqyiULlBCUSt7oBTCEYiIwGsE20gXpC3wwgov3HiXXYGogzIFOek0Bw9pQ1ga+MrDE1B23ACsSwOEQiCwlYftB2yxEAINCZ6g7nk4QuEoF10JorqJJgPpi24IKrZLseKgtIaExoeIZeJInzpegHF9gV5X+H7w2kOGjut5AdNdD5YNpSnxdEVAOgrCSsNzFTXDA11QwAmAvy3wIgpk0FCKAq0o8MMKdHA1BRGI2SY13cWVPkoKSrpLshaiLBrfMSUoKwczp6OHZTDZU4HrjDjUCUd1HNcLgKQUhLMhlBHo4cu2wykeWt4MAH/QI4sfUWj7Yfwz0C6AaZdQzcHYN0ApHNfj6cl+Nvazbb7d26dVhtJhdk6rbb+Bhc0jZkd7mF8/bAbMdCUiPF4/ZLQv3WY1CoF8JWTqJGMh8i3AOhY2wYeOSIhHa+265+NcmeG+DkqVWpuTy1BPkkKuSucVTaIAD5b2gyCcxV0EgTTkXuO3t7Z9yuxkhvnldqAO0J2OUszVX3e5uFy1CYcMboz3srR6dKXt39LKEZNDXZSqdQ4PL6dvFko1Og2NdDzMUG+K+xfSe89q/vE+z90c4mtXaN7P6sZEL199ZY07s/28ttx+HAEox8Fxz8eM+wu7gYRmeZfrIz08XLkstQG4OdnH/cd7bOxmWd855e/8jf+cePSdyUreCSN+xoY/AeOvUx8z8PpRqidA/EMGxM+kKfV6nc3NTXZ2dkilUty+fZtUKvWenO/9tGlsBeJ/8O/u8bjFFSXZGWFtqX3QSHbGOD05l48MTfSwcO9cr51KR6i7PtVG86UCJq5nKByX6EyEEZpPpj+F4ylmp3qRmghGL11jfLSTWt2lWnPo608FbHhjEJiY6G4D4SFLx/b8Nu343OxAG+juzyTaNKkIGB7qZGXzXGs7Pd7DgxZnh3DIIJ4Ms3WQw4142HM2kS4D58BH+eApICzxqxJPKvSsRj2tAgYVH83R8AyFSgevvua4SFfiNFbGbZwAKEqFOguB8UEvCtyoClxMAGGDrDYesxoa8FrAYLvhQEONgpCjoylBWXNQusBwJBECXbqHQuoC5UHEBU+pwEpRU9Q9F+kJdAWm1KjhkfMDNlh6EJEGFjq+5+ACNeUR1nSSmoWnfDQZuKVUXZeKCnxTNCAsdWKGiad8pC5RjffgDBgJJQiZOp7uU1MeLoqq42AqiaXpqIYOXvmgVRpjnQFoIpCiFL2GHhw0qRE2dJyqhxSBlEahUMJHVX2UL7A1Hx9FWbjorsSwBXbEByHI4aI5GpbUqBrBxNI1QNQ8TFOnrrUkZroSx/JxpcJBUcNBK4JKBEAfBH4E9LzET3uNMVrgpTy0rMTv8JvfwfpNm+mOLopbNht7WTb2soz3pS+lWW6dVpka6GB5J9s26M+vHfLJG0PkclUWN4/ZbzRRLm0dc32s5xKwPsqVGepNUreDz+HGaA/Lm8fcX9rD0DVG+9OsX9BQb+5lGeiKsHNSQUrJrfEMDxf38TyfnYP85QTaRt19vMvNqT7qVacJwpvXvdxgh1t01aP9HZyelimW68QjBh2JMNkLchCAVCxMveSga7JtteusXM+nUqqTjoc4fJ30zZNsmdvX+tnYyV35PEA8GmJ9/YTroz1XatO7O6KsN+4f9+d3uTM7wGtLO8371K2p/kuvGwIJzVhfmKXNy9p8gFQ8xPLGOYHwyoMt/sZP/yb/49/8Dob7LgdCvdl6Yl/43tRHTc7xUXotb6Y+9kD8w6YR932fo6Mj1tfXSafTPP300+9pV/EZ+H4/gbhSimKuwr/4B/+h7bnugQ6WWuQk0zcHWHzYwhx3RNhoYboB0pkEqy3M9rWbAyzMBwNT9rRMNG6ytHiMXW8ALmDyeoblB+eD17XZPh7d28bUJeGwQWdXDOX4TA13oRsaUkAkHqJWd+npjKF8hRnSKVZsxgbTOK6H43n4ysX3PSQBszl3rb9tCX54IM3azrmdm6FLenrjrO2cUh90KT9jowyoYqPVBW5YoayAFpcVgXQkTieAAA/0nAhkJw0CScsLPJMmCBcOaGWBm2jsQ4O91dT5Y14gQ3HDquHP3fDwdsANBzZ+QoFWDRw9mi4qXsB+owsKmnN+Pg80U6NM4KAiah4hqaELjarvBhIHTxHRTFzfo6p8dEDXJLoUGMLE8xWWpmNI2TQNMTQNQ0iELgLm3PUImwaalHjKp+66geOIgrCmY+Nhex6GIRFKYtsOeqOf0dJ1hC6puA4CCKMjNUFd8wNG3gcDDR8fZQa/CQlIR1JULkoPvkma66MchR8+e3sVhitQKmDLHRSEIOFaFIWN0sHToaJcOhyLnB5MRFRI4Pg+kbpBxQrey7LuIKogdFANObkXbzSLJvxm94+bVOinEj99BryDJNRYzaIcCmRLSioe9u0RXrWQjR1X904Z6e3gOFei3CJdWNrJcmO0l/m1A6KWRnfcoljx+er9LW5N9qGa36SgHq0dBv7eF2wDdw4LPHd9kLWdkzaXIMf1OM6V6e2McXAhxXbnuMJTUxlOstVLMo1AThLIZFprrD/NyVEJy7p6qLu7sBtIWJb3uTbazdrmSdPCsFhxGIhHmh7hZzU93M3G1gmO4zE12s3yzsklVjwWNtGV4GC/QHc6dinUC6CvO8HK6jHpVIRq3aZut48lAuhORVndOCabqzA71ct8CxiXUhC1DE6Oz499f36nyXYP9KaYv5Am2jy2UlRKLqOdKTZOC5c8yQe6km0OTxCkdn7/T/8G//xn/xIdifaegzdbTwJ93qN6Ik35UNfHGoi/E9cUeH+BeKVSYWNjg8PDQ8LhMM8++yyxWOwb7/gOqxWIvx91BsR/9R/+PsUWTer4bF8bCI/ELHa32jWVPf0plh6dDzwztwZ43LJPKh1hvSVcRwFdvSnWV8/B+8xsL49bvMi7e8+bMV3Xp1Sqk+6Ks94C+G/cHOCVr200/+/tTZAr1ag1AIyQgs4ui8PTc732rdl+VtaOSUdC6IZGV2eUSt1lsDuJlALdkITCJhXXxvicxklXoA0XPiTKIbLxWpP1SpZDlHUXqQlCtkTYoOyAzY5UNYQC5Ql8CcoNpBjSARsfdEGoJhAeKOVja4HCRdQg5OqURQD+dVdg2RrSF5Slg68LDFsQVQY1HBxNIYC4YyCUoISN0gU6kpin4aiAcdakIORpRIROybUx0LCUho4kLnQ0KUiFw3SEQ6SsECEpkHaNkOtwY2iAF25cp+tdmnj6vs/jzW1eWlhkt1hERWLUdY1i3SFbrZKt1SjUanhCgRJI5aF7IgBdesDmR12ouAGCN0yJJTSqFRdPKJSAkGmgOYKa5zRDjXSpMKrgmOBJRUk4aEhinkFOq4MQZIWNUdUQlsLRfHwJFcMJVirijV6CEGCDrIjAG50gaVQrSVT03DLRTUKqEqJw5lMuBSWtjiwKVONYnuHjftLB+EMT4QbXuXGQZagniRBVSg0HkpAZeMU/d22Qrz/aYaNy3vB5b3mP21MZ7l2Mkl9ueIkv7aFrktnRHnYP8nz1/iaz470cXmiILlXqhC2dRDREoRxcs2VIJvo7ub9wwI2p3kvabV8ptveCePedwzwCxe2pAR4s7OL7ikQsRHdHlKPsZeLl0eohz98c5pW7m5ci4XcO8kyOdrOyHYDta6PdrK4fN1nwpfUjbkwHQP7s92iZOl2JCJuNnpNuM0YyHibfkjOQiIXwbJ9K1aZStenriXJYqOK45+e/Nd3XnHD4SrG4fMDs5DkYvzWZuVI3fv/RLrev9XFarF5pVQgwM9LJ4toJJ7kTMt0xyqbe1ODPDHdfAuFn9cyNobcNwuGdA3EhxBNpyhX1hBH/cNfHGohHo9FveiBeLpebALynp4f+/iDK+f0A4fDBAPGDzSL/4XceNh8zTI3shQF0eKKHhZYEzckb/W0gPJGKsLVxLvlQQLIzSrYFdM/eGmS+hfnu7ImwvHIO1DVdopt6kMp5ts/cAA9aHFtGRzuZb9F3RiImHqoJwhUwMpxgfft8eXp6socHj3dRCipVSHdE2DsukW00YgopmBrv4eXtTcpPO/gSEsUQ5ZKD8qCguViOiecp3LrPScoBJRC+Qs/5OAnVsPBT6HmFaymU2QCBNYGqKfxIQ17iB82YbkQFCFyBVgZfg7oZgC9ZB+FCJeQhNIF0ZaD1NqCueYGjiU1gD2hKbMdDOJKYoaNrGspXGEgMXxLSdOKmRUcoTGfYZLQzzfVMN08PZOiIvv4AXywWWV5e5t4rrzA8PMzIyAiG8fYTAE9PT1lZWaFcLvPZa5MMDQ29LkBQSrF0dMLd3QMeH52wnc9zUq2Rq9Uo+QpTyKCRzYOq7QY6cimw0KhXPZQZ/G96Etfxcc3AJhwbQq6kaig8CXnlEFMmtvJwhI+nFKrukzRCVHDwvKBxVDvxsUIGfkPTrZRCqwhMSyIben69LHFEwPqHQzqFmoMsaRAKJgimIXF9H/IKLIWSipruYr2g478om7aGW4d5JvrSjGcMXNdnZeukGS0/N97Lg9WDNvbq7vI+10bSPN5ol5Ysbx3zqblh5lcP2laB5lcPuDnV12zoPKujbJmuhImuwWR/J3uHJRYav80HS/vMjHXzeK2d/a7WHcI1h6FMirDUuDd/fn8olGpkwolLtoZSCm6M9fDw0R69XXH2rnBSWV4/4sZ0H67rsbJ2fEn3/nBxn9vXB7i7uIuuCYa7k6y0yDqOTkoMZFI4jhs0auqSzniEjRaZ2t5hmcFMnN1s0LQ9O9F7CWT7fgDGr0/04Hr+6zZvAkgl6AiH2BV5LkrYM51x1rZyzf/3j0rEIzo9qTC5ss1prj2t+KzCIYMf+Ivf+rrnfDPluu4TD/D3op4w4h/q+lj/ImKxGJubrx+u8I3qvQTipVKJ9fV1jo+PyWQyPPfcc0QiEdbX19+RnOat1plf+vsFxJWv+OP/7wbKV02GafLmAPN3z7XiI1PtIDwSNTnYa2fIugeSrDw+Z3Wu3exnoYUd7+1PstTyvK5LjJCFd3rOWg0OJ1lfzzX/n5zubQPhyVSYk1yluSwtpKAnk2CtZQIwez3DfIuufWQozerWeXhKPGahmTrHx4GjixCCmckeXvH3KHzObaZdeicubjxw1ACgALahUB3BRMmqabiuh5MCEBiuRJUUTkNiInzQ8+CGFUIXhF0dtxIk8CkBSc+iVnbw3EDKEtdNnHIA5JBBYp9VD9w2KiJoUIwqA+lCyXfQNQ1LSXRHINAwNUlcs8jEIgymksz2dPHC6BDj3W/PyScej/PUU0+Ry+VYWVnhxRdfZGRkhOHh4bc0sOfzeZaXlykUCoyMjPDUU099w/2FEEz3dDHd03XpuaNymT9a3eLu7h6buQJ7xSJZu4b0JZoUhI2AQbY9D4/A6SWCpO542LpPzVAYXqC1r5tQFh74ioQMUZB1QCOPQ8zTqVguvlCAxPcFvgauKQARgPYKeAlF4DTjIasKZUJduI1kVYFeCOQqtgJ0ieaAqqtA3uLDse6SeSbG4HaMZCREvlhjbeeUTDpOre7gtIDQB6sHzI1neLDSzoAvbJ4y0hNh87DCUE+SZDTE0sYRf3x3gxsTveSL7e4n95f2mox5a0XDYYZ7urjbmLSelVJBs+XIQAcbrU5HStGXjuPaHht77atlAPtHBcaHO1nfzeL5ikQ0RHcywoPGRDocMi4x12cl/UDSdBGEn9W9RzvcvNaHa/s8vqL5cWc/x/hwJxsHWaaHu3m0dHmb7f0iMxM9lOp2myVqa/m+4vioyMAVNpBnNTnSxf0GSJ+Z6GFp96TJ4AsUEVPn0G0ft4oVF8v1Gc5EWNm9enz5q3/uebrTb58AUko9kaY8qSd1RX2sgXg8Hv+m04gXCgXW19c5PT2lv7+fT37yk20BCN/IR/y9qPczuOjf/+pL7D/OoumSeCpC/1gXtWKda9cygY+0BCNkok/3YtsutapN90BHW9T99M1+FlvY8XR3jNUWpltKiabrbY2V03PtYT8TUz1t7Hg6HWW3BexrmiCRCrPZIo8ZHU2y2gLCp6d720B4T3eco2yped6QpQfM/V4u2EDAxPUu/ii1Q70/+Ix1T0AOnI5gA+kL9JygngiSJs2ahlYB2/eRSCxHQyKoOm7AwhYFltIp+TZuKABjYU9DOecgLqJ0fDeQSmAKwr6G5/rUDQW6xHQEXk0hDYEuNfRaEIZimhKUIuGb6ELQn4gz1pHi1kAv335tgs43YLjfbqVSKZ555pkmo725ucno6OgbMtpwzqhns1mGh4e5devWO2LUz6o7GuW7b17ju29eaz5Wrtf5vaV1/nhji9VsloNShaoTgGhL06nYNp6EsJJIX1L1XZRQRD2JLwKQXJI2FhJlgS19SpqLqCpMS2JrPjXpgguaC14EEIEXuV4QePFgMuWHBbKqggCnwNYbN66CXoHkmSQFLEfH887DifbjJWIZg7WvZZt6772TIj0dMbqSEY7z54zpg9X9SxrwWNgkZIWY6hUs7+Zo9ft4tHrIzGg3jy8E+Nxd2mO4J8rmYZmBzhgR02Jl84Qt8tyYyvDwgg2h7Xic5ir0pKMcnpZJxUJkOmI8WgyuY2qsm6X1o0vE2urmCTem+8iXqlRLNmstjdIn2TJD/R3UWvXaSnF7ZoD7DXZ97lo/DxYvN4VKKfBt//VCNYNzbxzzyafG+Ord9dfdZmcvz9RoN7uv08ApBSSjIeYf7XJ9spdHFxo4YxGrLftgceWQ8ZEutk7y1Oout6b7myD9YvV2JtjZLjDSG2HjqJ0Vnxju4s/9Z7fe4NV94zobt55E3L/79USa8uGuJ0D8HQLxer3+jTd8E5XL5VhfXyefz9Pf388LL7yAZVmXtvug0jzfD/C/u37Cv/pf/wAAz/UpZCuE4yX2Ns+XcK8/O8q9P15t/j9+vY/5l9YBCIUMuvoSlLMVhgaSGKYeaK1jYVznzHtZEI5ZlEo1ojO9+J5POGqRy1fp70viuT6aoVEs1YlGzMAizvXwpUe5JfZ+5nofD1u8yvv6w6xunAP1wcEUa1vng3wiHsJVfvMYmiboG0ixsZMlZOlIAV03E/xx7y5KQqisEcbAsxVKg1ARTHQqyqVuBU2AlmcgfEUl4gGSkKchHEHJ9MCSmH6Q6FgKudCQhoiyCiQmUmB5ElXxqUsXU0qSukmpbONIP2BuaxJXBPrkhGE1EjkVMWkQM02GU0luZLr5tmvjzPVfDgp5LyudTtPR0cHJyQnLy8tsbGwwPj7OwMBAW1NxqVRidXWVo6MjBgcHuXHjBqZpvqfXFrUsvnNuhu+cC2K8faX4w5UNfm9pjeXjLPvlEjUv0JXbwidmGCig3EjZDCuNOj6OBOqKGDqOVLiuh2f76AIsU6Pm+Sip0PPgxwI5kRsNHG+8WMNCMSwQdYWsg2/RaNZUJOsWeSu4d9UNj4itUzWdpq58OZXl5q1udu8VmuDyMFuiMxmhpyPGYbalQXBln1tTGVzbR/mK5c1jlkqnCAGTgx0sb59PVn2lWN0+YWKwk5Xt9mROzxc8d22IV+5vAefHf7i0H7iiXADAxXKgJb81mWF1/ZjFFqnK0toRc9N9gQymFbcp0BB0xaPc3c5d+uy2drNMj/ewuH6IAG5M9TVBOMCjxT2mRgOQf1aaFEyPdLOwtI+uS8aHO1ndPLl07FvXBvjq19aYnenj4dJec8XvrKQMPL9fu78VbLOyh7oA7W9O9zevZ2n5IGjgPGPgFQz2Jnm80u5Ss7pxzNBAB8IQLFzBxJ+9Bs9VOK7P9k6ZG1PdPFw/AiEQwA/+pU+/Yx9x1w0kfk8Y8fegnkhTPtT1sQbiH7R9oVKKbDbL+vo6xWKRwcFBZmdn3xAofFDe5e81EPd9xT/66X+D0+JOcO3pYea/fi4dGp7qYeHueUR2JB7i6OA8pKdec9AtnY2WdMzZp4e51wDqAGPTvTy6v91c6k6lIzi+otRYLtc0Sd9wmr0Wpvv6rUHm53cDZwwpGJvqZHXxgLAmUErR3RulUHBJhhtpgqkw1ZqL1WCNLVMnErc4PCxiimAwGxnuZGk1uM4aLta3xvhP0UN8BChBzLU4MeuB1tuHjprJkVEPKDEfOuoWWd1G6ICClG2Rk3WEJtBqkBAmxYodNAy6kpCuU6zZCE0QtnWEo6jpCmEKokoDJSi6LoYhMTyJ8hSWZuB6HspTxDWDoXSCO/0ZvvP2NEMdqXf0eb8bJYSgq6uLzs5Ojo6OWFlZYX19nfHxcVKpFGtraxwcHNDf38+3fMu3fGDR2lIIPjs5ymcnR4Hgd//K5g6/fX+B+YPjoCnUrmNqgqhpUscl5EuEDxXNpyL8gD3XNeoysGaUvobUwRXBRC1eMyhrLroQ6JpEVkBIha8UuiEpVupojsI3A6ebvFFHzzfSOYGK6RK3TUqW3bRjvN95xNPXM2w/znL28z/JV+iIh8l0xlG+TyadoFp1WFg55NpoD/dX95vQUSlY3cszM9rD4/VzcOi4PjuHeXpSIQ6zNUYzcTRhsLZ9yslJ9bLkBLj3eC9gxluY95G+DqSvKBZrbT7ZZ/Vgca8NwMcjFoM9yabt6NxM35Xs9uLqIeODCVxX8fCCv7fvK7a2Txnu62BzL4uuCSaHunjcaG50XZ+DgwIDvUl2Ds4n5nPTmSaAnn+8x83r/dx/fG6HilKMD6RZWT9pbjN3raGdb2xzfaK3bVLg+4rFxYMgPGjlgLmZvkvXe1bbu1nmJvsoxSxOrtCAz033cW/+nClfWDrixmQvi7vHPDXdyeH2Aouywujo6NueyHqe15Q6vp16Yl34BvUEiH+o62MPxD8IaYpSipOTE9bX16lUKgwNDXHz5s03tVT+QUhT3o9z/h//6mUetYDunqEUj1t04aalUy7bTQCtgP7RTpZa7AuvPTXIwv3zwWRovItHLVryWCLMyWmpeQyhCeIdETbXW+Qkc/1tDZzXbw0w3zJAZQYSrK6eNIFJZ1eUXN6h1IimjsYsaq7XjLg3DElXT7zp9SukYGqqp8lauRFF5TMG25EiINAqEJI6pyG7+b8ldU51B2kLNBuSmkWhVsdSAk0JdEuj6NugCyxXQwhBXnchIom7BnU8CsJFC2nElUHZc5BCkFI6tapLXfmEpSDkgyfB0nQsTSMTi3It082fujHBU8MDb/ETff9KCEFPTw/d3d1sbW2xuLiI67qkUileeOEFIpF3XyLzTkoIwSdGBvnEyCAAB/ki//zlu7y6s89+pYyvdBBQcG1UHWKaxFYKFx9DCFRYUG5IU6QfMN1F6SDqYEtF3fRBgKgHYT5KC1ZIhAuiAspS4IKha3DoNkeBqvBIe2Fy1FCNpNFXu/Z52u5jbyNHVzKQpvi+oliu4ynRxlLfX97n5lSG+0vnYNz3FSvbJ0wNd7G02RKipTwSoTCdwzEetzgQ2Y7HSa5MX3ecvaPzSTbAo+UDpke7OTwpMtidZH6xxSFpvKc9TOvsmh7vcX2iB9v2yOUqbWzxo6V9pka7WLqgx+5ORykW6qRTVwcF1W2XfKFCX3ecRMRi8QIDXanaGIZGV0eM42yJ6xO9bQ3dAA8e7XJrdoB7DQ/zsYE4K+vtDa4PF/a4db2fe4u7ZHoSbGxc1o37SrGwuM8zNwd5sHg12w1wa6afew936EhG6O9JsHt43pQ60Jvk4ePLNocLywfcmOnjb//Ad+LaFVZXV/mDP/gDhoaGGBsbu3LF9o3qTB/+TqQlT1xTrq4n0pQPd32sgXgikaBUKqGUels/7rcKxJVSHB8fs76+Tq1WY3h4mIGBgbfUbPZBSVPey3Me7eb41f/5yy0nFAhNtjVGjc8NsHC3VQfe7iHeO5BiZeF8IAqFDcplp5nKCdAzkGR16XzQvH5rkIct2vKZuYE2ED401sliy+CWTFocn5SaINyyJLbnUioHchPDkKS7YmxsBQOqkIKR0a4m8y2EYGa6l0cN9qw8qMg/A660kTXQC0Gcd6XqYCKQLoioRhUPoQtCJUEtojiVDiIsidk6RdMF4aH7kqRvktXrSASWLQkpnXLdBgXpkEWxXqcgbOKaEQSO4BJCIAlsBqMSuk2DP33nGv+nTz6F9S5oqN+vqtfrrK+vs729TXd3N7FYjJ2dHV577TUmJibo6en5ph3Ae5Nx/h/f/mkAynWb3747z5eX1lg4PMYLsjQxpERDUBcKvQohoSH1oBdAs0ELSXxD4fgKrQpemMBj3lXIWuBbrnQQHmg1gReGKj7EBEZN4ESD38kJDik3TFbVoa7QfclC6pQ5J83+frHNVSQesRjKJNlqsRK8Coy7ns/Gfo7B7hiu4xAyDHYPy6xuF4mFq6TiFrniucSvVLExDZ10Ksxp7rxxMmTpRAyd7kS0DYQDPF49DBjuC1H3pqFhSA3bd8nm25swfV+xvZtnIJNkp/EaJke6ONwvUKrUOcnWmJ3OXOnF7TgePckY69uXJSgA+UKVnq44s5O9LC0fchWZe39+h1uz/Tiuz8Li1X7fDx7tcnt2gKOTYpCuekUZusbhboGZkS7uX3GtowNpHpxlJ+QrRGyT4d4EmwcFhABNiNdtQv3u//wWiVgICJFOp8nlck1APjg4yNjYGOFw+Mp9L9Y7jbd/Um9QTxjxD3V9rIH4+8WIK6U4PDxkfX0dx3EYGRmhv7//bd2UPqhmzffqnEopfum//7fUWvTXA5MpdlZyzf9HZzJtIDyRjrDVwmJrukSaWrMJUgHDU708bgHVs08PtzV0TlzLtIHwvsEUKy3MVjIVIVeoNd0GdF0gTUm9dNZwJMgMpFk/a84UMDh8vrSsgGvTGR41BkYFXL8WDOq+BrlrCtGvo4ouQgj0qsBOCmw8DKERcjWKMRfwCbs6uiMpxVxAoJchbOjUPBejCLoSmIZGybExlCBq6BRxcXCIaQa28Kh6LgnDwnV8vJqPgUIT0BWOcGewjz975xpPj/Sxvb3N2toad199lcnJSdLp9Fv+TN/Psm2bjY0Ntra2SKfTPPfcc8TjcQBGR0fZ2dnh8ePHrK2tMTk5SWdn5zctIAewNMknO+P0lZKkro+w5Eh+d2WTzdMcRcfG9TwMQ1DFR68LNEPiiQAwKwek8DGkxLSDpFVfI+gBcDVKuoOvBVrkmGtQ0h0QAiekSDgGBSOw3MzpNvGKTjHi4mqKYtjla9EjZpMpTF1r+k0XK3U832e0r4P1FpeSVjCuS8FgVwzlORTLNolomM2WpudS1SUZFYQtjWr9/F56mg8Y51jExPcVU8NdrKwdce/RLrGoRW9XnIPjdsb8weM9bs4EsewAk8Od5HJVHizsEo2YZLrj7F9g2Wt1h0rFpiMRZrivg4ePdtu8xBdXDpkc7WK5hTXvSISJWiYPHu0yPNiB7biXwngA4lGLetnGMOTr+nmXCjVisddnlgUKu+LQk4qxf5C/pCtHKSZHunm0sMfufp5bcwNtqxQhS6dSrre9pkrVxt53GeyJ0NmZapOktNYLz4zxuRem2h5LpVI8/fTTFAoFVldX+cM//EP6+/sZHx//hitP74Zjyjfzb/eDLKEU4iMk3fkovZY3Ux9rIP5eB/r4vs/BwQEbGxv4vs/IyAiZTOYd3Yw+ahrxP/y3d7GrdaZvDeDaHlKXHB/niKfC1GsOQgryLUyWAjq646wvnevAZ+4MMf/auXb82q1BFh60S1QWWhxR0l0xdndzzf/DEQPHUziNwVTTJbFUiO2zZi4BQ2NdrDY8yBUwNdPHo8aAr4Cx8Q7WNo4JWTqhkMHYeDen2QrT491omiSaCJI3h2518mpvjooZWMxFShq2rrAbaZdmFtyooio89FIQIx+KaFTrDoYPUoEdgbLy0FyBqWvUpIfte0SFjmMofCXowMJzfSq2S8zQqfs+jnLRfUW3ZfHc2CDf+8IdJno72z6P4eFh+vv72dra4u7duyQSCSYnJ0kmk2/vA36PynEcNjc32djYaDqpXLxGKSVDQ0P09/ezvb3NgwcPiEQi35QTDM/z2NraYn19nWg0ytNPPx2AHuB7n79D1XH4Fy/d48sLK+yWShiewlUeTsVHSfDDKnDOsaEa9qgqD1EO3FKUBr5yMQoCpRF8icIKvQRuDBCCgnCI2jplM2Bdi5ZLpKI1GoHB7lQ8ruUYdxJNpxKASs1hzy8yPphmdfsUlKK3Mx64jUx0sbB6zObeOYtuu4qhviRbLWA8X3bo7Yzi+RVs53wArtVdro/3srJ21Ob0USrXCZk6qXiI3EUrxMeBLtxz/TbWvFyxCVkGqUSIXKF9H9t2uTbaw8LKwaVAH8/z2d07Z837ehI4NZfdBoO+uZ1laryb5c3jtnTNyZEutjZPsR2P8dEuNvayzUn9WfX3Jjk8LLKxccJAX4Sdw8u2iTdnBrj/MLh33boxwL3HO21g/OZMf5PtBnjwYIfbcwPcbejPJ4e7rtSNu65PveJB8mrAEwmb/NB//bnXBb6JRII7d+40m6FffPFFMpkM4+Pjr5tx8U7j7eEJEH/desKIf6hLqI9xB8Ta2hrj4+Nks9m3BY5zuRwPHz7kW77lW9oe932fvb09NjY2EEI0Afi7ERFfLpd5+eWX+dznPveOj/Vm6969e6TTaQYHB9/V4+5vnvBj3/OLTTZcNzS6BjrYb3FJmX5mlM3lQ6yQgWkZDIx3c3pcCqLlNUEsFaVWtYPufgmGqeMpmoOilAJpaIFrSqOMiIldc4L4cAWhqNUI7VF4no8vXYrFKoZhELJCRBNhSuU6vq/wfZ9kR4SDwyKO4+HYHgMjHcw/2sN1g0a6gcEI23uNQVXA9dl+Hi7uU5iE3Awgg7h38xSkJdCFhl3zUAq0aNCQp9UBD7xG8I5eVBASeBpoviDuGXjCR3rgu4AmqLguhifQDIGrfGLCCLSDviIq4GZvmr/27Z9i9E06nDiOw/r6Opubm3R2djI5Ofm+BUm9Xnme1wTg0WiUyclJOjo63tS+rus2wW4ikWBiYoJUKvXeXvA3KN/32dnZYW1tDdM03xRrv5Mt8M/++FX+08YO+8USrqYwRSDn0jSBbXvUdB9lgOaD74Pf6K8z6wI7pBrffUXEltSEh/ABoYhGTQqNNFXlK6y6pB49B5CxZUlfMUIiYrF9kCcWNsmk48TCFiFDY2n9iGyLD/e1kU4W1k7avD9iEZNkJNSmUwYY6e9g5yBHZ8LEkJK942rAho92s7rRDnQBBjJJTrPlZvy8JgWzkxk2t0/p6ohe6Vwy0JfiJFtuyjzGBtMUclWyuQpjI51s7JziXUzAATqSEfp6E2xunra5J53V7EwfDxsOLVOj3WxsnLTbo072srh+LlHp6ojh2S65BskgBIyPd7HcYn96YyrD/KN2EH2zBYwP9aXY38tfAvhn29U9j8ev45IiJXTGQxyfVrnZAtzP6of/L5/nO7997sp9r6pyucza2hq7u7v09PQwMTHRXJk6q93dXba2tnj++eff9HFby/d9NE17z12PPkxVKBRIJpM89Rf/Lpr5wTSjvxfl2TVe/Zd/m3w+T+JdSlL+Zq6PNRA/Pj6mu7ub7e3tt/VhF4tFXn31VT7zmc8AAUjY3d1lc3MTXdcZGRmhp6fnXQHgZ1Wr1fjKV77C5z//+feNHXjw4AHxeJyRkZF37Ziu4/GTf+mXWbp3zmRf/8QYj1qi4qeeGmappfmyf6yLg90cXmPgSXREUJpGseECYJganQOpc8cTAePX+lhtBPco4NpTQ21hQLNPjbRJVPpHY+xsn7sKzN4a4GEL4zR7c4CHLcFAszcHeNhg6xQwNzfQZO8UMDrWwfJxntwU+HGBsCROzUNpogmyjbzCs0SQfumDWQQ7FriuhX2NsCNBk1SrdmBnGAZfCGRNYZgaNj4hXyOkafieQiLwPZ+EYTAaNfjO2WE+eXvubbPa9XqdtbU1dnZ26O3tfVPL0O92eZ7XBKyhUKjJar+d34DjOGxsbLC5uUlHRwcTExPv+81eKcX+/j4rKytIKd+2jv0/Lq7xq1+9x+LJCTXPxfYUnhGY6+i+RBoSQxP4QF4GLjoRX6MqPZQMriPhn8tS8CGmdEo46K5ABzQj8DOvSQ9P+tw+6SJW1AkZGg9aotA1TdCXCrFzwYP65mRgI9j6yhKxEFHTYL8hL+lMRRjoTiAQPFzcuwSGZycDT/6L7874cCcb2ydMjfRwmi1zdBKscIZDBh3JCLstziVnNTnaxfr2KbMTGR4+ag8LujbV6OG4cKK5qT5yuQq5YvVKIA5wc7afWt1lbe3oSnA8ey0A64lEmLCuNxu6z0rTJGNjXSytHzE2mGZ7K3ulpOXm3ABLG4fErKBn5apKd0QY6k9zd2H7kgUiwPRomqWVc9B/fSbD480jXE9x6/oAf///+T1I+dZ/W9VqlbW1Nba3t+nq6mJiYqJ539nc3OTw8JBnn332LR8XngDxq6oJxP+rjyAQ/9WPDxD/2EtTIPAafjsf9plMxHVddnZ22NrawjRNpqam6O7ufk+Acmvk/PvV+PJeSFP+9Rd+rw2Ej98YaAPhye4Imy02hKGIiW27TRAupKAjk2Sj0XypaDR0toDq2adG2iQrs08NMd8CwqfnBtpA+MBoku3t88Fx6lqG+ZYl8elrfW0M1fUb/U0QDjB3c4D7DdAeuKN082r1mNNPCZQRxMebWR83KUAKNE8Qs3VqEZ+IkogqeHUfoQuo+FBT1MN+wJCXFEIK/LBAdyEhDTAEvuujEXwfhC/otEKMxCM8lTa5MZx5V1hfy7K4du0aIyMjrKys8Md//MdNXehbdU54q+X7Pru7u6yurmIYBrOzs3R1db2j35ZhGExOTjI8PMz6+jovv/xyEzS814y/Uqpptei6LhMTE+9otewz02N8ZnqMYrXGP37xa/wf88tk6zWkJvE1ge/45F0fZADAa76HjUcqbJL3bHxDUNRcUp5JTgusC0u+S9jTqVoeLoDrI8rghwS4kgfylOSxIGxrXBvrZqHh3+15it3TGtfH24Nm7i/vcXO6HYwXSjU6+sPcmemnUKiytn3K6Ukgd7nWcEBpheLzywfMjHfyeLWFXVcKTUjuXBvk6/e3aK1qzcEybTo7Ipxk2ycG1arDnWsDfP1u+z4AC0sHzE73ML8c3Fc0Kbg+kWlOxkeHO7GdHI5z+X7o1F3CunYlCAeYX9jjztwAx8cldvYuTxA8z2dz44Qb0xm2XgeEAzx4sM1zz4zx1a+tXdaME6wCxiMh7t3f5vpMhoX1w7bVhNGhNMur7asFjx7vMzbSyWmlzo/8tT/xtkA4QDgcZnZ2lvHxcdbW1njppZeak913Kk15u6YKH4d64pry4a6PNSPu+z6RSISvfOUrTE1NfeMdLlS5XOarX/0quq4TiUQYHR19z5vBPM/jD/7gD/jWb/3WdyUZ8M3U48eP0XWdiYmJd+d4r27wd/7SLwcx9kC8I4ISglLDIUFoklQmRvbgfACdfmqYxVaQ/YlR5l9t0YU/NdRmVTg528dyi4vKyFQPW5unTXeA/uEODg5KzUGzbzDF8WkF2w6WrIdG0uwdFZq68dGJbra2z3We09czLC4fNNm0GxdA+LVb/XwtdspRKmAaQ7bAqAZMtqXrVIs2rg6+JZACtCI4Db2uXlUoQJgS3YGQkghN4ntBqEtdU2g2xEwDXUhCUmMoleDbpjKk/QqxWIyJiYn3TAddKpVYWVnh+PiY4eFhRkZG3nWWSinF3t4eq6ur74gxfjNVq9VYX19nZ2enuaz+XjD+p6enLC8vU61WGRsbY3Bw8F1dLTur/zi/wv/6hy+xnS/ioDANHU8KysrBkhq26+HrQUOUhU7dc1ESwqZO0QwkW3hgugLbCr7gInDTDEKBAFmHjnnQXcFgR4jt43PdtRAwN9bLg+V2B4/bU31UKzZhy+TotMT+UZHOVAThq0ve1rOTGeaXLzuAjPRF2dotMTPeS7lUZ7uRSnuVYwpApjtOsVynXLExdMn18Qzzj/fwfRV4eb9OyuTYcJKTXI2OWKTpgnRWM1O9LK61O6HcnOnjQaMPZfZ6Hw+vcEEJhw16UzESyTD3Xue8sYhFZzKC0AXrF87bPNf1fh483GHuxgD3H+1cAuPB8+fHn5zoYX0v0Ktbpk4yYjVXDi7Wf/tXP8N/+WeeuvK5t1O2bbO+vs7GxgamaRKNRnnmmWfe1u/Y8zwMw3jfxr0PQ50x4k//hY8eI/71X/v4MOIfayCulKK7u5vf+q3f4umnn37T+zmOw9bWFltbW3iex9zc3HvGgF8spRS/93u/x6c+9an3LaBkaWkJ4G1NVi5WpVTjx77nFzlsSdsbvdHPeksk/exz421BPgPT6TYXlbHrfay3WIL1j6Y5PCw2QXNXJkG5ZFNtLCGnOqO4QLGhx4wlLFwF1UoAulPpCL4U5BsTga6eGFXHa4b89A92cJIN2Lpo1KI3k8D1FboukUJghg3yxRrVqkO95uD1GTyyCvgmyJCGVldUwgo0geaBVlQ4ieC7YtUEjq+QUhCROjhBIqKrFJoDVd1HI2DIo2EDHQ3X8xAKRlIpPjc7yrcMpdjZ3iISiTQB+PvxXczn86ysrJDP5xkZGWF4ePgdN2OdOQytrKzg+z7j4+P09fW9L6+nWq2yurrK/v4+fX19b8ma7Y0qn8+zvLxMoVBgdHSU4eHh92U1a2X/iP/3l/4jDw5OKQmfkKZRdz1MS0PTNPIqsLaMawYFggmjXgcrpFFxHHw9yPZxG2+BqAcWiKqBg/QydDwC4QtuT/Zx94zxVopENMT0cBdO3UX5gQvK/lGBuYZMpbW601Fcx2vqpc/qjEU/q0jIYKg3jluvs7Z9GUjevNbP/YXLAHd0MI2haeTz1UtSjhvXrg7BGR/pJBoym5Pri3Xjej8PGx7gN2cCYHxWUgomJnpYbPE1PwPhmw1wfaNFwnZWhqEx0J1gc+uUUMiguzfBxnY7GL8+nWGh5XrnZhuvufH7mJnoZfEKXfjoSCf72SLjQ11tq3itNTfbz8/99H/5jhM0ryrbtvn6179OPp8nmUwyMTHxlle2fN/HMIx3fI/5KNUZEH/mez96QPxrv/4EiH8sSinF6Ogo//Af/sOmzvuNql6vs7W1xc7ODolEgtHRUV599dX3FRQD/P7v/z6f+MQniEavDpx4t2tlZQXHcbh27do7Oo5Sin/5s/+e+19dwXU8nLpLui/F5tIhju1SrzmMzQ6w9vh8IOkd6uDkqNRstkyko/hCUGoM2uGoSTgZ5uSwEaBjanRmUuw3gL5uSHqG0hzs5tAMiRQ+Xf0pHBssy0DXBLGOKHY9iBzXdQ1PKWzbxbE9rLDBSbZM9rSM43iMT/WwsXXabMycuzXYHKytqEF5zmSnow5CYLoCUVHYDbVD3Nao1VyEDyFNgge+LqkLn7AjqUgPNIFVF3iuTyxsgaco+w6Wr2EKQUckwq2hHv7P33obWS+zvr5OKBRiYmLiA7PmO2N6K5VKk+l9q0DzzGN/eXkZx3EYHx+nv7//PWGMv1GVy2VWV1c5PDxkYGDgbYWXQLBysLy8zMnJCcPDw4yOjn4gbF6+VOFn/82XeWXnkAo+nhBUlEesAcwdDSK6TkkGv4Go0qlJFw+FVIq4MEEX1JSLh4+tB7aIAF22xZ1SGvyAUd8/KnCSq1CtBcD+1lQf9y8A3ZtTl8F4b2eces0mf8EFZW46Q7lsEw2ZLK8dYTseQsDYYIrVzfb0TYAb05k2NrqvJ0EiYiEQLK0cXjJjEAIy3SH2DhvJuo2Gzwfzu+i6ZHCwg7WNy02fEDREeo7HoyuAvGlo9A92sLZ5cgmEn9XsbH+TxRcETanLK+dyvEjYpKM7xlYjZXR4oIP9/XxbEyjAjdl+Hizs0tUZo1oJ7Bivqts3B1jfPLnkNAMQChn8o//pL9KXee/ckR4+fIiUEsuyWFtbIxwOv6WVLs/zME3zCRBvqSYQ//MfQSD+rz4+QPxj/Y0WQrypmPtarcbm5ia7u7uk02nu3LnTbED5IAJ23m8v8XdLI/7lX/sq/+Yf/V7z/4GpXh6/vIbXiKdOdcc53c0S0gMHlXA8hGVppJIWQgh8PPSwwLUVsb4EQghS3Qmyx0V6u+MoX9E5kGJ/O0ciFsJxXAYnull+tIdS4NZh/HqG1cWG/lOTDE328NpL60BgY5jqSbDbAPFdPXFO8xVyjWXziyC8VY5iZCy2riuqIRvhQcrWqVQdJIJEUUPXJQUclClJejoF1wFTYLk+Wk3hCp+0ZVGrO9goIpqBW3UJGTpJ32C0s4M/9/wsf/LOZNC0+PghlmW9K5rpd1rpdJpPfOITTSC9ubnZZLK/EZBWSnF6esrKykpTsjEwMPCBBn9Eo1Fu3rzZlOC8+OKLDA0Nvel470olSCE8ODhgYGCAT3/60++5lv6NKhmL8Hf/qz9DrVbjl373j/h3j9aQvsCXIDVJGEG15mIK0EMaZeEiawrNEngCcr6DVgpCgvAVWgl0CSIkOLXqfKW+R3wj+P7NjvW0hf7cW9rj1rU+7i2c68PvL+0xN53hQQtgPjgp0tedwFeKUqnO6GAnsYjJ3kGB/p4ED1rArlKwsVtgYrSblfVz4ArwaOmA6fEejk6KDHQnebS4z0EDfc/O9DF/Qb6iFByd2owMpanXXHQhmnaArutzsF+gP5Ns2hU239N4iFK+Six69edqOx6H+wXGRjrxbf8SCAd49GiX6zMZHi3u098TbgPhEPh9i+MSA31JymWbYqF2CYQDPJzfZe56H8VynZPjq3Mx0h0RVpYOCYXNKz3Y/9r3fet7CsIhANKhUIjx8XGGh4fZ3t5mfn6epaWlZq/EEw3426+Pm676o1QfayAObxzqU61W2djYYH9/n87OTp555plLlkwflK/3+3nOdwrEfd9n5f4W/+Snf6f5WKwjQqlYa4JwzdCIdUTZbhmMMmPdLLf4f197doyFlubLsbleHr16LmGZfXaUhy3Pj17vZmn+3Ot79qmWUB8B49f7WWw0XxqmRnd/io1GIE+6M4on1OuC8NmbAzx4tIcS4M+EyHWB7kDClWhICmcR83WNivDwhY/hCixHUnEcYpqGcAUV4WHoEukqSjWbiNTRHB9TF6SjcZ6fHOCv/ImnScXC7O7u8kd/9EcYhsH169ffNznUmykhBN3d3XR1dXFwcMDy8jLr6+tMTEzQ29t75XVms1lWVlYoFovvq2TjzVYsFuP27dsUCgWWl5d58cUXm5r4q5jtWq3WtHDLZDJ86lOfelekLe9WhUIhfvDPfBv/7Z+s8zsvvsw///oiRc+nojzipkERB+koYkLD9nz8so8Mga+DZ9JI7BT4EdAq4CqgDiKpU+10CZ8I5tcOmRrqYnv3tBlyc29pj5vXAmb87FvwYGn/HIwrRXc6RmciTF86xv5hgfUW68GTbJm5mUxbDLvn+WztZRkZTLfJN2JhHal8uhJR5i/Ets8/3uPaVA8LS+2R9J7nk4qFOK2X2W7JF4Cg6dOs2HSmo5w0vNNHBjoo5qtsbJwgROC0snCFHMQwJJYSZKtXM9RKwdLiAc/eGuLrr11uHIXA/9yydIb6kjx4dJl5PzuQ8CFmmUgBF90XhYBENMTGSZlyxSYes+jpDHN4EqwqPvvUCN/xJ9+8VeHbrdZAH13XGR0dZWhoqBm6tby8/IYT+Cfx9m9QSnFlfOuHtT5Kr+VN1MceiEejUYrFdnagUqmwvr7O4eEh3d3dbygD+SCA+Pt9zrfLwPu+j1KK/EmRX/iBf4nTaIRECroG06y3DCxTd0ZY+Pq5a8rs8+PMt7ioXP/EGI9amjMnbw2w/PB8oJ2+M9gGwjNjcdaXWjx5nx5uOqQoYPb2cNNBRdMlQ+PdrDScEpIdYYSpcdKwFzsD4aGQSUcqTE8mQbXuMTzbxcPOCnkjeF1W3seNSTzpI21FWpkUqzaar0iFTHLKpSp8UpZJyXOQniAhDMo1m4hlgucjPJ/+WIjv+xPP8iefvd70pH949+tomsbMzMw3dVy7EIJMJkNPTw+7u7ssLi42AfkZc3+mLc/lcoyMjHD79u1v6gasRCLB008/TS6XY3l5ma2trSaI0HW92ZC2tbVFV1cXzz///Afut/5GZVkWf/7bPs2f/ZZn+Z0/eoV/9doie3UHQ0EorFF0HSwEdV2gOYq4qyNMSV6zG2AcvAjoFXAjgpr0YFAgXbDysLR1zEgmRS5XoVgOouvvL+0xNxMky/Z0xOhIRJBC8NzcECvrR5wclzg5DlYmh/pShENGU94C8GBxn9npXh4tngNe2/Y4zpbp702gSUksbLG4fMBi8RjLlPR0xzg8al/tXFg6ZGKkg5WNYNVrZKADt+5y79426Y4IqWT4klY9n6/S0x0nFrUYHexg8fFB09FEKVhZOWJ8tIvVlvTNnq44eD5Ly4d0pqN0JMNkLxwXpbgx08/917bp6bQ4PKlf+qyECDzHN1dPGcik2NnPXdrm5uwADxuExfR0huWN4zbHlbnr/c1GUoBiqU61JhkdTHGcrfIj3//t78v95KqIe03TGB4eZnBwkN3dXVZWVpqAfGBgoAnIlVJ8jFW0T+ojXh97IB6Px5uMeD6fZ2tri+PjY3p7e3nuuee+oXvCBwXE329pylt5jWcA3PM8fN/nC//db3K0c67nnH1+gvmX15r/X//EOI9aQPjEraE2ED56rY/HLY4pQ5M9rC+eM+ddAzGWWpo9MyMJDnfOVzmmb7XbFN54apiH9xoDk4DxaxmWFw/o6IiSSFqkumK4jkdvd5xQxGR3L48uBPVynVB/ipe/tklxVKM4qaN8hV5ShByJMHRUwcV0wYlJssIhaukoBQVcwo7AFBqluk3cMqn5LlIKolInbYb4xOQgf+Fbr1M4OmB/f4evfa1CpVJBSsnk5OSHaulWSsng4CB9fX1sb2/z8OFDQqEQmqZRKBQYHh5mbm7uQ+UJnEqlePbZZ5ua+PX1dZLJJLlcrvncN1sC6RtVKBTie7/t03zXtzzL//4fX+LXX1vmpOYSF4K6Cpx5vLCg5HvIoocwwVQCvSpxTEUt4pPwDApa4LRSHhXMVDtI+hag6EpGkAoqFYda3eHgsMjseODT3QqQb0xlyBaqzTS9rb0cIwMdHBwVm8E7AAvLh8xM9PB4JZgwh0MGY/1pXMfjNFth5ywJF6jbPqVSlXjMoFg6B/QAq5tZbsxkED5tGQGn2QqZ3gTRiHnJKzyXrzB3rZ+H8zuXbAVdz2d3N8dgf4rt3RzDAx3ksxWKDS32yWmZTG+SWNSn1JiYoBQ3Zwd5cD+4L2VP6owNd7G2eQ7mUYrZmX7mmw4oioG+FDt7569zfKSTRy2vYXFxn/Hxbjb3ctiOx+RYdxsIb16z67O9meNv/XffQVfn+zNpfKOI+7P7RX9/f9Nff2Vl5T11F/oo1RP7wg93feyBeCwW49GjR3znd34nhmHw9/7e3+P5559/00vKT6Qp59UKwM/2++Iv/Ude+4PHzW2mnhppA+GDU71ttoTdg2l2WpildG+C48MSvhf8Mju64+SylWbzZkdPnFLJaT6f7A6TPa3jez6hiMnAaJpKxWZ8qgfT0AnHLep1l+s3Mth1l3AszObaMcr2UJ5Hteay8bVA7jIz18+rr27i+4pIxKB3pJOHO4cUZjWMTgtZdtGqCi8uqZgQ8iAsDUohD90OfJtd38NxFPGQTkl5hEQAvHEVCWkykIzzXzwzw/d8ahYpZRD04rtks1lyuVyzofibSYbyVkrTNLq6usjlchwdBZOnVCpFb2/vhwqEt1YymaS3t5fV1dVmKm93d/cl2dqHpUKhEH/quVuMJy1eWt3lP2zlOKw7oEPY0RAaVEwXrS5wQmArH62g0AzAgFBFUIspfKl4LZSlcwn8cnC/SMXDxEyD3YNAN36cLTMz1sPqehAeA/BwaZ8b05kgkr4xAG/sZBkdTLN7kMduSFx8pVjfOeXO7AB2zWF17Zj5hna8qzNGMhEi3xJfX6l6xGOCcEhSrQXXYxoaM+M9bG2dku64vMq5f1BgZDiN7bhNr/Dhgf8/e+8dJ1lZZ/+/K4euzjlXV+g0mZlhSAICfglmUcF1lUXXtMIKA5JEksAwICAsKPhbERcFV9xVV1BWFonDEAcYJnVX6JxjVXflqnt/f/TcO7fDzHSo6jBT5/WaF3RV3VThPuf5POdzTi7hUIz33mvHbiukZYaUz0gkjt8XZnVDGR5XHxHFBGJivz4qKnJJJARCoShrGstlEg4Qj4v0do9OktpMvOYQiR4fnyDx5aXZdPX4yM/NmLg3TjkXr3eA6up8grE4/VPSS5U45aQaTjvZcdjnk43Z+Iir1WrKysooLS2lr68Pj8eD1+vFarVSXl6+Iu+Bi4J0xP2KxnFNxHfu3Mmrr75Kd3c3F198Mdddd92c0yOPB2nK0Yj4TARcq9Wy6+97efdvH1K7tgKVRoXBbCAhiDRuqkYUJ/y2tXodmdkTqw4qtQqdSU/k4JK0Sq3CYDIQjcQA1cHXa4lFEyQqBWLRCKFoFKPZQEF+BkazAd9ogEgsgjohkJdroqt1mHBoYn916yp4782DkwAV1K2pZM9BOUteQQYqvYb+g4ShYW05+w7qy7NzzRgsej4UR/Fv1IFGhRgXMKu1BLImSLc2kMBo1hCKJNBHRchQESRBtlqLwQBCRMSiViPGBbINBjbUlHHJxzZQXTzh9S2KojzwJBIJWSspWd91dnZis9lWVHVoqh3gaaedhlqtnhSi43A4Fs39Z6GYGi60evVq8vPz5YAeSYKzkICexYbk7DI8PExVVRXfPuEEvh6L8buX3uT373vxiwIxQUSLCr1ei1oQ8aviJIwqNGGRgDYOOrCMqYkgIGpE/DY1JR1GxkfDjI6FiBrj1FTm0XKwYbGppR9HVQEdXSNED06o97r6aHSWsN91iIy3dg5jq8wnEAxTlJtJNJqgrXOI/U09lJfkyNsCDA6NU1qcRTwuTKpmj43HKS/NZngkQH62jpHhiFwhjkbi0yrMAG3twzgdRXhaBlhVV8q+fT0y2fV4B6ivK+FAU+/k9E1RpLoil75uHyaTbhoRB+jsHMFanU9WppHdu6dXqcPhGIP9Y1SU5pCdbZ5Ewg99XhNkvLoiHyGeoGtwZqOBjo5h1jSW4xmf2fElN9fA1746v6j5+eJIFfGpkCRuxcXFDAwM4Ha7CQQCbNiQPI/zYwkqYeLfsYJj6Vpmg+OOiIuiyMsvv8yPfvQj3nrrLRobGzn11FP52c9+Nq/9HQ/SlMMd73AEXKPR0LK3k/u/8yvCB5diM/Ms6MwGhg9GTuuNOgor8+n2TlRJNVoNFfVltL3TCkyE+tQ0lrP/nWYhM4EAAMdjSURBVDb5+ar6UloOHPxbpyavNIuB7gkdtyXbhClTYKD3YGR2iYXB4QDR8MS51a4tp0lawj1Iwg8cXPLNL85EUMHQwPiEJeH6Cvbs6Z6wHSvNgXwdH5j9hNU6LAkVsdEYokoFZhU6v4CoVZE4SMKNag2aDBViVCCuEgnE4mTr9ai0KooyzJyzwc6XzlovD0jKpMWZbPtyc3PZtGmT7EjS1taG3W5fNG/t+UDZtFhcXMzJJ588SeJVW1tLVVUVLS0tvPHGG5SUlGCz2ZZVY6MSykkSTJy/sgG1uLiYoqIieUm9paXliE2qywHKSVJ5eTmnnnqq7Oyi0+n4pws+yhfOOJEn/m8nz+xtI4BIMBQjrgNDQoWoAo1Rgw4No0QJ6UUyBR1jmjiRuEB/fgy7PpOe/jGC4RjtA75JshJ3+yA15Xn0DYzJWvD97l7WNZYTGA9jMuiJReP0DYyRn5tBs7uPmCKxsqffR1VFLu2KPIKePj/5uQYiURXx+ARxNhq15GWZyTYbcbn7JqVehsIxxsbDFORbpvmLB8YjnLCqgnffa58WmHOgqZdVjWUTshbVRJXdbi1g756J+0lxcdZkGYoEUcRiMhAKxNBoVCQS08t+wWAUW00BIyMzGwhMnFsYa2U+o+Ohw76msb6U3R90UFSUhS4ng+HRQ/vTatV88vxKMjIW1+5uLkRcgkqloqioiIKCgkUfZ1cU0hXxFY2UlG0efvhhrFYrRqORLVu28NZbbx3x9U8//TT19fUYjUbWrFnDX/7yl2mv2b9/P5/61KfIzs4mIyODzZs3095+yDEjHA7z3e9+l/z8fCwWCxdeeCF9fdM72T//+c/z2c9+lo985CO0tbVxwQUXLIjUHi/SFOXxBEEgkUgQj8dJJBKo1Wr0ej0GgwGNRsNQzyh3fOURmYTrDFqyi7NlEq5Sq6iqL5NJOIB9fTVtCouy2g3VeBXaR9uaCloOTOjAVRoVFc5imYSbMvRk5lsYOGgxVliWTSSOTMKLKjNoPmhhOJWEF5ZkYbIYyMk20biqlBM2VRMKxMjJNFFcks0+tZ83xCGC8QSaEESDceIWDSqjmkQggd6gJUerJzOkRsPEMcWIiE6twSRqsKg11BXnc8vFZ/H4NV/kHz+2EY1GIxPwN998k/3798tkaKaKt+RIctJJJ+FwOPB4PLzxxhsMDAwsqwamaDRKU1MTO3bsIBaLsWXLFlavXj1jn4XRaKShoYGTTz4ZURR5/fXXOXDgAJHI9Ia1pYL0Gb3xxhs0NzdTXV3NySefPKNWX6VSUVpayimnnEJ1dTUul4s33niD/v7+ZfkZvf766wiCwMknn0x9ff2M9ooZGRl8+9Pn8Nt/vYhPOSvIQIUloUatUaNRqwmH4gRDUbKiGlRxkTF1nBz0qFQqwgaR7rwYJzRWsM5ZSkNNEXq9hk1rKlnrLGWts5RMs4FaayGrbEUU52SgRc0He7rQabXsbeqhydPPqD+Ep22Qqso8tJpD73k4EmdgJEB56WRN/tBIhKryfIoLLaypLUUVhz17uyci3Gumy7v8Y2EEIUFW1sQk0GjQsqa+lP4eH7vea2f1qvIZ38e9+7pZvaqM/NwMivIsHFD0qPT1+cnJNmM0HKpzaTQq6p0l7N3ThdvVh8NWNFM6PbXOYg7s62FsNERJyQz+yaLIqsZy9u7tYnhgnKrK6em5jfWl7D1YTe/v96OKC5QUHZJNff2S0yjMNyz6qk08Hp+3B7hKpUKj0Szbie1SQ9KIH0v/jickvSL+n//5n2zdupVHHnmELVu28JOf/IRzzz2XpqYmioqKpr3+9ddf50tf+hLbtm3jE5/4BE8++SSf+cxn2LVrF6tXT1gqeTweTjvtNL7+9a9z6623kpWVJTd/Sbjyyit59tlnefrpp8nOzuayyy7jc5/7HDt27Jh0vKuvvppf/vKXskl8RkbGYe0LZ4PjoSIuSVOOVAGXEApEuPOrjzAsLfeqVFjXVOH64NCkqWGznf3vHNKJN57sYN/brYf+3mJj3zuKZs01pbgUy7TOdYfi7nUGDYUVebQftD3MK84kmhDlFE3HqlK6OkfIyTOi1anIK85BDThri9AbtXR0jDDQ70er1VBTV8K+g/rwkhOKeVPnI25WoxFAHxBJ6MCi1aOLqQhGY8S0KsSxBGMGAaNKg0XUkdCIqBMimXo9JzhKufSCzZQWHBpQRVFkaGgIj8dDOBzGarXOOgBHInvFxcVyA2RGRgYOh4Pc3Nyjbp8qxGIx2traaG9vJzc3lxNPPHHWemmz2czq1auprq7G4/GwY8eOI1oELhbmG1KkbDrr7Oxk//79tLS04HA4Fi3xdCbE43Ha29tpbW2d82dksVi48gvn8TWfj/v/9AqvtvYSFUWyDXrCYoKAmCBL1BEIxBhTRcgy6vFrYoyoo7zq62aLqWhSyM5aZykf7j9kZVhamEUklpCbIPe7+6i3F+Hy9MuSEHfrIM6aQlpaB0kcfCwYiiKKAlmZOvxjMSwZBqrL8wgEImRbTOzd3z3JBc3l7p/w7Z4SwDM8EiI3R4+jJp/hgQB7FfHwew9Gye+ZIWEzGo5RUZLF7g+nP9fZOUJNTQEdXcNoNGoqSnJoOnDoPWhu6qW+oXTiXA5+J5yOIlo8/SQSAmNj4YmwoeIsevsO6bzXrKlgz8F7XygYZaDHj7UqX7Z7rCzPxd08uQA1MhLAEjNQVZ5LcWk2n/7kep5//vlFtQqVxo3lZE96TCFtX7iikfRkzS1btrB582YeeughYKJ6WllZyeWXX85111037fUXXXQRgUCAZ555Rn7spJNOYv369TzyyCMAXHzxxeh0Op544okZj+nz+SgsLOTJJ5/k85//PAAHDhygoaGBnTt3ctJJJx32fB999FGeeuop/vznP8/rel0uF6IoUltbO6/t54Pm5mZUKlVSIudnA7/fz/vvvy+/jzMRcJjw493+tZ/zzt/2yI81nlrLvre8h/4+ycF+RbNm/Yn2SbaF9ZtrOKCIty+rzaPbe2ggmrAxbAdRxGTRY19dydhoEL1Bh86gQWPQEo0kiIZjZOaYcR/oITAeQavTUOEooMU90QhaUZNLf3+ASCRORqaRvKIs2tuGEHUqNBtz6ImHMKg1mHQ6gokoYRVkiBrCkRiCXo05oUaVmEjiFOIJUKnQiiqKszL4f5ucXHzOhklR0crgmmAwKNvfLWRgisfjtLW10dbWRm5uLg6HY1EbBiVy19bWRlZWFg6HY8GuIUsVBy9B8gz3+XxUV1dTVVW1oCS/RCJBR0cHra2tSzJpEgSBzs5OOcnQ6XQu+Pjd/YPc8fsX2D/gZzwhkGHSESBOhkbHWCKKIIqY0RDVikR1IoYhkZOzSibSNA+ONqsdJRM+3wf/LszLQEyIslc3QJ2tCLe3f1IzYq2tEG/LQTIuiuTnmqkszUVMiOzZ3zPptQ21Jexv6mXq1Gd1Q+khYi2KOGxFBMaCJBJxRkbCzFRXqa8vZf9BX3KDQYujuoD9+7pRqcBZW0JT8/TVV5hIvRzzh+honx7oAxPpmnv3d1NWamGgPzhJOgOQlWXCmKGnr89PfV0JTTN4iev1Wsqr8ugfHMOgUTM8PHNhqawsh3vuvZjsLCN/+9vf+OhHP7poQVOJRILnn3+es846a15N2lLhyWg0pqviCkjJmls++SO0umMnWTMeC/Pmn3+YTtacD6LRKO+++y7XX3+9/Jhareacc85h586dM26zc+dOtm7dOumxc889lz/+8Y/AxA/w2Wef5ZprruHcc8/lvffeo6amhuuvv57PfOYzALz77rvEYjHOOecceR/19fVUVVUdlYgr7QvnA41Gs+jL6RqNhnh8ejNQsiFVwSVpSmtr62HjvkVR5Lfb/0xgNEDjiTYAjJkmQoEIDRutiKKI0awnFI5Tt74KAL3ZQCyWoP6EKlSo0Jt1RCNxahoLiUQimCwmVOhwNmYQi8XJKcyiq3WQDLOOSDhOmbWQPW9NkPq84ixEtZrhg97f9esr2b2rDVEQMZp0FFXl0+KeqJrb6ovwegYRRcgrzECl1RIOx8hdl487I0xEFUEnqFGjYliMohEhM6omEo2RbTQQjycIiSLGuAo1IhkaPbbSPL50zjo2NVRNe28kAj4+Pj7Jf3qh0Gq12O12KisraWlp4a233qK4uBibzXZU282FYCq5XLduHXl505fI54Ps7Gw2btzI0NCQnNK5GBZmUorm4OAglZWVSbNW1Gg08qpHe3s777//ftImLUeCKIqyZl2tVic1AKqsqICH/+UidjW1cs//vEpnIESGWkUoFEWnVZHQqwghkC3qCEbiqMwq3hrsYV1NEW0dQ0RiCfa4e6l3FOFtGSQeFxgYDpCbZaKkKJPe/onfcJO3n9qaQrwtAyQEEbNRx9hYkKpyEyQ0jIxGGR4MMjwYJD83g5xsE8MjQfk89zf3sqqhlL2K6jvAnv09rF5VTnA8jBAX8LoPBfxUVeXQ3j467Zqbm3txOoqIhGOEAxHZMlAUwePux24rxOOdnIxZWZ5DT+cwxSXZTMw4pr/3+/Z1Y7dl0tY2PqNm3O8PoVLD6sYymg7MHOgTjcbp6RymoXHC5WkmaLVqrr76PHJzzMRiE5r8xZzgSuPVQo6ZJuBHQFojvqKRVCI+ODhIIpGguLh40uPFxcUcOHBgxm16e3tnfH1v70T1ob+/n/Hxce666y5uv/12tm/fznPPPcfnPvc5XnzxRc444wx6e3vR6/Xk5OQcdj+HQ0ZGxlEj7o+EpZKmpJL8SwRcWYXYtGkTHo+HnTt3UlNTQ1VV1aSwhSd+9Ef+8G//K++jfouDXS/slf+2r6vC9UEHiYNOBzVrKvDu65ZDfmpWV9C8u4PEwYqQY10Fnt29sr62cYuN91+faJbT6DRYG8rwHHQ1KSzLJhoXGT1IwhtPOJSgmZltwpKXQZt3YKIR84QqfKNB6hvLUKkF+gb8DAaDjNWaGDPHUcVFsuMaYnGBaDxOnsmAX4wRU4mYtTrCoRgWgx5NPIFFr2dzXQVf/9SJFOZN9+IdHR3F4/HIvtnr169PidxCr9dTV1dHVVUVXq+XnTt3Ul5efthJ03whCAJdXV14vV6MRqPsGpKKATI/P5+8vDzZMSFVTarKpsWysjJOPfXUSZK3ZEGr1WKz2aisrKS1tZV3332XvLw87HZ7UlcxRFGUG3vj8XhKG3tPqLPy1Pet/Pdr7/Orl99HSESICCKqgEhGhg6fGJMDgMhV0xEew2ktQK/RkkiICKLI+lXlBPxhWZ6h12koyreAMHEtgiCyqraUjq4hRn0RQsGDDkj2Ivzjh4LYhkYCFBZYyMk2Muo7ZGG490APqxvL2LOvGxUThLTWXoR/NEiWxci+KZKT9vbRQ64oCuh1GkxaDYI6TueUkKBEQqCzY5iqqjzaD1a+G+pKcDf3Eo8LjIwEaWwsmzjWlM+htMREu9dPfUMpe/f1THseIDvTyFCvj7w8y8x2hKKIzVrAh7vaqasroal5+pj3rW9/lPqGsoPnezDNeBGJeCKRQKVSLXgynSbjM+NY01UfS9cyGyx71xSJDH7605/myiuvBGD9+vW8/vrrPPLII5xxxhkL2n9WVhaBQABRFOf1Iz+WmjWnEnClBMVgMLBx40YGBwdxuVx0dHTIITNP3/eXSSS8dpON5vcOyU1qVlfQ3twnk/DqxnK6W4dkEl7mKKDd3S+T8NoN1bg+7JpEwiXttk6vpaKuBM/BJdriylyCoRj+0QlNeOOmava9105GlomC4kyyCzKJRROYMwzozTr2vN+JCKxaX8m+/X2MFWpQ1ZuIROPoh0TUFi3jaoFMnQadWk0wECHHaCAQi6HTqNGpVZRYMjhro4OLz92AWj39O6NMjqyqqmLt2rWLonc2mUysWrWK6upq3G63rLe2Wq0LqsBL6Z5erxetVpvU6uqRIDkmFBYWytVdySJwoemikUiElpYWurq6ZnR2SRV0Oh1Op5Pq6mp5FaOwsBC73b5gG8fR0VFcLheBQGBRrS4/d9p6PnvqOh7446v8z3sHiGlUxMNxcnQ6guo4hAQSJhU9xgi+3j6K1SYy9AY5JbKsKItIMConT5qNOorzMmntOGS9V1poRhtQy9KNJk8/9c5iml19iAflKAOD45QUZWFJiLLNH8Ce/d2csLaCeDRBa+sQ+/cdqizX15dOqzRPckURRcpKM/CPRNjzYRcmk47y8ly6FAFlMFGVHhoYo7wsh9xsk5x0KWHfvm5WrT6YgHnwe1tjzabNO4Iowr493axeU86efZPPpbwsh6H+MYLBKNnZpmmacYA1q8tl3bj7QM8E6Vdc0zkfW8UFF6yV/5Ya7BeT1Er68IUcM03Cj4C0RnxFI6lEvKCgAI1GM82tpK+vj5KSkhm3KSkpOeLrCwoK0Gq1NDY2TnpNQ0MDr732mryPaDQqJ9zN5rgS0s2aRybgU1FQUEB+fj7d3d24XC6e/smzvPjYO/LzjhOseD7slAfHqoYyuloGZdJdWVdKX+cI0YOWZQWVWfR3+SeT8D2HIeEGLeXOYloO9KI3aCmtysOYaSRXpaLSClqjjsF+P2aznrxCC4ODAVq9Q1iyjeQVZ+P6oAudToOtoYR3u3oZW2MkYVRjFFSY9XpimgQJfwKLQUNYSGBWa8jQ6dEkVGSixV6cx8XnrOPk9TUzvo9+vx+Px8PIyEhS5Q1zhcViYf369TIx6+zsnFPDoQSlvEHqSVgKSz5lk2pXVxcHDhygpaUFp9M55wbIWCwmx9Hn5eUtWRy9tIohEfI33nhj3rKi8fFxXC4XIyMjVFdXs2HDhqRIn+YClUrFFZ89nUs/tombn3yePV39BMMx1CoVKo2ajLiGoCZBsFhNf08ISzhGna2QJu8A3f1+8rLNlBRl0dvvJxiO0dk/Skmhid6BCXLeMxDEVpVPV/eoHPBzwN03jYz39vspK8lGEASyM00U5lkYHhrn/fc7WNVQNs1SsNnVh8NRjNs9eQzau6+bDeuq8I0EaPEeChgLhWKMjgQoKsqaVp02mXRYTHo5i2Aq9u7porwig67OAI2NJezfM5l07/2wi9VrK9hzsFm0pCQL/2iA4EFfdJ8vhAiUlGTTe9AhqrGhVCbhAIIgsn/Pwf3s68bhKOK73z1r0m9kKZomZ4q3TyN5SFfEVzaSerfW6/Vs3LiRF154QdZvC4LACy+8wGWXXTbjNieffDIvvPACV1xxhfzY888/z8knnyzvc/PmzTQ1NU3aTrITA9i4cSM6nY4XXniBCy+8EICmpiba29vl/RwOWVlZK06akqyK+FwIuBIqlYry8nLe/2vzJBJuXV1B24EehIPuBxW1JfQrSHe5o5ihPj+R0MTAUmjNwTcYJh6bSMGsbijFPxKiylGIVqclKz+TSCRG4wmVoFIhiDAyOI7JqKWkKo+erlHCoRg6vYbq+hL2vjUxINWtq8Td3E88lqC0KpdwTKCtZZDc/Azy7XnsVQeIO80YowKx4TiaDB2heAJ9QoXapEWTAENcADFBbmYGJ9SV8dVPbqYof2YJwdjYGB6Ph6GhISorK1m1atWySI2UYteHhoZwuVy0t7fPSqogiiL9/f3TwoWWOqRGrVZTWVlJWVkZHR0dfPjhh1gsFhwOxzRZ2lQkEgnZNSQrK4uNGzcuizh6ycbRarXKsqLS0lJsNttRJTKhUAiPx0NfXx/l5eXL4nuXbTHzk29+mve9PdzzXy/R7R8jFBYIGETUQbCYNIhlWvISZgaGA6yuL+HDA70M+4JkmPRUlmbT0eMjFhfo90WocxTTdJAke9uHsFbm0dfrJ3wwMEci403NvZQUZpGXYwYRMk16OjtH6Ov2yee2d383DQ2l7Fc0PAqCSGv7EDXWAloOJvqWFGWSk2Xmg11tNDSWTbvGQCCKSiWSnW3E5wtPRNE3lNHiGWC4f5y8vAxyc82MKPTqEnq6A5y4uYa33/ROew5g7+5OVq8pp39wnNBYhPGxyRMHvy+EKIiUlmZjMuponqF5U9rPphNr+O6/noPBMHk1TqqILyaSQf7TFfEjIK0RX9FIetlk69atXHLJJWzatIkTTzyRn/zkJwQCAS699FIAvvrVr1JeXs62bdsA+N73vscZZ5zBvffey8c//nF++9vf8s477/Dzn/9c3uf3v/99LrroIk4//XQ++tGP8txzz/HnP/+Zl156CZho8Pr617/O1q1bycvLIysri8svv5yTTz75iI2aMNGsGY1GiUaj89LTrsRkzfkScCX+9NDfeOK2/8Zk0qEzaMm35jLcM0JWngmD0UB+eR5jwwEKy3JAFMkqzGSgbxStEbIMRoqrC+nvHIWEAIkE1vpSmt7vQBREVGoVdZtqeO+1ZgCyCywYLSb6DoZ31J9QTfO+boSESGaOmayCDFz7eiYkJxut7P2gE3OGHkdjKVq9hlgkTklVLrt8QzRHhxH1avRjCeIGNfoMPWZRjUmjJhSOY9Zo0ahU5GUbWVeTxdoaMzabjfyc6VVKZYNfRUUFp5122qK5EMwWKpVKXsVQyjscDsc0eYmkL/Z4PESjUWpqaigvL19yAj4VUgNkeXk5bW1t7Nq167CuMUrXEKPRyNq1a8nPz1+iMz88JFmR1WqVbRwrKiqwWq3TvlPRaJSWlhY6OzspLi7mlFNOWXZhSOttpfzm+1/iV//3Lr9+9X3iiQQxnUgskiAeh05tAHE8RjwqcEJjOZFQhHAkQiwWw1GdQyQiEk8IDPuDrKovpafXh0GnRUiINNSWEg5F0Go0CImJJM1VdRMEu6/nEPGursyjr88/KeXyQFMPdXXFNDUdqoDHYgm6en001BUjJiasBfu6J6ra+/Z2U99QyoEphHd8PEZWFuTk6MnLtrBfYXk4PBygqCiTjAw9gcChlE+LxUhhXgbv7PSyas2EF/hMGOwfo6wkmw8+6Jjx+bGxMIWFmZAQSCRmXhnVatV88aITKS6ePtkUBGHRq9OzibdPY/5IV8RXNpJuXwjw0EMPcc8999Db28v69et58MEH2bJlIk73zDPPxGq18vjjj8uvf/rpp7nxxhtpbW3F6XRy9913c8EFF0za52OPPca2bdvo7Oykrq6OW2+9lU9/+tPy8+FwmKuuuoqnnnqKSCTCueeey09/+tOjSlMk+5+WlpZ5DdCjo6Ps3buXU089dc7bzheSo4T0ns4WySDgoijyxK3/xX//5Dn5sfqTHLjeb5cr4YX2PHy9QWIHB8CyuiL6O33EDy4p155gxbu/R9aMN57kYN/BRE2tToN1VTnugxrL4qo8IlGB0YNRzo0n1rDvvYkBqqgiB1GlQqNVk5ltxmQxMD4WYXRonKKKXPZ92IVGp8GyrgAXQVRqFRbVRMUbtYpIII6gBYNKjV6lRqtSU1dVxJc/tYFVjjLZctDlchGLxeRqcjAYxOv10t/fT3l5uRxetRKgbLg0mUyyv/V8fbOXA5TEVNJbm0wmeeKh0WhmnHgsZ0irLMPDw1RWVmK1WlGpVEtqVzlf+ANhbn3yBd5v756wHVRDUDXhxmQZECEoUJxrwOePEokKqFSw2l7CXoXOeU3dQc32QVSU5TAyHJhEdOtri2luPiRTAbBW59PTNUo0dqhwodGosVkLcLn70WhU1NqLiIRiDA6MYbEY6VWQeQC1WoXdUYRLaVEoijQ0lDA+FqS/b5xodDohzsnVE4oIhENxystyiASiDA8dkkHWrypj//7JzaKVFbmMDgYYH4/QuLZ80jVLKCrKIjweIZEQySvKoKNjZNprtl5zPmd/bNW0x2HCAMHlci3qmNXd3U1HR8ecxywJEpFf6hWf5QaJv5zysVuPOfvC15+/+bixL0wJEV9JSCQS6HQ6du/eLUtd5oKxsTHee+89Tj/99BSc3cwYGRlh//79nHLKKbN6fTIIOEAinuCnVzzBC79+TX5s1Wl17HvTI/9dt9mO+8MOhIOa72JnHgMdYwgHrbkatthp2tUua8AbtjjY/24rACaLgcKqfNoPDnjVdSUM9I0RiyXIyc+g3F5MNBxDFMGYoae9dYihPj9FZTmIahX9PT7yijIxZhrpah/GXJ3NWL6GiEpEq1YTjsSJaiBDUENcwKjXIgoimSYDmxoqueRzm8nNnt4wJ2mlm5ub5VTRsrIyampqll0lcrZQBryoVCpEUaSmpiZp1opLgXA4jMfjoaenB41Gg1arlRuKVwoBnwrJV310dBSYWMFLhhf4UuDVD1v56V/foH3Yh04LMTUkVJDnUxP1xSktzCQeFRgcnph0r60t5cODbicAa+vL+HDvob/LSrLx+0OT5BszkXFbTQEd7cNyo6cKkRprAfk5Zpr2905q7MzONqHXaRiY4oyi1aqprMqjxTtIRXkuGhW0t000k1ZV59HT4yMWm07Gq6ryyLDo8TT1E4tOXsVUqaC2oZQDBycctpoCujtGiRyU8gHTyHh+QQZCRGD0oOzFaNJRWJZFe9shn/KLv3wSX/mn0w77OfT09NDW1nbU1eJkor29nf7+fjZt2jSv7aVxeilDvpYjZCJ+zjFIxP/v+CHiK3PETSJUKhUWi2XeOvHlLE1JFgEHiISi3Pu1n/PWX9+XH1v1kXr2veGW/2482TkprKd8VTFdriFZ76V8XqVRsepEB33dI1Q6izGYtFhyLEQjMeo3VGHMMDDQPYoaEbNJhynDyPs73KjUKuo3Wtn1xsR+6tZV0OLuJxqJ41xdRlwUiRrVJIoKaBNj6GJxzCoNoVCELIuBcDSOVg0alYbqvBzOO6OB885oOCJRC4fDDA8PE4/HsVgsBINBgsEg0Wh0xRLxYDCIzzdR+cvIyMDv9zM+Pk40Gl2RRFwURcbHxxkbG0Or1WI0GhkfH8fv95Ofn78iK2miKBIIBAgGgxgME5HkgUBAHpxWyoqFhI+ssbKlrpybfvkX3mnrIy6IaBMwYhFoLMwlS2UkGouTYdLR1jXC7uYeVjWUcqCpF1EQ2X2gm9WNEzZ/KqC710dJURYalRqff6Kp80BzHw21ExZ+Ehn3tgzSWF9CPCKg06jp7ByhxT1It0FLSUnWJCLu84Vm1HjH4wKB8QgbT6jkvXfaJpk6tLcNU1aRRW/PGMoeer1eQ4ZJT3g8NqMLhCiC60AvdXUlIIp4m/unBfrs291F49py9u3rJifXjCqOTMIBwqEY/Z0+amoKaGkZ5PQz6/jHS45c6V6KZs20NCWNNA6P4/6XoVKpFuQlrtFoDvrdCoumpT2aa0oyCTjAQOcQP770EXq9/RSU5WDKMJJblsP4aBDb6gkNsTkvg5EBH0U12ajVavJLCwj6I1Q7S4jFoqiNGrrcPViyjOgNWjLzM9lzkMRX1ZfS1zGK+8NuVBo19RutvL/j4HO1JYyOhmj3DGDJNlFQkce+9ztQa1Ss3VJDKBSldlUZolrF3uZu4pUWoqiJjEbJNRsZE+JoNWqMqFHHIN9gYpW9mC99ciM11QVHvO5QKERLSws9PT0UFxdz0kknkZGRIUe6v/POOxQWFuJwOBbF+i4ZmBpcIzX4SX7aO3fupKysDJvNtuz07oeD0rZPmVg6NjaG2+3mtddek1MyV0JF7XBe4IAsIWpra1uUoKNkQRRFuru78Xg8fGZdMZ89pYGfP7+b9hE/0USc/b5RqrQGBrrDmAxaNq+tIhyKgQpOWFtJW9sggVCUPQd6aKyXiPaES0pRgYUctYnRkSCZmSb8YyE2rq8iEopOVNiHxjiwtweno4jm5l45OCcSidPfP0ZFZS6dCnnH8HCAwqJMsrKM+P1hcnPNlJVk03ygh4AvRElpDj3do5Our7vTj81RQIt3CFGEkhILQX+IAwe14zZHEW2tg9NCe4TExOQgGolPI+ES9u/uYu2GCvp6/PT3TndkiUTidLUO85HTa7n8yo/JY9HhigtLRcQXGuazUle1FgMqji1d9fH2SR/30hRRFHE6nfz4xz/m7LPPnvP28XicV155hY985COLNsiHQiF27tzJRz/60Uk3p2QTcIDdL+/jx//0CL7BifCM3JJsLHmZdLkmQiNMmUbyqvLoappIpzNm6Kmor8Cze0LHnZVvIac4h46DIRM5JRkkEirGRiYqWA1b7DR/MBHkY8kxk1+WQ9tBaUrDZhvNe7rIzjWTX5KNKdNEJBxFo9UwNDROb9co1tpiBoNhevUJonl6tKKKTLWGSDSORlQhqEQMai2leZn8v9Mb+OTHVh+VuITDYVpbW+nq6qKoqAibzTajx3M4HMbr9dLT07PsyWswGMTj8ci69sOF/UhEfWhoiKqqKqqrq5cteZWItmTbdziifTiivhwxMjKC2+0+ohe4KIoMDAzg8XiIx+PU1NRQVla2LAm5clKRSCSw2+2TpEL/8bd3eerlD0hoIBCPUSbqGOuPEE9MlqZUluXgHwkRCkaxWAyUFWfjGw0Ri8YnpGoGLfFIYpKlYH1tCc2KyjhArbMYl6sPUcF5M8x6srNN08h1Q0MJWpWKA/t6JpHkzCwjer2aocHprij1DaVoNWr2f9iFIEweWq32fNpahuXiuEarptZRxIG93Wi0aqy2Qtyu/mn7zM3LQK9VkV+Uxb490zXjANU1Bdz+4y9gyTQgiqJMxGci5F6vF7/fz/r162fcVyrQ1NREIpGYZkM8WyQSCfR6fbqqPgWSNOXUs29Bqz2GpCnxMDteuCUtTTleIElT5uslLg3okoZtMSAdUwohmkrANRqN/G++EEWRPzzwHE/c/LQ8oNSsqWKozyeT8PzyHKIJQSbhRdUFqDQamYSXO0sIjkVkEl670UrLgR5ikTgqrYqqhhL2v9uGwaSjwlFERrYZQYTVJ9YgqtQM9Y+h1aopqS5g/wcdoIKGDVUc2DMxcDk3VdEeCxPMMqCPCaiDCRIaSCBgUmsxG3U0Oor5xwtPpLL86BHskUiE1tZWOjs7KSgoOKrHtNFopLGxkaqqKjlAp7q6murq6mUzYCir+iUlJUd12LBYLKxbtw6fzyd7kC838hoIBPB4PAwMDFBRUXFU2z7JxlFqvG1vb192jjBTJxVH8gJXBh319fXJTjiSzeRyqRz6fD6am5uPOKn46v/byPkn1nPTL/8X79AoPUKcmqosokMhdjd146jJo71jlI7uUQrzLRgNWgYGxxn1haipymd4eJxweKIpPDfHTGGhRdZ3H2junUbGm1191Mk68olzCASjqDVqiouz8PmC2KyFBMbDHNjTQ0VlHlqdZhIRH/OHycjQkp1jxDd6KMXTZitkdGCcvALLRE/MlI+h1TNEWWUm3Z1jZGebyco0yBXzRFygzTuI3VGIxz0gb1NUnEU8EqO/N0B/r59VayvYO4WMl5bncOv2C8nKnvhdi6Ior9JKY4SSkC+Vj/hyuScei0i7pqxsHPcVcYDTTjuNr3zlK/zDP/zDvLZ/6aWX2Lx584KT8WaLRCLByy+/zKmnnirLVKSb7UIJOMDY8Di/vetPuN5tQYgliERi5BZnM9g9SjQSIxqOYC4wE/JFERKgQkWJrYhxf5hENIFap6GgPJdwKIZaBRqtBlOWiWhkotFSp9cyHogw1Ocj6A9T2VBC24GJZE1rfSk+f5iRgQnnE51RR1frEIVl2RRV5hGPJ1Bl6Ng34mdUJ2JQq1GHEhhMOtSiClEQKM3L4pwz6/j0eetmRbSi0agc8pKfnz/v2PHR0VGam5sJhULYbLYlJXrK5MgjVfWPBFEUZYeeaDQqSySW6pqUKxCz9dqeCqVHuiAI0yq0iw2lF3hFRQU1NTVz1rMLgkBvby9erxe1Wp2U5NGFIBAI4Ha75VWV2Sa7PrtzP4/97V380QiqYAJHdjbhYAi9TkvfQIhAMEamxUCexUTHQSvTitIcfKNBuWEzO8tEhkEnB94A1NUW45rSwFlfV0JT04S8JTvLSHlZDirANxKku2t00nlVW/Pp7hye1oxZUGAhHk+gUWvIz8vAdeBQtHzjmnL2fdg14xq71WZhoCdEMBCf9pxOp6HCWoDX3U9ZeQ7jviBj/vCk1zQqyHh+oYW7fnIxRcXTq4YSIZ9aIW9ubl5QdXo+2L17NxkZGdjt9nltLwgCer1+2RQDlgukivhpHz32KuKvvXj8VMTTRBw477zz+NjHPsY3v/nNeW3/6quvsm7dukX7wkhEfPPmzRiNxqQRcICd//MOj1zxH4z2TwxkuaU55JXm4T1Y5dYaNJTVFdOxd0I+ojNoqd1sl51TTBYDlY0VNO+aiLgvqsxHbzbQ5Z2omtdvttFyoJdIOEZucRbmbCNd3iFUGhX2NeV49vVhytBjW1WOwMRgojfq2fdBB8aCDEK5BkbCETItBuIJgYQgok+oyM/OYE1DGV/47AmUluTM6lqj0ShtbW10dHSQm5uL3W5f8GcoyQbcbjeCIOB0OheVFCknFQUFBdjt9gUnR4qiSF9fH263e0mIntKecL6TiqmQyKvH40Gr1WK32xfV3lA5USouLpYtFxcCQRDo7u7G6/Wi1+ux2+0UFBQs6jV5vV66u7spLS3FbrfPWao1Hghz0+PPs7ezH3VEpL4onw/39ZBp0lKUbcRgMKLVaYlHE7g8/YgiFBdmEgvH5ebKTIuBbItxEqGWyLhaBSVFWWRlmcgw6+npHKVbIUnJzctAAwwNTV4hLSwyMjQQniQ3sWQacdqLaGsZYGRoukxl1doK9u7ulMm4SgWrVpWz78NOrPY8WlxDcty9Ejq9hobV5bj29xAKRqc9D7BqXQUdHSPcef9FVFQeebVvKiE/cOAAOp2Ourq6I26XTLz33nvk5uZitVrnvK1U3TcYDGkiPgUSEf/ImTcfc0T81ZduTRPx4wmf//znWbNmDVu3bp3X9q+//joNDQ0ptxRTSlB27dqFRqPB6XQmJaBktN/Pz69+gh3//Zb8WMOpdbTu6SJ8MBa6yJZHIgrDB312y2tLiCdE+tsnbLysqyrwjQYZORjx3HCyA++eLqLhGBk5JkptJbg/PJh+udFKKBhFb9BishgIRWKMDo+h1WlQafT0tI9gayxldDTIcCSKtjqH4ViMTK2WeCiO0ajFoNNSU57HeR9bxSknOWZ9rVKzZXt7Ozk5Odjt9qSnLCpJkcFgkOPYUwXlNSVrUjEVSg9yo9G46NeUCt/sqYE/DocjpYE/8Xhc9gLPy8vD4XAseKI0FYlEgs7OTlpbWzGZTNjtdvLy8lJGyOPxOK2trbS3t5Ofn4/D4VjwROl/32rioT/txKzRYs3KYu+BHkQR8jO19PWHUalUrHIU09vjIzPTSIZJj1GvnbAIVB3sj1GriIbjxOMJYtEEGRl6mvf3TKpsNzSUsn9f96Qkv/wCC0JcmOROAuBwFuF195OVZaS8LBd3Ux/RSJyy8hxGR4MEA9NJ86q1Fez9sJPCwkyMeg2d7YdsBhtWl7N/T9c0Ml7fUEqHd4Ci8hxaPANTdwlAdo6JW+/5IlZ74azfU+Xvqb6+ntLSUjQazaJM1N5++21KSkqorKyc87ZpIn54yET89GOQiL+SJuLHFS699FIKCgq46aab5rX9m2++KVefUgElAZeWFwG6urrkIKL5Dn6JhMDL//k6rz79BuOjQeLROLFYnOyiHNr2dRIJRUnERRwnVON+d8L/W6VW0XhKLQfe8SKKoNVrqD/RQXfLAFqDFr1BR0FlPqGxCCqNCoNJTywmEA5GUWvVoFLh/rALk8WAdVUFB95vx5hhoLq+lKYPO8nMNZBXlkVArcGvUeMfD2MwaEmIAiaNjrLCTM46o57zzl09pxtzLBajvb2d9vZ2srKysNvtR41GXyiU0erZ2dk4nc6kksl4PE5HRwetra1kZmbOKu59oZh6TQ6HI6k3y0QiQUdHBy0tLUtyTVlZWTgcjqROziRy3NLSQkZGBk6nM+XXlOrvhjSJ8Xq9Kbmm8WCEWx5/nuaOQYo0JrKMerwdQ5QXZuDyDqMCGuyFHDjQj4qJSnhOponOg7IVo0FLWVEWra1D8j5rncV4XH1yrgHMTMYzs3QIMZFg8KB8RBSpthZQmG9h93vt0zzBK6ryGBwYm3B6UUCFyOaTbOx+t21SwqeExrUV7NvdCSoVKkQqq7Lo8E4UOnR6DRU1EzIVJfLyLdx27xeoqJrdhFFyrHG73ZhMJmpra8nKypL14yqVKuWE/I033qCqqoqysrI5bytV8yULzzQOQSLip3/kpmOOiL/y6m1pIn484bLLLkMQBLZv3z6v7d955x0qKyspLi5O6nnNRMC1Wu2km1EkEpFDTCoqKrDZbLNqGhVFkTef2cWvb/09HQcm9IZGiwHbeiuud1uJRycGDduGasaGQwx2TQxuNWsqiURi9LUNkogL2NdVM+YPM9A5jEqtouEkBy37ewgHIuSV5pBbnI1nTxcarYa6jVZcH3YSi8Sp22RldDiAwagjM8+CiIpYLIGgV3OgZwQh24BKFA8mXqooK85h0wnVfPrTG7BY5nbDURISi8UiVwgXE1NjyRcqRVASO7PZLCdkLiaUMphk2DgqK+7KVYTF1Dorq4bJqFiLokhPT48sgXE4HIsqF4FDE9C2tjZycnIWPHGaKlVyOp0pvaY/vvwh//XyXkZ7/ViL8kEUycww8P6HHSQSIlWlFro7xxEEEaNRR1lRFi0tgwDodRqqynPxKirLTkcRLe7+SVaCDQ2lk2LqAYqLs9Bp1eRmmenr8TE4MOEcVd9YyoF9PZOIO0w4l/R0jxCNTJD0qup8EtE43R0jE17ge2aOtG9cW4HX3UdZaQ4tzZNJt053kIx7Jh4vLs3m1nu+QElZzqzeu6GhIVkTPlUmp5SspJqQ79ixQz7+XJEm4oeHTMRPOwaJ+GtpIn5c4frrr6erq4uHH354Xtu/9957FBcXz2u2PxNmQ8CnYnx8nObmZnw+HzabjcrKyhlfL4oie149wH/c/DTNb0/outUaDXVb7LQf6Cbom7AVLLEXYbSYads7MXjklmRTWFVA87sTQTr5Zbnklefhfr8dgOrGMqIxgd62ITQ6DXWbavDu7cZkMZJXkkVGdgbxWAKDSY/fF6Kvc4RSawE+X4ixsRCFtUUMRGJEAQ42QOXlGCkrNrJqdSZr1tbO2Y1Eqqy2trZiNptTvkQ/G4RCIdxuN/39/VRWVlJTUzMntx2JrLa0tCyJDngmLNTGUUou9Xg8y6LZEKZruG0225wmGVN7BZa6KRQO9US0t7fPu39geHiY5ubmRW/eHfIF2Pb43wmORTBpdOze24W9Kh8dKkQxTjwepaszQDwuotWqsVcV0Oya6GPRatTYrQWTIuod9iJaPQMkEodkKuVlZoYHI1RW5qPXahjsH0OtUTHmCxFQhP4ANKwqY/8MVoI19kJ8viBFBZk0TXm+YU05+/dOJ+PlFbkUFWXy/lutM2rGtTo1lbYCotEEt97zBfILj76iNj4+jsvlYnR0lJqaGqqqqg77OS0GIX/llVdYtWrVvGRfaSJ+eMhE/NQfHntEfMeP0kT8eMIdd9zBrl27ePzxx+e1/e7du8nNzZ2X/k2J+RDwqThcBSQ4FuKV373B/z72It4P2jBmGMgrzaW4ppCRQR/RWBSdToslOxODyUgkGJuIoRdFDBYj0XBs4rxQYcw0TugsRdDqtajUaqLROEJCICM3g4EeH6OD4+QWZaHRaWg90Eu5rQhDhgHv/h5sq8vIzLUQTCQYjMYYCUbQ6rRo1VCUa2HDCdV84pMbyMufkNoo3UjsdvtRPZOVGlmj0Yjdbic/P3/Z2LrBxA3U7Xbj8/nkaPkjyWyUzYUajWZZkNWpkNwyBgcHZbeMI00ylGRV8pheTvZ7gBx01NvbS1lZGTU1NUd1ahkZGcHlci0L95yZMB9HnbGxMVwuFz6fD6vVSlVV1ZLodZ9+4QNefceLRatj7/5uMjOMaETo6x+jKN8MsTgGvZbMrAxMBgPB8TCxuEA8kSArw8DIUACdToNWqyEry8DokJ94LIZapSMUjFNcnM2+D7smmZ2UlefgGw0QGJ+sAW9cfdAZ5SCyc0xUlucSiybwKIKDlKhfXcaBg5H1KkQaV1fQ9GEXiYTAqnWV7P2gY0YyXmnL5oobL6DGVn7E30c0GsXj8dDd3U15eTk2m23WLjypJOQvvvgiGzZsmJd0STono9G4rO4NywESET/jlGOPiL/8+tyJ+MMPP8w999xDb28v69at49/+7d848cQTD/v6p59+mh/+8Ie0trbidDrZvn07F1xwwaTX7N+/n2uvvZaXX36ZeDxOY2Mj//Vf/0VVVRUwUYi66qqr+O1vf0skEuHcc8/lpz/96ZwUEmkiDjz44IP85S9/4emnn57X9nv37iUjI2NeHeGQHAKuhCiKdHV14Xa58XWO07t7iJee3ClXu/PLcim2FdPyYTvhg5WeioYyTBYznvcndOBZBRYq68vw7O4gHIiQkWOmZnUl3r1dhMYjFJTnUlCRj+v9dgRBpG6jleGhAANdI5TZCsnKs+D3BcnIMpGRnUE4HMOUYaCza4SwTkNEq0IQBTKMeqor8znxJDtnfawRg2Fm4ibZzrlcrsMuhysb7wwGw7KoFh8NQ0NDuFwuucJYVlY26XwlGYDH40EUxWVRWT0afD4fbrcbv99/2EmGZIsYDodXRELk1ERSq9U6jeAoyaoUMLScvZOVKxklJSXYbLZpcimlveLhrnux0TXg44ln3mXfvm7KC7IYGBrHoNHiaRkgL8eMRhAYGpq41zXWFrF/X+9E8qAKGmonS1DKyiwM9gWJxQ5pvhsby6aR8fKKXEaGx6c1ZDauLqevZ5Tioiya9/WQOOg37qgvwdvcNy3UR6WC2lVl9PX6yMk00jalGXMmMv6Rc+r5xBcb6OruwGKxYLPZpq3sST0OLS0t5OXl4XQ6590wmwpC/vzzz3PyySfPS+aVJuKHh0zET77x2CPiO2+fExH/z//8T7761a/yyCOPsGXLFn7yk5/w9NNP09TUNKMk6vXXX+f0009n27ZtfOITn+DJJ59k+/bt7Nq1i9WrVwPg8Xg48cQT+frXv86XvvQlsrKy2Lt3LyeddJK8z+985zs8++yzPP7442RnZ3PZZZehVqvZsWPHrK83TcSBxx57jMcee4y//vWv89pesoOaq0dqsgk4gH9wjPf+voddz+/mvf/bg29gwsEkI8+MbZ2VaChGOBIlnoih02kxmc2YM82MDQdJxOIkBJGC8jwGuoaJRWOAilJbMSMDYwiCiEanJq80l+BYGLVGjUanA7WKWCSGOcuEfyRIT/sQFc4SQqEYvpFxympLGA3FGY/FEEQoyLfgcBZx1sdW0bC6Ys7vmdQgZrFY5OZHyaFE+hwW04puoZgqzZCccAYHB1dEeuJMEEVRDtCJRqPYbDbKysrw+/14PB78fv+SVlbnC+VKhkS2pSpkf3//vL3AlxLBYBCv10tfX59c9Ver1UntaUgFnn+jiWde2AdxgWg4TmaGgWZXL2q1huLcDNraJhxKaiqzaG0ZlYl1RZmZrvZD9oRWawG9XSOTmikbG0vZ92H3JDJeUZnH0ICfUCiGwaClxlZILBLDZNSz94POaefnbCjBfaAX5QirUkHj6jJEUWT/7pk14xIZV6lVfPkbp/O5fzgRlUpFPB6Xtf4SIc/NzZX1+jqdjtra2qT1iiSLkIuiyP/+7/9yxhlnzOs7JAXVpYn4dEhE/Mwtxx4Rf+nNuRHxLVu2sHnzZh566CFg4ntTWVnJ5ZdfznXXXTft9RdddBGBQIBnnnlGfuykk05i/fr1PPLIIwBcfPHF6HQ6nnjiiRmP6fP5KCws5Mknn+Tzn/88MMEHGxoa2LlzJyeddNKszj1NxJlYnrjjjjt49dVX57W9y+VCFEVqa2tn9fqpBDwWiTPQOUpf6yBDPaMUVeZRUJ6HKcNARraJjCwTGq0GURSJR+OExsOExsMERoN0NHXTcaBb/m8sEiOrIAuTeYIIqLQaYtE47vdaiUcSaA0aiu0FGAxGOpt6iUXiZOZbqKwvZ2xknE5XHxqdFvu6KhIJEe/eTrQ6DfZ1VYSCUdqbeimsyKOwIo/Wpl5QgX11BZFIAhEwmPWgVhEWYHgsTBzIzDZRXpnL6rWVnH3+aozGhZOUWCxGS0sL7e3tqFQqublvuck15gJBEOjo6MDjOajdV6sPm0i4UiBV9F0uF7HYhNxpNrKV5Q5JKx0IBBBFkZKSkmVJVueC8fFxWVoEE4mkdXV1SbeMTCYGR8Z56tlddHX7eP/DTlY7iokEY5hMeuKxBAcOhuyUFRvp7Q7KDZarG8vYs/tQ1buqOp+BHh/h8CHXk6lkPCvbiN1RRDQcw32gl6iSuK+tYN/708l4bWMprv0T1ovVNQXEwlF6OkdQq1U4Gkpp3tcz43Wt22zl/M9uYMtpzmnPSYS8tbUVmLhP1NbWpkzWtVBCnkgkeP755znrrLPmNUGVxkmDwbBi7+2pgkzET/zBsUfE37qDjo6OSUTcYDDM2H8UjUYxm838/ve/5zOf+Yz8+CWXXMLo6Ch/+tOfpm1TVVXF1q1bueKKK+THbr75Zv74xz/ywQcfIAgC2dnZXHPNNbz22mu899571NTUcP3118vH+Pvf/87ZZ5/NyMjIJNlVdXU1V1xxBVdeeeWsrnf5rpsuIqSIe+lGM1doNBoikchRXzeVgGs0GrRaLUajkcxsC7ZVFURCUfbscPHW3z5koGOI0QE//sExgv4Q2fkWdHotobEQvS19gIqcwizyy3JRqVXkl+ejN+rwDY2z/+2WCc12tpnc8myKawuJRwWiwRiRSJzMfD2rP1JPPCFMJM6pILc0l/yKfARBJJEQMOi0rD29DkEAlVqNKTsDc44FURTQZxgpd5bgHw0gajUIqBkLRjCixmTWU16Ww8fWVHDqWfWYTMmtDgqCwMDAAP39/RiNRgwGAz6fD5/PR15e3ooleD6fj/7+ftRqNRaLBZ/Px8jICPn5+YuW2ppshEIhBgYGiEajZGdnMz4+zvDwMHl5eSn1604lYrEYw8PDBINBMjMz5b9zcnJW1KqFEoIg4PP58Pv9mM1mNBoNfr+fvr4+jEbjsv1NFeRauOzLH+G5Vw8gItLRMUxOphlvywCBYJTVjcWMDPjQaNTYHbn0dvuIRmHP3i5Wry2XyXh72xCVlXkMH6x45+VmEArF2LTFSsgfZnBgnIE+P++/1UqVNX+ajHvf7k5Wra9g7xQy3ryvh7UnVBINRSc1bwqCiHt/D7UNpTTvn0zGnQ2lfOvKj1FaMXMuRTQaZWxswsElOzsbn89HV1cXRqOR3NzcpJNViXxLZFwQBHmsnA0hj8cnJiwLlWmlSfgRIDLNxWdF4+C1TO27u/nmm7nlllumvXxwcJBEIjFNl11cXMyBAwdmPERvb++Mr+/tnZi89/f3Mz4+zl133cXtt9/O9u3bee655/jc5z7Hiy++yBlnnEFvby96vX5a74NyP7NBmogDmZmZjI+Pz3t7jUZDIpE47POHI+AzDdgGk56N56xi4zmrAPANjbPvTQ+d7j5G+n0M9/pIoKawphSjxYDRpEcURUJjIdQaDbGEiM5kwLqumnF/EDQiOouBDIsZUKE36PGPjjPU72NI8FNYmY9Gp2egY5hEQqC4Oh+tXsv4SBARFXllOWjVaqLRBImEiDHHTCwuMB4T0GSZqLIWkJWbQbWjiC2n11FQlLrqmSTh8Hq9iKKIzWajpKQEtVrN2NgYzc3NvPbaa0d0jVmOUGqqq6ur2bBhA1qtVramfOONN+blRrKUCIfDtLS00N3dTUlJCaeccgomk0nWsu7evZusrCycTueK6YpXuvBYLBZOOOEEcnJyJun429rasNvtFBcXrwjiMNXdpba2Vj730dFRPB4Pr7322rLWvKtUKs4/vYE1zhJ++pvXIC5i0OXR0zXMngN92KtzaW0ZQRREqipyGegZBbWKzo5B1qwpZXQwSEIQiYZjlJTkMNjnY7h/jOH+MVpdEw4pA/1++XjtrUNUWfPp6xklEj5UFd87hYyXlGWTk2Nm7652nI2lEwmbCrIkCCLuAz0460twHehFpYIL//FkLrr0FLTa6XKtWCyG1+uls7OT0tJSTj31VAwGA7FYjI6ODj744IOU2rPOl5AnEgl524UcO43DQyWKqI4hcYN0LTNVxBcLkiTq05/+tFzZXr9+Pa+//jqPPPIIZ5xxRtKOtfzuqkuAVBHxuRDwwyE738LJF6ybtM+elgF6Wofo7xphtN/HUJ8f43iYRFwgHosTEQOEQnEsxRYsmZloNBqi4Rg6gw6VRoU5J4tYQoVaA8F4DI0oklGYhU6vw5hlQqXVkIEKg9mAJScDrVGHXq/DkmMmK89Mpb2QxnWVGJIgMZkNJKLj9XpJJBLYbLZptmmZmZmccMIJcvNje3s7DodjWTc2jo2N4Xa7GRkZobKykrVr106qPBoMBhobG6mursbtdrNjxw5Z1rEcCRFM9xY/6aSTJlXzNRqN3JzZ2trK22+/TWFhIXa7fdlW/QVBkL3A9Xo9q1evnuTCo1KpKCkpoaioiJ6eHpqbm2lpaVkSz/C5YHR0FJfLRSAQwG63T3N3ycnJYePGjQwPD+N2u2lvb8dqtR7V4WepUFGayw+/+zGe+uMO3tg1hN6kpbE0F2/LEDZHIZ1tw7R3jlBakk3IH8Y3GsI32kNVVTbdbX5EQaQfKC3LARHG/GEA9u/tpmF1OQf2dMlEur11iKqafPq6Ridpy/ft7uCEE2sYGw3iPtBL38FwoaY93dRP2QdMkHFvcx8bttRw4ZdPYtX66c5bkmTN6/WSnZ3NiSeeOEkupNPp5OKDRMgzMzPlps5kYyohF0WReDx+WEKeSCQWLcEzjWMLWVlZsyrUFBQUoNFo6Ovrm/R4X18fJSUlM25TUlJyxNcXFBSg1WppbGyc9JqGhgZee+01eR/RaJTR0dFJVfEjHXcmLM/RfJGRDGmKkojP1ISp0+mSUqFVq9WU24spt09eUonH47R4W9n/YTNCRE1+XiFalZ5oOE44EJ7wy1VrJhoyEwIa7YSERKVWMTg8iG9slPKqEmzOGvILssnMMWPKWNrqq1St83g8xGIxueHvcO+jSqWioKCA/Px8uru7ZUKe6ij2uSIQCODxeBgYGKCiooJVq1YdUTuZkZHBunXrZOLU2dm57LTjUnR7e3s72dnZbN68+Yg3UJ1Oh9PppLKyEq/XyxtvvEFpaSk2m+2o9oCLBcmpx+PxTKsWzwS1Wk15eTklJSV0dnayd+/eJQtbOhIkm8mhoaFJKzCHQ15eHps3b5adbtra2padLaP0/Wtra2NjYwEXnL2B/33ZxR+efZ9aRzHRUIzGVeV4PH309PrIz8ugyJhJf98Y7e0+iktMDPaFEBIiPd2jFJdkoVar8Y1OxNzv39tN/apymvYqyHjLBBnv7RqhqCiL7GwzXW1DvPeGl8Z105vQD+zppn5NBQd2H5KvaHUaPvOlE7nwH0/COEXCN9Upas2aNUdMb1YS8vb29mVDyOPx+IInbmkSfxQctBo+ZjDHa9Hr9WzcuJEXXnhB1m8LgsALL7zAZZddNuM2J598Mi+88MIkjbjk7iPtc/PmzTQ1NU3arrm5merqagA2btyITqfjhRde4MILLwSgqamJ9vZ2eT+zQbpZExgYGKCoqIiurq55NSb19/dPDAAbN04i4CqVKmkE/HCY2klvt9vnpRMMBoNyo1Z1dTVWq3XJql6iKMqOIZFIZN72dkpLr9zcXJxO54JSEheKmdwp5ko6pffG5XIhCAIOh2NJZRBTo9sdDge5uTNrW48E5eRkOTRzSo4v4XB43qRT+dvMzs5ecKLlQqFM4Z2v1Gmq9/tMq1OLCWUaqxTfrqxMubz9/MfTbxEMRmna30NOlonK0hxEQSQhCIyPhujsmKhal5ZaGOwdJx6fGBILCzOJR2OMDgXl/dUf1HQXF2eRm2dBFCYkGu3uvkkyFYDGdRXsm8FNpX5NOQd2d7L5VAeXXn4WpeXTfy8+n4/m5maCweCsshNmgpSo2t7enlJCLkEi4xIkQj40NMS+ffs4/fTT57VfQRDQaDQryolosSA1a370hOvRapZHASMZiCfCvLhr25ztCy+55BIeffRRTjzxRH7yk5/wu9/9jgMHDlBcXMxXv/pVysvL2bZtGzBhX3jGGWdw11138fGPf5zf/va33HnnnZPsC//whz9w0UUX8fDDD/PRj36U5557jiuuuIKXXnqJ0047DZiwL/zLX/7C448/TlZWFpdffrm8/9kiTcSZaCgzm800NzfPaTlBgkSMNm7cmDQbwqNhJiurZKRGKsNzHA7HNF/rVEIURYaGhvB4PITDYaxWKxUVFQueEESjUbxeL11dXZSWlmK32xdVazYbv+a5QhRFuru7ZblEMm3LZgNBEGTLyGQmfCr18kthb6i0J0zW8ZORaLkQxONxWltbaWtro6CgAIfDsWAZkLJfA5D7NRbzXiFNCERRxOl0HtGytNnTz99e2sfLLzcjCCJlhVm0eAcwGLQ4awoZ84cxm/VotWqC/nGi0SgGg4HMTAtiQkCIC0SjcULBKFnZJg582D3R5H4QVTUF9HcNz4qMN66t4KJLT2HtRuu081Qm70oFkYXK0KYScqlYkypMdVkZGBigtbWVU045ZV77SyQS6HS6ZdswvJSQiPhZG6475oj439+7a86BPg899JAc6LN+/XoefPBBtmzZAsCZZ56J1WqdFNz49NNPc+ONN8qBPnffffe0QJ/HHnuMbdu20dnZSV1dHbfeeiuf/vSn5eelQJ+nnnpqUqDPXLhkmogzQSqMRiNvvfXWnLzApep3IBCQY+4dDkdKl9bj8TgdHR20tbWRkZGRNAKuhNJyTqvVUltbm1KHC8lz2uPxEAwGU6ZDnbokX11dnVKtdSQSobW1lc7OzpTpoKWqf2trK9nZ2bKveqqg9DxXqVQpa0xUBv7MtyI4F0grQgMDAykLrlE2sC6GN/dMnvvZ2dlJP0ZPTw9erxetVrsoHv5Stfhw2vYjwdMywJ+e/YCdb3qprsjlwL4eNBo1tfYiDhwM+iktzSY4GpI14pmZBoxGHYN9Y/J+autLcO3vnUzGrfkM9IwSDsUmHVMi41s+4uQzXzqR+tXl084rHo/LdqypGkcWm5ALgiAXqTIzM1mzZo18T5/L9yNNxA8PmYivvw6tZmU08s8G8USEv78/dyK+UpEm4kyQi/z8fP70pz+xfv36o75eEAQSiYQ841er1USjUbnxrqamhqqqqqQSByUBN5vNcmd8Kgc8ySWipaWFnJyclEg7JAI+Pj4uE/BUNyIqI8hTQfJisZjcsJiXl4fdbk+5F7Pkq97R0ZESkidJYtxuN/F4fFEkCZJG1u12A6SE9EciEbxeL93d3YumUVdKlMrLy6mpqUnqCo1ysqTRaBalaVQpETEYDDgcjkkNrcmAcrK00GpxMBjl5dea2bO3i5deakIFrG4oY+9B/XZBoQWiAsODE038RpMGi1nP0MAhmYqzrgRv0+Qo+0prPoMKMl5clsOpH63jo+evpqJqejFDet88Hg8Wi4Xa2tqUEw8lIc/KypKDgZKJ8fFxmpub8fv9srQLDunK50LIBUFAp9Mt2wb1pYRMxNdde+wR8Q+2p4n48QQpZOTnP/+5rPuZCTMR8KkSlKGhIZqbm0kkEtTW1i64OrQUBHwqlNKOsrIy7Hb7gquFkjWa3++nqqqKqqqqRa14TG2EcjqdCyYrUxsW7XZ70iuQR4MykjxZKY+Sa0YwGJQH1cWUi0yVwUjNtwv5rKTJkiQXSYZcY66QAnSGhoaSpouXXIOi0SgOhyNlIS+Hg9LiMSMjIylWekrbPik4KZmTpZ7eUT74oJNd77URDsXY9XYrKiAnx4xRq6G/xweA0ajFbNYwMhiWt7XXFtPq6pej7dVqFZtPsVNals1Hzm7AVjvzxFHZ6zEbaU0qkApCLqXMdnd3U1FRgc1mk7/TEtVQ9lDNhpCnifjhIRPxNccgEf8wTcSPOzQ2NnLrrbdy3nnnTXtuNgRcCVEU6erqwu12z7vKsRwI+FQEAgFcLhcjIyPz1s/6fD48Hg+jo6NUVVVRXV29pEuOU5fv5/NZTSUf821YTCbGxsZwuVwL0jpLn5Uyzn0pB0PlCk1WVhYOh2POE51k7CPZmKqLn8+qkN/vx+Vy4ff7qampWXKLQWUPS1ZWFna7fVroxdGg/KwWQ3Y1cUyB1pYBOjpG6OwcYXBgjIHuUYYHx4lEJ/TfOq1IwB8hJy+DouIcrLZCsrJM1DaUYnMWTXM/mQop82BsbGxZuB/FYrFJBYT5EHJBEOTG+JycHGpraw87sZ0rIU8kEuj1+jQRnwESET979TXHHBF/Yc/daSJ+vGHz5s1897vflS1oYO4EfCqUVbeSkhIcDsdRl6CXIwGfCineOxaLzdqr2+/34/F4ZM/s6urqZdUFr/ysioqKcDgcR5V2SCS+paUFo9Eo29Qtt8/K5XIRiUSw2+2zkpOMj4/j8XgYHBxcFg4mUzGfanYqqurJhrTyEAqFZu0UpGzuq6yspKamZtl9VhLJy83NxW63H3VglaQ1brd7UXpU5gpRFBkZGZFXiWbb0xIOh/F4PPT29i77z0pa0Tva5Elqmm1ubkaj0czps5otIRcEAb1evyy965caMhFf9f1jj4jvvSdNxI83nHXWWXz2s5/ln/7pnxZMwKciGAzicrkYGhqS9eNTbyorgYArIYoiPT09uN1uDAYDdXV1M960x8bG8Hg8DA0NpawJLplQSjsON1hKpK6lpWXRGtQWAqn51u12o1arcTgcM56v8trna6+4mFDquw8nWVgMnXkyofTOP5IWPxqN0tLSIss1kuHEk0oog56O5BwjTfKXSlozF0hN5lJT8eFcnhKJxDTXGrPZvERnfXTMlpCPjY3R1NTE+Pi47LA1nzHySIRcej5NxGeGTMQbrz72iPi+H6eJ+PGGT37yk5xyyil861vfShoBn4qRkRGampqIxWI4nU6Ki4tlH+bW1lbMZjM2my3pTU6pRCKRoK2tjdbWVvLz83E6nZjN5klV1YqKCqxW64qJZ4dDy8dSs1FlZSUqlUp2iEilY0iqoGwMy8jIwOl0kpOTQyQSoaWlha6uLoqLi7HZbMuaKEzFVMcTafK02M4ryYSy4VKtVmO32ykqKkIQBDm4JicnB4fDkXK5RjIRDodpbW2d9l0bHx/H5XIxOjq6JLaVC8FMuQeSk4tUrDAajdM8zpc7DkfIlX70yazsH46QC4KAwWBYMd+HxYRMxBuuOvaI+P5700T8eMNpp51GWVkZP/vZz+YVRT9bSJVkaSkvHo/LNoQriYBPhXRz7u7uxmQyEQ6HKS8vx2q1Luuq6pEg+ZpLMhxpciZ5Jq8UUjcVUlNpa2srBoOBSCSyJP7WyYbkAT46OoperycWi604UjcVysmTWq0mkUhgNpuXXVrsXBEKhWRvfeX9wmazLesVsyNBuZoRiURQq9WoVCq56LJS7+3RaFTW+xuNRsLhMAUFBXLRJdlQEvLh4WEefvhhbrrpphV9b0oVZCJedwwS8abjh4ivTCaRAjQ2NvLXv/6VL3zhC7hcrpTdNAVBIBqNAhM3nEQigclkwmKxrNgbNUxUxgVBkP9frVZjNptX7KAqQVodkeRKWq0Wo9G4Ykm4BIkkCIKAKIrHhCuBNIGWPiuVSoVWq13RvyuVSoXBYECn08mflTQhXMnQ6XQYjUZUKpUsA4RDJGwlQqVSkZGRgdFolO+HUuz7Sr4unU5HZmYmer2eeHyiYTWRSMjjWLKhUqmIxWI8+uijbNiwgffffx+/35+SYx0rUIniMffveEK6Iq7A0NAQt9xyC//+7//OV77yFW688UYKCgqSsm+ls4bJZMJut5Ofn084HJ7mjbuSqndSZau3t1fWqhqNRrmSLAhCUmwcFxPKgCGpcU7ywZUqybm5uSnxVU8llM2lJpNJbi6Vgo4GBwfloKPl1ER2NCiTSyUvcIPBICcvCoKAw+FYcVVJZcqtZBuplKbk5uauOGmK1F/h8XgmRdJPbRBebs3cR4PStk+q7Ot0Ovr6+vB4PIiiuCJX0qTwpGAwKOvAJclKR0cHOTk52Gy2pEluRFHk+eef57rrrkMQBH784x/zyU9+ckX9bhcTUkX8HOeVx1xF/P9c9x83FfE0EZ8CURTZt28fV111FW+++SbXXXcd3/rWt+Y9KEwl4DabbUa/6tHRUZqamohEIjidzkWNi54PQqEQLS0t9PT0HFZXrBx0zWYztbW1S24VdzSMjo7idrsZGxs7rKxB6ateWlqK3W5f1vr3qemHhwt48fl8uFwuxsfHl4Wt2tGgdE85XHKpdO0ejwe9Xp+SoJlkQ/IXHx4ePmwCrLJZM1WprcnE1Eh6h8NBUVHRtM9BKS+SLDOX86RwaujZTLZ9khxR6i2RCPly/g5KBaK+vr7DhidFo9GkEvIDBw5www038Oabb3LjjTdy+eWXr6jJ2FJAJuL2K449Iu75SZqIH+8QRZFnn32Wq666CoA777yT8847b9Y3T+kGLenqDkfApx6zt7cXl8t1RCeSpYSy2aqoqAibzXZUAqCMb56tNeBiQ+lvPlsCIFWSh4aGluVqhtIxRBRF7Hb7UQmAMkEzkUjMapvFRiKRoL29ndbW1ll7gSsnxBaLBYfDsSx/W5K93WwTN2daDVhuPRnziaSfzYR4KSE5EblcLnQ6HbW1tUfV7CsnxBqNBpvNtuxWaZTN95IO/Gj36qmEfK5BZiMjI2zbto1f/OIXXHLJJdx2220UFRUt9FKOC6SJ+LGBNBE/CqLRKA899BC33347mzZtYtu2bdTX1x/25jkfAj7TPpR2V7O5GaYakUiE1tZWOjs7593Yp/Q8XmhEdbIwNjaG1+td0JL4yMgILpeLUCi0LNw5pCZTt9tNNBrFZrPN+ZyU9pSS7/ZSezkrV1gk3/a5npPSCSIvLw+Hw7Hk8qKplf352NsFAgG8Xi/9/f1JS1RdKBYaST9VInY4e8DFhiQZCofD87JYnGp/arPZZlwdWEwkowg0V0Iei8X45S9/ye23387atWu57777WLdu3bKamCx3yETc9r1jj4h7H0gT8TQmY2BggJtuuonHH3+cSy+9lBtuuGFSBSQej9PV1SU7Udjt9gVHps9meTDVUPr/5ufnY7fbF6xJVeoOl4q4KonLbKuPR4JUfXa5XKjVapxO54I///lAChoJBAKzDho5EqYmUTqdzkW/MUrVR4/HA3BYWcNcoLRsXCofbkEQ5PfWYrHgdDoXLN0aGxvD7XYzMjKyZMm1yY6kV9oDRqPRSfaAiwllHkQyVsAkR5yWlhb0ej02m21JemmUE4tkyCKVhDw3N5eamppJpF4URV588UWuvfZaIpEId999N5/5zGeWtQxuueIQEf9XtOpjiIgLEf7P+2CaiKcxHaIo8uGHH7J161Z27drFD37wAy666CIeeughfvOb3/Dwww+zbt26pBOwmRpmUn2znnoznU0i3lygTGRTq9XU1tYmrTH2SFA2l6ZiKV9qiPR6vVgsFmpraxflRjJVWzuTrnghiMVitLS00NHRsajyoqGhIVwu17wr+0dDMBjE4/EsaiV5anKktNqQzN+0UtqxWJH3qY6klya7Ho8HQRAWrflR+d2fbULyXJBIJGRCbjQa5Ub+VN/jlSuUVqs16dI6aQy5//77cblc3HjjjZSVlfGDH/yAV199lRtuuIHvfe97y05KtZIgE/Gay489It7yb2kinsbhIQgCTz/9NJdddhkjIyOUlJRwyy23cPHFF6dsUJiqSayrqyM3Nzfpx1Eu3c9H7zdXSMTV4/GkZPCWEA6HaWlpobu7e1FCa5Ryg1QS10AggMfjkcNsUp1cqtQxp5K4+nw+3G43fr9/UYjk2NgYLpcLn88n9wgke/VJkgy5XC7i8Th2uz2lyZFTkx8l55Vk36MWO5JeGXaUymAt5aQ6MzOT2tralDrUKPsYUpmuHI/HZeljcXExDocjpWS4q6uLm2++md/97neIosgnPvEJHn30UUpKSlJ2zOMFMhGvvuzYI+JtD6WJeBozIxQK8eijj7J9+3ZKSkpYs2YNf/rTnzj11FO58847qa2tTenxpUa1lpaWSUmWC0UsFqO9vZ329naysrIOG2ucKiiXs5PpRKKU1hQWFmKz2RZVE6yMjU9mCl2qK/tHgySBUFbgk0GUlVaKVVVVWK3WRZVWSMRVaRmYDOLq9/txuVyLNrFQYqZKcrImAEsZSS9prb1eLzqdDrvdnhRph7RaJ+VJLLbMLB6Py31GGRkZMiFfKKS+D5fLhclkoq6uLuUuVvF4nF/96lf86Ec/oqamhrq6Ov7rv/6Ls846i5tvvplNmzal9PjHOmQiXvUvxx4Rb/9pmoinMR0vvfQSX/rSlygtLeWWW26R/U37+vr44Q9/yBNPPME///M/c91116WkWq1EJBLB7XbT29tLVVUVNTU186rgSTd9yU0iWTf9+UKpw7RarfMmeMrKfiqkNXOFkojZbDYqKyvnRfCUtnVFRUXY7fYljaMfHh7G5XItOEZe6f5RVlZGTU3Nki1ZK632BEFYkHOMsmFxKSYWSkhEzOPxoNFocDgc8yauyymSfqq0Q/LHn891+f1+mpubGR8fn7XDS6oQj8flRMvMzEzsdvu8x5WRkRGampqIxWKLkvQpiiKvvvoq11xzDWNjY2zfvp3Pf/7zqNVq+vv7ueeee/jpT3/Keeedx9NPP53Wh88TMhGv/M6xR8Q7fpYm4mlMR1dXF++88w6f+tSnpt3ERFHkvffeY+vWrezdu5cbb7yRSy+9NOXNlWNjYzQ1NTE+Po7D4aC8vHxWN9jFWgadL0ZGRmhubiYSicyp0qYcvJaisn8kKKUJiURiTiEzUycWyynIRWmTCOB0OmdN8JT62+Xmh60krkfyX58JSq/5ZDQsJhNSk6DX652z+0wkEsHj8dDT07PsIumV97SMjAwcDsesiauyMX4hhY1UQFqtbGtrm7NfdygUorm5maGhIWpqahZlwuT1evnBD34gN2Ru3bp1RlleX18fr7zyCl/4whdSej7HMmQiXv7tY4+Idz2SJuJpzA+CIPDf//3fXHvttZjNZrZv384ZZ5yR8uqD1Pio0WiOqNFMJBJ0dnbS2tq6qI1B84FSe3o0r96pg/BSV/aPBFEUZRs+g8FAbW3tYQmD0jM7MzNzWfpfS1ASPJPJhNPpnNV1ZWdn43A4lu0NV/rNtLS0kJGRgdPpPOxnIE0EV0L66lQ/9iNNWuPxuJzomZ+fj8PhWDYTpqmQzrW9vZ3s7Owj9rko9dLLNeNAwtTJuM1mO+J1SdkNqWgwnQl+v5977rmHn/3sZ3zxi1/kjjvukBOJ00gNZCJe9q1jj4h3P5om4mksDOFwmPvuu4+77rqLM844gzvvvBO73Z7SYwqCIOvHp6a8KePNk2WvuFhQ6uJzc3OnXZdE/gwGw4pITpSgDM+YStpmqloupxWLI0FJ2qZ6dU+9LqfTuWwnTFMx2+s62iRkuWGqt7rSovRwkfQrAVLDdEdHxxGva6Wk/ko4kqWsKIp0dXXh8XjIyMhYFNemRCLBr3/9a2699Vbsdjv33XcfJ5544oq4V610yES89Fto1ctjZSoZiAtR/q8nTcTTSBJ6enr4wQ9+wG9/+1u+9a1vcc0116T8hh+NRvF4PHR3d1NeXo7JZKKtrS2pDU1LAeV1lZWVYTabaW9vR6vVHjPXVVJSQmZmJu3t7ajV6gXpeJcaSnlGcXExWVlZ8nXZ7fYlDzGZL5Qe5EVFReTk5NDe3g4kx+N8qaC8rsLCQvLy8mhvbz9iJP1KgDKMTHldgiDgdDqPiesqKCigoKCA9vZ2EonEolyXKIrs2LGDa6+9luHhYbZt25ZS57A0pkMm4iXfPPaIeO/P00Q8jeRBFEXeeecdtm7dSnNzMzfddBNf+cpXUqpBFASBlpYWWltbEQSBsrIy6uvrlzyVbqEQRZHW1la8Xi+CIFBSUkJjY+MxcV0dHR1ytHxhYSGrV69eNjrV+UKS4TQ3NxOPx8nPz2fVqlUpXyZfDPT29nLgwAFisRi5ubmsWbPmmLiu/v5+9u/fTzQaJTs7m9WrVy9pQ3CyMDQ0xN69e4lEImRlZbF69eplK6+ZC0ZGRti7dy+hUAiLxcLq1atT3j/S1tbGjTfeyP/+7//y/e9/n6uvvvqYeC9XGmQiXvTPxx4R7//3NBFPI/kQBIHf/e53XHfddWRnZ3P33Xdz2mmnJbVqIQgCvb29eL1eVCoVNpsNjUYjW3EtVnBOsqF0skgkEthsNgwGg+zJvBhOAKnATF7PZrNZjvVequTRZEAKlRkfH8dqtZKdnY3H42F8fFy28FuJ1yU5hoyMjGC1WsnLy6OlpYWRkZGUhCktFkKhEC6XS46kLywspK2tbdE86lMFZYNpRUUFJSUldHR00NfXt+QOPQvBVMvXiooKurq65KyEmpqapJPj8fFx7r33Xh566CE++9nPsm3bNiorK5N6jDRmD5mIF3792CPiA79IE/E0UodgMMiPf/xj7rnnHs455xxuv/12ampqFrRPqbHR6/UiiuK01LmpwTm1tbXLtolMCclpxO12E4lEpnk7SxVXt9u94jSsyvTDqRZwkhOJy+VCrVYvupfxQjA+Po7H42FoaGhazPpih9okE8owo5kcQ0ZGRnC73QQCAWw2GxUVFStionG0SPpUp7amCsoejJkyF5RhWIuVqpoMSP0IHo9nxqAhZcZASUkJNTU1C17RSCQSPPXUU9xyyy1UVVVx3333cfLJJ6+I3+2xDJmIF3zt2CPig4+liXgaqUdnZyfXX389//Vf/8V3v/tdrr766jkvKUqJm16vV64Ul5aWHpYAxGIxPB4PXV1dy85+bCqkSnEwGKSmpoaKiorDSlASiYTsflBQUIDT6Vy27gdjY2N4PB6Gh4enEdWpUKb7WSyWRWm+mi+URLWsrExetZgJU60BUxHznixMTUk9kne7KIoMDg7idruX/URjrpH0yonG0X6PSwnpu+V2u4/qSgSTf49S5X+pvN6PhsHBQZqbmxFFUV7dPNx3KxgM4vV66evro7S0lJqamjnfE0VR5M033+Taa6+lp6eHO++8k3/8x39cERPM4wEyEc+79Ngj4sO/TBPxNBYH0o1u69attLS0cPPNN/PlL3/5qAOcJNXweDzEYjFsNtucJAzKQI6FBMykAqOjo3g8Hvx+/5zjxpVkMJlJlslAMBjE4/HQ399PRUUFVqt11priqWRwOdmsLSRkSGkNKNkzLhf3CiVRzcrKwul0znpQWIgHeaqxkEh65QpVNBqd830n1ZCSPmOxGA6HY05BTD6fD4/Hg8/nkyfIy6XyPz4+TnNzMz6fb87360AggNfrpb+/f05SnI6ODm666SaeeeYZtm7dyrXXXrsiVlGPJ0hE/OzcS445Iv7CyK/SRDyNxYUgCDz55JNcf/31FBUVsX379hmX/qSKm8fjIRKJyJWp+Q6Ec6mwpBp+vx+Px8PIyMhRK8VHw9jYGM3NzYyNjS25TECZGllSUoLNZps3iQ6FQng8Hvr6+pZ8oqEMT5pNRfVIUE40CgsLcTgcS9YgqCTROp1OrtbPB8oVjbmGzKQCyYqkl1biPB4PoiguKH00GQgEArhcLoaHhxccXKOs/FutViorK5es8q90HlroCub4+Dher5eBgQHKy8upqamZsRAQCAT4yU9+wgMPPMAnPvEJ7rrrLqxW6wKvJI1UIE3Ejw2kifgyw/j4OHfffTf33Xcf559/Pj/60Y+oqqqSg4IyMjIwm81YrdakLQ0fTXOYakia4sHBwaQ2hUmTFpfLhSiKc0p8TAaUfr/JTo30+/24XC78fv+ir2hM9cyWPM6TgaPpsFOJqbKSuVZUjwSlB/lSJKOmKpJeEAR6enrwer1LUvlXEtWysjLsdnvS7h3KJuqFFjzmCkEQ6OjowOv1Jr2nZ2xsDK/Xy+DgIC0tLZx//vmUl5fLZgI333wzxcXF3H///Uk3E0gjuZCJeM5X0aqOISIuRnlh9D/SRDyNpUVbWxvXX389f/zjH7ngggvYt28fXV1d3H///XzhC19ISYVGGTdeWlqKw+FIKQlSahjLy8uxWq0pcS9QTjQWQ2etJF05OTkpS41UNj4mEgkcDkdKnWMkSYPH40m5x/n4+Dhut5vh4eFFaRD0+Xy4XK6UO7ooZTzFxcXY7faUSowWK5I+kUjIkzOz2ZzUydlMmBpelqoEU6UEMB6PU1NTk1IpjjQZbG5uTrnLlc/n46tf/SqvvfYa55xzDt3d3XR3d3PHHXdwySWXLEv9fxqTIRPx7K8ce0Tc90SaiKex9HjppZe44oor2LNnDyaTiTvuuIOvfe1rKa/KKJd5bTYbVVVVST1mKBSipaUlKVKNuUApfyguLsbhcCSV+Eua4tbW1kWVIUjOMR6PZ1bNafPZ/1I1II6MjOByuQiFQtMcc5IBpXOGRPgXQ+qjlBilgiAvVSS9Uq6UlZWVdM2/0k1Io9HMSd++0OOmWoqjlNPZ7fakf9dnQnd3N9/+9rd58cUX0Wq1/Ou//ivXX3/9ikm7Pd4hE/HMLx97RHzsN2kinsbSYceOHdx00028++67bN26lcsuu4z/+Z//4Qc/+AHl5eXcfffdbN68OeVEaHh4mKampqQltU1NJLTZbEsSAhEKhXC73fT391NdXY3Val1QtVWKy/Z6vej1ehwOx5I4gCjt2qZGsM8Xo6OjuFyuJXXKkKqSLpcLSE56ZSQSwev10t3dTWlpKTabbUm8pJNd+V8ukfTKSW9BQQF2uz0p38Xm5mZCoRAOh4OysrJF/41JOQ0ejweNRpOUhFhlsm5FRQU2my3lk8FgMMi//du/cd9993Huuedy991309vby80338xbb73F1q1bueKKK5ZN43QaM0Mm4pZ/OPaI+PiTaSKextJgZGSExsZGvvGNb3DllVdOqmyOjY2xbds2HnjgAT71qU9x2223UV5entLzEUVRlnWYzWbq6urm/MOIRqO0tbUldVBOBnw+H83NzQSDQbkCNZcBVSnVUKlUyyYGXDmwl5aWYrfb55z4uNjSkNlgKsl0Op1zrvwrK8XJmqwkA1MnPHOVxkzth1gu30XlhGe+Uhxl0JDVal0238Wuri5aWlrQ6/XY7fY5a+OV8prc3FycTmfKCxNSr9EPf/hD8vLyuP/++znjjDMmnfcrr7zCTTfdxMaNG7n33ntTej5pLAwSET/LfPExR8T/HvxtmoinsXSIRqNHXKZuaWnh2muv5S9/+QtXXnkl3/ve91LuMBGPx2lpaaG9vZ2SkhIcDsdRyV0sFpOXqVOplV4I5rPUPVWqcTTv9qVCIBDA7XYzNDQkV/6PVs2eKpk4nLPCUkJZ+ZcIzNHI9NQG0+UY/DRfCZBS377UDkGHw9R+kNl8r5Q9KzMFDS0HKO03zWYzdrt9VvePgYEBmpubF01eI4oi77//Ptdeey0ul4sf/ehHfO1rXzvshEYURWKx2LLNmEhjAjIRN1107BHx0H+miXgayxuiKPLKK69w5ZVXMjQ0xG233caFF16Y8gFYqk4NDg7K1amp5C6RSNDe3k5ra6vsDb3cSM9UzNalQBkytFxJz1QoddZ2u33GZrOpTYQ2m23J7ANnC+U5H46oSdpet9ud8gbTZGG2TbFTI+kXS9++ECgdkqqqqmYMz1FaPi6Fi9N8EI/H5f6QI93z/H4/zc3NBAKBea3CzQe9vb3ceuutPP3003z3u9/lxhtvTEtOjhHIRNzwxWOPiEd+lybiaawMJBIJfvnLX3LjjTdis9nYvn07J5xwQspv7iMjIzQ1NRGLxXA6nRQXF8sDaGtrKyaTCbvdTl5e3rImPVOhJHdKWYfP58Ptds8rZGg5QFn5V6vVOJ1OCgoK5OryUtnqJQPKoCSlt/rw8DAul4tIJLLsgmdmA+n31NLSMkmKc7RI+pWAmX5PGo1mUi/AUucazAeHWwWMRCK43W56e3upqqqipqYm5fePcDjMww8/zD333MNZZ53FPffcg9PpTOkx01hcyERc/wW0quU9CZ8L4mKMv0efThPxYw133HEHzz77LO+//z56vZ7R0dGjbiOKIjfffDP/3//3/zE6Osqpp57Kz372s0k3s+HhYS6//HL+/Oc/o1arufDCC3nggQcWXXfq8/m48847+bd/+zcuvPBCbr31VkpKSlJ6TCn4RCJ3iUQCo9E4L73kcoMk6xgcHMRkMhEKhQ5bwVtJkMidFFYTi8XIyMiYl956uUHyVvf5fBgMBjnwKlme2UsFyYmkpaUFo9FIJBKRLftW2qRpKqQVpkAggF6vJxaLLZpjSCoh9cW0tbVhNpsJhUIUFBTgdDpTvtIkCILc3J+Zmcl9993H2Wefvazvx8f6+JwqSET8o9rPH3NE/MX4748bIr5y73RzRDQa5Qtf+ALf+c53Zr3N3XffzYMPPsgjjzzCm2++SUZGBueeey7hcFh+zZe//GX27t3L888/zzPPPMMrr7zCN7/5zVRcwhGRnZ3N9u3b2b17N4FAgPXr13PPPfcQCoVSdkxpDieR8Hg8TkZGBpmZmcv6pj8bqNVqNBoNoigSjUbR6XRYLJYVVQWfCSqVCp1Oh1arJR6Py5OnlVZRnQk6nQ6DwYAgCMRiMbRaLQaDYUUTOgCNRoPJZJKJqiAI6HS6FT25kGA2mzGbzSQSCWKxGGq1esV/XjDxXczMzESv1xONRhFFEbVaTSrrXqIosnv3bi644AK+973v8f3vf59du3ZxzjnnLPv78bE+PqcconDs/TuOcNxUxCU8/vjjXHHFFUedcYuiSFlZGVdddRVXX301MFF1Li4u5vHHH+fiiy9m//79NDY28vbbb7Np0yYAnnvuOS644AI6OzspKytL9eUc9txffPFFrrzySnw+H3fccQef/vSnkzbAHc5TNxwOy7aAVqt1Vs2Byw0zuTwYjUZ6e3txu93o9fqk+3QvBg7XCCglWfb19U2SdawkKJv6ZvrMliLxMVmYKZI+HA7j9Xrl9NHl2FB7NMTjcVpbW2lra6OwsBCn0yl/ZsvNhWiuULoxOZ1O+TNLZXZCf38/t912G0899RTf/va3uemmm1bcPQqOj/E5mZAq4meqPnvMVcRfEv9w3FTEV3Z5L4VoaWmht7eXc845R34sOzubLVu2sHPnTi6++GJ27txJTk6O/CMHOOecc1Cr1bz55pt89rOfXYpTR6VScdZZZ/Huu+/y7//+71x55ZU8+uij3HXXXaxbt27eA9vRUuZMJhNr1qyR/X67urpk8rDcB9OpvsdbtmyZtHxZWlpKUVER7e3tvPfee+Tl5S2K3VgyoLTGm9pgajKZWL16NVVVVbhcLl577TVsNlvKkiWTCWVTcHZ2NieeeOIkqUZpaSnFxcV0dnayd+9eLBYLTqdzRTSqHSmS3mQysWrVKqqrq3G73ezYsYOqqqoV0awphU+53W5MJhObNm2a9HlIn1l3dzdNTU20tLQsmS//XCEVIvr6+qiurmbDhg3yCprJZKKxsRGr1YrX6+X1119PSppwJBLhkUceYfv27Zx22mm899571NfXJ+uSli1W8vicCsTFyDFVRY4TW+pTWFSkifhh0NvbC0BxcfGkx4uLi+Xnent7KSoqmvS8VqslLy9Pfs1SQqvV8u1vf5uLL76YH/3oR5x99tlcfPHF3HTTTdOu60gQRVHWcobDYTnY5XBELScnh82bN8sVyY6ODurq6palc4oyCTA7O3saMVBCo9HIkw+Px8Mbb7yR0tjwhWJsbAy3283IyMg0YjAVWVlZnHDCCQwNDeFyuejo6MDhcFBcXLzsCJAySVSv17N27drD2r+p1WqqqqooLS2lra2Nd955h4KCgkVLmpwrpkbSr1q16rDfLYvFwvr16+WJVmdn55KFLs0GQ0NDNDc3k0gkqK+vP2y1W61WU1FRQWlpKR0dHezZs2dRk2rnikQiQWtrK62trRQVFXHKKaccttptNptZvXo1VqsVj8fDjh07qKysxGq1zukeIggCf/nLX7jhhhvQ6/U89dRTnHfeecvut5oqHAvjczKg1+spKSnhtd6/LPWpJB0lJSXLclxNBVY0Eb/uuuvYvn37EV+zf//+46JCcCTk5ORw77338q1vfYurr76a9evXc8011/Av//IvR13SHhkZkZuprFYrlZWVsxrkVSqVXEVua2tj165dcrPSYsTZHw2JREL2lTabzaxbt27Wsc4Gg4HGxkaqqqpobm5mx44dy6qKrPQCr6ioOCKZU0KlUlFQUEB+fj7d3d00NzfT1ta2bKQ4ytAaQRCora2d9URBp9PhcDioqKjA6/XyxhtvUFZWhs1mWxayjqmR9CeddNKsJwpS1U+aRLW3ty8rb/vx8XGam5vx+Xxy8+xszkuj0WC1WqmoqKCtrY333ntvWeURSDaTLpcLo9HIxo0bZ11ssFgsrFu3Dr/fj8fj4bXXXpvVqoYoiuzbt49rr72WDz74gJtvvpnvfOc7y3IlJD0+px5Go5GWlhai0ehSn0rSodfrj4nepdlgRRPxq666in/6p3864mtsNtu89i05jvT19VFaWio/3tfXx/r16+XX9Pf3T9ouHo8zPDyccseS+aC2tpY//elPPP/882zdupXHHnuMO++8k49//OPTBkafz4fH48Hn81FVVXXEauqRoNFoZOs4j8fD66+/vmj2XTNBEAR6enrwer1otVpWrVo1b+2wxWKRq8jNzc10dHTgdDqXTNcajUbxer10dXVRXFx8xMrckaBSqSgvL6ekpEQmQEstxTmSvGYuMBqNNDY2Ul1djcvlYseOHUuaHDo1LfSEE06Y18qRchIl6azb2tqW1Dd9anV/9erV86pwabVa7HY7lZWVtLa28vbbb1NYWIjdbl/S72NTUxORSASn00lJScm83uOsrCw2bNjA6OioTMgPZ486ODjI7bffzhNPPME///M/8/TTT6c8CGghSI/Pi4Njpdn+eEa6WfMwkJpBrr76aq666ipgojGiqKhoWjPIO++8w8aNGwH429/+xnnnnbfsm0FisRiPPvoot9xyC2vWrOGuu+5i9erVvPnmm9x///1ceuml2O32pNv1+f1+mpqaCAaDOBwOysrKFoUkHK7BNFnHFkWRrq4uPB4PZrOZ2traRdMiK6ups02anAui0Sgej4fu7u5FryIr00El+8hkEmaJ4EsBTYtlm5fqSPqpSaIOh2PWKz4LhaTdb2lpSckETmpWTVXj45Ewm0CzhUCSAD733HMIgsDVV1+NXq/n5z//Odu2bWPLli3ce++9NDY2HpMylPT4nMbxiOOGiLe3tzM8PMz//M//cM899/Dqq68C4HA4ZNJSX1/Ptm3b5CaO7du3c9ddd/GrX/2KmpoafvjDH7J792727dsnz0DPP/98+vr6eOSRR4jFYlx66aVs2rSJJ598cmkudI4YHh7m1ltv5ZFHHqGoqIi+vj4+//nPs23bNgoLC1NyTClcprm5GZ1OR21tbcpIgkR4PB4P0Wg05cEuSjeIoqIiHA5HykiCMoFQ8gJPpQ5fSYqrq6tT6oqjrKammvxLTchutxtBEFKujV/MSHplYFN2dnZKZR2SVMPtdqf8dw2Tg5wqKiqoqalJmaZU+bsuLi7G4XCkrAopiiJ//vOf+eEPf0hfXx9Go5Hs7Gzuv/9+Pv7xjx+TBDw9PqdxPGNFS1Pmgptuuolf/epX8t8bNmwA4MUXX+TMM88EoKmpCZ/PJ7/mmmuuIRAI8M1vfpPR0VFOO+00nnvuuUk34N/85jdcdtllnH322XJgwIMPPrg4F5UEjI6OytUHURQxGo2sXbs2pdVclUpFcXExBQUFtLe38/7775Ofn5/0sAulvn2xmtgkq7yKigrcbrcsxUnmyoIUpOTxeBYsr5kLMjIyWLduHSMjI3JzoN1uT+rERiI87e3tc9ZKzxcqlYqioiIKCgro6emRtfFOpzOpRFIZSV9VVcW6detSru2VpGEVFRWTZB0OhyPpv7Xm5mYikciiOSWZzWbWrFnD2NjYnHTWc4HS5cVsNh+xmTuZcDqdWK1Wuru7UavVxGIx+vv7SSQSKz7LYCakx+c0jmccNxXxNCajq6uLH/3oRzz++ONcdNFF3HzzzdTU1PDXv/6Vq666ikQiwZ133sn555+f8gFVWf1Mhpe13+/H7XYzOjq6pPpf6Vyam5sZHx9fcGKgsnKbSCRwOBxJldfM9Vz6+/vlVFWn07mgycBiV/ePhKm2iAtNsFxOkfSSb3xvb29SVhqUqySpkGrMBaOjo7jdbsbGxqZZPs4Hkod7LBbD6XQuioPQ8PAwd955J7/85S/5p3/6J2677Tby8vL47W9/y80334xareaWW27hS1/60jFZGU8jjeMRaSJ+nOL111/ngQce4JZbbqGhoWHSc7FYjIcffpjbbruNjRs3sm3bNhoaGlJ+4x8bG6OpqWnepDUQCODxeBgYGJiXJViqIBFol8uFSqWaF2mVqtCSljmVcoa5QEmgLRYLtbW1c5I+SNp9t9udFEKfTESjUVpaWujs7JSDguYiMxIEQdZKJ4PQJxPj4+N4PB4GBwflyepcJr/KyUVpaSl2u31ZuM9MtVqdj+4/GAzicrkYGhqSXV5SPbmIxWL84he/4I477mDDhg3cd999rFmzZtLvIBaL8R//8R+8+OKLPPHEE8viN5JGGmksHGkinsZhMTg4yM0338xjjz3GJZdcwg9+8IOUd+lLpLW5uRmNRkNtbe1RjxkKheSkwbKyMmpqapZlF7mStGZmZlJbW3tUYqb0ApeqfMtxaVoZiDRbbbxktxeNRmWJy3IkF0o7yNms2Ci10lqtdlbf4aWCpFcfGxujpqbmqPakgiDQ0dGB1+slOzub2trapDYGJwtTV4+kJNkjfb+UCa0lJSU4HI6UTy5EUeSFF17guuuuIxaLcc899/CpT31qWUyy00gjjcVBmoincUSIosjevXvZunUr77zzDjfccAPf+MY3Uq5tVQ74OTk51NbWTtMKRyIRWlpa6OrqoqioCLvdnlTda6owdcCfSaqwmI1oycRsSOvY2Bgul0v2lZ6tN/1SQ3neh5M+DA8P43K5FlUrvVBIVWRpUjRTQ7NSijTbCfJygNRP4fV6UavVM9o5So5Hbrcbi8VCXV3doqxcNDc3c8MNN/D6669zww038L3vfW9ZrCqkkUYai4s0EU9jVpA6+a+++mo0Gg133XUX55xzTspJhtI6r6KiQvadbWtro729nby8POx2+7JZ8p8LlFZokgtJPB6XJxeLbc2WTPj9/mmVVqkXYLaV5eWKmSr5gUDgsJH0KwVKmZBKpZItFaU+h2AwKEvGlvvkYiqUdo5Go1G2c5R04IlEgtra2kXxXB8dHWXbtm38+7//O//4j//I7bffPqek4zTSSOPYQpqIJxHDw8Ncfvnl/PnPf5Y7tB944IHDLt22trZSU1Mz43O/+93v+MIXvgAw48Dw1FNPcfHFFyfv5GeJaDTKgw8+yB133MFJJ53EHXfcsSjJaOPj4zQ1NckOL5IV21I19CUTUjjI+Pg4oijKEezLccl/LhBFUQ47CofDCIIgrwCsxMmFEhJpdblcxONxEomEPFFcCSsXR4IUMuR2uxFFEUEQ5InicpRFzQWJREJeaVOr1QiCgM1mm3Xa50IQj8d5/PHH+dGPfsSqVau477772LBhw7Ke1BwPY1oaaSw10kK0JOLLX/4ye/fu5fnnn+eZZ57hlVde4Zvf/OZhX19ZWUlPT8+kf7feeisWi4Xzzz9/0mt/+ctfTnrdZz7zmRRfzczQ6/VcffXVNDU1UV1dzamnnso111zDyMhIyo4pCAIjIyOMj49jNBrR6/VEo1FisRgrfR6ZSCTw+XyEQiFMJhM6nY5QKEQkElnqU1swBEFgbGyMcDiMyWRCq9USCAQIh8NLfWoLRiKRIBAIEIvFMBqNaDQaxsbGCAaDS31qC4YgCIRCIRKJBCaTCZVKhc/nO2auLRKJyFatoigyMjJCIBBI2TFFUeSll17i1FNP5YEHHuBnP/sZf//73znhhBOWNQmH42NMSyONpUa6Ip4kSCleb7/9Nps2bQLgueee44ILLphTiteGDRs44YQT+MUvfiE/plKp+MMf/rDsblSiKPLBBx+wdetWdu/ezY033sill16aEr9sjUYj6ztFUZSbHrOyspZtw9iRIAiCrF3VarU4nU7y8/MRRVF22sjJyUl6SuZiQKqoer1eDAaD7Mcthcu0tramJHFxMTA1kr62tpacnJxp/ucOh2NFXpuUDqt0wFE24i51tPx8MbVRuq6uDovFMskZJxV9Jh6PhxtuuIGXX36Z6667jq1bty7LRvKZcDyOaWmksRRIE/Ek4bHHHuOqq66aVBmOx+MYjUaefvppOQ3sSHj33XfZtGkTO3bs4JRTTpEfV6lUlJWVEYlEsNlsfPvb3+bSSy9dNtUUQRD44x//yDXXXIPRaGT79u2ceeaZ8z4/qTHM4/HIS8czNb0pLdTKysqw2+3LXhYwNcXRbrfP6AUejUbxer10dXWt2Gs7XEKlUvef6tTMZEEZSS8IAk6nc8ZI+kgkgtfrpbu7e1nZ+h0JymsTRRGn0zmjVloZLV9aWorNZlsRpHJwcJDm5mZEUaS2tnZGe0yl81Iyrs3v97N9+3YeffRRLrroIu68805KS0sXeimLiuN5TEsjjcXEyhb8LSP09vZSVFQ06TGtVkteXh69vb2z2scvfvELGhoaJt2wAG677TbOOusszGYzf/vb3/iXf/kXxsfH+dd//deknf9CoFar+dznPscFF1zAAw88wD/8wz9w+umnc/vtt+N0Ome9n7l6AOt0Ourq6qioqKC5uZkdO3Zgs9morKxclvZf0rWFQqGjXpter6e+vp7KykpcLhc7duxY1k2Ao6OjuFwuAoHAUT3g9Xo9DQ0NVFVVydcmaZCX47XNJZLeYDDI1+Z2u9mxY4ecrLoc9dVjY2M0NzczNjZ21GszGo00NjZSXV2Nx+OZdG3Lsel2fHyc5uZmfD4fdrv9iNdmMplYtWoVVqtVvrb5ZBHE43F+/etfc+utt1JbW8vLL7/Mpk2bViTBPJ7HtDTSWEykK+JHwXXXXcf27duP+Jr9+/fz3//93/zqV7+iqalp0nNFRUXceuutfOc73zniPkKhEKWlpfzwhz/kqquuOuJrb7rpJn75y1/S0dExu4tYZPT29nLjjTfym9/8hm9+85tcd911R42FVqbizdfSTmoMXEwHhNlASvr0+XxyeMpcr02Z8reUiZpTIbmFDA8PzzvFVAorCoVCy8qVIxQK4Xa76e/vnzfhVE5QllMQkzJhc74ONj6fD7fbjd/vX1aTROVqUnl5OXa7fc7X5vf78Xg8jIyMzOp7LYoir732Gtdccw0+n4+77rqLL37xi8vis56K9JiWRhrLC2kifhQMDAwwNDR0xNfYbDZ+/etfL2gZ74knnuDrX/86XV1dFBYWHvG1zz77LJ/4xCcIh8PLdtlbFEV27drF1q1b2b9/PzfddBNf/epXpw1mysCaqqqqOSf8TYXS8WExPYFngtILPBlJn5Jm3u12YzAYqK2tJTc3N4lnPHsoZQrJkJcofaqXOmEz2ZH0U2Uth5PsLAYSiQStra20tbXJ7jwL1UQr7Rxn8iBfLMwme2CuGBkZwe12EwgEsFqtMxYIWlpauPHGG/m///s/vv/973P11Vcv6zyD9JiWRhrLC2kiniRIjS3vvPMOGzduBOBvf/sb55133qwaW84880wKCgr4/e9/f9Rj3XHHHdx7770MDw8n5dxTCUEQ+P3vf8+1115LZmYmd999Nx/5yEfYs2cPt912G1/84hdZu3Zt0gNrlKE5i63VVeqEk0HkpkLZ9Jifn4/T6Vy0gT8Wi9HW1kZbW1tKGveUTXXKhsHFQKoj6UVRlBs99Xq93KC7GFAe22g0yk2mydx/f38/brcbQPYgX4zJhtSb4HK5UKlU1NXVJfV9lWw43W43Tz31FJWVlVx++eVEo1F+/OMf8/DDD3PhhRdy5513UllZmbTjLjXSY1oaaSwO0kQ8iTj//PPp6+vjkUceIRaLcemll7Jp0yaefPJJALq6ujj77LP5j//4D0488UR5O7fbTW1tLX/5y18477zzJu3zz3/+M319fZx00kkYjUaef/55rr76aq6++mpuvfXWRb2+hSAUCnHvvfdy1113kZOTQ19fHx//+MfZtm0b1dXVKTtuMBjE5XIxNDRETU1NSpfPJZIqOWfY7faUOp5IATk9PT2yh3WqtLpStbGlpQWLxYLT6Tyq3GghUDp1FBUV4XA4UuY9vtiR9JKXdaoI/1QoZU1OpzOl1XilY85iTDaUGvej9SYsFKIo8utf/5rbb79d9vxvaGjg/vvvZ8uWLctCTpVspMe0NNJIPZZf99AKxm9+8xsuu+wyzj77bDn84MEHH5Sfj8ViNDU1TfPjfeyxx6ioqOD//b//N22fOp2Ohx9+mCuvvBJRFHE4HNx333184xvfSPn1JBPj4+OMjIyQSCTQarWo1WrsdnvKpRVms5l169bJZKSzs5Pa2tqkVuskYtXa2orFYmHjxo0pJakSDAYDjY2NckPna6+9lvRm1akkddWqVYsiGdHpdDidTioqKvB4PLz++uspSeNcikh6jUaD1WqlvLyclpYW3nrrrZRMNgKBAM3NzYyOjs6772KuUKvVVFRUUFpaSkdHB7t37yYrKwuHw5HU30Q0GsXtdtPT00NlZSVr165dlIZRu91OYWEh4+Pjsi9+f39/yo+7VEiPaWmkkXqkK+JppBR+v597772X++67jzPOOIPbb7+ddevW8dZbb7F161Y8Hg+33HILX/7yl1NOEqTlebfbjdlspq6ubkGyB8kLXCk1yMvLW7LKmGTTJghCUppVJe1vLBbDbrcvCkk9HPx+Py6Xa1Iz70ImG+Pj48smkj4UCuHxeOjr66OiomLBMi2lPWR5efmSpn0qVzYkTfpCpEySfMjr9ZKXl0dtbe2iyLLa29v54Q9/yF//+le2bt3KNddcg06n4+c//zm33347NTU13HnnnZx11lkpP5c00kjj2EKaiKeRUni9Xr75zW9y6623cuqpp056ThAEfvvb33LddddRUFDAXXfdxamnnppysieFr7S1tVFcXIzD4ZiThnuqz/lSNt9NhTJwxmw2U1tbO+dKpER6/X7/olVSZwNJq+tyuUgkEvN635VynqUmqVMxNjaGy+XC5/PNa3KQSCRob2+ntbU1ac2KycJCPciVzbwajYa6ujry8vJSeMYTCAQC3HfffTz44IN86lOf4q677pompRsfH+fBBx+ku7ubhx56KOXnlEYaaRxbSBPxNJYcgUCAe+65hx//+Mece+653H777SnVjUsIhUK4XC4GBwexWq2zshWUpAyz8TlfSignG7OVPShdXpazP7Sy8XC27jHxeFxuMl3uyZdKucxsXEiU8iGdTkdtbe2ikNT5IBAI4PF4GBgYmPV3zO/3y/IHh8NBWVlZyie9UpHglltuoaysjPvuu29RigRppJHG8Yc0EU9j2aCjo4Prr7+eP/zhD1x22WVcddVVixLvPjo6SlNTE9Fo9LAe3Uov8KWWMswF4XAYt9tNX18fVVVV1NTUTLOQVPoup8LlJVVQusfk5eXhdDqnkevDRdIvd0y1c3Q4HDNKjaTv7mJq3JOB2fyelF7nh/vuJhuiKPL2229zzTXX0NXVxR133MFXvvKVFfFbTyONNFYm0kQ8jWUFURTZuXMnW7dupaOjg1tuuYWLL754UfTjkke30t5tPhW85Qifz0dzczPBYBC73U5ZWRmiKMpENjc3F6fTuSgTn2RDqYmWPM31ev2sIumXOwRBoKurC6/Xi9lsxul0kpOTM8kNaLarOcsRM60wKb+XBQUFOJ3OlDnmKNHV1cVNN93E//zP//C9732P66+/fskyCNJII43jB2kivgIxPDzM5Zdfzp///Ge5k/2BBx44Iok688wzefnllyc99q1vfYtHHnlE/ru9vZ3vfOc7vPjii1gsFi655BK2bdu2JNHcgiDw61//mhtuuIHS0lK2b9++KBZhUuBJS0sLRqORcDgsk7uVUCU+EiS/5aamJgRBQBAEmdwtVynDXCClfA4NDaHX60kkEssqzXIhkKQ1ra2tGAwGwuEwpaWlOByOFR+Aoqz+x+NxAHn1YjECq4LBIA888AD3338/559/Ptu3b8dms6X8uAvF8TAOpJHG8YCVPTodp/jyl7/M3r17ef7553nmmWd45ZVX+OY3v3nU7b7xjW/Q09Mj/7v77rvl5xKJBB//+MeJRqO8/vrr/OpXv+Lxxx/npptuSuWlHBZqtZqvfvWr7N+/n3PPPZdPfvKTfO1rX0t5BLJEUFUqFdIcVa/XH1ODkFqtRhRFRFFEo9GsyAr/TFCr1XJVWPrs1Gr1iquCzwS1Wo1Op0OtViMIAsCk7+hKhkqlwmg0otfr5e+l9DtM5fUJgsDTTz/Nxo0befbZZ3n22Wf53e9+tyJIOBwf40AaaRwPSFfEVxiktLO3336bTZs2AfDcc89xwQUXHDHt7Mwzz2T9+vX85Cc/mfH5v/71r3ziE5+gu7ub4uJiAB555BGuvfZaBgYGltxZorW1leuuu45nnnmG733ve1xxxRVJbbZThqwofY99Ph9NTU2Ew+EVpcGdipGREVwuF6FQSJYAJBKJSVHuK7W6qkxRlVxwDAbDJI210+lcFP/zZGNqaqQUNiQ11g4MDFBdXU11dfWKnFCFw2FcLhf9/f1YrVasViuA/FvMzMxMeniUKIrs2rWLa6+9Fq/Xy+23386ll166oqQ9x+s4kEYaxyLSFfEVhp07d5KTkyPffAHOOecc1Go1b7755hG3/c1vfkNBQQGrV6/m+uuvnxTCsHPnTtasWSPffAHOPfdc/H4/e/fuTf6FzBFWq5WnnnqK/7+9+45r+t7+B/4KiIAooIBsWQlYFAQZAaLXRQtae7V2efu1jmqHtrUVB25cKKC4ireorbO3dbS1t0Nte2ldgCCCIiBksJWEvXfy+f3RH3mAijKSEOQ8Hw8et/fjZ5KQnM/7c97nXLp0Cb/99hvGjx+Ps2fPykcHe6qtpXpsbCzEYjFcXV07NOQxMDCAl5cXHB0dIRKJkJCQgIqKCkVckkrU1tYiJSUFKSkpMDY2Bo/Hk9fg1tLSgpOTE3x9fdHa2orY2FiIRCJIpdK+Pu0ukclkyM3NxY0bN1BbWwtvb2+MHTsWOjo6YLFYMDU1hZ+fH6ysrJCeno7k5GRUV1f39Wl3WVVVFZKSknD//n3Y2NjAx8dHfjOhp6cHV1dXeHp6orKyErGxscjLy+v134OqSKVSiEQixMbGAgB4PB4cHBygqakpb3g0YcIEGBoaIikpCXfv3kVtbW2vjysWi/Hhhx8iICAAEyZMQFZWFpYsWdKvgnBg4H4PEPI8en6etw8QYrEYI0eO7LBs0KBBGDFiBMRicafbvf3227CxsYGFhQVSU1MRHByMrKws/PDDD/L9tv/wBSD//0/bryqxWCxMnDgRCQkJOHnyJNavX4/Dhw8jPDwcnp6e3RrtbMtLFQqFAAAnJ6dOJ/OxWCyYmZnBxMQEeXl58qBWVZPIeqJ9xQlLS0uMGTOm09Gstu6jlZWV4PP5ePDggVqP/j/a7dPV1bXTNuoaGhoYNWoUzM3NkZubi1u3bimli6UiPVrpxt3dvdPUKAMDA3h4eMjrq+fn53da+UcdPDop2tPTs9PRbi0tLbDZbFhbWyM7OxsJCQk9rurT0NCAqKgoREZGYtq0aUhNTQWbzVbEJfWJgfw9QMjzhgJxNbF27VqEh4c/dZ379+/3eP/tcwddXFxgbm6OadOmQSQSwcHBocf77Quampp499138frrr2Pnzp2YPn06Xn31VWzdurXTR7LttQUtzc3NXarT3P64bWkdQqEQcXFxKiur1lXtOxmamJjA19e3y50HDQ0N4eXlBYlEIg/q1K0mdU9b0mtpaYHD4cDKygoikQhxcXGwtraGnZ2d2qR0PFr73c/Pr0s3CywWC8bGxjAyMpIHuXl5eeBwOJ3eoPSF9mVCORxOl28WtLW18cILL8DGxkY+im5tbQ1bW9tnpkrIZDL897//xYYNG2BgYIAff/wRU6ZMUcubFIC+BwgZiNQjeiBYuXIlFi5c+NR17O3tYWZmhuLi4g7LW1tbUV5eDjMzsy4fj8vlAgCEQiEcHBxgZmaGxMTEDutIJBIA6NZ+VUlfXx9hYWF4//33sWbNGri7uyMoKAjLly9/YgBTVVUFoVCI6urqXtUC19bWxpgxY2BtbY2srCzExsbCwcEBlpaWffYFL5VKUVhYKM+rfdpI49O0H/0vKCjA3bt31aJLo6Ja0uvq6mLs2LEYNWoUBAIBYmNj5d1D+6qyyqPdUHvz2llYWMDU1BQFBQVITU2Fvr4+OBwO9PX1lXDmXdOTxllPMmTIELi4uMhrkMfGxsrz4x/dH8MwuHv3LtauXYvMzExs27YNS5YsUZsb5s7Q9wAhAw9N1uxn2ibpJCUlwcPDAwDw+++/IzAw8KmTdB4VGxuLCRMm4O7du3B1dZVP0ikqKpI/8jxy5AhWr16N4uJitZ/ExzAMrl69ihUrVqC8vBw7duzAq6++Cg0NDdy9exd//vknXF1dFV4LvK9ab7c/flFREUQiEQYNGiQfBVXUDUH7Gt190RJemS3pGYaRPx2RSqVgs9kwNTVV6c1UaWkp+Hw+ZDIZHB0dn9i0p6faPx0ZOXIkHBwcuvx0RBFaW1uRk5OD/Px8pTSKKi8vh1AoRFlZGdLS0vDJJ59AR0cHEokE27Ztw5kzZ7B06VJs3ry5XzRx6g76HiDk+UGBeD80ffp0SCQSREdHo6WlBYsWLYKnpye++eYbAH83ppg2bRpOnToFb29viEQifPPNN5gxYwaMjIyQmpqKFStWwMrKSl5TViqVws3NDRYWFoiIiIBYLMY777yDJUuWYOfOnX15ud3S2tqKY8eOYdOmTbC2tsawYcMQGxuLt956CwcOHFBaLXCZTIb8/Hzk5OTIm+MocwS5fRDZ2tqq9Lzg9iPSbSPIypzgpsqW9AzDyEektbW1VVK/uqamBgKBAFVVVbC3t1fqiPyj8wWUfTPV9vsUCoUYMmQInJyclDYizzAM4uLi8N5776GpqQne3t7466+/MGnSJOzZswdOTk5KOa46oO8BQp4PFIj3Q+Xl5fj44487NHI4ePCgvJFDbm4u7Ozs8Ndff2Hy5MkoKCjAvHnzkJaWhrq6OlhbW+PVV1/Fxo0bO3xB5uXlYenSpbhy5Qr09PSwYMEChIWFqf3j3EeVl5djy5Yt+OKLLyCTyTBjxgwcOHBAJY9Wm5ubIRQKUVRUBCsrK9jb2ys8B7mqqgoCgQC1tbWws7ODlZWVyqo+lJWVgc/no7W1FRwOR+EjyH3Zkl4qlcqb5owYMUIpN1PtR/iV9f7oTNvNVEVFhdK6cZaXl3d4f6iim2lbHvinn36KqqoqjBo1Cp9//jmmT5+utrngikDfA4Q8HygQJ8+Ntg55bV04d+7cCX19faxevRp//vknVq9ejY8++kglHTJramrA5/NRU1Mjzx/v7YhnfX09hEIhSkpKFJ5i0x3tRzwVFSwzDKM2LembmpqQnZ2Nhw8fyruq9vaRfPsg38jICBwOR6VpIu21rynv4ODQ5cnKT1NfXy/vampnZ9fjHP7uYBgG6enpCA4Oxr1797BlyxYsWLAAX375JUJDQzFmzBiEhYXB19dXqedBCCG9QYE4eW4sXLgQGRkZCAsLw9SpU+XLGYZBTEwMVqxYgbq6OoSGhuKVV15R+uS8tuCSz+fLm7EYGxt3ez/Nzc3Izs7GgwcPlJJr21NSqVRe5cPY2BhsNrtHwWX7EX51aklfV1cHgUCA8vLyHo8gty/Xp6q0l66eV/vynWw2u0c3Pu2bKZmbm8PBwUElecQlJSXYvn07/vOf/+C9997Dli1bOszNqKqqQmRkJPbt24fExES88MILSj8nQgjpCQrEyXOjqqoK+vr6nQYTra2tOHLkCEJCQuDs7Izw8HC4uLio5NF5QUEBsrOzu1WBpH2e9IgRI8Bms+WPndVJ+xzk7pQEbGhogFAoRHFxcZ+O8D/LoyPIXa2O05am0dLSora1vWUyGR48eIDs7Gzo6uqCw+F06UahbTuRSIRhw4bB0dERw4YNU/r5Njc3Izo6GuHh4fD19UVkZORTg+zKysrnbqImIeT5QoE4GXAqKiqwbds2REdH41//+hc2b978WHMMZWg/sv20SXM9DY76Wvt0nKeNbD+pJb06jPA/DcMwkEgkEAqF0NDQAIfDkXe5fFT7kXRVpWn0VmtrK/Lz85GbmyufbNzZTV9ZWRmysrKUUumlMwzD4NKlS1i/fj00NTURGRn53OeAE0IGBgrEyYCVmZmJVatW4caNGwgODsaHH36oksfqtbW14PP5qKqqgoODgzxgfTRdgMPhqCTIUaT2ud4Mw3S4hvZPBvT19VU2iqpIMpkMhYWFyM7OxrBhwzrU6G5/o2VhYQEHBweVlnpUhKelQdXV1YHP56OyslLplV7aMAyD+/fvY926dbh9+zY2b96Mjz76SC2fnBBCSE9QIE46VV5ejk8++aTDrPwDBw50OlJWXl6OkJAQ/P777/LOjrNnz8b27ds7NCh5UmD57bffYu7cuUq7ls4wDIPLly9j5cqVaGlpQWhoKGbMmKGSHOW2/HGGYWBhYYHi4mI0NjYqbAJdX2qfuqCnpwcjIyM8ePAAgwYNgqOjo1p1fOyJR2t06+jooLCwEIaGhk8dTe4v2k8MtrS0hEwmQ1FRkUpvMMrKyhAaGoqTJ09i0aJF2LZtW4/mWKjaQPjcJIQoDgXipFPTp09HUVERDh8+LK9T6+XlJa9T+6i0tDSEhIRg4cKFcHZ2Rl5eHj788EO4urriu+++k6/HYrFw/PhxBAYGypcZGhr2aXpCS0sLvvjiC2zduhVubm4ICwuDs7Oz0kejq6ur5eXEdHV14eLi0qOuiuqqpKQEGRkZaG5uhoGBAVxcXLrUtr0/YBgGBQUFEAqFkEqlGDlyJJydnZ+b0VqZTAaBQICCggIAgLW1NdhsttLTbFpaWnD06FHs3LkTnp6e2Lt3L8aMGdNvngwNpM9NQkjvUSBOnqitc9utW7fg6ekJALh8+TJmzJjRrc5t58+fx7x581BXVyevQ8tisXDhwgXMnj1bWaffY2VlZdiyZQu+/PJLvPPOO9i4caNSRuEaGhqQnZ0NsVgMKysrWFlZobCwUP677Y9pDe092pLexMQEOTk5KC4uho2NDWxtbft1XeLKykrw+Xw0NDTIJ9EKhULU1NTIGx711yca7dOLgL9TpFgslrx5lIODA8zNzRUeGDMMg//9739Yu3YtpFIp9uzZg1deeaXfBODAwP3cJIT0XP/8piBKFx8fD0NDQ/mXCQD4+/tDQ0MDCQkJXd5PWyWTR4Oujz76CMbGxvD29saxY8egLveDRkZGOHjwIJKSkpCfn49x48YhKioKzc3NCtl/S0sL+Hw+4uLiIJPJ4OfnBycnJ+jp6cHJyQk+Pj5oampCbGwscnNzIZPJFHJcVWlqakJGRgYSEhKgq6sLHo8HOzs7DB06FC4uLvD09ERFRQViY2NRWFioNq97VzU0NCA1NRXJyckwMjICj8eDpaUlDAwMMH78eIwdOxYPHz5EXFwcxGJxv7u+2tpapKSkID09HVZWVvDx8YGJiQmMjY3h4+MDNpsNkUiEmzdvorS0VGHXl5WVhddffx0LFy7E4sWLkZaWhn/+85/9KggHBu7nJiGk5/rvkBRRKrFY/FglkUGDBmHEiBEQi8Vd2kdpaSm2b9+O999/v8Pybdu2YerUqRgyZAh+//13LFu2DLW1tVi+fLnCzr83WCwWxowZg0uXLuHXX3/FypUrcezYMezcuRMBAQE9Cg6kUikKCgqQk5MDfX19eHl5PbHtt56eHtzc3OQdLAsLC1VWmaI3Hm1J7+Pj88QSjQYGBvD09ERxcbE87aGtAok6a1/pxczMDH5+fo+lBLBYLBgbG8PIyAgPHz5EVlYW8vLy1KZ2+NM0NzdDJBLh4cOHsLKygouLy2MpNiwWC+bm5jA1NUVBQQHS0tIwdOhQcDicHqdTVVRUYNeuXfjqq68wf/58nDx5UiUVjJRlIH9uEkJ6hgLxAWbt2rUIDw9/6jr379/v9XGqq6vx8ssvw9nZGVu2bOnwb5s2bZL/t7u7O+rq6rB79261+0JhsViYOXMmXnrpJURFRWHJkiXw8vLCzp07MXr06C4Fxm0NXUQiEbS0tODq6tqliYptweyDBw+QkZGBoUOHwsnJSe2qjDzakn78+PHPrNvMYrFgamoKExMTFBQU4N69ezAwMICjo6PaTXJ8tEqKt7f3M18DFosFS0tLmJmZIS8vDykpKRgxYgQ4HE6X6ser0qM17ju7gWpPQ0MDNjY2sLCwQG5uLpKSkmBiYtKthk4tLS04fvw4duzYAVdXV8THx2PcuHFqe7NJn5uEEGWhHPEBpqSkBGVlZU9dx97eHl9//TVWrlyJiooK+fLW1lbo6Ojg/PnzePXVVzvdvqamBgEBARgyZAh++eWXZ04m+vXXXzFz5kw0NjaqpHxgT5WUlGDz5s04ceIEFi1ahPXr13fo5tdeW56tUChEa2trrxq6tK/QYWZmBjab3ee/J0W2pG9paUF2djYKCwtV2p3xaRiGQUlJCQQCAVgs1lPrhj9LU1MTsrOz8fDhQ1hYWMDe3l5tro/P50NTU7NXlWwaGxuRnZ2NoqKip9bHbzvulStXEBwcjMbGRkRERGD27Nlqn09Pn5uEEGWhQJw8Uduko6SkJHh4eAAAfv/9dwQGBj510lF1dTUCAgKgra2NixcvdmmELDQ0FJGRkSgvL1foNSgDwzC4d+8egoKCkJKSgg0bNmDx4sUdHuNLJBIUFBQovGV7fX09BAIBysrK+rRRjLJa0re/vp62lFeE6upq8Pl81NbWyjtpKuL62jf66cvrq6mpQVZWFmpra8FmsxVWKrO2thZCoRDl5eWwsbGBqalphyccAoEAGzduxLVr17Bu3Tp89tlnz13FD/rcJIR0FwXipFPTp0+HRCJBdHS0vAyXp6envAzXgwcPMG3aNJw6dQre3t6orq7GSy+9hPr6ely4cKHDI24TExNoamri559/hkQigY+PD3R0dPDHH39g1apVWLVqFbZu3dpXl9ptMpkMP/30E1avXo3BgwcjLCwMJiYm2LBhA8rKynDq1CnY2NgopZRdRUUFsrKy0NLSAg6HA1NTU5U80ldVS/qKigrw+Xw0NTWBzWYrpULHkzQ2NkIoFEIikSj9+gQCARoaGuSBviqur6mpCSKRCEVFRbC2toadnZ3Sru+nn37Chg0bsHz5cixcuBD79u3DkSNH8PbbbyM0NBRmZmYKP666oM9NQkh3UCBOOlVeXo6PP/64Q2OKgwcPyke5cnNzYWdnh7/++guTJ0/GlStXMGXKlCfuKycnB7a2trh8+TLWrVsHoVAIhmHAZrOxdOlSvPfee2r/ePpJmpqasGPHDoSHh6O1tRX+/v7Yt28f7OzslHrcttxzgUCAIUOGwNHRUWn1x/uiJT3DMBCLxRAKhdDS0oKjo2OnaUC91draitzcXOTl5cHExAQcDkfptc4ZhoFEIoFQKISGhkavUl+eRSqVIj8/Hzk5OTAyMgKHw+lyLndPyWQynD59Ghs2bEBVVRWcnJxw8uRJeHp6qm0euKLQ5yYhpDsoECekh2pqahAZGYnIyEhMnDgRurq6uHjxIpYsWYJ169Y9c9KiIrQPIhUdJKtDS/r2QaSiJzwyDCPv/qmrqwsnJyeVN1N6dDIoh8N5YjWdnmAYBsXFxeDz+Uq/mXn0uNevX8eaNWtQXV2NF198Eb/++itGjRqFiIgI/OMf/1D6ORBCSH9BgTghPXDixAkEBweDw+EgIiICfn5+YBgGKSkpCAoKQnp6OjZt2oSFCxeqpHFNW9pISUmJvGFOT/OP249Gq0tL+vYTHp81IbAr2spDSqXSXk00VZT2E3JNTU3h4ODQq1H56upqZGVlob6+Xp4Hrorry87OxsaNGxETE4Pg4GCsXLkSurq6qKurw4EDBxAeHo6JEyciOjoaVlZWSj8fQghRdxSIE9IDX3/9NfT19Z/Y+U8mk+GHH37AmjVrMHToUISHh+Mf//iHSgKhto6PjY2N4HA43a7UUl5eDoFAoPL87K6qra0Fn89HVVWVfMJqdx7Nt9/e3t5e7TpgNjQ0QCQSQSKR9CiPu32euyo7mFZXV2P37t344osv8MYbbyA0NPSJgXZpaSn27NmDdevWqfzpAyGEqCMKxAlRksbGRuzduxdhYWGYPHkyQkND4eDgoPTjto1oCwQCaGtrw8nJ6ZlpMm0t6SsqKvq0IktXdXdEu/1ERSsrK9jZ2fVqRF3ZqqurIRAIUFNTAzs7u2feMEilUuTl5SE3NxfGxsYqyXNvO+5//vMfbNmyBQ4ODti7dy+8vb3V6uaNEELUGQXihChZUVER1q9fj7Nnz+KDDz5AcHCwwvKAn0YqlcrzxzsLztoHqIpI+VAlhmHw8OFDCIXCTnO8H52oyGaz1a6pTmcYhkFZWRkEAgGkUinYbPZjFXJ6ctOlqHOLi4tDcHAwSktLERYWhrlz56rV0wVCCOkPKBAnRAUYhkFSUhKCgoLA5/MREhKCd955RyWjzk9KVwDQoSV9fwpQH9Xa2iofDW6reqKjo9Oh6oqTk5Pat5nvTPsbDh0dHTg6OmL48OG9TkPqqby8PGzatAmXL1/GqlWrsHr16n773iGEkL5GwxdE5Q4dOgRbW1vo6OiAy+UiMTHxqeufP38eo0ePho6ODlxcXHDx4sUO/84wDDZv3gxzc3Po6urC398fAoFAmZfQbSwWC15eXrh69SoOHDiAiIgITJw4EdevX4ey74V1dHQwduxYeHp6ory8HNeuXcP169dRVlaG8ePHY9y4cf06kBo0aBAcHBzA4/GgoaGB2NhYXLt2DQKBAGw2G1wut98G4cDf7x1LS0tMmDABJiYmSE5OxrVr13D79m0YGRmBx+OpJJe/trYWW7duhaenJ3R0dJCRkYEtW7ao5XtnIH7GEEL6JwrEiUqdPXsWQUFBCAkJQXJyMsaNG4eAgAAUFxc/cf24uDj861//wuLFi5GSkoLZs2dj9uzZSEtLk68TERGBgwcPIjo6GgkJCdDT00NAQAAaGxtVdVldpqGhgblz5yIjIwNz5szB66+/jnfeeQc5OTlKPS7DMGhubkZrays0NTXBYrEglUqVfhOgSlKpFFKpFCwWCxoaGpBKpWhtbX1urpFhGMhkMgCApqZmh9dUmdrywN3d3XH16lX88ccfOH36NEaNGqXU4/bUQP+MIYT0L5SaQlSKy+XCy8sLUVFRAP6uMGJtbY1PPvkEa9eufWz9t956C3V1dfjll1/ky3x8fODm5obo6GgwDAMLCwusXLkSq1atAvB3C3ZTU1OcOHECc+fOVc2F9VBBQQHWr1+P77//Hh999BFWrVql8Frd7Vu2t7WkZxhG5U1elKWlpQXZ2dkoLCyEubk5HBwcMHjwYJSWloLP54PFYim1YY6ytW/e1D4Xvq6uDgKBAOXl5bC1tYWNjY1CU50YhkFiYiLWrFmDoqIi7Ny5E/PmzVP7PHD6jCGE9Cfq/YlKnivNzc24ffs2/P395cs0NDTg7++P+Pj4J24THx/fYX0ACAgIkK+fk5MDsVjcYR0DAwNwudxO96lOrK2tcerUKfz555+4ceMG3N3dcfr0aUil0l7vu6GhAffu3cOtW7dgYGAAHo8nL/enqakJOzs78Hg8DBo0CPHx8RAIBEofXVUkmUyGvLw83LhxA3V1deByuXB2doa2tjZYLBZMTEzg6+sLa2trpKenIzk5GTU1NX192t1SUVGBhIQEiEQiODk5wcvLSz4hVU9PD25ubnB3d0dpaSliY2Px4MEDhTwBKCwsxOLFizFz5kwEBATg/v37mD9/vtoH4fQZQwjpb5RfYJaQ/6+0tBRSqRSmpqYdlpuamiIzM/OJ24jF4ieuLxaL5f/etqyzddQdi8WCj48PYmNj8c0332DdunU4evQowsPD4ePj0+1R3Edb0vN4vE67bWpra2PMmDEYNWoUsrKycOPGDbDZbFhaWqrt6HFbx0iBQABNTU24urp22nBIQ0MD1tbWMDMzQ25uLhITE2FmZgYHBweFdSBVhoaGBvD5fJSVlT2znOTw4cPh5eUFiUQCoVCIvLy8Hj8BqKurw/79+3HgwAHMnDkT6enp8sm9/QF9xhBC+hsKxAlRExoaGpg3bx5mz56NiIgIzJo1CzNmzMC2bdu6lI/7aEt6b2/vLqe5DBs2DB4eHigpKQGfz0dBQYFadNR8VFVVFfh8Purr6+Hg4NDlGwYtLS1wOBxYWVlBIBAgLi4ONjY2sLGxUUnDm65qbW1FTk4O8vPzYWZmBh6PB21t7Wdux2KxYGZmhpEjR6KwsBDp6ekYNmwYOBxOl0plymQynD9/Hps3b4apqSkuXbqECRMmqO3NGCGEPC/U+zkjea4YGxtDU1MTEomkw3KJRAIzM7MnbmNmZvbU9dv+tzv7VHdDhw7Ftm3bkJ6eDk1NTXh4eGD79u2oq6t74vpttaTj4uLw8OFDuLq6wsPDo9u55iwWCyNHjoSfnx/Mzc2RmpqKO3fudHpcVWpLs0lKSsLw4cPB4/FgZWXV7UBRV1cXrq6uGD9+PMrKyhSaztEbDMOgsLAQsbGxqKqqgpeXF8aMGdOlILw9DQ0NjBo1CjweD/r6+rh16xbS0tLQ0NDQ6XGTkpLw4osvYv369di6dSsSEhIwceLEfhmE02cMIaS/oUCcqMzgwYPh4eGBmJgY+TKZTIaYmBj4+vo+cRtfX98O6wPAH3/8IV/fzs4OZmZmHdaprq5GQkJCp/vsL2xsbPDNN9/gt99+w//+9z+4u7vj22+/lVfOAP7+XcTHx4PP58Pe3h4+Pj69HsXW0NCAra2tfDT25s2byMrKQktLS28vqdtaWlrkI9gsFgs8Hg9sNrvXo9iGhobw8vLC6NGjkZOTg5s3b6KsrExBZ9095eXluHnzJnJzczF69Gh4eHj0uuFT2xMAPz8/AH9XBrl48SJKSkrk6xQVFeGDDz5AYGAgJk2ahKysLLz77rtq3VH1WegzhhDS31DVFKJSZ8+exYIFC3D48GF4e3tj//79OHfuHDIzM2Fqaor58+fD0tISu3btAvB3ADFp0iSEhYXh5ZdfxpkzZ7Bz504kJydj7NixAIDw8HCEhYXh5MmTsLOzw6ZNm5CamoqMjAy1zgPuDqlUitOnT2PDhg2wsrLCu+++i1OnTiElJQX/+c9/4O/vr7QAqra2FllZWaipqZGngyh70p5MJsODBw8gEokwdOhQODo6Kq0bqUwmk1eQMTQ0BIfDwdChQ5VyrPbaqp5UVFTI88CV9Xutrq7Ghx9+iD///BMffPABBg8ejIMHDyIgIADh4eFwcHBQynH7An3GEEL6EwrEicpFRUVh9+7dEIvFcHNzw8GDB8HlcgEAkydPhq2tLU6cOCFf//z589i4cSNyc3PB4XAQERGBGTNmyP+dYRiEhITgyJEjqKysxIQJE/Dvf/8bjo6Oqr40pRMKhXjjjTdw584d2NjY4PTp0/Dw8FD6cRmG6VAO0NHREcbGxko7jkAgAMMw4HA4MDExUUmaRHNzM7Kzs/HgwQNYWFjIyyAq2qPlFtlstlKO86jW1lasW7cOR44cgYaGBtauXYuQkBC1r4TSE/QZQwjpLygQJ6QfqK2tRWRkJPbs2YOXXnoJy5YtQ3R0NC5duoQVK1bg008/VUkdcJlMhsLCQohEIhgYGMDR0VFho8c1NTXg8/moqamR1zvviyCxfX3uZ1Us6Y72o/zDhg2Do6OjwmvGPwnDMLhz5w6Cg4MhEAiwdetWaGhoYMuWLRg1ahT27NmDCRMmKP08CCGEPI4CcULUXFpaGl588UXY2dlh9+7d4PF4AP4OsK5evYqgoCCUlZVh27ZteO2111QSvLa0tEAkEuHBgwewtLSEvb19j0d1GxsbIRKJIBaLYW1tDTs7O2hpaSn4jLuvvLwcfD4fLS0tYLPZMDMz6/HIfNvTBIZh5E8TVDHKLxaLsW3bNpw7dw7Lli3Dxo0bYWhoCODvG459+/YhPDwcc+fOxdGjR5V+PoQQQjqiQJwQNdfc3IzLly/jlVdeeWLwJpVKcfz4cWzcuBEODg4IDw+Hu7u7SgK9uro68Pl8VFZWwt7eHtbW1l2+EZBKpcjNzUVeXh6MjY3B4XCgq6ur5DPunraulkKhENra2nB0dMTw4cO7vH1vfj+90djYiEOHDmH37t2YOnUqIiIiOk2jkEgkyMzMxKRJk5R+XoQQQjqiQJyQ50RVVRVCQ0MRFRWF1157DVu3blVZebWysjJkZWV1acSXYRg8fPgQIpEIOjo6cHR0lI/SqiupVIq8vDzk5ubCyMgIHA7nqalA7fPNe/vEoDtkMhl+/vlnbNiwAXp6eti3bx+mTZvWL0sREkLIQECBOCHPGaFQiNWrVyMmJgYrV67Exx9/rJKR5q7kQJeVlYHP50MqlYLNZsPU1LRfBYlNTU0QiUQoKiqClZUV7O3tO6TRKDOH/mkYhkFaWhrWrFmDjIwMbN26Fe+//75aNSsihBDyuOdvujwh7Rw6dAi2trbQ0dEBl8tFYmJip+sePXoUEydOxPDhwzF8+HD4+/s/tv7ChQvBYrE6/AQGBir7MrqFzWbjhx9+wI8//ojvv/8eHh4euHDhQof648rQ1k6ex+Nh2LBhSExMREZGBpqbm1FbW4uUlBSkpqbC3Nwcfn5+vcq57iva2tpwdnYGl8tFXV0dbty4gby8PEilUpSUlCA+Ph6FhYVwcXHB+PHjVRKEFxcXY/ny5Zg8eTLc3d3B5/OxbNkytQvCB+LfIiGEPAuNiJPn1tmzZzF//nxER0eDy+Vi//79OH/+PLKysjBy5MjH1v+///s/8Hg8+Pn5QUdHB+Hh4bhw4QLS09NhaWkJ4O8vf4lEguPHj8u309bW7lbesCq1trbiyy+/xObNmzF69GiEh4fD1dVVJQFwfX09MjMzUV5eDgCwtLRUWknAvlJaWorMzEw0NTWBxWKBzWarrNpLU1MToqOjER4ejgkTJmDPnj0YPXq00o/bE/S3SAghT0aBOFE4KysrrF+/HsuWLZMvi4uLg7+/P+7fvw8bGxuVnAeXy4WXlxeioqIA/J02YG1tjU8++QRr16595vZSqRTDhw9HVFQU5s+fD+DvL//Kykr8+OOPyjx1hausrMS2bdvwxRdf4K233kJISAhMTU2VdjypVIr8/Hzk5uZCT08PLS0t8rrgI0eO7Hcj4U/S3NwMkUiEhw8fwtDQEDU1NdDT04OjoyMMDAyUdlyZTIaLFy9iw4YN0NLSQmRkJAIDA9X6d0p/i4QQ8mSUmkIUjsvl4tatW/L/zzAMPvvsM6xYsUJlQXhzczNu374Nf39/+TINDQ34+/sjPj6+S/uor69HS0sLRowY0WH5lStXMHLkSDg5OWHp0qV91hq9OwwNDbF3717cuXMHZWVlcHNzw759+9DU1KTQ47RVGYmLi4NEIsG4cePg7e0NPz8/2NraIjMzE0lJSaiurlbocVVJJpMhNzcXsbGxaGpqgo+PDzw8PDBhwgQMHz4cSUlJuHfvHhoaGhR6XIZhkJGRgVmzZmHp0qX45JNPcPfuXUyfPl2tg3D6WySEkM5RIE4UzsfHp0Mgfvr0aRQUFGDdunUqO4fS0lJIpdLHRn1NTU0hFou7tI/g4GBYWFh0CCACAwNx6tQpxMTEIDw8HFevXsX06dMhlUoVev7K4uTkhJ9++gnnzp3Dt99+C09PT/z8888KyR+vrKxEYmIiBAIBHBwcwOVy5YETi8WClZUVeDweDA0NcevWLaSnpyv8RkCZGIZBcXEx4uLiUFRUBFdXV7i5uUFPTw8AMGjQILDZbPB4PLBYLMTFxUEgEKC1tbXXxy4tLUVQUBAmTpyIF154AXw+H8uXL1eLeuvP8jz/LX777bfQ1dVFUVGRfNmiRYvg6uqKqqoqlZ0HIaT/Uq/ZPOS54OPjg7Vr16K2thYsFgvr16/Hjh07VDJxTVHCwsJw5swZXLlyBTo6OvLlc+fOlf+3i4sLXF1d4eDggCtXrmDatGl9cardxmKxEBAQgKlTp+Lw4cP46KOP5LnGY8aM6fboan19PQQCAcrKymBrawsbG5tOO1EOGjQIHA4HVlZWEAgEiI2NfeY26qC6uhp8Ph91dXVwcHCApaVlp78nHR0djB07FqNGjQKfz8eNGzfk23Q3d7y5uRlHjhzBrl27wOVykZSUBGdnZ7UeAVc0df5bnDt3LsLCwrBz5058/vnnCAkJwf/+9z/cvHlTqelJhJDnB42IE4Xz8PCAhoYGkpOTER4eDhMTEyxatEil52BsbAxNTU1IJJIOyyUSyTNra+/ZswdhYWH4/fff4erq+tR17e3tYWxsDKFQ2OtzVjUtLS18/PHH4PP5cHFxwaRJk/Dpp5+ipKSkS9u3tLQgKysL8fHx0NLSAo/Hg729fZcCal1dXbi6usLd3V0+yiwWi6FuU1aampqQnp6OW7duwcDAADweD1ZWVl0KhPX19eHh4QFnZ2fk5+fj5s2bKCkp6dI1MgyDy5cvw8fHB1999RVOnz6NS5cu9ehGqa89z3+LLBYLoaGhOHr0KEJDQ/H555/j8uXL8gmlhBDyLBSIE4UbMmQIXFxc8P3332PPnj3Yt2+fSqpItDd48GB4eHggJiZGvkwmkyEmJga+vr6dbhcREYHt27fj8uXL8PT0fOZxCgsLUVZWBnNzc4Wcd18YMWIEDh48iNu3b+PBgwdwc3PDwYMH0dzc/MT1ZTIZ8vPzERsbi7q6Onh7e8PZ2Rna2trdPvbw4cPB5XLh4OAAPp+PW7duqcUjfalUipycHMTGxqK1tRW+vr7gcDjdLgnIYrEwcuRI+Pr6wsrKCunp6UhOTkZNTc0T12cYBpmZmZgzZw4WL16M999/H/fu3cPMmTP7XQDe5nn/W5w5cyacnZ2xbds2XLhwAWPGjFHp8Qkh/RtVTSFKsWzZMkRHR2PWrFm4cOFCn5zD2bNnsWDBAhw+fBje3t7Yv38/zp07h8zMTJiammL+/PmwtLTErl27AADh4eHYvHkzvvnmG/B4PPl+hg4diqFDh6K2thZbt27Fa6+9BjMzM4hEIqxZswY1NTW4d+9ejwJRdcMwDC5evIhVq1ZBKpVi586d8smAMpkMv/76KwwNDaGpqSnvoKkobS3vc3NzYWpqCjab3SEVQRUYhoFEIoFAIICWlhacnJwUWg6vpaUFOTk5KCgoQFNTE8aMGSOfwFxeXo5du3bh2LFjWLBgAbZv3w4TExOFHbsvPc9/i5cvX8acOXPQ3NyMtLQ0tS0hSQhRTxSIE6U4fPgwli9fjvT0dLDZ7D47j6ioKOzevRtisVg+0svlcgEAkydPhq2tLU6cOAEAsLW1RV5e3mP7CAkJwZYtW9DQ0IDZs2cjJSUFlZWVsLCwwEsvvYTt27crtRRgX2hpacGhQ4ewbds2eHh44PXXX8cXX3yBvLw8/PTTT3B3d1faU46GhgYIhUIUFxfD1tYWtra2Kskfr6qqAp/PR319PTgcDszNzZU2Cl1fX48NGzbg1KlTWLhwIaytrREZGQl3d3fs3bsXLi4u/XYEvDPP499icnIyJk+ejMOHD+PEiRPQ19fH+fPnVXZ8Qkj/R4E4UYopU6Zg/PjxiIyM7OtTIb1w584dvPnmmxAIBHB2dsaZM2fg4OCgkmNXVlaCz+ejsbERbDZbaYFxY2MjhEIhJBIJbGxsYGtrq5KulAzDYPfu3QgLC0NrayuWLVuGvXv3ql1HTPJkubm58PX1xaeffoq1a9ciISEBvr6+SEpKwvjx4/v69Agh/QTliBOFkclkkEgk2LlzJwQCAUJCQvr6lEgP1dTUYMOGDeDxeOByufjtt99gYWGBSZMm4d///jdaWlqUfg6Ghobw8vICh8OBSCRCYmIiKisrFbZ/qVQKkUiEuLg4MAwDPz8/sNlslQTCfD4fb775Jvbv34+tW7fi+PHj+Omnn+Dl5YU///xT6ccnvVNeXo7AwEDMmjVL3pCIy+Vi+vTpWL9+fR+fHSGkP6ERcaIwV65cwdSpUzF69GgcP35c/tiZ9C+xsbGYM2cORo8ejcjISPlEOZlMhl9++QWrVq2CpqYmwsLC4O/vr5IUCqlUiry8POTm5sLY2BgcDge6uro92hfDMBCLxRAIBNDR0YGjoyMMDQ0Ve8KdqKysRFhYGI4ePYp58+Zhx44d8lSKxsZGHDx4EKGhoQgICMDZs2efu/QUQgghHVEgTgjpoKysDNevX8esWbOeGAg2NzfLA0YfHx/s3LkTTk5OKjm3xsZGiEQiiMXiHqWRVFZWIisrC01NTeBwODAzM1NJsNva2ooTJ05g+/btGDNmDPbu3Qt3d/cnHrukpARxcXGYNWuW0s+LEEJI36JAnBDSI8XFxdi0aRNOnTqFxYsXY926dQqtMPI01dXVyMrKQn19PdhsNiwsLJ4aUDc0NEAgEKC0tFSlDYQYhsG1a9cQHByM2tpaREREYM6cOSov50kIIUQ9USBOCOkxhmFw584dBAUF4d69e9i4cSPeffddlU12LC4uBp/Ph5aWFhwdHTFixIgO67S2tiI3Nxd5eXkqL4koEomwYcMGXLlyBWvXrkVQUJDKyzESQghRbzQsQ4gCHTp0CLa2ttDR0QGXy0ViYmKn6544cQIsFqvDz6OBGsMw2Lx5M8zNzaGrqwt/f38IBAJlX0aXsVgsuLu7IyYmBkeOHEFUVBT8/Pzw119/Kb1LJovFgqmpKfz8/GBqaoo7d+7g7t27qK+vB8MwePDgAWJjY1FRUQFPT0+MHTtWJYFwdXU1Nm7cCC6XCyMjI2RmZmL9+vVqGYQPtPcrIYSoGwrECVGQs2fPIigoCCEhIUhOTsa4ceMQEBCA4uLiTrfR19dHUVGR/OfR2skRERE4ePAgoqOjkZCQAD09PQQEBKCxsVHZl9MtGhoamDNnDtLS0jBv3jy8/fbbmDt3rkrajWtqasLOzg48Hg9aWlqIi4vDtWvXIBKJMHr0aHh6esLAwEDp5yGVSnHixAmMGzcOt27dwtWrV3Hs2DFYWFgo/dg9MZDfr4QQoi4oECdEQfbu3Yv33nsPixYtgrOzM6KjozFkyBAcO3as021YLBbMzMzkP+2bkTAMg/3792Pjxo2YNWsWXF1dcerUKTx8+BA//vijCq6o+3R0dLB27VpkZWVh5MiR4HK5WLdunUra1kulUrS0tIDFYkFTUxNSqRTNzc1KH5lnGAbXr1/HxIkTERERgQMHDuDq1avw8vJS66on9H4lhJC+R4E4IQrQ3NyM27dvw9/fX75MQ0MD/v7+iI+P73S72tpa2NjYwNraGrNmzUJ6err833JyciAWizvs08DAAFwu96n7VAdmZmb48ssvcf36daSkpGDcuHE4duwYWltbFX6s1tZWCAQCxMfHQ0tLCxMmTACPx8OYMWOQl5eHhIQElJWVKfy4wN9NXd555x28/vrrmDNnDjIyMjB37ly1n4xJ71dCCFEP6v1tQUg/UVpaCqlU+lh7bVNTU4jF4idu4+TkhGPHjuG///0vvv76a8hkMvj5+aGwsBAA5Nt1Z5/qhMViwdPTE1euXEFUVBQiIyMxceJEXLt2TSGj1AzDoLCwEDdu3EBVVRW8vb3h7OwMbW1tsFgsjBw5En5+frCwsEBqaipSUlJQV1engCv7u+HRli1b4OXlBT09PWRkZGDz5s0YMmSIQvavbPR+JYQQ9UCBOCF9xNfXF/Pnz4ebmxsmTZqEH374ASYmJjh8+HBfn5pCaWho4M0330RGRgbeeOMNvPHGG/i///s/ZGdn93ifZWVluHnzJnJzc+Hs7AwPDw8MGzbsice2sbEBj8eDjo4Obt68iaysrB53BpVKpTh9+jTc3d1x/fp1xMTE4NSpU7C2tu7xtfQXA+X9SgghqkSBOCEKYGxsDE1NTUgkkg7LJRIJzMzMurQPLS0tuLu7yyc4tm3Xm32qE11dXWzcuBH379+HgYEBvL29sWnTJlRXV3d5H3V1dUhJSUFqairMzc3h5+eHkSNHPjMXe/DgwXjhhRfA5XJRV1eH2NhY5OfnQyaTdem4DMMgPj4eU6ZMwY4dOxAREYHY2Fj4+PiodR54Z+j9Sggh6oECcUIUYPDgwfDw8EBMTIx8mUwmQ0xMDHx9fbu0D6lUinv37sHc3BwAYGdnBzMzsw77rK6uRkJCQpf3qY6srKxw4sQJ/PXXX4iPj4ebmxtOnToFqVTa6TYtLS3IysrCzZs3oaOjAx6PB1tb227nYg8dOhTu7u4YM2YMCgsLcfPmTZSWlj51m/z8fCxatAizZs3CjBkzcP/+fcybN0/t88Cfht6vhBCiHpTfdYOQASIoKAgLFiyAp6cnvL29sX//ftTV1WHRokUAgPnz58PS0hK7du0CAGzbtg0+Pj5gs9morKzE7t27kZeXhyVLlgD4O8f6s88+w44dO8DhcGBnZ4dNmzbBwsICs2fP7qvLVAgWiwUul4sbN27gzJkzWLt2LY4cOYLw8HD4+fnJR5mbmpqQl5eHhw8fYtiwYeByuRg6dGivj21iYgIjIyMUFhYiLS0N+vr6sLCw6DByW1dXh3379uHAgQP45z//ifT0dNjY2PTq2OqE3q+EENL3KBAnREHeeustlJSUYPPmzRCLxXBzc8Ply5flk9fy8/M7jKJWVFTgvffeg1gsxvDhw+Hh4YG4uDg4OzvL11mzZg3q6urw/vvvo7KyEhMmTMDly5fVsjlMT2hoaODtt9/GrFmzsHv3brz66qsIDAzE9u3bkZiYiE2bNiEgIAAbN26EsbGxQtNANDQ0MGrUKJibmyMrKwve3t6YMmUKQkNDcf36dYSEhMDc3By//fYbeDxev0xBeRp6vxJCSN+jFveEELWRn5+PZcuW4dKlSxg0aBCWL1+O9evXQ1tbW+nHvnPnDpYuXYq0tDTo6elh7969WLRoETQ1NZV+bEIIIQNT/01yJIQ8V0pLSxEREYGYmBi89tprGDt2LL755ht89913T80fV4SHDx8iKioKQqEQr7/+OqytrREeHo5ffvlF6Q2BCCGEDFwUiBNC+lRrayv2798PDoeD3NxcpKSk4Ny5c7h16xZ27dqFrVu3YurUqUhISFB4UFxfX4+wsDC4u7ujpaUF9+7dw9mzZ3H37l2sWrUKS5YswbRp05CamqrQ4xJCCCEABeKEkD7GYrFw69YtnD17Fr/88gtGjx4N4O8c7vnz5+P+/fsICAjAzJkzsXjxYnkDmd6QyWQ4f/48PDw88Msvv+Dnn3/GuXPnYG9vDwAYNGgQPvjgAwiFQnh6eoLP5/f6mIQQQsijKEecENIv5ObmIjg4GL/++is+/fRTfPbZZ9DT0+vWPhiGQUpKCoKDgyESibBjxw7KAyeEENJnaEScENIv2Nra4syZM7h48SJ+++03jB8/HmfPnu1yUx6xWIylS5fipZdeAo/HQ1ZWFpYsWUJBOCGEkD5DgTgh/dShQ4dga2sLHR0dcLlcJCYmdrru5MmTwWKxHvt5+eWX5essXLjwsX8PDAxUxaV0GYvFwj/+8Q8kJCRg69atWL9+PV588UUkJSV1mj/e2NiIPXv2wM3NDTU1NUhNTUVERAQMDAxUfPbPNhBfU0IIGcgoECekHzp79iyCgoIQEhKC5ORkjBs3DgEBASguLn7i+j/88AOKiorkP2lpadDU1MQbb7zRYb3AwMAO63377bequJxu09TUxLvvvousrCxMmjQJgYGB+OCDD1BUVCRfRyaT4cKFC/Dw8MB3332HH3/8ET/88APYbHYfnnnnBvprSgghAxEF4oT0Q3v37sV7772HRYsWwdnZGdHR0RgyZAiOHTv2xPVHjBgBMzMz+c8ff/yBIUOGPBa0aWtrd1hv+PDhqricHtPX10dYWBju3buHhoYGuLm5ITw8HImJiZgxYwZWrFiB4OBgJCcnY+rUqWrdlIdeU0IIGXgoECekn2lubsbt27fh7+8vX6ahoQF/f3/Ex8d3aR9fffUV5s6d+9hkxytXrmDkyJFwcnLC0qVLUVZWptBzVxYHBwd89913+Omnn/D1119j6tSp8PDwQFZWFj788EMMGqTeTYTpNSWEkIFJvb+dCCGPKS0thVQqlbcib2NqaorMzMxnbp+YmIi0tDR89dVXHZYHBgZizpw5sLOzg0gkwvr16zF9+nTEx8f3iwmNLBYLU6ZMwb1793D9+nUEBAT09Sl1Gb2mhBAyMFEgTsgA89VXX8HFxQXe3t4dls+dO1f+3y4uLnB1dYWDgwOuXLmCadOmqfo0e2zIkCH9KghXhOf9NSWEkOcVpaYQ0s8YGxtDU1MTEomkw3KJRAIzM7OnbltXV4czZ85g8eLFzzyOvb09jI2NIRQKe3W+5NnoNSWEkIGJAnFC+pnBgwfDw8MDMTEx8mUymQwxMTHw9fV96rbnz59HU1MT5s2b98zjFBYWoqysDObm5r0+Z/J09JoSQsjARIE4If1QUFAQjh49ipMnT+L+/ftYunQp6urqsGjRIgDA/PnzsW7duse2++qrrzB79mwYGRl1WF5bW4vVq1fj5s2byM3NRUxMDGbNmgU2mz3g0jz6Cr2mhBAy8FCOOCH90FtvvYWSkhJs3rwZYrEYbm5uuHz5snyyX35+PjQ0Ot5nZ2Vl4caNG/j9998f25+mpiZSU1Nx8uRJVFZWwsLCAi+99BK2b98ObW1tlVzTQEevKSGEDDwsprN2dIQQQgghhBClodQUQgghhBBC+gAF4oQQQgghhPQBCsQJIYQQQgjpAxSIE0IIIYQQ0gcoECeEEEIIIaQPUCBOCCGEEEJIH6BAnBDyTNeuXcMrr7wCCwsLsFgs/Pjjj8/c5sqVKxg/fjy0tbXBZrNx4sSJx9Y5dOgQbG1toaOjAy6Xi8TERMWffA8NxGsmhBCiWhSIE0Keqa6uDuPGjcOhQ4e6tH5OTg5efvllTJkyBXfu3MFnn32GJUuW4LfffpOvc/bsWQQFBSEkJATJyckYN24cAgICUFxcrKzL6JaBeM2EEEJUixr6EEK6hcVi4cKFC5g9e3an6wQHB+PXX39FWlqafNncuXNRWVmJy5cvAwC4XC68vLwQFRUFAJDJZLC2tsYnn3yCtWvXKvUaumsgXjMhhBDloxFxQojCxcfHw9/fv8OygIAAxMfHAwCam5tx+/btDutoaGjA399fvk5/MxCvmRBCSO9QIE4IUTixWAxTU9MOy0xNTVFdXY2GhgaUlpZCKpU+cR2xWKzKU1WYgXjNhBBCeocCcUIIIYQQQvrAoL4+AULI88fMzAwSiaTDMolEAn19fejq6kJTUxOamppPXMfMzEyVp6owA/GaCSGE9A6NiBNCFM7X1xcxMTEdlv3xxx/w9fUFAAwePBgeHh4d1pHJZIiJiZGv098MxGsmhBDSOxSIE0Keqba2Fnfu3MGdO3cA/F2q786dO8jPzwcArFu3DvPnz5ev/+GHHyI7Oxtr1qxBZmYm/v3vf+PcuXNYsWKFfJ2goCAcPXoUJ0+exP3797F06VLU1dVh0aJFKr22zgzEayaEEKJiDCGEPMNff/3FAHjsZ8GCBQzDMMyCBQuYSZMmPbaNm5sbM3jwYMbe3p45fvz4Y/v9/PPPmVGjRjGDBw9mvL29mZs3byr/YrpoIF4zIYQQ1aI64oQQQgghhPQBSk0hhBBCCCGkD1AgTgghhBBCSB+gQJwQQgghhJA+QIE4IYQQQgghfYACcUIIIYQQQvoABeKEEEIIIYT0AQrECSGEEEII6QMUiBNCCCGEENIHKBAnhBBCCCGkD1AgTgghhBBCSB+gQJwQQgghhJA+QIE4IYQQQgghfYACcUIIIYQQQvoABeKEEEIIIYT0AQrECSGEEEII6QP/DzCT0zvs8MbYAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 318 + "outputs": [], + "execution_count": null } ], "metadata": { From f34a05607929bcbb01e258a9dd66fc38d42a386d Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sun, 14 Jul 2024 23:17:44 +0200 Subject: [PATCH 10/21] update README --- README.md | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index b673707..607f242 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,8 @@ # QuLearn -Welcome to QuLearn, a Python package designed to simplify the development and application of quantum and classical machine learning models. It includes a collection of QML applications from Fraunhofer ITWM. +Welcome to QuLearn, a Python package designed to simplify the development and application of quantum and classical machine learning models. +This project remained a hobby and is not actively developed anymore. +It is very difficult to get people to build something they don't have to... ## About @@ -8,13 +10,12 @@ QuLearn is built on top of [PyTorch](https://pytorch.org/) and [PennyLane](https QuLearn is suitable for various research applications and aims to democratize access to the exciting field of quantum machine learning. It serves as a platform for researchers, developers, and enthusiasts to implement, experiment, and contribute to this rapidly evolving field. -QuLearn also houses QML applications from Fraunhofer ITWM. - ## Getting Started ### Installation -(Installation instructions will be added soon.) +Package is not available on PyPI. +It can be installed from source via pip, works most of the time. ### Basic Usage From e6b4d88edd5af24df498e7d8798d2643d4ba9648 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Mon, 15 Jul 2024 11:01:27 +0200 Subject: [PATCH 11/21] example: add classification qkernel example --- scratch/scratch5.ipynb | 224 ++++++++++++++++++++++++++++++++++++++--- 1 file changed, 209 insertions(+), 15 deletions(-) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 5bdbe34..369445e 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -507,8 +507,8 @@ "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:45:28.739504Z", - "start_time": "2024-07-14T20:45:28.725884Z" + "end_time": "2024-07-15T07:34:46.737743Z", + "start_time": "2024-07-15T07:34:46.725454Z" } }, "source": [ @@ -541,19 +541,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(5.87,3.65,2.77)─╭●──Rot(0.75,2.32,5.82)────────────────────────\n", - "1: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(6.08,1.97,1.26)─╰X──Rot(3.20,5.95,0.85)─╭●──Rot(5.48,3.67,4.07)\n", - "2: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(4.29,2.04,3.89)─╭●──Rot(4.16,3.09,1.08)─╰X──Rot(4.50,3.46,5.41)\n", - "3: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(3.06,3.52,1.50)─╰X──Rot(3.08,2.97,2.64)─╭●──Rot(3.16,5.35,6.23)\n", - "4: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(5.46,5.72,2.33)─╭●──Rot(4.88,0.89,4.10)─╰X──Rot(0.37,2.94,1.91)\n", - "5: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(6.05,3.83,1.56)─╰X──Rot(1.34,5.45,5.62)────────────────────────\n", + "0: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(0.58,3.51,0.82)─╭●──Rot(0.89,2.04,3.00)────────────────────────\n", + "1: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(4.30,2.89,1.81)─╰X──Rot(2.66,3.29,2.39)─╭●──Rot(3.36,2.74,3.53)\n", + "2: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(3.11,3.18,3.22)─╭●──Rot(3.69,4.12,4.69)─╰X──Rot(2.16,6.22,3.45)\n", + "3: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(4.38,1.67,3.19)─╰X──Rot(5.48,3.60,4.22)─╭●──Rot(0.38,6.13,2.09)\n", + "4: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(6.27,0.71,0.64)─╭●──Rot(2.46,2.99,5.96)─╰X──Rot(2.11,5.80,4.22)\n", + "5: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(2.40,4.54,0.42)─╰X──Rot(1.58,4.33,5.08)────────────────────────\n", "\n", - "──╭●──Rot(4.54,0.52,4.68)─────────────────────────╭●──Rot(4.41,1.60,1.89)─────────────────────────┤\n", - "──╰X──Rot(4.29,2.35,1.81)─╭●──Rot(2.87,5.46,1.77)─╰X──Rot(1.16,2.38,4.97)─╭●──Rot(6.23,4.98,1.51)─┤\n", - "──╭●──Rot(4.38,3.58,0.03)─╰X──Rot(1.57,3.34,3.34)─╭●──Rot(1.15,5.83,5.63)─╰X──Rot(1.88,5.21,4.63)─┤\n", - "──╰X──Rot(2.92,4.43,3.56)─╭●──Rot(5.35,0.17,4.13)─╰X──Rot(0.82,1.12,3.23)─╭●──Rot(4.61,3.90,1.22)─┤\n", - "──╭●──Rot(4.61,2.39,2.19)─╰X──Rot(3.53,4.93,0.61)─╭●──Rot(2.09,4.94,5.99)─╰X──Rot(3.47,5.64,3.76)─┤\n", - "──╰X──Rot(2.22,2.15,5.18)─────────────────────────╰X──Rot(4.93,0.44,1.91)─────────────────────────┤\n", + "──╭●──Rot(6.21,5.13,4.11)─────────────────────────╭●──Rot(6.27,5.62,6.11)─────────────────────────┤\n", + "──╰X──Rot(5.31,4.11,4.23)─╭●──Rot(0.53,3.56,4.46)─╰X──Rot(6.03,0.94,0.59)─╭●──Rot(2.72,3.26,5.42)─┤\n", + "──╭●──Rot(4.66,4.78,5.73)─╰X──Rot(0.77,0.87,2.38)─╭●──Rot(0.50,2.98,5.33)─╰X──Rot(0.98,3.93,1.89)─┤\n", + "──╰X──Rot(5.06,6.14,5.36)─╭●──Rot(4.81,2.14,2.56)─╰X──Rot(1.99,2.71,0.81)─╭●──Rot(4.78,2.41,4.22)─┤\n", + "──╭●──Rot(1.79,1.30,2.26)─╰X──Rot(2.02,1.61,2.21)─╭●──Rot(0.72,3.62,0.51)─╰X──Rot(0.63,2.69,0.71)─┤\n", + "──╰X──Rot(3.07,2.33,5.27)─────────────────────────╰X──Rot(4.58,2.69,1.37)─────────────────────────┤\n", "\n", " ╭<𝓗>\n", " ├<𝓗>\n", @@ -564,7 +564,201 @@ ] } ], - "execution_count": 44 + "execution_count": 49 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:58:47.037819Z", + "start_time": "2024-07-15T08:58:46.648405Z" + } + }, + "cell_type": "code", + "source": [ + "from qulearn.qkernel import QKernel\n", + "import torch\n", + "\n", + "embed_pptn = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=True)\n", + "embed_angle = ParallelIQPEncoding(wires=2*num_qubits, num_features=2, n_repeat=1, base=base, omega=omega)\n", + "\n", + "ntrain = 10\n", + "num_features = 2\n", + "X_train = 1.98*torch.rand((ntrain, num_features)) - 0.99\n", + "kernel_model = QKernel(embed_angle, X_train)\n", + "kernel_classifier = SignModelWrapper(kernel_model)\n", + "\n", + "scores = kernel_model(X_train)\n", + "labels = kernel_classifier(X_train)\n", + "\n", + "print(scores)\n", + "print(\"=========\")\n", + "print(labels)" + ], + "id": "1fe4363cc12446da", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([ 0.2939, 0.9621, 1.1502, -0.1112, 0.2150, 0.2829, -0.9913, 0.6336,\n", + " 1.0529, -0.1257], grad_fn=)\n", + "=========\n", + "tensor([ 1., 1., 1., -1., 1., 1., -1., 1., 1., -1.],\n", + " grad_fn=)\n" + ] + } + ], + "execution_count": 180 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:58:47.107708Z", + "start_time": "2024-07-15T08:58:47.038578Z" + } + }, + "cell_type": "code", + "source": [ + "from sklearn.datasets import make_moons, make_classification\n", + "X, y = make_moons(n_samples=100, noise=0.2, random_state=42)\n", + "X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)\n", + "\n", + "X_min = X.min()\n", + "X_max = X.max()\n", + "X= 1.98 * (X - X_min) / (X_max - X_min) - 0.99\n", + "\n", + "# Plot the dataset\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='blue', label='Class 0')\n", + "plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='red', label='Class 1')\n", + "plt.title(\"Moons Dataset\")\n", + "plt.xlabel(\"Feature 1\")\n", + "plt.ylabel(\"Feature 2\")\n", + "plt.legend()\n", + "plt.show()" + ], + "id": "91befded4d0058f7", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4BbfN35ACCwkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJFdrb0t79J+/f/WpaUJP3zn57/2wogOBAcBzCLxfpH29mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4CK+KPzAUDgY1hFAFu71rE340KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKE9lnQ+StfOBIRZA+CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQHn81fkAIPARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIN/7qfAAQ+AiOA1jPntaJISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQWvzV+QAg8DEhL4CZzdYZ04MGWQPh0mPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEFlvnQ16e83HHJpP1eW90PiDIWSzW8TYHDlivnnr29M6JGH5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnqYaSk62BMTOpXeeJ/wsAocOWrUJy3vlAtgqUQe6/oFZRvFYawyqCQEaGtHu3tGaNtGSJ9T43l+8hAFRHRoY1AG7a1LE8KYnAGE7YrqYunMlpy/3nzZW54FMMqwgSZrPUu7e/WwEAoSUjw5ornl/JUSF/LTwAvyA4BgCENTofUCl3cv+FwocpzMdVExwDAABUJJxy/zGumjHHAAAAFQqX3H+Mq5ZEcAwAAFAxfy484CusqW5HcAwAAFAR28IDUtkA2dsLD/gKa6rbERwDAABUJtRz/4XTuOpKMCEPAADAFaGc+y9cxlW7gOAY1WIymbRixQoNGDDA300BAMD7QjX3H2uq2zGsAuXKz8/XXXfdpRYtWigyMlLJycm6/vrrtXr1an83TZKUnZ2tq6++WhdddJFMJpM2b97s7yYBABCcwmFctYsIjoOFxSLl5EhLl1rvvTxbdPfu3erSpYs++eQTPfLII9qyZYtWrVqlPn36aOzYsV59b1edOHFCV1xxhR566CF/NwUAgOAX6uOqXURwHAyys6WUFKlPH2noUOt9SopX8w3eeeedMplM2rBhgwYOHKjWrVvrN7/5jbKysvTFF1+U+7p7771XrVu3Vp06ddSiRQs98MADOnfunP35b775Rn369FH9+vUVHR2tLl266KuvvpIk7dmzR9dff70aNGigunXr6je/+Y3ee++9ct/rlltu0dSpU5WWlua5HQcAIJxlZEi7d0tr1khLlljvc3PDJjCWGHMc+GwJuS8c/2NLyO2FK7kjR45o1apVmjNnjurWrVvm+djY2HJfW79+fS1atEiJiYnasmWLRo8erfr162vSpEmSpGHDhqlz58565plnZDabtXnzZtWsWVOSNHbsWJ09e1affvqp6tatqx9++EH16tXz6L4BAIBKhOq4ahcRHAeyyhJym0zWhNz9+3t0DNDOnTtlGIbatm3r9mvvv/9++79TUlJ0zz33aNmyZfbgeO/evZo4caJ9261atbLX37t3rwYOHKgOHTpIklq0aFGd3QAAAHAbwyoCmZ8SchvOgnEXvfbaa7r88suVkJCgevXq6f7779fevXvtz2dlZem2225TWlqaHnzwQe3atcv+3N13363Zs2fr8ssv17Rp0/Ttt99Waz8AAADcRXAcyPyUkLtVq1YymUzatm2bW69bt26dhg0bpmuvvVbvvPOOvv76a9133306e/asvc706dP1/fffq1+/fvrkk0/Uvn17rVixQpJ022236ccff9Qtt9yiLVu2qGvXrnryySc9um8AAAAVITgOZH5KyB0XF6f09HQtWLBAJ06cKPP80aNHnb7u888/V7NmzXTfffepa9euatWqlfbs2VOmXuvWrTV+/Hh9+OGHysjI0EsvvWR/Ljk5Wbfffruys7M1YcIEPffccx7bLwAAgMoQHAcyW0LuC/MN2phMUnKyVxJyL1iwQBaLRd26ddN//vMf7dixQ1u3btX8+fPVvXt3p69p1aqV9u7dq2XLlmnXrl2aP3++vVdYkk6dOqVx48YpJydHe/bs0WeffaYvv/xS7dq1kyRlZmbqgw8+UG5urjZt2qQ1a9bYn3PmyJEj2rx5s3744QdJ0vbt27V582bl5+d78EgAAIBwQnAcyPyYkLtFixbatGmT+vTpowkTJujSSy/VH//4R61evVrPPPOM09fccMMNGj9+vMaNG6dOnTrp888/1wMPPFBqd8w6fPiwhg8frtatW+vGG2/UNddcoxkzZkiSLBaLxo4dq3bt2qlv375q3bq1nn766XLb+NZbb6lz587q16+fJGnw4MHq3LmzFi5c6MEjAQAAwonJqM7sK0iSioqKFBMTo8LCQkVHRzs8d/r0aeXm5qp58+aKioqq2htkZ1uzVpSenJecbA2MwyjvYHV55P8CAAAEpYritdJI5RYMMjKs6drWrrVOvmvSxDqUIgyWcAQAAPAlguNgEeYJuQEAAHyBMccAAABACXqOAQAeZbEwCgxA8CI49hHmPfof/weA9zmbP5yUZE28w/xhAMGAYRVeZi7pLim9Shz8w/Z/YKYLC/CK7Gxp0KCyq97n5VnLs7P90y4AcAc9x15Wo0YN1alTRz///LNq1qypiAiuR/yhuLhYP//8s+rUqaMaNfjYA55msVh7jJ39QGMY1tTsmZnWxDtcnwIIZEEXJSxYsECPPPKI8vPz1bFjRz355JPq1q2b07q9e/fWf//73zLl1157rd59911J0siRI/Xyyy87PJ+enq5Vq1Z5pL0mk0lNmjRRbm6u06WU4TsRERG6+OKLZSpvxUEAVbZ2bdke49IMQ9q3z1qPxDsAAllQBcevvfaasrKytHDhQqWmpmrevHlKT0/X9u3b1ahRozL1s7OzHYYzHD58WB07dtSf//xnh3p9+/bVSy+9ZH8cGRnp0XbXqlVLrVq1YmiFn9WqVYuee8BLDhzwbD0AISBIZ+cGVXD8+OOPa/To0Ro1apQkaeHChXr33Xf14osvavLkyWXqx8XFOTxetmyZ6tSpUyY4joyMVEJCgvcaLmuvJauyAQhVTZp4th6AIBfEs3ODphvt7Nmz2rhxo9LS0uxlERERSktL07p161zaxgsvvKDBgwerbt26DuU5OTlq1KiR2rRpozvuuEOHDx+ucDtnzpxRUVGRww0AwlnPntbzXnmjlkwm66r3PXv6tl0A/CDIZ+cGTXB86NAhWSwWNW7c2KG8cePGys/Pr/T1GzZs0HfffafbbrvNobxv375avHixVq9erYceekj//e9/dc0118hisZS7rblz5yomJsZ+S05OrtpOAUCIMJutHUJS2QDZ9njevKD4RRVAdVQ2O1eyzs6tIM7yt6AJjqvrhRdeUIcOHcpM3hs8eLBuuOEGdejQQQMGDNA777yjL7/8Ujk5OeVua8qUKSosLLTf9u3b5+XWA0Dgy8iQli+XmjZ1LE9KspYH+C+pADzBndm5ASpoxhw3bNhQZrNZBQUFDuUFBQWVjhc+ceKEli1bppkzZ1b6Pi1atFDDhg21c+dOXXXVVU7rREZGenzSHgCEgowMa7q2IJyDA8ATQmB2btD0HNeqVUtdunTR6tWr7WXFxcVavXq1unfvXuFr33jjDZ05c0Y333xzpe+zf/9+HT58WE2YNQIAVWI2W9O1DRlivScwBsJICMzODZrgWJKysrL03HPP6eWXX9bWrVt1xx136MSJE/bsFcOHD9eUKVPKvO6FF17QgAEDdNFFFzmUHz9+XBMnTtQXX3yh3bt3a/Xq1erfv79atmyp9PR0n+wTAPiLxSLl5EhLl1rvA3gIIIBgEQKzc4NmWIUk3XTTTfr55581depU5efnq1OnTlq1apV9kt7evXvL5LHdvn27/ve//+nDDz8ssz2z2axvv/1WL7/8so4eParExERdffXVmjVrFsMmAIS0IM6yBCCQ2WbnDhpkDYRLT8wLktm5JsNwNp0Q7igqKlJMTIwKCwsVHR3t7+YAQIVsWZYu/OtvO28xeQ5AtTm7Ak9OtgbGfvoD42q8RnDsAQTHAIKFxSKlpJQ/mdxksvYg5+YGdMcOgGAQYCvkuRqvBdWwCgBA9biTZal3b581C0Aoss3ODTJBNSEPAFA9IZBlCQC8iuAYAMJICGRZAgCvIjgGgDASAlmWAMCrCI4BIIzYsixJZQPkIMmyBABeRXAMAGEmI8Oarq1pU8fypCTSuAEA2SoAIAxlZEj9+wdUliWgYgGWFgyhi+AYAMJUkGZZQjhiSUf4EMMqAABA4LIt6Xhhgu68PGt5drZ/2oWQRXAMAAACk8Vi7TF2tpivrSwz01oP8BCCYwAAEJjcWdIR8BCCYwAAEJhY0hF+QHAMAAACE0s6wg8IjgEAQGBiSUf4AcExAAAITCzpCD8gOAYAAIGLJR3hYywCAgAAAhtLOsKHCI4BAEDgY0lH+AjDKgAAAIAS9BwDAAC4y2JhmEeIIjgGAABwR3a2dVnr0qv3JSVZM2swQTDoMawCAPzIYpFycqSlS633Fou/WwSgQtnZ0qBBZZe1zsuzlmdn+6dd8BiCYwDwA4tFmjlTatRI6tNHGjrUep+SwrkVCFgWi7XH2DDKPmcry8zkKjfIERwDgI9lZ0uNG0vTpklHjjg+R+cTEMDWri3bY1yaYUj79lnrIWgRHAOAD9l+kT182PnzdD4BAezAAc/WQ0AiOAYAH6noF9nS6HwCAlSTJp6th4BEcAwAPlLZL7IXovMJCDA9e1qzUphMzp83maTkZGs9BC2CYwDwEXeDXTqfgEr4Ot2L2WxN1yaVDZBtj+fNI99xkCM4BgA3VfV87E6wS+cTUInsbGt6F1+ne8nIkJYvl5o2dSxPSrKWk+c46JkMo7LRb6hMUVGRYmJiVFhYqOjoaH83B4AXVSf3v8ViPXfn5VU+7vg//+EcC5TLNrP1wi+SrffWF0EqK+QFHVfjNYJjDyA4BsKDJ87Htm1IzgPkiy6Snn2WwBgol+0qs7wB/CaT9Yo1N5dgFQ5cjdcYVgEALvBU7v/yfpG96CJpxgypoIDAGKgQuYbhZTX83QAACAbunI979654WxkZUv/+/CILVAm5huFlBMcA4AJPn4/N5sqDaABOkGsYXsawCgBwAedjIECQaxheRnAMAC7gfAwECHINw8sIjgGgHKXzGa9dKz3+uLWc8zHgZ+QahheRys0DSOUGhJ7y8hkPGWINlkuXJydbA2POx4CPkWsYbiDPsQ8RHAOhpbJ8xq+/LjVsyPkYAIKJq/Ea2SoAoJTK8hmbTFJWFusLwMPoAQUCBmOOAaAU1heAz2VnW1d869NHGjrUep+SYi0H4HMExwBQCusLwKdsY3guvCLLy7OWEyADPkdwDAClkM8YPuOpNckBeBTBMQCUQj5j+AxjeICAFHTB8YIFC5SSkqKoqCilpqZqw4YN5dZdtGiRTCaTwy0qKsqhjmEYmjp1qpo0aaLatWsrLS1NO3bs8PZuAAhQrC8An2EMDxCQgio4fu2115SVlaVp06Zp06ZN6tixo9LT03Xw4MFyXxMdHa0DBw7Yb3v27HF4/uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz7t7d0BEKBYXwA+EQpjeEqvlJOTwxAQhISgynOcmpqq3/3ud3rqqackScXFxUpOTtZdd92lyZMnl6m/aNEiZWZm6ujRo063ZxiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXeY6B0ER2LXiVxWLNSpGX53zcsclkvSIL1LyB5a2U889/cgWJgORqvBY0Pcdnz57Vxo0blZaWZi+LiIhQWlqa1q1bV+7rjh8/rmbNmik5OVn9+/fX999/b38uNzdX+fn5DtuMiYlRampqhds8c+aMioqKHG4AQo/ZLPXubV0Vr3fvwIxPEMSCeQwPWTYQwoImOD506JAsFosaN27sUN64cWPl5+c7fU2bNm304osvauXKlfr3v/+t4uJi9ejRQ/tLvsy217mzTUmaO3euYmJi7Lfk5OTq7BoAIFz5egyPJ4ZBVJZlwzDIsoGgFjTBcVV0795dw4cPV6dOndSrVy9lZ2crPj5e//rXv6q13SlTpqiwsNB+27dvn4daDAAIOxkZ0u7d0po10pIl1vvcXM8Hxp5abKSyLBsSWTYQ1IJm+eiGDRvKbDaroKDAobygoEAJCQkubaNmzZrq3Lmzdu7cKUn21xUUFKhJqQkPBQUF6tSpU7nbiYyMVGRkpJt7AABAOWxjeLzFNgziwt5e2zAId3qp8/I8Ww8IMEHTc1yrVi116dJFq1evtpcVFxdr9erV6t69u0vbsFgs2rJliz0Qbt68uRISEhy2WVRUpPXr17u8TQAAApqnFxv5+WfP1gMCTND0HEtSVlaWRowYoa5du6pbt26aN2+eTpw4oVGjRkmShg8frqZNm2ru3LmSpJkzZ+r3v/+9WrZsqaNHj+qRRx7Rnj17dNttt0mSTCaTMjMzNXv2bLVq1UrNmzfXAw88oMTERA0YMMBfuwnARWSTAFzgzmIjrvRex8e79r6u1gMCTFAFxzfddJN+/vlnTZ06Vfn5+erUqZNWrVpln1C3d+9eRUT82hn+yy+/aPTo0crPz1eDBg3UpUsXff7552rfvr29zqRJk3TixAmNGTNGR48e1RVXXKFVq1aVWSwEQGCwBcQrV0r//rd06NCvz5FFCnDC04uNXDh5sLr1gAATVHmOAxV5jgHfcJZW1Zn//IcAGbDLybFOvqvMmjWu9Rzb8jNX9EVMTg7c/MwIWyGX5xhAeCsvraozY8aQRQqw69nT+rPKhbmUbUwmazDbs6dr27PlZ65oe4GanxlwAcExgIBX0XwiZw4ftnaWAZB3Fhux5WdOSnIsT052zHzB8tIIQgTHAAKeK2lVL0RwDJTijcVGKsvP7Km8yoCPBdWEPADhydV5QgAqkJEh9e/v2RQv5eVn9mReZcDHCI4BBLxSa/S4zJvrKQBBy9uLjUiV51U2max5lfv3Z1wyAhLDKgAEvMrmE13ooosIjgG/cSevMhCACI4B+IU783Qqmk/kzLPP0iEF+I2n8yoDPkZwDMDnqjJPp7z5RKUlJZHjGKi26maYcHUcVFXGSwE+wCIgHsAiIIDrypunY+sRrmyeTukloxs1spYdPMjy0YBHOFtpx92lJ22LhOTllZ9/MSnJmumCLyx8yNV4jeDYAwiOAde4srAW50zAT6p75epsW5LzAPmii6zjn/iZBz7ECnkAAo4r+Yr375fmzPFNewCUqCzDhGTNMOHqEAvbOKi4OOfPHzliDZ7JeYwARHAMwGdcnX8zbRrnTMCnvJFhon9/qXbt8rcnuRdwAz5CcAzAZ9yZf8M5EwEt1JZF9kaGCVK6IUgRHAPwGVu+YldwzkTACsVlkb2RYYKUbghSBMcAfKZ0vmJXcM5EwLFNNLuwR9S2LHKwBsiVrbRjMknJydZ6riKlG4IUwTEAn8rIkGbMcK0u50wEFE9PWgskFa20Y3s8b557aWS8EXADPkBwDMDn7ruv4uEVnDMRkEJ9DG15K+0kJbmXxs3GGwE34AMExwB8znbONJk4ZyKIhMMY2owMa6LxNWukJUus97m5Vc9H7OmAG/CBGv5uAIDwZDtnOluMa948zpkIQOEyhtZslnr39tz2MjKsad1sS1uynCUCHCvkeQAr5AG/Kr28syvnQHfrA35T2bLIJpP16i43lw8xEIBcjdfoOQbgMdnZznuC//nP8nuCPd1JBXiNbTzQoEHWQLh0gMx4ICBkMOYYgEeEaoYrwAFjaIGQx7AKD2BYBcKd7dfm8iby82szQg7jgYCgw7AKAD7jToYrhlAgJDAeCAhZBMcAKlVZJ1k4ZLgC7Og1BkIawTGACrkyyS5cMlwBVZp1CiCoMCEPgFMWizRzpjRwYOWT7FglFmGBWadAWCA4BlBGdrZ1gt20ac6ft03jzcy0BtGsEouQZ7FYe4ydzWG/8AsBIKgRHANwUF7n2IVKT7KTyHCFEOfOrFMAQY0xxwDsKuocK0/pSXasEouQxaxTIGwQHAOwq6xzzJkLJ9mR4QohiVmnQNhgWAUAO3c6vZhkh7DCrFMgbBAcA7Bzt9OLSXYIG8w6BcIGwTEAu8o6x2yYZIewxKxTICyYDMOdqTdwxtW1uoFgYMtWITmfmDdjhnTffXSQIYyxQh4QlFyN15iQB8CBrXPswkXAkpOtvxrTOYawx6xTIKQRHAMog5RsAIBwRXAMwCk6x4AwxJARgOAYCHWc6wC4JDu77HiqpCRrlg7GUyGMkK0CCGHZ2VJKitSnjzR0qPU+JcVaDgB25a0bn5dnLeePBsIIwTEQojjXAXBJRevG28oyM631gDBAcAyEIM51QIixWKScHGnpUuu9J7+8la0bbxjSvn3WekAYIDgGQhDnOiCEeHt8lKvrxruzvjwQxAiOgRDEuQ4IEb4YH+XquvHuri8PBCmCYyAEca4DQoCvxkdVtm68yWRdBahnz+q9DxAkgi44XrBggVJSUhQVFaXU1FRt2LCh3LrPPfecevbsqQYNGqhBgwZKS0srU3/kyJEymUwOt759+3p7NwCv4lwHhABfjY8ym63p2qSyfzRsj+fNIwckwkZQBcevvfaasrKyNG3aNG3atEkdO3ZUenq6Dh486LR+Tk6OhgwZojVr1mjdunVKTk7W1Vdfrby8PId6ffv21YEDB+y3pUuX+mJ3AK/hXAeEAF+Oj7KtG9+0qWN5UpK1nDzHCCMmw3D2e01gSk1N1e9+9zs99dRTkqTi4mIlJyfrrrvu0uTJkyt9vcViUYMGDfTUU09p+PDhkqw9x0ePHtWbb75Z5XYVFRUpJiZGhYWFio6OrvJ2AE9zltM/OdkaGHOuQ1AI51VscnKsk+8qs2aN55azDOfjjZDnarwWNCvknT17Vhs3btSUKVPsZREREUpLS9O6detc2sbJkyd17tw5xcXFOZTn5OSoUaNGatCggf7whz9o9uzZuuiii8rdzpkzZ3TmzBn746KiIjf3BvCNjAypf3/OdQhS4b5im218VF6e83HHJpP1eU+Oj2LdeCB4hlUcOnRIFotFjRs3dihv3Lix8vPzXdrGvffeq8TERKWlpdnL+vbtq8WLF2v16tV66KGH9N///lfXXHONLBVMcJg7d65iYmLst+Tk5KrtFOADtnPdkCHWewJjBAVWsWF8FOAnQRMcV9eDDz6oZcuWacWKFYqKirKXDx48WDfccIM6dOigAQMG6J133tGXX36pnJyccrc1ZcoUFRYW2m/79u3zwR4AQJhgFZtfMRYY8LmgGVbRsGFDmc1mFRQUOJQXFBQoISGhwtc++uijevDBB/Xxxx/rsssuq7BuixYt1LBhQ+3cuVNXXXWV0zqRkZGKjIx0bwcAAK5xJ0tDOAwBYHwU4FNB03Ncq1YtdenSRatXr7aXFRcXa/Xq1erevXu5r3v44Yc1a9YsrVq1Sl27dq30ffbv36/Dhw+rCQlgAcA/XM2+sHKld9sRSEqPj+rZ0xooe2MpaQDB03MsSVlZWRoxYoS6du2qbt26ad68eTpx4oRGjRolSRo+fLiaNm2quXPnSpIeeughTZ06VUuWLFFKSop9bHK9evVUr149HT9+XDNmzNDAgQOVkJCgXbt2adKkSWrZsqXS09P9tp8AENZc7ZyYN88aKFY2tCCUMjC4MkkxlPYX8IOgCo5vuukm/fzzz5o6dary8/PVqVMnrVq1yj5Jb+/evYqI+LUz/JlnntHZs2c1aNAgh+1MmzZN06dPl9ls1rfffquXX35ZR48eVWJioq6++mrNmjWLYRMA4C+2LA0VDa2QrJPSMjOtQw7KC/4CNeNFVQJY2yTFC8di2yYpLl9ufRyI+wsEkaDKcxyoyHMMAB6WnS0NHOha3fLy/JYXTNoyPfhrQltVAnaLRUpJKf+CwWSS4uKkI0cCb3+BAOFqvBY0Y44BAGEkI8PaK+wKZ2OUAzXjRVVT1LkySfHw4cDbXyAIERwDAAJT//6u1XM2RtmdjBe+Up2AvbpLRPtjf4EgRXAMAHCZxWJNkOCTRAm2sccXLoBhYzJZ10N3tkKcq8FkdYNOd1QnYPdUBiVf7i8QpAiOAQAuyc62Dnvt00caOtR6n5LixcXqqrNCnKvBpC/TdlYnYK/sQsFVpCkFKkVwDAColN9Wc67qCnHV6XX2luoE7K5cKFx0UWDtLxCkyFbhAWSrABDKXEmUkJQk5eZ6MZ1udVKfSY7jfP2VvcF2IPPynI87duVAOst0kZxs7UGXAmt/gQDjarxGcOwBBMcAQllOjnUIRWXKy6jmVxUFk/5K41bdALaiC4VA218ggLgarwXVIiAAAN8LxLltLsvIsGa9CJQV42zDRJzlOXY1gLUtJV3e9gNpf4EgRHAMeACrtSKUBeLcNrdUFEz6g7cD2EDbXyDIEBwD1RSoq9MCnmKb21bZUFnmermBABYIWGSrAKrBbzP4AR+qTkY1AAg2BMdAFQXq6rSAN1Q1oxoABBuGVQBV5M5iV/x6ilDAXC8A4YDgGHDClQl2QT2DH6gihsoCCHUEx8AFXJ1gF/Qz+AEAQBmMOQZKcWeCXSCuTgsAAKqH4Bgo4e4EO2bwAwAQegiOgRLuTLCzYQY/AAChhTHHQImqTrBjBj8AAKGD4BgoUZ0JdszgBwAgNDCsAijBBDsAAEBwDJRggh0AACA4RtiyWKScHGnpUuu9xcIEOwAAwh1jjhGWKlvogwl2AAB4iSvL0PqRW8HxqVOntHHjRsXFxal9+/YOz50+fVqvv/66hg8f7tEGAtV14Xfw0CHpxhvL5jO2LfRh6yFmgh0AAB7m6jK0fmQyDGdLHpT1f//3f7r66qu1d+9emUwmXXHFFVq2bJmalEzdLygoUGJioiy2FRLCSFFRkWJiYlRYWKjo6Gh/NwelOPsOms2/LuRxIZPJ+h3NzQ2oi1gAAIKfbRnaC0NP28QeL49fdDVec3nM8b333qtLL71UBw8e1Pbt21W/fn1dfvnl2rt3r0caDHhaeUtBV3T95myhDwAAUE3uLkPrRy4Hx59//rnmzp2rhg0bqmXLlnr77beVnp6unj176scff/RmGwG3VfQddIWrC4IAAAAXVGUZWj9xOTg+deqUatT4dYiyyWTSM888o+uvv169evXS//3f/3mlgUBVVPYdrIyrC4IAAAAXVHUZWj9weUJe27Zt9dVXX6ldu3YO5U899ZQk6YYbbvBsy4BqqOp3yzbmmIU+AADwoOosQ+tjLvcc/+lPf9LSpUudPvfUU09pyJAhcnFuH+B1VflusdAHAABeEkTL0LqcrQLlI1tF4LFYpJQUa3q28j7hF2atSE62BsYBkkkGAIDQYpspLzmenAMsWwWLgCAk2ZaCHjTI+p1z9h1culSKjw/YHORAeAjwxQAAeJBtGVpneY4DqHeKnmMPoOc4cDnLc0wPMRAggmAxAABe4KeLYlfjNYJjDyA4Dmx0TAEByM+LAQAIPwTHPkRwDABusE0KKC/fIktVAvACj6+QBwAIDRaLlJNjHXefk+OHBamCaDEAAOGnSsHxK6+8ossvv1yJiYnas2ePJGnevHlauXKlRxsHAPCs7Gxrp22fPtLQodb7lBRruc8E0WIAAMKP28HxM888o6ysLF177bU6evSoLCVdDrGxsZo3b56n2wcA8BDbMN8LO23z8qzlPguQg2gxAADhx+3g+Mknn9Rzzz2n++67T+ZSY8G6du2qLVu2eLRxgBQAPwEDIcBisSaGcDbLxFaWmemj71cQLQYAIPy4HRzn5uaqc+fOZcojIyN14sQJjzQKsAmIn4CBEBBQw3xticilsgEyS1UC8DO3g+PmzZtr8+bNZcpXrVqldu3aeaJNgKQA+gkYCAEBN8zXthhA06aO5UlJpHED4Fdur5CXlZWlsWPH6vTp0zIMQxs2bNDSpUs1d+5cPf/8895oI8JQZT8Bm0zWn4D796dzCcHB3/m2A3KYb0aG9UtMInIAAaRKeY5fffVVTZ8+Xbt27ZIkJSYmasaMGbr11ls93sBgQJ5jz8vJsQ6hqMyaNVLv3t5uDVA9gbAQnC21cF6e84tOUgsDCHVeyXN8/vx5LV68WGlpadqxY4eOHz+u/Px87d+/P2wDY3hHwP0EDFRRoAwPYpgvALjGreC4Ro0auv3223X69GlJUp06ddSoUSOvNKw8CxYsUEpKiqKiopSamqoNGzZUWP+NN95Q27ZtFRUVpQ4dOui9995zeN4wDE2dOlVNmjRR7dq17YE//CsgfwIG3BRQGSLEMF8AcIXbE/K6deumr7/+2httqdRrr72mrKwsTZs2TZs2bVLHjh2Vnp6ugwcPOq3/+eefa8iQIbr11lv19ddfa8CAARowYIC+++47e52HH35Y8+fP18KFC7V+/XrVrVtX6enp9gsA+AeZnhAKAipDRImMDGn3buuQpCVLrPe5uQTGgE+QmzQouD3m+PXXX9eUKVM0fvx4denSRXXr1nV4/rLLLvNoA0tLTU3V7373Oz311FOSpOLiYiUnJ+uuu+7S5MmTy9S/6aabdOLECb3zzjv2st///vfq1KmTFi5cKMMwlJiYqAkTJuiee+6RJBUWFqpx48ZatGiRBg8e7FK7GHPsHbafoyXHnjdbwExPFwLd0qXWFISVWbJEGjLE++0B4EeBMPkgzLkar7mdrcIWMN599932MpPJJMMwZDKZ7CvmedrZs2e1ceNGTZkyxV4WERGhtLQ0rVu3zulr1q1bp6ysLIey9PR0vfnmm5KsOZvz8/OVlpZmfz4mJkapqalat25ducHxmTNndObMGfvjoqKiqu5WWKjqLH3bT8DO/pbMm8ffEgQ+hgcBkPRrb8+F/ZG2yQf09gQUt4Pj3Nxcb7SjUocOHZLFYlHjxo0dyhs3bqxt27Y5fU1+fr7T+vn5+fbnbWXl1XFm7ty5mjFjhtv7EI6qe6FMpicEM9vwoMoyRDA8CAhh5CYNOm4Hx82aNfNGO4LKlClTHHqki4qKlJyc7McWBSZPXSibzaRrQ3CyZYgYNMh6/nM2PIgMEUCIc2fyASe7gOB2cLx48eIKnx8+fHiVG1ORhg0bymw2q6CgwKG8oKBACQkJTl+TkJBQYX3bfUFBgZqU+l2zoKBAnTp1KrctkZGRioyMrMpuhA0ulAErhgcBYY7cpEHH7eD4b3/7m8Pjc+fO6eTJk6pVq5bq1KnjteC4Vq1a6tKli1avXq0BAwZIsk7IW716tcaNG+f0Nd27d9fq1auVmZlpL/voo4/UvXt3SdalsBMSErR69Wp7MFxUVKT169frjjvu8Mp+hAsulIFfMTwICGNMPgg6bgfHv/zyS5myHTt26I477tDEiRM90qjyZGVlacSIEeratau6deumefPm6cSJExo1apQka69106ZNNXfuXEnWQL5Xr1567LHH1K9fPy1btkxfffWVnn32WUnWiYSZmZmaPXu2WrVqpebNm+uBBx5QYmKiPQBH1XChDDhieBAQpph8EHTcDo6dadWqlR588EHdfPPN5U6O84SbbrpJP//8s6ZOnar8/Hx16tRJq1atsk+o27t3ryIifk3d3KNHDy1ZskT333+//v73v6tVq1Z68803demll9rrTJo0SSdOnNCYMWN09OhRXXHFFVq1apWioqK8th/hgAtlwE+qmh4GgHcw+SDouJ3nuDybN2/WlVdeGZZpzchzXJbFIqWkVH6hnJvL3wPAY8ijCgQuZ9/P5GQmH/iQq/Ga28HxW2+95fDYMAwdOHBATz31lJKTk/X+++9XrcVBLNyCY1c7pljEA/Ch8tLD8IUDAge/7PiV14Lj0sMWJOu43fj4eP3hD3/QY4895pD1IVyEU3DsbscUF8qAD9h+qilvFiw/1QBVR0AbMrwWHKOscAmOq9oxxd8VwMtycqQ+fSqvt2YNswIBdzBUKaS4Gq9FlPtMOWbOnKmTJ0+WKT916pRmzpzp7uYQ4CwW63n31Velv/61/LzFkjVvsbPVw22z9IcMsd4TGAMeRnoYwPNsPUIX/iJjW8kqO9s/7YLXud1zbDabdeDAATVq1Mih/PDhw2rUqJEszqKjEBeqPcfOLpgrQ8cU4Af0HAOexVClkOS1nmPDMGSy/Y5eyjfffKO4uDh3N4cAVd4Fc2XomAL8wJZH1cnfZknW8uRk8qgCrnJnJSuEHJfzHDdo0EAmk0kmk0mtW7d2CJAtFouOHz+u22+/3SuNhG9VtPRzZcJwPibgf+RRBTyLoUphzeXgeN68eTIMQ3/5y180Y8YMxcTE2J+rVauWUlJS7MsyI7hVdsHsDAv8AH6WkWGdFets8hDpYQD3sJJVWHM5OB4xYoQkqXnz5urRo4dq1qzptUbBv9y9EKZjCggQGRlS//6khwGqiyWfw5rby0f36tXL/u/Tp0/r7NmzDs+H0oS0cOXuhTAdU0AAsaWHAVB1DFUKa25PyDt58qTGjRunRo0aqW7dumrQoIHDDcHPlbk98fHSv/9tnfyem0tgDAAIMbahSk2bOpYnJbHiZIhzOzieOHGiPvnkEz3zzDOKjIzU888/rxkzZigxMVGLFy/2RhvhY7YLZqlsgGx7vHChNGwYeYsBACEsI0PavdvaE7RkCT1CYcLtPMcXX3yxFi9erN69eys6OlqbNm1Sy5Yt9corr2jp0qV67733vNXWgBVOeY5Z+hkAAAQjV+M1t8ccHzlyRC1atJBkHV985MgRSdIVV1yhO+64o4rNRSBibg8AAAg3bgfHLVq0UG5uri6++GK1bdtWr7/+urp166a3335bsbGxXmgi/Im5PQAAIJy4PeZ41KhR+uabbyRJkydP1oIFCxQVFaXx48dr4sSJHm8gAAAA4Ctujzm+0J49e7Rx40a1bNlSl112mafaFVRCdcwxAABAqPDamOPSTp8+rWbNmqlZs2bV2QwAAAAQENweVmGxWDRr1iw1bdpU9erV048//ihJeuCBB/TCCy94vIEAAACAr7gdHM+ZM0eLFi3Sww8/rFq1atnLL730Uj3//PMebRwAAECVWSxSTo60dKn13mLxd4sQBNwOjhcvXqxnn31Ww4YNk7lUTq+OHTtq27ZtHm0cAPgL51QgyGVnSykpUp8+0tCh1vuUFGs5UAG3g+O8vDy1bNmyTHlxcbHOnTvnkUYBgD9xTgUCRFWvUrOzpUGDHFexkqS8PGs5X2ZUwO3guH379lq7dm2Z8uXLl6tz584eaRQA+AvnVCBAVPUq1WKxLu/qLBmXrSwzk5+DUC63s1VMnTpVI0aMUF5enoqLi5Wdna3t27dr8eLFeuedd7zRRpRisbBiHeAtlZ1TTSbrObV/f753gFfZrlIv/DLarlKXL7cu4+rM2rVlr25LMwxp3z5rPVa5ghNu9xz3799fb7/9tj7++GPVrVtXU6dO1datW/X222/rj3/8ozfaiBL81At4lzvnVABeUt2e3wMHXHsfV+sh7Ljcc/zjjz+qefPmMplM6tmzpz766CNvtgsXqM5FNADXcE4FAoCrV6lPPik1blz2Z9QmTVx7H1frIey43HPcqlUr/fzzz/bHN910kwoKCrzSKDhi+BTgG5xTgQDg6tXn+PHOf0bt2VNKSrKOgyrPRRdZ6wFOuBwcX7jK9HvvvacTJ054vEEoi596Ad+o7JxqMknJyZxTAa+qytVn6RmzZrP0z38671GyOXxYWrmy6m1ESHN7zDF8j596Ad+wnVOlsgGy7fG8eUzGA7zKlZ7fC134M2r//tbe4fLYZtfykyuccDk4NplMMl3wQb3wMbyDn3oB38nIsI7hb9rUsTwpibH9gE9UdJVakdI/o65da+0ddqUucAGXJ+QZhqGRI0cqMjJSknT69Gndfvvtqlu3rkO9bFIneJztIjovz/mvRCaT9Xl+6gU8IyPD2vFE2kTAx2z5Ss+ckaZPl5591nryc4c7P6PykyuccDk4HjFihMPjm2++2eONgXO2i+hBg6yBcOkAmZ96Ae8wm0mBCvhUdrZ19nnpSTZJSdKMGVKrVlJBgXUSXmXc+RmVn1zhhMm4cKYd3FZUVKSYmBgVFhYqOjraa+/j7O9GcrI1MOanXgBA0CovX6mtB2j5cuvPOSkplf+MmptrfexqXXqWwoar8RoT8oJIRoa0e7e0Zo20ZIn1PjeXwBgAEMRczVcquT5jltm1qAaC4yBj+6l3yBDrPd9rAEBQcydfaf/+1rHIDRo41nE2Y5bZtagil8ccAwAAeJyrk+JWrpRuucUxkI6Ls/Y633ef894iZteiChhz7AG+GnMMAEDIycmxrnJXFaXHJNMTjEow5hgAAAQ+V5amLK+n98LFPwAPIDgGAAD+U9nkOcOoOPBlQQ94GMExAADwr4omz9kyVVSGBT3gIQTHAADA/8rLV9q/v2uvZ0EPeAjZKgAAQGBwtjSlbUxyZQt69OzpkyYi9NFzDAAAAhcLesDHCI4BAEBgY0EP+BDDKgAAQOBjQQ/4SND0HB85ckTDhg1TdHS0YmNjdeutt+r48eMV1r/rrrvUpk0b1a5dWxdffLHuvvtuFRYWOtQzmUxlbsuWLfP27gAAAHfZxiQPGWK9JzCGFwRNz/GwYcN04MABffTRRzp37pxGjRqlMWPGaMmSJU7r//TTT/rpp5/06KOPqn379tqzZ49uv/12/fTTT1q+fLlD3Zdeekl9+/a1P46NjfXmrgCoIouFTiMAgHcFxfLRW7duVfv27fXll1+qa9eukqRVq1bp2muv1f79+5WYmOjSdt544w3dfPPNOnHihGrUsF4XmEwmrVixQgMGDKhy+1g+GvC+7Gzpb3+T9u//tSwpyTpPh+GGAIDKhNTy0evWrVNsbKw9MJaktLQ0RUREaP369S5vx3YwbIGxzdixY9WwYUN169ZNL774oiq7Xjhz5oyKioocbgC8JztbGjTIMTCWrJmdBg2yPg8AgCcExbCK/Px8NWrUyKGsRo0aiouLU35+vkvbOHTokGbNmqUxY8Y4lM+cOVN/+MMfVKdOHX344Ye68847dfz4cd19993lbmvu3LmaMWOG+zsCwG0Wi7XH2Nk1q2FYMzllZlrn6TDEAqgiT4xZYtwTQoRfe44nT57sdEJc6du2bduq/T5FRUXq16+f2rdvr+nTpzs898ADD+jyyy9X586dde+992rSpEl65JFHKtzelClTVFhYaL/t27ev2m0E4NzatWV7jEszDGnfPms9b7JYpJwcaelS673F4t33A3wmO1tKSZH69JGGDrXep6S495OMJ7YBBAi/9hxPmDBBI0eOrLBOixYtlJCQoIMHDzqUnz9/XkeOHFFCQkKFrz927Jj69u2r+vXra8WKFapZs2aF9VNTUzVr1iydOXNGkZGRTutERkaW+xwAzzpwwLP1qoLxzghZtjFLF/40Yxuz5EoOYU9sAwggfg2O4+PjFR8fX2m97t276+jRo9q4caO6dOkiSfrkk09UXFys1NTUcl9XVFSk9PR0RUZG6q233lJUVFSl77V582Y1aNCA4BcIEE2aeLaeuzjvI2R5YswS454QgoJiQl67du3Ut29fjR49Whs2bNBnn32mcePGafDgwfZMFXl5eWrbtq02bNggyRoYX3311Tpx4oReeOEFFRUVKT8/X/n5+bKU/B769ttv6/nnn9d3332nnTt36plnntE//vEP3XXXXX7bVwCOeva09tJeuGqsjckkJSdb63laZed9yXreZ4gFgpInxiwFyrgnwIOCYkKeJL366qsaN26crrrqKkVERGjgwIGaP3++/flz585p+/btOnnypCRp06ZN9kwWLVu2dNhWbm6uUlJSVLNmTS1YsEDjx4+XYRhq2bKlHn/8cY0ePdp3OwagQmazdfjCoEHWQLh0oGoLmOfN806nlDvn/d69Pf/+gFd5YsxSIIx7AjwsaILjuLi4chf8kKSUlBSHFGy9e/euNCVb3759HRb/ABCYMjKswxecjfudN897wxo47yOkeWLMkr/HPQFeEDTBMYDwlpFhHbboy0xRnPcR0mxjlvLynI8dMpmsz1c0ZskT2wACTFCMOQYAyRoI9+4tDRlivff2/B5/jncGvM42Zkkq+yF3dcySJ7YBBBiCYwAoB+d9hDzbmKWmTR3Lk5JcT8XiiW0AAcRkVDYwF5Vyda1uAMHJWZ7j5GTvjncGfIoV8hAGXI3XCI49gOAYCH2c9wEguLkarzEhDwBcYBvvDAAIbQTHANxGLyoAIFQRHANwi7Pxt0lJ1olrjL8FAAQ7slUAcFl2tnWlugtXjcvLs5ZnZ/unXQAAeArBMQCXWCzWHmNnU3htZZmZ1noAAAQrgmMALlm7tmyPcWmGIe3bZ60HAECwYswxAJccOODZegC8iFmzQJURHANwSZMmnq1XXZz7gXIwaxaoFoZVAHBJz57W8+uFyyjbmEzWVeN69vR+W7KzpZQUqU8faehQ631KChMCAWbNAtVHcAzAJWazteNJKhsg2x7Pm+f93lvO/UA5qjNr1mKRcnKkpUut98ysRRgjOAbgsowMaflyqWlTx/KkJGu5t3+xJWMGUIGqzprlpxjAAcExALdkZEi7d0tr1khLlljvc3N9M5SRjBlABVydDbt69a9XkPwUA5RBcAzAbWaz1Lu3NGSI9d5XE+HImAFUwNXZsLNnW3uG33iDn2IAJwiOAQSNQMuYAQSUymbNlrZ/v3TjjfwUAzhBcAwgaARSxgwg4FQ0a7Y6+CkGYYbgGEDQCJSMGUDAKm/WbHXwUwzCDMExgKDi74wZQMCzzZq9//7qbYefYhCmWCEPQNDJyJD692eFPAQxby/xaDZLV11lnXxXFfwUgzBGcAwgKNkyZgBBx1fLO/fsKcXFSUeOVF73wnpJSdbAmJ9iEIYIjgEA8BVbXuEL06fZ8gp7cmyQ2WwNwqdNq7zu669b6/NTDCCTYThLcAh3FBUVKSYmRoWFhYqOjvZ3cwAAgchiseYXLi99mslk7bHNza16YHrhcI0ePaTEROnwYe+9JxAkXI3XmJAHAIAveHuJR2fLQF9yifSXvzhP7ca4YsApgmMAAHzBm0s8VrQM9KOPSvfcY+0hLo0UL4BTjDkGAMAXvLXEo8VS8TLQJpO0bJm0a5f0+eeMKwYqQXAMwGu8na0KCCq2JR7z8pwHsrbxv+7mFXZ1uMbnn5PiBXABwyoAeIWz4Y8pKdZyICxVtryzYUi33eb+dr05XAMIQwTHADyuouGPgwYRICOMVba887Rp7l9Femu4BhCmCI4BeFRlwx8lKTPTWg8IS7blnWfMcP68u1eRtuEaznqjJZaBBtxEcAzAo7ydrQoIGc8957zc3avIioZrkK4NcBvBMQCPYvgj4AJPX0WWN1yDdG2A28hWAcBBdTNMMPwRuICzL5U3riIzMqT+/UkRA1QTwTEAu+xs63jh0h1aSUnWX2xd7XjyVrYqICiV96UaPdq117t7FWk2k64NqCaGVQCQ5LkMEwx/BEpU9KWaPl266CIm0QEBiOAYgMczTDD8EWHPlS+V7d9cRQIBheAYgFcyTNiyVa1ZIy1ZYr3PzSUwRphw5Ut1+LA1nRtXkUBAYcwxAOXluVbP3QwTDH9E2HL1y9KqlfUqkkl0QMAgOAbCXHa2dciEK8gwAbjInbQtXEUCAYVhFUAYs80XOnSo4nrMDQLcxKp1QNAiOAbCVEXzhUpjbhBQBaRtAYIWwTEQpiqbL2TTsCFzg4AqIW0LEJSCJjg+cuSIhg0bpujoaMXGxurWW2/V8ePHK3xN7969ZTKZHG633367Q529e/eqX79+qlOnjho1aqSJEyfq/Pnz3twVICC4Ol/oiSc4hwNVRtoWIOgEzYS8YcOG6cCBA/roo4907tw5jRo1SmPGjNGSJUsqfN3o0aM1c+ZM++M6derY/22xWNSvXz8lJCTo888/14EDBzR8+HDVrFlT//jHP7y2L0AgcHW+0IWdXkDYqe6a6ky4A4KKyTAqG3Hof1u3blX79u315ZdfqmvXrpKkVatW6dprr9X+/fuVmJjo9HW9e/dWp06dNG/ePKfPv//++7ruuuv0008/qXHjxpKkhQsX6t5779XPP/+sWrVqudS+oqIixcTEqLCwUNHR0e7vIOAHFouUklL5Ms+5uQyLRBjzxJrqAAKCq/FaUAyrWLdunWJjY+2BsSSlpaUpIiJC69evr/C1r776qho2bKhLL71UU6ZM0cmTJx2226FDB3tgLEnp6ekqKirS999/X+42z5w5o6KiIocbEGyYLwRUwlNrqgMIKkERHOfn56tRo0YOZTVq1FBcXJzy8/PLfd3QoUP173//W2vWrNGUKVP0yiuv6Oabb3bYbunAWJL9cUXbnTt3rmJiYuy35OTkquwW4HcZGdJrr0kXXeRYznwhhD1Pr6kOIGj4NTiePHlymQlzF962bdtW5e2PGTNG6enp6tChg4YNG6bFixdrxYoV2rVrV7XaPWXKFBUWFtpv+/btq9b2AH/JzpayshzzHMfHS48/TmCMMOeNNdUBBAW/TsibMGGCRo4cWWGdFi1aKCEhQQcPHnQoP3/+vI4cOaKEhASX3y81NVWStHPnTl1yySVKSEjQhg0bHOoUFBRIUoXbjYyMVGRkpMvvCwQi2y/GF3aMHTok3XgjPccIc66mc3F3TXUAAc+vwXF8fLzi4+Mrrde9e3cdPXpUGzduVJcuXSRJn3zyiYqLi+0Brys2b94sSWpSMk2/e/fumjNnjg4ePGgftvHRRx8pOjpa7du3d3NvgOBR2S/GJpP1F+P+/RlzjDDlzvLPAEJKUIw5bteunfr27avRo0drw4YN+uyzzzRu3DgNHjzYnqkiLy9Pbdu2tfcE79q1S7NmzdLGjRu1e/duvfXWWxo+fLiuvPJKXXbZZZKkq6++Wu3bt9ctt9yib775Rh988IHuv/9+jR07lp5hhDR+MQYqwfLPQNgKiuBYsmadaNu2ra666ipde+21uuKKK/Tss8/anz937py2b99uz0ZRq1Ytffzxx7r66qvVtm1bTZgwQQMHDtTbb79tf43ZbNY777wjs9ms7t276+abb9bw4cMd8iID/maxSDk50tKl1ntPzP/hF2OgEu6mc/HGFxWAXwRFnuNAR55juMOd9QS8lWI1J0fq06fyemvWsHYBwpyzL2FysjUwtn0JyYUMBAVX4zWCYw8gOIar3DmHljdhztZpVZ0JcywAArihoitab35RAXgUwbEPERzDFe6cQ23Ba3njgj0RvNraIzm2iXM64CJffFEBeExIrZAHBDt31xPwxYS5jAxrANy0qWM5C4AALmJmKxCS/JrKDQgX7pxDe/f23YS5jAxrujZXx0ADKIWZrUBIIjgGfMDdc6gvU6yazUy6Q4hxZ9ZrdZALGQhJDKsAfMDdcygpVoEqys62jgPu00caOtR6n5JiLfc0vqhASCI4BnzAdg6tSOlzqLspVgHo11mmF45hysuzlns6QOaLCoQkgmPAB8xmaciQiusMHux4Di1vwlzDhtbJfXFxrDMA2Lk769VTmNkKhBxSuXkAqdxQmcoyPknWnmNnGZ9swydXrpT+/W/p0KFfn2OdAaCEv1e28dU4ZwBV5mq8xoQ8wAcqy1YhOWarKM1slo4csQbBF17K2n4tpoMKYc/fmSOY2QqEDIZVANVksVg7rZYutd47+9W2Oudtf/1aDAQVMkcA8BCCY6AaXJ0YX53zNusMAC4gcwQADyE4BqrInYnx1Tlv+/vXYiAokDkCgIcQHANV4O5Qh+qctxs1cq1NrtYDQhaZIwB4AMEx4CaLRXrySfeHOnDeBnwgI0PavdualWLJEut9bi5fMAAuI1sF4IbsbGuPcWWZJ2wuHOqQkSH17+9exqeDB117L1frASGPzBEAqoHgGHCRbYyxO5nBnU2wc/e87epkvh9+sGbLIL0qAABVxyIgHsAiIKHPlUU8SjOZrMMlnC3qUdX3zstzLTBnYRAAAMpyNV5jzDHgAlcW8bDx9MT4iibzOeMsWwYAAHANwTHgAnfSpHljgl15k/mcYWEQAACqjuAYcIGr436feMJ7E+NLT8K///6K67IwCAAAVUNwDLjA1UU87rrLu5PhbJP52rd3rT4LgwAA4B6CY8AFgbb4VnWWowYAAOUjOAZcFCiLeFgs1ltcXPl1KlqOGgAAlI88x4AbqrKIhye5sgiJP3qyEUYsFv99AQDABwiOATf5a/EtVxchSUqyBsbkOYbHObs6I7E2gBDDsAogCFgs1pikosA4Lk76+GPvZctAmLNdnV34swWJtQGEGIJjIAi4sgjJkSPWXm1+4YbHVXR1RmJtACGG4BgIAq6mZCN1G7yisqszEmsDCCGMOQaCAKnb4FfevDpjgh+AAEPPMRAEXF2EhNRt8ApvXZ1lZ0spKVKfPtLQodb7lBTGLwPwK4JjIAgE2iIkCDPeuDpjgh+AAEVwDASJQFmEBGHI01dnTPADEMAIjoEgkpEh7d4trVkjLVlivSd1G3zCk1dnTPADEMCYkAcEGX8tQgJ4bIlI0q8ACGAExwAA13ni6oz0KwACGMMqAAC+RfoVAAGM4BgA4FukXwEQwAiOAQC+R/oVAAGKMccAAP/w1AQ/APAggmMAgP+QfgVAgCE4BnzIYqGTDACAQEZwDPhIdrZ1UbDSax8kJVnnJTG8EgCAwMCEPMAHsrOlQYPKLgqWl2ctz872T7sAAIAjgmPAyywWa4+xYZR9zlaWmWmtBwAA/CtoguMjR45o2LBhio6OVmxsrG699VYdP3683Pq7d++WyWRyenvjjTfs9Zw9v2zZMl/sEsLE2rVle4xLMwxp3z5rPQAA4F9BM+Z42LBhOnDggD766COdO3dOo0aN0pgxY7RkyRKn9ZOTk3XgwAGHsmeffVaPPPKIrrnmGofyl156SX379rU/jo2N9Xj7Eb4u+BhWux4AAPCeoAiOt27dqlWrVunLL79U165dJUlPPvmkrr32Wj366KNKTEws8xqz2ayEhASHshUrVujGG29UvXr1HMpjY2PL1K3ImTNndObMGfvjoqIid3YHYaZJE8/WAwAA3hMUwyrWrVun2NhYe2AsSWlpaYqIiND69etd2sbGjRu1efNm3XrrrWWeGzt2rBo2bKhu3brpxRdflOFscGgpc+fOVUxMjP2WnJzs3g4hrPTsac1KceEquTYmk5ScbK0HAAD8KyiC4/z8fDVq1MihrEaNGoqLi1N+fr5L23jhhRfUrl079ejRw6F85syZev311/XRRx9p4MCBuvPOO/Xkk09WuK0pU6aosLDQftu3b597O4SwYjZb07VJZQNk2+N588h3DABAIPBrcDx58uRyJ83Zbtu2bav2+5w6dUpLlixx2mv8wAMP6PLLL1fnzp117733atKkSXrkkUcq3F5kZKSio6MdbkBFMjKk5culpk0dy5OSrOXkOQYAIDD4dczxhAkTNHLkyArrtGjRQgkJCTp48KBD+fnz53XkyBGXxgovX75cJ0+e1PDhwyutm5qaqlmzZunMmTOKjIystD7gqowMqX9/VsgDACCQ+TU4jo+PV3x8fKX1unfvrqNHj2rjxo3q0qWLJOmTTz5RcXGxUlNTK339Cy+8oBtuuMGl99q8ebMaNGhAYAyvMJul3r393QoAAFCeoMhW0a5dO/Xt21ejR4/WwoULde7cOY0bN06DBw+2Z6rIy8vTVVddpcWLF6tbt2721+7cuVOffvqp3nvvvTLbffvtt1VQUKDf//73ioqK0kcffaR//OMfuueee3y2bwAAAAgcQREcS9Krr76qcePG6aqrrlJERIQGDhyo+fPn258/d+6ctm/frpMnTzq87sUXX1RSUpKuvvrqMtusWbOmFixYoPHjx8swDLVs2VKPP/64Ro8e7fX9AQAAQOAxGZXlLUOlioqKFBMTo8LCQibnAQAABCBX47WgSOUGAAAA+ALBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAAAAKEFwDAAAAJSo4e8GAK6yWKS1a6UDB6QmTaSePSWz2d+tAgAAoYTgGEEhO1v629+k/ft/LUtKkv75Tykjw3/tAryKK0IA8DmGVSDgZWdLgwY5BsaSlJdnLc/O9k+7AK/KzpZSUqQ+faShQ633KSl84AHAywiOEdAsFmuPsWGUfc5WlplprQeEDK4IAcBvCI4R0NauLRsflGYY0r591npASOCKEAD8iuAYAe3AAc/WAwIeV4QA4FcExwhoTZp4th4Q8LgiBAC/IjhGQOvZ05qVwmRy/rzJJCUnW+sBIYErQgDwK4JjBDSz2ZquTSobINsez5tHdiuEEK4IAcCvCI4R8DIypOXLpaZNHcuTkqzl5DlGSOGKEAD8ymQYzqZEwx1FRUWKiYlRYWGhoqOj/d2ckMV6CAgrzla+SU62BsZcEQKA21yN1wiOPYDgGIBXcEUIAB7jarzG8tEAEKjMZql3b3+3AgDCCsExggadaAAAwNsIjhEUnA2/TEqyzlti+CUAAPAUslUg4GVnS4MGlV00LC/PWp6d7Z92AQCA0ENwjIBmsVh7jJ1NG7WVZWZa6wEAAFQXwTEC2tq1ZXuMSzMMad8+az0AAIDqIjhGQDtwwLP1AAAAKkJwjIDWpIln6wEAAFSE4BgBrWdPa1aKC1fRtTGZrIuG9ezp23YBAIDQRHCMgGY2W9O1SWUDZNvjefPIdwwAADyD4BgBLyNDWr5catrUsTwpyVpOnmMAAOApLAKCoJCRIfXvzwp5AADAuwiOEXDKWybabJZ69/Z36wAAQCgjOEZAYZloAADgT4w5RsBgmWgAAOBvBMcICCwTDQAAAgHBMQICy0QDAIBAQHCMgMAy0QAAIBAQHCMgsEw0AAAIBATHCAgsEw0AAAJB0ATHc+bMUY8ePVSnTh3Fxsa69BrDMDR16lQ1adJEtWvXVlpamnbs2OFQ58iRIxo2bJiio6MVGxurW2+9VcePH/fCHqAiLBMNAAACQdAEx2fPntWf//xn3XHHHS6/5uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz5trzNs2DB9//33+uijj/TOO+/o008/1ZgxY7yxC6gEy0QDAAB/MxmGs+RZgWvRokXKzMzU0aNHK6xnGIYSExM1YcIE3XPPPZKkwsJCNW7cWIsWLdLgwYO1detWtW/fXl9++aW6du0qSVq1apWuvfZa7d+/X4mJiS61qaioSDExMSosLFR0dHS19g/lr5AHAABQVa7Ga0HTc+yu3Nxc5efnKy0tzV4WExOj1NRUrVu3TpK0bt06xcbG2gNjSUpLS1NERITWr19f7rbPnDmjoqIihxs8x7ZM9JAh1nsCYwAA4CshGxzn5+dLkho3buxQ3rhxY/tz+fn5atSokcPzNWrUUFxcnL2OM3PnzlVMTIz9lpyc7OHWAwAAwB/8GhxPnjxZJpOpwtu2bdv82USnpkyZosLCQvtt3759/m4SAAAAPKCGP998woQJGjlyZIV1WrRoUaVtJyQkSJIKCgrUpFRy3IKCAnXq1Mle5+DBgw6vO3/+vI4cOWJ/vTORkZGKjIysUrsAAAAQuPwaHMfHxys+Pt4r227evLkSEhK0evVqezBcVFSk9evX2zNedO/eXUePHtXGjRvVpUsXSdInn3yi4uJipaameqVdAAAACFxBM+Z479692rx5s/bu3SuLxaLNmzdr8+bNDjmJ27ZtqxUrVkiSTCaTMjMzNXv2bL311lvasmWLhg8frsTERA0YMECS1K5dO/Xt21ejR4/Whg0b9Nlnn2ncuHEaPHiwy5kqAAAAEDr82nPsjqlTp+rll1+2P+7cubMkac2aNerdu7ckafv27SosLLTXmTRpkk6cOKExY8bo6NGjuuKKK7Rq1SpFRUXZ67z66qsaN26crrrqKkVERGjgwIGaP3++b3YKAAAAASXo8hwHIvIcAwAABLawz3MMAAAAuIvgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASQZPnOJDZsuEVFRX5uSUAAABwxhanVZbFmODYA44dOyZJSk5O9nNLAAAAUJFjx44pJiam3OdZBMQDiouL9dNPP6l+/foymUxeeY+ioiIlJydr3759LDRyAY5N+Tg25ePYVIzjUz6OTfk4NuXj2JTPV8fGMAwdO3ZMiYmJiogof2QxPcceEBERoaSkJJ+8V3R0NF+qcnBsysexKR/HpmIcn/JxbMrHsSkfx6Z8vjg2FfUY2zAhDwAAAChBcAwAAACUIDgOEpGRkZo2bZoiIyP93ZSAw7EpH8emfBybinF8ysexKR/Hpnwcm/IF2rFhQh4AAABQgp5jAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4DhBz5sxRjx49VKdOHcXGxrr0GsMwNHXqVDVp0kS1a9dWWlqaduzY4VDnyJEjGjZsmKKjoxUbG6tbb71Vx48f98IeeI+7+7B7926ZTCantzfeeMNez9nzy5Yt88UueVRV/o979+5dZt9vv/12hzp79+5Vv379VKdOHTVq1EgTJ07U+fPnvbkrHufusTly5IjuuusutWnTRrVr19bFF1+su+++W4WFhQ71gvGzs2DBAqWkpCgqKkqpqanasGFDhfXfeOMNtW3bVlFRUerQoYPee+89h+dd+fsTLNw5Ns8995x69uypBg0aqEGDBkpLSytTf+TIkWU+H3379vX2bniNO8dn0aJFZfY9KirKoU64fnac/d01mUzq16+fvU6ofHY+/fRTXX/99UpMTJTJZNKbb75Z6WtycnL029/+VpGRkWrZsqUWLVpUpo67f8eqzEBAmDp1qvH4448bWVlZRkxMjEuvefDBB42YmBjjzTffNL755hvjhhtuMJo3b26cOnXKXqdv375Gx44djS+++MJYu3at0bJlS2PIkCFe2gvvcHcfzp8/bxw4cMDhNmPGDKNevXrGsWPH7PUkGS+99JJDvdLHLlhU5f+4V69exujRox32vbCw0P78+fPnjUsvvdRIS0szvv76a+O9994zGjZsaEyZMsXbu+NR7h6bLVu2GBkZGcZbb71l7Ny501i9erXRqlUrY+DAgQ71gu2zs2zZMqNWrVrGiy++aHz//ffG6NGjjdjYWKOgoMBp/c8++8wwm83Gww8/bPzwww/G/fffb9SsWdPYsmWLvY4rf3+CgbvHZujQocaCBQuMr7/+2ti6dasxcuRIIyYmxti/f7+9zogRI4y+ffs6fD6OHDniq13yKHePz0svvWRER0c77Ht+fr5DnXD97Bw+fNjhuHz33XeG2Ww2XnrpJXudUPnsvPfee8Z9991nZGdnG5KMFStWVFj/xx9/NOrUqWNkZWUZP/zwg/Hkk08aZrPZWLVqlb2Ou8e7OgiOA8xLL73kUnBcXFxsJCQkGI888oi97OjRo0ZkZKSxdOlSwzAM44cffjAkGV9++aW9zvvvv2+YTCYjLy/P4233Bk/tQ6dOnYy//OUvDmWufGEDXVWPT69evYy//e1v5T7/3nvvGREREQ4ntWeeecaIjo42zpw545G2e5unPjuvv/66UatWLePcuXP2smD77HTr1s0YO3as/bHFYjESExONuXPnOq1/4403Gv369XMoS01NNf76178ahuHa359g4e6xudD58+eN+vXrGy+//LK9bMSIEUb//v093VS/cPf4VHYO47PzqyeeeMKoX7++cfz4cXtZKH12bFz5ezlp0iTjN7/5jUPZTTfdZKSnp9sfV/d4u4NhFUEqNzdX+fn5SktLs5fFxMQoNTVV69atkyStW7dOsbGx6tq1q71OWlqaIiIitH79ep+3uSo8sQ8bN27U5s2bdeutt5Z5buzYsWrYsKG6deumF198UUaQpf2uzvF59dVX1bBhQ1166aWaMmWKTp486bDdDh06qHHjxvay9PR0FRUV6fvvv/f8jniBpz7/hYWFio6OVo0aNRzKg+Wzc/bsWW3cuNHhb0VERITS0tLsfysutG7dOof6kvX/31bflb8/waAqx+ZCJ0+e1Llz5xQXF+dQnpOTo0aNGqlNmza64447dPjwYY+23ReqenyOHz+uZs2aKTk5Wf3793f4m8Fn51cvvPCCBg8erLp16zqUh8Jnx12V/c3xxPF2R43KqyAQ5efnS5JD8GJ7bHsuPz9fjRo1cni+Ro0aiouLs9cJdJ7YhxdeeEHt2rVTjx49HMpnzpypP/zhD6pTp44+/PBD3XnnnTp+/Ljuvvtuj7Xf26p6fIYOHapmzZopMTFR3377re69915t375d2dnZ9u06+2zZngsGnvjsHDp0SLNmzdKYMWMcyoPps3Po0CFZLBan/5/btm1z+pry/v9L/22xlZVXJxhU5dhc6N5771ViYqLDSbtv377KyMhQ8+bNtWvXLv3973/XNddco3Xr1slsNnt0H7ypKsenTZs2evHFF3XZZZepsLBQjz76qHr06KHvv/9eSUlJfHZKbNiwQd99951eeOEFh/JQ+ey4q7y/OUVFRTp16pR++eWXan9X3UFw7EWTJ0/WQw89VGGdrVu3qm3btj5qUeBw9dhU16lTp7RkyRI98MADZZ4rXda5c2edOHFCjzzySEAEON4+PqWDvQ4dOqhJkya66qqrtGvXLl1yySVV3q4v+OqzU1RUpH79+ql9+/aaPn26w3OB/NmB7zz44INatmyZcnJyHCadDR482P7vDh066LLLLtMll1yinJwcXXXVVf5oqs90795d3bt3tz/u0aOH2rVrp3/961+aNWuWH1sWWF544QV16NBB3bp1cygP589OICE49qIJEyZo5MiRFdZp0aJFlbadkJAgSSooKFCTJk3s5QUFBerUqZO9zsGDBx1ed/78eR05csT+en9x9dhUdx+WL1+ukydPavjw4ZXWTU1N1axZs3TmzBm/r+/uq+Njk5qaKknauXOnLrnkEiUkJJSZBVxQUCBJYfHZOXbsmPr27av69etrxYoVqlmzZoX1A+mzc6GGDRvKbDbb//9sCgoKyj0OCQkJFdZ35e9PMKjKsbF59NFH9eCDD+rjjz/WZZddVmHdFi1aqGHDhtq5c2dQBTjVOT42NWvWVOfOnbVz505JfHYk6cSJE1q2bJlmzpxZ6fsE62fHXeX9zYmOjlbt2rVlNpur/Vl0i8dHMaNa3J2Q9+ijj9rLCgsLnU7I++qrr+x1Pvjgg6CckFfVfejVq1eZTAPlmT17ttGgQYMqt9UfPPV//L///c+QZHzzzTeGYfw6Ia/0LOB//etfRnR0tHH69GnP7YAXVfXYFBYWGr///e+NXr16GSdOnHDpvQL9s9OtWzdj3Lhx9scWi8Vo2rRphRPyrrvuOoey7t27l5mQV9Hfn2Dh7rExDMN46KGHjOjoaGPdunUuvce+ffsMk8lkrFy5strt9bWqHJ/Szp8/b7Rp08YYP368YRh8dgzDep6PjIw0Dh06VOl7BPNnx0YuTsi79NJLHcqGDBlSZkJedT6L7iA4DhB79uwxvv76a3vKsa+//tr4+uuvHVKPtWnTxsjOzrY/fvDBB43Y2Fhj5cqVxrfffmv079/faSq3zp07G+vXrzf+97//Ga1atQrKVG4V7cP+/fuNNm3aGOvXr3d43Y4dOwyTyWS8//77Zbb51ltvGc8995yxZcsWY8eOHcbTTz9t1KlTx5g6darX98fT3D0+O3fuNGbOnGl89dVXRm5urrFy5UqjRYsWxpVXXml/jS2V29VXX21s3rzZWLVqlREfHx+UqdzcOTaFhYVGamqq0aFDB2Pnzp0O6ZTOnz9vGEZwfnaWLVtmREZGGosWLTJ++OEHY8yYMUZsbKw9G8ktt9xiTJ482V7/s88+M2rUqGE8+uijxtatW41p06Y5TeVW2d+fYODusXnwwQeNWrVqGcuXL3f4fNj+Vh87dsy45557jHXr1hm5ubnGxx9/bPz2t781WrVqFTQXlqW5e3xmzJhhfPDBB8auXbuMjRs3GoMHDzaioqKM77//3l4nXD87NldccYVx0003lSkPpc/OsWPH7HGMJOPxxx83vv76a2PPnj2GYRjG5MmTjVtuucVe35bKbeLEicbWrVuNBQsWOE3lVtHx9iSC4wAxYsQIQ1KZ25o1a+x1VJJb1aa4uNh44IEHjMaNGxuRkZHGVVddZWzfvt1hu4cPHzaGDBli1KtXz4iOjjZGjRrlEHAHg8r2ITc3t8yxMgzDmDJlipGcnGxYLJYy23z//feNTp06GfXq1TPq1q1rdOzY0Vi4cKHTuoHO3eOzd+9e48orrzTi4uKMyMhIo2XLlsbEiRMd8hwbhmHs3r3buOaaa4zatWsbDRs2NCZMmOCQziwYuHts1qxZ4/R7KMnIzc01DCN4PztPPvmkcfHFFxu1atUyunXrZnzxxRf253r16mWMGDHCof7rr79utG7d2qhVq5bxm9/8xnj33Xcdnnfl70+wcOfYNGvWzOnnY9q0aYZhGMbJkyeNq6++2oiPjzdq1qxpNGvWzBg9erRXTuC+4s7xyczMtNdt3Lixce211xqbNm1y2F64fnYMwzC2bdtmSDI+/PDDMtsKpc9OeX9LbcdjxIgRRq9evcq8plOnTkatWrWMFi1aOMQ7NhUdb08yGUaA5h8CAAAAfIw8xwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAhQI0eOlMlkKnPbuXOnR7a/aNEixcbGemRbVfXpp5/q+uuvV2Jiokwmk958802/tgcACI4BIID17dtXBw4ccLg1b97c380q49y5c1V63YkTJ9SxY0ctWLDAwy0CgKohOAaAABYZGamEhASHm9lsliStXLlSv/3tbxUVFaUWLVpoxowZOn/+vP21jz/+uDp06KC6desqOTlZd955p44fPy5JysnJ0ahRo1RYWGjvkZ4+fbokOe3BjY2N1aJFiyRJu3fvlslk0muvvaZevXopKipKr776qiTp+eefV7t27RQVFaW2bdvq6aefrnD/rrnmGs2ePVt/+tOfPHC0AKD6avi7AQAA961du1bDhw/X/Pnz1bNnT+3atUtjxoyRJE2bNk2SFBERofnz56t58+b68ccfdeedd2rSpEl6+umn1aNHD82bN09Tp07V9u3bJUn16tVzqw2TJ0/WY489ps6dO9sD5KlTp+qpp55S586d9fXXX2v06NGqW7euRowY4dkDAABeQnAMAAHsnXfecQhar7nmGr3xxhuaMWOGJk+ebA86W7RooVmzZmnSpEn24DgzM9P+upSUFM2ePVu33367nn76adWqVUsxMTEymUxKSEioUtsyMzOVkZFhfzxt2jQ99thj9rLmzZvrhx9+0L/+9S+CYwBBg+AYAAJYnz599Mwzz9gf161bV5L0zTff6LPPPtOcOXPsz1ksFp0+fVonT55UnTp19PHHH2vu3Lnatm2bioqKdP78eYfnq6tr1672f584cUK7du3SrbfeqtGjR9vLz58/r5iYmGq/FwD4CsExAASwunXrqmXLlmXKjx8/rhkzZjj03NpERUVp9+7duu6663THHXdozpw5iouL0//+9z/deuutOnv2bIXBsclkkmEYDmXOJtzZAnVbeyTpueeeU2pqqkM92xhpAAgGBMcAEIR++9vfavv27U4DZ0nauHGjiouL9dhjjykiwjr3+vXXX3eoU6tWLVksljKvjY+P14EDB+yPd+zYoZMnT1bYnsaNGysxMVE//vijhg0b5u7uAEDAIDgGgCA0depUXXfddbr44os1aNAgRURE6JtvvtF3332n2bNnq2XLljp37pyefPJJXX/99frss8+0cOFCh22kpKTo+PHjWr16tTp27Kg6deqoTp06+sMf/qCnnnpK3bt3l8Vi0b333quaNWtW2qYZM2bo7rvvVkxMjPr27aszZ87oq6++0i+//KKsrCynrzl+/LhD3ubc3Fxt3rxZcXFxuvjii6t3kACgCkjlBgBBKD09Xe+8844+/PBD/e53v9Pvf/97PfHEE2rWrJkkqWPHjnr88cf10EMP6dJLL9Wrr76quXPnOmyjR48euv3223XTTTcpPj5eDz/8sCTpscceU3Jysnr27KmhQ4fqnnvucWmM8m233abnn39eL730kjp06KBevXpp0aJFFeZl/uqrr9S5c2d17txZkpSVlaXOnTtr6tSpVT00AFAtJuPCgWUAAABAmKLnGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEr8PxoimZUgVu73AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 181 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:58:47.219942Z", + "start_time": "2024-07-15T08:58:47.216200Z" + } + }, + "cell_type": "code", + "source": [ + "import torch\n", + "from torch.utils.data import TensorDataset, DataLoader, random_split\n", + "from sklearn.datasets import make_moons\n", + "from sklearn.model_selection import train_test_split\n", + "import numpy as np\n", + "\n", + "# Split into training and validation sets\n", + "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Convert to PyTorch tensors\n", + "X_train_tensor = torch.tensor(X_train, dtype=torch.float64)\n", + "X_val_tensor = torch.tensor(X_val, dtype=torch.float64)\n", + "y_train_tensor = torch.tensor(y_train, dtype=torch.float64)\n", + "y_val_tensor = torch.tensor(y_val, dtype=torch.float64)\n", + "\n", + "# Convert y values from {0, 1} to {-1, 1}\n", + "y_train_tensor = 2 * y_train_tensor - 1\n", + "y_val_tensor = 2 * y_val_tensor - 1\n", + "\n", + "# Create TensorDatasets\n", + "train_dataset = TensorDataset(X_train_tensor, y_train_tensor)\n", + "val_dataset = TensorDataset(X_val_tensor, y_val_tensor)\n", + "\n", + "# Create DataLoaders\n", + "train_dataloader = DataLoader(train_dataset, batch_size=len(train_dataset), shuffle=True)\n", + "val_dataloader = DataLoader(val_dataset, batch_size=len(val_dataset), shuffle=False)\n" + ], + "id": "6d393e274c87452b", + "outputs": [], + "execution_count": 182 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:58:49.649182Z", + "start_time": "2024-07-15T08:58:49.646865Z" + } + }, + "cell_type": "code", + "source": [ + "from qulearn.trainer import RidgeRegression\n", + "trainer = RidgeRegression(lambda_reg=1.0)" + ], + "id": "96dac59a56787378", + "outputs": [], + "execution_count": 183 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:59:15.324962Z", + "start_time": "2024-07-15T08:58:50.011718Z" + } + }, + "cell_type": "code", + "source": "trainer.train(kernel_model, train_dataloader, val_dataloader)", + "id": "3388e29bfda8c98b", + "outputs": [], + "execution_count": 184 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-15T08:59:29.286816Z", + "start_time": "2024-07-15T08:59:15.325790Z" + } + }, + "cell_type": "code", + "source": [ + "kernel_classifier = SignModelWrapper(kernel_model)\n", + "\n", + "X_tensor = torch.tensor(X, dtype=torch.float64)\n", + "y = kernel_classifier(X_tensor)\n", + "\n", + "# Plot the dataset\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(X[y == -1][:, 0], X[y == -1][:, 1], color='blue', label='Class 0')\n", + "plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='red', label='Class 1')\n", + "plt.title(\"Moons Dataset\")\n", + "plt.xlabel(\"Feature 1\")\n", + "plt.ylabel(\"Feature 2\")\n", + "plt.legend()\n", + "plt.show()\n" + ], + "id": "dffd107e47feed5a", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4B7fN37ACCgkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJGdrb0t79J+/f/WpaUJP3zn57/4wogKBAcBzCLxfo329mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4AK+aP3AUDAY1hFAFu71rEz40KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKFdlvQ+StfeBIRZA2CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQLn81fsAIOARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIO/7qfQAQ8AiOA1jPntZ5ISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQYvzV+wAg4DEhL4CZzdYJ04MGWQPh0kPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEGFvvQ16e83HHJpP1eW/0PiCoWSzW0TYHDlivnXr29M55GP5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnmYaSk62BMROpXeeJ/wsAIcSWrUJy3vtAtgpcgMx/wa2ieK00hlUEgYwMafduac0aackS631uLl9EAKiWjAxrANy0qWN5UhKBMcqwXUtdOI/TlvnPmwtzwbcYVhEkzGapd29/twIAQkxGhjVZPL+TowL+WncA/kFwDAAIb/Q+oBLuZP4LiY9SmA+sJjgGAACoQFhl/mNgNWOOAQAAKhI2mf8YWC2J4BgAAKBC/lx3wGdYUt2O4BgAAKACtnUHpLIBsrfXHfAZllS3IzgGAACoRMhn/gurgdUVY0IeAACAC0I681/YDKyuHMExqsVkMmnFihUaMGCAv5sCAIDXhWzmP5ZUt2NYBcqVn5+vu+66Sy1atFBkZKSSk5N1/fXXa/Xq1f5umiQpOztbV199tS666CKZTCZt3rzZ300CACA4hcXAatcQHAcLi0XKyZGWLrXee3m26O7du9WlSxd98skneuSRR7RlyxatWrVKffr00dixY7363q46ceKErrjiCj300EP+bgoAAMEv5AdWu4bgOBhkZ0spKVKfPtLQodb7lBSv5hu88847ZTKZtGHDBg0cOFCtW7fWb37zG2VlZemLL74o93X33nuvWrdurTp16qhFixZ64IEHdO7cOfvz33zzjfr06aP69esrOjpaXbp00VdffSVJ2rNnj66//no1aNBAdevW1W9+8xu999575b7XLbfcoqlTpyotLc1zOw4AQDjLyJB275bWrJGWLLHe5+aGTWAsMeY48NkScl84/seWkNsLV3JHjhzRqlWrNGfOHNWtW7fM87GxseW+tn79+lq0aJESExO1ZcsWjR49WvXr19ekSZMkScOGDVPnzp31zDPPyGw2a/PmzapZs6YkaezYsTp79qw+/fRT1a1bVz/88IPq1avn0X0DAACVCNmB1a4hOA5klSXkNpmsCbn79/foGKCdO3fKMAy1bdvW7dfef//99n+npKTonnvu0bJly+zB8d69ezVx4kT7tlu1amWvv3fvXg0cOFAdOnSQJLVo0aI6uwEAAOA2hlUEMj8l5DacBeMueu2113T55ZcrISFB9erV0/3336+9e/fan8/KytJtt92mtLQ0Pfjgg9q1a5f9ubvvvluzZ8/W5ZdfrmnTpunbb7+t1n4AAAC4i+A4kPkpIXerVq1kMpm0bds2t163bt06DRs2TNdee63eeecdff3117rvvvt09uxZe53p06fr+++/V79+/fTJJ5+offv2WrFihSTptttu048//qhbbrlFW7ZsUdeuXfXkk096dN8AAAAqQnAcyPyUkDsuLk7p6elasGCBTpw4Ueb5o0ePOn3d559/rmbNmum+++5T165d1apVK+3Zs6dMvdatW2v8+PH68MMPlZGRoZdeesn+XHJysm6//XZlZ2drwoQJeu655zy2XwAAAJUhOA5ktoTcF+YbtDGZpORkryTkXrBggSwWi7p166b//Oc/2rFjh7Zu3ar58+ere/fuTl/TqlUr7d27V8uWLdOuXbs0f/58e6+wJJ06dUrjxo1TTk6O9uzZo88++0xffvml2rVrJ0nKzMzUBx98oNzcXG3atElr1qyxP+fMkSNHtHnzZv3www+SpO3bt2vz5s3Kz8/34JEAAADhhOA4kPkxIXeLFi20adMm9enTRxMmTNCll16qP/7xj1q9erWeeeYZp6+54YYbNH78eI0bN06dOnXS559/rgceeKDU7ph1+PBhDR8+XK1bt9aNN96oa665RjNmzJAkWSwWjR07Vu3atVPfvn3VunVrPf300+W28a233lLnzp3Vr18/SdLgwYPVuXNnLVy40INHAgAAhBOTUZ3ZV5AkFRUVKSYmRoWFhYqOjnZ47vTp08rNzVXz5s0VFRVVtTfIzrZmrSg9OS852RoYh1HeweryyP8FAAAIShXFa6WRyi0YZGRY07WtXWudfNekiXUoRRgs4QgAAOBLBMfBIswTcgMAAPgCY44BAACAEvQcAwA8ymJhFBiA4EVw7CPMe/Q//g8A73M2fzgpyZp4h/nDAIIBwyq8zFzSXVJ6lTj4h+3/wEwXFuAV2dnSoEFlV73Py7OWZ2f7p10A4A56jr2sRo0aqlOnjn7++WfVrFlTERFcj/hDcXGxfv75Z9WpU0c1avCxBzzNYrH2GDv7gcYwrKnZMzOtiXe4PgUQyIIuSliwYIEeeeQR5efnq2PHjnryySfVrVs3p3V79+6t//73v2XKr732Wr377ruSpJEjR+rll192eD49PV2rVq3ySHtNJpOaNGmi3Nxcp0spw3ciIiJ08cUXy1TeioMAqmzt2rI9xqUZhrRvn7UeiXcABLKgCo5fe+01ZWVlaeHChUpNTdW8efOUnp6u7du3q1GjRmXqZ2dnOwxnOHz4sDp27Kg///nPDvX69u2rl156yf44MjLSo+2uVauWWrVqxdAKP6tVqxY994CXHDjg2XoAQkCQzs4NquD48ccf1+jRozVq1ChJ0sKFC/Xuu+/qxRdf1OTJk8vUj4uLc3i8bNky1alTp0xwHBkZqYSEBO81XNZeS1ZlAxCqmjTxbD0AQS6IZ+cGTTfa2bNntXHjRqWlpdnLIiIilJaWpnXr1rm0jRdeeEGDBw9W3bp1HcpzcnLUqFEjtWnTRnfccYcOHz5c4XbOnDmjoqIihxsAhLOePa3nvfJGLZlM1lXve/b0bbsA+EGQz84NmuD40KFDslgsaty4sUN548aNlZ+fX+nrN2zYoO+++0633XabQ3nfvn21ePFirV69Wg899JD++9//6pprrpHFYil3W3PnzlVMTIz9lpycXLWdAoAQYTZbO4SksgGy7fG8eUHxiyqA6qhsdq5knZ1bQZzlb0ETHFfXCy+8oA4dOpSZvDd48GDdcMMN6tChgwYMGKB33nlHX375pXJycsrd1pQpU1RYWGi/7du3z8utB4DAl5EhLV8uNW3qWJ6UZC0P8F9SAXiCO7NzA1TQjDlu2LChzGazCgoKHMoLCgoqHS984sQJLVu2TDNnzqz0fVq0aKGGDRtq586duuqqq5zWiYyM9PikPQAIBRkZ1nRtQTgHB4AnhMDs3KDpOa5Vq5a6dOmi1atX28uKi4u1evVqde/evcLXvvHGGzpz5oxuvvnmSt9n//79Onz4sJowawQAqsRstqZrGzLEek9gDISREJidGzTBsSRlZWXpueee08svv6ytW7fqjjvu0IkTJ+zZK4YPH64pU6aUed0LL7ygAQMG6KKLLnIoP378uCZOnKgvvvhCu3fv1urVq9W/f3+1bNlS6enpPtknAPAXi0XKyZGWLrXeB/AQQADBIgRm5wbNsApJuummm/Tzzz9r6tSpys/PV6dOnbRq1Sr7JL29e/eWyWO7fft2/e9//9OHH35YZntms1nffvutXn75ZR09elSJiYm6+uqrNWvWLIZNAAhpQZxlCUAgs83OHTTIGgiXnpgXJLNzTYbhbDoh3FFUVKSYmBgVFhYqOjra380BgArZsixd+Nffdt5i8hyAanN2BZ6cbA2M/fQHxtV4jeDYAwiOAQQLi0VKSSl/MrnJZO1Bzs0N6I4dAMEgwFbIczVeC6phFQCA6nEny1Lv3j5rFoBQZJudG2SCakIeAKB6QiDLEgB4FcExAISREMiyBABeRXAMAGEkBLIsAYBXERwDQBixZVmSygbIQZJlCQC8iuAYAMJMRoY1XVvTpo7lSUmkcQMAslUAQBjKyJD69w+oLEtAxQIsLRhCF8ExAISpIM2yhHDEko7wIYZVAACAwGVb0vHCBN15edby7Gz/tAshi+AYAAAEJovF2mPsbDFfW1lmprUe4CEExwAAIDC5s6Qj4CEExwAAIDCxpCP8gOAYAAAEJpZ0hB8QHAMAgMDEko7wA4JjAAAQmFjSEX5AcAwAAAIXSzrCx1gEBAAABDaWdIQPERwDAIDAx5KO8BGGVQAAAAAl6DkGAABwl8XCMI8QRXAMAADgjuxs67LWpVfvS0qyZtZggmDQY1gFAPiRxSLl5EhLl1rvLRZ/twhAhbKzpUGDyi5rnZdnLc/O9k+74DEExwDgBxaLNHOm1KiR1KePNHSo9T4lhXMrELAsFmuPsWGUfc5WlpnJVW6QIzgGAB/LzpYaN5amTZOOHHF8js4nIICtXVu2x7g0w5D27bPWQ9AiOAYAH7L9Inv4sPPn6XwCAtiBA56th4BEcAwAPlLRL7Kl0fkEBKgmTTxbDwGJ4BgAfKSyX2QvROcTEGB69rRmpTCZnD9vMknJydZ6CFoExwDgI+4Gu3Q+AZXwdboXs9mark0qGyDbHs+bR77jIEdwDABuqur52J1gl84noBLZ2db0Lr5O95KRIS1fLjVt6lielGQtJ89x0DMZRmWj31CZoqIixcTEqLCwUNHR0f5uDgAvqk7uf4vFeu7Oy6t83PF//sM5FiiXbWbrhV8kW++tL4JUVsgLOq7GawTHHkBwDIQHT5yPbduQnAfIF10kPfssgTFQLttVZnkD+E0m6xVrbi7BKhy4Gq8xrAIAXOCp3P/l/SJ70UXSjBlSQQGBMVAhcg3Dy2r4uwEAEAzcOR/37l3xtjIypP79+UUWqBJyDcPLCI4BwAWePh+bzZUH0QCcINcwvIxhFQDgAs7HQIAg1zC8jOAYAFzA+RgIEOQahpcRHANAOUrnM167Vnr8cWs552PAz8g1DC8ilZsHkMoNCD3l5TMeMsQaLJcuT062BsacjwEfI9cw3ECeYx8iOAZCS2X5jF9/XWrYkPMxAAQTV+M1slUAQCmV5TM2maSsLNYXgIfRAwoEDMYcA0AprC8An8vOtq741qePNHSo9T4lxVoOwOcIjgGgFNYXgE/ZxvBceEWWl2ctJ0AGfI7gGABKIZ8xfMZTa5ID8CiCYwAohXzG8BnG8AABKeiC4wULFiglJUVRUVFKTU3Vhg0byq27aNEimUwmh1tUVJRDHcMwNHXqVDVp0kS1a9dWWlqaduzY4e3dABCgWF8APsMYHiAgBVVw/NprrykrK0vTpk3Tpk2b1LFjR6Wnp+vgwYPlviY6OloHDhyw3/bs2ePw/MMPP6z58+dr4cKFWr9+verWrav09HSdPn3a27sDIECxvgB8IhTG8JReKScnhyEgCAlBlec4NTVVv/vd7/TUU09JkoqLi5WcnKy77rpLkydPLlN/0aJFyszM1NGjR51uzzAMJSYmasKECbrnnnskSYWFhWrcuLEWLVqkwYMHu9Qu8hwDoYnsWvAqi8WalSIvz/m4Y5PJekUWqHkDy1sp55//5AoSAcnVeC1oeo7Pnj2rjRs3Ki0tzV4WERGhtLQ0rVu3rtzXHT9+XM2aNVNycrL69++v77//3v5cbm6u8vPzHbYZExOj1NTUCrd55swZFRUVOdwAhB6zWerd27oqXu/egRmfIIgF8xgesmwghAVNcHzo0CFZLBY1btzYobxx48bKz893+po2bdroxRdf1MqVK/Xvf/9bxcXF6tGjh/aXfJltr3Nnm5I0d+5cxcTE2G/JycnV2TUAQLjy9RgeTwyDqCzLhmGQZQNBLWiC46ro3r27hg8frk6dOqlXr17Kzs5WfHy8/vWvf1Vru1OmTFFhYaH9tm/fPg+1GAAQdjIypN27pTVrpCVLrPe5uZ4PjD212EhlWTYksmwgqAXN8tENGzaU2WxWQUGBQ3lBQYESEhJc2kbNmjXVuXNn7dy5U5LsrysoKFCTUhMeCgoK1KlTp3K3ExkZqcjISDf3AACActjG8HiLbRjEhb29tmEQ7vRS5+V5th4QYIKm57hWrVrq0qWLVq9ebS8rLi7W6tWr1b17d5e2YbFYtGXLFnsg3Lx5cyUkJDhss6ioSOvXr3d5mwAABDRPLzby88+erQcEmKDpOZakrKwsjRgxQl27dlW3bt00b948nThxQqNGjZIkDR8+XE2bNtXcuXMlSTNnztTvf/97tWzZUkePHtUjjzyiPXv26LbbbpMkmUwmZWZmavbs2WrVqpWaN2+uBx54QImJiRowYIC/dhOAi8gmAbjAncVGXOm9jo937X1drQcEmKAKjm+66Sb9/PPPmjp1qvLz89WpUyetWrXKPqFu7969ioj4tTP8l19+0ejRo5Wfn68GDRqoS5cu+vzzz9W+fXt7nUmTJunEiRMaM2aMjh49qiuuuEKrVq0qs1gIgMBgC4hXrpT+/W/p0KFfnyOLFOCEpxcbuXDyYHXrAQEmqPIcByryHAO+4SytqjP/+Q8BMmCXk2OdfFeZNWtc6zm25Weu6IuYnBy4+ZkRtkIuzzGA8FZeWlVnxowhixRg17On9WeVC3Mp25hM1mC2Z0/XtmfLz1zR9gI1PzPgAoJjAAGvovlEzhw+bO0sAyDvLDZiy8+clORYnpzsmPmC5aURhAiOAQQ8V9KqXojgGCjFG4uNVJaf2VN5lQEfC6oJeQDCk6vzhABUICND6t/fsyleysvP7Mm8yoCPERwDCHil1uhxmTfXUwCClrcXG5Eqz6tsMlnzKvfvz7hkBCSGVQAIeJXNJ7rQRRcRHAN+405eZSAAERwD8At35ulUNJ/ImWefpUMK8BtP51UGfIzgGIDPVWWeTnnziUpLSiLHMVBt1c0w4eo4qKqMlwJ8gEVAPIBFQADXlTdPx9YjXNk8ndJLRjdqZC07eJDlowGPcLbSjrtLT9oWCcnLKz//YlKSNdMFX1j4kKvxGsGxBxAcA65xZWEtzpmAn1T3ytXZtiTnAfJFF1nHP/EzD3yIFfIABBxX8hXv3y/NmeOb9gAoUVmGCcmaYcLVIRa2cVBxcc6fP3LEGjyT8xgBiOAYgM+4Ov9m2jTOmYBPeSPDRP/+Uu3a5W9Pci/gBnyE4BiAz7gz/4ZzJgJaqC2L7I0ME6R0Q5AiOAbgM7Z8xa7gnImAFYrLInsjwwQp3RCkCI4B+EzpfMWu4JyJgGObaHZhj6htWeRgDZArW2nHZJKSk631XEVKNwQpgmMAPpWRIc2Y4VpdzpkIKJ6etBZIKlppx/Z43jz30sh4I+AGfIDgGIDP3XdfxcMrOGciIIX6GNryVtpJSnIvjZuNNwJuwAcIjgH4nO2caTJxzkQQCYcxtBkZ1kTja9ZIS5ZY73Nzq56P2NMBN+ADNfzdAADhyXbOdLYY17x5nDMRgMJlDK3ZLPXu7bntZWRY07rZlrZkOUsEOFbI8wBWyAN+VXp5Z1fOge7WB/ymsmWRTSbr1V1uLh9iIAC5Gq/RcwzAY7KznfcE//Of5fcEe7qTCvAa23igQYOsgXDpAJnxQEDIYMwxAI8I1QxXgAPG0AIhj2EVHsCwCoQ726/N5U3k59dmhBzGAwFBh2EVAHzGnQxXDKFASGA8EBCyCI4BVKqyTrJwyHAF2NFrDIQ0gmMAFXJlkl24ZLgCqjTrFEBQYUIeAKcsFmnmTGngwMon2bFKLMICs06BsEBwDKCM7GzrBLtp05w/b5vGm5lpDaJZJRYhz2Kx9hg7m8N+4RcCQFAjOAbgoLzOsQuVnmQnkeEKIc6dWacAghpjjgHYVdQ5Vp7Sk+xYJRYhi1mnQNggOAZgV1nnmDMXTrIjwxVCErNOgbDBsAoAdu50ejHJDmGFWadA2CA4BmDnbqcXk+wQNph1CoQNgmMAdpV1jtkwyQ5hiVmnQFgwGYY7U2/gjKtrdQPBwJatQnI+MW/GDOm+++ggQxhjhTwgKLkarzEhD4ADW+fYhYuAJSdbfzWmcwxhj1mnQEgjOAZQBinZAADhiuAYgFN0jgFhiCEjAMExEOo41wFwSXZ22fFUSUnWLB2Mp0IYIVsFEMKys6WUFKlPH2noUOt9Soq1HADsyls3Pi/PWs4fDYQRgmMgRHGuA+CSitaNt5VlZlrrAWGA4BgIQZzrgBBjsUg5OdLSpdZ7T355K1s33jCkffus9YAwQHAMhCDOdUAI8fb4KFfXjXdnfXkgiBEcAyGIcx0QInwxPsrVdePdXV8eCFIEx0AI4lwHhABfjY+qbN14k8m6ClDPntV7HyBIBF1wvGDBAqWkpCgqKkqpqanasGFDuXWfe+459ezZUw0aNFCDBg2UlpZWpv7IkSNlMpkcbn379vX2bgBexbkOCAG+Gh9lNlvTtUll/2jYHs+bRw5IhI2gCo5fe+01ZWVladq0adq0aZM6duyo9PR0HTx40Gn9nJwcDRkyRGvWrNG6deuUnJysq6++Wnl5eQ71+vbtqwMHDthvS5cu9cXuAF7DuQ4IAb4cH2VbN75pU8fypCRrOXmOEUZMhuHs95rAlJqaqt/97nd66qmnJEnFxcVKTk7WXXfdpcmTJ1f6eovFogYNGuipp57S8OHDJVl7jo8ePao333yzyu0qKipSTEyMCgsLFR0dXeXtAJ7mLKd/crI1MOZch6AQzqvY5ORYJ99VZs0azy1nGc7HGyHP1XgtaFbIO3v2rDZu3KgpU6bYyyIiIpSWlqZ169a5tI2TJ0/q3LlziouLcyjPyclRo0aN1KBBA/3hD3/Q7NmzddFFF5W7nTNnzujMmTP2x0VFRW7uDeAbGRlS//6c6xCkwn3FNtv4qLw85+OOTSbr854cH8W68UDwDKs4dOiQLBaLGjdu7FDeuHFj5efnu7SNe++9V4mJiUpLS7OX9e3bV4sXL9bq1av10EMP6b///a+uueYaWSqY4DB37lzFxMTYb8nJyVXbKcAHbOe6IUOs9wTGCAqsYsP4KMBPgiY4rq4HH3xQy5Yt04oVKxQVFWUvHzx4sG644QZ16NBBAwYM0DvvvKMvv/xSOTk55W5rypQpKiwstN/27dvngz0AgDDBKja/Yiww4HNBM6yiYcOGMpvNKigocCgvKChQQkJCha999NFH9eCDD+rjjz/WZZddVmHdFi1aqGHDhtq5c6euuuoqp3UiIyMVGRnp3g4AAFzjTpaGcBgCwPgowKeCpue4Vq1a6tKli1avXm0vKy4u1urVq9W9e/dyX/fwww9r1qxZWrVqlbp27Vrp++zfv1+HDx9WExLAAoB/uJp9YeVK77YjkJQeH9WzpzVQ9sZS0gCCp+dYkrKysjRixAh17dpV3bp107x583TixAmNGjVKkjR8+HA1bdpUc+fOlSQ99NBDmjp1qpYsWaKUlBT72OR69eqpXr16On78uGbMmKGBAwcqISFBu3bt0qRJk9SyZUulp6f7bT8BIKy52jkxb541UKxsaEEoZWBwZZJiKO0v4AdBFRzfdNNN+vnnnzV16lTl5+erU6dOWrVqlX2S3t69exUR8Wtn+DPPPKOzZ89q0KBBDtuZNm2apk+fLrPZrG+//VYvv/yyjh49qsTERF199dWaNWsWwyYAwF9sWRoqGlohWSelZWZahxyUF/wFasaLqgSwtkmKF47Ftk1SXL7c+jgQ9xcIIkGV5zhQkecYADwsO1saONC1uuXl+S0vmLRlevDXhLaqBOwWi5SSUv4Fg8kkxcVJR44E3v4CAcLVeC1oxhwDAMJIRoa1V9gVzsYoB2rGi6qmqHNlkuLhw4G3v0AQIjgGAASm/v1dq+dsjLI7GS98pToBe3WXiPbH/gJBiuAYAOAyi8WaIMEniRJsY48vXADDxmSyrofubIU4V4PJ6gad7qhOwO6pDEq+3F8gSBEcAwBckp1tHfbap480dKj1PiXFi4vVVWeFOFeDSV+m7axOwF7ZhYKrSFMKVIrgGABQKb+t5lzVFeKq0+vsLdUJ2F25ULjoosDaXyBIka3CA8hWASCUuZIoISlJys31Yjrd6qQ+kxzH+fore4PtQOblOR937MqBdJbpIjnZ2oMuBdb+AgHG1XiN4NgDCI4BhLKcHOsQisqUl1HNryoKJv2Vxq26AWxFFwqBtr9AAHE1XguqRUAAAL4XiHPbXJaRYc16ESgrxtmGiTjLc+xqAGtbSrq87QfS/gJBiOAY8ABWa0UoC8S5bW6pKJj0B28HsIG2v0CQITgGqilQV6cFPMU2t62yobLM9XIDASwQsMhWAVSD32bwAz5UnYxqABBsCI6BKgrU1WkBb6hqRjUACDYMqwCqyJ3Frvj1FKGAuV4AwgHBMeCEKxPsgnoGP1BFDJUFEOoIjoELuDrBLuhn8AMAgDIYcwyU4s4Eu0BcnRYAAFQPwTFQwt0JdszgBwAg9BAcAyXcmWBnwwx+AABCC2OOgRJVnWDHDH4AAEIHwTFQojoT7JjBDwBAaGBYBVCCCXYAAIDgGCjBBDsAAEBwjLBlsUg5OdLSpdZ7i4UJdgAAhDvGHCMsVbbQBxPsAADwEleWofUjt4LjU6dOaePGjYqLi1P79u0dnjt9+rRef/11DR8+3KMNBKrrwu/goUPSjTeWzWdsW+jD1kPMBDsAADzM1WVo/chkGM6WPCjr//7v/3T11Vdr7969MplMuuKKK7Rs2TI1KZm6X1BQoMTERFlsKySEkaKiIsXExKiwsFDR0dH+bg5KcfYdNJt/XcjjQiaT9TuamxtQF7EAAAQ/2zK0F4aetok9Xh6/6Gq85vKY43vvvVeXXnqpDh48qO3bt6t+/fq6/PLLtXfvXo80GPC08paCruj6zdlCHwAAoJrcXYbWj1wOjj///HPNnTtXDRs2VMuWLfX2228rPT1dPXv21I8//ujNNgJuq+g76ApXFwQBAAAuqMoytH7icnB86tQp1ajx6xBlk8mkZ555Rtdff7169eql//u///NKA4GqqOw7WBlXFwQBAAAuqOoytH7g8oS8tm3b6quvvlK7du0cyp966ilJ0g033ODZlgHVUNXvlm3MMQt9AADgQdVZhtbHXO45/tOf/qSlS5c6fe6pp57SkCFD5OLcPsDrqvLdYqEPAAC8JIiWoXU5WwXKR7aKwGOxSCkp1vRs5X3CL8xakZxsDYwDJJMMAAChxTZTXnI8OQdYtgoWAUFIsi0FPWiQ9Tvn7Du4dKkUHx+wOciB8BDgiwEA8CDbMrTO8hwHUO8UPcceQM9x4HKW55geYiBABMFiAAC8wE8Xxa7GawTHHkBwHNjomAICkJ8XAwAQfgiOfYjgGADcYJsUUF6+RZaqBOAFHl8hDwAQGiwWKSfHOu4+J8cPC1IF0WIAAMJPlYLjV155RZdffrkSExO1Z88eSdK8efO0cuVKjzYOAOBZ2dnWTts+faShQ633KSnWcp8JosUAAIQft4PjZ555RllZWbr22mt19OhRWUq6HGJjYzVv3jxPtw8A4CG2Yb4Xdtrm5VnLfRYgB9FiAADCj9vB8ZNPPqnnnntO9913n8ylxoJ17dpVW7Zs8WjjACkAfgIGQoDFYk0M4WyWia0sM9NH368gWgwAQPhxOzjOzc1V586dy5RHRkbqxIkTHmkUYBMQPwEDISCghvnaEpFLZQNklqoE4GduB8fNmzfX5s2by5SvWrVK7dq180SbAEkB9BMwEAICbpivbTGApk0dy5OSSOMGwK/cXiEvKytLY8eO1enTp2UYhjZs2KClS5dq7ty5ev75573RRoShyn4CNpmsPwH370/nEoKEnxNuB+Qw34wM65eYROQAAkiV8hy/+uqrmj59unbt2iVJSkxM1IwZM3Trrbd6vIHBgDzHnpeTYx1CUZk1a6Tevb3dGqCaAmAlOFtq4bw85xedpBYGEOq8kuf4/PnzWrx4sdLS0rRjxw4dP35c+fn52r9/f9gGxvCOgPsJGKiqABkfxDBfAHCNW8FxjRo1dPvtt+v06dOSpDp16qhRo0ZeaVh5FixYoJSUFEVFRSk1NVUbNmyosP4bb7yhtm3bKioqSh06dNB7773n8LxhGJo6daqaNGmi2rVr2wN/+FdA/gQMuCugUkQwzBcAXOH2hLxu3brp66+/9kZbKvXaa68pKytL06ZN06ZNm9SxY0elp6fr4MGDTut//vnnGjJkiG699VZ9/fXXGjBggAYMGKDvvvvOXufhhx/W/PnztXDhQq1fv15169ZVenq6/QIA/kGmJ4SEgEoRYZWRIe3ebR2StGSJ9T43l8AY8AlykwYFt8ccv/7665oyZYrGjx+vLl26qG7dug7PX3bZZR5tYGmpqan63e9+p6eeekqSVFxcrOTkZN11112aPHlymfo33XSTTpw4oXfeecde9vvf/16dOnXSwoULZRiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXY469w/ZrtOTY8WYLmOnpQsBbutSag7AyS5ZIQ4Z4vz0A/CcA5h6EO1fjNbezVdgCxrvvvtteZjKZZBiGTCaTfcU8Tzt79qw2btyoKVOm2MsiIiKUlpamdevWOX3NunXrlJWV5VCWnp6uN998U5I1Z3N+fr7S0tLsz8fExCg1NVXr1q0rNzg+c+aMzpw5Y39cVFRU1d0KC1WdpG/7CdjZ35J58/hbgiDA+CAA0q+9PRf2R9rmHtDbE1DcDo5zc3O90Y5KHTp0SBaLRY0bN3Yob9y4sbZt2+b0Nfn5+U7r5+fn25+3lZVXx5m5c+dqxowZbu9DOKruhTKZnhDUbOODKksRwfggIHSRmzTouB0cN2vWzBvtCCpTpkxx6JEuKipScnKyH1sUmDx1oWw2k64NQcqWImLQIOsJ0Nn4IFJEAKHNnbkHnOwCgtvB8eLFiyt8fvjw4VVuTEUaNmwos9msgoICh/KCggIlJCQ4fU1CQkKF9W33BQUFalLqZ82CggJ16tSp3LZERkYqMjKyKrsRNrhQBkowPggIb+QmDTpuB8d/+9vfHB6fO3dOJ0+eVK1atVSnTh2vBce1atVSly5dtHr1ag0YMECSdULe6tWrNW7cOKev6d69u1avXq3MzEx72UcffaTu3btLsi6FnZCQoNWrV9uD4aKiIq1fv1533HGHV/YjXHChDJTC+CAgfDH3IOi4HRz/8ssvZcp27NihO+64QxMnTvRIo8qTlZWlESNGqGvXrurWrZvmzZunEydOaNSoUZKsvdZNmzbV3LlzJVkD+V69eumxxx5Tv379tGzZMn311Vd69tlnJVknEmZmZmr27Nlq1aqVmjdvrgceeECJiYn2ABxVw4UycAHGBwHhibkHQcft4NiZVq1a6cEHH9TNN99c7uQ4T7jpppv0888/a+rUqcrPz1enTp20atUq+4S6vXv3KiLi19TNPXr00JIlS3T//ffr73//u1q1aqU333xTl156qb3OpEmTdOLECY0ZM0ZHjx7VFVdcoVWrVikqKspr+xEOuFAG/KSq6WEAeAdzD4KO23mOy7N582ZdeeWVYZnWjDzHZVksUkpK5RfKubn8PQA8hjyqQOBy9v1MTmbugQ+5Gq+5HRy/9dZbDo8Nw9CBAwf01FNPKTk5We+//37VWhzEwi04drVjikU8AB8qLz0MXzggcPDLjl95LTguPWxBso7bjY+P1x/+8Ac99thjDlkfwkU4BcfudkxxoQz4gO2nmvJmwfJTDVB1BLQhw2vBMcoKl+C4qh1T/F0BvCwnR+rTp/J6a9YwKRBwB0OVQoqr8VpEuc+UY+bMmTp58mSZ8lOnTmnmzJnubg4BzmKxnndffVX661/Lz1ssWfMWO1s93DZJf8gQ6z2BMeBhpIcBPM/WI3ThLzK2layys/3TLnid2z3HZrNZBw4cUKNGjRzKDx8+rEaNGsniLDoKcaHac+zsgrkydEwBfkDPMeBZDFUKSV7rOTYMQybb7+ilfPPNN4qLi3N3cwhQ5V0wV4aOKcAPbHlUnfxtlmQtT04mjyrgKndWskLIcTnPcYMGDWQymWQymdS6dWuHANlisej48eO6/fbbvdJI+FZFSz9XJgznYwL+Rx5VwLMYqhTWXA6O582bJ8Mw9Je//EUzZsxQTEyM/blatWopJSXFviwzgltlF8zOsMAP4GcZGdZZsc4mD5EeBnAPK1mFNZeD4xEjRkiSmjdvrh49eqhmzZpeaxT8y90LYTqmgACRkSH17096GKC6WPI5rLm9fHSvXr3s/z59+rTOnj3r8HwoTUgLV+5eCNMxBQQQW3oYAFXHUKWw5vaEvJMnT2rcuHFq1KiR6tatqwYNGjjcEPxcmdsTHy/9+9/Wye+5uQTGAIAQYxuq1LSpY3lSEitOhji3g+OJEyfqk08+0TPPPKPIyEg9//zzmjFjhhITE7V48WJvtBE+ZrtglsoGyLbHCxdKw4aRtxgAEMIyMqTdu609QUuW0CMUJtzOc3zxxRdr8eLF6t27t6Kjo7Vp0ya1bNlSr7zyipYuXar33nvPW20NWOGU55ilnwEAQDByNV5ze8zxkSNH1KJFC0nW8cVHjhyRJF1xxRW64447qthcBCLm9gAAgHDjdnDcokUL5ebm6uKLL1bbtm31+uuvq1u3bnr77bcVGxvrhSbCn5jbAwAAwonbY45HjRqlb775RpI0efJkLViwQFFRURo/frwmTpzo8QYCAAAAvuL2mOML7dmzRxs3blTLli112WWXeapdQSVUxxwDAACECq+NOS7t9OnTatasmZo1a1adzQAAAAABwe1hFRaLRbNmzVLTpk1Vr149/fjjj5KkBx54QC+88ILHGwgAAAD4itvB8Zw5c7Ro0SI9/PDDqlWrlr380ksv1fPPP+/RxgEAAFSZxSLl5EhLl1rvLRZ/twhBwO3gePHixXr22Wc1bNgwmUvl9OrYsaO2bdvm0cYBgL9wTgWCXHa2lJIi9ekjDR1qvU9JsZYDFXA7OM7Ly1PLli3LlBcXF+vcuXMeaRQA+BPnVCBAVPUqNTtbGjTIcRUrScrLs5bzZUYF3A6O27dvr7Vr15YpX758uTp37uyRRgGAv3BOBQJEVa9SLRbr8q7OknHZyjIz+TkI5XI7W8XUqVM1YsQI5eXlqbi4WNnZ2dq+fbsWL16sd955xxttRCkWCyvWAd5S2TnVZLKeU/v353sHeJXtKvXCL6PtKnX5cusyrs6sXVv26rY0w5D27bPWY5UrOOF2z3H//v319ttv6+OPP1bdunU1depUbd26VW+//bb++Mc/eqONKMFPvYB3uXNOBeAl1e35PXDAtfdxtR7Cjss9xz/++KOaN28uk8mknj176qOPPvJmu3CB6lxEA3AN51QgALh6lfrkk1LjxmV/Rm3SxLX3cbUewo7LPcetWrXSzz//bH980003qaCgwCuNgiOGTwG+wTkVCACuXn2OH+/8Z9SePaWkJOs4qPJcdJG1HuCEy8HxhatMv/feezpx4oTHG4Sy+KkX8I3Kzqkmk5SczDkV8KqqXH2WnjFrNkv//KfzHiWbw4ellSur3kaENLfHHMP3+KkX8A3bOVUqGyDbHs+bx2Q8wKtc6fm90IU/o/bvb+0dLo9tdi0/ucIJl4Njk8kk0wUf1Asfwzv4qRfwnYwM6xj+pk0dy5OSGNsP+ERFV6kVKf0z6tq11t5hV+oCF3B5Qp5hGBo5cqQiIyMlSadPn9btt9+uunXrOtTLJnWCx9kuovPynP9KZDJZn+enXsAzMjKsHU+kTQR8zJav9MwZafp06dlnrSc/d7jzMyo/ucIJl4PjESNGODy++eabPd4YOGe7iB40yBoIlw6Q+akX8A6zmRSogE9lZ1tnn5eeZJOUJM2YIbVqJRUUWCfhVcadn1H5yRVOmIwLZ9rBbUVFRYqJiVFhYaGio6O99j7O/m4kJ1sDY37qBQAErfLyldp6gJYvt/6ck5JS+c+oubnWx67WpWcpbLgarzEhL4hkZEi7d0tr1khLlljvc3MJjAEAQczVfKWS6zNmmV2LaiA4DjK2n3qHDLHe870GAAQ1d/KV9u9vHYvcoIFjHWczZpldiypyecwxAACAx7k6KW7lSumWWxwD6bg4a6/zffc57y1idi2qgDHHHuCrMccAAIScnBzrKndVUXpMMj3BqARjjgEAQOBzZWnK8np6L1z8A/AAgmMAAOA/lU2eM4yKA18W9ICHERwDAAD/qmjynC1TRWVY0AMeQnAMAAD8r7x8pf37u/Z6FvSAh5CtAgAABAZnS1PaxiRXtqBHz54+aSJCHz3HAAAgcLGgB3yM4BgAAAQ2FvSADzGsAgAABD4W9ICPBE3P8ZEjRzRs2DBFR0crNjZWt956q44fP15h/bvuuktt2rRR7dq1dfHFF+vuu+9WYWGhQz2TyVTmtmzZMm/vDgAAcJdtTPKQIdZ7AmN4QdD0HA8bNkwHDhzQRx99pHPnzmnUqFEaM2aMlixZ4rT+Tz/9pJ9++kmPPvqo2rdvrz179uj222/XTz/9pOXLlzvUfemll9S3b1/749jYWG/uCoAqsljoNAIAeFdQLB+9detWtW/fXl9++aW6du0qSVq1apWuvfZa7d+/X4mJiS5t54033tDNN9+sEydOqEYN63WByWTSihUrNGDAgCq3j+WjAe/Lzpb+9jdp//5fy5KSrPN0GG4IAKhMSC0fvW7dOsXGxtoDY0lKS0tTRESE1q9f7/J2bAfDFhjbjB07Vg0bNlS3bt304osvqrLrhTNnzqioqMjhBsB7srOlQYMcA2PJmtlp0CDr8wAAeEJQDKvIz89Xo0aNHMpq1KihuLg45efnu7SNQ4cOadasWRozZoxD+cyZM/WHP/xBderU0Ycffqg777xTx48f1913313utubOnasZM2a4vyMA3GaxWHuMnV2zGoY1k1NmpnWeDkMsgCryxJglxj0hRPi153jy5MlOJ8SVvm3btq3a71NUVKR+/fqpffv2mj59usNzDzzwgC6//HJ17txZ9957ryZNmqRHHnmkwu1NmTJFhYWF9tu+ffuq3UYAzq1dW7bHuDTDkPbts9bzJotFysmRli613lss3n0/wGeys6WUFKlPH2noUOt9Sop7P8l4YhtAgPBrz/GECRM0cuTICuu0aNFCCQkJOnjwoEP5+fPndeTIESUkJFT4+mPHjqlv376qX7++VqxYoZo1a1ZYPzU1VbNmzdKZM2cUGRnptE5kZGS5zwHwrAMHPFuvKhjvjJBlG7N04U8ztjFLruQQ9sQ2gADi1+A4Pj5e8fHxldbr3r27jh49qo0bN6pLly6SpE8++UTFxcVKTU0t93VFRUVKT09XZGSk3nrrLUVFRVX6Xps3b1aDBg0IfoEA0aSJZ+u5i/M+QpYnxiwx7gkhKCgm5LVr1059+/bV6NGjtWHDBn322WcaN26cBg8ebM9UkZeXp7Zt22rDhg2SrIHx1VdfrRMnTuiFF15QUVGR8vPzlZ+fL0vJ76Fvv/22nn/+eX333XfauXOnnnnmGf3jH//QXXfd5bd9BeCoZ09rL+2Fq8bamExScrK1nqdVdt6XrOd9hlggKHlizFKgjHsCPCgoJuRJ0quvvqpx48bpqquuUkREhAYOHKj58+fbnz937py2b9+ukydPSpI2bdpkz2TRsmVLh23l5uYqJSVFNWvW1IIFCzR+/HgZhqGWLVvq8ccf1+jRo323YwAqZDZbhy8MGmQNhEsHqraAed4873RKuXPe793b8+8PeJUnxiwFwrgnwMOCJjiOi4srd8EPSUpJSXFIwda7d+9KU7L17dvXYfEPAIEpI8M6fMHZuN9587w3rIHzPkKaJ8Ys+XvcE+AFQRMcAwhvGRnWYYu+zBTFeR8hzTZmKS/P+dghk8n6fEVjljyxDSDABMWYYwCQrIFw797SkCHWe2/P7/HneGfA62xjlqSyH3JXxyx5YhtAgCE4BoBycN5HyLONWWra1LE8Kcn1VCye2AYQQExGZQNzUSlX1+oGEJyc5TlOTvbueGfAp1ghD2HA1XiN4NgDCI6B0Md5HwCCm6vxGhPyAMAFtvHOAIDQRnAMwG30ogIAQhXBMQC3OBt/m5RknbjG+FsAQLAjWwUAl2VnW1equ3DVuLw8a3l2tn/aBQCApxAcA3CJxWLtMXY2hddWlplprQcAQLAiOAbgkrVry/YYl2YY0r591noAAAQrxhwDcMmBA56tB8CLmDULVBnBMQCXNGni2XrVxbkfKAezZoFqYVgFAJf07Gk9v164jLKNyWRdNa5nT++3JTtbSkmR+vSRhg613qekMCEQYNYsUH0ExwBcYjZbO56ksgGy7fG8ed7vveXcD5SjOrNmLRYpJ0dautR6z8xahDGCYwAuy8iQli+XmjZ1LE9KspZ7+xdbMmYAFajqrFl+igEcEBwDcEtGhrR7t7RmjbRkifU+N9c3QxnJmAFUwNXZsKtX/3oFyU8xQBkExwDcZjZLvXtLQ4ZY7301EY6MGUAFXJ0NO3u2tWf4jTf4KQZwguAYQNAItIwZQECpbNZsafv3SzfeyE8xgBMExwCCRiBlzAACTkWzZquDn2IQZgiOAQSNQMmYAQSs8mbNVgc/xSDMEBwDCCr+zpgBBDzbrNn776/edvgpBmGKFfIABJ2MDKl/f1bIQxDz9hKPZrN01VXWyXdVwU8xCGMExwCCki1jBhB0fLW8c8+eUlycdORI5XUvrJeUZA2M+SkGYYjgGAAAX7HlFb4wfZotr7AnxwaZzdYgfNq0yuu+/rq1Pj/FADIZhrMEh3BHUVGRYmJiVFhYqOjoaH83BwAQiCwWa37h8tKnmUzWHtvc3KoHphcO1+jRQ0pMlA4f9t57AkHC1XiNCXkAAPiCt5d4dLYM9CWXSH/5i/PUbowrBpwiOAYAwBe8ucRjRctAP/qodM891h7i0kjxAjjFmGMAAHzBW0s8WiwVLwNtMknLlkm7dkmff864YqASBMcAvMbb2aqAoGJb4jEvz3kgaxv/625eYVeHa3z+OSleABcwrAKAVzgb/piSYi0HwlJlyzsbhnTbbe5v15vDNYAwRHAMwOMqGv44aBABMsJYZcs7T5vm/lWkt4ZrAGGK4BiAR1U2/FGSMjOt9YCwZFveecYM58+7exVpG67hrDdaYhlowE0ExwA8ytvZqoCQ8dxzzsvdvYqsaLgG6doAtxEcA/Aohj8CLvD0VWR5wzVI1wa4jWwVABxUN8MEwx+BCzj7UnnjKjIjQ+rfnxQxQDURHAOwy862jhcu3aGVlGT9xdbVjidvZasCglJ5X6rRo117vbtXkWYz6dqAamJYBQBJnsswwfBHoERFX6rp06WLLmISHRCACI4BeDzDBMMfEfZc+VLZ/s1VJBBQCI4BeCXDhC1b1Zo10pIl1vvcXAJjhAlXvlSHD1vTuXEVCQQUxhwDUF6ea/XczTDB8EeELVe/LK1aWa8imUQHBAyCYyDMZWdbh0y4ggwTgIvcSdvCVSQQUBhWAYQx23yhQ4cqrsfcIMBNrFoHBC2CYyBMVTRfqDTmBgFVQNoWIGgRHANhqrL5QjYNGzI3CKgS0rYAQSloguMjR45o2LBhio6OVmxsrG699VYdP368wtf07t1bJpPJ4Xb77bc71Nm7d6/69eunOnXqqFGjRpo4caLOnz/vzV0BAoKr84WeeIJzOFBlpG0Bgk7QTMgbNmyYDhw4oI8++kjnzp3TqFGjNGbMGC1ZsqTC140ePVozZ860P65Tp4793xaLRf369VNCQoI+//xzHThwQMOHD1fNmjX1j3/8w2v7AgQCV+cLXdjpBYSd6q6pzoQ7IKiYDKOyEYf+t3XrVrVv315ffvmlunbtKklatWqVrr32Wu3fv1+JiYlOX9e7d2916tRJ8+bNc/r8+++/r+uuu04//fSTGjduLElauHCh7r33Xv3888+qVauWS+0rKipSTEyMCgsLFR0d7f4OAn5gsUgpKZUv85yby7BIhDFPrKkOICC4Gq8FxbCKdevWKTY21h4YS1JaWpoiIiK0fv36Cl/76quvqmHDhrr00ks1ZcoUnTx50mG7HTp0sAfGkpSenq6ioiJ9//335W7zzJkzKioqcrgBwYb5QkAlPLWmOoCgEhTBcX5+vho1auRQVqNGDcXFxSk/P7/c1w0dOlT//ve/tWbNGk2ZMkWvvPKKbr75Zoftlg6MJdkfV7TduXPnKiYmxn5LTk6uym4BfpeRIb32mnTRRY7lzBdC2PP0muoAgoZfg+PJkyeXmTB34W3btm1V3v6YMWOUnp6uDh06aNiwYVq8eLFWrFihXbt2VavdU6ZMUWFhof22b9++am0P8JfsbCkryzHPcXy89PjjBMYIc95YUx1AUPDrhLwJEyZo5MiRFdZp0aKFEhISdPDgQYfy8+fP68iRI0pISHD5/VJTUyVJO3fu1CWXXKKEhARt2LDBoU5BQYEkVbjdyMhIRUZGuvy+QCCy/WJ8YcfYoUPSjTfSc4ww52o6F3fXVAcQ8PwaHMfHxys+Pr7Set27d9fRo0e1ceNGdenSRZL0ySefqLi42B7wumLz5s2SpCYl0/S7d++uOXPm6ODBg/ZhGx999JGio6PVvn17N/cGCB6V/WJsMll/Me7fnzHHCFPuLP8MIKQExZjjdu3aqW/fvho9erQ2bNigzz77TOPGjdPgwYPtmSry8vLUtm1be0/wrl27NGvWLG3cuFG7d+/WW2+9peHDh+vKK6/UZZddJkm6+uqr1b59e91yyy365ptv9MEHH+j+++/X2LFj6RlGSOMXY6ASLP8MhK2gCI4la9aJtm3b6qqrrtK1116rK664Qs8++6z9+XPnzmn79u32bBS1atXSxx9/rKuvvlpt27bVhAkTNHDgQL399tv215jNZr3zzjsym83q3r27br75Zg0fPtwhLzLgbxaLlJMjLV1qvffE/B9+MQYq4W46F298UQH4RVDkOQ505DmGO9xZT8BbKVZzcqQ+fSqvt2YNaxcgzDn7EiYnWwNj25eQXMhAUHA1XiM49gCCY7jKnXNoeRPmbJ1W1ZkwxwIggBsquqL15hcVgEcRHPsQwTFc4c451Ba8ljcu2BPBq609kmObOKcDLvLFFxWAx4TUCnlAsHN3PQFfTJjLyLAGwE2bOpazAAjgIma2AiHJr6ncgHDhzjm0d2/fTZjLyLCma3N1DDSAUpjZCoQkgmPAB9w9h/oyxarZzKQ7hBh3Zr1WB7mQgZDEsArAB9w9h5JiFaii7GzrOOA+faShQ633KSnWck/jiwqEJIJjwAds59CKlD6HuptiFYB+nWV64RimvDxruacDZL6oQEgiOAZ8wGyWhgypuM7gwY7n0PImzDVsaJ3cFxfHOgOAnbuzXj2Fma1AyCGVmweQyg2VqSzjk2TtOXaW8ck2fHLlSunf/5YOHfr1OdYZAEr4e2UbX41zBlBlrsZrTMgDfKCybBWSY7aK0sxm6cgRaxB84aWs7ddiOqgQ9vydOYKZrUDIYFgFUE0Wi7XTaulS672zX22rc97216/FQFAhcwQADyE4BqrB1Ynx1Tlvs84A4AIyRwDwEIJjoIrcmRhfnfO2v38tBoICmSMAeAjBMVAF7g51qM55u1Ej19rkaj0gZJE5AoAHEBwDbrJYpCefdH+oA+dtwAcyMqTdu61ZKZYssd7n5vIFA+AyslUAbsjOtvYYV5Z5wubCoQ4ZGVL//u5lfDp40LX3crUeEPLIHAGgGgiOARfZxhi7kxnc2QQ7d8/brk7m++EHa7YM0qsCAFB1LALiASwCEvpcWcSjNJPJOlzC2aIeVX3vvDzXAnMWBgEAoCxX4zXGHAMucGURDxtPT4yvaDKfM86yZQAAANcQHAMucCdNmjcm2JU3mc8ZFgYBAKDqCI4BF7g67veJJ7w3Mb70JPz776+4LguDAABQNQTHgAtcXcTjrru8OxnONpmvfXvX6rMwCAAA7iE4BlwQaItvVWc5agAAUD6CY8BFgbKIh8VivcXFlV+nouWoAQBA+chzDLihKot4eJIri5D4oycbYcRi8d8XAAB8gOAYcJO/Ft9ydRGSpCRrYEyeY3ics6szEmsDCDEMqwCCgMVijUkqCozj4qSPP/ZetgyEOdvV2YU/W5BYG0CIITgGgoAri5AcOWLt1eYXbnhcRVdnJNYGEGIIjoEg4GpKNlK3wSsquzojsTaAEMKYYyAIkLoNfuXNqzMm+AEIMPQcA0HA1UVISN0Gr/DW1Vl2tpSSIvXpIw0dar1PSWH8MgC/IjgGgkCgLUKCMOONqzMm+AEIUATHQJAIlEVIEIY8fXXGBD8AAYzgGAgiGRnS7t3SmjXSkiXWe1K3wSc8eXXGBD8AAYwJeUCQ8dciJIDHlogk/QqAAEZwDABwnSeuzki/AiCAMawCAOBbpF8BEMAIjgEAvkX6FQABjOAYAOB7pF8BEKAYcwwA8A9PTfADAA8iOAYA+A/pVwAEGIJjwIcsFjrJAAAIZATHgI9kZ1sXBSu99kFSknVeEsMrAQAIDEzIA3wgO1saNKjsomB5edby7Gz/tAsAADgiOAa8zGKx9hgbRtnnbGWZmdZ6AADAv4ImOD5y5IiGDRum6OhoxcbG6tZbb9Xx48fLrb97926ZTCantzfeeMNez9nzy5Yt88UuIUysXVu2x7g0w5D27bPWAwAA/hU0Y46HDRumAwcO6KOPPtK5c+c0atQojRkzRkuWLHFaPzk5WQcOHHAoe/bZZ/XII4/ommuucSh/6aWX1LdvX/vj2NhYj7cf4euCj2G16wEAAO8JiuB469atWrVqlb788kt17dpVkvTkk0/q2muv1aOPPqrExMQyrzGbzUpISHAoW7FihW688UbVq1fPoTw2NrZM3YqcOXNGZ86csT8uKipyZ3cQZpo08Ww9AADgPUExrGLdunWKjY21B8aSlJaWpoiICK1fv96lbWzcuFGbN2/WrbfeWua5sWPHqmHDhurWrZtefPFFGc4Gh5Yyd+5cxcTE2G/Jycnu7RDCSs+e1qwUF66Sa2MyScnJ1noAAMC/giI4zs/PV6NGjRzKatSoobi4OOXn57u0jRdeeEHt2rVTjx49HMpnzpyp119/XR999JEGDhyoO++8U08++WSF25oyZYoKCwvtt3379rm3QwgrZrM1XZtUNkC2PZ43j3zHAAAEAr8Gx5MnTy530pzttm3btmq/z6lTp7RkyRKnvcYPPPCALr/8cnXu3Fn33nuvJk2apEceeaTC7UVGRio6OtrhBlQkI0Navlxq2tSxPCnJWk6eYwAAAoNfxxxPmDBBI0eOrLBOixYtlJCQoIMHDzqUnz9/XkeOHHFprPDy5ct18uRJDR8+vNK6qampmjVrls6cOaPIyMhK6wOuysiQ+vdnhTwAAAKZX4Pj+Ph4xcfHV1qve/fuOnr0qDZu3KguXbpIkj755BMVFxcrNTW10te/8MILuuGGG1x6r82bN6tBgwYExvAKs1nq3dvfrQAAAOUJimwV7dq1U9++fTV69GgtXLhQ586d07hx4zR48GB7poq8vDxdddVVWrx4sbp162Z/7c6dO/Xpp5/qvffeK7Pdt99+WwUFBfr973+vqKgoffTRR/rHP/6he+65x2f7BgAAgMARFMGxJL366qsaN26crrrqKkVERGjgwIGaP3++/flz585p+/btOnnypMPrXnzxRSUlJenqq68us82aNWtqwYIFGj9+vAzDUMuWLfX4449r9OjRXt8fAAAABB6TUVneMlSqqKhIMTExKiwsZHIeAABAAHI1XguKVG4AAACALxAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQIka/m4A4CqLRVq7VjpwQGrSROrZUzKb/d0qAAAQSgiOERSys6W//U3av//XsqQk6Z//lDIy/NcuwKu4IgQAn2NYBQJedrY0aJBjYCxJeXnW8uxs/7QL8KrsbCklRerTRxo61HqfksIHHgC8jOAYAc1isfYYG0bZ52xlmZnWekDI4IoQAPyG4BgBbe3asvFBaYYh7dtnrQeEBK4IAcCvCI4R0A4c8Gw9IOBxRQgAfkVwjIDWpIln6wEBjytCAPArgmMEtJ49rVkpTCbnz5tMUnKytR4QErgiBAC/IjhGQDObrenapLIBsu3xvHlkt0II4YoQAPyK4BgBLyNDWr5catrUsTwpyVpOnmOEFK4IAcCvTIbhbEo03FFUVKSYmBgVFhYqOjra380JWayHgLDibOWb5GRrYMwVIQC4zdV4jeDYAwiOAXgFV4QA4DGuxmssHw0Agcpslnr39ncrACCsEBwjeNCLBgAAvIzgGMHB2fjLpCTrxCXGXwIAAA8hWwUCX3a2NGhQ2VXD8vKs5dnZ/mkXAAAIOQTHCGwWi7XH2Nm8UVtZZqa1HgAAQDURHCOwrV1btse4NMOQ9u2z1gMAAKgmgmMEtgMHPFsPAACgAgTHCGxNmni2HgAAQAUIjhHYeva0ZqW4cBldG5PJumpYz56+bRcAAAhJBMcIbGazNV2bVDZAtj2eN498xwAAwCMIjhH4MjKk5culpk0dy5OSrOXkOQYAAB7CIiAIDhkZUv/+rJAHAAC8iuAYAafcVaLNZql3b383DwAAhDCCYwQUVokGAAD+xJhjBAxWiQYAAP5GcIyAwCrRAAAgEBAcIyCwSjQAAAgEBMcICKwSDQAAAgHBMQICq0QDAIBAQHCMgMAq0QAAIBAETXA8Z84c9ejRQ3Xq1FFsbKxLrzEMQ1OnTlWTJk1Uu3ZtpaWlaceOHQ51jhw5omHDhik6OlqxsbG69dZbdfz4cS/sASrCKtEAACAQBE1wfPbsWf35z3/WHXfc4fJrHn74Yc2fP18LFy7U+vXrVbduXaWnp+v06dP2OsOGDdP333+vjz76SO+8844+/fRTjRkzxhu7gEqwSjQAAPA3k2E4S54VuBYtWqTMzEwdPXq0wnqGYSgxMVETJkzQPffcI0kqLCxU48aNtWjRIg0ePFhbt25V+/bt9eWXX6pr166SpFWrVunaa6/V/v37lZiY6FKbioqKFBMTo8LCQkVHR1dr/1DBCnkAAABV5Gq8FjQ9x+7Kzc1Vfn6+0tLS7GUxMTFKTU3VunXrJEnr1q1TbGysPTCWpLS0NEVERGj9+vXlbvvMmTMqKipyuMFzbKtEDxlivScwBgAAvhKywXF+fr4kqXHjxg7ljRs3tj+Xn5+vRo0aOTxfo0YNxcXF2es4M3fuXMXExNhvycnJHm49AAAA/MGvwfHkyZNlMpkqvG3bts2fTXRqypQpKiwstN/27dvn7yYBAADAA2r4880nTJigkSNHVlinRYsWVdp2QkKCJKmgoEBNSiXHLSgoUKdOnex1Dh486PC68+fP68iRI/bXOxMZGanIyMgqtQsAAACBy6/BcXx8vOLj472y7ebNmyshIUGrV6+2B8NFRUVav369PeNF9+7ddfToUW3cuFFdunSRJH3yyScqLi5WamqqV9oFAACAwBU0Y4737t2rzZs3a+/evbJYLNq8ebM2b97skJO4bdu2WrFihSTJZDIpMzNTs2fP1ltvvaUtW7Zo+PDhSkxM1IABAyRJ7dq1U9++fTV69Ght2LBBn332mcaNG6fBgwe7nKkCAAAAocOvPcfumDp1ql5++WX7486dO0uS1qxZo969e0uStm/frsLCQnudSZMm6cSJExozZoyOHj2qK664QqtWrVJUVJS9zquvvqpx48bpqquuUkREhAYOHKj58+f7ZqcAAAAQUIIuz3EgIs8xAABAYAv7PMcAAACAuwiOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAACgRNHmOA5ktG15RUZGfWwIAAABnbHFaZVmMCY494NixY5Kk5ORkP7cEAAAAFTl27JhiYmLKfZ5FQDyguLhYP/30k+rXry+TyeSV9ygqKlJycrL27dvHQiMX4NiUj2NTPo5NxTg+5ePYlI9jUz6OTfl8dWwMw9CxY8eUmJioiIjyRxbTc+wBERERSkpK8sl7RUdH86UqB8emfByb8nFsKsbxKR/Hpnwcm/JxbMrni2NTUY+xDRPyAAAAgBIExwAAAEAJguMgERkZqWnTpikyMtLfTQk4HJvycWzKx7GpGMenfByb8nFsysexKV+gHRsm5AEAAAAl6DkGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYLjADFnzhz16NFDderUUWxsrEuvMQxDU6dOVZMmTVS7dm2lpaVpx44dDnWOHDmiYcOGKTo6WrGxsbr11lt1/PhxL+yB97i7D7t375bJZHJ6e+ONN+z1nD2/bNkyX+ySR1Xl/7h3795l9v322293qLN3717169dPderUUaNGjTRx4kSdP3/em7vice4emyNHjuiuu+5SmzZtVLt2bV188cW6++67VVhY6FAvGD87CxYsUEpKiqKiopSamqoNGzZUWP+NN95Q27ZtFRUVpQ4dOui9995zeN6Vvz/Bwp1j89xzz6lnz55q0KCBGjRooLS0tDL1R44cWebz0bdvX2/vhte4c3wWLVpUZt+joqIc6oTrZ8fZ312TyaR+/frZ64TKZ+fTTz/V9ddfr8TERJlMJr355puVviYnJ0e//e1vFRkZqZYtW2rRokVl6rj7d6zKDASEqVOnGo8//riRlZVlxMTEuPSaBx980IiJiTHefPNN45tvvjFuuOEGo3nz5sapU6fsdfr27Wt07NjR+OKLL4y1a9caLVu2NIYMGeKlvfAOd/fh/PnzxoEDBxxuM2bMMOrVq2ccO3bMXk+S8dJLLznUK33sgkVV/o979epljB492mHfCwsL7c+fP3/euPTSS420tDTj66+/Nt577z2jYcOGxpQpU7y9Ox7l7rHZsmWLkZGRYbz11lvGzp07jdWrVxutWrUyBg4c6FAv2D47y5YtM2rVqmW8+OKLxvfff2+MHj3aiI2NNQoKCpzW/+yzzwyz2Ww8/PDDxg8//GDcf//9Rs2aNY0tW7bY67jy9ycYuHtshg4daixYsMD4+uuvja1btxojR440YmJijP3799vrjBgxwujbt6/D5+PIkSO+2iWPcvf4vPTSS0Z0dLTDvufn5zvUCdfPzuHDhx2Oy3fffWeYzWbjpZdestcJlc/Oe++9Z9x3331Gdna2IclYsWJFhfV//PFHo06dOkZWVpbxww8/GE8++aRhNpuNVatW2eu4e7yrg+A4wLz00ksuBcfFxcVGQkKC8cgjj9jLjh49akRGRhpLly41DMMwfvjhB0OS8eWXX9rrvP/++4bJZDLy8vI83nZv8NQ+dOrUyfjLX/7iUObKFzbQVfX49OrVy/jb3/5W7vPvvfeeERER4XBSe+aZZ4zo6GjjzJkzHmm7t3nqs/P6668btWrVMs6dO2cvC7bPTrdu3YyxY8faH1ssFiMxMdGYO3eu0/o33nij0a9fP4ey1NRU469//athGK79/QkW7h6bC50/f96oX7++8fLLL9vLRowYYfTv39/TTfULd49PZecwPju/euKJJ4z69esbx48ft5eF0mfHxpW/l5MmTTJ+85vfOJTddNNNRnp6uv1xdY+3OxhWEaRyc3OVn5+vtLQ0e1lMTIxSU1O1bt06SdK6desUGxurrl272uukpaUpIiJC69ev93mbq8IT+7Bx40Zt3rxZt956a5nnxo4dq4YNG6pbt2568cUXZQRZ2u/qHJ9XX31VDRs21KWXXqopU6bo5MmTDtvt0KGDGjdubC9LT09XUVGRvv/+e8/viBd46vNfWFio6Oho1ahRw6E8WD47Z8+e1caNGx3+VkRERCgtLc3+t+JC69atc6gvWf//bfVd+fsTDKpybC508uRJnTt3TnFxcQ7lOTk5atSokdq0aaM77rhDhw8f9mjbfaGqx+f48eNq1qyZkpOT1b9/f4e/GXx2fvXCCy9o8ODBqlu3rkN5KHx23FXZ3xxPHG931Ki8CgJRfn6+JDkEL7bHtufy8/PVqFEjh+dr1KihuLg4e51A54l9eOGFF9SuXTv16NHDoXzmzJn6wx/+oDp16ujDDz/UnXfeqePHj+vuu+/2WPu9rarHZ+jQoWrWrJkSExP17bff6t5779X27duVnZ1t366zz5btuWDgic/OoUOHNGvWLI0ZM8ahPJg+O4cOHZLFYnH6/7lt2zanrynv/7/03xZbWXl1gkFVjs2F7r33XiUmJjqctPv27auMjAw1b95cu3bt0t///nddc801Wrduncxms0f3wZuqcnzatGmjF198UZdddpkKCwv16KOPqkePHvr++++VlJTEZ6fEhg0b9N133+mFF15wKA+Vz467yvubU1RUpFOnTumXX36p9nfVHQTHXjR58mQ99NBDFdbZunWr2rZt66MWBQ5Xj011nTp1SkuWLNEDDzxQ5rnSZZ07d9aJEyf0yCOPBESA4+3jUzrY69Chg5o0aaKrrrpKu3bt0iWXXFLl7fqCrz47RUVF6tevn9q3b6/p06c7PBfInx34zoMPPqhly5YpJyfHYdLZ4MGD7f/u0KGDLrvsMl1yySXKycnRVVdd5Y+m+kz37t3VvXt3++MePXqoXbt2+te//qVZs2b5sWWB5YUXXlCHDh3UrVs3h/Jw/uwEEoJjL5owYYJGjhxZYZ0WLVpUadsJCQmSpIKCAjVp0sReXlBQoE6dOtnrHDx40OF158+f15EjR+yv9xdXj01192H58uU6efKkhg8fXmnd1NRUzZo1S2fOnPH7+u6+Oj42qampkqSdO3fqkksuUUJCQplZwAUFBZIUFp+dY8eOqW/fvqpfv75WrFihmjVrVlg/kD47F2rYsKHMZrP9/8+moKCg3OOQkJBQYX1X/v4Eg6ocG5tHH31UDz74oD7++GNddtllFdZt0aKFGjZsqJ07dwZVgFOd42NTs2ZNde7cWTt37pTEZ0eSTpw4oWXLlmnmzJmVvk+wfnbcVd7fnOjoaNWuXVtms7nan0W3eHwUM6rF3Ql5jz76qL2ssLDQ6YS8r776yl7ngw8+CMoJeVXdh169epXJNFCe2bNnGw0aNKhyW/3BU//H//vf/wxJxjfffGMYxq8T8krPAv7Xv/5lREdHG6dPn/bcDnhRVY9NYWGh8fvf/97o1auXceLECZfeK9A/O926dTPGjRtnf2yxWIymTZtWOCHvuuuucyjr3r17mQl5Ff39CRbuHhvDMIyHHnrIiI6ONtatW+fSe+zbt88wmUzGypUrq91eX6vK8Snt/PnzRps2bYzx48cbhsFnxzCs5/nIyEjj0KFDlb5HMH92bOTihLxLL73UoWzIkCFlJuRV57PoDoLjALFnzx7j66+/tqcc+/rrr42vv/7aIfVYmzZtjOzsbPvjBx980IiNjTVWrlxpfPvtt0b//v2dpnLr3LmzsX79euN///uf0apVq6BM5VbRPuzfv99o06aNsX79eofX7dixwzCZTMb7779fZptvvfWW8dxzzxlbtmwxduzYYTz99NNGnTp1jKlTp3p9fzzN3eOzc+dOY+bMmcZXX31l5ObmGitXrjRatGhhXHnllfbX2FK5XX311cbmzZuNVatWGfHx8UGZys2dY1NYWGikpqYaHTp0MHbu3OmQTun8+fOGYQTnZ2fZsmVGZGSksWjRIuOHH34wxowZY8TGxtqzkdxyyy3G5MmT7fU/++wzo0aNGsajjz5qbN261Zg2bZrTVG6V/f0JBu4emwcffNCoVauWsXz5cofPh+1v9bFjx4x77rnHWLdunZGbm2t8/PHHxm9/+1ujVatWQXNhWZq7x2fGjBnGBx98YOzatcvYuHGjMXjwYCMqKsr4/vvv7XXC9bNjc8UVVxg33XRTmfJQ+uwcO3bMHsdIMh5//HHj66+/Nvbs2WMYhmFMnjzZuOWWW+z1bancJk6caGzdutVYsGCB01RuFR1vTyI4DhAjRowwJJW5rVmzxl5HJblVbYqLi40HHnjAaNy4sREZGWlcddVVxvbt2x22e/jwYWPIkCFGvXr1jOjoaGPUqFEOAXcwqGwfcnNzyxwrwzCMKVOmGMnJyYbFYimzzffff9/o1KmTUa9ePaNu3bpGx44djYULFzqtG+jcPT579+41rrzySiMuLs6IjIw0WrZsaUycONEhz7FhGMbu3buNa665xqhdu7bRsGFDY8KECQ7pzIKBu8dmzZo1Tr+Hkozc3FzDMIL3s/Pkk08aF198sVGrVi2jW7duxhdffGF/rlevXsaIESMc6r/++utG69atjVq1ahm/+c1vjHfffdfheVf+/gQLd45Ns2bNnH4+pk2bZhiGYZw8edK4+uqrjfj4eKNmzZpGs2bNjNGjR3vlBO4r7hyfzMxMe93GjRsb1157rbFp0yaH7YXrZ8cwDGPbtm2GJOPDDz8ss61Q+uyU97fUdjxGjBhh9OrVq8xrOnXqZNSqVcto0aKFQ7xjU9Hx9iSTYQRo/iEAAADAx8hzDAAAAJQgOAYAAABKEBwDAAAAJQiOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGgAA1cuRImUymMredO3d6ZPuLFi1SbGysR7ZVVZ9++qmuv/56JSYmymQy6c033/RrewCA4BgAAljfvn114MABh1vz5s393awyzp07V6XXnThxQh07dtSCBQs83CIAqBqCYwAIYJGRkUpISHC4mc1mSdLKlSv129/+VlFRUWrRooVmzJih8+fP21/7+OOPq0OHDqpbt66Sk5N155136vjx45KknJwcjRo1SoWFhfYe6enTp0uS0x7c2NhYLVq0SJK0e/dumUwmvfbaa+rVq5eioqL06quvSpKef/55tWvXTlFRUWrbtq2efvrpCvfvmmuu0ezZs/WnP/3JA0cLAKqvhr8bAABw39q1azV8+HDNnz9fPXv21K5duzRmzBhJ0rRp0yRJERERmj9/vpo3b64ff/xRd955pyZNmqSnn35aPXr00Lx58zR16lRt375dklSvXj232jB58mQ99thj6ty5sz1Anjp1qp566il17txZX3/9tUaPHq26detqxIgRnj0AAOAlBMcAEMDeeecdh6D1mmuu0RtvvKEZM2Zo8uTJ9qCzRYsWmjVrliZNmmQPjjMzM+2vS0lJ0ezZs3X77bfr6aefVq1atRQTEyOTyaSEhIQqtS0zM1MZGRn2x9OmTdNjjz1mL2vevLl++OEH/etf/yI4BhA0CI4BIID16dNHzzzzjP1x3bp1JUnffPONPvvsM82ZM8f+nMVi0enTp3Xy5EnVqVNHH3/8sebOnatt27apqKhI58+fd3i+urp27Wr/94kTJ7Rr1y7deuutGj16tL38/PnziomJqfZ7AYCvEBwDQACrW7euWrZsWab8+PHjmjFjhkPPrU1UVJR2796t6667TnfccYfmzJmjuLg4/e9//9Ott96qs2fPVhgcm0wmGYbhUOZswp0tULe1R5Kee+45paamOtSzjZEGgGBAcAwAQei3v/2ttm/f7jRwlqSNGzequLhYjz32mCIirHOvX3/9dYc6tWrVksViKfPa+Ph4HThwwP54x44dOnnyZIXtady4sRITE/Xjjz9q2LBh7u4OAAQMgmMACEJTp07Vddddp4svvliDBg1SRESEvvnmG3333XeaPXu2WrZsqXPnzunJJ5/U9ddfr88++0wLFy502EZKSoqOHz+u1atXq2PHjqpTp47q1KmjP/zhD3rqqafUvXt3WSwW3XvvvapZs2albZoxY4buvvtuxcTEqG/fvjpz5oy++uor/fLLL8rKynL6muPHjzvkbc7NzdXmzZsVFxeniy++uHoHCQCqgFRuABCE0tPT9c477+jDDz/U7373O/3+97/XE088oWbNmkmSOnbsqMcff1wPPfSQLr30Ur366quaO3euwzZ69Oih22+/XTfddJPi4+P18MMPS5Iee+wxJScnq2fPnho6dKjuuecel8Yo33bbbXr++ef10ksvqUOHDurVq5cWLVpUYV7mr776Sp07d1bnzp0lSVlZWercubOmTp1a1UMDANViMi4cWAYAAACEKXqOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoMT/A5YPmZV/a1YTAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 185 }, { "metadata": { From 8846d64af5f4da7cc9a0d0b41d9ece6d872cc273 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Thu, 18 Jul 2024 17:11:07 +0200 Subject: [PATCH 12/21] feature (2D): add kron products and linear 2D basis qfe --- poetry.lock | 4143 ++++++++++++++++++++---------------- pyproject.toml | 2 +- qulearn/mps_kronprod.py | 104 + qulearn/qlayer.py | 145 ++ scratch/scratch5.ipynb | 259 ++- tests/test_mps_kronprod.py | 44 + 6 files changed, 2712 insertions(+), 1985 deletions(-) create mode 100644 qulearn/mps_kronprod.py create mode 100644 tests/test_mps_kronprod.py diff --git a/poetry.lock b/poetry.lock index 2bc3587..624ed9c 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,47 +1,48 @@ -# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "absl-py" -version = "1.4.0" +version = "2.1.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "absl-py-1.4.0.tar.gz", hash = "sha256:d2c244d01048ba476e7c080bd2c6df5e141d211de80223460d5b3b8a2a58433d"}, - {file = "absl_py-1.4.0-py3-none-any.whl", hash = "sha256:0d3fe606adfa4f7db64792dd4c7aee4ee0c38ab75dfd353b7a83ed3e957fcb47"}, + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, ] [[package]] name = "alabaster" -version = "0.7.13" -description = "A configurable sidebar-enabled Sphinx theme" +version = "0.7.16" +description = "A light, configurable Sphinx theme" optional = false -python-versions = ">=3.6" +python-versions = ">=3.9" files = [ - {file = "alabaster-0.7.13-py3-none-any.whl", hash = "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3"}, - {file = "alabaster-0.7.13.tar.gz", hash = "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2"}, + {file = "alabaster-0.7.16-py3-none-any.whl", hash = "sha256:b46733c07dce03ae4e150330b975c75737fa60f0a7c591b6c8bf4928a28e2c92"}, + {file = "alabaster-0.7.16.tar.gz", hash = "sha256:75a8b99c28a5dad50dd7f8ccdd447a121ddb3892da9e53d1ca5cca3106d58d65"}, ] [[package]] name = "anyio" -version = "3.7.0" +version = "4.4.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "anyio-3.7.0-py3-none-any.whl", hash = "sha256:eddca883c4175f14df8aedce21054bfca3adb70ffe76a9f607aef9d7fa2ea7f0"}, - {file = "anyio-3.7.0.tar.gz", hash = "sha256:275d9973793619a5374e1c89a4f4ad3f4b0a5510a2b5b939444bee8f4c4d37ce"}, + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] -exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} idna = ">=2.8" sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=6.1.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme", "sphinxcontrib-jquery"] -test = ["anyio[trio]", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (<0.22)"] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "appdirs" @@ -56,33 +57,34 @@ files = [ [[package]] name = "appnope" -version = "0.1.3" +version = "0.1.4" description = "Disable App Nap on macOS >= 10.9" optional = false -python-versions = "*" +python-versions = ">=3.6" files = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, ] [[package]] name = "argon2-cffi" -version = "21.3.0" -description = "The secure Argon2 password hashing algorithm." +version = "23.1.0" +description = "Argon2 for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, - {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, ] [package.dependencies] argon2-cffi-bindings = "*" [package.extras] -dev = ["cogapp", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "pre-commit", "pytest", "sphinx", "sphinx-notfound-page", "tomli"] -docs = ["furo", "sphinx", "sphinx-notfound-page"] -tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] [[package]] name = "argon2-cffi-bindings" @@ -123,34 +125,40 @@ tests = ["pytest"] [[package]] name = "arrow" -version = "1.2.3" +version = "1.3.0" description = "Better dates & times for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, - {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, ] [package.dependencies] python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] [[package]] name = "asttokens" -version = "2.2.1" +version = "2.4.1" description = "Annotate AST trees with source code positions" optional = false python-versions = "*" files = [ - {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, - {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, ] [package.dependencies] -six = "*" +six = ">=1.12.0" [package.extras] -test = ["astroid", "pytest"] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] [[package]] name = "astunparse" @@ -167,33 +175,48 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + [[package]] name = "attrs" -version = "23.1.0" +version = "23.2.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ - {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, - {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, + {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, + {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, ] [package.extras] cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[docs,tests]", "pre-commit"] +dev = ["attrs[tests]", "pre-commit"] docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] +tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] [[package]] name = "autograd" -version = "1.5" +version = "1.6.2" description = "Efficiently computes derivatives of numpy code." optional = false python-versions = "*" files = [ - {file = "autograd-1.5-py3-none-any.whl", hash = "sha256:a22a17e71c4a601359d544827762dd66d5ba50b287a8444d4f85ada1ee762ef6"}, - {file = "autograd-1.5.tar.gz", hash = "sha256:d80bd225154d1db13cb4eaccf7a18c358be72092641b68717f96fcf1d16acd0b"}, + {file = "autograd-1.6.2-py3-none-any.whl", hash = "sha256:208dde2a938e63b4f8f5049b1985505139e529068b0d26f8cd7771fd3eb145d5"}, + {file = "autograd-1.6.2.tar.gz", hash = "sha256:8731e08a0c4e389d8695a40072ada4512641c113b6cace8f4cfbe8eb7e9aedeb"}, ] [package.dependencies] @@ -202,67 +225,63 @@ numpy = ">=1.12" [[package]] name = "autoray" -version = "0.6.3" -description = "Write backend agnostic numeric code compatible with any numpy-ish array library." +version = "0.6.12" +description = "Abstract your array operations." optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "autoray-0.6.3-py3-none-any.whl", hash = "sha256:eb2d38186f443bea5e41dc757273fda2d2a1948dc7487668a6240072be0f4e08"}, - {file = "autoray-0.6.3.tar.gz", hash = "sha256:6729f49c8787778fd8bc2a3b57a625c8c21577c6e92628cad4b13aefd7531355"}, + {file = "autoray-0.6.12-py3-none-any.whl", hash = "sha256:3ed7a4abcec052bcbb4f0447c426d0a0b9b9fa03ab71e76eaa77747ca43ac3e2"}, + {file = "autoray-0.6.12.tar.gz", hash = "sha256:721328aa06fc3577155d988052614a7b4bd6e4d01b340695344031ee4abd2a1e"}, ] [package.extras] +docs = ["astroid (<3)", "furo", "ipython (!=8.7.0)", "myst-nb", "setuptools-scm", "sphinx (>=2.0)", "sphinx-autoapi", "sphinx-copybutton"] tests = ["coverage", "numpy", "pytest", "pytest-cov"] [[package]] name = "babel" -version = "2.12.1" +version = "2.15.0" description = "Internationalization utilities" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Babel-2.12.1-py3-none-any.whl", hash = "sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610"}, - {file = "Babel-2.12.1.tar.gz", hash = "sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455"}, + {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, + {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, ] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] [[package]] name = "beautifulsoup4" -version = "4.12.2" +version = "4.12.3" description = "Screen-scraping library" optional = false python-versions = ">=3.6.0" files = [ - {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, - {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, ] [package.dependencies] soupsieve = ">1.2" [package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] html5lib = ["html5lib"] lxml = ["lxml"] [[package]] name = "bleach" -version = "6.0.0" +version = "6.1.0" description = "An easy safelist-based HTML-sanitizing tool." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, - {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, ] [package.dependencies] @@ -270,101 +289,89 @@ six = ">=1.9.0" webencodings = "*" [package.extras] -css = ["tinycss2 (>=1.1.0,<1.2)"] +css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "cachetools" -version = "5.3.1" +version = "5.4.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.3.1-py3-none-any.whl", hash = "sha256:95ef631eeaea14ba2e36f06437f36463aac3a096799e876ee55e5cdccb102590"}, - {file = "cachetools-5.3.1.tar.gz", hash = "sha256:dce83f2d9b4e1f732a8cd44af8e8fab2dbe46201467fc98b3ef8f269092bf62b"}, + {file = "cachetools-5.4.0-py3-none-any.whl", hash = "sha256:3ae3b49a3d5e28a77a0be2b37dbcb89005058959cb2323858c2657c4a8cab474"}, + {file = "cachetools-5.4.0.tar.gz", hash = "sha256:b8adc2e7c07f105ced7bc56dbb6dfbe7c4a00acce20e2227b3f355be89bc6827"}, ] [[package]] name = "certifi" -version = "2023.5.7" +version = "2024.7.4" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"}, - {file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"}, + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, ] [[package]] name = "cffi" -version = "1.15.1" +version = "1.16.0" description = "Foreign Function Interface for Python calling C code." optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, - {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, - {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, - {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, - {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, - {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, - {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, - {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, - {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, - {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, - {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, - {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, - {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, - {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, - {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, - {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, - {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, - {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, - {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, ] [package.dependencies] @@ -372,116 +379,131 @@ pycparser = "*" [[package]] name = "charset-normalizer" -version = "3.1.0" +version = "3.3.2" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, - {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] [[package]] name = "cmake" -version = "3.26.4" +version = "3.30.0" description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software" optional = false -python-versions = "*" +python-versions = ">=3.7" files = [ - {file = "cmake-3.26.4-py2.py3-none-macosx_10_10_universal2.macosx_10_10_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:230227bf99f36614de84cdc92ffce3a50eb2803020e946f8da945a08fcf766bf"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2010_i686.manylinux_2_12_i686.whl", hash = "sha256:248a90816abfc10ff6e1109b54b8235c3e62f0ac92da16541753deb3b5ae063d"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:1b92f9f59f48c803106dbdd6750b0f571a0500e25d3a62c42ba84bb7a9240d10"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3175442985558d5415b97f264a6a1bb0af5ecfe10e3f7510257b1ea66bd33848"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1d887be5f1a3f17559a78707a6bc0560f4f8cb93cebb9d823d90a63e68bae09b"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:235d8eac93a28dcce5a1cd7130412885a2aa53d5735cb2230e0f26f589347b65"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:05cfd76c637eb22058c95e2dc383cadd4e0615e2643e637bb498a6cc24825790"}, - {file = "cmake-3.26.4-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:93015da6f1c0e1e5f2debf752f1803ea52d742d915ad674043d36e471f937507"}, - {file = "cmake-3.26.4-py2.py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:d726671ae7ae4aa6989e73d26b9f8f8e6af45163a26ea243949d72246566fdd8"}, - {file = "cmake-3.26.4-py2.py3-none-musllinux_1_1_i686.whl", hash = "sha256:432837364aa6cab2826a72e8a4cdd3586f5ac9ce495217ccd59aa70f2bba8120"}, - {file = "cmake-3.26.4-py2.py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:24110035aff586a04a6a6fcf4609270642e4f503c0620c962dff75b653f81414"}, - {file = "cmake-3.26.4-py2.py3-none-musllinux_1_1_s390x.whl", hash = "sha256:3e280e81713408987b7053f5b922c9f94e45668ca6efff1f02846309ca0b5b0f"}, - {file = "cmake-3.26.4-py2.py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:c3b0e72750c0f6c0373242c1299bc4ffdbebdd5004966ae6df0b2e9845aa6990"}, - {file = "cmake-3.26.4-py2.py3-none-win32.whl", hash = "sha256:e058e59154a1e490fb9425b420f87e28144292397607638d73e323509f7efae6"}, - {file = "cmake-3.26.4-py2.py3-none-win_amd64.whl", hash = "sha256:b7a6946c345497c14064e0c9585b30f5aaebbefdfc0b245b6bb5a978eb4fc85f"}, - {file = "cmake-3.26.4-py2.py3-none-win_arm64.whl", hash = "sha256:93a03bad17b9741acaff4a8651f8596496506602fa123e70fe67142f1b21ee2e"}, - {file = "cmake-3.26.4.tar.gz", hash = "sha256:d45b30b9ce7280829888c78650177ab525df2b6785e1a5b3d82b4c147d828c0e"}, + {file = "cmake-3.30.0-py3-none-macosx_10_10_x86_64.macosx_11_0_universal2.macosx_11_0_arm64.whl", hash = "sha256:9caf5839d041f3276596abf564267f7bbaf4b36731ad1f574f3d4c04d7f8c26b"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2c19c50ee12fb1fddb636401b60f301e873b1f0bc726968509556450496c26fb"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cc343a5fd4b3013e313083fd3226f4599210560e4d72743faa98057e9f41ccea"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cbe32916158e6ca2f45f6e1dc4578a99f5c9ab6cfc7e4f812fae284d54c4749d"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a981336efd0d97a02bab4aba90f989077516a42c2510a1ba216f1a5cc00656f"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59b8491d54064bf734e709001b1f79b1356a4c6c016f78445d5c0516785d096b"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:968e00571f6c07f36b2226a8dbd63eeba4888bcc2f9f30b1dbd2673f75b98564"}, + {file = "cmake-3.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e123afb34f08e38e76cd3303d1cea166f15ec7acd48353b6fe9d1175b10b4553"}, + {file = "cmake-3.30.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:d7c6265b3d066b25eaf07fc69b8672c28f531b59403cbabb864219f84098b378"}, + {file = "cmake-3.30.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:a6960b4b9e91bbcd68fc1a0395306a0eab68981752e667d4dc1721d9ad895358"}, + {file = "cmake-3.30.0-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:100da4b77c2133a426ec6bffc01efcbdd9c212665c0b9acaa20bcaf98dc75097"}, + {file = "cmake-3.30.0-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:e6e3ab9d48d5bf5564840e8152bcfe41a9318b1fe95b1410f8cc1f15800ff2bf"}, + {file = "cmake-3.30.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:bfb761c3dc275034d251494503e643dc8f23d15e8e6284eca1b2bfbde4634851"}, + {file = "cmake-3.30.0-py3-none-win32.whl", hash = "sha256:23253f76f44f0f69cf18c8343e56184ea3ab51e837198db691fbdef1bf986455"}, + {file = "cmake-3.30.0-py3-none-win_amd64.whl", hash = "sha256:aa9b483ff53804566909ec7ef8c25eaf4226c224756d731cb3dd28d9be2dea46"}, + {file = "cmake-3.30.0-py3-none-win_arm64.whl", hash = "sha256:fc9aba5cc8a631cbbe7a6b4b6b1f981346e70af35900459b4ac6a1b18f489568"}, + {file = "cmake-3.30.0.tar.gz", hash = "sha256:b6b9b584ce226dfde4d419578a2ae542e72409655c0ea2c989d5f9bb688cf024"}, ] [package.extras] -test = ["coverage (>=4.2)", "flake8 (>=3.0.4)", "path.py (>=11.5.0)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)", "pytest-runner (>=2.9)", "pytest-virtualenv (>=1.7.0)", "scikit-build (>=0.10.0)", "setuptools (>=28.0.0)", "virtualenv (>=15.0.3)", "wheel"] +test = ["coverage (>=4.2)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)"] [[package]] name = "colorama" @@ -496,117 +518,128 @@ files = [ [[package]] name = "comm" -version = "0.1.3" +version = "0.2.2" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "comm-0.1.3-py3-none-any.whl", hash = "sha256:16613c6211e20223f215fc6d3b266a247b6e2641bf4e0a3ad34cb1aff2aa3f37"}, - {file = "comm-0.1.3.tar.gz", hash = "sha256:a61efa9daffcfbe66fd643ba966f846a624e4e6d6767eda9cf6e993aadaab93e"}, + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, ] [package.dependencies] -traitlets = ">=5.3" +traitlets = ">=4" [package.extras] -lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"] test = ["pytest"] -typing = ["mypy (>=0.990)"] [[package]] name = "contourpy" -version = "1.1.0" +version = "1.2.1" description = "Python library for calculating contours of 2D quadrilateral grids" optional = false -python-versions = ">=3.8" -files = [ - {file = "contourpy-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:89f06eff3ce2f4b3eb24c1055a26981bffe4e7264acd86f15b97e40530b794bc"}, - {file = "contourpy-1.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dffcc2ddec1782dd2f2ce1ef16f070861af4fb78c69862ce0aab801495dda6a3"}, - {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25ae46595e22f93592d39a7eac3d638cda552c3e1160255258b695f7b58e5655"}, - {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17cfaf5ec9862bc93af1ec1f302457371c34e688fbd381f4035a06cd47324f48"}, - {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18a64814ae7bce73925131381603fff0116e2df25230dfc80d6d690aa6e20b37"}, - {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90c81f22b4f572f8a2110b0b741bb64e5a6427e0a198b2cdc1fbaf85f352a3aa"}, - {file = "contourpy-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:53cc3a40635abedbec7f1bde60f8c189c49e84ac180c665f2cd7c162cc454baa"}, - {file = "contourpy-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:1f795597073b09d631782e7245016a4323cf1cf0b4e06eef7ea6627e06a37ff2"}, - {file = "contourpy-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0b7b04ed0961647691cfe5d82115dd072af7ce8846d31a5fac6c142dcce8b882"}, - {file = "contourpy-1.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27bc79200c742f9746d7dd51a734ee326a292d77e7d94c8af6e08d1e6c15d545"}, - {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:052cc634bf903c604ef1a00a5aa093c54f81a2612faedaa43295809ffdde885e"}, - {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9382a1c0bc46230fb881c36229bfa23d8c303b889b788b939365578d762b5c18"}, - {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e5cec36c5090e75a9ac9dbd0ff4a8cf7cecd60f1b6dc23a374c7d980a1cd710e"}, - {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f0cbd657e9bde94cd0e33aa7df94fb73c1ab7799378d3b3f902eb8eb2e04a3a"}, - {file = "contourpy-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:181cbace49874f4358e2929aaf7ba84006acb76694102e88dd15af861996c16e"}, - {file = "contourpy-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fb3b7d9e6243bfa1efb93ccfe64ec610d85cfe5aec2c25f97fbbd2e58b531256"}, - {file = "contourpy-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bcb41692aa09aeb19c7c213411854402f29f6613845ad2453d30bf421fe68fed"}, - {file = "contourpy-1.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5d123a5bc63cd34c27ff9c7ac1cd978909e9c71da12e05be0231c608048bb2ae"}, - {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62013a2cf68abc80dadfd2307299bfa8f5aa0dcaec5b2954caeb5fa094171103"}, - {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0b6616375d7de55797d7a66ee7d087efe27f03d336c27cf1f32c02b8c1a5ac70"}, - {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:317267d915490d1e84577924bd61ba71bf8681a30e0d6c545f577363157e5e94"}, - {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d551f3a442655f3dcc1285723f9acd646ca5858834efeab4598d706206b09c9f"}, - {file = "contourpy-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7a117ce7df5a938fe035cad481b0189049e8d92433b4b33aa7fc609344aafa1"}, - {file = "contourpy-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d4f26b25b4f86087e7d75e63212756c38546e70f2a92d2be44f80114826e1cd4"}, - {file = "contourpy-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc00bb4225d57bff7ebb634646c0ee2a1298402ec10a5fe7af79df9a51c1bfd9"}, - {file = "contourpy-1.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:189ceb1525eb0655ab8487a9a9c41f42a73ba52d6789754788d1883fb06b2d8a"}, - {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f2931ed4741f98f74b410b16e5213f71dcccee67518970c42f64153ea9313b9"}, - {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:30f511c05fab7f12e0b1b7730ebdc2ec8deedcfb505bc27eb570ff47c51a8f15"}, - {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:143dde50520a9f90e4a2703f367cf8ec96a73042b72e68fcd184e1279962eb6f"}, - {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e94bef2580e25b5fdb183bf98a2faa2adc5b638736b2c0a4da98691da641316a"}, - {file = "contourpy-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ed614aea8462735e7d70141374bd7650afd1c3f3cb0c2dbbcbe44e14331bf002"}, - {file = "contourpy-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:438ba416d02f82b692e371858143970ed2eb6337d9cdbbede0d8ad9f3d7dd17d"}, - {file = "contourpy-1.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a698c6a7a432789e587168573a864a7ea374c6be8d4f31f9d87c001d5a843493"}, - {file = "contourpy-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:397b0ac8a12880412da3551a8cb5a187d3298a72802b45a3bd1805e204ad8439"}, - {file = "contourpy-1.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:a67259c2b493b00e5a4d0f7bfae51fb4b3371395e47d079a4446e9b0f4d70e76"}, - {file = "contourpy-1.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2b836d22bd2c7bb2700348e4521b25e077255ebb6ab68e351ab5aa91ca27e027"}, - {file = "contourpy-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084eaa568400cfaf7179b847ac871582199b1b44d5699198e9602ecbbb5f6104"}, - {file = "contourpy-1.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:911ff4fd53e26b019f898f32db0d4956c9d227d51338fb3b03ec72ff0084ee5f"}, - {file = "contourpy-1.1.0.tar.gz", hash = "sha256:e53046c3863828d21d531cc3b53786e6580eb1ba02477e8681009b6aa0870b21"}, +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"}, + {file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"}, + {file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"}, + {file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"}, + {file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"}, + {file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"}, + {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"}, + {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"}, + {file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"}, + {file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"}, + {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"}, ] [package.dependencies] -numpy = ">=1.16" +numpy = ">=1.20" [package.extras] bokeh = ["bokeh", "selenium"] -docs = ["furo", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.2.0)", "types-Pillow"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"] test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "wurlitzer"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] [[package]] name = "cycler" -version = "0.11.0" +version = "0.12.1" description = "Composable style cycles" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, - {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, ] +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + [[package]] name = "debugpy" -version = "1.6.7" +version = "1.8.2" description = "An implementation of the Debug Adapter Protocol for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "debugpy-1.6.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b3e7ac809b991006ad7f857f016fa92014445085711ef111fdc3f74f66144096"}, - {file = "debugpy-1.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3876611d114a18aafef6383695dfc3f1217c98a9168c1aaf1a02b01ec7d8d1e"}, - {file = "debugpy-1.6.7-cp310-cp310-win32.whl", hash = "sha256:33edb4afa85c098c24cc361d72ba7c21bb92f501104514d4ffec1fb36e09c01a"}, - {file = "debugpy-1.6.7-cp310-cp310-win_amd64.whl", hash = "sha256:ed6d5413474e209ba50b1a75b2d9eecf64d41e6e4501977991cdc755dc83ab0f"}, - {file = "debugpy-1.6.7-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:38ed626353e7c63f4b11efad659be04c23de2b0d15efff77b60e4740ea685d07"}, - {file = "debugpy-1.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279d64c408c60431c8ee832dfd9ace7c396984fd7341fa3116aee414e7dcd88d"}, - {file = "debugpy-1.6.7-cp37-cp37m-win32.whl", hash = "sha256:dbe04e7568aa69361a5b4c47b4493d5680bfa3a911d1e105fbea1b1f23f3eb45"}, - {file = "debugpy-1.6.7-cp37-cp37m-win_amd64.whl", hash = "sha256:f90a2d4ad9a035cee7331c06a4cf2245e38bd7c89554fe3b616d90ab8aab89cc"}, - {file = "debugpy-1.6.7-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:5224eabbbeddcf1943d4e2821876f3e5d7d383f27390b82da5d9558fd4eb30a9"}, - {file = "debugpy-1.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bae1123dff5bfe548ba1683eb972329ba6d646c3a80e6b4c06cd1b1dd0205e9b"}, - {file = "debugpy-1.6.7-cp38-cp38-win32.whl", hash = "sha256:9cd10cf338e0907fdcf9eac9087faa30f150ef5445af5a545d307055141dd7a4"}, - {file = "debugpy-1.6.7-cp38-cp38-win_amd64.whl", hash = "sha256:aaf6da50377ff4056c8ed470da24632b42e4087bc826845daad7af211e00faad"}, - {file = "debugpy-1.6.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:0679b7e1e3523bd7d7869447ec67b59728675aadfc038550a63a362b63029d2c"}, - {file = "debugpy-1.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de86029696e1b3b4d0d49076b9eba606c226e33ae312a57a46dca14ff370894d"}, - {file = "debugpy-1.6.7-cp39-cp39-win32.whl", hash = "sha256:d71b31117779d9a90b745720c0eab54ae1da76d5b38c8026c654f4a066b0130a"}, - {file = "debugpy-1.6.7-cp39-cp39-win_amd64.whl", hash = "sha256:c0ff93ae90a03b06d85b2c529eca51ab15457868a377c4cc40a23ab0e4e552a3"}, - {file = "debugpy-1.6.7-py2.py3-none-any.whl", hash = "sha256:53f7a456bc50706a0eaabecf2d3ce44c4d5010e46dfc65b6b81a518b42866267"}, - {file = "debugpy-1.6.7.zip", hash = "sha256:c4c2f0810fa25323abfdfa36cbbbb24e5c3b1a42cb762782de64439c575d67f2"}, + {file = "debugpy-1.8.2-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7ee2e1afbf44b138c005e4380097d92532e1001580853a7cb40ed84e0ef1c3d2"}, + {file = "debugpy-1.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f8c3f7c53130a070f0fc845a0f2cee8ed88d220d6b04595897b66605df1edd6"}, + {file = "debugpy-1.8.2-cp310-cp310-win32.whl", hash = "sha256:f179af1e1bd4c88b0b9f0fa153569b24f6b6f3de33f94703336363ae62f4bf47"}, + {file = "debugpy-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:0600faef1d0b8d0e85c816b8bb0cb90ed94fc611f308d5fde28cb8b3d2ff0fe3"}, + {file = "debugpy-1.8.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:8a13417ccd5978a642e91fb79b871baded925d4fadd4dfafec1928196292aa0a"}, + {file = "debugpy-1.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acdf39855f65c48ac9667b2801234fc64d46778021efac2de7e50907ab90c634"}, + {file = "debugpy-1.8.2-cp311-cp311-win32.whl", hash = "sha256:2cbd4d9a2fc5e7f583ff9bf11f3b7d78dfda8401e8bb6856ad1ed190be4281ad"}, + {file = "debugpy-1.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:d3408fddd76414034c02880e891ea434e9a9cf3a69842098ef92f6e809d09afa"}, + {file = "debugpy-1.8.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:5d3ccd39e4021f2eb86b8d748a96c766058b39443c1f18b2dc52c10ac2757835"}, + {file = "debugpy-1.8.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62658aefe289598680193ff655ff3940e2a601765259b123dc7f89c0239b8cd3"}, + {file = "debugpy-1.8.2-cp312-cp312-win32.whl", hash = "sha256:bd11fe35d6fd3431f1546d94121322c0ac572e1bfb1f6be0e9b8655fb4ea941e"}, + {file = "debugpy-1.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:15bc2f4b0f5e99bf86c162c91a74c0631dbd9cef3c6a1d1329c946586255e859"}, + {file = "debugpy-1.8.2-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:5a019d4574afedc6ead1daa22736c530712465c0c4cd44f820d803d937531b2d"}, + {file = "debugpy-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40f062d6877d2e45b112c0bbade9a17aac507445fd638922b1a5434df34aed02"}, + {file = "debugpy-1.8.2-cp38-cp38-win32.whl", hash = "sha256:c78ba1680f1015c0ca7115671fe347b28b446081dada3fedf54138f44e4ba031"}, + {file = "debugpy-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:cf327316ae0c0e7dd81eb92d24ba8b5e88bb4d1b585b5c0d32929274a66a5210"}, + {file = "debugpy-1.8.2-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:1523bc551e28e15147815d1397afc150ac99dbd3a8e64641d53425dba57b0ff9"}, + {file = "debugpy-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e24ccb0cd6f8bfaec68d577cb49e9c680621c336f347479b3fce060ba7c09ec1"}, + {file = "debugpy-1.8.2-cp39-cp39-win32.whl", hash = "sha256:7f8d57a98c5a486c5c7824bc0b9f2f11189d08d73635c326abef268f83950326"}, + {file = "debugpy-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:16c8dcab02617b75697a0a925a62943e26a0330da076e2a10437edd9f0bf3755"}, + {file = "debugpy-1.8.2-py2.py3-none-any.whl", hash = "sha256:16e16df3a98a35c63c3ab1e4d19be4cbc7fdda92d9ddc059294f18910928e0ca"}, + {file = "debugpy-1.8.2.zip", hash = "sha256:95378ed08ed2089221896b9b3a8d021e642c24edc8fef20e5d4342ca8be65c00"}, ] [[package]] @@ -633,13 +666,13 @@ files = [ [[package]] name = "docformatter" -version = "1.7.2" +version = "1.7.5" description = "Formats docstrings to follow PEP 257" optional = false python-versions = ">=3.7,<4.0" files = [ - {file = "docformatter-1.7.2-py3-none-any.whl", hash = "sha256:b59a4a07bdf0b474db6b6a9a0bbe123896676d86cd708552a2a6d6c2578ab6a4"}, - {file = "docformatter-1.7.2.tar.gz", hash = "sha256:c20c53b27581a3c9ae9f1d951d4801ff8e6d2afd8c8ff489aae31877e31f0573"}, + {file = "docformatter-1.7.5-py3-none-any.whl", hash = "sha256:a24f5545ed1f30af00d106f5d85dc2fce4959295687c24c8f39f5263afaf9186"}, + {file = "docformatter-1.7.5.tar.gz", hash = "sha256:ffed3da0daffa2e77f80ccba4f0e50bfa2755e1c10e130102571c890a61b246e"}, ] [package.dependencies] @@ -651,24 +684,24 @@ tomli = ["tomli (>=2.0.0,<3.0.0)"] [[package]] name = "docutils" -version = "0.20.1" +version = "0.21.2" description = "Docutils -- Python Documentation Utilities" optional = false -python-versions = ">=3.7" +python-versions = ">=3.9" files = [ - {file = "docutils-0.20.1-py3-none-any.whl", hash = "sha256:96f387a2c5562db4476f09f13bbab2192e764cac08ebbf3a34a95d9b1e4a59d6"}, - {file = "docutils-0.20.1.tar.gz", hash = "sha256:f08a4e276c3a1583a86dce3e34aba3fe04d02bba2dd51ed16106244e8a923e3b"}, + {file = "docutils-0.21.2-py3-none-any.whl", hash = "sha256:dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2"}, + {file = "docutils-0.21.2.tar.gz", hash = "sha256:3a6b18732edf182daa3cd12775bbb338cf5691468f91eeeb109deff6ebfa986f"}, ] [[package]] name = "exceptiongroup" -version = "1.1.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, - {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -676,27 +709,27 @@ test = ["pytest (>=6)"] [[package]] name = "executing" -version = "1.2.0" +version = "2.0.1" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = "*" +python-versions = ">=3.5" files = [ - {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, - {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, ] [package.extras] -tests = ["asttokens", "littleutils", "pytest", "rich"] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] [[package]] name = "fastjsonschema" -version = "2.17.1" +version = "2.20.0" description = "Fastest Python implementation of JSON schema" optional = false python-versions = "*" files = [ - {file = "fastjsonschema-2.17.1-py3-none-any.whl", hash = "sha256:4b90b252628ca695280924d863fe37234eebadc29c5360d322571233dc9746e0"}, - {file = "fastjsonschema-2.17.1.tar.gz", hash = "sha256:f4eeb8a77cef54861dbf7424ac8ce71306f12cbb086c45131bcba2c6a4f726e3"}, + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, ] [package.extras] @@ -704,85 +737,94 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "filelock" -version = "3.12.2" +version = "3.15.4" description = "A platform independent file lock." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "filelock-3.12.2-py3-none-any.whl", hash = "sha256:cbb791cdea2a72f23da6ac5b5269ab0a0d161e9ef0100e653b69049a7706d1ec"}, - {file = "filelock-3.12.2.tar.gz", hash = "sha256:002740518d8aa59a26b0c76e10fb8c6e15eae825d34b6fdf670333fd7b938d81"}, + {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, + {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, ] [package.extras] -docs = ["furo (>=2023.5.20)", "sphinx (>=7.0.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4.1)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] +docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] +typing = ["typing-extensions (>=4.8)"] [[package]] name = "flatbuffers" -version = "23.5.26" +version = "24.3.25" description = "The FlatBuffers serialization format for Python" optional = false python-versions = "*" files = [ - {file = "flatbuffers-23.5.26-py2.py3-none-any.whl", hash = "sha256:c0ff356da363087b915fde4b8b45bdda73432fc17cddb3c8157472eab1422ad1"}, - {file = "flatbuffers-23.5.26.tar.gz", hash = "sha256:9ea1144cac05ce5d86e2859f431c6cd5e66cd9c78c558317c7955fb8d4c78d89"}, + {file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"}, + {file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"}, ] [[package]] name = "fonttools" -version = "4.40.0" +version = "4.53.1" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.40.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:b802dcbf9bcff74672f292b2466f6589ab8736ce4dcf36f48eb994c2847c4b30"}, - {file = "fonttools-4.40.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7f6e3fa3da923063c286320e728ba2270e49c73386e3a711aa680f4b0747d692"}, - {file = "fonttools-4.40.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fdf60f8a5c6bcce7d024a33f7e4bc7921f5b74e8ea13bccd204f2c8b86f3470"}, - {file = "fonttools-4.40.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91784e21a1a085fac07c6a407564f4a77feb471b5954c9ee55a4f9165151f6c1"}, - {file = "fonttools-4.40.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:05171f3c546f64d78569f10adc0de72561882352cac39ec7439af12304d8d8c0"}, - {file = "fonttools-4.40.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7449e5e306f3a930a8944c85d0cbc8429cba13503372a1a40f23124d6fb09b58"}, - {file = "fonttools-4.40.0-cp310-cp310-win32.whl", hash = "sha256:bae8c13abbc2511e9a855d2142c0ab01178dd66b1a665798f357da0d06253e0d"}, - {file = "fonttools-4.40.0-cp310-cp310-win_amd64.whl", hash = "sha256:425b74a608427499b0e45e433c34ddc350820b6f25b7c8761963a08145157a66"}, - {file = "fonttools-4.40.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:00ab569b2a3e591e00425023ade87e8fef90380c1dde61be7691cb524ca5f743"}, - {file = "fonttools-4.40.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:18ea64ac43e94c9e0c23d7a9475f1026be0e25b10dda8f236fc956188761df97"}, - {file = "fonttools-4.40.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:022c4a16b412293e7f1ce21b8bab7a6f9d12c4ffdf171fdc67122baddb973069"}, - {file = "fonttools-4.40.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530c5d35109f3e0cea2535742d6a3bc99c0786cf0cbd7bb2dc9212387f0d908c"}, - {file = "fonttools-4.40.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5e00334c66f4e83535384cb5339526d01d02d77f142c23b2f97bd6a4f585497a"}, - {file = "fonttools-4.40.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb52c10fda31159c22c7ed85074e05f8b97da8773ea461706c273e31bcbea836"}, - {file = "fonttools-4.40.0-cp311-cp311-win32.whl", hash = "sha256:6a8d71b9a5c884c72741868e845c0e563c5d83dcaf10bb0ceeec3b4b2eb14c67"}, - {file = "fonttools-4.40.0-cp311-cp311-win_amd64.whl", hash = "sha256:15abb3d055c1b2dff9ce376b6c3db10777cb74b37b52b78f61657634fd348a0d"}, - {file = "fonttools-4.40.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14037c31138fbd21847ad5e5441dfdde003e0a8f3feb5812a1a21fd1c255ffbd"}, - {file = "fonttools-4.40.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:94c915f6716589f78bc00fbc14c5b8de65cfd11ee335d32504f1ef234524cb24"}, - {file = "fonttools-4.40.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37467cee0f32cada2ec08bc16c9c31f9b53ea54b2f5604bf25a1246b5f50593a"}, - {file = "fonttools-4.40.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56d4d85f5374b45b08d2f928517d1e313ea71b4847240398decd0ab3ebbca885"}, - {file = "fonttools-4.40.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8c4305b171b61040b1ee75d18f9baafe58bd3b798d1670078efe2c92436bfb63"}, - {file = "fonttools-4.40.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a954b90d1473c85a22ecf305761d9fd89da93bbd31dae86e7dea436ad2cb5dc9"}, - {file = "fonttools-4.40.0-cp38-cp38-win32.whl", hash = "sha256:1bc4c5b147be8dbc5df9cc8ac5e93ee914ad030fe2a201cc8f02f499db71011d"}, - {file = "fonttools-4.40.0-cp38-cp38-win_amd64.whl", hash = "sha256:8a917828dbfdb1cbe50cf40eeae6fbf9c41aef9e535649ed8f4982b2ef65c091"}, - {file = "fonttools-4.40.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:882983279bf39afe4e945109772c2ffad2be2c90983d6559af8b75c19845a80a"}, - {file = "fonttools-4.40.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c55f1b4109dbc3aeb496677b3e636d55ef46dc078c2a5e3f3db4e90f1c6d2907"}, - {file = "fonttools-4.40.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec468c022d09f1817c691cf884feb1030ef6f1e93e3ea6831b0d8144c06480d1"}, - {file = "fonttools-4.40.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d5adf4ba114f028fc3f5317a221fd8b0f4ef7a2e5524a2b1e0fd891b093791a"}, - {file = "fonttools-4.40.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aa83b3f151bc63970f39b2b42a06097c5a22fd7ed9f7ba008e618de4503d3895"}, - {file = "fonttools-4.40.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97d95b8301b62bdece1af943b88bcb3680fd385f88346a4a899ee145913b414a"}, - {file = "fonttools-4.40.0-cp39-cp39-win32.whl", hash = "sha256:1a003608400dd1cca3e089e8c94973c6b51a4fb1ef00ff6d7641617b9242e637"}, - {file = "fonttools-4.40.0-cp39-cp39-win_amd64.whl", hash = "sha256:7961575221e3da0841c75da53833272c520000d76f7f71274dbf43370f8a1065"}, - {file = "fonttools-4.40.0-py3-none-any.whl", hash = "sha256:200729d12461e2038700d31f0d49ad5a7b55855dec7525074979a06b46f88505"}, - {file = "fonttools-4.40.0.tar.gz", hash = "sha256:337b6e83d7ee73c40ea62407f2ce03b07c3459e213b6f332b94a69923b9e1cb9"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, + {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, + {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, + {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, + {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, + {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, + {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, + {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, + {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, + {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, + {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, + {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, + {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, ] [package.extras] -all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.0.0)", "xattr", "zopfli (>=0.1.4)"] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["munkres", "scipy"] -lxml = ["lxml (>=4.0,<5)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] pathops = ["skia-pathops (>=0.5.0)"] plot = ["matplotlib"] repacker = ["uharfbuzz (>=0.23.0)"] symfont = ["sympy"] type1 = ["xattr"] ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=15.0.0)"] +unicode = ["unicodedata2 (>=15.1.0)"] woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] [[package]] @@ -798,68 +840,26 @@ files = [ [[package]] name = "future" -version = "0.18.3" +version = "1.0.0" description = "Clean single-source support for Python 3 and 2" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ - {file = "future-0.18.3.tar.gz", hash = "sha256:34a17436ed1e96697a86f9de3d15a3b0be01d8bc8de9c1dffd59fb8234ed5307"}, + {file = "future-1.0.0-py3-none-any.whl", hash = "sha256:929292d34f5872e70396626ef385ec22355a1fae8ad29e1a734c3e43f9fbc216"}, + {file = "future-1.0.0.tar.gz", hash = "sha256:bd2968309307861edae1458a4f8a4f3598c03be43b97521076aebf5d94c07b05"}, ] [[package]] name = "gast" -version = "0.4.0" +version = "0.6.0" description = "Python AST that abstracts the underlying Python version" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, - {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, -] - -[[package]] -name = "google-auth" -version = "2.20.0" -description = "Google Authentication Library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "google-auth-2.20.0.tar.gz", hash = "sha256:030af34138909ccde0fbce611afc178f1d65d32fbff281f25738b1fe1c6f3eaa"}, - {file = "google_auth-2.20.0-py2.py3-none-any.whl", hash = "sha256:23b7b0950fcda519bfb6692bf0d5289d2ea49fc143717cc7188458ec620e63fa"}, -] - -[package.dependencies] -cachetools = ">=2.0.0,<6.0" -pyasn1-modules = ">=0.2.1" -rsa = ">=3.1.4,<5" -six = ">=1.9.0" -urllib3 = "<2.0" - -[package.extras] -aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] -pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] -reauth = ["pyu2f (>=0.1.5)"] -requests = ["requests (>=2.20.0,<3.0.0.dev0)"] - -[[package]] -name = "google-auth-oauthlib" -version = "1.0.0" -description = "Google Authentication Library" -optional = false -python-versions = ">=3.6" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7" files = [ - {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, - {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, + {file = "gast-0.6.0-py3-none-any.whl", hash = "sha256:52b182313f7330389f72b069ba00f174cfe2a06411099547288839c6cbafbd54"}, + {file = "gast-0.6.0.tar.gz", hash = "sha256:88fc5300d32c7ac6ca7b515310862f71e6fdf2c029bbec7c66c0f5dd47b6b1fb"}, ] -[package.dependencies] -google-auth = ">=2.15.0" -requests-oauthlib = ">=0.7.0" - -[package.extras] -tool = ["click (>=6.0.0)"] - [[package]] name = "google-pasta" version = "0.2.0" @@ -877,119 +877,176 @@ six = "*" [[package]] name = "graphviz" -version = "0.20.1" +version = "0.20.3" description = "Simple Python interface for Graphviz" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "graphviz-0.20.1-py3-none-any.whl", hash = "sha256:587c58a223b51611c0cf461132da386edd896a029524ca61a1462b880bf97977"}, - {file = "graphviz-0.20.1.zip", hash = "sha256:8c58f14adaa3b947daf26c19bc1e98c4e0702cdc31cf99153e6f06904d492bf8"}, + {file = "graphviz-0.20.3-py3-none-any.whl", hash = "sha256:81f848f2904515d8cd359cc611faba817598d2feaac4027b266aa3eda7b3dde5"}, + {file = "graphviz-0.20.3.zip", hash = "sha256:09d6bc81e6a9fa392e7ba52135a9d49f1ed62526f96499325930e87ca1b5925d"}, ] [package.extras] dev = ["flake8", "pep8-naming", "tox (>=3)", "twine", "wheel"] -docs = ["sphinx (>=5)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] -test = ["coverage", "mock (>=4)", "pytest (>=7)", "pytest-cov", "pytest-mock (>=3)"] +docs = ["sphinx (>=5,<7)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] +test = ["coverage", "pytest (>=7,<8.1)", "pytest-cov", "pytest-mock (>=3)"] [[package]] name = "grpcio" -version = "1.54.2" +version = "1.65.1" description = "HTTP/2-based RPC framework" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "grpcio-1.54.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:40e1cbf69d6741b40f750f3cccc64326f927ac6145a9914d33879e586002350c"}, - {file = "grpcio-1.54.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:2288d76e4d4aa7ef3fe7a73c1c470b66ea68e7969930e746a8cd8eca6ef2a2ea"}, - {file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:c0e3155fc5335ec7b3b70f15230234e529ca3607b20a562b6c75fb1b1218874c"}, - {file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bf88004fe086c786dc56ef8dd6cb49c026833fdd6f42cb853008bce3f907148"}, - {file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2be88c081e33f20630ac3343d8ad9f1125f32987968e9c8c75c051c9800896e8"}, - {file = "grpcio-1.54.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:33d40954199bddbb6a78f8f6f2b2082660f381cd2583ec860a6c2fa7c8400c08"}, - {file = "grpcio-1.54.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b52d00d1793d290c81ad6a27058f5224a7d5f527867e5b580742e1bd211afeee"}, - {file = "grpcio-1.54.2-cp310-cp310-win32.whl", hash = "sha256:881d058c5ccbea7cc2c92085a11947b572498a27ef37d3eef4887f499054dca8"}, - {file = "grpcio-1.54.2-cp310-cp310-win_amd64.whl", hash = "sha256:0212e2f7fdf7592e4b9d365087da30cb4d71e16a6f213120c89b4f8fb35a3ab3"}, - {file = "grpcio-1.54.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:1e623e0cf99a0ac114f091b3083a1848dbc64b0b99e181473b5a4a68d4f6f821"}, - {file = "grpcio-1.54.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:66233ccd2a9371158d96e05d082043d47dadb18cbb294dc5accfdafc2e6b02a7"}, - {file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:4cb283f630624ebb16c834e5ac3d7880831b07cbe76cb08ab7a271eeaeb8943e"}, - {file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a1e601ee31ef30a9e2c601d0867e236ac54c922d32ed9f727b70dd5d82600d5"}, - {file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8da84bbc61a4e92af54dc96344f328e5822d574f767e9b08e1602bb5ddc254a"}, - {file = "grpcio-1.54.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5008964885e8d23313c8e5ea0d44433be9bfd7e24482574e8cc43c02c02fc796"}, - {file = "grpcio-1.54.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a2f5a1f1080ccdc7cbaf1171b2cf384d852496fe81ddedeb882d42b85727f610"}, - {file = "grpcio-1.54.2-cp311-cp311-win32.whl", hash = "sha256:b74ae837368cfffeb3f6b498688a123e6b960951be4dec0e869de77e7fa0439e"}, - {file = "grpcio-1.54.2-cp311-cp311-win_amd64.whl", hash = "sha256:8cdbcbd687e576d48f7886157c95052825ca9948c0ed2afdc0134305067be88b"}, - {file = "grpcio-1.54.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:782f4f8662a2157c4190d0f99eaaebc602899e84fb1e562a944e5025929e351c"}, - {file = "grpcio-1.54.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:714242ad0afa63a2e6dabd522ae22e1d76e07060b5af2ddda5474ba4f14c2c94"}, - {file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:f900ed4ad7a0f1f05d35f955e0943944d5a75f607a836958c6b8ab2a81730ef2"}, - {file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96a41817d2c763b1d0b32675abeb9179aa2371c72aefdf74b2d2b99a1b92417b"}, - {file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70fcac7b94f4c904152809a050164650ac81c08e62c27aa9f156ac518029ebbe"}, - {file = "grpcio-1.54.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:fd6c6c29717724acf9fc1847c4515d57e4dc12762452457b9cb37461f30a81bb"}, - {file = "grpcio-1.54.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c2392f5b5d84b71d853918687d806c1aa4308109e5ca158a16e16a6be71041eb"}, - {file = "grpcio-1.54.2-cp37-cp37m-win_amd64.whl", hash = "sha256:51630c92591d6d3fe488a7c706bd30a61594d144bac7dee20c8e1ce78294f474"}, - {file = "grpcio-1.54.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:b04202453941a63b36876a7172b45366dc0cde10d5fd7855c0f4a4e673c0357a"}, - {file = "grpcio-1.54.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:89dde0ac72a858a44a2feb8e43dc68c0c66f7857a23f806e81e1b7cc7044c9cf"}, - {file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:09d4bfd84686cd36fd11fd45a0732c7628308d094b14d28ea74a81db0bce2ed3"}, - {file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7fc2b4edb938c8faa4b3c3ea90ca0dd89b7565a049e8e4e11b77e60e4ed2cc05"}, - {file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61f7203e2767800edee7a1e1040aaaf124a35ce0c7fe0883965c6b762defe598"}, - {file = "grpcio-1.54.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e416c8baf925b5a1aff31f7f5aecc0060b25d50cce3a5a7255dc5cf2f1d4e5eb"}, - {file = "grpcio-1.54.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dc80c9c6b608bf98066a038e0172013a49cfa9a08d53335aefefda2c64fc68f4"}, - {file = "grpcio-1.54.2-cp38-cp38-win32.whl", hash = "sha256:8d6192c37a30a115f4663592861f50e130caed33efc4eec24d92ec881c92d771"}, - {file = "grpcio-1.54.2-cp38-cp38-win_amd64.whl", hash = "sha256:46a057329938b08e5f0e12ea3d7aed3ecb20a0c34c4a324ef34e00cecdb88a12"}, - {file = "grpcio-1.54.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:2296356b5c9605b73ed6a52660b538787094dae13786ba53080595d52df13a98"}, - {file = "grpcio-1.54.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:c72956972e4b508dd39fdc7646637a791a9665b478e768ffa5f4fe42123d5de1"}, - {file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:9bdbb7624d65dc0ed2ed8e954e79ab1724526f09b1efa88dcd9a1815bf28be5f"}, - {file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c44e1a765b31e175c391f22e8fc73b2a2ece0e5e6ff042743d8109b5d2eff9f"}, - {file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cc928cfe6c360c1df636cf7991ab96f059666ac7b40b75a769410cc6217df9c"}, - {file = "grpcio-1.54.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a08920fa1a97d4b8ee5db2f31195de4a9def1a91bc003544eb3c9e6b8977960a"}, - {file = "grpcio-1.54.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4864f99aac207e3e45c5e26c6cbb0ad82917869abc2f156283be86c05286485c"}, - {file = "grpcio-1.54.2-cp39-cp39-win32.whl", hash = "sha256:b38b3de8cff5bc70f8f9c615f51b48eff7313fc9aca354f09f81b73036e7ddfa"}, - {file = "grpcio-1.54.2-cp39-cp39-win_amd64.whl", hash = "sha256:be48496b0e00460717225e7680de57c38be1d8629dc09dadcd1b3389d70d942b"}, - {file = "grpcio-1.54.2.tar.gz", hash = "sha256:50a9f075eeda5097aa9a182bb3877fe1272875e45370368ac0ee16ab9e22d019"}, + {file = "grpcio-1.65.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:3dc5f928815b8972fb83b78d8db5039559f39e004ec93ebac316403fe031a062"}, + {file = "grpcio-1.65.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:8333ca46053c35484c9f2f7e8d8ec98c1383a8675a449163cea31a2076d93de8"}, + {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:7af64838b6e615fff0ec711960ed9b6ee83086edfa8c32670eafb736f169d719"}, + {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbb64b4166362d9326f7efbf75b1c72106c1aa87f13a8c8b56a1224fac152f5c"}, + {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8422dc13ad93ec8caa2612b5032a2b9cd6421c13ed87f54db4a3a2c93afaf77"}, + {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4effc0562b6c65d4add6a873ca132e46ba5e5a46f07c93502c37a9ae7f043857"}, + {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a6c71575a2fedf259724981fd73a18906513d2f306169c46262a5bae956e6364"}, + {file = "grpcio-1.65.1-cp310-cp310-win32.whl", hash = "sha256:34966cf526ef0ea616e008d40d989463e3db157abb213b2f20c6ce0ae7928875"}, + {file = "grpcio-1.65.1-cp310-cp310-win_amd64.whl", hash = "sha256:ca931de5dd6d9eb94ff19a2c9434b23923bce6f767179fef04dfa991f282eaad"}, + {file = "grpcio-1.65.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:bbb46330cc643ecf10bd9bd4ca8e7419a14b6b9dedd05f671c90fb2c813c6037"}, + {file = "grpcio-1.65.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d827a6fb9215b961eb73459ad7977edb9e748b23e3407d21c845d1d8ef6597e5"}, + {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:6e71aed8835f8d9fbcb84babc93a9da95955d1685021cceb7089f4f1e717d719"}, + {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a1c84560b3b2d34695c9ba53ab0264e2802721c530678a8f0a227951f453462"}, + {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27adee2338d697e71143ed147fe286c05810965d5d30ec14dd09c22479bfe48a"}, + {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f62652ddcadc75d0e7aa629e96bb61658f85a993e748333715b4ab667192e4e8"}, + {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:71a05fd814700dd9cb7d9a507f2f6a1ef85866733ccaf557eedacec32d65e4c2"}, + {file = "grpcio-1.65.1-cp311-cp311-win32.whl", hash = "sha256:b590f1ad056294dfaeac0b7e1b71d3d5ace638d8dd1f1147ce4bd13458783ba8"}, + {file = "grpcio-1.65.1-cp311-cp311-win_amd64.whl", hash = "sha256:12e9bdf3b5fd48e5fbe5b3da382ad8f97c08b47969f3cca81dd9b36b86ed39e2"}, + {file = "grpcio-1.65.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:54cb822e177374b318b233e54b6856c692c24cdbd5a3ba5335f18a47396bac8f"}, + {file = "grpcio-1.65.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aaf3c54419a28d45bd1681372029f40e5bfb58e5265e3882eaf21e4a5f81a119"}, + {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:557de35bdfbe8bafea0a003dbd0f4da6d89223ac6c4c7549d78e20f92ead95d9"}, + {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8bfd95ef3b097f0cc86ade54eafefa1c8ed623aa01a26fbbdcd1a3650494dd11"}, + {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e6a8f3d6c41e6b642870afe6cafbaf7b61c57317f9ec66d0efdaf19db992b90"}, + {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:1faaf7355ceed07ceaef0b9dcefa4c98daf1dd8840ed75c2de128c3f4a4d859d"}, + {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:60f1f38eed830488ad2a1b11579ef0f345ff16fffdad1d24d9fbc97ba31804ff"}, + {file = "grpcio-1.65.1-cp312-cp312-win32.whl", hash = "sha256:e75acfa52daf5ea0712e8aa82f0003bba964de7ae22c26d208cbd7bc08500177"}, + {file = "grpcio-1.65.1-cp312-cp312-win_amd64.whl", hash = "sha256:ff5a84907e51924973aa05ed8759210d8cdae7ffcf9e44fd17646cf4a902df59"}, + {file = "grpcio-1.65.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:1fbd6331f18c3acd7e09d17fd840c096f56eaf0ef830fbd50af45ae9dc8dfd83"}, + {file = "grpcio-1.65.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:de5b6be29116e094c5ef9d9e4252e7eb143e3d5f6bd6d50a78075553ab4930b0"}, + {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:e4a3cdba62b2d6aeae6027ae65f350de6dc082b72e6215eccf82628e79efe9ba"}, + {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:941c4869aa229d88706b78187d60d66aca77fe5c32518b79e3c3e03fc26109a2"}, + {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f40cebe5edb518d78b8131e87cb83b3ee688984de38a232024b9b44e74ee53d3"}, + {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2ca684ba331fb249d8a1ce88db5394e70dbcd96e58d8c4b7e0d7b141a453dce9"}, + {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8558f0083ddaf5de64a59c790bffd7568e353914c0c551eae2955f54ee4b857f"}, + {file = "grpcio-1.65.1-cp38-cp38-win32.whl", hash = "sha256:8d8143a3e3966f85dce6c5cc45387ec36552174ba5712c5dc6fcc0898fb324c0"}, + {file = "grpcio-1.65.1-cp38-cp38-win_amd64.whl", hash = "sha256:76e81a86424d6ca1ce7c16b15bdd6a964a42b40544bf796a48da241fdaf61153"}, + {file = "grpcio-1.65.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:cb5175f45c980ff418998723ea1b3869cce3766d2ab4e4916fbd3cedbc9d0ed3"}, + {file = "grpcio-1.65.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b12c1aa7b95abe73b3e04e052c8b362655b41c7798da69f1eaf8d186c7d204df"}, + {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:3019fb50128b21a5e018d89569ffaaaa361680e1346c2f261bb84a91082eb3d3"}, + {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ae15275ed98ea267f64ee9ddedf8ecd5306a5b5bb87972a48bfe24af24153e8"}, + {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f096ffb881f37e8d4f958b63c74bfc400c7cebd7a944b027357cd2fb8d91a57"}, + {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2f56b5a68fdcf17a0a1d524bf177218c3c69b3947cb239ea222c6f1867c3ab68"}, + {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:941596d419b9736ab548aa0feb5bbba922f98872668847bf0720b42d1d227b9e"}, + {file = "grpcio-1.65.1-cp39-cp39-win32.whl", hash = "sha256:5fd7337a823b890215f07d429f4f193d24b80d62a5485cf88ee06648591a0c57"}, + {file = "grpcio-1.65.1-cp39-cp39-win_amd64.whl", hash = "sha256:1bceeec568372cbebf554eae1b436b06c2ff24cfaf04afade729fb9035408c6c"}, + {file = "grpcio-1.65.1.tar.gz", hash = "sha256:3c492301988cd720cd145d84e17318d45af342e29ef93141228f9cd73222368b"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.54.2)"] +protobuf = ["grpcio-tools (>=1.65.1)"] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] [[package]] name = "h5py" -version = "3.9.0" +version = "3.11.0" description = "Read and write HDF5 files from Python" optional = false python-versions = ">=3.8" files = [ - {file = "h5py-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eb7bdd5e601dd1739698af383be03f3dad0465fe67184ebd5afca770f50df9d6"}, - {file = "h5py-3.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:78e44686334cbbf2dd21d9df15823bc38663f27a3061f6a032c68a3e30c47bf7"}, - {file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68b41efd110ce9af1cbe6fa8af9f4dcbadace6db972d30828b911949e28fadd"}, - {file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12aa556d540f11a2cae53ea7cfb94017353bd271fb3962e1296b342f6550d1b8"}, - {file = "h5py-3.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:d97409e17915798029e297a84124705c8080da901307ea58f29234e09b073ddc"}, - {file = "h5py-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:551e358db05a874a0f827b22e95b30092f2303edc4b91bb62ad2f10e0236e1a0"}, - {file = "h5py-3.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6822a814b9d8b8363ff102f76ea8d026f0ca25850bb579d85376029ee3e73b93"}, - {file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54f01202cdea754ab4227dd27014bdbd561a4bbe4b631424fd812f7c2ce9c6ac"}, - {file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64acceaf6aff92af091a4b83f6dee3cf8d3061f924a6bb3a33eb6c4658a8348b"}, - {file = "h5py-3.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:804c7fb42a34c8ab3a3001901c977a5c24d2e9c586a0f3e7c0a389130b4276fc"}, - {file = "h5py-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8d9492391ff5c3c80ec30ae2fe82a3f0efd1e750833739c25b0d090e3be1b095"}, - {file = "h5py-3.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9da9e7e63376c32704e37ad4cea2dceae6964cee0d8515185b3ab9cbd6b947bc"}, - {file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4e20897c88759cbcbd38fb45b507adc91af3e0f67722aa302d71f02dd44d286"}, - {file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbf5225543ca35ce9f61c950b73899a82be7ba60d58340e76d0bd42bf659235a"}, - {file = "h5py-3.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:36408f8c62f50007d14e000f9f3acf77e103b9e932c114cbe52a3089e50ebf94"}, - {file = "h5py-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:23e74b878bbe1653ab34ca49b83cac85529cd0b36b9d625516c5830cc5ca2eac"}, - {file = "h5py-3.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f457089c5d524b7998e3649bc63240679b8fb0a3859ea53bbb06841f3d755f1"}, - {file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6284061f3214335e1eec883a6ee497dbe7a79f19e6a57fed2dd1f03acd5a8cb"}, - {file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7a745efd0d56076999b52e8da5fad5d30823bac98b59c68ae75588d09991a"}, - {file = "h5py-3.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:79bbca34696c6f9eeeb36a91776070c49a060b2879828e2c8fa6c58b8ed10dd1"}, - {file = "h5py-3.9.0.tar.gz", hash = "sha256:e604db6521c1e367c6bd7fad239c847f53cc46646f2d2651372d05ae5e95f817"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, ] [package.dependencies] numpy = ">=1.17.3" +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.0" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, + {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] + [[package]] name = "idna" -version = "3.4" +version = "3.7" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.5" files = [ - {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, - {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] [[package]] @@ -1005,40 +1062,40 @@ files = [ [[package]] name = "importlib-metadata" -version = "6.7.0" +version = "8.0.0" description = "Read metadata from Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "importlib_metadata-6.7.0-py3-none-any.whl", hash = "sha256:cb52082e659e97afc5dac71e79de97d8681de3aa07ff18578330904a9d18e5b5"}, - {file = "importlib_metadata-6.7.0.tar.gz", hash = "sha256:1aaf550d4f73e5d6783e7acb77aec43d49da8017410afae93822cc9cca98c4d4"}, + {file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"}, + {file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] [[package]] name = "importlib-resources" -version = "5.12.0" +version = "6.4.0" description = "Read resources from Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, - {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, + {file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"}, + {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["jaraco.test (>=5.4)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] [[package]] name = "iniconfig" @@ -1073,13 +1130,13 @@ test = ["nbval (>=0.9.2)", "pytest (>=4)", "pytest-cov"] [[package]] name = "ipykernel" -version = "6.23.2" +version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.23.2-py3-none-any.whl", hash = "sha256:7ccb6e2d32fd958c21453db494c914f3474908a2fdefd99ab548a5375b548d1f"}, - {file = "ipykernel-6.23.2.tar.gz", hash = "sha256:fcfb67c5b504aa1bfcda1c5b3716636239e0f7b9290958f1c558c79b4c0e7ed5"}, + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, ] [package.dependencies] @@ -1093,7 +1150,7 @@ matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" -pyzmq = ">=20" +pyzmq = ">=24" tornado = ">=6.1" traitlets = ">=5.4.0" @@ -1102,46 +1159,44 @@ cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" -version = "8.12.2" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.2-py3-none-any.whl", hash = "sha256:ea8801f15dfe4ffb76dea1b09b847430ffd70d827b41735c64a0638a04103bfc"}, - {file = "ipython-8.12.2.tar.gz", hash = "sha256:c7b80eb7f5a855a88efc971fda506ff7a91c280b42cdae26643e0f601ea281ea"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "ipython-genutils" @@ -1190,65 +1245,34 @@ files = [ [package.dependencies] arrow = ">=0.15.0" -[[package]] -name = "jax" -version = "0.4.12" -description = "Differentiate, compile, and transform Numpy code." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jax-0.4.12.tar.gz", hash = "sha256:d2de9a2388ffe002f16506d3ad1cc6e34d7536b98948e49c7e05bbcfe8e57998"}, -] - -[package.dependencies] -importlib_metadata = {version = ">=4.6", markers = "python_version < \"3.10\""} -ml_dtypes = ">=0.1.0" -numpy = ">=1.21" -opt_einsum = "*" -scipy = ">=1.7" - -[package.extras] -australis = ["protobuf (>=3.13,<4)"] -ci = ["jaxlib (==0.4.11)"] -cpu = ["jaxlib (==0.4.12)"] -cuda = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-cudnn82 = ["jaxlib (==0.4.12+cuda11.cudnn82)"] -cuda11-cudnn86 = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-local = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-pip = ["jaxlib (==0.4.12+cuda11.cudnn86)", "nvidia-cublas-cu11 (>=11.11)", "nvidia-cuda-cupti-cu11 (>=11.8)", "nvidia-cuda-nvcc-cu11 (>=11.8)", "nvidia-cuda-runtime-cu11 (>=11.8)", "nvidia-cudnn-cu11 (>=8.8)", "nvidia-cufft-cu11 (>=10.9)", "nvidia-cusolver-cu11 (>=11.4)", "nvidia-cusparse-cu11 (>=11.7)"] -cuda12-local = ["jaxlib (==0.4.12+cuda12.cudnn88)"] -cuda12-pip = ["jaxlib (==0.4.12+cuda12.cudnn88)", "nvidia-cublas-cu12", "nvidia-cuda-cupti-cu12", "nvidia-cuda-nvcc-cu12", "nvidia-cuda-runtime-cu12", "nvidia-cudnn-cu12 (>=8.9)", "nvidia-cufft-cu12", "nvidia-cusolver-cu12", "nvidia-cusparse-cu12"] -minimum-jaxlib = ["jaxlib (==0.4.11)"] -tpu = ["jaxlib (==0.4.12)", "libtpu-nightly (==0.1.dev20230608)"] - [[package]] name = "jedi" -version = "0.18.2" +version = "0.19.1" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" files = [ - {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, - {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, ] [package.dependencies] -parso = ">=0.8.0,<0.9.0" +parso = ">=0.8.3,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jinja2" -version = "3.1.2" +version = "3.1.4" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, ] [package.dependencies] @@ -1259,61 +1283,89 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "joblib" -version = "1.3.2" +version = "1.4.2" description = "Lightweight pipelining with Python functions" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, - {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "json5" +version = "0.9.25" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8" +files = [ + {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, + {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, ] [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "jsonschema" -version = "4.17.3" +version = "4.23.0" description = "An implementation of JSON Schema validation for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, - {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, ] [package.dependencies] -attrs = ">=17.4.0" +attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} -pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" +jsonschema-specifications = ">=2023.03.6" +referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] + +[[package]] +name = "jsonschema-specifications" +version = "2023.12.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, + {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, +] + +[package.dependencies] +referencing = ">=0.31.0" [[package]] name = "jupyter-client" -version = "8.2.0" +version = "8.6.2" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.2.0-py3-none-any.whl", hash = "sha256:b18219aa695d39e2ad570533e0d71fb7881d35a873051054a84ee2a17c4b7389"}, - {file = "jupyter_client-8.2.0.tar.gz", hash = "sha256:9fe233834edd0e6c0aa5f05ca2ab4bdea1842bfd2d8a932878212fc5301ddaf0"}, + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, ] [package.dependencies] @@ -1326,17 +1378,17 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-core" -version = "5.3.1" +version = "5.7.2" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.3.1-py3-none-any.whl", hash = "sha256:ae9036db959a71ec1cac33081eeb040a79e681f08ab68b0883e9a676c7a90dce"}, - {file = "jupyter_core-5.3.1.tar.gz", hash = "sha256:5ba5c7938a7f97a6b0481463f7ff0dbac7c15ba48cf46fa4035ca6e838aa1aba"}, + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, ] [package.dependencies] @@ -1345,24 +1397,25 @@ pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_ traitlets = ">=5.3" [package.extras] -docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] [[package]] name = "jupyter-events" -version = "0.6.3" +version = "0.10.0" description = "Jupyter Event System library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "jupyter_events-0.6.3-py3-none-any.whl", hash = "sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17"}, - {file = "jupyter_events-0.6.3.tar.gz", hash = "sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"}, + {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"}, + {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"}, ] [package.dependencies] -jsonschema = {version = ">=3.2.0", extras = ["format-nongpl"]} +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} python-json-logger = ">=2.0.4" pyyaml = ">=5.3" +referencing = "*" rfc3339-validator = "*" rfc3986-validator = ">=0.1.1" traitlets = ">=5.3" @@ -1370,53 +1423,68 @@ traitlets = ">=5.3" [package.extras] cli = ["click", "rich"] docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] -test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "pytest-cov", "rich"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-server = ">=1.1.2" [[package]] name = "jupyter-server" -version = "2.6.0" +version = "2.14.2" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server-2.6.0-py3-none-any.whl", hash = "sha256:19525a1515b5999618a91b3e99ec9f6869aa8c5ba73e0b6279fcda918b54ba36"}, - {file = "jupyter_server-2.6.0.tar.gz", hash = "sha256:ae4af349f030ed08dd78cb7ac1a03a92d886000380c9ea6283f3c542a81f4b06"}, + {file = "jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd"}, + {file = "jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b"}, ] [package.dependencies] anyio = ">=3.1.0" -argon2-cffi = "*" -jinja2 = "*" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" jupyter-client = ">=7.4.4" jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -jupyter-events = ">=0.6.0" -jupyter-server-terminals = "*" +jupyter-events = ">=0.9.0" +jupyter-server-terminals = ">=0.4.4" nbconvert = ">=6.4.4" nbformat = ">=5.3.0" -overrides = "*" -packaging = "*" -prometheus-client = "*" -pywinpty = {version = "*", markers = "os_name == \"nt\""} +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} pyzmq = ">=24" -send2trash = "*" +send2trash = ">=1.8.2" terminado = ">=0.8.3" tornado = ">=6.2.0" traitlets = ">=5.6.0" -websocket-client = "*" +websocket-client = ">=1.7" [package.extras] -docs = ["ipykernel", "jinja2", "jupyter-client", "jupyter-server", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] -test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] [[package]] name = "jupyter-server-terminals" -version = "0.4.4" +version = "0.5.3" description = "A Jupyter Server Extension Providing Terminals." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"}, - {file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"}, + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, ] [package.dependencies] @@ -1424,351 +1492,496 @@ pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} terminado = ">=0.8.3" [package.extras] -docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] -test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.2.3" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab-4.2.3-py3-none-any.whl", hash = "sha256:0b59d11808e84bb84105c73364edfa867dd475492429ab34ea388a52f2e2e596"}, + {file = "jupyterlab-4.2.3.tar.gz", hash = "sha256:df6e46969ea51d66815167f23d92f105423b7f1f06fa604d4f44aeb018c82c7b"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.1.0" +tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=8,<10)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] [[package]] name = "jupyterlab-pygments" -version = "0.2.2" +version = "0.3.0" description = "Pygments theme using JupyterLab CSS variables" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, ] +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, +] + +[package.dependencies] +babel = ">=2.10" +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + [[package]] name = "jupyterlab-widgets" -version = "3.0.7" +version = "3.0.11" description = "Jupyter interactive widgets for JupyterLab" optional = false python-versions = ">=3.7" files = [ - {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, - {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, + {file = "jupyterlab_widgets-3.0.11-py3-none-any.whl", hash = "sha256:78287fd86d20744ace330a61625024cf5521e1c012a352ddc0a3cdc2348becd0"}, + {file = "jupyterlab_widgets-3.0.11.tar.gz", hash = "sha256:dd5ac679593c969af29c9bed054c24f26842baa51352114736756bc035deee27"}, ] [[package]] name = "keras" -version = "2.12.0" -description = "Deep learning for humans." +version = "3.4.1" +description = "Multi-backend Keras." optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "keras-2.12.0-py2.py3-none-any.whl", hash = "sha256:35c39534011e909645fb93515452e98e1a0ce23727b55d4918b9c58b2308c15e"}, + {file = "keras-3.4.1-py3-none-any.whl", hash = "sha256:15599c51e2090c12f39de6db6489a0cf265ddf6653f0731b82db5af2bfa19105"}, + {file = "keras-3.4.1.tar.gz", hash = "sha256:34cd9aeaa008914715149234c215657ca758e1b473bd2aab2e211ac967d1f8fe"}, ] +[package.dependencies] +absl-py = "*" +h5py = "*" +ml-dtypes = "*" +namex = "*" +numpy = "*" +optree = "*" +packaging = "*" +rich = "*" + [[package]] name = "kiwisolver" -version = "1.4.4" +version = "1.4.5" description = "A fast implementation of the Cassowary constraint solver" optional = false python-versions = ">=3.7" files = [ - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"}, - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"}, - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32"}, - {file = "kiwisolver-1.4.4-cp310-cp310-win32.whl", hash = "sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408"}, - {file = "kiwisolver-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4"}, - {file = "kiwisolver-1.4.4-cp311-cp311-win32.whl", hash = "sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e"}, - {file = "kiwisolver-1.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-win32.whl", hash = "sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-win_amd64.whl", hash = "sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c"}, - {file = "kiwisolver-1.4.4-cp38-cp38-win32.whl", hash = "sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191"}, - {file = "kiwisolver-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9"}, - {file = "kiwisolver-1.4.4-cp39-cp39-win32.whl", hash = "sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea"}, - {file = "kiwisolver-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b"}, - {file = "kiwisolver-1.4.4.tar.gz", hash = "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] [[package]] name = "libclang" -version = "16.0.0" +version = "18.1.1" description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." optional = false python-versions = "*" files = [ - {file = "libclang-16.0.0-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:65258a6bb3e7dc31dc9b26f8d42f53c9d3b959643ade291fcd1aef4855303ca6"}, - {file = "libclang-16.0.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:af55a4aa86fdfe6b2ec68bc8cfe5fdac6c448d591ca7648be86ca17099b41ca8"}, - {file = "libclang-16.0.0-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:a043138caaf2cb076ebb060c6281ec95612926645d425c691991fc9df00e8a24"}, - {file = "libclang-16.0.0-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:eb59652cb0559c0e71784ff4c8ba24c14644becc907b1446563ecfaa622d523b"}, - {file = "libclang-16.0.0-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:7b6686b67a0daa84b4c614bcc119578329fc4fbb52b919565b7376b507c4793b"}, - {file = "libclang-16.0.0-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:2adce42ae652f312245b8f4eda6f30b4076fb61f7619f2dfd0a0c31dee4c32b9"}, - {file = "libclang-16.0.0-py2.py3-none-win_amd64.whl", hash = "sha256:ee20bf93e3dd330f71fc50cdbf13b92ced0aec8e540be64251db53502a9b33f7"}, - {file = "libclang-16.0.0-py2.py3-none-win_arm64.whl", hash = "sha256:bf4628fc4da7a1dd06a244f9b8e121c5ec68076a763c59d6b13cbb103acc935b"}, + {file = "libclang-18.1.1-1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:0b2e143f0fac830156feb56f9231ff8338c20aecfe72b4ffe96f19e5a1dbb69a"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, ] [[package]] name = "lightning-utilities" -version = "0.9.0" -description = "PyTorch Lightning Sample project." +version = "0.11.5" +description = "Lightning toolbox for across the our ecosystem." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "lightning-utilities-0.9.0.tar.gz", hash = "sha256:efbf2c488c257f942abdfd06cf646fb84ca215a9663b60081811e22a15ee033b"}, - {file = "lightning_utilities-0.9.0-py3-none-any.whl", hash = "sha256:918dd90c775719e3855631db6282ad75c14da4c5727c4cebdd1589d865fad03d"}, + {file = "lightning_utilities-0.11.5-py3-none-any.whl", hash = "sha256:ab2117cc926a9e3757919e25a0da574badb1c0f04fc931849235731b78016a8d"}, + {file = "lightning_utilities-0.11.5.tar.gz", hash = "sha256:a96bee6d8b3df18b7c1a8dec83b2adb03dca6ca0ce3ae9fd355eb0922c4e5e07"}, ] [package.dependencies] packaging = ">=17.1" +setuptools = "*" typing-extensions = "*" [package.extras] cli = ["fire"] docs = ["requests (>=2.0.0)"] -typing = ["mypy (>=1.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] [[package]] name = "line-profiler" -version = "4.0.3" +version = "4.1.3" description = "Line-by-line profiler" optional = false python-versions = ">=3.6" files = [ - {file = "line_profiler-4.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:52780098491df001a1315c1bc3d8199edd440698f1aef4e78875f9f2181f79bb"}, - {file = "line_profiler-4.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f170232f15d48fb4e7ca46fe4147a54dd930baa7ef07c04c38b53e0e826028b8"}, - {file = "line_profiler-4.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a727ddd521246fecd9a8aa918c81d2e7ebeef2c56af86be500280ec7ec720d1"}, - {file = "line_profiler-4.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:9bc4bf53a2c79c935a5e59645a6f5d9cc8618a4aded0d2116db5d4ebecab6dae"}, - {file = "line_profiler-4.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6eb244400492ffcbec0e6d5a52693828960a4c29f7d43c50190e4902bacad5be"}, - {file = "line_profiler-4.0.3-cp310-cp310-win32.whl", hash = "sha256:a4b7e84d800bb466e461d827eaadbf0bce1476b76a29b92d24f524db028ae4e1"}, - {file = "line_profiler-4.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:c5b579c7d1b3661e56c63f5052f96c81b7453e503e0c2950df79776181cc8007"}, - {file = "line_profiler-4.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e18ce062d652dc04eb0ebe5df13d78fb4d83979b459f8bca476059f3a71636d1"}, - {file = "line_profiler-4.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e9f56be58b78bcfdc505987730b1a0099f8b2693c392879d0a8d1dd81a437d0"}, - {file = "line_profiler-4.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12bf7dc576707760d58efb221f4ee36cc9ec3e514733186c807fe6839c65a9e6"}, - {file = "line_profiler-4.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:ac886a51df9a5cec9dd9f483a63b88d1ecfff50151a9177f54931787e1c08575"}, - {file = "line_profiler-4.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:779a41bd7cceb5487abc1e985cf90bc0be7a61f369c32e9971e3b244153373da"}, - {file = "line_profiler-4.0.3-cp311-cp311-win32.whl", hash = "sha256:467de51ae6f154865f40e7d645462c8bbf9dedb6c432b1af173c099d79b81c2e"}, - {file = "line_profiler-4.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:eb1d5e90862ac5385fdb002c40fe45bbf0396025dabc0565ac97efc622122274"}, - {file = "line_profiler-4.0.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:fbe0036a306835978270a66c460c7b57869fe985ca620613321971d396de295f"}, - {file = "line_profiler-4.0.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fed42c6d070804d95990ad633f97778bc744f7569cb2b5a2cf5be05e932763"}, - {file = "line_profiler-4.0.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4ae74a784e3c878bb52cb819a971315547cec2cab8705571318995c045aae27"}, - {file = "line_profiler-4.0.3-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:0f281672166f7d403b927f3a8af1fa28125be6309d0e8a3910770037b5abc7be"}, - {file = "line_profiler-4.0.3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a2654510d872e36c0737cc9358a94307c1db52bf906b3c92569c9bc067b896e"}, - {file = "line_profiler-4.0.3-cp36-cp36m-win32.whl", hash = "sha256:7fa9bec2d79374e32441fa46d284e4241f73d5e23b91cb3286c5573c29c2f218"}, - {file = "line_profiler-4.0.3-cp36-cp36m-win_amd64.whl", hash = "sha256:0783704f6bdd6d1029c193bb270b9e540f5b97ded662c74885b609d4bc016bfa"}, - {file = "line_profiler-4.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a3337db24f51bda9f7c2fc5a135fc657c5cc818ba5905195a4f79f7489048bae"}, - {file = "line_profiler-4.0.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6a19e39be62aa7d849fab9a7f61591365b41ae87fbf4321de5442cb460f1fb5"}, - {file = "line_profiler-4.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:659c3f99359825034a5becb7de2e19eeee96bbe60fface73059b446124b942d4"}, - {file = "line_profiler-4.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3873394ea9d66d05da6ed0f9f92e7463c44b716aadd034a603faad60a73577c6"}, - {file = "line_profiler-4.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fdaac2e769e7d64cd3d19c4df5d26287e1cd362f47a1d3b42edd7c8420f40101"}, - {file = "line_profiler-4.0.3-cp37-cp37m-win32.whl", hash = "sha256:d1bce3d49c8a0f89a04c41d95f256a48ee744d2cbca0c5fd859c928cddcccf3e"}, - {file = "line_profiler-4.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:81404b2530e2f4cb0e69f8b624957caef2b313227380e6aa7d3ccef494941f91"}, - {file = "line_profiler-4.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0a5dad6fa4ebc70676574941a564cdae4e664bf54fd68a8f19799167a927a3db"}, - {file = "line_profiler-4.0.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c60c0f5e14e17cf19d0f45dc25b406a47da57c667de6263281758fae0ec76ca0"}, - {file = "line_profiler-4.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af5259ba7f7ef73f9b02874fcfda2b0b7b0093e64b148bcf0d444bfb1d08fdcc"}, - {file = "line_profiler-4.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8ed41b4dc4bb5cea01e423928c50e354452eb1eb1b29b8b3ec94ee02b045fdf9"}, - {file = "line_profiler-4.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:878479d3df35f6a3be83cb7ea5ee3df8f51003da6eca291242ebfecaf8cf940f"}, - {file = "line_profiler-4.0.3-cp38-cp38-win32.whl", hash = "sha256:b1ba5076d8cf9fc7e18bb79884915d78f856a9f03e999e9c25ace462c4745bcb"}, - {file = "line_profiler-4.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:b35795dc56dae57e1bca9d3ed7f03ca5ad86de578da29434dcb3fcc590009120"}, - {file = "line_profiler-4.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:48ce36c8fb17a64a494fb3ba0c591dd0fd2318bbe99c5c49da35f93257a5bc1a"}, - {file = "line_profiler-4.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1847946c78be769d3b053879bc2df6e7eed7800e2e3b35a297043d656b4bb2f9"}, - {file = "line_profiler-4.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:506ab549197844629834c5db4414517f474d862a90dc3920800f823db48e7601"}, - {file = "line_profiler-4.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:5e9c5c6ea82ad587ebe127a1f18b37634ce9e2d8b2065c2cb382dc5576551503"}, - {file = "line_profiler-4.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db98ff49c1f4753959bb1e9b9835626cb817d1add6d480311938c373e9c4c5f7"}, - {file = "line_profiler-4.0.3-cp39-cp39-win32.whl", hash = "sha256:9e7fbe5280927d1c647b43516aedc2f21b0bfad27f6bc531ebca9df7c77f2f7f"}, - {file = "line_profiler-4.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:6906259a2732c18f3f8c3f03cbe3899a640d4dd998d09a4c91d41140fd8bc686"}, - {file = "line_profiler-4.0.3.tar.gz", hash = "sha256:deb2eb9e9119d911debe23edcec8ea68a2cd70c9e3f753c96aaf4a86ca497e7e"}, + {file = "line_profiler-4.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b26cccca30c0f859c585cd4a6c75ffde4dca80ba98a858d3d04b44a6b560c65"}, + {file = "line_profiler-4.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e8a1ed7bf88049cb8d069a2dac96c91b25b5a77cb712c207b7f484ab86f8b134"}, + {file = "line_profiler-4.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c320a8ccb2b9d0df85b8f19000242407d0cb1ea5804b4967fe6f755824c81a87"}, + {file = "line_profiler-4.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5751939d9dd95b1ec74e0aee428fe17d037fcb346fd23a7bf928b71c2dca2d19"}, + {file = "line_profiler-4.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b45f405d63730e5284403c1ff293f1e7f8ac7a39486db4c55a858712cec333d"}, + {file = "line_profiler-4.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:9e24d61810ad153ab6a795d68f735812de4131f282128b799467f7fa56cac94f"}, + {file = "line_profiler-4.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f961465381e5bdc9fa7e5597af6714ada700d3e6ca61cca56763477f1047ff23"}, + {file = "line_profiler-4.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:6112436cb48ab635bc64e3dbfd80f67b56967e72aa7853e5084a64e11be5fe65"}, + {file = "line_profiler-4.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:16c8d2830e9daf0bcd49422e9367db5c825b02b88c383b9228c281ce14a5ad80"}, + {file = "line_profiler-4.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0e3ed5dd55bda1b0f65893ff377b6aedae69490f7be4fd5d818dd5bcc75553bf"}, + {file = "line_profiler-4.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f0ad37589b270e59f65ec6704435f02ece6d4246af112c0413095a5d3b13285b"}, + {file = "line_profiler-4.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c29ef65e3e0085f20ffedcddfa8d02f6f6eaa0dacec29129cd74d206f9f6c"}, + {file = "line_profiler-4.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ef054e1b6fd2443341911a2ddad0f8b6ed24903fa6a7e5e8201cd4272132e3a"}, + {file = "line_profiler-4.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:02bc0650ef8f87a489d6fbafcc0040ca76144d2a4c40e4044babccfe769b5525"}, + {file = "line_profiler-4.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f032c0973f0c1150440dce5f9b91509fce474c11b10c2c93a2109e1e0dab8a45"}, + {file = "line_profiler-4.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:ec8a34285338aadc6a74e91b022b6d8ea19ac5deaaa0c9b880a1ab7b4ed45c43"}, + {file = "line_profiler-4.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8ae10578f1325772ccfa2833288d826e4bc781214d74b87331a6b7e5793252ca"}, + {file = "line_profiler-4.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b7c89c68379879d3a11c5e76499f0f7a08683436762af6bf51db126d3cb9cdd9"}, + {file = "line_profiler-4.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b9f4abf9ecb8b508d96420dde44d54a8484e73468132229bbba2229283a7e9fb"}, + {file = "line_profiler-4.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d12bf40ed654ad1d5c132be172054b9ec5ae3ba138ca2099002075fb14396a64"}, + {file = "line_profiler-4.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56d17f3bf22b9c7d72b3cb2d283d71152f4cc98e8ba88e720c743b2e3d9be6ad"}, + {file = "line_profiler-4.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9d7c7593ae86215d99d1d32e4b92ed6ace2ac8388aab781b74bf97d44e72ff1f"}, + {file = "line_profiler-4.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:248f16ba356ac1e19be834b0bdaf29c95c1c9229beaa63e0e3aad9aa3edfc012"}, + {file = "line_profiler-4.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:b85468d30ed16e362e8a044df0f331796c6ec5a76a55e88aae57078a2eec6afa"}, + {file = "line_profiler-4.1.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:82d5333d1ffac08b34828213bd674165e50876610061faa97660928b346a620d"}, + {file = "line_profiler-4.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f56985a885e2936eab6303fc82f1a20e5e0bb6d4d8f44f8a3825179d261053e"}, + {file = "line_profiler-4.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:713d43be1382f47c2f04d5d25ba3c65978292249849f85746a8476d6a8863717"}, + {file = "line_profiler-4.1.3-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:5d6a3dd7ba3a17da254338313ec1d4ce4bdd723812e5cb58f4d05b78c1c5dbe4"}, + {file = "line_profiler-4.1.3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:481bbace88b2e15fb63a16e578a48faa28eba7399afe7da6ce1bde569780c346"}, + {file = "line_profiler-4.1.3-cp36-cp36m-win_amd64.whl", hash = "sha256:654b16f9e82b0ce7f7657ef859bf2324275e9cd70c8169414922c9cb37d5589f"}, + {file = "line_profiler-4.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:39332137af7a562c44524cef7c37de9860428ce2cde8b9c51047ccad9fd5eca4"}, + {file = "line_profiler-4.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dad96626acd5804c818c374d34ce1debea07b1e100b160499f4dfbcf5fc1cbe6"}, + {file = "line_profiler-4.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7125846d636959907e307c1f0bbf6f05fe5b7ca195b929f7b676fd20cf0763f2"}, + {file = "line_profiler-4.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a89de2a09363dd1a62a0a49e82a7157854b6e92b1893627b14e952412357db60"}, + {file = "line_profiler-4.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9e11f5831a251d3a3551372b523b3bc0da1e912ab2ade2c4d9d8e0b225eed6ab"}, + {file = "line_profiler-4.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:66d856975284dc62ac6f5a97757e160c1eb9898078014385cf74b829d8d806b7"}, + {file = "line_profiler-4.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3fb0f43900d36d7ccd8b30b8506498440d5ec610f2f1d40de3de11c3e304fb90"}, + {file = "line_profiler-4.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7394227bfb5bf15002d3695e674916fe82c38957cd2f56fccd43b71dc3447d1e"}, + {file = "line_profiler-4.1.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8e19a0ca3198b173a5b7caa304be3b39d122f89b0cfc2a134c5cbb4105ee2fd6"}, + {file = "line_profiler-4.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ad57e3c80fb0aee0c86a25d738e3556063eb3d57d0a43217de13f134417915d"}, + {file = "line_profiler-4.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cca919a8199236326f14f3719e992f30dd43a272b0e8fcb98e436a66e4a96fc"}, + {file = "line_profiler-4.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d6753834e1ea03ea19015d0553f0ce0d61bbf2269b85fc0f42833d616369488b"}, + {file = "line_profiler-4.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a32559afd550852f2054a441d33afe16e8b68b167ffb15373ec2b521c6fdc51f"}, + {file = "line_profiler-4.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:e526f9dfad5e8e21cd5345d5213757cfc26af33f072042f3ccff36b10c46a23c"}, + {file = "line_profiler-4.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5aec873bea3a1357c1a21f788b44d29e288df2a579b4433c8a85fc2b0a8c229d"}, + {file = "line_profiler-4.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6059a8960487fc1e7b333178d39c53d3de5fd3c7da04477019e70d13c4c8520c"}, + {file = "line_profiler-4.1.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2ac815ba3cdc8603de6b0ea57a725f4aea1e0a2b7d8c99fabb43f6f2b1670dc0"}, + {file = "line_profiler-4.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4ebd58a953fa86384150b79638331133ef0c22d8d68f046e00fe97e62053edae"}, + {file = "line_profiler-4.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c91e4cb038496e771220daccb512dab5311619392fec59ea916e9316630e9825"}, + {file = "line_profiler-4.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b4e4a49a42d4d9e1dce122dd0a5a427f9a337c22cf8a82712f006cae038870bf"}, + {file = "line_profiler-4.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:209d41401238eb0da340f92dfaf60dd84500be475b2b6738cf0ef28579b4df9a"}, + {file = "line_profiler-4.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:68684974e81344344174caf723bb4ab6659bc186d05c8f7e2453002e6bf74cff"}, + {file = "line_profiler-4.1.3.tar.gz", hash = "sha256:e5f1123c3672c3218ba063c23bd64a51159e44649fed6780b993c781fb5ed318"}, ] [package.extras] -all = ["Cython", "Cython", "IPython", "IPython", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cmake", "coverage[toml]", "ninja", "pytest", "pytest-cov", "scikit-build", "ubelt"] -all-strict = ["Cython (==0.29.24)", "Cython (==3.0.0a11)", "IPython (==0.13)", "IPython (==0.13)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.8.1)", "cmake (==3.21.2)", "coverage[toml] (==5.3)", "ninja (==1.10.2)", "pytest (==4.6.11)", "pytest-cov (==2.10.1)", "scikit-build (==0.11.1)", "ubelt (==1.0.1)"] -build = ["Cython", "Cython", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cibuildwheel", "cmake", "ninja", "scikit-build"] -build-strict = ["Cython (==0.29.24)", "Cython (==3.0.0a11)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.8.1)", "cmake (==3.21.2)", "ninja (==1.10.2)", "scikit-build (==0.11.1)"] -ipython = ["IPython", "IPython"] -ipython-strict = ["IPython (==0.13)", "IPython (==0.13)"] -tests = ["IPython", "IPython", "coverage[toml]", "pytest", "pytest-cov", "ubelt"] -tests-strict = ["IPython (==0.13)", "IPython (==0.13)", "coverage[toml] (==5.3)", "pytest (==4.6.11)", "pytest-cov (==2.10.1)", "ubelt (==1.0.1)"] +all = ["Cython (>=3.0.3)", "IPython (>=7.14.0)", "IPython (>=7.18.0)", "IPython (>=8.12.2)", "IPython (>=8.14.0)", "cibuildwheel (>=2.11.2)", "cibuildwheel (>=2.11.2)", "cibuildwheel (>=2.11.2)", "cibuildwheel (>=2.11.2)", "cibuildwheel (>=2.11.2)", "cibuildwheel (>=2.8.1)", "cmake (>=3.21.2)", "coverage[toml] (>=6.1.1)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=7.3.0)", "ninja (>=1.10.2)", "pytest (>=6.2.5)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest-cov (>=3.0.0)", "rich (>=12.3.0)", "scikit-build (>=0.11.1)", "setuptools (>=41.0.1)", "setuptools (>=68.2.2)", "ubelt (>=1.3.4)", "xdoctest (>=1.1.3)"] +all-strict = ["Cython (==3.0.3)", "IPython (==7.14.0)", "IPython (==7.18.0)", "IPython (==8.12.2)", "IPython (==8.14.0)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.11.2)", "cibuildwheel (==2.8.1)", "cmake (==3.21.2)", "coverage[toml] (==6.1.1)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==7.3.0)", "ninja (==1.10.2)", "pytest (==6.2.5)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest-cov (==3.0.0)", "rich (==12.3.0)", "scikit-build (==0.11.1)", "setuptools (==41.0.1)", "setuptools (==68.2.2)", "ubelt (==1.3.4)", "xdoctest (==1.1.3)"] +ipython = ["IPython (>=7.14.0)", "IPython (>=7.18.0)", "IPython (>=8.12.2)", "IPython (>=8.14.0)"] +ipython-strict = ["IPython (==7.14.0)", "IPython (==7.18.0)", "IPython (==8.12.2)", "IPython (==8.14.0)"] +optional = ["IPython (>=7.14.0)", "IPython (>=7.18.0)", "IPython (>=8.12.2)", "IPython (>=8.14.0)", "rich (>=12.3.0)"] +optional-strict = ["IPython (==7.14.0)", "IPython (==7.18.0)", "IPython (==8.12.2)", "IPython (==8.14.0)", "rich (==12.3.0)"] +tests = ["coverage[toml] (>=6.1.1)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=6.5.0)", "coverage[toml] (>=7.3.0)", "pytest (>=6.2.5)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest (>=7.4.4)", "pytest-cov (>=3.0.0)", "ubelt (>=1.3.4)", "xdoctest (>=1.1.3)"] +tests-strict = ["coverage[toml] (==6.1.1)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==6.5.0)", "coverage[toml] (==7.3.0)", "pytest (==6.2.5)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest (==7.4.4)", "pytest-cov (==3.0.0)", "ubelt (==1.3.4)", "xdoctest (==1.1.3)"] [[package]] name = "lit" -version = "16.0.6" +version = "18.1.8" description = "A Software Testing Tool" optional = false python-versions = "*" files = [ - {file = "lit-16.0.6.tar.gz", hash = "sha256:84623c9c23b6b14763d637f4e63e6b721b3446ada40bf7001d8fee70b8e77a9a"}, + {file = "lit-18.1.8-py3-none-any.whl", hash = "sha256:a873ff7acd76e746368da32eb7355625e2e55a2baaab884c9cc130f2ee0300f7"}, + {file = "lit-18.1.8.tar.gz", hash = "sha256:47c174a186941ae830f04ded76a3444600be67d5e5fb8282c3783fba671c4edb"}, ] [[package]] name = "markdown" -version = "3.4.3" +version = "3.6" description = "Python implementation of John Gruber's Markdown." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Markdown-3.4.3-py3-none-any.whl", hash = "sha256:065fd4df22da73a625f14890dd77eb8040edcbd68794bcd35943be14490608b2"}, - {file = "Markdown-3.4.3.tar.gz", hash = "sha256:8bf101198e004dc93e84a12a7395e31aac6a9c9942848ae1d99b9d72cf9b3520"}, + {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, + {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, ] [package.dependencies] importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} [package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] testing = ["coverage", "pyyaml"] +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + [[package]] name = "markupsafe" -version = "2.1.3" +version = "2.1.5" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" files = [ - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, - {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, ] [[package]] name = "matplotlib" -version = "3.7.1" +version = "3.9.1" description = "Python plotting package" optional = false -python-versions = ">=3.8" -files = [ - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:95cbc13c1fc6844ab8812a525bbc237fa1470863ff3dace7352e910519e194b1"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:08308bae9e91aca1ec6fd6dda66237eef9f6294ddb17f0d0b3c863169bf82353"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:544764ba51900da4639c0f983b323d288f94f65f4024dc40ecb1542d74dc0500"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56d94989191de3fcc4e002f93f7f1be5da476385dde410ddafbb70686acf00ea"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99bc9e65901bb9a7ce5e7bb24af03675cbd7c70b30ac670aa263240635999a4"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7d248c34a341cd4c31a06fd34d64306624c8cd8d0def7abb08792a5abfd556"}, - {file = "matplotlib-3.7.1-cp310-cp310-win32.whl", hash = "sha256:ce463ce590f3825b52e9fe5c19a3c6a69fd7675a39d589e8b5fbe772272b3a24"}, - {file = "matplotlib-3.7.1-cp310-cp310-win_amd64.whl", hash = "sha256:3d7bc90727351fb841e4d8ae620d2d86d8ed92b50473cd2b42ce9186104ecbba"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:770a205966d641627fd5cf9d3cb4b6280a716522cd36b8b284a8eb1581310f61"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f67bfdb83a8232cb7a92b869f9355d677bce24485c460b19d01970b64b2ed476"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2bf092f9210e105f414a043b92af583c98f50050559616930d884387d0772aba"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89768d84187f31717349c6bfadc0e0d8c321e8eb34522acec8a67b1236a66332"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83111e6388dec67822e2534e13b243cc644c7494a4bb60584edbff91585a83c6"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a867bf73a7eb808ef2afbca03bcdb785dae09595fbe550e1bab0cd023eba3de0"}, - {file = "matplotlib-3.7.1-cp311-cp311-win32.whl", hash = "sha256:fbdeeb58c0cf0595efe89c05c224e0a502d1aa6a8696e68a73c3efc6bc354304"}, - {file = "matplotlib-3.7.1-cp311-cp311-win_amd64.whl", hash = "sha256:c0bd19c72ae53e6ab979f0ac6a3fafceb02d2ecafa023c5cca47acd934d10be7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:6eb88d87cb2c49af00d3bbc33a003f89fd9f78d318848da029383bfc08ecfbfb"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:cf0e4f727534b7b1457898c4f4ae838af1ef87c359b76dcd5330fa31893a3ac7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:46a561d23b91f30bccfd25429c3c706afe7d73a5cc64ef2dfaf2b2ac47c1a5dc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8704726d33e9aa8a6d5215044b8d00804561971163563e6e6591f9dcf64340cc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4cf327e98ecf08fcbb82685acaf1939d3338548620ab8dfa02828706402c34de"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:617f14ae9d53292ece33f45cba8503494ee199a75b44de7717964f70637a36aa"}, - {file = "matplotlib-3.7.1-cp38-cp38-win32.whl", hash = "sha256:7c9a4b2da6fac77bcc41b1ea95fadb314e92508bf5493ceff058e727e7ecf5b0"}, - {file = "matplotlib-3.7.1-cp38-cp38-win_amd64.whl", hash = "sha256:14645aad967684e92fc349493fa10c08a6da514b3d03a5931a1bac26e6792bd1"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:81a6b377ea444336538638d31fdb39af6be1a043ca5e343fe18d0f17e098770b"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:28506a03bd7f3fe59cd3cd4ceb2a8d8a2b1db41afede01f66c42561b9be7b4b7"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8c587963b85ce41e0a8af53b9b2de8dddbf5ece4c34553f7bd9d066148dc719c"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8bf26ade3ff0f27668989d98c8435ce9327d24cffb7f07d24ef609e33d582439"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:def58098f96a05f90af7e92fd127d21a287068202aa43b2a93476170ebd99e87"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f883a22a56a84dba3b588696a2b8a1ab0d2c3d41be53264115c71b0a942d8fdb"}, - {file = "matplotlib-3.7.1-cp39-cp39-win32.whl", hash = "sha256:4f99e1b234c30c1e9714610eb0c6d2f11809c9c78c984a613ae539ea2ad2eb4b"}, - {file = "matplotlib-3.7.1-cp39-cp39-win_amd64.whl", hash = "sha256:3ba2af245e36990facf67fde840a760128ddd71210b2ab6406e640188d69d136"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3032884084f541163f295db8a6536e0abb0db464008fadca6c98aaf84ccf4717"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a2cb34336110e0ed8bb4f650e817eed61fa064acbefeb3591f1b33e3a84fd96"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b867e2f952ed592237a1828f027d332d8ee219ad722345b79a001f49df0936eb"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:57bfb8c8ea253be947ccb2bc2d1bb3862c2bccc662ad1b4626e1f5e004557042"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:438196cdf5dc8d39b50a45cb6e3f6274edbcf2254f85fa9b895bf85851c3a613"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21e9cff1a58d42e74d01153360de92b326708fb205250150018a52c70f43c290"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d4725d70b7c03e082bbb8a34639ede17f333d7247f56caceb3801cb6ff703d"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:97cc368a7268141afb5690760921765ed34867ffb9655dd325ed207af85c7529"}, - {file = "matplotlib-3.7.1.tar.gz", hash = "sha256:7b73305f25eab4541bd7ee0b96d87e53ae9c9f1823be5659b806cd85786fe882"}, +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.9.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7ccd6270066feb9a9d8e0705aa027f1ff39f354c72a87efe8fa07632f30fc6bb"}, + {file = "matplotlib-3.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:591d3a88903a30a6d23b040c1e44d1afdd0d778758d07110eb7596f811f31842"}, + {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2a59ff4b83d33bca3b5ec58203cc65985367812cb8c257f3e101632be86d92"}, + {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fc001516ffcf1a221beb51198b194d9230199d6842c540108e4ce109ac05cc0"}, + {file = "matplotlib-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:83c6a792f1465d174c86d06f3ae85a8fe36e6f5964633ae8106312ec0921fdf5"}, + {file = "matplotlib-3.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:421851f4f57350bcf0811edd754a708d2275533e84f52f6760b740766c6747a7"}, + {file = "matplotlib-3.9.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3fce58971b465e01b5c538f9d44915640c20ec5ff31346e963c9e1cd66fa812"}, + {file = "matplotlib-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a973c53ad0668c53e0ed76b27d2eeeae8799836fd0d0caaa4ecc66bf4e6676c0"}, + {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82cd5acf8f3ef43f7532c2f230249720f5dc5dd40ecafaf1c60ac8200d46d7eb"}, + {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab38a4f3772523179b2f772103d8030215b318fef6360cb40558f585bf3d017f"}, + {file = "matplotlib-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2315837485ca6188a4b632c5199900e28d33b481eb083663f6a44cfc8987ded3"}, + {file = "matplotlib-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a0c977c5c382f6696caf0bd277ef4f936da7e2aa202ff66cad5f0ac1428ee15b"}, + {file = "matplotlib-3.9.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:565d572efea2b94f264dd86ef27919515aa6d629252a169b42ce5f570db7f37b"}, + {file = "matplotlib-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d397fd8ccc64af2ec0af1f0efc3bacd745ebfb9d507f3f552e8adb689ed730a"}, + {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26040c8f5121cd1ad712abffcd4b5222a8aec3a0fe40bc8542c94331deb8780d"}, + {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d12cb1837cffaac087ad6b44399d5e22b78c729de3cdae4629e252067b705e2b"}, + {file = "matplotlib-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0e835c6988edc3d2d08794f73c323cc62483e13df0194719ecb0723b564e0b5c"}, + {file = "matplotlib-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:44a21d922f78ce40435cb35b43dd7d573cf2a30138d5c4b709d19f00e3907fd7"}, + {file = "matplotlib-3.9.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0c584210c755ae921283d21d01f03a49ef46d1afa184134dd0f95b0202ee6f03"}, + {file = "matplotlib-3.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:11fed08f34fa682c2b792942f8902e7aefeed400da71f9e5816bea40a7ce28fe"}, + {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0000354e32efcfd86bda75729716b92f5c2edd5b947200be9881f0a671565c33"}, + {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db17fea0ae3aceb8e9ac69c7e3051bae0b3d083bfec932240f9bf5d0197a049"}, + {file = "matplotlib-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:208cbce658b72bf6a8e675058fbbf59f67814057ae78165d8a2f87c45b48d0ff"}, + {file = "matplotlib-3.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:dc23f48ab630474264276be156d0d7710ac6c5a09648ccdf49fef9200d8cbe80"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3fda72d4d472e2ccd1be0e9ccb6bf0d2eaf635e7f8f51d737ed7e465ac020cb3"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:84b3ba8429935a444f1fdc80ed930babbe06725bcf09fbeb5c8757a2cd74af04"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b918770bf3e07845408716e5bbda17eadfc3fcbd9307dc67f37d6cf834bb3d98"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f1f2e5d29e9435c97ad4c36fb6668e89aee13d48c75893e25cef064675038ac9"}, + {file = "matplotlib-3.9.1.tar.gz", hash = "sha256:de06b19b8db95dd33d0dc17c926c7c9ebed9f572074b6fac4f65068a6814d010"}, ] [package.dependencies] @@ -1776,69 +1989,83 @@ contourpy = ">=1.0.1" cycler = ">=0.10" fonttools = ">=4.22.0" importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} -kiwisolver = ">=1.0.1" -numpy = ">=1.20" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" packaging = ">=20.0" -pillow = ">=6.2.0" +pillow = ">=8" pyparsing = ">=2.3.1" python-dateutil = ">=2.7" +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + [[package]] name = "matplotlib-inline" -version = "0.1.6" +version = "0.1.7" description = "Inline Matplotlib backend for Jupyter" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, ] [package.dependencies] traitlets = "*" +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + [[package]] name = "mistune" -version = "3.0.1" +version = "3.0.2" description = "A sane and fast Markdown parser with useful plugins and renderers" optional = false python-versions = ">=3.7" files = [ - {file = "mistune-3.0.1-py3-none-any.whl", hash = "sha256:b9b3e438efbb57c62b5beb5e134dab664800bdf1284a7ee09e8b12b13eb1aac6"}, - {file = "mistune-3.0.1.tar.gz", hash = "sha256:e912116c13aa0944f9dc530db38eb88f6a77087ab128f49f84a48f4c05ea163c"}, + {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, + {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, ] [[package]] name = "ml-dtypes" -version = "0.2.0" +version = "0.4.0" description = "" optional = false -python-versions = ">=3.7" -files = [ - {file = "ml_dtypes-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:df6a76e1c8adf484feb138ed323f9f40a7b6c21788f120f7c78bec20ac37ee81"}, - {file = "ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc29a0524ef5e23a7fbb8d881bdecabeb3fc1d19d9db61785d077a86cb94fab2"}, - {file = "ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08c391c2794f2aad358e6f4c70785a9a7b1df980ef4c232b3ccd4f6fe39f719"}, - {file = "ml_dtypes-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:75015818a7fccf99a5e8ed18720cb430f3e71a8838388840f4cdf225c036c983"}, - {file = "ml_dtypes-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e70047ec2c83eaee01afdfdabee2c5b0c133804d90d0f7db4dd903360fcc537c"}, - {file = "ml_dtypes-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36d28b8861a8931695e5a31176cad5ae85f6504906650dea5598fbec06c94606"}, - {file = "ml_dtypes-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e85ba8e24cf48d456e564688e981cf379d4c8e644db0a2f719b78de281bac2ca"}, - {file = "ml_dtypes-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:832a019a1b6db5c4422032ca9940a990fa104eee420f643713241b3a518977fa"}, - {file = "ml_dtypes-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8faaf0897942c8253dd126662776ba45f0a5861968cf0f06d6d465f8a7bc298a"}, - {file = "ml_dtypes-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b984cddbe8173b545a0e3334fe56ea1a5c3eb67c507f60d0cfde1d3fa8f8c2"}, - {file = "ml_dtypes-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:022d5a4ee6be14569c2a9d1549e16f1ec87ca949681d0dca59995445d5fcdd5b"}, - {file = "ml_dtypes-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:50845af3e9a601810751b55091dee6c2562403fa1cb4e0123675cf3a4fc2c17a"}, - {file = "ml_dtypes-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f00c71c8c63e03aff313bc6a7aeaac9a4f1483a921a6ffefa6d4404efd1af3d0"}, - {file = "ml_dtypes-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80d304c836d73f10605c58ccf7789c171cc229bfb678748adfb7cea2510dfd0e"}, - {file = "ml_dtypes-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32107e7fa9f62db9a5281de923861325211dfff87bd23faefb27b303314635ab"}, - {file = "ml_dtypes-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:1749b60348da71fd3c2ab303fdbc1965958dc50775ead41f5669c932a341cafd"}, - {file = "ml_dtypes-0.2.0.tar.gz", hash = "sha256:6488eb642acaaf08d8020f6de0a38acee7ac324c1e6e92ee0c0fea42422cb797"}, +python-versions = ">=3.9" +files = [ + {file = "ml_dtypes-0.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:93afe37f3a879d652ec9ef1fc47612388890660a2657fbb5747256c3b818fd81"}, + {file = "ml_dtypes-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2bb83fd064db43e67e67d021e547698af4c8d5c6190f2e9b1c53c09f6ff5531d"}, + {file = "ml_dtypes-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03e7cda6ef164eed0abb31df69d2c00c3a5ab3e2610b6d4c42183a43329c72a5"}, + {file = "ml_dtypes-0.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:a15d96d090aebb55ee85173d1775ae325a001aab607a76c8ea0b964ccd6b5364"}, + {file = "ml_dtypes-0.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bdf689be7351cc3c95110c910c1b864002f113e682e44508910c849e144f3df1"}, + {file = "ml_dtypes-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c83e4d443962d891d51669ff241d5aaad10a8d3d37a81c5532a45419885d591c"}, + {file = "ml_dtypes-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e2f4237b459a63c97c2c9f449baa637d7e4c20addff6a9bac486f22432f3b6"}, + {file = "ml_dtypes-0.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:75b4faf99d0711b81f393db36d210b4255fd419f6f790bc6c1b461f95ffb7a9e"}, + {file = "ml_dtypes-0.4.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ee9f91d4c4f9959a7e1051c141dc565f39e54435618152219769e24f5e9a4d06"}, + {file = "ml_dtypes-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad6849a2db386b38e4d54fe13eb3293464561780531a918f8ef4c8169170dd49"}, + {file = "ml_dtypes-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaa32979ebfde3a0d7c947cafbf79edc1ec77ac05ad0780ee86c1d8df70f2259"}, + {file = "ml_dtypes-0.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3b67ec73a697c88c1122038e0de46520e48dc2ec876d42cf61bc5efe3c0b7675"}, + {file = "ml_dtypes-0.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:41affb38fdfe146e3db226cf2953021184d6f0c4ffab52136613e9601706e368"}, + {file = "ml_dtypes-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:43cf4356a0fe2eeac6d289018d0734e17a403bdf1fd911953c125dd0358edcc0"}, + {file = "ml_dtypes-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1724ddcdf5edbaf615a62110af47407f1719b8d02e68ccee60683acb5f74da1"}, + {file = "ml_dtypes-0.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:723af6346447268a3cf0b7356e963d80ecb5732b5279b2aa3fa4b9fc8297c85e"}, + {file = "ml_dtypes-0.4.0.tar.gz", hash = "sha256:eaf197e72f4f7176a19fe3cb8b61846b38c6757607e7bf9cd4b1d84cd3e74deb"}, ] [package.dependencies] numpy = [ - {version = ">1.20", markers = "python_version <= \"3.9\""}, - {version = ">=1.21.2", markers = "python_version > \"3.9\""}, - {version = ">=1.23.3", markers = "python_version > \"3.10\""}, + {version = ">=1.23.3", markers = "python_version >= \"3.11\""}, + {version = ">=1.21.2", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">1.20", markers = "python_version < \"3.10\""}, ] [package.extras] @@ -1863,48 +2090,49 @@ tests = ["pytest (>=4.6)"] [[package]] name = "mypy" -version = "1.4.0" +version = "1.10.1" description = "Optional static typing for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "mypy-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3af348e0925a59213244f28c7c0c3a2c2088b4ba2fe9d6c8d4fbb0aba0b7d05"}, - {file = "mypy-1.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0b2e0da7ff9dd8d2066d093d35a169305fc4e38db378281fce096768a3dbdbf"}, - {file = "mypy-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210fe0f39ec5be45dd9d0de253cb79245f0a6f27631d62e0c9c7988be7152965"}, - {file = "mypy-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f7a5971490fd4a5a436e143105a1f78fa8b3fe95b30fff2a77542b4f3227a01f"}, - {file = "mypy-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:50f65f0e9985f1e50040e603baebab83efed9eb37e15a22a4246fa7cd660f981"}, - {file = "mypy-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b1b5c875fcf3e7217a3de7f708166f641ca154b589664c44a6fd6d9f17d9e7e"}, - {file = "mypy-1.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b4c734d947e761c7ceb1f09a98359dd5666460acbc39f7d0a6b6beec373c5840"}, - {file = "mypy-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5984a8d13d35624e3b235a793c814433d810acba9eeefe665cdfed3d08bc3af"}, - {file = "mypy-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0f98973e39e4a98709546a9afd82e1ffcc50c6ec9ce6f7870f33ebbf0bd4f26d"}, - {file = "mypy-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:19d42b08c7532d736a7e0fb29525855e355fa51fd6aef4f9bbc80749ff64b1a2"}, - {file = "mypy-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6ba9a69172abaa73910643744d3848877d6aac4a20c41742027dcfd8d78f05d9"}, - {file = "mypy-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a34eed094c16cad0f6b0d889811592c7a9b7acf10d10a7356349e325d8704b4f"}, - {file = "mypy-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:53c2a1fed81e05ded10a4557fe12bae05b9ecf9153f162c662a71d924d504135"}, - {file = "mypy-1.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:bba57b4d2328740749f676807fcf3036e9de723530781405cc5a5e41fc6e20de"}, - {file = "mypy-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:653863c75f0dbb687d92eb0d4bd9fe7047d096987ecac93bb7b1bc336de48ebd"}, - {file = "mypy-1.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7461469e163f87a087a5e7aa224102a30f037c11a096a0ceeb721cb0dce274c8"}, - {file = "mypy-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cf0ca95e4b8adeaf07815a78b4096b65adf64ea7871b39a2116c19497fcd0dd"}, - {file = "mypy-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:94a81b9354545123feb1a99b960faeff9e1fa204fce47e0042335b473d71530d"}, - {file = "mypy-1.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:67242d5b28ed0fa88edd8f880aed24da481929467fdbca6487167cb5e3fd31ff"}, - {file = "mypy-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3f2b353eebef669529d9bd5ae3566905a685ae98b3af3aad7476d0d519714758"}, - {file = "mypy-1.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:62bf18d97c6b089f77f0067b4e321db089d8520cdeefc6ae3ec0f873621c22e5"}, - {file = "mypy-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca33ab70a4aaa75bb01086a0b04f0ba8441e51e06fc57e28585176b08cad533b"}, - {file = "mypy-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5a0ee54c2cb0f957f8a6f41794d68f1a7e32b9968675ade5846f538504856d42"}, - {file = "mypy-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:6c34d43e3d54ad05024576aef28081d9d0580f6fa7f131255f54020eb12f5352"}, - {file = "mypy-1.4.0-py3-none-any.whl", hash = "sha256:f051ca656be0c179c735a4c3193f307d34c92fdc4908d44fd4516fbe8b10567d"}, - {file = "mypy-1.4.0.tar.gz", hash = "sha256:de1e7e68148a213036276d1f5303b3836ad9a774188961eb2684eddff593b042"}, + {file = "mypy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e36f229acfe250dc660790840916eb49726c928e8ce10fbdf90715090fe4ae02"}, + {file = "mypy-1.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:51a46974340baaa4145363b9e051812a2446cf583dfaeba124af966fa44593f7"}, + {file = "mypy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:901c89c2d67bba57aaaca91ccdb659aa3a312de67f23b9dfb059727cce2e2e0a"}, + {file = "mypy-1.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0cd62192a4a32b77ceb31272d9e74d23cd88c8060c34d1d3622db3267679a5d9"}, + {file = "mypy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a2cbc68cb9e943ac0814c13e2452d2046c2f2b23ff0278e26599224cf164e78d"}, + {file = "mypy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bd6f629b67bb43dc0d9211ee98b96d8dabc97b1ad38b9b25f5e4c4d7569a0c6a"}, + {file = "mypy-1.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1bbb3a6f5ff319d2b9d40b4080d46cd639abe3516d5a62c070cf0114a457d84"}, + {file = "mypy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8edd4e9bbbc9d7b79502eb9592cab808585516ae1bcc1446eb9122656c6066f"}, + {file = "mypy-1.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6166a88b15f1759f94a46fa474c7b1b05d134b1b61fca627dd7335454cc9aa6b"}, + {file = "mypy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bb9cd11c01c8606a9d0b83ffa91d0b236a0e91bc4126d9ba9ce62906ada868e"}, + {file = "mypy-1.10.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d8681909f7b44d0b7b86e653ca152d6dff0eb5eb41694e163c6092124f8246d7"}, + {file = "mypy-1.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:378c03f53f10bbdd55ca94e46ec3ba255279706a6aacaecac52ad248f98205d3"}, + {file = "mypy-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bacf8f3a3d7d849f40ca6caea5c055122efe70e81480c8328ad29c55c69e93e"}, + {file = "mypy-1.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:701b5f71413f1e9855566a34d6e9d12624e9e0a8818a5704d74d6b0402e66c04"}, + {file = "mypy-1.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:3c4c2992f6ea46ff7fce0072642cfb62af7a2484efe69017ed8b095f7b39ef31"}, + {file = "mypy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:604282c886497645ffb87b8f35a57ec773a4a2721161e709a4422c1636ddde5c"}, + {file = "mypy-1.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37fd87cab83f09842653f08de066ee68f1182b9b5282e4634cdb4b407266bade"}, + {file = "mypy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8addf6313777dbb92e9564c5d32ec122bf2c6c39d683ea64de6a1fd98b90fe37"}, + {file = "mypy-1.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5cc3ca0a244eb9a5249c7c583ad9a7e881aa5d7b73c35652296ddcdb33b2b9c7"}, + {file = "mypy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:1b3a2ffce52cc4dbaeee4df762f20a2905aa171ef157b82192f2e2f368eec05d"}, + {file = "mypy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe85ed6836165d52ae8b88f99527d3d1b2362e0cb90b005409b8bed90e9059b3"}, + {file = "mypy-1.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c2ae450d60d7d020d67ab440c6e3fae375809988119817214440033f26ddf7bf"}, + {file = "mypy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be84c06e6abd72f960ba9a71561c14137a583093ffcf9bbfaf5e613d63fa531"}, + {file = "mypy-1.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2189ff1e39db399f08205e22a797383613ce1cb0cb3b13d8bcf0170e45b96cc3"}, + {file = "mypy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:97a131ee36ac37ce9581f4220311247ab6cba896b4395b9c87af0675a13a755f"}, + {file = "mypy-1.10.1-py3-none-any.whl", hash = "sha256:71d8ac0b906354ebda8ef1673e5fde785936ac1f29ff6987c7483cfbd5a4235a"}, + {file = "mypy-1.10.1.tar.gz", hash = "sha256:1f8f492d7db9e3593ef42d4f115f04e556130f2819ad33ab84551403e97dd4c0"}, ] [package.dependencies] mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=3.10" +typing-extensions = ">=4.1.0" [package.extras] dmypy = ["psutil (>=4.0)"] install-types = ["pip"] -python2 = ["typed-ast (>=1.4.0,<2)"] +mypyc = ["setuptools (>=50)"] reports = ["lxml"] [[package]] @@ -1919,49 +2147,25 @@ files = [ ] [[package]] -name = "nbclassic" -version = "1.0.0" -description = "Jupyter Notebook as a Jupyter Server extension." +name = "namex" +version = "0.0.8" +description = "A simple utility to separate the implementation of your Python package and its public API surface." optional = false -python-versions = ">=3.7" +python-versions = "*" files = [ - {file = "nbclassic-1.0.0-py3-none-any.whl", hash = "sha256:f99e4769b4750076cd4235c044b61232110733322384a94a63791d2e7beacc66"}, - {file = "nbclassic-1.0.0.tar.gz", hash = "sha256:0ae11eb2319455d805596bf320336cda9554b41d99ab9a3c31bf8180bffa30e3"}, + {file = "namex-0.0.8-py3-none-any.whl", hash = "sha256:7ddb6c2bb0e753a311b7590f84f6da659dd0c05e65cb89d519d54c0a250c0487"}, + {file = "namex-0.0.8.tar.gz", hash = "sha256:32a50f6c565c0bb10aa76298c959507abdc0e850efe085dc38f3440fcb3aa90b"}, ] -[package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=6.1.1" -jupyter-core = ">=4.6.1" -jupyter-server = ">=1.8" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -notebook-shim = ">=0.2.3" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" - -[package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-jupyter", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] - [[package]] name = "nbclient" -version = "0.8.0" +version = "0.10.0" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." optional = false python-versions = ">=3.8.0" files = [ - {file = "nbclient-0.8.0-py3-none-any.whl", hash = "sha256:25e861299e5303a0477568557c4045eccc7a34c17fc08e7959558707b9ebe548"}, - {file = "nbclient-0.8.0.tar.gz", hash = "sha256:f9b179cd4b2d7bca965f900a2ebf0db4a12ebff2f36a711cb66861e4ae158e55"}, + {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, + {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, ] [package.dependencies] @@ -1973,17 +2177,17 @@ traitlets = ">=5.4" [package.extras] dev = ["pre-commit"] docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] -test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] [[package]] name = "nbconvert" -version = "7.6.0" -description = "Converting Jupyter Notebooks" +version = "7.16.4" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "nbconvert-7.6.0-py3-none-any.whl", hash = "sha256:5a445c6794b0791984bc5436608fe2c066cb43c83920c7bc91bde3b765e9a264"}, - {file = "nbconvert-7.6.0.tar.gz", hash = "sha256:24fcf27efdef2b51d7f090cc5ce5a9b178766a55be513c4ebab08c91899ab550"}, + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, ] [package.dependencies] @@ -2005,29 +2209,29 @@ tinycss2 = "*" traitlets = ">=5.1" [package.extras] -all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] -qtpdf = ["nbconvert[qtpng]"] +qtpdf = ["pyqtwebengine (>=5.15)"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] -test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] -webpdf = ["pyppeteer (>=1,<1.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] [[package]] name = "nbformat" -version = "5.9.0" +version = "5.10.4" description = "The Jupyter Notebook format" optional = false python-versions = ">=3.8" files = [ - {file = "nbformat-5.9.0-py3-none-any.whl", hash = "sha256:8c8fa16d6d05062c26177754bfbfac22de644888e2ef69d27ad2a334cf2576e5"}, - {file = "nbformat-5.9.0.tar.gz", hash = "sha256:e98ebb6120c3efbafdee2a40af2a140cadee90bb06dd69a2a63d9551fcc7f976"}, + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, ] [package.dependencies] -fastjsonschema = "*" +fastjsonschema = ">=2.15" jsonschema = ">=2.6" -jupyter-core = "*" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" traitlets = ">=5.1" [package.extras] @@ -2036,76 +2240,65 @@ test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nest-asyncio" -version = "1.5.6" +version = "1.6.0" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" files = [ - {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, - {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, ] [[package]] name = "networkx" -version = "3.1" +version = "3.2.1" description = "Python package for creating and manipulating graphs and networks" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, - {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, + {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, + {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, ] [package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] +default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "notebook" -version = "6.5.4" -description = "A web-based notebook environment for interactive computing" +version = "7.2.1" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "notebook-6.5.4-py3-none-any.whl", hash = "sha256:dd17e78aefe64c768737b32bf171c1c766666a21cc79a44d37a1700771cab56f"}, - {file = "notebook-6.5.4.tar.gz", hash = "sha256:517209568bd47261e2def27a140e97d49070602eea0d226a696f42a7f16c9a4e"}, + {file = "notebook-7.2.1-py3-none-any.whl", hash = "sha256:f45489a3995746f2195a137e0773e2130960b51c9ac3ce257dbc2705aab3a6ca"}, + {file = "notebook-7.2.1.tar.gz", hash = "sha256:4287b6da59740b32173d01d641f763d292f49c30e7a51b89c46ba8473126341e"}, ] [package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=5.3.4" -jupyter-core = ">=4.6.1" -nbclassic = ">=0.4.7" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" [package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] [[package]] name = "notebook-shim" -version = "0.2.3" +version = "0.2.4" description = "A shim layer for notebook traits and config" optional = false python-versions = ">=3.7" files = [ - {file = "notebook_shim-0.2.3-py3-none-any.whl", hash = "sha256:a83496a43341c1674b093bfcebf0fe8e74cbe7eda5fd2bbc56f8e39e1486c0c7"}, - {file = "notebook_shim-0.2.3.tar.gz", hash = "sha256:f69388ac283ae008cd506dda10d0288b09a017d822d5e8c7129a152cbd3ce7e9"}, + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, ] [package.dependencies] @@ -2309,22 +2502,6 @@ files = [ setuptools = "*" wheel = "*" -[[package]] -name = "oauthlib" -version = "3.2.2" -description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" -optional = false -python-versions = ">=3.6" -files = [ - {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, - {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, -] - -[package.extras] -rsa = ["cryptography (>=3.0.0)"] -signals = ["blinker (>=1.4.0)"] -signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] - [[package]] name = "opt-einsum" version = "3.3.0" @@ -2343,120 +2520,214 @@ numpy = ">=1.7" docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] tests = ["pytest", "pytest-cov", "pytest-pep8"] +[[package]] +name = "optree" +version = "0.12.1" +description = "Optimized PyTree Utilities." +optional = false +python-versions = ">=3.7" +files = [ + {file = "optree-0.12.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:349aafac463642979f7fe7ca3aa9e2fa8a5a0f81ef7af6946a075b797673e600"}, + {file = "optree-0.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8046cbbcd5f7494ba7c6811e44a6d2867216f2bdb7cef980a9a62e31d39270c"}, + {file = "optree-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b43c09cf9dd28aed2efc163f4bb4808d7fad54250812960bf349399ba6972e16"}, + {file = "optree-0.12.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5c2f2e0e3978558bc8f7df8c5a999674097dd0dc71363210783eb8d7a6da8ef9"}, + {file = "optree-0.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3e323744d083bd8b4648c9ff2383f01bfbc33098656d56fdd984b2263ef905f3"}, + {file = "optree-0.12.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80e0d4eba4a65d4c6f2002ed949142a40933b8185523894659c26c34693c4086"}, + {file = "optree-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efffa3814ab8e3aaf7bf88495e4b6d263de9689d6f02dfa4490f8f64736806ac"}, + {file = "optree-0.12.1-cp310-cp310-win32.whl", hash = "sha256:4ee926120887404e92877c99714b960bc29f572e8db69fd2e934022d80452f91"}, + {file = "optree-0.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:a11e58d7c0a71a48d74ca0a6715f4c0932c6f9409ba93d600e3326df4cf778ae"}, + {file = "optree-0.12.1-cp310-cp310-win_arm64.whl", hash = "sha256:509bddd38dae8c4e8d6b988f514b7a9fe803ca916b11af67b40520f0b1eeeaef"}, + {file = "optree-0.12.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:06d6ef39b3ef9920d6cdb6d3d1d2804a37092d24dc406c4cb9b46cd6c9a44e89"}, + {file = "optree-0.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ce7cb233e87a2dc127b8ec82bd61f098e6ff1e57d0a09dc110a17b38bfd73034"}, + {file = "optree-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35ca77b810cf5959e6930d56534ecbecc4300f5e5fa14b977030265c1c8eab6c"}, + {file = "optree-0.12.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2de1297b2bf019379ab86103e31caa97c8a08628f0c8b58cd7709f9048c589eb"}, + {file = "optree-0.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:404cf2decd8fb6a1a8f6fef623c98873cdf7ae086aeb8909d104cd321d829ba0"}, + {file = "optree-0.12.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c987931bd31d0f28cbff28925a875639170534a36ce178a40020aca0769d9549"}, + {file = "optree-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e124f30daf79d51b1bbbda7e74d01e637fa47aff4aa64cb082b88057535daa64"}, + {file = "optree-0.12.1-cp311-cp311-win32.whl", hash = "sha256:d913122454d0e3f10dc25a1b598eaf588d225372f41ece3ad4d508bddd363e4d"}, + {file = "optree-0.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d4d8e024b841f99907b2340fee7ac9994fbe300383a9af6c93578d12861a969"}, + {file = "optree-0.12.1-cp311-cp311-win_arm64.whl", hash = "sha256:e20b5569369a5f1e8faa2604799b91a1941fe17b5de8afc84c8c23ff66d8e585"}, + {file = "optree-0.12.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:411a21eca034ddb98eb80e6c4bf552fc46b8d8ab7c4d250446d74d31a251a684"}, + {file = "optree-0.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a67842cd1c5c83d74863872f06fe6ed64e44279c0378267a9805567fe3c38591"}, + {file = "optree-0.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9280452c11da0872ec57be5d8f153207d6303b3cbf26115b2bf6d2b8157a5343"}, + {file = "optree-0.12.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2027217c3acaf44e5f5aabe01ba0cbf33066f3f6df870881ddf597965f80db0"}, + {file = "optree-0.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f65a31d7cfab2fed2bc29ab6eabcf4205dec6e0ee3cfb7006336c4f76d78fb0e"}, + {file = "optree-0.12.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fc1ec38d1ec43bb8358ab058c3220a70b7bfb56f2bb625f41cb09d117a0d6150"}, + {file = "optree-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24d74a9d97d7bdbdbb30356850f204950c39ab8fad7f273ed29d1feda19060b2"}, + {file = "optree-0.12.1-cp312-cp312-win32.whl", hash = "sha256:154738def491199d3fbcd919437315728e0a1caeaf4ec06688c76ef9d56e5ed6"}, + {file = "optree-0.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:1d76905bced5cf569d23dc4890341fae2fa257cce58a492a1603afcdc5969ae7"}, + {file = "optree-0.12.1-cp312-cp312-win_arm64.whl", hash = "sha256:42025da0bac19cc6de756fe64511f15baffb3fa7d8402e54aab035c02903eb5c"}, + {file = "optree-0.12.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:afa0051335c6032ee4dfc212952dcfb3b23fe59bcd70f56d25a214e7585cd62c"}, + {file = "optree-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0460f025bf1c08f2c008b5e3628d849fcb5810345222e57879cd248fec7f9f7"}, + {file = "optree-0.12.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f6b98b80b1259e9817aca701beba616ce33e43e856e7d644f7e0f582b8e45565"}, + {file = "optree-0.12.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7e79eedd9406c59d542482768e490795dc6b6f1a014c7852d29d9fd61749bf94"}, + {file = "optree-0.12.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:562036d3de15204ed1a88d9fc262a7e1c20964d22ef132069e20dbd88215f983"}, + {file = "optree-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aadb26d68f1d7871507f84846d8844aa94f47402d5277ce19cfe5102bb5df9e9"}, + {file = "optree-0.12.1-cp37-cp37m-win32.whl", hash = "sha256:a55a79c1c72f73259532e4cbe9ff65bed9663064747db02591fb4714fe742d2e"}, + {file = "optree-0.12.1-cp37-cp37m-win_amd64.whl", hash = "sha256:1f8baf0ad6b58843d24fa8caf079cf1f0c33cc3658263cff960b5c1d0cc53bc8"}, + {file = "optree-0.12.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:7a71dd58522cd6258b61b639092ac7a2631d881f039ef968b31dfd555e513591"}, + {file = "optree-0.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:da37e6cc669a9840844722edb3f8dd5b4f07e99b0e8c9196089cb49af70c7b75"}, + {file = "optree-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb968d3cc1db8944f220f1a67c9db043b86b47ace90ce3cfd23f3e6500baeb65"}, + {file = "optree-0.12.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50893bd088bdb3e2f07ee481dafd848b483bea1a19cc978f2309139314e5bc7d"}, + {file = "optree-0.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba6aed8b9684c5804a5e2d6b246c3b4a68bab793b6829d369ba1c53734852a0c"}, + {file = "optree-0.12.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:646842f8a2de2caaacc32a8c91f8031a93eda145ac9c915bb0fd2ad5249c14b7"}, + {file = "optree-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:606983f4696d81128e205a1c34d0c9f3fe6ae12f6c26ed5e8ab3722d6f378ec2"}, + {file = "optree-0.12.1-cp38-cp38-win32.whl", hash = "sha256:fd3ead0c64d22d692284d96c27d5091e682b002ffe5a52afacc9f1fcc8ae3180"}, + {file = "optree-0.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:bd207b43e71fb3f8c315e2e4a5444f48317b2108889e96279d5426bca730a47e"}, + {file = "optree-0.12.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9c473988b2d8fd7edc3958e6c7cb1d3f92afb7bcaff53b76a8f41cf4f3a24709"}, + {file = "optree-0.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5f24b0a8b181a90a778cadc942a79336d29f0c164704d58cd20989bf7d0bea1c"}, + {file = "optree-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49d3cfec1a51463b63e11c889bb00207c4e040016833cd202871ad946116925"}, + {file = "optree-0.12.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1ca00bdfe4da8068c2773b7ac4c8c96d3f61b8d21eba6a8642dab23ee631b0d"}, + {file = "optree-0.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5bfe3d3e47e10b528f9324d446c871bfad7d0be8c2bd2a2fbc3ddf1600ae8558"}, + {file = "optree-0.12.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a1a9905d2d917d5aff775283e0a59be2c6b529a219241c248d50b3ad51c6cce"}, + {file = "optree-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27ae426745931ae1c2ccd7a78b27f9b7402167e0600fa62e2ef1cd58727e7b94"}, + {file = "optree-0.12.1-cp39-cp39-win32.whl", hash = "sha256:4b32f39988bfe6e76eeefb335da529e614145f7f1dfa8583fbc4aca8a72f504b"}, + {file = "optree-0.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:6d90fb28d52725352858013cafe34d98d90ab1bb86b5d8dc29d420e9bbc5706b"}, + {file = "optree-0.12.1-cp39-cp39-win_arm64.whl", hash = "sha256:d313303a1ce36ea55c3a96fc375c5cc64a9ab814ab2677ce64e4a7d755a9b1d0"}, + {file = "optree-0.12.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:62d232a344c14b8e94fdd6de1acf2c0b05954b05d6bb346bddb13c38be37dc09"}, + {file = "optree-0.12.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88d01ce6f78f209cad8dc4cf2d3222d7056cac93612abfd6beb40ab43a131769"}, + {file = "optree-0.12.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b890ba0a21049addf589c314c85e98a68d3dfc84e3954491e9ce60f60cb7b0e7"}, + {file = "optree-0.12.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47db001a224382493ae7a8df16e7a9668e971fc129970d137995421aa6b06f8f"}, + {file = "optree-0.12.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:409ef6f3656299923d722509849d83607bb3e5c621dcfe6aa90ace85665e9b54"}, + {file = "optree-0.12.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:8513d6dd71807abb1037a5b5bc66b45c21afb42e9c90961fa5e762cea3943ab2"}, + {file = "optree-0.12.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0950ee245db2c40824362def1efc15621a6492419628cec1fac0061818420f7"}, + {file = "optree-0.12.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cefd4f4c7596cdd4c95dca431bc41284a43ebd7056e739480f157789aa34579d"}, + {file = "optree-0.12.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23afe4aae42336bdf8cf4fba35c56593405bf8f8e163627f722205b3bf0d9310"}, + {file = "optree-0.12.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b2fe5c04c218698a53ed2d4b7372f1989df8cf0a61d616e6f384770d8a5fb1c"}, + {file = "optree-0.12.1.tar.gz", hash = "sha256:76a2240e7482355966a73c6c701e3d1f148420a77849c78d175d3b08bf06ff36"}, +] + +[package.dependencies] +typing-extensions = ">=4.5.0" + +[package.extras] +benchmark = ["dm-tree (>=0.1,<0.2.0a0)", "jax[cpu] (>=0.4.6,<0.5.0a0)", "pandas", "tabulate", "termcolor", "torch (>=2.0,<2.4.0a0)", "torchvision"] +docs = ["docutils", "jax[cpu]", "numpy", "sphinx (>=5.2.1)", "sphinx-autoapi", "sphinx-autobuild", "sphinx-autodoc-typehints (>=1.19.2)", "sphinx-copybutton", "sphinx-rtd-theme", "sphinxcontrib-bibtex", "torch"] +jax = ["jax"] +lint = ["black", "cpplint", "doc8", "flake8", "flake8-bugbear", "flake8-comprehensions", "flake8-docstrings", "flake8-pyi", "flake8-simplify", "isort", "mypy", "pre-commit", "pydocstyle", "pyenchant", "pylint[spelling]", "ruff", "xdoctest"] +numpy = ["numpy"] +test = ["pytest", "pytest-cov", "pytest-xdist"] +torch = ["torch"] + [[package]] name = "overrides" -version = "7.3.1" +version = "7.7.0" description = "A decorator to automatically detect mismatch when overriding a method." optional = false python-versions = ">=3.6" files = [ - {file = "overrides-7.3.1-py3-none-any.whl", hash = "sha256:6187d8710a935d09b0bcef8238301d6ee2569d2ac1ae0ec39a8c7924e27f58ca"}, - {file = "overrides-7.3.1.tar.gz", hash = "sha256:8b97c6c1e1681b78cbc9424b138d880f0803c2254c5ebaabdde57bb6c62093f2"}, + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, ] [[package]] name = "packaging" -version = "23.1" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"}, - {file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] name = "pandas" -version = "2.0.2" +version = "2.2.2" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" -files = [ - {file = "pandas-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ebb9f1c22ddb828e7fd017ea265a59d80461d5a79154b49a4207bd17514d122"}, - {file = "pandas-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1eb09a242184092f424b2edd06eb2b99d06dc07eeddff9929e8667d4ed44e181"}, - {file = "pandas-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7319b6e68de14e6209460f72a8d1ef13c09fb3d3ef6c37c1e65b35d50b5c145"}, - {file = "pandas-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd46bde7309088481b1cf9c58e3f0e204b9ff9e3244f441accd220dd3365ce7c"}, - {file = "pandas-2.0.2-cp310-cp310-win32.whl", hash = "sha256:51a93d422fbb1bd04b67639ba4b5368dffc26923f3ea32a275d2cc450f1d1c86"}, - {file = "pandas-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:66d00300f188fa5de73f92d5725ced162488f6dc6ad4cecfe4144ca29debe3b8"}, - {file = "pandas-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02755de164da6827764ceb3bbc5f64b35cb12394b1024fdf88704d0fa06e0e2f"}, - {file = "pandas-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0a1e0576611641acde15c2322228d138258f236d14b749ad9af498ab69089e2d"}, - {file = "pandas-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6b5f14cd24a2ed06e14255ff40fe2ea0cfaef79a8dd68069b7ace74bd6acbba"}, - {file = "pandas-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50e451932b3011b61d2961b4185382c92cc8c6ee4658dcd4f320687bb2d000ee"}, - {file = "pandas-2.0.2-cp311-cp311-win32.whl", hash = "sha256:7b21cb72958fc49ad757685db1919021d99650d7aaba676576c9e88d3889d456"}, - {file = "pandas-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:c4af689352c4fe3d75b2834933ee9d0ccdbf5d7a8a7264f0ce9524e877820c08"}, - {file = "pandas-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:69167693cb8f9b3fc060956a5d0a0a8dbfed5f980d9fd2c306fb5b9c855c814c"}, - {file = "pandas-2.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30a89d0fec4263ccbf96f68592fd668939481854d2ff9da709d32a047689393b"}, - {file = "pandas-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a18e5c72b989ff0f7197707ceddc99828320d0ca22ab50dd1b9e37db45b010c0"}, - {file = "pandas-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7376e13d28eb16752c398ca1d36ccfe52bf7e887067af9a0474de6331dd948d2"}, - {file = "pandas-2.0.2-cp38-cp38-win32.whl", hash = "sha256:6d6d10c2142d11d40d6e6c0a190b1f89f525bcf85564707e31b0a39e3b398e08"}, - {file = "pandas-2.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:e69140bc2d29a8556f55445c15f5794490852af3de0f609a24003ef174528b79"}, - {file = "pandas-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b42b120458636a981077cfcfa8568c031b3e8709701315e2bfa866324a83efa8"}, - {file = "pandas-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f908a77cbeef9bbd646bd4b81214cbef9ac3dda4181d5092a4aa9797d1bc7774"}, - {file = "pandas-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:713f2f70abcdade1ddd68fc91577cb090b3544b07ceba78a12f799355a13ee44"}, - {file = "pandas-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf3f0c361a4270185baa89ec7ab92ecaa355fe783791457077473f974f654df5"}, - {file = "pandas-2.0.2-cp39-cp39-win32.whl", hash = "sha256:598e9020d85a8cdbaa1815eb325a91cfff2bb2b23c1442549b8a3668e36f0f77"}, - {file = "pandas-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:77550c8909ebc23e56a89f91b40ad01b50c42cfbfab49b3393694a50549295ea"}, - {file = "pandas-2.0.2.tar.gz", hash = "sha256:dd5476b6c3fe410ee95926873f377b856dbc4e81a9c605a0dc05aaccc6a7c6c6"}, +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, ] [package.dependencies] numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" -tzdata = ">=2022.1" +tzdata = ">=2022.7" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] [[package]] name = "pandocfilters" -version = "1.5.0" +version = "1.5.1" description = "Utilities for writing pandoc filters in python" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ - {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, - {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, ] [[package]] name = "parso" -version = "0.8.3" +version = "0.8.4" description = "A Python Parser" optional = false python-versions = ">=3.6" files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, ] [package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] [[package]] name = "pennylane" @@ -2529,132 +2800,140 @@ gpu = ["pennylane-lightning-gpu"] [[package]] name = "pexpect" -version = "4.8.0" +version = "4.9.0" description = "Pexpect allows easy control of interactive console applications." optional = false python-versions = "*" files = [ - {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, - {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, ] [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - [[package]] name = "pillow" -version = "9.5.0" +version = "10.4.0" description = "Python Imaging Library (Fork)" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, - {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, - {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, - {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, - {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, - {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, - {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, - {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, - {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, - {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, - {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, - {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, - {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, - {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, - {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, - {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, - {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, ] [package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] [[package]] name = "platformdirs" -version = "3.6.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "platformdirs-3.6.0-py3-none-any.whl", hash = "sha256:ffa199e3fbab8365778c4a10e1fbf1b9cd50707de826eb304b50e57ec0cc8d38"}, - {file = "platformdirs-3.6.0.tar.gz", hash = "sha256:57e28820ca8094678b807ff529196506d7a21e17156cb1cddb3e74cebce54640"}, + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, ] [package.extras] -docs = ["furo (>=2023.5.20)", "proselint (>=0.13)", "sphinx (>=7.0.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest-cov (>=4.1)", "pytest-mock (>=3.10)"] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] [[package]] name = "pluggy" -version = "1.0.0" +version = "1.5.0" description = "plugin and hook calling mechanisms for python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, - {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, + {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, + {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, ] [package.extras] @@ -2663,13 +2942,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.17.0" +version = "0.20.0" description = "Python client for the Prometheus monitoring system." optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "prometheus_client-0.17.0-py3-none-any.whl", hash = "sha256:a77b708cf083f4d1a3fb3ce5c95b4afa32b9c521ae363354a4a910204ea095ce"}, - {file = "prometheus_client-0.17.0.tar.gz", hash = "sha256:9c3b26f1535945e85b8934fb374678d263137b78ef85f305b1156c7c881cd11b"}, + {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, + {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, ] [package.extras] @@ -2677,13 +2956,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.38" +version = "3.0.47" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, - {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, ] [package.dependencies] @@ -2713,25 +2992,28 @@ files = [ [[package]] name = "psutil" -version = "5.9.5" +version = "6.0.0" description = "Cross-platform lib for process and system monitoring in Python." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ - {file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"}, - {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"}, - {file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"}, - {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"}, - {file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"}, - {file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"}, - {file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"}, - {file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"}, - {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"}, - {file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"}, - {file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"}, - {file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"}, - {file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"}, - {file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"}, + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, ] [package.extras] @@ -2762,40 +3044,15 @@ files = [ [package.extras] tests = ["pytest"] -[[package]] -name = "pyasn1" -version = "0.5.0" -description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "pyasn1-0.5.0-py2.py3-none-any.whl", hash = "sha256:87a2121042a1ac9358cabcaf1d07680ff97ee6404333bacca15f76aa8ad01a57"}, - {file = "pyasn1-0.5.0.tar.gz", hash = "sha256:97b7290ca68e62a832558ec3976f15cbf911bf5d7c7039d8b861c2a0ece69fde"}, -] - -[[package]] -name = "pyasn1-modules" -version = "0.3.0" -description = "A collection of ASN.1-based protocols modules" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, - {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, -] - -[package.dependencies] -pyasn1 = ">=0.4.6,<0.6.0" - [[package]] name = "pycparser" -version = "2.21" +version = "2.22" description = "C parser in Python" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=3.8" files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] [[package]] @@ -2814,17 +3071,17 @@ scipy = "*" [[package]] name = "pygments" -version = "2.15.1" +version = "2.18.0" description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Pygments-2.15.1-py3-none-any.whl", hash = "sha256:db2db3deb4b4179f399a09054b023b6a586b76499d36965813c71aa8ed7b5fd1"}, - {file = "Pygments-2.15.1.tar.gz", hash = "sha256:8ace4d3c1dd481894b2005f560ead0f9f19ee64fe983366be1a21e171d12775c"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] [package.extras] -plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyment" @@ -2839,63 +3096,27 @@ files = [ [[package]] name = "pyparsing" -version = "3.1.0" +version = "3.1.2" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.0-py3-none-any.whl", hash = "sha256:d554a96d1a7d3ddaf7183104485bc19fd80543ad6ac5bdb6426719d766fb06c1"}, - {file = "pyparsing-3.1.0.tar.gz", hash = "sha256:edb662d6fe322d6e990b1594b5feaeadf806803359e3d4d42f11e295e588f0ea"}, + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, ] [package.extras] diagrams = ["jinja2", "railroad-diagrams"] -[[package]] -name = "pyrsistent" -version = "0.19.3" -description = "Persistent/Functional/Immutable data structures" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, - {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, - {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, - {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, - {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, - {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, -] - [[package]] name = "pytest" -version = "7.3.2" +version = "7.4.4" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.7" files = [ - {file = "pytest-7.3.2-py3-none-any.whl", hash = "sha256:cdcbd012c9312258922f8cd3f1b62a6580fdced17db6014896053d47cddf9295"}, - {file = "pytest-7.3.2.tar.gz", hash = "sha256:ee990a3cc55ba808b80795a79944756f315c67c12b56abd3ac993a7b8c17030b"}, + {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, + {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, ] [package.dependencies] @@ -2911,13 +3132,13 @@ testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "no [[package]] name = "python-dateutil" -version = "2.8.2" +version = "2.9.0.post0" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, ] [package.dependencies] @@ -2958,13 +3179,13 @@ test = ["nbval", "numpy (>=1.14)", "pytest-check-links"] [[package]] name = "pytz" -version = "2023.3" +version = "2024.1" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2023.3-py2.py3-none-any.whl", hash = "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb"}, - {file = "pytz-2023.3.tar.gz", hash = "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588"}, + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, ] [[package]] @@ -2992,166 +3213,203 @@ files = [ [[package]] name = "pywinpty" -version = "2.0.10" +version = "2.0.13" description = "Pseudo terminal support for Windows from Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, - {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, - {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, - {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, - {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, - {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, + {file = "pywinpty-2.0.13-cp310-none-win_amd64.whl", hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56"}, + {file = "pywinpty-2.0.13-cp311-none-win_amd64.whl", hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99"}, + {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"}, + {file = "pywinpty-2.0.13-cp38-none-win_amd64.whl", hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d"}, + {file = "pywinpty-2.0.13-cp39-none-win_amd64.whl", hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b"}, + {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"}, ] [[package]] name = "pyyaml" -version = "6.0" +version = "6.0.1" description = "YAML parser and emitter for Python" optional = false python-versions = ">=3.6" files = [ - {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, - {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, - {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, - {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, - {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, - {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, - {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, - {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, - {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, - {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, - {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, - {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, - {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, - {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, - {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, - {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, - {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, - {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, + {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, + {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, + {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, ] [[package]] name = "pyzmq" -version = "25.1.0" +version = "26.0.3" description = "Python bindings for 0MQ" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "pyzmq-25.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:1a6169e69034eaa06823da6a93a7739ff38716142b3596c180363dee729d713d"}, - {file = "pyzmq-25.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:19d0383b1f18411d137d891cab567de9afa609b214de68b86e20173dc624c101"}, - {file = "pyzmq-25.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1e931d9a92f628858a50f5bdffdfcf839aebe388b82f9d2ccd5d22a38a789dc"}, - {file = "pyzmq-25.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:97d984b1b2f574bc1bb58296d3c0b64b10e95e7026f8716ed6c0b86d4679843f"}, - {file = "pyzmq-25.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:154bddda2a351161474b36dba03bf1463377ec226a13458725183e508840df89"}, - {file = "pyzmq-25.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:cb6d161ae94fb35bb518b74bb06b7293299c15ba3bc099dccd6a5b7ae589aee3"}, - {file = "pyzmq-25.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:90146ab578931e0e2826ee39d0c948d0ea72734378f1898939d18bc9c823fcf9"}, - {file = "pyzmq-25.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:831ba20b660b39e39e5ac8603e8193f8fce1ee03a42c84ade89c36a251449d80"}, - {file = "pyzmq-25.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3a522510e3434e12aff80187144c6df556bb06fe6b9d01b2ecfbd2b5bfa5c60c"}, - {file = "pyzmq-25.1.0-cp310-cp310-win32.whl", hash = "sha256:be24a5867b8e3b9dd5c241de359a9a5217698ff616ac2daa47713ba2ebe30ad1"}, - {file = "pyzmq-25.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:5693dcc4f163481cf79e98cf2d7995c60e43809e325b77a7748d8024b1b7bcba"}, - {file = "pyzmq-25.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:13bbe36da3f8aaf2b7ec12696253c0bf6ffe05f4507985a8844a1081db6ec22d"}, - {file = "pyzmq-25.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:69511d604368f3dc58d4be1b0bad99b61ee92b44afe1cd9b7bd8c5e34ea8248a"}, - {file = "pyzmq-25.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a983c8694667fd76d793ada77fd36c8317e76aa66eec75be2653cef2ea72883"}, - {file = "pyzmq-25.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:332616f95eb400492103ab9d542b69d5f0ff628b23129a4bc0a2fd48da6e4e0b"}, - {file = "pyzmq-25.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58416db767787aedbfd57116714aad6c9ce57215ffa1c3758a52403f7c68cff5"}, - {file = "pyzmq-25.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:cad9545f5801a125f162d09ec9b724b7ad9b6440151b89645241d0120e119dcc"}, - {file = "pyzmq-25.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d6128d431b8dfa888bf51c22a04d48bcb3d64431caf02b3cb943269f17fd2994"}, - {file = "pyzmq-25.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:2b15247c49d8cbea695b321ae5478d47cffd496a2ec5ef47131a9e79ddd7e46c"}, - {file = "pyzmq-25.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:442d3efc77ca4d35bee3547a8e08e8d4bb88dadb54a8377014938ba98d2e074a"}, - {file = "pyzmq-25.1.0-cp311-cp311-win32.whl", hash = "sha256:65346f507a815a731092421d0d7d60ed551a80d9b75e8b684307d435a5597425"}, - {file = "pyzmq-25.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8b45d722046fea5a5694cba5d86f21f78f0052b40a4bbbbf60128ac55bfcc7b6"}, - {file = "pyzmq-25.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f45808eda8b1d71308c5416ef3abe958f033fdbb356984fabbfc7887bed76b3f"}, - {file = "pyzmq-25.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b697774ea8273e3c0460cf0bba16cd85ca6c46dfe8b303211816d68c492e132"}, - {file = "pyzmq-25.1.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b324fa769577fc2c8f5efcd429cef5acbc17d63fe15ed16d6dcbac2c5eb00849"}, - {file = "pyzmq-25.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:5873d6a60b778848ce23b6c0ac26c39e48969823882f607516b91fb323ce80e5"}, - {file = "pyzmq-25.1.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:f0d9e7ba6a815a12c8575ba7887da4b72483e4cfc57179af10c9b937f3f9308f"}, - {file = "pyzmq-25.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:414b8beec76521358b49170db7b9967d6974bdfc3297f47f7d23edec37329b00"}, - {file = "pyzmq-25.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:01f06f33e12497dca86353c354461f75275a5ad9eaea181ac0dc1662da8074fa"}, - {file = "pyzmq-25.1.0-cp36-cp36m-win32.whl", hash = "sha256:b5a07c4f29bf7cb0164664ef87e4aa25435dcc1f818d29842118b0ac1eb8e2b5"}, - {file = "pyzmq-25.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:968b0c737797c1809ec602e082cb63e9824ff2329275336bb88bd71591e94a90"}, - {file = "pyzmq-25.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:47b915ba666c51391836d7ed9a745926b22c434efa76c119f77bcffa64d2c50c"}, - {file = "pyzmq-25.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5af31493663cf76dd36b00dafbc839e83bbca8a0662931e11816d75f36155897"}, - {file = "pyzmq-25.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5489738a692bc7ee9a0a7765979c8a572520d616d12d949eaffc6e061b82b4d1"}, - {file = "pyzmq-25.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1fc56a0221bdf67cfa94ef2d6ce5513a3d209c3dfd21fed4d4e87eca1822e3a3"}, - {file = "pyzmq-25.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:75217e83faea9edbc29516fc90c817bc40c6b21a5771ecb53e868e45594826b0"}, - {file = "pyzmq-25.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3830be8826639d801de9053cf86350ed6742c4321ba4236e4b5568528d7bfed7"}, - {file = "pyzmq-25.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3575699d7fd7c9b2108bc1c6128641a9a825a58577775ada26c02eb29e09c517"}, - {file = "pyzmq-25.1.0-cp37-cp37m-win32.whl", hash = "sha256:95bd3a998d8c68b76679f6b18f520904af5204f089beebb7b0301d97704634dd"}, - {file = "pyzmq-25.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:dbc466744a2db4b7ca05589f21ae1a35066afada2f803f92369f5877c100ef62"}, - {file = "pyzmq-25.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:3bed53f7218490c68f0e82a29c92335daa9606216e51c64f37b48eb78f1281f4"}, - {file = "pyzmq-25.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eb52e826d16c09ef87132c6e360e1879c984f19a4f62d8a935345deac43f3c12"}, - {file = "pyzmq-25.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ddbef8b53cd16467fdbfa92a712eae46dd066aa19780681a2ce266e88fbc7165"}, - {file = "pyzmq-25.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9301cf1d7fc1ddf668d0abbe3e227fc9ab15bc036a31c247276012abb921b5ff"}, - {file = "pyzmq-25.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e23a8c3b6c06de40bdb9e06288180d630b562db8ac199e8cc535af81f90e64b"}, - {file = "pyzmq-25.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4a82faae00d1eed4809c2f18b37f15ce39a10a1c58fe48b60ad02875d6e13d80"}, - {file = "pyzmq-25.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c8398a1b1951aaa330269c35335ae69744be166e67e0ebd9869bdc09426f3871"}, - {file = "pyzmq-25.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d40682ac60b2a613d36d8d3a0cd14fbdf8e7e0618fbb40aa9fa7b796c9081584"}, - {file = "pyzmq-25.1.0-cp38-cp38-win32.whl", hash = "sha256:33d5c8391a34d56224bccf74f458d82fc6e24b3213fc68165c98b708c7a69325"}, - {file = "pyzmq-25.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:c66b7ff2527e18554030319b1376d81560ca0742c6e0b17ff1ee96624a5f1afd"}, - {file = "pyzmq-25.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:af56229ea6527a849ac9fb154a059d7e32e77a8cba27e3e62a1e38d8808cb1a5"}, - {file = "pyzmq-25.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bdca18b94c404af6ae5533cd1bc310c4931f7ac97c148bbfd2cd4bdd62b96253"}, - {file = "pyzmq-25.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b6b42f7055bbc562f63f3df3b63e3dd1ebe9727ff0f124c3aa7bcea7b3a00f9"}, - {file = "pyzmq-25.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c2fc7aad520a97d64ffc98190fce6b64152bde57a10c704b337082679e74f67"}, - {file = "pyzmq-25.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be86a26415a8b6af02cd8d782e3a9ae3872140a057f1cadf0133de685185c02b"}, - {file = "pyzmq-25.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:851fb2fe14036cfc1960d806628b80276af5424db09fe5c91c726890c8e6d943"}, - {file = "pyzmq-25.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2a21fec5c3cea45421a19ccbe6250c82f97af4175bc09de4d6dd78fb0cb4c200"}, - {file = "pyzmq-25.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bad172aba822444b32eae54c2d5ab18cd7dee9814fd5c7ed026603b8cae2d05f"}, - {file = "pyzmq-25.1.0-cp39-cp39-win32.whl", hash = "sha256:4d67609b37204acad3d566bb7391e0ecc25ef8bae22ff72ebe2ad7ffb7847158"}, - {file = "pyzmq-25.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:71c7b5896e40720d30cd77a81e62b433b981005bbff0cb2f739e0f8d059b5d99"}, - {file = "pyzmq-25.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4cb27ef9d3bdc0c195b2dc54fcb8720e18b741624686a81942e14c8b67cc61a6"}, - {file = "pyzmq-25.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0c4fc2741e0513b5d5a12fe200d6785bbcc621f6f2278893a9ca7bed7f2efb7d"}, - {file = "pyzmq-25.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fc34fdd458ff77a2a00e3c86f899911f6f269d393ca5675842a6e92eea565bae"}, - {file = "pyzmq-25.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8751f9c1442624da391bbd92bd4b072def6d7702a9390e4479f45c182392ff78"}, - {file = "pyzmq-25.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6581e886aec3135964a302a0f5eb68f964869b9efd1dbafdebceaaf2934f8a68"}, - {file = "pyzmq-25.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5482f08d2c3c42b920e8771ae8932fbaa0a67dff925fc476996ddd8155a170f3"}, - {file = "pyzmq-25.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7fbcafa3ea16d1de1f213c226005fea21ee16ed56134b75b2dede5a2129e62"}, - {file = "pyzmq-25.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:adecf6d02b1beab8d7c04bc36f22bb0e4c65a35eb0b4750b91693631d4081c70"}, - {file = "pyzmq-25.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6d39e42a0aa888122d1beb8ec0d4ddfb6c6b45aecb5ba4013c27e2f28657765"}, - {file = "pyzmq-25.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:7018289b402ebf2b2c06992813523de61d4ce17bd514c4339d8f27a6f6809492"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9e68ae9864d260b18f311b68d29134d8776d82e7f5d75ce898b40a88df9db30f"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e21cc00e4debe8f54c3ed7b9fcca540f46eee12762a9fa56feb8512fd9057161"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2f666ae327a6899ff560d741681fdcdf4506f990595201ed39b44278c471ad98"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f5efcc29056dfe95e9c9db0dfbb12b62db9c4ad302f812931b6d21dd04a9119"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:48e5e59e77c1a83162ab3c163fc01cd2eebc5b34560341a67421b09be0891287"}, - {file = "pyzmq-25.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:108c96ebbd573d929740d66e4c3d1bdf31d5cde003b8dc7811a3c8c5b0fc173b"}, - {file = "pyzmq-25.1.0.tar.gz", hash = "sha256:80c41023465d36280e801564a69cbfce8ae85ff79b080e1913f6e90481fb8957"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, ] [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -3164,37 +3422,19 @@ urllib3 = ">=1.21.1,<3" socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] -[[package]] -name = "requests-oauthlib" -version = "1.3.1" -description = "OAuthlib authentication support for Requests." -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, - {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, -] - -[package.dependencies] -oauthlib = ">=3.0.0" -requests = ">=2.0.0" - -[package.extras] -rsa = ["oauthlib[signedtoken] (>=3.0.0)"] - [[package]] name = "retworkx" -version = "0.13.0" +version = "0.15.1" description = "A python graph library implemented in Rust" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "retworkx-0.13.0-py3-none-any.whl", hash = "sha256:cefe0565e9fff27cc995c8cbd0258e648be1395e863c333f1a9ea2b2174071aa"}, + {file = "retworkx-0.15.1-py3-none-any.whl", hash = "sha256:1e9f106b915215d57eb209076df3a07a6e34a258c98efe48bdae69bbd0e07282"}, ] [package.dependencies] -numpy = ">=1.16.0" -rustworkx = "0.13.0" +numpy = ">=1.16.0,<3" +rustworkx = "0.15.1" [package.extras] all = ["matplotlib (>=3.0)", "pillow (>=5.4)"] @@ -3227,79 +3467,154 @@ files = [ ] [[package]] -name = "rsa" -version = "4.9" -description = "Pure-Python RSA implementation" +name = "rich" +version = "13.7.1" +description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false -python-versions = ">=3.6,<4" +python-versions = ">=3.7.0" files = [ - {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, - {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, + {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, + {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, ] [package.dependencies] -pyasn1 = ">=0.1.3" +markdown-it-py = ">=2.2.0" +pygments = ">=2.13.0,<3.0.0" + +[package.extras] +jupyter = ["ipywidgets (>=7.5.1,<9)"] + +[[package]] +name = "rpds-py" +version = "0.19.0" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rpds_py-0.19.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:fb37bd599f031f1a6fb9e58ec62864ccf3ad549cf14bac527dbfa97123edcca4"}, + {file = "rpds_py-0.19.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3384d278df99ec2c6acf701d067147320b864ef6727405d6470838476e44d9e8"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54548e0be3ac117595408fd4ca0ac9278fde89829b0b518be92863b17ff67a2"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8eb488ef928cdbc05a27245e52de73c0d7c72a34240ef4d9893fdf65a8c1a955"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5da93debdfe27b2bfc69eefb592e1831d957b9535e0943a0ee8b97996de21b5"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79e205c70afddd41f6ee79a8656aec738492a550247a7af697d5bd1aee14f766"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:959179efb3e4a27610e8d54d667c02a9feaa86bbabaf63efa7faa4dfa780d4f1"}, + {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a6e605bb9edcf010f54f8b6a590dd23a4b40a8cb141255eec2a03db249bc915b"}, + {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9133d75dc119a61d1a0ded38fb9ba40a00ef41697cc07adb6ae098c875195a3f"}, + {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dd36b712d35e757e28bf2f40a71e8f8a2d43c8b026d881aa0c617b450d6865c9"}, + {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:354f3a91718489912f2e0fc331c24eaaf6a4565c080e00fbedb6015857c00582"}, + {file = "rpds_py-0.19.0-cp310-none-win32.whl", hash = "sha256:ebcbf356bf5c51afc3290e491d3722b26aaf5b6af3c1c7f6a1b757828a46e336"}, + {file = "rpds_py-0.19.0-cp310-none-win_amd64.whl", hash = "sha256:75a6076289b2df6c8ecb9d13ff79ae0cad1d5fb40af377a5021016d58cd691ec"}, + {file = "rpds_py-0.19.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6d45080095e585f8c5097897313def60caa2046da202cdb17a01f147fb263b81"}, + {file = "rpds_py-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5c9581019c96f865483d031691a5ff1cc455feb4d84fc6920a5ffc48a794d8a"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1540d807364c84516417115c38f0119dfec5ea5c0dd9a25332dea60b1d26fc4d"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9e65489222b410f79711dc3d2d5003d2757e30874096b2008d50329ea4d0f88c"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9da6f400eeb8c36f72ef6646ea530d6d175a4f77ff2ed8dfd6352842274c1d8b"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37f46bb11858717e0efa7893c0f7055c43b44c103e40e69442db5061cb26ed34"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:071d4adc734de562bd11d43bd134330fb6249769b2f66b9310dab7460f4bf714"}, + {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9625367c8955e4319049113ea4f8fee0c6c1145192d57946c6ffcd8fe8bf48dd"}, + {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e19509145275d46bc4d1e16af0b57a12d227c8253655a46bbd5ec317e941279d"}, + {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d438e4c020d8c39961deaf58f6913b1bf8832d9b6f62ec35bd93e97807e9cbc"}, + {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:90bf55d9d139e5d127193170f38c584ed3c79e16638890d2e36f23aa1630b952"}, + {file = "rpds_py-0.19.0-cp311-none-win32.whl", hash = "sha256:8d6ad132b1bc13d05ffe5b85e7a01a3998bf3a6302ba594b28d61b8c2cf13aaf"}, + {file = "rpds_py-0.19.0-cp311-none-win_amd64.whl", hash = "sha256:7ec72df7354e6b7f6eb2a17fa6901350018c3a9ad78e48d7b2b54d0412539a67"}, + {file = "rpds_py-0.19.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5095a7c838a8647c32aa37c3a460d2c48debff7fc26e1136aee60100a8cd8f68"}, + {file = "rpds_py-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f2f78ef14077e08856e788fa482107aa602636c16c25bdf59c22ea525a785e9"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7cc6cb44f8636fbf4a934ca72f3e786ba3c9f9ba4f4d74611e7da80684e48d2"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cf902878b4af334a09de7a45badbff0389e7cf8dc2e4dcf5f07125d0b7c2656d"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:688aa6b8aa724db1596514751ffb767766e02e5c4a87486ab36b8e1ebc1aedac"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57dbc9167d48e355e2569346b5aa4077f29bf86389c924df25c0a8b9124461fb"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b4cf5a9497874822341c2ebe0d5850fed392034caadc0bad134ab6822c0925b"}, + {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a790d235b9d39c70a466200d506bb33a98e2ee374a9b4eec7a8ac64c2c261fa"}, + {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1d16089dfa58719c98a1c06f2daceba6d8e3fb9b5d7931af4a990a3c486241cb"}, + {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:bc9128e74fe94650367fe23f37074f121b9f796cabbd2f928f13e9661837296d"}, + {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c8f77e661ffd96ff104bebf7d0f3255b02aa5d5b28326f5408d6284c4a8b3248"}, + {file = "rpds_py-0.19.0-cp312-none-win32.whl", hash = "sha256:5f83689a38e76969327e9b682be5521d87a0c9e5a2e187d2bc6be4765f0d4600"}, + {file = "rpds_py-0.19.0-cp312-none-win_amd64.whl", hash = "sha256:06925c50f86da0596b9c3c64c3837b2481337b83ef3519e5db2701df695453a4"}, + {file = "rpds_py-0.19.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:52e466bea6f8f3a44b1234570244b1cff45150f59a4acae3fcc5fd700c2993ca"}, + {file = "rpds_py-0.19.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e21cc693045fda7f745c790cb687958161ce172ffe3c5719ca1764e752237d16"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b31f059878eb1f5da8b2fd82480cc18bed8dcd7fb8fe68370e2e6285fa86da6"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1dd46f309e953927dd018567d6a9e2fb84783963650171f6c5fe7e5c41fd5666"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34a01a4490e170376cd79258b7f755fa13b1a6c3667e872c8e35051ae857a92b"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bcf426a8c38eb57f7bf28932e68425ba86def6e756a5b8cb4731d8e62e4e0223"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68eea5df6347d3f1378ce992d86b2af16ad7ff4dcb4a19ccdc23dea901b87fb"}, + {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dab8d921b55a28287733263c0e4c7db11b3ee22aee158a4de09f13c93283c62d"}, + {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6fe87efd7f47266dfc42fe76dae89060038f1d9cb911f89ae7e5084148d1cc08"}, + {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:535d4b52524a961d220875688159277f0e9eeeda0ac45e766092bfb54437543f"}, + {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:8b1a94b8afc154fbe36978a511a1f155f9bd97664e4f1f7a374d72e180ceb0ae"}, + {file = "rpds_py-0.19.0-cp38-none-win32.whl", hash = "sha256:7c98298a15d6b90c8f6e3caa6457f4f022423caa5fa1a1ca7a5e9e512bdb77a4"}, + {file = "rpds_py-0.19.0-cp38-none-win_amd64.whl", hash = "sha256:b0da31853ab6e58a11db3205729133ce0df26e6804e93079dee095be3d681dc1"}, + {file = "rpds_py-0.19.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5039e3cef7b3e7a060de468a4a60a60a1f31786da94c6cb054e7a3c75906111c"}, + {file = "rpds_py-0.19.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab1932ca6cb8c7499a4d87cb21ccc0d3326f172cfb6a64021a889b591bb3045c"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2afd2164a1e85226fcb6a1da77a5c8896c18bfe08e82e8ceced5181c42d2179"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1c30841f5040de47a0046c243fc1b44ddc87d1b12435a43b8edff7e7cb1e0d0"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f757f359f30ec7dcebca662a6bd46d1098f8b9fb1fcd661a9e13f2e8ce343ba1"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15e65395a59d2e0e96caf8ee5389ffb4604e980479c32742936ddd7ade914b22"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb0f6eb3a320f24b94d177e62f4074ff438f2ad9d27e75a46221904ef21a7b05"}, + {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b228e693a2559888790936e20f5f88b6e9f8162c681830eda303bad7517b4d5a"}, + {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2575efaa5d949c9f4e2cdbe7d805d02122c16065bfb8d95c129372d65a291a0b"}, + {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5c872814b77a4e84afa293a1bee08c14daed1068b2bb1cc312edbf020bbbca2b"}, + {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:850720e1b383df199b8433a20e02b25b72f0fded28bc03c5bd79e2ce7ef050be"}, + {file = "rpds_py-0.19.0-cp39-none-win32.whl", hash = "sha256:ce84a7efa5af9f54c0aa7692c45861c1667080814286cacb9958c07fc50294fb"}, + {file = "rpds_py-0.19.0-cp39-none-win_amd64.whl", hash = "sha256:1c26da90b8d06227d7769f34915913911222d24ce08c0ab2d60b354e2d9c7aff"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:75969cf900d7be665ccb1622a9aba225cf386bbc9c3bcfeeab9f62b5048f4a07"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8445f23f13339da640d1be8e44e5baf4af97e396882ebbf1692aecd67f67c479"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5a7c1062ef8aea3eda149f08120f10795835fc1c8bc6ad948fb9652a113ca55"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:462b0c18fbb48fdbf980914a02ee38c423a25fcc4cf40f66bacc95a2d2d73bc8"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3208f9aea18991ac7f2b39721e947bbd752a1abbe79ad90d9b6a84a74d44409b"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3444fe52b82f122d8a99bf66777aed6b858d392b12f4c317da19f8234db4533"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb4bac7185a9f0168d38c01d7a00addece9822a52870eee26b8d5b61409213"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6b130bd4163c93798a6b9bb96be64a7c43e1cec81126ffa7ffaa106e1fc5cef5"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:a707b158b4410aefb6b054715545bbb21aaa5d5d0080217290131c49c2124a6e"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dc9ac4659456bde7c567107556ab065801622396b435a3ff213daef27b495388"}, + {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:81ea573aa46d3b6b3d890cd3c0ad82105985e6058a4baed03cf92518081eec8c"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f148c3f47f7f29a79c38cc5d020edcb5ca780020fab94dbc21f9af95c463581"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0906357f90784a66e89ae3eadc2654f36c580a7d65cf63e6a616e4aec3a81be"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f629ecc2db6a4736b5ba95a8347b0089240d69ad14ac364f557d52ad68cf94b0"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6feacd1d178c30e5bc37184526e56740342fd2aa6371a28367bad7908d454fc"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae8b6068ee374fdfab63689be0963333aa83b0815ead5d8648389a8ded593378"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d57546bad81e0da13263e4c9ce30e96dcbe720dbff5ada08d2600a3502e526"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b6683a37338818646af718c9ca2a07f89787551057fae57c4ec0446dc6224b"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e8481b946792415adc07410420d6fc65a352b45d347b78fec45d8f8f0d7496f0"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bec35eb20792ea64c3c57891bc3ca0bedb2884fbac2c8249d9b731447ecde4fa"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:aa5476c3e3a402c37779e95f7b4048db2cb5b0ed0b9d006983965e93f40fe05a"}, + {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:19d02c45f2507b489fd4df7b827940f1420480b3e2e471e952af4d44a1ea8e34"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3e2fd14c5d49ee1da322672375963f19f32b3d5953f0615b175ff7b9d38daed"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:93a91c2640645303e874eada51f4f33351b84b351a689d470f8108d0e0694210"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5b9fc03bf76a94065299d4a2ecd8dfbae4ae8e2e8098bbfa6ab6413ca267709"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5a4b07cdf3f84310c08c1de2c12ddadbb7a77568bcb16e95489f9c81074322ed"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba0ed0dc6763d8bd6e5de5cf0d746d28e706a10b615ea382ac0ab17bb7388633"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:474bc83233abdcf2124ed3f66230a1c8435896046caa4b0b5ab6013c640803cc"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329c719d31362355a96b435f4653e3b4b061fcc9eba9f91dd40804ca637d914e"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef9101f3f7b59043a34f1dccbb385ca760467590951952d6701df0da9893ca0c"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:0121803b0f424ee2109d6e1f27db45b166ebaa4b32ff47d6aa225642636cd834"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8344127403dea42f5970adccf6c5957a71a47f522171fafaf4c6ddb41b61703a"}, + {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:443cec402ddd650bb2b885113e1dcedb22b1175c6be223b14246a714b61cd521"}, + {file = "rpds_py-0.19.0.tar.gz", hash = "sha256:4fdc9afadbeb393b4bbbad75481e0ea78e4469f2e1d713a90811700830b553a9"}, +] [[package]] name = "rustworkx" -version = "0.13.0" +version = "0.15.1" description = "A python graph library implemented in Rust" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "rustworkx-0.13.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:761a22a1b7294391e19f62640791b5d311f04be2cf5fbc608c6474bf53b16842"}, - {file = "rustworkx-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:61a8cfa2718c11c1320af76e9ae7d1256700ee52626420307fe60600e21aec3b"}, - {file = "rustworkx-0.13.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a6514f6c64fedcc04c7327c6575c3f9bf017365a4b08077cdc248477c943d6fc"}, - {file = "rustworkx-0.13.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71d5ff92bdb7b9d9324e2d07d9331675723ecc8efd5e8290f5cec14b3f53f12b"}, - {file = "rustworkx-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9592ed33482113cb524c060f733fe6677e3f0e1caafcc3c0589bee03f9218d9c"}, - {file = "rustworkx-0.13.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2d66be71bec30e45fcc660b17b06584584c004d884be2d92d9c381caa2d43bd2"}, - {file = "rustworkx-0.13.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:641c44f62196c7a2bdfa262feafe9db3710b45e7ae3b3e7dac57edf3e788b7bb"}, - {file = "rustworkx-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5feab550fe029b4db24ed3ea95936f9fa9753827507a354d262dcf68dfa490db"}, - {file = "rustworkx-0.13.0-cp310-cp310-win32.whl", hash = "sha256:4c669747786e58d42adb909ac39af1d5a764275a52e96e7e3445519718a7b40f"}, - {file = "rustworkx-0.13.0-cp310-cp310-win_amd64.whl", hash = "sha256:3112b72cd254a4e1ea8f7e2ab672960f54fa04a2f40f4ee4c1967e3f0cbdffb9"}, - {file = "rustworkx-0.13.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6b23a785f64d321edede3d4c18153984a402ef6728e543d9c36b74569d908ac5"}, - {file = "rustworkx-0.13.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:28049f4e717d8fabb46b296f775d8c63f8db2b4a72d83880c26a61abc11825f4"}, - {file = "rustworkx-0.13.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7f2ecf510e2cc507627d1d3f0f8249d59af1009331bcf66f703d431b35feaea3"}, - {file = "rustworkx-0.13.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6afda2a693cd55bcd1ab4decf14d33fd4486a8c8bded0230f617c9e2fb6b19cf"}, - {file = "rustworkx-0.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f31417ee53554d2b9007187108cacf393749984db1a0b8663af6d24481dee9c8"}, - {file = "rustworkx-0.13.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5b1964c1845c5d46d1f260182434ef9700feda9be12d7a8b778591983d22936"}, - {file = "rustworkx-0.13.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6764c06b0863fe1be82e2c560b226c9f0b5e5ca228323f2bf6f9b78905592cd"}, - {file = "rustworkx-0.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d20b8913cade8a836a8072bfae9441ae441a1604a9eb9870301cb3645f262e92"}, - {file = "rustworkx-0.13.0-cp311-cp311-win32.whl", hash = "sha256:624aa1b1425a3adbf22b80d3f263b236d9e4dfc2d0eab2a7378d0629a06a0b12"}, - {file = "rustworkx-0.13.0-cp311-cp311-win_amd64.whl", hash = "sha256:24978e6984232050100be125098f7deefea046cb97a4bc92b7d12b260af9956c"}, - {file = "rustworkx-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:83871fa4ff364ff761eeb3d3f40f7708fa046b4e7306d8f63742a74592ac5066"}, - {file = "rustworkx-0.13.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d31bc8dff1e5c3761357943aabbcace651662232efa50f9ce4855b4ac5b50c53"}, - {file = "rustworkx-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85ded90a8599ef94cb457e8df003ccbf4861ecd604c5f095a61cbb4d918b1809"}, - {file = "rustworkx-0.13.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0dc00d20e7526d567280e6477d1816352bf8688401ef44b52cc68adf67f9770b"}, - {file = "rustworkx-0.13.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbb321d2eb7decf8e0215e0735b526a232ac28613147dd95f5e0f5a93fd8c98b"}, - {file = "rustworkx-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71f09845499a1122ae3bb3dd4ce0ad5e0927737fd4ae30d378e34e89ad422931"}, - {file = "rustworkx-0.13.0-cp37-cp37m-win32.whl", hash = "sha256:2a9bbf4862ddc6b7e48b64e2222b10285b439ec5a542c3c3652ed89af3ddd014"}, - {file = "rustworkx-0.13.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ce6c3cbeb24444ce3260a4c205923622f462753f9c965d612cbfed0a568120bf"}, - {file = "rustworkx-0.13.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:30055205207174bcfd2e2b1ec41920e7747f9b8be5aba89208de908d3303f59d"}, - {file = "rustworkx-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:85248355323be073e33fde4f14d8c9ab79b3a4e74fbb2d61715e55843dd3a0ee"}, - {file = "rustworkx-0.13.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1c3515d735189f82fa44b8cae32e28bbba03d86cb350e1460b58465d5696424a"}, - {file = "rustworkx-0.13.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1814d6994bb1feeda373f845af40b230ea5e6af078d48601d623d773db19b15"}, - {file = "rustworkx-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d9af143694e7b1fa65c8c32a5ccbce4aeb4a48c53bc0a0db18e1c9a4a089831"}, - {file = "rustworkx-0.13.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7dd62dc51eb9563de78a1266c8faea844a54283e8b52f3d690f9154acd751e4"}, - {file = "rustworkx-0.13.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b6803f1e444ef4cdae2b35e9fec5582c41d0f2c64608ec7416459f19e180a00"}, - {file = "rustworkx-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:796db1f89acf20624fa41115cb9c630413c16364ce2b7a9d1e6f7fd770631085"}, - {file = "rustworkx-0.13.0-cp38-cp38-win32.whl", hash = "sha256:505dfd386d8388a0a0996bc9d64fc8a4fbd3fe5e8f8362af03c48567ee8e1332"}, - {file = "rustworkx-0.13.0-cp38-cp38-win_amd64.whl", hash = "sha256:84de10641d380dd165bf4250ea2f299542921d4daa85b1c7d39f0f0ef022c107"}, - {file = "rustworkx-0.13.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:320f95e3677d33202ca2ae9d82736848d8bce6eb12612fe81d3bcb9ab8952524"}, - {file = "rustworkx-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bd6d4d9189275d5a1fc6dac47ca58c56745edba597c975c2452b454debac4439"}, - {file = "rustworkx-0.13.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc4479e3043148cbef41aeddf15fb380c11baac488920a32c48e5d2611120851"}, - {file = "rustworkx-0.13.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01234e9c8572ec0060c13041bba162f902fdaf3ca731bb950831e8ccb1e27cc4"}, - {file = "rustworkx-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27879a7df24a10ee06531b74131af4647262d66023a10c413bc656f601d5c06d"}, - {file = "rustworkx-0.13.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99f215edd23f15e051e65dfe90664a1bcfa0c235c13ced9c7f336da2f6a35be3"}, - {file = "rustworkx-0.13.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76f948e2aa69561ca2e255f2a1d86dce005be58753c33f87bc78fdfdcd152267"}, - {file = "rustworkx-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bdd235fd83382264801756e2d38f9f09b113a62691984e2d3fc19570c6372198"}, - {file = "rustworkx-0.13.0-cp39-cp39-win32.whl", hash = "sha256:6dea6c5474f1b05e0345702a9368b33c8854c767389b0f571f0044301655a651"}, - {file = "rustworkx-0.13.0-cp39-cp39-win_amd64.whl", hash = "sha256:622379712710534092c8e83f694708ea79fe715b65f3c5894660f6cef7c7678e"}, - {file = "rustworkx-0.13.0.tar.gz", hash = "sha256:9d42059f57a9794c9cbe1c9fc3bca3b72ab00f9d8f24a0efb5ac3829c7f7d6b8"}, + {file = "rustworkx-0.15.1-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:6cd4496d3298cd3205c03545e48cc37d21e0455d57752af801d3fb250452d590"}, + {file = "rustworkx-0.15.1-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:cb518f5649e62d753e29ca1e57290c8f58adbebcd154dc3159f4a36ebfa1e2b7"}, + {file = "rustworkx-0.15.1-cp38-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac68ae2515ece22ba3ef56f3d16ad6bf707955f650d623190b2e7d706c6dc92"}, + {file = "rustworkx-0.15.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b903edec1d803704b499959f9d6f6119cdda63b9b64194a4b4307e506b112f0"}, + {file = "rustworkx-0.15.1-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2c97a56ff8a0f6c273a83e26e627c72207442b4252aa550acad0bff42caac40"}, + {file = "rustworkx-0.15.1-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:241c502532e348ba89200823326dba30de4df4b886cb2fd5a140b359ff124bb3"}, + {file = "rustworkx-0.15.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e5f4156f46fa03177c9b0580450eab87786063495d48b457762a5bdd20c55e2"}, + {file = "rustworkx-0.15.1-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:7834ab34748db6214ec3b3836b996b23882dc83184234e6d346d6bb85fd58ae5"}, + {file = "rustworkx-0.15.1-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:ce53f173fed16e1d51d9df9f23475a16c981b03bf1a412d991c75a70db6b1dc1"}, + {file = "rustworkx-0.15.1-cp38-abi3-win32.whl", hash = "sha256:308bc76a01bcae9af4602d8b9ed58021df37dd0bb5a7b2e3831ae53c5e234ff0"}, + {file = "rustworkx-0.15.1-cp38-abi3-win_amd64.whl", hash = "sha256:89077382633e918d2392772f53b9d6d30eee51eb536f8d38ee195c212b2f0427"}, + {file = "rustworkx-0.15.1.tar.gz", hash = "sha256:0e0cc86599f979285b2ab9c357276f3272f3fcb3b2df5651a6bf9704c570d4c1"}, ] [package.dependencies] -numpy = ">=1.16.0" +numpy = ">=1.16.0,<3" [package.extras] all = ["matplotlib (>=3.0)", "pillow (>=5.4)"] @@ -3308,86 +3623,90 @@ mpl = ["matplotlib (>=3.0)"] [[package]] name = "scikit-learn" -version = "1.3.2" +version = "1.5.1" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.8" -files = [ - {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, - {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, - {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, - {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, - {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, - {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, +python-versions = ">=3.9" +files = [ + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745"}, + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21"}, + {file = "scikit_learn-1.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf"}, + {file = "scikit_learn-1.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d"}, + {file = "scikit_learn-1.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d"}, + {file = "scikit_learn-1.5.1.tar.gz", hash = "sha256:0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414"}, ] [package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3,<2.0" -scipy = ">=1.5.0" -threadpoolctl = ">=2.0.0" +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" [package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] [[package]] name = "scipy" -version = "1.11.1" +version = "1.13.1" description = "Fundamental algorithms for scientific computing in Python" optional = false -python-versions = "<3.13,>=3.9" -files = [ - {file = "scipy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:aec8c62fbe52914f9cf28d846cf0401dd80ab80788bbab909434eb336ed07c04"}, - {file = "scipy-1.11.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:3b9963798df1d8a52db41a6fc0e6fa65b1c60e85d73da27ae8bb754de4792481"}, - {file = "scipy-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e8eb42db36526b130dfbc417609498a6192381abc1975b91e3eb238e0b41c1a"}, - {file = "scipy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:366a6a937110d80dca4f63b3f5b00cc89d36f678b2d124a01067b154e692bab1"}, - {file = "scipy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:08d957ca82d3535b3b9ba6c8ff355d78fe975271874e2af267cb5add5bd78625"}, - {file = "scipy-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:e866514bc2d660608447b6ba95c8900d591f2865c07cca0aa4f7ff3c4ca70f30"}, - {file = "scipy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba94eeef3c9caa4cea7b402a35bb02a5714ee1ee77eb98aca1eed4543beb0f4c"}, - {file = "scipy-1.11.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:512fdc18c65f76dadaca139348e525646d440220d8d05f6d21965b8d4466bccd"}, - {file = "scipy-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cce154372f0ebe88556ed06d7b196e9c2e0c13080ecb58d0f35062dc7cc28b47"}, - {file = "scipy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4bb943010203465ac81efa392e4645265077b4d9e99b66cf3ed33ae12254173"}, - {file = "scipy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:249cfa465c379c9bb2c20123001e151ff5e29b351cbb7f9c91587260602c58d0"}, - {file = "scipy-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:ffb28e3fa31b9c376d0fb1f74c1f13911c8c154a760312fbee87a21eb21efe31"}, - {file = "scipy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:39154437654260a52871dfde852adf1b93b1d1bc5dc0ffa70068f16ec0be2624"}, - {file = "scipy-1.11.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:b588311875c58d1acd4ef17c983b9f1ab5391755a47c3d70b6bd503a45bfaf71"}, - {file = "scipy-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d51565560565a0307ed06fa0ec4c6f21ff094947d4844d6068ed04400c72d0c3"}, - {file = "scipy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b41a0f322b4eb51b078cb3441e950ad661ede490c3aca66edef66f4b37ab1877"}, - {file = "scipy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:396fae3f8c12ad14c5f3eb40499fd06a6fef8393a6baa352a652ecd51e74e029"}, - {file = "scipy-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:be8c962a821957fdde8c4044efdab7a140c13294997a407eaee777acf63cbf0c"}, - {file = "scipy-1.11.1.tar.gz", hash = "sha256:fb5b492fa035334fd249f0973cc79ecad8b09c604b42a127a677b45a9a3d4289"}, +python-versions = ">=3.9" +files = [ + {file = "scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca"}, + {file = "scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f"}, + {file = "scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94"}, + {file = "scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa"}, + {file = "scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59"}, + {file = "scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884"}, + {file = "scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16"}, + {file = "scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d"}, + {file = "scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c"}, + {file = "scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2"}, + {file = "scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c"}, ] [package.dependencies] -numpy = ">=1.21.6,<1.28.0" +numpy = ">=1.22.4,<2.3" [package.extras] -dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "semantic-version" @@ -3406,13 +3725,13 @@ doc = ["Sphinx", "sphinx-rtd-theme"] [[package]] name = "send2trash" -version = "1.8.2" +version = "1.8.3" description = "Send file to trash natively under Mac OS X, Windows and Linux" optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ - {file = "Send2Trash-1.8.2-py3-none-any.whl", hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679"}, - {file = "Send2Trash-1.8.2.tar.gz", hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312"}, + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, ] [package.extras] @@ -3422,19 +3741,19 @@ win32 = ["pywin32"] [[package]] name = "setuptools" -version = "68.0.0" +version = "71.0.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "setuptools-68.0.0-py3-none-any.whl", hash = "sha256:11e52c67415a381d10d6b462ced9cfb97066179f0e871399e006c4ab101fc85f"}, - {file = "setuptools-68.0.0.tar.gz", hash = "sha256:baf1fdb41c6da4cd2eae722e135500da913332ab3f2f5c7d33af9b492acb5235"}, + {file = "setuptools-71.0.2-py3-none-any.whl", hash = "sha256:f6640114f96be808024fbd1f721161215543796d3a68da4524349de700604ce8"}, + {file = "setuptools-71.0.2.tar.gz", hash = "sha256:ca359bea0cd5c8ce267d7463239107e87f312f2e2a11b6ca6357565d82b6c0d7"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (<7.4)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "six" @@ -3449,13 +3768,13 @@ files = [ [[package]] name = "sniffio" -version = "1.3.0" +version = "1.3.1" description = "Sniff out which async library your code is running under" optional = false python-versions = ">=3.7" files = [ - {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, - {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, ] [[package]] @@ -3471,93 +3790,97 @@ files = [ [[package]] name = "soupsieve" -version = "2.4.1" +version = "2.5" description = "A modern CSS selector implementation for Beautiful Soup." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "soupsieve-2.4.1-py3-none-any.whl", hash = "sha256:1c1bfee6819544a3447586c889157365a27e10d88cde3ad3da0cf0ddf646feb8"}, - {file = "soupsieve-2.4.1.tar.gz", hash = "sha256:89d12b2d5dfcd2c9e8c22326da9d9aa9cb3dfab0a83a024f05704076ee8d35ea"}, + {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, + {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, ] [[package]] name = "sphinx" -version = "7.0.1" +version = "7.4.6" description = "Python documentation generator" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "Sphinx-7.0.1.tar.gz", hash = "sha256:61e025f788c5977d9412587e733733a289e2b9fdc2fef8868ddfbfc4ccfe881d"}, - {file = "sphinx-7.0.1-py3-none-any.whl", hash = "sha256:60c5e04756c1709a98845ed27a2eed7a556af3993afb66e77fec48189f742616"}, + {file = "sphinx-7.4.6-py3-none-any.whl", hash = "sha256:915760d6188288a1e30c2cd0d9fa31b1b009bc6e6019cc0c32d16c77d20e86d9"}, + {file = "sphinx-7.4.6.tar.gz", hash = "sha256:116918d455c493fff3178edea12b4fe1c1e4894680fd81e7b7431ea21d47ca52"}, ] [package.dependencies] -alabaster = ">=0.7,<0.8" -babel = ">=2.9" -colorama = {version = ">=0.4.5", markers = "sys_platform == \"win32\""} -docutils = ">=0.18.1,<0.21" +alabaster = ">=0.7.14,<0.8.0" +babel = ">=2.13" +colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\""} +docutils = ">=0.20,<0.22" imagesize = ">=1.3" -importlib-metadata = {version = ">=4.8", markers = "python_version < \"3.10\""} -Jinja2 = ">=3.0" -packaging = ">=21.0" -Pygments = ">=2.13" -requests = ">=2.25.0" -snowballstemmer = ">=2.0" +importlib-metadata = {version = ">=6.0", markers = "python_version < \"3.10\""} +Jinja2 = ">=3.1" +packaging = ">=23.0" +Pygments = ">=2.17" +requests = ">=2.30.0" +snowballstemmer = ">=2.2" sphinxcontrib-applehelp = "*" sphinxcontrib-devhelp = "*" sphinxcontrib-htmlhelp = ">=2.0.0" sphinxcontrib-jsmath = "*" sphinxcontrib-qthelp = "*" -sphinxcontrib-serializinghtml = ">=1.1.5" +sphinxcontrib-serializinghtml = ">=1.1.9" +tomli = {version = ">=2", markers = "python_version < \"3.11\""} [package.extras] docs = ["sphinxcontrib-websupport"] -lint = ["docutils-stubs", "flake8 (>=3.5.0)", "flake8-simplify", "isort", "mypy (>=0.990)", "ruff", "sphinx-lint", "types-requests"] -test = ["cython", "filelock", "html5lib", "pytest (>=4.6)"] +lint = ["flake8 (>=6.0)", "importlib-metadata (>=6.0)", "mypy (==1.10.1)", "pytest (>=6.0)", "ruff (==0.5.2)", "sphinx-lint (>=0.9)", "tomli (>=2)", "types-docutils (==0.21.0.20240711)", "types-requests (>=2.30.0)"] +test = ["cython (>=3.0)", "defusedxml (>=0.7.1)", "pytest (>=8.0)", "setuptools (>=70.0)", "typing_extensions (>=4.9)"] [[package]] name = "sphinxcontrib-applehelp" -version = "1.0.4" +version = "1.0.8" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-applehelp-1.0.4.tar.gz", hash = "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e"}, - {file = "sphinxcontrib_applehelp-1.0.4-py3-none-any.whl", hash = "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228"}, + {file = "sphinxcontrib_applehelp-1.0.8-py3-none-any.whl", hash = "sha256:cb61eb0ec1b61f349e5cc36b2028e9e7ca765be05e49641c97241274753067b4"}, + {file = "sphinxcontrib_applehelp-1.0.8.tar.gz", hash = "sha256:c40a4f96f3776c4393d933412053962fac2b84f4c99a7982ba42e09576a70619"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sphinxcontrib-devhelp" -version = "1.0.2" -description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." +version = "1.0.6" +description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp documents" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, - {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, + {file = "sphinxcontrib_devhelp-1.0.6-py3-none-any.whl", hash = "sha256:6485d09629944511c893fa11355bda18b742b83a2b181f9a009f7e500595c90f"}, + {file = "sphinxcontrib_devhelp-1.0.6.tar.gz", hash = "sha256:9893fd3f90506bc4b97bdb977ceb8fbd823989f4316b28c3841ec128544372d3"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sphinxcontrib-htmlhelp" -version = "2.0.1" +version = "2.0.5" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-htmlhelp-2.0.1.tar.gz", hash = "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff"}, - {file = "sphinxcontrib_htmlhelp-2.0.1-py3-none-any.whl", hash = "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903"}, + {file = "sphinxcontrib_htmlhelp-2.0.5-py3-none-any.whl", hash = "sha256:393f04f112b4d2f53d93448d4bce35842f62b307ccdc549ec1585e950bc35e04"}, + {file = "sphinxcontrib_htmlhelp-2.0.5.tar.gz", hash = "sha256:0dc87637d5de53dd5eec3a6a01753b1ccf99494bd756aafecd74b4fa9e729015"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] +standalone = ["Sphinx (>=5)"] test = ["html5lib", "pytest"] [[package]] @@ -3576,43 +3899,45 @@ test = ["flake8", "mypy", "pytest"] [[package]] name = "sphinxcontrib-qthelp" -version = "1.0.3" -description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." +version = "1.0.7" +description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp documents" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, - {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, + {file = "sphinxcontrib_qthelp-1.0.7-py3-none-any.whl", hash = "sha256:e2ae3b5c492d58fcbd73281fbd27e34b8393ec34a073c792642cd8e529288182"}, + {file = "sphinxcontrib_qthelp-1.0.7.tar.gz", hash = "sha256:053dedc38823a80a7209a80860b16b722e9e0209e32fea98c90e4e6624588ed6"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sphinxcontrib-serializinghtml" -version = "1.1.5" -description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." +version = "1.1.10" +description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, - {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, + {file = "sphinxcontrib_serializinghtml-1.1.10-py3-none-any.whl", hash = "sha256:326369b8df80a7d2d8d7f99aa5ac577f51ea51556ed974e7716cfd4fca3f6cb7"}, + {file = "sphinxcontrib_serializinghtml-1.1.10.tar.gz", hash = "sha256:93f3f5dc458b91b192fe10c397e324f262cf163d79f3282c158e8436a2c4511f"}, ] [package.extras] lint = ["docutils-stubs", "flake8", "mypy"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "stack-data" -version = "0.6.2" +version = "0.6.3" description = "Extract data from python stack frames and tracebacks for informative displays" optional = false python-versions = "*" files = [ - {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, - {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, ] [package.dependencies] @@ -3625,152 +3950,147 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "sympy" -version = "1.12" +version = "1.13.0" description = "Computer algebra system (CAS) in Python" optional = false python-versions = ">=3.8" files = [ - {file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"}, - {file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"}, + {file = "sympy-1.13.0-py3-none-any.whl", hash = "sha256:6b0b32a4673fb91bd3cac3b55406c8e01d53ae22780be467301cc452f6680c92"}, + {file = "sympy-1.13.0.tar.gz", hash = "sha256:3b6af8f4d008b9a1a6a4268b335b984b23835f26d1d60b0526ebc71d48a25f57"}, ] [package.dependencies] -mpmath = ">=0.19" +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "tensorboard" -version = "2.12.3" +version = "2.17.0" description = "TensorBoard lets you watch Tensors Flow" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "tensorboard-2.12.3-py3-none-any.whl", hash = "sha256:b4a69366784bc347e02fbe7d847e01896a649ca52f8948a11005e205dcf724fb"}, + {file = "tensorboard-2.17.0-py3-none-any.whl", hash = "sha256:859a499a9b1fb68a058858964486627100b71fcb21646861c61d31846a6478fb"}, ] [package.dependencies] absl-py = ">=0.4" -google-auth = ">=1.6.3,<3" -google-auth-oauthlib = ">=0.5,<1.1" grpcio = ">=1.48.2" markdown = ">=2.6.8" numpy = ">=1.12.0" -protobuf = ">=3.19.6" -requests = ">=2.21.0,<3" +protobuf = ">=3.19.6,<4.24.0 || >4.24.0,<5.0.0" setuptools = ">=41.0.0" +six = ">1.9" tensorboard-data-server = ">=0.7.0,<0.8.0" werkzeug = ">=1.0.1" -wheel = ">=0.26" [[package]] name = "tensorboard-data-server" -version = "0.7.1" +version = "0.7.2" description = "Fast data loading for TensorBoard" optional = false python-versions = ">=3.7" files = [ - {file = "tensorboard_data_server-0.7.1-py3-none-any.whl", hash = "sha256:9938bd39f5041797b33921066fba0eab03a0dd10d1887a05e62ae58841ad4c3f"}, - {file = "tensorboard_data_server-0.7.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:be8d016a1aa394e6198280d4a3dc37898f56467310c5f5e617cac10a783e055a"}, - {file = "tensorboard_data_server-0.7.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:255c02b7f5b03dd5c0a88c928e563441ff39e1d4b4a234cdbe09f016e53d9594"}, + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, ] [[package]] name = "tensorflow" -version = "2.12.0" +version = "2.17.0" description = "TensorFlow is an open source machine learning framework for everyone." optional = false -python-versions = ">=3.8" -files = [ - {file = "tensorflow-2.12.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:be4ac0dfcc7a16f6df2bc19bd322e312235ab3f7b0c7297f96c92c44bb14d2a1"}, - {file = "tensorflow-2.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5193ddb3bb5120cb445279beb08ed9e74a85a4eeb2485550d6fb707a89d9a88"}, - {file = "tensorflow-2.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357d9d2851188a8d27ee195345b4d175cad970150d1344ba9d9fcc4bf2b68336"}, - {file = "tensorflow-2.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:c8001210df7202ef6267150865b0b79f834c3ca69ee3132277de8eeb994dffde"}, - {file = "tensorflow-2.12.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:91dccda42c03569d8c787190482a11ecae3b9b173aaa9166f0ab20cecc9c31f4"}, - {file = "tensorflow-2.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31f81eb8adaeb558963f5d8b47dbfcc398d898f0857bf3de6b6484350236b7b5"}, - {file = "tensorflow-2.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ec4a2934ea19e92f27a9668ece43025ed5efe14b5d19be53b07692bc8a4189d"}, - {file = "tensorflow-2.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e7641e2a6e32f31ff233495478a9cc86b7c038140eab714a61eeddbbbb327c3"}, - {file = "tensorflow-2.12.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:a7194e744c5a7f3e759ecb949527b4a07718a6d1110e6e82fd4ce0c5586a7d4a"}, - {file = "tensorflow-2.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4afc2dd57435f29ebe249eb5f595d89b0e73be94922eeb7110aa6280a332837c"}, - {file = "tensorflow-2.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23850332f1f9f778d697c9dba63ca52be72cb73363e75ad358f07ddafef63c01"}, - {file = "tensorflow-2.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:e29fcf6cfd069aefb4b44f357cccbb4415a5a3d7b5b516eaf4450062fe40021e"}, - {file = "tensorflow-2.12.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:42fc2635e9420faee781a16bd393126f29cd39aa2b9d02901f24d8497bd6f958"}, - {file = "tensorflow-2.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76414355e420edb9154b4e72113eef5813ccb71701fda959afbbc1eebe3099bd"}, - {file = "tensorflow-2.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:020d6a54cb26020bdc71a7bae8ee35be05096f63e773dc517f6e87c49de62c50"}, - {file = "tensorflow-2.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:9f70a8f9ab46e5ed436850aa60d1cd40645f5c669e14bcad48915dc1f597dda2"}, +python-versions = ">=3.9" +files = [ + {file = "tensorflow-2.17.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:515fe5ae8a9bc50312575412b08515f3ca66514c155078e0707bdffbea75d783"}, + {file = "tensorflow-2.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b36683ac28af20abc3a548c72bf4537b00df1b1f3dd39d59df3873fefaf26f15"}, + {file = "tensorflow-2.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:147c93ded4cb7e500a65d3c26d74744ff41660db7a8afe2b00d1d08bf329b4ec"}, + {file = "tensorflow-2.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:e46090587f69e33637d17d7c3d94a790cac7d4bc5ff5ecbf3e71fdc6982fe96e"}, + {file = "tensorflow-2.17.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:e8d26d6c24ccfb139db1306599257ca8f5cfe254ef2d023bfb667f374a17a64d"}, + {file = "tensorflow-2.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca82f98ea38fa6c9e08ccc69eb6c2fab5b35b30a8999115b8b63b6f02fc69d9d"}, + {file = "tensorflow-2.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8339777b1b5ebd8ffadaa8196f786e65fbb081a371d8e87b52f24563392d8552"}, + {file = "tensorflow-2.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:ef615c133cf4d592a073feda634ccbeb521a554be57de74f8c318d38febbeab5"}, + {file = "tensorflow-2.17.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ee18b4fcd627c5e872eabb25092af6c808b6ec77948662c88fc5c89a60eb0211"}, + {file = "tensorflow-2.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72adfef0ee39dd641627906fd7b244fcf21bdd8a87216a998ed74d9c74653aff"}, + {file = "tensorflow-2.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ad7bfea6afb4ded3928ca5b24df9fda876cea4904c103a5163fcc0c3483e7a4"}, + {file = "tensorflow-2.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:278bc80642d799adf08dc4e04f291aab603bba7457d50c1f9bc191ebbca83f43"}, + {file = "tensorflow-2.17.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:97f89e95d68b4b46e1072243b9f315c3b340e27cc07b1e1988e2ca97ad844305"}, + {file = "tensorflow-2.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dde37cff74ed22b8fa2eea944805b001ae38e96adc989666422bdea34f4e2d47"}, + {file = "tensorflow-2.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ae8e6746deb2ec807b902ba26d62fcffb6a6b53555a1a5906ec00416c5e4175"}, + {file = "tensorflow-2.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:8f80d11ad3766570deb6ff47d2bed2d166f51399ca08205e38ef024345571d6f"}, ] [package.dependencies] absl-py = ">=1.0.0" astunparse = ">=1.6.0" -flatbuffers = ">=2.0" -gast = ">=0.2.1,<=0.4.0" +flatbuffers = ">=24.3.25" +gast = ">=0.2.1,<0.5.0 || >0.5.0,<0.5.1 || >0.5.1,<0.5.2 || >0.5.2" google-pasta = ">=0.1.1" grpcio = ">=1.24.3,<2.0" -h5py = ">=2.9.0" -jax = ">=0.3.15" -keras = ">=2.12.0,<2.13" +h5py = ">=3.10.0" +keras = ">=3.2.0" libclang = ">=13.0.0" -numpy = ">=1.22,<1.24" +ml-dtypes = ">=0.3.1,<0.5.0" +numpy = {version = ">=1.23.5,<2.0.0", markers = "python_version <= \"3.11\""} opt-einsum = ">=2.3.2" packaging = "*" protobuf = ">=3.20.3,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev" +requests = ">=2.21.0,<3" setuptools = "*" six = ">=1.12.0" -tensorboard = ">=2.12,<2.13" -tensorflow-estimator = ">=2.12.0,<2.13" -tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""} +tensorboard = ">=2.17,<2.18" +tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "python_version < \"3.12\""} termcolor = ">=1.1.0" typing-extensions = ">=3.6.6" -wrapt = ">=1.11.0,<1.15" +wrapt = ">=1.11.0" -[[package]] -name = "tensorflow-estimator" -version = "2.12.0" -description = "TensorFlow Estimator." -optional = false -python-versions = ">=3.7" -files = [ - {file = "tensorflow_estimator-2.12.0-py2.py3-none-any.whl", hash = "sha256:59b191bead4883822de3d63ac02ace11a83bfe6c10d64d0c4dfde75a50e60ca1"}, -] +[package.extras] +and-cuda = ["nvidia-cublas-cu12 (==12.3.4.1)", "nvidia-cuda-cupti-cu12 (==12.3.101)", "nvidia-cuda-nvcc-cu12 (==12.3.107)", "nvidia-cuda-nvrtc-cu12 (==12.3.107)", "nvidia-cuda-runtime-cu12 (==12.3.101)", "nvidia-cudnn-cu12 (==8.9.7.29)", "nvidia-cufft-cu12 (==11.0.12.1)", "nvidia-curand-cu12 (==10.3.4.107)", "nvidia-cusolver-cu12 (==11.5.4.101)", "nvidia-cusparse-cu12 (==12.2.0.103)", "nvidia-nccl-cu12 (==2.19.3)", "nvidia-nvjitlink-cu12 (==12.3.101)"] [[package]] name = "tensorflow-io-gcs-filesystem" -version = "0.32.0" +version = "0.37.1" description = "TensorFlow IO" optional = false -python-versions = ">=3.7, <3.12" -files = [ - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:74a7e25e83d4117a7ebb09a3f247553a5497393ab48c3ee0cf0d17b405026817"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:045d51bba586390d0545fcd8a18727d62b175eb142f6f4c6d719d39de40774cd"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db682e9a510c27dd35710ba5a2c62c371e25b727741b2fe3a920355fa501e947"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:7f15fd22e592661b10de317be2f42a0f84be7bfc5e6a565fcfcb04b60d625b78"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:336d9b3fe6b55aea149c4f6aa1fd6ffaf27d4e5c37e55a182340b47caba38846"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:842f5f09cd756bdb3b4d0b5571b3a6f72fd534d42da938b9acf0ef462995eada"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:1ce80e1555d6ee88dda67feddf366cc8b30252b5837a7a17303df7b06a71fc2e"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05e65d3cb6c93a7929b384d86c6369c63cbbab8a770440a3d95e094878403f9f"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:21de7dcc06eb1e7de3c022b0072d90ba35ef886578149663437aa7a6fb5bf6b3"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:79fdd02103b8ae9f8b89af41f744c013fa1caaea709de19833917795e3063857"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5635df0bbe40f971dc1b946e3372744b0bdfda45c38ffcd28ef53a32bb8da4da"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:122be149e5f6a030f5c2901be0cc3cb07619232f7b03889e2cdf3da1c0d4f92f"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8214cdf85bea694160f9035ff395221c1e25e119784ccb4c104919b1f5dec84e"}, - {file = "tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28202492d904a6e280cf27560791e87ac1c7566000db82065d63a70c27008af2"}, +python-versions = "<3.13,>=3.7" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:249c12b830165841411ba71e08215d0e94277a49c551e6dd5d72aab54fe5491b"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:257aab23470a0796978efc9c2bcf8b0bc80f22e6298612a4c0a50d3f4e88060c"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8febbfcc67c61e542a5ac1a98c7c20a91a5e1afc2e14b1ef0cb7c28bc3b6aa70"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9679b36e3a80921876f31685ab6f7270f3411a4cc51bc2847e80d0e4b5291e27"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:32c50ab4e29a23c1f91cd0f9ab8c381a0ab10f45ef5c5252e94965916041737c"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:b02f9c5f94fd62773954a04f69b68c4d576d076fd0db4ca25d5479f0fbfcdbad"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e1f2796b57e799a8ca1b75bf47c2aaa437c968408cc1a402a9862929e104cda"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee7c8ee5fe2fd8cb6392669ef16e71841133041fee8a330eff519ad9b36e4556"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:ffebb6666a7bfc28005f4fbbb111a455b5e7d6cd3b12752b7050863ecb27d5cc"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:fe8dcc6d222258a080ac3dfcaaaa347325ce36a7a046277f6b3e19abc1efb3c5"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fbb33f1745f218464a59cecd9a18e32ca927b0f4d77abd8f8671b645cc1a182f"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:286389a203a5aee1a4fa2e53718c661091aa5fea797ff4fa6715ab8436b02e6c"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:ee5da49019670ed364f3e5fb86b46420841a6c3cb52a300553c63841671b3e6d"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8943036bbf84e7a2be3705cb56f9c9df7c48c9e614bb941f0936c58e3ca89d6f"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:426de1173cb81fbd62becec2012fc00322a295326d90eb6c737fab636f182aed"}, + {file = "tensorflow_io_gcs_filesystem-0.37.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0df00891669390078a003cedbdd3b8e645c718b111917535fa1d7725e95cdb95"}, ] [package.extras] -tensorflow = ["tensorflow (>=2.12.0,<2.13.0)"] -tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.12.0,<2.13.0)"] -tensorflow-cpu = ["tensorflow-cpu (>=2.12.0,<2.13.0)"] -tensorflow-gpu = ["tensorflow-gpu (>=2.12.0,<2.13.0)"] -tensorflow-rocm = ["tensorflow-rocm (>=2.12.0,<2.13.0)"] +tensorflow = ["tensorflow (>=2.16.0,<2.17.0)"] +tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.16.0,<2.17.0)"] +tensorflow-cpu = ["tensorflow-cpu (>=2.16.0,<2.17.0)"] +tensorflow-gpu = ["tensorflow-gpu (>=2.16.0,<2.17.0)"] +tensorflow-rocm = ["tensorflow-rocm (>=2.16.0,<2.17.0)"] [[package]] name = "termcolor" -version = "2.3.0" +version = "2.4.0" description = "ANSI color formatting for output in terminal" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"}, - {file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"}, + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, ] [package.extras] @@ -3778,13 +4098,13 @@ tests = ["pytest", "pytest-cov"] [[package]] name = "terminado" -version = "0.17.1" +version = "0.18.1" description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, - {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, ] [package.dependencies] @@ -3795,27 +4115,28 @@ tornado = ">=6.1.0" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] [[package]] name = "threadpoolctl" -version = "3.2.0" +version = "3.5.0" description = "threadpoolctl" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, - {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] [[package]] name = "tinycss2" -version = "1.2.1" +version = "1.3.0" description = "A tiny CSS parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, - {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, ] [package.dependencies] @@ -3823,7 +4144,23 @@ webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] -test = ["flake8", "isort", "pytest"] +test = ["pytest", "ruff"] + +[[package]] +name = "tntorch" +version = "1.1.2" +description = "Tensor Network Learning with PyTorch" +optional = false +python-versions = "*" +files = [ + {file = "tntorch-1.1.2-py3-none-any.whl", hash = "sha256:de83901db848ec806f76e57016b652a8b8ae3977b246628ce3dc4e6c3c7f5a67"}, + {file = "tntorch-1.1.2.tar.gz", hash = "sha256:1dcd885f74b0e6da8dd7f215ad35bad643452108833ef3f757eb86cb063bd9a7"}, +] + +[package.dependencies] +numpy = "*" +scipy = "*" +torch = ">=1.11" [[package]] name = "toml" @@ -3904,13 +4241,13 @@ opt-einsum = ["opt-einsum (>=3.3)"] [[package]] name = "torch-tb-profiler" -version = "0.4.1" +version = "0.4.3" description = "PyTorch Profiler TensorBoard Plugin" optional = false python-versions = ">=3.6.2" files = [ - {file = "torch_tb_profiler-0.4.1-py3-none-any.whl", hash = "sha256:df7428ce5564e8357d0d03c0f246398c448fc8cd91b3075370ca5c25defbc635"}, - {file = "torch_tb_profiler-0.4.1.tar.gz", hash = "sha256:f2c7fb27d420be443ffde50ada655c19f76a245d21e7772de753196fd0967685"}, + {file = "torch_tb_profiler-0.4.3-py3-none-any.whl", hash = "sha256:207a49b05572dd983e4ab29eb5e0fcadd60374a8f93c78ec638217e8d18788dc"}, + {file = "torch_tb_profiler-0.4.3.tar.gz", hash = "sha256:8b8d29b2de960b3c4423087b23cec29beaf9ac3a8c7b046c18fd25b218f726b1"}, ] [package.dependencies] @@ -3920,35 +4257,37 @@ tensorboard = ">=1.15,<2.1.0 || >2.1.0" [package.extras] blob = ["azure-storage-blob"] gs = ["google-cloud-storage"] +hdfs = ["fsspec", "pyarrow"] s3 = ["boto3"] [[package]] name = "torchmetrics" -version = "1.2.0" +version = "1.4.0.post0" description = "PyTorch native Metrics" optional = false python-versions = ">=3.8" files = [ - {file = "torchmetrics-1.2.0-py3-none-any.whl", hash = "sha256:da2cb18822b285786d082c40efb9e1d861aac425f58230234fe6ce233cf002f8"}, - {file = "torchmetrics-1.2.0.tar.gz", hash = "sha256:7eb28340bde45e13187a9ad54a4a7010a50417815d8181a5df6131f116ffe1b7"}, + {file = "torchmetrics-1.4.0.post0-py3-none-any.whl", hash = "sha256:ab234216598e3fbd8d62ee4541a0e74e7e8fc935d099683af5b8da50f745b3c8"}, + {file = "torchmetrics-1.4.0.post0.tar.gz", hash = "sha256:ab9bcfe80e65dbabbddb6cecd9be21f1f1d5207bb74051ef95260740f2762358"}, ] [package.dependencies] lightning-utilities = ">=0.8.0" numpy = ">1.20.0" -torch = ">=1.8.1" +packaging = ">17.1" +torch = ">=1.10.0" [package.extras] -all = ["SciencePlots (>=2.0.0)", "lpips (<=0.1.4)", "matplotlib (>=3.2.0)", "mypy (==1.5.1)", "nltk (>=3.6)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +all = ["SciencePlots (>=2.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.3.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.9.0)", "nltk (>=3.6)", "piq (<=0.8.0)", "pretty-errors (>=1.2.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.3.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] audio = ["pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +debug = ["pretty-errors (>=1.2.0)"] detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] -dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "cloudpickle (>1.3)", "coverage (==7.3.1)", "dython (<=0.7.4)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.3.3)", "fire (<=0.5.0)", "huggingface-hub (<0.18)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.2.0)", "mir-eval (>=0.6)", "mypy (==1.5.1)", "netcal (>1.0.0)", "nltk (>=3.6)", "numpy (<1.25.0)", "pandas (>1.0.0)", "pandas (>=1.4.0)", "phmdoctest (==1.4.0)", "piq (<=0.8.0)", "psutil (<=5.9.5)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytest (==7.4.2)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "requests (<=2.31.0)", "rouge-score (>0.1.0)", "sacrebleu (>=2.0.0)", "scikit-image (>=0.19.0)", "scikit-learn (>=1.1.1)", "scipy (>1.0.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch-complex (<=0.4.3)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -image = ["lpips (<=0.1.4)", "scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (<=0.7.5)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.3.3)", "huggingface-hub (<0.23)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.3.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.0)", "mypy (==1.9.0)", "netcal (>1.0.0)", "nltk (>=3.6)", "numpy (<1.27.0)", "pandas (>1.0.0)", "pandas (>=1.4.0)", "piq (<=0.8.0)", "pretty-errors (>=1.2.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.3.0)", "torch-complex (<=0.4.3)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.10.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] multimodal = ["piq (<=0.8.0)", "transformers (>=4.10.0)"] -test = ["bert-score (==0.3.13)", "cloudpickle (>1.3)", "coverage (==7.3.1)", "dython (<=0.7.4)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.3.3)", "fire (<=0.5.0)", "huggingface-hub (<0.18)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "mir-eval (>=0.6)", "netcal (>1.0.0)", "numpy (<1.25.0)", "pandas (>1.0.0)", "pandas (>=1.4.0)", "phmdoctest (==1.4.0)", "psutil (<=5.9.5)", "pytest (==7.4.2)", "pytest-cov (==4.1.0)", "pytest-doctestplus (==1.0.0)", "pytest-rerunfailures (==12.0)", "pytest-timeout (==2.1.0)", "pytorch-msssim (==1.0.0)", "requests (<=2.31.0)", "rouge-score (>0.1.0)", "sacrebleu (>=2.0.0)", "scikit-image (>=0.19.0)", "scikit-learn (>=1.1.1)", "scipy (>1.0.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch-complex (<=0.4.3)"] -text = ["nltk (>=3.6)", "regex (>=2021.9.24)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] -typing = ["mypy (==1.5.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.2.0)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.6)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.9.0)", "torch (==2.3.0)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.3.0)"] [[package]] name = "torchviz" @@ -3966,38 +4305,38 @@ torch = "*" [[package]] name = "tornado" -version = "6.3.2" +version = "6.4.1" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:c367ab6c0393d71171123ca5515c61ff62fe09024fa6bf299cd1339dc9456829"}, - {file = "tornado-6.3.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:b46a6ab20f5c7c1cb949c72c1994a4585d2eaa0be4853f50a03b5031e964fc7c"}, - {file = "tornado-6.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2de14066c4a38b4ecbbcd55c5cc4b5340eb04f1c5e81da7451ef555859c833f"}, - {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:05615096845cf50a895026f749195bf0b10b8909f9be672f50b0fe69cba368e4"}, - {file = "tornado-6.3.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b17b1cf5f8354efa3d37c6e28fdfd9c1c1e5122f2cb56dac121ac61baa47cbe"}, - {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:29e71c847a35f6e10ca3b5c2990a52ce38b233019d8e858b755ea6ce4dcdd19d"}, - {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:834ae7540ad3a83199a8da8f9f2d383e3c3d5130a328889e4cc991acc81e87a0"}, - {file = "tornado-6.3.2-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:6a0848f1aea0d196a7c4f6772197cbe2abc4266f836b0aac76947872cd29b411"}, - {file = "tornado-6.3.2-cp38-abi3-win32.whl", hash = "sha256:7efcbcc30b7c654eb6a8c9c9da787a851c18f8ccd4a5a3a95b05c7accfa068d2"}, - {file = "tornado-6.3.2-cp38-abi3-win_amd64.whl", hash = "sha256:0c325e66c8123c606eea33084976c832aa4e766b7dff8aedd7587ea44a604cdf"}, - {file = "tornado-6.3.2.tar.gz", hash = "sha256:4b927c4f19b71e627b13f3db2324e4ae660527143f9e1f2e2fb404f3a187e2ba"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, ] [[package]] name = "traitlets" -version = "5.9.0" +version = "5.14.3" description = "Traitlets Python configuration system" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "traitlets-5.9.0-py3-none-any.whl", hash = "sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8"}, - {file = "traitlets-5.9.0.tar.gz", hash = "sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"}, + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] [[package]] name = "traittypes" @@ -4053,26 +4392,37 @@ torch = "*" tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] tutorials = ["matplotlib", "pandas", "tabulate"] +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20240316" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +files = [ + {file = "types-python-dateutil-2.9.0.20240316.tar.gz", hash = "sha256:5d2f2e240b86905e40944dd787db6da9263f0deabef1076ddaed797351ec0202"}, + {file = "types_python_dateutil-2.9.0.20240316-py3-none-any.whl", hash = "sha256:6b8cb66d960771ce5ff974e9dd45e38facb81718cc1e208b10b1baccbfdbee3b"}, +] + [[package]] name = "typing-extensions" -version = "4.6.3" -description = "Backported and Experimental Type Hints for Python 3.7+" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.6.3-py3-none-any.whl", hash = "sha256:88a4153d8505aabbb4e13aacb7c486c2b4a33ca3b3f807914a9b4c844c471c26"}, - {file = "typing_extensions-4.6.3.tar.gz", hash = "sha256:d91d5919357fe7f681a9f2b5b4cb2a5f1ef0a1e9f59c4d8ff0d3491e05c0ffd5"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] [[package]] name = "tzdata" -version = "2023.3" +version = "2024.1" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, - {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] [[package]] @@ -4087,59 +4437,60 @@ files = [ [[package]] name = "uri-template" -version = "1.2.0" +version = "1.3.0" description = "RFC 6570 URI Template Processor" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, - {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, ] [package.extras] -dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] [[package]] name = "urllib3" -version = "1.26.16" +version = "2.2.2" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +python-versions = ">=3.8" files = [ - {file = "urllib3-1.26.16-py2.py3-none-any.whl", hash = "sha256:8d36afa7616d8ab714608411b4a3b13e58f463aee519024578e062e141dce20f"}, - {file = "urllib3-1.26.16.tar.gz", hash = "sha256:8f135f6502756bde6b2a9b28989df5fbe87c9970cecaa69041edcce7f0589b14"}, + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, ] [package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] -secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] -socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "wcwidth" -version = "0.2.6" +version = "0.2.13" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" files = [ - {file = "wcwidth-0.2.6-py2.py3-none-any.whl", hash = "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e"}, - {file = "wcwidth-0.2.6.tar.gz", hash = "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"}, + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, ] [[package]] name = "webcolors" -version = "1.13" +version = "24.6.0" description = "A library for working with the color formats defined by HTML and CSS." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, - {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, + {file = "webcolors-24.6.0-py3-none-any.whl", hash = "sha256:8cf5bc7e28defd1d48b9e83d5fc30741328305a8195c29a8e668fa45586568a1"}, + {file = "webcolors-24.6.0.tar.gz", hash = "sha256:1d160d1de46b3e81e58d0a280d0c78b467dc80f47294b91b1ad8029d2cedb55b"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["pytest", "pytest-cov"] +tests = ["coverage[toml]"] [[package]] name = "webencodings" @@ -4154,29 +4505,29 @@ files = [ [[package]] name = "websocket-client" -version = "1.6.0" +version = "1.8.0" description = "WebSocket client for Python with low level API options" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "websocket-client-1.6.0.tar.gz", hash = "sha256:e84c7eafc66aade6d1967a51dfd219aabdf81d15b9705196e11fd81f48666b78"}, - {file = "websocket_client-1.6.0-py3-none-any.whl", hash = "sha256:72d7802608745b0a212f79b478642473bd825777d8637b6c8c421bf167790d4f"}, + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, ] [package.extras] -docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] optional = ["python-socks", "wsaccel"] test = ["websockets"] [[package]] name = "werkzeug" -version = "2.3.6" +version = "3.0.3" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "Werkzeug-2.3.6-py3-none-any.whl", hash = "sha256:935539fa1413afbb9195b24880778422ed620c0fc09670945185cce4d91a8890"}, - {file = "Werkzeug-2.3.6.tar.gz", hash = "sha256:98c774df2f91b05550078891dee5f0eb0cb797a522c757a2452b9cee5b202330"}, + {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, + {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, ] [package.dependencies] @@ -4187,27 +4538,27 @@ watchdog = ["watchdog (>=2.3)"] [[package]] name = "wheel" -version = "0.40.0" +version = "0.43.0" description = "A built-package format for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "wheel-0.40.0-py3-none-any.whl", hash = "sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247"}, - {file = "wheel-0.40.0.tar.gz", hash = "sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873"}, + {file = "wheel-0.43.0-py3-none-any.whl", hash = "sha256:55c570405f142630c6b9f72fe09d9b67cf1477fcf543ae5b8dcb1f5b7377da81"}, + {file = "wheel-0.43.0.tar.gz", hash = "sha256:465ef92c69fa5c5da2d1cf8ac40559a8c940886afcef87dcf14b9470862f1d85"}, ] [package.extras] -test = ["pytest (>=6.0.0)"] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] [[package]] name = "widgetsnbextension" -version = "3.6.4" +version = "3.6.7" description = "IPython HTML widgets for Jupyter" optional = false python-versions = "*" files = [ - {file = "widgetsnbextension-3.6.4-py2.py3-none-any.whl", hash = "sha256:3d2d4994aea8681eb438493e439f59f82ba81d91f388a12e55147ae137f4120e"}, - {file = "widgetsnbextension-3.6.4.tar.gz", hash = "sha256:ad1356c575d5add908afe886255deafb3f9b1589146a99279d1dcba5a05d16a5"}, + {file = "widgetsnbextension-3.6.7-py2.py3-none-any.whl", hash = "sha256:8a36ee7a3c12e273522c15206ee2bc4d6aad46b1944b697024f6bef828139df3"}, + {file = "widgetsnbextension-3.6.7.tar.gz", hash = "sha256:7eca1116ad1d6ce69ea3fb0a113c7453cb7175a30fd387fb820a348243dd96fb"}, ] [package.dependencies] @@ -4215,93 +4566,99 @@ notebook = ">=4.4.1" [[package]] name = "wrapt" -version = "1.14.1" +version = "1.16.0" description = "Module for decorators, wrappers and monkey patching." optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" -files = [ - {file = "wrapt-1.14.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59"}, - {file = "wrapt-1.14.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462"}, - {file = "wrapt-1.14.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320"}, - {file = "wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069"}, - {file = "wrapt-1.14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656"}, - {file = "wrapt-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c"}, - {file = "wrapt-1.14.1-cp310-cp310-win32.whl", hash = "sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8"}, - {file = "wrapt-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3"}, - {file = "wrapt-1.14.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d"}, - {file = "wrapt-1.14.1-cp35-cp35m-win32.whl", hash = "sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7"}, - {file = "wrapt-1.14.1-cp35-cp35m-win_amd64.whl", hash = "sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00"}, - {file = "wrapt-1.14.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1"}, - {file = "wrapt-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1"}, - {file = "wrapt-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569"}, - {file = "wrapt-1.14.1-cp36-cp36m-win32.whl", hash = "sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed"}, - {file = "wrapt-1.14.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471"}, - {file = "wrapt-1.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d"}, - {file = "wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015"}, - {file = "wrapt-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a"}, - {file = "wrapt-1.14.1-cp37-cp37m-win32.whl", hash = "sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853"}, - {file = "wrapt-1.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456"}, - {file = "wrapt-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1"}, - {file = "wrapt-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0"}, - {file = "wrapt-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57"}, - {file = "wrapt-1.14.1-cp38-cp38-win32.whl", hash = "sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5"}, - {file = "wrapt-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383"}, - {file = "wrapt-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735"}, - {file = "wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3"}, - {file = "wrapt-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe"}, - {file = "wrapt-1.14.1-cp39-cp39-win32.whl", hash = "sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5"}, - {file = "wrapt-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb"}, - {file = "wrapt-1.14.1.tar.gz", hash = "sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d"}, +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, ] [[package]] name = "zipp" -version = "3.15.0" +version = "3.19.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, - {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] [metadata] lock-version = "2.0" python-versions = ">=3.9 <3.12" -content-hash = "4e858daedc052b7acec7fcf45a2314bb22ca5323b179909fe5984c4e2cfd90e5" +content-hash = "87fff0ba39dd977bedf35bfb6ed85b069ff9c0824e8771527e93c7dbeb7a1112" diff --git a/pyproject.toml b/pyproject.toml index 2f01d5e..0c6f6a5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -2,7 +2,7 @@ name = "qulearn" version = "0.7.0" description = "Streamlining quantum and classical machine learning model development." -authors = ["Mazen Ali "] +authors = ["Mazen Ali "] readme = "README.md" packages = [{include = "qulearn"}] diff --git a/qulearn/mps_kronprod.py b/qulearn/mps_kronprod.py new file mode 100644 index 0000000..8c9c950 --- /dev/null +++ b/qulearn/mps_kronprod.py @@ -0,0 +1,104 @@ +# for python < 3.10 +try: + from typing import TypeAlias +except ImportError: + from typing_extensions import TypeAlias + +import torch +import tntorch + +MPS: TypeAlias = tntorch.tensor.Tensor + + +def kron(tleft: MPS, tright: MPS) -> MPS: + """ + Performs the Kronecker product of two MPS tensors. + + :param tleft: The first MPS tensor. + :type tleft: MPS + :param tright: The second MPS tensor. + :type tright: MPS + :return: The MPS tensor resulting from the Kronecker product of `tleft` and `tright`. + :rtype: MPS + """ + c1 = tleft.cores + c2 = tright.cores + c3 = c1 + c2 + t3 = tntorch.Tensor(c3) + + return t3 + +def zkron(tleft: MPS, tright: MPS) -> MPS: + """ + Performs the z-ordered Kronecker product of two MPS tensors. + See https://arxiv.org/abs/1802.02839. + + :param tleft: The first MPS tensor. + :type tleft: MPS + :param tright: The second MPS tensor. + :type tright: MPS + :return: The MPS tensor resulting from the Kronecker product of `tleft` and `tright`. + :rtype: MPS + """ + _core_length_check(tleft, tright) + + coresleft = tleft.cores + coresright = tright.cores + + if len(coresleft) != len(coresright): + raise ValueError("The number of cores in the left and right MPS must be the same.") + + coresout = [] + + for i in range(len(coresleft)): + coreleft = coresleft[i] + coreright = coresright[i] + rankleft1 = coreleft.shape[0] + rankleft2 = coreleft.shape[-1] + rankright1 = coreright.shape[0] + rankright2 = coreright.shape[-1] + + site_dim = coreleft.shape[1] + core = torch.empty((rankleft1 * rankright1, site_dim, rankleft2 * rankright1)) + for k in range(site_dim): + core[:, k, :] = torch.kron(coreleft[:, k, :], torch.eye(rankright1)) + coresout.append(core) + + site_dim = coreright.shape[1] + core = torch.empty((rankleft2 * rankright1, site_dim, rankleft2 * rankright2)) + for k in range(site_dim): + core[:, k, :] = torch.kron(torch.eye(rankleft2), coreright[:, k, :]) + coresout.append(core) + + tout = tntorch.Tensor(coresout) + return tout + + +def zkron_joined(tleft, tright): + """ + Performs the z-ordered Kronecker product of two MPS tensors, + and joins the physical indices of tleft and tright into one. + See https://arxiv.org/abs/1802.02839. + + :param tleft: The first MPS tensor. + :type tleft: MPS + :param tright: The second MPS tensor. + :type tright: MPS + :return: The MPS tensor resulting from the Kronecker product of `tleft` and `tright`. + :rtype: MPS + """ + _core_length_check(tleft, tright) + + c1 = tleft.cores + c2 = tright.cores + c3 = [torch.kron(a, b) for a, b in zip(c1, c2)] + + t3 = tntorch.Tensor(c3) + return t3 + + +def _core_length_check(tleft, tright): + coresleft = tleft.cores + coresright = tright.cores + if len(coresleft) != len(coresright): + raise ValueError("The number of cores in the left and right MPS must be the same.") diff --git a/qulearn/qlayer.py b/qulearn/qlayer.py index 23a2c18..7fd4886 100644 --- a/qulearn/qlayer.py +++ b/qulearn/qlayer.py @@ -225,6 +225,151 @@ def compute_norm(self, x: Tensor) -> float: return self.norm +class Linear2DBasisQFE(CircuitLayer): + """ + Layer for the 2D hat basis quantum feature embedding. + + :param basis: The hat basis class. + :type basis: HatBasis + :param wires: The wires to be used by the layer + :type wires: Wires + :param sqrt: Set flag to take square roots before applying hat basis. + :type sqrt: bool + :param normalize: Set flag to normalize basis vector before embedding. + :type normalize: bool + """ + + def __init__( + self, + wires: Wires, + basis: HatBasis, + sqrt: bool = False, + normalize: bool = False, + zorder: bool = False, + ) -> None: + super().__init__(wires) + self.basis = basis + self.sqrt = sqrt + self.normalize = normalize + self.norm = 1.0 + self.hbmps = HatBasisMPS(basis) + self.zorder = zorder + self.mps = None + self.mps1 = None + self.mps2 = None + + def circuit(self, x: Tensor) -> None: + """ + Define the quantum circuit for this layer. + + :param x: Input tensor that is passed to the quantum circuit. + :type x: Tensor + """ + self._check_input(x) + + x1 = x[0] + x2 = x[1] + position1 = int(self.basis.position(x1)) + position2 = int(self.basis.position(x2)) + a1, b1 = self.basis.nonz_vals(x1) + a2, b2 = self.basis.nonz_vals(x2) + + if self.sqrt: + # sometimes the values are close to 0 and negative + a1 = torch.sqrt(torch.abs(a1)) + b1 = torch.sqrt(torch.abs(b1)) + a2 = torch.sqrt(torch.abs(a2)) + b2 = torch.sqrt(torch.abs(b2)) + + # TODO: cover the case where x or y are outside of bounds + + val1 = a1 * a2 + val2 = a1 * b2 + val3 = a2 * b1 + val4 = a2 * b2 + self.norm = torch.sqrt(val1 ** 2 + val2 ** 2 + val3 ** 2 + val4 ** 2) + + if self.normalize: + a1 /= torch.sqrt(self.norm) + b1 /= torch.sqrt(self.norm) + a2 /= torch.sqrt(self.norm) + b2 /= torch.sqrt(self.norm) + + self.norm = self.norm.item() + + # for compatibility (TODO: remove) + first1 = a1.item() + second1 = b1.item() + first2 = a2.item() + second2 = b2.item() + + mps1 = self.hbmps.mps_hatbasis(first1, second1, position1) + mps2 = self.hbmps.mps_hatbasis(first2, second2, position2) + + if self.zorder: + mps = zkron2(mps2, mps1) + else: + mps = kron(mps2, mps1) + + self.mps1 = mps1 + self.mps2 = mps2 + self.mps = mps + mpsgates = MPSQGates(mps) + + s = mpsgates.max_rank_power + Us = mpsgates.qgates() + N = len(Us) + count = 0 + for k in range(N - 1, -1, -1): + wires_idx = list( + range(self.num_wires - count - s - 1, self.num_wires - count) + ) + subwires = [self.wires[idx] for idx in wires_idx] + qml.QubitUnitary(Us[k], wires=subwires, unitary_check=False) + + count += 1 + + def compute_norm(self, x: Tensor) -> float: + """ + Compute the norm of the basis vector for the given input x. + + :param x: Input tensor that is passed to basis vector. + :type x: Tensor + :returns: The norm. + :rtype: float + """ + self._check_input(x) + + x1 = x[0] + x2 = x[1] + a1, b1 = self.basis.nonz_vals(x1) + a2, b2 = self.basis.nonz_vals(x2) + + if self.sqrt: + # sometimes the values are close to 0 and negative + a1 = torch.sqrt(torch.abs(a1)) + b1 = torch.sqrt(torch.abs(b1)) + a2 = torch.sqrt(torch.abs(a2)) + b2 = torch.sqrt(torch.abs(b2)) + + # TODO: cover the case where x or y are outside of bounds + + val1 = a1 * a2 + val2 = a1 * b2 + val3 = a2 * b1 + val4 = a2 * b2 + self.norm = torch.sqrt(val1 ** 2 + val2 ** 2 + val3 ** 2 + val4 ** 2).item() + + return self.norm + + def _check_input(self, x: Tensor): + if x.dim() > 2: + raise ValueError("Input tensor must have 2 dimensions") + + if torch.any(torch.abs(x) >= 1): + raise ValueError("Out of bounds case is not implemented") + + class RYCZLayer(CircuitLayer): """ Layer for the RYCZ (Rotation around Y and Controlled-Z) gates. diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 369445e..100efa5 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.472111Z", - "start_time": "2024-07-14T20:10:07.704962Z" + "end_time": "2024-07-18T13:33:14.597202Z", + "start_time": "2024-07-18T13:33:14.594614Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 2 + "execution_count": 3 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.476898Z", - "start_time": "2024-07-14T20:10:08.473124Z" + "end_time": "2024-07-18T13:33:14.604134Z", + "start_time": "2024-07-18T13:33:14.599575Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 3 + "execution_count": 4 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.489326Z", - "start_time": "2024-07-14T20:10:08.477515Z" + "end_time": "2024-07-18T13:33:14.612540Z", + "start_time": "2024-07-18T13:33:14.605215Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[-1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188\n", - " -1.2944188 -1.2944188 -0.35210398 -0.35210398 -0.35210398 -0.35210398\n", - " -0.35210398 -0.35210398 -0.35210398 -0.35210398 0.16804749 0.16804749\n", - " 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749\n", - " 0.769309 0.769309 0.769309 0.769309 0.769309 0.769309\n", - " 0.769309 0.769309 -5.63848 -5.63848 -5.63848 -5.63848\n", - " -5.63848 -5.63848 -5.63848 -5.63848 -3.0203166 -3.0203166\n", - " -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166\n", - " -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536\n", - " -2.0521536 -2.0521536 0.75451875 0.75451875 0.75451875 0.75451875\n", - " 0.75451875 0.75451875 0.75451875 0.75451875]\n", + "[ 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357\n", + " 0.9212357 0.9212357 0.14730927 0.14730927 0.14730927 0.14730927\n", + " 0.14730927 0.14730927 0.14730927 0.14730927 -1.6554241 -1.6554241\n", + " -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241\n", + " -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199\n", + " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.35660762 -0.35660762\n", + " -0.35660762 -0.35660762 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", + " -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545\n", + " 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586\n", + " 2.2642586 2.2642586 0.49844724 0.49844724 0.49844724 0.49844724\n", + " 0.49844724 0.49844724 0.49844724 0.49844724]\n", "=========\n", - "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", - " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", - " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", - " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", - " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", - " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -2.0521536 -2.0521536 0.75451875 0.75451875]\n", + "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", + " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", + " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", + " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", + " 2.2642586 2.2642586 0.49844724 0.49844724]\n", "=========\n", - "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", - " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", - " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", - " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", - " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", - " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -2.0521536 -2.0521536 0.75451875 0.75451875]\n", + "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", + " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", + " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", + " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", + " 2.2642586 2.2642586 0.49844724 0.49844724]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 4 + "execution_count": 5 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.492491Z", - "start_time": "2024-07-14T20:10:08.490350Z" + "end_time": "2024-07-18T13:33:14.616889Z", + "start_time": "2024-07-18T13:33:14.614691Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 5 + "execution_count": 6 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.495895Z", - "start_time": "2024-07-14T20:10:08.493201Z" + "end_time": "2024-07-18T13:33:14.629403Z", + "start_time": "2024-07-18T13:33:14.626649Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[-1.2944188 -0.35210398 0.16804749 0.769309 -5.63848 -3.0203166\n", - " -2.0521536 0.75451875]\n", + "[ 0.9212357 0.14730927 -1.6554241 -0.02586199 -0.35660762 -0.07083545\n", + " 2.2642586 0.49844724]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[-1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188 -1.2944188\n", - " -1.2944188 -1.2944188 -0.35210398 -0.35210398 -0.35210398 -0.35210398\n", - " -0.35210398 -0.35210398 -0.35210398 -0.35210398 0.16804749 0.16804749\n", - " 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749 0.16804749\n", - " 0.769309 0.769309 0.769309 0.769309 0.769309 0.769309\n", - " 0.769309 0.769309 -5.63848 -5.63848 -5.63848 -5.63848\n", - " -5.63848 -5.63848 -5.63848 -5.63848 -3.0203166 -3.0203166\n", - " -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166 -3.0203166\n", - " -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536 -2.0521536\n", - " -2.0521536 -2.0521536 0.75451875 0.75451875 0.75451875 0.75451875\n", - " 0.75451875 0.75451875 0.75451875 0.75451875]\n", - "[-1.2944188 -1.2944188 -0.35210398 -0.35210398 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 0.16804749 0.16804749 0.769309 0.769309\n", - " 0.16804749 0.16804749 0.769309 0.769309 -1.2944188 -1.2944188\n", - " -0.35210398 -0.35210398 -1.2944188 -1.2944188 -0.35210398 -0.35210398\n", - " 0.16804749 0.16804749 0.769309 0.769309 0.16804749 0.16804749\n", - " 0.769309 0.769309 -5.63848 -5.63848 -3.0203166 -3.0203166\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -2.0521536 -2.0521536\n", - " 0.75451875 0.75451875 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -5.63848 -5.63848 -3.0203166 -3.0203166 -5.63848 -5.63848\n", - " -3.0203166 -3.0203166 -2.0521536 -2.0521536 0.75451875 0.75451875\n", - " -2.0521536 -2.0521536 0.75451875 0.75451875]\n" + "[ 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357\n", + " 0.9212357 0.9212357 0.14730927 0.14730927 0.14730927 0.14730927\n", + " 0.14730927 0.14730927 0.14730927 0.14730927 -1.6554241 -1.6554241\n", + " -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241\n", + " -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199\n", + " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.35660762 -0.35660762\n", + " -0.35660762 -0.35660762 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", + " -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545\n", + " 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586\n", + " 2.2642586 2.2642586 0.49844724 0.49844724 0.49844724 0.49844724\n", + " 0.49844724 0.49844724 0.49844724 0.49844724]\n", + "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", + " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", + " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", + " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", + " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", + " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", + " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", + " 2.2642586 2.2642586 0.49844724 0.49844724]\n" ] } ], - "execution_count": 6 + "execution_count": 7 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.499574Z", - "start_time": "2024-07-14T20:10:08.496570Z" + "end_time": "2024-07-18T13:33:14.632985Z", + "start_time": "2024-07-18T13:33:14.630171Z" } }, "source": [ @@ -323,15 +323,15 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 7 + "execution_count": 8 }, { "cell_type": "code", "id": "47ef065abf26f244", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:10:08.507514Z", - "start_time": "2024-07-14T20:10:08.500283Z" + "end_time": "2024-07-18T14:12:41.126245Z", + "start_time": "2024-07-18T14:12:41.110752Z" } }, "source": [ @@ -348,7 +348,7 @@ "\n", "class Linear2DBasisQFE(CircuitLayer):\n", " \"\"\"\n", - " Layer for the 1D hat basis quantum feature embedding.\n", + " Layer for the 2D hat basis quantum feature embedding.\n", "\n", " :param basis: The hat basis class.\n", " :type basis: HatBasis\n", @@ -474,13 +474,13 @@ " return self.norm" ], "outputs": [], - "execution_count": 8 + "execution_count": 13 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:37:33.831325Z", - "start_time": "2024-07-14T20:37:33.826217Z" + "end_time": "2024-07-18T13:33:19.350374Z", + "start_time": "2024-07-18T13:33:19.347273Z" } }, "cell_type": "code", @@ -500,7 +500,7 @@ ], "id": "9afa0015a6baf6fc", "outputs": [], - "execution_count": 34 + "execution_count": 10 }, { "cell_type": "code", @@ -907,10 +907,13 @@ "execution_count": 47 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-18T14:13:13.836741Z", + "start_time": "2024-07-18T14:13:13.830232Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import numpy as np\n", "\n", @@ -928,18 +931,71 @@ " embed.circuit(x)\n", " return qml.state()\n", "\n", - "x = torch.tensor([-0., -0.])\n", + "x = torch.tensor([-0.99, -0.])\n", "out = np.real(circuit(x))\n", "print(out)\n", "print(\"norm: \", np.linalg.norm(out))" ], - "id": "93646da4c54dfbff" + "id": "93646da4c54dfbff", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.9850) tensor(0.0150)\n", + "tensor(0.5000) tensor(0.5000)\n", + "[0. 0. 0. 0. 0.70178351 0.08660251\n", + " 0. 0. 0.70178351 0.08660251 0. 0.\n", + " 0. 0. 0. 0. ]\n", + "norm: 1.000000093060037\n" + ] + } + ], + "execution_count": 17 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-18T14:20:33.761243Z", + "start_time": "2024-07-18T14:20:33.755091Z" + } + }, + "cell_type": "code", + "source": [ + "from qulearn.qlayer import HatBasisQFE\n", + "\n", + "embed = HatBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False)\n", + "\n", + "x = torch.tensor([-1.1])\n", + "norm = embed.compute_norm(x)\n", + "print(norm)\n", + "pos = hat_basis.position(x)\n", + "a, b = hat_basis.nonz_vals(x)\n", + "print(a, b)\n", + "print(pos)" + ], + "id": "9130686d5d3a9c72", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9219543933868408\n", + "tensor([0.1500]) tensor([0.8500])\n", + "tensor([-1.])\n" + ] + } + ], + "execution_count": 31 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-18T13:34:12.174300Z", + "start_time": "2024-07-18T13:34:09.878048Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", @@ -982,7 +1038,28 @@ "# Show the plot\n", "plt.show()" ], - "id": "8f41ff534081649d" + "id": "8f41ff534081649d", + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/n6/zf0dn43x6855v3p_c2lbd38r0000gp/T/ipykernel_62067/993522411.py:18: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/Copy.cpp:276.)\n", + " Z[i, k] = torch.tensor(out)\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa/UlEQVR4nO3dfXhU1b33/8/MJDNJ0CRgIAGNAmJ5UCAaSgy1lZYcEuVn5VfbgtICKYVbKq0aq4JHQEUBnzhUpU1LQbRHCtVbrVUaxViOtY1QgxwfClQsCKIJICWBAHmYWfcflKnTJEyykp3NJO/Xde1Ls2d911p7s7Mna76z1vYYY4wAAAAAAHCJ1+0OAAAAAAC6NgamAAAAAABXMTAFAAAAALiKgSkAAAAAwFUMTAEAAAAArmJgCgAAAABwFQNTAAAAAICrGJgCAAAAAFzFwBQAAAAA4CoGpgAAAAAAVzEwBQB0Glu3btX48eP14osv6rHHHlOvXr10zjnn6Nlnn3W7awAA4BQYmAIAOoUNGzYoOztbH330kRITE3XjjTdqwoQJSkxM1HXXXaePP/7Y7S4CAIBmMDAFAMS8o0eP6jvf+Y7OO+88vfHGGyorK5Pf79fDDz+se++9V7W1tSopKXG7mwAAoBkMTAEAMe/pp5/W3r17tWTJEnXr1k1vvfWWLrzwQvn9fmVlZUmSDh48qFAopLPPPluVlZXudhgAAESIc7sDAAC01bp165Samqr/+I//kCS98847Gj16tCTp8OHDkqSzzjpLXq9Xe/fudaubAACgGWRMAQAx77333tPgwYMVFxenw4cPa9euXRo2bJgkafv27ZKkSy+91M0uAgCAU2BgCgCIeVVVVUpMTJQkvfvuuzLGhAemzz33nM4//3xdeOGF+sUvfqHrrrvOza4CAIAm8FVeAEDMy8zM1Ntvv63a2lq98847kqRhw4bp1Vdf1XPPPacVK1ZIkt5//31ddNFFbnYVAAA0gYwpACDmfe9739M//vEPXXXVVXrmmWeUlJSkhQsX6sorr9S3v/1tTZ06VdKJgemFF17obmcBAEAjHmOMcbsTAAC01V133aWf/vSn2r9/vzwej/r27asZM2bo1ltvlc/nkyT17t1bf/zjHzVgwACXewsAAD6PgSkAoFM588wzdcMNN2jx4sUR+w8ePKhzzjlHR44ckdfLF4YAADid8M4MAOg09uzZoyNHjmjQoEGNXnv//fc1ePBgBqUAAJyGeHcGAHQaW7dulaRmB6bMLwUA4PTEwBQA0GmcamD6zjvvaPjw4R3dJQAA0ALMMQUAdHpHjhzR0KFD9Zvf/EZf/OIX3e4OAAD4NzGXMX399dd11VVXqU+fPvJ4PHr++eejxmzYsEGXXHKJAoGABgwYoFWrVjUqs2zZMvXt21cJCQnKycnRpk2b2r/zAIAOt3HjRn3hC1/QN77xDQalAACcpmJuYFpTU6Phw4dr2bJlLSq/c+dOjRs3Tl/96le1ZcsW3XTTTfr+97+vl19+OVxm7dq1Kioq0vz587V582YNHz5c+fn52rdvn1OHAQDoIDk5Ofrkk0/08MMPu90VAADQjJj+Kq/H49Fzzz2n8ePHN1vm9ttv10svvaT33nsvvG/ixIk6dOiQSkpKJJ34o+WLX/yiHnvsMUlSKBRSZmamfvjDH2r27NmOHgMAAAAAdHUxlzFtrbKyMuXl5UXsy8/PV1lZmSSprq5O5eXlEWW8Xq/y8vLCZQAAAAAAzolzuwNOq6ioUHp6esS+9PR0VVdX69ixY/rHP/6hYDDYZJlt27Y1W29tba1qa2vDP4dCIR08eFBnnXWWPB5P+x4EAAAA0EkYY3T48GH16dMnZp4tffz4cdXV1Tnejt/vV0JCguPtnI46/cDUKYsWLdLdd9/tdjcAAACAmLRnzx6dc845bncjquPHj6vfeWeoYl/Q8bYyMjK0c+fOLjk47fQD04yMDFVWVkbsq6ysVHJyshITE+Xz+eTz+Zosk5GR0Wy9c+bMUVFRUfjnqqoqnXvuubpMVypO8e17EAAAAEAn0aB6vaF1OvPMM93uSovU1dWpYl9QH5X3VfKZzmV4qw+HdF72LtXV1TEw7Yxyc3O1bt26iH3r169Xbm6upBPp8uzsbJWWloYXUQqFQiotLdWsWbOarTcQCCgQCDTaH6d4xXkYmAIAAABN+ufSq7E2/e2MMz0640zn+hxSbJ2P9hZzA9MjR45ox44d4Z937typLVu2qEePHjr33HM1Z84c7d27V08++aQk6frrr9djjz2m2267Td/73vf02muv6Te/+Y1eeumlcB1FRUWaMmWKRowYoZEjR2rp0qWqqalRYWFhhx8fAAAAgNNP0IQUdPB5JkETcq7yGBBzA9O33npLX/3qV8M/n/w67ZQpU7Rq1Sp9+umn2r17d/j1fv366aWXXtLNN9+sn/zkJzrnnHP0y1/+Uvn5+eEyEyZM0P79+zVv3jxVVFQoKytLJSUljRZEAgAAAAC0v5h+junppLq6WikpKRqtq/kqLwAAANCMBlOvDfqtqqqqlJyc7HZ3ojr5d37F9nMdn2OaMXB3zJyX9hYb6zMDAAAAADqtmPsqLwAAAAB0tJBCcnIWqLO1n/7ImAIAAAAAXEXGFAAAAACiCBqjoIPL8zhZdywgYwoAAAAAcBUZUwAAAACIIiSjkJzLajpZdywgYwoAAAAAcBUZUwAAAACIIiSjIBlTx5AxBQAAAAC4iowpAAAAAETBHFNnkTEFAAAAALiKjCkAAAAARMFzTJ1FxhQAAAAA4CoypgAAAAAQReifm5P1d2VkTAEAAAAAriJjCgAAAABRBB1+jqmTdccCMqYAAAAAAFeRMQUAAACAKILmxOZk/V0ZGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExBQAAAIAoQvIoKI+j9XdlZEwBAAAAAK4iYwoAAAAAUYTMic3J+rsyMqYAAAAAAFeRMQUAAACAKIIOzzF1su5YQMYUAAAAAOAqMqYAAAAAEAUZU2eRMQUAAAAAuIqMKQAAAABEETIehYyDzzF1sO5YQMYUAAAAAOAqMqYAAAAAEAVzTJ1FxhQAAAAA4CoypgAAAAAQRVBeBR3M6wUdqzk2kDEFAAAAALiKjCkAAAAARGEcXpXXsCovAAAAAADuIWMKAAAAAFGwKq+zyJgCAAAAAFxFxhQAAAAAoggar4LGwVV5jWNVxwQypgAAAAAAV5ExBQAAAIAoQvIo5GBeL6SunTIlYwoAAAAAcBUZUwAAAACIglV5nUXGFAAAAADgKjKmAAAAABCF86vyMscUAAAAAADXkDEFAAAAgChOrMrr3DxQJ+uOBWRMAQAAAACuImMKAAAAAFGE5FWQ55g6howpAAAAAMBVZEwBAAAAIApW5XVWTGZMly1bpr59+yohIUE5OTnatGlTs2VHjx4tj8fTaBs3bly4zNSpUxu9XlBQ0BGHAgAAAABdXsxlTNeuXauioiIVFxcrJydHS5cuVX5+vrZv365evXo1Kv/ss8+qrq4u/PNnn32m4cOH61vf+lZEuYKCAj3++OPhnwOBgHMHAQAAACCmhORViDmmjom5jOmSJUs0ffp0FRYWasiQISouLlZSUpJWrlzZZPkePXooIyMjvK1fv15JSUmNBqaBQCCiXPfu3TvicAAAAACgy4upgWldXZ3Ky8uVl5cX3uf1epWXl6eysrIW1bFixQpNnDhR3bp1i9i/YcMG9erVSwMHDtTMmTP12WeftWvfAQAAAMSuoPE4vnVlMfVV3gMHDigYDCo9PT1if3p6urZt2xY1ftOmTXrvvfe0YsWKiP0FBQX6xje+oX79+unDDz/UHXfcoSuuuEJlZWXy+XxN1lVbW6va2trwz9XV1RZHBAAAAACIqYFpW61YsUJDhw7VyJEjI/ZPnDgx/P9Dhw7VsGHDdP7552vDhg0aM2ZMk3UtWrRId999t6P9BQAAAHB6CDr8HNMgc0xjR1pamnw+nyorKyP2V1ZWKiMj45SxNTU1WrNmjaZNmxa1nf79+ystLU07duxotsycOXNUVVUV3vbs2dOygwAAAAAARIipganf71d2drZKS0vD+0KhkEpLS5Wbm3vK2Kefflq1tbX6zne+E7Wdjz/+WJ999pl69+7dbJlAIKDk5OSIDQAAAEDnFDJex7euLOaOvqioSMuXL9cTTzyhrVu3aubMmaqpqVFhYaEkafLkyZozZ06juBUrVmj8+PE666yzIvYfOXJEt956q958803t2rVLpaWluvrqqzVgwADl5+d3yDEBAAAAQFcWc3NMJ0yYoP3792vevHmqqKhQVlaWSkpKwgsi7d69W15v5Hh7+/bteuONN/TKK680qs/n8+mdd97RE088oUOHDqlPnz4aO3asFixYwLNMAQAAAEhijqnTPMaYrn0G2kl1dbVSUlI0WlcrzhPvdncAAACA01KDqdcG/VZVVVUxMR3u5N/5yzdnK+nMpp/Y0R6OHg5q+iXlMXNe2lvMZUwBAAAAoKOFJEefNRpyrObYEHNzTAEAAAAAnQsZUwAAAACIIiSvQg7m9ZysOxZ07aMHAAAAALiOjCkAAAAARBE0XgUdfNaok3XHgq599AAAAAAA15ExBQAAAIAoQvIoJCdX5XWu7lhAxhQAAAAA4CoypgAAAAAQBXNMndW1jx4AAAAA4DoypgAAAAAQRVBeBR3M6zlZdyzo2kcPAAAAAHAdGVMAAAAAiCJkPAoZB1fldbDuWEDGFAAAAADgKjKmAAAAABBFyOE5pqEunjPs2kcPAAAAAHAdGVMAAAAAiCJkvAo5+KxRJ+uOBV376AEAAAAAriNjCgAAAABRBOVRUM6tnOtk3bGAjCkAAAAAwFVkTAEAAAAgCuaYOqtrHz0AAAAAtEBQ//o6rzNb6y1btkx9+/ZVQkKCcnJytGnTplOWX7p0qQYOHKjExERlZmbq5ptv1vHjx63OR3tjYAoAAAAAMWbt2rUqKirS/PnztXnzZg0fPlz5+fnat29fk+VXr16t2bNna/78+dq6datWrFihtWvX6o477ujgnjeNgSkAAAAARHHyq7xObq2xZMkSTZ8+XYWFhRoyZIiKi4uVlJSklStXNln+z3/+s770pS/puuuuU9++fTV27Fhde+21UbOsHYWBKQAAAADEkLq6OpWXlysvLy+8z+v1Ki8vT2VlZU3GjBo1SuXl5eGB6N///netW7dOV155ZYf0ORoWPwIAAACAKILGq6CDCxSdrLu6ujpifyAQUCAQiNh34MABBYNBpaenR+xPT0/Xtm3bmqz/uuuu04EDB3TZZZfJGKOGhgZdf/31fJUXAAAAABApMzNTKSkp4W3RokXtUu+GDRu0cOFC/fSnP9XmzZv17LPP6qWXXtKCBQvapf62ImMKAAAAAFEYeRSSx9H6JWnPnj1KTk4O7//3bKkkpaWlyefzqbKyMmJ/ZWWlMjIymqx/7ty5+u53v6vvf//7kqShQ4eqpqZGM2bM0H/+53/K63U3Z0nGFAAAAABOE8nJyRFbUwNTv9+v7OxslZaWhveFQiGVlpYqNze3yXqPHj3aaPDp8/kkScaYdjwCO2RMAQAAACCKjppj2lJFRUWaMmWKRowYoZEjR2rp0qWqqalRYWGhJGny5Mk6++yzw18Fvuqqq7RkyRJdfPHFysnJ0Y4dOzR37lxdddVV4QGqmxiYAgAAAECMmTBhgvbv36958+apoqJCWVlZKikpCS+ItHv37ogM6Z133imPx6M777xTe/fuVc+ePXXVVVfpvvvuc+sQInjM6ZC37QSqq6uVkpKi0bpacZ54t7sDAAAAnJYaTL026LeqqqqKmEt5ujr5d/4tf/r/FDjDub/za4/U6+EvvRgz56W9MccUAAAAAOAqvsoLAAAAAFEE5VXQwbyek3XHgq599AAAAAAA15ExBQAAAIAoQsajkHHuOaZO1h0LyJgCAAAAAFxFxhQAAAAAogjJq5CDeT0n644FXfvoAQAAAACuI2MKAAAAAFEEjUdBB+eBOll3LCBjCgAAAABwFRlTAAAAAIiCVXmdRcYUAAAAAOAqMqYAAAAAEIUxXoWMc3k942DdsaBrHz0AAAAAwHVkTAEAAAAgiqA8CsrBVXkdrDsWkDEFAAAAALiKjCkAAAAARBEyzq6cGzKOVR0TyJgCAAAAAFxFxhQAAAAAogg5vCqvk3XHgq599AAAAAAA15ExBQAAAIAoQvIo5ODKuU7WHQvImAIAAAAAXBWTA9Nly5apb9++SkhIUE5OjjZt2tRs2VWrVsnj8URsCQkJEWWMMZo3b5569+6txMRE5eXl6YMPPnD6MAAAAADEiKDxOL51ZTE3MF27dq2Kioo0f/58bd68WcOHD1d+fr727dvXbExycrI+/fTT8PbRRx9FvP7AAw/okUceUXFxsTZu3Khu3bopPz9fx48fd/pwAAAAAKDLi7mB6ZIlSzR9+nQVFhZqyJAhKi4uVlJSklauXNlsjMfjUUZGRnhLT08Pv2aM0dKlS3XnnXfq6quv1rBhw/Tkk0/qk08+0fPPP98BRwQAAADgdHdyVV4nt64spo6+rq5O5eXlysvLC+/zer3Ky8tTWVlZs3FHjhzReeedp8zMTF199dV6//33w6/t3LlTFRUVEXWmpKQoJyfnlHXW1taquro6YgMAAAAAtF5MDUwPHDigYDAYkfGUpPT0dFVUVDQZM3DgQK1cuVK//e1v9d///d8KhUIaNWqUPv74Y0kKx7WmTklatGiRUlJSwltmZmZbDg0AAADAaSwkj0LGwY1VeTu33NxcTZ48WVlZWbr88sv17LPPqmfPnvr5z3/epnrnzJmjqqqq8LZnz5526jEAAAAAdC0x9RzTtLQ0+Xw+VVZWRuyvrKxURkZGi+qIj4/XxRdfrB07dkhSOK6yslK9e/eOqDMrK6vZegKBgAKBQCuPAAAAAEAsMg4/x9SQMY0dfr9f2dnZKi0tDe8LhUIqLS1Vbm5ui+oIBoN69913w4PQfv36KSMjI6LO6upqbdy4scV1AgAAAADsxVTGVJKKioo0ZcoUjRgxQiNHjtTSpUtVU1OjwsJCSdLkyZN19tlna9GiRZKke+65R5deeqkGDBigQ4cO6cEHH9RHH32k73//+5JOrNh700036d5779UFF1ygfv36ae7cuerTp4/Gjx/v1mECAAAAOI2cnAvqZP1dWcwNTCdMmKD9+/dr3rx5qqioUFZWlkpKSsKLF+3evVte778Swf/4xz80ffp0VVRUqHv37srOztaf//xnDRkyJFzmtttuU01NjWbMmKFDhw7psssuU0lJiRISEjr8+AAAAACgq/EYY4zbnegMqqurlZKSotG6WnGeeLe7AwAAAJyWGky9Nui3qqqqUnJystvdierk3/n///pCxXfzO9ZOfU2dnvuPx2PmvLS3mJpjCgAAAADofGLuq7wAAAAA0NGYY+osMqYAAAAAAFeRMQUAAACAKEIOP8fUybpjARlTAAAAAICryJgCAAAAQBTMMXUWGVMAAAAAgKvImAIAAABAFGRMnUXGFAAAAADgKjKmAAAAABAFGVNnkTEFAAAAALiKjCkAAAAAREHG1FlkTAEAAAAAriJjCgAAAABRGEkhOZfVNI7VHBvImAIAAAAAXEXGFAAAAACiYI6ps8iYAgAAAABcRcYUAAAAAKIgY+osMqYAAAAAAFeRMQUAAACAKMiYOouMKQAAAADAVWRMAQAAACAKMqbOImMKAAAAAHAVGVMAAAAAiMIYj4yDWU0n644FZEwBAAAAAK4iYwoAAAAAUYTkUUgOzjF1sO5YQMYUAAAAAOAqMqYAAAAAEAWr8jqLjCkAAAAAwFVkTAEAAAAgClbldRYZUwAAAACAq8iYAgAAAEAUzDF1FhlTAAAAAICryJgCAAAAQBTMMXUWGVMAAAAAgKvImAIAAABAFMbhOaZkTAEAAAAAcBEZUwAAAACIwkgyxtn6uzIypgAAAAAAV5ExBQAAAIAoQvLIIwefY+pg3bGAjCkAAAAAwFVkTAEAAAAgCp5j6iwypgAAAAAAV5ExBQAAAIAoQsYjj4NZTSefkRoLGJgCAAAAQBTGOPy4mC7+vBi+ygsAAAAAcBUZUwAAAACIgsWPnEXGFAAAAADgKjKmAAAAABAFGVNnkTEFAAAAALiKjCkAAAAARMHjYpxFxhQAAAAA4KqYHJguW7ZMffv2VUJCgnJycrRp06Zmyy5fvlxf/vKX1b17d3Xv3l15eXmNyk+dOlUejydiKygocPowAAAAAMSIk88xdXLrymJuYLp27VoVFRVp/vz52rx5s4YPH678/Hzt27evyfIbNmzQtddeqz/84Q8qKytTZmamxo4dq71790aUKygo0Keffhrefv3rX3fE4QAAAABAlxdzA9MlS5Zo+vTpKiws1JAhQ1RcXKykpCStXLmyyfJPPfWUfvCDHygrK0uDBg3SL3/5S4VCIZWWlkaUCwQCysjICG/du3fviMMBAAAAEANOZDU9Dm5uH6G7YmpgWldXp/LycuXl5YX3eb1e5eXlqaysrEV1HD16VPX19erRo0fE/g0bNqhXr14aOHCgZs6cqc8+++yU9dTW1qq6ujpiAwAAAAC0XkwNTA8cOKBgMKj09PSI/enp6aqoqGhRHbfffrv69OkTMbgtKCjQk08+qdLSUt1///36n//5H11xxRUKBoPN1rNo0SKlpKSEt8zMTLuDAgAAAHDaczZb6uwzUmNBl3pczOLFi7VmzRpt2LBBCQkJ4f0TJ04M///QoUM1bNgwnX/++dqwYYPGjBnTZF1z5sxRUVFR+Ofq6moGpwAAAABgIaYypmlpafL5fKqsrIzYX1lZqYyMjFPGPvTQQ1q8eLFeeeUVDRs27JRl+/fvr7S0NO3YsaPZMoFAQMnJyREbAAAAgM7JdMDWlcXUwNTv9ys7Ozti4aKTCxnl5uY2G/fAAw9owYIFKikp0YgRI6K28/HHH+uzzz5T796926XfAAAAAIDmxdTAVJKKioq0fPlyPfHEE9q6datmzpypmpoaFRYWSpImT56sOXPmhMvff//9mjt3rlauXKm+ffuqoqJCFRUVOnLkiCTpyJEjuvXWW/Xmm29q165dKi0t1dVXX60BAwYoPz/flWMEAAAAcHo5HeeYLlu2TH379lVCQoJycnK0adOmU5Y/dOiQbrjhBvXu3VuBQEBf+MIXtG7dOttT0q5ibo7phAkTtH//fs2bN08VFRXKyspSSUlJeEGk3bt3y+v913j7Zz/7merq6vTNb34zop758+frrrvuks/n0zvvvKMnnnhChw4dUp8+fTR27FgtWLBAgUCgQ48NAAAAAFpi7dq1KioqUnFxsXJycrR06VLl5+dr+/bt6tWrV6PydXV1+o//+A/16tVLzzzzjM4++2x99NFHSk1N7fjON8FjTFd/Yk77qK6uVkpKikbrasV54t3uDgAAAHBaajD12qDfqqqqKibWaTn5d37/J+6QLykheoCl4NHj+vuUhS0+Lzk5OfriF7+oxx57TNKJKY6ZmZn64Q9/qNmzZzcqX1xcrAcffFDbtm1TfPzpN16Jua/yAgAAAEBnVV1dHbHV1tY2KlNXV6fy8vKIR2B6vV7l5eWprKysyXpfeOEF5ebm6oYbblB6erouuugiLVy48JSPyOxIDEwBAAAAIBqn55f+c45pZmamUlJSwtuiRYsadeXAgQMKBoPh6Ywnpaenq6Kiosnu//3vf9czzzyjYDCodevWae7cuXr44Yd17733tv+5shBzc0wBAAAAoLPas2dPxFd522vdm1AopF69eukXv/iFfD6fsrOztXfvXj344IOaP39+u7TRFgxMAQAAACAKY05sTtYvScnJyVHnmKalpcnn86mysjJif2VlpTIyMpqM6d27t+Lj4+Xz+cL7Bg8erIqKCtXV1cnv97ftANqIr/ICAAAAQAzx+/3Kzs5WaWlpeF8oFFJpaalyc3ObjPnSl76kHTt2KBQKhff97W9/U+/evV0flEoMTAEAAAAgqtPtOaZFRUVavny5nnjiCW3dulUzZ85UTU2NCgsLJUmTJ0/WnDlzwuVnzpypgwcP6sYbb9Tf/vY3vfTSS1q4cKFuuOGGdj1PtvgqLwAAAADEmAkTJmj//v2aN2+eKioqlJWVpZKSkvCCSLt375bX+688ZGZmpl5++WXdfPPNGjZsmM4++2zdeOONuv322906hAgMTAEAAAAgms+tnOtY/a00a9YszZo1q8nXNmzY0Ghfbm6u3nzzzVa30xH4Ki8AAAAAwFVkTAEAAAAgio5alberImMKAAAAAHAVGVMAAAAAiMb8c3Oy/i6MjCkAAAAAwFVkTAEAAAAgCptnjba2/q6MjCkAAAAAwFVkTAEAAACgJbr4PFAnkTEFAAAAALiKjCkAAAAARMEcU2eRMQUAAAAAuIqMKQAAAABEw3NMHUXGFAAAAADgKjKmAAAAABCV55+bk/V3XWRMAQAAAACuImMKAAAAANEwx9RRZEwBAAAAAK4iYwoAAAAA0ZAxdRQZUwAAAACAq8iYAgAAAEA0xnNic7L+LoyMKQAAAADAVWRMAQAAACAKY05sTtbflZExBQAAAAC4iowpAAAAAETDqryOImMKAAAAAHAVGVMAAAAAiIZVeR1FxhQAAAAA4CoypgAAAAAQhcec2JysvysjYwoAAAAAcBUZUwAAAACIhlV5HUXGFAAAAADgKjKmAAAAABANq/I6iowpAAAAAMBVZEwBAAAAIBrmmDqKjCkAAAAAwFVkTAEAAAAgGjKmjiJjCgAAAABwFRlTAAAAAIiGjKmjyJgCAAAAAFxFxhQAAAAAouE5po4iYwoAAAAAcBUZUwAAAACIwmNObE7W35WRMQUAAAAAuIqMKQAAAABEw6q8jorJjOmyZcvUt29fJSQkKCcnR5s2bTpl+aefflqDBg1SQkKChg4dqnXr1kW8bozRvHnz1Lt3byUmJiovL08ffPCBk4cAAAAAADFj0aJFkqTNmzertra23etv1cB0z5497d6B1lq7dq2Kioo0f/58bd68WcOHD1d+fr727dvXZPk///nPuvbaazVt2jS9/fbbGj9+vMaPH6/33nsvXOaBBx7QI488ouLiYm3cuFHdunVTfn6+jh8/3lGHBQAAAACnrdGjR0uSFi9erEsuuURDhw7VxIkTtXDhQr344ouqrKxsU/0eY0yLk8bdunXTLbfcotmzZyspKalNDdvKycnRF7/4RT322GOSpFAopMzMTP3whz/U7NmzG5WfMGGCampq9OKLL4b3XXrppcrKylJxcbGMMerTp49uueUW/fjHP5YkVVVVKT09XatWrdLEiRNb1K/q6mqlpKRotK5WnCe+HY4UAAAA6HwaTL026LeqqqpScnKy292J6uTf+efef6+8iQmOtRM6dly7b78zZs7LsWPH9N577+mdd97RO++8ozfeeENXXnmlFixYYFVfqzKm69ev18svv6wLLrhAq1atsmqwLerq6lReXq68vLzwPq/Xq7y8PJWVlTUZU1ZWFlFekvLz88Pld+7cqYqKiogyKSkpysnJabZOAAAAAF2LR/9amdeRze0DbMbhw4c1Z84cXXHFFfr2t7+tn/zkJ9qzZ48SExP1xS9+UdOmTdNPfvITlZeXN5oy2RqtGpiOGjVKGzdu1KJFizR37lxlZ2frj3/8o3XjrXXgwAEFg0Glp6dH7E9PT1dFRUWTMRUVFacsf/K/ralTkmpra1VdXR2xAQAAAEBnct111+kXv/iFUlNTFRcXp5/97Ge64IIL9F//9V+Nyr755pvW7VgtfjR58mRt375d48aN0xVXXKFvfvOb2rlzp3UnYtGiRYuUkpIS3jIzM93uEgAAAACnGI/z22no9ddf1/PPP69f//rXWr16tbZt26bS0lItWbJExcXFEWXj4+2nNLZpVd6xY8fq+9//vp577jkNGTJEt912m44cOdKWKk8pLS1NPp+v0cTayspKZWRkNBmTkZFxyvIn/9uaOiVpzpw5qqqqCm+nw8JQAAAAANCeJk2apCuvvFJXXnml5syZo9/85jc666yztGzZMj344IPt1k6rBqbFxcWaNm2ahg0bppSUFI0ZM0Z//OMfdf311+snP/mJ3nrrLQ0ZMkRvvfVWu3Xw8/x+v7Kzs1VaWhreFwqFVFpaqtzc3CZjcnNzI8pLJ+bKnizfr18/ZWRkRJSprq7Wxo0bm61TkgKBgJKTkyM2AAAAAJ2U6YDtNHTppZfqV7/6lUaMGKH33ntPt9xyi4YMGaJvf/vb+uijjzRz5kz97Gc/0xtvvNGmduJaU/i+++5TTk6OJk+erEsvvVTZ2dlKTEwMvz5jxgwtXLhQU6dOjXgcS3sqKirSlClTNGLECI0cOVJLly5VTU2NCgsLJZ34mvHZZ58dfs7OjTfeqMsvv1wPP/ywxo0bpzVr1uitt97SL37xC0mSx+PRTTfdpHvvvVcXXHCB+vXrp7lz56pPnz4aP368I8cAAAAAALHglVdeUV1dnX71q18pEAhIOrH2z+9+9ztNnz5d1dXVKi4u1t/+9jcdO3bMup1WDUxb8nXVadOmae7cudYdimbChAnav3+/5s2bp4qKCmVlZamkpCS8eNHu3bvl9f4rETxq1CitXr1ad955p+644w5dcMEFev7553XRRReFy9x2222qqanRjBkzdOjQIV122WUqKSlRQoJzy0EDAAAAiCFOZzVP04zpww8/rDFjxuiiiy5SYWGhhg8fruPHj2vVqlXKysrSU089JUkKBoNtaqdVzzFtCWOMXn/9dV1++eXtWe1pj+eYAgAAANHF6nNMz1t4n7wOJq5Cx4/rozv+87Q8L8eOHdNDDz2kZ555Ru+++64kKSsrS7/61a904YUXtksbrcqYtoTH4+lyg1IAAAAAndvJ5406Wf/pKjExUXPnztXcuXN1/PhxNTQ06IwzzmjXNtp9YAoAAAAA6Jycmu7IwBQAAAAAoumic0w7SpueYwoAAAAAQFuRMQUAAACAaMiYOoqBKQAAAABE0ZUXP+oIfJUXAAAAAOAqMqYAAAAAEI3xnNicrL8LI2MKAAAAAHAVGVMAAAAAiIbFjxxFxhQAAAAA4CoypgAAAAAQBavyOouMKQAAAADAVWRMAQAAACAa5pg6iowpAAAAAMBVZEwBAAAAIBqH55iSMQUAAAAAwEVkTAEAAAAgGuaYOoqMKQAAAADAVWRMAQAAACAaMqaOImMKAAAAAHAVGVMAAAAAiMLj8Kq8jq74GwPImAIAAAAAXMXAFAAAAADgKgamAAAAAABXMccUAAAAAKJhVV5HkTEFAAAAALiKjCkAAAAARMGqvM4iYwoAAAAAcBUZUwAAAABoiS6e1XQSGVMAAAAAgKvImAIAAABANKzK6ygypgAAAAAAV5ExBQAAAIAoWJXXWWRMAQAAAACuImMKAAAAANEwx9RRZEwBAAAAAK5iYAoAAAAAUZycY+rk1lrLli1T3759lZCQoJycHG3atKlFcWvWrJHH49H48eNb36hDGJgCAAAAQIxZu3atioqKNH/+fG3evFnDhw9Xfn6+9u3bd8q4Xbt26cc//rG+/OUvd1BPW4aBKQAAAABEYzpga4UlS5Zo+vTpKiws1JAhQ1RcXKykpCStXLmy2ZhgMKhJkybp7rvvVv/+/VvXoMMYmAIAAADAaaK6ujpiq62tbVSmrq5O5eXlysvLC+/zer3Ky8tTWVlZs3Xfc8896tWrl6ZNm+ZI39uCgSkAAAAARNNBGdPMzEylpKSEt0WLFjXqyoEDBxQMBpWenh6xPz09XRUVFU12/4033tCKFSu0fPly61PgJB4XAwAAAACniT179ig5OTn8cyAQaHOdhw8f1ne/+10tX75caWlpba7PCQxMAQAAACAK25VzW1O/JCUnJ0cMTJuSlpYmn8+nysrKiP2VlZXKyMhoVP7DDz/Url27dNVVV4X3hUIhSVJcXJy2b9+u888/v41H0DZ8lRcAAAAAYojf71d2drZKS0vD+0KhkEpLS5Wbm9uo/KBBg/Tuu+9qy5Yt4e3rX/+6vvrVr2rLli3KzMzsyO43iYwpAAAAAERjsXJuq+tvhaKiIk2ZMkUjRozQyJEjtXTpUtXU1KiwsFCSNHnyZJ199tlatGiREhISdNFFF0XEp6amSlKj/W5hYAoAAAAAMWbChAnav3+/5s2bp4qKCmVlZamkpCS8INLu3bvl9cbOF2QZmAIAAABANKdZxlSSZs2apVmzZjX52oYNG04Zu2rVqtY36KDYGUIDAAAAADolMqYAAAAAEEVHrcrbVZExBQAAAAC4iowpAAAAAERzGs4x7UxiKmN68OBBTZo0ScnJyUpNTdW0adN05MiRU5b/4Q9/qIEDByoxMVHnnnuufvSjH6mqqiqinMfjabStWbPG6cMBAAAAACjGMqaTJk3Sp59+qvXr16u+vl6FhYWaMWOGVq9e3WT5Tz75RJ988okeeughDRkyRB999JGuv/56ffLJJ3rmmWciyj7++OMqKCgI/3zyuT4AAAAAwBxTZ8XMwHTr1q0qKSnRX/7yF40YMUKS9Oijj+rKK6/UQw89pD59+jSKueiii/R//+//Df98/vnn67777tN3vvMdNTQ0KC7uX4efmpqqjIwM5w8EAAAAABAhZr7KW1ZWptTU1PCgVJLy8vLk9Xq1cePGFtdTVVWl5OTkiEGpJN1www1KS0vTyJEjtXLlShnTxT+yAAAAAPAvpgO2LixmMqYVFRXq1atXxL64uDj16NFDFRUVLarjwIEDWrBggWbMmBGx/5577tHXvvY1JSUl6ZVXXtEPfvADHTlyRD/60Y+arau2tla1tbXhn6urq1txNAAAAACAk1wfmM6ePVv333//Kcts3bq1ze1UV1dr3LhxGjJkiO66666I1+bOnRv+/4svvlg1NTV68MEHTzkwXbRoke6+++429wsAAABADGBVXke5PjC95ZZbNHXq1FOW6d+/vzIyMrRv376I/Q0NDTp48GDUuaGHDx9WQUGBzjzzTD333HOKj48/ZfmcnBwtWLBAtbW1CgQCTZaZM2eOioqKwj9XV1crMzPzlPUCAAAAABpzfWDas2dP9ezZM2q53NxcHTp0SOXl5crOzpYkvfbaawqFQsrJyWk2rrq6Wvn5+QoEAnrhhReUkJAQta0tW7aoe/fuzQ5KJSkQCJzydQAAAACdh+efm5P1d2WuD0xbavDgwSooKND06dNVXFys+vp6zZo1SxMnTgyvyLt3716NGTNGTz75pEaOHKnq6mqNHTtWR48e1X//93+ruro6PBe0Z8+e8vl8+t3vfqfKykpdeumlSkhI0Pr167Vw4UL9+Mc/dvNwAQAAAKDLiJmBqSQ99dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++XUePHpUkbd68Obxi74ABAyLq2rlzp/r27av4+HgtW7ZMN998s4wxGjBggJYsWaLp06d33IEBAAAAOL0xx9RRMTUw7dGjh1avXt3s63379o14zMvo0aOjPvaloKBABQUF7dZHAAAAAEDrxNTAFAAAAADc4DEnNifr78q8bncAAAAAANC1kTEFAAAAgGiYY+ooMqYAAAAAAFeRMQUAAACAlujiWU0nkTEFAAAAALiKjCkAAAAARMGqvM4iYwoAAAAAcBUZUwAAAACIhlV5HUXGFAAAAADgKjKmAAAAABAFc0ydRcYUAAAAAOAqMqbtzBMXJ4+ndafVEwjYtxdv+U8YZxnn89nFSfJ4LT8H6eg4SfJ67OI8lnGSdX+NG321jbWNsz3GtrRpy7Th486QZWxb2rSM9QRDHdpem2Ld6Gsw2KFtGttjlKSQZV/rG6zCTF2dXXuSQsePW8cCQJsxx9RRZEwBAAAAAK4iYwoAAAAAUTDH1FlkTAEAAAAAriJjCgAAAADRMMfUUWRMAQAAAACuImMKAAAAANGQMXUUGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExbWeegF8ej79VMd7UFOv2TGLALtAfb9ee3/6SCcX7LOPsPj8xPvvPXUycxyou5LOLO9Gm7XFatue172vI8vwYy38S2zhJMpb/Jp6QXXuekP3HndZtBtvQZrBj22zL+fE2WLZp2VdvveU/iCRP0C7WU2/3D2IbJ0me2gbLuDq7BmuO2cVJ0vHj9rEA0FbMMXUUGVMAAAAAgKvImAIAAABAFB5j5DHOpTWdrDsWkDEFAAAAALiKjCkAAAAARMMcU0eRMQUAAAAAuIqMKQAAAABEwXNMncXAFAAAAACi4au8juKrvAAAAAAAV5ExBQAAAIAo+CqvsxiYtjNPfJw8ntadVpMYsG7PdEuwigslxtvFBXxWcZIUtIwNxXs6NE6SQnGWbVrGnYi1jbPsq/0/pYxtX312fTVt6atlrCdkGRe0izsRa/eO5G1Tm3Zx3gbbOPt33Y5u01vfhr5axnrr7C48X639ReD1251Yr8/uS1eehjZcsACATouBKQAAAABEwxxTRzHHFAAAAADgKjKmAAAAABAFc0ydRcYUAAAAAOAqMqYAAAAAEA1zTB1FxhQAAAAA4CoypgAAAADQAl19HqiTyJgCAAAAAFxFxhQAAAAAojHmxOZk/V0YA9P25ouTvK08rf546+ZCiXaxDUl2ccEE+yS7bWzQ77GLi7eLk6SQ5T+JbZwkheLs+mvd1zb89hvL2JDPsj3LOEkycXY3eU/I7t/DE7QKOxHbYNemt01t2sV5bePq7eLa1qbdefXV2f+B4K23i407bnsfsL/fxXktY4N2x+iL508PAEBjvDsAAAAAQBQ8x9RZzDEFAAAAALiKjCkAAAAARMNzTB1FxhQAAAAA4CoypgAAAAAQhSd0YnOy/q6MjCkAAAAAwFVkTAEAAAAgGuaYOoqMKQAAAADAVWRMAQAAACAKnmPqLAam7c3nk7y+VoUYv/0/QyjQurZOCibYJcsbEu2T7A0JHqu4YMAyzm8VJkkK+e3aDMW3oU3L2JDl5dO2vtrdOY3d5SoTZ3+ntj0/npBdm54Gu2tHkrxBuzhPvXWT8lr212vZpm17bWqzzi6uLb8jvlq74zReu+surg3ff/IE7dr01tv9Qpt4/vQAADQWU1/lPXjwoCZNmqTk5GSlpqZq2rRpOnLkyCljRo8eLY/HE7Fdf/31EWV2796tcePGKSkpSb169dKtt96qhoYGJw8FAAAAQCwxxvmtC4upjy0nTZqkTz/9VOvXr1d9fb0KCws1Y8YMrV69+pRx06dP1z333BP+OSkpKfz/wWBQ48aNU0ZGhv785z/r008/1eTJkxUfH6+FCxc6diwAAAAAgBNiZmC6detWlZSU6C9/+YtGjBghSXr00Ud15ZVX6qGHHlKfPn2ajU1KSlJGRkaTr73yyiv661//qldffVXp6enKysrSggULdPvtt+uuu+6S39+G74MCAAAA6BSYY+qsmPkqb1lZmVJTU8ODUknKy8uT1+vVxo0bTxn71FNPKS0tTRdddJHmzJmjo0ePRtQ7dOhQpaenh/fl5+erurpa77//frN11tbWqrq6OmIDAAAAALRezGRMKyoq1KtXr4h9cXFx6tGjhyoqKpqNu+6663TeeeepT58+euedd3T77bdr+/btevbZZ8P1fn5QKin886nqXbRoke6++27bwwEAAAAQS3iOqaNcH5jOnj1b999//ynLbN261br+GTNmhP9/6NCh6t27t8aMGaMPP/xQ559/vnW9c+bMUVFRUfjn6upqZWZmWtcHAAAAAF2V6wPTW265RVOnTj1lmf79+ysjI0P79u2L2N/Q0KCDBw82O3+0KTk5OZKkHTt26Pzzz1dGRoY2bdoUUaayslKSTllvIBBQIBBocbsAAAAAYhdzTJ3l+sC0Z8+e6tmzZ9Ryubm5OnTokMrLy5WdnS1Jeu211xQKhcKDzZbYsmWLJKl3797heu+77z7t27cv/FXh9evXKzk5WUOGDGnl0QAAAAAAWitmFj8aPHiwCgoKNH36dG3atEl/+tOfNGvWLE2cODG8Iu/evXs1aNCgcAb0ww8/1IIFC1ReXq5du3bphRde0OTJk/WVr3xFw4YNkySNHTtWQ4YM0Xe/+1397//+r15++WXdeeeduuGGG8iIAgAAADiB55g6yvWMaWs89dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++Pbzqrt/v16uvvqqlS5eqpqZGmZmZuuaaa3TnnXeGY3w+n1588UXNnDlTubm56tatm6ZMmRLx3NPW8Hg88ng8rYoJxfus2pKkYMAuNphg95lEQ0Lrjq09YoO2cW34XCFk+ZSgULx9m0G/3c3Itk0Tb3/zC1nGWrfpa8ONOj5kFWZCltd6vf3nfaEGuzY99fa/l956uzhPg12cr64Nfa2zjLN8pzM++74ar+XvSCvfP07yGPvrzttgee+ptXv/8cXZv+cBADqvmBqY9ujRQ6tXr2729b59+8p87pOGzMxM/c///E/Ues877zytW7euXfoIAAAAoPNhjqmzYuarvAAAAACAzimmMqYAAAAA4AqeY+ooMqYAAAAAAFeRMQUAAACAKJhj6iwypgAAAAAAV5ExBQAAAIBoQubE5mT9XRgZUwAAAACAq8iYAgAAAEA0rMrrKAam7c3nlby+VoWE4uwT16F4j1Vc0DYuYBcnScEEyzYTLNsL2MW1JTbkt7+j2Mbaxpn4Ntz94kNWYR7LOF+cXZwkxcUHreJCIcvrtaF1v/8Rbdbb3QtCdW24hzTYHafXsk1jf3rktXzH8tXaHaNpw3eKjMfyXmnsfi89lterJHkb7A7U57e8BtrwngcA6LwYmAIAAABAFB45vCqvc1XHBD62BAAAAAC4iowpAAAAAERjjPWUixbX34WRMQUAAACAGLRs2TL17dtXCQkJysnJ0aZNm5otu3z5cn35y19W9+7d1b17d+Xl5Z2yfEdjYAoAAAAAUXiM81trrF27VkVFRZo/f742b96s4cOHKz8/X/v27Wuy/IYNG3TttdfqD3/4g8rKypSZmamxY8dq79697XB22o6BKQAAAADEmCVLlmj69OkqLCzUkCFDVFxcrKSkJK1cubLJ8k899ZR+8IMfKCsrS4MGDdIvf/lLhUIhlZaWdnDPm8bAFAAAAACiMR2wtVBdXZ3Ky8uVl5cX3uf1epWXl6eysrIW1XH06FHV19erR48eLW/YQSx+BAAAAACnierq6oifA4GAAoFAxL4DBw4oGAwqPT09Yn96erq2bdvWonZuv/129enTJ2Jw6yYypgAAAAAQhccYxzdJyszMVEpKSnhbtGhRux/L4sWLtWbNGj333HNKSEho9/ptkDEFAAAAgNPEnj17lJycHP7537OlkpSWliafz6fKysqI/ZWVlcrIyDhl/Q899JAWL16sV199VcOGDWufTrcDBqbtzes9sbWCibNPXIfiPVZxQb9tnFXYidjGv1POxiXYPwvK9jhDbWgz5A/ZBVrGeWzbkxQXH7SKi/c3WMX54+zak6QEf71VXEPQZxV3vN7+tlpfb9dmQ7x9m8E6u/tPyGd3rRuf/f3O1Nrdt4xlkz6PXXtS61dWPCkYsmvTE2zD/a7Ors1QvOWJbeV7JACcNkL/3JysX1JycnLEwLQpfr9f2dnZKi0t1fjx40+E/3Mho1mzZjUb98ADD+i+++7Tyy+/rBEjRrRXz9sFA1MAAAAAiDFFRUWaMmWKRowYoZEjR2rp0qWqqalRYWGhJGny5Mk6++yzw18Fvv/++zVv3jytXr1affv2VUVFhSTpjDPO0BlnnOHacZzEwBQAAAAAovj8PFCn6m+NCRMmaP/+/Zo3b54qKiqUlZWlkpKS8IJIu3fvlvdz31L52c9+prq6On3zm9+MqGf+/Pm666672tz/tmJgCgAAAAAxaNasWc1+dXfDhg0RP+/atcv5DrUBA1MAAAAAiKaVzxq1qr8LYwUCAAAAAICryJgCAAAAQDTGnNicrL8LI2MKAAAAAHAVGVMAAAAAiMJj7J9T3dL6uzIypgAAAAAAV5ExbW9ez4mtFUxc68p/XsgyNhRv2Z6/DX3128UFA5Zxlu1JUijB7iOrUELIvlG/XawvELSKi/c3WMVJkj/eLjbRX28XF28XJ0nd4uus4uqDPqu4mjj7C+9YnN0tuTbO/rqr89kdZ4PPrq+mDR+Hhjwd+1lqWz65Dobs7pUeu19nhex/RazfD4zdpSMTx2fiAGIUc0wdxbsDAAAAAMBVZEwBAAAAIApP6MTmZP1dGRlTAAAAAICryJgCAAAAQDTMMXUUGVMAAAAAgKvImAIAAABANOafm5P1d2FkTAEAAAAAriJjCgAAAABReIyRx8F5oE7WHQvImAIAAAAAXEXGtL15PCe2Vgj5Wlc+IjbOLjYUb9meZVyb2vTbfXoUSrD/1CmUYPkgqUDQus04y1h/oN4qLsFvFydJ3Sxjk+LrrOKS/cet4iTpzLhaq7jakN3tMTEuYBUnSYctY4/G2V93R71+q7har93vV72nDb+Xlm9ZIdvPYI39vdkTtDvOYNCuTW9dW95HLOPi7do0Xvu+AoCrWJXXUWRMAQAAAACuImMKAAAAANEYSZZfqmtx/V0YGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExBQAAAIBojBxelde5qmMBGVMAAAAAgKvImAIAAABANDzH1FFkTAEAAAAAriJj2t683hNbK5g4+88HQpb/gqE4j11cvF17khT0230KFLKOa8ODpixj4wJB6yYDCfVWcUmBOqu4bn67OEk6019rFZccf7xD4yQpNe6oVVyt5S9XwJtkFSdJfl+DVVy8N8G6Ta/H7vfLNq4t7H5DpJCx+7cMteEWEgra3de9lgfZlnuz9fuIz+59xPjs3/PsWgSAdhKSszciJ5+RGgPImAIAAAAAXEXGFAAAAACi4DmmzoqpjOnBgwc1adIkJScnKzU1VdOmTdORI0eaLb9r1y55PJ4mt6effjpcrqnX16xZ0xGHBAAAACAWnFz8yMmtC4upjOmkSZP06aefav369aqvr1dhYaFmzJih1atXN1k+MzNTn376acS+X/ziF3rwwQd1xRVXROx//PHHVVBQEP45NTW13fsPAAAAAGgsZgamW7duVUlJif7yl79oxIgRkqRHH31UV155pR566CH16dOnUYzP51NGRkbEvueee07f/va3dcYZZ0TsT01NbVQWAAAAACTxuBiHxcxXecvKypSamhoelEpSXl6evF6vNm7c2KI6ysvLtWXLFk2bNq3RazfccIPS0tI0cuRIrVy5UibKhVFbW6vq6uqIDQAAAADQejGTMa2oqFCvXr0i9sXFxalHjx6qqKhoUR0rVqzQ4MGDNWrUqIj999xzj772ta8pKSlJr7zyin7wgx/oyJEj+tGPftRsXYsWLdLdd9/d+gMBAAAAEHvImDrK9Yzp7Nmzm12g6OS2bdu2Nrdz7NgxrV69usls6dy5c/WlL31JF198sW6//XbddtttevDBB09Z35w5c1RVVRXe9uzZ0+Y+AgAAAEBX5HrG9JZbbtHUqVNPWaZ///7KyMjQvn37IvY3NDTo4MGDLZob+swzz+jo0aOaPHly1LI5OTlasGCBamtrFQgEmiwTCASafQ0AAABAJxOS5HG4/i7M9YFpz5491bNnz6jlcnNzdejQIZWXlys7O1uS9NprrykUCiknJydq/IoVK/T1r3+9RW1t2bJF3bt3txp4Go9Hxtu6K9b4Wt1MWCjO7rcjFG/bnl1cm9r0W36twW//2+0LBO2aDNRbt5kUqLOKOzNQaxcXbxcnSd0DR63iUuKP2bUXZ9eeJPWIq7GKOxryW8XFee2vuziv3XXn9dh/9cc21sn35eYYY9dqfcguzljGSVKo3u68Bu0uO3nr2tBXy/u68Vm22cr3SABA1+D6wLSlBg8erIKCAk2fPl3FxcWqr6/XrFmzNHHixPCKvHv37tWYMWP05JNPauTIkeHYHTt26PXXX9e6desa1fu73/1OlZWVuvTSS5WQkKD169dr4cKF+vGPf9xhxwYAAADg9OYxRh4H54E6WXcsiJmBqSQ99dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++XUePRmZXVq5cqXPOOUdjx45tVGd8fLyWLVumm2++WcYYDRgwQEuWLNH06dMdPx4AAAAAQIwNTHv06KHVq1c3+3rfvn2bfMzLwoULtXDhwiZjCgoKVFBQ0G59BAAAANAJsSqvo1xflRcAAAAA0LXFVMYUAAAAAFwRMlIbFhxsUf1dGBlTAAAAAICryJgCAAAAQDTMMXUUGVMAAAAAgKvImAIAAABAVA5nTNW1M6YMTNubx3NiawXjbV35zwv5LOMs/+VD8XZxkmTi7X7ZbOM8/pBVnCTF+xus4hL89dZtdvPXWcWdGV9rFdc9cDR6oWb0iK+xijvLMq5H3BGruLbEHg0FrOLiPUGruLbE+tqwEIPX8k0wZOzuW215yw1athkK2n05qKHB/h4S8tv11VtveV4t3wskycRZnlef5T29De959pEAgNMdA1MAAAAAiIY5po5ijikAAAAAwFVkTAEAAAAgmpCRo/NAeY4pAAAAAADuIWMKAAAAANGY0InNyfq7MDKmAAAAAABXkTEFAAAAgGhYlddRZEwBAAAAAK4iYwoAAAAA0bAqr6MYmLY3j+fE1gqhuNaV/zzjs4yz/JcPxdv/wljHxttNBI+LD9q1J8kf32AV181fb93mmf5aq7jugaNWcT3ia6ziJOksy9i0+MN27fmOWMVJUs+4aqu4o6GAVVy8x/6683piZ9GDkOzuW8bY3+/qg3Y3vAa/XVywwf5LRSbeLjZkeU8PxdvFSVLI8v3A+v3HZ38NAAA6LwamAAAAABANc0wdxRxTAAAAAICryJgCAAAAQDRGDmdMnas6FpAxBQAAAAC4iowpAAAAAETDHFNHkTEFAAAAALiKjCkAAAAARBMKSXLw0W6h2HlsnBPImAIAAAAAXEXGFAAAAACiYY6po8iYAgAAAABcRca0vXk8J7ZWMG34eCAU17q2wnE+u/aMZZwkmXi7T4E88Xbft4/3N1jFSVKiv94qLim+zrrN5PjjVnEp8ces4s6Kr7GKk6S0+MNWcb3iqq3ievrs4iSph9fuvNZ6aq3ivE7OPXFAyNjdQ+otbyJ18fY3kdqg3VtWfYNdmw1t6Gt9nN2N3cTbxYXa8G5ufLbvI3ZxxmsXBwCuI2PqKDKmAAAAAABXkTEFAAAAgGhCRpKDWc0QGVMAAAAAAFxDxhQAAAAAojAmJGOcW0vCybpjARlTAAAAAICryJgCAAAAQDTGODsPlFV5AQAAAABwDxlTAAAAAIjGOLwqLxlTAAAAAADcQ8a0vXk9J7ZWMG34eMD4Ojgurg2f5PjsYn1xdiuU+eOCVnGSlBhfbxWX7D9u3WZyvF1s97ijVnE94o5YxUnSWT672J6+asu4Y1ZxktTD8vfruLG7BiT782oraFp3z/m8+ni7m0G95U2koQ03vOPBeKu42qBdX2vr7d8iGyzPq4m3u0+aOPtrIGR5mNbvI3wkDiBWhUKSx8GVc1mVFwAAAAAA95AxBQAAAIBomGPqKDKmAAAAAABXkTEFAAAAgChMKCTj4BxTwxxTAAAAAADcQ8YUAAAAAKJhjqmjyJgCAAAAAFxFxhQAAAAAogkZyUPG1ClkTAEAAAAAriJj2t48nhNbKxhv68pHxPos4+LsPpEJteWKibdbaSwuPmgVF4hvsIqTpG7xdVZxZ8bVWreZGnfUKi7FMq5H3BGrOEnqGVdt16b3uGWcVZgkKc3XzSqu1tRbxYVkfw0EVWMVVy/LG4GkemP3S10fZxdX24abSE283yruWEO8VdzROLt7jyTVWd7vgj67e7Npw++Ibax1m214zwMAVxkjycGVc8mYAgAAAADgHjKmAAAAABCFCRkZB+eYGjKmAAAAAAC4h4wpAAAAAERjQnJ2jqmDdceAmMqY3nfffRo1apSSkpKUmpraohhjjObNm6fevXsrMTFReXl5+uCDDyLKHDx4UJMmTVJycrJSU1M1bdo0HTlivzAMAAAAADht2bJl6tu3rxISEpSTk6NNmzadsvzTTz+tQYMGKSEhQUOHDtW6des6qKfRxdTAtK6uTt/61rc0c+bMFsc88MADeuSRR1RcXKyNGzeqW7duys/P1/Hj/1oddNKkSXr//fe1fv16vfjii3r99dc1Y8YMJw4BAAAAQAwyIeP41hpr165VUVGR5s+fr82bN2v48OHKz8/Xvn37miz/5z//Wddee62mTZumt99+W+PHj9f48eP13nvvtcfpabOYGpjefffduvnmmzV06NAWlTfGaOnSpbrzzjt19dVXa9iwYXryySf1ySef6Pnnn5ckbd26VSUlJfrlL3+pnJwcXXbZZXr00Ue1Zs0affLJJw4eDQAAAADYWbJkiaZPn67CwkINGTJExcXFSkpK0sqVK5ss/5Of/EQFBQW69dZbNXjwYC1YsECXXHKJHnvssQ7uedNiamDaWjt37lRFRYXy8vLC+1JSUpSTk6OysjJJUllZmVJTUzVixIhwmby8PHm9Xm3cuLHD+wwAAADgNGRCzm8tVFdXp/Ly8ohxjtfrVV5eXnic8+/KysoiyktSfn5+s+U7Wqde/KiiokKSlJ6eHrE/PT09/FpFRYV69eoV8XpcXJx69OgRLtOU2tpa1dbWhn+uqqqSJDUEa5sLaVZD/fHohZoRrLX7bCF43G456pDffhlrE19vFRf01tnFqfX/FifVG7s26xrs4iSptt7u/Bz3N1jFHY0LWsVJUk2c3eT8RK9dXILP/rrz++zarLVcgOBw0H7hgiOWsUeD9v+Wxxrsrp/jltdrXZ1dnCTV19r9fjUcs7sXBI/6rOIkKXTU8h57zO4aCB2372uw1mMXV2d3jA0N9teAx9jHAjh9NOjE73KsPR6lQfWSg10+eV6qq6sj9gcCAQUCgYh9Bw4cUDAYbHKcs23btibrr6ioOOW4yG2uD0xnz56t+++//5Rltm7dqkGDBnVQj1pm0aJFuvvuuxvt/58PLFLhTV87AAAAQKf12WefKSUlxe1uROX3+5WRkaE3KpxfKOiMM85QZmZmxL758+frrrvucrxtt7k+ML3llls0derUU5bp37+/Vd0ZGRmSpMrKSvXu3Tu8v7KyUllZWeEy/z5BuKGhQQcPHgzHN2XOnDkqKioK/3zo0CGdd9552r17d0z8gsWi6upqZWZmas+ePUpOTna7O50W57ljcJ47BufZeZzjjsF57hic545RVVWlc889Vz169HC7Ky2SkJCgnTt3qq7O/ptxLWWMkccT+U2Wf8+WSlJaWpp8Pp8qKysj9ldWVjY7hsnIyGhV+Y7m+sC0Z8+e6tmzpyN19+vXTxkZGSotLQ0PRKurq7Vx48bwyr65ubk6dOiQysvLlZ2dLUl67bXXFAqFlJOT02zdTaXUpRNzWLmROSs5OZlz3AE4zx2D89wxOM/O4xx3DM5zx+A8dwyvN3aWu0lISFBCQoLb3Qjz+/3Kzs5WaWmpxo8fL0kKhUIqLS3VrFmzmozJzc1VaWmpbrrppvC+9evXKzc3twN6HF3sXA2Sdu/erS1btmj37t0KBoPasmWLtmzZEvHM0UGDBum5556TJHk8Ht10002699579cILL+jdd9/V5MmT1adPn/A/4ODBg1VQUKDp06dr06ZN+tOf/qRZs2Zp4sSJ6tOnjxuHCQAAAACnVFRUpOXLl+uJJ57Q1q1bNXPmTNXU1KiwsFCSNHnyZM2ZMydc/sYbb1RJSYkefvhhbdu2TXfddZfeeuutZgeyHc31jGlrzJs3T0888UT454svvliS9Ic//EGjR4+WJG3fvj28EJEk3XbbbaqpqdGMGTN06NAhXXbZZSopKYn4xOOpp57SrFmzNGbMGHm9Xl1zzTV65JFHOuagAAAAAKCVJkyYoP3792vevHmqqKhQVlaWSkpKwgsc7d69OyIrPWrUKK1evVp33nmn7rjjDl1wwQV6/vnnddFFF7l1CBFiamC6atUqrVq16pRl/n11L4/Ho3vuuUf33HNPszE9evTQ6tWr29S3QCCg+fPnN/n1XrQPznHH4Dx3DM5zx+A8O49z3DE4zx2D89wxOM/tZ9asWc1mPDds2NBo37e+9S1961vfcrhXdjwm1tZpBgAAAAB0KjE1xxQAAAAA0PkwMAUAAAAAuIqBKQAAAADAVQxMW+i+++7TqFGjlJSUpNTU1BbFGGM0b9489e7dW4mJicrLy9MHH3wQUebgwYOaNGmSkpOTlZqaqmnTpkU8/qarae352LVrlzweT5Pb008/HS7X1Otr1qzpiEM67dhcc6NHj250/q6//vqIMrt379a4ceOUlJSkXr166dZbb1VDQ4OTh3Jaa+15PnjwoH74wx9q4MCBSkxM1Lnnnqsf/ehHEauMS1zLy5YtU9++fZWQkKCcnBxt2rTplOWffvppDRo0SAkJCRo6dKjWrVsX8XpL7tNdUWvO8/Lly/XlL39Z3bt3V/fu3ZWXl9eo/NSpUxtdtwUFBU4fxmmvNed51apVjc7hvz9Tkeu5sdac46be6zwej8aNGxcuw7Xc2Ouvv66rrrpKffr0kcfj0fPPPx81ZsOGDbrkkksUCAQ0YMCAJhc3be39Hp2AQYvMmzfPLFmyxBQVFZmUlJQWxSxevNikpKSY559/3vzv//6v+frXv2769etnjh07Fi5TUFBghg8fbt58803zxz/+0QwYMMBce+21Dh3F6a+156OhocF8+umnEdvdd99tzjjjDHP48OFwOUnm8ccfjyj3+X+HrsTmmrv88svN9OnTI85fVVVV+PWGhgZz0UUXmby8PPP222+bdevWmbS0NDNnzhynD+e01drz/O6775pvfOMb5oUXXjA7duwwpaWl5oILLjDXXHNNRLmufC2vWbPG+P1+s3LlSvP++++b6dOnm9TUVFNZWdlk+T/96U/G5/OZBx54wPz1r381d955p4mPjzfvvvtuuExL7tNdTWvP83XXXWeWLVtm3n77bbN161YzdepUk5KSYj7++ONwmSlTppiCgoKI6/bgwYMddUinpdae58cff9wkJydHnMOKioqIMlzPkVp7jj/77LOI8/vee+8Zn89nHn/88XAZruXG1q1bZ/7zP//TPPvss0aSee65505Z/u9//7tJSkoyRUVF5q9//at59NFHjc/nMyUlJeEyrf23Q+fAwLSVHn/88RYNTEOhkMnIyDAPPvhgeN+hQ4dMIBAwv/71r40xxvz1r381ksxf/vKXcJnf//73xuPxmL1797Z730937XU+srKyzPe+972IfS25UXYFtuf48ssvNzfeeGOzr69bt854vd6IP5J+9rOfmeTkZFNbW9sufY8l7XUt/+Y3vzF+v9/U19eH93Xla3nkyJHmhhtuCP8cDAZNnz59zKJFi5os/+1vf9uMGzcuYl9OTo75P//n/xhjWnaf7opae57/XUNDgznzzDPNE088Ed43ZcoUc/XVV7d3V2Naa89ztL8/uJ4ba+u1/F//9V/mzDPPNEeOHAnv41o+tZa8R912223mwgsvjNg3YcIEk5+fH/65rf92iE18ldchO3fuVEVFhfLy8sL7UlJSlJOTo7KyMklSWVmZUlNTNWLEiHCZvLw8eb1ebdy4scP77Lb2OB/l5eXasmWLpk2b1ui1G264QWlpaRo5cqRWrlzZ6Jm3XUFbzvFTTz2ltLQ0XXTRRZozZ46OHj0aUe/QoUPDD3SWpPz8fFVXV+v9999v/wM5zbXX73ZVVZWSk5MVFxf5yOmueC3X1dWpvLw84p7q9XqVl5cXvqf+u7Kysojy0onr8mT5ltynuxqb8/zvjh49qvr6evXo0SNi/4YNG9SrVy8NHDhQM2fO1GeffdaufY8ltuf5yJEjOu+885SZmamrr7464v7K9RypPa7lFStWaOLEierWrVvEfq7ltol2b26PfzvEprjoRWCjoqJCkiL+UD/588nXKioq1KtXr4jX4+Li1KNHj3CZrqQ9zseKFSs0ePBgjRo1KmL/Pffco6997WtKSkrSK6+8oh/84Ac6cuSIfvSjH7Vb/2OB7Tm+7rrrdN5556lPnz565513dPvtt2v79u169tlnw/U2da2ffK2raY9r+cCBA1qwYIFmzJgRsb+rXssHDhxQMBhs8jrbtm1bkzHNXZefvwef3Ndcma7G5jz/u9tvv119+vSJ+KOyoKBA3/jGN9SvXz99+OGHuuOOO3TFFVeorKxMPp+vXY8hFtic54EDB2rlypUaNmyYqqqq9NBDD2nUqFF6//33dc4553A9/5u2XsubNm3Se++9pxUrVkTs51puu+buzdXV1Tp27Jj+8Y9/tPk+hNjUpQems2fP1v3333/KMlu3btWgQYM6qEedU0vPc1sdO3ZMq1ev1ty5cxu99vl9F198sWpqavTggw92mj/mnT7Hnx8cDR06VL1799aYMWP04Ycf6vzzz7euN9Z01LVcXV2tcePGaciQIbrrrrsiXuvs1zJi2+LFi7VmzRpt2LAhYmGeiRMnhv9/6NChGjZsmM4//3xt2LBBY8aMcaOrMSc3N1e5ubnhn0eNGqXBgwfr5z//uRYsWOBizzqnFStWaOjQoRo5cmTEfq5lwDldemB6yy23aOrUqacs079/f6u6MzIyJEmVlZXq3bt3eH9lZaWysrLCZfbt2xcR19DQoIMHD4bjO4OWnue2no9nnnlGR48e1eTJk6OWzcnJ0YIFC1RbW6tAIBC1/Omuo87xSTk5OZKkHTt26Pzzz1dGRkaj1fIqKysliWv5n1p6ng8fPqyCggKdeeaZeu655xQfH3/K8p3tWm5OWlqafD5f+Lo6qbKystlzmpGRccryLblPdzU25/mkhx56SIsXL9arr76qYcOGnbJs//79lZaWph07dnTJP+bbcp5Pio+P18UXX6wdO3ZI4nr+d205xzU1NVqzZo3uueeeqO109WvZRnP35uTkZCUmJsrn87X59wOxqUvPMe3Zs6cGDRp0ys3v91vV3a9fP2VkZKi0tDS8r7q6Whs3bgx/4pmbm6tDhw6pvLw8XOa1115TKBQK/+HfGbT0PLf1fKxYsUJf//rX1bNnz6hlt2zZou7du3eaP+Q76hyftGXLFkkK//GTm5urd999N2Iwtn79eiUnJ2vIkCHtc5CnAafPc3V1tcaOHSu/368XXnih0aMgmtLZruXm+P1+ZWdnR9xTQ6GQSktLI7JIn5ebmxtRXjpxXZ4s35L7dFdjc54l6YEHHtCCBQtUUlISMbe6OR9//LE+++yziAFUV2J7nj8vGAzq3XffDZ9DrudIbTnHTz/9tGpra/Wd73wnajtd/Vq2Ee3e3B6/H4hRbq++FCs++ugj8/bbb4cfRfL222+bt99+O+KRJAMHDjTPPvts+OfFixeb1NRU89vf/ta888475uqrr27ycTEXX3yx2bhxo3njjTfMBRdc0OUfF3Oq8/Hxxx+bgQMHmo0bN0bEffDBB8bj8Zjf//73jep84YUXzPLly827775rPvjgA/PTn/7UJCUlmXnz5jl+PKej1p7jHTt2mHvuuce89dZbZufOnea3v/2t6d+/v/nKV74Sjjn5uJixY8eaLVu2mJKSEtOzZ88u/7iY1pznqqoqk5OTY4YOHWp27NgR8SiChoYGYwzX8po1a0wgEDCrVq0yf/3rX82MGTNMampqeDXo7373u2b27Nnh8n/6059MXFyceeihh8zWrVvN/Pnzm3xcTLT7dFfT2vO8ePFi4/f7zTPPPBNx3Z58fzx8+LD58Y9/bMrKyszOnTvNq6++ai655BJzwQUXmOPHj7tyjKeD1p7nu+++27z88svmww8/NOXl5WbixIkmISHBvP/+++EyXM+RWnuOT7rsssvMhAkTGu3nWm7a4cOHw38XSzJLliwxb7/9tvnoo4+MMcbMnj3bfPe73w2XP/m4mFtvvdVs3brVLFu2rMnHxZzq3w6dEwPTFpoyZYqR1Gj7wx/+EC6jfz5f8KRQKGTmzp1r0tPTTSAQMGPGjDHbt2+PqPezzz4z1157rTnjjDNMcnKyKSwsjBjsdjXRzsfOnTsbnXdjjJkzZ47JzMw0wWCwUZ2///3vTVZWljnjjDNMt27dzPDhw01xcXGTZbuC1p7j3bt3m6985SumR48eJhAImAEDBphbb7014jmmxhiza9cuc8UVV5jExESTlpZmbrnllojHnHQ1rT3Pf/jDH5q8x0gyO3fuNMZwLRtjzKOPPmrOPfdc4/f7zciRI82bb74Zfu3yyy83U6ZMiSj/m9/8xnzhC18wfr/fXHjhheall16KeL0l9+muqDXn+bzzzmvyup0/f74xxpijR4+asWPHmp49e5r4+Hhz3nnnmenTp/MHpmndeb7pppvCZdPT082VV15pNm/eHFEf13Njrb1nbNu2zUgyr7zySqO6uJab1tz718lzO2XKFHP55Zc3isnKyjJ+v9/0798/4u/nk071b4fOyWNMF3jOAAAAAADgtNWl55gCAAAAANzHwBQAAAAA4CoGpgAAAAAAVzEwBQAAAAC4ioEpAAAAAMBVDEwBAAAAAK5iYAoAAAAAcBUDUwAAAACAqxiYAgAAAABcxcAUAAAAAOAqBqYAAAAAAFcxMAUAdCq//vWvlZiYqE8//TS8r7CwUMOGDVNVVZWLPQMAAM3xGGOM250AAKC9GGOUlZWlr3zlK3r00Uc1f/58rVy5Um+++abOPvtst7sHAACaEOd2BwAAaE8ej0f33XefvvnNbyojI0OPPvqo/vjHPzIoBQDgNEbGFADQKV1yySV6//339corr+jyyy93uzsAAOAUmGMKAOh0SkpKtG3bNgWDQaWnp7vdHQAAEAUZUwBAp7J582aNHj1aP//5z7Vq1SolJyfr6aefdrtbAADgFJhjCgDoNHbt2qVx48bpjjvu0LXXXqv+/fsrNzdXmzdv1iWXXOJ29wAAQDPImAIAOoWDBw9q1KhRGj16tIqLi8P7x40bp2AwqJKSEhd7BwAAToWBKQAAAADAVSx+BAAAAABwFQNTAAAAAICrGJgCAAAAAFzFwBQAAAAA4CoGpgAAAAAAVzEwBQAAAAC4ioEpAAAAAMBVDEwBAAAAAK5iYAoAAAAAcBUDUwAAAACAqxiYAgAAAABcxcAUAAAAAOCq/wc7ghVAcQH3uwAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 12 }, { "metadata": {}, diff --git a/tests/test_mps_kronprod.py b/tests/test_mps_kronprod.py new file mode 100644 index 0000000..b98660e --- /dev/null +++ b/tests/test_mps_kronprod.py @@ -0,0 +1,44 @@ +import pytest +import numpy as np +import tntorch as tn +from qulearn.mps_kronprod import kron, zkron + +def tensor_to_vector(tensor): + return tensor.numpy().reshape(-1) + +def test_kron(): + t1 = tn.randn([2]*3) + t2 = tn.ones([2]*3) + T1 = tensor_to_vector(t1) + T2 = tensor_to_vector(t2) + + t3 = kron(t1, t2) + T3 = tensor_to_vector(t3) + + T3_expected = np.kron(T1, T2) + delta = np.linalg.norm(T3_expected - T3) + + assert delta < 1e-5, f"Delta too large: {delta}" + +def test_zkron(): + t1 = tn.randn([2]*3) + t2 = tn.ones([2]*3) + + t4 = zkron(t1, t2) + T4 = tensor_to_vector(t4) + + # Assuming zkron2 is an alternative implementation of zkron for comparison + # If zkron2 does not exist, replace this part with an appropriate test + t5 = zkron(t1, t2) # Replace zkron with zkron2 if available + T5 = tensor_to_vector(t5) + + delta = np.linalg.norm(T4 - T5) + + assert delta < 1e-5, f"Delta too large: {delta}" + +def test_core_length_mismatch(): + t1 = tn.randn([2]*3) + t2 = tn.randn([2]*4) # Different size to induce error + + with pytest.raises(ValueError): + zkron(t1, t2) \ No newline at end of file From daf00124e282bea1597eaa40c1523cbac1a9205d Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Fri, 19 Jul 2024 00:48:12 +0200 Subject: [PATCH 13/21] fix (hat_basis): fix out of bounds 1D, fix tests --- qulearn/hat_basis.py | 4 ++-- tests/test_mps.py | 2 +- tests/test_trainer.py | 13 +++++++------ 3 files changed, 10 insertions(+), 9 deletions(-) diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index ae3b2cb..50a1eb4 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -42,8 +42,8 @@ def position(self, x: Tensor) -> Tensor: :rtype: Tensor """ - left_of_a = x <= self.a - right_of_b = x >= self.b + left_of_a = x < self.a + right_of_b = x > self.b within_range = torch.logical_not(torch.logical_or(left_of_a, right_of_b)) position = torch.zeros_like(x) diff --git a/tests/test_mps.py b/tests/test_mps.py index 9588e87..af816ff 100644 --- a/tests/test_mps.py +++ b/tests/test_mps.py @@ -34,7 +34,7 @@ def test_compute_max_rank_power(sample_mps): def test_embed2unitary(): A = torch.rand(4, 2) - Q, _ = torch.qr(A) + Q, _ = torch.linalg.qr(A) U = embed2unitary(Q) assert torch.allclose(U @ U.T, torch.eye(U.shape[0]), atol=1e-6) diff --git a/tests/test_trainer.py b/tests/test_trainer.py index 17240c3..7492e49 100644 --- a/tests/test_trainer.py +++ b/tests/test_trainer.py @@ -16,10 +16,11 @@ def test_trainer(): # Create a sample input dataset X and corresponding labels Y N = 104 - X = torch.randn(N, 10, dtype=torch.float64) - A = torch.randn(10, 1, dtype=torch.float64) - eps = torch.randn(N, dtype=torch.float64) * 0.01 - b = torch.randn(1, dtype=torch.float64) + d = 10 + X = torch.randn(N, d, dtype=torch.float64) + A = torch.randn(d, 1, dtype=torch.float64) + eps = torch.randn(N, 1, dtype=torch.float64) * 0.01 + b = torch.randn(1, dtype=torch.float64)*torch.ones(N, 1, dtype=torch.float64) Y = torch.matmul(X, A) + b + eps model = torch.nn.Linear(10, 1, bias=True, dtype=torch.float64) @@ -61,7 +62,7 @@ def setup_ridge_regression(): embed = HadamardLayer(wires=2) X_train = torch.Tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) - labels = torch.ones(3, 1) + labels = torch.ones(3) train_data = TensorDataset(X_train, labels) valid_data = TensorDataset(X_train, labels) train_data = DataLoader(train_data, batch_size=3) @@ -120,7 +121,7 @@ def run_training(): num_features = 1 num_samples = 10 X_train = torch.randn((num_samples, num_features)) - labels = torch.randn((num_samples, 1)) + labels = torch.randn((num_samples)) model = QKernel(embed, X_train) predicted = model(X_train) From d9b037a813e40fd57d2b7e0bd9e07aac092ee3bd Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Fri, 19 Jul 2024 01:02:57 +0200 Subject: [PATCH 14/21] feat (Linear2DQFE): add 2D qfe to qlayer --- qulearn/qlayer.py | 3 +- scratch/scratch5.ipynb | 479 ++++++++++++++--------------------------- 2 files changed, 167 insertions(+), 315 deletions(-) diff --git a/qulearn/qlayer.py b/qulearn/qlayer.py index 7fd4886..4162c85 100644 --- a/qulearn/qlayer.py +++ b/qulearn/qlayer.py @@ -14,6 +14,7 @@ from .hat_basis import HatBasis from .mps import HatBasisMPS, MPSQGates +from .mps_kronprod import kron, zkron DEFAULT_QDEV_CFG = {"name": "default.qubit", "shots": None} @@ -307,7 +308,7 @@ def circuit(self, x: Tensor) -> None: mps2 = self.hbmps.mps_hatbasis(first2, second2, position2) if self.zorder: - mps = zkron2(mps2, mps1) + mps = zkron(mps2, mps1) else: mps = kron(mps2, mps1) diff --git a/scratch/scratch5.ipynb b/scratch/scratch5.ipynb index 100efa5..5f7e466 100644 --- a/scratch/scratch5.ipynb +++ b/scratch/scratch5.ipynb @@ -5,8 +5,8 @@ "id": "6e4cb30e217e595f", "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.597202Z", - "start_time": "2024-07-18T13:33:14.594614Z" + "end_time": "2024-07-18T23:00:30.081128Z", + "start_time": "2024-07-18T23:00:30.077756Z" } }, "source": [ @@ -21,15 +21,15 @@ "from qulearn.mps import HatBasisMPS" ], "outputs": [], - "execution_count": 3 + "execution_count": 40 }, { "cell_type": "code", "id": "8d60b58b23b4e5f3", "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.604134Z", - "start_time": "2024-07-18T13:33:14.599575Z" + "end_time": "2024-07-18T23:00:30.111188Z", + "start_time": "2024-07-18T23:00:30.106502Z" } }, "source": [ @@ -83,15 +83,15 @@ " return t3" ], "outputs": [], - "execution_count": 4 + "execution_count": 41 }, { "cell_type": "code", "id": "9e4e98216ac5dfb8", "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.612540Z", - "start_time": "2024-07-18T13:33:14.605215Z" + "end_time": "2024-07-18T23:00:30.135050Z", + "start_time": "2024-07-18T23:00:30.129479Z" } }, "source": [ @@ -133,53 +133,53 @@ "output_type": "stream", "text": [ "delta: 0.0\n", - "[ 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357\n", - " 0.9212357 0.9212357 0.14730927 0.14730927 0.14730927 0.14730927\n", - " 0.14730927 0.14730927 0.14730927 0.14730927 -1.6554241 -1.6554241\n", - " -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241\n", - " -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199\n", - " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.35660762 -0.35660762\n", - " -0.35660762 -0.35660762 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", - " -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545\n", - " 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586\n", - " 2.2642586 2.2642586 0.49844724 0.49844724 0.49844724 0.49844724\n", - " 0.49844724 0.49844724 0.49844724 0.49844724]\n", + "[-1.1171911 -1.1171911 -1.1171911 -1.1171911 -1.1171911 -1.1171911\n", + " -1.1171911 -1.1171911 -0.5655495 -0.5655495 -0.5655495 -0.5655495\n", + " -0.5655495 -0.5655495 -0.5655495 -0.5655495 -0.0676304 -0.0676304\n", + " -0.0676304 -0.0676304 -0.0676304 -0.0676304 -0.0676304 -0.0676304\n", + " -0.05885036 -0.05885036 -0.05885036 -0.05885036 -0.05885036 -0.05885036\n", + " -0.05885036 -0.05885036 0.32007828 0.32007828 0.32007828 0.32007828\n", + " 0.32007828 0.32007828 0.32007828 0.32007828 0.10783434 0.10783434\n", + " 0.10783434 0.10783434 0.10783434 0.10783434 0.10783434 0.10783434\n", + " 0.39209718 0.39209718 0.39209718 0.39209718 0.39209718 0.39209718\n", + " 0.39209718 0.39209718 0.15642546 0.15642546 0.15642546 0.15642546\n", + " 0.15642546 0.15642546 0.15642546 0.15642546]\n", "=========\n", - "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", - " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", - " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", - " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", - " 2.2642586 2.2642586 0.49844724 0.49844724]\n", + "[-1.1171911 -1.1171911 -0.5655495 -0.5655495 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -0.0676304 -0.0676304 -0.05885036 -0.05885036\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -1.1171911 -1.1171911 -0.5655495 -0.5655495\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -0.0676304 -0.0676304\n", + " -0.05885036 -0.05885036 0.32007828 0.32007828 0.10783434 0.10783434\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.39209718 0.39209718\n", + " 0.15642546 0.15642546 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.32007828 0.32007828\n", + " 0.10783434 0.10783434 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.39209718 0.39209718 0.15642546 0.15642546]\n", "=========\n", - "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", - " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", - " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", - " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", - " 2.2642586 2.2642586 0.49844724 0.49844724]\n", + "[-1.1171911 -1.1171911 -0.5655495 -0.5655495 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -0.0676304 -0.0676304 -0.05885036 -0.05885036\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -1.1171911 -1.1171911 -0.5655495 -0.5655495\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -0.0676304 -0.0676304\n", + " -0.05885036 -0.05885036 0.32007828 0.32007828 0.10783434 0.10783434\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.39209718 0.39209718\n", + " 0.15642546 0.15642546 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.32007828 0.32007828\n", + " 0.10783434 0.10783434 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.39209718 0.39209718 0.15642546 0.15642546]\n", "=========\n", "delta: 0.0\n" ] } ], - "execution_count": 5 + "execution_count": 42 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.616889Z", - "start_time": "2024-07-18T13:33:14.614691Z" + "end_time": "2024-07-18T23:00:30.137647Z", + "start_time": "2024-07-18T23:00:30.135828Z" } }, "cell_type": "code", @@ -208,15 +208,15 @@ ] } ], - "execution_count": 6 + "execution_count": 43 }, { "cell_type": "code", "id": "ed6556db86940912", "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.629403Z", - "start_time": "2024-07-18T13:33:14.626649Z" + "end_time": "2024-07-18T23:00:30.145590Z", + "start_time": "2024-07-18T23:00:30.142532Z" } }, "source": [ @@ -230,43 +230,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "[ 0.9212357 0.14730927 -1.6554241 -0.02586199 -0.35660762 -0.07083545\n", - " 2.2642586 0.49844724]\n", + "[-1.1171911 -0.5655495 -0.0676304 -0.05885036 0.32007828 0.10783434\n", + " 0.39209718 0.15642546]\n", "[1. 1. 1. 1. 1. 1. 1. 1.]\n", - "[ 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357 0.9212357\n", - " 0.9212357 0.9212357 0.14730927 0.14730927 0.14730927 0.14730927\n", - " 0.14730927 0.14730927 0.14730927 0.14730927 -1.6554241 -1.6554241\n", - " -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241 -1.6554241\n", - " -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199 -0.02586199\n", - " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.35660762 -0.35660762\n", - " -0.35660762 -0.35660762 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", - " -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545 -0.07083545\n", - " 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586 2.2642586\n", - " 2.2642586 2.2642586 0.49844724 0.49844724 0.49844724 0.49844724\n", - " 0.49844724 0.49844724 0.49844724 0.49844724]\n", - "[ 0.9212357 0.9212357 0.14730927 0.14730927 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 -1.6554241 -1.6554241 -0.02586199 -0.02586199\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 0.9212357 0.9212357\n", - " 0.14730927 0.14730927 0.9212357 0.9212357 0.14730927 0.14730927\n", - " -1.6554241 -1.6554241 -0.02586199 -0.02586199 -1.6554241 -1.6554241\n", - " -0.02586199 -0.02586199 -0.35660762 -0.35660762 -0.07083545 -0.07083545\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 2.2642586 2.2642586\n", - " 0.49844724 0.49844724 2.2642586 2.2642586 0.49844724 0.49844724\n", - " -0.35660762 -0.35660762 -0.07083545 -0.07083545 -0.35660762 -0.35660762\n", - " -0.07083545 -0.07083545 2.2642586 2.2642586 0.49844724 0.49844724\n", - " 2.2642586 2.2642586 0.49844724 0.49844724]\n" + "[-1.1171911 -1.1171911 -1.1171911 -1.1171911 -1.1171911 -1.1171911\n", + " -1.1171911 -1.1171911 -0.5655495 -0.5655495 -0.5655495 -0.5655495\n", + " -0.5655495 -0.5655495 -0.5655495 -0.5655495 -0.0676304 -0.0676304\n", + " -0.0676304 -0.0676304 -0.0676304 -0.0676304 -0.0676304 -0.0676304\n", + " -0.05885036 -0.05885036 -0.05885036 -0.05885036 -0.05885036 -0.05885036\n", + " -0.05885036 -0.05885036 0.32007828 0.32007828 0.32007828 0.32007828\n", + " 0.32007828 0.32007828 0.32007828 0.32007828 0.10783434 0.10783434\n", + " 0.10783434 0.10783434 0.10783434 0.10783434 0.10783434 0.10783434\n", + " 0.39209718 0.39209718 0.39209718 0.39209718 0.39209718 0.39209718\n", + " 0.39209718 0.39209718 0.15642546 0.15642546 0.15642546 0.15642546\n", + " 0.15642546 0.15642546 0.15642546 0.15642546]\n", + "[-1.1171911 -1.1171911 -0.5655495 -0.5655495 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -0.0676304 -0.0676304 -0.05885036 -0.05885036\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -1.1171911 -1.1171911\n", + " -0.5655495 -0.5655495 -1.1171911 -1.1171911 -0.5655495 -0.5655495\n", + " -0.0676304 -0.0676304 -0.05885036 -0.05885036 -0.0676304 -0.0676304\n", + " -0.05885036 -0.05885036 0.32007828 0.32007828 0.10783434 0.10783434\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.39209718 0.39209718\n", + " 0.15642546 0.15642546 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.32007828 0.32007828 0.10783434 0.10783434 0.32007828 0.32007828\n", + " 0.10783434 0.10783434 0.39209718 0.39209718 0.15642546 0.15642546\n", + " 0.39209718 0.39209718 0.15642546 0.15642546]\n" ] } ], - "execution_count": 7 + "execution_count": 44 }, { "cell_type": "code", "id": "f5d359f0ae8df759", "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:14.632985Z", - "start_time": "2024-07-18T13:33:14.630171Z" + "end_time": "2024-07-18T23:00:30.149319Z", + "start_time": "2024-07-18T23:00:30.146392Z" } }, "source": [ @@ -323,164 +323,13 @@ " return kron(mpsx, mpsy)" ], "outputs": [], - "execution_count": 8 - }, - { - "cell_type": "code", - "id": "47ef065abf26f244", - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-18T14:12:41.126245Z", - "start_time": "2024-07-18T14:12:41.110752Z" - } - }, - "source": [ - "try:\n", - " from typing import TypeAlias\n", - "except ImportError:\n", - " from typing_extensions import TypeAlias\n", - "\n", - "from typing import Iterable, Any, Optional, Union, Dict\n", - "\n", - "from qulearn.mps import HatBasisMPS, MPSQGates\n", - "\n", - "Wires: TypeAlias = Union[int, Iterable[Any]]\n", - "\n", - "class Linear2DBasisQFE(CircuitLayer):\n", - " \"\"\"\n", - " Layer for the 2D hat basis quantum feature embedding.\n", - "\n", - " :param basis: The hat basis class.\n", - " :type basis: HatBasis\n", - " :param wires: The wires to be used by the layer\n", - " :type wires: Wires\n", - " :param sqrt: Set flag to take square roots before applying hat basis.\n", - " :type sqrt: bool\n", - " :param normalize: Set flag to normalize basis vector before embedding.\n", - " :type normalize: bool\n", - " \"\"\"\n", - "\n", - " def __init__(\n", - " self,\n", - " wires: Wires,\n", - " basis: HatBasis,\n", - " sqrt: bool = False,\n", - " normalize: bool = False,\n", - " zorder: bool = False,\n", - " ) -> None:\n", - " super().__init__(wires)\n", - " self.basis = basis\n", - " self.sqrt = sqrt\n", - " self.normalize = normalize\n", - " self.norm = 1.0\n", - " self.hbmps = HatBasisMPS(basis)\n", - " self.zorder = zorder\n", - " self.mps = None\n", - " self.mps1 = None\n", - " self.mps2 = None\n", - "\n", - " def circuit(self, x: Tensor) -> None:\n", - " \"\"\"\n", - " Define the quantum circuit for this layer.\n", - "\n", - " :param x: Input tensor that is passed to the quantum circuit.\n", - " :type x: Tensor\n", - " \"\"\"\n", - "\n", - " x1 = x[0]\n", - " x2 = x[1]\n", - " position1 = int(self.basis.position(x1))\n", - " position2 = int(self.basis.position(x2))\n", - " a1, b1 = self.basis.nonz_vals(x1)\n", - " a2, b2 = self.basis.nonz_vals(x2)\n", - "\n", - " if self.sqrt:\n", - " # sometimes the values are close to 0 and negative\n", - " a1 = torch.sqrt(torch.abs(a1))\n", - " b1 = torch.sqrt(torch.abs(b1))\n", - " a2 = torch.sqrt(torch.abs(a2))\n", - " b2 = torch.sqrt(torch.abs(b2))\n", - "\n", - " # TODO: cover the case where x or y are outside of bounds\n", - "\n", - " val1 = a1*a2\n", - " val2 = a1*b2\n", - " val3 = a2*b1\n", - " val4 = a2*b2\n", - " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2)\n", - " \n", - " if self.normalize:\n", - " a1 /= torch.sqrt(self.norm)\n", - " b1 /= torch.sqrt(self.norm)\n", - " a2 /= torch.sqrt(self.norm)\n", - " b2 /= torch.sqrt(self.norm)\n", - " \n", - " self.norm = self.norm.item()\n", - "\n", - " # for compatibility (TODO: remove)\n", - " first1 = a1.item()\n", - " second1 = b1.item()\n", - " first2 = a2.item()\n", - " second2 = b2.item()\n", - "\n", - " mps1 = self.hbmps.mps_hatbasis(first1, second1, position1)\n", - " mps2 = self.hbmps.mps_hatbasis(first2, second2, position2)\n", - " \n", - " if self.zorder:\n", - " mps = zkron2(mps2, mps1)\n", - " else:\n", - " mps = kron(mps2, mps1)\n", - " \n", - " self.mps1 = mps1\n", - " self.mps2 = mps2\n", - " self.mps = mps\n", - " mpsgates = MPSQGates(mps)\n", - "\n", - " s = mpsgates.max_rank_power\n", - " Us = mpsgates.qgates()\n", - " N = len(Us)\n", - " count = 0\n", - " for k in range(N - 1, -1, -1):\n", - " wires_idx = list(\n", - " range(self.num_wires - count - s - 1, self.num_wires - count)\n", - " )\n", - " subwires = [self.wires[idx] for idx in wires_idx]\n", - " qml.QubitUnitary(Us[k], wires=subwires, unitary_check=False)\n", - "\n", - " count += 1\n", - " \n", - " def compute_norm(self, x: Tensor) -> float:\n", - "\n", - " x1 = x[0]\n", - " x2 = x[1]\n", - " a1, b1 = self.basis.nonz_vals(x1)\n", - " a2, b2 = self.basis.nonz_vals(x2)\n", - "\n", - " if self.sqrt:\n", - " # sometimes the values are close to 0 and negative\n", - " a1 = torch.sqrt(torch.abs(a1))\n", - " b1 = torch.sqrt(torch.abs(b1))\n", - " a2 = torch.sqrt(torch.abs(a2))\n", - " b2 = torch.sqrt(torch.abs(b2))\n", - "\n", - " # TODO: cover the case where x or y are outside of bounds\n", - "\n", - " val1 = a1*a2\n", - " val2 = a1*b2\n", - " val3 = a2*b1\n", - " val4 = a2*b2\n", - " self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 +val4**2).item()\n", - " \n", - " return self.norm" - ], - "outputs": [], - "execution_count": 13 + "execution_count": 45 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:33:19.350374Z", - "start_time": "2024-07-18T13:33:19.347273Z" + "end_time": "2024-07-18T23:00:30.157567Z", + "start_time": "2024-07-18T23:00:30.155644Z" } }, "cell_type": "code", @@ -500,19 +349,19 @@ ], "id": "9afa0015a6baf6fc", "outputs": [], - "execution_count": 10 + "execution_count": 46 }, { "cell_type": "code", "id": "557b395bbcf03f54", "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T07:34:46.737743Z", - "start_time": "2024-07-15T07:34:46.725454Z" + "end_time": "2024-07-18T23:00:30.175626Z", + "start_time": "2024-07-18T23:00:30.164604Z" } }, "source": [ - "from qulearn.qlayer import AltRotCXLayer, HamiltonianLayer, ParallelIQPEncoding\n", + "from qulearn.qlayer import AltRotCXLayer, HamiltonianLayer, ParallelIQPEncoding, HatBasis, Linear2DBasisQFE\n", "base = 3.0\n", "omega = 1.0\n", "num_qubits = 3\n", @@ -523,7 +372,7 @@ "var = AltRotCXLayer(wires=2*num_qubits, n_layers=3)\n", "\n", "embed = Linear2DBasisQFE(wires=2*num_qubits, basis=hat_basis, sqrt=True, normalize=False, zorder=True)\n", - "embed = ParallelIQPEncoding(wires=2*num_qubits, num_features=2, n_repeat=1, base=base, omega=omega)\n", + "#embed = ParallelIQPEncoding(wires=2*num_qubits, num_features=2, n_repeat=1, base=base, omega=omega)\n", "obs = qml.PauliZ(5)\n", "model = MeasurementLayer(embed, var, observables=obs, measurement_type=MeasurementType.Expectation)\n", "\n", @@ -541,36 +390,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "0: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(0.58,3.51,0.82)─╭●──Rot(0.89,2.04,3.00)────────────────────────\n", - "1: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(4.30,2.89,1.81)─╰X──Rot(2.66,3.29,2.39)─╭●──Rot(3.36,2.74,3.53)\n", - "2: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(3.11,3.18,3.22)─╭●──Rot(3.69,4.12,4.69)─╰X──Rot(2.16,6.22,3.45)\n", - "3: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(4.38,1.67,3.19)─╰X──Rot(5.48,3.60,4.22)─╭●──Rot(0.38,6.13,2.09)\n", - "4: ──H──RZ(0.00)─╭MultiRZ(0.00)──Rot(6.27,0.71,0.64)─╭●──Rot(2.46,2.99,5.96)─╰X──Rot(2.11,5.80,4.22)\n", - "5: ──H──RZ(0.00)─╰MultiRZ(0.00)──Rot(2.40,4.54,0.42)─╰X──Rot(1.58,4.33,5.08)────────────────────────\n", + "0: ──────────────────────────────────────────────────╭U(M3)────────────────Rot(3.89,3.99,5.77)─╭●\n", + "1: ─────────────────────────────╭U(M2)───────────────├U(M3)────────────────Rot(3.44,2.04,5.01)─╰X\n", + "2: ────────╭U(M1)───────────────├U(M2)───────────────╰U(M3)────────────────Rot(0.99,5.41,2.80)─╭●\n", + "3: ─╭U(M0)─├U(M1)───────────────╰U(M2)────────────────Rot(0.01,2.31,1.80)──────────────────────╰X\n", + "4: ─├U(M0)─╰U(M1)────────────────Rot(3.15,4.69,5.42)─╭●────────────────────Rot(3.79,4.93,1.17)───\n", + "5: ─╰U(M0)──Rot(2.73,2.27,0.44)──────────────────────╰X────────────────────Rot(0.58,3.38,4.80)───\n", "\n", - "──╭●──Rot(6.21,5.13,4.11)─────────────────────────╭●──Rot(6.27,5.62,6.11)─────────────────────────┤\n", - "──╰X──Rot(5.31,4.11,4.23)─╭●──Rot(0.53,3.56,4.46)─╰X──Rot(6.03,0.94,0.59)─╭●──Rot(2.72,3.26,5.42)─┤\n", - "──╭●──Rot(4.66,4.78,5.73)─╰X──Rot(0.77,0.87,2.38)─╭●──Rot(0.50,2.98,5.33)─╰X──Rot(0.98,3.93,1.89)─┤\n", - "──╰X──Rot(5.06,6.14,5.36)─╭●──Rot(4.81,2.14,2.56)─╰X──Rot(1.99,2.71,0.81)─╭●──Rot(4.78,2.41,4.22)─┤\n", - "──╭●──Rot(1.79,1.30,2.26)─╰X──Rot(2.02,1.61,2.21)─╭●──Rot(0.72,3.62,0.51)─╰X──Rot(0.63,2.69,0.71)─┤\n", - "──╰X──Rot(3.07,2.33,5.27)─────────────────────────╰X──Rot(4.58,2.69,1.37)─────────────────────────┤\n", + "───Rot(6.17,2.88,4.65)─────────────────────────╭●──Rot(5.85,2.01,2.37)─────────────────────────╭●\n", + "───Rot(3.37,4.82,2.84)─╭●──Rot(5.07,5.28,4.99)─╰X──Rot(2.22,0.76,3.71)─╭●──Rot(0.75,5.06,6.23)─╰X\n", + "───Rot(1.62,1.33,2.46)─╰X──Rot(1.90,3.07,1.15)─╭●──Rot(6.25,0.08,5.93)─╰X──Rot(1.25,5.91,3.32)─╭●\n", + "───Rot(1.94,1.20,2.43)─╭●──Rot(5.26,3.68,5.31)─╰X──Rot(0.64,5.17,5.18)─╭●──Rot(0.27,3.61,3.72)─╰X\n", + "───────────────────────╰X──Rot(5.91,0.06,0.64)─╭●──Rot(0.76,4.20,5.93)─╰X──Rot(2.73,4.25,2.20)─╭●\n", + "───────────────────────────────────────────────╰X──Rot(6.04,4.09,5.67)─────────────────────────╰X\n", "\n", - " ╭<𝓗>\n", - " ├<𝓗>\n", - " ├<𝓗>\n", - " ├<𝓗>\n", - " ├<𝓗>\n", - " ╰<𝓗>\n" + "───Rot(4.53,3.56,5.54)─────────────────────────┤ ╭<𝓗>\n", + "───Rot(3.06,5.28,5.47)─╭●──Rot(3.67,0.73,1.24)─┤ ├<𝓗>\n", + "───Rot(0.06,4.13,1.87)─╰X──Rot(4.98,2.80,1.27)─┤ ├<𝓗>\n", + "───Rot(0.55,5.01,1.00)─╭●──Rot(4.24,1.02,0.11)─┤ ├<𝓗>\n", + "───Rot(0.09,0.83,3.41)─╰X──Rot(5.63,6.28,3.42)─┤ ├<𝓗>\n", + "───Rot(5.76,2.78,0.96)─────────────────────────┤ ╰<𝓗>\n" ] } ], - "execution_count": 49 + "execution_count": 47 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:58:47.037819Z", - "start_time": "2024-07-15T08:58:46.648405Z" + "end_time": "2024-07-18T23:00:30.869817Z", + "start_time": "2024-07-18T23:00:30.176537Z" } }, "cell_type": "code", @@ -584,7 +433,7 @@ "ntrain = 10\n", "num_features = 2\n", "X_train = 1.98*torch.rand((ntrain, num_features)) - 0.99\n", - "kernel_model = QKernel(embed_angle, X_train)\n", + "kernel_model = QKernel(embed_pptn, X_train)\n", "kernel_classifier = SignModelWrapper(kernel_model)\n", "\n", "scores = kernel_model(X_train)\n", @@ -600,26 +449,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "tensor([ 0.2939, 0.9621, 1.1502, -0.1112, 0.2150, 0.2829, -0.9913, 0.6336,\n", - " 1.0529, -0.1257], grad_fn=)\n", + "tensor([-1.7533, 1.5878, -0.2078, -1.6954, -1.9461, 0.8931, 0.8289, 0.3857,\n", + " 1.6959, 2.0537], grad_fn=)\n", "=========\n", - "tensor([ 1., 1., 1., -1., 1., 1., -1., 1., 1., -1.],\n", + "tensor([-1., 1., -1., -1., -1., 1., 1., 1., 1., 1.],\n", " grad_fn=)\n" ] } ], - "execution_count": 180 + "execution_count": 48 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:58:47.107708Z", - "start_time": "2024-07-15T08:58:47.038578Z" + "end_time": "2024-07-18T23:00:30.943576Z", + "start_time": "2024-07-18T23:00:30.870454Z" } }, "cell_type": "code", "source": [ "from sklearn.datasets import make_moons, make_classification\n", + "import matplotlib.pyplot as plt\n", "X, y = make_moons(n_samples=100, noise=0.2, random_state=42)\n", "X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)\n", "\n", @@ -644,19 +494,19 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4BbfN35ACCwkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJFdrb0t79J+/f/WpaUJP3zn57/2wogOBAcBzCLxfpH29mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4CK+KPzAUDgY1hFAFu71rE340KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKE9lnQ+StfOBIRZA+CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQHn81fkAIPARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIN/7qfAAQ+AiOA1jPntaJISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQWvzV+QAg8DEhL4CZzdYZ04MGWQPh0mPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEFlvnQ16e83HHJpP1eW90PiDIWSzW8TYHDlivnnr29M6JGH5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnqYaSk62BMTOpXeeJ/wsAocOWrUJy3vlAtgqUQe6/oFZRvFYawyqCQEaGtHu3tGaNtGSJ9T43l+8hAFRHRoY1AG7a1LE8KYnAGE7YrqYunMlpy/3nzZW54FMMqwgSZrPUu7e/WwEAoSUjw5ornl/JUSF/LTwAvyA4BgCENTofUCl3cv+FwocpzMdVExwDAABUJJxy/zGumjHHAAAAFQqX3H+Mq5ZEcAwAAFAxfy484CusqW5HcAwAAFAR28IDUtkA2dsLD/gKa6rbERwDAABUJtRz/4XTuOpKMCEPAADAFaGc+y9cxlW7gOAY1WIymbRixQoNGDDA300BAMD7QjX3H2uq2zGsAuXKz8/XXXfdpRYtWigyMlLJycm6/vrrtXr1an83TZKUnZ2tq6++WhdddJFMJpM2b97s7yYBABCcwmFctYsIjoOFxSLl5EhLl1rvvTxbdPfu3erSpYs++eQTPfLII9qyZYtWrVqlPn36aOzYsV59b1edOHFCV1xxhR566CF/NwUAgOAX6uOqXURwHAyys6WUFKlPH2noUOt9SopX8w3eeeedMplM2rBhgwYOHKjWrVvrN7/5jbKysvTFF1+U+7p7771XrVu3Vp06ddSiRQs98MADOnfunP35b775Rn369FH9+vUVHR2tLl266KuvvpIk7dmzR9dff70aNGigunXr6je/+Y3ee++9ct/rlltu0dSpU5WWlua5HQcAIJxlZEi7d0tr1khLlljvc3PDJjCWGHMc+GwJuS8c/2NLyO2FK7kjR45o1apVmjNnjurWrVvm+djY2HJfW79+fS1atEiJiYnasmWLRo8erfr162vSpEmSpGHDhqlz58565plnZDabtXnzZtWsWVOSNHbsWJ09e1affvqp6tatqx9++EH16tXz6L4BAIBKhOq4ahcRHAeyyhJym0zWhNz9+3t0DNDOnTtlGIbatm3r9mvvv/9++79TUlJ0zz33aNmyZfbgeO/evZo4caJ9261atbLX37t3rwYOHKgOHTpIklq0aFGd3QAAAHAbwyoCmZ8SchvOgnEXvfbaa7r88suVkJCgevXq6f7779fevXvtz2dlZem2225TWlqaHnzwQe3atcv+3N13363Zs2fr8ssv17Rp0/Ttt99Waz8AAADcRXAcyPyUkLtVq1YymUzatm2bW69bt26dhg0bpmuvvVbvvPOOvv76a9133306e/asvc706dP1/fffq1+/fvrkk0/Uvn17rVixQpJ022236ccff9Qtt9yiLVu2qGvXrnryySc9um8AAAAVITgOZH5KyB0XF6f09HQtWLBAJ06cKPP80aNHnb7u888/V7NmzXTfffepa9euatWqlfbs2VOmXuvWrTV+/Hh9+OGHysjI0EsvvWR/Ljk5Wbfffruys7M1YcIEPffccx7bLwAAgMoQHAcyW0LuC/MN2phMUnKyVxJyL1iwQBaLRd26ddN//vMf7dixQ1u3btX8+fPVvXt3p69p1aqV9u7dq2XLlmnXrl2aP3++vVdYkk6dOqVx48YpJydHe/bs0WeffaYvv/xS7dq1kyRlZmbqgw8+UG5urjZt2qQ1a9bYn3PmyJEj2rx5s3744QdJ0vbt27V582bl5+d78EgAAIBwQnAcyPyYkLtFixbatGmT+vTpowkTJujSSy/VH//4R61evVrPPPOM09fccMMNGj9+vMaNG6dOnTrp888/1wMPPFBqd8w6fPiwhg8frtatW+vGG2/UNddcoxkzZkiSLBaLxo4dq3bt2qlv375q3bq1nn766XLb+NZbb6lz587q16+fJGnw4MHq3LmzFi5c6MEjAQAAwonJqM7sK0iSioqKFBMTo8LCQkVHRzs8d/r0aeXm5qp58+aKioqq2htkZ1uzVpSenJecbA2MwyjvYHV55P8CAAAEpYritdJI5RYMMjKs6drWrrVOvmvSxDqUIgyWcAQAAPAlguNgEeYJuQEAAHyBMccAAABACXqOAQAeZbEwCgxA8CI49hHmPfof/weA9zmbP5yUZE28w/xhAMGAYRVeZi7pLim9Shz8w/Z/YKYLC/CK7Gxp0KCyq97n5VnLs7P90y4AcAc9x15Wo0YN1alTRz///LNq1qypiAiuR/yhuLhYP//8s+rUqaMaNfjYA55msVh7jJ39QGMY1tTsmZnWxDtcnwIIZEEXJSxYsECPPPKI8vPz1bFjRz355JPq1q2b07q9e/fWf//73zLl1157rd59911J0siRI/Xyyy87PJ+enq5Vq1Z5pL0mk0lNmjRRbm6u06WU4TsRERG6+OKLZSpvxUEAVbZ2bdke49IMQ9q3z1qPxDsAAllQBcevvfaasrKytHDhQqWmpmrevHlKT0/X9u3b1ahRozL1s7OzHYYzHD58WB07dtSf//xnh3p9+/bVSy+9ZH8cGRnp0XbXqlVLrVq1YmiFn9WqVYuee8BLDhzwbD0AISBIZ+cGVXD8+OOPa/To0Ro1apQkaeHChXr33Xf14osvavLkyWXqx8XFOTxetmyZ6tSpUyY4joyMVEJCgvcaLmuvJauyAQhVTZp4th6AIBfEs3ODphvt7Nmz2rhxo9LS0uxlERERSktL07p161zaxgsvvKDBgwerbt26DuU5OTlq1KiR2rRpozvuuEOHDx+ucDtnzpxRUVGRww0AwlnPntbzXnmjlkwm66r3PXv6tl0A/CDIZ+cGTXB86NAhWSwWNW7c2KG8cePGys/Pr/T1GzZs0HfffafbbrvNobxv375avHixVq9erYceekj//e9/dc0118hisZS7rblz5yomJsZ+S05OrtpOAUCIMJutHUJS2QDZ9njevKD4RRVAdVQ2O1eyzs6tIM7yt6AJjqvrhRdeUIcOHcpM3hs8eLBuuOEGdejQQQMGDNA777yjL7/8Ujk5OeVua8qUKSosLLTf9u3b5+XWA0Dgy8iQli+XmjZ1LE9KspYH+C+pADzBndm5ASpoxhw3bNhQZrNZBQUFDuUFBQWVjhc+ceKEli1bppkzZ1b6Pi1atFDDhg21c+dOXXXVVU7rREZGenzSHgCEgowMa7q2IJyDA8ATQmB2btD0HNeqVUtdunTR6tWr7WXFxcVavXq1unfvXuFr33jjDZ05c0Y333xzpe+zf/9+HT58WE2YNQIAVWI2W9O1DRlivScwBsJICMzODZrgWJKysrL03HPP6eWXX9bWrVt1xx136MSJE/bsFcOHD9eUKVPKvO6FF17QgAEDdNFFFzmUHz9+XBMnTtQXX3yh3bt3a/Xq1erfv79atmyp9PR0n+wTAPiLxSLl5EhLl1rvA3gIIIBgEQKzc4NmWIUk3XTTTfr55581depU5efnq1OnTlq1apV9kt7evXvL5LHdvn27/ve//+nDDz8ssz2z2axvv/1WL7/8so4eParExERdffXVmjVrFsMmAIS0IM6yBCCQ2WbnDhpkDYRLT8wLktm5JsNwNp0Q7igqKlJMTIwKCwsVHR3t7+YAQIVsWZYu/OtvO28xeQ5AtTm7Ak9OtgbGfvoD42q8RnDsAQTHAIKFxSKlpJQ/mdxksvYg5+YGdMcOgGAQYCvkuRqvBdWwCgBA9biTZal3b581C0Aoss3ODTJBNSEPAFA9IZBlCQC8iuAYAMJICGRZAgCvIjgGgDASAlmWAMCrCI4BIIzYsixJZQPkIMmyBABeRXAMAGEmI8Oarq1pU8fypCTSuAEA2SoAIAxlZEj9+wdUliWgYgGWFgyhi+AYAMJUkGZZQjhiSUf4EMMqAABA4LIt6Xhhgu68PGt5drZ/2oWQRXAMAAACk8Vi7TF2tpivrSwz01oP8BCCYwAAEJjcWdIR8BCCYwAAEJhY0hF+QHAMAAACE0s6wg8IjgEAQGBiSUf4AcExAAAITCzpCD8gOAYAAIGLJR3hYywCAgAAAhtLOsKHCI4BAEDgY0lH+AjDKgAAAIAS9BwDAAC4y2JhmEeIIjgGAABwR3a2dVnr0qv3JSVZM2swQTDoMawCAPzIYpFycqSlS633Fou/WwSgQtnZ0qBBZZe1zsuzlmdn+6dd8BiCYwDwA4tFmjlTatRI6tNHGjrUep+SwrkVCFgWi7XH2DDKPmcry8zkKjfIERwDgI9lZ0uNG0vTpklHjjg+R+cTEMDWri3bY1yaYUj79lnrIWgRHAOAD9l+kT182PnzdD4BAezAAc/WQ0AiOAYAH6noF9nS6HwCAlSTJp6th4BEcAwAPlLZL7IXovMJCDA9e1qzUphMzp83maTkZGs9BC2CYwDwEXeDXTqfgEr4Ot2L2WxN1yaVDZBtj+fNI99xkCM4BgA3VfV87E6wS+cTUInsbGt6F1+ne8nIkJYvl5o2dSxPSrKWk+c46JkMo7LRb6hMUVGRYmJiVFhYqOjoaH83B4AXVSf3v8ViPXfn5VU+7vg//+EcC5TLNrP1wi+SrffWF0EqK+QFHVfjNYJjDyA4BsKDJ87Htm1IzgPkiy6Snn2WwBgol+0qs7wB/CaT9Yo1N5dgFQ5cjdcYVgEALvBU7v/yfpG96CJpxgypoIDAGKgQuYbhZTX83QAACAbunI979654WxkZUv/+/CILVAm5huFlBMcA4AJPn4/N5sqDaABOkGsYXsawCgBwAedjIECQaxheRnAMAC7gfAwECHINw8sIjgGgHKXzGa9dKz3+uLWc8zHgZ+QahheRys0DSOUGhJ7y8hkPGWINlkuXJydbA2POx4CPkWsYbiDPsQ8RHAOhpbJ8xq+/LjVsyPkYAIKJq/Ea2SoAoJTK8hmbTFJWFusLwMPoAQUCBmOOAaAU1heAz2VnW1d869NHGjrUep+SYi0H4HMExwBQCusLwKdsY3guvCLLy7OWEyADPkdwDAClkM8YPuOpNckBeBTBMQCUQj5j+AxjeICAFHTB8YIFC5SSkqKoqCilpqZqw4YN5dZdtGiRTCaTwy0qKsqhjmEYmjp1qpo0aaLatWsrLS1NO3bs8PZuAAhQrC8An2EMDxCQgio4fu2115SVlaVp06Zp06ZN6tixo9LT03Xw4MFyXxMdHa0DBw7Yb3v27HF4/uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz7t7d0BEKBYXwA+EQpjeEqvlJOTwxAQhISgynOcmpqq3/3ud3rqqackScXFxUpOTtZdd92lyZMnl6m/aNEiZWZm6ujRo063ZxiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXeY6B0ER2LXiVxWLNSpGX53zcsclkvSIL1LyB5a2U889/cgWJgORqvBY0Pcdnz57Vxo0blZaWZi+LiIhQWlqa1q1bV+7rjh8/rmbNmik5OVn9+/fX999/b38uNzdX+fn5DtuMiYlRampqhds8c+aMioqKHG4AQo/ZLPXubV0Vr3fvwIxPEMSCeQwPWTYQwoImOD506JAsFosaN27sUN64cWPl5+c7fU2bNm304osvauXKlfr3v/+t4uJi9ejRQ/tLvsy217mzTUmaO3euYmJi7Lfk5OTq7BoAIFz5egyPJ4ZBVJZlwzDIsoGgFjTBcVV0795dw4cPV6dOndSrVy9lZ2crPj5e//rXv6q13SlTpqiwsNB+27dvn4daDAAIOxkZ0u7d0po10pIl1vvcXM8Hxp5abKSyLBsSWTYQ1IJm+eiGDRvKbDaroKDAobygoEAJCQkubaNmzZrq3Lmzdu7cKUn21xUUFKhJqQkPBQUF6tSpU7nbiYyMVGRkpJt7AABAOWxjeLzFNgziwt5e2zAId3qp8/I8Ww8IMEHTc1yrVi116dJFq1evtpcVFxdr9erV6t69u0vbsFgs2rJliz0Qbt68uRISEhy2WVRUpPXr17u8TQAAApqnFxv5+WfP1gMCTND0HEtSVlaWRowYoa5du6pbt26aN2+eTpw4oVGjRkmShg8frqZNm2ru3LmSpJkzZ+r3v/+9WrZsqaNHj+qRRx7Rnj17dNttt0mSTCaTMjMzNXv2bLVq1UrNmzfXAw88oMTERA0YMMBfuwnARWSTAFzgzmIjrvRex8e79r6u1gMCTFAFxzfddJN+/vlnTZ06Vfn5+erUqZNWrVpln1C3d+9eRUT82hn+yy+/aPTo0crPz1eDBg3UpUsXff7552rfvr29zqRJk3TixAmNGTNGR48e1RVXXKFVq1aVWSwEQGCwBcQrV0r//rd06NCvz5FFCnDC04uNXDh5sLr1gAATVHmOAxV5jgHfcJZW1Zn//IcAGbDLybFOvqvMmjWu9Rzb8jNX9EVMTg7c/MwIWyGX5xhAeCsvraozY8aQRQqw69nT+rPKhbmUbUwmazDbs6dr27PlZ65oe4GanxlwAcExgIBX0XwiZw4ftnaWAZB3Fhux5WdOSnIsT052zHzB8tIIQgTHAAKeK2lVL0RwDJTijcVGKsvP7Km8yoCPBdWEPADhydV5QgAqkJEh9e/v2RQv5eVn9mReZcDHCI4BBLxSa/S4zJvrKQBBy9uLjUiV51U2max5lfv3Z1wyAhLDKgAEvMrmE13ooosIjgG/cSevMhCACI4B+IU783Qqmk/kzLPP0iEF+I2n8yoDPkZwDMDnqjJPp7z5RKUlJZHjGKi26maYcHUcVFXGSwE+wCIgHsAiIIDrypunY+sRrmyeTukloxs1spYdPMjy0YBHOFtpx92lJ22LhOTllZ9/MSnJmumCLyx8yNV4jeDYAwiOAde4srAW50zAT6p75epsW5LzAPmii6zjn/iZBz7ECnkAAo4r+Yr375fmzPFNewCUqCzDhGTNMOHqEAvbOKi4OOfPHzliDZ7JeYwARHAMwGdcnX8zbRrnTMCnvJFhon9/qXbt8rcnuRdwAz5CcAzAZ9yZf8M5EwEt1JZF9kaGCVK6IUgRHAPwGVu+YldwzkTACsVlkb2RYYKUbghSBMcAfKZ0vmJXcM5EwLFNNLuwR9S2LHKwBsiVrbRjMknJydZ6riKlG4IUwTEAn8rIkGbMcK0u50wEFE9PWgskFa20Y3s8b557aWS8EXADPkBwDMDn7ruv4uEVnDMRkEJ9DG15K+0kJbmXxs3GGwE34AMExwB8znbONJk4ZyKIhMMY2owMa6LxNWukJUus97m5Vc9H7OmAG/CBGv5uAIDwZDtnOluMa948zpkIQOEyhtZslnr39tz2MjKsad1sS1uynCUCHCvkeQAr5AG/Kr28syvnQHfrA35T2bLIJpP16i43lw8xEIBcjdfoOQbgMdnZznuC//nP8nuCPd1JBXiNbTzQoEHWQLh0gMx4ICBkMOYYgEeEaoYrwAFjaIGQx7AKD2BYBcKd7dfm8iby82szQg7jgYCgw7AKAD7jToYrhlAgJDAeCAhZBMcAKlVZJ1k4ZLgC7Og1BkIawTGACrkyyS5cMlwBVZp1CiCoMCEPgFMWizRzpjRwYOWT7FglFmGBWadAWCA4BlBGdrZ1gt20ac6ft03jzcy0BtGsEouQZ7FYe4ydzWG/8AsBIKgRHANwUF7n2IVKT7KTyHCFEOfOrFMAQY0xxwDsKuocK0/pSXasEouQxaxTIGwQHAOwq6xzzJkLJ9mR4QohiVmnQNhgWAUAO3c6vZhkh7DCrFMgbBAcA7Bzt9OLSXYIG8w6BcIGwTEAu8o6x2yYZIewxKxTICyYDMOdqTdwxtW1uoFgYMtWITmfmDdjhnTffXSQIYyxQh4QlFyN15iQB8CBrXPswkXAkpOtvxrTOYawx6xTIKQRHAMog5RsAIBwRXAMwCk6x4AwxJARgOAYCHWc6wC4JDu77HiqpCRrlg7GUyGMkK0CCGHZ2VJKitSnjzR0qPU+JcVaDgB25a0bn5dnLeePBsIIwTEQojjXAXBJRevG28oyM631gDBAcAyEIM51QIixWKScHGnpUuu9J7+8la0bbxjSvn3WekAYIDgGQhDnOiCEeHt8lKvrxruzvjwQxAiOgRDEuQ4IEb4YH+XquvHuri8PBCmCYyAEca4DQoCvxkdVtm68yWRdBahnz+q9DxAkgi44XrBggVJSUhQVFaXU1FRt2LCh3LrPPfecevbsqQYNGqhBgwZKS0srU3/kyJEymUwOt759+3p7NwCv4lwHhABfjY8ym63p2qSyfzRsj+fNIwckwkZQBcevvfaasrKyNG3aNG3atEkdO3ZUenq6Dh486LR+Tk6OhgwZojVr1mjdunVKTk7W1Vdfrby8PId6ffv21YEDB+y3pUuX+mJ3AK/hXAeEAF+Oj7KtG9+0qWN5UpK1nDzHCCMmw3D2e01gSk1N1e9+9zs99dRTkqTi4mIlJyfrrrvu0uTJkyt9vcViUYMGDfTUU09p+PDhkqw9x0ePHtWbb75Z5XYVFRUpJiZGhYWFio6OrvJ2AE9zltM/OdkaGHOuQ1AI51VscnKsk+8qs2aN55azDOfjjZDnarwWNCvknT17Vhs3btSUKVPsZREREUpLS9O6detc2sbJkyd17tw5xcXFOZTn5OSoUaNGatCggf7whz9o9uzZuuiii8rdzpkzZ3TmzBn746KiIjf3BvCNjAypf3/OdQhS4b5im218VF6e83HHJpP1eU+Oj2LdeCB4hlUcOnRIFotFjRs3dihv3Lix8vPzXdrGvffeq8TERKWlpdnL+vbtq8WLF2v16tV66KGH9N///lfXXHONLBVMcJg7d65iYmLst+Tk5KrtFOADtnPdkCHWewJjBAVWsWF8FOAnQRMcV9eDDz6oZcuWacWKFYqKirKXDx48WDfccIM6dOigAQMG6J133tGXX36pnJyccrc1ZcoUFRYW2m/79u3zwR4AQJhgFZtfMRYY8LmgGVbRsGFDmc1mFRQUOJQXFBQoISGhwtc++uijevDBB/Xxxx/rsssuq7BuixYt1LBhQ+3cuVNXXXWV0zqRkZGKjIx0bwcAAK5xJ0tDOAwBYHwU4FNB03Ncq1YtdenSRatXr7aXFRcXa/Xq1erevXu5r3v44Yc1a9YsrVq1Sl27dq30ffbv36/Dhw+rCQlgAcA/XM2+sHKld9sRSEqPj+rZ0xooe2MpaQDB03MsSVlZWRoxYoS6du2qbt26ad68eTpx4oRGjRolSRo+fLiaNm2quXPnSpIeeughTZ06VUuWLFFKSop9bHK9evVUr149HT9+XDNmzNDAgQOVkJCgXbt2adKkSWrZsqXS09P9tp8AENZc7ZyYN88aKFY2tCCUMjC4MkkxlPYX8IOgCo5vuukm/fzzz5o6dary8/PVqVMnrVq1yj5Jb+/evYqI+LUz/JlnntHZs2c1aNAgh+1MmzZN06dPl9ls1rfffquXX35ZR48eVWJioq6++mrNmjWLYRMA4C+2LA0VDa2QrJPSMjOtQw7KC/4CNeNFVQJY2yTFC8di2yYpLl9ufRyI+wsEkaDKcxyoyHMMAB6WnS0NHOha3fLy/JYXTNoyPfhrQltVAnaLRUpJKf+CwWSS4uKkI0cCb3+BAOFqvBY0Y44BAGEkI8PaK+wKZ2OUAzXjRVVT1LkySfHw4cDbXyAIERwDAAJT//6u1XM2RtmdjBe+Up2AvbpLRPtjf4EgRXAMAHCZxWJNkOCTRAm2sccXLoBhYzJZ10N3tkKcq8FkdYNOd1QnYPdUBiVf7i8QpAiOAQAuyc62Dnvt00caOtR6n5LixcXqqrNCnKvBpC/TdlYnYK/sQsFVpCkFKkVwDAColN9Wc67qCnHV6XX2luoE7K5cKFx0UWDtLxCkyFbhAWSrABDKXEmUkJQk5eZ6MZ1udVKfSY7jfP2VvcF2IPPynI87duVAOst0kZxs7UGXAmt/gQDjarxGcOwBBMcAQllOjnUIRWXKy6jmVxUFk/5K41bdALaiC4VA218ggLgarwXVIiAAAN8LxLltLsvIsGa9CJQV42zDRJzlOXY1gLUtJV3e9gNpf4EgRHAMeACrtSKUBeLcNrdUFEz6g7cD2EDbXyDIEBwD1RSoq9MCnmKb21bZUFnmermBABYIWGSrAKrBbzP4AR+qTkY1AAg2BMdAFQXq6rSAN1Q1oxoABBuGVQBV5M5iV/x6ilDAXC8A4YDgGHDClQl2QT2DH6gihsoCCHUEx8AFXJ1gF/Qz+AEAQBmMOQZKcWeCXSCuTgsAAKqH4Bgo4e4EO2bwAwAQegiOgRLuTLCzYQY/AAChhTHHQImqTrBjBj8AAKGD4BgoUZ0JdszgBwAgNDCsAijBBDsAAEBwDJRggh0AACA4RtiyWKScHGnpUuu9xcIEOwAAwh1jjhGWKlvogwl2AAB4iSvL0PqRW8HxqVOntHHjRsXFxal9+/YOz50+fVqvv/66hg8f7tEGAtV14Xfw0CHpxhvL5jO2LfRh6yFmgh0AAB7m6jK0fmQyDGdLHpT1f//3f7r66qu1d+9emUwmXXHFFVq2bJmalEzdLygoUGJioiy2FRLCSFFRkWJiYlRYWKjo6Gh/NwelOPsOms2/LuRxIZPJ+h3NzQ2oi1gAAIKfbRnaC0NP28QeL49fdDVec3nM8b333qtLL71UBw8e1Pbt21W/fn1dfvnl2rt3r0caDHhaeUtBV3T95myhDwAAUE3uLkPrRy4Hx59//rnmzp2rhg0bqmXLlnr77beVnp6unj176scff/RmGwG3VfQddIWrC4IAAAAXVGUZWj9xOTg+deqUatT4dYiyyWTSM888o+uvv169evXS//3f/3mlgUBVVPYdrIyrC4IAAAAXVHUZWj9weUJe27Zt9dVXX6ldu3YO5U899ZQk6YYbbvBsy4BqqOp3yzbmmIU+AADwoOosQ+tjLvcc/+lPf9LSpUudPvfUU09pyJAhcnFuH+B1VflusdAHAABeEkTL0LqcrQLlI1tF4LFYpJQUa3q28j7hF2atSE62BsYBkkkGAIDQYpspLzmenAMsWwWLgCAk2ZaCHjTI+p1z9h1culSKjw/YHORAeAjwxQAAeJBtGVpneY4DqHeKnmMPoOc4cDnLc0wPMRAggmAxAABe4KeLYlfjNYJjDyA4Dmx0TAEByM+LAQAIPwTHPkRwDABusE0KKC/fIktVAvACj6+QBwAIDRaLlJNjHXefk+OHBamCaDEAAOGnSsHxK6+8ossvv1yJiYnas2ePJGnevHlauXKlRxsHAPCs7Gxrp22fPtLQodb7lBRruc8E0WIAAMKP28HxM888o6ysLF177bU6evSoLCVdDrGxsZo3b56n2wcA8BDbMN8LO23z8qzlPguQg2gxAADhx+3g+Mknn9Rzzz2n++67T+ZSY8G6du2qLVu2eLRxgBQAPwEDIcBisSaGcDbLxFaWmemj71cQLQYAIPy4HRzn5uaqc+fOZcojIyN14sQJjzQKsAmIn4CBEBBQw3xticilsgEyS1UC8DO3g+PmzZtr8+bNZcpXrVqldu3aeaJNgKQA+gkYCAEBN8zXthhA06aO5UlJpHED4Fdur5CXlZWlsWPH6vTp0zIMQxs2bNDSpUs1d+5cPf/8895oI8JQZT8Bm0zWn4D796dzCcHB3/m2A3KYb0aG9UtMInIAAaRKeY5fffVVTZ8+Xbt27ZIkJSYmasaMGbr11ls93sBgQJ5jz8vJsQ6hqMyaNVLv3t5uDVA9gbAQnC21cF6e84tOUgsDCHVeyXN8/vx5LV68WGlpadqxY4eOHz+u/Px87d+/P2wDY3hHwP0EDFRRoAwPYpgvALjGreC4Ro0auv3223X69GlJUp06ddSoUSOvNKw8CxYsUEpKiqKiopSamqoNGzZUWP+NN95Q27ZtFRUVpQ4dOui9995zeN4wDE2dOlVNmjRR7dq17YE//CsgfwIG3BRQGSLEMF8AcIXbE/K6deumr7/+2httqdRrr72mrKwsTZs2TZs2bVLHjh2Vnp6ugwcPOq3/+eefa8iQIbr11lv19ddfa8CAARowYIC+++47e52HH35Y8+fP18KFC7V+/XrVrVtX6enp9gsA+AeZnhAKAipDRImMDGn3buuQpCVLrPe5uQTGgE+QmzQouD3m+PXXX9eUKVM0fvx4denSRXXr1nV4/rLLLvNoA0tLTU3V7373Oz311FOSpOLiYiUnJ+uuu+7S5MmTy9S/6aabdOLECb3zzjv2st///vfq1KmTFi5cKMMwlJiYqAkTJuiee+6RJBUWFqpx48ZatGiRBg8e7FK7GHPsHbafoyXHnjdbwExPFwLd0qXWFISVWbJEGjLE++0B4EeBMPkgzLkar7mdrcIWMN599932MpPJJMMwZDKZ7CvmedrZs2e1ceNGTZkyxV4WERGhtLQ0rVu3zulr1q1bp6ysLIey9PR0vfnmm5KsOZvz8/OVlpZmfz4mJkapqalat25ducHxmTNndObMGfvjoqKiqu5WWKjqLH3bT8DO/pbMm8ffEgQ+hgcBkPRrb8+F/ZG2yQf09gQUt4Pj3Nxcb7SjUocOHZLFYlHjxo0dyhs3bqxt27Y5fU1+fr7T+vn5+fbnbWXl1XFm7ty5mjFjhtv7EI6qe6FMpicEM9vwoMoyRDA8CAhh5CYNOm4Hx82aNfNGO4LKlClTHHqki4qKlJyc7McWBSZPXSibzaRrQ3CyZYgYNMh6/nM2PIgMEUCIc2fyASe7gOB2cLx48eIKnx8+fHiVG1ORhg0bymw2q6CgwKG8oKBACQkJTl+TkJBQYX3bfUFBgZqU+l2zoKBAnTp1KrctkZGRioyMrMpuhA0ulAErhgcBYY7cpEHH7eD4b3/7m8Pjc+fO6eTJk6pVq5bq1KnjteC4Vq1a6tKli1avXq0BAwZIsk7IW716tcaNG+f0Nd27d9fq1auVmZlpL/voo4/UvXt3SdalsBMSErR69Wp7MFxUVKT169frjjvu8Mp+hAsulIFfMTwICGNMPgg6bgfHv/zyS5myHTt26I477tDEiRM90qjyZGVlacSIEeratau6deumefPm6cSJExo1apQka69106ZNNXfuXEnWQL5Xr1567LHH1K9fPy1btkxfffWVnn32WUnWiYSZmZmaPXu2WrVqpebNm+uBBx5QYmKiPQBH1XChDDhieBAQpph8EHTcDo6dadWqlR588EHdfPPN5U6O84SbbrpJP//8s6ZOnar8/Hx16tRJq1atsk+o27t3ryIifk3d3KNHDy1ZskT333+//v73v6tVq1Z68803demll9rrTJo0SSdOnNCYMWN09OhRXXHFFVq1apWioqK8th/hgAtlwE+qmh4GgHcw+SDouJ3nuDybN2/WlVdeGZZpzchzXJbFIqWkVH6hnJvL3wPAY8ijCgQuZ9/P5GQmH/iQq/Ga28HxW2+95fDYMAwdOHBATz31lJKTk/X+++9XrcVBLNyCY1c7pljEA/Ch8tLD8IUDAge/7PiV14Lj0sMWJOu43fj4eP3hD3/QY4895pD1IVyEU3DsbscUF8qAD9h+qilvFiw/1QBVR0AbMrwWHKOscAmOq9oxxd8VwMtycqQ+fSqvt2YNswIBdzBUKaS4Gq9FlPtMOWbOnKmTJ0+WKT916pRmzpzp7uYQ4CwW63n31Velv/61/LzFkjVvsbPVw22z9IcMsd4TGAMeRnoYwPNsPUIX/iJjW8kqO9s/7YLXud1zbDabdeDAATVq1Mih/PDhw2rUqJEszqKjEBeqPcfOLpgrQ8cU4Af0HAOexVClkOS1nmPDMGSy/Y5eyjfffKO4uDh3N4cAVd4Fc2XomAL8wJZH1cnfZknW8uRk8qgCrnJnJSuEHJfzHDdo0EAmk0kmk0mtW7d2CJAtFouOHz+u22+/3SuNhG9VtPRzZcJwPibgf+RRBTyLoUphzeXgeN68eTIMQ3/5y180Y8YMxcTE2J+rVauWUlJS7MsyI7hVdsHsDAv8AH6WkWGdFets8hDpYQD3sJJVWHM5OB4xYoQkqXnz5urRo4dq1qzptUbBv9y9EKZjCggQGRlS//6khwGqiyWfw5rby0f36tXL/u/Tp0/r7NmzDs+H0oS0cOXuhTAdU0AAsaWHAVB1DFUKa25PyDt58qTGjRunRo0aqW7dumrQoIHDDcHPlbk98fHSv/9tnfyem0tgDAAIMbahSk2bOpYnJbHiZIhzOzieOHGiPvnkEz3zzDOKjIzU888/rxkzZigxMVGLFy/2RhvhY7YLZqlsgGx7vHChNGwYeYsBACEsI0PavdvaE7RkCT1CYcLtPMcXX3yxFi9erN69eys6OlqbNm1Sy5Yt9corr2jp0qV67733vNXWgBVOeY5Z+hkAAAQjV+M1t8ccHzlyRC1atJBkHV985MgRSdIVV1yhO+64o4rNRSBibg8AAAg3bgfHLVq0UG5uri6++GK1bdtWr7/+urp166a3335bsbGxXmgi/Im5PQAAIJy4PeZ41KhR+uabbyRJkydP1oIFCxQVFaXx48dr4sSJHm8gAAAA4Ctujzm+0J49e7Rx40a1bNlSl112mafaFVRCdcwxAABAqPDamOPSTp8+rWbNmqlZs2bV2QwAAAAQENweVmGxWDRr1iw1bdpU9erV048//ihJeuCBB/TCCy94vIEAAACAr7gdHM+ZM0eLFi3Sww8/rFq1atnLL730Uj3//PMebRwAAECVWSxSTo60dKn13mLxd4sQBNwOjhcvXqxnn31Ww4YNk7lUTq+OHTtq27ZtHm0cAPgL51QgyGVnSykpUp8+0tCh1vuUFGs5UAG3g+O8vDy1bNmyTHlxcbHOnTvnkUYBgD9xTgUCRFWvUrOzpUGDHFexkqS8PGs5X2ZUwO3guH379lq7dm2Z8uXLl6tz584eaRQA+AvnVCBAVPUq1WKxLu/qLBmXrSwzk5+DUC63s1VMnTpVI0aMUF5enoqLi5Wdna3t27dr8eLFeuedd7zRRpRisbBiHeAtlZ1TTSbrObV/f753gFfZrlIv/DLarlKXL7cu4+rM2rVlr25LMwxp3z5rPVa5ghNu9xz3799fb7/9tj7++GPVrVtXU6dO1datW/X222/rj3/8ozfaiBL81At4lzvnVABeUt2e3wMHXHsfV+sh7Ljcc/zjjz+qefPmMplM6tmzpz766CNvtgsXqM5FNADXcE4FAoCrV6lPPik1blz2Z9QmTVx7H1frIey43HPcqlUr/fzzz/bHN910kwoKCrzSKDhi+BTgG5xTgQDg6tXn+PHOf0bt2VNKSrKOgyrPRRdZ6wFOuBwcX7jK9HvvvacTJ054vEEoi596Ad+o7JxqMknJyZxTAa+qytVn6RmzZrP0z38671GyOXxYWrmy6m1ESHN7zDF8j596Ad+wnVOlsgGy7fG8eUzGA7zKlZ7fC134M2r//tbe4fLYZtfykyuccDk4NplMMl3wQb3wMbyDn3oB38nIsI7hb9rUsTwpibH9gE9UdJVakdI/o65da+0ddqUucAGXJ+QZhqGRI0cqMjJSknT69Gndfvvtqlu3rkO9bFIneJztIjovz/mvRCaT9Xl+6gU8IyPD2vFE2kTAx2z5Ss+ckaZPl5591nryc4c7P6PykyuccDk4HjFihMPjm2++2eONgXO2i+hBg6yBcOkAmZ96Ae8wm0mBCvhUdrZ19nnpSTZJSdKMGVKrVlJBgXUSXmXc+RmVn1zhhMm4cKYd3FZUVKSYmBgVFhYqOjraa+/j7O9GcrI1MOanXgBA0CovX6mtB2j5cuvPOSkplf+MmptrfexqXXqWwoar8RoT8oJIRoa0e7e0Zo20ZIn1PjeXwBgAEMRczVcquT5jltm1qAaC4yBj+6l3yBDrPd9rAEBQcydfaf/+1rHIDRo41nE2Y5bZtagil8ccAwAAeJyrk+JWrpRuucUxkI6Ls/Y633ef894iZteiChhz7AG+GnMMAEDIycmxrnJXFaXHJNMTjEow5hgAAAQ+V5amLK+n98LFPwAPIDgGAAD+U9nkOcOoOPBlQQ94GMExAADwr4omz9kyVVSGBT3gIQTHAADA/8rLV9q/v2uvZ0EPeAjZKgAAQGBwtjSlbUxyZQt69OzpkyYi9NFzDAAAAhcLesDHCI4BAEBgY0EP+BDDKgAAQOBjQQ/4SND0HB85ckTDhg1TdHS0YmNjdeutt+r48eMV1r/rrrvUpk0b1a5dWxdffLHuvvtuFRYWOtQzmUxlbsuWLfP27gAAAHfZxiQPGWK9JzCGFwRNz/GwYcN04MABffTRRzp37pxGjRqlMWPGaMmSJU7r//TTT/rpp5/06KOPqn379tqzZ49uv/12/fTTT1q+fLlD3Zdeekl9+/a1P46NjfXmrgCoIouFTiMAgHcFxfLRW7duVfv27fXll1+qa9eukqRVq1bp2muv1f79+5WYmOjSdt544w3dfPPNOnHihGrUsF4XmEwmrVixQgMGDKhy+1g+GvC+7Gzpb3+T9u//tSwpyTpPh+GGAIDKhNTy0evWrVNsbKw9MJaktLQ0RUREaP369S5vx3YwbIGxzdixY9WwYUN169ZNL774oiq7Xjhz5oyKioocbgC8JztbGjTIMTCWrJmdBg2yPg8AgCcExbCK/Px8NWrUyKGsRo0aiouLU35+vkvbOHTokGbNmqUxY8Y4lM+cOVN/+MMfVKdOHX344Ye68847dfz4cd19993lbmvu3LmaMWOG+zsCwG0Wi7XH2Nk1q2FYMzllZlrn6TDEAqgiT4xZYtwTQoRfe44nT57sdEJc6du2bduq/T5FRUXq16+f2rdvr+nTpzs898ADD+jyyy9X586dde+992rSpEl65JFHKtzelClTVFhYaL/t27ev2m0E4NzatWV7jEszDGnfPms9b7JYpJwcaelS673F4t33A3wmO1tKSZH69JGGDrXep6S495OMJ7YBBAi/9hxPmDBBI0eOrLBOixYtlJCQoIMHDzqUnz9/XkeOHFFCQkKFrz927Jj69u2r+vXra8WKFapZs2aF9VNTUzVr1iydOXNGkZGRTutERkaW+xwAzzpwwLP1qoLxzghZtjFLF/40Yxuz5EoOYU9sAwggfg2O4+PjFR8fX2m97t276+jRo9q4caO6dOkiSfrkk09UXFys1NTUcl9XVFSk9PR0RUZG6q233lJUVFSl77V582Y1aNCA4BcIEE2aeLaeuzjvI2R5YswS454QgoJiQl67du3Ut29fjR49Whs2bNBnn32mcePGafDgwfZMFXl5eWrbtq02bNggyRoYX3311Tpx4oReeOEFFRUVKT8/X/n5+bKU/B769ttv6/nnn9d3332nnTt36plnntE//vEP3XXXXX7bVwCOeva09tJeuGqsjckkJSdb63laZed9yXreZ4gFgpInxiwFyrgnwIOCYkKeJL366qsaN26crrrqKkVERGjgwIGaP3++/flz585p+/btOnnypCRp06ZN9kwWLVu2dNhWbm6uUlJSVLNmTS1YsEDjx4+XYRhq2bKlHn/8cY0ePdp3OwagQmazdfjCoEHWQLh0oGoLmOfN806nlDvn/d69Pf/+gFd5YsxSIIx7AjwsaILjuLi4chf8kKSUlBSHFGy9e/euNCVb3759HRb/ABCYMjKswxecjfudN897wxo47yOkeWLMkr/HPQFeEDTBMYDwlpFhHbboy0xRnPcR0mxjlvLynI8dMpmsz1c0ZskT2wACTFCMOQYAyRoI9+4tDRlivff2/B5/jncGvM42Zkkq+yF3dcySJ7YBBBiCYwAoB+d9hDzbmKWmTR3Lk5JcT8XiiW0AAcRkVDYwF5Vyda1uAMHJWZ7j5GTvjncGfIoV8hAGXI3XCI49gOAYCH2c9wEguLkarzEhDwBcYBvvDAAIbQTHANxGLyoAIFQRHANwi7Pxt0lJ1olrjL8FAAQ7slUAcFl2tnWlugtXjcvLs5ZnZ/unXQAAeArBMQCXWCzWHmNnU3htZZmZ1noAAAQrgmMALlm7tmyPcWmGIe3bZ60HAECwYswxAJccOODZegC8iFmzQJURHANwSZMmnq1XXZz7gXIwaxaoFoZVAHBJz57W8+uFyyjbmEzWVeN69vR+W7KzpZQUqU8faehQ631KChMCAWbNAtVHcAzAJWazteNJKhsg2x7Pm+f93lvO/UA5qjNr1mKRcnKkpUut98ysRRgjOAbgsowMaflyqWlTx/KkJGu5t3+xJWMGUIGqzprlpxjAAcExALdkZEi7d0tr1khLlljvc3N9M5SRjBlABVydDbt69a9XkPwUA5RBcAzAbWaz1Lu3NGSI9d5XE+HImAFUwNXZsLNnW3uG33iDn2IAJwiOAQSNQMuYAQSUymbNlrZ/v3TjjfwUAzhBcAwgaARSxgwg4FQ0a7Y6+CkGYYbgGEDQCJSMGUDAKm/WbHXwUwzCDMExgKDi74wZQMCzzZq9//7qbYefYhCmWCEPQNDJyJD692eFPAQxby/xaDZLV11lnXxXFfwUgzBGcAwgKNkyZgBBx1fLO/fsKcXFSUeOVF73wnpJSdbAmJ9iEIYIjgEA8BVbXuEL06fZ8gp7cmyQ2WwNwqdNq7zu669b6/NTDCCTYThLcAh3FBUVKSYmRoWFhYqOjvZ3cwAAgchiseYXLi99mslk7bHNza16YHrhcI0ePaTEROnwYe+9JxAkXI3XmJAHAIAveHuJR2fLQF9yifSXvzhP7ca4YsApgmMAAHzBm0s8VrQM9KOPSvfcY+0hLo0UL4BTjDkGAMAXvLXEo8VS8TLQJpO0bJm0a5f0+eeMKwYqQXAMwGu8na0KCCq2JR7z8pwHsrbxv+7mFXZ1uMbnn5PiBXABwyoAeIWz4Y8pKdZyICxVtryzYUi33eb+dr05XAMIQwTHADyuouGPgwYRICOMVba887Rp7l9Femu4BhCmCI4BeFRlwx8lKTPTWg8IS7blnWfMcP68u1eRtuEaznqjJZaBBtxEcAzAo7ydrQoIGc8957zc3avIioZrkK4NcBvBMQCPYvgj4AJPX0WWN1yDdG2A28hWAcBBdTNMMPwRuICzL5U3riIzMqT+/UkRA1QTwTEAu+xs63jh0h1aSUnWX2xd7XjyVrYqICiV96UaPdq117t7FWk2k64NqCaGVQCQ5LkMEwx/BEpU9KWaPl266CIm0QEBiOAYgMczTDD8EWHPlS+V7d9cRQIBheAYgFcyTNiyVa1ZIy1ZYr3PzSUwRphw5Ut1+LA1nRtXkUBAYcwxAOXluVbP3QwTDH9E2HL1y9KqlfUqkkl0QMAgOAbCXHa2dciEK8gwAbjInbQtXEUCAYVhFUAYs80XOnSo4nrMDQLcxKp1QNAiOAbCVEXzhUpjbhBQBaRtAYIWwTEQpiqbL2TTsCFzg4AqIW0LEJSCJjg+cuSIhg0bpujoaMXGxurWW2/V8ePHK3xN7969ZTKZHG633367Q529e/eqX79+qlOnjho1aqSJEyfq/Pnz3twVICC4Ol/oiSc4hwNVRtoWIOgEzYS8YcOG6cCBA/roo4907tw5jRo1SmPGjNGSJUsqfN3o0aM1c+ZM++M6derY/22xWNSvXz8lJCTo888/14EDBzR8+HDVrFlT//jHP7y2L0AgcHW+0IWdXkDYqe6a6ky4A4KKyTAqG3Hof1u3blX79u315ZdfqmvXrpKkVatW6dprr9X+/fuVmJjo9HW9e/dWp06dNG/ePKfPv//++7ruuuv0008/qXHjxpKkhQsX6t5779XPP/+sWrVqudS+oqIixcTEqLCwUNHR0e7vIOAHFouUklL5Ms+5uQyLRBjzxJrqAAKCq/FaUAyrWLdunWJjY+2BsSSlpaUpIiJC69evr/C1r776qho2bKhLL71UU6ZM0cmTJx2226FDB3tgLEnp6ekqKirS999/X+42z5w5o6KiIocbEGyYLwRUwlNrqgMIKkERHOfn56tRo0YOZTVq1FBcXJzy8/PLfd3QoUP173//W2vWrNGUKVP0yiuv6Oabb3bYbunAWJL9cUXbnTt3rmJiYuy35OTkquwW4HcZGdJrr0kXXeRYznwhhD1Pr6kOIGj4NTiePHlymQlzF962bdtW5e2PGTNG6enp6tChg4YNG6bFixdrxYoV2rVrV7XaPWXKFBUWFtpv+/btq9b2AH/JzpayshzzHMfHS48/TmCMMOeNNdUBBAW/TsibMGGCRo4cWWGdFi1aKCEhQQcPHnQoP3/+vI4cOaKEhASX3y81NVWStHPnTl1yySVKSEjQhg0bHOoUFBRIUoXbjYyMVGRkpMvvCwQi2y/GF3aMHTok3XgjPccIc66mc3F3TXUAAc+vwXF8fLzi4+Mrrde9e3cdPXpUGzduVJcuXSRJn3zyiYqLi+0Brys2b94sSWpSMk2/e/fumjNnjg4ePGgftvHRRx8pOjpa7du3d3NvgOBR2S/GJpP1F+P+/RlzjDDlzvLPAEJKUIw5bteunfr27avRo0drw4YN+uyzzzRu3DgNHjzYnqkiLy9Pbdu2tfcE79q1S7NmzdLGjRu1e/duvfXWWxo+fLiuvPJKXXbZZZKkq6++Wu3bt9ctt9yib775Rh988IHuv/9+jR07lp5hhDR+MQYqwfLPQNgKiuBYsmadaNu2ra666ipde+21uuKKK/Tss8/anz937py2b99uz0ZRq1Ytffzxx7r66qvVtm1bTZgwQQMHDtTbb79tf43ZbNY777wjs9ms7t276+abb9bw4cMd8iID/maxSDk50tKl1ntPzP/hF2OgEu6mc/HGFxWAXwRFnuNAR55juMOd9QS8lWI1J0fq06fyemvWsHYBwpyzL2FysjUwtn0JyYUMBAVX4zWCYw8gOIar3DmHljdhztZpVZ0JcywAArihoitab35RAXgUwbEPERzDFe6cQ23Ba3njgj0RvNraIzm2iXM64CJffFEBeExIrZAHBDt31xPwxYS5jAxrANy0qWM5C4AALmJmKxCS/JrKDQgX7pxDe/f23YS5jAxrujZXx0ADKIWZrUBIIjgGfMDdc6gvU6yazUy6Q4hxZ9ZrdZALGQhJDKsAfMDdcygpVoEqys62jgPu00caOtR6n5JiLfc0vqhASCI4BnzAdg6tSOlzqLspVgHo11mmF45hysuzlns6QOaLCoQkgmPAB8xmaciQiusMHux4Di1vwlzDhtbJfXFxrDMA2Lk769VTmNkKhBxSuXkAqdxQmcoyPknWnmNnGZ9swydXrpT+/W/p0KFfn2OdAaCEv1e28dU4ZwBV5mq8xoQ8wAcqy1YhOWarKM1slo4csQbBF17K2n4tpoMKYc/fmSOY2QqEDIZVANVksVg7rZYutd47+9W2Oudtf/1aDAQVMkcA8BCCY6AaXJ0YX53zNusMAC4gcwQADyE4BqrInYnx1Tlv+/vXYiAokDkCgIcQHANV4O5Qh+qctxs1cq1NrtYDQhaZIwB4AMEx4CaLRXrySfeHOnDeBnwgI0PavdualWLJEut9bi5fMAAuI1sF4IbsbGuPcWWZJ2wuHOqQkSH17+9exqeDB117L1frASGPzBEAqoHgGHCRbYyxO5nBnU2wc/e87epkvh9+sGbLIL0qAABVxyIgHsAiIKHPlUU8SjOZrMMlnC3qUdX3zstzLTBnYRAAAMpyNV5jzDHgAlcW8bDx9MT4iibzOeMsWwYAAHANwTHgAnfSpHljgl15k/mcYWEQAACqjuAYcIGr436feMJ7E+NLT8K///6K67IwCAAAVUNwDLjA1UU87rrLu5PhbJP52rd3rT4LgwAA4B6CY8AFgbb4VnWWowYAAOUjOAZcFCiLeFgs1ltcXPl1KlqOGgAAlI88x4AbqrKIhye5sgiJP3qyEUYsFv99AQDABwiOATf5a/EtVxchSUqyBsbkOYbHObs6I7E2gBDDsAogCFgs1pikosA4Lk76+GPvZctAmLNdnV34swWJtQGEGIJjIAi4sgjJkSPWXm1+4YbHVXR1RmJtACGG4BgIAq6mZCN1G7yisqszEmsDCCGMOQaCAKnb4FfevDpjgh+AAEPPMRAEXF2EhNRt8ApvXZ1lZ0spKVKfPtLQodb7lBTGLwPwK4JjIAgE2iIkCDPeuDpjgh+AAEVwDASJQFmEBGHI01dnTPADEMAIjoEgkpEh7d4trVkjLVlivSd1G3zCk1dnTPADEMCYkAcEGX8tQgJ4bIlI0q8ACGAExwAA13ni6oz0KwACGMMqAAC+RfoVAAGM4BgA4FukXwEQwAiOAQC+R/oVAAGKMccAAP/w1AQ/APAggmMAgP+QfgVAgCE4BnzIYqGTDACAQEZwDPhIdrZ1UbDSax8kJVnnJTG8EgCAwMCEPMAHsrOlQYPKLgqWl2ctz872T7sAAIAjgmPAyywWa4+xYZR9zlaWmWmtBwAA/CtoguMjR45o2LBhio6OVmxsrG699VYdP3683Pq7d++WyWRyenvjjTfs9Zw9v2zZMl/sEsLE2rVle4xLMwxp3z5rPQAA4F9BM+Z42LBhOnDggD766COdO3dOo0aN0pgxY7RkyRKn9ZOTk3XgwAGHsmeffVaPPPKIrrnmGofyl156SX379rU/jo2N9Xj7Eb4u+BhWux4AAPCeoAiOt27dqlWrVunLL79U165dJUlPPvmkrr32Wj366KNKTEws8xqz2ayEhASHshUrVujGG29UvXr1HMpjY2PL1K3ImTNndObMGfvjoqIid3YHYaZJE8/WAwAA3hMUwyrWrVun2NhYe2AsSWlpaYqIiND69etd2sbGjRu1efNm3XrrrWWeGzt2rBo2bKhu3brpxRdflOFscGgpc+fOVUxMjP2WnJzs3g4hrPTsac1KceEquTYmk5ScbK0HAAD8KyiC4/z8fDVq1MihrEaNGoqLi1N+fr5L23jhhRfUrl079ejRw6F85syZev311/XRRx9p4MCBuvPOO/Xkk09WuK0pU6aosLDQftu3b597O4SwYjZb07VJZQNk2+N588h3DABAIPBrcDx58uRyJ83Zbtu2bav2+5w6dUpLlixx2mv8wAMP6PLLL1fnzp117733atKkSXrkkUcq3F5kZKSio6MdbkBFMjKk5culpk0dy5OSrOXkOQYAIDD4dczxhAkTNHLkyArrtGjRQgkJCTp48KBD+fnz53XkyBGXxgovX75cJ0+e1PDhwyutm5qaqlmzZunMmTOKjIystD7gqowMqX9/VsgDACCQ+TU4jo+PV3x8fKX1unfvrqNHj2rjxo3q0qWLJOmTTz5RcXGxUlNTK339Cy+8oBtuuMGl99q8ebMaNGhAYAyvMJul3r393QoAAFCeoMhW0a5dO/Xt21ejR4/WwoULde7cOY0bN06DBw+2Z6rIy8vTVVddpcWLF6tbt2721+7cuVOffvqp3nvvvTLbffvtt1VQUKDf//73ioqK0kcffaR//OMfuueee3y2bwAAAAgcQREcS9Krr76qcePG6aqrrlJERIQGDhyo+fPn258/d+6ctm/frpMnTzq87sUXX1RSUpKuvvrqMtusWbOmFixYoPHjx8swDLVs2VKPP/64Ro8e7fX9AQAAQOAxGZXlLUOlioqKFBMTo8LCQibnAQAABCBX47WgSOUGAAAA+ALBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAAAAKEFwDAAAAJSo4e8GAK6yWKS1a6UDB6QmTaSePSWz2d+tAgAAoYTgGEEhO1v629+k/ft/LUtKkv75Tykjw3/tAryKK0IA8DmGVSDgZWdLgwY5BsaSlJdnLc/O9k+7AK/KzpZSUqQ+faShQ633KSl84AHAywiOEdAsFmuPsWGUfc5WlplprQeEDK4IAcBvCI4R0NauLRsflGYY0r591npASOCKEAD8iuAYAe3AAc/WAwIeV4QA4FcExwhoTZp4th4Q8LgiBAC/IjhGQOvZ05qVwmRy/rzJJCUnW+sBIYErQgDwK4JjBDSz2ZquTSobINsez5tHdiuEEK4IAcCvCI4R8DIypOXLpaZNHcuTkqzl5DlGSOGKEAD8ymQYzqZEwx1FRUWKiYlRYWGhoqOj/d2ckMV6CAgrzla+SU62BsZcEQKA21yN1wiOPYDgGIBXcEUIAB7jarzG8tEAEKjMZql3b3+3AgDCCsExggadaAAAwNsIjhEUnA2/TEqyzlti+CUAAPAUslUg4GVnS4MGlV00LC/PWp6d7Z92AQCA0ENwjIBmsVh7jJ1NG7WVZWZa6wEAAFQXwTEC2tq1ZXuMSzMMad8+az0AAIDqIjhGQDtwwLP1AAAAKkJwjIDWpIln6wEAAFSE4BgBrWdPa1aKC1fRtTGZrIuG9ezp23YBAIDQRHCMgGY2W9O1SWUDZNvjefPIdwwAADyD4BgBLyNDWr5catrUsTwpyVpOnmMAAOApLAKCoJCRIfXvzwp5AADAuwiOEXDKWybabJZ69/Z36wAAQCgjOEZAYZloAADgT4w5RsBgmWgAAOBvBMcICCwTDQAAAgHBMQICy0QDAIBAQHCMgMAy0QAAIBAQHCMgsEw0AAAIBATHCAgsEw0AAAJB0ATHc+bMUY8ePVSnTh3Fxsa69BrDMDR16lQ1adJEtWvXVlpamnbs2OFQ58iRIxo2bJiio6MVGxurW2+9VcePH/fCHqAiLBMNAAACQdAEx2fPntWf//xn3XHHHS6/5uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz5trzNs2DB9//33+uijj/TOO+/o008/1ZgxY7yxC6gEy0QDAAB/MxmGs+RZgWvRokXKzMzU0aNHK6xnGIYSExM1YcIE3XPPPZKkwsJCNW7cWIsWLdLgwYO1detWtW/fXl9++aW6du0qSVq1apWuvfZa7d+/X4mJiS61qaioSDExMSosLFR0dHS19g/lr5AHAABQVa7Ga0HTc+yu3Nxc5efnKy0tzV4WExOj1NRUrVu3TpK0bt06xcbG2gNjSUpLS1NERITWr19f7rbPnDmjoqIihxs8x7ZM9JAh1nsCYwAA4CshGxzn5+dLkho3buxQ3rhxY/tz+fn5atSokcPzNWrUUFxcnL2OM3PnzlVMTIz9lpyc7OHWAwAAwB/8GhxPnjxZJpOpwtu2bdv82USnpkyZosLCQvtt3759/m4SAAAAPKCGP998woQJGjlyZIV1WrRoUaVtJyQkSJIKCgrUpFRy3IKCAnXq1Mle5+DBgw6vO3/+vI4cOWJ/vTORkZGKjIysUrsAAAAQuPwaHMfHxys+Pt4r227evLkSEhK0evVqezBcVFSk9evX2zNedO/eXUePHtXGjRvVpUsXSdInn3yi4uJipaameqVdAAAACFxBM+Z479692rx5s/bu3SuLxaLNmzdr8+bNDjmJ27ZtqxUrVkiSTCaTMjMzNXv2bL311lvasmWLhg8frsTERA0YMECS1K5dO/Xt21ejR4/Whg0b9Nlnn2ncuHEaPHiwy5kqAAAAEDr82nPsjqlTp+rll1+2P+7cubMkac2aNerdu7ckafv27SosLLTXmTRpkk6cOKExY8bo6NGjuuKKK7Rq1SpFRUXZ67z66qsaN26crrrqKkVERGjgwIGaP3++b3YKAAAAASXo8hwHIvIcAwAABLawz3MMAAAAuIvgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASQZPnOJDZsuEVFRX5uSUAAABwxhanVZbFmODYA44dOyZJSk5O9nNLAAAAUJFjx44pJiam3OdZBMQDiouL9dNPP6l+/foymUxeeY+ioiIlJydr3759LDRyAY5N+Tg25ePYVIzjUz6OTfk4NuXj2JTPV8fGMAwdO3ZMiYmJiogof2QxPcceEBERoaSkJJ+8V3R0NF+qcnBsysexKR/HpmIcn/JxbMrHsSkfx6Z8vjg2FfUY2zAhDwAAAChBcAwAAACUIDgOEpGRkZo2bZoiIyP93ZSAw7EpH8emfBybinF8ysexKR/Hpnwcm/IF2rFhQh4AAABQgp5jAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4DhBz5sxRjx49VKdOHcXGxrr0GsMwNHXqVDVp0kS1a9dWWlqaduzY4VDnyJEjGjZsmKKjoxUbG6tbb71Vx48f98IeeI+7+7B7926ZTCantzfeeMNez9nzy5Yt88UueVRV/o979+5dZt9vv/12hzp79+5Vv379VKdOHTVq1EgTJ07U+fPnvbkrHufusTly5IjuuusutWnTRrVr19bFF1+su+++W4WFhQ71gvGzs2DBAqWkpCgqKkqpqanasGFDhfXfeOMNtW3bVlFRUerQoYPee+89h+dd+fsTLNw5Ns8995x69uypBg0aqEGDBkpLSytTf+TIkWU+H3379vX2bniNO8dn0aJFZfY9KirKoU64fnac/d01mUzq16+fvU6ofHY+/fRTXX/99UpMTJTJZNKbb75Z6WtycnL029/+VpGRkWrZsqUWLVpUpo67f8eqzEBAmDp1qvH4448bWVlZRkxMjEuvefDBB42YmBjjzTffNL755hvjhhtuMJo3b26cOnXKXqdv375Gx44djS+++MJYu3at0bJlS2PIkCFe2gvvcHcfzp8/bxw4cMDhNmPGDKNevXrGsWPH7PUkGS+99JJDvdLHLlhU5f+4V69exujRox32vbCw0P78+fPnjUsvvdRIS0szvv76a+O9994zGjZsaEyZMsXbu+NR7h6bLVu2GBkZGcZbb71l7Ny501i9erXRqlUrY+DAgQ71gu2zs2zZMqNWrVrGiy++aHz//ffG6NGjjdjYWKOgoMBp/c8++8wwm83Gww8/bPzwww/G/fffb9SsWdPYsmWLvY4rf3+CgbvHZujQocaCBQuMr7/+2ti6dasxcuRIIyYmxti/f7+9zogRI4y+ffs6fD6OHDniq13yKHePz0svvWRER0c77Ht+fr5DnXD97Bw+fNjhuHz33XeG2Ww2XnrpJXudUPnsvPfee8Z9991nZGdnG5KMFStWVFj/xx9/NOrUqWNkZWUZP/zwg/Hkk08aZrPZWLVqlb2Ou8e7OgiOA8xLL73kUnBcXFxsJCQkGI888oi97OjRo0ZkZKSxdOlSwzAM44cffjAkGV9++aW9zvvvv2+YTCYjLy/P4233Bk/tQ6dOnYy//OUvDmWufGEDXVWPT69evYy//e1v5T7/3nvvGREREQ4ntWeeecaIjo42zpw545G2e5unPjuvv/66UatWLePcuXP2smD77HTr1s0YO3as/bHFYjESExONuXPnOq1/4403Gv369XMoS01NNf76178ahuHa359g4e6xudD58+eN+vXrGy+//LK9bMSIEUb//v093VS/cPf4VHYO47PzqyeeeMKoX7++cfz4cXtZKH12bFz5ezlp0iTjN7/5jUPZTTfdZKSnp9sfV/d4u4NhFUEqNzdX+fn5SktLs5fFxMQoNTVV69atkyStW7dOsbGx6tq1q71OWlqaIiIitH79ep+3uSo8sQ8bN27U5s2bdeutt5Z5buzYsWrYsKG6deumF198UUaQpf2uzvF59dVX1bBhQ1166aWaMmWKTp486bDdDh06qHHjxvay9PR0FRUV6fvvv/f8jniBpz7/hYWFio6OVo0aNRzKg+Wzc/bsWW3cuNHhb0VERITS0tLsfysutG7dOof6kvX/31bflb8/waAqx+ZCJ0+e1Llz5xQXF+dQnpOTo0aNGqlNmza64447dPjwYY+23ReqenyOHz+uZs2aKTk5Wf3793f4m8Fn51cvvPCCBg8erLp16zqUh8Jnx12V/c3xxPF2R43KqyAQ5efnS5JD8GJ7bHsuPz9fjRo1cni+Ro0aiouLs9cJdJ7YhxdeeEHt2rVTjx49HMpnzpypP/zhD6pTp44+/PBD3XnnnTp+/Ljuvvtuj7Xf26p6fIYOHapmzZopMTFR3377re69915t375d2dnZ9u06+2zZngsGnvjsHDp0SLNmzdKYMWMcyoPps3Po0CFZLBan/5/btm1z+pry/v9L/22xlZVXJxhU5dhc6N5771ViYqLDSbtv377KyMhQ8+bNtWvXLv3973/XNddco3Xr1slsNnt0H7ypKsenTZs2evHFF3XZZZepsLBQjz76qHr06KHvv/9eSUlJfHZKbNiwQd99951eeOEFh/JQ+ey4q7y/OUVFRTp16pR++eWXan9X3UFw7EWTJ0/WQw89VGGdrVu3qm3btj5qUeBw9dhU16lTp7RkyRI98MADZZ4rXda5c2edOHFCjzzySEAEON4+PqWDvQ4dOqhJkya66qqrtGvXLl1yySVV3q4v+OqzU1RUpH79+ql9+/aaPn26w3OB/NmB7zz44INatmyZcnJyHCadDR482P7vDh066LLLLtMll1yinJwcXXXVVf5oqs90795d3bt3tz/u0aOH2rVrp3/961+aNWuWH1sWWF544QV16NBB3bp1cygP589OICE49qIJEyZo5MiRFdZp0aJFlbadkJAgSSooKFCTJk3s5QUFBerUqZO9zsGDBx1ed/78eR05csT+en9x9dhUdx+WL1+ukydPavjw4ZXWTU1N1axZs3TmzBm/r+/uq+Njk5qaKknauXOnLrnkEiUkJJSZBVxQUCBJYfHZOXbsmPr27av69etrxYoVqlmzZoX1A+mzc6GGDRvKbDbb//9sCgoKyj0OCQkJFdZ35e9PMKjKsbF59NFH9eCDD+rjjz/WZZddVmHdFi1aqGHDhtq5c2dQBTjVOT42NWvWVOfOnbVz505JfHYk6cSJE1q2bJlmzpxZ6fsE62fHXeX9zYmOjlbt2rVlNpur/Vl0i8dHMaNa3J2Q9+ijj9rLCgsLnU7I++qrr+x1Pvjgg6CckFfVfejVq1eZTAPlmT17ttGgQYMqt9UfPPV//L///c+QZHzzzTeGYfw6Ia/0LOB//etfRnR0tHH69GnP7YAXVfXYFBYWGr///e+NXr16GSdOnHDpvQL9s9OtWzdj3Lhx9scWi8Vo2rRphRPyrrvuOoey7t27l5mQV9Hfn2Dh7rExDMN46KGHjOjoaGPdunUuvce+ffsMk8lkrFy5strt9bWqHJ/Szp8/b7Rp08YYP368YRh8dgzDep6PjIw0Dh06VOl7BPNnx0YuTsi79NJLHcqGDBlSZkJedT6L7iA4DhB79uwxvv76a3vKsa+//tr4+uuvHVKPtWnTxsjOzrY/fvDBB43Y2Fhj5cqVxrfffmv079/faSq3zp07G+vXrzf+97//Ga1atQrKVG4V7cP+/fuNNm3aGOvXr3d43Y4dOwyTyWS8//77Zbb51ltvGc8995yxZcsWY8eOHcbTTz9t1KlTx5g6darX98fT3D0+O3fuNGbOnGl89dVXRm5urrFy5UqjRYsWxpVXXml/jS2V29VXX21s3rzZWLVqlREfHx+UqdzcOTaFhYVGamqq0aFDB2Pnzp0O6ZTOnz9vGEZwfnaWLVtmREZGGosWLTJ++OEHY8yYMUZsbKw9G8ktt9xiTJ482V7/s88+M2rUqGE8+uijxtatW41p06Y5TeVW2d+fYODusXnwwQeNWrVqGcuXL3f4fNj+Vh87dsy45557jHXr1hm5ubnGxx9/bPz2t781WrVqFTQXlqW5e3xmzJhhfPDBB8auXbuMjRs3GoMHDzaioqKM77//3l4nXD87NldccYVx0003lSkPpc/OsWPH7HGMJOPxxx83vv76a2PPnj2GYRjG5MmTjVtuucVe35bKbeLEicbWrVuNBQsWOE3lVtHx9iSC4wAxYsQIQ1KZ25o1a+x1VJJb1aa4uNh44IEHjMaNGxuRkZHGVVddZWzfvt1hu4cPHzaGDBli1KtXz4iOjjZGjRrlEHAHg8r2ITc3t8yxMgzDmDJlipGcnGxYLJYy23z//feNTp06GfXq1TPq1q1rdOzY0Vi4cKHTuoHO3eOzd+9e48orrzTi4uKMyMhIo2XLlsbEiRMd8hwbhmHs3r3buOaaa4zatWsbDRs2NCZMmOCQziwYuHts1qxZ4/R7KMnIzc01DCN4PztPPvmkcfHFFxu1atUyunXrZnzxxRf253r16mWMGDHCof7rr79utG7d2qhVq5bxm9/8xnj33Xcdnnfl70+wcOfYNGvWzOnnY9q0aYZhGMbJkyeNq6++2oiPjzdq1qxpNGvWzBg9erRXTuC+4s7xyczMtNdt3Lixce211xqbNm1y2F64fnYMwzC2bdtmSDI+/PDDMtsKpc9OeX9LbcdjxIgRRq9evcq8plOnTkatWrWMFi1aOMQ7NhUdb08yGUaA5h8CAAAAfIw8xwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAhQI0eOlMlkKnPbuXOnR7a/aNEixcbGemRbVfXpp5/q+uuvV2Jiokwmk958802/tgcACI4BIID17dtXBw4ccLg1b97c380q49y5c1V63YkTJ9SxY0ctWLDAwy0CgKohOAaAABYZGamEhASHm9lsliStXLlSv/3tbxUVFaUWLVpoxowZOn/+vP21jz/+uDp06KC6desqOTlZd955p44fPy5JysnJ0ahRo1RYWGjvkZ4+fbokOe3BjY2N1aJFiyRJu3fvlslk0muvvaZevXopKipKr776qiTp+eefV7t27RQVFaW2bdvq6aefrnD/rrnmGs2ePVt/+tOfPHC0AKD6avi7AQAA961du1bDhw/X/Pnz1bNnT+3atUtjxoyRJE2bNk2SFBERofnz56t58+b68ccfdeedd2rSpEl6+umn1aNHD82bN09Tp07V9u3bJUn16tVzqw2TJ0/WY489ps6dO9sD5KlTp+qpp55S586d9fXXX2v06NGqW7euRowY4dkDAABeQnAMAAHsnXfecQhar7nmGr3xxhuaMWOGJk+ebA86W7RooVmzZmnSpEn24DgzM9P+upSUFM2ePVu33367nn76adWqVUsxMTEymUxKSEioUtsyMzOVkZFhfzxt2jQ99thj9rLmzZvrhx9+0L/+9S+CYwBBg+AYAAJYnz599Mwzz9gf161bV5L0zTff6LPPPtOcOXPsz1ksFp0+fVonT55UnTp19PHHH2vu3Lnatm2bioqKdP78eYfnq6tr1672f584cUK7du3SrbfeqtGjR9vLz58/r5iYmGq/FwD4CsExAASwunXrqmXLlmXKjx8/rhkzZjj03NpERUVp9+7duu6663THHXdozpw5iouL0//+9z/deuutOnv2bIXBsclkkmEYDmXOJtzZAnVbeyTpueeeU2pqqkM92xhpAAgGBMcAEIR++9vfavv27U4DZ0nauHGjiouL9dhjjykiwjr3+vXXX3eoU6tWLVksljKvjY+P14EDB+yPd+zYoZMnT1bYnsaNGysxMVE//vijhg0b5u7uAEDAIDgGgCA0depUXXfddbr44os1aNAgRURE6JtvvtF3332n2bNnq2XLljp37pyefPJJXX/99frss8+0cOFCh22kpKTo+PHjWr16tTp27Kg6deqoTp06+sMf/qCnnnpK3bt3l8Vi0b333quaNWtW2qYZM2bo7rvvVkxMjPr27aszZ87oq6++0i+//KKsrCynrzl+/LhD3ubc3Fxt3rxZcXFxuvjii6t3kACgCkjlBgBBKD09Xe+8844+/PBD/e53v9Pvf/97PfHEE2rWrJkkqWPHjnr88cf10EMP6dJLL9Wrr76quXPnOmyjR48euv3223XTTTcpPj5eDz/8sCTpscceU3Jysnr27KmhQ4fqnnvucWmM8m233abnn39eL730kjp06KBevXpp0aJFFeZl/uqrr9S5c2d17txZkpSVlaXOnTtr6tSpVT00AFAtJuPCgWUAAABAmKLnGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEr8PxoimZUgVu73AAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4BbfN35ACCwkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJFdrb0t79J+/f/WpaUJP3zn57/2wogOBAcBzCLxfpH29mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4CK+KPzAUDgY1hFAFu71rE340KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKE9lnQ+StfOBIRZA+CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQHn81fkAIPARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIN/7qfAAQ+AiOA1jPntaJISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQWvzV+QAg8DEhL4CZzdYZ04MGWQPh0mPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEFlvnQ16e83HHJpP1eW90PiDIWSzW8TYHDlivnnr29M6JGH5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnqYaSk62BMTOpXeeJ/wsAocOWrUJy3vlAtgqUQe6/oFZRvFYawyqCQEaGtHu3tGaNtGSJ9T43l+8hAFRHRoY1AG7a1LE8KYnAGE7YrqYunMlpy/3nzZW54FMMqwgSZrPUu7e/WwEAoSUjw5ornl/JUSF/LTwAvyA4BgCENTofUCl3cv+FwocpzMdVExwDAABUJJxy/zGumjHHAAAAFQqX3H+Mq5ZEcAwAAFAxfy484CusqW5HcAwAAFAR28IDUtkA2dsLD/gKa6rbERwDAABUJtRz/4XTuOpKMCEPAADAFaGc+y9cxlW7gOAY1WIymbRixQoNGDDA300BAMD7QjX3H2uq2zGsAuXKz8/XXXfdpRYtWigyMlLJycm6/vrrtXr1an83TZKUnZ2tq6++WhdddJFMJpM2b97s7yYBABCcwmFctYsIjoOFxSLl5EhLl1rvvTxbdPfu3erSpYs++eQTPfLII9qyZYtWrVqlPn36aOzYsV59b1edOHFCV1xxhR566CF/NwUAgOAX6uOqXURwHAyys6WUFKlPH2noUOt9SopX8w3eeeedMplM2rBhgwYOHKjWrVvrN7/5jbKysvTFF1+U+7p7771XrVu3Vp06ddSiRQs98MADOnfunP35b775Rn369FH9+vUVHR2tLl266KuvvpIk7dmzR9dff70aNGigunXr6je/+Y3ee++9ct/rlltu0dSpU5WWlua5HQcAIJxlZEi7d0tr1khLlljvc3PDJjCWGHMc+GwJuS8c/2NLyO2FK7kjR45o1apVmjNnjurWrVvm+djY2HJfW79+fS1atEiJiYnasmWLRo8erfr162vSpEmSpGHDhqlz58565plnZDabtXnzZtWsWVOSNHbsWJ09e1affvqp6tatqx9++EH16tXz6L4BAIBKhOq4ahcRHAeyyhJym0zWhNz9+3t0DNDOnTtlGIbatm3r9mvvv/9++79TUlJ0zz33aNmyZfbgeO/evZo4caJ9261atbLX37t3rwYOHKgOHTpIklq0aFGd3QAAAHAbwyoCmZ8SchvOgnEXvfbaa7r88suVkJCgevXq6f7779fevXvtz2dlZem2225TWlqaHnzwQe3atcv+3N13363Zs2fr8ssv17Rp0/Ttt99Waz8AAADcRXAcyPyUkLtVq1YymUzatm2bW69bt26dhg0bpmuvvVbvvPOOvv76a9133306e/asvc706dP1/fffq1+/fvrkk0/Uvn17rVixQpJ022236ccff9Qtt9yiLVu2qGvXrnryySc9um8AAAAVITgOZH5KyB0XF6f09HQtWLBAJ06cKPP80aNHnb7u888/V7NmzXTfffepa9euatWqlfbs2VOmXuvWrTV+/Hh9+OGHysjI0EsvvWR/Ljk5Wbfffruys7M1YcIEPffccx7bLwAAgMoQHAcyW0LuC/MN2phMUnKyVxJyL1iwQBaLRd26ddN//vMf7dixQ1u3btX8+fPVvXt3p69p1aqV9u7dq2XLlmnXrl2aP3++vVdYkk6dOqVx48YpJydHe/bs0WeffaYvv/xS7dq1kyRlZmbqgw8+UG5urjZt2qQ1a9bYn3PmyJEj2rx5s3744QdJ0vbt27V582bl5+d78EgAAIBwQnAcyPyYkLtFixbatGmT+vTpowkTJujSSy/VH//4R61evVrPPPOM09fccMMNGj9+vMaNG6dOnTrp888/1wMPPFBqd8w6fPiwhg8frtatW+vGG2/UNddcoxkzZkiSLBaLxo4dq3bt2qlv375q3bq1nn766XLb+NZbb6lz587q16+fJGnw4MHq3LmzFi5c6MEjAQAAwonJqM7sK0iSioqKFBMTo8LCQkVHRzs8d/r0aeXm5qp58+aKioqq2htkZ1uzVpSenJecbA2MwyjvYHV55P8CAAAEpYritdJI5RYMMjKs6drWrrVOvmvSxDqUIgyWcAQAAPAlguNgEeYJuQEAAHyBMccAAABACXqOAQAeZbEwCgxA8CI49hHmPfof/weA9zmbP5yUZE28w/xhAMGAYRVeZi7pLim9Shz8w/Z/YKYLC/CK7Gxp0KCyq97n5VnLs7P90y4AcAc9x15Wo0YN1alTRz///LNq1qypiAiuR/yhuLhYP//8s+rUqaMaNfjYA55msVh7jJ39QGMY1tTsmZnWxDtcnwIIZEEXJSxYsECPPPKI8vPz1bFjRz355JPq1q2b07q9e/fWf//73zLl1157rd59911J0siRI/Xyyy87PJ+enq5Vq1Z5pL0mk0lNmjRRbm6u06WU4TsRERG6+OKLZSpvxUEAVbZ2bdke49IMQ9q3z1qPxDsAAllQBcevvfaasrKytHDhQqWmpmrevHlKT0/X9u3b1ahRozL1s7OzHYYzHD58WB07dtSf//xnh3p9+/bVSy+9ZH8cGRnp0XbXqlVLrVq1YmiFn9WqVYuee8BLDhzwbD0AISBIZ+cGVXD8+OOPa/To0Ro1apQkaeHChXr33Xf14osvavLkyWXqx8XFOTxetmyZ6tSpUyY4joyMVEJCgvcaLmuvJauyAQhVTZp4th6AIBfEs3ODphvt7Nmz2rhxo9LS0uxlERERSktL07p161zaxgsvvKDBgwerbt26DuU5OTlq1KiR2rRpozvuuEOHDx+ucDtnzpxRUVGRww0AwlnPntbzXnmjlkwm66r3PXv6tl0A/CDIZ+cGTXB86NAhWSwWNW7c2KG8cePGys/Pr/T1GzZs0HfffafbbrvNobxv375avHixVq9erYceekj//e9/dc0118hisZS7rblz5yomJsZ+S05OrtpOAUCIMJutHUJS2QDZ9njevKD4RRVAdVQ2O1eyzs6tIM7yt6AJjqvrhRdeUIcOHcpM3hs8eLBuuOEGdejQQQMGDNA777yjL7/8Ujk5OeVua8qUKSosLLTf9u3b5+XWA0Dgy8iQli+XmjZ1LE9KspYH+C+pADzBndm5ASpoxhw3bNhQZrNZBQUFDuUFBQWVjhc+ceKEli1bppkzZ1b6Pi1atFDDhg21c+dOXXXVVU7rREZGenzSHgCEgowMa7q2IJyDA8ATQmB2btD0HNeqVUtdunTR6tWr7WXFxcVavXq1unfvXuFr33jjDZ05c0Y333xzpe+zf/9+HT58WE2YNQIAVWI2W9O1DRlivScwBsJICMzODZrgWJKysrL03HPP6eWXX9bWrVt1xx136MSJE/bsFcOHD9eUKVPKvO6FF17QgAEDdNFFFzmUHz9+XBMnTtQXX3yh3bt3a/Xq1erfv79atmyp9PR0n+wTAPiLxSLl5EhLl1rvA3gIIIBgEQKzc4NmWIUk3XTTTfr55581depU5efnq1OnTlq1apV9kt7evXvL5LHdvn27/ve//+nDDz8ssz2z2axvv/1WL7/8so4eParExERdffXVmjVrFsMmAIS0IM6yBCCQ2WbnDhpkDYRLT8wLktm5JsNwNp0Q7igqKlJMTIwKCwsVHR3t7+YAQIVsWZYu/OtvO28xeQ5AtTm7Ak9OtgbGfvoD42q8RnDsAQTHAIKFxSKlpJQ/mdxksvYg5+YGdMcOgGAQYCvkuRqvBdWwCgBA9biTZal3b581C0Aoss3ODTJBNSEPAFA9IZBlCQC8iuAYAMJICGRZAgCvIjgGgDASAlmWAMCrCI4BIIzYsixJZQPkIMmyBABeRXAMAGEmI8Oarq1pU8fypCTSuAEA2SoAIAxlZEj9+wdUliWgYgGWFgyhi+AYAMJUkGZZQjhiSUf4EMMqAABA4LIt6Xhhgu68PGt5drZ/2oWQRXAMAAACk8Vi7TF2tpivrSwz01oP8BCCYwAAEJjcWdIR8BCCYwAAEJhY0hF+QHAMAAACE0s6wg8IjgEAQGBiSUf4AcExAAAITCzpCD8gOAYAAIGLJR3hYywCAgAAAhtLOsKHCI4BAEDgY0lH+AjDKgAAAIAS9BwDAAC4y2JhmEeIIjgGAABwR3a2dVnr0qv3JSVZM2swQTDoMawCAPzIYpFycqSlS633Fou/WwSgQtnZ0qBBZZe1zsuzlmdn+6dd8BiCYwDwA4tFmjlTatRI6tNHGjrUep+SwrkVCFgWi7XH2DDKPmcry8zkKjfIERwDgI9lZ0uNG0vTpklHjjg+R+cTEMDWri3bY1yaYUj79lnrIWgRHAOAD9l+kT182PnzdD4BAezAAc/WQ0AiOAYAH6noF9nS6HwCAlSTJp6th4BEcAwAPlLZL7IXovMJCDA9e1qzUphMzp83maTkZGs9BC2CYwDwEXeDXTqfgEr4Ot2L2WxN1yaVDZBtj+fNI99xkCM4BgA3VfV87E6wS+cTUInsbGt6F1+ne8nIkJYvl5o2dSxPSrKWk+c46JkMo7LRb6hMUVGRYmJiVFhYqOjoaH83B4AXVSf3v8ViPXfn5VU+7vg//+EcC5TLNrP1wi+SrffWF0EqK+QFHVfjNYJjDyA4BsKDJ87Htm1IzgPkiy6Snn2WwBgol+0qs7wB/CaT9Yo1N5dgFQ5cjdcYVgEALvBU7v/yfpG96CJpxgypoIDAGKgQuYbhZTX83QAACAbunI979654WxkZUv/+/CILVAm5huFlBMcA4AJPn4/N5sqDaABOkGsYXsawCgBwAedjIECQaxheRnAMAC7gfAwECHINw8sIjgGgHKXzGa9dKz3+uLWc8zHgZ+QahheRys0DSOUGhJ7y8hkPGWINlkuXJydbA2POx4CPkWsYbiDPsQ8RHAOhpbJ8xq+/LjVsyPkYAIKJq/Ea2SoAoJTK8hmbTFJWFusLwMPoAQUCBmOOAaAU1heAz2VnW1d869NHGjrUep+SYi0H4HMExwBQCusLwKdsY3guvCLLy7OWEyADPkdwDAClkM8YPuOpNckBeBTBMQCUQj5j+AxjeICAFHTB8YIFC5SSkqKoqCilpqZqw4YN5dZdtGiRTCaTwy0qKsqhjmEYmjp1qpo0aaLatWsrLS1NO3bs8PZuAAhQrC8An2EMDxCQgio4fu2115SVlaVp06Zp06ZN6tixo9LT03Xw4MFyXxMdHa0DBw7Yb3v27HF4/uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz7t7d0BEKBYXwA+EQpjeEqvlJOTwxAQhISgynOcmpqq3/3ud3rqqackScXFxUpOTtZdd92lyZMnl6m/aNEiZWZm6ujRo063ZxiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXeY6B0ER2LXiVxWLNSpGX53zcsclkvSIL1LyB5a2U889/cgWJgORqvBY0Pcdnz57Vxo0blZaWZi+LiIhQWlqa1q1bV+7rjh8/rmbNmik5OVn9+/fX999/b38uNzdX+fn5DtuMiYlRampqhds8c+aMioqKHG4AQo/ZLPXubV0Vr3fvwIxPEMSCeQwPWTYQwoImOD506JAsFosaN27sUN64cWPl5+c7fU2bNm304osvauXKlfr3v/+t4uJi9ejRQ/tLvsy217mzTUmaO3euYmJi7Lfk5OTq7BoAIFz5egyPJ4ZBVJZlwzDIsoGgFjTBcVV0795dw4cPV6dOndSrVy9lZ2crPj5e//rXv6q13SlTpqiwsNB+27dvn4daDAAIOxkZ0u7d0po10pIl1vvcXM8Hxp5abKSyLBsSWTYQ1IJm+eiGDRvKbDaroKDAobygoEAJCQkubaNmzZrq3Lmzdu7cKUn21xUUFKhJqQkPBQUF6tSpU7nbiYyMVGRkpJt7AABAOWxjeLzFNgziwt5e2zAId3qp8/I8Ww8IMEHTc1yrVi116dJFq1evtpcVFxdr9erV6t69u0vbsFgs2rJliz0Qbt68uRISEhy2WVRUpPXr17u8TQAAApqnFxv5+WfP1gMCTND0HEtSVlaWRowYoa5du6pbt26aN2+eTpw4oVGjRkmShg8frqZNm2ru3LmSpJkzZ+r3v/+9WrZsqaNHj+qRRx7Rnj17dNttt0mSTCaTMjMzNXv2bLVq1UrNmzfXAw88oMTERA0YMMBfuwnARWSTAFzgzmIjrvRex8e79r6u1gMCTFAFxzfddJN+/vlnTZ06Vfn5+erUqZNWrVpln1C3d+9eRUT82hn+yy+/aPTo0crPz1eDBg3UpUsXff7552rfvr29zqRJk3TixAmNGTNGR48e1RVXXKFVq1aVWSwEQGCwBcQrV0r//rd06NCvz5FFCnDC04uNXDh5sLr1gAATVHmOAxV5jgHfcJZW1Zn//IcAGbDLybFOvqvMmjWu9Rzb8jNX9EVMTg7c/MwIWyGX5xhAeCsvraozY8aQRQqw69nT+rPKhbmUbUwmazDbs6dr27PlZ65oe4GanxlwAcExgIBX0XwiZw4ftnaWAZB3Fhux5WdOSnIsT052zHzB8tIIQgTHAAKeK2lVL0RwDJTijcVGKsvP7Km8yoCPBdWEPADhydV5QgAqkJEh9e/v2RQv5eVn9mReZcDHCI4BBLxSa/S4zJvrKQBBy9uLjUiV51U2max5lfv3Z1wyAhLDKgAEvMrmE13ooosIjgG/cSevMhCACI4B+IU783Qqmk/kzLPP0iEF+I2n8yoDPkZwDMDnqjJPp7z5RKUlJZHjGKi26maYcHUcVFXGSwE+wCIgHsAiIIDrypunY+sRrmyeTukloxs1spYdPMjy0YBHOFtpx92lJ22LhOTllZ9/MSnJmumCLyx8yNV4jeDYAwiOAde4srAW50zAT6p75epsW5LzAPmii6zjn/iZBz7ECnkAAo4r+Yr375fmzPFNewCUqCzDhGTNMOHqEAvbOKi4OOfPHzliDZ7JeYwARHAMwGdcnX8zbRrnTMCnvJFhon9/qXbt8rcnuRdwAz5CcAzAZ9yZf8M5EwEt1JZF9kaGCVK6IUgRHAPwGVu+YldwzkTACsVlkb2RYYKUbghSBMcAfKZ0vmJXcM5EwLFNNLuwR9S2LHKwBsiVrbRjMknJydZ6riKlG4IUwTEAn8rIkGbMcK0u50wEFE9PWgskFa20Y3s8b557aWS8EXADPkBwDMDn7ruv4uEVnDMRkEJ9DG15K+0kJbmXxs3GGwE34AMExwB8znbONJk4ZyKIhMMY2owMa6LxNWukJUus97m5Vc9H7OmAG/CBGv5uAIDwZDtnOluMa948zpkIQOEyhtZslnr39tz2MjKsad1sS1uynCUCHCvkeQAr5AG/Kr28syvnQHfrA35T2bLIJpP16i43lw8xEIBcjdfoOQbgMdnZznuC//nP8nuCPd1JBXiNbTzQoEHWQLh0gMx4ICBkMOYYgEeEaoYrwAFjaIGQx7AKD2BYBcKd7dfm8iby82szQg7jgYCgw7AKAD7jToYrhlAgJDAeCAhZBMcAKlVZJ1k4ZLgC7Og1BkIawTGACrkyyS5cMlwBVZp1CiCoMCEPgFMWizRzpjRwYOWT7FglFmGBWadAWCA4BlBGdrZ1gt20ac6ft03jzcy0BtGsEouQZ7FYe4ydzWG/8AsBIKgRHANwUF7n2IVKT7KTyHCFEOfOrFMAQY0xxwDsKuocK0/pSXasEouQxaxTIGwQHAOwq6xzzJkLJ9mR4QohiVmnQNhgWAUAO3c6vZhkh7DCrFMgbBAcA7Bzt9OLSXYIG8w6BcIGwTEAu8o6x2yYZIewxKxTICyYDMOdqTdwxtW1uoFgYMtWITmfmDdjhnTffXSQIYyxQh4QlFyN15iQB8CBrXPswkXAkpOtvxrTOYawx6xTIKQRHAMog5RsAIBwRXAMwCk6x4AwxJARgOAYCHWc6wC4JDu77HiqpCRrlg7GUyGMkK0CCGHZ2VJKitSnjzR0qPU+JcVaDgB25a0bn5dnLeePBsIIwTEQojjXAXBJRevG28oyM631gDBAcAyEIM51QIixWKScHGnpUuu9J7+8la0bbxjSvn3WekAYIDgGQhDnOiCEeHt8lKvrxruzvjwQxAiOgRDEuQ4IEb4YH+XquvHuri8PBCmCYyAEca4DQoCvxkdVtm68yWRdBahnz+q9DxAkgi44XrBggVJSUhQVFaXU1FRt2LCh3LrPPfecevbsqQYNGqhBgwZKS0srU3/kyJEymUwOt759+3p7NwCv4lwHhABfjY8ym63p2qSyfzRsj+fNIwckwkZQBcevvfaasrKyNG3aNG3atEkdO3ZUenq6Dh486LR+Tk6OhgwZojVr1mjdunVKTk7W1Vdfrby8PId6ffv21YEDB+y3pUuX+mJ3AK/hXAeEAF+Oj7KtG9+0qWN5UpK1nDzHCCMmw3D2e01gSk1N1e9+9zs99dRTkqTi4mIlJyfrrrvu0uTJkyt9vcViUYMGDfTUU09p+PDhkqw9x0ePHtWbb75Z5XYVFRUpJiZGhYWFio6OrvJ2AE9zltM/OdkaGHOuQ1AI51VscnKsk+8qs2aN55azDOfjjZDnarwWNCvknT17Vhs3btSUKVPsZREREUpLS9O6detc2sbJkyd17tw5xcXFOZTn5OSoUaNGatCggf7whz9o9uzZuuiii8rdzpkzZ3TmzBn746KiIjf3BvCNjAypf3/OdQhS4b5im218VF6e83HHJpP1eU+Oj2LdeCB4hlUcOnRIFotFjRs3dihv3Lix8vPzXdrGvffeq8TERKWlpdnL+vbtq8WLF2v16tV66KGH9N///lfXXHONLBVMcJg7d65iYmLst+Tk5KrtFOADtnPdkCHWewJjBAVWsWF8FOAnQRMcV9eDDz6oZcuWacWKFYqKirKXDx48WDfccIM6dOigAQMG6J133tGXX36pnJyccrc1ZcoUFRYW2m/79u3zwR4AQJhgFZtfMRYY8LmgGVbRsGFDmc1mFRQUOJQXFBQoISGhwtc++uijevDBB/Xxxx/rsssuq7BuixYt1LBhQ+3cuVNXXXWV0zqRkZGKjIx0bwcAAK5xJ0tDOAwBYHwU4FNB03Ncq1YtdenSRatXr7aXFRcXa/Xq1erevXu5r3v44Yc1a9YsrVq1Sl27dq30ffbv36/Dhw+rCQlgAcA/XM2+sHKld9sRSEqPj+rZ0xooe2MpaQDB03MsSVlZWRoxYoS6du2qbt26ad68eTpx4oRGjRolSRo+fLiaNm2quXPnSpIeeughTZ06VUuWLFFKSop9bHK9evVUr149HT9+XDNmzNDAgQOVkJCgXbt2adKkSWrZsqXS09P9tp8AENZc7ZyYN88aKFY2tCCUMjC4MkkxlPYX8IOgCo5vuukm/fzzz5o6dary8/PVqVMnrVq1yj5Jb+/evYqI+LUz/JlnntHZs2c1aNAgh+1MmzZN06dPl9ls1rfffquXX35ZR48eVWJioq6++mrNmjWLYRMA4C+2LA0VDa2QrJPSMjOtQw7KC/4CNeNFVQJY2yTFC8di2yYpLl9ufRyI+wsEkaDKcxyoyHMMAB6WnS0NHOha3fLy/JYXTNoyPfhrQltVAnaLRUpJKf+CwWSS4uKkI0cCb3+BAOFqvBY0Y44BAGEkI8PaK+wKZ2OUAzXjRVVT1LkySfHw4cDbXyAIERwDAAJT//6u1XM2RtmdjBe+Up2AvbpLRPtjf4EgRXAMAHCZxWJNkOCTRAm2sccXLoBhYzJZ10N3tkKcq8FkdYNOd1QnYPdUBiVf7i8QpAiOAQAuyc62Dnvt00caOtR6n5LixcXqqrNCnKvBpC/TdlYnYK/sQsFVpCkFKkVwDAColN9Wc67qCnHV6XX2luoE7K5cKFx0UWDtLxCkyFbhAWSrABDKXEmUkJQk5eZ6MZ1udVKfSY7jfP2VvcF2IPPynI87duVAOst0kZxs7UGXAmt/gQDjarxGcOwBBMcAQllOjnUIRWXKy6jmVxUFk/5K41bdALaiC4VA218ggLgarwXVIiAAAN8LxLltLsvIsGa9CJQV42zDRJzlOXY1gLUtJV3e9gNpf4EgRHAMeACrtSKUBeLcNrdUFEz6g7cD2EDbXyDIEBwD1RSoq9MCnmKb21bZUFnmermBABYIWGSrAKrBbzP4AR+qTkY1AAg2BMdAFQXq6rSAN1Q1oxoABBuGVQBV5M5iV/x6ilDAXC8A4YDgGHDClQl2QT2DH6gihsoCCHUEx8AFXJ1gF/Qz+AEAQBmMOQZKcWeCXSCuTgsAAKqH4Bgo4e4EO2bwAwAQegiOgRLuTLCzYQY/AAChhTHHQImqTrBjBj8AAKGD4BgoUZ0JdszgBwAgNDCsAijBBDsAAEBwDJRggh0AACA4RtiyWKScHGnpUuu9xcIEOwAAwh1jjhGWKlvogwl2AAB4iSvL0PqRW8HxqVOntHHjRsXFxal9+/YOz50+fVqvv/66hg8f7tEGAtV14Xfw0CHpxhvL5jO2LfRh6yFmgh0AAB7m6jK0fmQyDGdLHpT1f//3f7r66qu1d+9emUwmXXHFFVq2bJmalEzdLygoUGJioiy2FRLCSFFRkWJiYlRYWKjo6Gh/NwelOPsOms2/LuRxIZPJ+h3NzQ2oi1gAAIKfbRnaC0NP28QeL49fdDVec3nM8b333qtLL71UBw8e1Pbt21W/fn1dfvnl2rt3r0caDHhaeUtBV3T95myhDwAAUE3uLkPrRy4Hx59//rnmzp2rhg0bqmXLlnr77beVnp6unj176scff/RmGwG3VfQddIWrC4IAAAAXVGUZWj9xOTg+deqUatT4dYiyyWTSM888o+uvv169evXS//3f/3mlgUBVVPYdrIyrC4IAAAAXVHUZWj9weUJe27Zt9dVXX6ldu3YO5U899ZQk6YYbbvBsy4BqqOp3yzbmmIU+AADwoOosQ+tjLvcc/+lPf9LSpUudPvfUU09pyJAhcnFuH+B1VflusdAHAABeEkTL0LqcrQLlI1tF4LFYpJQUa3q28j7hF2atSE62BsYBkkkGAIDQYpspLzmenAMsWwWLgCAk2ZaCHjTI+p1z9h1culSKjw/YHORAeAjwxQAAeJBtGVpneY4DqHeKnmMPoOc4cDnLc0wPMRAggmAxAABe4KeLYlfjNYJjDyA4Dmx0TAEByM+LAQAIPwTHPkRwDABusE0KKC/fIktVAvACj6+QBwAIDRaLlJNjHXefk+OHBamCaDEAAOGnSsHxK6+8ossvv1yJiYnas2ePJGnevHlauXKlRxsHAPCs7Gxrp22fPtLQodb7lBRruc8E0WIAAMKP28HxM888o6ysLF177bU6evSoLCVdDrGxsZo3b56n2wcA8BDbMN8LO23z8qzlPguQg2gxAADhx+3g+Mknn9Rzzz2n++67T+ZSY8G6du2qLVu2eLRxgBQAPwEDIcBisSaGcDbLxFaWmemj71cQLQYAIPy4HRzn5uaqc+fOZcojIyN14sQJjzQKsAmIn4CBEBBQw3xticilsgEyS1UC8DO3g+PmzZtr8+bNZcpXrVqldu3aeaJNgKQA+gkYCAEBN8zXthhA06aO5UlJpHED4Fdur5CXlZWlsWPH6vTp0zIMQxs2bNDSpUs1d+5cPf/8895oI8JQZT8Bm0zWn4D796dzCcHB3/m2A3KYb0aG9UtMInIAAaRKeY5fffVVTZ8+Xbt27ZIkJSYmasaMGbr11ls93sBgQJ5jz8vJsQ6hqMyaNVLv3t5uDVA9gbAQnC21cF6e84tOUgsDCHVeyXN8/vx5LV68WGlpadqxY4eOHz+u/Px87d+/P2wDY3hHwP0EDFRRoAwPYpgvALjGreC4Ro0auv3223X69GlJUp06ddSoUSOvNKw8CxYsUEpKiqKiopSamqoNGzZUWP+NN95Q27ZtFRUVpQ4dOui9995zeN4wDE2dOlVNmjRR7dq17YE//CsgfwIG3BRQGSLEMF8AcIXbE/K6deumr7/+2httqdRrr72mrKwsTZs2TZs2bVLHjh2Vnp6ugwcPOq3/+eefa8iQIbr11lv19ddfa8CAARowYIC+++47e52HH35Y8+fP18KFC7V+/XrVrVtX6enp9gsA+AeZnhAKAipDRImMDGn3buuQpCVLrPe5uQTGgE+QmzQouD3m+PXXX9eUKVM0fvx4denSRXXr1nV4/rLLLvNoA0tLTU3V7373Oz311FOSpOLiYiUnJ+uuu+7S5MmTy9S/6aabdOLECb3zzjv2st///vfq1KmTFi5cKMMwlJiYqAkTJuiee+6RJBUWFqpx48ZatGiRBg8e7FK7GHPsHbafoyXHnjdbwExPFwLd0qXWFISVWbJEGjLE++0B4EeBMPkgzLkar7mdrcIWMN599932MpPJJMMwZDKZ7CvmedrZs2e1ceNGTZkyxV4WERGhtLQ0rVu3zulr1q1bp6ysLIey9PR0vfnmm5KsOZvz8/OVlpZmfz4mJkapqalat25ducHxmTNndObMGfvjoqKiqu5WWKjqLH3bT8DO/pbMm8ffEgQ+hgcBkPRrb8+F/ZG2yQf09gQUt4Pj3Nxcb7SjUocOHZLFYlHjxo0dyhs3bqxt27Y5fU1+fr7T+vn5+fbnbWXl1XFm7ty5mjFjhtv7EI6qe6FMpicEM9vwoMoyRDA8CAhh5CYNOm4Hx82aNfNGO4LKlClTHHqki4qKlJyc7McWBSZPXSibzaRrQ3CyZYgYNMh6/nM2PIgMEUCIc2fyASe7gOB2cLx48eIKnx8+fHiVG1ORhg0bymw2q6CgwKG8oKBACQkJTl+TkJBQYX3bfUFBgZqU+l2zoKBAnTp1KrctkZGRioyMrMpuhA0ulAErhgcBYY7cpEHH7eD4b3/7m8Pjc+fO6eTJk6pVq5bq1KnjteC4Vq1a6tKli1avXq0BAwZIsk7IW716tcaNG+f0Nd27d9fq1auVmZlpL/voo4/UvXt3SdalsBMSErR69Wp7MFxUVKT169frjjvu8Mp+hAsulIFfMTwICGNMPgg6bgfHv/zyS5myHTt26I477tDEiRM90qjyZGVlacSIEeratau6deumefPm6cSJExo1apQka69106ZNNXfuXEnWQL5Xr1567LHH1K9fPy1btkxfffWVnn32WUnWiYSZmZmaPXu2WrVqpebNm+uBBx5QYmKiPQBH1XChDDhieBAQpph8EHTcDo6dadWqlR588EHdfPPN5U6O84SbbrpJP//8s6ZOnar8/Hx16tRJq1atsk+o27t3ryIifk3d3KNHDy1ZskT333+//v73v6tVq1Z68803demll9rrTJo0SSdOnNCYMWN09OhRXXHFFVq1apWioqK8th/hgAtlwE+qmh4GgHcw+SDouJ3nuDybN2/WlVdeGZZpzchzXJbFIqWkVH6hnJvL3wPAY8ijCgQuZ9/P5GQmH/iQq/Ga28HxW2+95fDYMAwdOHBATz31lJKTk/X+++9XrcVBLNyCY1c7pljEA/Ch8tLD8IUDAge/7PiV14Lj0sMWJOu43fj4eP3hD3/QY4895pD1IVyEU3DsbscUF8qAD9h+qilvFiw/1QBVR0AbMrwWHKOscAmOq9oxxd8VwMtycqQ+fSqvt2YNswIBdzBUKaS4Gq9FlPtMOWbOnKmTJ0+WKT916pRmzpzp7uYQ4CwW63n31Velv/61/LzFkjVvsbPVw22z9IcMsd4TGAMeRnoYwPNsPUIX/iJjW8kqO9s/7YLXud1zbDabdeDAATVq1Mih/PDhw2rUqJEszqKjEBeqPcfOLpgrQ8cU4Af0HAOexVClkOS1nmPDMGSy/Y5eyjfffKO4uDh3N4cAVd4Fc2XomAL8wJZH1cnfZknW8uRk8qgCrnJnJSuEHJfzHDdo0EAmk0kmk0mtW7d2CJAtFouOHz+u22+/3SuNhG9VtPRzZcJwPibgf+RRBTyLoUphzeXgeN68eTIMQ3/5y180Y8YMxcTE2J+rVauWUlJS7MsyI7hVdsHsDAv8AH6WkWGdFets8hDpYQD3sJJVWHM5OB4xYoQkqXnz5urRo4dq1qzptUbBv9y9EKZjCggQGRlS//6khwGqiyWfw5rby0f36tXL/u/Tp0/r7NmzDs+H0oS0cOXuhTAdU0AAsaWHAVB1DFUKa25PyDt58qTGjRunRo0aqW7dumrQoIHDDcHPlbk98fHSv/9tnfyem0tgDAAIMbahSk2bOpYnJbHiZIhzOzieOHGiPvnkEz3zzDOKjIzU888/rxkzZigxMVGLFy/2RhvhY7YLZqlsgGx7vHChNGwYeYsBACEsI0PavdvaE7RkCT1CYcLtPMcXX3yxFi9erN69eys6OlqbNm1Sy5Yt9corr2jp0qV67733vNXWgBVOeY5Z+hkAAAQjV+M1t8ccHzlyRC1atJBkHV985MgRSdIVV1yhO+64o4rNRSBibg8AAAg3bgfHLVq0UG5uri6++GK1bdtWr7/+urp166a3335bsbGxXmgi/Im5PQAAIJy4PeZ41KhR+uabbyRJkydP1oIFCxQVFaXx48dr4sSJHm8gAAAA4Ctujzm+0J49e7Rx40a1bNlSl112mafaFVRCdcwxAABAqPDamOPSTp8+rWbNmqlZs2bV2QwAAAAQENweVmGxWDRr1iw1bdpU9erV048//ihJeuCBB/TCCy94vIEAAACAr7gdHM+ZM0eLFi3Sww8/rFq1atnLL730Uj3//PMebRwAAECVWSxSTo60dKn13mLxd4sQBNwOjhcvXqxnn31Ww4YNk7lUTq+OHTtq27ZtHm0cAPgL51QgyGVnSykpUp8+0tCh1vuUFGs5UAG3g+O8vDy1bNmyTHlxcbHOnTvnkUYBgD9xTgUCRFWvUrOzpUGDHFexkqS8PGs5X2ZUwO3guH379lq7dm2Z8uXLl6tz584eaRQA+AvnVCBAVPUq1WKxLu/qLBmXrSwzk5+DUC63s1VMnTpVI0aMUF5enoqLi5Wdna3t27dr8eLFeuedd7zRRpRisbBiHeAtlZ1TTSbrObV/f753gFfZrlIv/DLarlKXL7cu4+rM2rVlr25LMwxp3z5rPVa5ghNu9xz3799fb7/9tj7++GPVrVtXU6dO1datW/X222/rj3/8ozfaiBL81At4lzvnVABeUt2e3wMHXHsfV+sh7Ljcc/zjjz+qefPmMplM6tmzpz766CNvtgsXqM5FNADXcE4FAoCrV6lPPik1blz2Z9QmTVx7H1frIey43HPcqlUr/fzzz/bHN910kwoKCrzSKDhi+BTgG5xTgQDg6tXn+PHOf0bt2VNKSrKOgyrPRRdZ6wFOuBwcX7jK9HvvvacTJ054vEEoi596Ad+o7JxqMknJyZxTAa+qytVn6RmzZrP0z38671GyOXxYWrmy6m1ESHN7zDF8j596Ad+wnVOlsgGy7fG8eUzGA7zKlZ7fC134M2r//tbe4fLYZtfykyuccDk4NplMMl3wQb3wMbyDn3oB38nIsI7hb9rUsTwpibH9gE9UdJVakdI/o65da+0ddqUucAGXJ+QZhqGRI0cqMjJSknT69Gndfvvtqlu3rkO9bFIneJztIjovz/mvRCaT9Xl+6gU8IyPD2vFE2kTAx2z5Ss+ckaZPl5591nryc4c7P6PykyuccDk4HjFihMPjm2++2eONgXO2i+hBg6yBcOkAmZ96Ae8wm0mBCvhUdrZ19nnpSTZJSdKMGVKrVlJBgXUSXmXc+RmVn1zhhMm4cKYd3FZUVKSYmBgVFhYqOjraa+/j7O9GcrI1MOanXgBA0CovX6mtB2j5cuvPOSkplf+MmptrfexqXXqWwoar8RoT8oJIRoa0e7e0Zo20ZIn1PjeXwBgAEMRczVcquT5jltm1qAaC4yBj+6l3yBDrPd9rAEBQcydfaf/+1rHIDRo41nE2Y5bZtagil8ccAwAAeJyrk+JWrpRuucUxkI6Ls/Y633ef894iZteiChhz7AG+GnMMAEDIycmxrnJXFaXHJNMTjEow5hgAAAQ+V5amLK+n98LFPwAPIDgGAAD+U9nkOcOoOPBlQQ94GMExAADwr4omz9kyVVSGBT3gIQTHAADA/8rLV9q/v2uvZ0EPeAjZKgAAQGBwtjSlbUxyZQt69OzpkyYi9NFzDAAAAhcLesDHCI4BAEBgY0EP+BDDKgAAQOBjQQ/4SND0HB85ckTDhg1TdHS0YmNjdeutt+r48eMV1r/rrrvUpk0b1a5dWxdffLHuvvtuFRYWOtQzmUxlbsuWLfP27gAAAHfZxiQPGWK9JzCGFwRNz/GwYcN04MABffTRRzp37pxGjRqlMWPGaMmSJU7r//TTT/rpp5/06KOPqn379tqzZ49uv/12/fTTT1q+fLlD3Zdeekl9+/a1P46NjfXmrgCoIouFTiMAgHcFxfLRW7duVfv27fXll1+qa9eukqRVq1bp2muv1f79+5WYmOjSdt544w3dfPPNOnHihGrUsF4XmEwmrVixQgMGDKhy+1g+GvC+7Gzpb3+T9u//tSwpyTpPh+GGAIDKhNTy0evWrVNsbKw9MJaktLQ0RUREaP369S5vx3YwbIGxzdixY9WwYUN169ZNL774oiq7Xjhz5oyKioocbgC8JztbGjTIMTCWrJmdBg2yPg8AgCcExbCK/Px8NWrUyKGsRo0aiouLU35+vkvbOHTokGbNmqUxY8Y4lM+cOVN/+MMfVKdOHX344Ye68847dfz4cd19993lbmvu3LmaMWOG+zsCwG0Wi7XH2Nk1q2FYMzllZlrn6TDEAqgiT4xZYtwTQoRfe44nT57sdEJc6du2bduq/T5FRUXq16+f2rdvr+nTpzs898ADD+jyyy9X586dde+992rSpEl65JFHKtzelClTVFhYaL/t27ev2m0E4NzatWV7jEszDGnfPms9b7JYpJwcaelS673F4t33A3wmO1tKSZH69JGGDrXep6S495OMJ7YBBAi/9hxPmDBBI0eOrLBOixYtlJCQoIMHDzqUnz9/XkeOHFFCQkKFrz927Jj69u2r+vXra8WKFapZs2aF9VNTUzVr1iydOXNGkZGRTutERkaW+xwAzzpwwLP1qoLxzghZtjFLF/40Yxuz5EoOYU9sAwggfg2O4+PjFR8fX2m97t276+jRo9q4caO6dOkiSfrkk09UXFys1NTUcl9XVFSk9PR0RUZG6q233lJUVFSl77V582Y1aNCA4BcIEE2aeLaeuzjvI2R5YswS454QgoJiQl67du3Ut29fjR49Whs2bNBnn32mcePGafDgwfZMFXl5eWrbtq02bNggyRoYX3311Tpx4oReeOEFFRUVKT8/X/n5+bKU/B769ttv6/nnn9d3332nnTt36plnntE//vEP3XXXXX7bVwCOeva09tJeuGqsjckkJSdb63laZed9yXreZ4gFgpInxiwFyrgnwIOCYkKeJL366qsaN26crrrqKkVERGjgwIGaP3++/flz585p+/btOnnypCRp06ZN9kwWLVu2dNhWbm6uUlJSVLNmTS1YsEDjx4+XYRhq2bKlHn/8cY0ePdp3OwagQmazdfjCoEHWQLh0oGoLmOfN806nlDvn/d69Pf/+gFd5YsxSIIx7AjwsaILjuLi4chf8kKSUlBSHFGy9e/euNCVb3759HRb/ABCYMjKswxecjfudN897wxo47yOkeWLMkr/HPQFeEDTBMYDwlpFhHbboy0xRnPcR0mxjlvLynI8dMpmsz1c0ZskT2wACTFCMOQYAyRoI9+4tDRlivff2/B5/jncGvM42Zkkq+yF3dcySJ7YBBBiCYwAoB+d9hDzbmKWmTR3Lk5JcT8XiiW0AAcRkVDYwF5Vyda1uAMHJWZ7j5GTvjncGfIoV8hAGXI3XCI49gOAYCH2c9wEguLkarzEhDwBcYBvvDAAIbQTHANxGLyoAIFQRHANwi7Pxt0lJ1olrjL8FAAQ7slUAcFl2tnWlugtXjcvLs5ZnZ/unXQAAeArBMQCXWCzWHmNnU3htZZmZ1noAAAQrgmMALlm7tmyPcWmGIe3bZ60HAECwYswxAJccOODZegC8iFmzQJURHANwSZMmnq1XXZz7gXIwaxaoFoZVAHBJz57W8+uFyyjbmEzWVeN69vR+W7KzpZQUqU8faehQ631KChMCAWbNAtVHcAzAJWazteNJKhsg2x7Pm+f93lvO/UA5qjNr1mKRcnKkpUut98ysRRgjOAbgsowMaflyqWlTx/KkJGu5t3+xJWMGUIGqzprlpxjAAcExALdkZEi7d0tr1khLlljvc3N9M5SRjBlABVydDbt69a9XkPwUA5RBcAzAbWaz1Lu3NGSI9d5XE+HImAFUwNXZsLNnW3uG33iDn2IAJwiOAQSNQMuYAQSUymbNlrZ/v3TjjfwUAzhBcAwgaARSxgwg4FQ0a7Y6+CkGYYbgGEDQCJSMGUDAKm/WbHXwUwzCDMExgKDi74wZQMCzzZq9//7qbYefYhCmWCEPQNDJyJD692eFPAQxby/xaDZLV11lnXxXFfwUgzBGcAwgKNkyZgBBx1fLO/fsKcXFSUeOVF73wnpJSdbAmJ9iEIYIjgEA8BVbXuEL06fZ8gp7cmyQ2WwNwqdNq7zu669b6/NTDCCTYThLcAh3FBUVKSYmRoWFhYqOjvZ3cwAAgchiseYXLi99mslk7bHNza16YHrhcI0ePaTEROnwYe+9JxAkXI3XmJAHAIAveHuJR2fLQF9yifSXvzhP7ca4YsApgmMAAHzBm0s8VrQM9KOPSvfcY+0hLo0UL4BTjDkGAMAXvLXEo8VS8TLQJpO0bJm0a5f0+eeMKwYqQXAMwGu8na0KCCq2JR7z8pwHsrbxv+7mFXZ1uMbnn5PiBXABwyoAeIWz4Y8pKdZyICxVtryzYUi33eb+dr05XAMIQwTHADyuouGPgwYRICOMVba887Rp7l9Femu4BhCmCI4BeFRlwx8lKTPTWg8IS7blnWfMcP68u1eRtuEaznqjJZaBBtxEcAzAo7ydrQoIGc8957zc3avIioZrkK4NcBvBMQCPYvgj4AJPX0WWN1yDdG2A28hWAcBBdTNMMPwRuICzL5U3riIzMqT+/UkRA1QTwTEAu+xs63jh0h1aSUnWX2xd7XjyVrYqICiV96UaPdq117t7FWk2k64NqCaGVQCQ5LkMEwx/BEpU9KWaPl266CIm0QEBiOAYgMczTDD8EWHPlS+V7d9cRQIBheAYgFcyTNiyVa1ZIy1ZYr3PzSUwRphw5Ut1+LA1nRtXkUBAYcwxAOXluVbP3QwTDH9E2HL1y9KqlfUqkkl0QMAgOAbCXHa2dciEK8gwAbjInbQtXEUCAYVhFUAYs80XOnSo4nrMDQLcxKp1QNAiOAbCVEXzhUpjbhBQBaRtAYIWwTEQpiqbL2TTsCFzg4AqIW0LEJSCJjg+cuSIhg0bpujoaMXGxurWW2/V8ePHK3xN7969ZTKZHG633367Q529e/eqX79+qlOnjho1aqSJEyfq/Pnz3twVICC4Ol/oiSc4hwNVRtoWIOgEzYS8YcOG6cCBA/roo4907tw5jRo1SmPGjNGSJUsqfN3o0aM1c+ZM++M6derY/22xWNSvXz8lJCTo888/14EDBzR8+HDVrFlT//jHP7y2L0AgcHW+0IWdXkDYqe6a6ky4A4KKyTAqG3Hof1u3blX79u315ZdfqmvXrpKkVatW6dprr9X+/fuVmJjo9HW9e/dWp06dNG/ePKfPv//++7ruuuv0008/qXHjxpKkhQsX6t5779XPP/+sWrVqudS+oqIixcTEqLCwUNHR0e7vIOAHFouUklL5Ms+5uQyLRBjzxJrqAAKCq/FaUAyrWLdunWJjY+2BsSSlpaUpIiJC69evr/C1r776qho2bKhLL71UU6ZM0cmTJx2226FDB3tgLEnp6ekqKirS999/X+42z5w5o6KiIocbEGyYLwRUwlNrqgMIKkERHOfn56tRo0YOZTVq1FBcXJzy8/PLfd3QoUP173//W2vWrNGUKVP0yiuv6Oabb3bYbunAWJL9cUXbnTt3rmJiYuy35OTkquwW4HcZGdJrr0kXXeRYznwhhD1Pr6kOIGj4NTiePHlymQlzF962bdtW5e2PGTNG6enp6tChg4YNG6bFixdrxYoV2rVrV7XaPWXKFBUWFtpv+/btq9b2AH/JzpayshzzHMfHS48/TmCMMOeNNdUBBAW/TsibMGGCRo4cWWGdFi1aKCEhQQcPHnQoP3/+vI4cOaKEhASX3y81NVWStHPnTl1yySVKSEjQhg0bHOoUFBRIUoXbjYyMVGRkpMvvCwQi2y/GF3aMHTok3XgjPccIc66mc3F3TXUAAc+vwXF8fLzi4+Mrrde9e3cdPXpUGzduVJcuXSRJn3zyiYqLi+0Brys2b94sSWpSMk2/e/fumjNnjg4ePGgftvHRRx8pOjpa7du3d3NvgOBR2S/GJpP1F+P+/RlzjDDlzvLPAEJKUIw5bteunfr27avRo0drw4YN+uyzzzRu3DgNHjzYnqkiLy9Pbdu2tfcE79q1S7NmzdLGjRu1e/duvfXWWxo+fLiuvPJKXXbZZZKkq6++Wu3bt9ctt9yib775Rh988IHuv/9+jR07lp5hhDR+MQYqwfLPQNgKiuBYsmadaNu2ra666ipde+21uuKKK/Tss8/anz937py2b99uz0ZRq1Ytffzxx7r66qvVtm1bTZgwQQMHDtTbb79tf43ZbNY777wjs9ms7t276+abb9bw4cMd8iID/maxSDk50tKl1ntPzP/hF2OgEu6mc/HGFxWAXwRFnuNAR55juMOd9QS8lWI1J0fq06fyemvWsHYBwpyzL2FysjUwtn0JyYUMBAVX4zWCYw8gOIar3DmHljdhztZpVZ0JcywAArihoitab35RAXgUwbEPERzDFe6cQ23Ba3njgj0RvNraIzm2iXM64CJffFEBeExIrZAHBDt31xPwxYS5jAxrANy0qWM5C4AALmJmKxCS/JrKDQgX7pxDe/f23YS5jAxrujZXx0ADKIWZrUBIIjgGfMDdc6gvU6yazUy6Q4hxZ9ZrdZALGQhJDKsAfMDdcygpVoEqys62jgPu00caOtR6n5JiLfc0vqhASCI4BnzAdg6tSOlzqLspVgHo11mmF45hysuzlns6QOaLCoQkgmPAB8xmaciQiusMHux4Di1vwlzDhtbJfXFxrDMA2Lk769VTmNkKhBxSuXkAqdxQmcoyPknWnmNnGZ9swydXrpT+/W/p0KFfn2OdAaCEv1e28dU4ZwBV5mq8xoQ8wAcqy1YhOWarKM1slo4csQbBF17K2n4tpoMKYc/fmSOY2QqEDIZVANVksVg7rZYutd47+9W2Oudtf/1aDAQVMkcA8BCCY6AaXJ0YX53zNusMAC4gcwQADyE4BqrInYnx1Tlv+/vXYiAokDkCgIcQHANV4O5Qh+qctxs1cq1NrtYDQhaZIwB4AMEx4CaLRXrySfeHOnDeBnwgI0PavdualWLJEut9bi5fMAAuI1sF4IbsbGuPcWWZJ2wuHOqQkSH17+9exqeDB117L1frASGPzBEAqoHgGHCRbYyxO5nBnU2wc/e87epkvh9+sGbLIL0qAABVxyIgHsAiIKHPlUU8SjOZrMMlnC3qUdX3zstzLTBnYRAAAMpyNV5jzDHgAlcW8bDx9MT4iibzOeMsWwYAAHANwTHgAnfSpHljgl15k/mcYWEQAACqjuAYcIGr436feMJ7E+NLT8K///6K67IwCAAAVUNwDLjA1UU87rrLu5PhbJP52rd3rT4LgwAA4B6CY8AFgbb4VnWWowYAAOUjOAZcFCiLeFgs1ltcXPl1KlqOGgAAlI88x4AbqrKIhye5sgiJP3qyEUYsFv99AQDABwiOATf5a/EtVxchSUqyBsbkOYbHObs6I7E2gBDDsAogCFgs1pikosA4Lk76+GPvZctAmLNdnV34swWJtQGEGIJjIAi4sgjJkSPWXm1+4YbHVXR1RmJtACGG4BgIAq6mZCN1G7yisqszEmsDCCGMOQaCAKnb4FfevDpjgh+AAEPPMRAEXF2EhNRt8ApvXZ1lZ0spKVKfPtLQodb7lBTGLwPwK4JjIAgE2iIkCDPeuDpjgh+AAEVwDASJQFmEBGHI01dnTPADEMAIjoEgkpEh7d4trVkjLVlivSd1G3zCk1dnTPADEMCYkAcEGX8tQgJ4bIlI0q8ACGAExwAA13ni6oz0KwACGMMqAAC+RfoVAAGM4BgA4FukXwEQwAiOAQC+R/oVAAGKMccAAP/w1AQ/APAggmMAgP+QfgVAgCE4BnzIYqGTDACAQEZwDPhIdrZ1UbDSax8kJVnnJTG8EgCAwMCEPMAHsrOlQYPKLgqWl2ctz872T7sAAIAjgmPAyywWa4+xYZR9zlaWmWmtBwAA/CtoguMjR45o2LBhio6OVmxsrG699VYdP3683Pq7d++WyWRyenvjjTfs9Zw9v2zZMl/sEsLE2rVle4xLMwxp3z5rPQAA4F9BM+Z42LBhOnDggD766COdO3dOo0aN0pgxY7RkyRKn9ZOTk3XgwAGHsmeffVaPPPKIrrnmGofyl156SX379rU/jo2N9Xj7Eb4u+BhWux4AAPCeoAiOt27dqlWrVunLL79U165dJUlPPvmkrr32Wj366KNKTEws8xqz2ayEhASHshUrVujGG29UvXr1HMpjY2PL1K3ImTNndObMGfvjoqIid3YHYaZJE8/WAwAA3hMUwyrWrVun2NhYe2AsSWlpaYqIiND69etd2sbGjRu1efNm3XrrrWWeGzt2rBo2bKhu3brpxRdflOFscGgpc+fOVUxMjP2WnJzs3g4hrPTsac1KceEquTYmk5ScbK0HAAD8KyiC4/z8fDVq1MihrEaNGoqLi1N+fr5L23jhhRfUrl079ejRw6F85syZev311/XRRx9p4MCBuvPOO/Xkk09WuK0pU6aosLDQftu3b597O4SwYjZb07VJZQNk2+N588h3DABAIPBrcDx58uRyJ83Zbtu2bav2+5w6dUpLlixx2mv8wAMP6PLLL1fnzp117733atKkSXrkkUcq3F5kZKSio6MdbkBFMjKk5culpk0dy5OSrOXkOQYAIDD4dczxhAkTNHLkyArrtGjRQgkJCTp48KBD+fnz53XkyBGXxgovX75cJ0+e1PDhwyutm5qaqlmzZunMmTOKjIystD7gqowMqX9/VsgDACCQ+TU4jo+PV3x8fKX1unfvrqNHj2rjxo3q0qWLJOmTTz5RcXGxUlNTK339Cy+8oBtuuMGl99q8ebMaNGhAYAyvMJul3r393QoAAFCeoMhW0a5dO/Xt21ejR4/WwoULde7cOY0bN06DBw+2Z6rIy8vTVVddpcWLF6tbt2721+7cuVOffvqp3nvvvTLbffvtt1VQUKDf//73ioqK0kcffaR//OMfuueee3y2bwAAAAgcQREcS9Krr76qcePG6aqrrlJERIQGDhyo+fPn258/d+6ctm/frpMnTzq87sUXX1RSUpKuvvrqMtusWbOmFixYoPHjx8swDLVs2VKPP/64Ro8e7fX9AQAAQOAxGZXlLUOlioqKFBMTo8LCQibnAQAABCBX47WgSOUGAAAA+ALBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAAAAKEFwDAAAAJSo4e8GAK6yWKS1a6UDB6QmTaSePSWz2d+tAgAAoYTgGEEhO1v629+k/ft/LUtKkv75Tykjw3/tAryKK0IA8DmGVSDgZWdLgwY5BsaSlJdnLc/O9k+7AK/KzpZSUqQ+faShQ633KSl84AHAywiOEdAsFmuPsWGUfc5WlplprQeEDK4IAcBvCI4R0NauLRsflGYY0r591npASOCKEAD8iuAYAe3AAc/WAwIeV4QA4FcExwhoTZp4th4Q8LgiBAC/IjhGQOvZ05qVwmRy/rzJJCUnW+sBIYErQgDwK4JjBDSz2ZquTSobINsez5tHdiuEEK4IAcCvCI4R8DIypOXLpaZNHcuTkqzl5DlGSOGKEAD8ymQYzqZEwx1FRUWKiYlRYWGhoqOj/d2ckMV6CAgrzla+SU62BsZcEQKA21yN1wiOPYDgGIBXcEUIAB7jarzG8tEAEKjMZql3b3+3AgDCCsExggadaAAAwNsIjhEUnA2/TEqyzlti+CUAAPAUslUg4GVnS4MGlV00LC/PWp6d7Z92AQCA0ENwjIBmsVh7jJ1NG7WVZWZa6wEAAFQXwTEC2tq1ZXuMSzMMad8+az0AAIDqIjhGQDtwwLP1AAAAKkJwjIDWpIln6wEAAFSE4BgBrWdPa1aKC1fRtTGZrIuG9ezp23YBAIDQRHCMgGY2W9O1SWUDZNvjefPIdwwAADyD4BgBLyNDWr5catrUsTwpyVpOnmMAAOApLAKCoJCRIfXvzwp5AADAuwiOEXDKWybabJZ69/Z36wAAQCgjOEZAYZloAADgT4w5RsBgmWgAAOBvBMcICCwTDQAAAgHBMQICy0QDAIBAQHCMgMAy0QAAIBAQHCMgsEw0AAAIBATHCAgsEw0AAAJB0ATHc+bMUY8ePVSnTh3Fxsa69BrDMDR16lQ1adJEtWvXVlpamnbs2OFQ58iRIxo2bJiio6MVGxurW2+9VcePH/fCHqAiLBMNAAACQdAEx2fPntWf//xn3XHHHS6/5uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz5trzNs2DB9//33+uijj/TOO+/o008/1ZgxY7yxC6gEy0QDAAB/MxmGs+RZgWvRokXKzMzU0aNHK6xnGIYSExM1YcIE3XPPPZKkwsJCNW7cWIsWLdLgwYO1detWtW/fXl9++aW6du0qSVq1apWuvfZa7d+/X4mJiS61qaioSDExMSosLFR0dHS19g/lr5AHAABQVa7Ga0HTc+yu3Nxc5efnKy0tzV4WExOj1NRUrVu3TpK0bt06xcbG2gNjSUpLS1NERITWr19f7rbPnDmjoqIihxs8x7ZM9JAh1nsCYwAA4CshGxzn5+dLkho3buxQ3rhxY/tz+fn5atSokcPzNWrUUFxcnL2OM3PnzlVMTIz9lpyc7OHWAwAAwB/8GhxPnjxZJpOpwtu2bdv82USnpkyZosLCQvtt3759/m4SAAAAPKCGP998woQJGjlyZIV1WrRoUaVtJyQkSJIKCgrUpFRy3IKCAnXq1Mle5+DBgw6vO3/+vI4cOWJ/vTORkZGKjIysUrsAAAAQuPwaHMfHxys+Pt4r227evLkSEhK0evVqezBcVFSk9evX2zNedO/eXUePHtXGjRvVpUsXSdInn3yi4uJipaameqVdAAAACFxBM+Z479692rx5s/bu3SuLxaLNmzdr8+bNDjmJ27ZtqxUrVkiSTCaTMjMzNXv2bL311lvasmWLhg8frsTERA0YMECS1K5dO/Xt21ejR4/Whg0b9Nlnn2ncuHEaPHiwy5kqAAAAEDr82nPsjqlTp+rll1+2P+7cubMkac2aNerdu7ckafv27SosLLTXmTRpkk6cOKExY8bo6NGjuuKKK7Rq1SpFRUXZ67z66qsaN26crrrqKkVERGjgwIGaP3++b3YKAAAAASXo8hwHIvIcAwAABLawz3MMAAAAuIvgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASQZPnOJDZsuEVFRX5uSUAAABwxhanVZbFmODYA44dOyZJSk5O9nNLAAAAUJFjx44pJiam3OdZBMQDiouL9dNPP6l+/foymUxeeY+ioiIlJydr3759LDRyAY5N+Tg25ePYVIzjUz6OTfk4NuXj2JTPV8fGMAwdO3ZMiYmJiogof2QxPcceEBERoaSkJJ+8V3R0NF+qcnBsysexKR/HpmIcn/JxbMrHsSkfx6Z8vjg2FfUY2zAhDwAAAChBcAwAAACUIDgOEpGRkZo2bZoiIyP93ZSAw7EpH8emfBybinF8ysexKR/Hpnwcm/IF2rFhQh4AAABQgp5jAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4DhBz5sxRjx49VKdOHcXGxrr0GsMwNHXqVDVp0kS1a9dWWlqaduzY4VDnyJEjGjZsmKKjoxUbG6tbb71Vx48f98IeeI+7+7B7926ZTCantzfeeMNez9nzy5Yt88UueVRV/o979+5dZt9vv/12hzp79+5Vv379VKdOHTVq1EgTJ07U+fPnvbkrHufusTly5IjuuusutWnTRrVr19bFF1+su+++W4WFhQ71gvGzs2DBAqWkpCgqKkqpqanasGFDhfXfeOMNtW3bVlFRUerQoYPee+89h+dd+fsTLNw5Ns8995x69uypBg0aqEGDBkpLSytTf+TIkWU+H3379vX2bniNO8dn0aJFZfY9KirKoU64fnac/d01mUzq16+fvU6ofHY+/fRTXX/99UpMTJTJZNKbb75Z6WtycnL029/+VpGRkWrZsqUWLVpUpo67f8eqzEBAmDp1qvH4448bWVlZRkxMjEuvefDBB42YmBjjzTffNL755hvjhhtuMJo3b26cOnXKXqdv375Gx44djS+++MJYu3at0bJlS2PIkCFe2gvvcHcfzp8/bxw4cMDhNmPGDKNevXrGsWPH7PUkGS+99JJDvdLHLlhU5f+4V69exujRox32vbCw0P78+fPnjUsvvdRIS0szvv76a+O9994zGjZsaEyZMsXbu+NR7h6bLVu2GBkZGcZbb71l7Ny501i9erXRqlUrY+DAgQ71gu2zs2zZMqNWrVrGiy++aHz//ffG6NGjjdjYWKOgoMBp/c8++8wwm83Gww8/bPzwww/G/fffb9SsWdPYsmWLvY4rf3+CgbvHZujQocaCBQuMr7/+2ti6dasxcuRIIyYmxti/f7+9zogRI4y+ffs6fD6OHDniq13yKHePz0svvWRER0c77Ht+fr5DnXD97Bw+fNjhuHz33XeG2Ww2XnrpJXudUPnsvPfee8Z9991nZGdnG5KMFStWVFj/xx9/NOrUqWNkZWUZP/zwg/Hkk08aZrPZWLVqlb2Ou8e7OgiOA8xLL73kUnBcXFxsJCQkGI888oi97OjRo0ZkZKSxdOlSwzAM44cffjAkGV9++aW9zvvvv2+YTCYjLy/P4233Bk/tQ6dOnYy//OUvDmWufGEDXVWPT69evYy//e1v5T7/3nvvGREREQ4ntWeeecaIjo42zpw545G2e5unPjuvv/66UatWLePcuXP2smD77HTr1s0YO3as/bHFYjESExONuXPnOq1/4403Gv369XMoS01NNf76178ahuHa359g4e6xudD58+eN+vXrGy+//LK9bMSIEUb//v093VS/cPf4VHYO47PzqyeeeMKoX7++cfz4cXtZKH12bFz5ezlp0iTjN7/5jUPZTTfdZKSnp9sfV/d4u4NhFUEqNzdX+fn5SktLs5fFxMQoNTVV69atkyStW7dOsbGx6tq1q71OWlqaIiIitH79ep+3uSo8sQ8bN27U5s2bdeutt5Z5buzYsWrYsKG6deumF198UUaQpf2uzvF59dVX1bBhQ1166aWaMmWKTp486bDdDh06qHHjxvay9PR0FRUV6fvvv/f8jniBpz7/hYWFio6OVo0aNRzKg+Wzc/bsWW3cuNHhb0VERITS0tLsfysutG7dOof6kvX/31bflb8/waAqx+ZCJ0+e1Llz5xQXF+dQnpOTo0aNGqlNmza64447dPjwYY+23ReqenyOHz+uZs2aKTk5Wf3793f4m8Fn51cvvPCCBg8erLp16zqUh8Jnx12V/c3xxPF2R43KqyAQ5efnS5JD8GJ7bHsuPz9fjRo1cni+Ro0aiouLs9cJdJ7YhxdeeEHt2rVTjx49HMpnzpypP/zhD6pTp44+/PBD3XnnnTp+/Ljuvvtuj7Xf26p6fIYOHapmzZopMTFR3377re69915t375d2dnZ9u06+2zZngsGnvjsHDp0SLNmzdKYMWMcyoPps3Po0CFZLBan/5/btm1z+pry/v9L/22xlZVXJxhU5dhc6N5771ViYqLDSbtv377KyMhQ8+bNtWvXLv3973/XNddco3Xr1slsNnt0H7ypKsenTZs2evHFF3XZZZepsLBQjz76qHr06KHvv/9eSUlJfHZKbNiwQd99951eeOEFh/JQ+ey4q7y/OUVFRTp16pR++eWXan9X3UFw7EWTJ0/WQw89VGGdrVu3qm3btj5qUeBw9dhU16lTp7RkyRI98MADZZ4rXda5c2edOHFCjzzySEAEON4+PqWDvQ4dOqhJkya66qqrtGvXLl1yySVV3q4v+OqzU1RUpH79+ql9+/aaPn26w3OB/NmB7zz44INatmyZcnJyHCadDR482P7vDh066LLLLtMll1yinJwcXXXVVf5oqs90795d3bt3tz/u0aOH2rVrp3/961+aNWuWH1sWWF544QV16NBB3bp1cygP589OICE49qIJEyZo5MiRFdZp0aJFlbadkJAgSSooKFCTJk3s5QUFBerUqZO9zsGDBx1ed/78eR05csT+en9x9dhUdx+WL1+ukydPavjw4ZXWTU1N1axZs3TmzBm/r+/uq+Njk5qaKknauXOnLrnkEiUkJJSZBVxQUCBJYfHZOXbsmPr27av69etrxYoVqlmzZoX1A+mzc6GGDRvKbDbb//9sCgoKyj0OCQkJFdZ35e9PMKjKsbF59NFH9eCDD+rjjz/WZZddVmHdFi1aqGHDhtq5c2dQBTjVOT42NWvWVOfOnbVz505JfHYk6cSJE1q2bJlmzpxZ6fsE62fHXeX9zYmOjlbt2rVlNpur/Vl0i8dHMaNa3J2Q9+ijj9rLCgsLnU7I++qrr+x1Pvjgg6CckFfVfejVq1eZTAPlmT17ttGgQYMqt9UfPPV//L///c+QZHzzzTeGYfw6Ia/0LOB//etfRnR0tHH69GnP7YAXVfXYFBYWGr///e+NXr16GSdOnHDpvQL9s9OtWzdj3Lhx9scWi8Vo2rRphRPyrrvuOoey7t27l5mQV9Hfn2Dh7rExDMN46KGHjOjoaGPdunUuvce+ffsMk8lkrFy5strt9bWqHJ/Szp8/b7Rp08YYP368YRh8dgzDep6PjIw0Dh06VOl7BPNnx0YuTsi79NJLHcqGDBlSZkJedT6L7iA4DhB79uwxvv76a3vKsa+//tr4+uuvHVKPtWnTxsjOzrY/fvDBB43Y2Fhj5cqVxrfffmv079/faSq3zp07G+vXrzf+97//Ga1atQrKVG4V7cP+/fuNNm3aGOvXr3d43Y4dOwyTyWS8//77Zbb51ltvGc8995yxZcsWY8eOHcbTTz9t1KlTx5g6darX98fT3D0+O3fuNGbOnGl89dVXRm5urrFy5UqjRYsWxpVXXml/jS2V29VXX21s3rzZWLVqlREfHx+UqdzcOTaFhYVGamqq0aFDB2Pnzp0O6ZTOnz9vGEZwfnaWLVtmREZGGosWLTJ++OEHY8yYMUZsbKw9G8ktt9xiTJ482V7/s88+M2rUqGE8+uijxtatW41p06Y5TeVW2d+fYODusXnwwQeNWrVqGcuXL3f4fNj+Vh87dsy45557jHXr1hm5ubnGxx9/bPz2t781WrVqFTQXlqW5e3xmzJhhfPDBB8auXbuMjRs3GoMHDzaioqKM77//3l4nXD87NldccYVx0003lSkPpc/OsWPH7HGMJOPxxx83vv76a2PPnj2GYRjG5MmTjVtuucVe35bKbeLEicbWrVuNBQsWOE3lVtHx9iSC4wAxYsQIQ1KZ25o1a+x1VJJb1aa4uNh44IEHjMaNGxuRkZHGVVddZWzfvt1hu4cPHzaGDBli1KtXz4iOjjZGjRrlEHAHg8r2ITc3t8yxMgzDmDJlipGcnGxYLJYy23z//feNTp06GfXq1TPq1q1rdOzY0Vi4cKHTuoHO3eOzd+9e48orrzTi4uKMyMhIo2XLlsbEiRMd8hwbhmHs3r3buOaaa4zatWsbDRs2NCZMmOCQziwYuHts1qxZ4/R7KMnIzc01DCN4PztPPvmkcfHFFxu1atUyunXrZnzxxRf253r16mWMGDHCof7rr79utG7d2qhVq5bxm9/8xnj33Xcdnnfl70+wcOfYNGvWzOnnY9q0aYZhGMbJkyeNq6++2oiPjzdq1qxpNGvWzBg9erRXTuC+4s7xyczMtNdt3Lixce211xqbNm1y2F64fnYMwzC2bdtmSDI+/PDDMtsKpc9OeX9LbcdjxIgRRq9evcq8plOnTkatWrWMFi1aOMQ7NhUdb08yGUaA5h8CAAAAfIw8xwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAhQI0eOlMlkKnPbuXOnR7a/aNEixcbGemRbVfXpp5/q+uuvV2Jiokwmk958802/tgcACI4BIID17dtXBw4ccLg1b97c380q49y5c1V63YkTJ9SxY0ctWLDAwy0CgKohOAaAABYZGamEhASHm9lsliStXLlSv/3tbxUVFaUWLVpoxowZOn/+vP21jz/+uDp06KC6desqOTlZd955p44fPy5JysnJ0ahRo1RYWGjvkZ4+fbokOe3BjY2N1aJFiyRJu3fvlslk0muvvaZevXopKipKr776qiTp+eefV7t27RQVFaW2bdvq6aefrnD/rrnmGs2ePVt/+tOfPHC0AKD6avi7AQAA961du1bDhw/X/Pnz1bNnT+3atUtjxoyRJE2bNk2SFBERofnz56t58+b68ccfdeedd2rSpEl6+umn1aNHD82bN09Tp07V9u3bJUn16tVzqw2TJ0/WY489ps6dO9sD5KlTp+qpp55S586d9fXXX2v06NGqW7euRowY4dkDAABeQnAMAAHsnXfecQhar7nmGr3xxhuaMWOGJk+ebA86W7RooVmzZmnSpEn24DgzM9P+upSUFM2ePVu33367nn76adWqVUsxMTEymUxKSEioUtsyMzOVkZFhfzxt2jQ99thj9rLmzZvrhx9+0L/+9S+CYwBBg+AYAAJYnz599Mwzz9gf161bV5L0zTff6LPPPtOcOXPsz1ksFp0+fVonT55UnTp19PHHH2vu3Lnatm2bioqKdP78eYfnq6tr1672f584cUK7du3SrbfeqtGjR9vLz58/r5iYmGq/FwD4CsExAASwunXrqmXLlmXKjx8/rhkzZjj03NpERUVp9+7duu6663THHXdozpw5iouL0//+9z/deuutOnv2bIXBsclkkmEYDmXOJtzZAnVbeyTpueeeU2pqqkM92xhpAAgGBMcAEIR++9vfavv27U4DZ0nauHGjiouL9dhjjykiwjr3+vXXX3eoU6tWLVksljKvjY+P14EDB+yPd+zYoZMnT1bYnsaNGysxMVE//vijhg0b5u7uAEDAIDgGgCA0depUXXfddbr44os1aNAgRURE6JtvvtF3332n2bNnq2XLljp37pyefPJJXX/99frss8+0cOFCh22kpKTo+PHjWr16tTp27Kg6deqoTp06+sMf/qCnnnpK3bt3l8Vi0b333quaNWtW2qYZM2bo7rvvVkxMjPr27aszZ87oq6++0i+//KKsrCynrzl+/LhD3ubc3Fxt3rxZcXFxuvjii6t3kACgCkjlBgBBKD09Xe+8844+/PBD/e53v9Pvf/97PfHEE2rWrJkkqWPHjnr88cf10EMP6dJLL9Wrr76quXPnOmyjR48euv3223XTTTcpPj5eDz/8sCTpscceU3Jysnr27KmhQ4fqnnvucWmM8m233abnn39eL730kjp06KBevXpp0aJFFeZl/uqrr9S5c2d17txZkpSVlaXOnTtr6tSpVT00AFAtJuPCgWUAAABAmKLnGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEr8PxoimZUgVu73AAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 181 + "execution_count": 49 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:58:47.219942Z", - "start_time": "2024-07-15T08:58:47.216200Z" + "end_time": "2024-07-18T23:00:30.947918Z", + "start_time": "2024-07-18T23:00:30.944687Z" } }, "cell_type": "code", @@ -690,13 +540,13 @@ ], "id": "6d393e274c87452b", "outputs": [], - "execution_count": 182 + "execution_count": 50 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:58:49.649182Z", - "start_time": "2024-07-15T08:58:49.646865Z" + "end_time": "2024-07-18T23:00:30.949892Z", + "start_time": "2024-07-18T23:00:30.948588Z" } }, "cell_type": "code", @@ -706,26 +556,26 @@ ], "id": "96dac59a56787378", "outputs": [], - "execution_count": 183 + "execution_count": 51 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:59:15.324962Z", - "start_time": "2024-07-15T08:58:50.011718Z" + "end_time": "2024-07-18T23:01:01.656612Z", + "start_time": "2024-07-18T23:00:30.950440Z" } }, "cell_type": "code", "source": "trainer.train(kernel_model, train_dataloader, val_dataloader)", "id": "3388e29bfda8c98b", "outputs": [], - "execution_count": 184 + "execution_count": 52 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-15T08:59:29.286816Z", - "start_time": "2024-07-15T08:59:15.325790Z" + "end_time": "2024-07-18T23:01:18.891305Z", + "start_time": "2024-07-18T23:01:01.657284Z" } }, "cell_type": "code", @@ -752,32 +602,32 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4B7fN37ACCgkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJGdrb0t79J+/f/WpaUJP3zn57/4wogKBAcBzCLxfo329mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4AK+aP3AUDAY1hFAFu71rEz40KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKFdlvQ+StfeBIRZA2CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQLn81fsAIOARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIO/7qfQAQ8AiOA1jPntZ5ISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQYvzV+wAg4DEhL4CZzdYJ04MGWQPh0kPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEGFvvQ16e83HHJpP1eW/0PiCoWSzW0TYHDlivnXr29M55GP5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnmYaSk62BMROpXeeJ/wsAIcSWrUJy3vtAtgpcgMx/wa2ieK00hlUEgYwMafduac0aackS631uLl9EAKiWjAxrANy0qWN5UhKBMcqwXUtdOI/TlvnPmwtzwbcYVhEkzGapd29/twIAQkxGhjVZPL+TowL+WncA/kFwDAAIb/Q+oBLuZP4LiY9SmA+sJjgGAACoQFhl/mNgNWOOAQAAKhI2mf8YWC2J4BgAAKBC/lx3wGdYUt2O4BgAAKACtnUHpLIBsrfXHfAZllS3IzgGAACoRMhn/gurgdUVY0IeAACAC0I681/YDKyuHMExqsVkMmnFihUaMGCAv5sCAIDXhWzmP5ZUt2NYBcqVn5+vu+66Sy1atFBkZKSSk5N1/fXXa/Xq1f5umiQpOztbV199tS666CKZTCZt3rzZ300CACA4hcXAatcQHAcLi0XKyZGWLrXee3m26O7du9WlSxd98skneuSRR7RlyxatWrVKffr00dixY7363q46ceKErrjiCj300EP+bgoAAMEv5AdWu4bgOBhkZ0spKVKfPtLQodb7lBSv5hu88847ZTKZtGHDBg0cOFCtW7fWb37zG2VlZemLL74o93X33nuvWrdurTp16qhFixZ64IEHdO7cOfvz33zzjfr06aP69esrOjpaXbp00VdffSVJ2rNnj66//no1aNBAdevW1W9+8xu999575b7XLbfcoqlTpyotLc1zOw4AQDjLyJB275bWrJGWLLHe5+aGTWAsMeY48NkScl84/seWkNsLV3JHjhzRqlWrNGfOHNWtW7fM87GxseW+tn79+lq0aJESExO1ZcsWjR49WvXr19ekSZMkScOGDVPnzp31zDPPyGw2a/PmzapZs6YkaezYsTp79qw+/fRT1a1bVz/88IPq1avn0X0DAACVCNmB1a4hOA5klSXkNpmsCbn79/foGKCdO3fKMAy1bdvW7dfef//99n+npKTonnvu0bJly+zB8d69ezVx4kT7tlu1amWvv3fvXg0cOFAdOnSQJLVo0aI6uwEAAOA2hlUEMj8l5DacBeMueu2113T55ZcrISFB9erV0/3336+9e/fan8/KytJtt92mtLQ0Pfjgg9q1a5f9ubvvvluzZ8/W5ZdfrmnTpunbb7+t1n4AAAC4i+A4kPkpIXerVq1kMpm0bds2t163bt06DRs2TNdee63eeecdff3117rvvvt09uxZe53p06fr+++/V79+/fTJJ5+offv2WrFihSTptttu048//qhbbrlFW7ZsUdeuXfXkk096dN8AAAAqQnAcyPyUkDsuLk7p6elasGCBTpw4Ueb5o0ePOn3d559/rmbNmum+++5T165d1apVK+3Zs6dMvdatW2v8+PH68MMPlZGRoZdeesn+XHJysm6//XZlZ2drwoQJeu655zy2XwAAAJUhOA5ktoTcF+YbtDGZpORkryTkXrBggSwWi7p166b//Oc/2rFjh7Zu3ar58+ere/fuTl/TqlUr7d27V8uWLdOuXbs0f/58e6+wJJ06dUrjxo1TTk6O9uzZo88++0xffvml2rVrJ0nKzMzUBx98oNzcXG3atElr1qyxP+fMkSNHtHnzZv3www+SpO3bt2vz5s3Kz8/34JEAAADhhOA4kPkxIXeLFi20adMm9enTRxMmTNCll16qP/7xj1q9erWeeeYZp6+54YYbNH78eI0bN06dOnXS559/rgceeKDU7ph1+PBhDR8+XK1bt9aNN96oa665RjNmzJAkWSwWjR07Vu3atVPfvn3VunVrPf300+W28a233lLnzp3Vr18/SdLgwYPVuXNnLVy40INHAgAAhBOTUZ3ZV5AkFRUVKSYmRoWFhYqOjnZ47vTp08rNzVXz5s0VFRVVtTfIzrZmrSg9OS852RoYh1HeweryyP8FAAAIShXFa6WRyi0YZGRY07WtXWudfNekiXUoRRgs4QgAAOBLBMfBIswTcgMAAPgCY44BAACAEvQcAwA8ymJhFBiA4EVw7CPMe/Q//g8A73M2fzgpyZp4h/nDAIIBwyq8zFzSXVJ6lTj4h+3/wEwXFuAV2dnSoEFlV73Py7OWZ2f7p10A4A56jr2sRo0aqlOnjn7++WfVrFlTERFcj/hDcXGxfv75Z9WpU0c1avCxBzzNYrH2GDv7gcYwrKnZMzOtiXe4PgUQyIIuSliwYIEeeeQR5efnq2PHjnryySfVrVs3p3V79+6t//73v2XKr732Wr377ruSpJEjR+rll192eD49PV2rVq3ySHtNJpOaNGmi3Nxcp0spw3ciIiJ08cUXy1TeioMAqmzt2rI9xqUZhrRvn7UeiXcABLKgCo5fe+01ZWVlaeHChUpNTdW8efOUnp6u7du3q1GjRmXqZ2dnOwxnOHz4sDp27Kg///nPDvX69u2rl156yf44MjLSo+2uVauWWrVqxdAKP6tVqxY994CXHDjg2XoAQkCQzs4NquD48ccf1+jRozVq1ChJ0sKFC/Xuu+/qxRdf1OTJk8vUj4uLc3i8bNky1alTp0xwHBkZqYSEBO81XNZeS1ZlAxCqmjTxbD0AQS6IZ+cGTTfa2bNntXHjRqWlpdnLIiIilJaWpnXr1rm0jRdeeEGDBw9W3bp1HcpzcnLUqFEjtWnTRnfccYcOHz5c4XbOnDmjoqIihxsAhLOePa3nvfJGLZlM1lXve/b0bbsA+EGQz84NmuD40KFDslgsaty4sUN548aNlZ+fX+nrN2zYoO+++0633XabQ3nfvn21ePFirV69Wg899JD++9//6pprrpHFYil3W3PnzlVMTIz9lpycXLWdAoAQYTZbO4SksgGy7fG8eUHxiyqA6qhsdq5knZ1bQZzlb0ETHFfXCy+8oA4dOpSZvDd48GDdcMMN6tChgwYMGKB33nlHX375pXJycsrd1pQpU1RYWGi/7du3z8utB4DAl5EhLV8uNW3qWJ6UZC0P8F9SAXiCO7NzA1TQjDlu2LChzGazCgoKHMoLCgoqHS984sQJLVu2TDNnzqz0fVq0aKGGDRtq586duuqqq5zWiYyM9PikPQAIBRkZ1nRtQTgHB4AnhMDs3KDpOa5Vq5a6dOmi1atX28uKi4u1evVqde/evcLXvvHGGzpz5oxuvvnmSt9n//79Onz4sJowawQAqsRstqZrGzLEek9gDISREJidGzTBsSRlZWXpueee08svv6ytW7fqjjvu0IkTJ+zZK4YPH64pU6aUed0LL7ygAQMG6KKLLnIoP378uCZOnKgvvvhCu3fv1urVq9W/f3+1bNlS6enpPtknAPAXi0XKyZGWLrXeB/AQQADBIgRm5wbNsApJuummm/Tzzz9r6tSpys/PV6dOnbRq1Sr7JL29e/eWyWO7fft2/e9//9OHH35YZntms1nffvutXn75ZR09elSJiYm6+uqrNWvWLIZNAAhpQZxlCUAgs83OHTTIGgiXnpgXJLNzTYbhbDoh3FFUVKSYmBgVFhYqOjra380BgArZsixd+Nffdt5i8hyAanN2BZ6cbA2M/fQHxtV4jeDYAwiOAQQLi0VKSSl/MrnJZO1Bzs0N6I4dAMEgwFbIczVeC6phFQCA6nEny1Lv3j5rFoBQZJudG2SCakIeAKB6QiDLEgB4FcExAISREMiyBABeRXAMAGEkBLIsAYBXERwDQBixZVmSygbIQZJlCQC8iuAYAMJMRoY1XVvTpo7lSUmkcQMAslUAQBjKyJD69w+oLEtAxQIsLRhCF8ExAISpIM2yhHDEko7wIYZVAACAwGVb0vHCBN15edby7Gz/tAshi+AYAAAEJovF2mPsbDFfW1lmprUe4CEExwAAIDC5s6Qj4CEExwAAIDCxpCP8gOAYAAAEJpZ0hB8QHAMAgMDEko7wA4JjAAAQmFjSEX5AcAwAAAIXSzrCx1gEBAAABDaWdIQPERwDAIDAx5KO8BGGVQAAAAAl6DkGAABwl8XCMI8QRXAMAADgjuxs67LWpVfvS0qyZtZggmDQY1gFAPiRxSLl5EhLl1rvLRZ/twhAhbKzpUGDyi5rnZdnLc/O9k+74DEExwDgBxaLNHOm1KiR1KePNHSo9T4lhXMrELAsFmuPsWGUfc5WlpnJVW6QIzgGAB/LzpYaN5amTZOOHHF8js4nIICtXVu2x7g0w5D27bPWQ9AiOAYAH7L9Inv4sPPn6XwCAtiBA56th4BEcAwAPlLRL7Kl0fkEBKgmTTxbDwGJ4BgAfKSyX2QvROcTEGB69rRmpTCZnD9vMknJydZ6CFoExwDgI+4Gu3Q+AZXwdboXs9mark0qGyDbHs+bR77jIEdwDABuqur52J1gl84noBLZ2db0Lr5O95KRIS1fLjVt6lielGQtJ89x0DMZRmWj31CZoqIixcTEqLCwUNHR0f5uDgAvqk7uf4vFeu7Oy6t83PF//sM5FiiXbWbrhV8kW++tL4JUVsgLOq7GawTHHkBwDIQHT5yPbduQnAfIF10kPfssgTFQLttVZnkD+E0m6xVrbi7BKhy4Gq8xrAIAXOCp3P/l/SJ70UXSjBlSQQGBMVAhcg3Dy2r4uwEAEAzcOR/37l3xtjIypP79+UUWqBJyDcPLCI4BwAWePh+bzZUH0QCcINcwvIxhFQDgAs7HQIAg1zC8jOAYAFzA+RgIEOQahpcRHANAOUrnM167Vnr8cWs552PAz8g1DC8ilZsHkMoNCD3l5TMeMsQaLJcuT062BsacjwEfI9cw3ECeYx8iOAZCS2X5jF9/XWrYkPMxAAQTV+M1slUAQCmV5TM2maSsLNYXgIfRAwoEDMYcA0AprC8An8vOtq741qePNHSo9T4lxVoOwOcIjgGgFNYXgE/ZxvBceEWWl2ctJ0AGfI7gGABKIZ8xfMZTa5ID8CiCYwAohXzG8BnG8AABKeiC4wULFiglJUVRUVFKTU3Vhg0byq27aNEimUwmh1tUVJRDHcMwNHXqVDVp0kS1a9dWWlqaduzY4e3dABCgWF8APsMYHiAgBVVw/NprrykrK0vTpk3Tpk2b1LFjR6Wnp+vgwYPlviY6OloHDhyw3/bs2ePw/MMPP6z58+dr4cKFWr9+verWrav09HSdPn3a27sDIECxvgB8IhTG8JReKScnhyEgCAlBlec4NTVVv/vd7/TUU09JkoqLi5WcnKy77rpLkydPLlN/0aJFyszM1NGjR51uzzAMJSYmasKECbrnnnskSYWFhWrcuLEWLVqkwYMHu9Qu8hwDoYnsWvAqi8WalSIvz/m4Y5PJekUWqHkDy1sp55//5AoSAcnVeC1oeo7Pnj2rjRs3Ki0tzV4WERGhtLQ0rVu3rtzXHT9+XM2aNVNycrL69++v77//3v5cbm6u8vPzHbYZExOj1NTUCrd55swZFRUVOdwAhB6zWerd27oqXu/egRmfIIgF8xgesmwghAVNcHzo0CFZLBY1btzYobxx48bKz893+po2bdroxRdf1MqVK/Xvf/9bxcXF6tGjh/aXfJltr3Nnm5I0d+5cxcTE2G/JycnV2TUAQLjy9RgeTwyDqCzLhmGQZQNBLWiC46ro3r27hg8frk6dOqlXr17Kzs5WfHy8/vWvf1Vru1OmTFFhYaH9tm/fPg+1GAAQdjIypN27pTVrpCVLrPe5uZ4PjD212EhlWTYksmwgqAXN8tENGzaU2WxWQUGBQ3lBQYESEhJc2kbNmjXVuXNn7dy5U5LsrysoKFCTUhMeCgoK1KlTp3K3ExkZqcjISDf3AACActjG8HiLbRjEhb29tmEQ7vRS5+V5th4QYIKm57hWrVrq0qWLVq9ebS8rLi7W6tWr1b17d5e2YbFYtGXLFnsg3Lx5cyUkJDhss6ioSOvXr3d5mwAABDRPLzby88+erQcEmKDpOZakrKwsjRgxQl27dlW3bt00b948nThxQqNGjZIkDR8+XE2bNtXcuXMlSTNnztTvf/97tWzZUkePHtUjjzyiPXv26LbbbpMkmUwmZWZmavbs2WrVqpWaN2+uBx54QImJiRowYIC/dhOAi8gmAbjAncVGXOm9jo937X1drQcEmKAKjm+66Sb9/PPPmjp1qvLz89WpUyetWrXKPqFu7969ioj4tTP8l19+0ejRo5Wfn68GDRqoS5cu+vzzz9W+fXt7nUmTJunEiRMaM2aMjh49qiuuuEKrVq0qs1gIgMBgC4hXrpT+/W/p0KFfnyOLFOCEpxcbuXDyYHXrAQEmqPIcByryHAO+4SytqjP/+Q8BMmCXk2OdfFeZNWtc6zm25Weu6IuYnBy4+ZkRtkIuzzGA8FZeWlVnxowhixRg17On9WeVC3Mp25hM1mC2Z0/XtmfLz1zR9gI1PzPgAoJjAAGvovlEzhw+bO0sAyDvLDZiy8+clORYnpzsmPmC5aURhAiOAQQ8V9KqXojgGCjFG4uNVJaf2VN5lQEfC6oJeQDCk6vzhABUICND6t/fsyleysvP7Mm8yoCPERwDCHil1uhxmTfXUwCClrcXG5Eqz6tsMlnzKvfvz7hkBCSGVQAIeJXNJ7rQRRcRHAN+405eZSAAERwD8At35ulUNJ/ImWefpUMK8BtP51UGfIzgGIDPVWWeTnnziUpLSiLHMVBt1c0w4eo4qKqMlwJ8gEVAPIBFQADXlTdPx9YjXNk8ndJLRjdqZC07eJDlowGPcLbSjrtLT9oWCcnLKz//YlKSNdMFX1j4kKvxGsGxBxAcA65xZWEtzpmAn1T3ytXZtiTnAfJFF1nHP/EzD3yIFfIABBxX8hXv3y/NmeOb9gAoUVmGCcmaYcLVIRa2cVBxcc6fP3LEGjyT8xgBiOAYgM+4Ov9m2jTOmYBPeSPDRP/+Uu3a5W9Pci/gBnyE4BiAz7gz/4ZzJgJaqC2L7I0ME6R0Q5AiOAbgM7Z8xa7gnImAFYrLInsjwwQp3RCkCI4B+EzpfMWu4JyJgGObaHZhj6htWeRgDZArW2nHZJKSk631XEVKNwQpgmMAPpWRIc2Y4VpdzpkIKJ6etBZIKlppx/Z43jz30sh4I+AGfIDgGIDP3XdfxcMrOGciIIX6GNryVtpJSnIvjZuNNwJuwAcIjgH4nO2caTJxzkQQCYcxtBkZ1kTja9ZIS5ZY73Nzq56P2NMBN+ADNfzdAADhyXbOdLYY17x5nDMRgMJlDK3ZLPXu7bntZWRY07rZlrZkOUsEOFbI8wBWyAN+VXp5Z1fOge7WB/ymsmWRTSbr1V1uLh9iIAC5Gq/RcwzAY7KznfcE//Of5fcEe7qTCvAa23igQYOsgXDpAJnxQEDIYMwxAI8I1QxXgAPG0AIhj2EVHsCwCoQ726/N5U3k59dmhBzGAwFBh2EVAHzGnQxXDKFASGA8EBCyCI4BVKqyTrJwyHAF2NFrDIQ0gmMAFXJlkl24ZLgCqjTrFEBQYUIeAKcsFmnmTGngwMon2bFKLMICs06BsEBwDKCM7GzrBLtp05w/b5vGm5lpDaJZJRYhz2Kx9hg7m8N+4RcCQFAjOAbgoLzOsQuVnmQnkeEKIc6dWacAghpjjgHYVdQ5Vp7Sk+xYJRYhi1mnQNggOAZgV1nnmDMXTrIjwxVCErNOgbDBsAoAdu50ejHJDmGFWadA2CA4BmDnbqcXk+wQNph1CoQNgmMAdpV1jtkwyQ5hiVmnQFgwGYY7U2/gjKtrdQPBwJatQnI+MW/GDOm+++ggQxhjhTwgKLkarzEhD4ADW+fYhYuAJSdbfzWmcwxhj1mnQEgjOAZQBinZAADhiuAYgFN0jgFhiCEjAMExEOo41wFwSXZ22fFUSUnWLB2Mp0IYIVsFEMKys6WUFKlPH2noUOt9Soq1HADsyls3Pi/PWs4fDYQRgmMgRHGuA+CSitaNt5VlZlrrAWGA4BgIQZzrgBBjsUg5OdLSpdZ7T355K1s33jCkffus9YAwQHAMhCDOdUAI8fb4KFfXjXdnfXkgiBEcAyGIcx0QInwxPsrVdePdXV8eCFIEx0AI4lwHhABfjY+qbN14k8m6ClDPntV7HyBIBF1wvGDBAqWkpCgqKkqpqanasGFDuXWfe+459ezZUw0aNFCDBg2UlpZWpv7IkSNlMpkcbn379vX2bgBexbkOCAG+Gh9lNlvTtUll/2jYHs+bRw5IhI2gCo5fe+01ZWVladq0adq0aZM6duyo9PR0HTx40Gn9nJwcDRkyRGvWrNG6deuUnJysq6++Wnl5eQ71+vbtqwMHDthvS5cu9cXuAF7DuQ4IAb4cH2VbN75pU8fypCRrOXmOEUZMhuHs95rAlJqaqt/97nd66qmnJEnFxcVKTk7WXXfdpcmTJ1f6eovFogYNGuipp57S8OHDJVl7jo8ePao333yzyu0qKipSTEyMCgsLFR0dXeXtAJ7mLKd/crI1MOZch6AQzqvY5ORYJ99VZs0azy1nGc7HGyHP1XgtaFbIO3v2rDZu3KgpU6bYyyIiIpSWlqZ169a5tI2TJ0/q3LlziouLcyjPyclRo0aN1KBBA/3hD3/Q7NmzddFFF5W7nTNnzujMmTP2x0VFRW7uDeAbGRlS//6c6xCkwn3FNtv4qLw85+OOTSbr854cH8W68UDwDKs4dOiQLBaLGjdu7FDeuHFj5efnu7SNe++9V4mJiUpLS7OX9e3bV4sXL9bq1av10EMP6b///a+uueYaWSqY4DB37lzFxMTYb8nJyVXbKcAHbOe6IUOs9wTGCAqsYsP4KMBPgiY4rq4HH3xQy5Yt04oVKxQVFWUvHzx4sG644QZ16NBBAwYM0DvvvKMvv/xSOTk55W5rypQpKiwstN/27dvngz0AgDDBKja/Yiww4HNBM6yiYcOGMpvNKigocCgvKChQQkJCha999NFH9eCDD+rjjz/WZZddVmHdFi1aqGHDhtq5c6euuuoqp3UiIyMVGRnp3g4AAFzjTpaGcBgCwPgowKeCpue4Vq1a6tKli1avXm0vKy4u1urVq9W9e/dyX/fwww9r1qxZWrVqlbp27Vrp++zfv1+HDx9WExLAAoB/uJp9YeVK77YjkJQeH9WzpzVQ9sZS0gCCp+dYkrKysjRixAh17dpV3bp107x583TixAmNGjVKkjR8+HA1bdpUc+fOlSQ99NBDmjp1qpYsWaKUlBT72OR69eqpXr16On78uGbMmKGBAwcqISFBu3bt0qRJk9SyZUulp6f7bT8BIKy52jkxb541UKxsaEEoZWBwZZJiKO0v4AdBFRzfdNNN+vnnnzV16lTl5+erU6dOWrVqlX2S3t69exUR8Wtn+DPPPKOzZ89q0KBBDtuZNm2apk+fLrPZrG+//VYvv/yyjh49qsTERF199dWaNWsWwyYAwF9sWRoqGlohWSelZWZahxyUF/wFasaLqgSwtkmKF47Ftk1SXL7c+jgQ9xcIIkGV5zhQkecYADwsO1saONC1uuXl+S0vmLRlevDXhLaqBOwWi5SSUv4Fg8kkxcVJR44E3v4CAcLVeC1oxhwDAMJIRoa1V9gVzsYoB2rGi6qmqHNlkuLhw4G3v0AQIjgGAASm/v1dq+dsjLI7GS98pToBe3WXiPbH/gJBiuAYAOAyi8WaIMEniRJsY48vXADDxmSyrofubIU4V4PJ6gad7qhOwO6pDEq+3F8gSBEcAwBckp1tHfbap480dKj1PiXFi4vVVWeFOFeDSV+m7axOwF7ZhYKrSFMKVIrgGABQKb+t5lzVFeKq0+vsLdUJ2F25ULjoosDaXyBIka3CA8hWASCUuZIoISlJys31Yjrd6qQ+kxzH+fore4PtQOblOR937MqBdJbpIjnZ2oMuBdb+AgHG1XiN4NgDCI4BhLKcHOsQisqUl1HNryoKJv2Vxq26AWxFFwqBtr9AAHE1XguqRUAAAL4XiHPbXJaRYc16ESgrxtmGiTjLc+xqAGtbSrq87QfS/gJBiOAY8ABWa0UoC8S5bW6pKJj0B28HsIG2v0CQITgGqilQV6cFPMU2t62yobLM9XIDASwQsMhWAVSD32bwAz5UnYxqABBsCI6BKgrU1WkBb6hqRjUACDYMqwCqyJ3Frvj1FKGAuV4AwgHBMeCEKxPsgnoGP1BFDJUFEOoIjoELuDrBLuhn8AMAgDIYcwyU4s4Eu0BcnRYAAFQPwTFQwt0JdszgBwAg9BAcAyXcmWBnwwx+AABCC2OOgRJVnWDHDH4AAEIHwTFQojoT7JjBDwBAaGBYBVCCCXYAAIDgGCjBBDsAAEBwjLBlsUg5OdLSpdZ7i4UJdgAAhDvGHCMsVbbQBxPsAADwEleWofUjt4LjU6dOaePGjYqLi1P79u0dnjt9+rRef/11DR8+3KMNBKrrwu/goUPSjTeWzWdsW+jD1kPMBDsAADzM1WVo/chkGM6WPCjr//7v/3T11Vdr7969MplMuuKKK7Rs2TI1KZm6X1BQoMTERFlsKySEkaKiIsXExKiwsFDR0dH+bg5KcfYdNJt/XcjjQiaT9TuamxtQF7EAAAQ/2zK0F4aetok9Xh6/6Gq85vKY43vvvVeXXnqpDh48qO3bt6t+/fq6/PLLtXfvXo80GPC08paCruj6zdlCHwAAoJrcXYbWj1wOjj///HPNnTtXDRs2VMuWLfX2228rPT1dPXv21I8//ujNNgJuq+g76ApXFwQBAAAuqMoytH7icnB86tQp1ajx6xBlk8mkZ555Rtdff7169eql//u///NKA4GqqOw7WBlXFwQBAAAuqOoytH7g8oS8tm3b6quvvlK7du0cyp966ilJ0g033ODZlgHVUNXvlm3MMQt9AADgQdVZhtbHXO45/tOf/qSlS5c6fe6pp57SkCFD5OLcPsDrqvLdYqEPAAC8JIiWoXU5WwXKR7aKwGOxSCkp1vRs5X3CL8xakZxsDYwDJJMMAAChxTZTXnI8OQdYtgoWAUFIsi0FPWiQ9Tvn7Du4dKkUHx+wOciB8BDgiwEA8CDbMrTO8hwHUO8UPcceQM9x4HKW55geYiBABMFiAAC8wE8Xxa7GawTHHkBwHNjomAICkJ8XAwAQfgiOfYjgGADcYJsUUF6+RZaqBOAFHl8hDwAQGiwWKSfHOu4+J8cPC1IF0WIAAMJPlYLjV155RZdffrkSExO1Z88eSdK8efO0cuVKjzYOAOBZ2dnWTts+faShQ633KSnWcp8JosUAAIQft4PjZ555RllZWbr22mt19OhRWUq6HGJjYzVv3jxPtw8A4CG2Yb4Xdtrm5VnLfRYgB9FiAADCj9vB8ZNPPqnnnntO9913n8ylxoJ17dpVW7Zs8WjjACkAfgIGQoDFYk0M4WyWia0sM9NH368gWgwAQPhxOzjOzc1V586dy5RHRkbqxIkTHmkUYBMQPwEDISCghvnaEpFLZQNklqoE4GduB8fNmzfX5s2by5SvWrVK7dq180SbAEkB9BMwEAICbpivbTGApk0dy5OSSOMGwK/cXiEvKytLY8eO1enTp2UYhjZs2KClS5dq7ty5ev75573RRoShyn4CNpmsPwH370/nEoKEnxNuB+Qw34wM65eYROQAAkiV8hy/+uqrmj59unbt2iVJSkxM1IwZM3Trrbd6vIHBgDzHnpeTYx1CUZk1a6Tevb3dGqCaAmAlOFtq4bw85xedpBYGEOq8kuf4/PnzWrx4sdLS0rRjxw4dP35c+fn52r9/f9gGxvCOgPsJGKiqABkfxDBfAHCNW8FxjRo1dPvtt+v06dOSpDp16qhRo0ZeaVh5FixYoJSUFEVFRSk1NVUbNmyosP4bb7yhtm3bKioqSh06dNB7773n8LxhGJo6daqaNGmi2rVr2wN/+FdA/gQMuCugUkQwzBcAXOH2hLxu3brp66+/9kZbKvXaa68pKytL06ZN06ZNm9SxY0elp6fr4MGDTut//vnnGjJkiG699VZ9/fXXGjBggAYMGKDvvvvOXufhhx/W/PnztXDhQq1fv15169ZVenq6/QIA/kGmJ4SEgEoRYZWRIe3ebR2StGSJ9T43l8AY8AlykwYFt8ccv/7665oyZYrGjx+vLl26qG7dug7PX3bZZR5tYGmpqan63e9+p6eeekqSVFxcrOTkZN11112aPHlymfo33XSTTpw4oXfeecde9vvf/16dOnXSwoULZRiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXY469w/ZrtOTY8WYLmOnpQsBbutSag7AyS5ZIQ4Z4vz0A/CcA5h6EO1fjNbezVdgCxrvvvtteZjKZZBiGTCaTfcU8Tzt79qw2btyoKVOm2MsiIiKUlpamdevWOX3NunXrlJWV5VCWnp6uN998U5I1Z3N+fr7S0tLsz8fExCg1NVXr1q0rNzg+c+aMzpw5Y39cVFRU1d0KC1WdpG/7CdjZ35J58/hbgiDA+CAA0q+9PRf2R9rmHtDbE1DcDo5zc3O90Y5KHTp0SBaLRY0bN3Yob9y4sbZt2+b0Nfn5+U7r5+fn25+3lZVXx5m5c+dqxowZbu9DOKruhTKZnhDUbOODKksRwfggIHSRmzTouB0cN2vWzBvtCCpTpkxx6JEuKipScnKyH1sUmDx1oWw2k64NQcqWImLQIOsJ0Nn4IFJEAKHNnbkHnOwCgtvB8eLFiyt8fvjw4VVuTEUaNmwos9msgoICh/KCggIlJCQ4fU1CQkKF9W33BQUFalLqZ82CggJ16tSp3LZERkYqMjKyKrsRNrhQBkowPggIb+QmDTpuB8d/+9vfHB6fO3dOJ0+eVK1atVSnTh2vBce1atVSly5dtHr1ag0YMECSdULe6tWrNW7cOKev6d69u1avXq3MzEx72UcffaTu3btLsi6FnZCQoNWrV9uD4aKiIq1fv1533HGHV/YjXHChDJTC+CAgfDH3IOi4HRz/8ssvZcp27NihO+64QxMnTvRIo8qTlZWlESNGqGvXrurWrZvmzZunEydOaNSoUZKsvdZNmzbV3LlzJVkD+V69eumxxx5Tv379tGzZMn311Vd69tlnJVknEmZmZmr27Nlq1aqVmjdvrgceeECJiYn2ABxVw4UycAHGBwHhibkHQcft4NiZVq1a6cEHH9TNN99c7uQ4T7jpppv0888/a+rUqcrPz1enTp20atUq+4S6vXv3KiLi19TNPXr00JIlS3T//ffr73//u1q1aqU333xTl156qb3OpEmTdOLECY0ZM0ZHjx7VFVdcoVWrVikqKspr+xEOuFAG/KSq6WEAeAdzD4KO23mOy7N582ZdeeWVYZnWjDzHZVksUkpK5RfKubn8PQA8hjyqQOBy9v1MTmbugQ+5Gq+5HRy/9dZbDo8Nw9CBAwf01FNPKTk5We+//37VWhzEwi04drVjikU8AB8qLz0MXzggcPDLjl95LTguPWxBso7bjY+P1x/+8Ac99thjDlkfwkU4BcfudkxxoQz4gO2nmvJmwfJTDVB1BLQhw2vBMcoKl+C4qh1T/F0BvCwnR+rTp/J6a9YwKRBwB0OVQoqr8VpEuc+UY+bMmTp58mSZ8lOnTmnmzJnubg4BzmKxnndffVX661/Lz1ssWfMWO1s93DZJf8gQ6z2BMeBhpIcBPM/WI3ThLzK2layys/3TLnid2z3HZrNZBw4cUKNGjRzKDx8+rEaNGsniLDoKcaHac+zsgrkydEwBfkDPMeBZDFUKSV7rOTYMQybb7+ilfPPNN4qLi3N3cwhQ5V0wV4aOKcAPbHlUnfxtlmQtT04mjyrgKndWskLIcTnPcYMGDWQymWQymdS6dWuHANlisej48eO6/fbbvdJI+FZFSz9XJgznYwL+Rx5VwLMYqhTWXA6O582bJ8Mw9Je//EUzZsxQTEyM/blatWopJSXFviwzgltlF8zOsMAP4GcZGdZZsc4mD5EeBnAPK1mFNZeD4xEjRkiSmjdvrh49eqhmzZpeaxT8y90LYTqmgACRkSH17096GKC6WPI5rLm9fHSvXr3s/z59+rTOnj3r8HwoTUgLV+5eCNMxBQQQW3oYAFXHUKWw5vaEvJMnT2rcuHFq1KiR6tatqwYNGjjcEPxcmdsTHy/9+9/Wye+5uQTGAIAQYxuq1LSpY3lSEitOhji3g+OJEyfqk08+0TPPPKPIyEg9//zzmjFjhhITE7V48WJvtBE+ZrtglsoGyLbHCxdKw4aRtxgAEMIyMqTdu609QUuW0CMUJtzOc3zxxRdr8eLF6t27t6Kjo7Vp0ya1bNlSr7zyipYuXar33nvPW20NWOGU55ilnwEAQDByNV5ze8zxkSNH1KJFC0nW8cVHjhyRJF1xxRW64447qthcBCLm9gAAgHDjdnDcokUL5ebm6uKLL1bbtm31+uuvq1u3bnr77bcVGxvrhSbCn5jbAwAAwonbY45HjRqlb775RpI0efJkLViwQFFRURo/frwmTpzo8QYCAAAAvuL2mOML7dmzRxs3blTLli112WWXeapdQSVUxxwDAACECq+NOS7t9OnTatasmZo1a1adzQAAAAABwe1hFRaLRbNmzVLTpk1Vr149/fjjj5KkBx54QC+88ILHGwgAAAD4itvB8Zw5c7Ro0SI9/PDDqlWrlr380ksv1fPPP+/RxgEAAFSZxSLl5EhLl1rvLRZ/twhBwO3gePHixXr22Wc1bNgwmUvl9OrYsaO2bdvm0cYBgL9wTgWCXHa2lJIi9ekjDR1qvU9JsZYDFXA7OM7Ly1PLli3LlBcXF+vcuXMeaRQA+BPnVCBAVPUqNTtbGjTIcRUrScrLs5bzZUYF3A6O27dvr7Vr15YpX758uTp37uyRRgGAv3BOBQJEVa9SLRbr8q7OknHZyjIz+TkI5XI7W8XUqVM1YsQI5eXlqbi4WNnZ2dq+fbsWL16sd955xxttRCkWCyvWAd5S2TnVZLKeU/v353sHeJXtKvXCL6PtKnX5cusyrs6sXVv26rY0w5D27bPWY5UrOOF2z3H//v319ttv6+OPP1bdunU1depUbd26VW+//bb++Mc/eqONKMFPvYB3uXNOBeAl1e35PXDAtfdxtR7Cjss9xz/++KOaN28uk8mknj176qOPPvJmu3CB6lxEA3AN51QgALh6lfrkk1LjxmV/Rm3SxLX3cbUewo7LPcetWrXSzz//bH980003qaCgwCuNgiOGTwG+wTkVCACuXn2OH+/8Z9SePaWkJOs4qPJcdJG1HuCEy8HxhatMv/feezpx4oTHG4Sy+KkX8I3Kzqkmk5SczDkV8KqqXH2WnjFrNkv//KfzHiWbw4ellSur3kaENLfHHMP3+KkX8A3bOVUqGyDbHs+bx2Q8wKtc6fm90IU/o/bvb+0dLo9tdi0/ucIJl4Njk8kk0wUf1Asfwzv4qRfwnYwM6xj+pk0dy5OSGNsP+ERFV6kVKf0z6tq11t5hV+oCF3B5Qp5hGBo5cqQiIyMlSadPn9btt9+uunXrOtTLJnWCx9kuovPynP9KZDJZn+enXsAzMjKsHU+kTQR8zJav9MwZafp06dlnrSc/d7jzMyo/ucIJl4PjESNGODy++eabPd4YOGe7iB40yBoIlw6Q+akX8A6zmRSogE9lZ1tnn5eeZJOUJM2YIbVqJRUUWCfhVcadn1H5yRVOmIwLZ9rBbUVFRYqJiVFhYaGio6O99j7O/m4kJ1sDY37qBQAErfLyldp6gJYvt/6ck5JS+c+oubnWx67WpWcpbLgarzEhL4hkZEi7d0tr1khLlljvc3MJjAEAQczVfKWS6zNmmV2LaiA4DjK2n3qHDLHe870GAAQ1d/KV9u9vHYvcoIFjHWczZpldiypyecwxAACAx7k6KW7lSumWWxwD6bg4a6/zffc57y1idi2qgDHHHuCrMccAAIScnBzrKndVUXpMMj3BqARjjgEAQOBzZWnK8np6L1z8A/AAgmMAAOA/lU2eM4yKA18W9ICHERwDAAD/qmjynC1TRWVY0AMeQnAMAAD8r7x8pf37u/Z6FvSAh5CtAgAABAZnS1PaxiRXtqBHz54+aSJCHz3HAAAgcLGgB3yM4BgAAAQ2FvSADzGsAgAABD4W9ICPBE3P8ZEjRzRs2DBFR0crNjZWt956q44fP15h/bvuuktt2rRR7dq1dfHFF+vuu+9WYWGhQz2TyVTmtmzZMm/vDgAAcJdtTPKQIdZ7AmN4QdD0HA8bNkwHDhzQRx99pHPnzmnUqFEaM2aMlixZ4rT+Tz/9pJ9++kmPPvqo2rdvrz179uj222/XTz/9pOXLlzvUfemll9S3b1/749jYWG/uCoAqsljoNAIAeFdQLB+9detWtW/fXl9++aW6du0qSVq1apWuvfZa7d+/X4mJiS5t54033tDNN9+sEydOqEYN63WByWTSihUrNGDAgCq3j+WjAe/Lzpb+9jdp//5fy5KSrPN0GG4IAKhMSC0fvW7dOsXGxtoDY0lKS0tTRESE1q9f7/J2bAfDFhjbjB07Vg0bNlS3bt304osvqrLrhTNnzqioqMjhBsB7srOlQYMcA2PJmtlp0CDr8wAAeEJQDKvIz89Xo0aNHMpq1KihuLg45efnu7SNQ4cOadasWRozZoxD+cyZM/WHP/xBderU0Ycffqg777xTx48f1913313utubOnasZM2a4vyMA3GaxWHuMnV2zGoY1k1NmpnWeDkMsgCryxJglxj0hRPi153jy5MlOJ8SVvm3btq3a71NUVKR+/fqpffv2mj59usNzDzzwgC6//HJ17txZ9957ryZNmqRHHnmkwu1NmTJFhYWF9tu+ffuq3UYAzq1dW7bHuDTDkPbts9bzJotFysmRli613lss3n0/wGeys6WUFKlPH2noUOt9Sop7P8l4YhtAgPBrz/GECRM0cuTICuu0aNFCCQkJOnjwoEP5+fPndeTIESUkJFT4+mPHjqlv376qX7++VqxYoZo1a1ZYPzU1VbNmzdKZM2cUGRnptE5kZGS5zwHwrAMHPFuvKhjvjJBlG7N04U8ztjFLruQQ9sQ2gADi1+A4Pj5e8fHxldbr3r27jh49qo0bN6pLly6SpE8++UTFxcVKTU0t93VFRUVKT09XZGSk3nrrLUVFRVX6Xps3b1aDBg0IfoEA0aSJZ+u5i/M+QpYnxiwx7gkhKCgm5LVr1059+/bV6NGjtWHDBn322WcaN26cBg8ebM9UkZeXp7Zt22rDhg2SrIHx1VdfrRMnTuiFF15QUVGR8vPzlZ+fL0vJ76Fvv/22nn/+eX333XfauXOnnnnmGf3jH//QXXfd5bd9BeCoZ09rL+2Fq8bamExScrK1nqdVdt6XrOd9hlggKHlizFKgjHsCPCgoJuRJ0quvvqpx48bpqquuUkREhAYOHKj58+fbnz937py2b9+ukydPSpI2bdpkz2TRsmVLh23l5uYqJSVFNWvW1IIFCzR+/HgZhqGWLVvq8ccf1+jRo323YwAqZDZbhy8MGmQNhEsHqraAed4873RKuXPe793b8+8PeJUnxiwFwrgnwMOCJjiOi4srd8EPSUpJSXFIwda7d+9KU7L17dvXYfEPAIEpI8M6fMHZuN9587w3rIHzPkKaJ8Ys+XvcE+AFQRMcAwhvGRnWYYu+zBTFeR8hzTZmKS/P+dghk8n6fEVjljyxDSDABMWYYwCQrIFw797SkCHWe2/P7/HneGfA62xjlqSyH3JXxyx5YhtAgCE4BoBycN5HyLONWWra1LE8Kcn1VCye2AYQQExGZQNzUSlX1+oGEJyc5TlOTvbueGfAp1ghD2HA1XiN4NgDCI6B0Md5HwCCm6vxGhPyAMAFtvHOAIDQRnAMwG30ogIAQhXBMQC3OBt/m5RknbjG+FsAQLAjWwUAl2VnW1equ3DVuLw8a3l2tn/aBQCApxAcA3CJxWLtMXY2hddWlplprQcAQLAiOAbgkrVry/YYl2YY0r591noAAAQrxhwDcMmBA56tB8CLmDULVBnBMQCXNGni2XrVxbkfKAezZoFqYVgFAJf07Gk9v164jLKNyWRdNa5nT++3JTtbSkmR+vSRhg613qekMCEQYNYsUH0ExwBcYjZbO56ksgGy7fG8ed7vveXcD5SjOrNmLRYpJ0dautR6z8xahDGCYwAuy8iQli+XmjZ1LE9KspZ7+xdbMmYAFajqrFl+igEcEBwDcEtGhrR7t7RmjbRkifU+N9c3QxnJmAFUwNXZsKtX/3oFyU8xQBkExwDcZjZLvXtLQ4ZY7301EY6MGUAFXJ0NO3u2tWf4jTf4KQZwguAYQNAItIwZQECpbNZsafv3SzfeyE8xgBMExwCCRiBlzAACTkWzZquDn2IQZgiOAQSNQMmYAQSs8mbNVgc/xSDMEBwDCCr+zpgBBDzbrNn776/edvgpBmGKFfIABJ2MDKl/f1bIQxDz9hKPZrN01VXWyXdVwU8xCGMExwCCki1jBhB0fLW8c8+eUlycdORI5XUvrJeUZA2M+SkGYYjgGAAAX7HlFb4wfZotr7AnxwaZzdYgfNq0yuu+/rq1Pj/FADIZhrMEh3BHUVGRYmJiVFhYqOjoaH83BwAQiCwWa37h8tKnmUzWHtvc3KoHphcO1+jRQ0pMlA4f9t57AkHC1XiNCXkAAPiCt5d4dLYM9CWXSH/5i/PUbowrBpwiOAYAwBe8ucRjRctAP/qodM891h7i0kjxAjjFmGMAAHzBW0s8WiwVLwNtMknLlkm7dkmff864YqASBMcAvMbb2aqAoGJb4jEvz3kgaxv/625eYVeHa3z+OSleABcwrAKAVzgb/piSYi0HwlJlyzsbhnTbbe5v15vDNYAwRHAMwOMqGv44aBABMsJYZcs7T5vm/lWkt4ZrAGGK4BiAR1U2/FGSMjOt9YCwZFveecYM58+7exVpG67hrDdaYhlowE0ExwA8ytvZqoCQ8dxzzsvdvYqsaLgG6doAtxEcA/Aohj8CLvD0VWR5wzVI1wa4jWwVABxUN8MEwx+BCzj7UnnjKjIjQ+rfnxQxQDURHAOwy862jhcu3aGVlGT9xdbVjidvZasCglJ5X6rRo117vbtXkWYz6dqAamJYBQBJnsswwfBHoERFX6rp06WLLmISHRCACI4BeDzDBMMfEfZc+VLZ/s1VJBBQCI4BeCXDhC1b1Zo10pIl1vvcXAJjhAlXvlSHD1vTuXEVCQQUxhwDUF6ea/XczTDB8EeELVe/LK1aWa8imUQHBAyCYyDMZWdbh0y4ggwTgIvcSdvCVSQQUBhWAYQx23yhQ4cqrsfcIMBNrFoHBC2CYyBMVTRfqDTmBgFVQNoWIGgRHANhqrL5QjYNGzI3CKgS0rYAQSloguMjR45o2LBhio6OVmxsrG699VYdP368wtf07t1bJpPJ4Xb77bc71Nm7d6/69eunOnXqqFGjRpo4caLOnz/vzV0BAoKr84WeeIJzOFBlpG0Bgk7QTMgbNmyYDhw4oI8++kjnzp3TqFGjNGbMGC1ZsqTC140ePVozZ860P65Tp4793xaLRf369VNCQoI+//xzHThwQMOHD1fNmjX1j3/8w2v7AgQCV+cLXdjpBYSd6q6pzoQ7IKiYDKOyEYf+t3XrVrVv315ffvmlunbtKklatWqVrr32Wu3fv1+JiYlOX9e7d2916tRJ8+bNc/r8+++/r+uuu04//fSTGjduLElauHCh7r33Xv3888+qVauWS+0rKipSTEyMCgsLFR0d7f4OAn5gsUgpKZUv85yby7BIhDFPrKkOICC4Gq8FxbCKdevWKTY21h4YS1JaWpoiIiK0fv36Cl/76quvqmHDhrr00ks1ZcoUnTx50mG7HTp0sAfGkpSenq6ioiJ9//335W7zzJkzKioqcrgBwYb5QkAlPLWmOoCgEhTBcX5+vho1auRQVqNGDcXFxSk/P7/c1w0dOlT//ve/tWbNGk2ZMkWvvPKKbr75Zoftlg6MJdkfV7TduXPnKiYmxn5LTk6uym4BfpeRIb32mnTRRY7lzBdC2PP0muoAgoZfg+PJkyeXmTB34W3btm1V3v6YMWOUnp6uDh06aNiwYVq8eLFWrFihXbt2VavdU6ZMUWFhof22b9++am0P8JfsbCkryzHPcXy89PjjBMYIc95YUx1AUPDrhLwJEyZo5MiRFdZp0aKFEhISdPDgQYfy8+fP68iRI0pISHD5/VJTUyVJO3fu1CWXXKKEhARt2LDBoU5BQYEkVbjdyMhIRUZGuvy+QCCy/WJ8YcfYoUPSjTfSc4ww52o6F3fXVAcQ8PwaHMfHxys+Pr7Set27d9fRo0e1ceNGdenSRZL0ySefqLi42B7wumLz5s2SpCYl0/S7d++uOXPm6ODBg/ZhGx999JGio6PVvn17N/cGCB6V/WJsMll/Me7fnzHHCFPuLP8MIKQExZjjdu3aqW/fvho9erQ2bNigzz77TOPGjdPgwYPtmSry8vLUtm1be0/wrl27NGvWLG3cuFG7d+/WW2+9peHDh+vKK6/UZZddJkm6+uqr1b59e91yyy365ptv9MEHH+j+++/X2LFj6RlGSOMXY6ASLP8MhK2gCI4la9aJtm3b6qqrrtK1116rK664Qs8++6z9+XPnzmn79u32bBS1atXSxx9/rKuvvlpt27bVhAkTNHDgQL399tv215jNZr3zzjsym83q3r27br75Zg0fPtwhLzLgbxaLlJMjLV1qvffE/B9+MQYq4W46F298UQH4RVDkOQ505DmGO9xZT8BbKVZzcqQ+fSqvt2YNaxcgzDn7EiYnWwNj25eQXMhAUHA1XiM49gCCY7jKnXNoeRPmbJ1W1ZkwxwIggBsquqL15hcVgEcRHPsQwTFc4c451Ba8ljcu2BPBq609kmObOKcDLvLFFxWAx4TUCnlAsHN3PQFfTJjLyLAGwE2bOpazAAjgIma2AiHJr6ncgHDhzjm0d2/fTZjLyLCma3N1DDSAUpjZCoQkgmPAB9w9h/oyxarZzKQ7hBh3Zr1WB7mQgZDEsArAB9w9h5JiFaii7GzrOOA+faShQ633KSnWck/jiwqEJIJjwAds59CKlD6HuptiFYB+nWV64RimvDxruacDZL6oQEgiOAZ8wGyWhgypuM7gwY7n0PImzDVsaJ3cFxfHOgOAnbuzXj2Fma1AyCGVmweQyg2VqSzjk2TtOXaW8ck2fHLlSunf/5YOHfr1OdYZAEr4e2UbX41zBlBlrsZrTMgDfKCybBWSY7aK0sxm6cgRaxB84aWs7ddiOqgQ9vydOYKZrUDIYFgFUE0Wi7XTaulS672zX22rc97216/FQFAhcwQADyE4BqrB1Ynx1Tlvs84A4AIyRwDwEIJjoIrcmRhfnfO2v38tBoICmSMAeAjBMVAF7g51qM55u1Ej19rkaj0gZJE5AoAHEBwDbrJYpCefdH+oA+dtwAcyMqTdu61ZKZYssd7n5vIFA+AyslUAbsjOtvYYV5Z5wubCoQ4ZGVL//u5lfDp40LX3crUeEPLIHAGgGgiOARfZxhi7kxnc2QQ7d8/brk7m++EHa7YM0qsCAFB1LALiASwCEvpcWcSjNJPJOlzC2aIeVX3vvDzXAnMWBgEAoCxX4zXGHAMucGURDxtPT4yvaDKfM86yZQAAANcQHAMucCdNmjcm2JU3mc8ZFgYBAKDqCI4BF7g67veJJ7w3Mb70JPz776+4LguDAABQNQTHgAtcXcTjrru8OxnONpmvfXvX6rMwCAAA7iE4BlwQaItvVWc5agAAUD6CY8BFgbKIh8VivcXFlV+nouWoAQBA+chzDLihKot4eJIri5D4oycbYcRi8d8XAAB8gOAYcJO/Ft9ydRGSpCRrYEyeY3ics6szEmsDCDEMqwCCgMVijUkqCozj4qSPP/ZetgyEOdvV2YU/W5BYG0CIITgGgoAri5AcOWLt1eYXbnhcRVdnJNYGEGIIjoEg4GpKNlK3wSsquzojsTaAEMKYYyAIkLoNfuXNqzMm+AEIMPQcA0HA1UVISN0Gr/DW1Vl2tpSSIvXpIw0dar1PSWH8MgC/IjgGgkCgLUKCMOONqzMm+AEIUATHQJAIlEVIEIY8fXXGBD8AAYzgGAgiGRnS7t3SmjXSkiXWe1K3wSc8eXXGBD8AAYwJeUCQ8dciJIDHlogk/QqAAEZwDABwnSeuzki/AiCAMawCAOBbpF8BEMAIjgEAvkX6FQABjOAYAOB7pF8BEKAYcwwA8A9PTfADAA8iOAYA+A/pVwAEGIJjwIcsFjrJAAAIZATHgI9kZ1sXBSu99kFSknVeEsMrAQAIDEzIA3wgO1saNKjsomB5edby7Gz/tAsAADgiOAa8zGKx9hgbRtnnbGWZmdZ6AADAv4ImOD5y5IiGDRum6OhoxcbG6tZbb9Xx48fLrb97926ZTCantzfeeMNez9nzy5Yt88UuIUysXVu2x7g0w5D27bPWAwAA/hU0Y46HDRumAwcO6KOPPtK5c+c0atQojRkzRkuWLHFaPzk5WQcOHHAoe/bZZ/XII4/ommuucSh/6aWX1LdvX/vj2NhYj7cf4euCj2G16wEAAO8JiuB469atWrVqlb788kt17dpVkvTkk0/q2muv1aOPPqrExMQyrzGbzUpISHAoW7FihW688UbVq1fPoTw2NrZM3YqcOXNGZ86csT8uKipyZ3cQZpo08Ww9AADgPUExrGLdunWKjY21B8aSlJaWpoiICK1fv96lbWzcuFGbN2/WrbfeWua5sWPHqmHDhurWrZtefPFFGc4Gh5Yyd+5cxcTE2G/Jycnu7RDCSs+e1qwUF66Sa2MyScnJ1noAAMC/giI4zs/PV6NGjRzKatSoobi4OOXn57u0jRdeeEHt2rVTjx49HMpnzpyp119/XR999JEGDhyoO++8U08++WSF25oyZYoKCwvtt3379rm3QwgrZrM1XZtUNkC2PZ43j3zHAAAEAr8Gx5MnTy530pzttm3btmq/z6lTp7RkyRKnvcYPPPCALr/8cnXu3Fn33nuvJk2apEceeaTC7UVGRio6OtrhBlQkI0Navlxq2tSxPCnJWk6eYwAAAoNfxxxPmDBBI0eOrLBOixYtlJCQoIMHDzqUnz9/XkeOHHFprPDy5ct18uRJDR8+vNK6qampmjVrls6cOaPIyMhK6wOuysiQ+vdnhTwAAAKZX4Pj+Ph4xcfHV1qve/fuOnr0qDZu3KguXbpIkj755BMVFxcrNTW10te/8MILuuGGG1x6r82bN6tBgwYExvAKs1nq3dvfrQAAAOUJimwV7dq1U9++fTV69GgtXLhQ586d07hx4zR48GB7poq8vDxdddVVWrx4sbp162Z/7c6dO/Xpp5/qvffeK7Pdt99+WwUFBfr973+vqKgoffTRR/rHP/6he+65x2f7BgAAgMARFMGxJL366qsaN26crrrqKkVERGjgwIGaP3++/flz585p+/btOnnypMPrXnzxRSUlJenqq68us82aNWtqwYIFGj9+vAzDUMuWLfX4449r9OjRXt8fAAAABB6TUVneMlSqqKhIMTExKiwsZHIeAABAAHI1XguKVG4AAACALxAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQIka/m4A4CqLRVq7VjpwQGrSROrZUzKb/d0qAAAQSgiOERSys6W//U3av//XsqQk6Z//lDIy/NcuwKu4IgQAn2NYBQJedrY0aJBjYCxJeXnW8uxs/7QL8KrsbCklRerTRxo61HqfksIHHgC8jOAYAc1isfYYG0bZ52xlmZnWekDI4IoQAPyG4BgBbe3asvFBaYYh7dtnrQeEBK4IAcCvCI4R0A4c8Gw9IOBxRQgAfkVwjIDWpIln6wEBjytCAPArgmMEtJ49rVkpTCbnz5tMUnKytR4QErgiBAC/IjhGQDObrenapLIBsu3xvHlkt0II4YoQAPyK4BgBLyNDWr5catrUsTwpyVpOnmOEFK4IAcCvTIbhbEo03FFUVKSYmBgVFhYqOjra380JWayHgLDibOWb5GRrYMwVIQC4zdV4jeDYAwiOAXgFV4QA4DGuxmssHw0Agcpslnr39ncrACCsEBwjeNCLBgAAvIzgGMHB2fjLpCTrxCXGXwIAAA8hWwUCX3a2NGhQ2VXD8vKs5dnZ/mkXAAAIOQTHCGwWi7XH2Nm8UVtZZqa1HgAAQDURHCOwrV1btse4NMOQ9u2z1gMAAKgmgmMEtgMHPFsPAACgAgTHCGxNmni2HgAAQAUIjhHYeva0ZqW4cBldG5PJumpYz56+bRcAAAhJBMcIbGazNV2bVDZAtj2eN498xwAAwCMIjhH4MjKk5culpk0dy5OSrOXkOQYAAB7CIiAIDhkZUv/+rJAHAAC8iuAYAafcVaLNZql3b383DwAAhDCCYwQUVokGAAD+xJhjBAxWiQYAAP5GcIyAwCrRAAAgEBAcIyCwSjQAAAgEBMcICKwSDQAAAgHBMQICq0QDAIBAQHCMgMAq0QAAIBAETXA8Z84c9ejRQ3Xq1FFsbKxLrzEMQ1OnTlWTJk1Uu3ZtpaWlaceOHQ51jhw5omHDhik6OlqxsbG69dZbdfz4cS/sASrCKtEAACAQBE1wfPbsWf35z3/WHXfc4fJrHn74Yc2fP18LFy7U+vXrVbduXaWnp+v06dP2OsOGDdP333+vjz76SO+8844+/fRTjRkzxhu7gEqwSjQAAPA3k2E4S54VuBYtWqTMzEwdPXq0wnqGYSgxMVETJkzQPffcI0kqLCxU48aNtWjRIg0ePFhbt25V+/bt9eWXX6pr166SpFWrVunaa6/V/v37lZiY6FKbioqKFBMTo8LCQkVHR1dr/1DBCnkAAABV5Gq8FjQ9x+7Kzc1Vfn6+0tLS7GUxMTFKTU3VunXrJEnr1q1TbGysPTCWpLS0NEVERGj9+vXlbvvMmTMqKipyuMFzbKtEDxlivScwBgAAvhKywXF+fr4kqXHjxg7ljRs3tj+Xn5+vRo0aOTxfo0YNxcXF2es4M3fuXMXExNhvycnJHm49AAAA/MGvwfHkyZNlMpkqvG3bts2fTXRqypQpKiwstN/27dvn7yYBAADAA2r4880nTJigkSNHVlinRYsWVdp2QkKCJKmgoEBNSiXHLSgoUKdOnex1Dh486PC68+fP68iRI/bXOxMZGanIyMgqtQsAAACBy6/BcXx8vOLj472y7ebNmyshIUGrV6+2B8NFRUVav369PeNF9+7ddfToUW3cuFFdunSRJH3yyScqLi5WamqqV9oFAACAwBU0Y4737t2rzZs3a+/evbJYLNq8ebM2b97skJO4bdu2WrFihSTJZDIpMzNTs2fP1ltvvaUtW7Zo+PDhSkxM1IABAyRJ7dq1U9++fTV69Ght2LBBn332mcaNG6fBgwe7nKkCAAAAocOvPcfumDp1ql5++WX7486dO0uS1qxZo969e0uStm/frsLCQnudSZMm6cSJExozZoyOHj2qK664QqtWrVJUVJS9zquvvqpx48bpqquuUkREhAYOHKj58+f7ZqcAAAAQUIIuz3EgIs8xAABAYAv7PMcAAACAuwiOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAACgRNHmOA5ktG15RUZGfWwIAAABnbHFaZVmMCY494NixY5Kk5ORkP7cEAAAAFTl27JhiYmLKfZ5FQDyguLhYP/30k+rXry+TyeSV9ygqKlJycrL27dvHQiMX4NiUj2NTPo5NxTg+5ePYlI9jUz6OTfl8dWwMw9CxY8eUmJioiIjyRxbTc+wBERERSkpK8sl7RUdH86UqB8emfByb8nFsKsbxKR/Hpnwcm/JxbMrni2NTUY+xDRPyAAAAgBIExwAAAEAJguMgERkZqWnTpikyMtLfTQk4HJvycWzKx7GpGMenfByb8nFsysexKV+gHRsm5AEAAAAl6DkGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYLjADFnzhz16NFDderUUWxsrEuvMQxDU6dOVZMmTVS7dm2lpaVpx44dDnWOHDmiYcOGKTo6WrGxsbr11lt1/PhxL+yB97i7D7t375bJZHJ6e+ONN+z1nD2/bNkyX+ySR1Xl/7h3795l9v322293qLN3717169dPderUUaNGjTRx4kSdP3/em7vice4emyNHjuiuu+5SmzZtVLt2bV188cW6++67VVhY6FAvGD87CxYsUEpKiqKiopSamqoNGzZUWP+NN95Q27ZtFRUVpQ4dOui9995zeN6Vvz/Bwp1j89xzz6lnz55q0KCBGjRooLS0tDL1R44cWebz0bdvX2/vhte4c3wWLVpUZt+joqIc6oTrZ8fZ312TyaR+/frZ64TKZ+fTTz/V9ddfr8TERJlMJr355puVviYnJ0e//e1vFRkZqZYtW2rRokVl6rj7d6zKDASEqVOnGo8//riRlZVlxMTEuPSaBx980IiJiTHefPNN45tvvjFuuOEGo3nz5sapU6fsdfr27Wt07NjR+OKLL4y1a9caLVu2NIYMGeKlvfAOd/fh/PnzxoEDBxxuM2bMMOrVq2ccO3bMXk+S8dJLLznUK33sgkVV/o979epljB492mHfCwsL7c+fP3/euPTSS420tDTj66+/Nt577z2jYcOGxpQpU7y9Ox7l7rHZsmWLkZGRYbz11lvGzp07jdWrVxutWrUyBg4c6FAv2D47y5YtM2rVqmW8+OKLxvfff2+MHj3aiI2NNQoKCpzW/+yzzwyz2Ww8/PDDxg8//GDcf//9Rs2aNY0tW7bY67jy9ycYuHtshg4daixYsMD4+uuvja1btxojR440YmJijP3799vrjBgxwujbt6/D5+PIkSO+2iWPcvf4vPTSS0Z0dLTDvufn5zvUCdfPzuHDhx2Oy3fffWeYzWbjpZdestcJlc/Oe++9Z9x3331Gdna2IclYsWJFhfV//PFHo06dOkZWVpbxww8/GE8++aRhNpuNVatW2eu4e7yrg+A4wLz00ksuBcfFxcVGQkKC8cgjj9jLjh49akRGRhpLly41DMMwfvjhB0OS8eWXX9rrvP/++4bJZDLy8vI83nZv8NQ+dOrUyfjLX/7iUObKFzbQVfX49OrVy/jb3/5W7vPvvfeeERER4XBSe+aZZ4zo6GjjzJkzHmm7t3nqs/P6668btWrVMs6dO2cvC7bPTrdu3YyxY8faH1ssFiMxMdGYO3eu0/o33nij0a9fP4ey1NRU469//athGK79/QkW7h6bC50/f96oX7++8fLLL9vLRowYYfTv39/TTfULd49PZecwPju/euKJJ4z69esbx48ft5eF0mfHxpW/l5MmTTJ+85vfOJTddNNNRnp6uv1xdY+3OxhWEaRyc3OVn5+vtLQ0e1lMTIxSU1O1bt06SdK6desUGxurrl272uukpaUpIiJC69ev93mbq8IT+7Bx40Zt3rxZt956a5nnxo4dq4YNG6pbt2568cUXZQRZ2u/qHJ9XX31VDRs21KWXXqopU6bo5MmTDtvt0KGDGjdubC9LT09XUVGRvv/+e8/viBd46vNfWFio6Oho1ahRw6E8WD47Z8+e1caNGx3+VkRERCgtLc3+t+JC69atc6gvWf//bfVd+fsTDKpybC508uRJnTt3TnFxcQ7lOTk5atSokdq0aaM77rhDhw8f9mjbfaGqx+f48eNq1qyZkpOT1b9/f4e/GXx2fvXCCy9o8ODBqlu3rkN5KHx23FXZ3xxPHG931Ki8CgJRfn6+JDkEL7bHtufy8/PVqFEjh+dr1KihuLg4e51A54l9eOGFF9SuXTv16NHDoXzmzJn6wx/+oDp16ujDDz/UnXfeqePHj+vuu+/2WPu9rarHZ+jQoWrWrJkSExP17bff6t5779X27duVnZ1t366zz5btuWDgic/OoUOHNGvWLI0ZM8ahPJg+O4cOHZLFYnH6/7lt2zanrynv/7/03xZbWXl1gkFVjs2F7r33XiUmJjqctPv27auMjAw1b95cu3bt0t///nddc801Wrduncxms0f3wZuqcnzatGmjF198UZdddpkKCwv16KOPqkePHvr++++VlJTEZ6fEhg0b9N133+mFF15wKA+Vz467yvubU1RUpFOnTumXX36p9nfVHQTHXjR58mQ99NBDFdbZunWr2rZt66MWBQ5Xj011nTp1SkuWLNEDDzxQ5rnSZZ07d9aJEyf0yCOPBESA4+3jUzrY69Chg5o0aaKrrrpKu3bt0iWXXFLl7fqCrz47RUVF6tevn9q3b6/p06c7PBfInx34zoMPPqhly5YpJyfHYdLZ4MGD7f/u0KGDLrvsMl1yySXKycnRVVdd5Y+m+kz37t3VvXt3++MePXqoXbt2+te//qVZs2b5sWWB5YUXXlCHDh3UrVs3h/Jw/uwEEoJjL5owYYJGjhxZYZ0WLVpUadsJCQmSpIKCAjVp0sReXlBQoE6dOtnrHDx40OF158+f15EjR+yv9xdXj01192H58uU6efKkhg8fXmnd1NRUzZo1S2fOnPH7+u6+Oj42qampkqSdO3fqkksuUUJCQplZwAUFBZIUFp+dY8eOqW/fvqpfv75WrFihmjVrVlg/kD47F2rYsKHMZrP9/8+moKCg3OOQkJBQYX1X/v4Eg6ocG5tHH31UDz74oD7++GNddtllFdZt0aKFGjZsqJ07dwZVgFOd42NTs2ZNde7cWTt37pTEZ0eSTpw4oWXLlmnmzJmVvk+wfnbcVd7fnOjoaNWuXVtms7nan0W3eHwUM6rF3Ql5jz76qL2ssLDQ6YS8r776yl7ngw8+CMoJeVXdh169epXJNFCe2bNnGw0aNKhyW/3BU//H//vf/wxJxjfffGMYxq8T8krPAv7Xv/5lREdHG6dPn/bcDnhRVY9NYWGh8fvf/97o1auXceLECZfeK9A/O926dTPGjRtnf2yxWIymTZtWOCHvuuuucyjr3r17mQl5Ff39CRbuHhvDMIyHHnrIiI6ONtatW+fSe+zbt88wmUzGypUrq91eX6vK8Snt/PnzRps2bYzx48cbhsFnxzCs5/nIyEjj0KFDlb5HMH92bOTihLxLL73UoWzIkCFlJuRV57PoDoLjALFnzx7j66+/tqcc+/rrr42vv/7aIfVYmzZtjOzsbPvjBx980IiNjTVWrlxpfPvtt0b//v2dpnLr3LmzsX79euN///uf0apVq6BM5VbRPuzfv99o06aNsX79eofX7dixwzCZTMb7779fZptvvfWW8dxzzxlbtmwxduzYYTz99NNGnTp1jKlTp3p9fzzN3eOzc+dOY+bMmcZXX31l5ObmGitXrjRatGhhXHnllfbX2FK5XX311cbmzZuNVatWGfHx8UGZys2dY1NYWGikpqYaHTp0MHbu3OmQTun8+fOGYQTnZ2fZsmVGZGSksWjRIuOHH34wxowZY8TGxtqzkdxyyy3G5MmT7fU/++wzo0aNGsajjz5qbN261Zg2bZrTVG6V/f0JBu4emwcffNCoVauWsXz5cofPh+1v9bFjx4x77rnHWLdunZGbm2t8/PHHxm9/+1ujVatWQXNhWZq7x2fGjBnGBx98YOzatcvYuHGjMXjwYCMqKsr4/vvv7XXC9bNjc8UVVxg33XRTmfJQ+uwcO3bMHsdIMh5//HHj66+/Nvbs2WMYhmFMnjzZuOWWW+z1bancJk6caGzdutVYsGCB01RuFR1vTyI4DhAjRowwJJW5rVmzxl5HJblVbYqLi40HHnjAaNy4sREZGWlcddVVxvbt2x22e/jwYWPIkCFGvXr1jOjoaGPUqFEOAXcwqGwfcnNzyxwrwzCMKVOmGMnJyYbFYimzzffff9/o1KmTUa9ePaNu3bpGx44djYULFzqtG+jcPT579+41rrzySiMuLs6IjIw0WrZsaUycONEhz7FhGMbu3buNa665xqhdu7bRsGFDY8KECQ7pzIKBu8dmzZo1Tr+Hkozc3FzDMIL3s/Pkk08aF198sVGrVi2jW7duxhdffGF/rlevXsaIESMc6r/++utG69atjVq1ahm/+c1vjHfffdfheVf+/gQLd45Ns2bNnH4+pk2bZhiGYZw8edK4+uqrjfj4eKNmzZpGs2bNjNGjR3vlBO4r7hyfzMxMe93GjRsb1157rbFp0yaH7YXrZ8cwDGPbtm2GJOPDDz8ss61Q+uyU97fUdjxGjBhh9OrVq8xrOnXqZNSqVcto0aKFQ7xjU9Hx9iSTYQRo/iEAAADAx8hzDAAAAJQgOAYAAABKEBwDAAAAJQiOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGgAA1cuRImUymMredO3d6ZPuLFi1SbGysR7ZVVZ9++qmuv/56JSYmymQy6c033/RrewCA4BgAAljfvn114MABh1vz5s393awyzp07V6XXnThxQh07dtSCBQs83CIAqBqCYwAIYJGRkUpISHC4mc1mSdLKlSv129/+VlFRUWrRooVmzJih8+fP21/7+OOPq0OHDqpbt66Sk5N155136vjx45KknJwcjRo1SoWFhfYe6enTp0uS0x7c2NhYLVq0SJK0e/dumUwmvfbaa+rVq5eioqL06quvSpKef/55tWvXTlFRUWrbtq2efvrpCvfvmmuu0ezZs/WnP/3JA0cLAKqvhr8bAABw39q1azV8+HDNnz9fPXv21K5duzRmzBhJ0rRp0yRJERERmj9/vpo3b64ff/xRd955pyZNmqSnn35aPXr00Lx58zR16lRt375dklSvXj232jB58mQ99thj6ty5sz1Anjp1qp566il17txZX3/9tUaPHq26detqxIgRnj0AAOAlBMcAEMDeeecdh6D1mmuu0RtvvKEZM2Zo8uTJ9qCzRYsWmjVrliZNmmQPjjMzM+2vS0lJ0ezZs3X77bfr6aefVq1atRQTEyOTyaSEhIQqtS0zM1MZGRn2x9OmTdNjjz1mL2vevLl++OEH/etf/yI4BhA0CI4BIID16dNHzzzzjP1x3bp1JUnffPONPvvsM82ZM8f+nMVi0enTp3Xy5EnVqVNHH3/8sebOnatt27apqKhI58+fd3i+urp27Wr/94kTJ7Rr1y7deuutGj16tL38/PnziomJqfZ7AYCvEBwDQACrW7euWrZsWab8+PHjmjFjhkPPrU1UVJR2796t6667TnfccYfmzJmjuLg4/e9//9Ott96qs2fPVhgcm0wmGYbhUOZswp0tULe1R5Kee+45paamOtSzjZEGgGBAcAwAQei3v/2ttm/f7jRwlqSNGzequLhYjz32mCIirHOvX3/9dYc6tWrVksViKfPa+Ph4HThwwP54x44dOnnyZIXtady4sRITE/Xjjz9q2LBh7u4OAAQMgmMACEJTp07Vddddp4svvliDBg1SRESEvvnmG3333XeaPXu2WrZsqXPnzunJJ5/U9ddfr88++0wLFy502EZKSoqOHz+u1atXq2PHjqpTp47q1KmjP/zhD3rqqafUvXt3WSwW3XvvvapZs2albZoxY4buvvtuxcTEqG/fvjpz5oy++uor/fLLL8rKynL6muPHjzvkbc7NzdXmzZsVFxeniy++uHoHCQCqgFRuABCE0tPT9c477+jDDz/U7373O/3+97/XE088oWbNmkmSOnbsqMcff1wPPfSQLr30Ur366quaO3euwzZ69Oih22+/XTfddJPi4+P18MMPS5Iee+wxJScnq2fPnho6dKjuuecel8Yo33bbbXr++ef10ksvqUOHDurVq5cWLVpUYV7mr776Sp07d1bnzp0lSVlZWercubOmTp1a1UMDANViMi4cWAYAAACEKXqOAQAAgBIExwAAAEAJgmMAAACgBMExAAAAUILgGAAAAChBcAwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoMT/A5YPmZV/a1YTAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxjElEQVR4nO3deXhTVf7H8U8aoGVrS6VQSisF2UcEBoYOKAJjx6KoMIVRFmUZhVFBpxRBGJWdwV0GRRlXxBFQmSKuuCAdGUVQEEUFfoBlq7QISMu+pPf3R5rY0LRN2ux5v54nT8jJyc25l6T3e0/O+R6TYRiGAAAAACjC3w0AAAAAAgXBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAFywaNEimUwmmUwm/e9//yvzvGEYSk5Olslk0nXXXeeHFnpOTk6OfV9NJpMiIyPVuHFj9e7dW//4xz/0888/V3nbP/zwg6ZPn67du3d7rsHVsGTJEs2bN8/fzQAQQAiOAcANUVFRWrJkSZny//73v9q/f78iIyP90CrvuPvuu/XKK6/o2Wef1cSJExUXF6dp06apXbt2+uSTT6q0zR9++EEzZswgOAYQsGr4uwEAEEyuvfZavfHGG5o/f75q1Pj1T+iSJUvUpUsXHTp0yI+t86yePXtq0KBBDmXffPONrr76ag0cOFA//PCDmjRp4qfWAYB30HMMAG4YMmSIDh8+rI8++shedvbsWS1fvlxDhw51+poTJ05owoQJSk5OVmRkpNq0aaNHH31UhmE41Dt//rxmzZqlSy65RJGRkUpJSdHf//53nTlzxqFeSkqKrrvuOv3vf/9Tt27dFBUVpRYtWmjx4sUO9c6dO6cZM2aoVatWioqK0kUXXaQrrrjCoe3u6tixo+bNm6ejR4/qqaeespfv2bNHd955p9q0aaPatWvroosu0p///GeHHuJFixbpz3/+sySpT58+9mEbOTk5kqSVK1eqX79+SkxMVGRkpC655BLNmjVLFovFoQ07duzQwIEDlZCQoKioKCUlJWnw4MEqLCx0qPfvf/9bXbp0Ue3atRUXF6fBgwdr37599ud79+6td999V3v27LG3JSUlpcrHBkBoIDgGADekpKSoe/fuWrp0qb3s/fffV2FhoQYPHlymvmEYuuGGG/TEE0+ob9++evzxx9WmTRtNnDhRWVlZDnVvu+02TZ06Vb/97W/1xBNPqFevXpo7d67T7e7cuVODBg3SH//4Rz322GNq0KCBRo4cqe+//95eZ/r06ZoxY4b69Omjp556Svfdd58uvvhibdq0qVrHYNCgQapdu7Y+/PBDe9mXX36pzz//XIMHD9b8+fN1++23a/Xq1erdu7dOnjwpSbryyit19913S5L+/ve/65VXXtErr7yidu3aSbIGz/Xq1VNWVpb++c9/qkuXLpo6daomT55sf5+zZ88qPT1dX3zxhe666y4tWLBAY8aM0Y8//qijR4/a682ZM0fDhw9Xq1at9PjjjyszM1OrV6/WlVdeaa933333qVOnTmrYsKG9LQyxACADAFCpl156yZBkfPnll8ZTTz1l1K9f3zh58qRhGIbx5z//2ejTp49hGIbRrFkzo1+/fvbXvfnmm4YkY/bs2Q7bGzRokGEymYydO3cahmEYmzdvNiQZt912m0O9e+65x5BkfPLJJ/ayZs2aGZKMTz/91F528OBBIzIy0pgwYYK9rGPHjg5tcdWaNWsMScYbb7xRbp2OHTsaDRo0sD+2HYvS1q1bZ0gyFi9ebC974403DEnGmjVrytR3to2//vWvRp06dYzTp08bhmEYX3/9daVt2717t2E2m405c+Y4lG/ZssWoUaOGQ3m/fv2MZs2albstAOGHnmMAcNONN96oU6dO6Z133tGxY8f0zjvvlDuk4r333pPZbLb3mNpMmDBBhmHo/ffft9eTVKY3ecKECZKkd99916G8ffv26tmzp/1xfHy82rRpox9//NFeFhsbq++//147duyo4p6Wr169ejp27Jj9ce3ate3/PnfunA4fPqyWLVsqNjbW5Z7q0ts4duyYDh06pJ49e+rkyZPatm2bJCkmJkaS9MEHH9h7pC+UnZ2t4uJi3XjjjTp06JD9lpCQoFatWmnNmjVu7y+A8EFwDABuio+PV1pampYsWaLs7GxZLJYyE9ds9uzZo8TERNWvX9+h3DaUYM+ePfb7iIgItWzZ0qFeQkKCYmNj7fVsLr744jLv1aBBA/3yyy/2xzNnztTRo0fVunVrdejQQRMnTtS3337r/g47cfz4cYd9OnXqlKZOnWofV92wYUPFx8fr6NGjZcYCl+f777/Xn/70J8XExCg6Olrx8fG6+eabJcm+jebNmysrK0vPP/+8GjZsqPT0dC1YsMDhPXbs2CHDMNSqVSvFx8c73LZu3aqDBw965BgACE1kqwCAKhg6dKhGjx6t/Px8XXPNNYqNjfXIdk0mk0v1zGaz03Kj1CS/K6+8Urt27dLKlSv14Ycf6vnnn9cTTzyhhQsX6rbbbqtyG8+dO6f/+7//06WXXmovu+uuu/TSSy8pMzNT3bt3V0xMjEwmkwYPHqzi4uJKt3n06FH16tVL0dHRmjlzpi655BJFRUVp06ZNuvfeex228dhjj2nkyJH2/br77rs1d+5cffHFF0pKSlJxcbFMJpPef/99p8epXr16Vd53AKGP4BgAquBPf/qT/vrXv+qLL77Qa6+9Vm69Zs2a6eOPP9axY8ccelptwwSaNWtmvy8uLtaOHTvsvcqSVFBQoKNHj9rruSsuLk6jRo3SqFGjdPz4cV155ZWaPn16tYLj5cuX69SpU0pPT3coGzFihB577DF72enTpx0myUnlB/85OTk6fPiwsrOzdeWVV9rLc3Nzndbv0KGDOnTooPvvv1+ff/65Lr/8ci1cuFCzZ8/WJZdcIsMw1Lx5c7Vu3brCfXH1YgRA+GBYBQBUQb169fTMM89o+vTpuv7668utd+2118pisTikPZOkJ554QiaTSddcc429nqQy2RIef/xxSVK/fv3cbuPhw4fLtLlly5ZlUsO545tvvlFmZqYaNGigsWPH2svNZnOZ1HRPPvlkmTRsdevWlaQyQbOth7f0Ns6ePaunn37aoV5RUZHOnz/vUNahQwdFRETY9ysjI0Nms1kzZswo0ybDMByOS926dV0e9gEgPNBzDABVNGLEiErrXH/99erTp4/uu+8+7d69Wx07dtSHH36olStXKjMzU5dccokka/7gESNG6Nlnn7UPMdiwYYNefvllDRgwQH369HG7fe3bt1fv3r3VpUsXxcXF6auvvtLy5cs1btw4l16/du1anT59WhaLRYcPH9Znn32mt956SzExMVqxYoUSEhLsda+77jq98soriomJUfv27bVu3Tp9/PHHuuiiixy22alTJ5nNZj300EMqLCxUZGSk/vCHP6hHjx5q0KCBRowYobvvvlsmk0mvvPJKmeD2k08+0bhx4/TnP/9ZrVu31vnz5/XKK6/IbDZr4MCBkqRLLrlEs2fP1pQpU7R7924NGDBA9evXV25urlasWKExY8bonnvukSR16dJFr732mrKysvS73/1O9erVq/BiB0AY8FueDAAIIqVTuVXkwlRuhmEYx44dM8aPH28kJiYaNWvWNFq1amU88sgjRnFxsUO9c+fOGTNmzDCaN29u1KxZ00hOTjamTJliT2NW0XsYhmH06tXL6NWrl/3x7NmzjW7duhmxsbFG7dq1jbZt2xpz5swxzp49W+E+2FK52W41a9Y04uPjjSuvvNKYM2eOcfDgwTKv+eWXX4xRo0YZDRs2NOrVq2ekp6cb27ZtM5o1a2aMGDHCoe5zzz1ntGjRwjCbzQ5p3T777DPj97//vVG7dm0jMTHRmDRpkvHBBx841Pnxxx+Nv/zlL8Yll1xiREVFGXFxcUafPn2Mjz/+uEyb/vOf/xhXXHGFUbduXaNu3bpG27ZtjbFjxxrbt2+31zl+/LgxdOhQIzY21pBEWjcAhskwLrgsBwAAAMIUY44BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQIqiC408//VTXX3+9EhMTZTKZ9Oabb1b6mpycHP32t79VZGSkWrZsqUWLFpWps2DBAqWkpCgqKkqpqanasGGD5xsPAACAgBdUwfGJEyfUsWNHLViwwKX6ubm56tevn/r06aPNmzcrMzNTt912mz744AN7HVt+y2nTpmnTpk3q2LGj0tPTdfDgQW/tBgAAAAJU0KZyM5lMWrFihQYMGFBunXvvvVfvvvuuvvvuO3vZ4MGDdfToUa1atUqSlJqaqt/97nf21auKi4uVnJysu+66S5MnT3apLcXFxfrpp59Uv359liIFAAAIQIZh6NixY0pMTFRERPn9wyG9Qt66deuUlpbmUJaenq7MzExJ1qVJN27cqClTptifj4iIUFpamtatW1fuds+cOeOw/GpeXp7at2/v2cYDAADA4/bt26ekpKRynw/p4Dg/P1+NGzd2KGvcuLGKiop06tQp/fLLL7JYLE7rbNu2rdztzp07VzNmzChTvm/fPkVHR3um8QAAAPCYoqIiJScnq379+hXWC+ng2FumTJmirKws+2PbwY6OjiY4BgAACGCVDYEN6eA4ISFBBQUFDmUFBQWKjo5W7dq1ZTabZTabndZJSEgod7uRkZGKjIz0SpsBAADgP0GVrcJd3bt31+rVqx3KPvroI3Xv3l2SVKtWLXXp0sWhTnFxsVavXm2vAwAAgPARVMHx8ePHtXnzZm3evFmSNVXb5s2btXfvXknW4Q7Dhw+317/99tv1448/atKkSdq2bZuefvppvf766xo/fry9TlZWlp577jm9/PLL2rp1q+644w6dOHFCo0aN8um+AQAAwP+CaljFV199pT59+tgf28b9jhgxQosWLdKBAwfsgbIkNW/eXO+++67Gjx+vf/7zn0pKStLzzz+v9PR0e52bbrpJP//8s6ZOnar8/Hx16tRJq1atKjNJr7osFovOnTvn0W3CPTVr1pTZbPZ3MwAAQAAL2jzHgaSoqEgxMTEqLCx0OiHv+PHj2r9/vzjU/mUymZSUlKR69er5uykAAMDHKovXbIKq5zgYWSwW7d+/X3Xq1FF8fDyLhPiJYRj6+eeftX//frVq1YoeZAAA4BTBsZedO3dOhmEoPj5etWvX9ndzwlp8fLx2796tc+fOERwDAACngmpCXjCjx9j/+D8AAACVITgGAAAAShAcAwAAACUIjlEtJpNJb775pr+bAQAA4BEExyhXfn6+7rrrLrVo0UKRkZFKTk7W9ddfX2bVQX8xDENTp05VkyZNVLt2baWlpWnHjh3+bhYAAAhiBMdBwmKRcnKkpUut9xaLd99v9+7d6tKliz755BM98sgj2rJli1atWqU+ffpo7Nix3n1zFz388MOaP3++Fi5cqPXr16tu3bpKT0/X6dOn/d00AAAQpAiOg0B2tpSSIvXpIw0dar1PSbGWe8udd94pk8mkDRs2aODAgWrdurV+85vfKCsrS1988UW5r7v33nvVunVr1alTRy1atNADDzzgsDLgN998oz59+qh+/fqKjo5Wly5d9NVXX0mS9uzZo+uvv14NGjRQ3bp19Zvf/Ebvvfee0/cxDEPz5s3T/fffr/79++uyyy7T4sWL9dNPPzHMA4BbfN35ACCwkec4wGVnS4MGSRcurpeXZy1fvlzKyPDsex45ckSrVq3SnDlzVLdu3TLPx8bGlvva+vXra9GiRUpMTNSWLVs0evRo1a9fX5MmTZIkDRs2TJ07d9Yzzzwjs9mszZs3q2bNmpKksWPH6uzZs/r0009Vt25d/fDDD+WuZpebm6v8/HylpaXZy2JiYpSamqp169Zp8ODB1TgCAMJFdrb0t79J+/f/WpaUJP3zn57/2wogOBAcBzCLxfpH29mq04YhmUxSZqbUv7/kyTUtdu7cKcMw1LZtW7dfe//999v/nZKSonvuuUfLli2zB8d79+7VxIkT7dtu1aqVvf7evXs1cOBAdejQQZLUokWLct8nPz9fktS4cWOH8saNG9ufA4CK+KPzAUDgY1hFAFu71rE340KGIe3bZ63nSYazaNxFr732mi6//HIlJCSoXr16uv/++7V3717781lZWbrtttuUlpamBx98ULt27bI/d/fdd2v27Nm6/PLLNW3aNH377bfV2g8AKE9lnQ+StfOBIRZA+CE4DmAHDni2nqtatWolk8mkbdu2ufW6devWadiwYbr22mv1zjvv6Ouvv9Z9992ns2fP2utMnz5d33//vfr166dPPvlE7du314oVKyRJt912m3788Ufdcsst2rJli7p27aonn3zS6XslJCRIkgoKChzKCwoK7M8BQHn81fkAIPARHAewJk08W89VcXFxSk9P14IFC3TixIkyzx89etTp6z7//HM1a9ZM9913n7p27apWrVppz549Zeq1bt1a48eP14cffqiMjAy99NJL9ueSk5N1++23Kzs7WxMmTNBzzz3n9L2aN2+uhIQEh7RyRUVFWr9+vbp37+7mHgMIN/7qfAAQ+AiOA1jPntaJISaT8+dNJik52VrP0xYsWCCLxaJu3brpP//5j3bs2KGtW7dq/vz55QafrVq10t69e7Vs2TLt2rVL8+fPt/cKS9KpU6c0btw45eTkaM+ePfrss8/05Zdfql27dpKkzMxMffDBB8rNzdWmTZu0Zs0a+3Nl992kzMxMzZ49W2+99Za2bNmi4cOHKzExUQMGDPD48QAQWvzV+QAg8DEhL4CZzdYZ04MGWQPh0mPjbAHzvHmenYxn06JFC23atElz5szRhAkTdODAAcXHx6tLly565plnnL7mhhtu0Pjx4zVu3DidOXNG/fr10wMPPKDp06eX7I9Zhw8f1vDhw1VQUKCGDRsqIyNDM2bMkCRZLBaNHTtW+/fvV3R0tPr27asnnnii3DZOmjRJJ06c0JgxY3T06FFdccUVWrVqlaKiojx+PACEFlvnQ16e83HHJpP1eW90PiDIWSzW8TYHDlivnnr29M6JGH5jMqoz+wqSrD/nx8TEqLCwUNHR0Q7PnT59Wrm5uWrevHmVgzZnqYaSk62BMTOpXeeJ/wsAocOWrUJy3vlAtgqUQe6/oFZRvFYawyqCQEaGtHu3tGaNtGSJ9T43l+8hAFRHRoY1AG7a1LE8KYnAGE7YrqYunMlpy/3nzZW54FMMqwgSZrPUu7e/WwEAoSUjw5ornl/JUSF/LTwAvyA4BgCENTofUCl3cv+FwocpzMdVExwDAABUJJxy/zGumjHHAAAAFQqX3H+Mq5ZEcAwAAFAxfy484CusqW5HcAwAAFAR28IDUtkA2dsLD/gKa6rbERwDAABUJtRz/4XTuOpKMCEPAADAFaGc+y9cxlW7gOAY1WIymbRixQoNGDDA300BAMD7QjX3H2uq2zGsAuXKz8/XXXfdpRYtWigyMlLJycm6/vrrtXr1an83TZKUnZ2tq6++WhdddJFMJpM2b97s7yYBABCcwmFctYsIjoOFxSLl5EhLl1rvvTxbdPfu3erSpYs++eQTPfLII9qyZYtWrVqlPn36aOzYsV59b1edOHFCV1xxhR566CF/NwUAgOAX6uOqXURwHAyys6WUFKlPH2noUOt9SopX8w3eeeedMplM2rBhgwYOHKjWrVvrN7/5jbKysvTFF1+U+7p7771XrVu3Vp06ddSiRQs98MADOnfunP35b775Rn369FH9+vUVHR2tLl266KuvvpIk7dmzR9dff70aNGigunXr6je/+Y3ee++9ct/rlltu0dSpU5WWlua5HQcAIJxlZEi7d0tr1khLlljvc3PDJjCWGHMc+GwJuS8c/2NLyO2FK7kjR45o1apVmjNnjurWrVvm+djY2HJfW79+fS1atEiJiYnasmWLRo8erfr162vSpEmSpGHDhqlz58565plnZDabtXnzZtWsWVOSNHbsWJ09e1affvqp6tatqx9++EH16tXz6L4BAIBKhOq4ahcRHAeyyhJym0zWhNz9+3t0DNDOnTtlGIbatm3r9mvvv/9++79TUlJ0zz33aNmyZfbgeO/evZo4caJ9261atbLX37t3rwYOHKgOHTpIklq0aFGd3QAAAHAbwyoCmZ8SchvOgnEXvfbaa7r88suVkJCgevXq6f7779fevXvtz2dlZem2225TWlqaHnzwQe3atcv+3N13363Zs2fr8ssv17Rp0/Ttt99Waz8AAADcRXAcyPyUkLtVq1YymUzatm2bW69bt26dhg0bpmuvvVbvvPOOvv76a9133306e/asvc706dP1/fffq1+/fvrkk0/Uvn17rVixQpJ022236ccff9Qtt9yiLVu2qGvXrnryySc9um8AAAAVITgOZH5KyB0XF6f09HQtWLBAJ06cKPP80aNHnb7u888/V7NmzXTfffepa9euatWqlfbs2VOmXuvWrTV+/Hh9+OGHysjI0EsvvWR/Ljk5Wbfffruys7M1YcIEPffccx7bLwAAgMoQHAcyW0LuC/MN2phMUnKyVxJyL1iwQBaLRd26ddN//vMf7dixQ1u3btX8+fPVvXt3p69p1aqV9u7dq2XLlmnXrl2aP3++vVdYkk6dOqVx48YpJydHe/bs0WeffaYvv/xS7dq1kyRlZmbqgw8+UG5urjZt2qQ1a9bYn3PmyJEj2rx5s3744QdJ0vbt27V582bl5+d78EgAAIBwQnAcyPyYkLtFixbatGmT+vTpowkTJujSSy/VH//4R61evVrPPPOM09fccMMNGj9+vMaNG6dOnTrp888/1wMPPFBqd8w6fPiwhg8frtatW+vGG2/UNddcoxkzZkiSLBaLxo4dq3bt2qlv375q3bq1nn766XLb+NZbb6lz587q16+fJGnw4MHq3LmzFi5c6MEjAQAAwonJqM7sK0iSioqKFBMTo8LCQkVHRzs8d/r0aeXm5qp58+aKioqq2htkZ1uzVpSenJecbA2MwyjvYHV55P8CAAAEpYritdJI5RYMMjKs6drWrrVOvmvSxDqUIgyWcAQAAPAlguNgEeYJuQEAAHyBMccAAABACXqOAQAeZbEwCgxA8CI49hHmPfof/weA9zmbP5yUZE28w/xhAMGAYRVeZi7pLim9Shz8w/Z/YKYLC/CK7Gxp0KCyq97n5VnLs7P90y4AcAc9x15Wo0YN1alTRz///LNq1qypiAiuR/yhuLhYP//8s+rUqaMaNfjYA55msVh7jJ39QGMY1tTsmZnWxDtcnwIIZEEXJSxYsECPPPKI8vPz1bFjRz355JPq1q2b07q9e/fWf//73zLl1157rd59911J0siRI/Xyyy87PJ+enq5Vq1Z5pL0mk0lNmjRRbm6u06WU4TsRERG6+OKLZSpvxUEAVbZ2bdke49IMQ9q3z1qPxDsAAllQBcevvfaasrKytHDhQqWmpmrevHlKT0/X9u3b1ahRozL1s7OzHYYzHD58WB07dtSf//xnh3p9+/bVSy+9ZH8cGRnp0XbXqlVLrVq1YmiFn9WqVYuee8BLDhzwbD0AISBIZ+cGVXD8+OOPa/To0Ro1apQkaeHChXr33Xf14osvavLkyWXqx8XFOTxetmyZ6tSpUyY4joyMVEJCgvcaLmuvJauyAQhVTZp4th6AIBfEs3ODphvt7Nmz2rhxo9LS0uxlERERSktL07p161zaxgsvvKDBgwerbt26DuU5OTlq1KiR2rRpozvuuEOHDx+ucDtnzpxRUVGRww0AwlnPntbzXnmjlkwm66r3PXv6tl0A/CDIZ+cGTXB86NAhWSwWNW7c2KG8cePGys/Pr/T1GzZs0HfffafbbrvNobxv375avHixVq9erYceekj//e9/dc0118hisZS7rblz5yomJsZ+S05OrtpOAUCIMJutHUJS2QDZ9njevKD4RRVAdVQ2O1eyzs6tIM7yt6AJjqvrhRdeUIcOHcpM3hs8eLBuuOEGdejQQQMGDNA777yjL7/8Ujk5OeVua8qUKSosLLTf9u3b5+XWA0Dgy8iQli+XmjZ1LE9KspYH+C+pADzBndm5ASpoxhw3bNhQZrNZBQUFDuUFBQWVjhc+ceKEli1bppkzZ1b6Pi1atFDDhg21c+dOXXXVVU7rREZGenzSHgCEgowMa7q2IJyDA8ATQmB2btD0HNeqVUtdunTR6tWr7WXFxcVavXq1unfvXuFr33jjDZ05c0Y333xzpe+zf/9+HT58WE2YNQIAVWI2W9O1DRlivScwBsJICMzODZrgWJKysrL03HPP6eWXX9bWrVt1xx136MSJE/bsFcOHD9eUKVPKvO6FF17QgAEDdNFFFzmUHz9+XBMnTtQXX3yh3bt3a/Xq1erfv79atmyp9PR0n+wTAPiLxSLl5EhLl1rvA3gIIIBgEQKzc4NmWIUk3XTTTfr55581depU5efnq1OnTlq1apV9kt7evXvL5LHdvn27/ve//+nDDz8ssz2z2axvv/1WL7/8so4eParExERdffXVmjVrFsMmAIS0IM6yBCCQ2WbnDhpkDYRLT8wLktm5JsNwNp0Q7igqKlJMTIwKCwsVHR3t7+YAQIVsWZYu/OtvO28xeQ5AtTm7Ak9OtgbGfvoD42q8RnDsAQTHAIKFxSKlpJQ/mdxksvYg5+YGdMcOgGAQYCvkuRqvBdWwCgBA9biTZal3b581C0Aoss3ODTJBNSEPAFA9IZBlCQC8iuAYAMJICGRZAgCvIjgGgDASAlmWAMCrCI4BIIzYsixJZQPkIMmyBABeRXAMAGEmI8Oarq1pU8fypCTSuAEA2SoAIAxlZEj9+wdUliWgYgGWFgyhi+AYAMJUkGZZQjhiSUf4EMMqAABA4LIt6Xhhgu68PGt5drZ/2oWQRXAMAAACk8Vi7TF2tpivrSwz01oP8BCCYwAAEJjcWdIR8BCCYwAAEJhY0hF+QHAMAAACE0s6wg8IjgEAQGBiSUf4AcExAAAITCzpCD8gOAYAAIGLJR3hYywCAgAAAhtLOsKHCI4BAEDgY0lH+AjDKgAAAIAS9BwDAAC4y2JhmEeIIjgGAABwR3a2dVnr0qv3JSVZM2swQTDoMawCAPzIYpFycqSlS633Fou/WwSgQtnZ0qBBZZe1zsuzlmdn+6dd8BiCYwDwA4tFmjlTatRI6tNHGjrUep+SwrkVCFgWi7XH2DDKPmcry8zkKjfIERwDgI9lZ0uNG0vTpklHjjg+R+cTEMDWri3bY1yaYUj79lnrIWgRHAOAD9l+kT182PnzdD4BAezAAc/WQ0AiOAYAH6noF9nS6HwCAlSTJp6th4BEcAwAPlLZL7IXovMJCDA9e1qzUphMzp83maTkZGs9BC2CYwDwEXeDXTqfgEr4Ot2L2WxN1yaVDZBtj+fNI99xkCM4BgA3VfV87E6wS+cTUInsbGt6F1+ne8nIkJYvl5o2dSxPSrKWk+c46JkMo7LRb6hMUVGRYmJiVFhYqOjoaH83B4AXVSf3v8ViPXfn5VU+7vg//+EcC5TLNrP1wi+SrffWF0EqK+QFHVfjNYJjDyA4BsKDJ87Htm1IzgPkiy6Snn2WwBgol+0qs7wB/CaT9Yo1N5dgFQ5cjdcYVgEALvBU7v/yfpG96CJpxgypoIDAGKgQuYbhZTX83QAACAbunI979654WxkZUv/+/CILVAm5huFlBMcA4AJPn4/N5sqDaABOkGsYXsawCgBwAedjIECQaxheRnAMAC7gfAwECHINw8sIjgGgHKXzGa9dKz3+uLWc8zHgZ+QahheRys0DSOUGhJ7y8hkPGWINlkuXJydbA2POx4CPkWsYbiDPsQ8RHAOhpbJ8xq+/LjVsyPkYAIKJq/Ea2SoAoJTK8hmbTFJWFusLwMPoAQUCBmOOAaAU1heAz2VnW1d869NHGjrUep+SYi0H4HMExwBQCusLwKdsY3guvCLLy7OWEyADPkdwDAClkM8YPuOpNckBeBTBMQCUQj5j+AxjeICAFHTB8YIFC5SSkqKoqCilpqZqw4YN5dZdtGiRTCaTwy0qKsqhjmEYmjp1qpo0aaLatWsrLS1NO3bs8PZuAAhQrC8An2EMDxCQgio4fu2115SVlaVp06Zp06ZN6tixo9LT03Xw4MFyXxMdHa0DBw7Yb3v27HF4/uGHH9b8+fO1cOFCrV+/XnXr1lV6erpOnz7t7d0BEKBYXwA+EQpjeEqvlJOTwxAQhISgynOcmpqq3/3ud3rqqackScXFxUpOTtZdd92lyZMnl6m/aNEiZWZm6ujRo063ZxiGEhMTNWHCBN1zzz2SpMLCQjVu3FiLFi3S4MGDXWoXeY6B0ER2LXiVxWLNSpGX53zcsclkvSIL1LyB5a2U889/cgWJgORqvBY0Pcdnz57Vxo0blZaWZi+LiIhQWlqa1q1bV+7rjh8/rmbNmik5OVn9+/fX999/b38uNzdX+fn5DtuMiYlRampqhds8c+aMioqKHG4AQo/ZLPXubV0Vr3fvwIxPEMSCeQwPWTYQwoImOD506JAsFosaN27sUN64cWPl5+c7fU2bNm304osvauXKlfr3v/+t4uJi9ejRQ/tLvsy217mzTUmaO3euYmJi7Lfk5OTq7BoAIFz5egyPJ4ZBVJZlwzDIsoGgFjTBcVV0795dw4cPV6dOndSrVy9lZ2crPj5e//rXv6q13SlTpqiwsNB+27dvn4daDAAIOxkZ0u7d0po10pIl1vvcXM8Hxp5abKSyLBsSWTYQ1IJm+eiGDRvKbDaroKDAobygoEAJCQkubaNmzZrq3Lmzdu7cKUn21xUUFKhJqQkPBQUF6tSpU7nbiYyMVGRkpJt7AABAOWxjeLzFNgziwt5e2zAId3qp8/I8Ww8IMEHTc1yrVi116dJFq1evtpcVFxdr9erV6t69u0vbsFgs2rJliz0Qbt68uRISEhy2WVRUpPXr17u8TQAAApqnFxv5+WfP1gMCTND0HEtSVlaWRowYoa5du6pbt26aN2+eTpw4oVGjRkmShg8frqZNm2ru3LmSpJkzZ+r3v/+9WrZsqaNHj+qRRx7Rnj17dNttt0mSTCaTMjMzNXv2bLVq1UrNmzfXAw88oMTERA0YMMBfuwnARWSTAFzgzmIjrvRex8e79r6u1gMCTFAFxzfddJN+/vlnTZ06Vfn5+erUqZNWrVpln1C3d+9eRUT82hn+yy+/aPTo0crPz1eDBg3UpUsXff7552rfvr29zqRJk3TixAmNGTNGR48e1RVXXKFVq1aVWSwEQGCwBcQrV0r//rd06NCvz5FFCnDC04uNXDh5sLr1gAATVHmOAxV5jgHfcJZW1Zn//IcAGbDLybFOvqvMmjWu9Rzb8jNX9EVMTg7c/MwIWyGX5xhAeCsvraozY8aQRQqw69nT+rPKhbmUbUwmazDbs6dr27PlZ65oe4GanxlwAcExgIBX0XwiZw4ftnaWAZB3Fhux5WdOSnIsT052zHzB8tIIQgTHAAKeK2lVL0RwDJTijcVGKsvP7Km8yoCPBdWEPADhydV5QgAqkJEh9e/v2RQv5eVn9mReZcDHCI4BBLxSa/S4zJvrKQBBy9uLjUiV51U2max5lfv3Z1wyAhLDKgAEvMrmE13ooosIjgG/cSevMhCACI4B+IU783Qqmk/kzLPP0iEF+I2n8yoDPkZwDMDnqjJPp7z5RKUlJZHjGKi26maYcHUcVFXGSwE+wCIgHsAiIIDrypunY+sRrmyeTukloxs1spYdPMjy0YBHOFtpx92lJ22LhOTllZ9/MSnJmumCLyx8yNV4jeDYAwiOAde4srAW50zAT6p75epsW5LzAPmii6zjn/iZBz7ECnkAAo4r+Yr375fmzPFNewCUqCzDhGTNMOHqEAvbOKi4OOfPHzliDZ7JeYwARHAMwGdcnX8zbRrnTMCnvJFhon9/qXbt8rcnuRdwAz5CcAzAZ9yZf8M5EwEt1JZF9kaGCVK6IUgRHAPwGVu+YldwzkTACsVlkb2RYYKUbghSBMcAfKZ0vmJXcM5EwLFNNLuwR9S2LHKwBsiVrbRjMknJydZ6riKlG4IUwTEAn8rIkGbMcK0u50wEFE9PWgskFa20Y3s8b557aWS8EXADPkBwDMDn7ruv4uEVnDMRkEJ9DG15K+0kJbmXxs3GGwE34AMExwB8znbONJk4ZyKIhMMY2owMa6LxNWukJUus97m5Vc9H7OmAG/CBGv5uAIDwZDtnOluMa948zpkIQOEyhtZslnr39tz2MjKsad1sS1uynCUCHCvkeQAr5AG/Kr28syvnQHfrA35T2bLIJpP16i43lw8xEIBcjdfoOQbgMdnZznuC//nP8nuCPd1JBXiNbTzQoEHWQLh0gMx4ICBkMOYYgEeEaoYrwAFjaIGQx7AKD2BYBcKd7dfm8iby82szQg7jgYCgw7AKAD7jToYrhlAgJDAeCAhZBMcAKlVZJ1k4ZLgC7Og1BkIawTGACrkyyS5cMlwBVZp1CiCoMCEPgFMWizRzpjRwYOWT7FglFmGBWadAWCA4BlBGdrZ1gt20ac6ft03jzcy0BtGsEouQZ7FYe4ydzWG/8AsBIKgRHANwUF7n2IVKT7KTyHCFEOfOrFMAQY0xxwDsKuocK0/pSXasEouQxaxTIGwQHAOwq6xzzJkLJ9mR4QohiVmnQNhgWAUAO3c6vZhkh7DCrFMgbBAcA7Bzt9OLSXYIG8w6BcIGwTEAu8o6x2yYZIewxKxTICyYDMOdqTdwxtW1uoFgYMtWITmfmDdjhnTffXSQIYyxQh4QlFyN15iQB8CBrXPswkXAkpOtvxrTOYawx6xTIKQRHAMog5RsAIBwRXAMwCk6x4AwxJARgOAYCHWc6wC4JDu77HiqpCRrlg7GUyGMkK0CCGHZ2VJKitSnjzR0qPU+JcVaDgB25a0bn5dnLeePBsIIwTEQojjXAXBJRevG28oyM631gDBAcAyEIM51QIixWKScHGnpUuu9J7+8la0bbxjSvn3WekAYIDgGQhDnOiCEeHt8lKvrxruzvjwQxAiOgRDEuQ4IEb4YH+XquvHuri8PBCmCYyAEca4DQoCvxkdVtm68yWRdBahnz+q9DxAkgi44XrBggVJSUhQVFaXU1FRt2LCh3LrPPfecevbsqQYNGqhBgwZKS0srU3/kyJEymUwOt759+3p7NwCv4lwHhABfjY8ym63p2qSyfzRsj+fNIwckwkZQBcevvfaasrKyNG3aNG3atEkdO3ZUenq6Dh486LR+Tk6OhgwZojVr1mjdunVKTk7W1Vdfrby8PId6ffv21YEDB+y3pUuX+mJ3AK/hXAeEAF+Oj7KtG9+0qWN5UpK1nDzHCCMmw3D2e01gSk1N1e9+9zs99dRTkqTi4mIlJyfrrrvu0uTJkyt9vcViUYMGDfTUU09p+PDhkqw9x0ePHtWbb75Z5XYVFRUpJiZGhYWFio6OrvJ2AE9zltM/OdkaGHOuQ1AI51VscnKsk+8qs2aN55azDOfjjZDnarwWNCvknT17Vhs3btSUKVPsZREREUpLS9O6detc2sbJkyd17tw5xcXFOZTn5OSoUaNGatCggf7whz9o9uzZuuiii8rdzpkzZ3TmzBn746KiIjf3BvCNjAypf3/OdQhS4b5im218VF6e83HHJpP1eU+Oj2LdeCB4hlUcOnRIFotFjRs3dihv3Lix8vPzXdrGvffeq8TERKWlpdnL+vbtq8WLF2v16tV66KGH9N///lfXXHONLBVMcJg7d65iYmLst+Tk5KrtFOADtnPdkCHWewJjBAVWsWF8FOAnQRMcV9eDDz6oZcuWacWKFYqKirKXDx48WDfccIM6dOigAQMG6J133tGXX36pnJyccrc1ZcoUFRYW2m/79u3zwR4AQJhgFZtfMRYY8LmgGVbRsGFDmc1mFRQUOJQXFBQoISGhwtc++uijevDBB/Xxxx/rsssuq7BuixYt1LBhQ+3cuVNXXXWV0zqRkZGKjIx0bwcAAK5xJ0tDOAwBYHwU4FNB03Ncq1YtdenSRatXr7aXFRcXa/Xq1erevXu5r3v44Yc1a9YsrVq1Sl27dq30ffbv36/Dhw+rCQlgAcA/XM2+sHKld9sRSEqPj+rZ0xooe2MpaQDB03MsSVlZWRoxYoS6du2qbt26ad68eTpx4oRGjRolSRo+fLiaNm2quXPnSpIeeughTZ06VUuWLFFKSop9bHK9evVUr149HT9+XDNmzNDAgQOVkJCgXbt2adKkSWrZsqXS09P9tp8AENZc7ZyYN88aKFY2tCCUMjC4MkkxlPYX8IOgCo5vuukm/fzzz5o6dary8/PVqVMnrVq1yj5Jb+/evYqI+LUz/JlnntHZs2c1aNAgh+1MmzZN06dPl9ls1rfffquXX35ZR48eVWJioq6++mrNmjWLYRMA4C+2LA0VDa2QrJPSMjOtQw7KC/4CNeNFVQJY2yTFC8di2yYpLl9ufRyI+wsEkaDKcxyoyHMMAB6WnS0NHOha3fLy/JYXTNoyPfhrQltVAnaLRUpJKf+CwWSS4uKkI0cCb3+BAOFqvBY0Y44BAGEkI8PaK+wKZ2OUAzXjRVVT1LkySfHw4cDbXyAIERwDAAJT//6u1XM2RtmdjBe+Up2AvbpLRPtjf4EgRXAMAHCZxWJNkOCTRAm2sccXLoBhYzJZ10N3tkKcq8FkdYNOd1QnYPdUBiVf7i8QpAiOAQAuyc62Dnvt00caOtR6n5LixcXqqrNCnKvBpC/TdlYnYK/sQsFVpCkFKkVwDAColN9Wc67qCnHV6XX2luoE7K5cKFx0UWDtLxCkyFbhAWSrABDKXEmUkJQk5eZ6MZ1udVKfSY7jfP2VvcF2IPPynI87duVAOst0kZxs7UGXAmt/gQDjarxGcOwBBMcAQllOjnUIRWXKy6jmVxUFk/5K41bdALaiC4VA218ggLgarwXVIiAAAN8LxLltLsvIsGa9CJQV42zDRJzlOXY1gLUtJV3e9gNpf4EgRHAMeACrtSKUBeLcNrdUFEz6g7cD2EDbXyDIEBwD1RSoq9MCnmKb21bZUFnmermBABYIWGSrAKrBbzP4AR+qTkY1AAg2BMdAFQXq6rSAN1Q1oxoABBuGVQBV5M5iV/x6ilDAXC8A4YDgGHDClQl2QT2DH6gihsoCCHUEx8AFXJ1gF/Qz+AEAQBmMOQZKcWeCXSCuTgsAAKqH4Bgo4e4EO2bwAwAQegiOgRLuTLCzYQY/AAChhTHHQImqTrBjBj8AAKGD4BgoUZ0JdszgBwAgNDCsAijBBDsAAEBwDJRggh0AACA4RtiyWKScHGnpUuu9xcIEOwAAwh1jjhGWKlvogwl2AAB4iSvL0PqRW8HxqVOntHHjRsXFxal9+/YOz50+fVqvv/66hg8f7tEGAtV14Xfw0CHpxhvL5jO2LfRh6yFmgh0AAB7m6jK0fmQyDGdLHpT1f//3f7r66qu1d+9emUwmXXHFFVq2bJmalEzdLygoUGJioiy2FRLCSFFRkWJiYlRYWKjo6Gh/NwelOPsOms2/LuRxIZPJ+h3NzQ2oi1gAAIKfbRnaC0NP28QeL49fdDVec3nM8b333qtLL71UBw8e1Pbt21W/fn1dfvnl2rt3r0caDHhaeUtBV3T95myhDwAAUE3uLkPrRy4Hx59//rnmzp2rhg0bqmXLlnr77beVnp6unj176scff/RmGwG3VfQddIWrC4IAAAAXVGUZWj9xOTg+deqUatT4dYiyyWTSM888o+uvv169evXS//3f/3mlgUBVVPYdrIyrC4IAAAAXVHUZWj9weUJe27Zt9dVXX6ldu3YO5U899ZQk6YYbbvBsy4BqqOp3yzbmmIU+AADwoOosQ+tjLvcc/+lPf9LSpUudPvfUU09pyJAhcnFuH+B1VflusdAHAABeEkTL0LqcrQLlI1tF4LFYpJQUa3q28j7hF2atSE62BsYBkkkGAIDQYpspLzmenAMsWwWLgCAk2ZaCHjTI+p1z9h1culSKjw/YHORAeAjwxQAAeJBtGVpneY4DqHeKnmMPoOc4cDnLc0wPMRAggmAxAABe4KeLYlfjNYJjDyA4Dmx0TAEByM+LAQAIPwTHPkRwDABusE0KKC/fIktVAvACj6+QBwAIERaLlJNjHXifk+P7FamCaDEAAOGnSsHxK6+8ossvv1yJiYnas2ePJGnevHlauXKlRxsHAPCw7Gxrr22fPtLQodb7lBRrua8E0WIAAMKP28HxM888o6ysLF177bU6evSoLCU9DrGxsZo3b56n2wcA8BTbON8Le23z8qzlvgqQg2gxAADhx+3g+Mknn9Rzzz2n++67T+ZSY8G6du2qLVu2eLRxgOT/X4CBkGCxWDNDOJtmYivLzPTNFyyIFgMAEH7cDo5zc3PVuXPnMuWRkZE6ceKERxoF2ATCL8BASAikcb62RORS2QCZpSoB+JnbwXHz5s21efPmMuWrVq1Su3btPNEmQFLg/AIMhIRAG+drWwygaVPH8qQk0rgB8Cu3V8jLysrS2LFjdfr0aRmGoQ0bNmjp0qWaO3eunn/+eW+0EWGosl+ATSbrL8D9+9O5hODg93zbgTjONyPD+iUmETmAAFKlPMevvvqqpk+frl27dkmSEhMTNWPGDN16660eb2AwIM+x5+XkWIdQVGbNGql3b2+3BqiegFgIzpZbOC/P+VUnuYUBhDiv5Dk+f/68Fi9erLS0NO3YsUPHjx9Xfn6+9u/fH7aBMbwj0H4BBqoqYIYHMc4XAFziVnBco0YN3X777Tp9+rQkqU6dOmrUqJFXGlaeBQsWKCUlRVFRUUpNTdWGDRsqrP/GG2+obdu2ioqKUocOHfTee+85PG8YhqZOnaomTZqodu3a9sAf/hWIvwAD7gqkBBGSGOcLAC5we0Jet27d9PXXX3ujLZV67bXXlJWVpWnTpmnTpk3q2LGj0tPTdfDgQaf1P//8cw0ZMkS33nqrvv76aw0YMEADBgzQd999Z6/z8MMPa/78+Vq4cKHWr1+vunXrKj093X4BAP8g0xNCQSAliLDLyJB277aOSVqyxHqfm0tgDPgCuUmDgttjjl9//XVNmTJF48ePV5cuXVS3bl2H5y+77DKPNrC01NRU/e53v9NTTz0lSSouLlZycrLuuusuTZ48uUz9m266SSdOnNA777xjL/v973+vTp06aeHChTIMQ4mJiZowYYLuueceSVJhYaEaN26sRYsWafDgwS61izHH3mH7OVpy7HmzBcx0dCHQLV1qTUFYmSVLpCFDvN8eAH4UEJMPwpur8Zrb2SpsAePdd99tLzOZTDIMQyaTyb5inqedPXtWGzdu1JQpU+xlERERSktL07p165y+Zt26dcrKynIoS09P15tvvinJmrM5Pz9faWlp9udjYmKUmpqqdevWlRscnzlzRmfOnLE/LioqqupuhYWqztK3/QLs7G/JvHn8LUHgY3gQAEm/9vZc2B9pm3xAb09AcTs4zs3N9UY7KnXo0CFZLBY1btzYobxx48batm2b09fk5+c7rZ+fn29/3lZWXh1n5s6dqxkzZri9D+GouhfKZHpCMLMND6osQQTDg4AQRm7SoON2cNysWTNvtCOoTJkyxaFHuqioSMnJyX5sUWDy1IWy2Uy6NgQnW4KIQYOs5z9nw4NIEAGEOHcmH3CyCwhuB8eLFy+u8Pnhw4dXuTEVadiwocxmswoKChzKCwoKlJCQ4PQ1CQkJFda33RcUFKhJqd81CwoK1KlTp3LbEhkZqcjIyKrsRtjgQhmwYngQEObITRp03A6O//a3vzk8PnfunE6ePKlatWqpTp06XguOa9WqpS5dumj16tUaMGCAJOuEvNWrV2vcuHFOX9O9e3etXr1amZmZ9rKPPvpI3bt3l2RdCjshIUGrV6+2B8NFRUVav3697rjjDq/sR7jgQhn4FcODgDDG5IOg43Zw/Msvv5Qp27Fjh+644w5NnDjRI40qT1ZWlkaMGKGuXbuqW7dumjdvnk6cOKFRo0ZJsvZaN23aVHPnzpVkDeR79eqlxx57TP369dOyZcv01Vdf6dlnn5VknUiYmZmp2bNnq1WrVmrevLkeeOABJSYm2gNwVA0XyoAjhgcBYYrJB0HH7eDYmVatWunBBx/UzTffXO7kOE+46aab9PPPP2vq1KnKz89Xp06dtGrVKvuEur179yoi4tfUzT169NCSJUt0//336+9//7tatWqlN998U5deeqm9zqRJk3TixAmNGTNGR48e1RVXXKFVq1YpKirKa/sRDrhQBvykqulhAHgHkw+Cjtt5jsuzefNmXXnllWGZ1ow8x2VZLFJKSuUXyrm5/D0APIY8qkDgcvb9TE5m8oEPuRqvuR0cv/XWWw6PDcPQgQMH9NRTTyk5OVnvv/9+1VocxMItOHa1Y4pFPAAfKi89DF84IHDwy45feS04Lj1sQbKO242Pj9cf/vAHPfbYYw5ZH8JFOAXH7nZMcaEM+IDtp5ryZsHyUw1QdQS0IcNrwTHKCpfguKodU/xdAbwsJ0fq06fyemvWMCsQcAdDlUKKq/FaRLnPlGPmzJk6efJkmfJTp05p5syZ7m4OAc5isZ53X31V+utfy89bLFnzFjtbPdw2S3/IEOs9gTHgYaSHATzP1iN04S8ytpWssrP90y54nds9x2azWQcOHFCjRo0cyg8fPqxGjRrJ4iw6CnGh2nPs7IK5MnRMAX5AzzHgWQxVCkle6zk2DEMm2+/opXzzzTeKi4tzd3MIUOVdMFeGjinAD2x5VJ38bZZkLU9OJo8q4Cp3VrJCyHE5z3GDBg1kMplkMpnUunVrhwDZYrHo+PHjuv32273SSPhWRUs/VyYM52MC/kceVcCzGKoU1lwOjufNmyfDMPSXv/xFM2bMUExMjP25WrVqKSUlxb4sM4JbZRfMzrDAD+BnGRnWWbHOJg+RHgZwDytZhTWXg+MRI0ZIkpo3b64ePXqoZs2aXmsU/MvdC2E6poAAkZEh9e9PehiguljyOay5vXx0r1697P8+ffq0zp496/B8KE1IC1fuXgjTMQUEEFt6GABVx1ClsOb2hLyTJ09q3LhxatSokerWrasGDRo43BD8XJnbEx8v/fvf1snvubkExgCAEGMbqtS0qWN5UhIrToY4t4PjiRMn6pNPPtEzzzyjyMhIPf/885oxY4YSExO1ePFib7QRPma7YJbKBsi2xwsXSsOGkbcYABDCMjKk3butPUFLltAjFCbcznN88cUXa/Hixerdu7eio6O1adMmtWzZUq+88oqWLl2q9957z1ttDVjhlOeYpZ8BAEAwcjVec3vM8ZEjR9SiRQtJ1vHFR44ckSRdccUVuuOOO6rYXAQi5vYAAIBw43Zw3KJFC+Xm5uriiy9W27Zt9frrr6tbt256++23FRsb64Umwp+Y2wMAAMKJ22OOR40apW+++UaSNHnyZC1YsEBRUVEaP368Jk6c6PEGAgAAAL7i9pjjC+3Zs0cbN25Uy5Ytddlll3mqXUElVMccAwAAhAqvjTku7fTp02rWrJmaNWtWnc0AAAAAAcHtYRUWi0WzZs1S06ZNVa9ePf3444+SpAceeEAvvPCCxxsIAAAA+IrbwfGcOXO0aNEiPfzww6pVq5a9/NJLL9Xzzz/v0cYBAABUmcUi5eRIS5da7y0Wf7cIQcDt4Hjx4sV69tlnNWzYMJlL5fTq2LGjtm3b5tHGAYC/cE4Fglx2tpSSIvXpIw0dar1PSbGWAxVwOzjOy8tTy5Yty5QXFxfr3LlzHmkUAPgT51QgQFT1KjU7Wxo0yHEVK0nKy7OW82VGBdwOjtu3b6+1a9eWKV++fLk6d+7skUYBgL9wTgUCRFWvUi0W6/KuzpJx2coyM/k5COVyO1vF1KlTNWLECOXl5am4uFjZ2dnavn27Fi9erHfeeccbbUQpFgsr1gHeUtk51WSynlP79+d7B3iV7Sr1wi+j7Sp1+XLrMq7OrF1b9uq2NMOQ9u2z1mOVKzjhds9x//799fbbb+vjjz9W3bp1NXXqVG3dulVvv/22/vjHP3qjjSjBT72Ad7lzTgXgJdXt+T1wwLX3cbUewo7LPcc//vijmjdvLpPJpJ49e+qjjz7yZrtwgepcRANwDedUIAC4epX65JNS48Zlf0Zt0sS193G1HsKOyz3HrVq10s8//2x/fNNNN6mgoMArjYIjhk8BvsE5FQgArl59jh/v/GfUnj2lpCTrOKjyXHSRtR7ghMvB8YWrTL/33ns6ceKExxuEsvipF/CNys6pJpOUnMw5FfCqqlx9lp4xazZL//yn8x4lm8OHpZUrq95GhDS3xxzD9/ipF/AN2zlVKhsg2x7Pm8dkPMCrXOn5vdCFP6P272/tHS6PbXYtP7nCCZeDY5PJJNMFH9QLH8M7+KkX8J2MDOsY/qZNHcuTkhjbD/hERVepFSn9M+ratdbeYVfqAhdweUKeYRgaOXKkIiMjJUmnT5/W7bffrrp16zrUyyZ1gsfZLqLz8pz/SmQyWZ/np17AMzIyrB1PpE0EfMyWr/TMGWn6dOnZZ60nP3e48zMqP7nCCZeD4xEjRjg8vvnmmz3eGDhnu4geNMgaCJcOkPmpF/AOs5kUqIBPZWdbZ5+XnmSTlCTNmCG1aiUVFFgn4VXGnZ9R+ckVTpiMC2fawW1FRUWKiYlRYWGhoqOjvfY+zv5uJCdbA2N+6gUABK3y8pXaeoCWL7f+nJOSUvnPqLm51seu1qVnKWy4Gq8xIS+IZGRIu3dLa9ZIS5ZY73NzCYwBAEHM1XylkuszZpldi2ogOA4ytp96hwyx3vO9BgAENXfylfbvbx2L3KCBYx1nM2aZXYsqcnnMMQAAgMe5Oilu5UrpllscA+m4OGuv8333Oe8tYnYtqoAxxx7gqzHHAACEnJwc6yp3VVF6TDI9wagEY44BAEDgc2VpyvJ6ei9c/APwAIJjAADgP5VNnjOMigNfFvSAhxEcAwAA/6po8pwtU0VlWNADHkJwDAAA/K+8fKX9+7v2ehb0gIeQrQIAAAQGZ0tT2sYkV7agR8+ePmkiQh89xwAAIHCxoAd8jOAYAAAENhb0gA8xrAIAAAQ+FvSAjwRNz/GRI0c0bNgwRUdHKzY2VrfeequOHz9eYf277rpLbdq0Ue3atXXxxRfr7rvvVmFhoUM9k8lU5rZs2TJv7w4AAHCXbUzykCHWewJjeEHQ9BwPGzZMBw4c0EcffaRz585p1KhRGjNmjJYsWeK0/k8//aSffvpJjz76qNq3b689e/bo9ttv108//aTly5c71H3ppZfUt29f++PY2Fhv7gqAKrJY6DQCAHhXUCwfvXXrVrVv315ffvmlunbtKklatWqVrr32Wu3fv1+JiYkubeeNN97QzTffrBMnTqhGDet1gclk0ooVKzRgwIAqt4/lowHvy86W/vY3af/+X8uSkqzzdBhuCACoTEgtH71u3TrFxsbaA2NJSktLU0REhNavX+/ydmwHwxYY24wdO1YNGzZUt27d9OKLL6qy64UzZ86oqKjI4QbAe7KzpUGDHANjyZrZadAg6/MAAHhCUAyryM/PV6NGjRzKatSoobi4OOXn57u0jUOHDmnWrFkaM2aMQ/nMmTP1hz/8QXXq1NGHH36oO++8U8ePH9fdd99d7rbmzp2rGTNmuL8jANxmsVh7jJ1dsxqGNZNTZqZ1ng5DLIAq8sSYJcY9IUT4ted48uTJTifElb5t27at2u9TVFSkfv36qX379po+fbrDcw888IAuv/xyde7cWffee68mTZqkRx55pMLtTZkyRYWFhfbbvn37qt1GAM6tXVu2x7g0w5D27bPW8yaLRcrJkZYutd5bLN59P8BnsrOllBSpTx9p6FDrfUqKez/JeGIbQIDwa8/xhAkTNHLkyArrtGjRQgkJCTp48KBD+fnz53XkyBElJCRU+Ppjx46pb9++ql+/vlasWKGaNWtWWD81NVWzZs3SmTNnFBkZ6bROZGRkuc8B8KwDBzxbryoY74yQZRuzdOFPM7YxS67kEPbENoAA4tfgOD4+XvHx8ZXW6969u44ePaqNGzeqS5cukqRPPvlExcXFSk1NLfd1RUVFSk9PV2RkpN566y1FRUVV+l6bN29WgwYNCH6BANGkiWfruYvzPkKWJ8YsMe4JISgoJuS1a9dOffv21ejRo7VhwwZ99tlnGjdunAYPHmzPVJGXl6e2bdtqw4YNkqyB8dVXX60TJ07ohRdeUFFRkfLz85Wfny9Lye+hb7/9tp5//nl999132rlzp5555hn94x//0F133eW3fQXgqGdPay/thavG2phMUnKytZ6nVXbel6znfYZYICh5YsxSoIx7AjwoKCbkSdKrr76qcePG6aqrrlJERIQGDhyo+fPn258/d+6ctm/frpMnT0qSNm3aZM9k0bJlS4dt5ebmKiUlRTVr1tSCBQs0fvx4GYahli1b6vHHH9fo0aN9t2MAKmQ2W4cvDBpkDYRLB6q2gHnePO90Srlz3u/d2/PvD3iVJ8YsBcK4J8DDgiY4jouLK3fBD0lKSUlxSMHWu3fvSlOy9e3b12HxDwCBKSPDOnzB2bjfefO8N6yB8z5CmifGLPl73BPgBUETHAMIbxkZ1mGLvswUxXkfIc02Zikvz/nYIZPJ+nxFY5Y8sQ0gwATFmGMAkKyBcO/e0pAh1ntvz+/x53hnwOtsY5aksh9yV8cseWIbQIAhOAaAcnDeR8izjVlq2tSxPCnJ9VQsntgGEEBMRmUDc1EpV9fqBhCcnOU5Tk727nhnwKdYIQ9hwNV4jeDYAwiOgdDHeR8Agpur8RoT8gDABbbxzgCA0EZwDMBt9KICAEIVwTEAtzgbf5uUZJ24xvhbAECwI1sFAJdlZ1tXqrtw1bi8PGt5drZ/2gUAgKcQHANwicVi7TF2NoXXVpaZaa0HAECwIjgG4JK1a8v2GJdmGNK+fdZ6AAAEK8YcA3DJgQOerQfAi5g1C1QZwTEAlzRp4tl61cW5HygHs2aBamFYBQCX9OxpPb9euIyyjclkXTWuZ0/vtyU7W0pJkfr0kYYOtd6npDAhEGDWLFB9BMcAXGI2WzuepLIBsu3xvHne773l3A+UozqzZi0WKSdHWrrUes/MWoQxgmMALsvIkJYvl5o2dSxPSrKWe/sXWzJmABWo6qxZfooBHBAcA3BLRoa0e7e0Zo20ZIn1PjfXN0MZyZgBVMDV2bCrV/96BclPMUAZBMcA3GY2S717S0OGWO99NRGOjBlABVydDTt7trVn+I03+CkGcILgGEDQCLSMGUBAqWzWbGn790s33shPMYATBMcAgkYgZcwAAk5Fs2arg59iEGYIjgEEjUDJmAEErPJmzVYHP8UgzBAcAwgq/s6YAQQ826zZ+++v3nb4KQZhihXyAASdjAypf39WyEMQ8/YSj2azdNVV1sl3VcFPMQhjBMcAgpItYwYQdHy1vHPPnlJcnHTkSOV1L6yXlGQNjPkpBmGI4BgAAF+x5RW+MH2aLa+wJ8cGmc3WIHzatMrrvv66tT4/xQAyGYazBIdwR1FRkWJiYlRYWKjo6Gh/NwcAEIgsFmt+4fLSp5lM1h7b3NyqB6YXDtfo0UNKTJQOH/beewJBwtV4jQl5AAD4greXeHS2DPQll0h/+Yvz1G6MKwacIjgGAMAXvLnEY0XLQD/6qHTPPdYe4tJI8QI4xZhjAAB8wVtLPFosFS8DbTJJy5ZJu3ZJn3/OuGKgEgTHALzG29mqgKBiW+IxL895IGsb/+tuXmFXh2t8/jkpXgAXMKwCgFc4G/6YkmItB8JSZcs7G4Z0223ub9ebwzWAMERwDMDjKhr+OGgQATLCWGXLO0+b5v5VpLeGawBhiuAYgEdVNvxRkjIzrfWAsGRb3nnGDOfPu3sVaRuu4aw3WmIZaMBNBMcAPMrb2aqAkPHcc87L3b2KrGi4BunaALcRHAPwKIY/Ai7w9FVkecM1SNcGuI1sFQAcVDfDBMMfgQs4+1J54yoyI0Pq358UMUA1ERwDsMvOto4XLt2hlZRk/cXW1Y4nb2WrAoJSeV+q0aNde727V5FmM+nagGpiWAUASZ7LMMHwR6BERV+q6dOliy5iEh0QgAiOAXg8wwTDHxH2XPlS2f7NVSQQUAiOAXglw4QtW9WaNdKSJdb73FwCY4QJV75Uhw9b07lxFQkEFMYcA1Benmv13M0wwfBHhC1XvyytWlmvIplEBwQMgmMgzGVnW4dMuIIME4CL3EnbwlUkEFAYVgGEMdt8oUOHKq7H3CDATaxaBwQtgmMgTFU0X6g05gYBVUDaFiBoERwDYaqy+UI2DRsyNwioEtK2AEEpaILjI0eOaNiwYYqOjlZsbKxuvfVWHT9+vMLX9O7dWyaTyeF2++23O9TZu3ev+vXrpzp16qhRo0aaOHGizp8/781dAQKCq/OFnniCczhQZaRtAYJO0EzIGzZsmA4cOKCPPvpI586d06hRozRmzBgtWbKkwteNHj1aM2fOtD+uU6eO/d8Wi0X9+vVTQkKCPv/8cx04cEDDhw9XzZo19Y9//MNr+wIEAlfnC13Y6QWEnequqc6EOyComAyjshGH/rd161a1b99eX375pbp27SpJWrVqla699lrt379fiYmJTl/Xu3dvderUSfPmzXP6/Pvvv6/rrrtOP/30kxo3bixJWrhwoe699179/PPPqlWrlkvtKyoqUkxMjAoLCxUdHe3+DgJ+YLFIKSmVL/Ocm8uwSIQxT6ypDiAguBqvBcWwinXr1ik2NtYeGEtSWlqaIiIitH79+gpf++qrr6phw4a69NJLNWXKFJ08edJhux06dLAHxpKUnp6uoqIiff/99+Vu88yZMyoqKnK4AcGG+UJAJTy1pjqAoBIUwXF+fr4aNWrkUFajRg3FxcUpPz+/3NcNHTpU//73v7VmzRpNmTJFr7zyim6++WaH7ZYOjCXZH1e03blz5yomJsZ+S05OrspuAX6XkSG99pp00UWO5cwXQtjz9JrqAIKGX4PjyZMnl5kwd+Ft27ZtVd7+mDFjlJ6erg4dOmjYsGFavHixVqxYoV27dlWr3VOmTFFhYaH9tm/fvmptD/CX7GwpK8sxz3F8vPT44wTGCHPeWFMdQFDw64S8CRMmaOTIkRXWadGihRISEnTw4EGH8vPnz+vIkSNKSEhw+f1SU1MlSTt37tQll1yihIQEbdiwwaFOQUGBJFW43cjISEVGRrr8vkAgsv1ifGHH2KFD0o030nOMMOdqOhd311QHEPD8GhzHx8crPj6+0nrdu3fX0aNHtXHjRnXp0kWS9Mknn6i4uNge8Lpi8+bNkqQmJdP0u3fvrjlz5ujgwYP2YRsfffSRoqOj1b59ezf3Bggelf1ibDJZfzHu358xxwhT7iz/DCCkBMWY43bt2qlv374aPXq0NmzYoM8++0zjxo3T4MGD7Zkq8vLy1LZtW3tP8K5duzRr1ixt3LhRu3fv1ltvvaXhw4fryiuv1GWXXSZJuvrqq9W+fXvdcsst+uabb/TBBx/o/vvv19ixY+kZRkjjF2OgEiz/DIStoAiOJWvWibZt2+qqq67StddeqyuuuELPPvus/flz585p+/bt9mwUtWrV0scff6yrr75abdu21YQJEzRw4EC9/fbb9teYzWa98847MpvN6t69u26++WYNHz7cIS8y4G8Wi5STIy1dar33xPwffjEGKuFuOhdvfFEB+EVQ5DkOdOQ5hjvcWU/AWylWc3KkPn0qr7dmDWsXIMw5+xImJ1sDY9uXkFzIQFBwNV4jOPYAgmO4yp1zaHkT5mydVtWZMMcCIIAbKrqi9eYXFYBHERz7EMExXOHOOdQWvJY3LtgTwautPZJjmzinAy7yxRcVgMeE1Ap5QLBzdz0BX0yYy8iwBsBNmzqWswAI4CJmtgIhya+p3IBw4c45tHdv302Yy8iwpmtzdQw0gFKY2QqEJIJjwAfcPYf6MsWq2cykO4QYd2a9Vge5kIGQxLAKwAfcPYeSYhWoouxs6zjgPn2koUOt9ykp1nJP44sKhCSCY8AHbOfQipQ+h7qbYhWAfp1leuEYprw8a7mnA2S+qEBIIjgGfMBsloYMqbjO4MGO59DyJsw1bGid3BcXxzoDgJ27s149hZmtQMghlZsHkMoNlaks45Nk7Tl2lvHJNnxy5Urp3/+WDh369TnWGQBK+HtlG1+NcwZQZa7Ga0zIA3ygsmwVkmO2itLMZunIEWsQfOGlrO3XYjqoEPb8nTmCma1AyGBYBVBNFou102rpUuu9s19tq3Pe9tevxUBQIXMEAA8hOAaqwdWJ8dU5b7POAOACMkcA8BCCY6CK3JkYX53ztr9/LQaCApkjAHgIwTFQBe4OdajOebtRI9fa5Go9IGSROQKABxAcA26yWKQnn3R/qAPnbcAHMjKk3butWSmWLLHe5+byBQPgMrJVAG7Izrb2GFeWecLmwqEOGRlS//7uZXw6eNC193K1HhDyyBwBoBoIjgEX2cYYu5MZ3NkEO3fP265O5vvhB2u2DNKrAgBQdSwC4gEsAhL6XFnEozSTyTpcwtmiHlV977w81wJzFgYBAKAsV+M1xhwDLnBlEQ8bT0+Mr2gynzPOsmUAAADXEBwDLnAnTZo3JtiVN5nPGRYGAQCg6giOARe4Ou73iSe8NzG+9CT8+++vuC4LgwAAUDUEx4ALXF3E4667vDsZzjaZr3171+qzMAgAAO4hOAZcEGiLb1VnOWoAAFA+gmPARYGyiIfFYr3FxZVfp6LlqAEAQPnIcwy4oSqLeHiSK4uQ+KMnG2HEYvHfFwAAfIDgGHCTvxbfcnURkqQka2BMnmN4nLOrMxJrAwgxDKsAgoDFYo1JKgqM4+Kkjz/2XrYMhDnb1dmFP1uQWBtAiCE4BoKAK4uQHDli7dXmF254XEVXZyTWBhBiCI6BIOBqSjZSt8ErKrs6I7E2gBDCmGMgCJC6DX7lzaszJvgBCDD0HANBwNVFSEjdBq/w1tVZdraUkiL16SMNHWq9T0lh/DIAvyI4BoJAoC1CgjDjjaszJvgBCFAEx0CQCJRFSBCGPH11xgQ/AAGM4BgIIhkZ0u7d0po10pIl1ntSt8EnPHl1xgQ/AAGMCXlAkPHXIiSAx5aIJP0KgABGcAwAcJ0nrs5IvwIggDGsAgDgW6RfARDACI4BAL5F+hUAAYzgGADge6RfARCgGHMMAPAPT03wAwAPIjgGAPgP6VcABBiCY8CHLBY6yQAACGQEx4CPZGdbFwUrvfZBUpJ1XhLDKwEACAxMyAN8IDtbGjSo7KJgeXnW8uxs/7QLAAA4IjgGvMxisfYYG0bZ52xlmZnWegAAwL+CJjg+cuSIhg0bpujoaMXGxurWW2/V8ePHy62/e/dumUwmp7c33njDXs/Z88uWLfPFLiFMrF1btse4NMOQ9u2z1gMAAP4VNGOOhw0bpgMHDuijjz7SuXPnNGrUKI0ZM0ZLlixxWj85OVkHDhxwKHv22Wf1yCOP6JprrnEof+mll9S3b1/749jYWI+3H+Hrgo9htesBAADvCYrgeOvWrVq1apW+/PJLde3aVZL05JNP6tprr9Wjjz6qxMTEMq8xm81KSEhwKFuxYoVuvPFG1atXz6E8Nja2TN2KnDlzRmfOnLE/Lioqcmd3EGaaNPFsPQAA4D1BMaxi3bp1io2NtQfGkpSWlqaIiAitX7/epW1s3LhRmzdv1q233lrmubFjx6phw4bq1q2bXnzxRRnOBoeWMnfuXMXExNhvycnJ7u0QwkrPntasFBeukmtjMknJydZ6AADAv4IiOM7Pz1ejRo0cymrUqKG4uDjl5+e7tI0XXnhB7dq1U48ePRzKZ86cqddff10fffSRBg4cqDvvvFNPPvlkhduaMmWKCgsL7bd9+/a5t0MIK2azNV2bVDZAtj2eN498xwAABAK/BseTJ08ud9Kc7bZt27Zqv8+pU6e0ZMkSp73GDzzwgC6//HJ17txZ9957ryZNmqRHHnmkwu1FRkYqOjra4QZUJCNDWr5catrUsTwpyVpOnmMAAAKDX8ccT5gwQSNHjqywTosWLZSQkKCDBw86lJ8/f15Hjhxxaazw8uXLdfLkSQ0fPrzSuqmpqZo1a5bOnDmjyMjISusDrsrIkPr3Z4U8AAACmV+D4/j4eMXHx1dar3v37jp69Kg2btyoLl26SJI++eQTFRcXKzU1tdLXv/DCC7rhhhtceq/NmzerQYMGBMbwCrNZ6t3b360AAADlCYpsFe3atVPfvn01evRoLVy4UOfOndO4ceM0ePBge6aKvLw8XXXVVVq8eLG6detmf+3OnTv16aef6r333iuz3bffflsFBQX6/e9/r6ioKH300Uf6xz/+oXvuucdn+wYAAIDAERTBsSS9+uqrGjdunK666ipFRERo4MCBmj9/vv35c+fOafv27Tp58qTD61588UUlJSXp6quvLrPNmjVrasGCBRo/frwMw1DLli31+OOPa/To0V7fHwAAAAQek1FZ3jJUqqioSDExMSosLGRyHgAAQAByNV4LilRuAAAAgC8QHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKAEwTEAAABQguAYAAAAKEFwDAAAAJQgOAYAAABKEBwDAAAAJQiOAQAAgBIExwAAAECJGv5uAOAqi0Vau1Y6cEBq0kTq2VMym/3dKgAAEEoIjhEUsrOlv/1N2r//17KkJOmf/5QyMvzXLsCruCIEAJ9jWAUCXna2NGiQY2AsSXl51vLsbP+0C/Cq7GwpJUXq00caOtR6n5LCBx4AvIzgGAHNYrH2GBtG2edsZZmZ1npAyOCKEAD8huAYAW3t2rLxQWmGIe3bZ60HhASuCAHArwiOEdAOHPBsPSDgcUUIAH5FcIyA1qSJZ+sBAY8rQgDwK4JjBLSePa1ZKUwm58+bTFJysrUeEBK4IgQAvyI4RkAzm63p2qSyAbLt8bx5ZLdCCOGKEAD8iuAYAS8jQ1q+XGra1LE8KclaTp5jhBSuCAHAr0yG4WxKNNxRVFSkmJgYFRYWKjo62t/NCVmsh4Cw4mzlm+Rka2DMFSEAuM3VeI3g2AMIjgF4BVeEAOAxrsZrLB8NAIHKbJZ69/Z3KwAgrBAcI2jQiQYAALyN4BhBwdnwy6Qk67wlhl8CAABPIVsFAl52tjRoUNlFw/LyrOXZ2f5pFwAACD0ExwhoFou1x9jZtFFbWWamtR4AAEB1ERwjoK1dW7bHuDTDkPbts9YDAACoLoJjBLQDBzxbDwAAoCIExwhoTZp4th4AAEBFCI4R0Hr2tGaluHAVXRuTybpoWM+evm0XAAAITQTHCGhmszVdm1Q2QLY9njePfMcAAMAzCI4R8DIypOXLpaZNHcuTkqzl5DkGAACewiIgCAoZGVL//qyQBwAAvIvgGAGnvGWizWapd29/tw4AAIQygmMEFJaJBgAA/sSYYwQMlokGAAD+RnCMgMAy0QAAIBAQHCMgsEw0AAAIBATHCAgsEw0AAAIBwTECAstEAwCAQEBwjIDAMtEAACAQBE1wPGfOHPXo0UN16tRRbGysS68xDENTp05VkyZNVLt2baWlpWnHjh0OdY4cOaJhw4YpOjpasbGxuvXWW3X8+HEv7AEqwjLRAAAgEARNcHz27Fn9+c9/1h133OHyax5++GHNnz9fCxcu1Pr161W3bl2lp6fr9OnT9jrDhg3T999/r48++kjvvPOOPv30U40ZM8Ybu4BKsEw0AADwN5NhOEueFbgWLVqkzMxMHT16tMJ6hmEoMTFREyZM0D333CNJKiwsVOPGjbVo0SINHjxYW7duVfv27fXll1+qa9eukqRVq1bp2muv1f79+5WYmOhSm4qKihQTE6PCwkJFR0dXa/9Q/gp5AAAAVeVqvBY0Pcfuys3NVX5+vtLS0uxlMTExSk1N1bp16yRJ69atU2xsrD0wlqS0tDRFRERo/fr15W77zJkzKioqcrjBc2zLRA8ZYr0nMAYAAL4SssFxfn6+JKlx48YO5Y0bN7Y/l5+fr0aNGjk8X6NGDcXFxdnrODN37lzFxMTYb8nJyR5uPQAAAPzBr8Hx5MmTZTKZKrxt27bNn010asqUKSosLLTf9u3b5+8mAQAAwANq+PPNJ0yYoJEjR1ZYp0WLFlXadkJCgiSpoKBATUolxy0oKFCnTp3sdQ4ePOjwuvPnz+vIkSP21zsTGRmpyMjIKrULAAAAgcuvwXF8fLzi4+O9su3mzZsrISFBq1evtgfDRUVFWr9+vT3jRffu3XX06FFt3LhRXbp0kSR98sknKi4uVmpqqlfaBQAAgMAVNGOO9+7dq82bN2vv3r2yWCzavHmzNm/e7JCTuG3btlqxYoUkyWQyKTMzU7Nnz9Zbb72lLVu2aPjw4UpMTNSAAQMkSe3atVPfvn01evRobdiwQZ999pnGjRunwYMHu5ypAgAAAKHDrz3H7pg6dapefvll++POnTtLktasWaPevXtLkrZv367CwkJ7nUmTJunEiRMaM2aMjh49qiuuuEKrVq1SVFSUvc6rr76qcePG6aqrrlJERIQGDhyo+fPn+2anAAAAEFCCLs9xICLPMQAAQGAL+zzHAAAAgLsIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoETR5jgOZLRteUVGRn1sCAAAAZ2xxWmVZjAmOPeDYsWOSpOTkZD+3BAAAABU5duyYYmJiyn2eRUA8oLi4WD/99JPq168vk8nklfcoKipScnKy9u3bx0IjF+DYlI9jUz6OTcU4PuXj2JSPY1M+jk35fHVsDMPQsWPHlJiYqIiI8kcW03PsAREREUpKSvLJe0VHR/OlKgfHpnwcm/JxbCrG8Skfx6Z8HJvycWzK54tjU1GPsQ0T8gAAAIASBMcAAABACYLjIBEZGalp06YpMjLS300JOByb8nFsysexqRjHp3wcm/JxbMrHsSlfoB0bJuQBAAAAJeg5BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmC4wAxZ84c9ejRQ3Xq1FFsbKxLrzEMQ1OnTlWTJk1Uu3ZtpaWlaceOHQ51jhw5omHDhik6OlqxsbG69dZbdfz4cS/sgfe4uw+7d++WyWRyenvjjTfs9Zw9v2zZMl/skkdV5f+4d+/eZfb99ttvd6izd+9e9evXT3Xq1FGjRo00ceJEnT9/3pu74nHuHpsjR47orrvuUps2bVS7dm1dfPHFuvvuu1VYWOhQLxg/OwsWLFBKSoqioqKUmpqqDRs2VFj/jTfeUNu2bRUVFaUOHTrovffec3jelb8/wcKdY/Pcc8+pZ8+eatCggRo0aKC0tLQy9UeOHFnm89G3b19v74bXuHN8Fi1aVGbfo6KiHOqE62fH2d9dk8mkfv362euEymfn008/1fXXX6/ExESZTCa9+eablb4mJydHv/3tbxUZGamWLVtq0aJFZeq4+3esygwEhKlTpxqPP/64kZWVZcTExLj0mgcffNCIiYkx3nzzTeObb74xbrjhBqN58+bGqVOn7HX69u1rdOzY0fjiiy+MtWvXGi1btjSGDBnipb3wDnf34fz588aBAwccbjNmzDDq1atnHDt2zF5PkvHSSy851Ct97IJFVf6Pe/XqZYwePdph3wsLC+3Pnz9/3rj00kuNtLQ04+uvvzbee+89o2HDhsaUKVO8vTse5e6x2bJli5GRkWG89dZbxs6dO43Vq1cbrVq1MgYOHOhQL9g+O8uWLTNq1aplvPjii8b3339vjB492oiNjTUKCgqc1v/ss88Ms9lsPPzww8YPP/xg3H///UbNmjWNLVu22Ou48vcnGLh7bIYOHWosWLDA+Prrr42tW7caI0eONGJiYoz9+/fb64wYMcLo27evw+fjyJEjvtolj3L3+Lz00ktGdHS0w77n5+c71AnXz87hw4cdjst3331nmM1m46WXXrLXCZXPznvvvWfcd999RnZ2tiHJWLFiRYX1f/zxR6NOnTpGVlaW8cMPPxhPPvmkYTabjVWrVtnruHu8q4PgOMC89NJLLgXHxcXFRkJCgvHII4/Yy44ePWpERkYaS5cuNQzDMH744QdDkvHll1/a67z//vuGyWQy8vLyPN52b/DUPnTq1Mn4y1/+4lDmyhc20FX1+PTq1cv429/+Vu7z7733nhEREeFwUnvmmWeM6Oho48yZMx5pu7d56rPz+uuvG7Vq1TLOnTtnLwu2z063bt2MsWPH2h9bLBYjMTHRmDt3rtP6N954o9GvXz+HstTUVOOvf/2rYRiu/f0JFu4emwudP3/eqF+/vvHyyy/by0aMGGH079/f0031C3ePT2XnMD47v3riiSeM+vXrG8ePH7eXhdJnx8aVv5eTJk0yfvOb3ziU3XTTTUZ6err9cXWPtzsYVhGkcnNzlZ+fr7S0NHtZTEyMUlNTtW7dOknSunXrFBsbq65du9rrpKWlKSIiQuvXr/d5m6vCE/uwceNGbd68WbfeemuZ58aOHauGDRuqW7duevHFF2UEWdrv6hyfV199VQ0bNtSll16qKVOm6OTJkw7b7dChgxo3bmwvS09PV1FRkb7//nvP74gXeOrzX1hYqOjoaNWoUcOhPFg+O2fPntXGjRsd/lZEREQoLS3N/rfiQuvWrXOoL1n//231Xfn7EwyqcmwudPLkSZ07d05xcXEO5Tk5OWrUqJHatGmjO+64Q4cPH/Zo232hqsfn+PHjatasmZKTk9W/f3+Hvxl8dn71wgsvaPDgwapbt65DeSh8dtxV2d8cTxxvd9SovAoCUX5+viQ5BC+2x7bn8vPz1ahRI4fna9Soobi4OHudQOeJfXjhhRfUrl079ejRw6F85syZ+sMf/qA6deroww8/1J133qnjx4/r7rvv9lj7va2qx2fo0KFq1qyZEhMT9e233+ree+/V9u3blZ2dbd+us8+W7blg4InPzqFDhzRr1iyNGTPGoTyYPjuHDh2SxWJx+v+5bds2p68p7/+/9N8WW1l5dYJBVY7Nhe69914lJiY6nLT79u2rjIwMNW/eXLt27dLf//53XXPNNVq3bp3MZrNH98GbqnJ82rRpoxdffFGXXXaZCgsL9eijj6pHjx76/vvvlZSUxGenxIYNG/Tdd9/phRdecCgPlc+Ou8r7m1NUVKRTp07pl19+qfZ31R0Ex140efJkPfTQQxXW2bp1q9q2beujFgUOV49NdZ06dUpLlizRAw88UOa50mWdO3fWiRMn9MgjjwREgOPt41M62OvQoYOaNGmiq666Srt27dIll1xS5e36gq8+O0VFRerXr5/at2+v6dOnOzwXyJ8d+M6DDz6oZcuWKScnx2HS2eDBg+3/7tChgy677DJdcsklysnJ0VVXXeWPpvpM9+7d1b17d/vjHj16qF27dvrXv/6lWbNm+bFlgeWFF15Qhw4d1K1bN4fycP7sBBKCYy+aMGGCRo4cWWGdFi1aVGnbCQkJkqSCggI1adLEXl5QUKBOnTrZ6xw8eNDhdefPn9eRI0fsr/cXV49Ndfdh+fLlOnnypIYPH15p3dTUVM2aNUtnzpzx+/ruvjo+NqmpqZKknTt36pJLLlFCQkKZWcAFBQWSFBafnWPHjqlv376qX7++VqxYoZo1a1ZYP5A+Oxdq2LChzGaz/f/PpqCgoNzjkJCQUGF9V/7+BIOqHBubRx99VA8++KA+/vhjXXbZZRXWbdGihRo2bKidO3cGVYBTneNjU7NmTXXu3Fk7d+6UxGdHkk6cOKFly5Zp5syZlb5PsH523FXe35zo6GjVrl1bZrO52p9Ft3h8FDOqxd0JeY8++qi9rLCw0OmEvK+++spe54MPPgjKCXlV3YdevXqVyTRQntmzZxsNGjSoclv9wVP/x//73/8MScY333xjGMavE/JKzwL+17/+ZURHRxunT5/23A54UVWPTWFhofH73//e6NWrl3HixAmX3ivQPzvdunUzxo0bZ39ssViMpk2bVjgh77rrrnMo6969e5kJeRX9/QkW7h4bwzCMhx56yIiOjjbWrVvn0nvs27fPMJlMxsqVK6vdXl+ryvEp7fz580abNm2M8ePHG4bBZ8cwrOf5yMhI49ChQ5W+RzB/dmzk4oS8Sy+91KFsyJAhZSbkVeez6A6C4wCxZ88e4+uvv7anHPv666+Nr7/+2iH1WJs2bYzs7Gz74wcffNCIjY01Vq5caXz77bdG//79naZy69y5s7F+/Xrjf//7n9GqVaugTOVW0T7s37/faNOmjbF+/XqH1+3YscMwmUzG+++/X2abb731lvHcc88ZW7ZsMXbs2GE8/fTTRp06dYypU6d6fX88zd3js3PnTmPmzJnGV199ZeTm5horV640WrRoYVx55ZX219hSuV199dXG5s2bjVWrVhnx8fFBmcrNnWNTWFhopKamGh06dDB27tzpkE7p/PnzhmEE52dn2bJlRmRkpLFo0SLjhx9+MMaMGWPExsbas5HccsstxuTJk+31P/vsM6NGjRrGo48+amzdutWYNm2a01Rulf39CQbuHpsHH3zQqFWrlrF8+XKHz4ftb/WxY8eMe+65x1i3bp2Rm5trfPzxx8Zvf/tbo1WrVkFzYVmau8dnxowZxgcffGDs2rXL2LhxozF48GAjKirK+P777+11wvWzY3PFFVcYN910U5nyUPrsHDt2zB7HSDIef/xx4+uvvzb27NljGIZhTJ482bjlllvs9W2p3CZOnGhs3brVWLBggdNUbhUdb08iOA4QI0aMMCSVua1Zs8ZeRyW5VW2Ki4uNBx54wGjcuLERGRlpXHXVVcb27dsdtnv48GFjyJAhRr169Yzo6Ghj1KhRDgF3MKhsH3Jzc8scK8MwjClTphjJycmGxWIps83333/f6NSpk1GvXj2jbt26RseOHY2FCxc6rRvo3D0+e/fuNa688kojLi7OiIyMNFq2bGlMnDjRIc+xYRjG7t27jWuuucaoXbu20bBhQ2PChAkO6cyCgbvHZs2aNU6/h5KM3NxcwzCC97Pz5JNPGhdffLFRq1Yto1u3bsYXX3xhf65Xr17GiBEjHOq//vrrRuvWrY1atWoZv/nNb4x3333X4XlX/v4EC3eOTbNmzZx+PqZNm2YYhmGcPHnSuPrqq434+HijZs2aRrNmzYzRo0d75QTuK+4cn8zMTHvdxo0bG9dee62xadMmh+2F62fHMAxj27ZthiTjww8/LLOtUPrslPe31HY8RowYYfTq1avMazp16mTUqlXLaNGihUO8Y1PR8fYkk2EEaP4hAAAAwMfIcwwAAACUIDgGAAAAShAcAwAAACUIjgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BoAANXLkSJlMpjK3nTt3emT7ixYtUmxsrEe2VVWffvqprr/+eiUmJspkMunNN9/0a3sAgOAYAAJY3759deDAAYdb8+bN/d2sMs6dO1el1504cUIdO3bUggULPNwiAKgagmMACGCRkZFKSEhwuJnNZknSypUr9dvf/lZRUVFq0aKFZsyYofPnz9tf+/jjj6tDhw6qW7eukpOTdeedd+r48eOSpJycHI0aNUqFhYX2Hunp06dLktMe3NjYWC1atEiStHv3bplMJr322mvq1auXoqKi9Oqrr0qSnn/+ebVr105RUVFq27atnn766Qr375prrtHs2bP1pz/9yQNHCwCqr4a/GwAAcN/atWs1fPhwzZ8/Xz179tSuXbs0ZswYSdK0adMkSREREZo/f76aN2+uH3/8UXfeeacmTZqkp59+Wj169NC8efM0depUbd++XZJUr149t9owefJkPfbYY+rcubM9QJ46daqeeuopde7cWV9//bVGjx6tunXrasSIEZ49AADgJQTHABDA3nnnHYeg9ZprrtEbb7yhGTNmaPLkyfags0WLFpo1a5YmTZpkD44zMzPtr0tJSdHs2bN1++236+mnn1atWrUUExMjk8mkhISEKrUtMzNTGRkZ9sfTpk3TY489Zi9r3ry5fvjhB/3rX/8iOAYQNAiOASCA9enTR88884z9cd26dSVJ33zzjT777DPNmTPH/pzFYtHp06d18uRJ1alTRx9//LHmzp2rbdu2qaioSOfPn3d4vrq6du1q//eJEye0a9cu3XrrrRo9erS9/Pz584qJian2ewGArxAcA0AAq1u3rlq2bFmm/Pjx45oxY4ZDz61NVFSUdu/ereuuu0533HGH5syZo7i4OP3vf//TrbfeqrNnz1YYHJtMJhmG4VDmbMKdLVC3tUeSnnvuOaWmpjrUs42RBoBgQHAMAEHot7/9rbZv3+40cJakjRs3qri4WI899pgiIqxzr19//XWHOrVq1ZLFYinz2vj4eB04cMD+eMeOHTp58mSF7WncuLESExP1448/atiwYe7uDgAEDIJjAAhCU6dO1XXXXaeLL75YgwYNUkREhL755ht99913mj17tlq2bKlz587pySef1PXXX6/PPvtMCxcudNhGSkqKjh8/rtWrV6tjx46qU6eO6tSpoz/84Q966qmn1L17d1ksFt17772qWbNmpW2aMWOG7r77bsXExKhv3746c+aMvvrqK/3yyy/Kyspy+prjx4875G3Ozc3V5s2bFRcXp4svvrh6BwkAqoBUbgAQhNLT0/XOO+/oww8/1O9+9zv9/ve/1xNPPKFmzZpJkjp27KjHH39cDz30kC699FK9+uqrmjt3rsM2evToodtvv1033XST4uPj9fDDD0uSHnvsMSUnJ6tnz54aOnSo7rnnHpfGKN922216/vnn9dJLL6lDhw7q1auXFi1aVGFe5q+++kqdO3dW586dJUlZWVnq3Lmzpk6dWtVDAwDVYjIuHFgGAAAAhCl6jgEAAIASBMcAAABACYJjAAAAoATBMQAAAFCC4BgAAAAoQXAMAAAAlCA4BgAAAEoQHAMAAAAlCI4BAACAEgTHAAAAQAmCYwAAAKDE/wPXO5mVdCd3pAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 185 + "execution_count": 53 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:45:35.396362Z", - "start_time": "2024-07-14T20:45:35.393834Z" + "end_time": "2024-07-18T23:01:18.893610Z", + "start_time": "2024-07-18T23:01:18.891877Z" } }, "cell_type": "code", "source": "model = SignModelWrapper(model)", "id": "5ad9df503d305219", "outputs": [], - "execution_count": 45 + "execution_count": 54 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:45:54.972665Z", - "start_time": "2024-07-14T20:45:38.650071Z" + "end_time": "2024-07-18T23:01:36.477187Z", + "start_time": "2024-07-18T23:01:18.894153Z" } }, "cell_type": "code", @@ -828,21 +678,21 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJOCAYAAACgF8qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMDElEQVR4nO3de5xVdb0//vceLoOoA3q4DJN4QU0l0TEIgtM3LebHoHxTz7GTlAZyDI6mdQxNpRJUMrx9/frV6FAd8fI9GmVfNS0DDaU6hehBOV5CjxgmioMXghHQAWbW7w9jn7ZcNjCsWXvPPJ+Px3roXvuzP/NZH9Zs9pvX/qyVS5IkCQAAAGhjFVkPAAAAgI5JQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCgAAQCYUpAAAAGRCQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCkDZuP3226N79+6xYcOG/L7evXtHLpfb4fZP//RPRfv+5je/GQMGDEhz+ADAB+SSJEmyHgQA7IzTTjstNm7cGA888EBERGzevDnmzJmzzbaNjY1x0UUXRVNTU/z85z+PE088cYd9P/bYYzF8+PB49tln4yMf+cgeHzsAsLXOWQ8AAHZGU1NTPPTQQ3HDDTfk93Xu3DnOPPPMbbYdPXp0vPvuu/G9732vaDEaETFs2LDo27dvPPDAAwpSAGgjvrILQFl49NFHY/369fGZz3xmh+2am5vjC1/4QixYsCAuv/zyOPfcc3eq/1wuF//zf/7PfPoKAKRPQQpAWXjggQfiYx/7WFRXV++w3bnnnhv33HNPnHfeeTFt2rRd+hknn3xyPPbYY/Hmm2+2ZqgAwE5SkAJQFh544IGi6eg3v/nN+OEPfxif+9zn4qabbtrln1FXVxeVlZXx4IMP7u4wAYBdoCAFoOQ99dRTsWLFijj55JO32+amm26K73znO1FXVxf/9//+36io2PW/4rp37x4jR470tV0AaCMKUgBK3q9//evo2bNnHHPMMdt8/kc/+lFccMEFMWTIkLj33nuja9euW7V58803Y8yYMbH33nvHEUccEfPnz99mXyeccEIsWLBgTw4fANgOBSkAJW/w4MGxZs2aWLZs2VbPzZs3L8aPHx+HH354PPjgg7HPPvtss4/zzjsvqqur480334zrrrsuPve5z8Xq1au3avf444/HkCFD9vgxAABbU5ACUPJGjBgRvXr1ivvvv79g/6JFi+K0006LPn36xEMPPRS9e/fe5uvXrVsX9913X1xxxRXRvXv3OPnkk2PQoEHxs5/9rKDdpk2bYu7cuUXXqgIAe4aCFICS16lTpzjppJMK1nYuXbo0xowZE127do158+bFQQcdtN3Xv/jii7HPPvvEAQcckN83aNCgeO655wra/frXv47GxkYFKQC0kc5ZDwAAdsbJJ58cY8eOjT//+c+Ry+Wivr4+3n777fjyl78cTz31VDz11FNbvaZPnz4xatSoWLduXVRVVRU8V1VVFW+//XbBvvvvvz+OPfbYOPDAA1M9FgDgfQpSAMrCqFGjoqKiIn75y19Gr169YsWKFRER8b3vfS++973vbfM148aNi1GjRsU+++wTjY2NBc81NjZutd70gQceiDPPPDOdAwAAtqIgBaAs7LvvvvGpT30q7r///pgzZ04kSbLTrz388MNj3bp18dprr8WHPvShiIh49tlnY9y4cfk2zzzzTLz88su+rgsAbcgaUgDKxsknnxxz586NTZs27dLr9tlnnzjllFNi2rRp8e6778bPf/7zePrpp+OUU07Jt7n//vujuro6Pvaxj+3pYQMA25FLduWfmAEgQ++99168+uqrcfDBB0fnzrv2JZ8333wzxo8fHwsWLIgDDjggvve970VdXV3++VWrVkVzc3PU1NTs6WEDANuhIAUAACATZfeV3d/85jfxmc98JmpqaiKXy8V9991X9DULFiyIj370o1FZWRmHHXZY3HbbbVu1mTlzZhx88MHRrVu3GDZsWDz++ON7fvAAAAB7QHupi8quIF2/fn0ce+yxMXPmzJ1qv3z58hgzZkx86lOfiiVLlsQFF1wQX/rSl2LevHn5Nj/+8Y9j8uTJMW3atHjyySfj2GOPjfr6+njjjTfSOgwAAIDd1l7qorL+ym4ul4t77703Tj311O22ueSSS+IXv/hFPPvss/l9Y8eOjTVr1sTcuXMjImLYsGHxsY99LL773e9GRERLS0v0798/vvKVr8Sll16a6jEAAAC0RjnXRe3+ti8LFy4suGhFRER9fX1ccMEFERGxcePGWLx4cUyZMiX/fEVFRdTV1cXChQu3229TU1M0NTXlH7e0tMTq1avjb/7mbyKXy+3ZgwAAgHYiSZJ45513oqamJioqyuMLm++9915s3Lgx9Z+TJMlWtURlZWVUVla2uu+06qLWavcFaUNDQ/Tt27dgX9++faOxsTHefffd+POf/xzNzc3bbPP8889vt98ZM2bEFVdckcqYAQCgvVuxYkUccMABWQ+jqPfeey8OOWifaHijOfWftc8++8S6desK9k2bNi0uv/zyVvedVl3UWu2+IE3LlClTYvLkyfnHa9eujQMPPDA+ESdF5+iS4ciAUnPvfz2Tav9/9+FBqfZPttI+f8hWOf/+OjfZXY3rWuKgj74c++67b9ZD2SkbN26Mhjea40+LD46qfdNLdBvfaYmDBr8cK1asiKqqqvz+PZGOlrJ2X5BWV1fHqlWrCvatWrUqqqqqYq+99opOnTpFp06dttmmurp6u/1uLzrvHF2ic05BCvy3NP/yigjvOe1c2ucP2Srn31/nJq1Vbsvc9tk3F/vsm96YW+L9vquqqgoK0j0lrbqotdr9O8nw4cNj/vz5BfsefvjhGD58eEREdO3aNQYPHlzQpqWlJebPn59vAwAAUM5KtS4qu4R03bp1sWzZsvzj5cuXx5IlS2L//fePAw88MKZMmRKvvfZa3HHHHRERcc4558R3v/vduPjii+Mf//Ef45FHHomf/OQn8Ytf/CLfx+TJk2P8+PExZMiQGDp0aNx4442xfv36mDBhQpsfHwAAUHqak5ZoTvH+JM1Jyy61by91UdkVpP/xH/8Rn/rUp/KPt6zjHD9+fNx2223x+uuvxyuvvJJ//pBDDolf/OIX8bWvfS3+z//5P3HAAQfEv/7rv0Z9fX2+zemnnx5vvvlmTJ06NRoaGqK2tjbmzp271YJeAACAUtBe6qKyvg9pKWlsbIwePXrECXFKWa8HAfa8eSuXpNp/fU1tqv2TrbTPH7JVzr+/zk12V+M7LbHfh/8Ya9euTWWt5J625XN+wwsHpn5Ro+ojXimbedlT2v0aUgAAAEpT2X1lFwAAoK21REvs2irPXe+/I5KQAgAAkAkJKQAAQBHNSRLNKV5+J82+S5mEFAAAgExISAEAAIpoiSRaIr0UM82+S5mEFAAAgExISAEAAIpoiSSaJaR7nIQUAACATEhIAQAAirCGNB0KUoCU1dfUptr/vJVLUu0/7fFDR5b272+ayv29DSgNClIAAIAi3Ic0HdaQAgAAkAkJKQAAQBEtf9nS7L8jkpACAACQCQkpAABAEc0p34c0zb5LmYQUAACATEhIAQAAimhO3t/S7L8jkpACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABTRErlojlyq/XdEElIAAAAyISEFAAAooiV5f0uz/45IQgoAAEAmJKQAAABFNKe8hjTNvkuZhBQAAIBMSEgBylx9TW3WQyBF5f7nO2/lkqyH0GGlfe74s6WjkZCmQ0IKAABAJiSkAAAARbQkuWhJUrwPaYp9lzIJKQAAAJmQkAIAABRhDWk6JKQAAABkQkIKAABQRHNURHOKeV5zaj2XNgkpAAAAmZCQAgAAFJGkfJXdxFV2AQAAoO1ISAEAAIpwld10SEgBAADIhIQUAACgiOakIpqTFK+ym6TWdUmTkAIAAJAJCSkAAEARLZGLlhTzvJbomBGpghQAAKAIFzVKh4IUAKAdmrdySar919fUptp/2tKeH2DnKEgBAACKSP+iRh3zK7suagQAAEAmJKQAAABFvH9Ro/TWeabZdymTkAIAAJAJCSkAAEARLVERzW77ssdJSAEAAMiEhBQAAKAIV9lNh4QUAACATJRlQTpz5sw4+OCDo1u3bjFs2LB4/PHHt9v2hBNOiFwut9U2ZsyYfJuzzjprq+dHjx7dFocCAACUgZaoSH3bVe2hLiq7r+z++Mc/jsmTJ8esWbNi2LBhceONN0Z9fX288MIL0adPn63a33PPPbFx48b847fffjuOPfbY+Id/+IeCdqNHj45bb701/7iysjK9gwAAAGiF9lIXlV1CesMNN8TEiRNjwoQJMXDgwJg1a1Z07949Zs+evc32+++/f1RXV+e3hx9+OLp3777VxFdWVha022+//dricAAAgDLQnORS33ZFe6mLyqog3bhxYyxevDjq6ury+yoqKqKuri4WLly4U33ccsstMXbs2Nh7770L9i9YsCD69OkTRxxxRJx77rnx9ttv77CfpqamaGxsLNgAAABa44M1RlNT01ZtSqkuaq2yKkjfeuutaG5ujr59+xbs79u3bzQ0NBR9/eOPPx7PPvtsfOlLXyrYP3r06Ljjjjti/vz5cc0118Svf/3rOPHEE6O5uXm7fc2YMSN69OiR3/r37797BwUAAJS85r/chzTNLSKif//+BXXGjBkzthpLKdVFrVV2a0hb45ZbbolBgwbF0KFDC/aPHTs2//+DBg2KY445Jg499NBYsGBBjBw5cpt9TZkyJSZPnpx/3NjYqCgFAABaZcWKFVFVVZV/nMYazj1ZF7VWWSWkvXr1ik6dOsWqVasK9q9atSqqq6t3+Nr169fHnDlz4uyzzy76cwYMGBC9evWKZcuWbbdNZWVlVFVVFWwAAED71JJUpL5FxFY1xrYK0lKqi1qrrArSrl27xuDBg2P+/Pn5fS0tLTF//vwYPnz4Dl979913R1NTU5x55plFf86rr74ab7/9dvTr16/VYwYAANiT2lNdVHZf2Z08eXKMHz8+hgwZEkOHDo0bb7wx1q9fHxMmTIiIiHHjxsWHPvShrb5rfcstt8Spp54af/M3f1Owf926dXHFFVfEaaedFtXV1fHSSy/FxRdfHIcddljU19e32XEB2zdv5ZJU+6+vqU21f4D2yHvzjqU9/rTnn6399TrPdPpPdql9e6mLyq4gPf300+PNN9+MqVOnRkNDQ9TW1sbcuXPzC3pfeeWVqKgoPFFeeOGF+Pd///d46KGHtuqvU6dO8fTTT8ftt98ea9asiZqamhg1alRMnz7dvUgBAICS1F7qolySJLtWirNNjY2N0aNHjzghTonOuS5ZDwfaFf8KD+VLisPuKveEsdzHn6bGd1pivw//MdauXVsW12HZ8jn/+08Ojr32SS/Pe3fd5vinjy4um3nZU8pqDSkAAADtR9l9ZRcAAKCttURFtKSY56XZdynrmEcNAABA5iSkAAAARTQnFdGcpHiV3RT7LmUd86gBAADInIQUAACgiJbIRUvkUu2/I5KQAgAAkAkJKQAAQBHWkKajYx41AAAAmZOQAgAAFNEcFdGcYp6XZt+lrGMeNQAAAJmTkAIAABTRkuSiJUnxKrsp9l3KJKQAAABkQkIKAABQREvKa0hbOmhWqCAFWm3eyiWp9l9fU5tq/wCUnrT/bgFKg4IUAACgiJakIlpSvFdomn2Xso551AAAAGROQgoAAFBEc+SiOdK7Em6afZcyCSkAAACZkJACAAAUYQ1pOjrmUQMAAJA5CSkAAEARzZHuOs/m1HoubRJSAAAAMiEhBQAAKMIa0nR0zKMGAAAgcxJSAACAIpqTimhOMcVMs+9S1jGPGgAAgMxJSAEAAIpIIhctKV5lN0mx71ImIQUAACATElIAAIAirCFNR8c8agAAADInIQVarb6mNushACWq3N8f5q1ckvUQKFNpnztp/24597fWkuSiJUlvnWeafZcyCSkAAACZkJACAAAU0RwV0Zxinpdm36WsYx41AAAAmZOQAgAAFGENaTokpAAAAGRCQgoAAFBES1RES4p5Xpp9lzIFKQAAQBHNSS6aU/xabZp9l7KOWYYDAACQOQkpAABAES5qlA4JKQAAAJmQkAIAABSRJBXRkqSX5yUp9l3KOuZRAwAAkDkJKQAAQBHNkYvmSPEquyn2XcokpAAAAGRCQgoAAFBES5LulXBbktS6LmkSUgAAADIhIQUAyta8lUtS7b++pjbV/tMeP7DntKR8ld00+y5lHfOoAQAAyJyEFAAAoIiWyEVLilfCTbPvUiYhBQAAIBNlWZDOnDkzDj744OjWrVsMGzYsHn/88e22ve222yKXyxVs3bp1K2iTJElMnTo1+vXrF3vttVfU1dXFiy++mPZhAAAAZaI5yaW+7ar2UBeVXUH64x//OCZPnhzTpk2LJ598Mo499tior6+PN954Y7uvqaqqitdffz2//elPfyp4/tprr42bbropZs2aFYsWLYq999476uvr47333kv7cAAAAHZZe6mLyq4gveGGG2LixIkxYcKEGDhwYMyaNSu6d+8es2fP3u5rcrlcVFdX57e+ffvmn0uSJG688cb41re+Faecckocc8wxcccdd8TKlSvjvvvua4MjAgAASt2Wq+ymue2K9lIXlVVBunHjxli8eHHU1dXl91VUVERdXV0sXLhwu69bt25dHHTQQdG/f/845ZRT4rnnnss/t3z58mhoaCjos0ePHjFs2LAd9tnU1BSNjY0FGwAAQGt8sMZoamraqk0p1UWtVVYF6VtvvRXNzc0FlXxERN++faOhoWGbrzniiCNi9uzZ8bOf/Sz+7d/+LVpaWmLEiBHx6quvRkTkX7crfUZEzJgxI3r06JHf+vfv35pDAwAASlhL5KIlSXH7y1V2+/fvX1BnzJgxY6uxlFJd1Frt/rYvw4cPj+HDh+cfjxgxIo466qj4/ve/H9OnT9/tfqdMmRKTJ0/OP25sbFSUAgAArbJixYqoqqrKP66srNwj/aZVF7VWWRWkvXr1ik6dOsWqVasK9q9atSqqq6t3qo8uXbrEcccdF8uWLYuIyL9u1apV0a9fv4I+a2trt9tPZWXlHjs5AACA0pakfB/S5C99V1VVFRSk21JKdVFrldVXdrt27RqDBw+O+fPn5/e1tLTE/PnzC6r9HWlubo5nnnkmP8mHHHJIVFdXF/TZ2NgYixYt2uk+AQAA2kp7qovKKiGNiJg8eXKMHz8+hgwZEkOHDo0bb7wx1q9fHxMmTIiIiHHjxsWHPvSh/Hetr7zyyvj4xz8ehx12WKxZsyauu+66+NOf/hRf+tKXIuL9K01dcMEF8e1vfzsOP/zwOOSQQ+Kyyy6LmpqaOPXUU7M6TAAAoIRsWeuZZv+7or3URWVXkJ5++unx5ptvxtSpU6OhoSFqa2tj7ty5+cW3r7zySlRU/Hfw++c//zkmTpwYDQ0Nsd9++8XgwYPj97//fQwcODDf5uKLL47169fHpEmTYs2aNfGJT3wi5s6du9WNYgEAAEpBe6mLckmSJKn13oE0NjZGjx494oQ4JTrnumQ9HADoEOatXJJq//U1tan2n/b4ab/K+dxsfKcl9vvwH2Pt2rVF10qWgi2f8//u4QnRZe+uqf2cTes3xr3/361lMy97SlmtIQUAAKD9KLuv7AIAbJF2SpS2NMcvfW3fyvnbAZuTTRHxx9T6T0uprSFtLySkAAAAZEJCCgAAUERLyvchTbPvUiYhBQAAIBMSUgAAgCKsIU2HhBQAAIBMSEgBAACKkJCmQ0IKAABAJiSkAAAARUhI0yEhBQAAIBMSUgAAgCIkpOmQkAIAAJAJCSkAAEARSUS0RHopZpJaz6VNQgoAAEAmJKQAAABFWEOaDgkpAAAAmZCQAgAAFCEhTYeEFAAAgExISAEAAIqQkKZDQgoAAEAmJKQAAABFSEjTISEFAAAgExJSAACAIpIkF0mKKWaafZcyCSkAAACZkJACAAAU0RK5aIkU15Cm2Hcpk5ACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABThKrvpkJACAACQCQkpAABAEdaQpkNCCgAAQCYkpAAAAEVYQ5oOBSkAAEARScpf2VWQAgDQpuatXJJa3/U1tan1HZHu2Mlemn++je+0xH4fTq17yoyCFAAAoIgkIpIk3f47Ihc1AgAAIBMSUgAAgCJaIhe5SPG2Lyn2XcokpAAAAGRCQgoAAFCE276kQ0IKAABAJiSkAAAARbQkucilmGKmeY/TUiYhBQAAIBMSUgAAgCKSJOX7kHbQG5FKSAEAAMiEhBQAAKAIV9lNh4QUAACATEhIAQAAipCQpkNCCgAAQCYkpAAAAEW4D2k6JKQAAABkoiwT0pkzZ8Z1110XDQ0Nceyxx8bNN98cQ4cO3WbbH/7wh3HHHXfEs88+GxERgwcPju985zsF7c8666y4/fbbC15XX18fc+fOTe8gAIAOr76mNrW+561cklrf7UGacx9h/tujUrwPaXuoi8ouIf3xj38ckydPjmnTpsWTTz4Zxx57bNTX18cbb7yxzfYLFiyIz3/+8/Hoo4/GwoULo3///jFq1Kh47bXXCtqNHj06Xn/99fz2ox/9qC0OBwAAYJe1l7qo7ArSG264ISZOnBgTJkyIgQMHxqxZs6J79+4xe/bsbba/884748tf/nLU1tbGkUceGf/6r/8aLS0tMX/+/IJ2lZWVUV1dnd/222+/tjgcAACgDLyfkOZS3HZtPO2lLiqrgnTjxo2xePHiqKury++rqKiIurq6WLhw4U71sWHDhti0aVPsv//+BfsXLFgQffr0iSOOOCLOPffcePvtt3fYT1NTUzQ2NhZsAAAArfHBGqOpqWmrNqVUF7VWWRWkb731VjQ3N0ffvn0L9vft2zcaGhp2qo9LLrkkampqCv7wRo8eHXfccUfMnz8/rrnmmvj1r38dJ554YjQ3N2+3nxkzZkSPHj3yW//+/XfvoAAAgJKXbjr63/c47d+/f0GdMWPGjK3GUkp1UWuV5UWNdtfVV18dc+bMiQULFkS3bt3y+8eOHZv//0GDBsUxxxwThx56aCxYsCBGjhy5zb6mTJkSkydPzj9ubGxUlAIAAK2yYsWKqKqqyj+urKzc4z9jT9ZFrVVWCWmvXr2iU6dOsWrVqoL9q1atiurq6h2+9vrrr4+rr746HnrooTjmmGN22HbAgAHRq1evWLZs2XbbVFZWRlVVVcEGAAC0T0kbbBGxVY2xrYK0lOqi1iqrgrRr164xePDggoW3WxbiDh8+fLuvu/baa2P69Okxd+7cGDJkSNGf8+qrr8bbb78d/fr12yPjBgAA2FPaU11UVgVpRMTkyZPjhz/8Ydx+++2xdOnSOPfcc2P9+vUxYcKEiIgYN25cTJkyJd/+mmuuicsuuyxmz54dBx98cDQ0NERDQ0OsW7cuIiLWrVsXX//61+Oxxx6Ll19+OebPnx+nnHJKHHbYYVFfX5/JMQIAAKWlrdaQ7qz2UheV3RrS008/Pd58882YOnVqNDQ0RG1tbcydOze/oPeVV16Jior/rrP/5V/+JTZu3Bif/exnC/qZNm1aXH755dGpU6d4+umn4/bbb481a9ZETU1NjBo1KqZPn57K97UBAABaq73URbkk2dU73rAtjY2N0aNHjzghTonOuS5ZDwcA6ODmrVyS9RBKWn1Nbar9m//ta3ynJfb78B9j7dq1ZXEdli2f8wfc/o3o1L1b8RfspuYN78Ufx3+nbOZlTym7r+wCAADQPpTdV3YBAADa3G6s89zV/jsiCSkAAACZkJACAAAUkSTvb2n23xFJSAEAAMiEhBQAAKCI3blX6K723xEpSAEAMpLmrUHSvq1JuXNbFigNClIAAIBikly6V8LtoAmpNaQAAABkQkIKAABQhKvspkNCCgAAQCYkpAAAAMUkf9nS7L8DkpACAACQCQkpAABAEe5Dmg4JKQAAAJmQkAIAAOyMDrrOM00SUgAAADIhIQUAACjCGtJ0SEgBAADIhIQUAACgGPchTYWEFAAAgExISAEAAIrK/WVLs/+OR0EKAJCR+pra1Pqet3JJan0D7CkKUgAAgGKsIU2FNaQAAABkQkIKAABQjIQ0FRJSAAAAMiEhBQAAKCbJvb+l2X8HpCAFAAAoIkne39LsvyPylV0AAAAyISEFAAAoxkWNUiEhBQAAIBMSUgAAgGJc1CgVElIAAAAyISEFAAAoIpe8v6XZf0ckIQUAACATElIAAIBiXGU3FRJSAAAAMiEhBQAAKMZVdlOhIAUAaIfqa2qzHkKrzFu5JOshAG1AQQoAAFCMNaSpsIYUAACATEhIAQAAipGQpkJCCgAAQCYkpAAAAMVISFMhIQUAACATElIAAIBi3Ic0FRJSAAAAMiEhBQAAKCKXvL+l2X9HJCEFAAAgExJSAACAYlxlNxUSUgAAADKxSwXpihUr0hrHLpk5c2YcfPDB0a1btxg2bFg8/vjjO2x/9913x5FHHhndunWLQYMGxYMPPljwfJIkMXXq1OjXr1/stddeUVdXFy+++GKahwAAANAq7aEu2qWC9Mgjj4ypU6fGhg0b0hpPUT/+8Y9j8uTJMW3atHjyySfj2GOPjfr6+njjjTe22f73v/99fP7zn4+zzz47nnrqqTj11FPj1FNPjWeffTbf5tprr42bbropZs2aFYsWLYq999476uvr47333murwwIAANhp7aUuyiVJstPfVv79738fX/va1+LVV1+Nq666Ks4666zUBrY9w4YNi4997GPx3e9+NyIiWlpaon///vGVr3wlLr300q3an3766bF+/fr4+c9/nt/38Y9/PGpra2PWrFmRJEnU1NTEhRdeGBdddFFERKxduzb69u0bt912W4wdO3anxtXY2Bg9evSIE+KU6JzrsgeOFACg45q3cknWQyAlje+0xH4f/mOsXbs2qqqqsh5OUVs+5x90zbejolu31H5Oy3vvxZ8u+dZOz0up1kW7apcS0hEjRsSiRYtixowZcdlll8XgwYPjt7/9bSoD25aNGzfG4sWLo66uLr+voqIi6urqYuHChdt8zcKFCwvaR0TU19fn2y9fvjwaGhoK2vTo0SOGDRu23T4jIpqamqKxsbFgAwAAaI0P1hhNTU1btSmluqi1dusqu+PGjYvPfvazcfXVV8eJJ54Yo0ePjuuuuy4OOeSQPT2+Am+99VY0NzdH3759C/b37ds3nn/++W2+pqGhYZvtGxoa8s9v2be9NtsyY8aMuOKKK7baf+9/PRNV+6Zzraj6mtpU+gUAAIpIcu9vafYfEf379y/YPW3atLj88ssL9pVSXdRaraqcRo0aFV/60pfi3nvvjYEDB8bFF18c69at21NjK2lTpkyJtWvX5rdSueATAABQvlasWFFQZ0yZMiXrIaVqlxLSWbNmxRNPPBFPPPFELF26NCoqKuLoo4+Oc845J4499tiYM2dODBw4MO65554YMmTIHh9sr169olOnTrFq1aqC/atWrYrq6uptvqa6unqH7bf8d9WqVdGvX7+CNrW1tdsdS2VlZVRWVu7OYQAAAOWmje5DWlVVVXQNaSnVRa21SwnpVVddFWvXro1x48bFo48+GmvWrInFixfHzJkzY9KkSfHII4/EOeeck9rFjrp27RqDBw+O+fPn5/e1tLTE/PnzY/jw4dt8zfDhwwvaR0Q8/PDD+faHHHJIVFdXF7RpbGyMRYsWbbdPAACArLSnumiXEtKd+Vrq2WefHZdddtluD6iYyZMnx/jx42PIkCExdOjQuPHGG2P9+vUxYcKEiHh/feuHPvShmDFjRkRE/PM//3Mcf/zx8b/+1/+KMWPGxJw5c+I//uM/4gc/+EFERORyubjgggvi29/+dhx++OFxyCGHxGWXXRY1NTVx6qmnpnYcAABAGWmjhHRntZe6aLcuarQjffr0iUceeWRPd5t3+umnx5tvvhlTp06NhoaGqK2tjblz5+YX377yyitRUfHfwe+IESPirrvuim9961vxjW98Iw4//PC477774uijj863ufjii2P9+vUxadKkWLNmTXziE5+IuXPnRrcUL+sMAACwu9pLXbRL9yFl+7bcn+jP/zXAVXYBAFrJfUjbr3K9D+nBV12V+n1IX/7mN8tmXvaUdConAAAAKGKPf2UXAACg3SmxNaTthYQUAACATEhIAQAAipGQpkJCCgAAQCYkpAAAAEXkkve3NPvviCSkAAAAZEJCCgAAUEySe39Ls/8OSEIKAABAJiSkAAAAxbjKbioUpABA2Zq3ckmq/dfX1KbaP9tX7nOf9rkJ7YWCFAAAoAhX2U2HNaQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQDEpryGVkAIAAEAbkpACAAAUYw1pKiSkAAAAZEJCCgAAUIyENBUSUgAAADIhIQUAACgil/JVdlO9gm8Jk5ACAACQCQUpAAAAmfCVXQAAgGJc1CgVElIAAAAyISEFAAAowkWN0qEg3cP+7sODonOuS9bDKEnzVi7Jegglrb6mNushAB1Q2u/Nab+3ee9sv8r9c4Nzc/s2J5si4o9ZD4MSoSAFAADYGR00xUyTNaQAAABkQkIKAABQjKvspkJCCgAAQCYkpAAAAEW4ym46JKQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQBHWkKZDQgoAAEAmJKQAAADFWEOaCgkpAAAAmZCQAgAAFCMhTYWEFAAAgExISAEAAIpwld10KEhhJ9XX1GY9BIA9znsbpSrtc3PeyiVl3b/fXdoLBSkAAEAx1pCmwhpSAAAAMiEhBQAAKEZCmgoJKQAAAJmQkAIAABThKrvpkJACAACQCQkpAABAMdaQpqKsEtLVq1fHGWecEVVVVdGzZ884++yzY926dTts/5WvfCWOOOKI2GuvveLAAw+Mr371q7F27dqCdrlcbqttzpw5aR8OAABA6kq5jiqrhPSMM86I119/PR5++OHYtGlTTJgwISZNmhR33XXXNtuvXLkyVq5cGddff30MHDgw/vSnP8U555wTK1eujJ/+9KcFbW+99dYYPXp0/nHPnj3TPBQAAKCMlPMa0lKuo8qmIF26dGnMnTs3nnjiiRgyZEhERNx8881x0kknxfXXXx81NTVbveboo4+O//f//l/+8aGHHhpXXXVVnHnmmbF58+bo3Pm/D79nz55RXV2d/oEAAAC0kVKvo8rmK7sLFy6Mnj175icxIqKuri4qKipi0aJFO93P2rVro6qqqmASIyLOO++86NWrVwwdOjRmz54dSdJBv8QNAABsLWmDLQWlXkeVTULa0NAQffr0KdjXuXPn2H///aOhoWGn+njrrbdi+vTpMWnSpIL9V155ZXz605+O7t27x0MPPRRf/vKXY926dfHVr351u301NTVFU1NT/nFjY+MuHA0AAMDWPlhXVFZWRmVl5W73V2p11AdlnpBeeuml21wM+9fb888/3+qf09jYGGPGjImBAwfG5ZdfXvDcZZddFn/7t38bxx13XFxyySVx8cUXx3XXXbfD/mbMmBE9evTIb/3792/1GAEAgBLVRglp//79C+qMGTNmbHM45VpHfVDmCemFF14YZ5111g7bDBgwIKqrq+ONN94o2L958+ZYvXp10e8sv/POOzF69OjYd9994957740uXbrssP2wYcNi+vTp0dTUtN1/jZgyZUpMnjw5/7ixsVFRCgAAtMqKFSuiqqoq/3h79Ui51lEflHlB2rt37+jdu3fRdsOHD481a9bE4sWLY/DgwRER8cgjj0RLS0sMGzZsu69rbGyM+vr6qKysjPvvvz+6detW9GctWbIk9ttvvx1OYmujcwAAoHzk/rKl2X9ERFVVVUFBuj3lWkd9UOYF6c466qijYvTo0TFx4sSYNWtWbNq0Kc4///wYO3Zs/spQr732WowcOTLuuOOOGDp0aDQ2NsaoUaNiw4YN8W//9m/R2NiY/0527969o1OnTvHAAw/EqlWr4uMf/3h069YtHn744fjOd74TF110UZaHCwAA0GqlXkeVTUEaEXHnnXfG+eefHyNHjoyKioo47bTT4qabbso/v2nTpnjhhRdiw4YNERHx5JNP5q8cddhhhxX0tXz58jj44IOjS5cuMXPmzPja174WSZLEYYcdFjfccENMnDix7Q6MsjBv5ZKsh9Aq9TW1WQ8BAEqGvxfZZSleCTfff0pKuY7KJe5vskc0NjZGjx494oQ4JTrndvzd6o6q3Au6cucvXgCgFGxONsWC+Fn+NiKlbsvn/IHnfic6VRb/2uruam56L/7wL98om3nZU8oqIQUAAMhCLnl/S7P/jijz274AAADQMUlIAQAAiinjNaSlTEIKAABAJiSkAAAAO6ODpphpkpACAACQCQkpAABAEa6ymw4JKQAAAJmQkAIAABTjKrupkJACAACQCQkpAABAEdaQpkNCCgAAQCYkpAAAAMVYQ5oKCSkAAACZkJACAAAUYQ1pOhSktJn6mtqsh9Aq81YuyXoIAADQrihIAQAAirGGNBXWkAIAAJAJCSkAAEAxEtJUSEgBAADIhIQUAACgCFfZTYeCFAAAoBhf2U2Fr+wCAACQCQkpAABAEbkkiVySXoyZZt+lTEIKAABAJiSkAAAAxVhDmgoJKQAAAJmQkAIAABThti/pkJACAACQCQkpAABAMdaQpkJCCgAAQCYkpAAAAEVYQ5oOBSntxryVS1Ltv76mNtX+AQCgo1GQAgAAFGMNaSqsIQUAACATElIAAIAirCFNh4QUAACATEhIAQAAirGGNBUSUgAAADIhIQUAANgJHXWdZ5okpAAAAGRCQgoAAFBMkry/pdl/ByQhBQAAIBMSUgAAgCLchzQdElIAAAAyISEFAAAoxn1IUyEhBQAAIBMSUgAAgCJyLe9vafbfEUlIAQAAyISElHajvqY26yEAANBeWUOaCgkpAAAAmZCQAgAAFOE+pOkoq4R09erVccYZZ0RVVVX07Nkzzj777Fi3bt0OX3PCCSdELpcr2M4555yCNq+88kqMGTMmunfvHn369Imvf/3rsXnz5jQPBQAAoE2Uch1VVgnpGWecEa+//no8/PDDsWnTppgwYUJMmjQp7rrrrh2+buLEiXHllVfmH3fv3j3//83NzTFmzJiorq6O3//+9/H666/HuHHjokuXLvGd73wntWMBAADKSJK8v6XZf0pKuY4qm4J06dKlMXfu3HjiiSdiyJAhERFx8803x0knnRTXX3991NTUbPe13bt3j+rq6m0+99BDD8Uf/vCH+NWvfhV9+/aN2tramD59elxyySVx+eWXR9euXVM5HgAAgLSVeh1VNl/ZXbhwYfTs2TM/iRERdXV1UVFREYsWLdrha++8887o1atXHH300TFlypTYsGFDQb+DBg2Kvn375vfV19dHY2NjPPfcc3v+QAAAgLKzZQ1pmlsaSr2OKpuEtKGhIfr06VOwr3PnzrH//vtHQ0PDdl/3hS98IQ466KCoqamJp59+Oi655JJ44YUX4p577sn3+9eTGBH5xzvqt6mpKZqamvKPGxsbd/mYAAAA/toH64rKysqorKzc7f5KrY76oMwL0ksvvTSuueaaHbZZunTpbvc/adKk/P8PGjQo+vXrFyNHjoyXXnopDj300N3ud8aMGXHFFVfs9usBAIAy0kb3Ie3fv3/B7mnTpsXll1++VfNyraM+KPOC9MILL4yzzjprh20GDBgQ1dXV8cYbbxTs37x5c6xevXq732velmHDhkVExLJly+LQQw+N6urqePzxxwvarFq1KiJih/1OmTIlJk+enH/c2Ni41ckDAACwK1asWBFVVVX5x9tLR8u1jvqgzAvS3r17R+/evYu2Gz58eKxZsyYWL14cgwcPjoiIRx55JFpaWvKTszOWLFkSERH9+vXL93vVVVfFG2+8kY+yH3744aiqqoqBAwdut5/WRucAAED5aKv7kFZVVRUUpNtTrnXUB5XNRY2OOuqoGD16dEycODEef/zx+N3vfhfnn39+jB07Nn9lqNdeey2OPPLIfKX+0ksvxfTp02Px4sXx8ssvx/333x/jxo2LT37yk3HMMcdERMSoUaNi4MCB8cUvfjH+8z//M+bNmxff+ta34rzzzlNwAgAAZa3U66iyKUgj3r/K05FHHhkjR46Mk046KT7xiU/ED37wg/zzmzZtihdeeCF/9aeuXbvGr371qxg1alQceeSRceGFF8Zpp50WDzzwQP41nTp1ip///OfRqVOnGD58eJx55pkxbty4gvvtAAAAHdyW+5CmuaWklOuoXJKkeXfXjqOxsTF69OgRJ8Qp0TnXJevhAABASdqcbIoF8bNYu3btTn01NWtbPud//KQro3OXbqn9nM2b3ovHHpxaNvOyp2S+hhQAAKDUtdUa0o6mrL6yCwAAQPshIQWAVpi3ckmq/dfX1KbaP8C2pPne1vhOS+z34dS6T08b3Ye0o5GQAgAAkAkJKQAAQBHWkKZDQgoAAEAmJKQAAADFtCTvb2n23wFJSAEAAMiEhBQAAKAYV9lNhYQUAACATEhIAQAAishFylfZTa/rkiYhBQAAIBMSUgAAgGKS5P0tzf47IAkpAAAAmZCQAgAAFJFLUl5D2jEDUgkpAAAA2ZCQAgAAFOM+pKlQkAIAABSRS5LIpXjhoTT7LmW+sgsAAEAmJKTQQcxbuSS1vutralPrOyLdsUekP34AoB1o+cuWZv8dkIQUAACATEhIAQAAirCGNB0SUgAAADIhIQUAACjGbV9SISEFAAAgExJSAACAYpLk/S3N/jsgCSkAAACZkJACAAAUkUve39LsvyOSkAIAAJAJCSkAAEAx1pCmQkIKAABAJiSkAAAAReRa3t/S7L8jkpACAACQCQkpAABAMdaQpkJCCgAAQCYkpAAAAMUkf9nS7L8DUpDuYff+1zNRtW86wXN9TW0q/VIa5q1ckmr/aZ4/aY8dSpn3ZqA9SvO9bXOyKSL+mFr/lBcFKQAAQBG5JIlcius80+y7lFlDCgAAQCYkpAAAAMW4ym4qJKQAAABkQkIKAABQTBIRLSn33wFJSAEAAMiEhBQAAKAIV9lNh4QUAACATEhIAQAAikki5avsptd1KZOQAgAAkAkJKQAAQDHuQ5oKCSkAAACZkJACAAAU0xIRuZT774AkpAAAAGRCQgoAAFCE+5Cmo6wS0tWrV8cZZ5wRVVVV0bNnzzj77LNj3bp1223/8ssvRy6X2+Z2991359tt6/k5c+a0xSEBAACkqpTrqLJKSM8444x4/fXX4+GHH45NmzbFhAkTYtKkSXHXXXdts33//v3j9ddfL9j3gx/8IK677ro48cQTC/bfeuutMXr06Pzjnj177vHxt9a8lUtS7b++pjbV/tmxtOc/7fMHKE/+bgHYSWV8ld1SrqPKpiBdunRpzJ07N5544okYMmRIRETcfPPNcdJJJ8X1118fNTU1W72mU6dOUV1dXbDv3nvvjc997nOxzz77FOzv2bPnVm0BAADKWanXUWXzld2FCxdGz54985MYEVFXVxcVFRWxaNGinepj8eLFsWTJkjj77LO3eu68886LXr16xdChQ2P27NmRdNDvcAMAANuwJSFNc0tBqddRZZOQNjQ0RJ8+fQr2de7cOfbff/9oaGjYqT5uueWWOOqoo2LEiBEF+6+88sr49Kc/Hd27d4+HHnoovvzlL8e6deviq1/96nb7ampqiqampvzjxsbGXTgaAACArX2wrqisrIzKysrd7q/U6qgPyjwhvfTSS7e7YHbL9vzzz7f657z77rtx1113bbOqv+yyy+Jv//Zv47jjjotLLrkkLr744rjuuut22N+MGTOiR48e+a1///6tHiMAAFCi2igh7d+/f0GdMWPGjG0Op1zrqA/KPCG98MIL46yzztphmwEDBkR1dXW88cYbBfs3b94cq1ev3qnvLP/0pz+NDRs2xLhx44q2HTZsWEyfPj2ampq2+68RU6ZMicmTJ+cfNzY2KkoBAIBWWbFiRVRVVeUfb68eKdc66oMyL0h79+4dvXv3Ltpu+PDhsWbNmli8eHEMHjw4IiIeeeSRaGlpiWHDhhV9/S233BInn3zyTv2sJUuWxH777bfDSWxtdA4AAJSRlojIpdx/RFRVVRUUpNtTrnXUB2VekO6so446KkaPHh0TJ06MWbNmxaZNm+L888+PsWPH5q8M9dprr8XIkSPjjjvuiKFDh+Zfu2zZsvjNb34TDz744Fb9PvDAA7Fq1ar4+Mc/Ht26dYuHH344vvOd78RFF13UZscGAACQhlKvo8qmII2IuPPOO+P888+PkSNHRkVFRZx22mlx00035Z/ftGlTvPDCC7Fhw4aC182ePTsOOOCAGDVq1FZ9dunSJWbOnBlf+9rXIkmSOOyww+KGG26IiRMnpn48AABAecglSeRSvBNHmn2Xch2VS9zfZI9obGyMHj16xJ//a0BU7Zv5taJ2i5uXt2/zVi7Jeggly7lPR5b2e4PfL+CDNiebYkH8LNauXbtTX03N2pbP+XUfnhydO6W3ZG9zc1P86r9uKJt52VPKKiEFAADIRIr3Cs333wGVZ5QHAABA2ZOQAgAAFNOSRORSTDFbJKQAAADQZiSkAAAAxVhDmgoJKQAAAJmQkAIAABSVckIaHTMhVZCSV+73qSz3e92V+/yXM/dhBADIhoIUAACgGGtIU2ENKQAAAJmQkAIAABTTkkSq6zw76H1IFaQAAADFJC3vb2n23wH5yi4AAACZkJACAAAU46JGqZCQAgAAkAkJKQAAQDEuapQKCSkAAACZkJACAAAUYw1pKiSkAAAAZEJCCgAAUEwSKSek6XVdyiSkAAAAZEJCCgAAUIw1pKmQkAIAAJAJCSntxryVS7IeQqvU19RmPYTdVu5zT7bK/fwp59/diPIfP0CbaWmJiJaU++94JKQAAABkQkIKAABQjDWkqZCQAgAAkAkJKQAAQDES0lRISAEAAMiEhBQAAKCYliQiUkwxWySkAAAA0GYkpAAAAEUkSUskSXr3Ck2z71ImIQUAACATElIAAIBikiTddZ6usgsAAABtR0IKAABQTJLyVXYlpAAAANB2JKQAAADFtLRE5FK8Eq6r7AIAAEDbkZACAAAUYw1pKhSke9jffXhQdM51SaXveSuXpNIvpcGfL5SntH9362tqU+0fALKkIAUAACgiaWmJJMU1pIk1pAAAANB2JKQAAADFWEOaCgkpAAAAmZCQAgAAFNOSROQkpHuahBQAAIBMSEgBAACKSZKISPFKuBJSAAAAaDsSUgAAgCKSliSSFNeQJhJSAAAAaDsSUgAAgGKSlkh3DWmKfZewskpIr7rqqhgxYkR07949evbsuVOvSZIkpk6dGv369Yu99tor6urq4sUXXyxos3r16jjjjDOiqqoqevbsGWeffXasW7cuhSMAAABoW6VcR5VVQbpx48b4h3/4hzj33HN3+jXXXntt3HTTTTFr1qxYtGhR7L333lFfXx/vvfdevs0ZZ5wRzz33XDz88MPx85//PH7zm9/EpEmT0jgEAACgDCUtSepbWkq5jsolZbh69rbbbosLLrgg1qxZs8N2SZJETU1NXHjhhXHRRRdFRMTatWujb9++cdttt8XYsWNj6dKlMXDgwHjiiSdiyJAhERExd+7cOOmkk+LVV1+NmpqanRpTY2Nj9OjRI06IU6Jzrkurjm975q1ckkq/QLrqa2qzHkJJ8962Y84foL3ZnGyKBfGzWLt2bVRVVWU9nKLyn/Nzf5fa5/yIv8xLcm+q81KKdVRZJaS7avny5dHQ0BB1dXX5fT169Ihhw4bFwoULIyJi4cKF0bNnz/wkRkTU1dVFRUVFLFq0qM3HDAAAlKCkJf2tRLRlHdWuL2rU0NAQERF9+/Yt2N+3b9/8cw0NDdGnT5+C5zt37hz7779/vs22NDU1RVNTU/7x2rVrIyJic2yKSClzbnyndE5SYOdtTjZlPYSS5r1tx5w/QHuzOd5/Xyu3L2qm+Tk/33+8n8j+tcrKyqisrEzvB29DmnXUB2VekF566aVxzTXX7LDN0qVL48gjj2yjEe2cGTNmxBVXXLHV/n+PB1P7mft9OLWugVT9MesBlDTvbcU4f4D26e23344ePXpkPYyiunbtGtXV1fHvDel9zt9in332if79+xfsmzZtWlx++eVbtS3XOuqDMi9IL7zwwjjrrLN22GbAgAG71Xd1dXVERKxatSr69euX379q1aqora3Nt3njjTcKXrd58+ZYvXp1/vXbMmXKlJg8eXL+8Zo1a+Kggw6KV155pSx+scpRY2Nj9O/fP1asWFEW6w3KlXluG+a5bZjn9JnjtmGe24Z5bhtr166NAw88MPbff/+sh7JTunXrFsuXL4+NGzem/rOSJIlcLlewb3vpaLnWUR+UeUHau3fv6N27dyp9H3LIIVFdXR3z58/PT1xjY2MsWrQof4Wp4cOHx5o1a2Lx4sUxePDgiIh45JFHoqWlJYYNG7bdvrcXnffo0cMbWMqqqqrMcRswz23DPLcN85w+c9w2zHPbMM9to6KifC5n061bt+jWrVvWwyhQrnXUB5XPWRARr7zySixZsiReeeWVaG5ujiVLlsSSJUsK7nVz5JFHxr333hsREblcLi644IL49re/Hffff38888wzMW7cuKipqYlTTz01IiKOOuqoGD16dEycODEef/zx+N3vfhfnn39+jB07dqevDAUAAFCqSrmOyjwh3RVTp06N22+/Pf/4uOOOi4iIRx99NE444YSIiHjhhRfyFxiKiLj44otj/fr1MWnSpFizZk184hOfiLlz5xb8C8edd94Z559/fowcOTIqKiritNNOi5tuuqltDgoAACBFpVxHleV9SEtRU1NTzJgxI6ZMmdLmV8HqKMxx2zDPbcM8tw3znD5z3DbMc9swz23DPPPXFKQAAABkoqzWkAIAANB+KEgBAADIhIIUAACATChId9JVV10VI0aMiO7du0fPnj136jVJksTUqVOjX79+sddee0VdXV28+OKLBW1Wr14dZ5xxRlRVVUXPnj3j7LPPLrj8ckezq/Px8ssvRy6X2+Z2991359tt6/k5c+a0xSGVnN0550444YSt5u+cc84paPPKK6/EmDFjonv37tGnT5/4+te/Hps3b07zUErars7z6tWr4ytf+UocccQRsddee8WBBx4YX/3qVwuudhfhXJ45c2YcfPDB0a1btxg2bFg8/vjjO2x/9913x5FHHhndunWLQYMGxYMPPljw/M68T3dEuzLPP/zhD+N//I//Efvtt1/st99+UVdXt1X7s846a6vzdvTo0WkfRsnblXm+7bbbtprDD94T0fm8tV2Z4239XZfL5WLMmDH5Ns7lrf3mN7+Jz3zmM1FTUxO5XC7uu+++oq9ZsGBBfPSjH43Kyso47LDD4rbbbtuqza6+31PGEnbK1KlTkxtuuCGZPHly0qNHj516zdVXX5306NEjue+++5L//M//TE4++eTkkEMOSd599918m9GjRyfHHnts8thjjyW//e1vk8MOOyz5/Oc/n9JRlL5dnY/Nmzcnr7/+esF2xRVXJPvss0/yzjvv5NtFRHLrrbcWtPvrP4eOZHfOueOPPz6ZOHFiwfytXbs2//zmzZuTo48+Oqmrq0ueeuqp5MEHH0x69eqVTJkyJe3DKVm7Os/PPPNM8vd///fJ/fffnyxbtiyZP39+cvjhhyennXZaQbuOfC7PmTMn6dq1azJ79uzkueeeSyZOnJj07NkzWbVq1Tbb/+53v0s6deqUXHvttckf/vCH5Fvf+lbSpUuX5Jlnnsm32Zn36Y5mV+f5C1/4QjJz5szkqaeeSpYuXZqcddZZSY8ePZJXX30132b8+PHJ6NGjC87b1atXt9UhlaRdnedbb701qaqqKpjDhoaGgjbO50K7Osdvv/12wfw+++yzSadOnZJbb70138a5vLUHH3ww+eY3v5ncc889SUQk99577w7b//GPf0y6d++eTJ48OfnDH/6Q3HzzzUmnTp2SuXPn5tvs6p8d5U1BuotuvfXWnSpIW1pakurq6uS6667L71uzZk1SWVmZ/OhHP0qSJEn+8Ic/JBGRPPHEE/k2v/zlL5NcLpe89tpre3zspW5PzUdtbW3yj//4jwX7duYNsiPY3Tk+/vjjk3/+53/e7vMPPvhgUlFRUfDh6F/+5V+SqqqqpKmpaY+MvZzsqXP5Jz/5SdK1a9dk06ZN+X0d+VweOnRoct555+UfNzc3JzU1NcmMGTO22f5zn/tcMmbMmIJ9w4YNS/7pn/4pSZKde5/uiHZ1nj9o8+bNyb777pvcfvvt+X3jx49PTjnllD091LK2q/Nc7POH83lrrT2X//f//t/Jvvvum6xbty6/z7m8Yzvzd9TFF1+cfOQjHynYd/rppyf19fX5x639s6O8+MpuSpYvXx4NDQ1RV1eX39ejR48YNmxYLFy4MCIiFi5cGD179owhQ4bk29TV1UVFRUUsWrSozcectT0xH4sXL44lS5bE2WefvdVz5513XvTq1SuGDh0as2fPjqQD3vGoNXN85513Rq9eveLoo4+OKVOmxIYNGwr6HTRoUPTt2ze/r76+PhobG+O5557b8wdS4vbU7/batWujqqoqOnfuXLC/I57LGzdujMWLFxe8p1ZUVERdXV3+PfWDFi5cWNA+4v3zckv7nXmf7mh2Z54/aMOGDbFp06bYf//9C/YvWLAg+vTpE0cccUSce+658fbbb+/RsZeT3Z3ndevWxUEHHRT9+/ePU045peD91flcaE+cy7fcckuMHTs29t5774L9zuXWKfbevCf+7CgvnYs3YXc0NDRERBR8QN/yeMtzDQ0N0adPn4LnO3fuHPvvv3++TUeyJ+bjlltuiaOOOipGjBhRsP/KK6+MT3/609G9e/d46KGH4stf/nKsW7cuvvrVr+6x8ZeD3Z3jL3zhC3HQQQdFTU1NPP3003HJJZfECy+8EPfcc0++322d61ue62j2xLn81ltvxfTp02PSpEkF+zvqufzWW29Fc3PzNs+z559/fpuv2d55+dfvwVv2ba9NR7M78/xBl1xySdTU1BR8mBw9enT8/d//fRxyyCHx0ksvxTe+8Y048cQTY+HChdGpU6c9egzlYHfm+YgjjojZs2fHMcccE2vXro3rr78+RowYEc8991wccMABzucPaO25/Pjjj8ezzz4bt9xyS8F+53Lrbe+9ubGxMd59993485//3Or3IcpLhy5IL7300rjmmmt22Gbp0qVx5JFHttGI2qednefWevfdd+Ouu+6Kyy67bKvn/nrfcccdF+vXr4/rrruu3XyIT3uO/7ooGjRoUPTr1y9GjhwZL730Uhx66KG73W+5aatzubGxMcaMGRMDBw6Myy+/vOC59n4uU96uvvrqmDNnTixYsKDggjtjx47N//+gQYPimGOOiUMPPTQWLFgQI0eOzGKoZWf48OExfPjw/OMRI0bEUUcdFd///vdj+vTpGY6sfbrlllti0KBBMXTo0IL9zmXY8zp0QXrhhRfGWWedtcM2AwYM2K2+q6urIyJi1apV0a9fv/z+VatWRW1tbb7NG2+8UfC6zZs3x+rVq/Ovbw92dp5bOx8//elPY8OGDTFu3LiibYcNGxbTp0+PpqamqKysLNq+1LXVHG8xbNiwiIhYtmxZHHrooVFdXb3V1e9WrVoVEeFc/oudned33nknRo8eHfvuu2/ce++90aVLlx22b2/n8vb06tUrOnXqlD+vtli1atV257S6unqH7Xfmfbqj2Z153uL666+Pq6++On71q1/FMcccs8O2AwYMiF69esWyZcs65If41szzFl26dInjjjsuli1bFhHO5w9qzRyvX78+5syZE1deeWXRn9PRz+Xdsb335qqqqthrr72iU6dOrf79oLx06DWkvXv3jiOPPHKHW9euXXer70MOOSSqq6tj/vz5+X2NjY2xaNGi/L9wDh8+PNasWROLFy/Ot3nkkUeipaUl/4G/PdjZeW7tfNxyyy1x8sknR+/evYu2XbJkSey3337t5gN8W83xFkuWLImIyH/oGT58eDzzzDMFRdjDDz8cVVVVMXDgwD1zkCUg7XlubGyMUaNGRdeuXeP+++/f6pYO29LezuXt6dq1awwePLjgPbWlpSXmz59fkBr9teHDhxe0j3j/vNzSfmfepzua3ZnniIhrr702pk+fHnPnzi1YO709r776arz99tsFhVNHsrvz/Neam5vjmWeeyc+h87lQa+b47rvvjqampjjzzDOL/pyOfi7vjmLvzXvi94Myk/VVlcrFn/70p+Spp57K31LkqaeeSp566qmCW4scccQRyT333JN/fPXVVyc9e/ZMfvaznyVPP/10csopp2zzti/HHXdcsmjRouTf//3fk8MPP7zD3/ZlR/Px6quvJkcccUSyaNGigte9+OKLSS6XS375y19u1ef999+f/PCHP0yeeeaZ5MUXX0y+973vJd27d0+mTp2a+vGUol2d42XLliVXXnll8h//8R/J8uXLk5/97GfJgAEDkk9+8pP512y57cuoUaOSJUuWJHPnzk169+7d4W/7sivzvHbt2mTYsGHJoEGDkmXLlhXcUmDz5s1JkjiX58yZk1RWVia33XZb8oc//CGZNGlS0rNnz/zVnb/4xS8ml156ab797373u6Rz587J9ddfnyxdujSZNm3aNm/7Uux9uqPZ1Xm++uqrk65duyY//elPC87bLX8/vvPOO8lFF12ULFy4MFm+fHnyq1/9KvnoRz+aHH744cl7772XyTGWgl2d5yuuuCKZN29e8tJLLyWLFy9Oxo4dm3Tr1i157rnn8m2cz4V2dY63+MQnPpGcfvrpW+13Lm/bO++8k/9cHBHJDTfckDz11FPJn/70pyRJkuTSSy9NvvjFL+bbb7nty9e//vVk6dKlycyZM7d525cd/dnRvihId9L48eOTiNhqe/TRR/Nt4i/3B9yipaUlueyyy5K+ffsmlZWVyciRI5MXXnihoN+33347+fznP5/ss88+SVVVVTJhwoSCIrejKTYfy5cv32rekyRJpkyZkvTv3z9pbm7eqs9f/vKXSW1tbbLPPvske++9d3Lssccms2bN2mbbjmBX5/iVV15JPvnJTyb7779/UllZmRx22GHJ17/+9YL7kCZJkrz88svJiSeemOy1115Jr169kgsvvLDgdiUdza7O86OPPrrN95iISJYvX54kiXM5SZLk5ptvTg488MCka9euydChQ5PHHnss/9zxxx+fjB8/vqD9T37yk+TDH/5w0rVr1+QjH/lI8otf/KLg+Z15n+6IdmWeDzrooG2et9OmTUuSJEk2bNiQjBo1Kundu3fSpUuX5KCDDkomTpzog2Wya/N8wQUX5Nv27ds3Oemkk5Inn3yyoD/n89Z29T3j+eefTyIieeihh7bqy7m8bdv7+2vL3I4fPz45/vjjt3pNbW1t0rVr12TAgAEFn5+32NGfHe1LLkk6wP0CAAAAKDkdeg0pAAAA2VGQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJAC0K786Ec/ir322itef/31/L4JEybEMcccE2vXrs1wZADAB+WSJEmyHgQA7ClJkkRtbW188pOfjJtvvjmmTZsWs2fPjsceeyw+9KEPZT08AOCvdM56AACwJ+Vyubjqqqvis5/9bFRXV8fNN98cv/3tbxWjAFCCJKQAtEsf/ehH47nnnouHHnoojj/++KyHAwBsgzWkALQ7c+fOjeeffz6am5ujb9++WQ8HANgOCSkA7cqTTz4ZJ5xwQnz/+9+P2267LaqqquLuu+/OelgAwDZYQwpAu/Hyyy/HmDFj4hvf+EZ8/vOfjwEDBsTw4cPjySefjI9+9KNZDw8A+AAJKQDtwurVq2PEiBFxwgknxKxZs/L7x4wZE83NzTF37twMRwcAbIuCFAAAgEy4qBEAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJAJBSkAAACZUJACAACQCQUpAAAAmVCQAgAAkAkFKQAAAJlQkAIAAJCJ/x8/zMgsyu+x4gAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJOCAYAAACgF8qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMEElEQVR4nO3df5xVdb0v/vcMPwZRB/TwY5jEH6j5I9ExiAlONy3my6Dc1HvsJKWBHIOjaR3DUqkElQx/Xa9Xo0N1/XlPRtlV0zLQUKpTiIZy/BF6xDBRnFEhGAEdYGZ9/zD2acuPzTCsWXvPPJ+Px3roXvuzP/NZn1mzZ9689metsiRJkgAAAIAOVp71AAAAAOiaFKQAAABkQkEKAABAJhSkAAAAZEJBCgAAQCYUpAAAAGRCQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCgAAQCYUpACUjDvuuCN69+4dGzduzO3r379/lJWV7XT753/+54J9f+Mb34ghQ4akOXwA4H3KkiRJsh4EAOyK008/PTZt2hQPPPBARERs2bIl5s6du922TU1N8dWvfjWam5vj5z//eZx00kk77fuxxx6LkSNHxrPPPhsf+tCH9vjYAYBtdc96AACwK5qbm+Ohhx6KG264Ibeve/fucdZZZ2237dixY+Odd96J7373uwWL0YiI2traGDhwYDzwwAMKUgDoID6yC0BJePTRR2PDhg3xqU99aqftWlpa4nOf+1wsXLgwLr/88jjvvPN2qf+ysrL47//9v+fSVwAgfQpSAErCAw88EB/5yEeiqqpqp+3OO++8uOeee+L888+PGTNmtOlrnHLKKfHYY4/Fm2++2Z6hAgC7SEEKQEl44IEHCqaj3/jGN+IHP/hBfOYzn4mbbrqpzV+jrq4uKioq4sEHH9zdYQIAbaAgBaDoPfXUU7Fy5co45ZRTdtjmpptuim9/+9tRV1cX//f//t8oL2/7r7jevXvH6NGjfWwXADqIghSAovfrX/86+vbtG8cee+x2n//Rj34UF154YQwfPjzuvffe6Nmz5zZt3nzzzRg3blzsvffeccQRR8SCBQu229eJJ54YCxcu3JPDBwB2QEEKQNEbNmxYrF27NpYvX77Nc/Pnz4+JEyfG4YcfHg8++GDss88+2+3j/PPPj6qqqnjzzTfjuuuui8985jOxZs2abdo9/vjjMXz48D1+DADAthSkABS9UaNGRb9+/eL+++/P27948eI4/fTTY8CAAfHQQw9F//79t/v69evXx3333RdXXHFF9O7dO0455ZQYOnRo/OxnP8trt3nz5pg3b17BtaoAwJ6hIAWg6HXr1i1OPvnkvLWdy5Yti3HjxkXPnj1j/vz5cdBBB+3w9S+++GLss88+ccABB+T2DR06NJ577rm8dr/+9a+jqalJQQoAHaR71gMAgF1xyimnxPjx4+Mvf/lLlJWVRX19faxevTq++MUvxlNPPRVPPfXUNq8ZMGBAjBkzJtavXx+VlZV5z1VWVsbq1avz9t1///1x3HHHxYEHHpjqsQAA71GQAlASxowZE+Xl5fHLX/4y+vXrFytXroyIiO9+97vx3e9+d7uvmTBhQowZMyb22WefaGpqynuuqalpm/WmDzzwQJx11lnpHAAAsA0FKQAlYd99941PfOITcf/998fcuXMjSZJdfu3hhx8e69evj9deey0+8IEPRETEs88+GxMmTMi1eeaZZ+Lll1/2cV0A6EDWkAJQMk455ZSYN29ebN68uU2v22effeLUU0+NGTNmxDvvvBM///nP4+mnn45TTz011+b++++Pqqqq+MhHPrKnhw0A7EBZ0pZ/YgaADL377rvx6quvxsEHHxzdu7ftQz5vvvlmTJw4MRYuXBgHHHBAfPe73426urrc842NjdHS0hLV1dV7etgAwA4oSAEAAMhEyX1k9ze/+U186lOfiurq6igrK4v77ruv4GsWLlwYH/7wh6OioiIOO+ywuP3227dpM3v27Dj44IOjV69eUVtbG48//vieHzwAAMAe0FnqopIrSDds2BDHHXdczJ49e5far1ixIsaNGxef+MQnYunSpXHhhRfGF77whZg/f36uzY9//OOYOnVqzJgxI5588sk47rjjor6+Pt544420DgMAAGC3dZa6qKQ/sltWVhb33ntvnHbaaTtsc8kll8QvfvGLePbZZ3P7xo8fH2vXro158+ZFRERtbW185CMfie985zsREdHa2hqDBw+OL33pS3HppZemegwAAADtUcp1Uae/7cuiRYvyLloREVFfXx8XXnhhRERs2rQplixZEtOmTcs9X15eHnV1dbFo0aId9tvc3BzNzc25x62trbFmzZr4u7/7uygrK9uzBwEAAJ1EkiTx9ttvR3V1dZSXl8YHNt99993YtGlT6l8nSZJtaomKioqoqKhod99p1UXt1ekL0oaGhhg4cGDevoEDB0ZTU1O888478Ze//CVaWlq22+b555/fYb+zZs2KK664IpUxAwBAZ7dy5co44IADsh5GQe+++24cctA+0fBGS+pfa5999on169fn7ZsxY0Zcfvnl7e47rbqovTp9QZqWadOmxdSpU3OP161bFwceeGB8LE6O7tEjw5F1Xff+5zOp9v8/Pjg01f6B0uS9h/ZI+/xhx/xs7Vya52bT+tY46MMvx7777pva19iTNm3aFA1vtMSflxwclfuml+g2vd0aBw17OVauXBmVlZW5/XsiHS1mnb4graqqisbGxrx9jY2NUVlZGXvttVd069YtunXrtt02VVVVO+x3R9F59+gR3csUpFlI8w0iInxfge3y3kN7pH3+sGN+tnauI87NUlvmts++ZbHPvumNuTXe67uysjKvIN1T0qqL2qvTvwuOHDkyFixYkLfv4YcfjpEjR0ZERM+ePWPYsGF5bVpbW2PBggW5NgAAAKWsWOuikktI169fH8uXL889XrFiRSxdujT233//OPDAA2PatGnx2muvxZ133hkREeeee2585zvfiYsvvjj+6Z/+KR555JH4yU9+Er/4xS9yfUydOjUmTpwYw4cPjxEjRsSNN94YGzZsiEmTJnX48QEAAMWnJWmNlhTvT9KStLapfWepi0quIP3DH/4Qn/jEJ3KPt67jnDhxYtx+++3x+uuvxyuvvJJ7/pBDDolf/OIX8ZWvfCX+9//+33HAAQfE//k//yfq6+tzbc4444x48803Y/r06dHQ0BA1NTUxb968bRb0AgAAFIPOUheV9H1Ii0lTU1P06dMnToxTrUnIyPxVS1Ptv766JtX+gdLkvYf2SPv8Ycf8bO1cmudm09utsd8H/xTr1q1LZa3knrb17/yGFw5M/aJGVUe8UjLzsqd0+jWkAAAAFKeS+8guAABAR2uN1mjbKs+2998VSUgBAADIhIQUAACggJYkiZYUL7+TZt/FTEIKAABAJiSkAAAABbRGEq2RXoqZZt/FTEIKAABAJiSkAAAABbRGEi0S0j1OQgoAAEAmJKQAAAAFWEOaDgUpnUZ9dU2q/c9ftTTV/ktZ2nMPxcz5D3RGab63bUk2R8SfUuuf0qIgBQAAKMB9SNNhDSkAAACZkJACAAAU0PrXLc3+uyIJKQAAAJmQkAIAABTQkvJ9SNPsu5hJSAEAAMiEhBQAAKCAluS9Lc3+uyIJKQAAAJmQkAIAABTgKrvpkJACAACQCQkpAABAAa1RFi1Rlmr/XZGEFAAAgExISAEAAApoTd7b0uy/K5KQAgAAkAkJKQAAQAEtKa8hTbPvYiYhBQAAIBMSUqDd5q9ammr/9dU1qfYPAFCIhDQdElIAAAAyISEFAAAooDUpi9YkxfuQpth3MZOQAgAAkAkJKQAAQAHWkKZDQgoAAEAmJKQAAAAFtER5tKSY57Wk1nNxk5ACAACQCQkpAABAAUnKV9lNXGUXAAAAOo6EFAAAoABX2U2HhBQAAIBMSEgBAAAKaEnKoyVJ8Sq7SWpdFzUJKQAAAJmQkAIAABTQGmXRmmKe1xpdMyJVkAIAABTgokbpUJACAOzA/FVLsx4CKUn7e1tfXZNq/9BZKEgBAAAKSP+iRl3zI7suagQAAEAmJKQAAAAFvHdRo/TWeabZdzGTkAIAAJAJCSkAAEABrVEeLW77ssdJSAEAAMiEhBQAAKAAV9lNh4QUAACATJRkQTp79uw4+OCDo1evXlFbWxuPP/74DtueeOKJUVZWts02bty4XJuzzz57m+fHjh3bEYcCAACUgNYoT31rq85QF5XcR3Z//OMfx9SpU2POnDlRW1sbN954Y9TX18cLL7wQAwYM2Kb9PffcE5s2bco9Xr16dRx33HHxj//4j3ntxo4dG7fddlvucUVFRXoHAQAA0A6dpS4quYT0hhtuiMmTJ8ekSZPi6KOPjjlz5kTv3r3j1ltv3W77/fffP6qqqnLbww8/HL17995m4isqKvLa7bfffh1xOAAAQAloScpS39qis9RFJVWQbtq0KZYsWRJ1dXW5feXl5VFXVxeLFi3apT5uueWWGD9+fOy99955+xcuXBgDBgyII444Is4777xYvXr1Tvtpbm6OpqamvA0AAKA93l9jNDc3b9OmmOqi9iqpgvStt96KlpaWGDhwYN7+gQMHRkNDQ8HXP/744/Hss8/GF77whbz9Y8eOjTvvvDMWLFgQ11xzTfz617+Ok046KVpaWnbY16xZs6JPnz65bfDgwbt3UAAAQNFr+et9SNPcIiIGDx6cV2fMmjVrm7EUU13UXiW3hrQ9brnllhg6dGiMGDEib//48eNz/z906NA49thj49BDD42FCxfG6NGjt9vXtGnTYurUqbnHTU1NilIAAKBdVq5cGZWVlbnHaazh3JN1UXuVVELar1+/6NatWzQ2Nubtb2xsjKqqqp2+dsOGDTF37tw455xzCn6dIUOGRL9+/WL58uU7bFNRURGVlZV5GwAA0Dm1JuWpbxGxTY2xvYK0mOqi9iqpgrRnz54xbNiwWLBgQW5fa2trLFiwIEaOHLnT1959993R3NwcZ511VsGv8+qrr8bq1atj0KBB7R4zAADAntSZ6qKS+8ju1KlTY+LEiTF8+PAYMWJE3HjjjbFhw4aYNGlSRERMmDAhPvCBD2zzWetbbrklTjvttPi7v/u7vP3r16+PK664Ik4//fSoqqqKl156KS6++OI47LDDor6+vsOOa1fMX7U06yEA0Mn43QLpKPWfrfrqmqyHUHT+dp1nOv0nbWrfWeqikitIzzjjjHjzzTdj+vTp0dDQEDU1NTFv3rzcgt5XXnklysvzT5QXXngh/v3f/z0eeuihbfrr1q1bPP3003HHHXfE2rVro7q6OsaMGRMzZ850L1IAAKAodZa6qCxJkraV4mxXU1NT9OnTJ06MU6N7WY9Uvkap/0sb7C7/Sgvp8bsF2J40f/duSTbHwvhZrFu3riSuw7L17/zvPTks9tonvTzvnfVb4p8/vKRk5mVPKak1pAAAAHQeJfeRXQAAgI7WGuXRmmKel2bfxaxrHjUAAACZk5ACAAAU0JKUR0uS4lV2U+y7mHXNowYAACBzElIAAIACWqMsWqMs1f67IgkpAAAAmZCQAgAAFGANaTq65lEDAACQOQkpAABAAS1RHi0p5nlp9l3MuuZRAwAAkDkJKQAAQAGtSVm0JileZTfFvouZhBQAAIBMSEgBAAAKaE15DWlrF80KFaR72L3/+UxU7ts1TyZg++avWpr1EKDTqq+uyXoI7eL9gWKV5rnZ9HZr7PfB1LqnxChIAQAACmhNyqM1xXuFptl3MeuaRw0AAEDmJKQAAAAFtERZtER6V8JNs+9iJiEFAAAgExJSAACAAqwhTUfXPGoAAAAyJyEFAAAooCXSXefZklrPxU1CCgAAQCYkpAAAAAVYQ5qOrnnUAAAAZE5CCgAAUEBLUh4tKaaYafZdzLrmUQMAAJA5CSkAAEABSZRFa4pX2U1S7LuYSUgBAADIhIQUAACgAGtI09E1jxoAAIDMSUjpMPXVNVkPAbZr/qqlWQ8BMuO9GWDXtCZl0Zqkt84zzb6LmYQUAACATEhIAQAACmiJ8mhJMc9Ls+9i1jWPGgAAgMxJSAEAAAqwhjQdElIAAAAyISEFAAAooDXKozXFPC/NvouZghQAAKCAlqQsWlL8WG2afRezrlmGAwAAkDkJKQAAQAEuapQOCSkAAACZkJACAAAUkCTl0Zqkl+clKfZdzLrmUQMAAJA5CSkAAEABLVEWLZHiVXZT7LuYSUgBAADIhIQUAACggNYk3SvhtiapdV3UJKQAAABkQkJKTn11TdZDgEykfe7PX7U01f4BgPS1pnyV3TT7LmZd86gBAADInIQUAACggNYoi9YUr4SbZt/FTEIKAABAJkqyIJ09e3YcfPDB0atXr6itrY3HH398h21vv/32KCsry9t69eqV1yZJkpg+fXoMGjQo9tprr6irq4sXX3wx7cMAAABKREtSlvrWVp2hLiq5gvTHP/5xTJ06NWbMmBFPPvlkHHfccVFfXx9vvPHGDl9TWVkZr7/+em7785//nPf8tddeGzfddFPMmTMnFi9eHHvvvXfU19fHu+++m/bhAAAAtFlnqYtKriC94YYbYvLkyTFp0qQ4+uijY86cOdG7d++49dZbd/iasrKyqKqqym0DBw7MPZckSdx4443xzW9+M0499dQ49thj484774xVq1bFfffd1wFHBAAAFLutV9lNc2uLzlIXlVRBumnTpliyZEnU1dXl9pWXl0ddXV0sWrRoh69bv359HHTQQTF48OA49dRT47nnnss9t2LFimhoaMjrs0+fPlFbW7vTPpubm6OpqSlvAwAAaI/31xjNzc3btCmmuqi9Sqogfeutt6KlpSWvko+IGDhwYDQ0NGz3NUcccUTceuut8bOf/Sz+7d/+LVpbW2PUqFHx6quvRkTkXteWPiMiZs2aFX369MltgwcPbs+hAQAARaw1yqI1SXH761V2Bw8enFdnzJo1a5uxFFNd1F6d/rYvI0eOjJEjR+Yejxo1Ko466qj43ve+FzNnztztfqdNmxZTp07NPW5qalKUAgAA7bJy5cqorKzMPa6oqNgj/aZVF7VXSRWk/fr1i27dukVjY2Pe/sbGxqiqqtqlPnr06BHHH398LF++PCIi97rGxsYYNGhQXp81NTU77KeiomKPnRwAAEBxS1K+D2ny174rKyvzCtLtKaa6qL1K6iO7PXv2jGHDhsWCBQty+1pbW2PBggV51f7OtLS0xDPPPJOb5EMOOSSqqqry+mxqaorFixfvcp8AAAAdpTPVRSWVkEZETJ06NSZOnBjDhw+PESNGxI033hgbNmyISZMmRUTEhAkT4gMf+EDus9ZXXnllfPSjH43DDjss1q5dG9ddd138+c9/ji984QsR8d6Vpi688ML41re+FYcffngccsghcdlll0V1dXWcdtppWR0mAABQRLau9Uyz/7boLHVRyRWkZ5xxRrz55psxffr0aGhoiJqampg3b15u8e0rr7wS5eX/Ffz+5S9/icmTJ0dDQ0Pst99+MWzYsPj9738fRx99dK7NxRdfHBs2bIgpU6bE2rVr42Mf+1jMmzdvmxvFAgAAFIPOUheVJUmSpNZ7F9LU1BR9+vSJv/znkKjct6Q+CZ1TX12T9RCgU5q/amnWQ4Ad8t6fLe8PdEVNb7fGfh/8U6xbt67gWslisPXv/P/x8KTosXfP1L7O5g2b4t7/77aSmZc9pTQrJwAAAEpeyX1kF6DUlHoCJcEBgOJbQ9pZSEgBAADIhIQUAACggNaU70OaZt/FTEIKAABAJiSkAAAABVhDmg4JKQAAAJmQkAIAABQgIU2HhBQAAIBMSEgBAAAKkJCmQ0IKAABAJiSkAAAABUhI0yEhBQAAIBMSUgAAgAKSiGiN9FLMJLWei5uEFAAAgExISAEAAAqwhjQdElIAAAAyISEFAAAoQEKaDgVpCamvrsl6CEAX5L2Hrmz+qqVZD4GUeG/bOec+HUVBCgAAUICENB3WkAIAAJAJCSkAAEABEtJ0SEgBAADIhIQUAACggCQpiyTFFDPNvouZhBQAAIBMSEgBAAAKaI2yaI0U15Cm2Hcxk5ACAACQCQkpAABAAa6ymw4JKQAAAJmQkAIAABTgKrvpkJACAACQCQkpAABAAdaQpkNCCgAAQCYkpAAAAAVYQ5oOBSkAAEABScof2VWQQombv2ppqv3XV9ek2j8AAHQ1ClIAAIACkohIknT774pc1AgAAIBMSEgBAAAKaI2yKIsUb/uSYt/FTEIKAABAJiSkAAAABbjtSzokpAAAAGRCQgoAAFBAa1IWZSmmmGne47SYSUgBAADIhIQUAACggCRJ+T6kXfRGpBJSAAAAMiEhBQAAKMBVdtMhIQUAACATElIAAIACJKTpkJACAACQCQkpAABAAe5Dmg4JKQAAAJkoyYR09uzZcd1110VDQ0Mcd9xxcfPNN8eIESO22/YHP/hB3HnnnfHss89GRMSwYcPi29/+dl77s88+O+64446819XX18e8efPSO4jdMH/V0qyHAADQKfi7irYqxvuQdoa6qOQS0h//+McxderUmDFjRjz55JNx3HHHRX19fbzxxhvbbb9w4cL47Gc/G48++mgsWrQoBg8eHGPGjInXXnstr93YsWPj9ddfz20/+tGPOuJwAAAA2qyz1EVlSZJmnb/n1dbWxkc+8pH4zne+ExERra2tMXjw4PjSl74Ul156acHXt7S0xH777Rff+c53YsKECRHx3r8ErF27Nu67777dHldTU1P06dMn/vKfQ6Jy35Kr89kF9dU1WQ8BgA4mRYM9r+nt1tjvg3+KdevWRWVlZdbDKWjr3/mH/9ul0a13r9S+TsvGd+PFs67e5Xkp1rqorUqqctq0aVMsWbIk6urqcvvKy8ujrq4uFi1atEt9bNy4MTZv3hz7779/3v6FCxfGgAED4ogjjojzzjsvVq9evdN+mpubo6mpKW8DAABoj/fXGM3Nzdu0Kaa6qL1KqiB96623oqWlJQYOHJi3f+DAgdHQ0LBLfVxyySVRXV2d980bO3Zs3HnnnbFgwYK45ppr4te//nWcdNJJ0dLSssN+Zs2aFX369MltgwcP3r2DAgAAit7W+5CmuUVEDB48OK/OmDVr1jZjKaa6qL1K8qJGu+vqq6+OuXPnxsKFC6NXr/+K28ePH5/7/6FDh8axxx4bhx56aCxcuDBGjx693b6mTZsWU6dOzT1uampSlAIAAO2ycuXKvI/sVlRU7PGvsSfrovYqqYS0X79+0a1bt2hsbMzb39jYGFVVVTt97fXXXx9XX311PPTQQ3HsscfutO2QIUOiX79+sXz58h22qaioiMrKyrwNAADonJIO2CJimxpjewVpMdVF7VVSBWnPnj1j2LBhsWDBgty+1tbWWLBgQYwcOXKHr7v22mtj5syZMW/evBg+fHjBr/Pqq6/G6tWrY9CgQXtk3AAAAHtKZ6qLSqogjYiYOnVq/OAHP4g77rgjli1bFuedd15s2LAhJk2aFBEREyZMiGnTpuXaX3PNNXHZZZfFrbfeGgcffHA0NDREQ0NDrF+/PiIi1q9fH1/72tfisccei5dffjkWLFgQp556ahx22GFRX1+fyTECAADFpaPWkO6qzlIXldwa0jPOOCPefPPNmD59ejQ0NERNTU3Mmzcvt6D3lVdeifLy/6qz//Vf/zU2bdoUn/70p/P6mTFjRlx++eXRrVu3ePrpp+OOO+6ItWvXRnV1dYwZMyZmzpyZyue1AQAA2quz1EUldx/SYuU+pJ2f+5ACdD3uQwp7Xqneh3TIHV9P/T6kf5r47ZKZlz1F5QQAAEAmSu4juwAAAB1uN9Z5trX/rkhCCgAAQCYkpAAAAAUkyXtbmv13RRJSAAAAMiEhBQAAKGB37hXa1v67IgkpAAAAmZCQAgAAFJKUpXslXAkpAAAAdBwJKQAAQAGuspsOCSkAAACZkJACAAAUkvx1S7P/LkhCCgAAQCYkpAAAAAW4D2k6JKQAAABkQkIKAACwK7roOs80SUgBAADIhIQUAACgAGtI0yEhBQAAIBMSUgAAgELchzQVElIAAAAyISEFAAAoqOyvW5r9dz0KUjqN+uqarIcAdEHzVy3NeghdWtrv/aX8u8W5CZQCBSkAAEAh1pCmwhpSAAAAMiEhBQAAKERCmgoJKQAAAJmQkAIAABSSlL23pdl/F6QgBQAAKCBJ3tvS7L8r8pFdAAAAMiEhBQAAKMRFjVIhIQUAACATElIAAIBCXNQoFRJSAAAAMiEhBQAAKKAseW9Ls/+uSEIKAABAJiSkAAAAhbjKbiokpAAAAGRCQgoAAFCIq+ymQkFKTn11TdZDAKCT8bsFgJ1RkAIAABRiDWkqrCEFAAAgExJSAACAQiSkqZCQAgAAkAkJKQAAQCES0lRISAEAAMiEhBQAAKAQ9yFNhYQUAACATEhIAQAACihL3tvS7L8rkpACAACQCQkpAABAIa6ymwoJKQAAAJloU0G6cuXKtMbRJrNnz46DDz44evXqFbW1tfH444/vtP3dd98dRx55ZPTq1SuGDh0aDz74YN7zSZLE9OnTY9CgQbHXXntFXV1dvPjii2keAgAAQLt0hrqoTQXpkUceGdOnT4+NGzemNZ6CfvzjH8fUqVNjxowZ8eSTT8Zxxx0X9fX18cYbb2y3/e9///v47Gc/G+ecc0489dRTcdppp8Vpp50Wzz77bK7NtddeGzfddFPMmTMnFi9eHHvvvXfU19fHu+++21GHBQAAsMs6S11UliTJLn9a+fe//3185StfiVdffTWuuuqqOPvss1Mb2I7U1tbGRz7ykfjOd74TERGtra0xePDg+NKXvhSXXnrpNu3POOOM2LBhQ/z85z/P7fvoRz8aNTU1MWfOnEiSJKqrq+Oiiy6Kr371qxERsW7duhg4cGDcfvvtMX78+F0aV1NTU/Tp0yf+8p9DonLf0vwkdH11TdZDACg581ctzXoIRc3vluw4NylWTW+3xn4f/FOsW7cuKisrsx5OQVv/zj/omm9Fea9eqX2d1nffjT9f8s1dnpdirYvaqk2V06hRo2Lx4sUxa9asuOyyy2LYsGHx29/+NpWBbc+mTZtiyZIlUVdXl9tXXl4edXV1sWjRou2+ZtGiRXntIyLq6+tz7VesWBENDQ15bfr06RO1tbU77DMiorm5OZqamvI2AACA9nh/jdHc3LxNm2Kqi9prt66yO2HChPj0pz8dV199dZx00kkxduzYuO666+KQQw7Z0+PL89Zbb0VLS0sMHDgwb//AgQPj+eef3+5rGhoattu+oaEh9/zWfTtqsz2zZs2KK664os3H0B7+lRmg7aREwPb4uyo7W5LNEfGnrIfRdknZe1ua/UfE4MGD83bPmDEjLr/88rx9xVQXtVe7Pls6ZsyY+MIXvhD33ntvHH300XHxxRfH+vXr99TYitq0adNi3bp1ua1YLvgEAACUrpUrV+bVGdOmTct6SKlqU0I6Z86ceOKJJ+KJJ56IZcuWRXl5eRxzzDFx7rnnxnHHHRdz586No48+Ou65554YPnz4Hh9sv379olu3btHY2Ji3v7GxMaqqqrb7mqqqqp223/rfxsbGGDRoUF6bmpqaHY6loqIiKioqducwAACAUtNB9yGtrKwsuIa0mOqi9mpTQnrVVVfFunXrYsKECfHoo4/G2rVrY8mSJTF79uyYMmVKPPLII3HuueemdrGjnj17xrBhw2LBggW5fa2trbFgwYIYOXLkdl8zcuTIvPYREQ8//HCu/SGHHBJVVVV5bZqammLx4sU77BMAACArnakualNCuisfSz3nnHPisssu2+0BFTJ16tSYOHFiDB8+PEaMGBE33nhjbNiwISZNmhQR761v/cAHPhCzZs2KiIh/+Zd/iRNOOCH+5//8nzFu3LiYO3du/OEPf4jvf//7ERFRVlYWF154YXzrW9+Kww8/PA455JC47LLLorq6Ok477bTUjgMAACghHZSQ7qrOUhft1kWNdmbAgAHxyCOP7Oluc84444x48803Y/r06dHQ0BA1NTUxb9683OLbV155JcrL/yv4HTVqVNx1113xzW9+M77+9a/H4YcfHvfdd18cc8wxuTYXX3xxbNiwIaZMmRJr166Nj33sYzFv3rzoleJlnQEAAHZXZ6mL2nQfUnasI+5D6mpwAG3nKrvZ8rsrO879nXNuZmdLsjkWxs9K7j6kB191Ver3IX35G98omXnZU9KpnAAAAKCAPf6RXQAAgE6nyNaQdhYSUgAAADIhIQUAAChEQpoKCSkAAACZkJACAAAUUJa8t6XZf1ckIQUAACATElIAAIBCkrL3tjT774IkpAAAAGRCQgoAAFCIq+ymQkG6h/2PDw6N7mU9sh4GwB4zf9XSrIcAmXH+Z6e+uibrIXRpaZ77TW+3xn4fTK17SoyCFAAAoABX2U2HNaQAAABkQkIKAABQiDWkqZCQAgAAkAkJKQAAQCEpryGVkAIAAEAHkpACAAAUYg1pKiSkAAAAZEJCCgAAUIiENBUSUgAAADIhIQUAACigLOWr7KZ6Bd8iJiEFAAAgEwpSAAAAMuEjuwAAAIW4qFEqJKQAAABkQkIKAABQgIsapUNBCrTb/FVLU+2/vrom1f6hKyv1n6+033/Ijt8t0DUoSAEAAHZFF00x02QNKQAAAJmQkAIAABTiKrupkJACAACQCQkpAABAAa6ymw4JKQAAAJmQkAIAABRiDWkqJKQAAABkQkIKAABQgDWk6ZCQAgAAkAkJKQAAQCHWkKZCQgoAAEAmJKQAAACFSEhTISEFAAAgExJSAACAAlxlNx0KUigS81ctzXoIRSvtuamvrkm1fwAoNWn+btySbI6IP6XWP6VFQQoAAFCINaSpsIYUAACATEhIAQAACpGQpkJCCgAAQCYkpAAAAAW4ym46JKQAAABkQkIKAABQiDWkqSiphHTNmjVx5plnRmVlZfTt2zfOOeecWL9+/U7bf+lLX4ojjjgi9tprrzjwwAPjy1/+cqxbty6vXVlZ2Tbb3Llz0z4cAACA1BVzHVVSCemZZ54Zr7/+ejz88MOxefPmmDRpUkyZMiXuuuuu7bZftWpVrFq1Kq6//vo4+uij489//nOce+65sWrVqvjpT3+a1/a2226LsWPH5h737ds3zUMBAABKSCmvIS3mOqpkCtJly5bFvHnz4oknnojhw4dHRMTNN98cJ598clx//fVRXV29zWuOOeaY+H//7//lHh966KFx1VVXxVlnnRVbtmyJ7t3/6/D79u0bVVVV6R8IAABAByn2OqpkPrK7aNGi6Nu3b24SIyLq6uqivLw8Fi9evMv9rFu3LiorK/MmMSLi/PPPj379+sWIESPi1ltvjSTpoh/iBgAAtpV0wJaCYq+jSiYhbWhoiAEDBuTt6969e+y///7R0NCwS3289dZbMXPmzJgyZUre/iuvvDI++clPRu/eveOhhx6KL37xi7F+/fr48pe/vMO+mpubo7m5Ofe4qampDUcDAACwrffXFRUVFVFRUbHb/RVbHfV+mSekl1566XYXw/7t9vzzz7f76zQ1NcW4cePi6KOPjssvvzzvucsuuyz+/u//Po4//vi45JJL4uKLL47rrrtup/3NmjUr+vTpk9sGDx7c7jECAABFqoMS0sGDB+fVGbNmzdrucEq1jnq/zBPSiy66KM4+++ydthkyZEhUVVXFG2+8kbd/y5YtsWbNmoKfWX777bdj7Nixse+++8a9994bPXr02Gn72tramDlzZjQ3N+/wXyOmTZsWU6dOzT1uampSlAIAAO2ycuXKqKyszD3eUT1SqnXU+2VekPbv3z/69+9fsN3IkSNj7dq1sWTJkhg2bFhERDzyyCPR2toatbW1O3xdU1NT1NfXR0VFRdx///3Rq1evgl9r6dKlsd9+++10EtsbnQMAAKWj7K9bmv1HRFRWVuYVpDtSqnXU+2VekO6qo446KsaOHRuTJ0+OOXPmxObNm+OCCy6I8ePH564M9dprr8Xo0aPjzjvvjBEjRkRTU1OMGTMmNm7cGP/2b/8WTU1Nuc9k9+/fP7p16xYPPPBANDY2xkc/+tHo1atXPPzww/Htb387vvrVr2Z5uAAAAO1W7HVUyRSkERE//OEP44ILLojRo0dHeXl5nH766XHTTTflnt+8eXO88MILsXHjxoiIePLJJ3NXjjrssMPy+lqxYkUcfPDB0aNHj5g9e3Z85StfiSRJ4rDDDosbbrghJk+e3HEHRkmYv2pp1kMgJWl/b+ura1LtH9rDexvALkrxSri5/lNSzHVUWeL+JntEU1NT9OnTJ06MU6N72c4/W01p8kcbu6vUC1LnPtAZlfp7cynbkmyOhfGz3G1Eit3Wv/OPPu/b0a2i8MdWd1dL87vxx3/9esnMy55SUgkpAABAFsqS97Y0+++KMr/tCwAAAF2ThBQAAKCQEl5DWswkpAAAAGRCQgoAALArumiKmSYJKQAAAJmQkAIAABTgKrvpkJACAACQCQkpAABAIa6ymwoJKQAAAJmQkAIAABRgDWk6JKQAAABkQkIKAABQiDWkqZCQAgAAkAkJKQAAQAHWkKZDQQqQsvmrlqbaf311Tar9p63Ux5+2tM8f6Kq8N0NxUJACAAAUYg1pKqwhBQAAIBMSUgAAgEIkpKmQkAIAAJAJCSkAAEABrrKbDgUpAABAIT6ymwof2QUAACATElIAAIACypIkypL0Ysw0+y5mElIAAAAyISEFAAAoxBrSVEhIAQAAyISEFAAAoAC3fUmHhBQAAIBMSEgBAAAKsYY0FRJSAAAAMiEhBQAAKMAa0nQoSAFK3PxVS7MeQruU+vgBtsd72441vd0a+30w61FQLBSkAAAAhVhDmgprSAEAAMiEhBQAAKAAa0jTISEFAAAgExJSAACAQqwhTYWEFAAAgExISAEAAHZBV13nmSYJKQAAAJmQkAIAABSSJO9tafbfBUlIAQAAyISEFAAAoAD3IU2HhBQAAIBMSEgBAAAKcR/SVEhIAQAAyISEFAAAoICy1ve2NPvviiSkAAAAZEJCCruovrom1f7nr1qaav8AALSDNaSpkJACAACQCQkpAABAAe5Dmo6SSkjXrFkTZ555ZlRWVkbfvn3jnHPOifXr1+/0NSeeeGKUlZXlbeeee25em1deeSXGjRsXvXv3jgEDBsTXvva12LJlS5qHAgAA0CGKuY4qqYT0zDPPjNdffz0efvjh2Lx5c0yaNCmmTJkSd911105fN3ny5Ljyyitzj3v37p37/5aWlhg3blxUVVXF73//+3j99ddjwoQJ0aNHj/j2t7+d2rEAAAAlJEne29LsPyXFXEeVTEG6bNmymDdvXjzxxBMxfPjwiIi4+eab4+STT47rr78+qqurd/ja3r17R1VV1Xafe+ihh+KPf/xj/OpXv4qBAwdGTU1NzJw5My655JK4/PLLo2fPnqkcDwAAQNqKvY4qmY/sLlq0KPr27ZubxIiIurq6KC8vj8WLF+/0tT/84Q+jX79+ccwxx8S0adNi48aNef0OHTo0Bg4cmNtXX18fTU1N8dxzz+35AwEAAErO1jWkaW5pKPY6qmQS0oaGhhgwYEDevu7du8f+++8fDQ0NO3zd5z73uTjooIOiuro6nn766bjkkkvihRdeiHvuuSfX799OYkTkHu+s3+bm5mhubs49bmpqavMxAQAA/K331xUVFRVRUVGx2/0VWx31fpkXpJdeemlcc801O22zbNmy3e5/ypQpuf8fOnRoDBo0KEaPHh0vvfRSHHroobvd76xZs+KKK67Y7dcDAAAlpIPuQzp48OC83TNmzIjLL798m+alWke9X+YF6UUXXRRnn332TtsMGTIkqqqq4o033sjbv2XLllizZs0OP9e8PbW1tRERsXz58jj00EOjqqoqHn/88bw2jY2NERE77XfatGkxderU3OOmpqZtTh4AAIC2WLlyZVRWVuYe7ygdLdU66v0yL0j79+8f/fv3L9hu5MiRsXbt2liyZEkMGzYsIiIeeeSRaG1tzU3Orli6dGlERAwaNCjX71VXXRVvvPFGLsp++OGHo7KyMo4++ugd9tPe6BwAACgdHXUf0srKyryCdEdKtY56v5K5qNFRRx0VY8eOjcmTJ8fjjz8ev/vd7+KCCy6I8ePH564M9dprr8WRRx6Zq9RfeumlmDlzZixZsiRefvnluP/++2PChAnx8Y9/PI499tiIiBgzZkwcffTR8fnPfz7+4z/+I+bPnx/f/OY34/zzz1dwAgAAJa3Y66iSKUgj3rvK05FHHhmjR4+Ok08+OT72sY/F97///dzzmzdvjhdeeCF39aeePXvGr371qxgzZkwceeSRcdFFF8Xpp58eDzzwQO413bp1i5///OfRrVu3GDlyZJx11lkxYcKEvPvtAAAAXdzW+5CmuaWkmOuosiRJ8+6uXUdTU1P06dMnToxTo3tZj6yHQwmav2pp1kMAAEhd09utsd8H/xTr1q3bpY+mZm3r3/kfPfnK6N6jV2pfZ8vmd+OxB6eXzLzsKZmvIQUAACh2HbWGtKspqY/sAgAA0HlISKFI1FfXpNq/jwQDALRDB92HtKuRkAIAAJAJCSkAAEAB1pCmQ0IKAABAJiSkAAAAhbQm721p9t8FSUgBAADIhIQUAACgEFfZTYWEFAAAgExISAEAAAooi5Svspte10VNQgoAAEAmJKQAAACFJMl7W5r9d0ESUgAAADIhIQUAACigLEl5DWnXDEglpAAAAGRDQgoAAFCI+5CmQkEKAABQQFmSRFmKFx5Ks+9i5iO7AAAAZEJCCl1EfXVNan3PX7U0tb4B6JrS/L3VEfxu7IRa/7ql2X8XJCEFAAAgExJSAACAAqwhTYeEFAAAgExISAEAAApx25dUSEgBAADIhIQUAACgkCR5b0uz/y5IQgoAAEAmJKQAAAAFlCXvbWn23xVJSAEAAMiEhBQAAKAQa0hTISEFAAAgExJSAACAAspa39vS7L8rkpACAACQCQkpAABAIdaQpkJCCgAAQCYkpAAAAIUkf93S7L8LUpAC7VZfXZP1ELq0+auWZj0ESpif350r5Z8v39tsmf8d25Jsjog/ZT0MioSCFAAAoICyJImyFNd5ptl3MbOGFAAAgExISAEAAApxld1USEgBAADIhIQUAACgkCQiWlPuvwuSkAIAAJAJCSkAAEABrrKbDgkpAAAAmZCQAgAAFJJEylfZTa/rYiYhBQAAIBMSUgAAgELchzQVElIAAAAyISEFAAAopDUiylLuvwuSkAIAAJAJCSkAAEAB7kOajpJKSNesWRNnnnlmVFZWRt++feOcc86J9evX77D9yy+/HGVlZdvd7r777ly77T0/d+7cjjgkAACAVBVzHVVSCemZZ54Zr7/+ejz88MOxefPmmDRpUkyZMiXuuuuu7bYfPHhwvP7663n7vv/978d1110XJ510Ut7+2267LcaOHZt73Ldv3z0+foA01FfXZD2Edpm/amnWQyhqpf79hd2V9nuDny3arISvslvMdVTJFKTLli2LefPmxRNPPBHDhw+PiIibb745Tj755Lj++uujurp6m9d069Ytqqqq8vbde++98ZnPfCb22WefvP19+/bdpi0AAEApK/Y6qmQ+srto0aLo27dvbhIjIurq6qK8vDwWL168S30sWbIkli5dGuecc842z51//vnRr1+/GDFiRNx6662RdNHPcAMAANuxNSFNc0tBsddRJZOQNjQ0xIABA/L2de/ePfbff/9oaGjYpT5uueWWOOqoo2LUqFF5+6+88sr45Cc/Gb17946HHnoovvjFL8b69evjy1/+8g77am5ujubm5tzjpqamNhwNAADAtt5fV1RUVERFRcVu91dsddT7ZZ6QXnrppTtcMLt1e/7559v9dd5555246667tlvVX3bZZfH3f//3cfzxx8cll1wSF198cVx33XU77W/WrFnRp0+f3DZ48OB2jxEAAChSHZSQDh48OK/OmDVr1naHU6p11PtlnpBedNFFcfbZZ++0zZAhQ6KqqireeOONvP1btmyJNWvW7NJnln/605/Gxo0bY8KECQXb1tbWxsyZM6O5uXmH/xoxbdq0mDp1au5xU1OTohQAAGiXlStXRmVlZe7xjuqRUq2j3i/zgrR///7Rv3//gu1GjhwZa9eujSVLlsSwYcMiIuKRRx6J1tbWqK2tLfj6W265JU455ZRd+lpLly6N/fbbb6eT2N7oHAAAKCGtEVGWcv8RUVlZmVeQ7kip1lHvl3lBuquOOuqoGDt2bEyePDnmzJkTmzdvjgsuuCDGjx+fuzLUa6+9FqNHj44777wzRowYkXvt8uXL4ze/+U08+OCD2/T7wAMPRGNjY3z0ox+NXr16xcMPPxzf/va346tf/WqHHRsAAEAair2OKpmCNCLihz/8YVxwwQUxevToKC8vj9NPPz1uuumm3PObN2+OF154ITZu3Jj3ultvvTUOOOCAGDNmzDZ99ujRI2bPnh1f+cpXIkmSOOyww+KGG26IyZMnp348AABAaShLkihL8U4cafZdzHVUWeL+JntEU1NT9OnTJ06MU6N7WY+shwNQMuavWpr1EIpafXVN1kPo0kr5/Cz1cyftuS/1+SllW5LNsTB+FuvWrdulj6Zmbevf+XUfnBrdu6W3ZG9LS3P86j9vKJl52VNKKiEFAADIRIr3Cs313wVlftsXAAAAuiYJKQAAQCGtSURZiilmq4QUAAAAOoyEFAAAoBBrSFMhIQUAACATElIAAICCUk5Io2smpApSADKV9r0AS/k+kgDQ2SlIAQAACrGGNBXWkAIAAJAJCSkAAEAhrUmkus6zi96HVEEKAABQSNL63pZm/12Qj+wCAACQCQkpAABAIS5qlAoJKQAAAJmQkAIAABTiokapkJACAACQCQkpAABAIdaQpkJCCgAAQCYkpAAAAIUkkXJCml7XxUxCCgAAQCYkpAAAAIVYQ5oKCSkAAACZkJACRW/+qqVZD6Fd6qtrsh5Cl5b2/Kd9fqbdf6mfn6X+/kB2/GzRZq2tEdGacv9dj4QUAACATEhIAQAACrGGNBUSUgAAADIhIQUAAChEQpoKCSkAAACZkJACAAAU0ppERIopZquEFAAAADqMhBQAAKCAJGmNJEnvXqFp9l3MJKQAAABkQkIKAABQSJKku87TVXYBAACg40hIAQAACklSvsquhBQAAAA6joQUAACgkNbWiLIUr4TrKrsAAADQcSSkAAAAhVhDmgoFKdBu81ctzXoIRS3t+amvrkm1fzo3P7+QDu/9sGsUpAAAAAUkra2RpLiGNLGGFAAAADqOhBQAAKAQa0hTISEFAAAgExJSAACAQlqTiDIJ6Z4mIQUAACATElIAAIBCkiQiUrwSroQUAAAAOo6EFAAAoICkNYkkxTWkiYQUAAAAOo6EFAAAoJCkNdJdQ5pi30WspBLSq666KkaNGhW9e/eOvn377tJrkiSJ6dOnx6BBg2KvvfaKurq6ePHFF/ParFmzJs4888yorKyMvn37xjnnnBPr169P4QgAAAA6VjHXUSVVkG7atCn+8R//Mc4777xdfs21114bN910U8yZMycWL14ce++9d9TX18e7776ba3PmmWfGc889Fw8//HD8/Oc/j9/85jcxZcqUNA4BAAAoQUlrkvqWlmKuo0rqI7tXXHFFRETcfvvtu9Q+SZK48cYb45vf/GaceuqpERFx5513xsCBA+O+++6L8ePHx7Jly2LevHnxxBNPxPDhwyMi4uabb46TTz45rr/++qiurk7lWAAAADpCMddRJZWQttWKFSuioaEh6urqcvv69OkTtbW1sWjRooiIWLRoUfTt2zc3iRERdXV1UV5eHosXL+7wMQMAAEUoaU1/KxIdWUeVVELaVg0NDRERMXDgwLz9AwcOzD3X0NAQAwYMyHu+e/fusf/+++fabE9zc3M0NzfnHq9bty4iIrbE5oiuecVmurCmt4vnDbQr2pJsznoIXZrzn2JV6u8NfrZ2rpS/v1vivbGX2m1O0v47f+u8NDU15e2vqKiIioqK9L7wdqRZR71f5gXppZdeGtdcc81O2yxbtiyOPPLIDhrRrpk1a1Yu+v5b/x4PZjAayNZ+H8x6BF3dn7IeQJfm/Kd4lfZ7g5+tQkr7+xsRsXr16ujTp0/WwyioZ8+eUVVVFf/ekP7f+fvss08MHjw4b9+MGTPi8ssv36ZtqdZR75d5QXrRRRfF2WefvdM2Q4YM2a2+q6qqIiKisbExBg0alNvf2NgYNTU1uTZvvPFG3uu2bNkSa9asyb1+e6ZNmxZTp07NPV67dm0cdNBB8corr5TED1YpampqisGDB8fKlSujsrIy6+F0Wua5Y5jnjmGe02eOO4Z57hjmuWOsW7cuDjzwwNh///2zHsou6dWrV6xYsSI2bdqU+tdKkiTKysry9u0oHS3VOur9Mi9I+/fvH/3790+l70MOOSSqqqpiwYIFuYlramqKxYsX564wNXLkyFi7dm0sWbIkhg0bFhERjzzySLS2tkZtbe0O+95RdN6nTx9vYCmrrKw0xx3APHcM89wxzHP6zHHHMM8dwzx3jPLy0rmcTa9evaJXr15ZDyNPqdZR71c6Z0FEvPLKK7F06dJ45ZVXoqWlJZYuXRpLly7Nu9fNkUceGffee29ERJSVlcWFF14Y3/rWt+L++++PZ555JiZMmBDV1dVx2mmnRUTEUUcdFWPHjo3JkyfH448/Hr/73e/iggsuiPHjx7vCLgAAUPKKuY7KPCFti+nTp8cdd9yRe3z88cdHRMSjjz4aJ554YkREvPDCC7kLDEVEXHzxxbFhw4aYMmVKrF27Nj72sY/FvHnz8v6F44c//GFccMEFMXr06CgvL4/TTz89brrppo45KAAAgBQVcx1VlpTa5a2KVHNzc8yaNSumTZvW4VfB6irMcccwzx3DPHcM85w+c9wxzHPHMM8dwzzztxSkAAAAZKKk1pACAADQeShIAQAAyISCFAAAgEwoSHfRVVddFaNGjYrevXtH3759d+k1SZLE9OnTY9CgQbHXXntFXV1dvPjii3lt1qxZE2eeeWZUVlZG375945xzzsm7/HJX09b5ePnll6OsrGy72913351rt73n586d2xGHVHR255w78cQTt5m/c889N6/NK6+8EuPGjYvevXvHgAED4mtf+1ps2bIlzUMpam2d5zVr1sSXvvSlOOKII2KvvfaKAw88ML785S/nXe0uwrk8e/bsOPjgg6NXr15RW1sbjz/++E7b33333XHkkUdGr169YujQofHggw/mPb8r79NdUVvm+Qc/+EH8t//232K//faL/fbbL+rq6rZpf/bZZ29z3o4dOzbtwyh6bZnn22+/fZs5fP89EZ3P22rLHG/vd11ZWVmMGzcu18a5vK3f/OY38alPfSqqq6ujrKws7rvvvoKvWbhwYXz4wx+OioqKOOyww+L222/fpk1b3+8pYQm7ZPr06ckNN9yQTJ06NenTp88uvebqq69O+vTpk9x3333Jf/zHfySnnHJKcsghhyTvvPNOrs3YsWOT4447LnnssceS3/72t8lhhx2WfPazn03pKIpfW+djy5Ytyeuvv563XXHFFck+++yTvP3227l2EZHcdtttee3+9vvQlezOOXfCCSckkydPzpu/devW5Z7fsmVLcswxxyR1dXXJU089lTz44INJv379kmnTpqV9OEWrrfP8zDPPJP/wD/+Q3H///cny5cuTBQsWJIcffnhy+umn57Xryufy3Llzk549eya33npr8txzzyWTJ09O+vbtmzQ2Nm63/e9+97ukW7duybXXXpv88Y9/TL75zW8mPXr0SJ555plcm115n+5q2jrPn/vc55LZs2cnTz31VLJs2bLk7LPPTvr06ZO8+uqruTYTJ05Mxo4dm3ferlmzpqMOqSi1dZ5vu+22pLKyMm8OGxoa8to4n/O1dY5Xr16dN7/PPvts0q1bt+S2227LtXEub+vBBx9MvvGNbyT33HNPEhHJvffeu9P2f/rTn5LevXsnU6dOTf74xz8mN998c9KtW7dk3rx5uTZt/d5R2hSkbXTbbbftUkHa2tqaVFVVJdddd11u39q1a5OKiorkRz/6UZIkSfLHP/4xiYjkiSeeyLX55S9/mZSVlSWvvfbaHh97sdtT81FTU5P80z/9U96+XXmD7Ap2d45POOGE5F/+5V92+PyDDz6YlJeX5/1x9K//+q9JZWVl0tzcvEfGXkr21Ln8k5/8JOnZs2eyefPm3L6ufC6PGDEiOf/883OPW1pakurq6mTWrFnbbf+Zz3wmGTduXN6+2tra5J//+Z+TJNm19+muqK3z/H5btmxJ9t133+SOO+7I7Zs4cWJy6qmn7umhlrS2znOhvz+cz9tq77n8v/7X/0r23XffZP369bl9zuWd25XfURdffHHyoQ99KG/fGWeckdTX1+cet/d7R2nxkd2UrFixIhoaGqKuri63r0+fPlFbWxuLFi2KiIhFixZF3759Y/jw4bk2dXV1UV5eHosXL+7wMWdtT8zHkiVLYunSpXHOOeds89z5558f/fr1ixEjRsStt94aSRe841F75viHP/xh9OvXL4455piYNm1abNy4Ma/foUOHxsCBA3P76uvro6mpKZ577rk9fyBFbk/9bK9bty4qKyuje/fuefu74rm8adOmWLJkSd57anl5edTV1eXeU99v0aJFee0j3jsvt7bflffprmZ35vn9Nm7cGJs3b479998/b//ChQtjwIABccQRR8R5550Xq1ev3qNjLyW7O8/r16+Pgw46KAYPHhynnnpq3vur8znfnjiXb7nllhg/fnzsvffeefudy+1T6L15T3zvKC3dCzdhdzQ0NERE5P2BvvXx1ucaGhpiwIABec9379499t9//1ybrmRPzMctt9wSRx11VIwaNSpv/5VXXhmf/OQno3fv3vHQQw/FF7/4xVi/fn18+ctf3mPjLwW7O8ef+9zn4qCDDorq6up4+umn45JLLokXXngh7rnnnly/2zvXtz7X1eyJc/mtt96KmTNnxpQpU/L2d9Vz+a233oqWlpbtnmfPP//8dl+zo/Pyb9+Dt+7bUZuuZnfm+f0uueSSqK6uzvtjcuzYsfEP//APccghh8RLL70UX//61+Okk06KRYsWRbdu3fboMZSC3ZnnI444Im699dY49thjY926dXH99dfHqFGj4rnnnosDDjjA+fw+7T2XH3/88Xj22WfjlltuydvvXG6/Hb03NzU1xTvvvBN/+ctf2v0+RGnp0gXppZdeGtdcc81O2yxbtiyOPPLIDhpR57Sr89xe77zzTtx1111x2WWXbfPc3+47/vjjY8OGDXHdddd1mj/i057jvy2Khg4dGoMGDYrRo0fHSy+9FIceeuhu91tqOupcbmpqinHjxsXRRx8dl19+ed5znf1cprRdffXVMXfu3Fi4cGHeBXfGjx+f+/+hQ4fGscceG4ceemgsXLgwRo8encVQS87IkSNj5MiRucejRo2Ko446Kr73ve/FzJkzMxxZ53TLLbfE0KFDY8SIEXn7ncuw53XpgvSiiy6Ks88+e6dthgwZslt9V1VVRUREY2NjDBo0KLe/sbExampqcm3eeOONvNdt2bIl1qxZk3t9Z7Cr89ze+fjpT38aGzdujAkTJhRsW1tbGzNnzozm5uaoqKgo2L7YddQcb1VbWxsREcuXL49DDz00qqqqtrn6XWNjY0SEc/mvdnWe33777Rg7dmzsu+++ce+990aPHj122r6zncs70q9fv+jWrVvuvNqqsbFxh3NaVVW10/a78j7d1ezOPG91/fXXx9VXXx2/+tWv4thjj91p2yFDhkS/fv1i+fLlXfKP+PbM81Y9evSI448/PpYvXx4Rzuf3a88cb9iwIebOnRtXXnllwa/T1c/l3bGj9+bKysrYa6+9olu3bu3++aC0dOk1pP37948jjzxyp1vPnj13q+9DDjkkqqqqYsGCBbl9TU1NsXjx4ty/cI4cOTLWrl0bS5YsybV55JFHorW1NfcHf2ewq/Pc3vm45ZZb4pRTTon+/fsXbLt06dLYb7/9Os0f8B01x1stXbo0IiL3R8/IkSPjmWeeySvCHn744aisrIyjjz56zxxkEUh7npuammLMmDHRs2fPuP/++7e5pcP2dLZzeUd69uwZw4YNy3tPbW1tjQULFuSlRn9r5MiRee0j3jsvt7bflffprmZ35jki4tprr42ZM2fGvHnz8tZO78irr74aq1evziucupLdnee/1dLSEs8880xuDp3P+dozx3fffXc0NzfHWWedVfDrdPVzeXcUem/eEz8flJisr6pUKv785z8nTz31VO6WIk899VTy1FNP5d1a5Igjjkjuueee3OOrr7466du3b/Kzn/0sefrpp5NTTz11u7d9Of7445PFixcn//7v/54cfvjhXf62Lzubj1dffTU54ogjksWLF+e97sUXX0zKysqSX/7yl9v0ef/99yc/+MEPkmeeeSZ58cUXk+9+97tJ7969k+nTp6d+PMWorXO8fPny5Morr0z+8Ic/JCtWrEh+9rOfJUOGDEk+/vGP516z9bYvY8aMSZYuXZrMmzcv6d+/f5e/7Utb5nndunVJbW1tMnTo0GT58uV5txTYsmVLkiTO5blz5yYVFRXJ7bffnvzxj39MpkyZkvTt2zd3defPf/7zyaWXXppr/7vf/S7p3r17cv311yfLli1LZsyYsd3bvhR6n+5q2jrPV199ddKzZ8/kpz/9ad55u/X349tvv5189atfTRYtWpSsWLEi+dWvfpV8+MMfTg4//PDk3XffzeQYi0Fb5/mKK65I5s+fn7z00kvJkiVLkvHjxye9evVKnnvuuVwb53O+ts7xVh/72MeSM844Y5v9zuXte/vtt3N/F0dEcsMNNyRPPfVU8uc//zlJkiS59NJLk89//vO59ltv+/K1r30tWbZsWTJ79uzt3vZlZ987OhcF6S6aOHFiEhHbbI8++miuTfz1/oBbtba2JpdddlkycODApKKiIhk9enTywgsv5PW7evXq5LOf/Wyyzz77JJWVlcmkSZPyityuptB8rFixYpt5T5IkmTZtWjJ48OCkpaVlmz5/+ctfJjU1Nck+++yT7L333slxxx2XzJkzZ7ttu4K2zvErr7ySfPzjH0/233//pKKiIjnssMOSr33ta3n3IU2SJHn55ZeTk046Kdlrr72Sfv36JRdddFHe7Uq6mrbO86OPPrrd95iISFasWJEkiXM5SZLk5ptvTg488MCkZ8+eyYgRI5LHHnss99wJJ5yQTJw4Ma/9T37yk+SDH/xg0rNnz+RDH/pQ8otf/CLv+V15n+6K2jLPBx100HbP2xkzZiRJkiQbN25MxowZk/Tv3z/p0aNHctBBByWTJ0/2h2XStnm+8MILc20HDhyYnHzyycmTTz6Z15/zeVttfc94/vnnk4hIHnrooW36ci5v345+f22d24kTJyYnnHDCNq+pqalJevbsmQwZMiTv7+etdva9o3MpS5IucL8AAAAAik6XXkMKAABAdhSkAAAAZEJBCgAAQCYUpAAAAGRCQQoAAEAmFKQAAABkQkEKAABAJhSkAAAAZEJBCgAAQCYUpAAAAGRCQQoAAEAmFKQAdCo/+tGPYq+99orXX389t2/SpElx7LHHxrp16zIcGQDwfmVJkiRZDwIA9pQkSaKmpiY+/vGPx8033xwzZsyIW2+9NR577LH4wAc+kPXwAIC/0T3rAQDAnlRWVhZXXXVVfPrTn46qqqq4+eab47e//a1iFACKkIQUgE7pwx/+cDz33HPx0EMPxQknnJD1cACA7bCGFIBOZ968efH8889HS0tLDBw4MOvhAAA7ICEFoFN58skn48QTT4zvfe97cfvtt0dlZWXcfffdWQ8LANgOa0gB6DRefvnlGDduXHz961+Pz372szFkyJAYOXJkPPnkk/HhD3846+EBAO8jIQWgU1izZk2MGjUqTjzxxJgzZ05u/7hx46KlpSXmzZuX4egAgO1RkAIAAJAJFzUCAAAgEwpSAAAAMqEgBQAAIBMKUgAAADKhIAUAACATClIAAAAyoSAFAAAgEwpSAAAAMqEgBQAAIBMKUgAAADKhIAUAACATClIAAAAy8f8DRH6nh3bE8j8AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 46 + "execution_count": 55 }, { "cell_type": "code", "id": "66ba7a519125ef4e", "metadata": { "ExecuteTime": { - "end_time": "2024-07-14T20:46:18.744840Z", - "start_time": "2024-07-14T20:46:02.595385Z" + "end_time": "2024-07-18T23:01:54.087452Z", + "start_time": "2024-07-18T23:01:36.478936Z" } }, "source": [ @@ -898,19 +748,19 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAJOCAYAAAAd/wmUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZQkV33mDz83IjMra6/q2ves3vfW0upWi02ArJaGQWAYDLYZZDNmjG3mfW29v8MB28Ni+7V/73gMgrEY/Y4tDHiwhT2DMbKwEMja1dDaWlK31NVbLZm1de1LbrHc+/6RFdm5RNzIPburv59z4KgrI/JGREZGPvGN534fJoQQIAiCIAiCIAii4ijV3gCCIAiCIAiCuF4hMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEEQBEEQBFElSIwTBEEQBEEQRJUgMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEEQBEEQBFElSIwTBEEQBEEQRJUgMU4QBEEQBEEQVYLEOEEQBEEQBEFUCRLjBEFUjW9/+9uoq6tDJBJJ/q2jowOMMen/fvM3f9P1vf/gD/4AW7duLefmEwRBEETRMCGEqPZGEARxffLhD38YmqbhkUceAQAYhoGHH37YdtnV1VX8X//X/4V4PI5/+Zd/wd133y1975/97Gc4duwYTp8+jX379pV82wmCIAiiFHiqvQEEQVyfxONxPP744/jKV76S/JvH48HHP/5x22XvuusuRKNRfOMb33AV4gBw9OhRdHV14ZFHHiExThAEQVy1kE2FIIiq8OSTTyIcDuP973+/dDnTNPErv/IreOqpp/ClL30Jv/Vbv5XT+zPG8O///b9PVt0JgiAI4mqExDhBEFXhkUcewS233ILu7m7pcr/1W7+F73//+/id3/kdfPGLX8xrjHvuuQc/+9nPMDc3V8ymEgRBEETZIDFOEERVeOSRR1yr4n/wB3+Av/qrv8Iv/dIv4etf/3reY9xxxx2oqanBj370o0I3kyAIgiDKColxgiAqzquvvopgMIh77rnHcZmvf/3r+NM//VPccccd+Nu//VsoSv6Xq7q6Orz3ve8lqwpBEARx1UJinCCIivP000+jpaUFBw8etH397//+7/G7v/u7OHz4MP7pn/4JPp8va5m5uTm8733vQ319PXbt2oUnnnjC9r1uv/12PPXUU6XcfIIgCIIoGSTGCYKoODfffDOWl5dx4cKFrNd+/OMf495778WOHTvwox/9CA0NDbbv8Tu/8zvo7u7G3Nwc/vzP/xy/9Eu/hMXFxazlTp48icOHD5d8HwiCIAiiFJAYJwii4tx2221ob2/HD3/4w7S///znP8eHP/xhdHZ24vHHH0dHR4ft+uvr6/jBD36AL3/5y6irq8M999yDAwcO4J//+Z/TltN1HY899pirN50gCIIgqgWJcYIgKo6qqvh3/+7fpXm533rrLbzvfe+Dz+fDj3/8YwwNDTmuf/78eTQ0NKC/vz/5twMHDuDMmTNpyz399NNYXV0lMU4QBEFctVDoD0EQVeGee+7Bxz72MSwtLYExhuPHj2NhYQG//du/jVdffRWvvvpq1jqdnZ248847sb6+jqamprTXmpqasLCwkPa3H/7whzh06BAGBwfLui8EQRAEUSgkxgmCqAp33nknFEXBv/7rv6K9vR3BYBAA8I1vfAPf+MY3bNf5xCc+gTvvvBMNDQ1YXV1Ne211dTXLX/7II4/YJnoSBEEQxNUCiXGCIKpCY2Mj3v3ud+OHP/whHn74YQghcl53x44dWF9fx+TkJPr6+gAAp0+fxic+8YnkMm+88QbGxsbIokIQBEFc1ZBnnCCIqnHPPffgscceg67rea3X0NCAD3zgA/jiF7+IaDSKf/mXf8Hrr7+OD3zgA8llfvjDH6K7uxu33HJLqTebIAiCIEoGE/mUowiCIEpILBZDKBRCIBCAx5Pfg7q5uTnce++9eOqpp9Df349vfOMbuOOOO5Kvz87OwjRN9Pb2lnqzCYIgCKJkkBgnCIIgCIIgiCpBNhWCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSpAYJwiCIAiCIIgqQWKcIAiCIAiCIKoEiXGCIAiCIAiCqBIkxgmCIAiCIAiiSniqvQEEQRDFIoSAaZpgjEFRFDDGqr1JBEEQBJETJMYJgrhm4ZxD13VomgZd1+Hz+eDxeODxeKCqKolygiAI4qqHCSFEtTeCIAgiH0zThKZp0DQtrSJeU1MDIQSEEFAUBYqiwOPxgDFGwpwgCIK4KiExThDENYEQAoZhJKvgnPOk4LaEts/nSy6bemlTVRWqqpKFhSAIgrjqIDFOEMRVjRACuq4jHo/DMAwASIrqTGFtifHUdYGEncVaniwsBEEQxNUEiXGCIK5KUq0onHMASFbCUxFCYGVlBaFQCJxzDA4OoqOjI0tsW9Vyy8JiVcvJwkIQBEFUExLjBEFcNVhdUVJFOGPMtpLNOcfly5cRDAYRjUbR09MDv9+PiYkJKIqCoaEh9Pf3w+PxZI1BFhaCIAjiaoHEOEEQVceyomiahvHxcQgh0N/fbyuQNU3D5OQkJicnoaoqBgYG0N3dDY/HA5/PB845ZmZmMD4+jvX1dfT392NwcBD19fVZYwLA7OwslpeXsXv37rRqOUEQBEFUAmptSBBE1eCcp3VFAYBYLAYgUbFOZW1tDcFgEJcvX0ZLSwt2796Ntra2LOGsKAp6e3vR29uL5eVljI2N4bnnnkN7ezsCgQC2bNmSZk3RdR1ra2vgnINzDsMw0qrlBEEQBFFOSIwTBFFRUq0ouq4nWxOm+retqrUQAvPz8wgGg1hdXUV3dzduueWWrCq3Ey0tLbjhhhsQi8UwMTGBU6dOoaamBkNDQ+jt7U0Kfqs1omVh0XU9S5RTtZwgCIIoB2RTIQiiIlitCePxOHRdT+sFnip0z58/D9M0UVdXh1AolLSs9Pb2wuv1SsfI7KaSiWmamJqawvj4OOLxOAYGBuDxeLC4uIjDhw+nbStwpQtL5oRPgiAIgigVJMYJgigrVkpmPB6HaZoQQjh2MYlEIjh9+jTC4TCampowMDCA9vb2nO0ibmLcQgiBxcVFjI2NYX5+Hl6vFzfddBNaWlpsl7Uuk1ZrRLuuLgRBEARRCCTGCYIoC3YpmXaVZUsYh0IhLC0twe/3o6GhAfv37897zFzFeCoXLlzA5OQkNE1DQ0MDhoaG0N3dbdtC0fqftS+U7kkQBEEUC3nGCYIoGU4pmZZoTcU0TczMzCAYDELXdfT19WH37t0IBoPJyZyVwOfzoaGhAYcOHUIoFMKFCxcwMjKCwcFBDAwMJAV+qp/d2k/TNJP7R75ygiAIohBIjBMEUTSWFUXTNBiGkbSi2InwWCyGUCiEqakp+P1+DA0NobOzM6t7SqXxeDwIBAIYGhrC3NwcxsbGcPHiRfT29mJoaAiNjY0AkDXJ1OoIQ+meBEEQRCGQGCcIomDsrChuKZlzc3Nob2/HgQMH0NLSctUJV8YYOjs70dnZibW1NYyPj+PEiRNoaWlBIBBIpnta251aLdc0Lbn/ZGEhCIIgcoHEOEEQeZGPFYVzjtnZWYRCoWRK5q233ora2toqbX1+NDY2Yv/+/di5cyeCwSDOnDljm+6ZaWExTROmaVJrRIIgCMIVEuMEQeSE1X87Ho/DMAwAV7qLyFIyPR4P+vv7kymZblRatOYyh93n82Hbtm0YHh5OpnueP38+K90z08Ji+crJwkIQBEE4QWKcIAgpnHNEo1HMzc2hqanJ0YoC5J6SebWR6/ZlpnuOj49L0z1VVU2zsKysrKC5uRl+v58sLARBEAQAEuMEQdiQmpJp/e+1117DO97xjqzqdrEpmU7jX+20tLSgpaUFu3btck33tKrlr7/+Og4cOIDW1laysBAEQRAASIwTBJGCZUWx/OBWSqadvUTXdUxPT6elZB44cMA1JXOz4ff7sXPnTmzbtg3T09MYGxvDuXPnMDAwgMHBQfj9fgBXJnpa4ju1NSKlexIEQVy/kBgnCCLZns/qiuKWkhkMBjEzM4OGhgZs3749r5TMzYqqqujv70dfX18y3fPpp59GV1cXAoFAMt3TOqaWhYVzDs45DMNIq5YTBEEQ1wckxgniOiXVimJ1RQHgmJIJAKdPn8bKygo6Ojpw4403oqmpqUIbq0M1n4Si/S9MxKOA79fQU/fvgBwqyXORE1hbfwBD3hV4a38VvOYegNVdeesSW2IYY2hra0NbWxvC4TAmJibw4osvoqGhIdmDPXXZ1C4suq5niXKqlhMEQWxumLgWzJkEQZQMqzVhPB5Ps6LYCb/UlMxIJJK0XtTU1JRt+y5duoR4PI49e/YAYgVe/Z/gMf4BiphNW25S34JV5QPoa/gNqErCCmKlZQpuYmLtYajx/4Vhbyh9/1kjuO8/gPt/GVB6MDY2hqWlJdx4441l2yfDMBAKhXD27Fl4vV4EAoG0dM/ktqUECVkTZcnCQhAEsbkhMU4Q1wlWSmY8Hne1omSmZPb19WFkZARve9vbyirEgYQYZ+Yodg2ehMf4FzDEpMuvmDUI8Xeho/4zqPdvwcTyA2jj/4JOz5p0PQEVwnsHJpfuwPR8J2688aZS7oYtP/3pT7F9+3bMzc1haWkpK90zbfs2quXAlRaSTl1sCIIgiGsXsqkQxCbHLiXTyYrilJIJACMjI+XdUCGg8J9jsPnbULACjzEKBs11tWY1DiGexPTKi1hYVdCurqPDG3ddj8EE9MfR7h9FY2ctmPYrEN5fAFj5JqBaFpZAICBN97SWzUz3tD47SvckCILYPJAYJ4hNSKlTMq0KbVkepIkYPMaP4NX/Hoq4hFr/xp/RCFPZD8ZHoWDJdtUpvRZh04PhmnXs8VxZZjTeAAaBQE3YfkjUQah7wHgQtZ5zqPUACL8Gwf4C3P/L4L7/ACgtJd7R9ONXaLpnahcWq1pOopwgCOLahcQ4QWwiLCuKpmnJyYKpldRU8knJLIfYY3wOHuMf4dX/NxhWsl/HGlT+CgRUmMpBQKxAFePgAhjVGuBjHAO+CGBTyB6uWQcAzOp+LJs+bK1ZhZcBgnVBKP1g5ltQzJezxxSXoUa/BiX6/4D73g/u/zigbi3ZPgshso5loemeVgccSvckCIK4tiExThCbADsrSjlSMktRGZ+IBhGMPI13+78HL6Zcl2cwofLXwVGLEf04FuKncWv9JJQcdGeXN4YubwwX4g0YqtsPj3nOVoRnjxmDqv0jFO0xcN9xCN8dEJ7bcureUij5pntmWlisz5ssLARBENcWNIGTIK5RnKwodrYFu5TMgYGBvFIyn3zyySz7Sq5wwfHa2ht4avFpXIxeAgCoAD68pR7variIOpx3XNdAF16NH8DfzRtYNk0AQJcnijsaJ/GO+lnUKNx2PVMAl+KNqFMN9HmjAAABD4S6H0wsgfFxxzEF64FQesDMM2BI+M+FshWm/+MQvn8PsPyPAQA8/vjjuO2229DQ0JDT8rFYDBMTEwgGg7bpnsntTZnsCYBaIxIEQVxDkBgniGsMqx91PB7H2bNnk60G7YSXXUpmb29vQSmZTz75JI4ePYq6ujr3hTeImlG8sPwzPLP0LBb0Rac9wjsa63FPyzza2KtgSIjrMHbhyfUAfrAYgemwZh3T8a6GGdzROIUtnsRkzzBXEdTq0e2NokXVHbdNKDshmBfMOJMseHNlF8C8UMzTzuuxFvCaj4DXfBRQutwOQRqPP/443va2t+V1EwQknnxY6Z7xeDwr3TO5bSkWlpGREWzduhX19fVkYSEIgriKIZsKQVwjcM4Rj8ehaVoyoGd6ehqDg4NZldJypGTmK+b+efZf8Mzys4hzt84mDM+uRfDsWh22+9+Nu/0ang+reEU3AUSka0aEF/+6NoDH1/pwuG4eB/2LuLluAbv9q67bx/g5MAAa70IoMoCh5lWo3L1jDBPLUGN/BSX2N+C+j0D47oHw7nddD7D3jOdCZrrn+Pi4Y7qntXwoFMLg4GBWkBBZWAiCIK4uSIwTxFVMakqmJcJTWxOmTugTQmBxcRGhUAhLS0tlScnM50HaK6uv5iDE07kQ0/BPsX6EEHJfOAUTCn4e6cTPIx14cn0VdzZN4ubaBamvnKMRF8xb8J1ZjknDROtqAz7eOYSDvtfhyQgYylp3o4Kuan8PaH8Prt4I7v84hPc9ACvfZTU13TMSiWB8fDyZ7jk0NITu7u7kDZcV5mSdI5TuSRAEcXVCYpwgrkIs8WT5wS1hldkVhTEGwzAwOTmJYDAIXdfR19eH3bt3lzycJ1/hpooCLy+mkjCUFwTDBa0ZF+ab0a7GcEfjJN7ZMIta5YrRRWd9eCm2H9+diyHMr9hYlkwT/2PahIqd+HD7jbi9fhS14kqlXECFUA+AiWUoGRV0xXwVSvhVCKUXvOZXwH2/CCjZN0GFVsbtqKurw549e7Bjxw6EQiFcuHABIyMjGBwcxMDAQHKszJu21NaIlO5JEARRfUiME8RVhNWuzuqK4paSyTnHqVOnUFtbi6GhIXR2dmZZVkpJPpVxpUAxzooS41eYN/14eHkbfrAyhNvrlvELW+rwbLgT/7y4BiGxv5gA/mE+jH+Y78TbmoZxT/MS2jwmFD4KxTwl33Y+BTX636FEHwD3fRCrvl9Dg7e3+J2R4PF4EAgEMDQ0hLm5OYyPj+PixYsAgHA4nJxwm2phEUKAcw7OeVa1nCAIgqgsJMYJosqkWlF0Xc8rJRMAduzYgZ6enrJXN/N5fyEEGC9MUQtDAXwFrWpLTHjwvy/34eRiFxZrJgDkvh/Pr4bxVqQPY2+14Q8Pd+BQ87NQsC5dR0DBAvbjn2YXcWLt/4sDTftxR/t7sLN+B4Dy9Gy33rezsxOdnZ1YWVnBiRMn8Morr+SU7kkWFoIgiOpBYpwgqoTVmjAej0utKIBzSubLL7+MhoaGigmnXCvjhsmhmGpBFW6hl746y7kCGAwowLnjYR68tqDgIz8exJaaX8Z/vWUZx3tfgA+TacsJ1GGM34LvzvtwMRaDNfn09dU38PrqG+j396GztgM61+GH32ak0mG1TrztttswOzubU7onQBYWgiCIakBinCAqjJWSGY/HXa0ouaRkVqo7aT6iTNfNRGX8qhHjDI0NTXBqriiDpezEYlzB7z23BQzvw385GMV/3PE6mjzTeE07hL+9rG/0QY/Zvk8oNolQyyTOX7qAd7W/E7e3vRNN3tJNrk3FOidqamqS6Z6zs7MYGxtzTPcE7C0sHo/HMUCKIAiCKB4S4wRRIexSMp0qj5kpmXv27EkmMKaSWtWsBLmOpRsmwAsTb1rEPsSnGDhXEl70Aq54dt53AYavv16Hr79+K/7DOxYxq8/k/H5r5jr+ZfZHeHXxLGKzN+ATBw5hT3tH/hsmwfqcrPNFURT09PSgp6dHmu5prZOZ7mmdq5TuSRAEUXpIjBNEGXFKybSzotilZN5yyy3SgJhKivG8KuMGBzPUgmwhsbBTxE/hcM4AUy3oisdcy/sFeuOFgh+cO4sfnDuLI719+MSBQ7h9MAC1BBXoTDGeSktLC1paWrBr1y5MTEzg1KlTtumemaI81cJiVctJlBMEQRQPiXGCKAOWFUXTNBiGkbSi2Ilwu5TMAwcO5JSSedVWxnUz0aKwADxl8FNzrkDohXnGmZCLbaVAMc5SKu4npyZxcmoSg03N+Pj+g/jQrj2o9xU+i1Umxi38fj927tyJbdu2JdM9z507l5Xumekrtzr+MMbg8XjIV04QBFEkJMYJooTYWVGc/LalSMmspAjKrzJuJrqiFIARK/0+mZyB64W9bzxuQHapdBPrTgiRfXwmVlfwpy88i6+/9HN87hd68K6OY2ivaS/gvXO/Qcs33TPTwmKd32RhIQiCKAwS4wRRJFZrwng8jvn5eczOzmLnzp2OVpTUlMzOzs6iUjKv5sp4weLXuQV4wXCuQGiFrRuNaIC0Wl/YTYfgCgB7f/y6puHppSfx+MJjuKH5EO5ofw+212/LW+jms3w+6Z6ZFpaLFy/C5/NhYGCAWiMSBEHkCYlxgigQu5RMXdextraWFbxjmiZmZmZKnpJ59XrGCxfjegxggkGw0u0XFwyGfZMTVxobW5GIAspGZQywqXDntE0SMQ4AutAhIPDqyim8unIKg7UDeG/7e3BLy83wKPJLdy42FRlu6Z6+DQuNJcrX19dRV1eX9JWThYUgCCJ3SIwTRJ5wzhGPx6FpGjhPiCnrUb3VGs4iFoshFAphamoKfr+/LCmZV2Vl3DChxwrrimJqDDVQYcAoaH07OGcw4oUdJy6cxaRPUbCqhQuaw8klnnqPApgi/QZgIhrE3wS/jSfmHsHv9e9Dfe1xQNliu74QoiQi2Cnds7e3F0NDQ2hsbEyOl3r+2wUJkYWFIAjCHhLjBJEDqSmZlgi3a03IGAPnHMvLywgGg5ifn0d7ezsOHDiAlpaWkouRq60ybnWEeeutEayuhAsax9QBVagwWOnEuOBK4WJcIpoVIbBizqGQeyuTOx/P+prsMQM1NfiP7QaG1Z+Caf8Mof13CN+/h+n/OKDuSFu2VGLcIjXdc21tDePj4zhx4kQy3dOqhlvLUronQRBE7pAYJwgJdlYUWUrm8vIyYrEYXn/99WRKZm1tbdm2r9ITOJ2Ev2EYSRsO5xy1dQ2oizVhpYBxdC0hxkuJAg/MeGHHSiaaG2trwQrsRKibzu9b573ypocb6vAfWpfRyU6ApTwtYNDAtO9D0b4P7rkV3P8fITxvB5hScjGeSmNjI/bv34+dO3ciGAzizJkz0HUdjLFkSBBA6Z4EQRC5QmKcIGyw2rdZXVFyTcm0quW33XZbWkpmuaj0BM5MUm04tbW1GB4eRmdnJ154eQzmbGEq1YwDShnEuFHgBE5TIpo9qgpFIigbFQ3r3AuB7GUMSTv1Wh/De5pq8MHWWTSKZ123UTF+BmX9ZxBKAGbNJyD4u8oudH0+XzLd88SJE1hdXcWTTz6ZV7pnarWcIAjieoXEOEFskGpF0XW9oJRMVVVx5syZighxoHrdVFZXVzExMYG5uTm0t7fj4MGDaG5uTh4n3TALtoXomoDCSy3GVRhaYdtjSMS4T1EBm4mmw7413NUYwuG6ecwYtfjJWh9eCHdCS7nJ0I3s9/UpBn557xu4d9ubGPCFIZR94GInFH7OdTsFWiFYO9ToV9CCr2JX3y0A3w8o3TnuaWEoioKamhoMDg6isbExr3RPsrAQBEGQGCeIZLpgPB53taIIITA3N4dQKITV1VX09PSkpWSurq4mJ3VWcvsrxfLyMsbGxrC+vo6enh4cPXoUdXV1WcslJnAWNoYeB1iBHUqcUIUKvWAx7vyaR1EAbHQugcANtYs43hjCLv9qcplebxT3brmADzeP4cn1Hvzbeg+WzRrEUyzxLf4IfuPAq/ilgXPY4rlSwmfmaQCAUAIQrAXMfAMso7OLYP0QSgeY+QYU86WNbQG2dv8bxMrTEN47wP0fh/DcUND+54I1h4LSPQmCIPKHxDhx3WKlZMbjcVcrSq4pmZWuVFdiPMMwMD09jWg0iqmpKQwNDeHgwYPShFBd59BioqBsSj0uwEpdGRceGPHCLniaRIx7FQU+xcRtDdO4s3ESPd6o47INqoH3Nwdxd1MIJyMd+OF6OwLNXnz64Mt4X9cYahXngRgfAwMg2BZwdSuYcQ5C6QaYF4p5BswM2a8HE0z/MRT9x+DqwYQo994BMPd013ywbmAt8k33tN4jM93TKTCLIAhiM0FinLjusEvJdLKi5JuSuZnEeDQaTfrB6+vr4fP5sHPnTnR0dLiuqxsmtJhAIVNXtZgAk3QwKQQVKvQ4d7zgcc6gKPbHUZM0dVGZgmZ40eWJokXNzZTuYQLDvlX8p60/xW9t4zDBUMMkij8VsQQIDULpBFg9GJ/LbT0AMMfwyuQzCGqtuGfXrbmvl8tmOUwYzTXdE8iulluiXFVVSvckCGJTQ2KcuC6wHoVbfnDOudSKUmhKpqIo17wYX1lZwcTEBObn59HR0YEbbrgBzc3NOHnyZM7voRsmtAjPW4yrUAGwkotxBR7pzYGuK6ipsRfEmuF8fBUmsMx9+N7yVvzzyiDe2TCLX2icRLsnbrv8aLwBCgSGasKA94qPZ96owYJRg4BvDTU2NwUCNRDqPjA+CcV8Pe01ru4BBKDwt2zHNNCFn8y8A1/8eSsW4wr+y+HSPnUArthUnCgm3ZMsLARBbHZIjBObGmuSWDweh2EYSSuKnQgvRUpmNSrjpYBzjrm5OQSDQYTDYfT29ma1ZcwrgVM3EY/m7533sI1LUqnFOPcgHnOuXBumihqHlE2ZGPepV6q1MeHB42t9+OlaL26qncfxpklsr1mDIYBL8UY0qzqGa9Zt36fdE0e7J44IV3E2Vo9uTxQtHh0CLRDqNjB+Dor5iv2+mQkRLpR+CNYBZp4Bg4aFcC/+ZfZ2/LdX6hHnV46nUYY5DZk2FRn5pnta3yfTNJOin9I9CYLYTJAYJzYllhUlHA7jrbfewr59+xxbqJUyJTO1olcJoVCs+Le88MFgEIwxDAwMoKenx7EbTD4JnLFI/tullkmMq0KRJoKapvNnHZOIca/NYeJgeCnagTdjLfjFlnH0eiPYXbMCJYfToU4xsdu/ikmtFmejt+NQXRC15svuKwJgPASGEOb0Y/juud34yzNewK6lIs/REpMHhZzvuaZ7ZrZGFELgtddew8DAAFpaWsjCQhDENQ+JcWLTYLUmtLqiWP2MFxcXsyaCCSGwsrJS8pTM1MloV7MYj0QiCIVCmJ6eRkNDA3bs2IGOjg5Xq0Gu6LoJPc7BwCCQ+/Z5NqZ8inJUxiWVet2QiHHdeT1VATIPS5saw52Nk3hnwwz8SmLdJcOHWcOPId86ahXn9zsfb8K/rvbhVLQNAjEA7XhHw534wJZFbMErYLBfV0DFROw2/PdTO/GvEx7samkFsGS7bLkq44We77J0T+vGOLM14sLCArq6umCaJkzTpNaIBEFc05AYJ655ZCmZqcsACTvG7OwsQqEQotFoyVMyU8V4pch1LOsGZGJiAgsLC3l54fMdSzc4AAYP80AXes7vr1qXJKO0YpxxFZwDChRwG0FrSMaLSloiej0CVmvDIe8a7mqaxC11c1Az9GCrR0OrR0OMKxiJNaHDE0u2MOQCeDXahsdW+3FBy/wsGJ5dj+LZ9Vps892OX+0wEFBfAkMEACBQi9Nr78SXTg7itQUlZS1nyiHG3TzjuZKZ7vnmm2/i7NmzGBoaQn9/f/I7LYRIs5pZvnKysBAEcS1CYpy4ZrHaoMXj8WRv78wKuPXfsVgMc3NzmJychMfjQX9/P7q7u0sezmONVykxnktlnHOOy5cvIxgMIhqNore3Fzt37ky2l8tnrFzR9EQLEi/z5SXGFasyrpdWSKkbrRK9zIu4yJ5cacgq4xKbikcVaFaAX217A/tql123w69w7PKvggtgJNaEoFaPn673YtbI7tWeyUVNxx9NAk3sFvzHTh/Ca/X4rz/vwFQ4+0ZClgqqV9kzngup6Z6zs7MYGxvD+fPnk+melvi3s7DYBQkRBEFczZAYJ64pUlMyNU1L/ig7VcLW1xMT5l588UW0trZiz549aYmApabSlXGZGNd1HZOTkwiFQlBVFQMDA0XfgOS6X6vRRKcQT56XGHUjoVKUuDKubHjCPcxjK8ZlteSIZjq+7lEZIqIOf7O4A3c0TuGdDTOok/QLB4A104N/W+/FE2s9WOO+XHchyargeGA2hpde3I6omb+wvtpsKjIURUFPTw96enqwvLycTPcEEgFbqamvlO5JEMS1Colx4ppAZkVxS8kEgIMHD6Ktra3s21kNMZ6J1Rt9enoaTU1N2LVrF9rb24sWIvmsv6olBG++YpxtiHFT0ts7XzgHsNFNJDlBNAuRsLFk3AMkurs477eqJOw4C6bftb3hZd2Px9b68Hy4C5oorr2gF16oUAAHD/m1alORkZru+fTTT+PcuXOYmJiQpnsCSGuNaAlzEuUEQVxNkBgnrmosK4oV0FNISubzzz9fMk+4G9WqjAshsLS0hGAwmOyNfvPNNyc7UpSKXPdr3Uj4oVWR3yVG2RCpvIQ2Fc4VqBv60+nmQFGEbfCP1yWpUlE5BINlG89qb3hX0yQA4LHVPrwcbYeQyuTc8Sk++Lxex7sWmU2l2q0Ni8WyVx05cgSrq6vSdE/gioXFmtBNFhaCIK42SIwTVx2pVhRd111TMsPhMEKhkGNKJmMs6SkvB1wIPBOcwHfffAN//PZ3Jf5WxvEyWVtbw4svvohYLJZzb/Sp5dewuPJX2NbwFs6F34Xhzt9Ek79Luk4+1cSwkRCJSr5inJdDjLNkjKbqUJFWVQ6eqqo38LiIcY8ioNsIbA6GF1a68fCbBzDYPwNfadPn4WVeeJmzkNQ0Z5/+tWRTcRpLCAGv11twuidZWAiCuJogMU5cNVhpe1ZrQjcrSq4pmeVKxYzoOv75/Aj+7s3TmFhL2GHCul6RFE5N0zA5OYmZmRkoioJt27ahu7tb3htdCIxcfhQe/bs42HoOaE/8ud3/z4jEH8Xrs7ehc8tvoatxp+QtctuvKLfEr0fumciAiYTANLUSinGhYH0p8fkIk9luD2MCnGfbPjyOtpYEAmZaa0MhgGjUh0vjXVhaSTyV6O+ZB7wl9N0A8MALVVLVNSU+n3JN4KykGAeQdrNN6Z4EQVzLkBgnqg7nPJmS6WZFKSQls9SV8cm1NTz81hn80/mzWNPSUx0julHWFM5wOIxgMIiZmRk0NzejtbUVtbW16Ovrc1xHN6I4O/MddHn+CTc1ztkuU+cxcGv7MzDFs3h14gDq6v8zhtqOpS2Tj0iJi8QkRsZVIA97NNvwdpu5N2BxhXOG5sYmLCGKeEQD6rOXUZgAN7P3T3W5RHoUgLOECF9dq8WF0R5EouldakxeenGnCi9UyedRW1sLRCO2r5Uj9KcSnvHUsQD78zHfdE8ASQuLpmnJ1oiZXZkIgiDKCYlxomqkdkVxs6IUk5JZykr1P771Jv7058+DO7zf+sYPeinFuPUUIBgMYnl5GV1dXTh8+DAaGhpw/vx5x7FWotMILvw1jPgpHOkch1dx3yaVCRxuex0T65/HN86+HcNt78Bd7XdmTYqTMRt5HP/5rp/iR2w3mNmSlxi3kjeNOEOppBDnCrAhtBvrmrBmE4bjpCMVl8q4ojAoZgN+9vJOGIb9siYvvahThQceiU1FlrMUjkbBOS+Z2MysVNsxu3oO0fXvYrj9XRDedwGs8AmsuYyXa7onkF0tt0S5qqqU7kkQREUgMU5UFOvRsOUHt0SBkxWlFCmZpayMX14POwpxIGFd8ZVIjJumidnZWQSDQWiahr6+PuzduzdZ3QPsWxtOLp/C0spf4VDri+htTVRBL0drMbrWgn2tc2iQWCZeXezAj1YGcEGpA9g63pz/V/x44Sc40nQYO7HdcT3OdUyufwf1/B+x1TuHrbuBj+5+Ey/N9+LRtR6MqbXIxa8iNkSzFuXIrwu6M5wzCGOjD32ethk3z7vCBJjugyFxofASp4kCgGJ6pJVxGWvhMJ555plktdjrLc7Qbp1/dt/J8cUXsbz0AG5oeQWeWgGEvw+hDIDX/Cp4zQcBZvOYwoXUTAE3Ckn3JAsLQRCVhsQ4URGsSVNLS0tYXFxEV1dXWuUplVKnZJayMu5xsRyEdQ01RYp/TdMQCoUwOTkJn8+HgYGB5PHKJCnGk37w/4WDreeTfnCLztooOmujWNO9+PnlHmxrXEJ7baIXuMEZ/u3yAP4t0o1ZT01WJdsQBl5Y+RlOeH+OreFh/Lr2CbT4WgAAcXMJ02sPoJs9jt2ecNa6h9uncLh9CudXW/DDhSGcYQ0QEhG1srgGoKnkEzjFRnCPIvITxsylrM+Y2AgUcrZ+8DJUxhlXoRbYmaW+qQl79uzB2NgYLl68iL6+PgwNDaG+Pn9hDNjYRoTAudnHYUT+CodaR4AtmdsehBr9v6FE/xK85kPgNb8MqP2Fj5cjuaZ7Zj4Fsm6KvV4vOjo6qDUiQRAlh8Q4UVYyrSirq6uYmppCf3/2j681KbHUKZmlrIwzF7tt2NDRVmBlfH19HcFgELOzs2hpacHevXtdA4oYY3hz7SRaZ//fjn7wVBq9Oo52TkPnCp6b7cOauQU/ijdgXfW4Xg0EE7hoXsIfXvwShvyD+IWGy7jR/yT25TA5cUfTMv4/TcuYjdbhgfH9CNbZe/wb6hITcI0SinGTKzD1jc/fVOxtM8z+82Iu/cCZIsDiHsjEeDlsKsxUoUpsKkLiUzE4R1dXF7q6urCysoKxsTE899xz6OjowNDQUN6hWKm2kRPjJ9Ehvox9zROAvKEPGNahxr8DJf6/YHrvQFD5z+ir3ek6tjVZtFBB7Jbuad2UpLZGnJmZQX19PZqbm5N+crKwEARRKkiMEyXHLiXT+vHyer1ZwnhtbQ3BYBCXL19GS0tLyVMyS1kZdxPjEU3PyzMuhMDCwgKCwSBWVlbQ3d2NW265Ja8q5f1nDTwyfQz/eddreG/fuOvyk5EG/HAugFdEM4x4A1BrP9FPxnhsAt+KcZytH8ZdTSH0eaOu6/zsci/+euQgnpkewNtuPWu7jAIPAAO6XUhmgXDOwDfEOMtTGK+uhgE4p2QycMd2ianjlxxDhVJgZTy1tWFzczMOHTqEXbt2YXx8HKdOnUJtbS2GhobQ09OTkxUk1aby1ZfHsBq9DffuaMSHAyOod7lRE6jFGD+C74Q4xuJfw1DtIN7b8W4cbr4ZHsX+56lUfnendM/29nYEAoG0a5A1qdy6lpimCdM0qTUiQRAlgcQ4UTJySclUFAWc86yUzJ6enrxFaK6UsjIudLnIDhu5tTZM7QpjGAb6+vqwb9++ND94LjDGwAXw8nwPfnO+B9ublvAbu07hnsEL8Knp+/z6UjseXR7AeaUegm20+MvTtpGKAQXPhbvxfLgLB/2LuKsphN3+1fRlOMOjwW345shBnFnu2Pir87ERRmJ79FjBm5UFz6yM2+Ako/y+Oul7M0VAMSsvxoWhyMW45PSz6zPu9/uxa9cubNu2DVNTU7h48SLOnTuX1YXEjlTbSETXMb7ejD969e346ulb8Etbz+IT20+jr349fR3WjLf0w/j2HMecbgBI3H2NRyfwzYlv4/94foDb29+Jd7a9A42ehqzxSt3pJDXdc2JiAqdOnUJNTU0y3dPyjtulexqGkbzOkYWFIIhCIDFOFI3VFiwej6dNrrL7wbTaGJ44cSItJbPYSWQyrBuAUsA1+ftEdR1M8TiK8Xg8nuwKY/3Yd3V1FSwuEmL8ylgXVlvxuRffjftP34J7d7yBj20bwcnFTvw03IMZGz+4xF2RMwIMr8Xa8FqsDVt9qwlR7lnF90b34Nvn92M6knsKKN9oaajHSusZN+KJHRWyyZQ2Q3q9tXCKnPcqClQmpJM3AWyECZUWoStSzzh3sak44fF4kgJ8bm4uy1fe0NCQtU5qZTyW0t98Ta/BQyOH8K1zB3C8bxSfu+kSumrX8Ur8Rnz7cgxhrmW9l8WKsYJ/nnkEP5p9DLe2HsF7O96NXn9vcrxyCV6/34+dO3di27ZtmJ6eTqZ7ejwetLa2JpfLTPd0ChIiCILIBRLjREHYWVFyScmcnp6GECIrJbOclLLVoBmXi/GwroP55Vac1tZW7Nu3D62trUWLCsaYrfCaiTbg//f6MXzj7K1obl9AX/cCfDbKW3BWooD2BJe0Jnxjfi/eeq0P89HmvNfnxkY3lVjpWkNyrsDQNsS4kV81WUiEtBeApsdhxl2CgcrgGeeavDIuO99zSeBM7UJiRc6/8MILaGtrw9DQENra2tIsHFbFOG5kn2OmUPCj0Db8KLQNv/j2y5g35nPYwwS60PHs4vN4bvEF/OXer8Hr9ZSlMp6Jqqpp6Z6nTp3C+fPnsbq6SumeBEGUHBLjRF7kYkVJXTYzJXPv3r1466230NnZWbFtLmVl3IjKy6BhXQervfLDPD8/j2AwWDYrTkIESLaXexGaasfk9BZ0tq+gv3cBdbVXKpLcyK8NeK5wqXWDwTQBuxbxwriyjAoVZglK95wz6Bs3UXaVcdnxS7QltN8Gn8eDldV5xOd1yC6l5aiMm3HmNOcUgNSlkncCZ1NTEw4ePJjsQvLaa6+hpqYGgUAAPT09aZXquCT5M7FhhYnoGqUm+TlVMmDISvesq6tDT08PotFoTumeANJaI1rCnEQ5QRB2kBgncqJUKZmRSKSkaZi5UMrKuOYixqNGwmcxPz+PixcvwjTNslpxnCrjyddhVS8VzM61YnauBW2ta+jvXUBTYxTcFOUR4y7dUHRdharaVFFT1vMyL0xRCjGuQMQTnxu3+fiEYGCKsLWpyNIza70+dLa3YSYoADifF+XwjJtxFFEZL+yY+v1+7NixA1u3bsXU1BRGR0dx7tw5dHV1JZdxE/qFPoepYTUweWKfrAJAJeGco7a2FoFAIKd0T+CKhYVzDs45WVgIgnCExDjhSKoVRdf1glIyM/3Q1uTGcvo+MyllZVyL6oCk3fnC2hrWfbXQdR1bt25FZ2dn2X9487vRYFhYasLCUiNamsLY2bJQno0ymLTkbhj2vblN/cp/e5hHXuLNEc4Z+IZn3O4mgXMGVbE/P2Ri3LchqhSuQibGZVaXQtHjgEOzEQCQBlPlYlORoaoqBgYG0N/fn7zp5Jzj9OnTcj86U/Lu827hRQ34hhivhE0lk9Qxi0n3JAsLQRB2kBgnsrDS5+LxeE5WlHxSMq0fNM55TlH2paCknnFDoEZVETftq4sRXUd9fX2yR3q5SVTGZa87voLllTqIptz9u3mhu4hxBxtLmhhHqZ4kqElRz20845wrUBT788MwnYWSR1XAmIAW4dJUz7KI8RgAidtJdrYXK8YtGGPo6OiAz+fDiy++CAAwJe9d6/Egr/jTFDz8yjyMStpULOxuACjdkyCIUkFinEiSjxWl0JTMaojxUlbGTZOjzuN1FOPC64HP5yuZ+HeDMSYvHktfZCiBC8SeuAJZnn2iMm7z95QGG2qJLk+KUJM3LHYNPEzOoCjc1jsuE+NeRQVjAnqMgdUKCAehWQ6bih4VUOol3VTKWBnPGmvju7x//36I559yXK7W44WCwiraqvAmK+PVsqnIxsw33RNA0sKiaRoYY0lRThYWgrj+IDFOZKVkyqwoxaZkporxSlHK0B/D5PBK3iqi5xf6UyxuY0mLbcK+UlwSXDzjhmEvOMwUsay4hOnkipJymTNtbSoKPB4Tpo3wtmkOksSjJBzQekSA1QsIB9Fdjsq4FhVOHRcBVFaMW5azaNy5VSEA+BUVrMBjoZpemOLqsKnIyEz3HB8fx/nz55OtIVMnb2dWyy1RrqoqpXsSxHUGifHrFMu/GIvFklVwJysKULqUTGv5SorxUoT+RKNRhEIhLC4uQu1yFjoRQwcX+fq4C8e1Mi5fGyhHOiTgKsZNh8q4Hr+yN27JlrmipvhlTC37aFmecbtqvWY4H12VKWCKQDwmoDBnbVyOUyEeEfDJuqlIBtU3QrdKJfSsa8d8RJ7kakRjiEbj0icmzit7qm5TyedJnizdM7M1pJOFRQgBn89HXVgI4jqAxPh1hiXCLT/4s88+m7SX2PnBS52SyRgrqW0kFxRFgeGWzOKA5Yefm5tDe3s76usb0FRrYnrNPq89ahjQDF4xMe6O8484AyAkNoyi0FzEuEPvbT1FLCtCLdRinEaq3cWwKd7KPOOa5MmBlzGACWhRASbpM1iOyngswlEjOcVMl/PPFAKeEopxxhjmXMR4S10DlEKPha5e1TYVGZnpnlZrSCvd0xL5ma0Rn3jiCRw9ehSNjY2U7kkQmxwS49cJTlYUy8KRepHXdR3T09MIhUJlSckspW0kF/KtjHPOMTc3h2AwiHA4jN7e3is3LI9cgk/W4BmAxsVVVBmXtT0snxgXLmLccEjCNFLucRj3lKQJuiI8sOrWtmJcMDAmbC09ccP5vPF6AIAhHuFQKjyBMxbmaJbZVFzOCoNzeEokaK1K9WI0Kl2uRvWi1l9X0BhCuyLGK21TsSrWxY7plO45MDCAwcFB+P2JRwapTw+t9oiapiX95GRhIYjNB4nxTYxdSmamFSW1Sm2lZM7MzKChoaFsKZmlsI3kQ67i3zAMTE1NIRgMgjGG/v5+9Pb2pvnhORfwuLRni3GzYvvn9oMs22smWNnEuOISZ+8UCqSl2FSYqZRGjMMDIKHCU20wqTBmbyeJSx6oeDaq6bEqiPHoGge486cr84wDpfWNW0J1KSavjHsEAwQr6GkHjytpYrySQtT6LpfqOpiZ7jk+Po6nn34aXV1dyXRPvmElSi2YWNdz0zSpNSJBbDJIjG9C8knJVBQFS0tLuHTpUjIl88Ybb0RTU1PZtq/SNhU38R+NRhEMBjE9PY2Ghgbs2LHD8SbEzEGMx0XlbCrF/BAzOE86LAbOAeYi8p36d+uxK58TK1GMvCfFe25o2SFHsmcLcd35NZ8nIeDjcVMqxkudwOlhKjiHdAKnm01FLzD4xw7rydpSzN66ZeHhrODQHzPGkm0TK21TKbUYt7DSPdva2hCJRDA+Pp5M9xwYGAAARwuLYRgwDCN5XScLC0Fc25AY30RYbbLi8XjaD4itqNxIydR1HWNjY+jv70+mZJabanjGM8VxZn/0jo6OnG5CTJND5fJybcy8mjzjzjAOp6T3ohCCQXGx6JsONpW0yrVD9TxfUruy6PH8iu0xXRJiowqIjZelMq3EYtzLEkmPssq4mxgvZWXcqlQvx2PS5RhnBR8LLYqq2VTKJcZTqaurw549e7Bjxw5MTk7i4sWLAIDx8XEMDg46pns6BQkRBHFtQWL8GqfYlEyv14udO3eis7OzYttczco45xyXL19GMBhENBpFb28vjh07lvRrusG5AHMRsHFuVkyMG6b8OMo2Q2EKhIMoLgbOFSgux4g7VL3jsSsbLBzaH+aLwq9c5rQ4z6uZR1TiGfeoSHajkdtU8hgwBzwisT+CC8e7gErbVBhjWHET4wYKbm0YXtFwbmEOnV2NVRPjlag8ezweDA0NoaOjA88880zyqWVPTw8CgQClexLEJoXE+DVKPlYUWUrmSy+9VPFtr1Y3lfHxcYRCISiKgv7+fvT09OTcH93C5NxdjIvKTeCMCTcxLpnAKcozgVMIlqi6S7DrpsLAYOocSVNxiW4UUivjWlQ2oTX7tajmvCOqKoCN/VAkoqfUnnFjw8qjx3XAIWPLqIJnfF2T9xlnhgBcLF52xGJenGI6fnriJ3hQO4YtNb68v7fFYCVlVtqnrigKbrnllrzSPQGkpXtawpxEOUFc3ZAYv8YoJiUztSuIhaqqFRXGQGXFeCQSwezsLFZWVsAYw86dO9He3l7wjxPnAqoupJPQYmblKuNxWSoNAFPiDVbA4KLlC4Jz5nrDYpdK6WHpcencpVd5rihmSmU85rzDmZ8YA4NmCjh92ArjyZsZmcQstWe8wZ+ojobXI45ivBqV8XVdLsaFLlwSYdMJR2oQmmrD5flmWJ9BJBxDdH4O9fX1WF5eRktLS+EbniPVaqVo+cXzSfcErlhYOOfgnJOFhSCuAUiMXwPka0XJJyWz0lXqSowphMDy8jKCwSAWFhbQ1NSE+vp63HTTTUW/t8k5FF0APudlKjmBU3fJs1cUFTDtDdzlq4wrrpVxblMhVTPc3KJE6aCpk0nj0dzPOy/zQnbXpSoiaUFRZHdnpbapINFitLGuAYC9NcR9AmfpPeNhXZcvp5k5VcZX12oRmmrDwlL2/I3tO3ciPDuJSCSCF198EY2NjQgEAujs7Cyb0LxaEj+LSfckCwtBXN2QGL+KsdLYrICecqRkKooC0yzDLD4J5RLj1pOAYDCIWCyGvr4+7Nq1CysrKxgfHy/JGKYpoGpcKsYr2dowJvE0J3CxqRgKBGdgDqE3hSA4SwwrBGybd0NWGb+CXXR9vnDOsLK4cuXfJqBAAZe1ItnAq8j76iuMpXjGK2dTUS0PvGQXCrWpmJzjgZdP4oVQEA//4kdy2h7ruhRxEeNmnLt6xsORGrx2ZtjxdWOjYtzZ2YmhoSGEQiGcPXsWZ8+eRSAQSKsUlwrL8lFJrPaFdpQi3dP6HSFRThBXByTGr0LysaIUm5JZrcp4KSvHmqZhamoKoVAo+SSgp6cn+WNWyvE4FzDjJtDgvEyluqmEw2GMT09Jl5FthSIYuK4kvNluMy7zQPCNBnbODg9b64aacTnictdDTnDO0FzfhFVcCaTxMA804f7mmduTjUgKYlmHllLbVNhGNx9Zd8J8u6nEDQP/94nn8P2Rt6CZJpp8uXdVsmwqMZeUWzNuFm2L0k0OsVE19nq9GB4extDQEC5fvozR0VGcP38e/f39GBoaQl1dYQFDmVwtlXE78k33BJC0sGiaBsYYtUYkiKsAEuNXEU4pmXYXyVKlZFbDM16q0J9wOIxgMIiZmRk0Nzdj9+7daVWhUo8HbEzgjMmFa6yM3VQsC87ExASWlpagq/IfbNcJnJqSaCHoLaUYdxcRdv3NM20qpamMK/AqmfYXkVN/Qw+Tf5dU5Uqf9oRNxf5Yl7oyzjY88MLlqYjzFl0R4yuxGL707FP4yejFdAGfx/lr2VRiDnYoCz1quFbGmUu6rclNICP0R1EUdHd3o7u7G8vLyxgbG8Ozzz6Lzs7OZIhOMUKzGmJcVhm3IzPdc3x83DbdE8iulluiXFVVSvckiCpBYrzKWI8OI5EIpqam0NXVJbWilDol81rzjAshsLS0hGAwmAwpuvnmm9NafpVyvExMk0NE5cK1HK0NM1sy9vX1Yffu3Xjy0kXggvN60so4x0ZlvLQ/vJZAZdzZImwnUFWRfjlaXZInOuYC5yyrl7rfWwudp1gqUjYl1VnjVhln7IqvXRUyMZ7vVrtgKABEsu+2Ex7GoDsMbnATf/LcM/i7M6/bbnU+m2zZVDQXu5sWNYq+MTFMAVUyobKlpQU33HADotEoxsfH8fLLL6O+vh6BQCB5bc2Xq7kynkku6Z4WdhaWqakpNDc3o6mpiSwsBFFBSIxXCWtSTTweh2EYiMViOHfuHHp7e7MuwkIILC4uIhQKlTwl81rxjJummfSDa5qWFKO5hBSV3KYSlVcAY7x0NhXrBzIYDIIxhsHBwbTJuJrLcZRuhQCEroBzVorU+Stva1W9JYPbiTIlU7nz4i9PdmI805tuwZBID7UKkorDchaqkohpB+QTOEtdGYehAjBcK+MeRYHu8N0emwji6fFRx48on/PXsqm4pXrGI3rSY++EW2VcNzlYDkK1trYWu3fvxvbt2xEKhXDu3DmMjIwkO5Dk8wSxWpXxYsaUpXsODQ2hu7s7+f6povzixYvYvn07/H4/WVgIooKQGK8wdlYURVGSCWupP4JWSmYwGISu63kJ0FxRFAW6y8SrUpOPGLc6w4RCIfh8PgwMDKCrqyuvR7iltakI6BEXMW4aRYvxWCyGYDCIqakp1NfXY8eOHejo6Mj6UdTcYs0l26HwhGe81B1V+Mb7MUknOzuBGllP7wyiwld0QKjJFYiMYCSnireiCgihwDKCK26VcYWDb5wKikRwl1qMWy0fTUN+jqlMgVPE6lo4jHDE+clDPqfvFTEu/47FwwYg3J82yDA4hyfDpiLD4/EgEAgkfeVjY2O4cOGCbQcSJ6pVGc/nGicjM93zwoULGBkZweDgIAYGBtLSPU3ThNfrTYpzTdOSKc5kYSGI8kFNRytAqhVlbW0N0WgUQgh4PJ7kjHbrwss5RywWw4ULF/D8889jcnISQ0NDeNvb3oatW7eWPK7+arWprK+v46233sILL7yAlZUV7N27F0eOHEmblJTPeKWqVJsmhxYzpd0zYmbh3VTW1tZw5swZnDhxArFYDDfccAMOHz6cFvKRStzFqiB7NeEZZyVrIZgc06p+Sg6B3XbV+tIn3Onx4j8zzhlExr2TKtLPH2vvFSbSurxEw3HpezOIpK9dlbTsK7UYF3piLJ5DZdyJwLatUDzO1eF8vi+WZ1w2adSvehJPYtwq4y4GGWNjcnS+4pgxhq6uLhw9ehRHjhyBrut47rnn8Morr2BxcVG6v6UUxrlSjg4uVrrnO97xDuzbtw+Li4t46qmn8MYbb2BtbQ3AlX21ikTWtdM0zWRXL7OCOQoEIeOZZ57B+9//fvT29oIxhh/84Aeu6zz11FO46aabUFNTg+3bt+Nb3/pW1jIPPPAAAoEA/H4/jh49ipMnT5Z+4zOgyngZyScl0/r3m2++icXFxbSUzHJWIqoV+mNXjbfsOBMTE1hZWUFXVxcOHz6MhgZJ65IcKGVlnHMBBqDW43Hsq5zvBE4hBBYWFjAxMZHsiHP06NGcukG4VcalYnzDM+7SqjxvxEZypqzXuJ1A9anpN5paTCC/6cjZcK5k2TkU4dQyjsNICQhiDssll1cFjI0bGUWyr6XupmLGrcq4/JxWJcManEvbH7qFBqViXddk69R5PAB0wHUCp3wsU/CiK9XNzc04dOgQdu3ahfHxcbzyyiuoq6tDIBBIs29YXOuV8UwYY+js7ERnZ2dWuqeu62n7apfuaRhG8neMLCxENQmHwzh06BA++clP4kMf+pDr8qOjo3jf+96HT3/60/jud7+LJ554Ar/xG7+Bnp4eHD9+HADwve99D/fddx8efPBBHD16FPfffz+OHz+OkZERdHZ2lm1fSIyXAattVDweT4pAq8pgt6yVkgkkgh0yUzLLydXgGc+04/T392Pfvn3Jx6elGK9klfGN7a5VJWI8x8qR5YOfmJiAYRgFdcRxswZIt4MnqqylFuM8ZQJnfiumfz/0kohxBq7nKsbTUz/rauU3gQwCxsYpoEg6yJS6Mm6JcbfKuCoRkAbn0hRO0+S4dOkSBgYGXM9HIYRrv/tajxcCUVfPOFy7qRQvxi38fj927dqFbdu2Se0bPA9bTKmoVG/zzHTPxcVFvPLKK1k92zPTPZ2ChAiiktx99924++67c17+wQcfxPDwMP7iL/4CALBnzx4899xz+OpXv5oU41/5ylfwqU99Cr/+67+eXOfRRx/FN7/5TXzuc58r/U5sQGK8RJQiJTMajaK/v79iQhyobp/xeDyePAY+nw9DQ0MFdzyQkdoxoJgf1UR/3oRY8KvOX50YN2FIYuozffDWpMxC9ttVjEteY1yA6wq4WdpHzpYHneUp8lmGoI1HBYrtFM2FAlNP3z8mVNv+54qS7pUWEutJjaJAwAQ3Nvo4V9Azbmy4Z9wr487j6i5iHAyYm5vDxYsXXft2c86xGpXPO6lRVMQA1z7jbhM4LZtKKcWxZd8YHBzE3NwcxsbGcOnSJfT29mJoaKgqNpVKj+nz+TA8PIzz589j69atmJqaonRPYtNx4sQJ3HHHHWl/O378OH73d38XQOK3+eWXX8bnP//55OuKouCOO+7AiRMnyrptJMaLpJQpmePj41WvUlcCTdOwsrKCEydOoLW1Ffv27UNra2vZLuCWyC32Rzz1MXyN4vxDGTdNxLTszzESiSAYDGJ6ehrNzc3Yu3eva0KqG/FizhcOCJ2VPK7dqrTLxThLpGGmHkYzXfxqeUTXO2FXGWdclfQZv/JZpE7mzMQDhoWFBRhrieq5rDLOOQPnCbFfCvSNea6mLj8+CnOpjEuUMQdw9OhRrKysYHR0NNm3e3h4OK09HpD4Xq3o8hClGpajGJe/DKOElfGssVPsG6urqxgbG8MLL7wAv9+P+vr6kt8EyOCc550ZUSzWb09vby8GBwfzSvcEkJbuaQlzEuXlIxaLQdNKkIx2lWH3PaupqSnJfLmZmRl0dXWl/a2rqwurq6uIRqNYWlqCaZq2y5w9e7bo8WWQGC+QcqRkVsO/XakxU33RKysr8Pl8eSWFFoP1eRT7I26mVJB9zFmMx0wD0ViiUiiEwMrKCiYmJrC4uJhTX/R8kFY3XUjYSFjpu6lYPmp50xkYcQW+upTt54n+2RaxkohxBYaeflfAuJJT6A/nzmK8zl+DlmYFU9HEj6Ee0eBcxmfgnEFRSnPXo8US7+NWGffIKuOmCVNyF2YJrObm5mTf7rGxMbz44otobGzE8PBwclKxEAKrLh2ZrO+L6wRON5uKWT4xnkpTUxMOHjyInTt34tVXX8XCwgJeeOGFZLJlucc3TTMtqKcSWGLc2rd80j2BKxYWvnHDRBaW8hGLxTA81ICZy5Ut3lWChoYGrK+vp/3ti1/8Ir70pS9VZ4MqBInxPLAuNKmzykuZkqmqalUq4+Uc0zTN5DGwfNEdHR2Ym5uriBAH0ivjxZB60+KVNCLiAGKGkfSDR6NR9Pb2YteuXSXvhuNmU5FhVa5LLcat7ixuNhXT8ABIqewY6cE5RlyAgUEUUbrnnMGMZxwjU0G6GV3Y/jeXVLtrVA9qvAK1vhoAa2AubQYNU4HHU5rvmRbdeE/NrTLu/LmuRWOOrwHZ8yxra2uxZ8+eZN/uN998EyMjIwgEAjBN07Uy7rG+L26nq2trw+LtZvng9/vR3NyMlpYW1NfXY3R0FOfOncPg4CAGBwdLNq8lk2r1Nre6qKTilO5p2Zdk6Z5kYSkPmqZh5rKJ0ZeH0NS4eW50Vtc4hm8eRzAYTMtRKdXvZnd3N2ZnZ9P+Njs7i6amJtTW1ibPU7tluru7S7INTpAYzwHLimL5wa0LZalTMq+GyZSlIh6PIxQKYXJyEn6/H4FAAJ2dnVAUBbOzsxV9ApBaGS8GM6WNoFfiJwaAlWgUFy9exMDAAHp6epIToUqNW9CKlI3DUXIxbkXEu7Sv100FqbMjsreDwcM80EXhffBNzmBkWIZYih0mNXHTGjO5ruS4eFUFTGEwNqrUNZ5aAGuOy3PTued3vmiRxJiJ+QvO26goMjEub9vodGvh9XoxPDyMoaEhzMzMYHR0FOvr65hZk6eleoT1HZQu5trasJQTOHOFc46amprkxM75+fksX3mpnnRZmKZ51fnUi033tCwsVjtfEuXFU9+Q+N9mwXr43NTUVJJQw0yOHTuGH/3oR2l/+8lPfoJjx44BSMyduPnmm/HEE0/ggx/8IIDE9+KJJ57AZz7zmZJvTyokxiVYVhRN02AYRtKKYifCS5GSuRlsKqurq0lPfFtbm217xkr71EslxnlKeIzq8laGwnDrrbeWXTQUUxlH2SrjG6mULhraMNN/+IWNYC1WjHOuQI+n+2VEihhP2Efsj6EpsVR4FRVM4dBjG/vgsomyKnu+xCKJ7WUAvIrieA7IJnCuR1y8piwxWdKj2m+3oijo7e1FT08Pfv7zn2NlcUn6dsrGOeY+gVP+urHR2rCSQi5V/DPG0NHRgY6ODqytrWFsbAwnTpzAli1bMDQ0hPb29pJsWzUq41YF2w27dM+XXnoJ9fX1jumewJUny5qmUbpnieAQ4KWe9FNF8t2X9fV1XLhwIfnv0dFRnDp1Clu2bMHg4CA+//nPY3JyEt/5zncAAJ/+9Kfxl3/5l/jsZz+LT37yk/i3f/s3/MM//AMeffTR5Hvcd999uPfee3H48GEcOXIE999/P8LhcLK7SrkgMW6DXUqm00WjlCmZ12plXAiB+fl5TExMYH193bVPdjXEeOpEo0JJrYyrLt5XnaEiP6aGS+iPDLaxrjBLu508h97bQMK6YbdeKh54AUQL3xbOYMTTv1OpNx8mVxy93JKGOPAwBoYr/m24BCcZpRTj6yl2KUV1FOMykbMel1fGASCuG/CochsGYwxerxdKbS2w6rxc8lxw9YzLt8ksMPSnGJyEcWNjIw4cOICdO3diYmICb7zxRrIrVCHhZKlUqrVhKoV0cMk13RPIrpZbojy1wEXCPD84uKvz61oi37156aWX8O53vzv57/vuuw8AcO+99+Jb3/oWpqenMTExkXx9eHgYjz76KH7v934PX/va19Df34+//uu/TrY1BICPfvSjmJubwxe+8AXMzMzghhtuwGOPPZY1qbPUkBjfINWKMjY2hoaGBjQ3NztaUWKxGEKhEKampuD3+0vSlu9a84wbhoHp6WkEg8GkJ/7gwYOuXQCq2U6xGFK32YjLZyfGKvQ5FmVTSVbGS7MtFlbipatnPLMybivGi7tEca6AazzNzJE6TmZlPPUMMSRPDDxMAVMEtA3rtVvxvpSV8Wj4yoH1SKwoisTCEom5P23QDAP1cPdEc84RMd08SZa1xvXtkPgU7Lfd4GbFq8ZuwrimpgY7duzA1q1bMT09jbGxsTRfeSGFmWqlfhY6ZmZ7yPHxcVy8eBE9PT0IBAJpNp5MUR4OhxEMBrFr1y6ysOSJKYQ0+fZaI999uf3226W/63bpmrfffjteffVV6ft+5jOfKbstJZPrXoxbk0zi8TgMI6EiFhYWoKoqtmzZkrXsysoKgsEg5ufn0d7ejoMHD6K5ubkkF49qitR8JkWl3ojU1tZi27Zt6OjoyPkHshr7WYoUTj2lVBpdDQMSr168QvunF1EZtwx6ZZvAmW9l3EbPqaK4S5QCNevBp2WjARIi2eswsVKTTMr0KAxCEVfaL7p0juFuYTc5okCBoV0Rqx5Ji01Za8OoS/cTAIjpLju1gRACEZebz5WFZQAAd5noCiQ6qjj1ZrdCt6plU5GR6qleWFjA2NgYnn76aVtB6kY1KuOlGFOW7jk0NJTswGMtyxhDPB7H1NQUtm/fnrQgkYUlN653m8pm4roV46lWlMyUTI/HkybcUlMyrc4Y5UjJrEZl3KqE5FKJsW5E5ubmiroRKWUiZiXG1HUdk5OTOP3WpeTfGmsbIbNPxIupWOeBUUxZ2zrFy2RTcRPjppF+vpl69nmk5NKDUIIKT5ZO5il/kHnGdYn1xMMUMAbEN/zbwqXNYKnEuE/xIbVq7JEIbtnXMqa5C+18xHjUlC9b660FEMHyksTLsgFj6eFLqRjmlWt1pci3Es8YQ3t7O9rb27G+vp70lbe2tmJoaAgdHR2u18xqVcZLOdE8Nd3T6sBz9uxZDA0Noa+vL/kE1drX1HRPTdPSfo/JwmIPh5C2KL3WIDF+nZCakmmJcCugIPWLboliu5TM7u7usnXGUFU1WZ2vFNaPjNPFn3Oe9IOHw+GS3IhcK5Xx1JCepqYmDA9vBXAeACB0Ie1VHXebqVYiivGMI+kZL9HGWGxUnl1tKhkdaeycDsVXxrPXT4285xLPuCZJJvWpAhAM2oZdKTPlM2vMEtlUvOk9GaWTNGXiJRehreVYGOCcu9qyVJ74stTXNcis5QDkvcavBTGeSkNDQ1rc/JkzZ5KWjr6+PkfBXa3WhuUY0+fzYevWrQgEApidncX4+HhauqdhGMnf1EwLi2maSfsMtUYkNjPXhRi3rChWa0K3lEzTNDE7O4uxsbGslMxyUq0JnEBin1O93oZhYGpqCqFQCADQ39+P3t7ektyIlMIyki/53ABYIT3z8/NpIT3BqSsdI7jGAUkmR6VsKrLQn/Su3TaUq5uK9X5ulXEzU4xnbwfjKiQt3V1RRbbYyRwn9Wud+opsWoDXk9jP+Eavb9MmcTUVJ9tFvnhZuofbIxFPMqGumabrcdVyLAwIIRBzeRJkTaJVJGFZFrIjZQgOVGhytEUphLHP58O2bdswPDyc9JWfP38eAwMDGBwczAr4qUZrw3KPqSgKenp60NPTk5bu2dDQkGWVtEv3NAwj+btNFpYEZFPZPGxqMW61UbK6ogBI3lnLUjJXVlZQV1dXsYRIi2rYVKxjYQnVaDSa9IPX19fn3CM9HwrxqZdqTCeszz/1CcCxY8fSfiR5yvpZQTIZVK4y7jyOW2drYYqEYC+xTUXk2E3FzKgWmzbd9pRixTi8yLwrcKtiW8QkcfMeNdFP3dyo1Oou0fSlqoyrIvfKuAzNNFyPa1zP7VokhIDmcvNpbohxtwROAICkMm6aHPBcnZ7xXFAUBX19fejt7cXi4mKar3xoaAjNzc0lHzNXKnkDkJruefr0aSwsLOD55593Tfd0ChK6XrneJ3BuJjadGBdCYHR0FC0tLUlxm29KZlNTE3Rdr6gQB6rTZxxI/ECsrKzg4sWLmJ+fR0dHB2644YbkD0M5xgMq64t0qsZndoQZGBhwfAJgptgW9Ki8aqhxXpGbDZkYl5pvAcAozwRO6LklcGb6qO0SJZmpFHWVSnjOM8S4JtnflMMVl0w29G7YVK68p3xnS/W19mTYdlSJopade7n0p9dzLAwkxLh8WT2S+L5wifXHQvaVMTYm+F2rYtwitVd3OBzG+Pg4Tp48iaamJgQCgap4xqsxpt/vR1tbGxRFQWdnJ6V75gmHe6jttcRm2pd82XRiHADe8Y534Jvf/CaOHj1aUErmxMQEYjF5XHQ5qLRNhXOOy5cvg3OOc+fOoa+vL6saXA6qIcYzK+OpCaG1tbXYunVrMiHUCTNFwLiJ8biokBiXVOCZm1FFJF63aylYDNxkCYlYApsKiqwoJzzn6WZ0U8ut+hKVxM2rqki7iTFcqsilsqnEwumPD6SecYnhQ3oTt0E8xwmcnHNXcR+PJD6DXG78ZCmcRpX6b5dzzPr6euzduxfbt29PTnQEgKmpKQwODpZtjlIm1bDGWONac7Ls0j2HhobSguPsLCymaaKmpua6E+PmJpvAuZn2JV82pRivr69HJBLJurDYpWTedNNNWS2nqmEXscatRGVc1/WkH9x6arB37160t7eXfWwgXYxXCqsyvr6+jomJCVy+fBmtra22CaFO8JTJklrEpTIOUZGOMfLKOKRanFmtDQ0FwmRgaom2N9fKeIZA1e2sP2Zx4kCx8YzrLuGTFlGJ9URReFpl3zTk0fQls6nwDJuK1GHtjOwmziLXCZxCCFdxH9sQ40VXxgUHY5X92aqUZcSa6Njb24unnnoK09PTuHTpUtJXXuruXZmYppkW0lMpUru42KV7vvzyy47pnkB1unNdLZjiSoT8ZmAz7Uu+bDoxzhhDQ0MD1tfXk3/LNyWzGhMpgfLfBEQiEYRCIUxPT6OhoQE7d+5Ee3s7fv7zn1e0olCqePpcsWblj4+PIxqNoru7u6D5AJY/GLhS6XNCE5UR46asm4pbp5WNU43rSqK9oVqicy/H1oaZAtWIZ5+DRVftbdY34rl9LhGNw0lgqwxphnwGeX/szBuPQqnzpTe3j4QjzgtLhsylAqXJIkhTEC6+VZUxGPFE8FJOHT8lnvH5+QWIxs6KeqqrYd8AgGPHjiUnOj7zzDPo6upCIBBAS0tLWcarZmXcbtx80j2Bys4juFogm8rmYdOJcQBJMX7hwgW89dZbaG5uzisl0+PxVEWMl+MmQAiB5eVlBINBLCwsoLOzEzfeeCOampqSy1Taq84Yq0h7Q6s//MTEBCKRCLZs2YIbb7yx4OpPqk2FG0IaRa5t2FTKjSmzqbi1U9l4TWgM4Crk0z1zJ9fQn0wxrtlUxlMDegohupZtNzM09zmhKlMhJGqWMZZ1bBUmYDqI7pKdCqaK1IFrfTVA1L7fvUya5CLG43m0NpR1QajzesEQ31jW/f1krQ29NT5wzvHMM89gaGgIAwMDZbdxVCPx07pGbtmyBVu2bElWiV988UU0NjYiEAigq6urpAK0GkFDQMJmIrsmu6V7Vnpu19UEB4NZ4NOxqxG+ifYlXzadGBdCIB6P46tf/SpGR0fxq7/6q/jjP/7jvMJpNoNNxRKiwWAQsVgMfX192LVrl+3TgGq1VCyXWLVCekKhEDweDwYGBjA/P4+2traiHsPyjEpznceLFS1uu2y8UpVxWUVSUZwn4YkrUpPrCoQhcxjnh9A3HiNvjOPkO8i2qWTvS7GV8eb6FkQwlz5OjMMtoNzLvC5LiCwxLru8iBLZVBI93K98pn5fjSx7yhFTIniTQ+VYGY/E5U+JalUPYInxXGwqktd8NX7U1NRg9+7dGB0dxcWLF5OT/cph47AmC1a6lWJmpdiqElu+8rNnz2JkZARDQ0Po7+8vyQ1JtT3jbjilezY3N2PXrl1ln+t0NcKF+wPQa4nNtC/5smnEeDwex/e+9z187WtfwxtvvIH9+/fjxIkT2LVrV97vVS0xXgpRnCpEVVXFwMAAenp6pBfZaoTwlGPMaDSaDOlpbGzE7t270dbWBsYYFhcXix7PzBASftWDFdiLcR0ccU0vqwczFoshruVogJYgdOXKpMtSkDoRU2KlzrR02HnGud2kzjzI7D4CAOtrcVcx7nER4ypjQMZkREUicEtlU0nc6Fy5Rsg+s3DE2cLCcxDjuXZTWZE1ZEfie2ItwXOYEyqrjJsbQrW7uxvd3d1YWlrC2NgYnnnmGXR3dyMQCJS0C1RqOnOlkFWovV4vhoeHMTQ0lMzCOH/+fPKGpK6urqhxryabiozUdM9gMOjYqGGzY26yyvhm2pd8yfsK88wzz+D9738/ent7wRjDD37wA9d1nnrqKdx0002oqanB9u3b8a1vfStrmQceeACBQAB+vx9Hjx7FyZMnc9qecDiML3/5yxgaGsKf/umf4j/9p/+Ej370o3jPe95TkBAHql8ZL6SiGg6HMTIygueffx6Li4vYvXs3br31VvT397te6K6VREwnVlZW8MYbb+BnP/sZNE3DjTfeiJtuugnt7e1pk3yKHS9zfb/kuOoQiEaLF8p2rK+v480338TPfvYzaWU81x+nhGe8VFsHIKV1oMyqkinGtVj2viwvrGf9LVdMzqDYiGBuXPncnISfx2WSIFNEloVGkVXGS1Tx4XrGmDIrjWxCaQ6nhmbm9n1Z0+SV8RrlyrHMzTPu/JK50drQorW1FTfeeCPe/va3w+v14uTJkzh58iQuX75ckidT1RDjuXjUrQCdY8eO4fDhw4jH43j22Wfx6quvYmlpSbpuMeOWg2JuAnw+H4aHh69bq4olxjfT/65X8q6Mh8NhHDp0CJ/85CfxoQ99yHX50dFRvO9978OnP/1pfPe738UTTzyB3/iN30BPTw+OHz8OAPje976H++67Dw8++CCOHj2K+++/H8ePH8fIyAg6Ozul7+/1ejEyMoJvfetbuPPOO6EoCs6ePZs2gTNfqinG8wnDEUJgaWkJwWAw2R3GSovMd9xrrTIuhMD8/DwmJiawvr6O3t5e3HrrrY6PqlNbYRVK5mRJnyRNMC4EwiUU45b3f3x8HMvLy+ju7saRI0egTE0AhlwMucE1BbxE7Q2FABQzozLuuGz6mPFo9oRJr+pHoU1GOWe2wUNGDh+LCrfKeHaVVy7GS3N8eUaPdLubDYvaulpgbcV+e3LQlrlWxlddxLiPKQhv/Dd3D/6UtjY0HSwjqe0Bg8EgTp8+Da/Xi0AgkBYiky9XW2XcjtbWVrS2tiISiWBiYiLZfcTylef6XtWqjBuGUbTN5nqsigOJJ26leup2NbCZ9iVf8v4G3H333bj77rtzXv7BBx/E8PAw/uIv/gIAsGfPHjz33HP46le/mhTjX/nKV/CpT30Kv/7rv55c59FHH8U3v/lNfO5zn5O+v8/nw9/93d+l/a2hoQHBYDCf3UrDEsWVnriTGk0vG5dzjpmZGYRCIcTjcdfuMLmMWw3PeCFi3DTNZEgP5xz9/f04ePAgvF65eCqFR93MqBTKxLgmeEnEOOc8mQwajUbR39+PvXv3Ju0v0sp4jmMkbCpFbyqAhABOrYazbGv1lWVTXlChwm6LVRTj8Veg2lzc4zYVeAvrFdWlMq4oZtYxK0aMS6z1aZgZHWdkq8jOdp6D5sq1teG6i/fEiyuDmaZwF+MulXHZtTE1dn5qaipp4xgcHMTg4GDetjHrGlXpkKFCRHFdXR12796d9JWfO3cuzVfudo28lmwqmVyvYnyzVZM3077kS9k94ydOnMAdd9yR9rfjx4/jd3/3dwEAmqbh5Zdfxuc///nk64qi4I477sCJEycKGrOxsbHoyjhQ+dnl1rhOIlXTtKQf3Ov1YmBgAN3d3UVfyK4Fz3hqSI/f78fw8LBrSE8qpbDFZE7g9EpkBQcQdakYyrBuOiYmJgAg6f3PrCBxqRjPLWmS6wwit3wXV7jI6DIiO+QpApU5+CYMe0t+btvCWbKXeiqmzsHAIOzk6oZtJe5yI8WU7JAiqRh32VZjXYG30f38zDweMuu340tcyDfWGisHm4oQAmGX75Un5XPO5aZP5hnnOT41VBQlGSIzPz+PsbExXLp0CX19fXl14LB+A66lxE+Px4NAIJDmK79w4UJy35185deyGL9eMaHALN1sn6pTeT/C1UPZxfjMzAy6urrS/tbV1YXV1VVEo1EsLS3BNE3bZc6ePVvQmI2NjQiHw+4LOpBaoXarJpQSq51VZpV6fX0dwWAQs7OzaG5uxt69e7Fly5aS/UBczWI8dd9bW1uxf/9+tLa25r3vJamMZ2yvx8V4G9bzF+OapiEUCiEUCsHv92Pbtm3o6Ohw/HGWifGciwwmQw4ZMDkheLqLOVfPuFe1r1jmYilxgnMnLzyDl3mhCZs339gmxeXSqDAOI9O/LTknheRc4RwwVn3wNrobcvIS407nhgHk8sAhF5uKEAIRIV8uTYwbxXVT4Xl2NmGMoaOjAx0dHVhdXcXY2Biee+45dHR0IBAIuF5LKt1JBSidOGWMJSe6rqysYGxsDM8++6zjvleztWEx+3u9Bv4AiWvoZrJ2lMrOdy2yabqppJIZ+pMvViplNTuqWGmhwWAQy8vL6OrqwuHDh9HQ0OD+JnmiqioMo0Sl0RyRifFML3xXV1dBIT2pMMaK/jwzu6nYWSBSiZq5i/FIJJLsBNPS0pLzTYesv7NsTZYWz5ndGaRQMi+mUjGe8t9eB1uIXbvDXOGcOUa6eZjHXoxvUOuXf88YBIwMYSmTMbIfGaEx8FhuYkTLaGPIJO/r1CaMcfdKPQDoOZSxOeeIuoghJeVtcpoTKuumIgqvGjc1NeHgwYPYuXMnxsfH8corr7h6qyttVSzXmM3NzTh06BB27tyJiYkJvPLKK6irq0MgEEB3dzeAxHW30hVqK5CNbCqFQTaVzUPZxXh3dzdmZ2fT/jY7O4umpibU1tZCVVWoqmq7jHWRyJeGhoaiKuNAddsbzs7O4s0334SmaVke4XKNeTX0Geec4/Lly5iYmEAsFkN/f39RXvjM8fQCKtVp25exvYrLIYvlcIOzsrKCiYkJzM/PFzQBV1YVkkmkTL1Tqj7YPKMCzHI8rVSHS5ERy73An70tCoRDJdbRE75xYJhkhqOKRAFdZJxO0sq4RDQbETWrS4oTejR9f+Q2FfsXcxXjq+th18nkQgjEXB6rpE7oNfUcKuNSz3jxlWq/349du3Zh27ZtCIVCGBkZwcjICAKBQFbP7mqI8XLaNmpra5P7nppqOTAwAAAVF+NWQabcwU0EcbVT9m/AsWPH8KMf/Sjtbz/5yU9w7NgxAIkJNzfffDOeeOIJfPCDHwSQ+II+8cQT+MxnPlPQmJZnPNeuJHZUWqDG43FMTk5C0zRcvnw5Wa2pxMWx2jYVXdcxNTWFUCgERVFy6o2eLyXpppJR1nMTmlEHMS6EwMLCAiYmJrC2tobe3l4cO3asoNAKqU1FQua3oujYeet9MkQ9c7kfsSYuKrD/rLWYcO0J7gTnDMKpMi659AkBCOF87nmZgvm5OfD19Jsm2dkqnUwZVSFy7KceyxTjkq8tdxDJObQYBwAsLC3h+eefT3YksROlCTHu8kVIuSEyc7GpSD3jvGRVUMtbPTg4mOatHhgYwNDQEPx+f1WsG5W4AchMtbx06RIAYGRkpKKtAq3f2GKu9Yyx67cyLhSYubRGukbIIRNs05K3GLdi5i1GR0dx6tQpbNmyBYODg/j85z+PyclJfOc73wEAfPrTn8Zf/uVf4rOf/Sw++clP4t/+7d/wD//wD3j00UeT73Hffffh3nvvxeHDh3HkyBHcf//9CIfDye4q+VKsZxxIXKwqIcbX19cxMTGBy5cvo7W1FX6/Hzt27EBHR0fZx7aoVp/xeDyO8+fPY2pqCg0NDdi5c2dab/BSUop9zPSMw0VYRM10JWp1wZmYmIBhGOjv78eBAweKmpdQqGVcSbOpAKJMNhX50wMGQ1PgreFQHcRvMWLc5Aq4QyVWdZDOChOJfRAKnCR0bY0PTc1ezJ5P93jLen7LKuNm1JNMLXUjHknfJllR2jHNLsevwZaODgwNDeHSpUs4f/58Mn4+9XzlnCPuUmcX+pUBc5rAKXktX894Llg9u1NDhJ5++mn09PSgqampKpXxSo1ppVo2NDTgmWeeAecczz//PNra2hAIBEo6N8kOyx5ZzP5ez55xDga+iSZwymyXm528xfhLL72Ed7/73cl/33fffQCAe++9F9/61rfSOkAAwPDwMB599FH83u/9Hr72ta+hv78ff/3Xf51sawgAH/3oRzE3N4cvfOELmJmZwQ033IDHHnssa1JnrhTrGQfKa1OxKqPBYBArKyvo7u5OeqJffvnligvjSvcZX11dxerqKi5fvozOzk7ccMMNJU3NS8V6OlKKCZyZ3VSELqTfIEuMW5V/KylucHAQ3d3dJfnBdbIiJF5zJsumUioxnvE+bpVxU1PhreFgDmI8HuPIr2v+FThn4Ib9ea3aJHMCiSYjnAOcpSddpuL3eOD3K6ivqQFwpY+3ME041cdlYpxH1ZyfTMTW07dJVuV2emqSa2Xc5AIDAwPo7+/H5cuXk/HzAwMDyYA2IQQ0F5sK10pXGXfqM14KGGPYsmULtmzZgnA4jLGxMYyMjEBRFMzNzZWtUJBJNcJ3rEh6y1M/MTGBU6dOwe/3IxAIoKenpyzH3Rr3eq1sFwt5xjcPeYvx22+/XSpq7NI1b7/9drz66qvS9/3MZz5TsC0lE6syXsxFrRw2FatdXSgUSlZG9+3bl+YHv5Z6fueDFdITDAaxtrYGv9+P3t5e7N69u6zjrkRiaKmvLUlrw8wJnELj0m9QREuv/O/atavkP+iF3l9ktj0slRjP9IwrLmLc0BI/8IpTZTwi/8wcWxQi4Rnnuv36TuMpCk9U1CVi3KsoYEzAyOj5LQvgkYrxmJqV5ulELJyxP47lb5snORvkKsaNjTI2YwxdXV3o6urC0tISRkdHk/HzPT090FxOQh6/chxzEeOy3+NcWxsWS319Pfbt24fGxkZcunQJb7zxBnw+n9SyUyqqJcatMf1+P3bu3Jn0lV+6dAnnzp3D4OAgBgYGSjp/qVSTN69XMb/5bCpUGd9UWBPgwuEwmpqaCnqPUtpUMntkDw0NOc7er1YaZrluAEzTxMzMDILBYJo1Y3R0tCIX0OnlNbTU15aoMp7+uZhxDti37E2MvTCPWH+ZK/8FPtZTMivjJfKMZ0Y7uopxc0OMO6TQxKPy/VOZCsOhSTrnDKaLGM88BRVFQDeVrJuKVLyKCgYdWkYnwhrVCycBLzv1zLiSUz49A8tOKZWJ8SLPd8PmOmSlPa6vr2NsbAyvvvoqdJdz0Iin2lRyaW0o7zNe6SC2uro63HzzzZiamsLo6GgyRKjUwtTCNM2yTth3GjPzuKqqmtxPq1f7xYsX0dvbi0AgUJLOXsWKcSux+nolYVPZPDcim2lf8mXz3FKlYInxYoN/ihWoa2trOHPmDF544QWEw2EcOHAAt9xyi/SR32apjGuahkuXLuGFF15AKBTC0NAQbrvtNgQCAXi93or51BfWwojrRmkq4xnCx4jLPyd/YyMOHDhQNiEOuHTFkPnJRXkq41k2FZdDbpieje1x6KNuAorkMuU08RNIiHGnz4gJ1VYgK0rCh21Kust4FAUKA/SMJM9CPeMiruRUGfcyLzLLxnLPuMMJkGtlXPLmDQ0N2L9/P26++WYYLmJIj125WcpsB2mH7B690mLcqlKrqoqBgQG8/e1vx759+7CwsICnn34ab775ZtHzkzKpxqRRmSi2erXfcsstOHbsGIQQeOGFF/DSSy9hfn6+KDFsGAZ1UikCvhH6s1n+V6j//YEHHkha544ePYqTJ086Lnv77bcnn6ak/u9973tfcplf+7Vfy3r9rrvuKmjbcmVTfgu8Xi9qamqKukgWKsZT7Rirq6vo6enB0aNHHVPPSjVuMZSyGh8OhxEMBjEzM4OWlhbs27fPtl92KVoN5oLOBeZXw1BL0E2FZ3RTMaLyz8mtYlhupJ7xzGXLZFNx6zhjiV4mE7+SnuAqUxx3lHPFsTLOuALBWJY/mTEBkyvSubkepoCp2W0GZTYVWTCHqalQVBerBwd8Hptqqek8b8Gusg0g516RRg5VbK/XC8PlPNcjV8R4TqE/sm4qqIxNJTleRmcTa8JjZ2dnMkjnueeeQ2dnZzJIpxRjVqPFYC5jNm4UGCxf+euvv5607xTSAYtsKsVBNhXge9/7Hu677z48+OCDOHr0KO6//34cP34cIyMj6OzszFr++9//PjTtyu/JwsICDh06hI985CNpy9111134m7/5m+S/S9FiWcamFOOMMTQ0NGBtba3g98hXFBuGkfSDc84L7pRRLZtKMWMKIbC8vIyJiQksLS2hs7PTNaCoUpVxk3PMr0bQU1/8cc2sjMfW5VntsVxaRxSB282FzMKSWbEWZmku6HlXxo2NH2LJ+I5pmXDuTw64VMa5Cs4YVCWjXSVLaFVDcnPiVRQIhSMeLY1nXGgKhFd+oIw1Dzxbsq8lQiLGzSJjVXNZXwjhGmEdD1+56RaCSX3+AKSm9mpUxp2EXmqQzvj4OF566SU0NDRgeHgYXV1dBQvEa6G3eU1NDXbs2IGtW7dienoaY2NjOHfuHAYGBjA4OJizcClnT/XrAV5ENflqpJBuKl/5ylfwqU99Ktl978EHH8Sjjz6Kb37zm/jc5z6XtfyWLVvS/v3www+jrq4uS4zX1NQUnHVTCJtSjAOJCTjF2FRyrdzGYjGEQiFMTU2htrYWw8PD6OzsLPhiWi2bSiFjWiE9wWAQ0WgUfX19OYf0lMLDnQsG55hfC6OvsaXknnEtIj8/YmZ5U021Is6TTEuFg+06bzJj393EeNIOIquMSy5TcpuKAj3usGMbkzQVxX4Ddcnx8LBEW0gtlr6uItkH6QROTQFzuVwYq154Wm1u7CXHN/PmMUmulfEcbl45564/oLFw+vfETYzLWxtWNm0xl4pxbW0tdu/eje3btyMYDOLs2bPJEKG+vr68bRjVEKiFjqmqKvr7+9HX14eFhYW0tpCBQMA1wMwwDBLjRWAKBnMTRchb+7K6upr295qaGltdoWkaXn75ZXz+859P/k1RFNxxxx04ceJETmM+9NBD+NjHPpbVW/+pp55CZ2cnWltb8Z73vAd/8id/gra2tnx3KWc2pRi3KuPFiHGPx4NIJOL4+urqKiYmJpItrw4ePIjm5uaifyhUVU17hFIJ8q1SG4aRbNXHGEu26svnR6dylXGB1VgEjLUWNV4kEsHly/Npf0tEtTt/3uWujMc1uYKW9iAvU2WcG4XZVBKVcYc2hIWKccGgO/n6TQWmwuD12I9pSLbbqzBAMGh6+kIFV8Z1BcIjmYhpblTGRbYYz7ROpZKLmJaRS2U8IcadqVHVrDs9BQpka8lsKgKVr4znOp7H48Hw8DCGhoYwMzOTDBHq7+9PhgiVesxSUewNAGMM7e3taG9vT07uPXHiBFpbWxEIBBy7SJXqxuO6talseK03C+bGTbqVCGvxxS9+EV/60peylp+fn4dpmlltsLu6unD27FnX8U6ePInTp0/joYceSvv7XXfdhQ996EMYHh7GxYsX8fu///u4++67ceLEibLdPG5KMQ4kJhiV2jPOOU/6wdfX19HT04Nbb70VtbW1xW5u2rjV6jPullgai8UQDAYxNTWF+vr6ZDhRIRfCUkyozAXDNLEciRVciU+NqzcyK9EC8Ksexwp4vNxi3KXyLq0+lqmbSqaod62Mbywv86w79QQHAEWWpMkVmIawv10yE2EZimL/dCMu8Tb7PALgCrSMmyFZwFHmE4NUuM6g+CSvryf6kCs2x8EpYRRwFtO5FtLcJmYCidahMmo9XgDpx0lwIW0dcLVN4Mx3PEVR0Nvbi56enqxWkMPDw67VYplAnVpbw3PBcfzS3v15bZMbpZw0ak3utXzlb7zxBrxeL4aGhtDX15e2b1afcaIwuFDAN5Fn3Jp0HgwG0zrhlcuv/dBDD+HAgQM4cuRI2t8/9rGPJf/7wIEDOHjwILZt24annnoK733ve8uyLZv2W1AKm4olxq1KcCgUghCJIIxDhw6V5SJSLZsKAEcxvra2lkwJbW9vL0mrvkpVxrlmYjkay0v8O8XVX7p8CkAobdlaj7MY1wSHppvwectzJx2ReSlcKFdrw3w941ZlXCbG7URo8jVJZVwm1GEqEEqie4odsocOHgXgZnZlnJnMUWRKOhBCGIpjOBEAmJFEQqfCs/dH1irQsTKe42+3U5/yVObX5AWPWjV7m72qF6aQXePknvGrzabiRGqIUGa1eHh4GG1tbbb7YncDMLW2hv/n1ZfwTyNv4e19g2UR46Wu+Pl8Pmzfvj3NV37+/Pmkr9zv95ekteH1zGatjDc1NeXUlrq9vR2qqmJ2djbt77Ozs65+73A4jIcffhh/9Ed/5DrO1q1b0d7ejgsXLpAYz5fGxsaibSq6ridDW+rr67F9+3a0t7eXtTJTrQmcQHp1JFWQFtIVJpcxK7KfcYHVeDynyrhbXL2dOKlVPVhyeD9NcESiGnze0j05SSVuuNlUJI/7M4v8hgJhMjCXrh5uZD4McLOpcEuMS1r7KUJ1dAMxiRhX4XGcXCgMBXCaWy3klXGvKmzLywp3FuNCKBDCvuorDHmfcTOqAKYCxczeVyHZTt3h+5VrZTyXzgaLYXll3K96kDnNWZF0wAHklXGB4qLT84VznvckfDusavGOHTswMTGB1157DTU1NRgeHs5qdZt6HU4V4dbnWctK/7NdTp+6oijo6+tDb28vFhcXMTY2lnxSoOt60YWd69WiAiSMfZvJM56vIvD5fLj55pvxxBNP4IMf/GDiPTjHE0884Roi+Y//+I+Ix+P4+Mc/7jpOKBTCwsICenp68tzC3Nm0YrxQm4oQIukHD4fDqK+vL2toSybVaG1oXfg55zBNE7Ozs46CtJRjVsQzrgmsxTVpZTzXuHpuU96sUZx/wOLcRDSmo6WpTGLcxQYjk1IiwxTNNQUwFEAt7tzLrLC7V8YTy3PJfYXCVaeUeakYV6A6inHZeAAQ052PnkfNvpkBkDh+DldUIRhMzuCxudkRhvzJQCKhkyEW0ZF5IDJTYdM2x0mM51oZz8EzvhSJSl+vYWq2GHep5Lm1NrzabSoyUruQTE5O4uLFizh37hyGhoYwMDAAr9cLzjnmYlHc/8ypNBGefA9WetFcqpsOGYwxtLW1oa2tDevr6xgfH8fU1FQynK9Qy6P13tcjm6+bSv77ct999+Hee+/F4cOHceTIEdx///0Ih8PJ7iqf+MQn0NfXhz/7sz9LW++hhx7CBz/4waxJmevr6/jyl7+MD3/4w+ju7sbFixfx2c9+Ftu3b8fx48cL3zkXNq0Yb2xszKu1Ieccc3NzCAaDCIfDaG9vRzQaxf79pX0c6EY1bSrj4+OYnZ2Fz+dzFKSlHLMSYjwa0RDWNdvKeKoHPpe4etNmspxP8sMY5yYi0fJNxo262FRkhU2P4gFwZduErkCYKphrozo5WTaVHCvjmRM/095DJsZtJjVaeOCBU78brjNp146YQ39yAFAUnvUEAACYi9WHm/Y3O8JUpGLcjHnADQYtnP15C4m9BUgU6rOWyFmMu1fGl6Py9p4+mzYxzKV1zLXuGc+F1HTLubk5jI6O4uLFi+jr64Npmvjr06/jkUsXbNf1Sbr2FEqlO7g0NDRg3759CIfD8Hg8OHPmDFRVTfrK87GAXq9CnEjw0Y9+FHNzc/jCF76AmZkZ3HDDDXjssceSkzonJiayvsMjIyN47rnn8Pjjj2e9n6qqeP311/Htb38by8vL6O3txZ133ok//uM/Lmuv8U0rxhsaGrC05GQguIJVFQ2FQmCMYWBgAD09PYjFYlhYWKjAlqZTaZtKJBJBMBgEkOgQs3fvXmzZsqXsF7hKifHlaBxhXU+rjK+vryc98G1tbTk/+bBrFWcnNixiG5XxcqG5VsadxVRmRz+uK/bV3jzJ2zO+8YhVyA6TRHzEIhrg8OAhEfjjkOzpIpxllXGFMfuQIpePOuGPtxPjTGpT4bFEQmdjbWvWIIYu/9A8igIt43smctRcPIfK+IohF+Nem7so18q45LwVqHxrw3KK/8wQodHRUXDOMbns/NujliigK5Vq9fsWQqC7uxs33HBDsgON5SvPpwPN9crmC/0pbF8+85nPONpSnnrqqay/7dq1y9HGWVtbix//+McFbUcxbFox3tjYmBSZdkQiEYRCIUxPT6OhoQE7d+5Mq4pWwy4CVKYyLoRIdglZWFhAV1cXPB4Pdu7cmdOkiVJQKTG+EosiahhgGwmcp06dwvLyMrq7u3HkyJG8PPB2NhWv5OJhCIFIvHxi3K2bimMceuLF9H9qSkkmcfIM77ebGBcbx8/UJZVxQwEcChKmwRy92ImJn/YbYLp8LBFJZZyB2ebSuPVqN53aR3Imt6nEVQiTQdgco2hYbhPJEuNC5GFTca+MrxvyJz+qjZ9V/kwC0kbjlU7grGQ0fXNzMw4ePIiZmRlEJddGpQzxBdUS44ZhwOPxZHWgsfqVd3d3IxAISIsl13NlnIOB5xoccA2wmfYlXzatGK+vr8/yjFtJkcFgEAsLC+js7MSNN95oK0BVVYUQouI9X8tZGbesOBMTE4hGo+jt7cXOnTvh9/vx/PPPV7QiX6nQn5VYHGGu4Y033gCQuEnbu3cvfD6baHEX7GwqqouyifLyifFYEd1UWIb4EzpzrRbnQqYgZQJwVMtIpGQCLuJY0gO9rq4RK4JBtVHHtd5axGA/b4RrzFn0CSBucDgvwGBbNHb5qLmD4BbCpfVhLCGSTD37OHg9PgDOkyg9qgqkTvQ1AXhy+5xzScNbdwlGU22OU1GecSFw5swZRKNR9Pf3l11AVvr6bxVidFUyZrz0181K3nRkjpv6GaZ2oAmHwxgfH8fJkyfR1NSEoaGhopJNNyNUGd88bFoxnhr6Y5pm0g+eKUKdsC4Qlb5IlaMibxgGpqenk08KLCtOqi+v0vaYclfGTdPE9PQ0ZhYXEWvU0dnZifX1dQwNDRXcktKum4qd2EglJkuPKRI3m4oUG5uK26TGXLCtrkuykbhwF+N6jAMOD2w4Zxux9tkCRdYSMSpLT+UKZOVZpghbW4mbzYc72W24g7i3XtYUMEXAjNu0wZN0UwEANUO4MBOQHJY0cquMy8W4YnMDwlxtKvIX+/r6EAqFcOHCBQwODmJoaKigm+tcqLQYt66JK5qz/Wf58hLi8XhJ/avV6vctq8jX19dj79692LFjB0KhUDLZdGhoCP39/fB4PNTacNO1Ntw8+5Ivm1aMNzU1YXl5GX/4h3+IRx55BPfffz927NiRc1Jkaru/cs8yzxy3VBX5WCyGUCiEqakp1NbWYtu2bejo6LB934q1GtygXKE/mqYhFAohFArB7/eDez0wVQ0DAwO4dOlSURdvO5uK2wTFqJsfokCEEFhcXZEvI3mNZeyL0JX8+0rZjWkjxplw3hZLjMvcDmsrEaDTYX3OwJl9eqfKnaum4VVJSz6XVmEqhK2thGvyk8F0EuMCcs+4xqB4GUwbfebmGWcZ5zsz5edFKmYOS0Zd7uCYTbcX5nJ85QmcQGdnJ3bs2IGFhQWMjo5idHQUfX19CAQCWZHWxVKNyjhjDKtxZzEeX9PyipzPddxqVMYNw3B9uuH1epPJprOzs2nJpv39/RWzVl6NcMGS19DNwGbal3zZlGJ8ZGQEf/u3f4vXX38djDF8/vOfxzve8Y68Z2hXwzduXZiK+RFIDelpa2vDwYMH0dzcLH28V+kuLtZNh1vqZ65YE1Gnp6fR0tKC/fv3o7W1FcbTF2CwK2MUcwNg10aOubXIc/F15wvnPNl6MjQ9U/gbZX7UgjnaKPLCrjLO4dgNxYqJNyVivLGuBWFM2L5mblTG7VAlnVb8vgY4uq0lPc8BQFUTLTOztsWls4mdGLe0ssymIjQFQuEwbCvjrr0j0/4p0bnZ753DjaubGLez7rjZVOSe8cS1IzV+fXV1FaOjo3juuefQ2dmJ4eFhtLS0uG16TlSjMh4zOOKSa3FDTSNuu+22ZIjQli1bMDw8XNTE+2LCjQpFCJGXV11RFPT09KC7uxvLy8sYGxvDyZMnyxbCci3AN1llfDO1acyXTSPGhRB48skn8ZWvfAU//elP8c53vhOdnZ14+umnC75AVbPnd76PDYUQWFxcxMTEBFZWVvIO6al0ZTy1t3kxPwKpcfWdnZ24+eab0ypFUdOAoVwR48VUxm0TCQ0hFQ+xEp0/pmliamoq2aZpcHAQPR4VWLpc0PtlVsYTgxR/IcycwAnIK+OWGNdlPliJODaTlfHM9wUUSRcWOzFt4XZTojBuu5+GJv/+2L2v0BgAJn0qwQ0FzBTQY9nbbEgmmgJAXW0tFtdSFHEeX3FZNx4Lt/Ob6xzeoyswQn6IyYStwt2mkhjX59GwfesMllcaMDPXAs4V25v3pqYmHDp0CDt37sTY2BhefPFFNDU1YXh4uKje1UB1KuOyKbl1Hi+4ybNChE6dOgW/34/h4eGCWtJWYwKn9XuTrz2GMYbW1la0trZC07SqVPSvFrhQwDeRz3oz7Uu+FLznDzzwAAKBAPx+P44ePYqTJ086Lnv77beDMZb1v/e9733JZX7t134t6/W77ror5+357d/+bXzkIx/BoUOHcOnSJfzJn/wJdJfJRW5Uq+c3YyzncTnnmJqawsmTJ/Hmm2+ipaUFt912G3bt2pVXp5BqeMaBwirVQgjMz8/j5ZdfTv4IHTt2DPv27ct6ZKtxDsEENM0s2hpjZ1MRLmKo2Mq4pmm4dOkSnn/+eczMzGDHjh249dZb0dfXB6MYv6TN6eXWDSQnnCrjDlhifG3FWYLInD6GeWUSaNqQnNl28rDQJZV4t4+MgcNuXq6bZcTOM66HNwSQZFsTPeAZtKhdNT5Pz7h06XRymcAZc5m3wDWOuu1hDP/qJWy5NwhlZ8TVpqKqOg7sGcORmy+gbcs6tg3P4MiN5zHYfxnMpzuKr9raWuzZswe333472tvbcfr0aTz//PMIhUIFf++rUhmXfGEavb60bjRWiNC73vUuDAwM4MKFC3j66adx6dKlvH7/qiHGrd+4YsatRgeYqwkTbNP973qloMr49773Pdx333148MEHcfToUdx///04fvw4RkZG0NmZbe78/ve/D0278uu3sLCAQ4cO4SMf+UjacnfddRf+5m/+JvnvfCaofO5zn8Nf/MVfJAXo6upqcgJnoXg8nqq0N8xFGOu6jsnJSYRCoWRqZFdXV8EXp2pWxnPFLq7+4MGDUk+/4BwQwNziWtEdXOwq4zzOAcncsULFeDQaTQYSNTc3J203qVU+2aNsV2wOuyhBZdxOjMvaG1qfBoMXtncIkLc9NExm+2iTc0VqyZBW4iVecwBQFEDXsrfJcPGM21V9RDQxlmwCpzAsMZ79GkOifaFT2mamGM/ZMI7ciuiay6xVM2ZCsEQzndbudbT+4jouhf0wTD8aG2K2TXZ6ulaz/u71mhjqn4fZu4DfP/0N/Pq2D+GG9m22Y3q9Xmzbtg2BQABTU1O4dOkSzp8/n5ZymSvVqIxH7J5abVDv8YIp2QfN+g0YGBjA5cuXkyFC/f39GBoakhZmrDlKlRa2xkaXn2KOr1W4u16hyvjmoSAx/pWvfAWf+tSnknGjDz74IB599FF885vfxOc+97ms5bds2ZL274cffhh1dXVZYrympgbd3d2FbBKGhobS/t3Y2AhN06BpWsGzzq/GXuOp3uimpibs3r0bbW1tRV+QKv0UIB8Pd65x9XYIkZi0Nr8WKUtl3HSxJrhVDjOxYqLn5ubQ3t6eZbtJJTMmOy9s/O+l6DMujOwu0tJJrsluKvaBOIB8cqdhAqbNuc85g0fiw9Zjko62bseBCdsEzoRNRTIR08amYsY2LsGyyrjJIDhDPGz/eXslYlyxEW65kktl3O0cNOI8q3dwXV1i8mw05oWmedDYEEXqV1l2KVMVgah/FA+E/gKei734D/3/Du/tu8l+WVXFwMAA+vv70wTqwMBA8qmuG5UWqZxzxCQFg1rFI60dMsbQ1dWFrq6upK/62WefRVdXF4aHh237dZeiQl0IlhWz0N+u672TCpC4Ym6manLl1dbVQ95iXNM0vPzyy/j85z+f/JuiKLjjjjtw4sSJnN7joYcewsc+9rGsme9PPfUUOjs70draive85z34kz/5E7S1teW7iQCQFDDr6+sFi/Fq2FQA+8q4mze6WKrRTcVtzHzj6u0QEFAMYGE9gppiK+M2fcaNqPz8yKUyboUwjY+PY2lpCT09PTkFEmnFnJs2q5ZiAqewiZnPpTKux5wXsusiYqGbALe5KeNcyUoZTUWLC6ccoURsvQRN0yHsfOzC+j+nnuo222lVxiWnpTAZYDJEHcS4R3JTqmT46fOawJmLGHf5PhkR3fFdav06av2FWQkZA0z/FP7+8l/jXV3/Ax6Ps5BMFahLS0sYHR3FM888g+7ubgwPD0uvo9WwqYQlN/B+5C5eW1pacMMNNyASiaT168700ldTjBc75vUuyKkyvnnIW4zPz8/DNE10dXWl/b2rqwtnz551Xf/kyZM4ffo0HnroobS/33XXXfjQhz6E4eFhXLx4Eb//+7+Pu+++GydOnCjoC1tXVwfGGNbX1wsW9NW0qZimCSFEMqQnHA6jt7cXx44dK0tEcKU944Bz8E+hcfV2WJXx5XAM3UpxlXHTpjKuuYlxSbcJy/s+Pj6OSCSCvr4+7NmzJ+eeyXoxfcZtKuOuFeFcsLGUuCUGCiG3jcj83bohwFX7yriw28cNtBhHjYNMlKVhehnD8tISjEV7Ka8w4diey87bbsY3fnxyqIzHHG5YPDYTWC2ybCp5wOHeYtVwMbPEoyZEGW0EpqnC4Bwep3Y9GVgT/9bX1127kVjdnipvU3E+pl7OpE8O7Kirq8OePXuwfft2BINBnDlzBqqqIhAIoK+vL/kbV2m7RynE+PVsUQEo9GczUfFuKg899BAOHDiAI0eOpP39Yx/7WPK/Dxw4gIMHD2Lbtm146qmnCmpdpCgK6uvri/KNV8umwhjD5cuXce7cOQghMDAwgN7e3rKGMlS6Mp45ppWOOj4+XnBcvS0iURlfjETR21RcZdzOpqJH5ZU9u24TVnvC8fFxGIaBwcHBgj5fvajKePa+uFWEc8G2z7h0Mxm4riAuqYwbNl1ELOKmfcXZFEw6bjzC4VQPlU0Y9Xu96OhowVwwArvHC8zZbWP7Q2Ola0qL0JwBnCEWMWFXdZdXxgsXK0IIPP300wgEAhgYGLA9P92CgeLheI4yuTAMU4FhmIAvvyyI1G4k4+PjePXVV1FXV4fh4WF0dXWlXZsq3k1FcpOtSqxXbni9XmzduhWBQADT09MYHR3F+fPnk5a/SgtbwzBK8pt2PQtyAbapIuTFJtqXfMn7m9De3g5VVTE7O5v299nZWVe/dzgcxsMPP4w/+qM/ch1n69ataG9vx4ULFwoS44yxtBTOQqi0GI/H4wiFQlhfX4eu69i6dSs6Ozsr8mOgKErR3WfyxeoaY/XNtiKuC42rt0OIRC/wlXgMjPmK7DOevW5cluSIdJuKYRhJ77uqqnl53+0oyjNut2pJPOM2gVIup5WpqTB1Z3uHHndsUw7NcOqmothX/zcwdEmwjETw+FUPFAXweWphF0OvMOHoezRtji/Xcpj3wAEOBpPZNwWUVcazhEoeH7FQGPbu3YsLl87irYsnsX3wRgwNDSVtf6bJpXVxBiAe56gtc2W8mO9BTU0Ndu7cia1btyIUCmFkZATnzp1DIBBIPv2tvE3FeX+YVrz4VBQFfX196O3txcLCAs6fPw/OOU6fPo1AIICGhoai3j9XqtHBZbNBlfHNQ95i3Ofz4eabb8YTTzyBD37wgwASF5AnnngCn/nMZ6Tr/uM//iPi8Tg+/vGPu44TCoWwsLCAnp6efDcxSX19PcLhcMHrV0qMp9oyWltb0djYiK6uroInsxZCpSvjpmmCc44zZ85AURQMDAygp6en5NV/IQDFBNZicSiKv8jKePbx0eMcClMcA1Ji3EA8Hk92vqmrq8POnTvz9r7bUWoxzstkU3FLKRW6DzKVqMUEap1eMziYQ2tDeVQ8c5ywyiXdW3yqCjDhWK1nkhJ30pKSOlbSpiLZVMEQ8StY2A/4loCWEcCTYt1RJWK8mMq416MjFPk29gW+jxZfFD+f2Y+zz70X27qPYnh4GBGXtop1Xi+gasn2leXANBXbMK588Xg8CAQCGBwcxMzMDEZHR3HhwgUApavg5gLnHBHZPBON521TccIKTlIUBa+99hqEEHjhhRfQ1taGQCBQVIhQLpAYLx5K4Nw8FHSFue+++3Dvvffi8OHDOHLkCO6//36Ew+Fkd5VPfOIT6Ovrw5/92Z+lrffQQw/hgx/8YJaHe319HV/+8pfx4Q9/GN3d3bh48SI++9nPYvv27Th+/HhBO1aKyng5q8VWSE8wGEzaMm655RbU19fj9OnTFZ+YUinPeGpcPecc/f392Lp1axmrTwmbylpcK7qbip1nnAGo83iw7nCerEUjeObZ59HRvgUHDhxAS0tLyX7gDMnjbAaXLnZ2fcaLnMApBMDsPOOuYlxuMdCi3FGMx3UBn93ESK5AuKRTOu2vrKuMV1GgKAK6w6RSmfg149nCI5fKOARg9QfUtgCXbxXwrgLN5wBfBPBIOqZkvpJL4alW1fEr297Eb+x6DR21V/opvr33daD3dbx4eSd+8rN3AbhR+j51Hi+4quXVTjFfDFMpzq6VgaIo6O3tRU9PD6ampvDGG2/gmWeeQV9fHwKBQFbTgVKT8Iw7748ZNZE9Rbr4Mb1eLw4cOJAWIlRbW4tAIFDU0zsZhmGURIxfzzYVYvNQkBj/6Ec/irm5OXzhC1/AzMwMbrjhBjz22GPJx3pWSmAqIyMjeO655/D4449nvZ+qqnj99dfx7W9/G8vLy+jt7cWdd96JP/7jPy64EwqAosW4x+NBJBIpeH07UuPMNU1DX19fli2jWsmf5RTjdnH1Fy5cQFNTU1kfA1sTONcNveh9tPOMA0Ct6nUU4xo49uw9gP7ejoLHdUKX9COWWJcBAMLMdufZdgjJAy6YbecUWTcVAOCm/Ac5LvGMxwxh28KQcwbhUrmFgxjnnDkW6n2qB4pqOnZ/USWH0E54u4lx63RN+7QYg94MzB8W8ESADsO5kpqPTaXeo+Hj28/gP+18HVv82RYci1s6z+GWznN4bb4P71o7iKdnBmzf2K94EPOg/JVxWZP2AmGMoaWlBYqi4NZbb8Xo6Ciee+45dHZ2Ynh4GC0tLSUfE9iwqRjO31wjYgIlvh9IrVD7/f6kbWdychLnz5/HuXPnkj3aS/mEgCrjxWNCgbmJIuQ3077kS8HfrM985jOOtpSnnnoq62+7du1yrPbW1tbixz/+caGb4sjV5BnPDOkZGBhAd3e37cWoWsmf5RhT1pJRVo23i73OB90w4fWogEh084joicp4qVsbAoBf8oPCfF4oamn875k49ZZODMyk/fLsBHKxfcYFZ7at89xsKpy7VMYjzvsZNzhqHSrjpks6quOTAF1xDHLyMAYoHJrDPbqsrbfdzY7Qrb+xxI1jxvpmWNl4ze7AMhj1wHQ0DI9qwlejIxJJ77SUWam308XNNVF8bPub+KWhEQw1rDnvQAaH2ifx0Dsn8fR0P348O4T/c34PTHHlu1CjqoiqboVxgUP+RaxyH0a1/Fu1GoYK3eF7WSxWJ5mmpiYcOnQIO3fuxNjYGF588UXbFoGlwDRNhCU2lfiaBlZf+sp4ZkHE4/FgaGgIg4ODmJ2dzQoRqq11elaV37jFiPvrva0hQDaVzUTFu6lUklLYVIoVqFaS4vT0NBobG3PqlV2tNoOlGlMIgYWFBYyPj2N9fd2xJaNszLVwHI31NQX/0M0trKO3qxkCAswEIoZRtsq4KnnLODcQiZXH6iQT48xFjNsppGJtKpwz2/d1q4wbhvwyFI86v0FE52hy8owXKMa5AYkYV8BkNhXHwYStJ5/rSsp/A5n3bWbEErfyz8brNXDzwUtYXGpAcKoNq2sO5dOUDWzzh/E7N76ID/deQL1qImqo+PnlHgQal9FVaxP3mcH4WhMW4n68ozuEd/WE8Hv7XsZ3x3bjm2/ciIjhgw8KuOpUGRe4sXYBH2iewJAvMa/nrVgz/nW1H2/EWl3318I0FZiSSnIxZLZ1rK2tTbYInJiYwOnTp+Hz+RAIBNDb21uSJ3ycc4Ql7Xxi63rJPOMWsgo1Ywzd3d3o7u7G0tISxsbGkj3aA4FAwS1n3cbNles+gROKbQLxtcpm2pd82dRivLGxsWibSqFiPLUi3NHRgRtvvBFNTU05rVuNzialuAHIN65eFk+vaQaiHgV1/sKqyjNzqwkxLgDVSCRhysbLBdPh+PC45MfTNBCJShplF4EheTwv/XkS9g2kiq6MC8X2fd3EuLCpbGe8AzzMA0OkVwxVpgJg9mE6LpVxATjaVGR2Hatzie7w3o6ecW7fpSV1LK4rUH3p78ujiUu02yGyKkpbWtexpXUdK6u1CE21g4n0SeBCATrq1vBfbnwRv9hzCbUphv5aj4mjndPQOcNLc13o9Ecw2JhdKR9dbcKy7seNbZcx1Lia/HuHN4bf3XEKn9x6Bv9ncjseff02CFVNE+MMAjfVLuCe5gkM+tIn1+/xr2CPfwUTWj3+dbUfJyMdrm3bTFOBUebKeCZerxfbtm1DIBDA1NQULl26hPPnzyetHE7Xu1wIR+OIS67DkZV4RcV4KlaP9nA4nAwRam5uRiAQKOgJgWEYJeuadb1iCgZzE1WTN9O+5MumFuOV7qZihbhMTEwkK8K33npr3o/0rjXPeKFx9dIxGUM4Ei9YjM8tbXzuG60N48IofgKnQ9eGlvpGTKzZe2yjhoFoFSrjhVAKm4odbjYVg7sLAQ88MJAuxj0sIXrsHm1yzmDEnQcWiuQmQbK9no0HDppubyVwtKmYsPWIpB5zrilAffpGmVZCp4sYzzz2zU1RNDcFEYnMocPcgrn5ZvQ0rOH/degk7ukZRY0kntSrCBzuSLSufW2hA01egeGmeVxabcaqXoMb2i4DWHVcv0nV8euDb+GX+0fw430B/P3CdjAIHK6bxz1NE+j3yefhDPrC+M32EXzYGMNjq314NtwNTdifI8ZG6E85sLNvpKKqKgYGBtDf34/Lly8nrRwDAwMIBAIFhbPNrjs/kaj3esFNDXn1p8wBznleFer6+nrs3bs3GSJ0+vRpeL3e5BOCXN+rWJsKQJM3yaayedjUYryhoQFTU1MFr5+rKDZNE9PT0wgGg8kOIbKKcC7jVsOmku8NQLFx9TJxLITAWkRDx5a8NinJwmLiiYjY6KYSE7woz7imadAcnlZ4JY/W4qaJcEyS514Essp4IS3thK5CGAzMU9gxcrqQulXGzRzChjzMC4j0Gx4rddE29IcrMDSJGFedt4tpTtVtAZ/KILgCzeG9VQehxAygpW8V4YgP9XVXnpSkWmWE3QTPWI5i3OHY19XFsHv7FLYNTONXOy/ijqYpeO2M/Q4capvDxPoWvL4wBLDwhhDPDb/C8f7AJezumUeUe9DjDaPLm/t3od0Tx4dbxnCgdgmjWgOeWOvDesb8AtNUYEgmMheDW/qoBWMMXV1d6OrqwtLSEkZHR5NWjuHh4eQcmVxYjjlPnG3y1gDQqlYZz8Tn82Hbtm0YHh7G1NQUxsbGcP78eQwODmJwcNC16k0JnMUjhLKpIuTFJtqXfNnUYryxsbGslXErpGdychJ+vx/Dw8MlCemp1gTOXG8AShVXLxtTCIFwpHARu7S6UWHa6KaigxdU/Y9Go5iYmMD09LTjBE7V5W7eLoWzFNi1WrQo5CeK6wqEoYB5Cttex8q4m2c8FzFuc6lS2YaFw8EzrsclNhVZuxmHPuNMB7yqADcZ4k6VcYcjrwiguT2M+joNa+t+MAg0NMTTKuNCtxHjG+0QhSr/RN0qSt4agX9Y2YrH1vrxC41TeE/jFOpcek6eW2lF3FRxYMs8BhsWAQCja81YjPlxQ9usvHOMAC7GG9Gsatjlv1JFvxRvgI+Z6PfJPelRrmBca8CAL4xDtUs4VLuEuxsn8Uy4Gz9e7cOCmag6G6ZacZuKDMvKsb6+jrGxMZw4cQJbtmzB8PBwTn271yT2xDrViyhKL0CLFcWKoqC/vx99fX2Yn5/H2NgYLl265NoOkrqpFI8JBnMTpVZupn3JFxLjEpzE+Pr6OoLBIGZnZ9Ha2or9+/ejtbW1ZBfJathU3Krx5Yirl4txYC1SuNd6ZS2WrIIrBmAwkVdlfG1tDePj40nP/+HDh6H873EA2T+WqstHFZf0DS4GeUu3QirjDMJ0a4ooWd/B2OxmUzFdPeOAaifGYYlxB8+4JglPUeCYOMoc2g0yE/CoAjAU58m8DsMxAagb1pDGhkT1MxzxQd0XgfliExhY2mROC6s3eaGV8UxWuQ//ZyWAH632490N07izaRLNavo5fXZ5CwyhYH/rfNb6w40rGG5cwXSkHsFwIw62Xobfc+U85AK4qDWiRdWww5/tN99ak3hiFdTqoAuGrTXp12dLhA/6wtjtT7fC1Cg8cSPRMIWTkQ7862o/XjeVstlUChHjFg0NDdi/fz927NiB8fFxvPrqq6irq8Pw8DC6uroc33dNd77m1SmehBgvaIucMU2zqBbCFowxdHR0oKOjA6urqxgbG8Pzzz+P9vZ2BAKBrN/IYsOUqJtK4vu2mawdZXrIdU2wqcV4KVobCiHAecLisLS0hGAwiKWlJXR1dSVDekrN1dRNhXOOubm5ssTVSyvVAlgLOz+ydWM9Ek+uzwQgmICmc3i98huOpaUlTExMJPvdHz16NOn5d6qMu4nNsolxaTcVyYoOFzyuKUX5xguvjLu/tyryr4xrMbeeig77qm0YwzMOoiXGuSTxUXGKWzIBVUn/e32dhvr3TCFyZAELL7eB2+gwEUuINjdbfb69vKPCgx+tDeDxtT68vWEW7/VPYy1eAwGGva0Lruv31IXRUxfGYrwGry1uwZ4tlzFr1KHVo2FHjXt7xIEN3/is7scq96LbE8akbi/CM1EZcKx+Dsfq53CnOovFaB8gftXlpM+fYsS4RU1NTbJvdygUwsjICM6dO4dAIID+/v6syrCsraHPutUrQ2W81FkPTU1NOHjwIHbu3Inx8XG88sorqK+vRyAQSN6MkE2lePgms6kUui8PPPAA/vzP/xwzMzM4dOgQ/sf/+B84cuSI7bLf+ta3kgGVFjU1NYilWMSEEPjiF7+Iv/qrv8Ly8jLe9ra34X/+z/+JHTt2FLR9ubCpxXix3VSsC8X09DQmJycRi8XQ39+P3bt3l6SS4ES1bCrWjYc1/vT0NCYmJgCgLHH1sv3kQiBcRGWcc4HL82tXdJEAVtY11NVm30QIITA3N4fx8XHpDYej+HUJl4nJ4q2LwCxxZShhUylGjBdaGWfJirJgsO1VrthM4FMknnEIxTX50XFfjY11M/Ny+IYXX/KD4STGGQDFYdLkltoI7rl9AkeaLuNflwbxOmuCuSEyrFAgh/mLV/alwOqYAYbLuh9zrA7CZGjx5WcNa/LGoTCBNaMGJhR43T7sDBpVDUumD2Ge+K6pyK8IMVS/hkfGfoZdg3dha2t7Xuu6ke/ERhkejweBQACDg4OYmZnB6OgoLly4gMHBQQwNDSWvNWFJgJN34zy/WjzjueD3+7Fr1y5s27YteTMyMjKCQCBQsgTO6xkO5tpx6FqikH353ve+h/vuuw8PPvggjh49ivvvvx/Hjx/HyMgIOjs7bddpamrCyMhI8t+ZN3X/7b/9N3z961/Ht7/9bQwPD+O//tf/iuPHj+PNN98saGJ2LmxqMW5VxgsJkLFCegBgfHwcg4OD6OnpqcjFo1qVcSAxKXNmZgahUAh+vx/btm1DR0dHWVIyZS0cBQTWo4V7xk0uMLeY/gh8ZS2OrrYrthrOefKGg3Oe/IydbjicrAnQhbM/AdUR47KznQl7wSh0JdFju0AKrYyb4ooY515AtbkHU7ia1cTb2lbTZlyWg/XFSYwLnQEcWeMxAShQbG8WLFShAHaCkgOKmr5inWngnd55vL93FHWexM7saF7GXKwW/zS7FS+J5itiPIevH+dA7l9Tgf3+JXygeQLbMyrZbyy2w6Nw7GlZdFxb5wynFrrQX7+GWzpmrvxdMJyLNaFVjaNDMlkzzFUEtXoMpVTCu70xhE0PRmN16PeG0SDxf13W/XhkdQD3P/N2RHUf7r2l9IKkFJXxTBRFQW9vL3p6erCwsIDR0VGMjo4m/dVhyRfQOhzlsKmU+3ct9WZkdnYWY2Nj0DQNwWAQfr+/IIFzvfcYB6i1IQB85Stfwac+9alktfvBBx/Eo48+im9+85v43Oc+Z7uO1T/fDiEE7r//fvzhH/4hPvCBDwAAvvOd76Crqws/+MEP8LGPfSzvbcyFTS3GC/GMR6NRhEKhZIcQRVFw8OBBNDQ0lGkrs6mGZzweT/xwnjx5MhlXX0ofvB1uNpViKuNCCCwsXfnsGQfW4gaEEDAMA5OTkwgGg8mWXDIfp4XThEmhCUDSvTJejMKVbU+BMeBOn6gwGNzeUnCAORwmpxAd98r4lf/mHnsxzmzEeGyjf7tdZdyr+lxrrMJh4qgwFFs9DZFoXSg7Rk4TOJHiGa83DbzHdxnv6xtDjY3g7PBH8Z+HzuCjmg//8M4wfjB3CPOqu1gRDjdZmRtyyL+Ie5onkv7tTA5sSXjFR5YTEzgPtl3xjmsmw2uLXRioX00T4RZeJrDTvwougAvxRtQyA30pkzUTIrwBQ751WztKvWpgt7oKjSsYiTWh0xNDq+fKCWGJ8BPhTphQENsIjCqHf9iyJ5YDxhja29vR3v7/Z++/4yS77yp/+H1v5e6uzjl3dU+OmtFoNHISlrCEjW2xxo9hDTJakB9YBBgvi4HH2P7Z2GBjjDF48e6yZuG39uIFgxNeYVugUZjWKI5GaVKH6pxDVVd1hRueP7pvTVX1TRV71NPn9ZqXra5b3xvq3u8999zzOZ9GQqEQIyMjPPHEE6yZFHCKydSXi7otxXwDYAVRFGlra6OlpYUf/OAHxGIxzp49S1tbG729vbZ7ccCuZxx2rk0lFMqqF/F4dN0IiUSC5557jt/93d9N/U0URe6++24GBwcN17O2tkZPTw+KonDixAk+85nPcOjQIQBGRkaYmZnh7rvvTi1fU1PD6dOnGRwc3CXj+SAXm0ooFGJsbIz5+XmamppSCSFPPPHEDePfLgXSmxMBHDlyhIaGhrKs26wJj6KqRApolqOoKkur1/OMRQlW12Osrq7y5JNPUlVVxf79+2loaLB9wzXyjMsJxZSMx0rkGVdMbkZmD3PGeyuYNrwBcMgKisFDi553G9jgh3q93jchp5FIxWBG0lO6qyqrDdfrwGlOxlVjZVyRBF0y7nMmQFBNlXHRKN4RqCPOvc5p7u0cxW2S862hxp3gwZMv8v5jr/B/ru7nzy+fZDVhTMoVVcBhQsYPeZd5b+1IquOlFfbVLgMwG65jJVnJqiTR49cn4dkQBVKKezBeiQQkVZEed5T93lXL77tFhX3eELIKV+N+VODxtdYUCYeNNwGaPacUs2W5SGp1dTXHjh1j7969/Lf//b+Nt2czHej1ZFMxgjbvHzt2jGQyyejoKE899RR1dXX09vbmFJF7M0Nhh+WMb96durq6Mv7+8Y9/nE984hNbll9YWECWZVpaWjL+3tLSwqVLl3TXsW/fPr761a9y9OhRVldX+fznP88dd9zBK6+8QmdnJzMzM6kxssfUPisFdjQZr6qqIhKJGNpUspv0tLW1bWnSsx3+bc2mko+9xg6M2tU/9dRTJfND6cG6gLMAZVxRWU1rxCNIMLmwxJEOL8eOHaO2tjan8QwtKoBs0lwGSlfAaUbGHQ4nSPoqm5FNBYwJaq2c5G7vDPd0BnlqsY3vhTuZdWYqFYbKOOh6sDWkP+Po1GkCEF6JQJb9T0h5xrcO7MRFEvM3EoY2FSnTb17vWec/7L3Izw28wqLi4+zsbQhCr24mrkNnW/Y1zPGbb3mGO5sneXWpkdFQDXs3ia4dXA3XEfR48NZEWZ03vj6tfOMj8SqeizZS74jjd9h7W5OQBVbW/bRUL1GjqATD1dS4YhkJKmZYkx2sqw563WssyR4mkz4C7jXj5khZWJS8PJZFwjXI8kYHVjC/FvJFKWwqZvD5fKybvHZR1jfmEaHIRpXtIOPaPdXhcOB2uzl06BB79uxhbGyMl156CbfbnWoiZPQb7NpUQN1hnnGtN/T4+HjGW5Ji1uidOXOGM2fOpP77jjvu4MCBA/zX//pf+dSnPlW09eSKHU3G/X4/qqoSjUYzbCayLDMzM8P4+Lhl23an07ktxZTadhazYNKqXX05FXmwbvoTLaBZjqKqLC1ffysiyuDw+aipqcmZiIN5colkkdpRKmXc1DNuMj+b0Yts60aznOCeiinubB5PEag3Nk3xxqYpzi+08t1QF5NO7+Z3TTR31dhAkX5kjZRxr6uCLXrqJhlWVXGL8L5R8GlFxrceCVUGFAFBgSZvhF/a9yI/2/8avk1PdxVJ7u/+EXf9cQX/+9xh/vnbRzZJobbe6xtxpGmG3zj2DG+um0odu6MN8wC8utyAogocrt8aH6jh2aVmvrPSzbjTC07BUhE18uxriKouvhvq5l/CHby5coZ7qydpcOpfYzFJ5OJSM4HqVfY1j6X+3loRYVlLUKldoNqt/8C3JjuYSFbSm2ZHaRc37CoLkodFyUO/J4TTYJPnkl6+E+rmqUjTFhKuIT2fvlQ2lXKScUVRWDeZKyIrG2/6doIyLm0WqqYfX7fbzcDAQKqJ0MjICFeuXKGnp4eurq6MgnpVVXdtKuzcDpzV1dW2LEuNjY04HA5mZ2cz/j47O2voCc+Gy+Xilltu4dq1awCp783OztLW1pYx5vHjx22NmQ92PBmHDX9QVVUViUQi1aTH7XbT09Nj6RXersxvoGjE2G67+nIXjpqRf0WFtTw841o84VokQjy6lmKAggTrSv4TuJFFBSARNSd9xfaMa282JDuZgDowU9a0Te2QYryjeoIzjdOGy55unOF04wzPLzXz7dVu5sw2R8GwyDX9pYNi0LTWJeoowmnKtKIIONIKJDcyyM0f5vQeHlRJpLE1zP/3jhd578Al3A79373DF+W37nqa+990kb9/+iD/9I9HScTdiIrIydZJfuPoM9xRO6v7XSAVH3gtVEs44eKWxvnUZxsPOZ1MOn0ZM7Qomp+7dhNVEqqDH6118G9rbdxeOc+9VRN0ejaI3rrk4OJSEwPVK9zWrP9Kts4T53TzNJGkk/NzbfT7l2n0bbyF0iPh2Wh0xml0xlmVXUwnffS41/Bt2nbskHAN6Q9Bs/NzHGhoLCp5LqeXWlufmTIeC23Mh6urq8RisaK9xSxFtKGddTqdTl1l2+Fw0NXVRWdnJ/Pz8xlNhHp6ekoSJ7yL1yfcbjcnT57kkUce4b777gM2rqNHHnmEhx56yNYYsizz0ksv8fa3vx2Avr4+WltbeeSRR1LkOxQKcf78eX7lV36lFLsB7HAy7vF4cLlcPPvss/z93/89t912G294wxs4dOiQ7eLE7bCpaK/fCl1vru3qy62Mm69PJZqDZ1xVVebm5hgbGyMWiyGKIm63F2F9Q40TJYhKUt77Z2ZTSUSNi64A4kU6fxRFYW5ujmAwuJFCY1KvZ56mYvSJykDVKj9deY1bc2h7fqJ+jhP1czzvD/K/Jo7z7GDvli0wVcY3P6iojNPdv8TYZNvWhXQsJRuFm2rq/9e61vGJMnOSTzeXfMv3s8ZsFKOccof4qf/fY7gsiK+GZneMX33j8/z70y/zjef3c8veOU7X2fcVDlSvABBc8xNcrebhWBvTLp/uzCxYtLHPVSGTEXky0sK5SDP7pTVu881ztH6B0wYkPBuVLonTzdMkZJHnVxtxuZLs9YYtc8I11DiS1DiSRBUHz0brubDeaIuEp7Y/TRkfGxvn8flF+vr66OjoKAqJVhRF921pqaAoCjETMq7GN35fWZZ47LHHaG1tpa+vLyU65YvtsqlYrVMQBJqbm2lubmZ1dZXR0VGeeOIJmpub6enpoba29qa3qezUAs5c8OEPf5gPfOAD3Hrrrdx222188YtfJBKJpNJV7r//fjo6OvjDP/xDAD75yU9y++23MzAwwMrKCn/8x39MMBjkl37pl4CN8+5DH/oQf/AHf8CePXtS0Ybt7e0pwl8K7Fgyrqoqjz32GKqqcv/993PPPffwpje9iaNHj+Y0znbYVARBKOghIN929eV+8LDqwGmngFOzHI2NjaGqKl1dXbS3t/O/H5khlpAylfECyLhZ6/mYlTKuygX5/7V9DAaDAKkIRnXosuF3zGhbdpGhICicedMo99/9AgcbFpmOVvLMfCvHG2ZtkdKEvBFz11UV5gs/90NGfsrP//rXo/zoXw5c91WbHPZqb4T/7wef492Hr1LlkHjxxxv4m38+ybNP9aaWUfQsJZs97bv8K/x84xXu9M/gEhTOR5v4Rk03y5graJpnvN0Z4SdrxjldMU9CcfDCQgu9/lWafeYt2zWMJyqQVYFfPn2RiOzkUqyabvcaFTaKNAFeXGyiypXkzR2T9EdX+ce5Pl4UqpGzYmtECzKeT9a4V5B4k3eWe6unqPfEeGW5geloFYdsNP4BWIp5uBqq41jDPG5RZjjhp1JM0uay17BrNunlu6FuBiPNOXtf020qR48do1Ulld/d09NDd3d3QWS63DaVyHqcuMGVKwDRTWW8sbGRO+44zejoKIODg9TX19PX10d9fX3Oc4zWW+JGJOPpqKmpSRW5ak2EOjs7OXLkSAm38sbHTrWp5IL3ve99zM/P87GPfYyZmRmOHz/Oww8/nCrAHBsby7iOl5eXefDBB5mZmaGuro6TJ09y7tw5Dh48mFrmt3/7t4lEInzwgx9kZWWFN77xjTz88MMlranbcWRckiT+4R/+gc9//vMMDw/j8/n40pe+xHve8568xtsOZRxyt4wUo139jaSMq5tpKkYkVsuBn5iYwOVy0dfXR3Nz83W/vQLxhJQySIsyRBW5JDYVVVZxi04SBn7PJArxhITXkxsxkCSJqakpxsbGcLlcBAKBjH1UzSi3yUfa0XQ4Ze586zXuv/MCfTXXHdlad8XZ9QqC4WqON8zidmwdMCo5eGmpmf7q5QxLQ19lmN9/55N84K4LfP2xozz8vYMb0YRZaKkM86vHn+Gn2obxideP3bH6Rb7w8z/g1XfV8f8+fAtPPtaPktx6DvjFRb505yBvaxrHmUZUz1TOc+bU1zjf3cL//M5JXrnQqXscBjoX+fnGVznpW0x5ur0OmduaZ0gqIs/Mt9JRsUZ7pX4iUzBRiQB0p6WTaNF8MUXkUqyaDlfUsFjyhYVmaj1xjjVct6h0VKzxa70vpbLGn1FrkTZ/b6FINhXYIOF3+ae41z9JVdr2aST82mota0kXx9PsM+lYjHkZCtVypH4+Q0nXElRG4lU4BDXj2KSjEBKuIV0ZRxBob2ujra2NhYUFRkZGGB4epquri97e3rxuouUm4xNLK4af+d0eVHWzozACVVVVHD58mD179hAMBnnhhReoqKigr6/PVkyrBm3+3Q7PeD71UD6fj/3799Pf308ikX+B/07BbtOfDTz00EOGtpRHH30047//9E//lD/90z81HU8QBD75yU/yyU9+Mq/tyQcFk/EbqQ3phQsXePe7343T6eQ3f/M3eeCBBwpuWb8dyjjYfwgoZrv6G8kzrqqgJFWW1tZp8F9/oIjH44yPjzM5OYnf7zeMJ1RVlXhCQtgswhakjVSTUthUAHxOJ4mEMRmPridtk3GttmFiYoKKigpDe5Hpg4XJnOYTErzjXa/y8298kfZK45i7Fl+UFl+U+XUfI2s1HK2bw+tUCCVcvLbSyL7aRU43G3vKuysi/M69g9x/54t89fJh/t8rR5FVB13+FX7t+DO8o2UUj4l6fLBmmT98379y9e3P8W/TJ5nZjGRpc0Z5R804t1c8jsNkP0+3zHL6we/zwmIjf/PPJ3j+fC8Ax06O8YF3PcetBkQTwCUqnGqaQVYFnl9oodETpdu/QTRH45U4BNU0ItArKuz3Xs/LbnGuU+tMoqjwwmIzjZ4YtzQaW4HSs8a/PRvgnFRvw6Zi+jEAPkHibv8Ub8si4dkYqFkBYGzNz+pcBQd753CIKovrXobCdRxtmDP0lAP0bWaYTyQqSKhiKtO8GCRcgyRdJ5BagbUgCDQ1NdHU1MTKygojIyM89thjtLW10dfXl1O/iHKT8emVsOFnVS4XsHmfTDtsHo+HvXv3EggEUh0ur1y5Qm9vL52dnZYkOz3VpJwo1BrjdDpxOBy7NpVdZXzHoCAyfqO1Id2zZw9f+MIXuO+++1IXemVlZc6Nf9KxHQWcdtYry3KqKBOK067+RlPGBQUWwxEa/BVEo1GCwSCzs7PU19dbWm9UVSWZlGHzmUTcJON5K+MWx8XncLJqUDCYVBXWY0lkOcHVuX+g2neI9tpjW5bTPP6Tk5PU1tZy5MgRU1+k2Rbp7WaVK85P917m/QOv0Oe35+sFaPKt0+RbZzhUzeRqFQealkxJeDbavVE+euxpfnrPJS6GGnlX8whem55sgD3+Vfb4/5VT0TrmJS93+adNSXg2bmlY4Jb7f8DZe9pIyiJ3t0/a/q5DUDnROIuiwtnRTppawhz0Wedka9DyshOKwFNTLXg9CidNSHg2atwJ7u+6xDvjbv5O2sc3VjxMhGt1lzVLU/EJEm+umuEu/xRNBgkqeuiuCkNVmIlQE1fWvJxomOW2HH77TvdGYehrsRqeWGvmqWhL0ZS8dGVc7y1RbW0tt9xyC2tra4yOjnLu3DkaGxsJBAK2EpXKXdi4sGZ8n6p0uNA+1ZsP0jtczszMpOw63d3d9PT0GIoz2j1mOwo4y/0AsBOxS8Z3Dgoi4zdaG9LKysotdpSqqirCYWPFwQpmLdtLCSOVOl01LXa7+u3wjBuRYy2Wem5hhfjiDIuLizQ3N9t+06EoKlKatUSUIU4ByrhsTh49DuNLSSHG6Mp/p9LxfU5Wr6Ko8PzYMaqrf52O2uMZDxoNDQ2cOHHCVqyT+YPF9c/qPev8wp6X+PmBV/C7E6kUjL01S9R5rInZbLSC4Fo1RxvmCVSHWI57OD/XxqG6eapc1kkxc0kPq4qbPb4Q+ytCLEtuggkvAU8Il425dzLhI646uKViswlN0ktIdtHvCdvKq9aU7Le0bJDIDbVWIOCx95Cu2Une0juxOV4VDhS6PFGLb4KkwnC8mgZnnNvbN0j98wvN1Llj9FVbPxClp5v8yp6XeHDgZX4w38WfXzzF1aXGjGX1bCqVYpIf90/y4/4pKkR50z5TQ7srQrWNrPGFdS8TE7UcCszTWS2nfnuzWMN0FFMJz0Y6GTd7K6BZOgYGBhgdHeWZZ56hurqaQCBgWtBebmV8NW58LXoF53UybjKGKIq0t7fT1tbG4uIiIyMjjIyM0NHRQW9v75a5UyPF5VaYJUkqiIzvxhpuYJeM7xzkTcZfL21ItcY/+cLpdBKNWt90i41sYhyNRhkfH2d6erpk7epvFGVcVVVWllcAePnVy9x1ch+33357Tr5PVVWRZTWjgDOOkr8ybtEn3qPTI77KmeBn+1/lgb0v0exL6wYqwK0NL6Kov8j5oQNMTb2NnsZTBVuq0qECbb41/sO+F/mZwKVUTjZcT8FYl5ycn2tlT/Uy9d6tRGBirYqZ9UqONczRUnF9+7Vou9WEm/NzbRysXcCvQ8ymk16iipM+9xrNwvXx65wJ6pwJVmUXM0kffe4wbh2lfCxegSII9GbZQVpcMVpcMRYkD0ubedV6SvlwvAq3oNCbRbo1tXY66SOiOBjQaQsvK3BhqYUmb3SLnaR3c3mtcDN7fNgg4UPxjXbue9PSRUQBTmyOd3GxCa9TYm/N1gZAmh9/T81ShifbKai8vXmMe+8a4+xyO39x8VZenNtIn0kn45Viknv8k9ztn8rw42/YZ1ZJqgKXY9U0OmM0OLd6b+fXvYys1XKsfp7je66vPzvWcMC/TINva7FmKUm4Bikt2tBO0x+v15vyG6c3lwkEArpRr+Um4+GksQfak5YLamfOFwSBxsZGGhsbCYVCjIyMpJJI+vr6Um8GtiPWUFtvocr4zW5RgV0yvpOQNxl/vbQhLZSMb6dNRVGUjHb1zc3NnDx5suAoK6t1lgvZTX80/3swGGR0YgWArp4+W/UC2VDUjfE0m60oQRK1ZMq4W7h+Y6n3rPOBPS/xcwOvUOM2vsGKApxpfQ2l5TVeWDrCcvLXqOSk7W0y2qKeqlV+ef8F3t1zxTAnG8DnlDjdPENMdmTkRY+EqllOeDneMEdnlX7xImxYKE43TxNOujg/18b+mkVqPAkmEj6SqiPlGzb8/ma0XVh2MhyroNcdxiuqKSW720J51vKqlyQ389J1pX0oXkWFKKd8ykZoc22kpcwlvaxuKu2KChcWW2itiHCy0TgnHKBrk9RPJn3EFQcBzxrJTSW8xbXOPouIv/QGQCobxZNrSSevLDexr8bcCiQK8GP1U/zYnd/h/GozX37lBCuqQJWY5F7/BG/1T2eQ8Gy4BJV93hCKCi+tNuAXk/T6Q8ytexkN13K8YY7bTNreaw90cdnBM/OtdFev0OKJlYWEa5DzbPrjcrno7++nt7eXyclJrl69ypUrV+jr68vwWZebjK8ljZVxl5JerJrbuNXV1akkkvQ3A319fTgcjm2xixSrod3NTshV8i96vBFxM7/vKGuayna0IfX7/aytmd+UzbAdaSqqqiJJUipPWmtXX+pW9duhjGv7qsUTwkZ0n7++G74zQsyi1bwRNjq0kaGMS0IByrhFdZxzM7bF74rzpTM/4vbmKdtjiwKcbHiJ8bUPc2X6MPW1P0ej74z1F7NwvGWK9/Ve4nT9NN1+++e81yFzunmaV5cauLRUz976ZVsWCg1+V5LTzdNcWGgmuiRytHmeKof9382/mUByKVZNeNnLoZYF27GAAPXOBLWOBK+u1yJLAgeqVnSVdiM0u2LUO2O8FKkjFK7gdPOUbnqMETpc68QVgYvrtTgFhf2ekO1277DRACiccPH4RAcej5yTHx/gdM0ch07/kAvRBlpc6+zx2rfliQIcqVlkdt3HY9OdNHqjpoWZ2fA4ZE41zTAWreIvF/bxbLSpbOQgV2U8Gw6Hg+7ubrq6ujJ81losYtnJuGRs+xHTHEX5Hl2fz8eBAwcYGBhgbGyMl19+OTXnl3tfd5Xx4mBXGd85yJuMv17akFZWVhZExsuZppLerj4Wi1FTU8OpU6fK1nii3A8eGvEfHBzE4/FkRPddGto4r9bW8/Prpwq6NjmddolHY/nFYVk9pDg3J5Fw0sPPPfqTvLl1nF8/9BzHbTTPGQ7VsJrwcKxhji7hKVCe4upyPy7vb9Dke4PudxLS9bvzGztH+dXDz3OqekNplVWB5+ZbaPGt0Vll/VboleUGBOBg/UasXUIWeXq+lZ7KUIY9xQgXFxvxOWWOb9ov4puxfu2uqKUvWVFhKO6n2pHcaBbTFiKqOLgUq6bLHaHSRN2F657semecwxUrAFuUdjOklGznOseqlqFqORXpeKxhDo/JmwWAmCIwmvDT4Ypy1Lexfs0+EzBp965BS6Y5WLvAmzo3CktHw9UsxTfeTFiR+rDsZDJZQZ97jTf6N47/ZKKCeFqCiRlWJBcj4VoOVS/y5rYNT/yryw0oKhyut84aD4ar+YtXT/BsvJ7eXuN0mlIgwzNegKYmCAJtbW20trZm+KyBstYLrZnYVMTk9f0rlISmvxm4dOkSk5OTnD17NtV2vhz3G0mS8kr82kUmdsn4zkHeZPz10oa0urp6ywNDLiiHTUWvXX0oFMLlcpW1A1y5ilXTO4MC7N27l+bm5oybjCZ0RdftJz+kQ1PAhSwuGFrLb//McsYBHBlJFgKPzXTz2EyXKSl/baUeSRE5Ur+w5bM97iFQfp1rywGc3l+nyfemjM9j8ST3BK7yKwde4HBlpufYIaicbJpNkfImX3QjFSMLLy42UeGUtjR4cTsUbmuaIakIm1nb4S0RiBt2jmbqPHGONmRuv8cg1i8d8iYJr3cmtii5FaLMfu/1rO5OV2SL0q6R6GxPNlxX2iOKg0uxSt0GPHFFYCThp13HTqJFOi7GvFxYrOVw3TyVrsz1rysiwUQVXa7olo6Tmn1mWXIzJ+kXqq7E3VxabeBw3cIWJbzXH6LXH2IiUsVMdMOzn918KSQ7mUpWENBpO9+xaZ8xK3TVtq3fE+aWukwSfVDLGg/Vsp7wcETHrqOR8O+M7UFWRdpblrYsU2pkFnAW/oI73We9urrK+fPneemll1hYWChKp0srRGTjuUmJXT9/iyUIOxwO6urqCIfD9PX1MTIywtDQUEHZ7HZRDJvKrjK+S8Z3Egq6Gl4PbUgLVcZLScbN2tVHIpGy22NKbVOJRCKMjY2lUkOOHTvG888/bxDft3FzjearjGv2lKx7dN5k3MKmoi/g6pPySystQJIDtdYEZsA9DMqHuLbch9P76zR63sD42t9QLX+dL9+6tfAvHRop1xI8GrzrdFaEeXGpmXpPLKPZjB5cosqpphkkReDZ+RbafGu0+CK8tNxEk289VYhoBC3WTysWbHbGqHIkGI5X0+SMsdfCTpGe1X0pVk2bK4pXkBlJ+Gmz4cmu3CT165tKe6crgkNQCSaq6NQh0dlo8MZo8M6wmnDz1Fwzh6oXEF0K48lKut0Ry+9rhaph2cm1RAXdQpQEDq6E6jlSP8/tFnaUzso1OivXNpT6tWqO1s8RUx3MSj76dEh4NrRC10XJw8JmoWtIdrMgeQl4wtTpFG6mY6B6BYDJBT8RpYZA4wSTkUwSrmE7vJ5Skcl4OmpqanA4HBw6dIiFhQUGBwdpaGggEAhQV1dX1HVpiMjGb5HkWPoEUzzCopHilpYWWlpaWF5eTmWzt7a2luwhZDfasDjYJeM7BwWR8ddDG9JCPeOlION22tU7HA7iJlFXpUCpCjhXV1cJBoMsLS3R0tKSSg3R1Gu9dWrcdy2W3zFI3ZzTh1YhHE3m1Zre8rgkzcjAdVL+831rvG/Po+yvze1tTZ9rhKHox5iIeqh1rNHmttduHDZ8wYfr5nlxqYWZaBUtvgi9OeSMO0WVI/XzXFhsZmbBT2tTmA6TZkHZcAkqve4wwwk/JL2bHm37diG3qNDjXmM0UQXqRuFljcP+Q5VPlOl2rzEa9wMqne6oacObbNS4E+yrWeLSRBOVLet0+0JUWNhn0uF3SHS4olwaaiJRK3Cobp4Kp/31t/iiCChcXGnEXxmn1x3GnYOnvsG50WT9bxb30O6K8lb/dEbHUit0NIaZCbn4rfNv5f9O9GeQcA25dP8sFuQCPeNWUBSFqqoqWltbGRgYIBgM8txzz1FVVUUgEKCpqamo6mzExDOejFw/X4opCGeT4rq6Ourq6lLZ7IODg9TX19PX10d9fX3R9rdQMr4bbbgBVRW25dorFXbSvuSKggs4b/Q2pIWmqRTLR62qKsvLy4yNjdlqV1/uZBMormdcVVUWFxcZGxsjHA7T0dHBvn378Hg8qWUEQTCNNwSIrufn8U7N1WlDCypE4nJeZFy2SFMJLa2CcQ8ibQt4ebGf5xd7aah4wZanXLNjXFeSN9Tk4XgVPlGizWVOyrWc6j7/KqfS0jEuLDZT47LOuo4kHby8vJFzrUXsKSo8t9BCU1pXSsP1KyLBhJ9OV4QDm0qurMKVWDX1jhiNLvPfN6I4GE9sKNHa9yVV4EqsmgaDWL50rMkOJpKV9LgjqWY96Uq9lTq8GPNyLVTL0foFTvVv2Ko0pb5Vx36TjRXJlVKyT+7bUMJTsYDVyzR4zX+/2XUfY2s1HKuf4zbfxrkSTVP6rQpl5yUP31vt5slIM/JmkfH3w13c7Z/kbv80laL5Q8H4ag1/+61buCq+gSc8W+1UGraDG0lSfmkqdpFe1Oj1etm3bx+BQIDx8XFeeeUVXC4XfX19tLW1FaX4MaoY/xbxtXQyXlxlXI8Ua9nse/bsIRgM8sILL1BRUUFfXx8tLS0F768kSbs2lSJAQdhRaSo7aV9yRVnTVLYDVVVVBRdwqqqad7V5vu3qtyPFpRg2FUVRmJubY2xsjHg8TldXF0eOHDH0vhs2/tE847F8bSobA6RbbQUJog4prxu3YmFTqfRUkmpXbQJBFXALjpRS/qaWCX7j8LNbSLlGYttdUV07hlacNxyvwiPIdLjXMz4PJ1y8utLI3qycag3a+i4sNlPtihOozuwqqRUW7q9d3PJ9UYCTm10pX9hsYNObReo3SHAV3e419nszx3YIsHczVu9qzE+1I0GLK677/R4dO4ZTUNnrDaVIfZ0jTlPW9zVPtZ6dQ4v1S5F6R4yGrIeC+XUvI+FajjbMb9l/96Z9RiP1Tc6tSr9GwgOeMPucmevXYgFjsoOn51rp8a/S4sv8/WaiFYxHqjneMEeLL3P9mqc+bvJQMCd5+d5qF+fSSHjq2CouvrXay8OhTn6sapq3+mZozHooGAnX8OVXT3D+4kGEC0l6TpnfJMutaClK5jotLs+csZHGpG6Z810uF4FAgJ6eHqamphgaGuLq1aup9vOFEMyoyXy/vlqat6RWOeMej4e9e/cSCASYmJjg8uXLXLlyJbW/+arbhSrjgiDsknF2bSo7CTuejFdXVxOJRPJSQ4HUhJFrc4RC29VvR755IWRclmWmp6dT8YQ9PT20trZaTrhG61RSynhhZDz9bbwowbpj48Eq1xuBbHFcBNneuSUAYmrCEXh8tovHZztTpDzgX2FK8W56kq3brmukfCRehVuQqULmtZUGDukUBupBI+UvLjZR6UxQ745xNVzP4bp5y++LAqmGOBcWm6h2Jahxx5lTPfR5wpbbLwqwx7uR7X0t7qdCkfAqKnMO92Zhovn300n9tbifKlXCg8IcHgKesKWnWiP12kNBJTIOVb2uRFtE/GmkXnsoqHXEcQoq85uFkbVO8/V7HTK3NW8Uyj4730qrb6PQcjLq53jDLK0WSTZaoaykNfBxxJAQ+V6oi0EdEp6NmOrk/4a7+EGog2NqiH/XPEJCdvDlV0/w3bEBZFWkOSngBFSLN0PlJuMbFpV0Ml5cNq7NSUZzvsPhoKuri87OTmZnZxkeHmZoaMiy/bwRkrJMXNWf7x2CwPra9Ye9UtpUjOB0Ount7aW7uzsjBjLf/d31jO9iF5nY8WS8GDYV2Jg87CSbFKtdfbkzvyE/a0wymUztr8fjyXl/sxv/pJBSxvO0qWz5PxtkPOaSc1bGVVVlddWcWClxBWw0zxQR2JqWd52U39k+we+cejwnTzJAnSPOrORjJeaj3hPD78rtIaatYo2RcA2RhJt6zzqVNtrcp6PFF+Uf5/pYVly8v/0q3hw8zaIAdY4E313qZm65gvcNXMvJEy0KUOtI8J35bkJxFz/VHsSVgydaFKDeGWcqWkUy4aTBGzVtlpQNhwANzhiLkhcRhRpHIidPtktUaamI8H9m+0ki8O8ag1vSU8zgFFRqHQn+cbWXp6JNKBYkPBuyIPK8UMvzs8c59+yBDE+4sFkLoVpIz+V2qaQXb26sv7xkXIMgCLS2ttLS0sLS0hLDw8OMjo7S0dFBX18fPp/P1vqml0OGe1DlcoN6/c1FMRVhRVFySuwSRZH29nba2toyYiA7Ojro7e213UFYkqRdz3gRsOsZ3znY8WS80AJOQRBsqdTFble/Xcq43XWmJ8FUV1dz6NChvPbX0DOeSlPJ1zO+VRkXZFhX7Hfh1Hzvo6OjDI+YF1xKNpsTCSqIitExEnh0qgtmT3DAu8i7a4IMeMw92YtJN4vyRjpGrTMEm3XOLy814nbIuq3W0zEVqWIqWsWxhjma0+wQLy014rHx/fGIn2/O93ERP6ooggifnDvOUe8y76oZo99i+2eTXv45lGanqIJPzNzCMe8S76wZz/37Irw4U88x3xLvqh6zzNpeSLpZkj30e8I0VF9Pt7m41ITPkWRPzYqN73vp94Qy/OtG9qFsBNf8/MN8gFdEP+pmKPkfrhymfzHKfXVBDtWaZ33PJH18N9TFU0XoeJlUnFuKM9XNZzrV4pLZHmX8OsqtjGdDEAQaGhpoaGhgdXWVkZERHn/8cduJJFPLxue53+VGSbPAFfNIy7KcVzhCegxkKBRiZGSEJ554gubmZvr6+qitrTX8rqqqRbGp7GLXprKTsOPJeFVVFbFYDEmS8s7sNiPGpWpXv10FnFbrjEQiBIPBVBLMLbfcQnV1ddHXqd1c12MSsqLgyPHNQko5yVbGVdlyHzXfu9YBtauri71qHfxwwvA7yZg9JVkABMmcOLhFLy/H6ng5Vsth74ouKU/PkM72OwMc3swuf3mpEZcos682k1SPhf0sxCs41jBHe+VWwnrE4vtD4Rr+caGP18Qq1C2daQQuxuq5GKvjkHeFd9eMsceT+WZhKunje6vdnNft2CjwYqyBF2P1HPau8K58vr/ewIvrG99/Z/XYlizy+aSHFdlNvyesW0R6tH4+tf9OUWF/Vgyl1fe1h4DRRCWiqtLtybScjKxV8835AK+KVaiOzO1XEbjmqOTzoQP0LMV4V+0YJ+ozawqmkz6+u9rF+Wjx2s7LytZrTEhuXCs3nk0lc1tLRcbzIX01NTUcP36caDTKyMhIKhaxr6/PULCYDRmT8QqHi4wrtAwFnLmgurqaY8eOsXfvXkZHR3nmmWeorq6mr69PN3FGO7b5+utTQssuId9VxncQdjwZ14hiOBymvr4+rzGyFWNNMQ0Gg6ytrZWkXf12KONmDwDp8YRWSTC5wPABQLu3SioLoQgttbk94OjdmwUJEqiGrzhlWWZmZoZgMAhAd3c3bW1tOBwOxueGTdeXjNr8rVTAgre7BTfrRAFhCyn3CRIx1UG/Z40WiyQVSCPly404BRmnoLAmuTneMG+ZhJL+/VeWG3AIKo51lW9Fu3nN5d9CIrdC4JVYHa/Eajng2SDlPlHmu6tdPLfeiGpJIq/v/wHPKu+sGaNKTPLdUDfPRnP7/j7PKu+uGaPOEWdNcRFwh7cUfZrt/2vL9TjCAtWNUcIOJ/02v9/r3rDIBaNVxOa9uOrj/MNCP6+JVRv+FovtDzp9/PnaPtpXenhnzTg91at8Z/MhxHr/c0M2wQVgUxm3KmAut2tgi02lBGRcFMWCCF9FRQWHDh1KxSI+//zzVFVV0dfXt6XJ2VzY2ErpE5wZZHw7PON24PP5OHDgAAMDA4yNjfHyyy/jdrvp7e2lvb09w/IJ7NpUigB1hynju2R8B6OqqgrYUHTzJeNOpxNZljPa1UuSRGdnJ0ePHi1Jl8zt8IxnrzP7oUMvnrDY67y+7o3/FSSYLYCMZxdwJtStNhVJkpicnGR8fDyVltDc3JzxitpKeUvYLDQVVFASCpicMk4huxgqnZQv8+6aMVvrSkdSFfjmSh+yKvBTtbl/X0bgm0s9XJMqcHhznTAFXovX8dpcXZ6F1AKvxWt5ba6WjaeZ3L9/OV7L5+ZqGXCv8s6accs289lwiArfXe4joqq8q3ks5+8LKvzVpaNM9Cp4fbk/ZE85vfzXyB6UsIqY68ptQp+Mvz6UcblEZLwYSE8kGR8f59VXX+XKlSv09fWlSGo4Yfxg586qARBvMGU8Gy6Xi/7+fnp7e5mammJ4eJirV6/S09NDV1cXkrShRhTr+N7MUNmeWNFSYQftSs7Y8WRcFMWCu3CKosjMzAyXLl1KtatvbW0t6WSynZ5xRVGYnZ1lbGwsZdM4duxYwbmwRus0yxkXFFhcM0+V0INeQZcgZyrj6cW2FRUVGR1QsyHL5g9GsYiEHZIoqKBakHGH4YcCL8fqeXnT/nGfDU/5UwutfC/UxaTTk1Jiv7S2j66VHu7TsT9k45nFFr672sW40wtOATXmAAo5LwslEoV9/1qihj+dr6HPHead1WPcUmHeBfXSah3fXOpjyFGBWrex7j+bP0SPa42frBnj1gpzT/dYrJK/vHKcf7h0CBWBk+o1Cjl+yaQTj6c084IeGRc2OaKlMFDmu2g5POPFnt+dTid9fX2pWEQtkaSnp4eQCRl36tiHioVcU8JyQXrizNzcHCMjIwwNDdHS0oLD4SjorcNutOEGFASEHZTNvZszvoMhCELeZFwrUgyFQiSTSVOyVmxoJDXfSMZ8oGXrDg4OIopi6qGjlBFURjnjKTIORKK5F3HqkXFRgqSgEI/HuXLlClNTU9TW1nLkyBFqa2tNj7PVa3oB8DmdrEvmHhQBAckieUVUrd60XLd/GJHyx+Y6+P5aB7NOj85VLjDu9PHna3vpXOnmvtoxTmaR8ifm2/l+uJPprO+rNiMc9aCqG/9uhHvoSMLPlxYO0eVa450145z0LWSo3a+sNPCPyz0MOyp07STBZBVfXjhIuyvCT1aPc7piPuP7o7EqvnL5ON+8fDDDTqIYFu/aQyLpKB0Z1yN9ic00FYtVFtsyY4X0hj9QOptKKSCKIp2dnXR0dDA3N8fw8DAj05OGy2c3iy12mkqpIwYFQaClpYWWlhaWl5e5cuUKsixz8eJFW8WtuzDGrmd852DHk3EgZzKutaufnZ2lsbGR2tpampqaaGpqKuFWZkKbIMsxWaYrxAD9/f20tLSU9aEjG+m31nziDY0840lB5eWXX6axsZETJ07YLj61yhkH8DmsyTiqihQzZzaiavf3ziTl76oeYyxUw/+NdLDkcNm4ugUmnD7+Ym0fnas9vLt6jLDk4v9GO5h3uHW/XwgZB22yvXFeRo4nq/gvCwdod0Z4i2OBFneUb6/0MOLw2fB0w1Sykv+2uJ9vr3bzjuoJWh3r/LfLx/jWlQO6BLWQm42qgiQ5gfwShqywRRlXVQTNM27xZmi7bSrFNvSVUjHWoJHU5uZm/jo4BasGb7kSatb3ircNhUYM5oq6ujoGBgZ46aWXEEWRwcFB6uvr6evro76+flftzhGKKiDsIAK7k/zvuWLHk3FBEGx14dRrV3/69GkqKip45ZVXtsUyAqVtjrC+vp6KJ6ypqeHgwYNcvHiRhoaGsk2KRjnj6WQ6ny6cekrZhjIOe/fupaOjI6fxZAvPLIDXYeNyUkBatyLsuV6WGimv2/jPPE6XCYeXP10+wKWrHXR3LlBbo28NKpiMc2ORcQ1jMT+/d3U//b0zVPhyP99mpQq+urSXV690sLhUY7hcIcq4ogj66nWRoGtT2fxf1SIBqPwFnK8/m4oRBEEgbrIqNZ45PxbTllAOsScbkiThdrs5fPgwe/bsIRgMcuHCBXw+H319fbS0tNg69rvE/frbxp2CnbQvuWLHk3Ewb/xjp129VsBZTmRXnhcTa2trBINB5ufnaWxsTMUxagTWboOjYsDKMw75N/7JhiCDLKg5d4sDa5sKgEe0cTmpEI+ak3FFcRQ3TNgmFFVgNVzFS69VUe2P0NM5v4WUF66MF/T1okOSRIITTUzN1AMCimLuobeClUJcCBmXZRGllGTcZGwrz/h2K+OvJ5uKHiKS8QNgaCFLMb9B01TyWWd6cevExASXL1/mypUr9Pb20tnZudul0wK7NpWdg5uinFlPGZdlmfHxcZ566imGhoZobW3ljjvuIBAIbCFr21FMqTUbKlaiiqqqrKys8OKLL/Lss8/idDq57bbbOHz4cMqzpxXFlDPFxQ4ZX7eZVKJ9b2FhIWUrSb+0tf8fWrOOBMyGHZuKR7Ch5qgQj5rvj6pszw1ITSOKoXAlL73Wy4uv9LK8kmZwL9DzrBb4/WIhKYlcG2lh8Nn9TM00oJ0dhZJdy+Y4hZBxRUTRSzwpEraMncZvlRtMGc8m40vLy0Wdt8pOxmXjOUHN0iKKdQUVo/lOPtBbp9PppLe3lze/+c3s2bOHiYkJHn30Ua5evUoikXkAdmMNr0Mj4zvpXz748pe/TG9vL16vl9OnT/P0008bLvvf//t/501vehN1dXXU1dVx9913b1n+F37hF1J8SPt377335rVtdnHTKOMaGY/H40xOTubUrl4URZLJ3F9dF4pcOmIaQSOnwWCQaDRKR0cHBw4cMFSHy91syFajIRvKeHajHjMsrkTpz2krrdNUAFw2yDgqJGMyDkE0jGOTZDEvqwmAokC+HEJPtQ2FK3j5Ug/VVVF6uubwFHAjVNWN7dtOJJMCo+MtzMzpx5wW6lnM7mCZjULIuKKISAW+mTBDNsFNjwW1zhkvcwFnlk1lYXGRxx57LKWoFpr8VG4yHjVRxtV45rEdGx9jYqIzI7s7H2jz7nbYVIzWKYoi7e3ttLW1sbi4yMjICCMjI3R0dNDb20tl5YYwsJumsoFdzzh84xvf4MMf/jBf+cpXOH36NF/84he55557uHz5Ms3NzVuWf/TRR/nZn/1Z7rjjDrxeL5/97Gd529vexiuvvJJhX7333nv567/+69R/FzPSWQ83BRn3+/2MjIzwwAMPsLKywsc//vGc2tU7nU6i0dzj9QpFIYp8djxhd3c37e3tljepcuebGz1wpN/8zTzj2Y16enp6aG1tha+/hpE3eXnVvEW5HuzYVFwWRGxjoI1xKpwuwkn9hwxJEiB3Jw2woZ6KYn6/nxmhCq1VcGWonSNNxqkP1uOD07l9qpaiwLWRNhaWak2WKVD5tyDLhSjvsiyyFvEBy5bL5jV+9ralnUZy8sa2qfT09bK/pZ3h4WGGhobo7e2lu7s7b7tdub3UZsr4+mpm7GFdXR0jIyNcvXqV3t5eurq68nr40Obdcud921HjBUGgsbGRxsZGQqEQIyMjPPHEEzQ3N9Pb20ttbW15NvYGx65nHL7whS/w4IMP8sADDwDwla98hX/+53/mq1/9Kr/zO7+zZfmvfe1rGf/9V3/1V3zzm9/kkUce4f7770/93ePxbHCJMmHHk/Hz58/z+OOPEwwGedvb3sZHPvIRjh8/ntMY22FT0dabKzGWJImpqSnGx8dxOBw5Z6IXQ43PBUZvHdKvyXUdZdyyUY/JVb0SysemYj1LOG2QcW2zvE6nIRlPSgWop7IIzjzJuAURlRWhoNpLQQCHY/ukcVEEQTTfgULIsqpiGXVRyI1TUYS8H7TsYIsynrYqyzSVUmyQCbZ24ITW1lZaWlpYXFxkeHiY4eFhuru76enpybk7cjmVcVlWWJf160icgkgskjk/1tTU8MY3nkrFIg4NDaX2Mxf1rhidMPOBLMs5PTxUV1dz7Ngx9u7dy+joKM8++yynTp0qasfr1ys2yPjOUca1+TEUCmX83ePx6J7biUSC5557jt/93d9N/U0URe6++24GBwdtrTMajZJMJrc0hXz00Udpbm6mrq6Ot771rfzBH/wBDQ0NOe6RfexIMq4oCt///vf54z/+Y55//nn279/PLbfcwv/8n/8zr/HKTVDzWW92A5s9e/bQ1NSU86u87VDGddeXXsAZv34zyt7P/fv366a/GJIDFVbzIeM2bCq2eNLmMl6TYs/l0Doee4mLGVBV8yI8K1ipwooslD1PutgQLWhjqW9shXi+ZVnEsU1k3Or8L78ynpWmsvm7piuqy8vLDA8P89hjj9HR0UFfXx8VFRW2xlcUpWw2iLnQWmr7s+F3u4HMN3kCmbGIy8vLjIyMcPbs2Zz2U4tvLLfdI1+fus/n48CBA7p1XTcrdmoBZ1dXV8bfP/7xj/OJT3xiy/ILCwvIskxLS0vG31taWrh06ZKtdX7kIx+hvb2du+++O/W3e++9l3/37/4dfX19DA0N8Xu/93v8xE/8BIODgyV7eC3ao/+NYqBXVZU3vvGNPPjgg/zET/wEY2NjvOtd7ypI5diONBWwp4yvr69z+fJlzp07RygU4siRI5w8eZLm5ua8Jtnt8IzrFeSkC9GxWJJYLMaVK1e27KdhEyYDziWoEFo37nZnBDvRaaKdU2Rzx7yi8QWdzLOAU1UF/ZbmOXzfDBtkvTDPuBmcKJZk2QwCKk6LxGnBgswWalPxiub1DYUWcJZUGc96kBPSzmfFKtqz3J5xG01/6urqOHnyJGfOnEGSJB5//HFefPFFwmHzrrVQXpvK5HLI8LMq11bSmT7fCYJAfX19aj9lWebxxx/nwoULW9TFbGxHrCEUnm3ucrnKbq3ZRXkxPj7O6upq6l+68l1M/NEf/RF/93d/xz/90z9lvGn5mZ/5Gd71rndx5MgR7rvvPr73ve/xzDPP8Oijj5ZkO6BIyviNZKAXBIE/+7M/4+jRo6nl7eSMm2E7bSpG602PJ2xqakrFExaK7bCpWCnjobV1nnrqKRoaGmw36jHiBoIEa/Hci3HtKONYJE4AKS7rNin2VMX8CkUUtbAcaisiKiCUJA3FJci8uXKGt1dPkFRFvhvqZjDSbLs1sojK6Yp53lkzhk+U+L+hLh5dayWh0zzJyrOeLxnvd4d4p3+cA297kofnu/nihdsYW63bOn4BpFWWxZLafLYo4+lkXFIxy/Eop29VUbY+OJq5yPx+P8eOHWPPnj2MjIwwODhIQ0MDgUCAurqtv9HGOspnU5k1avYDVIhOsj810lj8fj9Hjx5lYGCA0dFRnnrqKerq6ggEAroNdbYjSUVbb6EFtrvYgMqN2LUhf2j7Ul1dbes+39jYiMPhYHZ2NuPvs7Ozln7vz3/+8/zRH/0RP/rRjzh69KjpsoFAgMbGRq5du8Zdd91luV35oChXxI1moD916lTGf/v9/tclGc8mxlo84djYGMvLy7S1tXH69Gl8Pl9R11lOZdwoSjG6fv3VbDwpc+rUqVQlvR2oqj51EGWISLnnlts6Jkms3zVpw5gUxEUTKvk8VqlqYTYIO0S7mGTcLcjcWTXNT1RPUOu4/oD0Sw1XeFf1GN8LdXEu0oxscFBFVM5UzvGT1eO0uq6fLz9bN8zbq8d5ONTJv621EU8j5Q5HcT3jA+4Q764Jcti3kvrbu1pGefvbgvxgvos/e/E2hpav+wwLyWlXFBHRYvsLgRkZB3AIgmECUDlflW9YVLLJuPVxqaio4NChQ/T39xMMBnn22Weprq6mv79/i9WtnGR8LqzfAwPAK2wl41aoqKjg4MGDDAwMZDTUCQQCGZ2Vt5OMF7JeVVV3k1Q2sVNtKnbhdrs5efIkjzzyCPfddx+wce0+8sgjPPTQQ4bf+9znPsenP/1p/uVf/oVbb73Vcj0TExMsLi7S1taW0/blgoLJ+OvBQO/3+wtKQ9nuAs7seMLOzk7TeMJCsJ2ece1hIxgMMjQ0llommVRwFilWSJAgKuX+W9op4FSTClhsZjy2YZFJrhv71qOJ/M41tcAOjZYToVq4jQPAK0i8tWqae6onqXbov6VodsX4Dw1XeWfNGN9b7eLJSEuKlDtQuGOThDe79I9jjSPJ++pGNkh5uJN/DbcRU504LLxEdpXrAfcq764ZyyDh6XAKKm9vHuOeu8f418VOvvjiKS4vNhemjCsiToPjVQxknztiVk2heIOQ8ezizY31239I8Xq97Nu3j0AgwNjYGC+++OIWslpOC8f8mjEZd+u83bFLRN1uN3v27KGvr4+JiQkuXbrElStX6Ovro6Oj43VLxneRhp0qjeeAD3/4w3zgAx/g1ltv5bbbbuOLX/wikUgkJQ7ff//9dHR08Id/+IcAfPazn+VjH/sYX//61+nt7WVmZgbYcFBoLor/5//5f3jPe95Da2srQ0ND/PZv/zYDAwPcc889RdvVbBRMxl8PBvqqqipbPkEjbFcBpyAIrK6ucv78eWRZpqury1Y8YSHYDs+4LMssLCwwOjqaetjYu3cvPDYNbBDohVCEjnrjNuNbYHBRixKGyQVmsPTMAkrCmozHNv3qdZU1ENGPWFyL53f8C/WMW9pUBLUg0uVB4i3uOe5rClLlsPcbNDnjPNBwjXfWjPO91U4U4F01EzQ67fn+/Q6J99aO8hP+Cb633MnfOcwL26yU/373Kj9VO8Yh74qt9TsE+PHGCe566wSPLbfzP0f22/qeHhRZQCxhNGT2ubOFjJusupx8QO8ct6OMZ8PlctHf309PT0+KrF69epW+vr6ydiFejRufyy6d8zFXUVhrqNPd3c309DQjIyNcu3bNdrRvsSFJUkH3sN2M8TTsMGU8n9qT973vfczPz/Oxj32MmZkZjh8/zsMPP5zipGNjYxlvuf7yL/+SRCLBT//0T2eMoxWJOhwOLl68yN/8zd+wsrJCe3s7b3vb2/jUpz5V0qzxbTduaQb6Rx99dIuBXsORI0c4evQo/f39PProozl7dvx+P5FIJO/XW06nE1VVy/bqUosnnJubQxAEBgYGcoonLATlfPBQFIVQKEQkEuHSpUt0dXXR0dGB0+kkOHv1+jZJMLO6lhMZVw1yPwQJYnmQcTsdOKW4gpW/pLKikmXWcZiQvnAsPzKulLiAs752jYr23N8wVYpJftw/xd3+SZZiPmYkLwMO+7axpAqLkod314wDMCd5qXHEceVwKc9IXt7kn+Odt0zwDy0D/MULp1iObSXmRg8kez2rvLsmyB5PiOG4n2XJTZ3Tvt1pVvJxWfEjNiXyTqSRFbHgpkSm42fbVLIuE5fTSdwgjrP8NpVMGKWR2EE6WZ2ammJkZIT19XXq6+sLJo52YGaby34g2kB+x1oURTo6Omhvb2d+fp5Lly6lAgB6e3tL3tREw64yXjzs5oxv4KGHHjK0pWQXXY6OjpqO5fP5+Jd/+Zf8NqQAFDzLvB4M9MUo4ITrUVClQiKRYHx8nMnJSSoqKmhoaMDhcNDe3l6ydWajHDaV9EY92uvgM2fOZEzQ6a+dBdn8VW4uEGWIW/Us14Gdpj9SzAbJ1/bLpNhTVsEluEiquVkSVFUoyEZi9V1ZFnFV2n9QqxKT3OOf5C7/FL5Ne0hlxcZ1OJv0ElacDHiMr8ukCkPxatpc6+zzXk+GqHMmWJFdzCZ9BDwhQ1KuqDAc9+N3JDPW84GuS/x/Oq7yzckB/uLCKRbWr9ciZHvG93lWeHfNGAe8q9f/5g0hqQKXY9U0OmM0mJDyqaSP76x283S0qeBYSFkWwU5jqXzGVgSySZ6Ydfo5Tea+chICPZuKnevTCqIo0tnZSUdHB+fPnyccDnP27NmCGwhZIWIiDgiJrftVqCgsCALNzc1Eo1FmZmZYW1vj7NmztLe309fXl1NtTj4ohmd8Fxu42T3jOwkFk/HXg4G+UGVcI+ClenW5vr7O2NgY09PT1NXVceTIEWprawkGg0QixSGhdlFKMq7XqMftdnPp0qUtk3P6fCvIsGRg6TCC0XQtSBBX8/CM20hTSUatybi26mzVMRtuwZMXGS9IGbfKGZfsjV0tJri3eoK3Vk3jMYjia3HFaGGTlMsuBrzXbWRxRWAk4afdtc7+NBKejlpHklpHklXZxXTSR38aKVdUGIr7qXEkM8ZNh0+U+bmuy7yn4xrfng7wZy+cYj7qTynP+zwr3Fczxv40Ep4Op6CyzxtCVuFKrJp6R4xG13VSXkwSrkFRxJLdrPQKf7PJuMNk7iyvMq5DxotolBEEAbfbTWtrK1VVVQU3ELLCukn3TUXnLZlQtPNJwefzcezYMcLhMCMjIzz55JM0NTURCASoqcnBFpgDCo023LWppEEVyh4rWlLspH3JEUV5/3ajG+j9fj+yLLO+vp7XU78gCCUp4gyHwwSDQRYWFmhqauLWW2+lqqoq9Xm5/dvaOiUpdxuHGcwa9ayururuY/qtVQDW13MkpgZ/FyVI5HHjtqO8RWw0E1I3x1GTqunV5xJyL85VCizgtLJAKBZJIF5B4qdqgtxZNYPbZh52iytGiyvGbNLLquxERqTTFTUk4dmocSSpcSQJyS6uJb04UKlzJNljQMKz4RNlfqbjKj/VNsR3Znp5IdTE/c2v2V6/Q4C93hCKCq+G61AElSdiLUUl4RpkWTSN8Ct07Gxkk3HRlAAJGwlGZbiX6tpUiqyWauptMRoIWSGiGM9t8vrWubhYxzhdodZiEffs2cPo6ChPP/00tbW19PX16TZVyxeqqhakjKuququMp2HXprJzUBQyfqMb6LX87UgkkvcruGKRcVVVWV5eZmxsLLVvRvGE21E4WkxlPBaLMTY2xtTUFLW1tSnFP31iN2r6k/239TyywfUgSpC0aAyjBzuecSVpPZPIm5GGSkI2vfqcQu5vYEqtjMsWynhMdXBhvZ5e9xp7bZJZgHVFZFn20OmKEFWczCR9VIphRJv3f0WFmaSXJmcCjyAzmayg2pHAY1ZxmIUZycftjTO8u3WUkUQVq7KTGptFptr3vzUT4Pl4Hf7q3JtK2YGsiCW7Wek9xOWijANlI+PZDX821l3cA5NdH6Q1EAqHwwwPD/PEE0/Q0tJCIBAouL+DWUF5IqLzWQnIuAaty2V/f39G0kxfXx+tra0Fk3Lt3rKbM14k7Kap7BgU7Yq4kQ30Xq8Xh8PB2tqabhMiOyiUGKuqyvz8PMFgkPX1dTo7Ozl48KBpPOF2RCoW4wEgEokwNjbG7OysZaMeI/K/hYzHikPGBRmSQu5XvGwjTUVKmDdG2Rhnk4zHFTAR1hzkR8ZzzclOh5UyrloSfYHX4nW8NlfLAc8q99UETUl5VBEJJqrodkdSdpAqh0SzK8Zc0sOq7KbfY0zK5U1PeYMzzt40JXy/I8Sa7GQkVkGfO2xKykcTlThQ6XFft4Pt84ZIqgKXYtW0OtepdRqfe5ObdpRnok0EFxqp8ZfOVqYopfOH6j3EObKeKRwmjao2UFiHVrsoVpqKGYyK9bUGQtFo1HYDIStETZTx2NrWz4plUzFrvuN2uxkYGKC3t5fJyUkuX77M1atX6e3tpaOjI29lW7u37NpUioNdz/jOwU3xeCqKYsFFnE6nMy+SqigKMzMzjI2NIcsy3d3dtLW12VIGtsOmUogyHg6HGR0dZXFxkZaWFluNeoya/mTfW6Nx+8kVZv5uQQZZUHOuH7Bzs9dK4MyW1Ei9FDM/l0Q1HzKuT1Rsf99KGY/bPV4Cr8VreW2uRpeURxQH44lKut0RDhiQ9WZXnGZXnHnJw4qUScqlzcLMDRKu//0qh5RBynvca/jSrDOj8UqcgkqvW588uwSV/Zuk/HKsmmZnLCM9JZ2Ea3YUVRFKqgxv2FTKR8bFrEvO3KZSvlfMkq5NpbjrsErOMmogpAUN5DK3RE2U8ejK1rcsxbSpWL1pdjqd9PT00NXVxczMDMPDw1y7do2enp68ilo1C+RuO/si4iZWk3cSbgoyDlBZWVnWLpzZxYo9PT20tLTkNAlth00l1weA9EY9mu3m9ttvt13kpNlUtpDjrAkmZiepZBOSomAkfmtrWAmtU1djz/O5urrK4uKSrWUFQTB9Za5sNhxK6nhBM8ZRc780FbVQz7j5d1WbBZzXkUnKf6J6nGTMxYGaJdue7CZnnCZnnAXJw6LkAgSaspRwM2ikPKI4eGmtFp8o4XUq9HrsKdiuzUJNLT1FROVHa+0ZJFxDKWMHYdOmUsQOqNljZ0BVt/Q9tbapbJ8yrhZ5vXZjbLMbCF28eFG326URVFUlpujPBS5RJKHrGS+eMm5XoRZFkfb2dtra2lhYWMi7qFVT43eV7eJgVxnfObgpyLggCPj9/oLIuF1iHI/HmZiYYHJyksrKyoxixVyxXTYVO2RcVVUWFxczGvVY2W6M1gds6XiXrUTn4hmXrJJPVFhYipiScc3bPzo6SjgcRhDt3bSsfmVNGU+sm/+uqk7nPSuoSqE54+afC7KAqoClW2HrN3ktXsvLMzXUrDh46MALGVGFVpA2c8abnTFkBBYkD7WOhG1POcBc0ke1I0mjO854soKoIlJhs8gUYFby8q9rbbokXINSYmVckcWiF4VqsHPeiBbrLteNdDttKkbQayB05coVAoEA7e3thmMthCPIBg8S1W4PkH/naCvk02VUEASamppoampieXmZkZERHnvsMdrb2+nt7c0IINBDsTLGd8n8JnY94zsGNwUZhw1lvJCYQCubSjQaZWxsjJmZGerq6jh69Ci1tbV5rw+2z6Zitp+KojA3N0cwGCSZTGY06sl3fdq4GTnjWVdlLAcynpRly4t6cSXCHpq2/D37IaOrq4sjR47w6IVHbK/fDKq08XvGI+a2G1Vx5FyoVWjOuKXqqm4kqjhyKIzMhMCF1WY+M3OUQ76NJjpmpDypwnC8mpasnPHGTaV8adO+4jDZ7JF4FW5Bpi8tZ3y/I8S64uBSrJoud4RK0fh837Cj9PBMtNGaCKsChq9kioCNpj8lGjub4Oqs50a2qcjbTMY16DUQunbtGr29vXR2dm6ZJ6eWjc//SqcLPc18O5RxPdTV1VFXV8fa2hojIyOcO3eOpqYm+vr6DO99uw1/io2t/QFe39hJ+5Ibbhoy7vf7CYftvdrWgxFJDYVCjI2NsbCwQHNz85Z4wkJwI6WppDfqAejp6aG1tbXgiTWdjGcg6966HrdvU5FtMJbl1czcclVVUw8ZiURiy0OGnQJOW9uWpoyLgmio6MmyI+ers9AOnFY2C0EGVRGB/M9J0aGgKI4M+0o2KTdq9pOORmecRmecRcnDouSh3xPKIOXD8So8YiYJT4dPlNnvvU7KO10RqhzX9ysnEr4JpYQ2DVXdbMpUKs/4FpvK1mUcW4wr2V/ZPmW81GkquSK9gdDs7CzDw8MMDQ3R09NDT09Pyms9vWJ8T6pwuNA7+0sRbVgIqqqqOHLkSCoW8ZlnnqGmpoa+vr4t/vlCO5ruxhruYqfipiHjxVTGNQtDMBhkdXU1Z5+0XWjKeL7NigpZpwa9Rj3Nzc1FK8DR9iubjBdiU5EVa2V8JbSeWu/s7CzBYBBZlunp6aGtrW3LTcpOtKEdqGmdN31OJ5Gk/n7Jspjz1akW6BlXLTzjgmKdNW4+Pjgdcpp6f91Tvt+zyjtrgohg2uwnGw3OOA3OOIuSm0XJg0OQ8YkqAZPOnunQSHlMEbkUq8YtKPxLuDMnEp6+f7lYZ3KBstkhs1xpKnoCv9W+lcumotuBswRkvFh2itbWVlpaWlhcXGR4eJiRkZGU13o2ZHyeenHok/GCt2oDxVapvV4v+/fvJxAIMD4+zksvvYTH40n55zVxqdB17lpU0rBrU9kxuGnIeKFpKlozHE09jcVidHZ2cvjw4ZK1STaycJQSmjJu1qinmBAEQT9rPLuAMyebimJ+w1JheTXCxMQEY2NjCIKQUvqNHjJst9u2WCyd1Fc4XIZkPCkJkGOkfqE541bPG4JkvwunwQg4HcrmA4Oc8fdL8VoubZLy+2qCVDtyi7Jcld34HRIeQWZB8iA5wZnDqbooefm3tfa8SLgGVRUQSnQ30X7XkhVwZpNxnXPB2jNezC0yRjma/hSqjGdDEATdBkKX5owFIjcGc34RbSqlSDVxu9309/fT29vLxMQEV65c4cqVK/T19aGq6q5nvJjYJeM7BjcNGff7/Xkr47IsE4lEWFlZYXFxka6uLtrb20tOkLXxy0nGk8kkiUSCc+fOGTbqKTb0rDFbm/7Yt6kkZcX0ohZUGA5OMDm5cdNobm623D+zuMR0WM0laprdxWvymyal3I+3Vlmfb/MVyzQQRUDJY7s0qIDDKZtkoW+Q8j/aJOXvrglaKuRDcT8VopShhNc7EyxJbuYlL/2ekCkpn0xU8J1Qd0EkXIOqgoWTI29obzxKldiS/ZsIOk4kq3zrshVwlrjpj5buVKr4vfQGQt/6P/9suJzT4Forpk2llM13HA5HRiziyMgI0WgUr9dLMpnMW8TaJeJpUEtnXdsW7KR9yRE3DRnPJ9pQkqSUOqyNceLEibJlpGrrkWW5ZOq7Bq1Rz8zMDKqqcvLkScNGPcWGHhnPFqKlpMx6PIHPY53WYmUpEWRw+Cu47bbbbE/sdnzoYB2xpqaN4xGNL78cnj1S0KwMsizidOZuq7GKNhTkQpVxcDplG0WmmUq5HikfildRIcr0e/Q9t/XOBPXOBMubpDyQRcqLScLTt1ssUQGnUmIybk8ZN0c5yLii6B8DpYiSmjYXlXqe9/v94POBgW1cNJgDitn0pxz3svRYxIsXL7K4uMijjz5KV1cXvb29Rbd33kxQ1Z3VQn4n7UuuuGnIuN/vZ2Fhwday8Xic8fFxJicnqaqqYv/+/cRiMRYXF8varECzcJSyiDO7Uc+xY8e4cOFCwS2ec4F+45/Mq1KQYGZ1jb7mesvxZEU1lahFCWQxty5uxUq1UdN+So9JRmAsmbNLJTWRyYqIk9y314pMCZK+KpkLnE4lhy6hGimvZZ9nhftqgrgEhUpRot+mJ7zOmaBuk5RPx31UOCX+b7iryCR8EyoIeRx3O0jZVMpFxnWmHNGKjpfhRrphUdEh40Vcd7nIOMC6bGzHSka2NvyB4ijjqqqW9Y0rbMzzXq+X1tZW2tvbU7GIbW1t9PX12Q4+2FXG07BrU9kxuGnIeFVVlaVNJRqNEgwGmZ2dpb6+nuPHj1NTUwPA9PR02ZNNoDTxhmaNehKJRGqZck16+jaVrGUkmAtHbJFxycIzLsgQlXLzJNtXxi0+TxvHaUJu1hNqHmR8Y6/z9Y1bET1RATlZWI650yETT+T+ludyvJbPppHyVlcsp+9HFScPL3dzIVGLo0SzniqAUDJlfLPLZ5nSVPRtKuYoR5qKXvEmFNemUk4yHlWM7ylrywb3qyLMy5oVp9wxg1oBZ21tLbfccgtra2uMjo5y7tw5GhsbCQQCBUcC31TYtansGDg1wvWnf/qnfOhDH9rerSkhzJr+hEIhgsEgi4uLNDc367Zxt8oZLxWKqYzbadSTbo0ppx3HyjMuyrAQtm6Asb6+ztDIiKUyvi7l5gOxU8Bphw6oynVS4zKxhUQTKrW2tuw6tNf39pXnTMg2lHGlADIO4HJKrMdyfcy4jmxSbuUpn0xU8O1QN4OhJuIJN16Peb57IVDVfBoi2cP1As7Sjq9B0Lk8boQCTqMHzcWlJVZXV1PiSSHQ5qJyiBHrirEoUOGsYJn1LX8vxlZp95Ryk3FJkjLuN1VVVRw+fJiBgYFULGJ1dTWBQGBLLCLsRhtmQ1BL2tqg7NhJ+5IrnA8++CA/+MEP+Omf/unt3paSIlsZV1WVpaUlgsEg4XDYMp5wOzK/oThdOHNp1GOY+11C2FHGBQkWTN5sRCIRRkdHmZ+fJ4m5r1yQYN1EkdKDrQJOS+kwUzt0mHinI/H8bSZynvGDVkkdggRysoCbt7ppUykgHlGDFSnXSPizm3YUWXEgCGpJO2QKUEBDJHNoyrXKhm+62M/J2SRXrw+S9eldevKql6QCIIgiTz/9NHV1dQQCAerrrd+gGUFLUikHGY8pxqKAFNH/bHFpseC87u0i40ZFo1osYn9/P2NjY6lYxL6+vi0pV7s2lTTs2lR2DJw/+MEPePTRR+ns7NzubSkpNGU8kUjw/e9/n/b2duLxOJ2dnRw5csSyQHK7lPFCbCr5NOrRbkLbT8azPOMyrES3WhPSPe+tra2cPn2al6cWQX3JeH0SxE1ugnqwkzOeKxdxmAy5Fs/9XNPIdL5Z4xaBkDiKoIyLYnGLELNJuV+UMki4BlUVEMXSkXFZFnA4NsbPN83GfPzrnnG1BM2FtpDxvJTx7bOpVPn9vOUtb2F0dJTnn38ev99Pf39/XnGsxY41NMO6anydr4f13+Ksrqxy9uzZLQ2EcoH25rPcxNYqZ9zlcqViEScnJ7l69SpXr15NdTDdRRZ2bSo7Bs5HH32U3t7e7d6OksPtdjM5OcmRI0dQFIVvf/vbnDx50rYyUAyFOh/ko8gX2qjHqAtnqWCLjJPZ+EfzvC8vL295q6Go5u5VQYaYyU1QD7ZyxnOcR/R8uRoiic14xhzGTNlU8vWM21DGCyXjgI00ldyhkXKjg6YoAk6HXDIyrigiDoeCIGysq9je8VSailIiMp7tGdfjgRar3E6biqKquN1u9u7dS19fH2NjY7z44ov4fD7b8aWpscpJxk1EgfWQPhkfGOjn2JGWLQ2Eckkl2a629HbX63A46O7uprOzk9nZWUZGRrh27Rrd3d3s27evDFv6OsGuMr5j4NzpRHx5eZn/8l/+C3/yJ39CKBTiox/9KB/4wAcyfGt28HqwqRSrUU+591Wv6Y/eNbkeS7K0tMTo6CjhcJjOzk4OHDiw5bdMSuYPEqIEyRxbusty8ck4SeMxVQQ8ooe4qp+ooPsdtUBl3KqAMwlqAWRcOw1Lq6Dqj60p46WCvEn2YYMwF3td2m8qCKVpK2RHGVctroHttKmkR4pq6mpPTw8TExO8+uqrXL16lUAgQFtbm+V8WC4yrqoqcVWfjHscDpIx/c/SGwitrKykGgh1dHTQ19dHRUWF5brLWROUjlztNaIo0tbWRmtrK4uLiywsLOzaVNKxS8Z3DIp6NX75y19O5YaePn2ap59+2nT5v//7v2f//v14vV6OHDnC97///YzPVVXlYx/7GG1tbfh8Pu6++26uXr1qa1smJyf5rd/6Lbq7u/nhD3/Ipz/9adxuN7/0S7+UMxGHDZuKFgdVTtixqcRiMa5cucK5c+cIhUIcOXKEkydP6hbA2MGNoYxvXW5mboGXX36Zuro67rjjDvr7+3V/S8uccQkSOUbQ2TkeOXMREzIO4BZzO08LTlOxeJoQFVAThZDxjf0tV3OYdJSajGvKOJQmC1zz2Zfi2Mmb+fTp0GuAmrR4QC/HfdTIpqLXgdPpdNLb28tb3vIWuru7uXr1Ko8//jgTExOm13O5iOpyZB3J4Kj5XcZFzum/VG1tLSdOnODMmTNIksQTTzzBiy++SDhsEF6+iXLHGmrIV5HXHkD27NlTgq16HUPdgf9uUogzMzPE4/bVNyN84xvf4MMf/jAf//jHef755zl27Bj33HMPc3NzusufO3eOn/3Zn+UXf/EXeeGFF7jvvvu47777ePnll1PLfO5zn+NLX/oSX/nKVzh//jyVlZXcc889xGLWsWZ///d/z9DQED/84Q959NFH+Ymf+AnW19fzVny1CaTc6riZSh2JRHjttdd46qmniMfjnDhxguPHj1NXV1eQelCKOEUz6HrU9di46OSOO+6gr6/P1CcpWRRbCgrIm9FedmEr2jDHQx5eMc/Kdgl5kvF8lXErm4oCaiL/80rjN6VqXGOGDTJeuvEVRcTllFPrKjZK2YFT7+FN1CHjksUbp7Io4wY593pkXIMoinR3d/OmN72J/v7+VL51MBjUnVvLpYxPLRsnAVWZ+cB15na/38+xY8d44xvfiNPpZHBwkOeee47l5WXdIW50m4oRBCG3/hA7HppnfCf9u0khal2xCsUXvvAFHnzwQR544AEOHjzIV77yFSoqKvjqV7+qu/yf/dmfce+99/Kf//N/5sCBA3zqU5/ixIkT/MVf/AWwoYp/8Ytf5KMf/Sjvfve7OXr0KH/7t3/L1NQU3/rWtyy35zd+4zf4p3/6J26//XaAVDfJXLtwakiP/Csn9IhxOBzmpZde4plnngHg1KlTHDlypGgdM7dbGVcUhdXQ1huVIDhsveK02nbtcl9e3RobZjhmMdJUshe3SBVxWKTCZEMj03l7xq0mQhWUgpTxzWFK4Bm3Qqn9zLIs4EiR8VKMr0UblomM6+gz8bh5LKRQlgJOfSJn51lZFEU6Ojp44xvfyP79+5mYmODs2bMMDw8jpUWdlouMT68Yk3GfSXdeMy5aUVHBoUOHeMtb3kJVVRXPPvss58+fZ35+PkN82C4yLklS3utVcxRQbgZo0YY76V8+uJFcGflCVFWVU6dOFTRIIpHgueee4+67774+sChy9913Mzg4qPudwcHBjOUB7rnnntTyIyMjzMzMZCxTU1PD6dOnDcdMR/bTs9bdy6rxj9l421HEqa1TVVWWl5e5cOECzz33HB6Ph9tvv50DBw5syUQvFNvhGVcUBVmWmZiYYHBwkOXllS3LxRL2ElDsJJ8AzC/ZfzCzo4znOo84VPMHCwe5pSSkOnCWxKay8WlhNpXNkbZJGb/+/4s/vqKIuBylU8a1As6SjK1zvjh0ePe6TppROoTiuh51YXRu50LSBEGgtbWVO+64gyNHjjA3N8fZs2e5evUqiUSibGR8NmR8L/Ka9OOzcwZ4PB727dvHnXfeSWNjIxcvXmRwcJCZmRlUVd0WMr5d693R2G5LyQ1gU7nRXBn5oigzzsLCArIs09LSkvH3lpYWZmZmdL8zMzNjurz2v7mMaQan04nP58tbGYftSVQRBIFIJMJzzz3HSy+9RHV1NXfccQd79+7NqXo+F5RbGYeNdJTBwUGmpqYYGBjQjbGKxe2RcclOsSWwuGL/wczW8bC6S2ZtVnLd/FwSLMj6luELsKkoOr7hLdsDqPHCp4zt0LbSuVqpbCROVwltKnIJbSrZ54uqIuqc7i63ebMmoQwdOI3IuJzHE5YgCDQ1NXH69GmOHz/OysoKZ8+eZWpqqtDNtAWzvgluk4Zgudg0tGLWO++8k/b2di5dusTjjz/O4uJi2Qs4tTm0kHz0XZvKLrJxo7ky8kX5y6m3CYIgUFlZWRAZL6dirCgKMzMzTE9Ps7KyQlNTE3fccQeBQCCvAtRcUC7PeDKZTL0BiUaj7N+/n1OnTtHS0qJL2Owq44qdNoUqLK9Yd/TUYEsZz/EekYya70+uZFwjavko47bjBuOF3wi3RRlPI4p2LA25QlEEXM6N37MkNpUSKuN2zxerxlflUMaNbCqF2BcEQaChoYFTp05x6tQpYrEYKysrvPrqq6yv27ey5YrFiPH84zCzsOVxCjgcDnp7e3nzm99MIBBgYWEh1Y1ZyrEbcb7YrkZDu9i5uBFdGfki/0fUNDQ2NuJwOJidnc34++zsLK2trbrfaW1tNV1e+9/Z2Vna2toyljl+/Hhe21lVVVUQGS9H45/sRj21tbWoqkpPT09J15uOUivjiUSCsbExJicn8fv9NDU1parlU9C5ucYTxq2j02ErhhBYCdm/0RalA2cW4lHz/VGV3G5aGlHLJ8fbNsmL5etHL34jnFzXf/0/BIqtzyuKiNOpbK6rFDaVEqapZJNxg0NjeQ2U4WWaYc54kX7P2tpaOjs7mZubI5FI8Pjjj9PW1kYgECi6HXB53fiVt14BbeqzAi4kURTp7OwkGo2ysrLC1NQUQ0NDBTUQsguN9G9HpOJOhcDOaiGvndmhrJoxj8eDx7P1zZyZK+PSpUu66yi3K8MuinJVuN1uTp48ySOPPJL6m6IoPPLII5w5c0b3O2fOnMlYHuCHP/xhanmtDW76MqFQiPPnzxuOaYYbXRmXJIlgMMjg4CATExMEAgFuv/126uvry160Uqr9TI9gjEQiHD9+nBMnTlBZWbk1Z1xnl+MJe9tkizgDq2H7/q+iNP3JGiK+Lpl+RcmTjOeljNskeYV4xlNjbItPJd0zXhqyrHGMkhZwqgLFfk7ealMx2gbzHbPzQqpQ5BJtmC8URcHtdnP8+HHuuOMOAJ588klbkYG5YDVuMv8kjPenGDYNVVWpqqrizJkzHDt2jKWlJR599FEuX75cMl+sLMs4nc6Ct3/XppKG7U4+KVGaSldXFzU1Nal/f/iHf7jNB7r0KIoyDvDhD3+YD3zgA9x6663cdtttfPGLXyQSifDAAw8AcP/999PR0ZE6qL/xG7/BW97yFv7kT/6Ed7zjHfzd3/0dzz77LP/tv/03YOOC+9CHPsQf/MEfsGfPHvr6+vj93/992tvbue+++/LaxkKV8VJ4xq0a9WxHs6FiK+PRaJRgMMjs7CwNDQ2cPHkSv9+fsb5sMq53c5UlhVA0RnWFuVfeln9UhXDEfqSnnaJQK4635WMVfE4XUUlfBpNlMafHZS1pIx/PuN2UDjVPZTxzkMKHKGj1JbKpXEfpfN3XO3AWcewsgmuktFldAw6TBJBiwbDpT5HJuGalqKqq4siRI6lIxMHBQRobG+nv76empqag9URlY3uIEiv9G1iHw1GUBkK5rnMXRUSeRY83LDb3ZXx8PCMdTk8Vh9ePK8MOijZ7vu9972N+fp6PfexjzMzMcPz4cR5++OGU1D82NpbxeuqOO+7g61//Oh/96Ef5vd/7Pfbs2cO3vvUtDh8+nFrmt3/7t4lEInzwgx9kZWWFN77xjTz88MN5Fy7eSDaVWCzG2NgYU1NT1NbWcuTIEWpra7c89W9XgksxyPja2hrBYJD5+Xmam5s5deqU7qteXfKvM8GIEsyG1izJuGpDGReAUMSeAqQoqj0Cl6MyDuBzOs3JeA5vjQvyjNskeIIsoCogvI7fNFs1N8przFKntaR+0zKQcYPLR7Gyf5WhFiCfnPFcoZemokUG9vf3Mzo6ytNPP01tbS39/f3U19fntZ6YQfdNAMmknqQYwrAsy1tqj7QGQuFwmOHhYR5//HFaW1sJBAIZ4kkh6yyEjO/GGupgh5Lx6upqW1HN6a4MTaTVXBkPPfSQ7nc0V8aHPvSh1N+MXBka+dZcGb/yK7+S965ZoahSxkMPPWR4AB599NEtf3vve9/Le9/7XsPxBEHgk5/8JJ/85CeLsn1VVVV5RxtCcVTqSCTC2NhYSiU+ceKE6UlX7gY8ULgyHgqFCAaDLC4u0tbWxunTp/H5fIbL6zX9UXVmGEGGuVCEPa2NWz5Lh51iS0GG9aQ9D7rdY5EPF/E5jC/BpJTbgNc946VQxlW0pw1VERAK6GapbsNr5sw0leKPn/4wU4p7Y/rbjmJnjW95k2JExq2ugxKTcUUxfmgsNRnX4PV62b9/P4FAgGAwyPPPP4/f7ycQCOTc8TimGt9LEhEzMl74cTYjxloDoT179qTeBjQ0NBAIBKirq8t7nZIkFZSkArsWlWwUks19IyKffXk9uDLsoPTvFW8g+P3+bVPGA/1vbQABAABJREFUw+Ewo6OjLC4u0tLSYqgSZ2O7bCpJm0Q1HSsrK4yOjrKyskJHRwdnzpwxfL2Uvb4tZFzn5ipKsLBm/TBlx1IiSLAu29vHRNJm2kAeyrhHNFaK4nmS8XyU8VwIniILiM4C7gDbffMowfozjl+RSamqZtpgtksZt+S7JdYMNiwq+vtezJ/UTqt4t9vNnj176O3tZWxsjJdeegmv10sgEKClpcUWaYxjPK/HQsYNlorx69tRqbW3AQMDA4yOjvLss89SXV2d14OH3XXawS4hT8MOVcZzwevBlWEHNxUZL1QZz9UyoqoqKysrBINBVlZWaG9v5/bbb8/pB90Om0ouyriqqiwtLREMBgmHw3R2dnLw4MGc4hf1yfjW5QQJFiPWCSh2ii1FCdYtjqssy0xOTnJtaMRyvI0NtLdYOjyC8c0pkcxtSG23888ZN0a6YrFhmcifeQnbLOWUxKZS9BGvIzsDvthZ41vIuMFlYWUTKHVnVaPiTSi+Mm43VUTL8e7t7WV8fJzXXnuNa9euEQgEaG1tNU0OMbOpREMm9SxFUsbtpppoDYQCgQBjY2NcvHgRn8+X04OHts5CyfguEc/CLhkHbnxXhh3cdGR8YWEh7+/bVYxVVU1luEaj0bwIqobtsKnYWaeqqiwsLDA6OkosFqOrq4sjR47kFY1ll4yLEixFrcm4LWVchpiifzOUJImJiQnGx8c31K7+AUA/JikdlhxJZ59cJhWa60nIpXxKI0MbRX653bNzUVtVswxkeyMU+P08UOJ7eCmJaDZZLrYynm1rMiTjFg+5pbb0mr3xyafpjxHy6cCp5Xh3d3czOTnJ1atXuXr1KoFAgI6ODt3xYgbKuNfpRDKJcS2WZzxXYpz94HHp0iWuXLlCIBCgvb3d8phJkrRbwFlk7NpUdg5uKjLu9/tT+d35wOl0Eo0aN2pQFIW5uTmCwSDJZJKuri46OjoK8slpNhVVVcumCpgp46qqMjs7m9rH7u5uOjo6Cppk7dpUBBlWTbJ5NdjxjIsSJLLWmUwmUyS8oqKCgwcPUl9fT2jNZtRXrmkqmJPxWELNjYynSJqAogg4HPZnNsts8nRl3KCIznzbrpMIp0NFVgQcBfjObzSUQm3XkP2mo9hkPFtxFg0EWyu+a/BsWzQYJamA/boOO8iHjGsQRTE178/MzDA0NMS1a9fo6+ujq6srNU+GojFkg4fSapcHMCHjeW1ZJgpRqdMfPKamphgZGeHatWv09vbS2dlpeL/Tog0Lwa4ynoW0OMAdgZ20LznipiLjpbKpZDfq6enpobW1tSgqgDZGucl49n5qHUGDwWCqCVFbW1tRGjjYJuPAuo0unHZtKvHNAqpkMsn4+Djj4+P4/X4OHz5MXV1d6njbyhjXNtAMOsM4TEhwJKGQS05DOkmTZRGHIxdLVQ42lRy97NlwOBQUWcQhls9+lX7plELBLaUqnK1cF9umoti0qWzspPG6LdNWCkQ5bSqFzmuiKNLe3k5bWxuzs7MMDw8zPDx8ncSuhAy/W+l0YRa6Woz7gB1fvBW0BkIdHR2pfTRrILQbbVgC7NpUdgxuOjJezKY/kiQxOTnJ+Pg4LpeLQCBAc3NzUTuMaZNXLh6/QpFOjmVZZmpqirGxsZQi0tLSUtRt0SXjBssmbJBxO6+sBQkSqsy1a9eYnJykurqaY8eOUVtbu3U8m2Tccik9640JH12L56b2pZO0DTXVPtnNpWunUbycXTidcl5dQgvD9YNfkjWruv+3KCi1TSVbeTdSxq3KBExis4sCU5uK3QdmW+sp3lwrCAKtra20tLSwsLDA0NAQw8PDzGJc2F4hOk3JeDFQTGKcvo+Li4sMDw8zMjJCV1cXvb29qRqpYkQb7irjmdi1qewc3FRk3O/3F6SMa2kqVo16igntpiDLcklbFadDewMQDAYZGxvD4/GwZ8+eVNv6YkOv6Y9RsVjMRrKJYiNnXJRgHTnVCdSsgYfdjp6WNpUSk/FsZTyn7+ZiU0kWdhN3OpW8ikwLQfraSjHfp49Z7Ctky4NLkXcg+1wxasVuaVMp8YsOU5vKDaaMZ0MQBJqammhsbGR5eZn//sMnDZf1YH59lTraMF9YNRCSJCmvuqldmGBXGd8xuKnIeKHKuCRJrK+vc+7cOdNGPcWEIAhF74hphmQyyezsLJFIhPn5eQ4cOFCyBw0Ndgs4waYybidnXAVZgMOHj+BwmN947dpU8hIsTXYnJqmIiCg2k0vSSVuuWeNWZDz9QUJOFqiMO6TyK+NpO1CaU7l8BZylTlMxIuNWp6FtO5cO7DSSMrep3BiecSsIgkB9fT0V9Q2wol+/5FLN171dBZy5IL2B0MjICI8//jgej6cgMi4Iwq4yno0dpozvkvGbBJoynuvrLq1Rz8zMDIIgWDbqKTbKkTUej8cZHx9ncnKSiooKXC4XJ0+eLMvkp9v0x0gZt0HG7XZqE1RYXI3SXF9lupyddJaNAa02TOdPSRUzIcwjelhXrBNkNnY5f2XckuBlkPFClXEZRSmvdzTjNC6JadzwPwrGlgLOIj+Xb7GpGJBxq3rbQpRxRbYu6DWzRxXRpVJSMq5h0SQIQEhY/cCFzcmKoqCqallsj36/n6NHjzIwMMDTTz9NMBgkEokU3EBoF5vYVcZ3DF7HTa1zR67KeCgU4qWXXuKZZ54B4PDhw4iiWFYiDqWNN4zFYly5coXBwUGi0SjHjx9n3759QPkq1zWbih0SHU9a3/HlHArJFpdsNBGyO14+ZNzixusS7ClJ2T7iXG0guSjjSh7KePpP63QqZVfGM7LNS7DqjMNf5PFL7hkvmjJewDbYqEOQTG0qrw9lXMOySURreHHV9LuFTsvavaScxZQVFRX4fD72799PVVUVzz77LOfPn2d+ft62eGJ3uV3s4vWIm1IZN4NZo55oNFr2BjxQmsY/0WiUYDDI7OwsjY2NnDx5Er/fD2y8CShntrl240uv8Dd65W2nG2YsYb/8aWnFWKHSYLsBUh6ecTmugM/4O/bJeNa4uSrjVuQ47RDkQ8bT4XZJRKKl62SmB6HUNpUScv1SpqnIcmZDIQDRoPmj1evwQrZrIy7TqgmX8XmXlIo3P5aDjK/EjeNSa7zVLGNM1gs9fyVpYw4td7KJJEn4fD56enryaiC0a1PRwa4yvmNwU5Hx6upqkskk8Xh8SxdMrYlNMBg0bNTjdDpRVbUsk3U6imlTWVtbIxgMMj8/T3NzM6dOnaKysnLL+rabjBshbmJTCYfDjI6OMj9vs7GTCkurNpTxEkYbynGL39Vmckk2EcrZM25FpDLIeGE3RFHMLb2lUKgqiGkWCKHIM76iZI5fcptKMcm4znniMOrEbjElFJK1bucBz4yMJ5IJzp8/T39/f8E1LuWY38MJ43b3mHwEIBTBpqLVIpUT6T719AZCExMTlg2EdlVxfeymqewc3FRkvKpqwxu8traWIuO5NOrZjphBbb2FkvFQKMTo6ChLS0u0tbVx+vRpfD59SVazjZTroSOdjGswmnwTya0NkNL3rb29nYaGRsA4xzcdK6s2OnoWKU1FD8l1c6U/vi6ZKucasm0mco5dMq3IsZCWMa0WaFOxs75iQlGy1MQiz/iKIuJ0XD9Hii3eKXL2g1YxlfGs31JVcRickoIlGc8fSqIwm4rT5aaxsZEXX3yRiooKBgYGaGxszIuUl2Pei8hJQ5NoMmo+J6yGVguK+duuvG+99TocDnp6eujq6rJsILRLyHexk3FTkfGKigpEUSQcDuPz+Zibm2N6ehqw16hnO2IGtfXmq1QvLy8zOjpKKBSivb2dM2fO4PEYZ9xq64Py3JTgujc9fR8NxWhJZWltnQZ/BSsrK4yOjrK6upqxb8IzY7bXvWqju2ax0lT0OGDC4sbrr6hlTV20XnehnnGrjU8jhKoN4lTw+ooIRREzbCpiscmyIuJwppPx15EynoOdyWq31ELU6AKVcRWV/v5+enp6GBsb46WXXsLr9dLf309zc3NOxLUYDXGsEDex5MTXjLtvAgRHRxl0RWxZO/SwXWRckiTD9Vo1EHI6nbs2FT3s2lR2DG4qMi4IAhUVFXz+85/ne9/7Hr/6q7/K/fffb7tRjyAIJfFvWyHXdaqqytLSEqOjo0QiETo7Ozl8+LDtB4jrvu3yWFW0V6YZyoeBCiJIcG1iiuB6iHA4rGsnyiViLbxm7S8vZZqKFRkXbF6i2TaVYqeppKui+ZDxDQvD9QNQXjIuIAilJMsCzoxup0Uev4QFnDk9tFkVcBawHfaUcesOnE6nk0AgQHd3NxMTE7z66qtcvXqV/v5+WltbbZG5cogQpmQ8bE7Gjx49Smu9yKVLl7h69SqBQCCnbsjbQcZVVUWWZd03zukwayDU09NjKSTdbNi1qewc3DRkfH5+ni9+8YtEIhGefPJJPve5z/He974350l3u8i4HWKsqirz8/MEg0FisRhdXV0cO3bMcgLMhp5SXWpkq/9G16Qow/OvXuKeWw5y5MgR3QcM2w1AVIhErcl40XLGdYaJRZMIJi5mRXbYyjzKJmjF9oxnkPF4Mdpxl9MzLiKWkCwriojLeX180SoDMI/xM/67iGRc2WJTMV7W2qZSgDJug4ybN/3J/G+n00lvby9dXV1MTExw+fJlrl27liLlRvO+lupUajKeMHl0ia6av63bsHZ009XVxeTkJENDQ1y7do2+vj46Ozstt73cNkvIPcElu4HQ0NAQY2NjHD58uJSb+frETUxgdxJ2PBkfGxvjT/7kT/irv/or3vSmN9HR0cHnPvc53va2t+U1Xjkyv3NdZ7rvXZIkuru7aW9vz1v90JTqcu7nFjJuQIAFCRo6uwkEAoZj2SXPArC2Xj5lXPepXwWPw0HM4FjLspgXGS92B04hbfNebzYVVQWHeP03LDYPkRUBRxoZL/aelVQZzxrbjHBb2lQKIeNxG2TcpJjZyE+c7kmenJzk6tWrXLt2zbBQUJuDSk7GBf3rvdLlQpYsKziBjW3UapxmZmZS1g6NlBuJMNuhjGv3knzWqzUQKqc49LrBrk1lx6Dkj8dLS0u8//3vp7q6mtraWn7xF3/RNOt7aWmJX/u1X2Pfvn34fD66u7v59V//dVZXM7NXNf9Y+r+/+7u/y1jm2rVr7N27l+npaR5//HEefvhhGhsbWV+3LtozgtPpvGFsKoqiMDk5yVNPPcXw8DCdnZ2cOXOGrq6ugifbcieqZDf+MVK3RQlWYuYE2q4yLsiwbiMqUSlWzrjB4ax0GccX2m2OU6hn3FKpTifjNojTFmQdwrLaVFQhg4AXv8AyUxkXiqyMb/ktizh8LmOXsoBTjZmf54pi/kZAsVi7Rlzf9KY30d/fz/DwMI8//jhjY2OZ804ZyHg0kUAyeLKpMpkLNGQfBVEUaW9v5w1veAMHDx5kamqKs2fPMjQ0RDK51fKyHWRci1Ms5Ljuesa3QrOp7KR/NytKroy///3vZ3p6mh/+8Ickk0keeOABPvjBD/L1r39dd/mpqSmmpqb4/Oc/z8GDBwkGg/zyL/8yU1NT/MM//EPGsn/913/Nvffem/rv2trajM8HBga4fPkyPT09qb/5/X7C4XDe+7MdyrjD4UhNZrAxmU5NTTE2NobD4SAQCNj2veeyzu2wqaiqytzcHPPz87rLCZJ5wwzIQRmXIOa0JuN2ow3zKeAE8DmML0O7pDp7E3NWxnOyqeTjGc9eX85D5A1VzSTgRSfjiojTeV3NLH7OeOaI26WMW3vGS6eMb1hUjMe3m7QhiiIdHR20t7czPT3N8PAww8PDKTW5HGR8atn4/lPlcJskjG/AiJAKgkBLSwvNzc0sLCyk/Nbd3d309vam6mrKUaCaDc0vni+Z3k1SMcCuMr5jUFIy/tprr/Hwww/zzDPPcOuttwLw53/+57z97W/n85//PO3t7Vu+c/jwYb75zW+m/ru/v59Pf/rT/NzP/RySJGW8equtraW1tdV0G9KJOEBlZaVl4x8zbIdnXHsAkCSJiYkJxsfH8Xq97Nmzh6amppKoBduhjC8uLnLlyhVkWcbnqwCWtm6XbEMZt0meRRniNjr3Fe04GGyWWzDJT5bs/bbZNpMtXmALyFZkPD1NJZbH+ZatjOc+Qt7I1T+fK2RFwO26/lBXdGVczrZSlJCMm0xtZp9BodGG5uTQrHgTcqgT2YQgCLS3t9PW1sbs7CxDQ0MMDw/T0dGR+rxUmF42jl31ig4bZNzqc4GmpiaamppYWlpieHiYs2fP0tnZSV9f37bZVLYjwWWnY6epyTtpX3JFSe9Sg4OD1NbWpog4wN13340oipw/f972OKurq1RXV2/xwP3qr/4qjY2N3HbbbXz1q1+19fTs9/tNbTJW2A6bCmxkaZ87d47FxUUOHjzIrbfemnNkVy4o1xsARVGYmppifX2dmZkZuru7OXPmDBUVFbrLCxKE40WyqUiQUK33sVg540YTjVswvkklbDbYKXW0oZD2AkEogjJuXe1aRJR4glcUMcMGI1r5OXJEOZv+mHrGS1nAGbNSxs0/z/cn1tI77rjjDg4dOsTc3BwAw8PDGW8ji4nZkPH9x2tLH7N/nOvr67n11lu57bbbWF9f57HHHmN6errsSnMxyPiuTUUH6g78d5OipMr4zMwMzc3NmSt0Oqmvr2dmZsbWGAsLC3zqU5/igx/8YMbfP/nJT/LWt76ViooKfvCDH/Af/+N/ZG1tjV//9V83Ha+qqqogMl5Om0o8HmdsbIyJiQmcTidHjhyhtra2LBNSqZVxjYQHg0EcDgder5fe3l7a2toA42tSAGImXTg3xrapjEvmEWO5jpdPmgqAx4SMx5L2LtKyRhsmxS3WjxsZhZBEO8hWqovtcMh+y1HMNJVclPGSduC0JOMWnvICyaUgCDQ3N+P1ennqqaeYn59ndHQ0lXNdzL4Sc2HjN7MuG79tPtddTU0NJ06cIBwOc+HCBWZnZ7l48SKBQCDVDK+UyH6rvYsiYacR2J20Lzkir6vjd37nd/jsZz9rusxrr72W1walIxQK8Y53vIODBw/yiU98IuOz3//930/9/1tuuYVIJMIf//EfW5LxysrKG14ZX19fZ2xsjOnpaerr6+np6WFlZYW6urqSrjcdpfKMa373YDCIy+ViYGCA5uZmLly4kKHWGKWpACQsFKtcCjiTNmwqdj3j+SrjLpMXVLGkip1b5VZlPLc7tlWaiphWByZsLi847M+c2dne5U1TKe26sscXhK0+9UJQzqY/gsmlJVp6xvOHYlHAaWVTKdY9XFVVnE4np0+fZmlpiaGhIUZHR7f4rgvBYiRq+JnDhi2tEDHG7/fT0NCQupecO3eOpqYm+vv7qa6uzntcKxRLGd9FJnZtKjsHeZHx//Sf/hO/8Au/YLpMIBCgtbU19dpPgyRJLC0tWXq9w+Ew9957L36/n3/6p3+yVCZOnz7Npz71KeLxuGljAL/fz/j4uOlYZiilZzwSiRAMBpmbm6OxsZFbb72Vqqoq5ubmWFra6p8uJYqtjEuSxOTkJGNjY3g8Hvbu3Zvhd89u+qOa3F7jSfPjb3e7RQliNiiEXZuKZQGnwTAO1ZhoRBM2yXiBnnErVTNbMVVkATEHMr6d0NtKRSmegq1HxmVZwFGE46OqW5X3HHpaWSKb6IvbpoybEzVLm0qRbBdawx9BEGhoaKChoSFFys+ePZsi5YU0n1mKGpNxwbzfz8Yyea95A7Isp2qO+vv7GRkZ4amnnqKhoYFAIFAS0WeXjJcIu8r4jkFeZFwrDrHCmTNnWFlZ4bnnnuPkyZMA/Ou//iuKonD69GnD74VCIe655x48Hg/f+c538Hq9luu6cOECdXV1lpNkVVVVQQWcoijqxkUVgnA4TDAYZGFhgZaWFm677bYMz/SNmG1uF+lFpz6fjwMHDtDQ0LBlYt2SM25yUSYtyLjd61lQN0h/UpJxOU0aihRJGTfaMIfJ7kQSNh8ECo02tHiSELMUU1XO7ca4lfiWb9bVO5c2jleRCFwJx98g4llpKiUs4Mz+nTM+A1PJP9+9VdXCbSpmD++5QK/7Zn19PfX19anmM2fPnqWrq4u+vj5b96ZsrMSNm/qocRvXe4E/fzox9vl8HDx4kP7+fkZHR3n22Wepqamhv7+f+vr6ohFgSZJ2CzhLgV0yvmNQ0gLOAwcOcO+99/Lggw/y9NNP8+STT/LQQw/xMz/zM6kklcnJSfbv38/TTz8NbBDxt73tbUQiEf7H//gfhEIhZmZmmJmZSZHD7373u/zVX/0VL7/8MteuXeMv//Iv+cxnPsOv/dqvWW5TdXX1DWNTWV1d5eLFizz33HO43W5uv/12Dhw4sKV4cbsSXApRxpPJJMPDwxlFpydPnqSxsVF3gs/OGTdTuhKWynhuV/TisvnDWUmb/mCuRq7F7f3uW8m0gJwDYbZK6MhW7HJV3h2li8q2hiFZLtLwOseuWL5uPUW4mLV3W2wqBegM+e6zkhQtH+7KZVMx605ZW1vLyZMnOX36NLFYjMcee4xXXnkl574VoYRxUx8lZn29CwWycb1oQ4/Hw759+7jzzjupr6/nwoULPPXUU8zNzRXlrYMWbZgvdqMNd1EotrPnjR2UvKLia1/7Gg899BB33XUXoijynve8hy996Uupz5PJJJcvXya6+eru+eefTyWtDAwMZIw1MjJCb28vLpeLL3/5y/zmb/4mqqoyMDDAF77wBR588EHL7Sk02rBQxVhVVVZWVhgdHSUUCtHR0cG+fftMFf1yZ35D/mQ8kUgwPj7OxMQEfr/fdtFpLsq4lWc8p4lbhYXlCK1Nxn5JSbL3e1tyEaPDabI74Vh+yjhspHw4zGT39GVzVMYVm5GLGrJ//nK+cda1qRSTjOv9rVhkXOcNRyk9446CAkTy2y45KSJY7JNZ900oHhnXU8azUVNTwy233EI4HGZoaIjHH3+c9vZ2AoGAYQpUOtaSCTAQiZMR6x+g0GvHzDKi1fH09vYyPj7Oyy+/jMfjSdlO81XKd20qpcGuZ9w+trPnjR2UnIzX19cb7ixAb29vBnm68847LcnUvffem7HjuaDQaMN8VWpVVVlcXGR0dJRoNEpnZyeHDx+2VaW/XY2GciHjWvLL1NQUNTU1HDt2LKcTciv5L0AZz1FFWV7R93AqisL09DRDQ8P2BsrTpiLHZcMrUVZBiamIXvPB9QiaLIu4XDYfJCzIkCPrVFAsyJH1Cgv7em7Q2bcirl/v2BVLyNPLSC8mGc8evxBlPN9dVhIOG8q4NZGTFQVHgYUAdsi4Br/fz/Hjx1lbW2N4eJgnnniC1tZWy4SSdSVpSMYTa9Y/QKGk1A4xdjqd9PX10d3dzcTEBJcvX+batWv09fXR3t6ec1Ok3ZzxEmHXpmILN0LPGyvcdFlDmmdcVdW8JrVcbSqqqqZisuLxON3d3XR0dOT0ym67lHE7+xmLxVIkvL6+nltuuSWvqvxclHEpqZjeeHO1qSyvZr5mTo9ddDqd1Dc0AtPWA+VpUwktrUKz/mcA6jpgYU3Vs5nk4hu3VIqLTMaz01VKi63rKqpNRZeMl86mUsqmP2IhZDzPfZbjIlYJo3aiOhVVNeK4tpELGddQVVXF0aNHGRgYSFnzmpub6e/vx+/3b1k+blIJux42trAUC7kQY4fDQU9PD11dXUxNTTE8PMy1a9cIBAJ0dHTYHkeSpIKSaHYzxvWxq4zbg1XPm5/6qZ+yNY5Zz5tf+qVfIhAI8Mu//Ms88MADOZ+vNx0ZL9QzbpekKorC7OwswWAQWZbp7u6mvb09L3XA4XCgqmpeN4p8YVWomh6/2NDQwMmTJ3VvPLmsL/24mqrbsspCKEJLrf76clLGVVgObSjjsiwzPT2dIuFah9OJpYv2hsozTcXr9AHGjYyEpIiVZKC3y7lkjVs2/cnadjmZy9hbX62LDrWMWeU6ZLmYw5fQk65HvFVVKFoazBabSgFc0CpNxej3VuKipQ/azrlcjN+0kFbxFRUVHD58mP7+foaHhxkcHNSNDUwaZEQKQHTV+gcohzKeDVEU6ezspKOjg5mZGYaGhhgaGqK3t5euri5LcWnXM14i7FBlPBTK7FLr8XgKSjC6EXveZOOmI+OFpqlYKeOatSEYDCIIAj09PbS2thZEorXvmhUXFRtGnvFoNEowGGR2dpampqZU/GIx1pdB/k0mGFGCWRMybiM6PAOroXXGx8cJBoO43e4UCdduerbJfZ7KeGRxHeqNv5dcU/A0525TyUVBNVfGt9KsQpVxp0NBlkWczvK+8dFQ3Ozx8irjqioULa1lS7RhIWTcYp+NyfgGMTR7wLBjUym08c/GNhQuePh8Pg4dOrQlNrC/v5/a2lqSBk/llS43qmLeXRiK4xnPdx8FQaCtrY3W1lbm5+cZGhpieHjYsjnSrk2lRNihZLyrqyvjzx//+Me39JqB13fPm2zclGR8bW0tbwXEyDMuy3IqR9vlchEIBGhubi4KedbGKKdVJdsaE4lEGB0dZX5+nubm5i3xi4Vii03FZIYRJJg36WKn5Dg7jYxNMj3tY9++fVvSXmRZJpGw9+7ecq0GP9/SxDLsMT6WNu7Php5xu7BUxrPHThR2Y3U45KLaLcxQ6rXonavFEvJ0rUZqcaITN9J20o6OqhZGxvM80qoWa2iyT3ZtKoVCUZSi2SG8Xi8HDhwgEAgwMjLCM888Q6W/GsngqdzvcmP2hkxDoVtXiPqf2obNjqVNTU0sLi4yPDxs2hypUDK+a1PRx9bg09c3tH0ZHx/PeJtkpIq/nnveZOOmI+PaDxyJRPL2NqeT8fQcba/Xq0voCoXWhKKcRZzafq6trTE6OprKQD99+jQ+n68k68vswGmyrAwLa8Zk3Kx759aFweH0curUqS0kXDvetofLN9pQNL8MlYT1uaSnbOfkGVeEnGb1XGwqenA5lc3iwTKc03r1m8VUk0poU9FVxov0EKM3tuWvqmJ4nlgdU6PPtYY/Zl+3ijbcGL84ZLzYCq7H42H//v0EAgEGL7xsePwqnS6M2wGlYRtsKsabItDY2EhjYyPLy8upHPbOzs6MHPbsgrdcoKrqrk3FCDtUGa+urrbFz17PPW+ycdORcc1SkS8ZdzqdqKpKLBZjcnKSyclJqqqqOHjwYFGbJGSj3EWciUSCUCjEs88+S1tbG7fffnteDS7sIldlfDFinO2bSwMQAUjK13POVVVNkXBRFHE4HPZzffONNnSYP2k7nR6sFLNClHFVBYQcO3YWSMadTjnnxkT5Qij13aqE0pRemkrRMsyLfPytbSr6yrfW8EdVBDDoWmrV9AduHJuKEdxuN+66BsPPvYLTFhkv5Baj1R6VwjJSV1fHrbfeyurqKsPDwzz22GOpyMddm0ppsFvAaQ/pPW++8pWvkEwmdXve3HXXXfzt3/4tt912W6rnTTQa5X/9r/9FKBRKedmbmppwOBx897vfZXZ2NsWPfvjDH/KZz3yG3/qt38p5G286Mu52u/F4PHkXcUqbGddPPfUUtbW1HD16NK9MyVxRrsY/q6urjI6OsrS0hMvl4syZMwUVTtjF1qY/xsuKEqysG3exy/WmvL6ezFDCNRIuiuLGQ4LN8fIt4MxuNb9l+0JJrH4B3cYzNslWPnYRpWAyLiFJ5Zp+9KTrIjLoEkYbljJnfMvDWoHbnC8ZVy26b4J1zjjkbk/THaPERfKzq8b3HTFpT2wppOmPNseVkhhrOezpkY+wEX+bL3ZtKgbYocp4KXCj9bzJxk1HxgVBoLKyMmcyvr6+TjAYTFXeHj58mMbGxlJsoi5KnTW+srLCyMhIqhFRU1MTk5OTZSHioBdtaKKMy7ASMyPjOaxYgfVkMlXUlE7CU4vYHTBPm4oACLKK6tAfYIOImN+odW0qtpXx3PziUDgZdzkVEokyKeOlvoeXMMZc0cnfLhUZt6VKmSyTt01ls4DTaL8Uxd7bgGIp46UkqrNh4/tOImzLpFLQm5hykHEN6ZGPjz/+OC+//DKzs7MEAgFqampKvv6bBjuJjJcQN1rPm2zcdGQcNiaJcDhsa9lIJEIwGGRubi6VHvLcc8+VxDdthlLYVFRVZXl5mdHRUcLhMF1dXalGRIuLi2X3qOeijIdNVBY1h+MkSpBwKLhcri0kXIMs2+yCma9NhQ3rjWpwf7QV61aAZ9ya6GxVNFUbPnYzOBwKcrkKOEWdk6mI70MFnVcepezAWTKbSoHTi+U+G5LxTZuKUVMs2YEdBlosMm6nEVu+WFgzJtwNVbWEbBhVClGIZVkuu8rs8/lQVZXTp08zPT3N008/TV1dHf39/dTV1ZVtO3Yidm0qOwc3HRkXBMFWvGE4HGZ0dJTFxUVaWloy0kO2oyNmMdepqipLS0uMjIwQjUbp6uriyJEjGTcho2jDUiFXz3g4uTX2QZIkxsfHWTexsGxZrwQJl2JaXCQXSxk3OZzupELMo8/GRZcXMI+5KMgzbkGK9T7NxTOuF2knCMUrRLRCKdciKwJOPZ9zsWwqBtGGxdgpJVsZt3G5C2r+u2aofGvKuMH5YKd4E+DS5cuc3H+goNqWUttUlqLGZFtI2vtRC/nptTeA5STj2rxeUVGRSpcJBoM899xz+P1++vv7aWhosNymXZuKDnZtKjsGNx0Zh+vxhnrQPNPLy8u0t7frFi6Wy79d7HWqqsrCwgKjo6PEYjG6urro7OzUJaLlLhjdQsZNCLAAxKXrxyKZTKYSbSorK3G6XIC9OEJBhricJBqNGkY1ltqmAqCE4lClv/71qI0mUzpj2/aM52FTUeOFE5ZiKbxWKGUBpyKLOJxbf5/iNf0pnWc8m+TaIePmEAyzxGVJQEU/PUdJnUsGNi2bZDwej/PYY4/R2dlJIBDIi5SXmoyvxE2EgoRNz3gBP3+pbTh6yLbGeDwe9u7dS19fH2NjY7z44otUVFTQ39+f0d9hF9bYVcZ3Dm5KMp7tGc+2a3R0dHDgwAHD9r1WjX9KgULIsaqqzM/PMzo6SiKRoLu727KV8fYr4+ZISjLJZJLx8XEmJiaoqqriyJEj1NXVIX7/kv31SiAJKoODg6nK/2yffLFsKmZkR0wY77Fs5F9JX3cJlXHdortikPHttKkUCYoi4HTo/LClVMY3Sa8Z7HQ3zSb6VoXEdqCqAoLOHVWWRMO40pRNxeBzO0kqAAcPHaZSVRkaGuKxxx6jo6ODQCCQk6Ww1GQ8HDd+wyXZeOiGjW6CvZ31eZHq7Ug1kSQJQRC2HFeXy0V/fz89PT2Mj4/zyiuvpP7W2tqaIuW7sYYm2FXGdwxuSjKe3vhHSw4xsmvo4fViU1FVldnZWYLBIJIk0dPTQ1tbm63JeDvIeEbOuMVFGYslOHfuHH6/P0XCNeSSqiBIkBQ2/IxDQ0M88cQTW7rJyXaPgwX5cZo0NXGaMXmfDwgZf44+obbryc6HFBfqGYfiKbzm6wBRh4wXS3yTFRFnCZVxXc+4IhRl/C0FnHamlzyLNOWkwzDEXEmYF3Datakoqorf7+f48eOEw2GGhoZ4/PHHcyLlJSfjUsLwOEhRydYYMzMzPPbYAn19fXR1deVErreDjGvrNFK8nU4nfX19dHd3Mzk5yeXLl7l69SqBQCAVO7erlu9ip+OmJOMVFRU88cQT/I//8T/o7e3lS1/6Eu3t7babEtzoNhVFUZidnWV0dBRVVVMkPJebjEbGVVUty0SYS5oKbCjjx44dy4iV1LbXtq2EDf6sAG6Pl2PHjrG6usrVq1eZmJigt7eXrq6uotlU1FACRIMHvbgx4V/3WL9uLyxn3MqmovMQUQRlvBxkXFYEXTJeLAlGUURcOmS80GLI6+PrHaMSkXE7XNCSjBtkiUsigkv/oKRsKoYFnPbONVmRU/OVRsrX1tZSpFx782XWObiQVvF2EJWThmQ8HrbX/vTEiVuocMupVvS9vb10d3fbun9tJxm3gsPhoLu7m87OTqanpxkeHubatWv09vbS2dm5S8h1sGtT2Tm4qch4Mpnka1/7Gg8//DDJZJIPf/jD/Mf/+B9TjYDs4ka1qSiKwvT0NMFgEEEQ6OnpobW1Na+bizZ5lstjmCsZVxFSRDy7WU+uEID5pQgdLTXU1NRw8uRJFhcXuXbtGqMjo0SWzVXp1DZZ2VTM2HrCeNslG8q1nv+6WDnjehOknWzo1LIGP2U5yLii6NsmiuUjlxUBt2trfUIpO3BujF+EsbPOD9EGGTd+t7MBo8/khAOHU8++IqQuHKNjZtemkpSkjAJFrVj/2LFjKVL+xBNPmJLyUivjMdX4IK+Hbda5CCItLY00NzczPz/P0NBQKve4u7vb9M3ujUzGNYiiSEdHB+3t7czMzDA8PExtbS2VlZUl3MrXKXZtKjsGNwUZj8Vi/PVf/zWf/exncbvd3H777bS2tvLbv/3beY13o9lUZFlOkXCHw0EgEKC5ubmgm4r23XKR8eymP1ZISLJux0ytQ2quWFhao6OlJrUtdXX1xIIKX//095gZnqfnx/YR7W1jfsW486clTJQdM1UyqeYZbVgsz7geGS+KMl7wENbrUEREx9brplgqmyKLuHxbfzwj/3Ou0I2nFISi+O1Lp4zrrCsp6jbXlBPX5xaj88GuTQVBQFVVJElKxZTqkXKtEU1bWxv9/f0ZpFxV1ZKS8YRB4YgoCKyH7Cnj2qkrCALNzc00NTWxuLiYIuWazU6v5mm7PON23zqnQxAE2traaG5u3u3eaYRdMr5jUJ6uG8DS0hLvf//7qa6upra2ll/8xV+0bLxz5513piZT7d8v//IvZywzNjbGO97xDioqKmhubuY//+f/nOqSqeHHfuzH+Mu//Es++9nP8tprr3H77bcX1A3sRlHGZVlmbGyMwcFBpqam2LNnD6dPn85bDU9HOhkvBzTPuKqqJBIJIhHzvF1ZVojEYiklTOus6nA4cid5KiyvRFPjnv0/g/zarb/Hn/7if2V2eB4BmPu3y6z97Vm6o2H8FfrKk8NpfsxFk5bzVZUmflbR+kam7xkvUrSh3vGMWxcRpsY3UsZLGjq4AUUVcOh6xotzXiuKgB5PKFZsY3b8YGr8YijjWWM77AmzpjAk4wlR9zMlrfGT4XdtdN+EDc+4RsK1h3RZvv7QDtcb0bzhDW9AVVWeeOIJLl68mIq6LbVNRTIoJq5yuW2LCNlHSRAEGhsbOX36NCdOnGB5eZmzZ89y+fJlEolMgl/q/dNDoQ8Au903jaHZVHbSv5sVZVPG3//+9zM9Pc0Pf/hDkskkDzzwAB/84AdNOyIBPPjgg3zyk59M/Xe6iiHLMu94xztobW3l3LlzTE9Pc//99+NyufjMZz6TWu4b3/gGnZ2dqUkol6Y/etgOz3i6Mi5JEpOTk4yNjeH1etm3bx+NjY1FnbC0CbBc+6n9NlevXmVqaspyvYIES2sxepq3pgqYZZQbYWE5wtn/M8g3/vDbTF6d1l9IVpn/l1cRPQ76f/I4Mx4fkfUkvS01+IZneDTqhBr9BB4wT7hYX1oH9L8bM0la0VBIB07LiEEd3iogoCoCgp7cueX7BuaGcijjKuhyjyJdKooq6v+mOp0z84HRA5V163nrItXsse0o41Y3S8Mumwn9h2QtY3zjy/rflWzaVLTSDm3u0h7utUY36Up5ZWUlR48epb+/n+HhYZ588klaW1tTqnopIMuKKRkHe/0RzOb5+vp6brvtNpaXlxkaGuLs2bN0dXXR29uL1+vdtmjDXWW7RNhVxncMykLGX3vtNR5++GGeeeYZbr31VgD+/M//nLe//e18/vOfT1VM66GiooLW1lbdz37wgx/w6quv8qMf/YiWlhaOHz/Opz71KT7ykY/wiU98IvWarru7O+N7dpr+mEEURZLJIshIOcDhcCBJEiMjI4yPj1NRUcHBgwepr68vmWpQrqzxeDzO6OgoANFolBMnTvDP51YB4wcmUYKVWIKAziSfj2r4L197nLlvP2trWSUuM/XN52jc10TvQCvj//N5krEk6ptPmn7P7HcSTJRU2eFAVVQE0XgZXaJTJGVclPXJtCoL6HoPbGwbuiMWH0Z2DrFIEozR5VEMm4qqGm+/tfJu5e7OUxnP06aiJETdogolze5ktE+27VZZG2eXlB85ciRFyuPxOMPDw3g8npxriawwsxI2fAisdDixfUeyMd3X1dVx6623srq6mop67OzsBNgWm0oh69yNNjSGoKoIO+j47KR9yRVleV81ODhIbW1tiogD3H333YiiyPnz502/+7WvfY3GxkYOHz7M7/7u7xJN62A2ODjIkSNHaGlpSf3tnnvuIRQK8corrxiO6ff7LS0yZii3TSWZTLK4uMjS0hLLy8scPnyYkydP2upaVghKHW8Yj8e5cuUKg4ODxGIbqtCBAweorq62JGqCBHNh/dtXzpezChPBBTr2tNJzuNNy8c797fQf72Hh8jzD//wSDrdI7/FOMCHLWGSVm5FxRBEhYX6p6pEgVbXnLbZSxqWYQQpGodGJZVHG9detV9RZzPHVIkwPG8fNgNya/Gaqau+BNJvkijbIuEewIFVGVpO4gU0lbsOmkkO0oR7SCbiRfaWiooLDhw/jdDpxOBycO3eOF198saD7RDamVowLwX2CfV3MtBA8CzU1NZw4cSJlzRwbG2N5eTnjPlpqyLKcl2c8Hbs2FQOoO/DfTYqyKOMzMzM0NzdnrtjppL6+npmZGcPv/ft//+/p6emhvb2dixcv8pGPfITLly/zj//4j6lx04k4kPpvs3GLoYyXg4wnEgnGxsaYnJzE6/VSUVHBiRMnSr5eDaXaz3g8TjAYZGpqioaGBk6ePElVVRX/9m//hqIoG/8syKsow8KaARnP4+ladTuZvLBxzrTtbUZQRaauZp5DXfvbcPs8DL0wmvH3WCjO6IUJ+Nk24+21ILyVFV6WTD6X1hScXjMCZkBkDKP90r5r5Rk3Un/tWjEMlivHvGu0b8VyIhiSYrtFhyYwI6FmNhVZFm09bGxJU7FRPyhcXYEj1cbbZfT3hFgGm4r5PttRylVVZe/evRw4cIDh4WHOnTtHc3Mz/f39+P1+W9thhOkV4zd9buwrx/nw0urqam655RZeeOEFIpFIqoA1EAiUPKVk1zNeOuw0n/VO2pdcURAZ/53f+R0++9nPmi7z2muv5T3+Bz/4wdT/P3LkCG1tbdx1110MDQ3R39+f97h+v59IJJJ3hnapPeOagjE5OUldXR3Hjx8nmUwyPDxcsnXqodjKeCwWIxgMMj09TUNDA7feemvGq2DN/uNwOKxvrBIsRvSTTay+qwvX9Uth+socAHtP9bM8t4rH68Zb4eZaFgnPhhnfViUFsxdR62sJwDiSTLWwkzqTxqqiy2n+G+ZVwMlGdrQdGCnjuSh8+cLoVCjWvd3o2KlFcLGZFeCaKeOyIuIQFXK1qdhRxq1eIxs+FMYdm7UDmVBixVPGbRdAmpByLdrQ5/Nx6NAhAoEAw8PDDA4OFkzK5wzEAwCXTUuZtv35QhRF2tvbaWlpYWhoiCeffJKWlhb6+/uLbsvRsOsZLyF2mpq8k/YlRxRExv/Tf/pP/MIv/ILpMoFAgNbWVubm5jL+LkkSS0tLhn5wPZw+fRqAa9eupVrmPv300xnLzM7OApiOq3XgzBelsqmkk9X6+npOnDhBdfWGCrW0tHRDJLjkg/T9amxs3ELCNTVcEARWV1fx+XyWNxxRgpX1AmIGs6C6tt4sIqtRahr8uDxOpq7NWo9hYlMRLBoHiRaEWI6ZUXVQ44ru1WyUxpGxjFXTH6M25pI9UqAakvbSz7ylzjI3tKnYfFAxg5nn30oZF0Xr6zb73LCljFsMa3g8YvrKeEZevaEybvOhz9ZS15FNypeXl1OEXhNq0kn5yMgIg4ODNDU1MTAwkDMpN3qTB/Yy3osBLU1FK2AdGBgo+huAbEiShMfjyfv7u55xY+wq4zsHBZHxpqYmmpqaLJc7c+YMKysrPPfcc5w8uVHk9q//+q8oipIi2HZw4cIFANra2lLjfvrTn2Zubi5lg/nhD39IdXU1Bw8eNBxHU8bzRbHtG+vr6wSDQWZmZnTJKmxfgkshZNxqv1KWlM119Pf3MzIywvz8PJJkvq+iDKsx/XhKNYcOnLA5ATivk/GOva34qnxce34k9TeX18WhN+xj5KUxoiGDhwATMi5aqMAunUzgdKhx8+8nJFX3arYTb5ivTcW+Mm5rsZKg5GTc4O+CwZuKXFCITcVlY2ZPPzcEWbVXQJRnmooac+h7xmNpOeOGBZzFsakYYX19nWvXrjE/P09fX19KbEm3r/h8Pg4ePJihlDc1NdHf358STKywFDUWD8Sk/W0v5K1OtkqteeW1uXdwcJDGxkb6+/upqanJf0Um68wVuxYVE+wq4zsGZfGMHzhwgHvvvZcHH3yQr3zlKySTSR566CF+5md+JpWkMjk5yV133cXf/u3fcttttzE0NMTXv/513v72t9PQ0MDFixf5zd/8Td785jdz9OhRAN72trdx8OBBfv7nf57Pfe5zzMzM8NGPfpRf/dVfNX0Sr66uJh6Pk0wmdRsjWKFYyng0GmV0dJS5uTmampo4deqUoX+vXMkm6cj3oSOdhOvtVzYJ15r19PT00NHRwejoqOXDkiBBSCcrXpYVJEnOvTLZIdKxp5WKah9XnxvZ8nEyluSVJy9TUe3j0Bv2cfmZIaTEhpxVVVdJ98FOhszSTiQZM5uKbBFf6HR6AONsfNXABG3nFb+VMi4atDiXJXs3WBEnoCO7luEem+uDWe4rMLKpFL5zZgWypmRc0S+WzFhGziwOFWxe5t5Kj0nGkYkyHhV1b7TpBZxGN2K7OePxmL2mOanlN5NTpqamaGtr4w1veANer9fUU+71elOkfGRkhKeeeso2eV2JGXvNFIMiaT0UQk6Nog3THzZGRkZ4+umnqa+vp7+/P9XpOF8UQsY1VXyXkOtjVxnfOShbzvjXvvY1HnroIe666y5EUeQ973kPX/rSl1KfJ5NJLl++nKrydrvd/OhHP+KLX/wikUiErq4u3vOe9/DRj3409R2Hw8H3vvc9fuVXfoUzZ85QWVnJBz7wgYxccj1o6uza2hr19fU570uhKvXa2hrBYJD5+XlaWlq47bbbdFszp2O7un7m8gCwvr7O6Ogos7OzOZHw9Ina6XQyMDBAZdXzsGB88xIlCCev33xlWWHw28/yv//gH0mc6cCbQ0EUKgheJ5NXjYt+NURD67zy5GVqm2toH2hFEOHacyO8MngF3mvylsfiMAoW27u+mjC1qSgGDYWKoYwbPa4qFgkvGqSVGDRu/Xs5bq9mRaaqAiZ9mOyNb3TzSJRaGTf/nlVDpS3dN21OLfFwHPDmvl1RozSV9A6cOp8rNnLwN/FH7/9zfuH9d/Pj978Fj89YZJEkiWAwSDAYpL6+ntOnT2e8sbNT6On1ejlw4AB9fX0Z5HVgYMCQlOuJB6n9XLc/txdyZlkRY22/AoEAo6OjPPPMM9TW1tLf35/XvdLOOq2wa1Mxwa4yvmNQNjJeX19v2uCnt7c346Lr6uri7NmzluP29PTw/e9/P6dtqaysRBAEwuFwXhNMvsQ4HA4zOjrK4uIira2tnD59Gp/PpPNiGjY6S6qpAqNywK4aH41GCQaDzM7O0tzcvOXhwg4J3woL64QMESmBLCs8+c3zfOOPvs38+CIDJ/tyvluJEsgOgZaeRmaDC5bLV9ZU0LGnlWsvjFLbVE33wU4uX9yqpmdsr4VCK4gCQkJGdesfE4fTCxi/5lYMzolieMbl1Riw9U2TnLSbY+5CT9UvVrygKUweNBRVwFHg7G/07fTCxHxh9iBl9gAly/r+bLOx7TT8AWu7ldFDgLIu6j6QZuaMb/18w6Ji74Ku76znG5/5Fv/wue/yng//JG/7D3dmkHJFUZicnGR4eBifz8eJEydMVd9cSHm2oqxHysPJuOHLsUQ0B9N4ASqxXWLs8XjYt28ffX19BINBnn/+efx+P/39/TlH6kqSVHC04S6McTOryTsJN+UVohWw5OsbdzqdORHjUCjE6OgoS0tLtLe3c/vtt+P1GqtLetAm0HKScStlPN1mUzwSvgmrNBUVImsxfv3U7zFx5XrHzFeeuAx7TlmPnz6WBLJDZX58kQNn9jA9NMvK3NZM4IpqH31Huhm6MMorT14GYDY4z2xwno7DHZjRcZcNE68YV5ANyPh6WMIsgEw1OKbFUMZVA55gl4wnDV7BF6slvRnMmu9stLIv8E5maMsoPD3CTBk3TVOR7dhUsoo3bWoLVteuft49ELPOGdc7lnaLNwFGXx7Ht7hRmP9XH/ka3/zC93jPh3+SH3/gLayGV7h69SqiKHLgwAGamppsE0o7pNzj8bB//376+voYHR3l6aefpq6ujoGBgRThj8jS/5+9846TpK7T/7uq0+Scc57Zmc05yaGgIngmDJwoenJg4vwJChjAgIoETz24O9ETUDwwnqh4HgLioTu7O5vYNLOTenLOeaZDVf3+6OmeDhW6e3YXXOZ5veYF29VV9e1U9Xyf7/N5Pppk3DEbfvzO+fSMG8FqtVJZWUlJSQnd3d2cOnWKuLg4Kioqwu76vBZteAERblOBvxVcSq8lQrwmybi389rsrJ77URveC4u3yEcL09PTdHZ2MjU1RX5+Pnv27Im6qtx7nvPRQCGSc6qtAPiTcDWbzapI+DLC+UnOzSwGEPGIdvaD6AbJKiDLCucOtXmKNfdX03naU6zpJeEdp7t9JDwYffYhoFDzHO5FF2rqsj8sioAWJ9Il1Tqi2vnwjGtGG7rC+zwlDf+02awgyQImgxz0VUFPGQ+zaVFUpz0PZHw1aSqRkvFwbSreOgntcamcyy0iIERlUwk31hAIKaCeHJ7mh3c+yc8eeJod797I2z5+FSVlxVGLGeGScq+i3NnZydGjR0lNTaW8vJwlrVktsDCjbWEJGccqjCrREmOLxUJFRQUlJSX09PRw5swZYmJiKC8vJysrS5csr0UbrmENxnhNknFYXeMff2JssQQ6eRVFYWpqiq6uLmZmZigoKKC2tjaqQtHgcwqCcFGLOIOV8fn5ebq6unxe92Cbzfkg4V6EU3inGSUY4b1KkEA2r+zkWnLReKCFtLwUavdU0naiU5OE+6DXfRNjmwqAPOeEJPWfpK5KqpPEIIVBOEVFn5xoEbVwixS1rDJmk+RRpy8gGVfc2sc2bikfBjRmKvLM6i+tUdtU5MhtKuEq44ZL4mqE2ruCYmBTUdsebpKKxqkBmBtf4M/fP0zLC5287Z+v4g3X79f1lBshHFJutVp9pLyrq4tjx46xJKuTcZMgsDQXQTD9KpXx1aysms1mysrKKCoqoq+vj6amJl/UcHZ2tiopd7vda2T8AmGtgPPSwWuSjHuV8WjJuCAIIUWciqIwMTHhSwIpKChg/fr1IWR9NbjY8YYmkwm32x1AwtW87ueThHuhhCNvGxDgcCEACAKyKCDKCrZ4GxWbS+g808OxP54mNTuZdXsqaT7cph3dZjSWMMh4jNmiljkCgFvWfi9FnZSWcDzjLqf+d0pbGQ/vpi5pFFGazJJnfAZNiVYFA8/4hYK0YEZRVmcpkHWKT8+3TSVcz3g00Ybe1J1olPFIbCpaJNVkEaneWUn32V4e+fSP+fl9v+Xa267hTf94+UUh5VVVVZSUlOBuUZ/QJ1ptoITfMyHa75TXWnk+VlbNZjMlJSUUFhbS19dHc3MzbW1tvv4fXsLvfV9We841m4oG1go4LxlcHPPxqxCJiYlR21RgxcKhKApjY2McP36cxsZG0tPT2bt3L2VlZeeViPuf82LB7XYzPj7O0aNHMZvN7Nq1i5qaGh8Rl2UZt9uN2+1GURRMJhNWqxWbzbZqJSQs65hJxKzmsY7yW21JT6BufzVms4nG+hZfnvjk8DTnDrWRXZJJ5fYy1X2LNxbpHjsmxtie5NJZqnbrpK1IOrFoYXnGjUipVpfJMNNUFI0xWMyyrhXjvECnMZHWuCKCyuEVGXCaVm2D0VXGXyGbipFFQtVqsjxpE4LEX9klBH63VJXxSMh46LlLNhUQkxhDU30L89OepK7JoSl+eMeTfHTD7TzzH8/hWIwsEjH0tCsE3Es+JUlClmVfKIHJZEbS4KMJ5sjuE9HaVLz3jvNZc2QymSguLuayyy6jpKSEtrY2Dhw4QF9fX4BAs6aMXxgI8qX3d6EwMTHB9ddfT1JSEikpKdx4442GzR8vv/xy38Ta+/exj30s4Dk9PT1cc801xMXFkZWVxe23347bHXkXr9ekMg6sShkHzwVtfHyc5uZmHA4HRUVF5OfnX1A/98XKGp+bm6Ozs5OxsTFiYmJCCk79lXDvKoH3b7WQJJn6Xx/xdLyMMb5JxWcmkluYQfPhdrKK07ElWpmIYnYtAKa4GE8BqAaGOkcZ6hylqDYfQRDobuyjbHMJriUnHU29gHYDLMf8Egnox1cKTu3PVtQh8zpW1PA84wak1KRB7MJVxhHVP0ezyY3TdX4nrMHQs/CcD2VcrT28vJzhrcgCrKJAVNeapJumYjKczAZ/5uHaVIwKkdXSVLwRmJbZwG0BFhW0POPhX1MS3rSenMwxBg60UL65hMW5RbpO9Wk+30vK//vb/3PBlfKRmTlN5V4w8OGHnie68V1IYiyKIoWFheTn5zMwMEBHRwd2u52ioqJVnXMt1tAAa8p42Lj++usZHBzk+eefx+Vy8Y//+I/cfPPNuil/ADfddFNAXLZ/fZwkSVxzzTXk5ORw8OBBBgcHueGGG7BYLNx7770Rje81S8ajVcYVRWFkZASXy0Vvby+lpaXk5eVdlJn/hVbG/aMX8/LyKC4uZm5uzkfELwYJ/+uvGmg9Zse1vtiQjItuGF9YImZwivWvq2Fp3uHpmrmzIPIBKLAgSWH9IHqa+inbVMz619Uw1jfBUOcIpBso32HMofRaYi869IKldU4bljKuv90kqn++SphZ2g6NFXizWWbJ8cop4+H46Y2gRoyUZRK9WmU86gJOWTScaATbP8JVxl1L+t5mVZvKcqFvcLKNv0VFbTtEZlMZX3CTVldEXUIsc71jngl9GJgcmuLJr/03L//pLFuuWH9BSHnf+JTm8+NMFt1GSioniGpcF0IZD4YoihQUFJCfn8/g4CDt7e0A9Pb2UlhYGNW9Yi1NRRtrnvHwcO7cOZ599lmOHj3K9u3bAXj44Ye5+uqr+da3vuVrPqmGuLg4cnJyVLc999xzNDU18cILL5Cdnc3mzZv52te+xp133slXvvKViGoFX7NkPNICTlmWGR4epru7G0mSsFqtlJaWkpubewFHGYgLpYzPzs7S2dnpi170pr4MDAwwMzNzUUj4z+/7LX0tAwBYbGascRadfpMeCG7I217CyAstvnzwkg2FTETpJc+uzmdycApZ0n6PSzcUIcsyHae6PWMQBGp2V9I9M6V7bFMYN0BBr9jQov2jVnSIVDjKuFEjdNmh3j1UCZNIi7Y4YCr0cfHCJpoAaNTMocjKqi0yigImMfS74vV6G9p/DKAfbai/n9G5g2sJwvWMW7NT0JOvVH3hXjuToq+MqxZ/htl9E6BIgNHvP4+3U0DpxiIkt0RPU7/mPoJJoGp7GX3Ngxz/4ymO//HUBVHKh6a16XaSLY5ZpsM/bpTj8aaaXAxiKwgCeXl5JCQkcPjwYfr7++ns7PT5zNdyx88T1qINw8KhQ4dISUnxEXGAK6+8ElEUaWho4J3vfKfmvk8++ST/9V//RU5ODn//93/P3Xff7VPHDx06xIYNG8jOzvY9/81vfjMf//jHaWxsZMuWLWGP8TX7i0hISDD0C4GHhA8NDdHd3Y2iKJSUlJCTk8OpU6cu+hLa+VbG/Um4VvSiJEm43e6LQsK9cDncOBddkKj/9RQl6B4YI9bvc+g60ws7o5sgDQ1OkZeXSmpOMq1HOwK2FdcVIIgCnWd6Ah5XFIXmw21IBQnoQXEZT6L0rAJLeiqpHhkPg3BKRqRRK20lDDKuKDC/oGMVicQTHAUsGhYZwS0Ydqk0giSJmFSKT72vyei1GRV46nvG9cdllBQTbZqKwyWjRwdVrSbLZDxEGXcGKeNqqnoENpWhw60BWfydpz2/1bJNxbhcbnqDSHnVzjKGu0ZpabAHPH4h7Cujcwua2806hbpax4sGr0TEoCzLWCwW9u7dy8jICHa7nY6ODkpLSykqKgqLlK+p4tq4VJXxmZnAPh82my3qWGiAoaEhsrKyAh4zm82kpaUxNKTdefv9738/xcXF5OXlcfr0ae68805aWlr49a9/7TuuPxEHfP/WO64aXtNkfHBQJaN6GbIsMzAwQHd3NyaTiZKSErKzs31LfGaz+aK3pz9faSozMzN0dnYyOTmpSsK9KrjZbGZ2dpaBgQGKi4vPi5ohSTIHnz7Kz+/7Db3NA9pPDOP6K7hBSlhdZKQ/FJuZ0aZxRnvHKajOw2w1IUsyJrPJd2PXgltHTQfCSlOJj43R1MdcovZ7LxgU8xlD/zniKgs4JZ1VAb3EkHBgRGhdc+qSr7SonAcbiYDFHPp7VJatMefj+FowKuA07KoabQFnFGkqPjuKbKCMq7zeSGwqWi/Zu4pVtqkYl9ON2WLCueik9UiH+g7L8Cfl7/7MW3nTP/4d1pjorjdjOquwJh0rlRpWq4xfTPir8dnZ2WRlZTE2Nobdbqezs5Pi4mKKi4t1ww7WyLgOLlHPeGFhYM+OL3/5y3zlK18JefrnPvc57r//ft1Dnjt3Lurh3Hzzzb7/37BhA7m5uVxxxRXY7XbKy8ujPq4aXtNkXE0ZlySJgYEBenp6MJvNVFRUqDY1uNjJJrB6m4qXhHubEK1bty7A0xRsR0lPT2fjxo20t7czMDBARUUFOTk5UV0cvST8lw/+jvjkOKZGQztcBiKMfGw3SPEqX+Foo78sfjcqAUwmEdEksji7ZLyz0T0uDDKu5/12m3T887qNbcIo4DQi4xrbFYfxG60o4NaZSKxWGVdkEHTee60sdMUJ8mqVcVnEpELGfTaV1aapRNuBUw5DGQ9SnM9ftKFafKHXpqLxuHffC5Cm4o/FuSViE2JAAMEU/nHnp+c5+Nuj/P6R53nrx94YFSmfmNeOLlQckd1Hwop9VcErQcbdbneAiCMIApmZmWRkZDAxMUF7eztdXV0UFRVRUlKy6n4crzVcqsp4b28vSUlJvse1VPHPfOYzfPjDH9Y9ZllZGTk5OYyMjAQ87na7mZiY0PSDq2HXrl0Avmz9nJwcjhw5EvCc4WFPrUokx4XXMBlPSkoK8Iy73W4fCfe2ANZrmfxKKOPRTgC8nUCnp6fDIuEmkwmz2Ywoir4L5+DgIG1tbfT09FBZWUlaWlpY59ZSwm1xVkq2FNDbOIhkkHOtBcENctx5+gorgMVMflUusfE22l/uCthcs6uCkZ4xJganVHe3xusvoYVzwVyacaDVpVO2mFHcCoI59Pso6TX9CSdNxejt15r/LYVDaAQkXTK+WmVcQI8hWkT1m7soi4aTECPIsqiqjK/YVIxiAKO3qWjKwCwr4waTsODi1fPV9EfPMx48QQgu4FR7Te4IbCpac6vUnGSySzJpabAHWAvLt5TgXHTQ26yxQipA4fo8pgZmfClL/3n7f/Hf3/49194WmVI+rqOMK+E33wTg2LFjbFxfo3t/UsNqG/5EA60JgFfsSU9PZ2JiArvdzksvveQj5auxJLymcIl6xpOSkgLIuBYyMzPJzNROMfNiz549TE1Ncfz4cbZt2wbAiy++iCzLPoIdDk6ePAngqxXcs2cP3/jGNxgZGfHZYJ5//nmSkpKora0N+7jwGibj3mjDiYkJfvOb31BZWUlMTAw1NTWkp6cbXuQudgOeaM7pT8LVOoHqkXB/eItxsrOz6enp4eTJk6SmplJZWUlCgrpX2siO4lhw0vVyH0npCRRU5XHucKvvmpJRkMZwjHYDHC9ECcTUlZghk1mkakcF9VEua1oSY+ivb1bd1tzQjtlqpm5fNV2NvcxPeTygtjgrxRsKODc9qXtsWxgxjVp2EC/kBTCpXJ8UnYCLcBJDjEipFgFTwiDjigKSThyeHEGBnurxZX0y7pxR/724FmSU2NXbSGJitG0qhsq4wURCb9VAtwOnJBpaZKK1qVhEkUjXxZWlZTJmqIyrRRuG//0oqMljyT7P0pyH3cYlxVKyoYjWo3Ymh0INYPblCXfFlhKWFpwBtSuV20qZHpul90zotWticMpHyt/9mbfyxg9rk3KHw4HdbmdwahJiVZ+CezGyaMOcnGzOnj0bdjt6L2RZfsVsKnpIS0sjLS2NqakpHykvLCyktLQUi8WyZlPRwaWqjJ9vrFu3jquuuoqbbrqJRx55BJfLxS233MJ1113nS1Lp7+/niiuu4IknnmDnzp3Y7Xaeeuoprr76atLT0zl9+jS33norl112GRs3bgTgTW96E7W1tXzwgx/kgQceYGhoiLvuuotPfvKTEU8oX7NkXBRFmpubqauro7y8nF/96lea7Xy19ne5ImhhfB4Qrk1lamqKzs5OZmZmKCgooK6uLsCTFy4JVzt/aWkp+fn5dHR00NDQQG5uLuXl5b4vnizLHPrdcX769V/re8KXMTM+R9OhVrJLMknLTUaRofVYB65aF5j1L+KCG5xmhdr91aAoDNlHaDzUCuvDn+n6jgU43TIxOs9xO9001rcQmxjD+tfV4HQ66Wnqp7WhA2dZou7xnfNOYjVUb98YDNrSm2Qzal4WteV9L8JSxg1bnKs/LCiCxyaiJ+AqApJo0lT1V62MG5BOTZuKC2Tb6iYCkiRiNoW++T4yHoYyrnt8HXVby6YiLWecXygyLo3NAtrFyqoFnA4tZTw4TSX0eJF4xnvbBskWRda/rhqAjlM9NNVr9w3wwrsKVrG1FJPFxNLcEm3HOw33mxic4gef/S9+9S+/5713vp0rPrDfR8rdbjfd3d10d3eTnp6OYrWARj6UayEyUaekuIR11RX09vb62tFr2Sn98UrZVMI9Z0pKCtu2bWN6epqOjg7+8pe/kJeXF3L/WoMfLlHP+IXAk08+yS233MIVV1yBKIpce+21PPTQQ77tLpeLlpYWFhY8QpvVauWFF17gu9/9LvPz8xQWFnLttddy1113+fYxmUz8/ve/5+Mf/zh79uwhPj6eD33oQwG55OHiNUfGx8bG+Pa3v813v/tdFEXhscce4+qrr454+c5sNvs+tIsFownA5OQkXV1dzMzMUFhYyPr1688LCQ+G1WqlpqaGwsJC2tvbqa+vp7CwiIGTo/zy/t8x3D1K5dYybPE2HPPGa7Dpeamk5aTQcsROYU0eeZU5tIfpGTdlxjLcYWdxbonSDUVMTc9F94NWQDEbvw8Wm5nC2jzsp7pAgLzKbDpP9oJRnGIYVn+9QkwA16yEJSX0cT0yroRDmPWUcUU/+FCWBEyiTtSd978OEIKuNooLlFUq43qkU5b9VNngbS5jwmp4bklQtZl4FW3DiYKOMq4o0RVwegm8oU0lyP6hl3HvD6NUEdUJxoJnLGLQlzA0Z3x1TX8QoKg2n4G2YRyLTko3FtF+ohPHgnGHzYzCNEwmkZaGdiq2lpJflUN/q3EagmgSySnL4sl7/ptf3P9brr3tGureVElPXw+xsbFs3bqVlJQUFg++rFlX4piNsAOogC9UoLCwMICUl5eXa4pKr1QBZ6SF/8nJyWzZsoXZ2VkGBwfXunfqYE0ZDx9paWm6DX5KSkoCbGyFhYW89NJLhsctLi7mD3/4w6rHd1ENZJG2I+3q6gppRer9++Uvf+l7ntr2n/3sZwHHGhoa4rOf/SwlJSWcOHGCb33rW6SkpHDNNddE5aN7NRVwTk5OcuLECc6cOUNycjJ79+6lrKzMR8S12tZbrdZVeQjj4+PZsGEDrn6B+97xb3z7Hx+ht3kA56KLxvoWRJNAbm2WJhFMz0tl3Z5KT7v5w23Ikkx3Yx99zQOYbWFEXkmwJLsZH5hkYWaRxvoWEtKNfWZaMNkspGQnq2+zmKjeVY4l1kJrQweLM0ssTi/RcaKHzMJ08mu0mwYAxMbrae4eGCnj0qL6lUrf8y0gGaQ16CZvGHmEjeL7lgmWKIfeUBWXsU1FL7bRs12PjAvgVL+Ri4Jp1R04tQivvKzGG0cbGoxdZ0KqrYyH13AoQHWXlbBvgs55feKo9pqUxeXPYCQwazusAs4IJmspOSk0H25nYmiK+ekFGg+0YLGaqdtfjS1OfRKRkBpP7b5qJgenaTnqiThsP9FJf+uQh5RXahdh5VRlkJgRT1N9K7MTc8v2lSe56w0PMHBknE0bNpGSkgLAok6bXE+tSPhQZMVHGryk/LLLLqOgoIBz585RX1/P0NBQSPTuK5mmEg0SExMpLy9fs6noQVYuvb/XKC6qMh5pO9LCwsKQ+MEf/OAHPPjgg7zlLW8JePzxxx/nqquu8v3bexH04qc//Smtra28+OKL7Ny5k5MnT0bU9CcYr7RnXFEUnx1lbm6OwsJCNmzYcEGUcDXIsscT/rNvakcULs4ssdi0RFZRBilZybQe89zs0vNSySrOoPVoB+MD6l5rt9NtaFMR3SDZAp8zOTod3exaAbesMD81T92+ajrP9LAws+hRvqozmBqcDckj9mKke4yFWBdcmaJ5+KXZJawYdBTV6HTphayRXmK12dAz2MtuAaw66vUqFGLjIkXPdte8hCUx8LkeMm4wUXCLmFSsIL7tusq4gOJUv8S5FhXk+FWScbeIIisIQasiXrXf2KYSfSSl1me2QsaNlPGV7eFaVAAUA2KkTsaXxxTU1EoJnigFNwWSDSaKQZgcnSF4Kj435SHlCanxVGwppe1EB85FF5YYC1Xby7C/3KVpZWk/4bGqVG4rZX56kYF2j1JeVJsPCvScU28mNDe+wM+++lue+8FLPk+5Q2NWaRZFluYj84xLkhtJ8lzHveKTyWSiuLiYwsJC+vr6aG5uDkh8EAThb46MryEMrNlULhlcNDIeTTtSk8kUEg/z9NNP8973vjekcDAlJUU3SubTn/40t956q+/fiYmJzM/PoyhKVDPvVypNxRvH09nZ6fMxbdy4MWAp8EKT8MO/O85/f+d/aA/DVwkw0jPGSM8Y63ZVEJMYy+n/a9Ik4V4Y3fTBs6SlBPuQTdERLNENikXA5fD4whPTE9j4hlq6m3oZaBox3F8xsKkIYVW869+0JA2H0tK8fu2CR13UIbR6liCDYRuRca/QoZYYobgEFJeRMm5wfN3GOCLuBQ2bittYPTaCLAkobhCCRFfvazIeu/Y2o2ZNsiKoprGEq4z7bw/XogJhpKmoPbYger5hQRuVcSf4t+kJej88FpUIPiOdp85NztNY30JSRiIbLltHT2O/LyHFCF7/+MbLaxFEgVMvNoa1n9dT/vS//i/Of65UfU6ixQpoxx6qwWQyoSgKbrcbURQDSLkoihQVFVFQUEBfXx8tLS0+Uu59/sWE2+1eVTKK93WtYQ2XOi7aL9OoHWk4OH78OCdPnuTGG28M2fbJT36SjIwMdu7cyWOPPRayRBf8g05MTESW5ah93xfbpqIoCouLi8zOznL27FnS09PZu3cvpaWlPiIebEcRRfG82FG8xz7w3w18aucXuf8D/8Zw5yi1e6pCVEE1JGbEU72rnNbjnbz8whnKtxSTWZi+qvH4EHx+kxjV7FqQQDZ7yE3ljjIEEU6/2IQiKVTtDCPc32gSEI5nXBAQdDp1yhrENSZOI6bBu5+B+mzkGdc/dnhWDFlFuRdk0XhsBtv10mJkWQCXFhkXkA1sQUaQJVE1ycZbNGqojK8iH15RBPViSdl4IuAt8vTCqhfUHoLIlHFZEhC835Gg16vIQStFQftGUrwZxtCo2FpKXGIsx/94Gseig7p91VjCsMMlpsVTu7eKs39t5tSLjVRsLSWjKDWsIVVuKwVBQDKr/44SzJHnantJtyiKPlIuSRKyLPvue15Sftlll1FSUkJraysDAwMsLCysqldFpFiNMq4oSsh9fA2BEFjxjV8Sf6/0G/oK4qIp49G2I/XHo48+yrp169i7d2/A4/fccw9veMMbiIuL47nnnuMTn/gEc3NzfOpTn9I8lldZn5ub04zn08PFUsYVRQlQwk0mE7t379ZVwkVRxGKxXFA7yuyEJwUlMSuepPRE+s+FfoYp2cnklGTSdrwjwOLRerQDk9lE7d4qes71MzcZahcyW82EJdgFTbKSs5MwaiekehgJFKtAUnYibUdXOvPNjM4xMzpHbnk2sYmxdJzsCtk3PS+VlOo89L7F4d6QxCUJyaL+uUkaySALM0u602o9z7jnvrwKZdyIjC8TMKvFRrCXxr0kGxZwGh1fj7TKsoAiq1/iLDExq1fG3QKofCZhK+OrsaksK+Na+0k6P57gokh5dBaIU39yECLtwOnv+Q4m6q6gaMxgJ0dEDX+A5OxkFEZDHvd20/XaTsCT4uRVyiu35dJ6rMNjjfNDgJXlYKvvce9xyrcUszCzyKA9dOUsuywDt+Sm7XgnUqxZs8A7zmRmVnWLNryXPK9q7CWtWkp5YWEh+fn5NDQ0MDk5yYEDBygvLyc3N/eCK+VrNpULjEs0Z/y1iFWT8QvdjtSLxcVFnnrqKe6+++6Qbf6Pbdmyhfn5eR588EFdMh4TE4PFYonaN36hPeOKojA+Pk5XVxeLi4sUFRVRXFyM3W4PUMJfSU84wOzIPLMj8xTXFSBLEr3Ng6RkJ5NXnk3rUTvNw6H5vgCSW6LpYCuxCTHU7a+m9agdl8NN1Y5yZsZm6HS5wRSGarR8k/Oes7G1LyrPuAAgCEyOzqvy2kG7p6tW6cYinEsu+lsHSc5KIjErnoFzQ8zYRdivHW8ohFmYIji1VSsPOdGINtT5yPUIrZ5v2bOzgm4hoRFZXj7+4rTT35DgObdL0Iwe9O1vaPXQSRyRBRBEFJeCYAl83sKsCyVxtWRcRLUuzxmeMm40kdCHlmfcZHjskFhDZ/g/GItBk5vg75M/GY+NjwVWrreypK+MR5SkAkyNzrB9exlzk3MM2kdIz08jIz+NliPtmvvMjM3SNDZLclYS+RU5tBy1I7kk1u2pZNA+omtlsb/cDUDVjjJmx+cY7BghoyCNtNxUWo+uiA9SsrZNY2kk8vtP8CpvuKQ8JiaGnJwcLBYL7e3t2O12ysrKyMvLu2CkfLVkfM2moo+1NJVLB6sm4xerHemvfvUrFhYWuOGGGwyfu2vXLr72ta/hcDg0/WqCIBAfH6+b5qKHC2VT8ZLwzs5OlpaWKCoqIj8/H7PZzPT0tG858kKT8IO/PUr9r4+GvV93Yx8p2clsfeMG+loHA5QkPSzOLdF4oIUNl63DZDFx8k9nPRvWFYZ3YgU2vGkDwy2ec7rT9S0bRsci1gpzS5pP6TzdQ0pWEluvXE9/2xB9Zz0FxkaOB8kd3tKwqEPGY5MSgYmQx40ItRCcKegHIzuEaHAjlIw8316biis0xk9xa1tvfOMzIPu6LeO9EYMOEIJ4nywLhsWBRh0yFUnEhBmC1nAUX5pK9BMJY2Vcfz/dYwd95qJOB9dguB1u9G4bIWTczya0MLPkm5ApLgUluKA5aMyR21QE2o51kJAaz5Y3bmC4a0SXiPtjemSG6ZEZ6vZXY7VZOP1SU9i/2dajHSSkxLP1jRsY6R4NIOKgT8bH2kdJRr9HQTC0PlkjUu6NGSwoKCAvL4+BgQE6Ojqw2+2Ul5dfEFLudrsjjjZcQwRYK+C8ZLDqX8nFakf66KOP8ra3vS2sc3k7RBoVjiQkJDA7G+kioQdmsxlFUZBl+bxcwBRFYWxsjK6uLpaWliguLiY/Pz9AVfBeUN1u9wUj4T+/77e+lIC8imyssVa6zvTq7puSlUReRQ6txzo48fwZzBZTQCKJHnJrspCXZM78xbN6klueRWxiHOGVSHmKz06caCd22kndvmqaB0eZj/IHLQByrAVRg4wnpidQWJNH27EOTrxw1mO12VdNT1MfMwbe+bj4GH9RUHsMOmR8amxJtd2KkYrqXNJJUjEipG4ZvcJSQzIte20ToWQcDZtHwP5GZDwMdVlR8avLinGXSlkWMJm03zvZJeBccIe0clKW279jQCYjIcwh+xrljOvMDqWgSYLgDv8HE+m1xn+y5lHGPeKHrPJbCI42jNSmIlpE6vZX03Gqm5efP4MgCFTvrGByeIqR7jHdffMqcrDFWX1KeEp2EknZCfQ2DqJI2u+PyWKiZlcFnad7OPH8GQCqdpQzPTbDcKfHMiMlaq8mxFujKG40mCBrkXL/Ak5RFH2kfHBwELvd7lPK8/PzzxspX7OpXFgIihJmOMDfBi6l1xIpLtqUNZp2pF60t7fzl7/8RTVY/ZlnnmF4eJjdu3cTExPD888/z7333stnP/tZ3fEIgkBCQkLUNhXvxUqSpFVduLwkvLOzE6fT6VPC/S9gsiwHXNSampqoqqoiMTEyRUUNsixz6DfH+Nk3fxMS1TXQ7rFm5NVk416SGOkKvKElZyaRX5VL61F7gBLudkk01rcQlxRL7b5qWhraQlQmT1zYAgPNwwGPe/2XpqJMFUNGKEQ3SElW3GOenHGhNLzCKi2klWQxMxo4QYtPiaOkrpC2Ex001a+8Tskt0VTfQky8jfyqXBW36goWZ5eIx9h2o6dSSor6Tc2IUOt6xo2ufQbbJY0CyZXje85tsdoITo2Q3cZpKqsh416biBoZtyXEG64KGJFxxS0uq+DBkX3L5zUsPg3fShJyboNoQ/1jB35mVoNITX/IOsQUVAo4/T7fhVmHbzIpLIWOL/g1RWpTsSXE0Pj7FVuJoii0HGlHEARqdlUwMTjJSM94wD6pOclkF2fS3BCooE8NzzA1PENqTjK5pVk0H7EjS4HXsOqdFYz1jYdYWVqP2pcnAuVMjcwwk6D9u3dMLWEO47rgj3BdG15SvrS0hN1uZ2ZmhtjYWN+Kqte+kp+fH0LKy8vLzwspPx9kfM2mogOZsMIB/mZwKb2WCHFR148ibUfqxWOPPUZBQQFvetObQo5psVj493//d2699VYURaGiooJvf/vb3HTTTYbjSUhIiNqm4r3ASJIUVateRVEYHR2lq6sLp9NJcXExeXl5qiTcG78YExPDnj176Orq4siRI+Tl5VFeXo7VGnlFvh4JD8ZA8zCiKLBuTyX9rUMIAuRX5dF23K7bbnphZpGm+hbS81OXvZt2KraWsji7aNhuWpJkTzKKAQQJJL+b3ZLDtaqlrvHJeep2lDMx6GkkVLqhCPvJLhp1XufSvIORjmHYUaY9zjDHZNKZgUgaxnBbXIzuRUw/i1v/PTbyusvO8NTfxTl3iGfcYrYiO/WLS40a57j1lPFlMm5STAS/QbPTDuQ4/cJtSRKxWHTSbdyCqmdcWe4saUTGV5OmYtT0R9Hx+QcTdXkxErtdZGkqkl+WuP8295zK+xr0UKQ2lYXZRVVaqygKzQ3tnmvY7kpG+8Y9v+2NRbQetTM5pF7XAjA5NM3k0LSvN0JzQzvFtQW4XW5dC4xnIuAh5fF/t1Fzoh5JrKQX4VJTSZLo7u6mq6uL9PR0du/eTWxsrE8h95JxLzHPy8sjNzc3RCkvKCiImpS73e41ZfwCYk0Zv3RwUcl4pO1Ivbj33nu59957Vfe56qqrApr9RILVkHGvTSRS33g0JDzYjlJTU0NBQQFtbW3U19dTWlpKYWFhWBc9WZY59NvjPP/jlxjpGQ2r5bNnP4X+1iEK1+UhCAItywWX4WC8f5KUrBRqdleyOLtIf1t45wwHohvkeL/JkCBEH4+kADYLPef6qNhSiqIodDf2sTRv3CHPKGc8XMTF2ND6Rro1lHFJ0s+Ektw63wsjJcJge9g2FRViJS0pusq4rIiGvms9Mu4lu645CWvQGyQjhqGMG6jTLnGZcAdes+TlJjerUsbDiDbU2y+iAs4IbCpGImVImop/l02/75I8r3KgYGU8gu6b4QxOlhVaj9mp2V2JoigMdYyEfw0bmMS8bEnxEO2+sPZTFIWppSVAvZZFMPh+q+5j2HhJYXBwkPb2dmw2G1u2bCE1NTVgu9di6b3HqJHyoaEh7HY7HR0dUZFyRVF8PvVosBZrGAbWPOOXDF7TlRWrIeMQWRGnoiiMjIzQ1dWF2+2muLiY3NzciEh48Ni3bNnCxMQEra2t9Pb2UllZSXZ2turF2kvCf/7N39DdtHIjqdpRxmDnMLNj2nadpPRECmpyaTve6VuSTc5KIm9LCecOtem+7vLNxTiXXNhfXlHCK7eVMjU2y6iejzPcpdhgMi6yqh90cmE6Qt84Z//aDOBJe9lXTevxDlxL2s11knOS0HWlhrn8tjixAMXJqttcovrPdWnehaqZfBmGWdw6EFZNxgXN87iWZNBR1hVZ0LehyCBrTFAAX2yiWTQTnEIjWG2Gyquhb9tHxgPhXvB8TqtKUzHMKBdVfyPh2VQCt8XHx6Fo1ywHnTjCnHG/74f/Nps5RmXf4HFGpqgaBQNV7ShnYmDSdw0TzSL5dTlMDU4zP6Fd25KYnkBBVR4tDW0ML1+zMgvTSc9PpaWhXTeNrWJrKZOp2kXlosF3TA0upwtTrLrX3Hs/cLlcVFZW+rpv+iPYU65FynNzc8nJyWF4eDggfaWgoCBs4QfCj3VVw5pFxQBr0YaXDF7zZDxazziEF2+oRsKDq9YjIeHBSEtLY9euXQwODtLa2kpPTw9VVVWkpKT4jq1Gwr1oPdrhKULaU0HXmV6W5lZU4MT0BIpq8mk9HuiVhpX0AU/BZSwdJ7sDtpdtLsblcGMPehw8He1Ek0jt3ip6m/uZnVj5DGITYyjfVMwxQQiLU/sr4wXVuUxl2tA33ehjcnIe2/SKTWpxbonG+hbf5KP5cFvA9SK3LIuEtASOjs0C2o2MrDarbst6L/SWrd0aqSh6lgTQ9x/rWSU8TzDwCBsVYC4f3xwTAwQyPtktgks7tUSWBV1Sqrj11W3vvs45iWDq53TJuMPIMJdl0PoZyi51m4q8uEw+DJRxl15jnlXaVPSLQwO3LU4tEhN2oodxAo0/ZIcfEfMb8/yYWlXt6tJU4lLjKN9S7Isc9MITuyqHpJzIbpn+xiFMFk/PgwH7MFN+UayWGAtV28pof7mLc4cCr3+jveOM9o57SHleKi1HAkm5tyC0/UQnjj2bNMdsMVnU0kp18fFNd/Kez/49b/zQZVhsnmvf/Pw8bW1tTExMUFpaSlFRkSEJDpeU5+TkkJ2dzfDwsE8pD2c11ntvXPOMXzisRRteOlgj46sg43qNfxRFYXh4mK6uLiRJoqSkJKTJwmpIuD+8S4vZ2dl0dXVx4sQJUlPTmGqd4+l/+V9VEu4PySXRfKidxLQEyvYW0982SEF1Hm3HO3S90rBScFm2qZiF2UXiEmNxu9wh5DwYsiTTdLCVmHgbdfuq6W0eoLAmj84zPZw90ILy1u26+/teuwTmjHgKanPpaxpkyZUCpdlh7RsCBRSL+k/CO/nILskkMT2B6dEZUrNTPDf4jhGU1+fqHtq95MIcQglDIejcmGWLem2AYpCrqOhGG+qPRzRSQh3hqcuL86GsVZEERMmjfptNoQPxkGEdsu0W9HPGdQo43ZiQZZNufKEkC8iyiCiqv0mKS8RqtQErkzdZEsDbBdNworKKAk6jpj+6DYUCyZEQQfMjo2tTsDLu//2w2la+v8qi2uwr8J+RpqkszCxif3mAzOI0ElMTmZuYJzkz0bg+xeXpeWC2mn2kPLcsiwH7sOH1z0vKs4ozSM1JYaR7lOySTJoPr/jJpRi9NCIlnNKYAIwPTPL9257gV996hnfe+hZK9+UzPDpMXl4e+/fvj7iGKFJSPjIyQnt7O52dnbqk3Jv6tZoi0DUiboA1ZfySwWuejEcbbQjqNhVZln1KuCzLPjvKhSDhwTCZTJSWltJ3Ypjvf/ZJBDOMd09FcAQFQRRISI3HsejEuahtywjZU1GIibNii7UyPjAZ0X4InsQSSZJWohDDvAaLbnDHwKy3i6e4Cs84gEb3Sy8kt4TZYiI+KY5F/whEU2SKoRb0yLjLpP5zNcrL1rVyGBAx0UgJNbKpLBNit0o8ouIWEFzLz1EZoqwY2FTc+lnhXguJWuKJJJgAz/4mDTlGlkX94ztFpKCfiL+SrxgVn+plpBvaF4Rl4hv0unzKuHH+uu9IRv4OPxh9j4NXaWS/1BT/91JSmcQFfxfdEdpUvKeen17EEm9GsHiSncKF2+nGseAgISXO02reIDnGH9Njs2QWphOXGIsSVPQsx2h/FkIUt2DvuzQ5PM0ffvQnnP/m4q0feyOX7a/AYo08TMB33CBS7v0LJuXZ2dlkZWUxMjISoJQHq/HeJJU1Qn3hIMjGVsK/JVxKryVSvKbJeGJiIsPDw8ZP1IC/TUWWZZ8SrigKJSUl5OTkXBQS7j22mh0lJsFGXm0WA+dGNL3UCanxFNcW0HaiIyCmq3RDEc4lp27BZcl6T3OeztM9vsessRbq9ld7lmgX1L0Z1lgLldvK6G7s851z0D683HY+JuycccENSyjMjsxRu7eKpqU5ImgoGHgsALM6AUjNSSanNIuWI3bG+lYa71RtL2NqZJoJgwJOW4wFzcpMP4g65NghqI9NNiDMTp03xNDX7JTQyxlXDNNUlvdVmUgokuCxGSkiamv1smykfOsr53pk3C16O1UKmEQNMi7pZ5ErLgHnnDugNE/xt74Y2FRkHbIZjiqsNjbf5EUQNVX/4AmOIIu6HVwDnisIut2Q9GwqroWV1RHFofLag76LEeeMW03L150uBppWGsylF6VgtpoZbteu6siryCEm3uqz1fW1DGKJsVC3r5qec30BVjp/CMsJLb3NAwHXzpzSTJIyEmk92oFsU38dgltGjCBWEvC9wdlVGSxMLjLQ6Ll//ejzP+eZh5/j3UH2lWgQrlLuJeWjo6MhSrl31XjNonKBsaaMXzJ4TZPx1RZwms1m3G43g4ODdHV1AVBcXPyqIOFeLM05GGgaISkrgbiUWIZaV0K24lPiKakroP1Ep+pybOcZD8Gu2VXBUNdogJ+yuK4AQRRUGwI5F100HmghKT2B8k3FnPPzWVtsZqp2lNPT1K/aatrbdl4ozg7PMy6BHGPy2V5cm7KjL+BUwBTU7js5M4n8yhzNCLTWYx2IJpHMN29Abz3AteDCFo5NRU+pNplQHAqCLcgKYOQZ12vaY1TAaeQZdxj51ZcTTVTOo7hFRKd2saIsi0g6Fhxjm4pnX5NoJsSwv7yUr7cyIMmCp1BS6/gqBZwByriOTUWSBWQdBmzkGfecQIWMh0Fgg59jtVpUve/aB1DArEXGg96PRb8CTr/vqc0aHHTJqpv+mK0W1WvKeM8UALmVWVgsFnqaVqpKUrKTySnNpKXBHpLe4Vpy0Vjf4hMXus72MT+1Qsort5UyPTar2m14qHOUoc5Rcsqy6LKqv1figkQ0t+D04lSGW0MnFv72lYtJyrOyssjMzGR0dBS73U5nZyclJSUkJCSsxRpeaKylqVwyeM2T8Wg947Is43A46OrqwmKxUFJSQnZ29kUl4Yd/d5yf3atOwoMxMzLHzMgcGaWpiKJIamYKXad6DT2RAM0N7R6VaH81CzMLgBCghGuec3yOpkNt5JRmkpCWgMVmob91UPWGGQzPjdFYFRHcBChPkSxLq8EtK9RsLkFyScSnxNF6zK56s/WHLMmM949DXYHmc4wIsxcxsdrJCwDyApiCghRsCXG6+0iyzg1RMPguGrydRp5xL1lWs6mYTBZEtImnUct6WRINbSwArgU5tIBT9p5DXZX3btO1qTiEEDLv36RIL9pQlkSDnHHj74va2KIh426nHJFvWZAV7Xtm0Ab/74c/152bULHABb2eSG0qjiVnSJa9PwbbPGp5fnU2ZquFhOR4Wo/aaT4cOsn2h1dcsMXZqNtfzfyUp0bAyIsOMNQxgmQpVd0mLrqJ+BaswHi3vg3Qn5Rf+5m3cuWHLsMWE3kvCi8iJeVjY2O0t7fT0dGByWTC7XZHFW+4Fm1ojLWc8UsHq2eFf8NITEyMWBmXZZmBgQEOHz7MwsICycnJ7Nq1K8AXLssyLpcLt9sjN5lMJqxWK1arddVEXJZl6p8+yqd3382PvvhzLDHhKx/xKXFk5WYyPTjLzNQMltjwL5A5ZVkszi4y1jdJTHxM2F3gTBYTabmpjPaMszS3REKK3u0ycohBZFwRhdXNrk0CMQk2hrpGkCWZ+HDHa2BTCfcioxhkPssqEXRGnnG3DuGWDci2nocd0I0mhBVC5Vax2HhVZG1lXNBVxhXJQBlfJsMmIfQ34l62zei9d5KsbVORZAHRLYR0CA14LbrKuD7RD4dUh6jQsnExr/fc/hB0Vk7UD6Bjewou4FzwO7bfeym7VK49wcp4hDnj4VjfRZOAyWZiuGuE6fFpsksywz5+fHIsbpfEUNco8SlxxCXpT5wBJJuoWU8iLl1Yg2xMQgx/fOzPfHzTnfzhB3/C5Qi/BkgNXvItiqIvQ9z75yXOgiCQmZnJ7t27KSwsxO1289JLL2G32333w0jPuYY1vBawpoyHqYzLsszg4CDd3d2IokhZWRkzMzMAAST8YttRhrtHyavOZn5mgelB9WLU+OQ4StYX0v5yl0/lHWwexWw1kV+XzYh9HNeS+oWyoCYPW4wlIKLw3KFWsksySUhNCMgP94fJLFK9s4JB+7DvnNOjnverZncFQ52Bthd/pOWl0B9mEx1BAcXvZpdakKKf960HBRRB8Cn35w63YbGZqdtfTcepbhZn1cOY8ypykHJTmNIfaVhDcDskQHuCpUbGF+YcoB5N7tlHp4BTNrg/GkVNKSptzf3hJX6KSsKDa/m1aHXZlBVRPyNdEvQ948vFpa7FQNKjSAqKacUzrn98jYmCJCK6Qz33/mq4njIuGSjj4dhUQmwdYWZWBxB9WYnYtyzI2vPdkGZEC/42lZX/t1hDV3P830tZNp5kBiM5OwlBFEIKKL2o3Oap7+g5PQBA3zlPLUxhXR6SQ2agXb02JjYxhrJNxbQcsTMxOAVA44EWYhNjDK8N6RsK6NIYb5w5GguJwro9lYx0j2kWysemxJBZmEbPmQHfY9+/7Ql+9S+/592feetFs6/ExcWRkpJCaWkp7e3tdHV1UVJSQlFRUVhdq73HWYMO1jzjlwxe02Q8KSmJubk534VEDV4S3tXVhclkoqyszNdYZ2FhAYfDcXHsKN/8Dd2N6naUgZZhBGGlXf3MuIeUxyXF6rZzdzsl+huHiUuJJbMsLaDIs6A6D1ucFfvLXarnHO4aZbhrlNKNRTgWnL4bmWgSqdlZwVDniKa9o/lwu4/k2k92+bLNU7KTSS9IofNkj2cc4V6HRSjbXIJz0UnL0AykpoW5YyAEKZDYA7gcbhoPtJCQEkftvmpaGtqQ3B4WlF2aSfJykdbkehvoLJJbrGYwbuSJYGQbUVFbZYN9JI1mQWCcpiIYJEoYkXEv0XapECvZIBPbSBk3KrD0FlDKzuC4vcBzaMGjXmtbaERX6PsXMLEw8owbvDYjBJPVcD3W/s8TnTKRLpCKhIjYPvh/WxQFlAW/PB6/jQvTKkfw2+6JX4yMiE2PzlKdl0pGQTotDSt1KoXr8hEFgbbjHar79TZ6SGvRhnyc8y6GOjx2FtEkUrO7kp7GXlVr3eLsEo0HWohLivUUjr7chWO5W29qTjLZxZmcHB/XHK9rYolYnYm3KhQ4d6gNk9lE7Z4qhrpGfBMEW5yViq2ltB7tCCDiXoz3T/hI+Xs++1auvOHCknKvPSUjI4P09HQmJiZ8hZ4lJSUUFxeHRcrXoAMF7R/j3yJeu1z8tU3G9ZRxrx2lu7sbs9lMRUUFWVlZAaRdFEWfHeVCkPCjfzjJk1/7b00S7g9FUTh3qA1bnI31l61DUBTaX1Yn4cFYmFpkYWqRlLwkEtLiMQsmus6E1+6583SPbyIgmESGO0ZoOqTvsYYVkpuYlkDF/lKWlpboPNmzopZHch8WBOwnuzy7bI0yYxyP4ieb1ecBc1MLNNW3kJ6fSnZpFpLLTeuRDoY7PQWxioGS73ZIhOPaNLIMSM7QZBA9P7ogKcgIOo119MdjNYpKkwQUWdt67lW21bqHeolssNVjZWwCks5rk2UDZdypboMJION6hFjXpiIiuMBsicE/Jkf2V8Z1Yh+NJhJhKeMhZNwUtN04TUVYkoiUjCuS9pfGf0ySJOIfNGryU4IlSeV7JQXuGzEEgbG+Ccb6JsgqziCjIB2300XrUXUSHoyeM57CzqIN+SQkxTHaM0FTONfPmUUaD7QQnxxH5euqAYGWI+1MDk0jbdG+Hgmu6JmH5JZoOtSKyWxi3d5KTKJIT1CiixbG+yd45NYn+OW3fs8/fP4dXP4Pey8IKXe73b4CTkEQSE9PJy0tzUfKu7q6KC4upqSkRJWUr3nGjbHmGb908Jr2jKuRcUmS6Ovr49ChQ/T391NZWcnOnTsD2sx7PeE2m42JiQn6+vp8vvDz4Qk/+JujfHrP3dx3/cPEJ8cRn6xfoOdFXFIsFVtKsJ/opK91kGKdgsJg5FXkkJGTTt/ZQRYWFknNSwprP0HwpK2M9ozTfryDnNIsbHHhFQslpieQU57JuYY2RnrHKKjNCzxwmBAkSC71dL9cjWdcWD6vYlb/DNNyU8gqyqD5UBvzUwuB769BzrgtNrz3RBBEBJc22bFaQhNZ9JRxT78a7bxuI4+xtKjvYxHQV9e9aSSSSqqCd1vUaSpG0YPeaMMgsh+uMi7LoQWa/ttEN8ghOePhRRtKkhhq6fCOT4mugDPU0qMxkQhRxiODRSchI4CMB73vgt/tRnarkD+/oUTafRNWPOPxyXFkFqTTeqSdmbE5qraXhX2M3IpsFucWaTrYRnxaHJlF2l11/SGIAsV1BXQ39tN1tpeq7eVYYy1Iidq/e71uu+GiqDafqeEZmhvaya/MJTVHx6/mB7PVTE5pJj+880k+uvEO/vc/z5+nXBAE+vr66OnpITY2NsRTnp6ezq5du9i6dSuTk5O89NJLtLW14XQ6Q463BgMorFhVLom/V/oNfeXwmlbGExMTWVxcxO12I0kSo6OjdHd3Y7VaqaysJDMzM+CCEGxHycrKIi4ujra2NgYHB6msrCQnJyeqi4iWHaXpYKsvK3yweVTVD+m1o3Sc7vYp4YtzS0wOT1NQnYvJbNJU13PLs0lIiQtIBhixjyOIArnrspgenGVhajFkP0GA6p0VjA9Mcu5wm+/xxvoWkjISQyIN/ZGQGk9uZRadJ3toO+o578zwHDPDc5SsL8TldNMeupsmBAkmnU427qvmZfNSOF3n9RFrBT8PqH+8oXdJuK9lEICKraXMTs4xYsAdnAsuLCqFhGoQHBKKRvOhuQkHKUGP6UXkKS4JLGYPSVTtcmkwmDDCaWRJQDRrZHV7CaIohsQyKm7T8n+1POMGNhVZADy+blElK9yrTAcf359AG/m2tZR3SRIRAVdQEZ7/ufSjDbUnEt7XZYTgsasp4yH7BBH92Ch8y+4lN8SrE3L/c0pBKwNOx/KXSQJFzZ7hN67g1xIOBLNI3b5qOs/0+K6DQ50jDHWOkFeRQ1xyLO0aCSjpealkFKTRcsTue6zrVC+CKFC6pYiZkTnG+ydU963YVsrs2FyALa+x3rPql1iWwajqXmAyyPhXhTdnvDiDxPRE2k+svJ5zh1oxWzz2lYGOYc2anJzqDObHl3wq+tK8w6eUr9a+MjExQUtLC5IkUVNTQ2ZmZgAZ928ClJaWxs6dO5mYmMButwco5d4uomuE3ABrnvFLBq9pZTwxMRGAe+65h5qaGv76179SXV3Njh07AiwpwekoZrPZl47ivaBUVlbS1tbG0aNHmZqaCnsM/kr4/R/4N1XS7M0Kz8hPo3LbisrjLSACz8VfrYior2WQ7sY+qraXkVGw4qXOLcuiansZg/Zh1YguRVYYPDeC2+Emvy4bs3Xl5lizq4LMogyaG9oZ7Q31RM6MzdJ0qI3s0izKt5T4Ho9PjqNyZylLCw7ajnTidoYyva6zvfS1Dmq8W+oQ3eCKMdNY34LC6mbXggJyrCc7MDEtnrp9njjHpoOtqrGJ7Sc6GekeIyE9IfqTBsGmlz+tQlxlvRvW8uRNqxDSSBkXNIrhAk6h10nSTykVghXq5cJSzQJOWUDSeW1eoqypIi8r08FxkWY/y4yRb1uriNDndw8au79NRZDVW9aDh8xrHTtci0aoTSXcJJWV/ZwqE20j6H0n/Mcku4II9fJu8rz6/soqlXFbnJXG+paVLr5+GGgfov14JwXVeQHXJK/fe3p0JoCIr4xJofPlHiYGJynbWkRaXopvW35lDqUbimg/3slwdyjlnp2YY2JhQXO8Jp3Cak0IArV7qxjtmwgg4l64XR77ytyEpwlaSvaKUl64Lp+idfkMtYwxOxaaIua1r0SjlM/Pz3Py5ElOnTpFbm4ue/fuJScnB5PJ5Etf8YpZbrc7wIKSlpbGjh072L59O9PT07z00ku0tLTgcIRRZPNah3wJ/l0gTExMcP3115OUlERKSgo33nijbppeV1eXz4IV/PfLX/7S9zy17T/72c8iHt9rVhlfWFjghz/8IQC//e1vuffee7nuuutCcsK9BFwQBMxms+/i4g9BEMjNzSUrK4uuri6OHz9OVlYWFRUVxOrkRo/1T/D1d3/H11zHCKO944z2jlO5rZT45Dhaj3WE5REET3Mas8XE5ivW41x00XSwhcGOEcP9nIsu+huHiU+LJb8kjfmxRZobwtOtvYVQ1TvLMdlMtB3tpO2IcTZvpBDcICV6lBynS89lHB5y6gooWF/IuUOtYXnuFVlhdnoBvQJOFCFsH7w064QE9e+NGuEyx9hUnumBtwBTi6gJRkkaYdgl9Lp4+p/XvSBjjvdTxr2EVsPOIcsikp7q7/Wcy+olhd7uoPPTLhL9HnfMrvgD9H3bemkqQsBrCD4neD5uWRYwmULJpyxrp6mEm4oSzImDP2MPMQ58UvDkQYzGtxwmGQ9Wxr0TPy0yLgQo45GT8cUFJ0ZT4r4WT2FjyfpCUnOSaTliD6/vgazQcaIH0SRQtbsMm83GmZfOGe4nx+kUT0fz3iuKYd8DWCblB1sxW81sfH0tiqyENV4I9JR//ql/DhCAguFyuejo6KCvr89Hwm22wOtRsKfcn4j7K+Wpqans2LGDyclJ2tvbaW5uZseOHWGN+bWKNc94+Lj++usZHBzk+eefx+Vy8Y//+I/cfPPNPPXUU6rPLywsZHAwUBj8wQ9+wIMPPshb3vKWgMcff/xxrrrqKt+/U1JSIh7fa46Mz8/P873vfY8HH3yQwsJCrFYrP/vZz6itrfU9J5iEm0wmVRIeDJPJRHl5Ofn5+bS3t3Pw4EHfspta04OM/DT++Xs38uidT4VF+mISbJRvKqHzTA+Ls0vU7K5goG2I6TH1SEN/ZJdkkpyZxMk/nfUkg+ytprmhDVmnGMuLqu3lzE7M0n2in7SCZDLL0hjtUF+yDR5vUV0+nWd6cC66KN1SxETvJNOjBuONkE2LEsjxy8uqq80ZB8ZGZ5ho6qN6VwUD7cO+SEY9xCTG6Ha7j2S11SaaNK02aiTF6ZI0f8k+Mq5B8Nw6/nTwFLUaQasAM+S8wakmirqNxHdcWUARRBQJVGLKfURZM/5w2SZisQaSA4t5xcer7xnXsZJoJMGEdOTUION6yrheUWrAuUJsKkHkV2WfYMVZMMi1V4Ped8L/aCFkfPmHLS9orNL4HTcqm4pB3YYX1TvKGR+YpOtsLyXrC1EUJawieVu8jaLaPOwnulFkhYrtJYx2T+heH6RY7dchKmLk1zqfNz288VZsKeHcwVYUBWr3VtHfNhTW9aygOo+PfPM6TSIuyzL9/f3Y7XYSExPZuXOnb6VZC2qk3D+BzJ+Ub9++3ReMsAYdrNlUwsK5c+d49tlnOXr0KNu3bwfg4Ycf5uqrr+Zb3/oWeXl5IfuYTCZycnICHnv66ad573vfS0JC4LQ/JSUl5LmR4hWxqXzjG99g7969vhzScKAoCl/60pfIzc0lNjaWK6+8kra2toDnGC1DNDc3U1payi9+8Qsee+wxjhw5QkpKiq+IU5ZlnE6n7yLgtaNYLJaICjNjYmJYv34927dvZ2Jigvr6egYGBlSrwwvW5XLDv76Lq+/8O1Lz1ItvbPE26vZVI4qibxnWm56yNO+gbn+NZvOfrOIMqndWMNI9RutRzzLs3NQCTQdblm0vpZqvo3JbKXkVObQes/tU9Im+aUY7JsiuyiA5W/3ia4uzUr2rHAWF1oYOnAsuUKDzRA9Lcw7W76/GGqs+3szCdGp2VmiOSQ2CG6R4C5VbS1dvF1HABciy5/1dnFukbl81tnh19TmjII2aXRUsLRk41SO4xrhntY+l1k1Tdy1gWcXUzvI2iDYMp5BQQ9n2fN39PNRBBWve/bSVcf20FclnU9H4bS6Tf8dcoL1oaXZl+V23w6dOtKF3NUAJ+jyUoCZIeuq35rZobSrB74PKdy74vbKozXKMEK5NxRl07OXXqyxqvOd+KyzR2FQscVZPqpNGslFhrcem0XLUztiy/7vrbC/djX2UbSqmcF2+6n6CAOv2VGG1WWg72onklJDdMu3HupibmqdiRwlJGtcdJV5b7zIJkWthsuSZOJRuLKKoVnu8tXsqscVYaDzQgsvhxu1003SwlfnpBWr3VpGcqV6gH5sUw9/dvJObfvg+avapX4fHx8c5fPgwPT091NXVsXXrVkMiHji+leZBsCJ+BdtXTDqFwmtYxitecHkB/oCZmZmAv9Valg4dOkRKSoqPiANceeWViKJIQ0NDWMc4fvw4J0+e5MYbbwzZ9slPfpKMjAx27tzJY489psr1jPCKkHGn08l73vMePv7xj4e9zwMPPMBDDz3EI488QkNDA/Hx8bz5zW9maWnFJ3399dfT2NjI888/z+9//3v+8pe/cPPNN/u2V1ZW8tOf/pSGhgauueYaBEEgPj6e2dnZ80LCg5GcnMyOHTuorq7GbrfT0NDA5OQkAA6Hg5aWFg4cOMDS0hL/8P/ezX+e+Rc+9PX3+Tq7eUm42WzS9EI6Fp00HmgmITmOml0rF8+sonRfyknLkXbVL8dIzxhtxzsp2VBIXsXKrK5iawn5Vbm0He/UbIQx3DrG7Ng8ebVZxCR4iKolxkL1rjIEk0BLgx3HXCipdCw6OXughdiEWNbtqfQ9np6XSs3uSsb7J2g+Gurd1IPoBltOIm0nOpmdmjdsVGMExS/Oz7noorG+BbPFRF5dtk/JSslOZt2eSiYGp2huaDfs/mexhn/j1U1TSQy1wig66pHg84xrkEoDFVZcpTLuD/di4AfjSzvRiACUfcq5AVlXIbWyvEKM5SDCHBA/GK1NZfk1K0GX0ODXojVRkGVBRxkPTw00yhlXS2sJeY4jjArdIFjMemkqfuMLnpgs/3gEt8b+/jaVCLtvAjiWnJw71EZGflrAtTCjII2qHeX0NvXTc65fdd+OU930nuunYksJ+VUr18LyLaVkFWdy7lArsxOha1+SS6L9aBfzs4tU7iglIdXz+zRZRPLrspGsOq8jGs/48gyr83QPPU39lG0qpshvElG6sYicsiyaDrUxMx46Xi8pX5hZoHZvNckZHhJttph42y1v5oeN3+bj3/gIVpuVw4cPc/bsWZ9YNT8/z8svv8zp06fJz89nz549ISEHkSBcUr4GHbzSxPkCkfHCwkKSk5N9f9/85jdX9TYNDQ2RlZUV8JjZbCYtLY2hIXWOE4xHH32UdevWsXfv3oDH77nnHn7xi1/w/PPPc+211/KJT3yChx9+OOIxviI2la9+9asA/OhHPwrr+Yqi8N3vfpe77rqLt7/97QA88cQTZGdn85vf/IbrrrsurGUIk8nEFVdc4TuuIAgsLS1x6tQpXve614VtR4kEgiCQk5NDZmYmPT09nDhxApvNhsPhID09nR07dpCUtKJSvOvTV/OG9+/nmX//I3/80f+FZV8BmByeZnJ4mnW7K4lJjOHUn84y0qPdcMIfXWd6Adj2pg3MTs6HncsrSzIDTSPEpcRSsi2PkY5JWhrC23d6dIbp0RkqtpaSnJHAyRebVjrKhdl90wtRgnm3i1hYVbShF4o19CY5P7XgiTNcX0BGfhonX2wMSCswzBl3ypjC/FrpRZ7NTDvJCnpM0vF9W8wmXGirrUbKuJq9KhhaxCn4fhqcLqJInoYwWmQ7MIc8lDR6k1bUyKskCyjO5eOrkfHlXfQsIXrRid6VhlBlPOg16qjfWtGG56uAUy1/PuTYUfiW3Q43oFGn4O8ZdwSey6t0umY0ZnirtKl4J6Xe2priuuXf6p8bGeszttUBtC83Odv4+lpQ4PT/NYW1n+SUaDvaidlmomR7ATNDs/Q3DiO/t0j1+YJTMm7wpYagj6vjVDcAGy5bh8kicvJPjWEdxuVw03SwBYvNzDUfvZK3fvyNAYJMbW0tpaWldHZ2cujQIWJjY1laWiI/P5+6ujpf2sn5gFpOeUdHBz//+c+55557ztt5LknIRGx1elVj+RrQ29sbwIuC6xC8+NznPsf999+ve8hz58KrldDD4uIiTz31FHfffXfINv/HtmzZwvz8PA8++CCf+tSnIjrH34RnvLOzk6GhIa688krfY8nJyezatYtDhw5x3XXXGS5DvPOd71Q9dm1tLd/85jdpbW3lK1/5iqp36HxAkiRcLs/yuPeiEx8fT1xcaIZ4SlYSH/zqe7jsvXt47As/5eSfzhoePz0/jazCdFqOtCPLClXLvkitOC5/lG0qxuV0c/y5M1hjLdTtq6btRAfORf1qepPFRPnWEvpbBug6PkBCRhw51ZkMtWiFea3APy7Q7ZIo31zM/PQiQ53GRaXBENygxC/fHCIk8iFQQFEhoLYEqyc+8mQ33Wf7KK4rQJYVer1Km8F5zRYzSpgipJ6P15wQD0wFPKaXMy4tJ9ZoKrQGXExySFgMFtAkp9b2ILIY/HXyNuXRUsa9tgYtZVzxL+AM3lf0HT9Y/ZclwXflM2q8o0WY5eWJRbD9J9imotc0SCuWMdwCTkMyrvLZBh9bDFOF94fVatFsJus/JsURSKiXy3AQ1Br+EDhxicam4v0NmiwmanZV0Hm6h+7GPk98a2o8bceMhYKUrCRyy7I583/nUBTPdXR6dIbhLuNrWmZpGpJboutYH5YYM1W7yujSUMbFxcibLakhPiWO4toCGutbkCWZii0lLC04fYWqeijdUMRH7ns/G/9unep2m81GQkICJpPJF0/odrtxuVznlYx7IQgCs7OzPPjgg3zve9/jve99Lw6HQzcE4bWOS7WAMykpKYCMa+Ezn/kMH/7wh3WfU1ZWRk5ODiMjgdzC7XYzMTERltf7V7/6FQsLC9xwww2Gz921axdf+9rXcDgcmpMINfxNkHHvMkJ2dmA3s+zsbN+2aJchXnjhBTo6OrjjjjvYsmULt912G5/61KfO2wXA6XTS1dVFb2+vL8IpKSmJmZkZWlpaqK+v9xV9Bi/3FdcV8JXffJbjz53m8c//VDXyLz0vlayiDFqO2gOId+tRO2arp+V8x6lu1djD0g1FHhViWV2BFVtGclYSZZtLaD7UFrKfySxSvq2UgbZBWhtWLCVzYwvMjS2QXpyKAIx1T4bsm5ieQFFNPq3H7AGpAPaT3Yiip5Nnv32Y0NFqQ3SDK0Gkdl8Vh03OVSvjWFZIREyCjbKNxbSf7KL50EqKjLeAqmpHORNDkwwYFI+5XRImo+SSZegp4/MLoRtlnZUcb7dELbXVONrQmKxJwRF2vmMHj2Ul9URxg6B4bSr6hYxafnfJR8bVbCqC7/hykMrqT96Nmv5oTmK8NpWg7YojfGUcPBMKMegLG60yHjzWcGwqljC/k/5wLThBo59sgE3FEfw6PONxaVU6+01Wo+3AWb2znLG+iYCElEH7MAAF1bnYYq3YT3aH7GqLs1KxpZS2Ex0BfRNaj9oRBIHqXRVMDk6qrjYmZycQkxzDcOuY7zHXkpvWhg7k92SqDtW0KIFa1nqYMJlFqndV0nWmJ+A66lX2K7aWsji7SH9b6L0vJSuZD3z5Wt7wgddhUlmuUxSFsbExWltbEQSBDRs2kJGRwcLCAp2dnRw+fJjs7GxKS0uJj9dJkIoAkiTxX//1X3z1q1+lvLyc//u//2PHjh1rBZxG8LN2XBKI8LVkZmaSman+G/PHnj17mJqa4vjx42zbtg2AF198EVmW2bVrl+H+jz76KG9729vCOtfJkydJTU2NiIjDeSTj4S4X1NTUnK9TnjeUlZXxy1/+kpdeeolbb72VH//4x3zta1/jne98Z9SWFS8J7+vr81WHJycn+7YnJSWxfft2RkZGaGtro7e3l+rqatLS0gKOIwgC29+8ic1vqOOPj/6Zn977NLMT86TlppBdkknr0Y4Ve0cQ3E5Py/mE1Hhq91Zx7pCnqr5kfSGAbqTi9MgM0yMz5FfmYImx0HXG0wCjcnspgx3DASQ8GOPLJNzTXGKR2bF54lPiKKkrpO1Eh6b1xls0aU0I7TKpB0ECt1Wgqb4V6ztrwulTo4p4q8isww1mE5YYC1Xbyug626sbJdZ61I7JbCI+tRTdxOYIbioxMTamNbaptpXXK3QyyBnXy9kGEMNQ74K9wb5xBZFBUbTAsqaq+Dfe0Wn6A9qedO/Y1V5DAEkWA0mPLT7eU6WrsS943y9tz7hPrQ/xYKuo8Gpjl71kXoDgOscolfFgNTkcMi455IhvAno1Gf7WGHlJfTyhJN07GH9lPPJJQmxyLC1Hzmhu9zbqKqrNx2Qy0Xmmx1OcubuSvrYhzeuSoii0NLR7xILdlYz0jjPeP0FMgo204mSGW8aYHg6dYcgWEcWs/vlbw/yMVUZD5bZSpkZmaNKxMHozyCu3lTI/vchA+xAWm4W3//NVXPuZa4hLVBeb5ubmaGlpYXZ21icSee+BcXFx1NXV+ewrXlJeVlamusIb1qtRFOrr67nzzjuZmJjgO9/5Du973/vOq1X0koas6P8g/9YQRl+LaLBu3TquuuoqbrrpJh555BFcLhe33HIL1113nc8N0d/fzxVXXMETTzzBzp07ffu2t7fzl7/8hT/84Q8hx33mmWcYHh5m9+7dxMTE8Pzzz3Pvvffy2c9+NuIxnjcyHu5yQTTwLiMMDw+Tm5vre3x4eJjNmzf7nrOaZQhBELj88ss5duwYjz76KJ/97Gf5/ve/z/3338/mzZvDnqEHk/Bt27YFkPDgc2ZnZ/v85KdOnSI1NZXKysoQxcFsMXPNx97I371vL//zgxf473/5PedUVGs1zE3O03Swlbr91VhjLLz8grHtxYv+tiEEATZdUcto/xitR8LzhAMMtYwRnxJLybZ8xjqnwva/O4ySSYIgukGxeS7eS4sOrNHdF4iNt5GVl8rUyCzpNXlhj1dyS8zNLkK2ttIlRJAz7px1AuoTElcQsVQMoum8MXSaSqNRYkE4OeMaNpNgkcOxIPlyoAU/MqKtjOunregq437ETgo6/tzUki8SPtLoQt927wQheOzBvvgwlPGQbWHnjK/ephLOyofKiTU3BdhUloKb/uiTcX9OEY0yvjC/hPHCNvQ0eaxlm69Yj9vp5uxfm8M6viwrnDvctuwLz2dmaJ6BRm1bnZSko4wtuNBaXdCD2WxWbdKmBe9z33bLm3nrx99IdrG6sud0OrHb7QwMDFBQUMDGjRuxWNSvZ8Gk/NChQ1GR8q6uLu6++27++Mc/cvvtt/PZz372vCnta1hDMJ588kluueUWrrjiCkRR5Nprr+Whhx7ybXe5XLS0tLAQ1Kjrscceo6CggDe96U0hx7RYLPz7v/87t956K4qiUFFRwbe//W1uuummiMd33sh4uMsF0aC0tJScnBz+9Kc/+cj3zMwMDQ0NvkSW1S5DeGEymbj55pt53/vex9e//nXe+MY38p73vIcvf/nLuqTe6XTS3d1Nb2+vIQkPhiiKlJSUkJeXR3t7O4cPH6agoICysrKQC2JCajzvu/Pt7H/XLn5018848j8vGx6/cF0+FpvZt3RbvrmYuekFhjuNfZCV28sY7Rvj1J+aEE0i6/ZU0tPUz/y0dmc5WMlE7zjdTdfxfmKTYsirzWaweQTFYPabnpeGeuaBOgQ3yMvezPj8NFzqCwWGcEvgdktMLjiZr8pn3c5Kun9+EIfBa7UlWIlNijGw1kSgjNu0b9LuYD+7UUvtZUam2dbdIGdcNIqJQY+MB+5rsdkAj81G8msjr5mmYhBd6FPGVT3jfucWTChuBWFZpbTEx6o/T2V/zWjD5TEHTySkIAJqRMbVtmup6SFjCProoklTiWSSuLKPzpj8bSpByjiCiCIroZGHK09AUTyLSNGQ8YS08GJNc8uziE2I9dXilG8uxrHoCstnnVOdycLkIl3H+j2t53Wyu6VkbTIuht/cMgBul5uSyhxik2JpD4OUV24v48b73s+63ZWq22VZpqenh87OTlJTU9m9e3fYhFiNlOfk5FBaWqpLyufm5vjWt77Fv/3bv/Gud72Lc+fOUVhYGNY51xCE17hNJRKkpaVpNvgBKCkpUU3xuffee7n33ntV97nqqqsCmv2sBq/IWlBPTw8nT56kp6cHSZI4efIkJ0+eDMgEr6mp4emnnwY8CvKnP/1pvv71r/O73/2OM2fOcMMNN5CXl8c73vEOIHAZ4siRI9TX14csQ0SC5ORkHnzwQU6dOsX09DSbN2/mX/7lXwKiFMETUdjW1saBAweYm5tj27ZtbNmyJWwi7g+r1UptbS07d+5kbm6O+vp6ent7keVQwpRfmcMXf/5p7nnmDp/tJBje1s+95/rp8PNJ2k92M9o9Ru3eKhLT1C+8FdtLSc1Lpu1YB1NDnhuNLMmcO9SGoijU7avGZA79+lhjLdTtr8Zk8sQxer3qizNLDDQNk5SVQHZlhuo5U3M8cYGTfikl4UB0g2wTyfvEm5m2mqP2jC8uuVhyeMii0yVxanQW6e+3U/WB1yGoxLnZ4m3U7qsCGRYW9HNQI/E+Oue179RukzkgdcKwi9/yZs00FYNLQFhNf8Ik4wtzK353fxIbbO3wHddLiDXIqVcZV7PgBJNcxW+xZWFm5f3VTDSR9ZVx3/jdYsDkUlkM8qdrve/yBVDGo/CMm6LKGdfbKPjup8qCyuuQQXLpdKVc3jcam8rczAK55VmajWqSMxJZt7uSoY7RgDoZ+8lu+loGqNxWSm55tuq+6UUpZJSkMtQyysyI5z7l7XK5MLNA3b5qEoOyxnWV8cVozXSe1cr2450UVOdSvqVUfbz5adz66Ed54MW7VYm4oiiMjIxw8OBBBgcH2bhxI5s3b45KmfaS8j179gCeTOfGxkZfJKIXXl/45s2b+ctf/sILL7zAT37ykzUiviq8CqIIz2us4SU0sYgQr0gB55e+9CV+/OMf+/69ZcsWAP785z9z+eWXA9DS0sL09Aopu+OOO5ifn+fmm29mamqK/fv38+yzzxITs7Kcb7QMEQ0qKyt5+umn+dOf/sRtt93G448/zje+8Q22b9/Offfdx6FDh/jBD34QkRJuhMTERLZu3eorount7aWqqoqMjFASu+n1dXy7/h7+9JO/8OQ9v2ZqZJr8yhxiE2N9vkE1yLKnrXJsQgx1+6ppPtKO5JIo31rC1MgU7ce0912YWaSxvoXMwnRSspJpO96BxWamakc5PU39uu2lp4dmmR6a9SQPuGQm+qYCklUmh6ZRLJHdiAUFFBHsg1OQa/h0TTicbpzOQCI8O+/gFJD9ocvJGJnC/sxxrDYzVdvL6W7spal+2U9ulOISARnXTbgQReQlBTHOmzRicNrl/2oXcBop6/qbQc8zHvQ8P5U5wDNuZFMxmEioKuNBBF5xAHGB+2nt6/+4lrItuzxuegE8Yr/V83rlYGVcayKhY4M5b9GGYdhUiEIZN+vkjHvPKwie9yL40IIiYDZpF8d7XpMSVc44gsCgfQQYIb8ql9h4G+0vd2GNtVC5tYz2E50BxZnB8Fo6/BNUEjPiic+IY6hZexXR5XDTWN/iS6Lqauxjfmqe+NI0zX2iVcb9f49eD3xhTR7WGCv2k13Y4qxce9tbecenrsIWpz4ZmJ2dpaWlhbm5OSoqKlTDA6JBsFJ+3XXXER8fz913383s7Cx33nkng4OD3H///Vx//fVrvvDzgTVl/JLBK0LGf/SjHxlmjAcvFwiCwD333KObO2q0DBEtBEHgyiuv5MSJE3z729/mxhtvxOFwUFdXxwMPPMDWrVsvyDkzMzNJT0+nt7eXM2fOkJKSQmVlZUgrVpNJ5E0fvpz91+7i2Uf/zE+//mucS+Fd7Rfnlmisb6FufxUOl5P2hq6wxzjaO87E0BRb37SR2fE5XRIesm/nBHGpcRRvzWOqf1a3SDJcKACRc4vAY8ie4wQfY3hijnGble0feT2LZ7pD/ORGOeOqB9WAYKBWy4sgLhNLIzIelxjLEtpqq64yrgS3tNF4mlP9hYUUGGr5xLWUcZ0ccVjpPKq2XQkprPQbh9+r0ipslXw2FS0yvvIpCbIJkJe97UGTAC0y7o1tVDl+uAWcwa87OJtbbewhE5soWrKbDIibp4hTARVlXHErLM7p+VwEZFkxzL9X3dXvN9i/nDy19Y0bfNe4cNF61I4t3krx1jxmRxZ1ibg/vElUueXZVO8o5y+ytnFN0PjdxrtcZCbF0TXvAFWyGvre9TZ77DXv/PTV/P0n30R6bqrqsR0OB+3t7QwNDVFUVMSmTZs0feGrgZeU33vvvXzhC19g165diKLIxz72Me67776Q+9caVgH5ElOTL1AB598C/iaiDV8NGBsb49vf/jYPP/wwe/fuJS0tjWeeeYZf//rXrF+/PiRW8XxBFEWKi4vJzc2lo6ODhoYG8vPzKSsrC8l6jUuM5V2fvpp979zBj+/+BfW/PmJ4/LLNxcxOzdF4wEOGC2pyEYDe5tAYRX+YzCLVOysYtA9z4rnTANTsrmCoczSgGY4a4pPjKNlQSPvxTrpPDGC2mcmvy2akfRyXwx2RiuyFIBFdQ7sgWEwmrBYRl5+XWhQEanOSmfjjSU4tx6SF5LjrkXFZiUh5EgwSThT/2BaD1e6F6QXISNJWl6MgPSHj0VDGg/3Wst8H5D+JkKNUxlfIuBrp07apBCrjRgWc+p5x8PjfTTHq41Qj47KML1LyfCnjihJ6rLA841HYVFxLLkBf3ZZlBVS+F4oMJl1l3BtFGcX30m+Xsk3FLM4tcuJ5T7pK6cYi3G6J3iaDahQB8tZlMdk3Q/eJgZUElZ4xzdQqL2ITYyjbWEzLUTuD9mHc16nndwOIQd8Ls8PF2/dV8ndvLqO/v5/pMZnf/U8bA5JiuOpWu7eKG+9/PxUalhVJkny+8PT0dPbs2RN1+km4mJ+f57e//S2HDx/mzW9+M3Fxcfzwhz9kaWmJL37xi5SWqo91DRFCkQkpHvlbxqX0WiLE2jpRGHjssccoLS3lxIkTPP/887zwwgv84he/4OWXX2ZkZITNmzfzr//6rzgc+r7h1cBqtVJTU8OuXbtYWFigvr6enp4eVT95dnEmdzzxSe57/otUblO/6JVuLCS7LIOOk92Mdq1k5/Y1D9LbPEjNrgpSskNtN8JyFnhyZhJNB1sD/N3Nh9uZn16gbn81trjQIsTYRI8lRpZkGg+04Fj0MCS3w01/4zCWWAt5tdFNakQJcrNXr7jE2MzExayMvTYvhfzmXuz/8Ucml4k4eNSz6ZFp6vZVE58ch6KXMx7hbF8wyH4WJHVSqwqvZ1ynLbvRvkbQJuNB//Yjfv7KuOhSjxD0PqapXqNNaPU845LfOLQmI4aecae/yr/8XxVrhToZ99t3FZ5x/329TYQCthsQfcEhRWdPMLhfKopHpVc9shscOvXQCkJ0GeN4lPGc0izKt5TQcap72bLiQefpHnqb+ikPanfvj5zKDFJyEhloGmFxxqNqexNUpkZmWLenSvOaWLu3CpPZUyfjdnp+lC6b9nsrLk/GBJfEnoJUfvX4R/no/7uampoa9u3bR+2mQj74oWpufmsFOfhZEfx+Uzmlmdz5X7dw7x+/oErEFUVhaGiIgwcP+pLHNm3adEGJuCzL/OxnP2Pr1q0899xzPPvss/zhD3/gv//7vzlz5gxOp5N169bxhS984YKN4TWFV9rjfUF8469NrCnjYWDz5s0899xzvgIVL2pqanjmmWd49tln+cxnPsNjjz3GN77xDa6++uoL5odLSEjQ9JMH31jX7anigT9/ib/84hBPfPlXjPdPULy+AMeSg87TvbrnaW5oxxLj8UC2v9yJc9FJ9a4KxvomdCMVXUsuGg+0kJSRSNmmYs4davM01NhaSufpHt3l4oWpRRamFkkuTouo6Q94ln2Hn3uZmL8rJprIMC8sVjM2SaI6MRXHwWY6n27QfK7bJdFY30JcUizWOCtaxiBBisCjgrEy7ppbyYY2GUUTLl/cND3jujYV/UP7nqZhMwlpiGPyu9xI/mTcQ7j9O1F6rss6yrcMiqDjGQ8ixibBjHcZQbSt1JloesINbCr+1hzvhEit0FSNjPuTbcMkGB34j03t8zUqDhUdMlHpMUbilSIgaRX1ukGWLZo/B0XR6b7pNaNrwBpnYbh7FKVT+4trX26KU7m9jNnxOYY6R0jNT8ZsMzHUNqa5n+SWOHeoFbPVTO3eavpaBpgZn6Viaymz43OqNjspVvv2KsoiZXEWvnjPuyksDRQgYmJiqKmpobi42JNykmVmfMjN7/63jVFFIS4plvfc8Tb+/uNvxGJTt5lMT0/T2trKwsIClZWV5ObmXtAGOoqicOzYMe688056enr4xje+wQ033BBwfaqsrOSJJ57grrvuoru7W+doawgbazaVSwZrZDwM6HnCBUHgLW95C1deeSXf+973+PjHP87mzZu57777qK2tvWAXwIyMDNLS0ujv76exsZHExESqq6tD/HiiKHL5dfvYdtVGfvHd3/KHh/+M22Ekp3rgWvJ4IDdctg6TWeTki41hj29mbJbF2UU2X7GepfmliPzk00OzYT/XC9ENcoIF58Q8sash4yYTBQmxtD3yPO7F8PLOF2YWcThdhHRvWYYQqTIuiOCWQSWtBkDyt1wYpaksf/201FZFb5KghDeJ0ExDCRqa0+9rJwgrlx7R7SWlKyxPllf816rKt1sMem7wdm1lfNEl++Zrwd05V46pb1NBRRlXa06kSsb9yKYqYQ7XpiLrk3EjZVx0SERzCzBqv60ogmYBpjyvgKD9+hRFCPG+hwvnktswNtWLtmMdxKfGUbQll9nhRUY7Jox3wtNIrelgC4U1eZRvKab1WCfzU/Oqz5Vj1V9HwYTCVz55Nbv3attYAGJjY6mtraW0tJSOjg7Sc8xMjUjs+877ySlST31ZWlqivb2d4eFhiouL2bJlC+bgONTzjIGBAb785S/z9NNP8//+3//j85//vG4r86qqKqqqqi7omF4zuNTU5EvptUSINZvKeYLFYuFTn/oUra2t1NbWctlll3HrrbcyNqattqwWoihSWFjIvn37SEhIoKGhgXPnzuF0rjAPl8tFe3s7R08cZcvbavlW/Zd4w/X7wzp+1fYycsqyOPOXc5x8sZG8imxKNxQZ7meymKjdW01soifLt/lwOxVbS8kuVo809Ed8chxVu8rDGp8/BAmsxanElqzOu282i5zoGsP6vn1UvHt3WJpD1Y4yRL0EmChm+x6ipHE4P4uH5DQ4ttemEo1nPGxlXEtdDvInx64o0u75FeItyKGqcoDqq7JS4N8IKJwCTveCXw1AzErKhFuDbOulnQDgp4x7x6LWnEhNLb8gNhVVZTz0Mf9jCwYZ89owKOBUQHJpTHLmjAudNZVxA1jjbRTUGMfYmm0m8uuycS466Xl5kOmhadbtriQ9T73w0R9J6Yms21NJX8sgL79wFrfTTd2+auKSQn3wckzg64gfd3JHTh3P3vEJQyLuj9jYWF90YPWGPBrbztLU1MTi4krxiCRJ2O12Dh48iCzL7N27l4qKigtKxBcWFrjvvvvYsmULDoeDs2fP8s1vflOXiK/hPEPhlbeVnNe/V/oNfeWwRsbPM9LT03nooYc4duwYPT09bNq0iX/7t38LIMjnGxaLherqanbv3o3D4aC+vh673U57ezsHDhxgenqarVu3snXrVkprivl/37+Jb/3lK9TuUVcnKraWkleRQ+uxDoY6VnyXA+3DdJ7poXJbKVlF6SH7iSaR2j2VJKUl0HSwhZmxFYW7/UQno30T1O6tIj4lNMs2NjGG9fs9fvLWI/aI3wPRDTO5ycw5o80MWz7Osr1ofHqBM5JC5kffSNHr61SfW75l+X062oGkM6MPJ6s7GFYdq4otbuX9kw06cPqeZ2DHUEW4F0aDnHAvlvwmDv7KtUAocZcNrBz++6uRVzlo8Uf2O/ei32qCW0vBlXVUeYXAnHSvMq6mTqscP0AZV236E2aaiuI/IVGLdwzdJ0AZN5rIaSGMNBWt7HkjMu5RxqO7LTmWXPQ1D1CxVTsvPK82C1uclf7GYVxLni+Jvy+8dm8VKVmhZNJiM1O3rxrHotPXawHAseCgsb4Fb+8FW/zKRE9e7gpsnnNzLdn89dZPcMNbL4vqtYEnpWT9+vXs3r0bSZI4ePAgTU1N9PT0UF9fz9jYGFu3bmXjxo3ExmoXya4Wsizzq1/9im3btvHMM8/wzDPP8Mtf/jLqDttrWAVecfJ8Af5eo1izqVwACIJAXV0d//u//8v//M//+Pzk3/zmN3nTm950wawr8fHxrF+/npaWFjo6OhBFkdLSUkpLS0POWbm1lHuf+wIHf3OMH9/9c4a7RinfXIJzyambTw6ePF6T2aN+dzf2sjCzQPXuSkZ7xmjS8ZPLkuzJNk+MoW5/Nc0N7ZjMIpXbyug83cNZr5UlJnKbieAG+TykqQQHF/SOzEBKAtWfvIrFlxoZPdtLyfpCZFnG/rLf+6TDH8xGvm4VyHNOSFC/oc6OO/Dd8sPs1ggCkiRgMvkRYgV9YiUrhOV1d4qqdt5goun2K0wNUcKD/+1vwVBRjxUDQhtMgj3k2fPaJX/vOiJykF/dc8zlnHENG4noNxnwTAwUVWVc7fPxL0hdlTLudxw1NTk0XSXwsTidTq96EEwGaT8KSBpFvYJT/5ajKKERjWFj+ZTe61fVjnKmRqYZ6R4jozQVt8PNQJNO+3q3p4mPxWamdl8Vvc0DzI7PUbOrguGuUd16l8VZT3xiQkocFfuqaT3egWIWqB6z8MhN15OZfv7U4vj4eDZs2MDg4CDNzc309/eTnp5ObW1tQN+N8w1FUTh58iR33nkn7e3tfO1rX+MjH/mIcd3KGi4cZBnjIo6/IagEUrxWsKaMX0AIgsBb3/pWzpw5w80338yNN97oa/+r1nZ1NZAkia6uLg4cOMD8/Dxbt26lqqqK3t5ejh8/zszMjOr49r1zB/927F4++p0bGLAP+TJrDc/nlmg62ELpxkI2vWE9rUfsjPdPhrXv4uwSLUfsrH9dDVXby2k80MLCzMqSazRpe6IE8nmYWmpNlFoGJhFft47Nb9nM+MAEPUERaXo541KYme8B43BqX5T8yZpRElR86oqKrt6hUXvcpjCLkAVQb+sedD5JXPmAgr3UIQ1rAsi4kU0ljGhDf2tPEHlQjRf0PRaa9CLLQkDTFrPZsjwm/XH6jq0zkQgmzHoIUMbVyHjQY57zruzjnI4u/ckWq9NZEs/3SqvlvRl9sqjIQtQ2leDZYOtRO06Xi6ItubgW3EwNhFeL4nK4aapvJasog81XrKe3eSDsrsBzUwucrW+h4h07yW4UufOqN55XIg6wuLjI6dOnOXfuHEVFRezYsQNRFKmvr6e1tfWCrMIODQ3xiU98gje+8Y3s2bOHlpYWbrrppjUi/krjlVax15Tx84Y1Mn4RYLVaue2222hpaaGsrIz9+/dz++23MzERXtGQHiRJoru7mwMHDjA8PMz69evZsWMH6enpPj95cnIyR48epbGxUTV+0Rpj5eqbruCRUw/y5o+8HtGogQ3LfvLSLM7+tYWTfzpLel6qZoyiP0xmcdmqEsepFxs5+9dmimrzw/J66kFwg3IeyLiscjHIy0ikzu1m6HvPcfJ/T+JyeHyiFpvfCXXes2iUcVGnMNOfzCkGOePz0ys5csGE14j0ya7wW3arR/gFKeMm/0jGIPIdTM79CLZatKFspIy71JRxUJxKSDMV1eY4svbxJVlE9OM7zrllu4Oa5UXNR+5/bCWU6IebvKMoK63nw1HGgydjpihFKMeC/uRSUQRNZXxuyGgCoF38aQT/tzI2MYa82ixmhmfoeXmQufEFTQtKMDIK0qjaXob95S5O/ukssiSzfn81sYnGqnPe3ipyPvYmTjjcKEsKCfH6E5dI4Ha7aW9v5+DBg4iiyN69eykvLyclJYXNmzezY8cO5ufnOXDgAG1tbeeFlC8tLfGtb32LzZs3Mz09zalTp3jwwQfPW7fpNawSrzRxXiPj5w1rZPwiIjMzk//4j/+goaGB1tZWNm3axCOPPILLFbly6m3kcODAAQYHB6mtrWXnzp0hEYdms5nKykr27NmD2+2mvr6ezs5OJCmUaKVkJfGJhz7Mdw5+jc1vUPdJB/jJO1eWfEd7x2k73knphiLyKkJzfIPzyadHVpT6nqZ++poHqN5ZQVpuSlT9PkQ3KJbV23/8VywyU+PZYBKY/OGf6HjmuG9YS/OO5SXpeNbtrvTsp6eMO8NLr/GHzaQ9szD7+UENeyT4DStYQVazSATsGsF1Ua1QMZj8yWYzyrLHPdSmok2QJZXLlD95D0cZ9xJlRYULGjXeCVXGxYAReceiGm1ooIwHryhE5pdeIeNq1hajY8tL4U+2Ak9rXMApa9QRSIsGFhd5NTYVAdEskl+XjSTJDDSNIEvL1qRlC8r89AJ1+6pJTFOpW0ny9EGYGp6m9ViH7/HFuSXOHmhBFEXq9ldjjQ2NE0wpy6LslquwZ6fS5aeiJ6j0W4gUiqLQ399PfX09ExMTbN++nfXr14dYUpKSktiyZQvbtm1jdnaWAwcO0N7eHtX9RZZlfvOb37Bt2zZ+9atf8fTTT/P0009TWVm56tezhvMIWbn0/l6jWPOMX2QIgsDGjRt57rnn+N3vfsftt9/Oo48+yn333ccb3vAGQz+5LMv09/fT2dmJxWJh3bp1ZGZmGu4XFxfHpk2bmJycpKWlhb6+PiorK8nOzg7Zt2R9IV/57e0c/+MpHvv8z+hvG6RsczGuJZehn7zzTA+C4OlaN9A+xPTYLNW7KpgYmNTNJwdoOdKOyWIid30uXbrPDIUggSK5sAlRdu9bhiTJpCbFUuRy0fbES7S7tQnL5PA0k8PT5FXk0GkStesdo7jAuGedoLGkPzcv4c2MMZn021n7nzmEjBn5gSIYt4fsBr5XauRUcItgVhCD2qUGq8qKgWdcDiDjxiTYarUBLgRVBVn/MU8qycprC35d3nOpFWuqe8a1lfFw/eKeMRrYVAzIuBj5HHEZxkWY8pJGAeeiPtFWlOhtKiabmfiUWPobhzWf43K4aaxvwRZrpW5/NZ2ne1iaXyKvNpvRzgldX/j89AKNB1pITEugcmsZLUftmGIsFF+3j6bJBQZVbHoJ8avzcHuv1y6Xi+rqatXrdTCSk5PZunUrU1NT2O12Dhw4QFFREUVFRVgsBtcLReHMmTPccccdnDt3jnvuuYebbrrpgscjriE6KIqMcgl1rbyUXkukWPuFvUIQRZF3vOMdvOUtb+Ff//Vf+eAHP8i+ffv4xje+oZrBKssyg4ODdHR0YDKZqK6uJisrK+Ji0NTUVHbt2sXg4CAtLS2+pkHBy46CILD9qs1svmI9Lz5Vz4/v+jlzk+p5usFQFE86wbo9lZRuKqbxQLOnzX0YkFwSw+3jUJIf0esS3SBZBNwD81iIrhNnYryNhIk5xDNdtJ7oCnu/gfYhZLFYc3s0aSqCTkqKv1JsMrpJ+n0/QpRqA5tKJPno4SjjANKijClGQBACSUFoAaefTUVFGQ+0qaiowkE2FWlZEVdUVu5V87hlbbIfTHx9ZFzFmuEfQ6m2f/C5NXPNVeC/sqFuUwn2xgdFTUadbGiUpgKKQ510S0vqj1scLnavy6dV6Yw6TUWWZGbHwrtGORadNB5oYd2eSmyxVs41tOOYD8/WMTsxR2N9C5sur8VVk8+psTnckvqbGa0yvrCwQFtbG+Pj45SWllJUVBSxPzslJYVt27YxMTGB3W6np6eHkpISCgsLVcn1yMgI99xzDz/96U/52Mc+xm9/+1tSU1OjGv8a1rCGyLBGxl9h2Gw27rjjDj70oQ9x1113sWfPHv7pn/6Jz3/+86SkpOB0Onn88ceprq7GYrFQUVFBTk7OqhJZBEEgLy+PrKwsurq6OHbsGNnZ2VRUVIQsfZotZt70ob9jz99v4+f3/ZY//OBPSDpqMXisLIuziz4lPDU7meySTJob2g3GBdW7KhkamWFR95kq+7qBGBNClJ1PBcD0u6M0LheSVm4vY2p4mtHecd39kjOTyK/Iwa7ns49CGRd03mK33892YcbAg+s3LL0iSVVEQNZUixfVSNVyPrdzIfAFBqvKAWkqKkpswHY1ZdwZ+Jhz3nM+92LoizLyjIcQ5mBl3GtTUSHeGEUbBivjERDRSKMNg4+t9x3TgxCGMl6bmUHT0gLOmMBJl+QIvOWITjeX1+Zx651vwxZj5eZjL+OO0qaiAHX7quk62xtQK6GGvIocrLEW3zUqISWOiv3VtB7rwGVQcF26sYileQen/q8J/q+JrPJs0q/aTOPQNLLfb91qMWG1RnaLdbvddHZ20tPTQ05ODvv27cNmW53vPC0tjdTUVB8p7+7uprm5mfe///0kJSXhcDj43ve+xwMPPMD+/ft5+eWXqampWdU513CRoFxi1o41z/gaXmlkZ2fzgx/8gPr6es6cOcPGjRv58Ic/zPr163nwwQexWq3s2bPnvLY1NpvNVFRUsHfvXhRF8eWTq/nJE9MS+KcHruehI99gx9WbVY9XtqmYwnX5tJ/opL9tyPf45PA0zQ3tFFTnUVxXoLpv1Y4ysooyaT7cxsTwVMSvRZRAMnvUsWigKAoOv0SXtmMdTAxO+YpNgxGfEkfd/moWZhdpPBzaCtsf0SiQCfGh5/QdL8AzbvBdCPCMB5FIg3FFMm41Mq5GkqUlr2c8iHzrNf0xUMZVve/B5N7bmEdF/DRqSR9SZBk8qVn+t5oyruoZDyD6ka1WBBzbINoweGUi+N9CBOeKCIrAZXs38vRTt/DWTYWYHSvkVvaScUlmfUosP/nXG/jcl9+NbTnOVEDUnpAYKfICNNa3IMtySOa3F8mZSazbXcmgfZiuM72+x+emPBaU2IQYavdVYVLpfptVnEHF1lI6T/cwaF+xwkzah2n/9z+S19RLXV6Kb5iRFG8qikJfX5+vL8SOHTuoq6tbNRH3QhAE0tPT2bFjB2VlZfznf/4n69at44YbbmDbtm08+eST/OxnP+OZZ55ZI+J/S3iliy3XCjjPG9aU8VcRBEFg8+bNfPSjH+X222/n17/+NZmZmTzyyCPs2bPnguWTx8bGsmHDBqampmhtbaW/v5/KykpVBb6gKpe7fnErp/7cyGOf/yldZ3spritAEAQ6TnXrnqevxRObmFOVweKUg+mRWSq2lbIwvUDr0ZWCKaObrhoEN8gWoopF1IK36Cs20VPY1XykHbPVTMWWEjpOdtPozUU36Z80JjbyperFyUVA3d+54Je0YnTt8i8sjTRNJSLPuEqTFzWF00uGg0losK0kwLMtmFCUwK9F4NgFJFnA5JcVrgSp1D7CrGYbMSzgDCb26hOJ8Mm4NtGPRBn3/+yj8YzbbDYiXoIiHGUcYmUzFouJT33277lpwcm/Pvg7/q+pH7fTTJ5N4HN3vJ2aDYWqx47WpuIdli/zOzWeii0ltB61I4gClVvLaDvRwbnD2rUrM2OzNI3NkpaTQnapZzUvJt5GWlEyA+dGGOnW7qg8fq6f8XP9FG4sIv51tYRnmIHx8XFaW1uRJIna2tqwaoCihSAIFBYW8qMf/YiPfOQj/OY3vyE+Pp6vfvWrXH755RfsvGu4QJDlVfjNXoV4DXvG15TxVwlkWebXv/41mzZt4o477uDuu+9mYmKCf/7nf+aDH/wg1113HXZ75J0pI0FKSgo7duygsrKStrY2jhw5wtTUlOpzN72+jm/X38OtP/woUyMzdJ3tVX2eGoZax8gsSGfzG9bT3zrIQLt2wVW4EGTwxFFHeTMRBGQNi8vi7BItRz256JVbSmg80MLi3JJvu2JAxl0LkUeMiToWApd/XrcBofaPYwvJGTfY1xKBR1Utjk6VIHojBoMnBsHpJ8Eqfsh2g4lFEOn2jkVWcSCodsHUiTYMHqvN5lmpCLbGAOrRhno2lUgKOP1XD8IoTA15TpjdW4NhthoVAQr0tXZx7tw5HA4HsXFWPvfld/OL7/8TX731nfzoxx9XJeIeCPo2FZ3ZpxJEJOcm55d94VXU7KqkuaEN52J4ySITQ1O0HLGz6fI6yjeV0N84jBLm5HT0dA+Dj7/ItZu0XqMH8/PznDx5ktOnT5Obm8vevXujqgOKBGNjY9x6661cfvnlvOENb2BoaIgf//jHPP7441RWVvLII49c0G7RazjPeKVV7DVl/LxhjYy/SnDixAn++Z//mY997GO0t7fz0Y9+lKSkJL7whS/Q0tJCRkYGu3bt4otf/KJqA5/zBUEQyM3NZd++fWRkZHDixAlOnz7N4mKohGYyiVx+3V4eOfUA137mGiw2/Zs0QHFdASXrC2k/0cXJF89itpip3VMVKIZHcS8S8BBYMUqCAYBKsZUgCtTurSIhJd6Ti36ghYKaPHIrsnzP0Ys19Dwh8qGIgjYhcfslqBgR6oXFFU95iL3CYF/JEb6pWC1XWpUgainjOp5xte1GhY9KULSel/yrNeFR84zrJZ4ETyQWl337asp48KQg+NiriTYMLOAM/b6E2FSCmwDpNJbSg9ulv5+iCOzevAOn0+nLvHa5XCSlxLPrsnW6+wqI+jnjer+loLe6ZEMh+ZU5nP6/Jk7/XxPJmUnU7K4Ia+GtclsZ6XmpnHzxLGcPNJNTmkXV9nLjHYE3XL+f7528n7e8f7/qdpfLRUtLC4cPH8Zms7Fv3z5KSkoQo6x3CQdOp5OHH36YTZs20dPTw7Fjx3jooYfIyMjgHe94By+//DLf+c53ePjhh3nqqacu2DjWcH6hyPIl9/daxZpN5VWC7du309nZidUaSghzc3N57LHH+MQnPsFtt93Gpk2b+PKXv8wHP/jBC9YBzWQyUV5eTn5+vq/RRHFxMSUlJSGV+HFJsdzw1ffy5o+8nh/f/Qvqf30k5Hj5VbnExNuwv9wV8PjsxBxNh1rJKc0kLjmejpNdRKtuC24C2pRHCjnWguineNfsqmCsf4Kmg4Ge8L7lLqWlm4uYHZ9jeHxa97iKO/ILjJ4VQLZ48roFs6Dul/Y/t26aisEgIrCpSC5jMgj4WscHE9pg+0iI8u0SMK1Y5UP86KHKeNB5l8mqWuqLoWc8mDBrWWAcKoWkEXbgjCRNJXCMKq/BQHUXZBGiuHwY5c8rChSlZhObWcT09LQvXq+4uJiioiL9mDxF1I3cFBQdPr68W1ZROsmZSbQd7wzYPDE4xcTgFFnFGaRkJdN6NHSlMb8yB4vNQtvxjoDHhzpHGOocIb8yh9iEGNqDrmMAtXuruPH+91OxpVR1eN5YWrvdTmJiIrt27SIhIbrkp3ChKArPPvssX/jCFxAEgZ/85Cdcc801Ieq7KIq8+93v5p3vfCfnuzv0Gi4gFIWo1J5XK17D3701Mv4qghoR90IQBHbs2MFLL73EL37xCz73uc/xgx/8gPvvv5/9+/dfsKXNmJgY1q9fT2Fhoc9PXlFRQV5eXsg5U3KSePsXryR3ZxqHfnyS/nND5JRmkZgWH3JjDMZQ5ygwSvmWEiaWnAxEMVbRDWbRFBx3HTas6QnIo7NUbi9jdmLOMP2l82QPJrOJ6ssq9XPRo6h2VwxW05VFEBJBMZq46HjGjZTxSNI2gj3foE4QrTGxwAJKcOxesGc8uGgyRDnX/reiAEHHM5s8vy2z2QpBq/CResZDu4euooBzFTYV42hDfWVcEKJUYo2+zoqZWLOn8NCbeT0xMUF7ezs9PT2UlZWRn58fIiS43W7cTgHdybjeuUWR2n3VtDS0M9KjnYI00j3GSPcYeRXZxCXF0X6ik+TMJPLKs2luaNclo97C9KLafESTSNeZXtLyU9j9gU3sftu2gBUzf4yNjdHa2oqiKNTV1YU0ZzvfUBSF5uZmPv/5z3Ps2DHuvvtuPvnJT+reY4C19vZ/a5CVyLqzvdrxGibjazaVvzGIosh1111HU1MT73rXu3j3u9/NBz7wATo79cnuapGcnMz27duprq6mo6ODhoYGJicnAc8SaFtbGwcOHGBxcZF3fOit/FvDN7n9iU/idrkNibg/7C93IUZ5QxAkMK/iKx2TnkjRllw6z3Qz1DFivAOeIs/mY/pe/mjqa0SD1yEvJ7fFJoV2Egw8kLYybvTzj6gDpxoRVSG5S3OeWYYS1PQnVBlXjw/U2h6oEgNBTWfcy8eX1JTxkJb04E8IQz3jQWRc8Srjod9b21zojEbPM66m3GtD9N27VP35Qe9xKBlX/51lClBdnK53Wn1IoXa1tLQ0X0JIf38/Bw8epL+/H1mWkWWZvr4+6uvrVe1O4cJqNdFY32IYverFQPsw3U19bLliPVlFGZw73Ba2KtzT1M9I9xgf+84N/OD0t/jQ7e/HYrFw+PBhGhsbfba+ubk5Tpw4wZkzZygoKGDPnj0XtEATYGJigttvv539+/dTXl5OS0sLt956qyERX8PfIBTFU/R4yfytkfFLEt/4xjfYu3cvcXFxpKSkhLWPoih86UtfIjc3l9jYWK688kra2gKr7ycmJrj++utJSkoiJSWFG2+8kbm5uQvwCrQRFxfHl770JZqamkhISGDHjh18+ctfZnZ29oKdUxAEcnJy2Lt3L9nZ2Zw4cYL6+noOHDjA7Ows27dvZ/PmzSQmJiKKIvvftZP/OHEf//DFd2ILo/lFVlE6VTvKGe3RTizQg+gG91zkrZ+9mJ5apOflQWxxVvLWqStcwShZX0heda7+k6K6vuj/NE3LSSuzE/p5yv5+9mDCJhn46yNSxtU84zpe7BCPuE6aCoQSYEnRSV+RxZDCSWm555RjQYUc66jsEKpeh0wcvO+rn03F5HBx9foCHn/on0LOJ+kUh0aijPvvr6qMB+eM+x1bcMkhynisw8Un3rqZJ5/4BA9//X1850vvIj87OeS4okGNhCKr144IgkBmZia7d++msrKSzs5ODhw4wIEDB+jq6mLdunVYTAaTS52vrGI1k/2xN1J85YawfnI1uytISI7j5T+dpe14ByUbCimsNW42JooCV934er538gHectMVWGwWYmJiqK2tZc+ePXhjYg8ePEhDQwNxcXHs37+foqKiC+oLd7lcfO9732Pjxo20trbS0NDAf/zHf5CZmXnBzrkaXMr354sFRVYuub8LhVf79+2SJuNOp5P3vOc9fPzjHw97nwceeICHHnqIRx55hIaGBuLj43nzm9/M0tKKl/j666+nsbGR559/nt///vf85S9/4eabb74QL8EQhYWFPPHEE7z44ovU19ezZcsWfvKTn6hmhZ9viKKI2+1GlmUSExOJjw+9kdribFz3+XfwvZP38/r371M9TlpuCut2VzLWN7Hs44zeMy5EpCwGQlkuQJ2fXGTg3AgpeUlklasrhPlVuZRtKqbrbC/9doM0mCguMCZR30HmmF5WmI1i5vzEz2CfdXARZQgiUPTDjQx0LdeThjTOcQYTYg3C6/13iL0jWMlWV7PVss+NCHGISh80cfCuAMiLJgSXxM7cZH7+g3/i03e+jeSYWILhr1CH2FQijPVTFEH19QK4gyYs/scW/IpzTQ4Xb9tcxK9/egvveN9e3+N1lTk8/q3r+dptV5Oe6vfbNli4EhT9ibcgCMTHxxMbG4vL5cLtdmMymTxqsTt656QCdA/P0JwYR/4n3kzB/mrV5xXXFVBQnUvz4XYmh1fqPbrO9NLb1E/F1lLyKnJU9938hjq+c/BrfPxfP0xKVlLI9piYGJ8Y4XK5UBQFQRAuqA9bURReeOEF9uzZw/e//30ef/xxnnvuOTZu3Piqjip8LdyfLzhecSX7AvxdILzav2+XtGf8q1/9KgA/+tGPwnq+oih897vf5a677uLtb387AE888QTZ2dn85je/4brrruPcuXM8++yzHD16lO3btwPw8MMPc/XVV/Otb32LvLy8C/Ja9CAIArt37+bAgQM89dRTfP7zn+c///M/uf/++9m9e/d5uyBLkkR/fz+dnZ3ExMSwceNG0tLSmJubo6WlhQMHDlBRUUF+fn7IOdPz0vj0D27mmo+9kcfufIqmQ60kpSdSUJ1L61E7E4NTfi8ouvGJbhBX0chEsQSyjKkBT2pNdmUGjlknU0MzZBdnkJyZROuxlQIvozQVS4Rd+DwQECRFMzZRXlZhFUWfvCmmle2hnnGDEUSSM67WCl6nMDLESx0UCxiiVgeR92DVXS+K0POYyXBM2v82iGGUTMiSQKUthi989R3kF2f4tlnNloCMdEXRLw6NpIATPJMxNeuNZ1vwe7jyb9EheyYOxenc8cV3kJik3WRq15YSfrqlhOf/2swjT9bjFF3oSdSiDhl3OBzY7XYGBwcpKChg48aNiKJIX18fjY2NLMy6AO1GN/oFnCtb7INTkJlC9SffjPNQK0MnOknPTyM9NyXgt6uG9hMeW13VjnKmRqYZ6R4jvzKXj3zzOra9eZPq9VRRFJ8vXBAENm7cSEZGBrOzs7S3t3PgwAGKioooLi7GYjFOnQoXra2tfOELX+DgwYN88Ytf5FOf+tR5axR0ofFauT9fSCiygnIJecYv5KT11f59u6SV8UjR2dnJ0NAQV155pe+x5ORkdu3axaFDhwA4dOgQKSkpvjce4Morr0QURRoaGi76mP0hiiIf+MAHOHfuHFdffTVvf/vb+fCHP0xPT8+qjuvv6ezv76e2tpadO3eSnp6OIAgkJiaybds2amtr6erq4vDhw4yPqxdQVW4t5d7nvsDnnvoUSRmJNB1sxe0KX8UXnW42ZydhcrpDtgkSyObVkHF10jzcNoaCQvHWPGan5kNv5gZKoRhlJyJhSft9kZbdOHrJEwCidWVwkTb9iYngph6sbHuuqSrWFQ2bSkjTH4Oul3o54+oNcLTJuFG8YEi0YdBrFW02BMXEv3//nwKIuOrYglTs4MlUNMq4mkXFAyHAgun2vna3zHZrKj/85vv42v3v1yXi/njj62r470du5BN/v5dYnUQUNTIuSRIdHR3U19fjcrnYs2cP1dXVWCwWTCYTxcXFnkJ0OXoiqXYbbxmYYqSmgM3v2Y3VZjYk4v5oPWpnad7BLf/2ER468nW2X7VZlYjPzs5y4sQJGhsbKSoqYvfu3WRkeL4HiYmJbNmyhW3btjE9Pc2BAwfo6OjA7Q69fkWCyclJ7rzzTvbs2UNBQQEtLS3cfvvtfzNEPBr8rd+fLwTcigO3fAn9KZ6l05mZmYA/h8Nh8E6cf1zs79slrYxHiqEhT6V8dnZ2wOPZ2dm+bUNDQ2RlBfqJzWYzaWlpvue80khISOCee+7hxhtv5HOf+xzbtm3jU5/6FLfddpuqlUQLiqIwODhIR0cHgiBQVVVFdna26g1JEASysrLIyMigp6eH06dPk5KSQlVVVcg5BUFgz9u2se1NG/j9957nFw/8jsXZJb8nhI5FcLnZXpjOZz/3NlLTE5mZmufer/2aEwNTYPYQLdENinUV80tLKKtOTE+gsDqP1qN2podmscZZya/LZrBlFHk5stBIGXctuYglRvc5arAisKSxzeOxlkManQRD8qMoho1yguCacxAT5rhVM7ZVIC/PXBR3YHhjcMOcUJtKBMq4ilKsKObl/dQKHcMn+uCZOPg/4nILiIr2jMxDuD0TK6MJUaSecUUWdNV0WREwLStnsiRSOCLz1WvezM5NFRGdxx/v3buR9+zZwHeOHuYnZ0/jCsrINCsrhNB7DWlvb8dms7FlyxZSU1NVj2s2mzEJsei2BY1AOBMFgbrsJAZ/3cDJ4WlEUWDd7kqGukaYHJrW3ddkNnH1R6/gfXe+ncQ09fhBp9NJe3s7g4ODFBYWsnHjRk3VOzk5mW3btjExMYHdbqenp4eSkhIKCwsjSjBxu908/vjjfP3rX6eurs5nTXw121HOFy6V+/P5gNVqJScnhwNDf3ilh3LekZCQQGFhYMOsL3/5y3zlK1+5qOO42N+3vzky/rnPfY77779f9znnzp2jpqbmIo3o1Yvi4mKeeuop6uvrue222/jJT37CV7/6Vd73vvfpFhIpisLIyAh2ux1ZlikrKyMnJyes4iNRFCkpKSEvLw+73c7hw4cpKCigrKws5EZljbHyrluv4Q3v389TX/81z//4JWRZIYCNuyXWZyRy5+feTnb+yk08KSWe+/7lg7S3DPDN+35Hr0tCcAvIVhFTtKKTeeWmGJcUS+mGItpPdAbkjDsXnPQ3DpOYEU9CRjyDzSMBiSVqiLZbsTTrhPhQzzGsZF0bKePo2lQM9o1A0VeWggirBmlyyyKKFHrsEGXdwL4hBVswAlrMq31PTShuJWS/4H3V/x00NmfQRMItICj62dk+Mh5M9EMmFZGRKlkRVhRvtVPLAoieD+MzeZv5hw/+XUTH14IgCNy2cw//vG0n3zj4V55ubUZa/tDNeJTxiYkJWltbcblcVFZWkpOTY0gaZZW8+nDh/1ZW5aWy9Ncm2n99eOXYssK5w22YLSZq91bR2zLA7HhoodWOqzfzj9/4B/Ir1X3jsizT09NDZ2cnqamp7N69O2yRIy0tjdTUVMbHx7Hb7XR3d/uiHo2uyS+99BJ33nknCwsLPPLII7zzne+8oAWh0WDt/nxxEBMTQ2dn5yXZLdVbZ+EPrRWfS+n79jdHxj/zmc/w4Q9/WPc5ZWVlUR07J8dz8R0eHiY3dyUhY3h4mM2bN/ueMzISGHvndruZmJjw7f9qgiAI7N+/n0OHDvGTn/yEL37xi7588h07dgR86b2+x/b2dlwuF2VlZeTl5UV1wbdaraxbt47CwkJaWlqor6+nrKyMgoKCkOOlZCfziYf/kas/eiWPff6nvHyyCySZyqQY7vjs31Ncka1+EqCiOo9HH/8YLz1/mq8/8xJOiwBRkHFRlpFNIpYYC1Xby+g83UNjfYvm82fH5pkdmye9KIX5nBj69A4epQ1O1Ol0aImJBeb0CzhlBfw858FE0KhhUCSTiFBlXP3YYowVxaWy1aFPgIPVblkRAg4SQGK1PNROwBR6yTNSp0PTVEJzxgVdZdzfpqI/6YiqgFNnH/+6gGtfvyeiY4cDi8nEV153Obfv2stdf/kzL3R1IMgWTp48ycTEBKWlpRQVFYWt/rqdBs8z+C3lZSSS3D1C179rLxG7XRJNB1uxxlqo21dN55keFmYWKVlfyEe++Q9sen2d+qmXRYq2tjZMJhObNm0iLS3N6CWFQBAEMjIySE9PZ3R0FLvdTldXF2VlZeTm5oZcH+12O1/4whd46aWX+PznP8+tt95KTEzkK20XA2v354uHmJiYV+334GLhUvq+/c2R8czMzAsW1VRaWkpOTg5/+tOffG/2zMwMDQ0NvgrcPXv2MDU1xfHjx9m2bRsAL774IrIss2vXrgsyrvMBk8nEhz/8Ya699lq++c1vcs011/C2t72Ne+65h9zcXH73u9/x9NNP85GPfITS0lLVphzRICEhga1bt/qKm/r6+qiqqvJ5Kv1Rsr6Qr/7udg78zwkyi7Oo2VCockR1/N0bN2KqSeHb33+BuW4tc4c28vPTmJ5aIHdzCY0HtEl4MMZ7pnCYE/WfFGVRiujU3m9+xkUiYE1QV84BDxnXafojGCS2RKToB7ef1xi6wwWiipIruISAQsfQDptB5DxEGfezqWi0UzcpJmRVMh6hTSVo4qC4BUS9S6mfUm/kR4/GpqJH4FNsscwr8wgIWITzVzgYjHirlfsvez3Hs3I40tWJzWZj//79EWdbb04v4EzXNLLG26k3fRRkhaVf1DM5rWNz8YNz0UVjfQu5ZVn80wPXc/k/7MNkUn8vZ2ZmaGlpYWFhwdeZeLXWEK+1LzMzk+HhYex2Ow888ADr1q3jn/7pn5ifn+eBBx7g+9//Ptdddx0tLS0BpODViLX78xouJi6l79ura43rPKOnp4eTJ0/S09ODJEmcPHmSkydPBmRA1tTU8PTTTwOei+OnP/1pvv71r/O73/2OM2fOcMMNN5CXl8c73vEOANatW8dVV13FTTfdxJEjR6ivr+eWW27huuuu+5uo1E5MTOTee+/lzJkzuN1uNm7cSGVlJR/96EcpKChg7969ESlZ4cCbL+wtNjpz5gwnTpxQzeIUBIHXvXVbRETci0SblRQNf6cRnC6JmUUn9oIMqj72RmIzDAj2Mmp2V5KYrv/caIvdBZf2juY4T9Hdwpz2MqUgBe8vBBBLt1OfbQsRWCaUEDKukQJjsuBeCj2v6A4cW0hhY7CCHBxdGFDAqX5u15yES6UjZogyHtJgKNimEvRvA5uK4HeZDVHdDSIcjSHoEnhpeXXFJtoumK9YlmW6urqor68nRpK58Q1Xsm7duqiazNx+1WX8/t3XsdWcoZ5zr/Nbci05MIkidfuqMYeRYGSxWbj2M9fw7QP3cMUHXqdKxB0OB42NjRw9epSUlBT27dtHQUHBeX0vvf0bvEWt999/P2VlZdTU1HD06FFeeuklHn300Vc9EY8Ua/fnNVxMvNq/b39zyngk+NKXvsSPf/xj37+3bNkCwJ///Gcuv/xyAFpaWpieXinmueOOO5ifn+fmm29mamqK/fv38+yzzwYsBz355JPccsstXHHFFYiiyLXXXstDDz10cV7UecL4+Dizs7OIoogsyyQnJ7N58+YL2g5ZFEWKiorIzc3FbrfT0NBAfn4+ZWVl56U7XILFFlE2tj+WHJ54Erckc2p4hoQ3b6baJND204PIrlDfS+W2MmYn5mg+3MZiuZEyHt2YBJ2mPPMzbjIIja8L2F9SQk4tSSKi6GE5Rn7zyJRxISTCTw1OCRSVvkyC20NUTablsRl6xrUVZbUW9OCxqbhVtFXDKMOg7Z/6wOX84aeNdPd7OtDiEkI6igacV76Ayriir4zbrDEsyYvg8lzrSktLz1snRkVRGB4epr29HZPJxMaNG0lP1+ncGSaKMlJ54sPvoal/hC/9759olqfCko0UQWBucp7G+hZSspLJK8/mXEObaiORfe/ayYfueS/ZJeqqmiRJdHd309XVRUZGBnv37iU2VmcV6jxAEAQ2bNhAVlYWfX19mEwmFhYWGB0dvaDnfaWwdn9ew8XEq/37JigXMthxDa86nD17lrvvvpvnnnuOW265hTvuuIOUlBQef/xx7rrrLsrLy7n//vsvSoX+/Pw8ra2tTE1NUVZWRmFhYdQFSYqi0NLXx5cfe4HJ9vCWqf1htZpwOkOluKy0eDJHprE/cxwBKNlQiOSS6G0e8D1noTKJwU/Wah476dg0CfOhDUKM4M53MVKhTpzyZ/ope9M0557LZCxJnVCYZl1IiYHWhB1b2oixediwvTGTgVntJb60BicxS+FbG0o/ew5xmZM6XSYajoc2XYmfn2V9dR+9T4YW1OT/vzZiYjwTn4bjlThdK+cutE5QsnWlOv2vB2vA77uSkzVBZZln+0hXMrM/D1UlCt/dRFN3IbNxgZ9FYvw8mzd0+/7dO5BOV89KnUJK8hwb1q3Eg34y+y7WZ2Zz/HQP//LonxmdmWXdx+Z4aNfnAo67uLhIe3s735l/ElvCvGdsY0m0tBcEPG//riYEwTOBOdCwjkiC9jet62FqzkZ3r3pdxTv2jzLuHiXDnMG7Ft/G5OQkxcXFFBcXY9aJJzTC1NQUra2tLC4uUlFRQV5e3gW7Xhyx9/LVF/5/e3ceFmW5PnD8+86w78iugOy4AoKyWpmSmp7KU6cyLbMsfy3WySW33M01T4tle2adLKvTcspTlllmgorijsqwiiCLgiD7MvP+/kAmkJlhkc18PtfFVc68KzPM3O/z3s997+asohRlJagt9MxHKK/D+4VDTR5z8nCgV297kg+kAuAf5s20tZPoHxWgcxsNFxgpKSkYGxsTGBiot/pLR8rIyGDRokX88ssvzJ07l9mzZyNJEm+99RZr1qzB39+fVatWceutt3b6sQiC0PX+0iPjQnMJCQl4enqSlpbWZILBY489xr333suqVasYPXo099xzD8uXL+/USS+WlpYMGTKEwsJCkpOTm+STt+WL/dKlS6SmplJUWopRC3nQ+tTUqLUBUWMFReUUGBkR+sztGJ88y/HfTjVfWU9jngZmFiZQ3vZjqiquBHQH43VXRmI1Bn5PxkZKrr68aJzC0dLIuJGO/GpDZI0ClFfKPeoZVVcbKXWOjIOOlvZ6npM1NAnEmz2vb2S8Fuqk5iPYzUsbGkiB0UjYXemqGRbkyaevPcyPu5P4WdqhXaa2tpaMjAzOnTuHi4sLxkoTGt4AukaxNRoJpVLW2UlTIUloDI2XtDCBsyFFxtzInCFDhnDp0iVSUlLIzs7G29tb54RqQyorK0lJSeHixYsdEtS3RrivB//zfYhdJ1N5fU8cqVToXlDHaVw4V8iFc4X0j/Rn7GMjufm+SL3nW1JSQnJyMpWVlfj7++Pm5tbpAxKlpaVs2LCBTZs2cc8993D69Gnc3f+8WJs1axaPP/44r7/+Ort27RLBuCD8RYlg/Abz6KOP6n3O1taW9evXM336dJ5//nlCQkKYPXs2M2bM6NRbtA4ODkRGRpKTk0NSUhLW1tYEBARgbW04/ePy5cukpaVpR/tCQkLYlvBVu4/D0sKEsvKmOdiuDlY4FpRw6vUfUUj1dYrPp+VTcuGydpmW6ozXlNVg1I4642amJlzW81ztlYuOqycyNlZXWQvmTUtCNU6DaCkY19RoaLGjUePl1RLKK4PZ+jqD1iqMkWub71dRXQsGjq1xWsrVDYOgacCs63moT1NR67hYa17TXH+gr9ZI9Lqqxf3tIwYSf/SPJiXvbGxsCA8Pr2+NfvDrRuvrqnMuoUTWGagrkNAYyHOq78Cp/zVSXHn9zBT17wN7e3uGDRvGhQsXSE1N5ezZs/j5+bVYdrDxBYarqyvR0dFdXslh1CA/Rg3y49tdCbxyYD+Fzk3v2uh6O5uYm3D3zHH8/Z/jMLPUXR6tqqqK1NRU8vPz6du3L15eXp1+gaFWq9m6dSvLly/H29ubX3/9lYiICJ2vgbW1NQsXLuzU4xEEoXuJYFxoxs/Pj6+//prffvuNmTNn8uGHH7Jq1SruuuuuTqtrq1Ao8PDwwNXVlYyMDBISEnBzc8PPz69Zjmt5eTlpaWlcuHABDw8PBg4cqF3GSM/kvdYwMzHWBuMOthb0qawm9cNfKVHXFxCU5fo6xQ0l0VIOp1NTWftnorQ+7UwEqy2tAXRfBNVJ9X+6smTg9Wg2gbPpyGzLpQ3bmL/cZNRdzyEplU2CcalWzTBPB+YuvIvnVKvgSpsjQ3ncV7ejv/p5/TnjEnU65kQ0y0c3UAtco1E06z4pyzLKWiVxcXEYGRk1y51WSArtVAZdo9gNkzg1GgUPDBjEF6eTtDW7JQnD7x9ZYTDPvGFk3FT5ZyDauIpHQ0OezMxM/Pz8mt2Vaui+m56ejrW1tfYCoztNGBXOXSOH8dH2P3g36QiXHa98Plz1dzjszmBC7g7E1cuFqtpKzLjqwlStJjMzk8zMTJydnbskL1yWZfbt28e8efO4cOECGzZs4IEHHuhx9cIFQehaIhgXdJIkiZEjR5KYmMj777/PzJkzeeedd1i3bh1BQUGddvvW2NiYgIAA3N3dUalU7N27Fx8fHzw9PamuriY9PZ28vDzc3NyIiYlpNjqn0BOItYapiRHWlqb4KCBt215SqnTnUzSURLN1tsEnxItD5RcNb7i9EzgNVDORrpy3oTQVSUd6Q1tGxhVtyF2GpiUF9Qb6CgXqKgnUGgJszVmwYAJ9PB2uHG9Dy/rm6RqNO2fqCrZbOzKu0THi2VLTn8YVT2SNgv379+Pv74+Dg4M27aOuohbfQF+dqQ0KjLTBuO6R8fqmQLKs5IXom5g5LJJFv//Kzsz0ll8BWWFwAqc2GFc0HxWWJInevXvj6upKdnY2SUlJWFpa4u/vj62tLRcuXCAlJQVJkhg4cGCb08c6kyRJTL3jZh4aF8OmL3/h31nJVFnVn+uAqAAeXTcJ/1BvamtrOXv2LIcPH8be3h4/Pz+srKy0FyFmZmaEhYVhZ2fX6ceclZXF4sWL+fHHH5k9ezZz585tU0dkQRD+usTleAcoKipi8uTJ2NjYYGdnx7Rp03SW7WuQmZmJJEk6f7788kvtcrqe37ZtW1eckpaRkRFPPPEEKpWKoUOHMnLkSGbMmEF+fn6n7tfCwoKQkBBCQkLIyclh9+7dxMXFodFoiIqKYsCAATpvk7vZtW/UztzMmL4mCpTfHUT18R7UegLxxkoKLnNmXwqOfZvXTG+iDZ0sGzMUjFdcGYU2MtN96x3QOTzdOHCTFO1ssCLL2CtolmDfeMTaUCdJa3NrXpn7N954a5o2EAeQrowN6Fq3cZqKrjrijfO+NTrSYADMzXVPolVrmv4eDFZTkZX07t2bEydO8Pvvv3P06FGcnZ0J7KN/EqOiUaqPvpzx+v+pX87C2JiXY8fw6wNTiHE3XOKzpWoqhoJx7fFdqXI0fPhwevXqRWJiIr///jtJSUl4enoSGRmJk5NTjwnEG1MqlTw7cQxxzz3JZHNP5v57Bqt/Xoh/qDdQf3Hv5+fH8OHDsbCw4MCBA/z++++kpKTg7+/PsGHDOj0QLy8vZ+XKlYSFhWFsbExSUhLLly/v0YH4X/k7TRB6IhGMd4DJkyeTlJTEzp072b59O3v27GH69Ol6l/fw8CA3N7fJz/Lly7GysuL2229vsuyHH37YZLmG+pZdzc7OjpdffpmjR49y8eJFQkJCeOWVV6iuru60fdbW1lJUVER1dTXm5uYolUqqqqqoq9PfYnPJM2OZ+3+jcLRv3RedsZGSYBcbLHcd58jGHXgF9sahd+uqJyiUCgZEB1B2Wc+Esit0jVC3avsGgvg64/p82SodFWC0+9URjDcONA38Gq+s3/wxB42GFdNH8vlHTzFvcgzWNX9upHGQbGjU3dTanoEhXs0ebwhadQbjjUfGdaQiNRkZ15OqVJKj+3XSaKQm1xXN01Qa/VtWUl5ejkajwdzcHI1GQ2lpKdYK/ekNykaTRnWNjDfcRZCuys93srTk9dHj+O899xPQS0/JwBaC8YaGQ4aC8QZ1dXVUVtZXIjIzM0OtVlNSUtKpf+MdxcTEmPmP3EnM34fpvGhQq9VUV1cjSRJmZmbU1tZy6dKlTj03jUbDp59+ypAhQ9i1axc//fQTW7dupW/fvp22z45yI3ynCUJPItJUrtHp06fZsWMHBw8eZOjQoQC8/vrrjBs3jg0bNugs/K5UKptVKfnmm2+47777sLJq2rTGzs6uR7XxDQwM5LvvvuPnn39m9uzZbN68mdWrVzN+/PgOy3tUq9WcO3eOjIwMrK2tCQ0Nxc7Ojrq6OjIyMjh48CCurq74+flhato0yFAoJGKHBxIz1If//HCUL/53hOqa5lGnQpIY6GrLhR8Oo8r8s45v8sE0jEyMGBgTSNqxTKrKdH9Z94vw40J2IafiVVQObWFkvL30TIKsf0qBXC0jGxqt1BFMNw7cDKapyE0rmFvW1DLtvij+dk+49rFRt4cwcmww/37/N774+QTqRm3iZUN5zGrd5RKVGF85rubrNhkZ1zm63GjfNbr3ra7Sd0yStqJJ/fYNVFOpq79IjIyMxNLSkqqqKtLT0ylIP8+ZujM6a+YrpT8/ZnUf+5VgXE/jIF/7Xnx9930cPH+eF/b8yvmy0j/PtZU542YGgvG6ujoyMzM5e/Zsk9zpyspK0tLSiI+Px93dvUNrlHeVxufm4uKiTW1rmHcSFxfX4ecmyzIHDx5k7ty55OTksHr1ah588MFO7eHQkW607zRB6AnEyPg12rdvH3Z2dtoPLYDY2FgUCgUHDhxo1TYSExM5evQo06ZNa/bc008/jaOjI+Hh4WzevJmeUBZekiTGjBnDkSNHmDlzJk8//TR33HEHJ0+evKbj02g0nDt3jr1795Kfn09QUFCTfE4jIyP8/f2Jjo5GrVYTFxdHeno6anXz0WFzM2MeunsYm1+aRGxM05rC/Xvb0+fMOVLf/ImSzOYNNepq6kiKS8bYxJgB0QFN5oX5h3rj5uvMmQOpFF5p+tJSNRWpnWkqihb+PDUVoNFRqk+7X11pKo2DVgPBfgOTqloeiPHn623PNgnEtfuQJB6cNoLX192FSeNUEUMpNiXVpKWlNXvdGoLW9oyMN+nQqWfeQF21/t9V04op+tNUlAoTgoODtSkGZmZmDBgwgJigoVRVVbF3717S0tKa3L0xajTmcXUnUfhzZFyB4Zruw3r35ueJD7J+RCx2pmbadQ2OjF+5iNE1Mi7LMtnZ2cTFxVFUVMTQoUMZPHiwdhKjubk5gwYNIjw8nIqKCp3n1lPJskxOTg5xcXFcunSJoUOHMmjQIG1qm6WlJUFBQR1+btnZ2Tz22GOMHz+e2267jTNnzvDwww9fN4E43JjfaYLQ3cTI+DXKy8vD2dm5yWNGRkb06tWLvLw8PWs19cEHH9C/f3+io6ObPL5ixQpGjhyJhYUFP//8M0899RRlZWU8++yzHXb818LY2JgZM2YwadIkli1bxi233MLkyZNZvHgxTk76m8lcTZZlcnNzSU9PR6FQ0L9/f4M5qubm5gQFBXHp0iVUKhU5OTn4+/vj4uLSbB2nXlbMfSKWu0YP5otvDpGzPZHMb1r3hVJaVMapeBWu3s44uNtTVlhOyuGM5gu2EIybW5ohlxhcRCeppWC8CtQG7kaYW5lx9bh+k5HxFvY/up8bzz7/N0xMdAeJsixTUFBAamp9QxUXZ0cuUz9qe3Wb98YszewoLCwkOzsbX19fevfujUKhwAgj1LQiZ1xnmkqjYL1Wz8h4jaFgvGnFlMYaT0ZtPMrdmI+jO+auptpmONnZ2fj4+NCnTx+UihZyxq9sX9nKj+Nxfv6M8/PnoxNH+aVoR7vSVAoLC1GpVKjVavr164ezs7Pevzdra2ttjfLU1FTOnTuHj49Pm2uUd5WioiJUKhW1tbWtPrfi4mJSUlI4d+4cXl5eeHh4tCmArqio4LXXXuOVV15h3LhxnDx5Em9v7446pS51I3+nCUJ3EcG4HvPnz2fdunUGlzl9+vQ176eyspJPP/2UxYsXN3uu8WNDhgyhvLycl156qcd9cPXq1YuNGzfyxBNPMHv2bEJCQpg3bx5PPPGEwVu/sixr6x2r1Wp8fXVXo9DH3t6e8PBwcnNzUalUZGVlERgYiK2tbbNlA31cWDRrHPHeTmxZ/DkFZ1uogHKFm68LljbmJP2RjO8QL1y8nMi/ajRdbqHpT1VpFaYtjHrqomihgZGmCjQGLgSqLldBr6a3iJsEnQZGxu3NzJjzwt/1Pt9QRaSyslIbUO88eVJbFz3UqQ91Kbao5JJmDSVNjCwYNmwYBQUFpKSkkJWVhb+/P8YKY6ppHgwD1DW6MDGU6gHgYmRKTp0ajJoGUzqDcY2M18WGfPX6UdHmo9f1aSwKhaxNpbmauVF9sGtnZ9esjrdsqtF+0uo6t4YLFyOpbe+RhweHkLj/D4PBeMOFREMwXlZWhkqloqSkpM1db+3t7Rk6dCgXL17Unltb/2Y7U0VFBSkpKRQWFuLt7Y2np2erA+qGkeDCwkJSU1PJysrC29ubPn36GPz9aDQavvrqK5YsWYKDgwP/+9//uPnmm3vE7+Nq4jtNEHouEYzrMXv2bKZOnWpwGR8fH1xdXSkoKGjyeF1dHUVFRa3Ki/vPf/5DRUUFU6ZMaXHZiIgIVq5cSXV1dbNc6Z5gwIAB/PDDD/zwww/MmTNHm09+++23N/lykmWZoqIiUlNTqaqq0o4gtmeUraE8m4uLC5mZmRw6dAgXFxf8/PyaVVuRJImYu8MZNi6E7zb9zH82fE9laZXO7Tq698KhTy9tG22AtCOZKBQSA6IDOHsqh/LiK201W/zebecXs1xfAhCl7t+LptpwnXFdt39bmzNuoqf7ZllZGSkpKVy6dAkvLy/69u2rDXiMGnULtTO35OvHJrH7VDorfv+dAuNGv2fZBEmScHFxwcnJSVtWr1qqBjM9xyUpkOskJCO5xZHxe++Oxn9MH9at/56sarX2zkVtXdPArFdBLfOGD2f8zaFMT5z357b0BPv1wXjLH5kNdbwdHR05f/48VSkHteXiDVVTMWrHBZuJwkhvTfd69ftTapScOnWK3Nxc3N3dGTRoULtypCVJwsnJCUdHR/Ly8po0Duqu0oeNGxI1lDxtz+ejJEk4Ojri4OBAQUEBaWlp2guOq5siybLM4cOHmTdvHhkZGbz44otMnTq1R6ejiO80Qei5RDCuh5OTU6tSLaKioiguLiYxMZGwsDAAfv31VzQaDRERES2u/8EHH3DnnXe2al9Hjx7F3t6+R39oSZLE+PHjGT16NJs2bWL69OmEhYWxZs0a+vfvz65du9i0aRNPPfUUfn5+bRq9MkSpVOLr60ufPn1ISUkhLi4OLy8vvLy8mm3fxMyEf8z+G7EP3sTWlV/xy8d70FyJaGwcrHEPdCM5IY2L2UXN9qPRyJyKV2FubcbA4YGc2Z/S4sh4e+uMAyiqNWgs9KRdVErN2sI33W8LOeMGLhJMrvqdVVVVkZaWRl5eHn369GnSaKmBqdJEe64No7wjBvgwYoAP/447whtHD1JuqkaS/ww6G8rqubm58UPCaWrRn2+uqZNQGsm6R5fl+h9JAnMjM/z79eH9zU+wf89pXn37F4qUStR19R93FkU1TPMdxPRpI5Ekidra2iZpNbq2r2nH6LVCocDd3R3nImcySQf0d+AEMFG0PTi2UFiAvvbwgKwBJEg9ncJA6wHaiafXSpIk3NzccHFxaVKj3M/PD3v71lUjulYajYacnBzS0tKwsrLqsIZEjS8UGy445s6dy5gxY5g0aRIFBQUsXbqUr776imeeeYYdO3ZgY6O7bGZPIr7TBKHnEsH4Nerfvz9jx47l8ccf5+2336a2tpYZM2YwceJE7azznJwcRo0axccff0x4+J+T4FJTU9mzZw8//PBDs+1+//335OfnExkZiZmZGTt37mT16tXMmTOny87tWhgbG/Pcc8/x4IMPsmTJEmJiYnB0dKSwsJApU6YQHh6uM53kWpmZmTF48GBKSkpITk4mJycHPz8/nbfS7VxsefqNRxn/RCwfL/mSqopqUhLTORWvanE/laVVJO1NxrFPL/B0oNDQwgY7KF55Us+IolStBgvdf6ZKpeEvMEnHfpuMzBqowmFyZTS+traWzMxMsrKycHZ2JioqCgsLC53rmCnM4MqcTJOrgtaHYoYwKTKYdTv2YG3aPKA1NjbG3sqeUnQHw9DQzEejJ1j/syKKhfLPOyKRN/dn2839+fbzeD7dnUAMLrzw3B2YmBhr29enp6dDowseXZMsGxrzGLcxlQTApNFFiq6RcfkagnFrIysMBeMlJaVgBwP8BhDsGtzm7bek4WKqd+/enD17liNHjmib63Rmp87GOe8DBgzolDroCoVCe9dt7969zJs3j8WLF1NaWsrYsWM5fvw4fn5+HbrPnkB8pwlC1xPBeAfYunUrM2bMYNSoUSgUCu655x42btyofb62tpbk5GQqKpp+aW7evBl3d3dGjx7dbJvGxsZs2rSJmTNnIssyfn5+vPzyyzz++OOdfj4dqbi4mJKSEiRJQqFQYGZmRkBAgN6ArqPY2toybNgw7cjWuXPnCAwM1Nngw2uQJ4u/msXBH4/y4QvbOJ/SuklKkkLCysmSzKJSQH/gIekagZZlXCR4bsYYKsqreO29X7ls3PzPUVGjQV8l8Tq9pfoa9tH8ocaBrqmJKTXVuqdxGkkKMjMzycjIwMbGhmHDhrU4+memMNUG47pGkJVKBQvHj9C7vqmyPhjVN/mzoamQvmBdo1GgVKqxNGp+kTLh/mgm3F8/maxhwnBqaqq2ff2Xmb8j0zDCrn9k3Fhqe8BsrDDS/l50j7q3XH5QH2tjK6BA7/NmphZUAo52nVR+8wojIyN8fX3x8PAgIyODhIQEXFxc8PX17dAW8+Xl5ahUKoqLi9uc895ekiTRr18/rK2tqa6uRqlUcvnyZQoLC/+SwTiI7zRB6GoiGO8AvXr14tNPP9X7vJeXl8783dWrV7N69Wqd64wdO5axY8d22DF2tZycHFasWMFHH33Egw8+iEqlwt3dne3btzNnzhw++OAD1q5dS2xsbKflmTbcSnd2dta2xHZ0dMTf379ZgCBJEuHjhjAkdjA73vuVbWu/pexSud5t9w1ypyj3EplHz1Hr1LzuriG2tXU88fDNjLo9RPvY8JED2br5N7btOEGNWaM0jhr9w+oVl9Vgpfdpro7GzS/VcKejB5mcBaBGrX/b1RUV5OXlERQURK9evVr1GpkrTeFK49L2jPKaKUxAoz+XvSGXW2+wfuVxXcF4g6KiIlJSUqiurm5yx0SRWV/JRd9kyIZtmyrak9dtDGrQaJpWZmmgHRlvR6DvYGr4AsnYpP530ZqmPx3BxMSEwMBAPD09SU9PJz4+nj59+uDt7X1NqQi1tbWkp6eTnZ1N7969iYmJ6fSa57Isc+zYMebPn8+ZM2dYuXIl06ZNo7S0lA0bNjBq1ChiY2N58cUXGTRoUKceS1cT32mC0LV6Xl0q4S/h+PHjFBcXc+zYMd5//308PT1RKBTceeednDx5kmnTpjF16lT+8Y9/kJyc3KnHolQq8fHxITo6GqVSSXx8PCkpKTprChubGHHH06N56+h6xj9xG4qrJk96DHDD3t2Ws8ezKb1QH6y3XGe8/r/m1bU8PjaIL7c92yQQh4Z63SP56t9PMsLHGelKoyKpVn8Bwlo9JfwabRUAo7I67saFP559kiljb9E+W12nf9vWFhZERETg4ODQ6oslC6M/00PaWhkEwOxK2o3+NJX649CVRlL/eP16NsbN77qUlZVx5MgRbfv6mJiYJu3rDXX/hMZ53W0PKBsuTPQ152nYZ8mFYnJyctpUd9nR1M7g8w0XLu0Zdb8W5ubmDBw4kIiICKqqqoiLiyM1NbXNdbwbUoni4uIoLy8nIiKC/v37d3ognp+frx0ZHjZsGCqViv/7v//DyMgIe3t7Vq1aRWpqKp6envzyyy+deiyCIPz1iZFxoVPcfvvtzdogNzAxMWHOnDlMmTKFxYsXEx0dzbRp01iwYEGnTv4yMzNj4MCBeHh4kJycTFxcHH5+fk2CsgY2DlZM3/Ag4x4fyYcLt5Gddr6+KdGp3OYbbiEYN5Mk/j7Mh2lP39biZFVTMxMWLv8H03IvsfrFbzhIFbrrvUBdneE/X2NJIqLcilWP3I2dbf2kPdOa+qCsvqGQgVrg5uZtvmNhYfTn3Yb2BK0NI+v6J3DWB7P601Tq29pbmfx5HNXV9Q2GcnNz9U48hfr64bXoD5gbOoo2pNK0hemVEpW6qrTAn4G+i70TGRkZZGVltao6iUajgRLD7dw1V5U27GpWVlaEhIRo63hnZ2fj7e2Nu7t7i38LFy9eRKWqn78xcODALqnWUl1dzZtvvsn69eu55ZZbOHbsGAEBATqXdXV1bZK6IQiC0F4iGBe6jbOzM2+//TZPPPEEs2bNIjg4mEWLFvHoo49iZNR5b00bGxuGDh2qrXN97tw5AgIC6NWrV5PlZFnGzMGE2DlRpBzIZN/HR3RuT181FePSWu6wdmfBe+MxN2tbMOTiZs9rmx7lcFI6i//7I2edddTe1ugOZqQ6DYOLjZk8YhiWphKXSwqxsTZHoVBgemWU1khP85oGJoq2V7ixMv5zZLw9Ex0bRtb1BuNqyfDzGgUajYSp0pi6ujrOnj3L2bNncXBwaLGKSEOXTEOBPly5YGijhgBef6Bfv21nW0eiQ6ObVCcJCAhoNtG5odlSSkoKlWrDI80aWUJCatfr0ZEa1/FuqC2vr0Z5Qy30y5cvd1lzIY1Gw//+9z8WLlyIubk5X375JbfddluPrBcuCMJfjwjGhW4lSRJDhgxh165dfPvtt8ydO5f333+fdevWMWLEiE7NJ3dxccHR0ZGsrCyOHj2Kg4MD/v7+WFhYUFxcTGpqKmVlZXh7exP+TDiTZ9zHzo/28OnKryi5WNp4Y022raysYwS9WP7oBO2IdHuFDvThfwOf5ttdCbyUsJ8Spz+DqhrNVQGWRsa3UGLFhPEE96/P6bx48aL2gsPf3x97hyt3Hlpov3l1acPWsFL+OSJtpjAzsKRulsqGYFxPQHxlZFmtp1mRRiOh0SjIzs4mLS0Nc3NzQkNDdU7avZqyYfS6hXz09gTjJlfyzPXmo18ZvbY0NmtSnSQzM5PExEQcHBzw8/PD0tKSkpISVCoVFRUV+Pr6YuHgACn6G7VoNPWj4j0hqGxcxzsvL4+0tDQyMzPx8/PDycmJ2tpa0tLSOH/+PO7u7gwePBhj4869iJBlmZMnTzJ//nxOnDjB8uXLmT59eqfvVxAEoTGRM36dKCoqYvLkydjY2GBnZ8e0adMoKyszuE5DMNv454knnmiyTFZWFuPHj8fCwgJnZ2eef/75Nud1dgSFQsHdd9/NyZMnefDBB5k0aRITJ04kJSWlU/erVCrx9vYmJiYGY2Nj4uPj2bt3L4mJidjZ2TF8+HBtYxulkZKx027lrWPruXvmOIxM6gO4hpFxqVbD0GJT/vePSbz2zORrDsQbmzAqnD1zn+YR876YlNTPkqyV/wyYnQvqeHXwTfx3wZME9/eqP54rDVoiIyPx9PQkKSmJ/fH7kWTpSpqKfiZGbQ/GrY3/DMZNpbYHrRZXRtZbmsCp93mNAlkjkZmZSb9+/Rg2bFirAnEA4yt3CvTmdV+5AGhPMG52ZWRcby78lUDf2ujPXHcjIyP8/Py078t9+/axd+9eDh06hL29PTExMbi7u7d40aTRtO/CqDM1TKyOjo7Gw8ODU6dOsXfvXvbu3UtVVRWRkZEEBgZ2ekB84cIF/vnPfzJixAiCgoJQqVQ8/fTTPT4Q/6t/FwjCjUgE49eJyZMnk5SUxM6dO9m+fTt79uxh+vTpLa73+OOPk5ubq/1Zv3699jm1Ws348eOpqakhPj6ejz76iC1btrBkyZLOPBWDzMzMmD9/PsnJyTg7OxMZGcmCBQsoKSnp1P1qNBrtxDmNRlOf0mFqqvP2uKWtBQ+vvJ9NiWuInjAMCeh3UcHnt93JljmP4u7m0CnHqFQqmT15HLv/7zFGVdqgqTPC5mIt890G8+vCZ4iNGmxwfUmSkGUZI9lIO2FRH2MDnT31sW40cbI91VSsWpmmotYbjEvIGoW2jGZbNKRx6M3r1lZqaXuZPm2aSgsj49Y6Jp4qFAqMjY21r12z49bTnbXxtk3b8Vp0BUmSMDU1xcjISPv3J8tyfS58J6qpqWHjxo2EhIRw/vx5Dh8+zGuvvdYsTa2nulG+CwThRiLSVK4Dp0+fZseOHRw8eJChQ4cC8PrrrzNu3Dg2bNigbcSgi4WFhd4Wxj///DOnTp3il19+wcXFhZCQEFauXMm8efNYtmxZp1csMMTV1ZX333+fJ598UptPvmTJEqZMmdKh+eQ1NTVkZGSQnZ2Ns7Mz0dHRmJubc+HCBVQqFdnZ2QQEBODg0DzAdvV2Zt4nM5h2oQRHp45vYKSPjZUFrz0zmdyCSzg72OidCNc4t1ihUGibo/xw5mfqavVVL69n3I40FTvTP+sstmfCYMPIuqE64i09L0lGeHh4kJSUhJWVFQEBAa3qjmjckErSQppK44oxrWXeUs64Nhj/M9C/urtkQ533xhMhfXx86NOnj8F9qzXdN3nTkNLSUlQqFaWlpdpJ1HV1ddoa5c7OzvVpOB3Yj0CWZX788UcWLlyIUqlk69at3H777T0ihae1bsTvAkG4EYiR8evAvn37tBOgGsTGxqJQKDhw4IDBdbdu3YqjoyODBg1iwYIFTZo07Nu3j8GDB+Pi4qJ9bMyYMVy+fJmkpKSOP5E2kiSJoUOHsnv3bt544w3+9a9/cdNNN7Fnz542lX/Tpa6ujrS0NPbu3UtFRQXh4eEMHjwYCwsLJEnSBua9e/fm+PHjHDlyhPJy3XXHuzIQb8zN2V5vIF5UVERCQgLJycl4eXkRGRmJs7MzkiRhpjTF1MTwCK+Jsu0XPCZKI5DbH7RaaYNxfaULDY+MqzUSkqzE09OTmJgYbG1tOXjwICdOnKCystLwsTeMjLdwIWDVjvMya2lk/EoVGDtTC2RZ5sKFC+zfv5+srCwGDBhAWFiY9oKi4XNg4MCBZGdns2/fPowMVlzpWcF4dXU1p06dIiEhAWtra226jUKh0NYoj46ORqFQsG/fPk6fPk11teGKMS2RZZlTp04xYcIEpk+fztNPP83x48cZN27cdRWIw437XSAIf3ViZPw6kJeXh7Ozc5PHjIyM6NWrF3l5+rtFTpo0ib59+2oDynnz5pGcnMzXX3+t3W7jD19A+29D2+1qCoWC++67j7/97W+8/PLL3HvvvYwaNYoXX3wRHx+fNm1Lo9GQnZ1NRkYG5ubmDBkyRG85RYVCQd++fXFzcyM9PZ39+/fj7u6Oj49Pj80rLS0tJTU1leLiYry8vPD09GwWsJsoTFFrag1ux7iFco36SCiRqcPCQOMdfexMza9MwjScM66WFTqrMmo0ChRXGh0ZGxvj7++Pu7s7aWlpxMfH4+Hhgbe3t87XzkRhcqUxT+tHr1vLXJszbrgKjHGtmsOHD1NaWmqwikjDXABHR0fOnz+P4sxJvfuu04BpO/LcO5parSYrK4uMjAwcHByIiorSO+rdUKO8b9++pKWlERcXh6enJ3379m3z311hYSGrVq3io48+4tFHH+Wzzz7D0bFzu5F2phv9u0AQ/qpEMN6N5s+fz7p16wwuc/q0/koJLWmcRzh48GDc3NwYNWoUaWlp+Pr6tnu73cXCwoJFixYxdepUXnjhBcLDw3nyySd5/vnnW0xFkGWZvLw8UlNTUSqVDBgwoNV1i01MTOjXrx/u7u6oVCri4uK6rORaa1VWVpKWlkZ+fj7u7u5662lDfQOYagynqaBu4Xk9FChQQ7uCcWOlsj4Y11ct5UpArNHzmtWX8Wv6kWZubs6gQYPw9PQkJSWFuLg4vL29m7VRb+iSqVYbTlOx0pHX3ZKG34W+kXFZrq8CcyQxEQ8PD4KCgloVdEqSRJ8+fTAzMaampkbvcXd1w5/GGqdKGRkZERIS0urcbCsrK4KDg7WVjbKzs/Hy8sLDw6PFGuW1tbW89957rF69mqFDh3Lw4EEGDhzYY0fCxXeBINzYRDDejWbPns3UqVMNLuPj44OrqysFBQVNHq+rq6OoqEhvDqAuERERAKSmpuLr64urqysJCQlNlsnPzwdo03a7mru7O1u2bOGpp55i5syZhISEsGzZMiZPntzsS7qhvF9D9z99tY1bw8rKitDQUG0zkuzsbPz9/bukGYk+tbW1ZGRkcO7cuSY574aYKEyQ9LYSqldwPpdTp07h6+vbpjbm9cFwTbvSVKC+uY7+NJWGair6RsYlvRNTbWxsCA0N1da5PnfuHH5+fri4uNRPJFQaX2k4ZDiVxMa4HTnjRi104JQlNBplq147XYwN1ISv08jdlqZy+fJlkpOTqaio0NtcqzXs7OwICwujsLCQ1NTUJjXKr74YlmWZnTt3smDBAtRqNVu2bOGOO+7osUF4A/FdIAg3NhGMdyMnJyecnJxaXC4qKori4mISExMJCwsD4Ndff0Wj0Wg/VFvj6NGjALi5uWm3u2rVKgoKCrS3Pnfu3ImNjQ0DBgxo49l0LUmSiIiIYO/evWzbto358+fz7rvvsm7dOqKjo5EkiZ9//pnMzEwCAgI6dCTb0dGRXr16aZuz2NjYEBAQgJWVVcsrdxC1Ws25c+fIyMjA1tZWO8GvNUwVpkgtVFPx7tuXmpoa7UiyrnQXXRqC4fYGP7KsbLHWt1pP51CNRoHCQDOjxnWuz58/j0ql4uzZswQEBGgDVkOlDTUaBbZmbQ/GLZSGR8Y1V3Ld2xOIg+GKKuUV1RjJXfe+BKiqqiItLY28vDz69u3LkCFDrnnSdePXLj8/n9TUVP744w+qqqqYMmUKCoWCM2fOsHDhQg4cOMCiRYt45plnrpuJh+K7QBBubD3jHrtgUP/+/Rk7diyPP/44CQkJxMXFMWPGDCZOnKidPZ+Tk0O/fv20oxtpaWmsXLmSxMREMjMz+e6775gyZQo333wzQUFBAIwePZoBAwbw0EMPcezYMX766ScWLVrE008/3abR0O6kUCiYNGkSp0+f5s477+Tvf/87d955JzfffDOTJk3i0qVLDB8+HE9Pzw5NKWlozhITE4OlpSUHDhzg9OnTetMFOoosy+Tk5BAXF0deXh5BQUGEhoa2OhAHMFWYILXwp29lbkZISAghISHk5+cTHx9Pbm5uixNnFRgh6QmWW+VK0KtLQ7Mf/cG4pO2kaUhDekdMTAxOTk4cOXKEovxC7Tb0bVtzpWxiW5kYGSPLLeSjy22vXtPA0Mh4jVpDQU4+GRkZqNuZetRaarWa9PR04uPjUavVREdH4+fn16HVjyRJwtXVlejoaDQaDYsWLSI0NJR7772XmJgYvLy8SE5OZvbs2ddNIN4W4rtAEP6axMj4dWLr1q3MmDGDUaNGoVAouOeee9i4caP2+draWu0tYajPc/7ll1949dVXKS8vx8PDg3vuuYdFixZp11EqlWzfvp0nn3ySqKgoLC0tefjhh1mxYkWXn9+1ajj2EydO8N///hdAWzmhI4OBqxkbGxMYGNgsn/zqnORr1TjdRq1W4+/vj6ura7uCQ1OFKejJy27QEOD16tWLiIgI8vLytG3MAwIC9E96lY3adUwN7es1av0TOBuqqNQZmMBpZGBk/GpKpVJ7x+Ts8R/r92Go4omeYLo1NBqphZHx9r9HjQy8z4yNzfB0daQgr4Bz587pTe+4Fo3nY5iYmLS66+m1UCgU3HvvvVy4cIGVK1eSnp5OeHg4jz32WLMJjn814rtAEP56RDB+nejVqxeffvqp3ue9vLyajFp6eHjw+++/t7jdvn378sMPP3TIMXaXgoICVq1axbvvvst9991HSkoKubm5zJo1iyFDhrBs2TImTpzYqjSL9rK0tGTIkCEUFglM3fUAAD28SURBVBaiUqk4d+4cAQEBODk5XXO+akML9PLy8g5JtzFpxci4SaMLmIaOic7OzmRlZXHkyJEmLdoba+vIuEaj4fz589r29UrJWH+HTVmBrAb0nLtGI2Ektb3KjYmJCT7ufUm4aCBnvJ2j1zU1NaSlpSHLCoN1xpXX8FFsbOC9UKcBeys7wsPDtekdZ8+e1bagv9b3ZnFxMSqViqqqKvz8/No9H6MtZFnmt99+Y/78+VRVVfHJJ59w880389JLL3HzzTdzxx138OKLL+Lv79+px9FdxHeBIPz1iDQV4bomyzJjx44lMzOTgwcP8tFHH+Ht7U10dDTx8fGsWbOG5cuXM3LkSA4cOHDN9clb4uDgQEREBF5eXpw6dYrExERKS0vbta3y8nKOHTtGYmIi9vb2HZZu06qRcR0dOJVKJd7e3toW7fv37yc5OZna2j/LJCpkExSt6N7ZuJ524/b1SsnIYJqKpk7/tjUahbZeeFs1tLnXNyovaxRtCsbVajUZGRnExcVRXV1dXzHFQKUWJe0vlWmoQVOdun4CZ+P0joYW9IcOHaK4uLhd+6yqquLEiRMkJibi4OBATExMuydotkVKSgr3338/kydP5qGHHiIpKYm7774bR0dH1q1bh0qlwtbWlqioKL19AQRBEHoaMTIuXNckSeLXX3/VeVtcoVAwZcoU/v73v7Nu3Tr+9re/cccdd7BixQrc3d077ZgUCgXu7u64uLhoOwq6ubm1ujJJdXU16enpnD9/Hjc3N2JiYjo0b9NUYaJtzqOPiYEAz9TUlAEDBuDp6YlKpWLv3r3a1BxlK0bGL1++jEqloqysrNlIvwIjZANpKrKegBbqm/4Yt7P1u7nS7Mo2DKSStDDpFZqmbBgbGxMcHFxfyu/wvw2OjLdnRL+BoZHxWnXTpj8KhQIPDw/c3Nw4e/Yshw8fplevXvj7+ze7y6FLXV0dmZmZnD17FhcXF2JiYjBrx6TWtiopKWHt2rW8++67TJ48meTkZJ1VPtzd3Xn33XdZv359q85HEAShJxAj48J1r6X8VGtra1588UWSkpKQZZnQ0FBWrVrV6SNnxsbGBAQEEBUVRW1tLXFxcQYn0tXV1ZGamkpcXBw1NTVERkYyYMCADp9AZaowRW5hZNzEqOXAs6HUY1BQEOfPn6+fuFcr6U2Bqays5MSJExw8eBBbW1tiYmKajfQrMdafM44Cuc5Qt0lFfYnCdrA0ahgZ1x+Ma+rqLyT0KS4uJiEhgZSUFHx9fYmIiPizprasMJgz3t6LCGghGNdoMFM2D5aNjIzw9fXVXujt37+fU6dOUVWlu+SlLMva17ioqIihQ4cyaNCgTg/E6+rq2Lx5M8HBwRw9epS9e/fy3nvvtVhur7Nz1gVBEDqSGBkXbhheXl5s27aNP/74g1mzZvHxxx+zYsUK7r333k5t3mNhYUFwcDBFRUXa+uQBAQHa9vQNXUHT09OxtLTs9AlwJgpT6mdA6k/Z0ZWmoo+DgwORkZHk5ORQnbYf2USmpKQEW1tboGkt9JZGU40kI70jyGpZaiFNRcKE9gW1fzbm0d9QSIkRBw8exNnZGT8/P20pwoqKClJSUigsLMTLy4u+ffs2n59gIGdcI0sYX8vIuIG7GFePjF/N1NSU/v374+npqe122bdv3ybdLi9duoRKpaKmpoaAgABtbfbOJMsyf/zxB3PnzqW0tJQ33niDf/zjHz2myZYgCEJHEp9sQhNFRUVMnjwZGxsb7OzsmDZtGmVlZQaXf+aZZwgMDMTc3BxPT0+effZZSkpKmiwnSVKzn23btnX26TQjSRI333wzBw4cYPny5SxcuJDbbruNQ4cOdXo+eUNlEh8fH86cOcPBgwfJyMggPj6e7OxsBg4cyNChQzt9VM9UYdpiZRBDaSq6SJKEu7s7znZOKCUjDh06xPHjx0lNTWXv3r2UlpYSHh7e4miqESboLJUC1KEwmKZSPzLevmDc8kozH/0j4wpMjcy0Nezj4+M5ffo0p0+fZt++fRgbGxMTE4OPj4/OicISSjT6OnBqFJhKnTQyrm5d0x9LS0uCgoIYOnQoxcXFxMXFkZqayrFjxzhy5AhOTk5ER0e3u4JPW6SnpzNp0iTuu+8+7r//fk6dOsV9993XowPxv/rnpiAInavnfroJ3WLy5MkkJSWxc+dOtm/fzp49e5q0Ur7a+fPnOX/+PBs2bODkyZNs2bKFHTt2MG3atGbLfvjhh+Tm5mp/JkyY0IlnYphSqeTRRx8lOTmZW265hbFjx/J///d/5Obmdup+G2pcDxgwgMrKSm05uCFDhnRIdYvWMFWYoGnhusPQaKsh5kbmmChN8ff35+LFi2RkZODg4EBQUBDW1tYtrm+M/sBRjaQ3oIUrrd/bG4wr60e5DeWMG0nGmJubM2DAADw8PMjJySEnJwcPDw/69etnMJ1IamFk3FTZ/lQkg3XG6zT1cwRaydbWluDgYOzt7cnIyKCwsBA/Pz+8vb07tRoR1KcALV68mPDwcOzt7Tl9+jQvvPBCu5shdaUb5XNTEITOIdJUBK3Tp0+zY8cODh48yNChQwF4/fXXGTduHBs2bNA2lWhs0KBBfPXVV9p/+/r6smrVKh588EHq6uqa1Pi2s7Prca2VbWxsWLt2LY8//jhz584lJCSEWbNm8eyzz3ZKEFBaWkpKSgolJSV4eXnh5OREeno6+/bt05/i0MH+HBnX3wTG0GirIVId1GrqyLxYXyHF0tKSlJQU4uLi8PX1pU+fPgZHOOuD8Qqdz8mSEk1tC8F4O1u/KxSKK4199KepGGFEQUEBKpUKhUJBcHAwkiSRkpJCQUEBfn5+elM4JJQGm/6YX0Mwbii/v7Uj4/XHUd9QKi0tDQsLC8LDwykvLyctLY3z58/j7++Pg4NDu49TH7VazdatW1m2bBm+vr789ttvhIeH9/gW9g1uxM9NQRA6lhgZF7T27duHnZ2d9gsFIDY2FoVCwYEDB1q9nZKSEmxsbJo123n66adxdHQkPDyczZs3d3paSFv4+vryn//8h++++47//ve/hIaG8tVXX6HRaDpk+5WVlZw8eZKEhASsrKwYPnw43t7eWFlZabtoXrhwodWdLq+FqcJUby3vBm1NUykrK+PIkSOUXCzGSGGqLXVna2tLWFgYAwYMICsri/3793PhwgW952eC4Quguhr9x6XRKDA3an+6h6xR6B1512gUVFfWcvr0aby8vIiMjMTJyQlHR0ciIyPx9vZGpVKRkJDApUuXdGxAf064LIOZov0TIQ134JQxlVoOxouKipqUmRw6dCi2trb07t1bm55y/PhxEhMTDU5ibQtZltm7dy8333wza9as4eWXX+aPP/4gIiLiugnE4cb+3BQEoWOIkXFBKy8vr1n3OiMjI3r16kVeXl6rtnHx4kVWrlzZ7BbtihUrGDlyJBYWFvz888889dRTlJWV8eyzz3bY8V8rSZK49dZbOXToEJs3b2bOnDm88847rFu3jpCQkHYFCDU1NWRkZJCdnY2LiwvR0dE6R9zt7OobszR0umxoGtQZ+eOmChNausZobTBeXV1NWloaubm59OnTB39PX87UlDQZ3ZckCWdnZxwdHcnOziYpKQlra2sCAgKapa6YyIYDx7oWRsYtjNof1GpkBRo9VWZkjYS5kSkxw2KaBUsNqUeurq6cPXuWI0eONCsXKMmGJmhKmCvafxdG312M3lbWzBwWabAraUVFBSqVikuXLuHt7a2zjr1SqcTLy4s+ffpo6/lfPYm1rc6ePcuiRYv46aefeP7555kzZ851W4rwRv/cFATh2olg/AYwf/581q1bZ3CZ06dPX/N+Ll++zPjx4xkwYADLli1r8tzixYu1/z9kyBDKy8t56aWXeuSXipGREdOnT+e+++7jxRdf5LbbbuO+++5jyZIlrb5drFarycrKIjMzE1tbW8LDw1vMmW7c6TIzM5PExEScnZ3x9/fv0BJyHTEy3tC+/uzZs9pqKpaWlqRllSBV6/5YUSgUeHp64ubmpq2/7urqiq+vr/b8TDSGz1Ndq/+41BoF5tdQIlBW6/841MgStpa2zQLxxpRKpbZuelpaGvv376d37974+PggaQxfZFgo2x+IXp3fb2FszOPBoUwZFISpnuNtXOGmoZa9iYnh352xsTH+/v54eHiQlpZGfHw87u7ueHt7t7hug7KyMv71r3/xxhtv8Pe//53Tp0/j4eHRuhPtYuJzUxCEriKC8RvA7NmzmTp1qsFlfHx8cHV1paCgoMnjdXV1FBUVtRiElpaWMnbsWKytrfnmm2+0ZdH0iYiIYOXKlVRXV3d4He2OYmdnx4YNG5g+fTrPP/88Q4YM4fnnn+epp57SGxxrNBpyc3NJS0vD1NT0z6YvbaBUKrX51Q11x/v27YuXl5fBYLC1TBQmqNs5Mn51+/qryzBaGJvR0sdKQ/11Dw8PUlJSiI+P156faQsj47UGgnGQsLiGEWaDwbhGgVkrA30TExNtucCG16+2hZsqlkqLthxqEw0j4xJwd2B/ngkLx9FC9/Y0Go02L9za2rpVF4lXMzMzY+DAgfTt21c7H6ChHKK++Q5qtZpt27axbNkyPDw82LlzJ1FRUT06HUV8bgqC0FVEMH4DcHJywsnJqcXloqKiKC4uJjExkbCwMAB+/fVXNBoNERERete7fPkyY8aMwdTUlO+++65Vo7hHjx7F3t7+uvhCCQgI4Ntvv2XXrl3MnDmTzZs3s2rVKu644w7tLf2GIOfcuXNoNJoOqcdsZmbGoEGD8PDwIDk5mZycHPz9/XFzc7um7RpLxnore2iXuSoPWZZlLl68SEpKChqNhn79+mnrpDdmbWSBrGndx4q5uTlBQUEUFxejUqnIycmhqqLG4Dp1BoNxsGgh59wQjYFgXJYN1+vWxdLSkuDgYC5dusTHB04YXPaaRsYVSiJ69+H5iGj6OTjqXa6wsJDk5GRkWWbgwIE4Ojpe0/vIysqKIUOGUFRURGpqKufOncPT05M+ffpoR8plWebAgQPMmzeP3Nxc1qxZw4MPPtijyxQ2EJ+bgiB0FRGMC1r9+/dn7NixPP7447z99tvU1tYyY8YMJk6cqK0IkJOTw6hRo/j4448JDw/n8uXLjB49moqKCj755BMuX76sneDl5OSEUqnk+++/Jz8/n8jISMzMzNi5cyerV69mzpw53Xm6bSJJErGxsRw5coR3332XZ599lrfffpv169eTn5/PokWL8PHxYd26dS1WDGkrW1tbhg0bRn5+PikpKWRlZREYGIi9vX27z0VTZziobTwybqh9/dVsjC2QWhmMN7Czs9OeX3biMWwrFJRY6B66r1UrdU87l2W8ZRs8bFsOnq7WUOGmrsZQYCph1s5Rd3t7eyzNbYFKnc+7WFgyyMGtXdsGeGhQEA7m5noD6/LyclQqFcXFxfj4+ODh4dGh789evXoxbNgwCgoKeP311/nPf/7DokWLuOmmm1i2bBnbt29n1qxZzJs3Dysrqw7bb08hPjcFQbhWIhgXmti6dSszZsxg1KhRKBQK7rnnHjZu3Kh9vra2luTkZCoq6svPHT58WFsxwM/Pr8m2MjIy8PLywtjYmE2bNjFz5kxkWcbPz4+XX36Zxx9/vOtOrIMYGRnx1FNP8cADD/Dcc89pm8BMnjyZ1atXtztAbokkSbi6uuLk5ERWVhZHjhzB0dERf3//dk2iqzMwCgxgrFRo66AXFBTg6elJcHBwi7fRrY3NMVa0vZtkw/ndP9aJqKws3t2dwM/ll6g2a1o5orZOydVNNnvVmLAgZji3Bwe2aZ+NJ5+6u7tjXG44VcRc2f5Rd0ljwtXBuIlCwYzgUB4NG9bu7QJ6U1Jqa2tJS0sjJyeHPn36MHDgwFbndreVJEm4uLiwePFizMzM+Oc//0lNTQ0jRowgKSkJLy+vTtlvTyE+NwVBuBaSLOokCUKb5ObmsmzZMj7++GMmTJhAQUEBiYmJzJs3jyeeeKJLbiFXV1eTmppKXl4enp6eeHt7tymf/MldX/BHRqHe57+6aaS2Aoyfn1+rJ5CW1Vbxxpn/MH/wg60+Fl1qamo4o0rhtT8Oc4gy1Ffie9uKKkos6o/FrFrBtP4hPHFr22pSq9Vqzp49S2ZmJg4ODvj7+2NhYcEjv7/CwRT957ni1mHc7TtU7/OGzNj1Bbuv/L4VksTf/QN5wKU3OVd+x76+vh1W116j0ZCdnU1aWhq2trYEBAR0yYi0RqPhyy+/ZMmSJTg4OBAWFsYXX3zByJEjWbNmDQMGDOj0YxAEQbge9fzEPUHoIWRZZunSpfj5+VFUVMSxY8f47LPP+OWXX/jss8/497//TXh4ONu3b++w+uT6mJqaMnDgQIYNG0ZJSQlxcXFkZ2e3ugZxrYESgUaSRFlZWava11/N0sgUi2sYQW5gYmJC0KCBbJxyN68EhxJQaQaa+jQVZS3c0cuHvY8/ypMjW1+TWpZlzp8/T1xcHBcvXiQ0NJTg4GAsrowsSwZqgQOYXsvkULl+RDqidx9+n/wwy2++lX6BgURHRwMQHx+PSqWitrb2GvYhc+HCBfbt20d2djaDBw8mNDS00wNxWZY5ePAgsbGxLFy4kOXLl5OYmMgHH3xAamoqnp6ehIWF8dhjj1FeXt6pxyIIgnA9EmkqgtBKkiRhbW3Nr7/+2mRiliRJ3H777cTGxvLWW2/x5JNPEhISwrp16+jfv3+nVoywsbEhLCyMgoICbX3ywMDAFiu4uFn0Ai7ofM5UqdRORGsrSZKwNe644M/S0pKR0RGE9PNnx/5Efjubx7Ojohnk79Om32tRUZE22NU7uVY2QV9XUgnwsGhbVZzGRnn4MyMkhv6OTXPazc3NGTRoEJ6entrKJN7e3m3O6y4rKyM5OZnS0tJWdTrtKOfPn2fp0qV88803/POf/2TBggXY2Nhon3dxceH111/nn//8J5s3b74uWtsLgiB0NZGmIggdrLCwkKVLl/LBBx8wZcoUXnjhBRwd9Ve56CgajYasrCwyMjKwt7dv0nTmarIs81tWJuvi95JTXtbkOXszM/548JF2H8d3Z/dxZ9+odq+vjyzL5ObmkpqaiqmpKYGBgS02RWo8ebEhyNVXfu/RnR+ScLaq2eNBzi68Mmo0LpadP8JcWFhISkoKarUaPz+/Fivy1NTUaNvVu7u74+Pj02Jef0eorKxk48aNvPzyy4wZM4b169fj4+PT6fsVBEH4KxLBuCB0AlmWOXXqFLNmzSIhIYEFCxYwffr0TptA11hNTQ2pqanaiYm6ArSysjJSUlK4UFREkpGCL86mU1pTX1bQxcKSXZOmtHv/+/JPEeXSefnB+nK+G6upqSE9PZ2cnBx69+6Nr69vi7/7aT9v5UDWn63e3aysWDdiFKGuvTvlPPRpSKdpqFUfEBDQbGJwWy68OpJGo+Gbb75h0aJF9OrVi1deeYVbbrmlR9cLFwRB6OlEMC4InUiWZbZv386cOXOQJIk1a9YwevToLgleSktLUalUTVIXGipsNLSv9/HxwcTEhEtVlbx1+BCfn07CzcqaHfdPbvd+00rO42vb+QHs1dVQfHx8UCqV2iDVzs4Of3//VudMP7rjCxKyC7EwNmZeZDT3BHbvhMPGFx29evXSXnRcuHABlUqFUqkkICAABweHTj8WWZY5evQo8+bNIyUlhZUrV/Loo492SBMqQRCEG52YwCl0mU2bNuHl5YWZmRkREREkJCQYXP7LL7+kX79+mJmZMXjwYH744Ycmz8uyzJIlS3Bzc8Pc3JzY2FhSUlI68xTaTJIk7rjjDk6cOMH06dN59NFHufvuuzlz5kyn79va2prQ0FAGDhzI2bNn2bNnD3v37qW2tpbIyEj69eunHS22NzNnYfRNfH33/Yzs63VN+3U1b39udVuYmpoyYMAAwsPDKS0t5Y8//mDPnj3k5uYSFBTEkCFD2jR50d3SgQcHDubAlGndHohDfSdWHx8fhg8fjqmpKfv27eOPP/7g1KlTeHl5ERkZ2SWBeF5eHk899RS33XYbUVFRqFQqpk+f3iMD8RvxM0YQhOufCMaFLvH5558za9Ysli5dyuHDhwkODmbMmDHN2kg3iI+P54EHHmDatGkcOXKECRMmMGHCBE6ePKldZv369WzcuJG3336bAwcOYGlpyZgxY6iqap73291MTEyYNWsWKpUKb29vYmJieP755ykqKurU/cqyTHV1NWq1GqVSWd/wx0ClF197e+ZGxlzTPi1NWl99pSOo1Wo0Gg2SJCFJEnV1dajV6lZXlmmw4qZRzI8a3uNSLmRZ1p6fQqFArVZTU1PT6RV7qqqq+Ne//kVISAglJSUcO3aMl156CVtb207db3vd6J8xgiBcv0SaitAlIiIiGDZsGG+88QZQn3vq4eHBM888w/z585stf//991NeXs727du1j0VGRhISEsLbb7+NLMv07t2b2bNnazvSlZSU4OLiwpYtW5g4cWLXnFg7yLLMiRMnmDlzJkePHuWFF15g2rRpHTrx7ur29f7+/jg7O1NbW6vNpW6cpnI9qqysJCUlhYsXL9K3b1+8vLyQJEmbb21hYUFAQECPDR5bolartSk3jXPjL126REpKCpWVldr0o468gNBoNHz//fe88MILWFpa8sorrzBq1Kged5FyNfEZIwjC9UqMjAudrqamhsTERGJjY7WPKRQKYmNj2bdvn8519u3b12R5gDFjxmiXz8jIIC8vr8kytra2RERE6N1mTyFJEkFBQezcuZP333+ft956i+joaHbt2tXm0VxdLl++TGJiIklJSbi7uxMdHa2tymFiYkK/fv2IiIigoqKCuLg4srKyOn2UtSPV1taiUqmIj49HqVQSHR2Nr68vSqUShUKBu7s7MTEx2Nvbc+jQIU6cOEFlpe5W9D2RLMvk5eURHx9Pfn4+Q4YMaVIP3d7enmHDhtGvXz8yMzPZt28fFy5cuOb3jizLHD9+nHHjxvHss88yZ84cjhw5QmxsbI8PxMVnjCAI17Oel/Qn/OVcvHgRtVqNi4tLk8ddXFz05k7n5eXpXD4vL0/7fMNj+pbp6RQKBX//+98ZN24cr732Gg899BAxMTGsWrWKgICANm+vLe3rraysCA0N5eLFi6hUKs6dO0dAQACOjo49NvBq6CyZnp6OtbU14eHhWFtb61zWyMgIPz8/+vTpQ1paGvHx8drR856Y69ygpKQElUpFRUUF/v7+uLm56Xw9GtrPOzk5kZ2dTVJSEtbW1vj7+zep891aBQUFrFixgs8++4wnnniC//73v80quPRk4jNGEITrmRgZF4RuZmpqyty5c0lOTqZ3795ERUUxf/58iouLW7V+45FiSZKIiYnB39+/VWkvjo6OREZG4unpSVJSEocPH6asrKzF9bqSLMsUFBRoO0sOHDiQ0NBQvYF4Yw1NdYYOHcqlS5e0nUp72p2AqqoqTp48yaFDh7C3tycmJobevXu3eGGkUCjw9PQkJiYGGxsbDh48yMmTJ1t9J6C6uprXXnuNkJAQCgoKOHLkCK+88sp1FYgLgiBc70QwLnQ6R0dHlEol+fn5TR7Pz8/H1dVV5zqurq4Gl2/4b1u22dO5uLjw7rvvEhcXx7FjxwgODub999+nrq5O5/IajYazZ8+yd+9eSktL29W+HuoDOg8PD2JiYrCysuLAgQOcPn2amit1x7tTQ8rNqVOn8PT0JDIyEicnpzaP3tva2jJ06FD69+9PZmYm+/fv5+LFi5101K2nVqu1I/eyLBMdHY2fn1+bR++NjY3x9/cnOjoaqJ+c2NBxVBeNRsP27dsJDw/n3//+N5999hnff/89/fr1u+Zz6g7iM0YQhOuZCMaFTmdiYkJYWBi7du3SPqbRaNi1axdRUbo7NUZFRTVZHmDnzp3a5b29vXF1dW2yzOXLlzlw4IDebV4PJEkiNDSU3377jTfffJNXX32V4cOH8/vvv2tzgtVqNdu3byc+Pp7z588zePBgwsLCWjVSbIixsTGBgYFERkZSXV1NXFwcmZmZ3TKK3DBSfPDgQWxtbYmJiWlzi/irSZKEs7Mz0dHRuLu7c+LECQ4fPkxpaWkHHnnrNHQTjYuLo7CwkNDQUAYPHnzN7eIb7gQMGzaM0tJS4uLi+P7777Uj5bIsk5SUxJ133smTTz7JM888w7Fjx7j99tt7bHpSa4jPGEEQrmeimorQJT7//HMefvhh3nnnHcLDw3n11Vf54osvOHPmDC4uLkyZMoU+ffqwZs0aoH5k75ZbbmHt2rWMHz+ebdu2sXr1ag4fPsygQYMAWLduHWvXruWjjz7C29ubxYsXc/z4cU6dOtXm0eGeqqqqipdffpm1a9cyYsQIbrvtNjZt2kRhYSE//fQTgYGBnRZEFRUVkZycjFqtJiAgoF0j0m1VV1dHZmYmZ8+exdnZGT8/v2sOUPVpqCyTnZ2Nm5sbvr6+mJqadsq+GisuLkalUlFVVYW/vz+urq6d8nttqKgzfvx4CgsLeeaZZ8jIyOCTTz7hscceY9myZV1Sp7yriM8YQRCuVyIYF7rMG2+8wUsvvUReXh4hISFs3LiRiIgIAEaMGIGXlxdbtmzRLv/ll1+yaNEiMjMz8ff3Z/369YwbN077vCzLLF26lHfffZfi4mKGDx/Om2++2a7Jjz3d77//zkMPPcS5c+cICwtj27Zt9O7d+V0uZVkmJyeHtLQ0LC0tCQwMvOYR+Jb209UlCSsqKkhJSaGwsBAvLy/69u2LUqns8P00TLC9cOGCdjJpZ+znahUVFUydOpUffvgBGxsbNm7cyEMPPXRdj4TrIz5jBEG4HolgXBB6sLy8PJYtW8ZHH33Eo48+yh133MGLL75ISkoKS5cu5aGHHuqSgK6uro6MjAyysrJwdXXFz8+vw0aRCwsLUalUqNVqbT307ggUL126hEqlorq6Gj8/P72VTNqq8Wi/i4sLfn5+XTKqKssyP/30EwsXLkSWZVatWsXp06dZv349o0aNYt26dQQGBnb6cQiCIAiGiWBcEHqo77//nkmTJjF69GjWrFmjHY3TaDR8/vnnzJ8/H3t7e9atW8fw4V3TObLxKLK3tzeenp7tvhgoKytDpVJRUlKCj4/PNeeEd4SGGt+pqakYGxsTEBBAr1692r2t3NxcUlJSunS0X5Zlzpw5w4IFCzh06BCLFi1ixowZ2uZO+fn5rFixgs2bN7NmzRqee+65Tj8mQRAEQT8RjAtCD3X+/HkyMjKIidHdnr6iooINGzbw0ksvcdttt/Hiiy/i5eXVJcd26dIlkpOTqa2txd/fX9tUqDWqq6tJS0sjNzcXd3d3fHx8OrT7aEdo6H6ZmZmJvb09/v7+WFpatnr9a/n9XIuioiJWr17Nhx9+yNSpU1mxYgVOTk46l01OTqa6upqgoKBOPy5BEARBPxGMC8J17ty5cyxcuJCvvvqKGTNmMHv27E7J675aW0d+9bV378lqampIS0vj/Pnz9OnTBx8fH+0Isy4deeegLWpra/nggw9YtWoVQ4YM4eWXX2bw4MF/ybxwQRCEvxoRjAvCX4Asy+zfv59Zs2Zx9uxZli5dyqRJk7osn9xQTnTj1A8TExMCAgKuu6YyZWVlpKSkUFxcrA2yG6fUdGZOvSGyLLNr1y7mz59PbW0tL730EnfeeWe3p/sIgiAIrSc+sYW/pE2bNuHl5YWZmRkREREkJCToXfa9997jpptuwt7eHnt7e2JjY5stP3XqVCRJavIzduzYzj6NVpMkiaioKOLi4li3bh0vvvgit956K/v27aOzr7cbWs9HR0cjyzLx8fGkpaWhVqu5dOkSCQkJpKam4ufnR3h4+HUXiANYWVkxZMgQgoKCtPXB8/Ly0Gg0ZGdnExcXR0lJCeHh4QwcOLBLAnGVSsW9997LlClTmDp1KidPnmTChAk9LhC/0f4WBUEQ2qpnfWoLQgf4/PPPmTVrFkuXLuXw4cMEBwczZswYCgoKdC6/e/duHnjgAX777Tf27duHh4cHo0ePJicnp8lyY8eOJTc3V/vz2WefdcXptIlCoeChhx7i9OnTjBs3jrvuuotHHnmErKysTt+3ubk5gwcPJjQ0lIKCAnbv3s3hw4dxcnIiOjq6w6qTdCcHBwciIyPx8fHh9OnT/Pbbb6Snp9O/f/8OabzUGsXFxcybN4+oqCj69OlDcnIyc+fO7ZILgLa6kf8WBUEQWksE40KHcXd3580332zyWHx8PBYWFpw9e7bLjuPll1/m8ccf55FHHmHAgAG8/fbbWFhYsHnzZp3Lb926laeeeoqQkBD69evH+++/r+3e15ipqSmurq7an548wmtlZcWKFStISkpCqVQSFhbGiy++SHl5eafut6amhry8PCoqKrCzs8PIyIgLFy50S5fLzlJRUcGFCxeQZRk7Oztqa2vJy8ujqqqqU/dbV1fH+++/T3BwMCdOnCAuLo53330XFxeXTt3vtRB/i4IgCC0TwbjQYSIiIjh48KD237Is89xzzzFz5kz69u3bJcdQU1NDYmIisbGx2scUCgWxsbHs27evVduoqKigtra2WUm73bt34+zsTGBgIE8++SSFhYUdeuydoW/fvnz66af89NNP7Ny5kyFDhvDZZ591eIt7jUbD2bNniYuLo6KigoiICMLCwhg+fDhOTk4cPnyY48ePa9uyX49qa2tJTk5m//79mJqaMnz4cMLCwoiJiUGpVBIfH49KpaK2trZD9yvLMrt37yYmJoZXX32Vt956i19//ZXQ0NAefadB/C0KgiC0jgjGhQ4TGRnZJBj/97//zblz51iwYEGXHcPFixdRq9XNRgtdXFzIy8tr1TbmzZtH7969mwQRY8eO5eOPP2bXrl2sW7eO33//ndtvvx21Wt2hx98ZJEli+PDh7N+/n5UrV7J48WJGjRrFwYMHrzmfXJZl8vPziY+P5/z58wQFBREaGoqVlRUASqUSHx8foqOjUSgUxMfHk5qaSl1dXUecWpfQaDScO3eOuLg4ysrKiIiIoH///tqqKmZmZgwcOJDw8HBKS0uJi4sjKyurQy540tLSmDhxIhMnTuSBBx7g1KlT/OMf/+hxeeG6/JX/Fj/77DPMzc3Jzc3VPvbII48QFBRESUlJlx2HIAh/DUbdfQDCX0dkZCTz58+nrKwMSZJYuHAhL774ojYwux6sXbuWbdu2sXv37iYVQSZOnKj9/8GDBxMUFISvry+7d+9m1KhR3XGobaZUKnnkkUf4xz/+wZo1a7Q55StWrKB3795t3l5JSQkqlYqKigr8/Pzo3bu33pFaMzMzBg0ahIeHByqVipycnBbX6QkuXryISqVClmUGDhyIo6Oj3uO1trYmNDSUixcvkpKSwrlz5/D398fJyanN53j58mXWrVvHO++8w/33309ycjJubm4dcUrXjZ78tzhx4kTWrl3L6tWref3111m6dCm//PIL+/fv75LGToIg/LX0/OEV4boRFhaGQqHg8OHDrFu3DicnJx555JEuPQZHR0eUSiX5+flNHs/Pz8fV1dXguhs2bGDt2rX8/PPPLTZC8fHxwdHRkdTU1Gs+5q5mbW3N6tWrOXHiBLW1tQwZMoS1a9dSUVHRqvUrKys5ceIEiYmJ9OrVi5iYGPr06dOqgNPW1pahQ4fSr18/0tPTOXDgAJcuXbrWU+pwZWVlHD58mBMnTuDu7k5UVFSrgmpJknByciIyMhJPT09OnTpFYmIily9fbtV+6+rq2LJlC8HBwRw6dIjff/+dzZs3X5eB+F/5b1GSJFatWsV7773HqlWreP3119mxYwd9+vTpsmMQBOGvQwTjQoexsLBg8ODBfPXVV2zYsIFXXnmly2+nm5iYEBYW1mTCV8MEsKioKL3rrV+/npUrV7Jjxw6GDh3a4n6ys7MpLCy8LoOkBj4+PnzxxRd8//33bN++nbCwML788ku96RW1tbWkpKQQHx+PQqEgOjoaX19fjIzadoNNkiRcXFyIjo7GxcWFI0eOcOzYsVZfDHSmmpoazpw5w4EDB7CwsGD48OHNaoq3hkKhwMPDg5iYGGxtbTl48CAnT57UO8lTlmX++OMPbrrpJtavX89rr73G77//zrBhw3r0nQND/up/i3/7298YMGAAK1as4JtvvmHgwIFdun9BEP46RNMfoUM99dRTvP3229x1111888033XIMn3/+OQ8//DDvvPMO4eHhvPrqq3zxxRecOXMGFxcXpkyZQp8+fVizZg0A69atY8mSJXz66adNWs9bWVlhZWVFWVkZy5cv55577sHV1ZW0tDTmzp1LaWkpJ06c6JEl5dpKrVazefNmFi9ejK+vL+vWrWPIkCFIkkRNTQ0//vgjtra2WFlZERAQgI2NTYftu7q6mrS0NHJzc/H09MTb27vNAf61asgLT09Px87OjoCAACwtLTts+5WVlaSmplJQUEB5eTk333wzdnZ2AGRkZLBo0SJ++eUXnn/+eebMmdPjO5O21l/5b3HHjh3cfffd1NTUcPLkSfr169dl+xYE4a9FBONCh3rnnXd49tlnSUpKws/Pr9uO44033uCll14iLy+PkJAQNm7cSEREBAAjRozAy8uLLVu2AODl5aWz9OLSpUtZtmwZlZWVTJgwgSNHjlBcXEzv3r0ZPXo0K1eu7NFl5dqjpKSEVatW8cYbb3DPPfcwZMgQXn31VYyMjPj55587tVZ4aWkpycnJlJWV4efn1+rUl2shy7I2L1ySJAIDA3FwcOi0/ZWUlDBp0iSOHTvGjBkzKC8v56233uKee+5h9erVeHh4dNq+u8tf8W/x8OHDjBgxgnfeeYctW7ZgY2PDl19+2WX7FwThr0UE40KHuvXWWwkNDeVf//pXdx+KcA2+++47pk2bxsWLF7n11lv55JNPtCO5nUmWZS5cuIBKpUKpVBIQENBpwXFpaSkqlYrS0lJ8fX3p06dPl6RV1dbW8swzz7B161ZMTU1Zs2YNzz777HWbjnKjyczMJCoqin/+85/Mnz+fAwcOEBUVxaFDhwgNDe3uwxME4TokgnHhmmk0Gi5cuMAHH3zAm2++yalTpzo0jUHoOjk5OSxatIjPP/+cp59+muHDh7N48WIuX77MqlWruOuuu7okYNVoNGRlZZGRkYG9vT3+/v4dljZSU1NDamoqubm5eHh44O3tjbGxcYds2xBZltm3bx/z5s2joKCAFStWcOnSJVauXElkZCQbNmwQecc9XFFREdHR0YwYMYK3335b+/j48eNRq9Xs2LGjG49OEITrlQjGhWu2e/duRo4cSb9+/fjwww+1t6CF68snn3zCE088wd/+9jfWrFmDt7c38GfnxyVLltCvXz/WrVtHUFBQl4zk1tTUkJaWxvnz53F3d8fHx6fdgfPVAX5AQECX5WZnZWWxePFifvzxR2bNmsXcuXO1JT8LCwtZuXIl77zzDnPnzmX58uVdckyCIAhCzyCCcUEQADh58iRlZWVERkbqfL5hFPett95i4sSJLFmypMvydMvKylCpVFy+fLnNKSWyLFNQUEBKSgpKpZLAwMBmHR07S3l5OS+//DIbN27kzjvvZO3atXq70aakpHD+/HluueWWLjk2QRAEoWcQwbggCG2SnJzMnDlz2LNnD/PmzePJJ5/skioWV0+2DAgIwNHR0eA6ly9fRqVSUV5e3qVNhjQaDZ9//jlLly7Fzc2NV155hZiYGJEXLgiCIDQjgnFBENpMlmV+/vlnZs2aRVVVFatXr2b8+PFdlk+enZ1NWloatra2BAQENOvyWl1dTWpqKnl5eV1aLlGWZQ4ePMjcuXPJyclh1apVPPTQQyiVyk7ftyAIgnB9Ek1/BOEabdq0CS8vL8zMzIiIiCAhIUHvslu2bEGSpCY/jVt9Q31At2TJEtzc3DA3Nyc2NpaUlJTOPo02kSSJMWPGcPToUWbOnMlTTz3FHXfcwcmTJ+ns63uFQoGnpyfDhw/HwsKCAwcOcObMGWpqalCr1WRkZBAXF4darSY6Ohp/f/8uCcRzcnJ47LHHGD9+PLGxsZw5c4apU6f2yED8RnzPCoIg9FQiGBeEa/D5558za9Ysli5dyuHDhwkODmbMmDEUFBToXcfGxobc3Fztz9V1ldevX8/GjRt5++23OXDgAJaWlowZM0Zv98buZGxszIwZM0hJSWHw4MHccsstPPfcc1y4cKFL9t2vXz8iIyOpqKjgjz/+YM+ePeTn5zNkyBCCgoIwNzfv9OOoqKhgzZo1DBkyhLq6Ok6cOMHq1auxtrbu9H23x43+nhUEQehpRDAuCNfg5Zdf5vHHH+eRRx5hwIABvP3221hYWLB582a960iShKurq/an8SRIWZZ59dVXWbRoEXfddRdBQUF8/PHHnD9/nm+//bYLzqh9evXqxWuvvUZiYiLZ2dmEhITw+uuvU1NT0+n7rquro66uDqVSiUKh0P67s0foNRoNX375JWFhYfzvf/9j+/btfPHFF/j4+HTqfq+VeM8KgiD0LCIYF4R2qqmpITExkdjYWO1jCoWC2NhY9u3bp3e9srIy+vbti4eHB3fddRdJSUna5zIyMsjLy2uyTVtbWyIiIgxusyeQJIkBAwbwww8/8Mknn/Dhhx8SHh7ODz/80CmBcVVVFSdPnuTQoUM4ODhw0003cdNNN9G3b1+SkpI4fPgwpaWlHb5fWZZJTExk9OjRzJs3j8WLF3Pw4EFGjBjR4ydoivesIAhCzyOCcUFop4sXL6JWq5uV93NxcSEvL0/nOoGBgWzevJn//ve/fPLJJ2g0GqKjo8nOzgbQrteWbfY0kiQxfvx4jh8/zlNPPcX06dOZMGECp06d6pCgXK1Wk5aWRnx8PLIsExMTg6+vr3Zk3MPDg5iYGKytrUlISODUqVMdNkKfl5fHE088wZgxYxg+fDjJyck89thjPTIvXBfxnhUEQeh5RDAuCF0oKiqKKVOmEBISwi233MLXX3+Nk5MT77zzTncfWoczMTHhueeeQ6VS4e/vz0033cScOXMoLCxs1/ZkWeb8+fPExcVRWFhIWFgYgwcPbjaZEOrzyQMCAoiKiqK2tpa4uDgyMzPRaDTt2ndlZSUvvfQSISEhlJWVcfz4cdavX4+trW27tnc9uZHes4IgCN1BBOOC0E6Ojo4olUry8/ObPJ6fn4+rq2urtmFsbMyQIUNITU0F0K53LdvsaRwdHdm0aRMJCQmkpqYSHBzMm2++SW1tbau3UVxcTEJCAmlpafj7+zNs2LBWBcIWFhYEBwcTHBxMbm4u8fHx5Ofnt3qEXqPR8M033xAWFsZXX33Ft99+y9dff42fn1+rj70nEe9ZQRCEnkcE44LQTiYmJoSFhbFr1y7tYxqNhl27dhEVFdWqbajVak6cOIGbmxsA3t7euLq6Ntnm5cuXOXDgQKu32RNJksTgwYP56aef+PDDD3n33XeJjIxk586dBgPjyspKjh8/zuHDh3FyciI6Oho3N7c252b36tWLyMhIvL29OXPmDIcOHeLy5ct6l5dlmaNHjzJu3DhmzpzJ/PnzOXz4MCNHjuzxeeGGiPesIAhCDyQLgtBu27Ztk01NTeUtW7bIp06dkqdPny7b2dnJeXl5sizL8kMPPSTPnz9fu/zy5cvln376SU5LS5MTExPliRMnymZmZnJSUpJ2mbVr18p2dnbyf//7X/n48ePyXXfdJXt7e8uVlZVdfn6dpaqqSn7ppZdkW1tbeezYsfLhw4fl8vJy7U9OTo589OhR+bvvvpMTEhLkwsLCJs9fy09JSUmTbZ89e7bJ8+np6fLUqVNlMzMzeebMmfKlS5e6+9fVocR7VhAEoWfp/E4YgvAXdv/993PhwgWWLFlCXl4eISEh7NixQzuZLSsrq0lXykuXLvH444+Tl5eHvb09YWFhxMfHM2DAAO0yc+fOpby8nOnTp1NcXMzw4cPZsWOHztzo65WpqSlz5sxhypQpLF68mOjoaB577DHmzJnD1q1b2bBhAwsWLOChhx7CxsamQ/dtZGSEv78/7u7u7NmzhxEjRvDoo48yd+5cPv74Y9avX8/NN9/M0aNHCQwM7NB99wTiPSsIgtCzSLLcycV4BUEQDJCvpIQ88sgjnDx5EktLS1588UUeeeSRJkFhZ9mxYwfPPvsseXl5uLq68v777zNmzJjrOh1FEARBuH6InHFBELpVeno6K1euJD09nfvvvx97e3veeecdfv/9905t3CPLMidPnuT111+nsrKS+++/H1mWWbFihcH28IIgCILQkUQwLghCt7h8+TLPP/88gwYNwtHRkZSUFLZu3cqZM2d48MEHmTRpEhMnTtRW7ehIFy5c4J///Ce33HILgwcP1u5bpVJx2223MXLkSB588EFycnI6fN+CIAiC0JgIxgVB6BZ1dXWkp6ezf/9+3n33XW3OspmZGfPnz+fMmTM4OzsTGRnJwoULKSkpueZ91tTUsHHjRkJCQsjJySExMZGNGzfSq1cvACwtLVm+fDlnzpxBkiSKioqueZ+CIAiCYIjIGRcEoceSr7SenzVrFmfOnGHJkiVMmTIFI6O2zT2XZZkff/yRhQsXolAo+Ne//sW4ceNEXrggCILQ7UQwLghCj6fRaPjyyy+ZN28etra2rFu3jptuuqnFYFqWZU6fPs2CBQtITExkyZIlPPXUU5iYmHTRkQuCIAiCYSJNRRCuM5s2bcLLywszMzMiIiIMTjYcMWIEkiQ1+xk/frx2malTpzZ7fuzYsV1xKq2mUCi4//77OXXqFP/4xz+49957mTx5MhkZGXrXKSwsZPbs2dx00034+/ujUql47rnnemQgfiO+poIgCEI9EYwLwnXk888/Z9asWSxdupTDhw8THBzMmDFjKCgo0Ln8119/TW5urvbn5MmTKJVK7r333ibLjR07tslyn332WVecTptZWFiwePFiTp8+jY2NDcOGDWPJkiWUlpZql6mtreXNN98kODiYtLQ0EhIS2LRpE46Ojt145Prd6K+pIAjCjU6kqQjCdSQiIoJhw4bxxhtvAPXpGx4eHjzzzDPMnz+/xfVfffVVlixZQm5uLpaWlkD9KGpxcTHffvttZx56h5NlmYSEBGbOnEl6ejrLli3DxcWFhQsXolareemll7jjjju6pFb5tRCvqSAIwo2tZ39LCYKgVVNTQ2JiIrGxsdrHFAoFsbGx7Nu3r1Xb+OCDD5g4caI2aGuwe/dunJ2dCQwM5Mknn6SwsLBDj70zSJJEREQEe/fu5V//+hcLFixg4sSJTJs2jRMnTnDXXXf1+EBcvKaCIAhC20oSCILQbS5evIhardaWAGzg4uLCmTNnWlw/ISGBkydP8sEHHzR5fOzYsdx99914e3uTlpbGwoULuf3229m3bx9KpbJDz6EzKBQKJk+eTExMDBcvXmTo0KHdfUitJl5TQRAEQQTjgnCD+OCDDxg8eDDh4eFNHp84caL2/wcPHkxQUBC+vr7s3r2bUaNGdfVhtpuXlxdeXl7dfRhd6q/+mgqCINwIevY9XEEQtBwdHVEqleTn5zd5PD8/H1dXV4PrlpeXs23bNqZNm9bifnx8fHB0dOyUzpdCU+I1FQRBEEQwLgjXCRMTE8LCwti1a5f2MY1Gw65du4iKijK47pdffkl1dTUPPvhgi/vJzs6msLAQNze3az5mwTDxmgqCIAgiGBeE68isWbN47733+Oijjzh9+jRPPvkk5eXlPPLIIwBMmTKFBQsWNFvvgw8+YMKECTg4ODR5vKysjOeff579+/eTmZnJrl27uOuuu/Dz82PMmDFdck43OvGaCoIg3NhEzrggXEfuv/9+Lly4wJIlS8jLyyMkJIQdO3ZoJwBmZWU1qyCSnJzM3r17+fnnn5ttT6lUcvz4cT766COKi4vp3bs3o0ePZuXKlZiamnbJOd3oxGsqCIJwYxN1xgVBEARBEAShm4g0FUEQBEEQBEHoJiIYFwRBEARBEIRuIoJxQRAEQRAEQegmIhgXBEEQBEEQhG4ignFBEARBEARB6CYiGBcEQRAEQRCEbiKCcUEQ9NqzZw933HEHvXv3RpIkvv322xbX2b17N6GhoZiamuLn58eWLVuaLbNp0ya8vLwwMzMjIiKChISEjj/4drjRzlcQBEHofiIYFwRBr/LycoKDg9m0aVOrls/IyGD8+PHceuutHD16lOeee47HHnuMn376SbvM559/zqxZs1i6dCmHDx8mODiYMWPGUFBQ0Fmn0Wo32vkKgiAI3U80/REEoVUkSeKbb75hwoQJepeZN28e//vf/zh58qT2sYkTJ1JcXMyOHTsAiIiIYNiwYbzxxhsAaDQaPDw8eOaZZ5g/f36nnkNb3GjnKwiCIHQPMTIuCEKH2bdvH7GxsU0eGzNmDPv27QOgpqaGxMTEJssoFApiY2O1y1xPbrTzFQRBEDqeCMYFQegweXl5uLi4NHnMxcWFy5cvU1lZycWLF1Gr1TqXycvL68pD7RA32vkKgiAIHU8E44IgCIIgCILQTYy6+wAEQfjrcHV1JT8/v8lj+fn52NjYYG5ujlKpRKlU6lzG1dW1Kw+1Q9xo5ysIgiB0PDEyLghCh4mKimLXrl1NHtu5cydRUVEAmJiYEBYW1mQZjUbDrl27tMtcT2608xUEQRA6ngjGBUHQq6ysjKNHj3L06FGgvpTf0aNHycrKAmDBggVMmTJFu/wTTzxBeno6c+fO5cyZM7z55pt88cUXzJw5U7vMrFmzeO+99/joo484ffo0Tz75JOXl5TzyyCNdem663GjnKwiCIPQAsiAIgh6//fabDDT7efjhh2VZluWHH35YvuWWW5qtExISIpuYmMg+Pj7yhx9+2Gy7r7/+uuzp6SmbmJjI4eHh8v79+zv/ZFrhRjtfQRAEofuJOuOCIAiCIAiC0E1EmoogCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0ExGMC4IgCIIgCEI3EcG4IAiCIAiCIHQTEYwLgiAIgiAIQjcRwbggCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0ExGMC4IgCIIgCEI3EcG4IAiCIAiCIHQTEYwLgiAIgiAIQjcRwbggCIIgCIIgdBMRjAuCIAiCIAhCNxHBuCAIgiAIgiB0k/8HtCzxQOPAjhYAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAJOCAYAAAAd/wmUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgkZ3mmi98Rkfta+753V++rurWCQAJZQggLjD1gG4xsbAwecxismZ/HjD3Gc/l45pyDzWIbjGdsjMGAwQs2QiABWloSam2t3tfq6q6qrH2v3DPW3x9ZmZ1VlVvt3a3vvi5d0FkR+UVkZkQ88cbzvY9kWZaFQCAQCAQCgUAg2HDkzd4AgUAgEAgEAoHgjYoQ4wKBQCAQCAQCwSYhxLhAIBAIBAKBQLBJCDEuEAgEAoFAIBBsEkKMCwQCgUAgEAgEm4QQ4wKBQCAQCAQCwSYhxLhAIBAIBAKBQLBJCDEuEAgEAoFAIBBsEkKMCwQCgUAgEAgEm4QQ4wKBQCAQCAQCwSYhxLhAIBAIBAKBQLBJCDEuEAg2jb//+7/H4/EQj8ezr9XW1iJJUtH/PvrRj5Z879///d+nq6trPTdfIBAIBIJVI1mWZW32RggEgjcmP//zP4+qqjz22GMA6LrOP/7jP+ZdNhwO81/+y38hlUrx/e9/nwcffLDoe7/00kvceeednDlzht27d6/5tgsEAoFAsBbYNnsDBALBG5NUKsWPfvQjPvvZz2Zfs9lsfPCDH8y77Dve8Q4SiQRf+tKXSgpxgNtvv536+noee+wxIcYFAoFAcN0ibCoCgWBTeOaZZ4jFYvzsz/5s0eUMw+CXf/mXefbZZ/mjP/ojfuu3fqus95ckiXe9613ZqrtAIBAIBNcjQowLBIJN4bHHHuPWW2+loaGh6HK/9Vu/xb/+67/y27/923z6059e1hgPP/wwL730EhMTE6vZVIFAIBAI1g0hxgUCwabw2GOPlayK//7v/z7/5//8H973vvfx53/+58se47777sPpdPKDH/xgpZspEAgEAsG6IsS4QCDYcI4fP04oFOLhhx8uuMyf//mf8z//5//kvvvu4+tf/zqyvPzTlcfj4e1vf7uwqggEAoHgukWIcYFAsOEcOXKEiooK9u3bl/fv3/rWt/jkJz/J4cOH+e53v4vD4ViyzMTEBA899BBer5ft27fz1FNP5X2ve+65h2effXYtN18gEAgEgjVDiHGBQLDhHDp0iNnZWS5fvrzkb08++SSPPPII3d3d/OAHP8Dn8+V9j9/+7d+moaGBiYkJPvOZz/C+972P6enpJcu98sorHD58eM33QSAQCASCtUCIcYFAsOHcdddd1NTU8L3vfW/B6y+//DI///M/T11dHT/60Y+ora3Nu340GuXf/u3f+B//43/g8Xh4+OGH2bt3L//+7/++YDlN03jiiSdKetMFAoFAINgshBgXCAQbjqIovPOd71zg5T5//jwPPfQQDoeDJ598kvb29oLr9/T04PP5aGlpyb62d+9ezp49u2C5I0eOEA6HhRgXCAQCwXWLCP0RCASbwsMPP8wv/uIvMjMzgyRJPPDAA0xNTfEf/+N/5Pjx4xw/fnzJOnV1ddx///1Eo1ECgcCCvwUCAaampha89r3vfY/9+/fT1ta2rvsiEAgEAsFKEWJcIBBsCvfffz+yLPPDH/6QmpoaQqEQAF/60pf40pe+lHedD33oQ9x///34fD7C4fCCv4XD4SX+8sceeyxvoqdAIBAIBNcLQowLBIJNwe/3c++99/K9732Pf/zHf8SyrLLX7e7uJhqNMjQ0RHNzMwBnzpzhQx/6UHaZ06dP09fXJywqAoFAILiuEZ5xgUCwaTz88MM88cQTaJq2rPV8Ph/vfve7+fSnP00ikeD73/8+p06d4t3vfnd2me9973s0NDRw6623rvVmCwQCgUCwZkjWcspRAoFAsIYkk0kGBwfp6OjAZlveg7qJiQkeeeQRnn32WVpaWvjSl77Efffdl/372NgYhmHQ1NS01pstEAgEAsGaIcS4QCAQCAQCgUCwSQibikAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSQowLBAKBQCAQCASbhBDjAoFAIBAIBALBJiHEuEAgEAgEAoFAsEkIMS4QCAQCgUAgEGwSts3eAIFAIFgtlmVhGAaSJCHLMpIkbfYmCQQCgUBQFkKMCwSCGxbTNNE0DVVV0TQNh8OBzWbDZrOhKIoQ5QKBQCC47pEsy7I2eyMEAoFgORiGgaqqqKq6oCLudDqxLAvLspBlGVmWsdlsSJIkhLlAIBAIrkuEGBcIBDcElmWh63q2Cm6aZlZwZ4S2w+HILpt7alMUBUVRhIVFIBAIBNcdQowLBILrGsuy0DSNVCqFrusAWVG9WFhnxHjuupC2s2SWFxYWgUAgEFxPCDEuEAiuS3KtKKZpAmQr4blYlsXc3ByDg4OYpklbWxu1tbVLxHamWp6xsGSq5cLCIhAIBILNRIhxgUBw3ZDpipIrwiVJylvJNk2T8fFxQqEQiUSCxsZGXC4XAwMDyLJMe3s7LS0t2Gy2JWMIC4tAIBAIrheEGBcIBJtOxoqiqir9/f1YlkVLS0tegayqKkNDQwwNDaEoCq2trTQ0NGCz2XA4HJimyejoKP39/USjUVpaWmhra8Pr9S4ZE2BsbIzZ2Vl27NixoFouEAgEAsFGIFobCgSCTcM0zQVdUQCSySSQrljnEolECIVCjI+PU1FRwY4dO6iurl4inGVZpqmpiaamJmZnZ+nr6+OFF16gpqaGjo4OqqqqFlhTNE0jEolgmiamaaLr+oJquUAgEAgE64kQ4wKBYEPJtaJompZtTZjr385UrS3LYnJyklAoRDgcpqGhgVtvvXVJlbsQFRUVHDhwgGQyycDAACdOnMDpdNLe3k5TU1NW8GdaI2YsLJqmLRHlolouEAgEgvVA2FQEAsGGkGlNmEql0DRtQS/wXKHb09ODYRh4PB4GBwezlpWmpibsdnvRMRZ3U1mMYRgMDw/T399PKpWitbUVm83G9PQ0hw8fXrCtcK0Ly+IJnwKBQCAQrBVCjAsEgnUlk5KZSqUwDAPLsgp2MYnH45w5c4ZYLEYgEKC1tZWampqy7SKlxHgGy7KYnp6mr6+PyclJ7HY7t9xyCxUVFXmXzZwmM60R83V1EQgEAoFgJQgxLhAI1oV8KZn5KssZYTw4OMjMzAwulwufz8eePXuWPWa5YjyXy5cvMzQ0hKqq+Hw+2tvbaWhoyNtCMfNfZl9EuqdAIBAIVovwjAsEgjWjUEpmRrTmYhgGo6OjhEIhNE2jubmZHTt2EAqFspM5NwKHw4HP52P//v0MDg5y+fJlLl68SFtbG62trVmBn+tnz+ynYRjZ/RO+coFAIBCsBCHGBQLBqslYUVRVRdf1rBUlnwhPJpMMDg4yPDyMy+Wivb2durq6Jd1TNhqbzUZHRwft7e1MTEzQ19dHb28vTU1NtLe34/f7AZZMMs10hBHpngKBQCBYCUKMCwSCFZPPilIqJXNiYoKamhr27t1LRUXFdSdcJUmirq6Ouro6IpEI/f39HD16lIqKCjo6OrLpnpntzq2Wq6qa3X9hYREIBAJBOQgxLhAIlsVyrCimaTI2Nsbg4GA2JfOOO+7A7XZv0tYvD7/fz549e9i2bRuhUIizZ8/mTfdcbGExDAPDMERrRIFAIBCURIhxgUBQFpn+26lUCl3XgWvdRYqlZNpsNlpaWrIpmaXYaNFazhx2h8PBli1b6OzszKZ79vT0LEn3XGxhyfjKhYVFIBAIBIUQYlwgEBTFNE0SiQQTExMEAoGCVhQoPyXzeqPc7Vuc7tnf31803VNRlAUWlrm5OYLBIC6XS1hYBAKBQAAIMS4QCPKQm5KZ+e/kyZPcfffdS6rbq03JLDT+9U5FRQUVFRVs3769ZLpnplp+6tQp9u7dS2VlpbCwCAQCgQAQYlwgEOSQsaJk/OCZlMx89hJN0xgZGVmQkrl3796SKZk3Gy6Xi23btrFlyxZGRkbo6+vj0qVLtLa20tbWhsvlAq5N9MyI79zWiCLdUyAQCN64CDEuEAiy7fkyXVFKpWSGQiFGR0fx+Xxs3bp1WSmZNyuKotDS0kJzc3M23fPIkSPU19fT0dGRTffMfKYZC4tpmpimia7rC6rlAoFAIHhjIMS4QPAGJdeKkumKAhRMyQQ4c+YMc3Nz1NbWcvDgQQKBwIZv91qz1pYYSZKorq6murqaWCzGwMAAr776Kj6fL9uDPXfZ3C4smqYtEeWiWi4QCAQ3N0KMCwRvMDKtCVOp1AIrSj4RnpuSCeDz+di1axdOp3Pdti+3G8lGsV6C1+v1snPnTrq7uxkcHOTChQu8/vrrdHR0FEz3BISFRSAQCN5ACDEuELxByKRkplKpklaUxSmZra2t2Yj49RTiNyuZdM/Lly+zZcsWJiYmCqZ7AnktLDabrWAXG4FAIBDcuAgxLhDc5ORLySxkRSmUkglw8eLFTdj6m4uMhaWjo6Noumdm2cXpnpnvTqR7CgQCwc2DEOMCwU3IWqdkZuwTN0LLweuZ3M9vpemeuRaWTLVciHKBQCC4cRFiXCC4ichYUVRVzU4WzK2k5rKclEwh9tYGy7KWfJYrTffMdMAR6Z4CgUBwYyPEuEBwE5DPirIeKZkbURnfaEF5vVT7l5vuudjCkvm+hYVFIBAIbiyEGBcIblCWY0VZi5TMjRR3N0s3lcWUu18rSffMtKo0DEO0RhQIBIIbCCHGBYIbjEw/6lQqxYULF7IdTvKJ8LVOybxeqsg3MssRx8tJ91zcGvHs2bN0dXXh9XqFhUUgEAiuY4QYFwhuEEzTJJVKoapqNqBnZGSEtra2bKU0w3qkZAoxt3ryecbLYXG6Z39/f8F0z8zyg4ODtLW1LQkSEhYWgUAguL4QYlwguI7JTcnMiPDc1oS51VDLspienmZwcJCZmZl1Scm8XivjsViMwcFBTNOkra2NysrKzd6kdSE33TMej9Pf359N92xvb6ehoSF7w5UJc8r8RkS6p0AgEFyfCDEuEFyHZMRTxg+eEVaLrSiSJKHrOkNDQ4RCITRNo7m5mR07dqx5OM/1Jtwsy2JmZoZQKMTMzAx1dXU4nU5ee+01fD4fHR0d1NfXl3wasJE3GCutjOfD4/EsSPe8fPlyNpiptbU1O5ZI9xQIBILrGyHGBYLriEy7ukxXlFIpmaZpcuLECdxuN+3t7dTV1S2xrKwl10M3lUxf9FAoRCqVoqmpKXvz4XA4suL00qVLXLx4Mdu3e6U++eudTLpne3s7ExMT9Pf309vbC6SfGGT6xRdL98ytlgsEAoFgYxFiXCDYZHKtKJqmLSslE6C7u5vGxsZ1r25udjeVxX3RW1tbaWhoWHLzkRGnbW1tjI+P09fXx+XLl2lpaaG9vR2Px7PkvTdi3zL7tF5jSZJEXV0ddXV1zM3NcfToUV5//fWy0j2FhUUgEAg2DyHGBYJNItOaMJVKFbWiQOGUzGPHjuHz+a671nxrSTQaJRQKMTY2RjAYZOfOndme28WQZZmGhgYaGhqYnZ2lr6+P559/nrq6Otrb26msrLxpBafP5wPgrrvuYmxsrKx0TxAWFoFAINgMhBgXCDaYTEpmKpUqaUUpJyVzowTyRlfGp6amCIVCzM7OUl9fz+HDh7Mic7lUVFRw4MABEokEAwMDvP7663g8Hjo6Ojbs81vvyni+sZxOZzbdc2xsjL6+voLpnpDfwmKz2QoGSAkEAoFg9QgxLhBsEPlSMgtVHhenZBaqBudWNTeC9R7LMAzC4TAzMzPMzMzQ3NzMrl27cDgca/L+breb7du3s2XLFoaGhrh8+TKqquJ2u1FVdc3GKcZmWGJkWaaxsZHGxsai6Z6ZdRane2Z+qyLdUyAQCNYeIcYFgnVkvVMyN1KMr6cAS6VS2ScAAF6vl4MHD67bZFSbzUZ7ezttbW2cOnWKqakpjhw5QnNzM+3t7ctKJi2XzbhpyvedrTTdM9fCkqmWC1EuEAgEq0eIcYFgHchYUVRVRdf1rBVlrVMyb/TKeDQaZWBggPHxcSorK9m9ezfhcJhYLLauXWEySJKU9dy3t7cXrRivls2wqRQba6XpnpmOP5IkYbPZhK9cIBAIVokQ4wLBGpLPilLIb7sWKZkbKYLWUpRm/OBzc3NLngBEIpFNmSgaDAbZt28f27Zty1aMXS4XHR0dNDY23lCe6eV8fstN91xsYcn8voWFRSAQCFaGEOMCwSrJtCZMpVJMTk4yNjbGtm3bClpRclMy6+rqVpWSeSNVxg3DYHR0lFAohK7rNDc3s3v37g3xaS+HTMW4q6uL4eFhent7uXTpUjZMZ6Xbu5GV8QzLGWs56Z6LLSy9vb04HA5aW1tFa0SBQCBYJkKMCwQrJF9KpqZpRCKRJRaLXCG6limZN4JnPJVKMTg4yNDQEC6Xi/b29rKSMTcbm82WFeC5YTpNTU10dHSsuLPLRrBa4V8q3TNzQ5IR5dFoFI/Hk/WVCwuLQCAQlI8Q4wLBMjFNk1QqhaqqmKYJkH1Un2kNlyGZTDI4OMjw8HBWiK51Sub1WhmPRCJZP3h1dTV79+6loqLiuhNnpfYpN0wnHA7T39/Piy++SFVVFR0dHVRXV5e1T2tZGR9MDBK0B/Hb/AXHWotxCqV7NjU10d7ejt/vz46X+/vPFyQkLCwCgUCQHyHGBYIyyE3JzIjwfK0JJUnCNE1mZ2cJhUJMTk5SU1OzbkL0equML+4I09jYyO2335439XI146w15Y4ZCATYu3dv1ld+8uRJnE5n1ldezk3WWuzfsdnjPDnxY+6ovI2317yNZnfTgr+vlRjPkHtDEolE6O/v5+jRo9l0z0w1PLOsSPcUCASC8hFiXCAoQj4rSrGUzNnZWZLJJKdOncqmZLrd7nXbvo32HxcS/rquZ204pmkuqyPMjYjT6aS7uzvrK1/ciSSf/Wgtb5qSZgrd0nlh+kVemH6Rnb4d3Ff7Nnb7dyFL8pqL8Vz8fj979uxh27ZthEIhzp49i6ZpSJKUDQkCke4pEAgE5SLEuECQh0z7tkxXlHJTMjPV8rvuumtBSuZ6sdETOBeTa8Nxu910dnZSV1e3aj/4Zu7TclAUhdbWVlpaWpicnKSvr4+rV6/S2NhIR0dH1sYBa7tPqqku+Pf56AXORy9Q76zjZ+vuYadt17oLXYfDkU33PHr0KOFwmGeeeWZZ6Z651XKBQCB4oyLEuEAwT64VRdO0FaVkKorC2bNnN0SIw+Z1UwmHwwwMDDAxMUFNTQ379u0jGAzekJXOtfj8JEmitraW2traBTaOyspKOjo6qKmpWbDsakmZqSWvtTgcfKhmmi3SfwMDtjffCuYekBtWPV4xZFnG6XTS1taG3+9fVrqnsLAIBAKBEOMCQTZdMJVKlbSiWJbFxMQEg4ODWU90bo/scDicndS5kdu/UczOztLX10c0Gl2RH/x6ZS0FYMbG0d3dTSgU4vTp09jtdpqamkqvXCa5lfH9Hjfvr47SIB1BQs++3tXwNNbcESz7fZiuD2LZDqzZ+IvJzKEQ6Z4CgUCwfIQYF7xhyaRkplKpklaUclMyN7pSvRHj6brOyMgIiUSC4eFh2tvb2bdv303rB18rnE4nW7duzfrKr169CkBPT8+ChMuVkDKT3Bf08a7gCEGeL7ichIGkPYmsPYmp7EuLcvt9IK3td5e5gc2w3HTPzHssTvcsFJglEAgENxNCjAvecORLySxkRVluSubNJMYTiUTWD+71enE4HGzbto3a2tp1GS/DzVYRlWWZlpYWKisref7554lEIjz33HM0NDTQ0dGxosAntxnEFY/gDJyHcj8u4yq94Sf41+mX2B28i7dUvxmvzbvssfNRaMJouemesLRanhHliqKIdE+BQHBTI8S44A1B5lF4xg9ummZRK8pKUzJlWb7hxfjc3BwDAwNMTk5SW1vLgQMHCAaDvPLKK2s6zhuNjJg8dOgQ0WiU/v5+XnrppWx7wNra2rLFZkKH//piBf+V+/nN3Sk+vP00NbbX8y6rS/UcT+3n6xMpIoYGTHAp8e98f+wH3FV1B2+ruZdG1+p85RmbSiFWk+4pLCwCgeBmR4hxwU1NZpJYKpVC1/WsFSWfCF+LlMzNqIyvBaZpMjExQSgUIhaL0dTUtKQt40YKoBulm8pyyK0e+3w+du/enfWVnz17FkVRaG9vp7m5ueQEYMPMfD4S//usi/999lbuab6F3z1wlW7vC0ikmEk08Jp1kH+ajKKRWPIemqVxZOp5jkw9zx7/bt5eey+7fDtX9D0vtqkUY7npnpnfgmEYWdEv0j0FAsHNhBDjgpuSjBUlFotx/vx5du/eXbCF2lqmZOZW9DZCKKxW/Ge88KFQCEmSaG1tpbGxsaAYvFlF8maR2x5wdHSUvr4+Ll++TEtLC+3t7QV95aphLHnt2SGFZ4e20u7v4sO3TvGT+DgQLWs7zkTOciZyllZXK/99+6eWvR8r+b2Xm+65uDWiZVmcPHmS1tZWKioqhIVFIBDc8AgxLrhpyLQmzHRFyfQznp6eXjIRzLIs5ubm1jwlM3cy2vUsxuPxOIODg4yMjODz+eju7i5pk7iZxc5G7Fux34QsyzQ1NdHY2MjMzAx9fX0cOXIk6ysPBoMLltetwh17+iMyp+MuyjeTX2NanVn2OrC633uxdM/MjfHi1ohTU1PU19djGAaGYYjWiAKB4IZGiHHBDU+xlMzcZSBtxxgbG2NwcJBEIrHmKZm5YnyjKHeszA3IwMAAU1NTy/LCL3es1fBGFlOSJFFVVUVVVRWxWIz+/n5eeeUVAoEAHR0d1NXVYVpWjk2lwPuYMqygCYldsmOaFrK8vO+glGe8XBane547d44LFy7Q3t5OS0tL9pi2LGuB1SzjKxcWFoFAcCMixLjghiXTBi2VSmV7ey+ugGf+fzKZZGJigqGhIWw2Gy0tLTQ0NKx5OE9mvI0S4+VUxk3TZHx8nFAoRCKRoKmpiW3bti27tZ4QN6tjudVjr9fLrl27sr7y8+fPc+HCBeobG9GXulQWsGIxjgPDNJHl5Vm0luMZL4dc+87Y2Bh9fX309PRk0z0z4j+fhSVfkJBAIBBczwgxLrihyE3JVFU1e1EuVAmLRtOe2VdffZXKykp27ty5IBFwrdnoyngxMa5pGkNDQwwODmZj21d7A3IzesY3kpX87ux2O11dXXR0dDA2NsaZy+eZSswBRcKWDFZ0drdZdnTdxG5bvhhfj2NKlmUaGxtpbGxkdnY2m+4J6YCt3NRXke4pEAhuVIQYF9wQFLOilErJBNi3bx/V1dXrvp2bIcYXk+mNPjIyQiAQYPv27dTU1KxaiFyv3VRyO8EYhpHtSFLuBNyN+q5WO05GmOJT+MGJHkArvLCxsu9KNm0YxvITZNfKplKM3HTPI0eOcOnSJQYGBoqmewILWiNmhLkQ5QKB4HpCiHHBdU3GipIJ6FlJSuZPf/rTNfOEl2KzKuOWZTEzM0MoFMr2Rj906FC2I8VacT1VxjPJoKFQCIDW1lZcLlfW0tDa2kp7e3tZrSk3ewLnclAtFUuyU0iMS4Clr1CMGysT42ttUylGxl512223EQ6Hi6Z7wjULS2ZCt7CwCASC6w0hxgXXHblWFE3TSqZkxmIxBgcHC6ZkSpKU9ZSvN5nt26jxACKRCK+++irJZHJFvdHLZbVCUjdULox+gzrbvyA5IGX/IC3e90MZ75vUJxmJ/jkt8vOM6k3Mzv0cM6E63G43W7Zsoba2FlmWcTgcNDU1MT09zdWrVzly5AjVzSl81d+l3X6eQeMgdcHfIeDsLmubR6NPkYx/iQpzkt7EO9nR/Jt4HZWr+hxWS8pU0fXCf3dIMlqqyAJFkAwFfYVifKOqzZmbT7vdvuJ0T2FhEQgE1xNCjAuuGzJpe5nWhKWsKOWmZG50KuZGjKeqKkNDQ4yOjiLLMlu2bKGhoWFFvdGXw0r2K5qaonfs/7DF80Nur8jte/0ZRuf+N9PSwzT7fxObnPZA537Xc+oFZmN/TqftNfbY07MWK5Qw1P0vrgQb0ey/Qr3v8AJBn0l71JwnqIp+ma2OHpT5P++Un0ePvcCVuZ14vb9NnfctS/fRNBiI/AP21D/Qbh8Fe/r1Wuc/EJn9Dsci99Be/9vU+LqW9TmsWWXcVFGLaG233Y6ulpjhWQj9xhDjwIKbbZHuKRAIbmSEGBdsOqZpZlMyS1lRVpKSuZGV8cx46yXGY7EYoVCI0dFRgsEglZWVuN1umpub12W8XJYrUsYilxif/mv2Bn/KXdX5LRUN9jka+Dpz0e/QZ95Lve8TAGiu4wzN/C+22HtocuR//y7nCPD/MTr311lBbzcVBiJfx576RlpI5/lZ2CSLbfZzoP42fbEmYrYHcRk/g2ZE6Z/9ItXmv7PVFsmK8Fz8dpU7qn6ElvoJJ8cOEAh+lM6au5b1uawW1UpRrPDtttlxOT3MreTNdeW69YznjgX5f4/LTfcEshYWVVWzrREXd2USCASC9USIccGmkdsVpZQVZTUpmWtRqbYsiyuJq6SMFLv8O4suu9ZiPPMUIBQKMTs7S319PYcPH8bn89HT03NddG7J5crUEVLxfyaonOOOmtmy3juopAgqT3Ap/BJxu5+9DWNU2dSy1m2wz1FtfZ2LM09iYmerYwSPvTxB2WEfpib4VS4nf8jVcY1tzgnsZZwV7bLJ4arXGY49yvHLO7C738nuxp9HKtIScK2qxylTJaEV/h6cioK1wsK4qcrLFuOLK9XrTTnjlZvuCUur5RlRriiKSPcUCAQbghDjgg0l82g44wc3TbOoFWUtUjJXUxnXLZ3j4RM8M32EgWSIt1e9bcPEuGEYjI2NEQqFUFWV5uZmdu3ala3ureVYq8U0dc6P/hMB/pG9wUGYb2F+dqYa04K9VVMF11VNiauqn2pbim3OWXDOYljQk/LjkzUa7cmC60YNhUHNS7M9zh7XOABJU+ZiMkCtLVlU0E/pDiZ0F52OKAe8wwCEDTu9mpsWewyfUljRXp4LEtac7K+eoMl7DDjGwNCXGNF/jt0tv47T7iv8Ya2SlJkioRb+zh2SgrXCbiqmKi/bppL5/W10Zbwc8b+SdE9hYREIBBuNEOOCDSEzaWpmZobp6Wnq6+sXVJ5yWeuUzJVUxqN6lJ/OHuW5mReY06898E+ahYVhhtXaYlRVZXBwkKGhIRwOB62trdnPK99Ym1kZj6tz9Ix9hXbXY9wWXGqM2F2ZFuF9kQCTSTf7q8exy+n3iBg2hjQPLfY4213hBespEnQ7IwD0q15MS6LTec1vPqk5mDLSQnrHonVdssl2VxjTgsspP25Jp9mRyP59SHWTsGx0OSJULxLrAUUjoGio84K+WklSY7+2zKnpGuySyc7K6SX72uaboo2/YWbqG5yJ3UdX429T6blmH1ozz7ihFhXjdkkGc4ViPCUtuzJezDayHqx0vHLTPRe3RszcFNvtdmpra0VrRIFAsOYIMS5YVxZbUcLhMMPDw7S0tCxZNjMpca1TMpcjji3jCt+ffI2nZ15Fs5b6nFNGqqzxVjTRMRolFAoxNjZGRUUFu3btKhlQtFmVccuyeOHq/81dlT/krqrSn0mHP0yHP8xEws1gtB6fP0qHc2qJkM5HuyMGwJjmJJqowXSE2eKMLBDJ+ZAl2Dov6AdUD3qqCptzmjZHvOSYjlxBn/STiNQQcE2yr2qy5LqVzgR3OB8jFf8Brw7dSUPNb9BaeWjNvifVUokXE+MomCu0qSSiOlqpeM9FbIZNZTXWkVLpnl6vF1jYGnF0dBSv10swGMz6yYWFRSAQrBVCjAvWnHwpmZmLl91uXyKMI5EIoVCI8fFxKioq1jwls2Rl3DJRjKPY9G9iM17ifT4fB52H+ftJOyPaQkGeMtdWjFuWxdTUFKFQiLm5ORoaGrj11luzgqDc99goMmOlTJ1/SkxwLr6Dd9f0scVferrguZlqdEvmYG0fSdPGlZSfeluCCluR8BrAtOCK6sMlmWwJDBE27FxKBWl1RPHKxYWjZsGVVIAqW4pa/yATupOLyQBdzjD2Ej+vuCkzoPposicI1F6lZ66S45N17KsaRymhO8cTLq5GKtlX+TI+XuDUlW3Ezf+AJDUWX7EMUoZKXCs8g9OGtGLPeHgmzsmTpwi4DRobG8sS2JthU1kL4V8o3bOmpoaOjo4F56DMpPLMucQwDAzDEK0RBQLBmiDEuGDNKCclU5ZlTNNckpLZ2Ni4bBFaLgUr41YCm/44du1byFZf9mWZKNvtz/InjQ5Cxq18Y8rDpWTanlKOTaUcW0xuVxhd12lubmb37t0L/ODl7ttmpH0m9BSmLHOaAGdm9tI5keCdFSEOVY0vWEc34eR0PZWOJLsqr/nGXbLOdlcY3ZLoSfnxyxoNi7zhKVOiT/VTY0uxNceikraSzBX1hud6yXMtMLW2FLW2FFHDRq/myesNn9EdjOkuOhZZYLqDMwCMxL0MRP3sqZzAa1+4bl8kwGTKzf6qcercI9nX91VeAv6Ey7Yajvf/InuaH8FucxX9vAuhGwapIlYSxZJW7Bl32vxUV9fQ29vLpUuXlnQhycdm2FTWugqfm+45MDDAiRMncDqd2XTPjHc8X7qnruvZ85ywsAgEgpUgxLhg1WTagqVSqQWTq/JdMDNtDI8ePbogJdNuz9NHbo3I3ABkkMwxbPq3sWvfRaKwTUJCpU35Kb9XJzNhHuI7M5VM6KurjKdSqWxXmMzFvr6+fsXiYqNtKpmxkjl2HQuJKzYPfxndTsNcBz/jGeG2qnHOzlTS4Q9zqGas4PvZJCvrDe9T0zdiVUqSYc1LqyO2xEueSz5vuEsymCzgJc/Fp+jsUMJZb3iVkkJHImrY6XJGqCwy8bPRE6PREyOi2nl5vI7uwAxjCQ+6JbO3apIOf+FxtwYngb9kYuLv6E08SHfTxwi46gsun49SEyxlkxXbVLQ4VNfUcnD3QSYmJujr66O3t5fm5mba29vx+ZZOTN3oyvh69jR3uVxs27aNLVu2MDIykk33tNlsVFZeC3tanO5ZKEhIIBAIykGIccGKyGdFKSclc2RkBMuylqRkricZwSobZ7Br30Qye0FyFBXiC9bHxCXFabBXM1rEHpA7XjErTmVlJbt376aysnLVomLzKuP5rSVRFCY1JzOqFwkIFumEshi3pDNnOIngQMHCJZWnKGUJXJJB0lIwkLBLJg65vDkCDtnEKRnETBsmEi7JyAYElcJj03DIBjOql5huo9qZKL3SPEF7HCXyAurM0/QqXVT6P0mVe39Z6xpmlEcPv8g76vr54cAW/uHybiaS154oyYbESn8RyYSFbpgLupBkIudffPFFqquraW9vp7q6eoGFYz290z1jP0GP/W/21FZguj6Iae5e9/OGoigL0j1PnDhBT08P4XBYpHsKBII1R4hxwbIox4qSu+zilMxdu3Zx/vx56urqNmiDdWr9r9HifRp38mLO62BKLVhUIVtnkFgq3iwcDBuH+OdZPydiCSBGkz1YcsjcC/Pk5CShUGjdrDgbfZHPVsbNhZXjOj3Ffd5R7q0NYZvvltLqhZmUk5PTlWwLzlDpzP9UIbdbSr392jLX7CIRXPJSeWlacFX145AMWhdNyhzXnMwaDjqdkbzecH1+Xb+s0eGMLfjbkOohYSl0OSLIedZN6AqnZ2pp8UY4WLPQlpNu5Sixt8BEz7Bq5/xsDVsDM9xaOwpAI9OYiQ9yJdKF3f0RmnwPLUgUza6b6mU8/Gf8UvWLeGrTNyq/ves4H9l+ku8NbOXvLu3j4lw1GGCyst9FKmou6aYSCATYt29ftgvJyZMncTqddHR00NjYuD6Vasvi7PC/4tT+jl3BfnAAOsjRo1RZrbRU3wXWbSB51nbcRWTSPT0eD42NjSQSibLSPYEFrREzwlyIcoFAkA8hxgVlsVYpmfF4fGPSMK0wdu3fsOn/yLaG/DYJ2RoEBjGlWkypBdk8i4SKQSXn1QN8Y4r5Svi1iqeZR7TnY3Jykt7eXgzDWFcrzmZVxpOGioRFlxHnweDgEq94hkpnitvrRknoCq9ONNDsidDkjWFYcCXlx6fo2W4pS9a1qVTaVOKmwoWkl0Z7nKCio1kSV1LpvuRb5i0ui6mzp6izp+b7hnuykz0Tpky/6qPBnsjaYxbTPC/sp3UH47qLLkcUh2wyk3RyKVzF9oopbpsX0otZ3MpxX9U4DsViLOGmL1LB3qoJbq8bWbKeLMFW+xXQP8XgxJ8Rt7+P9uCvI8sOphKvMRf5PF22U1Tbln7XDsXkFzov8Qudl3hhtJmfXL6L8fHKJcuVQyKPGM/gcrno7u6mq6uL4eFhrl69yqVLl6ivX57NphiGoXJ66B+o5hsc8Of/TdmkEDtbvo0190NMxy9gun4J5IY124Z8mKaJ2+2mo6OjrHRPuGZhMU0T0zSFhUUgEBREiHFBQXKtKJqmrSglc7EfOjO5cb18n5LZj03/PjbtB8jkF0yLka0JsCYwpO1ErQb+v2GZYb2wHSWl6jgdSw+dzP5Ho1E0TaOrq4u6urp1v/Buhmc8ljB5hznO+zovlbWe22Zwa+0oc6qd42NbqfaF6fbmF1uL8cgGO1xh5nQbZ4bbqayZKeolzyUz2XNCc3Kht4nG9omy2ikCVNlUqmwqY2qAkYk6aiuH8wrpfGRaOZ6erkY1K+nwhcpet8U+CXyJS2P/RJw6tjnO01BmouibG4Z4c8M/8fRgO1ecDl5J1qJZpVNqMySiGqbnu1yddtNW8eso8tJJpoqi0NraSktLS/am0zRNTp0+jrPuGZzOStoDHyqaRrqYuB7nH0P/QlviezzYeKGsdSQrjJL6CnLqO7xm/AYB99vo8naWPeZyyJ00upp0T2FhEQgE+ZCs6yG+T3BdkUmfS6VSC6wo+S4c+VIyW1paCqZkqqrKCy+8wFvf+tayouzL3GBk8xXs2jexGS+kX8KBKe9CMoeRKSz6LMCUdwMaipkWliZurui38vcTdga1hXaMFkczv9X0Hwm6r1lNwuFw1g9eXV1NMpmkpaWFpqamtdm/IgwODjI1NcX+/eX5jVfDuXPn8Hg8dHR08N3zp/mjl46yr2qcj2w/yf3NV1HyWEkyjCfcXI1UsLtyEp897TcfUL0Yi8J88pEb8JPxgl9J+bBJFm0FquoZxjQXYdNOlyOKIlnzbRKXBgHlY0h1k7QUOh1RZAk0U+bkVC01rkTRSZqQbuNo5NhVErrCmZlamj1RmrzF9/dKyotNIrtvCVOhX/XSUKINpGHCqek6Ag6VLYFZIJ0o+nS0kacjjUTMwh1RFEzu8k7wgHeQZlf6ycCM4WKU+2iq+E94bIUrz5Mzg1wc+V/srX2Valv6M53QvUxKD9Ja8QmctsJV+hl1lq8N/gPnIuex5p3uNbrKPe4xfqZuAIdS+CbEJMB5/Vb+fsJkYn4uR5enk7fX3MvBioPYpDU6vwBHjhxhz549VFdX5/17Jt1zeHg4b7pnhowozxQjRLqnQCAAIcYFOSzHipIvJbOlpaVkSqau6zz33HPcfffdq7dtWEls+hPYtW8iW735F0EhlurCLodx2sdyXnemxbo1gmzlr6Bb2BkyDvONKR8X5lsbtjvb+VDdh6jzVjExMUEoFCIajWb33+PxcOLECWpra2lubs77vmvJ0NAQExMTHDhwYN3HOnfuHJIkoes6/36lh3+avuaLbvfN8eFtp/j5jou4bNcmXl4JB5lVXeytupa8uZgxzcXcfBcTW87PbFD1kLIUOgt4twGGNTdxw0aXc+Ey+VI7FzOgetEsiS2LlrmS8mGXzCU+9FxOT9cgSRZ7cto1GiacnBfDW+fF8GJMC05N1+JSdHZUzGRf1+dtO0FFo77ApFfdkria8uFTNBpzlkkZMien62iZtwDlQ7MkjsbqeDLSzLB27UbSJem81TfK/f6hJe0hMyRNhT7jFir9/2nBJNO4NsrQ7J/SKj2NX8l/kxA3bfQZt1MX+CRB147s60OJYb4++A2uxK/mXQ/AbejcbpvhXXV9VDuv7a9mVvH89Db+NekkVsDyVmmv4N6ae7i76k14baufo/HMM89w4MCBBR1V8qGqKqFQiIGBAWRZXpLumUtGlEO6gp4R5cLCIhC88RBiXLAkJbOYFWW1KZmmafLss8/ypje9CafTuaLtTegzBIxvYdf/BYnZstcz5F1YpoUku5HNi0gUr6pmsJCYNA/xzekgc0Yzdxt3o08ks60Zm5qaFtxYnDx5kurq6rwpo2vN8PAwY2NjHDx4cN3GyExEvXDhArqu09LSwvOxOb5w/PUly1Y5E/zK1jO8pWEEm6xmPdTlMGfYGdbcKBh4ZIuWMpIyM0zPT/ZUMPErBo328jubTGhOpg0HYFGp6NQtowPM1UiQqYQLJJkmT7igGM5Hz1wlmmVHdiVpsCeoKCBo8zGgepmJOknoDrYFZ6gqMDk2H6cSlfwo3Mh2V5i3+UfxyqU7BMF8+JLWheX4RXTtaTqVV3GVCF3KYFjQq21jRvkVvjd5muFUeZYdAMWyuNup896GOK8nmvjGRIxyPymH7ODOytu5t+ptNHlW7m1/6qmnOHz4MMFg6QnccK1Y0d/fTyQSybaGzDd5e3G1XFEUke4pELzBEJ7xNygZ/2IymcxWwQt1RYG1S8nMLL+SSZyhRIhnZo5wbO44d/icvLeygyrpRFnrJrRmHE4FhXOYVhem3IpiludNNaWtVMgx/q/q1zgbq+HMkM7tWz5AbW1+P/hmTapcawzDYGRkhFAohGmauFwuKioq6O7u5tlTx/KuM51y84Wzt/Ky1Mud3lEqnCmaPcVtGQCqKTGquam1pfDKOv2ql1ndXjKdEyBpSozrLhpsSRyyQUj14pU1AkppkRk3ZaYMJ432BDIWQ5oHj6wtCQLKx2zKwXjCw/bgNLql0BsO4rer+B2lt3kq6WI65WJ35RSqBGOaG5ek5+0as2Rc3U7cVOgOhJlKurkcrmRf5TguW+ljakp34JQMPlF7gWnDwZDqocsZXvBEohCTuhPTnKTL+l+M4yKkeuhyRspqBTmieXg2LPFK/AkMllf5NSSJZ1U7wxO3cilR3hyFDKqpcmTqeU4Px5ierOeRffu5q7l12ceNaZrLstUVS/dc3Bpysa8804XFsiwcDofowiIQvAEQYvwNRkaEZ/zgzz//PHfccQdutzuvv3GtUzIzPslyxbhpmZyKnOaZ6SP0Jq5kX/9pNM5Po372e+7nF6tmqZePIbFQQFnImNJuNHUGt30QzCEAFKtnvrVhOxb++daG5Fl3L6Y5jZ0eFAAJ9vom2bv9m1wKP8uFsQ+ys/4XlkxUKyeBcy1Z67FSqRRDQ0MMDg7icrno7Oykrq6OS5cuZQVJssgEVwBNlnhNquTYRAU7zBg/W9XPzuD0kuUySZkti5Iyd5RI5wSYM2yMaB7aHLEFkzJ3uMJolsTFZIBKJd1VZTGzup1R3b0kZTM3CKhGSVJtX2rdGI55GYz5l3RGqXHFiWk2XhlvpN03R71naWV/MOplJOFnf9X4gnWrcrrGFPKGj2lO5gwnXc4IO2zpbfb4IrT6IsymnJycrmJrYIZq19LPakRzETXtbHFEqJ63ozTISRrsScLzTyTypZFCxjtvo9MRyX6WTfYE2GHWsDOqeWhzRPDk6e3ekwrw+FwLp5JVWCtst5hBXsZE1MWkNHg+1M/zoX62VFbxob37ebh7O65lPNFbqX1kcbpnpjVkJt0zc0wtbo341FNPcfvtt+P3+0W6p0BwkyPE+BuEQlaUjHDMPclrmsbIyAiDg4PrkpJZjlhNGAmOzr7MkZnnmNKWirgMJ+MJTsaddLvu5YPVCVqVVwE7hrwd2RpAsU6jFNhs2eoHwJQaMaQ6FPMM4MGQt4J+FZt8smDVb1tgGPj/6J/4W0a0/8DOxkewKddam21kZXytxopGo4RCIcbGxqisrGTPnj0Lgolyx0rpxSvHkpQWZpYkcV7xcX5uF61TSd4ZGOSOmlGmYn4mFSktLAt0N8lN57ya8iFLFu2OGFOqnymz+Lp2ycqK+yspHy5Jockxx5jmIWymJ2VmBO1iHDnJnr0pH37TTp17ht5wBXOqg/3VEwXtKF67zm11I+imxOuT9QTsSbYG5+iZqyCmO9hXNU6LL/+6ma4xi29CQikPGjJdi/qw51LhTHF73QiqIfPqRAN1rjjt/jD9qhfLYr6Xen77TbrjjJa9CamWdWoccfpSXiSJgq0nASoUjQpljqQpcyEZoEE2qHDEOJmo5PFwKz2p8mwdZWGs3Eud0q4dyL0z03z6uWf43CtHef/O3fzy7r3UeZcmi2bIVKxX6+UulO7Z2tpKW1sbLle6c03u08NMe0RVVbN+cmFhEQhuPoQYv4nJl5K52IqSW6XOpGSOjo7i8/nWLSUzX0JlhlA4zD9fOsOg/99JmeX7YHuSKT49JNPl/BneYYdDVc8gU57nWLZGwJLQpf2oqRRO5Qy2Mv277b4ptMi3+Ouzl/jtfZ8Biu/fWrNaMW5ZFjMzM4RCIWZmZqivry/r6UfKKCHGl9gtJEI2N382sZtt49t5uKqfw/V9ZadddjqjXEgG+eyJg7yta5J9/lDBSZ2L6XJG6UnW8pljB7lv5zD73WNlrStLsMUZ5WK4kW9eOczB2hHurh0qa12bbHFLzRinpmo4N9uGZiQ4UF1eK8fMTciVlI8LyQBOyaSrRMeZDA7F5FDNKCena4nHA7gVY0moUcF1ZZNuZ5i+WDWzphu7nCwqxHNxySbbnGFORNr57uQ2BvXC4nbF6CuvjCfUpcfIbDLJXx8/xt+ePM7v/kwjd9fdQoenfclymWN5rc6Di9M9+/v7OXLkCPX19dl0T9M0sxPoc9vBGoaBYRiiNaJAcJMhxPhNyHJSMmVZZmZmhitXrmRTMg8ePEggEFi37VtsU7Esi9dGR/jGudM8O9CPhcXdd5QvxHOZ1CV+6UgzTd4P8Ce3jXJX7XMozBVc3pC2Y1pg5yKyNYzdAYblRZf2olg9SOQPhgE4OtnIk+Em+m1uNOva53ojVMZN02R8fJyBgYFsK8ZMMFM5Y5WyqchS7vcLkagLRTHxeVWGgS+rrVQP13K/f4i3+kZxFoivNy14LV7DE5EWrqp+qILTsz5qI/XcHxjibu9Y0XVfidfyRLiZfs0PtXBucht1tlYe8A/xZu9YtlXiYoz5dX8YbiGk+cAPJ5NdfPdqK/e6xnlHfT/OAr5yzZQ4OVVHjSvBvuprHWcGon7GEl72V43hUPJ/Z+muKgEqFHWBAE93nHHQ6QznTRQFUA2Jk9P1NLhjHKyeyL4+qrmIGHY6F3WrWbDN8+NW21J0+a5Nuh3R3ETNtEWl8LoSz0freSLcwoThBksCae1//5Yuwwr1eDx/oxgAdNPkXOwkz/f8mK3eLby95m0cCO5DmW+NuNZiPEMm3bO6upp4PE5/f3823bO1tRWgoIVF13V0Xc+e14WFRSC4sRFi/CbCNE1UVSWVSi24gOS7iGRSMjVNo6+vrywxtlZkxLhqGDxxpZd/OHeai9O5XTcknJKTlLV8QS7N+1KHYzK/9kwTlY738d/2D/OOlp/its8CYGHDkHZjmZPYubjk+q5IMbBex8KFLt+CbPYhk7bKaKbEMzPNPDnXwrTNnj2CpJyuEtezGNc0jeHhYQYHB5FlmdbWVhobG5fd810tUfmXZAvDgEjMjcupEfAvtUhMGS6+NbuF74XbeJtvhPv8wwTmn0ikTJnnY/X8KNLMhL60XeaE4eYbM1v597l23uYb5j7/MP75CZspU+a5WAM/CjczaSwNrRnX3Xx9Ziv/Npce9+2L1j0SbeBHkWam8qw7Z7Pzb3ozT4YauF2e5uH6q1TOdzKJaele4h3+MIdrl6a+tvkitPkiTKdc9ExVsj04RYUzrRIzyaCN9gTb8lhv6u1J6uf93b2L/N1RzcbZmRq2BOa4NU8yaIM91xvuocUeza6bGbfJnsgbpJTpSjNn2BnR3LQ6YnjlzLoKT0ca+VGkmXBuD/N1EuOmLq1YjEdTxX+v2vy55nKsl8uxXqrtVbyt9l7eVHUXipk+f65ny0GPx8POnTvp7u5maGiI3t50q9b+/n7a2toKpnsWChISCAQ3FqK14Q3OalMyVVVl27Zt1NXVbdg2P/vKEc5YEv96tZ+pRP4WdO980yARo7ykxFwqlCoe++nSgBKXbPLfb53jHS1D+KTTKHL5750W7wfoTzn5/KhOlKXhKaYJf7nzs8iyzMWLF1EUha1bty57+5fL5OQkV65c4bbbbiu6XCKRyH7vPp+PtrY2ampqllVN6+npAaC7u5vfeepJnh7oL7jsnh19+HxJ7GV0+Mhglwze5B3HL2s8HW0kZpY/R2E16zokg7tWuK5imey3whzyxtkTDBFwFCnBLiKhKxybrCcYjLHFGcVTZptASN80vDbegGnBgeqJsjq45K7bk/RjSbDVGcW9zHF7kn5CupfH5tpJWHnqOaYCy3jPcumcO8jV4PEVrXvx7D7GI4Wf5tx3V29eW5xTdvKuqsO4L5ncfc8HN6z6HI/Hee6556iurmZmZobGxkY6OjoWpHtmyNcaUVhYBIIbC1EZv0FZjhUlX0rm3r17qaio4LXXXtuwbR5MDvHs9BFe8b3G0OXdTCUKX7AdrKxCX+jSkzRlfv/lSv70tWp+uauKD+86SdA5UPL9TFqw5GoU8xRdDo0PVNbw2Gwbw5ZnwXKyDHPJOJUe34Z2UylVGQ+HwwwMDDAxMUFtbS0HDhwou1dyMTSzuNjyuNVlCXEAzVJ4Ntq4su1ZxbrqKtY1JJnXpQqOxarYFg3yrooB9lVOllxvKOplOOHn1tox7LLBVdWHo0TQUIYpzcG47ubw/LqnputwKdqCEKGC6+oOJnUX291hFCz6VB92TFqdZYybs+4u5qi3pXgy0sylVIDCR97aMTkyAyv86c4VOddIWHmF+BaXiw/VJGmVPwv7NazYK5jOX8Gy3QrrLHIz83tuvfXWbLrn0aNH86Z75rOwGIaBLMtZYS5EuUBwfSPE+A3GalIym5qasm0MMyiKsq6TDU3L5Gz0HM9MH+FSPF1ZRQJ34WTu9HZJJRYogFSih7Gp2PhiTxNf7Gnko7uT/Ob2YwRtZ5csZ8g7wALFugDmYPb1O/wT3OGf4KXJBh6PtDCouMgIkalUlEqPb0MncMLS1oaZkJ5QKEQkEqGxsXHJ977asVSj2P5ZmKvofHFDIpn0yF4+F9lJ40yKn/EO89a6wSWTPS/PBYloTvZXj9Oc01UlkwKaTh2V6XREl6w7ormImXa6HJEFLRczE0N75iqJanb2VY2jyEXWzUnazPjSh1Q3CXNpkilc85xvcS5c9xbPFLd4pria8vFkpJnX4jUYyEhIrMetqNsZKDKDozCKpJDSTQrdMATcC70vezwuPlAdpV56Bon5aroEkvYssvYslrIdw/lBLMeDIK2PrS+3r7nf72fPnj1s27aNUCjEuXPnuHDhwpJ0z8UWFtM0MU1TWFgEghsAIcZvAJZrRVlOSuZyen4vh5SZ4qXZV3h2+ggT2tJKodte/HItWytso1iiAnSt17HEX59189dn38wvdt/KJ3afptZxCkPejWxNlgwEuqNmlDtqRjk1U8NjM2302jzMatH5Tdgcz3hmHkAoFMomZa5lS8rcsYpVxhXZwtDfOJU400w/GckwYnPytVQn37vayltdYzxY30/PXCWSZJVMJM2kjk7pTiZ1Jx2OMKO6FwvocBRuTwjQHUxXxkfiXkJRP/tqxhjXPRiWRKczWnTdZkfaLjajOxibqqSzdoJxzZVtqZivz3uGTmeUjzkvMq1f5SeD2zgiV5bZx2h5mNrKLldOyUmxyn3AlRa9t/o8vL9qiipeKHo7IRkXscX/O1bic5jO92M63wdyzYq2rRD5+po7HA62bNlCZ2dnNt2zp6cnb7rn4iChfL5yUS0XCK4fhBi/jsmksWUCetYjJVOWZYwSbeqWg2QOY9e+DfpJkqlmJrQo+S6ETtv6iHGjRP9rM49I/sceJ//Yc5hPvXUPP1t7llp5uOzxWj0RKkYswkkv4UC60rnRrQ1N0+TKlSsMDQ3hcDhob2+nvr5+Xapg1yrjRR77Sxam/sapwBmmhJwnOXNGsfH16a38KN7BbY5hHq7vK/s9K5UUM4adUd1LwlRospcvbxs9McYSHkZULylkGmz552XkHdemMiUbTGlB4pZB/TLWrbKp7HRNc8my0ast9TavBrtkxywdqJoXh1y8eu1zylTbK9jr0fBL40hl3khL1jSS+gSK9lNQOjCcvwK2HSvbyEVk2hfmYy3SPTPXESHKBYLrAyHGr0OWY0VZbUrmmlTGLQvZPIld+yaK8QwSJnbgvYHTvDPQyVPR7fzrdIzcURwlxLhprqxtgq4tX4xn6NUU/uugmx2ut/OB6hjNyivXHlMv4ko4yN/17OO7fd0kDTsdbWOEtbRw2ajKeCwWY2BggFQqRTgcZvfu3QtCetaaBcFQRX4zsiRhvYFsKqYpQ076q2FCJDrfRSaQIAEcoZYXRqvZZ4V5uKafDl/+CcSaBVdTAapsKbbmtDbULIlLyQBBJVUw+CfTUrHOHedATmvDTIiQT9ZoLFDhTgcc+QkoGltrrz3JMiy4nPLjkfV06maBdV+L1/CDcEu6heQ6dFNxSk4sc2W/a3sJK4nHIeGQ3XxlfJav0MaDFbt5IDBMkJMF1zHlbSApyMb59AvGKWT1e5i2W9O+cvtbQFp5X/RyEz+Xm+4JZC0sqqoiSZJojSgQXAcIMX4dUSglM99Jcq1SMlflGbc0FOMnaRFunsu7iIurPOS7ys/4Wnghvot/nEygAXabQbE+ZaZhW1EbM7eruC+6mBhn/nbhQjLJfx9SaHO8lQ/VaHTZXkGaf8R/KlzL31zcww+vdi+I9zZ0mYiWrl6upxi3LIvZ2VkGBgaYmZmhsrISu93OgQMH1mW8fOMD6MUq44BpvHEu7NZ8j3lNl4jF3Hg9KSoCS4WrIckclyo4PhVk60ScdwZDHKxKi+bcFoP5WhvaJSv7+tWUD9OQ2eJJ/zuuK5yerqPDP5e3pWJukmm/6sXM2lau9RevtSXpdi11ZCsSbJ1fN6R60Cw56zPXLYkXY3X8MNzCqO5Zsu5a4pCcJY7dwiglnrJ5HBJ2KXMplPjhbJQfzgbY57mf/1AVo0l6FVlKe+VNeScSGrJ5Ke97yfqryPqrWHIrpvMDmM73gFReYSSXYpXxfCxO9+zv78+b7glLq+UZUa4oikj3FAg2CSHGN5nMo8N4PM7w8HDWXlDIirLWKZkrqoxbs9j0J7CrX0dmaV/jfDgY5G2eQe5q6+T/HdjJtFJcjBvGygI+Sl1ElnNBH1BV/u9haLC/mfd6/Xz9fCU/6M9/YTcMhZieFmDr0U0lE9ITCoVIJBI0NzezY8cOUqkUp06dWtOxCrHAM24V/s1ISG8om4plgp4IIDsiVATLsJNIEpcVL38e3UHDbCdvr5rirkAfO/KI8HxkhPTp6Romk272VY1ze91IWetmEjUHVA8zuoM2Ryxvf/F8ZDq9jGguQqqXf5nrYHydRXgGu+UgucKaQTxavN2kywE2aeml8FQ8wam4TJ1yFx/1ztFRpSGbZ8oaUzJDKIn/BznxRa4av09rzUPL2uZyK+OLKSfdM7uNeSwsw8PDBINBAoGAsLAIBBuIEOObRGZSTSqVQtd1kskkly5doqmpaclJ2LIspqenGRwcXPOUzOV4xiXzCnbtW9j0x5FIYUp1GNIBZPNMQTtHBtVq5Ccjd/HHr1VzS6eGw1F8TF2XydPOu/Q2lmixZhQRkYsfrbtkFwFtKy+clTnvrOTM5ESBFUE3ZWLG2ttUMhfIUCiEJEm0tbUtmIyrquqGTRZdsF1FbuAkJKw30AROl0vHUFWUAqmaxRi1OfmTU7fhUg/wW3uP8UDtQMFE0QwzuoNQ3E93YIa9VZOMJTy8PN7I7soJfPbix2HYsDGseWh3xGhzxAkbdi4kAwtChAoRNRQGNS+t9ji3eafY5ZrjmWgjP4k0LQz9WQcUy85KH+DZbcWfljntFnIeS4kC/FKtl7scp3Arw1imDVPZj2TNIZl9JccdUe/g/z2xi4F4nG//3PK2OePrXinF0j3b29tpaGjIvn+uKO/t7WXr1q24XC5hYREINhAhxjeYfFYUWZazCWu5wiq3O4amadlq6FqmZMqyjKYVCQyxTBTjJWz6N7EZRxeua42DNY5JFabcMS/KF1ahZvXdfLP3AF845cGw0id/XVdwuoqna6ZWLOZWUxlP/61CqcKKtPH0BY24agImAXtxJWDoMgkjbWVZCzGeTCYJhUIMDw/j9Xrp7u6mtrY270VxIzu3ZDDMIt0m4A1VGZek0i01i6FpCqHpGh498gA1nigf3fc67226TNC28Lgc05zMGU66nBH2Ba51Zal3x6l3x4lqdl4eb6TTP0ude6FNJtMjvMsZWVCBDygaAUVDNWUuJgPUKMkFbRMBZnU7o7qbTkd0wbo+RedngyHeERjkpVgdP4q0MKitT6VcMexYK5xn7rR7oUh3FLvNRM45bzgliV+p9XC7+yQ269oTBwkdyUj7yC25G0tyIhlnFpxxLGRCyTfxfx/bxtND6cvr3trlH5+5rQ1Xy+J0z8uXL3Px4kXa2tpobW1dkO5pGAZ2uz17DlNVNZviLCwsAsH6IcT4BpDbmlBV1ewjyFwrSubEm5m8mZuSuZ7dMQraVKwENv0H2LVvIlt9xd+DaTCnsQiiy3uQzR4G4vv53OluHu9fWjFTdRmPXLyCF0+ayCso/JeqjBe7LEpqJfJcJd+/lMBadFOhlXh6YBhyNjhkNd1UIpEIAwMDjI+PU1NTUzKkZyPbKEKOZ7yoTQWsN5AYB9KTFleInjPZdTLu409eegt/ptzBh/ac4oOd5zEBdd6rXWjyJoDPrnF73QiaKXFsop4GfxRZMYiadrYs6i++GIdsst0VxrTgXF8t1Y06ihxl2nCnBbytsJXFLlnc7Rvjbt8Yr11t4Ii7jjPq2gYBSbqNYg+1imEaChR5cmdZ6c/FK8s8UufkFudxFGui6MlCMnvSv3OpAVNuRjJ66I0f4tOvbeHl0dWL6NVWxvNhs9lob2+nra2NiYkJ+vv76e3tXZDumbkJWGxhMQwj62MXrREF1wvPPfccn/nMZzh27BgjIyN897vf5T3veU/RdZ599lkeffRRzp49S2trK3/wB3/Ar/7qry5Y5otf/CKf+cxnGB0dZf/+/fzFX/xFyZTr1SLE+DqynJTMzL/PnTvH9PT0gpTM9TzpLZ7AKZlj2PTvYNOfwpRqkazyPOEAFhaXUwEeH3sff/Vi4Z9WSpexpOLx3dPhBDV1ZQ+dsxGFPyuJwtdXl1PlyYtRZsM+8omIZAkxrhsKKeuaGF+OQLYsi6mpKQYGBrIdcW6//XY8ntJVxo3uaZ7BKNZNxZQwtZvjQm3D5E7vOPf5h7mi+nky3FxgsuLK91fTloqupOHgf588zN+d3cc7uy7z692nKTeU1i5beOwaccOGQwIb1pIgn0LIEnhdKqrpRJLsyJKFvIwIn2Z/lIe9SR42LR4b7+Cs5MNcC1G5CjGul+jsoyfH2WGd5yN1I1S5tyIZy+ihaE1zYW4vf9/zUf6lJ/8Ny0qOzrWsjC9GkiTq6uqoq6tbku6padqCm4B86Z66rmevY8LCIthMYrEY+/fv58Mf/jDvfe97Sy5/9epVHnroIT72sY/xjW98g6eeeorf+I3foLGxkQceeACAb3/72zz66KN8+ctf5vbbb+fzn/88DzzwABcvXqSubiWipDyEGF8HMm2jUqlUVuhmHvXlWzaTkgnpYIe1Skssh4xnXDbOzLcm/AnSfJs22Qph4UeXd6GYF5AKRHmotPByYhffnkoRMw0aS3heU5qEWUKMU8LnWYhilfGFDegWrSdZC7qjLCapF79AG4aMaqrz71WeQDYMg7GxMQYGBlYc0rPRF8JswFCR/bsZKuMuSece3yj3+4eonK8otzlivMU7yolENT8MN3NZzX1isQqbSpHPSpLh3y/t4t8v7eKu5gE+uus4d1aMFhTXJ6dqcCkGOyumF7w+prmYMxx0OcPYCqzbn/JgmjKdDXMLXp/WHYzrLjocEVx5+qlDelKnZnppqZqicX53Hu08yUTSzWPjHbxiVpKSVyEuVYUiOVNFKfT5VjoSPLLtDL+67RQ+2/zxbRzDshQMZT8yM0jmQN51LdycnLuH33+5hYuzMrc0eIECYnwFN8vrURnPx+J0z+npaV5//XU6OjqKpnsWChISCDaSBx98kAcffLDs5b/85S/T2dnJn/3ZnwGwc+dOXnjhBT73uc9lxfhnP/tZPvKRj/Brv/Zr2XUef/xxvvKVr/B7v/d7a78T8wgxvkasRUpmIpGgpaVlw4Q4lk7A8SKNzf+MO9mbdxGJCDbzdSy8GPItyGYP0nwo9Zy1lycjTTwxG8Pimkc1XfUuPKErrkroJcR4LAUry7QrIsYlueAETkmCYtfMhF58ew1DRqe8biqZ735wcBCHw5GdlLmSi9nmVcaLiHFLwrpBK+MBWeV+/xD3+kfwyEvVnyxdi4HvSQX4YbiZE4lqVlMZV/NUxrPj5YjfF4faeHGoje7KSR7pPsO7W3px23R0E05O11PtTLC/emnaLUC9PUm9PUnYsDOseWh1RPHO79+VlA+HZNLuzH+zXWVTqbKpxE2FC0kvDbYEFfN+9oGUBwO5YMJnrSvBh9vO80u6whNjHRxRa5lTlh/oZaoyZpHfXDHURfNP6lwxfn37KX5pyzk8tqU32ZJkoJhpb7hON6pm4bFfTm8HXl6duZf/9lIj/ZHyjtfrrTKeD4fDQWdnJz09PXR1dTE8PCzSPQU3HUePHuW+++5b8NoDDzzAJz/5SSB9bT527Bif+tSnsn+XZZn77ruPo0cXzplba4QYXyVrmZLZ39+/pmmYxRhPnqbV/GMavflF+GIkYijm61gESElv5p9m/DwVjgJxFgsRQ1KBwr11oykLjeLtxiIr7WNWTIzLUuHSOBa2IiEdiTIq4zppgVJIIMfjcUKhECMjIwSDQXbt2lUyIbUcNlKMZ8Yyi3nGrRuvMl5NkludU7yn9irOAtXfxXQ7w3TXhjkfC3JktpNjhhd9mRVyy0p34imEnCc8p2emhj945R7+9MQd/HL3aR5s7uNQzdL+4vlIT9icI2HKnIhV4LPpC8KFiuGRDXa4wugWnIhX4pBMdrnnSq8IuG0GP9fcy7utXv41tJUTeiVDtuIx9bkYKWnFEziTavozbPZE+PnOC3x426mSXWcy2OjBZodwso1TsTv4ry8GGUvk+b6K/GRWKsaXmxmxWjLXnqamJtra2paV7gksSPfMCHMhytePZDKJqha/jt6IWJa15HfjdDrXpHHF6Ogo9fX1C16rr68nHA6TSCSYmZnBMIy8y1y4cGHV4xdDiPEVsh4pmasK4Fkmx6Oj/OV0Kx+saGSP6xh2pXjstUklltyJbF7Gab3AByocvNl/G38/4aRv0QlBt4qfIOYSJrqkk75M5T9ZR1Jrf1OiFLkwSBI4SjxGdys2EgX8pIYpY+aI8cz3aFkWc3NzDAwMMD09TV1dHYcOHcLvX5u48NxUvY288BUrUlqmiaXeGBfhTkeEBwMhDrmnkCWY0p30qU46HREcJUT5hOZkxnCy1R1mp/cEc4adpyJNPB1tJGaWJ6RMU6KYIJWKJFnOqi7+baqLcz4Pe2bCvLumj05/8Z7huSE/B7yzmPMJmy7JoMVRvEe6acGVlB+fonHAMwMsDREqxunpGmyyyS+0XeYXgLOz1Tw+08pF2YsplfB1J6QVV8bd5jT/760v8+72HmyyxUTCzdmZWnZWTBJwFH/ipVvV/NvlW/ifp9uocwQZS8TyL1js575Cm0puUM9GkBHjmSd0y0n3hGsWFtM0MU1TWFjWkWQySWe7j9HxjSnebSQ+n49odOH55NOf/jR/9Ed/tDkbtEEIMb4MMieaTBV8rVMyFUXZsMo4wLRh8OdTEj4O8+sNDvY5XkNmYaXLkNpBqkA2zyKbr2dfl1DpUF7gDxtsDBq38fUpDz3J9ARG1SretjBpgYyM36kQSeW/+dBNsEt2NKuEt3wRRT3jRcWqlZPClx+3vbAYBynbezsjxjN+8EQiQVNTE9u3b1/TtpSZsWBjxPiCynixep9pYRWxXmw+FntcM7wzMMhO18Lfe7UtRbUtRdSwcSXpydt/e0h1k7RsdDoi1OZ0NwkqGu+t6OedgRDPxxp4MtzMlFFcUBlFquKQvkkshqKYGJLESSXIqZl9dE7GeWdwkENV4wuWy034zA35kRclbCYTdrb458jVTvq8gK+ypdi6KKUzEyI0prlIqhU0Ocew2xb+No5P1RGwq+ytWmih2V0xxe6KKUbiXr430cExswJNyf95qAkyAbllU6OrPOAd5m23PL/AY1/rTlDrTpDQbbwy0UBHcIY6x8Jzlk49jw+/lT98KUhs/ilPq88J8fxifD1CvjZawOa22s2lULpnS0sL7e3tRdM9hYVlfVBVldFxg6vH2gn4r+dz7fIIR0w6D/UTCoUW5Kis1XWzoaGBsbGFTxHHxsYIBAK43e7s7zTfMg0NDWuyDYUQYrwMMlaUjB88X2vCXFaakrmcAJ61JAp8YVTFKx/gV2vtHHS+DnIjWCqK1QNWf8F1JXRalRf5VJ3CqHmYb0wFuJhc6h3NxbTSiXpBt1xQjAM4ZSeasTwxXrzKWLwynrapFN4el1L8cDHmfyeTk5MkEgl6e3tpbW2lsbExOxFqrckV4xtJsfFssnJdVsZlLG7zTPBgYJA2R4EK5zw+RWeHEs723662JYgaDmSJkuu6ZJOf8Q/zNt8wr8ZreSLcQr/my7usWaLTR7HKOICSM1naQuKK4uUvo9upn+3gXZUh9gYmGJkP+SmV8NnqiIMDRqd8JJ1+qt1jDGk+Gu0JtpVYt96eBPsoMxEXE4qXWluY3rkq6t1xDlaPF1230RPjo+1niWp2fjDWwfNaDdFFx5oak4rOU8ilQU/xkH+QN9cOF13ObdO5rXYU04LepJ9mVy0yKf514C388Ss+UuZiUVpYEBQrAqzkyMy0EdxISvnUV5vumbGw2Gw2IcrXCK8v/d/NgjF/sAQCgTUJNVzMnXfeyQ9+8IMFr/34xz/mzjvvBNJzJw4dOsRTTz2VbZFomiZPPfUUH//4x9d8e3IRYrwIGSuKqqroup61ouQT4WuRkrmRNpV82CQJ05Iw8KLgQLLK86FmkLCokJzoVhKbZKEXaTOomDZ8zuJCxI6T9K3CMigyplzCDmBDppgYd9qKXxwN0+LFF1/E4XBgs9m444471r26tZEXtNyLazo8qcDYFtdVZVwxTQ5Kc/xsbR8JWcYrl3+DZ5NMFCxUy4aOjLdUF6DccSVosMf5tapLxCwbPwy3ciZZQe7nVqoyXkrKyQWsNDFJIWw4SJrpU7y8jLKy16WSMCWSln1+3fLlpMelguYhYdqxkJY1rsem0e2a49aKMSYkB09EWriqpu1cqZiJZRTrd2Sx0znHQ4EBSNowl9H3XZbAIRt8o/c2vnaxgaFocctePiLRSMG/reRGuZzKuKrHOR36Mts8TxD0vwXT+QFQOpc9VoZMBbsU+dI9X3vtNbxeb8F0T7j2ZFlVVZHuuUaYWMWfUt5gLHdfotEoly9fzv776tWrnDhxgqqqKtra2vjUpz7F0NAQX/va1wD42Mc+xl/+5V/yu7/7u3z4wx/m6aef5jvf+Q6PP/549j0effRRHnnkEQ4fPsxtt93G5z//eWKxWLa7ynohxHge8qVkFjpprGVK5mZVxlsleKRRotP2CnKmfaEZwsKGIR9AMoeRyV/dMvFzSTvEP0xIDOk6ihUBCSo8CpOxwhdixbDjdRY/CduklURsr9SmkqmMF57YZS/hKTex2LV7N4osc/78+Q15zLyRlXHTNEkmk7z88svFw5NMsNTNF+NOw+BO2zQPN16l0nnNhmBa0JPy45M1Gu35n+JkvNU1tuQSa0Z/yosFdDjzV8hNC66ofjyyTkdOFX2Xa44B1csT4WZeiddiIM97xgtTjk0llypd5T73KD/TMoBtXqjX25PZTihN9jgBJf9vfFa3MzjjZ0sgTKczXVWutaXQLImLyQBVSmqBLSeXhCkzPNtAtX2abf50W8UmVxzTghNTtbgUnR0VM3nX1UyJk1N1NHhiHKxJn2c6gdu8k1xKBngy0szLcR3ZprD0CLTY75rmXcFQ1m7DfDOqgaifsYSXfVXjOJX856JT0zX8ff9OpirhhWNBmnwrq0YXE7ErrYwXOn8ktQhnB7/EFtd3uaNi/veV+jZK6tuYtrsxXR/Est1Z+seziJV0cCk33ROWVsszojy3wCWE+fIwMZfr3rquWe7evPbaa9x7773Zfz/66KMAPPLII3z1q19lZGSEgYFr7Uk7Ozt5/PHH+Z3f+R2+8IUv0NLSwt/8zd9k2xoCvP/972diYoI//MM/ZHR0lAMHDvDEE08smdS51ggxPk+uFaWvrw+fz0cwGCxoRUkmk2uekrmxnnGLt/o9vNM/Rq1yMu/jcAkdxTyBhYIh70cyx5FJx0OrNPNKfCffmlKJ57Q5MCQTBYWA28ZkrMhETkPBU0JrK9ZKxHhhin0zkmShlBBGjlIXKktCk+zYZWvDnnBshBjXNI3h4WH6+voA6O7uhvMnC69gAptoU/EZOm91TPDOpr68retkCbrnhVu/6sWyrgnruCkzoPpptscWeKtzaZ9fdlRzETHsdDkjKFLaW92bClBtS10Thotoc8T4zZpL/ILex5ORZr4X7VrVvmZsKvVGknd6h3lL3VDe5TKdUDRL4lIyQFBJZdM8pzQHU4aLTmeEPbXTS9a1S1b2s7iS8qFwrQ1i1FAY1Hy0OaJsqVpqC5ElOFA9AUDPXCVRzc6+qnEUGVKGzMmpOtr9YQ7X5n8Kt80VZpsrzH/4zT6evLSLFyUnqqUgYXHIPcnPBkMFbUNtvghtvgjTKScnpqrYFpim0pXe51cnGvjSuVt4fqwFu83gFn+6q9RKxaDL7YZw/s4y1grkeD5hHFfnODf4F2z3PMYdFfkn28r688jR57HkrRiuD2I5HgKpvImgq7HGlJPumWGxKI/FYoRCIbZv3y4sLMvEsKyimQ83Gsvdl3vuuafote+rX/1q3nWOHz9e9H0//vGPr7stZTFveDGemWSSSqXQ59vXTU1NoSgKVVVVS5adm5sjFAoxOTlJTU0N+/btIxgMrsnJo2A0/RpzcfYSb3J8i3r3qbKWl0j33bWQ0OW7eC3q539PxrDIXyVzyy58JareGDacJRpOSNZKWnutwjNuFb8QFevGAunOGDOpOF6v57rycK+UZDJJKBRieHgYn89HQ0NDdjJqMSQr3Rd6M9gaTfFfd7yarQqXIjMB8excJTMpF7fUjLHDlV9ULabBnqTBnmQw4WEoHqArOF1QwC+myqbyS5VXeac/xN+Ys/z7wDaGo8v1SFrcEhzjTtsED7YVnteRi12ysv7vM/EKDGCve5Zqe3kt0rrmu6b0Jn1ETDvbXXNlf17dwXRl/Eo4wEAsQHdghtvqykv4bXAmeGTvMX7OsPGTSBN7XTN0uwpbQ3Kpcqa4vW6ElKHwzwPd/GvvDl6ZuPYbVhQT3Ugf+0WtbGWNtpRkIkkkEllWB6XcyvhUIsxjV7/NQ8Gvcmdleb8vybyMLf5HWIm/4Cz/iXrv26iwB4uusxZBQ8XSPdvb26mrq1vSGjGVSjE8PMzWrVsxTVNYWJbBG92mcjPxhhXjuVaUxSmZNpttgSjOTcnMiJH1SMncqMr4qZlRPt3XyUdbunmg8Qh2KX9QSIa0XWU3GJPYzBe5wwNN1Tv5t1gTx5NLL+JOxVXSgmIaCs5ShW9rBT/PYp7xIpskYSGX8O9GI8Uv/oYpM6NFaZW8Gx7Es5bjRaNRBgYGGB8fp7q6mgMHDhAMBhkaGiKRSKCWCECyTLBSm3MR/bszB3h9uImP7DjJ/c1XS8bAZ9oTbvPPYg9aTOsOQmo6bbJUv/GIYWNI89Bij9NSPUrMVLiQDNBsj+MvYAXJoJoSV1U/1XKK/7znGJ/Y/TpPT7bwxdOHODdZ/HGoLBn8/Pbz/Eb3Kba407/JU9O12CSDXZVLK9uLGVQ9qJbMHs8sAMOam5hhY4szUvLzylTRu5wRbFL68+pXi6dzZphLObgwV83Oiim6AmEiqp2Xxxvp8s9Q6y4+6Tu3JeN7KwbQLYlLST9BRUtPHi3BcxPN/DDaTJ/m49WJhTeTNpuBrs/fiBfd/xX+pqV02EhlZSXt7e3U1taWFJmmaTKjx/iL1/+NQesUNpvBa+N7OCTN8rO1/TR6ik8itrAxYt3G1ya8XEz8GEV6msMVh7iv5m20e9ryrmMYxppONM9N9xwcHOTcuXNcuHCB9vZ2mpubs13FMk8BctM9VVVdcD0WFpb8mFgYN5GAFWL8DUJuSmZGhGcCCnIP9IwozpeS2dDQsG6dMRRFyVbn1xeJuCHxyRdqcNvey6PbrvKB3SdxSAt94RYBDHkLktGLzTy54FrU5j3PJ7znmbYO8M8zdRzNmfTkkBy4SxS1TV3G5Sn+FMA0lNWkjC+hWMcDJCg1r8/j8UCy8OQuXVeIaLGSCZxryVqJccuysiEfs7OzNDQ0cNttt6X3OWcsy7KIqSpFn0AYFqQ2zzN+crqej794P53+WX5j+0l+rv0SjkWe4UHVQ8qS2eKMLvBBZ9Imo4aNqwVaG07pDiZ1F52O6IIOJd4cK8jFZIBqJUnNoopz2gbjo8UeX1BFt0sWD9SGeOBtIV6Zq+Wvzx/kyEDHgnUdss4Hd5/ika6zNC9Ky9xXlbaCXJ6rIKI5slaQXPpS3rzdYJrsCbCnY++HxgJsqZnB41y4z2Oai7BhZ4szsqCKnpvOeX6onnrfNFXBheJ4MuGiN1LJ3qoJbq8byb7ud2jcXjeCZkocm6inypmgM7Cw8puav2lpXNSS0SZZbJuvjPepXrCWevhNC54eb+XJWBOTNgcUmBKSrozPTzhc+udV43C6uOeeewiFQpw9ezZr6Whubs5rCxmKTfEd4yjJkX9CUczsRVqVFY5SzcsTlWwz4zxYEWJf5cJCioWNIesOvjbhmm81m/4uDMvg5ZlXeHnmFbq9W3l7zb0cCO5HzunvvhaV8bz773DQ1dVFR0cHY2Nj9Pf3L0j31HU9e01dbGExDCNrnxGtEQU3M28IMZ6xomRaE5ZKyTQMg7GxMfr6+pakZK4nGzWBM9fDmNAl/uRcF392oYM/vHWO97Q9j01SMKVqZPMcNvN40StUlXSC36yC91fu5buzTRyJxLFLdpz24kJb12UUpfi+GisS48WtKEXX0ot/vw578VK+YchEtMSmRNSvdDzTNJmYmMj2Q29paWHXrl0LJl4tJl5GZVzaBM94+tC5Nu7VSAW//9pb+fyZw/xq9xk+0H2aCcONIlnLam14IRmgzpZEtWQiGUFqK2zryHisTQt6U36ckoFfURnRPHQsEvD5uC04wW13/IhL+4J8vX8H37+wnQ/vO8kvt12gusAEygxbg7MAjMS9jCW9bK+YYFjz4paNghNOM1TZVKqaJ4nGHVyZaaA6MEbEcKBaMl3OaNEKtEc22Nk8jG5I9MZrcEpxFAsGYwH2V40vEOGLscsWh+Y942dmapAlg47ALAOqnxZ7vOTn1ZHT63xac9LuiPLsRCs/TjYwq9gXXOWkPJU3m2JgzFfGi96wF6Ho8WdZOBwOtmzZQmdnJyMjI/T19dHT00NrayttbW24XC5CkQm+eOk7TEjnUarNPJNV05iSzAXFx4XITupnUny8TafZdo6QeStfnXBwNaVCAQshQE/sMj2xy1Q7qnlbzT28qeouPIp73dspyrJMY2MjjY2NC9I9fT5fVnwXS/fUdT173RYWljTCpnLzcFOL8UwbpUxXFCB7Z10sJXNubg6Px5M3JXM92SibSr5TWNKU+W8vV/KZ4z/HR7cN8h86XyToLr+Nm1+a4YPVMre7BnkuqhC1VRZdXtMVZEWnmNrWdRmWaxsvYlMp/gTawkjqRcV/qYlYhikT0TdWjMPKJp0ZhrFgpnk5/dAz+5XQi/9GJTPd9tAwJBRl4z4HXc//5U0kvXzm9O38y2Q7v7HnJD/jL95/OheHbOKRdGYNBwYSPkUraeXIIEsQlFNMGS4MS8Ihmbjk8ueENLti3No0DEGVPf4xAkVuABZT44oznvIwrbvQLJk6ubSVI4PPozKrq8zqTlKWTFBZRitIxSJoSzCWcmJqCm5FX/JUohjNngi90SAzugsZcMnlPymssiWZUl2EYgHGNDeJfAdznu9OseV4xkvesS+f3CNAlmWam5tpampienqavr4+vvXjJ/nnuRmqOs/j9kUKivB8jNmc/PdhJzu9v8T52GWg/N/IlDrFPw3/C5cjvfxW129uaG/z3HTPM2fOMDU1xU9/+tOS6Z6FgoTeqLzRJ3DeTNx0YtyyLK5evUpFRUVW3C43JTMQCKBp2oYKcdjIPuOFrypJzeT/OdPIZ87+HL93S5Rf7HwRt1x4cpgh7wQsFPMCsjnITjfsdD/LBfdpZkZv47nR1rzjaboMkg4UrsCqJSrVy6VY1UuSIBlJQZE5TmaJE4VhyMSNxILHrBtRvVmO+FdVlcHBQQYHB3G5XGzZsoXa2tplXdBiWvELfqa5jmmWfvqxluhG8dOZJsv8MNLKjyPN3Okd58HAII32wrajKykfDsmkbZElpE9Nnxc6ilTXRzQXMdNOlyOywKoyrrmYNRx0OcPYCvw0Zg07T4ZbeDbaQHJ+3sTXZrr5t7l23u4f5m2+EXwFPOlJXebkdD0d/jn2V07Mv5rIdlGpUFLUFamunx+qxiUbdDZOLHj9asqHLFnZCa/56B8NEk042NkxQU3OclcjQaZSLvZVjuMocHM2kXBxdd7KcjgbEpQgbNgZ1tx57UIZcq0su7yzAGwPzvBLhsITY+08m6xjzpa+q8/3kdsU49qNXLHDdYU6Id9NvCRJDBs6f3zlEhenpwAIrOLcb5b47Rcj07VqJa0NV4vL5aK6uhpZlqmrqxPpnsvEZNnBtNc1N9O+LJebTowD3H333XzlK1/h9ttvX1FK5sDAAMkSKZLrwYb1GS9yUVFsNtA0DEvmT44F+J/HHuC/HIzyK1uO4pGvzq9ux5B3I1sTKOb5vO+zwzfFV97yQ05N1/Klc7fw1HA7uZEdKU3BkpIUE+Mpbfkn1mKxIMWqXhIWLsVNsZChUgmAuq4QN5MbGlGfoZQYj8fjhEIhRkZGqKioYM+ePVRWVi5r+zIXwrhWolI6H6NWqof2WlOoMp5BmZ9gqCPzfKyBF2L1HHRP8c7AIFvmWxGmo9/9VChatnPIYjIifGR+4mPnfGtDgAHVi2lJdDijZPy6udTZk9TZk8wZdkY0D622KF5b+pgf01z8MNzCT2P16HmqumHTwXfnOng83Mrd3lEeCAxRa0sL67Bq5/xsDduC03ktIbldVK6kfNgxaZ2/ycjYaQKKxs7mqbz73Dn/WYxobqKGLdvOESCU8mCi0N6Qv6tKp3+OTv8ck0k3vVMV7KyYJOBI/4aGY16G4n72V41zW57tDigaAUW7loSa48NPmDL98/77fFYWl2LwnqYrvIcrPDfRzI+jTVzBs2Q5W043lVLzSgpR7OhbfGgeHx3hD597hssziybbruZwKRkeVRibkT4Hb0bqZ2bczJysfOme7e3tVFRUFLWwGIaB0+l8w4lx4yabwHkz7ctyuSnFuNfrJR6PLzmx5EvJvOWWW5a0nNrYft8Lx92IyrhRZIzFgtVC4jPH/fzp8Z/hE/ti/PLWIapsr2MzT5Q11r6qCb785ic5OVXLX50/yNMj7ZiWTEqXMFGBwk8fEppVRKoXoKhNpciBLoGZsqBItLBuFf9uDEMmYSayVeaN9I0XGmtubo6BgQEmJyepq6vj0KFDy2qxlo9UqWPDSNtUSkW9rzWGUaI15aLKqoXE64kaXk9U02nFeItjnP2149mJgaVonJ/4OJp00xsJ0hIIZ3uQlyKoaASVOWK6jR8OtdPndPFavBazDEWmWgpPRZt5JtrEAccU7WqKtzWGivqyc8ncZPSrHuZ0B02OeNltAjP7PKPbCalefIpe8KZlMTWuBDWuBHHdxgtjjVimxJ31IzR5S39mDtnM+vAvJvwkLZluV6SknzzDW2qHeEvtECena/j6FovvX9mGPt/KVFEM1GQ6pK2oTWWVh7Npmjz0nW/QN5f/pqXUk7diWKt4iihr18R4sbki60VuF5d86Z7Hjh0rmO4JbOiE+esNw7oWIX8zcDPty3K56cS4JEn4fD6i0WsXiOWmZG5WEuZ63wTE43EGBwfpD5XXkzgXC4kvnPLxL1cP8bPtrfzm9lfwKxdLrjeddNITrmJbcJovv/lHXA5X8FfnDnJmcit6CX9jPFWsbr58NK2w/1TCQk8U/+y1Et+NYcqkTHVDUzFhqRi3LIupqSkGBgaIRCI0NTVx5513Lnjku9JxAOKlbCrz9yymscGV8RLif3FaJYBP1ni7f5h73aMEHSpjmouelIsux7XKbyGM+YqyxzR5U+0oUcPGhWSQFnu0oKUil3OxCv785K28NFPPwb3LPyZNJF5Xa/ir17dyS3CCj+w4yVsbQyXXS5oSfaqfJnuCdkecSd3JxWSATkcERxn92XtTPtyywT7PLIn5do5N9iQBpbRf+Uo4yJzm5K66ESwkTk7V4rerdM9PPC1G2LAxrHnocEZxySZDqodhS6HLUbolo2pInJiup80b5k8PPcd/3nmMv+/Zw7ev7FzQTaXYvJCVFl0z7zk+FysoxNPLrRzLkFZeWVfTMmAzK+P5xl1OuiesPLDpRkbYVG4ebjoxDmTF+OXLlzl//jzBYHBZKZk2m21TxPh63ARkWtaFQiGmpqaoq6ujqakZhvJf/Et3E5D4qzMe/urMW/n1nbfzH3e+RtB2bslSIyk3g+Eg+xa1M9samOXP7niGvsgxvj+1DZtUk61QLSaWMqkod0fnsSyJQpc1pcj3LkmgxYqfCkpVhHVdJmWlNkWMQ7ryNjo6ysDAALqu09LSwt69e7P9fNdinPQEzhKT6jKe8RK2kbXGKCHG5RyhWaUkecA/xFt9ozhzJlXW25PUk2RGdzCmu+jM028841GutyUXVNHTHVjmSOV0YKnKM+ny1XAtf3X2Fp4LdQDgca3OEmcaCi9NNPPSRDPbg1P8xvaTvKutF/uiyaLptEwvrY7YgopyjS1FjS1F1LBxtqeGrsZpgr6F221YcEX1E5Q1tuRUwt3z7RwNS+JUbz1Vvjgt9Uur7BdnK1FNhb1Vua34LG6pSfvDz89WoRoK+6snlqw7q9sZ1d10LepE0+xI22ymdQfjev5e52kPfR1d/jluq70WMNToifF7+1/m47te57HhLv4htpNJgkVDf4o3TCn8x8yfRmZLVPFXcbowNWnFlQsrlT7/rldrw1Loul60Il8q3XOj53ZdT5hIGOvSkHNzKOfJ4M3KTSfGLcsilUrxuc99jqtXr/KBD3yAP/7jP15WSubNYFPJBBWFQiGSySTNzc1s374dp9PJud4ZVlpGuXbNkfjb827+9vyb+dD2W/m/dr9Ope00I6k6YkaCrZ4IjbWFJ8d1+MN83P8a76m9wF9fOMi/XN2Oai4U5eGUSfOKtjI/dlvxqo8aLe6FLiXGDUNBtTa+Mg4wPDzMxMQENpuNtra2BY9z15qkUaYY3+DKeCkxrigmTbYYDwYGucM7gU0q/P1U2lQqbSoxU+Fq0kuLPYYkQUj1lmy355TNeYEKPUk/PkWj3pbk+Zkm/uL0IU6MLQyd0Vfh94X0E5kMF+eq+f+98jY+e/o2fnXbKX65+xyqJZXVVtGn6BzsHiWlKvRMNFFZMUnQpmbDdrqdha0simSxb0u6PWEoXk0Kla2eCGdnqpGAXZX5vegZdlak/dOhqJ+xpIf91WOEjXQ/9y3OCDtshbc7t9f5sekq2twRPDaNMzN1dAenub1IyqfPrvFL7Rd5X+slnhzq5PuDd9Izk9+rttrC61i4PDvPSjA0VizGjUT697PZnvFSFEr3DAaDbN++fdVP/m5ETCv9383CzbQvy+WmEeOpVIpvf/vbfOELX+D06dPs2bOHo0ePsn379mW/12aJ8bWojGuaxtDQEIODgyiKkm1Zt34nWYmvXXTxtYt38d/fcog3VTzNVs946dXmafFG+eUtZ3mwpZefDHfw7Ss7Sc13BgiXsI3kIx5PAAVOysUs45JFKmZS7CYlUaK/tmHK6CQXVKrXk0xcvaZpzM3NsX37dmpqatbtcW2mMl5KjEvXqWfcbhnc7RvjsGeyqBDPxSsbNNgShLR09a3OlizYyWQxigQdzigvROv53Ut7ONq7Je9y5irEuGVlngYtZCTh43+dvIu/vbKLT9zxCg/4h8puq+h0GLRVjnFF9zJtOPHKet4KfyFaPVNcigV4fbIOC4n9VWPlr+uLYGFxJRXAtCRaHdGyvyuPbNDtn+HcTC0KFrXuGFXO4n3ZMyiyxTtarmB36FxRD3F5rG7JMkUnaRb9W/qvE5Hy5hMsF8mSiITjxabfFEWLbb4YX+64uemeoVCoYKOGmx3jJquM30z7slyWLcafe+45PvOZz3Ds2DFGRkb47ne/y3ve856i6zz77LM8+uijnD17ltbWVv7gD/6AX/3VX12wzBe/+EU+85nPMDo6yv79+/mLv/gLbrvttpLbE4vF+NM//VP+6q/+ioqKCj7xiU9w9OhR6uvrVyTEYfMr4yvpwpHpDjMyMkIgEGDHjh1UV1fnfZ+il7ZVHAsXUk6eHW+nXani3ZUDHPQUjubWTTg1XUfAoWarYnfVD/NbO47zN5f2863eXcR1O4qkYFjlfxdmkVvrUhYcyQK3zVbQhlGqi4ihyxiWtmS2/1qzOK7ebrezbds2Kioq1mW8xSRL2VTm/7yaSWUrwShRiTdk+PZsF98Pt/J23zD3+YeLxtZPag6m56Pfd85XZk0LLqf8eGWNxiIhOAlT4dloAz+KNDNrOJkw3Sve7mLkE+ILtsOy82SkhaciTdzhHecd/qGsvSMfkbidy0PVbGubYWdOFT2ketDmw38KYZpwrq+O+qYk27xh8KbXH0t46IsE2V05gc9e+PPO+Mn3V41nPeD5uqjkI2PBaVES3JFjizs7U41pSYvsMQvRTYkfj7Xxo2Qjs4qduJRfGK70W8qcBiZjhT/31eCW3VglJpcXIxW9Vjy4UcR4BofDQWdn5xtSiIMQ4zcTyxbjsViM/fv38+EPf5j3vve9JZe/evUqDz30EB/72Mf4xje+wVNPPcVv/MZv0NjYyAMPPADAt7/9bR599FG+/OUvc/vtt/P5z3+eBx54gIsXL1JXt7RCkYvdbufixYt89atf5f7770eWZS5cuLBgAudy2Uwxvpz+1JZlMTMzQygUynaHKadbxmo0Yjmr9ht+/nxyN7VGigc9w9xbP5j9W1SzcXamlg7/XNYvmkutO8Gn9r/ER3ec4O8u7WXADBKWyv8uvB4fWZ/EYopU2DJC3WOzFxTjhmVhkyT0Ah+gaUno80p0rcV4sbj6F198cUMsMdcq4yW+j8wEzg32jJeqMGc84zHTzvfC7TwRaeFu7xgP+Aepzem9XahHOKSDfLY6r8WwW4ZEp/vauSZi2PhxpJmnIo3ELXvOesU8xSv/nEq1j7Tb09+VjswLsQZ+Gqtnr2uGBwOhBZaViGEjFPPR4YhysHupraN1XsBP6E5mdCedzjD2+aENC0LxOpyJBHu6lh7T9e449e44Uc3Oy+ONdPpnqXNfs7BdmqskadjYV7XUL57bRaU35cOR05IRrk3q7Cxgwdk9b4/piwSYTLrZVz2enaSqmRJPjHXwk2Q9YcVOJm2n0Kl3tUfYdLywbW81uGQPPq+PwqWP4iTD6T3brMq4rutl2VSK8UYV46YlYZa4Ib+RuJn2Zbks+wh48MEHefDBB8te/stf/jKdnZ382Z/9GQA7d+7khRde4HOf+1xWjH/2s5/lIx/5CL/2a7+WXefxxx/nK1/5Cr/3e79X9P0dDgff/OY3F7zm8/kIhUp3FShERhSbprmhE1oyY5WaSJOZqDc4OEgqlSrZHWYxxZ76lp7AWf4laUJx8rVUJ49fbeYdriH8is7uyqmyWrBVOZP8572vMqc6+JeRLbxkBtGU0hMRi21d0dCf+f91ycUvRh67nbBaqEInZXuRr5UYLyeufqMTP1N68SqclJ3AucGV8VJifFHgTLpFYBPPRBrYLc3xJtcEdYEYna78PcIXk+k33hsOMpVy0mvz8my0ETXPhGS5qEVEwrJW5kkuJcZtedo5nkpWcSpZRacjwkP+AbyKRpcjxq7AbMnxam0pam0pIoaNy6oHCYt6e4oO73hJm4TPrnF73QiaKXF8ugbdkPHYjKxgLoYskZ04OqR6iBgKSFLaT15Ge8MOf5gOf5ippIuBpJdQzM+P1Uaiio2lkZf5j6UVV8bn3282uT5i3GE6V3yjICOTjG+uGF+Lcd+oYlxUxm8e1t0zfvToUe67774Frz3wwAN88pOfBNKJgMeOHeNTn/pU9u+yLHPfffdx9OjRFY3p9/tXXRmHjZ9dnhm3kNdYVdWsH9xut9Pa2kpDQ8OyT2TFgnFKrrvMs369nuI+7wj31A4xHPdxca6KA1VjKGV8rJm2iO9tuML7ZJN/H+3iBb2aZLH9LdZnvHibcQBcSvFDwmUrJsZBn//uViuQlxNXv1FiPDOOWtIznv5f6zqrjCt5fgASFnuds9zvGWFXYJrepJ8B1UNbEStHLqOqi1nVycHqCdqNMKql8NNYHdoiQS6X0TJwJZTa50xlfDH1tjj3+kbY75lhzrBzVfXRYY/gLJCQmUvKlBjSPDQ7Ejglgz7Vh2TYqSizx/qF2Wp8Np3uqlnOzFRzZrqGPUVsJLlM6Q5ipo2trghhw05vyp+3400+ErpCb7iC7ooZdvhm0ccUjqi16ap4DoXOIMWDfUp3UwmnyvOvLxeb6Vjx5FK37M72Vr+RxfgbFQMZI09A2I3KxvsRrh/WXYyPjo5SX1+/4LX6+nrC4TCJRIKZmRkMw8i7zIULF1Y0pt/vJxZb+WSZ3Ar1WrWFKwdJkvJO4oxGo4RCIcbGxggGg+zatYuqqqpVVAPWS7jNV4Wx2Oec5h7nOAcqrl1k23wR2nwRBmM+RuNeDlSPYctzHhmI+hlLeJe0RfxA60V+Trfx2Ggnz2k1xPMI56KatIxwPUcBv2gGd4mLhmFdE+MrmcC5krj6ja4Kleoqk62Maxs8gbOEMJVyqtMKJnd4J3hnIEST/VrFcst8q8JB1UPKkhe08ctlSHWTtBS2OKM01KSr6PVykkeqLvOeYD8/iTTxdI5VRVonMV6qg4xtUW/1VnuUdwVCHPZMZn3Z1TaVaptKRLVzrrearqalrQ0B4qbMgOqjdVE3mbSNROLslTq87hQdjfl7aR+frCXgUBf4t/fMV8WvRoJMJV3srx7HnuezmtCczBoOtjgjVM9PJs3tonIh6aXRFidoW3qjGNMUzszU0h2c4baczirvbe7lPVYvz0208KNYIyOKEyjcr7vYUVbO5M5Iif78K0XWV36NcknurJDfzNaGqxHjb9TAH0jPGbmZrB2l5sDczNw03VRyWRz6s1wkSdr0jiqZtNBQKMTs7Cz19fUcPnwYn69IRGSZFPu5l9J1xU57Lhl+s9ZNp/IcDUUmt7V4o7R4o4zEvQzG/OyvGsOhWJybqUa3ZPZVTdDmy99GzWPTeX9LD+8xrvD90Q6eUeuI5Yjy4lX/4p5xC7CXqDLYS1w0TCChasuuVq8mrn7jK+PFjgsrpzK+sSfWUpYNWQKHZPBW3ygP+IeothWuVLZkPNKakxnDSZczjE2CftULFkWTNoOKxs9X9PPOwCBHMpM4paUx7GtBqaAjmy39ZWxxhHlXMMQBd2Fnsd+hcXBburXhucEG6uunqbar2cmR7Yv6k+ciSxa75/3iw9Ea4rLKVk8Yw4QT0/XUOBMcrFnqCc/Q6Z+j0z/HRMLNlUgFe2vG8Mgmo5qL6Lx/P9fXn4tnvte5bkm8NlFPrStBuz+cvrmYrWFHxVTB9oayBPfUDXIPg5yereb7M20MUJN32ZUfYvNzFXSNYqeXFT+xVFd+GZfUa09jLcva8Aq1ZVnCprIKhE3l5mHdxXhDQwNjYwtbW42NjREIBHC73SiKgqIoeZdpaGhY0Zg+n29VlXHY3PaGY2NjnDt3DlVV83qEV8vq7j6XXpHqXDE+tP0UD9XO0Ooq36vf6IlR64rx0ngzuilxV/0QjjIekwM4FYOfb+5l79wUJ6I1vJCqJWKzFb1gluilAoC9xGS6UmIcS2IyEitbIK9VXP1GVoeKiXFJspC0+T7rG1wZL2bZCDqSvNMf4mBwkl2uwimIi6m1p6i1pziXCKAj0+0M4y6zRaBbNnhHYIjdzln+8/DdRZddqWdc14v9Hi32+yd4qOIqh7wTZaWCQrq14a6WUWZ0B6fiFQQVtezYeYAm3yS6Bc+NtAAWd9QNl31c17oT1LoT9KW8hA07rY44DUX6m+dikywO144xm3Lw7HALAYda1vyUDHsrptgdnOJNvlGe87XzT1d2EtNz52YUW7u0TSVh6kXF+EqxVBtSmZ/vYrSYSWRigitXrgBsuBjPPD1c7QROgeBGZ92PgDvvvJMf/OAHC1778Y9/zJ133gmkJ2AeOnSIp556Ktsi0TRNnnrqKT7+8Y+vaMyMZ3wlLQIzrEcaZjFSqRRDQ0Ooqsr4+DgdHR3U19ev38mxwLm75PTNnPW2B6f48LZT/GzbZRzzj8MNeRuD8WHaXcWfTKS7qtTQ4Q/z5oYhACaTbnqnguyvGsdlKy54Tk/XpKtxlVNsC87yXrOXJ8faOZpoAwo8PSjhJ7cApcSNir2Mx7iTkRiyLBcUyGsdV7/RlXHNLHxcyFKOZ1zb/Mp4gzvKr207zS92ncM731ZvRHMTM2x0OYvHqBsWXEn5CSoqu9xpMRqfj39vtseLtkUEuJr08zeX9vFPF3fi95XyoBdOji1Gvsq4hMXbm/r52M7jHKhOV6szLQJrbMmszaMQY9NeJqN+treOsc8zC5TX2hAgpckMRhuo9E3ylsZ0F6XJpIveqUp2VkwScBRvD3phthLdVLIe8tzgpGKtJAHCuo3z07XsrZrgnqb02FfCQWZUJ/uqJvLaXzKYFhyfrKfWHecttSO8pXaET+x6nW9d2cnXevYylvCW8IwX3TQAklaJlqArPISNhILNV17v+8UEXVW4gkEmJ9Of98WLF+ns7NywVMvMNXY117lMK9k3IoYlY6yiG9P1hvHGdRwtX4xnYuYzXL16lRMnTlBVVUVbWxuf+tSnGBoa4mtf+xoAH/vYx/jLv/xLfvd3f5cPf/jDPP3003znO9/h8ccfz77Ho48+yiOPPMLhw4e57bbb+PznP08sFst2V1kuq/WMQ/pOfSPEeG7P6MrKSlwuF93d3dTW1q772CtCsnhLwwAf3nYqK6JzUcxLtLvgasKPqits988u+Pto3MNANN1zePGj4xpXghpXgumUi5PTFeytmsBju/YdqIbEyek6al2JJX2DbbLFQ419vKO+n9tcW/ir8wfpCVct2rrSR3qp4qFc4qRvmBJzqQSuPAJ5veLqN7KbSimbSm7Hmo2ujOc+8en0z/Kb20/w7vae7I1ihkZ7AuwwpTuZ1J10OSILhJo6H3dfZ0vS7VpYlc1YIjRLSve/llLULAqWORur5K8vHOAHvd1kbm9LWRBW+u3lBh0pksmDLVf4rZ3H2V6x0I6S2yLwcsqPR9YXeOUBRsIeJif87Oocp75q4fkz09pwXHMxaziytp0MSc3Ghb4a2htm2VI5vGDdGleSGtcIcd3Gy+ONdPjmqPcsvDkplNSpSGS/g/6UFxOJzkU3BLO6nTHdTYcjuqQS3hVIPwUZT7i5Ggmyu3JyQa9z3YQTU/U0eGIcql34dDbgUPnojpN8eNtpvj+whWfG72Elpe1MNxWV9QkB0+IStpW6F1U7bpeLffv28dxzz2GaJj/96U+prq6mo6NjlXOTSqPPt5FdjVf9jewZN5Ewb6IJnOa6zWe7/lm2GH/ttde49957s/9+9NFHAXjkkUf46le/uqADBEBnZyePP/44v/M7v8MXvvAFWlpa+Ju/+ZtsW0OA97///UxMTPCHf/iHjI6OcuDAAZ544oklkzrLZbWecVhfm0qmMhoKhZibm6OhoYFbb70Vr9fLsWPH1j25sVj9u9Ch4JA13t3ey4e3naI7OFNyhE53+gJ6cbYS1VRwKyphzcW+qgkaPMWrhFXOJLfXjTKbcnJ6uo427yxDST8d3jC31hZP81Nki4fbL/Nw+2WeCHXyxfO3cH427QEt6pWf/2upluZKKTFuyIT1OO6cCZyapjE8PJxNilvruPqNbm2oFfl9pp338yEi6sZXxvdUTvCxHce5v+Vq0ao3QLUtRbUtxazm4NJ0Ja3uMJOmm05PmO0lbBl2yWL7fOT965N1VDhSTJpOvnz+IM+FOpa/8Sv8+kxTxi7r/Fx7Dx/dcYJ2f/Htzu2T3q96MS0Jp6yRMB1sCURoDBQ/NuvsSersSeYMOyOamzpbnHHdQwspDuTpT56Lx6Zze90IuilxYqYWv5Iipjlx2fSy2htmfPpjmos5w06lkmTacNPljLDdVny/69wJ6twJYpqNk3PV1NgSDMcDNHsjHC5xTrHLJj/X0cPPdfTw/vZm/vbiPp4bbSFXmJdTNdey9qZrx8haoMagcKRUcaxUukVkJpJ+3759bNu2jYGBAU6cOIHL5aKjo4PGxsZ1mdyZGfeNWtleLcIzfvOwbDF+zz33FL3wf/WrX827zvHjx4u+78c//vEV21IWk6mMryZRbD1sKpl2dYODg9nK6O7duxf4wTfEHlPk+1t8KFQ6Enxg6zne33WewZifgKN0/+VckoYNh2JgIWOTLGzL6CoR121IkoU8r6occvmfi2rIRDQH+jLTDaWST3tLVcZlwlqcBklGVVV6enoYHh7G5/OtW1z9httUjOI9s7NsQmXcssBY5pwIy0pvtSKDZbDs+uVw3M+nX787e9O3EtJV/eV/h4YhU1ERo6omjLrMx9WyZWEhISNhAoZJWS1HId2NBkCev43VNBnKdFnZZAsZE5BQZBPVWN452pZZV0rf+mmWhL1Y39Ic7HLmci+hSCaJZXYiqXPF+OTu1/j0rc/zjb4dfOPcflJG8cuohUVS1Qh643z84Ku8o7afHw5s4as9exmMBZY1fj6SEQiucF09LmOTFrYXdLlcbNu2jS1btjA0NMSVK1e4dOkSbW1ttLa2run8pbWavPlGFfM3n01FVMZvKjIT4GKxGIHAyk52a2lTSaVSDA4OMjQ0hMvlor29nfr6+ryVBkVRNqAyXppO/yy/tu0U722/hGveKtLoiaGZMq9ONNDqDRescKumTE88SLU9yf7qhR0UesMVRDX7ktdz6ZmrIKo52Fc9QZM3XQ2rd8eJzCf47QhOEXTm973OqQ6+2buLr/XsYSLpvaa0oKjWyS6imiWOiuInC0NXmE2FSaZcXLx4kZqaGg4cOEAwuNLLZWk26kKUGaeYZzz95CD9GW34BE5L4uxMDf/ppZ/hs2fm+Mj2E7y349ISm0qGKd3BpO6i0xHl1pp0dbTOnchaUGqUJNUFIth1S+LHk6184fXbuDxXXXLbSl1jVmxTMSUk2eKs4ufs7B46JxM8VBHiUNXSJMwMfSkvsgRtOR1hGkgyFXUTGgmyrW0CjzP/dzxn2BhZlHhZYdPQ7RKne+up9MVpqc8/4dK04MRUHdXOJPsWVcJLtTYEGNeczJkOtjgi2e+lyqaSNGUuJAPU5LEMZUgZMiem6unyz7IvmB67ef7ccm6mGt2U2VfknHRprpKUoSywx/23na/xH7tP8S9DW/lJ/9sKrhtwRbk8+QmOvOsonvmCwq9uO8OvbD3Lj4c6+NtL+zg+tbJmBQCJ8MoFjBaTcJO/raGiKFkBPjk5SV9fH729vTQ1NdHR0bEmnb1WK8YzidVvVNI2lZvnRuRm2pflclOL8Wg0umIxvhY2lUgkkvWDV1dXs3fvXioqKoqKp42ojBf2r1rsqxrglzpf5+3N/XmXsMsmt9aOopkSr0400OyJZAVzzHDjsu9EN86y25ffyrJlPuXvSjjInObk4PwEM9OCU9O1uBSDHRX526/55xP8Ylrae7otME2lK33xDUX9/F3PXv756g7iudUuScppVVG8tSGAqVlFjwqzxHlfN2T6xwbZX9nNli1baGtrK77CGrFRFyTTNElphSfhSTkTEa3UBidw6lK25UV/NMgfHHsrf3HuML+27RS/2HUenz293WOai7BhX9CzOpeMBSXjr/bK1yYPpkyZx8Y6+eKJw4QiFcvYuhKe8RV2ODJNGSV7syFx1ebhL6PbqZ9r5wHvCG+tHczada6kfDhlg44CbRmrfQmquxNE4w5OXK6lq3OSwPwk1WndwYTuoqtA4qVNsdi7JX1DM/D/Z++/4yS5y2t//F1Vnad7cs4zm/OuVrsriWgQrAAbZDCW7OtLsAFf+8rGX/3uxcDFwgZsbBMsE4wcJILDhYsN2BgQApkVQYviRkmbJ+/k1DlU+P3R0z0dqquq0+xqds7rtYjprtwVTp3Pec6z1IriDDHgTq5HVuHEfBsdnhA3Neu/JKSiDVPe7r3NM+nUmsx4w1Yhn2y7RJXtLj+KJvDMXBsNjmjaKx6RJU4vtLK5drFgskrKpz4a9DET8bC3aQbHygvBuaVGZE1kd4N+U6J6W5zf6nue3+g5x/dne/nCmYNcXEiOkDR7gvz+/qf45c7LuHVG9SRR446eIe7oGeLZuTb+fa6PUc1RdKxOcEkx7mhmgGgQaldsKoVIsSAItLS00NLSQiAQYHh4mMcff5zGxkb6+/tpamoqWRCQZXkjSaUMqOus6U+pnvHPf/7zfOITn2Bqaop9+/bx2c9+lsOHD+tO+8pXvpLHHnss7/PXv/716VrGd7zjHXz5y1/O+v7o0aM8/PDDJW2fFazLq8But+N0Ossq4iyVjGuaxtzcHGNjY/j9fjo6Ojhy5Agej7Wc4XJeAiynx+ic7y2uEH9z2yMcKPCwzIVd1DjUMoWsCjw22YXDrnCoaRZJfRaPBaEj9bC8sFzPZLiGAd8y+w2UqUzU2JPe04gs8a2Rzfzoai8Pj28qb7hu5ZgoUcXQgJlq6gPgckZQNYl4fHXYVlFFalvqqHHWGA7nBhPDLIXG6K43jryzgrWwqaiqysLCArIsEzboJJh59l3LAs4UpiM1/PmpW/nCC/v5H/uf4tbWSXZ7lmgzSeaAbH/1uWgdT8218vmTh5kLl68I5qHUJA1FxG7P91ZNSy6+Eh3ge+PtvLVxiA572DQJJQWvJ87+zVMkNIEzkTrQBHa4l2k0SWFJobc+eQ85v9TAZLiGLXWLprUeKaS83RFV4nSkHjsaO9zLgPnvJQkaB1dGOE7Mt+CPO9mT0zjMcLtXmpItJez8fKYVr5TgphZr90OnqPLGtmF+sXWYHy10Mhys5b/1nMdl0ZZ3U/M0NzVPMxr08q8zg7wg+pAterSDizKlZiZG/BqCG8uWTp/Px549e9K+8tOnT+NwONK+8mJV7g2bSnnYsKnA1772Ne69914eeOABjhw5wv3338/Ro0c5f/48ra2tedN/4xvfIJ7RRXt+fp59+/bx1re+NWu6O+64gy9+8Yvpv51OZ9HbVgzWJRkXBAGv10sgYC2fVg/FkmJZltN+cFVVS07KKMemEgrH8NaYGzf1zvfZaA1/8PPb+R87TvCW/vMFh/YzkWrS84qOCWRVYDzURqs9ise5ZDrvYtTJBX8j2+oW2Fq3xGjQxzOzbRxonjYtvAP4r6u9/MP5fTw524FpMVQR9VJKzPg3z7xZNNaGGRycxh90c+FyB9GoC0URiRMvSJAXos8SjHyWzfYztNk1zo4PIjvexZaW15YWNE11yXiqzmF0dBRVVREEAbvDAbK+uV7MJMRrXMBpdASW424evLSXzz57C7+55wT/rf+Fgk1kMrGk2Pm+v5tjwXZeGOkwIeKFTzQz5btUZVxRRVw616qgquwhyF0dF+l0hvErds5F6+h1BPBYyEkfm6klVqexayWTfSjuwyko6WZIRojLIpfiPlqcUbbVLzIZruHJmXb2NM7itpnfUy8sN2BzJdjrXkLWBC7GfNSKCUsvUKlGP9vq56l3xBkO1HLZX8++xhlLWednF5tw2RO8vH2CiCytjP4F6awxf5EJKDYmEh5e2jDFq5uuMh73ENVEBh1BS/e0E3Mt1Dvj3Dt4muW4g+9M9/O43JTV1CwXIiKRoEqpZDy8rCG4jZVxPTidTrZs2cLg4CCTk5MMDw9z4cIFenp66O3ttUxcKkHGb2SoiDd8msqnP/1p3v3ud6fT9x544AG+853v8NBDD/H+978/b/rGxuyUta9+9at4PJ48Mu50OkvudVMK1iUZB6ipqSkrUUUURRIGw/EpRKNRxsfHuXr1Km63m4GBAVpbW0uuPC/HpuIPWSPjhZ4LE2Eff/TMy/nCCwf47e0neevAuTxSLqtwaqGNekc0K4bMJmr0e6fQEJmO9wNTtOkUe44FvUxFvHmt7lOq1FjQx3TEw4Gm6bxisrgi8s2RrTx0fi+XAw2m+1kMUqO8iYjxsY9nktCEgCBAnS/CzfuuEAy5uDrZQEyLIWSkqQBMhb+PFvt7Bu1DiBmC+e6GK8AHOTf5N4TEd7C97c6iSXk1yHgikWB8fJzx8XGcTieDg4N4PB5OnTqFbLEAWIut9UPC5LgJEJYdfO7EER44eTO/vus079z0HD06to0Z2cX3/N38NNiGvPKwE01VTiMybjJnqWRcEZEyyLWkqRxgmTe3DtHhWd2vWilBrbSc9le32yLU2/Lvb8OTdYRjDnb2Z49SbVoZITDKGw/HJM6PtLKlb5GdntXGSh2eEB2eEMtxB6dmWtlau0CjK/9F6IWlRhRNYHfmfUXQ2LKy7qGYF1HQ6HPk/14hVeKFxSa25dhR+n1++n1+06zzMwvNOEQla91um8Khlqm0190jJdhan2+/8ys2riY8DGb46GG1i+uC7GBGdtHvCOgq5Sfmk2k8mR1K6xxxfr3nAm9VBR6d6eXRcDtztvyRNrfoppxklsCCgtBROimWJInu7m66urqYn59neHiYxx57jI6ODvr7+00bmMmyvEHGy4CiCUUXrF/PSO2L359thXM6nbovePF4nGeeeYYPfOAD6c9EUeT222/n+PHjltb54IMPcvfdd+dl6x87dozW1lYaGhp41atexcc+9jGamszrg0rFuiTjKWW8HDJus9kIhwurQH6/n9HRUWZnZ2lubmbv3r3U1dWVPVwmSVLWEEox8AejdLaaFwqaUYpUOsQD5/bzP1ZIeVwV0016UkPBehBQaXMMo2pwIVKLU9Ho8wZ4YamRuCKxr2mWHm/h36XHG6DHG+BqqIaJsI8DTVMEE07+5fIOvnJpD3PRMtqKG+548neLh43jVJZDq9ue2e5dEMDnjbJ18yRhZYEZtYsmtYGxwFeoUf4vm+wzYBBCsL1uHPgYl6b+gUV+gx1tv4ogWntIVXKINhqNMjY2xtWrV/H5fOzcuTOdNZwaacq06uQik36vtWfcDEKGr1bWJL5y9gD/eHY/R3sv81ubz3CgeYahsI9Hwp08GW7JKyYSTRRlUShcU2BGts1qEQrOp4pIkoZdVbhZWObNbZdpdhVWkFP+alkTuBCtpU6K02aPMhbzEJ5xs63HOGJwNW/cyZLiZNDpJ65KnL/cyubueQ5sLWwJqXPEuaV1kpgi8exCC62OMN3eEGcXm5AEjR0FakVSSOWLTybcBFeaNkVUifGEl35HgJubCltKMrPOTy0302YP0+4Jc2q+BY8tkde3IBOiQLp50vmlBsKyjX1NswTUZDFrLgnPRaMtTqMtvtIwqoZmLU6zO8qJuVYanNF03Ywe7KLGHe0j3MEIT8238b3lboYkd/qF3SmUGmqYRGBBTkcbltt4p7m5mebmZoLBIMPDwxw/fpyGhgb6+/sLpkhVShm/YW0q68wzrqw8pHt6erI+//CHP8wf//Ef500/NzeHoih5MdhtbW2cO3fOdH1PPvkkZ8+e5cEHH8z6/I477uDNb34zAwMDXL58mQ9+8IO87nWv4/jx41V7eVyXZBySWeOV9oyrqpr2gweDQTo6Orjllltwu8u7Ieaut1SbSiBsPuxeDCZXSPkXXjjAO7ee5r9vfs6SfQVW/LYuP49O9/DV6U28pXXI9GGbic6aELIm8kfPvJz/HN1MRCmjMY6W+o+BorvyVTxsPBoi2O2wMmKi12FSEMBmi7BY8yBxl58udbFgIoceNtdOMRL4Oy5N/gcO38vo8b4LUTSOEstUxhNKgIng35AIz1Dv+x1avJstrTcUCjE6Osr09DRNTU0cOHAgr/g5tR7FiDlmfrXWyrgmGIqEel9pCDw8upmHRzextWGemq5lvF7960gyUcaFVBvXAusxQunKuIAgqAz6Ze7afpE6h7VzzSZobHX5GY7V8EKkjhoxYUrEM9Fqj+ERZc5H67Ardrb0zOJ1W+sC6ZQUbmqc5fR8M+OhWhqdUV3FuRA67BGWRTv/d3GQJluMX/BO4rJgvYFk1vm+ujl+NNPNlye38kvNo2ypW7K87m31i8xEXDwXrscmqQw6AuliT9N1rzSMenqujYv+Bto8IfpNcuEzcahpmi5XiI+fv5lgc/LZ5FBL97G6RBeqmrwu9NJUSoXX62X37t1pX/mZM2ew2+309fXR1dWVRWZSOeMbKA2qJqKuI8+4uvIcGxsby3r+VMuv/eCDD7Jnz568Ys+77747/f/37NnD3r172bRpE8eOHePVr351VbZl3V4FlbCppMi4LMtcvXqV8fFxNE2jp6eHffv2VeUmUo5NJRAsLgPcKqYiXj5+6ja+eGEv79l+krsGz+E0aFWpaC5+6G/iB8FO5hUX2OHPFvewdS7EW5qG2LKSqFIIJ+db+Yfz+3hkor8yN5oieE40LBvOEM94URLk7OncgswveCe53XeVhpViN0WDizEf9WLc1KP8wlIjCUVib9MsffiBC8wFvsoMd9Lt+10ksbAFKa7NMrz0BXrEY+yyxaEWEuqPOTF6kMa6e+io26073/LyMiMjIywsLNDW1pZuPmUEI2U8M9RB0ARUFarQK6QKELiw2AyLzTQ3LjPQN43TIWc5hsyUcSNxrlo2FVUV0TSBfzh3gP97aRe/OniO39x6OsuioocrMS9OQc1KVhm62kA4ZmNH36zhb5ayZQw4guxyJ+0o4aidExc76G1dpKnO+D50cr6FOmeMvU2ravS5pUZiKyNnRliUHXwv0M1jwXbiWpLU/edyD6/0TvFK9zQtrojh/P813cMPY61M4gE7nFveSfdClKPeq7y05arhvDMRN8PBOvY3ztAqJfcxpNgYinrotIfTyTN6UDW4EvPhkxLcnDGy+NxiE6oGexqNX4Suhrz8zQsH+LfhbbhrouxrTqZd2dTSM79dK6q6IFTHu+1wONi8eXOWr/zixYtpX7nL5apItOGNjPWqjNfW1lpKwmtubkaSJKans0frp6enTf3eoVCIr371q3zkIx8xXc/g4CDNzc1cunRpg4wXC5/PV7ZNJZFIpJu21NTUsHnzZpqbm6vSiSyF60kZz8VUxMtHTryUvz13gPdsP8ndgy9kkfKg4uWicoR/mlVYyHmh0BA4L3n5+NJutsyHeHPTMNtqs9WwH0708Q/n9/H0XDuV7FC3uhHmiq4AOAWRWAHCGUmsPnBTtocGKcZrfBO80juVF2EmCbDFGUjH5Pl0CtFOzrXgscu6IwfNthDN/DOLgW8wpr2eLt/vYZdWfZj++EVsTZ9mm/csrpx120WVw01PoWpv59nRvXh9/5OehpvTHWBHR0cJBAJ0dXWxbds2U/UhpYyrFo5jCqoqmpLYtYO1B/fcQh1zC3XU+YJsGpjC444jCOaeccEgXq5qBZzK6r0oJDv44oW9/NOlXfxizyXes/1UVrfcFCH0Sgldz/dAZ3Laq3M+Zpdq2LlpCnvGZqXazuvFG3pcCQ5smSQhi1yc6sDXuEh7Rs2IqsGp+aQtQy81KRVnOhb0MRWpYX9z9rrnZSff8Xfzk2B72sOfQliz891ADw8vd7FbC/LG5mE2+VY966oGj8708nCokwVb7gibwLjk5sHIJr55pYdXumY42j6CI+OcnQ57GA3Vsr9phlZ3dpfRGklmu+QnsWL7qZditGa8dKsaXI75qJMSbHblBwqkOo+OBGqZiXrY1zidVWiaScITapK0Zhr1RLl0Mu7UXCtHoHybihFEUaSrq4vOzk4WFhYYHh7mxz/+Me3t7SQSibJ7MNyoFhVINihbT57xYp8UDoeDgwcP8uijj3LnnXcml6GqPProo6ZNJL/+9a8Ti8X4jd/4DdP1jI+PMz8/T0dHR5FbaB3rloyXalPRNC3tBw+FQtTU1FS9aUsmyok2DIYt2iHKFBOmIzV89MRL+NsX9vPu7Sc53DrJo4EOTmv1KBhvg4bABcnLXyztYtN8mF+qH+X5hWYeurCXKxUuysxft8F3GdYLj81OLKH/YhNVVsl4uxThnfUXuM03g80k5zczJu9KzItdkIkEW3A7ltjfbB7p2GCL0MC/sRz6T4bV1+C2v5J4/Itstj9PR635um9uOg38Ns+ObGVs+rU4Y5vp6ekpKfHHiIwLOQ8GVRHBVn0ybi6QaUWH1SwHvDx7ejMed5Qtg1fLUuHMPeOlp6nkntgJVeKbI9v41shWXj9wgffsPIHdptIgxnUJYS46mwN0NgcIKA4uJ1zUijGCqpNBZ4B6k7bzdpvKlvakb/z0fAs2USai2Gh1RS3FpqZqRvyKncsJNzWizA8Dnfws1GaqAKqiyGlqObO4h4HZCK+rG2M+4eb7kXYWJYfp027B5uAbcjffH2vjNts8h7wzLMXd7G+apq1Ag7P0fq/YfiB5fUuCQlyVqJMSbLFwzPt8fvp8fuajLoaXavHa4vzjxT1ZJDyNzFMlbgPUkrQLW8riIiQJTLH3gWIhCAJNTU00NTURDAYZGRnh6tWr6eZ8LS0tJRPrG5WQr780leL35d577+Xtb387N998M4cPH+b+++8nFAql01Xe9ra30dXVxcc//vGs+R588EHuvPPOvKLMYDDIn/zJn/CWt7yF9vZ2Ll++zPve9z42b97M0aNHS985E6xbMu7z+YqKNlRVldnZWcbGxgiFQjQ3NxOJRNi9W394v1ooL03Fqk2lMjeumWgNf3ryJezaNkJjQ3EvPhoCl6Qa/nj8Jk6/MFCR7bGw0sJfZRCtGoeDxQJkHKDGZiMky4S8AgtxFwlNxCZY+83CqkhcE2m2KShigpBc3CUYUETc2jFalYcZVz3ENcH0RSCFYMJGQvXz0k0PMRlpJ+F4F3Zbn+V1W1HGhRzerapr85CUdfz7mRAErWT1ORxxceq5QVqbjGsejJaumRwHs+8LIVMZz1smAt8Z2sbPFjr55X1neX3tuKU4xxRiqoSERr1Nxh93ElRsugksepC1ZIOkJlcCuwxzMTddNQFLEX+QtH/865XtPC/V4LToRU9BQ+CKzcOn5nfhcslQpOAbEuz8QGnnoVN7eLlvinZ3iB6vtWeJqiWVSp+kYhdgWXHQZIshWdzvqGLje5MD/PO5PfkkXAdaTKJ4PTEJaaU5mlCBAs5i4fV62bVrF6FQCJvNxnPPPYckSWlfeTEW0BuViG8gibvuuovZ2Vnuu+8+pqam2L9/Pw8//HC6qHN0dDTPzXD+/Hl++tOf8sgjj+QtT5IkTp8+zZe//GWWlpbo7Ozkta99LR/96EermjW+bsm41+tlcdG8KCiRSKT94IIg0NPTQ0dHB9FolPl56wVNlUI5NpWgVZtKhW12SqKMm/haDLGlV1F4xyVRIkUznCYpJi6bnZAss5hw8Y/T2/hhtIPX+CZ4je9qut11LpZkO1Oyh76M5IXa+uSQ9/OLTWisDlnrIammq+k0C4Dtkp+IKnEuWku3PYS3gI9/Ierkor+RnfVzHGlNrrPJVXqkYlE2FQOyWEkosvF6RFErWX1OwfSdx9AzXnllPPkzmM9ntylcitfxmbk6Om0h7qid4NaawqM5Y9O1+MMudvTP0Lwilq4msPhWElj07zXxhMCVmXZa2+bzGv2Mh7xcDXvZ1ziDs0Ah+CV/PX/z/E18Z2wQRZO4ae9lnBRHxlMwOyfMEIg5+crUHv750i6Odg3xru2n2NuoP4qlanA57qNBimcr4fakz31adtHnCKa7iuZiYsWO8o0VT7gVIg6gRCXA2gtSLoS4nVRp8bXK+9Y0jfb2dvbv38/U1FSWr7yvrw+Xyzyq90bG+mv6U9q+3HPPPQVtKceOHcv7bNu2bQVHOt1uN9///vdL2o5ysG7JuM/nY2xsrOD34XCY8fFxJicn8Xq9bN26NSt+qRy7SDkoRxkPhqzZVCpd9KKU02lxDe3Ehnud8aVTMCPjq5eNooiEVDvfWu7n+/5uXu27ylHfBN6VYq5kBJyDQWeQ7bZl3eWl8tovLDcQlW3sXfHUyhoMxXzUFvD4ArhXEhpiK/nRHfYwdSvrvhryMhHOz3TPRCpS8fLU3zOv/Td2tt9dMFIxpYwbHcc8ZVxZI2VcMf7NRFEt+yW0xI7jgDnZLkUZT406mG2WLaPRzlW5hocWtvLN5T5e65vgFRl1DkOT9URi9pWMcZ2W94LGVleG1QqVHmfy5TAWF3lhpJWetmW2d+mfa901QbprgizEnJxZqmOrbzGd+X1+qZHPP38TD08MZBVtl3OrKvdFMDXqoGgi3x3fxHfHBzncMsm7tp3iVZ2jyXWs1II02uLpPPRcNNjiNNjiya6i/iba7WFa3clC00wSniLgZtlcQsYvngiXfn2pcRuQuCbKeAqyLGOz2RBFkc7OTjo6OlhcXEznlbe3t9Pf329oE72RlXEVIS+C9cWM9bQvxWLdkvGampo8z7imaSwtLTE2Nsb8/Dytra26EW6QJOOapqGqalULNvXWWy1lPGXFmZiYKLVhmy6UeDnKeOW2oyxkbIfd5OA40g8tATnjgR/RbPynv5cfBLp4pfcqu11L7HYvZRV0GWHrSrHdC4uNTEc87G+bseQ3hWQ77u2uZCHZqUg9wrKPXW3jljoHAmyqnWYTn+by9D8yr/0629vuRpL0i8OSL3MFbpq5yniZ6qRVGNk1IBlLWK5lJvdFI+97g++Synjh41aKMr66P8bz2nS6Xi4qTr62NMi3l3v45bphOhMxdnZYjxdMvRxeiXmZmGtml2+K/VumTOZKotEZo9E5Q1i28e8jm3l4fJAfTvSbxj8Wi7LuS+i94Ak8OdvJk7OdvPHQKV5dP85B71z6BcUMblFhb+08CVXghxN9/Giyh28Mb7esgmdsRhrx0tN7USMrqrpQ2WjDYpD7EiAIAo2NjTQ2NhIKhRgZGeHJJ5+ktraWvr4+2trabmjynYsNZXz9YN2S8cymP4qipP3gkUiEzs5Otm7dajgElrpBrPVNqqwCzkgcTdPyblayLDM5OZkeKfB6fWDe1doylHgZx0cTkvLXGtxgDdeQQSJtJjcEZ1ZObv6DNKZJfD/Qw4+CnbzCO8XrfOPpqEMjpOwkO+rn2dGwwKzs4WLUySanNa/tSLwGDdjnXkJ2+jkx10a7O0C31/yJnWojvrl2kU2uv+bqwpcYib2ZHe2/hd2WikAzV8ZzRzrWTBmXRSOuiyiqZdtUzOKkDQuEzch4Scq4aLLWJGy69iWNnc4lfqlulO0uP3FF5NSldtoaA7Q3mp8vEVXih4FOHgl0EVTtNI238xphmldtGcFuoWD3zFITnzlziB9N9mJ0ZZbq8wdQyxmxA2S5MEmeiNfwibNHUAIOfnvPs9zZeTk9GmaEyaiHz529mW8Mby2ehOsgar0sKg8pVT1lU7kWed9GinxNTQ07d+5ky5YtjI+Pc+7cOc6fP09fXx/d3d3YbLaNaMN1F224fvalWKxbMl5bW8vS0hIf+tCH+Pa3v83999/Pli1baG9vt3TTSRFwRVGqXmWeu95SFXlB1pjxh2ir8wLJborj4+NcvXoVt9vNpk2baGlpYei5JypMxl8cyrhVm4rNhBjZVn4XDWNFNq5J/CDQxY8CHbzMO8Xra8dptuWr5IXsJC22MC02mJOdLMhONjn9eYVgqgZX4l48opLVJtwmqtzcMoWiCTw710qjM6rbYGQ+4uJSoIFdDXNZ6+70LNPp+SKzy/+P58NvZGv7byNg4TrI4X1rp4yb2VS0FfJaOoTSrMupuREEtaDtohQyrigigmCu+NtsmSvV2Oda4JfqxtIt7gEcksq+zVOoKjw31EqNK0Z/R76tKqjY+EGgkx8GOglrq+fDvNfOV+nmP6+08xphgdsHL+HReQl4Zq6Nzz13kJ9Md2PF714O15LLEQkwH22RFYmpYC1/fPyVfMJ+K+/YfYpf73uBNkd+If2c7OTbyz186cw+JmaajVdcxD4HF0s/KWMrg2Ypm8q1UMZlWTa1x9jtdgYGBujr62N6eprh4WEuXbpEd3c33d3dlvKo1ytUTShbZLiesJ72pVisSzJ+/vx5/vEf/5HTp08jCAIf+MAHeNnLXlZ0hfa18I2nbkylkHEJkcVAGI+oMTo6yszMDE1NTezdu5e6urqqDe+psXKaNmCoaF4LmMViS8Lq7yJb8KXKiPwo2MmPg+3cVjPDG2rHki3IZ+uZExzsbZo1tJM022I022IsyA5mZReDziSpHorV0miLsbmAnzy5rRo3rUTKnZxvwWuLs7lumcmwl/FQspiukJ8coMUVosX1f1kMfIvn/K8hpu4z3tmc7pxrRsZV0fAcEsXS01TSMKuTMyFRoqChFCTjxR8nWRGRJDW57waQJAUBjZvc8/xS3WjWS1veNoqwayB5vlyN1xPXEvQ7QwQUGw8HuvmvQAdRrfB9NOiy8U1a+d5EIwc0P3e2XqHVHeHnM5187vmb+PlMJ8Vc7OVYV9SK21Ryvs84t0MJJ58/cZgvnDzIW7a9wDs3n2Grx58m4aloxmjCQi64yS5nfr00GwcEZLn4Is6Uqi6sRBuutWdc07SivOqiKNLR0UF7eztLS0sMDw/z5JNPVq0Jy4sB6jpTxtdTTGOxWDdkXNM0fvSjH/HpT3+aH/7wh7z85S+ntbWVxx57rGQSei3IeKYiX8zLQ7JNucKJU88xVSPQ0dHBkSNH8Hg8OhNXlvmqZbY9N+givnbIkODMFFApwzNipshmQkHkJ6F2fhZqY6sc5W7fJUvZyyk02uK4V1qQC8AWp99yK26A/U2zXPHX8bOpLto8MQ61WPP4AjQ4Ixxu/DZPDTzDH9S18uULe1iM65Sa5ZBxbY1sKoqBpQCwpCCbwSy90jRsRVQLFiyXogjJiogkaoYKriSovLzuKq9oGGebe9lyNCFAp2OJJcXOlxY2cTzUlu54aQVRbBwXGnliup7QeB1PX+2xPG8WyingLOO+pKqC8cubpn/tq5rE18/t5uvndvGKzZcRmqNZZMnI+lIK4qGkVSkYDEJ9cfOGl1Mno4CimCvUlUaqNqpYe4wgCDQ0NNDQ0EA8Hr8miv71AlUTK9Ol+jrBetqXYlHynn/+85+nv78fl8vFkSNHePLJJwtO+8pXvhJBEPL+veENb0hP8453vCPv+zvuuMPy9vzu7/4ub33rW9m3bx9XrlzhYx/7GIlEaZFPKZSTbFLOOlPDhlagqipXr17lySefJBaNguTktttuY9u2bfpEHDBx/RYNuQxlHE2ofqKKIOSRxPztyPj/skmnxdQsgvlQth5UBL49vJXX/Oit/P7jt3NuqdF0Hr9i41y0FhDY7V5ml3uZmJaMNYxaIJnPLzZxdqGZwdplXtI+webaueRni02m84YSEk/MdLAcd/GS9gnu2XmCx37xX/jgvsdpdeWorLme8TVTxq1YHspVxk3mt6CMF5y1JJuKhCiquuegXVT4lYFzfP+Or/G+wZMc8c3hlWQuRGuZSZhn5c4sefjawk7+98RhHgt2FkXEM6GKIpeD9SXNC2V6xiOln3tWrmvjUTGB8/7GPNUyUQkyvnIeSUhEw8kLrq6uvujFBBeT8wrCtYk2TD3jylnvtUiAuZ6gIKy7fzcqSlLGv/a1r3HvvffywAMPcOTIEe6//36OHj3K+fPnaW1tzZv+G9/4BvH4agHb/Pw8+/bt461vfWvWdHfccQdf/OIX038XE7D+/ve/n0996lNpAur3+9MFnKXCZrNdk3hDK4kqiUSCiYkJxsfHsdls9Pb24vON4/bU4nCU3iK5FGhlPPQ0LZlSUXVlXAHjIOiM7xKa5SvDik1Fd3WagEoyMu1744O8unOYe3Y+y+7Guazp5hIOFhQXAzotyH0rrbhDqsQL0Rr6HEE8OR6bE3MteO2JdHxiJlKfXVxuICxL7GvKXvdizMn55WRBaa6VxWOT+c1tZ/iNzc/xr8Pb+Ltz+xkP1ZLrw9DMCGyFoFhpkFIWGddAxrCBjKkybkDGzawmuvPo2FQcosyvDJznt7efpCvH+mRb6RKZatHuEmS6HJGsaa4uePn3sUGeqfWhSJV5kSrnhayc+4IWLZ2omV3XGoKpym3TKWQ1s75YQeosdovu9F+lDP4GFlaHAK+FTUWWk+svR9lOCXc3KjaU8fWDksj4pz/9ad797nen240+8MADfOc73+Ghhx7i/e9/f970jY3Zyt9Xv/pVPB5PHhl3Op20t7eXskn09WV3EvT5fMTjceLxeMldk67HrPFwOMzY2BiTk5PU1tayfft2mpqa0jclf8hCjF6FbSpapLybuMXmleXBzJee8dRX46rhlZFJEEpRxpMLWd0YDYEfXh3gh1f7eUX7GPfsfAafPYZkt9PnnqPZbpzEUiMq7HCtNgDqtEcYv9qCryHAgWb9JiWZ2LISqXjFX8dy3EmPN8Rlfy17G2e4xcBPDsnCv1/f9AK/OnCO/xjdwj//bD+zGePlWpmJFlahmNlhtPLIuChqiDJgcCsxJ+OFvysldUZVk2RcVURcUoK7B1/gXdtO0W7Sul0USBdvjsZrUDQBe0TjmyObOVnnRW2o7G9WTh+Ccn6zcsh4+cq4fopNJW0qTiEjDaxIQmoX7MQiK2fsikXvWijjNputZDJ9oyepQFJjWk9q8tqzresHRZPxeDzOM888wwc+8IH0Z6Iocvvtt3P8+HFLy3jwwQe5++67qampyfr82LFjtLa20tDQwKte9So+9rGP0dRkPoyuB5/PB0AwGCyZjF8LmwroK+PLy8uMjo4yNzdHa2srBw8eTO9jCoIgEIqYk/FUyFqloJShjMMakXEzZNzY1ZgK+g6f5PcZ05p5lQuvTu8GKvDYVC+PTfVwW+s4/+fmE5bbhyfnTp4zCc2GLINHKs6mJYkqiiYQU+xIgoq9QDdRPYiChluSkZuz16nKa/OgUC0o4+VU6ouCCgWsJF2eAO/ZfpIjrVf5p0u7+PrQdmJK/q3VUBkvQRFSVBGvLcadnZd5y60XmQx7sZtVH+fAKSgENDuqbCNZ5ln536usiMFyPONRseTUVCtk3Ozaz813V1Wh7EQfIC0q2NXSW3O7hNV6j5Rt8VqQ8XLXeaMT8g1lfP2gaDI+NzeHoii0tbVlfd7W1sa5c+dM53/yySc5e/YsDz74YNbnd9xxB29+85sZGBjg8uXLfPCDH+R1r3sdx48fL+mC9Xg8CIJAMBgsmdBfS5uKoihomsbs7Cyjo6OEQiE6Ozu59dZbC+ajCwIELCjjFb99ySKqmkxiKBaaJiQVx2uMzHt6Imr8mysZL0rl2FQKQ+DxmR7e8N0eXtk7xD27nmG/L99mkkJQkRhPeOl1BNNWlqaBCDFF4smZdvp8y7S5IwXnv7hcT0i2s79plj5vUjHtqoGr4Romgj72NU3jkPTPmrgi8u8jW/i78/sZCtSDptGZuZ9rpIxbIdql+LJTEAUNctTrAd8Sv739BG/qu5QmwX9808+4Z+ezfOnCHv7p8k6CGf5sQ2W8SJLmUBV+pekKd990nnpH8prv9QaSv/lsO92eAJ01hVNTJhMuwqqdTc4AbUTBCX/QfJLJBS/fHhvgKV8tsq1CNpWEiJVUTD2U83KgRapHxlXVnDjYpOwXo0oXb9rUTDticXd1Nbo6fYrQrrXdoxJk/Ea2qMBG05/1hDVPU3nwwQfZs2cPhw8fzvr87rvvTv//PXv2sHfvXjZt2sSxY8dKii4SRZGampqyfOPXyqYiCAIzMzNcuHABTdPo6emhs7PTtOpcEARrZLwKWZ6qIiZbjhcLrdz8ZosQTR7smWQ8YrxBiQwyXqpNxWqT1WOjAxwbHeC2rlF+b8/THKpdtZ0syA5mZBeDjiDbXfmZ0E5J4XDrFAlV4KnZdro8wawIxbMLzYiCpusnB+j0hOj0hJiJuBkO1rG3YQbXig82LNv42pUdPHh+L1MRb8HtXzPPuIXfoTxlfMUzDmyvm+d3djzL63qu6I5cNLsi/K+9T/Lb20/yz5d38sULe5iPeQyVcas2FZei8FLbPG/quoLXnj/y4ZQUDmfky9c7YgzWrp4bE3E3MU1a6aCZn4fd0RjkPY1n+NWgi8ciPfwg1kRILa/PQllkvAzlIGmfK20c0MzbbaVGIVcZlytUzCys7I8oOzI+Kw4ecXVU2u/3I3a615zYyrJckUZDNzIh1xDWVQv5aozMvVhQ9JXQ3NyMJElMT09nfT49PW3q9w6FQnz1q1/lIx/5iOl6BgcHaW5u5tKlSyWRcUEQsrpwloK1JuOxWIzx8XGCwSCJRILBwUFaW1stF7gIgkAwbMWmUlltPNnBTcRmL42Mr5kybtEzHg8b/+YpMp5MUykxZaLIn+DxiV4en+jlYPs4v7P7WTo9QTY5AzRa6OxpFzUOrRC0p2fbUFTo9ip5xaKF0OqO0OqOsBBz8sRsC6cXWvnKxd360YYkA1VSZ6xWZuMVqzBTKTVKa6yTgihoDLQu8MFbH+fVXaOW5vE54vyPHSd5x5YzfO3KNr46vpmLYX3/k1kBp1eLcZu4yJ09V3DrtLfPRWa+/MVQLYqk4RIV+h3Wun3Ve6O8yXuRo+plHg108o3l/pIe+poGWhlWpbI842GxZDJv9nKnWCDWUo4yXpEklUzEbZQaReXKIOPxeAxVdXL27Fn6+/vxegu/XFcS1yLBZb1hQxlfPyiajDscDg4ePMijjz7KnXfeCSQrsR999FHuuecew3m//vWvE4vF+I3f+A3T9YyPjzM/P09HR0exm5hGTU0NoZB5a+dCWCsyHgwG0016Ghoa8Pl8tLW1FV3MKggQjJiTs4r7VLSkMl7arAKihU2uBAwf61lk3HiDYhnnRKk2FcEolsMAz0x18/8FGxn0LPP7e5/iZQ2TlnzlcUXg1EIbHZ4gnZ4glwJdDPlrGajN78qph6mwh4cu7OOrV3YQlg1kTkFAk7R0Jc5aKeNWiHZpfl2NW1qu8rs7n+W2tqtc8tdzcr6F/U3mhbGQPO5nFls42j3Mb2x5gccWOvns6Zs5M5t9bRci401SlNfVjvOymimCCSenF1rZWT+Hz2GtHuC5xSbcrjhbXAHG4x4ux3xZnTeNkFAlfhJq49FgZ8nqmyKL5RWMl6WMiytkvgRl3IRsW7nu85XxyhJPLWYDSrt5ChnNh5oam3A6k52fH3/8cZqamujv76exsbGqqvMGGS8fGx041w9KGiO69957efvb387NN9/M4cOHuf/++wmFQul0lbe97W10dXXx8Y9/PGu+Bx98kDvvvDPPwx0MBvmTP/kT3vKWt9De3s7ly5d53/vex+bNmzl69GhJO1YJZVwUxbKzygtB0zQWFhYYGxtjaWmJ9vZ2Dh06RE1NDWfPni2pMEUAS8p4xWO9tTIK9TQoss6wZBgdUS1Dqo5FFASD8YOonCnlCyiKgFTAU11wfWXedE7NdPBbP3wjO5unee++p3hl4wSSziJDCYmzi61sql3KavKztXYiuZz5Fjy2BFvqlnTXMxyo5e/P7+ebw1uJWxiaB1DtkAqSWDNl3JLqXcwx13hlxyi/u+MENzWvjgJurl0CYDToYybqYX/jNHrW6rAscWahlU21i1nH/VVNE7zqFyb4+XIrf/PcTTw+nkyByrWptNoivKF2jNtqZrCt2FsanVGOtE4SSNh5YqaDzbWLNLnyrSYAZxaacYgKuzIsSN0rqvhMwsmS4mDQGcCmc0iicYnvXRjkJ/XNLKrl2QhKThtaQakPZ1UVEMqwhZiNeFnZr9w0lUrEGgLp0zizcL7op0XMRsp3pWkadrudPXv2sGXLFkZHRzl58iRut5v+/n7a29ur0lhHlivTaOhGtqlsYP2gpDvtXXfdxezsLPfddx9TU1Ps37+fhx9+OF3UOTo6mnfxnj9/np/+9Kc88sgjecuTJInTp0/z5S9/maWlJTo7O3nta1/LRz/60ZKTUICyybjNZiMctjasaxWqqjI9Pc3o6CjxeJyuri527tyZlQ1eqiIvCAIhE1W3GhAoI0tYA3EtyLjZ/TrjaSYAHrudUIEXsWiq9XTqoahISFJxXptyvLCZ3uPn59r47Ud/kS0Nc7x3/1Pc3jyGTdBYDjoYjrUy4DNud79vReE9u9CMTVTYXp+MOTy31MTfvLCfh8cHi65wV+2k7chrRcbNX26sHXABjaPdQ/zOjhPsaihs4+n1Buj1BpgKexgNJmMgXTaVQNzO80vNbKtbMDzut9TNcMttD3Mm2MAD5w7w2EqHyk5biF+sG+OIZ7bgiIfPnuBI66Ruseap+RZq7An2GFiQWu0xWu0xlmQ7U7KbAUcAp6gRjtn43sVB/svZTLhWqshbuyJLGFjlTVHqS2ta2S5x3WbKt5Vc+Nyc8Uor44nw6rEp9iip0Qwir2lpUuxyudi6dSuDg4NMTExw8eJFLly4QF9fHz09PRXxeKewoYyXDwUxr7HUixnraV+KRclX1j333FPQlnLs2LG8z7Zt21ZQ7XW73Xz/+98vdVMK4nryjOc26enp6aG9vV33ZlRqpKIgCEQiCaIJGZfdKCi7CgWcZfhCRQvR6JWAoTKe87dHKkzGw2llPLnPsiJSbJulShfRXlxs5p4fvY7+ukV+d/c5bm84x76mccvzp/zj/zk+wDeHtvLYZB/FP+KTyBJTrxObipl4Jgkqb+i5xJv7z/PS9quW19vuCdPuCTMS9HFlqZ4djfkNkoywx7vI52/+L54MtLCo2bjdN6k7wqGHVLFmQoX/mujBa09wuHXKfMYV1NsS1NsSzMcdHD/XwX/YOlisLa9YMxdJm0rp85d6naQ83aUWhJkRZzPlXBRURDF7xytFxlN7FA+Vfm3JWb0h1DzxzGaz0dfXR29vL9PT0wwNDXH58mW6u7vp6+vD7davFykGqZzxUnGjxxrChk1lPWHN01TWEpWwqZRLxiORSLpJj8/nY9u2bTQ3NxsOrVnpwKkHQUgWQ15d9DPYatRivfI3sVIj7DRNwLYWZFww2eucw+0yUGxUTcsKhyhlKL4aiTYAw8sN/PnJI/xVZA+/d+B53th3GpeFgr+fzHbyvUAXkzYXx2d6KJWIA2gZdxUttkbKeDFDHxlwiApv7j/Pe7afpNcbQNXgxHwrtfY4m1YsKUaYj7i4FGhgb+Msfd2BFQtJO1tqF2l0mZ/YqXSTw77kCMVswsmi4mTQ6de1kGRCUeHkQhstrjCv6hoD4PRCC3ZRYUf9gum6Q6rEWLyGXnuIV+4d4Zb4OI9cHOC/bC0suyvzaFATYhV8ceZIZYCXytfMybjxeS3pXHNWCzgthHQCEAmoGZ8Ut6OJjFKqTGU8b1sEgfb2dtrb21lcXGR4eJgf//jHtLe309/fT11dXVHrzUSlog1vZJuKioi6jtTk9bQvxWJdk3Gfz1e2TaVUMp7ZpKelpYUDBw5QW1trad5SveqCICDIMLkUMCTjFafiWnmNPdZKGTdC7kPbKRpfGh7bKh0vjYwXPUsRC4dJ1csHnznMp87u5je3neY3Nj1HjT3bSqOoAj+c6eEHkQ7mJUf6biBKKpThb81UxrX4GinjJtGAuZYPt5Tg7k0v8FtbsztWigIcaEqmkJxZaMYmqrrEdjrsYSRUy77G2SwlPGkhmSKaynj3+mnT6Yg5FvOgCAL9juwC8xZ7jJYVC8m07KZ/xUKSCVmFk/NttHtCHGzOTrXa25gk9eeXGogqtrQNKRPJXPoa+jNy6QFcDoU37rrE65XLHLvUy09qOhgtM9ZQkcVrYlNJd/0s2aZSHhnPzRgH68q41U2O+DO9dcUdp0ggowOwARnPRENDAw0NDYRCIUZGRnjyySepq6ujv7+flpaWokmxLMtZ9swNFA9FE1DWkZq8nvalWKxrMr7WaSqapjE3N8fo6CjBYJDOzk5uueWWoof0SveMJ1WV5ZB+Udfqhha9aFOU7A3WQNSg5O4cVmGijGs5WYMOwXh/BFlOq7GlFGaVMxxnqgFn7Mp8zMMnTt/C35/bzzu2nuHtm8/ikBR+NLeJ74Wb8Es2coNdpFLy4jPXn3lXWSNlXFEE4/NnhRF67TH+++bneOeWMzQWKH5MIeW7PrfUSEIV2dM4x0SohqthH/ubpnVJdgqujIz3p+faaHWF6fUGGI7XIAK9TuP7UspCElRsDEU9dNtDOFA5tdBGT02Am1umDefftuL9HwnWEhYEtnqWCak2riY8DOSQ8FzYJI3bt41wOyOcCDfyXX8PF2O1JV2eaqJcm0pp86XEgVJtKgmTGhhTMq6jjJeavJSHlV0KLpV+nUaWM+bViuu+WVNTw86dO9m8eTNjY2OcPXsWu91Of38/nZ2dlpdVrk0FNoo3N2wq6wfrmox7vV6uXrXu/8yFVVKsKAqTk5OMjY2hqird3d3s3bsXu700Val0m0ryRDYr4qz46a6VEWF3vdj+crbDYTJc5nY6STWxW2tl3GxWPQKyFHdx/9lDPHh+L3u2jIJHQbLpn2MlNW/KQGboyvViUxEAUVT43QNP8d+6LlCj0zCnELbXLzAa8PHzqx04nTIHm6csxUlCMuP95uZpTs63sKjaaXZF6HIU7oaaC68ks0n0cy7UQCDkZkvtAi1uk5ftDPR5/SwmHJyL1iECm13L2Iu4VA94Fmi1RZhI1PCzUBunow0UcwdR4+Up46U+nJV48iSMRu0sLtfQ3prfFMsIpjYVkwLOcpRxM6SOSHChdAtlKIOMa5pakl3E4XCwadMmBgYGuHr1KsPDw1y8eJHe3l56e3tNVe+NDpzlQ9PEddVCXltH+1Is1jUZ9/l8VVXGU016JiYmcLlcDAwMFNWkpxBKLuBc+W8oYuz7qAb/VUskXWkSpVGFt4TcdRl8l8OOJZObgstpJ7JCFK43m4rRsgMJJ4JXBk1gye/B447iyGnWVGxMY976M56vglL9QQ9YsTOYBMlLkspxsZFnJg5xq7jAne1XqHcYv7he9tcTSDjY3zRDry+Zzz0W9DEV8bC/aQa7aHysTsy3UmePZeWSD8drEIA+h/G9KaYKDMV9dNoj7PEugneRuCLy1Gw7ne4AXV7j+acjbibCPvY0zLLLntzPgGLjcqKGXkcAj8lL13S4gbCUYMAZpMsR4XDNHGNxD9/19/BkuMVS9rgaL08ZL7XYPBq2s7gVJl/op7nJX3kyXooyXsE0FQmJaFhh9aQv7iAHMoi8VZtKIYiiSHd3N11dXczNzTE8PMyVK1fo6uqiv7+fmpoa3fk20lTKh4KAso66Vq6nfSkWG2TcAIXIeDAYZGxsjOnpaRoaGti9ezcNDQ0Ve0sv2aayItcFzOINKz0UpAFl2FQABBWq/VJsbFPJPiZCwpio2IVV30spNpVqFXAml2347UrKg0Z9bRhFSZJytyuG05E858pVxrNsKgjJ7qwFVPiKweRlThA1JCG5DXFR4jFaePxqIweFZd7cdoUWV7ZafX6pgbgq6UYE9ngD9HgDTEc8jARWYw1TSBVWNjsjaf95JlI+8fG4h5gmssmZXdcSUUVG4j667aE8O4lDUtPdVJ+da6XeGWXQlz3N1VANE2Ef+5tmaHNn75dPktkuLRNRJc5Fa+m0h6nNieW8NNGAoohs650nFz2OML/dfJ43y8M87O/mp6E24ppBsXOZynixNpNI1M7YRDPTS/XQkZxXjxgbQVEEMBkZMy3glEov4LQCt+imVPVCQCC4JKfnL5eMp5crCLS0tNDS0oLf72d4eJif/exnNDc309/fn/eMlGV5I02lTKja+rJ2FNuZej1hXZPxSkQbapqGqqoIgsDi4iJjY2MsLi7S1taWbtJTaZRsUyFlU1lbZVwA1FIL9bSc/1YLgoCiGBzTnBt7aDkIBhH3krRqzSlFGa/mTceI6Oe+L0pSkpSrqsCy343TGS/fM57zXC+nDb11WLGpZB/0hCjxcxp5arqBfdoyv9xyheW4CwHY2ZBPRHPR5g7T5g6zEHNyaqGRrXVzXPI30eEJ5hVW6iHVhGc64cKv2Gm3h5hIeOl1hNjuMlZyM9vdpwpNfbYYUxEv+5tm0rnjheAWFba7/CQ0gedmG2kSowTCLkBgS4/5vrfYYvz3xsu8qW6UHwQ6+a9AB2Et35anxcpTxq3eBlMkfGauPu/817OMGMFKhripTSXn5VPTKqiMCxpOofRowVwir2laxZv61NbWsnfvXrZu3crIyAjPPvssNTU19Pf309bWlh793bCplAd1ndlUSt2Xz3/+83ziE59gamqKffv28dnPfpbDhw/rTvulL30p3aAyBafTSTS6av/TNI0Pf/jD/P3f/z1LS0u85CUv4Qtf+AJbtmwpafusYF2T8XLTVFI3isnJSSYmJohGo3R3d7N9+/aymhGZofSc8eR/gyY2lXKUqoIo1aaSUsYV0HmWVxSqkU0455jU1/hALuztFTUh/dB/MdlUhAI/viSqHPLM8samEa7UjHD/ySOMBEuLLcsj44oIVCavv/BKjb8WhMKKvyLAouJgPuZGViWaXcU1+vLa4ghoLMXcKJpATZEtZWvEBIuKg5DqQADsQnHHqtYRYz7qQQAcoorNxDqTCbug4ZIUAmEXsYSN2prioo1qxAR7XIscds3x07lOfppoIZxBsNTY2qSpnH2hj2hM36Osp1Ibwcr1bJ6mkr3O5PTW9sVsKgGwq6U/f1w5RL5Uz7ildblcbNu2jU2bNjE+Ps758+c5f/48/f39FevAeSNDRbBkF3uxoJR9+drXvsa9997LAw88wJEjR7j//vs5evQo58+fp7W1VXee2tpazp8/n/4796XuL//yL/nMZz7Dl7/8ZQYGBvijP/ojjh49yvPPP4/L5Sp6G61gXZPxlDKuaVrRb9CpJj0AIyMj9Pb20tHRsSY3j3ILOMNhYzJQDR5YeqFecpuL5B8lQVWUgqPPAtnHRTB52Gqimp6+FMWrLGXcZF6jZYs5zEhQVfYQ5M6mIQZW7A676hZ4ffsw3x7dzN+8cIArgYbiNi/n0K2NMm6OXGUcTWObGuLOxmG21y1mfXVirpVah3HWeESWOL3QyqbapXSznYFaPxFZ4omZDgZ8S7S6C7/Q+ZX8dJN2exS/YudyIhlr6DIg1sP+WhbjLvY1zdDnDaQ/HwrUsRhzsq9xBsngNB6KebELKpsalyEjCfXcSDM2SWVzd+GsclmDy7FaWmxRtq5s+691X+QtymW+P9PHo5E2lm32ZC1JFc/19PYYXIPF21QqQMZz1lmKlc1w+Wr2i0cxV5hdyybyaoVsKkaw2Wz09/enmwgNDw8Tj8cZGxvD5XKVRHBu9Ixx2Ig2BPj0pz/Nu9/97rTa/cADD/Cd73yHhx56iPe///2686Ty8/WgaRr3338/H/rQh3jTm94EwFe+8hXa2tr41re+xd133130NlrBuibjpXjGI5EI4+PjXL16Fa/XiyiK7N27F6/XW6WtzEc50YZgrowDlfWNqyDIICCiFdvhY2VyUam6doqqaoWtoLk8La6CoVKvlaeMFz2H9XkNlfEVcidpKoeEIG9svUSHJ/8akUSNO/sv8sa+i3xvbJDPv3ATF5abrG2frjJ+LaFBhjIuaBo71SBvbh5i0KdvBzmQYQGxiyrbM7LGgwkbzy22sKVAy3u3TeFI6yQJNVls2eEO0J1RbJnKEB90BnQjBmulBLVSgrAqcS5aQ7c9hDdDab3ir8OfcLC/aZZ+8ucf8C0z4Et6x2dlFzt989gzfoIrMS9OQWHAqT9quL0v6ZOfCjYStscZzJhO1uDKCgnfprPtDknllzqGeIM2xLGZHv650cv8srX+Cnqw4ofVNOPYwKJtKhbOV7XINJViXtit3BvEROnDiHYlR1VfAzKegiiKdHR00NbWxiOPPEI0GuWxxx6jo6OD/v5+y704YMMzDuvXpuL3Z99bnE6nrhshHo/zzDPP8IEPfCD9mSiK3H777Rw/frzgeoLBIH19faiqyk033cSf/dmfsWvXLgCGhoaYmpri9ttvT09fV1fHkSNHOH78+AYZLwXF2FT8fj+jo6PMzs7S0tLC/v37qaur46c//WlJKnU5EEWxPGU8YqKMV+UmJmDDToLSOvishTIuGz3m1piMl1d0YzyvohWuZpRQeSlz3Nk+RJPTPCJPFOANvVd4Q+8VHhnv55NnDpsq5XnKuFxd5UY1OXeElWEPp5Rgr7zMr7QN0VMTMJ5pBZlZ41FZIq6JbKtbtNTy3i5mF1u6HTEkh8agM0C9rXDOdwqeFV93TBU5sdiMoIKIwF6dRj566KwJ0UmIZdnOZNyFhIZXUrLItRHavckXkOmEiyXFhoZAe4YSbgRRgFe1jfGqXx7j8cku/ubcfn4+20WxRYdWbCpJ/3bh6YpVxq2p2MbblbvOShZvJhdoo9TWpqKcrapXqoCzGKSeQfv27SORSDA8PMzPf/5zGhoa6O/vN+1SvYEkVNZZzvjKddXT05P1+Yc//GH++I//OG/6ubk5FEWhra0t6/O2tjbOnTunu45t27bx0EMPsXfvXpaXl/nkJz/JbbfdxnPPPUd3dzdTU1PpZeQuM/VdNbCuybjX6yUUChW0qeQ26eno6Mhr0lOqf7scpGwqxdprUpOaRhtWh4tj0+wkhOLIeCotQSy+4WjRSBi94OQcEzmmgEFtroaWPo7FNvOotqBjtHxZE/mP8zvolSK8pmvY8jKHgrWcletwtISgSDKuWTk+ZURbKiZk322L86a2K7xz81k0VWAsVEurK4TTomK6GHOyHHewq2Ge6aiHoUBdVlShGSZDHlRNYIvXz2iihqmEO128aQVjiRq+4+9hSHOzhyB1zmiWLcUMMwkX9bak2j4ar8EnxrOUdiMkNFhSHLTZIqgITMtuPKKMw6IvfSnmQJJU/val3+dKoJ6/PXeARyb6rat5Vsi4SYMeqVhl3GR5VpC7TrkCy0xBEECLSWSS8WL4mBDPJvLV9IwXQuqZKkkSDoeDXbt2sWXLFkZHRzlz5gwOhyPdRKhQcemGTSX5/FxPnvEUHxgbG8saJalkjd6tt97Krbfemv77tttuY8eOHfzt3/4tH/3oRyu2nmKxrsm4z+dD0zTC4XCWzURRFKamphgbG0OWZcMmPTabbc3JeOrmU2yHsnSaSiShS+RVVWVqaorxsQkofeRYZ71JiJq9eEKVsqnIxpNVBGKuMzwDOR8rUeMHuIqSoYwX9yArN9bQjMybxcE9t9jC7/zsKHsaF3nPtqc52n2lYBObF5Yb+dZCHxfEmuTxs7Crubtn1qoeQNBENKE0pU+WJd3zzmuL8+ubn+e3tp6iKaPbZrsnzHzUxcn5enY3zFJj17++5yIuLgca2Ns4w5EVT7jXnrS1jAZ9zEY87GuaxlaAZ40GfMzFPOxrmknbVFKq9Gi8BlWDfoNOnOeidfzHcg8vxOrT7XVPUcep+X1snw3xJh2vewqqBifnW2nzhtjiXiXu211+4qrIuWgtbbYoDTb9GNRYXGQ82E5z3WyWHaXRFieo2LgS9dDrCBbMKl+MObmw3Miextn0KMKexjk+d9sPGArU8Q/n9/HN4a3EVeMTykpthZmSXR1l3Bh5nvGKKuMaSkQCVhWMYu4oaswGrP7u10IZl+XkDT+TaDscDjZv3pxuIjQ0NMSFCxfo6+ujp6cnq4mQpmkbNhXWbwfO2tpaS5al5uZmJEliejo7vWp6erqgJzwXdrudAwcOcOnSJYD0fNPT03R0dGQtc//+/ZaWWQrWPRmHpD/I6/USj8fTTXocDgd9fX3pmKVCKNW/XQ5SN8ZirSop8q0kVBZDERq9HiBZjHr16lXGxsaw2WzU1dVWtopzZVmiYjOL5y2ItVDGjesIs79MRIzfDhS1dJtK+c8Q45uv1eLQMwsN/N7x17C5dpHf2fEsv9hzGWlF8Tyx0MK/L/UyYnODtLo+SxnkuTaVhBVlvPQHipyz/DpHlLdvOcvbNp+l3qk/UtPkitLkmmI57uDnM63srJ+j1pE8CafDHkZDtexrnCloR+n1Buj1BpgM1zAW8rG/cRrHSrOkpKfbmdUoKG/+lazxqwk3EVXKyhp/LlLPf/h7uRArkGYjCJyTvJxb3sXAQoRfqhvlQGNSqU9lnLe6wunow1w4RJXtLj+yJnAhWos3otDZkNyeaFzkheFW+juW2NSo373YK8lsl/xEV0h9hz1M3UpWuR4Jz8WAb5k/vfnH/P6up/nihT189fJOgrJ+EoqVjnxmqnNusonp8ipQ45C7zmLIuJUrIRYs/SYiR7L3rxrRhmZICU16yrYkSfT09NDd3c3s7GxWE6G+vr6qxAlv4MUJh8PBwYMHefTRR7nzzjuBJG969NFHueeeeywtQ1EUzpw5w+tf/3oABgYGaG9v59FHH02Tb7/fzxNPPMHv/M7vVGM3gHVOxp1OJ3a7naeffpqvf/3rHD58mJe85CXs2rXLcpOea2FTSQ2/Fbve1O6IMkws+vHYRMbGxtLFqNu2baO5uZnnf/4kWB/ltr5+xWbis9ZBisib9CmqBFSDN5Dc+LV42ISMa8pqmkrRZLy6ynix+vIlfwP/vydezWefO8ivb36OUbeDEa1G9+5gJYM8Xxk3Pz6CKqIVSZpSSCmZjc4Idw2+wG9vP4nXYrv7OkecW1onCSbs/HiyC0nUONwySZvHmo2kwxOiwxNiLurm+ZlGPLYEN7fok2A9dNqTaSszCRfnwnX8ONLO5bjVYSuBIcnDZ4Lb6Vzq57BtnoNNM5YyzgFsgpb0f7vg9KVWInE723rnOLDVmi/StULqE5rAqUAjy0EXh1oKv8Dkos0d5v37nuB3d5zg46du5etD2/OmsfJiaTYyVWzDqUqo2LnrrKwyDvNTASBDKS5iXjmUfYFq6rWxqZitUxAEWltbaW1tZXl5meHhYX7605/S2tpKX18f9fX1N7xNZb0WcBaDe++9l7e//e3cfPPNHD58mPvvv59QKJROV3nb295GV1cXH//4xwH4yEc+wi233MLmzZtZWlriE5/4BCMjI7zrXe8CkufdH/zBH/Cxj32MLVu2pKMNOzs704S/Gli3ZFzTNH784x+jaRpve9vbOHr0KC972cvYu3dvUcu5FjYVQRBKeglI3ZjEBDz93DnmXdDU1JQuRk2h4oN7qQUmJCg2oWqFuUlrQsaNtiP7z5hJPKSsrdpUNE1EVYX86LxC21HVYcXSzdfDwXr+7ORLGOybRBQ12lqWyBXMRAv+29zdSzVHMoIqa8W/yK3Aq8l86KbHuWvwHA5J4eR8Ky3OcEFVOhcjQR9zEQ8vab9KQhU5MddGv2/ZMJYwE+eWGpBViZd3TLAUd/DETAc7MpR2M/x8uZXPnLmZJbdIW4txs59CuGpz8ReXD9F8TuZ/7DjBHQbWo0xEVYFzw60MtC9R541xYayJmUUvWy00/gEIKDYmEh621Sxh92qcmm+h3hFjsNbafowEavn8Czfx7yMFmmlYuFaMXoYFQbV8XVpZnhWIOuusZAGnIIAdH2QUy8uy9aHFWDCHjLP2NpViG/7U1dWxb9++rCZC3d3d7Nmzp4pbef1jvdpUisFdd93F7Ows9913H1NTU+zfv5+HH344XYA5OjqaNfKzuLjIu9/9bqampmhoaODgwYM8/vjj7Ny5Mz3N+973PkKhEO95z3tYWlripS99KQ8//HDVMsZhHZJxWZb513/9Vz75yU9y5coV3G43n/nMZ3jLW95S0vKuhTIOxWeNa5pGIpFktIICy7EEh1/+EjweT960lb5008tLlNIWPvnftVDGtSLSVOJRBVEQUQvI0LKqZCnUiiIiihbPk7KVcaP5y6iEXIGiSFwZaWVsopnuznnaW5fS5EKyQmxyCzgtFK+J2FAprnCgVpF5lXOa1+0bxpHxkpBShk/Ot+KzF84KvxKoZTnuYl/jak63JCkcbp1KxxJ2eYJ01uinjzy/mIx6zOzWWe+Ic6R1klDCxhMzHWypXaDRpW+V+dliO3995hDPTnUCsHlA3xZiFaoi8vxSM79//DX0e5d4z/ZT/HL/eew6v1lEFRmJ++ixh9g/uKqkp0j48GQ9mt3JQAGVPZWRPpiRkQ5kdQWVBJWdDfpZ5ZkkXDFQw6w8nI1U51K6yZarYks6HvVK54xHc94zg8EQ+KzNG/Hnnw/XwjNeTD1UCm63m+3bt7Np0ybi8TV4aFzn2Gj6k8Q999xT0JZy7NixrL//6q/+ir/6q78yXJ4gCHzkIx/hIx/5SEnbUwrKHt/4/Oc/T39/Py6XiyNHjvDkk08WnPZLX/pS2oKR+pf7pqFpGvfddx8dHR243W5uv/12Ll68aGlbTp48yaZNm/g//+f/8I53vIOxsTG6u7vL8phdC2UcrL8EqKrK9PQ0Tz/9NMvLSTVKADy+el0iDuXbJPIXuLItVrzBBbAWynhRiQOAx+BhIaNkLbAYNa2shj8YF2jmNvXJn9l85akpYnEHl4c7eOrkZiYmG1FUwZpnPAeqBWUcCy3IU2hQEvyqfZRP9f2cN3VeySLimdjfNMOm2iXOLDRzfmk1Aebicj2n5lsY9Pk50DSjqyCnYgnbPCGenWtjdHmV6ZxdWd7OhvksIp6JGrvMkdZJPHaZJ2famY4kE5pUDR5b6OTNx97I23/wpjQRh/KvSyWjKGI4WM8Hn34Ftz98F/82OUhs5fhGVnzeKgLbXcvUSPovQP0dSww0TzOTcHIx6kNZOSn8io1z0VpcQtKi4ihwPuxpnGNnwwIXlhs4Nd+S/nwkUMv7nnwlr334Lr4xvM2QiANoFhpGGdVsWHp5zFteecRUL9e8KIJv4TQILmavoz5j5NMMoaXseQWE614Zz4XNZsPtdm/YVFaU8fX070ZFWcr49daGdMuWLXz605/mzjvvTF/oNTU1RTf+ycS1KOC0sl5FUdJFmZDM5WxtWeb5K0mVKhxZe9VAjZZwIaWUcfPI67Jh+FjW4RRum51gImf4V9VAFFaU8dWHSTFFnGW/DBm2uzf+vhTE43aujLQzdrWJbZuuIoqqcdOTXJuKBWXcyjTNcpybbAu8te9iwQQTPaSywo/PthNP2HhF57jleSVB46bmaVQNfnS1B7ctwS2t1rNmXStKe1SR+KeRbfy/yzt4fq5Nd1qlzE6leufgRLCOP/zJa/iEJ8hv7X2WOzuu6DYaKoRWe4xWe4zxmJtZxcUWp7+o+beupL0cn+7k34a38u1RYyU8F1Ze/SqtjCfKEBVAP72lqKY/ptevRmAx5yXKiidpBcGlnO0TuCYFnGv9ArAesd4I7Hral2JRFhm/3tqQ1tTU5NlRvF4vgUDp1YqiKJLIJWRrgEI2lVQizPj4OC6Xi02bNtHS0oIoioji6ghCyJCMVyESSgAlVkInypWLT0z+sVqFWgUU3mtNN2rFLeZfHoKStLsomppjUynmYVs9m4ogaqX2AjFFImHHblM4fOAi45NNTE43WNpvK55xrVBWuAbtaozXeSd4ecsEkFRX52Ju9jdOG7Z7T+HsQhOSqHFrS5JEX1huICrbLDfPOTHXSr0txi90Jl989bpyFkJCFXh4qp8fxtq4GvUWJOJg3tXRDEbzz4W9fOG5g3zh2UO8e++z/FrvBeoLxBpmIt0t1BGg2xkhuKKMG8UaZmIkUMvnnr+J/yiShKdh4ZgYjUqVMpKjyOW5N8tWxk0gCiKxiErmW28xdxT/QjaRF8W1z+uWZbksMr4Ra5jEBhlfPyj5rvNiaUOaavxTKmw2G+Gw9QYdlUKuTSUcDjM2Nsbk5CT19fXs3r07LxFGyFBHDMl4lWwqCWv1bllY00uvwMoEATSdZ7ZTzH9YCBqggCBoWaS4GJtK2WTc4DtTm4qlFRhsn6BhtysM9M7Q3TnH1ckmJqYas0m5IKBlmGk0K0qjDhnvkqP8Yu0YtzRnK9F9Pj99Pj/jIS9T4Rr2F8j6PjXfgtsms7sx20qSUmuv+OtYjjs5oBMBmIoIbHGF875PKe0vLDWiqCK7V/7ORFwV+e5UP4/G2ghKNpCS54wR1Coo47nwx9186umX8LkTh3jnnlP8974XaHPmX7gLyy6mgnVs6ZxhW0a30NxYw057mFodq0vZJHwF5eaMSyVk1yfKLODUV8YrpzzbkJBLvHPaNBtKjrYkCmufxlEJZfxGt6jABhlfTyiZjL9Y2pCWS8avpU1FVVWWl5cZHR1lbm6O1tZWDh48mM5Pz0XmaRyJFVbzDQsZS0GajAtWesJkz5r5rCy/9rAkCAWUcYegszcaCCuiVKZ3uzibSilbmTm/MVmuJjLXbLep9PXM0tUxz9WpRiamGpFXVEVVglRSoZVaAiUhrpw7Gn1yhDfVr2ZnF0J3TZDumiBT4RpGM7K+T8y3UmePsc9E+U4lfowGfcxGPexvnEYDTs630e4JmUYE7lhRxi8t1xOS7exrmiWmSPzn1AA/ircQWiHhKZhxBysRkEZQTFTkzPMmpjh44OQh/v7UTby57jLv2nuSTe2LzC+7GJupZ+fADDvrCu9/Zqzh+WgtTWKUZke8YiRcb5sLQTGyqZRAxovtG5C3zpyITlUFxaS5UVHLF2x5pc5W7+lOLd/qudYWFSi+oV0h3OiEXKP0osfrETfyeMeapqlcizakPp+PYFA/DcEKrkWaiqZpyLLMyMgIiUSCzs5Obr31VlPPfKYybugZr9IZHw9puIueK0PZV/Nbqa8JBHStHfYCNzlRTinjq5+trU2l8HeVuy3rvxnprdpmU+ntnuXW1gn6xDAPPb8XzeaF1GUTt7BVCY0D7nm2KUFua5/EZzEWEKDdE6LFFeLnM53ImsiRlqu4isiW7vUGaHcHeXy6C4AjrVfTDXysYHPdEhFZ4rHJbk5HGjgh1aFJ+ftsNmpRDc94JvTOG0WT+PrSVv71x1u4s/YCb9v5PPu3WBc+7ILGNpefq3E37338VTw8sakiJDwFS2kqRgWcRZLxpIJdrjJeXsa42R6Lms6IncVl19i8Op9qqKq6pqR8QxmvDDaU8fWDksn4i6UNaU1NTVlkfC3TVFLt6kdHR4lGo9TV1XHo0CHsdmsBzJmncThamIxXPE1lBdFgCWQ8gyAIapXfjAXSBZhZHwuarjXDpkMqBA0EmZUNvUY2FTPPuCEsZH5rQtK6o7Oo/OefxiYlzJsaRthTn7SDvK3/eb67fYB//JdDzE3XGtpUBDQOeWb5xVuepWelNXwgbrec1Z1QBU7Ot9HhCfKS9mQ04ELMycmFRvY0zBRsdZ9CTBE5Nd9Kn8/PyzqSnvTpiIeRQC37mmZwmuSqhxISZxdb2VK3wCs6xnkF44wEfXxjbpAzeNEyCI6pTaVMEmvmOTc6bzQETsSbmWMrg6d7eUPtODf1m5Py6YSLb/t7+dFCB0+MF8gKLwcWXlCMbSprmzEOOt03KxxrKJbxsmBTnXmfqarKY489lm47b/V5Uw5kWc5qb7+B0rBBxtcPSibjL5Y2pLW1tXkvDMVgLWwque3qe3t78fv92O32om6MmUpBOLp2NpXUWqOB4per5ZDxakOQQct5Bgigq4xLekRASyrjuYdwLdNUDMl4BX5bRRGRRLUAidBSG8EONcSdTcNsrV3MmsIpqvzy5su84UNDPHKlj388nt+YQ0LllppZfrF2jHZ7tmfZ50hkZXVvrV2gISerO64kSXiv18+hlmzS2OiMcUvrJMtxB0/MtOqS+ogscWahhcHaJQ7npKO0ucO0ucPMR12cnK9nd8NsHqkPJmycXWxhe/18XsfJPm+A/897islwDd+YHeAEdSiCaPqipCqlnxeqKpieV2bfJ+0VAlfq3XyWLfSe7+WNPZc56MmPb0yR8OOhVlQEtCr5jq08nBUDP3axyni5sYaQ7xmvdPdNsYxCX0nJJ8Aul4udO3cyNDTE5cuX6enpSccVVwuVsKlsKOMbZHw9oayr4cXQhrRcZbyaZDwajeq2qxcEgVAoVEIHztX/b0TGK46UZzyqISGhUMR2Z5LxNRiASKah5H6ooekQId0ePlpyGblTr61nvPB3lXg+qaqY7LSpQ0wkNA6wyBubRun3GkfcOUSVX9w8xNFNw/wk2M53/d0sKw5e5p3i9bXjNNv0m+GkkMrqjsgST850MOhbpMae4PRCK5t0SHQu6lYa8AQTSaV9e/08kqDy3GILW+sWTOdvckVpck2xHHfw5NVWtjenCjeb2Vk/xy0mbd87PCH+Z99Z5qIuvjkzyM9pMpzezPNtPK+FEQ+T5Us51pxRt5PPze2k0xbidb5xbvXOMCdnk/AUKvESqLvNlmwqBsp4kdtViULL3DSVYsm46RarYt5UVvdSTNjzppYkkba2Ntra2lhcXGRoaIgf//jHtLe3MzAwULBGqRxsRBtWBhtkfP2gLDL+YmhDWq5nvBpkPBgMMjo6yszMjG67+tR6YzFjspKLTKUgFpNJyAp2m14iSIUfnemFCbhEFyG1mILZjAf6GpFx3S3QEdAEnX4oaZtKDooZiq6mMl4Jo4+iCAXzmQfEEHc2jdBbYz0u1C5ovKRmig57GFkT6LSHabIQq5eC26aws2GWs4vNaJrAYO0SzS7r0T1ee4Id9XOc9zcgKxJbaxdpcFq/tuoccbY2znN2sQVRUNlWu1CUp73ZFeXNrVfYvrTMvl1hvnxxN8vx/PtZOWTcSvGnWVqLVMCSc1Wu4R8WtvFv/n78ikO3YKxaIqVZ0x9NM37JkIrM+ayGMp6osDKOIkIxgkcGtJgE5EYbrh6/hoYGGhoaCAaDDA8Pc/z4cRobGxkYGKCxsbFianS5ZHwj2jAJTTMfEXsxYT3tS7Eou4Dzem9DWm6aSqUKODVNY3FxkdHRUZaWlmhvb+fw4cMFu2QWyhk3QtaNMqExvRygu6k+f1uKWqqF9ZLyXYMDJyGKON6Zynhx3dArB0E/TUWQdY6Upq+YGw2V5y2imjaVCtzLFFUsmM98WfPy4bl97JgJ8pbmITb5lg2XlWq73m0PscOVnFbR4EK0lkYpSrPdmJT743ZeWGpmR/18utnOaqv6AJ01xufaYszJheVGdjXMcWglojCmSDw5205fjZ82j3Fs6XzUxSV/PXsb5ritLelJj8gST6wo9S1u425VsxEXVwIN7Gua4WXtE7ysfYLf3Hqaf7m8k4cu7GUuunr9l5OmYoXIl0rGAVQFloR8v3EKZn74UmF2rZipzpJeZqnR8irgGc89jpW2qaiFMvktQInmk3FJp3DT6/Wye/dutmzZwsjICCdOnMDj8TAwMEBbW1vZxZ6yLG/YVCoAFWFdpamsp30pFmuapnIt4PV6yy7g1LTSq81VVWV2dpbR0VEikQjd3d3s3LnTtHillJeAzHuTKMPEUlCXjFcTdq3wA1sPmQKHuBZkXOdaL5QzriY00LHsC2V7xi1Pqjc3RkWYlSBFqiIWbCMuCMnGTC9IPj62sIdtcyHe0jTEltqlrOmCisR4wkuvI8h2VzZhlwTY6vKjanAx6qNWitNmz1aqF6NOLviTJDrXk51qVS+rAk/PttHuDtHtzb7G5yMuLgUa2Ns4mze/U1I43DJFYmX+Tk+Izprs+WcjLoYC9extmuVIjp3FbVM40jpJXBF5cradnho/HTmkfjriZiRYx/7Gmbz1e+0J3rP9FG/bfJavD23n787vYzLsK8+mYuH8M1u+mEEi4wsOwiebqX9V8gXE7BFZLTJuNmxtRp6Lt6lUwTNeAYKfCU1vUMYih5HDOkXpBs81p9PJ1q1bGRwcZHx8nPPnz3PhwgX6+/vp7u4uWd0uVxkXhLVvVHQ9YsOmsn6w7sl4bW0toVAITdNKunhTNwxFUYoi43rt6js6OiyrAaXYYzL3TpBhalnfSlC1ET4Nov44FGMxzCTja2Bz17vWC+WMqzE1j4wLBZTxYmwq5d1wTMh4GUtOQVFF3cYlyeVnDmUInJe8fHxpN5vnw7y5cYg2d4hp1U2/I5BHwnMhCrDFFUDV4FLMh1dMIMlwJdDAXh0SmwubqHFzS7JV/bNzrTQ5o7htCYaDdezTIeG5sK/Mr2gCz8y20ewO45JkRoN17GucMfWUOySVw6mXgrk22lwh7KLKWKiW/U0ztLmN53fZFP77lue4e9MLfGtkCw9d3GU4vRHMibyGZpLWItlV4gsOFh9vJvh8La4aMU3GzU6savEiMzXfzFZSrDJebsY46KSpVDjaUClDtIgH85eup4znwmaz0d/fT29vL1NTUwwNDXHp0iV6e3vp6+srOhllwzO+gQ1kY92T8UrYVCB587CSbGLUrr7Y9ZZjUxFlmAmUPiJQFFY2U9ME3JIXP/npCwWRQUzXgozrPukK5IwrMRVyY3lXPOO5w+drlaYiCpqlroTlQFFEnAU80XqhGRoCkzh5LtiIAtS7o7iKaEMuCtAkxZiRXUTCTppdEdwFXgYKzd/hCTIeqsUmKDQ7Izgl6/NLgkaHJ8hE2IckqDS5wjhMIg0zYRM1Ot1BJsJeJDSanWHsRey/XVR5SesE/d4lVI/Cf/p7GU/UWJ4fzC0uoqiimjSeUV0aY/8wmL4mFT2bVgFUSxk3o6ZmBZemSZ+5y6uIZ7y6NhXFerlFHiI6iVfFPJtEUaSzs5OOjg7m5+cZGhpiaGiIrq4u+vv7qamxdt7KsrzhGa8ANjzj6wfrnoyXW8ApCIIlldpKu/piUJIynrEuQYHFsL6ftZq3MUexSeOZyngZDxnLq9N57ggAOmkqclRHgirkGV8jMi4IGP+AlUpTMbKpZKBWSXC7c5o7uoexZ8wzFPNiF1S6Hcae7LmEgwXFxaAzQIMtDit1jacXWnBJcrp1fSFMBGuYjHjZ3zSTZRU5Pd+C25ZgS92S4fzjwRqmVubP9J+fXmjBLZU+/6n5FjwW1z8d8bK/eSZtlTlSM8eJcCPf9vcyFLc2zGSmjEtWyLiNrJdjRSmGjFuetEgIaFrh5RuSZ1Ur2qZSrjIuCmretVNsAafZFidiWsmXeWQ5/yVRlIrfZ0EQaG5uprm5Gb/fz9DQED/96U9pbW1lYGCA+vr6gvNqmlYRm8oGNmwq6wnrnox7vV6i0SiyLJfczMCIGBfTrr7YdRavjGf8fyBSIN6waiKWBlrcBvo1qQXnSUG6Rsq4IGhoqpD3VXApDF05065EG+YKM2uVpiKImq6Kn/6+EgWciliwmC/VRbJRjvNazxS3t47q+ssHnEliORyvQUKjJ4eUzyScLCsONjkDukWcexuTrezPLjRjExW212eT8pGgj/moh31NM3R580e+9jZlzq+yfaV1fQqjQR+zEQ/7m2fo1pu/sbz592WsXxJVduTMPxb0MhOtYX+T/vwHPAsc8CxwNlLPf/p7OB+rw+hNy4xEFnq5ykLOJJpc+LvCC1jbh6mRMq7XD8B8eeWp2JLOiE7RyzQ5hHJU0yllsbajwcX869qKTcUItbW17Nu3j61btzI8PMxTTz1FbW0tAwMDtLS05BHn1HOt1ALOlCq+Qcg3lPH1hHVPxmtrawEIBAI0NjaWtIzcYkpN05ifn2dkZIRgMGi5XX0xKFcZh8JkvJpQY2U0pCguybE0FCjgFHRuArqFUivKeK5mrqqioYKXtYgyXobM7QAViDZUhYJpKm1ajF/2DfOSBmst0/sdSaI5Eq9B0DTsokpItTPoCNBqN//Bdzcms72fX2xCFFWcgsxS3M2+phn6vObxiqn5X1hqRBA0XKLMQszN/qYZeouZf6ERRRCotceYi3qKnv/cUiMJVaTWEWUuWsOBpml6vOYjdrvdS+x2L3EhWst/+ns4E21A7yQ281YLVmwzOcvQNAEBwXKTMEHQ1vxhauQZTxZaF7c95RZb5maMQwlk3ORwx3XJuLX9DCzmP1PKTUZJwe12s2PHDjZv3szo6Chnz57F4XDQ399PZ2dnluUT2LCpVADaOlPGN8j4OobXmzT9hkKhksm4zWZDUZSsdvWyLNPd3c3evXur0j64NM949t/h2Br4PmD14aGBEi3uxp558YnXiIyDhqbTyCcRLVDEKOsvRlHEPL+o7trKsqkYP4Ty9f3ioWlCnpJ6oGmK/7nzWVpdYRz24l/ybKjEkEADu6AiFrmZDlEmqtlAs2MXi5/fJcn4E47k+kuZ3yazFHcRFW1Iglb0/G5JJiy7iCs2bCXsf4MU45dqR/nluhG+4+/h2UgTmWYFM2Xc7YzT2zXPyHgLsViBYjudU0sSJGTNWsWgIFSxOLwAjIiuqOinJBlBKVMZ1yt8roQPPRPFePkzISERCSa7rGZ9XoJNxQh2u51NmzbR39/P1atXuXLlChcvXqSvr4+enh5kOXk+Veol4EaGxtpfc9XEOtqVorHuybgoimV34RRFkampKc6dO5duV9/e3l7Vm0kllPFoTJ80aen/qRAymv4kwkWyjEybShwsy8slQjdNRUA3TSURU5EEESXjbpeyqehBXgsybvp9JY6dkD5Jbmm9yv/c8Sy3rmRsp/DCUiOqJrCrwbhYdyzmQRGEtEKe/jzuQdEE+p3GxdUXlhqIqRJ7VhTm9OfLDURlW9qOUggXl+sJy/a0bSSFS/56Qon8z3NxxV+HP+Fkf9MM4M/6fDnh5EDTjOH8w/5aFhMuDjTN0OdbnX84UMtCzMX+phlDYj6dcBJQHQw6ArSsjCTc0/ICE3EP3/H38ES4BRWhoGfc7YrR2zVHS/MyggBDo20F1qRvfxKxfo+rXhFnYRgp2XoRpOUszwoqoYyXdgWb76hbdOsuXdSryq4AJEmip6eH7u5uZmZmGBoa4vLly7S1tSFJUlk2k41owyRUhArd868PbOSMr2MIglAyGU+1q/f7/SQSiax29dVGShkvJpIxd6qwXgEiSb5begmQATSIh0on42tyGRZQxvUKOAXAY7MTSMSzJi3kRU0OmZuriNVUxisDjZu8s/zVq37CgWZ9spnyQJ9bakTWBHbnkPLhWA2iAL0FyHbKQz4R9xDXxLTHPIXnFxsBgZ0FyH6qsPOyv55Aws7+HFJ9fqmBuA6JT2HzSi76UKCOpZiTfTmkuBCJT2GwNhnbOBr0MRv1sL9xmkyB8UqgFn88Sbb7M0h8Cv0+P/0+P2NBH9MRD/ubprFlzD+dcBFYsfO0CflDRl2OMO9pPs+diRG+4+9mVG3K+j6XhKdQSEGXJBU1kf+dKIiWCe21IONGIwJiSTaVyirjsiJWfui9xMPsFPSL60sp4CwGgiDQ1tZGW1sbi4uLXLhwAUVROH36NAMDAxWpsbpRseEZXz9Y92QcKJqMp9rVT09P09zcTH19PS0tLbS0tFRxK7OR8tOpqmrZWyfkSGyRAsp4pZG6lWtALFjck+J6uPiEAtGGAG6bLY+MC6r+9FaTGMoaVjQjPGUtXOVo1xD/c+eJgiQ4F6nCxiT5FUAQaKyJmCreKXStkPKrCTdhRSIadmATYWfDgsmcSWzKItUOnFICDclUsU9hwLcMvlVSXWOLkVBtBUl8Lnq9AXq9AcZDXibDXupsYSKqc4XE55PwXPR4A/R4A0yFaxgN+uisWySKg83OAG0Yd/cEaLVHeWfTJd506yj/NLyDf7qwm5a25TwSDsat4yWxABkvShm3PGnFYGhTkYu/HIrppKsHKS9j/PqxYjhU/YZs5RZwFoOGhgY2b97MmTNnEEWR48eP09jYyMDAAI2NjRtqd5FQNUG33unFivXkfy8W656MC4JgqQunXrv6I0eO4PF4eO6554q2jJSLzGIXy2Q8R/YtZFOpODIeeGG/XnFRYeRxSxWoZi+IAmkqhRQ0l5h9iQjayiLi+cuyOsRdVs64yfeC2ZCzri9Y5Rd7LvE7O06Q0ETTYkA9hGU7dY4YCgJxk+YyeoiqEi5BRbQpLMeLayACEJJtuGwKNTaF2YgTVaMoX3ZYtuOUFLx2mamwE1klS6k23X5Zwikq1DpklkIe4oqAQ7LOBKOyhF1SqZE0grJATBVwFhGSHdMkXPVR9uweKTjUa/SyWFAZL4aMXwPHp5GSXWwBp6ZZaZ5kjEpkjFfrKEqKPhmvtjKeC1mWcTgc7N69my1btjAyMsLJkydxu90MDAzQ1tZmyQK6QdxXRrnXkdF6Pe1LsVj3ZByMG/9YaVefKuBcS+RWnltB7r0pGtcn44l4vPKe8ZX86/CyQl2Rs2ZC0NagiEPHl17otu4UCzxMEwLkcEazboCrqy/jIWIyazEPKLuo8Mt9F/gfO07S681Wcc8tNaKYeMIVFU4utNHiCufZWSYSbmKqxKDT+CX4csyLR1RWp1vhC1Y91WcWmnFKSpZNptcbYCzoYybiYV+O/SMXLyw2ouXYYbprgkyFaxgL+djXOG1Iqi8u1xNVspX09powc1E3l+fr2ds4Y9jAaMhfy1LcxYHmVTtLgy1OULExFPXQ5wjiNkhCmUy4+fZyb9o7bgQjoilJKmpcz6ZinUxeC25kblOxvqzky3R5O1Fu981qQpT1ZZK1VMYhW2ByOp1s3bqVwcFBxsfHOX/+PBcuXKC/v5/u7u6NLp0m2LCprB/cMGQ8Vxkvpl19KcWU5SLVbKiYRJVcIibHVQLRGD6XE03TWF5eZmRkhMmpSShUx1UmgktqUWQ892EpqFUm44IAipalvhsVwDhzycjKxgkJdMh49ZXxSqSpOCWZXx04x3u2n6TDo/+Smmk/SagiuxtXyaqswon5Njo9IQ42T+vO32WPAEmyGMkh5aoGV2I+fFKCTQXIespTncrzPtA8nUXKT823UGNPFLSTpOwfV0M1XA178zzZZxebkASNHQXsMO2eEO2eEDMRNyP+WvY2z+LMKM67sOJJ311g/c2uCM2uCAsxJ6cXWtnVMIvXvlpPkCwMdax43fPtLF5JZrvkJ6xKnIvW0m0P4c0gesWQ8BRMlfFYPvG57gs4DciuUKRNxerLtBGq3X0T0L9BWjkF4jZAJ9pwjQmv3mivzWajv7+f3t5epqamGBoa4tKlS/T29tLX15cljm3EGq5ig4wn8fnPf55PfOITTE1NsW/fPj772c9y+PBh3Wn//u//nq985SucPXsWgIMHD/Jnf/ZnWdO/4x3v4Mtf/nLWfEePHuXhhx8uafus4IYj47FYjImJiaLa1YuiSCKx9pndufnmZshVpkQZxueXaXYIjIyMEA6H6erqoruri1PyxQpvLaBBNKwgIqIadabJRI4lolBSSSUhyKBlknGDe7s9h4ykp9Xr2LkWnnHThRf+yiHKvH3LGX5z6xla3BFLi9u20mzn/FIDMVUkKtsYqFvmUIs+Cc9FRwYpD6kiKgINUoLNLvOMblj1ZI8FfczHnaiqQL0jbpqCkkJnTYjOmhAzUTfDgTqcoowrR0k3Qqs7Qqs7wnzUxcn5empscURRYGe9tfkbnTGOtE7ijzt4YqadWnuUmJpfcFoIHlFhu8tPVBU5F63FIaj8MNBVFAlPwZCMi6puj4DrgYwbd+A0UcaLsFxVwt+d6xkvtvtmNaFF9cn4WivjsiwXVLxFUaSzs5OOjg7m5+cZGhpiaGiIrq4u+vv7qampATbSVFLY8IzD1772Ne69914eeOABjhw5wv3338/Ro0c5f/48ra2tedMfO3aMX/u1X+O2227D5XLxF3/xF7z2ta/lueeeo6trtcvfHXfcwRe/+MX0306nvs2rUrghyLjP52NoaIh3vvOdLC0t8eEPf7iodvU2m41w2LitdzVQrCKfuy+CDD95+gQ7m2ro7e2ls7MTm82GODpvJfTDOjKiDUHAJboJq9YK+HKxFmRcVLMfSUZqspR7c0jtq5w/j1VlvJwiFXPCU3jZcVXi+aUWxkK1lsk4QESWWIq72FS7xELMxXzcRYvTvLgwBVkDv2Kn2RYloYksKw5abNZD5VUNXgg28Ei0HVkTeY1ril6vH1sRnurLoTr+I9hLAIlXOmbp9/lxStZPtpmIB689QZcnxAV/A8GELUvpNsNs1INLUujxhnhusYnFmJMGp/VjsKg4eSzYwRPhlpKTkMyUcU2HjAspMm7lUF8Tm4pxzngxw2yVUcZz01RyR9bMo1vN40tLQyKiP+da531bqYMSBIHm5maam5vx+/0MDQ3x05/+lNbWVvr7+6mvr1+bjb3OseEZh09/+tO8+93v5p3vfCcADzzwAN/5znd46KGHeP/73583/T//8z9n/f0P//AP/Nu//RuPPvoob3vb29KfO51O2tvbi9+gErHuyfgTTzzBT37yE0ZGRnjta1/LH/7hH7J///6ilnEtbCqp9RZnU8n+W0yA5vZw22236dxwK/jk1LL/68RJGGtkPPfiWwsynisOGR0JW66ylrKp6PAwqw1DqjusaLRsgZ9Nd/Oz6S5e0jbB7+96uqDNBCCYsPHcYgtb6xY40joJJO0XABeXG4gqhaMDARIaXInV0maLsM2VacWIJqP7FDuDzkBBT7iiCvxgppfvRzpYkuzp6tV/TfTwyEgHr3ZO8br2YewGpPyxmS6+G+pmRnKkrUnfUTr40WgLL7fP8cb2K4ae7ucXmxBVjR1Nq3aWwy1TK0p3Bzvq56h1FB41u7RcR0h2ZCn5R1qniMgST8x0sMm3SLO78IvNZMLNf6zYUcqNIzX0V4sqmpFNxcKq17qAU1GMh+gFuTjLWyWU8dyc8TybSpUK1CORSJ5tLhdyqFCs5dqTcT07aCHU1tayb98+tm7dyvDwME8//TSHDh2qaMfrFyuSZHz9KOMpPuD3Z1v3nE6nrjIdj8d55pln+MAHPpD+TBRFbr/9do4fP25pneFwmEQikdcU8tixY7S2ttLQ0MCrXvUqPvaxj9HU1FRgKeVjXZJxVVX57ne/yyc+8QmeffZZtm/fzoEDB/jSl75U0vKKtYtUCsWsNx6Ps7S0lD2/DHHRpqt8VONtOrVMu1bEcE7OjUSspGJfAMUo47kvB4KBMr4WNhXT266lZa+S8ttaJ3jv7mxS7o/beWGpmR3182kSnostKznfF5fricj2rOY7MVVgKO6j055LwlfRZo/SZo8yk3CyrDjYlEHKE6rAw1P9/DDWhl+y65IXv2Tjm3I3Pxhp59XOaV7fPowjo9Dxv6Z7+F6okzmbQ3f+sGTjYbWdx8ZbeKk0x5s6rlBjWz35zi42YRO0ghGPtY44R1onCSVsPDHTwdbaBRpcq0r3xeV6IoqdvY36dhS3TeFI6yRxReSp2XZ6a/y0eVZH3ypJwlMwLeCM6jRZL+JBXz3P+Ep1eA7MMsGLtqlUQxnPIeMVKVDX7XFg/pyIBvTXvNZ2j2ISwjLhdrvZsWMHg4ODWR7yGxnr1TPe09OT9fmHP/xh/viP/zhv+rm5ORRFoa0tuwiura2Nc+fOWVrnH/7hH9LZ2cntt9+e/uyOO+7gzW9+MwMDA1y+fJkPfvCDvO51r+P48eNVKyquGBm/Xgz0mqbx0pe+lKGhId773vfyrW99i8997nOcPn265H27FmkqYE0Zj0QijI6OMjk5STyWPewtyjAftm5HKBW5twKb6rAuvOcq42tAxoshw4W2RyjDpkIJ0X+rKy57gqxpH5/p5vH/SpLy395xApugsbthtiAJz8WWuiUALi0nm+/EVIldjfNsL0DCc9Fqj9FqjzErO5kOe7gUbODRWBtByWZJQQxKNv5d7uKHI238gmOWWinGw+EuFmx2S3e3iCjxA62NH4838xJpnl3uRWpsCcue8hq7zJHWSSKyxJMz7TilBIIgFiThuXBIKodapkioAk/NtlPjjvKTaFtFSXgKpjaVaGHPuBW+Vi1OV+hyNbveiu3Aafn6NYBpmoqF7SmFrHu9XsyS+SPL1wcZT0Ublgq73b7m1poNrC3Gxsaora1N/10tv/af//mf89WvfpVjx45ljbTcfffd6f+/Z88e9u7dy6ZNmzh27BivfvWrq7ItFSHj15OBXhAE/vqv/5q9e/emp7eSM26Ea2lTKbTeYDDIyMgIs7OztLS0cPDgQa4uXwAm0tMIKgSj1n2pZWPlXi/KNiyHjec8H6Q1qJPN5cKGgp6c82W6gDN/0jWJNjRdtuG36JP1FVI+kyTlv7/rGW5umbK8Tn/cznzMzfb6eeaiHqbibnw26z9kXBP42Xwnf/3sIfp3TZY0jB+SbPyn0kEsLOF0Fn+txkSJ/9Ja+dunD/Ar3Zdoc5+hvghP98VAA98LdTEmOjmAn1Z3iHa39TqT0WAd/3J5J1dcDhobS6u3MIMZGU/okPHUxWIl4bBqyniBxZollSSb/hRTwFmNNJX8AvAqlbmaThEqQMbXGsXaVDZQGBprEAW8hkjtS21tbRYZL4Tm5mYkSWJ6OttuOT09ber3/uQnP8mf//mf88Mf/pC9e/caTjs4OEhzczOXLl26vsn49WagP3ToUNbfPp/vRUnGc20qmqaxtLTE6Ogoi4uLdHR0cOTIEdzuZJtjPYVjLbpwCtn/gyDbSybjwlqE1uSScQMFUotrWV7M2K5tIAABAABJREFUFN/QU8bXoumPKeEx8tCimaitxZHypZiD88tN7GyYSyvpdY5kt1K9SMNcxFSRb08P8JmTh7gaqAM0+rTJshTWUhoWZWI57uJzzx/kSxf28Bubn+M3t52m0aBY9fRiM99Y7GPE5gYpue6naeDZ6QPsw8+bW4boril8DC776/nc8zfxnbFNqJrI9i1jZW2/EQxtKqJKXIeMh4NhqLG2/LUOtzC83jQtaTErOme8dAiCiphTv5CXpnINmdPyfFz387X+3Uq1qaSgadpGksoK1qtNxSocDgcHDx7k0Ucf5c477wSSNuVHH32Ue+65p+B8f/mXf8mf/umf8v3vf5+bb77ZdD3j4+PMz8/T0dFR1PYVg7LJ+IvBQO/z+cpKQ7nWBZyapjE3N5eOJ+zu7mbHjh15Q31696dIPN9nUbWc1pXFanEJ3BZnybn4JP3nRUVRzPWuxtXswqgUGdeJNrScM14mYTRcttFPq2+91Z3QiJQvxh1cWm5gV0NhT3lmpGFYtbHJuRplGFVF/n1ykM+ePMxUyJe1XkUV84rgioFWJqFKkfmg7OCBcwf4yqXd/Hrvc7xr9+l08SrAqcUWvrnYx4jNBbb831MVRU5Qz6m5feyeDfLm5iv0eVePQS4JT29/Fc8No5EbSVLRwmLeq5rL4dZJQdfHWhdwmmWMC7CmaSq5qjjk+9CF0k/tVZR4mINLKnojYy8Wz/gGdLBepfEicO+99/L2t7+dm2++mcOHD3P//fcTCoXS4vDb3vY2urq6+PjHPw7AX/zFX3DffffxL//yL/T39zM1lXy2eb3etIviT/7kT3jLW95Ce3s7ly9f5n3vex+bN2/m6NGjFdvVXJRNxl8MBnqv10sgYC3XWA/XqoBTEASWl5d54oknUBSFnp6edDyhHkSdm2pMh4wDxTFSI+iwP71UhkLIFXrFNSDj+cp4YSgxBbwZ01bCplLFDDijZSeV8WKQTcrfve0ETkllX9NsSTnjftnO0/PtfPbkIebCXt3pVVUoOW1CUQTUssl49vxh2c4/XNnPP43s4q7Bc/xC1zA/DHUwIrl1SXje8gSR00ItZ+b3sWM2yEt9U/y/SzvzSHh6+iqqXGY54+hEGzrs1r29VcsZL/AWadp9kyJtKmWeO7l+cSjNM16NM8Atugve89daV5VluSybykbGeAbWmTJeCi+56667mJ2d5b777mNqaor9+/fz8MMPpznp6OhoVo3BF77wBeLxOL/yK7+StZxUkagkSZw+fZovf/nLLC0t0dnZyWtf+1o++tGPVjVr/Jobt9bCQO/z+QiFQiUPb9lsNjRNQ1XVNSkckWWZq1evMjMzgyAIbN68mfb2dvN16+xbtAAZr8pjc2WhSsT6Mcrl8tdCGTdKjJAjOQ/YCqSplFXAabboqvywK6R8up3b2qb4//Y+yQGLBYoAIcXGI5N9/N3z+5n2G/dnTZLh0l58VVVA1RmxKHYZeogqdr58cQ8/VxtobbGqFa9CEwSel3w8cqmXodHCQ53VfLAajtxoBexammCZrVWNHxXyjBu8/KYLr4tRxsv0jOcmqWha/jG38r5SjUvYJRQeqrw6eZVYrLfqTU1S2FDGK4eNnPEk7rnnnoK2lGPHjmX9PTw8bLgst9vN97///dI2pAyUTcZfDAb6ShRwQvImUk0yHo/HGRsbY2JiAo/HQ1NTE5Ik0dnZaWl+vYdhLL5WnUNXVddCzSUKzJYF0XovmdJRhDKeyCXjqXl0lfE18IybLrvkRVta++Mz3Zx6vIlbW6/yroGzhp7ygGLja2Pb+MKpgyzH3NgtNMkpx/OtqSKagS/aCox81QBamWRfMdm/cj3vhus2IeN6EDSxCDK+tqWJRuRZTF2fRUUblquM62WMF2gatsZwaIUzuWPRGI899hidnZ0MDAyku1xWC5XwjG8giRvdM76eUDYZfzEY6MtVxlMEXFEU7HarlYnWkRlP2NDQwJ49e6ivr2dkZIRQyHqygt6+ReNrb6+JFxMGkesZl7HUpa4sFLHoWCT7ZcaogBMEFEVAkowfFuXccMweQ0bPqUo9whRV5OnFNn44PMitrRO8N89T7uSr41v421M3E0ysqm1WiGauTaQYqKqAqvu7WJ0fzE4OrYzlJ9dhvH9VtakYrbsgGS9ie9ZcGbdiU7G+mnLTVKQcZTyveJPKeMZLeeexqYXtRps2DbJ/RxtDQ0P87Gc/o6WlhcHBQerqjEexSoUsy2WR8Q2bSgY0oXKW0+sB62lfikRFbCrXu4He5/OhKAqRSKSkt35BEKpSxBkIBBgZGWFubo6WlhZuvvlmvN5VL23RHTh1PovH5bWrPl+5kKLFDELkpqlUbmsKrzJ3JQY3gFgwxzdj4BmH5NC5JBkrwNV8+zckcxVar6qISY8xAsdnujk+08WtrRP81rbT/Gy6m/97eQdRJf+l1QoZN1OOzbarHOXayotA+Z50E7J/nSnjxZwz1W36kw+zAk5gTXPG8zLG9Za3tocoDUkuTMYFQcDn87F37162bNnC8PAwTz75JPX19QwMDNDU1FSx54emaWUp45qmbSjjGdiwqawfVISMX+8Gep8vmdgQCoVKHoKrFBnXNI3FxUVGR0fT+5YZT5iJYgtHRZ2+4pqsMb0cpL3el/15FU/6iF+1fGLpbkehOOxKIdczbjCpnNCwiRJy6qXIIE0FrD3Qr13OeGWgqGJOhFuKlHcbzqdpImY/blnKeJkFnJYsImUq42Y2mGtVwFlIsRWK+D2qlaZSStOfdCffogo4K5umoveyULX3FTPEbVh5E0h1udy0aROjo6OcOnUKt9vNwMAA7e3tZZPylLi0kTNeIWykqawbVOyKuJ4N9C6XC0mSCAaDuk2IrKDcRBVN05idnWVkZIRIJEJ3dzc7d+407ERWiRcAMQETi/48Ml5ptitkBB4El1Xqrc5XiIxXE0Uo4wLgsdnwx5MKeVaaiqpBzgvQDUHGFRGpxPhBQdAM97+cAkxVEcqykZgRZaiATcXk/Lh2BZz66y1me67HAk6r14Omle/XN+2+CVCJaMMSoMVsgH79kB7BdjgcbN68mf7+fiYmJjh//jwXL16kv7+frq6ukpXt1PNsw6ZSGWx4xtcPbojXU1EUyy7itNlsJRFjVVWZmppidHQURVHo7e2lo6PDkjJQtE1F5wYlyjC1XPp+F4WVB19gIWGZjOvm3latS10GMnzpZmqVW7LjZ8WuklLGERDjoObURVkj48VurHWszbPecmB5HkRRNTxGenF/VqGp1bepaPEXcQFnwf3TCtquhCK2p7rRhvnI7W6ZiWKVcd1iyyJhqoyrWmWU8RKWoUQkCpPxwvPZbDb6+vro6elhamqKK1eucOnSJfr6+ujt7S26hkqWkz/MRjv7CuIGVpPXE24IMg5QU1Ozpl04ZVlmYmKCsbEx7HY7fX19tLW1FXUTKlaNL0TGZ4PVaa+di9Q9IR4BERHVAjXUdCYRFNCqeWYKAijaap61yc3MUeAhrUfGrQx1l/X2b7Kt6nV+Y5ZEDaNTuhwyqsoCqgFBM53fyroT1VXGy7HpmKHQS5AkqagJ/e+KU8ar20wsF0a5/mKRnvFyk1QAJBNlXDQPE6oaEmGj39H8NxZFkc7OTjo6Opibm+PKlStcuXKF3t5e+vr6smKJjaAoCjabbUPZrhA2lPH1gxuCjKcKVMoh41aJcSwWY3x8nImJCWpqati+fXvJBTDFvgDorUIoQMaros6mLyQBl+girJbW9bQiXerM1iGDZnGkVI2tFnFm8g0pAbnP12rbVMpJU6ksStsHM8JWThGdVqZNxRIRLkBarcJUGa/Sw0hRBAr9ZpJYmIxnRgOahRxVi18VOmOMCHSxBZzldt+E/Jzx3DQVca1SZnUQDxlY8YoJzBEEWlpaaGlpYXFxkaGhIX784x/T2dlJf39/VgCBHiqVMb5B5lew4RlfN7ghyDgklfFiYgJzYWZTCYfDjI6OMjU1RUNDA3v37qW+vr7k9UHxNhW9DpxiAhbCaxHenQ0HTsJYIOM65EMvw7vSEJXVkXkzQa++xsdEYD75R8a0pWaNl0eYzchcOcuuPgTR+HwuSxlXRLRqKuOaVn4Bp6kyXi0ybtB9U1JRdbpvAtdJmko+9BrqZCIdbWjxeBpZXqxCP2d8FUJVlXHjYx/xF/6+VF7b0NBAQ0MDwWCQoaEhHn/8cVpaWhgYGCj47Nto+FNpFH7JfnFiPe1LcbhhyLjP5yMQCJQ8fyFl3O/3Mzo6ytzcHK2trXnxhOWg6KJRnfNYlGExGsn6rGqPzIwFOzRrqTe6NpW1GM4tQn13CBkPj4x91Bt2rrpNxQRVHVSogBqlE/iThXJsGuUq45YKOMtu+mNSwFk1Ml74vDQk4xknlLkyXiXPuM71klTFC29MuumPZZtK5ZXx3GWKsvXtMUQJywgvGZDxMgmQ1+tlz5496VjEp556irq6OgYGBmhubs5SsWVZLitJZSPWcAPrFTcMGa+kMp6KJxwZGWF5eZnOzk5uueUWy745q0gp41ZzwvVuqoIGEd0unNV9A5VUh6VV6D2/18JbKWbUrGlKoRKxJKQMgpQ1nQ7ztaKMl6NeGz+LjGMDy36MaVrZp40ZYSurA6csoJXh6bay7nLTVBQTm0vVlHGDl4AkGdcno9XMPbcMnVPGrHX9apqKte0vN2MczNNUxASoFXjilvKLBJcMRJ0K/cQul4vt27czODjI2NgYZ86cwel0Mjg4mK6XqoQyvmFRycCGTWXd4IYh4+WmqUiShCzLzMzMMDIyQjQapbu7m927d1elKyesVpyrqmrpBiYUeJ7EEvk34qqc85l+asVu7ey6RmQ8k0irqopE4eNry3ygmyjj1Y82NIph1AomT1wvMHuOWlGnC0GTRbQyPN2mqrxWHhnXNJBV4+u4ep5xAzIuqmgFlfFsz7gR1jJNxazgsugCzjK7b4J5moooV7kw3QD++cKG9UqTW4fDwaZNm+jv72d8fJwLFy5w4cIFBgYG0DRtwzNeSWyQ8XWDG4aM+3y+kpVxRVEIhUIsLS0xPz9PT08PnZ2dVfe+pZZvmYwXIGLxhA5rrPRJn9tIJ2GNjOsR0zUpdMp8cRCNj20W6TbxjFt5qFdLGRdETdf2cz2hmsq4KpdbwGnmGaesAs7k8s1sKtVJUzHzjBci48WcT2uZM25oK9G0Ego4yzvugqDmNMKCRI4PXZQLJkhWFXbBTiJW+Ptq/WySJGXFIg4NDREOh3G5XCQSiZJFrA0ingFNKKqu47rHetqXInHDkPFSog1lWWZ8fJzx8fH0Mm666aY1y0hNrUdRFEs3Lr0CTtBXxquDjPXHJchvKmptKWtAxrOuebMHdsbhy+SS4jUp4CwMc2Wycje6UvfBrEtjWZ5xWSzTpmK8boHylPGk6m88v1naSnnr1ocoqqhR/UdBpkf+2inj+VAMCi4FZfUoWx2FqnT3TdC3qVQEegfEYDfdosdwcdUmt5mxiKdPn2Z+fp5jx47R09NDf39/xe2dNxI0bS0TtKqP9bQvxeKGIeM+n4+5uTlL08ZiMcbGxpiYmMDr9bJ9+3ai0Sjz8/Nr2qxAEITiijgL3FN1lfFKI+ciKuRBzYOO8ibF8z+rNLJiDU0e2EIiwyt9jdNUjMjFWqZZlIxqFnDKApSRimFKhNXyyLhZxjiAVkbTIyOYKeNE9b9Xi6kfX9MCTgsZ41CETaW8457rF1cUIe+3XJPCdB04MSG7ayRGCoKAy+Wivb2dzs7OdCxiR0cHAwMDloMPNpTxDGzYVNYNbhgy7vV6TW0q4XCYkZERpqenaWxsZP/+/dTV1QEwOTlZdmv6UlBMvGGhe1SeMr4Gr59KgYd7HnQ2ZS3IeLZbwLjwUU2o4MiYdAW6NpVqF3AaJUi8CMi42WO0rALOhFBWh0xTZVyjrKY/q+p04fPtmnjGJRXVChk3U8ZL2K5SYSljHCzHC5WbM56XpKJjVxMTXBOyYVeNk63W8ndLFXDW19dz4MABgsEgw8PDPP744zQ3NzM4OFh2JPANhQ2byrqBKAgCgiBw//33X+ttqSqMmv74/X7OnDnDk08+iaZpHDp0iL1796aJOJjnjFcLxSjjhRQDOaEQTchomsbc3BxTU1NVfyYYd3zLgJ5n3MDfWClkiVYmD2w1tjpB5tbqNScye6hrmjGhNsX1z7cNYbb55aWplGtTMfeMl798AaOjUL1oQxPPeMScjJudt9VTxvM/M0pTyS6stmpTKVcZNy7ehGvXgVOSjS2Oa6k0y7KcVf/k9XrZvXs3L3/5y/F4PDz11FM88cQTzM7O6sYYbkQbZkPQ1t+/GxW2d7/73TzyyCP8yq/8yrXelqoiVxnXNI2FhQVGRkYIBAKm8YRFZ35XCMV04Sx0UxVlOH3xClpgkUQigafGU/E30Nx7ZNxqrazOxWdbC2W8CM+4HFPBlz+t3rBzuYVgIgKqEVkzsqmsnYOqaigrTSUhVDVNRVApa/lW9u1apalQiIzL1p+O1evAWZxNJfO6tMrdyk1TkUwyxqGCZLxIwiLIDvOJ1giKoujmjKdiETdt2sTo6Gg6FnFgYID29vYse+iGTSUDGzaVdQPbI488wrFjx+ju7r7W21JVpJTxeDzOd7/7XTo7O4nFYnR3d7Nnzx7TAslrpYwXY1Mp1FBFlOHUxSu8/uY9tLe3c+qxp6H0lMcCyF55rPRI9+TD1KzDSJnIUsZNbgBKNPPpvvp/9Qo4zRQ2M7IlCgKqAYMwTFNZB7JC2Z7xMmwqZp5xQaUsm4olz/i1KOAU1IKdRa8Hz7huzriF7ptAVjSjEcp9ic71jCcK2VSuBWI2oPCbwFpyW7Occbvdno5FnJiY4OLFi1y8eJH+/v51z1FKwoZNZd3AduzYMfr7+6/1dlQdDoeDiYkJ9uzZg6qq/Pu//zsHDx60HE9YjEJdSRSnyOufyEIC6ju66OrqqtyG5SLngRkJaAbJ3Rmz6Tws1+RyLEIZj4dXj38W39B5R9I0EVUV8mLOVr83I+PG22NkFTBLKqkktLTdorK/VllNbxJi4bxsS+s2mbdMMm4lKUW9BgWcyQdg+WS8WmPMugWcVm0qVpXxCqep5G1fZtyiGUo4jEaCjRqVMCLja+kat9r0R5Ikent76e7uZnp6mqGhIS5dukRvby/btm1bgy19kWBDGV83sK13Ir64uMjf/M3f8KlPfQq/38+HPvQh3v72t+NwFDd092KwqSiK/g1XlGEuFMn6rNrnfGhZpdbKhIU2pPI8L3vxRZFx68o4JImPWOBLs2FzzWQUxFgZN152JaEqyReOYsmz2ctIuTaVcpRxs30pWxm3sG/lNYQqDGMyXvgrtQhrRdVixnXTVIyjDVfntbaOSqep5C5PkFeOj5XtMTmQel/7A35o0p8+ETaxX63hfUOWZV2bSiGIokhHRwft7e3Mz88zNze3YVPJxAYZXzeoqAzz+c9/Pp0beuTIEZ588knD6b/+9a+zfft2XC4Xe/bs4bvf/W7W95qmcd9999HR0YHb7eb222/n4sWLlrZlYmKC//W//he9vb384Ac/4E//9E9xOBy8613vKpqIQ9KmommaZctIpWDFphKNRrlw4ULBY5Mk4xl++Wqc8TmLDC1bfHExIuPVRJZNxXhlsVCGid0kTQWMH+xmZMtm0oDI0DNe1YOWvWxFFZNe42KXYrKJZRVwxoXq5owrlKeMrxBIIy5Rrfq0Usm4ohTjGa+SMq7zmXVl3MJohJofQ1gsrHTfrBh0DojP68v/cAXxoFnh7fWnjOdCEASam5vZsmVLFbbqRQxtHf67QSFOTU0Ri5UfX/G1r32Ne++9lw9/+MM8++yz7Nu3j6NHjzIzM6M7/eOPP86v/dqv8Vu/9VucOHGCO++8kzvvvJOzZ8+mp/nLv/xLPvOZz/DAAw/wxBNPUFNTw9GjR4lGo6bb8/Wvf53Lly/zgx/8gGPHjvG6172OSCRSsrqduoGstTpupMiHQiFeeOEFfv7znxOLxRgcHNBfhgyLkYxjtgYnfdivFOwImoUC26GXVFJxpJiPmVora9hXCojy0lR0cgqNiI+5TcWkQ6PR/FV9pmbvp6qKiCWRceONLMszHhcRFKFkQmtJGUeg1Pfx1eUbbaBQnlWnAIxGHIyutWAgUvjL3OVUzTOefzyMrjGhSJtKuUkqAFKuMq5UkYzrQJQK70M8aHwQrkW0YalIpb9tYAUpz/h6+neDQkx1xSoXn/70p3n3u9/NO9/5Tnbu3MkDDzyAx+PhoYce0p3+r//6r7njjjv43//7f7Njxw4++tGPctNNN/G5z30OAE3TuP/++/nQhz7Em970Jvbu3ctXvvIVrl69yre+9S3T7Xnve9/LN7/5TW655RYAamuTpoliu3CmkNkNcy2hp4wHAgHOnDnDU089BcChQ4fYs2cPNR79TmtCApZjuS8w1T7pBVyihc5qBYhH1cm4IKx21rSwLo9tpcA3UxkHRJ3kF6N4QzMyavarXLOmP5oGwup+KYqIJBW/PnMyXsZ5GU96n0tdhplFJjUSUuoLg1ULTjUSVQwjNw3Of9FS5UcSVUtT0TnNrDb9sWL7KTdJBfJzxnMLOKtdvGm0l/PTJi9Ua2xTKZWMa5q2EW2Yg2sdQ3i9RBteT66MUiGmcrXLQTwe55lnnuH2229fXbAocvvtt3P8+HHdeY4fP541PcDRo0fT0w8NDTE1NZU1TV1dHUeOHCm4zEzkvj2nunuZNf4xWt61KOJMrVPTNBYXFzl58iTPPPMMTqeTW265hR07dlBTU5PaSN1liDL4E2uRF5gN085vBihkAakkUuuwcoN3Sys+x5xJdcm4oU3FZJtMvi/vWVS5p261lPFyyLQWTx73UsmyWdpJqgyg1MST1HaZkdZq8I1SbSqS6LA0HVTTpqJXwGkxTcXCJpWbpALmOeMptd7SmVPhl7F40OQlc43YuKZpZSvjG8jBtbaUVONfkbjeXBmloiKe8bm5ORRFoa2tLevztrY2pqamdOeZmpoynD7132KWaQSbzYbb7S5ZGYdrk6giCAKhUIhnnnmGM2fOUFtby2233cbWrVvzMtELRRsKQDynC2elH5t6JMuuWfDmF9iQtSDj6RpLCwfDtULGc/mGXrdQo2Hvcgv0jD3jawdFEUoi41ZUXyupI7pY8XOXSuZNbSopZbzE33CV7BufcNWINzS0dRj8jNdFznjOJph5vLNyxi2couUmqYB5B860Mm7pcJq9kVveLADCAePv18r1kRrhLaaAMxcbNpUN5OJ6c2WUinXQJsQaBEGgpqamLDK+lokqqqoyNTXF5OQkS0tLtLS0cNtttzE4OFi4ANXgJhWXc0yLazDaZzNpwwyFiUehpJJKIk1CLPSnd6QsGmUr42ayqNmWGHnG1+BHXYGiikhSCcq4lXi/EpVtbSVJRVXKU64LIU3GS1x+6iWjHCtSqSj8gqiBwf4UCGjSxVp5xs2ST4ot4DS6Xq0iP01lbT3jhXZTRDQtplfWKJQg9ezcUMY3UClcj66MUlH6K2oGmpubkSSJ6enprM+np6dpb2/Xnae9vd1w+tR/p6en6ejoyJpm//79JW2n1+sti4yvReMfRVGYmppiZGQEgPr6ejRNo6+vz3Reo8dOQl7bFBgASbGbnmEC+vzTciZvOVg5JJpmTpCcBQor9V4ajFp1l0/GC2Mt9SJVEQtmqRvOZzHdolhoGggrpFIr2dNtvN4UoSrXpmL2Q1XaM548nvrLlCQVNV74eKmKdcWmWmk+ucq4mZJdfAFnJZTxNUxT0UGhM8Ytug2+TeLkiRPU2KP09fWZNr8rB/KKIJTZTXMD5UFgTTWYqiN1pvr9/qzPnU4nTme+uGfkyjh37pzuOtbalWEVFbkqHA4HBw8e5NFHH01/pqoqjz76KLfeeqvuPLfeemvW9AA/+MEP0tOn2uBmTuP3+3niiScKLtMI17syLssyIyMjHD9+nPHxcQYHB7nllltobGy0XLQiFvKpkG9TqTh0NlFIWHjXK/COsBbd6lI3MStD2baVSyX3xqc3xG+cpmK8HqPf2pSirSEbVzUBsYSngBXVuxRlPJNwlqJca5qF4lo5ta4SyX4q2tDMplJhMm50PkqiMRlXrgubSvaCzTzexXrGy01TEQQ168VU0/KXWdT9zHToxPqinILbdJotW7awsLDAsWPHOH/+fNV8sYqiYLPZyraZbNhUMnCtk0+qlKbS09NDXV1d+t/HP/7xa3ygq4+KKOMA9957L29/+9u5+eabOXz4MPfffz+hUIh3vvOdALztbW+jq6srfVDf+9738opXvIJPfepTvOENb+CrX/0qTz/9NH/3d38HJC+4P/iDP+BjH/sYW7ZsYWBggD/6oz+is7OTO++8s6RtLFcZr4ZnPB6PMz4+zvj4OB6Ph+3bt9PU1JS+4VTqBUCWk0WgqeUadXIsCkYPhoQNTJ4FhbjnmrSO1nL+awBbihDkknEdxatsm8qL4llTHV+21WmM5imFjBupxymkCzhLtsFYm6/SZNyIbEqSmi581UNRTX/WqAOnUfqJoGTf2awcS6ORLCvIU8UVkdxzqaiRvhISlwr1jnBYsAo2NNSzY/N2lpaWuHLlCj/+8Y/p6upiYGAAT4GErlKwUbxZBZRY9HjdYmVfxsbG0gl4gK4qDi8eV4YVVGy86K677uKTn/wk9913H/v37+fkyZM8/PDDaal/dHSUycnJ9PS33XYb//Iv/8Lf/d3fsW/fPv71X/+Vb33rW+zevTs9zfve9z5+7/d+j/e85z0cOnSIYDDIww8/nFe4aBXXk00l1ajn8ccfx+/3s2fPHg4ePEhzc3PWm38xLwCigWKgKRqLIeuZwUVD54aQCJc2H1x/ZFxSCpBxnZ/GyNNqZkEwUunNNnOtUhHKg4BZlmRpyvjqPFoJSqeVdQor52SpNhXlGqWpGKXESJKKGjOyqRSxMdVSxnMWbNh9M5f0roEybuYXh+rbVAodfCt1O6k56+vruemmm7j11luRZZmf/OQnnDp1ikDApALUIsol4xuxhjq41sknVUpTqa2tzfpXiIy/GFwZVlExZRzgnnvu4Z577tH97tixY3mfvfWtb+Wtb31rweUJgsBHPvIRPvKRj1Rk+7xeb8nRhlAZlToUCjE6Osr09DRNTU3cdNNNWW+AubDSgTMNg6e8IMPEop9G74rSsQb3teXZEOi/nK6iADnVK4ysNFKBDJqFAs5UcEiu+KcXKFJO058b4YEjiRqKwSldSpqKVhFl3Bhi2QWcFtNUKq2MG7xoSJKKGjWyqWT8YXJqVk8Zz/7bKDM9j/RaUcbL9IybJalAcWkqlTyKYsKCBzznueHz+di3bx9btmxhaGiI48eP09TUxODgIA0NDSVviyzLZSWpJDf1xSA4rB3Kyea+HlHKvrwYXBlWUFEyfr3D5/NdM2U8EAgwPDzM/Pw8bW1tHDp0aDUf3ADFvAAY3afEBEwuB9jTY8aOS4TOReS212OqxRe4+KS1UMZTASkW3nXioVhy+tztLbqA03g95ZDxF8tjShRVFLXwMSpJGVcylfHij4SVhjximcp4ehvNCjgrHG1o5hknVvi3KM4zvlY2FevKuJXLySydxQxmGeNQYWW8mMOcsKN7k8pAoeeGx+Nh165dbN68meHhYZ5++mlqa2sZHBzMG8G1gkrZVDYIeQbWqU2lGNx1113Mzs5y3333MTU1xf79+/NcGZlFwylXxoc+9CE++MEPsmXLFl1XRigU4j3veQ9LS0u89KUvLcuVYQU3FBkvVxkv1jOuaRpLS0uMjIywtLREZ2cnt9xyS1E/aKVsKqIM0/7Ui0ghh2Hp0POgJ8IWHnKFyHiszA2ygPQz3sLBiIdioDOAoWdTUcvwjKsWVPrCeHE8pASTFJaSPONKpjJeagGoMVJkvJTlw7WLNjS1qUQLq6fFjAJU6+wrJk0lj/SuQc64VIwybgGlHUf9a0qLSpiScZM1Op1Otm3bxuDgIKOjo5w+fRq3283g4CBtbW2WyXElyPgGEc/BBhkHrn9XhhXccGR8bm6u5PlFUSSRML+raprG/Pw8w8PDhMNhuru72blzZ+F8cAMUZ1Mp/JUow1wwvLJ9RW+GOXSWGQta2O4CxEOqXqOr1VWnlHELB6TGWQOE820qRXrGq2lTebEMV5pFIpbSETGTNGpyKTYVk3VqWjo55//P3neHx1Gd678zs0191XuXLFvu3bIdQgs4kJvmEHzjQEgcOxSHG3oJhBZMDL75ceEmkAIkJBDSgAA3AUxIDJK7jQu2rL5qVrElq0urnfL7Y73rLTNn+tqW930ePeDdmTNnp5x5z3ve7/u0B3B6jyF3mSIZwEnTPASiTeVMb71EiJDtJ0LKOOn+0GZTMdYz7gmtvskJqp5NI88iN67gtym83axWK0pLS1FUVIT29nYcO3YM9fX1KCkpQU5OjmzKQpZlowGcBiNqU5k6uKDIeEJCgj9/txZYLBaMjUlHJfI8j97eXrS2tsLj8SA/Px+5ubm6fHI+m0pgJhTJbUnKuAfoGzcxgFMEEyMKIoSlUhvy8M4aTFRC/EX8FMwZODcP2BEewCnmGScQO1llXNdgpP1ckWmWOLR2lZbZU4tNJTBo0yxl3L+QopOMy6U2ND7POFkZB4GwBQZwetN7Sj8skfKME7OpaLKpGJ1NJYSMq7aoGHceJ0cVBCarHGMZhkFRUREKCgpw/PhxtLS0oLGxEUVFRcjLy5N83/lSG+pBVBkPQUA6wCmBqfRbVOKCIuNm2VRCC/UUFhYiKyvLEBXA14YSMk4szsgCA+MBcnMEbvqxIR7xchudzZnw6VNAKSlE4/bltQtpQlQZ1+EZ15Pb8DxRFWRtKhruzSBl3GOCMh4Abcp7wERMNptKZFMbciRlPGghUKZCacSyqRBsKqHPo4JnwmhlPKzgT+A5VPSMKkh/qhDuEfmNtV42mqaRl5eH3Nxc9PT0oLm5GU1NTSgsLBQtIBRNbWgCojaVKYMLjowbWfSHZVl0dnaivb0dVqsVJSUlyMjIMLTCmG/w4jhOtl2S949mgcHJM0Zsw+95kQZHBuTJOLH6pQ5eqgSCisvkmfBedyVFf3ielhT1zSh1HtAbE9s2DnIKqhZlW9BpU1GTwUV3gKjMw2d0dXJSthCG4cGO05J3Dh/AMy2gQRJ5TVPGQ66NmgBOJaKDXs/42a6+ScL4kPw2eidRFEUhKysLmZmZ6OvrQ3NzM1paWpCfn4+ioiJ/jJQRqQ2jyngwojaVqYMLiownJCToUsZ92VTkCvUYCR8B5zhOtlSxXADnsCcC+QIDMDrIggJFDhclvCwpweSJspoAzjFfLfSQJsRioyivGmm1hLMqWTKu4xaKeFZErcczIZtIcDYVE/KMB/xWLWQ8sP1zKYCTEgTiylAgGafklHHVPVOGcM+48gBOuWeC4yjd55sJU8ZDqm8G9CnSVHJsUMHMzqD3FkVRSEtLQ1pammgBIZZlNcVNRUFAVBmfMrigyLheZZxlWYyPj2P79u1wOp2YPXs2nE6nqbN1iqJA07SyIE4Zm8oYG4l8gUFHhZ1yYEKQ9qoTZ8I8/OkHTQEFb2CeCjIeeorFlHFQ3qVvLWRcHy8g7WzGMoO29mQ901o84wFquDabinJrgBayH2SFiLRNhXQ+5chqAJGkBfLDaJoyHvJvYkCqSmVcb45xIDzPeGgAp9EFzNTcHcP98rK8GW8vXwGh4eFhtLS04OOPP4bdbtdFximKiirjoZhiyniUjF8g8Cnjape7fIV6uru7QVGUbKEeo6E01zhJGacAeEiVVvRC4iGyU3YiGScFT1K82co4BbDK5Hf3mEdUZqN4eKMu6QAySPle8uEvQln1Ws+7htA2RQkmW2SUQ+7R01T0x+RsKoEvPG3tB+wja1Mx9joRPdEyxxICAjgpmW0jlk1FRQCnXHC23uqbgHyecfUBnFogfu6H+uTfG2YS3ISEBMyZMwdlZWXYvXs3WltbMTo6qruAUBSnEVXGpwyMMzefB1CrjA8NDeHw4cPYs2cPAGDWrFmgaTqiRBxQkd5QjuQEEnqjbnp/O+IHtwnkcswkgihqATEYNAtF54JnBdiocBJAQaRaKCVNgMy1qRB2lpkFnEtjoKaiP54Am4pHg3KtRhnXSfblsvwbPWkikXF5/kyBPv2aoAiFmgDzAjgDJyeCoE4Zl/t5hpBxmTzjRivjoj9K5OTbabui+INIiM2xsbGIiYnB9OnTER8fj71792LXrl04ceKE4nSuF0J14iguXFyQyjgJpEI9Y2Njmitw6oHSwj9yCoepyrgELILMsiRJGY/AqRa1mUgg1mKBWAEN2g3wIXWcpF7y5tpUIguTLOOalOEgm4oZynjAfaIpQDTofpBJbxlRZVx+f5qiwQs8IHOOzBtezpwP728hx8YEQc6mojOtISCijHOEAM4I8skYKkbhlpEZdFiWRUxMDAoLCzUVEIraVEQQVcanDC4oMp6YmAiPxwO32x1WBVMQBJw8eRKtra2ShXosFgsEQQDP84ZmTJGDcpsK+XuOE3BqcBAn+/ogWCIzqDGsTfNdFoksBBQPxQOAg7YACC8NyniCDSlnbCrhkE3bZ5YyzlPnzDqY3OnWm2fcDM+4XjIepO7KbasmzY8C6FPG4VfGIVM2PjTriVEIVHfl0hCqt6kYkH42QBnneCrs/o1MNpXwC2kTlFV6jhS/DcymElhAqKOjQ7aAUFQVF0c0m8rUwQVFxuPjvYn2RkZG/GRcTaEeNWkGjYRSZVyOyVGsgH/W7AJjQt+lxkqKtRDvMtLDFxGvpRoyTjEQy0ejzqYicxAdL0biPWla1VXjA0M1ecYDCLgWm4q6bCpabDDKUxsaTWpJRahkKqUDABiK8fZZ5ndrmUQpQeAkU448h2dTIZ9LUppEJaAoHnTAICZWY8Bwm4pCWHmyRdCHSGnNYqkNGYZBYWEh8vPzZQsIRQl5FFMZFxQZj42NBU3TGB4eRkxMDHp7e9HV1QVAWaEeNWkGjYTSbCq0jDROs0BmcSmOd/YCAwZ1Tg6TFoAo0KhYcjYBlKDcqmKDOBlnQl+2NHVWbCqRDtDkeBoMzYOT8RKrhd5sKpg02aait6jQORTAqeTe9ynjvMwkx+h++xBY9IdInsXKzsumNtRZ8MfCBynLYmTccFFBISelOWWZSyJl/WBZVvL9KldAyGKxRG0qYojaVKYMLigyTlEUYmNjsWXLFrzzzju45ZZbcP311ysu1ENRlAqV2jgYdUyaBfrHvTaLSBT9AQDeTSoNT24yTHE2AypOhFXC5xH0sj1d7UdzAKec14iASAtHPEeDZgTVXmG5c6DJM64zgFONTQU6PeOhFSXD+mLwdTSMjMtMcjgN+deVIHClQE2Oce/O5LZ1F/yRyTEOREYZF3v2qUkrFA1wEeC3giCA4zjRFeegrhAKCBUWFsJuV6b2XyiI2lSmDi4YMn7ixAk8/fTTGB0dRU1NDZ588klcc801qu0mZ4uMK8qmIgPaA/QOay96pAWkUttyCFOcTQAFKCbkFgkSGURoTrs2pALDZDOe6FB+SGScgvETMI6nQdPGR+3pzjOuQRknWjlgrGdc3qZinN2D5wFB0oMuKCpgRFOnVwRlJjmcTB5yreCDbCqETCqiw7K5AZxyaQ2ByARwDg8PA86QD90WAPKDKKlys1Hwvb+UVuAMLSDU1NSEtrY2zJo1y8xunp+4gAnsVMI5EtJlHtra2vBf//VfKCoqwr59+5Cbm4snn3wS1157rSbft9JgSiMhd0ye59Hd3Y2jR48Q26FY4OQoIee3HkiQTHZc+y0WCWVcULHMR0sQgaCsL6fbkrapkDqjrB9SIAWHmjFeczwFRgMZl1PG9XvGTQjgDLzGGtoPJPtyyreR3mvSJINheAiT8sfiWW+H+XG5FQ3alOWZQGVcjOz6IGUHEQi3qN7UhkxoWsNQpZ0XJCYJxiI0IQGgXAiJhPPD9/5SSsYD4SsgVFZWZnS3zn8IU/DvAoXpZLy/vx9r165FYmIinE4n1q1bR8z13d/fj+9///uoqKhATEwMCgoKcOutt2JwcDBoO59/LPDvtddeC9qmsbER06ZNQ1dXFz7++GO8++67SEtLw/i4dkJqsVjOGZsKz/Po7OzEzp070dzcjKzMTGI7XpuK77cbMwLLteIZJRDEc8CmItDKl8YsnPiGdKgyDo15xnWKzKSfYcb7ludo0LT60VPuumsio4H2AAUEU+0xA8m4oCHoL7AkvaxNx0DvP8nWwdA80Ubm7w/rvTHdY+QblONo8k2okagH7kWylUjGmBAOa7RNJaz6pha/uMxpEhuvbLbwGKbhPmUDaCR82CzrPRF6Eh9EPePh8NlUptLfhQrTbSpr165FV1cXtm7dCo/Hg29/+9vYsGEDXn31VdHtjx8/juPHj2PLli2orKxEa2srbrzxRhw/fhx/+ctfgrZ96aWXsGrVKv+/nU5n0PdlZWWoq6tDYWGh/7OEhATvkp5GnA1lnGEY/2AGeFWG48ePo62tDQzDoKSkBBkZGXB1nCK2Q7PAwMQE8pMSjZ+BSrQ3MaqdIlrCswgaDoGB8nMhddkDPqcEb3NSJIhsU1HYDwmQFFcz/OQcT4NhjFfGNXnGA60pmgI4VaQ21KSMB6Y2JBNAY8k4WRlXQsZjHDEY5UYwOc6D5NiVJeMaEeQZJ0yEpJVxChQj3jEjAjgDYUj1TQ2XX+zXjQ1yOFcWv31+ca1kOppJRQJTTU2eSr9FJUwl47W1tXj33XexZ88eLFq0CADw7LPP4qqrrsKWLVuQk5MTts+sWbPw17/+1f/v0tJSPP744/jmN78JlmWDAkCcTieysrKIfQgk4gAQFxcnW/iHhLPhGfdNAFiWRUdHB9rb2+FwOFBeXo709HT/ACc3ztEeYGjSpABOCUwMyYWrSYOOABn3vqsU9lDCfhnmGYc2m4qPyGtFxD3jnDbPuBzxFQRKtX0+yKaiQRlXlb9abzYVmfvNyNSGcmRcUEDGqdOec3aSPIngeNqU+0yxZ1yLMq4ztWF4ACdZGTdL1xVr1yLEAZBfBY6UTUWLRSUKMqaamjyVfotamDpt3rFjB5xOp5+IA8Dll18Omqaxa9cuxe0MDg4iMTExLBL7lltuQVpaGpYsWYIXX3xR0ew5ISGBaJORw9mwqQDA0NAQtm/fjr6+PlRWVmLRokXIyMgIUhrkVAeKBUZZc6Iipc786JA0WZO1qQgKNtIJgYZi9iB4xDcM8hOf/rmabComKuPmgNL0IpdPwUipVscDSSXFq79t5NRoIz3j8tsaSMblPOMKfMW+bCqTxFWu06tBZijjCvOMS5Nx6fOp26YS6hkPJeOhw20En9GxQWUHi4T1wwgyHrWpiECvP/tc/LtAYaoy3t3djYyMjOADWixISUlBd3e3ojZOnjyJxx57DBs2bAj6/NFHH8Wll16K2NhYvP/++7j55psxMjKCW2+9ldhefHy8LjIeSZuK2+1GW1sbOjo6YLFYMHv2bDidTskBSVYZZ4Ex3mAyLoT8NwSjAzzijT2ioRBoKPZqCx7xDQOVcZ8yqMWmoldV5HkBUtqb9vUJGWjosJIKkzxPg2GUP2fB1hEvmWckrAlSxyMhkOhpyqYSNjmTvlZG5usmKuM0D2FCAUESKFgoCziZ322aTSXgmSFlP5G0qRD6pDebSqhNS04ZVwLZiaTCczwyoOz5iQS9DV3VjsIgTDUCO5V+i0poejruvfdebN68mbhNbW2tpg4FYmhoCFdffTUqKyvx8MMPB3334IMP+v9//vz5GB0dxVNPPSVLxuPi4s55ZXx8fBxtbW3o6upCSkoKCgsLMTAwgOTkZJk95dU9txBZVX90iAUFCoLWp0yasxgCNQGc3KQEGVeRTYWowOoM4CRw8XMKSsgmx9OwKikP6UOINUUtmedlUvwFBXBqscHwwZMF78WWmDhF0DMuTMgXhqEEGnbaLpsGkeNo3VYrMQhm2lR0e8ZDs6kEtxep6pti4+twn7L7/8jRI4iZPxOJiYlGd8sPo5TxKIIRtalMHWgi43fccQduuOEG4jYlJSXIyspCb29v0Ocsy6K/v1/W6z08PIxVq1YhISEBb7zxhmzFy6VLl+Kxxx6D2+0mFgZISEhAe3s7sS0SzPSMj46OorW1Fb29vUhLS8OiRYsQHx+P3t5e9Pf3y+4vVy+GAsCd9jJEqlqjIFCwU3ZMCBOi38mB4k+r12ZBhU1FkowHKuOn25K0qRCIqN6BSDhPXlZKyLhqdTgkaFPt/nI2EtpQz7hx28pBlowrSD1Kg4YNdqLdAzhNRInx2truT16hTUUyWFKi394iRfqemdA846HZVLQEcGrrUfBeForBxBinqDW7zY6dO3ciNTUVJSUlCkQf9YiScZMQVcanDDSR8fT0dKSnp8tuV1VVhYGBAezbtw8LFy4EAHz44YfgeR5Lly6V3G9oaAhXXnkl7HY73nrrLdEcqqE4cOAAkpOTZSt0xcfH6wrgpGkaHo+xcsfw8DBaW1tx8uRJZGZmYsmSJYiNjQ06ppIJgJLBijOgeJAoCC9qC2/R/s4zqbt+UN5lYSXd4ybE36xSxUY4LtwqYd4kSEYWP4feY4LfqC/dKbWEVPAEly6RU7qDjwViX4BgUuXzpKvhBmqydhiqjBPOI017PeOyRxMoWGCDIEMs9WYmkQKvMJuKVD5vKdsHKWe5Ush6xrXYVPR06DRiqFgofeinTZuGxPiZcLlc2Lt3L5KSklBaWoqUlBTDCDDLstEATjMQJeNTBqYGcM6YMQOrVq3C+vXrsXv3btTU1GDjxo1Ys2aNP5NKZ2cnpk+fjt27dwPwEvErrrgCo6OjeOGFFzA0NITu7m50d3f7Cenbb7+NX//61/j000/R2NiI5557Dps2bcL3v/992T4lJiaeMzaVwcFBHDp0CPv27YPNZsOyZcswY8aMICIOKFfjlQycAifAzWrJt6UdlEf7IKykXLcuUJTyZCoSZBwi2VQAcRXPrKI/1Fla39N6VLn+qgliFASACiHfaqpYKiH+waSKUlS5MvgYKiYHkbKp0Dwot4LVKVBgOIvsOTXLMx74fBmZZ1xv8CYQTMYFQUEApxEQ/T3BH9opeQHLDwqw2+2oqKjAxRdfjJSUFBw4cAA7d+5Eb2+vIWkFfakNtSKa2jAKvTibNW+UwPSIildeeQUbN27EZZddBpqmsXr1ajzzzDP+7z0eD+rq6jA2NgYA2L9/vz/TSmjFrZaWFhQVFcFqteJnP/sZbrvtNgiCgLKyMvz0pz/F+vXrZfujN7Wh3gBOQRAwMDAAl8uFoaEh5ObmoqKigqjoMwzjLydMghIRg2aBkXETqukQxsp4WyKGMRj2uZLxlYqAxZ2nlc1KJ0bFzxslwGvYpqmg8yBGhIwMzgvqAyWYnXjGUDA0T/TrqrN1hNsN1Cnj8tuGEj2eo0BblJ9wNdlUIpXa0Huvyh/LPe7B5KQbgidB5liMKZ5P/vTTKQjk+0K9TUW/FhVoU/G2F3wsTUV/tCDkJ1p55WQ88L1htVpRVlaGoqIitLe349NPP4XdbvfbTrUq5VGbijmIesaV42zWvFEC08l4SkqK5I8FgKKioqBZ78UXXyw7C161alXQD1cDvakNtXrGBUFAX18fXC4XxsbGkJeXh1mzZsl64QEVEwAlZNwDjLonI1oLgmGt4neaAgWQ5qRr7RgFpeI7JzGHoeCtFhr6/hN72ZOymuhZBThbyrhW0DRPvLCqlGQRgqaOjCvItR2icKolzKHHIGXOiZQyrvTG51gO8fZEeZuKgV73QPh0CDlbiRTxlbSpGEDGmQBlXKx/YX1S9JjKWKYUtGDh5ANzz7QX3qLFYkFxcTEKCgrQ0dGBuro6NDY2ori4GDk5OaoraUbzjJuEqE1FEc6FmjdyODfKc0UQPs+41mUvtTYVQRDQ29uLPXv2oLa2Funp6Vi+fDlKSkoUEXFAuTJOK1AOKBYYnZw0XEUlxm2x4nM+JV2IhDIuyEW+KoCvQFEgJxa1qZikjNNyZFzXYY33CsndquqV8WAIKoiWFmVcTfuixyBcLzUWGznIK+PyiI9NgAUO2QmOeakNTxcdUlOYKRAS11dvWkOK4oOeu9DgTSBy2VRCQXmUvVsA8rPIMAwKCwtx0UUXobi4GM3Nzfjoo4/Q1tam6j2o1zMezTEujrNdut6MPzNwLta8CcUFl/hTr2dcqUrN8zx6enrQ2toKjuNQUFCAnJwcTQMSwzAQBAE8zxMVCTGFIxQ0C4x7WBDrWmsB6d7zWACxVVMF92skXmZGkHHGA4RyAVFlXCbPuFaYq4wLACVx32lUceUqd6pSxkVIohplXFbRFYQw1YJXkWtcbdYOQ5Vxkq1D6RyLp7zpHAnBk14LCQUztE/fM0NUxnkBkreUSZ5xi4UPIrJi7WnJpiILJY/6pAWK1xQVkFyappGXl4fc3Fx0d3ejqakJTU1NKCoqQn5+vqwfPOoZNwlTVBkfGhoK+thut8sm5yDhXKx5E4oLjozrzaYip4zzPI+uri60traCoigUFhYiKytL9bJeIHz7chxHJuMKDkGzwATLwrD0Gv6BQLo9wc0AZLupJCJBxjkjlPHTFpZATizqGScQLT3vG7n3qf7x2lhVykhlXExJDi+yQzqW+t+mJoBTjBCTbCoApTpbi+SxDVDGIXjJOE8g4z6/NGUKaaICjiEOkjfbLJuKhSFnUoEgnDVlnJ9goJSMq7nNKIpCdnY2srKycOLECTQ1NaG5uRmFhYUoLCyUXO2N2lRMwhQl4/n5+UEfP/TQQ2G1ZoDzu+ZNKC5IMj4yMgKe5zWr1GJknOM4dHZ2oq2tDVarFSUlJcjIyNBFwn3wtSFnVVGkjHuACY6N6PPLKSi5LYWIKOMGvCOY0/0MPK9iSh6Jq5y7yrg0zoVsKmIquBqyrCWvt5oqnKLty1THUVtBVApSlWABgFJ4jgUW4N0MQPjNfmJr0m0oCBpzjAPSAZyEyYUShOYYD33eKc7oKaxycOPKBzUt9g+KopCRkYH09HT09fWhubkZLpcLBQUFKCoqgs0W7FnXS8ajNhVx6M+Uf27B91va29uDilBJqeLnc82bUFxwZNx3gUdHRzVVHAu1qbAsi46ODrS3t8PhcKCiogJpaWmGDhw0TYOiKHl7jIJDUuzpKpxGvzQJ7bHj2s9FZGwq+tvw9TPwl6q1qei6JiZ6xs3I1CLncVelbIuRcTU2ElmbishHasi+yLZye/MCBYZwQyhVzonKuEIXQ8PeFsRTOQBiIPDiK3Ak0m8UWFKOcSIZl2hPZ5+ZsBzjIdU3I5pBNvhHTo4ovz/1iQAU0tLSkJaWhlOnTqGpqQnbtm1DXl4eiouL/TVCQgPe1EAQhKhNRQpTVBlPTExUxM/O55o3objgyHh8fDwA7WTcYrFAEARMTEygs7MTnZ2diI+PR2VlpaFFEkKhJIhTSQAnzQKTgtnJu4MxOSrRLwXeWMaELIyh4BkDbCq+F6+MTcWsoj/nnToia1NRkWdczA6kQvWUPZYYGVfRvijZlzukQYG+RnjGWTeH4x2nAMRIFsgyq+CPH4KMyk+YWEg9c0bbVEIDOMWEBEMWsETbCP6NEyMqDmTQ4JGcnIxFixZhcHDQH+iZk5ODkpKSqE3FJERTGypDYM2b559/Hh6PR7TmzWWXXYaXX34ZS5Ys8de8GRsbw+9//3sMDQ35vezp6elgGAZvv/02enp6sGzZMjgcDmzduhWbNm3CnXfeqbqPFxwZt9lssNvtmoM42dMFc3bu3Amn04k5c+ZoyimpFkpSKirKM+4B3GYkCyQ8RG4Ji76SdwAdATIuGPEUiBAbsZe9WQKPmSu4ZH+zVsgo42qyqehUxuWOJfqC0G2DIf9+oyZtRijjAkdBmPQSKYEHxKI0uUjYVAgBnFqUcb3ZVCwWGZtKZGurBWFiSPmFMFpASkpKwvz58zEyMoLm5mZUV1cDANxut+Y2ozYVCUxRZdwMnGs1b0JxwZFxiqIQFxenmoyPj4+jtbXVH3k7a9YspKWlmdFFUSjJ4qJksKJZwEORsl0bj/FhqeMpUMYnjO5NODgDngIxlVFMySPmGdcVwGniKCbjb9bUpJwyroKMillG1JFxLcq4mmwq4gGcxD7J/H5BQRtyRXJkEtqcaYen/Pey1GTSp8CbN65QRCVbm03F3ADOsxW8CQAjA8pXP826ZvHx8ZgzZw7Kysrw8ccf49NPP0VPTw9KSkqQlJRk0lEvQEwlMm4izrWaN6G44PKMA95BYnh4WNG2o6OjOHr0KHbt2gWO47Bo0SIwDIOYmBiTexkMJTYVJWScYgGW5hFJY8PYoPgNrSjgNBLKuPKUvJLwL5PrsKmYOqbqVJUiHSCqxvYg5i9XYyPRoozrJvt6bSoKJivkcygQAzKDwAP86VoBUvdvJJRxok2FlE1F4lzqT20YQsZD2jPLMy7+a4JP/HC/8tVPsxXnmJgYCIKAJUuWwOFwYPfu3di7dy9OnTpl6nEvBJztnODnS57x8wEXpDKuJL3h8PAwXC4X+vr6kJmZiSVLliA2NhaAioqYBsKoY1K8twaG4UV/CO2NDrKIE+uLEjLua9zEFwZvoDIe2EtR5e08zaZC07y40i9QpwM8jb0+qjzjIqTSUGVcZA6sN0CUkrPpyCnjCi43yS/OMDwEt7IJi8ABPOebsYqblsz3jFOGB3DqzabCyGRTMS2AUzZWm8LwKRXpa03WZXwiUmxsLGbMmIGSkhK0trZi3759SEhIQGlpKVJTU2UnBVGbigiiNpUpgwuOjANn0huKYXBwEC6XC6dOnUJOTo7fmB8IJf5to6HkmLSCfNneV6mB2TEUtDMyyCFD5HMlZDwSMMIz7iPjgadDiryedxAoMIw4Gec4WpKo64E6z7iYMm5cNhVRZdxjnPIuBrn7RFDg5CcRZIbmwSsk4xaLFRS8qeqkYr8j4hkn3GNkMh4ZZVxJAGckyIaDdkANwzZ7HPa9t3wBnHa7HdOmTUNxcTHa2tpw8OBBxMbGorS0FOnp6VHSrQJTTU2eSr9FLS5IMh7qGRcEAadOnYLL5cLw8DByc3MxY8aMsFypPsgV/jEDimwqCtuiWQCs0dI4wX7BU7BTdriF4AAeWmmPJYLGjAJvQNvinnERkmjSi8/M95cAgKbF7xeeN4uMq1DGPSLKuCqyLKPIiT12aor+iG2rM5uMImWcRMYZ5WScphh4PL4AThmbikkQBIp4DKJNRWwyJejvs2yecY3KuBahJHAXB6XOQmk292VZFhRFhdXcsFqtKC0tRWFhIdrb23HkyBH/Z1lZWX5SHk1rSEBUGZ8yuCDJeGDhH5fLhf7+foyNjSE/Px+zZ8+WTep+rtpUlCoKFAtQKsgEsS2F2zkoRzgZV9pf4+MHg2BE0R+fZ1zOpmLee8XEMySEL8n7wHEUGFqA6lg1GeVXNvd3YFO6bSoyx9JpUxFrXz74Uo6M6/OMMwwPKCzGNT7AwhdeZJb/Wg4CjM2m4q3aqm8MDFTGeT78OpsWwCnyewKHUpsgnwtZal8z4EtrKPV+slgsKC4uRkFBATo7O1FXV4eGhgaUlJT4085F1fIopjouSDIeGxuL6upqvPDCCygqKsIzzzyDnJwcxUUJzlWbitLximYBiqWMvfoyXNAqhCfAp8Wqh4iA4k2eMDMUBJ2atZJsKl4ifv69VARQoCVSb3A8DZtNvQQodz3VecZFJj0mK+Nqiv6ITyz0esb1k3FBIRnnxgO2kwvgNAmCQM6mQsozLtZnXnY5TD5fTSAZF5soaPaMaxgihIAE8FZeXbERs8ckpTnGGYZBQUEB8vLy0NXVhebmZjQ2NqKoqAh5eXlRQi6CqE1l6uCCIuMejwevvPIK3n33XXg8Htx+++24+eab/YWAlOJctakoXc6jPQqyNRgMixBu+WFUkHGzIVi0LysDEoRNoMDzlN/iYeZqq6lXU5CumMnzNBilOfICm5Q5F2p81qLK+KSBnnGRR12VMq6BqMr9fiXPLzGAk+bBT5we/gUBMQIwLhFzwgeWVj9LnnFeoIhWKLXKOG+Akh9oUxFbGdBMxjWcw+HhYeB0DTvaoy49VKSUcaWgaRq5ubnIyclBd3c3mpub4XQ6ERcnlgbgAkfUpjJlcEGQ8YmJCbz00kvYvHkzbDYbli1bhqysLNx9992a2jvXbCocx6GrqwsNjc3K2mK9GRIiCYazhfm+FdtUItBX3qIz+wGBpNC09weYGrxp8gtVaowMnGyoak/mXOgl41BBxmWVcTEyroJgc1pSG8qdHyNsKuM0UnkeG797CZZfXInfv/Av/OX9wxi3B5M5biLwwZVQxk3OM85yNPGckJ5dsf1YFZMpKTABynho8CYQ2QDOmJgYDJ3+//EhFmqCbMxWnFmWVbzqHAiKopCdnY2MjIxo9U4pRMn4lEHE8oz39/dj7dq1SExMhNPpxLp162QL71x88cX+ylu+vxtvvDFom7a2Nlx99dWIjY1FRkYG7rrrLn+VTB8uueQSPPfcc9i8eTNqa2uxbNkyXdXAzhVlnOM4tLW1YceOHTh+/HhYlSgpUKyBxFAI+a8EaDZ8MLZQygbYSFSy0+sbpwQAfPhJCFxaN5WMn7VBTNtvkifjagI49dpUZJRxMzzjMtdLTvk2wqay8crF+MMrG7HikpmgKArXffdSvPnHW7H2MxVwuM8wSd4d8HBIDHtm21RYD/kBJY4RogGccuqx3AMlBK0WidlUTBu3RLpmsZ4ZXz0j6gYDs9dI1SrjoYhW35TG2c4JHs0zbhwipoyvXbsWXV1d2Lp1KzweD7797W9jw4YNxIpIALB+/Xo8+uij/n/7cn0D3of86quvRlZWFrZv346uri5cf/31sFqt2LRpk3+7P/7xj8jLy/NHc6sp+iOGs+EZD1TGWZZFZ2cn2tra4HA4UFFRgbS0NEx6lPWJZgEu0jf9pAUIsTIySsl4hJRxPaAgXqDIu7TuJTbnNxk3tu9y50JvAKeRyriY6qrXMy7IvHXklG8lkxWirYMCvvjlqrDPKYrCtzZchuvXX4rf/OIDvPHhUbBuC2jBg4tn5qE7qQtuhN/oZpNxYk5wQQBN9IyHfyTnGZdLHEnTQpC9I4yMc4LiCqdqIXflY61OACpKF5tMdPWS8SgIiCrjUwYRIeO1tbV49913sWfPHixatAgA8Oyzz+Kqq67Cli1b/BHTYoiNjUVWVpbod++//z6OHj2KDz74AJmZmZg3bx4ee+wx3HPPPXj44Yf9qQkLCgqC9lNS9IcEmqbh8US21jHDMGBZFi0tLWhvb0dsbCwqKyuRkpLiVw0Upzb0ALzR5EqmPX4yfDBWqoxHoqy0EbnGGZHFFi5IGZfpg55LcjYHMQ3HNoJs+g8vktqQn1RjIzFZGRch7rLKuBE2FZJnXCZeg6IofPvGz+H69ZfirT/vxKVXzkNSchzuOHhY/FgmZ1PhCJlU5BRosVUGUnveRskpnEIDmpUW/ImEvusZPbdUZJZldZHxaGpDaVCCAGoKnZ+p9FvUIiI2lR07dsDpdPqJOABcfvnloGkau3btIu77yiuvIC0tDbNmzcJ9992HsbGxoHZnz56NzMxM/2dXXnklhoaGcOTIEck2ExISZC0yJETapuLxeNDX14f+/n6cOnUKs2bNwsKFC8OqllEKiv4AJlaGI4AXydygNM94JPprRK5xsUlD5GwqZ28Q03Jk+QBESjEhF8SIt4EVOMU943qVcX19UqaMSw/vFlrZ0M8wDL6yZgWSkr3Bc5TEK8N3LLPuQtJvkR0fRDolr+TLrJaEzKYiVn1TAdwqX22RCODU4hkPRNSmIgFhCv5doIiIMt7d3Y2MjOAajBaLBSkpKeju7pbc7xvf+AYKCwuRk5ODQ4cO4Z577kFdXR1ef/11f7uBRByA/9+kdo1QxiNBxicnJ9HW1obOzk44HA7ExsZiwYIFktsrVsZZQDB6cJN5iDzj4S+/8bFxAE7ZpiOhjOu1qQAA7Qa4kHa4iJHxsxTBqRFKlF3FwaEiyrg6mwqZmInaVPTmMdepfCsJcDWCjIeCliDjvkmnWXchScmWI75i81S9edFD78vQtIumknGZR2JCpQMz6hk/fzHVfNZT6beohS4Kcu+992Lz5s3EbWprazW3v2HDBv//z549G9nZ2bjsssvQ1NSE0tJSze0mJCRgdHQUgiBoesjN9oy73W4/CU9OTsa8efPg8XjQ3EzOlqKm6I+GCt264BGZ+8TExIZ/KAJGxIttNAyxqXjC49sCl++VEFDNMPllZfQYqYhM8jQsUmlqAiAawKnCpiKXelDMBqEqm4oGP7XcyoFeZdxKayNHYhmQvBVGzfYda6u+CUB04qPXVkOFeJdCs6lICgiKHiR953J0UJ1Z/dDhw5hWXqY6xa9SRD3jJmKqqclT6beohC4Kcscdd+CGG24gblNSUoKsrCz09vYGfc6yLPr7+yX94GJYunQpAKCxsdFfMnf37t1B2/T09AAAsV1fBU6tMMumMjExgdbWVnR1dSElJQULFixAYqI3eWx/f79hFThpDyAotLQohsxDNNQXbqhmFKpzYoGRRsMQZZwNPw2sCs+4rncw8f0r6GxcDurbVkLGFdtU3CKebN57vpU8ErIBnHrzjIu0Lxs/YIQyTtjGppEcUSLXOogom/QyJRX80WJTYUkBoQoQpoyHkPFIZICSwki/OjJuYRhs374dGRkZKC0tRUJCgqH9YVkWdrvaQkRnEPWMSyOqjE8d6KIg6enpSE9Pl92uqqoKAwMD2LdvHxYuXAgA+PDDD8HzvJ9gK8GBAwcAANnZ2f52H3/8cfT29vptMFu3bkViYiIqKysl2/Ep41phtE1lfHwcra2t6O7uRlpaGhYtWhSmUhhdgdMIjzQAxS/fiREhNJmKYmtFRJRxgzzjodcgMAuEmTYVXiSt4rkPHqSwFaW5xsUCOH2ec4aRPy9yKxaUiMqpvwInGXJ9UqK2k7bRTsbD99Py+9RCjzIu9tx5dJJxSoaMR8JaJ4WhfnUHnzVrFsrLy9DS0oIdO3YgLS0NpaWlSEpKMqQ/RthUopBAVBmfMoiIWWHGjBlYtWoV1q9fj927d6OmpgYbN27EmjVr/JlUOjs7MX36dL/S3dTUhMceewz79u2Dy+XCW2+9heuvvx4XXXQR5syZAwC44oorUFlZieuuuw4HDx7Ee++9hwceeAC33HILcSaemJgIt9utOSOKUcr42NgYjh49il27doHjOCxevBizZs0SXS5UUoFTsU3Fd8NHkMBx7vC8vkoFD1p7SnjFMEIZp0SU8cDlcFkyblI2FeocHeEYGT+44owqEjnFlVk55C0WZnjG9eZZ1+sZtzPqb/jh4WFMjoc/jGZnUpE7BjGtIWCOMn42AzgJj42NsoFVKV5QlLdoUGVlJS666CLExMRg9+7d2LdvHwYGBnR1FdBHxn2qeJSQi+Ns5wSP5hk3DhHLM/7KK69g48aNuOyyy0DTNFavXo1nnnnG/73H40FdXZ0/W4rNZsMHH3yAp59+GqOjo8jPz8fq1avxwAMP+PdhGAbvvPMObrrpJlRVVSEuLg7f+ta3gvKSi8FHdkdGRpCSkqL6t+j1jI+MjKC1tRUnTpxAZmYmlixZEpQ/XQxK1XiKUkZyac6rS4pUqdcGmWOODPAI/YVKh1dmEso9BxphCBkXmSupyaaiaxwitC2QBWj90NhxmuHBEZZoFFfhlAjWVFIyXskxxFROpco4z4tfd7lTRrpXeF6/Z9yhIrvF2NgYmpqa0NvbC0ti+H5BxzHpESWp77LEV+S5dIuupiiHnE0l8sq4tz8OOkb1noFE1+FwYMaMGSgpKYHL5cKePXvgdDpRWlqq6V0J6FfGozYVAqLK+JRBxMh4SkoKscBPUVFR0EOXn5+Pbdu2ybZbWFiIv//976r6EhcXB4qiMDw8rGmA0WpTGR4ehsvlQl9fH7KysrB06VLExCgbPBmGgSAI4HneX7xIDBQoCAruaJr1+og5nWTcN4zLEc3RgfDzRcnkOg49hpng5QryKQDFI6yzavKM6/mhZ/N9pfXQlIwMIlpGXuz4k+JJMr1Em/ycKiG14sq4sntXkuzL2HpJzxPHk0vD+7cjkPEYBcq42+1GS0sLOjs7kZWVheXLl6O68TAGVRzHKJDIuJYATr02FVougFOqTwoeFj3Psl1waN85sB27HRUVFSguLkZrayv279+PhIQElJaWhqXUlQPLsrpTG0YhjQtZTZ5KuCCfEJqmERcXp9k3brFYFBFjH4aGhuByudDf34+cnBwsW7YMDoe6QdOnLMiScZpSVF7Tm95QVRd0gee9S6iTwpk1VLFgsLMFIzzjYoOiqtSGesg4qVnh3BQc5NIWKlGtBUF8RQIQL7aj+hiCIF70R6EyLkUi9RQ94jladn9BIBNY1j2BiYkJ0XHI4/GgtbUVbW1tSElJwdKlS/2riWJx30H3OLFX2kGamMmmNhT5TI6Myz2rgZ5x7+pX8PZmBnCSemYV1AVKynFqm82G8vJyFBUVobW1FQcPHkRsbCzKysqQlpamiJRHUxuaCEE4u0qM0ZhKv0UlLkgyTlEU4uLiMDysMiHrafgGFo7jiMR4cHAQLS0tGBgYQG5uLqqqqjRHlfuOI1dAQXGucc6gIE4Vz46Digki46re3DwgEjtmGAyxqYiIsKwaz7gemDyzMqPvob7bUChRrb3baLepKFHfxbZQbFORUI0FGd+QrDKuKPWh9DZ2UKipqUFeXh6Kiopgt9vBcRw6OjrQ0tKCuLg4LFiwAE6nM2g/WuQhJGU6MQqkSZMs8Q2ZTFGg4NHZ58B7N9SiAuizqcgST5HHxvcRw6pb6lQqiFitVpSVlaGoqAhtbW04fPgwHA4HSktLkZGRQexzNLVhFFHI44Ik44C+wj+BxNhqDfY3CIKAgYEBuFwuDA0NIS8vD5WVlbDZ9PlBaJoGRVHGBXGyMNb/oYBY20LyqahRxs1Wdw1RxmVtKjJqpq7rQdj5HBUb5GwqytIfErKxKCBcin3pIVAawClN9rUr45wCZZxsHRGQk56JJblL0NTUhI8//hgpKSkYGRmB1WrFrFmzJK0IYmQ88FimFf3R4xkPOVcO2gG9PaXkyLgOZVxpZeKg/vj29aj026k8lMViQUlJCQoKCtDR0YGjR4/6Uw1nZmaK3jMsy0bJuEmYakGPU+m3qMUFScZ9yrhWMk5RVFgQpyAI6O/vh8vlwujoKPLy8jBr1qwwsq4HhqY35ATAGtmlP2tYtKgKMs6bzCkZr9de1xkR6WOk8owT2z5HV3jlybhSZVwcStRr2WNIdFF5AKcUiZQh48QATnnPOCn7CMPwiLfEIj4+Hjk5ORgeHsapU6cgCAKysrKQmJgoOalnRBT9QKJs1gINJ2gn46HPho1SYhGUybBDnxFFxDKz6FLGdURb824LAOUzAa32D4vFgqKiIuTn56OjowPHjh1DQ0ODv/6HT7ASBEF2NdfMfk55RAM4pwwiXIfx3EFCQoJmmwpwJohTEAScPHkS+/btw5EjR5Camorly5ejpKTEUCIeeEwSFBf+YSPP0ZjQaFEVD56YBcRo6K3CSXljYoMQqdSGRDJ+jg5wcj9XSf5qki/cEM+4JChF6jj5N0hfGKJNhVNAxgnHZWge9CSwZ88e1NbWoqioCJdccgkWL16MkZERVFdXo7GxUTT1KyOqjJusegoCcXKiNoDTSulPIRUY7xCmjAuCvvFKx4xGmFB3LfS+AxiGQWFhIS666CIUFRWhoaEB1dXV6OjoAM/z/pXcqDJuDih+6v2Zhf7+fqxduxaJiYlwOp1Yt26dbPHHiy++2B+z4Pu78cYbg7Zpa2vD1VdfjdjYWGRkZOCuu+4Cy6pfGrsglXEAupRxwEuM+/r6cOzYMbjdbhQUFCA3N9fUqHFlucaVtSVWLVIXlKRTZK1A0HtQhTIeATLOW/QtL4sNJF4VE6dTTpqX2lCnpi/fvkDB8EqeMk0pUcYFAulUUrJe7hgk8V7gKFAWGXWfOCGQPp8kTzjH07L9JtlUGIbHQNcJpBWXorCw0E+UkpKSsGDBAgwMDKCpqQnV1dUoKChAQUGBX1igKTrsRjU9mwoL4iqe6gqcBk8eQjOpUAShQ8kyvKx9j+AZZ8fUXQujBGeappGfn4/c3FwcP34czc3NaGpqQkFBAQDtZDya1lAGUWVcMdauXYuuri5s3boVHo8H3/72t7FhwwZilj8AWL9+fVC67MA01BzH4eqrr0ZWVha2b9+Orq4uXH/99bBardi0aZOq/l2wZFyrMi4IAnp7e+HxeNDe3o7i4mLk5OREZOZvtDJu7LqIguNOMkFkXM17IFJkXF8DEP1RLEfDauFNLvpDmbrUwfEUGIYnqKDqibpcMSJFnnEC2dWvXIP4chBYCuFlZZW275vciIOkBCtSxmXI+MLKeSjJLhH93ul0YuHChejv70dTUxPa2tr8lgRRm4rJZJzmCKlHFajQoXxufER/Sd/AcZYNeSZ05xjXooyfvp3cavUlg+0fNE0jLy8Pubm56OrqQmNjIwCgvb3de/9oeE9Gs6lII+oZV4ba2lq8++672LNnDxYtWgQAePbZZ3HVVVdhy5Yt/uKTYoiNjUVWVpbod++//z6OHj2KDz74AJmZmZg3bx4ee+wx3HPPPXj44YdVxQpesDYVtQGcPM+jq6sLu3btQmNjoz/lk9YBRguMrMJJewCCDVM9FDxE/GQI21Xx0jG1ot1p6LWp0AJE80f7CKypnnHtuyoCz9FBPtmg73ha2ztdThlXYjPRbVPR5hkHlHrStT1kxNSGPKUrgJNheKTFOmX7kJKSgkWLFmHOnDk4ceIEqqurMT42Tj6WCZyJtHRNcQoOGXKuEuO1Fa8JbvPM/xpdfZNntT/NE0NqJ8TmgKIo5OTkYN68eaBpGp2dnfjoo4/Q0tKiaQk/Cgn4UhtOpT8TsGPHDjidTj8RB4DLL78cNE1j165dxH1feeUVpKWlYdasWbjvvvv8hSl97c6ePRuZmZn+z6688koMDQ3hyJEjqvp4wSrj8fHxsn4hwEvCu7u70draCkEQUFRUhKysLBw8eDDiS2iKlHGFbVGcYEgGETUskJ/Qzv7NzNvrgxGpHikRVcxHVmRzQ+si4+YqRxxPw2rhICb6cTwFhubDFELdx1RAdklWFCXKuBxZJhFBXonyrlE1lveMyxxXxjOebItX1A+KopCamoqUlBT09fWhuvYgEFKnzOw84yTlWxHxDb2GemfdITCajGujyN4zPz6kznRrtuLM8zysViuWL1+O3t5eNDU1obm5GcXFxSgoKFBk64yq4tKYqsr40NBQ0Od2u11zWmgA6O7uRkZGRtBnFosFKSkp6O7ultzvG9/4BgoLC5GTk4NDhw7hnnvuQV1dHV5//XV/u4FEHID/36R2xXBBk/Guri7J73mex/Hjx9Ha2gqGYVBUVITMzEx/lLjFYtFUhVMPjMymQnlgDBk/DSXjATse0jkV7JOJQHlpI97RYkvUvowqptpUTH5hcRwNu138IvhVc4PJuF6bCq+gyqKsZ5zEbQzwpEvupzPPOGkSQDM8nPY4Vf2hKAppaWnITEtHJ9cY9J3ZecZJZEPJJD30ufOuVOkbuwO7FEbGdY5V3mwqpCUZ6a9GBtWScVWbq4YvxzhFUcjMzERGRgZOnjyJpqYmtLS0oLCwEIWFhcRkB1EyTsAU9Yzn5+cHffzQQw/h4YcfDtv83nvvxebNm4lN1tbWau7Ohg0b/P8/e/ZsZGdn47LLLkNTUxNKS0s1tyuGC5qMiynjHMfh+PHjaGtrg8ViQVlZmWhRAyUqtdEw1KbCGlPoRg0mR0P7piKAMwJk3IjzwYiQA04hGddjGyIr40a8zKTDyjiehtXKQlQ21wFFqQ0JRFAZGdfhGVeg3CvJCCPatol5xhlQYGhtEyeaImdTMYU2EYY8RSp0yDVkDSDjQe2F3GfECYIC4iTI8GnSOR7uUyvLm0t0WZYNUr8pikJ6ejrS0tLQ39+PxsZGuFwuFBQUoKioSHc9jgsNU1UZb29vR2Jiov9zKVX8jjvuwA033EBss6SkBFlZWejt7Q36nGVZ9Pf3S/rBxbB06VIA8OfWz8rKwu7du4O26enpAQBV7QIXMBlPTEwM8oyzLOsn4T4/eHp6uiS5PRvKuPEBnBTACQBjwICsYEAIDS4aGx0DkKCoeUZ/zJUsDCn8I0rGT3vGZXfWflze4EQnZyB/YTmOhsNu/BtBSdEeEiEWPPL7y1XgJFkklNhUiJUjKUHSbqI/zzjJpqJ91seIkXGT84yTyIYWMu5RcF+oQWg2Fd2ecY3p3WjQGBvmoErkiJAyHn5cr/0pNTXVHyi8bds2PynXY0m4oGCiz/qs4PRvSUxMDCLjUkhPT0d6errsdlVVVRgYGMC+ffuwcOFCAMCHH34Inuf9BFsJDhw4AADIzs72t/v444+jt7fXb4PZunUrEhMTUVlZqbhd4AIm477Uhv39/XjzzTdRXl4Oh8OB6dOnS1afC4QSy4jRMNSmIlCgWAEUa4xXWgnGh4MHDTUVOOkIkHEjlHFRm8pp5Uy2PLuON6NpnnFBIkVMECjZAj6iTcswN17BUgHJF262ZxxKlHGFxYFCIecZl01tSPhdFh1k3EJFPpsK6fbTYlOZMHgFx+hsKgIvqE+tIACxdCxUZzQ6S2Q8ECkpKUhJSfGn1Ny2bRvy8/NRXFwMq9UatakQMFWVcaMxY8YMrFq1CuvXr8fzzz8Pj8eDjRs3Ys2aNf5MKp2dnbjsssvw8ssvY8kSb3XiV199FVdddRVSU1Nx6NAh3HbbbbjoooswZ84cAMAVV1yByspKXHfddXjyySfR3d2NBx54ALfccovqCeUFS8ZpmsaxY8cwc+ZMlJaW4i9/+YtkOV+p/cWKYpgJI20qwGkFR+98Qgj5LwFDfW4EznUD83XKISLKuBFkXOR8+m0qpBclL3hXKjRCMPOFRfn6Tzi+lkFUZh9eweNFsqLwChRQPZ5xvcq41v04Bco4ycdt1WhRAcKL/ghC8Dk0qwKnFLQo44aTcaOVcQ5kMi7y3LAcCxutpLJoMNQIIlrAsqzibGO+lJqDg4Nobm7GRx99hJycHMycOdPwAnpTBlPUM24GXnnlFWzcuBGXXXYZaJrG6tWr8cwzz/i/93g8qKur82dLsdls+OCDD/D0009jdHQU+fn5WL16NR544AH/PgzD4J133sFNN92EqqoqxMXF4Vvf+lZQXnKluODI+MmTJ/HTn/4UTz/9NARBwIsvvoirrrrKH5ipFBaLJSjFTSQgNwE4deqU8rRRgtE+bPlBfXxYCCLjaggcPaG+R2phhDJOtKmQiJ/eQeg8VI/k1Hy9yjhMVsb1esa9haAk2ibZVDhKflXBJDJuCbGpeCeaAX0x4TYkPRqK6g+ENDDmNu6Nz/PhFUj1KuNabCoTExPApIbfFQFlXG0hvKSkJMyfPx/Dw8Po6uqKVu8kIKqMK0dKSgqxwE9RUVFQhrz8/Hxs27ZNtt3CwkL8/e9/192/iOYZV1uO1OVyhZUi9f39+c9/9m8n9v1rr70W1FZ3dzfuvPNOFBUVYf/+/diyZQucTieuvvpq1UQcOLcCOE+dOoX9+/fj8OHDYFSoqzSrv/ys/2gKHqKxkBpLalQZhoXp3jgjPONiqpg/mwrx4HqOKrOzUS9cg0+/fEl3BakNSTYVj/4ASxLZE3Rna5E+oaRbneP1BXDaGB2e8RD9JvQ4pnA7QneVqNCh99moEWT8dJtiRbD0BnDynPr+xcXFwUGpy5ADmK+MK7GpSCEhIQGlpaVRmwoJvDD1/i5QRFQZV1uOND8/Pyz94C9/+Us89dRT+PznPx/0+UsvvYRVq1b5/+10OoO+/8Mf/oD6+np8+OGHWLJkCQ4cOKCq6E8ozrZnXBAEDAwMoKWlBSMjI8jPz8fs2bPxy9dbASjwdAjeFxkXwdU/ngVslA2TwqS/D0oRieGYM0IZJ9lUCMSMErRzXW8g4Pn3wpKbWynJpkIixMKkATYVEhlXVJSIoIyTjwyep0DT4SeJ4+RTG5JyvtsZ7Te6BWLK+BmYcRuSFki05BkfntCpQAQgNHgT0G9T0aI5UBQFB63c9ndmP/XHUgM9ZDwKBYjaVKYMIkbGtZQjZRgmLD3MG2+8ga9//euIjw8uWuF0OompZH7wgx/gtttu8/87ISEBo6OjEARB08z7bGVT8aXjaWlp8fuY5syZ418KpBQq4wJOpzfUS8ZVPjwOyqGJjPu3N/HlYYRnXGyZ7UwFTpJnXPsxaUqABjHNYKi/MHIWEU7BUoVeZVyuD2IxAP729aY2lNmdFyjQIg+JEs846Xc5VNoGAkGHvDJYjZ54NSDdBoqKgYWcq8EJ/eO276qE+sUBsk3FkOFL9FkXgEkrVAcBmczGWZbVlRnFt9IdRRRTHRGzqegpR+rDvn37cODAAaxbty7su1tuuQVpaWlYsmQJXnzxxbDqmKEPdEJCAnie1+z7jrRNRRAEjI+PY3h4GJ9++ilSU1OxfPlyFBcX+4m4XHBncIOUoVUtlao5NgQOzCoHWZMJpyGecZFLoMSmoscrJ5fJ5FwVzeWsFnLfAzJk3GxlXG9qQ5kbWkr95hXkGScFcOoh46EBnGE2jXNQGQ8cm2jQGPcYp4yLknGd46oW7ikI2iocmz006FHGBUGIeJXr8w0UzvjGp8Tf2T6hZxERU8a1liMNxAsvvIAZM2Zg+fLlQZ8/+uijuPTSSxEbG4v3338fN998M0ZGRnDrrbdKtuVT1kdGRsJUdiWIlDIuCEKQEs4wDJYtWxYUFMPzvP9Pzc1MeyJP1Cx8QFEHleMsxRvj65aCIW2LKuPel6TWaoxyoGjByBomEYOc1UKAt+w7iZwQc4kboIyTJqyKlHHSNgqUcdE2eVo+Ew2BjMdYtBdWsTJkz7gpNhXdyviZ/3XQDhj5yg+d9FCscFYC6gQIYMc0kPGoTeX8xhTNM34hQjcZN7scqQ/j4+N49dVX8eCDD4Z9F/jZ/PnzMTo6iqeeeopIxh0OB6xWq2bfuNmecUEQ0NfXB5fLhfHxcRQUFKCwsBBNTU1BSrifhFMUGIZRHowq+Ar/mPYTRDE24Aacvi5QUMPIKd5kcZyhIFD6XqZiyvgZwkL2jGs+ZsTe/gQVWkNr8pMTr2+aYaRb1x/ASd6GaFPRWeFTVhkXYbahqQSlQFLG4yzavWkMTSbj56IyHjhDsFHGFpMxOq2hEoidYgoUJjWQcd/7Q0sSAyXQS8ajNhUyotlUpg50k/FIlSP9y1/+grGxMVx//fWy2y5duhSPPfYY3G63pF+NoijExcURs7mQYJZNxUfCW1paMDExgYKCAuTm5sJisWBwcBAcx4mScIvFApqmVecZ11OCPbjjyjaLsyZiCCcBAB73JADlxEBv5hcl4C0AoyM1mbhNxfsyIpIoPWRc9wZnB0pycPM8DYaRfs5IVhRlNhWTlXGZ1IYkiN0v3va8n0utGngnGNKNx9m0k3GrDBk3/F0qk39frU3FSqnPxU1CaACnrFKv4ATJbiKxgXtY/HMSeJ7Hxx9/jNLSUuTk5BhOylmWVZ3aMAoViAZwThnofkoiVY70hRdewBe/+EVFxzpw4ACSk5NlA0fi4+MxPKxhBIPXpiIIgmGqgiAIOHnyJFwuFyYmJlBYWIjc3NwgVYGiKHAcB5Zlw0i4D4ozGwreF4dua4b/4VF2YCvOvAzHxyagioxHQHUSGAASZJyUF/pMA+EfcSanNoyUMk787Rq6oKRqKMdTxDuEqH4rsqnIKOMkMq7IM05YDZH5/WLKOB8wAeAFCozItSdZVAAgzqrdpmKhydlUjAbFAgKhu2ptKoyK8UYJwpTxyNaB80OAgPEh9Q+hzWZFWVkZmpqa0NTUhJKSEuTm5hpGyqM2FXNBCQKoKWTtmEq/RS0iNmXVUo7Uh8bGRnz00UeiidXffvtt9PT0YNmyZXA4HNi6dSs2bdqEO++8k9gfiqIQHx+v2abiG6w4jtM1cPlIeEtLCyYnJ/1KeOAAxvN80KB29OhRTJs2DQkJCeENqlHGPQBv1Dip8BkS3AxwOh1uYmKi8h1BDqYzCskpMRg+Ph70WXysDWU2Cw72DgE28iNDsqnIeaQ1Ywqv7cmq55N6ybh5yrjXL05QdTUr46ePz1OASOpDkkUFEBBv1W7VsMl4xo1ehaE46RGC4pRM5wAEnEdKMIaM+zjD2bCpiIGigNFB9UuHFEUhNzcXOTk56Orq8pPy0tJSQ0i5EWQ8alMhgIeuTFznHKbSb1GJiK4fqS1H6sOLL76IvLw8XHHFFWFtWq1W/OxnP8Ntt90GQRBQVlaGn/70p1i/fr1sf+Lj4zXbVHwDDMdxmkr1CoKAEydOwOVyYXJyEoWFhcjJyREl4b70iw6HA1VVVXC5XNi9ezdycnJQWloKm+2MdESrtalYIL3ebQK4icCBWZ1nPBIvulO76zAvLw89yQkYnZjEtBgbXH/ZibrBMQhXL5TdX9xKQ4HjKLISrINPq6jzdN5BjiyTAjjlbCo8L5NuEmSlU46M8zxNvsNlrptY3wLJr1TfSWo1w/BItKkvDnNmf3I2FaMDOEkTcKUrZYHn3ygy7rt454oyDgAjpzSQcd9/KQo5OTnIzs4OIuUlJSXIy8vTTMpZlo0q4yYiqoxPHUSUjKstR+rDpk2bsGnTJtF9Vq1aFVTsRw30kHGfTUStb1wLCQ+1o0yfPh15eXloaGhATU0NiouLkZ+f721D8cuQ8pJbigI8ghq3iC6wE9rf1pEg40KsBZ1bD6F0QQnAUGg90Ar34OnJoYIJCwWI+lxZjiESP1P59HmsLMkGKxKUcYonzzOVeNbJNhWZPOlyqrvMsUXJeECbxGwrEmAYHolWbWSc53mcOtEX9FlYnnGDbzWal04UpHg8CDhPAs/ASGPqWVHGxbovAMP9Gg5+2vroizcKJOXd3d1oampCc3OzJlIuCAI4jtPsGY+mNVSAqGd8yuCCjqzQQ8YBdUGcgiCgt7cXLpcLLMuisLAQ2dnZqkh4aN/nz5+P/v5+1NfXo729HeXl5arehdTpEvNGFP9ROm56RgN6qNK2EQnVKbE4DcyBPhz5yJsBKCbegZkrKlC/rxnjCrtLuwE+JvgzjqMN91z7ELlsKpGHHBnnieo3ORuLkqwkRDIup4xzFGhQ4DReXLH+8XqVcZpHjEp1WBAEdHd3o7GxEacwCCQTjmX0vI9w6hQT3wDB2KvkG8eYQyudGhHAqQUMb4OaMhM+UEDQOyeQlGdnZyMrKws9PT1obGwMUsqVqN2+uhd6s6lEQUA0teGUwQVPxrV6xgFl6Q3FSHho1LoaEh6KlJQULF26FF1dXaivr4fbPaG4/xS8L49IeLF9cGs/3aAnjeuHFPqHRoHBMzap8ZEJHKmpQ1JGIoYZsXqI4WAmJcj42cqmEhGY0ws5dVnOF85z0tlYeLlUQgLZkywXwMnxp7MbSb1gZCZRYsp3kDIucT/J2VSaj9QhYQgoLi4OsriJoa+vDw0NDfB4PCgtLUVBPI/3296TPpbRNhXCKVJsUwlow6MgHaUahGZTOWs2FY9Gwkt5RSVfMgIxUp6VlYXMzEz09PT4lfKg1VgJ+N6NUc+4eYimNpw6iJJxHWScVPhHEAT09PTA5XKB4zgUFRUhOzvbMBIeCN/SYmZmJl5406VqX5rVmTJQ5cMzMaz9aYvEi46PEX9xDPYOeV/qCt4LYpMGU20qkcqmEpGjBEPWSiJHxgkTIF5BakISlHrGpRuQad8kz/hnFlah29WB6upq5Ofno6ioKCzuZWhoCA0NDRgaGgoiXsfHesjHiiBv0mJTGRgYB2Cch/lcCeAcOTkGIFH1fj7CTVGUv+KlHCnv7e1FY2MjWlpaiKTcl/VLTxBolIjLIKqMTxlc8GRca2pDQNymwvO8Xwnned5vRzGDhIeCYRjY7erSltEsdEUw+4dKhZFbY0P8meSGKm0qTASUcU6CjANQHCkp1k8zlfGIESDBF44oXozGDMhZSYRJMuElkXlZ1V0G8sq416aiFaI2FV4JGZe+h2lKQJYzDdnz0zE4OIjGxkZUV1ejsLAQBQUFmJycRFNTE3p7e1FQUIA5c+YEEXWbbNEfytiAcAOU8cA2Jg1KxSgI3mw5vmtAsQLi2wFHn8yOSiBz6sS+ToxJhWROVoVthZJy318oKc/MzERGRgZ6e3uDlPKCgoIgUu7LpBIl1OaB4iNTfyNSmEq/RS0uaDKekJCAnp4e+Q0lEGhT4Xner4QLgoCioiJkZWVFhIT72t7xt33oauwBHCpzd0dwrBwd5KC17AbtNrQrohAc4kTGmZWEcdFvwiGm4HMcrcnTqQSRunwcT4NheCLZMxokMi0I8oM3Sf2W9YzLKdcyxI7nyFRcNmW9qDIemGdcfD9iACd9pqJhUlISFi5ciP7+fjQ0NKClpQWCICArKwsrVqyAwxH+pFqZ4LFF9F5QuIKkBKQ5vlIVOvA8UkwMAOVWPhJYlgF4AbFdQEKrsmJhuk+LxKyXYe3QRMZFiLJSpdxHyk+cOBGmlPtWjaMWFZMRVcanDC5oMq43gNNisYBlWXR1dcHlcgEACgsLzwoJ/+MTb6L1aAcmL5mliozTHoDXXgPkDBQ+Q8MDHFJV7uODJQJknIoLPhlJ6YnILc9C3d5mxW2IkXGWJdtU9CEyAxh32n8tTcYNZGG+Y5JsJjKVJgFybndZC4wcGVfiGTdYGQ/LMy52XMIkwUIFf8dxHAYGBjA6Oor4+HhwHIe+vj4kJiaKZs+wUqFkXORYEXqfKrepnPnfEbdxnePcDDL2Ahals3QTEZwy1hgoJeUZGRlIT0/HiRMn0NTUhJaWFhQVFSE+Pj6a1tBsRLOpTBlc8GRcq2ec53m43W64XC5YrVYUFRUhMzMzoiR851v78NomLwnXCprVScZVPjycB7BRNkwKk6rJKcXB9JzoHppH6bwicB4Occ5Y1O9twtHt9RAY5ddMjCR4s6mYZFOJEHiegs0qiOpvPE+BogTDJxwkwqwkNSGpGqWcMi5nxdfrGdemjOvNpkKf7huP48ePo6mpCTExMZg/fz6Sk5P9qVebmprQ2tqK4uLioIBzGx1MxsUKDFGCgbcz4RJrsan0DY6TG1WIWDcDaoBRT8RNes4HerW9x5Qoz2pJ+cmTJ9HY2Ijm5mYwDAOWZTWlN4ymNpRHNM/41MEFTcYTEhJUK+M8z6O7u9ufHSUpKQmzZ88+K0r4xKgbCanxwRuovJdpFpBLKmE07JQDk4J6A3gkFiwFOw1HvB1Nn7hQPLsAcc44DPQMqjq4GEmQ9YzrQORWcqUP5LOwsAZnqyAGYCo4n2SbisnKOCeji8tZbETINq8kzziBjFtpBr29vWhoaADgrVmQkZHhJ2WBpMqXPcPlcqG0tBRZWVlgqABPsIKVCb0gjU2KbSoB98kkLDCizJ+NYsBNRHjgBCTvSa8yrj56VM3YoZSUp6enIy0tDfX19Whra8O2bdtQVFSEwsJC1aQ8alOJ4kLBBU3G1SjjPM+jq6sLra2toGkaJSUlGBoaAgA/yY6kHcWHntYTyKnIxOjQGAa7hqGWjRvmGVdxWBvsqvfxwcpR8Jh413JWCkeq6wAAtTsbYLVbMHNlBRqPtCt2moqRBJZTlhbxfAXP07BYjM+RSVS2FWRDIanXskV5DFHGCZMBcvOik7cgZVzKpkL6XRyH2tpalJSUEMud+7JnZGRk+HOMt7S0oLS01L84JUn6SUGX5K/DmyK4HBSnZA044NCEcYEbvAnWEK2wCnEA1Pv4tAz9Skl5bGwsnE4niouL0djYCJfLhaKiIhQUFCiqWu1rJwoCop7xKYMLmownJiZiZGTEP5CIwUfCXS4XGIZBSUkJMjMzQVEUxsbG4Ha7I2NHeeJNtB4Rt6Mcr+sBRVGYUVWOQwyjSh+hPQAEAQxPQU+iATWPkFXQTsYLkp1oGh5Qv6NC8Jbg+8DjZnGkug6x6QmK2xAjCRzHEJXx8+WVI3XJeJ4CTRsfoSql/gKAoMSmQlDqZZV1mZ+jxDPOc7ykK0LO0iObZ1yDMu6wWLFixQrFCiVN08jJyUFWVhY6OztRV1cHOAEQyLiRNhUSGVfrGbdQFkzKEXiFNjheEMCPnztkfGJI4wiig+zKkXKfPSUtLQ2pqano7+/3T+p8SrkSUh4FAQKMWOg5d3DhcvELm4yTlHGfp7K1tRUWiwVlZWVBy7mA90Xl8Xj8+VSNJuF7/n4Arzz2V0kSHghBEFC7owHCJbNUHcdbfZMChieBJCMiOeVh4axegqLBX2ynzH0BChbxMMTRIeXmULEMHxxHg1RCRtcYdE4MYJEv+qNXGdfvGZfJpsJToAgXR84TKzZ501uBM97h0OTfpWka+fn5yMnJwauf/gWAIB3Ia+D9aIhN5fR5stPkPE42ioJS85zAC6YETWoBRQHsmPx2YrBbaHjcHljt2kmxFClnWdYfwElRFFJTU5GSkuIn5S6XC4WFhaJ57oGoZ1wJop7xqYMoGQ8h4xzH+e0oFosF5eXlSE9PDyLhPiXcbrejv78fHR0dkgOKWgQq4e3HjmP60jLEJcVidFB+tI1NjAEdZ4eaUB5fAKeFp6HJZOB7dlQQa4q1AjZtK1I2k8k4GAq8jQYzGcKoVShIYiSOlQngJBI/ObVuCo9f5KI9SpRx7Z5xORuEvGecBkMzkJKuyPU95ZVxLWTcYdE3RjEMAwo0AI54HEMgCGSbikpl3EbZiZsl2B3om1A26RYEjTYVBc+qlaHBSW0Y8nFZthPsjjp0/t8+zF29DB02K/oUvCusFgaVybFo/d1H+N4bu3HNnV/A5ddfZAgp53keHR0daGtrQ0FBATiOC7KvpKamBinlra2tKCwsRGFhYVBF2KhFRQEETC1rxxT6KWpxQZPxhIQEjI+Pg2VZcByHEydOoLW1FTabjUjCfUtxGRkZiI2NRUNDA7q6ulBeXo6srCxNg4iUHeXo9no44u3IqcxA17ETEESSC8cmxqB4dgGaD7VifGgcSFVuqaA9gMBQ4D0cInY7eCyADRgcHAJUZh23yFkTOB5QkflEDHyCHUzfmZdyUnoi0iuycVjh/uLKOEMcM4lzGbmMgZEcwIiTBuNfniTCLefZBgCBYFORLfojm+6EgsADlEQzXrJPstnIpGWUyzOuwTMeo5OMe0Gd7ou0TcUQcAAs0udIbQVOC8grfzFWK6CQjPMmKuPs8DiQKj4u+s5GVmo8Ujr70fzz9/yf1b9aDcZuwdyvLUO71YL+QfHfkhtHw/3xMdS39gMA3INjeP62l/HnLe/oJuX9/f2oq6sDx3GYPn060tPT/e9MAEFFgFJSUrBkyRL09/f7A4V9SrmPlEcJuQyinvEpg7MQDn7uICHBS1offfRRTJ8+HR9//DEqKiqwePHiIEsKz/N+OwrgzS9us9lgs9n8A0p5eTkaGhqwZ88eDAwMKO4Dz/PY/uYe/KDqQWz+5v+KWlImRtw4frQXabkpKF9Y4v88JsGBmSsrAABHauowPqy+mIVPXVIcDBW6v+9/VDxDQye92r3dTlaqxGCRITCz0jNUtxkKPt77IkhIicPMFRUYGxpD/X6X8gZEzoWcTUVP1g3yuTd6cIvsy1FvOXtdNhUFzwRJHfeSYunzT/LDAwryjGtQxmOsBky4T3tHtARwqrkbiWSbExSTft/7nZEh4w5G+bnheAG8WdlUiASUwtw4G4Z+82+0/OOTsKeRc7Oof6Uak3+oxtw4G5ITY/zfFWYmofzEAPp/vwOjp4l4IPo6+/H8bS/je3Puxj9+9U943MqLCI2OjuLAgQM4ePAgsrOzsXz5cm/2HYYBTdN++wrHcWBZNsiCkpKSgsWLF2PRokUYHBzEtm3bUFdXB7c7AoUlznfwU/DPJPT392Pt2rVITEyE0+nEunXriNn0XC6XfzUn9O/Pf/6zfzux71977TXV/btglfGxsTH8+te/BgD87W9/w6ZNm7BmzZqwFIU+Ak5RFCwWi39wCQRFUcjOzkZGRgZcLhf27duHjIwMlJWVISYmBlI42dmPH3/t/6HlcJuiPp9o78OJ9j6ULyxGXFIs6vc2+zN/+KFyZul/4UVwRmoRvOfEbrMDil2aXtAyBMlh0+97z5ibh+LSfNTuqMeRmtPnN065CiamjMvZVPTwaWICPZPzspsNYgVOBTYJkjIua1NR8GLwkn3xCyQ/WVCvjAeuFGgJ4IyzGBEX4j2uWI5xAIbN/0jnX7EqDvj7QwtktdduUf6M0xQFTkMAp2UMSOiYwHAeaUVQ+gRSHIf63++UPQ7nZlH/+4/BOKxYtHYlMOHBp8+/r2gq7SPlf97yDu579ftBAlAoPB4Pmpub0dHR4SfhoSJLqKc8kIgHKuXJyclYvHgxTp06hcbGRhw7dgyLFy9W0OMLF1HPuHKsXbsWXV1d2Lp1KzweD7797W9jw4YNePXVV0W3z8/PR1dXV9Bnv/zlL/HUU0/h85//fNDnL730ElatWuX/t9PpVN2/C46Mj46O4rnnnsNTTz2F/Px82Gw2vPbaa6isrPRvE0rCGYYRJeGhYBgGpaWlyM3NRWNjI7Zv3+5fdhMLmkrLTcH3n1uHF+559QzpI8ARb0fp3CK0HG7D+PAEpi8rw/GGbgyeHFZ5Fs7AV0hHCfEQhRDyXwVg+NMTFA22BjmfqGAAE+g9NYThmg5ULC3D8cYeDJ4YUkdoRZVx8oub2LpA9qnwUnXRfX0xkItHetgnVuCU8WwDZOXaGGWchpScw/G0zPnX6RkXC/DkKQiEqMd4AyarvgVVWZuPTpDOvyoyfvo8CTz5dWdREXjPnxiEZUL9KpxtBPAkyA22pBU0CoUz8xQF9dvj7CibX4T6338MQQBmLp+GzoZu73gmg7yKHHzniTWSRJzneXR2dqKpqQkJCQlYsmSJf6VZsu8ipDwwA1kgKV+0aJE/MUIUBERtKopQW1uLd999F3v27MGiRYsAAM8++yyuuuoqbNmyBTk5OWH7MAyDrKysoM/eeOMNfP3rX0d8fHB9F6fTGbatWpwVm8rjjz+O5cuX+/OQKoEgCPjRj36E7OxsxMTE4PLLL/cXrvBBbhni2LFjKC4uxp/+9Ce8+OKL2L17N5xOpz+Ik+d5TE5O+gcBnx3FarWqypDicDgwa9YsLFq0CP39/aipqcHx48dFo8PzZmTj+v/5Kq6657NIzkkSbc8eZ8fMFRWgaRpHauowNjTuz54yMerGzJXTYXWcVn1U3ssUvL5xzWRcAzxjp1+OWp67SfJOvAEPs5uhwPPe8zs+Mo6ZKypgi1VuqRE7l4JAac6mInttiD5umX3PcZCVcQVk3KM9gFNJpkayDYbWdf7FUjfKVeAkTV4AIN6q3hoWCkqHTUUVSPnKVdjq/HoBT54QM1Lmf7E2BWBySNsPZSfVF+fxged5tB7pQPGcAhRU5opuQ1FAZVU57A4rjlTXweNmwU6yOLq9HqODY6hcPg1J6Ymi+8YkOvDZDUuw/tfXYvqKMtFt+vr6sHPnTrS1tWHmzJlYsGCBLBEP7p839WFgfQ6WZcPsK75MLFEQ4CPjU+kPwNDQUNCfXsvSjh074HQ6/UQcAC6//HLQNI1du3YpamPfvn04cOAA1q1bF/bdLbfcgrS0NCxZsgQvvviipkxAZ4WMT05O4pprrsFNN92keJ8nn3wSzzzzDJ5//nns2rULcXFxuPLKKzExccYnvXbtWhw5cgRbt27FO++8g48++ggbNmzwf19eXo4//OEP2LVrF66++mpQFIW4uDgMDw8bQsJDkZSUhMWLF6OiogJNTU3YtWsXTp06BQBwu92oq6tDdXU1JiYm8J//9TX86vB/41s/vhaxp31+PhJusTB+Eh4K9/gkjlQfQ3xSLKYvFR885UCxgEXFEq1EK4q3dPvSvWh4l/EyiYI5kkoMIFVmqRoAuNgzCtrkuAdHaurAWFXYVAAgtB8yDyfZJSpnZyB9Sdz1nAfRM66g2ic5gFNGGVfAmchFhZQ8E8o95XxIxUtR5VxmBSbRbpxNRTKA04AjAORAUC3KuOzqlJrFLwHgeY3BsDLHoQkB6L5z0nKoDW1HO1EytxAFM86Q8uI5BcgqycDRHQ0Y6gv3w/pI+djQGCqXVyApzUuiLVYGX9x4JX595Ke46fHvwGa3YefOnfj000/9YtXo6Cg++eQTHDp0CLm5uaiqqgpLcqAGSkl5FAScbeJsEhnPz89HUlKS/++JJ57QdZq6u7uRkRG8kmWxWJCSkoLu7m5FbbzwwguYMWMGli9fHvT5o48+ij/96U/YunUrVq9ejZtvvhnPPvus6j6eFZvKI488AgD4zW9+o2h7QRDw9NNP44EHHsCXvvQlAMDLL7+MzMxMvPnmm1izZo2iZQiGYXDZZZf526UoChMTEzh48CA+85nPKLajqIGvkl16ejra2tqwf/9+2O12uN1upKamYvHixUhMPKNSfPUHV+HSb6zE2z97D+/95t+K7CsAcKpnEKd6BhF31QKoNa3QLMBOcgAiU4DBPXx6oNUw3nITPDEBC8uTyXpuZgr6enuI2/Cx4Y/F+Ii64FjaDfCB4QICiC9homNHVhmP4FIu4ZqZ8fokKuMKbCq8DmVcbwAnz9EytikK3osr3kYoHwklv+LZVki/SUCiTTqGRSkoeKvJmp5n3CgyfrodD0suGa/mKeImGVBiSrogIMnBYHjUA16jwMHzypcpmw+2AgBmXzQDjJXGgX8eUbSfx83i6PY6WO0WXP29y/GFmz6HnLIzy+yVlZUoLi5GS0sLduzYgZiYGExMTCA3NxczZ84MSkGoF2J5ypubm/HHP/4Rjz76qGHHmZKQHj7OT5y+9dvb24N4kVSyh3vvvRebN28mNllbW6u7W+Pj43j11Vfx4IMPhn0X+Nn8+fMxOjqKp556CrfeequqY5wX2VRaWlrQ3d2Nyy+/3P9ZUlISli5dih07dgDQvgxRWVmJJ554ArfeeitOnDhhKBEPBMdx8Hi80em+QScuLg6xsbFh2zozEnHdI9fg8b/fh3mXKSvik5qbghnLyjE6pL76A81CUyEQAIibVD8SjA17nzi5CoRi8IyT38JujsygWAUvOj4m/CVqjVP38mFC41J1EBS5syQQftL5Pk6TfMlKyDjZpmKAZ5yojMuRcTJCJwuh50I02wqBjDMMD6ctTnN/fKBklHGjQFLGFecYx5lJjZw7RI3FjfWE/3bH+ASunuvETd+Yhtuun4nZTgcoj3pLCkkZD72d4pyxqFw+DUdq6nDgn0dQNr8IeRXh/lcxFM8uwI9evxMb/vu6ICLug91uR3x8PBiG8acnZFnW/x4zGhRFYWRkBA8//DCWLl2Kjo6OaEYVGfgCOKfSH+Ctjh74J0XG77jjDtTW1hL/SkpKkJWVhd7e3qB9WZZFf3+/Iq/3X/7yF4yNjeH666+X3VbrvXteBHD6lhEyMzODPs/MzPR/p3UZ4oMPPkBzczPuvvtuzJ8/H7fffjtuvfVWYhYUNZicnITL5UJ7e7s/hVNiYiKGhoZQV1eHmpoaf9Bn6HJf4cw8PPzmndj3/iG8dN8f0FHfFdZ+ak4yMgrSULenCX2d/cCK6ar7SHsAjtWWZzw7wYEBKK9OCQAjAzzsgKalSM+oPjI+KfM9APD2M+fBEW9HyZxCHGvpJewRDjr0OdRDxmX2lctXfT6DRJhJFhQ/REjTmbZlPONKbCoy2Vr0rLaHTlb1KuMMwyPJFi/5vVLQgrdAmOmecVIfVCnj3vPklhEOWJmLZR1j4Tm9asZOWvzriMzEJBaXxONbG65EUVERAKCjowOOWAZXjPH4xztNqO0fh6BQKec4wuz6dBcZC42KpeVwHW7D0e31/q8bP3EBAMoWFGN8eBydDeHvPmdGEr750Gpc+s3PgBEh/oIg4OTJk6ivrwdFUZg9ezbS0tIwNjaGlpYW7Ny5E5mZmSguLkZcnP7JHeAVq37/+9/jkUceQWlpKf79739j8eLF0QBOOQRYO6YEVP6W9PR0pKeny25XVVWFgYEB7Nu3DwsXLgQAfPjhh+B5HkuXLpXd/4UXXsAXv/hFRcc6cOAAkpOTVaduNoyMK10umD5dPVk0GyUlJfjzn/+Mbdu24bbbbsNvf/tbPPbYY/jKV76iWSn3kfCOjg5/dHhSUpL/+8TERCxatAi9vb1oaGhAe3s7KioqkJKSEtQORVFYdOVczLt0Jt574V/4w6Y3MNw/ipRsJzKL0lG/pxl9x0+d2UHDg0mx8r5kKSQlJWkg4yxSAVAalHH3GFmVGWfJ37s58lucnuTBO2hYHVZMW1gC16ftOLq9HlyqOhLDhHSD4rVzFLn9BB6Sa1xyVR4N7Ysp7wQKPA+IPYaKlHECATNTGed5L1nWExcd2r/Qf4sHcBLIOG2UMi4TwGkUCJdHjTLuuy/HZQRdlkSCATx8xeU4srMBfz3pAudhQHlYlCfS+M4PLsbMWTOCXr6FhYXIy8tDe3s77DEUVo0K+Ps7TTg2oG6sFPsx5QuLMdA7hKMEC2Pj/hYAQPnCYowOjuN4Yzesdiu+9P1VWH3H1YhNEBebRkZGUFdXh+HhYb9I5HsHxsbGYubMmX77io+Ul5SUiK7wKvo1goCamhrcc8896O/vx//7f/8P1157rWkr1FMOvGBgla1zADIxX1oxY8YMrFq1CuvXr8fzzz8Pj8eDjRs3Ys2aNf5MKp2dnbjsssvw8ssvY8mSJf59Gxsb8dFHH+Hvf/97WLtvv/02enp6sGzZMjgcDmzduhWbNm3CnXfeqbqPhpHxO+64AzfccANxm5IS6XylJPiWEXp6epCdne3/vKenB/PmzfNvo2cZgqIoXHzxxdi7dy9eeOEF3HnnnfjFL36BzZs3Y968eYpn6KEkfOHChUEkPPSYmZmZfj/5wYMHkZycjPLy8jDFwWK14OobP4fPXrsc//fLD/DX/34HtTsaRNuVQpIgwG5l0MsGv3RoFuDs2nJV0yoyEPjATgJWyqppQj8xTM5LPiazhDohs2xcmpoKqmkEGdNzQvz66kgtHdoNmd/KUIBUz+XGWpqWVtwoIZIxnOaoWDxPgxZJbcITVG8fBMI2cqn5lCnjUmTc27Yem4qcMq7FppJi16+M+8i4VJ5xo+4C0lxdjTLuO4+jbvK1kJuoJ8fF4t7rv4BrGpvx4h8/xKU3VKBq5cKwNGc+MAyDoqKiM6Q8FhgfEfB/R9rw0eQIBJvEc0v43RarBQ37Woj9DIRv2y9uvBJfuOlzyCwUV/YmJyfR1NSE48ePIy8vD3PmzIHVKh5DFErKd+zYoYmUu1wuPPjgg3jvvfdw11134c477zRMaY8iilC88sor2LhxIy677DLQNI3Vq1fjmWee8X/v8XhQV1eHsbFgq++LL76IvLw8XHHFFWFtWq1W/OxnP8Ntt90GQRBQVlaGn/70p1i/fr3q/hlGxpUuF2hBcXExsrKy8M9//tNPvoeGhrBr1y5/Rha9yxA+MAyDDRs24Nprr8WPf/xjfO5zn8M111yDhx56iEjqJycn0draivb2dlkSHgqaplFUVIScnBw0NjZi586dyMvLQ0lJSdiAGJ8ch2vv+RJWfnUpfvPAa9j9f58ENybyvol1e/CfX5iPr1/3GW91qN9sw+//7wAmT6dDpFlAiJN+iedaHehkJfxPGrmGg3JoIuMcK8DOWCTtKOMsC+kyLMCYjHI+KfDw9E6ibVouZiwpR+sft8M9OKa6cE4oGZcjxSXFGTjad0L8S5nzxLKC9JMsaziXnmidK6lYvMRWrJKSgmuiwzOuiIxLKOOcn4yTQbpXQ/sXOnlQa1OhKcDG6A/SpuTyjBt12xDmSloCOEcm5Mi4TLzJyCi2b98OhmFwx01fRVpamqLDWywWFBcXIz8/H21tbYiJp7BqQsAfDjbicJIHglW5oMFOssgtz0JMYgwaFZDy8kUlWPeTb2DGsnLR73meR1tbG1paWpCcnIxly5YpJsRipDwrKwvFxcVEUj4yMoItW7bgf//3f/HVr34VtbW1yM/PV3TMKEJwgdtU1CAlJUWywA8AFBUViVpnN23ahE2bNonus2rVqqBiP3pwVtaC2tracODAAbS1tYHjOBw4cAAHDhwIygk+ffp0vPHGGwC8CvIPfvAD/PjHP8Zbb72Fw4cP4/rrr0dOTg6+/OUvAwhehti9ezdqamrCliHUICkpCU899RQOHjyIwcFBzJs3D//93/8dlEoR8KYobGhoQHV1NUZGRrBw4ULMnz9fMREPhM1mQ2VlJZYsWYKRkRHU1NSgvb1dNLo+tzwLP/zjD/Do23ejaFbgQHbmZopxe/CtSyrxxh9vxbXXX+RX99fc8Fm8/srNuLQ8E/QkC9oDCIw0MYmL0Z+bOBQMp00ZB4A4C5lQxEsoOoC8cj5+Wh2b9HA4eGIY3H8swrRvfgaUitSGgEqyALKCKs+nSasa6voRvnNo29pypeuBVIpAUnCmkm1ks6koiFOTVsZ9ufRlzgph2SP0uvI6PeO0Qf5b2h/AaW4eaNJtrSbPuO/GHJog7yQ3NvS2d6CoqAhLly5VTMQDYbFYUFJSgpUrV2JGeQG+u6QMjxdNx8yTNCiPQkOTAHQ2dKNxXwvyKrJROr9YdLPU3BTc9sL38OSHD4oScUEQ0Nvbi+3bt6Orqwtz5szBvHnzNCnTPlJeVVUFwJtM4ciRI/6UiD74fOHz5s3DRx99hA8++AC/+93vokRcF86BVIRG/p0jAtDZwFkJ4PzRj36E3/72t/5/z58/HwDwr3/9CxdffDEAoK6uDoODg/5t7r77boyOjmLDhg0YGBjAypUr8e6778LhOJPnTm4ZQgvKy8vxxhtv4J///Cduv/12vPTSS3j88cexaNEi/OQnP8GOHTvwy1/+UpUSLoeEhAQsWLDAH0TT3t6OadOmib4A5l4yEz+teRT//N1HeOXR19EjAA63B1/73Gxc991LJO01NpsV9/5oNdZ1D+C/nvkzasN8FWcQExMDDEtVbdP28HDjPNzDI9ByC8ZYrIBbOtVgjNWGYYkXqwDAQdOYkMiqMs56EFi+YnjUjYMAnJfPgVtFesNQTyvNkzMUEjM58GKk+AxMExMEAaDOfuENKdIsTCqwqRC2MVUZP02KeRmPEVEZD7WphGZTUekZtxh0LWU94wbdjwKhu6psKqevsxwZH/WQLXAXLVuKnET9Y7zVakVZWRkKCgrQ2tqK79kpDI4JePVwA44lc8RVOCrg5HbUeQP686fnwOawoemAC/ZYG1bf/gV8+dZVsEsUKhseHkZdXR1GRkZQVlYmmjxAC0KV8jVr1iAuLg4PPvgghoeHcc8996CrqwubN2/G2rVro75wIxBVxqcMzgoZ/81vfiObYzxUUaIoCo8++igx76jcMoRWUBSFyy+/HPv378dPf/pTrFu3Dm63GzNnzsSTTz6JBQsWmHLM9PR0pKamor29HYcPH4bT6UR5eXmYR5FhaFxxw8VYuXopPt56GFd8RXkUenqWE7d//2o88s8P0TIhnqFcJsxN2Q8KQYLDiSFG2+3noMn7xcikaYy32TExIR5INcp6EI/wXzWgNs94CFnIykhCx4h0GWoSGS8rTEftQJ/k96QgTRLZO18gRZpJwZl+SCjjXEgBHTHoyabCq7CpSLYdalMJVcZVesYthNUvNaDhzRIjN5nRCxIZVxvAyXsosITZMENRsjaVZI1BilKw2WwoLy9HYWEhXC4XbowBBsZ4/LWuFYc4NyCW4lDkhmo/dhwA8JUfXIX/uOUKpGYnix7P7XajsbER3d3dKCgowNy5cyV94XrgI+WbNm3C/fffj6VLl4Kmadx44434yU9+Iumxj0ID+CmmJpsUwHk+4LxIbXgu4OTJk/jpT3+KZ599FsuXL0dKSgrefvttvP7665g1a1ZYWkWjQNM0CgsLkZ2djebmZuzatQu5ubkoKSkJK7wQmxCDK7+6RKIlcUxMTOBkZydYXloVIj4eGp8dhrPBYXcAUEdyAcAho/DZZMooO6xWQIKM84IAm4OBJ0BFowDkZTvR3jWguI+hy+gMTSYuHIGMW2UsMiQyHhcrvUqgBd5ukpV6oyFpJ9GRTUWWSAoCRGJGwzeT8YzL8lXCddekjJPIOLyFVfSqoDTo08cx9x4gVa9Xm9qQnyQ/Q/E2GwYJeYEtNA2HRvFADjabDdOmTfOTcmcsjf4RHr8/0oCmVHiju30QuV0ql0/Dus3fQJmEZYXjOL8vPDU1FVVVVZqznyjF6Ogo/va3v2Hnzp248sorERsbi1//+teYmJjAD3/4QxQXi/c1CpUQeBALTZxvmEq/RSWi60QK8OKLL6K4uBj79+/H1q1b8cEHH+BPf/oTPvnkE/T29mLevHn4n//5H1MLFNhsNkyfPh1Lly7F2NgYampq0NbWpqpaWyDcbrc/z7kdQHx8ZKPYKY+FbAolwCZz23KT5OVmh0y+X0dAgZ8ZpZnISEtQRcQBgA4h4xPj5JRmJG+xHHkikXGjdQaOo8FIsVSTRA1Jz7gCmwoktgn1X2uFZGpD3+eyh1HjGVeQ2pD0uzge+/btw8DAgFynJNHf34/x0QnicQzJtMYLwSQ0BOqyqQCcm3whHISMRACQaLOZnvPabrejoqICK1aswOyKfNy6tAIPZJahuJcXVQyzitNxz+83YtN794sScUEQ0N3dje3bt/szj82dO9dUIs7zPF577TUsWLAA77//Pt599138/e9/x1//+lccPnwYk5OTmDFjBu6//37T+nBB4Wx7vE3xjV+YiCrjCjBv3jy8//77/gAVH6ZPn463334b7777Lu644w68+OKLePzxx3HVVVeZ5oeLj4+X9JMreVkEFiFKTU3FkiVLwDgceL6jVWOPtD08gpvR/NxZBPK5ZWTOg1XmxWuNZTAtMQOjY27UNvWo7h/gzSseCIfdDhA8qSRlfGJMhsgTfq/RQ5sgUKAYGQO8wZBUxhUEcFIC5bW+h2wqF7ypFHKpDeVAEa6QfDaV8H1InvGE2Dg4nU7s378fycnJKCsrQ0JCguT2gRgZGUFDQwMGBgZgc9iIZNyIe45iAUGq6C0vhD1fRAjyaTAFlszuE2zGB7FLweFwYPr06SgsLERLSwvSExj0DLF4pbYRHVYBsYkxuObuL+I/bvocrHZxm8ng4CDq6+sxNjaG8vJyZGdnmzqZEAQBe/fuxT333IO2tjY8/vjjuP7668EErFKWl5fj5ZdfxgMPPIDWVq3vmyiCELWpTBlEybgCkDzhFEXh85//PC6//HI899xzuOmmmzBv3jz85Cc/QWVlpWkDYFpaGlJSUtDZ2YkjR44gISEBFRUVkn680NSLvkqgAGSXruVD0NSDdzNENZgERmbtPyEuDhgR978DgI1AxmfFOFFCCzjY3gcPqyZlQwhCfppNxpvJEVY45HJVx9isGBMk+ip7jmUysYR9LXefGG9hkbKU8EqUcXjVYosl+PzK21QUNS1rU4ntA8ZSpfeniKcreCKhN894jMUbOJifnw+Xy4Xdu3cjIyMDpaWlkmqp2+1GU1MTurq6kJubi5kzZ+Jfnx4CSzj3Rlx9UpEstZmKIFDgZGwqyQkJ6O2XjstIUFlNzwjExMSgsrISxcXFaG5uRmaiBX1DHC7a+Z/IKsgU3WdiYgKNjY3o6elBYWEh5s+fD4tMDI1eHD9+HA899BDeeOMN/Nd//Rfuu+8+/7tFDNOmTcO0adNM7dMFg6mmJk+l36ISUZuKQbBarbj11ltRX1+PyspKXHTRRbjttttw8uRJ045J0zTy8/OxYsUKxMfHY9euXaitrcVkgE3D4/GgsbER1dXVGB4e9qdeDBwsKYqClaDkE1+uGh8edpzSbFMJtYCEQm4CJJbirSImCcv/PYzx772LI0+/h7R9jZiZ49TUPyB8qV5OrScp4wkyAU+URYdKaSBv9hbnMX4w1aOMAxKBjhrvvbC2JQI4MU4hbb+AxENyzJF8vgJ94aHnQdymIk06fYHNPjvE8uXLQdM0duzYgaNHjwalbWVZFk1NTaipqYHH48GyZcswffp02Gw20GBMT2tIesZVBW8CgABwUtfpNOwycSbxVimZ3nzExMT4UwdWlufgSMOnOHr0KMYDrG8cx6GpqQnbt28Hz/NYvnw5ysrKTCXiY2Nj+MlPfoL58+fD7Xbj008/xRNPPEEk4lEYDAFn31Zi6N/ZPqFnD1Fl3GCkpqbimWeewY033og77rgDc+fOxX333YcNGzaEBVwaBavVioqKCuTl5aGhoQE1NTUoKCiAIAhob29HYmIiFixYAKfTKdmGhUDGzZisesYoze26h8YBwqmUo1mBwZQlMYnI2daL46/uRKAhZaC5FwM/ew+lS0ohLCxDc/eAuk6GCN1yEwS3TFo1Eliiqm4CJIgsx9GwWjjDLCA+SKrYCsm42P5ynnGlvmcpZdzeRcM2DAgyegdZGT89kTg9wQlTxlV6xmNCVmd8JK+oqMhPvPPy8mC329Ha2oqYmBjRcYOmaLI33QgQbCiqc/jzAOshk21GxlaYaD97ZNyH2NhYzJo1y6+Ub9++HdnZ2YiPj4fL5YLdbpcd540Az/N4/fXX8eCDD/oTGXz2s5813VMfhQiiyviUQZSMmwCKojBz5kz84x//wP/93//5/eRPPPEErrjiCtMGrbi4OMyaNQt1dXVobm4GTdMoLi5GcXGx7DFJZJxM6bT9FvcoYI3RtCsmhscBwtI/MWf3aeTHxKNo9yA6X3wfXYL0rzi+uwnC7ibk/MdCHFehMoWSObmCK3osMUQyrmdwU70rZUqCDSkftDBJKzqc2ORAdsKglIxLeMZ9xYYomgI4gRCMqFwZD/OMiyn+hN8VK2GViouLw+zZs9HW1oampiZwHIeMjAxUVlaKpr47k03FPJA84ZpsKjLKuNzKVSQ943LwXa+uri4cO3YMnZ2dSE1NRWVlZVDdDaMhCAIOHDiAe+65B42NjXjsscfwne98J8gXHkWEwfOIaACP2dCYkGIqIGpTMREUReELX/gCDh8+jA0bNmDdunX+8r+6SJIIOI6Dy+VCdXU1RkdHsWDBAkybNg3t7e3Yt28fhoakc1wDwJXFpYiT9DWTpDttv2NiWPuSlJ0hv3BIlo8sRyxS9/Yh7ycHcfyFPYoUUArAicPt6joZ0q4caaTEcgorBOn36rnLHBYLEvuMS4uoFWLKtiCQCVvQ/iLqtaxnXGlBRKlsKgEBgxQhwTUjc90DCbdeZTzeIq7uDg4OYt++fWhpaUFZWRkWLFiAyclJ1NTUwOVygQvJv82AMV8ZJ9y4am0qggCwOm01CSatamrB+Pg4Dh06hNraWhQUFGDx4sWgaRo1NTWor68Psikahe7ubtx888343Oc+h6qqKtTV1WH9+vVRIn62cdZtJSb8XaCIkvEIwGaz4fbbb0ddXZ2/HPJdd92F/v5+3W1zHIfW1lZUV1ejp6cHs2bNwuLFi5Gamur3kyclJWHPnj04cuSIZPrFr02vxN+//g1cM71SRMU1/gEZHxI0P3cMKQExxJXiNHsMLuqwIOG/PkLjlo9wsq0PlcunIc4pn9Ixc14hUi6uVNVHCgiKDJdTxkncj7SnRS7toY5LF2O34uM7b8G3HAWwD549Ui6ubMsX7fFBrYIM6LepCIFknCNMlmSyeKjxjAsCWfEPJZTj4+M4fPgw9u7di6SkJKxYsQIFBQVITU3FokWLMGvWLHR3d6OmpgYdHR3+NKqRsKmQrqxczEgYBAqsTH/lLve5oIyzLIvGxkZs374dNE1j+fLlKC0thdPpxLx587B48WKMjo6iuroaDQ0NhpDyiYkJbNmyBfPmzcPg4CAOHjyIp556yrBq01HoxNkmzlEybhiiNpUIIj09HT//+c9x00034fbbb8fcuXPxwx/+EOvWrVNdCY3jOHR2dqKlpQV2ux2VlZWi6Q0tFgvKy8uRm5vr95MXFxejoKAgTNVIjYnFQys/i/+snIWndm3Hjs4OAGZQcWBkkEO6TIpCKbAyZa0nA5Q8p82OOZ1A99M16Bw983LiOR5Ht9cjJsGBmSsrcGxXIzhPcLupFdlIunwujnadgjBITi8oBnoC4H1JKnQEcI6Ojkp+Z6FpsITKgXKZWEiwUDQYhsFd37wat4xN4OHf/A3vsb0QEiLrDRX1fKvwpfMiFgU5ZVyp6i4VwBloX6FY7dcgkHBzMnnG5c6JLyOIx+NBc3MzOjo6kJmZiRUrVoTZGyiKQlpaGlJTU9Hb24vGxka4XC6UlpaCFiLgGSdAUwCnzLkZnyAXH0s8C9lUfBAEAcePH0djYyNiYmKwaNEiUTKcmJiI+fPnY3BwEE1NTaiurkZBQQEKCwtVv194nsdbb72FH/7wh0hISMAbb7yBSy+9NOoLP9cQTW04ZRAl4xEGRVGYM2cO3n//fbz11lu466678MILL+AnP/mJosGO53k/CbdarZgxYwbS09Nl94uNjcXcuXNx6tQp1NXVoaOjA+Xl5cjMzAzbd1pKKn656gv4qL0NW3Ztl8mmovCHh2BkgAXPayvFPDlKfhuPTEwg3mrF/JNWnHh6BzpPSRPp8eEJHKmuQ0q2E+n5aajb3YikonSkX7UAR3oG0XH8lKY+AgDjOaN4j41IE2qA7PsmwcowmCCRcR1jW2BQW2ysA0/efC1uP3EKX/rbq5D8NSaMpaLKuIQiLbq/qE1FhkwaaVPhCI3JnK/ASUNYBc7QPOQyVox4qw0ulwstLS1ISkrCkiVLZPOMUxSFzMxMpKeno6urC42NjRiYHDQ9mwoJqgM4BXmbytgEuWDb2bKp+MZrj8eDiooK0fE6FElJSViwYAEGBgaCSHlBQYEsKRcEAYcPH8bdd9+N2tpaPProo1i/fr3p6RGj0AZB4CFMoaqVU+m3qEX0CTtLoGkaX/7yl/H5z38e//M//4PrrrsOK1aswOOPPy6ag5XneXR1daG5uRkMw6CiogIZGRmqlYrk5GQsXboUXV1dqKur8xcNClVaKIrCZwsKsTwvD2/UHYNraBBDBlYY9bihqJy5GNwj0suvDoZBRssISv/ZieN7OhW32d81gMkJD+ZdMQcnyrJxWGXFTTHQAadL7mVGIuOxcXHAsLjnn6Hklt91KOMiQb1Z6cnIS3Wiro8cg2AkxCpwynq+AyBGmI1TxuVtKlaGgRR/pGRmS8HKONmmwspMUHpb29AVy2POnDlITSVEQIuApmnk5uYiOzsbH++sBTuifqXIKGgJ4GRlJl+22BhgYkzy+0jbVMbGxtDQ0IC+vj7JlUw5OJ1OLFy4EP39/WhqakJbWxuKioqQn58vOh719vbi0UcfxR/+8AfceOON+Nvf/obk5GSjflIUUURBQNQzfpZht9tx9913o66uDjk5OaiqqsI999zjL1k9OTmJX/ziF/joo4/gcrlQVlaGqqoqRQqJFCiKQk5ODlasWIHk5GTs3bsXn376aVCeYR+sNIOvz5iJf1zzDXxz5mxYZMifGrhHtBHF8dFw/7KNZrCcTUTZk0cw8pPd6NrTibSiZKQWyL9MYhNjMHNFBTxuFgfeP4SOn7+HmSyLjBR5PzkJTEA3Y2Okg05lryLhNFlo8t6kMyx33NC2fTnrPTIVQY2GWBpCNeXsRfeX84zrVsbPfM6OEfz2csr46fa9dsrQYwWnByVbRwSU5+Vj2bJlqol4IGiaRkJcgukVOElp4FXbVHjAI5CJrFu2AmdklHGWZdHQ0IAdO3bAYrFgxYoVKC4u1hUomZKSgkWLFmHOnDk4ceIEqqur8fzzz/uD+t1uN55++mnMmzcPvb29+OSTT/D//t//ixLx8wGC4LV2TJW/qGc8irONzMxM/PKXv/T7yefMmYNLL73UX8Th5ZdfxrJly0DL5MNVA4vFgrKyMuTm5qKxsRE1NTUoKipCUVFR2OCf5HDg3qqVuHbGTPz37h34d9vpcsY6np3hPm1Ku8AJcDBWTHAsLBSFhUIiJv53H3rqgwssnXR5LSZZFekY7RvD8Mlgc4UtxoryhSVoOdSGIzV1/s8pAM1v7wNttWDumuVo4gWMjKkPhqIVxjxaaBoegjLOk0qmy5AIUtYeCuTLZz1dqZTjOLS3t8PlciE+Ph6piYloHhevVmjGUCqWNUQsKFMKYoRZTG0PhJHKOCmAU+7l4yPgXvIrrvAzjBCwjTgYhkdZdpEhnl+5bCpGuIpJ4SSqlXEArIzuNCHzHLGjo5CrVKwHgiCgs7MTjY2NiI+PD6qQbAQoikJqaipSUlLQ3t6OO+64A4899hguu+wy7N+/HzExMXjttddw5ZVXRn3h5xOEKeYZv4DJeFQZP4dAURTmzZuH733ve3A4HHj99dfBcRyee+45VFVVGUrEAxETE4PZs2dj4cKF6OvrQ01NDbq6ukSJXLEzGf97xVX49ef/A9NStCtsABBrCQ9CUooEmw2LGSfmvOjCyR+8h5F66Uqn3XUnMDY4gZyZGbDFWsFYGVQur4Aj1o4j1XUYGxJXenkPi/rffQTrP/YjM079MnUgGSe94Mg53snjk4Uhz6eJQ5tc7nmKRmdnJ2pqatDd3Y1Zs2Zh4cKFSIgRL51uFsQ943oDOGWUcYUZOwSJfvBKybhchsXTkwbJXOsEG0sgGIaH006u5KoUFsr81IYkMq5aGQeFSZkMTKMe8sy5y+XCnj170NfXR5zgakFfXx927twJl8uFyspKLFy40LQqlhRFIT8/H7/5zW+Qk5ODN998E319fVi/fj0uvvjiKBE/38DzU+/vAkWUjJ8j8FU1mzt3Lu6++248+OCD6O/vx/e//31cd911WLNmDZqamkztg9PpxOLFi1FeXo6Ghgbs3r3bb5cJxbLcPPz5y1/DV2bNgDNRffWe8hwn4vsnEetQH8Q5IycZVf8axtAdH2DwYJeifTgPh67aE8ipyEBOZQaO7qjDUN+Ion0n+kdx6kCL6n4qVfDkqv+RfN8OlVkSAiH32p0YG0NLSwumTZuGpUuX+rP1xFoju6AmRvzUBHCKqdfme8YDsqkQyDhjUZZnXIr8CoSiQEHHoXk4bfpsVz5QMkV/DLGpELizFmXc3kUTLXajMhVwL12xEunp6Th06BD27duHU6e0B3b7jzk6igMHDuDQoUPIzs7G8uXLNcUBqcHJkydx22234eKLL8all16K7u5u/Pa3v8VLL72E8vJyPP/886bkKY/CJJztNITR1IaGIUrGzxHs378f3//+93HjjTeisbER3/ve95CYmIj7778fdXV1SEtLw9KlS/HDH/5QtoCPHlAUhezsbKxYsQJpaWnYv38/Dh06hPHxcPWYoWmsWjYdL21Zi2u/MB9Wq7yvsTgrCdNOjaDjZ++h9lcfIu5fn2J2VpJsHm4AmJbjRHH7Cbh+9i6OvLYHiSnxmL60TNHvqlhSirTcFLg+6UT7wS44sxKQVZ4mux9FU6hcPg1Wh3rPaKCCR84VLqeME8icjGecBLmXfrzDgeXLlyMrKyto2zgr4VyQzL4aIVr0RzcZN0YZj5FIeReY8pDUFjdJZv2+Sy/V36AKnYSMIRRFGUbyrGBMz6ZCIuM2FRYlH5IaKVS+4MIS2hk21sRZrMQJhIWiEW+3o7i4GCtXrkRycjI++eQT7N+/H4ODg6r74vF4UFdXh507d8Jut2PFihUoKioybeUT8MYePfvss5g7dy7a2tqwd+9ePPPMM0hLS8OXv/xlv0/82WefxauvvmpaP6IwFgLPT7m/CxVRz/g5gkWLFqGlpQU2kUCh7OxsvPjii7j55pv9+ckfeughXHfddaZVQGMYBqWlpX4/+fbt21FYWIiioqKwSPy4GBvWXVuFqy+diRf+uAPbdoUr+AUZiYhz9aLluV1BxHSkewCNz72PvDkFsH9mBhqOD4TtW5LlBP1pK9rf2BX0eX/3APq7B5A/PQcUTaHtaHj2lLKFxRgdGEPd7uA+DXQNAxhGekkKWDeHU53hL9XpS8twsrMfR7fXwzMzX/pkSSBYwSPYVOQK9xC+k1PVSZCjNAmxsaIEIZ5Exk2AqE1Fprx5IMSsJHLKuNLCMryEiGgb4TBOe58Tok1Frn2/Z1xCgSdU6AwEY4iT2ws5m4ruIwkCkYxzYyxoWv24N1J3AqO3vov5i/Mh3DAT+z0DAIBYqxWjrLRNJcFu809krFYrSktLkZ+fj9bWVuzduxepqakoLS2VTRPpS0vb1NSEhIQELF26FPHxxliHpCAIAt59913cf//9oCgKv/vd73D11VeHTcxomsbXvvY1fOUrXzHchhOFiYh6xqcMomT8HIIYEfeBoigsXrwY27Ztw5/+9Cfce++9+OUvf4nNmzdj5cqVpi1tOhwOzJo1C/n5+aivr0dnZyfKysqQk5MTdszkRDu+9rki5KVM4qNPTqG9ewQ5aQlI7j6Fpl9sBalm4olDbcChNsy4ci4GCtLRdXIYhZmJiGnshuuNXcQXfPux4wCAisWlONnZj77jp1A8pwDsJIvGfWR7yYnmflAUkD0jHUPdIxg9NY7yRSUY7h/BsV2NZzbUcH6DFVHpQUZOESMVBGJ0XHe5e0Zqohcf4ZzLupVxT/i2shU4FVohJt3iSs5ffrsRv3zmffzfzkboKWQh5xnnlXrGDVRdGdDEipZ6X6dlHR405kvcY5ygiYgD8A8+A3vagT3tWHJRCdz/OQ2nLGQ1Tiytoc1mQ3l5OQoKCtDS0oLdu3cjPT0dpaWliIsLtwOdPHkS9fX1EAQBM2fOFC3QZiQEQcCxY8dw3333Ye/evXjwwQdxyy23EN8xgPQzH8U5Cl5QXi74fMAFTMajNpXzDDRNY82aNTh69Ci++tWv4mtf+xq++c1voqVFvadZDZKSkrBo0SJUVFSgubkZu3bt8vsmJycn0dDQgOrqaoyPj+Or/3ExfrX5Ojy47mLQ/9iP5rf3KVbLXO8dROy2I1hmpTH2p+1o/eCw4n3r9jQhPiUe8y+fje6WXj9Jl4MgAF21J+DMTkLB/Gy0HG5Fd3Nv8DYa3ptK1VU5Qk3OiKLjhS6zJGiXeDFHOueyuDJurmdc6bXzuMOvjZWywmqx4pbbr8Zff3MTvlhRAcuIOLsXZK6fhfLqJVIBq0oDOK1aCawIaM4Gov6tk2OOvt0sfWyZ6rskCCHPWd9HzXDf9k/MrRnCzBin5H6ktIZ2ux3Tp0/HihUrYLFYsHPnThw5csRv6xsZGcH+/ftx+PBh5OXloaqqSlGRNj3o7+/HXXfdhZUrV6K0tBR1dXW47bbbZIl4FOchBAEQ+Cn0FyXjUxKPP/44li9fjtjYWDidTkX7CIKAH/3oR8jOzkZMTAwuv/xyNDQ0BG3T39+PtWvXIjExEU6nE+vWrcPIiLJgQKMQGxuLH/3oRzh69Kg/FdZDDz2E4eFh045JURSysrKwfPlyZGZmYv/+/aipqUF1dTWGh4exaNEizJs3DwkJCaBpCp+5uBLP7f8J/vOHX4E9Vv5FkFGQimmLS3G8vgsH/7QD3CSHmSsrwCjwomeXZqBsQTFaP23HJx8cBmNhULl8GigFnuq86TkonlOAzqPdaPukC/ZYG3JmZIT+eNl2QhEYBKjHasITlXHzHmGbBBlPJJBxM4ZSsTSEUllMxBCYZtAHWc+44iBByk+YfbDRZ+71mFgbHtjwZXxw/bdw0Uh8GJmUO18MdTq9pJQyTqjQGQgrY9x9YvWYS+rii1Mkv9NDxkMxfVkZ4pNicfTFnZj43rtYvm0E02LCMzwpmXw6HA5UVlaiqqoKgiCgpqYG27dvx65duxAbG4uVK1eioKDAVF+4x+PBc889hzlz5qC+vh67du3Cz3/+c6Snp5t2TD2Yyu/nSEHghSn3ZxbO9fttSpPxyclJXHPNNbjpppsU7/Pkk0/imWeewfPPP49du3YhLi4OV155ZVBBnLVr1+LIkSPYunUr3nnnHXz00UfYsGGDGT9BFvn5+Xj55Zfx4YcfoqamBvPnz8fvfvc7cIQS6UaBpmmwLAue55GQkCC6PGuPtWPNfV/Gcwc245JvrBBtJyXbiRnLynGyox/1e854u8dHvKXqnRmJmLa4VHTf9PxUVCwpQ1dTLxr3n1kdGDk1iqPb65GRn4ayBcWi+2YVZ6B8YQk6jh1Hy6E2/+ejp8ZxvLYXzpxEZJSeTt+ogYwzCuV0ueBVEhnXI7DJqXNSyniyQ7qAkRkQBCpMMJHKYiIGXsSmIqeMx4rsIwVLiNvPToeT1bSURPz8B9fhb1/6Oub1W0Gx3pmanDLuG6IVZVMhTFBstHGORMqjPYOPEvSPhxcf84F26xjXTp+qwpl5yKvIxrGdjTjVcyZWpOeNT8F+7z2s3OtGccwZ/3eiXfnkw+FwnBYjaHg8Hn9ucjN92IIg4IMPPkBVVRV+8Ytf4KWXXsL777+POXPmnNOpCi+E97PpOOtKtgl/JuFcv9+mtGf8kUceAQD85je/UbS9IAh4+umn8cADD+BLX/oSAODll19GZmYm3nzzTaxZswa1tbV49913sWfPHixatAgA8Oyzz+Kqq67Cli1bkJOTY8pvIYGiKCxbtgzV1dV49dVXcd999+FXv/oVNm/ejGXLlhk2IHMch87OTrS0tMDhcGDOnDlISUnByMgI6urqUF1d7S8iFHrM1JwU/OCXG3D1jZ/Di/e8iqM76pGYmoC8imzU72lCP6H8fF/nKfR1nkJhZR44jkdH3XEkZyUhqzgDdbubcKJdvAANAPS0nkBP6wmUzC3A+MgEupp6kZaXgrTcFNTtbkJ3S6/kvgPHvVlrMsvT0Btng3SxbAmMeXDRUQb1C+KJq29yNhWOMEDROrKpyMEuUjIb8BaAiiyooOI2gDoyrsUznhYbhz6FqS8ZigmSuG0iZNyH4vwM/P7u7+JgrQsPvfkPuOLI/WBPB3/qzTPukLiWWkBP2r0vTalVGZlLwwAgUWohVprsWzVkUvEhOcuJzJR41O+VtsFQALp+/wmoV4DPfHcJWhYlKlLGBUHw+8IpisKcOXOQlpaG4eFhNDY2orq6GgUFBSgsLIRVRzrSUNTX1+P+++/H9u3b8cMf/hC33nor7BIZfs41XCjvZzMh8AKEKeQZN3PSeq7fb1NaGVeLlpYWdHd34/LLL/d/lpSUhKVLl2LHjh0AgB07dsDpdPpPPABcfvnloGkau3btCmszkqBpGt/85jdRW1uLq666Cl/60pdwww03oK2tTX5nAnieR0dHB2pqatDZ2YnKykosWbIEqampoCgKCQkJWLhwISorK+FyubBz50709YkT5PIFxdj0/v2499VbkZiWgKPb68F6lKldrUc7MHRyCAs+NxuMlUHtjgbwnLKZdPPBNkyMTmLB5+aA83A4tqtR8YPf03BSm/2CotD5y90o2vIp0uqGkSCRhUQuPSFHWLrT4xlnZHzEUsq40xZpMh5uKxFUZFOBBpuKR4UCG6qM2yh5JXXujCK8ed9NuGnmIuJ2NO0lblKecV5hnnG7THEoNZien0O87+Seldgu8SJbPvAx0n3VQ8atNguRiAeCEoDjv9qN9Ad2YVVsFnHb4eFh7N+/H0eOHEFBQQGWLVuGtDRv2tSEhATMnz8fCxcuxODgIKqrq9Hc3AxWpuKnHE6dOoV77rkHVVVVyMvLQ11dHe66667zhohrwfn+fjYDrOAGy0+hP8FblXtoaCjoz+3WVq1bDyJ9v01pZVwturu7AXhL0wciMzPT/113dzcyMoL9xBaLBSkpKf5tzjbi4+Px6KOPYt26dbj33nuxcOFC3Hrrrbj99ttFrSRSEAQBXV1daG5uBkVRmDZtGjIzM0WVdoqikJGRgbS0NLS1teHQoUNwOp2YNm1a2DEpikLVFxdi4RWz8c5zW/GnJ9/C+LD00jQAxCbGoHh2ARr3t2D/1sOwOqyYuaICDfubMTlOrp4X54xF0cw81O9txv6th2CPtWPG8mmo39sEbpJMuhJS45FfkYODMtuJgqYxo2oa6nY34sTDH6AgJxFJty/Dbusw2ICJgB6bipL87FKQ29UhQeBSYmLhpVyRWwIPtZWIqd1SENtWzqbCqiDjNIInLSRlPBRVs8vxbMunkt/LVuBUmNow1mKcGltRmgl8AEBiLid3X3lGPQCkC4WRyDg7NAlAG+E82dmPGcvK0e3qxalucn5wxsLgqu9dhmvv+RISUsTTD05OTqKxsRFdXV3Iz8/HnDlzJFXvpKQkLFy4EP39/WhqakJbWxuKioqQn5+vKoMJy7J46aWX8OMf/xgzZ870WxPPZTuKUZgq72cjYLPZkJWVheruv5/trhiO+Ph45OcHpxJ+6KGH8PDDD0e0H5G+3847Mn7vvfdi8+bNxG1qa2sxffr0CPXo3EVhYSFeffVV1NTU4Pbbb8fvfvc7PPLII7j22muJgUSCIKC3txdNTU3geR4lJSXIyspSFHxE0zSKioqQk5ODpqYm7Ny5E3l5eSgpKQl7UdkcNnz1tqtx6TdW4tUfv46tv90GPkQFtsfaUDa/GC2H23Ckps7/uWfCgyM1dUhKT0Tp3CLU7gwOqgAAe5wdZfOL0PSJC0dq6v2fu8fcqN1ej/iUOGSXZqBhT3gmmkDyf3R7PYSF4p51IiigdseZ404cH8LEne9jzvwcCOvn4JPJAe85k7WpkJRx80Dx4oTUYbGBoiQC301aZQwlo6qU8Un1FTwnJ5Qrl0yoMq6CjFtlVmd8X0vlGVea2tDoqqmUIH2p5W8B8hZ8DKF4EasnZztQu7MBFqs3uLu97jiGRaxIi6+ah28//p/ILRdXxHmeR1tbG1paWpCcnIxly5YpFjlSUlKQnJyMvr4+NDU1obW1FSUlJcjNzZUdk7dt24Z77rkHY2NjeP755/GVr3zF1IBQLYi+nyMDh8OBlpaWKVkt1RdnEQipFZ+pdL+dd2T8jjvuwA033EDcpqSkRFPbWVnewbenpwfZ2dn+z3t6ejBv3jz/Nr29wT5jlmXR39/v3/9cAkVRWLlyJXbs2IHf/e53+OEPf+jPT7548eKgm97ne2xsbITH40FJSQlycnI0Dfg2mw0zZsxAfn4+6urqUFNTg5KSEuTl5YW158xMws3PfhtXfe9yvHjfH3DwX0fAWBlULClDe21nEAkPxeCJIQyeGEJOWRZsMVa4DrfDYrOgYkkpWj9tx5Fq6X1H+kfR0N+CvIpsMBYGrUc6YHVYMW1RCVoOBZN/TayXosDTFOiQCcbgJ8eBm4+j6gvTcfI/CmStJqxJVcnkflJPeyeOxh9FaWlp2GBIwTTeLYpQJVssKFMSodvygCDj0PO4ecWXXIsyzrIsWltbcaQpfBIZCFllXDEZj6B9QecMkY6X7itNXgQj43S/WA+Ho9vrYYvxrq61HG7D2NA4imbl4ztP/CfmXjJTdHefSNHQ0ACGYTB37lykpEhnfpHsBkUhLS0NqampOHHiBJqamuByuVBSUoLs7Oyw8bGpqQn3338/tm3bhvvuuw+33XYbHBGP21CG6Ps5cnA4HOfsfRApTKX77bwj4+np6aalaiouLkZWVhb++c9/+k/20NAQdu3a5Y/AraqqwsDAAPbt24eFCxcCAD788EPwPI+lS5ea0i8jwDAMbrjhBqxevRpPPPEErr76anzxi1/Eo48+iuzsbLz11lt444038J3vfAfFxcXIzc01pABEfHw8FixY4A9u6ujowLRp0/yeykAUzcrHI2/dhb3vHcBf//vvOEog4aE43tgNmqGx8Mq56D9+ikjCQ9FR1wXGQmPhlXNwslNiX63LwA4rMCauXvS+cwzM1kaU/tdF6C+JRc+EeIgoKYBzfIzsv9WD6WVl8Hg8qKmp8Vdf9d0TNEXpqWWjGmEe70kV2VRCtrUxZGJqZxhQUKGMh5SLJHnGeZ7H8ePH0dTUhJiYGCydtwBok64R4CPjknnGFdpUEmzGZkAhxYzZIIAlMXKZ+4YlDDuUhHuI9rAoS09Aw8kRCBapBoL7NDnuXV3LLsnAd59ci4v/cwUYiRSQQ0NDqKurw9jYmL8ysV5riM/al56ejp6eHjQ1NeHJJ5/EjBkz8N3vfhejo6N48skn8Ytf/AJr1qxBXV1dECk4FxF9P0cRSUyl++28I+Nq0NbWhv7+frS1tYHjOBw4cAAAUFZW5i9DPH36dDzxxBP4yle+Aoqi8IMf/AA//vGPUV5ejuLiYjz44IPIycnBl7/8ZQDAjBkzsGrVKqxfvx7PP/88PB4PNm7ciDVr1pwXkdoJCQnYtGkTvvvd7+Kee+7BnDlz4HQ6MTIygu9+97tYvny5odH+gPelk56ejtTUVHR0dODw4cNISkrCtGnTwspBUxSFxavmY/5ls/GPX32I1554EyOnRmWP4Stdv++9g/4c482HWzExLB/4MX1ZGU6092Hfe4dgsTJBapkPoQVDlEJw2ETJOEUBFcvK0dtyArVPfojEWCsq7lyJ/ZksRjzB8h8pgNPM6PMkRyzmVkzHqVOn0NDQgI6ODpSWlnqrr0po44L/c2MNNOGeceWrNYw7eFsrTb6/vV555WScEoLbF0tt6Ft1amhoAM/zmD59OjIyMsDxPEjny3fppStw+tonB3DGGJjaEAAoQtpOz9A4EK88NiUUvE26bTrUrsPxmJEciwce/CrSs5xob+nFk0++jbrBcUAmt7rVbsUXN16Br93xH4hNFPewu91uNDY2oru7GwUFBZg/fz4sBmamAc7Ub8jIyMDBgwexefNmbNq0CR6PB7Nnz8a2bduwaNGiKecLj76fo4gkzvX7bUqT8R/96Ef47W9/6//3/PnzAQD/+te/cPHFFwMA6urqMDh4Jpjn7rvvxujoKDZs2ICBgQGsXLkS7777btBy0CuvvIKNGzfisssuA03TWL16NZ555pnI/CiD0NfXh+HhYdA0DZ7nkZSUhHnz5plaDpmmaRQUFCA7OxtNTU3YtWsXcnNzUVJSElYdzmK14D9uvgIXr1mO1554E//41Yfg2HBZTKx0Pcd6l6HtcTaULSpC8ydtollXyhee3nfnmX1ZD4cjNXWIS4pF5YoKHNt5OmOLxveg4Agnft7jDuPYjjMWBX7Mg85H/4Wi3EQk3F6FPZYhf5AnSRmPj48DRoa0dU7mR8WcnpQlJydj8eLF/iX6trY2MBQFjwgZ53kKNC3IBkiqRZhnXIVNJZQch2Y/CYVVZSElimeC8lKF2lQGBwfR0NCAkZGRMKuWReZ589tUZPKMCzwN0vXs7+pGXV0diouLDanEKDUZ834pc23kYiQs0t9TAfdVOs/hS1eXIjMvDuOTQ+D5ROQXZ+DZ59ah/mgHtvz3/8E14QF8to+AZld8dQm+9ejXkVkkrqpxHIfW1la4XC6kpaVh+fLliImRDjo1AhRFYfbs2cjIyEBHRwcYhsHY2BhOnDhh6nHPFqLv5ygiiXP9fqMEM6W1KM45fPrpp3jwwQfx/vvvY+PGjbj77rvhdDrx0ksv4YEHHkBpaSk2b94ckQj90dFR1NfXY2BgACUlJcjPz5f0p3fUd+E3P3wNe/5xAABQPKcA7CSrqOR9RkEaEtMT0LivRfW+6fmpcGYm4VOrBXxWsvIfdxqpx09ibJe3kFHRrHxwLKfouM6FueDWzcaByQHEWCwYl0iFtigrB3u7xduT83XHW61hKnwgfnXl1ajKLwj6zJfmcvUHf8e4hGJP07xs6kC1mF7ejvTUM9VlXX8qAteijBzZYgTk33rM/+8USxr+Vp0huX0qbYH9X8rNyRffOYl25kyxqs+nX4kvZn4B4+PjaGxsRG9vLwoKClBUVCS66jTr189Jtp2XPobiUhf2HyrB6Fi4P7S0qAs5WafAeizYsW+aZDsPLluAaR4bTp06hcLCQhQWFupSeBf87HlM2sWvv6V7HGyW9LVxNAxiojy80qV//0EObJL4JCV92wgS3TZ8b00VrvrqEgiCgBMnTqCxsREcx6G0tBTZ2dn+seuT3Y14+n/fRxcvwP6vT1FRlol1P/kGZlSJnytBENDT04OGhgZYrVZUVFQgOVn9c68WLS0teOCBB/DBBx/g7rvvxh133AGKovDcc8/hiSeeQHl5OR5//HFccsklpvcliiiiiDymtDIeRTh2796NgoICNDU1BQUYfPe738U111yDxx9/HFdccQVWr16NRx55xNSgl7i4OMyfPx99fX2oq6sL8pOHTgTypmXjgT/fhk8+/BTv/vpD7Hxrn+Lj9LadRG/bScy9pBKCABz691HF+55o78OJ9j4kfGEhyMnQxDE4OIGSudlgGAau/e2K9xvY1wns68Sl35yPukVWdEpsJxDoNk1RxEwscrPwGBGy5lvdcNhsGJ+IXO7XMHKvQhn3hGTNDM1+EoqEmFhMqrnaPB2U5o8RGNTX16O9vR2ZmZlYsWIFMdCKgiBZiZMTyMq4TzlnCX5xAMhyOjE/ryLIclRcXCwaUE3C+Pg4GhoakDkuoF3Kek+T76yElDiQEpnyEsq4Y5TD6qqZuOl7V/pX8AJ91740rC6XC6WlpcjIyMD8JWX47ctlqP7XpxheNRdXfmO55O8dHBxEXV0dxsfHUV5eHkTqzcLw8DC2bNmCn/3sZ1i9ejVqa2uRl5fn//7222/H+vXr8eyzz+Kf//xnlIxHEcUURZSMX2D4zne+I/ldUlISnnzySWzYsAF33XUX5s2bhzvuuAMbN240dYk2NTUVy5YtQ2dnJ44cOYKEhARMmzYNCQkJYdvOv3QW5ny2Eh/8dht+98hfRFOThSKzOB2JKfE4+K+joCgKM6rK0VnfjaG+Ydl9MwrT4ExPxOH+USBTWs2TgjMvBe0fHAYAZE9Px3DvKEb65Wt5pmQ74XDa0fr7T2B/BbjopmU4NicGvRPKAzZpCuB0rHvFEWIHbAR7BTXJAxZjlfFQMq4mm4ogUKBBg4fX7kPLDHs2xgI1CcMoPvhcdLg6kGXNwJIlS0Tv4bD9KUqyQqsvkY5cNhVS8CYAJDu8z6/PcuRTk1tbW1FWVoasrCwi8fR4PGhpaUF7ezuysrLwxsZv4+1tB/DM/t04lR5yn8gQ2OH+USBV+lkSQsg47ebwWc6JH3/7K0hKFPeiUxSFnJwcZGVlobOzE8eOHUNLSwvKy8uRkpKClZfMkjzexMQEGhsb0dPT4w9UNtoXHgqO4/DKK6/gkUceQXFxMT788EMsXbpU9BokJCTg/vvvN7U/UUQRxdnFuZWkNIpzAmVlZXj99dfx5ptv4vXXX8fChQvxxhtvgDcpxR7gVVzz8/OxYsUKJCQkYPfu3Th69KhoHtWJiXFkL0rFN579Ai65oQoWm/iLMzUnGdOXlqHXdRINpy0qgiCgdkcD3OOTmLmiAla7+L7JWUmYsawcJ9v7vFX7ND4p/afOEO+uYycwMeJGzsxMWB3ix01IiUPBnBwM9A7ieG0PAG/mis6f74TzjhpcdComqIALyWRG6wyijCEUiiFVdCRY3DUjzIOuIoATAKzUmd9CSVWrOQ2LyosthAQVFuUWYuHChYqIuLc/0tfJF+ogqYwLSpRxASmO2DPHO60mV1VVobS0FI2Njdi5cydOnDgRFhDsy6ldU1OD4eFhLFmyBDNnzoTD4cA1Vy7DR/d+H99Pnoa4voDnVKairNxtKfhuLV7A9JM0/nr1ajx76zcliXggfOPIypUrkZWVhcOHD2Pfvn0YGBgI25bjODQ1NaGmpgaCIGD58uUoKyszlYgLgoDt27fj4osvxqZNm7BlyxZUV1dj2bJlUy5AM4ooolCOKBmPQhQUReHSSy/Fvn37cO+99+K2227DVVddhYMHD5qawcNqtWLatGmoqqrC5OQkqqur4XK5wPM8xsfHceTIEezcuRMWiwWXXnEJfvC/N+Ln+3+CFV9Z7G8jMTUBlcunYfDEkGTZe/eYG0dq6hCfHI/pS8v8n8cnx6FyxTQM94+idmfDmSJEWl+UtmDix05yOH6kB1a7BTmVGX5i4oi3o3BeHsZHJtB26Dh4EUmbG51E5yP/Qsnmw6jik8DI9EmumJDcdYwlKON2YuCh8fcHp6MCJwBYqDMEixLIZNyq8loPDwRn+0lOUJd7mnQ4f2pDiYBYQQEZZxgeKfbwiYFPTV6xYgVyc3Nx5MgR7N27FwMDA/6c2jt27EBHRwdmzpyJBQsWhE0wKIrC91Zfhuo7NuI6Wz7sgx7NmYf8oIG0Xhb/M+cz+Mu930N5kfp0fgzDoKioCCtWrIDT6cT+/fvxySefYHh4GIIg4Pjx46ipqUFfXx8WLlyI2bNnmx6g2dbWhhtuuAFf/vKX8YUvfAG1tbVYu3btOVe4J4oooog8oqOAAejv78fatWuRmJgIp9OJdevWYWRE2j7hcrlAUZTo35///Gf/dmLfv/baa5H4SX5YLBbceOONqK+vx6JFi3DppZdi48aN6OnpMfW4sbGxmDdvHubNm4fOzk78+9//Rk1NDXieR1VVFSorK/0+3P/f3n2HR1VmDxz/zkx6771XahISSAVFQUEQZdfGgiKI8lMEFUSaNCkiqKgU14plxbKsq6voIohrIaEGQklCegjppPdkMnN/f2BGQpKZdIK8n+fJo8zcmpncOfPe857j6GXPkn/MZ9P+57n5gSga6hpIikulWam7pXl5YQXnj6bjHexByPhhKBubSYpNpbnpqgmT3S1t2EHN47rKBvKTirFxtcRzhAuSJHEhIZfmJt3HXH+xguJFPxD2eT7mNR0vr2ukTUcfREz1O666McjYsuNh+T74rnZ1morUhTrj0DpPXNfIuFzq4qj7VdVT2ittqHV/Wl4ntVr2e/fNDoJxHXXIL29f0tr0p2UewOjRo7GxsSE+Pp5ffvmFxMREPDw8iIyMxN7eXuv7SV9PwdKZd/LbE3O528IVwwZtt0e0v3Y2BQr+t3w+4yKHa12uM/T19fHz82P06NGYmJhw9OhRfvnlF9LS0vD392fUqFFYWVn1eD/a1NbWsn79esLCwtDX1ycxMZEXXnih0107r4U/82eaIAxEIhjvBTNmzCAxMZEDBw6wd+9efv31V+bOndvh8u7u7hQUFLT6eeGFFzAzM+OOO+5otewHH3zQarmW+pb9zcrKiq1bt5KQkEBJSQkhISG89tprNDb23SQ+pVJJWVkZjY2NGBsbo1AoaGhooLmDyiJDogN45t25zNs2G1uXzlVA0DPQY2hMIJculJDw4zm8hrq1u263R/s6CMZlMvAKcaOhppELp/KxcDLD2rXzOemDIvzgQhW5j31D9C81+BhbtFmmp2kqhloaxWyadAevDI7GrridqiN9cLe97QTOrl26WpUzVOtKU+naCTQ3tQ48O9OB80pyLaUU1Wrt9cM7k6bS2fSH5uZm6usvz0kwMjJCpVJRWVnZpb9xExMj1j1+HwcenMnYOnPkDe18WdRxOLYyo15P2VCpVDQ2NiKTyTAyMkKpVFJeXt6n1y+1Ws2nn37KiBEjOHjwID/88AO7d+/G09Ozz/bZW26EzzRBGEjEBM4eSk5OZt++fRw/fpyRI0cCsH37diZNmsQrr7zSbuF3hULRpkrJV199xf3339+mCY6VldWAauMbGBjIN998w/79+3n22WfZtWsXL774IpMnT+61260qlYqLFy+SlZWFubk5oaGhWFlZ0dzcTFZWFsePH8fJyQk/P782bdrlcjm3/C2GqLtG8vUb3/Pv17+nsYOmO4Mi/SnMLG7V9j7leIYmQM84nU1Dze8f1t2NDdoJxj2DXCkvrCQ7IVfz2KWMMmRyGc6DHagsqKauov2Jmr4jvKmrqm1VV73oq3Pw9TluejKK5GFGXGqZ5KkrN7eH6UYTR4cwISaYd7/6H++ln6XOpuf1qztyZZqGJLWuN90ZV46MSzpGvuVdrZGuuqoDZxeDcYWW3TWrtY96t6SpaCslqSudqbm5mezsbC5cuICDg4OmpnZ9fT0ZGRnExcXh5ubWpRrlNlbm7HjqQS7ml7Dy0284aVqPpH/5GHW96/Q7mAPSHVee25WVbWprazX54l09N10kSeL48eMsWbKEvLw8XnzxRR588ME+7eHQm260zzRBGAjEyHgPHT58GCsrK81FC2D8+PHI5XKOHj3aqW3Ex8eTkJDAnDlz2jz35JNPYmdnR3h4OLt27erTfO3OkslkTJgwgVOnTrFw4UKefPJJpkyZwrlz53p0fGq1mosXL3Lo0CGKiooICgoiLCxMcxtZT08Pf39/oqOjUalUxMbGkpmZiUrVdvTNyNSQaSv+wpunNjP2b9GtngsY5YO9ux3Jh9MoL2pbwq65qZnE2BT0DfQZEh1wOUOl22kqf/yJuQ52wsbdkgtn8qgqbnvLV1JLFCQXo2xoxnWoA3pX5Jt7DHbFc6gbGaeyKMgobrOuTIK8HYexeS6WmypNMNHT0zoxEKD7iQRXLCeT8ejUsXx+392MKZahV62ELjbN6YwrR4e701BIfkWeuK5gXFur9/YYGbZONyjOK+rw7k27x6YtTUWSaR8Z19EUCEDRweshSRK5ubnExsZSVlbGyJEjW+VOGxsbM2zYMMLDw6mrq+PQoUNkZGR06dzcXez4aPEjfHHbXQwqkYOqoyKOfzAw6HnQKkkSeXl5xMbGUl5ezsiRIxk2bJgmtc3U1JSgoKAenVt7cnNzefTRR5k8eTK33XYb58+f5+GHH75uAnG4MT/TBOFaEyPjPVRYWIiDQ+sGInp6etjY2FBYWNipbbz//vsMHjyY6OjWQeO6deu49dZbMTExYf/+/cybN4+amhqeeuqpXjv+ntDX12f+/PlMnz6dtWvXcvPNNzNjxgxWrVqFvX37ne3aI0mSpkawXC5n8ODBWnNUjY2NCQoKory8nNTUVPLy8vD398fR0bHNOnauNix89/+48/Hb+PK178hJzCX1eGanjqu6rIakuFScvB0oNDOi80UF/yDTUxAQ4U15SSV5yZ17PygblOQlFmNqY4KzqwVymR4XzuTqXhForm4ib81P+HpaUf7cCLQWb9TyGSjrxPf0lkl+6emXR+nXzvkLCj0j/rL7M8r1e/cD9soAXNtIcUcU0h+XusujyB1/FZF3sRrM1ZNJaypqiY2NxcfHB1dXV513jBQyBdB+k6HLOeO6R8a1panoy9sGgqWlpaSmpqJSqRg0aBAODg4d/r2Zm5szYsQIysvLSU9P5+LFi206ieoyxM+dfy37Pw6fSuH1kp9JlDruamvQw5HxsrIyUlNTUSqVnT63iooK0tLSuHjxIl5eXri7u3cpgK6rq+ONN97gtddeY9KkSZw7dw5vb+8ence1ciN/pgnCtSKC8Q4sW7aMzZs3a10mOTm5x/upr6/n008/ZdWqVW2eu/KxESNGUFtby8svvzzgLlw2NjZs27aNxx9/nGeffZaQkBCWLl3K448/rvXWr67uebpYW1sTHh5OQUEBqamp5OTkEBgYiKVl29xr/zAflv5jPnFfHefDVV9QfKGkU/tw9nXE1MKYhrpGsDDRvcLV5DJSj2bhEuCIa4AzeakFnVrNytESZ28Hzh9Nx8rVAgcfW4ozSzu1rpmzFc6TwilpUGr9C9fWMEjXS9DSPKa+vh5fX19cXFw0gVmAjT1HG9qO3veEuocj4zK1XHMf8OrKLFdTXT15VwfVVYuPDA5DWaHU1PH29/fXGhDqaSkFqGtkvDNpKvpXBJU1NTWkpqZSWVmps+vt1aytrRk5ciQlJSWac+vq32zUiECiRgTyXcJ5Xo6Lo8Sgbc62fjdHxuvq6khLS6O0tBRvb288PDw6HVC3jASXlpaSnp5OTk4O3t7eOr9MqdVqvvzyS1avXo2trS3fffcdN91004AsUyg+0wRh4BLBeAeeffZZZs2apXUZHx8fnJycKC5uHXg0NzdTVlbWqby4f/3rX9TV1TFz5kydy0ZERLB+/XoaGxvb5EoPBEOGDOH777/n+++/Z/HixZp88jvuuKPVh5MkSZSVlZGenk5DQ0OnRxDb01KezdHRkezsbE6cOIGjoyN+fn5tuh7KZDJi/hrOqEkhfLNzP/965Vvqq9vvBWjnZoOtqw0pLbnZ44O6fGzwR8GR/NTL1WcGRfhRmH2JinbSYwBMrUzwGuZO6vEMko+kAVCee3lZR387GqsaqShqf7zb0MIYr/ujOV/TwKXCStR+2r88aLs93FF8WFNTQ1paGuXl5Xh5eeHp6dkm4DHSUoO8u1qNjGsJPDtyZZqKWqU9UKqp0N0M6krqqwa1DRSGWDtYY2dnR35+PikpKWRnZ2sa0FxNoSUYl9QyrcfbmQmchnIFjY2NZGRkUFBQgJubG8OGDetWjrRMJsPe3h47OzsKCwtbNQ5qr3NuRyaHDGJyyCD+EXuKNxNOUG34xzcaff2uBeNXNiRydnYmJiamW9dHmUyGnZ0dtra2FBcXk5GRofnCcXVTJEmSOHnyJEuXLiUrK4sNGzYwa9asAZ2OIj7TBGHgEsF4B+zt7TuVahEVFUVFRQXx8fGEhYUB8NNPP6FWq4mIiNC5/vvvv89dd93VqX0lJCRgbW09oC9aMpmMyZMnc/vtt7Nz507mzp1LWFgYmzZtYvDgwRw8eJCdO3cyb948/Pz8ujR6pY1CocDX1xdXV1fS0tKIjY3Fy8sLLy+vNts3MDLg3mfvZPyDY9i9/kt+/PhXTT1xC1tz3AKdSTmWQUlu2ZUn1r0Du2q180fT0TfSZ+joQNJPZmkml+ob6RMQ5kPmmQskHkppZ0NQlFaCXCHHZYgD5Rcrqa++PKoo19fDf1o0mRIkXNGRVNLRllxbqqbsqjzjhoYGMjIyKCwsxNXVlaFDh3YYzBlrKYnYXVempugKptulUmha1msbaQawNLWgvAtJSaqr0lQMZZfPXy6X4+bmhrOzMzk5OZw+fRorKyv8/Pxa1evW0zbyqmtkXJMz3vHfkFxSExsbq+l02xsl9WQyGc7Ozjg6OpKbm0tiYiKmpqb4+flhbd25SkYAD8WM4MHoEHb8eJiPUs/SYKju9Mi4Wq0mLy+PjIwMzMzMOt3xVBeZTIajoyP29vaaLxxLlixhwoQJTJ8+neLiYtasWcOXX37JggUL2LdvHxYWbasZDTTiM00QBi4RjPfQ4MGDmThxIo899hhvvfUWSqWS+fPnM23aNM2s87y8PMaNG8fHH39MeHi4Zt309HR+/fVXvv/++zbb/fbbbykqKiIyMhIjIyMOHDjAiy++yOLFi/vt3HpCX1+fZ555hgcffJDVq1cTExODnZ0dpaWlzJw5k/Dw8HbTSXrKyMiI4cOHU1lZSUpKCnl5efj5+bV7K93K0ZIndzzC5MfH8/HqPTTUNZIWn0lSXGrbDWuJ/2SS1HHpw3YeVzYoSTyUgoWdOd5BHshkcvLTC1tVdemIWqUmP6kYQ1MDXIY4IPdyosLRloSKujbLSrqqqWhJU2kpi6hUKsnOziYnJ0fTtdHERPuIu6mWZkHddWVqiaVkSOcyV/8guyKg1Vl+votpMKorRsblyH/PAf+DQqHQpDxkZWVx7NgxHB0d8fX1xdjYGD1Zx8GnJMlQaynF2DIyru0LilwtMWLEiC4FyZ3VUqPcxcWFCxcucOrUKaytrdt84dBGJpOx4LZo/m9sOC/991csOhGYXZnzPmTIEJ110LtDLpdr7rodOnSIpUuXsmrVKqqrq5k4cSJnzpzBz89P94auM+IzTRD6nwjGe8Hu3buZP38+48aNQy6Xc88997Bt2zbN80qlkpSUFOrqWgdMu3btws3Njdtvv73NNvX19dm5cycLFy5EkiT8/PzYunUrjz32WJ+fT2+qqKigsrISmUyGXC7HyMiIgIAAnQFdT1laWjJq1CjNyNbFixcJDAxst8GH1zAPVn25iOP/TeCD5z8nP62dUK+9D3q1Gme5xITb3akqV/P9oRwajAzarKeWy5Cr2wa+Tj4OlOaVo2egh42zFZWXqjp9fq7+ztRV1VGZmIuRnVm7y+iaQqnteYXsciOPrKwsLCwsGDVqVKdH/0x7qUTcla4MNu0tLNH9teUqV4ys6yqYISm7NoNTdUXlTAO5QYdBoYGBAYGBgXh4eJCenk5cXBzu7u7oaR2ol6Fu1h6sAzRrGRm3t7Tqk0D8Snp6evj6+uLu7t7uF47OMNDXY/Vdt2pdpra2ltTUVCoqKrqc895dMpmMQYMGYW5uTmNjIwqFgqqqKkpLS/+UwTiIzzRB6G8ySdQVEvpAXl4e69at46OPPtKMjru5ubF3714WL16MQqHgpZdeYvz48X0+2UmlUnHhwgWys7Oxs7PD39+/wwBB2dTMvnd/4vOXvqam/I825/UTR4Dx70GmJGGraua2sa6EjPLB398fc3NzVCoVO1/7nv8ey0Rl+MfosOEPp5BfUevcJ9iTxvqmNpM5/UK9qS6tpkjL5FLXAGcMjPTJOpPT6nHrEe40B3lRXPXHfhrGGlEmda+piYlcxrYhIZo85668RjsOHuatrIRu7bcj9sZqBgWfB8BV8uLXLV1rXT72cQUXLc8BUHMhkFMFHQevEdV2XDx5qdPbHhxtRNOYUwBY6FmwedDGTq1XVVVFeno6K86dIrepbS38Fl6uZWTntc01B7AwqyN4WDYnEnypb2h/RHmspxs7bpvSqWPqLfX19WRmZmrSmry9vXuUiqBUKsnMzCQ3NxcXFxd8fX17rS54RyRJ4vTp0yxbtozz58+zfv165syZQ3V1Na+88gpvvPEG48ePZ8OGDQwbNqxPj0UQhD83UWdc6BNnzpyhoqKC06dP89577+Hh4YFcLueuu+7i3LlzzJkzh1mzZnHvvfeSktLlcc4uUSgU+Pj4EB0djUKhIC4ujrS0tHZrCusb6DHlydv5e8IWJj9+G3LF738ivwej5o1N3B1my8KFUUy971ZCQ0M1t+MVCgVPLZ7C528/ygh7c2i+nA8hGV8OQlwDnPEO8iDz9IV2q6qkn8ziUm4ZQ6IDMLVqnddr725LwChf8lIL2gTiAOWnLlL10W94VFVgaXr5i0BPvmXrKfSIiIjA1ta2y1+WzA17P0hSXdHCXt3U9TNrvnIdmfY0GlVT90fGDbvQ8MfCwuLy+8e0/TsbLZq1jIy3pKloyys309JJta8YGxszdOhQIiIiaGhoIDY2lvT09C7X8Var1eTk5BAbG0ttbS0REREMHjy4zwPxoqIizcjwqFGjSE1N5f/+7//Q09PD2tqajRs3kp6ejoeHBz/++GOfHosgCH9+Ik1F6BN33HFHmzbILQwMDFi8eDEzZ85k1apVREdHM2fOHJYvX96nt9ONjIwYOnQo7u7upKSkEBsbi5+fHy4uLm0CTgtbM+a+8iCTHruVD1Z8zkmViphBtkTf4oOfn5/WHFVLa1M2b32I9JR8nt34NaauNrj6OJB6PEPnMapVapLiUjE2N2Lo6EAKMotx8rTn/LF0Ll3UXtpQBlw6mILcMAPPScM4p9bvdudQAz15t+9YmPZBMN54RZ53bXU90LU0p8qyamiZTybXBzq+Y6DWmVTeWnPjH41sDGRdP3cTHb8vlarjy3RLmoq2WuRm+tducpyZmRkhISGaOt65ubl4e3vj5uamc+J2SUkJqamX528MHTq0S9VauquxsZE333yTLVu2cPPNN3P69GkCAgLaXdbJyalV6oYgCEJ3iWBcuGYcHBx46623ePzxx1m0aBHBwcGsXLmSRx55BD29vntrWlhYMHLkSIqLizWNPgICAtqUnZMkCSNbA8YvjuJmpbLDiaAd8Qt0YezNQzhrZ0FDWn6XjlGSJJDAwEif5uZm1KrOj9bKVGqsC6pR56vBtXu5+VdPQuyKO4MCOZ2Qyre1+TSb9c7rWK/8Y2TbwtSqy+ubm1jSkt3aqCPWbm7s2si4sglawmn9LoyMt2ivKc+VtFVK6UwwbjkAKlVcWcc7LS2NnJycDmuUt9RCr6qq6nJzoe5Sq9V89913rFixAmNjY/bs2cNtt902IOuFC4Lw5yPSVIRrSiaTMWLECA4ePMg777zDjh07iI6O5n//+1+ftkluKV8WFRWFo6MjCQkJnD59WjMhqaW017lz53BxcSEmJqbdEXRdTIz1yb1URYqVGZ5PTsB2sKvW5RX6CobEBKCnpyAxNoXCzGJSj2fiMcQVt0EuOvc3KMIPKwdLUo5koNIVdWqhrdyeLkaGBqx/7B4OPPQwUVUmyDqZ9mGoZaRULYHi91QVubobAf4VAW2jUvv7qrmLvzdl4x/b60qaSgsDHSPETU1a6oyrZUhqOdpugVgYGnX4XH9qqeMdGRmJn58fmZmZHD58mOLiYiRJoqmpieTkZI4ePYqpqSkxMTGa9La+IkkSZ8+eZcqUKTz55JMsWrSIU6dOcfvtt4tAXBCEfiOC8etEWVkZM2bMwMLCAisrK+bMmUNNTY3WdcaOHYtMJmv18/jjj7daJicnh8mTJ2NiYoKDgwPPPfdcl/M6e4NcLuevf/0r586d48EHH2T69OlMmzaNtLS0Pt1vS9m5mJgY9PX1iYuL49ChQ8THx2NlZcXo0aPbbWzTWcZGf+Trns+voGCoOwFP3IaxXduyb4Mi/LC0MycpNpWaq0oV5iTlkXs+n8BwP2ycrdqs6xPiiYufE+ePplOaXw6ApNf9YKInwXgLe1sL3l30MF/cfhf+JTLthc0BQx3NgvTkv/8utYwCd6T5irzuBh3VUnoSjBv0QTCurVLK5dKH2n8fVgYDIxhv0VKjPDo6Gnd3d5KSkjh06BCHDh2ioaGByMhIAgMD0e+DEplXunTpEk8//TRjx44lKCiI1NRUnnzyyT7fb0/92T8LBOFGJILx68SMGTNITEzkwIED7N27l19//ZW5c+fqXO+xxx6joKBA87NlyxbNcyqVismTJ9PU1ERcXBwfffQRH374IatXr+7LU9HKyMiIZcuWkZKSgoODA5GRkSxfvpzKyvY7VvYWtVqtGYlXq9XI5XIMDQ17PCpnclWpQ5VK4nRhFU0TQgiYeRMyPQV+od44+zpw/mg6ZQUVWreXciyd6rIaho4OxNDU8I9JoQkXyE9vXZJRUnQcjOsK03WlTnTFED93vlr2OGZ62gNVbSPjAPqyy8G6urnrXzKUV6SI1+sYGVc2di0AaWr4I7jvTjCu67yVOiZwaktjAbAx6Vrlmf4ik8kwNDRET09P8/cnSRJqddfShLqqqamJbdu2ERISQn5+PidPnuSNN95otzvqQHSjfBYIwo1EBOPXgeTkZPbt28d7771HREQEo0ePZvv27Xz++efk52vPRTYxMcHJyUnzc2Wt6P3795OUlMQnn3xCSEgId9xxB+vXr2fnzp00aSm11h+cnJx47733+O233zh16hTBwcHs2rWr10dqmpqaSElJIS4uDrVaTXR0NGPGjGHo0KFcuHCBo0ePUlqqfeKkNibG7QdnNXVNVJgY4X/LEJBBQUZxu8u1R9nYTFH2JXyCPLG0Myf7bNvqKgCSlgLW+nXaR3/1ejEYb2FprH2EVtcIsR6/V4npRjDefEUw3qAjGG9q6MHIeDcmcBrouCMgr+r4eCS19g6dADZGAy8Yr66u5uTJkyQlJeHl5cWYMWMYM2YMpqamHDt2jLNnz7apYd1TkiTx/fffEx4ezkcffcTu3bv57rvvGDx4cK/upy/diJ8FgnAjEMH4deDw4cOaCVAtxo8fj1wu5+jRo1rX3b17N3Z2dgwbNozly5e3+oA7fPgww4cPx9HRUfPYhAkTqKqqIjExsfdPpItkMhkjR47k559/ZseOHbz66quMGTOGX3/9tcf55M3NzWRkZHDo0CHq6uoIDw9n+PDhmJiYIJPJcHBwIDo6GhcXF86cOcOpU6eora3VveGrXJmm0sLJ1oyhzc0UvbWf1ANnSY/PwjvIA2dfx3a20Jq5jSlDogMoL6wk+XAqSXGpOHo54Bvi1WZZbSPj6gbtX2r0+yBP10jHpFx9HcG4omVkXNn1YPzKALtOS7UUPbkcSdW199aVI+PdyRk30nHeqtKGDp9TSzKadXw5sTXu2wZbXdHY2EhSUhLHjh3D3NycmJgYzQTNlqZI0dHRyOVyDh8+THJyMo2N3auV30KSJJKSkpg6dSpz587lySef5MyZM0yaNOm6ywu/UT8LBOHPTlRTuQ4UFhbi4ODQ6jE9PT1sbGwoLOy4Mfj06dPx9PTUBJRLly4lJSWFf//735rtXnnxBTT/1rbd/iaXy7n//vu588472bp1K/fddx/jxo1jw4YN+Pj4dGlbarWa3NxcsrKyMDY21tomXC6X4+npibOzM5mZmRw5cgQ3Nzd8fHw6nVdqYvzHctYWxrg3KUn/4CcqVVKrVJGsMznIZDIGR/mTl1pIVWl1q+0YmhjgH+pN2slskuJSWz1XmHV5VN03xJOailqKsi83DdIWjNNOR9Ar6Sv6PxjXk2nfp/z3CZxlJZVA10Z7q8rrMQH0ZHpoS9K5nDLStZFxtRrkyFGj7l6aio7fi0xL1oYkQbNKW0ApYWt07YNxlUpFTk4OWVlZ2NraEhUV1WEX3pYa5Z6enmRkZBAbG4uHhweenp5dzucuLS1l48aNfPTRRzzyyCN89tln2NnZ9cYpXRM3+meBIPxZiWD8Glq2bBmbN2/WukxycnK3t39lHuHw4cNxdnZm3LhxZGRk4Ovr2+3tXismJiasXLmSWbNm8fzzzxMeHs4TTzzBc889p7NVuyRJFBYWkp6ejkKhYMiQIZ2uW2xgYMCgQYNwc3MjNTWV2NjYTpdcMzYywMRYnwBDfTK/iCWtruNbvpIkkXw4DUMTQ4aODiT1eAaqZjWDIvy4eD6fc4e0N0fKSLiATC7DK8SNkpzyyz3tOyDTMfqr6INCNsZ62gMpXZNG62ubwBCM9M3oasCsJ79c3k+mNXBtmUTa9dvyejI9mqQm9OVdn/yn83et5YuTJMlo1jGhVV9HGkxfkiRJU0JUT0+PkJCQTudmm5mZERwcTEVFBenp6eTm5uLl5YW7u7vOCdVKpZJ3332XF198kZEjR3L8+HGGDh06YEfCxWeBINzYRDB+DT377LPMmjVL6zI+Pj44OTlRXNw6p7i5uZmysjKcnJw6vb+IiAgA0tPT8fX1xcnJiWPHjrVapqioCKBL2+1vbm5ufPjhh8ybN4+FCxcSEhLC2rVrmTFjRpsPaUmSKCkp0XT/66i2cWeYmZkRGhqqaUaSm5uLv7+/1qDezcGC4PIaEv6b0On9NNY1kngohaCxgwEZZ35O6vS6kloiOyEX3xFeJBnpdxyy6kjzUeVXkpSUhK+vb4/amF/JWNfIuI5g3NDAmBr4vUxhFxvzNMkwAAwU2s/FsJu58i3BuKG8878rlUpFdnY2ZoUlmJc2UW3bnWZJMoxUHe9T3t2uT72gqqqKlJQU6urqOmyu1RlWVlaEhYVRWlpKenp6qxrlV38ZliSJAwcOsHz5clQqFR9++CFTpkwZsEF4C/FZIAg3NhGMX0P29vbY29vrXC4qKkpT9zosLAyAn376CbVarbmodkZCQgIAzs7Omu1u3LiR4uJiza3PAwcOYGFhwZAhQ7p4Nv1LJpMRERHBoUOH+Pzzz1m2bBnvvPMOmzdvJjo6GplMxv79+8nOziYgIKBXm4fY2dlhY2NDbm4uiYmJWFhYEBAQgJlZ27bmNjZmrP3nMxz68hgfr/4nxTklOrfvHeRBU4OSMz9fHglzH+QCchkXk/J0ruvgaYelnTlp8Vk0T7MH2g8uZTrSVOys7GhqaiI2NhZvb288PDy6Xd6xha40Fblce8BkoGcEqstNdrpK2XD5fPUV2gNefbmc7kwRVvx+KTWQ6R4ZlySJ/Px80tPTMTY25r6xN/HIlMm88fl+dhek0Wilf/UKWrfXkFQJRg7tPieTXZ6k3Nft41sdT0MDGRkZFBYW4unpyYgRI3rcxKulRrmtrS1FRUWkp6fz22+/0dDQwMyZM5HL5Zw/f54VK1Zw9OhRVq5cyYIFC/r1vHtCfBYIwo1NTOC8DgwePJiJEyfy2GOPcezYMWJjY5k/fz7Tpk3DxeVyI5i8vDwGDRqkGd3IyMhg/fr1xMfHk52dzTfffMPMmTO56aabCAoKAuD2229nyJAhPPTQQ5w+fZoffviBlStX8uSTT/baaGhfk8vlTJ8+neTkZO666y7+8pe/cNddd3HTTTcxffp0ysvLGT16dK83D5HL5Xh4eBATE4OpqSlHjx4lOTm53coDMpmMMfdGsPPkJh5aey9GZu1XFXHxc8InxJOsMznkpRZoHr94Pp+LSXkEjPLFxsWq3XUt7cwZHOVPycVS0uKzAF0549rPz8TAkJCQEEJCQigqKiIuLo6CgoIeTZzVFYwrdIxeyqTLr19zY9ePoaXiiULH+INBNzuPtjQkMtAxMl5aWsqRI0fIysoiMDCQUaNGYWVlhUKhYNGMO/ht3lzubLZFUfvHVwKZjtNtbur4fa1ARmxsLFlZWahU3W8C1RkqlYrMzEzi4uJQqVRER0fj5+fXq910ZTIZTk5OREdHo1arWblyJaGhodx3333ExMTg5eVFSkoKzz777HUTiHeF+CwQhD8nMTJ+ndi9ezfz589n3LhxyOVy7rnnHrZt26Z5XqlUam4Jw+U85x9//JHXX3+d2tpa3N3dueeee1i5cqVmHYVCwd69e3niiSeIiorC1NSUhx9+mHXr1vX7+fVUy7GfPXuW//znPwCaygm9GQxcTV9fn8DAwDb55O7u7m2CfwMjA+5dPIVxD41h9/p/8+NHl6vC2LpYY+9uy/mj6Vr3lXo8A4WeHLfhTlzKKKOxrgkjM0N8g71IO5lJ8uGrGiRpKW2oawKngd7l4NLGxoaIiAgKCws1bcwDAgI6nPSqja5gvLGh46ohAEiXj0mpY7H2NP++jq5gXNXYvTJufwTjHZSyrKkhLS2NiooKzZ2G9r4cmpgY8dLj97OwpIKVH/+HI0bVOkfGm7XUITfQ0yM4OJi0tDQuXrzYYXpHT1w5H8PAwIDQ0FCsrKx6bfvtkcvl3HfffVy6dIn169eTmZlJeHg4jz76aJsJjn824rNAEP58ZFJf9hwXhH5QXFzMxo0beeedd7j//vtZu3YtBQUFLFq0iIsXL7J27VqmTZvW4zSLzigtLSU1NRWVSkVAQAD29vYd5qtmnc3hu7d/5H+7D9Gspdxee6wcLfAN8SLtRCZVpW2770kKGZmvdnzb2rpCTblVxwHZgy5DWDbp5laPXV0Rw8/PD1NT004f85YjsXx87kyHzweYmJFa13EnwfsjoYAkmv87nAtnupZMom8k4fH0eZz03NlzqG330xa++qbU/6i9m2F7IpeXc0ldyJOejzPMfKjm8aamJjIyMsjPz8fV1RUfH58ujdimZOax+av9HDOvhw7SeNwuXSTX3r3d50aa2PLh9PuRJEmT3iGXy/Hz89P63uysiooKUlNTaWhowM/Pr9vzMbpCkiT+97//sWzZMhoaGtiyZQs33XQTL7/8Mtu3b2fKlCls2LABf3//Pj0OQRCE3iLSVITrmiRJTJw4kezsbI4fP85HH32Et7c30dHRxMXFsWnTJl544QVuvfVWjh492uP65LrY2toSERGBl5cXSUlJxMfHU11d3e6y3sM9eHL7bJZ8Mh8XP901xlsEhvuip6dH/A9nMLE0wSfYs80yWlNUgLpy7TXT2xvFVigUeHt7ExMTg76+PkeOHCElJQWlUtmp49Y1Mm5h0XGQDCD93txG2Y00lZamP7IOcuhbmJt0/svFleS/p9C0NP1RqVRkZWURGxtLY2MjkZGRDBo0qMupE4E+rux6djZvhd6CS3H7X9ia1G1/r2alSlY4D+fD6fcDrdM7WlrQnzhxgoqKii4dT4uGhgbOnj1LfHw8tra2xMTEdHuCZlekpaXxwAMPMGPGDB566CESExP561//ip2dHZs3byY1NRVLS0uioqK61RdAEAThWhDBuHBdk8lk/PTTT/znP/9h2LBhrZ6Ty+XMnDmT5ORkJkyYwJ133smcOXPIzc3t02OSy+W4ubkRExODhYUFx44dIykpqd3mJTKZjIjJoWw79iJzNk/H1KrjmtDeQR64BjiTciyDkrwyAAozi8k8fQHfEV44ev5RP1lXMK4r9UFb7WtDQ0OGDBlCREQEtbW1HDp0iAsXLuhsY64rGNdFLXU/GJckGXLkyCQdFV2k7gWT8t9TaPTl+hQUFBAXF0dRURHBwcGEhIR06Q5Ce0aPHMz+FfNZ6zECy0utv/worwjG9auVTFO48NuzTzJ98ui2xymX4+7uzujRo7GxseHkyZMkJCR0OnBtbm4mPT2d2NhYZDIZMTEx+Pr69vldp8rKSpYvX05kZCROTk6kpKSwdOnSNvnMbm5uvPPOO6Snp/f4dy4IgtBfRDAuXPd05aeam5uzYcMGEhMTkSSJ0NBQNm7c2OcjZ/r6+gQEBBAVFYVSqdQ6kU7fQI9J/zeOpV8/QfCdg5BfEUy7+DnhE9x2YueVMk5lcym3jCHRAZhamSLpaNqjK+TU1YgG/ij1GBQURH5+viYA7ejug0LHFwAdaeyofq8R3tTQvbsb+jJ9kHQ0FuphMJ5yLoW0tDR8fX2JiIjodE3tzrr39kgOLVvAXDMfjMovB+VK9JE1qYmuNuHAw7NYOftu9PW0B8d6enr4+voSExODoaEhR44cISkpiYYO8vZbKsDExcVRVlbGyJEjGTZsGEZG7U9G7i3Nzc3s2rWL4OBgEhISOHToEO+++67Ocnt9nbMuCILQm8QETuGG4eXlxeeff85vv/3GokWL+Pjjj1m3bh333Xdfr05ou5qJiQnBwcGUlZVp6pMHBATg4OCATCbTdAXNzMzE1NSURW89QU1RHbvX/5uygnKdEztbqFVqkuJSMTY3IiDKlwvaFtYRz9oYd76Cgq2tLZGRkeTl5XH+/HnNJE9LS0vg8oSyrKws8rO1HhGSjoNSqVuqqXT60FrRk+khSdqD1O4G4/U1DWAODjYOBHsH9elIsUwm46lpE5jbeAsbPvqGLBk8f/udDPFrP29cG0NDQwYPHoyHh4em26Wnp2erbpfl5eWkpqbS1NREQEAAjo6O/ZIX/ttvv7FkyRKqq6vZsWMH9957b5/+nQqCIFwr4somtFJWVsaMGTOwsLDAysqKOXPmUFPT8YS2srIyFixYQGBgIMbGxnh4ePDUU09RWVnZajmZTNbm5/PPP+/r02lDJpNx0003cfToUV544QVWrFjBbbfdxokTJ/o8n7ylMomPjw/nz5/n+PHjZGVlERcXR25uLkOHDmXkyJFYWVnhFujC0k/m87fn/4LnELdO70MmA69h7uRnX9K+YAenalOs5CX/CKaOGtb+Ah3uV6ZJzbG2tubEiROcOXOG9PR0Dh06RHV1NYP8/LQfkq5GRJqRcR11GTugRydGxru3aWS/B/l+Xn79MlEYwMjQgA1z72X3yie6FYhfydTUlKCgIEaOHElFRQWxsbGkp6dz+vRpTp06hb29PdHR0Tg5OfV5IJ6Zmcn06dO5//77eeCBB0hKSuL+++8f0IH4n/26KQhC3xq4VzfhmpgxYwaJiYkcOHCAvXv38uuvv7ZqpXy1/Px88vPzeeWVVzh37hwffvgh+/btY86cOW2W/eCDDygoKND8TJ06tQ/PRDuFQsEjjzxCSkoKN998MxMnTuT//u//KChoPw2kt8hkMlxdXRkyZAj19fWacnAjRoxot7pFyK3DeC1uHU+8MQtLO+0THP3DvHHwtCf5cBpVVTpScK4KfE3KmlhgHcAvyxdw582h3To3+CP9wd/fn5KSEk3llaCgIKzMtB9/s45gvKXgTHdHxhXooVbruOR1sxS3ieHl/OSWCZzXK0tLS4KDg7G2tiYrK4vS0lL8/Pzw9vbu8y8ZVVVVrFq1ivDwcKytrUlOTub555/H2Ni4T/fbG26U66YgCH1DlDYUNJKTkxkyZAjHjx9n5MiRAOzbt49JkyaRm5uraSqhy549e3jwwQepra3V1PiWyWR89dVXA/aDJCMjgyVLlrB//34WLVrEU0891SdBQHV1NWlpaVRWVuLl5YW9vT2ZmZmUlJTg5eWFp6dnh0FPbWUde17+lm/f3E9z0x+l/TwGuyKTy7iQ+MfE1EZnE3KXBnV4HEbplTT4WaJfreRuC3dWPHQnBga6u0fqUlZWRlpaGo2NjZrSh2lpadTU1FBuYc6qk8c6XHeIrR1JpR13KL0l0Ai1dQJpmwO7dWyRy8ugyZF/n+i4LGKMvjNZP+Z3edthsyqpcMxnx5DXUcj7Z2S8t0mSRF5eHhkZGZiYmBAQEEBtbS0ZGRno6+vj7++Pra1tr+9XpVKxe/du1q5di6+vL1u3biU8PHzAt7BvcSNfNwVB6B1iZFzQOHz4MFZWVpoPFIDx48cjl8s5evRop7dTWVmJhYVFm2Y7Tz75JHZ2doSHh7Nr164+TwvpCl9fX/71r3/xzTff8J///IfQ0FC+/PJLnRVCOqu+vp5z585x7NgxzMzMGD16NN7e3piZmREUFERoaCiXLl3S2unS1NKEWRseYMeJF4m6eyQOnnYEjPQhJzmvVSAOIOlpD2T0ZXJuqjXj4OzZrJ3zlx4H4jU1NZw6dYqEhAQcHBw0pe4sLS0JCwtjyJAhVGgJtAGaJe2/a6Xq90mY3aSQ9FCpdXT5bO7ee9JQ3wSFJOfE8ROUl5d3axvXUllZGUeOHCE7O5tBgwYxcuRILC0tcXFx0aSnnDlzhvj4eKqqqnpln5IkcejQIW666SY2bdrE1q1b+e2334iIiLhuAnG4sa+bgiD0DjGBU9AoLCxs071OT08PGxsbCgsLO7WNkpIS1q9f3+YW7bp167j11lsxMTFh//79zJs3j5qaGp566qleO/6ekslk3HLLLZw4cYJdu3axePFi3n77bTZv3kxISEi3AoSmpiaysrLIzc3F0dGR6OjodkfcraysCA8P13S6vHjxIgEBAe1WhXD2cWTZ7gWcO3SeXcs+bX/HHZU2VKkZVmHAxidm4uuhvSJFZzQ2NpKRkUFBQQGurq4MHTq0TS1tmUyGg4MDo4JD4EJmh9tSqrQH403NYCrr/iVLJilQq7SPP0iq7gU6BgojjPSMsbe359SpU9jY2ODv7z/gy+vV1dWRmppKeXl5h51BFQoFXl5euLq6aur5Ozg44Ofn1+27RxcuXGDlypX88MMPPPfccyxevHjA/646cqNfNwVB6DkRjN8Ali1bxubNm7Uuk5yc3OP9VFVVMXnyZIYMGcLatWtbPbdq1SrN/48YMYLa2lpefvnlAfmhoqenx9y5c7n//vvZsGEDt912G/fffz+rV6/WWVKtRUu3yuzsbCwtLQkPD8fcXHvOtEwmw9nZGQcHB7Kzs4mPj8fBwQF/f/92S8gNGz2IV35dy/8+jeUfa/9FeWGF5jlJr23Q6V6sZs2k24kM6XlnwubmZi5cuMCFCxc01VR0BVPG+trzqZU67kI0NoN+Dy5ZcrUCpUr7Fyq1snvBuKSSYSA3wMfHBzc3NzIyMjhy5AguLi74+Pi0qYd9rbVUuLl48SLOzs7ExMTobEjUkqri7u5ORkYGcXFxuLm54e3t3elmRjU1Nbz66qvs2LGDv/zlLyQnJ+Pu3rPJp31FXDcFQegvIhi/ATz77LPMmjVL6zI+Pj44OTlRXFzc6vHm5mbKysp0BqHV1dVMnDgRc3NzvvrqK01ZtI5ERESwfv16GhsbB1yg0sLKyopXXnmFuXPn8txzzzFixAiee+455s2b12F9ZbVaTUFBARkZGRgaGhIcHNzlWtMKhQJfX19cXV01DVY8PT3x8vJqcwtbLpcz7sExRE8dxb9f+56vt/2XpvqmVk1/rC8peTY8kqmPhnf9l9DO+eXn55ORkYGxsTGhoaGdrulsrKN2eVM79ddbPd8soejBJUsmyWnWMUFTUnYzLUklw+D3FBoDAwNNucCW10/XfID+olarNXnh5ubmnfqSeDUjIyOGDh2Kp6cnaWlprcohdnR+KpWKzz//nLVr1+Lu7s6BAweIiooa0Oko4ropCEJ/EcH4DcDe3h57e3udy0VFRVFRUUF8fDxhYWEA/PTTT6jVaiIiIjpcr6qqigkTJmBoaMg333zTqUYgCQkJWFtbXxcfKAEBAXz99dccPHiQhQsXsmvXLjZu3MiUKVM0t/RbgpyLFy+iVqt7pR6zkZERw4YNw93dnZSUFPLy8vD398fZ2bnNdo3NjJix6q/cPvtm/rFmD9+fTca4vIlZnoOZN+e2Hgc9kiRRUlJCWloaarWaQYMGaeqkd/p8dATjtR00nGnRoOxhMK5S6AzGqys6LkenjbpZhoG89XvZ1NSU4OBgysvLNalHLV+yrkUQWlpaSkpKCpIkMXToUOzs7Hp0HGZmZowYMYKysjLS09O5ePEiHh4euLq6akbKJUni6NGjLF26lIKCAjZt2sSDDz44oMsUthDXTUEQ+ouopiK0cscdd1BUVMRbb72FUqlk9uzZjBw5kk8/vZybnJeXx7hx4/j4448JDw+nqqqK22+/nbq6Or766qtWqQr29vYoFAq+/fZbioqKiIyMxMjIiAMHDrB48WIWL17MCy+8cK1OtVuam5t55513WLNmDUOGDGHLli0UFRWxcuVKfHx82Lx5M66urr0ebEiSRFFREWlpaejr6xMYGIi1tXWHyyedy8bH3wUjw56X2quqqiI1NZWamhpNGkZ3zq9OqST8o/c6fN5YoaBey+i4s4UeMUNLiHvJssv7BrjlaYmsahPiMjoO+oPyTClJ73pAHjPdENPAKhb7LGz3eUmSKC4uJi0tDblcjr+/f4+D4c6qra0lNTWViooKfHx8cHd375P3Z3FxMdu3b+df//oXK1euZMyYMaxdu5a9e/eyaNEili5dipmZWa/ud6AQ101BEHpCjIwLrezevZv58+czbtw45HI599xzD9u2bdM8r1QqSUlJoa6uDoCTJ09qKgb4XdXUJSsrCy8vL/T19dm5cycLFy5EkiT8/PzYunUrjz32WP+dWC/R09Nj3rx5/O1vf+OZZ54hOjoamUzGjBkzePHFF7UGyD0hk8lwcnLC3t6enJwcTp06hZ2dHf7+/u1OohsyzKvH+2ypg15cXIyHhwfBwcE6b6Nro2tkvFFHzniDUq1pO98dkkpOk45qKd3dvtQsw1De8WilTCbD0dERe3t7cnNzSUxMxNzcHH9/fywsLLq1T12USiUZGRnk5eV1OLm2t7Sc36pVqzAyMuLpp5+mqamJsWPHkpiYiJeXV5/sd6AQ101BEHpCjIwLQhcVFBSwdu1aPv74Y6ZOnUpxcTHx8fEsXbqUxx9/vF9uITc2NpKenk5hYSEeHh54e3u3ySfvrisn9zk6OuLn59epW+idEfbBOzRqGf3Wk8k6bP5jqCfjL2G1/LqlexU8xj6u4GyVAWfzOh4ZH5ZhSllu10fGI/5qhFuYiv/z6FygpFQqyc7OJicnB0dHR3x9fXutrr1arSY3N5eMjAwsLS0JCAjolxFptVrNnj17WL16Nba2toSFhfHPf/6TW2t0siYAAC3hSURBVG+9lU2bNjFkyJA+PwZBEITr0cBP3BOEAUKSJNasWYOfnx9lZWWcPn2azz77jB9//JHPPvuMf/zjH4SHh7N3795eq0/eEUNDQ4YOHcqoUaOorKwkNjaW3NzcHtUgVqvVXLhwQdO+Pjw8nGHDhvVaIA66R8e1Pd/YrEam6sHIeLOMuoYmrcs0N3WvBadaKcNA1vkvYS2VSaKjowGIi4sjNTUVpVLZrf3D5ffnpUuXOHz4MLm5uQwfPpzQ0NA+D8QlSeL48eOMHz+eFStW8MILLxAfH8/7779Peno6Hh4ehIWF8eijj1Jbq6MzrCAIwg1IBOOC0EkymQxzc3N++ukn9uzZQ0BAgObxO+64g9OnT7NgwQKeeOIJ7r77bpKSkvq8QYeFhQVhYWEMGjSI7Oxsjhw5QllZWZe2IUkShYWFxMXFkZ+fz/DhwwkLC+tylY3O0BWMG2itNiKjuqy+2/uuLKuhtqHj7psAzQ3dC8ZVTWAg73oKiLGxMcOGDWPUqFFUV1cTGxvLhQsXuvxlrqamhpMnT5KYmIiHhweRkZHY2dl1+Xi6Kj8/n7lz53LHHXdwyy23kJKSwiOPPKKpquLo6Mj27ds5e/YsDg4O10Vre0EQhP4m0lQEoZeVlpayZs0a3n//fWbOnMnzzz/fL4GRWq0mJyeHrKwsrK2tO9V05ur29e1VaulNd+75lOzKyg6fdzIzo7Cm4zSRewNUxL3bvTGEkfeqOdpgSFF1xwG5x2EZzU1dv6sRfKsx4RMtuM/5nm4dG1z+UlRaWkpaWhoqlQo/Pz+dFXmamprIyMggPz8fNzc3fHx8epTX31n19fVs27aNrVu3MmHCBLZs2YKPj0+f71cQBOHPSIyMC0Ivs7W1Zfv27Zw4cYLs7GyCg4PZsWMHTU3aUyR6Si6X4+XlpWngcuTIEVJSUtpNfeiofX1fV/cw0tMeKBrItF+SDOXd79KoJzemvqnjsQcZoOxGIA7QrJTalDbsKplMhp2dHZGRkXh7e5OamsqxY8coLy9vs6xarSY7O5vY2FgaGxuJjIwkMDCwzwNxtVrNl19+SWhoKN988w3ffvste/bsEYG4IAhCD4hqKoLQB2QyGUOHDmXfvn3s3buXxYsXs2vXLjZt2sTtt9/ep0GvgYEBQ4YMwd3dndTUVGJjYzX1rVsqbGhrX9+XjBTaLzn6OpriqJq6nzPe3ChRr+w4DcVQoYeM7uVsq5rQNP3pKZlMhqurK05OTly4cIFTp05hY2ODv78/JiYmXLp0idTUVBQKBUFBQdja2vbKfrWRJImEhASWLl1KWloa69ev55FHHum1ScOCIAg3MjEyLvSbnTt34uXlhZGRERERERw7dkzr8nv27GHQoEEYGRkxfPhwvv/++1bPS5LE6tWrcXZ2xtjYmPHjx5OWltaXp9BlMpmMKVOmcPbsWebOncsjjzzCX//6V86fP9/n+zY3Nyc0NJShQ4dy4cIFfv31Vw4dOoRSqSQyMpJBgwb1ayAOunPG9XTUv1Ypux+MKxtAqe54ZNxIrwfbbkJracPuUCgU+Pj4MHr0aAwNDTl8+DC//fYbSUlJeHl5ERkZ2S+BeGFhIfPmzeO2224jKiqK1NRU5s6dOyAD8RvxGiMIwvVPBONCv/jiiy9YtGgRa9as4eTJkwQHBzNhwoQ2baRbxMXF8be//Y05c+Zw6tQppk6dytSpUzl37pxmmS1btrBt2zbeeustjh49iqmpKRMmTKBBRyfHa8HAwIBFixaRmpqKt7c3MTExPPfcc12ebNlVkiTR2NiISqVCoVAgk8n6vNKLNsa6gnEdaSrNjd0PmJvqZVxORmmfgbwno+5qDOR9kyIiSRJqtRqZTIZcLkelUtHU1NTnr2NDQwOvvvoqISEhVFZWcvr0aV5++WUsLbvXdKmv3ejXGEEQrl9iAqfQLyIiIhg1ahQ7duwALueeuru7s2DBApYtW9Zm+QceeIDa2lr27t2reSwyMpKQkBDeeustJEnCxcWFZ599lsWLFwNQWVmJo6MjH374IdOmTeufE+sGSZI4e/YsCxcuJCEhgeeff545c+b0ar7v1e3r/f39cXBwQKlUkpmZqWkE4+Pj06+j40v+d4DvM9I7fD7I3oEzl9oPngAmWdiQ8G1pt/btM9KIQ6aNHT7vZmqO+vuqbm3b1deAJ54JIdxqZLfWb49KpdJMyLW1tdWkqZSXl5OWlkZ9fb0m/ag3057UajXffvstzz//PKamprz22muMGzeuX7qF9oS4xgiCcL0SI+NCn2tqaiI+Pp7x48drHpPL5YwfP57Dhw+3u87hw4dbLQ8wYcIEzfJZWVkUFha2WsbS0pKIiIgOtzlQyGQygoKCOHDgAO+99x5///vfiY6O5uDBg71SCrGqqor4+HgSExNxc3MjOjpaU5XDwMCAQYMGERERQV1dHbGxseTk5PTbaLmunHG5jpHxxh4MSDY2aA8mezIy3tQo9drI+JWlJouKihgxYgTBwcGYmJgAYG1tzahRozTlLA8fPsylS5d6/N6RJIkzZ84wadIknnrqKRYvXsypU6cYP378gA/ExTVGEITrmQjGhT5XUlKCSqXC0dGx1eOOjo4UFha2u05hYaHW5Vv+25VtDjRyuZy//OUvnDt3jocffpiHHnqI+++/n9TU1G5tr76+nrNnz3L8+HEsLS2JiYnBw8MDeTt52GZmZoSGhjJ8+HByc3N7LaDTRVc1FbmOmK+ysvtNcWqqtNcY15Uio42yUd0rOeOVlZWcOHGClJQUfH19iYiIwNraus1yLe3no6OjcXNzIzExkZMnT1JV1b2R/eLiYhYsWMAtt9xCWFgYqampzJs3b0DmhbdHXGMEQbieiWBcEK4xQ0NDlixZQkpKCi4uLkRFRbFs2TIqKio6tb5SqSQ1NZW4uDhkMhkxMTH4+/t3Ku2lpZSeh4eHJqCr0VLnu6d05YxrG4H1bdKDI3nd3rfRxVoGVXZ80dPvweWwqVHCQNb9dJ+GhgbOnTvHiRMnsLa27nSpSblcjoeHBzExMVhYWHD8+HHOnTtHfX3nmiM1NjbyxhtvEBISQnFxMadOneK1115r9wuAIAiC0DdEMC70OTs7OxQKBUVFRa0eLyoqwsnJqd11nJyctC7f8t+ubHOgc3R05J133iE2NpbTp08THBzMe++9R3Nz+yO6vdW+Xi6X4+7uTkxMDGZmZhw9epTk5OQ+qYuuq5pKe6Gni8yAoO8KYckhSg9mdnvf5UeyUa45wpCPMvFubnscPRkZb6rv3gROlUpFRkYGcXFxSJJEdHQ0fn5+XR6R1tfXx9/fn+joaODy5MTU1NR2a8zD5ffO3r17CQ8P5x//+AefffYZ3377LYMGDeryOQwE4hojCML1TATjQp8zMDAgLCyMgwcPah5Tq9UcPHiQqKiodteJiopqtTzAgQMHNMt7e3vj5OTUapmqqiqOHj3a4TavBzKZjNDQUP73v//x5ptv8vrrrzN69Gh++eUXTQqJSqVi7969vd6+Xl9fn8DAQCIjI2lsbCQ2Npbs7OxezSfXFYxfyUqhT3B8FUbP/ErtgezLD+oofaiN9Pu69aeKkS8+RPD+IpyuCKAVUvfzopuVEvp0fmRckiQKCgqIjY2ltLRUkzLU03bxxsbGDBs2jFGjRlFdXU1sbCzffvutZqRckiQSExO56667eOKJJ1iwYAGnT5/mjjvuGPB54dqIa4wgCNez6yMhULjuLVq0iIcffpiRI0cSHh7O66+/Tm1tLbNnzwZg5syZuLq6smnTJgCefvppbr75Zl599VUmT57M559/zokTJ3jnnXeAy0HrM888w4YNG/D398fb25tVq1bh4uLC1KlTr9Vp9hq5XM59993HlClT2Lp1Kw888ABjx47ltttuY+fOnZSWlvLDDz8QGBjY60GUqakpISEhlJWVkZKSQm5uLgEBAdjb2/d4X7rSVCRJwlAuxz+rgcZ3TlJT29R6tFzRg/GDq9at+T4L031ZBM0aSvYIa2RaapDrJsOAzt2RqKioIDU1lYaGBvz9/XFycur119DCwoLQ0FBKSkqYPHkyzzzzDAsWLCArK4tPPvmERx99lD179vRLnfL+Iq4xgiBcr0QwLvSLBx54gEuXLrF69WoKCwsJCQlh3759mslROTk5rSYaRkdH8+mnn7Jy5UpWrFiBv78/X3/9NcOGDdMss2TJEmpra5k7dy4VFRWMHj2affv2dTlNYyAzMjJixYoVxMTE8NBDD/Htt98SFhbG3r17cXFx6dN929jYEBkZSV5eHsnJyeTk5BAYGNijEXhtI+MyQJ1aTMDHydRltG0BDyD1YjAOgBpqdyXiZGWI4d+C0NfTQ9nc9TsBLo6WGMu1j2rX19eTnp7OpUuX8PT0xMvLC4WOjqM9IZPJsLe35+eff2bWrFmsXLkSCwsL3n77bR566KHreiS8PeIaIwjC9UrUGReEAaywsJC1a9fy0Ucf8cgjjzBlyhQ2bNhAWloaa9as4aGHHurTgK5Fc3MzWVlZ5OTk4OTkhJ+fH4aGXa8esi8zncU/HWjzuJdKH/PP0qg7UYilvQXOvg6cP9K2HrnK0ZKm6O7lNeudy0E/raDN4z7BntRV11OYWYyxsyWm44dwsaZzAbmZiSEzpo7krtuGod9BB8/m5mays7O5cOECjo6O+Pn59UswJ0kSP/zwAytWrECSJDZu3EhycjJbtmxh3LhxbN68mcDAwD4/DkEQBEE7EYwLwgD17bffMn36dG6//XY2bdpEQEAAcDkX9osvvmDZsmVYW1uzefNmRo8e3S8jnXV1daSlpVFaWoq3tzceHh5d+jLwc0428/f/V/NvR7k+TvvzqN6b2WbypmuAM3r6Ci4k5moeU7lY0xQR0K1j10vORf/8H9VYHD3tMLcxI/1UdptlLYe5QJgPhVXtT4CUy2VMGTeMB/8yEkvz9kfEW/LC09LSMDExISAgoF+6V0qSxPnz51m+fDknTpxg5cqVzJ8/X9PcqaioiHXr1rFr1y42bdrEM8880+fHJAiCIHRMBOOCMEDl5+eTlZVFTExMu8/X1dXxyiuv8PLLL3PbbbexYcMGvLy8+uXYysvLSUlJQalU4u/vr2kqpMvR/FzmfP8tFgo9vBIqqP0oEZq1X4ICRvpQVlhBSW4Zze62KEf6deuY9VLy0U+6iKmVKZ5DXDl/NB21quMRcAmwv8mfGk8nymv+qCwTHuzB3L9F4+Fq0+G63f399FRZWRkvvvgiH3zwAbNmzWLdunXY29u3u2xKSgqNjY0EBQX1+XEJgiAIHRPBuCBc5y5evMiKFSv48ssvmT9/Ps8++2yPK6t0RldHflUqFT+eTmDXd3Eo3z6LqqLj1vRX09NXEBjuR65aotCpezWwbatq8apvIutsDvXVnW/lKdOTYz9xKHg48si0GKJCfTpctqd3DrpLqVTy/vvvs3HjRkaMGMHWrVsZPnz4ny4vXBAE4c9IBOOC8CcgSRJHjhxh0aJFXLhwgTVr1jB9+vR+yyfXlhPd0t49PT0dfX19arIa+ddL31GQUaRlq61Z2lvg4utIak0jNf7O3TpO0+JKvGvrqa2spzCruNPrWdiac89zk3CLcKS6pkoTZF85GbC3cuq7SpIkDh48yLJly1Aqlbz88svcdddd7XZdFQRBEAYmccUW/pR27tyJl5cXRkZGREREcOzYsQ6XfffddxkzZgzW1tZYW1szfvz4NsvPmjULmUzW6mfixIl9fRqdJpPJiIqKIjY2ls2bN7NhwwZuueUWDh8+3Oct7vX09PDz8yM6OhpJkoiLiyMjIwOVSkV5eTnHjh0jPT0dPz8/IiIiGP+3m9l+/EUe2fQ3TC1NtG7bwFifoTGB1NfUk3wkjYbG9nO4O6OhoYmMhAsUX7jEkOgAzG1MtZ+XvoKpT9/B309vZur8SYwcFUZQUJCmPnhhYSFqtZrc3FxiY2OprKwkPDycoUOH9ksgnpqayn333cfMmTOZNWsW586dY+rUqQMuEL/R/hYFQRC6SoyMC386X3zxBTNnzuStt94iIiKC119/nT179pCSkoKDg0Ob5WfMmEFMTAzR0dEYGRmxefNmvvrqKxITE3F1dQUuBwBFRUV88MEHmvUMDQ0HbNvwmpoatmzZwtatW5k0aRLr1q3Dw8OjX/ZdUVFBcnIydXV1wOXmKZ6enu2O0leVVPPZi1+x7/3/tcnfHhTlT0FGEZXFVZrHlINcaR7s1q3jkueVYnjsjwotRqaG+I7wIuVYBs1NrbucRt01koc33I+zj2Ob7UiSRH5+PqmpqajVavT19Rk0aFCv1GHvjIqKCjZt2sR7773Hgw8+yIYNGzTl+wYa8bcoCIKgmwjGhV7j5ubGihUrmDdvnuaxuLg4xo8fT3JyMp6env1yHBEREYwaNYodO3YAl6uPuLu7s2DBApYtW6ZzfZVKhbW1NTt27GDmzJnA5QCgoqKCr7/+ui8PvddduHCBZcuW8c033/D000+zcOFCTE21jwj3RFNTE5mZmeTl5WFlZUVNTQ1GRkYEBgZiZWXV4Xo5yXl8+PznxO8/g9dwd5QNSvLSCtsspxzqTnNA9+qrywvLMTyc2uZxGycrHDztOH80HZ9gT+a8NJ1hYzoun1hbW0taWhplZWVYWlpSUVGBvb09/v7+Pe6gqU1zczMffvgh69evZ+jQoWzdupURI0YM6Lxw8bcoCIKg28C6nylc1yIiIjh+/Ljm35Ik8cwzz7Bw4cJ+C8SbmpqIj49n/Pjxmsfkcjnjx4/n8OHDndpGXV0dSqUSG5vW1TJ+/vlnHBwcCAwM5IknnqC0tLRXj70veHp68umnn/LDDz9w4MABRowYwWeffdarLe7hcpB14cIFYmNjqaurIyIigrCwMEaPHo29vT0nT57kzJkzmrbsV/MY7Mrqfz/LC98uQaVUtRuIwx8t7ds+IeFhoCDIzgw6qpDSwbplhRUUXSjh2Q8e59Xf1nYYiCuVSlJSUjhy5AiGhoaMHj2asLAwYmJiUCgUxMXFkZqailLZ/VSa9kiSxM8//0xMTAyvv/46f//73/npp58IDQ0d0IG4+FsUBEHoHBGMC70mMjKyVTD+j3/8g4sXL7J8+fJ+O4aSkhJUKlWb2/aOjo4UFrYf4F1t6dKluLi4tAoiJk6cyMcff8zBgwfZvHkzv/zyC3fccQcqlapXj78vyGQyRo8ezZEjR1i/fj2rVq1i3LhxHD9+vMf55JIkUVRURFxcHPn5+QQFBREaGoqZmRkACoUCHx8foqOjkcvlxMXFkZ6eTnNzc7vbC7llKG8c2cDjr83EwradijDtdNE0b2pmxUOjee/9/+OV12by2pI7cWovRm1nXQMjfe5fejd/T9jMTfdFtZtvrVaruXjxIrGxsdTU1BAREcHgwYM1dbuNjIwYOnQo4eHhVFdXExsbS05OTq984cnIyGDatGlMmzaNv/3tbyQlJXHvvfcOuLzw9vyZ/xY/++wzjI2NKSj4o4nU7NmzCQoKorKyst+OQxCEP4eOe1MLQhdFRkaybNkyampqkMlkrFixgg0bNmgCs+vBSy+9xOeff87PP//cqiLItGnTNP8/fPhwgoKC8PX15eeff2bcuHHX4lC7TKFQMHv2bO699142bdrEpEmTuPvuu1m3bh0uLl1P/aisrCQ1NZW6ujr8/PxwcXHpcKTWyMiIYcOG4e7uTmpqKnl5eR2uo9BTcMdj4xhzXyR7Xv6WvW/up1n5e6B1RUCt36jk3luHMOv/xrfaxtAQLz7+eB7//c8J3t4dS52hPgDSVcH4zQ9E8dAL92HvZtvhOZaUlJCamookSQwdOhQ7O7sOz9Hc3JzQ0FBKSkpIS0vj4sWL+Pv7dyuXvKqqis2bN/P222/zwAMPkJKSgrNz96rIXK8G8t/itGnTeOmll3jxxRfZvn07a9as4ccff+TIkSP90thJEIQ/l4E/vCJcN8LCwpDL5Zw8eZLNmzdjb2/P7Nmz+/UY7OzsUCgUFBW1LptXVFSEk5OT1nVfeeUVXnrpJfbv36+zEYqPjw92dnakp7dt2T7QmZub8+KLL3L27FmUSiUjRozgpZde0ky41KW+vp6zZ88SHx+PjY0NMTExuLq6dirgtLS0ZOTIkQwaNIjMzEyOHj1KeXl5u8uaWZkye+M0dpzYROSUMAAkhQyZspkYDxv+9eETzH78tg73e8fdI/nqi6f4S5gXikalJpAPjPBjy/9Ws+j9xzsMxGtqajh58iRnz57Fzc2NqKioTgXVMpkMe3t7IiMj8fDwICkpifj4eKqqqrSu16IlLzw4OJgTJ07wyy+/sGvXrusyEP8z/y3KZDI2btzIu+++y8aNG9m+fTv79u3TTDIVBEHoCjGBU+hVoaGhjBkzhnfffZfvv/+esWPH9vsxREREEB4ezvbt24HLaQYeHh7Mnz+/w0ljW7ZsYePGjfzwww9ERkbq3Edubi4eHh58/fXX3HXXXb16/P1JkiR++eUXFi1aRGlpKevWreOee+5pNw1CqVSSnZ2tqaXt6+vbasSyq1QqFTk5OWRlZWFra4u/vz8mJh2XOjz7azJf/ecEc56ehKtHx6PZ7amuqmPbS98wZoQXY+6N6DCovnICqqurK76+vujr63dpX1e68nfWXg32FpIkcejQIZYsWUJlZSUvvfQS999//3WRjqLNn/1vMTQ0lMTERPbv38/NN9/cr/sWBOHPQwTjQq+aN28eb731FnfffTdfffXVNTmGL774gocffpi3336b8PBwXn/9df75z39y/vx5HB0dmTlzJq6urmzatAmAzZs3s3r1aj799NNWrefNzMwwMzOjpqaGF154gXvuuQcnJycyMjJYsmQJ1dXVnD17tl9qSvc1lUrFrl27WLVqFb6+vmzevFlTqaOpqYn//ve/WFpaYmZmRkBAABYWFr2278bGRjIyMigoKMDDwwNvb2/09Po3g64lLzwzMxMrKysCAgJ6tepMfX096enpFBcXU1tby0033aSpLpOVlcXKlSv58ccfee6551i8eLHWLyXXkz/z3+K+ffv461//SlNTE+fOnWPQoI4r8AiCIGgjgnGhV7399ts89dRTJCYm4ufnd82OY8eOHbz88ssUFhYSEhLCtm3biIiIAGDs2LF4eXnx4YcfAuDl5cWFCxfabGPNmjWsXbuW+vp6pk6dyqlTp6ioqMDFxYXbb7+d9evXD9j6zt1VWVnJxo0b2bFjB/fccw8jRozg9ddfR09Pj/379+Ps7NxnFTyqq6tJSUmhpqYGPz+/Tqe+9IQkSZq8cJlMRmBgILa2XRt174rKykqmT5/O6dOnmT9/PrW1tfz973/nnnvu4cUXX8Td3b3P9n2t/Bn/Fk+ePMnYsWN5++23+fDDD7GwsGDPnj39tn9BEP5cRDAu9KpbbrmF0NBQXn311Wt9KEIPfPPNN8yZM4eSkhJuueUWPvnkE611wnuLJElcunSJ1NRUFAoFAQEBfRYcV1dXk5qaSnV1Nb6+vri6uvZLWohSqWTBggXs3r0bQ0NDNm3axFNPPTWgyxQKf8jOziYqKoqnn36aZcuWcfToUaKiojhx4gShoaHX+vAEQbgOiWBc6DG1Ws2lS5d4//33efPNN0lKSurVNAah/+Tl5bFy5Uq++OILnnzySUaPHs2qVauoqqpi48aN3H333f0SsKrVak0+ubW1Nf7+/r2WNtLU1ER6ejoFBQW4u7vj7e3do7zwzpIkicOHD7N06VKKi4tZt24d5eXlrF+/nsjISF555RWGDh3a58chdF9ZWRnR0dGMHTuWt956S/P45MmTUalU7Nu37xoenSAI1ysRjAs99vPPP3PrrbcyaNAgPvjgA80taOH68sknn/D4449z5513smnTJry9vYHLFT7ee+89Vq9ezaBBg9i8eTNBQUH9MpLb1NRERkYG+fn5uLm54ePj0+3A+eoAPyAgoN9ys3Nycli1ahX//e9/WbRoEUuWLNGU/CwtLWX9+vW8/fbbLFmyhBdeeKFfjkkQBEEYGEQwLggCAOfOnaOmpqbDChYto7h///vfmTZtGqtXr+63PN2amhpSU1OpqqrqckqJJEkUFxeTlpaGQqEgMDCwTUfHvlJbW8vWrVvZtm0bd911Fy+99FKH3WjT0tLIz88XVTkEQRBuMCIYFwShS1JSUli8eDG//vorS5cu5YknnuiXKhZXT7YMCAjAzs5O6zpVVVWkpqZSW1urszFRb1Kr1XzxxResWbMGZ2dnXnvtNWJiYkReuCAIgtCGCMYFQegySZLYv38/ixYtoqGhgRdffJHJkyf3Wz55bm4uGRkZWFpaEhAQ0KbLa2NjI+np6RQWFvZruURJkjh+/DhLliwhLy+PjRs38tBDD6FQKPp834IgCML16fruKCEIA8DOnTvx8vLCyMiIiIgIjh071uGyH374ITKZrNXP1U1gJEli9erVODs7Y2xszPjx40lLS+vr0+gSmUzGhAkTSEhIYOHChcybN48pU6Zw7tw5+vr7vVwux8PDg9GjR2NiYsLRo0c5f/48TU1NqFQqsrKyiI2NRaVSER0djb+/f78E4nl5eTz66KNMnjyZ8ePHc/78eWbNmjUgA/Eb8T0rCIIwUIlgXBB64IsvvmDRokWsWbOGkydPEhwczIQJEyguLu5wHQsLCwoKCjQ/V9dV3rJlC9u2beOtt97i6NGjmJqaMmHCBBoaGvr6dLpMX1+f+fPnk5aWxvDhw7n55pt55plnuHTpUr/se9CgQURGRlJXV8dvv/3Gr7/+SlFRESNGjCAoKAhjY+M+P466ujo2bdrEiBEjaG5u5uzZs7z44ouYm5v3+b6740Z/zwqCIAw0IhgXhB7YunUrjz32GLNnz2bIkCG89dZbmJiYsGvXrg7XkclkODk5aX6unAQpSRKvv/46K1eu5O677yYoKIiPP/6Y/Px8vv766344o+6xsbHhjTfeID4+ntzcXEJCQti+fTtNTU19vu/m5maam5tRKBTI5XLNv/t6hF6tVrNnzx7CwsL47rvv2Lt3L//85z/x8fHp0/32lHjPCoIgDCwiGBeEbmpqaiI+Pp7x48drHpPL5YwfP57Dhw93uF5NTQ2enp64u7tz9913k5iYqHkuKyuLwsLCVtu0tLQkIiJC6zYHAplMxpAhQ/j+++/55JNP+OCDDwgPD+f777/vk8C4oaGBc+fOceLECWxtbRkzZgxjxozB09OTxMRETp48SXV1da/vV5Ik4uPjuf3221m6dCmrVq3i+PHjjB07dsBP0BTvWUEQhIFHBOOC0E0lJSWoVKo25f0cHR0pLCxsd53AwEB27drFf/7zHz755BPUajXR0dHk5uYCaNbryjYHGplMxuTJkzlz5gzz5s1j7ty5TJ06laSkpF4JylUqFRkZGcTFxSFJEjExMfj6+mpGxt3d3YmJicHc3Jxjx46RlJTUayP0hYWFPP7440yYMIHRo0eTkpLCo48+OiDzwtsj3rOCIAgDjwjGBaEfRUVFMXPmTEJCQrj55pv597//jb29PW+//fa1PrReZ2BgwDPPPENqair+/v6MGTOGxYsXU1pa2q3tSZJEfn4+sbGxlJaWEhYWxvDhw9tMJoTL+eQBAQFERUWhVCqJjY0lOzsbtVrdrX3X19fz8ssvExISQk1NDWfOnGHLli1YWlp2a3vXkxvpPSsIgnAtiGBcELrJzs4OhUJBUVFRq8eLiopwcnLq1Db09fUZMWIE6enpAJr1erLNgcbOzo6dO3dy7Ngx0tPTCQ4O5s0330SpVHZ6GxUVFRw7doyMjAz8/f0ZNWpUpwJhExMTgoODCQ4OpqCggLi4OIqKijo9Qq9Wq/nqq68ICwvjyy+/5Ouvv+bf//43fn5+nT72gUS8ZwVBEAYeEYwLQjcZGBgQFhbGwYMHNY+p1WoOHjxIVFRUp7ahUqk4e/Yszs7OAHh7e+Pk5NRqm1VVVRw9erTT2xyIZDIZw4cP54cffuCDDz7gnXfeITIykgMHDmgNjOvr6zlz5gwnT57E3t6e6OhonJ2du5ybbWNjQ2RkJN7e3pw/f54TJ05QVVXV4fKSJJGQkMCkSZNYuHAhy5Yt4+TJk9x6660DPi9cG/GeFQRBGIAkQRC67fPPP5cMDQ2lDz/8UEpKSpLmzp0rWVlZSYWFhZIkSdJDDz0kLVu2TLP8Cy+8IP3www9SRkaGFB8fL02bNk0yMjKSEhMTNcu89NJLkpWVlfSf//xHOnPmjHT33XdL3t7eUn19fb+fX19paGiQXn75ZcnS0lKaOHGidPLkSam2tlbzk5eXJyUkJEjffPONdOzYMam0tLTV8z35qaysbLXtCxcutHo+MzNTmjVrlmRkZCQtXLhQKi8vv9a/rl4l3rOCIAgDS993whCEP7EHHniAS5cusXr1agoLCwkJCWHfvn2ayWw5OTmtulKWl5fz2GOPUVhYiLW1NWFhYcTFxTFkyBDNMkuWLKG2tpa5c+dSUVHB6NGj2bdvX7u50dcrQ0NDFi9ezMyZM1m1ahXR0dE8+uijLF68mN27d/PKK6+wfPlyHnroISwsLHp133p6evj7++Pm5savv/7K2LFjeeSRR1iyZAkff/wxW7Zs4aabbiIhIYHAwMBe3fdAIN6zgiAIA4tMkvq4GK8gCIIW0u8pIbNnz+bcuXOYmpqyYcMGZs+e3Soo7Cv79u3jqaeeorCwECcnJ9577z0mTJhwXaejCIIgCNcPkTMuCMI1lZmZyfr168nMzOSBBx7A2tqat99+m19++aVPG/dIksS5c+fYvn079fX1PPDAA0iSxLp167S2hxcEQRCE3iSCcUEQromqqiqee+45hg0bhp2dHWlpaezevZvz58/z4IMPMn36dKZNm6ap2tGbLl26xNNPP83NN9/M8OHDNftOTU3ltttu49Zbb+XBBx8kLy+v1/ctCIIgCFcSwbggCNdEc3MzmZmZHDlyhHfeeUeTs2xkZMSyZcs4f/48Dg4OREZGsmLFCiorK3u8z6amJrZt20ZISAh5eXnEx8ezbds2bGxsADA1NeWFF17g/PnzyGQyysrKerxPQRAEQdBG5IwLgjBgSb+3nl+0aBHnz59n9erVzJw5Ez29rs09lySJ//73v6xYsQK5XM6rr77KpEmTRF64IAiCcM2JYFwQhAFPrVazZ88eli5diqWlJZs3b2bMmDE6g2lJkkhOTmb58uXEx8ezevVq5s2bh4GBQT8duSAIgiBoJ9JUBOE6s3PnTry8vDAyMiIiIkLrZMOxY8cik8na/EyePFmzzKxZs9o8P3HixP44lU6Ty+U88MADJCUlce+993LfffcxY8YMsrKyOlyntLSUZ599ljFjxuDv709qairPPPPMgAzEb8TXVBAEQbhMBOOCcB354osvWLRoEWvWrOHkyZMEBwczYcIEiouL213+3//+NwUFBZqfc+fOoVAouO+++1otN3HixFbLffbZZ/1xOl1mYmLCqlWrSE5OxsLCglGjRrF69Wqqq6s1yyiVSt58802Cg4PJyMjg2LFj7Ny5Ezs7u2t45B270V9TQRCEG51IUxGE60hERASjRo1ix44dwOX0DXd3dxYsWMCyZct0rv/666+zevVqCgoKMDU1BS6PolZUVPD111/35aH3OkmSOHbsGAsXLiQzM5O1a9fi6OjIihUrUKlUvPzyy0yZMqVfapX3hHhNBUEQbmwD+1NKEASNpqYm4uPjGT9+vOYxuVzO+PHjOXz4cKe28f777zNt2jRN0Nbi559/xsHBgcDAQJ544glKS0t79dj7gkwmIyIigkOHDvHqq6+yfPlypk2bxpw5czh79ix33333gA/ExWsqCIIgdK0kgSAI10xJSQkqlUpTArCFo6Mj58+f17n+sWPHOHfuHO+//36rxydOnMhf//pXvL29ycjIYMWKFdxxxx0cPnwYhULRq+fQF+RyOTNmzCAmJoaSkhJGjhx5rQ+p08RrKgiCIIhgXBBuEO+//z7Dhw8nPDy81ePTpk3T/P/w4cMJCgrC19eXn3/+mXHjxvX3YXabl5cXXl5e1/ow+tWf/TUVBEG4EQzse7iCIGjY2dmhUCgoKipq9XhRURFOTk5a162treXzzz9nzpw5Ovfj4+ODnZ1dn3S+FFoTr6kgCIIggnFBuE4YGBgQFhbGwYMHNY+p1WoOHjxIVFSU1nX37NlDY2MjDz74oM795ObmUlpairOzc4+PWdBOvKaCIAiCCMYF4TqyaNEi3n33XT766COSk5N54oknqK2tZfbs2QDMnDmT5cuXt1nv/fffZ+rUqdja2rZ6vKamhueee44jR46QnZ3NwYMHufvuu/Hz82PChAn9ck43OvGaCoIg3NhEzrggXEceeOABLl26xOrVqyksLCQkJIR9+/ZpJgDm5OS0qSCSkpLCoUOH2L9/f5vtKRQKzpw5w0cffURFRQUuLi7cfvvtrF+/HkNDw345pxudeE0FQRBubKLOuCAIgiAIgiBcIyJNRRAEQRAEQRCuERGMC4IgCIIgCMI1IoJxQRAEQRAEQbhGRDAuCIIgCIIgCNeICMYFQRAEQRAE4RoRwbggCIIgCIIgXCMiGBcEoUO//vorU6ZMwcXFBZlMxtdff61znZ9//pnQ0FAMDQ3x8/Pjww8/bLPMzp078fLywsjIiIiICI4dO9b7B98NN9r5CoIgCNeeCMYFQehQbW0twcHB7Ny5s1PLZ2VlMXnyZG655RYSEhJ45plnePTRR/nhhx80y3zxxRcsWrSINWvWcPLkSYKDg5kwYQLFxcV9dRqddqOdryAIgnDtiaY/giB0ikwm46uvvmLq1KkdLrN06VK+++47zp07p3ls2rRpVFRUsG/fPgAiIiIYNWoUO3bsAECtVuPu7s6CBQtYtmxZn55DV9xo5ysIgiBcG2JkXBCEXnP48GHGjx/f6rEJEyZw+PBhAJqamoiPj2+1jFwuZ/z48Zplric32vkKgiAIvU8E44Ig9JrCwkIcHR1bPebo6EhVVRX19fWUlJSgUqnaXaawsLA/D7VX3GjnKwiCIPQ+EYwLgiAIgiAIwjWid60PQBCEPw8nJyeKiopaPVZUVISFhQXGxsYoFAoUCkW7yzg5OfXnofaKG+18BUEQhN4nRsYFQeg1UVFRHDx4sNVjBw4cICoqCgADAwPCwsJaLaNWqzl48KBmmevJjXa+giAIQu8TwbggCB2qqakhISGBhIQE4HIpv4SEBHJycgBYvnw5M2fO1Cz/+OOPk5mZyZIlSzh//jxvvvkm//znP1m4cKFmmUWLFvHuu+/y0UcfkZyczBNPPEFtbS2zZ8/u13Nrz412voIgCMIAIAmCIHTgf//7nwS0+Xn44YclSZKkhx9+WLr55pvbrBMSEiIZGBhIPj4+0gcffNBmu9u3b5c8PDwkAwMDKTw8XDpy5Ejfn0wn3GjnKwiCIFx7os64IAiCIAiCIFwjIk1FEARBEARBEK4REYwLgiAIgiAIwjUignFBEARBEARBuEZEMC4IgiAIgiAI14gIxgVBEARBEAThGhHBuCAIgiAIgiBcIyIYFwRBEARBEIRrRATjgiAIgiAIgnCNiGBcEARBEARBEK4REYwLgiAIgiAIwjUignFBEARBEARBuEZEMC4IgiAIgiAI14gIxgVBEARBEAThGhHBuCAIgiAIgiBcIyIYFwRBEARBEIRr5P8B3nRgqBT1ppIAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 47 + "execution_count": 56 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T14:13:13.836741Z", - "start_time": "2024-07-18T14:13:13.830232Z" + "end_time": "2024-07-18T23:01:54.094406Z", + "start_time": "2024-07-18T23:01:54.087960Z" } }, "cell_type": "code", @@ -942,8 +792,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.9850) tensor(0.0150)\n", - "tensor(0.5000) tensor(0.5000)\n", "[0. 0. 0. 0. 0.70178351 0.08660251\n", " 0. 0. 0.70178351 0.08660251 0. 0.\n", " 0. 0. 0. 0. ]\n", @@ -951,13 +799,13 @@ ] } ], - "execution_count": 17 + "execution_count": 57 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T14:20:33.761243Z", - "start_time": "2024-07-18T14:20:33.755091Z" + "end_time": "2024-07-18T23:01:54.098107Z", + "start_time": "2024-07-18T23:01:54.094975Z" } }, "cell_type": "code", @@ -986,13 +834,13 @@ ] } ], - "execution_count": 31 + "execution_count": 58 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-07-18T13:34:12.174300Z", - "start_time": "2024-07-18T13:34:09.878048Z" + "end_time": "2024-07-18T23:01:54.134150Z", + "start_time": "2024-07-18T23:01:54.098621Z" } }, "cell_type": "code", @@ -1041,28 +889,31 @@ "id": "8f41ff534081649d", "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/n6/zf0dn43x6855v3p_c2lbd38r0000gp/T/ipykernel_62067/993522411.py:18: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/Copy.cpp:276.)\n", - " Z[i, k] = torch.tensor(out)\n" + "ename": "ValueError", + "evalue": "only one element tensors can be converted to Python scalars", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mValueError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[59], line 17\u001B[0m\n\u001B[1;32m 15\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m k \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mrange\u001B[39m(num_pnts):\n\u001B[1;32m 16\u001B[0m xy \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor([X[i, k], Y[i, k]], dtype\u001B[38;5;241m=\u001B[39mtorch\u001B[38;5;241m.\u001B[39mfloat32)\n\u001B[0;32m---> 17\u001B[0m out \u001B[38;5;241m=\u001B[39m \u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxy\u001B[49m\u001B[43m)\u001B[49m[idx]\n\u001B[1;32m 18\u001B[0m Z[i, k] \u001B[38;5;241m=\u001B[39m torch\u001B[38;5;241m.\u001B[39mtensor(out)\n\u001B[1;32m 19\u001B[0m \u001B[38;5;66;03m# Convert tensors to numpy arrays for plotting\u001B[39;00m\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/qnode.py:800\u001B[0m, in \u001B[0;36mQNode.__call__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 797\u001B[0m set_shots(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_original_device, override_shots)(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_update_gradient_fn)()\n\u001B[1;32m 799\u001B[0m \u001B[38;5;66;03m# construct the tape\u001B[39;00m\n\u001B[0;32m--> 800\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconstruct\u001B[49m\u001B[43m(\u001B[49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 802\u001B[0m cache \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mexecute_kwargs\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcache\u001B[39m\u001B[38;5;124m\"\u001B[39m, \u001B[38;5;28;01mFalse\u001B[39;00m)\n\u001B[1;32m 803\u001B[0m using_custom_cache \u001B[38;5;241m=\u001B[39m (\n\u001B[1;32m 804\u001B[0m \u001B[38;5;28mhasattr\u001B[39m(cache, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m__getitem__\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 805\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mhasattr\u001B[39m(cache, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m__setitem__\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 806\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mhasattr\u001B[39m(cache, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m__delitem__\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 807\u001B[0m )\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/qnode.py:711\u001B[0m, in \u001B[0;36mQNode.construct\u001B[0;34m(self, args, kwargs)\u001B[0m\n\u001B[1;32m 708\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mconstruct\u001B[39m(\u001B[38;5;28mself\u001B[39m, args, kwargs):\n\u001B[1;32m 709\u001B[0m \u001B[38;5;250m \u001B[39m\u001B[38;5;124;03m\"\"\"Call the quantum function with a tape context, ensuring the operations get queued.\"\"\"\u001B[39;00m\n\u001B[0;32m--> 711\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_tape \u001B[38;5;241m=\u001B[39m \u001B[43mmake_qscript\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc\u001B[49m\u001B[43m)\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 712\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_tape\u001B[38;5;241m.\u001B[39m_queue_category \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m_ops\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 713\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_qfunc_output \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtape\u001B[38;5;241m.\u001B[39m_qfunc_output\n", + "File \u001B[0;32m~/Projects/QuLearn/.venv/lib/python3.11/site-packages/pennylane/tape/qscript.py:1346\u001B[0m, in \u001B[0;36mmake_qscript..wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 1344\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mwrapper\u001B[39m(\u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[1;32m 1345\u001B[0m \u001B[38;5;28;01mwith\u001B[39;00m AnnotatedQueue() \u001B[38;5;28;01mas\u001B[39;00m q:\n\u001B[0;32m-> 1346\u001B[0m result \u001B[38;5;241m=\u001B[39m \u001B[43mfn\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1348\u001B[0m qscript \u001B[38;5;241m=\u001B[39m QuantumScript\u001B[38;5;241m.\u001B[39mfrom_queue(q)\n\u001B[1;32m 1349\u001B[0m qscript\u001B[38;5;241m.\u001B[39m_qfunc_output \u001B[38;5;241m=\u001B[39m result\n", + "Cell \u001B[0;32mIn[57], line 14\u001B[0m, in \u001B[0;36mcircuit\u001B[0;34m(x)\u001B[0m\n\u001B[1;32m 12\u001B[0m \u001B[38;5;129m@qml\u001B[39m\u001B[38;5;241m.\u001B[39mqnode(dev)\n\u001B[1;32m 13\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcircuit\u001B[39m(x):\n\u001B[0;32m---> 14\u001B[0m \u001B[43membed\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcircuit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mx\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 15\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m qml\u001B[38;5;241m.\u001B[39mstate()\n", + "File \u001B[0;32m~/Projects/QuLearn/qulearn/qlayer.py:156\u001B[0m, in \u001B[0;36mHatBasisQFE.circuit\u001B[0;34m(self, x)\u001B[0m\n\u001B[1;32m 148\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcircuit\u001B[39m(\u001B[38;5;28mself\u001B[39m, x: Tensor) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[1;32m 149\u001B[0m \u001B[38;5;250m \u001B[39m\u001B[38;5;124;03m\"\"\"\u001B[39;00m\n\u001B[1;32m 150\u001B[0m \u001B[38;5;124;03m Define the quantum circuit for this layer.\u001B[39;00m\n\u001B[1;32m 151\u001B[0m \n\u001B[1;32m 152\u001B[0m \u001B[38;5;124;03m :param x: Input tensor that is passed to the quantum circuit.\u001B[39;00m\n\u001B[1;32m 153\u001B[0m \u001B[38;5;124;03m :type x: Tensor\u001B[39;00m\n\u001B[1;32m 154\u001B[0m \u001B[38;5;124;03m \"\"\"\u001B[39;00m\n\u001B[0;32m--> 156\u001B[0m position \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mint\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mbasis\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mposition\u001B[49m\u001B[43m(\u001B[49m\u001B[43mx\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 157\u001B[0m a, b \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mbasis\u001B[38;5;241m.\u001B[39mnonz_vals(x)\n\u001B[1;32m 159\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msqrt:\n\u001B[1;32m 160\u001B[0m \u001B[38;5;66;03m# sometimes the values are close to 0 and negative\u001B[39;00m\n", + "\u001B[0;31mValueError\u001B[0m: only one element tensors can be converted to Python scalars" ] - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJOCAYAAACk4hqwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa/UlEQVR4nO3dfXhU1b33/8/MJDNJ0CRgIAGNAmJ5UCAaSgy1lZYcEuVn5VfbgtICKYVbKq0aq4JHQEUBnzhUpU1LQbRHCtVbrVUaxViOtY1QgxwfClQsCKIJICWBAHmYWfcflKnTJEyykp3NJO/Xde1Ls2d911p7s7Mna76z1vYYY4wAAAAAAHCJ1+0OAAAAAAC6NgamAAAAAABXMTAFAAAAALiKgSkAAAAAwFUMTAEAAAAArmJgCgAAAABwFQNTAAAAAICrGJgCAAAAAFzFwBQAAAAA4CoGpgAAAAAAVzEwBQB0Glu3btX48eP14osv6rHHHlOvXr10zjnn6Nlnn3W7awAA4BQYmAIAOoUNGzYoOztbH330kRITE3XjjTdqwoQJSkxM1HXXXaePP/7Y7S4CAIBmMDAFAMS8o0eP6jvf+Y7OO+88vfHGGyorK5Pf79fDDz+se++9V7W1tSopKXG7mwAAoBkMTAEAMe/pp5/W3r17tWTJEnXr1k1vvfWWLrzwQvn9fmVlZUmSDh48qFAopLPPPluVlZXudhgAAESIc7sDAAC01bp165Samqr/+I//kCS98847Gj16tCTp8OHDkqSzzjpLXq9Xe/fudaubAACgGWRMAQAx77333tPgwYMVFxenw4cPa9euXRo2bJgkafv27ZKkSy+91M0uAgCAU2BgCgCIeVVVVUpMTJQkvfvuuzLGhAemzz33nM4//3xdeOGF+sUvfqHrrrvOza4CAIAm8FVeAEDMy8zM1Ntvv63a2lq98847kqRhw4bp1Vdf1XPPPacVK1ZIkt5//31ddNFFbnYVAAA0gYwpACDmfe9739M//vEPXXXVVXrmmWeUlJSkhQsX6sorr9S3v/1tTZ06VdKJgemFF17obmcBAEAjHmOMcbsTAAC01V133aWf/vSn2r9/vzwej/r27asZM2bo1ltvlc/nkyT17t1bf/zjHzVgwACXewsAAD6PgSkAoFM588wzdcMNN2jx4sUR+w8ePKhzzjlHR44ckdfLF4YAADid8M4MAOg09uzZoyNHjmjQoEGNXnv//fc1ePBgBqUAAJyGeHcGAHQaW7dulaRmB6bMLwUA4PTEwBQA0GmcamD6zjvvaPjw4R3dJQAA0ALMMQUAdHpHjhzR0KFD9Zvf/EZf/OIX3e4OAAD4NzGXMX399dd11VVXqU+fPvJ4PHr++eejxmzYsEGXXHKJAoGABgwYoFWrVjUqs2zZMvXt21cJCQnKycnRpk2b2r/zAIAOt3HjRn3hC1/QN77xDQalAACcpmJuYFpTU6Phw4dr2bJlLSq/c+dOjRs3Tl/96le1ZcsW3XTTTfr+97+vl19+OVxm7dq1Kioq0vz587V582YNHz5c+fn52rdvn1OHAQDoIDk5Ofrkk0/08MMPu90VAADQjJj+Kq/H49Fzzz2n8ePHN1vm9ttv10svvaT33nsvvG/ixIk6dOiQSkpKJJ34o+WLX/yiHnvsMUlSKBRSZmamfvjDH2r27NmOHgMAAAAAdHUxlzFtrbKyMuXl5UXsy8/PV1lZmSSprq5O5eXlEWW8Xq/y8vLCZQAAAAAAzolzuwNOq6ioUHp6esS+9PR0VVdX69ixY/rHP/6hYDDYZJlt27Y1W29tba1qa2vDP4dCIR08eFBnnXWWPB5P+x4EAAAA0EkYY3T48GH16dMnZp4tffz4cdXV1Tnejt/vV0JCguPtnI46/cDUKYsWLdLdd9/tdjcAAACAmLRnzx6dc845bncjquPHj6vfeWeoYl/Q8bYyMjK0c+fOLjk47fQD04yMDFVWVkbsq6ysVHJyshITE+Xz+eTz+Zosk5GR0Wy9c+bMUVFRUfjnqqoqnXvuubpMVypO8e17EAAAAEAn0aB6vaF1OvPMM93uSovU1dWpYl9QH5X3VfKZzmV4qw+HdF72LtXV1TEw7Yxyc3O1bt26iH3r169Xbm6upBPp8uzsbJWWloYXUQqFQiotLdWsWbOarTcQCCgQCDTaH6d4xXkYmAIAAABN+ufSq7E2/e2MMz0640zn+hxSbJ2P9hZzA9MjR45ox44d4Z937typLVu2qEePHjr33HM1Z84c7d27V08++aQk6frrr9djjz2m2267Td/73vf02muv6Te/+Y1eeumlcB1FRUWaMmWKRowYoZEjR2rp0qWqqalRYWFhhx8fAAAAgNNP0IQUdPB5JkETcq7yGBBzA9O33npLX/3qV8M/n/w67ZQpU7Rq1Sp9+umn2r17d/j1fv366aWXXtLNN9+sn/zkJzrnnHP0y1/+Uvn5+eEyEyZM0P79+zVv3jxVVFQoKytLJSUljRZEAgAAAAC0v5h+junppLq6WikpKRqtq/kqLwAAANCMBlOvDfqtqqqqlJyc7HZ3ojr5d37F9nMdn2OaMXB3zJyX9hYb6zMDAAAAADqtmPsqLwAAAAB0tJBCcnIWqLO1n/7ImAIAAAAAXEXGFAAAAACiCBqjoIPL8zhZdywgYwoAAAAAcBUZUwAAAACIIiSjkJzLajpZdywgYwoAAAAAcBUZUwAAAACIIiSjIBlTx5AxBQAAAAC4iowpAAAAAETBHFNnkTEFAAAAALiKjCkAAAAARMFzTJ1FxhQAAAAA4CoypgAAAAAQReifm5P1d2VkTAEAAAAAriJjCgAAAABRBB1+jqmTdccCMqYAAAAAAFeRMQUAAACAKILmxOZk/V0ZGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExBQAAAIAoQvIoKI+j9XdlZEwBAAAAAK4iYwoAAAAAUYTMic3J+rsyMqYAAAAAAFeRMQUAAACAKIIOzzF1su5YQMYUAAAAAOAqMqYAAAAAEAUZU2eRMQUAAAAAuIqMKQAAAABEETIehYyDzzF1sO5YQMYUAAAAAOAqMqYAAAAAEAVzTJ1FxhQAAAAA4CoypgAAAAAQRVBeBR3M6wUdqzk2kDEFAAAAALiKjCkAAAAARGEcXpXXsCovAAAAAADuIWMKAAAAAFGwKq+zyJgCAAAAAFxFxhQAAAAAoggar4LGwVV5jWNVxwQypgAAAAAAV5ExBQAAAIAoQvIo5GBeL6SunTIlYwoAAAAAcBUZUwAAAACIglV5nUXGFAAAAADgKjKmAAAAABCF86vyMscUAAAAAADXkDEFAAAAgChOrMrr3DxQJ+uOBWRMAQAAAACuImMKAAAAAFGE5FWQ55g6howpAAAAAMBVZEwBAAAAIApW5XVWTGZMly1bpr59+yohIUE5OTnatGlTs2VHjx4tj8fTaBs3bly4zNSpUxu9XlBQ0BGHAgAAAABdXsxlTNeuXauioiIVFxcrJydHS5cuVX5+vrZv365evXo1Kv/ss8+qrq4u/PNnn32m4cOH61vf+lZEuYKCAj3++OPhnwOBgHMHAQAAACCmhORViDmmjom5jOmSJUs0ffp0FRYWasiQISouLlZSUpJWrlzZZPkePXooIyMjvK1fv15JSUmNBqaBQCCiXPfu3TvicAAAAACgy4upgWldXZ3Ky8uVl5cX3uf1epWXl6eysrIW1bFixQpNnDhR3bp1i9i/YcMG9erVSwMHDtTMmTP12WeftWvfAQAAAMSuoPE4vnVlMfVV3gMHDigYDCo9PT1if3p6urZt2xY1ftOmTXrvvfe0YsWKiP0FBQX6xje+oX79+unDDz/UHXfcoSuuuEJlZWXy+XxN1lVbW6va2trwz9XV1RZHBAAAAACIqYFpW61YsUJDhw7VyJEjI/ZPnDgx/P9Dhw7VsGHDdP7552vDhg0aM2ZMk3UtWrRId999t6P9BQAAAHB6CDr8HNMgc0xjR1pamnw+nyorKyP2V1ZWKiMj45SxNTU1WrNmjaZNmxa1nf79+ystLU07duxotsycOXNUVVUV3vbs2dOygwAAAAAARIipganf71d2drZKS0vD+0KhkEpLS5Wbm3vK2Kefflq1tbX6zne+E7Wdjz/+WJ999pl69+7dbJlAIKDk5OSIDQAAAEDnFDJex7euLOaOvqioSMuXL9cTTzyhrVu3aubMmaqpqVFhYaEkafLkyZozZ06juBUrVmj8+PE666yzIvYfOXJEt956q958803t2rVLpaWluvrqqzVgwADl5+d3yDEBAAAAQFcWc3NMJ0yYoP3792vevHmqqKhQVlaWSkpKwgsi7d69W15v5Hh7+/bteuONN/TKK680qs/n8+mdd97RE088oUOHDqlPnz4aO3asFixYwLNMAQAAAEhijqnTPMaYrn0G2kl1dbVSUlI0WlcrzhPvdncAAACA01KDqdcG/VZVVVUxMR3u5N/5yzdnK+nMpp/Y0R6OHg5q+iXlMXNe2lvMZUwBAAAAoKOFJEefNRpyrObYEHNzTAEAAAAAnQsZUwAAAACIIiSvQg7m9ZysOxZ07aMHAAAAALiOjCkAAAAARBE0XgUdfNaok3XHgq599AAAAAAA15ExBQAAAIAoQvIoJCdX5XWu7lhAxhQAAAAA4CoypgAAAAAQBXNMndW1jx4AAAAA4DoypgAAAAAQRVBeBR3M6zlZdyzo2kcPAAAAAHAdGVMAAAAAiCJkPAoZB1fldbDuWEDGFAAAAADgKjKmAAAAABBFyOE5pqEunjPs2kcPAAAAAHAdGVMAAAAAiCJkvAo5+KxRJ+uOBV376AEAAAAAriNjCgAAAABRBOVRUM6tnOtk3bGAjCkAAAAAwFVkTAEAAAAgCuaYOqtrHz0AAAAAtEBQ//o6rzNb6y1btkx9+/ZVQkKCcnJytGnTplOWX7p0qQYOHKjExERlZmbq5ptv1vHjx63OR3tjYAoAAAAAMWbt2rUqKirS/PnztXnzZg0fPlz5+fnat29fk+VXr16t2bNna/78+dq6datWrFihtWvX6o477ujgnjeNgSkAAAAARHHyq7xObq2xZMkSTZ8+XYWFhRoyZIiKi4uVlJSklStXNln+z3/+s770pS/puuuuU9++fTV27Fhde+21UbOsHYWBKQAAAADEkLq6OpWXlysvLy+8z+v1Ki8vT2VlZU3GjBo1SuXl5eGB6N///netW7dOV155ZYf0ORoWPwIAAACAKILGq6CDCxSdrLu6ujpifyAQUCAQiNh34MABBYNBpaenR+xPT0/Xtm3bmqz/uuuu04EDB3TZZZfJGKOGhgZdf/31fJUXAAAAABApMzNTKSkp4W3RokXtUu+GDRu0cOFC/fSnP9XmzZv17LPP6qWXXtKCBQvapf62ImMKAAAAAFEYeRSSx9H6JWnPnj1KTk4O7//3bKkkpaWlyefzqbKyMmJ/ZWWlMjIymqx/7ty5+u53v6vvf//7kqShQ4eqpqZGM2bM0H/+53/K63U3Z0nGFAAAAABOE8nJyRFbUwNTv9+v7OxslZaWhveFQiGVlpYqNze3yXqPHj3aaPDp8/kkScaYdjwCO2RMAQAAACCKjppj2lJFRUWaMmWKRowYoZEjR2rp0qWqqalRYWGhJGny5Mk6++yzw18Fvuqqq7RkyRJdfPHFysnJ0Y4dOzR37lxdddVV4QGqmxiYAgAAAECMmTBhgvbv36958+apoqJCWVlZKikpCS+ItHv37ogM6Z133imPx6M777xTe/fuVc+ePXXVVVfpvvvuc+sQInjM6ZC37QSqq6uVkpKi0bpacZ54t7sDAAAAnJYaTL026LeqqqqKmEt5ujr5d/4tf/r/FDjDub/za4/U6+EvvRgz56W9MccUAAAAAOAqvsoLAAAAAFEE5VXQwbyek3XHgq599AAAAAAA15ExBQAAAIAoQsajkHHuOaZO1h0LyJgCAAAAAFxFxhQAAAAAogjJq5CDeT0n644FXfvoAQAAAACuI2MKAAAAAFEEjUdBB+eBOll3LCBjCgAAAABwFRlTAAAAAIiCVXmdRcYUAAAAAOAqMqYAAAAAEIUxXoWMc3k942DdsaBrHz0AAAAAwHVkTAEAAAAgiqA8CsrBVXkdrDsWkDEFAAAAALiKjCkAAAAARBEyzq6cGzKOVR0TyJgCAAAAAFxFxhQAAAAAogg5vCqvk3XHgq599AAAAAAA15ExBQAAAIAoQvIo5ODKuU7WHQvImAIAAAAAXBWTA9Nly5apb9++SkhIUE5OjjZt2tRs2VWrVsnj8URsCQkJEWWMMZo3b5569+6txMRE5eXl6YMPPnD6MAAAAADEiKDxOL51ZTE3MF27dq2Kioo0f/58bd68WcOHD1d+fr727dvXbExycrI+/fTT8PbRRx9FvP7AAw/okUceUXFxsTZu3Khu3bopPz9fx48fd/pwAAAAAKDLi7mB6ZIlSzR9+nQVFhZqyJAhKi4uVlJSklauXNlsjMfjUUZGRnhLT08Pv2aM0dKlS3XnnXfq6quv1rBhw/Tkk0/qk08+0fPPP98BRwQAAADgdHdyVV4nt64spo6+rq5O5eXlysvLC+/zer3Ky8tTWVlZs3FHjhzReeedp8zMTF199dV6//33w6/t3LlTFRUVEXWmpKQoJyfnlHXW1taquro6YgMAAAAAtF5MDUwPHDigYDAYkfGUpPT0dFVUVDQZM3DgQK1cuVK//e1v9d///d8KhUIaNWqUPv74Y0kKx7WmTklatGiRUlJSwltmZmZbDg0AAADAaSwkj0LGwY1VeTu33NxcTZ48WVlZWbr88sv17LPPqmfPnvr5z3/epnrnzJmjqqqq8LZnz5526jEAAAAAdC0x9RzTtLQ0+Xw+VVZWRuyvrKxURkZGi+qIj4/XxRdfrB07dkhSOK6yslK9e/eOqDMrK6vZegKBgAKBQCuPAAAAAEAsMg4/x9SQMY0dfr9f2dnZKi0tDe8LhUIqLS1Vbm5ui+oIBoN69913w4PQfv36KSMjI6LO6upqbdy4scV1AgAAAADsxVTGVJKKioo0ZcoUjRgxQiNHjtTSpUtVU1OjwsJCSdLkyZN19tlna9GiRZKke+65R5deeqkGDBigQ4cO6cEHH9RHH32k73//+5JOrNh700036d5779UFF1ygfv36ae7cuerTp4/Gjx/v1mECAAAAOI2cnAvqZP1dWcwNTCdMmKD9+/dr3rx5qqioUFZWlkpKSsKLF+3evVte778Swf/4xz80ffp0VVRUqHv37srOztaf//xnDRkyJFzmtttuU01NjWbMmKFDhw7psssuU0lJiRISEjr8+AAAAACgq/EYY4zbnegMqqurlZKSotG6WnGeeLe7AwAAAJyWGky9Nui3qqqqUnJystvdierk3/n///pCxXfzO9ZOfU2dnvuPx2PmvLS3mJpjCgAAAADofGLuq7wAAAAA0NGYY+osMqYAAAAAAFeRMQUAAACAKEIOP8fUybpjARlTAAAAAICryJgCAAAAQBTMMXUWGVMAAAAAgKvImAIAAABAFGRMnUXGFAAAAADgKjKmAAAAABAFGVNnkTEFAAAAALiKjCkAAAAAREHG1FlkTAEAAAAAriJjCgAAAABRGEkhOZfVNI7VHBvImAIAAAAAXEXGFAAAAACiYI6ps8iYAgAAAABcRcYUAAAAAKIgY+osMqYAAAAAAFeRMQUAAACAKMiYOouMKQAAAADAVWRMAQAAACAKMqbOImMKAAAAAHAVGVMAAAAAiMIYj4yDWU0n644FZEwBAAAAAK4iYwoAAAAAUYTkUUgOzjF1sO5YQMYUAAAAAOAqMqYAAAAAEAWr8jqLjCkAAAAAwFVkTAEAAAAgClbldRYZUwAAAACAq8iYAgAAAEAUzDF1FhlTAAAAAICryJgCAAAAQBTMMXUWGVMAAAAAgKvImAIAAABAFMbhOaZkTAEAAAAAcBEZUwAAAACIwkgyxtn6uzIypgAAAAAAV5ExBQAAAIAoQvLIIwefY+pg3bGAjCkAAAAAwFVkTAEAAAAgCp5j6iwypgAAAAAAV5ExBQAAAIAoQsYjj4NZTSefkRoLGJgCAAAAQBTGOPy4mC7+vBi+ygsAAAAAcBUZUwAAAACIgsWPnEXGFAAAAADgKjKmAAAAABAFGVNnkTEFAAAAALiKjCkAAAAARMHjYpxFxhQAAAAA4KqYHJguW7ZMffv2VUJCgnJycrRp06Zmyy5fvlxf/vKX1b17d3Xv3l15eXmNyk+dOlUejydiKygocPowAAAAAMSIk88xdXLrymJuYLp27VoVFRVp/vz52rx5s4YPH678/Hzt27evyfIbNmzQtddeqz/84Q8qKytTZmamxo4dq71790aUKygo0Keffhrefv3rX3fE4QAAAABAlxdzA9MlS5Zo+vTpKiws1JAhQ1RcXKykpCStXLmyyfJPPfWUfvCDHygrK0uDBg3SL3/5S4VCIZWWlkaUCwQCysjICG/du3fviMMBAAAAEANOZDU9Dm5uH6G7YmpgWldXp/LycuXl5YX3eb1e5eXlqaysrEV1HD16VPX19erRo0fE/g0bNqhXr14aOHCgZs6cqc8+++yU9dTW1qq6ujpiAwAAAAC0XkwNTA8cOKBgMKj09PSI/enp6aqoqGhRHbfffrv69OkTMbgtKCjQk08+qdLSUt1///36n//5H11xxRUKBoPN1rNo0SKlpKSEt8zMTLuDAgAAAHDaczZb6uwzUmNBl3pczOLFi7VmzRpt2LBBCQkJ4f0TJ04M///QoUM1bNgwnX/++dqwYYPGjBnTZF1z5sxRUVFR+Ofq6moGpwAAAABgIaYypmlpafL5fKqsrIzYX1lZqYyMjFPGPvTQQ1q8eLFeeeUVDRs27JRl+/fvr7S0NO3YsaPZMoFAQMnJyREbAAAAgM7JdMDWlcXUwNTv9ys7Ozti4aKTCxnl5uY2G/fAAw9owYIFKikp0YgRI6K28/HHH+uzzz5T796926XfAAAAAIDmxdTAVJKKioq0fPlyPfHEE9q6datmzpypmpoaFRYWSpImT56sOXPmhMvff//9mjt3rlauXKm+ffuqoqJCFRUVOnLkiCTpyJEjuvXWW/Xmm29q165dKi0t1dVXX60BAwYoPz/flWMEAAAAcHo5HeeYLlu2TH379lVCQoJycnK0adOmU5Y/dOiQbrjhBvXu3VuBQEBf+MIXtG7dOttT0q5ibo7phAkTtH//fs2bN08VFRXKyspSSUlJeEGk3bt3y+v913j7Zz/7merq6vTNb34zop758+frrrvuks/n0zvvvKMnnnhChw4dUp8+fTR27FgtWLBAgUCgQ48NAAAAAFpi7dq1KioqUnFxsXJycrR06VLl5+dr+/bt6tWrV6PydXV1+o//+A/16tVLzzzzjM4++2x99NFHSk1N7fjON8FjTFd/Yk77qK6uVkpKikbrasV54t3uDgAAAHBaajD12qDfqqqqKibWaTn5d37/J+6QLykheoCl4NHj+vuUhS0+Lzk5OfriF7+oxx57TNKJKY6ZmZn64Q9/qNmzZzcqX1xcrAcffFDbtm1TfPzpN16Jua/yAgAAAEBnVV1dHbHV1tY2KlNXV6fy8vKIR2B6vV7l5eWprKysyXpfeOEF5ebm6oYbblB6erouuugiLVy48JSPyOxIDEwBAAAAIBqn55f+c45pZmamUlJSwtuiRYsadeXAgQMKBoPh6Ywnpaenq6Kiosnu//3vf9czzzyjYDCodevWae7cuXr44Yd17733tv+5shBzc0wBAAAAoLPas2dPxFd522vdm1AopF69eukXv/iFfD6fsrOztXfvXj344IOaP39+u7TRFgxMAQAAACAKY05sTtYvScnJyVHnmKalpcnn86mysjJif2VlpTIyMpqM6d27t+Lj4+Xz+cL7Bg8erIqKCtXV1cnv97ftANqIr/ICAAAAQAzx+/3Kzs5WaWlpeF8oFFJpaalyc3ObjPnSl76kHTt2KBQKhff97W9/U+/evV0flEoMTAEAAAAgqtPtOaZFRUVavny5nnjiCW3dulUzZ85UTU2NCgsLJUmTJ0/WnDlzwuVnzpypgwcP6sYbb9Tf/vY3vfTSS1q4cKFuuOGGdj1PtvgqLwAAAADEmAkTJmj//v2aN2+eKioqlJWVpZKSkvCCSLt375bX+688ZGZmpl5++WXdfPPNGjZsmM4++2zdeOONuv322906hAgMTAEAAAAgms+tnOtY/a00a9YszZo1q8nXNmzY0Ghfbm6u3nzzzVa30xH4Ki8AAAAAwFVkTAEAAAAgio5alberImMKAAAAAHAVGVMAAAAAiMb8c3Oy/i6MjCkAAAAAwFVkTAEAAAAgCptnjba2/q6MjCkAAAAAwFVkTAEAAACgJbr4PFAnkTEFAAAAALiKjCkAAAAARMEcU2eRMQUAAAAAuIqMKQAAAABEw3NMHUXGFAAAAADgKjKmAAAAABCV55+bk/V3XWRMAQAAAACuImMKAAAAANEwx9RRZEwBAAAAAK4iYwoAAAAA0ZAxdRQZUwAAAACAq8iYAgAAAEA0xnNic7L+LoyMKQAAAADAVWRMAQAAACAKY05sTtbflZExBQAAAAC4iowpAAAAAETDqryOImMKAAAAAHAVGVMAAAAAiIZVeR1FxhQAAAAA4CoypgAAAAAQhcec2JysvysjYwoAAAAAcBUZUwAAAACIhlV5HUXGFAAAAADgKjKmAAAAABANq/I6iowpAAAAAMBVZEwBAAAAIBrmmDqKjCkAAAAAwFVkTAEAAAAgGjKmjiJjCgAAAABwFRlTAAAAAIiGjKmjyJgCAAAAAFxFxhQAAAAAouE5po4iYwoAAAAAcBUZUwAAAACIwmNObE7W35WRMQUAAAAAuIqMKQAAAABEw6q8jorJjOmyZcvUt29fJSQkKCcnR5s2bTpl+aefflqDBg1SQkKChg4dqnXr1kW8bozRvHnz1Lt3byUmJiovL08ffPCBk4cAAAAAADFj0aJFkqTNmzertra23etv1cB0z5497d6B1lq7dq2Kioo0f/58bd68WcOHD1d+fr727dvXZPk///nPuvbaazVt2jS9/fbbGj9+vMaPH6/33nsvXOaBBx7QI488ouLiYm3cuFHdunVTfn6+jh8/3lGHBQAAAACnrdGjR0uSFi9erEsuuURDhw7VxIkTtXDhQr344ouqrKxsU/0eY0yLk8bdunXTLbfcotmzZyspKalNDdvKycnRF7/4RT322GOSpFAopMzMTP3whz/U7NmzG5WfMGGCampq9OKLL4b3XXrppcrKylJxcbGMMerTp49uueUW/fjHP5YkVVVVKT09XatWrdLEiRNb1K/q6mqlpKRotK5WnCe+HY4UAAAA6HwaTL026LeqqqpScnKy292J6uTf+efef6+8iQmOtRM6dly7b78zZs7LsWPH9N577+mdd97RO++8ozfeeENXXnmlFixYYFVfqzKm69ev18svv6wLLrhAq1atsmqwLerq6lReXq68vLzwPq/Xq7y8PJWVlTUZU1ZWFlFekvLz88Pld+7cqYqKiogyKSkpysnJabZOAAAAAF2LR/9amdeRze0DbMbhw4c1Z84cXXHFFfr2t7+tn/zkJ9qzZ48SExP1xS9+UdOmTdNPfvITlZeXN5oy2RqtGpiOGjVKGzdu1KJFizR37lxlZ2frj3/8o3XjrXXgwAEFg0Glp6dH7E9PT1dFRUWTMRUVFacsf/K/ralTkmpra1VdXR2xAQAAAEBnct111+kXv/iFUlNTFRcXp5/97Ge64IIL9F//9V+Nyr755pvW7VgtfjR58mRt375d48aN0xVXXKFvfvOb2rlzp3UnYtGiRYuUkpIS3jIzM93uEgAAAACnGI/z22no9ddf1/PPP69f//rXWr16tbZt26bS0lItWbJExcXFEWXj4+2nNLZpVd6xY8fq+9//vp577jkNGTJEt912m44cOdKWKk8pLS1NPp+v0cTayspKZWRkNBmTkZFxyvIn/9uaOiVpzpw5qqqqCm+nw8JQAAAAANCeJk2apCuvvFJXXnml5syZo9/85jc666yztGzZMj344IPt1k6rBqbFxcWaNm2ahg0bppSUFI0ZM0Z//OMfdf311+snP/mJ3nrrLQ0ZMkRvvfVWu3Xw8/x+v7Kzs1VaWhreFwqFVFpaqtzc3CZjcnNzI8pLJ+bKnizfr18/ZWRkRJSprq7Wxo0bm61TkgKBgJKTkyM2AAAAAJ2U6YDtNHTppZfqV7/6lUaMGKH33ntPt9xyi4YMGaJvf/vb+uijjzRz5kz97Gc/0xtvvNGmduJaU/i+++5TTk6OJk+erEsvvVTZ2dlKTEwMvz5jxgwtXLhQU6dOjXgcS3sqKirSlClTNGLECI0cOVJLly5VTU2NCgsLJZ34mvHZZ58dfs7OjTfeqMsvv1wPP/ywxo0bpzVr1uitt97SL37xC0mSx+PRTTfdpHvvvVcXXHCB+vXrp7lz56pPnz4aP368I8cAAAAAALHglVdeUV1dnX71q18pEAhIOrH2z+9+9ztNnz5d1dXVKi4u1t/+9jcdO3bMup1WDUxb8nXVadOmae7cudYdimbChAnav3+/5s2bp4qKCmVlZamkpCS8eNHu3bvl9f4rETxq1CitXr1ad955p+644w5dcMEFev7553XRRReFy9x2222qqanRjBkzdOjQIV122WUqKSlRQoJzy0EDAAAAiCFOZzVP04zpww8/rDFjxuiiiy5SYWGhhg8fruPHj2vVqlXKysrSU089JUkKBoNtaqdVzzFtCWOMXn/9dV1++eXtWe1pj+eYAgAAANHF6nNMz1t4n7wOJq5Cx4/rozv+87Q8L8eOHdNDDz2kZ555Ru+++64kKSsrS7/61a904YUXtksbrcqYtoTH4+lyg1IAAAAAndvJ5406Wf/pKjExUXPnztXcuXN1/PhxNTQ06IwzzmjXNtp9YAoAAAAA6Jycmu7IwBQAAAAAoumic0w7SpueYwoAAAAAQFuRMQUAAACAaMiYOoqBKQAAAABE0ZUXP+oIfJUXAAAAAOAqMqYAAAAAEI3xnNicrL8LI2MKAAAAAHAVGVMAAAAAiIbFjxxFxhQAAAAA4CoypgAAAAAQBavyOouMKQAAAADAVWRMAQAAACAa5pg6iowpAAAAAMBVZEwBAAAAIBqH55iSMQUAAAAAwEVkTAEAAAAgGuaYOoqMKQAAAADAVWRMAQAAACAaMqaOImMKAAAAAHAVGVMAAAAAiMLj8Kq8jq74GwPImAIAAAAAXMXAFAAAAADgKgamAAAAAABXMccUAAAAAKJhVV5HkTEFAAAAALiKjCkAAAAARMGqvM4iYwoAAAAAcBUZUwAAAABoiS6e1XQSGVMAAAAAgKvImAIAAABANKzK6ygypgAAAAAAV5ExBQAAAIAoWJXXWWRMAQAAAACuImMKAAAAANEwx9RRZEwBAAAAAK5iYAoAAAAAUZycY+rk1lrLli1T3759lZCQoJycHG3atKlFcWvWrJHH49H48eNb36hDGJgCAAAAQIxZu3atioqKNH/+fG3evFnDhw9Xfn6+9u3bd8q4Xbt26cc//rG+/OUvd1BPW4aBKQAAAABEYzpga4UlS5Zo+vTpKiws1JAhQ1RcXKykpCStXLmy2ZhgMKhJkybp7rvvVv/+/VvXoMMYmAIAAADAaaK6ujpiq62tbVSmrq5O5eXlysvLC+/zer3Ky8tTWVlZs3Xfc8896tWrl6ZNm+ZI39uCgSkAAAAARNNBGdPMzEylpKSEt0WLFjXqyoEDBxQMBpWenh6xPz09XRUVFU12/4033tCKFSu0fPly61PgJB4XAwAAAACniT179ig5OTn8cyAQaHOdhw8f1ne/+10tX75caWlpba7PCQxMAQAAACAK25VzW1O/JCUnJ0cMTJuSlpYmn8+nysrKiP2VlZXKyMhoVP7DDz/Url27dNVVV4X3hUIhSVJcXJy2b9+u888/v41H0DZ8lRcAAAAAYojf71d2drZKS0vD+0KhkEpLS5Wbm9uo/KBBg/Tuu+9qy5Yt4e3rX/+6vvrVr2rLli3KzMzsyO43iYwpAAAAAERjsXJuq+tvhaKiIk2ZMkUjRozQyJEjtXTpUtXU1KiwsFCSNHnyZJ199tlatGiREhISdNFFF0XEp6amSlKj/W5hYAoAAAAAMWbChAnav3+/5s2bp4qKCmVlZamkpCS8INLu3bvl9cbOF2QZmAIAAABANKdZxlSSZs2apVmzZjX52oYNG04Zu2rVqtY36KDYGUIDAAAAADolMqYAAAAAEEVHrcrbVZExBQAAAAC4iowpAAAAAERzGs4x7UxiKmN68OBBTZo0ScnJyUpNTdW0adN05MiRU5b/4Q9/qIEDByoxMVHnnnuufvSjH6mqqiqinMfjabStWbPG6cMBAAAAACjGMqaTJk3Sp59+qvXr16u+vl6FhYWaMWOGVq9e3WT5Tz75RJ988okeeughDRkyRB999JGuv/56ffLJJ3rmmWciyj7++OMqKCgI/3zyuT4AAAAAwBxTZ8XMwHTr1q0qKSnRX/7yF40YMUKS9Oijj+rKK6/UQw89pD59+jSKueiii/R//+//Df98/vnn67777tN3vvMdNTQ0KC7uX4efmpqqjIwM5w8EAAAAABAhZr7KW1ZWptTU1PCgVJLy8vLk9Xq1cePGFtdTVVWl5OTkiEGpJN1www1KS0vTyJEjtXLlShnTxT+yAAAAAPAvpgO2LixmMqYVFRXq1atXxL64uDj16NFDFRUVLarjwIEDWrBggWbMmBGx/5577tHXvvY1JSUl6ZVXXtEPfvADHTlyRD/60Y+arau2tla1tbXhn6urq1txNAAAAACAk1wfmM6ePVv333//Kcts3bq1ze1UV1dr3LhxGjJkiO66666I1+bOnRv+/4svvlg1NTV68MEHTzkwXbRoke6+++429wsAAABADGBVXke5PjC95ZZbNHXq1FOW6d+/vzIyMrRv376I/Q0NDTp48GDUuaGHDx9WQUGBzjzzTD333HOKj48/ZfmcnBwtWLBAtbW1CgQCTZaZM2eOioqKwj9XV1crMzPzlPUCAAAAABpzfWDas2dP9ezZM2q53NxcHTp0SOXl5crOzpYkvfbaawqFQsrJyWk2rrq6Wvn5+QoEAnrhhReUkJAQta0tW7aoe/fuzQ5KJSkQCJzydQAAAACdh+efm5P1d2WuD0xbavDgwSooKND06dNVXFys+vp6zZo1SxMnTgyvyLt3716NGTNGTz75pEaOHKnq6mqNHTtWR48e1X//93+ruro6PBe0Z8+e8vl8+t3vfqfKykpdeumlSkhI0Pr167Vw4UL9+Mc/dvNwAQAAAKDLiJmBqSQ99dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++XUePHpUkbd68Obxi74ABAyLq2rlzp/r27av4+HgtW7ZMN998s4wxGjBggJYsWaLp06d33IEBAAAAOL0xx9RRMTUw7dGjh1avXt3s63379o14zMvo0aOjPvaloKBABQUF7dZHAAAAAEDrxNTAFAAAAADc4DEnNifr78q8bncAAAAAANC1kTEFAAAAgGiYY+ooMqYAAAAAAFeRMQUAAACAlujiWU0nkTEFAAAAALiKjCkAAAAARMGqvM4iYwoAAAAAcBUZUwAAAACIhlV5HUXGFAAAAADgKjKmAAAAABAFc0ydRcYUAAAAAOAqMqbtzBMXJ4+ndafVEwjYtxdv+U8YZxnn89nFSfJ4LT8H6eg4SfJ67OI8lnGSdX+NG321jbWNsz3GtrRpy7Th486QZWxb2rSM9QRDHdpem2Ld6Gsw2KFtGttjlKSQZV/rG6zCTF2dXXuSQsePW8cCQJsxx9RRZEwBAAAAAK4iYwoAAAAAUTDH1FlkTAEAAAAAriJjCgAAAADRMMfUUWRMAQAAAACuImMKAAAAANGQMXUUGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExbWeegF8ej79VMd7UFOv2TGLALtAfb9ee3/6SCcX7LOPsPj8xPvvPXUycxyou5LOLO9Gm7XFatue172vI8vwYy38S2zhJMpb/Jp6QXXuekP3HndZtBtvQZrBj22zL+fE2WLZp2VdvveU/iCRP0C7WU2/3D2IbJ0me2gbLuDq7BmuO2cVJ0vHj9rEA0FbMMXUUGVMAAAAAgKvImAIAAABAFB5j5DHOpTWdrDsWkDEFAAAAALiKjCkAAAAARMMcU0eRMQUAAAAAuIqMKQAAAABEwXNMncXAFAAAAACi4au8juKrvAAAAAAAV5ExBQAAAIAo+CqvsxiYtjNPfJw8ntadVpMYsG7PdEuwigslxtvFBXxWcZIUtIwNxXs6NE6SQnGWbVrGnYi1jbPsq/0/pYxtX312fTVt6atlrCdkGRe0izsRa/eO5G1Tm3Zx3gbbOPt33Y5u01vfhr5axnrr7C48X639ReD1251Yr8/uS1eehjZcsACATouBKQAAAABEwxxTRzHHFAAAAADgKjKmAAAAABAFc0ydRcYUAAAAAOAqMqYAAAAAEA1zTB1FxhQAAAAA4CoypgAAAADQAl19HqiTyJgCAAAAAFxFxhQAAAAAojHmxOZk/V0YA9P25ouTvK08rf546+ZCiXaxDUl2ccEE+yS7bWzQ77GLi7eLk6SQ5T+JbZwkheLs+mvd1zb89hvL2JDPsj3LOEkycXY3eU/I7t/DE7QKOxHbYNemt01t2sV5bePq7eLa1qbdefXV2f+B4K23i407bnsfsL/fxXktY4N2x+iL508PAEBjvDsAAAAAQBQ8x9RZzDEFAAAAALiKjCkAAAAARMNzTB1FxhQAAAAA4CoypgAAAAAQhSd0YnOy/q6MjCkAAAAAwFVkTAEAAAAgGuaYOoqMKQAAAADAVWRMAQAAACAKnmPqLAam7c3nk7y+VoUYv/0/QyjQurZOCibYJcsbEu2T7A0JHqu4YMAyzm8VJkkK+e3aDMW3oU3L2JDl5dO2vtrdOY3d5SoTZ3+ntj0/npBdm54Gu2tHkrxBuzhPvXWT8lr212vZpm17bWqzzi6uLb8jvlq74zReu+surg3ff/IE7dr01tv9Qpt4/vQAADQWU1/lPXjwoCZNmqTk5GSlpqZq2rRpOnLkyCljRo8eLY/HE7Fdf/31EWV2796tcePGKSkpSb169dKtt96qhoYGJw8FAAAAQCwxxvmtC4upjy0nTZqkTz/9VOvXr1d9fb0KCws1Y8YMrV69+pRx06dP1z333BP+OSkpKfz/wWBQ48aNU0ZGhv785z/r008/1eTJkxUfH6+FCxc6diwAAAAAgBNiZmC6detWlZSU6C9/+YtGjBghSXr00Ud15ZVX6qGHHlKfPn2ajU1KSlJGRkaTr73yyiv661//qldffVXp6enKysrSggULdPvtt+uuu+6S39+G74MCAAAA6BSYY+qsmPkqb1lZmVJTU8ODUknKy8uT1+vVxo0bTxn71FNPKS0tTRdddJHmzJmjo0ePRtQ7dOhQpaenh/fl5+erurpa77//frN11tbWqrq6OmIDAAAAALRezGRMKyoq1KtXr4h9cXFx6tGjhyoqKpqNu+6663TeeeepT58+euedd3T77bdr+/btevbZZ8P1fn5QKin886nqXbRoke6++27bwwEAAAAQS3iOqaNcH5jOnj1b999//ynLbN261br+GTNmhP9/6NCh6t27t8aMGaMPP/xQ559/vnW9c+bMUVFRUfjn6upqZWZmWtcHAAAAAF2V6wPTW265RVOnTj1lmf79+ysjI0P79u2L2N/Q0KCDBw82O3+0KTk5OZKkHTt26Pzzz1dGRoY2bdoUUaayslKSTllvIBBQIBBocbsAAAAAYhdzTJ3l+sC0Z8+e6tmzZ9Ryubm5OnTokMrLy5WdnS1Jeu211xQKhcKDzZbYsmWLJKl3797heu+77z7t27cv/FXh9evXKzk5WUOGDGnl0QAAAAAAWitmFj8aPHiwCgoKNH36dG3atEl/+tOfNGvWLE2cODG8Iu/evXs1aNCgcAb0ww8/1IIFC1ReXq5du3bphRde0OTJk/WVr3xFw4YNkySNHTtWQ4YM0Xe/+1397//+r15++WXdeeeduuGGG8iIAgAAADiB55g6yvWMaWs89dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++Pbzqrt/v16uvvqqlS5eqpqZGmZmZuuaaa3TnnXeGY3w+n1588UXNnDlTubm56tatm6ZMmRLx3NPW8Hg88ng8rYoJxfus2pKkYMAuNphg95lEQ0Lrjq09YoO2cW34XCFk+ZSgULx9m0G/3c3Itk0Tb3/zC1nGWrfpa8ONOj5kFWZCltd6vf3nfaEGuzY99fa/l956uzhPg12cr64Nfa2zjLN8pzM++74ar+XvSCvfP07yGPvrzttgee+ptXv/8cXZv+cBADqvmBqY9ujRQ6tXr2729b59+8p87pOGzMxM/c///E/Ues877zytW7euXfoIAAAAoPNhjqmzYuarvAAAAACAzimmMqYAAAAA4AqeY+ooMqYAAAAAAFeRMQUAAACAKJhj6iwypgAAAAAAV5ExBQAAAIBoQubE5mT9XRgZUwAAAACAq8iYAgAAAEA0rMrrKAam7c3nlby+VoWE4uwT16F4j1Vc0DYuYBcnScEEyzYTLNsL2MW1JTbkt7+j2Mbaxpn4Ntz94kNWYR7LOF+cXZwkxcUHreJCIcvrtaF1v/8Rbdbb3QtCdW24hzTYHafXsk1jf3rktXzH8tXaHaNpw3eKjMfyXmnsfi89lterJHkb7A7U57e8BtrwngcA6LwYmAIAAABAFB45vCqvc1XHBD62BAAAAAC4iowpAAAAAERjjPWUixbX34WRMQUAAACAGLRs2TL17dtXCQkJysnJ0aZNm5otu3z5cn35y19W9+7d1b17d+Xl5Z2yfEdjYAoAAAAAUXiM81trrF27VkVFRZo/f742b96s4cOHKz8/X/v27Wuy/IYNG3TttdfqD3/4g8rKypSZmamxY8dq79697XB22o6BKQAAAADEmCVLlmj69OkqLCzUkCFDVFxcrKSkJK1cubLJ8k899ZR+8IMfKCsrS4MGDdIvf/lLhUIhlZaWdnDPm8bAFAAAAACiMR2wtVBdXZ3Ky8uVl5cX3uf1epWXl6eysrIW1XH06FHV19erR48eLW/YQSx+BAAAAACnierq6oifA4GAAoFAxL4DBw4oGAwqPT09Yn96erq2bdvWonZuv/129enTJ2Jw6yYypgAAAAAQhccYxzdJyszMVEpKSnhbtGhRux/L4sWLtWbNGj333HNKSEho9/ptkDEFAAAAgNPEnj17lJycHP7537OlkpSWliafz6fKysqI/ZWVlcrIyDhl/Q899JAWL16sV199VcOGDWufTrcDBqbtzes9sbWCibNPXIfiPVZxQb9tnFXYidjGv1POxiXYPwvK9jhDbWgz5A/ZBVrGeWzbkxQXH7SKi/c3WMX54+zak6QEf71VXEPQZxV3vN7+tlpfb9dmQ7x9m8E6u/tPyGd3rRuf/f3O1Nrdt4xlkz6PXXtS61dWPCkYsmvTE2zD/a7Ors1QvOWJbeV7JACcNkL/3JysX1JycnLEwLQpfr9f2dnZKi0t1fjx40+E/3Mho1mzZjUb98ADD+i+++7Tyy+/rBEjRrRXz9sFA1MAAAAAiDFFRUWaMmWKRowYoZEjR2rp0qWqqalRYWGhJGny5Mk6++yzw18Fvv/++zVv3jytXr1affv2VUVFhSTpjDPO0BlnnOHacZzEwBQAAAAAovj8PFCn6m+NCRMmaP/+/Zo3b54qKiqUlZWlkpKS8IJIu3fvlvdz31L52c9+prq6On3zm9+MqGf+/Pm666672tz/tmJgCgAAAAAxaNasWc1+dXfDhg0RP+/atcv5DrUBA1MAAAAAiKaVzxq1qr8LYwUCAAAAAICryJgCAAAAQDTGnNicrL8LI2MKAAAAAHAVGVMAAAAAiMJj7J9T3dL6uzIypgAAAAAAV5ExbW9ez4mtFUxc68p/XsgyNhRv2Z6/DX3128UFA5Zxlu1JUijB7iOrUELIvlG/XawvELSKi/c3WMVJkj/eLjbRX28XF28XJ0nd4uus4uqDPqu4mjj7C+9YnN0tuTbO/rqr89kdZ4PPrq+mDR+Hhjwd+1lqWz65Dobs7pUeu19nhex/RazfD4zdpSMTx2fiAGIUc0wdxbsDAAAAAMBVZEwBAAAAIApP6MTmZP1dGRlTAAAAAICryJgCAAAAQDTMMXUUGVMAAAAAgKvImAIAAABANOafm5P1d2FkTAEAAAAAriJjCgAAAABReIyRx8F5oE7WHQvImAIAAAAAXEXGtL15PCe2Vgj5Wlc+IjbOLjYUb9meZVyb2vTbfXoUSrD/1CmUYPkgqUDQus04y1h/oN4qLsFvFydJ3Sxjk+LrrOKS/cet4iTpzLhaq7jakN3tMTEuYBUnSYctY4/G2V93R71+q7har93vV72nDb+Xlm9ZIdvPYI39vdkTtDvOYNCuTW9dW95HLOPi7do0Xvu+AoCrWJXXUWRMAQAAAACuImMKAAAAANEYSZZfqmtx/V0YGVMAAAAAgKvImAIAAABAFKzK6ywypgAAAAAAV5ExBQAAAIBojBxelde5qmMBGVMAAAAAgKvImAIAAABANDzH1FFkTAEAAAAAriJj2t683hNbK5g4+88HQpb/gqE4j11cvF17khT0230KFLKOa8ODpixj4wJB6yYDCfVWcUmBOqu4bn67OEk6019rFZccf7xD4yQpNe6oVVyt5S9XwJtkFSdJfl+DVVy8N8G6Ta/H7vfLNq4t7H5DpJCx+7cMteEWEgra3de9lgfZlnuz9fuIz+59xPjs3/PsWgSAdhKSszciJ5+RGgPImAIAAAAAXEXGFAAAAACi4DmmzoqpjOnBgwc1adIkJScnKzU1VdOmTdORI0eaLb9r1y55PJ4mt6effjpcrqnX16xZ0xGHBAAAACAWnFz8yMmtC4upjOmkSZP06aefav369aqvr1dhYaFmzJih1atXN1k+MzNTn376acS+X/ziF3rwwQd1xRVXROx//PHHVVBQEP45NTW13fsPAAAAAGgsZgamW7duVUlJif7yl79oxIgRkqRHH31UV155pR566CH16dOnUYzP51NGRkbEvueee07f/va3dcYZZ0TsT01NbVQWAAAAACTxuBiHxcxXecvKypSamhoelEpSXl6evF6vNm7c2KI6ysvLtWXLFk2bNq3RazfccIPS0tI0cuRIrVy5UibKhVFbW6vq6uqIDQAAAADQejGTMa2oqFCvXr0i9sXFxalHjx6qqKhoUR0rVqzQ4MGDNWrUqIj999xzj772ta8pKSlJr7zyin7wgx/oyJEj+tGPftRsXYsWLdLdd9/d+gMBAAAAEHvImDrK9Yzp7Nmzm12g6OS2bdu2Nrdz7NgxrV69usls6dy5c/WlL31JF198sW6//XbddtttevDBB09Z35w5c1RVVRXe9uzZ0+Y+AgAAAEBX5HrG9JZbbtHUqVNPWaZ///7KyMjQvn37IvY3NDTo4MGDLZob+swzz+jo0aOaPHly1LI5OTlasGCBamtrFQgEmiwTCASafQ0AAABAJxOS5HG4/i7M9YFpz5491bNnz6jlcnNzdejQIZWXlys7O1uS9NprrykUCiknJydq/IoVK/T1r3+9RW1t2bJF3bt3txp4Go9Hxtu6K9b4Wt1MWCjO7rcjFG/bnl1cm9r0W36twW//2+0LBO2aDNRbt5kUqLOKOzNQaxcXbxcnSd0DR63iUuKP2bUXZ9eeJPWIq7GKOxryW8XFee2vuziv3XXn9dh/9cc21sn35eYYY9dqfcguzljGSVKo3u68Bu0uO3nr2tBXy/u68Vm22cr3SABA1+D6wLSlBg8erIKCAk2fPl3FxcWqr6/XrFmzNHHixPCKvHv37tWYMWP05JNPauTIkeHYHTt26PXXX9e6desa1fu73/1OlZWVuvTSS5WQkKD169dr4cKF+vGPf9xhxwYAAADg9OYxRh4H54E6WXcsiJmBqSQ99dRTmjVrlsaMGSOv16trrrlGjzzySPj1+vp6bd++XUePRmZXVq5cqXPOOUdjx45tVGd8fLyWLVumm2++WcYYDRgwQEuWLNH06dMdPx4AAAAAQIwNTHv06KHVq1c3+3rfvn2bfMzLwoULtXDhwiZjCgoKVFBQ0G59BAAAANAJsSqvo1xflRcAAAAA0LXFVMYUAAAAAFwRMlIbFhxsUf1dGBlTAAAAAICryJgCAAAAQDTMMXUUGVMAAAAAgKvImAIAAABAVA5nTNW1M6YMTNubx3NiawXjbV35zwv5LOMs/+VD8XZxkmTi7X7ZbOM8/pBVnCTF+xus4hL89dZtdvPXWcWdGV9rFdc9cDR6oWb0iK+xijvLMq5H3BGruLbEHg0FrOLiPUGruLbE+tqwEIPX8k0wZOzuW215yw1athkK2n05qKHB/h4S8tv11VtveV4t3wskycRZnlef5T29De959pEAgNMdA1MAAAAAiIY5po5ijikAAAAAwFVkTAEAAAAgmpCRo/NAeY4pAAAAAADuIWMKAAAAANGY0InNyfq7MDKmAAAAAABXkTEFAAAAgGhYlddRZEwBAAAAAK4iYwoAAAAA0bAqr6MYmLY3j+fE1gqhuNaV/zzjs4yz/JcPxdv/wljHxttNBI+LD9q1J8kf32AV181fb93mmf5aq7jugaNWcT3ia6ziJOksy9i0+MN27fmOWMVJUs+4aqu4o6GAVVy8x/6683piZ9GDkOzuW8bY3+/qg3Y3vAa/XVywwf5LRSbeLjZkeU8PxdvFSVLI8v3A+v3HZ38NAAA6LwamAAAAABANc0wdxRxTAAAAAICryJgCAAAAQDRGDmdMnas6FpAxBQAAAAC4iowpAAAAAETDHFNHkTEFAAAAALiKjCkAAAAARBMKSXLw0W6h2HlsnBPImAIAAAAAXEXGFAAAAACiYY6po8iYAgAAAABcRca0vXk8J7ZWMG34eCAU17q2wnE+u/aMZZwkmXi7T4E88Xbft4/3N1jFSVKiv94qLim+zrrN5PjjVnEp8ces4s6Kr7GKk6S0+MNWcb3iqq3ievrs4iSph9fuvNZ6aq3ivE7OPXFAyNjdQ+otbyJ18fY3kdqg3VtWfYNdmw1t6Gt9nN2N3cTbxYXa8G5ufLbvI3ZxxmsXBwCuI2PqKDKmAAAAAABXkTEFAAAAgGhCRpKDWc0QGVMAAAAAAFxDxhQAAAAAojAmJGOcW0vCybpjARlTAAAAAICryJgCAAAAQDTGODsPlFV5AQAAAABwDxlTAAAAAIjGOLwqLxlTAAAAAADcQ8a0vXk9J7ZWMG34eMD4Ojgurg2f5PjsYn1xdiuU+eOCVnGSlBhfbxWX7D9u3WZyvF1s97ijVnE94o5YxUnSWT672J6+asu4Y1ZxktTD8vfruLG7BiT782oraFp3z/m8+ni7m0G95U2koQ03vOPBeKu42qBdX2vr7d8iGyzPq4m3u0+aOPtrIGR5mNbvI3wkDiBWhUKSx8GVc1mVFwAAAAAA95AxBQAAAIBomGPqKDKmAAAAAABXkTEFAAAAgChMKCTj4BxTwxxTAAAAAADcQ8YUAAAAAKJhjqmjyJgCAAAAAFxFxhQAAAAAogkZyUPG1ClkTAEAAAAAriJj2t48nhNbKxhv68pHxPos4+LsPpEJteWKibdbaSwuPmgVF4hvsIqTpG7xdVZxZ8bVWreZGnfUKi7FMq5H3BGrOEnqGVdt16b3uGWcVZgkKc3XzSqu1tRbxYVkfw0EVWMVVy/LG4GkemP3S10fZxdX24abSE283yruWEO8VdzROLt7jyTVWd7vgj67e7Npw++Ibax1m214zwMAVxkjycGVc8mYAgAAAADgHjKmAAAAABCFCRkZB+eYGjKmAAAAAAC4h4wpAAAAAERjQnJ2jqmDdceAmMqY3nfffRo1apSSkpKUmpraohhjjObNm6fevXsrMTFReXl5+uCDDyLKHDx4UJMmTVJycrJSU1M1bdo0HTlivzAMAAAAADht2bJl6tu3rxISEpSTk6NNmzadsvzTTz+tQYMGKSEhQUOHDtW6des6qKfRxdTAtK6uTt/61rc0c+bMFsc88MADeuSRR1RcXKyNGzeqW7duys/P1/Hj/1oddNKkSXr//fe1fv16vfjii3r99dc1Y8YMJw4BAAAAQAwyIeP41hpr165VUVGR5s+fr82bN2v48OHKz8/Xvn37miz/5z//Wddee62mTZumt99+W+PHj9f48eP13nvvtcfpabOYGpjefffduvnmmzV06NAWlTfGaOnSpbrzzjt19dVXa9iwYXryySf1ySef6Pnnn5ckbd26VSUlJfrlL3+pnJwcXXbZZXr00Ue1Zs0affLJJw4eDQAAAADYWbJkiaZPn67CwkINGTJExcXFSkpK0sqVK5ss/5Of/EQFBQW69dZbNXjwYC1YsECXXHKJHnvssQ7uedNiamDaWjt37lRFRYXy8vLC+1JSUpSTk6OysjJJUllZmVJTUzVixIhwmby8PHm9Xm3cuLHD+wwAAADgNGRCzm8tVFdXp/Ly8ohxjtfrVV5eXnic8+/KysoiyktSfn5+s+U7Wqde/KiiokKSlJ6eHrE/PT09/FpFRYV69eoV8XpcXJx69OgRLtOU2tpa1dbWhn+uqqqSJDUEa5sLaVZD/fHohZoRrLX7bCF43G456pDffhlrE19vFRf01tnFqfX/FifVG7s26xrs4iSptt7u/Bz3N1jFHY0LWsVJUk2c3eT8RK9dXILP/rrz++zarLVcgOBw0H7hgiOWsUeD9v+Wxxrsrp/jltdrXZ1dnCTV19r9fjUcs7sXBI/6rOIkKXTU8h57zO4aCB2372uw1mMXV2d3jA0N9teAx9jHAjh9NOjE73KsPR6lQfWSg10+eV6qq6sj9gcCAQUCgYh9Bw4cUDAYbHKcs23btibrr6ioOOW4yG2uD0xnz56t+++//5Rltm7dqkGDBnVQj1pm0aJFuvvuuxvt/58PLFLhTV87AAAAQKf12WefKSUlxe1uROX3+5WRkaE3KpxfKOiMM85QZmZmxL758+frrrvucrxtt7k+ML3llls0derUU5bp37+/Vd0ZGRmSpMrKSvXu3Tu8v7KyUllZWeEy/z5BuKGhQQcPHgzHN2XOnDkqKioK/3zo0CGdd9552r17d0z8gsWi6upqZWZmas+ePUpOTna7O50W57ljcJ47BufZeZzjjsF57hic545RVVWlc889Vz169HC7Ky2SkJCgnTt3qq7O/ptxLWWMkccT+U2Wf8+WSlJaWpp8Pp8qKysj9ldWVjY7hsnIyGhV+Y7m+sC0Z8+e6tmzpyN19+vXTxkZGSotLQ0PRKurq7Vx48bwyr65ubk6dOiQysvLlZ2dLUl67bXXFAqFlJOT02zdTaXUpRNzWLmROSs5OZlz3AE4zx2D89wxOM/O4xx3DM5zx+A8dwyvN3aWu0lISFBCQoLb3Qjz+/3Kzs5WaWmpxo8fL0kKhUIqLS3VrFmzmozJzc1VaWmpbrrppvC+9evXKzc3twN6HF3sXA2Sdu/erS1btmj37t0KBoPasmWLtmzZEvHM0UGDBum5556TJHk8Ht10002699579cILL+jdd9/V5MmT1adPn/A/4ODBg1VQUKDp06dr06ZN+tOf/qRZs2Zp4sSJ6tOnjxuHCQAAAACnVFRUpOXLl+uJJ57Q1q1bNXPmTNXU1KiwsFCSNHnyZM2ZMydc/sYbb1RJSYkefvhhbdu2TXfddZfeeuutZgeyHc31jGlrzJs3T0888UT454svvliS9Ic//EGjR4+WJG3fvj28EJEk3XbbbaqpqdGMGTN06NAhXXbZZSopKYn4xOOpp57SrFmzNGbMGHm9Xl1zzTV65JFHOuagAAAAAKCVJkyYoP3792vevHmqqKhQVlaWSkpKwgsc7d69OyIrPWrUKK1evVp33nmn7rjjDl1wwQV6/vnnddFFF7l1CBFiamC6atUqrVq16pRl/n11L4/Ho3vuuUf33HNPszE9evTQ6tWr29S3QCCg+fPnN/n1XrQPznHH4Dx3DM5zx+A8O49z3DE4zx2D89wxOM/tZ9asWc1mPDds2NBo37e+9S1961vfcrhXdjwm1tZpBgAAAAB0KjE1xxQAAAAA0PkwMAUAAAAAuIqBKQAAAADAVQxMW+i+++7TqFGjlJSUpNTU1BbFGGM0b9489e7dW4mJicrLy9MHH3wQUebgwYOaNGmSkpOTlZqaqmnTpkU8/qarae352LVrlzweT5Pb008/HS7X1Otr1qzpiEM67dhcc6NHj250/q6//vqIMrt379a4ceOUlJSkXr166dZbb1VDQ4OTh3Jaa+15PnjwoH74wx9q4MCBSkxM1Lnnnqsf/ehHEauMS1zLy5YtU9++fZWQkKCcnBxt2rTplOWffvppDRo0SAkJCRo6dKjWrVsX8XpL7tNdUWvO8/Lly/XlL39Z3bt3V/fu3ZWXl9eo/NSpUxtdtwUFBU4fxmmvNed51apVjc7hvz9Tkeu5sdac46be6zwej8aNGxcuw7Xc2Ouvv66rrrpKffr0kcfj0fPPPx81ZsOGDbrkkksUCAQ0YMCAJhc3be39Hp2AQYvMmzfPLFmyxBQVFZmUlJQWxSxevNikpKSY559/3vzv//6v+frXv2769etnjh07Fi5TUFBghg8fbt58803zxz/+0QwYMMBce+21Dh3F6a+156OhocF8+umnEdvdd99tzjjjDHP48OFwOUnm8ccfjyj3+X+HrsTmmrv88svN9OnTI85fVVVV+PWGhgZz0UUXmby8PPP222+bdevWmbS0NDNnzhynD+e01drz/O6775pvfOMb5oUXXjA7duwwpaWl5oILLjDXXHNNRLmufC2vWbPG+P1+s3LlSvP++++b6dOnm9TUVFNZWdlk+T/96U/G5/OZBx54wPz1r381d955p4mPjzfvvvtuuExL7tNdTWvP83XXXWeWLVtm3n77bbN161YzdepUk5KSYj7++ONwmSlTppiCgoKI6/bgwYMddUinpdae58cff9wkJydHnMOKioqIMlzPkVp7jj/77LOI8/vee+8Zn89nHn/88XAZruXG1q1bZ/7zP//TPPvss0aSee65505Z/u9//7tJSkoyRUVF5q9//at59NFHjc/nMyUlJeEyrf23Q+fAwLSVHn/88RYNTEOhkMnIyDAPPvhgeN+hQ4dMIBAwv/71r40xxvz1r381ksxf/vKXcJnf//73xuPxmL1797Z730937XU+srKyzPe+972IfS25UXYFtuf48ssvNzfeeGOzr69bt854vd6IP5J+9rOfmeTkZFNbW9sufY8l7XUt/+Y3vzF+v9/U19eH93Xla3nkyJHmhhtuCP8cDAZNnz59zKJFi5os/+1vf9uMGzcuYl9OTo75P//n/xhjWnaf7opae57/XUNDgznzzDPNE088Ed43ZcoUc/XVV7d3V2Naa89ztL8/uJ4ba+u1/F//9V/mzDPPNEeOHAnv41o+tZa8R912223mwgsvjNg3YcIEk5+fH/65rf92iE18ldchO3fuVEVFhfLy8sL7UlJSlJOTo7KyMklSWVmZUlNTNWLEiHCZvLw8eb1ebdy4scP77Lb2OB/l5eXasmWLpk2b1ui1G264QWlpaRo5cqRWrlzZ6Jm3XUFbzvFTTz2ltLQ0XXTRRZozZ46OHj0aUe/QoUPDD3SWpPz8fFVXV+v9999v/wM5zbXX73ZVVZWSk5MVFxf5yOmueC3X1dWpvLw84p7q9XqVl5cXvqf+u7Kysojy0onr8mT5ltynuxqb8/zvjh49qvr6evXo0SNi/4YNG9SrVy8NHDhQM2fO1GeffdaufY8ltuf5yJEjOu+885SZmamrr7464v7K9RypPa7lFStWaOLEierWrVvEfq7ltol2b26PfzvEprjoRWCjoqJCkiL+UD/588nXKioq1KtXr4jX4+Li1KNHj3CZrqQ9zseKFSs0ePBgjRo1KmL/Pffco6997WtKSkrSK6+8oh/84Ac6cuSIfvSjH7Vb/2OB7Tm+7rrrdN5556lPnz565513dPvtt2v79u169tlnw/U2da2ffK2raY9r+cCBA1qwYIFmzJgRsb+rXssHDhxQMBhs8jrbtm1bkzHNXZefvwef3Ndcma7G5jz/u9tvv119+vSJ+KOyoKBA3/jGN9SvXz99+OGHuuOOO3TFFVeorKxMPp+vXY8hFtic54EDB2rlypUaNmyYqqqq9NBDD2nUqFF6//33dc4553A9/5u2XsubNm3Se++9pxUrVkTs51puu+buzdXV1Tp27Jj+8Y9/tPk+hNjUpQems2fP1v3333/KMlu3btWgQYM6qEedU0vPc1sdO3ZMq1ev1ty5cxu99vl9F198sWpqavTggw92mj/mnT7Hnx8cDR06VL1799aYMWP04Ycf6vzzz7euN9Z01LVcXV2tcePGaciQIbrrrrsiXuvs1zJi2+LFi7VmzRpt2LAhYmGeiRMnhv9/6NChGjZsmM4//3xt2LBBY8aMcaOrMSc3N1e5ubnhn0eNGqXBgwfr5z//uRYsWOBizzqnFStWaOjQoRo5cmTEfq5lwDldemB6yy23aOrUqacs079/f6u6MzIyJEmVlZXq3bt3eH9lZaWysrLCZfbt2xcR19DQoIMHD4bjO4OWnue2no9nnnlGR48e1eTJk6OWzcnJ0YIFC1RbW6tAIBC1/Omuo87xSTk5OZKkHTt26Pzzz1dGRkaj1fIqKysliWv5n1p6ng8fPqyCggKdeeaZeu655xQfH3/K8p3tWm5OWlqafD5f+Lo6qbKystlzmpGRccryLblPdzU25/mkhx56SIsXL9arr76qYcOGnbJs//79lZaWph07dnTJP+bbcp5Pio+P18UXX6wdO3ZI4nr+d205xzU1NVqzZo3uueeeqO109WvZRnP35uTkZCUmJsrn87X59wOxqUvPMe3Zs6cGDRp0ys3v91vV3a9fP2VkZKi0tDS8r7q6Whs3bgx/4pmbm6tDhw6pvLw8XOa1115TKBQK/+HfGbT0PLf1fKxYsUJf//rX1bNnz6hlt2zZou7du3eaP+Q76hyftGXLFkkK//GTm5urd999N2Iwtn79eiUnJ2vIkCHtc5CnAafPc3V1tcaOHSu/368XXnih0aMgmtLZruXm+P1+ZWdnR9xTQ6GQSktLI7JIn5ebmxtRXjpxXZ4s35L7dFdjc54l6YEHHtCCBQtUUlISMbe6OR9//LE+++yziAFUV2J7nj8vGAzq3XffDZ9DrudIbTnHTz/9tGpra/Wd73wnajtd/Vq2Ee3e3B6/H4hRbq++FCs++ugj8/bbb4cfRfL222+bt99+O+KRJAMHDjTPPvts+OfFixeb1NRU89vf/ta888475uqrr27ycTEXX3yx2bhxo3njjTfMBRdc0OUfF3Oq8/Hxxx+bgQMHmo0bN0bEffDBB8bj8Zjf//73jep84YUXzPLly827775rPvjgA/PTn/7UJCUlmXnz5jl+PKej1p7jHTt2mHvuuce89dZbZufOnea3v/2t6d+/v/nKV74Sjjn5uJixY8eaLVu2mJKSEtOzZ88u/7iY1pznqqoqk5OTY4YOHWp27NgR8SiChoYGYwzX8po1a0wgEDCrVq0yf/3rX82MGTNMampqeDXo7373u2b27Nnh8n/6059MXFyceeihh8zWrVvN/Pnzm3xcTLT7dFfT2vO8ePFi4/f7zTPPPBNx3Z58fzx8+LD58Y9/bMrKyszOnTvNq6++ai655BJzwQUXmOPHj7tyjKeD1p7nu+++27z88svmww8/NOXl5WbixIkmISHBvP/+++EyXM+RWnuOT7rsssvMhAkTGu3nWm7a4cOHw38XSzJLliwxb7/9tvnoo4+MMcbMnj3bfPe73w2XP/m4mFtvvdVs3brVLFu2rMnHxZzq3w6dEwPTFpoyZYqR1Gj7wx/+EC6jfz5f8KRQKGTmzp1r0tPTTSAQMGPGjDHbt2+PqPezzz4z1157rTnjjDNMcnKyKSwsjBjsdjXRzsfOnTsbnXdjjJkzZ47JzMw0wWCwUZ2///3vTVZWljnjjDNMt27dzPDhw01xcXGTZbuC1p7j3bt3m6985SumR48eJhAImAEDBphbb7014jmmxhiza9cuc8UVV5jExESTlpZmbrnllojHnHQ1rT3Pf/jDH5q8x0gyO3fuNMZwLRtjzKOPPmrOPfdc4/f7zciRI82bb74Zfu3yyy83U6ZMiSj/m9/8xnzhC18wfr/fXHjhheall16KeL0l9+muqDXn+bzzzmvyup0/f74xxpijR4+asWPHmp49e5r4+Hhz3nnnmenTp/MHpmndeb7pppvCZdPT082VV15pNm/eHFEf13Njrb1nbNu2zUgyr7zySqO6uJab1tz718lzO2XKFHP55Zc3isnKyjJ+v9/0798/4u/nk071b4fOyWNMF3jOAAAAAADgtNWl55gCAAAAANzHwBQAAAAA4CoGpgAAAAAAVzEwBQAAAAC4ioEpAAAAAMBVDEwBAAAAAK5iYAoAAAAAcBUDUwAAAACAqxiYAgAAAABcxcAUAAAAAOAqBqYAAAAAAFcxMAUAdCq//vWvlZiYqE8//TS8r7CwUMOGDVNVVZWLPQMAAM3xGGOM250AAKC9GGOUlZWlr3zlK3r00Uc1f/58rVy5Um+++abOPvtst7sHAACaEOd2BwAAaE8ej0f33XefvvnNbyojI0OPPvqo/vjHPzIoBQDgNEbGFADQKV1yySV6//339corr+jyyy93uzsAAOAUmGMKAOh0SkpKtG3bNgWDQaWnp7vdHQAAEAUZUwBAp7J582aNHj1aP//5z7Vq1SolJyfr6aefdrtbAADgFJhjCgDoNHbt2qVx48bpjjvu0LXXXqv+/fsrNzdXmzdv1iWXXOJ29wAAQDPImAIAOoWDBw9q1KhRGj16tIqLi8P7x40bp2AwqJKSEhd7BwAAToWBKQAAAADAVSx+BAAAAABwFQNTAAAAAICrGJgCAAAAAFzFwBQAAAAA4CoGpgAAAAAAVzEwBQAAAAC4ioEpAAAAAMBVDEwBAAAAAK5iYAoAAAAAcBUDUwAAAACAqxiYAgAAAABcxcAUAAAAAOCq/wc7ghVAcQH3uwAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" } ], - "execution_count": 12 + "execution_count": 59 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-07-18T23:01:54.134750Z", + "start_time": "2024-07-18T23:01:54.134710Z" + } + }, "cell_type": "code", "source": [ "a = 0.3\n", From 124ecb6855900043ec6a547668c93d7641998c40 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Fri, 19 Jul 2024 15:32:20 +0200 Subject: [PATCH 15/21] fix (all): add linear2qfe tests, static code checks, fix style --- .flake8 | 2 + Makefile | 36 +++++++--- poetry.lock | 135 ++++++++++++++++++++++++++++++++++--- pyproject.toml | 2 + qulearn/__init__.py | 4 +- qulearn/fim.py | 3 +- qulearn/hat_basis.py | 6 +- qulearn/mps.py | 11 +-- qulearn/mps_kronprod.py | 1 + qulearn/qlayer.py | 22 +++--- qulearn/trainer.py | 4 +- tests/test_datagen.py | 1 - tests/test_fat.py | 2 - tests/test_memory.py | 2 - tests/test_mps_kronprod.py | 6 +- tests/test_qlayer.py | 24 ++++++- 16 files changed, 215 insertions(+), 46 deletions(-) create mode 100644 .flake8 diff --git a/.flake8 b/.flake8 new file mode 100644 index 0000000..51b50a0 --- /dev/null +++ b/.flake8 @@ -0,0 +1,2 @@ +[flake8] +max-line-length = 100 \ No newline at end of file diff --git a/Makefile b/Makefile index b97de95..21cf613 100644 --- a/Makefile +++ b/Makefile @@ -1,20 +1,38 @@ -# Minimal makefile for Sphinx documentation +# Minimal makefile for Sphinx documentation and project maintenance tasks # -# You can set these variables from the command line, and also -# from the environment for the first two. +# Variables that can be set from the command line or environment SPHINXOPTS ?= SPHINXBUILD ?= sphinx-build SOURCEDIR = docs BUILDDIR = build -# Put it first so that "make" without argument is like "make help". +# Default target executed when no arguments are given to make. +default: all + +all: help format static test + help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) -.PHONY: help Makefile +# Code formatting and static analysis +format: + black --line-length 100 . + isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 . + +format_check: + black --line-length 100 --check . + isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 . --check-only + +static: + flake8 qulearn tests + mypy qulearn tests --ignore-missing-imports --no-strict-optional + +# Testing +test: + pytest tests/ + +test_coverage: + coverage run --source=qulearn --module pytest -v tests/ && coverage report -m -# Catch-all target: route all unknown targets to Sphinx using the new -# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). -%: Makefile - @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) +.PHONY: help format format_check static test test_coverage \ No newline at end of file diff --git a/poetry.lock b/poetry.lock index 624ed9c..120fa91 100644 --- a/poetry.lock +++ b/poetry.lock @@ -596,6 +596,70 @@ mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pill test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] +[[package]] +name = "coverage" +version = "7.6.0" +description = "Code coverage measurement for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "coverage-7.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dff044f661f59dace805eedb4a7404c573b6ff0cdba4a524141bc63d7be5c7fd"}, + {file = "coverage-7.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8659fd33ee9e6ca03950cfdcdf271d645cf681609153f218826dd9805ab585c"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7792f0ab20df8071d669d929c75c97fecfa6bcab82c10ee4adb91c7a54055463"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4b3cd1ca7cd73d229487fa5caca9e4bc1f0bca96526b922d61053ea751fe791"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7e128f85c0b419907d1f38e616c4f1e9f1d1b37a7949f44df9a73d5da5cd53c"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a94925102c89247530ae1dab7dc02c690942566f22e189cbd53579b0693c0783"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dcd070b5b585b50e6617e8972f3fbbee786afca71b1936ac06257f7e178f00f6"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d50a252b23b9b4dfeefc1f663c568a221092cbaded20a05a11665d0dbec9b8fb"}, + {file = "coverage-7.6.0-cp310-cp310-win32.whl", hash = "sha256:0e7b27d04131c46e6894f23a4ae186a6a2207209a05df5b6ad4caee6d54a222c"}, + {file = "coverage-7.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dece71673b3187c86226c3ca793c5f891f9fc3d8aa183f2e3653da18566169"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7b525ab52ce18c57ae232ba6f7010297a87ced82a2383b1afd238849c1ff933"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4bea27c4269234e06f621f3fac3925f56ff34bc14521484b8f66a580aacc2e7d"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed8d1d1821ba5fc88d4a4f45387b65de52382fa3ef1f0115a4f7a20cdfab0e94"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01c322ef2bbe15057bc4bf132b525b7e3f7206f071799eb8aa6ad1940bcf5fb1"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03cafe82c1b32b770a29fd6de923625ccac3185a54a5e66606da26d105f37dac"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0d1b923fc4a40c5832be4f35a5dab0e5ff89cddf83bb4174499e02ea089daf57"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4b03741e70fb811d1a9a1d75355cf391f274ed85847f4b78e35459899f57af4d"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a73d18625f6a8a1cbb11eadc1d03929f9510f4131879288e3f7922097a429f63"}, + {file = "coverage-7.6.0-cp311-cp311-win32.whl", hash = "sha256:65fa405b837060db569a61ec368b74688f429b32fa47a8929a7a2f9b47183713"}, + {file = "coverage-7.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:6379688fb4cfa921ae349c76eb1a9ab26b65f32b03d46bb0eed841fd4cb6afb1"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f7db0b6ae1f96ae41afe626095149ecd1b212b424626175a6633c2999eaad45b"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bbdf9a72403110a3bdae77948b8011f644571311c2fb35ee15f0f10a8fc082e8"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc44bf0315268e253bf563f3560e6c004efe38f76db03a1558274a6e04bf5d5"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da8549d17489cd52f85a9829d0e1d91059359b3c54a26f28bec2c5d369524807"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0086cd4fc71b7d485ac93ca4239c8f75732c2ae3ba83f6be1c9be59d9e2c6382"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fad32ee9b27350687035cb5fdf9145bc9cf0a094a9577d43e909948ebcfa27b"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:044a0985a4f25b335882b0966625270a8d9db3d3409ddc49a4eb00b0ef5e8cee"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:76d5f82213aa78098b9b964ea89de4617e70e0d43e97900c2778a50856dac605"}, + {file = "coverage-7.6.0-cp312-cp312-win32.whl", hash = "sha256:3c59105f8d58ce500f348c5b56163a4113a440dad6daa2294b5052a10db866da"}, + {file = "coverage-7.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:ca5d79cfdae420a1d52bf177de4bc2289c321d6c961ae321503b2ca59c17ae67"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d39bd10f0ae453554798b125d2f39884290c480f56e8a02ba7a6ed552005243b"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:beb08e8508e53a568811016e59f3234d29c2583f6b6e28572f0954a6b4f7e03d"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2e16f4cd2bc4d88ba30ca2d3bbf2f21f00f382cf4e1ce3b1ddc96c634bc48ca"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6616d1c9bf1e3faea78711ee42a8b972367d82ceae233ec0ac61cc7fec09fa6b"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4567d6c334c46046d1c4c20024de2a1c3abc626817ae21ae3da600f5779b44"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d17c6a415d68cfe1091d3296ba5749d3d8696e42c37fca5d4860c5bf7b729f03"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9146579352d7b5f6412735d0f203bbd8d00113a680b66565e205bc605ef81bc6"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:cdab02a0a941af190df8782aafc591ef3ad08824f97850b015c8c6a8b3877b0b"}, + {file = "coverage-7.6.0-cp38-cp38-win32.whl", hash = "sha256:df423f351b162a702c053d5dddc0fc0ef9a9e27ea3f449781ace5f906b664428"}, + {file = "coverage-7.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:f2501d60d7497fd55e391f423f965bbe9e650e9ffc3c627d5f0ac516026000b8"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7221f9ac9dad9492cecab6f676b3eaf9185141539d5c9689d13fd6b0d7de840c"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ddaaa91bfc4477d2871442bbf30a125e8fe6b05da8a0015507bfbf4718228ab2"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4cbe651f3904e28f3a55d6f371203049034b4ddbce65a54527a3f189ca3b390"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:831b476d79408ab6ccfadaaf199906c833f02fdb32c9ab907b1d4aa0713cfa3b"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46c3d091059ad0b9c59d1034de74a7f36dcfa7f6d3bde782c49deb42438f2450"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4d5fae0a22dc86259dee66f2cc6c1d3e490c4a1214d7daa2a93d07491c5c04b6"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:07ed352205574aad067482e53dd606926afebcb5590653121063fbf4e2175166"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:49c76cdfa13015c4560702574bad67f0e15ca5a2872c6a125f6327ead2b731dd"}, + {file = "coverage-7.6.0-cp39-cp39-win32.whl", hash = "sha256:482855914928c8175735a2a59c8dc5806cf7d8f032e4820d52e845d1f731dca2"}, + {file = "coverage-7.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:543ef9179bc55edfd895154a51792b01c017c87af0ebaae092720152e19e42ca"}, + {file = "coverage-7.6.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:6fe885135c8a479d3e37a7aae61cbd3a0fb2deccb4dda3c25f92a49189f766d6"}, + {file = "coverage-7.6.0.tar.gz", hash = "sha256:289cc803fa1dc901f84701ac10c9ee873619320f2f9aff38794db4a4a0268d51"}, +] + +[package.extras] +toml = ["tomli"] + [[package]] name = "cycler" version = "0.12.1" @@ -751,6 +815,22 @@ docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1 testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] typing = ["typing-extensions (>=4.8)"] +[[package]] +name = "flake8" +version = "7.1.0" +description = "the modular source code checker: pep8 pyflakes and co" +optional = false +python-versions = ">=3.8.1" +files = [ + {file = "flake8-7.1.0-py2.py3-none-any.whl", hash = "sha256:2e416edcc62471a64cea09353f4e7bdba32aeb079b6e360554c659a122b1bc6a"}, + {file = "flake8-7.1.0.tar.gz", hash = "sha256:48a07b626b55236e0fb4784ee69a465fbf59d79eec1f5b4785c3d3bc57d17aa5"}, +] + +[package.dependencies] +mccabe = ">=0.7.0,<0.8.0" +pycodestyle = ">=2.12.0,<2.13.0" +pyflakes = ">=3.2.0,<3.3.0" + [[package]] name = "flatbuffers" version = "24.3.25" @@ -1497,13 +1577,13 @@ test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (> [[package]] name = "jupyterlab" -version = "4.2.3" +version = "4.2.4" description = "JupyterLab computational environment" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.2.3-py3-none-any.whl", hash = "sha256:0b59d11808e84bb84105c73364edfa867dd475492429ab34ea388a52f2e2e596"}, - {file = "jupyterlab-4.2.3.tar.gz", hash = "sha256:df6e46969ea51d66815167f23d92f105423b7f1f06fa604d4f44aeb018c82c7b"}, + {file = "jupyterlab-4.2.4-py3-none-any.whl", hash = "sha256:807a7ec73637744f879e112060d4b9d9ebe028033b7a429b2d1f4fc523d00245"}, + {file = "jupyterlab-4.2.4.tar.gz", hash = "sha256:343a979fb9582fd08c8511823e320703281cd072a0049bcdafdc7afeda7f2537"}, ] [package.dependencies] @@ -1528,7 +1608,7 @@ dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] -upgrade-extension = ["copier (>=8,<10)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] [[package]] name = "jupyterlab-pygments" @@ -2013,6 +2093,17 @@ files = [ [package.dependencies] traitlets = "*" +[[package]] +name = "mccabe" +version = "0.7.0" +description = "McCabe checker, plugin for flake8" +optional = false +python-versions = ">=3.6" +files = [ + {file = "mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"}, + {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, +] + [[package]] name = "mdurl" version = "0.1.2" @@ -3044,6 +3135,17 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "pycodestyle" +version = "2.12.0" +description = "Python style guide checker" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycodestyle-2.12.0-py2.py3-none-any.whl", hash = "sha256:949a39f6b86c3e1515ba1787c2022131d165a8ad271b11370a8819aa070269e4"}, + {file = "pycodestyle-2.12.0.tar.gz", hash = "sha256:442f950141b4f43df752dd303511ffded3a04c2b6fb7f65980574f0c31e6e79c"}, +] + [[package]] name = "pycparser" version = "2.22" @@ -3069,6 +3171,17 @@ files = [ numpy = "*" scipy = "*" +[[package]] +name = "pyflakes" +version = "3.2.0" +description = "passive checker of Python programs" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyflakes-3.2.0-py2.py3-none-any.whl", hash = "sha256:84b5be138a2dfbb40689ca07e2152deb896a65c3a3e24c251c5c62489568074a"}, + {file = "pyflakes-3.2.0.tar.gz", hash = "sha256:1c61603ff154621fb2a9172037d84dca3500def8c8b630657d1701f026f8af3f"}, +] + [[package]] name = "pygments" version = "2.18.0" @@ -3741,13 +3854,13 @@ win32 = ["pywin32"] [[package]] name = "setuptools" -version = "71.0.2" +version = "71.0.3" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-71.0.2-py3-none-any.whl", hash = "sha256:f6640114f96be808024fbd1f721161215543796d3a68da4524349de700604ce8"}, - {file = "setuptools-71.0.2.tar.gz", hash = "sha256:ca359bea0cd5c8ce267d7463239107e87f312f2e2a11b6ca6357565d82b6c0d7"}, + {file = "setuptools-71.0.3-py3-none-any.whl", hash = "sha256:f501b6e6db709818dc76882582d9c516bf3b67b948864c5fa1d1624c09a49207"}, + {file = "setuptools-71.0.3.tar.gz", hash = "sha256:3d8531791a27056f4a38cd3e54084d8b1c4228ff9cf3f2d7dd075ec99f9fd70d"}, ] [package.extras] @@ -3950,13 +4063,13 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "sympy" -version = "1.13.0" +version = "1.13.1" description = "Computer algebra system (CAS) in Python" optional = false python-versions = ">=3.8" files = [ - {file = "sympy-1.13.0-py3-none-any.whl", hash = "sha256:6b0b32a4673fb91bd3cac3b55406c8e01d53ae22780be467301cc452f6680c92"}, - {file = "sympy-1.13.0.tar.gz", hash = "sha256:3b6af8f4d008b9a1a6a4268b335b984b23835f26d1d60b0526ebc71d48a25f57"}, + {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, + {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, ] [package.dependencies] @@ -4661,4 +4774,4 @@ test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", [metadata] lock-version = "2.0" python-versions = ">=3.9 <3.12" -content-hash = "87fff0ba39dd977bedf35bfb6ed85b069ff9c0824e8771527e93c7dbeb7a1112" +content-hash = "ecd48db0781c6beecd4d92a7e9ac5bfed95b83bf713bd2defd0c8820230fee20" diff --git a/pyproject.toml b/pyproject.toml index 0c6f6a5..971ede0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,10 +28,12 @@ tntorch="^1.1.1" [tool.poetry.group.dev.dependencies] mypy = "^1.3.0" line-profiler = "^4.0.3" +flake8 = "^7.0" [tool.poetry.group.test.dependencies] pytest = "^7.3.1" +coverage = "^7.6.0" [tool.poetry.group.docs.dependencies] diff --git a/qulearn/__init__.py b/qulearn/__init__.py index 97a4f5e..5fa6e2a 100644 --- a/qulearn/__init__.py +++ b/qulearn/__init__.py @@ -1,9 +1,11 @@ import toml import os + def get_version(): here = os.path.dirname(os.path.realpath(__file__)) version_info = toml.load(os.path.join(here, "../pyproject.toml")) return version_info['tool']['poetry']['version'] -__version__ = get_version() \ No newline at end of file + +__version__ = get_version() diff --git a/qulearn/fim.py b/qulearn/fim.py index d71dc6d..b722bf0 100644 --- a/qulearn/fim.py +++ b/qulearn/fim.py @@ -322,7 +322,8 @@ def empirical_fim(model: Model, features: Tensor) -> Tensor: :raises ValueError: If invalid features format. .. note:: - This function assumes that the output of the model is a differentiable tensor of probabilities. + This function assumes that the output of the model is a differentiable + tensor of probabilities. """ _check_features(features) diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index 50a1eb4..b1b730c 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -60,9 +60,11 @@ def grid_points(self, x: Tensor) -> Tuple[Tensor, Tensor]: """ Finds the grid points surrounding given values in the discretized space. - :param x: A tensor containing the values for which the surrounding grid points are to be found. + :param x: A tensor containing the values for which the surrounding + grid points are to be found. :type x: Tensor - :returns: A tuple of two tensors. The first tensor contains the left boundary points of the segments, the second tensor contains the right boundary points of the segments. + :returns: A tuple of two tensors. The first tensor contains the left boundary points + of the segments, the second tensor contains the right boundary points of the segments. :rtype: Tuple[Tensor, Tensor] """ diff --git a/qulearn/mps.py b/qulearn/mps.py index 416b788..f5d6a05 100644 --- a/qulearn/mps.py +++ b/qulearn/mps.py @@ -105,7 +105,8 @@ def contract(self, mps, L: int) -> Tensor: def left_core_reshape(self, core: Tensor) -> Tensor: """ - Reshapes a core tensor for the left-most core, preparing it for SVD and embedding into a unitary matrix. + Reshapes a core tensor for the left-most core, + preparing it for SVD and embedding into a unitary matrix. :param core: The core tensor to reshape. :type core: Tensor @@ -136,14 +137,16 @@ def reg_core_reshape(self, core: Tensor) -> Tensor: class HatBasisMPS: """ - Generates Matrix Product States (MPS) corresponding to evaluations of linear hat basis functions. + Generates Matrix Product States (MPS) corresponding to evaluations + of linear hat basis functions. :param basis: The hat basis to use for generating the MPS. :type basis: HatBasis .. note:: - The number of nodes in the hat basis must be a power of 2, corresponding to the number of qubits used. - Currently works only for scalar inputs x. + The number of nodes in the hat basis must be a power of 2, + corresponding to the number of qubits used. + Currently, works only for scalar inputs x. """ def __init__(self, basis: HatBasis) -> None: diff --git a/qulearn/mps_kronprod.py b/qulearn/mps_kronprod.py index 8c9c950..b6898df 100644 --- a/qulearn/mps_kronprod.py +++ b/qulearn/mps_kronprod.py @@ -28,6 +28,7 @@ def kron(tleft: MPS, tright: MPS) -> MPS: return t3 + def zkron(tleft: MPS, tright: MPS) -> MPS: """ Performs the z-ordered Kronecker product of two MPS tensors. diff --git a/qulearn/qlayer.py b/qulearn/qlayer.py index 4162c85..1abea22 100644 --- a/qulearn/qlayer.py +++ b/qulearn/qlayer.py @@ -230,7 +230,7 @@ class Linear2DBasisQFE(CircuitLayer): """ Layer for the 2D hat basis quantum feature embedding. - :param basis: The hat basis class. + :param basis: The 1D hat basis class. :type basis: HatBasis :param wires: The wires to be used by the layer :type wires: Wires @@ -839,11 +839,13 @@ def __init__( if not self.num_wires >= self.num_features: raise ValueError( - f"The number of wires ({self.num_wires}) must be greater than or equal to the number of features ({self.num_features})." + f"The number of wires ({self.num_wires}) " + f"must be greater than or equal to the number of features ({self.num_features})." ) if not self.num_wires % self.num_features == 0: raise ValueError( - f"The number of wires ({self.num_wires}) must be a multiple of the number of features ({self.num_features})." + f"The number of wires ({self.num_wires}) " + f"must be a multiple of the number of features ({self.num_features})." ) def circuit(self, x: Tensor) -> None: @@ -856,7 +858,8 @@ def circuit(self, x: Tensor) -> None: num_features = x.shape[-1] if num_features != self.num_features: raise ValueError( - f"Input tensor last dimension ({num_features}) must be equal to the number of features ({self.num_features})." + f"Input tensor last dimension ({num_features}) " + f"must be equal to the number of features ({self.num_features})." ) freq = 0 @@ -864,7 +867,7 @@ def circuit(self, x: Tensor) -> None: x_ = self.base ** (freq * self.omega) * x self.qfunc( x_, - self.wires[i : i + num_features], + self.wires[i: i + num_features], self.n_repeat, **self.kwargs, ) @@ -911,11 +914,13 @@ def __init__( if not self.num_wires >= self.num_features: raise ValueError( - f"The number of wires ({self.num_wires}) must be greater than or equal to the number of features ({self.num_features})." + f"The number of wires ({self.num_wires}) " + f"must be greater than or equal to the number of features ({self.num_features})." ) if not self.num_wires % self.num_features == 0: raise ValueError( - f"The number of wires ({self.num_wires}) must be a multiple of the number of features ({self.num_features})." + f"The number of wires ({self.num_wires}) " + f"must be a multiple of the number of features ({self.num_features})." ) def circuit(self, x: Tensor) -> None: @@ -928,7 +933,8 @@ def circuit(self, x: Tensor) -> None: num_features = x.shape[-1] if num_features != self.num_features: raise ValueError( - f"Input tensor last dimension ({num_features}) must be equal to the number of features ({self.num_features})." + f"Input tensor last dimension ({num_features}) " + f"must be equal to the number of features ({self.num_features})." ) num_repeats = int(self.num_wires / num_features) diff --git a/qulearn/trainer.py b/qulearn/trainer.py index 52c100a..8493a8d 100644 --- a/qulearn/trainer.py +++ b/qulearn/trainer.py @@ -258,8 +258,8 @@ def kernel_ridge_regression( K = model.kernel_matrix(inputs, inputs) num_samples = inputs.shape[0] - I = torch.eye(num_samples, dtype=labels.dtype, device=labels.device) - M = K + self.lambda_reg * I + Id = torch.eye(num_samples, dtype=labels.dtype, device=labels.device) + M = K + self.lambda_reg * Id alpha = nn.Parameter(torch.linalg.solve(M, labels)) return alpha diff --git a/tests/test_datagen.py b/tests/test_datagen.py index b28ff7b..ac13008 100644 --- a/tests/test_datagen.py +++ b/tests/test_datagen.py @@ -1,5 +1,4 @@ import pytest -import torch import math import numpy as np import torch diff --git a/tests/test_fat.py b/tests/test_fat.py index 4306a0b..5aa7a2a 100644 --- a/tests/test_fat.py +++ b/tests/test_fat.py @@ -1,5 +1,3 @@ -import os -import tempfile import torch from torch.nn import Linear from torch.optim import Adam diff --git a/tests/test_memory.py b/tests/test_memory.py index d042ff1..dd71c7a 100644 --- a/tests/test_memory.py +++ b/tests/test_memory.py @@ -1,5 +1,3 @@ -import os -import tempfile import torch from torch.nn import Linear from torch.optim import Adam diff --git a/tests/test_mps_kronprod.py b/tests/test_mps_kronprod.py index b98660e..0548512 100644 --- a/tests/test_mps_kronprod.py +++ b/tests/test_mps_kronprod.py @@ -3,9 +3,11 @@ import tntorch as tn from qulearn.mps_kronprod import kron, zkron + def tensor_to_vector(tensor): return tensor.numpy().reshape(-1) + def test_kron(): t1 = tn.randn([2]*3) t2 = tn.ones([2]*3) @@ -20,6 +22,7 @@ def test_kron(): assert delta < 1e-5, f"Delta too large: {delta}" + def test_zkron(): t1 = tn.randn([2]*3) t2 = tn.ones([2]*3) @@ -36,9 +39,10 @@ def test_zkron(): assert delta < 1e-5, f"Delta too large: {delta}" + def test_core_length_mismatch(): t1 = tn.randn([2]*3) t2 = tn.randn([2]*4) # Different size to induce error with pytest.raises(ValueError): - zkron(t1, t2) \ No newline at end of file + zkron(t1, t2) diff --git a/tests/test_qlayer.py b/tests/test_qlayer.py index 370f10f..ce4ce0c 100644 --- a/tests/test_qlayer.py +++ b/tests/test_qlayer.py @@ -7,6 +7,7 @@ MeasurementLayer, IQPEmbeddingLayer, HatBasisQFE, + Linear2DBasisQFE, TwoQubitRotCXMPSLayer, EmbedU, RYCZLayer, @@ -211,7 +212,6 @@ def test_embed_altrotvar_layer_circuit(mock_embed_altrotvar_layer): def test_embed_ryczvar_layer_num_parameters(mock_embed_ryczvar_layer): layer = mock_embed_ryczvar_layer - x = torch.tensor([0.1, 0.2]) num_parameters = sum(p.numel() for p in layer.parameters()) num_qubits = len(layer.wires) expected = layer.num_repeat * (num_qubits + 2 * (num_qubits - 1)) @@ -220,7 +220,6 @@ def test_embed_ryczvar_layer_num_parameters(mock_embed_ryczvar_layer): def test_embed_altrotvar_layer_num_parameters(mock_embed_altrotvar_layer): layer = mock_embed_altrotvar_layer - x = torch.tensor([0.1, 0.2]) num_parameters = sum(p.numel() for p in layer.parameters()) num_qubits = len(layer.wires) expected = layer.num_repeat * 3 * (num_qubits + 2 * (num_qubits - 1)) @@ -466,6 +465,27 @@ def test_hat_basis_qfe_compute_norm(sample_hat_basis): assert 1.0 == pytest.approx(norm, abs=1e-4) +def test_Linear2DBasisQFE_initialization(sample_hat_basis): + layer = Linear2DBasisQFE(wires=2, basis=sample_hat_basis, sqrt=True, normalize=True) + assert layer.sqrt is True + assert layer.normalize is True + + +def test_Linear2DBasisQFE_circuit(sample_hat_basis): + x = torch.tensor([0.0, 0.0]) + layer = Linear2DBasisQFE(wires=4, basis=sample_hat_basis) + layer.circuit(x) + assert layer.norm == pytest.approx(1.0, abs=1e-4) + + +def test_Linear2DBasisQFE_compute_norm(sample_hat_basis): + x = torch.tensor([0.0, 0.0]) + layer = Linear2DBasisQFE(wires=4, basis=sample_hat_basis) + norm = layer.compute_norm(x) + assert isinstance(norm, float) + assert 1.0 == pytest.approx(norm, abs=1e-4) + + def test_TwoQubitRotCXMPSLayer_initialization(): wires = 4 layer = TwoQubitRotCXMPSLayer(wires=wires) From a8a89952740943a35295bec0e86c33be8df0e192 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Fri, 19 Jul 2024 18:45:31 +0200 Subject: [PATCH 16/21] update (Makefile): add new tests and checks --- .flake8 | 5 ++- .gitlab-ci.yml | 24 ----------- .pre-commit-config.yaml | 12 ------ Makefile | 16 ++++--- docs/conf.py | 4 +- poetry.lock | 87 +++++++++++++++++++++++++++++++++++++- pyproject.toml | 4 +- qulearn/__init__.py | 5 ++- qulearn/datagen.py | 41 ++++++------------ qulearn/fat.py | 3 +- qulearn/fim.py | 15 +++---- qulearn/hat_basis.py | 4 +- qulearn/memory.py | 5 ++- qulearn/mps.py | 9 ++-- qulearn/mps_kronprod.py | 2 +- qulearn/observable.py | 5 ++- qulearn/qlayer.py | 75 ++++++++++++-------------------- qulearn/rademacher.py | 2 +- qulearn/trainer.py | 24 ++++------- qulearn/utils.py | 10 ++--- tests/test_datagen.py | 10 ++--- tests/test_fat.py | 10 ++--- tests/test_fim.py | 34 ++++++--------- tests/test_hat_basis.py | 13 ++---- tests/test_loss.py | 1 + tests/test_memory.py | 10 +++-- tests/test_mps.py | 13 +++--- tests/test_mps_kronprod.py | 15 ++++--- tests/test_observable.py | 8 ++-- tests/test_qkernel.py | 4 +- tests/test_qlayer.py | 40 ++++++++---------- tests/test_rademacher.py | 5 ++- tests/test_trainer.py | 22 +++++----- tests/test_utils.py | 12 +++--- 34 files changed, 270 insertions(+), 279 deletions(-) delete mode 100644 .gitlab-ci.yml delete mode 100644 .pre-commit-config.yaml diff --git a/.flake8 b/.flake8 index 51b50a0..b73a6b8 100644 --- a/.flake8 +++ b/.flake8 @@ -1,2 +1,5 @@ [flake8] -max-line-length = 100 \ No newline at end of file +max-line-length = 100 +ignore = + E203, + W503 diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml deleted file mode 100644 index a77157a..0000000 --- a/.gitlab-ci.yml +++ /dev/null @@ -1,24 +0,0 @@ -image: python:3.11 - -stages: - - test - - docs - -before_script: - - python -V - - pip install . - -test: - stage: test - script: - - pip install pytest - - pytest tests/ - rules: - - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH - -docs: - script: - - pip install sphinx - - make html - rules: - - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml deleted file mode 100644 index 31a5fe2..0000000 --- a/.pre-commit-config.yaml +++ /dev/null @@ -1,12 +0,0 @@ -repos: -- repo: https://github.com/pre-commit/pre-commit-hooks - rev: v2.3.0 - hooks: - - id: check-yaml - - id: end-of-file-fixer - - id: trailing-whitespace - - id: detect-private-key -- repo: https://github.com/psf/black - rev: 22.10.0 - hooks: - - id: black diff --git a/Makefile b/Makefile index 21cf613..1792dd3 100644 --- a/Makefile +++ b/Makefile @@ -10,19 +10,21 @@ BUILDDIR = build # Default target executed when no arguments are given to make. default: all -all: help format static test +all: format format_check static docs-html test test_coverage help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) -# Code formatting and static analysis +docs-%: + @$(SPHINXBUILD) -M $* "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + format: - black --line-length 100 . - isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 . + black --line-length 100 qulearn tests + isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 qulearn tests format_check: - black --line-length 100 --check . - isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 . --check-only + black --line-length 100 --check qulearn tests + isort --multi-line 3 --trailing-comma --force-grid-wrap 0 --use-parentheses --line-width 100 qulearn tests --check-only static: flake8 qulearn tests @@ -35,4 +37,4 @@ test: test_coverage: coverage run --source=qulearn --module pytest -v tests/ && coverage report -m -.PHONY: help format format_check static test test_coverage \ No newline at end of file +.PHONY: help docs-% format format_check static test test_coverage diff --git a/docs/conf.py b/docs/conf.py index 18939eb..94adaa0 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -9,7 +9,7 @@ project = "QuLearn" copyright = "2023, Mazen Ali" author = "Mazen Ali" -release = "0.1.0" +release = "0.7.0" # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration @@ -24,4 +24,4 @@ # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_theme = "alabaster" -html_static_path = ["_static"] +html_static_path = [] diff --git a/poetry.lock b/poetry.lock index 120fa91..0e7ca62 100644 --- a/poetry.lock +++ b/poetry.lock @@ -273,6 +273,52 @@ charset-normalizer = ["charset-normalizer"] html5lib = ["html5lib"] lxml = ["lxml"] +[[package]] +name = "black" +version = "24.4.2" +description = "The uncompromising code formatter." +optional = false +python-versions = ">=3.8" +files = [ + {file = "black-24.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dd1b5a14e417189db4c7b64a6540f31730713d173f0b63e55fabd52d61d8fdce"}, + {file = "black-24.4.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e537d281831ad0e71007dcdcbe50a71470b978c453fa41ce77186bbe0ed6021"}, + {file = "black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaea3008c281f1038edb473c1aa8ed8143a5535ff18f978a318f10302b254063"}, + {file = "black-24.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:7768a0dbf16a39aa5e9a3ded568bb545c8c2727396d063bbaf847df05b08cd96"}, + {file = "black-24.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:257d724c2c9b1660f353b36c802ccece186a30accc7742c176d29c146df6e474"}, + {file = "black-24.4.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bdde6f877a18f24844e381d45e9947a49e97933573ac9d4345399be37621e26c"}, + {file = "black-24.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e151054aa00bad1f4e1f04919542885f89f5f7d086b8a59e5000e6c616896ffb"}, + {file = "black-24.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:7e122b1c4fb252fd85df3ca93578732b4749d9be076593076ef4d07a0233c3e1"}, + {file = "black-24.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:accf49e151c8ed2c0cdc528691838afd217c50412534e876a19270fea1e28e2d"}, + {file = "black-24.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:88c57dc656038f1ab9f92b3eb5335ee9b021412feaa46330d5eba4e51fe49b04"}, + {file = "black-24.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be8bef99eb46d5021bf053114442914baeb3649a89dc5f3a555c88737e5e98fc"}, + {file = "black-24.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:415e686e87dbbe6f4cd5ef0fbf764af7b89f9057b97c908742b6008cc554b9c0"}, + {file = "black-24.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bf10f7310db693bb62692609b397e8d67257c55f949abde4c67f9cc574492cc7"}, + {file = "black-24.4.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:98e123f1d5cfd42f886624d84464f7756f60ff6eab89ae845210631714f6db94"}, + {file = "black-24.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48a85f2cb5e6799a9ef05347b476cce6c182d6c71ee36925a6c194d074336ef8"}, + {file = "black-24.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:b1530ae42e9d6d5b670a34db49a94115a64596bc77710b1d05e9801e62ca0a7c"}, + {file = "black-24.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:37aae07b029fa0174d39daf02748b379399b909652a806e5708199bd93899da1"}, + {file = "black-24.4.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:da33a1a5e49c4122ccdfd56cd021ff1ebc4a1ec4e2d01594fef9b6f267a9e741"}, + {file = "black-24.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef703f83fc32e131e9bcc0a5094cfe85599e7109f896fe8bc96cc402f3eb4b6e"}, + {file = "black-24.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:b9176b9832e84308818a99a561e90aa479e73c523b3f77afd07913380ae2eab7"}, + {file = "black-24.4.2-py3-none-any.whl", hash = "sha256:d36ed1124bb81b32f8614555b34cc4259c3fbc7eec17870e8ff8ded335b58d8c"}, + {file = "black-24.4.2.tar.gz", hash = "sha256:c872b53057f000085da66a19c55d68f6f8ddcac2642392ad3a355878406fbd4d"}, +] + +[package.dependencies] +click = ">=8.0.0" +mypy-extensions = ">=0.4.3" +packaging = ">=22.0" +pathspec = ">=0.9.0" +platformdirs = ">=2" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""} + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + [[package]] name = "bleach" version = "6.1.0" @@ -476,6 +522,20 @@ files = [ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + [[package]] name = "cmake" version = "3.30.0" @@ -1325,6 +1385,20 @@ files = [ [package.dependencies] arrow = ">=0.15.0" +[[package]] +name = "isort" +version = "5.13.2" +description = "A Python utility / library to sort Python imports." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6"}, + {file = "isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109"}, +] + +[package.extras] +colors = ["colorama (>=0.4.6)"] + [[package]] name = "jedi" version = "0.19.1" @@ -2820,6 +2894,17 @@ files = [ qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["docopt", "pytest"] +[[package]] +name = "pathspec" +version = "0.12.1" +description = "Utility library for gitignore style pattern matching of file paths." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, + {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, +] + [[package]] name = "pennylane" version = "0.28.0" @@ -4774,4 +4859,4 @@ test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", [metadata] lock-version = "2.0" python-versions = ">=3.9 <3.12" -content-hash = "ecd48db0781c6beecd4d92a7e9ac5bfed95b83bf713bd2defd0c8820230fee20" +content-hash = "9cbe66e579ba94bd7fb5e4b8394669e23141c9e18ba3833327a6542c6ba45eba" diff --git a/pyproject.toml b/pyproject.toml index 971ede0..fc584d6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,7 +28,9 @@ tntorch="^1.1.1" [tool.poetry.group.dev.dependencies] mypy = "^1.3.0" line-profiler = "^4.0.3" -flake8 = "^7.0" +flake8 = "^7" +black = "^24" +isort = "^5" [tool.poetry.group.test.dependencies] diff --git a/qulearn/__init__.py b/qulearn/__init__.py index 5fa6e2a..4c076e7 100644 --- a/qulearn/__init__.py +++ b/qulearn/__init__.py @@ -1,11 +1,12 @@ -import toml import os +import toml + def get_version(): here = os.path.dirname(os.path.realpath(__file__)) version_info = toml.load(os.path.join(here, "../pyproject.toml")) - return version_info['tool']['poetry']['version'] + return version_info["tool"]["poetry"]["version"] __version__ = get_version() diff --git a/qulearn/datagen.py b/qulearn/datagen.py index 2bc6160..8f99399 100644 --- a/qulearn/datagen.py +++ b/qulearn/datagen.py @@ -1,4 +1,4 @@ -from typing import Optional, TypeVar, Generic, Tuple, Dict, Set, List +from typing import Dict, Generic, List, Optional, Set, Tuple, TypeVar # for python < 3.10 try: @@ -7,12 +7,13 @@ from typing_extensions import TypeAlias from abc import ABC, abstractmethod -import torch -from torch.nn import Module -from torch.utils.data import TensorDataset, DataLoader -import numpy as np from itertools import product + +import numpy as np +import torch from scipy.stats import qmc +from torch.nn import Module +from torch.utils.data import DataLoader, TensorDataset Tensor: TypeAlias = torch.Tensor Array: TypeAlias = np.ndarray @@ -377,9 +378,7 @@ def gen_data(self, m: int) -> DataOut: X = self.prior.gen_data(m * self.num_data_samples) X = torch.reshape(X, (self.num_data_samples, m, self.prior.sizex)) - sigmas = gen_sigmas( - m=m * self.num_sigma_samples, seed=self.seed, device=self.device - ) + sigmas = gen_sigmas(m=m * self.num_sigma_samples, seed=self.seed, device=self.device) sigmas = torch.reshape(sigmas, (self.num_sigma_samples, m)) data = {"X": X, "sigmas": sigmas} @@ -442,9 +441,7 @@ class UniformPrior(PriorTorch[Tensor]): :param kwargs: Keyword arguments passed to the base class. """ - def __init__( - self, sizex: int, scale: float = 2.0, shift: float = -1.0, **kwargs - ) -> None: + def __init__(self, sizex: int, scale: float = 2.0, shift: float = -1.0, **kwargs) -> None: super().__init__(sizex, **kwargs) self.scale = scale @@ -487,9 +484,7 @@ class NormalPrior(PriorTorch[Tensor]): :param kwargs: Keyword arguments passed to the base class. """ - def __init__( - self, sizex: int, scale: float = 1.0, shift: float = 0.0, **kwargs - ) -> None: + def __init__(self, sizex: int, scale: float = 1.0, shift: float = 0.0, **kwargs) -> None: super().__init__(sizex, **kwargs) self.scale = scale @@ -778,8 +773,7 @@ def gen_synthetic_labels_fat( if d1 != d2: raise ValueError( - f"The length of b[0] and r[0] are {d1} and {d2}. " - f"Should be constant and the same." + f"The length of b[0] and r[0] are {d1} and {d2}. " f"Should be constant and the same." ) labels = np.zeros((Sr, Sb, d, 1)) @@ -796,9 +790,7 @@ def gen_synthetic_labels_fat( return y -def gen_sigmas( - m: int, seed: Optional[int] = None, device: Device = torch.device("cpu") -) -> Tensor: +def gen_sigmas(m: int, seed: Optional[int] = None, device: Device = torch.device("cpu")) -> Tensor: """ Random vector of +-1. @@ -819,11 +811,7 @@ def gen_sigmas( generator = torch.manual_seed(seed_) - sigmas = ( - torch.randint(2, (m,), device=device, requires_grad=False, generator=generator) - * 2 - - 1 - ) + sigmas = torch.randint(2, (m,), device=device, requires_grad=False, generator=generator) * 2 - 1 return sigmas @@ -900,10 +888,7 @@ def generate_model_lhs_samples( ) samples.append(sample_parameter.reshape((n_samples,) + p.shape)) parameter_list = [ - [ - torch.tensor(samples[j][i], device=device, dtype=dtype) - for j in range(len(samples)) - ] + [torch.tensor(samples[j][i], device=device, dtype=dtype) for j in range(len(samples))] for i in range(n_samples) ] diff --git a/qulearn/fat.py b/qulearn/fat.py index 44f7b82..b2aa283 100644 --- a/qulearn/fat.py +++ b/qulearn/fat.py @@ -5,8 +5,9 @@ from typing_extensions import TypeAlias import logging -import torch + import pennylane as qml +import torch from .datagen import DataGenFat from .trainer import SupervisedTrainer diff --git a/qulearn/fim.py b/qulearn/fim.py index b722bf0..285a83f 100644 --- a/qulearn/fim.py +++ b/qulearn/fim.py @@ -1,4 +1,4 @@ -from typing import List, Iterable +from typing import Iterable, List # for python < 3.10 try: @@ -8,6 +8,7 @@ import math from math import pi + import torch from torch.nn import Module @@ -119,9 +120,7 @@ def mc_integrate_fims_effdim( sum += weight * torch.exp(logdet - zeta) sum /= num_samples - result = 2.0 * zeta / torch.log(kappa) + 2.0 / torch.log(kappa) * torch.log( - 1.0 / volume * sum - ) + result = 2.0 * zeta / torch.log(kappa) + 2.0 / torch.log(kappa) * torch.log(1.0 / volume * sum) return result @@ -147,9 +146,7 @@ def half_log_det(fim: Tensor, c: Tensor) -> Tensor: _check_fim(fim) eigs = torch.linalg.eigvalsh(fim) - result = torch.tensor(0.5, device=fim.device, dtype=fim.dtype) * sum( - torch.log(1.0 + c * eigs) - ) + result = torch.tensor(0.5, device=fim.device, dtype=fim.dtype) * sum(torch.log(1.0 + c * eigs)) return result @@ -182,9 +179,7 @@ def const_effdim(num_samples: int, gamma: Tensor) -> Tensor: return const -def norm_const_fim( - trace_integral: Tensor, num_parameters: int, volume: Tensor -) -> Tensor: +def norm_const_fim(trace_integral: Tensor, num_parameters: int, volume: Tensor) -> Tensor: """ Computes the normalization constant for the Fisher Information Matrix (FIM). diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index b1b730c..276fe4f 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -47,9 +47,7 @@ def position(self, x: Tensor) -> Tensor: within_range = torch.logical_not(torch.logical_or(left_of_a, right_of_b)) position = torch.zeros_like(x) - position[within_range] = ( - (x[within_range] - self.a) / self.segment_length - ).floor() + position[within_range] = ((x[within_range] - self.a) / self.segment_length).floor() position[left_of_a] = -1 position[right_of_b] = -2 diff --git a/qulearn/memory.py b/qulearn/memory.py index 391ada8..f848289 100644 --- a/qulearn/memory.py +++ b/qulearn/memory.py @@ -7,12 +7,13 @@ from typing_extensions import TypeAlias import logging + +import numpy as np import torch from torch.nn import Module -import numpy as np -from .trainer import SupervisedTrainer from .datagen import DataGenCapacity +from .trainer import SupervisedTrainer Tensor: TypeAlias = torch.Tensor Model: TypeAlias = Module diff --git a/qulearn/mps.py b/qulearn/mps.py index f5d6a05..1e32f16 100644 --- a/qulearn/mps.py +++ b/qulearn/mps.py @@ -4,11 +4,12 @@ except ImportError: from typing_extensions import TypeAlias +import math from typing import List -import math -import torch import tntorch +import torch + from qulearn.hat_basis import HatBasis MPS: TypeAlias = tntorch.tensor.Tensor @@ -154,9 +155,7 @@ def __init__(self, basis: HatBasis) -> None: num_qubits = math.log2(basis.num_nodes) if not num_qubits.is_integer(): - raise ValueError( - f"Number of nodes ({basis.num_nodes}) " "must be a power of 2." - ) + raise ValueError(f"Number of nodes ({basis.num_nodes}) " "must be a power of 2.") self.num_sites = int(num_qubits) diff --git a/qulearn/mps_kronprod.py b/qulearn/mps_kronprod.py index b6898df..7eb6546 100644 --- a/qulearn/mps_kronprod.py +++ b/qulearn/mps_kronprod.py @@ -4,8 +4,8 @@ except ImportError: from typing_extensions import TypeAlias -import torch import tntorch +import torch MPS: TypeAlias = tntorch.tensor.Tensor diff --git a/qulearn/observable.py b/qulearn/observable.py index 0723532..f73e071 100644 --- a/qulearn/observable.py +++ b/qulearn/observable.py @@ -1,4 +1,4 @@ -from typing import List, Tuple, Sequence +from typing import List, Sequence, Tuple # for python < 3.10 try: @@ -7,8 +7,9 @@ from typing_extensions import TypeAlias import math -import torch + import pennylane as qml +import torch from .utils import all_bin_sequences diff --git a/qulearn/qlayer.py b/qulearn/qlayer.py index 1abea22..e9ae3e2 100644 --- a/qulearn/qlayer.py +++ b/qulearn/qlayer.py @@ -4,13 +4,13 @@ except ImportError: from typing_extensions import TypeAlias -from typing import Iterable, Any, Optional, Union, Dict - -from enum import Enum import math +from enum import Enum +from typing import Any, Dict, Iterable, Optional, Union + +import pennylane as qml import torch from torch import nn -import pennylane as qml from .hat_basis import HatBasis from .mps import HatBasisMPS, MPSQGates @@ -26,9 +26,7 @@ Wires: TypeAlias = Union[int, Iterable[Any]] Expectation: TypeAlias = qml.measurements.ExpectationMP Observable: TypeAlias = qml.operation.Observable -Observables: TypeAlias = Union[ - qml.operation.Observable, Iterable[qml.operation.Observable] -] +Observables: TypeAlias = Union[qml.operation.Observable, Iterable[qml.operation.Observable]] Probability: TypeAlias = qml.measurements.ProbabilityMP Sample: TypeAlias = qml.measurements.SampleMP Entropy: TypeAlias = qml.measurements.VnEntropyMP @@ -190,9 +188,7 @@ def circuit(self, x: Tensor) -> None: N = len(Us) count = 0 for k in range(N - 1, -1, -1): - wires_idx = list( - range(self.num_wires - count - s - 1, self.num_wires - count) - ) + wires_idx = list(range(self.num_wires - count - s - 1, self.num_wires - count)) subwires = [self.wires[idx] for idx in wires_idx] qml.QubitUnitary(Us[k], wires=subwires, unitary_check=False) @@ -241,12 +237,12 @@ class Linear2DBasisQFE(CircuitLayer): """ def __init__( - self, - wires: Wires, - basis: HatBasis, - sqrt: bool = False, - normalize: bool = False, - zorder: bool = False, + self, + wires: Wires, + basis: HatBasis, + sqrt: bool = False, + normalize: bool = False, + zorder: bool = False, ) -> None: super().__init__(wires) self.basis = basis @@ -288,15 +284,15 @@ def circuit(self, x: Tensor) -> None: val2 = a1 * b2 val3 = a2 * b1 val4 = a2 * b2 - self.norm = torch.sqrt(val1 ** 2 + val2 ** 2 + val3 ** 2 + val4 ** 2) + norm = torch.sqrt(val1**2 + val2**2 + val3**2 + val4**2) if self.normalize: - a1 /= torch.sqrt(self.norm) - b1 /= torch.sqrt(self.norm) - a2 /= torch.sqrt(self.norm) - b2 /= torch.sqrt(self.norm) + a1 /= torch.sqrt(norm) + b1 /= torch.sqrt(norm) + a2 /= torch.sqrt(norm) + b2 /= torch.sqrt(norm) - self.norm = self.norm.item() + self.norm = norm.item() # for compatibility (TODO: remove) first1 = a1.item() @@ -322,9 +318,7 @@ def circuit(self, x: Tensor) -> None: N = len(Us) count = 0 for k in range(N - 1, -1, -1): - wires_idx = list( - range(self.num_wires - count - s - 1, self.num_wires - count) - ) + wires_idx = list(range(self.num_wires - count - s - 1, self.num_wires - count)) subwires = [self.wires[idx] for idx in wires_idx] qml.QubitUnitary(Us[k], wires=subwires, unitary_check=False) @@ -359,7 +353,7 @@ def compute_norm(self, x: Tensor) -> float: val2 = a1 * b2 val3 = a2 * b1 val4 = a2 * b2 - self.norm = torch.sqrt(val1 ** 2 + val2 ** 2 + val3 ** 2 + val4 ** 2).item() + self.norm = torch.sqrt(val1**2 + val2**2 + val3**2 + val4**2).item() return self.norm @@ -665,9 +659,7 @@ def __init__( num_var_repeats = self.num_varlayers for _ in range(self.num_repeat): - embed_layer = IQPEmbeddingLayer( - self.wires, self.num_uploads, **self.iqpe_opts - ) + embed_layer = IQPEmbeddingLayer(self.wires, self.num_uploads, **self.iqpe_opts) var_layers = [] for _ in range(num_var_repeats): @@ -751,9 +743,7 @@ def __init__( self.blocks = nn.ModuleList() for _ in range(self.num_repeat): - embed_layer = IQPEmbeddingLayer( - self.wires, self.num_uploads, **self.iqpe_opts - ) + embed_layer = IQPEmbeddingLayer(self.wires, self.num_uploads, **self.iqpe_opts) var_layer = AltRotCXLayer( self.wires, self.num_varlayers, @@ -867,7 +857,7 @@ def circuit(self, x: Tensor) -> None: x_ = self.base ** (freq * self.omega) * x self.qfunc( x_, - self.wires[i: i + num_features], + self.wires[i : i + num_features], self.n_repeat, **self.kwargs, ) @@ -1012,9 +1002,7 @@ def circuit(self, _: Optional[Tensor] = None) -> None: for mps_layer_idx in range(self.n_layers_mps): for block_idx in ( - range(self.n_blocks - 1, -1, -1) - if self.reverse - else range(self.n_blocks) + range(self.n_blocks - 1, -1, -1) if self.reverse else range(self.n_blocks) ): self._block(mps_layer_idx, block_idx) @@ -1247,22 +1235,15 @@ def check_measurement_type(self) -> None: """ if not isinstance(self.measurement_type, MeasurementType): - raise NotImplementedError( - f"Measurement type ({self.measurement_type}) not recognized" - ) + raise NotImplementedError(f"Measurement type ({self.measurement_type}) not recognized") if self.measurement_type == MeasurementType.Expectation: if self.observables is None: raise ValueError( - f"Measurement type ({self.measurement_type}) " - "requires an observable" + f"Measurement type ({self.measurement_type}) " "requires an observable" ) - if ( - self.measurement_type == MeasurementType.Samples - and self.qdevice.shots is None - ): + if self.measurement_type == MeasurementType.Samples and self.qdevice.shots is None: raise ValueError( - f"Measurement type ({self.measurement_type}) " - "requires integer number of shots" + f"Measurement type ({self.measurement_type}) " "requires integer number of shots" ) diff --git a/qulearn/rademacher.py b/qulearn/rademacher.py index d4587cb..d291f3e 100644 --- a/qulearn/rademacher.py +++ b/qulearn/rademacher.py @@ -4,8 +4,8 @@ except ImportError: from typing_extensions import TypeAlias -import torch import pennylane as qml +import torch from .datagen import DataGenRademacher from .loss import RademacherLoss diff --git a/qulearn/trainer.py b/qulearn/trainer.py index 8493a8d..9806246 100644 --- a/qulearn/trainer.py +++ b/qulearn/trainer.py @@ -1,4 +1,4 @@ -from typing import Optional, Callable, Dict +from typing import Callable, Dict, Optional # for python < 3.10 try: @@ -6,14 +6,14 @@ except ImportError: from typing_extensions import TypeAlias +import logging from enum import Enum -import logging +import pennylane as qml import torch from torch import nn -from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader -import pennylane as qml +from torch.utils.tensorboard import SummaryWriter from .qkernel import QKernel @@ -119,9 +119,7 @@ def validate_epoch(self, model: Model, valid_data: Loader, epoch: int = 0) -> No epoch_type = EpochType.Validate self._epoch(epoch_type, model, valid_data, epoch) - def _epoch( - self, epoch_type: EpochType, model: Model, data: Loader, epoch: int = 0 - ) -> None: + def _epoch(self, epoch_type: EpochType, model: Model, data: Loader, epoch: int = 0) -> None: running_loss = 0.0 running_metrics = {} for metric in self.metrics: @@ -154,15 +152,11 @@ def _train_step(self, model: Model, inputs: Tensor, labels: Tensor) -> None: loss.backward() self.optimizer.step() - def _log_metrics( - self, phase: str, loss: float, metrics: Dict[str, float], epoch: int - ) -> None: + def _log_metrics(self, phase: str, loss: float, metrics: Dict[str, float], epoch: int) -> None: if self.writer is not None: self.writer.add_scalar(f"Loss/{phase}", loss, epoch) for metric_name, metric_value in metrics.items(): - self.writer.add_scalar( - f"Metrics/{phase}/{metric_name}", metric_value, epoch - ) + self.writer.add_scalar(f"Metrics/{phase}/{metric_name}", metric_value, epoch) if self.logger is not None: metrics_strs = [ @@ -237,9 +231,7 @@ def train(self, model: QKernel, train_data: Loader, valid_data: Loader) -> None: running_metrics[metric] = self.metrics[metric](predicted, labels) self._log_metrics(phase, running_metrics) - def kernel_ridge_regression( - self, model: QKernel, inputs: Tensor, labels: Tensor - ) -> Parameter: + def kernel_ridge_regression(self, model: QKernel, inputs: Tensor, labels: Tensor) -> Parameter: """ Compute Ridge Regression solution for the given inputs and labels using the provided model. diff --git a/qulearn/utils.py b/qulearn/utils.py index 246ced7..728a6a9 100644 --- a/qulearn/utils.py +++ b/qulearn/utils.py @@ -8,8 +8,9 @@ except ImportError: from typing_extensions import TypeAlias -from itertools import chain, combinations import math +from itertools import chain, combinations + import pennylane as qml import torch @@ -96,8 +97,7 @@ def parities_outcome(bitstring: str, H: Observable) -> float: if num_qubits != num_wires: raise ValueError( - f"Number of qubits ({num_qubits}) " - f"does not match number of wires ({num_wires})" + f"Number of qubits ({num_qubits}) " f"does not match number of wires ({num_wires})" ) sum = 0.0 @@ -125,9 +125,7 @@ def parities_outcome(bitstring: str, H: Observable) -> float: return sum -def parities_outcome_probs( - probs: Dict[str, float], H: Observable -) -> Dict[float, float]: +def parities_outcome_probs(probs: Dict[str, float], H: Observable) -> Dict[float, float]: """ Compute (real-valued) outputs with corresponding probabilities. diff --git a/tests/test_datagen.py b/tests/test_datagen.py index ac13008..bd7ca35 100644 --- a/tests/test_datagen.py +++ b/tests/test_datagen.py @@ -1,14 +1,16 @@ -import pytest import math + import numpy as np +import pytest import torch from torch.utils.data import DataLoader + from qulearn.datagen import ( DataGenCapacity, DataGenFat, DataGenRademacher, - UniformPrior, NormalPrior, + UniformPrior, generate_lhs_samples, generate_model_lhs_samples, ) @@ -257,9 +259,7 @@ def test_generate_model_lhs_samples(): assert len(parameter_samples) == n_samples for sample in parameter_samples: assert isinstance(sample, list) - assert len(sample) == len( - list(filter(lambda p: p.requires_grad, model.parameters())) - ) + assert len(sample) == len(list(filter(lambda p: p.requires_grad, model.parameters()))) for param in sample: assert isinstance(param, torch.Tensor) assert (param.detach().numpy() >= lower_bound).all() diff --git a/tests/test_fat.py b/tests/test_fat.py index 5aa7a2a..f383c44 100644 --- a/tests/test_fat.py +++ b/tests/test_fat.py @@ -2,8 +2,8 @@ from torch.nn import Linear from torch.optim import Adam -from qulearn.fat import fat_shattering_dim, check_shattering, normalize_const from qulearn.datagen import DataGenFat, UniformPrior +from qulearn.fat import check_shattering, fat_shattering_dim, normalize_const from qulearn.trainer import SupervisedTrainer @@ -52,9 +52,7 @@ def test_fat_shattering_dim(): metrics = {"Loss": loss_fn} trainer = SupervisedTrainer(opt, loss_fn=loss_fn, metrics=metrics, num_epochs=100) - fat_shattering_dimension = fat_shattering_dim( - model, datagen, trainer, dmin, dmax, gamma - ) + fat_shattering_dimension = fat_shattering_dim(model, datagen, trainer, dmin, dmax, gamma) assert isinstance(fat_shattering_dimension, int) assert fat_shattering_dimension > 0 @@ -77,9 +75,7 @@ def test_linear_model(): metrics = {"Loss": loss_fn} trainer = SupervisedTrainer(opt, loss_fn=loss_fn, metrics=metrics, num_epochs=100) - fat_shattering_dimension = fat_shattering_dim( - model, datagen, trainer, dmin, dmax, gamma - ) + fat_shattering_dimension = fat_shattering_dim(model, datagen, trainer, dmin, dmax, gamma) assert isinstance(fat_shattering_dimension, int) assert fat_shattering_dimension >= sizex diff --git a/tests/test_fim.py b/tests/test_fim.py index 709b5ed..de93b47 100644 --- a/tests/test_fim.py +++ b/tests/test_fim.py @@ -1,24 +1,24 @@ -import pytest import math -import torch + import numpy as np +import pytest +import torch + from qulearn.fim import ( - empirical_fim, + compute_effdim, compute_fims, - mc_integrate_fim_trace, - norm_const_fim, const_effdim, + empirical_fim, half_log_det, + mc_integrate_fim_trace, mc_integrate_fims_effdim, - compute_effdim, + norm_const_fim, ) @pytest.fixture def model(): - model = torch.nn.Sequential( - torch.nn.Linear(1, 2, bias=False), torch.nn.Softmax(dim=1) - ) + model = torch.nn.Sequential(torch.nn.Linear(1, 2, bias=False), torch.nn.Softmax(dim=1)) # Manually set weights to known values model[0].weight.data = torch.tensor([[1.0], [1.0]]) num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) @@ -144,9 +144,7 @@ def test_norm_const(): @pytest.fixture def setup_effdim(): - model = torch.nn.Sequential( - torch.nn.Linear(1, 2, bias=False), torch.nn.Softmax(dim=1) - ) + model = torch.nn.Sequential(torch.nn.Linear(1, 2, bias=False), torch.nn.Softmax(dim=1)) model[0].weight.data = torch.tensor([[1.0], [1.0]]) X = torch.tensor([[1.0], [2.0]]) @@ -160,9 +158,7 @@ def setup_effdim(): @pytest.fixture def setup_effdim2(): dim = 3 - model = torch.nn.Sequential( - torch.nn.Linear(dim, 5, bias=True), torch.nn.Softmax(dim=1) - ) + model = torch.nn.Sequential(torch.nn.Linear(dim, 5, bias=True), torch.nn.Softmax(dim=1)) n = 50 X = torch.randn((n, dim)) @@ -176,9 +172,7 @@ def setup_effdim2(): def test_comp_effdim(setup_effdim): effdim = compute_effdim(*setup_effdim) - num_parameters = sum( - p.numel() for p in setup_effdim[0].parameters() if p.requires_grad - ) + num_parameters = sum(p.numel() for p in setup_effdim[0].parameters() if p.requires_grad) X = setup_effdim[1] diag = 0.25 * X[0][0] ** 2 + 0.25 * X[1][0] ** 2 diag *= 0.5 @@ -188,9 +182,7 @@ def test_comp_effdim(setup_effdim): normconst = setup_effdim[4] * num_parameters / traceint n = len(X) const = setup_effdim[5] * n / (2 * math.pi * math.log(n)) - sqrtdet = math.sqrt( - torch.det(torch.eye(num_parameters) + const * normconst * expected_fim) - ) + sqrtdet = math.sqrt(torch.det(torch.eye(num_parameters) + const * normconst * expected_fim)) dgamma = 2 * math.log(sqrtdet) / math.log(const) diff --git a/tests/test_hat_basis.py b/tests/test_hat_basis.py index cd04422..61b474f 100644 --- a/tests/test_hat_basis.py +++ b/tests/test_hat_basis.py @@ -1,4 +1,5 @@ import torch + from qulearn.hat_basis import HatBasis @@ -6,27 +7,21 @@ def test_position_left_of_a(): hat_basis = HatBasis(a=0.0, b=1.0, num_nodes=5) x = torch.tensor([-0.1, -1.0]) expected = torch.tensor([-1, -1]) - assert torch.equal( - hat_basis.position(x), expected - ), "Position left of a should be -1" + assert torch.equal(hat_basis.position(x), expected), "Position left of a should be -1" def test_position_right_of_b(): hat_basis = HatBasis(a=0.0, b=1.0, num_nodes=5) x = torch.tensor([1.1, 2.0]) expected = torch.tensor([-2, -2]) - assert torch.equal( - hat_basis.position(x), expected - ), "Position right of b should be -2" + assert torch.equal(hat_basis.position(x), expected), "Position right of b should be -2" def test_position_within_range(): hat_basis = HatBasis(a=0.0, b=1.0, num_nodes=5) x = torch.tensor([0.25, 0.5, 0.75]) expected = torch.tensor([1, 2, 3]) - assert torch.equal( - hat_basis.position(x), expected - ), "Position within range should be correct" + assert torch.equal(hat_basis.position(x), expected), "Position within range should be correct" def test_grid_points_boundary_conditions(): diff --git a/tests/test_loss.py b/tests/test_loss.py index aaa2ab6..2a42230 100644 --- a/tests/test_loss.py +++ b/tests/test_loss.py @@ -1,5 +1,6 @@ import pytest import torch + from qulearn.loss import RademacherLoss diff --git a/tests/test_memory.py b/tests/test_memory.py index dd71c7a..c0028db 100644 --- a/tests/test_memory.py +++ b/tests/test_memory.py @@ -1,11 +1,13 @@ +from typing import List + import torch from torch.nn import Linear from torch.optim import Adam -from typing import List -from qulearn.qlayer import IQPEmbeddingLayer, RYCZLayer, HamiltonianLayer -from qulearn.observable import parities_all_observables -from qulearn.memory import memory, fit_rand_labels + from qulearn.datagen import DataGenCapacity +from qulearn.memory import fit_rand_labels, memory +from qulearn.observable import parities_all_observables +from qulearn.qlayer import HamiltonianLayer, IQPEmbeddingLayer, RYCZLayer from qulearn.trainer import SupervisedTrainer diff --git a/tests/test_mps.py b/tests/test_mps.py index af816ff..2e2416f 100644 --- a/tests/test_mps.py +++ b/tests/test_mps.py @@ -1,23 +1,20 @@ import pytest -import torch import tntorch +import torch + +from qulearn.hat_basis import HatBasis from qulearn.mps import ( - MPSQGates, HatBasisMPS, + MPSQGates, compute_max_rank_power, embed2unitary, zerobit_position_odd, ) -from qulearn.hat_basis import HatBasis @pytest.fixture def sample_mps(): - cores = ( - [torch.rand(1, 2, 2)] - + [torch.rand(2, 2, 2) for _ in range(2)] - + [torch.rand(2, 2, 1)] - ) + cores = [torch.rand(1, 2, 2)] + [torch.rand(2, 2, 2) for _ in range(2)] + [torch.rand(2, 2, 1)] mps = tntorch.Tensor(cores) return mps diff --git a/tests/test_mps_kronprod.py b/tests/test_mps_kronprod.py index 0548512..5affaa9 100644 --- a/tests/test_mps_kronprod.py +++ b/tests/test_mps_kronprod.py @@ -1,6 +1,7 @@ -import pytest import numpy as np +import pytest import tntorch as tn + from qulearn.mps_kronprod import kron, zkron @@ -9,8 +10,8 @@ def tensor_to_vector(tensor): def test_kron(): - t1 = tn.randn([2]*3) - t2 = tn.ones([2]*3) + t1 = tn.randn([2] * 3) + t2 = tn.ones([2] * 3) T1 = tensor_to_vector(t1) T2 = tensor_to_vector(t2) @@ -24,8 +25,8 @@ def test_kron(): def test_zkron(): - t1 = tn.randn([2]*3) - t2 = tn.ones([2]*3) + t1 = tn.randn([2] * 3) + t2 = tn.ones([2] * 3) t4 = zkron(t1, t2) T4 = tensor_to_vector(t4) @@ -41,8 +42,8 @@ def test_zkron(): def test_core_length_mismatch(): - t1 = tn.randn([2]*3) - t2 = tn.randn([2]*4) # Different size to induce error + t1 = tn.randn([2] * 3) + t2 = tn.randn([2] * 4) # Different size to induce error with pytest.raises(ValueError): zkron(t1, t2) diff --git a/tests/test_observable.py b/tests/test_observable.py index 87de194..3c23ba5 100644 --- a/tests/test_observable.py +++ b/tests/test_observable.py @@ -1,10 +1,12 @@ -import pytest from itertools import combinations -import torch + import pennylane as qml +import pytest +import torch + from qulearn.observable import ( - parity_all_hamiltonian, parities_all_observables, + parity_all_hamiltonian, sequence2parity_observable, ) diff --git a/tests/test_qkernel.py b/tests/test_qkernel.py index 22df6f0..edf4ffb 100644 --- a/tests/test_qkernel.py +++ b/tests/test_qkernel.py @@ -1,9 +1,9 @@ +import pennylane as qml import pytest import torch -import pennylane as qml -from qulearn.qlayer import HadamardLayer from qulearn.qkernel import QKernel +from qulearn.qlayer import HadamardLayer DEFAULT_QDEV_CFG = {"name": "default.qubit", "wires": 2, "shots": None} diff --git a/tests/test_qlayer.py b/tests/test_qlayer.py index ce4ce0c..7a7135c 100644 --- a/tests/test_qlayer.py +++ b/tests/test_qlayer.py @@ -1,26 +1,26 @@ -import torch -import pytest import pennylane as qml +import pytest +import torch + +from qulearn.hat_basis import HatBasis from qulearn.qlayer import ( - MeasurementType, + AltRotCXLayer, CircuitLayer, - MeasurementLayer, - IQPEmbeddingLayer, - HatBasisQFE, - Linear2DBasisQFE, - TwoQubitRotCXMPSLayer, EmbedU, - RYCZLayer, - AltRotCXLayer, - IQPERYCZLayer, - IQPEAltRotCXLayer, - HamiltonianLayer, HadamardLayer, - ParallelIQPEncoding, + HamiltonianLayer, + HatBasisQFE, + IQPEAltRotCXLayer, + IQPEmbeddingLayer, + IQPERYCZLayer, + Linear2DBasisQFE, + MeasurementLayer, + MeasurementType, ParallelEntangledIQPEncoding, + ParallelIQPEncoding, + RYCZLayer, + TwoQubitRotCXMPSLayer, ) -from qulearn.hat_basis import HatBasis - # Unit tests for CircuitLayer class @@ -302,9 +302,7 @@ def circuit(): return qml.probs(wires=wires) probs = circuit() - assert 0.125 == pytest.approx( - probs - ) # Should be equal probabilities for all 8 states + assert 0.125 == pytest.approx(probs) # Should be equal probabilities for all 8 states def test_parallel_iqp_encoding(): @@ -441,9 +439,7 @@ def sample_hat_basis(): def test_hat_basis_qfe_initialization(sample_hat_basis): - hat_basis_qfe = HatBasisQFE( - wires=2, basis=sample_hat_basis, sqrt=True, normalize=True - ) + hat_basis_qfe = HatBasisQFE(wires=2, basis=sample_hat_basis, sqrt=True, normalize=True) assert hat_basis_qfe.sqrt is True assert hat_basis_qfe.normalize is True diff --git a/tests/test_rademacher.py b/tests/test_rademacher.py index 6383328..dfcc75d 100644 --- a/tests/test_rademacher.py +++ b/tests/test_rademacher.py @@ -1,13 +1,14 @@ import logging import math + import torch from torch.nn import Linear from torch.optim import Adam +from qulearn.datagen import DataGenRademacher, NormalPrior +from qulearn.loss import RademacherLoss from qulearn.rademacher import rademacher from qulearn.trainer import SupervisedTrainer -from qulearn.loss import RademacherLoss -from qulearn.datagen import NormalPrior, DataGenRademacher def test_rademacher(): diff --git a/tests/test_trainer.py b/tests/test_trainer.py index 7492e49..4282eba 100644 --- a/tests/test_trainer.py +++ b/tests/test_trainer.py @@ -1,16 +1,18 @@ -import os import io -import pytest +import logging +import os import tempfile + +import pytest import torch -import logging -from torch.utils.tensorboard import SummaryWriter -from torch.utils.data import DataLoader, TensorDataset +from torch.nn import MSELoss from torch.optim import Adam -from qulearn.trainer import SupervisedTrainer, RidgeRegression +from torch.utils.data import DataLoader, TensorDataset +from torch.utils.tensorboard import SummaryWriter + from qulearn.qkernel import QKernel from qulearn.qlayer import HadamardLayer, ParallelEntangledIQPEncoding -from torch.nn import MSELoss +from qulearn.trainer import RidgeRegression, SupervisedTrainer def test_trainer(): @@ -20,7 +22,7 @@ def test_trainer(): X = torch.randn(N, d, dtype=torch.float64) A = torch.randn(d, 1, dtype=torch.float64) eps = torch.randn(N, 1, dtype=torch.float64) * 0.01 - b = torch.randn(1, dtype=torch.float64)*torch.ones(N, 1, dtype=torch.float64) + b = torch.randn(1, dtype=torch.float64) * torch.ones(N, 1, dtype=torch.float64) Y = torch.matmul(X, A) + b + eps model = torch.nn.Linear(10, 1, bias=True, dtype=torch.float64) @@ -161,6 +163,4 @@ def test_training_behavior(): ), f"Loss did not decrease after training. Before: {loss_before}, After: {loss_after}" assert "Train - Metrics: mse_loss:" in logs, "Train logging missing or incorrect" - assert ( - "Validate - Metrics: mse_loss:" in logs - ), "Validation logging missing or incorrect" + assert "Validate - Metrics: mse_loss:" in logs, "Validation logging missing or incorrect" diff --git a/tests/test_utils.py b/tests/test_utils.py index 4c930ea..0a6edc1 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -1,12 +1,14 @@ +from collections import Counter + import pennylane as qml import torch -from collections import Counter + from qulearn.utils import ( - probabilities_to_dictionary, - samples_to_dictionary, all_bin_sequences, parities_outcome, parities_outcome_probs, + probabilities_to_dictionary, + samples_to_dictionary, ) @@ -24,9 +26,7 @@ def test_samples_to_dictionary(): # all_bin_sequences def test_all_bin_sequences(): - assert Counter(map(tuple, all_bin_sequences(2))) == Counter( - map(tuple, [[0, 1], [1], [0], []]) - ) + assert Counter(map(tuple, all_bin_sequences(2))) == Counter(map(tuple, [[0, 1], [1], [0], []])) # parities_outcome From d2c830b4d8a3ed46c955627c77677a54ba458687 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Fri, 19 Jul 2024 19:48:51 +0200 Subject: [PATCH 17/21] chore (types): move all aliases to types module --- .flake8 | 3 ++- Makefile | 2 +- qulearn/datagen.py | 53 +++++++++++++++++++---------------------- qulearn/fat.py | 25 ++++++------------- qulearn/fim.py | 14 ++--------- qulearn/hat_basis.py | 8 +------ qulearn/loss.py | 9 +------ qulearn/memory.py | 20 +++------------- qulearn/mps.py | 9 +------ qulearn/mps_kronprod.py | 8 +------ qulearn/observable.py | 16 ++----------- qulearn/qkernel.py | 14 ++--------- qulearn/qlayer.py | 35 ++++++++++++--------------- qulearn/rademacher.py | 21 ++++------------ qulearn/trainer.py | 46 ++++++++++------------------------- qulearn/types.py | 47 ++++++++++++++++++++++++++++++++++++ qulearn/utils.py | 15 ++---------- 17 files changed, 129 insertions(+), 216 deletions(-) create mode 100644 qulearn/types.py diff --git a/.flake8 b/.flake8 index b73a6b8..e3515c5 100644 --- a/.flake8 +++ b/.flake8 @@ -2,4 +2,5 @@ max-line-length = 100 ignore = E203, - W503 + W503, + E402 diff --git a/Makefile b/Makefile index 1792dd3..6062505 100644 --- a/Makefile +++ b/Makefile @@ -10,7 +10,7 @@ BUILDDIR = build # Default target executed when no arguments are given to make. default: all -all: format format_check static docs-html test test_coverage +all: docs-html format format_check static test_coverage help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/qulearn/datagen.py b/qulearn/datagen.py index 8f99399..52183fc 100644 --- a/qulearn/datagen.py +++ b/qulearn/datagen.py @@ -1,29 +1,24 @@ -from typing import Dict, Generic, List, Optional, Set, Tuple, TypeVar - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - from abc import ABC, abstractmethod from itertools import product +from typing import Generic, Optional, Set, Tuple, TypeVar import numpy as np import torch from scipy.stats import qmc -from torch.nn import Module -from torch.utils.data import DataLoader, TensorDataset - -Tensor: TypeAlias = torch.Tensor -Array: TypeAlias = np.ndarray -Device: TypeAlias = torch.device -DataOut: TypeAlias = Dict[str, Tensor] -Loader: TypeAlias = DataLoader -Model: TypeAlias = Module -ParameterList: TypeAlias = List[List[Tensor]] -CDevice: TypeAlias = torch.device -DType: TypeAlias = torch.dtype + +from .types import ( + Array, + CDevice, + DataLoader, + DataOut, + Device, + DType, + Model, + ParameterList, + Tensor, + TensorDataset, +) + D = TypeVar("D") L = TypeVar("L") @@ -118,7 +113,7 @@ def gen_data(self, *args, **kwargs) -> D: pass -class DataGenCapacity(DataGenTorch[DataOut, Loader]): +class DataGenCapacity(DataGenTorch[DataOut, DataLoader]): """ Generates data for memory capacity estimation. @@ -175,7 +170,7 @@ def gen_data(self, N: int) -> DataOut: return data - def data_to_loader(self, data: DataOut, s: int) -> Loader: + def data_to_loader(self, data: DataOut, s: int) -> DataLoader: """ Convert data to pytorch loader. @@ -183,7 +178,7 @@ def data_to_loader(self, data: DataOut, s: int) -> Loader: :type data: DataOut :param s: Current label sample. :type s: int - :rtype: Loader + :rtype: DataLoader :raises ValueError: For invalid data or index s. """ self._check_data(data) @@ -223,7 +218,7 @@ def _check_data(self, data: DataOut): raise ValueError(f"Y must be 3-dim (not {check})") -class DataGenFat(DataGenTorch[DataOut, Loader]): +class DataGenFat(DataGenTorch[DataOut, DataLoader]): """ Generates data for estimating fat shattering dimension. @@ -275,7 +270,7 @@ def gen_data(self, d: int) -> DataOut: return data - def data_to_loader(self, data: DataOut, sr: int, sb: int) -> Loader: + def data_to_loader(self, data: DataOut, sr: int, sb: int) -> DataLoader: """ Convert data to pytorch loader. @@ -286,7 +281,7 @@ def data_to_loader(self, data: DataOut, sr: int, sb: int) -> Loader: :param sb: Current b sample. :type sb: int :returns: Pytorch data loader. - :rtype: Loader + :rtype: DataLoader :raises ValueError: For invalid data or indeces sr or sb. """ self._check_data(data) @@ -329,7 +324,7 @@ def _check_data(self, data: DataOut): raise ValueError(f"Y must be 4-dim (not {check})") -class DataGenRademacher(DataGenTorch[DataOut, Loader]): +class DataGenRademacher(DataGenTorch[DataOut, DataLoader]): """ Generates uniform data for estimating the empirical Rademacher complexity. @@ -385,7 +380,7 @@ def gen_data(self, m: int) -> DataOut: return data - def data_to_loader(self, data: DataOut, s: int) -> Loader: + def data_to_loader(self, data: DataOut, s: int) -> DataLoader: """ Convert data to pytorch loader. @@ -394,7 +389,7 @@ def data_to_loader(self, data: DataOut, s: int) -> Loader: :param s: Current sample. :type s: int :return: Pytorch data loader. - :rtype: Loader + :rtype: DataLoader :raises ValueError: For invalid data or index s. """ self._check_data(data) diff --git a/qulearn/fat.py b/qulearn/fat.py index b2aa283..c266e7e 100644 --- a/qulearn/fat.py +++ b/qulearn/fat.py @@ -1,25 +1,14 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import logging -import pennylane as qml import torch -from .datagen import DataGenFat -from .trainer import SupervisedTrainer - -Tensor: TypeAlias = torch.Tensor -Model: TypeAlias = qml.QNode -Datagen: TypeAlias = DataGenFat -Trainer: TypeAlias = SupervisedTrainer +from .datagen import DataGenFat as Datagen +from .trainer import SupervisedTrainer as Trainer +from .types import QModel, Tensor def fat_shattering_dim( - model: Model, + model: QModel, datagen: Datagen, trainer: Trainer, dmin: int, @@ -31,7 +20,7 @@ def fat_shattering_dim( Estimate the fat-shattering dimension for a model with a given architecture. :param model: The model. - :type model: Model + :type model: QModel :param datagen: The (synthetic) data generator. :type datagen: Datagen :param trainer: The trainer. @@ -65,13 +54,13 @@ def fat_shattering_dim( def check_shattering( - model: Model, datagen: Datagen, trainer: Trainer, d: int, gamma: float + model: QModel, datagen: Datagen, trainer: Trainer, d: int, gamma: float ) -> bool: """ Check if the model shatters a given dimension d with margin value gamma. :param model: The model. - :type model: Model + :type model: QModel :param datagen: The (synthetic) data generator. :type datagen: Datagen :param trainer: The trainer. diff --git a/qulearn/fim.py b/qulearn/fim.py index 285a83f..52ac422 100644 --- a/qulearn/fim.py +++ b/qulearn/fim.py @@ -1,20 +1,10 @@ -from typing import Iterable, List - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import math from math import pi +from typing import List import torch -from torch.nn import Module -Tensor: TypeAlias = torch.Tensor -Model: TypeAlias = Module -ParameterList: TypeAlias = List[Iterable[Tensor]] +from .types import Model, ParameterList, Tensor def compute_effdim( diff --git a/qulearn/hat_basis.py b/qulearn/hat_basis.py index 276fe4f..83cdeb9 100644 --- a/qulearn/hat_basis.py +++ b/qulearn/hat_basis.py @@ -1,14 +1,8 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - from typing import Tuple import torch -Tensor: TypeAlias = torch.Tensor +from .types import Tensor class HatBasis: diff --git a/qulearn/loss.py b/qulearn/loss.py index 0a5bef3..6359ae2 100644 --- a/qulearn/loss.py +++ b/qulearn/loss.py @@ -1,15 +1,8 @@ from typing import Optional -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import torch -Tensor: TypeAlias = torch.Tensor -Loss: TypeAlias = torch.nn.Module +from .types import Loss, Tensor class RademacherLoss(Loss): diff --git a/qulearn/memory.py b/qulearn/memory.py index f848289..5cbc416 100644 --- a/qulearn/memory.py +++ b/qulearn/memory.py @@ -1,25 +1,11 @@ -from typing import List, Tuple - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import logging import numpy as np import torch -from torch.nn import Module - -from .datagen import DataGenCapacity -from .trainer import SupervisedTrainer -Tensor: TypeAlias = torch.Tensor -Model: TypeAlias = Module -Datagen: TypeAlias = DataGenCapacity -Trainer: TypeAlias = SupervisedTrainer -Capacity = List[Tuple[int, float, int, int]] +from .datagen import DataGenCapacity as Datagen +from .trainer import SupervisedTrainer as Trainer +from .types import Capacity, Model def memory( diff --git a/qulearn/mps.py b/qulearn/mps.py index 1e32f16..3df4f08 100644 --- a/qulearn/mps.py +++ b/qulearn/mps.py @@ -1,9 +1,3 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import math from typing import List @@ -12,8 +6,7 @@ from qulearn.hat_basis import HatBasis -MPS: TypeAlias = tntorch.tensor.Tensor -Tensor: TypeAlias = torch.Tensor +from .types import MPS, Tensor class MPSQGates: diff --git a/qulearn/mps_kronprod.py b/qulearn/mps_kronprod.py index 7eb6546..e7adf29 100644 --- a/qulearn/mps_kronprod.py +++ b/qulearn/mps_kronprod.py @@ -1,13 +1,7 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import tntorch import torch -MPS: TypeAlias = tntorch.tensor.Tensor +from .types import MPS def kron(tleft: MPS, tright: MPS) -> MPS: diff --git a/qulearn/observable.py b/qulearn/observable.py index f73e071..2430e2f 100644 --- a/qulearn/observable.py +++ b/qulearn/observable.py @@ -1,23 +1,11 @@ -from typing import List, Sequence, Tuple - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import math +from typing import List import pennylane as qml -import torch +from .types import Hamiltonian, Observable, ParitySequence, Tensor from .utils import all_bin_sequences -Tensor: TypeAlias = torch.Tensor -Observable: TypeAlias = qml.operation.Observable -Hamiltonian: TypeAlias = qml.Hamiltonian -ParitySequence: TypeAlias = Sequence[Tuple[int, ...]] - def parity_all_hamiltonian(num_qubits: int, weights: Tensor) -> Hamiltonian: """ diff --git a/qulearn/qkernel.py b/qulearn/qkernel.py index ba4f28c..2065a26 100644 --- a/qulearn/qkernel.py +++ b/qulearn/qkernel.py @@ -1,24 +1,14 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - from typing import Optional import pennylane as qml import torch from torch import nn -from .qlayer import CircuitLayer +from .qlayer import CircuitLayer as FeatureEmbed DEFAULT_QDEV_CFG = {"name": "default.qubit", "shots": None} -FeatureEmbed: TypeAlias = CircuitLayer -Tensor: TypeAlias = torch.Tensor -QDevice: TypeAlias = qml.Device -QNode: TypeAlias = qml.QNode -Expectation: TypeAlias = qml.measurements.ExpectationMP +from .types import Expectation, QDevice, QNode, Tensor class QKernel(nn.Module): diff --git a/qulearn/qlayer.py b/qulearn/qlayer.py index e9ae3e2..0d556ef 100644 --- a/qulearn/qlayer.py +++ b/qulearn/qlayer.py @@ -1,12 +1,6 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import math from enum import Enum -from typing import Any, Dict, Iterable, Optional, Union +from typing import Dict, Iterable, Optional import pennylane as qml import torch @@ -15,22 +9,23 @@ from .hat_basis import HatBasis from .mps import HatBasisMPS, MPSQGates from .mps_kronprod import kron, zkron +from .types import ( + CDevice, + DType, + Entropy, + Expectation, + Observable, + Observables, + Probability, + QDevice, + QNode, + Sample, + Tensor, + Wires, +) DEFAULT_QDEV_CFG = {"name": "default.qubit", "shots": None} -QDevice: TypeAlias = qml.Device -CDevice: TypeAlias = torch.device -DType: TypeAlias = torch.dtype -QNode: TypeAlias = qml.QNode -Tensor: TypeAlias = torch.Tensor -Wires: TypeAlias = Union[int, Iterable[Any]] -Expectation: TypeAlias = qml.measurements.ExpectationMP -Observable: TypeAlias = qml.operation.Observable -Observables: TypeAlias = Union[qml.operation.Observable, Iterable[qml.operation.Observable]] -Probability: TypeAlias = qml.measurements.ProbabilityMP -Sample: TypeAlias = qml.measurements.SampleMP -Entropy: TypeAlias = qml.measurements.VnEntropyMP - class MeasurementType(Enum): """Measurement type for a measurement layer.""" diff --git a/qulearn/rademacher.py b/qulearn/rademacher.py index d291f3e..83cf743 100644 --- a/qulearn/rademacher.py +++ b/qulearn/rademacher.py @@ -1,30 +1,19 @@ -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - -import pennylane as qml import torch -from .datagen import DataGenRademacher +from .datagen import DataGenRademacher as Datagen from .loss import RademacherLoss -from .trainer import SupervisedTrainer - -Model: TypeAlias = qml.QNode -Tensor: TypeAlias = torch.Tensor -Trainer: TypeAlias = SupervisedTrainer -Datagen: TypeAlias = DataGenRademacher +from .trainer import SupervisedTrainer as Trainer +from .types import QModel, Tensor def rademacher( - model: Model, trainer: Trainer, X: Tensor, sigmas: Tensor, datagen: Datagen + model: QModel, trainer: Trainer, X: Tensor, sigmas: Tensor, datagen: Datagen ) -> Tensor: """ Estimate Rademacher complexity of a given model. :param model: Prediction model. - :type model: Model + :type model: QModel :param trainer: The trainer. :type trainer: Trainer :param X: Data tensor of size (num_data_samples, size_data_set, dim_feature) diff --git a/qulearn/trainer.py b/qulearn/trainer.py index 9806246..df5cd9a 100644 --- a/qulearn/trainer.py +++ b/qulearn/trainer.py @@ -1,31 +1,11 @@ -from typing import Callable, Dict, Optional - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - -import logging from enum import Enum +from typing import Dict, Optional -import pennylane as qml import torch from torch import nn -from torch.utils.data import DataLoader -from torch.utils.tensorboard import SummaryWriter from .qkernel import QKernel - -Optimizer: TypeAlias = torch.optim.Optimizer -Loss: TypeAlias = torch.nn.Module -Metric: TypeAlias = Callable -Writer: TypeAlias = SummaryWriter -Logger: TypeAlias = logging.Logger -Model: TypeAlias = qml.QNode -Loader: TypeAlias = DataLoader -Tensor: TypeAlias = torch.Tensor -Parameter: TypeAlias = nn.Parameter +from .types import DataLoader, Logger, Loss, Metric, Model, Optimizer, Parameter, Tensor, Writer class EpochType(Enum): @@ -75,51 +55,51 @@ def __init__( self.writer = writer self.logger = logger - def train(self, model: Model, train_data: Loader, valid_data: Loader) -> None: + def train(self, model: Model, train_data: DataLoader, valid_data: DataLoader) -> None: """ Train the given model using the provided data loaders. :param model: The model to be trained. :type model: Model :param train_data: The DataLoader for the training data. - :type train_data: Loader + :type train_data: DataLoader :param valid_data: The DataLoader for the validation data. - :type valid_data: Loader + :type valid_data: DataLoader """ for epoch in range(1, self.num_epochs + 1): self.train_epoch(model, train_data, epoch) self.validate_epoch(model, valid_data, epoch) - def train_epoch(self, model: Model, train_data: Loader, epoch: int = 0) -> None: + def train_epoch(self, model: Model, train_data: DataLoader, epoch: int = 0) -> None: """ Train the model for one epoch. :param model: The model to be trained. :type model: Model :param train_data: The DataLoader for the training data. - :type train_data: Loader + :type train_data: DataLoader :param epoch: The current epoch number. Default is 0. :type epoch: int """ epoch_type = EpochType.Train self._epoch(epoch_type, model, train_data, epoch) - def validate_epoch(self, model: Model, valid_data: Loader, epoch: int = 0) -> None: + def validate_epoch(self, model: Model, valid_data: DataLoader, epoch: int = 0) -> None: """ Validate the model after an epoch of training. :param model: The model to be validated. :type model: Model :param valid_data: The DataLoader for the validation data. - :type valid_data: Loader + :type valid_data: DataLoader :param epoch: The current epoch number. Default is 0. :type epoch: int """ epoch_type = EpochType.Validate self._epoch(epoch_type, model, valid_data, epoch) - def _epoch(self, epoch_type: EpochType, model: Model, data: Loader, epoch: int = 0) -> None: + def _epoch(self, epoch_type: EpochType, model: Model, data: DataLoader, epoch: int = 0) -> None: running_loss = 0.0 running_metrics = {} for metric in self.metrics: @@ -191,16 +171,16 @@ def __init__( self.metrics = metrics self.logger = logger - def train(self, model: QKernel, train_data: Loader, valid_data: Loader) -> None: + def train(self, model: QKernel, train_data: DataLoader, valid_data: DataLoader) -> None: """ Train the given model using the provided data loaders using Ridge Regression. :param model: The quantum kernel model to be trained. :type model: QKernel :param train_data: The DataLoader for the training data. - :type train_data: Loader + :type train_data: DataLoader :param valid_data: The DataLoader for the validation data. - :type valid_data: Loader + :type valid_data: DataLoader .. warning:: Training changes the state of the model by assigning `X_train`. diff --git a/qulearn/types.py b/qulearn/types.py new file mode 100644 index 0000000..b75e467 --- /dev/null +++ b/qulearn/types.py @@ -0,0 +1,47 @@ +from typing import Any, Callable, Dict, Iterable, List, Sequence, Tuple, Union + +# for python < 3.10 +try: + from typing import TypeAlias +except ImportError: + from typing_extensions import TypeAlias + +import logging + +import numpy as np +import pennylane as qml +import tntorch +import torch +from torch.utils.tensorboard import SummaryWriter + +# Type aliases +Tensor: TypeAlias = torch.Tensor +Array: TypeAlias = np.ndarray +Device: TypeAlias = torch.device +DataOut: TypeAlias = Dict[str, Tensor] +DataLoader: TypeAlias = torch.utils.data.DataLoader +TensorDataset: TypeAlias = torch.utils.data.TensorDataset +Model: TypeAlias = torch.nn.Module +QModel: TypeAlias = qml.QNode +ParameterList: TypeAlias = List[List[Tensor]] +CDevice: TypeAlias = torch.device +DType: TypeAlias = torch.dtype +Loss: TypeAlias = torch.nn.Module +Capacity = List[Tuple[int, float, int, int]] +MPS: TypeAlias = tntorch.tensor.Tensor +Observable: TypeAlias = qml.operation.Observable +Observables: TypeAlias = Union[qml.operation.Observable, Iterable[qml.operation.Observable]] +Probability: TypeAlias = qml.measurements.ProbabilityMP +Sample: TypeAlias = qml.measurements.SampleMP +Entropy: TypeAlias = qml.measurements.VnEntropyMP +Hamiltonian: TypeAlias = qml.Hamiltonian +ParitySequence: TypeAlias = Sequence[Tuple[int, ...]] +QDevice: TypeAlias = qml.Device +QNode: TypeAlias = qml.QNode +Expectation: TypeAlias = qml.measurements.ExpectationMP +Wires: TypeAlias = Union[int, Iterable[Any]] +Optimizer: TypeAlias = torch.optim.Optimizer +Metric: TypeAlias = Callable +Writer: TypeAlias = SummaryWriter +Logger: TypeAlias = logging.Logger +Parameter: TypeAlias = torch.nn.Parameter diff --git a/qulearn/utils.py b/qulearn/utils.py index 728a6a9..38af52b 100644 --- a/qulearn/utils.py +++ b/qulearn/utils.py @@ -1,21 +1,10 @@ """Frequently used functions.""" -from typing import Dict, List, Tuple - -# for python < 3.10 -try: - from typing import TypeAlias -except ImportError: - from typing_extensions import TypeAlias - import math from itertools import chain, combinations +from typing import Dict, List, Tuple -import pennylane as qml -import torch - -Tensor: TypeAlias = torch.Tensor -Observable: TypeAlias = qml.Hamiltonian +from .types import Observable, Tensor def probabilities_to_dictionary(probs: Tensor) -> Dict[str, Tensor]: From 96cc035708d8f78dccfce15d087d87d9b0669114 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sat, 20 Jul 2024 12:24:10 +0200 Subject: [PATCH 18/21] chore (Makefile): add secrets check --- .gitignore | 3 +++ Makefile | 7 +++++-- 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index ac439d1..86f1d15 100644 --- a/.gitignore +++ b/.gitignore @@ -86,3 +86,6 @@ ipython_config.py *.npy *.npz *.pkl + +# Other +.DS_Store diff --git a/Makefile b/Makefile index 6062505..74eccf2 100644 --- a/Makefile +++ b/Makefile @@ -10,7 +10,7 @@ BUILDDIR = build # Default target executed when no arguments are given to make. default: all -all: docs-html format format_check static test_coverage +all: docs-html format format_check static test_coverage secrets_check help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) @@ -37,4 +37,7 @@ test: test_coverage: coverage run --source=qulearn --module pytest -v tests/ && coverage report -m -.PHONY: help docs-% format format_check static test test_coverage +secrets_check: + @git secrets --scan -r + +.PHONY: help docs-% format format_check static test test_coverage secrets_check From 76e87e347aecf59116c5889684a1563ec3344e94 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sat, 20 Jul 2024 12:28:36 +0200 Subject: [PATCH 19/21] chore (git): add gitattributes --- .gitattributes | 5 +++++ Makefile | 3 --- 2 files changed, 5 insertions(+), 3 deletions(-) create mode 100644 .gitattributes diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..260d5a7 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,5 @@ +# Ignore Jupyter notebooks for language statistics +*.ipynb linguist-documentation=true + +# Set the primary language to Python +*.py linguist-language=Python diff --git a/Makefile b/Makefile index 74eccf2..4597dc5 100644 --- a/Makefile +++ b/Makefile @@ -1,13 +1,11 @@ # Minimal makefile for Sphinx documentation and project maintenance tasks # -# Variables that can be set from the command line or environment SPHINXOPTS ?= SPHINXBUILD ?= sphinx-build SOURCEDIR = docs BUILDDIR = build -# Default target executed when no arguments are given to make. default: all all: docs-html format format_check static test_coverage secrets_check @@ -30,7 +28,6 @@ static: flake8 qulearn tests mypy qulearn tests --ignore-missing-imports --no-strict-optional -# Testing test: pytest tests/ From 631aaba73a83865c27b5b77fa86350340547e402 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sat, 20 Jul 2024 12:55:03 +0200 Subject: [PATCH 20/21] chore (git): update workflow --- .github/workflows/main.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index bd3091b..e416c4d 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -47,8 +47,8 @@ jobs: - name: Set up Poetry virtual environment run: | poetry config virtualenvs.in-project true - poetry install --no-root + poetry install --with dev,test,docs - name: Run Makefile tasks run: | - make all + poetry run make all From 370fd50441fa87971b57fe11b891fbb9017c6f04 Mon Sep 17 00:00:00 2001 From: Mazen Ali Date: Sat, 20 Jul 2024 13:10:33 +0200 Subject: [PATCH 21/21] chore (version): update files for new version --- CHANGELOG.md | 12 +++++++++ docs/conf.py | 2 +- poetry.lock | 66 +++++++++++++++++++++++++------------------------- pyproject.toml | 2 +- 4 files changed, 47 insertions(+), 35 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 9574dee..1da5184 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,6 +5,18 @@ All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). +## [0.8.0] - 2024-07-20 + +### Added + +- Add Linear2DBasisQFE + +### Chore + +- Move type aliases to a separate module +- Update Makefile +- Add github workflows + ## [0.7.0] - 2024-02-06 ### Added diff --git a/docs/conf.py b/docs/conf.py index 94adaa0..b7f5b02 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -9,7 +9,7 @@ project = "QuLearn" copyright = "2023, Mazen Ali" author = "Mazen Ali" -release = "0.7.0" +release = "0.8.0" # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration diff --git a/poetry.lock b/poetry.lock index 0e7ca62..5b39946 100644 --- a/poetry.lock +++ b/poetry.lock @@ -2255,44 +2255,44 @@ tests = ["pytest (>=4.6)"] [[package]] name = "mypy" -version = "1.10.1" +version = "1.11.0" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e36f229acfe250dc660790840916eb49726c928e8ce10fbdf90715090fe4ae02"}, - {file = "mypy-1.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:51a46974340baaa4145363b9e051812a2446cf583dfaeba124af966fa44593f7"}, - {file = "mypy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:901c89c2d67bba57aaaca91ccdb659aa3a312de67f23b9dfb059727cce2e2e0a"}, - {file = "mypy-1.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0cd62192a4a32b77ceb31272d9e74d23cd88c8060c34d1d3622db3267679a5d9"}, - {file = "mypy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a2cbc68cb9e943ac0814c13e2452d2046c2f2b23ff0278e26599224cf164e78d"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bd6f629b67bb43dc0d9211ee98b96d8dabc97b1ad38b9b25f5e4c4d7569a0c6a"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1bbb3a6f5ff319d2b9d40b4080d46cd639abe3516d5a62c070cf0114a457d84"}, - {file = "mypy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8edd4e9bbbc9d7b79502eb9592cab808585516ae1bcc1446eb9122656c6066f"}, - {file = "mypy-1.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6166a88b15f1759f94a46fa474c7b1b05d134b1b61fca627dd7335454cc9aa6b"}, - {file = "mypy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bb9cd11c01c8606a9d0b83ffa91d0b236a0e91bc4126d9ba9ce62906ada868e"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d8681909f7b44d0b7b86e653ca152d6dff0eb5eb41694e163c6092124f8246d7"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:378c03f53f10bbdd55ca94e46ec3ba255279706a6aacaecac52ad248f98205d3"}, - {file = "mypy-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bacf8f3a3d7d849f40ca6caea5c055122efe70e81480c8328ad29c55c69e93e"}, - {file = "mypy-1.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:701b5f71413f1e9855566a34d6e9d12624e9e0a8818a5704d74d6b0402e66c04"}, - {file = "mypy-1.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:3c4c2992f6ea46ff7fce0072642cfb62af7a2484efe69017ed8b095f7b39ef31"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:604282c886497645ffb87b8f35a57ec773a4a2721161e709a4422c1636ddde5c"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37fd87cab83f09842653f08de066ee68f1182b9b5282e4634cdb4b407266bade"}, - {file = "mypy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8addf6313777dbb92e9564c5d32ec122bf2c6c39d683ea64de6a1fd98b90fe37"}, - {file = "mypy-1.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5cc3ca0a244eb9a5249c7c583ad9a7e881aa5d7b73c35652296ddcdb33b2b9c7"}, - {file = "mypy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:1b3a2ffce52cc4dbaeee4df762f20a2905aa171ef157b82192f2e2f368eec05d"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe85ed6836165d52ae8b88f99527d3d1b2362e0cb90b005409b8bed90e9059b3"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c2ae450d60d7d020d67ab440c6e3fae375809988119817214440033f26ddf7bf"}, - {file = "mypy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be84c06e6abd72f960ba9a71561c14137a583093ffcf9bbfaf5e613d63fa531"}, - {file = "mypy-1.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2189ff1e39db399f08205e22a797383613ce1cb0cb3b13d8bcf0170e45b96cc3"}, - {file = "mypy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:97a131ee36ac37ce9581f4220311247ab6cba896b4395b9c87af0675a13a755f"}, - {file = "mypy-1.10.1-py3-none-any.whl", hash = "sha256:71d8ac0b906354ebda8ef1673e5fde785936ac1f29ff6987c7483cfbd5a4235a"}, - {file = "mypy-1.10.1.tar.gz", hash = "sha256:1f8f492d7db9e3593ef42d4f115f04e556130f2819ad33ab84551403e97dd4c0"}, + {file = "mypy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3824187c99b893f90c845bab405a585d1ced4ff55421fdf5c84cb7710995229"}, + {file = "mypy-1.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:96f8dbc2c85046c81bcddc246232d500ad729cb720da4e20fce3b542cab91287"}, + {file = "mypy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1a5d8d8dd8613a3e2be3eae829ee891b6b2de6302f24766ff06cb2875f5be9c6"}, + {file = "mypy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:72596a79bbfb195fd41405cffa18210af3811beb91ff946dbcb7368240eed6be"}, + {file = "mypy-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:35ce88b8ed3a759634cb4eb646d002c4cef0a38f20565ee82b5023558eb90c00"}, + {file = "mypy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:98790025861cb2c3db8c2f5ad10fc8c336ed2a55f4daf1b8b3f877826b6ff2eb"}, + {file = "mypy-1.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:25bcfa75b9b5a5f8d67147a54ea97ed63a653995a82798221cca2a315c0238c1"}, + {file = "mypy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0bea2a0e71c2a375c9fa0ede3d98324214d67b3cbbfcbd55ac8f750f85a414e3"}, + {file = "mypy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2b3d36baac48e40e3064d2901f2fbd2a2d6880ec6ce6358825c85031d7c0d4d"}, + {file = "mypy-1.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:d8e2e43977f0e09f149ea69fd0556623919f816764e26d74da0c8a7b48f3e18a"}, + {file = "mypy-1.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1d44c1e44a8be986b54b09f15f2c1a66368eb43861b4e82573026e04c48a9e20"}, + {file = "mypy-1.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cea3d0fb69637944dd321f41bc896e11d0fb0b0aa531d887a6da70f6e7473aba"}, + {file = "mypy-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a83ec98ae12d51c252be61521aa5731f5512231d0b738b4cb2498344f0b840cd"}, + {file = "mypy-1.11.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c7b73a856522417beb78e0fb6d33ef89474e7a622db2653bc1285af36e2e3e3d"}, + {file = "mypy-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:f2268d9fcd9686b61ab64f077be7ffbc6fbcdfb4103e5dd0cc5eaab53a8886c2"}, + {file = "mypy-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:940bfff7283c267ae6522ef926a7887305945f716a7704d3344d6d07f02df850"}, + {file = "mypy-1.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f9294528b5f5cf96c721f231c9f5b2733164e02c1c018ed1a0eff8a18005ac"}, + {file = "mypy-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7b54c27783991399046837df5c7c9d325d921394757d09dbcbf96aee4649fe9"}, + {file = "mypy-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65f190a6349dec29c8d1a1cd4aa71284177aee5949e0502e6379b42873eddbe7"}, + {file = "mypy-1.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:dbe286303241fea8c2ea5466f6e0e6a046a135a7e7609167b07fd4e7baf151bf"}, + {file = "mypy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:104e9c1620c2675420abd1f6c44bab7dd33cc85aea751c985006e83dcd001095"}, + {file = "mypy-1.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f006e955718ecd8d159cee9932b64fba8f86ee6f7728ca3ac66c3a54b0062abe"}, + {file = "mypy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:becc9111ca572b04e7e77131bc708480cc88a911adf3d0239f974c034b78085c"}, + {file = "mypy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6801319fe76c3f3a3833f2b5af7bd2c17bb93c00026a2a1b924e6762f5b19e13"}, + {file = "mypy-1.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:c1a184c64521dc549324ec6ef7cbaa6b351912be9cb5edb803c2808a0d7e85ac"}, + {file = "mypy-1.11.0-py3-none-any.whl", hash = "sha256:56913ec8c7638b0091ef4da6fcc9136896914a9d60d54670a75880c3e5b99ace"}, + {file = "mypy-1.11.0.tar.gz", hash = "sha256:93743608c7348772fdc717af4aeee1997293a1ad04bc0ea6efa15bf65385c538"}, ] [package.dependencies] mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.1.0" +typing-extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] @@ -3939,18 +3939,18 @@ win32 = ["pywin32"] [[package]] name = "setuptools" -version = "71.0.3" +version = "71.0.4" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-71.0.3-py3-none-any.whl", hash = "sha256:f501b6e6db709818dc76882582d9c516bf3b67b948864c5fa1d1624c09a49207"}, - {file = "setuptools-71.0.3.tar.gz", hash = "sha256:3d8531791a27056f4a38cd3e54084d8b1c4228ff9cf3f2d7dd075ec99f9fd70d"}, + {file = "setuptools-71.0.4-py3-none-any.whl", hash = "sha256:ed2feca703be3bdbd94e6bb17365d91c6935c6b2a8d0bb09b66a2c435ba0b1a5"}, + {file = "setuptools-71.0.4.tar.gz", hash = "sha256:48297e5d393a62b7cb2a10b8f76c63a73af933bd809c9e0d0d6352a1a0135dd8"}, ] [package.extras] core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (<7.4)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] [[package]] diff --git a/pyproject.toml b/pyproject.toml index fc584d6..8d1a813 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "qulearn" -version = "0.7.0" +version = "0.8.0" description = "Streamlining quantum and classical machine learning model development." authors = ["Mazen Ali "] readme = "README.md"