Skip to content

Latest commit

 

History

History
89 lines (68 loc) · 3.97 KB

README.md

File metadata and controls

89 lines (68 loc) · 3.97 KB

Neuroevolution of Recurrent Architectures on Control Tasks

Videos

This repository contains the instructions on how to reproduce the experiments from the paper "Neuroevolution of Recurrent Architectures on Control Tasks" published at GECCO 2022 & the ALOE ICLR 2022 Workshop.

The code itself is located in a larger library called Nevo.

Installation (tested on Ubuntu 20.04)

# Debian packages                       ----------mpi4py---------- ~~~~~~~~~~~~~~~~~Gym~~~~~~~~~~~~~~~~~~~
sudo apt install git python3-virtualenv python3-dev libopenmpi-dev g++ swig libosmesa6-dev patchelf ffmpeg

# MuJoCo
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -P ~/Downloads/
mkdir -p ~/.mujoco/ && tar -zxf ~/Downloads/mujoco210-linux-x86_64.tar.gz -C ~/.mujoco/
echo -e "\n# MuJoCo\nMUJOCO_PATH=~/.mujoco/mujoco210/bin
export LD_LIBRARY_PATH=\$MUJOCO_PATH:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

# Library & Dependencies
git clone https://github.com/MaximilienLC/nevo && cd nevo/
virtualenv venv && source venv/bin/activate && pip3 install -r requirements.txt

Execution

<task> = acrobot, cart_pole, mountain_car, mountain_car_continuous, pendulum, bipedal_walker, bipedal_walker_hardcore, lunar_lander, lunar_lander_continuous, ant, half_cheetah, hopper, humanoid, humanoid_standup, inverted_double_pendulum, inverted_pendulum, reacher, swimmer or walker_2d
<net> = static/rnn or dynamic/rnn

mpiexec -n <n> python3 main.py --env_path envs/multistep/score/control.py \
                               --bots_path bots/network/<net>/control.py \
                               --nb_generations <nb_generations> \
                               --population_size <population_size> \
                               --additional_arguments '{"task" : "<task>"}'

Example from the paper: (you can increase the number of MPI processes if your machine allows it)

mpiexec -n 2 python3 main.py --env_path envs/multistep/score/control.py \
                             --bots_path bots/network/dynamic/rnn/control.py \
                             --nb_generations 100 \
                             --population_size 16 \
                             --additional_arguments '{"task" : "acrobot"}'

Downloading the Paper's Results & Final Dynamic States

wget https://www.dropbox.com/s/if66cy3ydep6xj0/envs.multistep.control.score.zip -P ~/Downloads/
unzip -o ~/Downloads/envs.multistep.control.score.zip -d data/states/

You can now run additional generations ...

mpiexec -n 4 python3 main.py --env_path envs/multistep/score/control.py \
                             --bots_path bots/network/dynamic/rnn/control.py \
                             --nb_elapsed_generations 100 \
                             --nb_generations 10 \
                             --population_size 16 \
                             --additional_arguments '{"task" : "cart_pole"}'

... Evaluate the new agents ...

mpiexec -n 4 python3 utils/evaluate.py --states_path data/states/envs.multistep.score.control/steps.0~task.cart_pole~transfer.no~trials.1/bots.network.dynamic.rnn.control/16/

... And both record the elite's behaviour and obtain its architecture.

python3 utils/record.py --state_path data/states/envs.multistep.score.control/steps.0~task.cart_pole~transfer.no~trials.1/bots.network.dynamic.rnn.control/16/110/

Reproducing the Paper's Figures

# Verify Stable Baselines 3 Results (not necessary for later steps)
git clone --recursive https://github.com/DLR-RM/rl-baselines3-zoo ~/rl-baselines3-zoo
jupyter notebook utils/notebooks/neuroevolution-recurrent-architectures/sb3_baselines.ipynb

# Visualize the dynamic networks
jupyter notebook utils/notebooks/neuroevolution-recurrent-architectures/dynamic_rnn.ipynb

# Reproduce the paper's figures  
jupyter notebook utils/notebooks/neuroevolution-recurrent-architectures/figures.ipynb