-
Notifications
You must be signed in to change notification settings - Fork 28
/
preprocess.py
189 lines (142 loc) · 6.05 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import s2s
import argparse
import torch
import ipdb
parser = argparse.ArgumentParser(description='preprocess.py')
##
## **Preprocess Options**
##
parser.add_argument('-config', help="Read options from this file")
parser.add_argument('-train_src', required=True,
help="Path to the training source data")
parser.add_argument('-train_tgt', required=True,
help="Path to the training target data")
parser.add_argument('-valid_src', required=False,
help="Path to the validation source data")
parser.add_argument('-valid_tgt', required=False,
help="Path to the validation target data")
parser.add_argument('-save_data', required=True,
help="Output file for the prepared data")
parser.add_argument('-src_vocab_size', type=int, default=50000,
help="Size of the source vocabulary")
parser.add_argument('-tgt_vocab_size', type=int, default=50000,
help="Size of the target vocabulary")
parser.add_argument('-src_vocab',
help="Path to an existing source vocabulary")
parser.add_argument('-tgt_vocab',
help="Path to an existing target vocabulary")
parser.add_argument('-seq_length', type=int, default=10,
help="Maximum sequence length")
parser.add_argument('-shuffle', type=int, default=1,
help="Shuffle data")
parser.add_argument('-seed', type=int, default=3435,
help="Random seed")
parser.add_argument('-lower', action='store_true', help='lowercase data')
parser.add_argument('-report_every', type=int, default=100000,
help="Report status every this many sentences")
opt = parser.parse_args()
torch.manual_seed(opt.seed)
def makeVocabulary(filenames, size):
vocab = s2s.Dict([s2s.Constants.PAD_WORD, s2s.Constants.UNK_WORD,
s2s.Constants.BOS_WORD, s2s.Constants.EOS_WORD], lower=opt.lower)
for filename in filenames:
with open(filename, encoding='utf-8') as f:
for sent in f.readlines():
for word in sent.strip().split(' '):
vocab.add(word)
originalSize = vocab.size()
vocab = vocab.prune(size)
print('Created dictionary of size %d (pruned from %d)' %
(vocab.size(), originalSize))
return vocab
def initVocabulary(name, dataFiles, vocabFile, vocabSize):
vocab = None
if vocabFile is not None:
# If given, load existing word dictionary.
print('Reading ' + name + ' vocabulary from \'' + vocabFile + '\'...')
vocab = s2s.Dict()
vocab.loadFile(vocabFile)
print('Loaded ' + str(vocab.size()) + ' ' + name + ' words')
if vocab is None:
# If a dictionary is still missing, generate it.
print('Building ' + name + ' vocabulary...')
genWordVocab = makeVocabulary(dataFiles, vocabSize)
vocab = genWordVocab
print()
return vocab
def saveVocabulary(name, vocab, file):
print('Saving ' + name + ' vocabulary to \'' + file + '\'...')
vocab.writeFile(file)
def makeData(srcFile, tgtFile, srcDicts, tgtDicts):
src, tgt = [], []
sizes = []
count, ignored = 0, 0
print('Processing %s & %s ...' % (srcFile, tgtFile))
srcF = open(srcFile, encoding='utf-8')
tgtF = open(tgtFile, encoding='utf-8')
while True:
sline = srcF.readline()
tline = tgtF.readline()
# normal end of file
if sline == "" and tline == "":
break
# source or target does not have same number of lines
if sline == "" or tline == "":
print('WARNING: source and target do not have the same number of sentences')
break
sline = sline.strip()
tline = tline.strip()
# source and/or target are empty
if sline == "" or tline == "":
print('WARNING: ignoring an empty line (' + str(count + 1) + ')')
continue
srcWords = sline.split(' ')
tgtWords = tline.split(' ')
if len(srcWords) <= opt.seq_length and len(tgtWords) <= opt.seq_length:
src += [srcDicts.convertToIdx(srcWords,
s2s.Constants.UNK_WORD)]
tgt += [tgtDicts.convertToIdx(tgtWords,
s2s.Constants.UNK_WORD,
s2s.Constants.BOS_WORD,
s2s.Constants.EOS_WORD)]
sizes += [len(srcWords)]
else:
ignored += 1
count += 1
if count % opt.report_every == 0:
print('... %d sentences prepared' % count)
srcF.close()
tgtF.close()
# if opt.shuffle == 1:
# print('... shuffling sentences')
# perm = torch.randperm(len(src))
# src = [src[idx] for idx in perm]
# tgt = [tgt[idx] for idx in perm]
# sizes = [sizes[idx] for idx in perm]
#
# print('... sorting sentences by size')
# _, perm = torch.sort(torch.Tensor(sizes))
# src = [src[idx] for idx in perm]
# tgt = [tgt[idx] for idx in perm]
print('Prepared %d sentences (%d ignored due to length == 0 or > %d)' %
(len(src), ignored, opt.seq_length))
return src, tgt
def main():
dicts = {}
dicts['src'] = initVocabulary('source', [opt.train_src], opt.src_vocab, opt.src_vocab_size)
dicts['tgt'] = initVocabulary('target', [opt.train_tgt], opt.tgt_vocab, opt.tgt_vocab_size)
if opt.src_vocab is None:
saveVocabulary('source', dicts['src'], opt.save_data + '.src.dict')
if opt.tgt_vocab is None:
saveVocabulary('target', dicts['tgt'], opt.save_data + '.tgt.dict')
print('Preparing training ...')
train = {}
train['src'], train['tgt'] = makeData(opt.train_src, opt.train_tgt, dicts['src'], dicts['tgt'])
print('Saving data to \'' + opt.save_data + '.train.pt\'...')
save_data = {'dicts': dicts,
'train': train,
# 'valid': valid
}
torch.save(save_data, opt.save_data + '.train.pt')
if __name__ == "__main__":
main()