-
Notifications
You must be signed in to change notification settings - Fork 7
/
DESCRIPTION
55 lines (55 loc) · 1.55 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
Package: sccomp
Title: Robust Outlier-aware Estimation of Composition and Heterogeneity for Single-cell Data
Version: 2.1.0
Authors@R: c(person("Stefano", "Mangiola", email = "[email protected]",
role = c("aut", "cre"))
)
Description: A robust and outlier-aware method for testing differential tissue composition from single-cell data. This model can infer changes in tissue composition and heterogeneity, and can produce realistic data simulations based on any existing dataset. This model can also transfer knowledge from a large set of integrated datasets to increase accuracy further.
License: GPL-3
URL: https://github.com/MangiolaLaboratory/sccomp
BugReports: https://github.com/MangiolaLaboratory/sccomp/issues
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.3
Depends: R (>= 4.2.0)
Imports:
instantiate (>= 0.2.3),
stats,
SingleCellExperiment,
parallel,
dplyr,
tidyr,
purrr,
magrittr,
rlang,
tibble,
boot,
lifecycle,
tidyselect,
utils,
ggplot2,
ggrepel,
patchwork,
forcats,
readr,
scales,
stringr,
glue
Suggests:
knitr,
rmarkdown,
BiocStyle,
testthat (>= 3.0.0),
markdown,
loo,
prettydoc,
tidyseurat,
tidySingleCellExperiment,
bayesplot,
posterior
Additional_repositories:
https://mc-stan.org/r-packages/
SystemRequirements: CmdStan (https://mc-stan.org/users/interfaces/cmdstan)
biocViews: Bayesian, Regression, DifferentialExpression, SingleCell
LazyData: true
VignetteBuilder: knitr