-
Notifications
You must be signed in to change notification settings - Fork 109
/
dataset_old.py
855 lines (751 loc) · 38.8 KB
/
dataset_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
"""
This file is part of DeepConvSep.
Copyright (c) 2014-2017 Marius Miron <miron.marius at gmail.com>
DeepConvSep is free software: you can redistribute it and/or modify
it under the terms of the Affero GPL License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
DeepConvSep is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the Affero GPL License
along with DeepConvSep. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from scipy import io
import os
import sys
from os import listdir
from os.path import isfile, join
import cPickle as pickle
import random
import re
import multiprocessing
import util
import climate
import itertools as it
logging = climate.get_logger('dataset')
climate.enable_default_logging()
"""
Routines for multiprocessing which can be used inside a class, e.g. loading many files from hard drive in parallel
"""
def fun(f,q_in,q_out):
while True:
i,x = q_in.get()
if i is None:
break
q_out.put((i,f(x)))
def parmap(f, X, nprocs = multiprocessing.cpu_count()-1):
"""
Paralellize the function f with the list X, using a number of CPU of nprocs
"""
nprocs = np.maximum(multiprocessing.cpu_count()-1,nprocs)
q_in = multiprocessing.Queue(1)
q_out = multiprocessing.Queue()
proc = [multiprocessing.Process(target=fun,args=(f,q_in,q_out)) for _ in range(nprocs)]
for p in proc:
p.daemon = True
p.start()
sent = [q_in.put((i,x)) for i,x in enumerate(X)]
[q_in.put((None,None)) for _ in range(nprocs)]
res = [q_out.get() for _ in range(len(sent))]
[p.join() for p in proc]
return [x for i,x in sorted(res)]
"""
Classes to load features which have been computed with one of the functions in transform.py,
and yield batches necessary for training neural networks.
These classes are useful when the data does not fit into memory, and the batches can be loaded in chunks.
"""
class LargeDataset(object):
"""
The parent class to load data in chunks and prepare batches for training neural networks
Parameters
----------
path_transform_in : list of strings or string
The paths for the directories from where to load the input data to the network
path_transform_out : list of strings or string, optional
The paths for the directories from where to load the output data to the network
If ommited is considered to be the same as path_transform_in
exclude_list : list of strings or string, optional
This list contains strings which are used to filter the data. Files containing these strings are excluded.
batch_size : int, optional
The number of examples in a batch
batch_memory : int, optional
The number of batches to load in memory at once
time_context : int, optional
The time context modeled by the network.
The data files are split into segments of this size
overlap : int, optional
The number of overlapping frames between adjacent segments
nsources : int, optional
In the case of source separation, this is the number of sources to separate
nprocs : int, optional
The number of CPU to use when loading the data in parallel: the more, the faster
log_in : bool, optional
Apply log10 to the input
log_out : bool, optional
Apply log10 to the output
mult_factor_in : float, optional
Multiply the input with factor
mult_factor_out : float, optional
Multiply the output with factor
scratch_path : string, optional
To speed up batch fetching, the resulting batches are written to a scratch path (e.g. SSD disk)
"""
def __init__(self, path_transform_in=None, path_transform_out=None, sampleRate=44100, exclude_list=[], nsamples=0,
batch_size=64, batch_memory=8000, time_context=-1, overlap=5, extra_features=False, tensortype=float, scratch_path=None,
log_in=False, log_out=False, mult_factor_in=1., mult_factor_out=1.,nsources=2,pitched=False,save_mask=False,pitch_norm=127,nprocs=2):
self.batch_size = batch_size
self.nsources = nsources
self.tensortype = tensortype
if path_transform_in is not None:
if not isinstance(path_transform_in, (list, tuple)):
self.path_transform_in = [path_transform_in]
else:
self.path_transform_in = path_transform_in
else:
self.path_transform_in = None
if path_transform_out is not None:
if not isinstance(path_transform_out, (list, tuple)):
self.path_transform_out = [path_transform_out]
else:
self.path_transform_out = path_transform_out
else:
self.path_transform_out = None
self.extra_features = extra_features
self.batch_memory = batch_memory #number of batches to keep in memory
self.mult_factor_in = mult_factor_in
self.mult_factor_out = mult_factor_out
self.log_in = log_in
self.log_out = log_out
#self.iteration_size = int(self.batch_memory / self.batch_size)
self.sampleRate = sampleRate
self.pitched = pitched
self.save_mask = save_mask
self.pitch_norm = pitch_norm
self.nprocs = nprocs
self.exclude_list = exclude_list
self.nsamples = nsamples
if time_context != -1:
self.time_context = int(time_context)
else:
self.time_context = 10 #frames
if overlap > self.time_context:
self.overlap = int(0.5 * self.time_context)
else:
self.overlap = overlap
#checks if the path where the .data files are store exists
if self.path_transform_in is not None:
if self.path_transform_out is None:
self.path_transform_out = self.path_transform_in
#if path exists, this routine reads total number of batches, initializes batches and variables
self.updatePath(self.path_transform_in,self.path_transform_out)
#to save a created batch to maybe a ssd fast drive
if scratch_path is not None:
if not os.path.exists(scratch_path):
os.makedirs(scratch_path)
self.scratch_path = scratch_path
else:
self.scratch_path = None
self._index = 0
def iterate(self):
"""
This is called whenever you need to return a batch, e.g. the callable that generates numpy arrays
"""
if self._index>=self.iteration_size or self.findex>=self.total_points:
self._index = 0
self.findex = 0
self.nindex = 1
self.idxbegin = 0
self.idxend = 0
self.foffset = 0
self.mini_index = 0
self.scratch_index = 0
#checks if there are enough batches in memory, if not loads more batches from the disk
if self.batch_memory<self.iteration_size and self.mini_index>=self.batch_memory:
self.loadBatches()
#logging.info('loaded batch %s from %s',str(self._index+1),str(self.iteration_size))
self._index = self._index + 1
idx0=self.mini_index*self.batch_size
idx1=(self.mini_index+1)*self.batch_size
self.mini_index = self.mini_index + 1
return self.returns(idx0,idx1)
def returns(self, idx0, idx1):
"""
This is a wrapper used by the callable \"iterate\" to return a batch between the indices idx0,idx1
"""
if self.pitched:
if self.extra_features:
return [self.batch_inputs[idx0:idx1],self.batch_outputs[idx0:idx1],self.batch_pitches[idx0:idx1],self.batch_features[idx0:idx1]]
else:
return [self.batch_inputs[idx0:idx1],self.batch_outputs[idx0:idx1],self.batch_pitches[idx0:idx1]]
elif self.save_mask:
if self.extra_features:
return [self.batch_inputs[idx0:idx1],self.batch_outputs[idx0:idx1],self.batch_masks[idx0:idx1],self.batch_features[idx0:idx1]]
else:
return [self.batch_inputs[idx0:idx1],self.batch_outputs[idx0:idx1],self.batch_masks[idx0:idx1]]
else:
return [self.batch_inputs[idx0:idx1],self.batch_outputs[idx0:idx1]]
def loadBatches(self):
"""
Loads more batches from the disk, if the batches from the memory are exhausted
"""
if hasattr(self, 'scratch_path') and self.scratch_path is not None:
batch_file = os.path.join(self.scratch_path,'batch'+str(self.scratch_index))
if os.path.exists(batch_file+'_inputs.data') and os.path.exists(batch_file+'_outputs.data'):
self.batch_inputs = self.loadTensor(batch_file+'_inputs.data')
self.batch_outputs = self.loadTensor(batch_file+'_outputs.data')
if self.pitched:
self.batch_pitches = self.loadTensor(batch_file+'_pitches.data')
elif self.save_mask:
self.batch_masks = self.loadTensor(batch_file+'_masks.data')
if self.extra_features:
self.batch_features = self.loadTensor(batch_file+'_features.data')
self.shuffleBatches()
else:
#generate and save
self.genBatches()
self.saveBatches(batch_file)
self.scratch_index = self.scratch_index + 1
else:
self.genBatches()
self.scratch_index = self.scratch_index + 1
#logging.info('read %s more batches from hdd',str(self.batch_memory))
self.mini_index = 0
def genBatches(self):
"""
This function is called by \"loadBatches\" to generate batches from the disk
"""
#getNextIndex sets the time indices corresponding to the next batch
self.getNextIndex()
#no multiprocessing
if self.nindex==self.findex:
x = self.loadFile(self.findex, idxbegin=self.idxbegin, idxend=self.idxend)
self.batch_inputs[0:self.idxend-self.idxbegin] = x[0]
self.batch_outputs[0:self.idxend-self.idxbegin] = x[1]
if self.pitched:
self.batch_pitches[0:self.idxend-self.idxbegin] = x[2]
elif self.save_mask:
self.batch_masks[0:self.idxend-self.idxbegin] = x[2]
if self.extra_features:
self.batch_features[0:self.idxend-self.idxbegin] = x[3]
x=None
else:
x = self.loadFile(self.findex, idxbegin=self.idxbegin)
self.batch_inputs[0:self.num_points[self.findex+1]-self.num_points[self.findex]-self.idxbegin] = x[0]
self.batch_outputs[0:self.num_points[self.findex+1]-self.num_points[self.findex]-self.idxbegin] = x[1]
if self.pitched:
self.batch_pitches[0:self.num_points[self.findex+1]-self.num_points[self.findex]-self.idxbegin] = x[2]
elif self.save_mask:
self.batch_masks[0:self.num_points[self.findex+1]-self.num_points[self.findex]-self.idxbegin] = x[2]
if self.extra_features:
self.batch_features[0:self.num_points[self.findex+1]-self.num_points[self.findex]-self.idxbegin] = x[3]
x=None
#this is where multiprocessing happens
if (self.nindex-self.findex) > 2:
i = self.findex + 1
xall = parmap(self.loadFile, list(range(self.findex+1,self.nindex)),nprocs=self.nprocs)
for i in range(self.findex+1,self.nindex):
#x = self.loadFile(i)
x=xall[i-self.findex-1]
idx0=self.num_points[i]-self.foffset
idx1=self.num_points[i+1]-self.foffset
self.batch_inputs[idx0:idx1] = x[0]
self.batch_outputs[idx0:idx1] = x[1]
if self.pitched:
self.batch_pitches[idx0:idx1] = x[2]
elif self.save_mask:
self.batch_masks[idx0:idx1] = x[2]
if self.extra_features:
self.batch_features[idx0:idx1] = x[3]
x=None
xall=None
#no multiprocessing
if (self.nindex-self.findex) > 0:
x = self.loadFile(self.nindex,idxend=self.idxend)
idx0=self.num_points[self.nindex] - self.foffset
idx1=self.num_points[self.nindex] + self.idxend - self.foffset
self.batch_inputs[idx0:idx1] = x[0]
self.batch_outputs[idx0:idx1] = x[1]
if self.pitched:
self.batch_pitches[idx0:idx1] = x[2]
elif self.save_mask:
self.batch_masks[idx0:idx1] = x[2]
if self.extra_features:
self.batch_features[idx0:idx1] = x[3]
x=None
#shuffle batches
self.shuffleBatches()
if self.idxend == (self.num_points[self.nindex+1]-self.num_points[self.nindex]):
self.findex = self.nindex + 1
self.idxbegin = 0
self.foffset = self.num_points[self.findex]
else:
self.findex = self.nindex
self.idxbegin = self.idxend
self.foffset = self.num_points[self.findex] + self.idxbegin
self.idxend = -1
def getNextIndex(self):
"""
Returns how many batches/sequences to load from each .data file
"""
target_value = (self.scratch_index+1)*(self.batch_memory*self.batch_size)
idx_target = np.searchsorted(self.num_points,target_value, side='right')
if target_value>self.num_points[-1] or idx_target>=len(self.num_points):
idx_target = idx_target - 2
target_value = self.num_points[idx_target]
self.idxend = self.num_points[idx_target] - self.num_points[idx_target-1]
self.nindex = idx_target
else:
while target_value<=self.num_points[idx_target]:
idx_target = idx_target - 1
self.idxend = target_value - self.num_points[idx_target]
self.nindex = idx_target
def loadPitch(self,id):
if self.pitch_code is None:
self.pitch_code = 'g'
return self.loadTensor(os.path.join(self.path_transform_in[self.dirid[id]],self.file_list[id].replace('_m_','_'+self.pitch_code+'_')))
def loadInputOutput(self,id):
"""
Loads the .data fft file from the hard drive
"""
allmixinput = self.loadTensor(os.path.join(self.path_transform_in[self.dirid[id]],self.file_list[id]))
if self.path_transform_in==self.path_transform_out:
allmixoutput = allmixinput[1:]
else:
allmixoutput = self.loadTensor(os.path.join(self.path_transform_out[self.dirid[id]],self.file_list[id]))
if self.nsources>1:
allmixoutput = allmixoutput[1:]
allmixinput = np.expand_dims(allmixinput[0], axis=0)
return allmixinput,allmixoutput
def loadFile(self,id,idxbegin=None,idxend=None):
"""
reads a .data file and splits into batches
"""
if self.path_transform_in is not None and self.path_transform_out is not None:
if idxbegin is None:
idxbegin = 0
if idxend is None or idxend==-1:
idxend = self.num_points[id+1] - self.num_points[id]
if self.pitched:
inputs,outputs,pitches = self.initOutput(idxend - idxbegin)
elif self.save_mask:
inputs,outputs,masks = self.initOutput(idxend - idxbegin)
else:
inputs,outputs = self.initOutput(idxend - idxbegin)
if self.extra_features:
features = self.initFeatures(idxend - idxbegin)
#loads the .data fft file from the hard drive
allmixinput,allmixoutput = self.loadInputOutput(id)
if self.pitched or self.save_mask:
allpitch = self.loadPitch(id)
#apply a scaled log10(1+value) function to make sure larger values are eliminated
if self.log_in==True:
allmixinput = self.mult_factor_in*np.log10(1.0+allmixinput)
else:
allmixinput = self.mult_factor_in*allmixinput
if self.log_out==True:
allmixoutput = self.mult_factor_out*np.log10(1.0+allmixoutput)
else:
allmixoutput = self.mult_factor_out*allmixoutput
i = 0
start = 0
if self.time_context > allmixinput.shape[1]:
inputs[0,:allmixinput.shape[1],:] = allmixinput[0]
outputs[0, :allmixoutput.shape[1], :allmixoutput.shape[-1]] = allmixoutput[0]
if self.extra_features:
features[0, :allmixoutput.shape[1], :] = self.extra_features(allmixinput[0],allpitch)
for j in range(1,self.nsources):
outputs[0, :allmixoutput.shape[1], j*allmixoutput.shape[-1]:(j+1)*allmixoutput.shape[-1]] = allmixoutput[j]
#import pdb;pdb.set_trace()
# if self.extra_features == True:
# features[0, :allmixoutput.shape[1], j*allmixoutput.shape[-1]:(j+1)*allmixoutput.shape[-1]] = self.extra_features(allmixinput[0],allpitch)
if self.pitched:
for j in range(self.ninst): #for all the inputed pitched instrument get their mask for the corresponding pitch contours
pitches[0, :allmixinput.shape[1], j*self.npitches:(j+1)*self.npitches] = allpitch[j] / float(self.pitch_norm)
elif self.save_mask:
masks[0, :allmixinput.shape[1],:] = self.filterSpec(allmixinput[0],allpitch)
else:
while (start + self.time_context) < allmixinput.shape[1]:
if i>=idxbegin and i<idxend:
allminput = allmixinput[:,start:start+self.time_context,:] #truncate on time axis so it would match the actual context
allmoutput = allmixoutput[:,start:start+self.time_context,:]
inputs[i-idxbegin] = allminput[0]
#import pdb;pdb.set_trace()
outputs[i-idxbegin, :, :allmoutput.shape[-1]] = allmoutput[0]
if self.extra_features:
features[i-idxbegin, :, :] = self.extra_features(allminput[0],allpitch[:,:,start:start+self.time_context])
for j in range(1,self.nsources):
outputs[i-idxbegin,:, j*allmoutput.shape[-1]:(j+1)*allmoutput.shape[-1]] = allmoutput[j,:,:]
if self.pitched:
for j in range(self.ninst): #for all the inputed instrument pitches
pitches[i-idxbegin, :allmixinput.shape[1], j*self.npitches:(j+1)*self.npitches] = allpitch[j,:,start:start+self.time_context].T / float(self.pitch_norm)
elif self.save_mask:
masks[i-idxbegin, :allmixinput.shape[1], :] = self.filterSpec(allminput[0],allpitch[:,:,start:start+self.time_context])
i = i + 1
start = start - self.overlap + self.time_context
#clear memory
allminput=None
allmoutput=None
#clear memory
allmixinput=None
allmixoutput=None
i=None
j=None
start=None
if self.pitched or self.save_mask:
allpitch=None
if self.pitched:
if self.extra_features:
return [inputs, outputs, pitches, features]
else:
return [inputs, outputs, pitches]
elif self.save_mask:
if self.extra_features:
return [inputs, outputs, masks, features]
else:
return [inputs, outputs, masks]
else:
return [inputs, outputs]
def shuffleBatches(self):
"""
Shuffle batches
"""
idxstop = self.num_points[self.nindex] + self.idxend - self.num_points[self.findex] - self.idxbegin
if idxstop>=self.batch_inputs.shape[0]:
idxstop=self.batch_inputs.shape[0]
idxrand = np.random.permutation(idxstop)
self.batch_inputs[:idxstop] = self.batch_inputs[idxrand]
self.batch_outputs[:idxstop] = self.batch_outputs[idxrand]
if self.pitched:
self.batch_pitches[:idxstop] = self.batch_pitches[idxrand]
elif self.save_mask:
self.batch_masks[:idxstop] = self.batch_masks[idxrand]
if self.extra_features:
self.batch_features[:idxstop] = self.batch_features[idxrand]
def initOutput(self,size):
"""
Allocate memory for read data, where \"size\" is the number of examples of size \"time_context\"
"""
inp = np.zeros((size, self.time_context, self.input_size), dtype=self.tensortype)
out = np.zeros((size, self.time_context, self.output_size), dtype=self.tensortype)
if self.pitched:
ptc = np.zeros((size, self.time_context, self.npitches*self.ninst), dtype=self.tensortype)
elif self.save_mask:
msk = np.zeros((size, self.time_context, self.input_size*self.ninst), dtype=self.tensortype)
if self.pitched:
return inp,out,ptc
elif self.save_mask:
return inp,out,msk
else:
return inp,out
def initFeatures(self,size):
features = np.zeros((size, self.time_context, self.output_size), dtype=self.tensortype)
return features
def saveBatches(self,batch_file):
"""
If set, save the batches to the \"scratch_path\"
"""
self.saveTensor(self.batch_inputs, batch_file+'_inputs.data')
self.saveTensor(self.batch_outputs, batch_file+'_outputs.data')
if self.pitched:
self.saveTensor(self.batch_outputs, batch_file+'_pitches.data')
if self.save_mask:
self.saveTensor(self.batch_outputs, batch_file+'_masks.data')
if self.extra_features:
self.saveTensor(self.batch_features, batch_file+'_features.data')
def getFeatureSize(self):
"""
Returns the feature size of the input and of the output to the neural network
"""
if self.path_transform_in is not None and self.path_transform_out is not None:
for i in range(len(self.file_list)):
if os.path.isfile(os.path.join(self.path_transform_in[self.dirid[i]],self.file_list[i])):
allmix = self.loadTensor(os.path.join(self.path_transform_in[self.dirid[i]],self.file_list[i]))
if self.pitched or self.save_mask:
pitch = self.loadTensor(os.path.join(self.path_transform_in[self.dirid[i]],self.file_list[i].replace('_m_','_p_')))
self.ninst = pitch.shape[0] #number of pitched instruments (inst for which pitch is defined)
self.npitches = pitch.shape[1] #numer of pitch contours for each pitched instrument
pitch=None
if self.path_transform_in==self.path_transform_out:
return allmix.shape[-1], self.nsources * allmix.shape[-1]
else:
allmixoutput = self.loadTensor(os.path.join(self.path_transform_out[self.dirid[i]],self.file_list[0]))
return allmix.shape[-1], self.nsources * allmixoutput.shape[-1]
def getMean(self):
if self.path_transform_in is not None:
return np.mean(self.batch_inputs)
def getStd(self):
if self.path_transform_in is not None:
return np.std(self.batch_inputs)
def getMax(self):
if self.path_transform_in is not None:
return self.batch_inputs.max()
def getMin(self):
if self.path_transform_in is not None:
return self.batch_inputs.min()
def getNum(self,id):
"""
For a single .data file computes the number of examples of size \"time_context\" that can be created
"""
shape = self.get_shape(os.path.join(self.path_transform_in[self.dirid[id]],self.file_list[id].replace('.data','.shape')))
time_axis = shape[1]
return np.maximum(1,int(np.floor((time_axis + (np.floor(float(time_axis)/self.time_context) * self.overlap)) / self.time_context)))
def updatePath(self, path_in, path_out=None):
"""
Read the list of .data files in path, compute how many examples we can create from each file, and initialize the output variables
"""
self.path_transform_in = path_in
if path_out is None:
self.path_transform_out = self.path_transform_in
else:
self.path_transform_out = path_out
#we read the file_list from the path_transform_in directory
self.file_list = [f for k in range(len(self.path_transform_in)) for f in os.listdir(self.path_transform_in[k]) \
if f.endswith('_m_.data') and os.path.isfile(os.path.join(self.path_transform_out[k],f)) and\
f.split('_',1)[0] not in self.exclude_list]
self.dirid = [k for k in range(len(self.path_transform_in)) for f in os.listdir(self.path_transform_in[k]) \
if f.endswith('_m_.data') and os.path.isfile(os.path.join(self.path_transform_out[k],f)) and\
f.split('_',1)[0] not in self.exclude_list]
if self.nsamples>2 and self.nsamples < len(self.file_list):
ids = np.squeeze(np.random.choice(len(self.file_list), size=self.nsamples, replace=False))
self.file_list = list([self.file_list[iids] for iids in ids])
self.dirid = list([self.dirid[iids] for iids in ids])
ids = None
self.total_files = len(self.file_list)
if self.total_files<1:
raise Exception('Could not find any file in the input directory! Files must end with _m_.data')
logging.info("found %s files",str(self.total_files))
self.num_points = np.cumsum(np.array([0]+[self.getNum(i) for i in range(self.total_files)], dtype=int))
self.total_points = self.num_points[-1]
#print self.num_points
self.input_size,self.output_size = self.getFeatureSize()
self.initBatches()
def updateBatch(self, batch_size):
"""
This function is called when batch_size changes
"""
self.batch_size = batch_size
self.initBatches()
def initBatches(self):
"""
Allocates memory for the output
"""
self.batch_size = np.minimum(self.batch_size,self.num_points[-1])
self.iteration_size = int(self.total_points / self.batch_size)
self.batch_memory = np.minimum(self.batch_memory,self.iteration_size)
logging.info("iteration size %s",str(self.iteration_size))
self._index = 0
self.findex = 0
self.nindex = 1
self.idxbegin = 0
self.idxend = 0
self.foffset = 0
self.mini_index = 0
self.scratch_index = 0
self.batch_inputs = np.zeros((self.batch_memory*self.batch_size,self.time_context,self.input_size), dtype=self.tensortype)
self.batch_outputs = np.zeros((self.batch_memory*self.batch_size,self.time_context,self.output_size), dtype=self.tensortype)
if self.pitched:
self.batch_pitches = np.zeros((self.batch_memory*self.batch_size,self.time_context,self.npitches*self.ninst), dtype=self.tensortype)
if self.save_mask:
self.batch_masks = np.zeros((self.batch_memory*self.batch_size,self.time_context,self.input_size*self.ninst), dtype=self.tensortype)
if self.extra_features == True:
self.batch_features = np.zeros((self.batch_memory*self.batch_size,self.time_context,self.output_size), dtype=self.tensortype)
self.loadBatches()
def loadTensor(self, path, name=''):
"""
Loads a binary .data file
"""
if os.path.isfile(path):
f_in = np.fromfile(path)
shape = self.get_shape(path.replace('.data','.shape'))
f_in = f_in.reshape(shape)
return f_in
else:
logging.info('File does not exist: %s'+path)
return -1
def get_shape(self,shape_file):
"""
Reads a .shape file
"""
with open(shape_file, 'rb') as f:
line=f.readline().decode('ascii')
if line.startswith('#'):
shape=tuple(map(int, re.findall(r'(\d+)', line)))
return shape
else:
raise IOError('Failed to find shape in file')
def saveTensor(self, t, out_path):
"""
Saves a numpy array as a binary file
"""
t.tofile(out_path)
#save shapes
self.shape = t.shape
self.save_shape(out_path.replace('.data','.shape'),t.shape)
def save_shape(self,shape_file,shape):
"""
Saves the shape of a numpy array
"""
with open(shape_file, 'w') as fout:
fout.write(u'#'+'\t'.join(str(e) for e in shape)+'\n')
def __len__(self):
return self.iteration_size
def __call__(self):
return self.iterate()
def __iter__(self):
return self.iterate()
def next(self):
return self.iterate()
def batches(self):
return self.iterate()
class LargeDatasetMask1(LargeDataset):
def __init__(self, path_transform_in=None, path_transform_out=None, sampleRate=44100, exclude_list=[],nsamples=0, timbre_model_path=None,
batch_size=64, batch_memory=1000, time_context=-1, overlap=5, tensortype=float, scratch_path=None, extra_features=False, model="", context=5,
log_in=False, log_out=False, mult_factor_in=1., mult_factor_out=1., pitched=False,save_mask=True,pitch_norm=127.,nsources=2,
nharmonics=20, nprocs=2,pitch_code='g',jump=0):
self.nharmonics = nharmonics
self.timbre_model_path=timbre_model_path
self.save_mask = save_mask
self.pitch_norm = pitch_norm
self.extra_features = extra_features
self.nsamples = nsamples
self.pitch_code = pitch_code
#load timbre models or initialize with 1s
if self.timbre_model_path is not None:
self.harmonics = util.loadObj(self.timbre_model_path)
super(LargeDatasetMask1, self).__init__(path_transform_in=path_transform_in, path_transform_out=path_transform_out, sampleRate=sampleRate, exclude_list=exclude_list, nsamples=nsamples, extra_features=extra_features, model=model, context=context,
batch_size=batch_size, batch_memory=batch_memory, time_context=time_context, overlap=overlap, tensortype=tensortype, scratch_path=scratch_path, nsources=nsources,jump=jump,
log_in=log_in, log_out=log_out, mult_factor_in=mult_factor_in, mult_factor_out=mult_factor_out,pitched=pitched,save_mask=save_mask,pitch_norm=pitch_norm,nprocs=nprocs)
def filterSpec(self,mag,notes,start,stop):
if not hasattr(self, 'ninst'):
self.ninst = notes.shape[0]
filtered = np.ones((self.ninst,mag.shape[0],mag.shape[1]), dtype=self.tensortype) * 1e-18
for j in range(self.ninst): #for all the inputed instrument notes
for p in range(len(notes[j])): #for all notes
if notes[j,p,2] > 0 and np.maximum(0, np.minimum(notes[j,p,1], stop) - np.maximum(notes[j,p,0], start))>0:
begin = int(np.maximum(notes[j,p,0], start))-start
end = int(np.minimum(notes[j,p,1], stop))-start
slice_x = slice(begin,end,None)
slices_y_start = notes[j,p,3::2]
slices_y_stop = notes[j,p,4::2]
if self.timbre_model_path is None:
slices_y = np.hstack(tuple([range(int(slices_y_start[f]),int(slices_y_stop[f])) for f in range(np.minimum(len(slices_y_start),len(slices_y_stop))) if slices_y_stop[f]>0]))
filtered[j,slice_x,slices_y] = 1.
slices_y = None
else:
for k in range(len(slices_y_start)):
filtered[j,slice_x,slice(int(slices_y_start[k]),int(slices_y_stop[k]),None)] = filtered[j,slice_x,slice(int(slices_y_start[k]),int(slices_y_stop[k]),None)] + self.harmonics[j,int(notes[j,p,2]),k]
slice_x = None
mask = np.zeros((mag.shape[0],self.ninst*mag.shape[1]), dtype=self.tensortype)
for j in range(self.ninst): #for all the inputed instrument pitches
mask[:,j*mag.shape[1]:(j+1)*mag.shape[1]] = filtered[j,:,:] / np.max(filtered[j,:,:])
filtered = None
# import matplotlib.pyplot as plt
# for j in range(self.ninst):
# plt.subplot(211)
# plt.imshow(mag,interpolation='none')
# plt.subplot(212)
# plt.imshow(mask[:,j*mag.shape[1]:(j+1)*mag.shape[1]],interpolation='none')
# plt.show()
#import pdb;pdb.set_trace()
j=None
p=None
f=None
return mask
def buildPitch(self,mag,notes,start,stop):
if not hasattr(self, 'ninst'):
self.ninst = notes.shape[0]
filtered = np.zeros((self.ninst,mag.shape[0],self.npitches), dtype=self.tensortype)
for j in range(self.ninst): #for all the inputed instrument notes
for p in range(len(notes[j])): #for all notes
if notes[j,p,2] > 0 and np.maximum(0, np.minimum(notes[j,p,1], stop) - np.maximum(notes[j,p,0], start))>0:
begin = int(np.maximum(notes[j,p,0], start))-start
end = int(np.minimum(notes[j,p,1], stop))-start
slice_x = slice(begin,end,None)
filtered[j,slice_x,int(notes[j,p,2])] = 1.
slice_x = None
mask = np.zeros((mag.shape[0],self.ninst*self.npitches), dtype=self.tensortype)
for j in range(self.ninst): #for all the inputed instrument pitches
mask[:,j*self.npitches:(j+1)*self.npitches] = filtered[j,:,:]
filtered = None
j=None
p=None
return mask
class LargeDatasetMask2(LargeDataset):
def __init__(self, path_transform_in=None, path_transform_out=None, sampleRate=44100, exclude_list=[],nsamples=0, timbre_model_path=None,
batch_size=64, batch_memory=1000, time_context=-1, overlap=5, tensortype=float, scratch_path=None, extra_features=False, model="", context=5,
log_in=False, log_out=False, mult_factor_in=1., mult_factor_out=1., pitched=False,save_mask=True,pitch_norm=127.,nsources=2,
nharmonics=20, nprocs=2,pitch_code='g',jump=0):
self.nharmonics = nharmonics
self.timbre_model_path=timbre_model_path
self.save_mask = save_mask
self.pitch_norm = pitch_norm
self.extra_features = extra_features
self.nsamples = nsamples
self.pitch_code = pitch_code
#load timbre models or initialize with 1s
if self.timbre_model_path is not None:
self.harmonics = util.loadObj(self.timbre_model_path)
super(LargeDatasetMask2, self).__init__(path_transform_in=path_transform_in, path_transform_out=path_transform_out, sampleRate=sampleRate, exclude_list=exclude_list, nsamples=nsamples, extra_features=extra_features, model=model, context=context,
batch_size=batch_size, batch_memory=batch_memory, time_context=time_context, overlap=overlap, tensortype=tensortype, scratch_path=scratch_path, nsources=nsources,jump=jump,
log_in=log_in, log_out=log_out, mult_factor_in=mult_factor_in, mult_factor_out=mult_factor_out,pitched=pitched,save_mask=save_mask,pitch_norm=pitch_norm,nprocs=nprocs)
def filterSpec(self,mag,notes,start,stop):
if not hasattr(self, 'ninst'):
self.ninst = notes.shape[0]
filtered = np.ones((self.ninst,mag.shape[0],mag.shape[1]), dtype=self.tensortype) * 1e-18
for j in range(self.ninst): #for all the inputed instrument notes
for p in range(len(notes[j])): #for all notes
if notes[j,p,2] > 0 and np.maximum(0, np.minimum(notes[j,p,1], stop) - np.maximum(notes[j,p,0], start))>0:
begin = int(np.maximum(notes[j,p,0], start))-start
end = int(np.minimum(notes[j,p,1], stop))-start
slice_x = slice(begin,end,None)
slices_y_start = notes[j,p,3::2]
slices_y_stop = notes[j,p,4::2]
if self.timbre_model_path is None:
slices_y = np.hstack(tuple([range(int(slices_y_start[f]),int(slices_y_stop[f])) for f in range(np.minimum(len(slices_y_start),len(slices_y_stop))) if slices_y_stop[f]>0]))
filtered[j,slice_x,slices_y] = 1.
slices_y = None
else:
for k in range(len(slices_y_start)):
filtered[j,slice_x,slice(int(slices_y_start[k]),int(slices_y_stop[k]),None)] = filtered[j,slice_x,slice(int(slices_y_start[k]),int(slices_y_stop[k]),None)] + self.harmonics[j,int(notes[j,p,2]),k]
slice_x = None
mask = np.zeros((mag.shape[0],self.ninst*mag.shape[1]), dtype=self.tensortype)
for j in range(self.ninst): #for all the inputed instrument pitches
mask[:,j*mag.shape[1]:(j+1)*mag.shape[1]] = filtered[j,:,:] / np.sum(filtered,axis=0)
filtered = None
# import matplotlib.pyplot as plt
# for j in range(self.ninst):
# plt.subplot(211)
# plt.imshow(mag.T,interpolation='none')
# plt.ylim([0,200])
# plt.subplot(212)
# #plt.imshow(mask[:,j*mag.shape[1]:(j+1)*mag.shape[1]],interpolation='none')
# plt.imshow(filtered[j,:,:].T,interpolation='none')
# plt.ylim([0,200])
# plt.show()
# import pdb;pdb.set_trace()
j=None
p=None
f=None
return mask
def buildPitch(self,mag,notes,start,stop):
if not hasattr(self, 'ninst'):
self.ninst = notes.shape[0]
filtered = np.zeros((self.ninst,mag.shape[0],self.npitches))
for j in range(self.ninst): #for all the inputed instrument notes
for p in range(len(notes[j])): #for all notes
if notes[j,p,2] > 0 and np.maximum(0, np.minimum(notes[j,p,1], stop) - np.maximum(notes[j,p,0], start))>0:
begin = int(np.maximum(notes[j,p,0], start))-start
end = int(np.minimum(notes[j,p,1], stop))-start
slice_x = slice(begin,end,None)
filtered[j,slice_x,int(notes[j,p,2])] = 1.
slice_x = None
mask = np.zeros((mag.shape[0],self.ninst*self.npitches), dtype=self.tensortype)
for j in range(self.ninst): #for all the inputed instrument pitches
mask[:,j*self.npitches:(j+1)*self.npitches] = filtered[j,:,:]
filtered = None
j=None
p=None
return mask