From 8bf8a866c5656ecae5558dd48d4b85924ae4aed3 Mon Sep 17 00:00:00 2001 From: Ian Czekala Date: Mon, 2 Dec 2024 14:05:03 +0000 Subject: [PATCH] added tests stylesheet, deleted some hardcoded settings. --- src/mpol/tests.mplstyle | 4 ++ test/conftest.py | 3 ++ test/images_test.py | 117 ++++++++++++++++++---------------------- 3 files changed, 58 insertions(+), 66 deletions(-) create mode 100644 src/mpol/tests.mplstyle diff --git a/src/mpol/tests.mplstyle b/src/mpol/tests.mplstyle new file mode 100644 index 00000000..ed4059c6 --- /dev/null +++ b/src/mpol/tests.mplstyle @@ -0,0 +1,4 @@ +image.cmap: inferno +figure.figsize: 7.1, 5.0 +figure.autolayout: True +savefig.dpi: 200 \ No newline at end of file diff --git a/test/conftest.py b/test/conftest.py index fa151838..24dd326b 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -8,6 +8,9 @@ from mpol import coordinates, fourier, gridding, images, utils from mpol.__init__ import zenodo_record +import matplotlib.pyplot as plt +plt.style.use("mpol.tests") + # private variables to this module _npz_path = files("mpol.data").joinpath("mock_data.npz") _nchan = 4 diff --git a/test/images_test.py b/test/images_test.py index 1bddc0eb..a798bd76 100644 --- a/test/images_test.py +++ b/test/images_test.py @@ -55,10 +55,8 @@ def test_imagecube_tofits(coords, tmp_path): def test_basecube_imagecube(coords, tmp_path): # create a mock cube that includes negative values nchan = 1 - mean = torch.full( - (nchan, coords.npix, coords.npix), fill_value=-0.5) - std = torch.full( - (nchan, coords.npix, coords.npix), fill_value=0.5) + mean = torch.full((nchan, coords.npix, coords.npix), fill_value=-0.5) + std = torch.full((nchan, coords.npix, coords.npix), fill_value=0.5) # tensor base_cube = torch.normal(mean=mean, std=std) @@ -83,7 +81,7 @@ def test_basecube_imagecube(coords, tmp_path): plt.colorbar(im, ax=ax[1]) ax[1].set_title("mapped") - fig.savefig(tmp_path / "basecube_mapped.png", dpi=300) + fig.savefig(tmp_path / "basecube_mapped.png") # try passing through ImageLayer imagecube = images.ImageCube(coords=coords, nchan=nchan) @@ -98,7 +96,7 @@ def test_basecube_imagecube(coords, tmp_path): origin="lower", interpolation="none", ) - fig.savefig(tmp_path / "imagecube.png", dpi=300) + fig.savefig(tmp_path / "imagecube.png") plt.close("all") @@ -108,10 +106,8 @@ def test_base_cube_conv_cube(coords, tmp_path): # create a mock cube that includes negative values nchan = 1 - mean = torch.full( - (nchan, coords.npix, coords.npix), fill_value=-0.5) - std = torch.full( - (nchan, coords.npix, coords.npix), fill_value=0.5) + mean = torch.full((nchan, coords.npix, coords.npix), fill_value=-0.5) + std = torch.full((nchan, coords.npix, coords.npix), fill_value=0.5) # The HannConvCube expects to function on a pre-packed ImageCube, # so in order to get the plots looking correct on this test image, @@ -141,7 +137,7 @@ def test_base_cube_conv_cube(coords, tmp_path): plt.colorbar(im, ax=ax[1]) ax[1].set_title("convolved") - fig.savefig(tmp_path / "convcube.png", dpi=300) + fig.savefig(tmp_path / "convcube.png") plt.close("all") @@ -151,10 +147,8 @@ def test_multi_chan_conv(coords, tmp_path): # and make sure that the HannConvCube works across channels nchan = 10 - mean = torch.full( - (nchan, coords.npix, coords.npix), fill_value=-0.5) - std = torch.full( - (nchan, coords.npix, coords.npix), fill_value=0.5) + mean = torch.full((nchan, coords.npix, coords.npix), fill_value=-0.5) + std = torch.full((nchan, coords.npix, coords.npix), fill_value=0.5) # tensor test_cube = torch.normal(mean=mean, std=std) @@ -180,16 +174,15 @@ def test_plot_test_img(packed_cube, coords, tmp_path): # put back to sky sky_cube = utils.packed_cube_to_sky_cube(packed_cube) - im = ax.imshow( - sky_cube[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax.imshow(sky_cube[chan], extent=coords.img_ext, origin="lower") plt.colorbar(im) - fig.savefig(tmp_path / "sky_cube.png", dpi=300) + fig.savefig(tmp_path / "sky_cube.png") plt.close("all") + def test_taper(coords, tmp_path): - for r in np.arange(0.0, 0.2, step=0.02): + for r in np.arange(0.0, 0.2, step=0.04): fig, ax = plt.subplots(ncols=1) taper_2D = images.uv_gaussian_taper(coords, r, r, 0.0) @@ -205,37 +198,41 @@ def test_taper(coords, tmp_path): ) plt.colorbar(im, ax=ax) - fig.savefig(tmp_path / f"taper{r:.2f}.png", dpi=300) + fig.savefig(tmp_path / f"taper{r:.2f}.png") plt.close("all") + def test_gaussian_kernel(coords, tmp_path): rs = np.array([0.02, 0.06, 0.10]) nchan = 3 - fig, ax = plt.subplots(nrows=len(rs), ncols=nchan, figsize=(10,10)) - for i,r in enumerate(rs): + fig, ax = plt.subplots(nrows=len(rs), ncols=nchan, figsize=(10, 10)) + for i, r in enumerate(rs): layer = images.GaussConvImage(coords, nchan=nchan, FWHM_maj=r, FWHM_min=0.5 * r) weight = layer.m.weight.detach().numpy() for j in range(nchan): - im = ax[i,j].imshow(weight[j,0], interpolation="none", origin="lower") - plt.colorbar(im, ax=ax[i,j]) + im = ax[i, j].imshow(weight[j, 0], interpolation="none", origin="lower") + plt.colorbar(im, ax=ax[i, j]) - fig.savefig(tmp_path / "filter.png", dpi=300) + fig.savefig(tmp_path / "filter.png") plt.close("all") + def test_gaussian_kernel_rotate(coords, tmp_path): r = 0.04 - Omegas = [0, 20, 40] # degrees + Omegas = [0, 20, 40] # degrees nchan = 3 fig, ax = plt.subplots(nrows=len(Omegas), ncols=nchan, figsize=(10, 10)) for i, Omega in enumerate(Omegas): - layer = images.GaussConvImage(coords, nchan=nchan, FWHM_maj=r, FWHM_min=0.5 * r, Omega=Omega) + layer = images.GaussConvImage( + coords, nchan=nchan, FWHM_maj=r, FWHM_min=0.5 * r, Omega=Omega + ) weight = layer.m.weight.detach().numpy() for j in range(nchan): - im = ax[i, j].imshow(weight[j, 0], interpolation="none",origin="lower") + im = ax[i, j].imshow(weight[j, 0], interpolation="none", origin="lower") plt.colorbar(im, ax=ax[i, j]) - fig.savefig(tmp_path / "filter.png", dpi=300) + fig.savefig(tmp_path / "filter.png") plt.close("all") @@ -245,61 +242,56 @@ def test_GaussConvImage(sky_cube, coords, tmp_path): nchan = sky_cube.size()[0] for r in np.arange(0.02, 0.11, step=0.04): - layer = images.GaussConvImage(coords, nchan=nchan, FWHM_maj=r, FWHM_min=r) print("Kernel size", layer.m.weight.size()) fig, ax = plt.subplots(ncols=2) - - im = ax[0].imshow( - sky_cube[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + + im = ax[0].imshow(sky_cube[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(sky_cube[chan]) ax[0].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[0]) c_sky = layer(sky_cube) - im = ax[1].imshow( - c_sky[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[1].imshow(c_sky[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(c_sky[chan]) ax[1].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[1]) - fig.savefig(tmp_path / f"convolved_{r:.2f}.png", dpi=300) + fig.savefig(tmp_path / f"convolved_{r:.2f}.png") plt.close("all") + def test_GaussConvImage_rotate(sky_cube, coords, tmp_path): # show only the first channel chan = 0 nchan = sky_cube.size()[0] for Omega in [0, 30]: - layer = images.GaussConvImage(coords, nchan=nchan, FWHM_maj=0.10, FWHM_min=0.05, Omega=Omega) + layer = images.GaussConvImage( + coords, nchan=nchan, FWHM_maj=0.10, FWHM_min=0.05, Omega=Omega + ) fig, ax = plt.subplots(ncols=2) - im = ax[0].imshow( - sky_cube[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[0].imshow(sky_cube[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(sky_cube[chan]) ax[0].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[0]) c_sky = layer(sky_cube) - im = ax[1].imshow( - c_sky[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[1].imshow(c_sky[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(c_sky[chan]) ax[1].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[1]) - fig.savefig(tmp_path / f"convolved_{Omega:.0f}_deg.png", dpi=300) + fig.savefig(tmp_path / f"convolved_{Omega:.0f}_deg.png") plt.close("all") + def test_GaussFourier(packed_cube, coords, tmp_path): chan = 0 @@ -307,9 +299,7 @@ def test_GaussFourier(packed_cube, coords, tmp_path): fig, ax = plt.subplots(ncols=2) # put back to sky sky_cube = utils.packed_cube_to_sky_cube(packed_cube) - im = ax[0].imshow( - sky_cube[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[0].imshow(sky_cube[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(sky_cube[chan]) ax[0].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[0]) @@ -329,38 +319,35 @@ def test_GaussFourier(packed_cube, coords, tmp_path): ax[1].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[1]) - fig.savefig(tmp_path / "convolved_FWHM_{:.2f}.png".format(FWHM), dpi=300) + fig.savefig(tmp_path / "convolved_FWHM_{:.2f}.png".format(FWHM)) plt.close("all") + def test_GaussFourier_rotate(packed_cube, coords, tmp_path): chan = 0 sky_cube = utils.packed_cube_to_sky_cube(packed_cube) - for Omega in [0, 20, 40]: + for Omega in [0, 30]: layer = images.GaussConvFourier( - coords, FWHM_maj=0.16, FWHM_min=0.06, Omega=Omega + coords, FWHM_maj=0.10, FWHM_min=0.05, Omega=Omega ) fig, ax = plt.subplots(ncols=2) - im = ax[0].imshow( - sky_cube[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[0].imshow(sky_cube[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(sky_cube[chan]) ax[0].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[0]) c_sky = layer(sky_cube) - im = ax[1].imshow( - c_sky[chan], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[1].imshow(c_sky[chan], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(c_sky[chan]) ax[1].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[1]) - fig.savefig(tmp_path / f"convolved_{Omega:.2f}.png", dpi=300) + fig.savefig(tmp_path / f"convolved_{Omega:.0f}_deg.png") plt.close("all") @@ -370,14 +357,12 @@ def test_GaussFourier_point(coords, tmp_path): # create an image with a point source in the center sky_cube = torch.zeros((1, coords.npix, coords.npix)) - cpix = coords.npix//2 - sky_cube[0,cpix,cpix] = 1.0 + cpix = coords.npix // 2 + sky_cube[0, cpix, cpix] = 1.0 fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True) # put back to sky - im = ax[0].imshow( - sky_cube[0], extent=coords.img_ext, origin="lower", cmap="inferno" - ) + im = ax[0].imshow(sky_cube[0], extent=coords.img_ext, origin="lower") flux = coords.cell_size**2 * torch.sum(sky_cube[0]) ax[0].set_title(f"tot flux: {flux:.3f} Jy") plt.colorbar(im, ax=ax[0]) @@ -401,6 +386,6 @@ def test_GaussFourier_point(coords, tmp_path): ax[1].set_ylim(-r, r) plt.colorbar(im, ax=ax[1]) - fig.savefig(tmp_path / "point_source_FWHM_{:.2f}.png".format(FWHM), dpi=300) + fig.savefig(tmp_path / "point_source_FWHM_{:.2f}.png".format(FWHM)) plt.close("all")