-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathmodel.py
154 lines (136 loc) · 7.77 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import tensorflow as tf
from layers import shufflenet_unit, conv2d, max_pool_2d, avg_pool_2d, dense, flatten
class ShuffleNet:
"""ShuffleNet is implemented here!"""
MEAN = [103.94, 116.78, 123.68]
NORMALIZER = 0.017
def __init__(self, args):
self.args = args
self.X = None
self.y = None
self.logits = None
self.is_training = None
self.loss = None
self.regularization_loss = None
self.cross_entropy_loss = None
self.train_op = None
self.accuracy = None
self.y_out_argmax = None
self.summaries_merged = None
# A number stands for the num_groups
# Output channels for conv1 layer
self.output_channels = {'1': [144, 288, 576], '2': [200, 400, 800], '3': [240, 480, 960], '4': [272, 544, 1088],
'8': [384, 768, 1536], 'conv1': 24}
self.__build()
def __init_input(self):
batch_size = self.args.batch_size if self.args.train_or_test == 'train' else 1
with tf.variable_scope('input'):
# Input images
self.X = tf.placeholder(tf.float32,
[batch_size, self.args.img_height, self.args.img_width,
self.args.num_channels])
# Classification supervision, it's an argmax. Feel free to change it to one-hot,
# but don't forget to change the loss from sparse as well
self.y = tf.placeholder(tf.int32, [batch_size])
# is_training is for batch normalization and dropout, if they exist
self.is_training = tf.placeholder(tf.bool)
def __resize(self, x):
return tf.image.resize_bicubic(x, [224, 224])
def __stage(self, x, stage=2, repeat=3):
if 2 <= stage <= 4:
stage_layer = shufflenet_unit('stage' + str(stage) + '_0', x=x, w=None,
num_groups=self.args.num_groups,
group_conv_bottleneck=not (stage == 2),
num_filters=
self.output_channels[str(self.args.num_groups)][
stage - 2],
stride=(2, 2),
fusion='concat', l2_strength=self.args.l2_strength,
bias=self.args.bias,
batchnorm_enabled=self.args.batchnorm_enabled,
is_training=self.is_training)
for i in range(1, repeat + 1):
stage_layer = shufflenet_unit('stage' + str(stage) + '_' + str(i),
x=stage_layer, w=None,
num_groups=self.args.num_groups,
group_conv_bottleneck=True,
num_filters=self.output_channels[
str(self.args.num_groups)][stage - 2],
stride=(1, 1),
fusion='add',
l2_strength=self.args.l2_strength,
bias=self.args.bias,
batchnorm_enabled=self.args.batchnorm_enabled,
is_training=self.is_training)
return stage_layer
else:
raise ValueError("Stage should be from 2 -> 4")
def __init_output(self):
with tf.variable_scope('output'):
# Losses
self.regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
self.cross_entropy_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y, name='loss'))
self.loss = self.regularization_loss + self.cross_entropy_loss
# Optimizer
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.args.learning_rate)
self.train_op = self.optimizer.minimize(self.loss)
# This is for debugging NaNs. Check TensorFlow documentation.
self.check_op = tf.add_check_numerics_ops()
# Output and Metrics
self.y_out_softmax = tf.nn.softmax(self.logits)
self.y_out_argmax = tf.argmax(self.y_out_softmax, axis=-1, output_type=tf.int32)
self.accuracy = tf.reduce_mean(tf.cast(tf.equal(self.y, self.y_out_argmax), tf.float32))
with tf.name_scope('train-summary-per-iteration'):
tf.summary.scalar('loss', self.loss)
tf.summary.scalar('acc', self.accuracy)
self.summaries_merged = tf.summary.merge_all()
def __build(self):
self.__init_global_epoch()
self.__init_global_step()
self.__init_input()
with tf.name_scope('Preprocessing'):
red, green, blue = tf.split(self.X, num_or_size_splits=3, axis=3)
preprocessed_input = tf.concat([
tf.subtract(blue, ShuffleNet.MEAN[0]) * ShuffleNet.NORMALIZER,
tf.subtract(green, ShuffleNet.MEAN[1]) * ShuffleNet.NORMALIZER,
tf.subtract(red, ShuffleNet.MEAN[2]) * ShuffleNet.NORMALIZER,
], 3)
x_padded = tf.pad(preprocessed_input, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT")
conv1 = conv2d('conv1', x=x_padded, w=None, num_filters=self.output_channels['conv1'], kernel_size=(3, 3),
stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias,
batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training,
activation=tf.nn.relu, padding='VALID')
padded = tf.pad(conv1, [[0, 0], [0, 1], [0, 1], [0, 0]], "CONSTANT")
max_pool = max_pool_2d(padded, size=(3, 3), stride=(2, 2), name='max_pool')
stage2 = self.__stage(max_pool, stage=2, repeat=3)
stage3 = self.__stage(stage2, stage=3, repeat=7)
stage4 = self.__stage(stage3, stage=4, repeat=3)
global_pool = avg_pool_2d(stage4, size=(7, 7), stride=(1, 1), name='global_pool', padding='VALID')
logits_unflattened = conv2d('fc', global_pool, w=None, num_filters=self.args.num_classes,
kernel_size=(1, 1),
l2_strength=self.args.l2_strength,
bias=self.args.bias,
is_training=self.is_training)
self.logits = flatten(logits_unflattened)
self.__init_output()
def __init_global_epoch(self):
"""
Create a global epoch tensor to totally save the process of the training
:return:
"""
with tf.variable_scope('global_epoch'):
self.global_epoch_tensor = tf.Variable(-1, trainable=False, name='global_epoch')
self.global_epoch_input = tf.placeholder('int32', None, name='global_epoch_input')
self.global_epoch_assign_op = self.global_epoch_tensor.assign(self.global_epoch_input)
def __init_global_step(self):
"""
Create a global step variable to be a reference to the number of iterations
:return:
"""
with tf.variable_scope('global_step'):
self.global_step_tensor = tf.Variable(0, trainable=False, name='global_step')
self.global_step_input = tf.placeholder('int32', None, name='global_step_input')
self.global_step_assign_op = self.global_step_tensor.assign(self.global_step_input)