-
Notifications
You must be signed in to change notification settings - Fork 23
/
utils.py
360 lines (277 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import re
import os
import cv2
import sys
import smtplib
import logging
import numpy as np
import torch
import torch.utils.data
import torch.distributed as dist
from tqdm import tqdm
from email.mime.text import MIMEText
from omegaconf import DictConfig
class _RepeatSampler(object):
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)
class FastDataLoader(torch.utils.data.dataloader.DataLoader):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
return len(self.batch_sampler.sampler)
def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)
class BadLossChecker:
def __init__(self, cfgs):
self.cfgs = cfgs
self.bad_steps = 0
def check(self, loss):
if not self.cfgs.enabled:
return False
if loss.isnan() or loss.isinf() or loss.item() > self.cfgs.threshold:
self.bad_steps += 1
if self.bad_steps == self.cfgs.max_bad_steps:
self.bad_steps = 0
return True
else:
self.bad_steps = 0
return False
def check_gpu_availability():
try:
import pynvml # type: ignore[import]
except ModuleNotFoundError:
return("pynvml module not found, please install pynvml")
from pynvml import NVMLError_DriverNotLoaded
try:
pynvml.nvmlInit()
except NVMLError_DriverNotLoaded:
return ("cuda driver can't be loaded, is cuda enabled?")
n_gpus = pynvml.nvmlDeviceGetCount()
for i in range(n_gpus):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
pids = [p.pid for p in procs]
if os.getpid() in pids and len(pids) > 1:
return False
return True
def get_grad_norm(model, prefix, norm_type: float = 2.0):
parameters = [p for n, p in model.named_parameters() if n.startswith(prefix)]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
param_norm = [torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]
total_norm = torch.norm(torch.stack(param_norm), norm_type)
return total_norm
def get_max_memory(device, n_gpus):
mem = torch.cuda.max_memory_allocated(device=device)
mem_mb = torch.tensor([mem / (1024 * 1024)], dtype=torch.int, device=device)
if n_gpus > 1:
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX)
return mem_mb.item()
def send_mail(sender, receivers, subject, content):
message = MIMEText(content, 'plain', 'utf-8')
message['From'] = sender
message['To'] = ','.join(receivers)
message['Subject'] = subject
try:
smtp_obj = smtplib.SMTP('localhost', 25)
smtp_obj.sendmail('', receivers, message.as_string())
logging.info("Mail sent successfully!")
except smtplib.SMTPException as e:
logging.error("An exception occurs! Failed to send mail!", e)
def init_logging(filename=None, debug=False):
logging.root = logging.RootLogger('DEBUG' if debug else 'INFO')
formatter = logging.Formatter('[%(asctime)s][%(levelname)s] - %(message)s')
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
logging.root.addHandler(stream_handler)
if filename is not None:
file_handler = logging.FileHandler(filename)
file_handler.setFormatter(formatter)
logging.root.addHandler(file_handler)
def dist_reduce_sum(value, n_gpus):
if n_gpus <= 1:
return value
tensor = torch.Tensor([value]).cuda()
dist.all_reduce(tensor)
return tensor
def copy_to_device(inputs, device, non_blocking=True):
if isinstance(inputs, list):
inputs = [copy_to_device(item, device, non_blocking) for item in inputs]
elif isinstance(inputs, dict):
inputs = {k: copy_to_device(v, device, non_blocking) for k, v in inputs.items()}
elif isinstance(inputs, torch.Tensor):
inputs = inputs.to(device=device, non_blocking=non_blocking)
return inputs
def size_of_batch(inputs):
if isinstance(inputs, list):
return size_of_batch(inputs[0])
elif isinstance(inputs, dict):
return size_of_batch(list(inputs.values())[0])
elif isinstance(inputs, torch.Tensor):
return inputs.shape[0]
else:
raise TypeError('Unknown type: %s' % str(type(inputs)))
def override_cfgs(dst: DictConfig, src: DictConfig):
for key in src:
if isinstance(src[key], DictConfig):
dst[key] = override_cfgs(dst[key], src[key])
else:
dst[key] = src[key]
return dst
def eat_all_ram(device, reserved=1024):
num = int(torch.cuda.get_device_properties(0).total_memory / 1024 / 1024) - reserved
cache = torch.rand([num, 1024, 256], dtype=torch.float32)
while True:
try:
cache[:num, ...].to(device)
del cache
break
except RuntimeError:
num -= reserved
def load_fpm(filename):
with open(filename, 'rb') as f:
header = f.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', f.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(f.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = '<'
else:
endian = '>' # big-endian
data = np.fromfile(f, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
def load_flow(filepath):
with open(filepath, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
assert (202021.25 == magic), 'Invalid .flo file: incorrect magic number'
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
flow = np.fromfile(f, np.float32, count=2 * w * h).reshape([h, w, 2])
return flow
def load_flow_png(filepath, scale=64.0):
# for KITTI which uses 16bit PNG images
# see 'https://github.com/ClementPinard/FlowNetPytorch/blob/master/datasets/KITTI.py'
# The -1 is here to specify not to change the image depth (16bit), and is compatible
# with both OpenCV2 and OpenCV3
flow_img = cv2.imread(filepath, -1)
flow = flow_img[:, :, 2:0:-1].astype(np.float32)
mask = flow_img[:, :, 0] > 0
flow = flow - 32768.0
flow = flow / scale
return flow, mask
def save_flow(filepath, flow):
assert flow.shape[2] == 2
magic = np.array(202021.25, dtype=np.float32)
h = np.array(flow.shape[0], dtype=np.int32)
w = np.array(flow.shape[1], dtype=np.int32)
with open(filepath, 'wb') as f:
f.write(magic.tobytes())
f.write(w.tobytes())
f.write(h.tobytes())
f.write(flow.tobytes())
def save_flow_png(filepath, flow, mask=None, scale=64.0):
assert flow.shape[2] == 2
assert np.abs(flow).max() < 32767.0 / scale
flow = flow * scale
flow = flow + 32768.0
if mask is None:
mask = np.ones_like(flow)[..., 0]
else:
mask = np.float32(mask > 0)
flow_img = np.concatenate([
mask[..., None],
flow[..., 1:2],
flow[..., 0:1]
], axis=-1).astype(np.uint16)
cv2.imwrite(filepath, flow_img)
def load_disp_png(filepath):
array = cv2.imread(filepath, -1)
valid_mask = array > 0
disp = array.astype(np.float32) / 256.0
disp[np.logical_not(valid_mask)] = -1.0
return disp, valid_mask
def save_disp_png(filepath, disp, mask=None):
if mask is None:
mask = disp > 0
disp = np.uint16(disp * 256.0)
disp[np.logical_not(mask)] = 0
cv2.imwrite(filepath, disp)
def load_calib(filepath):
with open(filepath) as f:
lines = f.readlines()
for line in lines:
if line.startswith('P_rect_02'):
proj_mat = line.split()[1:]
proj_mat = [float(param) for param in proj_mat]
proj_mat = np.array(proj_mat, dtype=np.float32).reshape(3, 4)
assert proj_mat[0, 1] == proj_mat[1, 0] == 0
assert proj_mat[2, 0] == proj_mat[2, 1] == 0
assert proj_mat[0, 0] == proj_mat[1, 1]
assert proj_mat[2, 2] == 1
return proj_mat
def zero_padding(inputs, pad_h, pad_w):
input_dim = len(inputs.shape)
assert input_dim in [2, 3]
if input_dim == 2:
inputs = inputs[..., None]
h, w, c = inputs.shape
assert h <= pad_h and w <= pad_w
result = np.zeros([pad_h, pad_w, c], dtype=inputs.dtype)
result[:h, :w] = inputs
if input_dim == 2:
result = result[..., 0]
return result
def disp2pc(disp, baseline, f, cx, cy, flow=None):
h, w = disp.shape
depth = baseline * f / (disp + 1e-5)
xx = np.tile(np.arange(w, dtype=np.float32)[None, :], (h, 1))
yy = np.tile(np.arange(h, dtype=np.float32)[:, None], (1, w))
if flow is None:
x = (xx - cx) * depth / f
y = (yy - cy) * depth / f
else:
x = (xx - cx + flow[..., 0]) * depth / f
y = (yy - cy + flow[..., 1]) * depth / f
pc = np.concatenate([
x[:, :, None],
y[:, :, None],
depth[:, :, None],
], axis=-1)
return pc
def project_pc2image(pc, image_h, image_w, f, cx=None, cy=None, clip=True):
pc_x, pc_y, depth = pc[..., 0], pc[..., 1], pc[..., 2]
cx = (image_w - 1) / 2 if cx is None else cx
cy = (image_h - 1) / 2 if cy is None else cy
image_x = cx + (f / depth) * pc_x
image_y = cy + (f / depth) * pc_y
if clip:
return np.concatenate([
np.clip(image_x[:, None], a_min=0, a_max=image_w - 1),
np.clip(image_y[:, None], a_min=0, a_max=image_h - 1),
], axis=-1)
else:
return np.concatenate([
image_x[:, None],
image_y[:, None]
], axis=-1)