-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
187 lines (164 loc) · 6.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# https://mmtracking.readthedocs.io/en/latest/quick_run.html#run-with-customized-datasets-and-models
# https://github.com/open-mmlab/mmtracking/blob/master/demo/demo_mot_vis.py
# https://github.com/open-mmlab/mmtracking/tree/master/tools
import torch
import numpy as np
import argparse
import logging
import os
import os.path as osp
import uuid
from datetime import datetime
import random
from mmengine.config import Config, DictAction
from mmengine.logging import print_log
from mmengine.registry import RUNNERS
from mmengine.runner import Runner
from mmtrack.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--auto-scale-lr',
action='store_true',
help='enable automatically scaling LR.')
parser.add_argument(
'--resume',
action='store_true',
help='resume from the latest checkpoint in the work_dir automatically')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--unique_id', type=str,
default=uuid.uuid4().__str__())
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
OTP_DIR = os.environ.get("OTP_DIR", "/workspace/Final_Submission")
# DATA_DIR = os.environ.get("DATA_DIR", "/workspace/data/01_data")
RANDOM_SEED = os.environ.get("RANDOM_SEED", 777)
args = parse_args()
# register all modules in mmtrack into the registries
# do not init the default scope here because it will be init in the runner
register_all_modules(init_default_scope=False)
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# cfg.data_root = DATA_DIR
cfg.randomness = dict(seed=RANDOM_SEED, deterministic=True)
cfg.gpu_ids = range(1)
# cfg.custom_hooks = [
# dict(
# _scope_='mmdet',
# type='MMDetWandbHook',
# init_kwargs={
# 'project': 'maicon-object-tracking',
# 'name': f'{args.config}_{datetime.now().strftime("%m_%d-%H_%M_%S")}',
# 'save_code': True,
# 'group': 'object-tracking',
# 'job_type': 'train',
# 'resume': 'auto',
# 'config': {
# 'dataset_type': cfg.dataset_type,
# 'data_root': cfg.data_root,
# 'train_pipeline': cfg.train_pipeline,
# 'test_pipeline': cfg.test_pipeline,
# 'train_dataloader': cfg.train_dataloader,
# 'val_dataloader': cfg.val_dataloader,
# 'test_dataloader': cfg.test_dataloader,
# 'model': cfg.model,
# 'train_cfg': cfg.train_cfg,
# 'val_cfg': cfg.val_cfg,
# 'test_cfg': cfg.test_cfg,
# 'param_scheduler': cfg.param_scheduler,
# 'optim_wrapper': cfg.optim_wrapper,
# 'randomness': cfg.randomness
# },
# 'tags': [cfg.dataset_type, cfg.data_root, cfg.model.type, cfg.model.detector.backbone.type, cfg.train_cfg.max_epochs, cfg.optim_wrapper.optimizer.type],
# 'id': args.unique_id
# },
# interval=10,
# log_checkpoint=True,
# log_checkpoint_metadata=True,
# num_eval_images=100,
# bbox_score_thr=0.3
# )
# ]
# Remove randomness
torch.cuda.manual_seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=False
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# enable automatic-mixed-precision training
if args.amp is True:
optim_wrapper = cfg.optim_wrapper.type
if optim_wrapper == 'AmpOptimWrapper':
print_log(
'AMP training is already enabled in your config.',
logger='current',
level=logging.WARNING)
else:
assert optim_wrapper == 'OptimWrapper', (
'`--amp` is only supported when the optimizer wrapper type is '
f'`OptimWrapper` but got {optim_wrapper}.')
cfg.optim_wrapper.type = 'AmpOptimWrapper'
cfg.optim_wrapper.loss_scale = 'dynamic'
# enable automatically scaling LR
if args.auto_scale_lr:
if 'auto_scale_lr' in cfg and \
'enable' in cfg.auto_scale_lr and \
'base_batch_size' in cfg.auto_scale_lr:
cfg.auto_scale_lr.enable = True
else:
raise RuntimeError('Can not find "auto_scale_lr" or '
'"auto_scale_lr.enable" or '
'"auto_scale_lr.base_batch_size" in your'
' configuration file.')
cfg.resume = args.resume
# cfg.resume = True
print(f'Config:\n{cfg.pretty_text}')
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# start training
runner.train()
if __name__ == '__main__':
main()