-
Notifications
You must be signed in to change notification settings - Fork 65
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Triton flash attention error #57
Comments
Have also encountered this
Have you found any solutions? |
No. |
Can you try |
I had the same issue and it worked for me. can you please specify the versions of all the packages you used? (the requirement file only has the version of transformers specified) |
(dna) atrix@Atrix:/mnt/c/Users/adity/OneDrive/Desktop/dnabert2/DNABERT_2/finetune$ sh scripts/run_dnabert2_prom.sh /mnt/c/Users/adity/OneDrive/Desktop/dnabert2/data/balanced_data_prom_vaish/
WARNING:root:Perform single sequence classification...
WARNING:root:Perform single sequence classification...
WARNING:root:Perform single sequence classification...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Some weights of the model checkpoint at zhihan1996/DNABERT-2-117M were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']
- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at zhihan1996/DNABERT-2-117M and are newly initialized: ['classifier.bias', 'classifier.weight', 'bert.pooler.dense.bias', 'bert.pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Using cuda_amp half precision backend
***** Running training *****
Num examples = 15,077
Num Epochs = 4
Instantaneous batch size per device = 32
Total train batch size (w. parallel, distributed & accumulation) = 64
Gradient Accumulation steps = 2
Total optimization steps = 944
Number of trainable parameters = 117,070,082
0%| | 0/944 [00:00<?, ?it/s]huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
/tmp/tmpk4bib9l3/main.c:2:10: fatal error: cuda.h: No such file or directory
2 | #include "cuda.h"
| ^~~~~~~~
compilation terminated.
Traceback (most recent call last):
File "<string>", line 21, in _fwd_kernel
KeyError: ('2-.-0-.-0--7929002797455b30efce6e41eddc6b57-3aa563e00c5c695dd945e23b09a86848-42648570729a4835b21c1c18cebedbfe-ff946bd4b3b4a4cbdf8cedc6e1c658e0-5c5e32ff210f3b7f56c98ca29917c25e-06f0df2d61979d629033f4a22eff5198-0dd03b0bd512a184b3512b278d9dfa59-d35ab04ae841e2714a253c523530b071', (torch.float16, torch.float16, torch.float16, torch.float32, torch.float16, torch.float32, torch.float32, 'fp32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32', 'i32'), ('matrix', False, 64, False, False, True, 128, 128), (True, True, True, True, True, True, True, (False,), (True, False), (True, False), (True, False), (True, False), (True, False), (True, False), (True, False), (True, False), (True, False), (False, False), (False, False), (False, False), (True, False), (True, False), (True, False), (False, False), (False, False), (False, False), (True, False), (True, False), (False, False), (False, False)))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train.py", line 303, in <module>
train()
File "train.py", line 285, in train
trainer.train()
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/transformers/trainer.py", line 1664, in train
return inner_training_loop(
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/transformers/trainer.py", line 1940, in _inner_training_loop
tr_loss_step = self.training_step(model, inputs)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/transformers/trainer.py", line 2735, in training_step
loss = self.compute_loss(model, inputs)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/transformers/trainer.py", line 2767, in compute_loss
outputs = model(**inputs)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 862, in forward
outputs = self.bert(
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 608, in forward
encoder_outputs = self.encoder(
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 446, in forward
hidden_states = layer_module(hidden_states,
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 327, in forward
attention_output = self.attention(hidden_states, cu_seqlens, seqlen,
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 240, in forward
self_output = self.self(input_tensor, cu_seqlens, max_s, indices,
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/bert_layers.py", line 185, in forward
attention = flash_attn_qkvpacked_func(qkv, bias)
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/flash_attn_triton.py", line 1021, in forward
o, lse, ctx.softmax_scale = _flash_attn_forward(
File "/home/atrix/.cache/huggingface/modules/transformers_modules/zhihan1996/DNABERT-2-117M/1d020b803b871a976f5f3d5565f0eac8f2c7bb81/flash_attn_triton.py", line 826, in _flash_attn_forward
_fwd_kernel[grid]( # type: ignore
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/triton/runtime/jit.py", line 106, in launcher
return self.run(*args, grid=grid, **kwargs)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/triton/runtime/autotuner.py", line 86, in run
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/triton/runtime/autotuner.py", line 200, in run
return self.fn.run(*args, **kwargs)
File "<string>", line 41, in _fwd_kernel
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/triton/compiler.py", line 1239, in compile
so = _build(fn.__name__, src_path, tmpdir)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/site-packages/triton/compiler.py", line 1169, in _build
ret = subprocess.check_call(cc_cmd)
File "/home/atrix/miniconda3/envs/dna/lib/python3.8/subprocess.py", line 364, in check_call
raise CalledProcessError(retcode, cmd)
subprocess.CalledProcessError: Command '['/usr/bin/gcc', '/tmp/tmpk4bib9l3/main.c', '-O3', '-I/usr/local/cuda/include', '-I/home/atrix/miniconda3/envs/dna/include/python3.8', '-I/tmp/tmpk4bib9l3', '-shared', '-fPIC', '-lcuda', '-o', '/tmp/tmpk4bib9l3/_fwd_kernel.cpython-38-x86_64-linux-gnu.so', '-L/usr/lib/wsl/lib']' returned non-zero exit status 1.
0%| | 0/944 [00:01<?, ?it/s] this error showed up when after using the above mentioned triton version, |
(dna) atrix@Atrix:/mnt/c/Users/adity/OneDrive/Desktop/dnabert2/DNABERT_2/finetune$ conda list
# packages in environment at /home/atrix/miniconda3/envs/dna:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
accelerate 0.24.1 pypi_0 pypi
aiohttp 3.9.0 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
antlr4-python3-runtime 4.9.3 pypi_0 pypi
anyio 3.5.0 py38h06a4308_0
argon2-cffi 21.3.0 pyhd3eb1b0_0
argon2-cffi-bindings 21.2.0 py38h7f8727e_0
asttokens 2.0.5 pyhd3eb1b0_0
async-lru 2.0.4 py38h06a4308_0
async-timeout 4.0.3 pypi_0 pypi
attrs 23.1.0 py38h06a4308_0
babel 2.11.0 py38h06a4308_0
backcall 0.2.0 pyhd3eb1b0_0
beautifulsoup4 4.12.2 py38h06a4308_0
bertviz 1.4.0 pypi_0 pypi
biopython 1.78 py38h7f8727e_0
blas 1.0 mkl
bleach 4.1.0 pyhd3eb1b0_0
boto3 1.33.7 pypi_0 pypi
botocore 1.33.7 pypi_0 pypi
brotli-python 1.0.9 py38h6a678d5_7
ca-certificates 2023.08.22 h06a4308_0
certifi 2023.11.17 py38h06a4308_0
cffi 1.16.0 py38h5eee18b_0
chardet 4.0.0 py38h06a4308_1003
charset-normalizer 3.3.2 pypi_0 pypi
cmake 3.27.9 pypi_0 pypi
comm 0.1.2 py38h06a4308_0
cryptography 41.0.3 py38hdda0065_0
cyrus-sasl 2.1.28 h52b45da_1
datasets 2.15.0 pypi_0 pypi
dbus 1.13.18 hb2f20db_0
debugpy 1.6.7 py38h6a678d5_0
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pyhd3eb1b0_0
dill 0.3.7 pypi_0 pypi
einops 0.7.0 pypi_0 pypi
evaluate 0.4.1 pypi_0 pypi
executing 0.8.3 pyhd3eb1b0_0
expat 2.5.0 h6a678d5_0
filelock 3.13.1 pypi_0 pypi
fontconfig 2.14.1 h4c34cd2_2
freetype 2.12.1 h4a9f257_0
frozenlist 1.4.0 pypi_0 pypi
fsspec 2023.10.0 pypi_0 pypi
glib 2.69.1 he621ea3_2
gst-plugins-base 1.14.1 h6a678d5_1
gstreamer 1.14.1 h5eee18b_1
huggingface-hub 0.19.4 pypi_0 pypi
icu 73.1 h6a678d5_0
idna 3.4 py38h06a4308_0
importlib-metadata 6.0.0 py38h06a4308_0
importlib_metadata 6.0.0 hd3eb1b0_0
importlib_resources 6.1.0 py38h06a4308_0
intel-openmp 2023.1.0 hdb19cb5_46306
ipykernel 6.25.0 py38h2f386ee_0
ipython 8.12.2 py38h06a4308_0
ipywidgets 8.0.4 py38h06a4308_0
jedi 0.18.1 py38h06a4308_1
jinja2 3.1.2 py38h06a4308_0
jmespath 1.0.1 pypi_0 pypi
joblib 1.2.0 py38h06a4308_0
jpeg 9e h5eee18b_1
json5 0.9.6 pyhd3eb1b0_0
jsonschema 4.19.2 py38h06a4308_0
jsonschema-specifications 2023.7.1 py38h06a4308_0
jupyter 1.0.0 py38h06a4308_8
jupyter-lsp 2.2.0 py38h06a4308_0
jupyter_client 8.6.0 py38h06a4308_0
jupyter_console 6.6.3 py38h06a4308_0
jupyter_core 5.5.0 py38h06a4308_0
jupyter_events 0.8.0 py38h06a4308_0
jupyter_server 2.10.0 py38h06a4308_0
jupyter_server_terminals 0.4.4 py38h06a4308_1
jupyterlab 4.0.8 py38h06a4308_0
jupyterlab_pygments 0.1.2 py_0
jupyterlab_server 2.25.1 py38h06a4308_0
jupyterlab_widgets 3.0.9 py38h06a4308_0
krb5 1.20.1 h143b758_1
ld_impl_linux-64 2.38 h1181459_1
libclang 14.0.6 default_hc6dbbc7_1
libclang13 14.0.6 default_he11475f_1
libcups 2.4.2 h2d74bed_1
libedit 3.1.20221030 h5eee18b_0
libffi 3.4.4 h6a678d5_0
libgcc-ng 11.2.0 h1234567_1
libgfortran-ng 11.2.0 h00389a5_1
libgfortran5 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libllvm14 14.0.6 hdb19cb5_3
libpng 1.6.39 h5eee18b_0
libpq 12.15 hdbd6064_1
libsodium 1.0.18 h7b6447c_0
libstdcxx-ng 11.2.0 h1234567_1
libuuid 1.41.5 h5eee18b_0
libxcb 1.15 h7f8727e_0
libxkbcommon 1.0.1 h5eee18b_1
libxml2 2.10.4 hf1b16e4_1
lz4-c 1.9.4 h6a678d5_0
markupsafe 2.1.3 pypi_0 pypi
matplotlib-inline 0.1.6 py38h06a4308_0
mistune 2.0.4 py38h06a4308_0
mkl 2023.1.0 h213fc3f_46344
mkl-service 2.4.0 py38h5eee18b_1
mkl_fft 1.3.8 py38h5eee18b_0
mkl_random 1.2.4 py38hdb19cb5_0
mpmath 1.3.0 pypi_0 pypi
multidict 6.0.4 pypi_0 pypi
multiprocess 0.70.15 pypi_0 pypi
mysql 5.7.24 h721c034_2
nbclient 0.8.0 py38h06a4308_0
nbconvert 7.10.0 py38h06a4308_0
nbformat 5.9.2 py38h06a4308_0
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.6 py38h06a4308_0
networkx 3.1 pypi_0 pypi
notebook 7.0.6 py38h06a4308_0
notebook-shim 0.2.3 py38h06a4308_0
numpy 1.24.4 pypi_0 pypi
numpy-base 1.24.3 py38h060ed82_1
nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi
nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi
nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi
nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi
nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi
nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi
nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi
nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi
nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi
nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi
nvidia-curand-cu12 10.3.2.106 pypi_0 pypi
nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi
nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi
nvidia-nccl-cu12 2.18.1 pypi_0 pypi
nvidia-nvjitlink-cu12 12.3.101 pypi_0 pypi
nvidia-nvtx-cu12 12.1.105 pypi_0 pypi
omegaconf 2.3.0 pypi_0 pypi
openssl 3.0.12 h7f8727e_0
overrides 7.4.0 py38h06a4308_0
packaging 23.2 pypi_0 pypi
pandas 2.0.3 pypi_0 pypi
pandocfilters 1.5.0 pyhd3eb1b0_0
parso 0.8.3 pyhd3eb1b0_0
pcre 8.45 h295c915_0
peft 0.6.2 pypi_0 pypi
pexpect 4.8.0 pyhd3eb1b0_3
pickleshare 0.7.5 pyhd3eb1b0_1003
pip 23.3 py38h06a4308_0
pkgutil-resolve-name 1.3.10 py38h06a4308_0
platformdirs 3.10.0 py38h06a4308_0
ply 3.11 py38_0
pooch 1.7.0 py38h06a4308_0
prometheus_client 0.14.1 py38h06a4308_0
prompt-toolkit 3.0.36 py38h06a4308_0
prompt_toolkit 3.0.36 hd3eb1b0_0
psutil 5.9.6 pypi_0 pypi
ptyprocess 0.7.0 pyhd3eb1b0_2
pure_eval 0.2.2 pyhd3eb1b0_0
pyarrow 14.0.1 pypi_0 pypi
pyarrow-hotfix 0.6 pypi_0 pypi
pycparser 2.21 pyhd3eb1b0_0
pygments 2.15.1 py38h06a4308_1
pyopenssl 23.2.0 py38h06a4308_0
pyqt 5.15.10 py38h6a678d5_0
pyqt5-sip 12.13.0 py38h5eee18b_0
pysocks 1.7.1 py38h06a4308_0
python 3.8.18 h955ad1f_0
python-dateutil 2.8.2 pyhd3eb1b0_0
python-fastjsonschema 2.16.2 py38h06a4308_0
python-json-logger 2.0.7 py38h06a4308_0
pytz 2023.3.post1 py38h06a4308_0
pyyaml 6.0.1 py38h5eee18b_0
pyzmq 25.1.0 py38h6a678d5_0
qt-main 5.15.2 h53bd1ea_10
qtconsole 5.5.0 py38h06a4308_0
qtpy 2.4.1 py38h06a4308_0
readline 8.2 h5eee18b_0
referencing 0.30.2 py38h06a4308_0
regex 2023.10.3 pypi_0 pypi
requests 2.31.0 py38h06a4308_0
responses 0.18.0 pypi_0 pypi
rfc3339-validator 0.1.4 py38h06a4308_0
rfc3986-validator 0.1.1 py38h06a4308_0
rpds-py 0.10.6 py38hb02cf49_0
s3transfer 0.8.2 pypi_0 pypi
safetensors 0.4.0 pypi_0 pypi
scikit-learn 1.3.0 py38h1128e8f_0
scipy 1.10.1 py38hf6e8229_1
send2trash 1.8.2 py38h06a4308_0
sentencepiece 0.1.99 pypi_0 pypi
setuptools 68.0.0 py38h06a4308_0
sip 6.7.12 py38h6a678d5_0
six 1.16.0 pyhd3eb1b0_1
sniffio 1.2.0 py38h06a4308_1
soupsieve 2.5 py38h06a4308_0
sqlite 3.41.2 h5eee18b_0
stack_data 0.2.0 pyhd3eb1b0_0
sympy 1.12 pypi_0 pypi
tbb 2021.8.0 hdb19cb5_0
terminado 0.17.1 py38h06a4308_0
threadpoolctl 2.2.0 pyh0d69192_0
tinycss2 1.2.1 py38h06a4308_0
tk 8.6.12 h1ccaba5_0
tokenizers 0.13.3 pypi_0 pypi
tomli 2.0.1 py38h06a4308_0
torch 1.13.1 pypi_0 pypi
tornado 6.3.3 py38h5eee18b_0
tqdm 4.66.1 pypi_0 pypi
traitlets 5.7.1 py38h06a4308_0
transformers 4.29.2 pypi_0 pypi
triton 2.0.0.dev20221103 pypi_0 pypi
typing-extensions 4.8.0 pypi_0 pypi
typing_extensions 4.7.1 py38h06a4308_0
tzdata 2023.3 pypi_0 pypi
urllib3 2.1.0 pypi_0 pypi
wcwidth 0.2.5 pyhd3eb1b0_0
webencodings 0.5.1 py38_1
websocket-client 0.58.0 py38h06a4308_4
wheel 0.41.2 py38h06a4308_0
widgetsnbextension 4.0.5 py38h06a4308_0
xxhash 3.4.1 pypi_0 pypi
xz 5.4.2 h5eee18b_0
yaml 0.2.5 h7b6447c_0
yarl 1.9.3 pypi_0 pypi
zeromq 4.3.4 h2531618_0
zipp 3.11.0 py38h06a4308_0
zlib 1.2.13 h5eee18b_0
zstd 1.5.5 hc292b87_0
(dna) atrix@Atrix:/mnt/c/Users/adity/OneDrive/Desktop/dnabert2/DNABERT_2/finetune$ pip list
Package Version
------------------------- -----------------
accelerate 0.24.1
aiohttp 3.9.0
aiosignal 1.3.1
antlr4-python3-runtime 4.9.3
anyio 3.5.0
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
asttokens 2.0.5
async-lru 2.0.4
async-timeout 4.0.3
attrs 23.1.0
Babel 2.11.0
backcall 0.2.0
beautifulsoup4 4.12.2
bertviz 1.4.0
biopython 1.78
bleach 4.1.0
boto3 1.33.7
botocore 1.33.7
Brotli 1.0.9
certifi 2023.11.17
cffi 1.16.0
chardet 4.0.0
charset-normalizer 2.0.4
cmake 3.27.9
comm 0.1.2
cryptography 41.0.3
datasets 2.15.0
debugpy 1.6.7
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.7
einops 0.7.0
evaluate 0.4.1
executing 0.8.3
fastjsonschema 2.16.2
filelock 3.13.1
frozenlist 1.4.0
fsspec 2023.10.0
huggingface-hub 0.19.4
idna 3.4
importlib-metadata 6.0.0
importlib-resources 6.1.0
ipykernel 6.25.0
ipython 8.12.2
ipywidgets 8.0.4
jedi 0.18.1
Jinja2 3.1.2
jmespath 1.0.1
joblib 1.2.0
json5 0.9.6
jsonschema 4.19.2
jsonschema-specifications 2023.7.1
jupyter 1.0.0
jupyter_client 8.6.0
jupyter-console 6.6.3
jupyter_core 5.5.0
jupyter-events 0.8.0
jupyter-lsp 2.2.0
jupyter_server 2.10.0
jupyter_server_terminals 0.4.4
jupyterlab 4.0.8
jupyterlab-pygments 0.1.2
jupyterlab_server 2.25.1
jupyterlab-widgets 3.0.9
MarkupSafe 2.1.1
matplotlib-inline 0.1.6
mistune 2.0.4
mkl-fft 1.3.8
mkl-random 1.2.4
mkl-service 2.4.0
mpmath 1.3.0
multidict 6.0.4
multiprocess 0.70.15
nbclient 0.8.0
nbconvert 7.10.0
nbformat 5.9.2
nest-asyncio 1.5.6
networkx 3.1
notebook 7.0.6
notebook_shim 0.2.3
numpy 1.24.3
nvidia-cublas-cu11 11.10.3.66
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu11 11.7.99
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu11 8.5.0.96
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.18.1
nvidia-nvjitlink-cu12 12.3.101
nvidia-nvtx-cu12 12.1.105
omegaconf 2.3.0
overrides 7.4.0
packaging 23.1
pandas 2.0.3
pandocfilters 1.5.0
parso 0.8.3
peft 0.6.2
pexpect 4.8.0
pickleshare 0.7.5
pip 23.3
pkgutil_resolve_name 1.3.10
platformdirs 3.10.0
ply 3.11
pooch 1.7.0
prometheus-client 0.14.1
prompt-toolkit 3.0.36
psutil 5.9.0
ptyprocess 0.7.0
pure-eval 0.2.2
pyarrow 14.0.1
pyarrow-hotfix 0.6
pycparser 2.21
Pygments 2.15.1
pyOpenSSL 23.2.0
PyQt5 5.15.10
PyQt5-sip 12.13.0
PySocks 1.7.1
python-dateutil 2.8.2
python-json-logger 2.0.7
pytz 2023.3.post1
PyYAML 6.0.1
pyzmq 25.1.0
qtconsole 5.5.0
QtPy 2.4.1
referencing 0.30.2
regex 2023.10.3
requests 2.31.0
responses 0.18.0
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
rpds-py 0.10.6
s3transfer 0.8.2
safetensors 0.4.0
scikit-learn 1.3.0
scipy 1.10.1
Send2Trash 1.8.2
sentencepiece 0.1.99
setuptools 68.0.0
sip 6.7.12
six 1.16.0
sniffio 1.2.0
soupsieve 2.5
stack-data 0.2.0
sympy 1.12
terminado 0.17.1
threadpoolctl 2.2.0
tinycss2 1.2.1
tokenizers 0.13.3
tomli 2.0.1
torch 1.13.1
tornado 6.3.3
tqdm 4.66.1
traitlets 5.7.1
transformers 4.29.2
triton 2.0.0.dev20221103
typing_extensions 4.7.1
tzdata 2023.3
urllib3 1.26.18
wcwidth 0.2.5
webencodings 0.5.1
websocket-client 0.58.0
wheel 0.41.2
widgetsnbextension 4.0.5
xxhash 3.4.1
yarl 1.9.3
zipp 3.11.0 |
I have never seen this error before, but it seems to result from the GCC version. Maybe you need to checkout the |
I am stuck here too. I tried to |
i followed the instructions given in the readme file except for building triton from source, triton gets installed as a dependency of the requirements file. i then pip uninstall triton then it started working. |
ill check the |
Ok, so I changed my fine tuning process to a kubernetes pod where I have access to A100 GPUs and doing the |
I also checked the triton repository and its issues but nothing worked for me , let me know if you find any working solutions |
what gcc version did it work on for u? |
The text was updated successfully, but these errors were encountered: