-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_tartan.py
184 lines (134 loc) · 5.9 KB
/
evaluate_tartan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import cv2
import glob
import os
import datetime
import numpy as np
import os.path as osp
from pathlib import Path
import torch
from dpvo.dpvo import DPVO
from dpvo.utils import Timer
from dpvo.config import cfg
from dpvo.data_readers.tartan import test_split as val_split
from dpvo.plot_utils import plot_trajectory, save_trajectory_tum_format
test_split = \
["MH%03d"%i for i in range(8)] + \
["ME%03d"%i for i in range(8)]
STRIDE = 1
fx, fy, cx, cy = [320, 320, 320, 240]
def show_image(image, t=0):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey(t)
def video_iterator(imagedir, ext=".png", preload=True):
imfiles = glob.glob(osp.join(imagedir, "*{}".format(ext)))
data_list = []
for imfile in sorted(imfiles)[::STRIDE]:
image = torch.from_numpy(cv2.imread(imfile)).permute(2,0,1)
intrinsics = torch.as_tensor([fx, fy, cx, cy])
data_list.append((image, intrinsics))
for (image, intrinsics) in data_list:
yield image.cuda(), intrinsics.cuda()
@torch.no_grad()
def run(imagedir, cfg, network, viz=False):
slam = DPVO(cfg, network, ht=480, wd=640, viz=viz)
for t, (image, intrinsics) in enumerate(video_iterator(imagedir)):
if viz:
show_image(image, 1)
with Timer("SLAM", enabled=False):
slam(t, image, intrinsics)
for _ in range(12):
slam.update()
return slam.terminate()
def ate(traj_ref, traj_est, timestamps):
import evo
import evo.main_ape as main_ape
from evo.core.trajectory import PoseTrajectory3D
from evo.core.metrics import PoseRelation
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:,3:],
timestamps=timestamps)
traj_ref = PoseTrajectory3D(
positions_xyz=traj_ref[:,:3],
orientations_quat_wxyz=traj_ref[:,3:],
timestamps=timestamps)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True)
return result.stats["rmse"]
@torch.no_grad()
def evaluate(config, net, split="validation", trials=1, plot=False, save=False):
if config is None:
config = cfg
config.merge_from_file("config/default.yaml")
if not os.path.isdir("TartanAirResults"):
os.mkdir("TartanAirResults")
scenes = test_split if split=="test" else val_split
results = {}
all_results = []
for i, scene in enumerate(scenes):
results[scene] = []
for j in range(trials):
# estimated trajectory
if split == 'test':
scene_path = os.path.join("datasets/mono", scene)
traj_ref = osp.join("datasets/mono", "mono_gt", scene + ".txt")
elif split == 'validation':
scene_path = os.path.join("datasets/TartanAir", scene, "image_left")
traj_ref = osp.join("datasets/TartanAir", scene, "pose_left.txt")
# run the slam system
traj_est, tstamps = run(scene_path, config, net)
PERM = [1, 2, 0, 4, 5, 3, 6] # ned -> xyz
traj_ref = np.loadtxt(traj_ref, delimiter=" ")[::STRIDE, PERM]
# do evaluation
ate_score = ate(traj_ref, traj_est, tstamps)
all_results.append(ate_score)
results[scene].append(ate_score)
if plot:
scene_name = '_'.join(scene.split('/')[1:]).title()
Path("trajectory_plots").mkdir(exist_ok=True)
plot_trajectory((traj_est, tstamps), (traj_ref, tstamps), f"TartanAir {scene_name.replace('_', ' ')} Trial #{j+1} (ATE: {ate_score:.03f})",
f"trajectory_plots/TartanAir_{scene_name}_Trial{j+1:02d}.pdf", align=True, correct_scale=True)
if save:
Path("saved_trajectories").mkdir(exist_ok=True)
save_trajectory_tum_format((traj_est, tstamps), f"saved_trajectories/TartanAir_{scene_name}_Trial{j+1:02d}.txt")
print(scene, sorted(results[scene]))
results_dict = dict([("Tartan/{}".format(k), np.median(v)) for (k, v) in results.items()])
# write output to file with timestamp
with open(osp.join("TartanAirResults", datetime.datetime.now().strftime('%m-%d-%I%p.txt')), "w") as f:
f.write(','.join([str(x) for x in all_results]))
xs = []
for scene in results:
x = np.median(results[scene])
xs.append(x)
ates = list(all_results)
results_dict["AUC"] = np.maximum(1 - np.array(ates), 0).mean()
results_dict["AVG"] = np.mean(xs)
return results_dict
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--viz', action="store_true")
parser.add_argument('--id', type=int, default=-1)
parser.add_argument('--weights', default="dpvo.pth")
parser.add_argument('--config', default="config/default.yaml")
parser.add_argument('--split', default="validation")
parser.add_argument('--trials', type=int, default=1)
parser.add_argument('--plot', action="store_true")
parser.add_argument('--save_trajectory', action="store_true")
args = parser.parse_args()
cfg.merge_from_file(args.config)
print("Running with config...")
print(cfg)
torch.manual_seed(1234)
if args.id >= 0:
scene_path = os.path.join("datasets/mono", test_split[args.id])
traj_est, tstamps = run(scene_path, cfg, args.weights, viz=args.viz)
traj_ref = osp.join("datasets/mono", "mono_gt", test_split[args.id] + ".txt")
traj_ref = np.loadtxt(traj_ref, delimiter=" ")[::STRIDE,[1, 2, 0, 4, 5, 3, 6]]
# do evaluation
print(ate(traj_ref, traj_est, tstamps))
else:
results = evaluate(cfg, args.weights, split=args.split, trials=args.trials, plot=args.plot, save=args.save_trajectory)
for k in results:
print(k, results[k])