This repository has been archived by the owner on Nov 20, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
lpcode.c
963 lines (858 loc) · 29.1 KB
/
lpcode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
/*
** $Id: lpcode.c,v 1.18 2013/04/12 16:30:33 roberto Exp $
** Copyright 2007, Lua.org & PUC-Rio (see 'lpeg.html' for license)
*/
#include <limits.h>
#include "lua.h"
#include "lauxlib.h"
#include "lptypes.h"
#include "lpcode.h"
/* signals a "no-instruction */
#define NOINST -1
static const Charset fullset_ =
{{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}};
static const Charset *fullset = &fullset_;
/*
** {======================================================
** Analysis and some optimizations
** =======================================================
*/
/*
** Check whether a charset is empty (IFail), singleton (IChar),
** full (IAny), or none of those (ISet).
*/
static Opcode charsettype (const byte *cs, int *c) {
int count = 0;
int i;
int candidate = -1; /* candidate position for a char */
for (i = 0; i < CHARSETSIZE; i++) {
int b = cs[i];
if (b == 0) {
if (count > 1) return ISet; /* else set is still empty */
}
else if (b == 0xFF) {
if (count < (i * BITSPERCHAR))
return ISet;
else count += BITSPERCHAR; /* set is still full */
}
else if ((b & (b - 1)) == 0) { /* byte has only one bit? */
if (count > 0)
return ISet; /* set is neither full nor empty */
else { /* set has only one char till now; track it */
count++;
candidate = i;
}
}
else return ISet; /* byte is neither empty, full, nor singleton */
}
switch (count) {
case 0: return IFail; /* empty set */
case 1: { /* singleton; find character bit inside byte */
int b = cs[candidate];
*c = candidate * BITSPERCHAR;
if ((b & 0xF0) != 0) { *c += 4; b >>= 4; }
if ((b & 0x0C) != 0) { *c += 2; b >>= 2; }
if ((b & 0x02) != 0) { *c += 1; }
return IChar;
}
default: {
assert(count == CHARSETSIZE * BITSPERCHAR); /* full set */
return IAny;
}
}
}
/*
** A few basic operations on Charsets
*/
static void cs_complement (Charset *cs) {
loopset(i, cs->cs[i] = ~cs->cs[i]);
}
static int cs_equal (const byte *cs1, const byte *cs2) {
loopset(i, if (cs1[i] != cs2[i]) return 0);
return 1;
}
/*
** computes whether sets cs1 and cs2 are disjoint
*/
static int cs_disjoint (const Charset *cs1, const Charset *cs2) {
loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;)
return 1;
}
/*
** Convert a 'char' pattern (TSet, TChar, TAny) to a charset
*/
int tocharset (TTree *tree, Charset *cs) {
switch (tree->tag) {
case TSet: { /* copy set */
loopset(i, cs->cs[i] = treebuffer(tree)[i]);
return 1;
}
case TChar: { /* only one char */
assert(0 <= tree->u.n && tree->u.n <= UCHAR_MAX);
loopset(i, cs->cs[i] = 0); /* erase all chars */
setchar(cs->cs, tree->u.n); /* add that one */
return 1;
}
case TAny: {
loopset(i, cs->cs[i] = 0xFF); /* add all to the set */
return 1;
}
default: return 0;
}
}
/*
** Checks whether a pattern has captures
*/
int hascaptures (TTree *tree) {
tailcall:
switch (tree->tag) {
case TCapture: case TRunTime:
return 1;
default: {
switch (numsiblings[tree->tag]) {
case 1: /* return hascaptures(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case 2:
if (hascaptures(sib1(tree))) return 1;
/* else return hascaptures(sib2(tree)); */
tree = sib2(tree); goto tailcall;
default: assert(numsiblings[tree->tag] == 0); return 0;
}
}
}
}
/*
** Checks how a pattern behaves regarding the empty string,
** in one of two different ways:
** A pattern is *nullable* if it can match without consuming any character;
** A pattern is *nofail* if it never fails for any string
** (including the empty string).
** The difference is only for predicates and run-time captures;
** for other patterns, the two properties are equivalent.
** (With predicates, &'a' is nullable but not nofail. Of course,
** nofail => nullable.)
** These functions are all convervative in the following way:
** p is nullable => nullable(p)
** nofail(p) => p cannot fail
** The function assumes that TOpenCall is not nullable;
** this will be checked again when the grammar is fixed.)
** Run-time captures can do whatever they want, so the result
** is conservative.
*/
int checkaux (TTree *tree, int pred) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny:
case TFalse: case TOpenCall:
return 0; /* not nullable */
case TRep: case TTrue:
return 1; /* no fail */
case TNot: case TBehind: /* can match empty, but can fail */
if (pred == PEnofail) return 0;
else return 1; /* PEnullable */
case TAnd: /* can match empty; fail iff body does */
if (pred == PEnullable) return 1;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TRunTime: /* can fail; match empty iff body does */
if (pred == PEnofail) return 0;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TSeq:
if (!checkaux(sib1(tree), pred)) return 0;
/* else return checkaux(sib2(tree), pred); */
tree = sib2(tree); goto tailcall;
case TChoice:
if (checkaux(sib2(tree), pred)) return 1;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TCapture: case TGrammar: case TRule:
/* return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TCall: /* return checkaux(sib2(tree), pred); */
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
};
}
/*
** number of characters to match a pattern (or -1 if variable)
** ('count' avoids infinite loops for grammars)
*/
int fixedlenx (TTree *tree, int count, int len) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny:
return len + 1;
case TFalse: case TTrue: case TNot: case TAnd: case TBehind:
return len;
case TRep: case TRunTime: case TOpenCall:
return -1;
case TCapture: case TRule: case TGrammar:
/* return fixedlenx(sib1(tree), count); */
tree = sib1(tree); goto tailcall;
case TCall:
if (count++ >= MAXRULES)
return -1; /* may be a loop */
/* else return fixedlenx(sib2(tree), count); */
tree = sib2(tree); goto tailcall;
case TSeq: {
len = fixedlenx(sib1(tree), count, len);
if (len < 0) return -1;
/* else return fixedlenx(sib2(tree), count, len); */
tree = sib2(tree); goto tailcall;
}
case TChoice: {
int n1, n2;
n1 = fixedlenx(sib1(tree), count, len);
if (n1 < 0) return -1;
n2 = fixedlenx(sib2(tree), count, len);
if (n1 == n2) return n1;
else return -1;
}
default: assert(0); return 0;
};
}
/*
** Computes the 'first set' of a pattern.
** The result is a conservative aproximation:
** match p ax -> x' for some x ==> a in first(p).
** The set 'follow' is the first set of what follows the
** pattern (full set if nothing follows it).
** The function returns 0 when this set can be used for
** tests that avoid the pattern altogether.
** A non-zero return can happen for two reasons:
** 1) match p '' -> '' ==> returns 1.
** (tests cannot be used because they always fail for an empty input)
** 2) there is a match-time capture ==> returns 2.
** (match-time captures should not be avoided by optimizations)
*/
static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: {
tocharset(tree, firstset);
return 0;
}
case TTrue: {
loopset(i, firstset->cs[i] = follow->cs[i]);
return 1;
}
case TFalse: {
loopset(i, firstset->cs[i] = 0);
return 0;
}
case TChoice: {
Charset csaux;
int e1 = getfirst(sib1(tree), follow, firstset);
int e2 = getfirst(sib2(tree), follow, &csaux);
loopset(i, firstset->cs[i] |= csaux.cs[i]);
return e1 | e2;
}
case TSeq: {
if (!nullable(sib1(tree))) {
/* return getfirst(sib1(tree), fullset, firstset); */
tree = sib1(tree); follow = fullset; goto tailcall;
}
else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */
Charset csaux;
int e2 = getfirst(sib2(tree), follow, &csaux);
int e1 = getfirst(sib1(tree), &csaux, firstset);
if (e1 == 0) return 0; /* 'e1' ensures that first can be used */
else if ((e1 | e2) & 2) /* one of the children has a matchtime? */
return 2; /* pattern has a matchtime capture */
else return e2; /* else depends on 'e2' */
}
}
case TRep: {
getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] |= follow->cs[i]);
return 1; /* accept the empty string */
}
case TCapture: case TGrammar: case TRule: {
/* return getfirst(sib1(tree), follow, firstset); */
tree = sib1(tree); goto tailcall;
}
case TRunTime: { /* function invalidates any follow info. */
int e = getfirst(sib1(tree), fullset, firstset);
if (e) return 2; /* function is not "protected"? */
else return 0; /* pattern inside capture ensures first can be used */
}
case TCall: {
/* return getfirst(sib2(tree), follow, firstset); */
tree = sib2(tree); goto tailcall;
}
case TAnd: {
int e = getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] &= follow->cs[i]);
return e;
}
case TNot: {
if (tocharset(sib1(tree), firstset)) {
cs_complement(firstset);
return 1;
}
/* else go through */
}
case TBehind: { /* instruction gives no new information */
/* call 'getfirst' to check for math-time captures */
int e = getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */
return e | 1; /* always can accept the empty string */
}
default: assert(0); return 0;
}
}
/*
** If it returns true, then pattern can fail only depending on the next
** character of the subject
*/
static int headfail (TTree *tree) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: case TFalse:
return 1;
case TTrue: case TRep: case TRunTime: case TNot:
case TBehind:
return 0;
case TCapture: case TGrammar: case TRule: case TAnd:
tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */
case TCall:
tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */
case TSeq:
if (!nofail(sib2(tree))) return 0;
/* else return headfail(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case TChoice:
if (!headfail(sib1(tree))) return 0;
/* else return headfail(sib2(tree)); */
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
}
}
/*
** Check whether the code generation for the given tree can benefit
** from a follow set (to avoid computing the follow set when it is
** not needed)
*/
static int needfollow (TTree *tree) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny:
case TFalse: case TTrue: case TAnd: case TNot:
case TRunTime: case TGrammar: case TCall: case TBehind:
return 0;
case TChoice: case TRep:
return 1;
case TCapture:
tree = sib1(tree); goto tailcall;
case TSeq:
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
}
}
/* }====================================================== */
/*
** {======================================================
** Code generation
** =======================================================
*/
/*
** size of an instruction
*/
int sizei (const Instruction *i) {
switch((Opcode)i->i.code) {
case ISet: case ISpan: return CHARSETINSTSIZE;
case ITestSet: return CHARSETINSTSIZE + 1;
case ITestChar: case ITestAny: case IChoice: case IJmp:
case ICall: case IOpenCall: case ICommit: case IPartialCommit:
case IBackCommit: return 2;
default: return 1;
}
}
/*
** state for the compiler
*/
typedef struct CompileState {
Pattern *p; /* pattern being compiled */
int ncode; /* next position in p->code to be filled */
lua_State *L;
} CompileState;
/*
** code generation is recursive; 'opt' indicates that the code is
** being generated under a 'IChoice' operator jumping to its end.
** 'tt' points to a previous test protecting this code. 'fl' is
** the follow set of the pattern.
*/
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
const Charset *fl);
void reallocprog (lua_State *L, Pattern *p, int nsize) {
void *ud;
lua_Alloc f = lua_getallocf(L, &ud);
void *newblock = f(ud, p->code, p->codesize * sizeof(Instruction),
nsize * sizeof(Instruction));
if (newblock == NULL && nsize > 0)
luaL_error(L, "not enough memory");
p->code = (Instruction *)newblock;
p->codesize = nsize;
}
static int nextinstruction (CompileState *compst) {
int size = compst->p->codesize;
if (compst->ncode >= size)
reallocprog(compst->L, compst->p, size * 2);
return compst->ncode++;
}
#define getinstr(cs,i) ((cs)->p->code[i])
static int addinstruction (CompileState *compst, Opcode op, int aux) {
int i = nextinstruction(compst);
getinstr(compst, i).i.code = op;
getinstr(compst, i).i.aux = aux;
return i;
}
static int addoffsetinst (CompileState *compst, Opcode op) {
int i = addinstruction(compst, op, 0); /* instruction */
addinstruction(compst, (Opcode)0, 0); /* open space for offset */
assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2);
return i;
}
static void setoffset (CompileState *compst, int instruction, int offset) {
getinstr(compst, instruction + 1).offset = offset;
}
/*
** Add a capture instruction:
** 'op' is the capture instruction; 'cap' the capture kind;
** 'key' the key into ktable; 'aux' is optional offset
**
*/
static int addinstcap (CompileState *compst, Opcode op, int cap, int key,
int aux) {
int i = addinstruction(compst, op, joinkindoff(cap, aux));
getinstr(compst, i).i.key = key;
return i;
}
#define gethere(compst) ((compst)->ncode)
#define target(code,i) ((i) + code[i + 1].offset)
static void jumptothere (CompileState *compst, int instruction, int target) {
if (instruction >= 0)
setoffset(compst, instruction, target - instruction);
}
static void jumptohere (CompileState *compst, int instruction) {
jumptothere(compst, instruction, gethere(compst));
}
/*
** Code an IChar instruction, or IAny if there is an equivalent
** test dominating it
*/
static void codechar (CompileState *compst, int c, int tt) {
if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar &&
getinstr(compst, tt).i.aux == c)
addinstruction(compst, IAny, 0);
else
addinstruction(compst, IChar, c);
}
/*
** Add a charset posfix to an instruction
*/
static void addcharset (CompileState *compst, const byte *cs) {
int p = gethere(compst);
int i;
for (i = 0; i < (int)CHARSETINSTSIZE - 1; i++)
nextinstruction(compst); /* space for buffer */
/* fill buffer with charset */
loopset(j, getinstr(compst, p).buff[j] = cs[j]);
}
/*
** code a char set, optimizing unit sets for IChar, "complete"
** sets for IAny, and empty sets for IFail; also use an IAny
** when instruction is dominated by an equivalent test.
*/
static void codecharset (CompileState *compst, const byte *cs, int tt) {
int c = 0; /* (=) to avoid warnings */
Opcode op = charsettype(cs, &c);
switch (op) {
case IChar: codechar(compst, c, tt); break;
case ISet: { /* non-trivial set? */
if (tt >= 0 && getinstr(compst, tt).i.code == ITestSet &&
cs_equal(cs, getinstr(compst, tt + 2).buff))
addinstruction(compst, IAny, 0);
else {
addinstruction(compst, ISet, 0);
addcharset(compst, cs);
}
break;
}
default: addinstruction(compst, op, c); break;
}
}
/*
** code a test set, optimizing unit sets for ITestChar, "complete"
** sets for ITestAny, and empty sets for IJmp (always fails).
** 'e' is true iff test should accept the empty string. (Test
** instructions in the current VM never accept the empty string.)
*/
static int codetestset (CompileState *compst, Charset *cs, int e) {
if (e) return NOINST; /* no test */
else {
int c = 0;
Opcode op = charsettype(cs->cs, &c);
switch (op) {
case IFail: return addoffsetinst(compst, IJmp); /* always jump */
case IAny: return addoffsetinst(compst, ITestAny);
case IChar: {
int i = addoffsetinst(compst, ITestChar);
getinstr(compst, i).i.aux = c;
return i;
}
case ISet: {
int i = addoffsetinst(compst, ITestSet);
addcharset(compst, cs->cs);
return i;
}
default: assert(0); return 0;
}
}
}
/*
** Find the final destination of a sequence of jumps
*/
static int finaltarget (Instruction *code, int i) {
while (code[i].i.code == IJmp)
i = target(code, i);
return i;
}
/*
** final label (after traversing any jumps)
*/
static int finallabel (Instruction *code, int i) {
return finaltarget(code, target(code, i));
}
/*
** <behind(p)> == behind n; <p> (where n = fixedlen(p))
*/
static void codebehind (CompileState *compst, TTree *tree) {
if (tree->u.n > 0)
addinstruction(compst, IBehind, tree->u.n);
codegen(compst, sib1(tree), 0, NOINST, fullset);
}
/*
** Choice; optimizations:
** - when p1 is headfail
** - when first(p1) and first(p2) are disjoint; than
** a character not in first(p1) cannot go to p1, and a character
** in first(p1) cannot go to p2 (at it is not in first(p2)).
** (The optimization is not valid if p1 accepts the empty string,
** as then there is no character at all...)
** - when p2 is empty and opt is true; a IPartialCommit can resuse
** the Choice already active in the stack.
*/
static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt,
const Charset *fl) {
int emptyp2 = (p2->tag == TTrue);
Charset cs1, cs2;
int e1 = getfirst(p1, fullset, &cs1);
if (headfail(p1) ||
(!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) {
/* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */
int test = codetestset(compst, &cs1, 0);
int jmp = NOINST;
codegen(compst, p1, 0, test, fl);
if (!emptyp2)
jmp = addoffsetinst(compst, IJmp);
jumptohere(compst, test);
codegen(compst, p2, opt, NOINST, fl);
jumptohere(compst, jmp);
}
else if (opt && emptyp2) {
/* p1? == IPartialCommit; p1 */
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
codegen(compst, p1, 1, NOINST, fullset);
}
else {
/* <p1 / p2> ==
test(fail(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */
int pcommit;
int test = codetestset(compst, &cs1, e1);
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, p1, emptyp2, test, fullset);
pcommit = addoffsetinst(compst, ICommit);
jumptohere(compst, pchoice);
jumptohere(compst, test);
codegen(compst, p2, opt, NOINST, fl);
jumptohere(compst, pcommit);
}
}
/*
** And predicate
** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n
** (valid only when 'p' has no captures)
*/
static void codeand (CompileState *compst, TTree *tree, int tt) {
int n = fixedlen(tree);
if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) {
codegen(compst, tree, 0, tt, fullset);
if (n > 0)
addinstruction(compst, IBehind, n);
}
else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */
int pcommit;
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, tree, 0, tt, fullset);
pcommit = addoffsetinst(compst, IBackCommit);
jumptohere(compst, pchoice);
addinstruction(compst, IFail, 0);
jumptohere(compst, pcommit);
}
}
/*
** Captures: if pattern has fixed (and not too big) length, use
** a single IFullCapture instruction after the match; otherwise,
** enclose the pattern with OpenCapture - CloseCapture.
*/
static void codecapture (CompileState *compst, TTree *tree, int tt,
const Charset *fl) {
int len = fixedlen(sib1(tree));
if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) {
codegen(compst, sib1(tree), 0, tt, fl);
addinstcap(compst, IFullCapture, tree->cap, tree->key, len);
}
else {
addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0);
codegen(compst, sib1(tree), 0, tt, fl);
addinstcap(compst, ICloseCapture, Cclose, 0, 0);
}
}
static void coderuntime (CompileState *compst, TTree *tree, int tt) {
addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0);
codegen(compst, sib1(tree), 0, tt, fullset);
addinstcap(compst, ICloseRunTime, Cclose, 0, 0);
}
/*
** Repetion; optimizations:
** When pattern is a charset, can use special instruction ISpan.
** When pattern is head fail, or if it starts with characters that
** are disjoint from what follows the repetions, a simple test
** is enough (a fail inside the repetition would backtrack to fail
** again in the following pattern, so there is no need for a choice).
** When 'opt' is true, the repetion can reuse the Choice already
** active in the stack.
*/
static void coderep (CompileState *compst, TTree *tree, int opt,
const Charset *fl) {
Charset st;
if (tocharset(tree, &st)) {
addinstruction(compst, ISpan, 0);
addcharset(compst, st.cs);
}
else {
int e1 = getfirst(tree, fullset, &st);
if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) {
/* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */
int jmp;
int test = codetestset(compst, &st, 0);
codegen(compst, tree, opt, test, fullset);
jmp = addoffsetinst(compst, IJmp);
jumptohere(compst, test);
jumptothere(compst, jmp, test);
}
else {
/* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */
/* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */
int commit, l2;
int test = codetestset(compst, &st, e1);
int pchoice = NOINST;
if (opt)
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
else
pchoice = addoffsetinst(compst, IChoice);
l2 = gethere(compst);
codegen(compst, tree, 0, NOINST, fullset);
commit = addoffsetinst(compst, IPartialCommit);
jumptothere(compst, commit, l2);
jumptohere(compst, pchoice);
jumptohere(compst, test);
}
}
}
/*
** Not predicate; optimizations:
** In any case, if first test fails, 'not' succeeds, so it can jump to
** the end. If pattern is headfail, that is all (it cannot fail
** in other parts); this case includes 'not' of simple sets. Otherwise,
** use the default code (a choice plus a failtwice).
*/
static void codenot (CompileState *compst, TTree *tree) {
Charset st;
int e = getfirst(tree, fullset, &st);
int test = codetestset(compst, &st, e);
if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */
addinstruction(compst, IFail, 0);
else {
/* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, tree, 0, NOINST, fullset);
addinstruction(compst, IFailTwice, 0);
jumptohere(compst, pchoice);
}
jumptohere(compst, test);
}
/*
** change open calls to calls, using list 'positions' to find
** correct offsets; also optimize tail calls
*/
static void correctcalls (CompileState *compst, int *positions,
int from, int to) {
int i;
Instruction *code = compst->p->code;
for (i = from; i < to; i += sizei(&code[i])) {
if (code[i].i.code == IOpenCall) {
int n = code[i].i.key; /* rule number */
int rule = positions[n]; /* rule position */
assert(rule == from || code[rule - 1].i.code == IRet);
if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */
code[i].i.code = IJmp; /* tail call */
else
code[i].i.code = ICall;
jumptothere(compst, i, rule); /* call jumps to respective rule */
}
}
assert(i == to);
}
/*
** Code for a grammar:
** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2:
*/
static void codegrammar (CompileState *compst, TTree *grammar) {
int positions[MAXRULES];
int rulenumber = 0;
TTree *rule;
int firstcall = addoffsetinst(compst, ICall); /* call initial rule */
int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */
int start = gethere(compst); /* here starts the initial rule */
jumptohere(compst, firstcall);
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
positions[rulenumber++] = gethere(compst); /* save rule position */
codegen(compst, sib1(rule), 0, NOINST, fullset); /* code rule */
addinstruction(compst, IRet, 0);
}
assert(rule->tag == TTrue);
jumptohere(compst, jumptoend);
correctcalls(compst, positions, start, gethere(compst));
}
static void codecall (CompileState *compst, TTree *call) {
int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */
getinstr(compst, c).i.key = sib2(call)->cap; /* rule number */
assert(sib2(call)->tag == TRule);
}
/*
** Code first child of a sequence
** (second child is called in-place to allow tail call)
** Return 'tt' for second child
*/
static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2,
int tt, const Charset *fl) {
if (needfollow(p1)) {
Charset fl1;
getfirst(p2, fl, &fl1); /* p1 follow is p2 first */
codegen(compst, p1, 0, tt, &fl1);
}
else /* use 'fullset' as follow */
codegen(compst, p1, 0, tt, fullset);
if (fixedlen(p1) != 0) /* can 'p1' consume anything? */
return NOINST; /* invalidate test */
else return tt; /* else 'tt' still protects sib2 */
}
/*
** Main code-generation function: dispatch to auxiliar functions
** according to kind of tree
*/
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
const Charset *fl) {
tailcall:
switch (tree->tag) {
case TChar: codechar(compst, tree->u.n, tt); break;
case TAny: addinstruction(compst, IAny, 0); break;
case TSet: codecharset(compst, treebuffer(tree), tt); break;
case TTrue: break;
case TFalse: addinstruction(compst, IFail, 0); break;
case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break;
case TRep: coderep(compst, sib1(tree), opt, fl); break;
case TBehind: codebehind(compst, tree); break;
case TNot: codenot(compst, sib1(tree)); break;
case TAnd: codeand(compst, sib1(tree), tt); break;
case TCapture: codecapture(compst, tree, tt, fl); break;
case TRunTime: coderuntime(compst, tree, tt); break;
case TGrammar: codegrammar(compst, tree); break;
case TCall: codecall(compst, tree); break;
case TSeq: {
tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */
/* codegen(compst, p2, opt, tt, fl); */
tree = sib2(tree); goto tailcall;
}
default: assert(0);
}
}
/*
** Optimize jumps and other jump-like instructions.
** * Update labels of instructions with labels to their final
** destinations (e.g., choice L1; ... L1: jmp L2: becomes
** choice L2)
** * Jumps to other instructions that do jumps become those
** instructions (e.g., jump to return becomes a return; jump
** to commit becomes a commit)
*/
static void peephole (CompileState *compst) {
Instruction *code = compst->p->code;
int i;
for (i = 0; i < compst->ncode; i += sizei(&code[i])) {
switch (code[i].i.code) {
case IChoice: case ICall: case ICommit: case IPartialCommit:
case IBackCommit: case ITestChar: case ITestSet:
case ITestAny: { /* instructions with labels */
jumptothere(compst, i, finallabel(code, i)); /* optimize label */
break;
}
case IJmp: {
int ft = finaltarget(code, i);
switch (code[ft].i.code) { /* jumping to what? */
case IRet: case IFail: case IFailTwice:
case IEnd: { /* instructions with unconditional implicit jumps */
code[i] = code[ft]; /* jump becomes that instruction */
code[i + 1].i.code = IAny; /* 'no-op' for target position */
break;
}
case ICommit: case IPartialCommit:
case IBackCommit: { /* inst. with unconditional explicit jumps */
int fft = finallabel(code, ft);
code[i] = code[ft]; /* jump becomes that instruction... */
jumptothere(compst, i, fft); /* but must correct its offset */
i--; /* reoptimize its label */
break;
}
default: {
jumptothere(compst, i, ft); /* optimize label */
break;
}
}
break;
}
default: break;
}
}
assert(code[i - 1].i.code == IEnd);
}
/*
** Compile a pattern
*/
Instruction *compile (lua_State *L, Pattern *p) {
CompileState compst;
compst.p = p; compst.ncode = 0; compst.L = L;
reallocprog(L, p, 2); /* minimum initial size */
codegen(&compst, p->tree, 0, NOINST, fullset);
addinstruction(&compst, IEnd, 0);
reallocprog(L, p, compst.ncode); /* set final size */
peephole(&compst);
return p->code;
}
/* }====================================================== */