-
Notifications
You must be signed in to change notification settings - Fork 6
/
util.py
66 lines (57 loc) · 2.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import re
import torch
import shutil
import logging
import numpy as np
from collections import OrderedDict
from os.path import join
from sklearn.decomposition import PCA
import datasets_ws
def save_checkpoint(args, state, is_best, filename):
model_path = join(args.save_dir, filename)
torch.save(state, model_path)
if is_best:
shutil.copyfile(model_path, join(args.save_dir, "best_model.pth"))
def resume_model(args, model):
checkpoint = torch.load(args.resume, map_location=args.device)
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
# The pre-trained models that we provide in the README do not have 'state_dict' in the keys as
# the checkpoint is directly the state dict
state_dict = checkpoint
# if the model contains the prefix "module" which is appendend by
# DataParallel, remove it to avoid errors when loading dict
if list(state_dict.keys())[0].startswith('module'):
state_dict = OrderedDict({k.replace('module.', ''): v for (k, v) in state_dict.items()})
model.load_state_dict(state_dict)
return model
def resume_train(args, model, optimizer=None, strict=False):
"""Load model, optimizer, and other training parameters"""
logging.debug(f"Loading checkpoint: {args.resume}")
checkpoint = torch.load(args.resume)
start_epoch_num = checkpoint["epoch_num"]
model.load_state_dict(checkpoint["model_state_dict"], strict=strict)
if optimizer:
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
best_r5 = checkpoint["best_r5"]
not_improved_num = checkpoint["not_improved_num"]
logging.debug(f"Loaded checkpoint: start_epoch_num = {start_epoch_num}, "
f"current_best_R@5 = {best_r5:.1f}")
if args.resume.endswith("last_model.pth"): # Copy best model to current save_dir
shutil.copy(args.resume.replace("last_model.pth", "best_model.pth"), args.save_dir)
return model, optimizer, best_r5, start_epoch_num, not_improved_num
def compute_pca(args, model, pca_dataset_folder, full_features_dim):
model = model.eval()
pca_ds = datasets_ws.PCADataset(args, args.eval_datasets_folder, pca_dataset_folder)
dl = torch.utils.data.DataLoader(pca_ds, args.infer_batch_size, shuffle=True)
pca_features = np.empty([min(len(pca_ds), 2**14), full_features_dim])
with torch.no_grad():
for i, images in enumerate(dl):
if i*args.infer_batch_size >= len(pca_features):
break
features = model(images).cpu().numpy()
pca_features[i*args.infer_batch_size : (i*args.infer_batch_size)+len(features)] = features
pca = PCA(args.pca_dim)
pca.fit(pca_features)
return pca