-
Notifications
You must be signed in to change notification settings - Fork 6
/
train.py
172 lines (141 loc) · 6.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import logging
import numpy as np
from tqdm import tqdm,trange
import torch.nn as nn
import multiprocessing
from os.path import join
from datetime import datetime
from torch.utils.data.dataloader import DataLoader
torch.backends.cudnn.benchmark= True # Provides a speedup
import util
import test
import parser
import commons
import datasets_ws
import network
from loss import loss_function
from dataloaders.GSVCities import get_GSVCities
import warnings
warnings.filterwarnings("ignore")
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
#### Initial setup: parser, logging...
args = parser.parse_arguments()
start_time = datetime.now()
args.save_dir = join("logs", args.save_dir, start_time.strftime('%Y-%m-%d_%H-%M-%S'))
commons.setup_logging(args.save_dir)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {args.save_dir}")
logging.info(f"Using {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs")
#### Creation of Datasets
logging.debug(f"Loading dataset {args.eval_dataset_name} from folder {args.eval_datasets_folder}")
val_ds = datasets_ws.BaseDataset(args, args.eval_datasets_folder, args.eval_dataset_name, "val")
logging.info(f"Val set: {val_ds}")
test_ds = datasets_ws.BaseDataset(args, args.eval_datasets_folder, args.eval_dataset_name, "test")
logging.info(f"Test set: {test_ds}")
args.features_dim = 14*768
#### Initialize model
model = network.CricaVPRNet(pretrained_foundation = True, foundation_model_path = args.foundation_model_path)
model = model.to(args.device)
model = torch.nn.DataParallel(model)
## Freeze parameters except adapter
for name, param in model.module.backbone.named_parameters():
if "adapter" not in name:
param.requires_grad = False
## initialize Adapter
for n, m in model.named_modules():
if 'adapter' in n:
for n2, m2 in m.named_modules():
if 'D_fc2' in n2:
if isinstance(m2, nn.Linear):
nn.init.constant_(m2.weight, 0.)
nn.init.constant_(m2.bias, 0.)
for n2, m2 in m.named_modules():
if 'conv' in n2:
if isinstance(m2, nn.Conv2d):
nn.init.constant_(m2.weight, 0.00001)
nn.init.constant_(m2.bias, 0.00001)
#### Setup Optimizer and Loss
if args.optim == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optim == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.001)
#### Resume model, optimizer, and other training parameters
if args.resume:
model, optimizer, best_r5, start_epoch_num, not_improved_num = util.resume_train(args, model, optimizer)
logging.info(f"Resuming from epoch {start_epoch_num} with best recall@5 {best_r5:.1f}")
else:
best_r5 = start_epoch_num = not_improved_num = 0
logging.info(f"Output dimension of the model is {args.features_dim}")
#### Getting GSVCities
train_dataset = get_GSVCities()
train_loader_config = {
'batch_size': args.train_batch_size,
'num_workers': args.num_workers,
'drop_last': False,
'pin_memory': True,
'shuffle': False}
#### Training loop
ds = DataLoader(dataset=train_dataset, **train_loader_config)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=len(ds)*3, gamma=0.5, last_epoch=-1)
for epoch_num in range(start_epoch_num, args.epochs_num):
logging.info(f"Start training epoch: {epoch_num:02d}")
epoch_start_time = datetime.now()
epoch_losses = np.zeros((0,1), dtype=np.float32)
model = model.train()
epoch_losses=[]
for images, place_id in tqdm(ds):
BS, N, ch, h, w = images.shape
# reshape places and labels
images = images.view(BS*N, ch, h, w)
labels = place_id.view(-1)
descriptors = model(images.to(args.device))
descriptors = descriptors.cuda()
loss = loss_function(descriptors, labels) # Call the loss_function we defined above
del descriptors
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# Keep track of all losses by appending them to epoch_losses
batch_loss = loss.item()
epoch_losses = np.append(epoch_losses, batch_loss)
del loss
logging.info(f"Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "
f"average epoch triplet loss = {epoch_losses.mean():.4f}")
# Compute recalls on validation set
recalls, recalls_str = test.test(args, val_ds, model)
logging.info(f"Recalls on val set {val_ds}: {recalls_str}")
is_best = recalls[1] > best_r5
# Save checkpoint, which contains all training parameters
util.save_checkpoint(args, {"epoch_num": epoch_num, "model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(), "recalls": recalls, "best_r5": best_r5,
"not_improved_num": not_improved_num
}, is_best, filename="last_model.pth")
# If recall@5 did not improve for "many" epochs, stop training
if is_best:
logging.info(f"Improved: previous best R@5 = {best_r5:.1f}, current R@5 = {(recalls[1]):.1f}")
best_r5 = (recalls[1])
not_improved_num = 0
else:
not_improved_num += 1
logging.info(f"Not improved: {not_improved_num} / {args.patience}: best R@5 = {best_r5:.1f}, current R@5 = {(recalls[1]):.1f}")
if not_improved_num >= args.patience:
logging.info(f"Performance did not improve for {not_improved_num} epochs. Stop training.")
break
logging.info(f"Best R@5: {best_r5:.1f}")
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
#### Test best model on test set
logging.info("Test *best* model on test set")
best_model_state_dict = torch.load(join(args.save_dir, "best_model.pth"))["model_state_dict"]
model.load_state_dict(best_model_state_dict)
recalls, recalls_str = test.test(args, test_ds, model, test_method=args.test_method)
logging.info(f"Recalls on {test_ds}: {recalls_str}")
#### Test last model on test set
logging.info("Test *last* model on test set")
last_model_state_dict = torch.load(join(args.save_dir, "last_model.pth"))["model_state_dict"]
model.load_state_dict(last_model_state_dict)
recalls, recalls_str = test.test(args, test_ds, model, test_method=args.test_method)
logging.info(f"Recalls on {test_ds}: {recalls_str}")