diff --git a/TestingLowerBounds/FDiv/Basic.lean b/TestingLowerBounds/FDiv/Basic.lean index edca0d66..6606fea1 100644 --- a/TestingLowerBounds/FDiv/Basic.lean +++ b/TestingLowerBounds/FDiv/Basic.lean @@ -127,25 +127,21 @@ lemma fDiv_ne_bot_of_derivAtTop_nonneg (hf : 0 ≤ derivAtTop f) : fDiv f μ ν lemma fDiv_zero (μ ν : Measure α) : fDiv (fun _ ↦ 0) μ ν = 0 := by simp [fDiv] lemma fDiv_congr' (μ ν : Measure α) (hfg : ∀ᵐ x ∂ν.map (fun x ↦ ((∂μ/∂ν) x).toReal), f x = g x) - (hfg' : ∀ᶠ x in atTop, f x = g x) : + (hfg' : f =ᶠ[atTop] g) : fDiv f μ ν = fDiv g μ ν := by have h : (fun a ↦ f ((∂μ/∂ν) a).toReal) =ᶠ[ae ν] fun a ↦ g ((∂μ/∂ν) a).toReal := ae_of_ae_map (Measure.measurable_rnDeriv μ ν).ennreal_toReal.aemeasurable hfg - rw [fDiv] + rw [fDiv, derivAtTop_congr hfg'] congr 2 · exact eq_iff_iff.mpr ⟨fun hf ↦ hf.congr h, fun hf ↦ hf.congr h.symm⟩ · exact EReal.coe_eq_coe_iff.mpr (integral_congr_ae h) - · congr 1 - sorry --we should add a lemma for derivAtTop saying that if f = g eventually then derivAtTop f = derivAtTop g lemma fDiv_congr (μ ν : Measure α) (h : ∀ x ≥ 0, f x = g x) : fDiv f μ ν = fDiv g μ ν := by have (x : α) : f ((∂μ/∂ν) x).toReal = g ((∂μ/∂ν) x).toReal := h _ ENNReal.toReal_nonneg - rw [fDiv] - congr 3 - · simp_rw [this] - · simp_rw [this] - sorry --we should add a lemma for derivAtTop saying that if f = g eventually then derivAtTop f = derivAtTop g + simp_rw [fDiv, this, derivAtTop_congr_nonneg h] + congr + simp_rw [this] -- TODO: finish the proof of `fDiv_of_eq_on_nonneg` and use it to shorten the proof of `fDiv_of_zero_on_nonneg`. --the name feels a bit wrong, what could I write instead of `on_nonneg`?