This repository has been archived by the owner on Dec 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRH_NRF24.h
641 lines (583 loc) · 30.1 KB
/
RH_NRF24.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// RH_NRF24.h
// Author: Mike McCauley
// Copyright (C) 2012 Mike McCauley
// $Id: RH_NRF24.h,v 1.20 2017/07/25 05:26:50 mikem Exp $
//
#ifndef RH_NRF24_h
#define RH_NRF24_h
#include <RHGenericSPI.h>
#include <RHNRFSPIDriver.h>
// This is the maximum number of bytes that can be carried by the nRF24.
// We use some for headers, keeping fewer for RadioHead messages
#define RH_NRF24_MAX_PAYLOAD_LEN 32
// The length of the headers we add.
// The headers are inside the nRF24 payload
#define RH_NRF24_HEADER_LEN 4
// This is the maximum RadioHead user message length that can be supported by this library. Limited by
// the supported message lengths in the nRF24
#define RH_NRF24_MAX_MESSAGE_LEN (RH_NRF24_MAX_PAYLOAD_LEN-RH_NRF24_HEADER_LEN)
// SPI Command names
#define RH_NRF24_COMMAND_R_REGISTER 0x00
#define RH_NRF24_COMMAND_W_REGISTER 0x20
#define RH_NRF24_COMMAND_ACTIVATE 0x50 // only on RFM73 ?
#define RH_NRF24_COMMAND_R_RX_PAYLOAD 0x61
#define RH_NRF24_COMMAND_W_TX_PAYLOAD 0xa0
#define RH_NRF24_COMMAND_FLUSH_TX 0xe1
#define RH_NRF24_COMMAND_FLUSH_RX 0xe2
#define RH_NRF24_COMMAND_REUSE_TX_PL 0xe3
#define RH_NRF24_COMMAND_R_RX_PL_WID 0x60
#define RH_NRF24_COMMAND_W_ACK_PAYLOAD(pipe) (0xa8|(pipe&0x7))
#define RH_NRF24_COMMAND_W_TX_PAYLOAD_NOACK 0xb0
#define RH_NRF24_COMMAND_NOP 0xff
// Register names
#define RH_NRF24_REGISTER_MASK 0x1f
#define RH_NRF24_REG_00_CONFIG 0x00
#define RH_NRF24_REG_01_EN_AA 0x01
#define RH_NRF24_REG_02_EN_RXADDR 0x02
#define RH_NRF24_REG_03_SETUP_AW 0x03
#define RH_NRF24_REG_04_SETUP_RETR 0x04
#define RH_NRF24_REG_05_RF_CH 0x05
#define RH_NRF24_REG_06_RF_SETUP 0x06
#define RH_NRF24_REG_07_STATUS 0x07
#define RH_NRF24_REG_08_OBSERVE_TX 0x08
#define RH_NRF24_REG_09_RPD 0x09
#define RH_NRF24_REG_0A_RX_ADDR_P0 0x0a
#define RH_NRF24_REG_0B_RX_ADDR_P1 0x0b
#define RH_NRF24_REG_0C_RX_ADDR_P2 0x0c
#define RH_NRF24_REG_0D_RX_ADDR_P3 0x0d
#define RH_NRF24_REG_0E_RX_ADDR_P4 0x0e
#define RH_NRF24_REG_0F_RX_ADDR_P5 0x0f
#define RH_NRF24_REG_10_TX_ADDR 0x10
#define RH_NRF24_REG_11_RX_PW_P0 0x11
#define RH_NRF24_REG_12_RX_PW_P1 0x12
#define RH_NRF24_REG_13_RX_PW_P2 0x13
#define RH_NRF24_REG_14_RX_PW_P3 0x14
#define RH_NRF24_REG_15_RX_PW_P4 0x15
#define RH_NRF24_REG_16_RX_PW_P5 0x16
#define RH_NRF24_REG_17_FIFO_STATUS 0x17
#define RH_NRF24_REG_1C_DYNPD 0x1c
#define RH_NRF24_REG_1D_FEATURE 0x1d
// These register masks etc are named wherever possible
// corresponding to the bit and field names in the nRF24L01 Product Specification
// #define RH_NRF24_REG_00_CONFIG 0x00
#define RH_NRF24_MASK_RX_DR 0x40
#define RH_NRF24_MASK_TX_DS 0x20
#define RH_NRF24_MASK_MAX_RT 0x10
#define RH_NRF24_EN_CRC 0x08
#define RH_NRF24_CRCO 0x04
#define RH_NRF24_PWR_UP 0x02
#define RH_NRF24_PRIM_RX 0x01
// #define RH_NRF24_REG_01_EN_AA 0x01
#define RH_NRF24_ENAA_P5 0x20
#define RH_NRF24_ENAA_P4 0x10
#define RH_NRF24_ENAA_P3 0x08
#define RH_NRF24_ENAA_P2 0x04
#define RH_NRF24_ENAA_P1 0x02
#define RH_NRF24_ENAA_P0 0x01
// #define RH_NRF24_REG_02_EN_RXADDR 0x02
#define RH_NRF24_ERX_P5 0x20
#define RH_NRF24_ERX_P4 0x10
#define RH_NRF24_ERX_P3 0x08
#define RH_NRF24_ERX_P2 0x04
#define RH_NRF24_ERX_P1 0x02
#define RH_NRF24_ERX_P0 0x01
// #define RH_NRF24_REG_03_SETUP_AW 0x03
#define RH_NRF24_AW_3_BYTES 0x01
#define RH_NRF24_AW_4_BYTES 0x02
#define RH_NRF24_AW_5_BYTES 0x03
// #define RH_NRF24_REG_04_SETUP_RETR 0x04
#define RH_NRF24_ARD 0xf0
#define RH_NRF24_ARC 0x0f
// #define RH_NRF24_REG_05_RF_CH 0x05
#define RH_NRF24_RF_CH 0x7f
// #define RH_NRF24_REG_06_RF_SETUP 0x06
#define RH_NRF24_CONT_WAVE 0x80
#define RH_NRF24_RF_DR_LOW 0x20
#define RH_NRF24_PLL_LOCK 0x10
#define RH_NRF24_RF_DR_HIGH 0x08
#define RH_NRF24_PWR 0x06
#define RH_NRF24_PWR_m18dBm 0x00
#define RH_NRF24_PWR_m12dBm 0x02
#define RH_NRF24_PWR_m6dBm 0x04
#define RH_NRF24_PWR_0dBm 0x06
#define RH_NRF24_LNA_HCURR 0x01
// #define RH_NRF24_REG_07_STATUS 0x07
#define RH_NRF24_RX_DR 0x40
#define RH_NRF24_TX_DS 0x20
#define RH_NRF24_MAX_RT 0x10
#define RH_NRF24_RX_P_NO 0x0e
#define RH_NRF24_STATUS_TX_FULL 0x01
// #define RH_NRF24_REG_08_OBSERVE_TX 0x08
#define RH_NRF24_PLOS_CNT 0xf0
#define RH_NRF24_ARC_CNT 0x0f
// #define RH_NRF24_REG_09_RPD 0x09
#define RH_NRF24_RPD 0x01
// #define RH_NRF24_REG_17_FIFO_STATUS 0x17
#define RH_NRF24_TX_REUSE 0x40
#define RH_NRF24_TX_FULL 0x20
#define RH_NRF24_TX_EMPTY 0x10
#define RH_NRF24_RX_FULL 0x02
#define RH_NRF24_RX_EMPTY 0x01
// #define RH_NRF24_REG_1C_DYNPD 0x1c
#define RH_NRF24_DPL_ALL 0x3f
#define RH_NRF24_DPL_P5 0x20
#define RH_NRF24_DPL_P4 0x10
#define RH_NRF24_DPL_P3 0x08
#define RH_NRF24_DPL_P2 0x04
#define RH_NRF24_DPL_P1 0x02
#define RH_NRF24_DPL_P0 0x01
// #define RH_NRF24_REG_1D_FEATURE 0x1d
#define RH_NRF24_EN_DPL 0x04
#define RH_NRF24_EN_ACK_PAY 0x02
#define RH_NRF24_EN_DYN_ACK 0x01
/////////////////////////////////////////////////////////////////////
/// \class RH_NRF24 RH_NRF24.h <RH_NRF24.h>
/// \brief Send and receive unaddressed, unreliable datagrams by nRF24L01 and compatible transceivers.
///
/// Supported transceivers include:
/// - Nordic nRF24 based 2.4GHz radio modules, such as nRF24L01 http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
/// and other compatible transceivers.
/// - nRF24L01p with PA and LNA modules that produce a higher power output similar to this one:
/// http://www.elecfreaks.com/wiki/index.php?title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA
/// - Sparkfun WRL-00691 module with nRF24L01 https://www.sparkfun.com/products/691
/// or WRL-00705 https://www.sparkfun.com/products/705 etc.
/// - Hope-RF RFM73 http://www.hoperf.com/rf/2.4g_module/RFM73.htm and
/// http://www.anarduino.com/details.jsp?pid=121
/// and compatible devices (such as BK2423). nRF24L01 and RFM73 can interoperate
/// with each other.
///
/// This base class provides basic functions for sending and receiving unaddressed, unreliable datagrams
/// of arbitrary length to 28 octets per packet. Use one of the Manager classes to get addressing and
/// acknowledgement reliability, routing, meshes etc.
///
/// The nRF24L01 (http://www.sparkfun.com/datasheets/Wireless/Nordic/nRF24L01P_Product_Specification_1_0.pdf)
/// is a low-cost 2.4GHz ISM transceiver module. It supports a number of channel frequencies in the 2.4GHz band
/// and a range of data rates.
///
/// This library provides functions for sending and receiving messages of up to 28 octets on any
/// frequency supported by the nRF24L01, at a selected data rate.
///
/// Several nRF24L01 modules can be connected to an Arduino, permitting the construction of translators
/// and frequency changers, etc.
///
/// The nRF24 transceiver is configured to use Enhanced Shockburst with no acknowledgement and no retransmits.
/// TX_ADDR and RX_ADDR_P0 are set to the network address. If you need the low level auto-acknowledgement
/// feature supported by this chip, you can use our original NRF24 library
/// at http://www.airspayce.com/mikem/arduino/NRF24
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
/// data rate, and with identical network addresses.
///
/// Example Arduino programs are included to show the main modes of use.
///
/// \par Packet Format
///
/// All messages sent and received by this class conform to this packet format, as specified by
/// the nRF24L01 product specification:
///
/// - 1 octets PREAMBLE
/// - 3 to 5 octets NETWORK ADDRESS
/// - 9 bits packet control field
/// - 0 to 32 octets PAYLOAD, consisting of:
/// - 1 octet TO header
/// - 1 octet FROM header
/// - 1 octet ID header
/// - 1 octet FLAGS header
/// - 0 to 28 octets of user message
/// - 2 octets CRC
///
/// \par Connecting nRF24L01 to Arduino
///
/// The electrical connection between the nRF24L01 and the Arduino require 3.3V, the 3 x SPI pins (SCK, SDI, SDO),
/// a Chip Enable pin and a Slave Select pin.
/// If you are using the Sparkfun WRL-00691 module, it has a voltage regulator on board and
/// can be should with 5V VCC if possible.
/// The examples below assume the Sparkfun WRL-00691 module
///
/// Connect the nRF24L01 to most Arduino's like this (Caution, Arduino Mega has different pins for SPI,
/// see below). Use these same connections for Teensy 3.1 (use 3.3V not 5V Vcc).
/// \code
/// Arduino Sparkfun WRL-00691
/// 5V-----------VCC (3.3V to 7V in)
/// pin D8-----------CE (chip enable in)
/// SS pin D10----------CSN (chip select in)
/// SCK pin D13----------SCK (SPI clock in)
/// MOSI pin D11----------SDI (SPI Data in)
/// MISO pin D12----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND----------GND (ground in)
/// \endcode
///
/// For an Arduino Leonardo (the SPI pins do not come out on the Digital pins as for normal Arduino, but only
/// appear on the ICSP header)
/// \code
/// Leonardo Sparkfun WRL-00691
/// 5V-----------VCC (3.3V to 7V in)
/// pin D8-----------CE (chip enable in)
/// SS pin D10----------CSN (chip select in)
/// SCK ICSP pin 3----------SCK (SPI clock in)
/// MOSI ICSP pin 4----------SDI (SPI Data in)
/// MISO ICSP pin 1----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND----------GND (ground in)
/// \endcode
/// and initialise the NRF24 object like this to explicitly set the SS pin
/// NRF24 nrf24(8, 10);
///
/// For an Arduino Due (the SPI pins do not come out on the Digital pins as for normal Arduino, but only
/// appear on the SPI header). Use the same connections for Yun with 5V or 3.3V.
/// \code
/// Due Sparkfun WRL-00691
/// 3.3V-----------VCC (3.3V to 7V in)
/// pin D8-----------CE (chip enable in)
/// SS pin D10----------CSN (chip select in)
/// SCK SPI pin 3----------SCK (SPI clock in)
/// MOSI SPI pin 4----------SDI (SPI Data in)
/// MISO SPI pin 1----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND----------GND (ground in)
/// \endcode
/// and initialise the NRF24 object with the default constructor
/// NRF24 nrf24;
///
/// For an Arduino Mega:
/// \code
/// Mega Sparkfun WRL-00691
/// 5V-----------VCC (3.3V to 7V in)
/// pin D8-----------CE (chip enable in)
/// SS pin D53----------CSN (chip select in)
/// SCK pin D52----------SCK (SPI clock in)
/// MOSI pin D51----------SDI (SPI Data in)
/// MISO pin D50----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND----------GND (ground in)
/// \endcode
/// and you can then use the constructor RH_NRF24(8, 53).
///
/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by hardware SPI to the
/// ITDB02 Parallel LCD Module Interface pins:
/// \code
/// IBoard Signal=ITDB02 pin Sparkfun WRL-00691
/// 3.3V 37-----------VCC (3.3V to 7V in)
/// D2 28-----------CE (chip enable in)
/// D29 27----------CSN (chip select in)
/// SCK D52 32----------SCK (SPI clock in)
/// MOSI D51 34----------SDI (SPI Data in)
/// MISO D50 30----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND 39----------GND (ground in)
/// \endcode
/// And initialise like this:
/// \code
/// RH_NRF24 nrf24(2, 29);
/// \endcode
///
/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by software SPI to the
/// nRF24L01+ Module Interface pins. CAUTION: performance of software SPI is very slow and is not
/// compatible with other modules running hardware SPI.
/// \code
/// IBoard Signal=Module pin Sparkfun WRL-00691
/// 3.3V 2----------VCC (3.3V to 7V in)
/// D12 3-----------CE (chip enable in)
/// D29 4----------CSN (chip select in)
/// D9 5----------SCK (SPI clock in)
/// D8 6----------SDI (SPI Data in)
/// D7 7----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND 1----------GND (ground in)
/// \endcode
/// And initialise like this:
/// \code
/// #include <SPI.h>
/// #include <RH_NRF24.h>
/// #include <RHSoftwareSPI.h>
/// Singleton instance of the radio driver
/// RHSoftwareSPI spi;
/// RH_NRF24 nrf24(12, 11, spi);
/// void setup() {
/// spi.setPins(7, 8, 9);
/// ....
/// \endcode
///
///
/// For Raspberry Pi with Sparkfun WRL-00691
/// \code
/// Raspberry Pi P1 pin Sparkfun WRL-00691
/// 5V 2-----------VCC (3.3V to 7V in)
/// GPIO25 22-----------CE (chip enable in)
/// GPIO8 24----------CSN (chip select in)
/// GPIO11 23----------SCK (SPI clock in)
/// GPIO10 19----------SDI (SPI Data in)
/// GPIO9 21----------SDO (SPI data out)
/// IRQ (Interrupt output, not connected)
/// GND 6----------GND (ground in)
/// \endcode
/// and initialise like this:
/// \code
/// RH_NRF24 nrf24(RPI_V2_GPIO_P1_22, RPI_V2_GPIO_P1_24);
/// \endcode
/// See the example program and Makefile in examples/raspi. Requires bcm2835 library to be previously installed.
/// \code
/// cd examples/raspi
/// make
/// sudo ./RasPiRH
/// \endcode
/// \code
///
/// You can override the default settings for the CSN and CE pins
/// in the NRF24() constructor if you wish to connect the slave select CSN to other than the normal one for your
/// Arduino (D10 for Diecimila, Uno etc and D53 for Mega)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave select pin to be other than the usual SS
/// pin (D53 on Mega 2560), you may need to set the usual SS pin to be an output to force the Arduino into SPI
/// master mode.
///
/// Caution: this module has not been proved to work with Leonardo, at least without level
/// shifters between the nRF24 and the Leonardo. Tests seem to indicate that such level shifters would be required
/// with Leonardo to make it work.
///
/// It is possible to have 2 radios conected to one arduino, provided each radio has its own
/// CSN and CE line (SCK, SDI and SDO are common to both radios)
///
/// \par SPI Interface
///
/// You can interface to nRF24L01 with with hardware or software SPI. Use of software SPI with the RHSoftwareSPI
/// class depends on a fast enough processor and digitalOut() functions to achieve a high enough SPI bus frequency.
/// If you observe reliable behaviour with the default hardware SPI RHHardwareSPI, but unreliable behaviour
/// with Software SPI RHSoftwareSPI, it may be due to slow CPU performance.
///
/// Initialisation example with hardware SPI
/// \code
/// #include <RH_NRF24.h>
/// RH_NRF24 driver;
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// Initialisation example with software SPI
/// \code
/// #include <RH_NRF24.h>
/// #include <RHSoftwareSPI.h>
/// RHSoftwareSPI spi;
/// RH_NRF24 driver(8, 10, spi);
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// \par Example programs
///
/// Several example programs are provided.
///
/// \par Radio Performance
///
/// Frequency accuracy may be debatable. For nominal frequency of 2401.000 MHz (ie channel 1),
/// my Yaesu VR-5000 receiver indicated the center frequency for my test radios
/// was 2401.121 MHz. Its not clear to me if the Yaesu
/// is the source of the error, but I tend to believe it, which would make the nRF24l01 frequency out by 121kHz.
///
/// The measured power output for a nRF24L01p with PA and LNA set to 0dBm output is about 18dBm.
///
/// \par Radio operating strategy and defaults
///
/// The radio is enabled all the time, and switched between TX and RX modes depending on
/// whether there is any data to send. Sending data sets the radio to TX mode.
/// After data is sent, the radio automatically returns to Standby II mode. Calling waitAvailable() or
/// waitAvailableTimeout() starts the radio in RX mode.
///
/// The radio is configured by default to Channel 2, 2Mbps, 0dBm power, 5 bytes address, payload width 1, CRC enabled
/// 2 byte CRC, No Auto-Ack mode. Enhanced shockburst is used.
/// TX and P0 are set to the Network address. Node addresses and decoding are handled with the RH_NRF24 module.
///
/// \par Memory
///
/// Memory usage of this class is minimal. The compiled client and server sketches are about 6000 bytes on Arduino.
/// The reliable client and server sketches compile to about 8500 bytes on Arduino.
/// RAM requirements are minimal.
///
class RH_NRF24 : public RHNRFSPIDriver
{
public:
/// \brief Defines convenient values for setting data rates in setRF()
typedef enum
{
DataRate1Mbps = 0, ///< 1 Mbps
DataRate2Mbps, ///< 2 Mbps
DataRate250kbps ///< 250 kbps
} DataRate;
/// \brief Convenient values for setting transmitter power in setRF()
/// These are designed to agree with the values for RF_PWR in RH_NRF24_REG_06_RF_SETUP
/// To be passed to setRF();
typedef enum
{
// Add 20dBm for nRF24L01p with PA and LNA modules
TransmitPowerm18dBm = 0, ///< On nRF24, -18 dBm
TransmitPowerm12dBm, ///< On nRF24, -12 dBm
TransmitPowerm6dBm, ///< On nRF24, -6 dBm
TransmitPower0dBm, ///< On nRF24, 0 dBm
// Sigh, different power levels for the same bit patterns on RFM73:
// On RFM73P-S, there is a Tx power amp, so expect higher power levels, up to 20dBm. Alas
// there is no clear documentation on the power for different settings :-(
RFM73TransmitPowerm10dBm = 0, ///< On RFM73, -10 dBm
RFM73TransmitPowerm5dBm, ///< On RFM73, -5 dBm
RFM73TransmitPowerm0dBm, ///< On RFM73, 0 dBm
RFM73TransmitPower5dBm ///< On RFM73, 5 dBm. 20dBm on RFM73P-S2 ?
} TransmitPower;
/// Constructor. You can have multiple instances, but each instance must have its own
/// chip enable and slave select pin.
/// After constructing, you must call init() to initialise the interface
/// and the radio module
/// \param[in] chipEnablePin the Arduino pin to use to enable the chip for transmit/receive
/// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the NRF24 before
/// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega,
/// D10 for Maple)
/// \param[in] spi Pointer to the SPI interface object to use.
/// Defaults to the standard Arduino hardware SPI interface
RH_NRF24(uint8_t chipEnablePin = 8, uint8_t slaveSelectPin = SS, RHGenericSPI& spi = hardware_spi);
/// Initialises this instance and the radio module connected to it.
/// The following steps are taken:g
/// - Set the chip enable and chip select pins to output LOW, HIGH respectively.
/// - Initialise the SPI output pins
/// - Initialise the SPI interface library to 8MHz (Hint, if you want to lower
/// the SPI frequency (perhaps where you have other SPI shields, low voltages etc),
/// call SPI.setClockDivider() after init()).
/// -Flush the receiver and transmitter buffers
/// - Set the radio to receive with powerUpRx();
/// \return true if everything was successful
bool init();
/// Reads a single register from the NRF24
/// \param[in] reg Register number, one of RH_NRF24_REG_*
/// \return The value of the register
uint8_t spiReadRegister(uint8_t reg);
/// Writes a single byte to the NRF24, and at the same time reads the current STATUS register
/// \param[in] reg Register number, one of RH_NRF24_REG_*
/// \param[in] val The value to write
/// \return the current STATUS (read while the command is sent)
uint8_t spiWriteRegister(uint8_t reg, uint8_t val);
/// Reads a number of consecutive registers from the NRF24 using burst read mode
/// \param[in] reg Register number of the first register, one of RH_NRF24_REG_*
/// \param[in] dest Array to write the register values to. Must be at least len bytes
/// \param[in] len Number of bytes to read
/// \return the current STATUS (read while the command is sent)
uint8_t spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len);
/// Write a number of consecutive registers using burst write mode
/// \param[in] reg Register number of the first register, one of RH_NRF24_REG_*
/// \param[in] src Array of new register values to write. Must be at least len bytes
/// \param[in] len Number of bytes to write
/// \return the current STATUS (read while the command is sent)
uint8_t spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t len);
/// Reads and returns the device status register NRF24_REG_02_DEVICE_STATUS
/// \return The value of the device status register
uint8_t statusRead();
/// Sets the transmit and receive channel number.
/// The frequency used is (2400 + channel) MHz
/// \return true on success
bool setChannel(uint8_t channel);
/// Sets the chip configuration that will be used to set
/// the NRF24 NRF24_REG_00_CONFIG register when in Idle mode. This allows you to change some
/// chip configuration for compatibility with libraries other than this one.
/// You should not normally need to call this.
/// Defaults to NRF24_EN_CRC| RH_NRF24_CRCO, which is the standard configuration for this library
/// (2 byte CRC enabled).
/// \param[in] mode The chip configuration to be used whe in Idle mode.
/// \return true on success
bool setOpMode(uint8_t mode);
/// Sets the Network address.
/// Only nodes with the same network address can communicate with each other. You
/// can set different network addresses in different sets of nodes to isolate them from each other.
/// Internally, this sets the nRF24 TX_ADDR and RX_ADDR_P0 to be the given network address.
/// The default network address is 0xE7E7E7E7E7
/// \param[in] address The new network address. Must match the network address of any receiving node(s).
/// \param[in] len Number of bytes of address to set (3 to 5).
/// \return true on success, false if len is not in the range 3-5 inclusive.
bool setNetworkAddress(uint8_t* address, uint8_t len);
/// Sets the data rate and transmitter power to use. Note that the nRF24 and the RFM73 have different
/// available power levels, and for convenience, 2 different sets of values are available in the
/// RH_NRF24::TransmitPower enum. The ones with the RFM73 only have meaning on the RFM73 and compatible
/// devces. The others are for the nRF24.
/// \param [in] data_rate The data rate to use for all packets transmitted and received. One of RH_NRF24::DataRate.
/// \param [in] power Transmitter power. One of RH_NRF24::TransmitPower.
/// \return true on success
bool setRF(DataRate data_rate, TransmitPower power);
/// Sets the radio in power down mode, with the configuration set to the
/// last value from setOpMode().
/// Sets chip enable to LOW.
void setModeIdle();
/// Sets the radio in RX mode.
/// Sets chip enable to HIGH to enable the chip in RX mode.
void setModeRx();
/// Sets the radio in TX mode.
/// Pulses the chip enable LOW then HIGH to enable the chip in TX mode.
void setModeTx();
/// Sends data to the address set by setTransmitAddress()
/// Sets the radio to TX mode
/// \param [in] data Data bytes to send.
/// \param [in] len Number of data bytes to send
/// \return true on success (which does not necessarily mean the receiver got the message, only that the message was
/// successfully transmitted).
bool send(const uint8_t* data, uint8_t len);
/// Blocks until the current message (if any)
/// has been transmitted
/// \return true on success, false if the chip is not in transmit mode or other transmit failure
virtual bool waitPacketSent();
/// Indicates if the chip is in transmit mode and
/// there is a packet currently being transmitted
/// \return true if the chip is in transmit mode and there is a transmission in progress
bool isSending();
/// Prints the value of all chip registers
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging purposes only.
/// \return true on success
bool printRegisters();
/// Checks whether a received message is available.
/// This can be called multiple times in a timeout loop
/// \return true if a complete, valid message has been received and is able to be retrieved by
/// recv()
bool available();
/// Turns the receiver on if it not already on.
/// If there is a valid message available, copy it to buf and return true
/// else return false.
/// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
/// You should be sure to call this function frequently enough to not miss any messages
/// It is recommended that you call it in your main loop.
/// \param[in] buf Location to copy the received message
/// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
/// \return true if a valid message was copied to buf
bool recv(uint8_t* buf, uint8_t* len);
/// The maximum message length supported by this driver
/// \return The maximum message length supported by this driver
uint8_t maxMessageLength();
/// Sets the radio into Power Down mode.
/// If successful, the radio will stay in Power Down mode until woken by
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
/// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
/// \return true if sleep mode was successfully entered.
virtual bool sleep();
protected:
/// Flush the TX FIFOs
/// \return the value of the device status register
uint8_t flushTx();
/// Flush the RX FIFOs
/// \return the value of the device status register
uint8_t flushRx();
/// Examine the receive buffer to determine whether the message is for this node
void validateRxBuf();
/// Clear our local receive buffer
void clearRxBuf();
private:
/// This idle mode chip configuration
uint8_t _configuration;
/// the number of the chip enable pin
uint8_t _chipEnablePin;
/// Number of octets in the buffer
uint8_t _bufLen;
/// The receiver/transmitter buffer
uint8_t _buf[RH_NRF24_MAX_PAYLOAD_LEN];
/// True when there is a valid message in the buffer
bool _rxBufValid;
};
/// @example nrf24_client.pde
/// @example nrf24_server.pde
/// @example nrf24_encrypted_client.pde
/// @example nrf24_encrypted_server.pde
/// @example nrf24_reliable_datagram_client.pde
/// @example nrf24_reliable_datagram_server.pde
/// @example RasPiRH.cpp
#endif