-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodel.py
234 lines (205 loc) · 7.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
from contextlib import nullcontext
import comfy.latent_formats
import comfy.model_base
import comfy.model_management
import comfy.model_patcher
import comfy.model_sampling
import comfy.sd
import comfy.supported_models_base
import comfy.utils
import torch
import torch.nn as nn
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
class LTXVModelConfig:
def __init__(self, latent_channels, dtype):
self.unet_config = {}
self.unet_extra_config = {}
self.latent_format = comfy.latent_formats.LatentFormat()
self.latent_format.latent_channels = latent_channels
self.manual_cast_dtype = dtype
self.sampling_settings = {"multiplier": 1.0}
self.memory_usage_factor = 2.7
# denoiser is handled by extension
self.unet_config["disable_unet_model_creation"] = True
class LTXVSampling(torch.nn.Module, comfy.model_sampling.CONST):
def __init__(self, condition_mask, guiding_latent=None):
super().__init__()
self.condition_mask = condition_mask
self.guiding_latent = guiding_latent
self.set_parameters(shift=1.0, multiplier=1)
def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000):
self.shift = shift
self.multiplier = multiplier
ts = self.sigma((torch.arange(0, timesteps + 1, 1) / timesteps) * multiplier)
self.register_buffer("sigmas", ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma * self.multiplier
def sigma(self, timestep):
return timestep
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 1.0
if percent >= 1.0:
return 0.0
return 1.0 - percent
def calculate_input(self, sigma, noise):
if self.guiding_latent is not None:
noise = (
noise * (1 - self.condition_mask)
+ self.guiding_latent * self.condition_mask
)
return noise
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
self.condition_mask = self.condition_mask.to(latent_image.device)
scaled = latent_image * (1 - sigma) + noise * sigma
result = latent_image * self.condition_mask + scaled * (1 - self.condition_mask)
return result
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
result = model_input - model_output * sigma
# In order to d * dT to be zero in euler step, we need to set result equal to input in first latent frame.
if self.guiding_latent is not None:
result = (
result * (1 - self.condition_mask)
+ self.guiding_latent * self.condition_mask
)
else:
result = (
result * (1 - self.condition_mask) + model_input * self.condition_mask
)
return result
class LTXVModel(comfy.model_base.BaseModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_sampling = LTXVSampling(torch.zeros([1]))
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out["attention_mask"] = comfy.conds.CONDRegular(attention_mask)
return out
class LTXVTransformer3D(nn.Module):
def __init__(
self,
transformer: Transformer3DModel,
patchifier: SymmetricPatchifier,
conditioning_mask,
latent_frame_rate,
vae_scale_factor,
):
super().__init__()
self.dtype = transformer.dtype
self.transformer = transformer
self.patchifier = patchifier
self.conditioning_mask = conditioning_mask
self.latent_frame_rate = latent_frame_rate
self.vae_scale_factor = vae_scale_factor
def indices_grid(
self,
latent_shape,
device,
):
use_rope = self.transformer.use_rope
scale_grid = (
(1 / self.latent_frame_rate, self.vae_scale_factor, self.vae_scale_factor)
if use_rope
else None
)
indices_grid = self.patchifier.get_grid(
orig_num_frames=latent_shape[2],
orig_height=latent_shape[3],
orig_width=latent_shape[4],
batch_size=latent_shape[0],
scale_grid=scale_grid,
device=device,
)
return indices_grid
def wrapped_transformer(
self,
latent,
timesteps,
context,
attention_mask,
indices_grid,
skip_layer_mask=None,
skip_layer_strategy=None,
img_hw=None,
aspect_ratio=None,
mixed_precision=True,
**kwargs,
):
# infer mask from context padding, assumes padding vectors are all zero.
latent = latent.to(self.transformer.dtype)
latent_patchified = self.patchifier.patchify(latent)
if mixed_precision:
context_manager = torch.autocast("cuda", dtype=torch.bfloat16)
else:
context_manager = nullcontext()
with context_manager:
noise_pred = self.transformer(
latent_patchified.to(self.transformer.dtype).to(
self.transformer.device
),
indices_grid.to(self.transformer.device),
encoder_hidden_states=context.to(self.transformer.device),
encoder_attention_mask=attention_mask,
timestep=timesteps,
skip_layer_mask=skip_layer_mask,
skip_layer_strategy=skip_layer_strategy,
return_dict=False,
)[0]
result = self.patchifier.unpatchify(
latents=noise_pred,
output_height=latent.shape[3],
output_width=latent.shape[4],
output_num_frames=latent.shape[2],
out_channels=latent.shape[1] // math.prod(self.patchifier.patch_size),
)
return result
def forward(
self,
x,
timesteps,
context,
attention_mask,
img_hw=None,
aspect_ratio=None,
**kwargs,
):
transformer_options = kwargs.get("transformer_options", {})
ptb_index = transformer_options.get("ptb_index", None)
mixed_precision = transformer_options.get("mixed_precision", False)
cond_or_uncond = transformer_options.get("cond_or_uncond", [])
skip_block_list = transformer_options.get("skip_block_list", [])
skip_layer_strategy = transformer_options.get("skip_layer_strategy", None)
mask = self.patchifier.patchify(self.conditioning_mask).squeeze(-1).to(x.device)
ndim_mask = mask.ndimension()
expanded_timesteps = timesteps.view(timesteps.size(0), *([1] * (ndim_mask - 1)))
timesteps_masked = expanded_timesteps * (1 - mask)
skip_layer_mask = None
if ptb_index is not None and ptb_index in cond_or_uncond:
skip_layer_mask = self.transformer.create_skip_layer_mask(
skip_block_list,
1,
len(cond_or_uncond),
len(cond_or_uncond) - 1 - cond_or_uncond.index(ptb_index),
)
result = self.wrapped_transformer(
x,
timesteps_masked,
context,
attention_mask,
indices_grid=self.indices_grid(x.shape, x.device),
mixed_precision=mixed_precision,
skip_layer_mask=skip_layer_mask,
skip_layer_strategy=skip_layer_strategy,
)
return result