-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscan.py
140 lines (117 loc) · 5.65 KB
/
scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
Authors: Wouter Van Gansbeke, Simon Vandenhende
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import os
import torch
from termcolor import colored
from utils.config import create_config
from utils.common_config import get_train_transformations, get_val_transformations,\
get_train_dataset, get_train_dataloader,\
get_val_dataset, get_val_dataloader,\
get_optimizer, get_model, get_criterion,\
adjust_learning_rate
from utils.evaluate_utils import get_predictions, scan_evaluate, hungarian_evaluate
from utils.train_utils import scan_train
FLAGS = argparse.ArgumentParser(description='SCAN Loss')
FLAGS.add_argument('--config_env', help='Location of path config file')
FLAGS.add_argument('--config_exp', help='Location of experiments config file')
def main():
args = FLAGS.parse_args()
p = create_config(args.config_env, args.config_exp)
print(colored(p, 'red'))
# CUDNN
torch.backends.cudnn.benchmark = True
# Data
print(colored('Get dataset and dataloaders', 'blue'))
train_transformations = get_train_transformations(p)
val_transformations = get_val_transformations(p)
train_dataset = get_train_dataset(p, train_transformations,
split='train', to_neighbors_dataset = True)
val_dataset = get_val_dataset(p, val_transformations, to_neighbors_dataset = True)
train_dataloader = get_train_dataloader(p, train_dataset)
val_dataloader = get_val_dataloader(p, val_dataset)
print('Train transforms:', train_transformations)
print('Validation transforms:', val_transformations)
print('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)))
# Model
print(colored('Get model', 'blue'))
model = get_model(p, p['pretext_model'])
print(model)
model = torch.nn.DataParallel(model)
model = model.cuda()
# Optimizer
print(colored('Get optimizer', 'blue'))
optimizer = get_optimizer(p, model, p['update_cluster_head_only'])
print(optimizer)
# Warning
if p['update_cluster_head_only']:
print(colored('WARNING: SCAN will only update the cluster head', 'red'))
# Loss function
print(colored('Get loss', 'blue'))
criterion = get_criterion(p)
criterion.cuda()
print(criterion)
# Checkpoint
if os.path.exists(p['scan_checkpoint']):
print(colored('Restart from checkpoint {}'.format(p['scan_checkpoint']), 'blue'))
checkpoint = torch.load(p['scan_checkpoint'], map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
best_loss_head = checkpoint['best_loss_head']
else:
print(colored('No checkpoint file at {}'.format(p['scan_checkpoint']), 'blue'))
start_epoch = 0
best_loss = 1e4
best_loss_head = None
# Main loop
print(colored('Starting main loop', 'blue'))
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*15, 'yellow'))
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
# Train
print('Train ...')
scan_train(train_dataloader, model, criterion, optimizer, epoch, p['update_cluster_head_only'])
# Evaluate
print('Make prediction on validation set ...')
predictions = get_predictions(p, val_dataloader, model)
print('Evaluate based on SCAN loss ...')
scan_stats = scan_evaluate(predictions)
print(scan_stats)
lowest_loss_head = scan_stats['lowest_loss_head']
lowest_loss = scan_stats['lowest_loss']
if lowest_loss < best_loss:
print('New lowest loss on validation set: %.4f -> %.4f' %(best_loss, lowest_loss))
print('Lowest loss head is %d' %(lowest_loss_head))
best_loss = lowest_loss
best_loss_head = lowest_loss_head
torch.save({'model': model.module.state_dict(), 'head': best_loss_head}, p['scan_model'])
else:
print('No new lowest loss on validation set: %.4f -> %.4f' %(best_loss, lowest_loss))
print('Lowest loss head is %d' %(best_loss_head))
print('Evaluate with hungarian matching algorithm ...')
clustering_stats = hungarian_evaluate(lowest_loss_head, predictions, compute_confusion_matrix=False)
print(clustering_stats)
# Checkpoint
print('Checkpoint ...')
torch.save({'optimizer': optimizer.state_dict(), 'model': model.state_dict(),
'epoch': epoch + 1, 'best_loss': best_loss, 'best_loss_head': best_loss_head},
p['scan_checkpoint'])
# Evaluate and save the final model
print(colored('Evaluate best model based on SCAN metric at the end', 'blue'))
model_checkpoint = torch.load(p['scan_model'], map_location='cpu')
model.module.load_state_dict(model_checkpoint['model'])
predictions = get_predictions(p, val_dataloader, model)
clustering_stats = hungarian_evaluate(model_checkpoint['head'], predictions,
class_names=val_dataset.dataset.classes,
compute_confusion_matrix=True,
confusion_matrix_file=os.path.join(p['scan_dir'], 'confusion_matrix.png'))
print(clustering_stats)
if __name__ == "__main__":
main()