forked from isl-org/lang-seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_lseg_zs.py
323 lines (291 loc) · 9.68 KB
/
test_lseg_zs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.nn as nn
from modules.lseg_module_zs import LSegModuleZS
from additional_utils.models import LSeg_MultiEvalModule
from fewshot_data.common.logger import Logger, AverageMeter
from fewshot_data.common.vis import Visualizer
from fewshot_data.common.evaluation import Evaluator
from fewshot_data.common import utils
from fewshot_data.data.dataset import FSSDataset
class Options:
def __init__(self):
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
# model and dataset
parser.add_argument(
"--model", type=str, default="encnet", help="model name (default: encnet)"
)
parser.add_argument(
"--backbone",
type=str,
default="resnet50",
help="backbone name (default: resnet50)",
)
parser.add_argument(
"--dataset",
type=str,
default="ade20k",
help="dataset name (default: pascal12)",
)
parser.add_argument(
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
)
parser.add_argument(
"--base-size", type=int, default=520, help="base image size"
)
parser.add_argument(
"--crop-size", type=int, default=480, help="crop image size"
)
parser.add_argument(
"--train-split",
type=str,
default="train",
help="dataset train split (default: train)",
)
# training hyper params
parser.add_argument(
"--aux", action="store_true", default=False, help="Auxilary Loss"
)
parser.add_argument(
"--se-loss",
action="store_true",
default=False,
help="Semantic Encoding Loss SE-loss",
)
parser.add_argument(
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
training (default: auto)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
testing (default: same as batch size)",
)
# cuda, seed and logging
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
# checking point
parser.add_argument(
"--weights", type=str, default=None, help="checkpoint to test"
)
# evaluation option
parser.add_argument(
"--eval", action="store_true", default=False, help="evaluating mIoU"
)
parser.add_argument(
"--acc-bn",
action="store_true",
default=False,
help="Re-accumulate BN statistics",
)
parser.add_argument(
"--test-val",
action="store_true",
default=False,
help="generate masks on val set",
)
parser.add_argument(
"--no-val",
action="store_true",
default=False,
help="skip validation during training",
)
parser.add_argument(
"--module",
default='',
help="select model definition",
)
# test option
parser.add_argument(
"--no-scaleinv",
dest="scale_inv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--ignore_index",
type=int,
default=-1,
help="numeric value of ignore label in gt",
)
parser.add_argument(
"--jobname",
type=str,
default="default",
help="select which dataset",
)
parser.add_argument(
"--no-strict",
dest="strict",
default=True,
action="store_false",
help="no-strict copy the model",
)
parser.add_argument(
"--use_pretrained",
type=str,
default="True",
help="whether use the default model to intialize the model",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
# fewshot options
parser.add_argument(
'--nshot',
type=int,
default=1
)
parser.add_argument(
'--fold',
type=int,
default=0,
choices=[0, 1, 2, 3]
)
parser.add_argument(
'--nworker',
type=int,
default=0
)
parser.add_argument(
'--bsz',
type=int,
default=1
)
parser.add_argument(
'--benchmark',
type=str,
default='pascal',
choices=['pascal', 'coco', 'fss', 'c2p']
)
parser.add_argument(
'--datapath',
type=str,
default='fewshot_data/Datasets_HSN'
)
parser.add_argument(
"--activation",
choices=['relu', 'lrelu', 'tanh'],
default="relu",
help="use which activation to activate the block",
)
self.parser = parser
def parse(self):
args = self.parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
return args
def test(args):
module_def = LSegModuleZS
module = module_def.load_from_checkpoint(
checkpoint_path=args.weights,
data_path=args.datapath,
dataset=args.dataset,
backbone=args.backbone,
aux=args.aux,
num_features=256,
aux_weight=0,
se_loss=False,
se_weight=0,
base_lr=0,
batch_size=1,
max_epochs=0,
ignore_index=args.ignore_index,
dropout=0.0,
scale_inv=args.scale_inv,
augment=False,
no_batchnorm=False,
widehead=args.widehead,
widehead_hr=args.widehead_hr,
map_locatin="cpu",
arch_option=args.arch_option,
use_pretrained=args.use_pretrained,
strict=args.strict,
logpath='fewshot/logpath_4T/',
fold=args.fold,
block_depth=0,
nshot=args.nshot,
finetune_mode=False,
activation=args.activation,
)
Evaluator.initialize()
if args.backbone in ["clip_resnet101"]:
FSSDataset.initialize(img_size=480, datapath=args.datapath, use_original_imgsize=False, imagenet_norm=True)
else:
FSSDataset.initialize(img_size=480, datapath=args.datapath, use_original_imgsize=False)
# dataloader
args.benchmark = args.dataset
dataloader = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
model = module.net.eval().cuda()
# model = module.net.model.cpu()
print(model)
scales = (
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
if args.dataset == "citys"
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
)
f = open("logs/fewshot/log_fewshot-test_nshot{}_{}.txt".format(args.nshot, args.dataset), "a+")
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
batch = utils.to_cuda(batch)
image = batch['query_img']
target = batch['query_mask']
class_info = batch['class_id']
# pred_mask = evaluator.parallel_forward(image, class_info)
pred_mask = model(image, class_info)
# assert pred_mask.argmax(dim=1).size() == batch['query_mask'].size()
# 2. Evaluate prediction
if args.benchmark == 'pascal' and batch['query_ignore_idx'] is not None:
query_ignore_idx = batch['query_ignore_idx']
area_inter, area_union = Evaluator.classify_prediction(pred_mask.argmax(dim=1), target, query_ignore_idx)
else:
area_inter, area_union = Evaluator.classify_prediction(pred_mask.argmax(dim=1), target)
average_meter.update(area_inter, area_union, class_info, loss=None)
average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)
# Write evaluation results
average_meter.write_result('Test', 0)
test_miou, test_fb_iou = average_meter.compute_iou()
Logger.info('Fold %d, %d-shot ==> mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, args.nshot, test_miou.item(), test_fb_iou.item()))
Logger.info('==================== Finished Testing ====================')
f.write('{}\n'.format(args.weights))
f.write('Fold %d, %d-shot ==> mIoU: %5.2f \t FB-IoU: %5.2f\n' % (args.fold, args.nshot, test_miou.item(), test_fb_iou.item()))
f.close()
if __name__ == "__main__":
args = Options().parse()
torch.manual_seed(args.seed)
test(args)