-
Notifications
You must be signed in to change notification settings - Fork 2
/
results1.txt
8490 lines (5655 loc) · 227 KB
/
results1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
glm Model Build progress: [###############################################] 100%
gbm Model Build progress: [###############################################] 100%
deeplearning Model Build progress: [######################################] 100%
naivebayes Model Build progress: [########################################] 100%
glm prediction progress: [################################################] 100%
gbm prediction progress: [################################################] 100%
deeplearning prediction progress: [#######################################] 100%
naivebayes prediction progress: [#########################################] 100%
Model Details
=============
H2OGeneralizedLinearEstimator : Generalized Linear Modeling
Model Key: GLM_model_python_1573972048565_1
GLM Model: summary
ModelMetricsBinomialGLM: glm
** Reported on train data. **
MSE: 0.034264075410084235
RMSE: 0.1851055790895678
LogLoss: 0.12085960655990972
Null degrees of freedom: 5830
Residual degrees of freedom: 5530
Null deviance: 2686.033133694482
Residual deviance: 1409.4647317016672
AIC: 2011.4647317016672
AUC: 0.942604407491897
pr_auc: 0.6293341059778711
Gini: 0.885208814983794
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.3153655624027554:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 6.12 %
ModelMetricsBinomialGLM: glm
** Reported on cross-validation data. **
MSE: 0.051913320602323294
RMSE: 0.2278449485995318
LogLoss: 0.19882087614699245
Null degrees of freedom: 5830
Residual degrees of freedom: 5530
Null deviance: 2688.148162640199
Residual deviance: 2318.6490576262177
AIC: 2920.6490576262177
AUC: 0.8632391575556054
pr_auc: 0.352901159741942
Gini: 0.7264783151112109
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1917528206408285:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 966.07 %
Cross-Validation Metrics Summary:
See the whole table with table.as_data_frame()
Scoring History:
Model Details
=============
H2OGradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_model_python_1573972048565_19
Model Summary:
ModelMetricsBinomial: gbm
** Reported on train data. **
MSE: 0.012437300639165106
RMSE: 0.1115226463063225
LogLoss: 0.05586303959938421
Mean Per-Class Error: 0.020429911094872688
AUC: 0.9982852476028775
pr_auc: 0.9787117715554463
Gini: 0.996570495205755
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.28823036815699593:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 6.16 %
ModelMetricsBinomial: gbm
** Reported on validation data. **
MSE: 0.04135704110695338
RMSE: 0.20336430637393912
LogLoss: 0.14938488295194158
Mean Per-Class Error: 0.17461640038644743
AUC: 0.8995117199859933
pr_auc: 0.4384180726926545
Gini: 0.7990234399719867
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1730570983047975:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 4.99 %
ModelMetricsBinomial: gbm
** Reported on cross-validation data. **
MSE: 0.04563211753485938
RMSE: 0.21361675387211412
LogLoss: 0.1674845391760666
Mean Per-Class Error: 0.19519546949214472
AUC: 0.8767118100437107
pr_auc: 0.4143699806611364
Gini: 0.7534236200874214
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.14976154569692646:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 4.64 %
Cross-Validation Metrics Summary:
Scoring History:
See the whole table with table.as_data_frame()
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ODeepLearningEstimator : Deep Learning
Model Key: DeepLearning_model_python_1573972048565_462
Status of Neuron Layers: predicting target, 2-class classification, bernoulli distribution, CrossEntropy loss, 100,802 weights/biases, 1.2 MB, 60,783 training samples, mini-batch size 1
ModelMetricsBinomial: deeplearning
** Reported on train data. **
MSE: 0.0002025634470533075
RMSE: 0.014232478598378692
LogLoss: 0.0014725022017782006
Mean Per-Class Error: 9.134088417983577e-05
AUC: 0.9999994882863631
pr_auc: 0.9159585512373423
Gini: 0.9999989765727262
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.3817001420578375:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 6.18 %
ModelMetricsBinomial: deeplearning
** Reported on validation data. **
MSE: 0.05283576911382561
RMSE: 0.22986032522779049
LogLoss: 0.33316835515994925
Mean Per-Class Error: 0.18103760689530057
AUC: 0.8645187232893587
pr_auc: 0.36215044818841974
Gini: 0.7290374465787175
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1668261091492872:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 5.52 %
ModelMetricsBinomial: deeplearning
** Reported on cross-validation data. **
MSE: 0.06600013891723396
RMSE: 0.2569049219404602
LogLoss: 0.3501334670817284
Mean Per-Class Error: 0.22408963585434183
AUC: 0.8364317594045292
pr_auc: 0.30618984138647304
Gini: 0.6728635188090584
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.16336558024892478:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 7.37 %
Cross-Validation Metrics Summary:
Scoring History:
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ONaiveBayesEstimator : Naive Bayes
Model Key: NaiveBayes_model_python_1573972048565_501
Model Summary:
ModelMetricsBinomial: naivebayes
** Reported on train data. **
MSE: 0.2861207498667428
RMSE: 0.5349025610957034
LogLoss: 4.741192193919239
Mean Per-Class Error: 0.21970527341371326
AUC: 0.8037294201568096
pr_auc: 0.03258001686143964
Gini: 0.6074588403136192
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999986437458381:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 33.68 %
ModelMetricsBinomial: naivebayes
** Reported on validation data. **
MSE: 0.2796090055615876
RMSE: 0.5287806781280757
LogLoss: 4.567464844338186
Mean Per-Class Error: 0.2387424007830199
AUC: 0.7859086469702276
pr_auc: 0.03234253068083473
Gini: 0.5718172939404551
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999945381831505:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 32.48 %
ModelMetricsBinomial: naivebayes
** Reported on cross-validation data. **
MSE: 0.2833825989676502
RMSE: 0.5323369224162928
LogLoss: 4.782142831626247
Mean Per-Class Error: 0.23075752039946407
AUC: 0.7954442646623867
pr_auc: 0.03494579064413157
Gini: 0.5908885293247734
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999983158041506:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.12 %, avg score: 33.20 %
Cross-Validation Metrics Summary:
GLM acc:predict 0.924928
dtype: float64
GBM acc:predict 0.932063
dtype: float64
DL acc:predict 0.930165
dtype: float64
B acc:predict 0.82716
dtype: float64
glm Model Build progress: [###############################################] 100%
gbm Model Build progress: [###############################################] 100%
deeplearning Model Build progress: [######################################] 100%
naivebayes Model Build progress: [########################################] 100%
glm prediction progress: [################################################] 100%
gbm prediction progress: [################################################] 100%
deeplearning prediction progress: [#######################################] 100%
naivebayes prediction progress: [#########################################] 100%
Model Details
=============
H2OGeneralizedLinearEstimator : Generalized Linear Modeling
Model Key: GLM_model_python_1573972048565_520
GLM Model: summary
ModelMetricsBinomialGLM: glm
** Reported on train data. **
MSE: 0.036475221620232826
RMSE: 0.19098487275235393
LogLoss: 0.12544952889433192
Null degrees of freedom: 11689
Residual degrees of freedom: 11389
Null deviance: 5391.982001605795
Residual deviance: 2933.0099855494796
AIC: 3535.0099855494796
AUC: 0.9455649412574875
pr_auc: 0.5772143817032235
Gini: 0.8911298825149749
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.28955329569327665:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 6.13 %
ModelMetricsBinomialGLM: glm
** Reported on cross-validation data. **
MSE: 0.04538024404092814
RMSE: 0.2130263928271052
LogLoss: 0.1620893443905556
Null degrees of freedom: 11689
Residual degrees of freedom: 11389
Null deviance: 5393.446028375481
Residual deviance: 3789.648871851189
AIC: 4391.648871851189
AUC: 0.9062731764197172
pr_auc: 0.4258373760254989
Gini: 0.8125463528394343
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.17895500608203735:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 597.89 %
Cross-Validation Metrics Summary:
See the whole table with table.as_data_frame()
Scoring History:
Model Details
=============
H2OGradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_model_python_1573972048565_538
Model Summary:
ModelMetricsBinomial: gbm
** Reported on train data. **
MSE: 0.019961407264670796
RMSE: 0.14128484442667869
LogLoss: 0.07730650019788868
Mean Per-Class Error: 0.04883299835363608
AUC: 0.9901488260585353
pr_auc: 0.9016023399484042
Gini: 0.9802976521170705
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.24719113358179037:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 6.17 %
ModelMetricsBinomial: gbm
** Reported on validation data. **
MSE: 0.03951350363529628
RMSE: 0.19878003832200122
LogLoss: 0.14303040245744278
Mean Per-Class Error: 0.1654334243200256
AUC: 0.9064720964768321
pr_auc: 0.4666585003225704
Gini: 0.8129441929536643
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.18097685296677044:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 5.54 %
ModelMetricsBinomial: gbm
** Reported on cross-validation data. **
MSE: 0.04169489484066804
RMSE: 0.20419327814761198
LogLoss: 0.14795680808706776
Mean Per-Class Error: 0.1600097157457998
AUC: 0.9130260264798559
pr_auc: 0.4867419562941152
Gini: 0.8260520529597117
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.16396773163522013:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 5.44 %
Cross-Validation Metrics Summary:
Scoring History:
See the whole table with table.as_data_frame()
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ODeepLearningEstimator : Deep Learning
Model Key: DeepLearning_model_python_1573972048565_967
Status of Neuron Layers: predicting target, 2-class classification, bernoulli distribution, CrossEntropy loss, 100,802 weights/biases, 1.2 MB, 121,842 training samples, mini-batch size 1
ModelMetricsBinomial: deeplearning
** Reported on train data. **
MSE: 0.0008267592451034052
RMSE: 0.028753421450384044
LogLoss: 0.0034874703973230043
Mean Per-Class Error: 0.001414490890858544
AUC: 0.9999816586182095
pr_auc: 0.9017162450363572
Gini: 0.9999633172364191
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.3003916100298748:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.01 %, avg score: 5.95 %
ModelMetricsBinomial: deeplearning
** Reported on validation data. **
MSE: 0.04908488518747141
RMSE: 0.22155108933939235
LogLoss: 0.3290042203203713
Mean Per-Class Error: 0.15289730035311844
AUC: 0.8917533993443896
pr_auc: 0.41918212180418674
Gini: 0.7835067986887791
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.02115714734086097:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 4.65 %
ModelMetricsBinomial: deeplearning
** Reported on cross-validation data. **
MSE: 0.04934972335118933
RMSE: 0.22214797624824165
LogLoss: 0.2517597022206859
Mean Per-Class Error: 0.15671539919017663
AUC: 0.9056982264442416
pr_auc: 0.4312641605563829
Gini: 0.8113964528884832
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.19532600985052362:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 5.38 %
Cross-Validation Metrics Summary:
Scoring History:
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ONaiveBayesEstimator : Naive Bayes
Model Key: NaiveBayes_model_python_1573972048565_1020
Model Summary:
ModelMetricsBinomial: naivebayes
** Reported on train data. **
MSE: 0.1542671107507001
RMSE: 0.39276852056994094
LogLoss: 1.8513166665925391
Mean Per-Class Error: 0.16853495221757075
AUC: 0.8809800167547045
pr_auc: 0.0652931645181444
Gini: 0.761960033509409
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999927983757287:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 20.50 %
ModelMetricsBinomial: naivebayes
** Reported on validation data. **
MSE: 0.1550359843651464
RMSE: 0.3937460912379276
LogLoss: 1.9246534620593279
Mean Per-Class Error: 0.18058144293362477
AUC: 0.8661501027291789
pr_auc: 0.06364639365044591
Gini: 0.7323002054583578
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999947086303693:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 20.10 %
ModelMetricsBinomial: naivebayes
** Reported on cross-validation data. **
MSE: 0.155106569663931
RMSE: 0.39383571405337403
LogLoss: 1.876245851271284
Mean Per-Class Error: 0.17838434671841275
AUC: 0.8717750975165236
pr_auc: 0.0653529692844937
Gini: 0.7435501950330472
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999933046087028:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.13 %, avg score: 20.30 %
Cross-Validation Metrics Summary:
GLM acc:predict 0.936466
dtype: float64
GBM acc:predict 0.934264
dtype: float64
DL acc:predict 0.927964
dtype: float64
B acc:predict 0.921057
dtype: float64
glm Model Build progress: [###############################################] 100%
gbm Model Build progress: [###############################################] 100%
deeplearning Model Build progress: [######################################] 100%
naivebayes Model Build progress: [########################################] 100%
glm prediction progress: [################################################] 100%
gbm prediction progress: [################################################] 100%
deeplearning prediction progress: [#######################################] 100%
naivebayes prediction progress: [#########################################] 100%
Model Details
=============
H2OGeneralizedLinearEstimator : Generalized Linear Modeling
Model Key: GLM_model_python_1573972048565_1039
GLM Model: summary
ModelMetricsBinomialGLM: glm
** Reported on train data. **
MSE: 0.038841934233576986
RMSE: 0.19708357169885313
LogLoss: 0.1350181354250104
Null degrees of freedom: 17592
Residual degrees of freedom: 17292
Null deviance: 8076.169251610593
Residual deviance: 4750.748113064416
AIC: 5352.748113064416
AUC: 0.9324544089973231
pr_auc: 0.5208686013777714
Gini: 0.8649088179946463
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.19859171807063816:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 6.09 %
ModelMetricsBinomialGLM: glm
** Reported on cross-validation data. **
MSE: 0.04410895764981131
RMSE: 0.21002132665472645
LogLoss: 0.15591904903508025
Null degrees of freedom: 17592
Residual degrees of freedom: 17292
Null deviance: 8077.663876724361
Residual deviance: 5486.167659348339
AIC: 6088.167659348339
AUC: 0.9076170129920581
pr_auc: 0.42270525644706386
Gini: 0.8152340259841162
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.19800148401607492:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 439.65 %
Cross-Validation Metrics Summary:
See the whole table with table.as_data_frame()
Scoring History:
Model Details
=============
H2OGradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_model_python_1573972048565_1057
Model Summary:
ModelMetricsBinomial: gbm
** Reported on train data. **
MSE: 0.02576340846452519
RMSE: 0.16050983915176412
LogLoss: 0.09537895358893542
Mean Per-Class Error: 0.07101948831292959
AUC: 0.980314403107036
pr_auc: 0.816487554945469
Gini: 0.960628806214072
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.29751196843290245:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 6.12 %
ModelMetricsBinomial: gbm
** Reported on validation data. **
MSE: 0.03967489887783791
RMSE: 0.19918558903153086
LogLoss: 0.14295892832937174
Mean Per-Class Error: 0.16723456003645087
AUC: 0.9109504136589728
pr_auc: 0.4645275901822439
Gini: 0.8219008273179456
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.2090360066062496:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 5.70 %
ModelMetricsBinomial: gbm
** Reported on cross-validation data. **
MSE: 0.04225952240466633
RMSE: 0.20557121005789292
LogLoss: 0.15045577779637592
Mean Per-Class Error: 0.160346493653035
AUC: 0.9082515231631926
pr_auc: 0.46067043595346047
Gini: 0.8165030463263852
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.13391111752940213:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 5.60 %
Cross-Validation Metrics Summary:
Scoring History:
See the whole table with table.as_data_frame()
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ODeepLearningEstimator : Deep Learning
Model Key: DeepLearning_model_python_1573972048565_1426
Status of Neuron Layers: predicting target, 2-class classification, bernoulli distribution, CrossEntropy loss, 100,802 weights/biases, 1.2 MB, 183,148 training samples, mini-batch size 1
ModelMetricsBinomial: deeplearning
** Reported on train data. **
MSE: 0.0008131592451520644
RMSE: 0.02851594720769528
LogLoss: 0.0038237907159489925
Mean Per-Class Error: 0.0012353624808756347
AUC: 0.999958257326115
pr_auc: 0.8873601374070946
Gini: 0.99991651465223
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.4113586824024038:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.83 %, avg score: 5.93 %
ModelMetricsBinomial: deeplearning
** Reported on validation data. **
MSE: 0.04948752248594388
RMSE: 0.22245791171802337
LogLoss: 0.29208128200116873
Mean Per-Class Error: 0.13860201830140362
AUC: 0.9019552294847509
pr_auc: 0.427408720168853
Gini: 0.8039104589695019
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.17922675508626557:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 6.01 %
ModelMetricsBinomial: deeplearning
** Reported on cross-validation data. **
MSE: 0.05142110261149639
RMSE: 0.22676221601381566
LogLoss: 0.2417046412591304
Mean Per-Class Error: 0.16071350732265677
AUC: 0.9034137748248047
pr_auc: 0.4224292157349248
Gini: 0.8068275496496093
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.18448950988314664:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 5.78 %
Cross-Validation Metrics Summary:
Scoring History:
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ONaiveBayesEstimator : Naive Bayes
Model Key: NaiveBayes_model_python_1573972048565_1481
Model Summary:
ModelMetricsBinomial: naivebayes
** Reported on train data. **
MSE: 0.14864622303128738
RMSE: 0.38554665480495015
LogLoss: 1.719548298148039
Mean Per-Class Error: 0.17622768331034133
AUC: 0.872089327513513
pr_auc: 0.07352224353261681
Gini: 0.744178655027026
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999932957355422:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 19.73 %
ModelMetricsBinomial: naivebayes
** Reported on validation data. **
MSE: 0.148680150958049
RMSE: 0.38559065206258436
LogLoss: 1.7290081428950734
Mean Per-Class Error: 0.16657451978855087
AUC: 0.8757910357716923
pr_auc: 0.06604112178030136
Gini: 0.7515820715433845
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999913958330208:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 19.83 %
ModelMetricsBinomial: naivebayes
** Reported on cross-validation data. **
MSE: 0.14896893707237843
RMSE: 0.38596494280229443
LogLoss: 1.7342898976528052
Mean Per-Class Error: 0.1802904117057711
AUC: 0.8661997744616304
pr_auc: 0.07456294922981647
Gini: 0.7323995489232609
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.9999907703805865:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.09 %, avg score: 19.64 %
Cross-Validation Metrics Summary:
GLM acc:predict 0.927661
dtype: float64
GBM acc:predict 0.937301
dtype: float64
DL acc:predict 0.937149
dtype: float64
B acc:predict 0.925232
dtype: float64
glm Model Build progress: [###############################################] 100%
gbm Model Build progress: [###############################################] 100%
deeplearning Model Build progress: [######################################] 100%
naivebayes Model Build progress: [########################################] 100%
glm prediction progress: [################################################] 100%
gbm prediction progress: [################################################] 100%
deeplearning prediction progress: [#######################################] 100%
naivebayes prediction progress: [#########################################] 100%
Model Details
=============
H2OGeneralizedLinearEstimator : Generalized Linear Modeling
Model Key: GLM_model_python_1573972048565_1500
GLM Model: summary
ModelMetricsBinomialGLM: glm
** Reported on train data. **
MSE: 0.03991758528674311
RMSE: 0.1997938569794955
LogLoss: 0.1384481775770503
Null degrees of freedom: 23199
Residual degrees of freedom: 22899
Null deviance: 10874.995094881593
Residual deviance: 6423.995439575134
AIC: 7025.995439575134
AUC: 0.9315255788153693
pr_auc: 0.5244277137644696
Gini: 0.8630511576307387
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.20940518117286813:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.27 %, avg score: 6.27 %
ModelMetricsBinomialGLM: glm
** Reported on cross-validation data. **
MSE: 0.04381384589484784
RMSE: 0.2093175718730939
LogLoss: 0.1534008852158109
Null degrees of freedom: 23199
Residual degrees of freedom: 22899
Null deviance: 10878.446031226727
Residual deviance: 7117.801074013629
AIC: 7719.801074013629
AUC: 0.9137769317748126
pr_auc: 0.4559362765281299
Gini: 0.8275538635496251
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.24807332194156417:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.27 %, avg score: 376.92 %
Cross-Validation Metrics Summary:
See the whole table with table.as_data_frame()
Scoring History:
Model Details
=============
H2OGradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_model_python_1573972048565_1518
Model Summary:
ModelMetricsBinomial: gbm
** Reported on train data. **
MSE: 0.028803156204226382
RMSE: 0.16971492628589385
LogLoss: 0.10508324057553159
Mean Per-Class Error: 0.08492911037731155
AUC: 0.9729166320969628
pr_auc: 0.7687509539777678
Gini: 0.9458332641939255
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.26365472678489854:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.27 %, avg score: 6.30 %
ModelMetricsBinomial: gbm
** Reported on validation data. **
MSE: 0.0386404431696093
RMSE: 0.1965717252547001
LogLoss: 0.13883804879511494
Mean Per-Class Error: 0.1543634587880911
AUC: 0.9175915808480748
pr_auc: 0.4876443056852089
Gini: 0.8351831616961496
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.18437598892677529:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 5.80 %, avg score: 6.07 %
ModelMetricsBinomial: gbm
** Reported on cross-validation data. **
MSE: 0.04155604738602806
RMSE: 0.20385300435860165
LogLoss: 0.14752613069669374
Mean Per-Class Error: 0.15425555031412996
AUC: 0.9173365761691079
pr_auc: 0.499469458078755
Gini: 0.8346731523382158
Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.18297273434066919:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Avg response rate: 6.27 %, avg score: 5.88 %
Cross-Validation Metrics Summary:
Scoring History:
See the whole table with table.as_data_frame()
Variable Importances:
See the whole table with table.as_data_frame()
Model Details
=============
H2ODeepLearningEstimator : Deep Learning
Model Key: DeepLearning_model_python_1573972048565_1857
Status of Neuron Layers: predicting target, 2-class classification, bernoulli distribution, CrossEntropy loss, 100,802 weights/biases, 1.2 MB, 265,204 training samples, mini-batch size 1