forked from shariqfarooq123/AdaBins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
284 lines (229 loc) · 10.9 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# This file is mostly taken from BTS; author: Jin Han Lee, with only slight modifications
import os
import random
import numpy as np
import torch
import torch.utils.data.distributed
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def preprocessing_transforms(mode):
return transforms.Compose([
ToTensor(mode=mode)
])
class DepthDataLoader(object):
def __init__(self, args, mode):
if mode == 'train':
self.training_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
if args.distributed:
self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.training_samples)
else:
self.train_sampler = None
self.data = DataLoader(self.training_samples, args.batch_size,
shuffle=(self.train_sampler is None),
num_workers=args.num_threads,
pin_memory=True,
sampler=self.train_sampler)
elif mode == 'online_eval':
self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
if args.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and perform/report evaluation only on one) regardless
self.eval_sampler = None
else:
self.eval_sampler = None
self.data = DataLoader(self.testing_samples, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=self.eval_sampler)
elif mode == 'test':
self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1)
else:
print('mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
def remove_leading_slash(s):
if s[0] == '/' or s[0] == '\\':
return s[1:]
return s
class DataLoadPreprocess(Dataset):
def __init__(self, args, mode, transform=None, is_for_online_eval=False):
self.args = args
if mode == 'online_eval':
with open(args.filenames_file_eval, 'r') as f:
self.filenames = f.readlines()
else:
with open(args.filenames_file, 'r') as f:
self.filenames = f.readlines()
self.mode = mode
self.transform = transform
self.to_tensor = ToTensor
self.is_for_online_eval = is_for_online_eval
def __getitem__(self, idx):
sample_path = self.filenames[idx]
focal = float(sample_path.split()[2])
if self.mode == 'train':
if self.args.dataset == 'kitti' and self.args.use_right is True and random.random() > 0.5:
image_path = os.path.join(self.args.data_path, remove_leading_slash(sample_path.split()[3]))
depth_path = os.path.join(self.args.gt_path, remove_leading_slash(sample_path.split()[4]))
else:
image_path = os.path.join(self.args.data_path, remove_leading_slash(sample_path.split()[0]))
depth_path = os.path.join(self.args.gt_path, remove_leading_slash(sample_path.split()[1]))
image = Image.open(image_path)
depth_gt = Image.open(depth_path)
if self.args.do_kb_crop is True:
height = image.height
width = image.width
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
depth_gt = depth_gt.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
image = image.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
# To avoid blank boundaries due to pixel registration
if self.args.dataset == 'nyu':
depth_gt = depth_gt.crop((43, 45, 608, 472))
image = image.crop((43, 45, 608, 472))
if self.args.do_random_rotate is True:
random_angle = (random.random() - 0.5) * 2 * self.args.degree
image = self.rotate_image(image, random_angle)
depth_gt = self.rotate_image(depth_gt, random_angle, flag=Image.NEAREST)
image = np.asarray(image, dtype=np.float32) / 255.0
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
if self.args.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
image, depth_gt = self.random_crop(image, depth_gt, self.args.input_height, self.args.input_width)
image, depth_gt = self.train_preprocess(image, depth_gt)
sample = {'image': image, 'depth': depth_gt, 'focal': focal}
else:
if self.mode == 'online_eval':
data_path = self.args.data_path_eval
else:
data_path = self.args.data_path
image_path = os.path.join(data_path, remove_leading_slash(sample_path.split()[0]))
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
if self.mode == 'online_eval':
gt_path = self.args.gt_path_eval
depth_path = os.path.join(gt_path, remove_leading_slash(sample_path.split()[1]))
has_valid_depth = False
try:
depth_gt = Image.open(depth_path)
has_valid_depth = True
except IOError:
depth_gt = False
# print('Missing gt for {}'.format(image_path))
if has_valid_depth:
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
if self.args.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
if self.args.do_kb_crop is True:
height = image.shape[0]
width = image.shape[1]
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
if self.mode == 'online_eval' and has_valid_depth:
depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth,
'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]}
else:
sample = {'image': image, 'focal': focal}
if self.transform:
sample = self.transform(sample)
return sample
def rotate_image(self, image, angle, flag=Image.BILINEAR):
result = image.rotate(angle, resample=flag)
return result
def random_crop(self, img, depth, height, width):
assert img.shape[0] >= height
assert img.shape[1] >= width
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y + height, x:x + width, :]
depth = depth[y:y + height, x:x + width, :]
return img, depth
def train_preprocess(self, image, depth_gt):
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
if self.args.dataset == 'nyu':
brightness = random.uniform(0.75, 1.25)
else:
brightness = random.uniform(0.9, 1.1)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def __len__(self):
return len(self.filenames)
class ToTensor(object):
def __init__(self, mode):
self.mode = mode
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
image = self.to_tensor(image)
image = self.normalize(image)
if self.mode == 'test':
return {'image': image, 'focal': focal}
depth = sample['depth']
if self.mode == 'train':
depth = self.to_tensor(depth)
return {'image': image, 'depth': depth, 'focal': focal}
else:
has_valid_depth = sample['has_valid_depth']
return {'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
'image_path': sample['image_path'], 'depth_path': sample['depth_path']}
def to_tensor(self, pic):
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError(
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img