Skip to content

Latest commit

 

History

History
37 lines (32 loc) · 1.06 KB

README.md

File metadata and controls

37 lines (32 loc) · 1.06 KB

LOFTune

This repository contains the source code for our paper: LOFTune: A Low-overhead and Flexible Approach for Spark SQL Configuration Tuning.

Requirements


  • tokenizers 0.11.4
  • optuna 3.5.0
  • quantile-forest 1.1.3
  • scikit-learn 1.0.2
  • torch 1.12.1
  • tree-sitter 0.20.1
  • sqlglot 20.7.1

Datasets


Structure


  • config: The parameters of the algorithm and model.
  • data: Part of datasets used in the experiments.
  • modules: Knowledge Base Updater, Configuration Recommender, Controller and some helper functions.
  • sql_encoder: Convert sql to vector, i.e. Multi-task SQL Representation Learning.
  • main.py: A complete function entrance, including all callable related interfaces.
  • run_tests.sh: A shell test script that can be run directly.
  • scripts and utils.py: Some commonly used helper functions.

Usage


  1. Download datasets
  2. Set mode and workloads in run_tests.sh
  3. Execute run_tests.sh