-
Notifications
You must be signed in to change notification settings - Fork 0
/
ecs.cpp
1333 lines (1177 loc) · 40 KB
/
ecs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* --------------------------------------------------------- */
/* --- File: ecs.c -------- Author: ACMO --- */
/* --------------------------------------------------------- */
/*
ECS for non-linear function minimization.
Copyright 2020 ACMO
e-mail: alexandre.cesar .AT. ufma.br
SOURCE:
https://github.com/cavalcantigor/ecs
*/
#define GARE "ECS15"
#define NOXLS
#define NODUMP
#define CONSO
#define NOCONVER
#define PLOT 0
/* PLOTS E CONVERGENCIA */
#define PLOTGERA 10
#define CONVAVAL 10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
/* Problema */
#define MAXGER 180000
#define NUMCRU 200
#define TAXERR 0.001
/*Clusters */
#define AAPALFA 0.05
//define AAPALFA 0.25F
//define INICLUS 3
#define MORTUS 0
#define GELADO 1
#define QUENTE 2
#define ASSIMPLES 0
#define NASRECOMBI 1
#define NASCAMINHO 2
/* Populacao*/
#define PPIOR 0.1
/* Operadores Evolutivos */
#define NUMSELS 2
#define ROLGIRO 6
#define BLXALFA 0.35
#define NI 2
#define MUTNUNI 1
#define PREBATI (rand() % 101 / 100.F)
/* Parametros comuns Busca Local */
#define ESCALA 0.1F
#define PSGRI 0.05F
/* Constantes */
#define TRUE 1
#define FALSE 0
#define INFINITO 9999999
#define PLOTODOS -1
#define max(x, y) (x > y ? x : y)
#define randi(x, y) (x + ((rand() % 1001 / 1000.) * (y - x)))
/*---------------------------------------------------------------------------#
Author : ACMO
ALGORITMO GENETICO COM POPULACAO FIXA, BLX E GEOMETRICO, MUTACAO NAO UNIFORME
clock_t clock(void);
*/
/*************** G L O B A I S *******************/
struct
{
int numAval;
} FuncaoTeste;
typedef struct
{
double *var;
double fit;
int sel;
} Cromossomo;
typedef struct
{
Cromossomo *indiv;
Cromossomo centr;
double sumFit;
double media;
double dvpad;
int tamPop;
int tamInd;
int melhor;
int pior;
int numMuta;
int iguais;
int gerMelhor;
int pai[NUMSELS];
} Populacao;
Populacao P;
FILE *saida = NULL;
#include "./funtesv5i.h"
int funcao;
double SOLUCAO;
int MAXVAR;
int ROLETA = 1;
int MAXAVA;
int PASSOS = 10;
double MUTPROB = 1;
int MAXPOP = 10;
double PPROMIS = 2.6F;
int NUMCLUS = 20;
typedef struct
{
Cromossomo ponto;
int conta;
double alert;
int stats;
} Centro;
// pos = ultima posica; num = total = pos - MORTUS; max = limite
typedef struct
{
Centro *grupos;
int posGrp;
int numGrp;
int maxGrp;
double limiar;
int densid;
} Prototipos;
void PlotPop(Populacao *Prox, double *p, Prototipos C, int numGeracoes, int flag)
{
int i, j, ini, fim, index, cor;
fprintf(saida, "\n figure ");
fprintf(saida, "\n [c,h] = contour(X,Y,Z);");
fprintf(saida, "\n hold on;");
// POPULACAO INICIAL A CADA N CRUZAMENTOS/ A CADA GERACAO
if (p == NULL)
{
fprintf(saida, "\nP%d=[", numGeracoes);
for (i = 0; i < Prox->tamPop; i++)
{
fprintf(saida, "\n");
for (j = 0; j < 2; j++)
fprintf(saida, "%.10f ", Prox->indiv[i].var[j]);
}
fprintf(saida, "\n]; \n plot (P%d(:,1),P%d(:,2),'.k');", numGeracoes, numGeracoes);
}
else
{
fprintf(saida, "\np%d=[", numGeracoes);
for (j = 0; j < 2; j++)
fprintf(saida, "%.10f ", p[j]);
fprintf(saida, "\n]; \nplot (p%d(:,1),p%d(:,2),'sb');", numGeracoes, numGeracoes);
}
if (flag == PLOTODOS)
{
ini = 0;
fim = C.posGrp - 1;
}
else
{
ini = fim = flag;
}
for (index = ini; index <= fim; index++)
{
if (C.grupos[index].stats > MORTUS)
{
fprintf(saida, "\nB%d=[", index);
for (j = 0; j < 2; j++)
fprintf(saida, "%.10f ", C.grupos[index].ponto.var[j]);
fprintf(saida, "\n]; \nplot (B%d(:,1),B%d(:,2),'ob');", index, index);
fprintf(saida, "\n circle(%.2f,%.2f,%.2f,'r');", C.limiar, C.grupos[index].ponto.var[0], C.grupos[index].ponto.var[1]);
}
}
}
int CorrigeInviavel(double *xr, double linf, double lsup)
{
if ((*xr) > lsup)
*xr = lsup - PREBATI * ((*xr) - lsup) / ((*xr) - linf);
else if ((*xr) < linf)
*xr = linf + PREBATI * (linf - (*xr)) / (lsup - (*xr));
return (1);
}
int MutaNaoUni(double *indiv, int tamind, int tampop, int ger, int expo, float pmut)
{
int mutou = FALSE;
float fRandVal, fFactor;
float fNewt, fNewT;
int iExponent, iIndex;
for (iIndex = 0; iIndex < tamind; iIndex++)
{
if (rand() % 100 < pmut)
{
mutou = TRUE;
fRandVal = (rand() % 101 / 100.);
/* pick either the max or min. limit */
if (fRandVal < 0.5) /* lower */
{
fNewt = ger;
fNewT = MAXGER;
fRandVal = (rand() % 101 / 100.);
fFactor = pow((1.0F - (fNewt / fNewT)), expo) * fRandVal;
if (fFactor < TAXERR / 10.0F)
fFactor = TAXERR / 10.0F;
fFactor = fFactor * (indiv[iIndex] - FuncoesTeste[funcao].inf);
indiv[iIndex] = indiv[iIndex] - fFactor;
}
else
{
fNewt = ger;
fNewT = MAXGER;
fRandVal = (rand() % 101 / 100.);
fFactor = pow((1.0F - (fNewt / fNewT)), expo) * fRandVal;
if (fFactor < TAXERR / 10.0F)
fFactor = TAXERR / 10.0F;
fFactor = fFactor * (FuncoesTeste[funcao].sup - indiv[iIndex]);
indiv[iIndex] = indiv[iIndex] + fFactor;
}
} // if prob
} // for
return mutou;
}
double Simplex(double (*func)(double[], int n), double start[], double fstart, int n,
double EPSILON, double SCALE, int MAX_IT, double ALPHA, double BETA, double GAMMA)
{
// by ACMO
double ajuste, nureal, interv;
//
int vs; /* vertex with smallest value */
int vh; /* vertex with next smallest value */
int vg; /* vertex with largest value */
int i, j, m, row;
int k; /* track the number of function evaluations */
int itr; /* track the number of iterations */
double **v; /* holds vertices of simplex */
double pn, qn; /* values used to create initial simplex */
double *f; /* value of function at each vertex */
double fr; /* value of function at reflection point */
double fe; /* value of function at expansion point */
double fc; /* value of function at contraction point */
double *vr; /* reflection - coordinates */
double *ve; /* expansion - coordinates */
double *vc; /* contraction - coordinates */
double *vm; /* centroid - coordinates */
double min;
double fsum, favg, s, cent;
/* dynamically allocate arrays */
/* allocate the rows of the arrays */
v = (double **)malloc((n + 1) * sizeof(double *));
f = (double *)malloc((n + 1) * sizeof(double));
vr = (double *)malloc(n * sizeof(double));
ve = (double *)malloc(n * sizeof(double));
vc = (double *)malloc(n * sizeof(double));
vm = (double *)malloc(n * sizeof(double));
/* allocate the columns of the arrays */
for (i = 0; i <= n; i++)
{
v[i] = (double *)malloc(n * sizeof(double));
}
/* create the initial simplex */
/* assume one of the vertices is 0,0 */
pn = SCALE * (sqrt(n + 1) - 1 + n) / (n * sqrt(2));
qn = SCALE * (sqrt(n + 1) - 1) / (n * sqrt(2));
for (i = 0; i < n; i++)
{
v[0][i] = start[i];
}
for (i = 1; i <= n; i++)
{
for (j = 0; j < n; j++)
{
if (i - 1 == j)
{
v[i][j] = pn + start[j];
}
else
{
v[i][j] = qn + start[j];
}
}
}
/* find the initial function values */
f[0] = fstart;
for (j = 1; j <= n; j++)
{
f[j] = func(v[j], n);
}
k = n + 1;
/* begin the main loop of the minimization */
for (itr = 1; itr <= MAX_IT; itr++)
{
/* find the index of the largest value */
vg = 0;
for (j = 0; j <= n; j++)
{
if (f[j] > f[vg])
{
vg = j;
}
}
/* find the index of the smallest value */
vs = 0;
for (j = 0; j <= n; j++)
{
if (f[j] < f[vs])
{
vs = j;
}
}
/* find the index of the second largest value */
vh = vs;
for (j = 0; j <= n; j++)
{
if (f[j] > f[vh] && f[j] < f[vg])
{
vh = j;
}
}
/* calculate the centroid */
for (j = 0; j <= n - 1; j++)
{
cent = 0.0;
for (m = 0; m <= n; m++)
{
if (m != vg)
{
cent += v[m][j];
}
}
vm[j] = cent / n;
}
/* reflect vg to new vertex vr */
for (j = 0; j <= n - 1; j++)
{
/*vr[j] = (1+ALPHA)*vm[j] - ALPHA*v[vg][j];*/
vr[j] = vm[j] + ALPHA * (vm[j] - v[vg][j]);
}
fr = func(vr, n);
k++;
if (fr < f[vh] && fr >= f[vs])
{
for (j = 0; j <= n - 1; j++)
{
v[vg][j] = vr[j];
}
f[vg] = fr;
}
/* investigate a step further in this direction */
if (fr < f[vs])
{
for (j = 0; j <= n - 1; j++)
{
/*ve[j] = GAMMA*vr[j] + (1-GAMMA)*vm[j];*/
ve[j] = vm[j] + GAMMA * (vr[j] - vm[j]);
}
fe = func(ve, n);
k++;
/* by making fe < fr as opposed to fe < f[vs],
Rosenbrocks function takes 63 iterations as opposed
to 64 when using double variables. */
if (fe < fr)
{
for (j = 0; j <= n - 1; j++)
{
v[vg][j] = ve[j];
}
f[vg] = fe;
}
else
{
for (j = 0; j <= n - 1; j++)
{
v[vg][j] = vr[j];
}
f[vg] = fr;
}
}
/* check to see if a contraction is necessary */
if (fr >= f[vh])
{
if (fr < f[vg] && fr >= f[vh])
{
/* perform outside contraction */
for (j = 0; j <= n - 1; j++)
{
/*vc[j] = BETA*v[vg][j] + (1-BETA)*vm[j];*/
vc[j] = vm[j] + BETA * (vr[j] - vm[j]);
}
fc = func(vc, n);
k++;
}
else
{
/* perform inside contraction */
for (j = 0; j <= n - 1; j++)
{
/*vc[j] = BETA*v[vg][j] + (1-BETA)*vm[j];*/
vc[j] = vm[j] - BETA * (vm[j] - v[vg][j]);
}
fc = func(vc, n);
k++;
}
if (fc < f[vg])
{
for (j = 0; j <= n - 1; j++)
{
v[vg][j] = vc[j];
}
f[vg] = fc;
}
/* at this point the contraction is not successful,
we must halve the distance from vs to all the
vertices of the simplex and then continue.
10/31/97 - modified to account for ALL vertices.
*/
else
{
for (row = 0; row <= n; row++)
{
if (row != vs)
{
for (j = 0; j <= n - 1; j++)
{
v[row][j] = v[vs][j] + (v[row][j] - v[vs][j]) / 2.0;
}
}
}
f[vg] = func(v[vg], n);
k++;
f[vh] = func(v[vh], n);
k++;
}
}
/* test for convergence */
fsum = 0.0;
for (j = 0; j <= n; j++)
{
fsum += f[j];
}
favg = fsum / (n + 1);
s = 0.0;
for (j = 0; j <= n; j++)
{
s += pow((f[j] - favg), 2.0) / (n);
}
s = sqrt(s);
if (s < EPSILON)
break;
}
/* end main loop of the minimization */
/* find the index of the smallest value */
vs = 0;
for (j = 0; j <= n; j++)
{
if (f[j] < f[vs])
{
vs = j;
}
}
for (j = 0; j < n; j++)
{
start[j] = v[vs][j];
// rebate ponto invi�vel de volta ao espa�o de busca com concentra��o
// perto da fronteira tanto maior qto for MENOR o valor de REBATIMENTO
CorrigeInviavel(&start[j], FuncoesTeste[funcao].inf, FuncoesTeste[funcao].sup);
}
min = func(v[vs], n);
k++;
for (i = 0; i <= n; i++)
{
free(v[i]);
}
free(f);
free(vr);
free(ve);
free(vc);
free(vm);
free(v);
return min;
}
float randgen(float fLlim, float fUlim)
{
float fRandomVal;
fRandomVal = rand() % 101 / 100.; // rand entre 0 e 1
return (fLlim + (float)(fRandomVal * (fUlim - fLlim)));
}
/* ************************ GENETICS **************************** */
void GeraIndividuos(Populacao *p, int mp, int mv, int melhor, int nfun)
{
int i, j, pior;
double soma, fit;
// inicializa o centroide
for (j = 0; j < mv; j++)
p->centr.var[j] = 0.0F;
for (i = 0, soma = 0, pior = 0; i < mp; i++)
{
// gera individuo e acumula-o no centroide (nao ocorre a divisao - centroide = soma)
for (j = 0; j < mv; j++)
{
p->indiv[i].var[j] = (double)randgen(FuncoesTeste[nfun].inf, FuncoesTeste[nfun].sup);
p->centr.var[j] += p->indiv[i].var[j];
}
fit = funccod[nfun](p->indiv[i].var, mv);
p->indiv[i].fit = fit;
p->indiv[i].sel = 0;
if (fit > p->indiv[pior].fit)
pior = i;
if (fit < p->indiv[melhor].fit)
melhor = i;
soma += (fit);
}
// retira do centroide a parte do pior individuo, antecipando, pois ele sera substituido
// na primeira atualiza��o
for (j = 0; j < mv; j++)
p->centr.var[j] -= p->indiv[pior].var[j];
p->sumFit = soma;
p->melhor = melhor;
p->pior = pior;
p->media = p->sumFit / p->tamPop;
}
void IniciaCls(Prototipos *c, int mc, int mv)
{
int i;
c->grupos = (Centro *)malloc(sizeof(Centro) * NUMCLUS);
for (i = 0; i < mc; i++)
{
c->grupos[i].conta = 0;
c->grupos[i].stats = MORTUS;
c->grupos[i].alert = 0.0F;
c->grupos[i].ponto.var = (double *)malloc(sizeof(double) * mv);
if (c->grupos[i].ponto.var == NULL)
{
fprintf(saida, "ERRO/IniciaCls(#1): Memoria!!!");
exit(-1);
}
}
c->maxGrp = mc;
c->posGrp = 0;
c->numGrp = 0;
c->limiar = 0.0F;
}
void IniciaPop(Populacao *p, int mp, int mv)
{
int i;
p->centr.var = (double *)malloc(sizeof(double) * mv);
if (p->centr.var == NULL)
{
fprintf(saida, "ERRO(1): Problemas de memoria!!!");
exit(-1);
}
p->indiv = (Cromossomo *)malloc(sizeof(Cromossomo) * mp);
if (p->indiv == NULL)
{
fprintf(saida, "ERRO(2a): Problemas de memoria!!!");
exit(-1);
}
for (i = 0; i < mp; i++)
{
p->indiv[i].var = (double *)malloc(sizeof(double) * mv);
if (p->indiv[i].var == NULL)
{
fprintf(saida, "ERRO(2b): Problemas de memoria!!!");
exit(-1);
}
}
p->tamPop = mp;
p->tamInd = mv;
p->numMuta = 0;
p->iguais = 0;
}
void RoletaPressaoSeletiva(Populacao *p, double melhorfit)
{
int i, pos, sel, fator;
double z, gatilho, acum;
sel = 0;
while (sel < NUMSELS)
{
pos = rand() % p->tamPop;
fator = (p->indiv[pos].sel > 3 ? 3 : p->indiv[pos].sel);
// fator = 2;
z = (1.0F / pow((p->indiv[pos].fit - melhorfit + 1), fator));
gatilho = z * (ROLGIRO - (ROLGIRO - 1) * z);
acum = 0;
i = 0;
while (acum < gatilho && i <= ROLGIRO)
{
pos = (pos < p->tamPop - 1 ? pos + 1 : 0);
fator = (p->indiv[pos].sel > 3 ? 3 : p->indiv[pos].sel);
// fator = 2;
z = 1.0F / pow((p->indiv[pos].fit - melhorfit + 1), fator);
acum += z;
i++;
}
p->indiv[pos].sel++;
p->pai[sel] = pos;
sel++;
}
}
void CruzaBlend(Populacao *p, int pai, int mae, int filho, float alfa)
{
double a, b, r;
int i;
a = -alfa;
b = 1 + alfa;
for (i = 0; i < p->tamInd; i++)
{
r = a + (rand() % 101 / 100.) * (b - a);
// gera filho
p->indiv[filho].var[i] = p->indiv[pai].var[i] + r * (p->indiv[mae].var[i] - p->indiv[pai].var[i]);
// rebate se invi�vel
CorrigeInviavel(&(p->indiv[filho].var[i]), FuncoesTeste[funcao].inf, FuncoesTeste[funcao].sup);
}
}
int AtualizaGrp(Prototipos *c, Populacao *p)
{
int i, j, k;
int indice, pertice, dispice;
double dist, menorDist;
int maiorCont = 0;
int numsels = NUMSELS;
char pertence;
for (i = 0; i < numsels; i++)
{
pertence = FALSE;
menorDist = INFINITO;
// insercao a priori na ultima posicao
dispice = c->posGrp;
for (j = 0; j < c->posGrp; j++)
{
if (c->grupos[j].stats != MORTUS)
{
dist = sqrt(DistEucl(p->indiv[p->pai[i]].var, c->grupos[j].ponto.var, p->tamInd));
if (dist < c->limiar && !pertence)
{
pertence = TRUE;
pertice = j; // relativo a pertincia
}
if (dist < menorDist)
{
menorDist = dist;
indice = j; // relativo a assimila��o
}
}
else
dispice = j;
}
// se n�o pertencer a ninguem o ultimo mortus sera usado
// se n�o entrar nenhuma vez no if, vale a inicializacao (ultimo centro)
if (!pertence && !(dispice >= c->maxGrp))
{
// salva o primeiro ponto e seu fitness
memcpy(c->grupos[dispice].ponto.var, p->indiv[p->pai[i]].var, p->tamInd * sizeof(double));
c->grupos[dispice].ponto.fit = p->indiv[p->pai[i]].fit;
// Cluster come�a gelado
c->grupos[dispice].conta = 1;
c->grupos[dispice].stats = GELADO;
// aumenta posGrp se inseriu na ultima posicao
c->posGrp += (dispice == c->posGrp);
// independente disso, aumenta o num
c->numGrp++;
}
else
{ // ou pertence ou nao cabe mais clusters, entao assimila o cluster mais proximo
if (menorDist > TAXERR)
{
//--------------------------------------------------
// protege de assimila��o pontos muito pr�ximos ao centro
// TRES TIPOS DE ASSIMILA��O
//--------------------------------------------------
#ifdef ASSIMPLES
// ASSIMPLES usa um AAPALFA para gerar um novo centros na reta entre o antigo e o ponto assimilado
// N�o precisa avaliar o novo centro, isso � feito antes de Hooke
// Se for executar sem BLOCAL, mas n�o deixar de avalia-lo em IIIntenso
{
int flag = 0;
if (rand() % 1 == 0 && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 1;
}
for (k = 0; k < p->tamInd; k++)
{
c->grupos[indice].ponto.var[k] += AAPALFA * (p->indiv[p->pai[i]].var[k] - c->grupos[indice].ponto.var[k]);
}
if (flag && PLOT)
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
} // auto
#endif
#ifdef ASRECOMBI
// ASRECOMBI usa n - AAPALFA's para gerar um novo centros no hiperplano entre o antigo e o ponto assimilado
// N�o precisa avaliar o novo centro, isso � feito antes de Hooke
// Se for executar sem BLOCAL, mas n�o deixar de avalia-lo em IIIntenso
{
double a, b, r;
int flag = 0;
a = -AAPALFA;
b = 1 + AAPALFA;
if (rand() % 1 == 0 && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 1;
}
for (k = 0; k < p->tamInd; k++)
{
r = a + (rand() % 101 / 100.) * (b - a);
c->grupos[indice].ponto.var[k] += r * (p->indiv[p->pai[i]].var[k] - c->grupos[indice].ponto.var[k]);
CorrigeInviavel(&(c->grupos[indice].ponto.var[k]), FuncoesTeste[funcao].inf, FuncoesTeste[funcao].sup);
}
if (flag && PLOT)
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
} // auto
#endif
#ifdef ASCAMINHO
// ASCAMINHO usa v�rios AAPALFA para gerar v�rios novos centros entre o antigo e o ponto assimilado
// Ele j� avalia o novo centro. Em Hooke n�o precisa avaliar de novo
{
double *aux, fitaux, *sau, fitsau;
int namost, flag = 0;
aux = (double *)malloc(p->tamInd * sizeof(double));
sau = (double *)malloc(p->tamInd * sizeof(double));
memcpy(aux, c->grupos[indice].ponto.var, p->tamInd * sizeof(double));
fitsau = c->grupos[indice].ponto.fit;
namost = (int)floor(1.0F / AAPALFA);
while (--namost)
{
if (rand() % 1 == 0 && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 1;
}
for (k = 0; k < p->tamInd; k++)
{
aux[k] += AAPALFA * (p->indiv[p->pai[i]].var[k] - c->grupos[indice].ponto.var[k]);
}
fitaux = funccod[funcao](aux, p->tamInd);
if (fitaux < fitsau)
{
memcpy(sau, aux, p->tamInd * sizeof(double));
fitsau = fitaux;
if (flag && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 0;
}
}
}
memcpy(aux, p->indiv[p->pai[i]].var, p->tamInd * sizeof(double));
do
{
if (rand() % 1 == 0 && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 1;
}
for (k = 0; k < p->tamInd; k++)
{
aux[k] += AAPALFA * (p->indiv[p->pai[i]].var[k] - c->grupos[indice].ponto.var[k]);
CorrigeInviavel(&aux[k], FuncoesTeste[funcao].inf, FuncoesTeste[funcao].sup);
}
fitaux = funccod[funcao](aux, p->tamInd);
if (fitaux < fitsau)
{
memcpy(sau, aux, p->tamInd * sizeof(double));
fitsau = fitaux;
if (flag && PLOT)
{
PlotPop(p, p->indiv[p->pai[i]].var, *c, indice, indice);
flag = 0;
}
}
else
break;
} while (1);
if (fitsau < c->grupos[indice].ponto.fit)
{
memcpy(c->grupos[indice].ponto.var, sau, p->tamInd * sizeof(double));
c->grupos[indice].ponto.fit = fitsau;
}
free(aux);
free(sau);
} // auto
#endif
} //if
if (pertence)
{ // pertinente � o cluster proximo (limiar) mais antigo (primeiro a ser encontrado)
c->grupos[pertice].conta++;
// guarda a maior contagem
if (c->grupos[pertice].conta > maiorCont)
maiorCont = c->grupos[pertice].conta;
// independente de ser o mesmo ou n�o, o cluster � esquentado
c->grupos[pertice].stats = QUENTE;
// se houver dispice do lado esquerdo de pos, pos � decrementado
c->posGrp -= (c->posGrp == dispice + 1);
} //if
} // else (pertence)
}
return (maiorCont);
}
void AtualizaPop(Populacao *p, int pos, double fit, int ger)
{
int i, j, salto, maxIt;
/*
Tira de soma o fit de quem vai ser substituido
Poe em soma o fit de quem vai substituir
*/
p->sumFit -= (p->indiv[pos].fit);
p->sumFit += (fit);
p->indiv[pos].fit = fit;
p->indiv[pos].sel = 0;
p->media = p->sumFit / p->tamPop;
if (fit < p->indiv[p->melhor].fit)
{
p->melhor = pos;
p->gerMelhor = ger;
}
/* ***** procura um outro pior ******** */
maxIt = (int)ceil(PPIOR * p->tamPop);
salto = (int)ceil(maxIt / 3.0F);
// p->pior=p->melhor == p->tamPop ? p->melhor - 1: p->melhor +1;
for (i = 0; i < maxIt; i++)
{
j = rand() % p->tamPop;
if (p->indiv[j].fit > p->indiv[p->pior].fit)
{
p->pior = j;
i += salto;
}
}
/*
Antecipando que o pior vai sair, retira-o do centroide e poe o novo(POS)
Na hora de considerar o criterio, calcula o centroide efetivo para tampop-1
individuos
*/
for (j = 0; j < p->tamInd; j++)
p->centr.var[j] = p->centr.var[j] + p->indiv[pos].var[j] - p->indiv[p->pior].var[j];
}
/*
H O O K E - J E E V E S ROUTINES
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*/
double HookExplore(double (*fobj)(double[], int n), double *xr, double fp, double dx, int n)
{
int i, j;
double fr;
double linf, lsup, salvo;
linf = FuncoesTeste[funcao].inf;
lsup = FuncoesTeste[funcao].sup;
for (i = 0; i < n; i++)
{
// first direction
salvo = xr[i];
xr[i] = salvo + dx;
// viability
CorrigeInviavel(&xr[i], linf, lsup);
// evaluate
fr = fobj(xr, n);
if (fr < fp)
{
// success
fp = fr;
}
else
{
// failure: other direction
dx = -dx;
xr[i] = salvo + dx;
// viability
CorrigeInviavel(&xr[i], linf, lsup);
// evaluate
fr = fobj(xr, n);
if (fr < fp)
{
// success
fp = fr;
}
else
{
// reset direction: ACMO bichado por que houve corre��o
xr[i] = salvo;
}
}
}
return (fp);
}
double HookeJeeves(double (*fobj)(double[], int n), double xc[], double fc, int n,
double epsilon, int passos, double scala, double step)
{
double linf, lsup, dx, err, fp, inif;
static double mdx = 1.0F, melf = 0.0F;
static int cont = 100;
int i, m;
char reduz;
double *xr = (double *)NULL;
double *xp = (double *)NULL;
linf = FuncoesTeste[funcao].inf;
lsup = FuncoesTeste[funcao].sup;
xp = (double *)malloc(n * sizeof(double));
xr = (double *)malloc(n * sizeof(double));
if (xr == NULL || xp == NULL)
{
fprintf(saida, "ERRO(5): Problemas de memoria!!!");
fprintf(saida, "ABEND 102");
}