diff --git a/CMakeLists.txt b/CMakeLists.txt index c441dc2..4c55a07 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -20,6 +20,7 @@ message(STATUS "C API : ${ARROW_INSTALL}") include_directories ( ${ARROW_INSTALL}/include + ${_VCPKG_ROOT_DIR}/installed/${VCPKG_TARGET_TRIPLET}/include # where arrow has been installed using vcpkg ${CMAKE_BINARY_DIR} # For 'k.h', downloaded below ) diff --git a/README.md b/README.md index aae3072..0df811b 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,6 @@ # arrowkdb - - -### Warning: This interface is currently a pre-release alpha and subject to change without notice +[![GitHub release (latest by date)](https://img.shields.io/github/v/release/kxsystems/arrowkdb?include_prereleases)](https://github.com/kxsystems/arrowkdb/releases) [![Travis (.org) branch](https://img.shields.io/travis/kxsystems/arrowkdb/master?label=travis%20build)](https://travis-ci.org/kxsystems/arrowkdb/branches) @@ -10,9 +8,9 @@ This interface allows kdb+ to users read and write Apache Arrow data stored in: +- Apache Parquet file format - Arrow IPC record batch file format - Arrow IPC record batch stream format -- Apache Parquet file format This is part of the [*Fusion for kdb+*](http://code.kx.com/q/interfaces/fusion/) interface collection. @@ -61,9 +59,22 @@ Follow the instructions [here](https://arrow.apache.org/install/#c-and-glib-c-pa Follow the instructions [here](https://arrow.apache.org/install/#c-and-glib-c-packages-on-homebrew) to install `apache-arrow` using Homebrew. -#### Windows +#### Windows (using `vcpkg`) + +A `vcpkg` installation of Arrow is available as described [here](https://arrow.apache.org/install/#c-package-on-vcpkg). This requires installation the of the `x64-windows` triplet for Arrow then copying the `vcpkg` installed DLLs (Arrow, Parquet and compression libs) to the `%QHOME%\w64` directory: + +```bash +C:\Git> git clone https://github.com/Microsoft/vcpkg.git +C:\Git> cd vcpkg +C:\Git\vcpkg> bootstrap-vcpkg.bat +C:\Git\vcpkg> vcpkg integrate install +C:\Git\vcpkg> vcpkg install arrow:x64-windows +C:\Git\vcpkg> copy C:\Git\vcpkg\installed\x64-windows\bin\*.dll %QHOME%\w64 +``` + +#### Windows (building Arrow from source) -Unfortunately the `vckpg` installation currently builds the legacy Arrow version 0.17.1 which is not compatible with the required 2.0.0. Therefore it is is necessary to build Arrow from source. Full details are provided [here](https://arrow.apache.org/docs/developers/cpp/windows.html) but the basic steps are as follows: +It is also possible to build Arrow from source. Full details are provided [here](https://arrow.apache.org/docs/developers/cpp/windows.html) but the basic steps are as follows: ##### Snappy @@ -127,7 +138,7 @@ C:\Git\arrow\cpp\build> cmake --build . --config Release C:\Git\arrow\cpp\build> cmake --build . --config Release --target install ``` -Create symlinks to the arrow and parquet DLLs in the `%QHOME%\w64` directory: +Create symlinks to the Arrow and Parquet DLLs in the `%QHOME%\w64` directory: ``` C:\Git\arrow\cpp\build> MKLINK %QHOME%\w64\arrow.dll %BUILD_HOME%\bin\arrow.dll @@ -158,7 +169,7 @@ install.bat In order to successfully build and install this interface from source, the following environment variables must be set: -1. `BUILD_HOME` = Location of the Arrow C++ API release (only required if Arrow is not installed globally on the system, e.g. on Windows where Arrow was built from source) +1. `ARROW_INSTALL` = Location of the Arrow C++ API release (only required if Arrow is not installed globally on the system, e.g. on Windows where Arrow was built from source) 2. `QHOME` = Q installation directory (directory containing `q.k`) From a shell prompt (on Linux/MacOS) or Visual Studio command prompt (on Windows), clone the `arrowkdb` source from github: @@ -177,6 +188,9 @@ cd build ## Linux/MacOS cmake .. +## Windows (using the vcpkg Arrow installation) +cmake .. -DCMAKE_TOOLCHAIN_FILE=C:/Git/vcpkg/scripts/buildsystems/vcpkg.cmake + ## Windows (using the Arrow installation which was build from source as above) cmake .. -DARROW_INSTALL=%ARROW_INSTALL% ``` @@ -195,2391 +209,15 @@ cmake --build . --config Release --target install -## Arrow Datatypes and kdb+ mappings - -Currently Arrow supports over 35 datatypes including concrete, parameterized and nested datatypes. - -Similar to the C++ Arrow library and pyarrow, `arrowkdb` exposes the Arrow datatype constructors to q. When one of these constructors is called it will return an integer datatype identifier which can then be passed to other functions, e.g. when creating a field. - -### Concrete Datatypes - -These cover the datatypes where there is a single fixed representation of that datatype. - -| **Arrow Datatype** | **Description** | **Kdb+ representation of Arrow array** | -| ------------------ | ------------------------------------------------------- | ---------------------------------------------------- | -| na | NULL type having no physical storage | Mixed list of empty lists | -| boolean | Boolean as 1 bit, LSB bit-packed ordering | 1h | -| uint8 | Unsigned 8-bit little-endian integer | 4h | -| int8 | Signed 8-bit little-endian integer | 4h | -| uint16 | Unsigned 16-bit little-endian integer | 5h | -| int16 | Signed 16-bit little-endian integer | 5h | -| uint32 | Unsigned 32-bit little-endian integer | 6h | -| int32 | Signed 32-bit little-endian integer | 6h | -| uint64 | Unsigned 64-bit little-endian integer | 7h | -| int64 | Signed 64-bit little-endian integer | 7h | -| float16 | 2-byte floating point value (populated from uint16_t) | 5h | -| float32 | 4-byte floating point value | 8h | -| float64 | 8-byte floating point value | 9h | -| utf8 | UTF8 variable-length string | Mixed list of 10h | -| large_utf8 | Large UTF8 variable-length string | Mixed list of 10h | -| binary | Variable-length bytes (no guarantee of UTF8-ness) | Mixed list of 4h | -| large_binary | Large variable-length bytes (no guarantee of UTF8-ness) | Mixed list of 4h | -| date32 | int32_t days since the UNIX epoch | 14h (with automatic epoch offsetting) | -| date64 | int64_t milliseconds since the UNIX epoch | 12h (with automatic epoch offsetting and ms scaling) | -| month_interval | Interval described as a number of months | 13h | -| day_time_interval | Interval described as number of days and milliseconds | 16h (with automatic ns scaling) | - - - -### Parameterized Datatypes - -These represent multiple logical interpretations of the underlying physical data, where each parameterized interpretation is a distinct datatype in its own right. - -| **Arrow Datatype** | **Description** | **Kdb+ representation of Arrow array** | -| ----------------------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | -| fixed_size_binary(byte_width) | Fixed-size binary. Each value occupies the same number of bytes. | Mixed list of 4h | -| timestamp(time_unit) | Exact timestamp encoded with int64_t (as number of seconds, milliseconds, microseconds or nanoseconds since UNIX epoch) | 12h (with automatic epoch offsetting and TimeUnit scaling) | -| time32(time_unit) | Time as signed 32-bit integer, representing either seconds or milliseconds since midnight | 19h (with automatic TimeUnit scaling) | -| time64(time_unit) | Time as signed 64-bit integer, representing either microseconds or nanoseconds since midnight | 16h (with automatic TimeUnit scaling) | -| duration(time_unit) | Measure of elapsed time in either seconds, milliseconds, microseconds or nanoseconds | 16h (with automatic TimeUnit scaling) | -| decimal128(precision, scale) | Precision- and scale-based signed 128-bit integer in two's complement | Mixed list of 4h (each of length 16) | - - - -### Nested Datatypes - -These are used to define higher level groupings of either the child datatypes or its constituent fields (a field specifies its datatype and the field's name). - -| **Arrow Datatype** | **Description** | **Kdb+ representation of Arrow array** | -| ------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | -| list(datatype_id) | List datatype specified in terms of its child datatype | Mixed list for the parent list array containing a set of sub-lists (of type determined by the child datatype), one for each of the list value sets | -| large_list(datatype_id) | Large list datatype specified in terms of its child datatype | Mixed list for the parent list array containing a set of sub-lists (of type determined by the child datatype), one for each of the list value sets | -| fixed_size_list(datatype_id, list_size) | Fixed size list datatype specified in terms of its child datatype and the fixed size of each of the child lists | Same as variable length lists, except each of the sub-lists must be of length equal to the list_size | -| map(key_datatype_id, item_datatype_id) | Map datatype specified in terms of its key and item child datatypes | Mixed list for the parent map array, with a dictionary for each map value set | -| struct(field_ids) | Struct datatype specified in terms of a list of its constituent child field identifiers | Mixed list for the parent struct array, containing child lists for each field in the struct | -| dictionary(value_datatype_id, index_datatype_id) | A dictionary datatype specified in terms of its value and index datatypes, similar to pandas categorical | Two item item mixed list, first item contains the values list and the second item contains the indices list. | -| sparse_union(field_ids) | Union datatype specified in terms of a list of its constituent child field identifiers | Similar to a struct array except the mixed list has an additional type_id array (5h) at the start which identifies the live field in each union value set | -| dense_union(field_ids) | Union datatype specified in terms of a list of its constituent child field identifiers | Similar to a struct array except the mixed list has an additional type_id array (5h) at the start which identifies the live field in each union value set | - - - -### Inferred Datatypes - -It is also possible to have `arrowkbd` infer a suitable Arrow datatype from the type of a kdb+ list. Similarly Arrow schemas can be inferred from a kdb+ table. This approach is easier to use but only supports a subset of the Arrow datatypes and is considerably less flexible. Inferring Arrow datatypes is suggested if you are less familiar with Arrow or do not wish to use the more complex or nested Arrow datatypes. - -| Kdb+ list type | Inferred Arrow Datatype | Notes | -| ----------------- | ----------------------- | --------------------------------------------- | -| 1h | boolean | | -| 2h | fixed_size_binary(16) | Writing path only, reads as mixed list of 4h | -| 4h | int8 | | -| 5h | int16 | | -| 6h | int32 | | -| 7h | int64 | | -| 8h | float32 | | -| 9h | float64 | | -| 10h | int8 | Writing path only, reads as 4h | -| 11h | utf8 | Writing path only, reads as mixed list of 10h | -| 12h | timestamp(nano) | | -| 13h | month_interval | | -| 14h | date32 | | -| 15h | NA | Cast in q with `timestamp$ | -| 16h | time64(nano) | | -| 17h | NA | Cast in q with `time$ | -| 18h | NA | Cast in q with `time$ | -| 19h | time32(milli) | | -| Mixed list of 4h | binary | | -| Mixed list of 10h | utf8 | | - -??? warning "The inference only works for a trivial kdb lists containing simple datatypes" - - Only mixed lists of char arrays or byte arrays are supported, mapped to Arrow utf8 and binary datatypes respectively. Other mixed list structures (e.g. those used by the nested arrow datatypes) cannot be interpreted - if required these should be created manually using the datatype constructors - - - -### Parquet Datatype Limitations - -The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype: - -| Arrow Datatype | Status as of apache-arrow-2.0.0 | -| ----------------- | ------------------------------------------------------- | -| float16 | Unsupported | -| month_interval | Unsupported | -| day_time_interval | Unsupported | -| duration | Unsupported | -| large_utf8 | Unsupported | -| large_binary | Unsupported | -| sparse_union | Unsupported | -| dense_union | Unsupported | -| date64 | Mapped to date32(days) | -| fixed_size_list | Mapped to list | -| dictionary | Categorical representation stored | -| uint32 | Parquet v2.0 only, otherwise mapped to int64 | -| timestamp(nano) | Parquet v2.0 only, otherwise mapped to timestamp(milli) | - - - -## Arrow Fields - -An Arrow field describes a column in the table and is composed of a datatype and a string field name. - -Similar to the C++ Arrow library and pyarrow, `arrowkdb` exposes the Arrow field constructor to q. The field constructor takes the field name and its datatype identifier and will return an integer field identifier which can then be passed to other functions, e.g. when creating a schema. - - - -## Arrow Schemas - -An Arrow schema is built up from a list of fields and is used when working with table data. The datatype of each field in the schema determines the array data layout for that column in the table. - -Similar to the C++ Arrow library and pyarrow, `arrowkdb` exposes the Arrow schema constructor to q. The schema constructor takes a list of field identifiers and will return an integer schema identifier which can then be passed to other functions, e.g. when writing Arrow or Parquet files. - - - -## Arrow Tables - -An Arrow table is composed from a schema and a mixed list of Arrow array data kdb objects: - -- The array data for each column in the table is then populated using a builder object specific to that field's datatype -- Similarly datatype specific reader objects are used to interpret and inspect the array data for each column in the table - -The mixed list of Arrow array data kdb objects should be ordered in schema field number. Each kdb object representing one of the arrays must be structured according to the field's datatype. This required array data structure is detailed above for each of the datatypes. - - - -## Function Reference - -### Datatype Constructors - -#### **`dt.na`** - -*Create a NULL datatype* - -```q -.arrowkdb.dt.na[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.na[]] -null -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.na[];(();();())] -3 nulls -``` - -#### **`dt.boolean`** - -*Create a boolean datatype* - -```q -.arrowkdb.dt.boolean[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.boolean[]] -bool -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.boolean[];(010b)] -[ - false, - true, - false -] -``` - -#### **`dt.uint8`** - -*Create an uint8 datatype* - -```q -.arrowkdb.dt.uint8[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.uint8[]] -uint8 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.uint8[];(0x102030)] -[ - 16, - 32, - 48 -] -``` - -#### **`dt.int8`** - -*Create an int8 datatype* - -```q -.arrowkdb.dt.int8[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.int8[]] -int8 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.int8[];(0x102030)] -[ - 16, - 32, - 48 -] -``` - -#### **`uint16`** - -*Create an uint16 datatype* - -```q -.arrowkdb.dt.uint16[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.uint16[]] -uint16 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.uint16[];(11 22 33h)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.int16`** - -*Create an int16 datatype* - -```q -.arrowkdb.dt.int16[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.int16[]] -int16 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.int16[];(11 22 33h)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.uint32`** - -*Create an uint32 datatype* - -```q -.arrowkdb.dt.uint32[] -``` - -Returns the datatype identifier - -??? warning "`uint32` datatype is supported by Parquet v2.0 only, being changed to `int64` otherwise" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.uint32[]] -uint32 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.uint32[];(11 22 33i)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.int32`** - -*Create an int32 datatype* - -```q -.arrowkdb.dt.int32[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.int32[]] -int32 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.int32[];(11 22 33i)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.uint64`** - -*Create an uint64 datatype* - -```q -.arrowkdb.dt.uint64[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.uint64[]] -uint64 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.uint64[];(11 22 33j)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.int64`** - -*Create an int64 datatype* - -```q -.arrowkdb.dt.int64[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.int64[]] -int64 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.int64[];(11 22 33j)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.float16`** - -*Create a float16 (represented as uint16_t) datatype* - -```q -.arrowkdb.dt.float16[] -``` - -Returns the datatype identifier - -??? warning "`float16` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) +## Documentation -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.float16[]] -halffloat -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.float16[];(11 22 33h)] -[ - 11, - 22, - 33 -] -``` - -#### **`dt.float32`** - -*Create a float32 datatype* - -```q -.arrowkdb.dt.float32[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.float32[]] -float -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.float32[];(1.1 2.2 3.3e)] -[ - 1.1, - 2.2, - 3.3 -] -``` - -#### **`dt.float64`** - -*Create a float64 datatype* - -```q -.arrowkdb.dt.float64[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.float64[]] -double -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.float64[];(1.1 2.2 3.3f)] -[ - 1.1, - 2.2, - 3.3 -] -``` - -#### **`dt.utf8`** - -*Create a UTF8 variable length string datatype* - -```q -.arrowkdb.dt.utf8[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.utf8[]] -string -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.utf8[];(enlist "a";"bb";"ccc")] -[ - "a", - "bb", - "ccc" -] -``` - -#### **`dt.large_utf8`** - -*Create a large (64 bit offsets) UTF8 variable length string datatype* - -```q -.arrowkdb.dt.large_utf8[] -``` - -Returns the datatype identifier - -??? warning "`large_utf8` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.large_utf8[]] -large_string -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.large_utf8[];(enlist "a";"bb";"ccc")] -[ - "a", - "bb", - "ccc" -] -``` - -#### **`dt.binary`** - -*Create a variable length bytes datatype* - -```q -.arrowkdb.dt.binary[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.binary[]] -binary -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.binary[];(enlist 0x11;0x2222;0x333333)] -[ - 11, - 2222, - 333333 -] -``` - -#### **`dt.large_binary`** - -*Create a large (64 bit offsets) variable length bytes datatype* - -```q -.arrowkdb.dt.large_binary[] -``` - -Returns the datatype identifier - -??? warning "`large_binary` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.large_binary[]] -large_binary -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.large_binary[];(enlist 0x11;0x2222;0x333333)] -[ - 11, - 2222, - 333333 -] -``` - -#### **`dt.fixed_size_binary`** - -*Create a fixed width bytes datatype* - -```q -.arrowkdb.dt.fixed_size_binary[byte_width] -``` - -Where `byte_width` is the int32 fixed size byte width (each value in the array occupies the same number of bytes). - -returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.fixed_size_binary[2i]] -fixed_size_binary[2] -q).arrowkdb.dt.getByteWidth[.arrowkdb.dt.fixed_size_binary[2i]] -2i -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.fixed_size_binary[2i];(0x1111;0x2222;0x3333)] -[ - 1111, - 2222, - 3333 -] -``` - -#### **`dt.date32`** - -*Create a 32 bit date (days since UNIX epoch) datatype* - -```q -.arrowkdb.dt.date32[] -``` - -Returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.date32[]] -date32[day] -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.date32[];(2001.01.01 2002.02.02 2003.03.03)] -[ - 2001-01-01, - 2002-02-02, - 2003-03-03 -] -``` - -#### **`dt.date64`** - -*Create a 64 bit date (milliseconds since UNIX epoch) datatype* - -```q -.arrowkdb.dt.date64[] -``` - -Returns the datatype identifier - -??? warning "`date64` datatype is changed to `date32(days)` by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.date64[]] -date64[ms] -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.date64[];(2001.01.01D00:00:00.000000000 2002.02.02D00:00:00.000000000 2003.03.03D00:00:00.000000000)] -[ - 2001-01-01, - 2002-02-02, - 2003-03-03 -] -``` +Documentation outlining the functionality available for this interface can be found [here](https://code.kx.com/q/interfaces/arrow/). -#### **`dt.timestamp`** -*Create a 64 bit timestamp (units since UNIX epoch with specified granularity) datatype* -```q -.arrowkdb.dt.timestamp[time_unit] -``` - -Where `time_unit` is the time unit string: SECOND, MILLI, MICRO or NANO - -returns the datatype identifier - -??? warning "`timestamp(nano)` datatype is supported by Parquet v2.0 only, being mapped to `timestamp(milli)` otherwise" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.timestamp[`NANO]] -timestamp[ns] -q).arrowkdb.dt.getTimeUnit[.arrowkdb.dt.timestamp[`NANO]] -`NANO -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.timestamp[`NANO];(2001.01.01D00:00:00.100000001 2002.02.02D00:00:00.200000002 2003.03.03D00:00:00.300000003)] -[ - 2001-01-01 00:00:00.100000001, - 2002-02-02 00:00:00.200000002, - 2003-03-03 00:00:00.300000003 -] -``` - -#### **`dt.time32`** - -*Create a 32 bit time (units since midnight with specified granularity) datatype* - -```q -.arrowkdb.dt.time32[time_unit] -``` - -Where `time_unit` is the time unit string: SECOND or MILLI - -returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.time32[`MILLI]] -time32[ms] -q).arrowkdb.dt.getTimeUnit[.arrowkdb.dt.time32[`MILLI]] -`MILLI -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.time32[`MILLI];(01:00:00.100 02:00:00.200 03:00:00.300)] -[ - 01:00:00.100, - 02:00:00.200, - 03:00:00.300 -] -``` - -#### **`dt.time64`** - -*Create a 64 bit time (units since midnight with specified granularity) datatype* - -```q -.arrowkdb.dt.time64[time_unit] -``` - -Where `time_unit` is the time unit string: MICRO or NANO - -returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.time64[`NANO]] -time64[ns] -q).arrowkdb.dt.getTimeUnit[.arrowkdb.dt.time64[`NANO]] -`NANO -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.time64[`NANO];(0D01:00:00.100000001 0D02:00:00.200000002 0D03:00:00.300000003)] -[ - 01:00:00.100000001, - 02:00:00.200000002, - 03:00:00.300000003 -] -``` - -#### **`dt.month_interval`** - -*Create a 32 bit interval (described as a number of months, similar to YEAR_MONTH in SQL) datatype* - -```q -.arrowkdb.dt.month_interval[] -``` - -Returns the datatype identifier - -??? warning "`month_interval` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.month_interval[]] -month_interval -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.month_interval[];(2001.01m,2002.02m,2003.03m)] -[ - 12, - 25, - 38 -] -``` - -#### **`dt.day_time_interval`** - -*Create a 64 bit interval (described as a number of days and milliseconds, similar to DAY_TIME in SQL) datatype* - -```q -.arrowkdb.dt.day_time_interval[] -``` - -Returns the datatype identifier - -??? warning "`day_time_interval` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.day_time_interval[]] -day_time_interval -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.day_time_interval[];(0D01:00:00.100000000 0D02:00:00.200000000 0D03:00:00.300000000)] -[ - 0d3600100ms, - 0d7200200ms, - 0d10800300ms -] -``` - -#### **`dt.duration`** - -*Create a 64 bit duration (measured in units of specified granularity) datatype* - -```q -.arrowkdb.dt.duration[time_unit] -``` - -Where `time_unit` is the time unit string: SECOND, MILLI, MICRO or NANO - -returns the datatype identifier - -??? warning "`duration` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.duration[`NANO]] -duration[ns] -q).arrowkdb.dt.getTimeUnit[.arrowkdb.dt.duration[`NANO]] -`NANO -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.duration[`NANO];(0D01:00:00.100000000 0D02:00:00.200000000 0D03:00:00.300000000)] -[ - 3600100000000, - 7200200000000, - 10800300000000 -] -``` - -#### **`dt.decimal128`** - -*Create a 128 bit integer (with precision and scale in two's complement) datatype* - -```q -.arrowkdb.dt.decimal128[precision;scale] -``` - -Where: - -- `precision` is the int32 precision width -- `scale` is the int32 scaling factor - -returns the datatype identifier - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.decimal128[38i;2i]] -decimal(38, 2) -q).arrowkdb.dt.getPrecisionScale[.arrowkdb.dt.decimal128[38i;2i]] -38 -2 -q).arrowkdb.ar.prettyPrintArray[.arrowkdb.dt.decimal128[38i;2i];(0x00000000000000000000000000000000; 0x01000000000000000000000000000000; 0x00000000000000000000000000000080)] -[ - 0.00, - 0.01, - -1701411834604692317316873037158841057.28 -] -q) // With little endian two's complement the decimal128 values are 0, minimum positive, maximum negative -``` - -#### **`dt.list`** - -*Create a list datatype, specified in terms of its child datatype* - -```q -.arrowkdb.dt.list[child_datatype_id] -``` - -Where `child_datatype_id` is the identifier of the list's child datatype - -returns the datatype identifier - -```q -q)list_datatype:.arrowkdb.dt.list[.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype[list_datatype] -list -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.getListDatatype[list_datatype]] -int64 -q).arrowkdb.ar.prettyPrintArray[list_datatype;((enlist 1);(2 2);(3 3 3))] -[ - [ - 1 - ], - [ - 2, - 2 - ], - [ - 3, - 3, - 3 - ] -] -``` - -#### **`dt.large_list`** - -*Create a large (64 bit offsets) list datatype, specified in terms of its child datatype* - -```q -.arrowkdb.dt.large_list[child_datatype_id] -``` +## Status -Where `child_datatype_id` is the identifier of the list's child datatype - -returns the datatype identifier - -```q -q)list_datatype:.arrowkdb.dt.large_list[.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype[list_datatype] -large_list -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.getListDatatype[list_datatype]] -int64 -q).arrowkdb.ar.prettyPrintArray[list_datatype;((enlist 1);(2 2);(3 3 3))] -[ - [ - 1 - ], - [ - 2, - 2 - ], - [ - 3, - 3, - 3 - ] -] -``` - -#### **`dt.fixed_size_list`** - -*Create a fixed size list datatype, specified in terms of its child datatype* - -```q -.arrowkdb.dt.fixed_size_list[child_datatype_id;list_size] -``` - -Where: - -- `child_datatype_id` is the identifier of the list's child datatype -- `list_size` is the int32 fixed size of each of the child lists - -returns the datatype identifier - -??? warning "`fixed_size_list` datatype is changed to `list` by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q)list_datatype:.arrowkdb.dt.fixed_size_list[.arrowkdb.dt.int64[];2i] -q).arrowkdb.dt.printDatatype[list_datatype] -fixed_size_list[2] -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.getListDatatype[list_datatype]] -int64 -q).arrowkdb.dt.getListSize[list_datatype] -2i -q).arrowkdb.ar.prettyPrintArray[list_datatype;((1 1);(2 2);(3 3))] -[ - [ - 1, - 1 - ], - [ - 2, - 2 - ], - [ - 3, - 3 - ] -] -``` - -#### **`dt.map`** - -*Create a map datatype, specified in terms of its key and item child datatypes* - -```q -.arrowkdb.dt.map[key_datatype_id;item_datatype_id] -``` - -Where: - -- `key_datatype_id` is the identifier of the map key child datatype -- `item_datatype_id` is the identifier of the map item child datatype - -returns the datatype identifier - -```q -q)map_datatype:.arrowkdb.dt.map[.arrowkdb.dt.int64[];.arrowkdb.dt.float64[]] -q).arrowkdb.dt.printDatatype[map_datatype] -map -q).arrowkdb.dt.printDatatype each .arrowkdb.dt.getMapDatatypes[map_datatype] -int64 -double -:: -:: -q).arrowkdb.ar.prettyPrintArray[map_datatype;((enlist 1)!(enlist 1f);(2 2)!(2 2f);(3 3 3)!(3 3 3f))] -[ - keys: - [ - 1 - ] - values: - [ - 1 - ], - keys: - [ - 2, - 2 - ] - values: - [ - 2, - 2 - ], - keys: - [ - 3, - 3, - 3 - ] - values: - [ - 3, - 3, - 3 - ] -] -``` - -#### `dt.dictionary` - -*A dictionary datatype specified in terms of its value and index datatypes, similar to pandas categorical* - -```q -.arrowkdb.dt.dictionary[value_datatype_id;index_datatype_id] -``` - -Where: - -- `value_datatype_id` is the identifier of the dictionary value datatype, must be a scalar type -- `index_datatype_id` is the identifier of the dictionary index datatype, must be a signed int type - -returns the datatype identifier - -??? warning "Only the categorical interpretation of a `dictionary` datatype array is saved by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q)dict_datatype:.arrowkdb.dt.dictionary[.arrowkdb.dt.utf8[];.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype[dict_datatype] -dictionary -q).arrowkdb.dt.printDatatype each .arrowkdb.dt.getDictionaryDatatypes[dict_datatype] -string -int64 -:: -:: -q).arrowkdb.ar.prettyPrintArray[dict_datatype;(("aa";"bb";"cc");(2 0 1 0 0))] - --- dictionary: - [ - "aa", - "bb", - "cc" - ] --- indices: - [ - 2, - 0, - 1, - 0, - 0 - ] -q) // The categorical interpretation of the dictionary (looking up the values set at each index) would be: "cc", "aa", "bb", "aa", "aa" -``` - -#### **`dt.struct`** - -*Create a struct datatype, specified in terms of the field identifiers of its children* - -```q -.arrowkdb.dt.struct[field_ids] -``` - -Where `field_ids` is the list of field identifiers of the struct's children - -returns the datatype identifier - -```q -q)field_one:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)field_two:.arrowkdb.fd.field[`utf8_field;.arrowkdb.dt.utf8[]] -q)struct_datatype:.arrowkdb.dt.struct[field_one,field_two] -q).arrowkdb.dt.printDatatype[struct_datatype] -struct -q).arrowkdb.fd.fieldName each .arrowkdb.dt.getChildFields[struct_datatype] -`int_field`utf8_field -q).arrowkdb.dt.printDatatype each .arrowkdb.fd.fieldDatatype each .arrowkdb.dt.getChildFields[struct_datatype] -int64 -string -:: -:: -q).arrowkdb.ar.prettyPrintArray[struct_datatype;((1 2 3);("aa";"bb";"cc"))] --- is_valid: all not null --- child 0 type: int64 - [ - 1, - 2, - 3 - ] --- child 1 type: string - [ - "aa", - "bb", - "cc" - ] -q) // By slicing across the lists the logical struct values are: (1,"aa"); (2,"bb"); (3,"cc") -``` - -#### **`dt.sparse_union`** - -*Create a sparse union datatype, specified in terms of the field identifiers of its children* - -```q -.arrowkdb.dt.sparse_union[field_ids] -``` - -Where `field_ids` is the list of field identifiers of the union's children - -returns the datatype identifier - -An arrow union array is similar to a struct array except that it has an additional type_id array which identifies the live field in each union value set. - -??? warning "`sparse_union` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q)field_one:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)field_two:.arrowkdb.fd.field[`utf8_field;.arrowkdb.dt.utf8[]] -q)union_datatype:.arrowkdb.dt.sparse_union[field_one,field_two] -q).arrowkdb.dt.printDatatype[union_datatype] -sparse_union -q).arrowkdb.fd.fieldName each .arrowkdb.dt.getChildFields[union_datatype] -`int_field`utf8_field -q).arrowkdb.dt.printDatatype each .arrowkdb.fd.fieldDatatype each .arrowkdb.dt.getChildFields[union_datatype] -int64 -string -:: -:: -q).arrowkdb.ar.prettyPrintArray[union_datatype;((1 0 1h);(1 2 3);("aa";"bb";"cc"))] --- is_valid: all not null --- type_ids: [ - 1, - 0, - 1 - ] --- child 0 type: int64 - [ - 1, - 2, - 3 - ] --- child 1 type: string - [ - "aa", - "bb", - "cc" - ] -q) // Looking up the type_id array the logical union values are: "aa", 2, "cc" -``` - -#### **`dt.dense_union`** - -*Create a dense union datatype, specified in terms of the field identifiers of its children* - -```q -.arrowkdb.dt.dense_union[field_ids] -``` - -Where `field_ids` is the list of field identifiers of the union's children - -returns the datatype identifier - -An arrow union array is similar to a struct array except that it has an additional type_id array which identifies the live field in each union value set. - -??? warning "`dense_union` datatype is not supported by Parquet" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q)field_one:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)field_two:.arrowkdb.fd.field[`utf8_field;.arrowkdb.dt.utf8[]] -q)union_datatype:.arrowkdb.dt.dense_union[field_one,field_two] -q).arrowkdb.dt.printDatatype[union_datatype] -dense_union -q).arrowkdb.fd.fieldName each .arrowkdb.dt.getChildFields[union_datatype] -`int_field`utf8_field -q).arrowkdb.dt.printDatatype each .arrowkdb.fd.fieldDatatype each .arrowkdb.dt.getChildFields[union_datatype] -int64 -string -:: -:: -q).arrowkdb.ar.prettyPrintArray[union_datatype;((1 0 1h);(1 2 3);("aa";"bb";"cc"))] --- is_valid: all not null --- type_ids: [ - 1, - 0, - 1 - ] --- value_offsets: [ - 0, - 0, - 0 - ] --- child 0 type: int64 - [ - 1, - 2, - 3 - ] --- child 1 type: string - [ - "aa", - "bb", - "cc" - ] -q) // Looking up the type_id array the logical union values are: "aa", 2, "cc" -``` - -#### `dt.inferDatatype` - -* Infer an Arrow datatype from a kdb+ list* - -```q -.arrowkdb.dt.inferDatatype[list] -``` - -Where `list` is a kdb+ list - -returns the datatype identifier - -The kdb+ list type is mapped to an Arrow datatype as described [here](#inferreddatatypes). - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.inferDatatype[(1 2 3j)]] -int64 -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.inferDatatype[("aa";"bb";"cc")]] -string -``` - -### Datatype Inspection - -#### `dt.datatypeName` - -*Return the base name of a datatype, ignoring any parameters or child datatypes/fields* - -```q -.arrowkdb.dt.datatypeName[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns a symbol containing the base name of the datatype - -```q -q).arrowkdb.dt.datatypeName[.arrowkdb.dt.int64[]] -`int64 -q).arrowkdb.dt.datatypeName[.arrowkdb.dt.fixed_size_binary[4i]] -`fixed_size_binary -``` - -#### `dt.getTimeUnit` - -*Return the TimeUnit of a time32/time64/timestamp/duration datatype* - -```q -.arrowkdb.dt.getTimeUnit[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns a symbol containing the time unit string: SECOND/MILLI/MICRO/NANO - -```q -q).arrowkdb.dt.getTimeUnit[.arrowkdb.dt.timestamp[`NANO]] -`NANO -``` - -#### `dt.getByteWidth` - -*Return the byte_width of a fixed_size_binary datatype* - -```q -.arrowkdb.dt.getByteWidth[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the int32 byte width - -```q -q).arrowkdb.dt.getByteWidth[.arrowkdb.dt.fixed_size_binary[4i]] -4i -``` - -#### `dt.getListSize` - -*Returns the list_size of a fixed_size_list datatype* - -```q -.arrowkdb.dt.getListSize[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the int32 list size - -```q -q).arrowkdb.dt.getListSize[.arrowkdb.dt.fixed_size_list[.arrowkdb.dt.int64[];4i]] -4i -``` - -#### `dt.getPrecisionScale` - -*Return the precision and scale of a decimal128 datatype* - -```q -.arrowkdb.dt.getPrecisionScale[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the int32 precision and scale - -```q -q).arrowkdb.dt.getPrecisionScale[.arrowkdb.dt.decimal128[38i;2i]] -38 -2 -``` - -#### `dt.getListDatatype` - -*Return the child datatype identifier of a parent list/large_list/fixed_size_list datatype* - -```q -.arrowkdb.dt.getListDatatype[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the list's child datatype identifier - -```q -q)list_datatype:.arrowkdb.dt.list[.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.getListDatatype[list_datatype]] -int64 -``` - -#### `dt.getMapDatatypes` - -*Return the key and item child datatype identifiers of a parent map datatype* - -```q -.arrowkdb.dt.getMapDatatypes[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the map's key and item child datatype identifiers - -```q -q)map_datatype:.arrowkdb.dt.map[.arrowkdb.dt.int64[];.arrowkdb.dt.float64[]] -q).arrowkdb.dt.printDatatype each .arrowkdb.dt.getMapDatatypes[map_datatype] -int64 -double -:: -:: -``` - -#### `dt.getDictionaryDatatypes` - -*Return the value and index child datatype identifiers of a parent dictionary datatype* - -``` -.arrowkdb.dt.getDictionaryDatatypes[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the dictionary's value and index child datatype identifiers - -```q -q)dict_datatype:.arrowkdb.dt.dictionary[.arrowkdb.dt.utf8[];.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype each .arrowkdb.dt.getDictionaryDatatypes[dict_datatype] -string -int64 -:: -:: -``` - -#### `dt.getChildFields` - -*Return the list of child field identifiers of a struct/spare_union/dense_union parent datatype* - -```q -.arrowkdb.dt.getChildFields[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns the list of child field identifiers - -```q -q)field_one:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)field_two:.arrowkdb.fd.field[`utf8_field;.arrowkdb.dt.utf8[]] -q)struct_datatype:.arrowkdb.dt.struct[field_one,field_two] -q).arrowkdb.fd.printField each .arrowkdb.dt.getChildFields[struct_datatype] -int_field: int64 not null -utf8_field: string not null -:: -:: -``` - -### Datatype Management - -#### `dt.listDatatypes` - -*Return the list of identifiers for all Arrow datatypes currently held in the DatatypeStore* - -```q -.arrowkdb.dt.listDatatypes[] -``` - -Returns list of datatype identifiers - -```q -q).arrowkdb.dt.int64[] -1i -q).arrowkdb.dt.float64[] -2i -q).arrowkdb.dt.printDatatype each .arrowkdb.dt.listDatatypes[] -int64 -double -:: -:: -``` - -#### `dt.printDatatype` - -*Display user readable information on the specified datatype identifier, including parameters and nested child datatypes* - -```q -.arrowkdb.dt.printDatatype[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype, - -1. prints datatype information to stdout -1. returns generic null - -??? warning "For debugging use only" - - The information is generated by the `arrow::DataType::ToString()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q).arrowkdb.dt.printDatatype[.arrowkdb.dt.fixed_size_list[.arrowkdb.dt.int64[];4i]] -fixed_size_list[4] -``` - -#### `dt.removeDatatype` - -*Remove an Arrow datatype from the DatatypeStore. Any memory held by the datatype object will be released.* - -```q -.arrowkdb.dt.removeDatatype[datatype_id] -``` - -Where `datatype_id` is the identifier of the datatype - -returns generic null on success - -```q -q).arrowkdb.dt.int64[] -1i -q).arrowkdb.dt.float64[] -2i -q).arrowkdb.dt.listDatatypes[] -1 2i -q).arrowkdb.dt.removeDatatype[1i] -q).arrowkdb.dt.listDatatypes[] -,2i -``` - -#### `dt.equalDatatypes` - -*Check if two Arrow datatypes are logically equal, including parameters and nested child datatypes* - -```q -.arrowkdb.dt.equalDatatypes[first_datatype_id;second_datatype_id] -``` - -Where: - -- `first_datatype_id` is the identifier of the first datatype -- `second_datatype_id` is the identifier of the second datatype - -returns boolean result - -Internally the DatatypeStore uses the `equalDatatypes` functionality to prevent a new datatype identifier being created when an equal datatype is already present in the DatatypeStore, returning the existing datatype identifier instead. - -```q -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.int64[];.arrowkdb.dt.int64[]] -1b -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.int64[];.arrowkdb.dt.float64[]] -0b -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.fixed_size_binary[4i];.arrowkdb.dt.fixed_size_binary[4i]] -1b -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.fixed_size_binary[2i];.arrowkdb.dt.fixed_size_binary[4i]] -0b -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.list[.arrowkdb.dt.int64[]];.arrowkdb.dt.list[.arrowkdb.dt.int64[]]] -1b -q).arrowkdb.dt.equalDatatypes[.arrowkdb.dt.list[.arrowkdb.dt.int64[]];.arrowkdb.dt.list[.arrowkdb.dt.float64[]]] -0b -``` - -### Field Constructor - -#### `fd.field` - -*Create a field instance from its name and datatype* - -```q -.arrowkdb.fd.field[field_name;datatype_id] -``` - -Where: - -- `field_name` is a symbol containing the field's name -- `datatype_id` is the identifier of the field's datatype - -returns the field identifier - -```q -q).arrowkdb.fd.printField[.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]]] -int_field: int64 not null -``` - -### Field Inspection - -#### `fd.fieldName` - -*Return the name of a field* - -``` -.arrowkdb.fd.fieldName[field_id] -``` - -Where `field_id` is the field identifier - -returns a symbol containing the field's name - -```q -q)field:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q).arrowkdb.fd.fieldName[field] -`int_field -``` - -#### `fd.fieldDatatype` - -Return the datatype of a field - -``` -.arrowkdb.fd.fieldDatatype[field_id] -``` - -Where `field_id` is the field identifier - -returns the datatype identifier - -```q -q)field:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q).arrowkdb.dt.printDatatype[.arrowkdb.fd.fieldDatatype[field]] -int64 -``` - -### Field Management - -#### `fd.listFields` - -*Return the list of identifiers for all Arrow fields currently held in the FieldStore* - -```q -.arrowkdb.fd.listFields[] -``` - -Returns list of field identifiers - -```q -q).arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -1i -q).arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -2i -q).arrowkdb.fd.printField each .arrowkdb.fd.listFields[] -int_field: int64 not null -float_field: double not null -:: -:: -``` - -#### `fd.printField` - -*Display user readable information on the specified field identifier, including name and datatype* - -```q -.arrowkdb.fd.printField[field_id] -``` - -Where `field_id` is the identifier of the field, - -1. prints field information to stdout -1. returns generic null - -??? warning "For debugging use only" - - The information is generated by the `arrow::Field::ToString()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q).arrowkdb.fd.printField[.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]]] -int_field: int64 not null -``` - -#### `fd.removeField` - -*Remove an Arrow field from the FieldStore. Any memory held by the field object will be released.* - -```q -.arrowkdb.fd.removeField[field_id] -``` - -Where `field_id` is the identifier of the field - -returns generic null on success - -```q -q).arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -1i -q).arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -2i -q).arrowkdb.fd.listFields[] -1 2i -q).arrowkdb.fd.removeField[1i] -q).arrowkdb.fd.listFields[] -,2i -``` - -#### `fd.equalFields` - -*Check if two Arrow fields are logically equal, including names and datatypes* - -```q -.arrowkdb.fd.equalDatatypes[first_field_id;second_field_id] -``` - -Where: - -- `first_field_id` is the identifier of the first field -- `second_field_id` is the identifier of the second field - -returns boolean result - -Internally the FieldStore uses the `equalFields` functionality to prevent a new field identifier being created when an equal field is already present in the FieldStore, returning the existing field identifier instead. - -```q -q)int_dt:.arrowkdb.dt.int64[] -q)float_dt:.arrowkdb.dt.float64[] -q).arrowkdb.fd.equalFields[.arrowkdb.fd.field[`f1;int_dt];.arrowkdb.fd.field[`f1;int_dt]] -1b -q).arrowkdb.fd.equalFields[.arrowkdb.fd.field[`f1;int_dt];.arrowkdb.fd.field[`f2;int_dt]] -0b -q).arrowkdb.fd.equalFields[.arrowkdb.fd.field[`f1;int_dt];.arrowkdb.fd.field[`f1;float_dt]] -0b -``` - -### Schema Constructors - -#### `sc.schema` - -*Create a schema instance from a list of field identifiers* - -```q -.arrowkdb.sc.schema[field_ids] -``` - -Where `fields_ids` is a list of field identifiers - -returns the schema identifier - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q).arrowkdb.sc.printSchema[.arrowkdb.sc.schema[(f1,f2)]] -int_field: int64 not null -float_field: double not null -``` - -#### `sc.inferSchema` - -*Infer and construct an Arrow schema based on a kdb+ table* - -```q -.arrowkdb.sc.inferSchema[table] -``` - -Where `table` is a kdb+ table or dictionary - -returns the schema identifier - -??? warning "Inferred schemas only support a subset of the Arrow datatypes and is considerably less flexible than creating them with the datatype/field/schema constructors" - - Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferred-datatypes). - -```q -q)schema_from_table:.arrowkdb.sc.inferSchema[([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc"))] -q).arrowkdb.sc.printSchema[schema_from_table] -int_field: int64 -float_field: double -str_field: string -``` - -### Schema Inspection - -#### `sc.schemaFields` - -*Return the list of field identifiers used by the schema instance* - -```q -.arrowkdb.sc.schemaFields[schema_id] -``` - -Where `schema_id` is the schema identifier - -returns list of field identifiers used by the schema - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)schema:.arrowkdb.sc.schema[(f1,f2)] -q).arrowkdb.fd.printField each .arrowkdb.sc.schemaFields[schema] -int_field: int64 not null -float_field: double not null -:: -:: -``` - -### Schema Management - -#### `sc.listSchemas` - -*Return the list of identifiers for all Arrow schemas currently held in the SchemaStore* - -```q -.arrowkdb.sc.listSchemas[] -``` - -Returns list of schema identifiers - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q).arrowkdb.sc.schema[(f1,f2)] -1i -q).arrowkdb.sc.schema[(f2,f1)] -2i -q).arrowkdb.sc.listSchemas[] -1 2i -``` - -#### `sc.printSchema` - -*Display user readable information on the specified schema identifier, including its fields and their order* - -```q -.arrowkdb.sc.printSchema[schema_id] -``` - -Where `schema_id` is the identifier of the schema, - -1. prints schema information to stdout -1. returns generic null - -??? warning "For debugging use only" - - The information is generated by the `arrow::Schema::ToString()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q).arrowkdb.sc.printSchema[schema] -int_field: int64 not null -float_field: double not null -str_field: string not null -``` - -#### `sc.removeSchema` - -*Remove an Arrow schema from the SchemaStore. Any memory held by the field object will be released.* - -```q -.arrowkdb.sc.removeSchema[schema_id] -``` - -Where `schema_id` is the identifier of the schema - -returns generic null on success - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q).arrowkdb.sc.schema[(f1,f2)] -1i -q).arrowkdb.sc.schema[(f2,f1)] -2i -q).arrowkdb.sc.listSchemas[] -1 2i -q).arrowkdb.sc.removeSchema[1i] -q).arrowkdb.sc.listSchemas[] -,2i -``` - -#### `sc.equalSchemas` - -*Check if two Arrow schemas are logically equal, including their fields and the fields' order* - -```q -.arrowkdb.sc.equalSchemas[first_schema_id;second_schema_id] -``` - -Where: - -- `first_schema_id` is the identifier of the first schema -- `second_schema_id` is the identifier of the second schema - -returns boolean result - -Internally the SchemaStore uses the `equalSchemas` functionality to prevent a new schema identifier being created when an equal schema is already present in the SchemaStore, returning the existing schema identifier instead. - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q).arrowkdb.sc.schema[(f1,f2)] -1i -q).arrowkdb.sc.schema[(f2,f1)] -2i -q).arrowkdb.sc.equalSchemas[.arrowkdb.sc.schema[(f1,f2)];.arrowkdb.sc.schema[(f1,f2)]] -1b -q).arrowkdb.sc.equalSchemas[.arrowkdb.sc.schema[(f1,f2)];.arrowkdb.sc.schema[(f1,f1)]] -0b -q).arrowkdb.sc.equalSchemas[.arrowkdb.sc.schema[(f1,f2)];.arrowkdb.sc.schema[(f2,f1)]] -0b -``` - -### Array Data - -#### `ar.prettyPrintArray` - -*Convert a kdb+ list to an Arrow array and pretty prints the array* - -```q -.arrowkdb.ar.prettyPrintArray[datatype_id;list] -``` - -Where: - -- `datatype_id` is the datatype identifier of the array -- `list` is the kdb+ list data to be displayed - -the function - -1. prints array contents to stdout -1. returns generic null - -??? warning "For debugging use only" - - The information is generated by the `arrow::PrettyPrint()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q)int_datatype:.arrowkdb.dt.int64[] -q).arrowkdb.ar.prettyPrintArray[int_datatype;(1 2 3j)] -[ - 1, - 2, - 3 -] -``` - -#### `ar.prettyPrintArrayFromList` - -*Convert a kdb+ list to an Arrow array and pretty print the array, inferring the Arrow datatype from the kdb+ list type* - -```q -.arrowkdb.ar.prettyPrintArrayFromList[list] -``` - -Where `list` is the kdb+ list data to be displayed - -the function - -1. prints array contents to stdout -1. returns generic null - -The kdb+ list type is mapped to an Arrow datatype as described [here](#inferreddatatypes). - -??? warning "For debugging use only" - - The information is generated by the `arrow::PrettyPrint()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q).arrowkdb.ar.prettyPrintArrayFromList[(1 2 3j)] -[ - 1, - 2, - 3 -] -``` - -### Table Data - -#### `tb.prettyPrintTable` - -*Convert a kdb+ mixed list of Arrow array data to an Arrow table and pretty print the table* - -``` -.arrowkdb.tb.prettyPrintTable[schema_id;array_data] -``` - -Where: - -- `schema_id` is the schema identifier of the table -- `array_data` is a mixed list of array data - -the function - -1. prints table contents to stdout -1. returns generic null - -The mixed list of Arrow array data should be ordered in schema field number and each list item representing one of the arrays must be structured according to the field's datatype. - -??? warning "For debugging use only" - - The information is generated by the `arrow::Table::ToString()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q).arrowkdb.tb.prettyPrintTable[schema;((1 2 3j);(4 5 6f);("aa";"bb";"cc"))] -int_field: int64 not null -float_field: double not null -str_field: string not null ----- -int_field: - [ - [ - 1, - 2, - 3 - ] - ] -float_field: - [ - [ - 4, - 5, - 6 - ] - ] -str_field: - [ - [ - "aa", - "bb", - "cc" - ] - ] -``` - -### `tb.prettyPrintTableFromTable` - -*Convert a kdb+ table to an Arrow table and pretty print the table, inferring the Arrow schema from the kdb+ table structure* - -```q -.arrowkdb.tb.prettyPrintTableFromTable[table] -``` - -Where `table` is a kdb+ table - -the function - -1. prints table contents to stdout -1. returns generic null - -Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferreddatatypes). - -??? warning "Inferred schemas only support a subset of the Arrow datatypes and is considerably less flexible than creating them with the datatype/field/schema constructors" - - Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferred-datatypes). - -??? warning "For debugging use only" - - The information is generated by the `arrow::Table::ToString()` functionality and displayed on stdout to preserve formatting and indentation. - -```q -q).arrowkdb.tb.prettyPrintTableFromTable[([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc"))] -int_field: int64 -float_field: double -str_field: string ----- -int_field: - [ - [ - 1, - 2, - 3 - ] - ] -float_field: - [ - [ - 4, - 5, - 6 - ] - ] -str_field: - [ - [ - "aa", - "bb", - "cc" - ] - ] -``` - -### Parquet Files - -#### `pq.writeParquet` - -*Convert a kdb+ mixed list of Arrow array data to an Arrow table and write to a Parquet file* - -```q -.arrowkdb.pq.writeParquet[parquet_file;schema_id;array_data;options] -``` - -Where: - -- `parquet_file` is a string containing the Parquet file name -- `schema_id` is the schema identifier to use for the table -- `array_data` is a mixed list of array data -- `options` is a dictionary of symbol options to long/symbol values (pass :: to use defaults) - -returns generic null on success - -The mixed list of Arrow array data should be ordered in schema field number and each list item representing one of the arrays must be structured according to the field's datatype. - -Supported options: - -- `PARQUET_CHUNK_SIZE` - Controls the approximate size of encoded data pages within a column chunk (long, default: 1MB) -- `PARQUET_VERSION` - Select the Parquet format version, either `V1.0` or `V2.0`. `V2.0` is more fully featured but may be incompatible with older Parquet implementations (symbol, default `V1.0`) - -??? warning "The Parquet format is compressed and designed for for maximum space efficiency which may cause a performance overhead compared to Arrow. Parquet is also less fully featured than Arrow which can result in schema limitations" - - The Parquet file format is less fully featured compared to Arrow and consequently the Arrow/Parquet file writer currently does not support some datatypes or represents them using a different datatype as described [here](#parquet-datatype-limitations) - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.pq.writeParquet["file.parquet";schema;array_data;::] -q)read_data:.arrowkdb.pq.readParquetData["file.parquet";::] -q)array_data~read_data -1b -``` - -#### `pq.writeParquetFromTable` - -*Convert a kdb+ table to an Arrow table and write to a Parquet file, inferring the Arrow schema from the kdb+ table structure* - -```q -.arrowkdb.pq.writeParquetFromTable[parquet_file;table;options] -``` - -Where: - -- `parquet_file` is a string containing the Parquet file name -- `table` is a kdb+ table -- `options` is a dictionary of symbol options to long/symbol values (pass :: to use defaults) - -returns generic null on success - -Supported options: - -- `PARQUET_CHUNK_SIZE` - Controls the approximate size of encoded data pages within a column chunk (long, default: 1MB) -- `PARQUET_VERSION` - Select the Parquet format version, either `V1.0` or `V2.0`. `V2.0` is more fully featured but may be incompatible with older Parquet implementations (symbol, default `V1.0`) - -??? warning "Inferred schemas only support a subset of the Arrow datatypes and is considerably less flexible than creating them with the datatype/field/schema constructors" - - Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferred-datatypes). - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q).arrowkdb.pq.writeParquetFromTable["file.parquet";table;::] -q)read_table:.arrowkdb.pq.readParquetToTable["file.parquet";::] -q)read_table~table -1b -``` - -#### `pq.readParquetSchema` - -*Read the Arrow schema from a Parquet file* - -```q -.arrowkdb.pq.readParquetSchema[parquet_file] -``` - -Where `parquet_file` is a string containing the Parquet file name - -returns the schema identifier - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.pq.writeParquet["file.parquet";schema;array_data;::] -q).arrowkdb.sc.equalSchemas[schema;.arrowkdb.pq.readParquetSchema["file.parquet"]] -1b -``` - -#### `pq.readParquetData` - -*Read an Arrow table from a Parquet file and convert to a kdb+ mixed list of Arrow array data* - -```q -.arrowkdb.pq.readParquetData[parquet_file;options] -``` - -Where: - -- `parquet_file` is a string containing the Parquet file name -- `options` is a dictionary of symbol options to long values (pass :: to use defaults) - -returns the array data - -Supported options: - -- `PARQUET_MULTITHREADED_READ` - Flag indicating whether the Parquet reader should run in multithreaded mode. This can improve performance by processing multiple columns in parallel (long, default: 0) - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.pq.writeParquet["file.parquet";schema;array_data;::] -q)read_data:.arrowkdb.pq.readParquetData["file.parquet";::] -q)array_data~read_data -1b -``` - -#### `pq.readParquetToTable` - -*Read an Arrow table from a Parquet file and convert to a kdb+ table* - -```q -.arrowkdb.pq.readParquetToTable[parquet_file;options] -``` - -Where: - -- `parquet_file` is a string containing the Parquet file name -- `options` is a dictionary of symbol options to long values (pass :: to use defaults) - -returns the kdb+ table - -Each schema field name is used as the column name and the Arrow array data is used as the column data. - -Supported options: - -- `PARQUET_MULTITHREADED_READ` - Flag indicating whether the Parquet reader should run in multithreaded mode. This can improve performance by processing multiple columns in parallel (long, default: 0) - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q).arrowkdb.pq.writeParquetFromTable["file.parquet";table;::] -q)read_table:.arrowkdb.pq.readParquetToTable["file.parquet";::] -q)read_table~table -1b -``` - -### Arrow IPC Files - -#### `ipc.writeArrow` - -*Convert a kdb+ mixed list of Arrow array data to an Arrow table and write to an Arrow file* - -```q -.arrowkdb.ipc.writeArrow[arrow_file;schema_id;array_data] -``` - -Where: - -- `arrow_file` is a string containing the Arrow file name -- `schema_id` is the schema identifier to use for the table -- `array_data` is a mixed list of array data - -returns generic null on success - -The mixed list of Arrow array data should be ordered in schema field number and each list item representing one of the arrays must be structured according to the field's datatype. - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.ipc.writeArrow["file.arrow";schema;array_data] -q)read_data:.arrowkdb.ipc.readArrowData["file.arrow"] -q)read_data~array_data -1b -``` - -#### `ipc.writeArrowFromTable` - -*Convert a kdb+ table to an Arrow table and write to an Arrow file, inferring the Arrow schema from the kdb+ table structure* - -```q -.arrowkdb.ipc.writeArrowFromTable[arrow_file;table] -``` - -Where: - -- `arrow_file` is a string containing the Arrow file name -- `table` is a kdb+ table - -returns generic null on success - -??? warning "Inferred schemas only support a subset of the Arrow datatypes and is considerably less flexible than creating them with the datatype/field/schema constructors" - - Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferred-datatypes). - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q).arrowkdb.ipc.writeArrowFromTable["file.arrow";table] -q)read_table:.arrowkdb.ipc.readArrowToTable["file.arrow"] -q)read_table~table -1b -``` - -#### `ipc.readArrowSchema` - -*Read the Arrow schema from an Arrow file* - -```q -.arrowkdb.ipc.readArrowSchema[arrow_file] -``` - -Where `arrow_file` is a string containing the Arrow file name - -returns the schema identifier - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.ipc.writeArrow["file.arrow";schema;array_data] -q).arrowkdb.sc.equalSchemas[schema;.arrowkdb.ipc.readArrowSchema["file.arrow"]] -1b -``` - -#### `ipc.readArrowData` - -*Read an Arrow table from an Arrow file and convert to a kdb+ mixed list of Arrow array data* - -```q -.arrowkdb.ipc.readArrowData[arrow_file] -``` - -Where `arrow_file` is a string containing the Arrow file name - -returns the array data - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q).arrowkdb.ipc.writeArrow["file.arrow";schema;array_data] -q)read_data:.arrowkdb.ipc.readArrowData["file.arrow"] -q)read_data~array_data -1b -``` - -#### `ipc.readArrowToTable` - -*Read an Arrow table from an Arrow file and convert to a kdb+ table* - -```q -.arrowkdb.ipc.readArrowToTable[arrow_file] -``` - -Where `arrow_file` is a string containing the Arrow file name - -returns the kdb+ table - -Each schema field name is used as the column name and the Arrow array data is used as the column data. - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q).arrowkdb.ipc.writeArrowFromTable["file.arrow";table] -q)read_table:.arrowkdb.ipc.readArrowToTable["file.arrow"] -q)read_table~table -1b -``` - -### Arrow IPC Streams - -#### `ipc.serializeArrow` - -*Convert a kdb+ mixed list of Arrow array data to an Arrow table and serialize to an Arrow stream* - -```q -.arrowkdb.ipc.serializeArrow[schema_id;array_data] -``` - -Where: - -- `schema_id` is the schema identifier to use for the table -- `array_data` is a mixed list of array data - -returns a byte list containing the serialized stream data - -The mixed list of Arrow array data should be ordered in schema field number and each list item representing one of the arrays must be structured according to the field's datatype. - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q)serialized:.arrowkdb.ipc.serializeArrow[schema;array_data] -q)read_data:.arrowkdb.ipc.parseArrowData[serialized] -q)read_data~array_data -1b -``` - -#### `ipc.serializeArrowFromTable` - -*Convert a kdb+ table to an Arrow table and serialize to an Arrow stream, inferring the Arrow schema from the kdb+ table structure* - -```q -.arrowkdb.ipc.serializeArrowFromTable[table] -``` - -Where `table` is a kdb+ table - -returns a byte list containing the serialized stream data - -??? warning "Inferred schemas only support a subset of the Arrow datatypes and is considerably less flexible than creating them with the datatype/field/schema constructors" - - Each column in the table is mapped to a field in the schema. The column name is used as the field name and the column's kdb+ type is mapped to an Arrow datatype as as described [here](#inferred-datatypes). - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q)serialized:.arrowkdb.ipc.serializeArrowFromTable[table] -q)new_table:.arrowkdb.ipc.parseArrowToTable[serialized] -q)new_table~table -1b -``` - -#### `ipc.parseArrowSchema` - -*Parse the Arrow schema from an Arrow stream* - -```q -.arrowkdb.ipc.parseArrowSchema[serialized] -``` - -Where `serialized` is a byte list containing the serialized stream data - -returns the schema identifier - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q)serialized:.arrowkdb.ipc.serializeArrow[schema;array_data] -q).arrowkdb.sc.equalSchemas[schema;.arrowkdb.ipc.parseArrowSchema[serialized]] -1b -``` - -#### `ipc.parseArrowData` - -*Parse an Arrow table from an Arrow stream and convert to a kdb+ mixed list of Arrow array data* - -```q -.arrowkdb.ipc.parseArrowData[serialized] -``` - -Where `serialized` is a byte list containing the serialized stream data - -returns the array data - -```q -q)f1:.arrowkdb.fd.field[`int_field;.arrowkdb.dt.int64[]] -q)f2:.arrowkdb.fd.field[`float_field;.arrowkdb.dt.float64[]] -q)f3:.arrowkdb.fd.field[`str_field;.arrowkdb.dt.utf8[]] -q)schema:.arrowkdb.sc.schema[(f1,f2,f3)] -q)array_data:((1 2 3j);(4 5 6f);("aa";"bb";"cc")) -q)serialized:.arrowkdb.ipc.serializeArrow[schema;array_data] -q)read_data:.arrowkdb.ipc.parseArrowData[serialized] -q)read_data~array_data -1b -``` - -#### `ipc.parseArrowToTable` - -*Parse an Arrow table from an Arrow file and convert to a kdb+ table* - -```q -.arrowkdb.ipc.parseArrowToTable[serialized] -``` - -Where `serialized` is a byte list containing the serialized stream data - -returns the kdb+ table - -Each schema field name is used as the column name and the Arrow array data is used as the column data. - -```q -q)table:([] int_field:(1 2 3); float_field:(4 5 6f); str_field:("aa";"bb";"cc")) -q)serialized:.arrowkdb.ipc.serializeArrowFromTable[table] -q)new_table:.arrowkdb.ipc.parseArrowToTable[serialized] -q)new_table~table -1b -``` - - - -## Status +**Warning: This interface is currently a pre-release alpha and subject to non-backwards compatible changes without notice.** The arrowkdb interface is provided here under an Apache 2.0 license. diff --git a/travis_setup.sh b/travis_setup.sh index 0951928..41ab7db 100644 --- a/travis_setup.sh +++ b/travis_setup.sh @@ -34,7 +34,7 @@ elif [[ "$TRAVIS_OS_NAME" == "windows" ]]; then cmake --build . --config Release --target install cd ../.. # Build and install arrow - git clone https://github.com/apache/arrow.git --branch apache-arrow-2.0.0 + git clone https://github.com/apache/arrow.git cd arrow/cpp mkdir build cd build