-
Notifications
You must be signed in to change notification settings - Fork 0
/
species_data.py
55 lines (43 loc) · 1.62 KB
/
species_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# The entire data here comes from the
# https://webbook.nist.gov/chemistry/form-ser/
# NIST(National Institute of Standards and Technology) chemistry webbook
############################################################################################
# Unit should be g/mol
sps_M_g_mole = {
'H2': 2.01588,
'O2': 31.9988,
'N2': 28.0134,
'N': 14.0067,
'O': 15.9994,
'H': 1.00794,
'NO': 30.0061,
'He': 4.002602,
}
sps_M = {sps: val / 1000 for sps, val in sps_M_g_mole.items()} # change unit to kg/mol
############################################################################################
# By NIST (https://physics.nist.gov/cgi-bin/cuu/Value?r), molar(universal) gas constant :
R = 8.314462618 # J/mol*K
# P*V = n*R*T
# n = m/M, R_s = R / M_tol
# P = m/(V*M)R*T = rho * R/M * T = rho * R_s *T
'''
############################################################################################
speed of sound given by the Newton-Laplace equation:
c = sqrt(K_s / rho)
which K_s is a coefficient of stiffness
rho is density
c in ideal gases:
K = gamma * p
then
c = sqrt(gamma * (p/rho))
gamma is the adiabatic index also known as the isentropic expansion factor (c_p / c_v)
By Blottner's model and Eucken's relation,
the specific heat of constant volume for species s are written as:
c_v_tr_s = 3/2 * (R / M_s)
c_v_rot_s = R / M_s (Diatomic molecular, i.e. N2, NO)
c_v_rot_s = 0 (Single atom,i.e. O, N)
c_v_vib_s = R / M_s (Diatomic molecular, i.e. N2, NO)
c_v_vib_s = 0 (Single atom,i.e. O, N)
which c_p: specific heat capacity at constant pressure
c_v: specific heat capacity at constant volume
'''