-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathClenchRex.py
120 lines (91 loc) · 3.95 KB
/
ClenchRex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2
import numpy as np
import math
import pyautogui
# pass source as 0 (zero) for inbuilt webcam, 1 or -1 for external camera
cap = cv2.VideoCapture(0)
while (True):
try:
# an error comes if it does not find anything in window as it cannot find contour of max area
# therefore this try error statement
# obtain frame and kernel matrix
ret, frame = cap.read()
frame = cv2.flip(frame, 1)
kernel = np.ones((3, 3), np.uint8)
# define region of interest
roi = frame[100:300, 100:300]
# convert to HSV
cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 0)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# define range of skin color in HSV
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
# extract skin colur image
mask = cv2.inRange(hsv, lower_skin, upper_skin)
# extrapolate the hand to fill dark spots within
mask = cv2.dilate(mask, kernel, iterations=4)
# blur the image
mask = cv2.GaussianBlur(mask, (5, 5), 100)
# find contours
_, contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find contour of max area(hand)
cnt = max(contours, key=lambda x: cv2.contourArea(x))
# approx the contour a little
epsilon = 0.0005 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# make convex hull around hand
hull = cv2.convexHull(cnt)
# define area of hull and area of hand
areahull = cv2.contourArea(hull)
areacnt = cv2.contourArea(cnt)
# find the percentage of area not covered by hand in convex hull
arearatio = ((areahull - areacnt) / areacnt) * 100
# find the defects in convex hull with respect to hand
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
# finding number of defects due to fingers (= l)
l = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(approx[s][0])
end = tuple(approx[e][0])
far = tuple(approx[f][0])
pt = (100, 180)
# find length of all sides of triangle
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
s = (a + b + c) / 2
ar = math.sqrt(s * (s - a) * (s - b) * (s - c))
# distance between point and convex hull
d = (2 * ar) / a
# apply cosine rule here
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57
# ignore angles > 90 and ignore points very close to convex hull (generally noise induced points)
if angle <= 90 and d > 30:
l += 1
cv2.circle(roi, far, 3, [255, 0, 0], -1)
# draw lines around hand
cv2.line(roi, start, end, [0, 255, 0], 2)
# minimum one defect for hand
l += 1
# print corresponding gestures which are in their ranges
font = cv2.FONT_HERSHEY_SIMPLEX
if l == 1:
if areacnt < 2000:
cv2.putText(frame, 'Put hand in the box', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
else:
if arearatio < 12:
cv2.putText(frame, 'Running', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif l > 1:
cv2.putText(frame, 'Jump', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
pyautogui.press('space')
# show the windows
cv2.imshow('mask', mask)
cv2.imshow('frame', frame)
except:
pass
if cv2.waitKey(5) & 0xFF == 27:
break
cv2.destroyAllWindows()
cap.release()