-
Notifications
You must be signed in to change notification settings - Fork 1
/
Object_detection_picamera.py
217 lines (174 loc) · 8.12 KB
/
Object_detection_picamera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Import packages
import os
import serial
import cv2
import numpy as np
from picamera.array import PiRGBArray
from picamera import PiCamera
import tensorflow as tf
import argparse
import sys
import subprocess
# Set up camera constants
#IM_WIDTH = 1280
#IM_HEIGHT = 480
IM_WIDTH = 640 # Use smaller resolution for
IM_HEIGHT = 480 # slightly faster framerate
ser = serial.Serial("/dev/ttyACM0",9600,timeout=1)
# Select camera type (if user enters --usbcam when calling this script,
# a USB webcam will be used)
camera_type = 'picamera'
parser = argparse.ArgumentParser()
parser.add_argument('--usbcam', help='Use a USB webcam instead of picamera',
action='store_true')
args = parser.parse_args()
if args.usbcam:
camera_type = 'usb'
# This is needed since the working directory is the object_detection folder.
sys.path.append('..')
# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 90
## Load the label map.
# Label maps map indices to category names, so that when the convolution
# network predicts `5`, we know that this corresponds to `airplane`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
font = cv2.FONT_HERSHEY_SIMPLEX
# Initialize camera and perform object detection.
# The camera has to be set up and used differently depending on if it's a
# Picamera or USB webcam.
# I know this is ugly, but I basically copy+pasted the code for the object
# detection loop twice, and made one work for Picamera and the other work
# for USB.
### Picamera ###
if camera_type == 'picamera':
# Initialize Picamera and grab reference to the raw capture
camera = PiCamera()
camera.resolution = (IM_WIDTH,IM_HEIGHT)
camera.rotation = 180
camera.framerate = 10
rawCapture = PiRGBArray(camera, size=(IM_WIDTH,IM_HEIGHT))
rawCapture.truncate(0)
initial_pico_argument = "pico2wave -w test.wav \"{} {} \" && aplay test.wav"
temp=""
for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
t1 = cv2.getTickCount()
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
frame = np.copy(frame1.array)
frame.setflags(write=1)
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
#print(boxes[0,0])
#print(classes[0,0])
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.40)
# Temporary Code -----------------------------------
threshold = 0.4
position = ["Left","Ahead","Right"]
for index,value in enumerate(classes[0]):
label=""
argument=""
object_dict={}
if scores[0,index] > threshold:
object_name = (category_index.get(value)).get('name').encode('utf-8')
bounding_box = boxes[0][index]
width_object = bounding_box[3]*640+bounding_box[1]*640
width_object_threshold = int(width_object/2)
#angle = int(width_object_threshold)/10
length_object = bounding_box[2]*480 - bounding_box[0]*480
if length_object>=280:
if width_object_threshold<212:
label="Left"
#print(object_name," ", "at Left")
elif width_object_threshold>=212 and width_object_threshold<424:
label="Ahead"
#print(object_name," ", "at Ahead")
elif width_object_threshold>=424 and width_object_threshold<=638:
label="Right"
#print(object_name," ", "at Right")
if label == "Left":
angle = 48
elif label == "Ahead":
angle= 32
else:
angle = 11
temp=""
argument = str(angle) + '\n'
ser.write(argument.encode())
while(True):
inputi = ser.read().decode('utf-8')
if (inputi != '\r'):
temp = temp + inputi
else:
print(object_name," at ",label," at ",temp," angle ",angle)
temp=""
break
#if scores[0,index] > threshold:
#final_pico_argument=initial_pico_argument.format(((category_index.get(value)).get('name').encode("utf8")),"ahead")
#subprocess.call(final_pico_argument,shell=True)
#----------------------------------------------------
#cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA)
#cv2.line(frame,(212,0),(212,480),(255,0,0),1)
#cv2.line(frame,(424,0),(424,480),(255,0,0),1)
# All the results have been drawn on the frame, so it's time to display it.
#cv2.imshow('Object detector', frame)
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc = 1/time1
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
rawCapture.truncate(0)
camera.close()
cv2.destroyAllWindows()