-
Notifications
You must be signed in to change notification settings - Fork 7
/
main.py
465 lines (384 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import csv
import copy
import argparse
import itertools
import cv2
import numpy as np
import mediapipe as mp
from utils import CvFpsCalc
from model import KeyPointClassifier
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument('--use_static_image_mode', action='store_true')
parser.add_argument(
"--min_detection_confidence",
help='min_detection_confidence',
type=float,
default=0.7,
)
parser.add_argument(
"--min_tracking_confidence",
help='min_tracking_confidence',
type=int,
default=0.5,
)
parser.add_argument(
"--model",
type=str,
default='Kazuhito00',
)
parser.add_argument('--unuse_brect', action='store_true')
args = parser.parse_args()
return args
def main():
# 引数解析
args = get_args()
cap_device = args.device
cap_width = args.width
cap_height = args.height
use_static_image_mode = args.use_static_image_mode
min_detection_confidence = args.min_detection_confidence
min_tracking_confidence = args.min_tracking_confidence
model_name = args.model
use_brect = not args.unuse_brect
# カメラ準備
cap = cv2.VideoCapture(cap_device)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, cap_height)
# モデルロード
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=use_static_image_mode,
max_num_hands=1,
min_detection_confidence=min_detection_confidence,
min_tracking_confidence=min_tracking_confidence,
)
model_path = os.path.join('model', model_name,
'keypoint_classifier.tflite')
keypoint_classifier = KeyPointClassifier(model_path=model_path)
# ラベル読み込み
label_path = os.path.join('model', model_name,
'keypoint_classifier_label.csv')
with open(label_path, encoding='utf-8-sig') as f:
keypoint_classifier_labels = csv.reader(f)
keypoint_classifier_labels = [
row[0] for row in keypoint_classifier_labels
]
# FPS計測モジュール
cvFpsCalc = CvFpsCalc(buffer_len=10)
while True:
fps = cvFpsCalc.get()
# キー処理(ESC:終了)
key = cv2.waitKey(10)
if key == 27 or key == ord('q'): # ESC or q
break
# カメラキャプチャ
ret, image = cap.read()
if not ret:
break
image = cv2.flip(image, 1) # ミラー表示
debug_image = copy.deepcopy(image)
# 検出実施
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = hands.process(image)
image.flags.writeable = True
# キーポイント分類
brect = None
landmark_list = None
handedness = None
hand_sign_id = 0
if results.multi_hand_landmarks is not None:
for hand_landmarks, handedness in zip(results.multi_hand_landmarks,
results.multi_handedness):
# 外接矩形の計算
brect = calc_bounding_rect(debug_image, hand_landmarks)
# ランドマークの計算
landmark_list = calc_landmark_list(debug_image, hand_landmarks)
# 相対座標・正規化座標への変換
pre_processed_landmark_list = pre_process_landmark(
landmark_list)
# キーポイント分類
hand_sign_id = keypoint_classifier(pre_processed_landmark_list)
# 描画
debug_image = draw_bounding_rect(use_brect, debug_image, brect)
debug_image = draw_landmarks(debug_image, landmark_list)
debug_image = draw_info_text(
debug_image,
model_name,
brect,
handedness,
keypoint_classifier_labels[hand_sign_id],
fps,
)
cv2.imshow('Hand Gesture Recognition', debug_image)
cap.release()
cv2.destroyAllWindows()
def calc_bounding_rect(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_array = np.empty((0, 2), int)
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
landmark_point = [np.array((landmark_x, landmark_y))]
landmark_array = np.append(landmark_array, landmark_point, axis=0)
x, y, w, h = cv2.boundingRect(landmark_array)
return [x, y, x + w, y + h]
def calc_landmark_list(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_point = []
# キーポイント
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
# landmark_z = landmark.z
landmark_point.append([landmark_x, landmark_y])
return landmark_point
def pre_process_landmark(landmark_list):
temp_landmark_list = copy.deepcopy(landmark_list)
# 相対座標に変換
base_x, base_y = 0, 0
for index, landmark_point in enumerate(temp_landmark_list):
if index == 0:
base_x, base_y = landmark_point[0], landmark_point[1]
temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x
temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y
# 1次元リストに変換
temp_landmark_list = list(
itertools.chain.from_iterable(temp_landmark_list))
# 正規化
max_value = max(list(map(abs, temp_landmark_list)))
def normalize_(n):
return n / max_value
temp_landmark_list = list(map(normalize_, temp_landmark_list))
return temp_landmark_list
def pre_process_point_history(image, point_history):
image_width, image_height = image.shape[1], image.shape[0]
temp_point_history = copy.deepcopy(point_history)
# 相対座標に変換
base_x, base_y = 0, 0
for index, point in enumerate(temp_point_history):
if index == 0:
base_x, base_y = point[0], point[1]
temp_point_history[index][0] = (temp_point_history[index][0] -
base_x) / image_width
temp_point_history[index][1] = (temp_point_history[index][1] -
base_y) / image_height
# 1次元リストに変換
temp_point_history = list(
itertools.chain.from_iterable(temp_point_history))
return temp_point_history
def draw_landmarks(image, landmark_point):
# 接続線
if landmark_point is not None and len(landmark_point) > 0:
# 親指
cv2.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]),
(255, 255, 255), 2)
# 人差指
cv2.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]),
(255, 255, 255), 2)
# 中指
cv2.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]),
(255, 255, 255), 2)
# 薬指
cv2.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]),
(255, 255, 255), 2)
# 小指
cv2.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]),
(255, 255, 255), 2)
# 手の平
cv2.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]),
(255, 255, 255), 2)
cv2.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]),
(0, 0, 0), 6)
cv2.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]),
(255, 255, 255), 2)
# キーポイント
for index, landmark in enumerate(landmark_point):
if index == 0: # 手首1
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 1: # 手首2
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 2: # 親指:付け根
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 3: # 親指:第1関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 4: # 親指:指先
cv2.circle(image, (landmark[0], landmark[1]), 8,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 5: # 人差指:付け根
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 6: # 人差指:第2関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 7: # 人差指:第1関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 8: # 人差指:指先
cv2.circle(image, (landmark[0], landmark[1]), 8,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 9: # 中指:付け根
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 10: # 中指:第2関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 11: # 中指:第1関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 12: # 中指:指先
cv2.circle(image, (landmark[0], landmark[1]), 8,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 13: # 薬指:付け根
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 14: # 薬指:第2関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 15: # 薬指:第1関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 16: # 薬指:指先
cv2.circle(image, (landmark[0], landmark[1]), 8,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 17: # 小指:付け根
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 18: # 小指:第2関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 19: # 小指:第1関節
cv2.circle(image, (landmark[0], landmark[1]), 5,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 20: # 小指:指先
cv2.circle(image, (landmark[0], landmark[1]), 8,
(255, 255, 255), -1)
cv2.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
return image
def draw_bounding_rect(use_brect, image, brect):
if use_brect and brect is not None:
# 外接矩形
cv2.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]),
(0, 0, 0), 1)
return image
def draw_info_text(image, model_name, brect, handedness, hand_sign_text, fps):
if brect is not None:
cv2.rectangle(image, (brect[0], brect[1]), (brect[2], brect[1] - 30),
(0, 0, 0), -1)
if handedness is not None:
info_text = handedness.classification[0].label[0]
if hand_sign_text != "":
info_text = info_text + ':' + hand_sign_text
cv2.putText(image, info_text, (brect[0] + 5, brect[1] - 6),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 1,
cv2.LINE_AA)
cv2.putText(image, "FPS:" + str(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
1.0, (0, 0, 0), 4, cv2.LINE_AA)
cv2.putText(image, "FPS:" + str(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
1.0, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, "Model:" + model_name, (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 4, cv2.LINE_AA)
cv2.putText(image, "Model:" + model_name, (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, cv2.LINE_AA)
return image
if __name__ == '__main__':
main()