Skip to content

Latest commit

 

History

History
488 lines (390 loc) · 20.2 KB

fork-choice.md

File metadata and controls

488 lines (390 loc) · 20.2 KB

Phase 0 -- Beacon Chain Fork Choice

Table of contents

Introduction

This document is the beacon chain fork choice spec, part of Phase 0. It assumes the beacon chain state transition function spec.

Fork choice

The head block root associated with a store is defined as get_head(store). At genesis, let store = get_forkchoice_store(genesis_state) and update store by running:

  • on_tick(store, time) whenever time > store.time where time is the current Unix time
  • on_block(store, block) whenever a block block: SignedBeaconBlock is received
  • on_attestation(store, attestation) whenever an attestation attestation is received

Any of the above handlers that trigger an unhandled exception (e.g. a failed assert or an out-of-range list access) are considered invalid. Invalid calls to handlers must not modify store.

Notes:

  1. Leap seconds: Slots will last SECONDS_PER_SLOT + 1 or SECONDS_PER_SLOT - 1 seconds around leap seconds. This is automatically handled by UNIX time.
  2. Honest clocks: Honest nodes are assumed to have clocks synchronized within SECONDS_PER_SLOT seconds of each other.
  3. Eth1 data: The large ETH1_FOLLOW_DISTANCE specified in the honest validator document should ensure that state.latest_eth1_data of the canonical beacon chain remains consistent with the canonical Ethereum proof-of-work chain. If not, emergency manual intervention will be required.
  4. Manual forks: Manual forks may arbitrarily change the fork choice rule but are expected to be enacted at epoch transitions, with the fork details reflected in state.fork.
  5. Implementation: The implementation found in this specification is constructed for ease of understanding rather than for optimization in computation, space, or any other resource. A number of optimized alternatives can be found here.

Constant

Name Value
INTERVALS_PER_SLOT uint64(3)

Preset

Name Value Unit Duration
SAFE_SLOTS_TO_UPDATE_JUSTIFIED 2**3 (= 8) slots 96 seconds

Configuration

Name Value
PROPOSER_SCORE_BOOST uint64(70)
  • The proposer score boost is worth PROPOSER_SCORE_BOOST percentage of the committee's weight, i.e., for slot with committee weight committee_weight the boost weight is equal to (committee_weight * PROPOSER_SCORE_BOOST) // 100.

Helpers

LatestMessage

@dataclass(eq=True, frozen=True)
class LatestMessage(object):
    epoch: Epoch
    root: Root

Store

@dataclass
class Store(object):
    time: uint64
    genesis_time: uint64
    justified_checkpoint: Checkpoint
    finalized_checkpoint: Checkpoint
    best_justified_checkpoint: Checkpoint
    proposer_boost_root: Root
    equivocating_indices: Set[ValidatorIndex]
    blocks: Dict[Root, BeaconBlock] = field(default_factory=dict)
    block_states: Dict[Root, BeaconState] = field(default_factory=dict)
    checkpoint_states: Dict[Checkpoint, BeaconState] = field(default_factory=dict)
    latest_messages: Dict[ValidatorIndex, LatestMessage] = field(default_factory=dict)

get_forkchoice_store

The provided anchor-state will be regarded as a trusted state, to not roll back beyond. This should be the genesis state for a full client.

Note With regards to fork choice, block headers are interchangeable with blocks. The spec is likely to move to headers for reduced overhead in test vectors and better encapsulation. Full implementations store blocks as part of their database and will often use full blocks when dealing with production fork choice.

def get_forkchoice_store(anchor_state: BeaconState, anchor_block: BeaconBlock) -> Store:
    assert anchor_block.state_root == hash_tree_root(anchor_state)
    anchor_root = hash_tree_root(anchor_block)
    anchor_epoch = get_current_epoch(anchor_state)
    justified_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
    finalized_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
    proposer_boost_root = Root()
    return Store(
        time=uint64(anchor_state.genesis_time + SECONDS_PER_SLOT * anchor_state.slot),
        genesis_time=anchor_state.genesis_time,
        justified_checkpoint=justified_checkpoint,
        finalized_checkpoint=finalized_checkpoint,
        best_justified_checkpoint=justified_checkpoint,
        proposer_boost_root=proposer_boost_root,
        equivocating_indices=set(),
        blocks={anchor_root: copy(anchor_block)},
        block_states={anchor_root: copy(anchor_state)},
        checkpoint_states={justified_checkpoint: copy(anchor_state)},
    )

get_slots_since_genesis

def get_slots_since_genesis(store: Store) -> int:
    return (store.time - store.genesis_time) // SECONDS_PER_SLOT

get_current_slot

def get_current_slot(store: Store) -> Slot:
    return Slot(GENESIS_SLOT + get_slots_since_genesis(store))

compute_slots_since_epoch_start

def compute_slots_since_epoch_start(slot: Slot) -> int:
    return slot - compute_start_slot_at_epoch(compute_epoch_at_slot(slot))

get_ancestor

def get_ancestor(store: Store, root: Root, slot: Slot) -> Root:
    block = store.blocks[root]
    if block.slot > slot:
        return get_ancestor(store, block.parent_root, slot)
    elif block.slot == slot:
        return root
    else:
        # root is older than queried slot, thus a skip slot. Return most recent root prior to slot
        return root

get_latest_attesting_balance

def get_latest_attesting_balance(store: Store, root: Root) -> Gwei:
    state = store.checkpoint_states[store.justified_checkpoint]
    active_indices = get_active_validator_indices(state, get_current_epoch(state))
    attestation_score = Gwei(sum(
        state.validators[i].effective_balance for i in active_indices
        if (i in store.latest_messages
            and i not in store.equivocating_indices
            and get_ancestor(store, store.latest_messages[i].root, store.blocks[root].slot) == root)
    ))
    if store.proposer_boost_root == Root():
        # Return only attestation score if ``proposer_boost_root`` is not set
        return attestation_score

    # Calculate proposer score if ``proposer_boost_root`` is set
    proposer_score = Gwei(0)
    # Boost is applied if ``root`` is an ancestor of ``proposer_boost_root``
    if get_ancestor(store, store.proposer_boost_root, store.blocks[root].slot) == root:
        num_validators = len(get_active_validator_indices(state, get_current_epoch(state)))
        avg_balance = get_total_active_balance(state) // num_validators
        committee_size = num_validators // SLOTS_PER_EPOCH
        committee_weight = committee_size * avg_balance
        proposer_score = (committee_weight * PROPOSER_SCORE_BOOST) // 100
    return attestation_score + proposer_score

filter_block_tree

def filter_block_tree(store: Store, block_root: Root, blocks: Dict[Root, BeaconBlock]) -> bool:
    block = store.blocks[block_root]
    children = [
        root for root in store.blocks.keys()
        if store.blocks[root].parent_root == block_root
    ]

    # If any children branches contain expected finalized/justified checkpoints,
    # add to filtered block-tree and signal viability to parent.
    if any(children):
        filter_block_tree_result = [filter_block_tree(store, child, blocks) for child in children]
        if any(filter_block_tree_result):
            blocks[block_root] = block
            return True
        return False

    # If leaf block, check finalized/justified checkpoints as matching latest.
    head_state = store.block_states[block_root]

    correct_justified = (
        store.justified_checkpoint.epoch == GENESIS_EPOCH
        or head_state.current_justified_checkpoint == store.justified_checkpoint
    )
    correct_finalized = (
        store.finalized_checkpoint.epoch == GENESIS_EPOCH
        or head_state.finalized_checkpoint == store.finalized_checkpoint
    )
    # If expected finalized/justified, add to viable block-tree and signal viability to parent.
    if correct_justified and correct_finalized:
        blocks[block_root] = block
        return True

    # Otherwise, branch not viable
    return False

get_filtered_block_tree

def get_filtered_block_tree(store: Store) -> Dict[Root, BeaconBlock]:
    """
    Retrieve a filtered block tree from ``store``, only returning branches
    whose leaf state's justified/finalized info agrees with that in ``store``.
    """
    base = store.justified_checkpoint.root
    blocks: Dict[Root, BeaconBlock] = {}
    filter_block_tree(store, base, blocks)
    return blocks

get_head

def get_head(store: Store) -> Root:
    # Get filtered block tree that only includes viable branches
    blocks = get_filtered_block_tree(store)
    # Execute the LMD-GHOST fork choice
    head = store.justified_checkpoint.root
    while True:
        children = [
            root for root in blocks.keys()
            if blocks[root].parent_root == head
        ]
        if len(children) == 0:
            return head
        # Sort by latest attesting balance with ties broken lexicographically
        # Ties broken by favoring block with lexicographically higher root
        head = max(children, key=lambda root: (get_latest_attesting_balance(store, root), root))

should_update_justified_checkpoint

def should_update_justified_checkpoint(store: Store, new_justified_checkpoint: Checkpoint) -> bool:
    """
    To address the bouncing attack, only update conflicting justified
    checkpoints in the fork choice if in the early slots of the epoch.
    Otherwise, delay incorporation of new justified checkpoint until next epoch boundary.

    See https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114 for more detailed analysis and discussion.
    """
    if compute_slots_since_epoch_start(get_current_slot(store)) < SAFE_SLOTS_TO_UPDATE_JUSTIFIED:
        return True

    justified_slot = compute_start_slot_at_epoch(store.justified_checkpoint.epoch)
    if not get_ancestor(store, new_justified_checkpoint.root, justified_slot) == store.justified_checkpoint.root:
        return False

    return True

on_attestation helpers

validate_target_epoch_against_current_time
def validate_target_epoch_against_current_time(store: Store, attestation: Attestation) -> None:
    target = attestation.data.target

    # Attestations must be from the current or previous epoch
    current_epoch = compute_epoch_at_slot(get_current_slot(store))
    # Use GENESIS_EPOCH for previous when genesis to avoid underflow
    previous_epoch = current_epoch - 1 if current_epoch > GENESIS_EPOCH else GENESIS_EPOCH
    # If attestation target is from a future epoch, delay consideration until the epoch arrives
    assert target.epoch in [current_epoch, previous_epoch]
validate_on_attestation
def validate_on_attestation(store: Store, attestation: Attestation, is_from_block: bool) -> None:
    target = attestation.data.target

    # If the given attestation is not from a beacon block message, we have to check the target epoch scope.
    if not is_from_block:
        validate_target_epoch_against_current_time(store, attestation)

    # Check that the epoch number and slot number are matching
    assert target.epoch == compute_epoch_at_slot(attestation.data.slot)

    # Attestations target be for a known block. If target block is unknown, delay consideration until the block is found
    assert target.root in store.blocks

    # Attestations must be for a known block. If block is unknown, delay consideration until the block is found
    assert attestation.data.beacon_block_root in store.blocks
    # Attestations must not be for blocks in the future. If not, the attestation should not be considered
    assert store.blocks[attestation.data.beacon_block_root].slot <= attestation.data.slot

    # LMD vote must be consistent with FFG vote target
    target_slot = compute_start_slot_at_epoch(target.epoch)
    assert target.root == get_ancestor(store, attestation.data.beacon_block_root, target_slot)

    # Attestations can only affect the fork choice of subsequent slots.
    # Delay consideration in the fork choice until their slot is in the past.
    assert get_current_slot(store) >= attestation.data.slot + 1
store_target_checkpoint_state
def store_target_checkpoint_state(store: Store, target: Checkpoint) -> None:
    # Store target checkpoint state if not yet seen
    if target not in store.checkpoint_states:
        base_state = copy(store.block_states[target.root])
        if base_state.slot < compute_start_slot_at_epoch(target.epoch):
            process_slots(base_state, compute_start_slot_at_epoch(target.epoch))
        store.checkpoint_states[target] = base_state
update_latest_messages
def update_latest_messages(store: Store, attesting_indices: Sequence[ValidatorIndex], attestation: Attestation) -> None:
    target = attestation.data.target
    beacon_block_root = attestation.data.beacon_block_root
    non_equivocating_attesting_indices = [i for i in attesting_indices if i not in store.equivocating_indices]
    for i in non_equivocating_attesting_indices:
        if i not in store.latest_messages or target.epoch > store.latest_messages[i].epoch:
            store.latest_messages[i] = LatestMessage(epoch=target.epoch, root=beacon_block_root)

Handlers

on_tick

def on_tick(store: Store, time: uint64) -> None:
    previous_slot = get_current_slot(store)

    # update store time
    store.time = time

    current_slot = get_current_slot(store)

    # Reset store.proposer_boost_root if this is a new slot
    if current_slot > previous_slot:
        store.proposer_boost_root = Root()

    # Not a new epoch, return
    if not (current_slot > previous_slot and compute_slots_since_epoch_start(current_slot) == 0):
        return

    # Update store.justified_checkpoint if a better checkpoint on the store.finalized_checkpoint chain
    if store.best_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
        finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)    
        ancestor_at_finalized_slot = get_ancestor(store, store.best_justified_checkpoint.root, finalized_slot)
        if ancestor_at_finalized_slot == store.finalized_checkpoint.root:
            store.justified_checkpoint = store.best_justified_checkpoint

on_block

def on_block(store: Store, signed_block: SignedBeaconBlock) -> None:
    block = signed_block.message
    # Parent block must be known
    assert block.parent_root in store.block_states
    # Make a copy of the state to avoid mutability issues
    pre_state = copy(store.block_states[block.parent_root])
    # Blocks cannot be in the future. If they are, their consideration must be delayed until the are in the past.
    assert get_current_slot(store) >= block.slot

    # Check that block is later than the finalized epoch slot (optimization to reduce calls to get_ancestor)
    finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
    assert block.slot > finalized_slot
    # Check block is a descendant of the finalized block at the checkpoint finalized slot
    assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root

    # Check the block is valid and compute the post-state
    state = pre_state.copy()
    state_transition(state, signed_block, True)
    # Add new block to the store
    store.blocks[hash_tree_root(block)] = block
    # Add new state for this block to the store
    store.block_states[hash_tree_root(block)] = state

    # Add proposer score boost if the block is timely
    time_into_slot = (store.time - store.genesis_time) % SECONDS_PER_SLOT
    is_before_attesting_interval = time_into_slot < SECONDS_PER_SLOT // INTERVALS_PER_SLOT
    if get_current_slot(store) == block.slot and is_before_attesting_interval:
        store.proposer_boost_root = hash_tree_root(block)

    # Update justified checkpoint
    if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
        if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
            store.best_justified_checkpoint = state.current_justified_checkpoint
        if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
            store.justified_checkpoint = state.current_justified_checkpoint

    # Update finalized checkpoint
    if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:
        store.finalized_checkpoint = state.finalized_checkpoint
        store.justified_checkpoint = state.current_justified_checkpoint

on_attestation

def on_attestation(store: Store, attestation: Attestation, is_from_block: bool=False) -> None:
    """
    Run ``on_attestation`` upon receiving a new ``attestation`` from either within a block or directly on the wire.

    An ``attestation`` that is asserted as invalid may be valid at a later time,
    consider scheduling it for later processing in such case.
    """
    validate_on_attestation(store, attestation, is_from_block)

    store_target_checkpoint_state(store, attestation.data.target)

    # Get state at the `target` to fully validate attestation
    target_state = store.checkpoint_states[attestation.data.target]
    indexed_attestation = get_indexed_attestation(target_state, attestation)
    assert is_valid_indexed_attestation(target_state, indexed_attestation)

    # Update latest messages for attesting indices
    update_latest_messages(store, indexed_attestation.attesting_indices, attestation)

on_attester_slashing

Note: on_attester_slashing should be called while syncing and a client MUST maintain the equivocation set of AttesterSlashings from at least the latest finalized checkpoint.

def on_attester_slashing(store: Store, attester_slashing: AttesterSlashing) -> None:
    """
    Run ``on_attester_slashing`` immediately upon receiving a new ``AttesterSlashing``
    from either within a block or directly on the wire.
    """
    attestation_1 = attester_slashing.attestation_1
    attestation_2 = attester_slashing.attestation_2
    assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
    state = store.block_states[store.justified_checkpoint.root]
    assert is_valid_indexed_attestation(state, attestation_1)
    assert is_valid_indexed_attestation(state, attestation_2)

    indices = set(attestation_1.attesting_indices).intersection(attestation_2.attesting_indices)
    for index in indices:
        store.equivocating_indices.add(index)