forked from Morizeyao/GPT2-Chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
251 lines (224 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import transformers
import torch
import os
import json
import random
import numpy as np
import argparse
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
from tqdm import tqdm
from torch.nn import DataParallel
from tokenizations.bpe_tokenizer import get_encoder
def build_files(data_path, tokenized_data_path, num_pieces, full_tokenizer, min_length):
with open(data_path, 'r', encoding='utf8') as f:
print('reading lines')
lines = json.load(f)
lines = [line.replace('\n', ' [SEP] ') for line in lines] # 用[SEP]表示换行, 段落之间使用SEP表示段落结束
all_len = len(lines)
if not os.path.exists(tokenized_data_path):
os.mkdir(tokenized_data_path)
for i in tqdm(range(num_pieces)):
sublines = lines[all_len // num_pieces * i: all_len // num_pieces * (i + 1)]
if i == num_pieces - 1:
sublines.extend(lines[all_len // num_pieces * (i + 1):]) # 把尾部例子添加到最后一个piece
sublines = [full_tokenizer.tokenize(line) for line in sublines if
len(line) > min_length] # 只考虑长度超过min_length的句子
sublines = [full_tokenizer.convert_tokens_to_ids(line) for line in sublines]
full_line = []
for subline in sublines:
full_line.append(full_tokenizer.convert_tokens_to_ids('[MASK]')) # 文章开头添加MASK表示文章开始
full_line.extend(subline)
full_line.append(full_tokenizer.convert_tokens_to_ids('[CLS]')) # 文章之间添加CLS表示文章结束
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'w') as f:
for id in full_line:
f.write(str(id) + ' ')
print('finish')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='选择模型参数')
parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='选择词库')
parser.add_argument('--raw_data_path', default='data/train.json', type=str, required=False, help='原始训练语料')
parser.add_argument('--tokenized_data_path', default='data/tokenized/', type=str, required=False,
help='tokenized语料存放位置')
parser.add_argument('--raw', action='store_true', help='是否先做tokenize')
parser.add_argument('--epochs', default=5, type=int, required=False, help='训练循环')
parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size')
parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='学习率')
parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数')
parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss,设置为gradient accumulation的整数倍')
parser.add_argument('--stride', default=768, type=int, required=False, help='训练时取训练数据的窗口步长')
parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累')
parser.add_argument('--fp16', action='store_true', help='混合精度')
parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--num_pieces', default=100, type=int, required=False, help='将训练语料分成多少份')
parser.add_argument('--min_length', default=128, type=int, required=False, help='最短收录文章长度')
parser.add_argument('--output_dir', default='model/', type=str, required=False, help='模型输出路径')
parser.add_argument('--pretrained_model', default='', type=str, required=False, help='模型训练起点路径')
parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='Tensorboard路径')
parser.add_argument('--segment', action='store_true', help='中文以词为单位')
parser.add_argument('--bpe_token', action='store_true', help='subword')
parser.add_argument('--encoder_json', default="tokenizations/encoder.json", type=str, help="encoder.json")
parser.add_argument('--vocab_bpe', default="tokenizations/vocab.bpe", type=str, help="vocab.bpe")
args = parser.parse_args()
print('args:\n' + args.__repr__())
if args.segment:
from tokenizations import tokenization_bert_word_level as tokenization_bert
else:
from tokenizations import tokenization_bert
os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡
model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config)
print('config:\n' + model_config.to_json_string())
n_ctx = model_config.n_ctx
if args.bpe_token:
full_tokenizer = get_encoder(args.encoder_json, args.vocab_bpe)
else:
full_tokenizer = tokenization_bert.BertTokenizer(vocab_file=args.tokenizer_path)
full_tokenizer.max_len = 999999
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('using device:', device)
raw_data_path = args.raw_data_path
tokenized_data_path = args.tokenized_data_path
raw = args.raw # 选择是否从零开始构建数据集
epochs = args.epochs
batch_size = args.batch_size
lr = args.lr
warmup_steps = args.warmup_steps
log_step = args.log_step
stride = args.stride
gradient_accumulation = args.gradient_accumulation
fp16 = args.fp16 # 不支持半精度的显卡请勿打开
fp16_opt_level = args.fp16_opt_level
max_grad_norm = args.max_grad_norm
num_pieces = args.num_pieces
min_length = args.min_length
output_dir = args.output_dir
tb_writer = SummaryWriter(log_dir=args.writer_dir)
assert log_step % gradient_accumulation == 0
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if raw:
print('building files')
build_files(data_path=raw_data_path, tokenized_data_path=tokenized_data_path, num_pieces=num_pieces,
full_tokenizer=full_tokenizer, min_length=min_length)
print('files built')
if not args.pretrained_model:
model = transformers.modeling_gpt2.GPT2LMHeadModel(config=model_config)
else:
model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model.train()
model.to(device)
num_parameters = 0
parameters = model.parameters()
for parameter in parameters:
num_parameters += parameter.numel()
print('number of parameters: {}'.format(num_parameters))
multi_gpu = False
full_len = 0
print('calculating total steps')
for i in tqdm(range(num_pieces)):
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'r') as f:
full_len += len([int(item) for item in f.read().strip().split()])
total_steps = int(full_len / stride * epochs / batch_size / gradient_accumulation)
print('total steps = {}'.format(total_steps))
optimizer = transformers.AdamW(model.parameters(), lr=lr, correct_bias=True)
scheduler = transformers.WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps,
t_total=total_steps)
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=fp16_opt_level)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = DataParallel(model, device_ids=[int(i) for i in args.device.split(',')])
multi_gpu = True
print('starting training')
overall_step = 0
running_loss = 0
for epoch in range(epochs):
print('epoch {}'.format(epoch + 1))
now = datetime.now()
print('time: {}'.format(now))
x = np.linspace(0, num_pieces - 1, num_pieces, dtype=np.int32)
random.shuffle(x)
piece_num = 0
for i in x:
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'r') as f:
line = f.read().strip()
tokens = line.split()
tokens = [int(token) for token in tokens]
start_point = 0
samples = []
while start_point < len(tokens) - n_ctx:
samples.append(tokens[start_point: start_point + n_ctx])
start_point += stride
if start_point < len(tokens):
samples.append(tokens[len(tokens)-n_ctx:])
random.shuffle(samples)
for step in range(len(samples) // batch_size): # drop last
# prepare data
batch = samples[step * batch_size: (step + 1) * batch_size]
batch_inputs = []
for ids in batch:
int_ids = [int(x) for x in ids]
batch_inputs.append(int_ids)
batch_inputs = torch.tensor(batch_inputs).long().to(device)
# forward pass
outputs = model.forward(input_ids=batch_inputs, labels=batch_inputs)
loss, logits = outputs[:2]
# get loss
if multi_gpu:
loss = loss.mean()
if gradient_accumulation > 1:
loss = loss / gradient_accumulation
# loss backward
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# optimizer step
if (overall_step + 1) % gradient_accumulation == 0:
running_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if (overall_step + 1) % log_step == 0:
tb_writer.add_scalar('loss', loss.item() * gradient_accumulation, overall_step)
print('now time: {}:{}. Step {} of piece {} of epoch {}, loss {}'.format(
datetime.now().hour,
datetime.now().minute,
step + 1,
piece_num,
epoch + 1,
running_loss * gradient_accumulation / (log_step / gradient_accumulation)))
running_loss = 0
overall_step += 1
piece_num += 1
print('saving model for epoch {}'.format(epoch + 1))
if not os.path.exists(output_dir + 'model_epoch{}'.format(epoch + 1)):
os.mkdir(output_dir + 'model_epoch{}'.format(epoch + 1))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
# torch.save(scheduler.state_dict(), output_dir + 'model_epoch{}/scheduler.pt'.format(epoch + 1))
# torch.save(optimizer.state_dict(), output_dir + 'model_epoch{}/optimizer.pt'.format(epoch + 1))
print('epoch {} finished'.format(epoch + 1))
then = datetime.now()
print('time: {}'.format(then))
print('time for one epoch: {}'.format(then - now))
print('training finished')
if not os.path.exists(output_dir + 'final_model'):
os.mkdir(output_dir + 'final_model')
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'final_model')
# torch.save(scheduler.state_dict(), output_dir + 'final_model/scheduler.pt')
# torch.save(optimizer.state_dict(), output_dir + 'final_model/optimizer.pt')
if __name__ == '__main__':
main()