forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keyboard_agent.py
237 lines (191 loc) · 7.42 KB
/
keyboard_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Keyboard agent."""
import os
import numpy as np
import sonnet as snt
import tensorflow.compat.v1 as tf
from option_keyboard import smart_module
class Agent():
"""An Option Keyboard Agent."""
def __init__(
self,
obs_spec,
action_spec,
policy_weights,
network_kwargs,
epsilon,
additional_discount,
batch_size,
optimizer_name,
optimizer_kwargs,
):
"""A simple DQN agent.
Args:
obs_spec: The observation spec.
action_spec: The action spec.
policy_weights: A list of vectors each representing the cumulant weights
for that particular option/policy.
network_kwargs: Keyword arguments for snt.nets.MLP
epsilon: Exploration probability.
additional_discount: Discount on returns used by the agent.
batch_size: Size of update batch.
optimizer_name: Name of an optimizer from tf.train
optimizer_kwargs: Keyword arguments for the optimizer.
"""
tf.logging.info(policy_weights)
self._policy_weights = tf.convert_to_tensor(
policy_weights, dtype=tf.float32)
self._current_policy = None
self._epsilon = epsilon
self._additional_discount = additional_discount
self._batch_size = batch_size
self._n_actions = action_spec.num_values
self._n_policies, self._n_cumulants = policy_weights.shape
def create_network():
return OptionValueNet(
self._n_policies,
self._n_cumulants,
self._n_actions,
network_kwargs=network_kwargs,
)
self._network = smart_module.SmartModuleExport(create_network)
self._replay = []
obs_spec = self._extract_observation(obs_spec)
def option_values(values, policy):
return tf.tensordot(
values[:, policy, ...], self._policy_weights[policy], axes=[1, 0])
# Placeholders for policy.
o = tf.placeholder(shape=obs_spec.shape, dtype=obs_spec.dtype)
p = tf.placeholder(shape=(), dtype=tf.int32)
q = self._network(tf.expand_dims(o, axis=0))
qo = option_values(q, p)
# Placeholders for update.
o_tm1 = tf.placeholder(shape=(None,) + obs_spec.shape, dtype=obs_spec.dtype)
a_tm1 = tf.placeholder(shape=(None,), dtype=tf.int32)
c_t = tf.placeholder(shape=(None, self._n_cumulants), dtype=tf.float32)
d_t = tf.placeholder(shape=(None,), dtype=tf.float32)
o_t = tf.placeholder(shape=(None,) + obs_spec.shape, dtype=obs_spec.dtype)
# Compute values over all options.
q_tm1 = self._network(o_tm1)
q_t = self._network(o_t)
qo_t = option_values(q_t, p)
a_t = tf.cast(tf.argmax(qo_t, axis=-1), tf.int32)
qa_tm1 = _batched_index(q_tm1[:, p, ...], a_tm1)
qa_t = _batched_index(q_t[:, p, ...], a_t)
# TD error
g = additional_discount * tf.expand_dims(d_t, axis=-1)
td_error = tf.stop_gradient(c_t + g * qa_t) - qa_tm1
loss = tf.reduce_sum(tf.square(td_error) / 2)
# Dummy calls to keyboard for SmartModule
_ = self._network.gpi(o_tm1[0], c_t[0])
_ = self._network.num_cumulants
_ = self._network.num_policies
_ = self._network.num_actions
with tf.variable_scope("optimizer"):
self._optimizer = getattr(tf.train, optimizer_name)(**optimizer_kwargs)
train_op = self._optimizer.minimize(loss)
# Make session and callables.
session = tf.Session()
self._session = session
self._update_fn = session.make_callable(
train_op, [o_tm1, a_tm1, c_t, d_t, o_t, p])
self._value_fn = session.make_callable(qo, [o, p])
session.run(tf.global_variables_initializer())
self._saver = tf.train.Saver(var_list=self._network.variables)
@property
def keyboard(self):
return self._network
def _extract_observation(self, obs):
return obs["arena"]
def step(self, timestep, is_training=False):
"""Select actions according to epsilon-greedy policy."""
if timestep.first():
self._current_policy = np.random.randint(self._n_policies)
if is_training and np.random.rand() < self._epsilon:
return np.random.randint(self._n_actions)
q_values = self._value_fn(
self._extract_observation(timestep.observation), self._current_policy)
return int(np.argmax(q_values))
def update(self, step_tm1, action, step_t):
"""Takes in a transition from the environment."""
transition = [
self._extract_observation(step_tm1.observation),
action,
step_t.observation["cumulants"],
step_t.discount,
self._extract_observation(step_t.observation),
]
self._replay.append(transition)
if len(self._replay) == self._batch_size:
batch = list(zip(*self._replay)) + [self._current_policy]
self._update_fn(*batch)
self._replay = [] # Just a queue.
def export(self, path):
tf.logging.info("Exporting keyboard to %s", path)
self._network.export(
os.path.join(path, "tfhub"), self._session, overwrite=True)
self._saver.save(self._session, os.path.join(path, "checkpoints"))
class OptionValueNet(snt.AbstractModule):
"""Option Value net."""
def __init__(self,
n_policies,
n_cumulants,
n_actions,
network_kwargs,
name="option_keyboard"):
"""Construct an Option Value Net sonnet module.
Args:
n_policies: Number of policies.
n_cumulants: Number of cumulants.
n_actions: Number of actions.
network_kwargs: Network arguments.
name: Name
"""
super(OptionValueNet, self).__init__(name=name)
self._n_policies = n_policies
self._n_cumulants = n_cumulants
self._n_actions = n_actions
self._network_kwargs = network_kwargs
def _build(self, observation):
values = []
flat_obs = snt.BatchFlatten()(observation)
for _ in range(self._n_cumulants):
net = snt.nets.MLP(**self._network_kwargs)(flat_obs)
net = snt.Linear(output_size=self._n_policies * self._n_actions)(net)
net = snt.BatchReshape([self._n_policies, self._n_actions])(net)
values.append(net)
values = tf.stack(values, axis=2)
return values
def gpi(self, observation, cumulant_weights):
q_values = self.__call__(tf.expand_dims(observation, axis=0))[0]
q_w = tf.tensordot(q_values, cumulant_weights, axes=[1, 0]) # [P,a]
q_w_actions = tf.reduce_max(q_w, axis=0)
action = tf.cast(tf.argmax(q_w_actions), tf.int32)
return action
@property
def num_cumulants(self):
return self._n_cumulants
@property
def num_policies(self):
return self._n_policies
@property
def num_actions(self):
return self._n_actions
def _batched_index(values, indices):
one_hot_indices = tf.one_hot(indices, values.shape[-1], dtype=values.dtype)
one_hot_indices = tf.expand_dims(one_hot_indices, axis=1)
return tf.reduce_sum(values * one_hot_indices, axis=-1)