forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
noise.py
117 lines (105 loc) · 4.43 KB
/
noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Settings for adding noise to the action and measurements."""
import numpy as np
from numpy import random
from fusion_tcv import tcv_common
class Noise:
"""Class for adding noise to the action and measurements."""
def __init__(self,
action_mean=None,
action_std=None,
measurements_mean=None,
measurements_std=None,
seed=None):
"""Initializes the class.
Args:
action_mean: mean of the Gaussian noise (action bias).
action_std: std of the Gaussian action noise.
measurements_mean: mean of the Gaussian noise (measurement bias).
measurements_std: Dictionary mapping the tcv measurement names to noise.
seed: seed for the random number generator. If none seed is unset.
"""
# Check all of the shapes are present and correct.
assert action_std.shape == (tcv_common.NUM_ACTIONS,)
assert action_mean.shape == (tcv_common.NUM_ACTIONS,)
for name, num in tcv_common.TCV_MEASUREMENTS.items():
assert name in measurements_std
assert measurements_mean[name].shape == (num,)
assert measurements_std[name].shape == (num,)
self._action_mean = action_mean
self._action_std = action_std
self._meas_mean = measurements_mean
self._meas_std = measurements_std
self._meas_mean_vec = tcv_common.dict_to_measurement(self._meas_mean)
self._meas_std_vec = tcv_common.dict_to_measurement(self._meas_std)
self._gen = random.RandomState(seed)
@classmethod
def use_zero_noise(cls):
no_noise_mean = dict()
no_noise_std = dict()
for name, num in tcv_common.TCV_MEASUREMENTS.items():
no_noise_mean[name] = np.zeros((num,))
no_noise_std[name] = np.zeros((num,))
return cls(
action_mean=np.zeros((tcv_common.NUM_ACTIONS)),
action_std=np.zeros((tcv_common.NUM_ACTIONS)),
measurements_mean=no_noise_mean,
measurements_std=no_noise_std)
@classmethod
def use_default_noise(cls, scale=1):
"""Returns the default observation noise parameters."""
# There is no noise added to the actions, because the noise should be added
# to the action after/as part of the power supply model as opposed to the
# input to the power supply model.
action_noise_mean = np.zeros((tcv_common.NUM_ACTIONS))
action_noise_std = np.zeros((tcv_common.NUM_ACTIONS))
meas_noise_mean = dict()
for key, l in tcv_common.TCV_MEASUREMENTS.items():
meas_noise_mean[key] = np.zeros((l,))
meas_noise_std = dict(
clint_vloop=np.array([0]),
clint_rvloop=np.array([scale * 1e-4] * 37),
bm=np.array([scale * 1e-4] * 38),
IE=np.array([scale * 20] * 8),
IF=np.array([scale * 5] * 8),
IOH=np.array([scale * 20] *2),
Bdot=np.array([scale * 0.05] * 20),
DIOH=np.array([scale * 30]),
FIR_FRINGE=np.array([0]),
IG=np.array([scale * 2.5]),
ONEMM=np.array([0]),
vloop=np.array([scale * 0.3]),
IPHI=np.array([0]),
)
return cls(
action_mean=action_noise_mean,
action_std=action_noise_std,
measurements_mean=meas_noise_mean,
measurements_std=meas_noise_std)
def add_action_noise(self, action):
errs = self._gen.normal(size=action.shape,
loc=self._action_mean,
scale=self._action_std)
return action + errs
def add_measurement_noise(self, measurement_vec):
errs = self._gen.normal(size=measurement_vec.shape,
loc=self._meas_mean_vec,
scale=self._meas_std_vec)
# Make the IOH measurements consistent. The "real" measurements are IOH
# and DIOH, so use those.
errs = tcv_common.measurements_to_dict(errs)
errs["IOH"][1] = errs["IOH"][0] + errs["DIOH"][0]
errs = tcv_common.dict_to_measurement(errs)
return measurement_vec + errs